OLIVER PRETZEL
Imperial College, London

Error-Correcting Codes
and Finite Fields

CLARENDON PRESS - OXFORD
1992

-t ’ T‘(—‘c-\;‘(, <
QUIRE 44T 31, =ve

4 ': (}:

Oxford University Press, Walton Street, Oxford 0X2 6DP
Oxford New York Toronto
Delhi Bombay Calcutta Madras Karachi
Petaling Jaya Singapore Hong Kong Tokyo
Nairobi Dar es Salaam Cape Town
Melbourne Auckland
and associated companies in
Berlin 1badan

Oxford is a trade mark of Oxford University Press

Published in the United States
by Oxford University Press, New York

© Oliver Pretzel, 1992

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, without the prior permission in writing of Oxford
University Press. Within the UK, exceptions are allowed in respect of any
fair dealing for the purpose of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act, 1988, or
in the case of reprographic reproduction in accordance with the terms of
licences issued by the Copyright Licensing Agency. Enquiries concerning
reproduction outside those terms and in other countries should be sent to
the Rights Department, Oxford University Press, at the address above.

This book is sold subject to the condition that it shall not, by way
of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated
without the publisher’s prior consent in any form of binding or cover
other than that in which it is published and without a similar condition
including this condition being imposed on the subsequent purchaser

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
Pretzel, Oliver.

Error-correcting codes and finite fields/Oliver Pretzel.
(Oxford applied mathematics and computing science series)
Includes bibliographical references.

1. Error-correcting codes (Information theory) I. Title. II. Series.
QA268.P74 1992 003'.54--dc20 92-4088

ISBN 019 859678 2

Typeset by Integral Typesetting, Gorleston, Norfolk NR31 6RG
Printed in Great Britain by
Bookcraft (Bath) Ltd,
Midsomer Norton, Avon

To Christl and Raimund

Preface

This book arose out of a series of courses given to students of mathematics
and electrical engineering at Imperial College. The theory of error-correcting
block codes combines mathematical elegance and practical utility to an
unusual degree. Thus, the intention of the courses was twofold. On the one
hand I wished to introduce the mathematicians to some attractive practical
problems and to address these as an essential part of the development of a
mathematical theory. On the other I hoped to persuade engineers of the
power and elegance of modern mathematics and to give them confidence in
using it.

There are many excellent texts on coding theory, notably that by
MacWilliams and Sloane, but I found that they were either too advanced
for my purposes or stopped short of providing all the mathematical tools
required to implement a coding system (like the excellent introductions by
Hill or Pless). I therefore wrote my own set of lecture notes, which form the
basis of Parts 1-3 of the book. These start with a standard elementary
introduction to coding theory, then develop the theory of finite fields (which
is an essential tool) and in Part 3, exploit it to construct and decode BCH
and Reed-Solomon codes.

1 abhor tome-like textbooks that skim over a vast array of topics saying
only trivialities about all of them, So this book does require its reader to
think. My experience has been that although electrical engineers go through
a kind of culture shock as the material on finite fields is presented, they
emerge confident that they can apply them in the many areas of their
discipline in which they appear. Similarly mathematicians used to abstract.
generalities and existence theorems find the concerns of coding theory
unfamiliar but gain a deeper understanding of the mathematical theory by
seeing it at work. .

The standard courses at Imperial College covered most of the material in
Parts 1-3. The additional sections (the Extras), were only mentioned, or left
out of the course entirely. However, in writing the book, I could not resist
the temptation to add a further part on Goppa codes (both classical and
geometrical) including the decoder of Skorobogatov and VIidut. This part
was tried out in a postgraduate course at the University of London. During
that course it became evident that the major difficulty in presenting geometric

Goppa codes is to find a simple presentation for the geometry of algebraic -
curves. Chapters 21-23 are my attempt to do this. I hope that once a reader- -

has worked through the first three parts of the book, these chapters will not

viii Preface

present excessive difficulties. In treating Goppa’s codes, I have tried to exhibit
them as natural generalizations of BCH codes, and included proofs that BCH
codes are a special class of both classical and geometric Goppa codes in the
exercises.

All parts contain exercises. These range from routine calculations to
extensions of the theory. Routine calculations are extremely important for
the understanding of the subject, and all chapters contain extensive examples
to guide the reader. He or she should work through these carefully and then
do the corresponding exercises to gain confidence. The more theoretical
exercises are to some extent optional. They certainly contain material that
will deepen the reader’s understanding of the codes, but on the other hand,
they are not essential. How many of these should be attempted depends on
the reader’s purpose in studying the book and on his or her ‘mathematical
maturity’. Attempt at least a few, and if you enjoy them try more.

The book also contains two short appendices, one on linear algebra and
the other on polynomials. The first is provided mainly because engineers
frequently have not seen the rank and nullity theorem explicitly and also
because linear algebra is usually taught only for real and complex numbers,
whereas coding theory uses finite fields. The second is a quick refresher on
the properties of polynomials.

Each of the four parts of the book is divided into chapters. The chapters
are split into sections or paragraphs, numbered consecutively. Theorems,
propositions, and definitions are referred to by their section numbers. If the
reference is to Section 7 in Chapter 3, it is given as 3.7. Some chapters have
‘extra’ sections at the end that can be omitted at first reading. The start of
these sections is marked by the heading ‘Extras’. External references are
given by authors’ names and the date; there are separate lists for textbooks
and papers in journals.

My thanks are due to my students and colleagues who attended the
lectures. I frequently learned as much from them as they did from the courses.
‘What qualities the book may have are due to them in no small measure. I
must particularly thank Benjamin Baumslag who read early drafts in detail
and made many suggestions for improvement. Without his enthusiasm and
insistence I would never have completed the book. I would also like to thank
the copy editor for his careful reading of the text. He introduced many
improvements. Naturally, its deficiencies are my own.

Imperial College, London
March 1992

O.R.LP.

Contents

PART 1 BASIC CODING THEORY

1 Introduction 3
Errors of transmission. Examples from natural language. Channel models.
The binary symmetric channel. Three simple codes (a parity check code, a
triple repetition code, and a triple parity check code).

2 Block codes, weight, ‘and distance 13
Block codes. Block length, message block length, and rate. Definition of
Hamming weight and distance. Minimum distance, error detection, and error
correction, Block and message success probabilities. Calculation of error
detection/correction probabilities for the examples of Chapter 1. Discussion
of Shannon’s theorem (without proof). ’

3 Linear codes 27
Definition of linear codes and fields. Dimension and rate. The generator
matrix. Standard form generator matrices and systematic encoding. Message
and check bits. The check matrix. Uniqueness of standard form generator
and check matrices.

Decoding by cosets (standard array). Coset leaders and syndromes. Code
can correct single errors if and only if check matrix has distinct non-zero
columns. Conditions for multiple error correction.

4 Error processing for linear codes 47

5 Hamming codes and the binary Golay codes 63

Definition of the sequence of binary Hamming codes Ham(k) by their check
matrices. Success probabilities for Hamming codes. Long Hamming codes
are very efficient, but poor at correcting errors. Perfect codes. Construction
of the binary Golay codes by Turyn’s method.

Appendix LA Linear algebra 79
The laws of arithmetic: rings, domains, and fields. Elementary vector space
theory. Bases and dimension. Elementary matrix theory. Row operations,
rank, and nullity. Vandermonde matrices.

X Contents
PART 2 FINITE FIELDS

6 Introduction and an example 95

The need for fields other than Z/2. An attempt to construct a field of order
16. Z,/16 will not do. Polynomial arithmetic. Table of GF(16).

7 Euclid’s algorithm 106

Division with remainder. Euclidean domains with F[x] and Z as examples.
Euclid’s algorithm in tabular form for a Euclidean domain. Finding the
highest common factor in the form (a, b) = ua + vb.

Extras. Relations between entries in the table for Euclid’s algorithm.
Continued fractions. Convergents, the entries in the tabular form of Euclid’s
algorithm and convergents to continued fractions.

8 Invertible and irreducible elements 122

Definition of invertible elements in a Euclidean domain. Definition of
irreducible elements in a Buclidean domain. The 1-trick and the key property
of irreducible elements. Discussion of unique factorization.

Extras. Proof of unique factorization.

9 The construction of fields 136
Construction of the factor ring (residue class ring) D/a. D/a is a field if and

only if a is irreducible. Using Euclid’s algorithm to perform field arithmetic
in F[x]/f(x). Examples: GF(16) as GF(2)[x]/(x* + x> + 1), Z/787.

10 The structure of finite fields 151

The prime field and the characteristic. The order of a finite field. The
Frobenius automorphism x — x?. Fermat’s little theorem: if F has order g
then all its elements are roots of x? — x. Example: GF(16).

11 Roots of polynomials 166

The evaluation map. Its basic properties (i.e. it is a homomorphism). The
formal derivative. Horner’s scheme for evaluating a polynomial. Extension
of Horner’s scheme to evaluate the derivative. Multiple roots. The minimal
polynomial of a. Characterization of the minimal polynomial and the set
(ideal) of polynomials with « as a root. List of minimal polynomials of
elements of GF(16). Isomorphism F[o] =~ F[x]/mp,(x). Construction of a
field containing a root of a given polynomial. Existence of finite fields of all
legal orders.

Extras. Calculation of the minimum polynomial of f using the Frobenius
automorphism.

Contents xi

12 Primitive elements 179
Definition of primitive elements. Primitive elements of GF(16). Logarithms
for calculating products and quotients in finite fields. Zech logarithms for
calculating sums. Primitive polynomials. Existence of primitive elements.
Existence of subfields of all legal orders. Isomorphism of fields of the same
order. The polynomial x? — x is the product of all irreducible polynomials
of degree dividing g.

Extras. The number of irreducible polynomials of a given degree.

Appendix PF Polynomials over a field 191
Recapitulation of the basic theory of polynomials over a field. Definition,
addition, multiplication, degree. F[x] is an integral domain. Division with
remainder. Polynomials in two indeterminates.

PART3 BCH CODES AND OTHER POLYNOMIAL
CODES

13 BCH codes as subcodes of Hamming codes 201

Example: BCH(4, 2) constructed from Ham(4) by extending the check matrix
H,. Extensions must not be linear (or quadratic). View H, as having entries
in GF(2¥). Criterion for multiple error correction. Vandermonde matrices.
The full check matrix ¥, , and the reduced check matrix Hy 2 (V. and H ,
in general). Example BCH(4, 3). BCH(k, f) can correct ¢ errors per block. It
has block length 2% — 1 and dimension >2* —1 — kt.

14 BCH codes as polynomial codes 216
Example: BCH(4, 3) used throughout to illustrate the theory. Code words
as polynomials. Redefine BCH(k, ¢) in terms of polynomials. The generator
polynomial of BCH(k, ¢). Dimension of BCH(k, t). Encoding by multiplica-
tion. The check polynomial of BCH(k,). Use of the check polynomial, to
verify and decode a code word. Systematic encoding by division with
remainder.)

Extras. Polynomial codes in general. Cyclic codes in general. Recognition
of polynomial and cyclic codes.

15 BCH error correction: (1) the fundamental equation . 233
Example BCH(4, 3) continued. The error polynomial and error locations.
Syndromes; calculation via Horner’s scheme. Direct solution of case of two
errors. The syndrome polynomial. Derivation of the fundamental equation.
The error locator, error evaluator and error co-gvaluator polynomials.
Uniqueness of these as solutions of the fundamental equation.

xil Contents

16 BCH error correction: (2) an algorithm 249
Example BCH(4,3) continued. The Sugiyama-Kasahara~Hirasawa—
Namekawa error processor using Euclid’s algorithm. Failure modes of the
algorithm. .

17 Reed-Solomon codes and burst error correction 267

Example RS(4, 3) used throughout. The Reed-Solomon code RS(k, t) corre-
sponding to BCH(k, t). Adaptation of the decoding algorithm to RS(k, ¢).
Failure modes. RS(k, t) as a cyclic code over GF(2¥). Parameters of RS(k, t)
over GF(2*) and GF(2). RS(k, t) as a burst error-correcting code. Comparison
with interleaved BCH(k, ¢). :

Extras. Detailed proofs of the statements concerning error modes.

18 Bounds on codes 287

Extending, shortening and puncturing a code. The Singleton bound. MDS
codes. Reed—Solgmon codes are MDS. Coding bounds based on sphere
packing: the Hamming bound, the Gilbert-Varshamov bound. The asymp-
totic Gilbert-Varshamov bound.

Good and bad families of codes. BCH codes are bad in relation to their
designed distance, although their parameters for moderate block lengths are
good. Estimates for the true minimum distance. Discussion of the fact that
BCH codes are still bad for their true minimum distance,

Extras. Proof of the estimates used in establishing the asymptotic Gilbert—
Varshamov bound.

PART4 CLASSICAL AND GEOMETRIC GOPPA
CODES

19 Classical Goppa codes 303

Deﬁnition of ~the Goppa Code GC(P,g) with Goppa polynomial g(x).
Rational functions over GF(g). Dimension of GC(P, g), special case of binary

Goppa codes. Minimum distance of the GC(P, g). Goppa codes and codes of
BCH-type.

20 Classical Goppa codes: error processing 320
The error locator and error evaluator polynomials, the fundamental equa-
tion. Euclid’s algorithm decoding for GC(P, g).

Extras. Classical Goppa codes are bad for their designed distance, but there

exists a sequence of classical Goppa codes that is good for the true minimum
distance.

Contents Xiii

21 Introduction to algebraic curves 333
Irreducible polynomials in F[x, y] and plane curves. Points of curves. Points
over extension fields. Projective transformations and points at infinity (using
three affine coordinate systems). Calculation of points on example curves
over finite fields.

22 Functions on algebraic curves 343
The coordinate ring of a curve and the field of functions of a curve. Invariance
under projective transformation. Rational and non-rational curves. Orders
of functions at points. Non-singular points.

23 A survey of the theory of algebraic curves 355

The existence of non-singular points. The degree theorem, divisors, L-space,
rank, and degree of a divisor. Explicit calculation of bases of L-spaces for
example divisors. Riemann’s theorem and the genus. The Plicker formula
for the genus. The main theorems are not proved, but consequences from
them are drawn, and some important special cases are dealt with in detail.

24 Geometric Goppa codes 368
Definition of geometric Goppa codes and their duals. Classical Goppa codes
as examples. Check matrices for Goppa codes. Dimension and minimal
distance. One-point codes. Examples based on the curves of Chapter 21.
Extras. Discussion of the fact that primary and dual Goppa codes form
the same class.

25 An error processor for geometric Goppa codes 379
Conditions under which the error processor will work. Specialization to
one-point codes. The Skorobogatov-Vlidut error processor. Error locator
functions in the L-space of the auxiliary divisor. Proof that the error
processor works. Example calculations-for short one-point codes. Compari-
son of a long one-point code with a Reed—-Solomon code.

Extras. Discussion of Tsfasman-Vlddut-Zink curves as examples of curves
with many rational points. Estimates for Goppa codes based on such curves.
Some sequences of geometric Goppa codes meet the asymptotic Gilbert—
Varshamov bound, even when error correction is limited to the SV-processor.

Bibliography 391

Index 394

Part 1

Basic coding theory

1 Introduction

You wake up one morning and in the half-light you see a figure with a
strange hat crouching in the corner of the room. After a moment your eyes
adjust and you realize that it is just your clothes thrown over a chair, and
some bottles on the dressing table behind. Now you notice that your loved
one is gone and find a note on the pillow saying ‘1 LOVE XOU".

Almost certainly this will reassure you, as you will assume that in the dark
the Y became an X. Of course, that is not 100 per cent certain. It is just
possible that the X was intended for an L and that you have been abandoned
for your close friend (or so you thought) Lou.

This example contains the essence of coding theory. In transmitting or
storing and reading messages there is always a possibility of error and any
robust communication system must cope with it with a high degree of
reliability. Natural systems such as our eyes or the English language achieve
reliability in two ways that have similar features, but are clearly distinct. The
first part of the story illustrates the way our eyes work. That seems to be to
use experience to guess the meaning of what they see. Our brains are very
good at this, perhaps because they use many independent guessing mechan-
isms and then compare the results. We can be fooled, by optical illusions
or when we are disoriented, but on the whole our eyes are very reliable.

The mechanism used by language is slightly different. Consider the pillow
note in the example. Xou is not a word in the English language. So either
it represents a name, or you know that an error has occurred. Now, certain
types of error are far more frequent than others. Roughly, we can say that
errors will, with very high probability, involve only a few letters. There are
not many words in the English language that can be transformed into each
other by changing only a few letters. So it is likely that there are very few
candidates for the correct version of a misspelled word. English operates a
similar mechanism at the next level. Most word sequences either do not
make sense or violate the laws of grammar. Thus there is further checking
to see if a word is correct.

The difference between the two systems used by vision and language is
that the second makes use of built-in restrictions in the language rather than
experience. These restrictions ensure that most sequences of letters do not
form words, and most sequences of words do not form sentences. English
uses the letters of the alphabet inefficiently, but gains in robustness from that
inefficiency.

The theory of error-correcting codes deals with the general problem of

4 Error-correcting codes and finite fields

transmitting messages reliably. The words ‘transmitting’ and ‘message’ are
taken in the widest possible sense. The message can be a piece of music, a
text, a picture, or simply a stream of 1s and Os. Transmission includes storage
to be read later, as well as speech, the telegraph, television, or satellite
communications.

Both of the natural error-correction methods illustrated in our story are
emulated by artificial systems. The first is the model for image enhancement
techniques, where statistical methods are used to improve received pictures.
The second is the model for the subject of this book, classical coding theory.
In the classical theory we make no assumptions about the nature of the
message that is to be transmitted. We therefore have no statistic on which

to base a guess of the correct message. Instead we must build redundancy .

into the message at the transmitter, much as written English does, in order
that the receiver can use that redundancy to correct any errors that may
have occurred on the way. Of course, this goal cannot be achieved with
certainty, but high probability is possible.

A weakness of classical coding is that errors that occurred before the
transmitter ‘encoded’ and transmitted the message cannot be detected at all.
On the other hand, the implementation of a modest correcting system is
extremely simple and easy to understand, as you will see.

1.1 The basic problem

We can describe the situation we wish to model very roughly as follows.
Information is sent via a channel which is prone to errors. The distorted
information is processed at the receiving end to restore the original message
as nearly as possible.
The channel can take many forms.

Examples

o Radio communications of all kinds, television and satellite pictures. Here
the channel is the combination of modulator that translates the informa-
tion into electrical signals, transmitter, receiver and demodulator. This
book will not discuss modulation. For that you should consult a textbook
on signal processing.

e Computer file transfers such as the links between cash dispensers and the
banks’ central computers. In this example the main part of the channel is
likely to be a cable.

e Tape recorders, compact disks, floppy disks, textbooks. Now the channel
is a storage medium together with the means of storing and retrieving
information from it. Errors can occur either by a failure of the storage or
reading device or by deterioration of the medium.

Introduction 5

e Talking in a noisy pub. loudspeaker announcements at railway stations.
Oral language also has built in error-processing capabilities, and our ears
have a remarkable capability for selective hearing.

In many of the examples the information is passed through the channel
in separate lumps like the letters in a book, or the individual dots of a
television picture. But it is also possible that it is sent in some continuously
varying form like music on the radio, or speech. We shall discuss only the
first type of channel which is called a discrete channel.

We assume the message is composed of symbols or characters from a fixed
finite set which we shall call the alphabet. In the case of English the alphabet
contains not only the upper and lower case letters and numerals but also
all the punctuation marks and the space character. All in all, that gives an
alphabet with about 80 symbols. All alphabets will be assumed to have a
null character which will be denoted by 0. The null character in English is
a space. Of course, an alphabet with only one character would be useless
(why?). So the simplest alphabet is the binary alphabet consisting of two
symbols 0 and 1, which we denote by B:

B ={0,1}.

The elements of B are called bits (binary digits).

In this chapter it will do no harm if you assume that the alphabet
being used is B, but for later use the definitions will be given for general
alphabets 4.

1.2 Three simple codes

We shall now construct three very simple binary codes. These are not really
of great practical use or sophistication, they just represent the kind of
construction you might first think of, if you were trying to develop coding
theory from scratch.

Examples

o Code A. The (8, 7) parity check code. Many computers use a sequence
of eight bits, a byte, as a unit of information. For instance the ASCII code
which is in almost universal use for microcomputers represents characters
like ‘a’, *B’, and ‘3’ by bytes. A byte can represent any value between 0
and 255. As we have seen, English only needs about 80 characters. So,
even allowing for ‘control codes’ representing internal instructions, seven
bits ought to be enough. We can therefore use the eighth bit to check that
the byte is being correctly transferred. We set the eighth bit of each byte

Error-correcting codes and finite fields

so that the number of Is in the byte is even. For example, the ASCII code
for the digit 1 (seven bits in ascending order) is

‘1" 1000110.
We encode this as
10001101.
On the other hand, the ASCII code for the letter A is
‘A’ + 1000001
and we encode this as
10000010.

Now if a byte is transferred and one of the bits goes wrong, then the
number of 1s becomes odd. So the receiver can ask for a retransmission.
There is no way the receiver can tell which bit went wrong, and if two
bits are incorrect the receiver will let the byte through. Incidentally, in
practice the order of the bits is reversed, so that the check bit comes first.

We will discuss the performance of this code (and the other two
examples) more mathematically in Chapter 2. But we can already make
some observations.

1. The code is very economical (the encoded message is 4th longer than
the original).

2. It cannot correct errors. So it is only suitable where the receiver can
ask for retransmission (because while errors can be detected, they
cannot be located).

3. The probability of errors during transmission should be fairly low
(because the code cannot cope with two errors in a byte).

Code B. The triple repetition code. Now let us go to the other extreme.
Imagine an ultra-conservative telegraph operator who wants to be quite
sure that his transmissions get through properly. He decides to repeat
each bit three times.

0 - 000, 1 - 111

Suppose the receiver gets a block 101. He can either say ‘something’s
gone wrong, let’s ask Haggerty for a retransmit’ or he can guess that it is
more likely that the 0 is wrong than the two 1s and correct to 111. That
will be quicker but there is some risk because though it is unlikely, it is
not impossible that the two 1s went wrong.

As above, we can give a rough assessment of the code’s characteristics.

1. The code is very uneconomical (the encoded message is three times
as long as the original).)

o

Introduction 7

2. Tt can correct single errors in a block of three, or alternatively where
retransmission is possible, it can be used to detect single or double
errors in a block of three.

3. For correction the error probability can be moderate, and for
detection it can be quite high.

e Code C. The triple check code. Our last code is a first attempt at a

practical code. We divide the message into blocks of three, say ‘abc’,
where each of a, b, and ¢ is 0 or 1, and add three check bits ‘xyz’, also
each 0 or 1. The way we do this is such that three conditions are satisfied:

1. The number of 1s in abx is even.
2. The number of 1s in acy is even.
3. The number of 1s in bcz is even.

So if
abe = 110,

then

x =0,

y=1,
and

z=1
Thus the code word is

110011.

Before continuing you should write down all the code words of this code
(there are 8).

The triple check code can not only detect but also correct single errors
in a block of 6 because

If a is incorrect conditions (1) and (2) will fail.
If b is incorrect conditions (1) and (3) will fail.
If ¢ is incorrect conditions (2) and (3) will fail.
If x is incorrect condition (1) alone will fail.
If y is incorrect condition (2) alone will fail.
If z is incorrect condition (3) alone will fail.

So by examining the conditions, the receiver can find a single erroneous
bit. Note that we must not assume that our check bits will be immune
from error.

If we only want to detect the presence of errors then the receiver can
detect any two errors. For if two bits are in error there is a condition

8 Error-correcting codes and finite fields

involving one but not the other. Hence not all conditions will be satisfied.
It is, however, possible that a different single error would produce the
same symptoms of incorrectness. For instance, if a and x are incorrect,
then only condition (2) will fail, so if the receiver adopted a correction
strategy he would make a mistake and ‘correct’ y.

This code has the following properties.

1. The code is moderately uneconomical (encoded message twice as
long as original).

2. For correction it can deal with one error in a block of six. For
detection it can deal with two errors in a block of six.

3. Since it deals with one or two errors in a block of six rather than a
block of three it will not be quite as reliable as triple repetition.

In fact, if it is used for pure error detection the code can do rather better
than this discussion suggests (see Section 2.9).

1.3 Channel models

We now return to the ideas we are trying to model. The examples above are
very primitive and we have not considered the way that the channel
introduces errors. But the more accurately we try to emulate the behaviour
of the real-life system we are modelling, the more complicated the model
becomes. To begin with we choose the simplest model, the random error
channel. That was the model implicitly used in our examples.

Definition A channel is called a random error channel if for each pair of
distinct symbols a, b of the alphabet there is a fixed probability p, , that
when a is transmitted b is received.

The main point of this definition is that p, , does not depend on anything
else, such as whether the previous symbol was correctly transmitted or not.
It is common practice to indicate this by the inelegant adjective ‘memoryless’,
but in this book the word ‘random’ alone will be used.

The random channel may be a poor model. Imagine you are standing on
the platform of a railway station. The loudspeaker starts ‘Here is an
important announcement ..., and at that instant an express train comes
through on the opposite platform, and the rest of the announcement is
swamped. This channel is not random. The error affects a whole chunk of
the message, and the message is lost rather than distorted. Here are two
rather more practical examples. With storage media errors tend to affect
several symbols at a time. The burst error channel, which will be discussed
later in the book, is a more appropriate simple model for this type of

Introduction 9

situation. If the previous symbol was in error, that will increase the
probability of the current symbol being corrupted. H.av-ing parts of the
message swamped by noise is common in radio transmission. This type of
error is called an erasure. With erasures we know where things have gone
wrong, but not what the correct symbol was. It is not very difficult to exte'nd
our theory to account for erasures as well, but for the moment let us stick
to ordinary errors.

For simplicity we shall also assume that p, ;, is independent of the symbols
a and b (providing b # a).

Definition A random error channel is called symmetric if the probabilities
Pa.» are the same for all possible choices of pairs a, b with a # b.

For the rest of the book we shall assume that we are dealing with a discrete
random symmetric channel unless we explicitly state otherwise. For the timp
being we shall restrict ourselves to the binary alphabet. So our initial topic
is ‘coding for the binary symmetric channel’.]

We shall use p for the probability of an error occurring in a single bit.
We can assume that p < &, because if p > 4 the probability that the wrong
bit is received is (1 — p) < 3. So just by reversing every received bit we would
change to a channel with p < 4. If p = 4, then the output of the channel is
independent of the input and we might as well stop transmitting.

Here is a picture of a channel.

ok ok ok ook ok dokok kR ok

% Random error #
3 generator ¥

) advr» avrA}])

Signal Y Distorted signal

1.4 Encoders, error processors, and decoders

The next stage of our model is to introduce the idea of an encoder. This
takes the input signal, which we shall call the message, and modifies it in order
to make it possible to detect, and perhaps also correct, any errors that the
channel is likely to induce. At the other end we must have a decoder which
retrieves the original message, but before we apply the decoder we need an
error processor. This attempts to correct or detect errors in the received
message. According to circumstances it may modify the received message to

10 Error-correcting codes and finite fields

«?nable the decoder to translate it (error correction), or send an error signal,
in which case the decoder will ignore part of the incoming message (error
detection). Often the decoder and error processor are lumped together and
the error signal is called a decoding failure. But it is better to keep them
separate in your mind even though in some implementations it is natural to
combine them.

The complete picture of our model now looks like this:

ok ok ok kR ok sk ok

% Random error 4
. generator v

Jlyaey» avral])
ignal l

Message S
Encoder >
word x Code word u

Distorted signal
Received word v

X Code Message
Syeeived | Brror word 1’ word X’

word U processor

v + error signal

1.5 Specific cases

To make this more concrete I shall describe the encoders, error processors
and ~dé:coders of the three example codes explicitly. We shall assume that the
receiver adopts a correction strategy where possible.

e Code A
Encoder: Divide message into blocks of seven. To each block add an
eighth bit to make the number of 1s even.
Error processor: Count number of Is in received block. Error signal if the
number is odd.
Decoder: Strip the eighth bit.

e Code B
Encoder: Repeat each bit three times.
Error processor: Take the majority vote in each block of three and make
all three equal to that.

Introduction 11

Decoder: Strip the last two bits.

e CodeC
Encoder: Divide message into blocks of three. To each block of three

calculate a further three bits satisfying conditions (1), (2) and (3).
Output the amalgamated block of six.

Error processor: Check conditions (1), (2) and (3). If none fail, word is
correct. If one or two fail, correct the single bit involved in the failing
conditions and not in the others. If all three fail, send error signal.

Decoder: Strip last three bits off each block (unless error signal).

The examples show that the decoder is often an almost trivial component.
Example B illustrates that the separation of error processor and decoder
may be somewhat artificial

1.6 Summary

In this initial chapter the ideas of a communication channel and in
particular the binary symmetric channel were introduced. Three simple
example codes for the binary channel were defined and their error-processing
capabilities were discussed.

Exercises 1

1.1 A spelling checker is a kind of error processor for typewritten English.
Consider what strategies a spelling checker should adopt. Why is the
symmetric channel model, used for binary codes, not adequate for a
spelling checker?

1.2 Extend the definition of the (8, 7) parity check code to define an
(n + 1, n) parity check code, adding a parity check bit to every block
of n message bits. What are the advantages and disadvantages of taking
n large in this definition?

13 Extend the definition of the triple repetition code to define an n-fold
repetition code. What are the advantages and disadvantages of taking
n large in this definition?

1.4 There is one pattern of incorrect equations that the triple check code
does not exploit to correct an error. Try to modify the definition of the
triple check code to produce a code which adds three check bits to
every block of four message bits and can still correct any single error.

1.5 Show that it is not possible to devise a code adding three check bits to
every block of five message bits in such a way that the code can correct

every single error.

12 Error-correcting codes and finite fields

1.6 The standa}'d ASCII code used to represent printable and non-printable
characters in computers contains 128 7-bit symbols: for instance (in the
usual descending order) ‘0’ is 0110000, a space * * is 0100000, ‘A’ is
100000.1, and ‘a’ is 1100001, Devise a single error-correcting code for
transmitting ASCII, using as few check bits as possible. Give encoding
and error-correcting rules.

2 Block codes, weight, and distance

All the examples of Chapter 1 divide the message into blocks before they
process it. We shall concentrate on such codes, as they form the best vehicle
for introducing the ideas of coding theory. For simplicity the channel will
be taken to be the binary symmetric channel. Having found some examples,
we need a method to assess their performance over a given channel. The key
concept that forms the basis for the assessment is the Hamming distance,
which is just the number of places in which two words differ. We shall show
that the Worst case error-processing performance of a code is completely
determined by the minimum distance between code words.

Then some elementary probability theory can be used to assess the
performance of a code. This will be illustrated by calculating the success
probabilities of our examples in transmitting a message of 10000 bits over
a channel with a bit error probability of 0.1 per cent.

Finally we shall discuss Shannon’s theorem, which represents the remark-

able theoretical optimum for average coding performance.

2.1 Block codes

Taking the sample codes of Chapter 1 as our model, we adopt the convention
that our encoders will divide the message into words or blocks, sequences of
symbols of a fixed length m, the encoder translates each word into a code
word of a fixed length n. Such codes are called block codes.

Definition If Ais an alphabet an A-word or A-block of length n is a sequence
of n symbols from A. The set of A-words of length n is denoted by A"

If 4 has g symbols, then there are g choices for the symbol in each place
in an A-word of length n. So the total number of such words is ¢". Using
the conventional notation |A| for the number of members of the set A, this
can be expressed by the suggestive equation |A"| = |A["

Having defined blocks we can now define block codes formally. Notice
how the following definition copies the way our exarnple codes were defined.

Definition An (n, m)-block code C over the alphabet A of size ¢ consists of
a set of precisely ¢" code words in A"
An encoder E for C is a map from A™ to C. It translates any A-word x of

14 Error-correcting codes and finite fields

length m into a code word u = E(x). Every message word must correspond
to a unique code and every code word must represent a unique message
word. In technical terms, the encoder must be bijective.

The corresponding decoder D is the inverse map of E. It takes every code
word u = E(x) back to x.

The number n is called the block length of the code.

We shall call the number m the rank of the code.

The fraction m/n is called the rate of the code.

For our sample codes the data are as follows.

Examples
Numbers:

Name Block length Rank Rate
Code Parity check 8 7 %
Code B Triple repetition 3 1 L
CodeC Triple check 6 3 1

The reason we require precisely g™ code words is to ensure that an encoder
exists. There are g™ possible message words and each must correspond to a
code word. These code words must be distinct. Any further code words are
not used and may as well be discarded. In particular a binary code of rank
m must have 2™ code words. Very often the encoder will preserve the message
word x as the first part of the code word E(x). For instance, all the encoders
for the sample codes behave like that. Such an encoder is called standard or
systematic. In that case the code word is divided into message symbols and
check symbols and the decoder merely strips the check symbols. Of course
m < n, because the code lies in 4" So the rate is always <1.

With a binary symmetric channel the error-processing capabilities of the
coding system do not depend on the encoder and decoder, but only on the
set of code words, because these are all that the channel sees. The choice of
encoder and decoder is thus only a matter of practical convenience. Most
of coding theory is concerned with the construction of codes C and efficient
€ITOI ProCessors.

2.2 Weight and distance

When errors occur in transmission the receiver reads a word v although the
transmitter sent a word u.

Definition 1fu= (uy,...,u,)and v = (vy,...,v,)are words in A", we shall
refer to u; as the entry of u in place j and we shall say v differs from u in place
jif u; # v;. The words position and location are synonyms for place.

Block codes, weight, and distance 15

In this context it is usual to call the word v that will be analysed by the
error processor the received word. If the received word v differs from the
transmitted one in k places we say an error of weight k occurred or more
loosely that k errors occured.

Examples Suppose u = (1,0,0,1,1,0) is transmitted and v = (1,1,0,1,0,0)
is received. Then an error of weight 2 has occurred (or in loose parlance two
errors occurred).

It is useful to formalize this idea by regarding the number of places in
which two words differ as a distance between them.

Definition The Hamming distance d(u, v) between two words u and v is the
number of entries in which they differ. The Hamming weight wt(u) of u is
the number of non-null entries in u.

If 0 is the word (0,...,0) then wt(u) = d(u, 0).

The term ‘distance’ in the name Hamming distance is quite appropriate.
There are certain formal properties that a distance function must satisfy in
order that it behaves in the way we expect. These are listed below, and
followed by the straightforward verification that they are satisfied by the
Hamming distance.

Definition Distance axioms. A function f(x, y) on pairs of elements of a
set § is a distance function if it satisfies the following conditions.

f(x, y) is always a non-negative real number.
f(x,y) = 0if and only if x = y.

10, 9y =13 %)

For any three elements x, y, z of S,

fx2) < f(x,9) + f(32)

Condition (4) s called the triangle inequality, because if x, y, and z are
thought of as the corners of a triangle it states that the length of any side
of a triangle is at most the sum of the lengths of the other two sides.

el

X z

Proposition The Hamming distance is a distance function.

16 Error-correcting codes and finite fields

Proof By its definition the Hamming distance satisfies (1)-(3). To see that
(4) holds, let x = (x1,...,%,), y=(1»...>¥,) and z=(zy,...,2,). Then
d(x, z) is the number of places in which x and z differ. If we denote the set
of these places by U, then

d(x,z) = U\ = [{ilx; # z;}I.

Let S = {ilx; # z; and x; = y;} and T = {ilx; # z; and x; # y;}. Then U is
the disjoint union of S and 7. Hence

d(x, z) = |S| + |T}.

It is immediate from the definition of d(x, y) that x differs from y in all the
places in 7. Thus .

IT < d(x,)
On the other hand if i € S, then y; = x; # z;. So
18] < d(y, 2),
and (4) follows. |]

2.3 Error processing

An error processor P for C could just test each word v it receives to see if
it is a code word or not and send an error signal for a non-code word, or
it could attempt to correct certain non-code words. To give a flexible formal
definition, we assume that when it receives a word v the processor puts out
a word u and a signal (‘good’ or ‘bad’). The signal says whether the processor
is putting out a code word or not.

Definition An error processor P for C is a map that accepts a word v of
length n (called the received word) and produces a pair (x, u) where x takes
on two values (‘good’ or ‘bad’) and u is a word of length n. The signal x
has the value ‘good’ when u is a code word and ‘bad’ otherwise. An error
processor that always leaves the received word unchanged is called an error
detector and we shall call an error processor that always produces a code
word perfect.

Any error processor must start by testing the received word v to see if it
is a code word or not. If v is a code word then the error processor’s job is
over. It has no means of knowing what the message was and so it can do
no better than accept the word it received as correct. It will transmit it
unchanged with a ‘good’ signal.

Block codes, weight, and distance 17

This means that error patterns that distort one code word into another
code word are undetectable and hence uncorrectable. Suppose now that we
want to be able to detect all errors of weight at most s. It is clearly necessary
that any two distinct code words are at Hamming distance s + 1. That makes
it natural to introduce a word for the smallest possible distance between
distinct code words.

Definition Let C be an (n, m)-code. The minimum distance d(C) of C is the
smallest Hamming distance between distinct code words of C. T his measure
is so important that we sometimes call attention to it by describing C as an
(n,m, d)-code.

Examples

o The parity check code A has minimum distance 2, because it consists of
all words of even weight.

e The triple repetition code B has minimum distance 3, because it contains
only the two words (0, 0, 0) and (1, 1, 1).

o The triple check code C also has minimum distance 3. You can see this
by writing down all eight code words.

2.4 Error detection: a necessary and sufficient condition

The condition for error detection we derived above is not only necessary, it
is also sufficient.

Proposition Let C be a code. Then it is possible for an error processor for C
to detect all errors of weight <s if and only if d(C) > s + L.

Proof If two code words u and v are at distance at most s, then one
can be distorted into the other by an error of weight at most s. In that case
no error processor for C can detect all errors of weight at most s. Conversely
if any two code words are at distance at least s + 1, then any error of weight
s will distort a code word into a non-code word. An error detector can check

S p— - - - ——

18 Error-correcting codes and finite fields

whether a received word is a code word or not (for instance by looking it
up in a table). Hence all errors of weight at most s are detectable. n

2.5 Error correction: a necessary and sufficient condition

There is a similar condition for error correction. Suppose we wish to be able
to correct all single errors. Then given a received word and the information
that an error of weight one occurred, there must be only one code word that
could have been transmitted. In other words no two code words u and v
may be at distance at most 1 from same word w. Thus (by the triangle
inequality) the code must have minimum distance at least 3.

A similar argument works for larger errors. If we are to be able to correct
all errors of weight up to ¢, then given a word and the information that an
error of weight at most ¢ occurred, there must be a unique code word that
could have been transmitted. So no two code words may be at distance at
most ¢ from the same word w. Hence the code has minimum distance at
least 2t + 1.

Again this condition is also sufficient.

u v

Proposition There exists an error processor for the code C that corrects all
errors of weight up to t if and only if C has minimum distance 2t + 1.

Proof Suppose the code contains two code words u and v at distance at
most 2t. Let w be a word that agrees with u at all places that u and v agree.
Further let w agree with u at the first ¢ places where u and v disagree and
with v in the remaining places where u and v disagree (if d(u, v) <t take
w =). Then d(u, w) < t and d(v, w) < t. Now suppose w is received together
with the information that at most ¢ errors occurred. Then either u or v could
have been transmitted (and possibly even some other code word). There is
no way that from the given information an error processor can decide with
certainty which code word was transmitted. So it will fail to correct some
errors of weight <¢. .
Canvarenty enmnnce that the code has minimum distance 2t + 1 and a

Block codes, weight, and distance 19

word w is received, together with the information that an error of weight at
most ¢ has occurred. If there were two code words u and v at distance at
most ¢ from w, then by the triangle inequality d(u, v) < 2¢, contradicting our
hypothesis. Hence there is a unique code word u at distance at most ¢ from
w and we can deduce that u must have been transmitted. n

2.6 Mixed strategies

We have seen that the minimum distance d(C) completely determines the
worst-case error-detecting and error-correcting capabilities of a code. Often,
however, we do not want just to detect all errors of a certain weight, and
correcting all errors that lie within the theoretical capabilities of the code
may be too time consuming or too expensive. It is possible to have a mixed
strategy: we correct errors of weight up to some (usually small) value ¢ and
still detect errors of weight up to ¢ +s.

The main theorem of this chapter, which generalizes Propositions 2.4 and
2.5 gives precise bounds for s and ¢ in terms of d(C).

Theorem A code C can correct all errors of weight up to t and at the same
time detect all errors of weight up to s + t if and only if d(C) 2 2t + s + 1.

Informally this says that error correction costs about twice as much as
error detection — for every error bit you attempt to correct you lose two bits
in the number of errors you can detect. That is because if you are employing
error correction an error that pushes a code word u close enough to another
code word v will cause the error processor to choose v rather than content
itself with the statement that the received word is erroneous.

X

Example The theorem completely describes the error-correcting and -
detecting capabilities of our sample codes.

20 Error-correcting codes and finite fields

e Code A. The parity check code has minimum distance 2. It can detect
single errors but it cannot correct them (s = 1, t = 0).

e Codes Band C. Both the triple check code and the triple repetition code
have minimum distance 3. They can detect double errors (s = 2, t = 0) or
correct single errors (s =0, t = 2.)

Example Suppose we have a code C with block length 64 and minimum
distance 10.
Then we have the following possibilities for error processing:

—

Detect errors of weight up to 9.

2. Correct errors of weight up to 4.
The code only needs minimum distance 9 for that. So this scheme is a
bit wasteful. i

3. Correct errors of weight 1, detect errors of weight up to 8. Schemes like
this are quite common in practice (e.g. in compact disc players), because
weight 1 error correctors are fast and simple to implement.

4. Correct errors of weight <2, detect errors of weight <7.

Correct errors of weight <3, detect errors of weight <6.

6. Correct errors of weight <4, detect errors of weight <5.

These last three possibilities use the minimum distance to the full.

Compare (6) with (2).

Of course, a coding scheme is not obliged to use the full capability of the
code. Practical considerations may make it necessary to limit the operation
of the error processor. Still, it is not worth listing all the schemes that are
weaker than (1)-(6).

o

Proof Consider an error processor for the given code C that works as
follows: if v is received and there is a unique code word u with d(u, v) <t,
correct v to that code word. Otherwise send an error signal.

Assume d(C) > 2t + s. Then by Proposition 2.5 our decoder will correct
errors of weight <t successfully. Suppose that u is transmitted and w is
received, where t < d(u, w) < t + s. Then by the triangle inequality, a code
word v with d(v, w) < ¢t would have s < d(u, v) < 2t + s. Hence there is no
such code word and the error processor will send an error signal.

Conversely, suppose that d(C) <2t +s. If d(C) <2t we know from
Proposition 2.5 that C cannot correct all errors of weight <t. So we may
assume that d(C) > 2t. Then by the triangle inequality there is never more
than one code word at distance < ¢ from any received word w. Let u and v
be two code words with 2t < d(u, v) < 2t + s. Divide the places in which u
and v differ into two sets S and T with S<rand t < T< s+ t. Now let w
be defined so that w agrees with u and v outside S U T, with u in S and with
win T. Then t < d(u, w) <t + s and d(v, w) < t. Thus if u is transmitted and
v is received an error of weight < s + ¢ has occurred. Yet an error processor

Block codes, weight, and distance 21

that corrects all errors of weight < ¢ will not send an error signal. Instead
if will ‘correct’ w to v, because as we noted above, v is the only code word
with d(v, w) < t. Thus the code cannot successfully detect all errors of weight
up to s + t. |}

2.7 Probability of errors

The minimum distance is a worst-case measure for the performance of a
code, but it would be nice to know how our codes (and other, better codes)
could be expected to perform on average. To do this we shall need a little
probability theory. The discussion will not be needed in the sequel and can
be omitted at the reader’s discretion. By sticking to the random channel
model we can make the probability theory required quite simple. All that we
require are some counting arguments.

Proposition 4 block code of block length n is used to transmit a word u over
a binary symmetric channel with error probability p.

The probability of a particular error of weight k occurring in the received
word is p*(1 — p)y"~*,

The probability of some error of weight k occurring is

@ Pl —p)*,)

n
where (k) is the binomial coefficient ‘n choose k’.

Proof For a particular error word of weight k to occur we specify k places
in which the received word contains the wrong symbol. Then the other n — k
places contain the correct symbol. The probability of a wrong symbol in a
particular place is p, and the probability of a correct symbol is 1 — p. For
a random channel all these probabilities are independent. Hence the
probability that they all occur is their product p*(1 — p)"~*.

The total number of error words of weight k is given by the possible ways

of choosing the k places in error. That is precisely (n . The possible errors

are mutually exclusive. So the probability that one of them occurs is the sum
of their individual probabilities. Hence formula (1) holds.]
2.8 Probability of correct transmission

A similar argument applies to correctable and detectable errors.

Proposition A block code is used to transmit a message over a binary
symmetric channel.

22 Error-correcting codes and finite fields

(a) The probability that an error processor produces a correct word is the
sum of the probabilities of the error patterns that the error processor can
correct.

(b) If the error patterns that an error processor can correct are independent
of the transmitted code word, then the probability that a complete message
is transmitted correctly is the probability that the error processor produces
a correct word taken to the power I, where | is the number of code words
required to transmit the message.

Remarks The simplifying assumption in (b) is close to the truth for
most practical applications, but is by no means a theoretical necessity
(see Exercise 2.5). In Exercise 2.3 you will be asked to formulate the
corresponding result for error detection.

Proof (a) The error words that the error processor can correct are mutually
exclusive. Hence the probability that one of them occurs is the sum of
their individual probabilities.

(b) The probabilities of correctable errors in each of the code words
transmitted are independent; hence the probability that all received words
have correctable errors is the product of the probabilities of correctable
errors in each word. As these are all identical the result follows.]

2.9 Examples

We can now apply Propositions 2.7 and 2.8 to our example codes.

We assume we have to transmit a message of 10000 bits along a
channel with error probability p = 1/1000.

With no coding the probability of successful transmission is

0.99910000 ~ 0.000 045.
Now let us see how our codes perform.

e Code A. The (8,7) parity check code. To each message block of 8 bits
add a parity check so that the number of Is is even.
Rate: 3.
This can detect up to one error in each transmitted word of length 11.
It cannot correct any errors.

Probability no error in word: (0.999)% ~0.992028.
Probability 1 error in word: (0.999)” x 8/1000 ~0.007944.
0.999972.

Probability of correct transmission: (0.992028)"°°°%/” ~0.000011.
Probability of no undetected error: (0.999972)'°°0%7 ~0.961.
This code gives moderate protection against undetected errors.

Block codes, weight, and distance 23

e Code B. The triple repetition code 1 — 111, 0 — 000.
Rate: §.
1. Error detecting. The code can detect two errors in a block of three. So
the only undetectable error pattern is 111 which has probability 10~°.
Probabilty of correct transmission: (0.999)*°°%° ~10713,
Probability of no undetected error: (1 — 1079)10000 ~0.99999.
In this mode the code gives excellent protection against undetected
errors, but the extremely low probability of correct transmission
indicates that a lot of retransmission will be required and the low rate
already makes the code wasteful.
2. Error correcting. One error in a block is a thousand times more likely
than two. So we use majority logic error processing.

Probability no error in block: (0.999)* ~(0.997003.

Probability 1 error in block: .
(0.999)% x 3/1000 ~0.0029%4.
~0.999997.

Hence probability of correct transmission:

(0.999997)10000 ~0.97.

This is also the probability of no undetected error, because two
errors in a block cause incorrect decoding.

In this mode the code produces a pretty good likelihood of correct
transmission. However incorrect words will not be picked up and will
be present in about 3 per cent of such messages transmitted. Again,
the low rate makes the code quite expensive to use.

Code C. The triple check code. Divide message into blocks of three
(a, b, ¢). Encode as (4, b, ¢, x, y, z) wtih x = a + by=a+cz=b+c
Rate: 3.

1. Error detecting. The only undetectable error patterns are those which
affect precisely 2 or 0 bits in each condition. By trial and error (or by
using the coset table of Chapter 4) we find that these are:

(000000) no errors, and
(10110), (010101), (001011), (111000), (011110), (101101) and (110011).

The probability (a) of any particular error pattern of weight 3 is
(0.999)3(0.001)* © ~997 x 1071
The probability (b) of any particular error pattern of weight 4 is
(0.999)2(0.001)* ~9.98 x 10713,
Probability (c) of no undetected error in a word: 1 — 4a — 3b
0.999999996.
Probability of no undetected error in message: ¢'°°°°" = 0.999987.
In this mode the code comes close to the performance of the triple
repetition code at a considerable saving in expense.

24 Error-correcting codes and finite fields

2. Error correcting. We can correct one error in a block of six. Over
and above this we can simultancously also detect the three crror
patterns (1,0,0,0, 0, 1), (0,1,0,0,1,0) and (0,0, 1,1,0,0) as these
cause all three conditions to fail.

Probability no error in block: (0.999)° ~0.994015.
Probability 1 error in block: 6(0.999)°/1000 ~0.005970.
~0.999985.

Probability of 3 error patterns above: 3(0.999)%/10° ~0.000003.
Probability of correct transmission: (0.999985)1°000/3 ~0.951.
Probability of no undetected error: (0.999987)10009/ ~0.957.

In this mode there will be uncorrected errors in about 5 per
cent of the messages we transmit. The degradation of performance
compared with the triple repetition code is more significant here, but
may still be worth the saving in expense. Even if we add the facility
to send an error signal if all three conditions fail, that will improve
performance only very slightly.

2.10 Shannon’s theorem

The calculations we have just made show that the average performance of
our codes is not very good. So we are led naturally to ask the question: is
it possible to do significantly better? The answer to this is an emphatic yes.
It was given in Claude Shannon’s channel coding theorem of 1948, proved
before any practical error-correcting codes were known.

Shannon showed that there is a constant called the channel capacity C(p)
for any discrete symmetric channel, such that there exist block codes of rate
less than but arbitrarily close to C(p) with probability of correct transmission
arbitrarily close to 1.

The formula for C(p) for a binary channel is

C(p) =1+ plog, p + (1 — p)logy(1 — p)-

If p = 0.5, then C(0.5) = 0. This illustrates the fact that no coding scheme
works for a channel with error probability 0.5. The channel of our example
has p = 0.999. Here C(0.999) = 0.9886. So Shannon’s theorem says that there
are codes adding only about 15 check bits per 1000 message bits that achieve
arbitrarily high probability of correct transmission for our message.

Clearly there is a lot of scope for improvement in our codes. Shannon’s
theorem is not proved in this book, but it is compared to other bounds on
codes in Chapter 18.

Block codes, weight, and distance 25

2.11 Summary

The key concept of this chapter has been the Hamming distance. In
Propositions 2.4 and 2.5 and Theorem 2.6 it was used to describe the
worst-case error-processing capabilities of a block code. Then Propositions
27 and 2.8 used it to calculate average error-processing performance for a
code over a binary symmetric channel, assuming that the way the error
processor treats an error is independent of the transmitted code word.

2.12 Exercises

21 Let C be the binary (n + 1, n)-parity check code, defined by adding a
single check bit to every block of n message bits. Show that as n
increases, the rate of the code tends to 1, but for a channel with fixed
error probability, the probability of correct transmission of a code word
tends to 0 as n grows large.

22 Let C be the (n, 1)-repetition code, defined by repeating each message
bit n times. Show that as n increases the rate of this code tends to 0,
but that for a channel with fixed error probability and a message of
fixed length, the probability of detecting all errors tends to 1. Show that
the same conclusion holds for correction by majority vote.

2.3 Formulate and prove the analogue of Proposition 2.8 for error
detection.

24 Define a code by adding an overall parity check p to the triple check
code. So abc is encoded as abcxyzp with

a+b+x=a+c+y=b+c+z
=a+b+c+x+y+z+p=0.

What are the parameters of this code, including minimum distance?

2.5 Construct a binary code C containing (among others) two words u and
» such that if u is transmitted any error of weight at most 2 can be
corrected, but if v is transmitted there is an error of weight 1 that cannot
be detected. Show that Proposition 2.8(b) does not apply to this code.

2.6 A binary code C has block length 15 and rank 5. It is capable of
correcting three random errors in a block and no more. If we define a
second code R by taking a message block of five bits abcde to the code
word abcdeabcdeabede, then R has the same block length and dimension
as C. The code R cannot correct all triple errors, but it can correct
some error patterns of weight 5. Give the block error probabilities for
the two codes and compare their performance for a message of 5000
bits on a channel with error probability 0.01.

PO L LI

26
2.7

2.8

29

2.10

[
—
—

212

2.13

2.14

215

Error-correcting codes and finite fields

A binary code C of block length 12 has minimum distance equal to 3.
Show that some code words must have odd weight, and some code
words have even weight. The code is extended to a code K of block
length 13 by adding an overall parity check bit to each word; that is,
a bit is appended to cach code word so that the total number of 1s in
the resulting word is even. What is the minimum distance of K? Show
that C can correct all single errors in received words, while K can
correct all single errors and simultaneously detect the presence of all
double errors in received words.
Two channels are available for transmission of a long message. The
first is a binary channel with error probability p = 0.01; the second is
a symmetric channel with a alphabet A of size 16 and error probability
= 0.04. It is possible to send a binary message along the second
channel by sending blocks of four bits as a single symbol of the alphabet
A according to some arbitrary translation scheme. Compare the error
probabilities of a message of 5000 bits encoded using the triple check
code on both channels.
A double error-correcting binary code of block length 20 and rank 12
is used to transmit a message of 18000 bits through a binary symmetric
channel with error probability 1 in 250. Ona second similar transmission
the error probability of the channel doubles. What is the probability that
the message is received and decoded correctly in each transmission?
Let E be a binary code of block length 8. Show that if E can correct
all single errors, then it has at most 28 code words.
Show that for the triple check code the undetectable error patterns are
precisely the non-zero code words.
It is possible that in transmission the value of a symbol is completely
lost, so that the receiver recognizes that an error has occurred, but has
no information about the transmitted symbol. Such errors, which are
called erasures, can occur in radio transmission or through faulty
magnetic media. Show that a code can correct ¢ errors and simul-
taneously u erasures if and only if it has minimum distance >2t + u.
Formulate and prove a generalization of Theorem 2.6 dealing with
simultaneous error correction, detection, and erasure correction.
A binary code C is extended by adding a further bit so that all code
words are even. Give the block length, rank, and minimum distance of
the extended code. What happens if you extend a code twice?
A code C is punctured at place i, by deleting the ith entry of all code
words. Describe the effect of puncturing a code on its rank and its
minimum distance.
A code C is shortened at place i, by taking only those code words of
the punctured code that are obtained from words with a zero in the
ith place. Show that shortening a code does not reduce its minimum
distance. Does it always reduce its rank?

|
!
|
|
|
i
|
i

3 Linear codes

In this chapter we begin by taking another look at our example codes from
Chapter 1 in the light of a natural arithmetic'on B. That will lead us to
define a special class of codes called linear codes (some authors call these
group codes). Linear codes are amenable to the standard techniques of linear
algebra and that makes it possible to devise efficient implementations for
them. It is fair to say that although some theoretically good non-linear block
codes are known, virtually all block codes used in practice are linear.

3.1 Arithmetic in B
Let us take another look at two of the examples of Chapter 1.

e Code A, the (8, 7) parity check code, is defined so that its words all have
even weight.

e Code C, the (6, 3) triple check code, is defined so that certain subsets of
the entries of a word contain an even number of 1s.

If we introduce the convention that in B

1+41=0+0=0 and 0+1=1+0=1,

then the fact that a set'S of symbols of B contains an even number of 1s can
be expressed by stating that the sum of the elements of § is 0. This addition
is basic to the binary logic chips from which computers are built and is called
exclusive or in computer science. For our purposes, though, arithmetic is
more useful than symbolic logic. ’

The definition of multiplication for B is even simpler than that for addition:

0x1=1x0=0x0=0
1x1=1.

Definition The binary field is the set B = {0, 1} endowed with the operations
of addition and multiplication defined above.

The word “field’ in this definition has a precise technical meaning, that
will be explained shortly. For the time being it will be sufficient to say that

28 Error-correcting codes and finite fields

all four arithmetic operations: plus, minus, times and divide are possible and
that they obey the standard rules of arithmetic like the ones for ordinary
numbers. The binary field has one particular peculiarity, namely that plus
and minus are the same. That is because the sum of two natural numbers
has the same parity as their difference.

Examp{es We can use the definition to give more concise descriptions of
the parity and triple check codes.

e Code A. The (8,7) parity check code. Encode a block (xy,...,x,) by
(X4, ..., X4, y), where

y=X+- -+ x5

e Code C. The (6,3) triple check code. Encode a block (a,b,c) by
(a, b, ¢, x, y, z), where

x=a+b;
y=a+c
z=b+ec.

3.2 Arithmetic in B”

Given binary words of the same length, say (g, b, ¢) and (d, b, ¢') it is now
natural to define their sum as (a + ', b + b, ¢ + ¢).

Examples Given two words (1,0, 0, 1, 1,0) and (0, 1,0, 1,0, 1), their sum is
calculated by:

100110
+ 010101
1100 1 1

We will frequently omit the commas and brackets and write the sum above
as 100110 + 910101 = 110011. It is important to remember when carrying
out the addition, that it is binary addition without carry.

) This addition looks exactly like the way real vectors are added in ordinary
llnf{ar algebra. That is no accident. It turns out that the standard theorems
of linear algebra apply to the set A" of words of length n over any alphabet
A provided that A is a field. The words play the role of vectors and the
symbols in A4 play the role of scalars. For general alphabets A, it is also
necessary to define multiplication of vectors by scalars, but for B that is

Linear codes 29

trivial: 0.x = 0 and 1.x = x. So we can say the B" is a vector space over B.

Our three example codes all respect the vector space structure in the
following strong sense: If x and y are message words that are encoded as u
and v, then the message word x + y is encoded as u + v.

Examples

e Code A. The parity check code. Let x = 0101010 and y = 0011011. Then
x is encoded as u = 01010101 and y is encoded as v = 00110110. The sum
x + y = 0110001 is encoded as 01100011 = u + v.

e Code B. The triple repetition code. Let x =y =1. Then x and y are
encoded as u = v = 111. The sum x + y = 0 is encoded as 000 = u + v.

e Code C. The triple check code. Let x =100 and y = 010. Then x is
encoded as u = 100110 and y is encoded as v =010101. The sum
x + y = 110 is encoded as 110011 = u + v.

It is not an accident that the codes behave like this. If you define the code
word u encoding a message word x by linear conditions, then it will always
happen. The arithmetic on B was defined so that the conditions that ‘come
naturally’ are linear. So we can expect codes defined in a ‘natural’ way to
have the same additive property as our examples. Such codes are called
linear.

Definition A binary code is called linear if the sum of two code words is a
code word.

3.3 Fields: a definition

It is now time to give the proper definition of a field. The definition merely
describes the natural properties of the arithmetic operations that we wish to
execute. But it is important that all these properties are true, because
otherwise it will not be possible to use linear algebra. The way to read these
axioms is to check that they agree with what one means by the ‘usual rules
of arithmetic’.

Field axioms

A. Laws of addition

Al. (a+b)+c=a+(b+c) [Associative law]
A2. There exists 0, such that forallg, 0 +a=a+0=a. [Zero]
A3. a+b=b+a [Commutative law]

A4. For all g, there exists —a s.t. a+ (—a)=0. [Negatives]

30 Error-correcting codes and finite fields

B. Mixed laws
D1. a(b+c)=ab + ac.

D2. (a+ b)c = ac + be. [Distributive laws]

C. Laws of multiplication

M1. (ab)c = a(bc). [Associative law]

M2. There exists 1 # 0, such that for all a, la = al = a. [Identity]
M3. ab = ba. [Commutative law]
M4. For all a # 0, there exists a~! such that aa™! = 1. [Inverses]

Axiom A4 ensures that subtraction is possible, and M4 that division by
non-zero field elements is possible.

Examples

1. The real numbers form a field with the usual operations,

2. The integers (whole numbers) do not form a field, because M4 is not
satisfied. The number 2 has 2~* = 4 which is not a whole number. But
the integers do satisfy all the other axioms and a weaker axiom than
M4, called the cancellation law:

MS5. Ifab=0,thena=0o0rb=0.

B is a field.
4. The ternary field Z/3 with three elements 1,0 and —1 satisfying the
following addition and multiplication is a field.

0+1=1+0=1, 0+0=0,

0+ —1=~=1+0=~—1

1+1=-1, 1+ —-1=—-1+4+1=0,

—14+ —-1=1

Multiplication: 0x 1=1x0=0x0=0x —1=—-1x0=0;
Ixl==1x—1=1 Ix—1=—-1x1=-—1

w

Addition:

It is left to the reader to check the axioms. The check is rather tedious,
and in Chapter 9 a general theorem will be proved from which the fact
that Z/3 is a field follows directly.

Definition An arithmetic structure S with operations + and x satisfying
axioms Al-A4, D1-D2, and M1-M4 is called a field. If all axioms except
M4 are satisfied, then S is called a (commutative) ring. If S is a commutative
ring that also satisfies the cancellation law MS it is called an (integral)
domain.

Examples
e B, the set of real numbers and the set of complex numbers all form fields.
Of these only B is finite.

Linear codes 31

e The integers Z and also the set of polynomials with coefficients in a field
form domains.

e Theset of real 2 x 2 diagonal matrices is a (commutative) ring that is not
a domain.

3.4 Vector space operations

If we require the alphabet 4 to be a field, then there are two natural
arithmetic operations on the words in A" If u=(uy,...,4,) and v=
(01, .-.,0,) are words, we define u + v = (u; + vy,...,u4, +v,)andforae 4,
au = (auy, . .., au,). BEquipped with these operations A" becomes a vector
space over A. The operations satisfy analogues of the axioms A1-Ad4, M1,
M2, and D.

As shown in Appendix LA, the main theorems of linear algebra hold for
vector spaces over any field, and they offer powerful computational and
theoretical tools that are indispensable for coding theory. It is not possible
to exploit these tools without knowing them. Ideally, you should be familiar
with ordinary matrix theory and in particular the rank and nullity theorem.
If you know real linear algebra, but not linear algebra over general fields, a
good procedure is to continue to read the main text, taking the fact that the
methods extend to finite fields on faith, and consulting Appendix LA where
everything is proved when you are uncertain. If you know matrix algebra
but do not know any theory you will still be able to work through the
examples, but you will probably find the proofs difficult to follow. Appendix
LA covers everything needed, but it is rather terse and you may wish to
consult one of the textbooks (Cohn, 1982; Noble and Daniel, 1977; Strang,
1980).

3.5 Binary linear codes

The most important property of binary linear codes is expressed in the
following almost obvious lemma.

Lemma Let C be a binary code. Then it is linear code if and only if it is a
subspace of the vector space B".

Proof Suppose C is a linear code. We already know that the sum of two
code words is a code word.

It remains to show that a scalar multiple of a code word is a code word.

32 Error-correcting codes and finite fields

As 1-u = u multiplying by 1 obviously takes code words to code words. The
other multiple, 0-u = 0, the all-zero word of length n. To show that 0 is a
code word note that 0 = u + u = u — u (binary addition and subtraction are
the same). But if u encodes x, then u + u encodes x + x = x — x = 07, the
all-zero word of length m. Thus 0 is a code word.

Conversely, if C is a subspace, then for any two code words u and v, u + v
lies in C, hence C is linear. n

Any subspace of B" has exactly 2" elements, where m is its dimension (see
Exercise 5). Hence it can be used to encode message blocks of length m.
Since encoding shorter message blocks just means that some code words are
never used, we shall assume that the rank of a linear code is the same as its
dimension, and we shall use the two words interchangably.

It is now natural to extend the definition of linear codes to other alphabets.

Definition Let A be an alphabet that is a field. Then a code C of block
length n over A is a linear code if it is a subspace of 4"

From now on propositions and theorems will be stated and proved for
general linear codes, but the examples will still be binary codes. This is
because more general codes are needed for practical multiple error correction
in the third part, and the proofs for general linear codes are essentially
identical to the proofs for binary codes. For the reader wishing to become
more familiar with general linear codes, the exercises will contain a series of
cxamples on ternary codes, which have three symbols (1,0, —1).

A useful fact about linear codes is that you can read off the minimum
distance of the code by cheeking the weights of its code words,

Proposition For a linear code C the minimum distance is equal to the minimum
weight of a non-zero code word of C.

Remark To find the minimum weight of a code word you have to check
at most |C| words. Finding the minimum distance of a non-linear code
involves checking all pairs of code words, about |C|?/2 checks. Often the
structure of a linear code enables the minimum weight to be found without
checking all code words.

Examples

e Code A. The (8,7)-parity check code. The minimum weight of an even
weight non-zero word is obviously 2, and that is the minimum distance
of the (8, 7)-parity check code. '

e Code C. The triple check code. Permuting the bits of a message word
in any way will merely permute the bits of the corresponding code word.

Linear codes 33

So by checking the weights of 100110, 110011 and 111000 we see that the
minimum weight of a non-zero word is 3, the minimum distance of the
code.

Proof if u and v are code words then d(u, v) = wt(u —v). But u—vis a
code word because C is linear.]

3.6 Encoders and linearity

In Section 3.2 it was noted not only that our example codes are linear but
that they encode sums of message words to sums of code words. When we
are dealing with linear codes we shall always assume that the encoder
respects that linearity.

Definition An encoder E for a linear binary (n, m)-block code C is a linear
map from B™ to B".

The central theme of linear algebra is the way linear maps can be
represented by matrices. We can obviously define matrices over any field
such as B, and matrix multiplication can be defined in the standard way. To
see this examine the following calculation. :

Example Matrix multiplication over B.

1 1 0jf1}fo
10 11}t
0 t 1jLodlLt

Now it ought to be possible to accomplish encoding for a linear code by
matrix multiplication. Let us test our examples.

Examples

e Code A. The parity check code. Suppose x is a word of length 7 encoded
into the word u of length n. We are looking for a matrix Gy, such that
uT = G,xT, where the exponent T denotes the transpose that converts
rows to columns and vice versa.

The first symbol of the code word encoding the message word x is the
first symbol of x. So the first row of G, is (100000 0). Similarly
the second row is (0 10000) and so on until the seventh row is
(00000 0 1). The check symbol is the sum of all the others so the eighth

34 Error-correcting codes and finite fields

rowof Gis (111111 1). Hence

00
10
1

o o O

Gy =

o O o o ©
o o O o O O

—

1
0
0
0
0
0
0

o O O o O
—
o o = O O o O

0
00
00
00001
L1 11111

—_

We check this by choosing a message word and calculating the code
word by matrix multiplication and by the rule given in Chapter 1. Take,
say, x = 0101100. This encodes as u = 01011001. We verify that u” =
G x"

Moo o000 0] _ [o]
0100000?-‘1
0010000 |0
000 1ol {1
0000100 1
00000101 0
00000010 0
1111111-0- 1]

e Code B. The triple repetition code. Now we seek a 3 x 1 matrix G
taking 1 to (1,1, 1)T and 0 to (0, 0, 0)". The obvious matrix is

1
Gp=|1
1

e Code C. The (6, 3)-triple check code. The message word abc is encoded
to abcxyz, where x =a +b, y=a+c,and z = b + ¢. Write the words
as columns. If this transformation is accomplished by multiplying
(a, b, c)T by G, then the first three rows of G¢ are (100), (0 1 0) and
(0 0 1) because the first three bits of the code word are the same as the

Linear codes 35

message bits. The last three rows calculate the check bits from the
message bits. Hence

-

1 00
010
0 0 1
%=1y 1 of
101
o 1 1

Again let us check this on a message word x, say x = 110. By the
equations this encodes as u = 110011. Now we verify that u’ = Gex™.

[o o] [1]
0 1 0f i1
00 tf Hfo
110 0

Lo
101 1
o 1 1] |1

3.7 The generator matrix

The matrix used to encode a linear code is very important and so it is given
a name.

Definition Let C be a linear (n, m)-code with encoder E. Let the n x m-
matrix G be chosen so that E(x) = GxT for any word x of length m. Then G
is called a generator matrix of the code,

Recall that an encoder is called standard or systematic if the message word
forms the first m symbols of the code word. That property can easily be read
off from the generator matrix.

Proposition Let C be a linear (n, m)-code with generator matrix G. Then the
encoder is systematic if and only if the first m rows of G form the m x m-identity

matrix I,.

Proof The rows of G express the equations defining the symbols of the code

36 Error-correcting codes and finite fields

word u encoding x in terms of the symbols of x. Thus the first m symbols
of u are the symbols of x if and only if the first m rows of G are (1,0,...,0),
©,1,0,...,0),...,0,...,1). u

3.8 The columns of the generator matrix
The columns of the generator matrix are also significant.

Examples

e Code A. The matrix has seven columns, all having 1 as their last entry
and a single other 1. Thus the third column is (0,0, 1,0, 0, 0, DT, That is,
the transpose of the code word 0010001 that encodes 001000.

e Code C. The matrix has three columns that are transposes of the code
words 100110,010101, 001011 that encode 100,010 and 001 respectively.

This pattern holds always, even for non-systematic encoding.

Definition The elements 10...0,010...0,...,0...01 of A" having exactly
one entry equal to 1 and all others equal to 0 are called the unit words of
length n and denoted by ey, e, ..., €,.

Proposition Let C be a linear (n, m)-code with generator matrix G. Then the
columns Gy, ..., G, of G are the transposes of the code words encoding the
unit words of length m, ¢y, ..., ¢,.

Proof All the proposition states is that Ge] = G,. That is true for all
m x n-matrices G and unit words length m from the definition of matrix
multiplication. For the dot product of the jth row of G with ¢ is
(gju"ngi,--ngm)'(ow--»17~~w0)=.‘1ﬁ~ u

Example To convince yourself of this elementary fact try the following
matrix multiplication with ordinary numbers:

12 3|0 2
4 5 6{||1]=|5
7 8 9JLO 8

3.9 Codes and generator matrices

1t is quite possible for a code to have several distinct generator matrices, but
not all m x n-matrices occur as generator matrices of some code. In order

Linear codes 37

for the matrix to implement an encoder it must take distinct message words
to distinct code words. From the rank and nullity theorem of linear algebra,
Theorem LA.10, it follows that an m x n-matrix M implements an encoder
if and only if it has rank m or, equivalently, its columns are linearly
independent. That is always the case if the first m rows of M form an
m x m-identity matrix, but it may or may not be true for more general
matrices.

Examples
1. The following matrix is a non-systematic encoding matrix for Code A,
the (8, 7)-parity check code:

1 0000 0 0]
1100000
0110000
0011000
M=lo o o1 100
0000110
000001 1
000000 1]

The proof that the matrix really does have the claimed property isa
good exercise in matrix manipulation (see Exercise 3.14).

2. The following matrix is not a generator matrix for any code:

1100
1 01 1
N={0 1 0 1}
01 11
0010

That is because N(1, 1,0,0)T = N(0,0,0,).

3. Finally, here is a matrix that implements an encoder for Code C, the
triple check code:

38 Error-correcting codes and finite fields

110

111

011
P=

00 1

1t 01

1 00

As the code only coniains zight code words this
Again the proof is left as an exercise.

The following proposition gives simple necessary and sufficient conditions
for a matrix to be a generator matrix for a given linear binary code.

Proposition Let C be an (n, m)-linear code and let G be an n X m-matrix.
Then G is a generator matrix for C if and only if it has rank m and its columns
are code words.

Proof The conditions are necessary. The rank of G is the dimension of its
image space. If G is a generator matrix for C then that dimension is m. The
columns of G encode the unit message words. If G is a generator matrix for
C, they must be code words.

The conditions are sufficient. Let the columns of G be Gy,...,G,.
Multiplication by G takes the message word 4, ...a, to the word a,GT
+---+ a,GT. By hypothesis that is a linear combination of code words.
So, as C is linear, it is a code word. Thus G takes A™ to a subspace of C.
The dimension of that subspace is the rank of G =m = rank C. A sub-
space of full dimension is the whole space. So G maps B” onto C. Now
by the rank and nullity theorem, G has nullity 0. Thus it is one-to-one and
represents an encoder for C. n

This concludes the section on encoding linear codes and we now turn our
attention to the more demanding problem of error processing.

3.10 Code word checking

The major reason for using linear codes is that the first step of error
processing, checking whether a received word is a code word or not, is
particularly simple to achieve. Very often a linear code is defined by requiring
certain equations hold. Then all that is necessary is to check these equations.

Linear codes 39
Even when the code is not defined in this way, it is easy to construct a
suitable set of equations to check.

Examples ')
e Code A. The (8,7)-parity check code is defined by a single equation.
The word abedefgh is a code word if and only if

h=a+b+c+d+e+f+g

a+b+c+d+e+f+g+h=0.

e Code C. The (6,3)-triple check code is defined by three equations. The
word abexyz is a code word if
a+b=x or a+b+x=0,
a+c=y or at+c+y=0,
b+c=z or b+c+z=0.

These equations can be expressed in matrix form:

a
b
110100 0
4
101010 =0
X
011001 0
y
2]

Definition A check matrix for a linear code C over a field 4 is a
k x n-matrix H with the property that for a vector v in A, Hv" =0 if and
only if ve C.

The number k is arbitrary, but we shall show in Section 3.13 that the
smallest possible value for k is n — m. The check matrix is said to be in
standard or systematic form if it has the form (D,J), where J is the
(n — m) x (n — m) identity matrix. Standard form (wth standard encoding)
means that the non-message bits (the check bits) are each given as combina-
tions of the message bits.

Remember that multiplication by H does not decode. The check matrix
is part of an error-processing system, and only tests whether a word belongs

to the code.

40 Error-correcting codes and finite fields

Examples Standard and (where they exist) non-standard generator and
check matrices for all three of our example codes are shown below, with the
standard form on the left and the non-standard on the right in each case.

o Code A, The (8, 7)-parity check code

Generator:
M oo00000] [100O0O0OTODO]
0100000 1 100000
0010000 0110000
0001000 0011000
0000100 0001100
0000010 0000T1 10
000000 ! 0000011
11t t1) 000000 1

Check:

(¢ 1 1 1 1 1 1 1) none
e Code B. The (3, 1)-repetition code

Generator:
[
1 none.
L1

Check:
11 0] 11 0]
L1 0 1] 10 1 1]

e Code C. The (6, 3)-triple check code

Generator:
10 0] 11 0]
010 111
0 0 I 01 1
110 00 1
101 1 01
0 1 1] Ll 0 o]

Linear codes 41

Check:
110100 110100
101010 1 01010
011001 101101

3.11 Relation between generator and check matrices

There is a simple relation between the standard form generator and check
matrices. The standard form generator consists of an m x m-identity matrix
I on top of an (n—m) x m-matrix A. The check matrix consists of the
negative of the same matrix — A followed by an (n —m) x (n — m)-identity
matrix J. For completeness I include the proposition below that verifies that
that is always the case.

Proposition () An (n, m)-linear code has unique generator and check matrices
in standard form if it has either.
(b) If these are G* = (I, A") and H = (B,J), then A = —B.

Proof 1If the matrices exist, G is m x n and H isnx (n—m).

(a) If C has generator and check matrices G and H as above, then HG = 0,
because the columns of G are code words. Multiplying out we get
Bl +JA=0. But Bl = B and J4 = A. Hence G is determined by H and
vice versa. Thus they are unique.

(b) To completé the proof we must show that given G = (I, A) and
HT = (— A", J), then v™ = Gu" for some u if and only if Ho" = 0. As HG = 0
it is immediate that, if v* = Gu", it follows that Hv' = HGu™ = Qu" = 0.
Conversely, let Ho™ = 0 and split o" into (4, w"), where u consists of the
first m symbols of v. Then Ho™ = 0 <> —AuT + Jw™ = —Au" + w' = 0. So
wT = Au™. Hence o7 = (u, w)T = (4, ud™)" = (I, A)™u" = Gu". |

3,12 Existence of generator and check matrices

Does every linear code have systematic generator and check matrices? Well
almost. Every linear code can be modified by permuting the code-word
symbols into a code with a standard generator matrix. The order of symbols
in a code is not important (although it had better stay fixed once it has been
chosen). So we may assume that we always have a code with a standard
generator matrix. It is possible, however, that other considerations take
precedence over systematic encoding and decoding.

42 Error-correcting codes and finite fields

Here is the rather technical proof that every linear code is equivalent in
the above sense to a systematic code.

Proposition Let C be a linear code, then it is possible to permute the code
word symbols in such a way that C has a standard generator matrix.

Proof Let G be a generator matrix for C, and let M = G™. It is possible by
elementary row operations to convert M into a matrix M’ in row echelon
form (Lemma LA.13), that is:

The first non-zero entry of the (i + 1)th row occurs later than the first
non-zero entry of the ith row.

The first non-zero entry of each row is a 1.

All the other entries in the column containing that 1 are 0.

Example Here is a matrix with ordinary numbers in row echelon form.

120050
001020
00 130
000001

Proof (cont.) The rows of M’ arc lincar combinations of the rows of M,
which are code words. So the rows of M are code words. Now we permute
the columns of M’ to produce a matrix M” such that the first non-zero entry
of the ith row is in the ith column. This corresponds to permuting the
symbols of the code words to produce a code C". Clearly M" starts with an
m x m-identity matrix. Furthermore M"T is a generator matrix for C”
because it satisfies the conditions of Proposition 3.9.]

3.13 Rank of the check matrix

That concludes the basic facts about generator and check matrices. It remains
to prove the claim about the size of a check matrix made in Section 3.10.
In addition it will be shown that extending a check matrix by adding columns
that are linear combinations of columns that are already there has no effect
whatsoever. Apart from warning the would-be constructor of check matrices
what not to do, that fact turns out to be useful in the analysis of BCH codes
in Part 3.

Proposition (a) The rank of a check matrix H for an (n, m)-linear code C is
n—m.
(b) In particular, H has at least n — m rows.

. Linear codes 43

(¢) If H is a check matrix for the code C and K is a matrix obtained from
H by adding columns that are linear combinations of the columns of H, then
K is a check matrix for the same code.

Proof (a) In terms of linear algebra, the statement that H is a check matrix
for C states that C is the null space of H. That implies that the rank m of
C (which is its dimension as a vector space) is the nullity of H. Now by the
rank and nullity theorem (Theorem LA.10),

m+r=n,

where r is the rank of H. Hence r =n —m.

(b) By Theorem LA.11, the rank of a matrix H is at most equal to the
number of rows of H. :

(c) Obviously, Kv™=(0,...,0) implies Hv™ = (0,...,0), because the
entries of HoT are the first entries of Kv™. But if Hv™ =0, then Kv' =0,
because all the entries of KvT are linear combinations of those of Hv™ and
linear combinations of Os are 0. . B

3.14 Summary

This chapter has laid the foundations of linear coding theory. Almost all the
results are direct consequences of theorems from linear algebra.

The key definitions are linear code, generator and check matrix. Given a
linear code C with a generator matrix G and check matrix H, we can encode
a message word by multiplying by G and check whether a received word is
a code word by multiplying by H. If the result is 0, then it is a code word,
otherwise it is not. If G and H are in standard form decoding can then be
achieved by stripping the check bits from the code word.

The major outstanding problem is how to correct errors if they have
occurred. That is the subject of the next chapter, where a simple and powerful
general technique is introduced.

Exercise 3

3.1 Let R be a ring and define subtraction a — b, so that b+@—>b)=a.
Show that for any a and b a difference a — b exists and is unique. Which
of the axioms A1—A4 remain true if addition is replaced by subtraction?

32 Let F be a field and define division a/b by b (a/b) = a. For which
pairs a and b does a quotient a/b exist? Show that if the quotient exists
it is unique. Which of the axioms M1-MS5 remain true if multiplication
is replaced by division?

44
33

3.4

3.5

3.6

Error-correcting codes and finite fields

Let R be a commutative ring and define division as in a field. For which
pairs a and b does a quotient a/b exist? Show that if R is the ring of
2 x 2 diagonal matrices over a field then even when it exists, the
quotient may not be unique.

Show that the cancellation M5 law follows from the existence of
inverses M4.

Show that any subspace of B" has exactly 2™ elements, where m < n is
the dimension of the subspace.

Let F be a finite field with g eclements. Show that any subspace of F"
has exactly g™ elements, wherem < n is the dimension of the subspace.

In the next three exercises the ternary field is used. This has three elements
0, +1and — 1. Multiplication is ordinary multiplication, addition is ordinary
addition except that 1 + 1= —1and —1+ —1=1 '

3.7

3.8

3.9

3.1

(=]

3.1

—

3.13

3.14

A ternary (8, 7) parity check code is defined by adding a ‘trit’ (that is
a ternary digit (0, = 1) to each message block of length seven, so that
the sum of the trits becomes 0. Show that this code can detect all single
errors and some double errors.

Construct a ternary code analogous to the triple check code. To each
block abc of three trits add three check trits xyz such that a + b=x,
a+c=y, and b + ¢ = z. Show that this code can correct single errors
in a block. Give generator and check matrices for the code.

A binary code C has a standard form check matrix H. The ternary
code D has the same check matrix. How are the code words of C
and D related? Show that C and D have the same dimension. Show
also that if C has minimum distance >3, then D also has minimum
distance >3.

Show that for any linear code the undetectable error patterns are
precisely the non-zero code words.

In an application requiring modest error correction the input data
divide naturally into binary blocks of length 16. How many check bits
must be added to produce a single error-correcting linear code? It is
suggested that by abandoning linearity a more efficient single error-
correcting binary block code that divides the message into blocks of
length 16 could perhaps exist. Is this suggestion correct?

Design such a single error-correcting binary linear code of dimen-
sion 16 with the minimal number of check bits, by giving a generator
matrix.

Show that if a single error-correcting binary linear code has a standard
form generator matrix with all rows of even weight, then the code can
detect double errors while correcting single errors in a block. Is it
possible to arrange that the code of Exercise 3.12 achieves this result?
Show that the following matrix is a non-systematic encoding matrix for

Linear codes

the (8, 7)-parity check code (see Section 3.9):

10
11
01
00
00
00
00
00

The following multiplication may suggest the answer:

100
110
011
00 I
000
000
o oo
lo 00

0
0
1
1
0
0
0
0

o © ©

1

1
0
0
0

0
0
0
1
1
0
0
0

o o = = © © © @

0 o = = 0o © 9 °

o = = 0o © © © @

»—»—AOOOOCO

0
0
0
0
0
1
1
0

0
0
0
0
0
0
1
1

o = o = o -

—_ O

45

315 Prove that the following matrix is a generator matrix for the triple
check code (see Section 3.9):

_ - o o = =

—_ =

o ©o © =

o m = = = O

46 Error-correcting codes and finite fields

3.16 A binary linear code C and a ternary code D both have the check

matrix H:
1110001000
1001100100
0101010010
0010110001

Construct generator matrices for C and D. Find the block length,
dimension, and minimum distance of C and D.

3.17 For the codes of Exercise 3.16 decide for each of the following words
whether they are (a) code words, (b) at distance 1 from some code word
or (c) at distance at least two from all code words. In case (b) give the
code word for which the condition holds:

1010111011
0101011111
1011101111
1110110110

3.18 How many words of length 10 cannot be converted into code words
of the code C of Exercise 3.16 by correcting at most one bit?

3.19 Let C be a linear binary code. Show that either half the code words
have even weight, or all the code words have even weight.

3.20 Recall that a binary code is extended by adding a bit so that all code
words have even weight. How should the extended code be defined for
linear codes over an arbitrary field?

3.21 Show that extending, puncturing or shortening a linear code produces
a linear code. Describe the generator and check matrices of these
derived codes in terms of the generator and check matrices of the
original codes.

3.22 Let C be a linear code with generator matrix G. The code with GT as

its check matrix is called the dual code C* of C. Show that if C is an

(n, m)-code, then C~- is an (n.n — m)-code.

The (ulu + t) construction. Let C and D be linear codes of block length

n, with C of rank m and D of rank I. Suppose that C has minimum

distance d and D has minimum distance 2d. Show that the code X

consisting of all words of the form (u|u + v) with ue Cand veD is a

linear code of block length 2n, rank m + | and minimum distance 2d.

(9]
[]
w

4 Error processing for linear codes

This chapter introduces a simple method of error processing for lin'ear 'codes
that always produces a closest code word and so gives maximum likelihood
decoding. The method uses a rather large table called a stand.ard array or
coset table. The error processor then merely looks up the received word in
the table and reads off the corresponding code word.

4.1 Constructing the standard array

Let C be a linear (n, m)-code over a field 4 with g symbols. We shall cor}struct
a g™ x ¢"~™ array T containing all the words in A" In order to describe the
construction, we label the rows of T from 0 to ¢"~™ — 1 and the columns
from 0 to g™ — 1. The word in the ith row and kth column will be called
u; . The table will be constructed one row at a time.

Row 0. The top row of T consists of the code words in any order, except
that we require the first word to be 0. So ug,0 =0, and ug i TUNS through
all the code words in some order.

Example The top row of a standard array for the triple check code, Code
C, could be as follows:
001011 111000 011110 101101 110011

000000 100110 010101

Row i (Step 1). Supposing now we have constructed the table up the row
i — 1. Choose an element of A" that has not appeared and place it in the
0Oth column so that it becomes u; o. This word is called the row leader. As
you will see later it is a good idea to choose the row leader to be of smallest
possible weight. In that case the row leader is called a coset leader. For the
time being we do not insist that row leaders must be coset leaders.

Example Triple check code. A good choice for the first entry of the second
row of the table would be 100000. Supposing that the first three rows had

50 Error-correcting codes and finite fields

Proof By the first evaluation in the proof a horizontal difference is a
difference between two code words and a vertical difference is the difference
between two row leaders. As the code is linear the difference between two
code words is a code word, proving the first statement. If the difference
u; o — ;0 between two row leaders (with, say, i > j) is a code word uo,y,
then u; o = u; o + U x = ;. That violates the condition in step 1 for row
i that the row leader must be chosen from the words that have not yet
appeared in the table. |

4.3 Occurrence of words in a standard array

From the facts we have just proved we can devise a test to see if two words
lie in the same row of a standard array.

Theorem Let C be a linear (n, m)-code and T a standard array for C. Then
two entries u and v lie in the same row of T if and only if their difference u — v
is a code word.

Proof Corollary 4.2 above shows that if u and v lie in the same row, then
u — v is a code word. To prove the converse consider u = u; , and v; ;, where,
say, i >j. Let x be the code word uy, —uy, and y be the non-code
word u; o — ;o Then u—v=x+y. If u—v were a code word then
y = (u — v) — x would be the difference between two code words. Since C is
linear such a difference is a code word. As we know that y is not a code
word the assumption that u — v is a code word is untenable.]

We can now show that every word occurs exactly once in a standard array
and so error processing with the array is complete (every received word is
output as a code word) and unambiguous (the code is completely determined
by the received word).

Corollary For C and T as in Theorem 4.3, every word of length n occurs
exactly once in T.

Proof We first show that all the entries are distinct. If two entries u = u;
and v = u;; are the same, then u — v = 0 is a code word. Hence i = j. Thus
u—v =g, — U, If k # 1, that is the difference between two distinct code
words and hence non-zero. Thus k = .

If the symbol field A has g elements, then the table contains g"¢" ™™ = ¢"
distinct entries and they are words of length n. As there are only ¢" elements
of A" every element must occur. n

Error processing for linear codes 51

4.4 Another view of Theorem 4.3

Another way of stating Theorem 4.3 is to say that for any standard array
the entries in the same row as u are the values u — v, where v runs through
the code. This fact is so useful that I have given it a separate number.

Example The triple check code Take the word u = 100011 that lies in the
second row of the standard array 7;. The differences between u and the code

words are
u — 000000 = 100011;
u.— 100110 = 000101;
— 010101 = 110110;
u — 001011 = 101000;
u — 111000 = 0110115
u—011110 = 111101;
u — 101101 = 001110;
u — 110011 = 010000.
As you can see these are just the words in the second row of the table.
Corollary If C is a linear (n, m)-code over A with a standard array T and

ue A", then the entries in the row of T containing u are just the values u —v
as v ranges over C.

Proof The term w is in the same row as u ifand only if w —u € C. Putting
v = (w — u) it follows that w is in the same row as u if and only if w =u + v
for some code word v.

4.5 Cosets

Choose any standard array and gather together the elements in each of its
rows. These collections are called the cosets of the code. Since the test whether
two elements lie in the same row of the standard array does not depend on
the actual array we start with, the cosets will be the same whatever array 18

chosen.

Example The triple check code The cosets are given by thc' rows.of the
standard array T;. Supposing we chose to construct the table in a different

52 Error-correcting codes and finite fields

manner we would perhaps end up with this table.

000000 110011 100110 010101 001011 111000 011110 101101
000101 110110 100011 010000 001110 111101 011011 101000
100100 010111 000010 110001 101111 011100 111010 001001
110000 000011 010110 100101 111011 001000 101110 011101
100001 010010 000111 110100 101010 011001 111111 001100
000110 110101 100000 010011 001101 111110 011000 101011
100010 010001 000100 110111 101001 011010 111100 001111
010100 100111 110010 000001 011111 101100 001010 111001

Although the rows are in a different order and the entries in each row are
in a different order, the sets of entries in a row are the same. That is obviously
true for the first row, but it is also true for the others. Check this by finding
which row of the original table has the same terms as the third row of this
one. We shall refer to this table as 7.

To make this discussion rigorous, we need a formal definition of a coset.

Definition Let C be a linear (n, m)-code over A and let u € A". The coset of
C containing u is the set of words v for which v —ue C. We shall use u + C
to denote the coset of u with respect to C.

In this definition the coset apparently depends on the choice of u. But, of
course, different choices of u may lead to the same coset. We have to show
that either we get identical cosets or completely disjoint ones. This fact is
implicit in the arguments we have outlined so far, but it is worth giving a
direct proof.

Proposition If the cosets of u and v with respect to C have any element in
common, then they are identical.

Proof Suppose w — uand w — v both lie in C. We shall show that the cosets
of u and v are identical. Let x lie in 4 + C. Then x — u e C. Now

x—y=(x—-u-—W-—u+Ww-=0).

That is a sum of three code words and hence a code word. Thus x lies in
the coset of v. The argument that any member of the coset of v lies in the
coset of u is identical. n

To sum up, any standard array for a linear (n, m)-code C contains every
word of length n exactly once. Each row consists of the words of some coset
of C. It is possible to take the cosets in any order, provided you leave the
coset consisting of the code words at the top. The row leader for each row

Error processing for linear codes 53

may be also chosen freely, but then the order of the elements in the row is
determined by the order of the code words in the top row.

4.6 Error words

We now introduce the idea of an error word for a linear code. This is an
extension of the definition for binary codes given in Chapter 2. The error
word is just the difference between a received word and the corresponding
transmitted code word. Rather than considering an error processor as a
machine for guessing which code word was sent, it is convenient to imagine
that it tries to guess which error occurred and then uses that to determine
the code word.

Definition Let a linear (n, m)-code C be used to transmit a message. Suppose
the code word u is transmitted and the word v is received. Then we say that
the error word or error pattern e = v — u has occurred.

Remember: received word equals transmitted code word plus error word:
v=1u-+e.

Example The triple check code Suppose that the word 110011 is trans-
mitted and 100011 is received, then the error that occurred is 010000. On
the other hand if 100110 is transmitted and 100011 is received then the error
that occurred is 000101.

Now if 10011 is received and we are using 7}, our error processor corrects
it to 110011, whereas if we were using T it corrects it to 100110. So we could
say that T} guesses that the error that occurred was 010000 and T guesses
that it was 000101, Notice that these are the row leaders of the row containing
100011 in the two arrays.

Proposition Let P be an error processor using the standard array T. Suppose
that a code word w is received, then P will correct w to u = w — e where e is
the row leader of the row containing w in. T.

Proof The word at the head of the column containing e is 0. Thus by
Proposition 42,e —0=w —u, where u is the code word at the head of the
column containing w. Hence u =w —e. B

The proposition states that an error processor using 2 standard array
always guesses that the error pattern was a row leader. One application of
the result is to determine whether it is feasible to attempt to correct a certain

set of error patterns with a linear (1, m)-code.

54 Error-correcting codes and finite fields

Example A standard array for the triple check code or any binary linear
(6, 3)-code has 8 rows. As there are 15 possible error patterns of weight 2,
no standard array can have all of them as row leaders. So such a code will
not enable us to correct them all.

4.7 Correction to closest code word

Shortly we shall take this argument further, but first we show that if we
choose the row leaders of our standard array to be of minimal weight (that
is we choose coset leaders), then each received word will be corrected to a
closest code word.

Theorem Let C be a linear (n, m)-code over A with a standard array T in
which the row leaders have smallest possible weight. Let u be a word of length
n and let v be the code word at the head of its column. Then for any code word
w the distance d(u, w) is greater than or equal to d(u, v).

Example The triple check code. Again take u = 100011. From the differ-
ences between u and the code words calculated above we can calculate the
distances:

u — 000000 = 100011: distance 3;
u — 100110 = 000101: distance 2;
u — 010101 = 110110: distance 4;
u — 001011 = 101000: distance 2;
u — 111000 = 011011: distance 4;
u— 011110 = 111101: distance 5;
u — 101101 = 001110: distance 3;
u — 110011 = 010000: distance 1.

|

The c}osest code word is 110011, which lies at the head of the column
containing in the standard array T}, but not in the standard array Ts.

Proof The distance d(u, w) is the weight of the difference u — w. As w runs
through C, u — w runs through the coset of u, which is the row containing
u in the table. By construction the row reader x has the smallest possible
weight and u = x + v or v = u — x. Thus d(u, v) is minimal. u

That concludes the basic facts about decoding with a standard array.
Theoretically the standard array is an optimal decoding technique. However,

Error processing for linear codes 55

there remain two problems to solve. Firstly how do you design ‘good’
multiple error-correcting codes, and secondly how can you implement a
decoder that does not require a table of ¢" entries? Multiple error-correcting
codes may need to have long block lengths and values of over 100 are not
uncommon. A table with 2100 entries is not feasible, even on a large
computer.

4.8 Information from the standard array

To attack these problems we now look at the information the standard array
gives us about the error-processing capabilities of a code. The key to further
progress is the simple observation of Proposition 4.6 that in standard array
decoding the row leaders are the error patterns that are corrected. Hence if
two error patterns lie in the same coset the code can correct at most one of
them.

Theorem Let C be a linear code and let S = {es,...,e,} be a set of error
patterns. An error processor can distinguish these error patterns (regardless of
the received word) if and only if they lie in distinct cosets of C. In that case a
standard array processor can be constructed that corrects them.

Example The triple check code. The error patterns 000101, 100100, 110000,
100001, 000110, 100010, 010100 lie in distinct cosets. The standard array Ts
places them as row leaders. So the error processor based on that array will
correct these errors.

On the other hand'000101 and 101000 lie in the same coset. It is impossible
to construct an error processor that will always correct both of these errors.

Proof Let e be an error and let f # e lie in the coset ofe. Thus f=u-+e
for some fixed code word u # 0. If an error processor corrects an error e
regardless of received word, it must take f to u. If it corrects an error f
regardless of received word it must take f to 0. Obviously no error processor
can do both.

Conversely suppose that f does not lie m the coset of e. Then we can form
a standard array in which both e and f are row leaders. For all code words
u, this processor takes the words u + ¢ and u + £ to u. Thus it corrects both
error patterns regardless of the received word. | |

The most valuable set of errors we could wish to correct is the set of all
errors up to some given weight. The proposition gives us a useful criterion
to check whether a code is capable of this.

56 Error-correcting codes and finite fields

Corollary The code C can correct all error patterns of weight <k if they all
occur as coset leaders. That is the case if and only if they lie in distinct cosets.

4.9 Cosets of a code and its check matrix

There is a close relationship between the cosets of a linear code and its check
matrix. This can be exploited to reduce the storage required for a standard
array of an (n, m)-code by a factor 2™, but more importantly it forms the
basis of all practical error-processing schemes.

Proposition If a linear code C has check matrix H, then two words u and v
lie in the same coset of C if and only if Hu" = Hv'.

Proof By Definition 4.5, v and v lie in the same coset if and only ifv —u e C.
But by the definition of a check matrix, » — u € Cifand only if Hv — w)T = 0.
That is equivalent to the condition Hu™ = Hv. | |

When we use a standard array for decoding, we determine the row
containing a received word u and then assume that the error word is the
row leader. Since the value Hu" determines the row of u we do not need to
store all the elements, but only this value and the row leader. Since the value
‘diagnoses’ the error it is called the syndrome of u.

Definition Given a linear (n, m)-code C and a check matrix H, the syndrome
of a word u of length n is (HuT)T (we transpose so that the syndrome is a
row vector).

We can restate the basic property of the check matrix by saying that a
word is a code word if and only if it has syndrome 0. Now we can replace
the standard array by a table containing the row leaders and syndromes only.

Example Triple check code We take the standard array 7; and the check
matrix

110100
H=|1 010 1 0
011001

Error processing for linear codes 57

Then the standard array reduces to the following table:

Row leader Syndrome
000000 000
100000 110
010000 101
001000 011
000100 100
000010 010
000001 001
100001 111

To show how this abbreviated table can be used, suppose u = 100011 is
received. The syndrome (Hu™)T is 101. So u is decoded by subtracting 010000,
giving 110011. Similarly 001100 has syndrome 111, so it is decoded as 101101.

4.10 Syndromes of received words and error words

One point of the previous paragraph is that the syndrome of a received word
is the same as the syndrome of the corresponding error word. That is
sufficiently important that we state it as a proposition.

Proposition Let C be a linear code with check matrix H. Suppose the code
word u is transmitted and the word v = u + e is received. The syndromes of e
and v are equal: He™ = Hu".

Proof Ho" = Hu" + HeT =0 + He". n

Normally the error word has a relatively low weight. We can exploit the
connection of the standard array with the check matrix to investigate in
more detail which errors a code can correct. We start by asking what
conditions on the check matrix ensure that a code can correct all error
patterns of weight one.

The (transposed) syndrome of a word of weight one is a constant multiple
of a single column of the check matrix, as you can easily convince yourself
by checking the following example.

Example (In ordinary numbers)
110100
H={1 01010
011001

58 Error-correcting codes and finite fields
v=(0 0 2 0 0 0),
(H"'=(0 2 2).

The reason this occurs is that in multiplying each row of H by v, the single
non-zero entry of v is multiplied by the H entry in the corresponding column.

4.11 Condition for single error correction

We can now give a necessary and sufficient condition on the columns of the
check matrix for the code to be able to correct single errors.

.T heorem A linear code C with check matrix H can correct all single errors
if and only if the columns of H are non-zero and no column is a multiple of
any other. In particular, a binary linear code can correct all single errors if
and only if it has a check matrix with distinct non-zero columns.

Examples The theorem is particularly easy to use for binary codes. Recall
the check matrices of our example codes.

e The (8,7)-parity check code has check matrix
a1t 1 1 1 1 1 1

’ljhat clearly does not have distinct columns. So the code cannot correct
single errors.

® The (3, 1)-repetition code has check matrix

[1 1 o}
1o 1f
This does have distinct columns and the code can correct single errors.
e Finally, the (6, 3)-triple check code has check matrix
110100

101010
011001

This also has distinct columns. So again the code can correct single errors.

Pr?of By Theorem 4.8 the error words of weight one can all be distin-
guished and corrected if and only if they lie in distinct cosets. They lie in

Error processing for linear codes 59

distinct cosets if and only if they have distinct syndromes. But as we observed
above, the syndromes of errors of weight one are just the multiples of the
columns of H. So the condition of the theorem is necessary and sufficient
for the code to correct all errors of weight one. ||

4.12 Check matrix and minimum distance

Recall that in Proposition 2.5 we proved that a code can correct all errors
of weight at most ¢ if and only if it has minimum distance 2¢ + 1. It turns
out that by combining this result with linear algebra we can adapt the proof
of Theorem 4.11 to show that the check matrix determines the minimum
distance of the code precisely. That result will be of central importance in

Part 3.
To motivate the extended theorem we first restate Theorem 4.11.

Theovem 4.11 A linear code with check matrix H has minimum distance at
least 3 if and only if the columns of its check matrix are non-zero and no column
is a multiple of any other.

Using the language of linear algebra, we can rephrase this again.

Theorem 4.11 A linear code has minimum distance greater than 2 if and only
if no 2 rows of its check matrix are linearly dependent.

The extension we require is the following.

Theorem Let C be a linear code with check matrix H. Then C has minimum
distance >d if and only if no set of d columns of H is linearly dependent.

We denote the columns of H by Hy, H,,..., H,. Recall that columns
H,, H,,...,H; form a linearly dependent set if there exist elements
€y Cps-.-»C4€ F,mo0t all zero, such that

¢,H, + CHy + -+ cgHy = 0.)

Proof The theorem follows from the following three observations.

1. As Cis linear, its minimum distance is the minimum weight of a non-zero
code word.

5. A word ¢ is a code word if and only if Hc™=0.

3. Ifc=(cp...»C,) the equation HcT = 0 tells us that the set of columns

{H,| ¢, # 0} is linearly dependent.

60 Error-correcting codes and finite fields

We now put these together to prove the theorem. Note that for

¢=1(C1yCz+->Cn)s
HC' = ¢ Hy + ¢Hy + -+ + ¢l @)
Suppose there is a non-zero code word ¢ = (Cy» Cas - - - » Ca)s Of weight <d.

We must show that H has a linearly dependent set of d columns. Ascisa
code word, Hc" = 0 and equation (2) gives

HcT=c1H1+c2H2+-~+c,,H,‘=0. 3)

Choose a set of precisely d columns of H that include all those for which
¢; # 0; for convenience we renumber to make this set Hy, ..., H,. Then since
¢;=0fori>d, (3) becomes

¢, H, +czH2+~~+cdH,,=0. €3]

Since ¢ # 0, at least one of the coefficients ¢; must be non-zero. Hence the
columns Hj, ..., H; form a linearly dependent set.

Now suppose, conversely, that H has d columns that form a linearly
dependent set. Again renumbering for convenience, Suppose the first d
columns of H form a linearly dependent set. Then equation (1) holds for
certain ¢;, not all zero. Defining ¢; = 0 for i > d we find a non-zero word
¢ = (CyyCgs-- - » Cp)s SUCh that equation (3) holds. But this equation states
that ¢ is a code word of C. Thus ce C, and has weight at most d.]

Example This criterion becomes progressively harder to use as the mini-
mum distance in question increases. But we can derive the precise minimum
distances of our example codes.

e The (8,7)-parity check code
a1 11111 1).

The columns of the check matrix are non-zero, but any two are equal.
Thus the code has minimum distance 2.

[1 1 0
1o 1f
The columns of the check matrix are distinct but the sum of the second and

third column is the first. Thus any two columns are linearly independent but
all three are not. The code has minimum distance three.

e The (3, 1)-repetition code

Error processing for linear codes 61
e The (6,3)-triple check code
0100
1 1 0 1 Of.
011001
This also has distinct columns and again the sum of the second and third
column is the first. So again the code has minimum distance 3.

4,13 Summary

This chapter contains the basic theory of error processing for linear codes.
Sections 4.1-4.5 discuss the use of a coset table. It is shown that such an
array will always contain all possible received words, each occurring exactly
once. The rows of the table are always cosets of the code. Sections 4.6-4.3
use the table to establish which error patterns can be decoded. In particular
choosing the row leaders of the array to be coset leaders gives minimum
distance and hence maximum likelihood correction. Sections 49 and 4.10
relate the coset table to a check matrix of the code and introduce the idea
of the syndrome of a received word. Instead of storing all the words, we need
only store the syndromes. Then for a received word we calculate its syndrome
by multiplying it by the check matrix. This tells us the coset containing the
word and we correct it by subtracting the coset leader. Finally the last two
sections analyse the check matrix directly to give a necessary and sufficient
criterion for a code to correct single errors (Theorem 4.11) and a precise
determination of the. minimum distance of the code. (Theorem 4.12.)

In the next chapter we shall return to binary codes and exploit our results
to produce a class of optimally efficient single error-correcting codes.

Exercises 4

41 Let D be a binary linear (8, 5)-code with the following parity checks
added to the message block abede: x =a + b+ey=a+tbtctd
and z = b + d + e. Give a table of coset leaders for all the syndromes
of E and exhibit two error patterns of weight 1 with the same syndrome.

Construct a binary (9, 5)-code that can correct single errors by adding
a further check bit to the code D.

42 Let C be a linear code, and suppose the coset table (standard array) of
Section 4.1 is used for error processing. Show that the probability that
a word is correctly received is independent of the transmitted word.

43 Prove that a binary linear code can correct ¢ errors in a block if and
only if for all k=1,...,2t no sum of k rows of its check matrix is 0.

62
4.4

4.5

4.6

47

4.8

4.9

Error-correcting codes and finite fields

The matrix below is the generator matrix for a (7, 3)-binary linear code.
Write down a table of code words. What is the minimum distance of
the code?

Write down the standard form check matrix of the code and construct
a syndrome/coset leader decoding table for the code. Where there is a
choice of coset leaders indicate all possible choices.

10001 11
01010 11
0011101

Proposition 2.5 states that a code can correct all errors of weight <t
if and only if it has minimum distance >2¢ + 1. Derive a proof of this
theorem for linear codes from Corollary 4.8.

Use the fact that for a linear (n, m)-code the standard array has ¢" ™"
rows to construct a bound on the largest k for which a linear (n, m)-code
can correct all errors of weight <k.

Exercise 3.16 introduced a binary linear code C and a ternary code D
both having the check matrix H:

11100 1 000
1001100100
0101010010
0010110001

Construct coset/syndrome tables for C and D.

Use the tables to check your answers to Exercise 3.17 and 3.18.
In Exercise 1.4 you are asked to construct an improved version of the
triple check code, in which three check bits are added to a block of
four bits and it is still possible to correct all single errors. Construct
such a code by using Theorem 4.11 to produce 2a check matrix.
Construct a coset table for this improved code. Show that if the coset
leaders are chosen with minimal weight, then they are precisely 0, and
all words of weight 1. How many words are at distance at least 2 from
all code words?
The coset table provides a method for error processing any linear code.
Show that a coset table can be designed to match the performance of
any error processor whose performance is independent of the trans-
mitted word. That is, given such an error processor P, it is possible to
construct a coset table that will correct all the errors P can correct and
perhaps more.

5 Hamming codes and the binary Golay
codes

In the previous chapter we saw that a binary linear code C can correct all
single errors if and only if its check matrix H has distinct columns. In Chapter
3 it was shown that the rank of C is bounded by the number of columns of
H minus the rank of H. If H has a sufficiently large set of columns, then its
rank is just the length of the columns. So to make the rank of the code
maximal we must choose as many distinct columns for H as possible. This
leads us to define a class of single error-correcting binary codes by choosing
the check matrix to have all possible non-zero columns of length k. These
are the celebrated Hamming codes, which we shall denote by Ham(k).

5.1 The binary Hamming codes

Definition The binary Hamming code Ham(k) has as its check matrix Hy
the matrix whose columns are all non-zero binary words of length k.

Example We shall order the columns of H, in a manner that will ensure
that the matrix is in standard form.
Here are the check matrices of Ham(3) and Ham(4).

1011100

Hy=|1 1100 1 0f;
L0111001

r1 00 110101111000

H4=110101111000100
0110101111000T10
lo ot 101011110001

Notice that H, contains all non-zero columns of length 3 and H, contains
all non-zero columns of length 4. Since the matrices are in standard form
we can read off the parameters of Ham(3) and Ham(4). Ham(3) is a
(7, 4)-code and Ham(4) is a (15, 11)-code. Ham(3) uses three check bits to
encode a message block of length 4, and is thus clearly more efficient than

64 Error-correcting codes and finite fields

our sample triple check code. One aim of this chapter is to show that the
Hamming codes represent the optimum efficiency attainable for a single
error-correcting code.

You may ask whether it is legitimate to choose the order of the columns
of H, at our convenience. The answer is yes. The only effect of permuting
the columns of H is to apply the same permutation to the entries in all the
code words, and for a random channel that does not affect the properties of
the code in any way (see Exercise 5.1).

5.2 Parameters of the Hamming codes

We have seen that it is easy to read off the block length and rank of the
Hamming codes from their check matrices, but it is useful to write down
formulae for these values.

Proposition (a) Ham(k) has block length n = 2% — 1 and rank
m=2—k—1.

(b) The minimum distance of Ham(k) is 3.

Example This tells us that Ham(S) is a (31, 26)-code with minimum
distance 3.

Proof (a) The number n is the number of non-zero binary words of length
k, and hence the number of columns in H,.
Among the columns of H are the k unit columns

(1,0,...,0), (0,1,0,...,0),...,(0,...,0,1),

which form a k x k-identity matrix. Thus Hy has rank k, and the rank and
nullity theorem (LA.10) tells us that the rank of Ham(k) is 2% —1—k
(b) This follows from Theorem 4.12.

The formula shows that the rate of Hamming codes approaches 1 quite
fast as k grows large. The codes are extremely efficient. On the other hand,
correcting a single error in a block loses its usefulness as the block length
increases. So it is the shorter Hamming codes that are most frequently used.
On the other hand the long Hamming codes form an excellent basis for
developing multiple error-correcting codes.

Hamming codes and the binary Golay codes 65

5.3 Comparing Ham(3) and TPC

Let us build coset-syndrome decoding tables for Ham(3) and our triple
parity check sample code to compare them in a little more detail. Both codes
produce syndromes of length 3 so that we can amalgamate the two tables.

Example Syndrome-decoding tables for the triple parity check code (TPC)
and Ham(3):

Syndrome TPC error Ham(3) error

000 0000O0O 000O00O0DO0
1 00 000100 0000100
010 0000T10 000O0O0CT1O
001 0000O01 0000O0OTO0?!1?
110 100000 1000000
1 01 010000 0001000
011 001000 0100000
111 100001 0010000

Notice that when we reach the last syndrome the TPC code has run out
of single errors, but there are several possible errors of weight 2 and our
choice is arbitrary. On the other hand, Ham(3) precisely uses up all the
errors of weight 1 and no more. Codes with this property are rare. They are
called 1-perfect.

This property of Ham(3) can be stated in a more precise form if we notice
that the syndrome-decoding table tells us that whatever incorrect word we
receive we can always correct it to a code word by changing one bit. This
bit is determined by the syndrome: there is no choice. The proposition below
restates this formally for all Hamming codes.

Proposition To every word ve B" with n= 2k — 1, there is a unique word
u € Ham(k) with d(u,v) < 1.

Proof Let v be a word in B". The syndrome H,v" of v is 0 if and only if
v e Ham(k). Otherwise the syndrome is a non-zero word of length k. But
every non-zero word appears as a column of H. Suppose that it is the ith
column. Let ¢; be the unit word (0,...,0,1,0,...,0) with 1 in the ith place.
Then H,el is also the ith column of Hy. Thus u=v—¢; is a code word of
Ham(k). The uniqueness of u follows from Proposition 5.2(b). | |

The property we have just established for Hamming codes is also enjoyed
by some multiple error-correcting codes.

66 Error-correcting codes and finite fields

Definition An (n, m)-code C is called r-perfect if to every vector ve A" there
is a unique code word u with d(u, v) < r. Thus Hamming codes are 1-perfect.

5.4 Perfect codes

Perfect codes have maximum rank among the codes that can correct error
patterns of weight <r (see the proposition below) but they are very rare.
The only possible parameters n, m, d for binary perfect codes are given in
the following list:

1. (2r +1,1,2r + 1). These are the parameters of the r-fold repetition code
which is r-perfect. :

2. (2*—1,2%—k —1,3). These are the parameters of the Hamming codes
which are 1-perfect.

3. (23,12, 7). These are the parameters of the binary Golay code G,3, which
is 3-perfect. This code has a remarkable geometric structure and will be
constructed at the end of the chapter. ’

In the next proposition we establish the fact that r-perfect codes have
maximum rank among codes of a given block length and minimum distance
2r + 1. For the proof we need the concept of a ball of radius r around a
word u. It has the obvious definition.

Definition The r-ball D(u) = D with centre u consists of all vectors ve B"
with d(u, v) <.

Proposition If there is an r-perfect (n, m)-code then no (n, m')-code with
m' > m has minimum distance greater than 2r.

Proof The statement that C is r-perfect says that the r-balls centred on the
code words are disjoint and cover B".

Now the number |D| of elements of an r-ball D is independent of its centre.
So 2" = 2™D|. Thus if C' is an (n, m')-code the r-balls centred on the words
of C' cannot be disjoint. n

Remark We can calculate [D|:

o= (5)+()++C)

" If we insert this value in the formula 2" = 2"|D| it places severe restrictions

on m, n, and r. Thus the Golay code G3 could not exist but for the fact that
14+234+2322/2+232221/6=1+23 + 253 + 1771 = 2048 = 2'*,

Hamming codes and the binary Golay codes 67

5.5 Length of Hamming codes

To illustrate the fact that short Hamming codes are more useful than long
ones we calculate the performances of these codes on the same message and
channel that we used in Chapter 1. That is a message of 10000 bits length
transmitted via a binary symmetric channel with error probability p = 0.001.

We start by calculating the generator matrices and encoding rules for these
codes. The generator matrix can be obtained easily from the check matrix
by Proposition 3.11.

Examples
e Ham(3):
Generator matrix:

1 0 0 0]
0100
0010
000 1]
1011
1110
10 1 1 1]

This matrix éncodes a message word abed as a code word abedxyz,
where the check bits x, y, and z are calculated as follows:

x=a+c+d,
y=a+b+ec,

and
z=b+c+d.

For a 10000-bit message on a channel with error probability 0.001 the
probability of correct transmission is:

09997 + 7(0.001)(0.999)¢)0 9% =~ 0.949.

This is almost as good as the triple check code. On the other hand the
rate is ¢, which is somewhat more efficient. The triple check code requires
transmission of 20000 bits while Ham(3) requires 17 500.

68 Error-correcting codes and finite fields
e Ham(4):
Generator matrix:

(1000000000 0]
01 00O0O0OOOO0O
00100O0O0O0OOO OO
000100O0O0OOTOO®O
00001 00O0OO0OO OO
0000O0OT1O0O0OO0OOO
000O0O0OO0OT1TO0O0OOOQO
000O0OO0OO0OO0OTOO OO
0000O0OO0OO0OOT1OO
000O0O0OO0OO0OOOT1O
000O0O0OOOOOGO0OO
1001 1010 1 11
11010111100
0110101 1110
(0 01 1010111 1]

This matrix encodes a message word abcdefghijk as a code word
abcdefghijkuxyz where the check bits u, x, y and z are calculated as
follows:

u=a+d+e+g+i+j+k,
x=a+b+d+f+g+h+i,
y=btct+e+tg+h+i+j,
z=c+d+f+h+i+j+k.

You can check directly that each single error causes a different
combination of these conditions to fail (see Exercise 5.2).

For a message of 10000 bits on a channel with error probability 0.001
the probability of correct transmission is

(0.999'5 + 15(0.001)(0.999)!4)10000/11 0 9],

Now relia}bility has dropped noticeably, but the efficiency has increased
sharply. This code has rate $} and requires only 13 637 bits to transmit
the message.

Hamming codes and the binary Golay codes 69

EXTRAS

The remainder of this chapter is devoted to a construction of the remarkable
Golay code mentioned above. We shall in fact construct two closely related
codes, the Golay codes G, and G,,. The codes are not used in later chapters
of the book, and are included because of their great interest and beauty. The
more practically inclined reader may omit this section entirely.

The construction given here is due to Turyn, see MacWilliams and Sloane
(1977, pp. 587-8) and Lint (1982, p. 43). Although it is G, that is perfect,
G, is the more highly symmetrical of the two codes and it is this code which
is constructed first. The construction gives a tiny inkling of the wonderful
properties possessed by this code.

5.6 A closer look at Ham(3)

We begin by looking at Ham(3) in a little more detail. So we list its code
words.

Example The code words of Ham(3):

0000000 1111111

1000110 0100011 0010111 0001101

1100101 1010001 1001011 0110100 0101110 0011010
1110010 1101000 1011100 0111001.

Proposition The code words of Ham(3) apart from Q= 0000000 and

1= 1111111 have weight three or four. Those of weight four are found from
those of weight three by replacing 0 by 1 and vice versa. | |

5.7 Symmetries of the Hamming code

The Hamming code has two nice symmetries that can be read off from the
list of code words. The first becomes apparent if we list the code words in
two columns. We start with 0 and 1. Then we list the rest of the words
forwards in the first column and from the back in the second. The list looks
like this.

Example The code words of Ham(3) arranged in complementary pairs:

70 Error-correcting codes and finite fields

0000000 1111111
1000110 0111001
0100011 1011100
0010111 1101000
0001101 1110010
1100101 0011010
1010001 0101110
1001011 0110100.

The words of the second column are obtained from the ones in the first
column by interchanging Os and Is.

Definition A binary word v is called the complement of a word u if v is
obtained from u by interchanging the symbols 0 and 1.

Now we put all the words of weight 3 in the first column and arrange
them to show the second symmetry.

Example The code words of Ham(3) arranged to show cyclic symmetry:

0000000 1111111
1101000 0010111
0110100 1001011
0011010 1100101
0001101 1110010
1000110 0111001
0100011 1011100
1010001 0101110

You can see that if we push the bits of a code word to the right, wrapping
'the last bit back to the beginning we get another code word. This operation
is called a rotation or cyclic shift.

Deﬁr.zition A rotation or cyclic shift of a word by k places is obtained by
moving each symbol k places to the right, and wrapping to the start of the
word when a symbol passes the end.

Codes for which every cyclic shift of a code word is a code word are very
important and will be investigated in detail in Part 3 of the book. They are
called ;yclic codes. We note the symmetry properties of Ham(3) in a
proposition.

Proposition The Hamming code Ham(3) is a cyclic code for which the
complement of any code word is a code word.]

Hamming codes and the binary Golay codes 71

5.8 Construction of Golay code G, (1)

We are going to construct the Golay codes by fitting together two versions
of Ham(3). As with a jigsaw puzzle these must be made to mesh nicely. For
the first copy we take the version we have constructed above. We will denote
it by H. The second code, which we denote by K, is obtained from H by
reversing the order of the bits. Of course, internally K has the same structure
as H, but the important fact is the way they fit together. By just writing
down the code words of K, the reader will immediately establish the following
fact, but we give a formal proof for completeness.

Proposition Let H be the Hamming code Ham(3) defined above and let K
be the code obtained from H by reversing the order of the bits in each code
word. Then H and K are both (7, 4) codes of minimum distance 3. Furthermore,
the only words that are code words of both H and K are 0 and 1.

Proof It is sufficient to prove that no word of weight 3 lies in both H and
K, because the other words apart from 0 and 1 are obtained from these by
taking complements. We shift the word cyclically so that it starts with two
adjacent 1s. If it lies in H the result is 1101000 and if it lies in K the result
is 1100010. So it cannot lie in both H and K. u

5.9 Construction of Golay code Gy, (2)

The next step in the construction of the Golay codes is to extend both H
and K by adding a parity check bit to the end of each code word, making
the number of 1s even. This results in two (8, 4)-codes, that we shall call H'
and K’, with minimum distance 4. They still have only the words 0 and 1
(now of length 8) in common, but it is no longer true that the words of K’ are
those of H' in reverse order. As in the previous section we first calculate the
code words and then state the properties of the codes in a proposition.

Example The code words of H' and K"
H K

00000000 11111111 00000000 11111111
11010001 00101110 00010111 11101000
01101001 10010110 00101101 11010010

00110101 11001010 01011001 10100110
00011011 11100100 10110001 01001110
10001101 01110010 01100011 10011100
01000111 10111000 11000101 00111010

10100011 01011100 10001011 01110100

72 Error-correcting codes and finite fields

Proposition H' and K' are linear codes. The code words of H' have weights
0, 4, and 8. Thus H' has minimum distance 4.

The only code words H' and K’ have in common are 00000000 and
it

Proof The codes are linear, because adding a check bit is a linear process.
The statement about the weights of code words is evident from the table.
The minimum distance of a linear code is the minimum weight of a non-zero
code word.

If ' is a common code word of H' and K, then stripping its parity check
bit yields a common code word u of H and K. Thus 4 = 0000000 or 1111111.
Hence «' = 00000000 or 11111111, | |

5.10 Construction of Golay code G,, (3)

We are now in a position to define the extended Golay code G,,4. This has
code words of length 24 which we split into three parts of length 8.

Definition The extended Golay code G,, consists of all words of length 24
of the form

a+x,b+x,a+b+x,

where a and b are code words of H' and x is a code word of K.

Example A typical code word of G,, is obtained by taking ¢ = 11010001,
b = 10010110, and x = 01011001. That gives the code word

10001000 11001111 00011110.

Proposition In the representation of the code words of the extended Golay
code above the code words a, b of H' and x of K' are uniquely determined.

Proof Suppose a+ x =c +y, with ¢, ¢ in H and x, y in K. Then
a+c=x+y Hencea+ cisinboth H and K'.Soa+c=0ora+c=1.
In the former case a = ¢ and x = y. In the latter case that implies that c is
the complement of a and y is the complement of x.

Suppose now thata + x, b + x,a + b+ x =c + y,d + y,c +d + y, with
d also in H'. Then either a = ¢ and x = y, in which case it follows that b = d,
or ¢ is the complement of a and x is the complement of y. But then d is the
complement of b and ¢ + d is also the complement of a + b. But because in
B,1+1=0+0and1+0=0-+ 1, the result of adding the complements
of a and b is a + b itself and not its complement. Hence this case cannot
oceur, n

Hamming codes and the binary Golay codes 73

Corollary The extended Golay code G,4 has block length 24 and rank 12.

Proof The block length is immediate from the construction.
From the proposition G,, is a linear code with 2242* = 2!? code words.
So it has rank 12. n

We can also check the rank by constructing a basis or a generator matrix.
We do that in the following example.

Example A generator matrix for the extended Golay code Gy

We begin by writing down generator matrices for H' and K'. The generator
matrix for H' is obtained by adding the appropriate parity check row to the
generator matrix for H. That gives

1 0 0 0]
010
00 1
0001
A0
1110
01 11
L1 10 1]

A generator matrix for K’ can be obtained by reversing the first seven rows
of the matrix we have just obtained, giving

01 11
1110
1011
B=0001.
0010
0100
1000
1101

Now we substitute the columns of A for a and b and those of B for x in the
formula a + x, b + x, a + b + x, one at a time, taking exactly one of 4, b

74 Error-correcting codes and finite fields

and x to be non zero. That gives the 24 x 12 generator matrix for G,4:

" 00000000 1 1 1]
01000000O0T1 110
001000001011
000100000001
101100000010
111000000100
011100001000
110100001101
0000100001 Lt
000001001110
000000101011
000000010001
000010110010
(ll)()()lll()()l()()
0000O0T1 11 1000
00001 101 1101
1000100001 11
010001001110
001000101011
000100010001
101110110010
111011100100
011101111000
L110111011101_

5.11 The weights of code words of Golay code G,

The last major task is to determine the minimum distance of G,4. We begin

by showing that the words of Ga4 have weight divisible by 4. Then in the

Hamming codes and the binary Golay codes 75

next paragraph we shall show that G,, has minimum distance 8. To do this
we will need to estimate the weight of a sum of words by a calculation
involving the original words. For that purpose we introduce a product of u
and v, u*v. Bach entry (u=*0); is the product w;v;, and define j(u, v) =
wt(u = v). It is easy to verify that j(u, v) counts the number of places where

both u and v have a 1, and so
wt(u + v) = wt(u) + wt(v) — 2j(u, v)

(see Exercise 5.13). For example, to calculate the weight of 11010001 +
00010111 we note that j(u, v) =2 sO the weight of the sum is 8 — 4=4
Indeed the sum is 11000110.

What happens if we add three words u, v, w? If we estimate the weight of
the sum by wt(u) + wt(v) + wi(w) — 2j(u, v) — 2j(th w) —2j(v, w), we will
correctly assess the contribution of the s that lie in exactly one or two of
the words, but if there is a place where all three have a 1, then that will make
a contribution of 3 —6= —3 to the sum instead of +1. So if we define
Jj(u, v, w) to be the number of places where all three words have a 1, our
correct formula is

wt(u + v+ w) = wt(u) + wt(v) + wt(w) — 2j(u, v)
— 2j(u, w) — 24(v, W) + 41, v, W)
Let us try this out on 11010001, 00010111, O11 10010, j(u, v) = j(u, w) =

Jjv,w) =2 and j(u, v, w) = 1. The formula gives the weight of the sum as
12 — 12 + 4 = 4, and this gives the correct weight of the sum 10110100

Proposition Any code word C=a+x,b+x,a+b+x0fGa has weight
divisible by 4.

Proof We write C as A+ B+ X, where A=a,0,4a, B=0,bband C=
x, x, x. Let us estimate j(4, B), j(4,C) and j(B, C). We want to show they
are all even. For the functions involving X that is easy: j(4, X) = 2j(a, x)
and j(B, X) = 2j(b, x). :

For j(4, B) = j(a, b) a little work is necessary. We know that a + bisa
code word of H'. So it has weight divisible by 4. Now considering the formula

2j(a, by = wt(a) + wt(b) — wt(a + b),

we see that all the terms on the right-hand side are divisible by 4. Hence
j(4, B) = j(a, b) is even.
We can now use the formula to show that C has weight divisible by 4:

wt(C) = Wi(A) + wi(B) + wi(C)
— 2j(A, B) - 2i(A, X) = 2(B, X) + 4i(4, B, X).

76 Error-correcting codes and finite fields

Each of the weights of 4, B, X is a multiple of the weight of a, b, x and
hence a multiple of 4. Each of j(4, B), j(4, X) and j(B, X) is even so the
terms involving these are also multiples of 4. Finally 4j(4, B, X) is obviously
a multiple of 4. So the weight of C is a multiple of 4 as required. n

5.12 The minimum distance of G4

As G, is a linear code its minimum distance is the minimum weight of its
code words. A look at the generator matrix shows that G, has code words
of weight 8, and we know that all the code wods of G, have weight divisible
by 4. So it remains to investigate the possibility that G,, has a code word
of weight 4.

Proposition The extended Golay code Gy, has minimum distance 8.

Proof Suppose C=a+x, b+ x,a-+b+x has weight 4. a,b,a + b, and
x all have even weight and by the formula

wt(u + v) = wt(u) + wt(v) — 2j(u, v)

it follows that a + x, b + x, and a + b + x have even weight. Thus one of
them must have weight 0. That implies that x lies in H. We remark for later
use that then x =0 or x =1, but for the moment we only need the
consequence that the words a + x, b + x and a + b + x all lie in H. Every
non-zero word in H has weight >4, so exactly two of the three words must
be 0. Thus two of a, b and a + b must equal x. Hence the third is 0. Therefore
C is of the form 0, 0, x (or a permutation of this). But as x = 0 or x =1 the
weight of 0,0, x is O or 8, contradicting our hypothesis.

We have shown that all the non-zero code words of G,, have weight at
least 8. If a is a code word of H of weight 4 the code word A4 = 4,0, a of
G,, has weight 8. Hence the minimum weight and thus the minimum distance
of the code is exactly 8.]

5.13 The Golay code G3

All the code words of G,, have even weight. So we can regard the last bit
of each code word as a parity check bit. We remove this bit to find a new
code G, with block length 23. This is the binary Golay code Gj3.

Theorem The binary Golay code G, has rank 12 and minimum distance 7.
It is 3-perfect.

Hamming codes and the binary Golay codes 77

Proof If two code words of G,4 agree in their first 23 positions, then they
are the same, because the last bit must be chosen to make their weights even.
Hence G,, has the same number of distinct code words as G,,. Thus it has
212 code words and hence rank 12.

The minimum weight of a code word of Gas is 7 or 8. The minimum
will only be 8 if all code words of weight 8 in G’ have 0 as their
last bit. But 110100010000000011010001 is a code word of Gu4 sO
11010001000000001101000 is a code word of G3. Thus the minimum weight
and hence the minimum distance of G, is 7.

Since the minimum distance of G, is 7 the balls of radius 3 around code
words are pairwise disjoint. So no word of length 23 is at distance <3 from
two code words. Each 3-ball D = D3(u) contains exactly

B+ 6+ 6
0 1 2 3
1+ 23 +23.22/2+232221/6
=1 + 23+ 253 + 1M1

= 2048 =2'!

words. Thus the 3-balls around code words together contain exactly
211212 — 223 words. That is the whole of B23, Thus every word is at distance
3 from a unique code word.

|D|

i

It was shown by V. Pless (1968), S. L. Snover (1973), and Delsarte and
Goethals (1975) that the Golay codes G,3 and G, are the unique codes with
their parameters (for details see MacWilliams and Sloane, 1977, p. 646).

That book contains a great deal more about the structure of these truly’

wonderful objects, as does Conway and Sloane (1988). For an elementary
introduction to the geometric aspects of these codes I refer the reader to
Thompson (1983).

5.14 Summary

In this chapter we have constructed two families of perfect codes, first the
single error-correcting Hamming codes with k check bits, Ham(k), and then
the remarkable triple error-correcting Golay code G,3. There was also a
short discussion explaining why perfect codes are rather rare.

Exercises 5

5.1 What is the effect on the code Ham(k) of changing the order of the
columns of the check matrix H,?

78 Error-correcting codes and finite fields

5.2 Show that the generator matrix for Ham(4) given in Section 5.5 encodes
a message word abcdefghijk as a code word abedefghijkuxyz where the
check bits u, x, y, and z are calculated as follows:

u=a+d+e+g+i+j+k,
x=a+b+d+f+g+h+i
y=btctet+tgt+th+i+]
z=c+d+f+h+i+j+k

Check that each single error causes a different combination of these
conditions to fail.

5.3 Show that the codes H' and K’ of Section 5.9 can correct all single
errors in a block and simultaneously detect the presence. of double
errors, but that when they detect a double error they cannot determine
the transmitted word.

5.4 Show that a ternary code with check matrix H can correct all single
errors if and only if no two columns of its check matrix have sum or
difference 0.

5.5 Use Exercise 5.4 to construct a ternary Hamming code Hamj,(k), with
check matrix Hj , having as its columns all non-zero length k ternary
words with first non-zero entry + 1. Thus (0,1, —1)T is a column of
Hj ., but (0, —1,)T is not. Calculate the block length and rank of
the code and show that it is perfect.

5.6 Generalize Exercise 5.5 to arbitrary finite fields F with [F| = q.

5.7 Show that there is no I-perfect binary code of block length 8 (see
Exercise 2.10).

5.8 Show that if D is a ball in B" of radius 1, then |D| is a power of 2 if
and only if r is of the form 2" — 1. Explain why this implies that 1-perfect
codes must have the same rank as Hamming codes.

5.9 Show that if D is a ball in B” of radius r and n = 2r + 1, then [D]is a
precise power of 2. How many such balls are required to cover B"?
What are the r-perfect codes corresponding to these covers?

5.10 The ternary ball of radius r about a word of length n consists of all
words whose distance from u is at most r. Calculate the volume of this
ball (that is, the number of words contained in the ball).

5.11 Fgr each n construct a binary linear code of maximal rank with
minimum distance 2.

5.12 Try to extend the Hamming check matrix H, to produce a check matrix
of a double-error-correcting code. Such an extension is described in
detail in Chapter 13.

5.13 P.rove.the formula for the weight of the sum of three binary vectors
given in Section 5.11. Generalize it to a formula for the weight of the
sum of n binary vectors.

Appendix LA Linear algebra

This appendix gives a sketch of that part of linear algebra that is required
for coding theory. The appendix is not intended to be a learning text and

the reader who is completely unfamiliar with the subject should study one .

of the textbooks Birkhoff and MacLane (1977), Cohn (1982), Noble and
Daniel (1977) or Strang (1980) before tackling coding theory.

On the other hand, although coding theory requires only a small part of
linear algebra, it uses that in the context of finite fields rather than the real
numbers used by the textbooks. So, even for a reader familiar with standard
linear algebra, it may be worth while to skim through the appendix. The
treatment foregoes the advantages of the standard ‘coordinate-free’ presenta-
tion of linear algebra, because in coding theory a change of coordinates can
completely change the characteristics of a code. Instead, linear algebra is
presented for vectors considered as n-tuples. This allows a quicker introduc-
tion, but makes some proofs less transparent.

In keeping with its nature as a revision text, the style of the appendix is
terser than that of the main body of the book. 1 assume that most readers
will be at home with vectors and matrices and so do not dwell on their
definitions. However, it is unfortunately the case that engineering mathe-
matics courses often skimp the presentation of the central result of linear
algebra, the rank and nullity theorem, so this is presented in a little more
detail. The appendix ends with a short discussion of row operations and a
technical section on Vandermonde matrices which is required in Part 3 of
the book.

LA.1 Matrices

Linear algebra underlies the theory of matrices and vectors. A matrix is an
m x n array of entries ;; which we shall assume are taken from a field F.
In coding theory this is usually a finite field, but the theory holds for any
field. The matrix with entries a;; is denoted by 4 = (a;;). A row vector isa
1 x n matrix and a column vector is an n X 1 matrix. We can turn any
matrix A = (a;;) on its side by defining its transpose AT, which is an n xm
matrix with AT = (a;;). The transpose of a row vector is a column vector
and vice versa. We shall just speak of vectors when it is indifferent whether
they are written as rows or columns.

The set of vectors of length n is denoted by F*, its elements will be written

80 Error-correcting codes and finite fields

as columns in matrix calculations but as rows x = (xy, ..., x,) when this is
more convenient. F" comes equipped with standard operations for adding
vectors and for multiplying them by elements of F (called scalars). Thus

Cppeees X)) F oo e s Yn) =X+ Vis oo oy X+ V)
and
Xy .oy Xy) = (aXxy, ..., 0%,).

There is an obvious zero vector 0, with all its entries O and each vector x
has a negative — x, obtained by multiplying it by — 1. These same operations
apply to m x n matrices.

LA.2 Vector spaces

Coding theory is concerned with choosing subsets of F” that have nice
properties. Two such properties of general importance are closure under the
vector addition and multiplication by scalars defined above. '

Definition A non-empty subset S < F" is called a vector space if it is closed
under vector addition and multiplication by scalars. A vector space U
contained in a vector space V is called a subspace of V.

Of coyrse, F" is a vector space and so in {0}, which is the smallest vector
space. We can consider F" as a subspace of F"*! by appending a 0 to all
its vectors.

LA.3 Linear dependence

There is an invariant called the dimension or rank associated with each
vector space. It measures the degrees of freedom available to the elements
of that space. Thus for a linear code the rank indicates the length of the
message word corresponding to each code word. The idea of degrees of
freedom is too vague to be usable in proofs and is replaced by the formal
concept of linear independence.

Definition A finite subset S = {v,...,v,} of a vector space V is called
linearly independent if the only way of writing 0 as a sum of multiples of the
vectors in S is

0=00,+00,+---+ 0y,

Appendix LA Linear algebra 81
The way this is used formally is to assume that
O=a; v, +a 0+ + @ 0

and see if this forces a, = a, = - - - = a, = 0. Incidentally, a sum of multiples
a,° v, + @y vy + -+ + a v, is called a linear combination of vy, ..., v

A natural choice for a linearly independent subset of F” is the standard
basis, which consists of the unit vectors

e, =(1,0,...,0), e, =(0,1,0,...,0),...,6, = (0,...,0,1).

If we add any further vector x = (x,, .. ., X,) to this set it ceases to be linearly
independent because

O=x;"e,+Xy7€;+- -+ %€, + (—1)x.

This example gives another way of defining linear independence: the set S
is linearly independent if none of its members can be written as a linear
combination of the others. Thus each vector in S is ‘independent’ of the rest.

LA.4 Dimension or rank
We can now define the dimension of a vector space.

Definition The dimension or rank dim(V’) of a vector space V is the largest
possible number of elements in a linearly independent subset of V.

Thus if we say dim(V) = 10, we are stating that there exists a linearly
independent subset S of ¥ containing 10 vectors, but there is no subset
containing 11.

This definition of dimension is not practical because it requires us to
examine all possible subsets of ¥ before we can be sure what the dimension
of V is. In fact, finding the dimension is much easier. In Section LA.8 we
shall prove that one just needs to find a single linearly independent set S
that cannot be extended. The number of vectors in that set is the dimension
of V. Thus the dimension of F" is n, because the standard basis is a linearly
independent set that cannot be extended.

LA.5 Basis

Defication A linearly independent subset S of a vector space V is called a
basis of Vif for any vector v € ¥, vis a linear combination of members of S.

It is an easy exercise to show that if S is linearly independent and v is not

82 Error-correcting codes and finite fields

a linear combination of members of S, then S U {v} is linearly independent.
The proof is included here to show how linear independence is used in
arguments.

Proposition Let S be a linearly independent subset of the vector space V and
let ve V. If v is not a linear combination of elements of S, then Su {v} is
linearly indendent.

Proof Suppose, on the contrary that S U {v} is not lincarly independent,
and let S = {xy,..., x,}. Then there exist scalars ay, ..., a,, and b, not all
zero, such that

0=a1'x1+az-x2+--~+a,~x,+bv.

If b = 0, we can omit the last term from the equation and find that S is not
linearly independent. Thus the assumption that § is linearly independent
forces b 5 0. Therefore

v=—(ay/b)x; + -+ —(a/b)x,.

That shows that v is a linear combination of elements of S, contradicting
our second hypothesis. n

LA.6 Matrix multiplication

In this section we recall the essential facts about matrix multiplication. Recall
the definition. If A = (a;;)isanm x n matrix and B = (by)isann x s matrix
the product AB is an m x s matrix C with entries

n
Cix = Z ;b
j=1

Notice that this sum only makes sense because the rows of A have the same
length as the columns of B. The entries of AB are found by taking a row of
A and a column of B, multiplying corresponding entries and adding the
results. A special case of matrix multiplication occurs when B is a column
vector.

The statements of the following lemma can be verified by expanding the
formulae involved.

Proposition Let A be an m x n matrix, B and C be n x r matrices and D be
anr x s matrix, all with entries in a field F, and let « be an element of F. Then

(@) AB+ C)=AB+ AC;
(b) A(eB) = a(4B);
(c) A(BD)=(AB)D.

Appendix LA Linear algebra 83

Note that B, C and B + C are all three n X r matrices, so that the results
of the operations on both sides of (a) -are m x r matrices. The addition in
part (a) consists of adding corresponding entries of B and C. The multiplica-
tion by o in (b) consists of multiplying all the entries of the matrix by a.
They are the same operations as those defined for vectors. In part (c) the
left-hand side first calculates an n X s matrix, which is then multiplied on
the left by anm X n matrix, but the right-hand side first calculates an m x r
matrix, which is then multiplied on the right by an r x s matrix. In both
cases the result is an m x s matrix.

The most important application of matrix multiplication is in representing
linear equations. A set

Ay 0y F Qg0+ Aln = by

Ay,01 F Ggay + 0+ B2 Un = by

QpiVy + Gyt F Gunln = b,

of m linear equations in n unknowns can be succinctly written as Av = b,
where 4 = (a;)) is the matrix of coefficients, v is the (column) vector of
unknowns (of length n), and b is the vector of constants (of length m).

LA.7 Condition for non-zero solution

We now proceed to establish the claim made in Section LA.4. First we need
a technical lemma on matrix equations; this states that if a system of linear
equations has fewer equations than unknowns and the constants are all 0,
then the system has non-zero solutions.

Lemma Let A= (a;)beanr X (r + 1) matrix with entries in a field F. Then
the equations Av = 0 have a non-zero solution in Fret

Proof The proof is by induction on r.

Induction start. ¥ = 1. In that case A = (ab) and Av = 0 is a single equation
of the form av, +bv, =0. If a= 0, choose v=(1,0). If a# 0, choose
v = ((—b)/a, 1). In either case Av = 0 and v has at least one non-zero
coefficient.

Induction step. Let r > 1, and assume the lemma proved for r — 1. If all the
entries in the last column of A are 0, then Ae,., = 0, where e,.; =
,...,0,1). Thus we may assume that A has a non-zero entry in its last

column. As the order of the equations in Av = 0 is immaterial, we can also

84 Error-correcting codes and finite fields
assume that a, ., # 0. Suppose the system of equations is
Ay Uy + a0+t Ay Drey =0
@y 0y + GppVp 0 F Ay iy Dpey =0
@
A0y + AUy F o G iUy =00

Without chgnging the set of solutions we can subtract a, , /6,4, times
the last equation from the kth equation for k=1,...,r — 1. That produces
a new system of equations:

by +bvy+- 4+ 00, =0
byvy + byyvy + -4+ 00,, =0

. (2)
a0, + AUy + o Gy iy Uiy =0,

Let B be the (r — 1) x r matrix (b;;). By induction hypothesis there exists
w = (wy,...,w,) such that Bw = 0, but w; # 0 for some i. Put

U= (Wihoo s W Wiy,

where

Werr = — (@, W + QaWy + -+ Gy WAy s

Then_u satisfies LI}e equations (2). Hence it also satisfies (1). Then Av =0
and since v contains w as its initial part, v has a non-zero coefficient. n

LA.8 Basis and dimension

T(teorem Let V be a vector space with a basis B = {v,, . .., v,}; then no subset
with more than r elements is linearly independent.

Proof I',et S = {Uy, ..., Uy Uy, ...} beaset with more than r elements. By
assumption each u; is a linear combination of members of B. Thus we can
write u; = Y. a;w; for suitable choices of a;; € F (notice the reverse order of
the mfhces). Let A be the r x (r + 1) matrix obtained by taking the
coefficients for u,,...,u,;,. By Lemma LA.7, there exists a vector
b=(by,...,b,+) such that Ab = 0, but not all b; = 0. We shall show that

crtl
Y b =0,
i=1

Appendix LA Linear algebra 85
thus showing that S is not linearly independent. First note that Ab =0
implies that

r+1

Y, ba; =0 forallj=1,...,7
i1

Thus
r+1 r+1 r r+1
Z biu; = Z b; Z a;v; = Z (Z bn“ﬂ) vj 0v; =0,
i=1 =1 j=1 j=1 \i=1 i=1
establishing the claim. |]

Corollary Since, by assumption, B is linearly independent, that establishes
that V has dimension r.

LA.9 Linearity of maps defined by matrices

An n x m matrix A defines a map from F™ to F" by taking a vector v € F™
to the vector Av e F". The maps defined by matrix multiplication are linear
in the following sense. '

Definition A map f from F™ to F" is called linear if for all u,ve F", and
all a,be F, flau + bv) = af () + bf (v).

Associated with an m x n matrix A (or linear map) are two natural
subspaces, one in F™ and the other in F" They are defined as follows.

Definition The kernel of A is the set of vectors u€ F™ such that Au=0.
The image of A is the set of vectors v € F" such that v = Au for some ue F™
The dimension of the image of 4 is called the rank of A, and the dimension
of the kernel of A is called its nullity.

The nullity measures the degrees of freedom in solving an equation Au = v,
because Au = Au' is the same as A —) = 0. The rank determines the size
of the set of vectors v € F" for which the equations Au = v have any solutions
at all. In coding theory it is natural to regard F™ as the message space and
F" as the space of receivable words. If A is used for encoding then the set
of code words forms the image space. If two message words differ by a word
in the kernel of A, they will be encoded to the same code word. It is therefore
desirable that the kernel of 4 should be the zero space {0}.

The central result of linear algebra links the dimensions of these two
spaces. It states that any increase in the dimension of one of them is precisely

86 Error-correcting codes and finite fields

matched by a decrease in the dimension of the other. Thus the more solutions
there are to any equation Au = v, the fewer v there will be for which the
equations have a solution.

LA.10 Rank and nullity

Theorem (The rank and nullity theorem) Let A be an n x m matrix over
a field F with rank r and nullity k, then r + k = m.

Lemma LA.7 can be interpreted as saying that the kernel of an r x'r + 1
matrix is not {0}, or in other words the matrix has nullity >1. That can be
deduced from the rank and nullity theorem, because the image of A lies in
F" and hence has dimension <r. That forces the kernel of 4 to have
dimension >1.

Proof Let {u,,...,u} be a basis of the kernel of A4 and let {w,,...,w,}

be a basis of the image of 4. By the definition of the image, for each

i=1,...,r there exists at least one v; € F", with Av; = w;. Choose one such

v; for each i. We shall show that B = {u,...,u, vy, ..., 0} isa basis of F™.
First we show that B is linearly independent. Suppose that

ayuy + -+ @i+ byoy +- -+ b, =0.
We can multiply all the vectors by A and get
aAuy + o+ apAu, + by Avg + -+ b Av, = A0 = 0.
Now Au; = 0 and Av; = w;. So this gives
byw, + -+ bw,=0.

But, by assumption {w,, ..., w,} is a basis, and hence linearly independent.
Therefore by the definition of linear independence, b, =---=b, = 0. We
substitute this in the original equation and obtain

ajuy + 0+ auy =0,

Again, {u,,..., u,} is a basis and hence linearly independent. Thus we now
have a, =- .- =g, = 0. By showing that all the as and bs are 0 we have
established that B is linearly independent.

Now we show that if x € F™, then x is a linear combination of elements
of B. This is also proved by first applying A and then using the information
that gives us. The vector Ax lies in the image of A and by assumption
{wy,...,w,} is a basis of that image. Hence Ax is a linear combination of

Appendix LA Linear algebra 87
members of {wy,...,w,}, say
Ax =dw, +- -+ dw,.
Now define an auxiliary vector y in F™ by
y=dw, +--+dv,.
From its definition
Av=dw, + -+ dw,

So Ax = Ay, or A(x — y) = 0. That implies that x —y lies in the kern'el of
A and {uy,...,%} is a basis of that kernel. Hence x —y is a linear
combination of members of {uy, ..., U4}, say

x—y=cily ot Gl
Combining the expressions for x — y and y we get
x=(x—y) +y=cy + o+ g+ dyoy +oo 0+ o

That shows that x is a linear combination of elements of B and completes
the proof. u

LA.11 Column rank and row rank

The definitions of rank and nullity given above are somewhat abstract, since
they rely on finding the dimensions of certain subspaces. In order to use the
rank and nullity theorem we need a practical way to calculate at least one
of these two numbers. The standard choice is the rank. In this section we
shall establish that the rank of an n x m matrix 4 is just the maximal size
of a set of linearly independent columns of A. Since all these columns lie in
F™ which has dimension n, that also proves that the rank of an n x m matrix
A is at most n.

Definition The column rank of a matrix 4 is the maximal size of a linearly
independent set of columns of A. The row rank of A is the maximal size of
an independent set of rows.

Theorem Let A be ann x m matrix with entries in a field F. Then the column
rank of A is equal to the rank of A.

Proof Denote the columns of 4 by Ay, ..., 4,. First notice that 4; = Ae;,
where ¢;=(0,...,0,1,0...0) with the 1 in the ith position. Thus the
columns of A lie in the image space of A. For convenience rearrange the

88 Error-correcting codes and finite fields

columns so that the first 7 columns {A4y,..., A,} are linearly independent

and all the later columns are linear combinations of these first r. We must

show that then A has rank r. We shall do this by showing that {Ay,..., 4,}

forms a basis of the image of 4. Since we already know that {Ay,.... 4.}

is linearly independent, we need only show that every vector in the image

of A is a linear combination of members of {Ay, ..., 4,}.
Fori=r+1,...,nlet

A= Zl bijAj' (6]
j=

Now let v = Au lie in the image of 4 and let u = (4, ...,). Then
and thus

substituting for the later columns using equation (1), we obtain

v=Au= Yy A= 3, (u,-+) u;bij>Aj.

i=1 =1 i=r+l

Thus, as required, v is a linear combination of members of {4;,..., A}

LA.12 Equivalence of the two ranks

There is an apparent asymmetry in Theorem LA.11. Why is the column rank
chosen and not the row rank? The answer is that both these ranks are in
fact the same, but there are no simple calculations to show that the rank
equals the row rank of 4 (assuming that matrices are written on the left). It
is surprisingly difficult to establish the equality of the row and column rank
of a matrix. Here is a proof using the rank and nullity theorem.

Theorem Let A be anm x n matrix with row rank = k, then the column rank
of A is also k.

Proof Denote the rows of 4 by Al,..., A™. Rearrange them if necessary
so that the first k rows are linearly independent. Then for rows k + 1 tom

Appendix LA Linear algebra 89

we have equations of the form
k
Ati= Y by Al 1Y)
i=1

Let B be the (m — k) x m matrix
[by b -1 0 - 0]
bm—k,l"‘bm—k.k 00 - -1 '

Notice that the set of vectors —Bey,; for i= 1,...,m—k, forms the
standard basis of F™~*. By definition, it follows that B has rank m — k. For
each row B', equation (1) for 4**' is equivalent to the multiplication
B4 = 0. Thus the complete set of equations (1) can be rewritten as BA =0.

Hence for any column 4, of A, B4, =0.1In other words, the columns of
A lie in the null-space of B. Hence

col. rank 4 < nullity B
and by the Rank and Nullity Theorem
nullityB=m—rankB=m—(m—k)=k=row rank A.

We have therefore established that the column rank of A is at most equal
to its row rank. Applying the same argument to the transpose of A4, we get
the opposite inequality. So the row rank of 4 is equal to the column rank
of A. ||

LA.13 Row operations

Matrices are usually used to represent systems of equations. There are certain
natural operations on equations and these are reflected in the definition of
elementary row operations on matrices.

Definition Let M be a matrix with entries in a field. The following
operations on M are called elementary row operations:

ER1. Permute the order of the rows of M;
ER2. Multiply a row by a non-zero scalar;
ER3. Add a multiple of one row to another.

In Chapter 3 we need a lemma that shows that any matrix can be brought
into row-echelon form by elementary row operations.
Definition A matrix M is in row-echelon form if

1. every non-zero row begins with a 1;

90 Error-correcting codes and finite fields

2. all the other entries in the column of that initial 1 are 0;
3. the first non-zero entry of row i + 1 occurs later than that of row i (in
particular if row i is zero, then so are all later rows).

Lemma Any matrix M with entries in a field can be brought into row-echelon
form by elementary row operations.

Proof Let M beanm x nmatrix. For k successively equal to 1, ..., m apply
the following procedure:

e Stepl. Permute rows k to m so that the leftmost non-zero entry occurs
in row k. If rows k to m are all zero, then stop. Otherwise, let the first
non-zero entry in row k after this step be m,,. Then m;; = 0if i > k and
i<l

e Step 2. Multiply row k by 1/my,.
e Step 3. Add multiples of row k to all others so that my = 0 for i # k.

It is easy to check that after this procedure has been executed i times TOws
1 to i satisfy the conditions of the definition. u

LA.14 Vandermonde matrices

That concludes the general theory of linear algebra, as far as it is needed for
this text, but in Part 3 we shall need some facts about a special class of
matrices called Vandermonde matrices. We prove these facts here, so that
they do not interrupt the flow of the coding theory later.

Definition A system A of n equations in n unknowns x, X, ..., X, with
coefficients in a field F, of the following form:

a;x; +ax; + - +a,x,=0

alx, +a3x, +- -+ akx, =0

aixy +ayx, -+ apx, =0,

where the coefficients a,, ..., a, are distinct and non-zero, will be called a
Vandermonde system of order n.

Theorem Let A as above be a Vandemonde system of order n. Then the only
solution of A is x; =Xy ==X, =0.

Appendix LA Linear algebra 91

Proof The proof is by induction on the order n of the system. If n =1 the
statement reduces to the fact that in a field the equation a,x, = O with a; # 0
implies x; = 0.

Now suppose n > 1 and assume that the system has a non-zero solution
(X1 - - - » X,)- Rearranging the indices if necessary, we may assume that x, # 0.
Divide all the equations by x, denoting x;/x, by y; to obtain

ayyy +azys+ ot @11 =

aty; + a3y, + A2y Yne1 = — 0y

aiy, +dyyy + Gy Ye-1 = 0

Now multiply each of these equations by a, and subtract it from its successor
(note: we do not use the resulting equation in the next subtraction, but return
to the present system). This gives:

(a2 —aa)y, +- 0+ (@) = 8,-10,)Yn-1=0

(a3 —dla)y, + -+ @3-y — 218,)9p-1=0

(@ — alta)y; + -+ @y = a3Z36)Yn-1 = 0.
Finally introduce new variables z;, ..., Zs-1 where
z;=(a;— a,)y;-
Then this system can be rewritten as

ayzy + ot Gye1Za-1 =0

@z 4+ @12, =0

@iz 4+ Al iz = 0.

Now this a Vandermonde system of order n — 1. So by the induction
hypothesis it follows that z; =23 ="+ =2,-1 = 0. Hence, as a; # a, for
i < nand x, was assumed to be non-zero, it follows that x; = z:(a; — G,)%, =0
fori=1,...,n— 1. But now the first equation of our original system reduces
to

a0 + -+ a,-10 + a,x, = 0.

This implies that a, or x, =0, contradicting our assumptions. u

92 Error-correcting codes and finite fields

LA.15 Rank of a Vandermonde matrix

Definition A matrix V of the form

a, a, - a,
2 2 2
ay a; " Gy
ay & - a
with non-zero ay, ..., a,, is called a Vandermonde matrix.

Corollary A Vandermonde matrix V has linearly independeﬂt columns.
Equivalently, the rank of an n X n Vandermonde matrix is n.

Proof Theorem LA.14 showed that the nullity of a Vandermonde matrix
is 0. By the rank and nullity theorem the result follows.]

It is perhaps excessive to quote the rank and nullity theorem in this case.
The linear independence of the columns of ¥ is just the statement that

a, a, a, 0
a? a? a? 0
70 U I PR A I
ay aly ay 0
has as its only set of solutions x, = x, =--- = x, = 0. But that is precisely

the same as the statement of Theorem LA.14.

|

Part 2

Finite fields

6 Introduction and an example

Before attempting to construct an example of a finite field, we should discuss
why there is any need for fields other than the binary field B. After all,
practically all computation is done in binary. So why make life harder by
working over other fields? There are, however, several good reasons why a
knowledge of finite fields is indispensable in the study of error-correcting
codes, and 1 shall list three of the more obvious ones here.

6.1 Constructing codes for correcting multiple errors

In Part 1 it was shown that extending the check matrix of a linear code in
a linear manner does not change the code. It is obvious that if we wish to
correct more than one error we must add checks in some way. To add
non-linear checks in a structured way we need ‘good’ non-linear functions.
The binary field B is too small to have any such functions. For instance,
powers in a finite field are particularly promising. These are the functions
required by the most frequently used block codes, the Bose-Chaudhury-
Hocquenghem codes (BCH codes) and Reed-Solomon codes (RS codes). In
the binary field B there are no non-trivial powers: 1" =1 and 0" = 0 for all
positive n. To use powers we must have a larger field.

6.2 Correcting error bursts

In many situations the assumption that errors occur entirely independently
of each other is a poor model. For instance, when faults occur on storage
devices, they are likely to affect several neighbouring bits. A better model
for such devices is to assume that errors occur in ‘bursts’. An error burst of
length I is a sequence of I consecutive unreliable symbols in a transmitted
word. The length I is chosen as small as possible to cover all the actual
errors. The model then assumes that errors on the channel take the form of
bursts up to some fixed maximal length.

The most straightforward approach to error bursts is to use interleaving:
take several code words and transmit all their initial bits first, then their
second bits and so on. So a sequence of, say, four words a = (a;, az,...),
b=(by,by..)c=(C1,Cp-.) d=(d1,dp...) would be transmitted as a;,

96 Error-correcting codes and finite fields

by, ¢y, dy, Ay, by, €3, dy, ... That has the effect of separating the bits from
each code word so that burst will tend to affect bits from distinct code words.
A more subtle and, as you will see in Part 3, more powerful method of
designing codes for correcting error bursts is to collect the signal bits together
into blocks. If we can give these blocks a suitable field structure they can be
viewed as the letters of the alphabet of the code. A single error-correcting
code over that field will then correct any burst lying inside a block, and a
double error-correcting code will correct any burst lying in two adjacent
blocks, and so on. Applying this idea to BCH codes yields RS codes which
will be discussed in detail in Part 3. A combination of RS codes and
interleaving is used for error correction on compact audio discs.

6.3 Finding new codes

The structure of the base field controls and limits the possible codes. Allowing
a larger range of base fields may yield new codes with special properties.
For instance there is a 2-perfect ternary (11, 6)-code, similar to the binary
Golay code. It was also discovered by Golay. This code cannot be
constructed over B. That is just one example of the fact that the choice of
alphabet field profoundly affects the available range of codes. Indeed finite
ficlds arc the most important discrete structures, preciscly because they
control and limit the possibilities of finite patterns. As block codes are such
patterns, they are naturally closely bound up with finite fields.

6.4 Four-bit strings

To give an idea of the techniques involved in constructing finite fields, we
shall try to construct a field of 16 elements from scratch. Such a field would
be useful it we wanted to manipulate blocks of four bits as single units to
cope with burst errors. In practical applications, blocks of four are rather
too small but, just because the field is small, it is relatively easy to use it for
hand calculations. So this field will be used in the coding examples later in
the book.

Before we start the construction, we introdce a notational device. In
contrast to computers, human beings find strings of 0s and 1s difficult to
distinguish. So we shall denote each string by the integer it represents in
binary positional notation. For instance, a string (a, b, ¢, d) of length four
will be denoted by 8a + 4b + 2¢ + d. Thus (1, 1,0, 1), or 1101 for short, will
be denoted by 13=1x8+1x4+0x2+1x 1 With this notation
strings of four bits are denoted by the numbers 0 to 15 inclusive (0000 « O,
0001 < 1,..., 1110 & 14, and 1111 < 15).

Readers who have used hexadecimal notation will recognize where this

Introduction and an example 97

idea comes from and they can, if they wish, substitute the letters A, B, C, D,
E, F for 10, 11, 12, 13, 14 and 15. That has the advantage of requiring only
one written symbol for each block of four bits, but the disadvantage of a
further, possibly unfamiliar, notation.

You should not take the notation to mean that 1101 really is the number
13. We are merely using the number as a convenient way of writing strings.
In particular you must not think that addition and multiplication will be
the same as for ordinary numbers. It may well not be true that 13+ 1 = 14.
In fact, for ordinary addition 15 + 1 = 16, which does not represent any
string of four bits. We shall have to redefine addition and multiplication in
such a way that the result is always a string of four bits (represented by a
number from 0 to 15).

6.5 The integers modulo 16

A first attempt at constructing the hypothetical field could be to make it as
like ordinary numbers as possible. Let the symbol 13 really represent the
number 13. When we do ordinary arithmetic with the numbers 0, ..., 15 the
only problem is that the result may not be one our restricted set of numbers
0,...,15.

The simplest way of getting round this is by subtracting or adding a
multiple of 16 to every answer to put it into the range we need. That is the
kind of thing we do in calendar calculations: 10 days after January the 26th
is February the Sth, 17 days after a Tuesday is a Friday. We can state the
operation more mathematically by saying that we replace every integer by
its (non-negative) remainder after division by 16. For the moment we denote
the operations of addition or multiplication followed by taking remainders
after division by 16 by @ and ®. The set of numbers 0, ..., 15 with this
addition and multiplication is denoted by Z/16 (pronounced ‘Zed mod 16°),
Z being the standard mathematical symbol for the set of integers and 16 the
number used to obtain the remainders. Just to see how the arithmetic works
let us do some sums.

Example Arithmetic in Z/16.
3@5=38, I® 1l =4, 1@l =6
Is=15 9®I11=3, 1ett="7

It almost appears that we have hit the jackpot at our first attempt, and
indeed Z/n is a useful construction, and is discussed in some detail in the
next chapter. But of course, there wouldn’t be a whole part of this book
devoted to finite fields if life were that easy. Unfortunately, although it is
not difficult to check that our operations satisfy most of the usual laws of

98 Error-correcting codes and finite fields

arithmetic (to be precise, they make the set {0,...,15} into a commutative
ring—see Exercise 6.2), they do have some bad properties. For instance you
cannot multiply 4 to get an odd remainder so you cannot ‘divide’ 5 by 4.
Worse still:

4®5=4=41
and, worst of all:
4®4=0.

So Z/16 does not satisfy the cancellation law. Its structure is not even a
domain, let alone a field (if you are uncertain what a commutative ring or
a domain is look up the definition in Section 3.3). At this point, it is a good
idea to stop reading and work through Exercise 6.2 before continuing.

The failure of this attempt to produce a field is due to the fact that 16 is
not a prime number. Any factorization of 16 into smaller numbers 16 = ab
becomes a ® b = 0 in Z/16. In the next chapter we shall show that if pis a
prime number, then the construction works and Z/p is a field (see also
Exercises 6.4-7). One special case is when p = 2. The resulting field Z/2 is
none other than the binary field B. We could at this point consider limiting
our constructions to Z/p, p prime. But remember where the choice of 16
came from. We are trying to construct a field whose elements correspond to
blocks of 4 bits. Any field whose elements correspond to blocks of k bits
must have 2* elements. So using Z/p for a prime number p # 2 is of no use
for our purposes.

6.6 Polynomials with binary coefficients

The construction of Z/16 has a further weakness. The addition does not
correspond to the one we have used for our code words because, for example,
4@ 4 = 8, whereas for groups of bits such as (1, 1,0, 1) the natural addition
would give (1,1,0,1) + (1,1,0,1) = 0. Perhaps we can combine this ‘exclu-
sive-or’ type of addition with the idea of taking remainders as the starting
point to find an alternative construction.

We need a structure that looks a bit like Z but has an addition where
u +u = 0. Such a structure is the set of polynomials in a ‘variable’ x with
coefficients in B. We denote this set by B[x]. For the moment we forget
about the fact that polynomials are functions and just use the familiar rules
for adding and multiplying them.

Polynomial operations

Let f(x)=@a,x"+ -+ a;x+a, and g(x) = bux™ + -+ byx + by be
polynomials in B[x] (that is, the coefficients a;, b; lie in B). We adopt the

Introduction and an example 99

convention that for i > nand j > m, a;= 0 and b; = 0. We may assume that
n = m. Then

(f + g)x) = (@, + b)x"+-+ (a1 + by)x + (a0 + bo)
and
(JO00) = Cpam™ ™ 4+ €1X + Cos
where
¢ = aoby + arb—y 0t a.bo.
In particular if m=n = 3, then
fg = asbsx® + (azbs + ash,)x® + (ahy + azby + asb)x*
+ (aghs + ayb; + azby) + asbo)x® + (aohs + aiby + a,bo)x*
+ (aghy + a;bo)x + aobo-

The rule is the usual one: multiply every term of f(x) by every term of
g(x) and gather together terms with the same power of x. The calculations
are simplified by the fact that the only coefficients are 0 and 1, and1+1=0.
For f(x) = x* 4+ x* + 1 and g(x) = x> + x* + x we get

+om=+x)+E+x)+x+l=x+1
f)(x) = x° + (° +x5)+(x4+x“)+(x3+x3)+x2+x
= x84+ x* + x.

Polynomials do indeed form a commutative ring with this addition and
multiplication. This is proved in Appendix PF where you will find a formal
development of the theory. The zero polynomial 0 is the one with all its
coefficients eql to 0 and the constant 1 denoted by 1 (with all coefficients of
positive powers of x equal to 0) plays the role of identity element.

If coefficients are taken in B, then

(f+f)(x):(an+an)x"+"'+(al+a1)x+(a0+a0)
=0x"+---+0x+0=0,

so we do get ‘exclusive-or’ addition.

Polynomials share many of the important properties of the integers, the
most important of which is the cancellation law. If we multiply two non-
zero polynomials of degrees m and n the result has degree m + n and so it
cannot be the constant 0. To be a bit more specific, if the highest non-zero
coefficients of f(x) and g(x) are a, and b, (both 1 because that is the
only non-zero element of B), then f(x) = @,x" +- -+ a;x + do and g(x) =
bX™ + -+ byx + bo and the sum defining the highest coefficient of the

100 Error-correcting codes and finite fields

product reduces to a single term ¢, 4, = ayby =1 x 1 = 1. Thus the product
has at least one non-zero coefficient and hence it is not 0.

We can also copy division with remainder. This is sometimes called
‘synthetic division’. If we want to divide f(x) by g(x) we first match the
highest terms by multiplying g(x) by x"~™. Then we subtract the result from
f(x) and repeat the process until the remainder has degree less than m. The
idea is most easily understood by an example.

Example Let us divide f(x) = x® + x* + x by g(x) = x* + x® + 1. First
multiply g(x) by x* and subtract. The result is x* + x (over B addition and
subtraction are the same). Then multiply g(x) by x and subtract. The result
is x*. Finally subtract 1 x g(x) to get x* + 1. So the quotient is x2+x+'1
and the remainder is x> + 1.

We can write this out like an ordinary long division:

x* 4+ x3 4 xS + x4+ x? (2 +x+1
x8 + x5 +x2
x° + X
x5+ x* + x
x4
xt 4 x3 + 1
x? +1

A'more concise notation is obtained by leaving out the powers x” and the
+ signs, but then we must include all the cocfficients, not just the non-zcro
ones, thus

O xP+x+1=1xx+0xx>+0xx*+0xx?

+1xx24+1x +0x1
can be written as
1000 1 1 O

The long division is then written in the following form:

1100 DI 0001 1 01 11
1 100 1
10001
1 1.0 0 1
10000
1 1.0 0 1

1 00 1

Introduction and an example 101

6.7 The structure B[x]/f(x)

The second version of long division suggests another representation for the
block 1101. We invert the correspondence we set up above. Then 1101
corresponds to the polynomial x3 + x% + 1. In general, we use @,x" + -+
a,x + a, to represent the word (4, . . . » a1, Go). The words we are interested
in are represented by polynomials of degree three or less. Addition is fine as
it stands, because the sum of two such polynomials will still have degree at
most 3, but multiplication can increase the degree above the limit 3. So we
copy the idea of Z/16: divide by a suitable polynomial f(x) and take
remainders. By analogy, we denote the resulting structure by B[x]/f(x)-

In contrast to Z, there is a choice for the divisor polynomial f(x). If Z/n
is to have 16 elements, then n must be 16, but any polynomial of degree 4
has as its set of remainders the set of all polynomials of degree 3 or less.
Thus B[x]/f(x) will have as its members the polynomials of degree 3 or less,
of which there are precisely 16. Addition in B[x]/f(x) will be the same for
all polynomials f(x) of degree 4, but multiplication depends on the choice
of f(x), because it involves taking remainders after dividing by f(x).

Some polynomials turn out to be unsuitable. For the same reason that
made Z/16 fail to be a field, we cannot take a polynomial of degree 4 that
can be split into the product of two polynomials of smaller degree. For if
f(x)=g(x)h(x) and g and h both have degree <3, then in B[x]/f(x)
multiplying g(x) and h(x) gives the remainder of f(x) on division by f(x).
That is obviously 0, violating the cancellation law. So to produce a field we
must look for polynomials which do not split. Such polynomials are called
irreducible and are the polynomial equivalents of prime numbers. Trial and
error will tell us that there are three choices (see Exercise 6.8). One of them
isx* + x>+ 1

6.8 The field of order 16

Using the polynomial x* + x3 + 1 we make a second try at constructing a
field of order 16. We let each binary 4-tuple abcd represent the polynomial
ax® + bx? + cx + d. As noted already, humans do not take to sequences of
bits very well. So we introduce a second translation by representing abcd by
the ordinary number that has abcd as its binary notation. Thus 13 «» 1101 «
x>+ x?+ 1.

You can now read Table 6.1. the zigzag line separates the addition part
from the multiplication part. Addition is represented in the lower half and
multiplication in the upper half. As u(x) + u(x) = 0 <> 0, we omit the sums
on the diagonal and only write the squares of the elements there. The field
is denoted by GF(16). '

102 Error-correcting codes and finite fields

Table 6.1 The field GF(16) based on x* + x> + 1

Log — 0 1 12 2 9 13 7 3 410 5 14 11 8 6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0olx0 0 0 0 0 0O 0 0 0O O O O 0 O 0 O
1/ +0]1 2 3 4 5 6 7 8 9 11 12 13 14 15
2 2 3] 4 6 8 10 12 14 9 s 1 3 5 7
3 3 02 15 12 9 1 4 13 8
4 4 5 6 T[99 5011 7 2 14
5 5 4 7 6 1 3 12 14 1
6 6 7 4 5 2 2 8 3 9
7 7 6 5 4 3 2 10 315 . 6
8 8§ 9 10 11 12 13 15 14 4 1 S
9 9 8 11 10 13 12 1 5 8 10
10 0 11 8 9 14 15 2 1 51 2
11 11 10 9 8 15 14 13 12 3 2 109 13
12 12 13 14 15 & 9 10 11 4 5 71 6 11
13 13 12 15 14 9 8 11 10 5 4 6 1| 4
14 14 15 12 13 10 1t & 9 6 7 5 2 12
15 15 14 13 12 11 10 9 8 7 6 4 3 3

Addition is ordinary polynomial addition over B. The rule for performing
this addition directly with the numbers in the table may be familiar to you
from the game of Nim. Mentally you split each number into distinct powers
of 2, then the sum is the sum of those powers of 2 that occur in just one of
the two numbers you are addiing. For instance,

B+1d=@+4+1)+@+4+2)=2+1=3

It is also useful to remember that if a + b = ¢, then a + ¢ = b.

Multiplication (the upper half of the table) is polynomial multiplication
over B, followed if necessary by taking the remainder after division by
x* 4+ x3 + 1. Check this by multiplying 13 by 14.

There is no simple method for doing muitiplication in your head, but you
can use the ‘logarithms’ at the head of the table. Just as with ordinary
logarithms you multiply two terms by looking up their logarithms and
adding them. If the result is bigger than 14, subtract 15 and then look up
the number with your answer as its logarithm. That is the product. For
instance to multiply 13 by 14. First look up their logarithms (11 and 7). Add
them; the result is 19 > 14, so subtract 15. That gives 4, the logarithm of 9.
Thus 13 x 14 =9.

Many implementations of finite fields use such ‘discrete logarithms’ to
perform multiplication, because it is quicker than polynomial arithmetic and

Introduction and an example 103

requires less storage than the full multiplication table. However, the construc-
tion of the logarithms is somewhat mysterious. It will only be possible to
explain how they appear after we have developed some understanding of the
structure of finite fields. The theory that produces them will be fully explained
as part of the discussion of primitive elements in Chapter 12. Initially we shall
base our theory on the conceptually simpler polynomial definition of
multiplication.

You should check that the construction does yield a field by finding the
inverses of the non-zero elements. How do you do that? For a field as small
as this example searching is boring but quite feasible. Can you think of a
systematic way to find the inverse in a large finite field without using
logarithms?

6.9 Historical digression

It is standard practice to denote a field of order g by GF(q). The initials GF
stand for Galois field, after the French mathematician Evariste Galois
who died in a duel in 1832 at the age of 20, having invented the theory of
finite fields and having made at least two further major contributions to
mathematics.

Galois’ biography is a cautionary tale for teachers. He was unquestionably
one of the great mathematical geniuses, but he failed the exams to enter the
Ecole Polytechnique because he refused to write his answers in the form
required by the examiners. He did, however, get into the FEcole Préparatoire
in 1829. In July 1830 a revolution broke out against the reactionary regime
and Galois became an ardent republican. After the suppression of the revolt
he wrote an article, violently attacking the director of the Ecole Préparatoire
for which he was expelled.

He devoted much of his time to republican activities but still continued
his research. In July 1831 he was arrested during a demonstration and placed
in detention for illegally wearing a uniform and carrying weapons. In March
1832 he was transferred to a nursing home because of the outbreak of a
cholera epidemic. Here he had an unhappy love affair. At the end of May
after the break-up of the affair he was provoked to a duel by an unknown
adversary, believed by some to have been an agent provocateur. On 29 May,
believing he would be killed, he wrote desperate letters to his republican
friends and a summary of his major results, which he asked his friends to
show to Gauss and Jacobi in the event of his death. Nothing seems to have
come of this, but the letter was published in the Revue Encyclopédique in
September 1832, though it aroused little interest. On 30 May 1832 Galois
was admitted to hospital, mortally wounded. He died there on 31 May. His
funeral, on 2 June, was the occasion for a republican demonstration heralding
the riots in Paris in the following days.

104 Error-correcting codes and finite fields

Galois had submitted work to learned journals and the academy from
1829 onwards. His first published major treatise, ‘Sur la théorie des nombres’
was published in Férussac’s Bulletin des Sciences Mathématiques in 1830. Tt
defines the so-called ‘Galois imaginaries’, which are elements of finite fields,
and provides the fundamental results on finite fields. A memoir on the
solution of equations had earlier been sent to the Academy. Cauchy reviewed
it favourably, but advised Galois to rewrite it in the light of the results of the
young Danish mathematician Niels Henrik Abel who had just died. The
revised memoir was lost on the death of Fourier, who had been assigned to
review it, giving rise to the legend that Cauchy had just put Galois’ paper
in a drawer. In 1831 Galois submitted a new version of his memoir. Cauchy
had left France in 1830 and Poisson was assigned to review it. He rejected
it, saying that some of the results could be found in Abel’s work and the rest
were not fully proved. Galois, embittered by this injustice after his earlier
misfortune, wrote ‘On jugéra’ (posterity will judge) in the margin of his copy.

Eventually Liouville became interested in Galois” work. In 1843, 11 years
after Galois’ death, he introduced the results to the Academy of Sciences.
He announced the publication of the memoir rejected by Poisson for the
end of that year (it was actually published in 1846). This memoir can be
regarded as the foundation of modern algebra and became the basis for
major research efforts over the next 100 years.

Exercises 6
6.1 Check the following calculations in Z/16

3@5=8,
35 =15,

9@ 11 =4,
9@ 11 =3,

1@l =6
1@l =9.

6.2 Verify that Z/16 satisfies all the axioms for a commutative ring. Check
that your verification requires no special properties of the number 16,
so that the same argument can be applied to Z/n for any n > 2. What
happens for n =0 and n = 1?

6.3 Show that any factorization of 16 into smaller numbers 16 = ab
becomes a® b = 0 in Z/16.

6.4 Show thatfor | < a < 7, ab = ac (mod 7), i.e. ab and ac leave the same
remainder after division by 7, implies b = ¢ mod 7. Deduce that Z/7
satisfies the cancellation law M3.

6.5 Deduce from Exercise 6.4 that for any 1 < a < 7, there exists b so that
ab =1 (mod 7). Thus Z/7 is a field.

6.6 Show that for any prime p, Z/p satisfies the cancellation law MS5.

6.7 Deduce from Exercise 6.6 that for any prime p, Z/p is a field.

6.8 Write down all binary polynomials of degree 4 (there are 8). Five of

Introduction and an example 105

these polynomials can be factored into products of smaller d.eg‘ree. Find
factorizations for these polynomials. Check that the remaining poly-
nomials cannot be factored into products of polynomials of smaller

degree.) N
69 Check the following calculations in GF(16) using the definition and not
the table.
3@5=06, I®il=2 11 @ 11 = 10;
3®@S=15, I®1l =35, 11 ®11=10.

6.10 Construct a field of order 8.
6.11 Starting with the ternary field Z/3, construct a field of order 9.

7 Euclid’s algorithm

This chapter is devoted to an algorithm that is the central technique of this
book. It is Euclid’s algorithm, which was invented about 2000 years ago to
find highest common factors of integers without first splitting them into their
prime factors. It turns out that this algorithm is the key that enables us to
construct all finite fields and to do arithmetic in them. In addition it provides
an efficient method for error processing of BCH and RS codes. The existence
of efficient error processors for these codes is the principal reason for their
dominance of practical block-code implementations.

Euclid’s algorithm itself is both quick to implement and simple to
understand. It works equally well for integers and polynomials and indeed
in any arithmetic structure in which division with remainder can be
reasonably defined. Our applications will be to polynomials, but to avoid
unnecessary obstacles to understanding [shall initiaily use the integers as
the main example. The text will then give the general theory. If you get
confused calculate an integer example to see what is going on.

7.1 An example

Suppose, for some reason, perhaps because we need to express a fraction in
lowest terms, we wish to calculate the highest common factor (greatest
common divisor) of 12 and 104. These numbers are small and it is easy to
do by prime factorization. 12 = 3 x 4,104 = 13 x 8, so the highest common
factor is 4. That is the method commonly taught at school, but for large
numbers it is very impractical. Try finding the highest common factor of
303 582 and 263 739 that way.

The idea of Euclid’s algorithm is to replace the original problem by an
easier one with the same answer. You then repeat the process until the
problem is so easy that the answer can be read off. Now, any common factor
of 303 582 and 263739 is also a factor of (303 582 — 263 739) = 39843, and
any common factor of 263 739 and 39 843 is also a factor of 303 582. So the
HCF of 303 582 and 263 739 is the same as that of 263739 and 39843. We
can thus replace our original problem by the simpler one: find the HCF of
263739 and 39 843. Then we repeat this step, always replacing the larger of
a pair of numbers by their difference, until the numbers are small. The pairs
we get are:

Euclid’s algorithm 107

303 582 263739
39843 263739
39843 223896
39843 184053
39843 144210
39843 104367
39843 64 524
39843 24681
15162 24681
15162 9519

5643 9519
5643 3876
1767 3876
1767 2109
1767 342
1425 342
1083 342
741 342
399 342
57 342
57 285
57 228
57 171
57 114
57 57

1t is obvious that the highest common factor of 57 and 57 is 57 itself and
that solves the problem. As the highest common factors (HCFs) of all the
pairs in the table are the same, the highest common factor of 303 582 and
263739 is also 57.

You will agree that this method is simpler than factorizing 303 582 and
263739 into prime factors, but it still involves quite a lot of subtractions.
The procedure can be improved by using division with remainder to get rid
of repeated subtractions by the same number. We add an initial column with
the quotients and replace the two columns of numbers by a single one. Each
number is divided by its successor, and the remainder is placed on the row
after the successor. The pairs of numbers with the same highest common
factor are now consecutive entries in the second column.

108 Error-correcting codes and finite fields

Q R

303582
263739
39843
24681
15162
9519
5643
3876
1767
342

57

0

O\ LA DN st e O\

Notice that the same numbers appear, but now no number appears twice.
That shortens the table, but we lose our original test that told us when we
had found the HCF. The signal that the HCF has been found is that the
next number becomes 0, because the appearance of 0 implies that the last
number is a factor of its predecessor. Obviously, the HCF of a number x
and any multiple xy of x must be x itself.

7.2 Euclidean domains

You have now learned the essential part of Euclid’s algorithm, but it delivers
more information than is immediately apparent. A slightly more sophisticated
version that displays the extra information will apear shortly, but first we
shall extend the scope of the discussion to cover polynomials at the same
time as integers. We do that by defining clearly the arithmetical conditions
under which division with remainder makes sense. You can omit this
paragraph on first reading and return to it after you have seen how Euclid’s
algorithm works for the examples. If you do that, just replace every reference
to a ‘Buclidean domain’ by the ‘integers’ or ‘polynomials over B’ and use
the familiar methods of long division.

We start with a set of elements that form a domain D. Remember, that
means that all the standard laws of addition, multiplication and subtraction
hold and we also have a cancellation law: if ab = ac and a # 0, then b =c.
The examples that are important for this book are the integers Z or the set
F[x] of polynomials with coefficients in a field F (e.g. F = B, or F may be
the real or complex numbers).

To make use of division with remainder, we need some way of distinguish-
ing a good remainder from a bad one. For instance, 23 = (1) x 5 + 28,

Euclid’s algorithm 109

but no-one would regard 28 as the remainder of 23 divided by 5. So we
introduce a ‘size’ function defined on the non-zero elements we want to use
for division with remainder (defining the size of 0 is tricky, so we just make
it an exception). The size function needs to satisfy certain technical conditions
for the theory to work, and a function satisfying these is called a Euclidean
valuation.

Definition Let D be a domain. We shall call a function ||x|| defined on
the non-zero elements x of D with values in the non-negative integers
0,1,2,...) a Euclidean valuation, if

EV1. For every a, b #0, [labll > lla} and |labli > [Ibll;
EV2. For every a,b # 0 in D there exist a quotient g and remainder r in
D, such that a = gb 4+ r, and Irl < bl or r=0.

Example For Z we can take ||x| = |x|. It is obvious that EV1 and
EV?2 are satisfied, even if a = 0. However, the quotient ¢ and remainder r
are not unique; e.g. 25 =3 x 7+ 4 =4 x 7+ (=3), and both 4 and —3
satisfy |r| < 7. In general that only causes minor book-keeping difficulties
(this matter is discussed in greater detail in Chapter 9). For the moment we
side-step all difficulties by insisting that the remainder should satisfy 7 > 0.

For B[x] we can take [|f(x) equal to the degree of f(x), that is
the index of highest non-zero coefficient (it is conventional to take — oo as
the degree of the polynomial 0). The properties of the degree are developed
formally in Appendix PF. From the discussion there or the less formal one
in Chapter 1 you can see that EV1 and EV2 hold, but note that in this case
the axiom EV1 fails for a = 0. For example if b = x, then deg(0x) = deg(0) =
— o < 1 =deg(x). That is why we exclude 0 from our considerations. In
the case of polynomials, the quotient ¢ and remainder r are unique.

Definition A domain with a specified Euclidean valuation is called a
Euclidean domain.

We say b divides a if b=ac for some ¢, and denote this by bla.
In that case, of course, the remainder r is 0.

7.3 Highest common factor

Before discussing Euclid’s algorithm in this more general setting, we
must define what the highest common factor of two objects is.

Definition Let a and b be non-zero clements of a domain D. We say
d is a highest common factor or HCF (US terminology: greatest common
divisor or GCD) of a and b, in symbols d = (4, b), if

110 Error-correcting codes and finite fields

HCF1. d|a and d|b, that is d divides both a and b, and
HCF2. ifc|aand c|b then c|d, that s, any other common factor divides d.

For polynomials the HCF is determined only up to multiplication by a
constant (and even for integers, its sign is undetermined). That will be
discussed in Chapter 8, but for the moment we shall not worry about it and
continue as though the HCF were absolutely unique.

Examples

e The HCF of 12 and 104 is 4, because certainly 4 divides both 12 and
104, and if any number divides 12 =4 x 3 and 104 = 8 x 13 it must
divide 4.)

Two comments are appropriate here. Firstly, the argument above
assumes uniqueness of prime factorization, which has not been proved.
An alternative argument based on Euclid’s algorithm will be given in the
next section.

Second, you may wonder why the definition replaces the natural idea
that 4 is the biggest common factor by the condition that every other
factor divides it. The reason is that if the definition uses bigness it
requires two concepts, divisibility and size. As it stands it only uses
divisibility.

e Now consider the two real polynomials f(x) = 2x> — x? = (2x — 1)x?
and g(x) = 4x? — 4x + 1 = (2x — 1)%. Their HCF is clearly 2x — 1. This
statement again tacitly assumes unique factorization. Furthermore why
should we choose 2x — 1? What about x — 4 or ix —4? They are
just as good. That is the non-uniqueness that was mentioned above. It
does not cause serious problems and will be ignored for the time
being.

7.4 HCF in terms of a and b

One further point before we introduce Euclid’s algorithm in its full version.
When we calculate the HCF of a and b by the method introduced in Section
7.1, we get a series of remainders and the last non-zero term is (a, b). It is
often useful to express the HCF in terms of a and b themselves and the
calculations permit us to do that also.

Examples
e The calculation for (12, 104) is

Euclid’s algorithm 111

Q R
104
8 12
1 8
4
0

From this we can read off (12, 104) = 4, but also from the divsions we
know that
8=104 — 8 x 12,
4=12—-1x8

Using the equation to substitute for 8 in the second we get
4=9x12—1x 104

The coefficients 9 and —1 turn out to be just as useful as the highest
common factor itself. Now we can easily check that 4 is the highest
common factor of 12 and 104 without assuming unique prime factoriza-
tion. We have already checked that 4 divides both 12 and 104. To verify
HCF?2 observe that any common factor of 12 and 104 must divide
9x 12—-104=4.

e For the two real polynomials f(x) = 2x* — x* = (2x — 1)x? and g(x) =

4x? — 4x + 1 = (2x — 1)? the calculation is

— 2x3 — x?
— 4x? —4x + 1
et bd

8x — 4 0

From this we can read off that
Jx—4=(x3 = x?) — (Bx + Hx* —4x + 1).
That equation tell us that any common factor of f(x) and g(x) divides
iIx -4
1t is clear that the coefficients needed in the examples can always be

calculated by substitution as above, but that is more clumsy than necessary,
and we shall modify our procedure to calculate them at the same time as
the HCF itself.

112 Error-correcting codes and finite fields

7.5 The four-column array for Euclid’s algorithm

For the full version of Euclid’s algorithm we produce a table with four
columns headed @, R, U, V. The headings Q and R stand for ‘quotient” and
‘remainder’ and are the headings of the columns of the basic algorithm. The
additional columns headed U and V will contain the elements u and v such
that (a, b) = ua + vb. We number the rows of the table starting with —1.
Each row is calculated from its two predecessors.

The first two rows are filled in as follows:

Row (0] R U 14
-1 — a 1 0
0 — b 0 1

From row 1 onwards each new row is produced by first calculating the
Q- and R-entries as before. For row 1 we do this by dividing a by
b:a = q,b + r,. That gives us the first two entries. The U-entry is 1 and the
V-entry is —q,:

I 9 n 1 —4

Notice that ry = la + (—q,)b.
Now I will tell you how to calculate each new row of the table. Suppose
you have calculated up to row k and the last two rows are:

k—1 Ar-1 Tk=1 UWk-1 Vk—y
k 9k ry U Uk

Begin the calculation of row k + I by dividing ., by ri: fi—y = G 11 +
r+1. That produces the Q- and R-entries, g4, and ry4,, of row k + 1. To
get the U- and V-entries put iy, =ty — oy (4 A0A Uy = U1 — Qs 1k
using the value g ,.; you have already calculated.

Stop when r, becomes 0. This must happen after a finite number of steps
because at each step we get ||| < ||7- |, and the values |r || cannot decrease
indefinitely.

7.6 A worked example

Here is a worked example using 12 and 104 again. Notice that the Q- and
R-columns are just the same as before.

Euclid’s algorithm 113
Example Calculate the HCF of 104 and 12:

Row Q R U Vv

-1 — 104 1 0
0 — 12 0 1
1 8 8 1 -8
2 1 4 -1 9
3 2 0 3 —26

The calculation of row 2 goes as follows. Divide 12 by 8. That gives the
quotient g, = 1 and the remainder r, = 4. Now calculateu, =0 —¢g, x 1 =
—land v, =1—¢g,(—8)=9.

We know already that 4 is the highest common factor of 12 and 104 and
also that 4= —1 x 104 + 9 x 12. These numbers are the .entries in the R-,
U- and V-columns of row 2, which is the last row with a non-zero R-entry.

The final row with the zero R-entry does not need to be calculated in full,
but before we go on, let us note in passing that the cancelled form of 1 is
2. That is no accident. As will be shown in Section 7.9, it is true in general
that when r, = 0, —u,/, is the cancelled form of b/a.

7.7 Formal definition of Euclid’s algorithm
The full rule is as follows.

Euclid’s algorithm The algorithm is performed on a table with four columns
headed Q, R, U, and V. The rows are numbered starting at —1.
Input. Two non-zero elements a and b of a Euclidean domain D.

e Step 1. Initialization. 1In rows —1 and 0, leave the Q-column empty.
The entries in the R-, U-, and V-columns are 4, 1, 0 in row —1 and b,
0, 1 in row 0. Set k = 0.

e Step 2. Calculation of Q-entry. Divide 1, by 1 producing the quotient
g and the remainder r: r-y = gr + 1. Put gy = ¢.

e Step 3. Calculation of R-, U-, and V- entries. The formulae determining
Tyt 1> Uesy @nd Uy g are

Ter1 = Te—1 — Qe+ 1Tk
U1 = U1 — Qe+ 1%k

Vg = Vg—1 — Qi+ 1V

114 Error-correcting codes and finite fields

It is not necessary to recalculate 74 ,. It is the remainder r calculated
in Step 2.

o Step 4. Iterative test. 1f 1.y # 0, then increment k and return to Step
2.1f 4, = 0, the calculation is finished.

Output. When the algorithm halts 1, = 0.

(a) ris a highest common factor of a and b and
() n=wat+vb

As remarked above, the U- and V-entries of the final row with 1., =0
do not need to be calculated.

7.8 More on Euclid’s algorithm

1 hope you are convinced that Euclid’s algorithm really works. However, I
have not given formal proofs of the claims made for it. That is the purpose
of this section. The proofs just follow the calculations and use induction to
ensure that everything moves along as it ought to.

Theorem Let Euclid’s algorithm be performed on elements a and b of the
Euclidean domain D. Denote the columns of the table by Q. R, U, and V
respectively, and let the entries in the kil row be k, gy, i, uy and v, Then the
following statements hold.

(@) The algorithm terminates after a finite number of steps.

(b) The last non-zero element of the R-column is a highest common factor of

a and b.
(©) Forany k, r, = wa + vb.

Proof (a) Let |lx| denote the Euclidean valuation of x in D. From
the calculation of g, in Step 2 and r, in Step 3 it follows that 7y
is the remainder of r,_, on division by r. Hence either 7., =0 or
I 1ll < lInll. So if the R-entry does not become 0, its value || drops
by at least 1. It follows that for r, # 0, {Irll < IIbl — k. Thus the algorithm
terminates after at most ||b|| + 1 iterations.

(b,) Let the last non-zero element be r,. In this part we show that
r, is a common factor of a and b. We prove this inductively, showing
that for k = 1,...,n + 1, r, divides 7, .

For k=1 we have the equation 7,_; = g, %, + 0. So nlr,_y. Further-
more, for k=2, fy_p = qufy—y + . Since r, divides both summands on
the right-hand side it divides r,_,. Suppose we have shown that r, divides
both 7,_y.; and r_p AS Fy_jo1 = Gnoksifu—k T Taok+1s it follows that r,
divides r,_,. That completes the inductive proof. The cases k=n and

Euclid’s algorithm) 115

k = n + 1 state that r, divides r = b and r_; = a.Thus r, is a common factor
of both a and b.

We defer the proof that r, is a highest common factor of a and b until
after part (c).

(c) This part is proved by a similar induction to part (b,), but this time
we start at the top of the table. It is clear thata=r_, = 1xa+0xband
b=r,=0xa+1x b. Hence the statement is true for k = —1,0. Suppose
that the statement is true for r,_, and 7. We shall show that it is true for
h+1 by some simple algebra:

Tevr = Te—1 — Qi+ 1T
= Uy 1@ + Do 1b = Qv 1 (0 + 0,b)
= (U — Qe 100 + W1 = G 10D
= Uy 1a + Ui

That proves that r, = wa + b for all k.
(b,) It remains to show that r, satisfies the second condition for a highest
common factor of a and b. So let c|a and c|b. Then

¢|(uqa + v,b) = 1,.

Thus r, satisfies both conditions for highest common factor and we have
shown that r, is a highest common factor of @ and h. |

That concludes the discussion of Euclid’s algorithm. The algorithm can
be used in any Euclidean domain, that is any domain with a size function,
for which division with remainder is defined. It is designed to calculate the
highest common factor d of two elements a and b of such a domain, without
using any form of prime factorization and it automatically produces
coefficients u and v such that d = ua + vb.

EXTRAS

7.9 The cross-product theorem

In the extras we first establish some slightly less immediate facts about
Euclid’s algorithm that will be needed to establish that the error-processing
algorithm for BCH codes in Part 3 really works. Then we examine the
connection between Euclid’s algorithm and continued fractions. That is not
used anywhere in this book, but there is an error processor for BCH codes
using continued fractions, and the information given here will enable you to
see that any such error processor must be equivalent to a Euclid’s algorithm
eITor processor.

116 Error-correcting codes and finite fields

The information required for the proof that the error processor works is
contained in two theorems. The first deals with the ‘cross products’ of
elements in adjacent rows of Buclid’s algorithm, and the second describes the
way their norms behave:

Theorem The cross-product theorem. Consider the four column version of
Euclid’s algorithm. Let j > 0 and let (rj—y, ujy, ;) and (rj, uj, v;) be the
entries in the R, U, and V columns of rows j — 1 and j. Then

(@) rj-quj — iy = £b;
) 1oy — 1o = £4
(©) uj—0;—uv; =t

Example The entries for j = 2, in the table for Euclid’s algorilhm starting
with 104 and 12, are

8 1 -8
and 4 -1 9.
8 —1—4-1=—12;89—4-—8=—1081-9~ —1-—8=1.

Proof The proof is by induction, starting with j = 0. For that row the values
area-0—b-1=—b;a-1—b-0=gyand 1-1 —0-0 = 1. So the statements
hold. Suppose now that the statements hold for j and let us calculate the
values for j + 1, using the fact that

Tipy =Tj—1 — dj+17 Ujpy = Ujoy = G4l Dj+1 = Vj—1 — qj+1Up
(2) iy = Faath = 15— — Qe at) — (-1 — Qi+ O
=Ty = ey U = Ty TG4 1Y
= = (-1t = T%j-1)-

Hence the value for the ru cross-product in row j + 1 is the negative of
the value in row j. That establishes formula (a). The other formulae are
established identically by substituting the pairs (r, v) and (u, v) for (r,u) in
the above formula.

Formula (c) has a useful corollary:

Corollary The entries in the u and v columns have highest common factor 1.
The fraction v/u formed from the entries in the last row of the table (in which
the r entry is 0) is the cancelled version of —a/b.

Proof To show that the entries have highest comment factor 1, we show
that any common factor of u; and v; must divide 1. But that follows from

the fact that such a factor d must divide u;_,v; —u;v;; = £ 1.

Euclid’s algorithm 117
For the entries in the last row we have

0 = ua + vb.
Hence u/v = —a/b.

7.10 The norms of the entries in the table

By the very construction of the algorithm we know that the E}lclide'an
valuations ||r;|| must decrease strictly as each is the result of a division with
remainder. We shall now establish that for the entries in the U and ¥ columns
the opposite holds. Their values increase. We shall show this only for
polynomials, as a general proof requires more information about Euclidean
valuations than we have at our disposal.

Theorem In the four-column version of Euclid’s algorithm for polynomials
over a field F (a) the degrees of the entries in the R-column decrease strictly
from row O onwards; (b) the degrees of the entries in the U- and V-columns
increase strictly from row 1 onwards. .

Proof (a) Forj 0,7, is the remainder when r;_, is divided by 7;. So its
degree is less than that of r; by definition.

(b) The U- and V-entries in rows 0 and 1 are (0, 1) and (1, —g; # 0). So
we have deg(u;) > deg(uo) and deg(v,) > deg(v,). We shall show ‘that
proved deg(u;) > deg(y; 1), and deg(r;) < deg(r;,), then deg(u;.) > deg(u;).
The assumption that deg(r;.;) < deg(r;) implies that deg(q;) > 0. Hence

deg(—q;+ ;) > deg(u;) > deg(u;-).
Then deg(— ;115 + ;1) = deg(—q;+ 1u) > deg(u;)

as required. The proof for the V-entries is identical. |

7.11 Continued fractions

A continued fraction is an expression of the form

1
a; +

a, +

as +

118 Error-correcting codes and finite fields

Continued fractions are closely related to the entries in the table for
Euclid’s algorithm, as you shall shortly see. First we give a formal definition
of a continued fraction:

Definition The continued fraction (ay, . .., a,), where ay, . . ., a, are elements
of a Euclidean domain, is defined inductively. If n =1, the value is a,,
otherwise it is a, + 1/(a,, ..., a,).

That is not the whole story. Zero values can cause difficulties which we
shall ignore. More importantly, most of the theory of continued fractions is
concerned with infinite continued fractions, but an investigation of these
would lead us too far afield. The interested reader is referred to the classic
book by Hardy and Wright (1938) or the beautiful little book by H.
Davenport (1952).)

1t is obvious that the later terms of a continued fraction contribute ever
smaller amounts to its total value. So we can consider what happens if we
leave them off.

Definition The continued fraction (ay, .. . , ,) with m < n is called the mth
convergent of (ay,...,a,).

Now we come to the startling relation between Euclid’s algorithm and
continued fractions.

Theorem Let the four column form of Euclid’s algorithm be applied to the
elements a and b (a, b # 0), and let the algorithm terminate withr, = 0. Then

@@ a/b=(y-.-)
®) vpftt = =1+ > Gm)-
Examples Using the table for 104 and 12, check that
104/12 = 26/3 = 8 + 1/(1 + 1/2).
Furthermore, 9/1 = 8 + 1/1.
Remark In number theory it is shown that the convergents to a continued
fraction are the closest approximations possible when the denominator is

restricted in size. Thus (rather trivially) 9 is the closest integer (denominator
1) to 26/3.

7.12 A lemma on continued fractions

The proof of this theorem involves an investigation of the algebra of
continued fractions which is due to the great Swiss mathematician Leonhard

Euclid’s algorithm 119

Euler. We break the argument into two lemmas. These concern a sequence
of functions w, of n variables. For n = 0 we define wo = 1. For n = 1 we define
w,(x,) = x;. In general for n > 2,

Wo(X1s e v es Xp) = X4 Wy o1 (X250 05 Xp) + Wy (X35 o 05 Xp)-
Lemma (Gy, ...y @) = W@y, -0 Q) Wn-1(a2: -+ a,).

Proof This is certainly true for n =1, and for n =2 we get
(a1, a3) = (aga;.+ 1)/a,.
which is also correct. The induction step is straightforward:
(@1y.--say) =ay + 1/(as,...,a,)
= 0y Wema(@3s e @) Wam 1025)

= (alwn—l(aZ: ey an) + Wn~—2(a37 ey an))/wn—l(az’ rec an)

i

Wn(ab""an)/wn—l(als"'!an)' u

7.3 A second lemma

The next stage statement is a remarkable formula for w,. We begin by
defining an admissible product of the terms ay, ..., a,. This is also done
recursively. The product of all terms is admissible, and if an admissible
product contains a;a;. ;, then the product obtained by removing this pair is
also admissible; if this results in removing all terms, we set the product equal
to 1. Thus the admissible products of the terms a, b, ¢, d are abcd, cd, ad, ab,
and 1, while the ‘admissible products of a, b, c, d, e are abcde, cde, ade, abe.
abc, a, b, ¢, d, and e.

Lemma Euler's formula. The function wy(ay,...,a,) is the sum of all.
admissible products of the terms ay, .. ., a,, each product taken once only.

Proof This is true for wo and wy. Suppose it is true for w,_, and w,,.
Then w,(xy, ..., X,) = Xy Wy 1(Xa5 - Xp) £ Wyo2(X35 .05 Xp)-

But this is x; x the sum of admissible products of x,,...,x, + the
admissible products of X, ..., x,. The first sum consists of the admissible
products of x4, . . . , X, in which x; has not been removed. The second consists
of the admissible products of x,, ..., x,, in which x,x, has been removed.
But together these cover all admissible products.

Corollary Wy(Xys s %) = Wy(Xps o+ 5 X1)-

Proof Euler’s formula is symmetric.

120 Error-correcting codes and finite fields

7.14 Proof of Theorem 7.11
Now we are ready to prove the theorem.

Lemma v, = (—1)"Wy(qy,-- > qm)>
while Uy =(=1""'w,_1(q2 - > qm)-

Proof This is true for v, = 1 and v, = —gq,, and also true for 4, = 1, and
u, = —g,. Now if it is true for m and m — 1, then
Va1 = ~Gm+1Vm + Uy

= (= D)™ G WnlG1s - @) + (= " W1 (G s)
=(- I)MH(QmHWm(Qm’ s d) F e 1@ 15 41)

= (=" " W s 15+ -+ 01)

=(=D)"" W11+ 5 Q1)

The proof for u,, is the same.]

Proof of Theorem 7.11 By Lemma 7.14

Oty = = WG -2) W= 1(d2s - -5)
By Lemma 7.12 this fraction is just the mth convergent to (qy,..., q,).

7.15 Summary

This chapter was devoted to Euclid’s algorithm, the basic technique required
for Parts 2 and 3 of this book. We showed how the algorithm provides an
efficient means of calculating the highest common factor of two elements
without having to find their prime factorizations first. We extended the
algorithm to a tabular form in which the additional columns give factors u
and v, such that the calculated highest common factor of a and b has the
form ua + vb.

In the ‘extra’ sections we proved the important cross product theorem
giving relations between the entries of the table in adjacent rows, and finally
we discussed the connections between the algorithm and continued fractions.

7.16 Exercises

7.1 Calculate the highest common factor of 100006 561 and 7234 517.

7.2

7.3

74

7.5

7.6

7.7

7.8

7.9

Euclid’s algorithm 121

Calculate the highest common factors of the binary polynomials
1001001001 and 101010101.

Find the inverses of 79 and 90 modulo 787 by using Euclid’s algorithm
to express 1 as 79u + 787v and 90u’ + 787v'.

Calculate the inverses of 5 = 0101 and 7 = 0111 using Euclid’s algorithm
in GF(16).

Show that if a = cb in a Euclidean domain, then the only possible
form for division with remainder is g =c¢, r =0.

Show that for Z, the ring of integers, axiom HCF2 can be replaced by

HCF2' 1If c|a and c|b, then |c| < |d|.

and that this gives the same HCF.
Show that for any Euclidean domain with val}xation lla]l, axiom HCF2
can be replaced by’ :

HCF2' 1If ¢|a and c|b, then [ic|| < |d].

Show that for a Euclidean domain D, the element 1 has the minimal
value. That is, for any a # 0, ||1]] < |lall.

Show that for an element a # 0 of a Euclidean domain D the equation
ab = 1 has a solution if and only if ||a]| = [|1].

8 Invertible and irreducible elements

There are two special classes of elements in a Euclidean domain D that are
in a sense diametrical opposites. The first class consists of those elements
that have inverses in D. These elements, called invertible, are too nice for
division with remainder to be of any use. They also have a way of slipping
in and out of expressions involving products, because if a is invertible and
ab = 1, then for any elements x and y, xy = (xa)(by). For this reason highest
common factors and prime factorization are unique only up to multiplication
by invertible elements.

The only invertible elements of Z are 1 and —1. So for integers
multiplication by an invertible element amounts at most to a sign change.
That is not very noticeable, which explains why the problems caused by
invertible elements are not discussed in school. For polynomials over a field,
the effects of invertible elements are more pronounced, because in that case
the invertible polynomials are just the non-zero constants. So many unique-
ness results for polynomials are ‘up to multiplication by a constant’.

The second, more interesting special class of elements corresponds to prime
numbers. These are non-invertible elements that have no non-trivial fac-
torizations. In general, such elements are called irreducible. As you could see
in Chapter 6, irreducible polynomials play a key role in the construction of
finite fields. Indeed, not only do they appear in the construction, but almost
any calculation in a finite field will involve such a polynomial explicitly or
implicitly. So it is important to establish their properties. The most important
of these is the fact that (in a Euclidean domain) if an irreducible divides a
product it divides one of the factors. That ‘key property’ is proved by an
elegant technique that I call the “1-trick’.

In the extra sections 8.9 onwards, the key property of irreducibles is used
to prove that in Buclidean domains all non-invertible elements have unique
factorizations into irreducibles. That fact can be taken on faith if you wish,
because it is only needed to verify that certain natural calculations always
produce the right answers. However, the techniques of the first part
are important and should be mastered. As usual, the examples will be drawn
from the integers (and occasionally polynomials), but the proofs will be given
for Euclidean domains.

Invertible and irreducible elements 123

8.1 Invertible elements

First we discuss invertible elements. Recall from Chapter 2, that highest
common factors of a single pair of elements a and b are not quite unique.
In Z they may differ in sign. Thus the possible highest common factors of
12 and 104 are 4 and —4. It is natural to exclude the negative possibility
and declare 4 to be the only highest common factor. However, in the case
of polynomials over fields highest common factors are only determined up
to multiplication by a constant, and the choice of a ‘best” highest common
factor is not so obvious.

Example 1n the last chapter we used Euclid’s algorithm to calculate the
highest common factor of

fx)=2x*—x*=@2x—1x* and g(x)= 4x? —dx + 1= (2x — D)2

The algorithm gives 3x — § as the HCF, but that is not a particularly good
choice. Perhaps the ‘nicest” HCF would be 2x — 1, because that has integer
coefficients, but such an HCF with integer coefficients may not always
exist. A good universal choice is to make the highest coefficient of the HCF
equal to 1. That gives x — & as the ‘normalized’ HCF of 2x* — x? and
4x2 —4x + 1.

Division with remainder is unique for polynomials and so Euclid’s
algorithm cannot simply be modified to produce a normalized HCF. To put
the HCF into a desired form we may have to multiply the result of the
algorithm by a suitable constant. In this case (dx — %) x 2 produces x — }.

As the example shows, an attempt to define highest common factors so
that they are unique may have the effect that Euclid’s algorithm calculates
the wrong value. Instead, it is better to leave the ambiguity and measure
how far highest common factors can differ. A moment’s thought establishes
that two highest common factors d and d’ of the same elements a and b
must each divide the other. Now if d = xd’ and d' = yd, then xy = L
Elements that multiply to 1 are called inverses, and if x has an inverse y, x
is called invertible.

Definition An element x of a Euclidean domain D is called invertible if x|1,
or in other words, if there exists y € D such that xy = 1.

If x is invertible then x divides every element a of D, because from xy =1
it follows that a = x(ya). Thus for invertible elements the whole of the theory .
of division with remainder collapses into triviality—all remainders are zero.

124 Error-correcting codes and finite fields

8.2 More on HCFs

The following proposition gives a formal description of the variability of
highest common factors.

Proposition Let a and b be non-zero elements of a domain D. If d = (a, b) is
a highest common factor of a and b, then the complete set of highest common
factors of a and b is the set of products dx, where X runs through all invertible
elements of D.

Proof Let x be invertible. We want to show that dx satisfies HCF1 and
HCF2 (see Section 7.3). .

HCF1. Leta=dyandb =dz Thena=dxx"'yand b = dxx™ 'z Thus dx
divides both a and b.
HCF2. Let r be a common factor of a and b. Then, since d satisfies HCF2,

it follows that r|d. So d = ru, for some u. Hence dx = rux and r
divides dx. Therefore dx satisfies HCF2.

Conversely, suppose that d” satisfics both HCF1 and HCF2. As d satisfies
HCF1 by assumption, it is a common factor of a and b and so since d’
satisfies HCF2, it follows that d’ = dx for some x. By symmetry, d = d'x’ for
some x'. Hence d’ = d'x'x, and as D is a domain it follows that x'x = 1. Thus
d’ = dx, where x is invertible. |

8.3 Invertibility and || x||

It is useful to relate the property that x is invertible to the Euclidean
valuation ||x|. The rule is easy to guess by looking at examples. The only
invertible elements of Z are +1 and these are also the only elements with
|x| = 1. Similarly, the invertible elements of the set of polynomials F[x] over
the field F are the constants and thse are precisely the elements of degree 0.
That suggests the following lemma, which will be useful later in the chapter.

Lemma Let D be a Euclidean domain with valuation ||x||. Then the following
statements hold:

(@) x| =1} for all non-zero x € D.
®) lIxll = 1]l if and only if x is invertible.

Proof Statement (a) is an immediate consequence of axiom EV1:

fell = 111 x [l > {10

Invertible and irreducible elements 125

To prove statement (b) suppose that [|x|| = |1l Divide 1 by x with
quotient g and remainder r: 1 = gx + r. By definition IIrll < lixll, or r=0.
By part (a), there is no non-zero r € D, for which |r|| < ||x||l. Hence r = 0.
But then it follows that 1 = gx and so x is invertible.]

8.4 Relative primeness

Now we turn to the consideration of irreducible elements. It is easiest to
begin, not with the concept of a prime or irreducible element, but with a
description of the situation when two elements have no common prime
factors. This can be easily calculated because it is equivalent to the statement
that the highest common factor of the two elements in question is 1. That
can be determined by Euclid’s algorithm. Algorithms for testing for prime-
ness are much more subtle, and completely factorizing large integers, let alone
polynomials, is computationally so difficult that it has become a kind of
sport played by computer buffs. Occasionally you read about a newly
discovered large prime or a ‘fast’ factorization in the press.

Definition Two elements a and b of a Euclidean domain D are said to be
relatively prime if 1 = (a, b).

Because of the non-uniqueness of highest common factors you must allow
multiplication by invertible elements. If 1 is a highest common factor of a
and b then by the discussion above the full set of possible highest common
factors of a and b consists of the invertible elements of D.

Proposition Let a and b be non-zero elements of a Euclidean domain. Then
each of the following statements implies both the others. '

(i) The elements a and b are relatively prime.
(i) There exists a highest common factor d of a and b, such that d is invertible.
(iii) Every highest common factor d of a and b is invertible.

Remark In particular, two polynomials over a field are relatively prime if
and only if the highest common factor calculated by Euclid’s algorithm is a
constant,

Proof (i) implies (ii). By assumption 1 is a highest common factor of a and
b. Certainly, 1 is invertible. So (ii) holds.

(ii) implies (iii). By assumption there exists d = (a,b) such that d is
invertible, say de = 1. Let d’ be any highest common factor of a and b. By
Proposition 1, d' =dx where x is invertible, say xy =1. Then d'ey =
dxey = 1. Thus 4’ is invertible.

126 Error-correcting codes and finite fields

(iii) implies (i). Let d be any highest common factor of a and b. By
assumption d has an inverse e. Now e is an invertible element (with inverse
d). Hence by Proposition 8.2, de = 1 is a highest common factor of a and
b. Thus (i) holds.

8.5 The ‘1-trick’

It is a little ironic that the most important application of Euclid’s algorithm
is the case when the two initial numbers a and b have no common prime
factors. That is because when two numbers have highest common factor 1, we
can use the auxiliary columns of Euclid’s algorithm to write down an
equation linking them with 1. This is the first stage of an ingenious technique
I call the ‘1-trick’.

Theorem Representability of 1. Let a and b be non-zero elements of a
Euclidean domain D; then a and b are relatively prime if and only if there are u
and v in D such that ua + vb = 1.

Examples Suppose that a and b are numbers with a common prime factor,
say 2, for example, a = 4, b = 6. Then whatever whole numbers we choose
for u and v, ua + vb will be even. In general, any common prime factor of
a and b must always divide all numbers of the form ua + vb. In that case
ua + vb cannot be ever equal to 1.

The same argument works for polynomials. If f(x) and g(x) have an
irreducible factor h(x) in common, then it must divide u(x)f(x) + v(x)g(x),
for any polynomials u(x) and v(x). So u(x)f(x) + v(x)g(x) can never be 1.

What about the converse? That is not so easy to see from prime
factorization. For instance, is it obvious from prime factorization that there
are whole numbers such that u x 49 + v x 11 =1 (answer u = —2, v =9)?
But of course, this drops out of Euclid’s algorithm. That is fortunate, because
we have not defined prime factors and so the arguments given here have a
somewhat wobbly base.

Proof Suppose a and b are relatively prime and suppose d is the HCF of
a and b calculated by Euclid’s algorithm, Then firstly d = w'a + v'b for some
« and v’ in D. Secondly, d is invertible with, say, inverse, e. Putting u = v'e
and v = v'e we get

| =de = u'ea+ veb = ua + vb.

Conversely suppose there exist u and v in D such that ua + vb = 1. Then
let d be the highest common factor of a and b. Since d divides both a and

Invertible and irreducible elements 127

b, it also divides ua + vb = 1. Hence there exists e in D such that 1 = de.
Thus d is invertible and a and b are relatively prime. ||

8.6 Irreducibility

The equation of Theorem 8.5 almost always occurs when prime numbers or
irreducible polynomials appear on the scene. So now is the time to define
irreducibility formally.

Definition We call x # 0 irreducible in D if

(a) x does not have an inverse in D, and ‘
(b) whenever x is written as yz, one of y and z has an inverse in D.

Examples For Z irreducibles are just the ordinary prime numbers 2, 3, 5,
7, 11,..., but the number 1 is not regarded as irreducible, because it fails
test (a) of the definition.

For polynomials over a field, the invertible elements are the non-zero
constants. Other polynomials cannot have inverses because multiplying a
non-zero polynomial f(x) by a non-constant polynomial g(x) will increase
the degree of f(x). Thus it will produce a non-constant answer. '

Every linear polynomial x + a is irreducible, but these irreducibles are not
particularly useful.

Polynomials of degree 2 or 3 can only split into products involving at
least one polynomial of degree 1. Factors of f(x) that have degree 1
correspond to roots of f(x) (as will be shown in Chapter 11). Hence a
polynomial of degree 2 or 3 is irreducible if it has no roots. Thus, for instance,
x? — 2x + 2 is irreducible over the real numbers. For finite fields searching
for roots is easy (unless the field is very large).

Unfortunately this simple criterion fails for degree 4 onwards. For instance,
the real polynomial x* — 4x® + 8x? — 8x + 4 has no real roots, but it is not
irreducible, because it factors as (x* — 2x + 2)?. Small irreducibles can be
found by a systematic search called the Sieve of Eratosthenes (see Exercise
8.6). Finding large irreducibles is not easy, even in the integers, but there are
moderately efficient algorithms that can find large prime numbers. For-
tunately, constructing a finite field requires only one irreducible, so a search
algorithm is usually feasible.

The following lemma links the two concepts of irreducibility and relative
primeness. The idea of irreducibility is more important, but relative prime-
ness leads to the 1-trick.

Lemma Let a be an irreducible element in the Euclidean domain D. Then for

128 Error-correcting codes and finite fields
any x € D exactly one of the two following statements holds. Either

(a) a divides x exactly, or
(b) a and x are relatively prime.

Proof Consider d = (a, x). We have a = de and x = df. If d is invertible then
a.and x are relatively prime. On the other hand, if d is not invertible, then
by the irreducibility of 4, e has an inverse. So x = ae™*f. Thus a|x. Hence
one of (a) or (b) must hold.

If a|x, then a = (g, x) and by hypothesis a is not invertible. So a and x
are not relatively prime. Thus the statements cannot both be true. u

8.7 The Key Property of irreducible elements

We can now establish the basic property of irreducibles using the 1-trick. It
is the well-known but rarely proved fact that if a prime divides a product it
divides one of the factors. At school that is usually deduced from the fact
that numbers have unique prime factorizations. However, equally often, and
often in the same class, uniqueness of prime factorization is deduced from
the fact that if a prime divides a product it divides one of the factors. Now
it is certainly true that these two statements do imply each other, but that
does not constitute a proof of either of them.

Theorem The Key Property of irreducible elements in Euclidean domains.
Let a, b, and ¢ be elements of a Euclidean domain and suppose that a is
irreducible. Then if a divides bc, then a divides b or a divides c.

Warning 1t is quite common in abstract arguments to assume this is true
for any element .a, but that is incorrect. For instance, 4 divides 12 and
12 = 2 x 6 but 4 does not divide 2 or 6.

Proof Suppose that a does not divide b. Then by Lemma 8.6, a and b are
relatively prime. Hence by Theorem 8.5, there exist u and v in D such that
1 =ua + vb.

This is where the 1-trick occurs. Since we have an equation with 1 on the
left-hand side, we can multiply it by any element we are interested in, and
then that element will be on the left-hand side. In this case the element we
choose is c.

¢ = uac + vbc.

Now, a obviously divides uac, and it divides vbc, because by hypothesis it
divides bc. Hence a divides the sum uac + vbc = c.]

Invertible and irreducible elements 129

The simple manipulation used in the proof constitutes the I-trick. It is not
an accident that the proof implicitly uses Euclid’s algorithm, because in more
general domains the theorem may not be true (see Exercise 8.12). Fortuna-
tely, all the domains that are of interest in this part are Euclidean.

Example Suppose that 11 divides 49x. We can deduce that 11 divides x
following the above proof:

1=9x11-2x49
Hence
x =9 x 11x — 2 x 49x.

11 divides 11x obviously. It divides 49x by hypothesis. Hence 11 divides
99x — 98x = x.

1t is occasionally useful to apply the 1-trick when we do not know that
a is prime, but are able to establish that a and b are relatively prime. In that
case the proof of the theorem goes through without the need to invoke
Theorem 8.5. :

Corollary Let a, b, and ¢ be elements of a Euclidean domain, such that a and
b are relatively prime. If a divides bc then it divides c. |

Example 6 and 55 are not prime, but they are relatively prime
(55—-9x6=1).

Hence if 6 divides 55x, it follows that 6 divides x.

8.8 LCM of relatively prime elements

The next proposition, also proved by the 1-trick, expresses the fact that for
relatively prime elements the least common multiple is the product.

Proposition Let a, b and c be elements of a Euclidean domain such that a
and b are relatively prime. If both a and b divide c, then ab divides c.

Example 1If 4 and 9 both divide x, then 4 x 9 = 36 divides x. On the other
hand, if a and b are not relatively prime, then the conclusion may not hold.
For example, both 4 and 6 divide 12, but 4 x 6 = 24 does not divide 12,

130 Error-correcting codes and finite fields

Proof By Theorem 8.5,
1 = ua + vb.

Hence ¢ = uac + vbc.

Now, a divides ua and, by hypothesis b divides c. Therefore ab divides
uac. Similarly, b divides vb and a divides c. So ab divides vbc. Hence ab
divides both summands on the right-hand side. Thus it divides the left-hand
side. n

The most common application of this Proposition is when a and b are
distinct irreducibles.

EXTRAS

8.9 Irreducibility and norm

These are the basic facts about irreducibles. The chapter concludes with a
proof of unique factorization in Euclidean domains. The first stage of the
proof is to show that every element can be written as a product of
irreducibles, without worrying about uniqueness. The proof is, in a sense,
constructive, but the algorithm it leads to is roughly ‘look for irreducible
factors”. Yet no significantly better method of factoring a number or
polynomial is known. Incidentally, that is the basis for the security of the
famous RSA public key cryptographic system. However, it is also not known
whether a better factorization method exists. It is conceivable that there is
a quick factorizing method that has eluded generations of mathematicians.

For the proof we shall need some information linking the property of
irreducibility and the Euclidean valuation which we state in the following
lemma.

Lemma Let a be a non-zero, non-invertible element of a Euclidean domain
D with Euclidean valuation ||x|. Then a is irreducible if and only if for any
factorization a = b, ||al| = ||bl or |lall = |lc|l.

The lemma says that if an element is neither irreducible nor invertible,
then it can be split into a product of terms of strictly smaller size. That will
allow us to use induction on the size.

Proof Suppose a is irreducible and a = bc. Then one of ba and c is

invertible. Say b has inverse d. Then da = c. From a = bc it follows that

llall = licll, and from da = c it follows that [a|| < llcll. Hence |lal| = licll.
Conversely, suppose a is not irreducible and say a = be with neither b nor

Invertible and irreducible elements 131

¢ invertible. Then neither b nor ¢ is a multiple of . We shall show that
bl < llall and |icll < liall. For suppose 16} = llall. Then b =ga +r and
r # 0, because if a divides b, then c is invertible. Hence {lrll < llall and so
Irll < ib]l. On the other hand, r=b—qa = b(1 — gc). Hence |ir| > |bl.
That contradiction invalidates the assumption that ||b]| > [la]l. Thus ||b]| <
lall. By the same argument, ficl| < llall, establishing the claim. |]

A consequence of the same lemma gives us the induction start. It states
that among the non-invertible elements, those of smallest size are irreducible.
In particular, it proves that 2 is a prime number and also that every linear
polynomial is irreducible.

Corollary If a is an element with || minimal subject to llal > |||, then a
is irreducible.

Proof We prove that if a is not irreducible then a]| is not minimal subject
to Jlall > |I1]l. If a is not irreducible, then either a is invertible and so (by
Lemma 8.3) |lal| = ||1]l, or @ = bc with neither b nor ¢ invertible. From the
proof of the lemma it then follows that ||b] < lla]l. As b is not invertible it

follows from Lemma 8.3 that ||1]] < ||bll < llall. Hence |la] is not minimal-
n

subject to [lal > [I1]|.

8.10 Prime factorization: existence

The proof of the.existence of prime factorizations (but not their uniqueness)
is now straightforward.

Theorem Let a be a non-zero, non-invertible element of a Euclidean domain
D. Then a can be written as a product of irreducible elements of D.

Remark Tt does not make sense to try and factorize 0 or 1 or indeed any
element that divides 1. That is the reason for the exclusion of invertible
elements. We must also allow products consisting of a single term. Otherwise
irreducible elements like the prime 7 in Z do not have factorizations.

Proof The proof is by induction on the Euclidean valuation |all in D.

If @ is irreducible, then we use the one term product a. By Corollary 8.9
that implies that the theorem is true for a of minimal size [af > ||1].

If a is not irreducible, then there exists a factorization a = bc with ||b|,
llell < ||l By induction hypothesis, b and ¢ can be written as products of

132 Error-correcting codes and finite fields
irreducible elements, say
b=p, X "X Pm
c=q, X X g,
Then
a=py XX Py X gy XXy

is a representation of a as a product of irreducibles. n

8.11 Prime factorization: uniqueness

Now that we have established that in a Euclidean domain every non-
invertible element has a factorization into irreducibles, it remains to show
that the factorization is unique. It is very easy to believe that it must always
be the case that if an element has a factorization into irreducibles, the
factorization must be unique, but that is not so. In the exercises there is an
example to show that for more general domains it may be possible for
an element to have two quite distinct factorizations into irreducibles. Such
an unjustified tacit assumption of unique factorization is a common flaw in
many incorrect ‘proofs’ of the famous (unproved) conjecture known as
Fermat’s last theorem.

Example 1f you require all factorizations to be absolutely identical, then
unique factorization never holds, because, for example,
6=2x3=3x2=(~2)x(=3)=(-3)x(=2).
Or, for real polynomials,
42 —4x+ 1=(Gx—DBx—H=2x - H2x—-1)=---
It is clear that we must allow rearrangements of the factors and also

multiplications by invertible elements. Subject to these modifications, fac-
torization in Euclidean domains is indeed unique.

Theorem Let a be a non-zero, non-invertible element of a Euclidean domain
and let

=Py XX Py =qy XX Qy

be two factorizations of a into irreducible elements. Then m =n and the
products can be ordered in such a way that

q;=p; % d;s i=1...,n, 1)
with d; invertible.

Invertible and irreducible elements 133

Proof The proof is by induction on m. First notice that a is irreducible if

and only if m = 1, because if m> 1, then the factorization a = p;b, where
b=p, XX py has two non-invertible terms. Of course, the same argu-
ment works for the product of the gs. Hence m = 1 if and only if n = 1 and
in that case a = p; = q;.

For the induction step, assume that the theorem holds for elements with a
factorization into m — 1 irreducibles. We first show that the products can
be arranged so that (1) holds for i = 1. By hypothesis, p, divides the product
gy X -+ % qy, Hence by Theorem 8.7 (the key property of irreducibles), p,
divides one of the factors g;. Rearrange the product so that the index of that
factor is 1. Then ¢, = pyd,. Since gy is irreducible one of p; and d; must be
invertible, and as p, is also irreducible the invertible term must be d;.

We can write the factorizations as

Py X Py X0 X pp=py XAy X gp X0 X Gy

Cancel p, on both sides of the equation and replace g, by g5 = d14,- Then
let

b=py X X Pp=qs X Xy
This left-hand product has m — 1 terms. So we can apply the induction
hypothesis to b. That tells us that m .= n and we can rearrange the ps so that

gi=pdifori=3,...,m and ¢y =pud;

Since d, is invertible we can define
dy =dyd;7!

which has inverse d;d5 !, Then pd, = padadi* = q5d7 ' = q,. We already
know that g, = p,d;. So this proves (1) for alli=1,...,m |

8.12 Summary

With hindsight it is apparent that this chapter has described a theory of
divisibility of Euclidean domains. We ask how can non-zero elements of a
Fuclidean domain split into products? Irreducible and invertible elements
cannot be split except in trivial ways. Every other element factorizes into
irreducibles and the factorization is unique up to order and multiplication
by invertible elements. The factorization completely determines all the
possible products the element can split into.

Because there is no efficient way of computing factorizations, they are of
little practical use. Instead we use Euclid’s algorithm. In this chapter that
occurs implicitly by means of the 1-trick and Theorem 8.5 on representing 1.

ey

134 Error-correcting codes and finite fields

In particular, it implies that if an irreducible element of a Euclidean domain
divides a product, then it divides one of the factors. That is a key result for
the construction of finite fields.

Exercises 8

8.1 Prove that if a and b are invertible elements of a Euclidean domain,
then so is ab.

8.2 Prove that if a is an invertible element of any ring, then the cancellation
law holds for a: ab = ac implies b = c.

8.3 Prove the statements made in Section 8.1 about the invertible elements
of Z and .F[x].

The invertible elements of Z are + 1.
The invertible elements of F[x] are the non-zero constants.

8.4 Let D be a Euclidean domain such that for all non-zero a, b, ||la|l = ||b]..
Show that D is a field.

8.5 The Sieve of Eratosthenes. To find all the prime numbers up to 100
write down all the numbers from 1 to 100. Cross out 1. Then repeat
the following steps until all numbers are circled or crossed out. Circle
the smallest number not yet marked (the first time this will be 2). Cross
out all multiples of the number you have just circled (the first time that
will be all even numbers from 4 to 100). Prove that when you have
finished the circled numbers are the primes. Extend this method to find
the prime numbers up to any n.

8.6 Adapt the Sieve of Eratosthenes to F[x], where F is a finite field. Use
it to find all irreducible binary polynomials of degree at most 6. What
problem do you encounter if F is not finite?

In the remaining questions we consider the set Z[/ —3], which consists
of all complex numbers of the form a + b,/ —3 with a,be Z.

8.7 Prove that Z[,/—3] forms an integral domain (the most important
axioms to check are the closure axioms).
8.8 For a,beZ, define |la + b,/ —3|| = a* + 3b%. Show that for

x,yeZ[/-3],

llxyll = Ixllyll (Hint: |a + by =3l = (@ + by/ —3)(a — by/=3)).

8.9 Show that x € Z [,/ —3] is invertible if and only if |x| = 1. Write down
all the invertible elements of D.

8.10 Show that for x € Z[/—3], llx| = 4 implies that x is irreducible (the
condition is sufficient, but not necessary). Deduce that 2, 1 + J -3,

and 1 —,/~3 are all irreducible.

Invertible and irreducible elements 135

8.11 Show that in Z[\/—3],4=2x2and 4= (1 + V=31 —/=3) are
two different prime factorizations of the same element.

8.12 Show that in Z[,/—3] it is possible for an irreducible element to divide
a product without dividihg any factor.

8.13 Show that there exist elements a,b in Z[\/—3], such that for all
geZ[/—3], a = gb + r implies ||r|| > ||b]l.

9 The construction of fields

This chapter will show you how to use a Euclidean domain D to construct
a field. The most important case is when D is the set of polynomials over a
small field that you already know. The construction is used in algebra to
analyse the solutions of algebraic equations, but that is not our main purpose.
For us, the important fact is that if the little field we start with is finite, the
result will be another larger finite field. Later it will turn out that all possible
finite fields can be constructed by this method.

The idea is the one that was used to construct the field GF (16) in Chapter 6:
find a suitable element a and use the set D/a of remainders that are left
when the elements of D are divided by a. From the examples given in
Chapter 6 you can see that not every element will produce a field, and you
can guess that the extra condition that it will have to satisfy is irreducibility.
Applying the construction to the integers Z gives fields of prime order Z/p,
applying it to polynomials over B gives fields of order 2".

The chapter splits into two sections. First we describe the general
construction of D/a. Then it is shown that using irreducible elements for the
construction produces a field.

9.1 The factor ring

We start with a Euclidean domain D. In practice, this may be the integers,
but it is most often the set F[x] of polynomials over some field F that has
already been constructed. Choose a non-zero element a in D, and denote by
Dja the set of remainders after division by a. We shall initially establish that
for any choice of a, the natural definitions of addition, subtraction, and
multiplication of remainders that are derived from the operations of D work
correctly. Division is necessarily different, because it is not defined in D itself,
and so cannot simply be carried over.

Construction The factor ring D/a. Let D be a Euclidean domain and a € D,
a # 0. Denote by D/a (D modulo a) the set of remainders of elements of D
when divided by a. Addition and multiplication in D/a are defined as addition
and multiplication D followed by dividing the result by a to obtain the
remainder.

There are two special cases of this construction. By convention D/0 is

The construction of fields 137

defined to be D itself, At the other extreme, if a has an inverse a™* = b, then
x = xba + 0 for all x in D. So there is only one remainder: 0. Then D/a is
the single element set {0}. We exclude these two ‘trivial’ cases.

9.2 The uniqueness assumption

Assume for the moment that for a fixed divisor a the quotient and remainder
for each b € D are uniquely determined. That is the case for polynomials over
B but not for Z.

Uniqueness assumption Given a,be D, a #0, if r; and r, satisfy

(@) For i = 1,2 there exists g; such that b = g; +7; and
() fori=1,2|nl <lal,
then r, =1,

In Sections 9.4-9.6 it will be shown that even if the uniqueness assumption
does not hold, it is always possible to choose quotients and remainders so
that the arguments work, but it is easier to see how to do that, when you
know how the uniqueness assumption enters the arguments.

Notation We denote by

x mod a the remainder of x on division by a, and

x div a the corresponding quotient.

Thus x = (x div a)a + (x mod a).

When it is necessary to distinguish the addition and multiplication in the
factor ring D/a from those in D, we shall use the symbols @ and ® for the
operations in D/a. Thus

x®y=(x+ y)moda, and
x® y = (xy)mod a.

9.3 D/a is a commutative ring

1t is easy to verify that D/a is a commutative ring.

Theorem Let D be a Euclidean domain and a non-zero, non-invertible element
of D. Then D/a is a commutative ring.

138 Error-correcting codes and finite fields

The proof of the theorem consists of checking the axioms A1-A4, M1-M4,
and D. The hardest axioms to check are the associative laws. In the following
proposition these and a selection of the other axioms are proved. The rest
can be checked in the same way and are left to the reader as an exercise.

Proposition (a) Let D be a Euclidean domain and aeD, a#0. Then D/a
satisfies the associative laws:

Al: x®)@®z=x@(yD2),and
ML x®))®z=xQ(y®2),

(b) The elements 0 and 1 act as zero and identity elements of Dfa. The
negative of an element x in D/a is obtained by taking the remainder of its
negative -x in D after division by a. :

The proof of this proposition is easy but abstract, so here is a worked

example.

Example Let D =17 and a = 16.
Choose x =11, y=10 and z=7 We check the associative law of
multiplication modulo 16 (addition is similar but easier).

11 x10=6 x 16 + 14, o)
14x7=6x16+2, Y

11®10 = 14.
1M1 7=2.
Doing things in the other order we get:

10x7=4x16+6 and 11 x6=4x16+2.
So
RN =1186=2.

The answer for both multiplications are the same. To produce a general
proof, the calculations have to be rewritten. The first calculation can be put
in the form:

(11x10)x7=(6><16+14)x7=6x7x16+6x16+2A (03]
The second calculation can similarly be written as
Hx0xT=11x@x16+6=11x4x16+4x16+2. (2

Now the left-hand sides of (1) and (2) are equal. It follows that the remainders
on the right hand sides have to be equal s well. That is the main step of
the proof.

The construction of fields 139
Proof (a) Proof of Al. Let

n=x®y=(x+y)moda
and
=x®y)®z=(+zmoda.

Then with ¢, = (x + y)diva and ¢, = (i, + 2) diva,
(@1 +adat+n=qa+tn+z
=(x+y +z
Hence by the uniqueness assumption, r, = ((x + y) + z) mod a. Thus
x@y)@®z=((x+y)+z)moda.
Similarly
x®(y@z)=(x+(y+2)moda.

But (x + y) + z = x + (y + z)in D, by the associative law of addition. Hence
x®y)®z=x®(y®2z) in D/a and the associative law of addition holds
in D/a.

Proof of M1. The argument is similar. Let

rn=x®y=xymoda
and
r,=(x®y) ®z=rzmoda.

Then with g, = xy diva and g, = r;zdiva,
(@12 +a)a+r=(qa+n)
= (xy)z
Again, the uniqueness assumption implies r, = (xy)z mod a and thus
(x®y) ® z = (xy)zmod a.

As before, symmetry gives
X ® (y ® z) = x(yz) mod a.

Again, the associative law of multiplication in D gives (xy)z = x(yz). Hence
the same law holds in D/a:(x®)) @z =x ® (y ® 2).

(b) Let x € D/a. Then x =0 + x = 1 x x. Furthermore, since x is in D/a,
xmod a = x. Thus 0@ x = 1 ® x = x. That establishes that 0 and 1 are the
zero and identity of D/a. Now, if —xmoda =y, and —x diva = ¢, then
x + y = (—qpa + 0. Hence x % y = 0. Therefore y is the negative of x in D/a.

| |

140 Error-correcting codes and finite fields

9.4 Remainder functions

The next three sections consider how remainders modulo a can be made
unique by using an appropriate selection rule. The problem to define
operations x mod a and x div g, so that the arguments of Proposition 9.3
always work. For integers this can be achieved by ensuring that the signs
are consistent. So, if you wish, you can safely skip to Section 9.9. Remember
only that in our definition of x mod a for integers, x mod a is always
non-negative.
We introduce selection by defining a remainder function.

Definition Let a # 0 be an element of a Euclidean domain D with Euclidean
valuation || x|. A function x mod a defined on D is called a remainder function,
if for all xe D,

x = qa + (x mod a) for some ¢,
and

xmoda=0 or ||x mod al| < llall.

The value ¢ in the above equation is called the corresponding guotient
function and denoted by x div a.

From now on the function x mod a incorporates an element of choice.
That makes it quite possible that the arguments of Proposition 9.3 go
wrong. Indeed designers of practical systems often forget to check for
consistency and that produces strange results. For instance, the function a
MOD b as implemented in most computer languages is inconsistent. As an
example, consider the calculation of 3 — 2288 + 2279 mod 7. If you perform
the arithmetic first and then apply the MOD function you get —6 mod 7,
which usually produces —6. On the other hand, many algorithms will apply
the MOD function after each arithmetical operation to keep the numbers
small. In that case, the result of the first addition is —2285 mod 7 = —3; so
the result of the whole calculation is 2276 mod 7 = 1. This effect leads to
occasional incorrect results for standard algorithms, such as the calculation
of the date of Easter. These ‘bugs’ appear erratically and cause great
difficulties because they cannot be seen in the source code of programs (for
a discussion of the calculation of Easter see O’Beirne (1965)). Before using
the MOD function on a computer, you should check its values for all possible
combinations of signs of a and b, and you may have to take steps to avoid
its inconsistencies.

The construction of fields 141

9.5 Class representatives

The arguments of Proposition 9.3 make use of uniqueness in a particular
way. They start with a known remainder r of some element x, r = x mod a.
Then they show that for a different y, there is an equation y = ga + r. From
that it is deduced that r = y mod a. To make these arguments work when
there is a choice, our function must satisfy the following condition.

Consistency condition A remainder function x mod a in D is said to be
consistent if it satisfies the following condition for all x and y in D.

(C) if xmoda=r and there exists g such that y=gqga+r, then
ymoda=r. ' ‘

The possibility of a consistent set of choices depends on the fact that there
are only two ways the remainders of distinct elements x and y after division
by a can be related. Either x and y have completely separate sets of possible
remainders, in which case the choices for x and y are independent and cannot
lead to conflict, or x and y have precisely the same set of remainders so that
we can demand that the choice for x is the same as the choice for y.

Example With the integers Z as D and 7 as the divisor g, the sets of possible
remainders of 25, 29 and 32 are as follows.

25 4,-3
29: 1,-6
32: 4, -3.

As you see, 25 and 32 have the same set of remainders, so we must make
sure that we make the same choice in both cases. On the other hand, 29 has
a completely separate set of remainders so the choice here can be made
independently.

Thus remainders on division by a fall into classes so that, any division of
an element x by a,

x=aq+r
which results in one member of a given class can be modified to produce
x=qga+r

with #" any other member of the same class. On the other hand, it cannot

142 Error-correcting codes and finite fields

be modified to produce a remainder of a different class. Thus we make
division with remainder unique by picking a single representative remainder
from each class.

9.6 Interchangeability of remainders

The following proposition gives a simple formulation that is equivalent to
the discussion above. It says that two possible remainders are interchange-
able if and only if their difference is an exact multiple of a.

Proposition Let D be a Euclidean domain wih Euclidean valuation | x||. Let
a#0, ry, and r, be elements of D. Then the following statements hold:

(a) If there exists x € D such that x = g,a + 1, and x = q,a + 1y, then there
exists b e D such that ab =r; —r,.

(b) If there exists be D such that ab=r, — 13, then for any y = qaa + 1y
there exists q, such that y = q,a + ry.

Example With integers Z as D and 7 as the divisor a the remainders +4
and —3 are equivalent because 7 exactly divides 4 — (=3) =7. Any number
that leaves remainder 4 for a quotient g will leave remainder — 3 for quotient
g+ 1.Thus25=3x7+4=4x7-3.

Proof (a) From the assumptions g,a + 71, = 20 + 1. Hence ry —r, =
(g5 — q,)a is an exact multiple of a.
(b) If r, — r, = ab and y = gsa + ry, then

y=(q5+ba—ba+n
=(+ba—(—r)+tn
=(q; + ba+r,.

So take g, = g3 + b.

Corollary Divide the elements r,s of D with |rll, Isl| < llall into classes by
putting r and s in the same class if and only if a divides r —s. Then the
proposition assures us that a remainder function will be consistent if and only
it if chooses exactly one remainder from each class.

Definition The classes defined in the corollary are called the restricted
residue classes of D modulo a. The ring D/a is called the residue class ring
of D modulo a.

The construction of fields 143

The class of 0 always contains only O (see Exercise 9.2). We shall also
assume that the identity 1 is always the selected representative of its class.
You can now verify that in the proof of Theorem 9.3 the uniqueness
assumption can be replaced by the assumption that the remainder function
is consistent (see Exercise 9.3).

Example Possible consistent rules for the integers are (a) always take
x mod a non-negative, (b) always take it non-positive, (c) take the remainder
with the smallest absolute value taking it to be negative if there is still a
choice. The choice (c) is the one made by 2s complement arithmetic as it is
implemented for signed integers on most computers. It would be disastrous
if a.computer used an inconsistent rule for its internal integer arithmetic. It
is curious that while the basic arithmetic unit of all computers implements
a consistent mod function, many high-level computer languages do not. We
shall always use rule (a)—for integers x mod a > 0 for all x and a.

9.7 Condition for a field

It remains to put all the ingredients together and determine exactly when
Dja is a field. It will come as no surprise to you that that is the case precisely
when a is irreducible. As D/a is always a commutative ring, it is only
necessary to show that for irreducible a, every non-zero remainder has an
inverse in D/a. To see why that is so, consider an example.

Example Let D=7 and a = 787. The number 787 is prime, hence Z/787
should be a field. How do you find the inverse of a non-zero remainder such
as x = 53 in Z/787? You must find a number y such that

xymoda=1
In other words if b = xy div a, you must satisfy the equation
xy + ba=1.

Here x and a are known, and y and b are sought. That is precisely the
problem that the last two columns of Euclid’s algorithm were designed to
solve. Since @ = 787 is prime and 0 < x = 53 < 787, it follows that 1 = (g, X).
So applying Euclid’s algorithm to a and x will produce b in the U-column
and y in the V-column (see Table A, overleaf). Thus 1 = (—20) x 787 +
297 x 53. In other words, 53 x 297 mod 787 = 1. Thus 297 is the desired
inverse.

Sometimes the algorithm produces a negative answer for y. In that case
all you need to do is replace y by y mod a.

144 Error-correcting codes and finite fields
Table A
Row Q R U 14
-1 — 787 1 0
0 — 53 0 1
1 14 45 1 —14
2 1 8 -1 15
3 5 5 6 —89
4 1 3 -1 104
5 1 2 13 —-193
6 1 1 -20 297
7 2 0 53 —787

9.8 Proof of the condition

The proof that D/a is a field when a is irreducible just follows the steps of
the calculation above, but it replaces the direct use of Euclid’s algorithm by
Theorem 8.5 that states that if a and x are relatively prime, then there exist
u and v such that 1 = ua + vx.

Theorem Let D be a Euclidean domain with Euclidean valuation | x||. Further,
let a be a non-zero element of D without an inverse.

(@) If a is not irreducible, then D/a does not satisfy the Cancellation law,
x®y=0s#x=00ry=0.
(b) If ais irreducible, then D/a is a field.

Proof (a) If a is not irreducible we can find x and y in D such that xy = a
and neither x nor y is invertible. Let x' = x mod a and y' = y mod a. We
shall show that x' # 0, y’ # 0 but X’ ® y' = 0 in D/a.

Letg = xdivaand ¢’ = ydiva Ifx' = 0, then x = ga. Thus a = xy = qay.
As the cancellation law holds in D and a # 0, it follows that gy = 1. Thus
y has inverse g. That contradicts our hypothesis that y is not invertible.
Therefore x’ # 0. Similarly, " # 0.

What is x'y’ mod a?

Well,

X' =x—qa
and
y=y—qa

The construction of fields 145

SO
X'y =xy—(qy+qx—qqda)a=(1—qy—qgx+ qqaa.

Hence x’' ® ¥ = X'y’ mod a = 0. Thus x’ and y’ violate the cancellation law
in D/a.

(b) Now assume that a is irreducible. As it has already been established
that D/a is always a commutative ring (Theorem 9.3), the only law that needs
to be established is that every non-zero element of D/a has a multiplicative
inverse.

Let x # 0 be an element of D/a. To find an inverse of x, we must find y
in D/a so that xymod a = 1.

Step 1. As x is a remainder we must have ||x|| < |a. Therefore by EV1, a
does not divide x. Hence by Lemma 8.6, (g, x) = 1.

Step 2. Therefore by Theorem 8.5 there exist u and v such that 1 = ua + vx.
Step 3. Keeping the notation of Step 2, let y =vmoda and g =vdiva.
Then y € D/a and -

xy=vx—qax=1—ua—qax‘= —(u+gx)a+1.

Thus x ® y = xy mod a = 1 and we have found our inverse, y. u

9.9 Finding inverses

The algorithm for finding an inverse modulo a, when a is irreducible, is the
basis for performing division in finite fields, so here is a further example to
show how it works for polynomials.

Example Let us calculate the inverse of 9 =1001 in GF(16) by the
method indicated by Theorem 9.8. In Chapter 6 we constructed GF(16) as
B[x]/f(x), with f(x) = x* + x> + 1. The'symbol 9 represents the-polynomial
X3+ 1

Just as in the discussion of long division for polynomials in Chapter 6,
the polynomials in the table will be represented by binary n-tuples. Thus
x*+x®+1 will be represented by 11001 and x*+ 1 by 1001. Poly-
nomial arithmetic is rather more unwieldy than integer arithmetic, so
we insert extra rows in the table that incorporate the rows of the long-
division calculation. The rows that belong to Buclid’s Algorithm itself are
underlined.

146 Error-correcting codes and finite fields

Row Q R U 14
—1 — 11001 00001 00000
0 — 01001 00000 00001
0, 1: —_— 10 01011 00000 00010
0,2: 1 01 00010 00001 00011
2 100 00001 00100 01101
3 10 00000 01001 11001

To show-how the intermediate row before row 1 is calculated consider
the long-division table for dividing 11001 by 01001:

1001)11001(11
1001
) 1011
1001
o) 10

The rows that actually appear in the table are those marked (1) and (2).
These are obtained by shifting 1001 to match the highest remaining non-zero
coefficient and subtracting. In the table for Euclid’s algorithm, the Q column
indicates the shift, and the precise rule is as follows:

Choose g to be a power of x so that g x rp matches the highest term of r_, in
degree (for more general fields we take ¢ = ax™ so that the highest terms
match).

Now calculate the next row as though this were the correct ¢. Giving the
row the number 0, 1 we get the entries:
do,1 = 4> To,1 =7T-1— 70, Ug,1 = U1 — GUo, Vg1 = V-1 — qUo-
The resulting row still has degree greater than the degree of r,. So repeat the
process choosing g so that g x r, matches the highest term of ry.,. That
produces 7, ,, which gives a new intermediate row with entries
qo,2 =4, To,2 = To,1 — 470

Ug,2 = Ug,1 — qUo» Vo,2 = Vo,1 — qlo-

Continue in the same manner until the degree of the R-entry drops below
the degree of r,. Re-label the last row Row 1. In this case row 0, 2 becomes
row 1. Now continue to the next stage of Euclid’s algorithm.

The process has the advantage that long division is carried out inside the
table. But the Q-entry in the underlined row is not the full quotient ¢;. To
find the full quotient you must add all the entries below the last underlined

The construction of fields 147

row. We shall not make any use of the g entries and so it is unnecessary to
rewrite the underlined row to produce the full g;.

From the table read off the-inverse of 1001 = 9. The highest common
factor (1001, 11001) is r, = 1. So the inverse is v, = 1101 = 13 which agrees
with the multiplication table at the end of Chapter 6.

Note that in both Examples 9.7 and 9.9 the last entries of U and V are x
and a respectively. That is always the case when a is irreducible. The last row
gives no new information, but it does form a useful calculation check.

9.10 Available field sizes

What are the sizes of the finite fields obtainable by this method?

Example First consider D = Z. The theorem tells us that Z/n is a field if
and only if n is prime. Z/n has exactly n elements {0, 1,...,n — 1}. So we
get fields with any prime number of elements. For n = 2, we get B, and for
n=3 we get the ternary field. That does not help us find fields with 2"
elements. :

Now take the case D = B[x], the set of polynomials over B. Here the
method produces only fields that have 2" elements, because the set of
remainders of a polynomial of degree n in B[x] is just the set of polynomials
of degree < n — 1. That set has exactly 2" elements.

The argument of the examples yields the following proposition.

Propasition‘ (a) For each prime number p the field Z/p has p elements. (b) If
there is a field F of q elements and an irreducible polynomial f(x) € F[x] of
degree n, then the field F[x]/f(x) has q" elements. |]

So, provided there are suitable irreducible polynomials, we can construct
fields of prime-power orders. In the next chapter it will be shown that all
finite fields have prime-power order. Finally, the question arises whether
there are fields of all such orders. It is possible to prove directly that there
are enough irreducible polynomials to produce fields of every prime power
order, but the proof does not help in finding irreducible polynomials (see
Exercise 9.6). In Chapter 11 the existence of fields of every prime power order
will be proved by a different method.

9.11 GF(16) again

It is now possible to verify rigorously that GF(16) as constructed in Chapter
6 is a field. All we need to do is to check that x* + x* + 1 is irreducible.
That can be done by looking for possible factors of smaller degrees.

148 Error-correcting codes and finite fields

Example Verification that GF(16) is a field.

Let f(x) = x* + x> + 1. We shall show that f(x) is irreducible. If f(x) =
g(x)h(x) and deg(g(x)) < deg(h(x)) < deg(f(x)), then deg(g(x)) < 2. So we
need only verify that f(x) has no factors of degree 1 or 2.

Does f(x) have a factor of degree 1?7 The only such polynomials over B
are x and x + 1. Clearly x does not divide f(x). And x + 1 divides x* + 1,
so if it divided x* + x® + 1, it would have to divide x3.

Could f(x) be the product of two polynomials of degree 2? The poly-
nomials of degree 2 are x, x? + 1, x2 + x and x? + x + 1. The polynomial
x divides both of the first two of these, but it does not divide x* + x* + 1,
so these two are out. (x + 1)> = x>+ x+ x + 1 =x*+ 1, and x + 1 does
not divide f(x). So the third polynomial is also out. We are left with the
possibility of the last, x* + x + 1. If f(x) = (x* + x + 1h(x), the second
factor h(x) would also have degree 2. Hence h(x) may not be one of x2,
x2 + 1 or x* + x. Thus it must also be x* + x + 1. But

GHx+1)P?=x*+x3+x?+x3+x2+x+ x>+ x+1
=x*+x2+1#f(x).

Since f(x) is not invertible (because it is not a constant), it follows that
f(x) is irreducible. That proves that B[x]/f(x) is a field. The remainders on
division by f(x) are the binary polynomials of degree up to 3. There are
precisely 16 such polynomials. Thus we have proved that B[x]/f(x) is a field
of order 16.

A proof of this type is far more efficient than attempting to verify the field
axioms directly.

9.11 Summary

The topic of this chapter was the construction of the factor rings D/a
(the ‘modulo’ construction). We generalized the method used to construct
Z/16 and GF(16), the field of order 16, in Chapter 6. The construc-
tion can be performed using any non-zero, non-invertible element a of a
Euclidean domain. It yields the factor ring D/a. The main result of
the chapter, Theorem 9.8, states that the factor ring D/a is a field pre-
cisely when a is irreducible. That gives a general tool for constructing finite
fields. The construction contains within it algorithms for performing arith-
metic in the field it constructs. In particular, inverses of elements in a
constructed field can be calculated from the additional columns of Euclid’s
algorithm.

The construction of fields 149

9.12 Exercises

9.1 Complete the proof of Theorem 9.3 that under the uniqueness assump-
tion, for any non-zero, non-invertible element a in a Euclidean domain
D, D/a forms a commutative ring.

92 Show that for any non-zero, non-invertible element a of a Euclidean
domain D, the restricted residue class of 0 mod a, contains only 0.

9.3 Verify that in the proof of Theorem 9.3 the uniqueness assumption can
be replaced by the assumption that the remainder function is consistent.

9.4 Show that there are 2" binary polynomials of degree exactly n.

9.5 Show that all polynomials of degree 1 are irreducible. Let the number
of irreducible binary polynomials of degree n be I(n). Calculate 1(2),
I1(3), I(4). Verify that, for these values of n,

=Y d-1d).
din
(A general proof of this formula is given in Exercise 12.15.You can find
a different one in MacWilliams and Sloane (1977), Chapter 4).
9.6 Let p be a prime number and let I,(n) be the number of irreducible
polynomials of degree n with coefficients in Z/p. Assuming the formula
pi= 3 d- 1),

din
prove that I(n) # 0.
The next four exercises deal with constructions of fields.

9.7 Using appropriate irreducible binary polynomials, construct fields of
orders 4, 8 and 32, giving their addition and multiplication tables.

9.8 Using appropriate irreducible ternary polynomials, construct fields of
order 9 and 27.

9.9 Construct a field F of order 16 using the irreducible polynomial
x*+xP+xP+x+ 1

9,10 Find a root y of the polynomial x* + x* + 1 in the field F of Exercise
9.9, Define a map ¢ from our ‘standard’ field GF(16) to F by defining
$(2%) = 7. Show that ¢ is bijective (one-to-one and onto) and that
d(x +¥) = ¢(x) + $(y) and d(xy) = p(x)$(y) for all x,ye GF(16).
This exercise shows that F and GF(16) are essentially identical.

The next three exercises show how to define residue class rings for any
commutative ring.

9.11 Let R be an arbitrary commutative ring, and let a€ R. Define b=c¢
(mod ¢) if b — ¢ = ga for some g € R. For each element x of R define

150 Error-correcting codes and finite fields

the class [x] = {b|x = b (mod a)}. Show if y € [x] then [y] = [x] and
if y ¢ [x] then [x] N [y] = &. An element ye[x] is called a repre-
sentative of the class x.

9.12 Continuing from Exercise 9.11, define R/a to be the set {[x]|x € R}.
Introduce multiplication and addition in R/a by defining [x] + [y] =
[x + y] and [x][y] = [xy]. Show that if x"e[x] and y'e[y] then
x' +y e€[x + y] and x'y’ € [xy]. Deduce that the addition and multi-
plication defined in R/a do not depend on the choice of representatives
x and y for the classes [x] and [y].

9.13 Continuing from Exercise 9.12, show that R/a is a commutative ring.

10 The structure of finite fields

Now that you have seen a method of constructing finite fields, we turn to
the task of analysing their structure. In this chapter we establish four
fundamental results. These results are all related to a prime number, called
the characteristic of the field, that determines its arithmetical properties. As
the results are analytical in nature, their proofs are not applied directly, .
like the proofs involving Euclid’s algorithm. Rather, the characteristic is
implicitly used by many algorithms. You can use the algorithms without
understanding the theory, but you will not be able to design or modify them.

For reference and by way of motivation, all four properties are first
presented with examples. The proofs are given later.

10.1 The prime field and the characteristic
The first result is the following:

Theorem Every finite field F contains a field of the form Z/p, where p is a
prime.

For any element a € F and any positive integer n, the element b of F obtained
by adding a to itself n times satisfies b = O if and only if the prime p divides n.

Definition The special field Z/p contained in F is called the prime field of
F; p is called the characteristic of F and denoted by x(F).

The prime field of F can be obtained in the following way. Start with the
0 and 1 elements of F and then take all possible products and sums. The
set of elements you get in this way is the prime field of F. You can also take
differences and quotients, but that will turn out to be unnecessary.

Example In GF(16). 1 +1=0and 1 x 1 = 1. So the only elements that
we can get from 0 and 1 by applying arithmetic are 0 and 1 themselves. Thus
the prime field of GF(16) is Z/2 = B and the characteristic is 2. That is hardly
surprising, since we started with B when we constructed GF(16).

The characteristic determines which family a finite field belongs to, in the
sense that fields of the same characteristic share many of their properties.

152 Error-correcting codes and finite fields

For example, it follows from the theorem that fields of characteristic 2 are
precisely those fields for which a + a = 0 holds for any non-zero element a
(see Exercise 10.1)

10.2 Sizes of finite fields

The second result determines the possible sizes of finite fields.

Theorem If a finite field E contains a finite field F and F has q elements,
then E has exactly g" elements for some positive integer n.

Definition 1f a field E contains a field F (such that addition and multiplica-
tion in F are defined by restricting the definition in E to elements of F), then
F is called a subfield of E and E is called an extension field of F.

The number of elements of a finite field is called its order.

Example The most familiar pair of fields like this consists of the set of real
numbers R and the set of complex numbers C. The field R is a subfield of
C, and C is an extension of R (obtained by adjoining i = J=D.

Theorem 10.1 states that every finite field E is an extension of its prime field
and the answer to the question, ‘How do you construct E from its prime
field?’ can be guessed from Chapters 1 and 4. This special case determines
the possible sizes of all finite fields and is sufficiently important to be stated
as a corollary.

Corollary If a finite field E has characteristic p, then E has order p" for some
positive integer n.

Example The field GF(16) has characteristic 2 and confirms the corollary
with its 16 = 2% elements. More interesting is the fact that the elements
(0, 1, 10, 11) form a subfield of GF(16). This field has 4 elements and 4 = 2%,
while 16 = 42,

The theorem implies that GF(16) has no subfield of order 8. The corollary
implies that there is no field at all of order 10.

The theorem and its corollary suggest several questions:

1. Given a prime power p", is there a field of order p"?
2. IfEis a field of order ¢", does E contain a subfield of order g7
3. How many distinct fields of a given order can there be?

The structure of finite fields 153

These questions will be answered in later chapters. It is not hard to guess
the answers, but proving that they are correct is another matter.

10.3 A property of x(F)

The next result is very important for practical calculations. It states that in
taking a sum of elements of a field F to the power p = %(F), you can just
take each element to that power and then add the powers—if p = 1(F),
taking pth powers commutes with addition.

Theorem If F has characteristic p, then for a,be F, (a + b)? = a? + b,

Example According to the Theorem, in GF(16),.(a + b)? = a® + b, for
example 10 =112 =(8 +3)? =82 +3>=15+5.
You can verify the characteristic 2 case directly
(@ +b)? =(a+b)a + b)=a*+ab + ba + b’
=a*+b*+ab +ab=a’ + b,
because in characteristic 2, u + u = 0. The general argument is not much

harder than that.

Definition For a field F of characteristic p, the map a — aP is called the
Frobenius automorphism of F, after the great German mathematician Gustav
Frobenius (1864-1917).

The theorem can be restated in the following form. If ¢: F — F is the
Frobenius automorphism, then .
$(a + b) = ¢(a) + $(b).
1t is also obvious that
$(ab) = $(@)p(b).

These two equations are the essential properties of an automorphism of a
field (see Section 10.8).

10.4 Fermat’s little theorem
The last of our four basic results about finite fields is equivalent, in the case

of the field Z/p, to a theorem of the famous French mathematician Pierre
de Fermat (16017-1665). Fermat was a counsel to the parlement of Toulouse

154 Error-correcting codes and finite fields

and an amateur mathematician. He was a pioneer of analytical geometry
(where he anticipated Descartes) and differential calculus (where he anticipated
Newton). He invented a form of proof by induction which he called ‘infinite
descent’ but stated many of his theorems without proof, among them this
one, which he stated in 1640, and his notorious ‘last theorem’. Fermat’s last
theorem remains unproved to this day, so it should better be called Fermat’s
last conjecture (there have been many incorrect ‘proofs™—see Section 8.11).
Our theorem which was first proved by Leibniz in about 1680, is called
Fermat's little theorem to distinguish it from the ‘last theorem’.

Theorem Fermat’s little theorem. Let F be a field of order q. Then for any
element ae F, a’ = a.

Example For every element a of GF(16), a'% = a. In particular, if a # 0,
then a5 = 1. That is the reason that in calculating products using logarithms,
the answer is taken modulo 15. So you can see that Fermat’s little theorem
constitutes the first step in the construction of a logarithm table for F.

10.5 Integer multiples

In discussing the Frobenius automorphism and Fermat’s little theorem, we
took integer powers of field elements without further ado. It was, I hope,
obvious that a2 stands for a x a and a® stands for a x a x a. In the same
way, we can take integer products for elements of a field. Initially, we shall
use © when we multiply a field element by an integer to distinguish an
integer multiple from a product of field elements. Thus 2 ® a = a + a and
3 ® a=a+ a+ a Later we shall drop the special symbol and rely on the
context to determine whether this multiplication by integers or standard field
multiplication is meant.

Example In GF(16),2® 2 =2+ 2 =0, while 2 x 2 = 4. Notice that all
the 2s except the very first stand for the element 0010 of the field. The first
2 really is the number 2.

Definition Let F be any field, a€ F, and let n be a positive integer. We
define n © a to be the element of F obtained by adding the element a to
itself n times. The definition is extended to all integers by setting 0 © a = 0,
and (—-n)©Qa=nQ (—a).

10.6 Some arithmetic

The main reason for introducing this multiplication is that the prime field
of F turns out to be the set of elements of the form n © 1. To prove that,

The structure of finite fields 155

we need some of the arithmetical properties of this multiplication. Indeed,
it satisfies all those laws of arithmetic that make sense. Most of them are not
directly needed. So they are left as an exercise (see Exercise 10.2). The three
that we do require are the subject of the next proposition.

Proposition Let m,neZ, acF and let 1 denote the identity element of F.
Then the following equations hold.

m+nOl=mO1+n01,

mxmOl=mOx®OI).
and
mQ@Qa=mQ@1) xa.

Notice that there is something to prove. The formula (m + n) © 1 means
“first add the two integers m and n and then take the appropriate multiple
of 1°, whereas m © 1+ n © 1 means ‘take appropriate multiples of 1 and
then add them in F. The most confusing thing about the proof is the notation.
All it does is to show that the laws of arithmetic allow us to expand
brackets to get the stated results. For any particular m and n this can easily
be seen directly. For instance, if m = 2 and n =3, then the statements of the
propositions can be written in the form

A+14+D+Q+D=1+14+14+1+1,
A+14+DA+D=14+1+1+1+1+1,
and (l+1+la=a+a+a.

These equations are direct consequences of the associative law of addition
A1 and the distributive laws D1 and D2.

Proof We shall assume in the proof that m and n are positive. The other
cases follow by manipulating the signs of the terms. :
We write the terms m © 1 and n © 1 as

>1 and DEE
k=1 ’

k=1

From the associative law of addition it follows that

m n m m+n m+n
mOl+nO1l=Y1+Y¥Y1=Y1+ Y 1=3 l=m+nOlL
k=1 k=1 k=1 k=m+1 K=1

From the distributive law we get

(mol)x(n@1)=<i 1)x<ki 1>=i(2 1): $i=mmol,

k=1

156 Error-correcting codes and finite fields

and

(m@l)xa:(il)xa:ia=m®a. n
k=1 k=1

10.7 Constructing the prime field

We are now ready to construct the prime field of any given finite field F.
Consider the set of elements a of the form a = n © 1, where n may be any
integer. It will turn out that this set is precisely the prime field we are looking
for, but that must still be established, so we shall call it the prime set of F
for the time being.

As F is finite, its prime set must be finite. So m © 1 =n © 1 must hold
for some pair of integers m s n. Suppose m > n. Subtracting n © 1 from both
sides we get (m — n) © 1 =0, and m — n > 0. So there exist positive integers
k for which k © 1 =0. Let p be the smallest such positive integer. The
number p will turn out to be the characteristic of the field F. That must also
be proved, so we shall call p the null characteristic of F.

Example In GF(16) the prime set is the set

{.,=-30,-201,-10L00L10L20L,L30 L...}
={..,1,0,1,0,1,0,1,...}
= {0, 1}.

The null-characteristic is 2, because 1 © 1 % 0 and 2 © 1 = 0. As claimed,
2 is the characteristic of GF(16), and the prime set is the prime field.

The following theorem proves the first part of Theorem 1, by establishing
that the null-characteristic is a prime p, and the prime set is essentially Z/p.

Theorem Let F be a finite field of null characteristic p. Then the following
statements hold.

(a) The prime set of F has p elements.
(b) The number p is prime.
(¢) The prime set of F forms a subfield of F that is a copy of Z/p

Proof (a) The existence of the null characteristic p has been established
already. From the fact that p© 1 =0, it follows that n O 1 =m O 1 if m
and n leave the same remainder modulo p. On the other hand, the difference
between two distinct remainders r > s mod p is r — s < p. Hence because p
was chosen minimal withp O 1 =0,(r—s) O 1 #0andsor©Q1#sQ 1.

The structure of finite fields . 157

Thus the prime set of F is in one-to-one correspondence with the remainders
modulo p, that is, elements of Z/p. Therefore it has precisely p elements.

() If p=ab with 0<a, b<p, then a©O1#0 and b ©1#0. But
@@ B O1)=(ab)®1=pO1=0. That cannot happen in a field F.
Thus p must be a prime number.

(c) It has already been established in (a) that the elements of the prime
set of F are in one-to-one correspondence with those of Z/p. From
Proposition 10.6 it also follows that they add and multiply in exactly the
same way. For mOl+nQl=m+n0O1l=r0O1, where r=(m+n)
modn. Similartly m@ 1 xn@1l=mnO1=s01, where s = mnmod n.

Corollary The prime set of F is the prime field of F, and the null characteristic
of F is the characteristic of F.

We can now drop the use of the words ‘prime set’ and ‘null characteristic’.

10.8 Isomorphisms and automorphisms

It is worth noting the way we established that the prime field of F ‘was a
copy of” or ‘essentially the same as’ Z/p. We found a one-to-one correspond-
ence between the elements of the prime field and those of Z/p, such that
products and sums were preserved. It is convenient to replace the informal
idea of a copy by a formal definition legitimizing the proof.

Definition Two fields F and F’ are called isomorphic (Greek: ‘of equal
shape’) if there exists a map ¢ from F to F’ such that

(a) ¢ is bijective (that is, to each element f € F' there is exactly one element
o € F with ¢(«) = f), and
(b) for any a, be F, ¢(ab) = ¢(a)¢(b), and ¢(a + b) = ¢(a) + ¢(b).
The map ¢ is called an isomorphism. If F = F’, then ¢ is called an
automorphism of F.

An isomorphism ¢ can be reversed to. give a map ¢~' from F’ to
F, which is called the inverse map. It is straightforward and left as
an exercise to verify that ¢! is also an isomorphism. An example of an
automorphism is the Frobenius automorphism defined in Section 10.3.

10.9 Completing Theorem 10.1

Theorem 10.1 has not quite been finished yet. We must still prove the second
statement,

158 Error-correcting codes and finite fields

Proposition Let F be finite field of characteristic p, and a # 0 an element of
F. Then for an integer n, n © a = 0 if and only if n is a multiple of p.

Example In GF(16),n© a=aifnis odd, and n © a = 0 if n is even.

Proof It has been shown in Theorem 10.7 that n® 1 =r ® 1 where
r = nmod p. and that the only integer r with 0 < r < pfor whichr © 1 = 0
is r=0 Thus n© 1=0if and only if n is a multiple of p. The general
statement follows from the fact proved in Proposition 10.6 that n ® a =
(n© 1) x a. For a # 0, it follows that n © a = 0 if and onlyifn®1=0.
n

10.10 Proof of Theorem 10.2

We have now proved all the statements of Theorem 10.1 and a bit more. In
doing so we have laid the foundations for the entire structure analysis of
finite fields. The remaining results require no new definitions.

The next task is to prove Theorem 10.2. The proof will follow from the
following proposition.

Proposition Let F be a subfield of the finite field E. Then there exist elements
oy, ..., d, of E such that

(a) every element B € E can be written in the form by, + - - - + bya,;
®) if byag + -+ + b, =cyoy + -+ + ¢, with b, c;eF, then by =
Cprevnby=0c,.

Example 1f F =2Z/2 and E = GF(16) we can consider the elements of E
as polynomials of degree at most three and choose a; = 1, &, = x, a3 = x2,
@y = x> In the binary representation this corresponds to the sequence
1,2, 4, 8. Ineither of the representations it is easy to see that (a) and (b) hold.

The proposition often holds for infinite fields as well. For instance, take
F as the real numbers R and E as the complex numbers C. Then we can
choose «; =1 and «, = i, and, as we know, every complex number has a
unique representation in the form a + bi.

Proof Constructay, ..., «, as follows. Start with «; = 1. Suppose Lyyenes Uy
have been chosen. Then if there is still a f € F that cannot be written in the
form byoy + « -+ + b,q,, take o, , = f. Otherwise stop and put k = n.

The procedure must end because F is finite. When it ends (a) is
automatically satisfied and all we must show is that (b) also holds. So assume
that byay + «++ + b0, = ¢, + -+ + ¢,0, and there is at least one value j

The structure of finite fields 159
for which b; # c;. Choose k to be the largest such j. Then
by —cpay + - + (by—c,)x, = 0.
Since b; = c; for j > k, we can write
(by —cy)ay + -+ + (b —)y = 0.
Using the fact that d = b, — ¢, # 0, we can rewrite this as
o= ((by — c)fd)ory + -+ + ((be—1 — €= 1)/d)t— 1,

contradicting the choice of «;. ||
Theorem 10.2 is now just a matter of counting.

Corollary 1 (Theorem 10.2) If a finite field E contains a finite field F and
F has q elements, then E has exactly q" elements for some positive integer n.

Proof Choose elements ay,...,, as in the proposition. Then we can
represent every element fe E with f=bja, + --- + b,a, by the n-tuple
(by, ..., by). There are exactly ¢" such n-tuples.]

Corollary 10.2 follows immediately by substituting the prime field for F.

Corollary 2 If a finite field E has characteristic p, then E has order p" for
some positive integer n.]

10.11 Use of linear algebra

From Proposition 10.10 we can deduce rather more than just Theorem 10.2.
It actually shows that E is a vector space over F, so that we can use the
results of linear algebra.

Theorem Let F be a subfield of the finite field E. Then the following statements
hold. .

(@) The zero elements of F and E are the same.

(b) The identity elements of F and E are the same.

(¢) The set E with field addition and multiplication limited to products ab
where a € F, forms a vector space over F.

Examples 1If E is the set of complex numbers and F is the set of real
numbers, then the vector space we get in part (c) is the ‘complex plane’. It
has dimension 2 and a natural basis is the set (1,i), giving the real and
imaginary cordinate axes.

160 Error-correcting codes and finite fields

If E = GF(16) and F = B, then E corresponds to binary 4-tuples, and the
vector space-of part (c) is B4 To reduce GF(16) to a binary vector space we
just forget how to multiply the 4-tuples and restrict ourselves to addition.

Warning Theorem 10.11(a) holds in most situations where a zero is defined,

but Theorem 10.11(b) is not true for most algebraic systems. For example
consider the set M of 2 x 2 real matrices. This has the standard identity and

zero matrices
1 0 0 0
=[] o-lo o)
0 1 0 0

as its identity and zero elements. M contains a copy R of the real numbers
in the form of matrices of the shape :

(s o]
6 o}

which is the same as the zero matrix O, but the identity element of R is

Lo o}

which is different from the matrix I.

The zero element of R is

Proof (a) Let 0 be the zero of E and 0’ be the zero of F. Then using addition
in F,
0+0=0.
Using addition in E,
0+0=0=0+0.
Subtracting 0’ from both sides gives 0 = 0".

(b) The proof is almost the same. Let 1 be the identity of E and 1’ the
identify of F. Then using multiplication in F

'x1V=1.
Using multiplication in E,
Ixl'=1I'=1x1".
From the field axioms 1’ # 0' = 0. So we can divide both sides by 1’ to get
1=1.

The structure of finite fields 161

(c) We choose elements a, ..., a, € E as in Proposition 10.10 and repre-
sent elements of E by n-tuples as we did in the proof of Theorem 10.2. Then
for B and y corresponding to n-tuples (b,,...,b,) and (cy, ..., c,) we have

B=1byoy + - + by, Y =C10 + cc + Cullye

Hence B + 7 = (by + ¢,)ay + -+ + (b, + ¢,), corresponds to (b + ¢y, ...,
b, + c,). Similarly for aeF, af = ab;a, + - - + ab,x, corresponding to
(aby,...,ab,). Thus, with these operations E has the same structure as F”".

| |

10.12 Uniqueness of the prime field

From Theorem 10.2 and its Corollary it follows that the prime field of F
and hence y(F) is unique. That can also be deduced from Theorem 10.1,
but the proof using Theorem 10.2 is almost immediate.

Corollary Let F be a finite field. The only field of the form Z/q contained in
F is-the prime field of F.

Proof The factor ring Z/q is only a field for q prime. If F has characteristic
p, then F has order p". Thus p" = ¢™, and since p and g are primes it follows
that p =gq.

It remains to show that if G is a subfield of F of order p, then G is precisely
the prime field of F. By Theorem 10.11(b), G contains the identity element
1 of F. Hence G contains n © 1, for all integers n. Therefore G contains the
prime field of F. But G has the same order as that prime field. Hence G is
the prime field of F. n

10.13 A result on binomial coefficients

Before proceeding to the proof of the third fundamental result, we prove a
lemma on binomial coefficients.

Lemma Let p be a prime number and 0<k<p. Then p divides the binomial

coefficient
(P) __ P
k) k(p—k!

Example The binomial coefficients for 7 are 1, 7/1=7, 7 x 6/2 =21,
7 %x 6 x 5/3! = 35, 7 x 6 x5 x 4/4! =35, 7x6x5x4x3/5=21,
7x6x5x4x3x2/6l =17, and 7!/7! = 1. The prime 7 divides all but the
first and last coefficients.

162 Error-correcting codes and finite fields

Proof Denote the binomial coefficient (i) by x, and let its numerator p!

be n and its denominator k!(p — k)! be d. Then d, x, and n are all integers
and dx = n. The prime p obviously divides n, therefore by the key property
of irreducibles, Theorem 8.7, it follows that p divides one of d and x. If
0 < k < p, then p does not divide any of the factors of d = k!(p — k)!. Again
by Theorem 8.7, it follows that p does not divide d. Hence p divides x. W

10.14 The Frobenius automorphism
We can now prove our third fundamental result.

Theorem Let F be a finite field of characteristic p. Then the map ¢ from F
to itself defined by ¢(a) = a” is an automorphism.

Example You have already seen an example (and indeed a proof) that
a® + b? = (a + b)? in GF(16) and the fact that a?b? = (ab)? is obvious.
All that remains is to check that taking squares is bijective. From the table,
we see that the list of squares of elements of GF(16) is 02=0,12=1,22=4,
32=542=9,52=8,62=13,7* =12, 82 = 15,9% = 14,10? = 11, 11> = 10,
122 = 6, 13% = 7, 14% = 2, and 15% = 3. As required, each element of GF(16)
occurs exactly once. That proves that taking squares is bijective.

Incidentally, one consequence of the theorem is that elements of a finite
field F of characteristic 2 have unique square roots in F, unlike real numbers
that have exactly two square roots or none at all. One unfortunate side effect
of that is that the formula for quadratic equations cannot work, because it
relies on the existence of two square roots. The problems arising from this
will be discussed at greater length in Part 3.

Proof There are three conditions to satisfy:

1. ¢(a + b) = ¢(a) + ¢(b) (this is Theorem 10.3).
2. ¢(ab) = ¢(a)d(b) (this is almost trivial).
3. The map is bijective.

1. Observe that the binomial theorem allows us to calculate (a + b)? in
F. That is because the binomial theorem is proved by multiplying out the
terms (a + b) using the distributive law, and then counting how many times
each product a?~¥b* occurs. Thus:

(a+b)p=(p>ap+<p)ap—lbp+,,,+< P)ab,,,w(p)bp'
0 1 o1 ,

The structure of finite fields 163

By Lemma 10.13, all the middle binomial coefficients are multiples of p.
Hence by Theorem 10.1, these terms are all 0in F. The first and last binomial
coefficient are both equal to 1. That concludes the proof of (a).)

2. This is straightforward. The equation a”b? = (ab)? holds because the
commutative law of multiplication allows us to rearrange products.

3. First we show that if a? = b, then a = b.

From statement 1, a® + (b — a)? = b”. Hence if @’ = b?, it follows that
(b — a)? = 0. But a product of elements in‘a field can only be 0 if one of the
factors is 0. Hence b — a = 0. Therefore a = b. Thus we have shown that ¢
is one-to-one.

To show that it is also onto we exploit the fact that F is finite. Since ¢ is
one-to-one, the set of pth powers of elements of F has the same number of
elements as F itself. That implies that every element of F is a pth power and
hence that ¢ is onto. - . |

10.15 Fermat’s little theorem

The last of our basic facts is the little Fermat theorem. This theorem is
obviously true for a = 0; 07 = 0 for any g. For non-zero a we can cancel one
factor a on either side of the equation. Thus we arrive at an equivalent
statement of the theorem, with a remarkably neat proof.

Theorem If F is a field with exactly q = p" elements, then for every non-zero
element ae F,a% ! = 1.

Proof Assume a # 0. List all the elements of F starting with O as follows:
fi =0, fos..., f,. Consider the products afiforalli=1,...,q. Then, by the
cancellation law af; # af; for i # j. Using the fact that F is finite, it follows
that the list af; = 0, afs, . . . , af, contains all the elements of F in some new
order.

Taking the products of non-zero elements of both lists we get

fafs oo oo Jy=(afa)af3) - (afy)-

Now rearranging the right-hand side:

fafs fo= @A ofs o

By the cancellation law, it follows that a* =1, |
10.16 Summary
We have established the fundamental structural properties of fmite' fields.

Each finite field F has a unique characteristic p = (F) that is a prime
number. A finite field F of characeristic p has a unique prime field of the

164

Error-correcting codes and finite fields

form Z/p and F has order g =p". The map ¢ taking a to a” is an
automorphism of F, and if this map is repeated n times, taking a to a? the
result is the identity map of F.

The major questions left unanswered are whether a finite field of given
prime-power order exists and how many different fields of a given order
there can be. These questions will be decided by considering the roots of
polynomials with coefficients in a finite field.

10.17 Exercises

10.1

10.2

10.3

104

10.5

10.6

10.7

10.8

Show that a field has characteristic 2 if and only if it contains a
non-zero element a for which a + a = 0. .

(Properties of integer multiplication in fields.) Prove that the multipli-
cation defined in Section 10.2 has the following properties (m, n denote
integers; x, y denote field elements):

(mn) @ x=mQO (nQ x);
mO (xy) =m0 x)O y;

10 x=x;
00 x=0;
m®0=0;

m+nOx=Mmox)+ (00O x);
mOx+y)=moOx)+moy).

Show that if ¢ is an isomorphism from F to G, then ¢~ ! is an
isomorphism from G to F.

Show that the map ¢ defined in Exercise 9.10 from GF(16) to the field
F = B[x]/(x* + x® + x* + x + 1) is an isomorphism.

Find all subfields of the fields constructed in Exercises 9.7-9. Verify
that for each the order of the whole field is a power of the order of
the subfield.

Show that there are four automorphisms of GF(16) taking 2 respectively
to 2, 4, 9, and 14. Write down tables showing the action of these
automorphisms on the other elements of GF(16).

Show that if ¢ is any automorphism of GF(16) and ¢(2) = B, then
B* + B* + 1 = 0. Deduce that the maps of Exercise 10.6 are the only
automorphisms of GF(16).

Show that the elements of proper subfields of GF(16) are precisely
those y for which y* = y, for some k = 2/ with j < 4. Show that there

10.9

The structure of finite fields 165

are elements f of GF(16) that are not contained in any proper subfield
but for which f* = B for some k < 2*.

Show that in a field F of characteristic p any element « has at most
one pth root f (that is, an element § € F with §7 = a). Show further
that if F is finite, then every element has exactly one pth root.

11 Roots of polynomials

Until now, polynomials have been treated as formal sums. That is appro-
priate for the construction of finite fields. The idea that polynomials are
functions only gets in the way and causes confusion. However, one functional
aspect of polynomials is important for our theory, namely the concept of a
zero or root of a polynomial. Field extensions were originally introduced in
order to solve polynomial equations. The most notable example of this is
the introduction of imaginary and then complex numbers to.solve the
equation x? 4+ 1 = 0. That occurred in the sixteenth century and caused
mathematicians of that time great philosophical problems, as can still be
seen from the very names ‘real numbers’ and ‘imaginary numbers’. It is
amusing to note that the introduction of the real numbers caused the ancient
Greeks equal philosophical problems, and that they would have queried the
attribute ‘real’ for most irrational numbers.

Be that as it may, the idea of a root of a polynomial is far too useful to
be abandoned. None the less, it is better not to revert to considering
polynomials as functions, because that would require us to rewrite the theory
we have developed so far. Instead we shall introduce an ‘evaluation operator’
that allows us to substitute a constant element for the indeterminate x in
the polynomial f(x). As an example, consider polynomials with real coeffi-
cients. We decide on a value, say 1+ i, and substitute it for x in all
polynomials. The result for each polynomial f(x) will be a constant, which
we denote in the usual way by f(1 + i). We even call it the value of f(x) at
1 + i. Those polynomials, like say x> — 2x + 2, for which the value becomes
0, will be said to have 1 +1 as a root.

One advantage of this approach is that the behaviour as the polynomials
vary but the x-value stays fixed is perfectly regular:

f+U+1i)=f1+1)+g(1+1)
and

fo +1i) =f(1 +1) x g(1 +1).
By contrast, if we choose two constants, 1 + i and say 2, then in general

SA+i+2)#fA+D+fQ)

and

FA+D)x2)#fA+1) xf(2).

Roots of polynomials 167

You will have noticed that, although I started with real polynomials, the
constant I used was complex. It is essential to allow the constant to come
from an extension field for the idea of a root to be truly useful. Thus the
imaginary number i is a root of the real polynomial x% + 1, and that is its
true raison d’étre.

11.1 More on polynomials

The applications we require later will be to finite fields, but the theory of
this chapter applies almost without change to any fields. Throughout the
chapter we shall consider a fixed pair of fields F and E, such that E is an
extension of F. The coefficients of polynomials we consider will belong to
the field F, called the base field. Constants at which we evaluate the
polynomials may belong to E. For example F could be R, the reals and E
could be C, the complex numbers, or F = B and E = GF(16). We shall be
interested in the roots in E of polynomials with coefficients in F. Polynomials
will be written as sums

f) =% axt

without explicit summation bounds. The lower bound is 0, the upper oo, but
it is assumed that only finitely many coefficients are non-zero. The set of
polynomials is denoted by F[x]. If you are unsure about your knowledge
of polynomials, skim through Appendix PF before continuing with this
chapter.

Definition Let f=Y a;x'e F[x] be a polynomial and fe E. We define
f(B) =Y a,f' € E. The element f is called a root or zero of f(x) if f(B) = 0.
The map from F[x] to E taking f(x) to f(B) is called the evaluation map at
B (note that f varies while § stays fixed).

Example Let F = B and E = GF(16). Let § = 5. Then the evaluation map
at 5 maps the (infinite) set of polynomials over B into the finite set GF(16).
Choosing a polynomial at random, x°® + x* + x> + x + 1 gets mapped to
455 +5%+5+1=5+1+3+5+1=3.

We first establish that the evaluation map has the properties claimed for
it in the introduction. The proof of that is a straightforward (and rather
boring) application of the formulae for polynomial addition and multiplica-
tion. Such proofs are commonly ‘left as an exercise for the reader’ because
the author is disinclined to write them down. However, I rather doubt
whether they are a useful exercise.

168 Error-correcting codes and finite fields

Proposition Let f(x) and g(x) be polynomials in F[x] and B an element of
E. Then

S+ 9)B) =S(B) + g(B)

and

Ja(B) =f(B) x g(B).

Proof Let f(x) and g(x) be Y a;x' and) b;x' respectively. Then
(f+9)B) =Y (@ +b)B =T aif’ + 3 bif* = 1(B) + g(B).
Similarly,
f(B)a(B) = (z aiﬁ‘)(Z bjﬁi> = Z Z (aibj)ﬁi+j~
i Jj i j

Substituting k = i + j, and gathering terms with equal values k, we get

z Z (aibj)BHj = Z (Z aibh-—i> B =fo(B).

i j Jj i
The evaluation map has some of the properties of an isomorphism but it is

usually neither one-to-one nor onto. It is worth noting the name for such i
maps. ’ i

Definition A map ¢ from a ring A to a ring B is alled a homomorphism
(Greek: ‘similar shape’) if, for all a,b € 4, i
$la + b) = $(a) + ¢(b),
and
$(a x b) = ¢(a) x ¢(b).

From the definitions it is immediate that the term ‘isomorphism’ is i
synonymous with ‘bijective homomorphism’. i

11.2 Evaluating polynomials

The next proposition gives the underlying reason why the evaluation map
has good properties. It is also the basis for the most efficient numerical
method for evaluating polynomials.
Proposition If f(x) is considered as a polynomial in E[x] then

f(B)=f(x) mod (x —f).
In particular f(B) = 0 if and only if (x — p) divides f(x) in E[x].

Roots of polynomials 169
Proof Using division with remainder in E[x], we get
J(x) = (x = By(x) + 7,

where y has degree <1 or y =0. In any case, y is a constant in E. By
Proposition 11.1 it follows that

B =0xqB)+y=7y.

The second statement merely reformulates the case when y = 0.]
A notable sequence of the proposition is the following corollary.
Corollary A polynomial f(x)e F[x] of degree n has at most n roots in E.

Warning This is usually false if E does not satisfy the field axioms. For
instance, in the set of 2 x 2 real diagonal matrices the polynomial x2 — 1 has

4 roots:
1 o] [1 0 -1 0 -1 0
o 1] [0 1) 0 -1}
The set of quaternions (which are not discussed further in this book) is

an example where all the field axioms except the law that ab = ba are
satisfied. In that set the polynomial x? + 1 has eight roots.

Proof We shall show that if f(x) has n roots in E, then deg(f(x)) > n. Let
Bis - - -, B, be distinct roots of f in E, then f(x) = (x — B,)g(x) and fori > 1,
J(B:) = (Bi— B)g(B:) = 0. As B, — B, #0, it follows that g(B;) = 0. Thus
g(x) has roots f,,..., 8, in E. By induction, deg(g) > n — 1. Therefore,
deg(f) > n. |]

11.3 The formal derivative

Over finite fields, we cannot differentiate functions in the usual way by taking
limits, but we can define the formal derivative of a polynomial by copying
the formula for real polynomials. This formal derivative retains some of the
properties of the original.

geﬁni{io:t For f(x) =Y a;x'e F[x], the derivative f'(x) is defined as
ia;x "1,

170 - Error-correcting codes and finite fields
Proposition For f(x), g(x) € F [x] and a,beF, : .
(@ (af + bg) (x) = af '(x) + bg'(x);

®). (fg) (%) = f(x)g'(x) =" (x)g(x)-

Proof (a) This is immediate from the formula.
(b) Let f(x) =Y a;x'. Then fg = 3 a)(x'g(x)). Therefore by part (2), it is
sufficient to prove this for f = x* Let g(x) = Y bix.
(fg(x)) =Y (k + Dbyx T+
— Z ibixi—wc—l + Z kbixi+k~x

= xtg/(x) + ket 1g(x). "

The derivative will be useful in certain computations involved in error-
processing Reed-Solomon codes, but it can also be used to check for multiple
roots in just the same way as the derivative of a real polynomial.

Definition The multiplicity of the root B of the polynomial f(x) is the highest
power n for which (x —)" divides f(x). If has multiplicity > 2, then f is
called a multiple root of f(x).

Theorem - The multiple roots of f(x) are precisely those that are also roots

of f'(x).

Proof Suppose that f§ is a root of £(x). Then f(x) = (x — B)g(p). Hence Bis
a multiple root of f(x) if and only if itis a root of g(x). On the other hand,

f1x) = (x = Bg'(x) + g(x)-

As B is a root of (x — B)g'(x), it follows that g is a root of g(x) if and only
if it is a root of f'(x). | |

11.4 Horner’s scheme

A convenient method for evaluating a polynomial and its derivative at any
constant § was published by Horner in 1819, and is usually known as
Horner’s scheme (but in the electrical engineering literature it is sometimes
referred to as Goerzel’s algorithm). The method was certainly already known
to Newton, but there are already enough things named after him.

The method works over any field, and we shall use it in the appropriate
finite fields. For the sake of clarity the examples we give here will use
real numbers.

Roots of polynomials 171

We will use as our example f(x) = 2x*+ x* —x + 1, and take f = —1.
Start by writing the coefficients of the polynomial (including zeros) in
descending order in a row.

a, a a, a, a,
Example
2 1 0 -1 1

To the left of the table write . Copy the highest coefficient a, as the first
entry b, of the second row. For the later entries put b, = a; + Bby4,. The
last entry by, is the value f(f).

a, a, a, a, a,
B by=a, by=as+pbs by=a;+Pbs by =a, + fb, bo=ao+ Bb,

Example
2 1 [\] —1 1
-1 2 -1 1 -2 3 f(-)=3.

To find the first derivative repeat the procedure with row b, but end one
column earlier. Thus ¢, = b, ¢, = by + Pegs fork=n—1 down to 1. Then
e =f"(B):

a, a; a, a; a9

B by=a, by=a;+Pby by=a,+ b b, =a, + Bb, by =ao+ by
ca=by Cc3=by+Pes cr=by+pecs ¢, =by + fe,

Example)
2 1 0 -1 1
-1 2 -1 1 -2 3
2 -3 4 -6 (-1 =—6.

For those who would like a proof, here is a sketch.
Proposition Horner’s scheme correctly evaluates f(x) and f'(x) at the place B.

Proof First notice that the first calculation can be rewritten as
F(X) = a,x" + -+ ap = (x — B)(b,x""* + -+ by) + bo.
So by, is the value f(f), and differentiating at x = B we get
f'xX)=b,p "+ + by

Hence the same calculation for b, . .., by will give f'(f). |

172 Error-correcting codes and finite fields

11.5 The minimal polynomial of

If E is finite, the powers of § € E cannot all be distinct. So f is a root of a
polynomial of the form x™ — x" with m > n. An element of an extension field
E that is a root of a non-zero polynomial over F is called algebraic over F,
the other elements are called transcendental. As all the fields we shall be
using will be finite, all elements will be algebraic, but e.g. ¢ and © are
transcendental over the rational numbers.

Definition If p ¢ E is algebraic, then the monic (i.e. highest coefficient = 1)
polynomial t(x) in F[x] of lowest degree such that «(B) =0 is called the
minimal polynomial of . It will be denoted by mpy(x).

Example F =B, E = GF(16).

Element(s) Minimal polynomial
0 x
1 x4+ 1
10, 11 x4+ x+1
6;7,12,13 x*+x+1
2,4, 9,14 x4+ x3+1
3,5, 815 x4+ xd x4 x+ 1.

Proposition If t(x)=mp, and f(x)e F[x], then there exists a unique
polynomial g(x) with deg(g) < degt and g(B) = f(B).

Remark g is the remainder of f divided by t. This means that the set of
values of polynomials at x = 8, which we denote by F[f], is in 1 to 1
correspondence with the remainders in F[x] on division by &.

Proof If f(x) = t(x)q(x) + g(x) with deg(g) < deg(t), then
f(B) = 0q(B) + 9(B).

So there is a polynomial of the required type. If g(8) = h(f) and g # h and
both have degree less than ¢, then g — h has B as a root and degree less than
the degree of ¢, contradicting the fact that t = mp. n

Important special case [has j as a root if and only if ¢ divides f exactly.
In the next theorem, this is used to show that the minimal polynomial is
unique.

Roots of polynomials 173

11.6 Properties of the minimal polynomial

Theorem (a) The minimal polynomial of an algebraic element B is irreducible.
() If f is a monic irreducible polynomial in F[x] with-B as a root, then
[=mp,.
(¢) If t =mpy and o = B? where F has q elements, then t = mp,.

Proof (a) Let t be the minimal polynomial of p. If t = fg, then

0=1(p) =S(Bg(p).

So f(B) =0 or g(B) = 0. Say f(B) =0, then ¢ divides f, so g has an inverse
and must be a non-zero constant.

(b) Let t = mpy(x) and'let f(x) be a monic irreducible polynomial such
that f(B) = 0. Then by Proportion 11.4, ¢ divides f. But f is irreducible, so
f = at, where a is a constant. As both ¢ and f are monic a = 1.

(c) Let g = p*, where p is the characteristic of E. By Theorem 10.14, raising
elements of E to the pth power is an automorphism. Thus raising them to
the gth power is also an automorphism. By Fermat’s little theorem 10.4,
a? = g for any element ae F.

Let ¢ = mpy(x) and say t =), a;x’. Then

0=up) =Y ap’
Hence
0=up)y = ap) =3 aip¥ =} a; = 1(p?).
By part (b) it follows that ¢ is the minimal polynomial of % n

In the extra section 11.12, we shall show that if we start with § and
successively take gth powers, f = Bi,..., B, Bir1 = B until we get B =B,
then mpy(x) = [(x — B,).

Corollary If B is algebraic over f, the set of values of polynomials over F at
x = B, F[B], is a field and it is isomorphic to F[x]/mp;.

Construction Recall that by Theorem 9.8 F[x]/f(x) is a field if f(x) is
irreducible. Given a polynomial f(x) € F, we can construct a field contain-
ing F containing a root of f(x). Let g be an irreducible factor of f. Consider
the field F[x]/g(x). It contains the element x which we rename f to avoid
confusion. Then g(f) is the remainder of g(x) when divided by g(x), which
is clearly 0. As g(B) = 0, it follows that f(f) = 0.

174 Error-correcting codes and finite fields

11.7 Fields with p” elements

We are now going to construct a field with g = p" elements for any prime
p and any power p. The method is based on the following consequence of
Fermat’s little theorem.

Theorem Let E be a field of q elements and let F be a subfield of E. Then in
F[x], x* — x is the product of the distinct minimal polynomials of elements of E.

Proof By Fermat’s little theorem, f is a root of x? — x. The number of
distinct roots of x? — x obtained this way is g. So the roots of x? — x are
precisely the elements of E, and in particular, x? — x has no multiple roots.
It follows that the polynomials in F[x] dividing x? — x are just the minimal
polynomials of these elements. Furthermore each of the minimal polynomials
divides x? — x just once. Thus up to a constant x? — x is the product of the
minimal polynomials. As all polynomials involved have highest coefficient
1, the constant must be 1. | |

By cancelling out the factor x we obtain a corollary that will be useful in
Part 3.

Corollary I Under the hypotheses of Theorem 11.7, x3~* — 1 is the product
of the minimal polynomials of the non-zero elements of E in F[x]. | |

Later we shall use this result with F = B, but for the moment we need the
special case when F = E. Then the minimal polynomial of f is just x — f
and so the theorem takes on a particularly simple form.

Corollary 2 Let E be a field of q elements. Then in E[x]
x—x=[] (x=p).

BeE

This divides the problem of constructing a field of g elements into two
parts. First find a field in which x? — x ‘splits’ into linear factors and then
show that its roots form the field we are looking for.

11.8 The splitting field

Theorem Let f € F[x], then there exists a field E containing F over which
f splits into linear factors.

Roots of polynomials 175

Proof The proof is by induction on the degree of f. That ju.st.rr.leans we
add one root after another in a systematic way. Enlarge F by adjoining roots
of f according to the following procedure.

Step 1. If deg(f) = 1, F = E and there is nothing to do.

Step 2. If deg(f) > 1 and f(x) = (x — B)g(x) in F, apply the induction
hypothesis to g(x) to find E in which g splits into linear factors. Then E does
the job for f as well.

Step 3. 1fdeg(f) > 1 and f has no linear factors. Let g(x) be an irreducible
factor of f. Apply the construction of Section 11.6 to obtain F' = F[x]/g(x)
containing F and the root B = x of g(x). Now f has a linear factor over F’
s0 go back and apply Step 2 to F'.

Continue in this way adding roots of f one by one and reduc'ing the
degree of the polynomial we have to deal with until we have split it up
entirely. |

11.9 An existence theorem

Theorem Let F be a field with p elements and q = p". Then there exists a
field E containing F with exactly q elements.

Proof By Theorem 11.8 there exists a field K containing F over which
x? — x splits into linear factors. Let E be the set of roots of x4 —x in K.
First we show that E has the right number of elements. The derivative of
% — xis gx4~! — 1. Now g is a power of the characteristic of E, so gx* “t=0.
Thus x? — x has derivative 1. Thus by Theorem 11.3, x? — x has no multiple
roots. Next we shall show that E is a field. To do this we must show it
contains 0 and 1, is closed under products, sums, negatives and inverses. The
other laws follow because they hold for any subset of K.

Certainly 09 = 0 and 17 =1, so 0 and 1 lie in E. Now let B and y lie in
K, so f?=p and y? =y. Now ¢ is a power of the characteristic of E and
just as in Theorem 11.6, we deduce from Theorem 10.14 that raising elements
to the qth power is an automorphism of E. Hence

(By)* = p** = By.
B+y)=p+y=5+7

Furthermore, if ¢ = B, then 1/8% = 1/B.)
Finally, if 7 = B, then (—)? = (—1)?8.If ¢is odd (—1)? = — 1. Otherwise
the characteristic of E is 2 and —1 = +1. In either case (—f)?= —f. - W

176 Error-correcting codes and finite fields

11.10 Herstein’s alternative

Remark As 1. N. Herstein showed in a pretty little note in Amer. Math.
Monthly (1987) the derivative is not necessary for the proof that x? — x has
no multiple roots. The reason I have used the derivative is that it provides
a useful computational simplification for decoding Reed-Solomon codes.
However, I cannot resist adding Herstein’s replacement here.

Proposition Let E be a field of characteristic p and let q = p". Then x? has
no multiple roots in E.

Proof Let o be aroot of x? — x, in E. We must show that (x — «)? does not
divide x? — x. Now notice that o? = a, by assumption. Hence

xI—x=xI—of—x+a
But g = p", and we have seen that in a field of characteristic p,
(a+ by =a”+b".
Hence also
(x —o)?=x?—oal.
Thus
xt—x=x'—0of—(x —a)
=(x—0)f—(x—a)
=(x-a)((x—a) -1

Now clearly (x — «) does not divide ((x — 2)?”* — 1) and so (x —)? does
not divide x? — x.]
11.11 Subfields of all orders

Theorem 11.9 also allows us to show that a finite field has subfields of all
legitimate orders.

Theorem Let F be a field of order q = p", where p is a prime number. Then
for each k dividing n, F has a unique subfield of order p*.

Proof That the values of k given above are the only legitimate ones was
proved in Theorem 10.10. So suppose that k divides n, and let r = p*

Roots of polynomials 177

and l=n/k.Theng—1=r—1=(@—1¢"" '+ - +r+1). Weputs=
#=1 4 ... 47+ 1 and write this as g — 1 = (r — 1)s. Now

X = ()= (0 = DT e x o+ D).
Hence
X—x=x—-x)"t+ -+ x+1).

So the polynomial x" — x divides x? — x.

By Fermat’s little theorem F contains a complete set of roots of x? — x.
Among these must be a complete set of roots of x* — x. By Theorem 11.9, the
latter set forms a subfield G of F with r elements. Since G exhausts the
available roots of x” — x there can be no other subfield of order r. n

EXTRAS
11.12 A formula for the minimal polynomial

In this section we shall prove the formula for the minimal polynomial of 8
given in Section 11.6.

Theorem Let B be an element of a finite field E containing the field F of order
q. Starting with P, successively take qth powers to get B=PB1u...s B
Bisy = B, with B3 = B, then mp; = [T (x — B).

Proof Let g(x) be the polynomial given by the formula. We shall show that
its coefficients lie in F. That follows because

n n
g'(x) = H1 (x— B = (Hz (x— /i-))(x =B =4g(x).
Thus the coefficients a; of g(x) all satisfy af = ;. By Fermat’s little theorem
10.3, F contains g roots of (x? — x). In a field there can be no further roots,
hence all the coefficients of g(x) lie in F.
Since g(x) has f as a root, g(x) must be a multiple of mp,(x). But since
all of the roots of g(x) are distinct and are also roots of mpy(x) (by Theorem
11.6¢), mpy(x) must be a multiple of g(x). Hence they are equal.

11.13 Summary

In this chapter we reintroduced the concept of a root of a polynomial. First
we found the minimal polynomial having a given element as a root, and
then, exploiting its properties, we showed that every polynomial has roots
in suitable extensions of its coefficient field. Finally we used this result to

178 Error-correcting codes and finite fields

show that there are finite fields of every prime power order. As we already
know that no other orders are possible, we have now determined the possible
orders of finite fields completely. There is however still one obvious question
left unanswered. Are all fields of a given order essentially the same, or is it
possible to have two fields of the same order but a different algebraic
structure. That question will be answered in the next chapter. It describes
how to construct a tool that enables us to perform quick multiplication in
finite fields, but also to analyse their algebraic structures more closely.

11.14 Exercises

11.1 What happens if Horner’s scheme is continued for a fourth row
d, ending another column earlier? Is the answer f“(x) evaluated
at B? What about continuing the array in this way until there
are no columns left to fill? Test your answer on the real polynomial
X +xt+ P+ x+ L

11.2 Use the formula of Theorem 11.12 to verify the table of minimal
polynomials of elements of GF(16) in Section 11.5.

11.3 Let ¢ be an homomorphism of a ring R onto a ring S. Show that ¢
is an isomorphism if and only if the only element a of R for which
¢(a) =01is a=0.

11.4 Let ¢ be a homomorphism of the field F onto the field G, show that
¢ is an isomorphism.

11.5 Let ¢ be an isomorphsim of the finite field F onto the field G; show
that F and G have the same prime field, and that ¢ acts as the identity
on that prime field.

11.6 Let ¢ be an isomorphism of the finite field F onto the field G and let
H be their common prime field. Show that for any element § of F,
the minimal polynomial of ¢(f) over H is the same as that of §.

11.7 Find the minimal polynomials of all the elements of the fields
constructed in Exercises 9.7-9.9.

11.8 Verify that the minimal polynomials found in Exercise 11.6 are all
binary irreducible polynomials of degree < 5, and all (monic) ternary
irreducible polynomials of degree < 3.

119 Let g =p" and u = p° for a prime p. Show that for any field F of
characteristic p, x? — x divides x* — x in F[x] if and only if r divides s.
Deduce that a field of order u contains a subfield of order g if and
only if r divides s.

12 Primitive elements

You will recall that in our example of GF(16) we introduced ‘logarithms’
for non-zero field elements that could be used like conventional logarithms
to convert multiplication into addition. This is certainly of practical signi-
ficance, since addition modulo 15 is easily implemented on a chip, while
polynomial multiplication followed by division with remainder (the method
used to define multiplication) is both more complicated and slower. On the
other hand, the existence of such logarithms is closely linked to a remarkable
property possessed by finite fields that is of great theoretical importance. If
logarithms exist, then every non-zero clement of the field is an integer power
of the element with a logarithm 1. In the case of GF(16) every non-zero
element is a power of the element we have denoted by 2. Indeed, choose an
element x and let its logarithm be y, say x =9, y =log(x) =4. Then
2=2x2x2x280

log(2*) = log(2) + log(2) + log(2) + log(2) = 4.

Hence 9 = 2%, and in general x = o’. The existence of an element whose
powers produce all the elements of a finite field is perhaps the most crucial
property of such fields. It is not shared by infinite fields such as the rational
numbers Q or the real numbers R.

12.1 Primitive elements

Definition A primitive element of a finite field F is an element x € F, such
that for every non-zero element g € F, B = of for some k.

Once a primitive element o in a field has been found, we can define k to
be the logarithm to the base o of § when f = o, We can then use a table
of such logarithms to do multiplication rather than work out the whole
multiplication table. Primitive elements also have very useful properties for
codes as we shall see later.

Example The primitive elements of GF(16) are 2,4, 6,7, 9, 12, 13, 14. You
can check this directly for each in turn. Here is the calculation for 2.

180 Error-correcting codes and finite fields
20=1,2'=1x2=222=2x2=4,2=4x2=38,
24=8x2=92=9x2=11,2°=11x2=152"=15x2=7,
2=7x2=14,22=14x2=520=5%x2=10,2""=10x2= 13,
212 =13 x2=328%=3x2=62"=6x2=12.

Similarly one can check that 3 is not a primitive element.
30=1,3'=1%x3=232=3x3=523=5x3=153*=15x3=8,
3¥=8x3=1,
3¥=1%x3=23"=3x3=53"=5%x3=153°=15x3=8,
30=8x3=1, ‘

M =1x3=232=3x3=533=5%x3=153"=15x3=8.

The repeating pattern of these powers is clear and ensures that no new
field elements will appear as powers of 3. You should check one of the
primitive elements and one non-primitive element for yourself. We shall

always use the element 2 as our primitive element. The next proposition
sums up the results of these calculations.

Proposition If F has q elements then o is a primitive element of F if and only
if the powers o, a2, o, ..., a?"* = a° = 1 are distinct and produce all non-zero
elements of F.

Proof From the little Fermat theorem we know that «¢~! = 1. Hence for
k>q— 1, = o791 Hence o* = ¢*™3@~ 1 (here division with remainder
is the ordinary division in the integers). Hence the list

aat ol .., a7 =0 =1

contains all the elements of F that are powers of a.

Now suppose that « is primitive; then the list must contain all the non-zero
elements of F. As the list has ¢ — 1 terms and F has g — 1 non-zero elements,
the terms in the list must all be distinct.

If, on the other hand, « is not primitive there must be at least one non-zero
element of F that does not appear on the list. So the list contains at most
q — 2 distinct entries. Therefore at least one entry must appear twice. W

Definition 'We define the value k with 0 < k < g — 2 and = «* to be the
(discrete) logarithm of § to the base «.

It follows that the logarithm of fy is the remainder of the sums of the
logarithms of f# and y when they are divided by g — 1.

Primitive elements 181

Example The top row of the table of GF(16) gives the logarithms to the

base 2.

To multiply 10 by 13 take their logarithms, 10 and 11. The sum of these
is 21. Its remainder modulo 16 — 1 = 15 is 6. The number with logarithm 6
is 15. Thus 10 x 13 = 15.

12.2 Existence of primitive elements: preliminaries

We shall now prove that primitive elements always exist. The proof is not
difficult, but requires a little care and patience. Indeed several textbooks
contain erroneous versions of it (see Exercise 12.7). To set it up we need a
definition and two lemmas.

Definition Let F be a field of order ¢. If 0 # f € F, then the order of f is
the smallest positive power k such that f*'= 1. We denote it by ord(f). A
primitive element is characterized by the fact that ord(e) = ¢ — L.

The definition suggests what is needed to find a primitive element of a
field F: search for an element of highest possible order in F, and then show
it is a primitive element. To enable us to do that we must establish
the basic properties of the order function we have just defined.

Lemma For any element B of a finite field F of order q,

(@) B =1 if and only if ord(p) divides n;

(b) ord(p) divides g — 1;

(¢) if ord(B)=m and d is the highest common factor of m and n, then
ord(f") = m/d. In particular, if n divides m, then ord(B") = m/n.

Proof (a) Certainly if n = s ord(p), then
pr= (ﬂmd(ﬁ))s =15=1.

Conversely, suppose f* = 1 and let n = s ord(f) + r, with 0 < r < ord(f).
Then

1= ﬁn — ﬂ s (ﬁord(ﬂ))s,ﬂr — Isﬂ' — ﬁ'.
By definition, ord(f) is the smallest positive power of § equal to 1. Hence
r=0.
(b) By Fermat’s little theorem, $7~* = 1, hence by part (a), ord(f) divides
qg-—1. -
(c) Obviously, (7)™ = (™) = (1) = 1. We claim that m/d is the
smallest positive power for which that holds. As the highest common factor

182 Error-correcting codes and finite fields

of m and n is d, we have
d =um + vn
for some u and v. Now suppose (f")* = p™ = 1. Then
k = umk/d + vnk/d.

Since m = ord(p) it follows that m divides nk. Hence m/d divides nk/d. So
m/d divides both terms on the right-hand side of the equation for k. Thus
m/d divides k, proving our claim.]

12.3 Elements of large order

In general the order of the product of two elements f and y is at most equal
to the least common multiple of their individual orders. But it can be a lot
smaller than this upper bound. For instance if y = ™%, then the orders of
B and y are equal, but however large they are, the order of fy = 1 is 1. This
shows that it is not in general true that ord(f) divides ord(fy). There is an
example in the exercises to show that this kind of thing can happen even
when y is not as obviously related to 8 as this.

In searching for a primitive element we are looking for elements with large
orders. We would like to increase the order of a starting element by
multiplying it by others; so this collapse is undesirable. The next lemma gives
a condition under which we can still increase the order of an element in this
way.

Lemma If B,y € F and ord(f) = m and ord(y) = n and the highest common
Jactor of m and n is 1, then ord(fy) = mn.

Proof Certainly (fy)™ = f™g™ =1, by Lemma 122(a). So we need
only show that no smaller positive power of By is 1. Suppose (By)* = 1.
Then

1= (ﬁ,y)kn _ ﬂk"}’kn = ﬂlm.
Hence m divides kn, say kn = am. Similarly,
1= (ﬁy)km — ﬁkm,ykm = ,),km.

Hence n divides km, say km = bn.
Now m and n have highest common factor 1. That allows us to apply the
I-trick. From Euclid’s algorithm it follows that I = um + vn for some

Primitive elements 183
integers u and v. Hence
k = k(um + vn)(um + vn)
= u?mkm + 2uvkmn + v*nkn
= uPmbn + 2uvkmn + v*nam
= (u®b + 2uvk + via)mn.
Thus mn divides k. n

12.4 Existence of primitive element: proof

We are now ready to state and prove the theorem we have been working
up to.

Theorem The theorem of the primitive element. Let F be a finite field of
order q. Then F contains a primitive element o, that is F contains an element
o such that all the non-zero elements B € F can be represented in the form o
for suitable powers n.

Proof The proof we shall give is in three stages. We select an element « in
F of largest possible order. First we show that for any element § in F the
order of B divides the order of «. From that we deduce that the order of
must be at least g — 1. Finally we conclude that the order is exactly g — 1.

Suppose, therefore, that a 5 0 has largest possible order in F, and let § # 0
be an element of F. Let ord(a) = n and ord(B) = m. If m does not divide n,
there must be a prime p for which the highest power x = p* dividing m is
greater than the highest power y = p' dividing n. Let y = o, which by Lemma
12.2(c) has order n/y not divisible by p, and let & = ™%, which has order x.
Now x and n/y are relatively prime. So by Lemma 12.3, y6 has order nx/y > n,
contradicting our choice of «. Thus we have established that ord(f) must
divide ord(«) = n.

This implies that for every non-zero element feF, f"=1. Thus the
polynomial x" — 1 has all the non-zero elements of F as its roots. But in a
field a polynomial of degree n has at most n roots, so ¢ — 1 < n.

On the other hand by the little Fermat theorem, o4~ ! = 1. Therefore, by
definition n = ord(«) < g — 1. Hence n = g — 1 as required. n

12.5 Discrete logarithms and addition

Given a primitive element « of a finite field F of order g, we can associate
with each non-zero element f of F its discrete logarithm, that is the smallest

184 Error-correcting codes and finite fields

power n such that «" = B. A table of these powers enables us to perform
multiplication by adding powers.

Example 1n the table of GF(16) the logarithms at the head of the table are
the powers of the primitive element 2 such that 2" = . To multiply 9 = 24
by 6 = 2'3, add the powers to obtain 217 =22 =4

A problem with this method of multiplication is the need for table look-up
to find logarithms and antilogarithms. One can avoid that by storing the
elements of F in the form of logarithms but then addition is no longer
straightforward. As an aside, we describe here a method, due to Zech, of
representing a finite field by using the discrete logarithms to denote non-
zero field elements. Multiplication is then just addition modulo g — 1.
Addition is performed by means of an auxiliary table. The element 0 is
assigned the special discrete logarithm oo, so that the same rules apply to
it. The method is interesting, but in practice its disadvantages are greater
than its advantages.

Definition Zech logarithms. Let F be a finite field of order g with primitive
element «. Represent the elements of F by their discrete logarithms, adding
a special discrete logarithm oo to represent 0. The Zech logarithm Z(n) of
ne{,0,...,q— 1} is the discrete logarithm of 1 + o", where a® = 0.
The reason for the name is that Julius Zech (1849) published a table of
these logarithms (which he called ‘addition logarithms’) for doing arithmetic
in Z/p. These were, I think, intended for number-theoretical calculations.

Example A table of Zech logarithms for GF(16) using « = 2 is

Element: w 0 1234 56 78910121314
Zech logarithm: 0w 129431081362 5 1 711

Notice that this table is its own antilogarithm table, because GF(16) has
characteristic 2.

Proposition Addition using Zech logarithms. If the field elements B and
y have discrete logarithms m and n then B+7v has discrete logarithm
n + Z(m — n), where Z(m — n) is the Zech logarithm of m — n.

Example To add 9=2% and 5= 2° by this method we find that the
discrete logarithm of the sum is 4+ Z(5) = 14. Thus confirming that
5+9=2"%=12

Note that if you are using Zech logarithms the only data in the calculation
would be 4, 9 and Z(5) and the answer would be 14. We have only translated
the sum into normal notation to check that it is correct.

Primitive elements 185

Proof Z(m — n) is the logarithm of (1 + B/) and thus n + Z(m — n) is the
Jogarithm of (1 + B/y) = B+ n

You can see that addition requires two conventional additions (modulo
g — 1) and one table look-up, whereas using discrete logs for muitiplication
with elements in their standard representation requires three table look-ups
(of which one is in reverse) and one conventional addition (modulo g — 1).
1t does appear that Zech addition is more economical than logarithmic
multiplication, but as addition is a more basic operation than multiplication
the gain of efficiency in multiplication will not normally outweigh the loss
for addition.

12.6 Primitive polynomials

It is possible to determine whether an element of F is primitive or not from its
minimal polynomial. Thus primitive elements of a field fall into classes
according to their minimal polynomials. Anticipating the proofs of these
facts we make the following definition.

Definition Let E be an extension field of F. A polynomial in F [x]is called

primitive for E if it is the minimal polynomial of a primitive root of E. A
polynomial in F [x] which is primitive for some extension field E is called
primitive.

There is another use of the term primitive polynomial in the mathematical
literature, so if you are reading a book on general algebra and you come
across the term, check whether it has the same meaning as here. If finite fields
form a major topic of the book, that will probably be the case.

Note also that the choice of extension field E is important in this definition.
If a polynomial is the minimal polynomial of a primitive element of E and
F < E « G, then the element will not be a primitive element of G, and so
the polynomial will not be primitive for G. There are also irreducible-
polynomials that are never primitive such as the minimal polynomial of 3
in GF(16).

Proposition If\F| = q and |E| = ¢" =r + 1, then a monic polynomial f(x) is
primitive for E if and only if f(x) is irreducible, and f(x) divides x" — 1, but
does not divide x™ — 1 for any m <r.

Proof Over E the polynomial x"—1 splits into linear factors. So any
polynomial f(x) dividing x" — 1 has a root in E. If f(x) is also irreducible,
then it must be the minimal polynomial of any of its roots.

186 Error-correcting codes and finite fields

Let « have f(x) as its minimal polynomial. Then «" = 1 if and only if « is
a root of x" — 1, and that holds if and only if f(x) divides x" — 1. Now, a is
a primitive element of E if and only if o has order r. That is the same as saying
aisarootof x* — 1 but not of x™ — 1 for any m < r. The statement follows. W

Example Primitive polynomials for F = B and E = GF(16)

x does not divide x*° — 1 not primitive.
x+1 divides x — 1 primitive for B but not for E.
x*+x+ 1 divides x> — 1 primitive for GF(4) but not for E.
x**+x+1 primitive for E.
x4+ x3+ 1 primitive for E.

x* + x* + x? + x + 1 divides x° — 1 not primitive.
Corollary If f(x) is a primitive polynomial in F[x] and F has order g, then
the smallest value r for which f(x) divides x" — 1 has the formr = ¢" — 1.

If f(x) is primitive for E over F, then all its roots lie in E and they are all
primitive elements of E.]

Example The fact that 2 is a primitive element of GF(16) now automatically
gives the primitive elements 4, 9, and 14. The field has two classes of primitive
roots, namely the ones above and the roots of x* + x + 1: 6, 7, 12 and 13.

12.7 Isomorphism of fields of same order

Our discussion of the theory of finite fields is almost complete. There remains
only one grand final theorem, namely that there is essentially only one field

~ of any legitimate order p". To be more precise we shall show that if two finite

fields have the same order, then there is an isomorphism from one to the
other. Thus the two fields are algebraically indistinguishable.

Theorem Let E and K be two finite fields with |E| = |K| = q = p", where p
is a prime number. Then E and K are isomorphic, that is, there is a one-to-one
map of E onto K that preserves all the arithmetic operations.

Proof Let F = Z/p which'is contained in both fields. Let « be a primitive
element of E with minimal polynomial f(x). Then f(x) divides x?~! — 1,
which splits into linear factors in K. Thus f(x) has a root § in K. By
Proposition 12.6, is a primitive element of K. Now E = F[«] and
K = F[B]. But by Corollary 11.6 both these are isomorphic to F[x]/f(x).
Hence they are isomorphic to each other.]

Such a short proof for such a big theorem!

Primitive elements 187

12.8 Factorization of x? — x

From Theorem 12.7 we can derive a further result that confirms the
calculations of Exercises 11.7-8.

Theorem Let F be a finite field of order q and let n = g*. Then in F[x] the
polynomial x" — x is the product of all (monic) irreducible polynomials of degree
dividing k.

Proof Let E be a field of order n containing F (such a field exists by
Theorem 11.9. We know from Corollary 11.7.1 that x" — x is the product of
all minimal polynomials of elements § of E. If the polynomial has degree
then the field F[§] has ¢' elements and by Theorem 10.10, ¢* must be a
power of ¢'. Thus these polynomials are irreducible polynomials of degree
dividing k.

We must show that every such irreducible is a minimal polynomial of an
element of E. So let f(x) be irreducible of degree / dividing k. Let G be the
field F[x]/f(x), which has order ¢'. By Theorem 11.11, E has a subfield H of
order g'. Now by Theorem 12.7, G and H are isomorphic. Therefore H
contains a root of f(x). This root y lies in E and has f(x) as its minimal
polynomial. Thus f(x) occurs as a factor of x" — x. As this holds for all
irreducibles of suitable degree, the theorem follows. n

EXTRAS
12.9 Generators of field extensions

In discussing the theoretical properties of classical Goppa codes in Chapter
20 we shall need an estimate of the number of irreducible polynomials of a
given degree over a finite field. The appropriate place to calculate that
number is in this chapter. We consider a field F of order g and an extension
field E of order ¢". We know that there exist primitive elements of E, but
now we require a slightly weaker concept.

Definition An element o € E is called a generator of E over F if E = F[a].

Example For F =B and E = GF(16) the element 2, being primitive, is a
generator, but notice that 3 is also a generator even though it is not primitive,
because 2 = 3° + 3 and so 2 € F[3].

188 Error-correcting codes and finite fields

Proposition If F < E are fields of order q and q" respectively, then a € E is
a generator if and only if the minimum polynomial of o over F has degree n.

Proof Let the minimum polynomial of « be f(x). If deg(f) = n then F[«]
being isomorphic to F[x]/f(x) has ¢" elements. Thus F[«] must be the whole
of E. Conversely if F[o] = E then it has ¢" elements. Thus F[x]/f(x) has ¢"
elements and therefore f(x) has degree n. n

12.10 Counting generators
Now we shall estimate the number of generators of E over F.

Proposition Let F < E be fields of order q and q" and let m = n/2 + 1, then
E has at least q" — q™ generators.

Examples If n < 2, then this estimate only gives 0, but in those cases one
can directly count the number of generators (see Exercise 12.9). If F =B
and E = GF(16), then n = 4 and the estimate gives 16 — 8 = 8 generators,
in fact GF(16) has 12 generators: the only non-generators being 0, 1, 10
and 11.

Proof An element « is a non-generator if and only if « lies in a proper
subfield of E that contains F. For each divisor d or n, E contains precisely
one subfield of order g%. Thus the number of elements « that do not lie in
any proper subfield containing F is

n/2
q - EIZ ¢‘zq-Y ad=q9—q
din r=1
d<n

n2 _

q

i 2q"—-q"+q.]

12.11 Counting irreducible polynomials

By moving from field elements to their minimum polynomials we can use
Proposition 12.10 to count irreducible polynomials.

Theorem Let F be a field of order q, then for n> 2 there are at least
q" — q\/q")/n irreducible polynomials of degree n in F[x].

Example Taking q =2 we get the following numbers I of irreducible
polynomials for small values of n:

n 3 4 4 6 7 8 9 10
I: 0.78 2 4.1 8 15.05 28 51.8 96

Primitive elements 189

Of course since the number of polynomials is an integer, fractions must
be rounded up. The important point is that this number increases strongly
with n.

Proof Let E be a field of order ¢" containing F. Then E has at least
q" - qu" generators over F. We consider their minimum polynomials.
These are all irreducible and have degree n. Now each such polynomial has
at most n roots in E, so at most n generators can have the same minimum
polynomial. Thus the number of these polynomials must be at least
(q" = g+/q")/n as claimed. |

12.12 Summary

This chapter was concerned with primitive elements of fields. We proved
that every finite field has such elements. Then we discussed how they can be
used to introduce discrete logarithms, which simplify the implementation of
field multiplication. The existence of primitive elements has profound
consequences for the arithmetic of finite fields, one example of which is that
fields of the same order are necessarily isomorphic.

12.13 Exercises

12.1 Verify the statement about the primitive elements of GF(16) in Section
12.1: show that they are precisely the elements 2,4,6,7,9,12,13,14.

122 Show that a field is finite if and only if it has a primitive element.

12.3 Show that a field of order 1024 always contains elemens f, y, of orders
33 and 93. For such elements g* = y*! or 1! = 3!, We assume that
B = 3! Verify that in that case (By)**t = ptly~t=1. But as
3 does not divide 341, deduce that the order of fy is not a multiple
of ord(p) or of ord(y).

124 Let m and n be relatively prime integers. Show that the least common
multiple of m and n is mn.

12.5 Let m and n have HCF = d. Show that the least common multiple of
m and n is mn/d. (Hint: Use the ‘d-trick’ variant of the 1-trick.)

12.6 Show that if m and n are integers and m divides kn and n divides km,
.then k is a common multiple of m and n, and hence a multiple of the
least common multiple of m and n.

127 What is wrong with the following ‘proof’ of the theorem of the
primitive element?

Let o be an element in F of largest possible order n. Suppose that

B is a non-zero element of F such that ord(B) = m does not divide n.
Let d = HCF(m, n). Then m/d # 1 and n and m/d are relatively prime.

190

12.8

129

12.10

12.11

12.12

12.13

12.14
12.15

Error-correcting codes and finite fields

Thus «($%) has order nm/d > n contradicting the assumption. Hence
for all elements non-zero B, ord(f) divides ord(«). The rest of the proof
is the same as the one given in the text. All non-zero elements of F
are roots of x" — 1. Thus, if |F| = ¢, n > ¢ — 1. But by Fermat’s little
theorem, ord(«) divides g — 1. Hence n = g — 1. n
Verify that the rules for multiplication and addition using discrete and
Zech logarithms given in Section 12.5 produce the correct answers
when applied to 0 + §, and 0- 8.
Let F be a field of order ¢ and E an extension field of F of
order g% How many elements of E are generators over F?
Let a be a primitive element of a finite field F of order g. Show that
o is a primitive element of F if and only if HCF(k, g — 1) = 1.
Euler’s totient function ¢(n) counts the number of m such that
1 <m<n and HCF(m, n) = 1. Show that the number of primitive
elements of a field of order g is ¢(g — 1).
If F is a field of order p*, where p is prime, show that the primitive
elements of F fall into classes of size k, where two primitive elements
are in the same class if they have the same minimal polynomial.
Deduce that k divides ¢(p* — 1).
Show that every element o # 0, 1 of the field of order 32 is primitive
and, hence or otherwise, that the only proper subfield of a field of
order 32 is the binary field.
Find primitive elements of Z/p for p = 5, 7, 11, 13, 17, 19, 23.
Deduce the formula of Exercise 9.5 from Theorem 12.8, that is, if the
number of irreducible binary polynomials of degree n is I(n), then
2"=3 d-I(d).

din

Appendix PF Polynomials over a field

The purpose of this appendix is to give a formal outline of the theory of
polynomials. It is intended for reference rather than for study. A ‘full
exposition can be found in Cohn (1982). Throughout the appendix F is a
fixed field. We begin with polynomials in a single indeterminate x. Initially
the full set of field axioms is not required, so we shall use an integral
domain R.

PF.1 Polynomials defined
Definition The set R[x] of polynomials in the indeterminate x is the set of
formal sums f(x) = Y a;x' such that

1. the summation index i ranges from 0 to o,
2. the coefficients a; lie in R, and
3. there exists an n such that for all i > n, a; = 0.

The element g; is called the coefficient of x' in f(x). The sum is really finite
and we can write
f)=ax"+ - +ax+a

ifa;=0fori>n.
Let f(x) = Y, ax' and g(x) = Y. bxx". Define
o =y, abj.
where i,j =0,...,k and i + j = k. Then
(f+9x) =Y (@+b)x and (fex) = cx*.

PF.2 Constants

Definition A polynomial with all its coefficients a; = 0 for i > 0 is called a
constant. Constant polynomials will be identified with their coefficients a,. If
there is a possibility of confusion, the constant will be underlined when it is
being considered as a polynomial.

192 Error-correcting codes and finite fields

Proposition Polynomial addition and multiplication in R[x] restricted to
constants are the same as ring addition and multiplication in R.

PF.3 Arithmetic

We must establish that addition and multiplication of polynomials are
well-behaved. The proof is a tedious verification of details.

Proposition Let R be a ring and R[x] the set of polynomials over R. With
polynomial addition and multiplication R[x] forms a commutative ring.

Proof It is necessary to verify the following axioms for Section 3.3: Al1-A4,
M1-M3, and DI-D2. Let f(x) = ¥ axig(x) = ¥ bx', and h(x) = Y, cix'.

Axioms Al-A4 These axioms all reduce to axioms for ring addition of
individual coefficients (the zero polynomial is the constant 0). As an example
we prove the associative law Al

((f +9) + B =X (@ + b) + ¢)x’
=Y (a; + (b; +)X’
=(/+ (g + M)
Axioms D1-D2 We prove D1; D2 is proved analogously. Let
d, = ag(b, + ¢;) + - + a(bo + ¢o)s
ne = aoh, + - - + abo,
and S = Aol + + 1+ @
Then by the distributive law in R d, = 1, + s,. Hence
(f x (g + M)x) = 3 dix',
=Y x4+ Y sx,
= (fg + fh)Xx).

Axioms MI-M3 Axioms M2 (with the constant I as identity) and M3
are immediate from the formula. It remains to prove M1.
For all I let

d, = aeh, + - + aby,
e, = bgc, + - -+ + bicy,
and n=ape, + - + ady.

Then =Y. a;bjc;, where i,j,k=0,...,Land i+j+ k=1L

Appendix PF Polynomials over a field 193
By symmetry it follows that r, = djco + * -+ + docy- Therefore
(flgh)(x) = ¥ nxt = (fh)(x). L

PF.4 Degree

Definition The degree of a non-zero polynomial f(x) = Y a;x' € R[x],
denoted by deg(f(x)), is the maximum i for which a; # 0. The degree of the
zero polynomial is defined to be —oo.

Proposition Let R be an integral domain, and let f(x) =3 a;x' and g(x) =
Y. bix' be two polynomials in R[x], then

(@) deg((f + 9)(x) < max{deg(f(x)), deg(g(x))}, and
(b) deg(fg(x)) = deg(f(x)) + deg(g(x))-

Proof Let n = deg(f(x)) and m = deg(g(x)).

(a) Suppose that n > m. Then for k > n, the coefficient a; + b, of x* in
(f + 9)(x) is 0. Hence deg((f + g)(x)) < n.

(b) The coefficient of x™*" in (fg)(x) is Z a;b;, where i +j=n+m. Now
ifi>nthea,—:O,andifi<nthenj=n+m—i>m,sothatb,-=0.Thus
the sum reduces to a,b,,. By hypothesis 4, # 0 and b,, # 0. Hence a,b,, #0.
Thus deg(fg(x)) = m + n.

On the other hand, if k > m + n, then the coefficient of x* in (fg)(x) is
S a,b;, where i + j = k. Now if i > ntheq; = 0,andifi <nthenj=k —i>m,
so that b; = 0. Thus all the terms of the sum are 0. Hence deg(fg(x)) < m + n.

| §

PF.5 Domain property carries over

Theorem If R is an integral domain, then R[x] is an integral domain.
Proof The only axiom that requires proof is the cancellation law MS. If
f(x) # 0 and g(x) # 0, then deg(f(x)) > 0 and deg(g(x)) = 0. Therefore by
Proposition PF.4, deg(fg(x)) = 0. Thus fg(x) # 0. n
PF.6 Division with remainder

Theorem Let F be a field and let f(x) and g(x) # 0 be two polynomials in
F[x), then there exist unique polynomials q(x) and r(x) such that

f(x) = g(x)g(x) + r(x), and deg(r(x)) < deg(g(x))-

194 Error-correcting codes and finite fields

Proof Uniqueness. Suppose there are also p(x) and s(x) satisfying the same
conditions. Then

0 = f(x) = f(x) = g(x)g(x) + r(x) = p(x)g(x) — s(x).

Hence

(r — 9)x) = (p — P(x)g(x).

Therefore

deg(g(x)) > deg((r — 5)(x)) = deg((p — q)(x)) + deg(g(x))-

Thus deg((p — q(x)) < 0. So p(x) = g(x) and therefore also r(x) = s(x).
Existence. Consider the set S of all polynomials of the form h(x) = f(x) —
q(x)g(x) where q varies among all polynomials in F[x]. Choose r(x) in this
set with the smallest possible degree. We must show deg(r(x)) < deg(g(x)).
Suppose n = deg(r(x)) = m = deg(g(x)) and let r(x) =3 a;x' and g(x) =
z byx'. Then s(x) = r(x) — (@,/b,)x"~"g(x) is in S. Furthermore deg(s(x)) < n,
because s(x) is the difference of two polynomials of degree n. Finally, the
coefficient of x" in s(x) is @, — (@,/bw)bm = 0. Thus deg(s(x)) < n. That
contradicts the hypothesis that r(x) had the smallest possible degree.
Therefore the assumption that deg(r(x)) = deg(g(x)) is untenable and the
theorem is proved. | |

EXTRAS
PF.7 Polynomials in two indeterminates

In Part 4 we shall require polynomials in two indeterminates for the
definition of geometric Goppa codes. Polynomials in two indeterminates
share most of the properties of polynomials in one indeterminate. They form
an integral domain containing F and indeed F[x] as well, but it is not always
possible to divide one polynomial by another leaving a remainder of smaller
degree. We shall also need the concept of quotient fields of integral domains
in that part, to enable us to use rational functions. These topics will be
sketched here.

Definition The set F[x, y] of polynomials in the indeterminates x and y is
the set of formal sums f(x) = Y. a;x"y’, such that

1. the summation indices i and j range from 0 to oo,
2. the coefficients aj; lie in F, and
3. there exists an n such that for all i,j with i +j > n, a; = 0.

The element a; is called the coefficient of 'y’ in f(x). The sum is really finite.

Appendix PF Polynomials over a field 195
Let f(x,y) = Y, a;x'y’ and g(x,y) = 3, b,x'y’. Define
e =, abu-na-ns
wherei=0,...,kandj=0,.”,l. Then
(f+9)x) =Y (@;+byxy and (f() =T cuxy"

PF.8 Constants

Definition A polynomial with all its coefficients a;; = Ofori+j > Oiscalled
a constant. Constant polynomials will be identified with their coefficients-ago.
If there is a possibility of confusion, the constant will be underlined when it
is being considered as a polynomial. Similarly, a polynomial with g;; = 0 for
all j > 0, can be identified. witha polynomial f(x) = > aox’ in F[x].

Proposition Polynomial addition and multiplication in F[x, y] restricted to
constants are the same as field addition and multiplication in F.

Similarly, restricted to polynomials with coefficients a;; = Oforallj > 0, they’
correspond to the operations of F[x].

PF.9 Arithmetic

We must establish that addition and multiplication of polynomials are well
behaved. The proof is simplified by the fact that we earlier allowed our
coefficients to lie in an integral domain.

Proposition Let F ‘be a field and F[x,y] the set of polynomials in two
indeterminates over F. With polynomial addition and multiplication F[x, y]
forms an integral domain.

Proof By sorting terms first by powers of y and then by powers of x, we
can consider a polynomial in F[x, y] to be a polynomial in R[y], where
R = F[x]. Now, R is an integral domain by Propositions PF.3 and PF.5.
So by using these propositions again it follows that R[y] is an integral
domain. | |

PF.10 Degree

Definition The degree of a non-zero polynomial f(x, y) = Y ax'y € F[x],
denoted by def(f(x)), is the maximum n for which there exist i, with

i+j=n and a;# 0.

196 Error-correcting codes and finite fields

The degree of the zero polynomial is defined to be —co. We shall also
make use of the partial degrees of f(x, y). The degree in y of f(x, y) deg,(f(x, y))
is its degree when considered as a polynomial in R[y], with R = F[x]. The
degree in x is defined similarly.

The main facts about partial degrees of f(x,y) have already been
established in Proposition PF.4. The full degree has similar properties.

Proposition Let f(x,y) = ¥ ayx'y! and f(x,y) =Y. a;x'y be two polynomials
in F[x, y]; then

(@) deg((f + 9)(x,y)) < max{deg(f(x,)), deg(g(x, ¥))}.
(b) deg(fg(x, y)) = deg(f(x,) + deg(g(x,), and
(o) deg(f(x, 1)) < deg,(f(x, 1)) + deg,(f(x,).

Proof Let n = deg(f(x)) and m = deg(g(x)).

(a) Suppose that n>m. Then for k> n, and i+ j =k, the coefficient
a;; + by of X'y’ in (f + g)(x) is 0. Hence deg((f + g)(x)) S n.

(b) Let i +j=n and a; # 0, k + [=m and b, # 0. Then by the same
argument as in Proposition PF4(b), the coefficient of x***)/*" in (fg)(x) is
ayby. Nowifi+j+k+I>m+ntheni+j>nork+I>m So a;;=0,
or by, = 0. Thus a;;b,; = 0. Hence deg(fg(x)) =m + n.

(c) If i > deg,(f) or j > deg,(f), then a;; = 0. | |

PF.11 Rational functions

In Part 4, we shall also need to use rational functions, which are simply
‘fractions of polynomials’. The construction of fractions can be mimicked
for any integral domain, so we conclude the Extras of this Appendix with a
description of it. I think the reader will agree that using an abstract integral
domain D is preferable to doing the calculations for polynomials in two
indeterminates.

PF.12 The field of fractions

Construction The field of fractions of an integral domain D.

Step 1 Let S be the set of pairs (a, b) with a,be D, b # 0. For mnemonic
convenience we denote the pair by a/b, and call it a fraction. We shall call

a its numerator and b its denominator.

The main difficulty in constructing a field of fractions is that different

Appendix PF Polynomials over a field 197

fractions may denote the same value (for example, 2 =1). It would be nice
to cancel out common factors, but that would make composite fractions
invalid. So it is better to allow them, but modify our definition of ‘equality’.

Step 2 Define two fractions a/b and c¢/d to be equivalent and write a/b = ¢/d
if ad = bc.

The penalty for this approach is that from now on we must ensure that
everything we do remains invariant if we change a fraction to an equivalent
one. Thus 4 + 1 must give the same answer as 3 4 4. The technical term for
this is that our operators must be well-defined.

Step 3 Definition of addition and multiplication of fractions

a/b + c/d = (ad + bc)/bd
a/b x c/d = ac/bd.

PF.13 Arithmetic for fractions

Proposition Addition and multiplication of fractions are well-defined, and the
results are valid fractions.

Proof Suppose a/b = ufv and c/d = x/y; then

av = bu and cy =dx.

Hence acvy = bdux, so ac/bd = ux/vy.

Furthermore, (ad + bc)vy = avdy + bvcy = budy + bvdx = bd(uy + vx). So
(ad + be)/bd = (uy + vx)/vy.

To prove that the results are valid fractions, we must check that their
denominators are non-zero. But by assumption b # 0 and d # 0, and as we
have assumed that D is an integral domain, it follows that bd # 0. =

PF.14 Fractions form a field
Theorem The set of fractions defined by these rules forms a field.

Remark This field is called the field of fractions or sometimes quotient field
of the integral domain D. The original example is the field of rational
numbers Q obtained from the ordinary integers Z. More important in our
applications will be fields of rational functions, obtained from polynomial
rings.

198 Error-correcting codes and finite fields

Proof We must verify the full set of axioms from Section 3.3: Al-A4,
M1-M4, and D1-D2.

We use three fractions a/b, ¢/d, e/f without further ado.

Al To check (a/b + c/d) + e/f = a/b + (c/d + e/f), verify that both sides
produce (adf + cbf + ebd)/bdf.

A2 To check a/b+ c¢/d = c/d + a/b, note that ad + bc = c¢d + da, and
bd =dbin D.

A3 The zero is 0/1.

A4 The negative 0 is (—a)/b. Because a/b + (—a)/b = 0/bb, and 0/bb = 0/1
because 0+ 1 = bb-0.

M1 To check ((a/b)(c/d))(e/f) = (a/b)(c/d)(e[f)), verify that both sides
produce ace/bdf.

M2 To check (a/b)(c/d) = (c/d)(a/b), note that ac = ca and bd = db.

M3 The identity is 1/1.

M4 1Ifa/b +#0,thena-1 % b-0=0.Soa # 0. Hence b/a is a valid fraction.
Now (a/b)(b/a) = ab/ab. But ab/ab = 1/1 as ab-1 =ab- 1.

DI To check (a/b)(c/d + e[f) = (a/b)(c/d) + (a/b)(e/f), verify that both
sides reduce to (acf + ade)/bdf.

D2 Same as DI. u

Part 3

BCH codes and other polynomial codes

13 BCH codes as subcodes of Hamming
codes

How do you modify a Hamming code to correct two errors? In other words,
how can you increase its minimum distance from 3 to 5? You will either
have to lengthen the code words or eliminate some of them from your code.
Correcting two errors in a long word may not be much better than correcting
one error in a short one. So we adopt the second approach. That is, we shall
try to produce a double error-correcting subcode of the Hamming code by
removing some code words to make the new code sparser.

The most natural way of reducing the set of words of a Hamming code
is by introducing further checks, that is, adding new rows to the Hamming
check matrix H,. Of course just adding any old rows will probably not get
us what we want. Firstly the additional checks may be linear combinations
of ones we already have. In that case (by Proposition 3.13) the set of code
words will not be changed. Secondly, although the set of code words may
be reduced the minimum distance may not be increased, or it may not be
increased enough.

If you tried Exercise 5.12, you will have found that inventing useful
additional checks is not at all easy. That is because you have to find
non-linear extension rows for the check matrix H,. On the other hand, if
you form the extra rows in an unstructured way, it will be difficult to prove
that the minimum distance increases, even though that may well be the case.
In practice, that means that the new rows must be defined in a systematic
way, most simply by an algebraic formula.

As B has only two elements, it is not easy to define non-linear functions
for binary vectors. We get round this by a trick: we gather bits together in
groups of k and consider the groups to represent elements of the field GF' 25).
For this larger field there are plenty of non-linear functions, for instance
f(x) = x* or any other non-linear polynomial that is not a square.

13.1 Example Consider the columns of the Hamming check matrix H, as
representing the non-zero elements of GF (2%). For instance, for k = 4 we let
the columns of H, represent elements of GF(16).

We are free to permute the columns of H, to produce a nice order, as this
only has the effect of permuting the bits of a code word, For our present

202 Error-correcting codes and finite fields

purposes the best way to arrange the elements is as descending powers of a
primitive element a.
Choosing « = 2 gives us the check matrix H, in the following form:

(12 6 3 13 10 5 14 7 15 11 9 8 4 2 1),

which in binary is

100 1t 10 10 1t 111000
110 1t 01 11 1 000100
011 0 1o 11 1 1 000O0T1O0

o001 1 01t 01 1 1100011

Now add further rows of elements of GF(16) (or in general GF(2")) to
extend the matrix as simply as possible. In binary, this limits us to adding
binary rows in batches of four (or k in general). Thus we may have to add
a few more rows than would strictly be necessary, but we can define them
more easily.

The simplest way of extending the matrix is to make each new entry a
function of the orginal entry at the head of its column. This gives us a check
matrix with columns of the form:

o
fl(ai)
FACH]
where f; is some function fori=1,...,r.
It seems reasonable to expect that with a good choice of fj,..., f, the

extra checks will enable us to correct an additional error per block. The
problem is to choose the functions f; so that there is a feasible means of
calculating the minimum distance of a code from its check matrix H. We
can then choose the number of necessary rows in such a way as to make it
easy to prove that the resulting code can correct the desired number of errors.

13.2 Vandermonde matrices

In Chapter 4 we showed how the check matrix of a linear code completely
determines its minimum distance.

Theorem 412 Let C be a linear codewidth check matrix H. Then C has
minimum distance > d if and only if no set of d columns of H is linearly
dependent.

BCH codes as subcodes of Hamming codes 203

The condition is theoretically very useful, but unless H has some special
structure it is difficult to verify for large d. For example, checking it for a
small matrix with, say, 15 columns involves 105 pairs of columns for d =2,
1365 quadruples of columns for d = 4, and 5055 sextuples of columns for
d = 6. We obviously need some structure on H that will allow us to verify
the condition without having to check all cases.

There are families of matrices for which the condition can be verified
without checking all the cases. Perhaps the simplest of these families is the
class of Vandermonde matrices.

An n x n Vandermonde matrix ¥ is defined as follows:

The first row of ¥ can be chosen arbitrarily:
P PR
Then the whole matrix is
A Ay A

BB R
V=V, k)= . . .

moao R

Matrices of this type are important because there is a simple formula for
the determinant of V. They are named in honour of Alexandre Théophile
Vandermonde, who was born in Paris in 1735 and died there in 1796.
However, in none of his four mathematical papers (all published in 1771-72)
does Vandermonde ever refer to ‘his’ matrix. Nevertheless, as one of these
papers can be regarded as the first full development of the theory of
determinants, it is fitting that his name should be commemorated by a
determinant formula (see Exercise 13.9). In later life Vandermonde played a
prominent role in the French revolution.

We shall not need the precise formula for the detérminant, but only the
following theorem, which follows from the formula.

Theorem The Vandermonde theorem Let 4y, 4,,..., 4, be distinct non-
zero elements of a field F. Then the columns of V = V(Ay, Az ...,A,) are
linearly independent over F.

Proof See the Linear Algebra appendix of Part 1.]

Example Consider the real matrix M = V(1, 2, 3):

12 3
1 4 9.
1.9 27

204 Error-correcting codes and finite fields

Its columns are linearly independent if the only solution of the equations

1 2 3 0
x| 1| +y4]+2 9|=|0
1 8 27 0

is x = y = z = 0. We rewrite these equations as
x+2y+ 3z=0
x+4y+ 9z2=0
x+ 8y +27z=0.
Subtracting the first equation from the second and third, we obtain

2y+ 7z=0
6y + 24z =0.

Now we subtract three times the first new equation from the second and get
3z=0.
So z = 0. Substituting back we get y =0 and x = 0.

13.3 Extending a Hamming check matrix

Now the obvious way to extend a Hamming check matrix to achieve a code
of minium distance 5 is to arrange for cvery 4 x 4 matrix to be a
Vandermonde matrix.

Definition We define the double error-correcting BCH code BCH(k, 2) to
have the check matrix ¥} , with columns:

o

et

o3

ot

Example V, , has the following form:
12 6 3 13 10 5 14 7 15 11 9 & 4 2 1
6 13 5 7 11 8 2 12 3 10 14 15 9 4 1
3 515 8 1 3 515 8 1 3 5 15 8 1
13 7 8 12 10 15 4 6 5 11 2 3 14 9 1

or in binary:

"1 0
1
01
00
01
11
10
01
00
01
10
11
10
11
01
11

BCH codes as subcodes of Hamming codes

—_ = e =] —-

o o o =

—

=

OO = = O O O

O OO o O O = O =

—_

(= =

o O O O O = = O = O

_ e s e e

_

o O = O O O =

o O = O = O

- O e ke e e

[T

O O = e = O

-0 O O O _ e OO = e e

- o

—

[e R S = S < S < S < S e SR

—_

(=

—

O kO O o OO O = =

R T = T N S T S N N =~ =T

-0 O = O O = O

_ e

—_

[T

[TR =T = TR = N = N = = S R =R == R

[~}

—

- 0 O O = O O O = O O O

205

13.4 Verification

To verify that the code does have minimum distance 5 and thus can correct
two errors we must prove that no four columns of ¥, , are linearly dependent.

Proposition No four columns of V,_, are linearly dependent.

Proof Choose, say, columns ¥, ¥, ¥, ¥. They form a Vandermonde
matrix:

o o o o
PRI YR T
P
Y A

Furthermore, «, of, o and o are distinct and non-zero. Hence it follows
from Theorem 13.3 that its columns ¥;, ¥}, ¥, V; are linearly independent.

206 Error-correcting codes and finite fields

13.5 Further extension

We can easily extend our idea to produce codes of block length 2 —1
correcting t errors per block, provided ¢ is not too large.

Definition The t error-correcting BCH code BCH(k, t) over the field of
order 2% based on the primitive element a, has as its check matrix an n x 2t
matrix ¥, , where n = 2% — 1. We number the columns ¥ of ¥ ,, from 0 to
n — 1, counting from the right. Then for i =0,...,n — 1, ¥, is defined by
the formula:

For the rows of ¥; , to be distinct we must have 2t < 2% but we can make
a slightly sharper estimate for the size of 1. The block length of the code is
the number of columns of its check matrix, in this case n = 2% — 1. For the
code to have minimum distance greater than 2t we must have 2t < n. Hence
the definition only makes sense for ¢ < 2¢7'.

We denote the code by BCH(k, r). We shall tacitly assume that ¢t < 2k=t
whenever we mention BCH(k, t). BCH codes were originally discovered by
Hocquenghem (1959) and independent by Bose and Ray-Chaudhuri (1960).
As delays in publication can easily cause differences of over a year, it is fair
to name the codes after all three authors: B(ose,)C(haudhuri,)H(ocquenghem)
codes. It should be noted that these authors introduced the codes and proved
that they had minimum distance at least 2¢ + 1, but they did not construct
an error processor.

The original BCH codes were generalized by several authors, notably
Gorenstein and Zierler (1961), and the name is now usually used to refer to
the larger class of codes. Our codes are then called binary, narrow sense,
primitive BCH codes. Once you have understood the theory presented here,
it is easy to extend it to the more general BCH codes, which are discussed
briefly in Chapter 19. You can find more detail in Blahut (1983), McEliece
(1977) or MacWilliams and Sloane (1977).

The parameters given for BCH codes are not standardized. In particular
the parameter ¢ is often replaced by the designed distance J of the code. That
is theoretically preferable as it is possible, over certain fields, to design
BCH-type codes with even values of 8. This does not occur for binary fields,
so I retain the present (perhaps more suggestive) notation.

BCH codes as subcodes of Hamming codes 207

13.6 Using BCH(4, 3) as an example

I shall use BCH(4,3) as an example throughout the chapter and its
successors, interspersing example calculations with the theory. Each example
will carry on from its predecessor, so that I do not have to repeat definitions
again and again. The code BCH(4, 3) was chosen because calculations will
be in GF(16) and the code is small enough to list all its code words and
perform all calculations by hand and check them directly.

Example BCH(4, 3) as a linear subcode of the Hamming code Ham(4) The
check matrix of BCH(4,3) is V = ¥} 5. Its columns are

where i runs from 14 down to 1.
The complete matrix is

12 6 3 13 10 S5 14 7 1511 9 8 4 21
6 13 5 7 11 8 2 12 3 10 14 15 9 41
3 515 8 1 3 515 8 1 3 515 81
13 7 8 12 10 15 4 6 5 11 2 3 14 9 1
1o 11 1 10 11 1 10 11 1 10 11 1 10 11 1
5 8 315 1 5 8 315 1 5 8 3 151

We can also write ¥ 5 in binary form as a 24 x 15 matrix, in which each
column consists of the binary representations of the elements of GF(16) in
the matrix above.

209

f linearly

we cannot construct a
, possible to produce

chapter we shall find a description of

hem as the columns of G. You may care
down a generator matrix.

de by finding a largest possible set o

BCH codes as subcodes of Hamming codes
(4, 3) directly. It is, however.

SO E eSS S50 Y SSSH S-S SHAS ~oSH A=
OO HAOO OO —— ——=OO —HE OO OO ™= — OO OO —~—
Ot O OO~ OO —HOO OO mOO— OO OO
OO HEHOO —m=HOO OO OO~ —HAOO OO OO

COOO mrmr— A OO0O0OO OO OO0 o —

OO OO OO OO mMOO™ —mOO— —OO— —_ O O
OCA O HOAO —HO—O O —O— OO OO —O O OO
OO OO~ OO —H=OO —,,TOO HAOO OO OO
OO OO~ w00~ OO —_OO— OO O~ —=HO — OO~

OO A0 O OO OO —O—O OO OO OO~

OO OO — OO~ O —O— OO OO OO~ O—~O—
COrmm OO~ QO —— OO~ — OO OO mm™m OO = OO —
COO0OO -~ OO0OO .I.IIIAOOOO —_ et QO OO
OO0 OO0 Hmemm - OO0 COOQO v e

COO0O0 OO0 OO0 OO0 — v = — v

Error-correcting codes and finite fields

208

appear in the list. How can you see directly that this code has minimum
As the check matrix ¥, 5 is not in standard form,

distance 77
generator matrix G for BCH

a generator matrix G for the co
independent code words and using t

to try and find such a set. In the next

BCH(k, t) that makes it easy to write

List of code words of BCH(S, 3):

@
e s
ﬁ.\v
a8 .5
— B
1 g
o o ©o -~ © © © — o © o o -~ 0 0O © - °o o O - wm
o O - 0o O = O o - O — 0110111111% W..hl
> o
o - 0o O - 0o O - — — —_ O e o - O O O = = 3 w.ﬂ.ﬁ
Lo v
- O O O o e o O = o 1100011000w... g%
29
_ O O o e e = O O O o 1010110101w CMW
o .
& -4
—_ O e e o O O O O — - - - O - 0 O O O — A meox
)
—_ e e O O e o O o 01000111110 Fﬂvw
4 9
O o - O O o 1010110011W mw
=]
- - O O O O O o ©c 0o - © - o ~ o o o = m...lm.
<
=
O ~ O - — O ©o © O © — 1100010111m WH
o
= <
o
E B =
_ O e O - O - = O O — _ O - O 00 O v O L
> T ©°E
—_ - O e O e o o O — 0010101111m Wmm
(3] - =
OO H - O = O = - o o o - = o g
=] o o - o — B 3 B3
O e O e e O O o 1110111000% w...mm
1zl
w 8O
s S
_1100011000 i 0110100101w ta.m
> |7 =
w . =
8 =z
2 S8
e T
= - @as

210 Error-correcting codes and finite fields

13.8 The reduced check matrix

The matrix ¥, contains too many redundant rows for it to be a practical
check. Indeed for fields of characteristic 2 squaring is a linear function and
we know from Proposition 3.13(c) that any row of a check matrix that is
a linear function of the other rows is superfluous. This suggests that we
should introduce a reduced check matrix H,, which contains only the
odd-numbered rows of ¥, ,.

Definition The matrix H, , obtained from ¥, , by deleting the even-numbered
rows will be called the reduced check matrix of BCH(k,t). We shall
number the rows of H, , with the same indices as in ¥} . their numbers are
L3,...,2t— 1

Example BCH(4,3) Thereduced check matrix of BCH(4,3)is H = H, 3:

12 6 3 13 10 5 14 7 1511 9 8 4 21
3 515 8 13 515 8 1 3 515 8 1
10 11 1 10 11 1 10 1t 1 10 11 1 10 11 1

In binary the matrix is:

1

100 1 1 01 0 1t 1 11000
11010 1110 00100
01101 01 1 11 00010
00110 101 11 100 01
001 10 00110 001 10
01t 100 01100 01100
10100 10100 10100
11101 11101 11101

10 11 01 101 10110
00000 00O0O0O 000 0O
110 1 1 01 101 101 10

101 1 01 10110 110 1 1]

BCH codes as subcodes of Hamming codes 211

Several rows of the binary version of H, 5 are still superfluous, but
removing them is not possible without abandoning the representation over
GF(16).

Proposition For any k and t <2~" the matrices H,, and Vi, are check
matrices for the same code, BCH(k, t).

You could well ask why we introduced ;. at all if the smaller matrix Hy,,
defines the same code. There are three reasons. Firstly, the Vandermonde
argument for finding the minimum distance of the code does not work with
H,.,. Secondly, the reduction to H, , works only for binary BCH codes. For
ternary codes we could remove every third row and for BCH codes defined
over a field of order g we could remove every gth row. Thirdly, there is an
important class of codes of BCH type, the Reed-Solomon codes of Chapter
5, for which no row of ¥; , can be removed.

Proof Let w = (Wy4 Wy3,...,W;, Wg) be a code word of the code C
defined by Hy . Thus H, w" = 0. Writing the product row by row we obtain
the equations:

14 '
Y wa* =0, (k)
i=0

which hold for all odd k < 2t.
As w; is 0 or 1 for all i, w} = w;. Hence squaring (k) gives:

14)
¥ wa =0, (2k)
i=0

for all k.

So equation (k) holds for all k = 1,..., 2t. That just states that ¥}, W =0.
Hence w is a code word of BCH(k, t). As the rows of H, , are a subset of the
rows of ¥, any code word of BCH(k, t) must be a code word of C. Thus
the two codes are equal. u

13.9 Some questions

Before we can use BCH codes we must answer three major questions:

1. What is the dimension of BCH(k, t)? If this is too small then the code
will be hopelessly inefficient, for example if the dimension is 1 then the code
has become the 2% — 1 repetition code, and we can get that without all the
machinery we have introduced.

2. What is the minimum distance of the code? 1If the code is to correct ¢

212 Error-correcting codes and finite fields

errors this must be at least 2¢ + 1, and we have good reason to expect this
to be so, but so far we have only proved it explicitly for ¢ = 2.

3. How can we correct errors in received words efficiently? Just knowing
that the code is capable of correcting ¢ errors without a practical correcting
algorithm is of little use. That is certainly the toughest problem we have to
solve. A simple and efficient algorithm will be introduced in Chapter 16.

The following theorem gives initial answers to Questions 1 and 2.

Theorem (a) BCH(k, t) has block lengthn = 2* — 1 and rank at least n — kt.
(b) It has minimum distance at least 2t + 1, and so can correct all error
patterns of weight at most t.

The estimate for the dimension of BCH(4,3) is 3. A binary code of
dimension 3 has exactly 8 code words, whereas BCH(4, 3) has 32 code words,
and so dimension 5. In the next chapter we shall improve the estimate. The
bound given here is only sharp if the rows of the reduced check matrix H, ,
are all linearly dependent. For that to be the case ¢ must be small by
comparison with 2¢~*. For large ¢ we may expect BCH(k, ¢) to have a higher
dimension and thus a better rate than the theorem predicts.

The bound for the minimum distance can also be improved by a computer
search of actual codes. But the improvement is only moderately useful, as
there is no efficient general error-correcting algorithm that takes advantage
of a higher minimum distance. Still, for any error processor, a larger
minimum distance will improve the error-detection capabilities of the code.
For more information on the true minimum distance of BCH(k, t) see
MacWilliams and Sloane (1977), Chapter 9.

Proof (a) The block length is n = 2* — 1, because that is the number of
distinct powers of a.

The code consists of those words u for which H, " = 0. In other words,
the transposes of the code words form the null space of H, ,. Therefore, the
dimension of BCH(k, t) is the nullity of H, ,.

The rank and nullity theorem of linear algebra (see Appendix LA) states
that for any matrix A the dimension of the space of solutions of the equation
Av =0 is equal to the number of columns of 4 — the rank of A. So the
dimension of BCH(k, ¢) is the number of columns of H, , — the rank of H, ;.
By construction, H, , has n columns (considered as a binary matrix) and its
rank is at most equal to the number of its rows, which is kt. Thus

dim BCH(k, t) > n — kt.

The argument for part (b) closely parallels the one we gave for the
special case BCH(4, 2) in Section 13.4. We again apply the criterion of the
Vandermonde theorem to the check matrix ¥V =V, ,.

BCH codes as subcodes of Hamming codes 213

We must show that no 2t columns of ¥ are linearly dependent. Choose
2t columns Vjy, - - - » ¥z, and consider the matrix formed by these columns.
Denoting the power «'® by o, we can write it as

0 Oyttt Gy
2 2 ... 42
oy % *2¢
2t 2t L, . 2t
ay %y %2t

This matrix is a Vandermonde matrix and oy, 5, ..,d, are distinct
and non-zero. Hence the columns are linearly independent. Therefore by
Theorem 4.12, BCH(k, t) has minimum distance greater than 2z. ||

Remark For later use we note that this proof also shows that these 2t
columns are linearly independent not just over B, but also over GF(2Y).

13.10 The check matrix and error patterns

The most useful consequence of Theorem 13.9 for the theory presented in the
following chapters is the fact that the check matrix ¥, can distinguish error
patterns of weight at most . So we state this as an explicit corollary.

Proposition Let u be a code word of BCH(k, t) and let be obtained from u
by adding an error pattern e of weight at most t,

v=1u+e.

Then e is uniquely determined by the syndrome V0"

Proof 1If an error pattern f # e of weight at most ¢ produces a word with
the same syndrome as v, then ¥, (v — f)" = 0. So v — fis a code word. But
the Hamming distance from u to v — f = u + e — f is the weight of e—f
which is at most 2¢. That contradicts Theorem 13.9, which states that the
minimum distance of the code is greater than 2¢. So such an error pattern
f cannot exist.

13.11 Summary

In this chapter we have demonstrated a method of adding additional rows
to the Hamming check matrix H,. We regard its columns as elements
B € GF(2¥) and successively add further rows fori = 2,...,2t, row i contain-
ing the power B of the elements of GF(2*) in the same order as they appear

214 Error-correcting codes and finite fields

in H,. We have shown that, provided ¢ < 2¢7*, this yields a check matrix
for a subcode, BCH(k, t) of Ham(k) that can correct ¢t errors. The codes
produced by the construction are called BCH codes. We can reduce the check
matrix for BCH(k, t) without changing the code by omitting the even-
numbered rows. We calculated simple bounds for the parameters of BCH
codes.

In the next chapter we shall find a more elegant and powerful description
of BCH codes that will enable us to calculate the precise dimension of a
code and find simple and efficient encoding, checking and decoding algorithms.
It is the basis for the efficient error correcting algorithm that is developed
in Chapter 16.

13.12 Exercises

13.1 Show that every function from a field of order g to itself can be
represented by a polynomial of degree less than g. This result puts a
limit on the powers one can usefully apply to extend Hy.

13.2 Prove directly that any 4 columns of the reduced check matrix

|:126 3 13 10 5 14 7 15 11 9 8 421}
“2"ls 515 8 13 515 8 13515 8 1

are linearly independent. (Hint: Use the factorization (x + B)* =
(« + B)@? + af + B?) to show that the equations « + =7y + 4.
o3 + f3 =93 + 6% imply that a =y or & = 4.)

13.3 What are the true rank and minimum distance of BCH(4, 3)?

13.4 For which value of ¢t will the construction of ¥, , produce repeated
rows over GF(2%)?

The next three questions describe a different method of constructing
multiple error-correcting codes.

13.5 Define the rth order binary Reed-Muller code of RM(r, m) of block
length n = 2" as follows. R(0, m) is the n-fold repetition code. Its
generator matrix is the n x 1 matrix

GO, m)=(1,...,)T

For r > m, G(r, m) = G(m, m). For r < m, RM(r, m) is defined recurs-
ively as the code with generator matrix

G(r,m—1) 0
Gr,m—1) Gr—1,m— 1)}’

where the second column occurs only if r > 1. Write down generator
matrices for R(r,m) for all r,m with 0 < r<m<4.

G@r,m) = [

13.6

13.8

139

BCH codes as subcodes of Hamming codes 215

Prove that for r < m, the rth order Reed—Muller code RM(r, m) has
minimum distance 2", (Hint: Use Exercise 13.5 to split each code
word x into two halves, x = (u|u + v) where u e RM(r,m — 1) and
veRM(@r—1,m—1)).

Prove that RM(r, m) has rank

1+(’;)+..,+('j).

Show that extending BCH(k, 3) by a parity check bit produces a code

of block length 2% minimum distance at least 8, and rank at least

2% _ 3k — 1. Compare the ranks of these extended codes with those

of RM(k — 3,k) for k=4, 5,6, 7.

Show that the determinant of the Vandermonde matrix of Section 13.2
is Ady . A [1 (= 4))

i>j

You can do this as follows. Working backwards from the last-but-one '

row subtract A, times each row from its successor. This makes the
first column of the matrix (4;,0,...,0)". When you expand by this
column you get a factor 4, and you are left withan(n — 1) x (n — 1)
matrix. Extracting a factor 4; — 4, from each column of this matrix
leaves V(Ag, ..., 4y)-

14 BCH codes as polynomial codes

Throughout this chapter we shall consider a particular code BCH(k, t) with
block length n=2* — 1 and rank m. In the last chapter we showed that
checking whether a binary word (cy, ..., ¢,) was a code word of BCH(k, t)
is equivalent to verifying the equations

n—1
'ZO o =0, : (k)

for powers o* of a primitive element o, k=1,...,2t That makes it natural
to identify code words ¢ with binary polynomials ¢(x) of degree less than n.
Hence the equations can be rewritten

c(e¥) = 0. (3]

This identification of code words with polynomials turns out to be very
useful, as it allows us to exploit much of the theory of finite fields and
polynomials that we developed in Part 2.

14.1 Code polynomials
We start with a convention suggested by our initial discussion.

Convention Let V be the vector space B" of binary n-tuples. We write an
element ue V as (u,_1, ..., Uy, Up) and identify it with the polynomial

n—1
ux) =Y ux'.
fe=rd

The polynomial corresponding to a word w will be denoted by w(x), using
the same letter, indeed we shall eventually identify words and polynomials.
The set of all binary polynomials of degree less than n will be denoted by
P, (P for-polynomial, but note that the maximum degree isn—1).Ifcisa
code word of a code C we shall call the corresponding polynomial c(x) a
code polynomial of c.

Example BCH(4,3) The code word
00001 1 1011 00T1O0°1

BCH codes as polynomial codes 217

corresponds to the polynomial
x10+x9+x8+x6+x5+x2+1'
We can now rephrase the definition of BCH(k, t) and Proposition 13.8 in
the language of polynomials.

Proposition Definition of BCH(k, 1) Letn=2*—1and let the columns of
the check matrix V; , of BCH(k, t) be ordered so that

o = (@),
If ¢(x) € P,, then c(x) is a code polynomial of BCH(k, t, &) if and only if
(a)=0 0

for all powers j <2t of a.
Equation (j) holds for all odd j <2t if and only if it holds for all j < 2t.
|

14.2 The generator polynomial

In developing the theory of finite fields in Part 2 we proved a number of
theorems about roots of polynomials which turn out to be very useful. We
considered two finite fields F < E and an element B e E. Recall that the
minimal polynomial mpy(x) of B is the polynomial of least degree with
coefficients in F and highest coefficient 1 that has § as a root.

Proposition 11.5 (special case) If mpy(x) is the minimal polynomial of B
over F, then a polynomial p(x) € F[x] has p as aroot if and only if mpy(x)
divides p(x).

Theorem 11.6 (a) The minimal polynomial mpy(x) of B is irreducible in
F[x].

(b) If a monic irreducible polynomial p(x) € F [x] has B as a root, then
p(x) = mpy(x).

(¢) If F has order g, and y = p*, then mp,(x) = mpy(x).

In our case the base field is B, so g = 2. We can combine these results
with Proposition 14.1 to show that there is a special code polynomial g(x)
in BCH(k, t) that has the following property. A binary polynomial u(x) of
degree less than 2* — 1 is a code polynomial of BCH(k, ©) if and only if it is
a multiple of g(x). The polynomial g(x) is easy to calculate. From its degree
we can read off the precise rank of BCH(k, 1) and we shall also use it to
construct a generator matrix of BCH(k, 1).

.

218 Error-correcting codes and finite fields

Proposition Let g(x) be the product of the distinct minimal polynomials of a,
a?,..., a2 over B (each polynomial is taken only once, even if it occurs as
minimal polynomial several times). Then a polynomial c(x) of degree less
than n = 2% — 1 is a code polynomial of BCH(k, t,) if and only if g(x) divides
c(x).

Proof 1f g(x) divides ¢(x), then c(a’) =0forj=1,...,2t because g(af) =0
for these values of j. Hence by Proposition 14.1, ¢(x) is a code polynomial.

Conversely if ¢(af) =0 for j=1,...,2t, then by Proposition 11.5, the
minimal polynomial of «/ over B divides ¢(x) for all such j. Now, g(x) is just
the product of these polynomials, each taken once only. Since they are
distinct and irreducible by Theorem 11.6, they are relatively prime. Then it
follows by Proposition 8.8 (quoted below for polynomials) that g(x) divides
c(x).]

Proposition 8.8 If a(x) and b(x) are polynomials with highest common factor
(a(x), b(x)) = 1, and both a(x) and b(x) divide c(x), then their product a(x)b(x)
divides c(x).

Remark Since (by Theorem 11.6) the minimal polynomial of g over B is
the same as that of §, we can omit all the even powers of «. This refiects the
fact that in testing a word ¢ to see if it is in BCH(k, t) we need only check
the equations () of Section 14.1 for odd j.

Definition The polynomial g(x) is called the generator polynomial of
BCH(k, t).

14.3 Rank and generator polynomial of BCH codes

Corollary (a) The generator polynomial of BCH(k, t) is the unique non-zero
polynomial g(x) of lowest degree in BCH(k, 1).
(b) The rank of BCH(k, t) is 2* — deg(g(x)) — 1.
Example BCH(4,3) The generator polynomial is
mp,()mpg(x)mpy 1 (x) = (* + x° + D(x* + x>+ x>+ x + DX* + x + 1)
=x0 4+ x4+ x+x8+x°+x2+ 1.
As we saw above, this corresponds to the code word
00001 11011 0O0T1O0T1

A check through the list of code words of BCH(4, 3) shows that this is
the only non-zero code word that starts with four zeros.

BCH codes as polynomial codes 219

Corollary (b) tells us that the rank of BCH(4, 3) is 5, which is the correct
value (because BCH(4, 3) has 32 code words). By comparison, recall that
Theorem 13.9 gives rank m at least equal to 3. The corollary will give a rank
differing from the estimate of Theorem 13.9 if two distinct odd powers of «,
of and of, with 1 <i<j <2t have the same minimal polynomial, or if o
has a minimal polynomial of degree less than k for some 1 <i<2t Itis
possible to work out when this can occur and it turns out that the estimate
of Theorem 13.9 is accurate for 2t < J(Z") (see MacWilliams and Sloane
(1977), Chapter 9).

Proof (a) A non-zero multiple b(x)g(x) of a polynomial g(x) has degree at
least equal to deg(g(x)) and equality holds only if b(x) is a constant. The
only non-zero constant in B is 1. Hence all non-zero code polynomials have
degree at least equal to deg(g(x)) and the only one with degree equal to
deg(g(x)) is g(x) itself.

(b) We can obtain all code polynomials by multiplying g(x) by poly-
nomials b(x). of degree less than m = 2k — deg(g(x)) — 1. Furthermore,
multiplying g(x) by distinct polynomials b(x) and a(x) of degree < m yields
different code polynomials. So the number of code polynomials is 2. Thus
its rank is m.

14.4 Multiplicative encoding

The corollaries above give a simple encoding algorithm for BCH(k, t). The
message space consists of P, the set of all polynomials b(x) of degree less
than m = 2% — deg(g(x)) — 1. Encode b(x) by multiplying it by g(x). By
Proposition 14.2 this is a code word and by Corollary 14.3(b) we can
obtain all code words in this manner.

Example BCH(4,3) Suppose we want to encode the message word
b=(10111). We write this as a polynomial b(x) = x*+x2+x*+ 1. To
find the corresponding code word, multiply this polynomial by the generator
polynomial
g = x10 + X2 +x®+x0+x° + x> + 1.
In doing polynomial arithmetic there is no need to write down the powers
of x provided we write down all the coefficients including the zeros.

11101100101 x¥+x2+x¥+x8+x"+x>+1

x 10111 x*4+x2+x"+1
11101100101
111011001010
1110110010100
111011001010000
110001001101011

220 Error-correcting codes and finite fields

Note that addition is just binary addition without carry. This gives the code
word:

11000 10011 01011,
which corresponds to the code polynomial:

X xB P+ xS+ X+ x+ 1

14.5 A generator matrix for BCH(%, t)

We can use the generator polynomial to construct a generator matrix for
BCH(k, t). The idea is to represent polynomial multiplication by the
generator polynomial by a suitable matrix. Remember that the columns of
a generator matrix of a code C are all code words of C. We choose as our
columns the code words corresponding to x‘g(x) for i=m —1,...,0.

Example BCH(4,3) A generator matrix G for BCH(4, 3) is

10000
11000
11100
01110
101 11
11011
01101
00110
100 11
01001
10100
01010
00101
00010
0 0 00 1]

The matrix is obtained by writing down as successive columns the

BCH codes as polynomial codes 221
coefficients of x'g(x) for i =4,...,0, and
g(x) = 10+ x° + x® + x0 + x° + x> + 1.
Again suppose our message contains a block b=(10111). The cor-
responding code word ¢ is GbT, which gives

11000 10011 01011

This agrees with the result in the previous example.

If you follow through the calculations in this example and the last, you
will see that they are exactly the same, That is the idea behind the proof of
the next proposition, which states that our method of producing a generator
matrix always works. However, to make the proof neater, we shall show that
G satisfies the conditions for a generator matrix that we established in
Chapter 3.

Proposition 3.9 Let C be an (n, m)-linear code and let G be an n x m-
matrix. Then G is a generator matrix for C if and only if it has rank m and
its columns are code words.

Proposition Let g(x) be the generator polynomial of BCH(k, 1) and let G be
the n % m matrix constructed by taking as its columns the coefficients of xig(x)
fori=m—1,...,0. Then G is a generator matrix for BCH(k, t).
Proof (a) The columns G; are all code words by their construction.

(b) Let the corresponding code polynomials be g{(x) = x'g(x) for

i=m~—1,...,0.To show that G has rank m, we must show that its columns
are linearly independent. So suppose that

m=—1
Y biG; =0,
i=0
then
m=1 m=1)
z bigi(x) = Z b;x'g(x) = 0.
i=0 i=0
If b(x) is defined by
m—1
bix)= Y bx',
i=0
then it follows directly that b(x)g(x) = 0. Hence b(x) is the zero polynomial

so all coefficients b; must be 0. Thus the columns G, . . ., G- are linearly
independent and G has rank m.]

222 Error-correcting codes and finite fields

14.6 The check polynomial

Let ¢ = 2*and let n = ¢ — 1. We know from Theorem 11.7, Corollary 1, that
x" — 1 is the product of the distinct minimal polynomials of the non-zero
elements of GF(q). The generator polynomial g(x) of BCH(k,t) is the product
of a certain subset of these minimal polynomials. Hence x” — 1 is a multiple
of g(x). It should be emphasized that x" — 1 itself is not a code word of
BCH(k, t) (why not?).

Let us write x"— 1= g(x)h(x). Consider a code polynomial c¢(x) =
b(x)g(x) for some polynomial b(x) of degree less than m. If we multiply this
¢(x) by h(x) we find that c(x)h(x) = b(x)g(x)h(x) = b(x)(x" — 1). It is easy to
recognize multiples of x" — 1 by low-degree polynomials and that gives us
an easily checkable necessary and sufficient condition for ¢(x) to be a code
polynomial.

Definition The polynomial h(x) is called the check polynomial of BCH(k, t).

Proposition Let c(x) be a polynomial of degree less than n. Then c(x) is a
code polynomial of BCH(k, t) if and only if x" — 1 divides c(x)h(x).

Denoting the rank of BCH(k,t) by m, the condition holds if and only if,
Jor i < m, the coefficient of x"** in c(x)h(x) is the same as that of x' and the
coefficients of x™, ..., x""* are all zero.

Example BCH(4,3) For BCH(4, 3) the check polynomial h(x) is
G+ x4+ Dx+ 1) =x"+x*+x2 + 1.

To use the check polynomial to check a word c(x), multiply c(x) by h(x)
and see if the coefficients repeat from x!°, We shall use this test on the code
word we constructed in the previous example.

1 1000T1TO0O01 101011

X 1 10101
110001001 101011
110001001 10101100

1 1000100110101 10000
1 10001 00T 10101 100000
1011 10000000O0O0OO0OT1O0T1 1 1

This shows the repeat pattern confirming it is a code word.

Proof We have already seen that if c(x) is a code word then c(x)h(x) is a
multiple of x" — 1.

BCH codes as polynomial codes 223

Suppose conversely that c¢(x)h(x) = b(x)(x" — 1) = b(x)g(x)h(x). Cancel-
ling the non-zero polynomial h(x) we get ¢(x) = b(x)g(x). As c(x) has degree
less than n, it is a code polynomial. Thus we have established that the
condition is necessary and sufficient.

Now for b(x)g(x) to be a code word, b(x) must have degree less than
n—d=m Hence c(x)h(x) = b(x)(x" — 1) = x"b(x) — b(x) = x"b(x) + b(x)
has the form stated. |

14.7 Multiplicative decoding for BCH(k, 7)

We can use the check polynomial to provide a multiplicative decoder for
our code. It incorporates a check for correctness of the received word, but
does no error processing. It is based on the simple observation that if b(x)
has degree less than n the coefficient sequence of

b(x)(x" — 1) = x"b(x) + b(x)

consists of two disjoint copies of the sequence for b(x) separated by Os. So
if we multiply a code polynomial c(x) = b(x)g(x) by h(x), the first m
coefficients (and also the last m coefficients) will be the coefficients of b(x).

Example BCH(4,3) Look at Examples 14.4 and 14.6 again. In Example
14.4 we obtained the code word ¢
110001001 101011
by encoding the message word b
10111

multiplicatively. In Example 14.6 we checked ¢ by multiplying c(x) by h(x). -
The result was

10111000000O0O0OO0OO0OCTI!IOT1T11

This clearly exhibits two copies of b separated by 10 zeros.

To sum up, we can use the techniques we have developed so far to encode
and decode code words of BCH(k, ¢), though we have not yet got a method
for error processing. The methods are quite simple:

® Encoding Multiply the message polynomial b(x) by the generator
polynomial g(x) to obtain the code polynomial ¢(x).

e Decoding Multiply the code word ¢(x) by the check polynomial h(x).
Verify that the result has the appropriate repeat pattern and read off b(x).

224 Error-correcting codes and finite fields

14.8 Systematic encoding for BCH(k, t)

The main weakness of this method is that the decoder has about as much
work to do as the encoder. Since the receiver also has to cope with the task
of error processing, it may be preferable to use a systematic encoder so that
the message can be read off from the code polynomial directly and the
receiver’s work load is slightly reduced. There is such a method and the
encoder involves the same amount of calculation as the one above.

The systematic encoder for BCH(k, t) also uses the generator polynomial
g(x) but it replaces multiplication by long division. In binary the only number
we have to divide by is 1 and dividing by 1 is the same as multiplying by 1.
So division involves no greater effort than multiplication. The idea is as
follows. .

Algorithm Systematic encoding for BCH(k, t) Let BCH(k, t) have gener-
ator polynomial g(x). Let the block length and rank of BCH(k, t) be n and
m respectively.

Step 1. Given a message word b construct a word w of length n with b as
its initial segment by appending n — m zeros to b.

Step 2. Consider w as a polynomial w(x). Divide it by g(x) and find the
remainder r(x); r(x) has degree less than deg(g(x))-

Step 3. Put ¢(x) = w(x) — r(x) = w(x) + r(x). Then ¢(x) is the code poly-
nomial encoding b.

You will see from the following example calculation that polynomial
division over B is easy.
Example BCH(4,3) Suppose we wish to encode the message block
11000
systematically. First we add 10 Os to get
W=110 00 000O0O 000 0 O
Then we divide by g(x):
11101100101)

O =
O | =

O = o
O i SO O

Ofm = | S| == ©

s fm O = D == ©
O = |O == OO O
OO O =|— OC O

BCH codes as polynomial codes 225

So our code word is:
11000 100110101 L

This process involved four shifts and subtractions. The multiplicative
encoder also used four shifts and additions to produce the same code word.
So the effort involved is identical (in the multiplicative example we did
the additons all at once, but that involved a more complicated adding
procedure).

Proposition (a) The algorithm above produces a code polynomial c(x) for
every message word b of length m.

(b) The initial coefficients of c(x) are the entries of b. Hence distinct message
words produce distinct code words.

(©) If ¢(x) = a(x)g(x) and a(x) has k non-zero coefficients, the division in
Step 2 involves k shifts and subtractions.

Proof (a) Since w(x) leaves remainder r(x) on division by g(x), ¢(x) =
w(x) — r(x) is divisible by g(x). It has degree less than n. Hence it is a code
polynomial.

(b) Since r(x) has degree less than deg(g(x)) = n — m, the highest m
coefficients of ¢(x) are the same as those of w(x). By construction these are
precisely the entries of b.

(c) Since c(x) and w(x) differ only in the coefficients of x! for i < deg(g(x)),
the processes of dividing w(x) and c(x) by g(x) involve precisely the same
shifts and subtractions. Dividing ¢(x) by g(x) by g(x) is the inverse operation
of multiplying g(x) by a(x). That involves k shifts and additions. Hence
dividng c(x) by g(x) involves k shifts and subtractions.

EXTRAS

14.9 Polynomial codes

We conclude the chapter with a discussion of the conditions a general linear
code C over a field F (not necessarily B) has to satisfy for us to be able to
use the polynomial techniques that we have developed for BCH(k, t).

We shall assume that the code C has block length n and rank m. We can
always consider code words as polynomials of degree less than n, and shall
continue to call these code polynomials, whether or mot the code is a
polynomial code (as defined below). Thus every code can be considered as
a set of polynomials, but that does not always benefit us much. It is the
existence of a generator polynomial that makes the representation useful.

226 Error-correcting codes and finite fields

Definition A code C of block length n is called a polynomial code if there
exists a polynomial g(x) such that C, considered as a set of code polynomials,
consists of the multiples of g(x) with degree less than n. The polynomial g(x)
is called a generator polynomial of C.

Example Let K be the binary code of block length 15 whose polynomials
have the following properties.

1. The coefficient of x®* is the same as the coefficient of x' fori = 0,.. ., 6.
2. The coefficient of x” is always 0.

Then K is a polynomial code with g(x) = x® + 1 as generator because each
code polynomial ¢(x) can be split as

6 14 3
)=y ex+ Y ext=0("+1) Y ext,
i=0 i=8 i=0

Thus the code polynomials of K are just the multiples of g(x) of degree less
than 15.

Proposition The generator polynomial g(x) of a polynomial code C is a code
polynomial of C. It is unique up to multiplication by a non-zero constant.

Proof As g(x) is a multiple of itself it is a code polynomial, unless it has
degree at last equal to n. In that case C has no code words at all.

If §(x) is another generator polynomial for C, then g(x) is a multiple of
§(x), §(x) = a(x)j(x), and vice versa, §(x) is a multiple of g(x), §(x) =
b(x)g(x). Therefore, a(x)b(x) = 1 and a(x) and b(x) are constants.

14.10 The nature of polynomial codes

For a polynomial code C we can use the encoding techniques we introduced
for BCH(k, t) and calculate the rank of C from the degree of its generator
polynomial.

Example (continued) The code K has rank 7. For this code multiplicative
and systematic encoding are the same. The message word v = (011000 1)
encodes as

c=(0 1 1 0001 0011000 1.

What is now needed is a method for recognizing a polynomial code. Such
a method is given below. In order to describe it we need a further definition.

BCH codes as polynomial codes C227

Definition The left shift of a word (a, b,...,z) is defined to be the word
(b, ...,z a). Notice that the entries ‘wrap around’.

Theorem Recognition of polynomial codes

(a) Any polynomial code C is linear. Furthermore its block length n, rank m,
and the degree d of a generator polynomial g(x) are related by the equation
n=m+d.

(b) A linear code is a polynomial code if and only if for every code word
beginning with O the left shift is also a code word.

Example (continued) With
c==(011000100110001)

as above, the left shift of ¢ is
w=(110001001100010)

which is the code word of K encoding the message (1100 010).
On the other hand, the left shift of w is

(100010011000101)‘
This is not a code word of K because the corresponding polynomial is
x4 x4 x4+ X6+ X2+ 1,

which has a non-zero x” term.

Proof (a) The sum of two multiples of g(x) is a multiple of g(x). A constant
multiple of a multiple of g(x) is a multiple of g(x). Hence the set of multiples
of g(x) that have degree less than n is a vector space. Thus C is linear. As
in the proof of Corollary 14.3(b) multiplication by g(x) induces an iso-
morphism of the space P,_, of polynomials of degree less than n — d onto
C. Hence = rank(C) = dim(P,_,) =n —d.

(b) Suppose C is a polynomial code with generator polynomial g(x). Then
a code word ¢ beginning with 0 corresponds to a code polynomial c(x) of
degree less than n — 1. The left shift of ¢ corresponds to xc(x) (because its
rightmost entry is 0). As c(x) is a multiple of g(x), xc(x) is a multiple of
g(x) and its degree is less than n. Thus it is-a code polynomial. So the left
shift of ¢ is a code word.

For the converse, suppose that we are given a linear code C of block length
n, such that for every code word ¢ with leftmost entry 0, the left shift of ¢ is
a code word. Consider the set S of non-zero code polynomials of C. Choose
g(x) in S of smallest possible degree d. Let g be the code word corresponding
to g(x) and suppose that g starts with n — d ~1=m—1zeros. So g can be

228 Error-correcting codes and finite fields

left-shifted m — 1 times, yielding m words (including g itself). By the
hypothesis, each of these shifted words is a code word. The kth left shift of
g has x*g(x) as its code polynomial. Combining this with multiplication by
constants and additon, we see that for any polynomial b(x) of degree less
than m, b(x)g(x) is a code polynomial.

We shall now show that these are the only code polynomials. Let c(x) be
the code polynomial corresponding to a code word c. Then dividing c(x) by
g(x) we get

c(x) = q(x)g(x) + r(x),
where r(x) = 0, or deg(r(x)) < deg(g(x)) and
deg(g(x)) = deg(c(x)) — deg(g(x)) <n —d =m.

Thus g(x)g(x) is a code word. By the linearity of C it follows that r(x) is
a code word. As g(x) has minimal degree among the non-zero code words
r(x) = 0. So ¢(x) = q(x)g(x) is a multiple of g(x). This shows that C is a
polynomial code with g(x) as generator, and that m is-the rank of C.]

14.11 Cyclic codes
Not all polynomial codes have check polynomials.

Example Consider the polynomial code K defined above. If we divide

x'5 4+ 1 by x® + 1 we get
100000 00 O0O0O0O0°1
1. 00000

000
00 1
1 00000O0O0T1

So x'3 + 1 = x7(x® + 1) + x” + 1. That means there is no polynomial h(x)
such that g(x)h(x) = x'° + 1.

It is therefore necessary to distinguish those polynomial codes C that do
have a check polynomial. They are called cyclic codes. The reason for the
name ‘cyclic’ will become apparent when we derive the condition which
characterizes these codes.

Definition If the generator polynomial g(x) of a polynomial code of block
length n divides x" — 1, then the code is called cyclic. In that case the
polynomial h(x) such that h(x)g(x) = x" — 1 is called the check polynomial.

Example We define a new binary code L of block length 16 with the same
generator polynomial g(x) = x® + 1 as K. This code has rank 8. It consists

BCH codes as polynomial codes 229

of all code words of length 16 whose second half is identical to their first
half. As x!6 + 1 = (x3 + 1)%, this code has check polynomial h(x) = g(x) =
x%+ 1

14.12 The nature of cyclic codes

For a cyclic code we can use all the encoding and decoding methods we
introduced above for BCH(k,). In particular, we can test whether a
polynomial is a code polynomial by multiplying it by h(x) to see whether
the result is a multiple of x" — 1. Note however, that we still have not
produced an error-processing method.

Example (continued) Check whether
c=(1100110111001101)

is a code word of L.

1
110011011
110011010 11001101

This shows the repeat pattern characterizing code words.

The last theorem of the chapter shows that cyclic codes are precisely those
linear codes for which you can ‘cycle’ any code word.

Theorem Recognition of cyclic codes A linear code is cyclic if and only if
for any code word c the left shift of ¢ is also a code word.

Example (continued) Consider the code word c of L that was found above:
c=(1100110111001101).
The left shift of ¢ is
(1001101110011011).

Its second half is identical to its first half. So it is also a code word of L.

Proof Suppose the code is cyclic, with generator polynomial g(x). Let ¢ be
a code word. If ¢ starts with 0, then its left shift is a code word by Theorem

230 Error-correcting codes and finite fields

14.10. So assume c starts with a non-zero symbol a. If ¢(x) is the polynomial
corresponding to ¢, then the polynomial corresponding to its left shift is

w(x) = xc(x) — ax" + a,

where the first term moves ¢ one place to the left, and the two last terms
produce the ‘wrap around’. Clearly g(x) divides xc(x). It also divides
—ax" + g, because it divides x" — 1. Hence it divides w(x). As deg(w(x)) <mn,
it follows that w(x) is a code polynomial.

Conversely, suppose every left-shifted code word is a code word. Then the
code is a polynomial code with generator, say, g(x) with highest coefficient
a. Multiplying by a™! if necessary, we may assume that a = 1. We must
show g(x) divides x" — 1. Let the degree of g(x) be d. Consider the polynomial

o(x) = x" "7 g(x).

The polynomial ¢(x) corresponds to a code word ¢ starting with the symbol
1. As before the left shift of ¢ corresponds to

xe(x) — x" + 1.

Now this is, by assumption, a code word of C, and so it is divisible by g(x).
As c(x) was assumed to be a code word, xc(x) is divisible also by g(x). Hence
g(x) divides x" — 1. Thus the code is cyclic.]

14.13 Summary

In this chapter we showed how BCH code words could be interpreted
as polynomials. We gave a definition of the code based on its generator
polynomial. The exact rank of the code was determined from its generator
polynomial. The check polynomial was introduced and used to implement
a check whether a word is a code word. Both systematic and multiplicative
encoding and decoding were introduced.

From the discussion given here it might appear that the primitive element
chosen to construct BCH(k, t) is very important. However, that is a false
impression. When we have completed the main theory of BCH codes, we
shall return to this (minor) topic in Section 16.11. If you are interested, you
can read that section now. It requires no further theory.

In the Extras of this chapter, we discussed the general properties of
polynomial and cyclic codes.

14.14 Exercises

14.1 For each primitive element o« of GF(16) calculate the generator and
‘check polynomials of BCH(4, 3) based on «.

142

14.3

14.4

14.5

14.6

14.8
149

BCH codes as polynomial codes 231

Show that for k > 3, k even, BCH(k, 2) has rank 2¢ — 2k — 1. (Hint:
Show that 3|2¢ — 1; hence if « is a primitive element of GF (2¥) then
o is a generator of GF(2*), but not a primitive element.)

Show that the polynomial

x4 xB xS+ xt+xP+x+1

generates a cyclic binary code of block length 15. What is its check
polynomial? Use your polynomials to construct the code word in this
code for the message word 11000 (using systematic encoding), and to
determine whether 11001 01000 01110 is a code word.

Show-that the polynomial

xS+ xP+xt+ x4 1

generates a cyclic code of block length 17. What is the check
polynomial of the code? What is the rank m of the code? Check
whether the following words are code words:

1110001110010100°1
11100011101 100110

Find a code word beginning with a 1 followed by m — 1 zeros.

The binary Golay code as a polynomial code.

In Exercises 14.5-10 we shall show a construction of the binary
Golay code as a polynomial code. To be more precise we shall
construct a (23, 12)-binary code, and prove that its minimum weight
is at least 5. In fact that weight is 7 and the code is the Golay code.
For a complete proof that this construction does produce a code of
minimum weight 7, we refer the reader to McEliece (1977), Chapter
8.7, and MacWilliams and Sloane (1977), Chapter 16.

Show that the field GF(2!!) contains an element f§ of order 23.
Using Theorem 11.12 show that the minimal polynomial of § over
B=GF(2)is

g() =TT (x = £,

where i =25 k=1,2,3,4,6,8,9, 12,13, 16, 18.
Similarly show that the minimal polynomial of B~tis

3 =10 — £

where i = 2%, k =5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22.

Deduce that x2* — 1 = (x — 1)g(x)g(x) in B[x].

Let G be the cyclic code of block length 23 generated by g(x). Show
that G has rank 11.

232 Error-correcting codes and finite fields
14.10 Let H be the matrix

1 B ﬁz - ﬁzz
1 ﬁz ﬂA - B21
1 ﬂ3 ﬁﬁ e Bzo
1 54 ﬂﬂ Ve ﬁlg

Show that every word u in G satisfies H-u = 0 and deduce that G has
minimum weight at least 5.

Exercises 14.11-16 deal with an analogous construction of the ternary
Golay code. This is an (11, 6)-code with minimum weight 5. Again we
produce only the first step in the proof that the code has then required
minimum weight and refer the reader to the same two sources as above for
the rest of the proof.

14.11 Show that the field GF(3%) contains an element y of order 11.
14.12 Show that the minimal polynomial of y over T = GF| (3) is

g() =TT (x = vi),
where i =3 k=1,3,4,5,9.
14.13 Similarly show that the minimal polynomial of y~
G =TT =),
where i = 3% k=2,6,7,8, 10.
14.14 Deduce that x'! — 1 = (x — 1)g(x)g(x) in T[x]. .
14.15 Let G be the cyclic code of block length 11 generated by g(x). Show

that G has rank 6.
14.16 Let H be the matrix

Tis

1 ¥y 'YZ ,y10
1 73 v6 ys
1 .I‘-t .,,8 ,7
1 75 /10 /5

Show that every word u in G satisfies H u = 0 and (ignoring the first
row of H) deduce that G has minimum weight at least 4.

15 BCH error correction: (1) the
fundamental equation

We now come to the major problem that has to be solved before BCH codes
can be used in practice, namely that of error processing. In this chapter we
shall analyse the problem and produce the ‘fundamental equation’ that has
to be solved in order to find ‘the error pattern of a received word. In the
next chapter we shall then show how to solve this equation by an efficient
method.

15.1 Determining the error word

Assume we are using the code BCH(k, t) of block length n = 2% — 1, designed
to correct up to t errors. Suppose a code word ¢ is transmitted and the word
dis received. If d is not a code word we can tell this by using the check matrix

Vi d # 0,
Let the error word be e = d — ¢. Then from Proposition 4.10 we know that
V. d =V e M

If s < ¢ errors occurred, then by Proposition 13.10 there is exactly one
possible error word e of weight at most ¢ satisfying (1). How should we go
about determining it? The error word e pinpoints a set of columns of ¥,
whose sum is ¥ ,e. The simplest approach to determining e is just to search
for the appropriate set of columns. If ¢ = 1 we have a Hamming code and
the search is easy. We just check the n columns of ¥, to find which one
gives the syndrome ¥ .d.

However, for BCH(k, t) with ¢t > 1, we would have to consider

(0G0
1 2 t

combinations of columns and for k=8 and t =3 this number is already
2763 775. Clearly, we need to find a more efficient procedure.

)

234 Error-correcting codes and finite fields
To make our assumptions more specific let the words above be as
follows:
¢=(Ca1,--+5C1,Co)s
d=(dy-1,...,dy, do),
€=(ey-15+-+5€1€0)s
where, of course, ¢; = d; — ¢;. As in the last chapter, the numbering, from

the right starting at O, is chosen for coherence with the polynomial
representation. .

Definition 1If the component e; of the error word e is non-zero, ¢; # 0,
we say i is an error location of d. We let M denote the set of error
locations.

If we are dealing with BCH(k, t), we assume the number of errors s is at
most t. Thus M has s < t elements and s is the weight of e.

Example BCH(4,3) This example follows on from the one in the last
chapter and will be continued throughout this chapter.

Let the transmitted word be c=(11011001010000 1);
d=(11000001010000 1);

e=(000110000000000).

and the received word be

so the error word is

Thus s = 2 and the error locations are 10 and 11 (count from right starting
at 0).

15.2 The syndromes of a received word

If we consider ¥, , as a matrix over GF| (29, then the full syndrome ¥ d is
a word of length 2¢ with entries.

S17 SZ9- . '3S2I

in GF(2%).

Example BCH(4,3) Let d be as above:

d=(1 1000001010000 1)

BCH error correction: (1) the fundamental equation 235

From Chapter 14, ¥, 5 is

12 6 3 13 10 5 14 7 15 11 9 8 4 21
6 13 5 7 11 8 2 12 3 10 14 15 9 41
3 515 8 1 3 515 8 1 3 515 81
3 7 8 12 1015 4 6 511 2 3 14 91
0 1t 1 10 11 1 10 11 1 10 11 1t 10 11 1
s 8§ 315 1 5 8 315 1 5 8 3 151

S;=124+ 6+ T+11+1= 17,
S,= 6+ 13+12+10+1=12,
S;= 34+ 5+154+ 14+1=9,
S,=13+ 7+ 6+11+1= 6,
Ss=10+11+11+10+1= 1,
S¢= S5+ 8+ 3+ 1+1=15.

Notice that S, = S2, S, = 5% and S5 = §3.

Now we represent the code by polynomials as in the last chapter. So with
c=(Cam1r---1C1,Co)s
d=(dy-1,---,d1,do);
e= (en-—b s €y eO)’
the corresponding polynomials are

e(X) = CyuyX" 1+ - -+ + Cos

d(x) =d,_,x""' 4+ -+ +do,

e(x) = d(x) — c(x) = euu X" "1 + -+ + €.

Example BCH(4,3) With the same words as above the polynomials are
o(x) = x4+ x*3 4+ xM + x0 + x7 + %%+ 1,

dx) =x* +xP +x"+ x5+ 1,

and e(x) = x4+ x1°,

236 Error-correcting codes and finite fields

By Definition 14.4, the rows of ¥, are of the form

-2)j 2j j 0
(a2, o a? = 1),

where g = 2%, « is a primitive element of GF(2") and j runs from 1 to 2t

Thus the ith entry S; can be written as

n—1
S, = Y djot =d().
ji=1

15.3 Syndromes and syndrome vectors

It is inconvenient to keep having to refer to ‘the ith entry of the syndrome’.
Hence the following definition:

Definition The values S; = d(e) for i = 1,...,2t are called the syndromes
of d(x). The word V¥, d = (S, Sz, S20) will be referred to as the full
syndrome or syndrome vector.

Before recalculating the example we gather together the basic facts about
the syndromes in a proposition. These facts have all been proved in previous
chapters and are merely rephrased here in terms of polynomials.

Proposition (a) If ¢(x) is a code polynomial of BCH(k, t), d(x) is a polynomial
of degree at most 2% — 2, and e(x) = d(x) — c(x), then the syndromes S; of d(x)
and e(x) are identical for i =1,...,2t.

(b) The syndrome Sy; = S? foralli=1,...,t

() d(x) is a code polynomial of BCH(k, t) if and only if the syndromes
81,83, ..., 8y are all 0.

Proof (a) This is Proposition 4.10 rephrased in terms of polynomials; (c)
is Proposition 14.1 of the last chapter. To see (b) Note that for d = (d;) € B",
d? =d;. Hence

n—1 2 n=1 n—1

2 - LT - 2,20 — 20

S?=(Y djo) =Y dja =Y djo? =8, |
j=0 j=0 i=0

As BCH(k, t) is a subcode of BCH(k, [) for I <1, it follows that the first
2! syndromes for BCH(k,) are just the syndromes for BCH(k,). In
particular, S, is the ordinary Hamming syndrome for the code Ham(k)
interpreted as an element of GF(2°).

BCH error correction: (1) the fundamental equation 237

Example BCH(4,3) The syndromes of ¢(x) can be calculated as follows:
o(x) = x!* + x13 + x4+ x10 4+ x7T + %+ 1,
S;=c¢2 =12+ 6+13+10+ 7+11+1=0,
Sy=c8 = 3+ 5+ 8+ 1+15+ 1+1=0,
S5=c(11)=10+11+10+11+11+10+1=0.

The other syndromes can be found by squaring and so are all 0.
Now let us try d(x):

dx) = x4+ xP +x"+x° + 1,
S,=d@2) =12+ 6+ T+11+1=7,
Sy=d@®) = 3+ S+15+ 1+1=9,
Sy=d(1)=10+11+11+10+1=1

Check that these values are also obtained by calculating d(4), d(9) and d(15).
Unlike a real-life error processor, we know E(x). So we can also use that:

I

|

e(x) = x'' + x1°,
S,=e@ =13+10=71,
S;=e®) = 8+ 1=9,
Sy =e(1l) =10+ 11 =1,

We can also use Horner’s scheme (described in Section 11.4) to find the
syndromes of d(x):

1 10 0 00 0 1 0 1t 0 0 00 1
=2 1 3 6 12 12 4 911 14 510 13 3 7
2%=8 1 9710 62 9 6 2 15 5 319
25=11 1 10 1 11 10 1 11 11 10 0 0 0 0 0 1

15.4 The case s =2

To gain some insight into the problem of decoding multiple errors we
shall devise an ad hoc method of using the syndromes to correct two errors.
This method only uses S;, S, and S;. It is not very difficult, but its analogue
for three errors is considerably more complicated. We shall use the fact that
we are dealing with a binary code. This makes some things easier but others
harder, as you will see. We shall assume that there are precisely two errors.
So, strictly, this algorithm should be preceded by a test for single errors.

238 Error-correcting codes and finite fields

That is quite easy: test whether the syndromes form a column of the check
matrix ¥,,. If they do, the column gives the error location just as with
Hamming codes. Now let the set of error locations be M = {i, j}. Then the
equations we have to solve are:

o +o =8, (¢Y)
a¥ 4ot =8,,)
o 4 0¥ = 5, G)

Equation (2) is just the square of (1), but it is useful nevertheless.
First we multiply (2) by o and add it to (3). This gives

@3+ o3 + o + o = dla? 4 0¥ = ot + of) = 'S, + 5.
Now we substitute (1) to eliminate (¢ + of) in the penultimate expression:
0?8, = 'S, + Ss.
Finally we use (2) again to replace a®/ by «* on the left-hand side:
S, +)8, = a‘Sz\.jl- Ss.

This is a quadratic in o and its two solutions are « and «’. Here
we hit a snag. The usual method of solving quadratics fails for fields of
characteristic 2, because it relies on completing ax? + bx + ¢ to a square by

adding a constant. For a binary field (x + p)* = x* + B* and has no linear-

term. So if b # 0, this method will not work. Indeed an element of a binary
field has only a single square root, while a general quadratic polynomial has
two roots. Thus there can be no formula for the roots of a quadatic involving
only square roots and linear terms.

However, our field is finite. So we can simply search for the roots of the
quadratic.

Example BCH(4,3) The equations are

o= 7,)
o+ o =12,)
e od= 9. ©)

Multiplying (2) by of and adding it to (3) we obtain
a4+ of) = 120" + 9.
Substituting (1) we get

Ta¥ = 120 + 9.

BCH error correction: (1) the fundamental equation 239
Using (2) to replace «*/ by a? we have

7(12 + o%) = 120/ + 9,
or
7o + 12af + 154+ 9 =0.

Dividing by 7 we have our final equation:
a? 4+ Tat + 15 =0.

We use Horner’s scheme to check that it has the expected roots 10 =21
and 13 =2'%

17 15
10 113 0
13° 1 13 0

15.5 Summary of the method

We can summarize the method as follows. We seek two quantities o =a
and o = b, for which we are given the power sums:

a+b=35,,

a® +b*=S,,

@ +b>=8,,

and a* +b*=8,.

The method we use is to find a quadratic that has a and b as its roots. So
what we are initially trying to calculate is the coefficients of the quadratic

(y — a)(y — b) = y* — (@ + by + ab.

To extend this scheme to triple errors, we would first have to test for single
or double errors and then we would have to find the coefficients of the cubic

y-—ay-by-o9

from the first six power sums of a, b and c.
In general the coefficients of

G—a)y—a) - (y—a)=y + A4y + A,

are called the elementary symmetric functions of ay, @, . . . , @, and there are
equations linking them to the power sums. These equations are called
Newton’s identities. The first error-processing procedure proposed for binary
BCH codes, due to Peterson (1960), followed this path. We shall discuss
Peterson’s method further in the exercises. In the text we shall develop

240 Error-correcting codes and finite fields

Newton’s identities in a polynomial form that leads to a more efficient, but
more sophisticated, error processor.

15.6 The syndrome polynomial

Of course, the syndromes really form one word or vector, and as before we
can represent this by a polynomial. To avoid confusion with code polynomials
we use a different indeterminate, z.

Definition The syndrome polynomial of the word d with syndromes S, . .., Sy
is the polynomial

2t—1

s(zZ) =8, + Sz + S22+ - + S22 = Y S
i=0

We have chosen the exponents of z so that our polynomial has smallest
possible degree.

Example BCH(4,3) The syndrome polynomial of d(x) above is
s(z) = 1425 + 2% + 625 + 922 + 122+ 7.

The syndrome polynomial can be written as a double sum because its
coefficients S; can themselves be represented as sums:

n—1 B
S;= Y e,)
j=0

and

n-=1
Si= 3 djo,)
j=o

Both formulae give the same value. Formula (1) is not practical, but it is
more useful for the theory because the non-zero terms are directly related
to the error locations that we wish to determine.

Using formula (1) we can write s(z) as

2t—-1 . 2r—1n—-1) .
s@= Y SsZ= 2, 2 et iz,
i=0 i=0 j=0 :
Now e is non-zero only if j is an error location, that is, j € M. We can insert
this in the second sum and reverse the order of summation to obtain
2t-1 2t-1

s(z) = 'Zo Si2 =Y, el Z i, 3

jeM i=0

BCH error correction: (1) the fundamental equation 241

15.7 A geometric progression

Write out the inner sum in detail:
2t-1 .
Y @iz =1+ oz + a2z 4 - oI
i=0
=l+g+q+ - +4¢*",
where ¢ = az.
This is just a geometric progression, for which we learn a formula at school:

Lemma The geometric progression

l+g+g*+ - +q" =

Proof Multiply the left-hand side of the equation by (1 — g):
A=t +q+g+-+q"7
=1+q+q*+ - +4g""
—q—q*—= - __qlr—l_qu

15.8 Formula for syndrome polynomial

Using the formula for the geometric progression we can rewrite the
Syndrome polynomial s(z).

Proposition The syndrome polynomial s(z) can be expressed as

e g2t 12t
s =y —1 1 L

jeml—diz o 1—oz

6

where M is the set of error locations.

Example BCH(4,3) Compare our formula for s(z) above:

s(z) = 1425 + 2% + 62° + 922 + 12z + 7

242 Error-correcting codes and finite fields
with the one obtained by evaluating
210 211 27026 27726
T-2% " T-20; 1-29% 1-2%;
_219(1 — 26056) ~ 211(1 — 2665)

1 =219 1 =2z
_10(1 — 10%25) 13(1 — 13525)
T 1-10z 1— 13z

= (14 10z + 1122 + 23 + 10z* + 112%) x 10
+(1+ 132+ 722 + 82° + 122* + 102%) x 13
=10+ 11z + 22 + 102° + 11z* + z°
+ 13 + 7z + 822 + 122% + 10z* + 152°
=7+ 12z + 92% + 62° + z* + 142° = 5(2)

Proof Using Lemma 15.7 (with g = oz) to evaluate the inner sum we get

2~1 21
@)= 3 Si= 3 ;o Z alz’,)
i=0 jeM i=0
1 g2
=Y el ——
jem 1 —a'z
j (20+1)j,2¢
e;o ;0 z -

jaul—olz oy 11—z

15.9 Introduction to the fundamental equation

We can add the ‘fractions’ of each sum of equation (8.1) by placing them
all over a common denominator. In this way we can express s(z) as difference
of two quotients with the same denominator:

w(z) u(z)z*

s(z)=£~ @) . 1)

I(z) I(z)
The polynomial I(z) is the product of all the terms (1 — «’z) where j runs
through the error locations j e M:

I(2) =] (1 = &2). ()]

jeM

The roots of I(z) are the inverses of the powers o, j& M. So I(z) can be

BCH error correction: (1) the fundamental equation 243

used to determine the error locations. It is called the error locator polynomial
of d(x). However, finding I(z) itself is still a problem, because the whole
development of the preceding paragraph assumes that the error polynomial
e(x) is known, and of course that is just the polynomial the error processor
needs to determine.

Example BCH(4,3) The error locations are 10 and 11. Hence the error
locator has the formula

Iz) = (1 — 21%)(1 — 2*12) = (1 + 102)(1 + 132)
=152+ 7z + 1.

15.10 The numerators

The formulae for the polynonials w(z) and u(z) in terms of the error values
and error locations can easily be determined.

Proposition The polynomials u(z) and w(z) satisfy the following formulae:

w(z) = jg{ e igl (1 — a'z))
i#j
wz) = 2 eV T (1 —ai2).)
A

Example BCH(4,3) With error locations 10 and 11 as above the error
evaluator and coevaluator have the formulae

w(z) = 2'°(1 + 2112) + 211(1 + 2107

=101 + 132) + 13(1 + 10z) = 7.
and
u(z) = 27°(1 + 21'z2) + 277(1 4 219)

(as2'*=1,2"° = 1% =1 and 277 = 22 = 4). Hence

w(z) = 10(1 + 132) +4(1 + 10z) = 14 + 12z,

Proof By definition,

ve) _ 5 e
lz) joel—olz

 Multipeaigby wey WE Oans - S —
W)= Y edl(z) e [liens (1 — oz"z)'

jeMl—de jeM 1— oz

Cancelling the denominator gives the formula for w(z).
The proof for u(z) is completely analogous. u

Once we know I(z) and hence the error locations, w(z) can be used to
calculate the error values (which for BCH(k, t) must all be 1). It is called the
error evaluator. The polynomial u(z) could equally be used to determine the
error values. So we shall call it the error co-evaluator. In practice only w(z)
is ever used.

You may ask what is the purpose of calculating a number you know to
be 1. Well, it does serve as a check on the computation. Furthermore, in
Chapter 17 we shall meet an important family of codes, the Reed-Solomon
codes, which are closely related to the present BCH codes and for which the
error values need not be 1. However, the most important reason for
introducing the error evaluator here is that, as we shall see, we can only find
w(z) and I(z) together. So we do need both. We shall only need u(z) for the
theory. We use it to prove that the polynomials we calculate by our algorithm
are the right ones.

15.11 The fundamental equation

We rewrite equation (9.1) to clear the denominators:
I(2)s(z) + u(z)z* = w(z).)

In this form we shall call it the fundamental equation for BCH codes.
It is more common in the literature to express the fundamental equation (1)
as a congruence omitting explicit mention of u(z):

I(2)s(z) = w(z) (mod z?).

The error locator is often denoted by a(z), the error evaluator by w(z) and
the syndrome polynomial by S(z). So you will most often find it in the form

a(2)8(z) = w(z) (mod z%).
Example BCH(4,3) We recall the polymomials calculated above.
Error locator:
I(z) = (1 — 2'°2)(1 — 2'1z) = (1 + 102)(1 + 132)
= 1522+ 7z + 1.

70T venrwalOll —— - e

w(z) = 10(1 + 132) + 13(1 + 10z) = 7.
Error coevaluator:
u(z) = 10(1 + 132) + 4(1 + 102) = 14 + 12z.
Now we check the fundamental equation:
(2)s(2) = (1522 + Tz + 1)(142° + z* + 62° + 92° + 122+)

= 1425 + z4+4 622+ 922+ 12z2+7
+ 28 4+ 725 + 11z2% + 1323 + 1522 + 122
+ 1277 4+ 1525 + 925 4 10z* + 1123 + 627

= 1227 +142°+ 05+ 0z*+ 0z°+ 0z2+ 0z+7

U2)s(z) + u(z)z? = 1227 + 1428 + 7 + 1227 + 142° = w(2).”

We conclude this section by giving formal definitions of the error locator,
evaluator and co-evaluator and stating an obvious proposition.

Definition The code BCH(K, t), defined using the primitive element o« of the
field GF(2%), is used to transmit a code polynomial c(x). Suppose the
polynomial d(x) is received and let M be the set of its error locations. Then

 the error locator polynomial of d(x) is

1) =[] (1 — o2),)

jeM

the error evaluator polynomial of d(x) is

“w(z) = Z e H (1 —d'z) 3)
jeM lxe;ﬁbj

and the error co-evaluator polynomial of d(x) is

uz) = Y ea® W [T (1 —di2). 4)
jeM '.E;ebj

Assuming that M has s elements, we can read off from these formulae the
degrees of each term. This gives the following proposition.

Proposition If s errors occurred in the received word d(x), then the degrees

246 Error-correcting codes and finite fields
of the error locator, evaluator and co-evaluator satisfy
deg(l(2)) = s,
deg(u(z)) < s,
deg(w(z)) < s.
Furthermore, 1(0) = 1. | |

15.12 Proving the fundamental equation

The discussion so far is formalized in the following proof of the validity of
the fundamental equation. The proof avoids the use of fractions, working
only with polynomials.

Theorem. Suppose that a code word of BCH(k,t) is transmitted and the
polynomial d(x) is received. If at most t errors occurred in transmission, then
the error locator polynomial I(z), error evaluator and co-evaluator polynomials
w(z) and u(z), and the syndrome polynomial s(z) of d(x) are connected by the
fundamental equation:
I(2)s(z) + u(2)z* = w(z). 63}
Proof Observe that
2t
(1 — ajz) Z ajizi-l - aj — dj(2'+1)22r
i=1

Evaluating I(z)s(z) we now get

I2)s(2) = T] (1 — o2) f Szt

jeM

-3 T e

jeM i=11em
N 2t P
=Y [] @ —dz) Y eaz~?
1eM jeM =1
a
=Y (1—d2) Y eodz™] (1 —d¥)
1M =1 1M\
=Y ed [] (1—d2)— Y ez [T (1—d2)
leM ieM\l leM ie M\l

= w(z) — u(z)z*. ™

BCH error correciion: (€3] the f;t'ndaméntd'ly equation 247

15.13 Summary

In this chapter we started the task of finding an error-processing method for
BCH codes. We introduced the syndromes and developed the theory of the
fundamental equation relating the syndrome polynomial and three other
polynomials, the error locator I(z), the error evaluator w(z) and the error
co-evaluator u(z), :

I2)s(z) = w(z) — u(2)z>.

For double errors I showed a straightforward method that could be used
to find the error locations directly from the syndromes. The method is a
special case of the first error-processing algorithm for BCH codes due to
Peterson. It becomes too slow for large numbers of errors. In the next chapter
I shall present an efficient algorithm for solving the fundamental equation
and hence correcting up to ¢ errors in a word.)

15.14 Exercises

15.1 Suppose that BCH(4, 3) is used to transmit a message and that the
error pattern of a received word is

100001000010000

calculate the syndrome, error locator, error evaluator and error
co-evaluator polynomials and check the validity of the fundamental
equation.

In Exercises 15.2-6 we extend the method of Section 154 to produce

an error processor for BCH(4, 3) when three errors occur. Let the error
locations be i, j, and k, and put a =o', b =0/ and ¢ = ak,

152 Let (z — a)z — b)(z — ¢) = 2% + ;2% + Lz + l5. Write down formulae
for I, 15, and 5.

153 Show that for the given errors, the syndromes S; satisfy S; = @+ b+

154 Let A =(a;) be the3 x 4 matrix with a; = S;4 ;-1 Show that if u is
the vector (1, Iy, I, 13)T, then Au =0, and that all the solutions of this
system are constant multiples of u.

15.5 Show that if less than three errors occurred, then the system Au =0
of Exercise 15.4 still has a non-zero solution (uq, . . . , #3), and that the
polynomial I(z) = uoz® + u,2* + Uz + us has o among its roots for
all error locations i. .

156 Show that in the case that less than three errors occurred it is possible
to determine the true error locations as follows. Let the non-zero roots
of z) be o. For i =1iy,..., . Let f be a word with entries f; which

248

15.7

15.8

159

15.10

Error-correcting codes and finite fields
are unknown for j=1iy,...,i, but zero for all other j. Solve the
equations ¥ 5T = (S,, ..., Sy)". Then [is the error word.

Using Exercises 15.2-6 correct the following words (using a search to
find the roots of the equation I(z) = 0:

10101 11011 11110,
11000 0010t 000O00O0 I

Adapt the error processor of Exercises 15.2-6 to BCH(k, 4). This
error processor is equivalent to the ones developed by Peterson,
Gorenstein and Zierler. So I shall refer to it as the PGZ error
processor.

Suppose BCH(4, 3) is used to transmit a message and that at most
three errors occurred on transmission of ¢. Let the first five bits of a
received word d form the word m. Using systematic encoding, encode
m to a code word ¢’. Show that if wt(c' — d) < 3, then ¢’ = c.

A partial error processor for BCH(4,3) Apply the method of Exercise
15.8 to the received word d; if it fails (that is wt(¢' — d) > 3), shift d
cyclically and repeat. Continue in this manner. If you succeed with the
code word c” after k shifts, then ¢” is ¢ shifted k times. The method
fails if you return to d without success. Prove that if the method does
not fail and at most three errors occurred it correctly identifies the
transmitted word c¢. Apply the method to the words of Exercise 15.7.
Which error patterns does this error processor correct? This method
of error processing for cyclic codes is called error trapping.

16 BCH error correction: (2) an
algorithm

In this chapter we present an efficient algorithm for solving the fundamental
equation for BCH codes. It can be used as the basis of a practical error
processor for BCH codes. The existence of such processors is the principal
reason for the pre-eminence of the BCH family among block codes in
practical use.

The first efficient algorithm for solving the equation was invented
by Berlekamp (1965). Later Massey (1969) produced a modification of
Berlekamp’s algorithm. It is easier to understand, because it can be
viewed as a method for synthesizing a minimal feedback shift register to
produce an output sequence starting with the syndromes of a received
word.

I shall present a conceptually simpler algorithm invented by Sugiyama et
al. (1975). It is based on Euclid’s algorithm. There is also a further algorithm
that uses continued fractions. All these algorithms are based on properties
of Newton’s identities relating various symmetric functions of n variables to
each other and are theoretically equivalent. The reader who studied the
Extras in Chapter 7.2 will appreciate why this is the case for the Euclidean
and continued fraction methods.

In practice, the Berlekamp and Berlekamp-Massey algorithms are a little
faster than the others. However, recent studies suggest that this may only
be due to inefficient machine implementations of Euclid’s algorithm (see
Eastman 1990).

16.1 The fundamental equation again

Before stating the algorithm let us recall the fundamental equation that we
wish to solve. We are using BCH(k, £) which has block length n = 2% — 1,
and minimum distance greater than 2t We represent code words by
polynomials.

We assume the set-up of the last chapter: .

A code word ¢ is transmitted, the word d is received and the error word

250 Error-correcting codes and finite fields
¢ is defined as their difference:
c=(Chots--+1C15C0)s
d=(dy_1,--->d1,d0)
e=(ey-1-->€1)
These words are represented by polynomials o(x), d(x) and e(x):
c(x) = Cpoy X" P A Co
d(x) = dy_ X"t 4+ o
e(x) = d(x) — c(x) = e, X"+ e

As we are now interested in a practical error-processing scheme we
represent the syndromes by the formula that can be calculated from the
received word d(x). Fori=1,..., 2t, the syndrome S; is given by S; = d(h),
where o is the primitive element used to define the code. The syndrome
polynomial s(z) is

S(Z) = 51 + SZZ + 5322 + o SZIZZI—l‘

We seek the error locator polynomial /(z) and with it will also obtain the
error evaluator w(z) and the error co-evaluator u(z). These are defined in
terms of the set M of error locations i for which ; # 0 and the primitive
element used to design the code:

i) =[] (1 —o'2),

jeM
wz) =Y el JTT (1 - o'z),
jeM ieM
i
wz) =Y eI (A - o'z).
jeM ieM
i#)

Knowledge of the error locator would enable us to calculate its roots and
thus to find the error locations and correct the received word. The key to
the solution of this problem is the fundamental equation (Theorem 15.12):

12)s(2) + u(@x)z* = W)

16.2 The BCH algorithm

The algorithm we shall use is based on the remarkable fact that all the
polynomials we are looking for appear in the table produced when Euclid’s

BCH error correcti(r)ﬁ:W(Z) an»ﬁl‘;;orithrri '
algorithm is applied to 22 and s(z). It is assumed that s < t errors occurred
in d(x). What happens if that assumption is false is discussed later.

The BCH Algorithm (with Example BCH(4, 3)

Step 1. Calculate S; = d@)fori=1,3,...,2t— L
Calculate S,; = Stfori=1,2,...,t
Put s(z) = 3.2, Siz'

If s(z) = 0, the received word has no errors. STOP.

Example With

c=(110110010100001)

and
d=(110000010100001)

we have already performed this step:

s(z)=14z+z+62+9z+122+7

Step 2. Apply Euclid’s algorithm to a(z) = 22 and b(z) = s(z). Finish at the
first stage where the remainder r;(z) has degree < 1.

Example
Q R) v
— 1 00 00 O O © o0 1 00 O
— 141 6 9 12 7 © 0 0 00 1
7 12 7 14 7 10 15 © o0 1 0 7 12
2 10 5 © 2 10) 14 5 4

The U column is not needed for the error computations, but is included
to illustrate the theory.

When calculating Euclid’s algorithm for polynomials by hand it is
convenient to use the intermediate rows described in Section 9.9. Then the
calculation above appears as follows:

Row Q R) |14
-1 — 1 0 0 0 0 0 O © 0 1 00 O
0o — 41 6 9 12 17 (O 0 0 00 1
7 0 711 13 15 12 0 (O 0 1) 07 0
1 0 12 7 14 7 10 15 (© 0 1 0 7 12
2 0 78 4 11 7 (2 0 141 1
2 0 10 5 (0 2 10 14 5 4.

252 Error-correcting codes and finite fields

The rows of the table proper are underlined. The other rows are
calculated successively to eliminate coefficients of r;_,(z) that have indices
greater than or equal to the degree of r;_,(z). Thus the first auxiliary row
merely eliminates the highest coefficient or r;_,, in the next calculation this
row replaces r;_,. We continue producing new auxiliary rows, each calcu-
lated to reduce the highest coefficient of the R-entry of its predecessor, which
it then replaces. When the degree of the auxiliary row becomes less than
that of r,_,(z) the long division is complete, the row is underlined and
labelled row i. This form of the table will be used in the examples from now
on and called the polynomial form of Euclid’s algorithm.

Step 3. If rf(z) =0, there are more than t errors: STOP. Otherwise,
put [°(z) = vj(2). This differs from I(z) only by a non-zero constant factor.
Find the roots of I°(z): B, ..., fs-

Notation For the purposes of the discussion of the theory that follows, we
denote the entries in the final row of the BCH algorithm by r{(z) = w°(z)
and uy(z) = u°(z) and vy(z) = [°(2).

We note for future use that w°(z), u°(z) and [°(z) differ from w(z),
u(z) and l(z), by the same constant factor. This crucial fact will be
proved in Section 16.5 onwards.

Obviously, if [°(z) differs from I(z) by a constant factor, then I(z)
and [°(z) have the same roots.

Example

I°(z) = 1422 + 5z + 4 = 4(152% + Tz + 1) = 4l(z);

u’(z) =2z + 10 =4(12z + 14) = 4u(z);
wo(z) =5 =4 = 4w(z).
Search for roots of 1°(z):

14 5 4

1 14 11 15

2 14 0 4

3 14 14 15

4 14 15 10

5 4 1 1

6 14 10 10

7 4 4 1

8 14 8 11

9 14 6 0

BCH error correction: (2) an algorithm 253

From this row we see that 9 is a root of 1°(z) and further that
I°(z) = (z — 9)(14z — 6).
Thus the roots of [°(z) are 9 and 6/14 = 11.

Step 4. 1f the roots of I°(z) are f; = «”®, then the errors occurred at the
places 2 — p(i) — 1,i=1,..., e counting from the right, starting with 0 (or
at p(i) counting from the left starting with 1).

Example The roots are 9 = 2% and 11 = 2°.
Error positions are 15— 4 =11 and 15— 5 =10
Transmittedword: 1 2 0 1 1 0 0 1 0 1 0 0 0 O L

16.3 Termination of the algorithm

For the moment, we defer the proof that the polynomials w°(z), u°(z) and
1°(z) produced by the BCH algorithm are indeed just constant multiples of
w(z), u(z) and I(z) as claimed to the end of the chapter. First we show that
provided that no more than ¢ errors occurred, the algorithm will terminate

properly.

Proposition Assume 1 <s<t errors occurred. Then the Step 2 of the
algorithm will end with a non-zero r(z), such that deg(r(z)) <t and
deg(rj-,(2)) = t.

Proof From the fundamental equation, the highest common factor of z%
and s(z), (z%, s(z)) divides w(z). So it satisfies

deg(z%, s(z)) < deg(w(2)) <s < t.

On the other hand the degree of z*' is 2t > t. Since Euclid’s algorithm
terminates with r,(z) = (z%, s(z)), there must be a j such that r;_,(z) has
degree at least ¢ but ry(z) has degree less than t. | |

16.4 Failure modes

Proposition 16.3 relies on the fact that the fundamental equation holds,
which is true when at most ¢ errors occurred. If more than ¢ errors occur
the algorithm will possibly produce an incorrect code word, or it may break
down. Such a failure signals to the receiver that the assumption that at most
t errors occurred is false, it is therefore preferable to incorrect decoding, but

254 Error-correcting codes and finite fields

allowances must be made for such failures when you design an error
Processor.

There are three conceivable failure modes. We illustrate the ones that can
actually occur with examples for BCH(4, 3). It is a good exercise for the
reader to calculate the examples independently. The modes that cannot occur
for BCH(k, t) are marked by a star. For proofs that the starred failure modes
cannot occur with BCH(k, ¢) see the Extras at the end of Chapter 17.

Mode A The algorithm does not terminate properly. This could happen in
two ways:

1. All the non-zero terms in the R column have degree at least ¢.

2%, s(z) has degree less than t.

Examples

e Failure mode A1 This occurs if and only if z*|s(z)

101101101101 101,

s(z) = 11z2%,

e Failure mode A2 The BCH algorithm terminates so to speak before it
has started, with a non-zero error evaluator w°(z) = s(z), but I°(z) = 1,
which has no roots. This case never occurs for BCH codes because if
S; # 0, then S,; = S7 # 0.

Mode B The algorithm terminates but produces a faulty error locator

I(2).

1. 0is aroot of I(z);
2*. Mode B1 has not occurred but I(z) has a multiple root.

In that case two error locations (which must by definition be distinct) are
the same;

3. I(z) does not split into linear factors.

The error locator is constructed to split into linear factors with distinct
non-zero roots. So any of these indicate that something is wrong.
Examples
e Failure mode Bl

d=101110000O0O0O0O0TO0O0
s(z) = 3z° + 8z* + 10z° + 3z2 + 152 + 8,
1°(z) = 6z° + 1022,

BCH error correction: (2) an algorithm 255

e Failuré mode B3

d=1 10001 100011000,
s(z) = 14z° + 825,
I°(z) = 9z2° + 1.

Mode C* The algorithm produces valid error locator, but error evaluator
produces an error value # 1.

This type of error would not be detected by the algorithm as it stands,
but it would be picked up by an extended algorithm that calculated the error
value from 1°(z) and w°(z). As this type of failure does not occur, an error
value #1 indicates a calculation mistake.

16.5 The polynomials calculated by the algorithm

We now come to the proof that the polynomials 1°(z), u°(z) and w°(z)
obtained by the BCH algorithm really are just constant multiples of the true
error locator, evaluator and co-evaluator. If you want to take that result on
trust, calculate some of the examples and skip to the next chapter. .

In order to show that the polynomials 1°(z), u°(z) and w°(z) produced by
the algorithm are as we claim, we must work out what the distinguishing
properties of I(z), u(z) and w(z) are and then check which of them are satisfied
by I°(2), u°(z) and w°(z). We already know most of these properties. In this
paragraph we will establish the last one we need. In the next section we shall
show that the properties can be used to distinguish I(z), u(z) and w(z). Then
finally we shall show that 1°(z), u°(z) and w°(z) have all the properties except
one (which accounts for the constant factor).

We assume from now on, that s < ¢ errors occurred in the transmission
of the code word c¢(x). Of course, the most important property of I(z), u(z)
and w(z) is that they satisfy the fundamental equation (Theorem 15.12), and
we already have some information about degrees (Proposition 15.11). The
next proposition gives the final ingredient we need.

Proposition The highest common factor of I(z) and u(z) is 1.
U2), u(z)) = 1.

The same proof can also be used to show that (I(z), w(z)) = 1, but we shall
not make any use of that fact.

Proof First we check for factors of the form (1 — o’z). If i € M, I(z) contains

256 Error-correcting codes and finite fields

a factor (1 — a'z). So i« %) = 0. The formula for u(a™') is

u(z) = Y e;a® VT (1 —adg™h).
ieM jeM
J#i

All the terms in the sum except one are zero. That one is

o T (1—a/7h.
jeM\i
It is a product of non-zero values. Hence u(a™") # 0.

Suppose that I(z) and u(z) have a non-constant common factor v(z). Since
I(z) splits into linear factors, the same is true of v(z). Thus v(z) has at least
one root a %, for some i € M. That implies that u(a~*) = 0, contradicting the
calculation we made above. Therefore I(z) and u(z) have no non-constant
common factors and thus their highest common factor is 1. u

16.6 Uniqueness of the error locator and evaluator

We now investigate how far the fundamental equation (Theorem 15.12) and
the properties we have established in Propositions 16.5 and 15.11 determine
the error locator, evaluator and co-evaluator polynomials.

Theorem Uniqueness of I(z), u(z) and w(z)

@) If1°(2), u°(z) and w°(z) satisfy the fundamental equation and have degrees
satisfying deg(l°(z)) < t, deg(u°(z)) <t and deg(w’(z)) < t, then there
exists a polynomial k(z) such that 1°(z) = k(z)i(z), u°(z) = k(z)u(z) and
w(z) = k(z)w(z).

(b) If, furthermore, 1°(z) and u°(z) have highest common factor 1, then the
polynomial k(z) is a non-zero constant.

(© If I°(2) also satisfies 1°(0) = 1, then k(z) = 1. So I°(z) = I(2), u°(z) = u(z)
and w°(z) = w(2).

Proof (a) We have
I(2)s(z) + u(z)z* = w(z) (1)

and

1°(2)s(z) + u°(2)z* = w°(z).)

.Eliminate s(z) by multiplying (1) by I°(z) and (2) by Kz) and subtracting,

This gives
(°@)u(z) — U2)u®(2))z* = I°(2)w(z) — I(Z)w°(z2).

BCH error correction: (2) an algorithm 257

Both terms on the right have degree less than s + ¢ and s < t. Hence the
polynomial on the right has degree less than 2t. On the other hand, the
polynomial on the left is a multiple of z?*. It follows that the only way this
equation can be satisfied is if

1°(2)u(z) — I(z)u°(z) =0 ‘3)
and
1°(2)w(z) — l(z)w°(z) = 0. 4)

Informally, these two equations show that the ‘ratios’ I°(2)/I(2), u°(z)/u(z)
and w°(z)/w(z) are all equal.
We shall show that there is a polynomial k(z) such that

1°(z) = k(2)l(2).
Then we shall deduce from (3) and (4) that
u°(z) = k(z)u(z)

and
w(z) = k(z)w(z).

We know from Proposition 16.5 that I(z) and u(z) have highest common
factor 1. So we shall use the 1-trick. From Euclid’s algorithm it follows that
there are polynomials f(z) and g(z) such that

f@2) + 9(2)u(z) = 1.
We multiply this equation by [°(z):
I°(@) = fU)I°(2) + g(2)!°(2)u(2).
Now we use (3) to substitute for [°(z)u(z):
I°(z) = f@U2)I°(2) + g(2)(2)u’(2)
= (f@I°(2) + 9@ (2)i(2).

So k(z) = f(2)I°(2) + g(z)u°(z) is the polynomial we require. Substituting
I°(2) = k(z)l(z) in (3) and (4) gives

k(@2)I(2)u(z) = l(z)u°(z)
and
k@) (2)w(z) = l(z)w°(z).

As I(z) # 0 it follows that u°(z) = k(z)u(z) and w°(z) = k(z)w(2).
(b) From part (a), k(z) divides both [°(z) and u°(z). If they have highest

258 Error-correcting codes and finite fields

common factor (1°(z), u°(z)) = 1, then k(z) divides 1. As the only polynomials
dividing 1 are the non-zero constants, the statement follows.

(c) From part (b) I(z) and [°(z) are non-zero and differ by a constant
factor K = k(z). By Propositon 15.11,(0) = 1. Thus if I° = 1, then K = 1 and
hence [°(z) = I(z), u°(z) = u(z) and w°(z) = w(z). |

16.7 Properties of Euclid’s algorithm

In Theorem 16.8 we shall show that [°(z), u°(z) and w°(z) satisfy conditions
(a) and (b) of Proposition 16.6, and hence differ from the true error locator
and evaluators by a constant factor. The proof of the theorem relies on some
technical properties of Euclid’s algorithm relating the entries in a pair of
rows to those in the next pair of rows. Formal proofs of these facts are given
in Theorems 7.8-7.10 in the Extras of Chapter 7. :

Here we shall motivate and illustrate them using Euclid’s algorithm for
integers and the properties of 2 x 2 determinants. Exactly the same facts
hold when Euclid’s algorithm is applied to polynomials.

Recall the calculation of the highest common factor of 104 and 12 by
Euclid’s. algorithm.

Row 0 R U v

—1 — 104 1 0
0 — 12 0 1
1 8 8 i -8
2 1 4 —1 10
3 2 0 3 —26.

The first two rows just contain 104, 1, 0 and 12, 0, 1. Thereafter the R, U
and V entries of each new row are calculated by subtracting the same multiple
q of their immediate predecessors from the entries two rows above:

Tivr =Tj—1 = 4j+17j

Uiy = Ujy — G+ 1l

Vj+1 = Vj—1 = gj+1Y;.

For our present purpose it is unimportant how g;. , is formed. Consider

the 2 x 2 determinants
Xj-1 YVi-1
Xj Vi

where x and y are any of r, u or v (but the choice is fixed for both
determinants). Now

Xj Vi

Xj+1 Vj+1

and

5

Xje1 =Xj-y = §j41%; and Vi#1 = Vj-1 — A+ 1Y)

So the second determinant is obtained from the first by switching the rows
and then subtracting g;.,, times the first from the second. Hence the value
of the second determinant is just —1 times the first. By looking at the
determinants obtained from the first two rows we now derive three facts:

e Factl. Forallj, rj_yu;—u;_r;= £b;
e Fact2. Forallj, r_v;—vj-==%q
e Fact3. Forallj, uj_yv; —v;_qu;= 1.
These factors constitute the cross-product theorem 7.9. Recall further that
our table is constructed so that for all j,
e Fact 4. Forallj,uja+v;b=r;

That is proved in Theorem 7.8. Finally, we need some elementary facts
about the degrees of the entries in the table when Euclid’s algorithm is
applied to polynomials. These are proved in Theorem 7.10.

e Fact 5. The degrees of the entries in the R column decrease strictly.

This is the way the algorithm was set up. It implies that the degree of the
entry in the Q column is always at least 1.

e Fact 6. From row 1 onwards, the degrees of the entries in the U and
V columns increase strictly.

That is because the highest term of, say v;, (z) comes from g;,,(2)v;(2).

16.8 Relating I°(z), u°(z) and w’(z) to Kz), u(z) and w(z)

Theorem Denote the polynomials calculated by the BCH algorithm by
1°(2) = v(2), u°(z) = u;(z) and w°(z) = r;(2) and the true error locator, evalua-
tor polynomials I(z), w(z) and u(z). If s <t errors occurred, then there
exists a non-zero constant K such that 1°(z) = Kl(z), u°(z) = Ku(z) and
w(z) = Kw(z).

Proof We denote the polynomials vj(z), ufz) and ri(z) obtained by the
algorithm by [°(z), u°(z) and w°(z) as before.

The statement we wish to prove'is the conclusion of Proposition 16.6(b).
The hypotheses required to apply that proposition are as follows:

1. I°(z), u°(z) and w°(z) satisfy the fundamental equation;
2. their degrees satisfy

deg(I°(2)) <'¢,
degw®°(@)) <t
deg(w(2)) < t.

259

260 h Errar—corrécting codes and]irrzirtev jields o
3. The highest common factor of [°(z) and u°(z) is 1.

1. To verify that [°(z), u°(z) and w°(z) satisfy the fundamental equation,
we use Fact 4, substituting s(z) for b and z* for a:

v(2)b(2) + uf2)a(z) = r(2),
or
I°(2)s(z) + u°(2)z*" = w(z). 1)

2. Certainly deg(w°(z)) < t, because that is the stopping condition for
the BCH algorithm.

The calculations for the other two degrees are close parallels.
From Fact 6 we have

deg(v;-1(2)) < deg(I°(2)),
and from Fact 5,
deg(r;-1(2)) > deg(w°(2)).
Therefore
deg(v;-,(2)w°(2)) < deg(I°(2)r;-,(2)).
Now, from Fact 2,
1°(2)r5-1(2) — v;-1(2)W°(2) = + 2%
Hence
deg(I°(2)r;-1(2)) = 2t.
Since we stopped at the first row of Euclid’s algorithm for which
deg(ri(2)) < t,
it follows that
deg(r;-,(2)) > ¢.
Hence
deg(I°(2)) <t
as required. From Fact 6 we have
deg(u;-41(2)) < deg(u°(2)),
as above:

deg(r;-1(2)) > deg(w(2)).

BCH error correction: (2) an algorithm ~—— 261
Therefore

deg(u;-(w°(2)) < deg(u°(@)r;-1(2))-
Now, from Fact 1,

u(@)rj-1(2) = u;-1(2w°(@) = £3(2).
Hence
deg(u’(2)r;-1(2)) < 2t.
Again from the stopping criterion of the algorithm,
deg(r;-1(2)) = t.
Hence
deg(u’(z)) <t

as required.
3. Fact 3 states that for all j,

uj_ 0 — vj_qu;= 1.
Substituting 1°(z) for v; and u°(z) for u;,
;-1 (DI°(2) — u*(2)v;-4(2) = +1.

Thus any common factor of I°(z) and u°(z) must divide both terms on
the left hand side and hence 1. So the highest common factor of I°(z)

and u°(z) is 1.
We have now established the three statements we required and the
conclusion of the theorem now follows from Proposition 6(a) and (b).
]

EXTRAS
16.9 Changing the primitive element used to calculate syndromes

In the Extras of this chapter we consider how the choice of primitive
element affects the code BCH(k, t). There are two ways in which the
choice may apparently influence the resulting code. Firstly, it is used to
calculate the syndromes, and secondly it is used to generate the multiplica-
tion table of GF(2*). We shall show that neither of these affects the code
materially. Indeed, changing the choice in the first case amounts only to a
permutation of the bits of the code words, while in the second it has no effect
whatsoever.

262 » Error-correcting codes and finite fields
Suppose we choose a different primitive element f to evaluate the
syndromes. Remember that the first appearance of the primitive element

« was in the choice of ordering the rows of ¥, ,. So we must permute
the rows of ¥, , to correspond to the powers of f.

Example 1If we choose o = 2 and § = 6 in GF(16), then the powers of 2 are
(in descending order)

12 6 3 13 10 5 14 7 15 11 9 8 4 2 1,
while those of 6 are
4 9 15 14 10 3 12 2 8 11 7 5 13 6 1.

Thus to transfer from « to § we must rearrange the columns of ¥ , , to fit
the new powers. For instance the first column of ¥, , must correspond to
4 so it must be the column of ¥} , .. :

The effect of this is to permute the entries of the code words. To make
the permutation clear, I shall tabulate a code word with corresponding field
element above each entry. Thus as a code word for BCH(4, 3, 2) is

12 6 3 13 10 5 14 7 15 11 9 8 4 2 1
110 1 10 01 0 100O0O0O0 1

The permuted word

4 9 15 14 10 3 12 2 8 11 7
00 0 0 1t 0 100 11

is a code word of BCH(4, 3, 6).
To check this we should calculate the syndromes of this word by evaluating
its polynomial at 6, 5 and 11. T give the calculation for 6 below.

000010 10 0 110 111
6 00001 6 123 10 158 2 13 40

I leave it to you to verify the other syndromes, and to write out ¥, ;6.

Proposition Changing the primitive element with respect to which the syn-
dromes are evaluated has the effect of permuting the entries in the code words
of BCH(k, ©).

Proof The columns of the check matrix ¥, , are defined independently of the
primitive element selected. That element only determines the order in which
they are entered. Thus a different choice produces a different order of the
same columns. That corresponds to a permutation of the entries of the code
words. |

BCH error-correctir

16.10 Changing the field representation

Now consider the effect of changing the representation of the field to that
based on S.

Example The primitive element 6 of GF (16) is a root of the polynomial
%* + x + 1. If we use that polynomial instead of x*+ x* + 1 to construct
GF(16), then our new primitive element which corresponds to the polynomial
x will be represented by 2 instead of 6. It is a very good exercise for you'to
construct the table yourself. The whole new table is given below.

Log — 0 1 4 2 8 510 314 9 7 613 11 12
0 1 2 3 4 5 6 7 8 91011 1213 14 15
0!x0 0 0 0 0 0 0O 0O 0 0 0 0 O 0 0 0
1 0] 1 2 3 4 5 6 § 9 10 11 12 13 14 15
2 2 314 6 8 10 12 3 1 7 511 9 15 13
3 3 02 1[5 12 1 8 13 14 7 4 1 2
4 4 5 6 T3 2 14 10 5 1 9
5 5 4 7 6 1 1 4 9 12 6
6 6 7 4 5 2 3.9 4 8 4
7 7 6 5 4 0o 3 512 11
8 8§ 9 10 11 4 15 2 1
9 9 8 11 10 3 51 15 14
10 1011 8 9 14 15 12 13 2 38 11 12
11 11 10 9 8 15 14 13 12 3 2 1 6 3
12 2 13 14 15 8 9 10 11 4 5 6 3 8
13 13 12 15 14 9 8 11 10 S5 4 7 4 7
14 14 15 12 13 10 11 8 9 6 7 4 3 5
15 15 14 13 12 11 10 9 8 7 6 5 2 10

Addition remains the same, because it is just polynomial addition in B[x].

What represents our old friend « that used to be denoted by 2? Well, from
the list of powers of 6 above we see that in our original copy of GF(16), 2
is 67. Hence in the new table it has logarithm 7, so it is denoted by 11.

Consider the code word '

11011001010000°1
of BCH(k, t, «). To verify that it is still a code word of BCH(4, 3, «), even

with the new table we must calculate its syndromes at o = 11, o3 =12 and
@5 = 6. The evaluation at 11 is given below. You should check that the

264 Error-correcting codes and finite fields

powers of a are correctly calculated, and check the syndromes there also.
Let us evaluate it at « = 11 in the new field representation:

{1 101 10 0 1 010 0
11 1 10 2 4 11 9 12 12 13 7 4 10

0 0 1
2 5 0.
Proposition Changing the primitive element used to generate the field GF(2*)

without changing the primitive element used to evaluate the syndromes has no
effect on BCH(k, t).

Proof By Theorem 12.7, there is only one field GF(2*) for a given k. The
calculation of the syndromes takes place in this unique field, regardless of
the different binary representation we give its elements. Thus the fact that a
calculation produces 0 will not be affected by the representation chosen.

) n

16.11 Choice of primitive element is immaterial

From this discussion it follows that the minimal polynomial of the primitive
element is more important than the minimal element itself, because when we
construct the field multiplication table, we cannot tell which of the roots of
the generating polynomial we have chosen to be represented by x. The field
is like a symmetric crystal, and if you choose a different root of the same
polynomial it is like rotating the crystal so that it looks just the same. If you
choose a root of a different polynomial it is like viewing the crystal from a
vertex rather than a face — it is the same crystal, but it looks a bit different.

In particular, if the primitive element chosen to calculate the syndromes
is changed to a different root of the same primitive polynomial, then the
resulting permutation of their bits takes code words to code words of exactly
the same code. The words may be moved around but the code itself is
unchanged.

Example Consider the code word

110001001 101011

of BCH(4, 3).

If we change the base primitive element from 2 to 9, which is a root of
the same minimal polynomial x* + x* + 1, then the powers of 9 in descend-
ing order are

13 7 8 12 10 15 4 6 5 11 2 3 14 9 1,
as against the powers of 2

12 6 3 13 10 5 14 7 15 11 9 8 4-2 1.

BCH error correction: (2) an algorithm 265
Thus the word changes to
00110101 1110001,

which, as you can verify, is also a code word of BCH(4, 3).

Proposition Changing the primitive element with respect to which the syn-
dromes are evaluated to a different root of the same minimal polynomial
permutes the codewords of BCH(k, t), but does not change the code itself.

Proof Suppose we change our root from 2 to another root of the same
minimal polynomial. This permutes the entries of the code words. Now we
also change the basis of the multiplication table of GF(2*) to the new root.
By Proposition 16.10, that does not change the code any further, but now
our new primitive element is represented by 2. However, the multiplication
table is constructed using only the minimal polynomial and not the specific
root selected. The multiplication table now looks exactly as it did before,
but the code is again based on 2, so it is the original BCH(k, t). Thus the
effect of permuting the entries has merely interchanged code words among
themselves. |

Tt is unimportant which primitive element is chosen to construct BCH(k, ?).
Of course, the encoder and decoder must use the same element and then
match encoding and decoding techniques. The error processor will still work
if it uses a different root of the same minimal polynomial. But the main point
of this discussion is that no particular care has to be taken in choosing the
primitive element. Any one will do.

We sum this up with the following theorem.

Theorem In designing a BCH code BCH(k, t) the choice of primitive element
is immaterial. n

16.12 Summary

In this chapter we produced an algorithm for calculating polynomials 1°(z),
u°(z) and w°(z) (with the right range of degrees) satisfying the fundamental
equation. It is based on Euclid’s algorithm. We discussed the ways this
algorithm might break down if the received word contained more than the
designed number of errors of the code.

We proved that, provided the received word has no more than the designed
number of errors, [°(z), u°(z) and w°(z) differ from the true polynomials i(z),
u(z) and w(z) only by a non-zero constant factor. It is thus possible to

200 i - wrror-correcting codcs and e fielas— - - —

determine the error locations of a received word from the roots of [°(z). An
example of the calculation was given in Section 16.2.

In the Extras, we showed that the primitive element used to construct the
code and determine the syndromes of received words has no effect on the
properties of the code.

16.13 Exercises

16.1 The code BCH(4,3) is used to transmit a message. One received
block is

0110110010100 T10

Calculate the syndromes and the error locator polynomial. Given
that not more than three errors occurred in transmission, find the
transmitted code word. .

16.2 The code BCH(4, 3) is used to transmit a message. Two words are
received as follows

00001 10011 10010, 10100 10111 11100.

Show that at least four errors of transmission occurred in the first
word and decode the second.
16.3 What happens when you apply the PGZ error processor (seec Exercises
15.2-6) to the first word of Exercise 16.2?
164 Use the Euclidean error processor for BCH(4,3) to correct the
received word

10101 11011 11110

16.5 Compare the calculations of Exercise 16.4 with those in Exercise 15.7.

16.6 Check the claims made for the words in the examples of Section 16.4.
For each word verify that it has the claimed syndrome polynomial
and that the error processor fails as described.

16.7 This exercise gives an indication of the background from which the
Euclidean error processor arose. It deals with Padé approximants to
a power series. Consider a power series P(x) = ag + a,x + a,x? + - -.
A Padé approximant of P(x) is a rational function p(x)/gq(x) with
q(x)P(x) = p(x) (mod x™*"*1) where deg p(x) < m and deg g(x) < n.
By applying Euclid’s algorithm to P(x) and x™*"*! show that Padé
approximants always exist.

17 Reed-Solomon codes and burst error
correction

If you look through the previous two chapters you will notice that in dealing
with BCH codes all calculations take place in GF (16). We only check at the
end that the answers lie in GF(2) = B. So why not drop that final condition?
Then we obtain a linear code with an alphabet of elements of GF(16). This
code is called a Reed—-Solomon code. The arguments of the last two chapters
can easily be adapted to show that this code also corrects up to ¢t errors in
a word, but now each error affects a symbol from GF(16).

The code can be converted into a binary code by regarding the elements
of GF(16) as strings of 4 bits. Considered as a binary code, the block length
of the code is multiplied by 4, but the number of errors it can correct remains
unchanged. That is not very impressive. However, any set of binary errors
that only affect a single ‘block’ of four bits is regarded as a single error and
corrected in one go. Thus although the code is comparatively weak at
correcting random errors, it is quite powerful in correcting multiple binary
errors bunched close together and thus affecting only a few blocks. Such
errors are called error bursts and are often a better model of the errors that
occur in storage media than random errors.

Their excellent burst error-correcting capability, together with the existence
of good error-processing algorithms, is one reason for the widespread use of
Reed-Solomon codes in practice.

17.1 Introducing Reed—Solomon codes

Definition The Reed-Solomon code RS(k, t) consists of all words w of length
g — 1 with entries in GF(q) (where g = 2) such that V. W' = 0. Here ¥, is
the full check matrix of BCH(k, ¢).

Remark We cannot use H, , because the argument used in Proposition 13.8
to prove that H, , defines the same binary code as ¥, breaks down. The
argument relies on the fact that for binary polynomials FG), f(x®) = (%)%
because all the coefficients of f are 0 or 1. This is no longer true when f(x)
is allowed to have coefficients in GF(2*) with k > 1.

268 Error-correcting codes and finite fields

Proposition As a code over GF(q), RS(k, t) is a (cyclic) polynomial code with
generator polynomial g(x) = (x — a)(x — a?) - - - (x — a®*). It has block length
n = q — 1 and dimensionm = n — 2t. Its minimum distance is at exactly 2t + 1.

Proof With ¥, , arranged as for BCH a word u with entries in GF(q) lies
in RS(k, £) if and only if for the corresponding polynomial u(x), u(e) = u(«?) =
-+« = u((«?) = 0. That is the case if and only if g(x) | u(x).

The block length is the number of rows of ¥, , =¢q — 1.

The dimension is obtained by subtracting the degree of g(x) from n.

The proof that the minimum distance is at least 2t + 1 is precisely the
same as in Chapter 13. We show that no 2t columns of ¥, , are linearly
dependent. Indeed, any 2° columns of ¥, , form a Vandermonde matrix, and
are thus linearly independent. Note that the proof of this fact is independent
of the field of scalars being used, and so holds equally for GF(2*) and GF(2).

On the other hand the generator polynomial g(x) is a code polynomial of
degree 2t. That corresponds to a code word of weight at most 2t + 1. Thus
the minimum distance is exactly 2t + 1. |

Note that g(x) is not binary. Although all code words of BCH(k,) are
code words of RS(k, t), the RS code has many more code words which do
not consist of only Os and 1s. The generator polynomial g(x) cannot
distinguish between these different types of code words, whereas the generator
polynomial for BCH(k, r) does.

Example The code RS(4,3) As in the previous chapters we shall stick with
this single code and each example will continue from the previous ones, using
the same code and the same code words.

(a) RS(4, 3) as a linear code over GF(16).

Block length n = 15, dimension m = 9, minimum distance d = 7.

Check matrix ¥,

12 6 3 13 10 5 14 7 15 11 9 88 4 21
6 13 5 7 11 8 2 12 3 10 14 15 9 4 1
3 515 8 1 3 515 8 1 3 515 81

13 7 8 12 10 15 4 6 S5 11 2 3 14 9 1
0 11 1 10 11 1 10 11 1 10 11 1 10 11 1
5 8 315 1 5 8 315 1 § 8 3 15 1

(b) RS(4, 3) as a cyclic code.
The general polynomial g(x) is

(x =2)(x — d(x —)(x — Y(x — 11)(x — 15)
= x84+ 3% + x* 4+ 4x3 + Tx? + 13x + 15,

Reed-Solomon codes and burst error correction 269
Since x'% — 1 = [Ts.6rue (* — B), the check polynomial h(x) is
(x = D(x = 3)(x — 5)(x — 6)(x — T)(x — 10)(x — 12)(x — 13)(x — 14)
=x% + 3x® 4+ 4x7 + 11x® + 11x° + 2x* + 14x3 + 3x? + 125 + 5.

Check that multiplying g(x)h(x) gives x'° — 1.

17.2 Using RS codes

As RS(k, t) is a cyclic code, all the techniques of Chapter 14 can be applied.
We can use the generator polynomial to construct a generator matrix (this
is left to the exercises) and also to encode message words either multiplicat-
ively or using the systematic algorithm. The check polynomial can be used
to test whether a word is a code word in the standard -way. We illustrate
these procedures in the following example.

Example
e Standard encoding
The code has dimension 9 so we choose a message word of length 9:

14 3 8 14 3 8 14 3 8

Extend it to a word of length 15 by appending 6 zeros and divide that
word by the generator polynomial

131471315)14 3 814 3 8 14
1411 1410 1 912

w

8 000000

8 6 4 2 1 2 3
8 1 8111012 5
712 91114 6 8
79 7 512 8 6
51414 21414 0
515 513 211 1
1111512 5 1 0
1 3 1 4 71315
814 8 21215 0
8 1 8111012 5
15 0 9 6 3 50
15 81514 6 4 3
86 85130
8 1 8111012 5
7 0141115 50
79 7 512 86
9 914 3136

270 Error-correcting codes and finite fields
That gives the code word
c=14 3 8 14 3 8

14 3 8 9 9 14 3 13 6.

This is the code word that we shall use throughout the chapter.
® Multiplicative encoding

We choose as our message word: 14 8 7 5 1 8 15 8 7.
Multiply this word by the generator
14 8 7 5 1 8158 7 x 1 3 1 471315
14 8 7 51 8158 7
111 915 3 18 1 9
14 8 7 5 1815 8 7
1011 5134111411 5
110122 710 610 12
9128111312 412 8
125 6 115 5 3 56
14 3 814 3 8143 8 9 914 3136

This gives the same code word as above.
Now we check ¢ using h(x). Multiply c(x) by h(x). We expect two
copies of our second message word separated by six zeros.

14 3 814 3 814 3 8 9 914 313 6 x1341111 214 3125
14 3 814 3 814 3 8 9 914 313 6
11 5 111 5 111 51 2 211 51410
10 12 11 10 12 11 10 12 11 151510 12 6 1
6 414 6 414 6 414 5 5 6 4 238
6 414 6 414 6 414 5 5 6 42 8
56 9569 56 91111 56 312
21113 21113 21113 3 3211 915
15 111 5 111 51 2211 51410
713 4 713 4 713 48 8 71310 3
415 3 415 3 4153 6 6 41511

14 8 7 51 81587 00000014 87 51 815 87

The expected pattern has duly appeared.

17.3 Burst errors

As a binary code RS(k, £) has block length n = k(g — 1) (where g = 2¥) and
its dimension is n — 2kt. Its minimum distance is not, however, k(2t + 1), as
a single bit error in a block representing an element of GF(q) contributes
the full unit distance over GF(g). Thus, all we can easily say is that its
minimum distance is at least 2¢ + 1. In fact it turns out to be exactly 2¢ + 1.
However, as we have already seen, errors occurring close together will affect

Reed—Solomon codes and burst error correction 271
either the same GF(16) symbol or neighbouring symbols. So for such ‘burst
errors” we do obtain good decoding capabilities.

Example Our code RS(4, 3) has the following parameters:

Block length: 4 x 15 = 60,
Dimension: 4 x 9 = 28.
Minimum Distance: 7, we see this by noting that the BCH code word

(101 1001010000O0T1

is also an RS code word if its entries are regarded as elements of GF(16),
giving us a code word

0001 0001 0000 0001 0001 0000 0000 0001
0000 . 0001 0000 0000 0000 0000 0001
of weight 7 in RS(4, 3).
Definition A symbol is an element of GF(q). In dealing with RS(k, t)
considered as a binary code, we shall identify symbols with the sets of bits
representing them.

A set of binary errors in a word is called a burst. The length of the burst
is the number of binary positions between the first and last error (inclusive).
Note that not every position of a burst need contain an error. In practice,
it is assumed that many, but not necessarily all, places contain an error.
Example Our chosen code word is

c=14 3 8 14 3 8 14 3 8 9 9 14 3 13 6.

There are altogether 16° = 68 719476 736 code words. So you will, I hope,
excuse me for not writing them all down.
In binary this code word is

1110 0011 1000 1110 0011 1000 1110 0011
1000 1001 1001 1110 0011
The error burst e of length 11
0000 0000 0000 0000 0000 0000 1011 1000
1110 0000 0000 0000 0000 0000 0000

1101 0110

produces the word

d=14 3 8 14 3 8 5 11 6 9 9 14 3 13 6.

Proposition RS(k, t) can correct a burst of length k(t — 1) + 1.

272 Error-correcting codes and finite fields

By the proposition our code can correct all bursts of length 9. But we
shall see that it can also correct the burst of length 11 in the example. That
is because this particular burst only affects four symbols.

Proof A burst of length k(t — 1) + 1 cannot affect more than ¢ symbols,
because if it affected the last bit ¢; and the first bit ¢;,, it would cover the
¢ — 1 symbols in between and have length at least 2 + k(t — 1). |

17.4 Errors and syndromes

As with BCH(k, 1), we regard words as polynomials, but now these are
elements of F[x] with F = GF(2*). We use the same conventions that we

v used for BCH(k, t).

We assume that a code word ¢ corresponding to the polynomial c(x) is
transmitted and that the word d corresponding to the polynomial d(x) is
received. The error word e = d — ¢ corresponds to the error polynomial
e(x) = d(x) — c(x).

Definition The set M of error locations contains those exponents i for which
the coefficient ¢; of x' in e(x) is non-zero. The values ¢; are called the
corresponding error values.

This definition is identical to that for BCH(k, t), but now the error values
may well be different from 1.

Example With
c=14 3 8 14 3 8 14 3 8 9 9 14 3 13 6,
d=14 3 8 14 3 8 5 11 6 9 9 14 3 13 6,

we have
e=0 0 0 0 0 0 11 8 14 0 0 0 0 0 O.

The error locations are 6,7, 8 (we count from the right starting from 0)

and the corresponding error values are 14, 8, 11.

We define the syndromes and the syndrome polynomial for RS(k, t) in
precisely the same way as we did for BCH(k, t). The only difference is that
now the even syndromes must be calculated directly, and cannot be obtained
by squaring.

Definition For'i =1,...,2t,the syndrome S; of d(x) with respect to RS(k,)
is defined as d(«'), where o is the primitive element used to construct the code.

Reed-Solomon codes and burst error correction 273

Example We use Horner’s scheme to calculate the example syndromes.
Syndromes for c =14 3 8 14 3 8 14 3899143136,

4 3 8 14 3 8 14 3 8 9 9 14 3 13 6
, 14 6 4 6 1515 9 8 111 6 2 7 30
4 14 9 71 4 110 0 8 2 110 0130
3§ 14 14 5 13 15 13 2 10 14 4 2 7 9 10°0
9 14 0 8 913 9 0 3 10 515 412 50
1 14 5 4 9 6 014 5 4 1415 3 7140
5 14 15 11 3 11 515 0 8 12 2 9 9 728
Syndromes for d =14 3 8 1438 511699 143 13 6,
4 3 8 14 3 8 5 11 6 9 9 14 3 136
5 14 6 4 6 15 15 2 151 11 6 2 7 30
4 14 9 711 4 1 1158 2 110 0130
g 14 14 5 13 1513 9 122 0 9 9 4 64
9 14 0 8 9 13 9 11 14 515 3 1211 8 1
4 14 5 4 9 6 0 5 75 5 5 212 41
5 14 15 11 3 11 5 4 5 7 15 10 12 8 8 3

Note that S, # S2. That can happen because we are not dealing with a binary
polynomial.

Proposition A word c € GF(q)" where g = 2% and n = q — 1, is a code word
of RS(k, t) if and only if its syndromes Spy...s Sy are all zero. If cis a code
word and d = ¢ + e, then the syndromes of d are the same as those of e.

Proof Just as with BCH(k, t), the syndromes are the entries of V..cT, and
V., is defined to be the check matrix of RS(k, t). The second statement pow
follows because ¥ ,dT = V™ + Vi .e". | |

17.5 Defining the error locator and evaluator polynomials

We copy the definitions of the error locator, error evaluator, error ¢o-
evaluator and syndrome polynomials directly from BCH(k, t).

Definition Let the code RS(k, 1), defined over the field GF(2¥) with primitive
element «, be used to transmit a code polynomial c(x). Suppose the
polynomial d(x) is received and let M be the set of its error locations.
Then if d(x) has syndromes S, .., Sy, its syndrome polynomial is

2-1)
$(2) = S+ 8,2 + S5z + o+ + 8§p2¥ = Y SisiZh [6))
=0

274 Error-correcting codes and finite fields
its error locator polynomial is
I(z) = H (1 — alz).)
jeM
its error evaluator polynomial is

jeM ie
i#j

wiz)= Y, eo 1 (1 — a2) 3)

and its error co-evaluator polynomial is

uz) =Y ea® VI (1 —d). 4)
jem ieM

Example With d as above the syndrome polynomial is
325 + z¢ + 2% + 422,
the error locator is
(1 = 152)(1 — 72)(1 — 142) = 152% + 11z% + 6z + 1,

the error evaluator is

14.15(1 — 72)(1 — 14z) + 8.7(1 — 15z)(1 — 142) + 11.14(1 — 152)(1 - 7z) =472,

and the error co-evaluator is

14.157(1 — 7z)(1 — 142) + 8.77(1 — 152)(1 — 14z) + 11.147(1 — 152)(1 — 7z)
=822 + 11z + 14.

The statements of the following proposition are obvious.

Proposition Let ¢ be a code word of RS(k, t), and let d = ¢ + e be a received
word. If s errors occurred in d, then the degrees of the error locator, evaluator
and co-evaluator satisfy

deg((2) = s,
deg(u(z)) <'s,
deg(w(z)) < s.
Furthermore, I(0) = 1. | |

17.6 The fundamental equation

We can copy the proof of. validity of the fundamental equation directly from
Chapter 15.

Theorem Suppose that a code word ¢ of RS(k, t) is transmitted and the word
d is received. If at most t errors occurred in transmission, then the error locator
polynomial I(z), error evaluator and co-evaluator polynomials w(z) and u(z),
and the syndrome polynomial s(z) of d(x) are connected by the fundamental
equation.

I(2)s(z) = w(z) + u(z)z*.

Example
(2)s(z) = (152 + 11z% + 6z + 1) x (325 + 2* + 2% + 47%)

15 11 6 1x3 1 1 4 00
§ 4 11 3 00000
15 11 6 1 0 0 0 O
15 11 6 1 0 0 O
14 7 1 4 0 0
g 11 14-0 0 0 4 00
(2)s(z) = (822 + 11z + 14)z° + 4z*

= u(z)z® + w(z).

Proof Evaluating l(2)s(z) we get
2t
I2)sz) = T] (1 —oz) 3, Sz
i=1

jeM

ITa -2 %t: Y e,ariziT!

jeM i=1 peM
2t .
=Y [a-d2) Y ez
peM jeM i=1
2t . . n
=Y (1—a'2) Y, eofz™! M1 a-eo2
peM i=1 ieM\p
=Y e [1 (1—aiz)— % eua*irz 1 a-d2)
peM ieM\p peM ieM\p
= w(z) + u(z)z*. | |

17.7 Error processing algorithm

Any error-processing algorithm for BCH(k,t) can be adapted to RS(k, £). The
original algorithm finds the error locations. Then the error values can be
found by using the fundamental equation to determine the error evaluator
polynomial from the error locator and syndrome polynomials. Here is the
adaptation of the algorithm based on Euclid’s algorithm for BCH(k, 1).

Reed—Solomon codes and burst error correction 218

276 * Error-correcting codes and finite ﬁéids

The set-up is the same as for BCH. Note only that all syndromes must be
calculated: it is no longer true that S, is S%. The calculations proceed as for
BCH but, having located the errors, we must also determine their values.
The version of the algorithm presented here uses a computationally advan-
tageous formula for e;. It will be verified in Theorem 17.8.

The RS algorithm

Write the code words and received words as words with entries in GF(q)
and consider them as polynomials. We assume that no more than ¢ symbol
errors have occurred. Example calculations for the received word d given
above are interspersed with the steps of the algorithm.

Step 1. Calculate S; = d(o') for i = 1,2,...,2t. Put

2t-1 .
5(z) =8; + 8oz + Ssz? + o + 8,24 = Y 5442
i=0

If s(z) = 0, there are no errors: STOP.

Example This has already been done:
s(z) = 32° + z* + 2% + 4z,
Step 2. Apply Euclid’s algorithm to a(z) = z* and b(z) = s(z).

Finish at the first stage where r/(z) has degree <t.
If r(z) = 0, there are more than ¢ errors: STOP.

Example

Q R 174

— 100 0 00O 0 0 0 0

= 31 1 400 0.0 0 1
8 0 § 8 11 0 0 0 g 0
15 7 4 14 0 0 8 15

11 6 7 4 00 14 13 1
15 9 8 00 14 8 2
8 11 14 0 0 13 15 1 15
2 700 13 10 8 11

Step 3. Put I°(2) = vj(z). Find the roots of I°(z): By, ..., f;.

Example
1°(z) = 132% + 10z + 8z + 11 = 10I(2).

Reed-Solomon codes and burst error correction

zr1
We check for the roots using Horner’s scheme, and use it to calculat}a the
derivative at the same time, that will be used in the next step. We omit the

unsuccessful runs.

13 10 8 11
5 13 1 13 0

13 10 4 1°(5) =0, 1°(5) =4
7 3 2 6 0

1310 2 =0, 1" =2
4 13 3 3 0

13 10 11 1°(14) =0, 1°(14) = 11.

Step 4. For each root By, if B; = «"®, then the error occurred at the place
Z—pi)—Li=1,...,e

Example The roots ofl°(z5 are§5=2°=2"57=2"=2"8,and 14 =25 =
2-7, Thus the errors occurred at locations 6, 8 and 7.

Step 5. Put w°(z) = rj(2). Calculate the error values

€y = wo(B:)/1°'(Bo)-

Example
w(z) = 722 = 10w(2)

Error values:

e =755/4 =14=1110
e, =71414/11 = 8§ = 1000
e =777/2 =11=1011.

Thus the corrected word is

d=14381438 5+1111+86+149
=1438143814 3 8 9

17.8 Correctness of the algorithm

Theorem (a) The polynomials 1°(z), w*(z) determined by the algorithm are
equal to KI(z) and Kw(z) where K is a non-zero constant.
(b) The algorithm calculates the error values correctly.

278 " Error=correcting codes and finite fields

Proof (a) The polynomials /(z), u(z), and w(z) are defined by the same
formulae as in Chapter 15, and they satisfy the fundamental equation. Thus
the proof of Theorem 16.8 can be transferred without any change. That
proves (a).

(b) From the formula for w(z),

wa) =e-a”t JT (1 —ad™Y).
jeM\i
From the formula for I(x)
Mo =—a"" T] 1 —a79).
jeM\i
(I'(2) is a sum, and again all other terms are 0). Thus
e = wa™H/I'(a™h).

As I°(z) and w°(z) differ from I(z) and w(z) only by multiplication by the
same constant it makes no difference if we use them instead.]

17.9 Failure modes

The possible failure modes are similar to those for BCH(k, t), but because
the error values are no longer limited to 1, a non-identity error value no
longer constitutes a failure. That makes failure mode C obsolete. On the
other hand failure mode A2 can now occur.

Mode A The algorithm does not terminate properly. This could happen
in two ways:
1. All the non-zero terms in the R column have degrees at least t.
2. s(z) has degree less than t.
Example
® Failure mode A1 This occurs if and only if z'| s(z)
d=1 14 10 15 0 0 0 0 0 0 0 0 0 0 0
S(z) = 2% + 4z* + 23

® Failure mode A2 In this case s(z) = w(z) but I(z) = 1, which has no
roots.

d=1 5148 8 0000 0O0O0O0 0 0,
s(z) = 13z + 10.

" Reed-Solomon codes and burst error correction 279
Mode B The algorithm terminates but produces a faulty error locator
I(z).

1. 0is a root of I(z);
2. Mode B1 has not occurred but I(z) has a multiple root.

In that case two error locations (which must by definition be distinct)
are the same;

3. I(z) does not split into linear factors.

The error locator is constructed to split into linear factors with distinct
non-zero roots. So any of these indicate that something is wrong.

Example

o Failure mode Bl
d=0 111000 00O0O0O0O0 O,

5(z) = 82° + 10z* + 3z% + 5z% + 15z + 8,
I°(z) = 62° + 1022,
e Failure mode B2 .
d=0 0 0 0000 O O 11 13 15 9 13 3,

s(z)=z*+ 22 + 1,
I°2) =22+ 1 = (z + 1)2.

e Failure mode B3
d=11 0001 100O0T1T1O00 0,

s(z) = 14z° + 923,
I°(z) = 92° + 1.

17.10 Burst error performance

One of the reasons for the popularity of RS codes is their burst error
sensitivity, but the easiest way to construct a code for correcting bursts is
to ‘interleave’ the code words of an ordinary code, so that errors that occur
close together affect different words of the code. Thus compact audio discs
use a coding scheme that combines RS codes and interleaving. In this section
we shall briefly investigate burst error correction and compare the gains
obtained by using RS codes with those obtained by plain interleaving. There
is no need to modify the error processor for RS codes. Any error processor
capable of correcting all random errors will also correct all amenable bursts.
Conversely, however, there are conceptually simpler error processors that

280 Error-correcting codes and finite fields™
can correct all amenable bursts, but not all random errors. One of these is
described in the exercises.

Definition Ler C be a code of block length n. We define the r-fold interleaved
code rC to be of block length rn defined to have as its code words those
words consisting of the concatenated columns of any r x n matrix whose
rows are code words of C.

Example Let uy = (Uyy,. .- JUp), ety = (Uprs oo os) DY T codes of C.

Then the matrix formed by the definition is

Uy T Uin

Upp U Upn
Hence the interleaved code word of rC is

(Uyg Uags e o os Upgs Uras oo oo Urin=1)s B < o Upn)-

The effect of using rC is the same as using C, but transmitting the code
words of C in the following way. Take r code words at a time, transmit their
first entries in order, then their second entries, and so on until their last
entries have been transmitted.

The following proposition is very easy to prove.

Proposition Let C be a code and let D = rC. Then if C is linear, so is D, and
if C can correct t random errors, then D can correct any burst of length tr.

Proof If C is linear, then any lincar combination of matrices with code
words of C as rows will also have code words of C as rows. Consequently
any linear combination of code words of D will be a code word of D. You
can also see this directly by looking at the formula for the code words of D.
Now suppose C can correct ¢ random errors, and let ¢ be a code word of
D written as an r x n matrix. A burst of length tr produces at most ¢ errors
in each row of the matrix. As C can correct [€rrors, all these errors can be
corrected.]

To see whether interleaving produces better or worse results than the
transition from BCH(k,t) to RS(k,t), we compare the performance of
RS(4, 3) and RS(4,4) with codes obtained by interleaving four words of
BCH(4, 2) and BCH(4, 3), which we denote by 4-BCH(k, 1).

All the codes have block length 60 and their ranks are as follows:

RS(4,3): 36; RS(4,4): 28; 4-BCH(4,2): 28; 4-BCH(4, 3): 20.

‘_{eed _,_M‘ mon... " sand ,:fASt er ~~—' ~orrec - st

The maximum length of a burst each can correct is calculated from the
formulae of the text.

RS(®4,3):9; RS(4,4): 13; 4-BCH(4, 2):8; 4-BCH(4,3): 12.

It follows that the RS(4, 3) corrects bursts of length 1 greater than the
4-BCH(4,2) but has much greater rank. A similar statement holds for
RS(4, 4) and 4-BCH(4, 3). The RS codes significantly outperform the inter-
leaved codes.

EXTRAS

17.11 Possible syndrome polynomials of RS

The final part of the chapter is devoted to an analysis of the possible
syndrome polynomials and polynomials 1°(z) produced by Euclid’s algorithm,
when we drop the condition that the number of errors should be less than
the designed number ¢. In this discussion we regard BCH(k, t) as a subcode
of RS(k, t) consisting of those words in RS(k, t) that have entries in B. We
shall prove the claims made in Chapter 16 that certain failure modes cannot
occur.

First we establish that there is no limitation (apart from degree) on the
syndrome polynomials of RS(k, t).

Proposition Let q = 2t n=gq— 1, and E = GF(q). Then every polynomial
of degree at most 2t — 1 in E[z] is the syndrome polynomial of some word in E".

Proof The set of polynomials in E[z] of degree at most 2¢t — 1 forms a
vector space of dimension 2¢. The mapping taking each word of E" to its
syndrome polynomial is linear and by definition RS(k,) is its null space.
Now the rank and nullity theorem tells us that

dim(RS(k, t)) + dim(syndrome polynomials) = dim E" = n.

The dimension of RS(k, t) is n — 2t (Proposition 17.1). So the dimension of
the set of syndromes is 2t. As that is the dimension of the set of all
polynomials of degree 2t — 1, the syndromes must exhaust that space, and
the claim is proved.]

It follows, as confirmed by the examples, that all failures of Type A can
occur.
17.12 Possible syndrome polynomials of BCH

For BCH(k,), the situation is more complicated, certainly a syndrome
polynomial S(z) of a binary word must have S,; = S?, but the (binary)

282 Error-correcting codes and finite ﬁeldsﬂ

dimension of the set of such polynomials in E[z] is kt, while the dimension
of BCH(k, t) may well be greater than n — kt. So some ‘eligible’ syndrome
polynomials are not syndromes of binary words. However, if we restrict our
attention to words of weight at most t, then it does follow that if the
syndrome looks like the syndrome of a binary word, the word was indeed
binary.

Proposition Let the notation be as in Proposition 17.11.

(a) If s(z) with coefficients S; of zi~1 in E is the syndrome of a binary word
v, then for all j, S? = S,;.
(b) If s(z) is the syndrome of a word u in E" of weight at most t, and for all

j<t, 8} =S5, then u lies in B".

Proof (a) We have already proved this in Proposition 15.3.
(b) Let u have weight s<t, and considering u as a polynomial let
M = {i|u; # 0}. Then

S;= 3y wa
ieM
Hence
26
Sy =Y watY
ieM
and
$2= % ula?l.
ieM

Now consider the s x s Vandermonde matrix 4 = (a;;) = («*¥), where ie M
andj=1,...,¢t and the vectors v = (¥;) and w = (u?). The statement that
S,;= 5% is the same as Av = Aw or A(v—w)=0. But it was shown in
Appendix LA of Part 1, that for Vandermonde type matrices the only
solution of this equation is v — w = 0. Thus ; = v for all i in M. Now the
only roots of x?> — x in any field are 0 and 1. Thus u is a binary vector.]

Corollary If a binary word d lies within distance t of a word c of RS(k, 1),
then c is binary. Thus error mode C cannot occur for BCH(k,).

Proof The error word e satisfies the hypothesis of part (b) of the proposition.
n
17.13 A final result

Finally, we shall prove that error mode B2 cannot occur for binary
BCH codes. This proof is intricate. It depends upon the fact that for

Reed-Solomon codes and burst error correction 283
the syndrome polynomial s(z) the derivative s'(z) is congruent to s%(2)

modulo z?. That is because in characteristic 2 the derivative of an even
power of z is 0. First we prove a lemma that assumes this fact.

Lemma Let F be a field of characteristic 2 and let 0 # s(z) € F[z] be a
polynomial of degree < (2t — 1) such that s*(z) = s'(z) mod z* for some t.
Further let v(z), r(z) € F[z] satisfy

1. v(z)s(z) = r(z) mod z%.
2. The highest common factor of v(z) and r(z), (v(2), (2)) is 1.
3. deg(v(2)) < t, deg(r(z)) < t.

Then r(z) = v'(z).

Proof The first stage of the proof is to divide s(z) by a power of z to make
sure that it has a non-zero constant term. .

Let 2" be the highest power of z dividing s(z). Then n is even, for if it were
not, then s(z) having a non-zero coefficient of z* would imply that s'(z) had
a non-zero coefficient of z 1. Then s%(z), which is divisible by z*", could not
be congruent to s'(z). Let u = 2t — n (which is also even) and s(z) = §(z)z"
From the congruence (1) it follows that r(z) = #(z)z" and v(2)(z) = #(z) mod z*.
Furthermore, since z does not divide §(z), the highest common factor of §(z)
and z*is 1, (3(z), 2*) = 1. Also (z") =0, s0 5'(z) = 5(z)z" and it follows that
§(2)z" = §'(z) mod z*.

Now as (5(2), z*) = 1, there exist polynomials #(z) and ¢,(z) such that

§(2)t(z) + z't4(2) = 1.
In other words
5(z)t(z) = 1 mod z“.

In the next part of the proof we several times have to differentiate a product
f(2)z* with k even. The derivative of z* is 0, and so (using the product rule)
the derivative of f(z)z* is f'(z)z" :

In particular this implies that if f(z) = g(z)(mod z*), then f'(z)=
g'(z)(mod z*). Hence

0=1'=5)z) + 5(2)t'(2)
= $2(2)2"(2) + §(2)t'(2)
= 5(2)(3(2)t(z)z" + t'(2))

= 5(2)(2" + t'(2)) mod z*.

Multiplying the first and last polynomials by #(z) and noting that 5(z)i(z) = 1,
we see that z" + t'(z) = 0 mod z*. Thus ¢(z) = z" mod z*.

284 Error-correcting codes and ﬁhite ﬁelds' ‘

Now v(2)8(z) = 7(z) mod z* implies 7(2)¢(z) = v(z) mod z*. Hence

v'(z) = F(2)Kz) + F2)t'(2) = F(2)t(z) + F(z)z" mod z*.
Replacing #(z)z" by r(z) and rearranging, we get
v'(z) + r(z) = F'(2)t(z) mod z*.

Hence (v'(z) + r(2))5(z) = 7'(z) mod z*.

Multiplying by z" gives

W'(z2) + r(2)s(z) = F(z)z" mod z%.

Denote 7/(z)z" by r°(z), V'(z) + r(z) by v°(z) and observe that we now have
two congruences of the same type

v(2)s(z) = r(2) and v°(2)s(z) = r°(z) mod z*'.

Multiplying the first congruence by v°(z) and the second by v(z) and
subtracting we obtain

v°(2)r(z) — v(z)r°(z) = mod z*'.

Observe that deg(r°(z)) < deg(r(z)) < t and deg(v°(2)) < t. Thus the degrees
of both products are at most 2t — 2. Hence the congruence is an equality.

Since deg(r°(z)) < deg(r(2)), it follows that deg(v°(2)) < deg(v(z)). Further-
more, v(z) divides v°(2)r(z) and thus, since (v(2), 1(2)) = 1, v(z) divides v°(z)
(we used this implication, which is proved in the corollary to Theorem 7.7,
in the proof of the uniqueness of the error locator and error evaluator
Proposition 16.6).

Now the proof is complete because deg v°(z) < deg v(2). Therefore the only
way that v(z) can divide v°(z) is if v°(z) = 0. Hence v'(z) = r(2).]

Corollary It is not possible that in attempting to correct the syndrome of a
binary word Euclid’s algorithm produces a locator polynomial that has multiple
roots, but no zero root.
Proof 1If s(z) is the syndrome polynomial of a binary word, then

2t

s@) =Y, 27! with S, = SZ.

i=1

and therefore

1 2t
s@ =Y 5,247 while s*2) =} SEATE
i=1 i=1

Thus s(z) satisfies the congruence of the lemma. Now suppose that the

Reed=Solomon codes and burst error correction T 28y
decoding algorithm reaches the first stage when deg(r(z)) < ¢, then
v(z)s(z) = r(z) mod z%.

If r,(z) and v,(2) are the previous entries in the R and ¥ columns, then
1(@)(z) + r(z)v,(2) = 2%, so any common factor of r(z) and v(z) must be
a power of z. The assumption that v(z) has no zero roots implies that z does
not divide v(z). Thus (r(z), v(z)) = 1. Furthermore since deg(r,(z)) > deg(r(z))
and deg(v,(2)) < deg(v(2)),

deg r,(z) + deg v(z) = 2t.

By assumption deg r;(z) > ¢; so deg v(z) < t. From the lemma it now follows
that r(z) = v'(z), but then the fact that (r(z), v(z)) = 1 implies that v(z) has no
multiple roots.]

17.14 Summary

This chapter covered the basic facts about Reed-Solomon codes. These codes
use the same syndromes and error processing facilities as BCH codes, but
have code words taken from F", where F = GF(2¥) is the field used to define
the BCH code. We determined the parameters of Reed-Solomon codes and
showed how to adapt the BCH error processor to RS codes by adding a
step to evaluate the error at each location. Reed-Solomon codes are
particularly useful for burst error correction, as was shown by means of
examples. In the Extras we gave an analysis of exactly which failure modes
can actually occur with the Euclidean error processor of Chapter 16.

17.15 Exercises

17.1 Encode the message word 9 8 7 6 5 4 3 2 1 using RS(4,3) and
systematic encoding.

17.2 The code RS(4, 3) is used to transmit a message. One received word
has syndromes §; = 1, S, = 1, S3 =13, S, =2, S5 = 1, S¢ = 10. Find
the error pattern assuming that no more than three errors occurred.

17.3 Verify that

c=

111000111000111000111000111000111000100110011110001111010110

is a code word of RS(4, 3).

Show that the code can correct every binary burst of length <9,
but cannot in general correct a burst of length 13. In an error burst of
length 6 some of the underlined digits of ¢ are changed and the other

286

174

17.5

17.6
17.7

17.8

179

17.10

17.11

17.12

Error-correcting codes and finite fields

digits remain unchanged. What is the error locator polynomial of the
resulting word?
The code RS(4, 3) is used to transmit a message. One received word
has syndromes:

S,=11, S;=1, S3=15 S,=11, S;=11, Ss=4.

What was the binary error pattern?
The code RS(4, 3) is used to transmit a message. One received word is

1 248 58 421 8 14 2 10 12 4

Assuming that no more than three errors occurred, what was the
transmitted word?

Construct a generator matrix for RS(4, 3).

Verify that the examples given in Section 17.9 satisfy the claims made
for them. For each word check that it has the claimed syndrome
polynomial and that the error processor fails as described.

Show that the dual code of RS(k, t) (see Exercise 3.22) can be defined
as the set of values of polynomials of degree at most 2¢ on the non-zero
elements of GF(2*), arranged in order of descending powers of the
primitive element. Find the parameters of the dual code. (In fact the
dual codes are also Reed—Solomon codes).

Construct an error trapping algorithm for RS(k, t) analogous to that
of Exercise 15.10. Show that this algorithm can correct the same burst
errors as the full algorithm. Use this method to correct the error burst
in the received word d of Example 17.3. Which algorithm is faster?
Show that the PGZ error processor of Exercises 15.2-6 will also work
for RS(4, 3). Use it to correct the received word d of Example 17.3.
Compare this method with the method used in the text.

Use the fundamental equation to design an error processor for up to
t erasures in RS(k, t). Use your algorithm to correct

1232527892821 04

Show that it is not possible for the error processor described in the
text to produce a valid error locator, but an error value of 0 for one
of the error locations. In other words, it cannot happen that at the
end of the calculations v{(z) = K [] (1 — f;z) and for some i, say i = 1,
BT =0.

18 Bounds on codes

In Parts 1 and 3 we have constructed codes that are designed to give a
certain worst case performance. For such codes Shannon’s theorem is not
an appropriate measure because it concerns the average performance of a
code. In this chapter we shall prove some simple bounds on the worst-case
performance of codes and compare our codes with them.

The ideas of sphere packing used in the discussion of Hamming codes lead
naturally to such bounds. The Hamming bound which counts the number
of disjoint balls of a fixed radius that can be placed in A" gives an upper
bound for the minimum distance of a code in terms of its block length and
its rate. All codes must lie below this bound, and the closer a code gets to
it the better it is. This bound is very generous and it is known that there are
very few codes that actually achieve it.

If instead we count how many balls are required to cover A" we obtain
the Gilbert-Varshamov Bound, which like Shannon’s theorem, promises the
existence of good codes, but now with respect to worst-case performance. It
is against this bound that we shall measure our codes. It turns out that for
short block lengths our codes are good, but as the block length increases
they fall progressively further and further short of the bound.

The discussion of the Gilbert-Varshamov bound is the main purpose of
the chapter, but before we embark on it we introduce a further simple upper
bound on the worst-case performance of codes, the Singleton bound. The
Singleton bound is generally tighter than the Hamming bound and it will
turn out that it is achieved by all Reed-Solomon codes. So in a sense
Reed—Solomon codes are optimal. Towards the end of the chapter I shall
explain how this statement squares with the seemingly contradictory one in
the previous paragraph.

18.1 The ball of radius r in B”

Example Suppose you are designing a binary code C of block length 7,
that is to have minimum distance d = 3. You have just picked the code word
u = (1000110). What restrictions does that place on further choices? The
obvious answer is that you must not choose any word v with d(u,v) <3 as
a code word. Before you read on write down all words v with d(u, v) < 3.
To construct all words at distance less than 3 from a given word u, you

288 Error-correcting codes and finite fields

first have to change one place in u in all possible ways, and then change two
places in all possible ways. In our example there are 7 places and so there
are 7 ways of changing one place and 21 ways of changing two places. By
analogy with geometry we make the following definition.

Definition In B" the ball Dy(u, 1) with centre u € B" and radius r consists of
all words v such that d(u,v) <r.

Our balls actually have a lot of corners, but they are the nearest we can
get to a sphere with a discrete distance function like the Hamming distance.
The calculation you ought to have done just above was to determine all the
words in the ball of radius 2 around u = (1000110). There are 29 of
them—the calculated words plus u itself. From the example it is fairly easy
to guess the formula for the number of words in a ball.

Theorem Let D be a ball with centre u € B" and radius r then the formula for
the number of words in D is

n n n Lo(n
D| = + +oo = .
o= (5)+ (1) ()= £.0)
Definition We will denote this number by V2, n,r).

Proof D is the disjoint union of the sets of words v with d(u, v) = k, for
k=0,...,r The number of words v at distance k is the number of ways of
choosing the k places at which v should differ from u. That number is just

. N . n
the binomial coefficient i)

18.2 The ball of radius r in general

Exactly the same argument is possible for an alphabet A4 with g letters.
Indeed, the definition of distance is the same as in the binary case so the
definition of a ball of radius r is unchanged.

Definition The g-ary ball with D,(u,r) centre ue A" and radius r consists
of all words v such that d(u,v) <r.

The formula for the number of words in a ball is a slightly more
complicated than in the binary case.

Theorem Let D be a g-ary ball with centre ueB” and radius r; then the
formula for the number of words in D is

ID| = (:)‘) + (’D(q —D 4t C)(‘Z —1y= ,20 @(‘* — D

Notation This number will be denoted by V(g,n, r).

Note that for g = 2 we get the same formula as in Theorem 18.1, because
then g — 1 = 1. The proof is very similar to the original one. The factor
(q — 1)* comes from the fact that there are now g possible symbols that can
occur in any chosen place.

Proof Again D is the disjoint union of the sets of words v with d(u, v) = k,
for k=0,...,r To find a word at distance k we must first choose the k
places at which » should differ from u. The number of ways of doing this is

. n .
the binomial coefficient (k Then in each of these places we must choose

a symbol different from the one u has in that location. There are g — 1 ways
of doing this. Altogether that gives (¢ — 1)* possibilities once the places have

been chosen. Thus there are Z (g — 1)* words at distance k from u. ||

18.3 Code sizes

Example Let us return to the code you were designing in B” with minimum

distance 3. What is the biggest such code you could possibly construct? The

balls of radius 1 around distinct code words must be disjoint. For if w is at

distance 1 from both u and «, then d(u, ') < 2 by the triangle inequality.

So each code word comes with its exclusive clique of 7 immediate neighbours.

That tells us that the code can have at most 27/8 = 2* = 16 code words.
This argument can easily be extended to arbitrary alphabets.

Theorem The Hamming bound Let C be a g-ary code over the alphabet
A of block length n and minimum distance d = 2r + 1. Then C has at ‘most
q"/V(q, n,r) code words.

Proof The balls of radius r around distinct code words must be disjoint.
Hence |C|V(g, n, 1) < |A"| = 4"

For linear codes we can restate this result in terms of the rate (which, you
will recall, is the rank divided by the block length).

‘Bounds on codes — — - 289 .

290 Error-correcting codes and finite fields

Corollary A linear g-ary r-error-correcting code of block length n has rate
at most 1 — log, V(q, n,r)/n.

Proof 1If C has rank m, then |C| = ¢ Hence
m = log,(IC]) < n — log, V(g,n,7).

So the rate of C is at most (n — log, ¥(g, n, r))/n. n

18.4 Upper bounds

It is very rare for ¥(2,n,r) to be a precise power of 2. So the Hamming
bound is attained by only very few codes. For r = 1 that happens exactly
when n + 1 is a power of 2. That leads to the Hamming codes discussed in
Chapter 5. It also occurs if n = 2r + 1 (see Exercise 18.1), and there is one
further case n = 23 and r = 3 corresponding to the Golay code G,3. It can
be shown that there are no other possibilities. The parameters of codes
meeting the Hamming bound for larger g are also known and are even more
restrictive.

Because of this we discuss a further simple upper bound which is achieved
by many codes.

Theorem The Singleton bound A linear g-ary code of block length n and
minimum distance d has rank at most n —d + 1.

Proof Delete the first d — 1 symbols in all the code words of the code C.
As C has minimum distance d, we still have g™ distinct words but the block
length is reduced to ¢" 4**. Hence m<n—d + 1. |

Definition A code that meets the Hamming bound is called perfect. A code
that meets the Singleton bound is called maximum distance separable or MDS
for short.

Proposition 17.1 tells us that all Reed-Solomon codes are MDS codes,
and therefore have optimal parameters for their block-length.

18.5 The Gilbert-Varshamov bound

Example Theorems 18.3 and 18.4 tell us about the absolute best that you
can hope to achieve when you are trying to construct a code of minimum
distance 3 and block length 7. Now let us ask what the worst that can happen

Bounds on codes 291

is. You are designing a binary code of block length 7 and minimum distance
3. To do this you just pick code words at distance at least 3 from all the
code words you already have, and stop when there are none left. You use
no kind of look-ahead in your choice. So you may well end up with rather
few code words. What is the smallest number you can possibly end up with?

Look at the situation when you cannot pick any more code words. Since
you cannot add a further code word to your code every word in B” must
be at distance < 2 from some code word. So the balls of radius 2 around
the code words must cover the whole of B7. Hence |C|-¥(2,n,2) > 2.
(2, n,2) was calculated in Section 18.2. It is 29. So you will certainly get
at least | 128/29 | = 4 code words. That’s a fair bit worse than the maximum
16 we found in-the last paragraph, but since we have assumed no intelligence
in our search we should not expect a brilliant result.

Theorem The Gilbert—Varshamov bound There exists a g-ary code C of
block length n, minimum distance d with |C| > q"/V(g,n,d — 1).

Proof Let C be a code in A" with minimum distance d. We can assume C
is maximal in the sense that no word can be added to C without reducing
the minimum distance. For if C were not maximal we could enlarge it by
adding a word to it that does mot reduce the minimum distance. The
maximality of C implies that every word in 4" is at distance <d — 1 from
a code word. Hence the balls of radius d — 1 around code words cover A"
Thus

q" =A< [CIV(g,n,d — 1).
Rewriting this inequality we get

ICl = q"/V(g,nd —1). []

18.6 Achieving the Gilbert—Varshamov bound

It is worth while to note that the Gilbert—Varshamov bound can always be
achieved by linear codes.

Theorem Let C be a linear code of block length n over the field F of order
q with minimum distance = d. If |C| < ¢"/V(g,n,d — 1), then there exists a
linear code C' = C in F* such that the minimum distance of C' is still > d.

Proof From Theorem 18.5 we can choose a word v such that its distance
from all words of C is at least d. Construct C’ as the set of all sums u — av,
where ue C and ae F. The obviously C' is linear because for a, a’,bb’' € F

292 Error-correcting codes and finite fields

andu, ' e C
b(u + av) — b'(u’ + a'v) = (bu + b'W') — (ba + b'a')v;

bu + b'u' € C because C is linear and ba + b'a’ € F. Thus the sum is in C".
C' also contains C (take a =0). To show that C still has minimum
distance > d, we must show that every non-zero code word has weight at
least d. Let w = u — av be a non-zero code word, then for a = 0, we C, and
so by assumption it has weight > d. If on the other hand a # 0, let b = a™ .
Then

wt(w) = wt(bw) = wt(bu — v) = d(bu, v).

Since C is linear bu is a code word of C, and v was chosen to have
distance > d from all code words of C. Thus d(bu, v) > d. This establishes

that all non-zero code words of C’ have weight at least d as required. W

Corollary There exists a linear code of block-length n and minimum distance
d over an alphabet of size q with rank at least n — log,(V(q, n, d — 1) and hence
rate at least 1 — (log,(V(q, n, d — 1))/n.

Proof Choose a code meeting the Gilbert—Varshamov bound. Then it has
at least g"/V(q, n, d — 1) code words. Thus its rank m is at least

log,(q"/V(g,n,d — 1) = n — log,(V(g, n,d — 1).

The statement about the rate follows immediately from the definition of
the rate as m/n. | |

18.7 Short blocks
For short block lengths many codes surpass the Gilbert—Varshamov bound.

Examples

e The (8,7) parity check code has minimum distance d = 2, because it
consists of all the words of even weight. The Hamming bound does not apply
to even minimum distances and the Hamming bound for minimum distance
d = 3 is the same as the Gilbert-Varshamov bound for d = 2. The size of
code this gives is 28/|D,| = 28/9 ~ 25. So this code surpasses the Gilbert—
Varshamov bound.

e The (3, 1) repetition code has minimum distance d = 3. The Hamming
bound says that the size of this code must be most 23/|D,| = 23/4 = 2. So this
code is one of the few that meets the Hamming bound.

Bounds on codes 293

The (6,3) triple check code also has minimum distance d = 3. The
Hamming bound gives the maximal possible size for such a code. as
26/|D,| =25/7 = 9%. The Gilbert-Varshamov bound says that a code exists
of size 25/|D,| = 26/22 = 212, The code has 8 code words so it is quite good.

18.8 Longer blocks

The Gilbert—Varshamov bound becomes harder to achieve as the block
length of codes increases. But using a long code meeting the bound for a
given rate to transmit a message will greatly improve the error performance
(see Exercise 18.5). So to make the bound into a measure for families of
codes we need to be able to compare codes of differing block lengths. We
can replace the rank by the rate, which for an (n, m)-code is m/n, but we
need a similar length-independent measure to replace the minimum distance.

Definition For a code C of block length n and minimum distance d, the
relative minimum distance is d/n.

We shall also need an estimate for the second term of the Gilbert—
Varshamov bound in which »n no longer appears explicitly. To this end we
introduce the g-ary analogue of the ‘binary entropy’ function that appears
in Shannon’s theorem. .

Definition For 0 < 0 < (g — 1)/q we define the g-ary entropy function H/(6)
by H,(0) = 0 and,

H(8) = blog,(q — 1) — dlogy(8) — (1 - 6) log,(1 — &).
Proposition For all 0 < § < (g — 1)/q, H,(8) = dq/(a — 1) with equality for
d=0,(q—1)/q
Proof For 0 < 8 < (q — 1)/q, the derivative of Hy(6) is

log,(g — 1) — logg(6/(1 — 6)) = 0.
Its second derivative is
6 — 1)/(61n(g)) <O.
So the curve y = H,(x) is concave, constantly turning clockwise.

For 8 = (g — 1)/g, H,(8) = 1. Hence the straight line joining the origin to
((q — 1)/g, 1) must stay below the curve everywhere. |]

294 " Error-correcting codes and finite fields
189 A lemma

With the help of this function we can replace the function ¥(g,n,d — 1) in
the Gilbert-Varshamov bound.

Lemma Let 0 <6< (q— 1)/q, and for any integer n let r =r(n) be the
greatest integer such that r < én. Then

() log,(V(g,n, 1)) > nHy) and
(b) The limit of n™* log,(V(g, n, 1)) is Hy(5).

The proof of this lemma is given in the Extras.

18.10 The asymptotic Gilbert—Varshamov bound

Theorem The asymptotic Gilbert-Varshamov bound For all 6 < (g — 1)/g,
there exists a sequence C, of linear block codes over GF(q) with block length
of C, = n, the relative minimum distance of C, tending to &, and rate tending
to 1 — Hy9).

Proof Let r be the greatest integer satisfying r < én. By Theorem 18.6 there
exists a linear code C, over GF(q) of block length n, minimum distance r + 1,
and rate m/n > 1 — n~* log(V(g, n, r)). By Lemma 18.9 the limit of the rates
of the codes C, is 1 — H,(6). To determine the limit of the relative minimum
distances observe that dn <r + 1 < dn+ L. Hence d < (r + 1)/n < d + 1/n.
Hence the limit of (» + 1)/n as n tends to infinity is J. u

We use this theorem to define good and bad classes of codes.

Definition Let W be a family of codes. We call W bad if, for any infinite
sequence of codes in W, either the rate tends to 0, or the relative minimum
distance tends to 0. We call W good if it contains an infinite sequence of
codes that tends to the Gilbert-Varshamov bound. The value 1 — H,(0) is
called the capacity of the g-ary channel.

Note that while good and bad are certainly mutually exclusive, ‘not bad’
does not imply ‘good’.

Example Hamming codes. For these the rate is (2 — k — 1)/(2* — 1), which
tends to 1 as the block length increases. On the other hand the minimum
distance is always 3, so the relative minimum distance is 3/n, which tends to
0. Thus Hamming codes are a bad family.

“Bounds on codes = 294

18.11 BCH codes

A similar argument can be applied to the design parameters of BCH codes
to show that with this measure they are also a bad family.

Proposition Let C,= BCH(k,t) be a sequence of BCH codes such that
the block length n = 2* tends to oo, and the designed relative minimum distance
is greater than ¢ for some & > 0. Then the designed rate of the codes drops
below 0.

Proof The designed minimum distance of C, is 2t + 1, so the designed
relative minimum distance is (2t + 1)/n. Thus if this is to remain above ¢,
we must have ¢ > en/2 — 1. On the other hand, the designed rank of the code
is n—kt. As k =log,(n) it follows that the designed rank is at most
n — (en/2 — 1) log,(n). But when n is sufficiently large log,(n) > 3e, s0

n — (en/2 — 1) log,(n) < n — 3n/2 + log,(n) = log,(n) —n/2 <0

In other words, if the designed rate stays above 0, then it is impossible for
the relative minimum distance to remain above ¢ for large n.]

From this proposition it is clear that the designed values must become
poor estimates of the true dimension and true minimum distance of BCH
codes. However, one can find upper estimates for the true values for
minimum distance and dimension and show that even with these estimates
the conclusion of the proposition holds (see MacWilliams and Sloane (1977),
Chapter 9), not only for our BCH codes but for all codes of BCH type
defined over any finite field F. Such codes are discussed briefly in Chapter
19 in the context of the even more general class of classical Goppa codes.
They are treated in some detail in Blahut (1983) and MacWilliams and
Sloane (1977).

Reed-Solomon codes belong to the BCH class, and so form a bad family.
That would appear to contradict the optimality of Reed-Solomon codes,
which can, after all, be constructed with arbitrarily long block lengths. But
to increase the block length of Reed-Solomon codes you must also increase
the size of the alphabet. That changes the meaning of the minimum distance.
If you follow the burst error correcting route and re-interpret the alphabet
symbols as blocks of binary bits, then the parameters of the Reed—Solomon
code are no longer optimal, because its block length and rank are multiplied
by a constant k, but its minimum distance remains constant. So in that
interpretation they form a bad family. On the other hand, if you retain the
symbols as your base units, then the block length of the Reed—Solomon code
cannot increase above the size of the alphabet.

296 Error-correcting codes and finite fields

EXTRAS
18.12 The missing proof

Proof of Lemma 189 Note that 0 < 1
< (g - 1/g < (g — D1 - o).
Thus for 0 < i < dn, taking k = dn — i we get

— 0 < 1/q. Hence for any k > 0,

890 & (q — 1)L — §)on=id
and hence separating powers and multiplying by (1 —)"

81 =8y "¥(g — 1)) 2 6(1 — &)" = 8"/(g — 1)
Now

=0+ 1=9)

_i()(q»«l)‘() a-ae
on
£

= V(q, n, r)q " "Hald),

I!M~

Taking logarithms to base g gives
0 > log,(V(g, n, r) — n- H6),

proving (a).
For the proof of (b) we need to apply Stirling’s formula for In (n!):

m+HInm-—n+K<In@)<@+HInm —n+ K+ 1/12)n),

where K is a constant (In (27)/2). If we convert to logarithms to the base g,
the constant changes and we get

(n + 3) log,(n) — nlog,(e) + K’ < logy(n!)
< (n+ §) log,(n) — nlog,(e) + K’ + log,(e)/(12n).

Certainly V(q, n,) is at least as large as any of the terms in the sum defining
it. Thus

Vignr) > (f)(q —1y,

Bounds on codes 297
We use Stirling’s formula and (omitting subscripts g) get:
log(V(g, n, 1)) = (n + 3) log(n) — (r +) log(r)
—(n—r+%logn—r)+rloglg—1)
— nlog(e) + rlog(e) + (n — r) log(e) + C
— log(e)/12r — log(e)/12(n — r).
When we divide by n and let n tend to co, we can ignore the terms that tend
to 0 and get,
lim(n~* log(¥(g, n,))) = lim(log(n) — (r/n) log(r)
— ((n —r)/n) log(n —r) + (r/n) log(g — 1)).
Now, if we choose r as the greatest integer satisfying r <-dn, then as n tends
to infinity dn/r and (1 — d)n/(n — r) both tend to 1. Hence
lim(n ™! log(¥(g, n, r)))
> lim(log(n) — & log(én)
— (1 —8)log((1 — o)n) + d-log(g — 1))
= lim(log(n) — & log(é) — & log(n)
— (1 —d)log(l —8) — (1 — 8) log(n) + dlog(g — 1))
= lim(—6 log(d) — (1 —) log(1 — 8) + 6 log(g — 1))
= H,(5).

As log(V(q, n, r)) < nHy(6) for all n, the limits must be equal.]

18.13 Summary

In this chapter we introduced some elementary bounds on block codes. The
Hamming bound and the Singleton bound give upper limits for the rate of
any g-ary code with a given block length and minimum distance. These are
rather primitive bounds and several better bounds are discussed in van Lint
(1982), McEliece (1977) and MacWilliams and Sloane (1977). The Gilbert—
Varshamov bound guarantees the existence of linear codes with a reasonable
rate, provided the relative minimum distance is not too large. We used this
bound in its asymptotic form to define good and bad classes of codes.

The currently most favoured block codes for implementation, the BCH
family, form a bad class. What that implies, just as for Hamming codes, is
that the gains available by increasing the block length are limited. Reed-
Solomon codes are optimal for their alphabet. There are many codes of BCH

298 Error-correcting codes and finite fields

type of moderate block lengths with quite good parameters, but very soon
the codes fall short of the Gilbert-Varshamov bound and for large block
lengths they become very poor.

In Part 4 we shall describe two important good classes of codes, both due
to the Russian mathematician N. V. Goppa. The classical Goppa codes are
a generalization of BCH codes to which the standard error processors can
be applied. Their designed parameters are sometimes better than those of
corresponding BCH codes, but they remain bad. However, we shall show
that with respect to the true minimum distance and rank there is a good
family of classical Goppa codes. This result is of limited use, as the proof
does not show how to construct the family, and the error-correction
algorithms can only exploit the designed parameters.

The more recent geometric Goppa codes have much better parameters,
but they are harder to construct and cannot use standard BCH error
processors. The error-processing algorithms developed for them so far are
not sufficiently powerful or efficient. If better error processors appear, they
may well become the dominant codes of the future.

18.14 Exercises

18.1 Show that ¥(2,n, 1) is a power of 2 if and only if n + 1 is a power of
2. Show also that ¥(2,2r + 1,r) is a power of 2. Which perfect codes
correspond to the second of these cases?

18.2 Show that the bound obtained in Exercise 4.6 is weaker than the
Singleton bound.

18.3 Compare the Singleton bound and the bound of Exercise 4.6 with the
Hamming bound.

184 Prove that a binary code with block length n and minimum distance >
2n/3 must be a repetition code. Deduce that, for some channels, it is
impossible to meet the performance of Shannon’s theorem using only
the error-correction capability given by the minimum distance of a
code.

18.5 A message of 10000 bits is transmitted over a channel with error
probability 0.004. Four codes of block lengths 10, 20, 40, 100 and rate
4 are available, each meeting the Gilbert~Varshamov bound (exactly).
Calculate the transmission error probabilities.

18.6 For all n construct a binary linear code of block length n and
minimum distance 2 with maximum rank.

18.7 Let C be a binary linear code. Show that either all code words start
with a 0, or exactly half the code words do. Explain why the same
statement is true for any other fixed position in a word.

18.8 Deduce from Exercise 18.7 that for a binary linear code C of block

Bounds on codes 299
length n and dimension m,
Y wt(w) <n-2m

ueC
189 The Plotkin bound It follows from Exercise 18.8 that the minimum
distance of a binary (n, m)-code d satisfies d < n-2m"1j(2™ — 1). Prove
this.
18.10 Compare the Plotkin bound with the Hamming and Singleton bounds.

Part 4

Classical and geometric Goppa codes

19 Classical Goppa codes

It is a sad fact that long BCH codes are bad in the sense that their rate
and relative minimal distance cannot both be bounded away from 0. As
block lengths increase the performance of the codes deteriorates instead of
improving as it should.

The Russian mathematician N. V. Goppa (1970) invented an extended
class of codes that contains the BCH codes as a special case. He proved that
this class of codes contains sequences of codes that approach the Gilbert
bound as the block length increases, though there is still no explicit
construction for such a sequence. Goppa showed that for these codes a
variant of the fundamental equation for BCH codes holds. From this it is
straightforward to design an error processor modelled on Peterson’s BCH
error processor. The Sugiyama, Kasahara, Hirasawa, and Namekawa error
processor, derived from Euclid’s algorithm, was actually designed for these
‘classical’ Goppa codes and thus made their use a practical proposition. This
class of codes forms the topic of the first two chapters of this part.

In 1980 Goppa took his ideas further, extending his definition by means
of algebraic curves over a field. His new ‘geometric’ class of codes contains
many explicit codes that exceed the Gilbert bound. That makes them
potentially very exciting. However, this time Goppa did not find an
equivalent of the fundamental equation. A weak equivalent was discovered
(but not published) by Justesen in the second half of the 1980s and it was
used by Skorobogatov and Viddut (1988) to design an error processor for
a subclass of Goppa’s geometric codes. The subclass still contains many
explicit codes exceeding the Gilbert bound. The error processor is a variant
of the Peterson BCH error processor. So, although it is still inefficient in
comparison with the more modern BCH error processors, the first step
towards a practical use of Goppa’s geometric codes has been achieved.

In the last four chapters I shall introduce these powerful and exciting
geometric codes. The basic facts of algebraic geometry will be presented with
simple examples, but a full introduction to algebraic geometry is unfortun-
ately beyond the scope of this book. So while the development is sufficient
to enable you to understand the codes, a few deep theorems will be presented
only by example.

For the time being, however, we remain on familiar ground. In this chapter
we introduce the classical codes and in the next we shall show how the BCH

304 Error-correcting codes and finite fields

error processor can be adapted to them, and then prove that in contrast to
BCH codes they are a good family.

19.1 The basic idea

Consider the fundamental equation for BCH codes:
w(z) u(z)z*

O e o

Goppa’s idea is to replace the polynomial z* by an arbitrarily chosen
polynomial g(z), define the code so that the fundamental equation still holds
and then solve that equation by analogous methods to the ones used for
BCH(k, ¢).

The first step is to rewrite the syndrome polynomial for a BCH code in
a form that exhibits the ‘BCH polynomial’ z* explicitly. We take our cue
from Proposition 15.8 (except that now we calculate s(z) in terms of the
received polynomial d(x) = d,_x"" ! + -+ + d,).

Proposition The BCH syndrome polynomial s(z) for the polynomial d(x) can
be expressed as

daj n dja(2r+ Diy2t
s = 3 4
Jol—ocz j=0 1 =o'z

®

Proof The syndrome is defined by the formula

2t-1 2t-1

s(z) = Z S,Hz—ZdotJ Z ozt
Using the lemma on summing a geomemc progression (with g = o/z) to
evaluate the inner sum we get

s(z) = Z djpd ————

1— azuzzz

n d-(l’ n d‘m(2r+1)j221
=y 45 i]

j=ol—alz =6 1—oz

19.2 Goppa polynomials

We can consider this result to say that modulo z*, the syndrome polynomial
of d(x) with respect to BCH(k, t) is

s(2) = i d,txj

j=0 1- diZ’

Classical Goppa codes 305

If we replace o by its inverse o™ =y, and s(z) by —s(z), the equation of
Section 19.1 can be rewritten in the form
-3

—s@ = Z v’(1~v) Sez—y

Of course —s(z) is just as good a syndrome as s(z)—indeed, in characteristic
2 it is the same. So we use this formula as the basis for our definition of
Goppa codes.

With this definition of the syndrome it is no longer true that code words
are characterized by the equation s(z) = 0. They only satisfy the congruence
s(z) = 0 mod z%, but we shall see that that is no-great disadvantage. More
serious is the problem of interpretation. What is the meaning of the fractions
1/(z — y’) in the formula? We shall discuss that in the next paragraph

It turns out that there is no need to choose the values y’ as successive
powers of some primitive element so long as they are not roots of the defining
‘Goppa polynomial’.

Definition Let F < E be finite fields, let g(z) be a polynomial over E, and
let P={B;,...,B,} be a set of elements of E such that for i=1,...,n,
g(B)) # 0. Then thc Goppa code GC(P, g) can be defined as the set of words
d € F" such that

s(z) = Zl - i l;
i= i

The polynomial g(z) is called the Goppa polynomial of the code. If E = F,
we speak of a full Goppa code; otherwise of a subfield Goppa code.

=0 (modulo ¢(2)).

Reed-Solomon codes are full Goppa codes with Goppa polynomial z%
and BCH codes are subfield Goppa codes with the same Goppa polynomial.
Notice that the Goppa polynomial is defined over the larger field and that
the subfield code is not obtained by interpreting the symbols of the full code.
1t consists of those words of the full code with all their entries in the subfield.

Definition A general BCH code is a Goppa code with Goppa polynomial
22" and P consisting of the set of successive powers of an element o of E.

It is not hard to extend the full theory of BCH codes including their
generator and check polynomials to these general BCH codes (see the
Exercises of Chapter 20).

19.3 Congruences

How should the congruence defining Goppa codes be interpreted? The
syndrome is defined as a rational function. To use it in this form put all the

306 Error-correcting codes and finite fields

fraction in the sum defining s(z) over a common denominator. Then
Z;=1 dj H'il=1 (z - ﬁ,)
i£J)
n?: 12— ,B,)

Denote the numerator and denominator of this fraction by n(z) and u(z)
respectively. Now as g(8;) # 0, it follows that u(z) and g(z) are relatively
prime. Thus from Euclid’s algorithm it follows that there is a polynomial
h(z) such that u(z)h(z) = 1 mod g(z). Now if g(z) divides s(z) then it divides
s(2)u(z) = n(z) and conversely, if g(z) divides n(z) then it divides n(z)h(z) =
5(2). So if we use the following definition of congruence for rational functions
our theory will be consistent with the computational polynomial approach.

s(z) =

Definition Congruences for rational functions Let s(z) be a rational func-
tion, the representation n(z)/u(z) of s(z) is said to be cancelled or in lowest
terms, if the highest common factor of n(z) and u(z) is 1. If g(z) is a polynomial
then the congruence

s(z) = 0 mod g(z)

means that in the representation of s(z) as n(z)/u(z) in lowest terms, g(z)
divides n(z). It follows that g(z) and u(z) must be relatively prime (see Exercise
19.4).

We shall say that g(z) divides the rational function s(z) if s(z) = 0 (mod g(2)).
For two rational functions s(z) and t(z), the congruence

s(z) = t(z) mod g(z)

means that s(z) — t(z) = 0 mod g(z).

19.4 Another approach

Instead of defining congruences for rational functions we could adopt the
approach that we used in Chapter 15. As all the denominators (z — j;) are
relatively prime to g(z) we can find polynomials kj(z) such that

hi(z)(z — B;) = 1 mod g(2).

Then in the formula for s(z) each term 1/(z — §;) can be replaced by hy(z),
and we get a syndrome polynomial which we shall denote by s',,(z). The
rational and polynomial forms of the syndrome each have their advantages.
So we shall establish that they define the same code and use both.

The polynomials hj(z) that function as inverses of (z — f;) modulo g(z)
are obviously not unique, but it is useful to make a fixed choice. The

Classical Goppa codes 307

proposition below gives a formula for the lowest degree polynomials that
can be used.

Proposition Let g(z) be a polynomial with coefficients in a field F and let B
be an element of F. Then (z — P) divides g(z) — g(B). Thus there exists a
polynomial k(z) such that (z — B)k(z) = g(z) — g(B). If, furthermore, g(B) #0,
then putting h(z) = —k(z)/g(P) it follows that h(z)(z — B) = 1 mod 9(2)). The
polynomial h(z) defined in this way is the unique solution of the congruence
h(z)(z — B) = 1 (mod g(z)) with deg(h(2)) < deg(g(2))-

Example Let F = GF(16),9(z) = 23 +z+1,and f = 5. Then g(f) = 7 and
g2 —gB)=2>+z+6=(z— 5Nz +5z+9). S0 h(z) = 142> + 4z + 3.

Proof Let f(z) = g(z) — g(B). Then f(B) = 0. Hence (z — B) divides f(z),
and k(z) = f(2)/(z — B) is a polynomial. With h(z) defined as —k(z)/g(p) it
follows that

hz)z — B) = —k2)z — B)/g(B) = —f@)/9(B) = 1 —g()/g(B)=1 (mod 4(2))-
Clearly, deg(f(2)) = deg(g(z)). Hence deg(h(z)) < deg(g(2))- If there is a
second solution of the congruence, h°(z) # h(z),.with deg(h°(2)) < deg(g(2)),
then (h — h°)(z)(z — B) = 0 (mod(g(2)). But deg((h — h°)(2)) < deg((g(2)). Hence

(h — h°)(z)(z — B) = g(z). Therefore g(f) = 0, contrary to our assumption.
n

19.5 The syndrome polynomial

We can use Proposition 19.4 to remove all the fractions in the definition of
s(2). If

n d.
@)=Y —

=1z

we can replace 1/(z — B;) by hz) to get a polynomial

5,(2) = '=i1 d;hy(2).

Definition The function s(z) is called the rational form syndrome of d(x).
The polynomial s,(2) is called its syndrome polynomial.

If the degree of g(2) is t, then the degree of hy(z) is at most ¢ — 1. Thus
the congruence s,(z) = 0 (mod g(z)) reduces to an equation, 5,(z) = 0. In the
next proposition we shall show that the polynomial and the rational function
both define the same code.

308 Error-correcting codes and finite fields

Proposition Let P={f,,...,B,} and let g(z) be a polynomial such that
g(B;) # 0 for all j, and deg(g(z)) = t. Further let hyz), j=1,...,n, be the
polynomials defined in Proposition 19.4, such that hj(z)(z — B ;) = 1 (mod g(2)).
For any wordd = (d,,...,dy), let s(z) = 3 d;/(z — B;) and s,(2) = Y. d;h(2).
Then 5(2) = 5,(2) (mod g(z)) and s(z) = 0 (mod g(2)) if and only if 5,(2) = 0.
Thus the two syndromes define the same code.

Proof For convenience reorder the indices so that dy,...,d, are the
non-zero entries of d. Then the two forms are given by the formulae

s,(2) = Y. d;hy2)
=1
and
n(z) Z’_;:l dj H’{=l‘ (z— ﬁ.)
sz) =22 _ %)
u(z) [B-1 -8

The rational form is already cancelled. To verify that, observe that each
factor of u(z) divides all the summands of n(z) except one. So it cannot divide
the whole sum.

Now s(2) — 5,(2) = n(z) — u(2)s,(2))/u(2), and to show that s(z) and s,(z)
are congruent, we must show that g(z) divides n(z) — u(z)s,(2), or equivalently
that the polynomial congruence n(z) = u(z)s,(z) (mod g(z)) holds. But since
(z — Bj)hfz) = 1 (mod g(z)), modulo g(z) we have

k k k k
u@s@) = [1G=5) L dp@ = 3. d; 3 @ = B) = n(a).
- Y

That establishes the congruence. Finally, deg(s,(z)) < deg(g(2)), and hence
5,(2) = 0 (mod g(2)) implies 5,(z) = 0.

19.6 Two full Goppa codes

Example We choose F = GF(16). We shall construct the codes with Goppa
polynomials
g =22 +z+1 and g¥2)=z+z*+ 1.
The polynomial g(z) is irreducible over GF(16) and thus has no roots in
GF(16). So we can take all elements of GF(16) as the set P for both codes,
giving us codes of block length 16. Thus our first code GC, consists of all
words (d, . .., d;5) of length 16 with entries in GF(16) such that
15 d
@)=Y —4-=0

(mod x* + x + 1).
j=0Z—]

Classical Goppa codes 309

and the second code GC, consists of the words satisfying a similar congruence
with respect to g?(z). Thus GC, is a subcode of GC,.)

We calculate the inverse polynomials hy(z), k(z) of (z — j). w1t}3 respect to
g(z) and g?(z) by the formula of Proposition 19.4. They are given in the table
below.

J 9(j) h(z) ') ;C(Z))
2z 5 ¢ 22z z
0 1 1 0 1 1 1 0 0 1 0
1 1 1 1 0 1 1 1 1 1 0 0
2 11 10 13 9 10 11 15 7 14 14 5
3 13 9 2 15 7 14 11 4 12 3 5
4 10 11 7 14 11 10 3 12 2 2 8
5 7 14 4 3. 12 2 10 9 6 5 8
6 2 12 3 6 4 6 13 5 7 13 5
7 9 13 8 7 14 7 12 15 6 12 15
8 12 2 9 5 6 4 11 14 13 8 15
9 11 10 12 2 10 11 5 6 4 4 15
10 10 11 1 1 11 10 11 1 10 1 10
11 11 10 1 1 10 11 10 1 11 1 1
12 14 7 15 12 2 12 6 3 13 6 3
13 4 6 5 13 9 13 7 8 12 7 8
14 10 11 6 4 11 10 8 13 9 9 3
15 6 4 14 8 13 9 10 2 7 15 3

By Proposition 19.5, d = (do, . . . , d15) is a code word if the sum
15 i5
Y dhfz)=0 or Y. dkifz) =0,
i=0 i=0

as the case may be

19.7 A check matrix

Polynomial addition and vector addition are the same, so we can construct
a check matrix from the polynomial form of the syndrome.

Proposition Let C = GC(P,g) with P ={B,,....B.} and deg(g(2))=1t.
Further let hi(z),j=1,...,n, be the polynomials defined in Proposition 19.4
with h(z)(z — B)) =1 (mod g(2)). Construct a t x n matrix H = (h;;), so that
fori=0,...,t—1, b is the coefficient of 2% in h(z). Then for any wor.d d
with syndrome s,(2). if Hd = (sy, . .. L5, then s,(2) =Y. s2' " Thus H is a
check matrix for C.

310 Error-correcting codes and finite fields

Example The check matrices obtained from the proposition and the table
in Example 19.6 are as follows.

e Check matrix for GC;:

(1 1 10 9 11 14 12 13 2 10 11 10 7 6 11 4
0113 2 7 4 3 89 12 1 115 5 6 14
L1 0 9 15 14 3 6 7 5 2 1 1 12 13 4 8

e Check matrix of GC;:

1111 14 10 2 6 7 4 11 10 11 12 13 10 9
115 11 3 10 13 12 11 S5 11 10 6 7 8 10
1 7 412 9 51514 6 1 1 3 8 13 2
1 14 12 2 6 10 11 13 12 9 7
014 3 2 51312 8 4 1 1 6 7 915
0 8

5 5 8 515 15 15 10 11 3 8 3 3

~
N
—
w
EN

S = O O ©

Proof Letd=(d,,...,d,). The polynomial
n n 1
@)=Y dhfz)= 3 Y dhgz .
j=1 j=li=1

The coefficient of 2/~ in this polynomial is) ; h;d; = s;, proving the claim.

The second statement follows because d is a code word if and only if 5,(z) = 0.

19.8 Standard matrix form

Example Reducing a check matrix with standard row operations does not
change the code. Thus we can transform the matrices into standard form.

e Standard form check matrix for GC;:

8§ 8 5 853 107 10 911 10 5100
1 11 10 53 9157 1 14 914 4010
2 4 31126 97 11 213 1211 00 1

Classical Goppa codes 311

e Standard form check matrix for GC,:

8 14 7 5 3 11 11 4 9 13 1.0 0 0 0 0
6 14 131 9 14 6 9 6 3010000
14 13 13 2 13 2 8 4 3 14 001000
12 13 2 4 6 11 13 1 14 8 00 01 00
3 12 85 4 6 14 212 14 0 0 00 1 0
1M 8 33 6 12 6 14 13 14 0 0 0 0 0 1

Now we can produce standard form generator matrixes for the codes.

o Standard form generator matrix for GC;:

1 0 0 000 00 0 0O O 0 O
01 0 000 00 0 0 O 0 O
00 1L 0006 00 0 0 0 0 0
00 0 100 00 0 0 0 0 O
000 0 010 00 0 0 0 0 O
0 0 0001 00 0 0 0 0 O
00 0 000 10 0 0 0 0 O
0 0 0 00O 01 0 0 0 0 0
00 0 00O 00 1 0 0 0 O
00 0 000 00 0O 1 0 0 0
0 0 0000 00 0 0 1 0 0
00 0 000 00 0 0 0 1 0
00 0 000 00 0 0 0 0 1
8 8 5 85310710 9 11 10 5
111 10 53 9 157 1 14 9 14 4
2 4 31126 9711 213 12 11

312 Error-correcting codes and finite fields

e Standard form generator matrix for GC,:

1 0 00 0 0 0 0 0 O
0L 00 0 0 0 0 0 O
00 10 0 00 0 0 O
00 01 0 0 0 0 0 0
00 00 1 0 0 0 0 0
0 0 00 0 1 0 0 0 0
00 00 0 0 1 0 0 0
00 00 0 0 0 1 0 0
00 00 0 0 0 0 1 0
00 00 0 0 0 0 0 1
8 14 75 3 11 11 4 9 13
6 14 131 914 6 9 6 3
14 13 132 13 2 8 4 3 14
12 13 24 6 11 13 1 14 8
312 85 4 614 2 12 14
L1t 8 33 6 12 6 14 13 14

To confirm that there are indeed generator matrices for our codes we can
check directly that their columns are code words using the rational form of
the syndrome. We shall do this for the last two columns

000O0O0OOO0OOOO0OOOT1! S5 411
and
000O0OO0OO0OOOT1 13 3 14 8 14 14

For the first word we must check to see if g(z) divides

1 + S 4 11
z+12 z+13 z+14 z+15

We bring the fractions over a common denominator:

(z + 12)(z + 13)(z + 14)(z + 15) = z* + 72> + 6z + 5.

Classical Goppa codes 313
The numerator is
(23 + 1222 + z + 10) + 5(z° + 1322 + 6)
+4(2 + 1422 + 52 +2) + 1123 + 1522 + 11z + 1) = 1123 + 11z + 11,

which is 11g(2).
For the second word we must check to see if g2(z) divides

1+13+3+14+s+14+14
739 7410 41l z412 z+13 z+14 z+15

This time the common. denominator is

(z + 9)(z + 10)(z + 11)(z + 12)(z + 13)(z + 14)(z + 15)
= 274 825 4 1525 + 52* + 1322 + 1222 + Tz + 6,
and the numerator is
@+ 25+ 624+ 22+ 4224 3z+ 5)
+13(25 + 225 + 224+ 822+ 1122+ 1324 8)
+ 3(z8 + 325 + 112 + 152° + 12z + 14)
+ 14(z5 + 425 + 132% + 1523 + 622 + 152 + 12)
+ 8(z%+ 525+ 4zt + 3284 32+ 22+ 4)
+14(2% + 62° + 5z + 9z% + 15z + 11)
+ 14(25 + 725 + 92* + 152° + 142 + 7
=92 4922 49,
which is 99%(z).
It should be remarked that while the matrices are convenient for calcula-
tion, they obscure the structural relations between code words. For instance,

it is not immediately apparent from the matrices that GC, is a subcode of
GC, (see Exercises 19.1 and 19.2).

19.9 Rank and minimum distance

We can now prove the analogue of Theorem 13.9. We consider first the case
of a full Goppa code.

Proposition Let C = GC(P, g) be a full goppa code with |P| = n and deg(G) = t.

314 Error-correcting codes and finite fields

Then GC(P, g) is a linear code with block length n, rank at least n —t and
minimum distance at least t + 1.

Proof That C is linear follows directly from the definition. For let u and v
be two code words with syndromes s(z) and t(z). By definition g(z) divides
both s(z) and t(z). Now if w = au + by, then w has syndrome as(z) + bi(z),
which is also divisible by g(z) (see Exercise 19.4). Thus au + bv is also a code
word.

Using the method of Proposition 19.7 we can construct a t x n check
matrix H for C. Thus the rank of H is at most ¢, and by the rank and nullity
theorem, the dimension of C, which is the null space of H, is at least n — t.

To estimate the minimum distance we use the rational form of the
syndrome. First recall that since C is linear, its minimum distance is the
minimum weight of a non-zero code word. Let d =(d,,...,d,) #0 be a
code word of smallest weight and for convenience assume that its non-zero
entries are dy, . . ., d,. Then the syndrome of d is

f(_z) _ 25=1 de?;} (z-B)
u(z) 1—ES=1 (z—8)
As d is a code word g(z) must divide n(z). Now
n(B;) =d, [Tf=2 (B, — B;) #0.

Thus n(z) # 0. But the degree of n(z) is at most k — 1. Hence if g(z) divides
n(z), it follows that k — 1 >t,or k>t + 1. n

Example 1In our examples GC, and GC, we found that the check matrices
had full rank. Thus these codes have block length 16, and ranks 13 and
10 respectively. The formula for the minimum distance says that their
minimum distances are at least 4 and 7. The code words we checked at the
end of the last example had weights 4 and 7. So the formula for the minimum
distance is also precise in these cases.

19.10 Subfield Goppa codes

It is easy to extend the estimates of Proposition 19.9 to subfield Goppa codes.
The estimate for the rank changes, as the check matrix has to be remodelled
into a check matrix with entries in the subfield, but the estimate for minimum
distance stays the same.

Example Suppose we wish to consider the binary subcodes of the example

Classical Goppa codes 315
codes in Section 19.4 above. They are defined as the sets of binary words d for
which Hd = 0, where H is one of the two check matrices:

e Check matrix for GC;:

9 11 14 12 13 2 10 11 10 7 6 11 4
3 89 12 1 115 5 6 14
1 12 13 4 8]°

11 10
01 13 2 7 4
l1o 91514 3 6 75 21
e Check matrix of GC;:

11 12 13 10 9

{1114 10 12 6 7 4 11 10

01 15 11 310 13 12 11 511 10 6 7 8 10
01 7 412 9 51514 6 1 13 813 2
01 1412 2 6 7 613 410 11 13 12 9 7
{014 3 2 51312 8 4 1 1 6 7 915
oo s s 8 8 51515151011 3 8 33

Now consider the first equation given by the first matrix. It is
1dg + 1d, + 10d, + 945 + 11d, + 14ds + 12dg + 13d, + 2dg + 10dg
+ 11dyo + 10d,; + Tdyp + 6dy3 + 1ldyg + 4dys = 0.

Since the entries d; are all in B, we can replace the elements of GF(16) by
their binary column representations. So the equation becomes

0 0 1 1 17 1 1
' 0 1
0 do + 0 d, + . d, + 0 dy + d, +) ds + 0 ds
1 1 0. 1 1d 0 0
1 0 1 1 1 0
+ ; dy + ? dg + (1) dy + (l)i\duﬁ (1) dyy + i}du
1 0 0 1 L O 1
0 1 0
1 0 1
+ . dys + 1 dis+ 0 dys=0.
0 1 0.

316 Error-correcting codes and finite fields

Using this idea on each row we produce binary check matrices for the binary
subfield codes. These matrices have four times as many rows as those over
GF(16).

Binary check matrix for GC, |B:

[0011111101110010
000001 110000T1T1°Q0°1
0010110011111 110
11011001001 0101°0
001000011 10071001
0010110001 00T11T1°1
000110100000°T1O0T1°1
0110101010111100
00111000000O0T1T10 1
0001 1011100011710
0001 111101000000
1 01 101011011010 0]

Binary check matrix of GC,|B:
0

COO0CO0COOOOR OO O0OO0OOHOOO~OO

O OO O e e b e O e e e e e O e
— OO M OOOO R L OO O M OMO m -
S - I N i i N S - - -
C OO~ —~ O R OO —m O~ OO RO —~ORO~OO
MO RO O = = O OR OO RO mO
PO R OO O O b OO = O
O OO0 RO MM ORI MmN RO =00 O
~ O, —F OO~ OO0 R OO M MO RO RO O
RO~ R~ OO0 OO~ Om R OO~ OO mO —
— OO, ~ O OO~ RO R OO~ O mmO —
,P OO O~ M OR O =~ —r OO RO — =
C OO M M OO0 OO k= OO
-, OO, OO~ R~ OO R m O L OO0, O~ O M
R OO R R MR M OO R OO~ O R —, OO~

T
OO OO~ 000000000 SO

Classical Goppa codes 317

Proposition Let C = GC(P, g)| F be a subfield Goppa code with |P| =n and
g € E[z] of degree t. Further, let the dimension of E, considered as a vector
space over F be m. Then C is a linear code with block length n, dimension at
least n — mt, and minimum distance at least t + 1.

Proof The block length is obviously the same as for the full Goppa code
defined over E, and the minimum distance cannot be lower than for that
code. So we need only establish the bound for the dimension.

By Proposition 19.7 we have a check matrix H with ¢ rows, so that C
consists of the words in d in F” such that Hd = 0. This check matrix has
entries in E rather than F. As E has dimension m as a vector space over F
its elements can be represented by column vectors of length m over F. In H
we can replace each entry h;; by its column (hyy, . . ., hijm)". Now, the fact that
Hd = 0 is equivalent to the conditions .

Y, hid;j =0,
j=1

fori=1,...,t But, replacing h;; by its coordinate column, these conditions
are equivalent to

Z hijd; =0,
j=1

fori=1,...,tand k =1,...,m. Thus the mt x n matrix H’ with entries in
F obtained from H replacing the entries h;; by their coordinate columns is a
check matrix for C. Thus the rank of H is at most mt and hence the rank
of C is at least n — mt by the rank and nullity theorem. n

EXTRAS
19.11 Special properties of binary Goppa codes

It is by no means obvious that the two binary matrices given in Example
19.10 define the same code, but that is indeed the case. This special property
of binary Goppa codes analogous to the fact that the two check matrices
H,,and ¥, define the same binary BCH code. It follows that some binary
Goppa codes have much better parameters than Proposition 19.10 indicates,
because we can use g(z) to estimate the rank and g%(z) to estimate the
minimum distance.

Proposition Let E be a finite field of characteristic 2, and let g(z) be a
square-free polynomial in E[Z], that is g(z) is not divisible by the square of any
non-constant polynomial in E[z]. Then for any valid set P of elements of E the
binary subfield codes GC(P, g)| B and GC(P, g*)| B are identical.

318 Error-correcting codes and finite fields

Remark The full codes are usually different, as shown by our example. It
is only for the subcodes of words with 0-1 entries that equality is claimed.

Proof First notice that the condition

n d.
s(z2) = 3, —==0 (mod g*(2)) @
j=0z—B;
implies
s(z) = i 4 =0 (mody(z)).)
<oz —B;

Hence GC(P, g%) = GC(P, g).

That holds over any field; now we shall show that provided d; e B for all j,
condition (2) implies condition (1). For convenience we renumber the ele-
ments of P so that d; = 1 forj=1,...,k and d; = 0 for j > k. Now we can
rewrite the left-hand side of (2) as

k
s(zy=Y 1 _ne

Soz—f; u@’

‘We multiply out and obtain
@ B Z_’;=l H;:l (Z - »B:)
u(z) [B-1-8)

By the product rule of differentiation n(z) is just the derivative of u(z). From
the formula for derivatives and the fact that E has characteristic 2 it follows
that the coefficients of odd powers of z in n(z) are all 0. So let k' be chosen
so that k — 2 < 2k' < k — 1. Then there exists elements o} such that

v
niz) =y oz
j=0

In a finite field of characteristic 2, every element is a square (see Exercise
10.9). So we can find «; so that o} = «] and

k' k' 2
nz) =y ozt = (> ozjzj) .
j=0 j=0

Thus n(z) is a perfect square, say n(z) = m(z)%. The binary word d we started
with is a code wora of GC(P, g). Therefore g(z) divides n(z) in E[z]. By
assumption g(z) is square free, so g is a product of distinct irreducible
polynomials f(z) in E[x], each dividing g(z) only once. Each f(z) divides
n(z), so being irreducible, it must divide m(z). Furthermore, all the irreducible
factors of g(z) are distinct. Thus, by Proposition 8.8, their product g(z) divides
m(z). That implies that g(z)? divides n(z), and thus that d is a code word of
GC(P, g*). n

Classical Goppa codes 319

19.12 Summary

In this chapter we have introduced the classical Goppa codes and established

 their basic properties. We showed that the syndrome can be treated as a

polynomial or a rational function, using the polynomial form to construct
check matrices for the codes and the rational form to estimate their
parameters, In the next chapter we shall show how to adapt the Euclidean
error processor to these codes, and prove that there are good sequences of
Goppa codes in the sense of Chapter 18.

19.13 Exercises

19.1 Produce check matrices for the example codes GC, and GC, of Section
19.8 that exhibit GC, as a subcode of GC,.

19.2 Produce generator matrices for GC; and GC, that exhibit GC, as a
subcode of GC;.

19.3 Check that all the columns of the generator matrices for GC; and
GC, given in Section 19.8, satisfy the defining conditions in either
form. Prove that these matrices are indeed generator matrices for the
codes.

19.4 Show that if s(z) = u(z)/n(z) is a rational function in cancelled form
and ¢(z) divides s(z), then g(z) and n(z) are relatively prime.

Show that if £(z) is another rational form, and g(z) divides both s(z)
and t(z), then g(z) divides as(z) + bt(z) for any constants a and b.

19.5 Construct a Goppa code of maximum length over GF(16) with Goppa
polynomial x‘+x3'+ 1. Estimate its rank and minimum distance.

19.6 Let GC(P, g) be a classical Goppa code with P = {f,,...,B,} and
g(z) = Y, g;’ of degree t. Define matrices 4, B and C as follows: 4 is
at x t matrix with entries a;; =0 if i <j, and a;; = g,;+; il i <Js B
is a ¢ x n matrix with entries b;; = {™*; C is a diagonal n x n matrix
with entries ¢j; = 1/g(8;) (and ¢;; = 0 if i # j). Show that ABC = —H
where H is the check matrix for GC(P, g) constructed in Proposition
19.7.

19.7 With the notation of Exercise 19.6, let K be the ¢t x n matrix with
entries k;; = Bi~!/g(B;). Show that K is also a check matrix for
GC(P, g).

20 Classical Goppa codes:
error processing

In this chapter we shall describe how the error-processing algorithm of
Part 3 can be adapted to classical Goppa codes. We shall define error locator
and evaluator polynomials in the same way as we did for BCH codes, though
the definitions have to be slightly modified to take account of the fact that
the places corresponding to the entries of a code word need not be
consecutive powers of a primitive element, and indeed can include the zero
element. At the end of the chapter we shall prove that classical Goppa codes
are a theoretically good family.

20.1 Error locator and evaluator

Suppose we are given a Goppa code GC(P,g) where P = {f,,...,5,}
consists of elements of a field F. From the last chapter we know that the
minimum distance of GC(P, g) is at least d = deg(G) + 1. We shall call 4
the designed distance of GC(P, g) and construct an error processor to correct
t errors, where ¢t is the largest integer with 2t + 1 <d. As far as error
correction is concerned, we may assume that we are dealing with the full
Goppa code, because if a word from a subfield code is transmitted and
fewer than ¢t errors occurred, then a full code error processor will correctly
return the subfield code word.

Definition Suppose a code word ¢ = (cy, ..., c,) of GC(P, g) is transmitted

and in transmission the error word e = (e, . .., ¢,) is added to ¢ to produce

the received word d = (d,, ..., d,). Then the error locations are the values

i=1,...,n, for which e; # 0. We denote the set of error locations by M.
The error locator polynomial is

I)=T] - B
jeM
and the error evaluator polynomial is
w@) =3 ¢ [] @~ B).

jeM ieM
i#j

Classical Goppa codes: error processing 321

Notice that we have replaced (1 — a’z) in the products by (z — f;). That
allows B; = 0, but it changes the formulae slightly. It is also possible to define
an error co-evaluator (see Exercise 20.2).

Example Consider the code GC, of Chapter 19, with Goppa polynomial
25 + 2% + 1. In Section 19.8 we checked that
¢c=0 0000O0O0O0O0T1 133 14 8 14 14
is a code word. Suppose that
d=12 4 0000001 13 3 14 8 14 14
is received, then the error word is
e=124000000O0O0O0O0000,

and the error locations are 0, 1 and 2 (if we take the natural order for the
values f8;).
Then the error locator and evaluator are given by the formulae

(D)=2(z—1)(z—2)=2°+322 + 22

and
wiz)=(@E—1)(z—-2)+2z(z—-2)+42z— 1)

=7z* + 3z + 2.
Proposition The degrees of the error locator and evaluator If s errors

occurred in the received word d, then the degrees of the error locator and
evaluator satisfy:

deg(i(2) = s;
deg(w(z)) < s.
Furthermore, the highest coefficient of I(z) is 1. n

20.2 The fundamental congruence

With our new definition of the syndrome the fundamental equation holds
automatically, albeit as a congruence modulo g(z).

Theorem The fundamental congruence for Goppa codes The syndrome,
error locator and evaluator polynomials of a word with respect to GC(P, g)
are related by the congruence

(2)s(2) = w(z) (mod g(2)).

322 Error-correcting codes and finite fields

Proof Let the code word ¢ be transmitted and the word for which the
syndrome s(z) is calculated be d = ¢ + e. Then denote the syndromes of these
three words by s,(z), s.(z), and s.(z) respectively. We have

w@=y-H-y G g3 G

j= 1z_ﬁj j= 12—‘ﬂ, j= lz_ﬁj

The first sum on the right-hand side is congruent to 0 modulo G, by
definition. Thus

P

le-ﬁj j=1

The sum on the right can be expanded and the congruence becomes

Z,’;=1 ejHLx (z— ﬂJ)

s4(2) = H?=: ’(*zf_ %) (mod ¢(2)),
which is just
5@ =22 (mod g(2).
l()
Multiplying the congruence by I(z) gives the desired result. |

Example In practice the formula is not used to calculate the syndrome.
Instead we use the check matrix obtained in Proposition 19.7. That produces
the polynomial syndrome s,(z).

1 11 14 10 2 6 7 4 11 10 11 12 13 10 9
1 15 11 3 10 13 12 11 5 11 10 6 7 8 10
17 412 9 51514 6 1 1 3 8 13 2
1 14 12 2 6 7 6 13 4 10 11 13 12 9 17
014 3 2 51312 8 4 1 1 6 7 915
0 5 5 8 8 5 1515 15 10 11 3 8 3 3

O - OO O e

Multiplying d (or e) by this matrix we obtain the syndrome
5,(z) = 42° + 12z* + 72° + 822 + 11z + 13.

As we know the error locator and evaluator we can check the validity of

Classical Goppa codes: error processing 323
the fundamental congruence:
(2)s,(2) = (2° + 322 + 22)(42° + 122* + 72> + 82% + 112 + 13)
=428 + 22% + 4z* + 122 + 32
=@+ 2+ 22+ 1)+ T2 +32+2
= (4z% + 2)g(z) + w(z).

20.3 Uniqueness of /(z) and w(z)

From their formulae we can read off the fact that I(z) and w(z) have highe;t
common factor 1 (the proof is identical to Proposition 16.6), and just as in
Chapter 16 we can use this fact to establish the uniqueness of I(z) and w(z).

Proposition Uniqueness of I(z) and w(z). Suppose that in transmitting a
code word of GC(P, g) at most t errors occurred, where 2t < deg(g(2)) and let
I(z) and w(z) be the error locator and evaluator of that word. Then the following
statements hold.

(@) The highest common factor of I(z) and w(z) is 1,
(2), w(2)) = 1.
) IfI°(z), w°(z) and u°(z) satisfy
1°(2)s,(2) + u(2)g(2) = w(z)

deg(I°z)) <t
and
deg(w’(2)) < ¢,

where s,(z) is the polynomial form of the syndrome, then there exists a
polynomial k(z) such that 1°(z) = k(z)l(z) and w°(z) = k(z)w(2).
(¢) If, furthermore, 1°(z) and u°(z) have highest common factor 1, then the
polynomial k(z) is a non-zero constant.
(d) If I°(2) also has highest coefficient 1, then k(z) =1. So 1°(z) = (2),
u°(z) = u(z) and w°(z) = w(z).

Proof The argument for (a) is unchanged from that for BCH codes, I(z)
splits into linear factors and none of these divides w(z).
(b) For some u(z) we have

(2)5,(2) + u(2)g(2) = w(2) (€]
and
1°(2)s,(2) + u*(2)g(2) = w(2). @)

324 Error-correcting codes and finite fields
Eliminate s(z) by multiplying (1) by [°(z) and (2) by I(z) and subtracting.
This gives
(°(@2)u(z) — U(2)u°(2))g(2) = 1°(2)w(z) — [(2)w°(2).

By assumption s < ¢ errors occurred and thus each term on the right has
degree less than st and hence less than 2¢. On the other hand, each term on
the left has a factor g(z) which has degree > 2t. It follows that the only way
this equation can be satisfied is if

1°(z2)w(z) — l(2)w°(z) = 0. 3)
This implies that

1°(2)u(z) — I(z)u°(z) = 0. “@

We know from part (a) that i(z) and w(z) have highest common factor 1.
By Euclid’s algorithm this implies that there are polynomials f(z) and h(z)
such that

f@Uz) + h(z)w(z) = 1.
We multiply this equation by /°(z):
I5(2) = f@U)I°(2) + h(@)°(2)w(2).
Now we use (3) to substitute for I°(z)w(z):
I°(z) = f@U)I°(2) + h(2)l(2)w°(2)
= (f(D)I°(2) + K (2)(2).
So of k(z) = f(2)I°(2) + g(z)u°(z), then 1°(z) = k(z)I(z). Substituting I°(z) =
k(2)l(z) in (3) and (4)
k(2)i(z)w(z) = U(z)w°(z).
As I(z) # 0 it follows that w°(z) = k(z)w(z) and thus also u°(z) = k(z)u(z).
(c) From part (b), k(z) divides both [°(z) and u°(z). If they have highest
common factor (°(z), u°(z)) = 1, then k(z) divides 1. As the only polynomials
dividing 1 are the non-zero constants, the statement follows.
(d) From part (c) i(z) and 1°(z) are non-zero and differ by a constant
factor K = k(z). By its definition I(z) has highest coefficient 1. Thus if [°(z)

also has highest coefficient 1, then K =1 and hence I°(z) = I(z) and
wo(z) = w(z). |

20.4 An error processor for GC(P, g)
Algorithm We assume that no more than ¢ symbol errors have occurred.

Example calculations for the received word d as above are interspersed with
the steps of the algorithm.

Classical Goppa codes: error processing 325
Step 1. Using the check matrix derived in Proposition 19.7, calculate the
syndrome polynomial s,(z). If s,(z) = 0, there are no errors: STOP.
Example This has already been done:
s(2) = 42° + 122% + 72° + 82° + 11z + 13.
Step 2. Apply Euclid’s algorithm to a(z) = g(z) and b(z) = 5,(z). Finish at

the first stage where r(z) has degree less than ¢. If r{z) = 0, there are more
than ¢t errors: STOP.

Example 'We include the U column for check purposes, but do not show
the auxiliary rows used in the calculation.

0 , R U |4
10 0 0 1t 0 1 1 0

4 12 7 8 11 13 0 1

6 10 14 6 15 4 14 1 6 10
5 03 12 13 3 6 53 73 6
5 3 4 6 4 804 264 0

Step 3. Put 1°(z) = v)(2). Find the roots of 1°9(2): Yyse e s Yoo

Example
1°(2) = 22% 4+ 622 + 4z = 2l(z) = 2z(z — 1)(z — 2)

In practice calculate the roots by any convenient search method such as
Horner’s scheme.

Step 4. For each root yini=1,...,s,if y;= B, then an error occurred at
the place k.

Example In our case y,= f;—, for i=1,2,3. The errors occurred at
locations 0, 1, 2.

Step 5. Put w°(z) = r{(2). Calculate the error values
e = w(y)/I”().

Example 1°(z) = 20 4. The values for the three zeros are

0o 1 2
we 4 12 2
1 4 6 12
e 1 2 4

326 Error-correcting codes and finite fields
Thus
240000O0O0OO0OO0OO0OO0OO0OTO0ODO,

e=1

which enables us to recover c. In practice the derivative can be calculated
using Horner’s scheme, or by any other convenient means.

20.5 Termination of the algorithm

Proposition Assume that 0 < s <t errors occurred. Then Step 2 of the
algorithm will end with a non-zero ryz), such that deg(riz)) <t and
deg(r;—,(2)) > t.

Proof From the fundamental equation, the highest common factor of g(z)
and s,(2), (9(2), s,(2)) divides w(z). So it satisfies

deg(g(2), 5,(2)) < deg(w(2)) <s <t.

On the other hand the degree of g(z) is >2t > t. Since Euclid’s algorithm
terminates with r,(z) = (g(2), s,(2)), there must be a j such that r;_,(z) has
degree at least ¢ but r{(z) has degree less than .

20.6 Correctness of the algorithm

Theorem Assume that the weight s of the error word e satisfies 2s < deg(g(2)).
Then the following statements hold.

(@) The polynomials 1°(z), w°(z) determined by the algorithm are multiples
of the error locator and evaluator I(z) and w(z) by a non-zero constant K.
(b) The algorithm calculates the error values correctly.

Proof (a) When the algorithm terminates let u°(z) be the entry in the
U column. Then just as in Theorem 16.8 the properties of Euclid’s algorithm
imply that

u(2)9(2) + 1°(2)s(2) = w°(2),

and that u°(z) and I°(z) have highest common factor 1. Part (a) now
follows from Proposition 20.3.

(b) The formulae for I'(z) and w(z) are both sums in which all terms
except one contain a factor (z — y;) = (z — $,). Evaluating the remaining
terms we get

w(Bi) = e, H (B — Bj)-
jeM\k

Classical Goppa codes: error processing 327
and

l'(ﬂu) = H (ﬂk - ﬁj)~
jeM\k
Thus

e = w(BI/I'(By)-

As [°(z) and w°(z) differ from I(z) and w(z) only by multiplication by the
same constant it makes no difference if we use them instead.]

The most striking thing about this implementation of Goppa codes is its
similarity to the implementation of Reed-Solomon codes. The additional
theoretical ballast only appears in two places. Firstly, a check matrix must
be calculated and used to find the syndromes and secondly the Goppa
polynomial must be inserted into Euclid’$ algorithm in place of z%. On the
other hand, the benefit to be obtained is potentially very great, because, as
we shall show in the concluding part of this chapter, there exist long Goppa
codes that are good, in the sense that their rates and relative minimum
distances can simultaneously be bounded away from 0. However, one seldom
gets something for nothing, and the implementation described in these two
chapters cannot make full use of the goodness of the codes.

EXTRAS

20.7 Goodness of classical Goppa codes

We shall show that for each § < (g — 1)/q there exists a sequence of classical
Goppa codes defined over GF(g) such that their block lengths tend to oo,
their relative minimum distance tends to &, and their rate tends to 1 — H(5).
However, this fact holds only if we use the true minimum distance to evaluate
d. For the designed minimum distance it is false and you should note that
our error processor corrects only ¢ errors, where 2t + 1 is the designed
distance of the code. The only benefit we obtain if the true minimum distance
is greater than the designed minimum distance is a greater ability to detect
errors beyond those that are decoded. That is useful, but not as good as the
capability of correcting these errors also.

First we shall adapt the proof given in Proposition 18.11, which states that
(with respect to their design parameters) BCH codes are bad, to Goppa
codes.

Proposition Let GC, = GC(P,, g,) be a sequence of Goppa codes over a field
F of order g, such that the block length n tends to oo, and the designed relative

328 Error-correcting codes and finite fields

minimum distance is greater than ¢ for some € > 0. Then the designed rate of
the codes tends to 0.

Proof The designed minimum distance of GC, is deg(g,(z)) + 1, so the
designed relative minimum distance is (deg(g.(2)) + 1)/n. Thus, if this is to
remain above ¢, we must have deg(g,) > en — 1. On the other hand, to obtain
a block length of n we must use a field E of size ¢" > n. And in this case
the designed dimension of the code is n — m deg(g,(z)). As m must be at
least logy(n) it follows that the designed minimum distance is at most
n — en log,(n). But when n is sufficiently large log,(n) > ¢, and this expression
becomes negative. In other words, if the designed rank stays above 0,
then it is impossible for the designed relative minimum distance to remain
above ¢ for large n.) n

20.8 Measures of goodness

Clearly, the designed values must become poor estimates of the true
di ion and true distance of a Goppa code as the block length
becomes large. In fact, in contrast to BCH codes, there are so many Goppa
codes that many must have true minimum distance far above the designed
value. We shall quantify how big ‘far above’ is and use that estimate to show
that Goppa codes form a good family. The reason there are so many Goppa
codes is that there are very many irreducible polynomials, as we proved in
the Extras of Chapter 12. It will be useful to start by recalling some definitions
and facts about g-ary balls from Chapter 18.

Definition 18.2 Let F be a field of order g. The g-ary ball Dy(u, r) with
centre u € F" and radius 7, consists of all those words with entries in F"
at distance < r from u. The number of such words is denoted by ¥(q, n, r).

Definition 18.8 The g-ary entropy function H,(J) is defined as
H(8)=0dlog(g— 1)~ log,(8) — (1 — 6) log,(1 — d). -

Lemma 18.9(b) The limit as n tends to co and r/n tends to 6 of (V(g, n, r))/n
is H,(0).

Here finally is a restatement of the Gilbert—Varshamov bound that is our
measure of goodness.

Theorem 18.10 For all 6 < (q — 1)/q there exists a sequence C, of linear
block codes over GF(q) with block length C, = n, the relative minimum
distance of C, greater than & — 1/n and rate tending to 1 — H,(3).

Classical Goppa codes: error processing 329

] We shall not construct our good sequence of Goppa codes explicitly and,
in particular, not try and construct codes for all block lengths. Instead we
shall only choose block lengths that are precise powers of g.

Proposition Let F be a field of order q and choose m and d < q™. Let t be
chosen so that

d-V(q,q"d — 1) < g™ — q\/q™.

Then there exists a classical Goppa code over F of block length g™, minimum
distance at least d and rank at least g™ — mt.

Proof Let E be a field of order n = g™ containing F. We construct the code
GC(P, g) as a subfield code using the fields F and E. We take as our set of
points P the whole of the field E and as our Goppa polynomial g(z) we select
one of the irreducible polynomials of degree t. From Theorem 12.11 we know
that there are at least (g™ — q,/q™)/t of these. How many of our possible
choices lead to codes with minimum distance less than d?

If the subfield code defined over F of GC(P, g) has minimum distance less
than d, then it contains a code word ¢ 5 0, of weight <d. If ¢ = (cy, ..., c,),
then its syndrome is

LR
3
iz1z— B u(@)
and c is in the code if and only if g(z) divides n(z). As the weight of c is less
tt_lan d, the degree of n(z) is at most d — 2. Hence it can have at most (d — 2)/t
distinct irreducible factors of degree t. In all there are ¥(q,n,d —1)—1
possible words of weight less than d; so the total number of excluded
irreducible polynomials is certainly less than d- V(q, n,d — 1)/t.

Now by our hypothesis this is less than (g™ — g,/g™)/t. Thus there must
be at least one irreducible polynomial of degree ¢t over E that has not been
excluded. If we take that polynomial, then the code will have true minimum
distance at least d and by Proposition 19.10 its dimension is at least
n—mt=q" —mt a

20.9 Goppa codes as a good family

We now come to the theorem that confirms that Goppa codes form a good
family.

by h‘eorem Let F be a field of order q and let 6 < (q — 1)/q. Then there
exists a sequence of classical Goppa codes GC(P, g) defined over F with block

330 Error-correcting codes and finite fields

lengths q™, relative minimum distance tending to the limit 6 and rate tending
to a limit r > 1 — Hy(3).

Proof For each m > 1 put n = g™ Choose d minimal so that d/n > é and
t minimal so that

d-V(g q"d—1)<n' —nJn'.

Then by Proposition 20.8, there exists GC(P, g) with |P| = n, ggz) iltreducible
of degree t and true minimum distance at least d.. By the minimality of our
choices,

nl—l — n(r+ 1)/2 nr)___ n(l+3)/2

) < V(g nd—1)<—

To make our estimates simpler we reduce the left-hand term of this inequality
(on the safe assumption that for large n, ¢ will be at least 3) and we also
increase the right-hand term.

-1 i1 _ 12 nx_n(r+§)/2 n

Lsn——~——< Vig,nd-1)<—-—"—<—.
2d d d d
Taking logarithms to the base g and, using the fact that n = ¢", this yields
m(t — 1) — log(2d) < log(V(g, n,d — 1) < mt — log(d)
Now we divide by n and take the limit as n tends to co.
lim((t — 1)m/n) < H(&') < lim((tm/n)),

where &' is the limit of (d — 1)/n. This differs from the limit § of d/n by the
limit of 1/n which is 0. Thus &' = 6. Also m = log(n) and the two outer
expressions differ by the limit of m/n which is also 0. So these limits are the
same. Notice that, as ¢ also increases with n, it does not follow that the limit
of mt/n is 0. Indeed the inequality gives

lim(mt/n) = Hy(3).

Now the rates of our codes are at least (n — tm)/n = 1 — tm/n. So in the limit
they have rate at least

1 — lim(tm/n) = 1 — H6). u

20.10 Summary

In the first part of this chapter we adapted the Reed—-Solomon error processor
of Chapter 17 to classical Goppa codes. This required very little change. For

Classical Goppa codes: error processing 331

this type of error processing, these codes are no harder to implement than
Reed-Solomon codes. However, Goppa codes are not, in general, cyclic, and
so they are not amenable to partial error-processing and error-trapping
techniques.

In the second half we showed that in contrast to the BCH and Reed-
Solomon family, Goppa codes contain sequences meeting the asymptotic
Gilbert-Varshamov bound. It would be pleasant but misleading to end the
chapter on this high note. Classical Goppa codes do indeed form a good
family, but this result is not as good in practice as in theory.

Firstly, the theorem proves only that there must be good classical Goppa
codes. It does not give any practical means of finding them, or of verifying
that the code one has found really is a good one.

Secondly, even if we have one of the good codes, our error corrector cannot
exploit its true minimum distance. So all we gain from the large true
minimum distance is that the processor detects many additional errors
beyond those it corrects. That is useful for high reliability, but it does not
extend the correction capability.

20.11 Exercises

20.1 Using the code GC, correct the following words:

1248915619 10 8 11 13 9 15 13
12589 15618 11 11 3 13 4 5 13.

20.2 An error co-evaluator for classical Goppa codes. Show that s5p(2) =
(W(z) + u(2))/l(z) where

uz) = —9@) Y. (e;/g(B) I z = Bo).
jeM i%j

20.3 Prove the equivalent of Proposition 20.3 for the rational form of the
syndrome.

204 Let C be the Goppa code you constructed in Exercise 19.5. Use
the error-correction algorithm of this chapter to correct the word

50...015.
20.5 Discuss the failure modes of the error-processing algorithm of Section
204.

20.6 Show that it is impossible for the classical Goppa code GC(P, g) to
be cyclic for all choices of the set of values P.

The following questions deal with general BCH codes. In Exercise 20.7
we give the original definition, from which we develop their theory in analogy
to Part 3. In Exercises 20.11 and 20.12 we establish that these are essentially
the same as the codes defined in Section 19.2.

332 Error-correcting codes and finite fields

20.7 Let F be a finite field, E a finite extension field of F, and let « € E have

- order n. The general BCH code GBCH(n, d, r) of block length n and

designed minimum distance d is constructed as the polynomial code

with generator polynomial equal to the least common multiple of the

minimal polynomials in F[x] of o/, & *%, ..., a"*4" 1, Sl.w\fv‘that this

code is cyclic. Show that if « has order n = |E| — 1 (="‘primitive’), and

r = 1 (=*narrow-sense’), then for F = GF(2) the code is the standgrd

BCH code (as constructed in Part 3) and for F = E the code is a
Reed-Solomon code.

20.8 Show that the code GBCH(n, d, r) has minimum distance at least d.
Estimate the rank of the code assuming that the minimal polynomials
are all distinct and have maximal possible 'degree.

209 Define the syndromes S,, ..., §,+4-1 of the word v for GBC.H(n,A d,r)
by interpreting the word as a polynomial and evaluating it at
..., 41 Define the syndrome polynomial of u as

S+ Speaz -+ Sppam2tTh

and its error locator as [](1 —a'z), where the index runs over
the powers of @ corresponding to the error positions. Define also
analogous error evaluator and co-evaluator polynomials. Show that
these polynomials satisfy the fundamental equation of BCH codes.

20.10 Adapt the BCH error processor of Part 3 to GBCH(n, d,r).

20.11 Verify that the codes GBCH(n, d, 1) are precisely the subfield Gop'pa
code with Goppa polynomial z¢ and P equal to the set of consecutive
powers a of E.

20.12 Show that GBCH(n, d, 1) can be obtained from GBCH(n, d,r) by
multiplying the entries of the code words by powers of o, the
ith entry being multiplied by =%,

21 Introduction to algebraic curves

The key extension in Goppa’s definition of his geometric codes is to replace
the set of polynomials over a finite field by a more general construction.
Naturally, this generalization requires some effort. Goppa uses the language
of algebraic curves to introduce the codes, but it is also possible to construct
them in a purely algebraic manner. That was my original intention, but the
algebraic approach turns out to be far more intricate and abstract than the
geometric one. So I have decided to follow Goppa and give a geometric
description of the codes.

To keep the introduction simple, we shall restrict our attention to algebraic
curves in the plane. Higher dimensional curves can be dealt with in a similar
manner, but require more of the apparatus of algebraic geometry. In this
chapter we shall assemble the tools needed to calculate with plane curves.
The next chapter deals with rational functions on curves, defining their zeros
and poles. In Chapter 23, I shall describe the general theory, mainly by means
of examples. Then, in Chapter 24 Goppa’s new codes are constructed, their
parameters are calculated, and finally, in Chapter 25, an error-processing
algorithm for them is produced.

21.1 Defining a curve

The natural way to define a plane algebraic curve is to define it as the set
of points for which some polynomial f(x, y) in two indeterminates is zero.
We denote the set of polynomials in two indeterminates by F[x, y] and make
a tentative definition as follows.

Let f(x, y) be a polynomial in F[x, y]. The set C of points (, f) for which
f(a, B) = 0 forms a curve. We say C is the curve f(x, y) = 0 and write C:
fix,y)=0.

This definition needs some polishing. So let us consider some examples.

Example Over the real numbers R, the polynomial x4+ y? —1 cor-
responds to the circle x* + y* =1, y — x? corresponds to the parabola
y = x?, and the polynomial y corresponds to the straight line y = 0, which
is just the x-axis. These are all bona fide curves.

334 ‘ Error-correcting codes and finite fields

The product (x? + y? — 1)(y — x2) defines a circle and a parabola. What
about the polynomials x? + y2 + 1, or x2 + 1? They have no real points at
all.

21.2 Irreducible polynomials in F[x, y]

To avoid the case when we get two curves, we must ensure that the defining
polynomial f(x, y) does not factorize. Polynomials in two indeterminates
share most of the properties of ordinary polynomials f(x), but there is an
important exception. With respect to addition and. multiplication, polyno-
mials in two indeterminates behave as well as one could expect. They form
an integral domain. We can also define the degree of a polynomial f(x, y)
by taking the degree of x™y" to be m + n. As with ordinary polynomials, the
degree of a product of two polynomials f(x, y) and g(x, y) is the sum of their
degrees and the degree of their sum is at most equal to the larger of their
individual degrees:

deg(f(x, y)g(x, y)) = deg(f(x, y)) + deg(g(x, y),
deg(f(x, y) + g(x, y)) < max{deg(f(x, y)), deg(g(x, y)}

That is proved in Appendix PF of Part 2. However, it is no longer possible
to divide f(x, y) by g(x, y) in such a way that the degree of the remainder
is always smaller than the degree of the divisor.

Example Consider the polynomials x, y and x — y. If we divide x by x — y
wegetx = 1-(x — y) + y,but dividing yby x — ygivesy = —1-(x — y) + x.
It is not possible to write x as g(x, y)(x — y) + r where the degree of r is <0.

Since we do not have division with remainder, it is not possible to perform
Euclid’s algorithm. Nevertheless, we can still examine the factorization of
polynomials. To this end we make the usual definition of irreducibility.

Definition A polynomial f(x,y) in F[x, y] is called irreducible if in any
factorization f(x, y) = g(x, y)h(x, y), one of g and h is a constant.

Example The polynomials x, y and x — y are all irreducible. So is any
irreducible polynomial in a single indeterminate x or y alone. There are many
more. For instance, the polynomial x3y + y* + x is irreducible over Z/2.

It turns out that irreducible polynomials in two indeterminates have just
the same properties as those in a single indeterminate, but it is much harder
to prove that, because we cannot use Euclid’s algorithm or the 1-trick. While

Introduction to algebraic curves 335

we need to know the properties of irreducibles in two indeterminates, the
proofs are not useful in applications in the way that the 1-trick is, so I shall
only sketch the theory. You can find full proofs in Birkhoff and MacLane
(1977) and most other standard texts on algebra.

Proposition If f(x,y) is irreducible and f(x,y) divides g(x, y)h(x, y) then
f(x, y) divides one of g(x, y) and h(x, y).

The idea of the proof is to introduce the field R of rational functions in x.
Then f, g and h can be considered as polynomials in R[y]. Next one shows
that f is still irreducible in R[y], so that one can apply the 1-trick there.
That establishes that one of g and h is of the form f - r, where r is a polynomial
in y with coefficients that are rational functions of x. Finally, one shows that
all the coefficients of r are polynomials in x, so that r € F[x, y]. This proof
was invented by Gauss.

It then follows by the standard arguments that every polynomial in two
indeterminates has a unique factorization into irreducibles. With the aid of
unique factorization we can still find highest common factors, but it is no
longer true that the HCF of f(x, y) and g(x, y) can be written in the form
uf + vg, and there is no quick way of calculating it.

Our first refinement of the definition of a curve C: f(x, y) = 0 is to require
the defining polynomial f(x,y) to be irreducible. That eliminates the
possibility that C splits into two curves.

21.3 Increasing the supply of curves

A plane curve over GF(2) cannot have more than 4 points with coefficients
in GF(2) itself, because the only available points are (0, 0), (0, 1), (1, 0), (1, 1).
This means that, as far as the points over GF(2) alone are concerned, there
are only at most 2* = 16 plane curves. That is rather restrictive. To get
enough different curves, we must admit points with coordinates («, f) in fields
E containing F. For instance, if we define curves over the real numbers, we
shall still regard the complex point (i, \/2) as part of the circle x> + y? = 1.
We do not need to allow all possible fields containing F, and restrict our
attention to finite extensions.

Definition A field E is called a finite extension of F if E is finite dimensional
as a vector space over F.

Example The complex numbers C form a finite extension of the real
numbers R. If F < E are finite fields, then E is a finite extension of F. But
the real numbers R do not form a finite extension of the rational numbers Q.

336 Error-correcting codes and finite fields

Our second refinement of the definition is to admit points with coordinates
in finite extension fields.

21.4 Absolute irreducibility

When we extend from F to E it is possible that the polynomial defining C:
f(x, y) = 0 may factor.

Example Suppose we take F = R and consider the ‘curve’ C: x>+1 = 0.
This has no real points at all, but over C it splits into two straight lines,
x=iand x = —i.

On the other hand the other example C: x> + y? + 1 = 0, which also has
no real points, becomes a ‘circle of radius i’ with points such as i(a,), where
(a, B) lies on the circle x> + y> — 1 = 0.

To avoid the problem with x? + 1, we now require that the defining
polynomial of any curve remains irreducible in E[x] for any finite extension.

Definition A polynomial f(x,y) in F[x,y] is called absolutely irreducible
if, for every finite extension E of F, f(x, y) is irreducible in E[x, y].

Example The circle C: x* + y> — 1 = 0 and parabola C: y?> — x =0 are
algebraic curves over R.

21.5 Projective transformations

Even this definition of a curve is not quite sufficient. It is necessary to add
a few more points. You will probably be familiar with the fact that for
many theorems about functions on complex pumbers one must admit an
additional ‘point at infinity’. That point ensures that all rational functions
including 1/x have zeros. For our theory we also need to allow points at
infinity. We can obtain these by allowing certain non-linear coordinate
transformations which are called projective because of their relation to
perspective drawing. We shall need just two such transformations.

Definition The coordinate transformations from the standard (x, y)-system
to the (u, v)- and (w, z)-systems given by the rules

u=1/x, v=y/x

Introduction to algebraic curves 337

and

w=1/y, z=Xx[y

will be called projective coordinate changes.

The transformation from the (u, v)-system to the (w, z)-system is of the
same type (see Exercise 21.2).

Points can be given in any of the three coordinate systems, most points
are representable in all three systems, but some are only representable in
two of them and a very few are only representable in one system.

Example The point (x =1, y = 1) is the same as the point (u = 1,v = 1),
the point (x = a, y = b) for a # 0 is the same as the point (u = a™*, v = ba™?).
The point (x = 0, y = 1) has no equivalent in the (u, v)-system, but it is the
same as (w = 1,z = 0). The point (u =0, v = 1) has no equivalent in the
(x, y)-system, but it is the same as (w = 0,z = 1). The point (x =0,y = 0)
has no equivalent in the (u, v)- or the (w, z)-system.

Convention We usually specify the coordinate system we are using by the
notation P:(x = «, y = f). The systems are used in the following order of
priority. If a point can be reprsented in the (x, y)-system, then we use that
system. Failing that, if the point can be represented in the (u, v)-system
(necessarily with u = 0) we use that system. The single remaining point
(w =0,z = 0) is represented in the (w, z)-system.

We can consider the points that cannot be represented in the (x, y)-system
as forming a line at infinity or horizon, which intersects every ordinary line
in a single point. Thus (4 = 0, v =) is the intersection of the line y = ax
with the horizon, and (w = 0, z = 0) is the intersection of the y-axis, x = 0
with the horizon.

21.6 Final definition of algebraic curve

To decide whether a point (u = 0, v = f) lies on a curve C: f(x, y) = 0, we
need to transform the equation itself. That can be done provided f(x, y) # x.
In the exceptional case the curve is a straight line. That line is, of course,
the horizon of the (u, v)-system.

Example The straight line y =ax has as its polynomial ax — y. The
equation can be written as y/x = a. In the (u, v)-system that transforms to
v = g, confirming that (u = 0, v = a) lies on the line.

The rectangular hyperbola x* — y? =1 transforms to 1/u® — v2/u? = 1.

338 ‘ Error-correcting codes and finite fields

For x #0, 1/u #0. So we can multiply this equation by u® to get the
curve 1 = v? + u?. This is the equation of a circle with the line u =0 as a
diameter. Thus the hyperbola can be viewed as a circle with the horizon as
a diameter.

The parabola 2x = y* + 1 transforms to 2/u = v?/u? + 1. Again we
multiply by u? to get 2u = v® + u® or (u — 1) + v?> = 1. This is also the
equation of a circle, but this time u = 0 is a tangent line. The parabola can
be viewed as a circle with the horizon as a tangent.

The curve x>+ y*—1=0 transforms to 1/u®+v3u®>—1=0 or
1 + v® — u® = 0 the same way. If, as will be the case in our examples, the
characteristic of the underlying field is 2, then the formula remains the same
as the original formula in x and y.

Notice that in all cases the degree of the equation is not changed by the
transformation.

We can now give our final definition of an algebraic curve.

Definition Let f(x, y) be an absolutely irreducible polynomial in F[x, y] of
degree d and define

g(u, v) = wf(1/u, vju);
h(w, z) = wif (z/w, 1/w).

Then the algebraic curve C defined by f(x, y) is the union of the three curves
Ci:f(x,y) =0, Cy: g(u,v) =0, and Cy: h(w, z) = 0, points being allowed to
have coordinates in any finite extension E of F. We call these three curves
the affine components of C, and will still denote the full curve by C: f(x, y) =
When I wish to restrict attention to a particular component I shall speak of
the affine curve C: d(x, y) =

If f(x,y)=x, then g(u,v) = 1, so the (u, v)-affine component is empty.
That is because f(x,y) is then the horizon of the (u, v) system. For other
cases we must show that the affine components fit together properly, and
that g and h satisfy the conditions for an affine curve.

Proposition Let f(x,y) # ax be an absolutely irreducible polynomial of
degree d. If g(u, v) = u’f(1/u, v/u), then g is an absolutely irreducible polynomial
of degree d. Furthermore, if a single point P has coordinates P: (x = a, y =)
and also P: (u = y,v =), then f(a,) = 0 if and only if g(3, 5) = 0.

Proof Corresponding to a term bx"y* of f(x,y), g(x,y) has a term
bu'~""%". As f(x,y) # ax and f(x, y) is absolutely irreducible, x does not

Introduction to algebraic curves 339

divide f(x, y). Hence at least one term of f(x, y) has r = 0. That proves that
g has degree d.

Suppose that g is not irreducible over some finite extension field, say
g(u, v) = h(u, v)k(u, v), with h and k of degrees r and s respectively. Then
f(x, y) = (x"h(1/x, y/x))(x*k(1/x, y/x)), and the two factors are polynomials of
degree r and s respectively. Since f is absolutely irreducible, it follows that
r =0 or s = 0. But that implies that one of h and k is a constant and hence
that g is absolutely irreducible.

By assumption y = 1/a and 6 = B/a and a # 0. Then g(y,) = o%f (o, /3)
Thus g(y, 6) = 0 if and only if f(a, f) =

21.7 Curves over finite fields

Up until now our examples have been real curves, to aid the reader’s
geometrical intuition, but for codes we need to use curves over finite fields.
We conclude the chapter with three such curves. These examples will be
important in later chapters. For all three curves we calculate all the points
with coordinates in the fields GF(2), GF(4), GF(8) and GF(16). The fields
GF(2) = {0, 1} and GF(4) = {0, 1, 10, 11} are subfields of GF(16), but GF(8)
is not. So we provide a separate table for GF(8) based on the polynomial
x3 + x2 + 1 here. In order to distinguish elements of GF(8) from those of
GF(16), we shall write 2', 3’ etc.

Table of GF(8) based on x> + x? + 1

log — 0 1 5 2 3 6 4
01 2 3 4 5 6 7

0 x0 0 0 0 0 0 0 O
1 1{tr 2 3 4 5 6 7
2 2 3{4 6 5 7 1 3
3 32 1|5 1 2 7 4
4 4 5 6 7|7 3 2 6
5 5 4 7 6 16 4 1
6 6 7 4 5 2 33 S
7 7 6 5 4 3 2 12

We shall observe the convention that we use the (x, y)-system where
possible, the (u, v)-system for points of the form (u = 0,v) and the (w, z)-
system only for (w = 0,z = 0).

340 Error-correcting codes and finite fields

21.8 An example of a cubic curve

Example The curve x> + > +1 =0

This curve has the equations u® + v® + 1 = 0 in the (u, v)-system and the
equation w3 + 23 + 1 = 0 in the (w, z)-system. Points over GF(2):

(x=0,y=1(x=Ly=0;u=00=1);
Points over GF(4):

the points over GF(2) and
(x=0,y=10), (x=0,y=11); (x =10, y = 0), (x = 11, y = 0);
u=0,v=10), (u=0,v=11);

Points over GF(8):

the points of GF(2) and
(x=2,y=5),(x=4,y=6),(x=7,y=3Y
(x=5,y=2)(x=6,y=4),(x=3,y="7).

Points over GF(16):
the points over GF(4) and no further points.

That is because x* =0, 1, 3, 5, 8, or 15. The only two cubes adding to 1
are 0 and 1 and the only solutions of x> = 1 are 1, 10 and 11.

21.9 The Klein Quartic

Example The Klein Quartic has equation X3y +y® + x = 0. This has
vYu+u®+v=0 and w'z + z> + w =0 as its equations in the other co-
ordinate systems. Points over GF(2):

(x=0,y=0); (u=0,v=0); (w=0,z=0).
Points over GF(4):

the points over GF(2) and
(x =10,y =11), (x = 11, y = 10).

Points over GF(8):

the points over GF(2) and the following (x, y)-points:
(1,39, (1,5), (I, 6% 3, 1), (5, 1), (6, 1);

(2,2), @, 4),(7,7),

(2,5), 4,6),(7,3), 2, 7), 4,2), (T, 4);
(3,4),(5,7), (6,2);, (3,5), (5,6, (6, 3).

Introduction to algebraic curves 341
Points over GF(16):

the points over GF(4) and the following (x, y)-points:
(3, 10), (5, 11), (8, 10), (15, 11);

(10,2), (11, 4),(10,9), (11, 14);

(6,8), (13,15), (7, 3), (12, 5);

Notice that once a single point (, §) on the curve has been found, the point

(a2, %) also lies on the curve. The classes of points obtained this way are
separated by semicolons. ’

21.10 A quintic

Example The curve x° + y° + 1 = 0. The other equations of the curve are
u®+v®+1=0and w® + z° + 1 = 0. Points over GF(2):

(x=0y=1;(x=1,y=0;u=00v=1);
Points over GF(4):

the points over GF(2) and
(x =10,y = 11), (x =11, y = 10).

Points over GF(8):

the points over GF(2) and the following (x, y) points:
(2,5), (4,6),(7,3),(5,2), (6,4), (7, 3).

Points over GF(16):
The points over GF(4) and 60 further points obtained as follows.

There are five fifth roots of 1:1, 3,5, 8 and 15. Points of the form (0, 1)
have already been counted, but there are 12 more:

(x=0,y=3,52815;(x=3,5815y=0;u=00v=3,538, 15);

There are also five fifth roots of 10: 10, 4, 9, 12, 14; and five fifth roots
of 11: 11, 2, 6, 7, 13. The points these produce can all be expressed
in the (x, y)-system. They are obtained by taking (x =10,4,9,12, 14,
y=112,6,7,13) or (x = 11,2,6,7, 13, y = 10,4, 9, 12, 14). The two points
(10, 11) and (11, 10) have already been counted. The 48 remaining points
fall into classes of 4, obtained by the squaring method as in the previous
example.

One purpose of this example is to show that curves can have a very large
number of points. That is the underlying reason why there are such good
geometric Goppa codes.

342 Error-correcting codes and finite fields

21.11 Summary

In this chapter we have studied the basic properties of polynomials in two
indeterminates, and used them to define algebraic plane curves. In order to
complete the curves we permitted field extensions and projective trans-
formations, giving us three different coordinate systems. We finished by
calculating all the points of three example curves over the fields of orders 2,
4, 8, and 16. In the next chapter we shall investigate the properties of
functions on curves.

21.12 Exercises

21.1 Show that if f(x, y) has degree 1, then F[x, y]/f(x, y) = F[x].

212 Show that the transformation from the (u, v)-system to the (w, z)-
system via the (x, y)-system is given by z = 1/, w = u/v.

21.3 Homogeneous coordinates. Replace an (x, y)-point in the plane by the
point (x, y, 1), a (4, v)-point by (1, v, u), and a (w, z) point by (z, 1, w).
Now regard two points (g, b, ¢) and (@, b', ¢’) as equivalent if there
exists a non-zero constant k with @’ = ka, b’ = kb and ¢’ = kc. Show
that (a, b, ¢) is equivalent to an (x, y)-point if and only if ¢ # 0. Show
that the (x, y)-point equivalent to (a, b, c) is unique if it exists. Finally,
show that the points in the (x, y)- and (u, v)-points equivalent to
(a, b, c) (where a # 0 and b # 0) are linked by the projective trans-
formation of the text.

214 Why did I choose the Klein quartic as my example of a curve of
degree 4, and not the curve x* + y* =17

215 Find the points of the curve x” + y” = 1 in the fields GF(2), GF(4),
GF(8) and GF(16).

22 Functions on algebraic curves

In the previous chapter we obtained a satisfactory definition of a plane
algebraic curve. The next step is to investigate the behaviour of rational
functions at points of the curve.

22.1 Congruence

Example On the unit circle polynomials that differ by multiples of (x? +
y? — 1) have the same values. So as far as the circle is concerned, they are
the same. We shall make a definition of congruence modulo f(x,y) that
reflects this idea for the curve C:f(x, y) = 0. The different possible poly-
nomial functions on the affine curve will then correspond to the congruence
classes modulo f(x, y).

Definition Let f(x,y) be an irreducible polynomial in F[x, y]. Then we
define polynomials g(x, y) and h(x, y) to be congruent modulo f(x, y),

g(x, y) = h(x,y) (mod f(x, y))

9(x, y) = h(x, y) = q(x, p)f(x, y)

for some polynomial g(x, y). The set of all polynomials congruent to a given
polynomial g(x, y) modulo f(x, y)is called a congruence class modulo f(x, y).

With polynomials in a single indeterminate, division with remainder
enables us to pick out a ‘best’ member of each class, namely the common
remainder on division by f(x). For polynomials in two indeterminates, such
a choice is no longer possible. So we shall have to operate with the classes
themselves.

22.2 The coordinate ring
Addition and multiplication of polynomial functions on a curve make sense,

so we shall introduce addition and multiplication of congruence classes.
When you read ‘add congruence class 4 to congruence class B’ you should

344 Error-correcting codes and finite fields

consider this as shorthand for ‘take any polynomials ge 4 and he B and
add them; consider only the class of the result g + h’. This is a bit like the
childhood rule ‘odd + odd = even’, if we take odd to mean the class of odd
integers and even to mean the class of even integers.

Definition Let f(x, y) be an irreducible polynomial in F[x, y]. We define
the residue class ring F[x, y]/f(x, y) to have as its elements the congruence
classes modulo f(x,y). Addition and multiplication are defined by the
following rule.

If A and B are congruence classes modulo f, choose g € A and he B and
define A + B and AB to be the classes containing g + h and gh respectively.

If C is the affine curve C:f(x,y) =0, then F[x, y]/f(x,y) is called the
coordinate ring of C and denoed by F[C].

Proposition The definition above makes F[x, y]/f(x,y) into an integral
domain.

Proof The main effort of the proof is expended in showing that the
operations are well defined, which means that the result of an operation is
independent of the elements that are chosen in each class. The verification
of the axioms then follows a familiar course.

Addition and multiplication are indeed well defined. For suppose that g
and g° both lie in A and h and h° both lie in B. We must show that g + h
and g° + h° lie in the same class, and also that gh and g°h° lie in the same
class. By assumption f divides g — g° and h — h°. Hence it divides g + h —
(@°+h°). So g+ h and g° + h° lie in the same class. Also f divides
(g —¢°)h + g°(h — h°) = gh — g°h°. So gh and ¢g°h° lie in the same class.

To establish those axioms that express the identity of two formulae, we
need only choose representatives of the classes in question and appeal to the
validity of the formulae in F[x, y]. Thus to prove

Al A+(B+C)=A+B)+C,

we choose g€ A, he B and ke C. Then g + (h + k) = (g + h) + k, establish-
ing the formula. This argument can be adapted to prove all the commutative,
associative and distributive laws.

The 0 and 1 class are the classes containing the 0 and 1 of F[x, y]. Thus
the O class is the set of multiples of f(x, y).

The negative of the class A4 is the class containing the negatives of its
elements (if you prefer: choose g € 4 and take the class of —g).

There remains the question of the cancellation law. That follows from
Proposition 22.1. Suppose that AB is the 0 class. That means that for ge 4
and h e B, f divides gh. Since f is irreducible, it follows that f divides one
of g or h. Thus A =0 or B=0. n

Functions on algebraic curves 345

22.3 The function field

The structure of the residue class ring F[x, y]/f(x, y) is closely related to
the nature of the affine curve f(x, y) = 0. Indeed it is so closely linked that
the structure can change under projective transformations. To see that,
consider the polynomial x. For any affine curve C;:f(x, y) = 0, x is a poly-
nomial function, but for another component of the same curve C,: g(u, v) = 0,
x corresponds to the function 1/u. This function will usually not be equivalent
to a polynomial.

To avoid having to check which polynomials remain polynomials under
projective transformations, we extend our residue class ring to rational
functions. These are invariant under all the transformations we need and are
also the functions used to generalize BCH and Goppa codes.

Definition The function field F(C) of the curve C: f(x, y) = 0 over the field
F is the field of fractions of F[C] = F[x, yJ/f(x,).

Recall that the field of fractions of D is constructed by taking fractions
a/b, with a,be D and b # 0. Fractions a/b and c/d are considered equal if
ad = bc, and we use the usual rules of addition and multiplication:

a/b + c¢/d = (ad + bc)/bd, (a/b)(c/d) = ac/bd.

For details of this construction see Appendix PF on polynomials in Part 2.

22.4 Equivalence of rational functions

It is important to réalize when two rational functions ¢(x, y) and Y(x, y)
represent the same element of F(C). To that end we adapt Definition 19.3
to rational functions in two indeterminates.

Definition Let ¢(x, y) be a rational function, the representation n(x, y)/
u(x, y) of ¢(x, y) is said to be cancelled or in lowest terms, if the highest

common factor of n(x, y) and u(x, y) is 1. If f(x, y) is a polynomial then the
congruence

¢(x, y) = 0mod f(x, y)

means that in the representation of ¢(x, y) as n(x, y)/u(x, y) in lowest terms,
f({c, y) divides n(x, y). It follows that f(x, y) and u(x, y) must be relatively
prime.

We shall say that f(x, y) divides the rational function ¢(x, y) if ¢(x, y) = 0

346 Error-correcting codes and finite fields

(mod f(x, y)). For two rational functions ¢(x, y) and y(x, y), the congruence
#(x, y) = Y(x, y) mod f(x, y)
means that ¢(x, y) — ¥(x, y) = 0 mod f(x, y).

Proposition Let C:f(x,y) =0 be an algebraic curve defined over the field
F, and for j = 1,2, let ¢(x, y) = nfx, y)/uj(x, y) be two rational functions in
cancelled form. Assume that f(x, y) does not divide uj(x, y), j = 1,2. Then

(@) ¢; represents 0 in F(C) if and only if ¢; = 0 (mod f);

(b) ¢, and ¢, represent the same class of F(C) if and only if ¢, = ¢,
(mod f);

() ifu, =u, and n, = n, (mod f), then ¢, = ¢, (mod f).

Proof (a) By definition
¢;=0 (mod f)

if and only if n; = fq; for some g;€ F[x, y]
if and only if n; represents 0 in F[C]
if and only if n;/u; represents 0 in F(C).

(b) The functions ¢; and ¢, represent the same element of F(C) if
and only if ¢, — ¢, represents 0 in F(C). By part (a) that is equivalent
to the statement that ¢, — ¢, = 0 (mod f).

(© ¢, — ¢, = (uyn, — uyn,)/uju,. By hypothesis, f divides u; — u, and
also n, — n,. Hence f divides

(uy — uz)ny — uy(ny — ny) = uyny — uzny.

As f is irreducible it does not divide nu,. Thus ¢, — ¢, = 0(mod f).
n

Example Consider the cubics x® =y and x + y® = 1. The first gives
an example of a rational curve. By replacing every occurrence of y by
x3, every polynomial in F[x, y]/(x® — y) can be reduced to a polynomial in
x alone. Thus F[x, y}/(x® — y) is isomorphic to F[x]. An algebraic one-
dimensional bug living on this curve could not tell that it was not on a
straight line.

That always applies for quadratic curves (see Exercises 22.9 and 22.10),
but not necessarily for cubics. In particular it does not apply for the second
cubic (see Exercise 22.1). So by doing algebraic calculations a one-dimen-
sional bug living on the curve x> + y* = 1 could determine that it was not
on a straight line.

Functions on algebraic curves 347

22.5 Independence of coordinate system

The function field F(C) of a curve is the same for all three of its affine
components. It does not depend on the choice of coordinate system.

Proposition Let f(x, y) # ax be an irreducible polynomial of degree d, and
let g(u, v) = u%f(1/u, v/u). Then the map o: h(x, y) = h(1/u, v/u) induces an
isomorphism of the function fields of the curves f(x, y) = 0 and g(u, v) = 0.

Notice that h is not multiplied by a power of u.

Example Consider the curve C:x3 +y3—1=0. Let ¢ be the function
x3/(x + y), ¢° the function y3/(x + y). Then in F(C),

¢+ ¢° = (x> + Y)/(x + y) = 1(x + y).
In the (u, v)-system C is defined by 1 + v® — u® = 0.
o(@) = (1/w)/(L/u + vfu) = 1/u*(1 + v),
a(¢°) = v*/u*(1 + v)
a(1/(x + y)) = u/(1 + v).
a(@) + 6(¢°) = (1 + v)u*(1 + v) = w/u?(1 + v)
=uf(1 +v) = o(1/(x + y)).
Proof For the moment, consider the curves C: f(x, y) = 0,and D: g(u,v) =0
to be different. We first take o to define a map from F[x, y] into F(D) and
show that o(h) = 0 if and only if & is a multiple of f. Suppose that o(h) = 0.
That means that h(1/u, v/u) = g(u, v)k(u, v) in F[u,v]. Let deg(f(x,y)) =d
and deg(k(u, v)) = e. Then
h(1/u, vju)/u’* = (g(u, v)/u®)(k(u, V)/u°).
Hence
x4*eh(x, y) = f(x, p)xk(1/x, y/x).

As x°k(1/x, y/x) is a polynomial in x and y, it follows that f(x, y) divides
x4*eh(x, y). Since f is irreducible and f # ax it follows that f(x, y) divides
h(x, y).

Thus a(h) = o(h°) if and only if h and h° are congruent modulo f(x, y).
So ¢ defines a map from F[C] into F(D). It is obvious that a(h + h°) =
a(h) + s(h°) and o(hh®) = o(h)a(h°). We extend the map to the whole of

348 Error-correcting codes and finite fields

F(C) by defining o(h/h°) = o(h)/o(h°) when h° # 0 modulo f(x, y). That
produces an embedding of F(C) in F(D).

The same argument can be applied reversing the réles of f and g,
producing an inverse embedding of F(D) in F(C). Thus the two fields are
the same. |

22.6 Evaluating functions at points

A polynomial f(x,y) € F[C] can be evaluated at all (x, y)-points of C.
Obviously, if the point P: (x = a, y = f) has coefficients in an extension field
E of F the value of f may be in E. However, a rational function ¢ may not
be defined at all for certain points, for instance 1/x is not defined at the
origin. These points are called poles of the rational function. If a point P is
a pole of a function ¢, then the inverse function, ¢ ~* has value 0 at P, and
we say P is a zero of ¢~ '. For well-behaved points on a curve we can refine
this notion by defining an order function v at the point P, such that for
¢ e F(C), W(¢) > 0if P is a zero of ¢ and v(¢) < O if P is a pole of ¢. This
mimics the definition of the order of a complex rational function at a point
in the complex plane. It is possible to go further and copy the theory of
residues, but we shall not need that.

Using projective transformations we can evaluate rational functions at
(u, v)-points and (w, z)-points also.

Example Let F =R and consider the circle C: x? + y? = 1.

Let ¢ = x(x — 1)*/(y — 1)%. Then for P = (1,0), v(¢) = 2, because of the
factor (x — 1)? in the numerator. For P = (0, 1), v(¢) = — 1, because we have
factors x in the numerator and (y — 1)? in the denominator.

Let = x> + 1 = (x + i)(x —i). Then for P = (i, —i), and P = (—i, i),
V() = 1. On the other hand, at these points v(¢) = 0 and this indicates a
non-zero value +i(i — 1)%/(i + 1)2 = +i(i — 1)*/4.

It is also possible for a function to have poles or zeros at (u,v)- or
(w, z)-points. Let y = x. Then for P, u=0,v=iand P, u=0,v= —i. In
the (u, v)-system y becomes 1/u, so it has order —1 at P and P. It will turn
out that all non-constant polynomials have poles at the horizon.

The order of any real function is always the same at conjugate complex
points P and P, and if the order is 0, then the values at conjugate points are
conjugate.

22.7 Discrete valuations

The word ‘order’ is rather over-used in mathematics, so in the formal
definition we replace it by ‘discrete valuation’.

Functions on algebraic curves 349

Definition Let F be a field. A discrete valuation v on F is a function from
F* to Z (the asterisk signifies that v is not defined for 0). It has the following
properties:

DVI1. v(ab) = v(a) + v(b)
DV2. v(a + b) > min{w(a), v(b)}
DV3. v(a) =1 for at least one a.

It is sometimes convenient to put v(0) = co, which preserves the axioms
even whena=0o0r b=0.

Example Consider rational functions in a single indeterminate x over the
real numbers R. We use the language of algebraic curves and regard this as
the function field R(C), where C: y = 0 is a straight line.

For the point x = 0, we define the order v(f) of a polynomial f(x) to be
the power to which x divides f of x, for rational functions f/g, v(f/g) =
v(f) — v(g). It is easy to check that this is a discrete valuation. The point
x =0 is a zero of multiplicity m > 0 of f/g if v(f/g) = m. It is a pole of
multiplicity m if v(f/g) = —m.

Now define u(f) to be the power to which the irreducible polynomial
(x? + 1) divides f(x). Again u(f/g) = p(f) — pu(g). This is again a discrete
valuation (DV1 holds because (x? + 1) is irreducible). (x2 + 1) is the minimal
polynomial of the complex points x = i and x = —i, and now u(f/g) reflects
the multiplicities of these points as zeros or poles. Notice that for real
functions the multiplicities are necessarily equal.

There is also a point at infinity on the line obtained by the projective
transformation u = 1/x. A polynomial ax” + - - - + b with a # 0 transforms
to the rational function (a + - - - + bu")/u". At u = 0 the order of this function
is —n = —deg(f(x)). This extends to rational functions by defining v(f/g) =
deg(g(x)) — deg(flx)). You can check directly that this defines a discrete
valuation.

The following proposition is used implicitly in many order calculations.
Its easy proof is left as an exercise to the reader (Exercises 22.4 and 22.5).

Proposition If v is a discrete valuation, then v(1) = 0, if v(a) < v(b), then
v(a + b) = v(a). n
22.8 Order functions

We can now define an order function for a point of a curve. There are two

candidates, the x-order and the y-order. Usually they are the same, but a
little care will be needed.

350 Error-correcting codes and finite fields

Definition “Let C: f(x, y) = 0 be a curve and let P: (x = «, y = f8) be a point
of C with «, e F. Let g(x, y) € F[C], then the largest power n for which
there exist polynomials g°(x) € F[x] and h°(x, y) € F[x, y] with h°(0,0) # 0
such that

g=(x—a)'g°(x — a)/h°(x — a, y — f)mod f,

is called the x-order of g at P and denoted by v, (g). The x-order vp, (g/h)
is defined as vp ,(g) — vp_(h).
The y-order is defined analogously.

Example Consider the circle x2 + y> = 1 and the point P:(x =0,y = 1).
The x-order of x" is obviously n. If the base field is R then

y—1=—=x*/(y +) mod (x* + y* — 1),

so the x-order of y — 1 is at least 2. We shall shortly show that it is exactly
2. Similarly y =(—x*+ 1)/(y +1) and y+ 1 = (—x>+2)/(y + 1) have
x-order 0.

The x-order of y* + y> — y — 1 = (y — 1)(y + 1)? should be 2, and indeed
Yy —y—l=—x*=x2+2/(y+ 1)

The y-order is not a discrete valuation, because the y-order of x? =
(I —y)X1 + y)is 1 and the y-order of x cannot be defined.

Note that if the base field is GF(2), then y + 1 has value 0 at P and so
these calculations become invalid, but similar calculations can be made in
that case also.

22.9 Orders as discrete valuations

For well-behaved points at least one of the two orders is a discrete valuation,
and usually they are the same. We shall use formal partial derivatives to
define what we mean by well-behaved. They are defined by the standard
formula in the same way as the ordinary derivative.

Definition Let f(x,y) = Zaiixi y; be a polynomial. Then 9f/0x is defined
by the formula)" i-a;;x'~*y/. Here the factor i indicates standard multiplica-
tion by an integer.

Theorem Let C: f(x, y) = 0 be an affine curve, and let P: (x = o, y=p) be
a point of C.

(a) If of /0y(a, B) # O, then the x-order is a discrete valuation.
(b) If also of /0x(x, B) # O, then the x-order and the y-order are the same.

Functions on algebraic curves 351

Example Again taking the circle and the point P: (0, 1), 9f/dy(0, 1) = 2, so
the x-order is a discrete valuation. As the x-order of y + 1 at P is 0, it follows
that the x-order of y — 1 = —x?/(y + 1)is2—-0=2.

The calculation df/0x(0, 1) = 0 confirms that the y-order is not a discrete
valuation.

Proof The proof is somewhat lengthy, though the details are not hard.

We can expand f(x, y) in terms of x — o and y — f. That gives a kind of
‘Taylor expansion’ of f(x,y) at P, but because f(x, y) is a polynomial,
differentiation is not required to construct it. Let 0 # b = 9f/dy(«,) and
a = Jf /0x(a, B). Then

f(x,y) = a(x — «) + b(y — B) + higher degree terms in (x — a) and (y — f).
(O]

There is no constant term, because P lies on the curve. We gather terms
involving (y — B) and write

G=Bb+=Pgix—ay—B) =f(x,y) + h(x — o), @

where g,(x,y) is a polynomial in two indeterminates and h,(x) is a
polynomial in a single indeterminate. Consider first the case that h,(x) = 0.
Then y — B divides f(x, y) and since f(x, y) is absolutely irreducible f(x, y) =
y — B. In this case replacing y by § produces an isomorphism of F[C] with
F[x] and the x-order is just the power to which x divides a polynomial.
That is a discrete valuation as claimed, so we may assume that h,(x) # 0.
In that case we extract the highest power of x — « dividing h;(x — «) and write

hi(x —a) = (x — a)"h(x — &), 3)
where x — a does not divide h(x), and
G+ (= Pg(x—ay—) =g(x,y), @

where g(0, 0) # 0. So
(=B =(x—o)'h(x — &)/g(x — &, y — B) (mod f(x, y)). ©)
Given any polynomial r(x, y), we can expand it as r°(x — o, y —) and
use equation (6) to replace all tems (y — f). That gives an expression
r(x, y) = (x — 0)*h°(x — @)/g°(x — o, y — B)
with g°(0, 0), h°(0) # 0.
Now we show that the power k in the formula is unique. For if
(= a)f'h°(x —)/g°(x — o y — B) = (x — &)'h'(x — @)/g'(x — &,y — B)
(mod f),
where g°(0,0), (0, 0), h°(0), h'(0) # 0, and say k > I, then f divides
(x — a)'((x — &) 'h°(x — a) — h'(x — @)).

352 Error-correcting codes and finite fields

Since 9f/dy(a, B) #0, (x — @) #f(x,y). Thus (x —«) and f(x,y) are
relatively prime. Hence f divides

(x —) 'h°(x — a) — h'(x — a).

Since f(x, f) = 0, it follows that h'(x — o) = h*(0) = 0, contradicting our
assumption.

It is left as an easy exercise (Exercise 22.6) for the reader to check the
axioms DV1-DV3.

(b) To show that the two valuations are the same, note that in equation
(1) we now have a # 0 as well as b # 0. So equation (6) can be written as

G=Pb+(y—Bgx —ay—B) =f(xy) — (x —a)a + h(x — a))

Thus the x-order of y — f is 1. Therefore the x-order of g(y — p) is the same
as the y-order of g(y — p). It follows that the x-order of h(x, y) is the same
as the y—order of h(x, y) for all polynomials. |]

22.10 Properties of points and curves

Definition Let C be the curve f(x, y) = 0, defined over a field F. A point
(x = a, y =) with coefficients in an extension field E of F field F is called
non-singular if 0f /0x(a, B) # 0 or df/dy(a, B) # 0. For points defined in the
(u, v)- and (w, z)-systems the definition is analogous. A curve C with only
non-singular points is called smooth.

The order function vp at a non-singular point P is the x-order if
0f/oy(P) # 0. Otherwise it is the y-order.

Examples
1. Thecurve C: x>+ y* = 1. The curve is smooth for fields of characteris-
tic 5 3, because 9f/dx = 3x? and 9f/dy = 3y® and (x = 0, y = 0) is not
a point of C. The same argument works in the other coordinate systems.
Consider the points P: (x = 0, y = 1). As df/dx = 0 at P, we must use
the x-order. So the order of x is 1. To calculate the order of y — 1,
rewrite the Taylor expansion of f(x, y) = x3 + (y + 1)(1 4+ y + y?). Thus
y+1=x3(1 +y+ y*) and hence the order of y + 1 is 3.
2. Tke Klein quartic x®y + y> + x = 0. For a field of characteristic 2, the
partial derivative df/0x is x%y + 1. If this is 0, then x3y + y* + x =
x+y*+x=y% 50 y=0, but then x =0 and x%y + 1 = 1, giving a
contradiction. A similar argument holds in the other coordinate systems.
Thus the curve is smooth for fields of characteristic 2. Consider the
point P: (x = 0, y = 0). As df/dy(a, B) = 0 at P, we must use the y-order.
Rewriting f(x, y) = 0 as x(x?y + 1) + y* = 0, we see that x=y3/(x2y + 1).
So the order of x is 3, while the order of y is 1.

Functions on algebraic curves 353

3. Thecurve C:x° + y°> = 1. This curve has 9f/dx = 5x* and 9f /0y = 5y*;
as (x=0, y=0) is not on the curve, it is smooth for fields of
characteristic # 5. Again, the same argument works in the other
coordinate systems.

The order function at P:(x =0, y = 1) can be obtained in the same
way as for x>+ =1 We write (y+ DO*+y>+y*+y+ 1)+
x% =0, to see that v(y + 1) = 5, while v(x) = 1.

22.11 Summary

We have now established the major properties of rational functions on
curves. The most important of these is that for non-singular points there
exists an order function v defined on rational functions, v(¢) < 0 if ¢ has a
pole, and v(¢) > 0 if ¢ has a zero. This order function behaves in a manner
similar to the negative of the degree. It is a discrete valuation. In the next
chapter you will see that this enables us to define vector spaces using a
rational curve. It is these spaces that determine the geometric Goppa codes.

22.12 Exercises

22.1 Show that x* + y* — 1 is not a rational curve, using the following
method.

Suppose we could embed F[x, y]/(x® + y* — 1) into the rational
functions in ¢. Then let the image of x be p(t)/r(t) and y be q(t)/r(t),
where we can assume that the polynomials p(t), ¢(t), r(f) have no
common factors. Then in F[t]

PO+ ¢ —r’@e=0.

Differentiate this equation, cancel the 3 and get

o0 a0 0] SO
oo ro) TO1=%
—r(0)

Deduce first that p?, g*> and —r? are rational multiples of gr' — g'r,
rp’ — r'p and pq’ — ¢'p and then since p, g and r are relatively prime,
that p?|qr' — q'r, ¢*|rp’ — r'p, and —r?|pq’ — p'q. Let, say, p have the
largest degree among p, q and r, then 2 deg(p) < deg(q) + deg(r) — 1,
which is a contradiction.

22.2 Show that if (o, f) is a singular point of the Klein Quartic over some
field F, then 383 + 20 = 0 and —2p% + a = 0. Show that unless F has

354

223
224

225
226

227

228

22.10

Error-correcting codes and finite fields

characteristic 7, the only solution for these equations is « = = 0.
Deduce that for characterisitc # 7, the Klein Quartic is smooth.

For F = GF(7) = Z/7, show that (x = 2, y = 4) is a singular point of
the Klein Quartic.

Show that for a discrete valuation v, v(1) = 0.

Show that for a discrete valuation v, v(a) < v(b) implies v(a + b) = v(a).
Complete the proof of Theorem 22.9, by verifying that when

of/oy(a, B) # O,

then the x-order at P: («, B) satisfies axioms DV1-DV3.

Show that the curve x” + y” = 1 is smooth for fields of character-
istic # 7.)

Let C:f(x, y) =0 be an algebraic curve and let its equation in the
(u, v)-system be g(u,v) =0. Let P:(x =a,y =) be a point of the
curves with (u, v)-coordinates (y, 8). Show that if P is singular with
respect to f(x, y) it is also singular with respect to g(u,v).

Euler’s substitution. Every quadratic curve is rational. Let

C:fy)=0

be a smooth curve with f of degree 2, such that the point P: (0, 0) lies
on C. Show that for any t, the equation f(x, tx) = 0 is a quadratic
with one root = 0 (except for possibly two values of t). Let u be the
other root, show that there is a rational function g(z) with at most
two poles such that u = g(t). Deduce that every (x, y) point of the
curve C is of the form (g(t), tg(t)) for a choice of ¢.

Euler’s substitution (cont.) With the assumptions of Exercise 22.9, let
h(z) = f(g(2), t{g(t)). Show that h is the zero function in t. Now let ¢
be the map from F[x, y] to F(t) taking k(x, y) to k(g(t), tg(t)). Show
that ¢ induces an isomorphism of F(C) with F(t). This proves that C
is rational.

23 A survey of the theory of algebraic
curves

In this chapter we state the main theorems of the theory of algebraic curves
up to Riemann’s theorem. These theorems are important in constructing and
establishing the properties of geometric Goppa codes, but they do not enter
directly into the calculations, once the codes have been constructed. As the
proofs of the principal theorems are deep, I shall content myself with stating
them. I shall show by means of examples and consequences derived from
them, how they enable us to analyse the properties of curves. The theory is
developed fully in several textbooks such as Shafarevitch (1974), Chevalley
(1951) and Fulton (1969). The reader who would like a broader view of
algebraic geometry related to codes is referred to van Lint and van der Geer
(1988), though the latter book also omits many of the proofs.

23.1 Conjugate points

Notice that in Examples 21.8-10 the points in the extension fields are
grouped together by semicolons. The coordinates of points in the same group
have the same minimal polynomials. Hence, if a rational function defined
over GF(2) is zero on one point of a group it is zero on all the others as
well. That means that, as far as GF(2) is concerned, we cannot distinguish
which of the points in a group we have picked out. That is rather like the
fact that as far as real functions are concerned we cannot distinguish between
+iand —i.

Definition Let (x = «, y = f§) be a point with coefficients in an extension
field E of F. Then a point (x = &, y = f') is called conjugate to (x, p) if for
any polynomial g(x, y) in F[x, y], g(¢, f) = 0 if and only if g(«,) = 0.

Example Recall Example 21.8, the curve x* + y* + 1 over GF(2). Its points
are

GF(2): (x=0,y=1);(x=1y=0);u=00v=1)
GF@4): (x=0,y=10), (x=0,y=11); (x=10,y=0), (x =11,y =0);
u=0,0=10), (u=0,v=11);

356 ' Error-correcting codes and finite fields

GF@B): (x=2,y=5)(x=4,y=6),(x=T7,y=73Y)
x=5,y=2),(x=6,y=4),(x=3,y="T).

) Distinct points over GF(2) are not conjugate. The points over GF(4) group
into pairs of conjugates. The points of GF(8) group into triples. These
groupings are indicated by semicolons.

In Chapter 22 we observed the fact that the order functions of complex
conjugate points on real polynomials were the same. From the real point
of view they are identical twins. That holds in the more general situation of
algebraic curves.

Proposition (a) Let P and P’ be conjugate points over a field F, then if one
lies on a curve C defined over F, then so does the other. If one is non-singular,
then so is the other.

(b) Conjugate non-singular points of a curve C define the same order
function.

Proof (a) If C is defined by f(x,y)=0 and P:(x=a,y= p) and
P (x =,y = p) are conjugate, then P lies on C implies f(a, f) = 0 and
that implies f(«', §) = 0. Thus P’ lies on C also. By the same argument
0f/0x(a, B) = 0 if and only if df/dx(a’f’) = 0, and the same statement holds
for 0f/dy. Thus if P is non-singular, then so is P".

(b) Let («, f) and («, f') be conjugate points of C: f(x, y) = 0, defined
over F and let E and E’ be the fields F[«, 8] and F[o’, f']. Every element
of E can be written as g(a, f) where g is some polynomial in F[x, y]
Furthermore, by definition g(«, 8) = 0 if and only if g(«, 8') = 0. Hence we
can define a map ¢ from E to E’ by taking g(a, f) to g(«, §). This map is an
isomorphism: it is bijective and preserves addition and multiplication.
Furthermore, it leaves elements of F unchanged and so the equation
S(x, y) = 0 remains unchanged. Hence if h(x, y) € E[x, y] has x-order n at
(%, B), oh(x, y) has x-order n at («, f'). If he F[x, y], then oh(x, y) = h(x, y).
So, on F(C), («, B) and («, f') define the same order. []

23.2 The degree of a point

To measure how much we must enlarge F to obtain the coordinates of
P: (a, {3), we introduce the notion of the degree of a point. It emerges that,
more importantly, the degree counts the number of conjugates of P.

Definition Let F be a field and let P:(x =a,y=4f) be a point with
coefficients in a finite extension field E. Let F[«,] be the extension field
generated by the coordinates of P. Then the degree of P, denoted by d(P),
is the dimension of F[«, f] as a vector space over F.

A survey of the theory of algebraic curves 357

Example To obtain the point P: (i, 2) of the real circle x% + y? = 3, we must
enlarge R to C. So the degree of P is 2. It has two conjugates, P itsell and
P: (—i,2).

Propositic (a) Conjugate points have the same degree.
(b) If P(x = o, y = P) is a point of degree n of the curve C defined over a
finite field F. Then in any extension field of F [«, B, P has exactly n conjugates.

Example For the curve x> + y* = 1 defined over GF(2) the points (1,0),
(10,0), and (2, 5) given in Example 21.12 have degrees 1, 2 and 3.
The number of conjugates of each is the same as its degree.

Remark 1f we drop the restriction that F is finite, then part (b) need no
longer hold. In that case one can only say that P has at most n conjugates
over any extension field. It is also possible to give a condition when there is
an extension field in which P has the full quota of n conjugates.

Proof (a) Let P: («, B') be a conjugate of P. From Proposition 23.1 we
have seen that the map o taking g(a, f) to g(o/, f') defines an isomorphism
of F[a, f] onto F[a/, f7] fixing F. Thus the dimensions of these two fields
as vector spaces over F must be equal.

(b) We deal with the case that neither « nor B lies in F itself. A similar
but simpler argument proves the case when one of a, § lines in F. Let y be
a primitive element of F[«, f] and, say « = ', = y’. The minimal poly-

nomial of y has degree n and exactly n roots y = yy,...,7, in F[a, f]. For
each y,, the point (yi, y{) is a conjugate of P. So P has at least n conjugates
in Flo, f].

Now suppose P': (o,) is conjugate to P in some extension field E of
F[a, B]. The isomorphism ¢ of part (a) maps y onto a primitive element y’
of F[«, f'] such that o« =y" and § = y7. But y' has the same minimal

polynomial as y and the roots of that polynomial in E are precisely y,, .. ., 7,-
Thus y’ =y, for some k=1,...,n, and P’ is one of the conjugates we
calculated for F[a, f].]

23.3 Functions on a curve

We now turn our attention to the behaviour of functions on a curve. We
shall state, but not prove, two fundamental theorems, which are generaliza-
tions of important theorems of complex number theory. These state that all
non-constant functions have zeros and poles, and furthermore they have the
same number if they are counted correctly.

358 Error-correcting codes and finite fields

Theorem The existence theorem Let C: f(x, y) = O be an affine curve over
F.and let g(x, y) be an irreducible polynomial in F[x,y] such that g(x, y) is
not congruent to a constant modulo f(x,y). Then there exists a point
P:(x = a,y = B) with a, B in some extension field of F, such that g(a,) = 0.
The number of such points is finite.

Furthermore, if C is smooth, and for h(x, y) € F[x, y], vp(h) = vp(g) for all
points P: (x = «, y = f) with g(a, B) = 0, then h(x, y) ix congruent to a multiple
of g(x, y) modulo f(x, y). [|

Corollary Since there are infinitely many irreducible polynomials in F[x, y],
there are infinitely many points on any curve. Furthermore, different irreducible
polynomials must be zero on non-conjugate points. So there are infinitely many
non-conjugate points on a curve.]

It also follows that different absolutely irreducible polynomials define
different curves. As it can be shown that there are infinitely many absolutely
irreducible polynomials, there are infinitely many different curves.

23.4 Counting poles and zeros

For most purposes conjugate points should not be distinguished. So we
coagulate conjugate points into ‘places’. As we can only define orders for
non-singular points, we restrict our attention to these.

Definition Let C be a curve and P a non-singular point of C; the set of
conjugates of P is called a place. We abuse notation and denote the
place of P by P also. As the degrees and order functions of conjugate points
are the same, we can speak of the degree of order function of a place, and
use the notation d(P) and v,(f) equally for places or their member points.

With this concept we can formulate a grand extension of the theorem that
the number of roots of a polynomial of degree n, counted with the correct
multiplicity, is exactly n. For this theorem we assume that the curve we are
dealing with is smooth, that is: all its points are non-singular.

Theorem The degree theorem Let C:f(x, y) = 0 be a smooth curve defined
over F, and let ¢ € F(C). Then vp(¢) # O for finitely many places P, and
summing over all places we have

2 ve(@)d(P) = 0. n

Corollary Replacing each place P by its d(P) constituent points we see that

A survey of the theory of algebraic curves 359
if we sum over all non-singular points the sum becomes

z ve(¢) = 0.
That states that if the poles and zeros of ¢ are counted with the correct order,
then f has equally many poles and zeros.

Example 1t is interesting to confirm what the theorem says for ordinary
polynomials. Consider the curve y = 0. This straight line has as its function
field ordinary rational functions in one indeterminate. It has points («, 0) with
o in some extension field and there is a single point at infinity (u = 0, v = 0).
This has degree 1 (because its coordinates lie in the base field) and its order
function assigns to each polynomial f(x) = f(1/u) the value —deg(f).

Two finite places (a, 0) and (B, 0) are conjugate if « and § have the same
minimal polynomial. Thus finite places correspond to irreducible polynomials
in F[x] and the degree of the place P corresponding to the irreducible p(x)
is just deg(p). The order of a polynomial f(x) at this place is the power to
which p(x) occurs in the (unique) factorization of f(x).

As there are only finitely many irreducible factors of f the number of places
where f has order >0 is finite. Furthermore the sum

2 ve(£)d(P)

over these places is precisely the degree of f. If we add in the point at
infinity, then v (f) = —deg(f) and so the sum becomes 0.

23.5 Specifying subspaces

In defining a code based on a curve C we shall need to use linear subspaces
of the field of functions F(C). The most natural way to specify such a space
is to require its members to have specified orders at certain places.

Example For the field F(x) the set of rational functions with order > —n
at oo is the vector space of rational functions of degree <n. This is
infinite-dimensional.

If we also require the function f/g to have no poles at any finite places,
that means that no irreducible polynomial divides g. Thus g is a constant
and we now have the set of polynomials of degree <n. This has dimension
n+ 1.

Suppose we relax the restriction and allow order > — 1 at the point x = 0.
Now we have the set of functions of the form f/x where f has degree <n + 1.
The dimension increases to n + 2. If we tighten the condition instead and
require a zero at x = 0, we get the set of polynomials of the form xf with
S of degree <n. The dimension drops to n. Of course, if we require the order

360 ' Error-correcting codes and finite fields

to be at least 0 at all finite places and >0 at oo we are asking for a function
f/g with deg(g) > deg(f) and no poles. There are no such functions (except
0, which we give infinite order at all places) and the dimension is 0.

On a straight line, this behaviour is very regular, but for general curves
it is more subtle. To perform the corresponding calculations there we need
a proposition that follows from the existence theorem.

Proposition Let C: f(x, y) = 0 be a smooth curve and let g(x, y)/h(x, y) be a
rational function with ve(g/h) > 0 for all (x, y)-points P: (x = a, y = f) of C
(in other words all the poles of g/h are on the horizon of the (x, y)-system).
Then in F(C), g(x, y)/h(x, y) = g°(x, y) for some g° € F[x, y].

Proof Suppose that h(x, y) is not congruent to a constant modulo f(x, y).
Then we can extract an irreducible factor h°(x, y) from h, such that k° is also
not congruent to a constant modulo f. Say h(x, y) = h°(x, y)i'(x, y). For all
(x, y)-points P of C, for which vp(h°) > 0, we have vp(g) = vp(h) + vp(g/h) >
ve(h). Thus, by the existence theorem, g(x, y) is congruent to h°(x, y)g'(x, »)
modulo f(x, y). So we can replace g/h by g'/h’ where k' has degree less than
h. Repeating the process as often as required we can reduce the denominator
to a constant. n

Corollaries (1) A function in F(C) without any zeros on C: fx,y) is a
constant.
(2) A function without any poles on C is also a constant.

Proof (1) If g/h has no zeros at all, then by the proposition, g/h is congruent

to a polynomial g°(x, y) modulo f(x, y). By the existence theorem, all the

irreducible factors of g°(x, y) are congruent to constants modulo f(x, p).
Hence 4°(x, y) is congruent to a product of constants modulo f(x, y).

(2) If g/h has no poles, then h/g has no zeros. So by (1) it is a constant.

[]

23.6 Applying Proposition 23.5

Proposition 23.5 is very useful for determining the nature of functions with
specified poles and zeros.

Example Take C: x* + y® = 1 defined over GF(2) and consider the point
P:(x =0,y =1). What is the dimension of the set of rational functions
flg € F(C) with vp(f/g) > —n and vo(f/g) = 0 everywhere else?

e Ifn = 0, then the space consists of the constants and the dimension is 1.

e If n =1, then the space still consists of constants.

A survey of the theory of algebraic curves 361

You can see this as follows. A function satisfying our condition must be
of the form f/g with f(0, 1) # 0 and ¢(0, 1) = 0. Now since vp(x) = 1, and
vo(x) > 0 for all points Q:(x = «, y = ff), xf/g satisfies the conditions of
Proposition 23.5. Thus xf/g is congruent to a polynomial h(x, y) in F(C)
and our function takes the form h(x, y)/x. In the (u, v)-system this transforms
to h(1/u, v/u)u. If h has degree > 1, it has a prohibited pole at (u = 0,v = 1).
So hmust have degree < 1. Our function must be of the form (ax + by + c)/x.

In order that this has no pole at (x = 0, y = 10), we must have 10b + ¢ = 0,
but in order that it has no pole at (x = 0, y = 11), we must have 11b + ¢ = 0.
Hence b = ¢ = 0 and our function is the constant a = ax/x.

Thus there are no non-constant functions of this type and the dimension
remains 1.

e Ifn =2 we have a function x/(y + 1) = y> + y + 1/x* which has a pole
of order 2 at P. The function has zeros at (x =0,y = 10) and (x =0,
y = 11). At all other points the order of this function is 0. So the
dimension of our space for n = 2 is at least 2.

e If n =3 there is a further function 1/(y + 1) = y*> + y + 1/x>. This has
a pole of order 3 at P. It has no further zeros or poles in the (x, y)-system.
In the (i, v)-system it transforms to v?u + vu® + u® which has zeros at
(u=0,v=1),(u=0,v=10),and (u = 0,v = 11). The dimension of our
space for n = 3 is at least 3.

We shall shortly show that the dimensions of these spaces for n = 2, 3 are
exactly 2 and 3.

23.7 Divisors

If we want to make conditions at several points, we can assemble them into
one global definition by introducing the concept of a divisor. We use places
to ensure that conjugate points are treated equally.

Definition A divisor D of a curve C assigns an integer value D(P) to every
place of C. We require that D(P) 5 0 for only finitely many places.

We shall use the notation D = ¥ D(P)P to denote the divisor. Addition
of divisors is defined term by term, and we say D < E if D(P) < E(P) for
all P. If only one place P has a possibly non-zero value D(P) = n, we write
D =nP.

Let S be a set of places and let D be a divisor. The L-space L(D, S) is the
set of elements ¢ € F(C) such that vu(¢) + D(P) > O for all P& S. If S is the
set of all places of C it is omitted.

362 Error-correcting codes and finite fields

Example In Example 23.5 we first considered the straight line y = 0. We
calculated L(nP, S) where P = oo and S = {P}. It is the space of all rational
functions of degree <n. On the other hand, we found that L(nP) is the space
of polynomials of degree <n.

In Example 23.6, we then considered the curve x> + y* =.1. For P: (0, 1)
we found that L(OP) = L(P) and that both were just the set of constants.
We found non-trivial elements of L(2P) and L(3P).

Theorem The L-space L(D,S) is a vector space over F. If S is finite,
dim(L(D, S)) = oo, but dim(L(D)) is finite.

23.8 A special case

Although we cannot prove the Theorem 23.7 here, we shall prove a special
case that will suffice for our calculations.

Proposition Let C be a smooth curve defined over F, and let P be a point of
C with coefficients in F. Let D be a divisor of the form nP with n > 0. Suppose
1=¢,¢,5...,¢,€ L(D) with ve(@;) = —n;. Suppose that

(@ O=n<n,<---<m<n,
(b) If y € L(D) then vp(y) = n; for some j=1,..., k.

Then ¢,, ..., ¢, forms a basis of L(nP).

Example Using the proposition, we can now complete the calculations of
Example 23.6. Let C: x* + y* = 1 over GF(2) and P: (0, 1). We have shown
that there are no functions i with vx() = —1 and vo(¥) = 0 for Q # P. But
we have given examples of functions with vp(y) < —2 and vo(¥) = 0 else-
where. Indeed, if we take the functions ¢ = x'y//(y + 1)'*J, then as vp(x) = 1,
ve(y) =0, and vp(y + 1) = 3, we have vp(¢)) = —2i — 3j. Choosing appro-
priate non-negative values i and j will give every value strictly less than — 1.

We must check that the functions have no further poles. As (0, 1) is the
only point in the (x, y)-system with y = 1, ¢ has no further poles in that
system. In the (4, v)-system ¢ has the form v//(v + u)'*J. As the curve has
the (u, v)-equation u® + v® = 1, there are no poles in the (u, v)-system. The
only point of the (w, z)-system we need to consider is (0, 0), but this does
not lie on C. That proves that the only pole of ¢ is P, and thus
¢ € L((2i + 3j)P).

Applying the proposition to functions ¢ with vp(¢p) =0,2,...,n, we find
that L(nP) has dimension n for n > 1, but L(OP) has dimension 1.

Proof For convenience we assume that P is the (x, y)-point (x = a,y =)
with o, Be F. By axiom DV2 (see Section 22.7), the order of a linear

e s S A

A survey of the theory of algebraic curves 363

combination of ¢,, ..., ¢; at P is at least —n; while ¢;,, has order <-n;
So ¢4, is not a linear combination of ¢1....,¢;. Hence the functions ¢;
are linearly independent.)

To prove that they form a basis, we show that every function ¥ € L(nP)
is a linear combination of ¢, ..., ¢, by induction on —vp(¥). If vp(¥y) = O,
then since vo(}) > 0 everywhere else, Y is a constant and so Y = ad,.
Suppose the proposition is true for vp(y) > —n; and suppose we hav.e
Y € L(D) with vp(y) = —n;. Then vp(y/¢;) = 0. So the value of y/¢;at Pis
a non-zero constant a in F..Let y =y/¢; — a. Then vp(y) > Q, and so
ve(x$;) > —n;. But x¢; =y — ag;, and sinf:e Y and ¢; e L(nP) it follows
that yy; € L(nP). By the induction hypothesis,

x=apy+ -+ a8y
So y=ai¢+ -+ a0 + ad; n

23.9 Riemann’s theorem and the genus

Definition For a divisor Y, D(P)P, the dimension of L(D) is ca_lled the rank
of D and denoted by (D). The value ¥ D(P)d(P), where d(P) is the degree
of the place P, is called the degree of D and denoted by d(D).

Calculating the value of I(D) is quite dificult, as you have seen. It does not
behave as regularly as one might expect. For instance we found .that
I(P)=1=10P) for x>+ y*=1 and P=(0,1). In general, behavn(?ur
becomes regular as the degree d(D) becomes large. Riemann’s theorem, which
is the most important result of the theory of algebraic curves, gives a gengral
estimate (D) in terms of a constant g, called the genus of the curve. Using
this theorem greatly simplifies the calculations required to determine L(D).

Theorem Riemann’s theorem Let C be an algebraic curve over F.

(@) Let A and B be divisors on C with A < B (that is A(P) < B(P) Sor all
points P of C). Then

I(B) — d(B) < I(A) — d(A).

(b) There exists a non-negative number g such that for all divisors D with
d(D) > 2g — 2.

D) —d(D)=1-—g. []

Definition The number g satisfying Riemann’s theorem is called the genus
of the curve C.

364 Error-correcting codes and finite fields

The following two corollaries are immediate consequences of the theorem.

Corollaries (1) The genus of C is unique.
(2) For all divisors D on C, (D) —d(D) > 1 — g.

Example Example 23.6 corroborates (but does not prove) the fact that the
straight line y = 0 has genus 0. Any quadratic curve has a function field
isomorphic to ordinary rational functions. It follows that quadratic curves
also all have genus 0.

From the fact that I(P) = 1 = d(P) for the point P: (0, 1) of the curve
x3 + y3 = 1 over GF(2), it follows that this curve cannot have genus 0. The
calculations in Example 23.8 strongly suggest that this curve has genus 1,
and that is indeed the case.

23.10 The Pliicker formula for smooth plane curves

The examples we have calculated hint at the idea that the genus of a cubic
curve ought to be 1, and one might guess that may be there is a formula for
the genus in terms of the degree of the defining equation. That is indeed the
case for smooth curves.

Theorem The Pliicker formula Let C: f(x,y) = 0 be a smooth curve of
degree n. Then the genus of C is (n — 1)(n — 2)/2. []

As it stands, the formula is valid only for smooth plane curves. There are
generalizations to other cases. As expected, the formula gives the genus of
curves of degree 1 and 2 as 0, and the genus of a cubic curve as 1.

In the next section we shall use the theorem to perform calculations for
the Klein quartic and the curve x® + y5 = 1 similar to those we performed
for x* + y* = 1. For completeness we first tabulate the results of Example
23.8.

Example Let C be the curve x* + y* = 1 and P = (0, 1). The genus of C is
1 and the values I(nP) are as follows:

n 0 n>0
I(nP) 1 n

A survey of the theory of algebraic curves 365

23.11 The Klein quartic

Example For the Klein quartic, the equations in the three systems are
Xy +y*+x=0,v+u> +v=0,w3z + z* + w = 0. By the Pliicker formula
the curve has genus 3. We consider the quartic as a curve over GF(4).

Choose as our base point P the point (x=0,y=0). We have
0f/0y(0,0) =0. So we must use the y-order. Thus vy(y) =1 and as
x(x%y + 1) = y3, vp(x) = 3.

Consider the furiction ¢ = y/x’ with 0 < 3i < 2j. This function has a pole
of order 3j — i at P. Other (x, y)-points on C have x # 0 and are not poles,
but we must also consider (u, v)-points with u =0 and the (w, z) point
Q: (w =0,z = 0). In the (u, v)-system y/x’ becomes w/ ‘v’ which has no pole
because j > i. In the (w, z)-system it becomes w'~%/z/. Since vy(w) = 3 and
vo(2) = 1, vo(W™¥/z%) = 2j — 3i > 0. So ¢ has no further poles.

The values vp(y'/x’) = 3j — i, we can obtain for these functions are 0, 3,
5, and all numbers > 5. So for n > 5 we get n — 2 values. From Riemann’s
theorem it follows that for n > 5 the functions y'/x' with 0 < 3i < 2j form a
basis of L(nP).

Suppose n < 5. If has a pole only at P then y cértainly also lies in L(5P).
Thus vp() = vp(y'/x’) for some admissible values i,j. By Proposition 23.8
it follows that appropriate functions ¢ = y/x’ still form a basis of L(nP).
We can now write out a table of values for I(nP).

n 0 1 2 3 n>4
i(nP) 1 1 1 2 n—2

23.12 A quintic

Example The curve x° + y* = 1 over GF(16). This curve has genus 6.

We take as our base point P the point (x = 0,y = 1) As df/0x(0, 1) = 0,
we use the x-order. Thus vp(x) = Land (y + D(y* + y> + 2 + y + 1) = x5,
so vp(y + 1)=5.

The function ¢ = x'y¥/(y + 1)'*/ has vp($) = —(4i + 5j) and no poles at
other points of C. The values of n representable as 4i + 5j, with i,j > 0, are
0,4,5,8,9, 10 and all values > 12. For n > 10 the number of such values
isn—35.

By Riemann’s theorem it follows that appropriate functions ¢ =
x'y/(y + 1)'*J with vp(¢) = — n form a basis of L(nP) for n > 10. It follows
that if € F(C) is a function with a pole only at P, then v,() = 4i + 5j for

366 ' Error-correcting codes and finite fields

some i and j. Hence by Proposition 23.8, appropriate functions ¢ =
x'y/(y + 1)"*I form a basis of L(nP) for all n > 0. The table below lists I(nP).

n 0 1 2 3 4 5 6 7 8 9 10 n>10
i(nP) 1 1 1 1 2 3 3 3 4 5 6 n—35

Just as we proved the dimension formulas for x> + 3 = 1 directly, it is
possible to do so for Examples 23.11 and 23.12 also, but it is much easier
to apply Riemann’s theorem.

23.13 Summary

We have now assembled the most important facts about curves. The points
of a curve group together to form places. Their main properties such as
degree (which, at least for finite fields counts the number of points in a place)
and the order function depend only on the place. Even for finite fields a
curve has infinitely many places and there are infinitely many curves. Every
rational function on a curve has equally many poles and zeros if they are
counted with the correct multiplicities.

To combine conditions on the order of functions at various places on a
curve we define divisors D and their associated spaces L(D). We explicitly
calculated the spaces L(nP) for three curves and chosen points. The spaces
L(D) are finite-dimensional. The dimension /(D) is estimated by Riemann’s
theorem, which relates it to the degree d(D). The difference (D) — d(D) is
always at least 1 — g, where g is the genus of the curve. The difference
decreases as the divisor increases, and for divisors of degree greater than
2g — 2,1(D) — d(D) = 1 — g always holds. Straight lines and quadratic curves
have genus 0, for smooth curves of degree d the genus is given by the Pliicker
formula (d — 1)(d — 2)/2.

In the next chapter we shall use the spaces L(D) to construct Goppa’s
codes.

23.14 Exercises

23.1 Why do the coordinates of conjugate points of an algebraic curve have
the same minimal polynomials?

23.2 Let F be a field and a, f be elements of a finite extension E, Suppose
that the degrees of the minimum polynomials of « and pare mand n
respectively. Show that the elements o', for 0 < i < m and 0 < j<n,
contain a basis of F[a, £].

233

234

23.5

23.6

23.7

239

A survey of the theory of algebraic curves 367

Prove that if P: («, B) is a point of degree n over a finite field F, with
o € F, then P has exactly n conjugates in any extension field of F[f].
Show that the conjugates of the point («,) defined over a field of
characteristic 2 are (a, B), (@, 2), (@*, B%),

Let C be the x-axis defined by y = 0 over GF(16). Denote the point
(x = B,y =0) by () and the point (u = 0, v = 0) by (c0) taken over
all non-zero values i, and let D = a(0) + b(o0). Show that the functions
x' with —a < i < b form a basis of L(D).

Let C be as in Exercise 23.5, and let g(x) be an irreducible polynomial
of degree d. Let P be the place of C associated with g (see Example
23.4). Show that if D = aP + b(), then the functions x’g’ with i > 0,
j = —a,and dj + i < b, form a basis of L(D).

Show that for any curve C and any place P, I(nP) <n + 1.

What is the genus of the curve x” + y” = 1 over GF(2)?

For the point P:(x =0,y =1) of x” + y” = 1 calculate the values
I(nP) for all n.

24 Geometric Goppa codes

We shall begin by defining dual Goppa codes, and then use these to define
the Goppa codes themselves. In the process it will become clear that
geometric Goppa codes are a generalization of classical Goppa codes.
Together with the definitions we will produce estimates for the rank and
minimum distance of the codes. As with previous classes we shall call these
estimates the designed rank and minimum distance of the codes.

24.1 Dual Goppa codes

Definition Let F be a finite field and let C be a smooth algebraic curve
defined over F. Let {P,,..., P,} be a set of points of degree 1 (that is points
P; of C of the form («;, B;) with «;, B; € F), and let B be the divisor that is
the sum of these places,)" P,. Further let D be divisor such that D(P) =0
for all j=1,...,n The dual Goppa code GD(B, D) is defined as the set of
vectors (dy, ..., d,) such that there exists a rational function ¢ € L(D) with
d;= §(P).

We need to choose the points P; to be of degree 1, so that the values
d;lie in the field F. Points of degree 1 form places on their own, so the divisor
Bis correct as it stands. Since B determines the set of points P, we shall write
F; € B to indicate that P, is one of the selected points.

Example To avoid confusion, we shall use only the field GF(16) and its
subfield GF(4) in the examples of this chapter. You can tell if we are working
over GF(4) by the fact that the values are restricted to 0, 1, 10, and 11.
Consider the curve C: x> + y* = 1 defined over F = GF(4). In Section 21.8
we found all the points of C over GF(4). They are the same as the points
over GF(16). There are 9 points, which we number as follows:

0:(x=0,y=1),1:(x=0,y=10), 2: (x =0,y = 11),
3(x=1y=0),4(x=10,y=0),5 (x =11,y =0),
6:(u=0,u=1),7:(u=0,v=10),8:(u=0,v=11).

We take as B the sum of the points 1 to 8 and D as a multiple aP,. In
Example 23.8 we showed that the functions x'y//(y + 1)*/, have poles of

Geometric Goppa codes 369

order —(2i + 3j) at P, and belong to L(D) if 2i + 3j < a. We also showed
that choosing one such function of each order gives a basis of L(D).

The table below shows the values at P, for a choice of such functions of
orders down to —7. Notice that there is no function of order —1.

Function Order (x, y) points (u, v) points
23 4 5 6 7 8

1 0 1 11 1 1 111
x/(y + 1) -2 0 01 10 11 1 11 10
y(y+1) -3 11 10 0 0 0 1 1 1
Xy + 1) -4 0 01 11 10 1 10 11
xy/(y + 1)? -5 0 00 0 O 111 10
XNy +1)° -6 0 01 1 1 111
xyly + 1) -7 0 00 0 O 110 11

Transposing the entries in the rows up to order —a will give a generator
matrix for the code GD(B, aP,). Thus for a =0 or a =1 we get just the
eightfold repetition code. For 1 < a < 8 the code has dimension a as can be
easily checked. It is also an easy exercise to find in each such code a code
word of weight 8 — a.

If you try to perform these calculations, you may wish to begin by
following the calculation of generator and check matrices for the codes that
will be presented in Example 24.5.

We can summarize the parameters of the codes in the following table.

a 1
Rank 1
Min. dist. 8

NN
W W W
LR N
W W
LS N
NN

24.2 Parameters of dual Goppa codes

Proposition Let C be an algebraic curve over the field F and let G be a
geometric Goppa code GG(B, D) defined over C with d(D) = a. Then for the
block length n, rank m and minimum distance d of G,

(@) n=d(B),
(b) m=1ID)~ D - B),
() d=zn—a.

370 Error-correcting codes and finite fields

Proof Statement (a) is obvious. Statement (b) is a direct consequence of
the rank and nullity theorem. The map taking a function ¢ in L(D) to its
sequence of values on the points of B is linear. The map takes ¢ to the all
zero sequence if and only if ¢(P) = 0 for all points of P of B, which holds
if and only if ¢ € L(— B). Since B and D are disjoint ¢ € L(D) and ¢ € L(— B)
is equivalent to ¢ € L(D — B).

Statement (c) follows from the degree theorem (Theorem 23.4), which
implies that a non-zero function has the same number of zeros and poles,
when they are counted with correct multiplicities. Let ¢ be a non-zero
function of L(D) and suppose that ¢ has b zeros among the points of B.
Then by the degree theorem,

0=3 ve(§)d(P) + . vo()d(Q)
PeB 0¢B

But for all points P, vp(¢p) + D(P) = 0, and for the points Pe B, D(P) =0,
hence ¢ has no poles at points of B, and the first sum above has value at
least equal to b. Hence

0=b+ Y vo(@)d(@)=b— Y D(Q)Q)
Q¢B Q¢B

As D(P) = 0 for all points of B,
Y. D(@)d(Q) = ¥ D(P)A(P) + Y. D(Q)d(Q) = d(D) = a.
Q¢B PeB Q¢B

Hence 0 > b — a, or b < a. So ¢ has at most a zeros in B and any non-zero
code word has weight at least n — a. n

The estimates of the proposition are most useful if d(D) < n. In that case
d(D — B) <0, so (D — B) = 0. We can use Riemann’s theorem to obtain a
lower bound for the rank and obtain the following corollary.

Corollary Ifd(D) = a < n = d(B), then GD(B, D) has rank at least a + 1 — g,
where g is the genus of the underlying curve, and minimum distance at least
n-—a. n

Remark When g = 0, the codes meet the Singleton bound (see Theorem
18.4). As we shall see, the (full) classical Goppa codes are geometric Goppa
codes for curves of genus 0, so this establishes that classical Goppa codes
(and their subclass Reed-Solomon codes) meet the Singleton bound.

24.3 Table for the Klein quartic

Example 1In this example we shall calculate a table for the Klein quartic
over GF(16) analogous to that of Example 24.1. As shown in Example 21.9,

Geometric Goppa codes 371
this curve has 17 points oer GF(16), which we number as follows:
0:(0,0), 1: (u=0,v =0), 2: (w =0,z = 0), 3: (10, 11), 4: (11, 10),
5:(3,10), 6: (5, 11), 7: (8, 10), 8: (15, 11),
9: (10,2), 10: (11, 4), 11: 10,9), 12: (11, 14),
13: (6, 8), 14: (13,15), 15:(7, 3), 16: (12, 5).

(Points are (x, y)-points except for P, and P,).

We take for D a multiple aP, and for B the 16 other points. In Example
23.11 we found that a basis for L(D) could be found by choosing functions
of the form y'/x’ with 0 < 3i < 2j. These functions have order —(3j — i) at P,.

Function Ord Values m d
8 910111213 141516

[}
w
IS
%)
o
-

1 0 1t 11111111 111111 1 16
1/x -3 001110 815 3 511101110 4 914 2 2 13
yix? -5 00 1 1 2 491413 712 6 712 613 3 11
1/x? -6 00101115 3 5 810111011 914 2 4 4 10
yx3 -7 01101112 613 7 4 914 2 3 5 815 5 9
yix? -8 001110 914 2 4 2 4 914 5 815 3 6 8
1/x3 -9 001158153 1111153538 7 7
y3/xt -10 00 1 1 4 914 2 712 61312 613 7 8 6
yix* —11 001011 712 61315 3 5 813 712 6 9 5
1/x* —12 001110 3 5 8151110111014 2 4 9 10 4
y¥/x® —-13 00111011 101110 3 5 815 2 4 914 1 3
y/x® —14 00 1 11011101113 712 6 613 712 12 2
1/x3 —15 001011 1 1 1 11011101110 11 10 11 13 1
y/x© —16 00101114 2 4 9 4 914 2 815 3 5 14 1
y/x® -17 001110 613 712 2 4 914 1 1 1 1 14 1
1/x¢ —18 00 118153 5111135815 15 i

The transpose of the rows of order up to —a gives a generator matrix for
GD(B, aP,). The entries in the m and d columns show the true rank and
minimum distance of the codes. Notice that as a increases from 16 to 17,
the rank of the code fails to increase. At that stage I(17P, — B) = 1. The rank
values can be obtained by applying standard row operations to the matrix.
The minimum distance values are found by searching for short code words.

24.4 Primary Goppa codes
As we have seen, the field of ordinary rational functions F(x) is the algebraic

function field corresponding to the irreducible polynomial f(x, y) = y. Geo-
metrically, the curve in question is a straight line. However, for this case the

372 Error-correcting codes and finite fields

definition of a dual Goppa code does not match the definition of the classical
Goppa code GC(P, g), which we recall here from Section 19.2.

Definition Let g(z) be a polynomial over F, and let P = {,,..., §,} be
a set of elements of F such that for i=1,...,n, g(B;) # 0. Then the
(classical) Goppa code GC(P, g) can be defined as the set of words d € F"
such that

s(z) = i djﬂ» =0 (modulo g(z)).

siz=p;

In classical terms, the values d ; are the residues of s(z) at the places z = I
By its construction s(z) has degree < 0, so v (s) > 1. Furthermore, the fact
that g(z) divides s(z) can be expressed by the fact that for a finite place Q
which is a zero of g(z), vy(s) > vo(9)- So if we let B be the divisor Z Q; where
Q, is the place z = f;, and we let D be the divisor with value D(Q) = vo(g)
for all finite places and Dy = 1. Then s(z) € L(B — D). So we could say that
GC(P, D) consists of the sequences (d, ..., d,) where d; is the residue of a
rational function s € L(B — D). That is the way Goppa himself defined the
codes, but using residues would require a further chapter of theoretical
algebraic geometry. So let’s see if we can remove the residues from the
definition.

With the divisors B and D as above, let ¢(z) € L(D). Then all the poles of
¢(2) lie among the zeros of g(z), and indeed ¢(z)s(z) has no poles outside
the set B,,..., B,. Now in the classical theory, the sum of all the residues
of a rational function is 0. The reader familiar with the classical theory of
residues will realize that we should have D(c0) = —1 to make the residue
of ¢(z)s(z)dz at oo equal to 0, see Exercises 24.5-8. Thus we have

Y di¢(B) =0.

These considerations lead us to make the following definition of a
(primary) geometric Goppa code defined over a finite field.

Definition Let F be a finite field and let C be a smooth algebraic curve
defined over F. Let {P,,..., P,} be a set of points of C degree 1, and let B
be the divisor that is the sum of these places, Y P,. Further let D be a divisor
such that D(P;) = Ofor all j = 1,..., n. The (primary) geometric Goppa code
GG(B, D) is defined as the set of vectors (d,,...,d,) such that for all
¢ e L(D), Y d;p(P;) =0.

Again B determines the set of points P, and we shall write P, € B to indicate
that P, is one of the selected points. Also, if D is a non-negative multiple of
a single rational point we shall call the code a one-point code.

Geometric Goppa codes 373

This definition provides an easy method for producing a check matrix for
a geometric Goppa code.

Proposition If A is a generator matrix for the dual Goppa code GD(B, D),
then A" is a check matrix for the geometric Goppa code GG(B, D).

Proof By the definition of the codes, u is a code word of GG(B, D) if and
only if v-u = 0 for all code words v of GD(B, D). Since the columns of 4
form a basis of GD(B, D), that will hold if and only if v-u = 0 for all columns
of A, in other words, if and only if A™u = 0. []

24.5 Generator and check matrices

Example In this example we give generator and check matrices in standard
form for the codes GD(B, aP,) and GG(B, aP,) derived from the function
table in Example 24.1. The curve is x> + y* = 1, P is the point (x = 0,y = 1),
and B is the sum of the eight other rational points over GF(4). The matrices
in the first column are obtained by using row operations on appropriate
rows of the following matrix extracted from the table:

1
]

1 11 1 11 1 1
0 01 10 11 1 11 10
0 1010 11 0 11
11 10 0 0 01 1 1
0 01 11 10 1 10 11
0 00 O O0 1 11 10
0O 01 1 11 1 1
LO 00 0 0 1 10 11 |

To obtain the matrices in the second column we use the formula of
Proposition 3.11. In order to make it easy to check the calculations I have
not altered the order of the columns in reducing the matrix to standard form.
This means that some columns are permuted (identically in both matrices).

For the primary code GG(B, aP,), the matrix in the first column is a check
matrix and the matrix in the second is a transposed generator. For the dual
code GD(B, aF,) it is the other way round. The matrix in the first column
is a transposed generator matrix and the matrix in the second is a check
matrix. We also list the block length rank and minimum distance of both
codes (the block length is always 8).

374

Error-correcting codes and finite fields

a=0,1.GG:(n=8,m=7,d=2);GD:(n=8,m=1,d =8).

1

1
1
1
1
1
1

1

©C O O O O O =

o o © o o

(=]

c O O O -

©c © O = o O ©

S ©o o ©

[T

a=2.GG:(n=8,m=6d=2);GD:(n=8,m=2,d=6).

[11
00

0
1

11
10

10
11

0 10
1 11

11]
10,

Fl

11
10
0

10
|11

1

0
0
0
0
0

0 00

10
11

1
11
10

1

o O o o

0
1

©c © o

a=3,GG:(n=8,m=5,d=3);GD:(n=8,m=3,d=5).

0

a=4.GG:(n=8,m=4,d=4;GD:(n=8,m

o o ©

0
0

[T

0

0 10

©C O = O

11

10 11

-0 o O

1

10
1
11
1

1 10
1 11
1 0

10
11

- - o

r1

[10
1
11

10 10 1 0
111 0 1
1 100
011 0 0
11 10 0 0
=4,d=4).
1111
1100
10110
1010

S - O O O O ©

O =

©C O o o o o

o O ©

S = O O

-~ o ©o o o ©

o o o <o

-0 o O

Geometric Goppa codes 375

a=5GG:(n=8m=3,d=5;GD: (n=8,m=5,d = 3).

1 0 0 0 10 0 0 11

0010 1 0 10 10 10 11 1 11 0 0 0

0100110111 0 1 1010 1110

0001 10 1 1 1 11 10 1 0 10 0 1

LO O 0 0 0 1 11 10
a=6.GG:(n=8,m=2,d=6;GD:(n=8,m=6,d=2).

M 0000 0 10 117

001000 11 10

010000 10 11 10 10 11 0 1 11 1 O

000100 O 1 [111110101001]

000O0O0OT1 11 10

000010 1 o0
a=7.GG: (n=8,m=1,d=8;GD:(n=8,m=17,d=2).

1 0 0 000 0 T

001 00O0O0°'1

01000O0O0°1

00010001 [1 1111 1]

000O0O0OT1O01

0000T1O0O0

0000001 |

It is striking that the parameters of the dual codes are just those of the
primary codes in reverse order. Indeed (as you are asked to show in Exercise
24.3), the primary code for a and the dual code for 8 — a are identical. We
shall return to this topic in the Extras.

24.6 Parameters of Goppa codes

Proposition Let C be an algebraic curve of genus g over the field F and let
G be a geometric Goppa code GG(B, D) defined over C with dD) =a.

376 Error-correcting codes and finite fields

Assume that 2g — 2 < a. Then for the block length n, dimension m and
minimum distance d of G,

(@) n=d(B),
(b) m=n—a+g—1+UD— B)
() dza—(2¢9-2).

Example The table below gives the parameters for the primary Goppa
codes calculated in Example 24.5:

a 1
Rank 7
Min. dist. 2

NN
w W
R R
“n W W
[= N S
00— 3

The next table gives the parameters for primary and dual Goppa codes,
GG(B, aP,) and GD(B, aP,) based on the Klein quartic.

a 0 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18

rank GD 1 2 3 4 5 67 8 9 10 11 12 13 14 14 15
Min. dist. GD 16 13 11 10 9 8 7 6 5 4 3 2 1 1 1 1
Rank GG 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2 1
Min. dist. GG 2 2 2 2 3 45 6 7 8 91011 13 13 16

Proof (a) B=Y, P; and d(P;)) = 1, by hypothesis, so d(B) =n, and by
definition the block length of GG(B, D) is the number of places in P.

(b) Let A be a generator matrix for the dual Goppa code GD(B, D). Then
by Proposition 24.2, AT has rank D) — (D — B). Thus by the rank and
nullity theorem, C has dimension n — I(D) — (D — B). As d(D) > 2g — 2,
Riemann’s theorem tells us that (D) =a+ 1 —g.

(c¢) Suppose that d is a non-zero code word of C and arrange the places
P;so that d;#0 for j=1,...,k and d; =0 for j > k. Put B;=Yi_, P,
We shall show that the assumption that 1 <k <a— (2g —2) leads to a
contradiction. For in that case we have d(D — B,) > 2g — 2, and so also
d(D — B,_;)>2g—2. Hence by Riemann’s theorem KD — B;)=
r—k+1—g, and I(D—B,_,)=r—k+2—g. Thus there exists
¢eL(D—By_,), $¢L(D— B,). That implies that $(P)=0 for j=
L,...,k—1,and ¢(B)#0.As (D — B,_,) <D, pe L(D) and) d;$p(P)) =
d,¢(B,) # 0, contradicting the assumption that d € C.]

The relation between the conditions on d(D) for primary and dual
geometric Goppa codes is discussed further in the Extras. For the moment
we just note that if I(D — B) = d(D — B) + 1 — g, then the rank m of the
code reduces to 0, so a must be chosen at most equal to n + 2g — 2. In order

Geometric Goppa codes 377

for the estimate of (b) to provide information without the need to calculate
I(D — B), we must also havea<n+g — 1.

EXTRAS

24.7 Primary and dual Goppa codes are the same

I will now reveal the fact, suggested by Example 24.5, that the distinction
between dual and primary Goppa codes is spurious.

Theorem There exists a divisor K of degree 2g — 2, such that GG(B, D) =
GD(B,K + B — D).]

The proof of this theorem is an easy consequence of the Riemann-Roch
refinement of Riemann’s theorem.

You should note, however, that the transformation does not always
preserve the property of being a one-point code. So one-point codes may
not be the same as dual one-point codes. In our examples the one-point
codes for x* + y* = 1 are the same as the dual one-point codes, but for the
Klein quartic the parameters of the two classes do not agree.

To show that the statement of the theorem is reasonable, we compare the
parameters of the two codes. If d(B) = n, and d(D) = r > 2g — 2, then

dK+B—-D)y=29g—2+n—r<n.
So GD(B, K + B — D) has block length n,
rankm>29g—-2+n—r+1—g=n—r+g—1
and minimum distance
dz2n—-29+2—-n+r=r—29+2.

These are the same as the estimates for the rank and minimum distance of
GG(B, D).

24.8 Summary

In this chapter we have introduced primary and dual geometric Goppa codes,
defined over an algebraic curve. We calculated their parameters and in the
extras we discussed the fact that the two classes of codes are in reality
identical.

378

Error-correcting codes and finite fields

24.9 Exercises

24.1

242

24.3

244

24.5

24.8

Calculate the minimum distance of the dual Goppa codes GD(B, nP)
based on x* + y3 = 1 directly and check their ranks.

Construct dual Goppa codes GD(B, nP) of block length 25 based on
x5 + y® = 1. Calculate their parameters.

Prove that for x* + y* = 1, the primary and dual Goppa codes of the
text are pairwise identical.

Construct generator matrices for the primary Goppa codes cor-
responding to the codes of Exercise 24.2.

Let C be the x-axis defined by y = 0 defined over GF(16). Denote the
point (x = f, y = 0) by (B) and the point (u =0, v = 0) by (o0). Let
B be the divisor Y, (i), where the sum is taken over all non-zero values
i, and let D = 6(0) — (c0). Use functions 1/x, 1/x2, ..., 1/x® (which are
a basis of L(D) by Exercise 23.5) to produce a check matrix for
GG(B, D). Show that if the columns of this matrix are arranged
correctly, then the matrix is the check matrix ¥ ; of BCH(4, 3).
Prove that using C as in Exercise 24.5, all BCH and Reed-Solomon
codes can be represented as geometric Goppa codes.

With C as in Exercise 24.5, let B’ be the divisor), (i), where the sum
is over all i. Furthermore, let Q be the place defined by the irreducible
polynomial g(z) = z> + z + 1. Let D’ be the divisor Q — (c0) and D"
be the divisor 2Q — (o0). Using the functions obtained in Exercise 23.6
construct check matrices for GG(B', D') and GG(B', D”). Verify that
these are check matrices of the classical Goppa codes GC(B, g) and
GC(B', g%) of Section 19.6 (they are almost the same as the ones
constructed in Section 19.7). .

Prove that using C as in Exercise 24.5, all classical Goppa codes can
be obtained as geometrical Goppa codes.

25 An error processor for geometric
Goppa Codes

The theoretical properties of a class of codes only bear fruit if there exists a
practical error-processing scheme that exploits them. So we shall describe
a correction algorithm for geometric Goppa codes due to Skorobogatov and
Vlidut (1988) (based on ideas of Justesen). This algorithm requires the
solution of two large systems of linear equations. It does not correct to the
full capability of the code, but falls short by an amount equal to the genus
of the underlying curve. That is a genuine problem, because for curves of
genus 0, geometric Goppa codes are the same as classical codes. On the
other hand, as we shall show in the Extras, the existence of good families of
geometric Goppa codes depends on the existence of curves with large
numbers of rational points. To find such curves it is necessary to consider
curves of large genus. Nevertheless, we shall show that the algorithm can be
used to devise coding schemes that are more powerful than those based on
Reed-Solomon codes, and sometimes exceed the Gilbert-Varshamov bound.

25.1 Conditions for the error-processing algorithin

The definition of geometric Goppa codes provides us with a large collection
of syndromes that we can use as starting points for error correction. The
algorithm of Skorobogatov and VIadut makes a clever selection of these. It
uses a subsidiary divisor F to split the syndrome equations in such a way,
that one obtains a two-stage solution process. We describe the algorithm in
precise detail below. We assume that 2g — 2 < d(D) < d(B) + g — 1. That
ensures that our code has the parameters given by Proposition 24.6.

The subsidiary divisor F we require for the error processor must satisfy
F(P) =0 for P e B. The number of errors ¢ that the processor can correct
depends on the choice of F. To be precise, t must satisfy the following
inequalities:

1. d(F)y<dD)—(29—-2)—1t.
2. {F)>t

Recall that the designed distance of the code is
d(C) =d(D) — (29 — 2).

380 Error-correcting codes and finite fields

So if the second condition were d(F) > t, the algorithm would correct as
many errors as possible. Unfortunately, if g > 1, then I(F) < d(F) is possible
and will certainly hold for d(F) > 2g — 2. In that case t will be less than the
theoretical optimum.

For one-point codes with D = aP, the auxiliary divisor can be chosen to
have the form F =bP. The following easy proposition translates the
conditions (1) and (2) into conditions on the numbers a and b.

Proposition Let C = GG(B, D) be a one-point code with D = aP for a
non-negative integer a with2g —2 <a<n+g—1.

(a) If b satisfies
t+g<b<a-—-29—t+1.
then F = bP satisfies the conditions for the algorithm to work.

(b) If2t <a-—3g+ 1, then there exists a b satisfying the inequality of part
(a).

For one-point codes with designed minimum distance d = a — 2g + 2, the
algorithm corrects ¢ errors for 2t + 1 <d — g.

Example In presenting the decoding algorithm I shall use GG(B, 6F,) based
on x3+y3 = 1. This curve has genus 1, so to correct 2 errors we need
3<b<6—-2—2+ 1 Hence we can take F = 3P, Notice that with the
code GG(B, 5P,), which has minimum distance 5, we cannot find b as
required.

Proof (a) The right-hand inequality is just a direct translation of condition
(1). For condition (2) we need only verify that /(bP) > t. But by Riemann’s
theorem

bP)2b+1—g>t.

(b) The inequality just states that t + g<a—2g—t + 1. n

25.2 The Skorobogatov—VEidut error-processing algorithm

Let ¢ be a code word and let d = ¢ + e, where e has weight <t.

Example As already stated, we take as our code GG(B, 6P,). The divisor

An error processor for geometric Goppa codes 381
F is 3P,. We take c, d and e as follows:
¢c=0 0 10 11 1 10 1 11
e=1 01 00 00 O
d=1 0 1 11 1 10 1 11

Algorithm

Step 0. (This step is performed once only for any given code.) Choose bases

{b1- 50} (Y.} and {xy,..., 6} of L(D), L(F) and L(D — F)
respectively.

Note that y;y;e L(D) foralli=1,...,Lj=1,...,k

Example For one-point codes we can always choose the functions y; and
i to be equal to ¢; by arranging the initial basis suitably. In our case the
functions ¢; are naturally chosen to be

Lx/(y + 0, 9y + D, X[y + D% xy/(y + 1% x*y + 1),

F and D — F are the same and of dimension 3. So we choose the functions
¥; and x; to be the first three of those above:

Lx/(y+ 1, y/(y + 1).

Step 1. Given a received word d define the syndromes of d as the values
s;j(d) as follows:

sij(d) = Z ‘/’i(Pr)X,(P,)dn
r=1
where the summation is over the points in B. If all syndromes are 0, STOP.

Example The values s;(d) are given in the table below. The fact that
Y:x; = ¥;x and that apart from i = j = 3, the result is one of the functions
¢;, makes the values easy to compute.

syy=1d = 14041411+ 1+10+ 1+11=10
S;z=¢yd= 0+0+1+ 1+114+10+ 14+10=10
S;3=¢3d=11+0+0+ 0+ 0+10+ 1+11=11
Sp2=¢4d= 0+0+1+10+10+10+ 104+ 10=11
S;3=¢sd= 0+0+0+ 0+ 0+10+11+ 1= 0
$33=¢3d=10+0+0+ 0+ 0+10+ 1+11=10

382 Error-correcting codes and finite fields

Of course, as we know e, these syndromes could equally be calculated
from e. Try using e to calculate the values and check that they are the same
as the ones given here.

Step 2. Find a non-zero solution of the set of k linear equations

1

Y sfdx; =0, j=1,...,k

i=1

Example The equation system is

10 11 1][x, 0
1 oflx|={0
11 o 10l x, 0

A solution is x, = 1, x, = 1, x5 = 10.

Step 3. For the solution x found in Step, 2, let § =) x,i;. Let S < B be
the set of P, for which 6(P,) = 0. Assume for convenience that S = {P,,..., P,}.
Solve the equations

S ()= ¥ 6Py j=1....u.
i=1 i=1

Example The function 8 = 1-¢, + 1-¢, + 10- ¢ has values
0 10 0 11 10 10 O 1.

SoS={(x=0,y=10),(x =1,y =0), (u=0,v = 10)}.
The equation system is

(11 17 [107]
0 1 11} 11
Zy
1mo 1 1
Z | +
110 11
LZj
0 0 11 0
[0 1 1] 11]

The solution is z; = 1, z, = 11, z; = 0.

Step 4. Extend the solution of this set of equations by putting z;= 0 for
j=v+1,...,n.Thene=(z,,...,z,).

An error processor for geometric Goppa codes 383

Example The algorithm correctly gives

e=z, 0 2z, 0 0 0 z, 0=1 0 11 0 0 0 0 0.

25.3 Another code

Example Here is a second example of the algorithm. We use a code
GG(B, aP,) based on the Klein quartic. The code has block length 16 and
we shall use it to correct three errors. This will allow us to compare this
code with RS(4, 3). As the curve has genus 3, the algorithm requires minimum
distance 10 to correct three errors. From the table in Section 24.7 we see
that we must use GG(B, 14F,).

We select the code word ¢, error word e and received word d as follows:

c=9 9 15 4 4 10 6 2 1 11 10 8 13 0 0 1
e=0 0 000 00O0O0O O OO O3 21
d=9 9 15 4 4 10 6 2 1 11 10 8 13 3 2 0.

We number the functions of the table in Section 24.3 by their order. Then
a basis of L(14P,) consists of ¢q, 3, Ps, ..., P14

¢0 ¢3 ¢5 ¢6 ¢7 ¢8 ¢9 ¢10 ¢ll ¢12 ¢13 ¢14

P A 1y oy 1y oy
& 2 = 5 & a4 @ 3 03

Ed
x x2 x X x* x* x* x* X x

The auxiliary divisor F = bP,, where 3+3<b<14—-3—-6+ 1. So
b= 6. The functions y; = ¢; for i=0,3,5,6. Similarly D — F = 8P,, so
xi=¢;fori=0,3567,8.

The syndromes are given in the following table. Again, all of them with
the exception of s5, can be calculated as ¢;-d.

ij 0 3 5 6 7 8
0 0 5 12 11 9 5
3 5 1 5 7 14 14
5 12 5 14 14 11 9
6 11 7 14 7 9 12

384 Error-correcting codes and finite fields

Our first set of equations is

0 5 12 11 0
5 11 s 17 u 0
2 s 14 14| x| |o
1 714 7 5|0
9o 1411 9l z| o
S 1409 12 0

A non-zero solution u =11, x =5,y =6,z= 1.
The function 11¢, + 5¢; + 6¢5 + ¢¢ has values

11 11 11 15 12 10 12 14 2 5 12 13 4 0 0O 0.
So S consists of the last three points of B,
S = {(13,14), (7, 3)(12, 5)}.

Therefore the second set of equations is

1 1 1] 07
9 14 5
12 6 13 2
4 2 4

5 8 15 9
8 15 3|~ 5
305 s||?|T |7
6 13 7{L? 14
712 6 14
2 4 9 7
4 9 14 9
13 7 12 12

which are of course dependent. The first three equations are already sufficient
to determine x = 3, y = 2, z = 1. But the rest confirm that this solution is
valid. Thus we obtaine=00000000000003 2 1.

The rank of our code is 4, while the rank of RS(3, 4) is 9. The Goppa code
is distinctly inferior to the Reed-Solomon code. Even with a full decoder we
would have to take GG(B, 11P) which has rank 7. The reason for this is
that for ease of calculation we have chosen a curve with very few points. As
you will see in Example 25.5, the relative merits of the two types of codes
are reversed when we take curves with larger numbers of rational points.

An error processor for geometric Goppa codes 385

25.4 Why does it work?

Theorem Assume that F and t satisfy the hypotheses of Proposition 1, then
the decoding algorithm of Section 2 will correctly identify errors of weight at
most t.

Proof The idea behind the algorithm is to find an error locator function
0 in L(F), that is, a non-zero function such that 0(P;) =0if e; # 0. Such a
function will exist if I = I(F) > 1, because then the conditions require us to
solve ¢ equations

1

2 xiiP) =0

i=1
in the / unknowns x; (there is one equation for each j, for which e; #0).

Thus the hypotheses for the correction algorithm allow us to state that

an error locator exists, but the equations above cannot be used to find it,
because we do not known the error word e. However, if y € L(D — F), then
10 € L(D), so

Y x6(P)c; = 0.
i=1

Hence
5108, = 5 a0ikpe, = 5 xmcee, = 3 o =o.
Thus if 0 = ¥ x,
0= 51w 3 xwiepa,= (£ aewirpa)s.

Allowing y to run through a basis of L(D — F) gives the equations solved
in Step 2.

We must also ensure that conversely any solution of these equations yields
an error locator. Observe that equation (1) can be interpreted as stating that
for any solution x,,...,x; and 0 =Y x,, the word (6(P,)e,, ..., O0(P,)e,)
is a code word of GG(B, D — F). Its weight cannot be greater than the weight
of e which is assumed to be at most t. So if we ensure that the minimum
distance of GG(B, D — F) > t, then the word (8(P)e,, . . ., 0(P,)e,) must be
0. Then 6 will be an error locator. The designed minimum distance of
GG(B,D — F) is d(D) — d(F) — 2g + 2, and our hypothesis is indeed that
this is >t. That establishes that the equations of Step 2 have a non-zero
solution, and that any non-zero solution yields an error locator.

Any solution z of the equations of Step 3 gives a code word d — z of

386 Error-correcting codes and finite fields

GG(B, D). By assumption z = e is one such solution, but could there be
others? Two solutions give code words at distance at most v, where (as in the
algorithm) v is the number of zeros of the error locator among P,, ..., P,.
If we ensure that the number of zeros of our error locator is less than the
minimum distance of GG(B, D), then there cannot be more than one solution.
But the word (8(P,), . . ., 6(P,)) lies in GD(B, F) which has minimum distance
=n — d(F). Hence v < d(F) < d(D) — 2g + 2, which is the designed distance
of GG(B, D). That establishes the theorem. []

25.5 Improving performance

Example The example code based on the Klein quartic is clearly inferior
to the Reed-Solomon code RS(4, 3). But the performance of geometric codes
improves dramatically when the code is based on a curve with many rational
points. To give an indication of this, consider the curve x> + y*> = 1 over
GF(16) which has 65 rational points. Choose one of them, P, and consider
the one-point code with B as the sum of the other 64 points and D = 37P.
By the Pliicker formula, the curve has genus 6, and so this code has rank
m > 32 and minimum distance d > 27. The SV algorithm can correct 10
€ITOrS.

For comparison we need a code defined over GF(16). Consider the code
RS(4, 4), which has rank m = 7 and minimum distance d = 9. We compare
the error probabilities for transmission of a code word of the Goppa code
and four code words of the Reed~Solomon code. This is biased in favour of
the Reed-Solomon code, because it has a poorer rate and four code words
of the Reed-Solomon code transmit only 28 message symbols, whereas a
code word of the Goppa code transmits 32.

The calculations follow the pattern of those in Chapter 2; we leave the
details as an exercise for the reader (see Exercise 25.1).

On a channel of error probability p = 0.001, the probability of an
uncorrectable error occurring in at least one of four RS code words is
approximately 2 x 1076,

If the Goppa code is used with a hypothetical full correcting algorithm
correcting 13 errors the probability of an uncorrectable error in a block is
about 3 x 10715,

Even using the SV algorithm, one can still correct 10 errors. This gives
an error probability of 5 x 10711,

It is apparent that even with the SV algorithm the performance of the
Goppa code is a significant improvement over that of the Reed-Solomon
code. Reed-Solomon codes are in a sense optimal, but their block lengths
are restricted by the available alphabet. If we repeat words (as here) or use
a general BCH code to increase the block length the code’s parameters
become poor. By contrast, the advantages of geometric Goppa codes appear

An error processor for geometric Goppa codes 387

with only moderately long block lengths, but there they are far superior to
other known block codes, as we shall demonstrate.

EXTRAS

25.6 Geometric Goppa codes and the Gilbert—Varshamov bound

Tsfasman et al. (1982) gave an explicit description of a sequence of geometric
Goppa codes over GF(p?) whose rate and relative minimum distance tend
to the asymptotic Gilbert-Varshamov bound. Their construction uses the
so-called Shimura modular curves, and requires deep algebraic geometry.

There have been several other constructions of good sequences of geometric
Goppa codes, none of them elementary. The main point in all these
constructions is to find sequences of curves with large numbers of rational
points in relation to their genus. That is a difficult and deep problem. So
the design of highly efficient geometric Goppa codes is not easy.

The curves of Tsfasman et al. (1982) are examples of the following
proposition.

Proposition For a finite field GF(p*) with p prime > 7, there exists a family
of smooth curves such that the number n of rational points on the curves tend
to infinity but for the genus g, g/n tends to 1/(p — 1).]

25.7 Towards a good family

In order to exploit these curves to produce a good family of codes we must
recall the asymptotic Gilbert-Varshamov bound.

For all 6 < (q — 1)/g, there exists a sequence C, of linear block codes over
GF(g) with block length C, = n, the relative minimum distance of C,
greater than 6 — 1/n, and rate tending to 1 — H,(J).

The construction exploits the fact that the formulaec lead to simple

expressions for the particular value 0 = (g — 1)/(2g — 1).

Proposition For x = 6 = (q — 1)/(2q — 1) the tangent to the curve y = H,(x)
isy=x+log (2g—1)— L

Proof We shall omit the subscript g from the logarithms in the following
equations. The value of H, at J is given by the formula

dlog(q — 1) — 8 log(d) — (1 — 9) log(1 —).

388 ' Error-correcting codes and finite fields
Substituting é = (¢ — 1)/(2q — 1) we obtain
‘dlog(g — 1) — dlog(g — 1) + 5 log(2qg — 1)
—(1=-9)+(1—-9logg—1)=log2g— 1)+ —1.
The derivative of H(x) at d is given by the formula
log(g — 1) — log(d) + log(1 — §).
Substituting for & we obtain ‘

log(g — 1) — log(q — 1) + log(2g — 1) + 1 — log(2qg — 1)=1. |]

25.8 Eliminating logarithms

The logarithms are inconvenient but can easily be got rid of.

Proposition For q > 49, and 6 = (q — 1)/(2q — 1), H(6) > 6 + 1/(\/g — 1
For q > 361, H(8) > 6 + 2/(/q — 1). ! Va-b

Proof From Proposition 7, Hy(6) = 6 + log,(2g — 1) — 1. So we need only
show that log,(2g — 1) — 1 > (\/q — 1). For g = 49 this follows immediately
l"rf)m the fact that log,(97) = 1.1755 > 7/6. As the right-hand side decreases
with g and the left increases, the inequality remains in force for larger q. The
argument for the second statement is entirely analogous.

25.9 Proof of goodness

Theorem For q the square of the prime p > 7, there exist one-point codes
over GF(q) with block length n tending to infinity such that for &=
(9 — 1)/(2q — 1) the relative minimum distance of the codes tends to a limit
> 6 and their rate to a limit >1 — H/3). If p > 19, then the statement holds,
even if we replace the minimum distance d by d — g, where g is the genus of
the underlying curve.

) The second statement says that, even with the reduced correction capability
given by the SV error processor, these codes form a good family.

Proof Consider the sequence of curves of Tsfasman et al. (1982) and choose
one of their rational points P. Let B be the sum of the other rational points
and let D = aP. Let the genus of the curve be g, then putting d(B) = n, we
have (g — 1)/n —» 1/(p — 1). Provided that 2g — 2 < a the rank m and

An error processor for geometric Goppa codes 389
minimum distance d of the code satisfy
mzn—a+yg—1
d>a—29+2.

Thus m/n > 1 — afn + (g — 1)/n and d/n > a/n — 2(g — 1)/n. Choose a so
that (a — 2(g — 1))/n — 6. Then the limit of d/n is at least & and the limit of
m/n is at least

1—6—lim((g — D/m)=1-=38~1/(p—1)>1-H)

by Proposition 25.8. Thus the codes meet the asymptotic Gilbert-Varshamov
bound for this d.

It we wish to use the SV error processor, then to have a code that behaves
as though it had minimum distance d we must make the true minimum
distance d + g. Thus (d + g)/n converges to é + lim(g/n) = S+ 1/(p—1).1f
we choose a to achieve this limit, then the limit of m/n is bounded below by
1—6—2/(p—1). I p=19 this is still at least 1 — Hy(6).]

25.10 Summary

We have described the Skorobogatov-Vladut error processor, giving examples
for one-point codes, and showed that it can correct ¢ errors in such codes if
2t + 1 < d — g, where d is the designed minimum distance, and g is the genus
of the underlying curve. We also showed that there exist explicit sequences
of geometric Goppa codes that approach the asymptotic Gilbert-Varshamov
bound.

25.11 Exercises

25.1 Calculate the error probabilities of Example 25.5.

The numbers involved are very close to 1, so you will need a high
precision calculator (at least 16 decimal places). If you do not have
such a calculator, replace the error probability by 0.005. This produces
values that can be calculated with an 8-digit scientific calculator.

25.2 Use the Skorobogatov-Vlidut error processor for the code GG(B, 14F,)
based on the Klein quartic to correct

9 2 15 4 6 10 6 2 1 12 10 8 13 0 0 1.

253 Let C be the x-axis defined by y =0 over GF(16). Denote the
point (x = B, y = 0) by (§) and the point (u = 0,v = 0) by (). Let B
be the divisor Z (i), where the sum is taken over all non-zero values
i,let D = 6(0) — (c0), and let F be the divisor 3(0). Show that F satisfies
the conditions for the SV error processor for GG(B, D) = RS(4, 3).

390 Error-correcting codes and finite fields

Use the functions 1.1/x, 1/x2, ..., 1/x* as a basis of L(F), the functions
1/x,...,1/x® as a basis of L(D — F), and the functions 1/x, ..., 1/x¢
as a basis of L(D) and the SV error processor to correct the word
d=14381438511699143136.

254 Compare the calculations of Exercise 25.3 with those of Exercise 17.10
(which uses the PGZ error processor on the same word).

25.5 Prove that when applied to Reed-Solomon or BCH codes the SV
error processor is the same as the PGZ error processor.

25.12 Conclusion

I hope that the reader who has persevered this far will have learned enough
algebra and coding theory to follow the literature. In particular, the theory
of geometric Goppa codes is growing rapidly, and it has been my intention
to enable my readers to keep abreast of developments.

T will be particularly pleased if I have also managed to convey some of
the power and beauty of the theory of fields and algebraic geometry.

Bibliography

Textbooks

Birkhoff, G. and MacLane, S. (1977). A survey of modern algebra (4th edn).
Macmillan, New York.
A classic text on algebra. Covers an enormous range including linear algebra and
polynomials in one or two indeterminates in a clear matter-of-fact style.

Blahut, R. (1983). The theory and practice of error control codes. Addison-Wesley,
Reading, MA.
An excellent technical text, giving detailed implementations of many error-process-
sing systems and discussing their advantages and disadvantages.

Chevalley, C. (1951). Introduction to the theory of algebraic functions of one variable.
Math. Surv. VI. American Mathematical Society, Providence, RL
Brilliant, densely written account of algebraic curves from a purely algebraic point
of view.

Cohn, P. M. (1982). Algebra, Vol. 1, Wiley, New York.

Treats linear algebra and polynomials in a single indeterminate in the context of
a complete algebra course. More ‘modern’ than Birkhoff and Mac Lane, it does not
hesitate to introduce and use the power of abstract concepts.

Conway, J. H. and Sloane, N. J. A. (1988). Sphere packings, lattices and groups,
Springer, New York.

Davenport, H. (1952). The higher arithmetic. Hutchinson, London.
A most elegant little book on number theory (out of print).

Fulton, W. (1969). Plane algebraic curves. Benjamin, New York.
A readable geometric introduction with proofs.

Hardy, G. H. and Wright, E. M. (1938). An Introduction to the theory of numbers.
Oxford University Press, Oxford.
Many later editions. A classic treasure house of number theory.

Hill, R. (1986). A first course in coding theory. Oxford University Press, Oxford.

Lint, J. H. van (1982). Introduction to coding theory. Springer, New York.
Elegant, somewhat terse exposition for mathematicians.

Lint, J. H. van and Geer, G. van der (1988). Introduction to coding theory and algebraic
geometry. Birkhiuser, Basel.
Brief, concise introduction to general coding theory by van Lint, followed by a
matching introduction to algebraic geometry by van der Geer. Gives a good overview
of the theoretical background to geometric Goppa codes.

392 Bibliography

McEliece, R. (1977). The theory of information and coding. Addison-Wesley, Reading,
MA.
Two books for the price of one. A beautiful exposition of Shannon’s theory
(requiring some familiarity with probability theory), followed by a pellucid introduc-
tion to coding theory (requiring some knowledge of finite fields).

MacWilliams, F. J. and Sloane, N. J. A. (1977). Theory of error-correcting codes.
North-Holland, Amsterdam.
The bible of Coding Theory. Comprehensive up to its publication date. Clearly and
comprehensibly written. Few routine exercises, but a bibliography of over 1500 items.

Noble, B. and Daniel, J. (1977). Applied linear algebra. Prentice-Hall, Englewood
Cliffs, NJ.
A comprehensive treatment from an applied point of view.

O’Beirne, T. H. (1965). Puzzles and Paradoxes, Oxford University Press, Oxford.
A highly entertaining book of articles originally published in the New Scientist.
Surreptitiously covers much mathematics. Unfortunately out of print.

Pless, V. (1982). Introduction to the theory of error-correcting codes. Wiley, New York.

Shafarevich, I. R. (1974). Basic algebraic geometry. Springer, New York.
A readable general introduction.

Strang, G. (1980). Linear algebra and its applications. Academic Press, London.
An excellent elementary introduction.

Thompson, T. M. (1983). From error-correcting codes through sphere packings to
simple groups. Mathematical Association of America, Providence R.IL

Other references

Berlekamp, E. R. (1965). On decoding binary Bose-Chaudhuri-Hocquenghem codes.
1EEE Trans. Info. Theory, 11, 577-9.

Bose, R. C. and Ray-Chaudhuri, D. K. (1960). On a class of error correcting binary
group codes. Info. and Control, 3, 68-79.

Delsarte, P. and Goethals, J.-M. (1975). Unrestricted codes with the Golay para-
meters are unique. Discrete Math., 12, 211-24.

Eastman, W. (1990). Inside Euclid’s algorithm, coding and design theory, Part 1, IMA
Vol. Appl. Math., 20, 113-27.

Golay, M. J. E. (1949). Notes on digital coding. 1EEE, 37, 657.

Goppa, V. D. (1970). A nev class of linear error-correcting codes, Problems of Info.
Transmission, 8(3), 207-12.

Goppa, V. D. (1981). Codes on algebraic curves, Dokl. Akad. Nauk SSSR, 259,
1289-90 (translated: Soviet Math. Dokl., 24 (1981), 170-2).

Gorenstein, D. C. and Zierler, N. (1961). A class of error-correcting codes in p™
symbols, J. Soc. Indus. Applied Math., 9, 207-14.

Hamming, R. W. (1950). Error detecting and correcting codes, Bell Syst. Tech. J.,
29, 147-60.

Herstein, 1. N. (1987). A remark on finite fields. Amer. Math. Monthly, 94, 290-1.

Bibliography 393

Hocquenghem, A. (1959). Codes correcteurs d’erreurs. Chiffres, 2, 147-56.

Massey, J. L. (1969). Shift register synthesis and BCH decoding. IEEE Trans. Info.
Theory, 15, 122-7.

Peterson, W. W. (1960). Encoding and error-correction procedures for the Bose—
Chaudhuri codes. IEEE Trans. Info. Theory, 8, 60.

Pless, V. (1968). On the uniqueness of the Golay codes. J. Comb. Theory, 5,215-28.)

Skorobogatov, A. N. and Viidut, S. G. (1988). On the decoding of algebraic
geometric codes. IEEE Trans. Info. Theory, 36, 1051-60.)

Snover, S. L. (1973). The uniqueness of thie Nordstrom-Robinson and Golay _bmary
codes. Ph.D. Thesis, Department of Mathematics, Michigan State University.

Sugiyama, Y., Kasahara, M., Hirasawa, S., and Namekawa, T. (1975). A method for
solving key equation for decoding Goppa codes. Information and Control, 217,
87-99.

Tsfasman, M. A., Vladut, S. G. and Zink, Th. (1982). On Goppa codes which are
better than the Varshamov-Gilbert bound. Math. Nachr. 109, 21-8.

Zech, J. (1849). Tafeln der Additions- und Subtraktionslogarithmen fiir 7 Stellen,
Weidman, Berlin.

Index

Abel, Niels Henrik, 104
algebraic
curve, 338
element, 172
algorithm
error trapping for BCH(4, 3), 248
Euclid’s, 106
Euclid’s cross product theorem, 116
Euclid’s four-column version, 112
Euclidean error process or for BCH codes,
250
Euclidean error processor for classicl
Goppa codes, 324
Euclidean error processor for Reed—
Solomon codes. 275
Goerzel, 170
Horner, 170
Peterson error processor for BCH codes,

Peterson-Gorenstein-Zierler error
processor, 248
SkorobogatovM Vladut error processor for
geometric Goppa codes, 380
alphabet, 5
binary, 5
automorphism
field, 157
Frobenius, 153

bad (family of codes), 294

ball (of radius r), 66

basis (of vector space), 81

bijective map, 157

bit, 5

block length, 13

Bose, R. C., 206

bound
Gilbert-Varshamov, 291
Gilbert-Varshamov, asymptotic, 294
Hamming, 289
Plotkin, 299
Singleton, 290

Cauchy, A. L., 104
channel
binary, 9

burst error, 8
capacity, 24, 294
discrete, 5
random error, 8
symmetric, 9
characteristic of a field, 151
check
matrix, 39
matrix for BCH code, 206
matrix for classical Goppa code, 309
matrix (reduced) of BCH code, 210
parity 5
polynomial for BCH code, 222

ode
(n,m,d)-, 17
(n, m)-, 13
ASCIL, 6
BCH, double error-correcting, 204
BCH, general, 305, 331
BCH, ¢ error-correcting, 206
block, 13
classical Goppa (full and subfield), 305
cyclic, 70, 228
dual, 46
dual (geometric) Goppa, 368
extended, 26
extended Golay, 72
general BCH, 305, 331
Golay, 76
good and bad families, 294
Hamming, 63
interleaved, 280
linear, 33-4
maximum distance separable (MDS), 290
one-point (Goppa), 372
perfect, 66, 290
polynomial, 226
primary (geometric) Goppa, 372
punctured, 26
Reed-Muller, 214
Reed-Solomon, 267
repetition, 6
shortened, 26
coefficient of polynomial, 191
complement of a binary word, 70
constant polynomial, 191
continued fractions, 118
convergents of a continued fraction, 118

Index 395

coordinate changes, projective, 336
coset, 51
table, 48
curve
affine, 338
affine component, 338
algebraic, 338
coordinate ring of, 344
function field of, 345
genus of, 363
Klein quartic, 340
rational algebraic, 346
Shimura modular, 387
smooth algebraic, 352
cyclic
code, 70, 228
shift of a word, 70

decoder, 9
multiplicative for BCH and cyclic codes,
233

degree
of polynomial in one indeterminate, 193
of polynomial in two indeterminates, 195
partial, of polynomial in two indetermines,

denominator, 196
derivative (formal) of a polynomial, 169
dimension, 81
of a code, 32
discrete
channel, §
valuation, 349
distance
axioms, 15
function, 15
Hamming, 15
minimum, 17
div (operation), 137, 140
division with remainder,
for polynomials, 100, 193
divisor
of a curve, 361
degree of, 363
greatest common divisor = highest
common factor, 109
rank of, 363
domain, 30
Euclidean, 108
integral, 30

element
generator of field extension, 187
invertible, 123
irreducible, 127
primitive, 179
encoder, 9

linear, 33
multiplicative for BCH and polynomial
codes, 219
multiplicative for Reed-Solomon codes, 270
standard, 14
systematic, 14
systematic for BCH and polynomial
codes, 224
systematic for Reed-Solomon codes, 269
entropy function, 293
equation, fundamental for BCH
error-processing, 246
eratosthenes, sieve of, 127, 134
error
burst, 271
burst, correction capability of
Reed-Solomon code, 271, 279
burst, length of, 271
co-evaluator polynomial, BCH, 244
co-evaluator polynomial, Reed-Solomon,
274
detector, 16
evaluator polynomial, BCH, 244
evaluator polynomial, classical Goppa
code, 320
evaluator polynomial, Reed-Solomon, 274
locations, BCH, 234
locations, classical Goppa codes, 320
Jocations, Reed-Solomon, 272
locator polynomial, BCH, 243
locator polynomial, classical Goppa code,
320
locator polynomial, Reed-Solomon, 274
pattern, 53
processor, 9
processor, BCH, 250
processor, classical Goppa code, 324
processor, conditions for SV error
processor, 379
processor, perfect, 16
processor, Peterson-Gorenstein—Zierler,
PGZ, 248
processor, Reed-Solomon codes, 275
Processor, Skorobogatov-Vlidut for
geometric Goppa code, 380
trapping, 248
value, Reed—Solomon code, 272
weight, 15
word, 13, 53
Euclidean
algorithm, 106
algorithm, cross-product theorem, 116
algorith, four-column version, 112
domain, 108
valuation, 109
Euclidean domain, 108
invertible element, 123
irreducible element, 127

396

Euclidean domain (cont.)
relatively prime elements, 125
“Euler, L., 118
formula for convergents to continued
fraction, 119
evaluation map, 167

factor ring, 136
failure modes
of BCH error processor, 253
of Reed-Solomon error processor, 278
Fermat’s theorem, 154
field, 30
binary, 27
finite extension, 335
of fractions, 196-7
function field of algebraic curve, 345
GF(8), 339
GF(16), 102
prime, 151
fractions
continued, 117
equivalent, 197
field of, 196-7
Frobenius automorphism, 153
function
distance, 15
elementary Symmetric, 239
entropy, 293
rational, 196
remainder, 140

Galois, Evariste, 103
generator
of field extension, 187
matrix, 35
matrix for BCH coee, 220
matrix for classical Goppa code, 310
matrix for dual Goppa code, 371
polynomial, 217
genus
of algebraic curve, 363
Pliicker formula for genus of smooth
plane curve, 364
Golay code, 76
good
family of codes, 290
Goppa, N. V., 303
classical code, 305
dual (geometric) code, 368
primary (geometric) code, 372
Gorenstein, D. C,, 206

Hamming, R. W,
bound, 289
code, 63

Index

distance, 15
Herstein, I. N, 176
highest common factor (HCF) = greatest
common divisor, 109
Hirasawa, S., 303
Hocquenghem, A., 206
homomorphism, 168
horizon, 337
Horner’s scheme, 170

image of linear map, 85
independence, linear, 80
inequality, triangle, 15
indeterminate, 191
inverse

calculation of, modulo a irreducible, 143-6
invertible element of Euclidean domain, 123
irreducible element of Euclidean domain, 127
isomorphic fields, 157
isomorphism of fields, 157

Justesen, J., 379

Kasahara, M., 303
kernel of linear map, 85

law
associative, 29-30
cancellation, 30
commutative, 29-30
distributive, 30
line at infinity, 337
linear !
code, 31-2
encoder, 33
independence, 80
map, 33, 85
Liouville, J., 104
location, 14
logarithm
discrete, 178, 180
Zech, 184

map
linear, 85

matrix, 79
check, 39
check, in standard or systematic form, 39
full check matrix for BCH code, 206
generator, 35
generator, in standard or systematic form,

35

reduced check matrix of BCH code, 210

Index 397

row echelon form, 89
Vandermonde, 92

minimum distance
(designed) of BCH code, 206, 312
of a general code, 17
relative, of a code, 293

mod (operation), 137, 140

Namekawa, T., 303
non-singular point, 352
nullity of linear map, 85
numerator, 196

order
of a field element, 181
of a finite field, 152
function of a point on an algebraic curve,
350

Padé approximant to a power series, 266
perfect
code, 66
€rTor processor, 16
place
of an algebraic curve, 358
degree of, 358
point
conjugate points, 355
degree of, 356
non-singular, 352
Poisson, 104
pole of rational function, 348
polynomal
absolutely irreducible in two
indeterminates, 336
check for BCH code, 222
check for cyclic code, 228
code, 216
error co-evaluator, 244
error co-evaluator, Reed-Solomon, 274
error evaluator, 244
error evaluator for classical Goppa code,
320

error evaluator, Reed-Solomon, 274
error locator, 243

error locator, classical Goppa code, 320
error locator, Reed-Solomon, 274
generator for BCH code, 217
generator for polynomial code, 226
in one indeterminate, 191

in two indeterminates, 194
irreducible in one indeterminate, 101
irreducible in two indetermi 334
minimal, 172

monic, 172

primitive, 185
root of, 167
syndrome, 240
syndrome, Reed-Solomon, 273
zero of, 167
power sum, 239
prime
field, 151
relatively prime elements, 125
primitive
element, 179
polynomial, 185
projective coordinate changes, 336

rank, 81
of a code, 14, 32
column, of matrix, 87
of divisor, 363
of linear map, 85
row, of matrix, 87
rate, 14
rational
algebraic curve, 346
congruence modulo a polynomial, 306, 346
function, 196
function cancelled form, 306, 346
functions, field of, 197
Ray-Chauduri, D. K., 206
relatively prime elements in Euclidean
domain, 125
Riemann’s theorem, 363
ring, 30
commutative, 30
coordinate ring of algebraic curve, 344
factor ring, 136
residue class ring D/a, 136
residue class ring F[x, y]/f(x, y), 344
root
multiple, 170
multiplicity of, 170
of polynomial, 167
rotation of a word, 70
row
echelon form matrix, 89
operations, 89

scalar, 80
Shannon’s theorem, 24
Singleton bound, 290
Skorobogatov, A. N., 379
smooth algebraic curve, 352
space
L-space of a divisor, 361
vector, 31, 80
standard array, 48
subcode, 201

398 Index

subfield, 152

subspace, 31, 80

Sugiyama, Y., 303

symbol
check, 14
message, 14

syndrome, 56
in BCH error processing, 234
polynomial, BCH, 240
polynomial, classical Goppa code, 307
polynomial, Reed-Solomon, 273
rational function, classical Goppa code, 307
vector for BCH error processor, 236

theorem
BCH code is independent of field
representation, 265
classical Goppa codes form a good family,

cross-product theorem for Euclidean
algorithm, 116

degree theorem for rational functions on
algebraic curves, 358

dual and primary Goppa codes are the
same, 377

existence of points on algebraic curves, 358

Fermat’s, 154

finite dimension of L-spaces, 362

fundamental congruence for classical
Goppa codes, 275

fundamentat equation for BCH codes, 246

fundamental equation for Reed-Solomon
codes, 275

geometric Goppa codes are good, 388

one-point codes are good w.r.t. their
designed parameters, 388

Pliicker formula, 364

primitive element, 183

rank and nullity, 86

recognition of cyclic codes, 229

recognition of polynomial codes, 227

P bility of 1 in a Euclid
domain, 126
Riemann’s, 363
Shannon’s, 24
Skorobogatov-Vlidut error processor
works correctly, 385
unique factorization in Euclidean
domains, 132
uniqueness of error locator and evaluator
for BCH codes, 256
1-trick, 126, 128
Tsfasman, M. A, 387
Turyn construction of Golay codes, 69

valuation

discrete, 349

Euclidean, 109
Vandermonde, A. T., 203

matrix, 92, 203

system of equations, 90
vector, 79

space, 31, 80

subspace, 31, 80
Vlidut, S. G, 379

weight
error, 15
Hamming, 15
word, 13
code, 13
entry, 14
error, 53
received, 15

Zech, J., 184
zero

of polynomial, 167

of rational runction, 348
Zierler, N., 206

