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Chapter 1
Introduction

The study of stochastic differential equations (SDEs) driven by Lévy processes in R
originated in the book by Skorokhod [97]. In view of the Lévy-Itd decomposition,
he reduced the problem of studying such SDEs to the analysis of SDEs driven by
compensated Poisson random measures (cPrms) and Brownian motion, under a mild
restriction [97]. He was aware of the fact that the restriction can be removed. Recently,
following initial work of Eberlein and Ozkan [27], these SDEs have been found to
arise in finance as term structure models for interest rates, volatility in market indices
[9] and in the study of flows with applications to pseudo-differential equations [16].
The more general SDEs studied in [36] arise in polymer models [24].

Here, we consider SDEs driven by non-Gaussian Lévy processes, and hence,
following Skorokhod, we examine SDEs driven by compensated Poisson random
measures. For this, Skorokhod starts by defining an It stochastic integral with respect
to compensated Poisson random measures with associated variance measure A ® (3,
where A\ denotes the Lebesgue measure and [ is a Lévy measure. He defines the
stochastic integral of non-anticipating functions with respect to filtering associated
with compensated Poisson random measures.

Later, Ikeda and Watanabe in their fundamental book [45] generalized the def-
inition of the It6 integral to compensated Poisson point processes. Here, the asso-
ciated variance measure is a general measure on R allowing jumps (as opposed
to Lebesgue measure). This means the integral has to be defined with respect to
predictable processes [96] which remove Skorokhod’s restriction and introduce the
interlacing of solutions with respect to compensated Poisson random measures at
jump times.

So, in order to generalize Skorokhod’s work to infinite-dimensional spaces, one
needs to define the Itd stochastic integral of non-anticipating functions taking values
in a Banach space with respect to compensated Poisson random measure. In the case
where the Banach space is Hilbertian, the definition can be given using the same
techniques as in the one-dimensional case and one obtains an It6 isometry for the It6
integral. This was done in the work of Riidiger [91].

In [53] Kallianpur and Xiong studied SDEs driven by cPrms in multi-Hilbertian
spaces with interesting applications to pollution in rivers. Since in multi-Hilbertian
© Springer International Publishing Switzerland 2015 1
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2 1 Introduction

spaces the boundedness of a set implies its compactness, this theory is, although
interesting, rather restrictive.

In view of the fact that a Hilbert space has an inner product and by the validity of
the Itd isometry, one can easily extend Skorokhod’s technique for SDEs to Hilbert
space SDEs. A restricted program in this direction with a predictability assumption
and using Ikeda—Watanabe interlacing was carried out in the first book on Hilbert
space valued SDEs [5]. Due to its clarity, this book has generated a lot of interest in
applying SDEs in specific applied problems.

‘We have written this monograph with an eye towards applications. Here, we study
SDEs in Banach spaces and stochastic partial differential equations (SPDEs), both
driven by compensated Poisson random measures. In Chap. 6, we show how SPDEs
occur naturally in filtering problems and in applications to finance. If we set the
partial differential operator identically equal to zero, then these results reduce to
generalized versions of results from [5].

S(P)DEs in Banach spaces arise naturally in different problems as seen, for exam-
ple,in [12] for applications in finance or, for fluid dynamics, in [29] (see also [ 14, 30]).
In order to describe the theory in this generality we follow Skorokhod’s program,
first defining stochastic integrals in Banach spaces.

In Chap. 3, we begin by considering the Wiener integral of deterministic functions
with values in a separable Banach space. This first appeared in Albeverio and Riidiger
[3], establishing the Lévy—Itd decomposition. The assumption required on the Banach
space is thatitis of (Rademacher) type 2 (see [42]). This is a condition on the geometry
of the Banach space. The Wiener integral of Bochner square-integrable functions can
then be defined with respect to any compensated Poisson random measure. However,
to study this integral for this class of functions for a particular Poisson random
measure with compensator A ® 3, we only need inequality (3.1.4), connecting the
Wiener integral of a simple function f with respect to the compensated Poisson
random measure to the Bochner integral of || f||> with respect to the compensator
A ® (. In fact, we prove that the constant K 3 in (3.1.4) is independent of (3 if and
only if the space is of type 2 (see [67]).

Motivated by this, we study the It6 integral for non-anticipative processes with
respect to compensated Poisson random measures satisfying inequality (3.5.7), which
is the analogue of inequality (3.1.4). In fact, using ideas of Rosinski [90], we prove
that (3.5.7) is necessary for defining the It6 integral for all processes which are
square-integrable with respect to A ® 3 Q@ P (see [67]). Then we show that in M-type
2 spaces, which are defined in [85], our condition (3.5.7) is satisfied. We remark,
however, that inequality (3.5.7) is independent of the geometry of the Banach space,
i.e. the condition that a Banach space is of M-type 2 is only a sufficient condition
for the validity of inequality (3.5.7). For the definition of the It6 integral, we also
prove that the space of simple processes is dense in the space of non-anticipative
square-integrable functions with respect to A @ 5 @ P.

In addition, we establish It6’s formula, based on [68], improving the earlier work
of [93].

Once these preliminaries are established, we carry out Skorokhod’s plan for SDEs
in Banach spaces of M-type 2, establishing existence and uniqueness results for SDEs


http://dx.doi.org/10.1007/978-3-319-12853-5_6
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3

1 Introduction 3

driven by compensated Poisson random measures. The method here goes through
for general Banach spaces, provided condition (3.5.7) is satisfied for each Poisson
random measure with compensator A ® (3. This work first appeared in [67] and was
done independently for M-type 2 spaces in [38].

The study of SPDEs driven by Brownian motion was initiated by Pardoux [80]
and Krylov and Rozovskii [56], who were motivated by attempts to solve the Zakai
equation, which occurs in filtering problems. They studied the strong solutions to
the so-called variational problem. The corresponding equation for SPDEs driven
by jump Lévy processes are studied in [89]. Their presentation is very clear and
is easily accessible to an advanced researcher. The mild solution to SPDEs driven
by Brownian motion was originally studied by Da Prato and Zabczyk [18]. For
the Brownian motion case, the Pardoux, Krylov—Rozovskii and Da Prato—Zabczyk
approach is presented for the interested reader in the book [34]. In [75], the analogue
of the Zakai equation with jump processes is studied. However, their approach to the
solution is through Malliavin calculus and uses the work of Di Nunno et al. [22]. In
Chap. 6, in order to make the presentation self-contained, we show how the Zakai
equation with jump processes arises in filtering problems, based on the work in [64].
Even in the Brownian motion case, the approaches to solving filtering problems
depend on the structure, as one can see in [101]. Independently of filtering problems,
the study of SPDEs driven by cPrms was initiated in [4], in the case where the partial
differential operator is the Laplacian, motivated by applications in physics.

The material in Chap.5 on SPDEs is based on [2], generalizing the work in [4].
We also study the non-Markovian case, due to its applications, see [24]. The solution
concept we study is that of a mild solution [83], which is the analogue of that studied
in [18, 34, 35] in the case of Brownian motion. In the Markovian case, we study
smoothness with respect to initial value in terms of Gateaux differentiability. An
improvement of this part was subsequently given in [72] in terms of Fréchét differ-
entiability. We do not include here the fundamental work of [89] on the variational
method for Lévy driven SPDEs as including it would mean rewriting their work.
We present in Chap. 6 an application of these ideas for the HIM model in finance
given in [32]. As one can see, it requires effort to formulate the HIM-equation and to
find a proper Hilbert space based on the work in [13, 31]. In order to keep the book
self-contained, we present this formulation following the basic work of Filipovic and
Tappe [32].

Finally, we study asymptotic properties of the solutions of SPDEs driven by
compensated Poisson random measures using the method of Lyapunov functions.
This extends the work initiated in [54, 59, 60, 63] for the Brownian motion case.
This work is based on Li Wang’s thesis [99] and is taken from [69]. Here we use
Yosida approximations of mild solutions by strong solutions. One of these was given
in [2] and the other is in [65]. It should be noted that the Lyapunov function method
studied here is new, even for SDEs driven by compensated Poisson random measures
in one dimension. It can be used, for example, to study the exponential stability
needed for almost sure stability using the techniques of [70] as in [6] by constructing
a Lyapunov function in specific examples. This is also done to study exponential
ultimate boundedness for spot rate models driven by Lévy processes [11]. As a
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consequence, one can prove the positive recurrence property of spot rate models to
an interval and use it to make investment decisions. In particular we can easily prove
the asymptotic properties of the HIM model given in [71].

In their recent book [84] Peszat and Zabczyk study stochastic partial differen-
tial equations driven by a square-integrable martingale taking values in a Hilbert
space. Solutions in their case have cddlag modification as opposed to our case (for
cPrm), where the solution is cddlag. We give general conditions where the semi-
group generated by a partial differential operator (PDO) is a pseudo contraction.
We also present general theorems on the asymptotic behaviour of solutions using the
Lyapunov method. From these results one can obtain more detailed asymptotic behav-
iour (recurrence) than the existence of invariant measures derived from the behaviour
of solutions for deterministic equations. As the latter behaviour is dependent on the
semigroups generated by a PDO, we do not have to treat each PDO case separately,
which is done in [84]. We also present a Zakai equation to motivate our study.

The organization of this monograph is as follows: In Chap. 3, we study Wiener
and Itd integrals with respect to compensated Poisson random measures and Itd’s
formula after presenting preliminary concepts in Chap. 2. In Chap. 4 we give existence
and uniqueness results for SDEs in Banach spaces. SPDEs driven by compensated
Poisson random measures are studied in Chap. 5. In Chap. 7, the asymptotic behaviour
of the solutions of SPDEs is examined using Lyapunov’s method. We show in Chap. 6
how the SPDEs driven by compensated Poisson random measures arise in filtering
problems and how our general results can be applied to get the existence of solutions
for the HIM model from finance on appropriate function spaces.

We do not give other examples of SPDEs involving partial differential operators
such as Navier—Stokes, Reaction—Diffusion etc. because most of these can be worked
out as in the book [34] given for Brownian motion as noise. As the results for Lévy
driven SPDEs are similar to those given in [34], these examples can be worked out
as exercises.
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Chapter 2
Preliminaries

In this chapter, we prepare the required preliminaries.

2.1 The Bochner and the Pettis Integral

Let F be a separable Banach space with dual space F*. We denote by 5(F) the Borel
o-algebra of F, which is defined as B(F) = o(O), where O denotes the system of
all open sets in F', and o(-) as usual denotes the generated o-algebra.

For x € F and € > 0 we denote by U.(x) the open ball around x with radius e,
that is

Ux) ={y e F:lly—x|l <e}

We denote by U the system of all open balls in F. Furthermore, we denote by C the
system of all cylinder sets

{x] €B1,...,x, € By}

with n € N, linear functionals x7j, ..., x; € F* and Borel sets By, ..., B, € B(R).

Proposition 2.1.1 Suppose the Banach space F is separable. Then we have
B(F)=cU) = a(C).

Proof For any open set O € O, by Lindel6f’s Lemma [1, Lemma 1.1.6] there exist
sequences (x,),eN C F and (€,),eNC (0, 00) such that O = U,enUe, (%) € o(Uf).
Hence O C o(U), proving B(F) C o).

Let U € U be an open ball. Then there existx € F and e > O suchthat U = U (x).
By [41, Theorem 2.8.5] there exists a sequence (x};),en C F* such that

lx|l = sup |{x;,x)| forall xeF.
neN
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Therefore, we obtain

U={yeF:ly—xl<e={yeF:suplix,y—x)| <e}

neN
= Mpenty € F 2 1{x,, y) — (7, )| < €} = Muenix, € Ue({x;,, x))} € a(0).

This shows U C o(C), and hence o(Uf) C o (C).

For any n € N and linear functionals x7, ..., x;€ F* the mapping

&}, ...,x) : E—>R"
is continuous. Therefore, we have C C B(F), and hence o (C) C B(F). O

Let (2, F, p) be a o-finite measure space. Then we call a function f : Q — F
measurable if itis F /B(F)-measurable, and we call f weakly measurable if for each
x* € F* the scalar valued function (x*, f)is measurable. If (2, F, 1) is a probability
space, thatis (2) = 1, we will also call a measurable function f : Q — F arandom
variable.

A measurable function f : Q2 — F is called simple (or elementary) if there exist

a positive integer n € N, elements x1,...,x, € F and sets Ay, ..., A, € F with
w(A;) <oofori=1,...,nsuch that
n
f= inIlA,-- (2.1.1)
i=1

We denote by E(F) = £(R2, F, u; F) the linear space of all elementary functions.

A function f : Q — F is called strongly measurable if there exists a sequence
(fi)nen C E(F) of simple functions such that f,,(w) — f(w) forallw € Q.

As the Banach space F is separable, a function f : Q@ — E is weakly measurable
if and only if it is measurable if and only if it is strongly measurable.

For p > 1 we denote by LP (2, F, u; F) the linear space consisting of all mea-
surable functions f : € — F such that

1/p
(/ IIfII”du) < o0.
Q

Identifying all measurable functions which coincide p-almost everywhere, the linear
space LP (2, F, u; F) is a Banach space. We shall also use the abbreviation L” (F),
or LP(F; F), when there is no chance of ambiguity.

Let us now provide the definition of the Bochner integral. For a simple function
f € E(F) of the form (2.1.1) we define the Bochner integral as

/S2 fdp = xipA.
i=1
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Then we have

‘ /Q fduH = | D xip@n| < D il = /Q 1flldp.
i=1 i=1

Therefore, the Bochner integral defines a continuous linear operator

E(F) — F, fr—>/fdu. (2.1.2)
Q

Lemma 2.1.2 For each p > 1 the linear space E(F) is dense in LP (F).

Consequently, the integral operator (2.1.2) has a unique extension

LY(F) —> F, fr—>/Qfdu, (2.1.3)

which we also call the Bochner integral, and we have the estimate

| fro

If the measure space (€2, F, w) is finite, that is, ©(€2) < oo, then, by the Cauchy—
Schwarz inequality, for each p > 1 the integral operator (2.1.2) has a unique contin-
uous extension

5/ I flldp forall f e L'(F). (2.1.4)
Q

LP(F) — F, fr—)/fdu.
Q
For a function f € L'(F) and a subset A € F we set
/ fdu ::/ fladp.
A Q
If (2, F, p) is a probability space, that is, () = 1, for f € L' (F) we set

E[f] :=/Qfdu~

If the measure space is given by (22, F, p) = (R4, B(R1), A) where A denotes
the Lebesgue measure, then for each measurable function f : Ry — F with

1
/ | f(s)llds < oo forallt >0
0

we define the function

!
/ f(s)ds := fdx, t>0.
0 0,7]
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Proposition 2.1.3 The function Ry — F, t — fé f(s)ds, is continuous.

Now let (2;, F;),i = 1, 2, be two measure spaces and let 1 be a o-finite measure
on ;. We set

(2, F) = (21 x 2, F1 @ F2).

Proposition 2.1.4 Let f : Q — F be measurable such that wy — f(wi,w?2) €
LY(Q0; F) for all wy € Q1. Then the mapping

Q= F, w |—>/Q fwi,w)ua(dwr) (2.1.5)
2

is measurable.

Now let G be another separable Banach space. Recall that for a closed linear
operator A : D(A) C F — G the domain D(A) equipped with the graph norm
llx|llpay = llxIl + llAx|| is also a Banach space. Using the closed graph theorem, we
can prove the following result:

Proposition 2.1.5 Let A : D(A) C F — G be a closed operator and let
f e LY (D(A)) be a function. Then we have f € LY(F), Af e LY(G) and

A/ fd,u:/Afdu. (2.1.6)
Q Q
Recall that a system S C F is called a semiring if:
1. 0 eS;
2. ForallA,B€ Swehave ANB < S;
3. For all A, B € S there exist n € N and disjoint sets Cy, ..., C, € S such that
A\B=UL,C.

We denote by X(F) = X(S;F) the linear space of all simple functions
f : Q — F of the form (2.1.1) with disjoint sets Ay, ..., A, € S.

Proposition 2.1.6 Let S be a semiring such that F = o(S). Then, for all p > 1 the
linear space % (S; F) is dense in LP (F).

Proof Letp > land f € L”(F) be arbitrary. By Lemma 2.1.2 we may assume that f
is of the form (2.1.1) with n € N, elements x,...,x, € FandsetsAy, ..., A, € F
such that pu(A;) < oo fori = 1,...,n. Let us first assume that the measure y is
finite. Note that the o-algebra F is generated by the algebra

A={BU...UB,:peNandBjy,...,B, €S are disjoint}.
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Since the measure 4 is finite [10, Theorem 5.7] applies and yields for each m € N
and eachi =1, ..., n the existence of a set B" € A such that

1
WAAB") < ———— (2.1.7)

nPm||x;||P”

We define the sequence ( fi;,)men C E(F) of simple functions as
n
S = inILB;n, meN

Note that, due to the third property of the semiring S, we have (f,)uen C 2(S; F).
It remains to prove that f,,, — f in LP(F). By (2.1.7), for each m € N we obtain

n P n P
/Qllf — fulPdp = /Q H > xila, — Ign)| dp < /Q (Z ||xi||]lA,-AB;") dp
i=1 i=1

n n
< n‘"_l/ Z lbeillP Lo agpdp = nP~" > IxillP w4 AB])
Q* i
_ i=1

1 -1 N 1
<n” Zn W = e =
||x 1P n’m m

which completes the proof for the case when the measure y is finite or when f has
finite support.

Suppose f does not have finite support. Then for all € > O there is an f. with
finite support such that fQ | f — fellPdu < oo. Forall e > 0 and all N € N there is
an m.> N such that f,, € ¥(F) and

2P
/Ilf—fmgllpduSZ”/ ||f—fe||”du+2”/ I fe = fmPdp <27+ —,
Q Q Q me

which completes the proof. (I

Let us now recall the definition of the Pettis integral. The following result is known
as Dunford’s lemma.

Lemma 2.1.7 Let f : Q — F be a weakly measurable function such that (x*, ) €
LY(R) for all x* € F*. Then the linear operator

5 F o R )= [ S

IS COntinuous.
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Let f : Q — F be a weakly measurable function such that (x*, f) € L'(R) for
all x* € F*. By Dunford’s lemma we have x;i* € F** and

D- du = x%*
()/Qf,u xf

is the so-called Dunford integral of f.1If we have x’;-* € F (which is in particular true
if the Banach space F is reflexive), then we say the function f is Pettis integrable,
and the Pettis integral of f is given by

(P-) /Q fdp = x7. 2.1.8)

Proposition 2.1.8 Suppose the separable Banach space F is reflexive. Then each
function f € L'(F) is Pettis integrable and we have

/ fdu = (P-) / fdu forall f € L'(F). (2.1.9)
Q Q

Moreover, for each x* € F* we have

<x*,/ fdu):/(x*,f)dp forall f € L'(F). (2.1.10)
Q Q

Proof The identity (2.1.10) follows from Proposition2.1.5 and (2.1.9) is a conse-
quence of (2.1.10). O

2.2 Stochastic Processes in Banach Spaces

Let (2, F, (F1)i=0, P) be a filtered probability space. The filtration (F;);>¢ satisfies
the usual conditions if:

1. It is right-continuous, i.e., we have F; = ﬂpt Fsforallt > 0;
2. It is complete, i.e., we have N’ C F;, Vt € R, where A denotes the collection
of P-null sets of F.

In the sequel, we shall always assume that the usual conditions are satisfied.

Let F be a Banach space and let X = (X;);e; be an F-valued process with index
set/ C R..Inthe sequel, we will always have I = R or/ = [0, T'] for some T > 0.

The process X is called (F;)-adapted (in short, adapted) if for each t € I the
random variable X; is F;-measurable.

The process X is continuous if all its paths ¢ ~» X;(w) are continuous. The process
X is cadlag if all its paths are right-continuous with left-hand limits. If X is cadlag,
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we define the left-continuous process X;_ as

Xt— =

Xo, t=0
limgy Xs, >0

and the jumps AX as
AX; =X, —X,—, t=0.
For T > 0 we define the system of sets
Gr=Ax{0}:AeFplU{Ax (5,t] :0<s<t<T:AeF}

and the predictable o-algebra Pr = o(Gr). An F-valued process X = (X;)sc[0,7] is
called predictable if it is Pr-measurable.

We call the sigma algebra generated by all cadlag processes the “optional sigma
algebra” and denote it by Pr.

Lemma 2.2.1 Every left-continuous, adapted process X = (X;):c[0,1 is predictable.
Proof For each n € N we define the process X" = (X[")sc[0,7] as

on

X" = Xoljoy + k_Z]XT(/;;]) ]l(T(l;;l)’%].

Then each X" is Gr-measurable and, by the left-continuity of X, we have X" — X
everywhere. Therefore, the process X is predictable. O

Let Hr be the system of sets

Hr ={X"'B): X = (Xt)refo, 17 18 left-continuous, adapted and B € B(F)}.

Proposition 2.2.2 We have Py = o(Hr), that is, the predictable o-algebra Pr is
the smallest o-algebra generated by all left-continuous adapted processes.

Proof By Lemma?2.2.1 every left-continuous adapted process is predictable, that
is, we have Hr C Pr, and hence o(H7) C Pr. Conversely, every process X =
(Xt)refo,17 of the form X = x14 withx € F and A € Gr is left-continuous and
adapted. Therefore, we have Gr C Hr, and hence Pr C o(Hr). O

A process X = (X;)r>0 is called predictable if for each T > 0 the restriction
X|ax[o,7] 1s predictable.

A process X = (X;)ses is called progressively measurable if for each t € I the
restriction X |qx[o0,/] is F; ® B([0, t])-measurable. Note that a progressively measur-
able process X is also adapted.
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Proposition 2.2.3 Let T > 0 be arbitrary. The following statements are valid:

1. Every predictable process X = (X;):e is progressively measurable.
2. Every right-continuous adapted process X = (X;)tej is progressively measurable.

Proof Let T € I be arbitrary. We have Gr C Fr ® B([0, T]), and hence Pr C
Fr @ B([0, T]). Therefore, every predictable process is progressively measurable.

Suppose X = (X;)/c[0,7] 1s right-continuous and adapted. For each n € N we
define the process X" = (X]"):e[0,7] as

2"

n._
X" = X()l{()} + ;X% ]1(7(251)‘2775].

Then each X" is Fr ® B([0, T])-measurable and, by the right-continuity of X, we
have X" — X everywhere. Therefore, the process X is Fr ® B([0, T])-measurable,
and consequently, every right-continuous adapted process is progressively mea-
surable. (Il

For T > 0 we denote by IC;(F ) the linear space of all progressively measurable
processes X = (X;)se[0,7] such that

T
IP(/ X, ]lds < oo) =1.
0

For each X € ICIT(F ) we define the pathwise Bochner integral

t
/ Xgds, tel0,T]. (2.2.1)
0

Lemma 2.2.4 Foreach X € IC} (F) the integral process (2.2.1) is continuous and
adapted.

Proof This is a consequence of Propositions2.1.3 and 2.1.4. (I

We denote by IC})O (F) the linear space of all progressively measurable processes
X = (X1)r>0 such that for all 7 > 0 the restriction X |« 0,77 belongs to ICIT(F ). For
each X € IC%(F ) we define the pathwise Bochner integral

1t
/ Xgds, t>0
0

which, according to Lemma2.2.4, is a continuous adapted process.
Let X = (X;)rer and Y = (¥;)ses be two processes. Then Y is called a version (or
a modification) of X if

PX; =Y, =1 forallt el.
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The processes X and Y are called indistinguishable if

P(ﬂ{xz = Y,}) =1.

tel

The processes X and Y are called independent if foralln, m € Nandall#; <...<t,,
Sty ..., S,m With 1, ..., t,,51,...,5, € I the random vectors (X;,,...,X;,) and
(Ys,, ..., Yy, are independent.

2.3 Martingales in Banach Spaces

Let (2, F, P) be a complete probability space and let F’ be a separable Banach space.

Proposition 2.3.1 Let X € L'(F; F) be a random variable and let C C F be a sub
o-algebra. Then, there exists a unique random variable Z € L! (C; F) such that

EX1c] =E[Z1¢] forallC €C.

Proof See [18,Proposition 1.10]. O

The random variable Z is denoted by E[X | C] and is called the conditional expec-
tation of X given C. Furthermore, [18, Proposition 1.10] yields that

IEX [Cl < E[IX]|C] forallX € L'(F; F). (2.3.1)

Taking into account the Cauchy—Schwarz inequality, forevery p > 1 we may consider
the conditional expectation as a continuous linear operator

IP(F,F) > LP(C;F), X E[X|C].

Now let the probability space (€2, F, P) be equipped with a filtration (F;);>0 satisfy-
ing the usual conditions. Let I C R be an index set such that/ = R or I = [0, T]
for some 7' > 0.

Definition 2.3.2 An F-valued adapted process (M;);¢; is called a martingale if:

1. We have E[||M;|]] < coforallt € I,
2. Forall s, t € I with s <t we have E[M, | F;] = M, almost surely.

Recall that a mapping 7 : @ — Ry = [0, oo] is called a stopping time if we
have {T < t} € F; for all + > 0. For a stopping time 7 and an F-valued process
X = (X;)ser the stopped process X7 is defined as X; := X;., for ¢ € I. Note that for
a progressively measurable process X and a stopping time 7 the stopped process X"
is progressively measurable, too.
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An F-valued process M = (M;);¢; is called a local martingale if there exists a
sequence (7,),eN of stopping times with 75, 1 oo almost surely such that for each
n € N the stopped process M7 is a martingale.

Lemma 2.3.3 An F-valued, adapted process M = (M;),c; with E[||M;||] < oo for
all t € 1 is a martingale if and only if for each x* € F* the real-valued process
(x*, M) is a martingale.

Proof If M is a martingale, then clearly for each x* € F* the process (x*, M) is
a martingale, too. Now suppose that for each x* € F* the process (x*, M) is a
martingale. By [41, Theorem 2.8.5] there exists a sequence (x;'),cny C F* such that

x|l = sup [{x;,x)| forallx € F.
neN

Let s, t € I with s < ¢ be arbitrary. There exists a set Qo € F with P(£2p) = 1 such
that

E[(x}, X¢) | Fsl(w) = (xf, Xs(w)) forallw € Qoandn € N.
Therefore, for all w € ¢ we obtain

IELX; | Fl(w) — Xs@) | = sup [{x, E[X; | Fil(w) — X(w))]

neN
= sup |E[(x;, X) | Fsl(w) — (x, Xs(w))| =0,
neN
finishing the proof. (]
Theorem 2.3.4 Every F-valued martingale M = (My);cr has a cadlag version.

Proof Since F is separable, we look at (x*, M;) for x* in a countable determining
set. Then by the one-dimensional result the theorem follows. |

The following two estimates are known as Doob’s LP-inequalities.

Theorem 2.3.5 Let M = (M;);c; be an F-valued martingale. Then, the following
statements are valid:

1. Forallp > 1 and A\ > 0 we have

1
]P’( sup [|M;| = A) < —E[|M7|P]. (2.3.2)
1€[0,7] AP

For every p > 1 we have

p
E[ sup ||Mt||1’] < (L) EL|M7|P]. 233)
1€[0,7] p—1
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Proof The real-valued process ||M || is a non-negative submartingale. Indeed, for all
s, t € I with s < t we have, by using (2.3.1),

Ml = IEM; | Fslll < ELIM | | Fsl.

Thus, the inequalities (2.3.2) and (2.3.3) follow from [88, Theorem II.1.7]. U

Fix a finite time horizon T > 0. For p > 1 we denote by MI} (E) the linear space
of all E-valued martingales M = (M;);cj0,77 With E[||M7]|”’] < oo. Identifying
indistinguishable processes, a norm on M’;(E) is given by

M1 p, = ELIMTIPTP.

Lemma 2.3.6 For each p > 1 the normed space M’; (E) is a Banach space.

Proof Let p > 1 be arbitrary. The linear mapping
¢ (M7E), || ID) — L"(Frs E),  ¢(M) = My

is in particular an isometry. It is also surjective, because for any X € LP(Fr; E) we
have qﬁ’l (X) = M with M; = E[X7 | F¢] for t € [0, T]. Therefore, ¢ is an isometric
isomorphism, proving the completeness of M’; (E). 0

2.4 Poisson Random Measures

Let (2, F, (F)s>0, P) be a filtered probability space and let (E, £) be a Blackwell
space. Weset ¥ = Ry x E.
We recall here the definition of a Blackwell space (Definition 24, Chap. 3) [20].

Definition 2.4.1 A measurable space (E, £) is a Blackwell space if the associated
Hausdorff space (E, £) is Souslin.

Remark 2.4.2 For simplicity, as a particular case, we might take (E, &) to be a
complete separable metric space, since in all applications considered in this mono-
graph (E, £) is the space which marks the jumps of a Lévy process. However, we
shall state the results of this section in full generality. We remark that a Blackwell
space is in particular countably generated and that the o-algebra B(X’) is generated
by the semiring

S={{0} xB:Be&}U{(s,t]xB:0<s<tandB e &}.

Definition 2.4.3 A random measure on X is a family N = {N(w; dt, dx) : w € Q}
of measures on (X, B(X)) satisfying N(w; {0} x E) =0 for all w € Q.
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Definition 2.4.4 An integer-valued random measure is a random measure N that
satisfies:

o N(w; {t} XE) < 1forallw e Q;
e N(w;A) € No forallw € 2 and all A € B(X);
e N is optional and P-o-finite, where P is the o-field of optional sets.

The third condition is purely technical and ensures that for each progressively
measurable process f : 2 x E x Ry — F with

t
IP’(//||f(s,x)||N(ds,dx)<oo)=1 for allt > 0
0 JE

the integral process is adapted.

Definition 2.4.5 A Poisson random measure on X, relative to (F;);>0, i an integer-
valued random measure N such that:

1. There exists a o-finite measure 3 on E such that
ENA)] = A®B)(A), A€ B(WX).
2. Forevery s € Ry and every A € B(X) suchthatA C (s, 00) x E and E[N(A)] <

00, the random variable N (A) is independent of F.

For a Poisson random measure N the measure v (dt, dx) := dt ® (3(dx) is called the
compensator (or the intensity measure) of N. The next result explains the terminology
“Poisson random measure”.

Theorem 2.4.6 Let N be a Poisson random measure with compensator v, and let
Ay, ..., A, € B(X) be disjoint subsets for some n € N with v(A;) < oo for all
i = 1,...,n. Then the random variables N(A;), i = 1, ..., n are independent and
have a Poisson distribution with mean v(A;).

Proof The statement follows from [48, Theorem 11.4.8]. O

Let N be a Poisson random measure. We call ¢(dt, dx) = N(dt, dx) — v(dt, dx)
the compensated Poisson random measure associated to N, and v is also called the
compensator (or the intensity measure) of g. Note that for each set A € B(X) with
v(A) < oo we have, since N(A) ~ Pois(v(A)) according to Theorem 2.4.6,

E[g(4)] =0 and E[g(A)’] = v(A).

Lemma 2.4.7 For each A € B(Ry) and each B € £ with 3(B) < oo, the process
M = (My)1=0 given by

M; =q((0,11NAXB), t=0

is an (Fy)-martingale.
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Proof Let(0 < s <t < oo be arbitrary. Since N((s, t]NA x B) is independent of F§
(see Definition 2.4.5) and has distribution Pois(A((s, t] NA)3(B)) by Theorem 2.4.6,
we obtain

E[M; — M | Fs] = E[q((s, 1] N A x B) | 5]
=E[N((s,t1NA x B) | Fs] — M((s, t1NA)B(B)
=E[N((s,t]NA x B)] — A((s,t]NA)B(B) =0,

establishing the proof. ]

Lemma 2.4.8 Foreachs > 0, each A € B(R) withA C (s, 00), each F € Fy and
each B € £ with 3(B) < 0o the process M = (M,);>0 given by

M; = 1pq((0,t]NAXxB), t>0
is an (Fy)-martingale.
Proof By Lemma?2.4.7, the process

N; =q((0,1]NA x B), t€][0,T]

is a martingale. We shall now prove that 1N is also a martingale, which will finish
the proof. Let 0 < u < ¢ be arbitrary. If u < s, then we have

E[1rNy | Ful = E[LFE[N; | Fs]l | Ful = E[1FNg | Ful = 0 = 1rN,,
and for u > s we obtain
E[1rN; | Ful = LFE[N; | Ful = 1pNy,
showing that 1N is a martingale. U
We set Lg(F) = LY(X,B(X), \® (3; F).
Theorem 2.4.9 The linear space X (F) = X(S; F) is dense in Eb (F).
Proof This follows from Remark 2.4.2 and by Proposition2.1.6. (]
Remark 2.4.10 Any function f € X (F) is of the form
noom
FEx) =D arila, 01,40 (2.4.1)
k=1 I=1

for n, m € N with:

e clementsay; € Ffork=1,...,nand/=1,...,m;
e time points 0 < fg < ...t, < 00;
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o sets Ay € £ with B(Ax) <ocofork=1,...,nand/ =1, ..., msuch that the

product sets Ay ; X (#x—1, tx] are mutually disjoint.

Definition 2.4.11 For every f € X(F) of the form (2.4.1) we define the Wiener

integral of f with respect to g as

/ /X f@ gt dx) =D ariq((te—1, tk] X Axp).

k=1 I=1

Note that the integral

L(F) — LY (F), f+— // f(t, x)q(dt, dx)
X

is a linear operator.

Lemma 2.4.12 For each € E})) (F) we have (2.4.3)

E[ / / IIf(t,x)IIN(dt,dX)}= / / 1 £t )| B dt
X X

and the integral operator

LY(F) — L'(F), f»—>// £t x)q(dt, dx)
X

is continuous.

Proof We show that for any g € Eb (R) with g > 0 we have

E[// g(t, x)N (dt, dx):| :// g(t, x)B(dx)dt,
X X

(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)

which yields (2.4.3). By inspection, (2.4.5) holds true for every simple function
g € X(R) with g > 0. For an arbitrary g € £}3(R) with g > 0 there exists a sequence
(gn)nen C Z(R) of simple functions such that g, > O foralln € Nand g, 1 ¢

everywhere. By the monotone convergence theorem we obtain

IE|:// g(t, x)N(dt, dx)j| = lim E[// gn(t, x)N (dt, dx)]
X n—o0 X

= lim / / gn(t, X) B(dx)dt
n—oo X

// g(t, x)B(dx)dr,
X

proving (2.4.5). We deduce that for every f € C}j (F) relation (2.4.3) is valid and
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} < E[ / / £ 0 IN e, dx)]
X
- / / 1 £ (0 B0,
X

proving the continuity of the linear operator (2.4.4). (|

E[H / £(t, x)N(dt, dx)
X

For f € Eb(F) and B € £ we define

t
//f(s,x)q(ds, dx) = // f(s,x)q(ds,dx), t=>0.
0 JB (0,1]xB

Lemma 2.4.13 For each € Eg(F) and each T > 0 the process M = (M;)e(0,T]
given by ‘

t
M,:/ /f(t,x)q(dt,dx), te[0,7]
0 JE

belongs to MIT(F).
Proof There exists a sequence (f;),en C X (F) of simple functions such that
fu— fin E%(F). For n € N we define M" = (M}");c[0,1] by

t
My =/ /fn(s,X)q(ds, dx), te[0,T].
0o JE

By Lemma 2.4.7 we have M" € MIT(F ) for all n € N. By the continuity of the
integral operator (2.4.4) we have E[||M} — Mr||] — 0. Since ./\/llr(F) is a Banach
space according to Lemma?2.3.6, we deduce that M € MIT(F ). t

Now we fix T > 0 and set
LEPr; F) :=L"(Qx[0,TI xE,Pr ®E,PQ A ® 3 F).

An analogous argument as in the proof of Lemma2.4.12 provides the following
result:

Lemma 2.4.14 For each f € E}; (Pr; F) we have

EH / / £(t, X)N(dt, dx) :E[ / / I f(t,x)llﬁ(dx)dt} (2.4.6)
X X

and the integral operator

LYPriF) = L'(F), f+ / / £(t, X)q(dt, dx) (2.4.7)
' X
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IS continuous.

For f € ﬁ};(PT; F) and B € £ we define

t
/ /f(s,x)q(ds, dx) = // f(s,x)q(ds,dx), tel0,T].
0o JB (0,1]xB

Lemma 2.4.15 Foreach f € Elﬁ(PT; F) the process M = (M;);c[0,T] given by

t
M,://f(t,x)q(dt,dx), te0,T]
0 JE

belongs to ./\/llT(F ), and the integral operator

t
LL(Pr: F) — Mp(F), [+ ( / / £ (s, x)q(ds, dx)) (2.4.8)
0 JE

1€[0,T]
s continuous.

Proof Arguing as in the proof of Lemma 2.4.13, we obtain, by using Lemma?2.4.8
instead of Lemma 2.4.7, that M € MIT(F ). The continuity of the integral operator
(2.4.8) follows from Lemma 2.4.14. O

2.5 Characteristic Functions

Let (2, F, P) be a probability space and let E be a separable Banach space. For a
random variable X : Q2 — E we define the characteristic function

px 1 E* = C. ox(@®) = B[],

Theorem 2.5.1 Let X,Y : Q — E be two random variables with px = @y. Then
we have PX = PY,

Proof We will show that PX|c = PY|c, where C denotes the system of cylinder
sets. Since C is stable under intersection and generates 3(E) by Proposition 2.1.1,
the uniqueness theorem for measures, see, e.g., [10, Theorem 5.4], then yields that
PX = PY,

Let n € N, the linear functionals x}, ..., x; € E* and u € R" be arbitrary. Then
we have
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Using the uniqueness theorem for characteristic functions in finite dimensions, see,
e.g., [47, Theorem 14.1], for all By, ..., B, € B(R) we obtain

PX(x} € By,...,x* € B)) = P((x},X) € By, ..., (x},X) € By)

= P& Y=t "(Bp X ... %X By) = P& Y=t "(By X ... X By)

=P((x},Y)€By,...,(x',Y) eB,) =P (x} €By,...,x' € By,

showing that PX = PY. (|

Hence, all well-known theorems for finite dimensional random variables transfer
to Banach space valued random variables. In particular, we obtain the following
result:

Theorem 2.5.2 Let X;, ..., X, : Q — F be random variables. Then X1, ..., X,
are independent if and only if for all x7, ..., x; € F* we have

n
PX1 Xy @ x) = [ [ ex 0.
=1
Now let N be a Poisson random measure.

Proposition 2.5.3 Let F be a separable Banach space. For each f € E 3(F) the
characteristic function of the integral

Ny = / f(s,x)N(ds, dx)
X
is given by
E[e!0" V] = exp ( / / (e re0) — l)ﬁ(dx)ds), Y EE . (25.1)
X

Proof Let f € X(F) be an arbitrary simple function of the form (2.4.1). By
Theorem2.4.6 the random variables N ((tx—1, tx] % A,;) are independent and have
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a Poisson distribution with mean A\((fx_1, t%])3(A ). Thus, for every y* € F* we
obtain

E[e/0" 1] = E[ exp ((iy*, D2 kN (1. 1] AkJ)))}

k=1 I=1

= H HE[exp (", ar, )N ((tx—1, te] x Ak,z))]

k=11=1
= [TTTexp (At nh AL (07 — 1))
k=11=1

n m

= exp (Z > (0 — Ao, tk])ff(Ak,z))

k=1 I=1

= exp ( / / (e"@‘**f (.0} 1) ﬁ(dx)ds).
X

This proves (2.5.1) for every f € X(F). Now, let f € C%(F ) be arbitrary. There
exists a sequence (f,),en C X (F) of simple functions such that f, — f in
E}j(F ). By the continuity of the integral operator (2.4.4) we have Ny, — Ny in

LY(Q, F,P; F). Let y* € F* be arbitrary. There exists a subsequence (11 )xen such
that (y*, f,,,) — (v*, f) almost surely and (y*, ank) — (y*, Ny) almost surely. By
Lebesgue’s dominated convergence theorem we have

E[e“y*’Nf”k)] — E[ei(y*’Nf>].

Note that for all x € R we have

le™ — 1] = |cosx — | +isinx| = \/(cosx —1)2 4sin’ x
<VxZ4x2= \/5|x|.
Therefore, for every g € Cé (E) we have

1079600 1 < V21y* | lg(s, DI, (5, %) € X.

Using the generalized Lebesgue dominated convergence theorem (Lemma 7.1.8) we
deduce

/ /X (e’@*’fnk(”)> _ l)ﬁ(dx)ds N / /X (e"@*’f (s2) _ 1)ﬂ(dx)ds.

Consequently, the identity (2.5.1) is valid for all f € Lé(F ). O
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Lemma 2.5.4 Let F, G be two separable Banach spaces. Let f € Eb(F), g €
[,}j(G) and A, B € B(X) with AN B = (0 be arbitrary. Then, the random variables

X:// ft, x)N(dt,dx) and Y:// g(t, x)N(dt, dx)
A B

are independent.

Proof First we assume that f € X(F) and g € X(G) are simple functions of the
form

FEx) =D arila, ()1, 40), (2.5.2)
k=1 I=1
P q

9t x) =D > Biilp ()15, 50(0) (25.3)
k=1 I=1

with disjoint sets A ; C A and By ; C B. Then we have

nom P 4
X = Zzak,lN((tk—l, ] X Agg) and Y = Zzbk,lN((Sk—l, Sk] X Bg,1)-

k=1 I=1 k=1 I=1

Using Theorem 2.4.6, the random variables X and Y are independent. In the general
case where f € E}}(F) and g € ,CE(G) there exist sequences (f,),eN C X (F)
and (gn)nen C 2(G) of simple functions of the type (2.5.2) and (2.5.3) such that
fn— fin [,é (F)and g, — gin L%(G). Then, for each n € N the random variables

an// Ju(t,x)N(dt,dx) and Y, =// gn(t, X)N (dt, dx)
A B

are independent. By the continuity of the integral operator (2.4.4) we have X, — X
in E}j(F Yand Y, — Y in E}i(G). Consequently, the random variables X and Y are
also independent. (]

2.6 Remarks and Related Literature

The material of Sect. 2.1 is from [23]. In Sect. 2.4, we have taken the general definition
of a Poisson random measure, which can be found in [48]. The inequalities in Sect. 2.3
are due to Doob and follow from the fact that ||M;|| is a submartingale.



Chapter 3
Stochastic Integrals with Respect
to Compensated Poisson Random Measures

In this chapter, we define the stochastic integral. Throughout this section, (2, F,
(Fi)r=0, P) is a filtered probability space.

3.1 The Wiener Integral with Respect to Compensated
Poisson Random Measures

Let (E, &) be a Blackwell space and let g(dt, dx) be a compensated Poisson random
measure on X = Ry x E with compensator v(dt, dx) = dt ® B(dx). Let F be a
separable Banach space.

Let 5123 (F) = L>(X,B(X), » ® B; F). As discussed in Sect.2.4 the o-algebra
B(X) is generated by the semiring

S={{0} xB:Be&}U{(s,t] xB:0<s<tandB € &}

and by Proposition 2.1.6 the linear space X (F) = X(S; F) is dense in E% (F). More-
over, any function f € X (F) is of the form (2.4.1).

Forevery f € X(F) of the form (2.4.1) we defined in Definition2.4.11 the Wiener
integral of f with respect to g as

/ / f gt dx) =D arig((t1. i) x Ag).
X k=1 I=1

Note that the Wiener integral

S(F) —» L*(F), [+ //f(t,x)q(dt,dx) (3.1.1)
X

is a linear operator.
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Remark 3.1.1 If F = H is a separable Hilbert space, then for simple functions we
have the so-called It6 isometry

2
IE|:H //f(t,x)q(dt,dx)
X

Indeed, for a simple f € ¥ (H) of the form (2.4.1) we have

o ]

}:/ If (&, 0128 @x)dt forallf € (H). (3.1.2)
X

ZE[ Zzakzq((tk 1 tk] X A ]

k=1 I=1
) E[ Zak’lq((tkfl’ 0l X Ak, DD axig((te-1. 4l Ak,l)>i|
== k=1 I=1

n

m
> lla IPElg((r-1, 5] x Ag.)]
k=1 I=1
n m n m

+ D ariai Blq((t-r. 1] % Acg). q((timr. 1] X Ai )]
k=1 I=1 i=1 j=1
Using Theorem 2.4.6 we obtain
n m n m
D lardlPELg(t-1. 8] x Acdl = D> lla i 1> BADA (1. 1)

k=1 I=1 k=1 I=1

_ / 1t 0B (dwt.
X

For k < i the random variable g((#i—1,%] x A;;) is independent of F;_, and
q((tk—1, tx] x Agp) is F,_,-measurable. Therefore, we get

E[{g((tk—1, tk] X Ag,1), q((ti—1, 1;] X A j))]
= E[E[{q((t—1, t] x Ax,1), q((tiz1, ti] x Ap)] | Friy ]
= E[{g((tx—1, tx] x Ar,)), Elg((ti—1, ;] x Ai))1)] =0

and hence, the Itd isometry (3.1.2) is valid.
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Consequently, if FF = H is a separable Hilbert space, then the integral operator
(3.1.1) is an isometry, and therefore in particular continuous. Thus, and because
Y. (H) is dense in 5/23 (H), it has a unique extension

Ly(H) > L*(H), f+> / / f(t, x)q(dt, dx),
X

which we also call the Wiener integral, and we have the Itd isometry

IE|:H //f(t, x)q(dt, dx)
X

If F is a general Banach space, then the definition of the Wiener integral becomes
more involved, because relation (3.1.2) may not be satisfied for all f € X (F). The
article [102] gives a counterexample for stochastic integrals with respect to a one-
dimensional Brownian motion.

However, if there exists a constant Kg > 0 (which may depend on ) such that

2
}:// If (. x)I*B(dx)dt forallf € L3(H). (3.1.3)
X

2
IE|:H/ f(t, x)q(dt, dx) ] <Kg // |[f(t,x)||2ﬁ(dx)dt for allf € X (F),
X X

(3.14)

then we can analogously define the Wiener integral for all f € E% (F) as the contin-
uous linear operator

L3(F) —> L*(Q, F.P;iF), f+— //f(t,x)q(dt,dx), (3.1.5)
X

which is the unique extension of (3.1.1). In particular, we obtain the estimate

2
E[” / f(t, x)q(dt, dx) }gKﬁ / / If (. )1 B(dx)dt forallf € Lj(F).
X X

Remark 3.1.2 The Wiener Integral in (3.1.5) is cadlag.

We proceed with the definition of the Pettis integral. Let f : X — F be a measurable
function such that (y*, f) € C?; (R) for all y* € F*. We define the linear operator

T F* = LXQ,F,P), Ty = //(y*,f(s,x))q(ds, dx).
X
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Arguing as in the proof of Dunford’s lemma (see Lemma?2.1.7), we show that 7/
is continuous. The function f is said to be Pettis integrable if there exists a random
variable Z/ € L2(§2, F, P; F) such that almost surely

'y = (v, Z). (3.1.6)
Note that such a random variable Z/ is P-almost surely unique, provided it exists,

and that the set of Pettis integrable functions forms a linear space. Following the
ideas of [90], we call Z/ the Pettis integral of f and set

(P-) / / f(s, x)q(ds, dx) =7 .
X

We observe that for each simple function f € X (F) the Pettis integral exists and
coincides with the Wiener integral, that is

//f(s,x)q(ds, dx) = (P—) //f(s,x)q(ds,dx) for allf € X (F). (3.1.7)
X X

Lemma 3.1.3 Suppose there exists a constant Kg > 0 such that (3.1.4) is satisfied.
Then each function f € /;/23 (F) is Pettis integrable and we have

//f(s,x)q(ds, dx) = (P-) //f(s, x)q(ds, dx) forallf € [%(F). (3.1.8)
X X

Moreover, for each x* € F* we have

//f(s x)q(ds, dx) // f(s,x))g(ds,dx) forallf e £2 (F). (3.1.9)

Proof The identity (3.1.9) is immediately verified for simple functions f € X (F),
and thus follows for general functions f € E% (F) by choosing an approximating
sequence (f),en C X (F) and passing to the limit. Because of (3.1.9), for an arbitrary
function f € E% (F) the random variable

7= //f(s, x)q(ds, dx) (3.1.10)
X

satisfies (3.1.6), proving the identity (3.1.8). O

Now the question arises which properties of the continuous linear operator 7/
ensure that the function f : X — F is Pettis integrable. If F is a Hilbert space, we
get a straight answer. Recall that for two separable Hilbert spaces H; and H> a linear
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operator T : Hy — Hj is called a Hilbert—Schmidt operator if for one (and thus for
any) orthonormal basis (e;);en of H; we have

> 11T < oo

jeN

Theorem 3.1.4 Suppose that F = H is a separable Hilbert space, and letf : X —
H be a measurable function with (y, f) € 6/23 (R) for all y € H. Then the following
statements are equivalent:

. 77:H—IL? (2, F, P) is a Hilbert—Schmidt operator.
2. fe 5,23 (H).
3. The function f is Pettis integrable with

EH' (Po) / / F(s, 1)q(ds. dx)
X

Proof Let (e));eN be an orthonormal basis of H. By the It6 isometry, the monotone
convergence theorem and Parseval’s identity we have
2i|

DT ¢l =D RN 1 = ZEH / / (ej.f (s, x))q(ds, dx)
jeN jeN jeN ¥
=3 [ tessoipands = [ 3 iR
jeN"y v JeN
= [[ weoPsnds
X

proving (1) < (2). The implication (2) = (3) follows from Lemma3.1.3. Suppose
that f is Pettis integrable with relation (3.1.11) being satisfied. By the monotone
convergence theorem and Parseval’s identity we obtain

2T el = 3 BN ¢;*] = E[Z leeflz]
jeN jeN JjeN

:]E[Zuej,zf)ﬁ}

jeN

2
} < . (3.1.11)

2
] <o

— B2 = EH' (P-) / / F(s, )q(ds. dx)
X

providing (3) = (1). [l
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Theorem 3.1.5 Let F be a separable Banach space. The following statements are
equivalent:

1. Eachf € /.’,/23 (F) is Pettis integrable and we have (3.1.11).
2. Eachf € E% (F) is Pettis integrable, we have (3.1.11) and the linear operator

LY(F) > LX(QF.PiF), fr> (P—)//f(s,x)q(ds,dx) (3.1.12)
X

is continuous.
3. There exists a constant Kg > 0 such that (3.1.4) is satisfied.

If the previous conditions are fulfilled, then we have identities (3.1.8) and (3.1.9).
Proof The implication (2) = (1) is obvious and the implication (3) = (1) as well
as the additional statement follow from Lemma3.1.3. The implication (2) = (3) is
valid, because the Wiener integral and the Pettis integral coincide for simple functions
f € X(F), see (3.1.7).

Consequently, it only remains to prove (1) = (2). We shall prove that the linear
operator

S: Ly(F) — LX(Q.F.P;F), [ 7,

is a closed operator. Then the assertion follows from the closed graph theorem. Let
(f)nen C L‘%(F) and f € E%(F) be such that f, — f and Sf,, — ¢ for some
g€ L*(Q2, F,P; F). Then, for each y* € F* we have

lim (%, Sfa) = (", 9)

n— oo

and by (3.1.6) and the continuity of the linear operator
L3(R) > LX(Q. F.P;R), h> // h(t, x)q(dt, dx),
X

we obtain almost surely

lim (¥, Sf,) = lim (y*, Z/") = lim T/y*

n— oo n— oo n— o0
ngngo//(y*,.fn(t, x))q(dt, dx) = //(y*,f(t,x))q(dt, dx)

X X

=Ty = (", Z') = (%, Sf).

We deduce that Sf = g, proving that S is a closed operator. U

Let us now introduce Banach spaces of type 2, which are more general than Hilbert
spaces.
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Definition 3.1.6 A separable Banach space F is called a Banach space of type 2 if
there exists a constant K > 0 such that for every probability space (2, F, P), for
each n € N and for any collection X1, ..., X, : @ — F of independent, symmetric,
Bochner-integrable random variables with E[X;] = 0,i =1, ..., n, we have

|5
i=1

Remark 3.1.7 Note that every separable Hilbert space H is a Banach space of type 2.
Indeed, for any independent random variables X1, ..., X, : @ — F with E[X;] =0,
i=1,...,n, wehave

E|: Zn:Xi
i=1

2 n
}5KZE[||X,-||2]. (3.1.13)
i=1

2] - E|:<§Xi, gxﬂ - Zn:ZnZEHXi’Xj)]

i=1 j=1

= > EIXilIA+2 > E[X:. X;)]1.

i=1 i<j
Since for i < j we have, by the independence of X; and Xj,

E[(Xi, Xj)] = E[E[(X;, X;) | Xi]] = E[E[(x, Xj)]lx=x;]
= E[{x, E[Xj])]x=x;] =0,

o|3x
i=1

showing that (3.1.13) is fulfilled.

It is easy to show that the Lebesgue space L” on R for 2 < p < oo is of type 2
using Kahane inequality.

From now on, let ' be a Banach space of type 2. Let f € X(F) be an arbitrary
simple function of the form (2.4.1). Since the product sets A ; X (fx—1, t] are disjoint,
using Theorem 2.4.6 we obtain

2 2
¢ ]

E|:H //f(t, x)q(dt, dx)
X
<KD > lladPElg((-1, il x Ag )]

k=1 I=1
n o m

=KD > llar P BALDAM (11, )

k=1 I=1

we arrive at

2 n
} = > ElIXil],
i=1

n m
DD akig((tr, 5] x Ag)

k=1 I=1
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=K / / IIF (2, )1I* B (dx)d.
X

This shows that estimate (3.1.4) is satisfied with a constant not depending on 8.
Hence, we can define the Wiener integral as the continuous linear operator

L3(F) — LX(Q, F.P;F), fr> //f(t,x)q(dt, dx), (3.1.14)
X

which is the unique extension of (3.1.1). In particular, we get

2
E[”/ f(t, x)q(dt, dx) } 51(// If (t. x)1°dtB(dx) forallf € Lj(F).
X X

(3.1.15)
For f € E%(F) and A € B(X) we define

/ / . X)q(dt, dx) = / / 0140, 0q(dr, d),
X

A

and for B € £ and r > 0 we define

t
//f(s,x)q(ds, dx) := // f(s, x)g(ds, dx).
0 B

(0,t]xB

Similar to the proof of Lemma?2.5.4, we obtain the following result:

Lemma 3.1.8 Let F, G be two Banach spaces of type 2. Let f € Elzg (F), g€ Eé G)
and A, B € B(X) with AN B = ( be arbitrary. Then the random variables

X = //f(dt, dx)q(dt,dx) and Y = // g(dt, dx)q(dt, dx)
A B

are independent.

Proposition 3.1.9 Let E be a Banach space of type 2. For each f € E% (F) the
characteristic function of the Wiener integral

Wr = //f(s, x)q(ds, dx)
X
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is given by

E[e/0" W] = exp (// (e“y*f(s’x” —1- i(y*,f(s,x)))ﬂ(dx)ds), y* e E*.
X
(3.1.16)

Proof Let f € X(F) be an arbitrary simple function of the form (2.4.1). By
Theorem 2.4.6 the random variables N ((#x—1, fx] X Ak ;) are independent and have
a Poisson distribution with mean A((f¢—1, #%]) 8(Ax.1). Thus, for every y* € F* we
obtain

n

m
Efe'®" "] = E[CXP (<l DD a1, il x Ak,l)>)i|
k=1 =1
n m

— H HE[exp (i7", ar)q((tx—1, k] x Ak,l))]
k=11=1

= [TTTexp (-1 DBk ("0 — 1))

k=11=1
xexp (= 0", a2 (b, 1 DBAD)

— exp (Z P Gl BN W) LY tkDﬁ(Ak,z))

k=1 I=1

= exp ( / / (ei<~"*’f CER f(s,x))),B(dx)ds).
X

This proves (3.1.16) for every f € Z(F). Now, let f € L,ZS (F) be arbitrary. There
exists a sequence (f;),en C X (F) of simple functions such thatf;, — f in E% (F).By

the continuity of the It6 integral (3.1.14) we have Wy, — Wy in LZ(Q, F,P; F). Let
y* € F* bearbitrary. There exists a subsequence (ny)cn such that (y*, f,.) = (", f)
almost surely and (y*, W) — (y*, Wr) almost surely. By Lebesgue’s dominated
convergence theorem we have

E[ei(y*’wf”k>] — E[ei(y**wﬁ].

Note that for all x € R we have

le® — 1 —ix| = [cosx — 1 4 i(sinx — x)| = v/(cosx — 1)2 + (sinx — x)2

- x22+x22<12
=y\2 2) = A
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Therefore, for every g € L% (E) we have

|0 969) _ 1 j(y*, g(s, x))| < \/_Ily IPlg(s, 017, (s,x) € X.

Using the generalized Lebesgue dominated convergence theorem (Lemma7.1.8) we
deduce

// (D 1 =ity £ (5.0)) Bldx)ds
X

R / / (0776 — 1 — ity £ (s, 00)) Bld)ds.
X

Consequently, the identity (3.1.16) is valid for all f € E% (F). O

Lemma 3.1.10 For each f € L’% (F) and each T > 0 the process M = (M;):c[0,T]
given by

t
M; = //f(s,x)q(ds, dx), te|0,T]
0 E

belongs to M%(F).

Proof There exists a sequence (f,),en C X (F) of simple functions such thatf,, — f
in L% (F). For n € N we define M" = (M");c[0.1) by

1t
=//fn(s,x)q(ds, dx), te][0,T].
0 E

By Lemma2.4.7 we have M" € ./\/l2 (F) for all n € N. By the continuity of the
integral operator (3.1.14) we have E[||M” Mt || ] — 0. Since ./\/l2 (F) is a Banach
space according to Lemma?2.3.6, we deduce that M € M2 (F). (]

For the rest of this section, let ' be separable Banach space. The integrals in the
upcoming lemma are Bochner integrals.

Lemma 3.1.11 Suppose there is a constant Kg > 0 such that (3.1.4) is satisfied.
Then for each f € E}g (FHnN ﬁ% (F) we have

//f(t,x)q(dt, dx) =//f(t,x)N(dt, dx) —/ f(t, x)B(dx)dt. (3.1.17)
X X X
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Proof For every simple function f € X (F) identity (3.1.17) holds true by inspec-
tion. By Proposition 2.1.6, the linear space X (F') is dense in L}s (F) and in E% (F).
The continuity of the integral operators (3.1.14) and (2.4.4) yields that (3.1.17) is
valid for all f € 5}3 (F)N 5/23 (F). O

Lemma 3.1.12 Forallf € E}S (N C% (F) we have

]

2

< 4// Ilf(S,x)IIZﬂ(dX)dS+6</ Ilf(S,X)II,B(dx)dS) .
X X

Proof Using Lemma3.1.11 we obtain
]
2 2
<os|( [ wemmas.an) | +2( [[wemisaa)
X X
2
< ZE[(// IIf (s, X)llg(ds, dx) +// Ilf(&X)Ilﬁ(dX)dS) }
X

X

2
+2(/ IV(S,X)IIﬁ(dX)dS>

X
2 2
54E[( / / (s, ) lg(ds, dx)) ]+6( / / Ilf(s,x)llﬁ(dx)ds) .
X X

Applying the It6 isometry (3.1.3) yields the desired estimate. ]

]E|:H / f(s, x)gq(ds, dx)
X

E|:” / f(s, x)g(ds, dx)
X

The following result complements Theorem 3.1.5.

Theorem 3.1.13 Let F be a separable Banach space. The following statements are
equivalent:

(a) The Banach space F is of type 2.

(b) There exists a constant K > 0 such that for an arbitrary compensated Pois-
son random measure q(dt, dx) with compensator v(dt, dx) = dt ® B(dx) for
some o -finite measure B, every function f € [,}23 (F) is Pettis integrable and we
have
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JE|:H P-) //f(t, x)q(dt, dx)
X

<K / / If (£, x)|1dtB(dx) for allf € LE(F).
X

2
} (3.1.18)

Proof The implication (a) = (b) follows from estimate (3.1.15) and Theorem 3.1.5.

In order to prove (b) = (a), we shall establish that E}% C Bp, where 6% denotes
the linear space consisting of all sequences (xj)jeny C F with Zj’il ||xj||2 < 00,
and where Br denotes the linear space of all sequences (xj)jeny C F such that for
any i.i.d. sequence (¢j)jen of independent symmetric Bernoulli random variables
(e Pl = £1) = %) the sequence (Z;“:l €jXj)nen is bounded in L2(2, F, P; F).
Then the Banach space F is of type 2 in the sense of [43, p. 113], and according to
[43, Theorem I1.6.6] the Banach space F is of type 2 in the sense of our Defini-
tion3.1.6.

Let (x)jeN € Z% be arbitrary. For each j € N let N; be a Poisson random measure
on X’ with intensity measure v;(dt, dx) = dt ® B;(dx), where the measure f; is given
by

1
:3] = E(Sx, + ‘Sij)a

and denote by g;(dt, dx) = N;(dt, dx) — v;(dt, dx) the associated Poisson random
measure. Note that

1

/ / xBj(dx)dt =0, foralljeN. (3.1.19)

0 E

Let (I1j)jen be an i.i.d. sequence of bilateral Poisson distributed random variables
with parameter %, thatis, each I1; has the distribution of X—Y, where X and Y are inde-
pendent with X, ¥ ~ Pois(%). We define the sequence (S;,),en, C L*(Q, F,P; F)
by So := 0 and

n
S, = Zl'ljxj, neN.
J=1

Then, for all n, m € Ny with m < n and all y* € F* we have

n n
E[e"@’**sn—sw]:E[exp (,-<y*, > Hm))] = [] E[]
j:m+1 j:m+1

n

= H exp (%(ei(Y*»)‘/> — 1)) exp (%(e—i@*,m _ 1))

j=m+1



3.1 The Wiener Integral with Respect to Compensated Poisson Random Measures 37

n

j:m—H

—exp(//(e y*.x) 1)( Z ﬁ,)(dx)dr)

o n (1 / [ 3 ) o)

where we have used Proposition2.5.3 in the last step. By virtue of the uniqueness
theorem for characteristic functions (see Theorem?2.5.1), for all n,m € Ny with
m < n we obtain

Jj=m+1

1 n

sn—smi//x( > Nj)(dt,dx). (3.1.20)

0o g JEmtl

We shall now prove that (S,),cn is a Cauchy sequence in L*(Q, F,P;F).Lete > 0
be arbitrary. Since Zj’i 1 ||xj||2 < 00, there exists an ng € N such that for n, m > ng
with m < n we have

n €
2

E xill© < —.

Il K

j=m+1

By Theorem 3.1.5, for every function f € £2(F) the Wiener integral exists and we
have the identity (3.1.8). Using (3.1.8), (3.1.19), (3.1.20) and identity (3.1.17) from
Lemma3.1.11 and estimate (3.1.18), for all n, m > ng with m < n we obtain

ELSy — Sull’] = E //X( 2]

j) (dt, dx)

_ n 2
—K (P—)//x( > qj)(dt, dx) ]
- 0 E Jj=m+l1

K//uxn ( Z ﬂ](dx)>dt K Z gl < e.

0 Jj+m+1 Jj=m+1
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Consequently, the sequence (S,,),en converges in L2(Q2, F, IP; F). By the Ito—Nisio

Theorem, see [46, Theorem 3.1], the sequence (S,),cN converges almost surely.
We shall now apply the contraction principle from [50]. Note that the sequence

(Tj)jen is uniformly nondegenerate, that is, there exist constants a, b > 0 such that

P(|I1j| > a] > b forallj € N.

Now let (¢;)jen be an arbitrary i.i.d. sequence of independent symmetric Bernoulli
random variables. According to [50, Theorem 5.6], the series z;'il €;x;j converges
almost surely. Applying the [t6—Nisio Theorem again, the series Zj'il €jX; converges
in L2(Q, F,IP; F), and hence (X)jeN € Br, which settles the proof. O

3.2 Lévy Processes

Let F be a separable Banach space.

Definition 3.2.1 An F-valued adapted process X = (X;);>0 with P(Xg = 0) = 1 is
called a Lévy process if the following conditions are satisfied:
1. X has independent increments, i.e., X; — X is independent of F; forall0 < s < r.

2. X has stationary increments, i.e., X; — X; 4 X, sforall0 <s <t

3. X is continuous in probability, i.e., for all #+ > 0 we have X; = lim;_,; X in
probability.

4. With probability 1 the paths X.(w) : Ry — F are cadlag.

If 1-3 holds then X = (X;);>0 1S a Lévy process in law.

Remark 3.2.2 Let G be another separable Banach space, let £ : F — G be a
continuous linear operator and b € G. Then the process Y; = €(X;) + bt is a G-
valued Lévy process.

Let us recall that ¢y denotes the characteristic function of the random variable X.

Lemma 3.2.3 Let X be a Lévy process in law. Then, there exists a function ¥ :
F* — C such that

ox, (") = VO (1, x%) e Ry x F*. (3.2.1)
Proof Letx™ € F* be arbitrary. Then, we have ¢y, (x*) = 1 and, since X is continu-

ous in probability, the function r — gy, (x*) is continuous. By the independence and
the stationarity of the increments of X, for all ¢, s > 0 we obtain
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X, (x%) = B[/ X143)] = B[l X Xet X))
— E[ei(X*,Xrﬂ*Xx)]E[ei@*.,xx)]

= E[/® XY X] = oy, () ox, 7).

It follows that (¢x, (x*));>0 is a uniform continuous semigroup in C. Therefore, the
limit

) —1
V) = wa,(x)

1t
exists and we have (3.2.1). O

Definition 3.2.4 A function v : F* — Cis called a characteristic exponent of X if
we have (3.2.1).

Lemma 3.2.5 Foralln e N, all0 =ty < ... < tyandallxy, ..., x; € F* we have

n
Py X)) (T s ) = H‘PX% . 1(2 *)
I=k

Proof Using the stationarity and the independence of the increments, we obtain

n

PXyoXe) T+ - X3) = E| exp (iZ(x,f,X,k))}
- k=1

n

=E exp((<2xk,th>+ (xZ,sz—Xn)))]
—E exp(<2xk,X,1>)i|E exp (ié(x}:,X,k—X,l))]

= ¢x,, (xl 4+ .. +xn)(p(xr2—r1 ..... Xt’r[l)(x;, ey x;,k)

By induction, the claim follows. O

Lemma 3.2.6 Let F, G be Banach spaces and let (X, Y) be an F x G-valued Lévy
process in law such that for allt > 0 the random variables X; and Y; are independent.
Then the two Lévy processes in law X and Y are independent.

Proof Letn € Nand 0 < #; < ... < 1, be arbitrary. Using Lemma3.2.5, for all
xj,...,xy e Frand y},...,y; € G* we obtain

* k * k
(p(X[I ..... X’n Ytl ..... Y[”)(-xlv'-'axnvyla'~'ayn)

_ * Lk
—(P(X,I,Y,] ,,,,, X,n,Y,n)(xl’)’]»~-~, nvyn)
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n n
= H g[)(X’k—fk—l Yy _y) ( Z(xl*’ yf))
k=1 1=k
n n n
=[1ex, ( le*)fﬂw,k,“> ( Zy?‘)
k=1 1=k 1=k

= QX X)) AT )OO ),
proving the independence of the random vectors (X;,, ..., X;, ) and (¥;,, ..., Y;,). O
Definition 3.2.7 A measure 8 on (F, B(F)) is called a Lévy measure if it satisfies

A({0}) = 0 and

/(||)c||2 A 1)B(dx) < oo. (3.2.2)
F

Definition 3.2.8 Let X be a Lévy process in law and let 8 be Lévy measure. We say
that 8 is a Lévy measure of X if the function ¢ : F* — C given by

Y(x*) = / (ei<x*’x) — 1 —i(x*, x)l{”xnfl})ﬂ(dx), X e F*
F
is a characteristic exponent of X.

Our goal is to construct a Lévy process X with a given Lévy measure §. For this, we
prepare some auxiliary results. Let (E, £) be a Blackwell space and let N (dt, dx) be a
Poisson random measure on X = R x E with compensator v(dt, dx) = dt ® B(dx).
We denote by g(dt, dx) the associated compensated Poisson random measure.

Lemma 3.2.9 Letf € LY(E, €&, B; F). Then the process

t

X, = / / FON(s,dx), t>0 (3.2.3)
0 E

is a Lévy process.

Proof The process X is adapted and we have P(Xog = 0) = 1. Fort > O with s < ¢
we have f10,11a0,s] = 01in £}3 (F) for s — t by Lebesgue’s dominated convergence
theorem. By the continuity of the integral operator (2.4.4) we obtain

X — X, = //f(x)l(s’,](x)N(ds, dx) - 0
X

in L' (F) as s — t, and hence X is continuous in probability.
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In order to prove independence and stationarity of the increments of X, we first
assume that f € X (F) is a simple function of the form

n
f0) =D ala (x).
k=1
Then the integral process (3.2.3) is given by

n
Xe =D aN(0.1] x A, 1=0
k=1

and is cadlag.
For arbitrary 0 < s < t we obtain

n n
X, — X, = ZakN((s, 1] xAy) and X,_, = ZakN((O, t—s] X Ag).
k=1 k=1

By Definition2.4.5 and Theorem 2.4.6 we have
L(X; — X;) = Poisq, (1 — ) B(A1)) * ... % Poisq, (1 — $)B(An)) = LX),

where Pois, (1) denotes a Poisson distribution on the linear space (a) with mean A,
and X; — X is independent of ;. For a general function f € L! (E; F) there exists a
sequence (f,),eN of simple functions such that f;, — f in LY(E: F). Set

t

X7 =//fn(x)N(ds, dx), t>0.
0 E

By the continuity of the integral operator (2.4.4) we have X;' — X; in LY(E; F) for
each ¢t > 0, and hence X has independent and stationary increments and is cadlag. [J

Similarly, the following result can be proven:

Lemma 3.2.10 Suppose the separable Banach space F is of type 2. Let f €
L*(E, €&, B; F) be arbitrary. Then the process

t

Xt=//f(X)q(ds7dx), t>0
E

0

is a Lévy process.
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Now, let 8 be a Lévy measure on (F, B(F)) and let N (dt, dx) be a Poisson random

measure on X' = R x F with compensator v(dt, dx) = dt ® B(dx). We denote by
q(dt, dx) the associated compensated Poisson random measure.

Theorem 3.2.11 Suppose that the Banach space F is of type 2 or that

/(llxll A DB(dx) < oo.
F

Then the two processes

~

Y, ::/ / xN(ds,dx), t>0

0 {llxll=1}
t
Z; ::/ / xq(ds,dx), t>0
0 {llxll<1}

are independent Lévy processes, and the process X = Y + Z is a Lévy process with
Lévy measure B.

Proof For n € N we define the process

!
Y :=/ / xN(ds,dx), t>0.

0 {1=<|lxll<n}

We can write the process (Y", Z) as

1t
¥,z = (//xﬂ{lﬁxmn}q(d& dx)
0 FE

t

'
+/ / xﬂ(dx)dt,//x]l{”x”<1}q(ds, dx)).
0 E

0 {1<|lx]|<n}

By Lemmas?2.5.4,3.1.8,3.2.6,3.2.9and 3.2.10, the process (Y", Z) is a Lévy process
with independent components. Using Lebesgue’s dominated convergence theorem,
we have Y/' — Y; almost surely for every r > 0. Hence (Y, Z) is a Lévy process with
independent components. By Remark 3.2.2, the process X = Y +Z is a Lévy process.
Using Propositions2.5.3 and 3.1.9, for each x* € F* the characteristic function is
given by
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ex(x) = lim gyni7 (%) = gz,(@*) lim gy (x*)
n—o0o n—o0o
t
= exp ( / / (ei<x*’x) —1- i(x*,x))ﬂ(dx)ds)

0 {llxll<1}
t

x lim exp / / (ei(x*’x> — l)ﬂ(dx)ds)

n—00
0 {1<|lx]<n}

'
= exp (// (e“x*’x> —1- i(x*,x)ll“x”S]}),B(dx)ds).
0 E

Consequently, the Lévy process X has the Lévy measure 8. g

3.3 The Lévy-It6 Decomposition in Banach Spaces

In this section, we prove the Lévy—It6 decomposition in separable Banach spaces,
showing that every Lévy process with values in a Banach space can be decomposed
into three independent components, which are a drift, a Brownian motion and a jump
part, represented by a Wiener integral.

In the sequel, let F be a separable Banach space and let X be an F-valued Lévy
process. Set X = Ry x F. We define the random measure N on (X, B(X)) by

N@A) = Liax2080.ax)(A), A € B(X). (3.3.1)

t>0
Furthermore, for any B € B(F) with 0 ¢ B we define the process
NB =N(0,711xB), t>0. (3.3.2)
For t > 0 let C; be the o-algebra generated by the system of all cylinder sets
(X, — X, €B1,.... X, — Xi, , € B}
with n € N, time points t <ty < t; < ... < t,, and Borel sets By, ..., B, € B(F).

Note that the o -algebra C; is independent of F;.
We say that the jumps of a Lévy process X are bounded by a constant C > 0 if

IP’( sup |AX;|| < C) =1.

TGR+
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Lemma 3.3.1 Let (X;);>0 be an F-valued Lévy process with bounded jumps. Then
we have

E[|1X;]|"] < oo foralln € Nandt > 0.

Proof This is established by literally following the proof of [87, Theorem 1.34]. [
Lemma 3.3.2 Forall 0 <s < t we have that AX; is Cg-measurable.

Proof We have
AXZ = Xl —Xl, = llm (X[ _thl)9
n— 00 n

which is C;-measurable. O

Lemma 3.3.3 For each B € B(F) with 0 ¢ B the process N® is a Lévy process, and
the measure B on (F, B(F)) given by

B(B) = EINT], B e B(F) (3.3.3)
is o -finite.
Proof We can write the process N as

NP =D 15(AX). 120,

O<s<t

Let 0 < s < ¢ be arbitrary. By Lemma3.3.2 we have

NE—NE=>" 15(aX)

S<u<t

is Cs-measurable, and hence independent of F;. Define (f(u)uzo by

Xy =Xsqpu— X5, u>=0.
Then we have
NE-NE= > 1p(ax)= D 1p(aX,) and
s<ust O<u<t—s
NE = Z 15(AX,).

O<u<t—s

Consequently, the process N? has independent and stationary increments, and thus it
is a Lévy process. Note that the jumps of N' B are bounded by 1. Lemma3.3.1 yields
that B(B) < oo for all B € B(F) with 0 ¢ B. Therefore, the measure $ is o -finite. [
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Proposition 3.3.4 The random measure N (dt, dx) is a Poisson random measure
with compensator v(dt, dx) = dt ® B(dx), where the measure 3 is given by (3.3.3).

Proof Arguing as in the proof of [48, Proposition I1.1.16], the random measure N is
an integer-valued random measure on X’

Lets € Ry and A € B(X) with A C (s, 00) x E and E[N(A)] < oo be arbitrary.
Then N(A) is C;-measurable, and hence independent of 5.

Let0 < s < ¢ and B € B(F) with 0 ¢ B be arbitrary. Since N is a Lévy process
by Lemma3.3.3, we obtain

E[N((s, ] x B)] = E[N? — NB] = (t — )E[NP] = ( — 5)B(B).
Therefore, N is a Poisson random measure with compensator given by (3.3.3). U

We call a real-valued Lévy process X a Poisson process with parameter A > 0 if
X1 has a Poisson distribution with mean A.

Corollary 3.3.5 Foreach B € B(E) with 0 ¢ B the process N® is a Poisson process
with mean B(B).

Proof This is an immediate consequence of Proposition 3.3.4 and Theorem 2.4.6. [J

In the sequel, for a given Lévy process X, the random measure N denotes the Pois-
son random measure defined in (3.3.1), whose compensator is given by v(dt, dx) =
dt ® B(dx) with B defined in (3.3.3), and g(dt, dx) = N(dt, dx) — v(dt, dx) denotes
the associated compensated Poisson random measure.

Lemma 3.3.6 Let X be a Lévy process and B € B(E) with 0 ¢ B. Then the process

t
W[:X[—//XN(ds,dx)
0 B

is a Lévy process with
P(AW;, ¢ B) =1 forallt > 0. (3.3.4)
Proof Let0 < s < t be arbitrary. Then we have

W =W, =X, — X, — Z AX,15(AX,) (3.3.5)

sS<u<t

is Cs-measurable, and hence independent of F;. Define (f(u) u=0 by

Xy = Xsgu — X, u>0.
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Then we have

Wi=W=X =X, — > AXJAp(AX) =X s— > AX1p(AX,),
s<u<t O<u<t—s
Wt—s =Xi—s — Z AxuﬂB(Xu)7

O<u<t—s

hence independent and stationary increments. The representation (3.3.5) also shows
that (3.3.4) is valid. O

Definition 3.3.7 An F-valued process (W;);>0 is called a Wiener process if for each
n € Nand each £ € L(E, R") the process £(W) is an R"-valued Lévy process with
L(Wy) ~ N(O, (t—s)Qp) with a symmetric, non-negative definite matrix Q; € R"*".

Proposition 3.3.8 Let (X;);>0 be a Lévy process with jumps bounded by 1. Suppose
that the Banach space E is of type 2 or that

/(||x|| A 1) B(dx) < oo. (3.3.6)
F

Then we have E[||X1]|]] < oo and the process (W;);>o given by
t
W, = X, — tE[X] —/ / xq(ds,dx), t>0
0 {llxl=<t}
is an F-valued Wiener process.

Proof According to Lemma3.3.1 we have E[||X;||] < oo for all + > 0. For each
n € N we define the process

W =X, — fE[X)] —/ / xq(ds,dx), t>0.
0 {1/n<|lx|=1}

We can write this process as

t
W' =X, + / xB(dx) — E[Xl])t —/ / xN(ds, dx).
(1/n<lxl<1) 0 (1/n<|xl|<1)

If the Banach space F is of type 2, this follows from Lemma3.1.11. Hence, by
Lemma3.3.6, each W" is a Lévy process with jumps bounded by %

We fix an arbitrary 7 > 0. If condition (3.3.6) is satisfied, then Doob’s inequality
(Theorem 2.3.5), Lemma 3.1.12 and Lebesgue’s theorem yield
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IE[ sup ||WS—W;1||2}
s€[0,T]

|: sup / / xq(du, dx) ]
s€[0,T]
0 {lixl<iy
<4 sup IE[H/ / xq(du, dx) ]
s€[0,T]
0 {Ixl<iy
T T 5
< 16/ / ||x||2ﬁ(dx)ds+24(/ / ||x||/3(dx)ds)
0 {xl<iy 0 {Ixl<iy
2
< 16T / ||x||,3(dx)+24T2( / ||x||ﬂ(dx)) — 0.
{Ixll< 1y {Ixll <1}

In the other case, where the separable Banach space E is of type 2, Doob’s inequality
(Theorem 2.3.5), estimate (3.1.15) and Lebesgue’s theorem give us

/ / xq(du, dx)
}

{Ixl <1

]E|: sup || Wy — WS"||2} =E[ sup
s€[0,T1] s€[0,T]

<4 sup EH'/ / xq(du, dx) }
s€[0,T]
0 {ix<1y
T
<4k / / P B(dx)ds
0 {xl<iy

= 4TK / lxI?B(dx) — 0.
{llxll <%}

Consequently, there exists a subsequence (7x)ren such that

sup ||Wy — W |> - 0 P-almost surely.
5€[0.T]

Since T > 0 was arbitrary, it follows that the sample paths of W are continuous. It
follows that W is a Wiener process. (]
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Lemma 3.3.9 Let J be a pure jump Lévy process with some Lévy measure B and let
W be a Wiener process. Then the two processes W and J are independent.

Proof By Proposition2.1.1 it suffices to show that for all n € N and x* € L(F, R")
the processes (x*, W) and (x*, J) are independent.

Let n € N and x* € L(F,R") be arbitrary. The process ({(x*, W), (x*,J)) is
an R?"-valued Lévy process. Indeed, the semimartingale characteristics (see [48,
Definition 1I.2.7]) of (x*, W) and (x*,J) with respect to the truncation function
h:R" — R* h(x) = x1yjx <1, are given by

B W) = 0, C,(X*’W> = ct, pes W) = 0,
BY') =0, cW ) =0, v& (A x B) = MA)F(B)

for some symmetric, non-negative-definite matrix ¢ € R"*" and a measure F on
(R"™, B(R™)) satisfying fR,,(HxH2 A DF(dx) < oo. Hence, we compute the semi-
martingale characteristics of ({(x*, W), (x*, J)) as

cO

BEO, Ct:(oo

)t, V(A X BxC)=AAF(),

showing that ({(x*, W), (x*, J)) is a Lévy process. Computing the characteristic func-
tions yields

I . .
Pl W) (1)) (U, V) = exp (Elul2 +/ (e’””‘)‘l‘l(v')‘) ‘*"<”)F(dx))

Rn
c . 1
= exp (§|u|2) exp (/ (ez(v,x) 1—i{v,x) (xlsl))F(dx)) = @(x*,Wn(u)Qﬁ(x*,h)(V)
Rﬂ
for all (u, v) € R?". This proves the independence of (x*, W) and (x*, J). O

Theorem 3.3.10 Let (X;);>0 be a Lévy process. Suppose that the Banach space F
is of type 2 or that

/(lell A 1D)B(dx) < oo.
F

Then, the process (J;);>0 defined as

t t
J; ::/ / xN (ds, dx) +/ / xq(ds,dx), t>0
0 {llxlI=1} 0 {llxl<1}
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is a Lévy process with Lévy measure B, where B is defined in Definition3.2.8, and
there exist a € F and a Wiener process W such that we have the decomposition

X[ = ot + W[ +Jta t Z O (337)

Moreover, the two processes W and J are independent.

Proof Applying Theorem3.2.11 yields that J is a Lévy process with Lévy measure
B. We define the process L as

L,:/ / xN(dt, dx), t=>0.
0 {llxI=1}

By Lemmas3.2.9 and 3.3.6 the processes L and X — L are Lévy processes, and the
jumps of X —L are bounded by 1. Hence, by Proposition 3.3.8 we have E[ || X; —L{||] <
00, and the process

W, ;:Xt—L,—ozt—/ / xq(ds,dx), t=>0
0 {llxli<1}

is a Wiener process, where o« = E[X — L], which provides the Lévy-Itd decomposi-
tion (3.3.7). According to Lemma3.3.9, the two processes W and J are
independent. |

3.4 Isomorphisms for Spaces of Predictable Processes

In order to establish our subsequent results concerning stochastic integration of
adapted, measurable resp. progressively measurable processes, we provide the fol-
lowing Theorem 3.4.2 in this section.

Let (Q, P, F) be a measure space. In view of our applications in Sect. 3.5, we do
not demand that (2, P, ) is a probability space. Moreover, let (}}) >0 be a filtration
satisfying the usual conditions.

Fix T > 0 and let i be a measure on (fZ x [0, T, fT ® B([0, T])) with marginals

w(A x [0, T]) =PA), AeFr.

We assume that there exists a sequence (A;),eN C Fo such that A, 4 Q and
P(A,) < oo foralln € N. In particular, the measures P and p are o -finite.

There exists a transition kernel K : € x B(0,T]) — R4 from (Q, .73T) to
([0, 71, B([0, T1)) such that
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T
w(B) = // 15(&. HK (@, d)P(d@), B € Fr ® B(0,T1).
O 0

see [48, Sect.Il.1a].

Definition 3.4.1 We denote by Pr the predictable o-algebra on Q x [0, T']. Fixing
an arbitrary p > 1, we define the spaces

Lg",pred(F) = LP(Q X [07 T]a 75T7 I‘L; F)’

L} e (F) := 1P(Q x [0, T1, Fr ® B((0, T1), j1; F) N Progy (F),

L (F) == L"(Q x [0, T], Fr ® B0, T]). p: F) N Adr(F),

where Progy (F) denotes the linear space of all F-valued progressively measurable
processes (®;)c[0,71 and Adr(F) denotes the linear space of all F-valued adapted
processes (®;)ef0,17-

‘We have the inclusions

p p )4
LT,pred(F) - LT,prog(F) - LT,ad(F)‘

In the upcoming theorem, we will show that these three spaces are actually isomet-
rically isomorphic, provided the measures A — K (w, A) are absolutely continuous.
In particular, the latter two spaces are Banach spaces, too.

Theorem 3.4.2 Suppose there is a nonnegative, measurable function f : Q x
[0, T] — R such that for each @ € 2 we have K(w, dt) = f (o, t)dt. Then we
have

P ~ P ~ 7P
LT,pred(F) = LT,prog(F) = LT,ad(F)'
Proof 1t suffices to prove that for each ® € L’;’ aq(F) there exists a process () €
L’;,pred(F ) such that ® = 7 (P) almost everywhere with respect to .
Let® e L’}’ad (F) be arbitrary. We will show that there is a sequence (9"),cn C
L’;’pred(F) such that ®" — @ in Lf, ,(F). Then ("),.cy is a Cauchy sequence in

L’;,pred (F) and thus has a limit 7 (®) € LIY)",pred (F). But this limit has the property
@ = () almost everywhere with respect to , which will finish the proof.
The proof of the existence of a sequence ($"),cny C L’;’pred (F) satisfying ®" —

® in Lf 4 (F) is divided into two steps:

1. First of all, we may assume that

P(Q) = n(€ x [0, T]) < oo (3.4.1)
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and that there is a constant M > 0 such that
|®|| <M everywhere. (34.2)

Indeed, by assumption, there exists a sequence (A,)nen C Fo with A, 0 Q
and P(A,) < oo for all n € N. Defining the sequence (®"),cn C L’;’ad(F)
by ®" := (& A n)l,,, Lebesgue’s dominated convergence theorem yields that
" — @ inLj  (F).

2. Now we proceed with a similar technique as in [58, pp. 97-99]. We extend ® to
a process (®;);cr by setting

@,(®) ;=0 for(d,1) € QxR\[0,T].

Defining for n € N the function 6, : R — R by

o= X 10 40,

JEZ

we have 6,(t) 1 t for all t € R. The shift semigroup (S;);>0, Sif = f( + ) is
strongly continuous on L” (R; F). Thus, performing integration by the substitution
t ~» t + s, using Fubini’s theorem, Lebesgue’s dominated convergence theorem
and noting (3.4.1) and (3.4.2) we obtain

/

| D16, 1—5) (@) — (@) |PdtdsP(dd)

St~

~

—S

| Dsr6,0) (@) — Oy (@)||P dtdsP(dd)

I
0

s

~

—t

| D516, (@) — Pyir(@)||PdsdiP(dd)

St — 5 T T

L
o

T
/ 16,0 (@) — By 1o(@)[PdsdiB(di) — 0.

\o

~

+Q/

@fter passing to a subsequence, if necessary, for P ® A ® A-almost all (@, s, t) €
Q x [0, T] x [0, T] we have

[ ®s16,1—5) (@) — (@) [P — 0,
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where A denotes the Lebesgue measure. Thus, there exists an s € [0, T] such that

[ D6, (1—5) (@) — P(@)|F — 0 for P® r-almost all (@, 1) € 2 x [0, T].
(3.4.3)

For n € N we define the process ®" = (®}');¢[0,77 by
D 1= Dyrg ) = Zq>s+%n(s+,2;nlys%](t), te[0,T1.
JEZ

Note that ®" is predictable, because ® is adapted. Hence, we have (®"),cn C
L’; pred(F ). By assumption, there is a nonnegative, measurable function f : Q x

[0, 7] — R such that for each @ € Q we have K(&, dt) = f(@, tdt. Using
(3.4.1) we have

T T
/ / F(@, NdiP(dé) = / / K@, d)P(dd) = w(Q x [0, T]) < .
S 0 S 0
Noting (3.4.1) and (3.4.2), we obtain by (3.4.3) and Lebesgue’s dominated con-
vergence theorem

T
/ 19" — DPdy = / / 1By, (@) — D@ K (@, d) ()
0

Qx[0,T] Q

T
_ / 1By s6,1s) (@) — D@ PF (@, diP(d) — O,
I 0

showing that ®" — ® in Ll}’ad(F). [l

3.5 The It6 Integral

Let (E, &) be a Blackwell space and let g(dt, dx) be a compensated Poisson random
measure on R4 x E with compensator v(dt, dx) = dt ® f(dx). Let F be a separable
Banach space.

Let I C R, be an index set such that / = Ry or I = [0, T] for some T > 0. A

functionf : Q x I x E — F is called adapted/measurable/progressively measurable
if it has the respective properties on the enlarged space

(QF Fi.P)=(QXE, FxE (Fi xE)=0.P® B).
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Now we fix T > 0 and set u = P ® A. Let Lﬁ‘}’ﬂ(F) = L%’ad(F) and X7 (F) =

) (QT; F). By Proposition2.1.6 and Theorem 3.4.2 the linear space X7 (F) is dense
in E%’ P (F). Note that any function f € X7 (F) is of the form

n m
FEx) =D arilag, () 1r, Lo, .00 (3.5.1)
k=1 I1=1
for n, m € N with:
e clementsay; € Ffork=1,...,nand/=1,...,m
e timepoints 0 <79 < ... <1, <T;
e sets Ay € £ with B(Ax ) <oofork=1,...,nand/ =1, ..., msuch that the
product sets Ay ; X (#x—1, #] are mutually disjoint;

esets Fp;eFy fork=1,...,nandl=1,...,m.

For f € X7 (F) we define the 10 integral as the process

t

/ / fs,0q(ds, dx) := D> arilr g1, 6] 0 (0,11 x A ), 1 € [0, T].
E

0 k=1 I=1
(3.5.2)

Remark 3.5.1 Assume that the compensated Poisson random measure g(dt, dx) is
the counting measure of a Lévy process (X;);>0, then for f € X7 (F)

t

//f(s,X)q(ds, dx) = Z f (s, (AXy) (@), ©) L1g(AXy (@)

0 E O<s<t

t

—//f(s,x, w)v(ds, dx). 3.5.3)
E

0

Lemma 3.5.2 For each f € X7 (F) the process M = (M;)>0 given by
'
M, = //f(s,x)q(ds, dx), te|0,T]
0 E

belongs to M%(F).

Proof This is a direct consequence of Lemma?2.4.8. O
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Due to Lemma3.5.2, we may regard the Itd integral defined in (3.5.2) as a linear
operator

t
27 (F) = M3(F), f ( / / £(s, x)q(ds, dx)) . (3.5.4)
0 FE

te[0,T]

Remark 3.5.3 If F = H is a separable Hilbert space, then for simple functions we
have the so-called It6 isometry
]

T
E|:H//f(s,x)q(ds, dx)

_E[//Hf(s 2 ﬂ(dx)dsi| forall € L2 ﬁ(H) (3.5.5)

Indeed, for a simple f € X7 (H) of the form (3.5.1) we have

r 2

E[H//f(t,x)q(dt,dx) ]
0 E

m 2

- ]

n
DD kil g, i X Ag )
n m n m
]E[< D> arale,q(e ] X Aen), DD akile gt i) x Ak,l)>:|

k=1 I=1
k=1 I=1 k=1 I=1
n

m
Z lag 1|7 L7 (-1, 1] X Ag)]
=1

=»—

m n m
+ Z Z Zak,za,-,,-E[ka,,q((tk_l, il % Ar1), Lrq((timr, 1] X Ai ).

Using Theorem 2.4.6 we obtain

n m

D> llacIPEILp, g (1, 1] x Axp)]

k=1 I=1

= > > llarlPPF)BADA(tr1. 1))

k=1 I=1

T
:]E[//|[f(t,x)||2ﬂ(dx)dt].
0 E
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For k < i the random variable g((f;i—1,%] x A;;) is independent of F_, and
q((tk—1, tx] ¥ Ag,1) is F;,_ -measurable. Therefore, we get
E[(Lr, ,q((tk—1, t] ¥ Ax.0)s 1F, ;q((Fi-1, 1] X A )]
= E[1r, ,1r, ; E[(q((tr—1, ] X Ak,0), q((ti-1, ti] X Ai )] | Foy ]
= E[1r, , 1F,;(q((tk—1, tx] X A1), Elq((ti-1., ;] X A; j)])] =0,

and hence, the It6 isometry (3.5.6) is valid.

Therefore, if F = H is a separable Hilbert space, then the integral operator (3.5.4)
is an isometry, and therefore in particular continuous. Thus, and because X7 (H) is
dense in E%’ P (H), it has a unique extension

t

L7 4(H) > M7H), [+ ( / / f(s,x)q(ds,dx)) =
0 E te[0,T]

which we call the [0 integral, and we have the Itd isometry

A 2
]E|:H //f(s,x)q(ds, dx) ]
0 E

T

:E[ / / Ilf(s,x)||2,3(dx)ds} for allf € L3 4(H). (3.5.6)
0 E

In order to define the It6 integral in the general setting, where the separable Banach
space F is not a Hilbert space, we assume there exists a constant Kg > 0 (which may
depend on ), such that

]

T
]E|:H//f(s,x)q(ds, dx)
0 FE
5KﬁEI://|[f(s,x)||2dsﬂ(dx):| for allf € X (F). 3.5.7)
E

T
0

In this case, we can analogously define the Itd integral for all f € E%’ ﬁ(F ) as the
continuous linear operator

t
L3 p(F) — Mp(F), [+ ( / / f(s,x)q(ds, dx)) : (3.5.8)
0 E

te[0,T1]
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which is the unique extension of (3.5.4). In particular, we obtain the estimate

A 2
IE[H//f(s,x)q(ds,dx) i|
0 E
T

< KﬁE[ / / |[f(s,x)||2ﬂ(dx)dsi| forallf € L7 4(F). (3.5.9)
E

0

Remark 3.5.4 The It6 integral in (3.5.8) is cadlag.

We proceed with the definition of the Pettis integral. Letf : Q@ x [0, T] x E — F be
a function such that (y*, f) € E%’ 8 (R) for all y* € F*. We define the linear operator

'
. F* - M%(R), T y* = (//(y*,f(s,x))q(ds, dx)) .
s 9 1€[0,7]

Arguing as in the proof of Dunford’s lemma (see Lemma?2.1.7), we show that 7/
is continuous. The function f is called Pettis integrable if there exists a process
7' e M%(F ) such that almost surely

Ty = (", 7).
Note that such a process Z/ is P-almost surely unique, provided it exists, and that the

set of Pettis integrable functions forms a linear space. Following the ideas of [90],
we call Z/ the Pettis integral of f and set

t
(P—)//f(s,x)q(ds, dx):=7, tel0,T]
0 E

We observe that for each simple function f € X7 (F) the Pettis integral exists and
coincides with the It6 integral, that is, we have

t

(//f(s,x)q(ds, dx))
- 1€[0,T]

t
= ((P—)//f(s,x)q(ds,dx)) for allf € X7 (F).
- 1€[0,T]

Arguing as in the proof of Lemma3.1.3, we obtain the following result:
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Lemma 3.5.5 Suppose there exists a constant Kg > 0 such that (3.5.7) is satisfied.
Then, each function f € ﬁ% (F) is Pettis integrable and we have

//f(s,x)q(ds, dx) = (P—) //f(s,x)q(ds, dx) for all f € E?B(F). (3.5.10)
X X

Moreover, for each x* € F* we have

//f(s x)q(ds, dx) // f(s,x))q(ds,dx) forall fe Ez (F).

(3.5.11)

Remark 3.5.6 Let us stress that Lemma 3.5.5 states in particular that if there exists
a constant Kg > 0 such that (3.5.7) is satisfied, then the It integral is defined on
£/23 (F) and inequality (3.5.9) holds.

Now the question arises which properties of the continuous linear operator 7/
ensure that the function f : Q x [0, T] x E — F is Pettis integrable. Arguing as in
the proof of Theorem 3.1.4, we obtain the following result:

Theorem 3.5.7 Suppose that F = H is a sepamble Hilbert space, and let f :
Q x [0,T] x E — H be a function with (y,f) € L3 ﬂ(R)for all y € H. Then the
following statements are equivalent:

1. 77 :H— ./\/l2 (R) is a Hilbert—Schmidt operator.
2. fe ET’ ﬂ(H)
3. The function f is Pettis integrable with

r 2
E[H P-) / / £(s, X)q(ds, dv)
0 E

If F is a separable Banach space, we obtain the following result by arguing as in
the proof of Theorem3.1.5.

] < oo. (3.5.12)

Theorem 3.5.8 Let E be a separable Banach space. The following statements are
equivalent:

1. Eachf € L2 ﬁ(F) is Pettis integrable and we have (3.5.12).
2. Eachf € L2 ’ﬁ(F) is Pettis integrable, we have (3.5.12) and the linear operator

ﬂ(F) - M3 7(F), f— (P- )//f(s x)q(ds, dx) (3.5.13)

IS continuous.
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3. There exists a constant Kg > 0 such that (3.5.7) is satisfied.
If the previous conditions are fulfilled, then we have identities (3.5.10) and (3.5.11).

Now the natural question arises if for non-Hilbertian Banach spaces there exists a
constant Kg > 0 such that inequality (3.5.7) is satisfied for all f € X7 (F). Following
[85], we introduce M-type 2 Banach spaces for this purpose.

Definition 3.5.9 A separable Banach space F is called a Banach space of M-type 2 if
there exists a constant K > 0 such that for each n € N, for every filtered probability
space (2, F, (Fi)i=o....n, P) and for every F-valued (Fj)-martingale (M;);=o
with My = 0 we have

n
ELIM,|*] < K " BIIM; — Mi1|]. (3.5.14)
i=1

Remark 3.5.10 Note that every Banach space of M-type 2 is also a Banach space
of type 2. Indeed, for any independent random variables X1, ..., X, : @ — F with
E[X;]1=0,i=1,...,n we define the filtration (Fi)x=0,...» by

Fo=1{0,Q} and Fr=0X,....Xx), k=1,....n

and the (Fj)-martingale (M)i=o,... » by
My=0 and My= > X;. k=1,....n.
Then, using (3.5.14) we obtain

1

showing (3.1.13).

Remark 3.5.11 Note that every separable Hilbert space H is a Banach space of M-
type 2. Indeed, for every H-valued (Fy)-martingale (M;);—o,... » With Mo = 0 we

obtain
E[[|Ma]%] [HZ(M — M) }
[(Z(M Mioy), Z(M M- o)}

i=1

2 n n
} = E[IM,[I°] < K D ElIM; — M;1 "1 =K D E[I1Xil*],
i=1 i=1

= ZE[HM,- — M |P142 D EUM; — Mi—y, My — Mj-1)].

i<j
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Fori < j we get, by using that M; — M;_ is F;-measurable and that M is a martingale,

E[{M; — M, M;j — M;—1)] = E[E[{M; — M;—, M; — M;—1) | Fi]]
=E[M; — M, E[M; — M;—, | Fi])] =0,

and hence we arrive at
n
ELIM, |1 = D> ElIM; — M1,
i=1
showing that (3.5.14) is fulfilled.

Proposition 3.5.12 Suppose that F is a Banach space of M-type 2. Then we have

A 2
EI:H //f(s, x)q(ds, dx) :|
0 E

T

SKZE[// |[f(s,x)||2,3(dx)dsi| forallf € $(F), (3.5.15)
0 E

where the constant K > 0 stems from (3.5.14).

Proof Let f € X(F) be a simple function of the form (A.1.1). Define the random
variables (M;);=o....n by

.....

i m
M; = Z Zaksl]leJQ((tk—l, te] X Ax.1)
k=1 [=1
i

Z//.f(S,X)q(ds,dx), i=0,...,n
0 E

Then we have My = Oand (M;);—o
the filtration

..........

gi=.7:,i, l=0,,l’l

For fixed k = 1, ..., n we define the random variables (My ;);=o,...m by

J
Mij = aulp, q((t-1. ] x Aw), j=0.....m
=1
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and the filtration (Gy j)j=o,....m by

Grj=0(q((tk—1, k] X Aj), j=0,...,m

Then we have My o = 0 and (M j)j—o,....m is @ (Gx j)j=o0,... m-martingale. Indeed,
let j1 < j» be arbitrary. Then for [ = j; + 1, ...,j> the set Fi; € F_, and Gy j,
by Definition2.4.5. Since the product sets (fx—1, #] x Ag; and (fx—1, k] X Ay,
are disjoint, the random variable g((tx_1, #x] x Ay ;) and G j, are independent by
Theorem2.4.6. Moreover, the set Fy ; and g((fx—1, tx] X Ak, 1) are independent. There-
fore, we obtain

J2
E[Mj, — Micjy | Grjil = D Ellr,q((t1. %] x Ae) | G jy]
I=j1+1
i
= > Ellg,q((t1, &] x Ag0)]
I=j1+1
J2
> PFE)EIG((t1, ] X Ae)] =0
I=j1+1

showing that (My j)j=o,...,m is a (G j)j=o0,....m-martingale. Therefore, using the esti-
mate (3.5.14), we obtain

H' / / f0,0atds. o)
Z Z aii1r, ,q((fk, 1] X Ag,)

_E[
k=1 I=1

= E[IM,*] < K D E[IM — My_1]%]

3]

2i|
k=1

n n m
=K > ElIMinl*] < K> DD ElIMi — My y-11I°]
k=1 k=1 I=1
n m 2
S o»y }

k=1 [=1

]

m
> @il gt ] X Ag)
1=1

1 1p, g (s ter1] X Ak 1)

=KD > llacIPPFr) (1 — 1) BAKD

k=1 I=1
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T
— K / / ELIf ¢, ) |18 (o),
0 E

proving (3.5.15). g

Consequently, if the Banach space F is of M-type 2, then we can define the 1t6
integral for all f € C%, p(F ) as the continuous linear operator

t
£T pF) — M3 7(F), f+— (//f(s,x)q(ds, dx)) , (3.5.16)
0 & te[0,T]

which is the unique extension of (3.5.4), and we obtain the estimate

r 2
]EH'//f(s,x)q(ds, dx) :|
0 E

T

5K2E[ / / If s, x)||2,3(dx)ds:| forall f € L7 4(F), (3.5.17)

0 E

where the constant K > 0 stems from (3.5.14).

Remark 3.5.13 Let (2, F, u) be a measure space with o-finite measure u, and
2 <p < oo, then F= LP(2, F, u; R) is a Banach space of M-type 2 [85, 100]. For
an example of type 2 spaces which is not of M-type 2 we refer to the forthcoming
book on Martingales in Banach spaces by G.Pisier

There are separable Banach spaces which are not of M-type 2 (e.g., see
Example 3.5.15), but where inequality (3.5.7) is satisfied for certain Poisson ran-
dom measures. In particular, the following proposition (from [68]) holds for any
separable Banach space F.

Proposition 3.5.14 Suppose that B(E) < oo. Then inequality (3.5.9) is satisfied
with Kg= 4 + 6T B(E).

Proof Letf € X7 (E/F) be arbitrary. Then we have

T
2
E["Z/f(s,x)q(ds, dx) :|
/] /] |
< 2E|:( Ilf Cs, x) IV (ds, dx)) ]+2E|:( |[f(s,x)||ﬁ(dx)ds) i|
0 E
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T

r 2
S2E[(//IV(S,X)IIQ(61S, dx)+//|lf(s,x)||ﬁ(dx)dS) }
0 E 0 E
r 2
+2E|:(//|[f(s,x)||ﬂ(dx)ds) ]
0 E

Thus, by the It6 isometry for real-valued integrands and the Cauchy—Schwarz
inequality we obtain
]

T
EH'//f(s,x)q(ds, dx)
0 E
T 2
541@[( / / 1 s, ) lla(ds, dx)) }+6E[( / / uf<s,x>||ﬂ<dx)ds) }

0
(3.5.18)
T T
< 41@[ / / IIf (s, x>||2ﬂ(dx>ds] + 6Tﬂ<E>E[ / / £ s, x)||2ﬂ(dx)ds].
0 E 0 FE
(3.5.19)
Consequently, inequality (3.5.9) is satisfied with Kg= 4 + 6T B(E). (|

Here we provide an example of a separable Banach space which is not of M-type
2 [68].

Example 3.5.15 Let I' be the space of all real-valued sequences (%)jenC R which
are absolutely convergent, that is

o0

xllp = D" x| < oo.

j=1

Then (I', | - | ;1) is a separable Banach space which is not M-type 2. Indeed, let
(¢j)jen be the standard unit sequences in / !, which are given by

e1 =(1,0,...), e=1(0,1,0...),...

.....

yeees
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M =0 and M .= ZX(") =1,....n

Then M™ is a martingale with respect to the filtration (f,gn)) k=0,....n given by

FP =10, F" =", ... X", k=1,....n

Moreover, we have

n n
SUENMY - M7 = ZE X ell 21 =" EIX" ]

k=1

as well as

)27 — nom 0 no )
(M7 IG1 =Bl Y. X; ejnll]—IE[(Z‘,j:1 1X; |)]
" n () 1y (M)
=2 2 EOX X
_ n ()2 n n () 1y M)
=20 BIXTPI D > EIXIX

n 2 2n(n — 1)
=1+» =14
JEL TR mn
2(n—1)
=1+——F > o0 for n— o0.
b4

Similarly to Proposition2.1.5 we prove the following result:

Proposition 3.5.16 Let F', G be Banach spaces of M-type 2, letA : D(A) CF — G
be a closed operator and let f € L3 ﬂ(D(A)) be a function. Then we have f €

L} 4(F), Af € L} 4(G) and
1 !
A//f(s,x)q(ds, dx) =//Af(s,x)q(ds, dx), te[0,T]
0 E 0 E

It will be useful to extend the Itd integral (3.5.16) further. Let £2 (F ) be the
linear space of all progresswely measurable functions f : 2 x Ry x E — F such
that flox[0.7]xE € ET’ﬂ(F) forall T > 0. Forall f € Eoo’ﬁ(F) we can define the

1t6 integral
t
( / /f(s,X)q(ds,dx)) ,
0 E IZO

which is again a martingale.
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For fixed T > O let IC% 8 (F) = IC% 8 (E/F) be the linear space of all progressively
measurable functions f : Q x [0, T] x E — F such that

T

IP(// If (s, x) 1B (dx)ds < oo) =1.
0 E

Forf € IC%, g(F) we define the sequence of stopping times

t
z :=inf{te [0, ] ://|[f(s,x)||2ﬁ(dx)dszn}, neN.
0 E

Note that f10,-,] € E%y 8 (F) for all n € N. Hence, we can define the It0 integral

t '
//f(s,x)q(ds, dx) := nli)ngo//f(s,x)ll[o,r”]q(ds, dx), te[0,T]
0 E 0 E

which is a local martingale.
Finally, let ICgo’ g(F) = ICgoﬁ p(E/F) be the linear space of all progressively mea-

surable functions f : Q x Ry x E — F such that f|qx[0.7xE € IC%JS(F) for all
T > 0.Forallf e Kio,ﬁ(F) we can define the Itd integral

t
(//f(s,X)q(ds, dx)) ,
0 E 120

which is again a local martingale.
In the sequel we will use the following result from [93]:

Theorem 3.5.17 Let f € K%ﬁﬂ(E/F) be arbitrary and let (fy),eN be a sequence

such that f, € K%’ﬁ(E/F) for all n € N. Suppose that f;, converges v ® P-almost
surely to f on Q x [0, T] x E, when n — 00, and P-almost surely

T
lim / / f — fII*dv = 0.
0 E

Assume thereisa g € IC%’/S(E/F) such that

T T
//ufn||2dvs//||g||2dv.
0 E 0 E
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Then we have

t t
[ [r60as.an = im [ [ 60005 a0,
0 E 0 E

where the limit is in probability.
Proof The proof follows from Theorem 7.7 and Remark 7.8 in [93]. O

For the rest of this section, let ' be a separable Banach space. We have a linear
operator

t

Sr(F) = My(F), [ (//f(s,X)q(ds, dX))
0 E te[0,T]

which is continuous according to Lemma?2.4.15. Thus, and because X7 (F) is dense
in EIT’ P (F), we can define the It0 integral (on EIT, ﬂ(F )) as the unique extension

t

Ly 4(F) > Mp(F), fr> ( / / f(s,x)q(ds, dx)) . (3.5.20)
0 E te[0,T]

Remark 3.5.18 1f the separable Banach space F is of M-type 2, then the two inte-
gral operators (3.5.16) and (3.5.20) coincide on Elr’ﬂ(F) N L%‘ﬁ(F), due to their
continuity.

Lemma 3.5.19 Forallf € Ly(Pr; F)= Ly ,.q(F) we have

! '
//f(s,x)q(ds,dx) =//f(s, X)N (ds, dx)
0 E 0 E

t

—//f(s,x)ﬁ(dx)ds, te[0,T]. (3.5.21)
E

0

Proof For every simple function f € X7 (F) identity (3.5.21) holds true by inspec-
tion. By Proposition2.1.6 and Theorem 3.4.2, the linear space X7 (F) is dense in
E}S (F). The continuity of the integral operator (2.4.8) yields that (3.5.21) is valid for

allf e L}g(PT; F). O
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Lemma 3.5.20 Foreachf € EIT,ﬂ (F)= L%,ad (F) we have

! t
E[H//f(s’xmds’ dx) ] = 2E[// Ilf(s,x)llﬂ(dx)ds], t €0, T].
0 E 0 E

Proof According to Theorem3.4.2 there exists a g € LT pred (F) such thatf = g
almost everywhere with respect to P ® 8 ® A. Using Lemmas 3.5.19 and2.4.14, for

each r € [0, T'] we obtain
t
]:E[ //g(s,x)q(ds, dx) ]
0 E

t
EI:H//f(s,x)q(ds, dx)
0 E
t -
//g(s,x)N(ds, dx)
0 E B

o
+E H / / 95, X)B(ds, dv) }
0 E

— t —
<2E / / lg(s, 011 B(dx)ds

"0 E

IA
=
—

— t —
IR / / I (s, )| B(dw)ds

0 E

completing the proof. O

3.6 Integration with Respect to Martingales

Let F be a Banach space of M-type 2. As shown in the previous Sect. 3.5, for T > 0
andf € L% (F) we can define the It6 integral

t
M; = //f(s,x)q(ds, dx), te|0,T]

0 E

and M = (M;)¢[0,7] is an F-valued martingale. In [86] the stochastic integral with
respect to a martingale has been defined. In this section, we shall examine the con-
nection of the integral in [86] to the Itd integral of the previous Sect.3.5.

Let F be a separable Banach space and fix T > 0.
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Definition 3.6.1 A martingale M € M2T(F ) is controlled by a non-decreasing, real-
valued, absolutely continuous process A = (A;);c[0,7] if we have

E[|M, — M||*| Fs] <E[A, —As | Fsl, O0<s<r<T.

Lemma 3.6.2 Suppose the Banach space F is of M-type 2. Then for each f €
£2T’ ﬂ(F ) the martingale

t
M; =//f(s,x)q(ds, dx), tel0,T] (3.6.1)
0 E

is controlled by the process

t

A, =K? / / If (s, )12 B(dx)ds, te€[0,T], (3.6.2)
0 E

where the constant K > 0 stems from (3.5.14).

Proof Let(Q < s <t < T be arbitrary. It suffices to show that for all B € F; we have
E[IM; — ML) < E[(A; — A))Lp].
Note that the function g : 2 x [0, T] x E — F given by
g, x) = f(u, x)Ls,n(v)1p

is again progressively measurable, and hence g € L%’ g(F ). Using the estimate
(3.5.17), we obtain
]
T

< K21E[ / / Ilg(u,x)llzﬁ(dx)du} — B[4, — Ay 151,
E

0

T
E[|M; — M,||*15] = E[H / / g(u, x)q(du, dx)
0 E

finishing the proof. O

Now let G be another separable Banach space. We set X7(F,G) = E(GT;
L(F, G)). Note that any process H € X7 (F, G) is of the form
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n
H=> d&lrle 4 (3.6.3)
k=1
for n € N with:
e continuous linear operators ®; € L(F, G) fork =1, ..., n;
e timepoints0 <17y <... <1, <T,;
o setsFy,e€Fy fork=1,... n

For a simple process H € X7 (F, G) of the form (3.6.3) and a square-integrable
martingale M € M%(F ) we define the 116 integral

! n
(H-M), :=/Hde = > 1p OuMyni — My, ), 1€[0,T].  (3.64)
0 k=1

Lemma 3.6.3 ForeachH € X7(F,G)and M € M3.(F)we have H-M € M%(G).

Proof Let H € X7(F, G) be an arbitrary process of the form (3.6.3). Let k =
1, ..., nbe arbitrary. Then, the process

Ny = & Mypt — My ), t€][0,T]
is a martingale. We shall now prove that 1x, N is also a martingale, which will finish
the proof, as the Itd integral is given by (3.6.4). Let 0 < s < ¢t < T be arbitrary. If
s < tx_1, then we have
E[1F,N; | Fs] = E[E[1£,N; | Fo 11 Fs] = E[1F E[N:] | Fs] = 0 = 1Ny,
and for s > #; we obtain

E[17Ni | Fs] = LrEIN; | Fs11p Ny,

showing that 1z, N is a martingale. (|

Due to Lemma3.6.3, forany M € M%(F ) we may regard the It0 integral defined
in (3.6.4) as a linear operator

2r(F,G) - M%(G), Hw H-M. (3.6.5)
Note that for any H € X7(F, G) the mapping
Mr(F) > M7 (G), M+~ H-M

is also well-defined and linear.
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Proposition 3.6.4 Let M € M%(F ) be arbitrary. Suppose the Banach space G is

of M-type 2 and that there exists a process A = (A;)se(0,1] Such that M is controlled
by A. Then we have

]

where the constant Kg > 0 stems from estimate (3.5.14) regarding the Banach
space G.

2 T
} < KG]E[/ ||Hs||2dAs} forallf € 27 (F,G),  (3.6.6)
0

Proof Letf € X7(F, G) be asimple function of the form (3.6.3). Define the random
variables (N;)i=o,...» by

1
Ni = ZlAkq)k(M’k -M, )=H -M),;, i=0,...,n

k=1
Then we have No = 0 and (V;);=0. ..., is a (G;)-martingale, where (G;);=o....» denotes
the filtration
Gi=F, i=0,..,n
Hence, using the estimate (3.5.14), we obtain
T ’ N
IE[H [ am, } = ELINGP < K S EDING — N1 I2]
0 k=1
n
=K Y Bl ®x(My, — My )]
k=1
n
< KG D ElLp |kl IMy, — My, |1%]
k=1
n
= Kg Y E[Lp, |k |ElIM,, — My, 1| Fy 1]
k=1
n
< K D ElLp [ ®IPE[A, — Ay, | Fy 1]
k=1
n T
= KGIE[Z L, [ PklI* Ay —A,k_.)] = KGIE[ / ||Hs||2dAs}

completing the proof. O



70 3 Stochastic Integrals with Respect to Compensated Poisson Random Measures

For a non-decreasing, real-valued, absolutely continuous process A = (A;):¢[0,7]
weset = P®Aand L7 ,(F, G) = L7 4 (L(F, G)) in the sense of definition (3.4.1)

with = Q. By Proposition2.1.6 and Theorem 3.4.2, the linear space X7 (F, G) is
dense in L'%’A (F,G).

Let M € M%(F ) be a square-integrable martingale. Suppose that the Banach
space G is of M-type 2 and that there exists a process A = (A;);e[0,7] such that M
is controlled by A. According to Lemma3.6.2, the latter condition is in particular
satisfied if the Banach space F is of M-type 2 and martingale M is given by (3.6.1) for
some f € Ei ﬁ(F ). By Proposition 3.6.4, the integral operator (3.6.5) is continuous.

Since X7 (F, G) is dense in L% 4(F, G), it has a unique extension

L3 ,(F,G) — M3(G), Hr> H-M, (3.6.7)

which we also call the /76 integral, and we have the estimate

T
o
0

Theorem 3.6.5 Let F, G be Banach spaces of M-type 2 and let f € E%, ﬂ(F ) be

arbitrary. Let M € /\/lzT(F) and A = (Ap)iefo,1) be given by (3.6.1) and (3.6.2).
Then, for all H € L7 ,(F, G), we have Hf € L7 4(G) and

t 13
(/HSdMS) = (//HJ(S, x)q(ds, dx)) . (3.6.9)
) 1€[0,T] - 1€[0,T]

Proof Forall H € E% 4 (F, G) we have

T T
E[ / / IIHsf(s,X)Ilzﬁ(dx)dS} SE[ / / IIHsIIZIlf(s,X)Ilzﬁ(dx)ds}
0 FE 0 E
T

= E[ / ||Hs||2dAs} < o0,
0

showing that Hf € /3%’ ﬁ(G). The proof of identity (3.6.9) is divided into several
steps:

T

2

] < KgE[/ ||HS||2dAS} forallf € L7 ,(F,G).  (3.6.8)
0

1. For elementary integrands f € X7(F) and H € X7 (F, G) identity (3.6.9) holds
true by inspection.


http://dx.doi.org/10.1007/978-3-319-12853-5_2

3.6 Integration with Respect to Martingales 71

2. Now letf € L:‘} ,s(F) and H € X7(F, G) be arbitrary. By Proposition2.1.6 and
Theorem 3.4.2 there exists a sequence (f;,),cny C 27 (F) of simple functions such
that f,, — f in E%’ﬁ(F). Foreachn € Nlet M" € M%(F) be defined by

t
M = / / fuls, Dq(ds, dx), 1€ [0,T].
0 E

Moreover, we define N" € M%(F ) by

t

N;n = //(f(ssx) _fn(s9x))q(dsv dx)» re [07 T]
0 E

and the process B" = (B})c[0,1] by

t

B! = // If (s, X) — fuls, X)I>B(dx)ds, 1€ [0,T].
E

0

By Lemma 3.6.2 the martingale N” is controlled by B". Hence, by (3.6.8) we get

T T 5
o] o]
0 0
T 2 T
:E[H /Hstf } < KGE[/ ||Hs||2dB?:|
0 0

T

=KGE[ / / G, x)—fn(s,x)||2ﬁ<dx>ds] =0,
0 F

showing that
H-M"—H-M in M3(G). (3.6.10)
Moreover, we have Hf, — Hf in Ci P (F), because

t

E[//IIHJn(S,X)—Hsf(S, x)||2ﬂ(dx)ds:|
0 E
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t
SE[ / / VL PG, ) — £ 5. ) 28(dD) ds]
0 E

t
= | max II¢kII2E[// I/ Cs, x) —f(S,x)Ilzﬂ(dX)dS} — 0.
o 0 E

By Step 1, the convergence (3.6.10) and the continuity of the integral operator
(3.5.16) we obtain

t t
(fman) = ( [ nan)
) tefo,7] " ) 1€[0,T]

t

= lim (//fo,,(s,x)q(ds, dx))
n—0o0 7 1€[0,T]

0
t

(//Hsf(s,x)q(ds, dx)) ,
1€[0,T]

0 E

where the limits are taken in M%(G).

3. Finally, let f € L7 4(F) and H € L7 ,(F, G) be arbitrary. By Proposition2.1.6
and Theorem3.4.2 there exists a sequence (H"),cny C X7(F, G) of simple
processes such that H" — H in E%’A(F, G). We have H"f — Hf in Ezrgﬂ(G),
because

T

IE[ / / IIH?f(s,x)—fo(s,x)llzﬂ(dx)ds}
0 E
T

5E|://”Hsn_I'Is”sz(S,)c)||2/3(dx)dsi|
0 E

T

— n 2

_E[/ |H" — Hy]| dAS] — 0.
0

By Step 2 and the continuity of the integral operators (3.5.16) and (3.6.7) we

obtain
t t
(fman) = ([ man)
) tefo,r] " ) 1€[0,T]
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t

= lim (//Hff(s,x)q(ds, dx))
n—00 1€[0,T]

0 E
t
- ( | [ 09w, dx)) ,
- 1€[0,7T]
where the limits are taken in M%(G ). O

3.7 1to’s Formula

We assume that E is a Blackwell space and F is a separable Banach space, ¢(dt, dx) =
N(dt, dx)(w) — v(dt, dx), with v(dt, dx) = dt ® B(dx) is the compensated Poisson
random measure.

Let0 <t <T,A € B(E\{0}) and

t

Z; :=//f(s,x)q(ds, dx).
0 A

We assume that f € K%’ﬁ(F), and that for all g € ,Cgo’ﬁ(F), g is It0 integrable with
respect to the compensated Poisson measure g(ds, dx).

In Theorem 3.7.2 we shall prove the Itd formula for the F-valued random process
(Y1)s=0, with

t
Y, = Z,—i—//k(s,x)N(ds, dx).
0 A

We assume that A is aset with B(A) < 00,k : QxR xE — Fisaprogressively
measurable process. Moreover k is cadlag or caglad B(dx) ® P-almost surely.

Improving the result in [93] we do not need to assume here that the Fréchét deriv-
atives of ‘H are uniformly bounded. Hence important functions H for applications,
as proposed, for instance, in Example 3.7.6 at the end of this section, can be consid-
ered for the It6 formula. Instead, we need to introduce the following definition and
properties:

Definition 3.7.1 We call a continuous, non-decreasing function 7 : Ry — R,
quasi-sublinear if there is a constant C > 0 such that

h(x +y) < C(h(x) + h(y)), x,y€ Ry,
h(xy) < Ch(x)h(y), x,y € Ry.
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Theorem 3.7.2 We suppose that:

e H e C"2(Ry x F; G) is a function such that

19y H(s, I < hallylD, (s,y) € Ry x F (3.7.1)
19y H(s, I < h2(llylD, (s,y) € Ry x F (3.7.2)

for quasi-sublinear functions hy, hy : Ry — R
o f: Q2 xRy x E — F is a progressively measurable process such that for all
t € Ry we have P-almost surely

t t
/ / 1 (s, ) [Pv(ds, dx) + / / (1 (s, D21 (5. 0 1Pv(ds, d)
0 A 0 A

t
+//h2(llf(& X) DI s, ) [P v(ds, dx) < oo. (3.73)
0 A

t
//Ilk(s,X)IIV(ds,dx) <00 P-as.
0 A

Then the following statements are true:

1. Forallt € Ry we have P-almost surely

t
[ s, voas < . (3.7.4)
0

t
// H(s, Y5+ f(s,x)) — H(s, YS)||2v(ds, dx) < o0, (3.7.5)
0 A

t
// IH (s, Yy +f(s,x)) — H(s, Ys) — 0yH(s, Yo)f (s, 0) |v(ds, dx) < oo,
0 A

(3.7.6)

t

// IH (s, Yo + k(s,x)) — H(s, Y5 )|IN(ds, dx) < oo. (3.7.7)
0 A
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2. We have P-almost surely

t
H(t, ) = HO, Yo) + / 0 H(s, ¥y)ds
0

t
+//(H(s, Yoo +f(s. ) — H(s, Ys—))q(ds, dx)
0 A

t
+ / / (H(s. Yo+ f (s, %)) — H(s. V)
0 A
— OyH(s, Yo)f (s, x))v(ds, dx)
t
+//(H(s, Ys— + k(s,x)) — H(s, Y_))N(ds,dx), t=0.
0 A

(3.7.8)

Remark 3.7.3 Assume f and k do not depend on w € Q. Let £ € L(F/R) such that
LH(y) = /{H(y +/(s,x) = HY) — dH)f (s, x)}v(ds, dx)
A

+ /{H(y + k(s, x)) — H()}v(ds, dx). (3.7.9)
A

Then if H(s, -) € Dom(L) a.s. for s € [0, T]

t 1

H(E, Y,) - H, Yo) = / OH(s, Yy )ds + / LHG, Y

T

t
4 / / (H(s. Yo +f (s, ) — Hs. Y ))q(ds. dv)
T A

t

+ / / (H(s, Yy + k(s 2)) — H(s, Yo ))q(ds, dv) P-as.
T A

It follows that £ is the generator of (Y;)e[0.7]-
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Remark 3.7.4 Ifk(s, x) = 0 then H(s, -) € Dom(L).If k does not depend on w € Q
and

/||k(s,x)||2v(ds, dx) < 0o
A

and 9,’H(s, y) is uniformly bounded, then H(s, -) € Dom(L).

The second statement in Remark 3.7.4 is easily checked by proving that the second
integral in (3.7.9) is well-defined. This is a consequence of the following inequality,
see, e.g., [55, Chap. X], which holds for Fréchét differentiable functions H : £ — G.

IHG) —HGo)ll = lly — yoll Jup I o + 6 — yo) I, (3.7.10)

where H’ denotes the first Fréchet derivative of H.
We shall use besides (3.7.10) the following inequalities for twice Fréchét differ-
entiable functions H : E — G., which can be found, for example, in [55, Chap. X],

IH©) = Ho) = H Go) v = yo) I

=y —oll OSlglP1 IH (o + 6 = y0)) — H (o), (3.7.11)
IH' () = H Gl < Ily = yoll OSUP IH" (vo + 6 = yo)lI- (3.7.12)
<6<l

Before proving Theorem 3.7.2 we first prove a more restricted result given by the
following lemma.

Lemma 3.7.5 Suppose that:

o HeCy2(Ry x F; G);
e f:QXRy XE— F,andk : 2 x Ry x E — F are simple functions.

Then the following statements are true:

1. Forallt € Ry we have P-almost surely

t
/ 10sH (s, Yy)|lds < oo, (3.7.13)
0

t
// TH(s, Ys + f(s,x)) — H(s, Y5)|IN(ds, dx) < oo, (3.7.14)
0 A

t

// 19y H (s, Yy)f (s, x)||v(ds, dx) < oo, (3.7.15)
A

0
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t
// IH(s, Ys— + k(s, x)) — H(s, Ys_)|IN(ds, dx) < oo. (3.7.16)
0 A

2. (3.7.8) holds P-almost surely.

We will give two proofs of Lemma3.7.5. One for the case where we make the
additional assumption that E is a separable Banach space, and one for the general
case where E is Blackwell. In fact assuming that E is a separable Banach space makes
the proof very natural as paths are decomposed into pure jump cadlag functions and
continuous functions. Once this case is understood the proof for the more general
case where E is a Blackwell space appears natural.

Proof We first remark that (3.7.13) and (3.7.15) hold because of the continuity of
the partial derivatives d;H and 8,H and because fot Sy If (s, ) [lv(ds, dx) < oo, since
f is a simple function.

Let us first assume that E is a separable Banach space. In this case, N (ds, dx) is the
counting measure of a Lévy process (X;);>0, and due to Remark 3.5.1

t

Zi(w) = z S (s, (AXs) (), @) 1a(AXs(w)) —//f(s,x, w)v(ds, dx).
O<s<t 0 A

(3.7.17)

Moreover

t

/ / (H(s. Y +£(5,)) — H(s, Y5 )}q(ds, dv)
T A

= D H(s Yo (@) + £ (s, AXy(0), ©)) = Hs, Yo (@) La(AX ()

T<S<t

t
— //{H(s, Ys_(w) +f(s,x,w)) —H(s, Ys_(w))}v(ds, dx) P-as.
T A

As Lévy processes are continuous in probability, it follows that almost surely

1A (AX(w)) Ak(s, AXs(w), w) =0,
Ta(AX (@) Af (s, AXs(w), w) = 0,
Vs € [0, T] La(AXs(@))1a(AX;(w)) = 0.

Let

I(A) i=1{ke0,....2" —1:3s € (¢, 7", | : AX,(w) € A)
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with 7! := 7 + % Then

H(z, Yi(@)) = H(z, Y (@) (3.7.18)
21

= D> HE@, Yo, (@) = HTE, Yer ()
= > H@Ey Yo, (@) = H@E, Y ()
kel (A)UT(A)

+ D HE Yy, (@) = HE, Y ().
kg (A)UT7L (A)

It can easily be checked that almost surely

Tim > HE L Yy (@) = K Yy (@) (3.7.19)
kel (A)UT2 (A)

t
= //{H(S, Yo +f(s,x)) — H(s, Ys_)}q(ds, dx)

t
+//{H(s, Yo +k(s,x)) — H(s, Ys_)}N(ds, dx)

T A

t
+//{H(s, Ys +f(s,x)) —H(s, Ys_)}v(ds, dx).
T A

Equation (3.7.8) follows once we show that for some subsequence of {n},cn, which
for simplicity we still denote by {n}, the following convergence holds for n — oo
almost surely

Tim YT (R Yy, (@) = H(T Yy (@)
kg2 (A)UT' (A)

t '
:/8SH(S, Ys(w))ds—//ayH(s, Ys_ (0)f (s, x, w)v(ds, dx). (3.7.20)

T

Proof of (3.7.20): We have the Taylor expansion of the function H(s, y):

D (HGE Yy (@) = HE, Yo (@)

kg (AU (A)

= > WHE Yg@) Yy (@) = Yo ()

kg (AUTE(A)
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+ D> WHE Y, — T (3.7.21)
k¢ (A)UTZ(A)

+ Z er} (o).

keI (AU (A)

Then we have

t

lim Z OH (T, Yer) (T — ) = / A H(s, Ys (w))ds P-as.

—00
kgTs (A)UT7(A) ;

and
Tim > HHL V@) Yy, (@) = Yo (@)
kgI') (AU (A)

=1lim > AHEL Yy @) (Zy, (@) — Zg @)
kg (AU (A)

n
T
Kkt

——gim > [ [ane v @iero
kgt (A)UTL(A) r]:, A

t
= —//ayH(s, Y (0)f (s, x, w)v(ds, dx) P-a.s.
T A

where the last equality follows because Y.(w) is P-a.s. uniformly bounded on [0, T']
and from the following estimates:

T
msip > / / (OH( Y (@) — 0,Hs, Vo) (@)
OO kgn (AU (A) o

X f(s, x, w)v(ds, dx)

n
Tkt 1

= C(w) > / / 1Yz (@) — Ys_()lIIf (s, x, @)[|v(ds, dx)

KETLAUTLA) fn

T
<C(w) sup /Hf(S,x, w)||v(ds, dx).
kT (AU (A)
i A
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(3.7.20) is proven once we show that in the expansion (3.7.21) we have

. . _ :
nl_l)ngo Z erg(w) =0 P-as.

kg¢rn
This is a consequence of
lerf (@)l < C@)(IYzy, (@) = Yer(@)I* + 5/ — 71, (3.7.22)
lim Z 1Yz, (@) = Yo (@|>=0 P-as. (3.7.23)
kg2 (A)UT2 (A)
zi e o<l ;nr)2~ (3.7.24)
k=0

Proof of (3.7.22):

H (s, y) — H(s0, y0) — dsH(s0, y0) (s — s0) — dyH(s0, y0) (v — yo) I
< IH(s, y) — H(s, yo) — dH(s, yo) v — yo) I
+ [IH (s, yo) — H(s0, yo) — dsH(s0, yo) (s — so) ||
+ 1@yH (s, yo) — dyH(s0, y0)) (v — yo) I

= sup [|9;H(so +6(s — 50), yo) — dsH (50, yo)lll(s — s0)]
0<6<1

+ Osgpl 9y H(s, yo + 60 — yo)) — yH (s, yo) Iy — yo) I

+ 118y H (s, yo) (v — yo) — 9yH(s0, yo) (v — yo) |

< sup [|359sH(so +O(s — 50), yo)llIs — sol”
0<6<1

+ sup (|9 H(s. yo + 0 — y0). yo) Iy — yolI*
0<6<1

+ sup |50, H(s, yo)llls — sollly — yol.

selz,t]

Proof of (3.7.23):

Y. C@IYy (@) = Y@

kgLl (UL (A)

<20 > Iz

2
1 (@) — Zgp (@)
kT (A)UT (A)
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n
Te+1

/ /f(s,x, w)v(ds, dx)
A

n
Tk

< 2C(w) sup
kgD (A)UTR (A)

n
Tk+1

/f(s, x, w)v(ds, dx)

’

2
<2
k=0

n
T

and since f(s, x, w) is Bochner integrable P-almost surely with respect to v and
v(ds, dx) = a(ds)B(dx), with a(ds) < ds, it follows that

Tt
/ /f(s,x, w)v(ds, dx)
i A

n
Tk+1

lim sup sup
n=00 k¢l (AU (A)

< lim sup sup //Hf(s,x, w)||v(ds,dx) =0 P-as.
n—>00 k¢Tlh(AUTL(A)
T

This completes the proof. Let us now assume that E is, in general, a Blackwell space.
In this case the representation (3.7.17) for Z; is no longer valid. However, also in this
case, according to [49, Proposition II.1.14], there exist a sequence ( f]A) jeN of finite

stopping times with [ f]A]] NS IA]] = ) for j # [ and an E-valued optional process &
such that for every optional process f : Q2 x Ry x E — H with

t

P(// If (s, ) IN (ds, dx) < oo) =1 forall t>0
0 A

we have the identity

t

/ / fG 0ONs, dx) = D fUR €L ppay. 120, (3.7.25)
A

0 keN

Let
IhA) :=f{ke0,....2" —1:3[} e (. 7,1 3)

with 7! i==7 + % Then equality (3.7.18) holds.
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It can be shown, similarly to (3.7.19), that almost surely

. n n
Gim o> H, Yy, @) = HT V(@)
kel (A)UT7 (A)

= Jim >0 DM Yy @) U E)

kel (A) j
- H(Tk . Y ((,L)))]lfAe(.[n .L.n ]
A
+n1ergo Z Z H(tit g Yor (o) + k(] ,éfjA))
kel (A) j
— H(‘L’;:’, Yr,f(w))]lfj/\e(flg,fgﬁ]

t
= //{H(s, Yo +f(s,x)) — H(s, Ys_)}q(ds, dx)
T A

'
+ / /{H(s, Yy +k(s,x)) — H(s, Ys_)}N(ds, dx)

T A

t
+ / /{H(s, Ys_ +f(s,x)) —H(s, Ys_)}v(ds, dx).
T A

The proof of (3.7.20) is identical to the proof in the case where E is a separable
Banach space. As in the previous case, it follows that (3.7.8) holds. (]

We now prove Theorem3.7.2.

Proof Estimate (3.7.4) holds true by the continuity of the partial derivative o,H
and (3.7.7) is valid because B(A) < oco. By Taylor’s theorem, the Cauchy—Schwarz
inequality and (3.7.1), we obtain P-almost surely

t
// IH(s, Y5+ (s, %)) — H(s, Yo)[>v(ds, dx)

0 A

i I
2
=//H/3y7i(s, Yy + 0f (s, x))f (s, x)dO
0A 0

1

t
< / / / 10, H(s. ¥ + 0 (5, ) P11 (5. ) [2d6v(ds, dv)

A0

v(ds, dx)

t 1
< / / / B (1Ys + 67 (s, ) DI (5. )| >dOv (ds, ).
0 A0
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Since A is quasi-sublinear, for some constant C > 0 we get P-almost surely

t
/ / IH(s, Y + £ (s, %)) — H(s, Y5)|>v(ds, dx)
0 A
1

t
SCZ///(hl(||Ys||)+Ch](Q)hl(|[f(s,x)||))2”f(s’x)“2d9v(ds’ o
0

A 0

t
<202 / / I (1Y D211 (s, )P (ds, dx)

t
4204 (1) / / I (1F (s, D21 Gs. ) [Pv(ds, d) < oo,
A

showing (3.7.5). By Taylor’s theorem and (3.7.2), we obtain P-almost surely

t
/ / IH(s, Y 15, 00) — Hs, ¥s) — 0,H(s, Yo)f (5, )| v(ds, dv)

v(ds, dx)

t 1
:/ / H/ Ay H(s, Yy + 0f (s, X)) (f (5, X), f (5, x))dO
0 A 0

1

t
< / / / 1y H (s, Y+ 0F (s, 0) | 1 s ) |PdOv(ds, d)

A O

t 1
< / / / ha(I1Y; + 6f (s, ) DI (5, ) [2d6v (ds, ).
0 A O

Since hy is quasi-sublinear, for some constant C > 0 we get P-almost surely

t
// IH(s, Ys +f(s,x)) = H(s, Y5) — 0yH(s, Y)f (s, X)[|v(ds, dx)

0 A
1

/ / / (ha(1%511) + Cha(@)ha (1 s, 1) D) I (5. ) [2dBv(ds, )
A

0
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t
<c / / I (¥ DI (5, 01 2v(ds, dx)
0 A

t
+C2h2(1)//hz(IU‘(S,x)ll)llf(s,X)||2V(ds, dx) < oo,
0 A

providing (3.7.6).

Let us prove that (3.7.8) holds. It is sufficient to prove (3.7.8) for the case where
the Fréchét derivatives of H are uniformly bounded. In fact, if this is not the case,
we can use the same method as in the proof of [73, Theorem 25.7]. We consider H¢
€ C}*(Rx F/G) such that, for |x|| < C, Hc (s, x) coincides, with all its derivatives,
with H(s, x). We prove the It6 formula for the process (Yiaz.):e[0,7], Where tc is the
stopping time with

= inf {||Y, C}.
tc(w) rel[%,r]{” il > C}

Note that the probability that ¥; has a jump at time ¢ is zero, as Y; is continuous in
probability, so that Hc (s, Ysare) = H(S, Ysaz-), and similarly for the derivatives.
It follows that (ysar.)refo,77 satisfies the Itd formula (3.7.8). As a consequence of
properties (3.7.4)—(3.7.7), taking the limit as C — oo, all terms converge to the
terms in (3.7.8), where Theorem3.5.17 is used to prove that the stochastic integral
term also converges. It follows that (y;)sc[0,77 solves (3.7.8).

From properties (3.7.4)—(3.7.7), it follows that it is sufficient to prove the theo-
rem for the case where f(f, x, w) is a simple function. By Lemma3.7.5, (3.7.8) is
proven. (]

Example 3.7.6 Suppose that F is a separable Hilbert space. Then H(x) = llx||? is of
class C?(F; R) with

H,(x)v=2(x,v) and Hyx)(v,w) =2(v,w).
Therefore, we have
IH ()l < 2lx]] and [|[Hu )] < 2.

Consequently, if

1 1

//|[f(s,x)||2v(ds, dx)+//|[f(s,x)||4v(ds, dx) < oo forallt € Ry,
0 B 0 B
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then Theorem 3.7.2 applies and yields that P-almost surely

1Y 11* = 1Yoll? +// (I1Ys— + £ (s, 07 — Y- 1) q(ds, dx)
// Y5+ £ (s, 017 = [1Ysl1> = 2(Y;. (5, x))) v(ds, dx)

4 / / (1Yo 4+ g5, 017 — V5o PN (ds. dx). 1> 0.

3.8 Remarks and Related Literature

The Wiener integral derivation from condition (3.1.4) was given in [91], along with
Theorem 3.1.13. The idea of this originated in [90]. (See also [97] for the real-valued
case.) The concepts connected with Lévy processes are taken from [94] and the
derivation of the Lévy-Itd decomposition in Banach spaces combines ideas of [94]
with the work of [3], where the infinite-dimensional version is proved under the type
2 condition. Earlier work of [21] defined the integral with respect to compensated
Poisson random measures differently, following the lines of [45] instead of [97], to
obtain the Lévy-Itd decomposition. That both definitions of integrals are equivalent
is discussed in [91].

The definition of the It6 integral for M-type 2 spaces appears in [39, 65] (and
previously, under restricted conditions, in [91]). We take the generalization under
(3.5.7) given here from [67], and the Pettis integral in M-type 2 spaces follows the
approach in [67] for integrating non-anticipating processes. Integration with respect
to martingales taking values in M-type 2 spaces in given by [86]. As our integral is a
martingale in an M-type 2 Banach space, we connect integrals with respect to these
martingales to integrals with respect to compensated Poisson random measures. This
material originally appeared in [66].

The results in Sect. 3.4 concerning isomorphism of L”-spaces originated in [92]
and for particular cases appears in the classical literature, e.g., [20, 58].

Itd’s formula was originally given in this context in [93]. However, there it was
only proven for a smaller class of functions. Here, we have given an improvement
of [93], which will also appear in [68].

In [39], the Itd stochastic integral was given in M-type p Banach spaces instead
of M-type 2 Banach spaces. Our technique can be used to obtain similar results.
However our condition (3.5.9) allows us to define the It6 integral in any Banach
space without involving geometry. One involves geometry in connecting the Pettis
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integral to the It0 integral using Rosinski’s method. This method was exploited by
J.M. A.M. Van Neerven and his collaborators in the Gaussian case using an idea of
D.J.H. Garling in a series of papers. One can find them on MathSciNet. Because
they are too numerous and our work involves condition (3.5.9) and jump processes,
we do not refer to these results here.



Chapter 4
Stochastic Integral Equations in Banach
Spaces

In this chapter, we first study the solutions of stochastic differential equations with
non-Markovian Lipschitz condition and growth condition. In this case the drift and
noise coefficients a(t, Z) and f (¢, x, Z), being non-anticipating, depend on the path
of the solution Z = (Z;)s¢(0,7)- This is done by defining the equation on a probability
space with Q := D(R., E), the space of cadlag functions on R, — E, and with
the o-algebra generated by the cylinder sets of D(R4, E), where E is a separable
Banach space.

After proving the existence and uniqueness in this case, we consider on a general
probability space a stochastic differential equation with coefficients defined on R4 x
Fx Qand Ry x F x E x Q with values in F. The coefficients in this case depend
on the value of the solution Z at time t, i.e. the coefficients appearing in the drift and
noise are of the form a(¢t, Z;, w) and f (¢, x, Z;, w).

4.1 Existence and Uniqueness Results for Non-Markovian
Solutions

Let us denote by C; the o-field on D(R, E) generated by cylinder sets with basis in
[0, t]. We consider the stochastic differential equation

dZ, = a(t, Z)dt + /f(t,x,Z)q(dt, dx) 4.1.1)
E
Zy =
with® : Ry — E.
We assume that a and f are non-linear functions with
a: Ry xDR4,E) - E
f: Ry xXExXxDR4,E) - E
© Springer International Publishing Switzerland 2015 87
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where

(Al) f(t,x, z) is jointly measurable and, for each r € Ry, x € E, f(t,x,-) is C;
adapted.
(A2) a(t, x) is jointly measurable and, for each r € R, a(t, -) is C; adapted.

For each r € R we consider the function

6, :D(R4,E) — DR, E)
z — 62

with

0:(z)(s) =z forO<s <t

=z fors>t

and assume f (¢, x, z) = f(t, x, 6;(2)) and a(t, z) = a(t, 6,(z)).
We further assume

(A3) Let T > 0 be fixed. Then there exists an [ > O such that for ¢, r,€ [0, T]
) [5) 2
| [ wexoisad + [ lacaikd <t [0 i@
1 E n n

where [1zlle = supg<<7 I2(5) -
Moreover, we assume that there is a constant Kz such that inequality (3.5.7) is
satisfied, so that, due to Lemma3.5.5, the It6 integral in (4.1.1) is well defined, and
inequality (3.5.9) holds.
Now we define

t t
1(t,72) :=/ a(s,Z)ds—i—/ /f(s,x,Z)q(ds, dx).
0 0 JE

Then we get

Lemma 4.1.1 There exists a constant C; r such that for any C,-stopping time T and
te[0,T]

t
E[ sup ||1<s,Z>||%}sc,,T(r+ / E[ sup ||zv||i~]ds).
0

0<s<tAT 0<v<sat
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Proof Note that

S
sup |[I(s,2)|z <2 sup | / a(v, Z)dv||%
0

0<s<tIAT 0<s<tAT

12 sup | / / P, 1, 2)q(dv, du) |2
0 JE

0<s<tAT
s s 2
E[ sup | / a(v,zwvn%} < rE[ sup (l / 1+ ||9U(Z>||§o>dv) }
0<s<tAT 0 0<s<t 0
4.1.2)
Using the martingale property of the second term and Doob’s inequality we get
N t
]E[ sup Il/ /f(v, M,Z)q(dv,du)llfg} = Cz,T(H-E[/ II9U(Z)||§odv]).
O<s<tnr JO JE 0
(4.1.3)

In fact,

s INT
E[ sup | / / f(v,u,Z)qwu,du)n%]sE[u / / f(v,u,Z)q(dv,du)II%}
0<s<tAT 0 JE 0 E

t
< KSE[ / e Z)Iléﬁ(du)dv]
0

t
< KﬁlE[ / (1+ ||0U(Z)||§o)dv}
0

t
< Kﬁz(r + ]E[/ ||9v(Z>||§odvD.
0

The result follows from inequalities (4.1.2) and (4.1.3). O

Let T > 0 and define

HZT = £ := (&)sef0.7] : €s(w) is jointly measurable, C;-adapted, with E[ sup ||§s||2]

0<s<t

<00}.
We have just proved that

I:HZT — H2T
§E— 1, 9.
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Lemma 4.1.2 The linear space HzT, equipped with the norm
172
1Z 14y = E[ sup ||Zt||2} :
1€[0,77]
is a Banach space.

The proof is given for the more general statement Lemma4.2.1 in the next section.
Let us now assume the Lipschitz condition

(A4) Let T > 0 be fixed. Then there exists a K > 0 such that for fixed 71,1, € R
andZ,Y €e DR, E)

15}

n
/ /E V(3. Z) — £t x, V) IBB(d0)dE + / la(t, Z) — a(t, ¥)|dt
15t 1

n
<1 / 16,Z) — 6,(7) | 2udt.
3]

Lemma 4.1.3 Themap I : ’Hg — ’Hg is continuous. There exists a Cx T depend-
ing on K, T such that

T
E[ sup [I(s,Z") —I(s,ZP)|2] < Ck.1 / E[ sup ||Z} — Z2|%ds].
0

0<s<T 0<s<T

Exercise: Use condition (A4) and follow the proof of Lemma4.1.1 to get
Lemma4.1.3.

Theorem 4.1.4 Let T > 0, z € E. There exists a unique solution Z= (Zs)sc[0,T] in
Hg which satisfies

t t
Zi=z+ / a(s, Z)ds + / /f(s, x, Z)q(ds, dx).
0 0 JE

Proof We shall prove that the solution can be approximated in HzT by Z"'= (Z})se[0,1]
when n — oo. Define forn e N

Z?(w) =z P —a.s.
7 (w) = I(s, Z"(w)) .

Observe that (Z}'); € [0, T] is F; -adapted. Define

1 2
o' =E[ sup [|Z' — ZM|5).
0<s<t
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By Lemma4.1.1 we get
t
U? = IE|:/ sup ||ZS1 _ZS()||122ds:| <Vir(@)
0 0<s<t

with V;.7(z) = C;.72T||z||%. Also by Lemma4.1.3

2C2

1 ! 1 02 T T
v < / E[ sup [1Z! — Z0)21ds < Vir(2). (4.1.4)
0 0<s<t
By induction
t n+lCIn(+T1
"< C gy < — 21y, ) 4.15
o < K,T/O s < KLV 4.15)

Tn+lcn+1 3
Lete, = ((nTll)('T) . Then by Chebychev’s inequality

P(sup |IZM = Z!'% > €n) < €2Vir(2).

O0=<s=<t
As Y, €2 is convergent, we get by the Borel-Cantelli Lemma that > 02 | SUP) <</
I1Z — Z')|2 converges P -a.s.

This gives that Z" converges to some process Z = (Z;);c[o,7] in the supremum
norm, where Ze D([0, T], E).

Moreover
n+m—1
E[ sup [1Z —Z|P) =E[lim sup | > (Z* —Z)IE]
0<t<T X 0<i<T k=n
n+m—1 1 2
sE[ngngo ( > izt —Zt"u%k;)}
k=n

and by Schwarz’s inequality

E[ sup [1Z — 7} ]<ZE[ sup [|Z+! — Z"nEkZ]Z

0<t<T k=n 0<t<T k=n
o] Tk+1clk(+7} o) 1
<V, — BT y? —
- ”(Z)(kz k+ D! )(kaz)
=n =n

which converges to zero as n — oo. That is, Z" — Z in 7—[2T .
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By Lemma4.1.3 and
7 = I(s, 2" (w))

with Z" — Z a.e., we get that Z, obtained by contraction in HzT , satisfies (4.1.1).
To prove uniqueness, suppose (Z;):c[o,77 and (¥;):c[o, 7] are solutions to (4.1.1). Let

vy = E[ sup [|Zs — YslZ].

0<s<t

Then, as in (4.1.4), we have
t
v < Ck,1 / vsds
0

Cn
and by induction v; < —SLE[supy_,, | Z; — ¥;|/%] which tends to zero as n — oc.
Thus we have v; = 0 Vt € [0, T], and hence uniqueness. (Il

4.2 Existence and Uniqueness of Markovian Solutions
in D([0, T'], F)

We now consider equations defined on any filtered probability space (2, F, F;, P),
satisfying the usual conditions, with values on a separable Banach space F. As usual
the mark space (E, £) defining the cPrm is a Blackwell space. We consider the
stochastic differential equation (SDE)

t t
Z; = &y —l—/ a(s, Zg)ds +/ /f(s,x, Zs)q(ds, dx) “4.2.1)
0 0 JE

under conditions

B1) f(t,x,z,-)isa B([0,T] x E x F) ® F;/B(F)-measurable function such that
for fixedr € [0,T],x € Eand z € F, f(t, x, z, -) is F; adapted.

(B2) a(t, x,-)isa B([0, T]) x E® F;/B(F)-measurable function such that for fixed
te[0,T]and x € E, a(t, x, -) is F; adapted.

(B3) There exists a constant L > 0 such that

Tla(t, z) — a(t, y)|1% + /E If (7, x, 2) — £ (£, x, ) |3 5(dx)

<L|z—y|> forallt€[0,T],z,yeF P—ae.
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(B4) There exists a constant M > 0 such that

la(t, 2) 117 + /E IIf (2, x, 2) 17 5(dx)

<M(Jz|*+1) forallre[0,T),z€F P—a.e.

Moreover, we assume that there is a constant K3 such that inequality (3.5.7) is
satisfied, so that, due to Lemma3.5.5, the It0 integral in (4.2.1) is well defined, and
inequality (3.5.9) holds.

Let S% be the linear space of all cadlag adapted processes Z such that

E[ sup ||Zt||,%] < o0,
1€[0,T]

where we identify processes whose paths coincide almost surely. Note that, by the
completeness of the filtration, adaptedness does not depend on the choice of the
representative.

Lemma 4.2.1 The linear space S+, equipped with the norm

12
1Zlls2 = E[ sup ||Zt||2i| ,
€19,

is a Banach space.

Proof Let (Z"),en be a Cauchy sequence in S%. Then there exists a subsequence
(ng)ren such that

sz
E[ sup ||Z)"* — z"+! ||2} <=, keN.
1€[0,T] k
By the monotone convergence theorem, we deduce that
o0 o0
E[Zkz sup [|Z% — Z"+! ||2} = Zkz]E[ sup [|Z% — z"*! ||2} <1, keN.
- telo.T] =1 1€[0,T]

4.2.2)

Therefore, there exists an 29 € F with P(29) = 1 such that

o0

K2 sup ||ZM*(w) — Z" M (W)]I> < 00, w € Q.
k=1 tel0,T]

Fix w € Qp and let € > 0 be arbitrary. There exists an index ky € N such that

m—1 2

6
K sup [|ZM*(w) — 2% (W) < iz for all I, m > ko with | < m.
o el ™
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Therefore, for all /, m > ko with [ < m we obtain, by using the Cauchy—Schwarz
inequality,

m—1
sup (12" (w) — 2" (W) <Z sup 11Z" (w) — 2" )
t€[0,T] —I t€[0,T]
m—1 1 1/2 ,m—1 1/2
s(zﬁ) (Zk2 sup [ 2" (w) — ”"“wnz) <e
t€[0,T]

k=l

Consequently, for almost all w € 2 the sequence (Z" (w))keN is a Cauchy sequence
in the Banach space of all cadlag functions from [0, 7] to F, equipped with the
supremum norm. Thus, there exists a cadlag process Z such that almost surely

sup [1Z* = Z|| — 0,
tel0,T]

whence the process Z is also adapted. For each k € N we have almost surely

2
7" — 7112 = i 2
I tnk 1l lhm ||Ztnk Ztn1|| < ( E ”Z”l ”H—I”)

(Z ) (Z l2||Z”1 nl+1 ”2)’ te [O, T]

and hence

sup [|Z* — Z|* < —ZF sup 1|z =z ).
te[0,T] 1€[0,T]

By (4.2.2), we obtain
1 1_
1Zllg < 12" g2 + 12" = Zlg2 < o0,
showing Z € S%, and, by using Lebesgue’s theorem, we have Z"* — Z in S%.
Let € > 0 be arbitrary. There exists an index ky € N such that || Z" — Z]| 52 < 5
for all k > kg and ||Z"" — Z’”||S% < 5 forall n, m > ko. Therefore

12" = Zligy < 112" = Z% gz + 12 = Zllgz < e.

Consequently, we have Z" — Z in S%. (]
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Theorem 4.2.2 Suppose Assumptions (Bl), (B2), (B3) and (B4) are fulfilled,
®li0,17 € S% for all T > 0 and that the Banach space F is of M-type 2. Then, there
exists a unique solution Z for the integral equation (4.2.1) such that Z|[o,1] € S% for
allT = 0.

Proof Due to Assumption (B1), it suffices to prove existence and uniqueness on S%
for each 7 > 0. In the sequel let 7 > 0 be arbitrary. We divide the proof into the
following steps:

1. Forany Z € S% we define the process SZ by

t

t
(SZ); = ®; + / a(s, Z))ds + / / F(s.%, Z)q(ds, do), 1 € [0, T].
0 0 JE

We shall first prove that the process SZ is well defined. Indeed, by the linear
growth condition (B4) we have

T T T
E[/ ||a<s,zs>||2ds]sME[/ <||zs||2+1>ds}=M(T+JE[/ ||zs||2ds])
0 0 0

5MT(1+1E[ sup ||zs||2])
s€[0,T]

< 00,

showing that a(s, Z) € L%(F), as well as

T T
E[ / / s zonzmdx)ds} fMlE[ / A 1>ds}
0 E 0
T
SM(T+]E[/ ||zs||2dsD
0

< 2M2T<1 +E[ sup ||ZY||2ds}) < 00,
s€[0,T]

showing that f (s, x, Z) € L}. 5(E, F).

2. Next, we show that SZ € S% for all Z € S%. By Doob’s inequality
(Theorem 2.3.5), estimate (3.5.17) and the linear growth condition (B4) we obtain

t 2
/a(s,Zs)ds ]

1€[0,T] t€[0,T] t€l0,T] 0
T 2
/O/f(s,x,Zs)q(ds,dx) ]

. E
T 2
5315[ sup ||<I>f||2]+3E[(/ ||a(s,zs>uds)]
te[0,T] 0

E[ sup H(‘SZ):||2i| S3E|: sup ||<l>,||{|+3[E|: sup

+ 3E[ sup
1€[0,7]
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T 2
ZIE[H/ /f(s,x, Zs)q(ds, dx) i|
0o JE

T
sup |1 +3TE[ / ||a<s,zx>||2ds]
L 7€[0,T] n 0

T .
2K2E[ /0 /E s x, zx>||2ﬁ(dx>ds]

T
sup || D, +3(T+4K2)MIE[/ U1Zs 1> + 1)dsdti|
L 7€[0,7] n 0

7 T
sup || D)% | +3(T + 4K2)MT(T + E[/ ||Zs||2ds])
L 7€[0,T] a 0

sup | @® +3(T+4K2>MT2<1+E[ sup ||z,||2]) -
L r€[0,T] i 5€10.7]

Therefore, the operator S maps S% into itself.

3. Now, we shall prove that S has a unique fixed point. For two arbitrary processes
Y, Z ¢ S%, Doob’s inequality (Theorem 2.3.5), estimate (3.5.17) and the Lipschitz
condition (B3) gives us for all # € [0, T] the estimate

|

s€[0,¢]

sup [[(SY)s — (SZ)‘v||2i| < 2IE|: sup

]

/ (@, Y2) — a(v, Zo))dv
0

/S/(f(v,x, Yy)

0o JE

]
1 2

=< 2E[(/ llaCs, Ys) —a(s,Zs)IIdS) }
0

t
* SEH / /(f(S,x, Ys) —f(s,x, Zs))q(ds, dx)
0 JE

s€[0,z]

+ 2IEI|: sup
s€l0,1]

—f(v, x,Z,))q(dv, dx)

]

t
- 8K21E[ /0 /E IIf (s, x, Y5) — f (s, x, zs)n%(dx)ds}

t
< 2TIE[/ lla(s, Yy) — a(s, Z.s)llzds]
0

t
<2T+ 4K2)L]E[/ Y, — ZS||2ds]
0
t
= 2T+ 4K7)L / ELY, — Z,I1ds
0

t
<2T +4K2)L/ ]E|: sup ||Y, — ZU||2]ds.
0 v€el0,s]
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By induction, for each n € N we deduce that

]E[ sup ||3"Y,—s"z,||2]
t€[0,T]

T rn th—2 In—1
< (2(T+4K2)L)”/ / / (/ IE[ sup ||, —Zsllz}ds)dzn_l.,.dzzdtl
0 JO J0O J0 vel0,s]

T rn In—1
< (2(T+4K2)L)"(/ / / ldt,,...dtgdtl)IE[ sup ||Yt—Z[||2}
JO 0 0 tel0,T]

< 2 nin _ 2
= QT+ 4L Bl sup [[Y; = Zi]|7 .

1€[0,T]
Hence, there exists an n € N such that S : S% — S% is a contraction. Taking into
account Lemma4.2.1, this implies that the mapping S has a unique fixed point.

O

4.3 Existence and Uniqueness of Markovian Solutions
Under Local Lipschitz Conditions

This section deals again with existence and uniqueness of the solution of (4.2.1)
assuming conditions (B1), (B2) and (B4). Instead of the Lipschitz condition (B3) we
assume the more general local Lipschitz condition (B3') below

(B3’) for each n € N there exists a constant L(n) > 0 such that

Tla(t, z) — a(t, )|+ + /E If (2, x, 2) — £ (£, x, ) | F:8(dx)

<L)z —yl* forallt€[0,T],z,yeF, |lz| <n, Iyl <n P—ae.

Theorem 4.3.1 Suppose Assumptions (B1), (B2), (B3') and (B4) are fulfilled, ®|[0.17
S S% for all T > 0 and that the Banach space F is of M-type 2. Then there exists a
solution Z of the integral equation (4.2.1) such that Z||0,1] € S% forall T > 0. The
solution is P @ \-a.e. unique on Q x R.

Proof
Step 1. Forn € Nlet

Z
an(s, 2) =a(57 m) “4.3.1)

Z
In(s, x,2) =f (SJC, m) , 4.3.2)
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where we denote with B,, = B(0, n) the centered ball in F' with radius n, and with

d(z, By) the distance of z € F from B,, then a,, f, satisfy (B1), (B2), (B3), (B4).
Hence for each n € N there exists a unique solution Z" of the integral equation

t t
Zl =, +/ an(s, Z)ds +/ Ja(s,x, Zq(ds, dx). (4.3.3)
0 0o JE

Step 2. For n € N we define the stopping time
T, = inf{r € [0, T] : ||IZ}'|| > n}.
By uniqueness of solutions for (4.3.1) we get a.s.
Zl =27}

el for t e [0, 7)

giving P(1, < 7,41) = L.
Our goal is to prove

PUpen{m =T}) = 1. (4.34)

Then Z = lim,, Z" is the desired solution of (4.3.1). Let n be arbitrary. By inequality
(3.5.17) and (B4) we get

E[1Z1%] < 16E[]| @[> + mm[ /O ' lancs, Z§’>||2ds}
x 161(21@[/(:/15 (TACES Z;‘)HZB(dx)ds}
< 16E[||®;||* + 16M (1 + KZ)(T + /Ot ||z;’||2ds).
By Gronwall’s Lemma for ¢ € [0, T]
E[IZ1%1 < (16E[||q>t||2] +16M(1 + K2>T)e“’M“+K2>T. (4.3.5)

Therefore by Markov’s inequality and Doob’s inequality (Theorem?2.3.5), estimate
(3.5.17) and the linear growth condition (B4).

P(r, < T) <P( sup |Z']| > n)
t€[0,T]
t
n
<P( sup [|®}] > )+]P’( sup || [ an(s, Z)ds|| > =)
1€[0,T] tef0,71 Jo 3
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+P( sup | / / fuls. x, ZMdsq(ds, dv)| > g)

1€[0,T]

3 3 : T n 2
< (—) E[ sup [Pl ]+( ) E[n/ an<s,zx>ds||}
tel0,T] 0
( ) [n / Fals.x, Z1q(ds, dx)||2]
3 2 3 2 T
< (—) E[ sup [ 1+( ) TE[ / ||an<s,z;'>ds||2]
n 1€[0,T] 0

3 3 T
< (—) E[ sup [ ]+( ) M<T+K2>/ (1Z"1P + Dyds
n t€[0,T] 0
3\? 5
<{-) E[ sup [|D:]"]
n 1€[0,T]

3 2 3 2 T
+( ) M(T+K2)T+( ) M(T+K2>/ IZ|%ds
n 0
3\2 3 5
( ) E[ sup ||| ]+( ) M(T + K*T
te[0,T]
+

(16E ll®,[1°] + 16M (1 +K2)T)T616M(1+K2)T

This gives

P(Onl{mn < T =limP({7, <T}) = 0.

Thus we get the solution which is in S%.

4.4 Continuous Dependence on Initial Data, Coefficients
and the Markov Property

Theorem 4.4.1 Let F be a separable Banach space of M-type 2. Let T > 0. Assume

@077 € S%for all T > 0 and that, like a(t, x) and f (¢, x, z), d"*(t, x) and " (¢, x, 7)

are (F;)-adapted functions satisfying conditions (Bl) and (B2). Assume also that

a(t, x) and f (t, x, z) satisfy conditions (B3') and (B4) and

(C1) foreach ¢ > 0O there exists a constant L(c) > 0 such that
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T
T|ld" (1, 2) — a"(t, )| % + /0 /E " (2, x, 2) = fut, %, V)1 % B(dx)

<L@©lz—ylI? forall t€[0,T). z,yeF. |zl <c, Iyl <c,neN P—ae.

(C2) There exists a constant M > 0 such that

||a"(t,z)\|2p+/ ™ (t, x, D1 2Bdx) < M(l|z|*> + 1) forallt €[0,T),z€ F,neN P—a.e.
E

(C3) sup, E[sup,cpo.7y 167171 < 00
(C4) forallt€[0,T],z€F

6 — éill + lla™ (2, 2) — a(t, 2) | %

T
+/ / " (t, x,z) — f(t, x, z)||%ﬂ(dx)dt — 0 in probability as n — oo.
0 E

Let (Z]')nex be the solutions of (4.2.1) with coefficients a"(t, x), f"*(t, x, z) and ¢},
respectively, then for each t € [0, T, Z' — Z,; in probability as n — oo.

Proof Under the given assumptions (Z;'),c[o,7] exists and is unique. By Doob’s
inequality (Theorem?2.3.5), similarly to the proof of (4.3.5), it can be shown that
there is a constant C such that

E[ sup [|Z')1%] < ¢“TE[ sup [¢})2]. (4.4.1)
te[0,T] te[0,T]

Let us define

DN (@) = Lo [ O+ sl + 12811 + 1 Zsll = N, Vs € [0, T1,
U0 i IO sl IZE + I1Zs]l > N, for somess € [0, T,

t
Z} = Z)Wh (1) = (@) — @)UY (1) + Y ()] /O (@"(s, Zs) — a(s, Z))ds
t
+ / (fi’l(sv X, ZS) _f(S, X, ZY))q(deu)}
0 JE\{0}
Fors < t, YN () < 4N (s), s, t € [0, T]. It follows from (C2) that
t
E(Z — 20" ()] < Ela ()] + C /0 E[IZ" — Z, 24 (s)].

where o (1) = (@7 — ©) PN (1).
aN(t) — 0 in probability uniformly for ¢ € [0, T]. From o/ (t) < 4N” and the
dominated convergence theorem it follows that
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E[al ()] = 0 uniformly in £ € [0, T.
By Gronwall’s Lemma
E[IZ" — Z >N ()] = 0 as n — oo.
Let € > 0, then
PUIZ! = Z ]l > ©) < %E[nzt" — Z 1YY 01+ PN (1) = 0).
Using (C3) it is easy to check

PN () =0) - 0 as N — oo. (4.4.2)

Hence

1
lim limsupP(||Z]' — Z/|| > ¢€) < — lim lim sup E[||Z;! —Z,||2¢,11V(t)]
N—oo n €4 N—oo n

+ lim limsup Py () = 0),
N—o0 n

completing the proof. (]

Exercise Prove (4.4.2).

Now let us consider a(t, z)= a(z), ®(t,w) = ®(¢) and f (¢, x, 2)= f(x, z) for all
t > 0. Then, as in the classical one-dimensional case, the solution is homogenous
[79].

Theorem 4.4.2 Let a(t,z) = a(z),f(t,x,2)= f(x,z2) and ®(t) = z € F for all
t > 0, let F be a Banach space of M-type 2 and assume (B1)—(B4) are satisfied. Then
the solution of (4.2.1) is Markov.

Proof We follow the classical method. We denote by Z;(s; ) the solution of (4.2.1)
starting with Z; = u at time s, i.e.

t t
Zi(s;u) = u+/ a(r, Z,(s; u))dr+/ /f(’"avar(S; u))q(dr, dx)
K E

N

and define for a bounded measurable function W on F and for u € F
Py (W) (u) = E[W(Z(s; u))].
We have to prove the Markov property, i.e. foranyv <s <t <T

E[W (Z(v; §)/F/1 = (Ps)(W)(Zs(; §)) for any W e By(F).  (4.4.3)
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Here By, (F) is the space of bounded measurable function on F.
As .7-92 C Fy itis sufficient to prove

E[W(Z(v; §)/Fs] = Py (V) (Zs(v5 §) (4.4.4)
for any F,-adapted random variable £, any v < s < t < T and any W bounded
measurable function on F'.

From uniqueness of the solution of (4.2.1) it follows that
Zi(v; (W) = Zi(s; Zs(v; ) (W) (w) P —a.s. (4.4.5)
Let
n(w) = Zs(v; &) (w). (4.4.6)
Then from (4.4.5) it follows that (4.4.4) can be written as
E[W(Z(s: m)/Fs] = P, (V) (). (4.4.7)
We will prove (4.4.7) for all o(Z(v; x))-measurable random variables 7 with
E[||n]|> < cc. Note that, due to Theorem4.2.2, E||Z,(v; £)[|*> < oco.
If n = x then Z(s; x) is independent of F; by definition of the Lévy process,
associated cPrm and It6 integral. It follows that

E[W(Z:(s; %)/ Fs] = E[W(Zi(s; x))] = Py, (¥ (x)), (4.4.8)

so that (4.4.7) holds for this particular case.
Now we prove (4.4.7) for the case where

n
NW) =Y ajla;(Zs(v; £)) (4.4.9)
1
with {A;,j =1,...,n} apartition of F and ay, ..., a, € F.In this case

Zi(s; )W) = D~ Z(s: apla, (Zy(v: ©) P —as.,
1

W(Zi(s; (@) W) = D" W(Zi(s; ) 1a,(Zs(; ) P —as.,
1
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and

E[W(Z (s:m)/Fs] = ]E[Z W (Zi (55 ap)1a; (Zs (v ©)) ) Fi] (4.4.10)
1
= ZPs,r(‘I’)(aj)lAst(v, & =Py, (W), (4.4.11)
1

where we used that W (Z(s; aj)) are independent of F and 14;(Z;(v; §)) are Fi-
measurable.

If E[||n]|?] < oo then there exists a sequence of 7, of the form (5.4.7) such that
E[||n, — nl> — 0] and by Theorem4.4.1, using a subsequence and the fact that
1¥(Z;(s; n)) is bounded, we get the result. [l

Exercise Take a general 1 and prove the result, by approximating with mx=n A k.

4.5 Remarks and Related Literature

The material of Sects.4.2—4.4 is taken from [65] and Sect. 4.1 gives generalizations
of results in [36] to the Banach space case (see also [35]).

Note that in this chapter the geometry of Banach spaces is only used in the
definition of the Itd integral. In view of condition (3.1.4), the results are valid in
any Banach space for which the driving jump process satisfies (3.1.4).
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Chapter 5
Stochastic Partial Differential Equations
in Hilbert Spaces

In this chapter we study partial differential equations. It is well known [83] that
finite dimensional partial differential equations lead to infinite-dimensional ordinary
differential equations in the deterministic case involving unbounded operators. The
solutions of these can be studied by semigroup methods. However, one has to dis-
tinguish between classical solutions and so-called mild solutions. In the stochastic
case involving Gaussian noise they are studied in the book [34]. In order to keep
our presentation self-contained, we describe in the next section the basic theory of
semigroups and how it is used in solving deterministic partial differential equations.
This material is taken from [83], where the complete proofs can be found.

5.1 Elements of Semigroup Theory

Let (E, ||-llg), (F, |- |lr) be Banach spaces and L(E/F) be the space of bounded
linear operators from E to F. It is known that L(E/F) is a Banach space, when
equipped with the norm

1T/ = sup [Txllp, T € L(E/F). (5.1.1)

Ixllg=1

We denote by L(F)= L(F/F) and by Id € L(F) the identity operator.

For T € L(E/F), we recall T* € L(F*, E*) defined by (x, T*y*) = (Tx, y*),
x € E,y* € F*, is the adjoint operator of T. If E = F = H is a Hilbert space,
the operator 7 is said to be symmetric if 7 = T, and is non-negative if Vi € H,
(Th,h) > 0.

Definition 5.1.1 A family {(S;),t > 0} C L(FE) is called a strongly continuous
semigroup (Cp-semigroup for short) if the following properties hold:

e So =1d;

e (semigroup property) Sg4; = SgS; forall s, t > 0;

e (strong continuity property) lim;_,o S;x = x forall x € E.
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Let {S;} be a Cp-semigroup in a Banach space E. Then there exist constants o > 0
and M > 1 such that

IS¢ lLey < Me™ 1> 0. (5.1.2)

If M = 1, then {S;} is called a “pseudo-contraction semigroup”. If o = 0 then {S;}
is said to be “uniformly bounded” and if « = 0 and M = 1, then {S;} is called a
“contraction semigroup”. If for every x € E, t — S;x is differentiable for t > 0,
then {S;} is called a “differentiable semigroup”.

Note that for a Cop-semigroup, t — S;x is continuous for x € E.

Definition 5.1.2 Let {S;} be a Cp-semigroup on E. The linear operator A with
domain

. Six — .
D(A) :={x € E, lim exists}
t—0t
defined by
. Six—x
Ax = lim
t—0t t

is called the infinitesimal generator of {S;}.

We call {S;} “uniformly continuous” if lim,_,g+ [|.S; — I |lL(gy= 0. In this case
{S;} is uniformly continuous iff A is bounded and

o
tA)"
5=t =y 1D

n!
n=0

with the convergence in norm for every ¢ > 0.

Theorem 5.1.3 Let A be the infinitesimal generator of a Co-semigroup {S;} on E,
then

(1) Forx € E
t+h

1
lim — Sexds = S;x.
h—0 t

(2) Forx € D(A), S;x € D(A) and

d
—Six = AS;x = S Ax.
dr tX tX tAX
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(3) Forx € E, [y Syxds € D(A) and

t
A/ Sexds = Six — x.
0

(4) If {S:} is differentiable then forn = 1,2,..., 8, : E — D(A") and S :=
A"S; € L(E).
(5) Forx € D(A)

u u
Sux — Six = / S¢Axds = / AS;xds.
' t

(6) D(A) is dense in E and A is a closed operator.

Furthermore N, D(A") is dense in E, and if E is reflexive, then the adjoint semi-
group {S} of {S;} is a Cp-semigroup with infinitesimal generator A*, the adjoint
of A.

We shall be dealing with E = H, a real separable Hilbert space. In this case, for
h € H, we define the graph norm

el Dy == (IRI% + ARG

Then (D(A), ||| - [llp(a)) is a real separable Hilbert space.

Exercise Let A be a closed linear operator on a real separable Hilbert space. Prove
that (D(A), || - || pca)) is a real separable Hilbert space.
Let B(H) be the Borel o-field on H. Then D(A) € B(H) and

A (D(A), B(H)|Ipw)) — (H, B(H)).

Consequently, B(H)|p(a) coincides with the Borel o-field on the Hilbert space

(DA, (I llDcay)-
Measurability of D(A)-valued functions can be understood with respect to either
of the two o-fields.

Theorem 5.1.4 Ler f : [0, T] — D(A) be measurable and let fot Il £ () [[IDeay
ds < oo. Then

/[ f(s)ds € D(A) and /t Af(s)ds = A/t f(s)ds.
0 0 0

Now we introduce the concept of the resolvent of A, which is needed for Yosida
approximation.

Definition 5.1.5 The resolvent set p(A) of a closed linear operator A on a Banach
space E is the set of all complex numbers A for which A/ — A has a bounded inverse
R(\, A) := (A — A)"'e L(E). The family of linear operators R(\, A), A € p(A),
is called the resolvent of A.
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We note that R(\, A) : E — D(A) is one-to-one, i.e.

(M —ARNA)x=x, xeE
and R\, A)Y(AM — A)x =x, x € D(A),
giving AR(\, A)x = R(\, A)Ax, x € D(A).

Exercise Show that R(\, A)R(\2, A)= R(A\2, A)R(\, A) for A1, \» € D(A).
Lemma 5.1.6 Let {S;} be a Co-semigroup with infinitesimal generator A. Let
ag = lim 1~ In(|StILeE)),
1—>00

then any real number A > o belongs to the resolvent set p(A) and
[e )
R(\, A)x = / e MSxdt x €E.
0

In addition, for x € E

lim [[AR(\, A)x —x||g =0.
A—00

Theorem 5.1.7 (Hille-Yosida Theorem) Let A : D(A) C E — E be a linear
operator on a Banach space E. Necessary and sufficient conditions for A to generate
a Cy-semigroup are

(1) Aisclosed and D(A) = E.
(2) There exist a, M € R such that for A > o, A € p(A)

IR A Ly <= MA—a)™, r=1,2,...
In this case ||S¢||Lg) < Me™, t > 0.
For A € p(A), consider the family of operators
R) := AR(\, A).

Since the range R(R(A, A)) of R(A, A) is such that R(R(\, A)) C D(A), we define
the “Yosida approximation” of A by

Axx = AR)x, x € E.

Exercise Use A\(AI — A)R(\, A) = A to prove

Axx = MR\, A) — Al
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From the exercise, A) € L(E). Denote by St’\ the uniformly continuous semigroup
S,)‘x =My, xcE.

Using the commutativity of the resolvent, we get Ay, A\, = A),A),, and clearly
AyS) = SMA,.

Theorem 5.1.8 (Yosida approximation) Let A be an infinitesimal generator of a
Co-semigroup {S;} on a Banach space E. Then

(a) limyoo R\x =x, x €E.
(b) Ayx = Ax, for x € D(A).
(c) lim)_ S{\x =Sx, x€E.

The convergence in (c) is uniform on compact subsets of Ry and

ISM e < Mexp (2

with constants M and « as in the Hille-Yosida Theorem.

We conclude this section by introducing the concept of a “mild” solution. Let us
look at the deterministic problem

du(t)
dt

= Au(t), u(0)=x, xe€H.

Here H is a real separable Hilbert space and A is an unbounded operator generating
a Cp-semigroup.

A classical solution u : [0, T] — H of the above equation will require a solution
to be continuously differentiable and u ()€ D(A). However,

u (1) =Sx, t>0

is considered as a solution to the equation [83, Capt. 4]. For x ¢ D(A), it is not a
classical solution. Such a solution is called a “mild solution”.
In fact, one can consider the non-homogeneous equation

du(t)
dt

= Au(t) + f(t,u()), u(0)=x, x e H.

Then for Bochner integrable f € L! ([0, T], H), one can consider the integral
equation

t
u (t) = S;x +/ S5 f (s, u(s))ds.
0
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A solution of this equation is called a “mild solution” if u € C([0, T], H).

We will consider mild solutions of stochastic partial differential equations (SPDEs)
with Poisson noise. Note that the stochastic integral fot Si—s f(s,x)q(ds, dx), which
appears in such SPDEs, is in general not a martingale. However, as for Doob’s
inequality, the following lemma holds.

Lemma 5.1.9 Assume (S;);>0 is pseudo-contractive. Let q(ds, dx) be a compen-
sated Poisson random measure on Ry x E associated to a Poisson random measure
N with compensator dt @ 3(dx). For each T > O the following statements are valid:

1. There exists a constant C > 0 such that for each f € L',ZT 3(E, H) we have

2 T
} < CeME[ / / Il £ (s, x)||25<dx>ds].
0 E

(5.1.3)

t
/ Si—sf (s, x)q(ds, dx)
0

IE[ sup
1€[0,T]

2. Forall f € £2T,8(E’ Hy) and all € > 0 we have

t
/ Si—s f (5. X)q(ds. dx)
0

IP’[ sup > e]
1€[0,T]

462(yT T )
< E[ | [ e ﬂ(dx)ds], (5.14)
€ 0 E

where [) Si—s f (s, x)q(ds, dx) is well defined, if the r:h.s. is finite. [ Si—s f (s, x)
q(ds, dx) is cadlag.

Proof Let M be the martingale

!
Mt=//f(s,x)q(ds,dx), te[0,T].
0 JE

By Theorem 3.6.5 we have

t

t
/ Si—s f(s,x)g(ds, dx) =/ S;_sdMg, te][0,T].
0 0

Using [44, Theorem 3’.22'] we obtain

2
] < T (3 + V10)’E[(M, M)7]

t
E[ sup /Sfﬂf(s,x)q(ds,dx)
0

1€[0,T]

T
=e2”<3+~/ﬁ>zﬂ<:[ / / IIf(s,x)IIZB(dx)ds},
0 E
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proving (5.1.3) with C = (3 + +/10)?, and using [44, Theorem. 5'.16'] we obtain

t eZ(xT
]P’[ sup /St,sf(s,x)q(ds,dx) >e:|§ 2 E[(M, M)r]

1€[0,T]

4 2aT
= i [ / / 1 (s, 2] ﬁ(dx)ds}

proving (5.1.4).
Let us show that fé Si—s f (s, x)q(ds, dx) is cadlag. There is a sequence of simple

functions {f;,},en such that f, — f in E?(H), ie.

lim / / E[| fu (6, ) — £t )] d1B(du) = 0.

Let

//St sfnqds,du) = /S, sdM?,
://f,,q(ds,du). (5.1.5)
0 JH

As Si_s fu(s, u, w) belongs to the set 3 (H ) of simple functions, Y/ is amartingale
and is cadlag.
It follows that

2aT
e
P (Sup05t5T 1y, — Y| > e) <4 -

eZaT T
<42 / /E[nfn(r,u)
€ 0 H

— fu(t, w)|*1d15(du).

E[<Mn - Mm)T]

By the Borel-Cantelli Lemma and f, — f in ,Cg (H) there is a subsequence
Mk
{Y, " (w)}ken such that

lim sup ||¥)*(w) —¥Y/*"(w)| =0 P—a.s.

k— 00 0<t<T
It follows that

Y (w) = klggo Y*(w) uniformlyin [0,T], P —a.s.

We see that Y; is cadlag, since Y;'* is cadlag. (]
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5.2 Existence and Uniqueness of Solutions of SPDEs Under
Adapted Lipschitz Conditions

We shall study in this section cadlag solutions to stochastic partial differential
equations with non-Gaussian noise. As stated in Sect. 5.1, we shall treat these equa-
tions as ordinary stochastic differential equations in an infinite-dimensional space
involving unbounded operators. Let us now assume that H is a separable Hilbert
space and let A be a (generally unbounded) linear operator on the domain D(A)
C H. Assume that A is an infinitesimal generator of a pseudo-contraction semi-
group {S;};>0 on H to H.

We want to study the existence and uniqueness of mild solutions of the stochastic
differential equation on the interval [0, T']

[ dZ, = (AZ +a(t, 2))dt + [y, f(t,u, Z)q(dt, du) (52.1)

Zy = Zo(Ww),
where a(-, z), f (-, u, z) are, for fixed z € H,u € H, functionson D(R4, H) and Z,
is Z evaluated in 7. In other words, we look at the solution of the integral equation
t

I3
Zi=SiZ0+ / Si_sals, Z)ds + / / Sis f(s,u, Z)q(ds, du),  (52.2)
0 0 H

where the integrals on the r.h.s. are well defined.

As in Chap. 4, we assume that with @ = DRy, H), F; is a o-algebra generated
by cylinder sets of €2 with base on [0, 7]. Let us assume throughout that A is an
infinitesimal generator of a pseudo-contraction Cp-semigroup. Let

a: Ry xDR4,H) - H, f:RyxHxDR;, H) - H

be functions and [|z]lco 1= SUpy<,<7 2Nl #, for T < oc.

(a) f(t,u,z) is jointly measurable and, for each t € Ry, u € H, f(t,u,-) is
Fi-adapted.
(b) a(t, z) is jointly measurable and, for each t € Ry, a(¢, -) is F;-adapted.

If we consider the map 0; : D(Ry, H) — DR, H) defined by

0:(z)(s) =2z if 0<s<t

=z if t<s

then f(t,u,z) = f(t,u,0;(z)) and a(z, z)= a(t, 6;(2)).
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(c) There exists a constant / > 0 such that, for fixed ¢, t, € [0, T],

o S 1w, 2P + [ Nlat, 213 dr
= lfttlz(l + 110, (2)12)dt P —a.s.

(d) There exists a constant K > 0 such that, for fixed 71,7, € [0, T] and z, ye
DR, H),

n I
/ / 1 f (s 2) — £ u, y) 2t Bdu) +/ la(t, 2) — att, y)Pydt
n JH ,
1 b 1
= K/ 16,(z) — 6:()|I>dt P —a.s.
n
Let,for Z € D(Ry; H),

t t
1(t,2) := / Si—sa(s, Z)ds +/ / Si—sf(s,u, Z)q(ds,du), te€]l0,T].
0 0 JH\{0}
(5.2.3)

Theorem 5.2.1 Assume (a), (b) and (c). There exists a constant C; .., such that for
any F;-stopping time T

t
E[ sup ||I(SaZ)||%{]§Cl,T,a(t+/E[ sup |1 ZylI1*1ds), t€[0,T].
0<s<tAT 0 O<v<sAT
5.2.4)

Proof

A
SUPg<s<tnr 1752 Z)13) < 2 5UPgzszons | /O Sy_va(v, Z)dv|,

s
2 5uppzy o | /O / S f (v, 1, 2)q(dv, di) |y
H
(5.2.5)

(where we used the inequality [|x + y|> < 2|lx||? 4+ 2||ly||?, valid for any x, y € H).
Using the bound on §; and condition (c) we obtain

s
E[SUPOSSSMT ”/O Ss—va(v, Z)dU”%-[]
s
< E[Supofsg(lem/o (1 + 1105(Z) lo0)dv)?]

SAT
< 22071242 4 zE[/ 16,(2)]1%.dv]}.
0



114 5 Stochastic Partial Differential Equations in Hilbert Spaces

Moreover, using Theorem 3 of [44] and (c) we get

N
E[Sup05551A7||A /HSt—uf(v,u,Z)q(dv,du)llﬁ]

SAT
<227 123 + V10)* {1 + tE[/ 16,(Z) % dv]},
0

E[supo—y<;rr 11 (s, Z) 131 < 4e**T12(1 + 3 + V10)%)

SAT
{12 + 1E[ / 10u(2) 12 dv1}
0
t
< Ciralt + / E[supg<y<snr 1 Zo121ds),
0

with Cy 7.4 := 4Te**T12(1 + 3 + V10)?). O
Let T > 0 and

H2T = {& := (&)sep0.1] ¢ & (w) is jointly measurable,
Fi-adapted ; E[ sup ||§s||%1] < 00}.

0<s<T

Let us observe that it follows from Theorem 5.2.1 that the map

I: HZT — HZT
§—> 1,9

is well defined.

Lemma 5.2.2 Assume (a), (b), (c) and (d). The map I : 'HZT — HzT is continuous.
There is a constant Cy kT, depending on o, K and T, such that

T
E[ sup [|I(s, Z") — I(s, zz)n%{]scw,r/ E[ sup ||Z2— Z131ds .
0

0<s<T 0<s<T
(5.2.6)

Exercise Use (d) and the arguments as in Theorem 5.2.1 to prove Lemma 5.2.2.

Theorem 5.2.3 Let T > 0, x € H. There is a unique solution Z = (Zs)sc|0,T] in
HZT which satisfies

' '
Z; = S;x +/ S;_sa(s, Z)ds +/ / Si—sf(s,u, Z)q(ds, du). 5.2.7)
0 0 JH
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Proof We shall prove that the solution can be approximated in HzT by Z" =
(Z})sepo,1), for n — 0o, n € N, where

Z0%w) :=Sx P —as.
7MWy =1 (s, 2" (W) .

Note that (Z}');¢[0,7] is F;-adapted. Let

v i=E[ sup |Z"T' — Z2"|3,].

0<s<t

Then from Theorem 5.2.1 it follows that there is a constant V,, ; 7 (x), depending
on «, [ and T and the initial data x, such that

v <E[ sup [1Z) — Z2131 < Vau 7 ().

0<s<T

Similarly as in the proof of Theorem 5.2.1, it can be proven that there is a constant
Co.x, 1 depending on o, K and T, such that

! T%(Co k,1)*
ol < Coxr / E[ sup [1Z) — 203 1ds < ~CouK. 1)
0

= Va,l,T(x)-
0<s<t 2

In a similar way we get by induction that

_ (TCax.n)""!

t
W< C / v ds V. x).
i <Cuok,T ) U = Tt o,1,T (X)
n+l %
Let e, := (%) . Then:
(T Cok.7)"™!

e Va1, 7 (%)
+1)! &ty
P(sup (120 = Z0)P > e) < — Do
0<r<T (TCakn) 3

m+D!

= Vo (x).

As > e,% is convergent, we get that > -, SUPg<; <7 ||Z;’Jrl -7} | converges
P -as. It follows that there is a process Z := (Z;)ej0,7], Z € D([0, T']; H), such
that Z" converges to Z, as n goes to infinity, in the space D([0, T']; H) (with the

supremum norm), P-a.s. Moreover

n+m—1

Elsupo<, <7 1Z: — Z}'I*] = Ellimy 00 sup< <7 | D, (ZFT = ZP)I%]
k=n
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n+m—1 !
i k+1 k 2
<E[Jim ( > supoyer 127" = Zf k)]
k=n
o0 00 1
= X Elswpgizr 128 = ZEPIOT Y. 5
k=n k=n
0 k+172
(TCo,k, 1)k
<V TR’
__wﬂﬂg; (SR,

— 1
(zk—z)—>0 as n— o0,
k=n

where we used Schwarz’s inequality. It follows that, as n goes to infinity, Z” also
converges to Z in the space HZT . From Lemma 5.2.2 it follows that (Z;)o<;<7 solves
(5.2.7). We shall prove that the solution is unique. Suppose that (Z;)o<;<r and
(Y1)o<:t<r are two solutions of (5.2.7). Let

Vi i=E[ sup || Zy — Ys|%1.

0<s<t

Then similarly as before we get

t
Vl < Ca,K,T/ Vs
0

and by induction

n
< (Ca,K',Tt)

Vs E[ sup [|Zs — Y[|5]1— 0 as n— oo

0<s<T

ie. V, =0Vre[0,T]. (]

5.3 Existence and Uniqueness of Solutions of SPDEs Under
Markovian Lipschitz Conditions

Let us assume that we are given
a: Ry xH — H,

f: Ry xHxH — H.



5.3 Existence and Uniqueness of Solutions of SPDEs . .. 117

Assume
(A) f(t,u,z) isjointly measurable,
(B) a(t, z) is jointly measurable,
and for fixed T > 0
(C) there is a constant L > 0 such that
Tlla(t,z) —a(t, 2> + / 1S, 2) = f(,u, ) PBu) < Liz —2/1°
H

forallt € [0,T], z, 7 €F,

(D) there is a constant K > 0 such that

T||a<r,z>||2+/H £, u, DII*B(du) < K(z)|* + 1)

forallt € [0,T], ze€F.

We assume again that A is the infinitesimal generator of a pseudo-contraction
semigroup (S;)sef0,7] - If we consider functions a(t, z) = a(t, z;) and f (¢, u, z)=
f(t,u,z:) on D(Ry, H) then our previous theorem tells us that the equation

t
Zi = 5,20 + / Si_sals. Zy)ds
0

t
+/ / Si—sf(s,u, Zs)q(ds,du) P —a.s. VYVt €[0,T] (5.3.1)
0 JH

has a unique solution on HZT .

However, we shall now consider the SPDE on any filtered probability space
(2, F, (Fi)=>0, P) (satisfying the usual conditions) and show that it has a unique
cadlag solution in S% as defined in Chap. 4.

Theorem 5.3.1 Suppose assumptions (A)—(D) are satisfied. Then for Zoe L>
(2, Fo, P; H), there exists a unique mild solution in S% to (5.3.1), with initial con-
dition Zy, such that Z; is JF;-measurable.

Proof Define the process
t
(S8Z) = 81 Zo +/ Si—sa(s, Z)ds
0

t
+/ / Si—sf(s,u, Zg)g(ds,du) t €[0,T]. (5.3.2)
0 JH


http://dx.doi.org/10.1007/978-3-319-12853-5_4

118 5 Stochastic Partial Differential Equations in Hilbert Spaces
Consider
Elsupg<,<7 (SZ):11°1 < 3E[supg<,<7 [15: Zol1’]
+ 3E[supg—;<7 /0 t /H Si_sa(s, Zg)ds|*]

t
+ 3E[SUP0515T ”/ St—sf(ss u, Zs)‘](dsv d”)”2]
0

Using the fact that ||S;|| < e for t > 0, inequality (5.1.3) and (D) we get
Elsupo<, <7 1(SZ)11”1 < 3¢** T E[[| Zo*]

T
+ 3e2aTE[||/ a(s, Zs)ds|*]
0
T
#3780 [ [ fon zogts.aolP)
0 H
T
< 3e2aTE[||ZO||2] + 3T62aTE[/O lla(s, ZS)||2dS]
T
n 362aTcE[/ / I f (s, u, Zy)|>dsB(du)]
0 H
T
< 3TB 20l + 34T CKEL | 124 0Pds1+ K)

where C is any fixed constant such that (5.1.3) holds and such that C > 1.
This shows that S maps S% into itself.
ForY, Z e S% using again (5.1.3)

E[supy<,<, (SY); — (SZ)s[1*] < 2E[supy,, | /0 S /H Sy—v(@(, ¥)
— a(v, Z,))dv|*]
+ 2E[supg-,<, | /O S o (fu, ¥y
— f(,u, Z)q(dv, du)|*]

t
< 2Te*TE[ / la(s, Ys) — a(s, Zy)||*ds]
0

T
+262“TCIE[/ /||f(s,u, Ys)
0 H
— f(s,u, Zy)|I*dsBdu)].
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Using (C) we get
t
E[supy—,; [(SY)s — (SZ),|I*] < 2Le** CE[ / 1Yy — Z||*ds]
0
t
< 2Le*TCE| / SUPg<y—s 1Yo — Zyl|*ds).
A <

By induction we get

on (CL)neZDch

E[ sup [|(SY); — (SZ)s]*] < p

0<s<t

E[ sup ||Y, — Z||*ds].
0<t<T

Hence for some n € N, S is a contraction, yielding the conclusion by the fixed
point theorem. ]

Corollary 5.3.2 Let0 < T < 00, and assume (A), (B), (C) and (D). Let (Zf);e[o,r]
(resp. (Ztn)te[oj]) be the solution to (5.3.1) with initial condition & (resp. 1), then

E[|Zf — Z]I] < Crallé —nll%,
with constant C; , depending on t and «.

Exercise Prove the corollary by computing E[]|| Zf - 7171

We assume again that A is the infinitesimal generator of a pseudo-contraction
semigroup (S;):¢[o0,7] and conditions (A), (B), (C), (D) hold.
Let

Zo(w)=¢ P—a.s.
and let (Z;);c[0,7] be the unique cadlag process solving P-a.s. (5.3.1) for every
tel0,T].
Let {A,},cn be the Yosida approximation to A (see Sect.5.1). For every fixed

T > 0, there exists a unique cadlag process (Z}');¢[0,7] such that fOT E[||Z§||2]ds
< oo and such that (Z}');¢[0,7] is a strong solution of

dZy = A, Z}dt +a(t, Z})dt +/ fs,u, ZHq(ds, du)
H

with initial condition & (see Chap.4 or [65]). Moreover, (Z}');¢[o,7] is also a mild
solution, i.e. P-a.s.

t t
z;’:s,"§+/0 SPafs, Z;‘)ds+/0 LSf,Sf(s,u,zg)q(ds,du) (5.3.3)
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for every ¢ € [0, T] and such that conclusions the conditions in Theorem 5.3.1 are
satisfied. We shall prove the following result:

Theorem 5.3.3
lim E[[Z, - Z}'|*1=0
n—oo

uniformly in [0, T].

Proof We have

E[|Z: — Z'|*] < 23|IS"€ — S,€11° (5.3.4)
+2°E[| /0 (Sisas, Zy) — S;_sa(s, Z)ds|*)

t
+23E[II/0 /H(Sz—sf(s,u, Z) = Sy f (s, u, Z)q(ds, du)|].

We shall analyze separately the three terms on the right-hand side of inequality
(5.3.4). As for the first term, we remark that

lim [S¢ - S&l=0.
n—oQ
By Sect.5.1 (Yosida approximation) we get that the convergence is uniform in

[0, T].
Let us consider the second term on the right-hand side of (5.3.4). We have:

t
E[| / (S—sa(s, Z) = 8i,a(s, Z{)ds|)*)
0
t
< 2T / Ell|Si—sa(s, Zy) — 8;_,a(s. Zy)|*1ds
0

t
+2T/ E[||S"_ a(s, Zs) — S a(s, Z")|*1ds (5.3.5)
0

11Lngo |Si—sa(s, Zs(w)) — S;_,a(s, Zgw)|| =0 P —a.s. (5.3.6)
and

IS _sa(s, Zg(w)) — 8" a(s, Zs)|* < Crlla(s, Zsw))|?
< CrK(IZ@I*+1). (537)
This is a consequence of uniform convergence and condition (D). By the Lebesgue

dominated convergence theorem it follows that the first term on the r.h.s. of (5.3.5)
converges to zero.
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Let us consider the second term on the r.h.s. of (5.3.5). We observe that from
uniform convergence and the Lipschitz condition (C) it follows that

TIIS; (s, Zs @) — S;a(s, ZH@)* < CrL| Zs(w) — Z )|

so that
t t
2T/ E[|S"_,a(s, Zs) — S"_,a(s, ZM)|*ds < 2CTL/ E[|Z, — Z"|*]ds.
0 0

It follows that for all € > 0 there is an ny € N such that for all n > ng

t t
Ef) /O (Si_sa(s, Zs) — SI_.a(s, ZMds|P] < ¢ +2CrL /0 E[l1Zs — Z"|?] ds.

Let us consider the third term in (5.3.4). By similar arguments as above, it can be
proved that

E{| /O t /H (Sis f (5,1, Zg) — Sy £ (s, u, ZDq(ds, )]
<e+ 2CTL/Ot]E[||ZS — Z"1*1ds.
It follows that
El|1Z: — Z]'|1*] < 2°|1S7€ — Sié))> + 2*e2*CrL /0 "ENZ: - Z!|1ds.
Using Gronwall’s Lemma we get
ElZ: — Z}11P] < 2P11S7¢ = Si€II” + 2% ) exp 2*TLCr)

so that (5.3.4) gives the result. U

5.4 The Markov Property of the Solution of SPDEs

Let B, (H) denote the set of bounded real valued functions on H. We first prove
that the Markov property holds for the semigroup associated to the mild solutions of
(5.3.1):

Let0 < v < T and § € H. Let (Z(t, v, £))efv, 7] denote the solution of the
following integral equation
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t t
Zi= S+ [ Ssats.zods + [ [ Supeon Zog@s.dw 4
v v JH

(in the sense of Theorem 5.3.1). Let .7-',2 denote the o-algebra generated by Z (7, v, £),
with7 <f,7>v.Letv <s <t < T and P, be the linear operator on B;(H),
defined by

(Ps,) (@) (x) = E[¢(Z(t,5: x))] for ¢ € By(H) xe€H. (5.4.2)

Then the Markov property holds, i.e.

Theorem 5.4.1 LetO <v <s <t <T.Then
El¢(Z (1, v; )/ FL1 = (P )(@)(Z(s, v; ) forany ¢ € By(H).
Proof As FZ C Fy, itis sufficient to prove that
E[¢(Z(t,v; )/ Fs] = (Ps,))(@)(Z(s, v; §)) . (5.4.3)
From the uniqueness of the solution we get
Z(t,v; W) = Z(t,5; Z(s5,v; W) (w) P—a.s. (5.4.4)

Let
nw) := Z(s, v; H(w). (5.4.5)

Then from (5.4.4) it follows that (5.4.3) can be written as
E[p(Z(z, 53m)/Fs] = (Ps,)(@)(Z (s, vin)) . (5.4.6)
Itis enough to show that (5.4.6) holds forevery ¢ € C»(H), with Cp(H) denoting
the set of continuous real-valued bounded functions on H. We first assume that ¢ is

linear and bounded.
Moreover, let us first consider the case where

nw)=x € H P—a.s.
As x is constant and because of the independent increment property of the cPrm,
Z(t,s; n(w)) is independent of F;. In fact F; is the o-algebra generated by the
pure jump Lévy process with compensator ds3(dx). See Sect.2.4 and Sect. 3.3, or

[3, Sect.2].

Elp(Z(t,s:m)/Fs] = E[p(Z(t, 5, x))] = P51 (o(x))

so that (5.4.6) holds for this particular case.


http://dx.doi.org/10.1007/978-3-319-12853-5_2
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Now we prove (5.4.6) for the case where
n
Nw) =D ajla, (Z(s,v: €) (5:4.7)
1

with {A;, j =1,...,n} apartitionof H anday,...,a, € H.Inthis case
n
Z(@t, sinW)W) = D2, s1apla (Z(s,v: ) P—aus.,
1

GZ(t, 53 @) W)) = D H(Z(t,53a))1;(Z(s,v;€) P—as.,
1
and

Elo(Z(t, s:m)/Fs] = E[Z P(Z(t,s:a;)1a;(Z(s, v: )/ Fs]
1

=D P @pla;(Z(s,v,8) = P (d)(n),  (54.8)
1

where in (5.4.8) we used that ¢(Z(t, s; a;)) are independent of F; and 14;(Z(s,
v; £)) are Fg-measurable.

Now we prove (5.4.6) for the case where 77(w) is given according to (5.4.5). (From
the proof it follows in particular that the r.h.s. of (5.4.3) is FZ-measurable.) There
is a sequence of simple functions 7, (w) of the form (5.4.7) such that, if for a given
natural number M we denote 77,1!” =1, A M, then

lim lim E[||nY —7[*] = 0. (5.4.9)
M— o0 n—>00

Similar to the proof of Corollary 5.3.2 it follows that

im lim E[||Z(t, s:n)") — Z(t, ;)1 = 0.

1
M— 00 n—>00

There is a subsequence (by abuse of notation we denote it in the same way as the
original sequence), for which

lim lim Z(t,s;n,llw)(w) =Z(t,s;n)(w) P—a.s.

M — o0 n—00

As ¢ is continuous and bounded, it follows from (5.4.8) that

E[G(Z(t, 551)/Fs)] = limpr 00 limy, 00 E[G(Z (1, 5, n}1) / Fi)]
= limp— o0 limy— 00 Py (0) (M) = Py 1(0) ().
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Given ¢ € C,(H) there exists a sequence of linear bounded functions ¢, converg-
ing, up to a set of Borel measure zero, to ¢ (see e.g. [103], Chap. V.5). It follows
that ¢, (Z(t,s;m) — ¢(Z(¢t,s;n) P -ass., when n — 00. ¢, can be chosen to be
uniformly bounded, so that

,EEOEW"(Z(“ s/ F)l =Elo(Z(t, s;m)/F)]. 0

Theorem 5.4.2 LetT >0, f(s,u,z)) = f(u,z),a(s,z) =a(z) andx € H, then
(Z(t,0; x)(W))te[0,1] is a homogenous Markov process.

Proof 1t is sufficient to prove that
P =Py for all 0<s=<t<T (5.4.10)

together with the Markov property in Theorem 5.4.1 implies that the Chapman—
Kolmogorov equation holds for the transition probabilities associated to Py ;,0 <
s <t < T and (Z(t, 0; x)(w))se[0,7] 1S @ Markov process.

Let us remark that the compensated Lévy random measure g (ds, du)(w) is transla-
tion invariant in time, i.e. if # > 0 and g (ds, du)(w) denotes the unique o-finite mea-
sure on 3(R+ x H) which extends the pre -measure g (ds, du)(w) on S(Ry) x B(H),
such that g((s, 7], A) := q((s + ¢, 7+ t], A), for (s, 7] x A € S(Ry)xB(H), then
q(B) and ¢ (B) are equally distributed for all B € B(R4 x H).

It follows that

Z(t+h,t;x)
1+h 1+h
—_ Sux / Sansa(Z(s, 1 X))ds + / / Sins f(Z(s, 13 X))q (ds, du)
t t H
h h
— S / Sh_sa(Z(t + 5. 1; X))ds + / / Shs £, Z(t + 5. 15 1)) (ds, du)
0 0 H
h h
= Spx +/ Sh_sa(Z(t +s,t;x))ds +/ / Sh—sfu, Z(t +s,t; x))g(ds, du).
0 0 H

By uniqueness (Theorem 5.3.1) it follows that Z(¢ + h, t; x)(w) and Z(h, 0; x)(w)
have the same distribution, completing the proof. U

5.5 Existence of Solutions for Random Coefficients

Let LZT = LZT([O, T] x 2, (Fi)iefo, 1) be the space of processes (Z;(w))re[0,7]
which are jointly measurable and

1) Z,T is F;-measurable,
(i) fy ElIZ,l*1ds < oc.
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Definition 5.5.1 We say that two processes Z; (we LT, i = 1,2, are dt ® P-
equivalent if they coincide for all (f, w) € I, with ' € B([0, T]) ® Fr, and dt ®
P (') = 0. We denote by £2T the set of dt @ P-equivalence classes.

Remark 5.5.2 L',ZT, with norm

T
120y o= ([ BOZIP19',

is a Hilbert space.

In this section we assume that the coefficients are random and adapted to the
filtration and prove the existence of a solution in £2T . We assume here the growth
and Lipschitz conditions of the coefficients independent of w, but depending on the
points in H. We assume in fact that we are given

a: Ry xHxQ — H,
f: Ry xHXHXxQ — H,
such that
(A")  f(t,u,z,w) isjointly measurable such that forall ¢ € [0, T'], u € E and fixed
z€ H, f(t,u,z, ) is F;-adapted,
(B') al(t, z,w) is jointly measurable such that for all r € [0, T'], and fixed z € H,

a(t, z,-) is F;-adapted, and for fixed 7 > 0
(C’) there is a constant L > 0 such that

Tla(t,z,w) —a(t, 2, w)|? +/ Iftu,z,w) — f(t,u, 2, w)*B(du) < L||z — 2'||?
H
forall +e€[0,T], z,7€eH, and P—ae. we,
(D) there is a constant K > 0 such that

Tla(t, z, W)l + [ 1 £t u, z, ) ?B@du) < K(|zII> + 1)
for all te([0,T], z€ H, and P—a.e. we Q.

Theorem 5.5.3 Let0 < T < o0 and suppose that (A’), (B'), (C'), (D') are satisfied.
Let x € H. Then there is a unique process (Z;)o<i<T € £2T which satisfies

t
Zi(w) = Six + / Si_sals, Z,(w), w)ds
0

t
+/ / Si—sf(s,u, Zg(w),w)q(dsdu) VYt e[0,T]. (5.5.1)
0 JH
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As a consequence of Theorem 5.5.3 we have:

Corollary 5.5.4 LetO < T < oo and suppose that (A’), (B'), (C'), (D') are satisfied.
Then there is up to stochastic equivalence a unique process (Z;)o<i<T € L2T which

satisfies (5.5.1).
Remark 5.5.5 As a consequence of Lemma 5.1.9 we have that (Z;)o<;<7 is cadlag.

Before proving Theorem 5.5.3 we prove some properties of the following function

t
Ko, W) = Six + / Si_sals, & (@), wyds
0
t
+ / / Sues £ (5, 11, £ (W), w)q (ds. du)
0 H

with x € H and £ := (&)seq0,71€ L1
Lemma 5.5.6 Forany T > O there is a constant C } such that

T

T
/O E[| K, (x, &) — K;(x, |71t < qur/o ELl1& — melI*1dz.

Proof

T
/O EIK, (x, ) — Ky (x, ©)|X1d1

T t

52620‘TT/ IE[II/ (a(s,&)—a(SJ)s)dSIIZ] dt

0 0
T t
+ zew/o /0/HE[n(f(s,u,és)—f(s,u,ns)llzdsﬁ(du)]dt
T

< 2LTe2“T/ E[l& — ns)1*1de < o0,

0

where we applied the bounds on S;. This proves the lemma. U

Let
K(x,&: HxLl - cf (5.5.2)

be such that its projection at time ¢ € [0, T'] is given by K (x, &).

Lemma 5.5.7 There exists a constant o, depending on T, such that ar € (0, 1)
and

1K (x, (W) = K, Ml gr < arll€ =l gz (5.5.3)
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Proof Let S := K;(x, £). We shall prove that S” is a contraction operator on Lg ,
for sufficiently large values of n € N. By Lemma 5.5.6 it follows by induction that

T 5 1n T T T T 5
/ E[IS"¢, — §™n, |2 1d < C / dr/ dsl/ dsz,...,/ EfIE,, — 1, 121dsn
0 0 0 0 0

lnTn T 5
<cl ?/0 ELlE, — 15 121ds.

From this we get that, for sufficiently large values of n € N, the operator S" is a
contraction operator on £2T and therefore has a unique fixed point. Suppose that S"0
is a contraction operator on [,27 . We get

T T
/0 drELISE — Sil?] /O drE[[S"0H g, — §0+ 2]

1 k1o 4kng
C; T

T
/ drE[||SE — Sne||%]
kngp! 0

Clk"o+1 kng T
< T—/ dtE[||& — n]I’1 — 0 as k — oo.
kno+ 11 Jo 0

Proof of Theorem 5.5.3 From (5.5.3) it follows that K (x, &) is a contraction on
Eg for every fixed x € H. We get by the contraction principle that there exists a
¢ € C(H, L)) such that

K(x, ¢(x)) = ¢(x)

for every fixed x € H. ¢(x) := (Z; (w))seq0,717 is the solution of (5.5.1). O

5.6 Continuous Dependence on Initial Data,
Drift and Noise Coefficients

Let T > 0. Let us assume that (A), (B), (C), (D) or (A’), (B), (C), (D) are satisfied
for fo(t,u, z,w):= f(t,u, z,w)andap(t, z, w) := a(t, z, w). Moreover, we assume
that this also holds for f, (¢, u, z, w) and a,(t, z, w), for any n € N. Let (Z;);¢[0,1]
be a solution of (5.5.1) (in the sense of the previous theorems, depending on the
hypothesis). We denote by (Z}' (w))[o,7] the unique solution of

t
Z}(w) = SzZ’S(w)Jr/ Si—san(s, Z} (w), w)ds
0

t
—I—/ / Si—s fu(s,u, Z} (w), w)q(ds, du)
0 JH
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(in the sense of the previous theorems). We prove the following result:

Theorem 5.6.1 Assume that there is a constant K > 0 such that for all n € Ny,
tel0,Tlandz € H

lan (. 2, )2 +/ I falt, w2, ) ?Bdu) < K(Jzl* +1) P—as. (5.6.1)
H
Assume that there is a constant L such that foralln € No, t € [0, Tlandz,7 € H:

T”an(t, Z,UJ) - al’l(ta Z/’ w)”z +/ “fn(tv u,z, Cl)) - fn(ta u, Z/,UJ)HZﬂ(dM)
H

<Ll|lz—7|*> P—a.s. (5.6.2)
Moreover, assume that
sup E[[|Z0)II*] < oo, (5.6.3)
nENO
lim E[|Z¢ — Zol*1 =0 (5.6.4)
n—oo

(where Zg(w) = Zo(w)) and assume that for every t € [0, T] and fixed z € H

lim {Tnan(t,z,w)—a(t,z,w)||2+/ I fult,u, z,w0) — £(t,u, 2, w) 1> Bdu))
n—oo H

=0 P—a.s. (5.6.5)
Then

lim sup E[||Z — Z|*] = 0.

=% ¢e0,T]
Proof Let t < T, then:
t
EllZ! — Z:|1*] < 22e**T{E[|| 2§ — Zol*1 + 2L / E[|Z) — Z:||*1ds
0
t
4T / Elllan(s. Z;) — a(s. Zy)|?ds)
0
t
+2%2°T(2 /O / B[Nl fu(s, u, Zs) — f(s,u, Zo)|*18(du)ds}
H

where the latter inequality is proved by using a bound on || S || and inequality (5.6.2).
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Let

t
=T / Elllan (s, Zs) — a(s, Z5)|I*1ds,
0

t
5 i /0 /H ELl fy (5. 11, Zs) — £ (5. u, Zy)[P13(du)ds.

As
1im,, s o llan (s, Zs, w) — a(s, Zs, w)|*

+/ ”fn(sal’t’Zva)_f(Sa u, Zv,w)”zﬂ(du):(), P—G.S.
H

and (5.6.1) implies

lan(t, Zs(), )I> + [ | fult, u, Zs(w), w)||>B(du)
<K(UZwI*+1) P-as.,

it follows that

lim sup d} + lim sup +' =0.

n—00 40, T] n—=00 0, T]

The conclusion then follows by using Gronwall’s inequality. ]
5.7 Differential Dependence of the Solutions
on the Initial Data

In this section we continue to assume, as before, that the coefficients a and f satisfy
the conditions (A), (B), (C) and (D) and we shall prove the differential dependence
of the solution of (5.3.1) with respect to the initial data. Let

t t
Ki(r,€) = Six + / Si_sas, &)ds + / / Sies f (5. u, £)q(ds, du)
0 0 H

with x € H and £ := (gs)se[O,T]G Lg

Lemma 5.7.1 Forany T > O there is a constant CL., resp. C2, such that

T T
/O E[lIK; (x, &) — K, (x, p)|1*1dt < c}/0 E[& — %14t (5.7.1)
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T
/0 E[I K (x, &) — Ki(y. O1*1dt < CFlx —yl*. (5.7.2)
Proof Note that (5.7.1) is a special case of Lemma 5.5.6. The proof of (5.7.2) is
similar to that of Lemma 5.2.2. O
Let

K(x,&: HxLl - cF

be such that its projection at time ¢ € [0, T'] is given by K (x, &).

Remark 5.7.2 From Theorem 5.3.1 we know that there is a unique solution (Z7
(w))refo,r) of (5.3.1). Hence, from Theorem 5.3.1 we know that for every fixed
xeH

Kx,Zf (w) = Zf (w) P —a.s. (5.7.3)
We shall now prove some facts about the map K.
Theorem 5.7.3 Let & € L) be fixed. The map
K(.9:H — L]

is Fréchét differentiable and its derivative %—[; along the direction h € H is such that

aKt (X, g)

h) = .
oy D= Sih

The proof of Theorem 5.7.3 is easy and follows from the Frechét differentiability
of S;.
Remark 5.7.4 Tt follows in particular that % isin L(H; £2T) .

Let us denote by 8% the Fréchét derivative in H. Starting from here we assume
that the coefficients a and f in the SPDE also satisfy the following conditions
(B) L f(t,u,z) exists forallr € (0, T] and fixed u € H,

(F) a%a(t, 2) exists for all # € (0, T].

Moreover we assume that

0 0
l5-a(s, 2)I11? +/ = £ (s, z. w)|I*B(du) < oo uniformly in z e H,
0z o 0z

and s €[0,T], (5.7.4)

where ||| - ||| denotes the operator norm of the Fréchét derivative in H.
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Theorem 5.7.5 Let x € H be fixed.

K(x,): LY — T (5.7.5)
is Gateaux differentiable and its derivative 2 85 K along the direction ¢ € [,2 satisfies

6K1(X, g)

t 15)
e = /0 S 5a(s, ) (1)ds

! 0
+/ / St—sa—f(s, u, &) (ns)q (ds, du)
0 JH z

(with the notation g—za(s,fs(w)) (resp. %f(s, u, & (w))) for a—aza(s,z) (resp. d%
f(s’ u7 Z))’ at = gs(w))

Proof Forany fixed x € H,and§, n € £2T we consider the map r — K (x, {+rmn)
from R to Eg . We have

t
Ki(x,&4+rn) = Six +/ Si—sa(s, & +rng)ds
0
t
+ / / Sy 5.0, E + rng)g(ds, du).
0 JH

It follows that

(als, & +rns) — als, Es))ds

r

1 t
;(Kt(x,§+r7l) - K(x, 9 =/0 St—s
+/’/ St_s(f(s,u,is+r77s)—f(s,u,§s))
0 JH

q(ds, du).
-

Let us fix z € H and define for any r # 0:

a(t,z+ry) —a(t,z2)
r

ar(t,z,y) ==

f,u,z+ry)— f(t,u,z)

r

frtu,z,y) =

wheret € [0, T],y € H.a,(t,y, & (w)) and fr- (2, u, y, &(w)) satlsfy the conditions
(5.6. l)and (5.6.2) with r instead of n (and y instead of 7). Moreover, 7z a(s, &(w))y

and 2 e f (s, u, & (w))y satisfy the same conditions, by condition (5.7.4).



132 5 Stochastic Partial Differential Equations in Hilbert Spaces

Analogous to (5.6.5), we have (also using the Lipschitz conditions) that

0
lim, o {T l|la,(t,y, & (w)) — 8—a(t, SWHyl? +/ I £t u, y, & (W)
< E\{0}
0
- g/ &W)YIPBu)} =0 P—a.s.

Defining similarly as before

! 0
v = T/ Ellla, (s, s, &, ) — a—a(s,fs)nsllz]ds
0 Z

4 0
5 = / / LA 5,10 €)= 5/ 50 €0 P13,
0 H Z

and operating in a similar way as in the proof of Theorem 5.6.1, we obtain the desired
result. O

We also assume
(G) a%a(s, z) is continuous in z ds-a.s.

(H) C%f(s, u, z) is continuous ds-a.s. in the norm || - || z2 43, of L2(dp).

Theorem 5.7.6 For any fixed n € £2T the function

5
EK(x,f)n CHx L£F - T (5.7.6)

IS continuous.

Proof of Theorem 5.7.6 Let (x™, ") converge to (x, £) in H x LZT. Foranyn € N
we have that

Gk )Uz—a—fK(x»f)nz—/o Sims(oals, €0 = +-als, €0m)
t
0
+ / / s 5o,
0 JH <
15)
- a_f(sv us fs)'ﬂs)@(ds, d-x)
Z

From || S;|| < e’ it follows that

/TE[HQK(” e — 2 K (x, O 21de
o 8{ X, nt 85 X, nt

T 0 0
< o127 / El-Zats, €)ns — —as, &)y |2ds
0 0z 0z
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T 0 0
4Tl / / B £ s, € — -2 £ (5., € |21 Bdu).
0o JH 0z 0z
(5.7.7)

& — £in £2T as n — oo implies that there is a subsequence {rny}icn such that

" €& ds @dP-as. in[0, T] x , as k — o0o. Hence we have

0 0
l15-als, &K W)ns — m—als, EHnslll - 0 ds @ dP —a.e.
0z 0z
in [0,T]x Q2 as k— o0
and

0 0
/ == (5o u, € @)ns — = f (s, 1, &)l II*Bdu) — 0
H 0z 0z
ae. ds®dP in [0,T] x Q. (5.7.8)

We get by the Lebesgue dominated convergence theorem that 6% K (x, &)nis con-
tinuous. ]

Corollary 5.7.7 Let us assume that all the hypotheses of Theorem 5.7.6 hold. Let
(Z)1e10,1) denote the solution of (5.3.1) with initial condition

Zow)=x P —a.s.

Then (%Zf),e[o,r] is a solution of
—Zx / (S,— 55 a(s Zx)—Zx)ds

+ / / s L f 5w, 2220 s, d). (5.7.9)
o JH 0z Ox

Proof The statement of Corollary 5.7.7 is a consequence of Theorems 5.7.3-5.7.6,
Remark 5.7.4 and Proposition C.0.3 in Appendix C of [15] (see also Appendix C of
[19], where the Gaussian case is considered). O

5.8 Remarks and Related Literature

In this chapter, we have studied Hilbert space valued SPDEs. A special case of
SPDE:s in Banach spaces with certain restrictions on the partial differential operator
was considered in [38].
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Our presentation is based on [2]. The technique is a generalization of that used in
[35] (see also [34]) and is generalized from [36].

The material on Gateaux differentiability with respect to the initial value was
generalized in [72].

This work has found applications to financial models in [32].

For our work in Chap. 7 on stability theory we provide the Yosida approximations
for mild solutions. As the approximating solutions are strong solutions, we can apply
1t6’s formula for these. The general case of non-anticipating coefficients is of interest
in view of the applications presented in [24].

We refer the reader to [33] where Sz.-Nagy’s dilation theorem is used to study
uniqueness by relating mild solutions to strong solutions. However, in this form, one
does not know how to study the asymptotic behaviour of the equation in Sect. 6.1 to
obtain the result on invariant measure in [71], which is done in Chap. 7.
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Chapter 6
Applications

In this chapter we show how the results of Chap. 5 can be used to solve some problems
arising in finance. In addition, we provide motivation for the study of Chap.5 since
the Zakai equation in filtering problems has the form of the SPDEs studied there.

6.1 The HJMM Equation from Interest Rate Theory

In this section we describe the HIMM model for term structure interest rates. We
follow [32] in our presentation in the next section. We start by explaining some
fundamental ideas from finance mathematics. After deriving the HIMM equation,
we consider the existence and uniqueness of this equation using our results in Chap. 5
on mild solutions of SPDEs. Under additional assumptions on the space of forward
curves and drift, we obtain the strong solution result of [17]. In order to demonstrate
the strength of our result, we present an example for which the assumptions in [17]
are not satisfied. In the next section we introduce the basic financial problem. We do
not give full details of the work as it is already described in [32]. However, we give
sufficient details to motivate our model.

6.1.1 Introduction to the HJMM Equation

A zero coupon bond with maturity 7 is a financial asset which pays the holder one
unit of cash at time 7. Its price for t < T can be written as

T
pt,T) =exp (—/ f, u)du)
t

where f (¢, T) is the forward rate at time T (> t).
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The classical continuous framework for the evolution of forward rates goes back
to Heath et al. [40]. They assume that under a risk-neutral measure for every time 7
the forward rates f (¢, T') follow an It6 process of the form

n T
df(t,T) = Zai(t, T)/ o(t, s)ds (6.1.1)
i=1 !
n .
+ D 0it, T)dW}, t€[0,T] (6.1.2)
i=1
where W = (Wl, ..., W")is a standard Brownian motion in R". This gives that the

discounted zero coupon bond price processes

t
exp (—/ fs, s)ds) p,T) tel0,T]
0

are local martingales for all maturities 7'. This guarantees absence of arbitrage in the
bond market model.

Empirical studies have revealed that models based on a Brownian motion (noise)
only provide a poor fit to observed market data [31, Chap. 5]. Some authors [12, 26],
and others have proposed to replace Brownian motion W in (6.1.1) by a more general
process (with jumps). If X is a Lévy process, this leads to

df (t.T) = apm(t. Tydt +»_0;(t, T)dX}, 1€[0.T]. (6.1.3)

i=1

Here the drift term is replaced in (6.1.1) by an appropriate term determined by
o(t, T) and a generating function of X (as explained later).

From a financial modeling point of view, one considers o and a7y to be a function
of the prevailing forward curve T — f(t—, T,w) = limyy, f (s, T, w). This leads
to f (¢, T) being a solution of the stochastic equation for ¢ € [0, T']

df @, T) = agu, T, f(t,-))dt + zgi(t, T, f(t, ~))de, tel0,T] (6.1.4)
i=1

where f (0, T) = ho(T) is some initial forward curve.
Let us switch to an alternative parametrization to show that Eq. (6.1.4) is an
infinitesimal stochastic PDE. Let us introduce the Musiela parametrization [78]

re(x)=f@t,t+x), x=>0.
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Then the above equation in integrated form becomes

t n t

re = Stho(x) + / Si—summ(s, s +x, r)dt + > / Si—s0i(s, s+ x, r5)d X}
0 i=1 0

(6.1.5)

where S;h = h(t + -) fort € R, that is (see Chap.5), r; is a mild solution of the
equation

n
dr; = irt()c) + agm(t, r)dt + Zcri (1, rt)de (6.1.6)
dx —
in an appropriate Hilbert space H of forward curves, where % is the generator of
the strongly continuous semigroup S; (shift).

Here we use (with a slight abuse of notation):

agmm(t, r.) for agy(t, t +-,r.) and o(t, r.) for oy (t,t + -, r.).

The advantage of using the representation (6.1.6) instead of (6.1.4) is that instead
of dealing with infinitely many SDEs, one for every maturity time 7, we can deal
with only one (infinite-dimensional) SPDE.

Before we specify H in various cases, we end this section by motivating the HIM
drift condition.

Throughout H denotes a separable Hilbert space of forward curves and o; :
Ry xH — H (@ =1,2,...,n) are volatilities. In order that the term structure
model (6.1.6) is free of arbitrage, we have to show that all discounted bond prices
are local martingales. In order to achieve this, we assume that these are compact
intervals [a1, b1], [a2, b2],..., [an, bn] having zero as inner point, such that the Lévy
measures vy, 12, ..., v, of X1, X2, ..., X" respectively, satisfy fori = 1,2,...,n

/ e ui(dx) < oo for z€[a;,b;l. (6.1.7)
Ix|>1

From (6.1.7) we see that

Vi) = E[eX] i=1,....n
exists on [a;, b;] and is in C* [95]. Moreover, the Lévy processes X! possess
moments of arbitrary order. Let [c;, d;] C (a;, b;) be compact intervals having zero

as an inner point. For any continuous function 2 : Ry — R define Th : Ry — R
by

Thx) = /0 hGpdn.
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Fori =1,2,...,n,let
bi
Ay ={he H; —-Th(Ry) C [c;, di1}.

Ifo;(Ry x H) C AY,i =1,2,...,n, the HIM drift is

n

d X
am(t, r)(x) = Zawi (—/0 oit, r)(n)dn) (6.1.8)

i=1

= —0i (1. 1) @)Y (—/O Ui(t,r)(ﬂ)dn> (6.1.9)

which is well defined for all x. The HIM drift condition above implies that P is a
local martingale measure [31, Sect.2.1].

Remark 6.1.1 We need to ensure that oy (t,r) € H for all (¢,r) € R x H and
that the Lipschitz property of o; (i = 1,2, ..., n) implies the Lipschitz property of
apyy- This requires us to choose the space of forward curves carefully. In order that
(6.1.5) implies (6.1.6) we also need the map /2 +— h(x) from H to R to be continuous.

6.1.2 The Space of Forward Curves and Mild Solution
to the HJJM Equation

In this section we introduce the space of forward curves following [31]. We shall
present the existence and uniqueness result for the case n = 1. In view of our
condition on the existence of all moments of the Lévy measure, we can incorporate
the Poisson part of the Lévy decomposition of the Lévy process occurring in Eq.
(6.1.6) into the drift part, observing that the Lipschitz condition on ¢ implies the
Lipschitz condition needed in Theorem 5.2.3.

Now we consider the existence of mild and weak solutions to (6.1.6). We first
define the spaces H,, of forward curves, which were introduced in [31, Chap. 5].

Letw : Ry — [1, co) be anon-decreasing C!'-function such that w*% e L'(Ry).

Example 6.1.2 w(x) = ™, for a > 0.
Example 6.1.3 w(x) = (1 + x)?, for a > 3.
Let H,, be the linear space of all absolutely continuous functions 7 : R, — R

satisfying

/ Ih o) Pw(x)dx < oo,

R+
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where i’ denotes the weak derivative of 4. We define the inner product

@ﬁhﬁ=g®M®%+/ § O ()w()dx

Ry

and denote the corresponding norm by ||| - |||.. Since, for large time, forward curves
flatten to the maturity x, the choice of H,, is reasonable from an economic point of
view.

Proposition 6.1.4 The space (Hy, (-, -)w) is a separable Hilbert space. Each h €
H,, is continuous, bounded and the limit h(oco) := limy_, oo h(X) exists. Moreover,
for each x € Ry, the point evaluation h +— h(x) : Hy, — R is a continuous linear
functional.

Proof All of these statements can be found in the proof of [31, Theorem5.1.1]. O

The fact that each point evaluation is a continuous linear functional ensures that
forward curves (r;) solving (6.1.6) satisfy the variation of constants formula (6.1.5).

Defining the constants Cy, ..., Cq4 > 0 as
Cy = —l% C =1 C Ca = —%2
=Tl g, C=1+CL Gi=lw S g,
_1.7
Cai= w751} g,
we have for all 1 € H,, the estimates

||h/||L1(R+) < Cy [ 1w (6.1.10)

12l Lo,y < Co |l Alllw, (6.1.11)

Ih —h(©)lL1®,) = C3 |l Alllw, (6.1.12)

Ith = (o)) wliL1r,) < Ca I A3 (6.1.13)

which also follows by inspecting the proof of [31, Theorem5.1.1].

Since in order to apply Theorem 5.2.3 we require that the shift semigroup (S;);>0
defined by S;h = h(t 4 -) for t € R is pseudo-contractive in a closed subspace of
H,,, we use a technique which is due to Tehranchi [98], namely we change to the
inner product

(9, h)w := g(c0)h(00) +/ g OR (Vw(x)dx

Ry

and denote the corresponding norm by || - ||,,. The estimates (6.1.10)—(6.1.13) are
also valid with the norm || - ||, for all 2 € H,, (the proof is exactly as for the original
norm ||| - |||w). Therefore we conclude, by using (6.1.11),
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1

1
———— Ikl < 2w < A+ CD)2 IR, h € Hy
(1+C3)2
showing that || - ||, and ||| - |||., are equivalent norms on H,,. From now on, we shall
work with the norm || - ||.

Proposition 6.1.5 (S;) is a Co-semigroup in H,, with generator % : D(%) C
H, — H,, %h = W', and domain

D(L)={he Hy |l € Hy).

The subspace Hg = {h € Hy | h(co) = 0} is a closed subspace of Hy, and (S;) is
contractive in H,g with respect to the norm || - || .

Proof Except for the last statement, we refer to the proof of [31, Theorem 5.1.1]. By
the monotonicity of w we have

ISchl2 = /R W' (x + ) Pw(x)dx < |2,
.

forall# € Ry and h € HY), showing that (S;) is contractive in H. g

We define for any h = (hy, ..., hy,) € X?:lAziw

Shix) = —Zh,-(x)\lli’ (— /OX hi(n)dn) , xeRy. (6.1.14)
i=1

Proposition 6.1.6 There is a constant Cs > 0 such that for all g, h € x}_ 1Azi0 we
have

n
159 = Shllw = Cs > (1 il + lgillo + 19613 gi = hillu-— (6.1.15)

i=1

Wi

Furthermore, for each h € X7:1AH0 we have YLh € Hg, and the map % :

n ;i
Xi:lAHO

w

— HY is continuous.

Proof We define

Ki:= sup |W/(x)|, Li:= sup |¥/(x)| and M; := sup |¥(x)|
xe[c,-,d,-] XE[Ci,di] XG[Ci,di]
fori =1, ..., n. By the boundedness of the derivatives \IJZT on [c¢;, d;], the definition

(6.1.14) of X yields that foreach i € X?:lAZig the limit £/ (00) := limy_, o Lh(x)
exists and
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Th(co) =0, he x!_ A} (6.1.16)
By using (6.1.16) and the universal inequality

|x1+~-~+xk|2§k<|x1|2+"'+|xk|2>’ keN

we get for arbitrary g, h € X ?:1‘4;;0, the estimate

S h v, (— /0 hl-(mdn)

159 — ShI? =/
R Vi

=D ginw] (—/O gi(n)dn) + D007y (—/O gi(n)dn)
i=1

i=1

n X 2
= > hi(0)*y] (—/ hi(n)dﬂ) ‘ wx)dx <4n(li + I+ I3+ 1),
i=1 0

where we have put

n X X 2
N A (— / him)dn) " (— / g,-(mdn)\ w()dx,
= Jr, 0 0
n X 2
L= Z/R v, (—/O gi(n)dn) | (x) — g; () Pw(x)dx,
i=1 +

n X X 2
=Y g = [ gitpdn) = (= [ hitmdn)| wx)dx,
R 0 0
=17
n X 2
L= [ W= [ hitmdn) (i) = hi@)*) w(x)dx.
R 0
i=1""+

Using (6.1.12) yields

n n
I < D L hilgllgi = hillfag,, < €3 D Lilhilg lgi = hilly,s
i=1

i=1

and I, is estimated as

n
L <> Klgi — hill3.
i=1
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Taking into account (6.1.12) and (6.1.13), we get

n n
L= > Mlgiwlpglg = hillfig,, < C3C4 > M lgillyllgi = hilly,
i=1 i=1

and by using Holder’s inequality and (6.1.13), we obtain

o< DL | (@00 + ki) w(n) 2 (i) — hi () w(x) tdx
i=1 IRy

" 1 1
< D LIl +h)twiiy g I = i) wlfy g

i=1

n
<2Cs D Li(lgilly + Ihilli)llgi = hilly,s
i=1

which gives us the desired estimate (6.1.15). For all & € x:?:lAIq;"o we have Xh €
Hg by (6.1.15), (6.1.16), and the map X : x?zlAziO — HS) is locally Lipschitz
continuous by (6.1.15). ! O

By Proposition 6.1.6 we can, for given volatilities o; : Ry x Hy, — Hg satisfying
oi(Ry x Hy) C AZ’O fori =1, ..., n, define the drift term apyy according to the
HIM drift condition (6.1.8) by

oM =Yoo Ry x H, — HY, (6.1.17)

where 0 = (01, ..., o,).
Now, we are ready to establish the existence of Lévy term structure models on
the space H,, of forward curves.

Theorem 6.1.7 Leto; : Ry x Hy, — HB be continuous and satisfy o; (R4 x Hy)) C
fori =1,...,n. Assume there are M, L > 0 such that foralli = 1,...,n

andt € R4 we have

loi(t,)lw <M, heH,
loi(t, k1) — oi(t, ho)llw < Lllh1 — hallw, hi, ho € Hy,.

Then, for each hy € H,y, there exists a unique mild and a unique weak adapted
cadlag solution (r;);>0 to (6.1.6) with ro = hyg satisfying

E[ sup ||rt||i:| <00 forallT > 0. (6.1.18)
te(0,7T]
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Proof By Proposition6.1.6, apgym maps into Hg, see (6.1.17). Since 0 = (o074, ...,
o) Ry x Hy — X?ZIAZ’S is continuous by assumption and X : XL]AZ;O, — Hg
is continuous by Proposition 6.1.6, it follows that agpy = X o o is continuous.
Moreover, by estimate (6.1.15), we obtain for all + € Ry and hy, hy € Hy the

estimate

n
v (¢, h1) = g (e, h2) [l < Cs(1 4+ M) D loi(t, hy) — 0i(t, 7o)

i=1

< Cs(1 + M)*nL|lhy — hally.

Taking into account Proposition6.1.5, applying TheoremS5.2.3 completes the
proof. (]

As an immediate consequence, we get the existence of Lévy term structure models
with constant direction volatilities.

Corollary 6.1.8 Leto; : Ry xH, — Hg bedefinedbyoi(t,r) = o;(r) = p;i(r)A;,
where \; € Azio and p; : Hy — [0, 1] fori =1, ...,n. Assume thereisan L > (0
such that for al?i =1,...,n we have

lpi(h1) — @i(h2)| < Lllhy — hallw, hi, ho € Hy.

Then, for each hy € H,y, there exists a unique mild and a unique weak adapted
cadlag solution (r;);>0 to (6.1.6) with ro = hg satisfying (6.1.18).

Proof Forall hy, hy € Hy andalli = 1,...,n we have

loi(ht) — oi(h2)llw < LIAillwllh — h2llw.

Observing that ||o; (h)]ly < ||Aillw forallh € Hy andi = 1, ..., n, the proof is a
straightforward consequence of Theorem 6.1.7. ]
The only assumption on the driving Lévy processes X!, ..., X", needed to apply

the previous results, is the exponential moments condition (6.1.7). It is clearly satis-
fied for Brownian motions and Poisson processes.

There are also several purely discontinuous Lévy processes fulfilling (6.1.7), for
instance generalized hyperbolic processes, which have been introduced by Barndorff-
Nielsen [8], and their subclasses, namely the normal inverse Gaussian and hyperbolic
processes. These processes have been applied to finance by Eberlein and co-authors
in a series of papers, e.g. in [25].

Other purely discontinuous Lévy processes satisfying (6.1.7) are the general-
ized tempered stable processes, see [17, Sect.4.5], which include Variance Gamma
processes [61], and bilateral Gamma processes [57].

Consequently, Theorem 6.1.7 applies to term structure models driven by any of
the above types of Lévy processes.
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6.1.3 Forward Curve Evolutions as Strong Solutions
of Infinite-Dimensional Stochastic Differential Equations

In this section we choose the forward curves as in [13] and show that in this case
% is a bounded operator on the space. This allows us to obtain strong solutions to
Eq. (6.1.6) using Theorem4.2.2, as the space of forward curves is a Hilbert space
(clearly of M-type 2). We remark that under assumption (6.1.7) the Poisson integral
part of Eq. (6.1.6) (using Lévy decomposition) can be replaced by compensated
Poisson, adding the compensating term to the drift.

We fix real numbers 3 > 1 and v > 0. Let Hj be the linear space of all
h eC*® (R4, R) satisfying

IO G

n=0

We define the inner product
o

1\" [ (d"g()\ (d"hx)\ .
9. M :Z(B) /0 ( T )( s ) e

0

and denote the corresponding norm by || - || g,,. From [13, Proposition4.2] we obtain
the following Propositions 6.1.9 and 6.1.10.

Proposition 6.1.9 The space (Hg ,, (-, -)3,4) is a separable Hilbert space and for
each x € Ry, the point evaluation h — h(x) : Hg, — R is a continuous linear
functional.

The fact that each point evaluation is a continuous linear functional ensures that
forward curves (r;) solving (6.1.6) satisfy the variation of constants formula (6.1.5).

Proposition 6.1.10 We have % € L(Hg ), i.e. % is a bounded linear operator on
Hg .

Theorem 6.1.11 Let o; : Ry x Hg, — Hg ., be continuous and satisfy o; (R, x

Hgs.) C Ag’;} fori =1,...,n. Assume that agym(t,r) € Hg ., for all (t,r) €
2,y

R x Hg . Furthermore, assume that ogym (¢, v) : Ry x Hy o — Hp  is continuous

and that there is a constant L > 0 such that for all t € Ry and hy, ho € Hg ~, we
have

llommm(t, hy) — armm(t, h2) gy < Ll — ha2ll g,
loit, k) —oi(t, k)l < Lllhy — hallgy, i=1,...,n.

Then, for each hy € Hg y, there exists a unique strong adapted cadlag solution
(rt)r>0 to (6.1.6) with ro = hyg satisfying
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IE[ sup ||r[||%7i| < oo forallT > 0. (6.1.19)
1€l0,7] o

Proof Taking into account Proposition6.1.10, the result is a consequence of
Corollary 4.2.2. O

Unfortunately, Theorem6.1.11 has some shortcomings, namely it is demanded
that the drift term apyv according to the HIM drift condition maps into the space
Hpg . The following simple counterexample shows that this condition may be vio-
lated.

Example 6.1.12 Let 0 = —1 and X be a compound Poisson process with intensity
A = 1 and jump size distribution N (0, 1). Notice that the compound Poisson process
satisfies the exponential moments condition (6.1.7) for all z € R, because its Lévy
measure is given by

F(dx) =

But we have ayym ¢ Hp,, because

) © /4 2
/ apm (x)2e 1 dx =/ (—\Il(x)) e dx
0 0 dx
00 d 2 2 N 00 /
:/ (7 (67 — 1)) e dx :/ xzexz_’}xdx = 00.
o \dx 0

The phenomena that the drift gy may be located outside the space of forward
curves Hp - has to do with the fact that the space Hg , is a very small space in a
sense, in particular, every function must necessarily be real-analytic (see [13, Propo-
sition4.2]).

The small size of this space arises from the requirement that % should be a
bounded operator, because we are dealing with the existence of strong solutions.
When dealing with mild solutions, problems of this kind will not occur.

Nevertheless, for certain types of term structure models, we can apply
Theorem 6.1.11. For this purpose, we proceed with alemma. For a given real-analytic
function 2 : Ry — Ritis, in general, difficult to decide whether & belongs to Hj
or not. For the following functions this information can be provided.

Lemma 6.1.13 Every polynomial p belongs to Hg ., and for 6 € R satisfying
6% < fand § < 3, the function h(x) = % belongs to Hpg ..

ox

Proof The first statement is clear. For (x) = ¢°* we obtain
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whence h € Hp . O

Letn = 3, that is, we have three independent driving processes. We denote by X!
and X2 two standard Wiener processes, and X3 is a Poisson process with intensity
A > 0. We specify the volatilities as

a1 (x) = 1) p(x), 02(r)(x) = a(re™ando3(r)(x) = =1, (6.1.20)
where p is a polynomial, §, 7 € R satisfy 46> < 3, 6 < % and > < 3,1 < %, and

where ¢; : H, 3 — Rfori = 1, 2. Note that 0;(Hg ) C Hp fori =1,2,3 by
Lemma6.1.13. The drift according to the HIM drift condition (6.1.8) is given by

alt L o1 e Y .
agm () (x) = — Ewl(r) q(x) +5902(V) +A (e =1) |,

dx 1)

where g(x) = fg p(m)dn is again a polynomial. From Lemma6.1.13 and
Proposition 6.1.10 we infer agym(Hp,) C Hp .

Proposition 6.1.14 Assume thereis a constant L > O suchthatforall hy, h, € Hg ,,
we have

lpi(h1) — @i(h2)| < Lllhy — hillgy, i=1,2,
lpi (h1)? = @i (h2)?] < LIy — hillg, i=1,2.

Then, for each hy € Hg y, there exists a unique strong adapted cadlag solution
(r1)r=0 to (6.1.6) with ro = ho satisfying (6.1.19).

Proof We have for all hy, hy € Hg

loy(hy) —o1(ho)ll < Llipliglht — halig s
loa(h1) — o2 (h)ll < Lle® |5~ k1 — hallg--

Using Proposition6.1.10, we obtain for all 41, hy € Hp
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L
lanom (i) = anum ()15, < 3 1A Nz, ) (la2055
3 € = D25 1 = hallss-
Applying Theorem 6.1.11 completes the proof. O

In order to generalize Proposition 6.1.14, by allowing that in (6.1.20) may depend
on the present state of the forward curve, instead of being constant, we prepare two
auxiliary results.

Lemma 6.1.15 Let v > O and g,h € CI(R+; R). Assume there are ¢ > 0, € €
(—00, v) and xo € Ry such that

lg(X)h(x)| < ce™ forall x > xo.
Then we have
/OO" gEhxe dx = % [Q(O)h(o) + /0 " @0 dx
- /O N Q(x)h/(x)e_wdx} .

Proof Performing partial integration with three factors, we obtain

[some] "= /OOO g (h()e " dx + /OOO gEON (x)e " dx
—7 / " gh@e R dx.
0

By hypothesis, we have lim,_, o g(x)h(x)e™ 7" = 0, and so the stated formula
follows. O

Lemma 6.1.16 Let v > 0 and h € C*(Ry; R) be such that h, h', " > 0. Assume
there are ¢ > 0, € € (—o0, %) and xq € R4 such that

|h(x)| < ce and |h' (x)| < ce”™ forallx > xg.

Then we have
00 ,}/2 00
/ B (x)%e dx < L / h(x)?e " dx.
0 2 Jo

Proof Using Lemma®6.1.15 twice, we obtain
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oo 2 ,—yx 2 [ / —yx 1 2
h(x)?e dx = — h(x)h' (x)e ™ dx + —h(0)
0 Y Jo v
2 * / 2 —yx o " —yx
=— h'(x)%e de—l—/ h(x)h" (x)e ™ dx
Y 0 0
1 2 2 /
+ = | h(0)" + =h(0)R(0) |.
Y Y

Since h, h', k" > 0 by hypothesis, the stated inequality follows. O

Now we generalize Proposition 6.1.14 by assuming that, instead of being constant,
n : Hg, — Rin (6.1.20) is allowed to depend on the current state of the forward
curve. The rest of our present framework is exactly as in Proposition6.1.14.

Proposition 6.1.17 Assume that, in addition to the hypothesis of Proposition6.1.14,
we have v < ~/2, n(Hg.,) C [0, 3) N[0, /B) and

[n(h1) —n(h2)| < Llhy — haligy

forallhy, hy € Hg .. Then, for each hg € Hg -, there exists a unique strong adapted
cadlag solution (r;)r>o to (6.1.6) with ro = hg satisfying (6.1.19).

Proof 1t suffices to show that I : Hz ., — Hp, defined as I'(r)(x) := X g
Lipschitz continuous. So let k1, hy € Hpg ., be arbitrary. Without loss of generality
we assume that 79(h2) < n(h1). Observe that all derivatives of I'(h;) — ['(hy) are
non-negative. So we obtain by applying Lemma6.1.16 (notice that v < /2 by
hypothesis), and the Lipschitz property |e* — e”| < e*|x — y| for y < x, that

> (1

2
IT () = TR, = Z(E) / (e s — iyt ™) e ax

n=0

p n(hl)x nhx ) —yx
< ﬁT/ e —e ) e dx

ﬁ n(h1>x : =X
<goq (o = niopx) e

ﬁ nx)? e 2 2
<51 /0 (xe ) e dx ) L2y — ha3,-

The integral is finite, because we have n(h;) € [0, 12’) by assumption. Applying
Theorem6.1.11 completes the proof. ]
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6.2 A Bayes Formula for Non-linear Filtering with Gaussian
and Cox Noise

It is known [104] that if the observation noise is Brownian, the Zakai equation
is a stochastic partial differential equation (SPDE) driven by a Brownian motion.
Motivated by attempts to solve this equation, [56, 80] initiated the study of SPDEs
driven by Brownian motion. Our purpose in this section is to show that if the noise
is a Lévy process we get an SPDE driven by a Lévy process for the unconditional
density. In order to include both the Gaussian and the non-Gaussian part, we shall
present here the recent work from [64].

6.2.1 Introduction to the Problem

The general filtering setting can be described as follows. Assume a partially observ-
able process (X, Y) = (X;, Y1)o<i<T € R? defined on aprobability space (2, F, P).
The real valued process X; denotes the unobservable component, referred to as the
signal process or system process, whereas Y; is the observable part, called the obser-
vation process. Thus information about X, can only be obtained by extracting the
information about X that is contained in the observation Y; in the best possible way.
In filter theory this is done by determining the conditional distribution of X, given
the information o-field ]-"tY generated by Y, 0 < s < ¢. Or stated in an equivalent
way, the objective is to compute the optimal filter as the conditional expectation

Eplf(X:) | FF1

for a rich enough class of functions f.
In the classical non-linear filter setting, the dynamics of the observation process
Y; is supposed to follow the following It process

dYt == h(t, X;)dt +dWl,

where W; is a Brownian motion independent of X. Under certain conditions on the
drift h(f, X;) see [51, 52], Kallianpur and Striebel derived a Bayes type formula
for the conditional distribution expressed in terms of the so-called unnormalized
conditional distribution. In the special case when the dynamics of the signal follows
an It6 diffusion

dYr = b([, X[)d[ + O'(t, Xt)dB[,
for a second Brownian motion B;, Zakai [104] showed under certain conditions

that the unnormalized conditional density is the solution of an associated stochastic
partial differential equation, the so-called Zakai equation.
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Here we extend the classical filter model to the following more general setting.
For a general signal process X we suppose the observation model is given as

t
Yz=ﬁ(l,X)+G;+// s Ny(dt,ds), (6.2.1)
0 JRy

where

e G, is a general Gaussian process with zero mean and continuous covariance func-
tion R(s,),0 < s,t < T, that is, independent of the signal process X.

e Let F) (respectively FX) denote the o-algebra generated by {¥;,0 < s < 1}
(respectively {X;,0 < s < t}) augmented by the null-sets. Define the filtration
(Fr)o<t<r through F; := ]—"7)5 \Y fty. Then we assume that the process

t
L; :=// SN\(dt, ds)
o JRy

is a pure jump F;-semimartingale determined through the integer valued random
measure N) that has an F;-predictable compensator of the form

p(dt, ds,w) = A(t, X, s)dtv(ds)

for a Lévy measure v and a functional \(z, X (w), ). In particular, G, and L, are
independent.

e The function 3 : [0, T] x RI%T] — R is such that (¢, -) is FX -measurable and
B(-, X(w)) is in H(R) for almost all w, where H(R) denotes the Hilbert space
generated by R(s, t) (see Sect.6.2.2).

The observation dynamics thus consists of an information drift of the signal dis-
turbed by some Gaussian noise plus a pure jump part whose jump intensity depends
on the signal. Note that a jump process of the form given above is also referred to as
a Cox process.

The objective here is a first step toward extending the Kallianpur—Striebel Bayes
type formula to the generalized filter setting described above. When there are no
jumps present in the observation dynamics (6.2.1), the corresponding formula has
been developed in [62]. We will extend their approach to the present setting including
Cox noise.

In a second step we then derive a Zakai type measure-valued stochastic differential
equation for the unnormalized conditional distribution of the filter. For this purpose
we assume the signal process X to be a Markov process with generator O; := L; 4+ B;
given as

Ly f(x) :=0b(t, x) 0x f (x) + %Uz(h x) Oxx f (%),

By f(x) = /]R (G 47 X)) — f(x) = By F)y (2 x)s) 0(ds)
0
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where the coefficients b(¢, x), o(¢, x), v(¢, x) and f(x) are in Cg(]R) for every t.
Here, Cg (R) is the space of continuous functions with compact support and bounded
derivatives up to order 2. Further, we develop a Zakai type stochastic parabolic
integro-partial differential equation for the unnormalized conditional density, given
it exists. In the case when the dynamics of X does not contain any jumps and the
Gaussian noise G; in the observation is Brownian, the corresponding Zakai equa-
tion has also been studied in [75]. For further information on Zakai equations in a
semimartingale setting we also refer to [34, 37].

The remaining part of this chapter is organized as follows. In Sect.6.2.2 we
briefly recall some theory of reproducing kernel Hilbert spaces. In Sect.6.2.3 we
obtain the Kallianpur—Striebel formula, before we discuss the Zakai type equations
in Sect.6.2.4.

6.2.2 Reproducing Kernel Hilbert Space and Stochastic Processes

A Hilbert space H consisting of real valued functions on some set T is said to be a
reproducing kernel Hilbert space (RKHS) if there exists a function K on T x T with
the following two properties: for every ¢t in T and g in H,

(i) K(,1) €eH,
@) (g(-), K(-, 1)) = g(t) (the reproducing property).

K is called the reproducing kernel of H. The following basic properties can be found
in [7].

(1) If a reproducing kernel exists, then it is unique.

(2) If K is the reproducing kernel of a Hilbert space H, then {K (-, 1), t € T} spans
H.

(3) If K isthe reproducing kernel of a Hilbert space H, then it is nonnegative definite
in the sense that forall #;,...,#,inTand ay, ..., a, € R

n
Z K(ti,tj)aiaj > 0.
i,j=1

The converse of (3), stated in Theorem 6.2.1 below, is a fundamental step towards
understanding the RKHS representation of Gaussian processes. A proof of the the-
orem can be found in [7].

Theorem 6.2.1 (E.H. Moore) A symmetric nonnegative definite function K on T x
T generates a unique Hilbert space, which we denote by H(K) or sometimes by
H(K,T), of which K is the reproducing kernel.

Now suppose K (s,t), s,t € T, is a nonnegative definite function. Then, by
Theorem 6.2.1, there is a RKHS, H (K, T), with K as its reproducing kernel. If we
restrict K to T’ x T where T’ C T, then K is still a nonnegative definite function.
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Hence K restricted to T’ x T’ will also correspond to a reproducing kernel Hilbert
space H(K,T’) of functions defined on T’. The following result from [7; p. 351]
explains the relationship between these two.

Theorem 6.2.2 Suppose KT, defined on T x T, is the reproducing kernel of the
Hilbert space H(KT) with the norm || - ||. Let T" C T and K be the restriction of
K1 onT xT'. Then H(K7) consists of all f in H(KT) restricted to T’. Further, for
such a restriction f' € H(Kt) the norm || f'|| g (k) is the minimum of || f || i (kr)
forall f € H(KT) whose restriction to T’ is f.

If K(s,t) is the covariance function for some zero mean process Z;,t € T,
then, by Theorem 6.2.1, there exists a unique RKHS, H (K, T), for which K is the
reproducing kernel. It is also easy to see [e.g., see Theorem 3D, 81] that there exists
a congruence (linear, one-to-one, inner product preserving map) between H (K ) and
5pL*(Z,, t € T} which takes K (-, 1) to Z;. Let us denote by (Z, 1) € SpL"{Z:, ¢ € T}
the image of 7 € H(K, T) under the congruence.

We conclude this section with an important special case. Suppose the stochastic
process Z; is a Gaussian process given by

t
Z,:/ F(it,u)ydw,, 0<t<T
0

where f(; F z(t, u)du < oo forall0 <t < T and W, is Brownian motion. Then the
covariance function

NS
K(s,t)EE(ZSZ,)=/ F(t,u)F(s, u)du 6.2.2)
0

and the corresponding RKHS is given by

t
H(K) = [g 1 g(1) :/ Ft,u)g*(u)du, 0<t< T] (6.2.3)

0

for some (necessarily unique)
g* €SP UF( (). 0 <1 < T}
with the inner product
T
(91, 92)HK) =/O 97 () g5 (w)du,

where

N

gl(s):/o F(s,u)g{(u)du and gz(s):/o F(s,u)gs(u)du.
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For 0 <t < T, by taking K (-, )* to be F(z, -)1[0,,(-), we see, from (6.2.2) and
(6.2.3), that K(-,t) € H(K). To check the reproducing property suppose h(t) =
fo F(t,w)h*(u)du € H(K). Then

T t
(h,K(-,t))H(K)z/ h*(u)K(-,t)*du:/ B*(u)F(t, u)du = h(r).
0 0

It is also very easy to check in this case [cf. 82, Theorem 4D] that the congruence
between H(K) and @LZ{Z,, t € T} is given by

T
(Z, g) =/0 g (w)dw,. (6.2.4)

6.2.3 The Filter Setting and a Bayes Formula

Assume a partially observable process (X, Y) = (X;, Yi)o<i<T € R? defined on a
probability space (€2, F, IP). The real valued process X; denotes the unobservable
component, referred to as the signal process, whereas Y; is the observable part, called
the observation process. In particular, we assume that the dynamics of the observation
process is given as follows:

t
Y, = 8(t, X) + G, +/ / ¢ Ny(d1, d<), (6.2.5)
0 JRg

where

e G, is a Gaussian process with zero mean and continuous covariance function
R(s,1),0 <s,t < T, thatis, independent of the signal process X.

e The function 3 : [0, T] x RI%T] — R is such that 3(z, -) is FX -measurable and
B(-, X(w)) is in H(R) for almost all w, where H(R) denotes the Hilbert space
generated by R(s, 1) (see Sect.6.2.2).

o Let 7Y (respectively FX) denote the o-algebra generated by {¥,,0 < s < t}
(respectively {X;,0 < s < t}) augmented by the null-sets. Define the filtration
(Ft)o<i<r through F; := ]—"7{( \% fty. Then we assume that the process

t
L :=// < Ny(d1, de)
0 JRy

is a pure jump F;-semimartingale determined through the integer valued random
measure N that has an F;-predictable compensator of the form

w(dt, ds, w) = At, X, 5)dtv(ds)

for a Lévy measure v and a functional A(¢, X (w), <).
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e The functional \(z, X, <) is assumed to be strictly positive and such that

T
/ / log® (A(s, X, <)) pu(ds, ds) < oo as. (6.2.6)
0 Ro

T
/ / log® (\(s, X, <)) ds v(ds) < oo as. (6.2.7)
0 Ro

and

A= exp[/ /Ro ()\(s X ))Nx(ds,dc)
1 1
I - 1 ds,d
+/0 ~/Ro(0g()\(s,X»§)) A(s, X, ¢) + )'u( 5, q)}

is a well-defined F;-martingale. Here Nx(ds, d<) is the compensated jump mea-
sure

Nx(ds, ds) := Ni(ds, ds) — pu(dt, ds).

Remark 6.2.3 Note that the specific form of the predictable compensator u(dz,
dg, w) implies that L; is a process with conditionally independent increments with
respect to the o-algebra FX, i.e.

Eplf(Li — L)1a | Ff1=Epl[f(L; — Ls) | Ff 1Ep[1a | F7 1,

for all bounded measurable functions f, A € Fs,and 0 < s <t < T (see, for
example, Theorem 6.6in [48]). It also follows that the process G is independent
from the random measure N (ds, ds).

Given a Borel measurable function f, our non-linear filtering problem then comes
down to determining the least squares estimate of f (X;), given the observations up to
time ¢. In other words, the problem consists in evaluating the optimal filter

pLf (X0 | F]. (6.2.8)
In this section we want to derive a Bayes formula for the optimal filter (6.2.8) by an

extension of the reference measure method presented in [62] for the purely Gaussian
case. For this purpose, define for each 0 <t < T with 5(-) = 8(-, X)

1
A; :=exp{—(G, ) — EHﬁ”?] .

Then the main tool is the following extension of Theorem 3.1 in [62].
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Lemma 6.2.4 Define
dQ := A\ dP.
Then Q; is a probability measure, and under Q; we have that
Y = ét + Ly,

where 5S = (B(s, X) + G5, 0 < s < t, is a Gaussian process with zero mean and
covariance function R, Ly, 0 < s < t, is a pure jump Lévy process with Lévy measure
v, and the process X5, 0 < s < T has the same distribution as under P. Further, the
processes G, L and X are independent under Q;.

Proof Fix 0 <t < T. First note that since 3(-) € H(R) almost surely, we have by
Theorem 6.2.2 that 3|j0,;] € H(R; t) almost surely. Further, by the independence of
the Gaussian process G from X and from the random measure Ny (ds, d<) it follows
that

Ep[A; A7l = Ep[Ep[A, | F7 JEp[A] | F7 1.
Since for f € H(R; t) the random variable (G, f); is Gaussian with zero mean and

variance || f ||,2, it follows again by the independence of G from X and the martingale
property of A, that Ep[A,;A}] = 1, and Q; is a probability measure.

Now take 0 < s1,...,5, <t,0<ry,...,rp <t,0=<11,...,t, < T and real
numbers Af, ..., Ay, V15 .-+, Yp> @1, ...,y and consider the joint characteristic
function

]EQ [ei Z_’,"=| Qj er +i Z,"n=| Ai 551’ +i Z/f:] Yk (er *er,| )]
t

— Ep [ei Sy X+ X NG+ X ’Yk(Lr,{—er_l)AtA;]

i > i X i S NG i >P —L,

= Ep [ =1 X Eplel X MO A | FF | Bple! Thot W En ) 5, 7).
Here, for computational convenience, the part of the characteristic function that
concerns L is formulated in terms of increments of L (where we set ro = 0). Now,
as in Theorem 3.1 in [62], we get by the independence of G from X that

Eple’ S NGy A |f]¥] = ¢~ Zii=1 NARGLs)

which is the characteristic function of a Gaussian process with mean zero and covari-
ance function R.

Further, by the conditional independent increments of L, as in the proof of
Theorem 6.6 in [48], we get that



156 6 Applications

Ep [ef,” Sy 3(s.X.) Na(ds.ds) | ]_-])g] _ I g (00X —1-6(5.X.0)) i ds)

forO <r <u < T. So that for one increment one obtains

Ep [em(Lu—Lr)Al |f§]

N =
+/ /RO (’””k’g (A(s,lx, <>) B A(s,lx, 9 I)M(d”dg)] 'fﬂ
- Ep[exp [ / /RO (e"”*“"g(m) 1 —iye —log (m)) p(dt, d<)
+/r“ /RO (mg—l—log(/\(s’lx’ g)) - A(S’IX’ 5+ l)u(dz,dg)] |]—‘%}
= Ep [exp [ / ' /R 0 <ei"’<+‘°g(m9m) - m) A, X, g)dtz/(dc)] |f7¥}
— exp [(u - /RO (ef“ - 1) u(dg)] .

The generalization to the sum of increments is straightforward and one obtains the
characteristic function of the finite dimensional distribution of a Lévy process (of
finite variation):

P
Bple! Xia HEn b o, | 7 = exp [Z(rk e [ (1) u(do] :
Ro

k=1

All together we end up with

Eg

|:€i 3oy X+ Sy NG+ 30y WLy L )]
t

= Ep [ Z5-t %0 | . 7 Ehiat ARG o Zkm (k) g (7K =)y

which completes the proof. ]

Remark 6.2.5 Note that in the case where G is Brownian motion Lemma6.2.4 is
just the usual Girsanov theorem for Brownian motion and random measures. In this
case, it follows from the Cameron—Martin theorem and the fact that X is independent
of G, that A, A} is a martingale, and dQ is a probability measure.

Now, the inverse Radon—-Nikodym derivative

dr _ —1 /\—1
a0, (A7 (AD)
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is Q;—a.s. by condition (6.2.6) and an argument as in [62, p. 857] via
t ~
(A~ =exp [ / / log (A(s, X, <)) N(ds, d<)
0 JRy
t
+/ / (log (A(s, X,9)) — A(s, X, <) + 1) ds u(dg)],
0 JRy
/\—1 ~ 1 2

(A~ =exp [(G, B — Ellﬂlll l

Here

N(ds, ds) := Ny(ds, ds) — dtv(ds)

is now a compensated Poisson random measure under QQ;. Then we have by the
Bayes formula for conditional expectation for any .7-'%( -measurable integrable func-
tion g(T, X)

Eg, [9(T. X\)(An~ (AP~ FY]
Eg, [(A0=1(Ap=1 [ FY]

Bs [o(r, )| 7| =

From Lemma 6.2.4 we know that the processes (55)035:, (Ls)o<s<t>and (Xs)o<s<T
are independent under @Q; and that the distribution of X is the same under Q; as
under P. Hence conditional expectations of the form Eq, [¢(X, G, L)| }',Y ] can be
computed as

Eq,[6(X. G, L) | F' 1(w) = /Q S(X(@), Gw), L@)Qs (D)

= /Q H(X (&), G(w), L(w))PAD)
= E3[6(X (@), Gw), L)1,

where (w,w) € Q x Q and the index P denotes integration with respect to w.
Consequently, we get the following Bayes formula for the optimal filter.

Theorem 6.2.6 Under the above specified conditions, for any ]-"7)5 -measurable inte-
grable function g(T, X)

_ Ja 9T X@)ou (. &)aj(w, H)P(AS)
Jo i (w, D)oy (w, ©)P(dD)
Ep [9(T. X (@) (w, D)aj (w, &)]

Ep [9(T. X) 1 7/ ]

)

Ep [ozt(w, w)ag (w, &J)]
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where
t
o (w, L) = exp [/ / log ()\(s, X (@), g)) N(w, ds, ds)
0 JRg
t
+/O /}R (log (A(s, X(©),6)) = A(s, X (@), <) + 1) ds V(d<)},
0

~ 1
ap(w, &) = exp [(G(w), BC @) — Ellﬂ(u L7J)||12] .

6.2.4 Zakai Type Equations

Using the Bayes formula from above we now want to proceed further in deriving
a Zakai type equation for the unnormalized filter. This equation is basic in order to
obtain the filter recursively. To this end we have to impose certain restrictions on
both the signal process and the Gaussian part of the observation process.

Regarding the signal process X, we assume its dynamics to be Markov. More
precisely, we consider the parabolic integro-differential operator O; := L; + B;,
where

Ly f(x) :=0b(t, x) 0x f(x) + %OZ(I, x) Oxx f (%),

B; f (x) i=/R {f (x + (1, 0)9) — f(x) = Ox f(x)y(t, x)s} v(do)
0

for f € Cg (R). Here, Cg (R) is the space of continuous functions with compact
support and bounded derivatives up to order 2. Further, we suppose that b(¢, -),
o(t,-), and ~(¢, -) are in Cg (R) for every ¢ and that v(ds) is a Lévy measure with
second moment. The signal process X;, 0 <t < T, is then assumed to be a solution
of the martingale problem corresponding to O, i.e.

t
FXp) — /0 (O ) (Xu)du

is an FX-martingale with respect to P for every f € C(z) R).
Further, we restrict the Gaussian process G of the observation process in (6.2.5)
to belong to the special case presented in Sect.2.1, i.e.

t
Gtz/ F(t,s)dWs,
0

where W; is Brownian motion and F(z,s) is a deterministic function such that
fot F 2(t, s)ds, 0 <t < T. Note that this type of process includes both Ornstein—
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Uhlenbeck processes as well as fractional Brownian motion. Then (¢, X) will be
of the form

t
6(t, X) :/ F(t,s)h(s, X5)ds.
0
Further, with
. t
W[ :Z/ h(s, Xs)ds + Wl
0

we get (G, B), = [y h(s, Xs)dWy and ||B]> = [y h*(s, X,)ds, and o (w, @) in
Theorem 6.2.6 becomes

t t
aé(w,a)):exp[ / h(s,xs@))dWs(w)—% / hz(s,xs@))ds].
0 0

Note that in this case VT’S, 0 < s <'t, is a Brownian motion under Q;.
For f € Cg (R) we now define the unnormalized filter V;(f) = V;(f)(w) by

Vi()w) = /Q X @) (w, D)aj(w, OPED) = Eg [ f(Xe (@) (W, D)y (w, D)] .

Then this unnormalized filter obeys the following dynamics.

Theorem 6.2.7 (Zakai equation I) Under the above specified assumptions, the
unnormalized filter V,( f) satisfies the equation

aVi(1O) @ = V(O f ) @dr + Vi (1t 9 £()) @d Wi @)
+ / Vz( A, 9 =1 f(-)) ()N (w, dt, ds). (6.2.9)
Ro

Proof Set

T
91(©) == f(X1 (&) —/ (Os /)X (@))ds.
t

Then, by our assumptions on the coefficients b, o, v and on the Lévy measure v(ds),
we have |g;| < C for some constant C. Since f(X;)— f(; O, f(Xy) ds is amartingale
we obtain

Eslg | F ' O1= r(X), 0<i<T. (6.2.10)
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If we define
[(w, ) = a;(w, ©)a; (w, D),
then, because I'; (w, @) is .F,X@)-measurable for each w, Eq.(6.2.10) implies that

Vi(f) = Eplf (X ()T (w, @)]
X

= EplEslgr (@) @, &) | F 1] = Ealgr )T (w, D).

By definition of g;,
dgi(@) = (O )X (@))dt.

Furthermore, I'; = T';(w, ©) is the Doléans—Dade solution of the following linear
SDE

dr; = h(t, X,(@)r,dvT/,(w)Jr/ (A, X (@), ) — 1) ;N (w, dt, ds).
Ro

So we get
t
Eg [9:(@OT ] = Ep [go(@)To] + Ep [ /0 (Os /H(Xs (&)))des}
t
+E; [ / h(s, X;(@)gs ()T d Wy (w)}
0
t
+Ep [/ /R (AG. Xs(@).¢) = 1) go(@)T (N (w. ds, dc)} .
0 0

The first term on the right-hand side equals f(Xy), and for the second one we can
invoke Fubini’s theorem to get

t t
Eg [ / (Osf)(Xs(c?)))Fst] - / B[O, ) (X, ()T lds
0 0
t
= Vil O f (- ds.
| v o) was

For the third term we employ the stochastic Fubini theorem for Brownian motion
(see for Example 5.14 in [58]) in order to get
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t
Eﬁp |:/ h(s, Xs(@)gs(@)rsdws(w)}
0
t o~
= [ s [ @@ aie
' X (@) W
= | By [h(s, X, @SB [ g5 @) | FXO ] a W,
| s [ xu@r B [0 12X | W)
t ~
= | s [ xe@r F @] W)
t o~
= [ V(.0 O) @i,
0

Further, one easily sees that the analogue stochastic Fubini theorem for compensated
Poisson random measures holds, and we get analogously for the last term

t
e [/0 /]R (A6, Xs (@), ) ~ 1)93(@)Fsﬁ(w,ds,dc)]
t ’ ~
:/ / V(6.9 = D FO) @ @, ds. o),
0 JR,

which completes the proof. (]

If one further assumes that the filter has a so-called unnormalized conditional
density u(t, x) then we can derive a stochastic integro-PDE determining u(, x)
which for the Brownian motion case was first established in [104] and is usually
referred to as the Zakai equation.

Definition 6.2.8 We say that a process u(f, x) = u(w,t, x) is the unnormalized
conditional density of the filter if

Vi (f)(w) =/ Su(w, t, x)dx (6.2.11)
R

for all bounded continuous functions f : R — R.

From now on we restrict the integro part 3, of the operator O; to be the one of
a pure jump Lévy process, i.e. ¥ = 1, and we assume the initial value X (w) of the
signal process to possess a density denoted by &£(x). Then the following holds:

Theorem 6.2.9 (Zakai equation II) Suppose the unnormalized conditional density
u(t, x) of our filter exists. Then, provided a solution exists, u(t, x) solves the following
stochastic integro-PDE

du(t, x) = Ofu(t, x)dt + h(t, x)u(t, x)d W, (w)
+ Jrg A, X, ) = Du(t, x)N (w, dt, d<) (6.2.12)
u(0, x) = &(x).
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Here Of := L] + B} is the adjoint operator of O; given by
* 1 2
L7 F () = =0 (b1, ) f () + 500 (20,00 F ()

By f(x) = /R {f(x =¢) = f(x) + Ox f(x)}v(d<)
0

for f € C3(R).

For sufficient conditions on the coefficients under which there exists a classical
solution of (6.2.12) see for example [75]; in [74] the existence of solutions in a
generalized sense of stochastic distributions is treated.

Proof By (6.2.9) and (6.2.11) we have for all f € Cgo(]R)

t
/f(x)u(t,x)dx:/ f(x)f(x)dx—i—/ /u(s,x)@jf(x)dxds
R R 0 JR
t
+ [ [ w0 fdrd W)
0 JR
'
+/ / / u(s, x) (A(s,x,¢) — 1) f(x)dxﬁ(w, ds, ds).
0 JRyJR
Now, using integration by parts, we get
/u(s,x)ﬁ?f(x)dx:/ F)OFu(s, x)dx. (6.2.13)
R R
Further, using integration by parts again and by substitution, we have
/u(s,x)B;kf(x)dx =/ F@)Biu(s, x)dx. (6.2.14)
R R

Fubini together with (6.2.13) and (6.2.14) then yields

/ f)u(t, x)dx :/ f(x)E&Mx)dx +/ f(x) (/t O;ku(s,x)ds) dx
R R R 0
t
+/ f(x) (/ u(s,x)h(s,x)dVT’s(w)) dx
R 0

t
+/ f(x) (/ / u(s, x) (s, x,q) — l)ﬁ(w,ds,dc)) dx.
R 0 JRy

Since this holds for all f € C§°(R) we get (6.2.12). O
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6.3 Remarks and Related Literature

Kallianpur and Striebel [52] established a Bayes formula for the filter. This can be
used in order to obtain the computation of the filter iteratively using SPDEs driven
by a Brownian motion (Zakai equation). This motivated the study of the pioneering
work of [56, 80] on SPDEs with respect to Brownian motion.

It was shown in [62] that the Brownian motion can be replaced by any Gaussian
process in establishing a Bayes formula. For a subclass of Gaussian processes (includ-
ing fractional Brownian motion) one can use it to obtain an analogue of the Zakai
equation.

For Lévy processes such an equation was first established in [75]. The work
presented here is from [64], giving a simultaneous generalization of the work in
[62, 75]. The properties of reproducing kernel Hilbert spaces are taken from the
basic work of [7].

For sufficient conditions under which a classical solution to (6.2.12) exists is given
in [75]. The existence of a generalized solution is proven in [74].

The material in Sect. 6.1 is taken directly from the pioneering work of [32] which
constructs the SPDE as an equation in an appropriate Hilbert space, motivated by
[13,31].



Chapter 7
Stability Theory for Stochastic Semilinear
Equations

In this chapter we study stability of time-homogeneous stochastic partial differential
equations

[ dZ; = (AZ; 4+ a(Z))dt + [y f(x, Z)q(dt, dx)
(7.0.1)

Zo = X.

Throughout this chapter, (2, F, (F;):>0, P) denotes a filtered probability space sat-
isfying the usual conditions. Let H be a separable Hilbert space. In (7.0.1), g denotes
the compensated Poisson random measure on R x E associated to a Poisson random
measure N with compensator dt ® 3(dx).

7.1 Exponential Stability in the Mean Square Sense

Leta: H — H and f : H\{0} x H — H be functions.

Assumption 7.1.1 There exists a constant L > 0 such that

la(z1) —a(z2)| < Lllz1 — 22l (7.1.1)

/E I f(z1, u) — f(z2, wI*B(du) < Lz — 22> (7.1.2)

forall z1, zo € H, and a constant C > 0, such that

/ I £z, w)?B(du) < C(1 + ||z]|*) forallz € H. (7.1.3)
E
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Remark 7.1.2 Note that
la@Il = K(lzll+1), z €H, (7.1.4)

for some constant K > 0.

Throughout this chapter, we assume that Assumption 7.1.1 is fulfilled.
As proved in Chap.5, under Assumption 7.1.1, for each x € H the stochastic
partial differential equation (7.0.1) has a unique mild solution (Z;);>0, and it is a

homogeneous Markov process satisfying fOT E[|Z} |1ds < oo forall T € R,.
Definition 7.1.3 We say that the solution of SPDE (7.0.1) is exponentially stable in
the mean square sense if there exist positive real constants ¢, 6 such that

E[|Z}]1?] < ce " ||x||* forallx € Hands > 0. (7.1.5)

Our object in this chapter is to derive conditions for exponential stability in the
mean square sense.

By Theorem 5.4.2, for each x € H the solution Z* for (7.0.1) is a time-
homogeneous Markov process.

Let D denote the Fréchét derivative.

Definition 7.1.4 The infinitesimal generator L of the solution of SPDE (7.0.1) is
defined as

LY(y) = DY(y)(Ay + a(y))
+/ (w(y + f(x,y) = ¥(y) — DY(y) f(x, y))ﬂ(dx), y € D(A)
H\{0}

for any ¢ € C7'°(H; R).
Lemma 7.1.5 Let ¢ € C;’z’loc(l&_ x H; H) and x € D(A) be arbitrary, and let Z

be a strong solution for (7.0.1) with Zy = x. Then, we have

t
¢mz»—¢ww>=é<@szo+£m&a»m
t
+/ /wmzy+ﬂmA»—¢mz»mu&mxtzo.
0 E

Proof The statement follows from Itd’s formula (Theorem 3.7.2). O

Definition 7.1.6 A function ¢ € Cg‘]OC(H : R) is called a Lyapunov function for
(7.0.1) if there are constants ¢; > 0,i = 1, 2, 3 such that

clxl?> <v@) <eslx)?. xeH (7.1.6)
LY(x) < —crp(x), x € D(A). (7.1.7)
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For n € N with n > «, where the constant o € R stems from (5.1.2), we con-
sider the approximative system (A.3.2), and denote by £, its infinitesimal generator.
According to Theorem A.3.2, foreach x € D(A) there exists a unique strong solution

Z™* for (A.3.2) with Z = x.

Lemma 7.1.7 Let i) € CZ’IOC(H ; R) be a function such that for some constants
c3, k3 > 0 we have

W) < cslx|*+1), xeH. (7.1.8)
Then, for all x € D(A), all c; > 0 and all n € N such that

1
E[/ € (c2 + En)w(Zf’xﬂds] <oo, t>0 (7.1.9)
0

we have the identity
t
eYE[Y(Z)] - Y(x) = ]E|:/ e (cr + z:,,)w(zgls")ds} t>0. (7.1.10)
0

Proof Note that the function ¢ : Ry x H — H, ¢(t,x) = e'1)(x) belongs to
C;’Z’IOC (R4 x H; H). Using Itd’s formula (Lemma 7.1.5) we obtain

t
e2MP(ZP) —Y(x) = / e (cr + L)Y(Z )ds + My, 1>0
0
where M denotes the local martingale
t
M= [ [ et s ez - vz edsdn. =0
0o JE

There exists a non-decreasing sequence (7y;),eN Of stopping times such that 7, —
oo almost surely and M7 is a martingale with MOT’" = 0 for each m € N. Therefore,
we obtain

t ATm
CTEI(ZE )] — (x) = E[ / e cnm(zgws], t>0,
0

Let t > 0 be arbitrary. By (7.1.8), we have P-almost surely

WEZE Y < es(IZBE 1P+ 1) 503( sup ||z;”||2+1), m e N.
s€[0,1]

Since (Zs)sefo0.1] € S,z(H ) and (7.1.9) is valid, Lebesgue’s dominated convergence
theorem applies and yields (7.1.10). O
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At this point, we prepare a generalized version of Lebesgue’s dominated conver-
gence theorem, which we will require in the sequel.

Lemma 7.1.8 Let (X, X, ) be a measure space. Let f, : X — R, n € N and
f + X — R be measurable such that f, — f almost surely. Furthermore, let
gn € LY (X), n € Nand g € L'(X) be such that g = liminf,_, o g,, almost surely,
| ful < gnforalln € Nand [y gudp — [y gdp. Then we have f € L' (X) and

Aﬂ@eéjw

Proof The hypothesis | f,,| < g, implies that the functions g, + f;, and g, — f; are
nonnegative and measurable for all » € N. Fatou’s Lemma yields

/ gdp +/ fdp =/ liminf(g, + fu)dp < liminf/ (gn + fu)dp
x x x n—>o0 n—oo [y

:/gdu—i—liminf/ fadp
X n—oo X

as well as
/ gdp _/ fdp =/ liminf(g, — fu)dp < liminf/ (Gn — fu)dp
X X X n—0oo n—oo X

:/gdu—limsup/ fad .
X n—00 X

Since g € LY(X), we deduce that

| ran <timint [ pap <timsop [ pan < [ gap.
X n—oo Jx n—oo JX X

and hence the desired conclusion follows. O

Lemma 7.1.9 Let ¢ € C;*lOC(H ; R) be arbitrary. Suppose there exist constants
c3, ¢4, cs5 > 0 such that we have (7.1.8) and

IDY)| < ea(l+ IxI), x € H (7.1.11)
IDY*(x)| < e¢s5, x € H. (7.1.12)

Letx € H,t > 0 and co > 0 be arbitrary. Then there exists a subsequence (ny)reN
such that

t
E|:/ €2 (L, — £)¢(Z?k’x)|dsi| <oo, keN (7.1.13)
0

and we have the convergences
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E[Y(Z{)] — E[(Z))], (7.1.14)

t
E[/ e (Ly, — L)z/J(Z?k*x)ds:| — 0. (7.1.15)
0
Proof Letx € H,t > 0 and ¢, > 0 be arbitrary. By Theorem A.3.2 we have

E[ sup |21 — Z;‘||2} — 0. (7.1.16)
s€[0,1]

Hence, there exists a subsequence (ny ) such that almost surely

sup [|Z"%* — ZX|12 = 0. (7.1.17)
s€[0,7]

By (7.1.8) and the generalized Lebesgue dominated convergence theorem (Lemma
7.1.8) we deduce (7.1.14). Note that for each k € N we have

€2 (L, — LYY(Z") = XK +/ F(s, u)B(du), s €l0,1]
E

where we have defined X* : Q x [0,¢] — R and Fk:Qx [0,f] x E — Ras
X§ = e DY(Z ) (ni Ry (A) — 1d)a(Z)4),
FE () = €2 (D020 4 nicRo (A)f (1, Z05)) = D(Z0)
— DU(Z i R (A) f (, Z05) )
— e (W@ 4, Z)
— U2 = DUZI) F, 1))
By (7.1.17) we get

XK =0, P® A|jo,-almost everywhere,

Ff(s,u) > 0, P® Alo,r] ® B-almost everywhere.
Furthermore, we define Y, Y* : Q x [0,¢] - Rand G, Gk Qx [0,f]x E — Ras

Y, = 2c4K (v + e (1 + | Z5 %),
YS = 2caK (v + e (1+ 1 28|17,
G(s,u) = 2cs5(y + e’ C(1 + | Z1|),
G* (s, 1) = 2¢5(y + De" C(1 + || 27+ ||?),
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where the constants K > 0 and C > 0 stem from the linear growth conditions
(7.1.3), (7.1.4), and the constant v > 0 comes from Lemma A.3.1.

Using (7.1.11), Lemma A.3.1 and the linear growth condition (7.1.4) we obtain
for all k € N the estimate

XK < 2caK (v + De (1 4 | 20 )?) = YK

almost everywhere with respect to P® A|jo,/]. By Taylor’s theorem, relation (7.1.12),
Lemma A.3.1 and the linear growth condition (7.1.3) we get for all k € N the estimate

|F¥(s, u)| < e5e ||ng Ry, (A) f (u, ZM) 1> + cse || f (u, Z0)||1?
< 2¢5(y + D C(1+ |2 1%) = G (s, u)

almost everywhere with respect to P ® Al[o,;j ® 3. This shows (7.1.13). By (7.1.17)
we have

Yk = v,, P® A|jo.j-almost everywhere,
Gk(s, u) — G(s,u), P® Ap,q® [-almost everywhere,

and, furthermore, by (7.1.16) we have

E[/l Yskdsi| — E[/r stsi|,

0 0
t t

E[/ / Gk(s,u)dsﬁ(du)] — IE[/ / G(s,u)dsﬁ(du)}
0 JE 0 JE

The generalized Lebesgue dominated convergence theorem (Lemma 7.1.8) applies
and proves (7.1.15). (]

Theorem 7.1.10 Suppose Assumption 7.1.1 is fulfilled, and there exists a Lyapunov
function 1 € Cy°°(H;R) for (1.0.1) such that (1.1.11) and (7.1.12) are satisfied
with appropriate constants c4, cs5 > 0. Then, the SPDE (7.0.1) is exponentially stable
in the mean square sense.

Proof Let x € D(A) and t > 0 be arbitrary. By Lemma 7.1.9, there exists a subse-
quence (ny)xen such that (7.1.13)—(7.1.15) are satisfied. Using (7.1.7) and (7.1.13),
for each k € N we have

t t
E[ / 165 (e + cnkw(zyk’mds} < E[ / 1625 (L — cwazk’mds} < 0.
0 0
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By Lemma 7.1.7 and relation (7.1.7) we obtain

eNE[(Z{F)] = p(x) = ]E[/Ot e (2 + Enk)qﬁ(Z?k’x)dS}
< IE|:/0I e (L, — E)q/J(Z;”"X)ds:|, keN
and hence, by virtue of (7.1.14) and (7.1.15), we get
CUE[H(Z)] < ().
Incorporating (7.1.6) we obtain
B[ ZT 7] < BIH(ZH] < e p(x) < ez |lx])%,
Since D(A) is dense in H, applying Corollary 5.3.2 yields (7.1.5) with ¢ = i—? and
]

9202.

Now we want to show that in the linear case, if the SPDE has a zero solution (i.e.
x = 0) and it is exponentially stable in the mean square sense, then we can construct
a Lyapunov function. Let f : E — R be a function. We consider the linear SPDE

d70 = AZ%t + [ fo(v)Z%(dt, dv),
{ ! ! Je ! (7.1.18)

0 _
Zo—x.

Assumption 7.1.11 We assume that d := fE fo(»)*B(dy) < .

By Theorem 5.3.1, for each x € H there exists a unique mild solution Z%* for
(7.1.18) with Zg = x. For n € N withn > « we consider the approximative system

dZl = A, Z4t + [, fo(v)Z!q(dt, dv),
[ oo Je ! (7.1.19)

n _
Zy =x,

where A, € L(H) denotes the Yosida approximation defined in Chap. 5. By Theorem
4.2.2, for each x € H there exists a unique strong solution Z™* for (7.1.19) with
Zy" = x.
0
We denote by Ly the infinitesimal generator for (7.1.18), and by £, we denote
the infinitesimal generator for (7.1.19).

Lemma 7.1.12 Let T € L(H) be a self-adjoint operator. Then the function

Y H—>R, ¥kx)=(Tx,x) (7.1.20)

belongs to Ci’lOC(H; R), there are constants c3, c4, c5 > O suchthat (7.1.8), (7.1.11),

(7.1.12) are satisfied, and we have
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L(x) =2(Tx, Ax + a(x)) +/ (Tf(u,x), f(u,x))B(du), x € D(A).
E

Proof This is a direct calculation. O
Corollary 7.1.13 Let T € L(H) be a self-adjoint operator. Then the function
(7.1.20) belongs to Cz’IOC(H; R), and we have

Lo(x) =2(Tx, Ax) +d(Tx,x), x € D(A)
Lap(x) =2(Tx, Apx) +d(Tx,x), x € H
foralln € N.

Proof This is a direct consequence of Lemma 7.1.12. O

Lemma 7.1.14 Let B : H x H — R be a symmetric, bilinear operator. Then we
have

(B(x+y,x+y)—B(x—y,x—y)), x,yeH.

N

B(x,y) =

Proof This is a straightforward calculation by using the symmetry of the bilinear
operator B. (I

Lemma 7.1.15 Let B : H x H — R be a symmetric, bilinear operator and let
B, : Hx H— R, n e N be a sequence of symmetric, bilinear operators such that
B, (x,x) — B(x, x) forall x € H. Then we have

B,(x,y) - B(x,y), x,y € H.

Proof This is a direct consequence of Lemma 7.1.14. (I

Lemma 7.1.16 Let B : H x H — R be a symmetric, bilinear operator. Assume
there exists a constant M > 0 such that

|B(x,x)|| <M forallx € Hwith|x|| = 1.

Then the bilinear operator B is continuous.

Proof By assumption we have

X X
B, )| = IIXIIZB(—, —) < M|x|* x€H.
llell Nl

By Lemma 7.1.14 and the parallelogram identity we obtain
4BGe, I < M(llx + y12 + llx = yIH) =2M(Ix 1> + IylII>), x,ye H

proving the continuity of B. (]
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Lemma 7.1.17 Lett > 0 be arbitrary. There exist positive semidefinite, self-adjoint
operators (T]"),en, C L(H) such that

t
(T,"x,y)z/ E[(Z*, Zg*)1ds, n e Ny (7.1.21)
0

forall x,y € H, and we have

lim £,9"(x) = Loy2(x), x € D(A) (7.1.22)
n— o0
where we have defined the functions (\}}'),en, C C;’IOC(H; R) by ¢ (x) = (T/'x, x)
forn € Ny.
Proof Let n € Ny be arbitrary. Let B, : H x H — R be the symmetric, bilinear
operator

t
B, (x, ) ::/ E[(Z", Z¢7)1ds.
0

Since Z"% = 0, and the solution map H — Stz(H), x +— Z™* is Lipschitz contin-
uous by Corollary 5.3.2, we obtain

t
Bn(x,x>=/0 E[nzgf’xnzlsm[ sup ||Z;1’X||2] <tM|x|*, xeH

s€[0,7]

for a suitable constant M > 0. By Lemma 7.1.16, the bilinear operator B,, is continu-
ous. Thus, there exist positive semidefinite, self-adjoint operators (7}"),en, C L(H)
such that (7.1.21) is satisfied for all x, y € H. By Theorem 5.3.3 we have

13 !
lim B,(x,x) = lim / E[||Z"*|*1ds =/ E[| 2> |*1ds = B(x,x), x € H.
n— o0 n— oo 0 0
Lemma 7.1.15 implies that (7'x, y) — (Ttox, y) for all x,y € H. Therefore,
Corollary 7.1.13 and Theorem 5.3.3 yield the claimed convergence (7.1.22). (]
Lemma 7.1.18 Forallt > 0 and x € D(A) we have

E[|Z{ 121 = Lot (x) + Ilx]1.

Proof Lett > 0 and x € D(A) be arbitrary. Furthermore, let (P;);>0= (Po)r>0 be
the Markov semigroup in (7.1.18) as defined earlier in Sect.5.4.

Let s € [0,¢] and n € N be arbitrary. Setting ¢ : H — R, p(h) = ||h|* we
obtain, by using the Markov property,
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t t
[ (Z2)] = E[ /O E[go(z,%nyzzg-xds} = E[ /0 <Puso><z;?’X)du]
t
= IE[ /O Elp(Zyi) | FE ]du}
t
= [ Bz Pl = v 0 = o, (7.1.23)
and Lemma 7.1.7 gives us
S
E[yy (Z5)] = 7 (x) +/O E[(Lnp)(Zy")]du. (7.1.24)
Combining (7.1.23) and (7.1.24) we get
N
Prps () — Y (x) =/O E[(La ) Z ) du + 7] (x). (7.1.25)
Note that, moreover, we have
. Yix) d
m —

li

lim =+ —glb?(x)ls:o:E[llzg’xllz]:||x||2. (7.1.26)

Combining (7.1.25) and (7.1.26) we obtain

Yl ) =) lim

N s—

= x4+ Lo (x).

' 0 1/}5 (X) + E[£11¢?(Zg’x)]

d
S (x) = lim
dt =0 s (7.1.27)

Now, Theorem 5.3.3 and (7.1.27) yield

d . . d
i) = E[|Z) 1] = lim E[Z12] = lim —¢f (x) = Lot (x) + [Ix])?,
t n— 00 n—oo dt
(7.1.28)
completing the proof. ]

Lemma 7.1.19 Suppose the SPDE (7.1.18) is exponentially stable in the mean
square sense. Then there exists a positive semidefinite, self-adjoint operator T €
L(H) such that

o0
(Tx,y):/ E[(Z%*, 20" ds, x,ye H (7.1.29)
0

and we have ||T|| < §, where the constants c, 6 > 0 stem from (7.1.5).

Proof Let B: H x H — R be the symmetric, bilinear operator
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o0
Bux.y) = [ BIZE. Zas
0
Using the estimate (7.1.5), we obtain
o o0 c
Bl = [ EUZY Plds < el [ e tds = Sl 3.1.30)
0 0

ByLemma7.1.16, the bilinear operator B is continuous. Hence, there exists a positive
semidefinite, self-adjoint operator T € L(H ) such that (7.1.29)is valid. Since || T'|| =
sup| <1 [{Tx, x)|, estimate (7.1.30) shows that | T'|| < g. O

Since (S;)>0 is pseudo-contractive, there exists, by the Lumer—Phillips theorem,
a constant A\ > 0 such that

(Ax,x) < Mlx||> forallx € D(A). (7.1.31)
Theorem 7.1.20 Suppose Assumption 7.1.11 is fulfilled. If the linear SPDE (7.1.18)

is exponentially stable in the mean square sense, then for each w € (0, ﬁ) the
Sfunction

o0
A H SR A =/O E[|Z% )12 1ds + wl|x|? (7.1.32)

is a Lyapunov function for (7.1.18), conditions (7.1.11) and (7.1.12) are satisfied
with ) = Ag for suitable constants c4, c5 > 0, and we have the estimate

LoA’(x) < —(1 — QA+ d)w)|Ix]?, x € D(A). (7.1.33)
Proof Relation (7.1.5) with Z = 79 shows that for all x € H we obtain
E[Z2% 2] < ce " ||x||> > 0 ast — oo. (7.1.34)

Moreover, we have

—>00

13 o0
lim (Ex,X)=t§rgo/ E[||ij||2]ds=/ E[Z}|*1ds = (Tx,x), x € H.
0 0

Lemma 7.1.15 implies that (T;x,y) — (Tx,y) for all x,y € H. Therefore,
Corollary 7.1.13, Lemma 7.1.18 and (7.1.34) yield

Lot(x) = lim Loty (x) = lim BLIZ 7] = IxI*) = ~llxl*, x € D(A).
(7.1.35)
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Letw € (0, ﬁ) be arbitrary. The function Ag : H — R defined in (7.1.32) has
the representation

A (x) = (T + w)x, x) = (Tx, x) + w|x|?, x € H.
Thus, by Lemma 7.1.12, the function A? belongs to CE’IOC(H :R), and there are

constants ¢4, cs > 0 such that (7.1.11) and (7.1.12) are satisfied with ¢y = Ag.
Taking into account Lemma 7.1.19, we have

wllx]? < Ag(x) < (g +w)||x||2, xeH (7.1.36)

that is, condition (7.1.6) is satisfied with ¢; = w, ¢3 = 5 +wand ¢ = Ag. By
Lemma 7.1.13, relations (7.1.35), (7.1.31) and (7.1.36) we obtain

LoA% (x) = 2((T + w)x, Ax) +d((T + w)x, x)
= Loy (x) + (2(Ax, x) + d||x[|P)w

< —IxP +w@r+ D) x[* = —(1 = @A+ dw)|lx|?
1— QA+ dw)
———)A%(x), x eD(A),
_( o )W(X)x (A)
proving the estimate (7.1.33) and condition (7.1.7) is satisfied with ¢y = W,
g
Y =A% and £ = L. O

The reason for looking at the linear case is that, in general, we do not know if

P(x) = E[ /0 IIZfllzdt}
2,loc

isin C» " (H; R). However, using the results of Sect.5.7, we can give conditions

on the coefficient for ¢ € Ci’lOC(H : R). In this case

A(x) = P(x) +wlx|?

satisfies condition (7.1.6).

Lemma 7.1.21 Let T € L(H) be a self-adjoint operator. Then we have

KTx,x) =Ty, | = IITIllx =yl llx+ I, x,yeH.
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Proof Let x,y € H be arbitrary. Then we have

(Tx,x) =(Ty,y) =(Tx,x) +(Tx,y) = (Ty, x) = (Ty, y)
=(Tx,x+y) =Ty, x+y)=(T(x —y), x+y),

which yields the assertion. (]

Theorem 7.1.22 Suppose Assumptions 7.1.1 and 7.1.11 are fulfilled, the solution of
the linear SPDE (771.1.18) is exponentially stable in the mean square sense, and there
is a constant € > 0 such that for all x € H we have

)
2fxMlaColl +/E I f(v, x) — fox|lll f (v, x) + fo(w)x]B(dv) < (1 — G)EIIXIIZ,
(7.1.37)

where the constants c, 0 > 0 stem from (7.1.5). Then the solution of the SPDE (7.0.1)
is also exponentially stable in the mean square sense.

Proof There exists an w € (0 ) such that

1
* 20 +d
)
Coi=me— (22 +d+ (1 =6 |w> 0. (7.1.38)
C

By Theorem 7.1.20, the function Ag : H — R defined in (7.1.32) is a Lyapunov
function for (7.1.18), conditions (7.1.11) and (7.1.12) are satisfied with ¢) = Ag for
suitable constants c4, c5 > 0, and we have the estimate (7.1.33). Note that we have
the representation

A% (x) = (Tx, x) +wllx||> = (T + w)x,x), x € H.

Let x € D(A) be arbitrary. Using Lemma 7.1.12, estimate (7.1.37) and Lemma
7.1.21 we obtain

LA (x) = LoA (x) = 2((T + w)x, a(x))
+ [ (1 +w 7w, F)
E
— (T +w) fo)x. fow)x))v(dv)
= (7] +w>(2||x||||a<x>|| + [ e
H\{0}

— Jo)x |l f (v, x) + fo(v)XIIV(dv))

0
<a- 6)(5 +w)§||x||2 — - e>(1 + %)nxnz,
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and therefore, by taking into account (7.1.33),
LAY (x) < LoAY(x) + (1 - e)(l + )u &
2 wb 2 2
<=0 -CA+dDwx[IF+ A -1+ - lx]® = —Cullx|”

By (7.1.38) and (7.1.6), condition (7.1. 7) is satisfied with ¢ = AO and a suit-

able constant ¢, > 0. Consequently, A/ is also a Lyapunov functlon for (7.0.1).
By Theorem 7.1.10, the SPDE (7.0.1) 1s exponentially stable in the mean square
sense. U

Definition 7.1.23 We say that the zero solution of (7.0.1) is stable in probability if
for each € > 0 we have

lim ]P’(sup 1Z5] > e) =0. (7.1.39)

llxl—0 >0

Theorem 7.1.24 Suppose Assumption 7.1.1 is fulfilled, and there exists a function
P e Cb OC(H R) and constants c1, c3 > 0 such that (7.1.6) and (7.1.7) are satisfied
with ¢ = 0, and (7.1.11) and (7.1.12) are satisfied with appropriate constants
c4, ¢s > 0. Then the zero solution of (7.0.1) is stable in probability.

Proof Let x € D(A) and t > 0 be arbitrary. By Lemma 7.1.9, there exists a subse-
quence (ny)ren such that (7.1.13)—(7.1.15) are satisfied with ¢c; = 0. Using (7.1.7)
and (7.1.13), for each k € N we have

t t
E[ / |£nk¢<2§k’xnds] < E[ / (Lo — £>w<zzk~)‘>|ds} <o
0 0

By Lemma 7.1.7 and relation (7.1.7) we obtain

t
E[(Z* )] — p(x) = E[/O Enkw(zﬁ"’x)dS]
t
< E[/ (L, — ﬁ)q/)(Zg’k'x)ds], k e N
0

and hence, by virtue of (7.1.14) and (7.1.15), we get

E[(Z)] < (0.

Now, let x € H be arbitrary. Since D(A) is dense in H, there exists a sequence
(*n)neN C D(A) with x, — x. By (7.1.8), Corollary 5.3.2 and the generalized
Lebesgue dominated convergence theorem (Lemma 7.1.8), there exists a subse-
quence (nx)enN such that
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E[%(Z,")] — E[$(Z)]

Hence, we deduce that

E[¥(Z5)] < ¢(x) forallx € Handr > 0. (7.1.40)
Now, let x € H and € > 0 be arbitrary. We define the stopping time

T =inf{r > 0: || Z|| > €}.
By (7.1.6) and (7.1.40) we obtain
creP(rf <1 S EW(Z], 0] < (),

which implies

P(Sup 1z > 6) <P} <1) < ¥ x),
t>0

Ccl€

and hence, in view of (7.1.6), we arrive at (7.1.39). O

Corollary 7.1.25 Suppose Assumption71.1.11 is fulfilled. If the linear SPDE (7.1.18)
is exponentially stable in the mean square sense, then the zero solution of (7.1.18) is
stable in probability.

Proof This is a direct consequence of Theorems 7.1.20, 7.1.10 and 7.1.24. O

Corollary 7.1.26 Suppose Assumption 7.1.1 and 7.1.11 are fulfilled. If the linear
SPDE (7.1.18) is exponentially stable in the mean square sense and we have (7.1.37),
then the zero solution of (7.0.1) is stable in probability.

Proof This is an immediate consequence of Theorems 7.1.22, 7.1.10 and 7.1.24. [J

7.2 Exponential Ultimate Boundedness in the Mean
Square Sense

Definition 7.2.1 The solution of SPDE (7.0.1) is called exponentially ultimately
bounded in the mean square sense if there exist constants ¢, 6§, M > 0 such that

E[Z1 2] < ce " ||x|> + M forallx € Hand? > 0. (7.2.1)
Theorem 7.2.2 Suppose Assumption 7.1.1 is fulfilled, and there exist a function

(VNS CZ’IOC(H; R) and constants ¢; > 0,i =1,...,5and k; > 0,i = 1,2, 3 such
that (7.1.11) and (7.1.12) are satisfied and we have
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crllxll> =k < ¥(x) < c3llx? —ks, x € H, (7.2.2)
LY(x) < —c2p(x) + ka, x € D(A). (7.2.3)

Then the solution of SPDE (7.0.1) is exponentially ultimately bounded.

Proof Let x € D(A) and t > 0 be arbitrary. By Lemma 7.1.9, there exists a subse-
quence (ny)xen such that (7.1.13)—(7.1.15) are satisfied. Using (7.1.7) and (7.1.13),
for each k € N we have

t t
E[ / 162 (2 + ﬁnk)wzz?k’xwds} < E[ / 1623 (L — LYB(ZIE) + k2>|ds}
0 0
t
< E[ / 1625 (L, — z:)wz:?kmds}

0

t

+k2/ e?ds < o0o.
0

By Lemma 7.1.7 and relation (7.1.7) we obtain

t
e E[P(ZF)] = px) =E /O e (e + En,{)lb(Z?k’x)dS}

t
<E / e ((Lny — OY(ZHF) + Cz)dS}
0

' '
=E / e (L, — E)Q/J(Z?"’x)dsi| + kz/ eds,
0 0

and hence, by virtue of (7.1.14) and (7.1.15), we get

eYE[P(ZH] = (x) + ]z—j(eczl —D.

Incorporating (7.2.2) we obtain

. k )
CBIIZEIP) = ki < BI(Z)] < e (wx) e - 1))

k . k
< e el — ka) + (1 — e) < ez x|+ 2.
(&) 2
Since D(A) is dense in H, applying Corollary 5.3.2 yields (7.2.1) with

1 k
c:c—3, 0 =cp, and M:—(k1—|——2).
Cq C1 Cc2

This completes the proof. O
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Corollary 7.2.3 Suppose the assumptions of Theorem7.2.2 are fulfilled. Then, for
all x € H, there exists a finite constant M > 0 such that

lim sup E[[| Z;[|*] < M.

t—00
Proof The assertion follows from Theorem 7.2.2 and the estimate (7.2.1). O

Remark 7.2.4 The above Corollary 7.2.3 generalizes a result of Skorokhod ([97],
p- 70).

Lemma 7.2.5 Suppose the SPDE (7.1.18) is exponentially ultimately bounded in

the mean square sense and let t > 0 be arbitrary. Then we have ||T;|| < 5 +

Mt, where Ty € L(H) denotes the positive semidefinite, self-adjoint operator from
Lemma7.1.17, and where the constants ¢, 0, M > 0 stem from (7.2.1).

Proof Using the estimate (7.2.1), for all x € H we obtain
t t c
(T, x)]l =/ E[[| 28 |*1ds < c||x||2/ e™Mds + Mt = Sllx|I* + M.
0 0

Since || T; || = supy,<; [{Tix, x)|, we deduce that [|7;]| < % + Mt. [l

Theorem 7.2.6 Ifthe solution of the linear SPDE (7.1.18) is exponentially ultimately

. L0t
bounded in the mean square sense, then for each t > lnTC and each w € (0, %)

there are constants ¢c; > 0,1 = 1,...,5and k; > 0, i = 1,2,3 such that the
function

t
AL, H—R, AL, = / ELIZ*(1*1ds + wllx | (7.2.4)
0

satisfies (7.1.11), (7.1.12) and (7.2.2), (7.2.3) with b = Ag’, and L = Loy, and we
have the estimate

LoA? ,(x) < —(1 —ce™ — QA+ dw)|x|1* + M, x € D(A) (7.2.5)
where the constants ¢, 0, M > 0 stem from (7.2.1).
Proof By Lemma 7.1.18 and the estimate (7.2.1) we obtain
Loty () = =xI* + ELZ 17T < =l + ce™ x> + M
= (ce” ¥ — D)||x|I* + M.

: o0 . .
Letr > 1“7‘ and each w € (0, ‘2‘At+ dl) be arbitrary. The function AY, : H — R

defined in (7.2.4) has the representation
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A% ,(x) = (T, + w)x, x) = (Tx,x) + wllx||?, x € H.

Thus, by Lemma 7.1.12, the function Ag’[ belongs to Ci’lOC(H ; R), and there are

constants ¢4, ¢s > 0 such that (7.1.11) and (7.1.12) are satisfied with ¢ = Ag’t.
Using Lemma 7.2.5 we have

wlx|* < Ag(x) < (g + Mt +w)||x||2, x € H, (7.2.6)

that is, condition (7.2.2) is satisfied with ¢; = w, c3 = % 4+ Mt 4+ wand ¢ = Ag.
By Lemma 7.1.13, relations (7.1.35), (7.1.31) and (7.2.6) we obtain

EoAg,t(x) =2((T; + w)x, Ax) +d{(T; + w)x, x)
= Lot (x) + 2{Ax, x) + d x| P)w
< (e — D|x|> + M + @)\ + d)w]|x|?
=—(1—ce " — QA+ dw)|x|* + M
_(1 —ce " — QA+ d)w
SHEMt+w

)Ag’,(x) + M, xeD(A)

proving the estimate (7.2.5) and condition (7.1.7) with

l—ce ™ — A+ d)w
C2: c
§~|—Mt~|—w

and £ = L. [l

Theorem 7.2.7 Ifthe solution of equation (7.0.1) is exponentially ultimately bounded
in the mean square sense and

T
6(x) = /0 E[| Z*121ds

belongs to CZ’IOC(H i R) for some T > 0, then there exists an w > 0 such that

V() = o) +wlx]?
is a Lyapunov function.
Proof The proof is similar to that of Theorem 7.1.20. ]

Theorem 7.2.8 Suppose Assumptions7.1.1,7.1.11 are fulfilled, the SPDE (7.1.18) is
exponentially ultimately bounded in the mean square sense, and there exist constants
W, N > 0 such that
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W < max ———— (7.2.7)

and for all x € H we have

2llx|[llax)|l +/H\{0} £, %) = fo)x|lll f (v, %) + fo()x|lv(dv) < Wx|* + N,
(7.2.8)

where the constants ¢, 0, M > 0 stem from (7.2.1). Then the solution of the SPDE
(7.0.1) is also exponentially ultimately bounded in the mean square sense.

Proof By (7.2.7), there exist t > lnTC and € > 0 such that

W= )l_cefet (7.2.9)
= —€)———. L
7+ Mt
Furthermore, there exists an w € (0, C;ﬁ::dl) such that
Cosi=1—ce™e—QA\+d+ W)w > 0. (7.2.10)
By Theorem 7.1.20, there are constants ¢; > 0,i = 1,...,5andk; >0,i =1,2,3

such that the function Ag : H — R defined in (7.1.32) satisfies (7.1.11), (7.1.12)
and (7.2.2), (7.2.3) with ¢ = Ag,t and £ = L, and we have the estimate (7.2.5).
Note that we have the representation

A? () = (Tx,x) + wlx|* = (T; + w)x,x), x € H.

Let x € D(A) be arbitrary. Using Lemmas 7.1.12, 7.1.21 and estimate (7.2.8) we
obtain

LAY (x) = LoAL , (x) = 2((T; + w)x, a(x))
+ /E (T + ) f @0, F0,2)
— (T + @) fo(w)x, fo(0)x) B(dv)
= (1Tl +w) (2||x||||a(x>||

+/ If (. x) = fo(w)x [l f (v, x) + fo(v)XIlﬂ(dv))
H\{0}

c
< (5 + Mt +w)(W||x||2 +N),
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and therefore, by taking into account (7.2.5) and (7.2.9),

LAY ,(x) < —(1—ce™™ — @A+ d)w)||x|* + M

C
+ (5 + Mt + w)(W||x||2 +N)
C
= —CiulxI>+ M+ (5 + Mt +w)N.

By (7.2.10) and (7.2.2), condition (7.2.3) is satisfied with ¢ = Ag,t and suitable

constants ¢ > 0 and k» > 0. Consequently, Ag’t is also a Lyapunov function for

(7.0.1). By Theorem 7.2.6, the SPDE (7.0.1) is exponentially ultimately bounded in
the mean square sense. O

Let us recall some notation, which we will use in the sequel. For a function
f :+ H — R the notation

f(x) = 0 for|x| — oo

means that for each ¢ > 0 there exists a constant C > 0 such that

lf(x)| <e forallx € H with |lx]| > C.

For two functions f, g : H — R the notation

J(x) =o(g(x)) for|x] — oo

means that

J(x)

—— — 0 forlx|] — oo.
9(x)

Corollary 7.2.9 Suppose the linear SPDE (7.1.18) is exponentially ultimately
bounded in the mean square sense and

llaG) |l = o(llx]D), (7.2.11)
/E 1S @, %) = fo)x [l f (v, %) + fo)xllv(dv) = o(llx]|*) (7.2.12)

for ||x|| = oo. Then the solution of SPDE (7.0.1) is also exponentially ultimately

bounded in the mean square sense.

Proof There exists a constant W > 0 such that (7.2.7) is satisfied. By (7.2.11) and
(7.2.12) there exists a C > 0 such that
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2
2| [l o)l +/ ILf (v, x) = fo)xlll f (v, x) + fo(v)xllv(dv) < Wilx]|
E

for all x € H with ||x|| > C. Set
M :=C?>+2K(C*+1)+2C?,

where the constant K > 0 stems from the linear growth condition (7.1.4). For each
x € H with ||x|| < C we obtain, by using (7.1.4),

2xIllaColl +/E ILf (v, x) = fo)x |l f (v, x) + fo(w)x]|G(dv)

< lIxlI* + lla()|? +2/E(||f(v,x)llz/6’(dv) +2d|x?

< lIxI? 4+ 2K (x> + 1) +2d||x|* < M.

Consequently, condition (7.2.8) is satisfied, whence Theorem 7.2.8 completes the
proof. O

Corollary 7.2.10 Suppose Assumption7.1.1 is fulfilled, that the solution of the deter-
ministic PDE

[ dZ[ == AZ[dt,

Zo=Xx
is exponentially ultimately bounded and we have

la)l = o(lxI),
/E 1 f (s ) P0(dv) = o(x )

for ||x|| = oo. Then, the SPDE (7.0.1) is exponentially ultimately bounded in the
mean square sense.

Proof The assertion follows from Corollary 7.2.9 with fo = 0. a

7.3 Invariant Measures

Let (P);>0 be the Markov semigroup of (7.0.1) as defined in (5.4.2) for s = 0, i.e.
P, is the linear operator on By, (H) defined by

(P)(9)(x) = E[H(Z))] for ¢ € Bp(H) x € H
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where Z} := Z(t,0; x) is the solution of (7.0.1) with initial condition x € H
evaluated at time ¢t > 0.

Definition 7.3.1 (P:);>0 is a Feller semigroup if P;(Cp(H)) C Cp(H) for all
t € Ry, where C,(H) denotes the space of all bounded, continuous functions
f:H— H.

By continuous dependence on the initial condition (see Lemma 5.7.1) the semi-
group (Py);>0 defined in (5.4.10) is a Feller semigroup.

Definition 7.3.2 [28, p. 230] A o-finite measure p on (H, B(H)) is an invariant
measure for (P;);>¢ (resp. for the SPDE (7.0.1)) if we have

/P,fd,uz/ fdu forall f € Cp(H)andr > 0.
H H

Definition 7.3.3 A sequence (u,),eN of probability measures on a separable metric
space X converges weakly to a probability measure y if

/X fdpin — /X fdu

Let (ex)ren be an orthonormal basis of H, and define the isometric isomorphism

for every f € Cp(X).

T H — 2N), Jx:=((x,er)ren-

Note that ¢£2(N) c RN, The linear space RN, equipped with the metric

9]

d(x,y) = Zz_k —|Xk bl x,yeRN
P T RF—fp Y
k=1

is a separable metric space, and we have x,, — x in RY if and only if x,’§ — x* for
allk e N.

For a finite subset / C N we denote by 7; : RY — R’ the corresponding
projection, and for finite subsets / C J C N we denote by 7r11 : R/ — R/ the
corresponding projection. The family of £2(N)-valued processes

v¥ =gz @, xelMandr >0

is a family of time-homogeneous Markov processes. We denote its Markov semigroup
by (Q;);>0. For every finite subset I C N, the family of R-valued processes
I,x

Y, i=m Y)Y, x e R andr >0
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is afamily of time-homogeneous Markov processes. We denote its Markov semigroup
by ( Q,I )i>0-

Theorem 7.3.4 Suppose Assumption 7.1.1 is fulfilled. If the solution of the SPDE
(7.0.1) is exponentially ultimately bounded in the mean square sense, then it has an
invariant measure v satisfying

/ llx|I*v(dx) < oo. (7.3.1)
H

Proof Letx € H and a finite subset / C N be arbitrary. We show that the family of
probability measures

1 n
py ™ (B) = ‘/ P(y[* € B)ds. BeBR'), neN
nJo

is tight. Indeed, for an arbitrary ¢ > 0 we define the compact subset

cllx||>+ M
Kei={y e R ylpr = | ===},

where the constants ¢, M > 0 stem from (7.2.1). Then, by Chebyshev’s inequality

and (7.2.1),
I [elx|2 + M
u?""(R’\KE>=; /O P(HY!’*HRI =\ )as

€ n
< — E[YI* |3, 1ds
- n(c||x||2+M)/o Y e

n
< +/ E[|Z* 21ds < e.
a2+ M) Jo

proving the tightness. By Prokhorov’s theorem, there exist a subsequence (nx )N and
a probability measure z; on (R!, B(R')) such that //;k * — iy weakly. According
to [28, Theorem 9.3, p. 240], the probability measure p; is an invariant measure for

the Markov semigroup (Q,’ )i>0, that is, we have

/R[ o! frdu; = /R[ frdpy forall f; € Cp(R)andt > 0. (7.3.2)

The family {x; : I C Nfinite} is consistent, that is, for finite subsets / C J C N we
have

Wy =iy o 7r11. (7.3.3)
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Indeed, let I C J C N be arbitrary finite subsets. Then for each n € N we have
1y = ;" o ). There exists a joint subsequence (ng)gen such that y}** — gy
and ,u’}" Y — 1y weakly. The latter convergence implies ,u'}k *o 7r1J ) 7r,J
weakly, and hence, we arrive at (7.3.3).

By Kolmogorov’s extension theorem, there exists a unique probability measure

on RN such that for any finite subset / C N we have
Jb] = pLoTy. (7.3.4)

Let f : RN — R be bounded, measurable and such that fii=flp R - R
belongs to Cp(RY) for all finite subsets I C N. Setting I,, := {1, ...,n}forn e N,
by Lebesgue’s theorem and relations (7.3.4) and (7.3.2) we obtain

/ fdu = lim/ f1, 0w, dp = lim frdur, = lim/ o fr dur,
RN RN n— n— Rin

n—00 0 JRIn o0
= lim oM f omydp =/ O, fdu, t>0. (7.3.5)
n—00 RN RN

Hence, p is an invariant measure for the Markov semigroup (Q;);>0 on the state
space RY, Now, we define the function 7 : RY - H as

0, otherwise,

—1 2
T {j (x), x et

and the probability measure v on (H, B(H)) as v := poZ.Let f € Cp(H) be
arbitrary. Then, foZ|; : R’ — Risbounded and continuous, and for any x € ¢2(N)
and ¢ > 0 we have

0:(f o D)(x) = El(f o )(¥})] = EI(f 0 DT ZI¥)] = ELf(Z]¥)] = P, f (Zx).

Thus, by using (7.3.5), we obtain

/fdv=/ foIdu=/ 0/(f o Dydn
H RN RN
:/ (P[f)OIdMZ/ P[de, tZO
RN H

proving that v is an invariant measure for the Markov semigroup (P;);>0.
It remains to show that the invariant measure v satisfies (7.3.1). We define

RN SR, f(x) = | Zx|?

and for each n € N we define
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fo RN S R fu(@) = fOLirw<n)-
Let n € N be arbitrary. Then we have f, € L' (RN, (). By the ergodic theorem

for Markov processes with invariant measure [103, Theorem XII1.2.6, p. 388], for
p-almost all x € RY the limit

* T 1k
7w = im ¢ [ 0. fmds

exists, and for the function f*: RN — R we have

/fn*du=/ fudp. (7.3.6)
RN RN

Using (7.2.1), for each x € H we obtain

k k
F5(T0) = lim / 0, fo(Tx)ds < lim ~ / 0, f(Tx)ds
k—o00 k 0 k—oo k 0

1 [k 1 [k
= lim -/ E[J~'Y7*|?1ds = lim -/ E[||ZF*)ds < ¢ + M.

k—oo k Jo k—oo k Jo ’
(7.3.7)

By the monotone convergence theorem and relations (7.3.6) and (7.3.7), we arrive at

/ Ix|I*v(dx) = / IZC) NP p(dx) = / f(x)p(dx)
H RN RN

= lim fu()pu(dx) = lim /N fr@pdx) <c+ M,
n—0oo R

n—o0 JpN
establishing (7.3.1). (]

Remark 7.3.5 As the mild solution of an SPDE is a Feller Markov process, we can
use arguments as in Lemmas 5.1, 5.2 and Theorem 5.2 in [76, 77] to conclude that
ultimate 2-boundedness of the solution implies that it is weakly positive recurrent in
the bounded sets of H.

If p is the invariant measure for the Markov semigroup (P;);>o of (7.0.1) then, in
view of Theorem 7.3.4, we get that for each € > 0, there exists an R > 0 such that

u(y € H, ||yl > R) <€ (7.3.8)

and if (7.0.1) is ultimately bounded then there exists a 77 such that for ¢t > T

POIZ| < R) = 1= 5 foranyx e (y: Iyl < R} := B, (73.9)
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where (Z}');>0 is the solution of (7.0.1). Now let g be a function on H, weakly con-
tinuous and bounded. Note Bg is compact in the weak topology on H, equivalently
given by the metric p on H such that

o0
plh Wy =2 2 few h—=h)|. hh' € H
k=1

with {ex}reny an orthonormal basis in H. Hence g is uniformly continuous on Bg
under p.
This implies that there is a § > 0 such that for i, '€ Bg, p(h, k') < § implies

lg(h) — g(h")|< 7.
Note that there exists an N such that

- 5
Z 2_k|<ek,h_h/>|<§ h,h/GBR.
k=N+1

Now assume for R > 0, § > 0 and € > O there exists a Ty := To(R,d,¢) > 0
such that

P(|Z° — Z'| > §) <€ for xo,x; € Bg andfor > Ty. (7.3.10)

Choose, using (7.3.10), t > T; such that
N €
D P(er. Z,° = Z")| < 5/2) = 1 - 3 for xo,x1 € Bg.
k=1

Then for r > T», we get
P(1g(Z*) = g(Z)| < n) = P(Z°, Z* € Br, p(Z;°, Z;") < 0)
N
>P(Z°, Z]" € Bg, 27|
1
X0 X1 6
<ex,Z;" —Z; >|S§)

>P(Z"°, Z' € Bg, < e, Z,°

—Z'>< -, k=1,2,...N)

For given € we can choose T such that fort > T
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€ €
P(1g(Z°) — g(Z;")| < 5) >1- Ky forxg, x| € Bg,

where Ko = sup |g(y)|. Then

€

e =¢, for xg,x; € Bg. (7.3.11)

Ellg(Z) — g(Z)[1 > g + 2K,

Now we state the uniqueness result for invariant measures, following [44].

Theorem 7.3.1 Suppose (7.0.1) is ultimately bounded and its solution (Z});>¢ sat-
isfies (7.3.10). Then there exists at most one invariant measure.

Proof Let u; (i = 0, 1) be invariant measures, then (7.3.11) holds by the argument
above. Note that fori =0, 1

/ i (du) = / Elg(Z") 111 (du).
H H

Consider

| / go(du) — / o) (dv)] = | / / (9) — g0 (du) a1 (dv)|
H H HJH
.y / / Elg(Z!) — g(Z) o (du)ypn (dv)|
HJH
< /H /H IELg(Z1)] — ELg(Z) 0 (duypn (dv)
< /B IELg(Z1)] — ELg(Z) o (duypn (@)
R
+ / IE[g(Z!)] — Elg(Z))]l o (du)pn (dv)
H\Bg
« /B IELg(Z)] — Elg(Z")]l0(duyp (dv)
+ / IELg(Z)] — Elg(Z))lo(dupn (dv))
H\Bpg

< e+2(2Kge) +2Koe if t>T,

where K is as before. Since e is arbitrary we get for all bounded continuous functions

/g(u)uo(du)=/ g(W)p1(dv). g
H H

We now give a condition directly in terms of the partial differential operator A
and the Lipschitz condition so that the solution which is exponentially ultimately
bounded has a unique invariant measure. We note that, in view of [44], the condition
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|S¢| < e for a € R (pseudocontraction semigroup), is equivalent to
(Ay,y) < allyl?, v € D(A).

Proposition 7.3.2 [69] Suppose that

(Ay,y) < —collyl?. y € D(A), (7.3.12)
suppose that cy > 0 is the maximum value satisfying the above inequality (7.3.12)
and let k be the minimum value of L in (7.1.1) and (7.1.2). If vy = c¢o — 3k > 0 we get
for t large enough

E[1Z° — Z'*] < e |lxo — x| (7.3.13)

Exercise Prove that (7.3.13) implies (7.3.10).
For the proof of Proposition 7.3.2 we will use the following:

Lemma 7.3.3 [44] Let p > 1 and g be a nonnegative locally p-integrable function
on [0, 00). Then for each € > 0 and real d

t t
/ D g(rydr < Cle, p)/ eP AT 0P (1) dr
0 0

for t large enough with C(e, p) = (1 — qe)g and % + 5 =1
For the proof of Lemma 7.3.3 we refer to [44].

Proof Let Z;" and Z;° be two solutions. Then we have
t
Z° — Z7' = S,(x0) — Si(x1) + / Si—s(@(ZX) — a(ZX1))ds
0
t
+ / / Sy (f (v, Z2) — f(v, Z))q(ds. dv).
0 JH\{0}
So
t
1Z° — Z7' 1% < 3118 (x0) — Se(xn) 1> + 3]l /0 Si—s(a(ZX0) — a(ZX))ds||*

t
+|I// Si—s(f (v, Z) = f(v, Z))q(ds, dv)|)*.
0 JH\{0}
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So

t
E[1Z° — Z{'*] < 372" ||xg — x1||* + 3E [ /0 18— (a(Z0) — a(Z;”»uzds}
t
+3E [ / If (v, Z2) = fv, ZM*q(ds, dv)]
0
t 2
<3¢ |lxg — x1|* + 3KE ( / o720z — Z1 ||ds)
0

t
+3 / KELIZ - Z' |P)ds
0
—2cot _ 2
< 36720 |xg — xy |2 4 3k(1 + 26)

t
x / 6—2(60+6)(l—S)E[”Z§0 _ Z;CI ||2]ds
0
t
+ 3k/ E[||Z — Z | 1ds.
0

Letting € — 0 and e~ 2(€0+90=5) | we have

1
E[1Z = Z;'I1P) < 3¢ ||xo — x1| + 6k / ELIZ = Z;"|*)ds.
0
So by Gronwall’s inequality, we have

2 —2cot 2 6kt —2¢qt+6k 2
ElI1Z{* — Z;' 7] < 3¢ xo — x1[|7e™ = 3e >0 M Jagg — xy . O

7.4 Remarks and Related Literature

In this chapter, we have presented the Lyapunov function approach in order to study
exponential stability, stability in probability and exponential ultimate boundedness
of the solutions of SPDEs. The presentation is taken from [69], which is based on
the thesis of Wang [99]. This allows us to study the invariant measure and, following
[76, 77], the recurrence of the solutions to bounded sets in H. Applications of these
techniques to various interesting models can be given, as shown in the Brownian
motion case in the book [34].



Appendix A
Some Results on Compensated Poisson
Random Measures and Stochastic Integrals

In this appendix, we provide some auxiliary results.

A.1 Stochastic Fubini Theorem for Compensated Poisson
Random Measures

Let (E, £) be a Blackwell space and let g (dt, dx) be a compensated Poisson random
measure on X = Ry x E relative to the filtration (F;);>0 and with compensator
v(dt,dx) = dt ® B(dx). Let H be a separable Hilbert space.

Lemma A.1.1 LetT € Ryand B : [0, T]x[0,T] x E x Q — H be progressively
measurable with

T T
E[/ / / | B(s, . v)||2ﬁ(dv)drds] < oo.
0 0 E

Then we have
T T T T
/ / / B(s, t,v)g(dv,dt)ds = / / / B(s,t,v)dsq(dv, dt).
0 0 E 0 E JO
Remark A.1.1 In LemmaA.l.1 we assume B € L’T)’pmg(F), in the sense of Defini-
tion3.4.1, with @ := [0, T]1x E x 2, u := ds ®dt ® B(dx) ®P. Due to the isomor-
phism proved in Theorem 3.4.2 the statement still holds if we assume instead B €
L q(H) with L7 (H) = L@ x [0, T1. Fr ® B(0, T1), u: F) N Adr (H),

where Adr(H) is the linear space of all H-valued adapted processes w.r.t. the
filtration 7, := B([0,T]) ® £ ® F;.

Proof We give a sketch of the proof. Let B be a simple function, i.e. B € X ([0, T] x
[0, T] x E x 2; H), then B is of the form
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n

4 m
B(s.t.0) = > > > arilis;_ . Lay, g L@ (ALD
j=1k=11=1

for n, m € N with:

e clementsay; € Hfork=1,...,nandl =1,...,m;

e timepoints0 <sp <...<s, <Tand0 < <...<t, <T;

e sets Ay € € with B(Ax) <oofork=1,...,nand/ =1, ..., m such that the
product sets Ay ; X (tk—1, t] are disjoint;

esetsFp ;e Fyy fork=1,...,nand!l =1,...,m,

and in this case the statement is easily checked. For B € L2T PrOg(H ), there is a

sequence of simple functions B,, converging to B in L2T’ng(H ), by Proposition
2.1.6. The theorem is proved by Lebesgue’s dominated convergence theorem using
the isometry

T 0T T T
IEI|:///||B(s,t,v)||2/3(dv)dtdsi|=E|:/ ||//B(s,t, v)q(dv,dt)||2ds]
0 JO JE 0 0 JE

(A.1.2)

which is a consequence of Remark 3.1.1, and implies

T T T T
E[ / / / IIB(s,t,v)Ilzﬁ(dv)dtds]zE[II / / / B(s,t,v)q(dv,dr>ds||2].
0 0 E 0 Jo JE

O

Remark A.1.2 Note that, due to the isomorphism stated in Theorem 3.4.2, the
Fubini theorem for the Brownian case, stated for example in [18] Chap. 4.6, can
also be generalized to adapted integrands in LT aH) = = LXQ x[0,T], Fr ®
B(0,T]), u; F) N Adr(H), where in this case Ady(H) is the linear space of
all H-valued adapted processes w.r.t. the filtration jz} = B(0,T]) ® F;, and
Q:=[0,T]1xQ u:=dsQdt ®P.

LemmaA.1.1 can be generalized to the case where the integrands have values in
a separable Banach space F under the additional assumption:

(A) There is a constant Kg such that inequality (3.5.7) is satisfied.

LemmaA.1.2 LetT € Ry and B: [0, T1x [0, T1x E x Q@ — F, B € L3 (F),

with
T T
E[/ / /||B(s,t, v)||2/3(dv)dtdsi| <00
0 0 E
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Assume (A). Then we have

T T T T
/ / / B(s, t,v)q(dv, dt)ds =/ / / B(s, t,v)dsq(dv, dt).
0 0 E 0 EJO

Proof The proofis identical to the proof in Lemma A. 1.1, but using inequality (3.5.9)
instead of isometry (A.1.2). In fact, using

T T T T
]E[/ / /||B(s,t, u)||2,3(dv)dzds]zKﬁE[||/ / /B(s,t,v)q(dv,dt)ds||2:|.
0 0 E 0 0 E
O

Remark A.1.3 If F is a separable Banach space of M-type 2, then assumption (A)
is guaranteed.

A.2 Existence of Strong Solutions for SPDEs

Let H be a separable Hilbert space. Let (S;);>0 be a Co-semigroup on H with
generator A. Here we prove some auxiliary results on SPDEs of the type

(A2.1)

{dzt = (AZ; +a(Z))dt + [ f(x, Z)q(dt, dx)
Zy = X.

Let functionsa : H — H and f : H x E — H be given.

Assumption A.2.1 There exists a constant L > 0 such that

172
la(z1) —a(z2)ll + (/E lf(x,z1) — f(x,Z2)|l2ﬂ(dX)) <Llz1 —z2 (A22)

forall z1,zo € H, and a constant K > 0 such that

1/2
la()Il + (/E IIf(x,Z)Ilzﬁ(dX)) = K(lzIl+1 (A.2.3)
forall z € H.
Assumption A.2.2 We have

a(y) e D(A), yeH
f(v,y) e D), yeHandvekE
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and there exist g1, g2 € Ll (R4) such that

loc

[ASi—sa(M = g1 (@A + [y, (A.24)

/E IAS;—s f (v, MI?B(dv) < ga(t)(1 + [Iy]I*) (A2.5)

forall0 <s <tandally € H.

Theorem A.2.3 Suppose Assumptions A.2.1 and A.2.2 are fulfilled. Then for each
x € D(A) there exists a unique strong solution for (A.2.1) with Zy = x.

Proof According to Theorem 5.2.3 there exists a unique mild solution Z € Sgo(H )
for (A.2.1) with Zg = x. Let r > 0 be arbitrary. By (A.2.4) we have almost surely

t t
/o lAa(Zy)llds < g1 (0)/O (I +1Zshds < oo,
and by (A.2.5) we obtain

t t
E[ / / IIAf(v,Zs)Ilzﬂ(dv)dS]ng(O)E[ / <1+||zs||2)ds} <
0 E 0

Noting that x € D(A), we deduce

t t
Zi= Sx + / Si_ya(Zs)ds + / / Si—s £ (v, Z,)q(ds, dv) € D(A)
0 0 E

as well as

t t
AZ, = S;Ax + / AS,_sa(Zy)ds + / / AS,_s f (v, Z)q(ds, dv). (A.2.6)
0 0 JE

By (A.2.4) we have almost surely

t s t t
/ / |ASy—ra(Z)) drds < ( / gl<s>ds)( / 1+ ||zs||>ds) <0
0 Jo 0 0

Using Fubini’s theorem for Bochner integrals, we obtain almost surely

/ / AS_ra(Z, )drds_/ / ASs;_ra(Z,)dsdr

/ Si—sa(Zs )ds—/ a(Zyg)ds. (A2.7)
0
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By (A.2.5) we have

[/ / / IASs—r £, Z0) ﬁ(dv)drds]
(/ gz(S)ds) [/ A+ 1Zl )ds] o

Using Fubini’s theorem for It6 integrals (Lemma A.1.1), we obtain almost surely

t Ky t t
/ / / ASs— f(v, Z)g(dv,dr)ds = / / / ASs— f(v, Z,)dsq(dv, dr)
0o Jo JE 0 JEJr

t 13
=/ / Si—s f(v, Zg)q(dv, ds) —/ / fv, Zy)g(dv, ds). (A.2.8)
0 JE 0 JE

Combining identities (A.2.6)—(A.2.8) we arrive at

/OIAZ ds_/tSAxds+/ / ASs_ra(Z,)drds
/ / /ASS +f(v, Z,)g(dv, dr)ds
_S,x—x—}-/ Si—sa(Zs )ds—/ a(Zs)ds
/ /Sz sf (v, Zs)q(dv, ds) — / /f(v Zs)q(dv, ds)
_Zt—x—/o a(Zy )ds—/ / f, Zs)q(dv, ds),

showing that Z is a strong solution for (A.2.1). ]

A.3 Approximation of SPDEs with Strong Solutions

For n € N with n > o we introduce the resolvent R, (A) € L(H) by
Ry(A) := (n — A)",

where o > 0 was introduced in (5.1.2).

Lemma A.3.1 There exists a constant y > 0 such that

InR,(A)|| <y, neNwithn > «a. (A.3.1)
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Proof By [83, Thm. 1.5.3] we have

1
[ Rn (A = , neNwithn >«
n—o

and hence there exists a constant y > 0 such that (A.3.1) is fulfilled. 0

We will approximate the solutions of the SPDE (A.2.1) by the system of SPDEs

[dz," = (AZ; + nRy(A)a(Z)d1 + [ nRu(A)f 0. Zg(dv.dD) 5o

Zy=x
foralln € Nwithn > «.

Theorem A.3.2 Suppose Assumptions A.2.1 and A.2.2 are fulfilled, and let x €
D(A) be arbitrary. Then, for each n € N with n > « there exists a unique strong
solution Z™~ € SgO(H) for (A.3.2) with Z§j = x, and for each T > 0 we have

]E[ sup ||z — z;‘uz] — 0,
t€l0,T]

where Z* denotes the mild solution for (A.2.1) with Zy = x.

Proof Letn € N with n > « be arbitrary. Then we have

nR,(A)a(y) e D(A), ye H
nR,(A)f(v,y) e D(A), ye Handv € E.

Wedenoteby A,, € L(H) the Yosida approximation definedin Chap.5.Let0 < s <t
and y € H be arbitrary. By the linear growth condition (A.2.3) we obtain

IASi—sn Ry (A)a(l = [1S—s AnaW | < Ay la)]l < Ke [ Anll(1+ [Iy])
as well as
/E IAS;—sn Ry (A) f (v, Y)I*B(dv) = /E 1Si—s An f (v, ) [*B(dv)
< 24 IPK A+ [y < 2K (| AL 121+ Iy I1%).
Using Lemma A.3.1 and the Lipschitz condition (A.2.2), for all z1, zo € H we have
InRy(A)a(z1) — nRy(A)a(z)|

1/2
+ (/E [nRy(A) f(x,21) —nRu(A) f(x, Zz)llzﬁ(dX)) <vyLlz1 -zl
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and, by the linear growth condition (A.2.3), for all z € H we get

1/2
InR,(A)a(z)| + (/E In Ry (A) f(x, z)||2ﬂ(dx)) = yM(lzll + D).

Applying Theorem A.2.3 completes the proof. (]
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