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matical research. 
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ternational research prize for a mathematical mono­
graph of expository nature. The prize-winning mono­
graphs are published in this series. Details about the 
prize and the Fundaci6 Ferran Sunyer i Balaguer can 
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o Foreword 

The present foreword addresses itself to readers with a previous knowledge, or in­
terest, in pseudodifferential analysis, modular form theory or quantization theory. 
The book itself, however, to start with the introduction which follows, has been 
written under no such assumption, and everything needed will be recalled in due 
time. 

A. Pseudo differential analysis: First and above all, this is the study of a certain 
class of pseudo differential operators in one variable, namely those whose Weyl 
symbols are automorphic distributions on ~2, i.e., distributions invariant under 
the linear action of the group r = 8L(2,7l,): these symbols are interesting, but 
singular objects. The spectral theory of the Euler operator in L2(r\~2) - a Hilbert 
space the very definition of which may involve the Weyl calculus - shows that 
automorphic distributions are linear superpositions of the following elementary 
distributions: the Eisenstein distributions (of which a continuous family is needed) 
and the (exceptional) cusp-distributions. The main object of this study is the 
construction of a multiplication table - in other words a symbolic calculus - for 
the associated operators. 

From the point of view of pseudo differential analysis, one interest of this work 
lies in that it requires handling, and composing, extremely singular operators. 
When automorphic distributions are taken as symbols, a composition formula of 
the familiar type such as 

(0.1) 

would be totally inappropriate, since none of the terms on the right-hand side could 
have in general any signification. This calls for a drastic change of point of view, 
putting the emphasis, on the phase space ~2 too, on spectral-theoretic concepts 
rather than differential geometry. Also, it is useful to extend the Weyl calculus Op 
as a more general calculus OpP depending on some integer p 2': 0: besides its role 
in smoothing up some of the difficulties inherent in the Weyl calculus proper, this 
extension may have some interest from the point of view of harmonic analysis -
it yields a parameter-dependent generalization of the metaplectic representation 
- and appears in the analysis of certain relativistic wave equations; it is also the 
natural pseudo differential analysis to use in problems dealing with functions on 
the real line, flat up to a specified order at zero. Other by-products include an 
improved version of Cotlar's lemma about sums of "almost-orthogonal" operators 
(in Section 10), and some understanding and applications, from the point of view 
of operator theory, of the complement of the symplectic Lie algebra sp(n,~) in 
the full linear algebra gl(2n,~) (Section 12). 

B. Non-holomorphic modular form theory: There is no classical way to turn spaces 
of automorphic functions on the half-plane into non-commutative (associative) al­
gebras: the main point of the book is that, taking a quantum point of view, such 
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a construction is possible, even quite natural. The trick is to associate operators 
to automorphic functions (relying on some symbolic calculus of operators) and 
consider the composition of operators. The composition formulas bring to light, 
in a novel way, much of the structure pertinent to the study of non-holomorphic 
modular form theory, such as the zeta function, Hecke's theory, L-functions and 
convolution L-functions. Even though we could have worked throughout on the 
half-plane, we have found it much better, for several reasons, to transfer automor­
phic functions to the plane m;2, where they become objects r-invariant under the 
linear action of some arithmetic group. This forces one to work with distributions 
rather than functions, but apart from this harmless fact, it has only advantages: 
one of these is that the algebraic structure on the space of automorphic distribu­
tions can be defined solely in terms of the - immensely popular - Weyl calculus of 
operators (cf. supra). The main result (Sections 5 and 15) expresses the composi­
tion of any two Eisenstein distributions as the image of a quite canonical "Bezout 
distribution" (related to Poincare-Selberg series) under a simple, but interesting, 
operator: more details can be found in the following introduction. 

C. Quantization theory: Under this vocable, we mean the definition and study of 
rules of symbolic calculus associated with the consideration of nice "phase spaces" : 
such a space could be m;2 (on which there are more possibilities than what is 
usually believed, including the OpP -calculus referred to in the first part of this 
foreword), or r\m;2 (the main object of study here), or a homogeneous space, or 
(tentatively, at least) some of the spaces of interest in algebraic geometry. Writing 
this monograph has confirmed again our feeling that deformation quantization (the 
"small parameter" point of view) may not be the more fruitful point of view. Since 
this position - also based on a fairly wide experimentation with the construction of 
alternative pseudo differential analyses, over a span of years - lies outside the more 
popular trends, we have found it useful, in a last, largely self-contained, expository 
section, to indicate what could be some lines of a program in this direction. It is 
to be noted, in particular, that concepts relative to the composition of symbols 
are given a much wider realm than is usually the case, even (cf. Section 17) in the 
case of the one-dimensional Weyl calculus. 



1 Introduction 

The group 8L(2, JR.) acts on the Poincare upper half-plane II as a group of frac­
tional-linear transformations z /---t ~::~. Given a discrete subgroup r of 8L(2, JR.) 
such as r = 8L(2, Z) (with one exception in Section 18, this will be the sole case 
considered in this book), the r-invariant functions f on II are called automorphic 
functions: they can be identified to functions on any fundamental domain of the 
action of r, by which is meant any domain in II containing essentially - i.e., up to 
a negligible set - one point in each r-orbit. A non-holomorphic modular form is an 
automorphic function on II which is at the same time a generalized eigenfunction 
of the Laplace-Beltrami operator Do for some eigenvalue 1~,\2. 

One of the themes ofthe present work is that moving from the half-plane II to 
the plane JR.2, on which r acts in a linear way, is advantageous in several important 
aspects. Let us discard, to begin with, the first argument against this idea: there 
is no fundamental domain for the action of r in JR.2. True, and no continuous non­
constant function on JR. 2 qualifies as a r -invariant function. However, r -invariant 
distributions do exist, and are the central object of this study. Besides the Dirac 
mass at the origin, the simplest example available is the Dirac comb, supported 
in Z2. Since the Euler operator £ = 2~1f (x /1x + ~ %t; + 1) (the extra term 1 makes 
£ a formally self-adjoint operator on L2 (JR.2)) commutes with the linear action of 
8L(2, JR.), the terms Q;~,\ of the (continuous) decomposition of the Dirac comb into 
its homogeneous components of degrees -1 - i>.. are themselves r-invariant: we 
call them the Eisenstein distributions. 

It is very classical to denote as L2(r\II) the Hilbert space consisting of all 
automorphic functions whose restriction to some fundamental domain of r in 
II is square-integrable with respect to the invariant measure on II: indeed, this 
Hilbert space does not depend on which fundamental domain you choose. It is 
not as obvious, on the other hand, how to define a Hilbert space L2(r\JR.2) of 
automorphic (i.e., r-invariant) distributions on JR.2: but this can be done, which 
will be our first task. 

A connection between automorphic distributions and non-holomorphic mod­
ular forms is best seen with the help of the (one-dimensional) Weyl calculus of 
pseudo differential operators, a fixture of our story. This is a certain map which 
associates an operator Op( h) acting on functions of one variable to functions h 
of two variables. More precisely, Op(h) is well defined as a linear map from the 
Schwartz space S(JR.) of rapidly decreasing Coo functions on the real line to the 
dual space S'(JR.) of tempered distributions whenever h lies in the space S'(JR.2): 
Op(h) is called the operator, or pseudodifferential operator, with symbol h. It is 
customary to set Op(hd Op(h2) = Op(hl #h2) when the left-hand side makes 
sense: thus, the composition of operators gives rise to a partially defined bilinear 
composition # of distributions in two variables. 

One of the niceties of the Weyl calculus is its covariance under the metaplec­
tic representation, a concept which we now explain. It may be a little difficult to 
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visualise a topological group which would be a two-fold cover of SL(2, JR), i.e., 
a connected group SL(2, JR) together with a homomorphism from SL(2, JR) to 
SL(2, JR) the kernel of which would have exactly two elements. However, such a 
group exists, for reasons having to do with homotopy theory (the so-called funda­
mental group 7r1 (SL(2, JR)) is isomorphic to Z, of which Z/2Z is a quotient group): 
it is called the metaplectic group, and any of the two elements of SL(2, JR) which go 
to some given element 9 of SL(2, JR) under the homomorphism referred to above 
is said to lie above g. Now, there is a canonical isomorphism between SL(2, JR) 
and a group of unitary transformations of the Hilbert space L2(JR), namely the 
group generated by the transformations u 1--+ v with v(at) = a-!u(a- 1t) for some 
a> 0, or v(t) = u(t) expi7rct2 for some c E JR, or v = e-¥- Fu, where F is the 
Fourier transformation. Any unitary transformation U in the metaplectic group 
restricts as an isomorphism from the space S(JR) onto itself, and extends as an 
isomorphism from the space S' (JR) onto itself. The covariance property of the Weyl 
calculus refers to the formula U Op(h) U-1 = Op(h 0 g-l): it is valid whenever h 
lies in S'(JR2) and U lies above 9 E SL(2,JR) in the metaplectic group. 

It is to be noted that the two unitary transformations of L2(JR) which lie, in 
the metaplectic group, above the same element 9 of SL(2, JR), are simply related 
since one is the product of the other by the transformation which consists in 
multiplying by -1: this will make the fact that the map U 1--+ g: SL(2, JR) ----t 

SL(2, JR) is two-to-one rather than an isomorphism essentially harmless. Denote, 
for reasons to be apparent presently, as Ui the (even) function t 1--+ e-7rt2 on JR, 
renormalized so as to have norm 1 in the space L2(JR); in a similar way, denote 
as u} the renormalized version of the (odd) function t 1--+ t C7rt2 . If 9 = (~ ~) E 

SL(2, JR), and U is a unitary transformation in the metaplectic group, lying above 
the point g, it turns out that, up to the multiplication by some factor, depending 
only on g,ofmodulus 1, the functions UUi and Uu} agree with a pair offunctions 
U z and u;, depending only on the point z = (~~). i = ~i:~: note that the 
knowledge of z = g.i, on the other hand, only implies that of the class gK, with 
K = SO(2), in SL(2, JR). 

Then, any symbol h E S' (JR2) invariant under the linear action of the matrix 
- I (in this case, Op( h) preserves the parity of functions) can be characterized 
by a pair of functions on II, namely, with p = 0 or 1, the two functions z 1--+ 

(u~ I Op(h)u~). The fundamental point (a consequence of the covariance of the 
Weyl calculus together with our construction of the functions u~, p = 0 or 1) 
is that if h is an automorphic distribution in JR2, these two functions on II are 
automorphic in the usual sense: with the help of the Weyl calculus, we are thus in a 
position to establish a one-to-one correspondence between a space of automorphic 
distributions (on JR2) and a space of pairs of automorphic functions on II. Under 
this transfer, a certain Hilbert space of such pairs (for the cognoscenti only: the 
space of Cauchy data for the Lax-Phillips scattering theory) finally becomes the 
space L2(r\JR2) we have been looking for. 
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The structure of this space is, up to a point, well understood. Elements of 
this space are superpositions of the following building blocks, hereafter referred to 
as elementary automorphic distributions: the Eisenstein distributions, of which a 
continuous superposition is needed; and a countable family of much more myste­
rious cusp-distributions. 

The next question is to better understand the cusp-distributions. Could one 
define a generating object for all elementary automorphic distributions, in a way 
comparable to the way the Dirac comb can be decomposed into Eisenstein distri­
butions? The answer is yes, and is introduced early in this work under the name of 
Bezout's distribution and denoted as ~. It can be thought of as being associated 
with a comb of straight lines in ]R.2 in just the same way the Dirac comb is a comb 
of points. 

That the above-defined correspondence between automorphic distributions 
(on ]R.2) and pairs of automorphic functions on II links the spectral theory of the 
Euler operator on ]R.2 to that of the Laplacian on II can be traced to the formula 

(1.1) 

which expresses that if h happens to be homogeneous of degree -1- i).., the scalar 
product (u~ I Op(h)u~), as a function of z, is a (possibly generalized) eigenfunc­
tion of .Do for the eigenvalue 1+;2. In particular, under this correspondence, the 

Eisenstein distribution <E~A gives rise to a pair of modular forms both proportional 
to the usual Eisenstein series E 1-;), : this is the modular form defined by complex 

2 

continuation from the series (convergent when Re v < -1) 

E () _ ~ " (Imz - n12) v;1 
1;V Z - 2 ~ 1m z . 

m,nEZ 
(m,n)=l 

(1.2) 

It is now possible to point towards a few of the advantages offered by the 
whole construction. First, ]R.2 has more symmetries than II since, besides the linear 
action of 8L(2, ]R.), it is also endowed with the action of ]R.2 itself by translations. 
Next, the very concept of homogeneous automorphic distribution is slightly sub­
tler than that of non-holomorphic modular form. For any given non-holomorphic 
modular form gives rise to two automorphic distributions (linked by the Fourier 
transformation on ]R.2), each one corresponding to the choice of a square root of 
)..2: in this way, the linearly independent automorphic distributions <EtA corre­
spond to the linearly dependent Eisenstein series E l±P., and the same goes for 

2 

cusp-distributions versus non-holomorphic cusp-forms. 
The fundamental novelty, which leads to most of the developments in the 

present paper, lies in the interpretation of automorphic distributions as symbols 
of operators. For, with any luck, such operators might be composed, and this would 
provide the space of automorphic distributions with the structure of an associative 
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algebra. However, there are considerable difficulties, which we shall first overlook 
so as to present some of the final results: later in this introduction, we shall explain 
the origin of these difficulties and the way they are to be solved. 

In linear analysis (and in quantum mechanics as well), it is always a good 
idea to substitute for the study of a given self-adjoint operator A that of any 
commutative algebra, as large as possible, of self-adjoint operators, containing A as 
an element. For the case of the operator ~ - which admits a self-adjoint realization 
in the space L2(r\II) of automorphic functions - such an algebra was introduced 
by Hecke: besides ~,it consists of a sequence (TN )N>I of explicit (not differential) 
operators of an arithmetic nature, to be completed by one extra operator. All 
this transfers to the automorphic distribution level, to a sequence (Ttist )N2':1 of 
operators, to be completed by the operator T~tt such that (T~tt h)(x,t;) = 

h( -x, t;): this last operator permits splitting automorphic distributions as sums of 
automorphic distributions of parities 0 and 1. Together with the Euler operator 
£ and T~tt, the sequence (Ttist )N2':1 generates a maximal commutative algebra 
of self-adjoint operators on the space L2(r\lR2), and the elementary automorphic 
distributions that have been alluded to above are exactly the joint eigenfunctions 
of all operators in this commutative algebra. 

It is useful to introduce a generating series for all Hecke operators, setting 
£(s) = LN>I N-sTtist for complex s with Re s large. Multiplying £(s) by some 
Gamma-like-function, in the spectral-theoretic sense, of the two operators £ and 
T~tt, one finds an operator .c' (s) the complex continuation of which, as a function 
of s, satisfies the simple functional equation £'(1 - s) = £'(s) x (_I)parity . The 
main formula (Theorem 15.1) of the book can be expressed as 

Q:~ q Q:~ = £' (1 + i (A + A2)) F £' (1 + i (AI - A2)) Q3 
<AI <A2 2 2 

+ side term, (1.3) 

where q is, up to a slightly different normalization, just the sharp composition # 
of automorphic distributions corresponding under the Weyl calculus Op to the 
composition of operators, F is the Fourier transformation on JR.2, Q3 is the Bezout 
distribution the existence of which, as a canonical generator of all elementary 
automorphic distributions, has been asserted above, and the side term is a simple 
linear combination of four Eisenstein distributions. 

It is a consequence of the covariance of the Weyl calculus under the metaplec­
tic representation that hI #h2 (or hI q h2) has to be an automorphic distribution 
whenever hI and h2 are. The equation (1.3) is thus only the first entry - in some 
sense, but not all, the one most difficult to get at - in a multiplication table, the 
entries of which should give the decomposition into element aries of the q -product 
of any two elementary automorphic distributions. This task has been pushed up 
to some point, but not fully completed, in Section 16. We have also, in the same 
section, hinted at a partly conjectural unified formula, stated in terms of Eulerian 
products. 
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Early in this work (in Section 5), we give a heuristic proof of the main for­
mula (1.3), which makes a clear understanding of the role played by the two factors 
£( Hi(A~±A2)) possible. However, the genuine proof ofthis formula entails consider­
able difficulties, and will be given later, in Sections 13 to 15. The most serious one 
arises from the fact that a q -product such as Q:~Al q Q:t2 is not quite meaningful in 
the usual sense, since the associated operators cannot be composed. To lower our 
requirements, we may satisfy ourselves with the demand that all operators that 
have to be dealt with should act on the space linearly generated by the functions 
u~, p = 0 or 1, Z E II, and should be valued in the algebraic dual of this space: this 
is the bare minimum needed for applications to modular form theory. However, 
the operator whose Weyl symbol is an elementary automorphic distribution does 
not even send U z into L2(lR), which prevents us, if p = 0, from defining 

as we would like to do: however, on the other hand, this definition is all right if 
p = 1. 

There are two ways to circumvent this difficulty. The cheaper one, which 
we have used in the explicit computations, is based on the remark (Proposition 
13.1) that one can sometimes define the image under the Euler operator £ of 
the symbol h of some operator A without being able to define either h or A: 
the trick is to consider instead of A the operator PAQ - QAP, where Q and 
P are the two canonical generators of Heisenberg's representation in L2(lR). This 
just works with our problem, and makes it possible to define the q -product of 
any two Eisenstein distributions modulo some distribution homofeneous of degree 
-1, which has to be a multiple of the Eisenstein distribution Q:o if automorphic. 
Adopting this point of view, which we have done in all arithmetic computations, 
has the advantage that one may still work with the Weyl calculus, though with a 
rather indirect definition: another one is the explicit character of the composition 
formulas. A disadvantage is that the composition of operators used in this context 
exists only in such a weak sense that giving a meaning to the composition of three 
operators the Weyl symbols of which are elementary automorphic distributions -
which would be necessary to support a claim of associativity - seems at best a 
remote possibility. 

There is a deeper way to deal with the problem, based on the embedding 
of the Weyl calculus Op into a certain sequence (OpP)p=O,l, ... of calculi. As soon 
as p ~ 1 (i. e., with the exception of the Weyl calculus itself), the composition 
of two operators the symbols of which are elementary automorphic distributions 
has a genuine meaning in the OpP-calculus, an even stronger one (Section 10) 
if p ~ 2: finally, any given number of operators with homogeneous automorphic 
OpP-symbols can be composed (Theorem 10.7) if p is large enough. Just like the 
Weyl calculus, the OpP -calculus benefits from some covariance property, linked to 
some (inequivalent) variant of the metaplectic representation: as a consequence, 
the composition, in the sense of the OpP -symbolic calculus, of two automorphic 
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distributions, is again (when well-defined) automorphic. Constructing the OpP­
calculi will take time: however, besides their role in smoothing up the Weyl cal­
culus somewhat, when dealing with very singular symbols, these calculi may have 
an importance of their own. On the one hand, they seem to be the right pseudod­
ifferential analyses in problems dealing with operators acting on functions fiat up 
to a certain order at zero; next, their construction may be considered (Section 8) 
as paralleling Dirac's construction of the wave equation for the electron, except 
that instead of just one operator one has to consider a pair of non-commuting 
operators; finally (Section 7 about the horocyclic calculus) they provide a way, in 
quantization theory, of dealing with some of the not so nice features (the symbol 
map is not an isometry) inherent in the quantization of symmetric spaces. 

We take this opportunity to give, in Section 17, a full proof of a theorem, 
somewhat carelessly treated in [62, Section 5J, dealing with the one-dimensional 
Weyl calculus in general (not that associated with automorphic symbols): the 
point is that there exists a composition formula completely different from the 
well-known one, and that it is the one suitable when the metaplectic representation 
enters the picture in any serious way. Contrary to the usual (Moyal-type) formula 
hl #h2 '" hlh2 + (4i7r)-l {hl, h2} + ... ,it has an extension to the OpP-calculus, 
though we have not made the coefficients of this formula fully explicit (they are 
given instead by recurrence relations with respect to p). One may mention here 
too that, as has been proved by our student Bechata [5J, this formula extends to 
the Weyl calculus on (complex-valued functions on) p-adic numbers, whereas the 
more familiar one would be meaningless too in this case. 

We wish to strongly stress again that, in the arithmetic situation which is 
the environment of this paper, there is a symbolic calculus of operators, but the 
composition formula cannot bear any relation to the one we have grown accus­
tomed to, or to any concept based on Taylor expansions and on classical objects 
such as the pointwise product of symbols: this composition formula is precisely 
the multiplication table the construction of which has begun here. This is not as 
exotic as one might think and, at the end of this work, we have inserted an in­
formal section entitled "new perspectives in quantization theory" , partly to show 
that the nature of composition formulas in alternative pseudodifferential analyses 
is much more varied, and linked to interesting spectral theory, than experience 
with the sole Weyl calculus might lead one to believe. The same section contains 
a small number of open problems, mostly of a harmonic analytic nature, some of 
which look quite feasible, even though extensive work may be required towards 
their solution. 

Before we leave this introduction, we want to address ourselves, again, to 
our readers more interested in modular form theory, especially in facts about the 
Rankin-Cohen products. These are expressions 

Fjk1 ,k2 (!1, h) = t( _1)1 el +! -1) e2 ; ~ ~ 1) f~j-I) fJl) (1.5) 
1=0 
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which permit building a sequence of holomorphic modular forms of weights kl + 
k2 + 2j from any pair of holomorphic modular forms h, 12 of weights kl and 
k2 . These bilinear expressions were first introduced by H. Cohen [12] (Rankin had 
considered a special case in [40]) and enjoy quite a popularity at present [70, 13, 
10, 11, 39]. We urge our readers interested in Rankin-Cohen products to have a 
look at the quantization Section 19, in particular the part of it relative to the 
composition formulas, to see why, in connection with some appropriate symbolic 
calculus, the composition formulas given in [63], the main ingredients of which were 
just Rankin-Cohen products, had a status quite comparable - but the symbolic 
calculus and the phase space were different - to, say, the composition formula from 
our present Section 17. Only, discrete Hilbert sums rather than direct integrals had 
to be considered there; in the arithmetic situation which is the most important 
object of the present work (Chapter 3), both discrete sums and integrals have to 
be considered simultaneously. 

The methods in the present work, by definition, have to rely on ideas from 
two usually separated fields of activity. The present author is certainly more at 
ease with pseudodifferential analysis, which he has practised for decades, than with 
number theory. But he believes that his lack of competence in this latter domain 
is a guarantee that this book will be accessible to analysts in general: he can 
only hope that practitioners of modular form theory will view with a sympathetic 
eye these attempts, by an analyst, at familiarizing himself with some of the more 
elementary tools of their fascinating trade. 



Chapter 1 

A utomorphic Distributions 
and the Weyl Calculus 

2 The Weyl calculus, the upper half-plane, 
and automorphic distributions 

The defining formula of the Weyl calculus [68] is 

(Op(h)u)(x) = J h (x;y,'fJ) u(y)e2i'Tr(X-Y)"Idy d'fJ, u E S(JR). (2.1) 

The operator Ope h) is called the operator, or pseudodifferential operator, with 
symbol h. If hE S'(JR2), the space of tempered distributions on JR2, then Op(h) 
is a well-defined linear operator from the space S(JR) of rapidly decreasing Coo 
functions on JR to S'(JR) , and the map Op so defined is an isomorphism. One 
way to see this is to introduce, for any pair u, v of functions in S(JR), the Wigner 
function W ( v, u) on JR 2 defined as 

W(v, u)(x,~) = i: v(x + t) u(x - t) e4i'Trtt; dt. (2.2) 

Then, as is easily seen, W(v,u) E S(JR2), and for every h E S'(JR2) the formula 

(vIOp(h)u) = (h, W(v,u)) 

= r h(x,~)W(v,u)(x,~)dxd~ 
JHf.2 

(2.3) 

is a proper definition of Op(h): observe that we define scalar products (I) as 
being antilinear with respect to the argument on the left. The symbol h lies in 
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12 Chapter 1. Automorphic Distributions and the Weyl Calculus 

£2(JR2) if and only if Op(h) extends as a Hilbert-Schmidt operator on £2(JR). It 
is often useful to note that W(v, u) is also the symbol of the rank-one operator 
W f---> (vlw)u. 

The Weyl calculus of pseudodifferential operators was introduced by H.Weyl 
in 1926, as an answer to questions regarding the early theory of quantum mechan­
ics; a somewhat similar motivation ~ with considerable incentive from harmonic 
analysis as well ~ will be present in Section 19. But the main current importance 
of pseudo differential analysis lies in its role as the basic tool in the modern treat­
ment of linear partial differential equations. One should mention that, though 
Weyl's formula was mentioned in the Kohn-Nirenberg foundational paper [28], it 
is mainly the standard calculus (which will be needed in (11.22), where it plays 
a minor role) that has been used, up to comparatively recently, by analysts: for 
this calculus, there is no covariance under the metaplectic representation. The 
literature on pseudodifferential analysis and its applications to partial differen­
tial equations is immense: our first choices would be the treatises [51, 24, 45] by 
Treves, H6rmander, Shubin. A short introduction to the Weyl calculus, with more 
emphasis on harmonic analysis than on partial differential equations (thus closer 
from our present point of view) can be found in the Chapter 0 of [65]. No previous 
familiarity with the Weyl calculus, however, would be of much use in the present 
work, in which new methods had to be built from scratch. 

Recall [67] that there exists a certain twofold covering 8£(2, JR) of the group 

8£(2, JR) and a unitary representation Met of 8£(2, JR) in £2(JR), preserving the 
space S(JR) and extending as a representation within the dual space S'(JR) such 

that, for every 9 E 8£(2, JR) lying above some point g E 8£(2, JR), and every 
tempered distribution h on JR2, the covariance rule 

Met(g) Op(h) Met(g)~1 = Op(h 0 g~l) (2.4) 

should hold: Met is the so-called metaplectic representation. The set of all unitary 
operators Met(g), 9 E 8£(2, JR), is generated as a group by the operators of the 
following three species: 

(i) transformations u f---> V, v(x) = a~!u(a~lx), a> 0; 

(ii) multiplications by exponentials exp i7rcx2 , creal; 

(iii) e~1f times the Fourier transformation. 

These three transformations are associated with points 9 that lie above the points 
g = (~a~l) , (~~) and (~I 6) of 8£(2, ~). As a consequence, Met is not an 
irreducible transformation, but acts within £~ven(~) and £~dd(~) separately: the 
two terms can then be shown to be acted upon in an irreducible way. It is an easy 
task to check (2.4), starting from (2.1), in each of the three cases above. 

A first consequence of the covariance formula (2.4) is that, given any two 
symbols hI and h2' say in £2(~2) (the associated operators are then Hilbert­
Schmidt operators on £2(~), thus can be composed in the usual sense), and given 
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any (~~) E SL(2,~), the formula 

(2.5) 

holds. In particular, if hI and h2 are invariant under the action of a certain element 
of SL(2, ~), so is hI #h2' by definition the symbol of Op(hd Op(h2). From the 
second interpretation of the Wigner function given right after (2.3), and from the 
covariance formula (2.4), it also follows that 

W(Met(g) v, Met(g) u) = W(v, u) 0 g-1 (2.6) 

if u, v E S(~) and 9 E SL(2,~) lies above 9 E SL(2, ~). 
On ~2, we shall always use the symplectic Fourier transformation F, de-

fined as 

(Fh)(x,~) = ( h(Y,'TJ)e2i7r(X1)-Y~)dyd'TJ. 
J~2 

(2.7) 

It is more intrinsic than the usual Fourier transformation, which depends on the 
choice of a scalar product on ~2 rather than a two-form: in particular, it com­
mutes with the linear action of the group SL(2,~) on ~2. In connection with the 
Weyl calculus, however, we shall often use instead g = 22i7r£ F, (cf infra for the 
signification of 22i7r£ if in doubt): here £ stands for Euler's operator, as defined by 

1 (a a ) £=- x-+~-+l 
2i7r ax a~ 

(2.8) 

(the extra constant makes it formally self-adjoint on L2(~2)), so that 

(gh)(x,~)=2 ( h(Y,'TJ)e4i7r(X1)-Y~)dyd'TJ. 
J~2 

(2.9) 

Concerning the use of g, let us remark - the verification as a consequence 
of (2.1) is immediate - that, if h E S'(~2), gh is the symbol of the operator 
u 1-+ Op(h)'11" where '11,(x) = u( -x): in particular, g2 is the identity transformation. 
Then, operators with g-invariant symbols vanish on Sodd(~), and those whose 
symbols change to their negatives under g vanish on Seven(~). On the other hand, 
even distributions on ~2 are just the symbols of the operators that commute with 
the map u 1-+ '11" in other words the operators which send Seven(~) to S~ven(~) 
and Sodd(~) to S~dd(~). Even-even symbols h are those of operators which vanish 
on Sodd(~) and send S(~) to S~ven(~): they are characterized as being even 
distributions invariant under g, and there is a similar notion of odd-odd symbol 
(even, invariant under - g). 

We assume some familiarity with the general spectral theory of self-adjoint 
operators, as can be found in treatises of functional analysis, for instance [41, 69], 
in particular with Stone's theorem about groups of unitary operators and their 
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infinitesimal generators. The Euler operator £ is essentially self-adjoint on L2(~2), 
when CO' (~2\ {O}) is taken as its initial domain. One has 

(2.10) 

for every h E L2(~2) and t > 0: besides the fact that the map t f--+ t2i1re is a 
group homomorphism, this means in particular that 

The operator t2i1re is a continuous endomorphism ofthe space S(~2), and extends 
as a continuous endomorphism of the dual space S'(~2), setting 

(2.11) 

whenever hE S(JR2) and 6 E S'(JR2), or 

(Cl-2i1re6, h) = (6, (x,~) f--+ h(tx, t~)) . (2.12) 

A distribution 6 is homogeneous of degree -1 - v if and only if t2i1re 6 = t- V 6. 
We now recall the spectral theory of the operator £, i.e., the decomposition 

of functions h in L2(JR2) into homogeneous parts. Actually, we shall only have 
to deal with the subspace L~ven(JR2) of L2(~2) consisting of even functions: this 
simplifies notation a little bit. 

Any function hE S(JR2) can be decomposed as the integral 

(2.13) 

into functions homogeneous of degrees -1 - iA, setting 

h>.(x,~) = - ti>'h(tx,t~)dt : 1 100 

27f 0 
(2.14) 

indeed (2.13) follows from (2.14) together with an application of the one-dimen­
sional Fourier inversion formula to the function /(7) = eT h(eTx,eT~). 

In the case when h is even, one can recover h>. from the function h~ on the 
real line defined as 

(2.15) 

since one may write 

(2.16) 

One then has 

(2.17) 
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a formula which permits extending the definition of h~ as an element of L2(JR), 
for almost every A E JR, whenever h lies in L~ven(JR2): the formulas (2.13) and 
(2.17) together provide the spectral decomposition of Euler's operator in the space 
L~ven(JR2). It will often be necessary to consider the complex continuation of the 
function A 1--+ h).., getting the function v 1--+ h-iv, with 

(2.18) 

as a result: if h lies in S(JR2 ), the function h-iv is well defined for Re v > -1, a 
function homogeneous of degree -1 - v in JR2\{0}. Again, we set 

(2.19) 

Recall that g, rather than F, plays an important role in the Weyl calculus. 
Coming back to the link between g and F, as expressed just before (2.8), note 
that when acting on functions, the operator 2-!+i7l"£ is given by the formula 

(2.20) 

There is no satisfactory way to get rid of the factor J2 entirely when dealing with 
the Weyl calculus in an arithmetic environment: ultimately, this is due to the fact 
that both the one-dimensional and the two-dimensional Fourier transformations 
play a role here, whereas the characters on the line that give rise to these two 
Fourier transforms are more naturally normalized in a different way (compare F 
and gin (2.9)). This is why, for short, we shall also use the modified version Opv'2 
of the Weyl calculus, defined by 

OPv'2(h) = Op ( T!+i7l"£ h) : (2.21 ) 

the use of Opv'2 instead of Op will only serve to make a few formulas nicer, 
especially at the end of Section 16. 

Remark. Some of our readers with a training in arithmetic will undoubtedly feel 
some reservations about the presence of the factor J2 in (2.20) and would find 
the change (x,~) 1--+ (x, 2~) or (2x,~) rather than (2!x, 2!~) preferable. They are 
of course right and, had we pursued the present work in the direction of congru­
ence subgroups, this would have been our choice: however, when the emphasis is 
on 8L(2, Z), the present choice permits one not to have to bother with Hecke's 
subgroup fo(2). 

We now introduce the Poincare upper half-plane II = {z E C: 1m z > O}, on 
which the group 8L(2, JR) acts through fractional-linear transformations: 

( a b) _ az + b 
cd .z- --d· 

cz + (2.22) 
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On II, the Laplace-Beltrami operator 

(2.23) 

commutes with this action: in just the same way, the Euler operator £ on JR?2 
commutes with the linear action of SL(2, JR?). 

For every z E II, consider the two functions U z and u; defined on the real 
line by 

uz(t)=2t (1m (_~))t exp (i1ft:) , 

u;(t) = 2£ 1f! (1m (-~)) i t exp (i1f t:) (2.24) 

The family (UZ)ZEII is total in L~ven(JR?), and the family (U;)zEII is total in 
L~dd(JR?). For our purposes, the best way to prove this is to use the metaplectic 
representation Met the existence of which has been recalled just around (2.4), and 

to show (this has been done in [62, p.120-121]) that, if 9 E SL(2,JR?) lies above 
(~~) E SL(2,JR?) and if b > 0, one has the formulas 

( a+.g)-! 
Met (g) U z = ± --~-

la+ 21 

1 a+.", 
( 

b )-~ 
Met(g) U z = ± la + il 

Uaz±b , 
cz+d 

1 
Uaz±b , 

cz±d 
(2.25) 

in which the important fact is that the coefficients in front of the right-hand sides 
are constants (i. e., depend only on z) of modulus one: this less precise result is 
quite easy to check directly, for one may satisfy oneself with doing this only when 
9 describes the set of generators of SL(2, JR?) given right after (2.4). Then, that 
each of the above-mentioned family is total in the appropriate space results from 
the well-known fact that, when restricted to even, or odd, functions in L2 (JR?) , 
the metaplectic representation is irreducible. In the odd case (only), one has a 
more precise result, to wit a resolution of the identity, obtained by polarizing the 
identity 

Il v lli2 (IR) = (81f)-1 1rr l(u!lv)12 dJ.t(z). (2.26) 

Proposition 2.1. An operator Op(h), with h E S~ven(JR?2), is characterized by the 
pair of functions z f---> (uzIOp(h)uz) and z f---> (u;IOp(h)u;). 

Proof. Using (2.24), one sees that the function (z, w) f---> (uwIOp(h)uz) (resp. 
(u;IOp(h)u;)) is (1m (-~)Im (_~))8 with 8 = i (resp. i) times a function 
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holomorphic with respect to wand antiholomorphic with respect to z. Thus, if 
these two functions of (z, w) vanish on the diagonal of II x II, they vanish on the 
whole of II x II. Since h is even, one may assume that h is either an even-even or 
an odd-odd symbol: in either case, one may conclude, observing that the family 
(Uz)zEI1 (resp. (U;)zEI1) is total in Seven(l~) (resp. Sodd(l~)) as well. 0 

As a consequence of (2.2), it is easily found that 

W(uz,uz)(x,~) = 2 exp (-I~7l')x - Z~12) (2.27) 

and 

-lx-z~1 -1 exp --lx-z~1 : [ 47l' 2] (27l' 2) 
Imz Imz 

(2.28) 

actually, using (2.6), it is enough to check (2.27) and (2.28) when z = i, which 
simplifies the computation greatly. 

A simple, if somewhat tedious, calculation (again, group-invariance argu­

ments make it easier) shows that if k( IXI~Z~12) is a smooth function k of the 
indicated expression, one has 

( A _~) k (Ix - z~12) = 7l'2 £2 . k (Ix - Z~12) , 
4 Imz Imz 

(2.29) 

where the emphasis is put on the z-variable (resp. the (x,~)-variables) on the 
left-hand (resp. right-hand) side. This applies in particular to the pair of Wigner 
functions just displayed, yielding for every h E S' (~2), and p = 0 or 1, the relation 

(U~IOp(7l'2 £2h)u~) = (A -~) (z 1-+ (u~IOp(h)u~)) 

as a consequence of (2.3) and (2.27), (2.28). 

(2.30) 

We conclude this section with the definition of automorphic distributions. 

Definition 2.2. Set r = 8L(2, Z) C 8L(2, ~). An automorphic distribution is any 
r-invariant tempered distribution on ~2, i.e., any distribution 6 E S'(~2) with 
the property that 

(6og-l,h): =(6,hog) 

= (6, h) 

for every h E S(~2) and every 9 E r. 

(2.31 ) 

Observe that since the matrix ((} ~l) lies in r, every automorphic distri­
bution is an even distribution, which will make our life somewhat easier: it is only 
in Section 18 that we shall approach more general arithmetic groups and possibly 
odd distributions, but we shall not go far in this direction. 
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Theorem 2.3. An automorphic distribution (5 is characterized by the pair of func­
tions z f--4 (u~IOp(5)u~) (p = 0,1) on the upper half-plane: these two functions 
are automorphic. If (5 is homogeneous of degree -1 - i).., these functions are 
generalized eigenfunctions of ~ for the eigenvalue 1~A2. 

Proof Since an automorphic distribution is even, the first point follows from 
Proposition 2.1. Observe that neither of the extra factors, of modulus 1, that 
appear on the right-hand sides of (2.25), shows any longer in the scalar product 
(u~IOp(5)u~), since its two occurrences there cancel out: that such a scalar prod­
uct is an automorphic function of z is thus a consequence of the covariance formula 
(2.4). It has to be a generalized eigenfunction of ~ for the eigenvalue Ht if (5 

is homogeneous of degree -1 - i).., as a consequence of (2.30). 0 

3 Eisenstein distributions, Dirac's comb and 
Bezout's distribution 

For Re v < -1, hE S(]R.2), one can define 

1 100 (Q:~,h) ="2 L Itl-Vh(tn,tm)dt, 
Iml+lnl#O -00 

(3.1) 

a convergent expression. As shown in [62, Proposition 13.1], this defines an even 
tempered distribution Q:~, homogeneous of degree -I-v, and the function v f--4 Q:~ 
extends as a holomorphic function of v for v -1= ±1, with simple poles at v = ±1; 
the residues there are given as Resv=-l Q:~ = -1 and Resv=l Q:~ = <5, the unit 
mass at the origin of ]R.2. All that concerns the analytic continuation of the map 
v f--4 Q:~ was derived in loc.cit. from (3.25) below, an identity obtained by the 
use of Poisson's formula. Also, FQ:~ = Q:~v. We shall also use, here, a different 
normalization, setting 

~t = 2 -12-v Q:~ : (3.2) 

since Q:~ is homogeneous of degree -1 - v, this can also be written as 

(3.3) 

in the sense of (2.12). Then, 

g~~ = ~~v, (3.4) 

with 9 as defined in (2.9). In view of (2.21), one has 

(3.5) 

Incidentally, the reader may wonder why we have felt it necessary to use 
both a change of typographical style and the superscript U to denote the lifted-up 
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version Q;~ of the Eisenstein series El-v (cf. Theorem 3.1) or the lifted-up version 
2 

!.m~ (cf. infra, (4.4)) of a Maass cusp-form M j. This is so because we need to 
preserve the notation of [62], in which intermediary versions Q;", and !.mj (which 
we are dispensing with here, but which are likely to recur elsewhere) also played 
a role. 

Remark on notation: to help the reader, let us make the following conventions. 
Fraktur-style capital letters with the superscript ~ denote homogeneous automor­
phic distributions. Non-homogeneous automorphic distributions, like the Dirac and 
Bezout distributions introduced later in this section, are denoted by fraktur-style 
capital letters without such a superscript; fraktur-style lower-case letters shall 
denote non-automorphic distributions, usually the pieces some more interesting 
(automorphic) distributions are made of. Calligraphic-style letters F, g are re­
served for versions of the Fourier transformation, M and N (in the next section) 
for Maass cusp-forms. 

Introduce, whenever Re v < 1, the distribution q", such that 

1100 (q"" h): = - Itl-'" h(t, 0) dt, 
2 -00 

(3.6) 

which is just the term with n = 1, m = 0 from the right-hand side of (3.1). One 
may abbreviate q", as 

(3.7) 

here, of course, ~ denotes the Dirac mass on R Given 9 = (~ ~) E 8L(2, lR), one 
has (q",og-l,h) = (q""hog) with 

(h 0 g)(~) = h(a6 + b6, c6 + d6), (3.8) 

so that 1100 (q", 0 g-1, h) = - Itl-'" h(at, ct) dt. 
2 -00 

(3.9) 

As is usual, if Iml + Inl -:f. 0, we shall denote as (m, n) the largest common divisor 
of m and n. When m E Z, nEZ, (m, n) = 1, the pair (:::':) describes the set 
r/r~ where r = 8L(2,Z) and r~ = {(b n : bE Z}: our notation r~ is meant 
to emphasize that this is only r n N, with N = {(b n : bE lR} while the (twice 
as large) group roo = {±g, 9 E r~} is the subgroup of r whose associated 
group of fractional-linear transformations of IT (and of PI (C) = C U {oo}) is the 
stabilizer of the point at infinity. Using also (3.2), one may thus write (setting in 
(3.1) m = rml, n = Tnl with r?: 1 and (ml' nd = 1) 

~~ = 2 -12-
v ((1 - v) L 

where ( is the Riemann zeta function. 

-1 q", 0 9 , (3.10) 
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This series is weakly convergent in S'(JR2) if Re v < -1. Introduce also 

tv = Qq-v 

then, if Re v > -1 and hE S(JR2), 

(tv, h) = Joo It!" dt r h(y, ry) e-4i7rt1) dy dry, 
-00 ilR2 

(3.11) 

(3.12) 

(3.13) 

Using (3.10), (3.4) and (3.11), one thus gets when Re v > 1 the expression (a 
weakly convergent series in S'(JR2)) 

~~=2V21((1+v) L tvog-1 . 

gEr/r~ 

(3.14) 

No expansion comparable to (3.10) or (3.14), however, can be given when -1 :::; 
Re v :::; 1: in this range of values of v, it is (3.25) below that has to be used. 

In order to better understand the operator Op(~~), we shall apply Proposi­
tion 2.1. 

Theorem 3.1. For v#- ±1, one has 

(3.15) 

and 

(u; I Op(~~)u;) = -v E~-v (z), 
2 

(3.16) 

where E l-v (z) is the classical Eisenstein series defined when Re v < -1 as 
2 

and [48, p. 208] 

with 

v-l 

El-v (z) = ~ " (Imz - n I2 )-2 
2 2 L.... Imz 

m,nEZ 
(m,n)=l 

E~-v(z): =(*(l-v)E,-v(Z) 
2 ----,-

= Et+v (Z) ----,-

s S 
(*(s): = 1[-2 r("2) ((s) 

=(*(l-s). 

(3.17) 

(3.18) 

(3.19) 
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Proof. Using analytic continuation, one may assume that Re 1/ < -1. From (2.3) 
together with (2.27) and (2.28), one has 

and 

(u; I Op(J~)u;) = ( J~, (x,~) f-+ 2 [I!7r Z Ix - Z~12 - 1 ] exp( - I:7r z Ix - z~12)) . 

(3.21) 
Set, for c: > 0 and fixed z E II, 

J(c:;x,~) = ~ [: Itl-V .2 exp ( - ~:: Ix - z~12) dt 

= (27r(;-1 r C; 1/) c: V ;-1 CXI~Z;12) v;-I (3.22) 

Then, from (3.10) and (3.9), then (3.20) and (3.21), 

(uz I Op(J~)uz) = 2 -12-V ((1 - 1/) L J(l; n, m) 

and 

(m,n)=1 
v-I 

=7rV;-lr(I/-1)((1_I/)X~ L (Imz-nI2)-2 
221m z 

(m,n)=1 

= E~_v (z) (3.23) 
2 

(u; I Op(J~)u;) = (-2 ! -1) 1_ (2 -12-v ((1 - 1/) L J(c:; n, m)) 
10-1 (m,n)=1 

= -1/ ELv (z). (3.24) 
2 

o 

We also gave in [62, Proposition 13.1] another expression of the Eisenstein 
distribution <!:~: namely, for Re 1/ < 0, 1/ # -1, and hE S(JR2 ), one has 

(<!:~, h) = (( -1/) [: Itl- V - 1 (F11h)(0, t) dt + ((1- 1/) [: Itl-V h(t, 0) dt 

+ Luv(lnl)jOO Itl-V- 1 (Fllh) G:,t) dt, (3.25) 
n#D -00 
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where the partial Fourier transform is defined as 

and, for n 2': 1, (JAn) = Ld21 dV • 

din 

(3.26) 

Only the presence of the first two terms dictated the condition Re v < 0 
there, but analytic continuation makes it possible to drop this condition, assuming 
instead v -1= -1,0,1,2, .... One may write (3.25) as 

~Ux,~) = (( -v) 1~I-v-1 + ((1 - v) Ixl-v 8(~) + L iJv(lnl) 1~I-v-1 e2i7rn f . 
n#O 

(3.27) 

Note that, at v = 0, the infinities from the first two terms cancel out since ((0) = 
-~ and 

_~ 1~I-v-1 _ v-18(~) = ~ ~ [(I~I-V - 1) sign~l 
2 2v ~ 

this explains why ~g is, indeed, meaningful. 
Consider the following two distributions on JR2 : 

lJ = 8(x - 1) 8(~) 

and 

b = e2i7rx 8(~ - 1), 

i.e., the distributions defined, for hE S(JR2 ), by 

(lJ, h) = h(l, 0) 

and 

(b, h) = i: h(x, 1) e2i7rX dx. 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

One may observe that lJ 0 g-l = lJ whenever 9 E r~, the subgroup of r defined 
right after (3.9), and that the same invariance property holds if one substitutes b 
for lJ. It thus makes sense, at least formally, to define the distributions 

and 

1)prime = 211" L lJ 0 g-l 

gH/r'!x, 

~ = ~ L bog-I. 
gH/r'!x, 

(3.33) 

(3.34) 
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However, as we shall show in the next section, the first of these two distribu­
tions is just a slightly modified version of the Dirac comb alluded to above, while 
the second one incorporates all homogeneous automorphic distributions invariant 
under the symplectic Fourier transformation in its decomposition into homoge­
neous components. Otherwise stated, the first object, as we shall see, yields nothing 
but the Eisenstein series, while the second yields, in a sense, all non-holomorphic 
modular forms. The major task of the present work is to show how canonically 
IE generates not only automorphic distributions but also, in the sense of Weyl's 
calculus, sharp products of such. 

Set 
~(x,~) = 27f L 8(x - n) 8(~ - m) 

Iml+lnl#O 
(3.35) 

(the Dirac comb on ]R2 with the mass at the origin deleted): then [62, Proposition 
16.1] 

(3.36) 

in a weak sense in S~ven(]R2); the proof is quite easy. 
Since \il 0 g-l, h) = (il, hog) and, as said just after (3.9), the set of pairs 

(::, :) is a set of representatives of r /r~, one has 

\~prime, h) = 27f L h(n, m). (3.37) 
(n,m)=l 

The distribution just defined is related to the Dirac comb in an easy way. Actually, 
as shown in (loc.cit., (16.57)) 

(3.38) 

so that one could write in some sense 

(3.39) 

As it turns out, the distribution ~prime is somewhat more fundamental than ~, 
and the definition of the Bezout distribution which follows bears more similarity 
to ~prime than to ~: we should really have denoted it as IE prime , but have not 
done so, for the sake of simpler notation, as it is by far the more important of the 
two related distributions, the second of which will be made explicit at the very 
end of this section. 

We now turn to the proper definition of the Bezout distribution. 

Definition 3.2. With b defined as in (3.30), set, for every £ ~ 1, 

(3.40) 
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One then defines, for e 2: 1, the distribution 

23£ = ~ L El 0 g-1 , 
gH/rg" 

a definition to be justified in the theorem that follows. 

(3.41) 

Actually, we are only interested in defining (23i ,h) when hE Seven(lR2); if 
hE Sodd(IR2), the series may not converge (though it does so if h lies in the image 
of Sodd(IR2) under the operator i7r£ (7r2£2 + ~), a remark unimportant at this 
point), but it must be treated as zero since one may group the terms bi 0 g-1 and 
bi 0 (_g)-1 whose sum is an even distribution. 

Theorem 3.3. If e 2: 1, the series on the right-hand side of (3.41) is weakly conver­
gent in S~ven(IR2), i.e., the series (23£, h) = ~ L9Er/rg" (b i 0 g-1, h) converges 

for every hE Seven(IR2). 

Proof. Our problem is to show that the series 

(23, h) = ~ L (b o g- l ,h) (3.42) 
gH/rg" 

converges whenever h E Seven (IR2) lies in fact in the image of the operator 7r2 £2. 
Completing the column (::,,) to (::" ::"11)' we thus have to examine 

1 
(23, h) = 2 L In,m(h), 

(m,n)=1 
(3.43) 

with 

(3.44) 

obviously, In,m depends only on the pair n, m. This expression of 23 (together 
with the condition mIn - nlm = 1) justifies the name of "Bezout distribution". 
If Iml 2: Inl, so that in particular m =I=- 0, we write 

1 (h) - e-2i7r *, 100 
h (nx - ~ mx) e2i7rX dx n,m - " 

-00 m 
(3.45) 

where, as is usual, n is characterized by the condition nn == 1 mod m. In the case 
when Inl > Iml, we use instead of (3.45) the equation 

In,m(h) = e2i7r "!t I: h (nx, mx + ~) e2i7rX dx (3.46) 

with min == 1 mod n this time. Of course, In,m(h) makes sense whether h is even 
or odd. We first need a lemma: 
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Lemma 3.4. Let h E S(JR2 ). One has for some constant C > 0 the inequality 

and, if h is an odd function, 

Proof. We may assume that Iml ?: Inl: starting from (3.45), we get 

IIn,m(h)1 :S C i: (1 + m 2x 2 )-1 dx 

:SCm-I. 

Since, for t between 0 and ~,one has 

(3.47) 

(3.48) 

(3.49) 

it is clear that In,m (h) agrees, up to a term less than C m -2, with the integral 

e-2i7r {;; i: h(nx, mx) e2irrx dx, 

which reduces if h is odd to 

i e-2i7r {;; i: (sin 27rx) h(nx, mx) dx 

=- e-2m m: SIn - h -x, x dx, i ,. n Joo (. 27rX) ( n ) 
Iml -00 m m 

(3.50) 

clearly a O(m-2) for large m, as seen by splitting the integral into the parts where 
1;'1 :S 1 and Ixl ?: Iml. D 

End of the proof of Theorem 3.3. Again, we consider the case when Iml ?: Inl. Let 
f = f(s, 0-) be any function in S(JR2 ). Recalling that h = 2i7rE f = (s ts + 0- !/(J + 
1) f, we have 

so that, after an integration by parts, 

In,m(2i7rE 1) = 

2irr n Joo [ ( 1 ) 1 of ( 1 )] e- m: -00 -2i7rxf nx - m,mx - mas nx - m,mx 
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or 

In,m (2i7r£ j) = - 2: In,m ( (a + 2~7r :s) /) , (3.51 ) 

finally leading to 

2 2 47r2 (( 1 8) 2) 2i7r (( 1 8) ) In,m(-47r £ j)=- m 2 In,m a+ 2i7r8s / +~In,m a- 2i7r 8s / , 

(3.52) 

where the last term arises from the commutation formulas [2i7r£,a] = a and 
[2i7r£, %s] = -%8· 

It is then immediate from Lemma 3.4 that if / E Seven(I~.2), one has 

from which Theorem 3.3 follows. o 

Recall that the version OPv0 of the Weyl calculus was defined in (2.21). 
We now analyze the action of the operator with the Bezout distribution as its 
OPv0-symbol on the families of functions defined in (2.24). 

Theorem 3.5. For every £ 2: 1, one has 

(3.53) 

and 
(3.54) 

Proof Of necessity, (u~ I OPv0(b) u~) = O. For it is immediate that the distribution 
b is invariant under the symplectic Fourier transformation F defined in (2.7), thus 
its image under 2-!+i7rE is invariant under y: as a consequence (c/. remark after 
(2.9)), Op(2-!+i7rE b) vanishes on odd functions. 

We now compute the interesting part. With z = x + iy (we then use (s, a) 
rather than (x,~) or (y, "') on 1R2), one has 

(uzi OPv0(b) uz) = ( b, T!-i7rE W(uz , U z )) 

= \ b, (s, a) 1--4 exp 7rls ~ zal 2 
) (3.55) 
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thus 

(3.56) 

Then, as a consequence of the metaplectic covariance of the Weyl calculus together 
with (2.25) 

(uz / Opy'2(b 0 g-l) uz) = (Ug-l. z / Opy'2(b) Uy-l.z) 

'f (nl n2) r I 9 = ml m2 E . 

1 

( Y )"2 2' m2 Z - n2 = exp zw 
/- mlZ + n1/ 2 -mlZ + n1 

Next, since £ commutes with the action of r, one has 

(3.57) 

w2 £2 (w2 £2 + 1) ... (w2 £2 + (£-1)2) 2-!+i7r£ (bog-I) = T!+i7r£ (bi! og-l). 

Also, as a consequence of (2.30), together with (2.4) and (2.25), 

(Uz / Opy'2(bi! 0 g-l) u z ) 

= (L\-~) (L\+~) ... (L\-~+(£-1)2) (Zf--4(Ug-l. z /Opy'2(b)uy-l.z))' 

(3.58) 

We note by induction that 

The theorem follows, and one should recall at this point that the series on 
the right-hand side of (3.53) is a special case of a class of automorphic functions 
introduced by Selberg [43J (following the use of Poincan§'s series in the holomorphic 
case), and used by many authors in the field ([15, 20J or [62, Section 20]). 

A still special case is given by the family of functions (depending on 1/ E C 
with Re 1/ < -1 and on an integer N) 
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With this notation, the first statement of the theorem reduces to 

(3.61 ) 

o 

In the next section, we shall make the decomposition of the Bezout distri­
bution into homogeneous components explicit, at the same time proving that not 
only ~£, with C ~ 1, but also ~ itself makes sense as a tempered distribution. 

Remark. One can also define In,m under the sole assumption that Iml + Inl #- 0 
instead of (m, n) = 1, setting 

In,m(h): = I: h(nx + nl (m, n), mx + ml (m, n)) e2i7rX dx, (3.62) 

where the matrix (::':::;1) has determinant (m, n). The automorphic distribution 
«(1 + 2i7f £) ~, which bears the same relation to ~ as the relation of 1) to 1)prime 

(cf. (3.39)), is just 

(3.63) 

4 The structure of automorphic distributions 

We now need to refresh the reader's memory on Maass cusp-forms and the Roelcke­
Selberg expansion - or, as the case may be, deliver him a crash course on the 
subject. On these classical matters, concerning the spectral theory of the modular 
Laplacian, several books are available, in particular [48, 25]. To begin with, recall 
that II is endowed with an 8L(2, ~)-invariant Riemannian structure, for which 

2 2 

the so-called "hyperbolic distance" is characterized by cosh d( i, x + iy) = H~y+Y , 

together with its 8L(2, ~)-invariance property. The associated invariant measure 
is d/-L(x + iy) = y-2dxdy. 

There are infinitely many possible fundamental domains for the action of r 
on II: the most usual one consists of all points z E II with - ~ < Re z < ~ and 
Izl2 > 1. The space L2(r\II) is the Hilbert space of automorphic (i.e., r-invariant) 
functions on II which are square-summable when restricted to any fundamental 
domain. In this space, the Laplacian D. has a canonical self-adjoint realization, 
the spectral resolution of which has both a continuous and a discrete, countable, 
spectrum. Eisenstein series E1-i>., oX E ~ (cf. (3.17)) serve as a (redundant, since 

2 

Eai>' are linearly dependent) family of generalized eigenfunctions, corresponding 
2 

to the continuous part [~, oo[ of the spectrum. Genuine eigenfunctions of D., i.e., 
the ones in L2(r\II), belong to a Hilbert space which has an orthonormal basis 
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temporarily denoted as {(~)~, Ml, M2,"'}' where the normalized constant cor­

responds to the eigenvalue 0, and Mj corresponds to the eigenvalue I:Aj: the 
non-constant ones are called cusp-forms, and we shall always assume that Aj > 0 
and that the sequence (Aj) is non-decreasing. It is known, by an application of 
Selberg's trace formula, that Aj goes to infinity as j ----+ 00 in such a way that 

A1 rv 12j ([48, p.290] or [25, p.174]). The Roelcke-Selberg theorem is the asser­
tion that any f E L2(f\II) can be uniquely written as 

f = <1>0 + '" <l>j M j + ~ Joo <I>(A) E,-iA dA, (4.1) 
6 87r 2 
j'21 -00 

where <1>0, <l>j are constants with L l<I>j l2 < 00, and <I> E L2(JR) satisfies the 
symmetry property 

with (* as defined in (3.19). 

<I> (A) 
(* (iA) 

<1>( -A) 
(*( -iA) , 

( 4.2) 

A cusp-form Mj associated with the eigenvalue H:i admits a Fourier series 
expansion (with respect to Re z) given as 

Mj(x + iy) = y~ L bn K ~ (27r Inly) e2i7rnx (4.3) 
n#O 2 

for some coefficients bn , depending on M j . This is a simple consequence of the 
method of separation of variables: observe that if a function of y alone is an 

2 
eigenfunction of ~ for the eigenvalue I-t ' it has to be a linear combination of 

i-v l+v . . . . 
y-2- and y-2-. Such a term IS mdeed present m the expanSIOn (4.5) below of 
Eisenstein series but absent from the expansion (4.3) of cusp-forms, precisely so 
as to ensure that cusp-forms are square-integrable in the fundamental domain. 

We now lift Mj to an automorphic distribution on JR2. There is one subtle, 
but essential, point in this lifting, to wit: corresponding to one cusp-form, there 
are two distinct automorphic distributions. We shall assume that our sequence 
(Aj, M j) (note that in our present notation eigenvalues are to be repeated ac­
cording to their multiplicity, though it is not known whether multiple eigenvalues 
do exist) has been parametrized by the set {j: j ~ I}, and let us repeat that 
for each j the number Aj has been chosen > 0 (only its square is known from 
the eigenvalue of ~, or from the right-hand side of (4.3)). Then we define the 
distribution 9J1~ on JR2 through the equation 

\9J1~, h) = ~ L Inl i~j bn Joo Itl-iAj - 1 (Fllh) U.:, t) dt, (4.4) 
2 n#O -00 t 

where the partial Fourier transform :Fl1h has been defined in (3.26). It has been 
proved in [62, Proposition 13.1] that 9J1~ is an even tempered distribution, ho­

mogeneous of degree -1 - iAj. We also define 9J1~j by the same formula, after 
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)..j has been replaced by -)..j: equation (4.4) is then valid for all j E ZX if one 
defines ).._ j: = -)..j. One may wish to call either of the two distributions 9Jt~j a 
"cusp-distribution" . 

Eisenstein series, too, have classical Fourier series expansions, given by 

E'i-v (x + iy) = (*(1 - v) y 12v + (*(1 + v) yl¥-
2 

+ 2 y! L Inl-~ O"v(lni) K ~ (27fInly) e2i7rnx • (4.5) 
n#O 

Observe again that the presence of the first two terms distinguishes Eisenstein 
series from cusp-forms, as seen from the expansion (4.3). Comparing (4.3) and 
(4.4) on one hand, (4.5) and (3.25) on the other, one sees that the way M j has 
been lifted to 9Jt~j is quite similar to the way the Eisenstein series E'i-iA has 

2 

been lifted to the pair of automorphic distributions ~t>.' even though the latter 
ones had an alternative definition (3.1) (not a direct one, though, as it relied on 
analytic continuation). 

The following is a quotation from [62, Theorem 13.2 and Proposition 13.4]' 
though we have changed the normalizations slightly so as to take the use of the 
quantization rule Opy'2 into account. It is not going to be used in this book, but 
our readers with a previous interest in the Lax-Phillips scattering theory for the 
automorphic wave equation [30] may find the right-hand side of (4.8) quite natural. 

Theorem 4.1. The map 6 1-+ A = Opy'2( 6) establishes an isometry from the space 
of tempered distributions 6 on ~2 admitting decompositions 

(4.6) 

with 

1116111¥-: = 27f (lcol2 + Ic~12) + ~ /00 Iw()..)12 1(*(i)..)12 d)" 
3 87f -00 

+ 2 L ICj 12 < 00 (4.7) 
#0 

onto a linear space of operators A: S(~) ----t S'(~) commuting with all operators 
Met(g), g E r, and satisfying 

IIAII¥-: = II z 1-+ (uzIAu z ) lIi2(r\l1) 

+ ~ III~ _ ~I-! (z 1-+ (u;IAu;)) 112 
£2 (r\II) 

< 00. (4.8) 
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Let us remark that the spaces of distributions or operators just introduced 
are not complete. This is so because we have decided, for simplicity, to consider 
only tempered distributions as symbols: a further extension would be necessary so 
as to get true Hilbert spaces. The absolute value around 6. - i in (4.8) is needed 
solely because of the eigenvalue O. 

Up to now, eigenvalues 1:.>-j have been repeated according to their multi­
plicity, and the cusp-forms M j corresponding to the same eigenvalue have been 
chosen in an arbitrary way, with the sole condition that, together, they should 
make an orthonormal basis of the given eigenspace. More precision is now needed 
concerning the choice of the cusp-forms M j. First, we need to distinguish even 
cusp-forms M, invariant under the map M f--* M with M(z) = M( -2), from 
odd cusp-forms, which change to their negatives under this transformation; even 
(resp. odd) eigenvalues are those for which there exists at least one even (resp. odd) 
eigenfunction. It is suitable to our needs to denote from now on as (Ath2:1 the 

increasing sequence of positive numbers such that 1+(~t)2 is an even eigenvalue 
of 6.: a similar convention holds for the sequence (Akh2:1 of odd eigenvalues; we 
still set A:k = - At. Since possibly multiple eigenvalues (it is not known whether 
any such can exist, in the case of the full modular group r) are not repeated 
any more, we need to define for each k, in a specific way, an orthonormal basis 
(Mt £)l<£<n+ or (M k £)l<£<n- of even, or odd, cusp-forms corresponding to the 

'--k '--k 

given eigenvalue. This is made possible by Hecke's theory. 
For every N ~ 1, the Hecke operator TN is the linear operator on automor­

phic functions defined as 

(TNJ)(Z)=N-~ L f(az;b) 
ad=N,d>O 

bmodd 

(4.9) 

All relevant information concerning the TN'S can be found in [48, p.241]; also 
recall for future use (loc. cit., p. 238) that 

MN(Z) = U r (~ ~), 
ad=N,d>O 

b mod d 

(4.10) 

where MN(Z) denotes the set of matrices with integer coefficients and determi-
. J+(.>-±)2 . 

nant N. Then, for each eIgenvalue ~, one can select an orthonormal basIs 
(Mt £)1 <£<n± of the corresponding eigenspace, in such a way that each Mt £ 

, - - k ' 

should be a Maass-Heeke eigenform: this means that, besides being an eigenfunc-
tion of 6., it should also be an eigenfunction of the Heeke operator TN for each N. 

Heeke's theory shows that if M is a Maass-Heeke form, then b±l =1= 0 and 
TN M = bbN M == bb- N M. It is customary, when dealing with Hecke's theory, 

1 -1 

to consider Maass-Hecke eigenforms N normalized by the condition that b1 = 1 
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(so that TN N = bN N for all N ;::: 1). Given an even eigenvalue 1+(~;)2, with 

k ;::: 1, we shall denote as (Nt-£)l<£<n± a basis of the corresponding (even or 
, - - k 

odd) eigenspace, consisting of Maass-Hecke forms normalized by the above-stated 
condition, to wit that the coefficient b1 from the expansion (4.3) of Nt-£ should 

be 1: then, for any given >..t, the functions Nt-f are uniquely defined' up to a 
permutation. ' 

We now lift Nt-£ to an automorphic distribution on 1R2 . The recipe has been 
provided in (4.4) and remains the same: only the coefficients bn have to be taken 
from the Fourier series expansion (4.3) of Nt-f' In this way, we end up with two 

well-defined distributions (!J1t f)~ and (!J1~k £)~ (the one with the subscript k;::: 1 

corresponds to the positive choice of a squ'are root of (>..t)2), homogeneous of 
degrees -1 - i>"k and -1 - i>"-k = -1 + i>"k respectively. 

The following result should be compared to Theorem 3.1. 

Theorem 4.2. For every k E ZX, and £ = 1, ... ,nt, one has 

where :F is the symplectic Fourier transformation. Also, for every ZEIT, 

and 

(u; I Opy'2( (!J1~£)~) u;) = -i>..t Njt'I,£(Z) , 

where Opy'2 has been defined in (2.21). 

(4.11) 

(4.12) 

( 4.13) 

Proof It is just the same proof for even or odd cusp-forms: we shall thus drop the 
sign ±. For p = 0 or 1, one has, using the Wigner function (2.27) or (2.28), 

(4.14) 

with 

T!-i1rE W(u~, u~)(s, a) = (-2 d~ - 1) Plt:=l exp (- :c Is - za l2 ) ( 4.15) 

Now, with 

h(s,a) = exp ( - :c ls -za l2 ) 

= exp ( - :c [(s _ xa)2 + y2a2]) , (4.16) 
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one has 

(4.17) 

and 

( -2 ! -1 rlC=l (F11h) (T,t) =y~ e2i7rnx (27fY (t2 - ~:) r e-7ry(t2+ 7~). 
(4.18) 

Thus, with the coefficients bn taken from (4.3), 

Now, as a consequence of [31, p.85], 

I: Itl- iAk - 1 e-7ry(t2+~) dt = 2Inl-~ K~ (27flnIY), (4.20) 

which yields the result if p = o. If p = 1, we write 

I: (27f Y (t2_ ~:)) Itl-iAk-le-7ry(t2+7~)dt 
~ = 21nl- 2 (27flnIY) [K ~-l (27flnIY) - K ~+l (27flnIY)] 

2 2 

iAk 

=2(-iAk)lnl-""2 K~(27flnIY), (4.21) 
2 

according to [31, p.67]. This proves the two formulas (4.12) and (4.13). 

To show that F91tc = 91~k,c, or, what amounts to the same, that 

Q (T~+i7rE 91" ) = T~+i7rE 91" 
k,C -k,C' 

it suffices, according to Proposition 2.1, to show that 

(u~ I Op(Q (T~+i7rE 91tc)) u~) = (u~ I Op(T~+i7rE 91~k,R) u~) (4.22) 

for all z E II and p = 0,1. Now, from the remark which follows (2.9), the left-hand 
side is just (-l)P (u~ I Op(2-~+i7rE 91L) u~), so that what is needed in order to 
complete the proof of Theorem 4.2 is t~ remark that 

(-l)P (u~ I Opv'2(91~,c) u~) = (u~ I Opv'2(91~k,R) u~), 

a consequence of (4.12) and (4.13) since A-k = -Ak. 

(4.23) 

o 
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We now give the decomposition of the Bezout distribution into its homoge­
neous components. We should insist on the fact that, in 91~ £, the subscript k can 
be any non-zero integer, while in N k ,£, it has to be 2: 1. ' 

Theorem 4.3. For £ 2: 1, the Bezout distribution ~£ admits the weakly convergent 
decomposition, in S~ven (I~. 2 ) , 

(4.24) 

where the norms are to be taken in the space L 2(r\II). 

Proof We shall first show that the right-hand side of (4.24) is weakly convergent 
for every £ 2: 0, then apply Proposition 2.1 to show that, if £ 2: 1, its sum coincides 
with ~£. Incidentally, note that this will also give a meaning as an element of 
S~ven (JR2 ) to ~ = ~o itself: remark that 

r(-%)r(%) 
(* (i>.) (* (-i>.) 

1 

(( i>.) (( -i>.) 
(4.25) 

has no singularity on the real line and that, around (3.28), we emphasized that 
~~ is meaningful. 

First, consider the integral term on the right-hand side of (4.24), and make 
~t explicit with the help of (3.25). Using Pochhammer's symbols (a)e = r~(;).e) = 
a(a + 1) ... (a + £ - 1) and the definition (3.19) of the function (*, we have to 
show, whenever hE S(JR2 ), the convergence of the following three integrals: 

I = 100 (-%)e(%)e d>.l°O Itl- iA- 1 (F-1h)(0 t)dt 
1 -00 ((i>.) -00 1" 

I = 100 
(-% )e( % )e r(l _ . >.) d>.l°O Itl- iA h(t 0) dt 

2 -00 (( i>.) (( -i>.) '> Z -00 " 

I = 100 (-%)e(%)e d>." . (I I) 100 Itl- iA- 1 (F-1h) (!!: t) dt (4.26) 
3 -00 (( i>.) (( -i>.) f:o a'A n -00 1 t' . 

It is known [49, p.161, 149] that 1((1 ± i>')I±l ::;: Clog 1>'1 as 1>'1 ~ 00 so 
that, using the functional equation (3.19) ofthe zeta function and the estimate [31, 
p.13j of the Gamma function on vertical lines, the same (even better, actually) 
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inequality holds for (((±iA))-l. Pochhammer's symbols are taken care of, for 
large IAI, by means of 

Itl- iMr- 1 (signt)E = . 1 ~ (Itl-iMr (sign t)l-E), 
-zA + r dt 

( 4.27) 

with E = 0 or 1, so that, saving an extra factor 1-1\2 at the end, and using an 
integration by parts, we are done for hand 12 . 

So far as h goes, we start with the same integration by parts so as to com­
pensate the Pochhammer's symbols, still saving an extra factor 1;>.2, next use the 

trivial inequality 100i>.(lnl)l:<::; 1 + i~!~ and write (r = 0, 1, ... ) 

1: IW- 1 I (:~ r (F11h) (~, t) I dt 

:<::; CN to 1: IW-1 I~ 1m 
(1 +t2 + ~:) -N dt 

:<::; CN In 1m (1 + Inl)-if t 100 
IW- 2m-l (1 + t 2 )-if (1 + C 2 )-if dt 

m=O -00 

( 4.28) 

to conclude. 
In view of (4.4), consider the term 

1 r(f! - &) r(f! + &) ')' 100 ) -L 2 2 2 L Inlf bn Itl- i>'k-1 (Fl1h) (~, t dt, (4.29) 
4 k,£ IIJ\!Ikl,ell n,iO -00 t 

coming from the application of the right-hand side of (4.24) to h: note that we 
have dropped the superscript ± since what follows applies just as well to the 
sum of automorphic distributions which corresponds to even, or odd, Maass-Hecke 
eigenforms. The study of this term goes along the same lines as that of h, except 
for the following: first, the dA-integration is replaced by a summation with respect 
to k, f!; next, the coefficients bn from the Fourier series expansion of J\!Ikl,£ are 
unknown, and so is IIJ\!I kl,cll-l. As indicated in [48, p.220], Ibnl is uniformly 
majorized by some fixed power of Inl (the exponent 130 +E would do), and we have 
seen from the study of h how to take care of powers of n. Next, very temporarily 
reverting to the notation (Aj, Nj) instead of (Ak' Nk,R) so as to indicate that 
eigenvalues should be repeated according to their multiplicity, one has, as recalled 
just before (4.1), Aj rv (48j)~ as j -+ 00, so that powers of Aj (coming, say, from 
Pochhammer's symbols) in our series can be taken care of in exactly the same way 
powers of A were compensated in the study of h. Finally, as a consequence of a 
result of R.A.Smith [46], quoted in [48, p. 247], one has for large Ikl 

IIJ\!Ikl,ell- 1 :<::; C Ir (i~k ) 1-1 , (4.30) 

which ends the proofthat the series on the right-hand side of (4.24) is convergent. 
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To finish the proof of Theorem 4.3, we only have to show, with p = 0 or 
1, that for all Z E II, (u~ I Opv'2(~f) u~) agrees with the analogous scalar prod­
uct, obtained after substituting for ~f the right-hand side of (4.24). Recall from 
Theorem 3.1, and (3.5), that 

From (4.12), (4.13), 

(u~ I OPv'2(Q;~A) u~) = (u~ I Op(J~A) u~) 
= (-iA)P E~-iA (z). 

2 

(u~ I Opv'2((!)1t,f)~) u~) = (-iAk)P AIj!'J,f(Z), 

Finally, using Theorem 3.5, what we have to show is that 

(4.31 ) 

(4.32) 

is zero for p = 1, and agrees with (47r)f r~f(1t) U1(z,£ +~), as defined in (3.61), 

for p = O. 
The first point comes from the fact that, except for the factor -iA, -iAt 

or -iXi,;, all that remains under the integral or the series in each term on the 
right-hand side of (4.33) is an even function of A, At or Xi,;. The interesting part 
was proved by Selberg [43] and, rephrased as 

( ( 1)) -f r(~) r(£-%)r(£+%) 
El-;iA I U1 z'£+"2 = (47r) r(£+~) x 2 (*(1 +iA) (4.34) 

together with 

( ± ( 1)) -e r(~) (iAt) ( iAt) Aljkl,el U1 z'£+"2 = (47r) r(£+~) x r £-2 r £+2 ' 

(4.35) 
can also be found in [15, p.246] or [20, p.247]. 0 

It is natural to ask whether one could give the (integral) first term on the 
right-hand side of (4.24) a closed form, say when £ = o. 



4. The structure of automorphic distributions 37 

Proposition 4.4. Set, for t E JR, 

¢(t) = L (e2i1r~ - 1 - 2i7f ~) M6b(r) , 
r2':l 

(4.36) 

where M6b(r) is the arithmetic function (usually denoted as f.L(r)) which vanishes 
if r is not square free, and is -1 to the number of prime factors of r otherwise. 
Set 

1 100 
(6, h) ="2 L -00 ¢(t) h(tn, tm) dt, 

(m,n)=l 

(4.37) 

a formula to be compared to the initial definition (3.1) of Eisenstein distributions. 
Finally, set 

1 100 1 
I.Econt = 47f -00 «( i).) «( -i).) (E~A d)', (4.38) 

which is (using (4.25)) the continuous term in the spectral decomposition of I.E. 
Then 

I.Econt = 6 + ~ L Resll=ip[«(if.L) ((-if.L))-l (ELl. 
(*(p)=o 

(4.39) 

Proof. Before we start it, note that the presence of the extra terms on the right­
hand side of (4.39), associated to the non-trivial zeros of the zeta function, implies 
of course that 6, contrary to I.Econt , lies outside the Hilbert space of automorphic 
distributions introduced in Theorem 4.l. 

Note that 

(4.40) 

so that, for every a with 1 < a ~ 2, 

1¢(t)1 ~ Cmin(t2 , IW)· (4.41 ) 

Given any hE S(JR2 ), one has 

l ia+oo 

(6, h) = ia-oo (6, L Il ) df.L (4.42) 

with 

(4.43) 

thus 

1 100 100
. (6, h_ ll ) = -4 L ¢(t) dt S-'Il h(stn, stm) ds. 

7f -00 0 
(m,n)=l 

(4.44) 
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If 1 < a = 1m f.1 ~ 2, one may write 

with 

1 r~· 
(6, h_/-I) = 411" L io s->/-I iI>(f.1) h(sn, sm) ds 

(m,n)=l 

iI>(f.1) = i: ¢(t) Itli/-l-1 dt 

= 100 
Itli/-l-1 dt L (e2i7r* - 1 - 2i1l"~) Mob(r) 

-00 r2':l 

= 100 Itli/-l-1 dt L(e2i7rt - 1 - 2i1l"t) ri/-l Mob(r) 
-00 r2':l 

= _1_. -100 Itli/-l-1 (e2i7rt _ 1 - 2i1l"t) dt 
(( -Zf.1) -00 

1 r(if.1) (_:!!.I!. :!!.I!.) 
=------. e 2+e 2 

((-if.1) (211"»/-1 

1 Li/-l r(~) - ---11"2 
-((-if.1) re-;iy) 

((1- if.1) 
((if.1) (( -if.1) 

(4.45) 

(4.46) 

(we have used the duplication formula for the Gamma function [31, p.3] together 
with the functional equation (3.19) of the zeta function and the well-known ex­
pansion as a Dirichlet series of !). 

Using the identity (a consequence of (3.1)) 

(Q:L, h) = ((1 - if.1) L 100 s-i/-l h(sn, sm) ds, (4.47) 
(m,n)=l 

we get, from (4.45), 

( 4.48) 

the theorem then follows from (4.41) and a contour deformation; note that the 
simple pole of Q:L at f.1 = i (cf discussion between (3.1) and (3.2)) is killed by 
that of (( -if.1). 0 

The distributions !.Beont and 6 are closely related to a "comb", i. e., a r­
invariant measure supported in 1£2\ {O}. 
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Proposition 4.5. Set 

1 
91(x, 0 = '2 L (n,m)Mob((n,m))6(x-n)6(~-m). (4.49) 

Inl+lml#O 

The decomposition of the distribution 91 into homogeneous components is 

91 _ ~ 100 1 ~ d>" 
- 4n -00 ((1 - i>..) (( -i>..) \Ei .\ 

- ~ L Res/l=ip[ (((1 - iJL) (( -iJL))-l \EL]· (4.50) 
(* (p)=O 

Proof. From the analogue of (4.44), one gets, if 1m JL > 1 and hE S(JR2 ), 

1 roo . 
(91,h-Jl) = 4n L (n,m)Mob((n,m)) In s-'Jlh(ns,ms)ds 

Inl+lml#o 0 

=~L L rMob(r) {OOs-iJlh(rns,rms)ds 
4n Jo r?:l (n,m)=l 

1 100 
. = -((( -iJL))-l L s-'Jl h(ns, ms) ds 

4n 0 
(n,m)=l 

(4.51 ) 

Using (4.42), then the fact [62, (16.6)] that (V, h_ Jl ) = \ \EL, h) (proved in 

just the same way), one gets, if a > 1, 

1 lia+oo 
(91, h) = -. ((( -iJL) ((1 - iJL))-l \ \EL, h) dJL, 

4n ta-OO 

( 4.52) 

which leads to (4.50) after a contour deformation. D 

Remark. In some sense, one may thus write 

(5 = ((1 + 2in £) 91 = n~+2iK E f( -in £) 91. 
((-2in£) f(~+in£) 

( 4.53) 
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5 The main formula: a heuristic approach 

With considerable precautions, one can give a meaning to the sharp product of two 
Eisenstein distributions ~t and ~t2. The "main formula" (5.38) or (5.62) referred 
to in the title above expresses the distribution ~~1 #~~2 as the image of the Bezout 
distribution 23 under a simple operator, quite interesting from an arithmetic point 
of view: the Bezout distribution has been built precisely towards this purpose. 

We shall not prove the main formula in this section, only give a heuristic 
approach to it, with the following aims in mind: first, to introduce, at this early 
stage, the ingredients of the operator connecting ~~1 #~~2 to 23; next, to give a 
rough explanation of why the main formula should be expected, at the same time 
pointing towards the main tools as well as the main difficulties of the complete 
proof, which will be given in Sections 13 to 15. The formal arguments given here 
probably provide a better feeling about the role played by the "Dirichlet-Hecke" 
series £(s) (5.22) in (5.44) than the rigorous arguments to be developed later. 

First, we transfer the usual Hecke operators TN to our distribution setting. 

Definition 5.1. Let S' per (JR2 ) be the subspace of S' (JR2 ) consisting of distributions 
invariant under the linear action of the matrix (6 i ), i. e., under the transforma­
tion (x,~) f---+ (x +~, ~): of course, it contains the space of r-invariant tempered 
distributions. 

Given 6 E S' per (JR2 ) and an integer N 2: 1, we define the distribution 
T'Jrist6 through 

In particular, if 6 coincides with a function hI, one has 

(Tdisth )(x C) = N-~ ~ h (ax + b~ d~) 
N 1 , <" L...J 1 v'Ji1' v'Ji1 

ad=N,d>O 
bmodd 

One also defines 

(5.2) 

(5.3) 

that T~~st 6 is automorphic if 6 is, is a consequence of the fact that the matrix 
( -1 0) normalizes r in G £(2 JR) One may also note that T dist Tdist = T dist T dist o 1 ' . -1 N N -1' 

a consequence of (i/ ~) (g ~) = (~ -,/) (c/ ~), so that it would be quite natural 
to set T~W: = T~ir TfJst for all N 2: 1. 

Remark. Recall that the involution 6 f---+ 96 admits a companion interpretation 
on the operator level since, as reported after (2.8), one has Op(6)u = Op(Q6)u 
if 6 E S'(JR2) and U E S(JR). 
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The involution T~\st also has such an interpretation, to wit 

(5.4) 

if u(x) = u( -x) and Op(6)* is the formal adjoint of Op(6). 

One can easily prove in a direct way that, for N::,. I, T'!rist 6 is automorphic 
if 6 is. However, one may dispense with the proof since it is a consequence of 
Proposition 2.1 and of the next proposition. Also, it is immediate that the Hecke 
operator T'!rist commutes with E. Finally, T'!rist commutes with the symplectic 
Fourier transformation if N ::,. 1 [62, Proposition 16.11], for general N when 
acting on even distributions only (in particular automorphic distributions). 

Proposition 5.2. For p = 0 or 1, and Z E II, one has for every 6 E S' per (JR2 ) 

and N ::,. 1 the relation 

where the operator TN is defined by (4.9) on all functions f on II invariant under 
the translation Z f-+ Z + 1: in particular, on automorphic functions, TN is the 
usual Hecke operator. Also, 

Proof. Starting in just the same way as in (4.14), (4.15), we get 

(u~ I Opy'2(T'!rist 6) u~) 

= ( -2 :c - 1) l:=1 \ T'!rist 6, (s,O") f-+ exp ( - :c Is - 20"1 2 ) ) 

(5.6) 

= (-2 :c - I)PI N-~ L /6, (s,O") f-+ exp (- ~c Ids - bO" - a2O"12)) 
6=1 ad=N, d>O \ y 

b mod d 

The second part is immediate. D 

Note that 

(N- iJrE T'!rist6,h)= L (6,(x,Of-+h(dx-b~,a~)). (5.8) 
ad=N,d>O 

b mod d 
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It has been observed in [62, Section 16] that Dirichlet series in the argument 
2i1r [, as well as the modified operator N- i 7r £ T'J/"t, act within the space of au­
tomorphic distributions supported in Z2\{0}. One can prove something entirely 
analogous with the Bezout distribution substituted for the distribution ~prime, 
i.e., substituting combs of lines for combs of points. However, we shall satisfy 
ourselves with the following (needed) result. 

Proposition 5.3. Given n, m with (n, m) = 1 and an integer N 2 1, define the 
tempered distribution I:!,m as 

(I:!'m,h) = I: h(nx+nl,mx+mde2i7rNXdx, 

where U;,:::';) E r. Then 

N i7r £ T dist ~ = ~ " IN N 2 ~ n,m' 
(n,m)=l 

(5.9) 

(5.10) 

where both sides are considered as continuous linear forms on the image of S(JR.2) 
under the operator 1r2 [2. 

Proof. Let w denote a complete set of matrices (g ~) with integer coefficients and 
a 2 1, ad = N, b mod d, and let w denote a complete set of matrices (g ~b) under 
the same conditions: the map g 1--+ det(g).g-l preserves MN(Z) (cf. (4.10)) and 
sends a set w to a set w. Thus 

MN(Z) = U r')' = U ')'r. 
'"YEw '"YEw 

Let A be a complete set of representatives of r /r~. Then 

MN(Z) = U gr~ ')' = U ')'gr~. 
'"YEw 
gEA 

'"YEw 
gEA 

(5.11) 

(5.12) 

Now U'"YEwr~ ')' = U'"YEW')' r~ since both sets coincide with {( g d) : a 2 1, ad = 
N}. Thus 

too. 

MN(Z) = U g')'r~ 

One then has, for every hE S(JR.2 ), 

'"YEw 
gEA 

(N- i7r £ T'Jjst It,o, h) = L I: h(dx - b, a) e2i7rX dx 
ad=N,d>O 

b mod d 

L e2i7r~ 100 h(dx, a) e2i7rX dx. 
ad=N, d>O -00 

b mod d 

(5.13) 

(5.14) 
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Since Lb mod d e2i7r~ = 0 unless d = 1, this reduces to 

[: h(x, N) e2i7rx dx 

= [: (N-1+2i7r£ h) (~, 1) e2i7rx dx 

= [: (N2i7r £ h)(x, 1) e2i7r Nx dx : (5.15) 

thus 

(5.16) 

Letting r/r~ act and summing, we are done, in view of (3.41): the proof of 
Theorem 3.3 indeed justifies the convergence of both sides in the case when h lies 
in the image of S(JR.2 ) by the operator 7[2 £2 . 

Incidentally, recall that (4.24) from Theorem 4.3, in which the right-hand side 
is still meaningful when 1! = 0, allowed us to give a meaning to ~ as a tempered 
distribution; the same could be done here with the right-hand side of (5.10), which 
would thus become an identity in S~ven(JR.2). 0 

The action of the Hecke operators T'J/"t on Eisenstein distributions (!:~ or on 
cusp-distributions (l)1~ l)~ is easy to describe too. The first one has been given in 
[62, (16.88)]: for every'N ~ 1, 

(5.17) 

Proposition 5.4. One has, for every N ~ 1, 

T dist (l)1± )~ - b (l)1±)~ N k,l - N k,l , (5.18) 

where bN is the N-th coefficient from the Fourier expansion (4.3) of the cusp-form 

JVji,,£" 

Proof. According to Theorem 4.2 and Proposition 5.2, one has if Z E II and p = 0 
or 1 

(u~ I OPv'2(Ttist (l)1t,l)~) u~) = (-iAk)P (TN JVjil,l)(Z) 

= (-iAk)P bN JVjil,l(Z) 

= bN (u~ I Opv'2(l)1t,l)~) u~), 

so that the proposition follows from Proposition 2.1. 

(5.19) 

o 
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Proposition 5.5. 

and 
r dist (91+ )~ - (91+ )~ -1 k,£ - k,£ , 

Proof. This is a consequence of (5.6). 

(5.20) 

(5.21) 

o 
As observed in [62, (16.83)], one can handle all Hecke operators simultane­

ously through the consideration of the one-parameter family of operators 

£(8): = L N- S r'tist 

N?l 

= IT (1 - p-sr;ist + p-2s)-1 . 
p prime 

For Re v < -1 and Re 8 > 1 - R~ v , one then has 

£( 8) ~~ = ( (8 - ~) ( (8 + ~) ~~, 

and, for any cusp-distribution (91~£)~, one has for Re 8 large enough 

(5.22) 

(5.23) 

(5.24) 

where the L-function L(8, Mj) associated to a cusp-form admitting the Fourier 
series expansion on the right-hand side of (4.3) is defined, as is usual, by the 
Dirichlet series 

L(8,Mj) = Lbnn-s (5.25) 
n:2:1 

this is a consequence of (5.17) and (5.18). 

Recall that if Mj is an even cusp-form, associated to the eigenvalue H(~j)2, 
L*(8,Mj) extends as an entire function of 8 satisfying the functional equation [8, 
p.107] 

L*(8,Mj) = L*(l- 8,Mj) (5.26) 

if one defines 

(5.27) 

if Mj is an odd cusp-form, associated to the eigenvalue H(~j)2, one should set 
instead 

(5.28) 
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getting in this case the functional equation 

L*(8,Mj) = -L*(l- 8,M;). (5.29) 

Just in the same way as changing L(8, Mj) to L*(8, Mj) made the usual 
functional equation possible, a modified version £'(8) of the Dirichlet-Heeke op­
erator £(8) will be invariant under the symmetry 81--+ 1 - 8. 

Definition 5.6. An (even) distribution <5 E S~ven(1R2) shall be said to be of even 
(re8p. odd) type if it is invariant (re8p. changes to its negative) under the operator 
T~ft introduced in (5.2). 

From Proposition 5.5, it follows that Eisenstein distributions are of even type, 
and that a cusp-distribution (l)1t,l)~ (re8p. (l)1k,l)~) is of even (resp. odd) type. 

Definition 5.7. With £(8) = LN;:::I N-s T'tJist, one defines 

(5.30) 

where Leven (8) (re8p. £odd (8)) is the linear operator on automorphic distributions 
which coincides with £(8) on (even) distributions of the even (re8p. odd) type and 
vanishes on distributions of the odd (resp. even) type. 

In this definition, we are postponing all questions of convergence, or rather 
of analytic continuation. Assuming that this has been done, observe that 

£' (8) = £' (1 - 8) T~tt , (5.31) 

i.e., £'(8) = ±£'(1-8) according to type, a consequence of (5.23) and (5.24), (5.26) 
and (5.29). 

Consider two Eisenstein distributions ~~1 and ~~2. From (3.14) and (3.13) 
it follows that, if Re v > 1, 

" -v-3 1 r (~2V) L 
~" = 2-2- -1,1-2 

v 1f -r-7-(--=-~2+) 
Inl+lml#O 

1 - mx + n~I-I-v (5.32) 

thus, if Re VI > 1 and Re V2 > 1, one may expect the formula 

r(I+Vl) r(l+v2) 
~~ #~~ = 2 -V1 -;.v2 -6 1f-v1-v2-I 2 2 

V1 V2 r(-¥)r(-~) 

x L 1- mIX + nl~I-I-v1#1_ m2X + n2~I-I-v2. (5.33) 
In11+lm11#O 
In21+lm21#O 
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First, we split this sum as 

(5.34) 

where the "marginal" terms are those with nlm2 - n2ml = O. Setting nj = Tj n 
and mj = Tj m with Tl ~ 1, T2 =I=- 0 and (n, m) = 1, it is immediate that 

(~" #~" ) _ -V1-;v2-6 -V1-v2- 1 r(~) r(~) 
v V1 V V2 marg - 2 1f r ( _ vI) r ( _ ~ ) 

X 2 «(1 + vI) «(1 + V2) L 1- mx + n~I-V1-V2-2 (5.35) 

or, using (5.32) again, 

1 r (I+V1) r (l+v2) 
(~" #~" ) _ 1f2 2 2 

V V1 V V2 marg - r ( _ ~") r ( _ ~ ) 

(n,m)=1 

r ( l+V~+V2) 

r (2+V~+V2) 

X «(1 + VI) «(1 + V2) J" 
«(2 + VI + V2) V1 +V2+1' 

or finally, using the functional equation (3.19) of the zeta function, 

(5.36) 

(5.37) 

Our first aim in this section is to indicate why one may expect a formula 
such as 

(J~l #J~2)main = £' (1 + V~ + V2) 9 £' (1 + V~ - V2) T!+i7l"C IE 

+ side terms, (5.38) 

where the side terms, similar to (5.37), cannot be made precise from the much too 
rough analysis that follows. 

Let us just mention here, without proof, that the number of side terms, 
including (5.37), would be two or three in our case: in Sections 13 and 15, we shall 
find four side terms. The reason for this is that the number of side terms depends 
on the position of Re (VI ± V2) with respect to ±1: in Sections 13 to 15 (where 
proofs are complete), it is the case when IRe (VI ±v2)1 < 1 that will be discussed. 

The relation (5.38) would be even nicer if, in analogy with (3.3), we had 
introduced a special notation for the distribution 2-!Hrrc IE: recall that J~ = 
2-!+i7l"C Q;~ is better adapted than Q;~ to the use of the Op-calculus: in the Opy'2-
calculus, it is the other way around (cf (5.62) below). 

We now study the (much harder) main part (J~1 #J~2)main. It has been 
shown in [62, Lemma 5.1], and it will be reviewed with more care in Theorem 
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11.3, that if Re 111 > 1, Re 112 > 1 and 1110 112 are distinct from even integers, one 
has the formula 

with 

-I-VI +v2-i>.. -1+vl-v2-i>.. 

h)..(x,~)=LCj(1I1,1I2;iA)lxlj 2 1~lj 2 , 

j=O,l 

where Itlj: = IWI! (sign t)j and 

r(T)r(=f-) 
r (Vlt1) r (v2t1) 

(5.39) 

(5.40) 

r (1+Vl -V~+i)"+2j) r (1+Vl +V~-iA+2j) ) r (I-Vl +V~+i)"+2i) 

r e-Vl +V~-i)"+2j) r e-Vl-V~+i)"+2j)) r (1+Vl-V~-iA+2j) . 

(5.41) 

Applying the covariance formula (2.5), it follows from (5.33) that 

-I-VI +v2-i>.. -1+vl-v2-i>. 

I - m1 x + n1~lj 2 I - m2x + n2~lj 2 dA. (5.42) 

We first refer to Definition 5.6 and observe that, when acting on even distri­
butions, any of the operators 2i7f£, 9 or £(s) preserves the type (even or odd) of 
distributions. Also, since changing m1, m2 to their negatives changes n1 m2 -n2m1 
to its negative as well, it is clear that the last sum on the right-hand side of (5.42) 
has the type specified by j: it is of even type if j = 0, of odd type if j = 1. Next, 
going back to Definition 5.7 and remembering that 9 £ = -£ g, one sees that, 
when acting on distributions of the type specified by j, 

£' C + II; + 112) 9 £' (1 + II; - 112) = 7f-Vl 

X r (1+Vl +V212i1f£+2j) r (1+Vl-V242i1f£+2j) £ (1 + 111 +112) g£ (1 + 111 -112) . 

r e-Vl-V242i1f£+2j) r e-Vl +v212i1f£+2j) 2 2 

(5.43) 
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When acting on distributions homogeneous of degree -1 - i).., 2i1f £, acts as 
the scalar -i).., so that an admittedly formal argument would already reduce the 
formula to be proven to 

with 

6=.cC+V~+V2) g.c(1+V~-V2) T!+2i7r£~ 

+ side terms, 

r (1-V1 +V2 +iA+2j ) 

6 = 100 2 -9;-i'" 1f -2+v] ;-v2-iA d)" L 4 L 
_ . r (1+10'1 -V2- iA+2j) 

00 )=0,1 4 n1m2-n2m1>0 

(5.44) 

-I-VI -v2+i.\ -I-VI +"'2-i). -1+vl-v2- i >.. 

(nl m2- n2m l) 2 l-mlx+nl~lj 2 l-m2x+n2~lj 2 

(5.45) 

N t 'th - (n2 -n1 ) th t -1 _ ( )-1 (-m1 n1 ) ex ,WI 9 - m2 -m1 ,so a 9 - nl m2 - n2m l -m2 n2 ,we 
may write the sum on the last line, recalling that the set of matrices w has been 
introduced in the beginning of the proof of Proposition 5.3, as 

L N- 1 - V1 ;-V2 +i'" L N- 1- iA (IXlj-1-V1~V2-iA 1~lj-1+V1;-V2-iA) 0 g-1 (5.46) 

N?l gEMN(Z) 

or, using (5.11), as 

L N -1-V1 ;-V2+iA L Ii 0 'Y (5.47) 
N?1 ""YEw 

with 

-1-"'I+"'2-i'\ -1+Vl- u2- i >.. 

1- mIX + nl~lj 2 1- m2X + n2~lj 2 (5.48) 

On the other hand, from (5.2), 

TN Ii = Nlf L Ii 0 w . (5.49) 
""YEw 

Thus (5.44), to be proven, reduces to 

(5.50) 
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with 

-I-v! +v2-iA -1+"'1 -v2-i.>... 

l-mlX+nl~lj 2 l-m2X+n2~lj 2 (5.51 ) 

As a next step, observe that 

(5.52) 

and recall that g commutes with the action of SL(2,lR.): thus (changing A to -A 
in the integral) 6 1 = g 6 1 , so that the identity to be proven is, finally, 

( 1 + VI -V2) 1+" £: 6 1 = C 2 2-' >71" IB + side terms. (5.53) 

To try to justify this formula, we now start from the right-hand side, and 
from Proposition 5.3, thus getting if Re (VI - V2) > 1 the formula 

N i7l"£:,,(1+ V
21- V2) _~" -1-~1+V2 " N 

J-- IB - 2 ~ N ~ In,m' 

N2:1 (n,m)=1 

(5.54) 

From (5.9), one has 
(5.55) 

with g = (:;:, :;:,~ ) E r (where the second column is arbitrary) and 

(5.56) 

The decomposition of the distribution (If"o)even, with , 

into homogeneous components, is, using (2.13) and (2.14), 

(5.57) 
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an admittedly formal integral. If one could perform the sum of r /r~-transforms 
of this identity, one would thus get, but this is again essentially heuristic, 

still with (:::.:::.~) E r, and up to extra side terms. Obviously, a contour deforma­
tion would be needed in order to substitute for the series under the integral sign 
a convergent one: this (and the residue theorem) explains the disappearance of 
side terms from the result of our rough arguments. Let us mention at once that, 
though this would be quite feasible if non-trivial, we shall not try to repair the 
preceding arguments in the proof of the main formula to be started in Section 13, 
rather follow a quite different path, for reasons which will be given then. 

We now split the distribution on the right-hand side of (5.58), noting that 
the set of matrices with integral entries and determinant -1 can be described 
either as the set of matrices (_nm -r::.l ), or the set of matrices (;:, ~;:,~ ), with 
9 = (:::.:::.~) E r, and that changing 9 to the first of these matrices would be 
tantamount to changing (x,~) to (-x, ~), whereas changing 9 to the second one 
would be the same as changing N to -N. Thus, up to side terms, 

-1-1.11 +v2+ i .x . . N 7nlx-nle 

INlj 2 I - mx + n~l-l-t>' e2tn ",x+n, d>... (5.59) 

Now, it is an easy consequence of Poisson's formula (cj. for instance [62, 
(10.9), (10.10), (10.31), (10.32)]) that, for real t, 

r(ili) '"' INls-1 e2in Nt = i j 7f~-s 2. '"' It + W- s 
~ J r(l-S+l) ~ J' 
N-I-O 2 bE&'; 

(5.60) 

with the following proviso: the domains of convergence of the two sides of this 
equation are disjoint, since the left-hand side (resp. the right-hand side) converges 
for Re s < 0 (resp. Re s > 1), and it is to be understood that, on both sides, 
analytic continuation has to be used. Formally plugging the result of this (genuine) 
equation into (5.59), we would get 



5. The main formula: a heuristic approach 51 

which is the same as (5.45), using again that the set of pairs n, m parametrizes 
r/r~. 

Remark. As a conclusion to this heuristic section, let us briefly point towards the 
main difficulty, and the way it is going to be solved. 

Proving the main formula (5.38) or, if one agrees to use the OPv'2-calculus, 
the equivalent one, in which ~ denotes the sharp product from the OPv'2-calculus, 

(5.62) 

(recall that the Fourier transformation has been defined in (2.7) and Bezout's 
distribution IB in the beginning of the proof of Theorem 4.3, and in (3.42) in an 
informal way) entails considerable difficulties. 

Some of these are already apparent from the heuristic considerations that pre­
cede. They are connected to the lack of absolute convergence of series of integrals, 
and are to be taken care of by the (not quite) usual complex contour deformation 
methods. Another difficulty stems from the fact that we are dealing with rather 
singular distributions, typically something like Ixli 1~lr To circumvent this dif­
ficulty, we shall appeal to Proposition 2.1 again, substituting for the analysis of 
~tl #J~2 the technically simpler analysis offunctions z f-+ (u~IOp(J~l #J~2) un 
We may then use results relative to the spectral theory of the automorphic Lapla­
cian to proceed further. 

But the main difficulty has not yet been singled out. It is the fact that 
J~l #J~2 is not really meaningful in the usual sense. Though Op(J~) is always 
well defined, for v -I ±1, as a linear operator from S(lR) to S'(lR) , it is not 
possible to find three "dense" spaces E l , E2, E3 of functions or distributions, 
each of which would be invariant under the metaplectic representation, such that 
Op(J~2) should send El to E2, and Op(J~J should send E2 to E3. Not even 
choosing for El the space algebraically generated by the u~'s, p = 0 or 1, and for 
E3 the algebraic dual of this space, would do, for it will be proven in the beginning 
of Section 10 that Op(J~) does not even send U z into L2(lR): things behave better 
so far as odd states u~ are concerned. 

A spectral analysis of the problem of giving the sum on the right-hand side 
of (5.33) a meaning shows that there is a remaining difficulty, quite similar to the 
one that prevented us, in Theorem 3.3, from giving the series (3.41) defining IB£ 
a direct meaning in the case when £ = o. Namely, it is only after we have applied 
i7r £ or, more generally, (i7r £)p for some p ~ 1 to each term, that a series such as 
I: 1- mlx + nl~l-l-Vl#l- m2x + n2~I-l-V2 can be made to converge. 

We must then give some answer to the following question: how can one, in 
certain cases, give a meaning to the image under i7r £ of the symbol h of some 
operator A, without being able to define either h or A? An answer is provided 
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in Section 12 and the very beginning of Section 13: though this is not strictly 
unavoidable, a much better understanding of this issue can be obtained from the 
introduction of the "higher-level Weyl calculi", to be developed in the next seven 
sections. For, with the OpP -calculus, there is a naturally associated pair of sets of 
functions (U~)zErr, (U~+l )zErr, such that, extending the concept ofWigner function 
to the OpP-theory, the Wigner function associated with a pair (u~, u~) (resp. with 
a pair (u~+ 1, u~+l )) should be essentially the image of the usual Wigner function 
W(uz , u z ) under the operator (-i7r£)p (resp. (-i7r£)p+l)' 

The OPP -calculus has other applications, and may not be devoid of inter­
est from the point of view of elementary harmonic analysis, relativistic quantum 
mechanics or quantization theory. However, readers only interested in the automor­
phic Weyl calculus may be advised to jump to Section 13, after having familiarized 
themselves only with Definition (6.13) and with Proposition 12.1. 



Chapter 2 

A Higher-level Weyl Calculus 
of Operators 

N.B. The level alluded to here is an energy level (Theorem 8.1). 

6 A tamer version of the Weyl calculus: 
the horocyclic calculus 

The Opp -calculus, to be introduced in Section 9 with a first approach in the present 
section, smoothes up the most serious difficulties inherent in the automorphic 
pseudodifferential analysis in two ways. First, as soon as p 2: 1, it "forgets" all 
distributions homogeneous of degree -1: and a detailed spectral analysis of our 
problem shows that this part of the decomposition is indeed the major obstacle 
to defining the sharp product of, say, two Eisenstein distributions. Next, its use 
makes it possible to substitute for the collection of functions ('l/Jz) a set of functions 
'l/J;+1 which are just as nice as the 'l/Jz's outside zero but which, moreover, vanish 
up to a certain order at zero (cf (6.2)). In the next seven sections, we shall develop 
this calculus to a further extent than what is strictly needed for its application to 
the automorphic pseudo differential calculus. 

The horocyclic calculus was first introduced in [56, Theorem 6.1], but [62, 
Section 17] gives a more self-contained introduction. It depends on some real pa­
rameter T > -1, and on the consideration of the Hilbert space HT+! of (classes 
of) measurable functions on the half-line (0,00) such that 

Ilvll;+! := 100 
Iv(sWs-T ds < 00. (6.1) 

There exists a unitary projective representation 1)T+1 of SL(2,~) in this space, 
equivalent to a representation taken from the projective discrete series of SL(2, ~). 

A. Unterberger, Automorphic Pseudodifferential  Analysis  and Higher Level  Weyl  Calculi 
© Springer Basel AG 2003
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The horocyclic calculus is a symbolic calculus of operators on Hr+1' in which 
symbols live on JR2 : it satisfies a covariance property fully analogous to (2.4), the 
representation Dr+! taking the place of the metaplectic representation. As we wish 
to rapidly familiarize the reader with the main features of the horocyclic calculus, 
we postpone the definition of Dr+1 to the next section. 

It may not be necessary at present to recall the original definition of the 
horocyclic calculus, which depends on the use of the Radon transformation, from 
functions on II to even functions on JR2, and on a connection between the horo­
cyclic calculus and any of the symbolic calculi available with II as a phase space. 
Instead, we shall give a set of characteristic properties, which the reader may take 
as an axiomatic definition of the calculus. The existence and uniqueness will be 
shown by other, more interesting, means in Section 9, at least in the special case 
when 27 is an odd integer: it will be sufficient to deal with this case in the present 
work, even though, as shown in Section 8, part of the structure with p replaced 
by an arbitrary real number may be useful in the study of some relativistic wave 
equations. 

We first define, for any 7 > -1 and z E II, the function 

it has norm 1, and the representation Dr+1 essentially permutes the elements of 
this family: for, given any z E II and 9 E 8L(2, JR), there exists w E te, Iwl = 1 
depending on (7,g,Z), such that 

""' ()0I,r+1 _ 01,r+1 L'r+1 9 'f/z - W'f/g.z . (6.3) 

For any pair w, z of points of II, we consider the rank-one operator 

~ . V f---+ (0I,r+1Iv)0I,r+1 
W,z· If''w \f/z' (6.4) 

where the scalar product (antilinear on the left) is of course that associated with 
the Hilbert space Hr+!' The following, reproducing [62, Theorem 17.5 and Propo­
sition 17.6], is a characterization of the horocyclic calculus. 

Theorem 6.1. For every 7 > -1, there exists a unique isometry symbr +1 from 
the Hilbert space of all Hilbert-Schmidt operators on Hr+1 into L~ven(JR2) with 
the following properties: first, the image of symbr +! consists of all functions in 
L~ven(JR2) invariant under the (unitary) symmetry 

r(inE) r (7 + ! - inE) 

r( -inE) r (7 + ! + inE) g. 
(6.5) 

Next, the function Pw,z = symbr+!(Pw,z), where Pw,z is the rank-one oper­
ator defined in (6.4), is characterized, with the notation introduced in (2.14) and 
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(2.15), by the equation 

(Pw,z)~(s) = 1'r+1 ('l/!;:+1, 'l/!;+1) (-2i) ~+% __ ....:.(W'1_-'i':'-)~_+_L_t----;-1 ~iA , 
(w - S)2+2(S - 2)2+2 

where the scalar product, taken in the space Hr+l' can be made explicit as 

and the constant 1'r+1 is given by 

( Ii>. ) ( 1 i>. ) 
r+1 = T~ (27r)-1-% r "2 +"2 r T + "2 + "2 

1'>. r (i2') r(T + 1) 
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(6.6) 

(6.7) 

(6.8) 

The function symbr +1 (B) is called the horocyclic symbol of the operator B. 

Given T> -1, the two maps S];~~ and S]~tl defined by 

(6.9) 

and 
+1 7"-1 1 (t2) (S]~dd v)(t) = 2-2 Itl 2 - r v "2 sign(t) (6.10) 

define two isometries, the first one from Hr+1 onto L~ven(lR), the second one 
from Hr+1 onto L~dd(lR). In the even case, we shall choose T = -~ + 2£ with 
£ = 0,1, ... and set 

(6.11) 

in the odd case, we shall choose T = ~ + 2£ and set 

(6.12) 

The two formulas (6.11) and (6.12) of course reduce to 

(6.13) 
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whatever the parity of p = 0,1, .... We also remark that our present notation 
extends the meaning of u~, as it has been defined in (2.24) in the case when 
p = 0 or 1. The reader should not mistake the sequence (Unp20 for an orthogonal 
sequence of Hermite functions, despite the coincidence for p = 0 or 1. 

We shall now substitute for the Weyl calculus a generalized version: Op2£ will 
do when dealing with operators acting within spaces of even functions only, and 
Op2H1 will work in the odd case. Mark the lower-case, meant to emphasize that, 
so to speak, in any case, only "one fourth" of a complete calculus of operators on 
L2(JR) is realized in this way. 

Definition 6.2. We denote as op2l the isometry from the subspace of L~ven(JR2) 
consisting of all functions invariant under the symmetry (6.5), where T = -~ +2£, 
onto the space of even-even Hilbert-Schmidt operators on L2 (JR) (cf discussion 
following (2.9)), characterized by 

2£ (( 2H!) -1 2H!) A = op (h) {==? h = symb2H! Sqeven A Sqeven , (6.14) 

and we denote as Op2H1 the isometry from the subspace of L~ven(JR2) consisting 
of all functions invariant under the symmetry (6.5), where T = ~ + 2£, onto the 
space of odd-odd Hilbert-Schmidt operators on L2(JR) characterized by 

2£+1( ) (( 2H~)-1 A 2H~) A = op h {==? h = symb2H ~ Sqodd Sqodd' (6.15) 

Note that only the intertwining operator occurring in (6.14) or (6.15) distin­
guishes the opp-calculus from the horocyclic calculus. From [62, Theorem 17.7], 
it follows that the opO_( resp. the Op1 )-calculus is just the same as the even-even 
(resp. the odd-odd) part of the Weyl calculus. But, first, one should check that 
the symmetry (6.5) reduces to g when T = -~, to -g when T = ~: again, one 
should go back to the discussion following (2.9) to note that, indeed, this is all 
right. 

To develop the opp-calculus further, we first compute Wigner functions. The 
concept is the same as in (2.3), only substituting opp for Op. Consider the invo­
lution (6.5) 

. = r(in£)r(p-in£) g= (-in£)pg 
I:p. r( -in £) r(p + in £) (in £)p , 

(6.16) 

using on the right-hand side the notation provided by the use of Pochhammer's 
symbols. 

The Wigner function wigP(v,u), where v, u lie in S(JR) and have the parity 
associated with p, is characterized by the property that one should have 

(vlopP(h)u) = r h(x,~)wigP(v,u)(x,~)dxd~ 
I~.2 

(6.17) 
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for every h E L~ven (lR2) invariant under ~P' and that it should also be invariant 
under the same symmetry. 

One of the most pleasant properties of the horocyclic calculus (a property 
not shared by any of the calculi available with II as a phase space, for instance 
[6, 7] or [55, 58]) is that the symbol map is an isometry from a space of Hilbert­
Schmidt operators to some closed subspace of L~ven (lR2). This also holds for the 
opp-calculus in view of the intertwining formula (6.14) or (6.15). A consequence, 
by a trivial Hilbert space argument, is that the Wigner function wigP (v, u) is also 
the opP-symbol of the rank-one operator W f-+ (vlw)u. From Theorem 6.1, we get 
in particular (with the notation (2.14), (2.15)) 

[wigP(u~,u~)]~(s) = If+~ (Iz - s12) -'2iA 
1m z 

Thus, from (2.16) and (6.8), 

[ . P( P P)] ( ~)= n-~ r(¥) r(p+%) (2nlx_z~12)-12iA 
WIg UZ'U z .\ x, 2 r (%) r (p+~) 1m z 

Recall (2.13) that 

(6.18) 

(6.19) 

(6.20) 

and that 2in [ h = -iA h if h is a distribution on lR2 homogeneous of degree 
-1 - iA. It thus follows that 

(6.21) 

with (recalling (2.27)) 

(6.22) 

The equation (6.21), together with the Q-invariance of W(uz,uz) and the 
relation Q(in [) Q-I = -in [, makes it possible to check that, indeed, wigP( U z , uz ) 

is invariant under ~p. As ~P is its own transpose, when acting on S~vcn(lR2), one 
sees that defining opP(h) by (6.16) is also meaningful whenever h E L~verJlR2): 
the result is just the same as opP( ~(h + ~ph)). 

We already observed in (2.29) that applying the operator n 2 [2 to a function 

of q = 27r i~,~;~12, viewed as a function of x,~, was equivalent to applying it, viewed 
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as a function of z, the operator D. - ~. Here, taking the first point of view, one 
gets 

. (d 1) Z7f£.k(q) = qdq +"2 .k(q). (6.23) 

We have thus proved 

Proposition 6.3. For any p = 0, 1, ... , and ZEIT, 

(qf}q + ~) (qf}q - ~) ... (qf}q - p + ~) 
wigP(u~, u~)(x,~) = (-1)P ~.~ ... (_~ + p) .2 e-q , 

with q = 271' Ix-z';1 2 

1m z 

(6.24) 

Note that the right-hand side is the product of e-q by a polynomial in q. 
Using a "sesquiholomorphic" argument, one immediately finds wigP(u~, u~) for 
any pair w, Z as well: indeed, since u~ is (1m (-~))~+i times an antiholomorphic 

function of z, (6.17) shows that wigP(u~,u~) is (1m (-~)Im (-~))~+i times a 
function which is holomorphic in wand antiholomorphic in z. Thus wigP(u~, u~) 
is obtained from (6.24) by substituting 

2rr (x - w~_~ - z~) 
"2i 

for q, and multiplying the whole new function obtained by (compare (6.7)) 

('IV- 1 _ w-1) ~+i (Z-1 - z-l) ~+i 

(z-1 - w-1 )P+~ 

This makes it possible, for any tempered (this is far from necessary) distribution 
h E S'(l~.2), invariant under the symmetry (6.16), to define oPP(h) in the following 
minimal sense: as a linear operator from the space algebraically generated by the 
u~'s, ZEIT, to the weak dual of this space. 

We now generalize Theorem 3.1 and Theorem 4.2. First, just as in the Weyl 
calculus, we set (cf. (2.21)) 

oP0(h) = opP(T~+i7l'e h). 

Theorem 6.4. For every p = 0,1, ... and ZEIT, 

if l/ =1= ±1, and 

( PI P (.e~) P) - (-~)p E* () 
U z opy'2 ~v U z - (~)p l;v Z 

( &) 
(u~loP0((SJ1t,J')~) u~) = (~t P A0'k'I,Az) 

for any cusp-distribution (SJ1t,J')~' 

(6.27) 

(6.28) 

(6.29) 
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Proof 

(6.30) 

since <!:~ is homogeneous of degree -1- v, and it suffices to apply Theorem 3.1 for 
the first part. The second part is proven in the same way, using Theorem 4.2. 0 

7 The higher-level metaplectic representations 

The "square root construction" to be introduced now is very similar to the one 
which yields first-order systems such as Dirac's equation from second-order equa­
tions such as Klein-Gordon's. Only, the starting point here will be not one operator, 
but the set of infinitesimal operators from a pair of representations taken from the 
discrete series of 8L(2, JR.). In the next section, as a development unrelated to our 
current automorphic endeavours, we shall briefly describe how this construction 
indeed produces the radial parts of the energy operators from Dirac's equation (a 
wave equation for the electron-positron) or from Weyl's equation for the neutrino. 

Our present motivations are different: the main point is to smooth up a lit­
tle bit the Weyl calculus of operators while preserving its fundamental covariance 
property. To this effect, we first need to generalize the metaplectic representation 
Met to a sequence (Metp)p2o: this will be obtained by piecing together two irre­
ducible representations Vp+! and Vp+~ from the holomorphic discrete series of 
8L(2, JR.). We reproduce the (classical) definition of this latter concept, from [62, 
Section 17]. Recall that a projective representation is almost like a representation, 
except for the fact that the homomorphism property is weakened by allowing extra 
"phase" factors, complex numbers of modulus one (cf 1. in Proposition 7.1). Also, 
the projective representation V r +1 defined as follows is square-integrable only in 
the case when T > 0, but we shall, for simplicity, call the whole family (where 
T> -1) the projective holomorphic discrete series, or simply the discrete series. 

Proposition 7.1. Let T be a real number> -1, and let Hr+1 be the Hilbert space 
of all (classes of) measurable functions on the half-line (0,00) such that 

(7.1) 

There exists a unitary projective representation 7f = V r+1 of 8L(2, JR.) in Hr+1 
with the following properties, in the statement of which g = (~ ~): 
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1. for every pair (g,gd of elements of SL(2,~), the complex number 
1f(ggl)-l1f(g)1f(gd belongs to the group exp(2i1fTZ); 

2. for every 9 with b < 0, 1f(g) = ei7r(r+1)1f(_g); 
3. if b = 0, a> 0, (1f(g)v)(s) = ar-1v(a-2s)e2i7r~s; 
4. if b > 0, and v E Co(]O, oo[), 

. .,.+1 21f roo 
(1f(g)v)(s)=e- t7r - 2 b 10 v(t) ( s) ~ (2. ds+at) - exp Z1f---

t b 
Jr (4; v'St) dt . 

(7.2) 

Proof. That one can give a real-type realization of the holomorphic discrete series 
in which the integral kernels of the unitary operators 1f(g) are realized with the 
help of Bessel-type functions is well known in a much more general context [21, 22]. 
An elementary reference is ([55], Proposition 1.5) (note that in the latter reference, 
the representation was denoted as 9 f-t M g -1 and that our present Dr+1(g) is just 
Mg1 with gl = (? "6) g-l (? "6), and T substituted for .\). 

Of course, if T is an integer, Dr+1 can be chosen as a genuine representation 
in a unique way; in any case, Dr +1 (g) is uniquely defined up to the multiplication 
by some number in exp(2i1fTZ). 0 

Proposition 7.2. Under the assumption that T > 0, consider the Hilbert space Hr+1 
of all holomorphic functions f in II with 

(7.3) 

together with the map v f-t f, 

(7.4) 

The map just defined is an isometry from Hr+1 onto Hr+1: it intertwines the 
representation Dr+1 of SL(2,~) in Hr+1 and a representation 15r+1 of SL(2, lR) 
in Hr+1, taken from the holomorphic (projective) discrete series, characterized up 
to scalar factors in the group exp(2i1fTZ) by the fact that 

- 1 (dZ-b) (Dr+1(g)f)(z) = (-cz+a)-r- f 
-cz+a 

(7.5) 

if c < 0. In all this the fractional powers which occur are those associated with the 
principal determination of the logarithm in II. 

Let us emphasize that, as one should be, we have been very careful with the 
phase factors, especially in view of the fact that the values of T of main interest 
to us are -~, ~, ~, .... Not everyone normalizes the holomorphic discrete series 
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in the same way, as the conjugation under some inner automorphism of 8L(2,~) 
may occur: here, no choice could possibly be arbitrary, in view of the necessity of 
coherence with the Weyl symbolic calculus. 

It is important, first, to understand the infinitesimal operators of the repre­
sentation 1)T+1, i.e., the infinitesimal operators, in the sense of Stone's theorem, 
of the one-parameter groups of unitaries t I-t 7r( exp tX), X E g = .5l(2, ~). For 
instance, if X = (g c/ ), and 9 = exp j3X = (6 -t), the operator 7r(g) given in 
(7.2) is exactly, when j3 < 0, the operator exp(ij3A) , where A is the appropriate 
self-adjoint realization of the formal differential operator 

1 ( d2 d) A = - 27r S ds2 + (1 - r) ds (7.6) 

on the half-line. One can also establish the following: if A is a certain self-adjoint 
realization of the formal differential operator 

1 ( ~ d 2 ) A=-- s-+(1-r)--47r s , 
27r ds2 ds 

(7.7) 

then 

(7.8) 

so that exp(-i; A) is the unitary 7r(g) , in the sense of Proposition 7.1, corre­
sponding to 9 = (~1 A ) . 

It is much easier to check that if X = ((} n, so that exp( aX) = (e;" eo,,), 
then 7r(g) , given in Proposition 7.1 as 

(7r(g)v)(s) = ea (l-T) v(e2as ) , 

can also be expressed as 7r(g) = exp(iaA), with 

A = -i (2S! + 1 - r) 

(7.9) 

(7.10) 

also, that if X = (~8), so that exp({'X) = q n, one has 7r(exp ,/,X) = exp(h A) 
with (Av)(s) = 27rsv(s). 

In the three cases when X is the element (g en, (e/ n or ( ~ 8) of g, 
we have thus made a certain operator A, such that 7r(etX ) = exp(itA), explicit: 
the correspondence X I-t iA from g to a certain space of second-order differential 
operators, linearly extended, is usually denoted as X I-t d7r(X): it is the infinitesi­
mal representation associated with 7r. It is then Stone's theorem on one-parameter 
groups of unit aries which permits one to define, for each formal differential opera­
tor A in the linear space under consideration, the self-adjoint realization one has 
in mind: it will not be necessary to characterize the domain of iA in each case. 

We can now begin our construction of the representation Metp , p = 0,1, ... 
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Definition 7.3. Given p = 0,1, ... , we consider the space Sp(JR) = {x f---t xPv(x), 
v E S(JR)}, and the operators of "position and momentum" Q and P, defined on 
Sp(JR) by the equations 

QU = xu, 

Pu=_I_ [dU+(_I)p+l'!!..U]. 
2irr dx x 

(7.11) 

Note that, if U = xP v, 

2irr (Pu)(x) = dd (xP vex)) + (-I)pH '!!.. (-x)P v( -x) 
x x 

dv 1 
= x P dx + pxP- [vex) - v( -x)]. (7.12) 

This implies that Pu E Sp(JR). 
The space Sp(JR) is provided with the topology which makes the multiplica­

tion by x P an isomorphism from S(JR) to Sp(JR). 
Of course, P and Q reduce to the usual position and momentum operators 

in the case when p = 0: then, the operators iP, iQ and if linearly generate, over 
JR, the set of infinitesimal operators of the so-called Heisenberg representation 
of the three-dimensional Heisenberg group in L2(JR). When p f 0, P and Q 
do not generate a finite-dimensional Lie algebra, but we have no need for it. It 
is handy to write all operators on Sp(JR) in block-matrix form, corresponding 
to the decomposition Sp(JR) = (Sp(JR))even EB (Sp(JR))odd. To avoid carrying the 
coefficient (-I)pH throughout, or splitting the discussion at every step, or using 
very cumbersome terminology, we shall usually assume that p is even: however, 
when p is odd, the situation is fully similar except for the fact that one must 
switch the two terms of the direct sum above instead. All statements given in the 
even case will then remain valid in the odd case. 

The following formal computations are straightforward, if somewhat tedious. 

Proposition 7.4. With respect to the decomposition Sp(JR)=(Sp(JR))evenEB(Sp(JR))odd 
in the case when p is even, Sp(JR) = (Sp(JR))odd EB (Sp(JR))even when p is odd, one 
has 1 (0 ..4.. + E) P= - d dx x 

2irr - - EO' 
dx x 

[P,Q] = ~ (1+2P 0), 
2m 0 1- 2p 

PQ + QP = ~ (2X d~ + 1 0) 
2~rr 0 2x..4.. + 1 ' dx 

(7.13) 
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One must note that all "second-order" operators are diagonal in block-matrix 
form, contrary to P and Q; they generate a Lie algebra, isomorphic to 9 = 5l(2, 1R), 
given by the relations: 

Proposition 7.5. 

Finally, 

Proposition 7.6. 

[p2,Q2] = ~ (PQ + QP), 
~7f 

[P2, PQ + QP] = l:- p2, 
~7f 

[Q2, PQ + QP] = -l:- Q2. 
~7f 

_[Q2,p] = [PQ+QP,Q] = ~Q, 
~7f 

[P2,Q] = -[PQ+QP,P] = ~P. 
~7f 

(7.14) 

(7.15) 

We now connect the operators in the linear space generated by p2, PQ + 
QP, Q2 to the infinitesimal operators of the representations Vr+l, T = P ± ~. 
Define, in block-matrix form, the unitary operator 

(7.16) 

from Hp+! EB Hp+~ onto L~ven(lR) EB L~dd(IR). Under this isomorphism, one may 
transfer the operators p2, PQ + Q P, Q2. The result of a simple formal computa­
tion is the following: 

Proposition 7.7. 

(-2~[S~~(~-P)tS] 0 ) 
-2~ [s~ + (~- p) is] 

(j}-l (7f (PQ + QP)) (j} ( -i (2s tso+ ~ - p) 0 ) 
-i (2s ts + ~ - p) , 

e~s 2~S)· (7.17) 

In the upper-left corner (resp. the lower-right corner), one recognizes in 
each case the operator A, listed above, corresponding to the case when X = 
(8(/), ((/~) or (~8), and to the value T = p- ~ (resp. p+ ~). Since the 
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operators -i d1f(X), with 1f = Vp+! or Vp+~, have already been provided with 
an unambiguous definition as self-adjoint (rather than only symmetric) operators, 
we can, under the transfer by <1>, give all operators in the linear space generated 
by p2, PQ + Q P and Q2 an unambiguous definition as a self-adjoint operator on 
L2(lR) just as well. 

Definition 7.8. The p-metaplectic representation Metp is the unitary projective 
representation on L2(lR) defined by 

Metp(g) = <I> (VP+o!(g) 0) <1>-1 
Vp+~(g) 

(7.18) 

for all 9 E 8L(2, lR), where Vr has been introduced in Definition 7.l. 

Remark that, since T = P ± ~ and p E Z, Metp lifts up, for all values of p, 
as a genuine representation of a twofold covering of 8L(2, lR), but not of 8L(2, lR) 
itself. 

Theorem 7.9. For p = 0,1, ... , the unitary operator Metp(g) preserves the sub­
space Sp(lR) of L2(lR) for every 9 E 8L(2, lR). 

Proof. With 9 = (~~), the case when b = 0 is trivial, so we can assume that 

(u 1 0) b> 0 and write Metp(g) = PO'.! Up+! with 

. T+l 1f 100 
1 . (dx2 + ay2 ) (Uru)(x) = e-'1l"-2- b -00 IxYI'.! (signxy)J exp i1f b 

Jr (21f~XYI) u(y)dy, (7.19) 

with j = 0 or l,j == T + ~ mod 2. Setting q = p when dealing with functions of 
the parity related to p (i. e., even if p is even, odd if p is odd), q = p + 1 when 
dealing with functions of the opposite parity, performing the change of variable 
y f-+ ~ and changing the constants a and d, we thus have to show that, for every 
q = 0, 1, ... , the operator Vq defined by 

100 . (d 2 2) Jq_1.(lxyl) 
(VqU)(x) = e'1l" x +ay (xy)q 2 1 U(y) dy 

-00 Ixylq-'.! 
(7.20) 

preserves the space Sq(lR): let us not forget that a function in Sp(lR) of any given 
parity is actually in Sq(lR). 

Since [31, p. 72] one has for some constant C and every r > 0 

(7.21 ) 
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and the function (r- 1 :1~)q (si~r) extends as an even C= function of r on the real 

line, it is clear that, as soon as U lies in S(l~), the function x f---+ (Vq:~(x) is well 
defined and Coo on ~: it remains to be shown that it is rapidly decreasing at 
infinity. 

First assume that u is zero in a neighbourhood of O. Then, for Ixl ?: 1, an 
integration by parts, applied to the equation 

x-q (Vu)(x) = C j= e irr (dx2+ay2) yq (X- 2y- 1 .!!:.-)q (sinxy ) u(y) dy, (7.22) 
q _= dy xy 

makes it possible to isolate of the factor sin xy; next, a new integration by parts, 
based on the relation sinxy = (x- 1 ddy )4N sinxy, shows that the function X-qvqu 
is also rapidly decreasing at infinity (together with all its derivatives). 

We now drop the assumption that u vanishes in a neighbourhood of 0, still 
assuming, of course, that u E Sq(~). Let w be an arbitrary function in Sq(~), and 
denote as yw the function y f---+ Y w(y). Assuming q ?: 1, and using an integration 
by parts (based on the use of the operator ddy (y.) ) and the equation [31, p.67] 

Ixyl J~_! (ixyl) = IxYI Jq_ ~ (Ixyl) - (q - ~) Jq _! (Ixyl) , (7.23) 

one may write, starting from (7.19) and (7.20), 

(Vq((Yw)'))(x) = -I: e irr (dx2+ay2) Ixyl! (signxyF 

[2i7r ay2 Jq_! (Ixyl) + (1 - q) Jq_! (Ixyl) + IxYI Jq_ ~ (Ixyl) ] w(y) dy , (7.24) 

in other words 

(Vq (yw' + (2 - q)w + 2i7r ay2w) )(x) = -x Vq- 1 (yw). (7.25) 

Now, given any u E Sq(~), solve the equation 

yw' + (2 - q)w + 2i7r ay2w = u (7.26) 

with w(O) = 0, so that 

w(y) = yq-2 e-irray2!ay t2 eirrat2 dt. (7.27) 

Then, with ¢ E Co (~) with ¢(y) = 1 in a neighbourhood of 0, u can be written as 
u = Ul +U2, where Ul (resp. U2) is the image under the operator y d~ +2-q+2i7r ay2 
of the function ¢w (resp. (1 - ¢) w). The function VqU2 lies in Vq(~) because 
U2 does and, moreover, vanishes in a neighbourhood of O. From (7.25) one has 
VqUl = -x Vq- 1 (y¢w), so that the proof of Theorem 7.9 follows by induction: the 
case when q = 0 reduces to the well-known fact that unit aries in the image of the 
(usual) metaplectic representation preserve the space S(~). D 
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We now come to the discussion of the adjoint action of unitaries in the p­
metaplectic group on the operators P and Q: at the same time, this will provide 
us with an easy mnemonic for remembering the group homomorphism () (a twofold 
covering) extending the map Metp(g) f-> g . 

Theorem 7.10. Given an operator 

x = 1f [0: (PQ + QP) + {3p2 + 'YQ2] (7.28) 

in the Lie algebra (over JR.) generated by the operators p2, Q2, PQ + QP, set 

(7.29) 

this is the matrix of the operator i ad X, acting on the space generated by Q and 
P, in the basis (-P, Q). Given any operator -yP + rJQ in this space, one has, 
for every t E JR., 

eitX (-yP + rJQ) e-itX = -y' P + rJ'Q 

with (~:) = (exptX) (~) . 

Proof. From Proposition 7.6, one has 

[X, Pj = i (o:P + 'YQ), 

[X, Q] = -i (o:Q + (3P), 

(7.30) 

(7.31) 

which proves the first point. The second one is a consequence of the relation 

eitX (-yP + rJQ) e-itX = eit ad X (-yP + rJQ) , (7.32) 

where i ad X is represented by the matrix X in the given basis. o 

In particular, defining O'r by the equation (7.8), i.e., 

(7.33) 

one defines the p-Fourier transformation Fp as 

(7.34) 

then 

(7.35) 
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and 

(7.36) 

When p = 0, Fp is the usual Fourier transformation F on L2(IR), defined as 

(Fu)(y) = J e~2i7rxYu(x)dx. (7.37) 

In all cases, F; = (~ ~I)' the block-matrix representation of the map u f-7 U. 
Making Fp explicit will help understand in which sense it generalizes the 

Fourier transformation. 

Proposition 7.11. Let u E Co(IR\{O}). Assume that p is even. If u is even, one 
has 

(7.38) 

and if u is odd, 

(7.39) 

Proof. From (7.34) and the Definition (7.16) of <I> , one gets 

-r Sqp+~ (SqP+~)~l 
J P == even (J T)- ~ even on even functions 

and 

on odd functions. (7.40) 

Proposition 7.11 is then a consequence of (7.33) together with the Definition 

(6.9), (6.10) of Sq~:.J and Sq~;}: the computation is straightforward, if some­
what tedious. 0 

From (7.32), it is clear that the map () : ±Metp(g) f-7 g E SL(2, IR) is charac­
terized as follows: with U = ±Metp(g), ()(U) is the matrix of the transformation 
AdU: 

(Ad U)( -yP + 7]Q) = U (-yP + 7]Q) U~l 

in the basis (-P, Q). 

(7.41 ) 

Now, consider the effect of p-metaplectic unit aries (i.e., operators w Metp(g) 
for some g E SL(2, IR) and wEe, Iwi = 1) on functions u~ or u~+l as introduced 
in (6.13). 
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Theorem 7.12. Given a p-metaplectic unitary U, with 8(U) (as defined above 
(7.41)) = (~~), one has 

(7.42) 

and 
(7.43) 

for some "phase factors" w or w' E C, with Iwl = Iw'l = 1. 

Proof. This is a consequence of (6.13) and of the Definition 7.8 of the p-metaplectic 
representation: however, we prefer to give a direct proof for a set of generators of 
the p-metaplectic group (this is sufficient), computing the phase factors in the 
cases considered. If U = exp(ir.'ifQ2), so that 8(U) = (~n, one immediately 
gets, according to Proposition 7.4, 

(Uu~)(x) = ei7rfX2 u~(x) 
= u~,(x) (7.44) 

with P = ~ + /, i.e., z' = 'F~l = (~ ~) .Z, and the same goes for the action on 

u~+1. If U = exp (in.'if (PQ + QP)), so that 8(U) = (c~a e9,), one gets, starting 
from (6.13) and using Proposition 7.4 again, 

(U u~)(x) = U~-2az(X), (7.45) 

and the same goes with the odd states u~+1. 
Things are more complicated in the case when U = exp (i(3:rr p2), so that 

8(U) = (6 -t)· Assuming, say, (3 < 0, and using, with T = p±~, the formula 
1 

( (27r)T+l) '2 
provided by (7.19), we get, with C = r(T+1) , the equation 

(7.46) 

with j = T - P + ~ (= 0 or 1). This integral is essentially found in [31, p. 93], which 
yields the result 

( l))Ttl( ( (3))-T-l 
-; -i 1 - 2 right 

e- i7r Ttl IxIT+~ (sign x).1 exp (i'if x2 (1 1)) 
(3(1 - ~) - 73 (7.4 7) 
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where the subscript in ()ri;h-;;1 means that the principal determination of the power 

function on the right-half plane is to be chosen. Now, with f, = ,B(1~%) - ~, so 

that z' = z - (3, one has 1m (-.;,) = 11- ~1-2 1m (-~) so that, with (= iI1~1~) 
d -i7r~ ;--r-1 1 lId h 1· U r+! r+! an w = e 2 '>right' we get w = an t e reatlOn rUz = WUz_,B. 

. -r+l 
If (3 > 0, the formula is almost the same: only e-27r - 2- has to be changed to its 
inverse. 

We shall also need the formulas 

-1 P _ (-iZ) -!-p p 
Fp u z - -1-1 . u_~ 

Z nght 

and 

3 

'l"'-1 p+1 _ . (-iZ)-2-P p+1 
.rp U z - 2 1 1 U_.l , 

Z right Z 

(7.48) 

proved in the same way, starting from (7.38), (7.39). o 

In connection with the representation Metp , the families of functions (U~)zEII 
and (u~+1)ZEII will be used in exactly the same way the families (uz) and (u;) 
have been used in connection with the usual metaplectic representation. 

Proposition 7.13. Assume that p is even. Then the set (U~)zEII is total in 
(SP(IR))even and the set (U~+1)zEII is total in (SP(IR))odd. 

Proof Dividing functions in the appropriate space by xP or xP+1 reduces the 
question to the case when p = 0, in which it is well known to be true. 0 

In all that precedes, and in all to be coming with the exception of Section 12 
(which depends on induction on p starting from p = 0), the assumption that pis 
an integer is not necessary: we now substitute for p any real number s (one should 
assume s > -~ if an appeal to the projective representation Vs+! is needed) and 
extend Proposition 7.4 as a definition, setting in particular 

1 ( 0 Ps =- d 
2i7f - - ~ dr r 

ddr +~) . o . (7.49) 

we shall regard Ps as acting on functions U only defined on (0,00), which is not a 
genuine difference from our first interpretation, in which each component of U was 
assumed to have a definite parity; observe that we changed the variable x to r. 

The spectral structure of the operator Ps (and, as a consequence of the ana­
logue of (7.30) concerning the s-metaplectic representation, that of any operator 
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in the real vector space generated by Ps and Qs = Q) is of course an easy matter, 
in view of the formula 

p2= __ ~ r2 
1 (d2 _ s(s-l) 

s 47r2 0 
(7.50) 

taken from (7.13). 
Another interesting operator is the operator A = 7r (P; + Q2), which occurs 

in (7.35), hereafter referred to as the Ops-version of the harmonic oscillator. From 
(7.13), 

(7.51) 

with 
L = _~ [~_ s(s -1) _ 4 2 2] 

s 4 d 2 2 7rr. 7r r r 
(7.52) 

The standard WKB method shows that, among the solutions of (Ls - >.) ep = 0 on 
]0,00[, there is one which goes to zero, as r ~ 00, like rA-!e-7IT2 and another one 

which goes to infinity like r A-! e7rr2 • On the other hand, at r = 0, the roots of the 
indicial equation are sand 1- s. We assume that s > ~ from now on. If s > ~, it 
is clear from what precedes that L s , initially defined on CoOO, oo[), is essentially 
self-adjoint on L2((0,00);dr); if ~ < s ::; ~, we fix a self-adjoint extension of 
Ls by the boundary condition rep' - sep = 0 at 0, which selects the solutions 
of (Ls - >.) ep = 0 behaving like rS at zero. One can show that Ls is unitarily 
equivalent to the operator which is the generator, in the sense of Stone's theorem, 
of the unitary group () ~ V s+! ( ( ~f~ Z -,,~~n,/)) associated with the representation 
Vs+! from the projective discrete series. However, it suffices for our purposes to 

note that the spectrum of Ls is the sequence (s + ~ + 2n)n=o,I, ... and that an 
eigenfunction corresponding to the eigenvalue s + ~ + 2n is the function 

(7.53) 

which can be found in [31, p. 243]: here L~-!) is a generalized Laguerre polyno­
mial. 

The matrix structure, on the other hand, of the operator Ps , makes the study 
ofthe "generalized eigenvalue equation" Psu = Mu in which M may be a general 
hermitian matrix, interesting as well. The following proposition will be useful in 
the next section. 

Proposition 7.14. Assume s > ~, and let M = (~ -db) be an arbitrary hermitian 
matrix with d -I=- o. The equation 

1 
Psu= "2 Mu (7.54) 
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has a non-trivial solution in the space (L2((0, 00); dr)? if and only if b > 0 and 
the condition 

detM + (~)2 = 0 
s+n 

(7.55) 

is satisfied for some n = 0, 1, .... If (7.55) holds, the corresponding space of solu­
tions is one-dimensional, generated by 

( 

8 L(2s-1) (2 ) ) 
- 7rILr r n 7rfJr 

un(r) = e 27r1/ 8+1 L(2S+1)(2 ) 
isd r n-1 7rfJr 

(7.56) 

where fJ = (-det M) ~ = s~n: the second row should be interpreted as zero in the 
case when n = O. 

Proof. Assume that detM < 0 to start with, and set detM = -fJ2, fJ> O. 
Consider the isometry B: (L2((0,00);dr))2 ----+ (L2((0, 00); 2:2 dX))2 defined by 

or 

(7.57) 

A straightforward computation shows that 

l!:. -.!L + 1-'( ~+2S)) 
x <ix x 2 

o 
(7.58) 

Thus, with v = Bu, the equation Psu = ~ Mu is equivalent to 

(7.59) 

with 

-.!L + ~+2S) 
dx x 

o 
(7.60) 

where (x~) denotes the operator of multiplication by x~. We also set 

[3* __ 1_ ( 0 
s - 2i7r -.!L _ 28+ ~ 

<ix x 

d 2S-~) <ix + -x- . 

o 
(7.61 ) 
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this is the adjoint of Bs in (L2((0, 00); dX))2, not in the Hilbert space referred to 
in the beginning of the present proof. It is immediate that 

(7.62) 

Also, setting 
Mcof = ( d ib) 

-,b a , (7.63) 

so that in particular Mcof M = _p,2 I, a straightforward computation shows that 

thus 

and (7.59) implies 

M cof (x) Bs - B: M (x) = _ 2bs I : 
7f 

* 2 2bs 7f(BsBs+(x ))v=-v. 
p, 

(7.64) 

(7.65) 

(7.66) 

At this point, we may briefly remark that if det M had been non-negative, we 
would have been led with the help of analogous transformations to a second-order 
differential equation without any L2 solution near infinity (the same left-hand side 
with a term _(x2), or no such term at all, instead of (x2 )). It was thus no loss of 
generality to assume that det M < 0, and we now come back to the discussion of 
this case. 

Comparing (7.62) and (7.52), one sees that 

(7.67) 

Actually, with v = (~~ ), the problem Bsv = p,-l M xv fully reduces - formally to 
start with - to the eigenfunction equation 

(7.68) 

since V2 can then be obtained as 

Vl . (7.69) 

Since 2s - ~ > ~ as well, we discussed the equation (7.68) in L2((0,00);dx) 
just before the statement of Proposition 7.14. It should be observed that since 
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8 > ~, only a solution VI equivalent near 0 to a constant times x2s-!, not X~-2s, 
can yield a V2 in the required space L2((0, 1); X2 dx) near zero: it is thus, even 
when 8 ::; ~, the self-adjoint extension of L 2s _1. discussed before the statement 
of Proposition 7.14 that we are indeed interested in. 

We thus get, from (7.53), 

b8 = J-l (8 + n) for some n = 0, 1, ... 

and, up to a multiplicative constant, 

Vl(X) = e-7rX2 x2s-! L~2S-I)(27fX2), 

which implies (using (7.69) and (7.70)) 

~ V2(X) = e-7rX2 x2s-! [2 (L~2S-1))/(27fX2) + ~ L~2s-I)(27fX2) ] 

Since (a consequence of some formulas in [31, p.241]) 

28 ~ L(2s-I)(t) + nL(2s-1)(t) + tL(2s+1)(t) = 0 dt n n n-I , 

one has 
( ) _ 2i7fJ-l _7rX2 2s+~ L(2s+1) (2 2) V2 X - - ~ e x n-l 7fX 

if n ;::: 1, and V2 = 0 if n = O. Computing J-l- s e-1v, we are done. 

(7.70) 

(7.71) 

(7.72) 

(7.73) 

(7.74) 

o 
Remark. The Ops-version ofthe harmonic oscillator A, introduced in (7.51), has 
a neater structure than any of its two non-zero entries, actually just as neat as that 
of the ordinary harmonic oscillator. For its eigenfunctions can be constructed by 
the usual procedure applicable to Hermite functions: the proof of the proposition 
that follows is immediate by induction. It should be emphasized that it works 
notwithstanding the fact that Q and Ps do not generate a finite-dimensional Lie 
algebra in the case when 8 i:- o. 
Proposition 7.15. Set A=7f! (Q+iPs) (the annihilation operator) and A* =7f! (Q­
iPs) (the creation operator, adjoint to the preceding one in (L2((0, 00); dr)?). One 
has 

A=A*A+(~6"8 

= AA* - (~6" 8 

Set Wo(r) = (rse~..-r2) and, for k;::: 0, Wk = A*kwo . Then Awo = 0; also 

keven;:::2 

k odd 

(7.75) 
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and 

allk~O. (7.76) 

Finally 

IIW2j+1112 = (2j + 1 + s) IIW2j112, 
11'1121+2112 = (2j + 2) IIw2j+1112, j = 0, 1, ... (7.77) 

and the sequence of functions (~) constitutes an orthonormal basis of the 
IIWkll k~O 

8 The radial parts of relativistic wave operators 

The present section is an excursion into quantum mechanics, leading to another 
interpretation of the constructions from the last section: it is unrelated to modular 
form, or automorphic distribution, theory. 

It is a very classical fact that, when the space L 2(JRd) is decomposed accord­
ing to the action of the rotation group, the Fourier transformation (that associated 
with the Euclidean structure of JRd) decomposes into summands, each of which is 
related under the elementary change of coordinate s 1-+ s2 to the Hankel transform 
7r(g) as defined in (7.2), with 9 = (~r/): more specifically, if r = lxi, x E JRd and 
f is the product of a function U(r) by some harmonic homogeneous polynomial 
of degree k, then the Fourier transform of f is V(r) times the same polynomial, 
with 

V(r) = 27ri-k rl-~-k ('Xl U(t) t~+k h_l+k(27rrt) dt : (8.1) io 2 

note that the subscript r = ~ - 1 + k is an integer or half an integer according 
to whether the dimension d is even or odd. The whole representation 7r = V r +1 

can also be interpreted as a summand in the decomposition of the part of the 
metaplectic representation on L2 (JRd) commuting with rotations. 

In the preceding section, we have been led to analyzing a certain realization 
of the direct sum of V p+! and Vp+f in the case when p = 0, it was especially 

natural to identify the spaces HI and H'1. with the even and odd parts of L2(JR). 
2 2 

We now give an alternative interpretation of the direct sum of Vp+! and Vp+~ 
in the case when p ~ 1, showing that the operator P as introduced in (7.13), or 
a certain linear combination of P and [P, QJ, can be thought of as a radial part 
of a first-order system occurring in a wave equation from relativistic quantum 
mechanics. 

The analogy between the original construction of the Dirac wave equation 
and our definition of the operators P, Q is related to the fact that, in both cases, 
a "square root construction" is needed. In our case, Q2, PQ + Q P and p2 were 
known before P and Q were (and, indeed, are directly related to the infinitesimal 
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operators of some pair ofrepresentations from the discrete series of 8L(2, ~)). We 
very briefly recall now how the Dirac equation and, in a similar way, the Weyl 
equation (possibly for the neutrino: it describes a massless particle and has no 
invariance under the parity transform, which makes it suitable for the description 
of a particle playing a role in weak interactions) answer a square root problem: 
we shall use results and methods from Thaller's book [50], in particular pages 125 
to 129. 

With 'ljJ = 'ljJ(t, x), t E ~, x E ~3, both wave equations can be written 
(loc.cit., p.3 and 4) as 

in ~~ = Ho'ljJ, (8.2) 

with an operator Ho acting only in the space coordinates x to be defined now. 
Recall the definition of Pauli matrices 

( 0 -i) a2 = i 0 ' a -(lO). 3 - 0 -1 . (8.3) 

one also introduces the vectors u = (aI, a2, a3) and '\l = (a~l' a~2' a~3) as well 
as their "scalar product" u. '\l = L aj a~. Then, Weyl's equation is just (8.2) 

J 

with the choice 
Ho = -incu.'\l, (8.4) 

in other words, with OJ = a~j' 

(8.5) 

of course, nand c denote Planck's constant and the velocity of light respectively. 
It is immediate that 

(8.6) 

where A is the usual (negative !) Laplacian on ~3. Thus the construction of Ho 
just answers the problem of extracting a square root of (some two-dimensional 
matrix extension of) A. We also denote as .0 the operator 

.0 = (X3 Xl - iX2) 
Xl + iX2 -X3 ' 

(8.7) 

a square root of the corresponding two-dimensional matrix extension of the oper­
ator of multiplication by Ix12. 
Remarks. 

1. One may observe that the operators HS, .02 and 

[H;f, .02] = -4n2c 2 (2: XjOj +~) (6~) 
= -2inc (Ho.o +.0 Ho) (8.8) 
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constitute a linear basis of the set of infinitesimal operators of some (re­
ducible) unitary representation of the twofold covering of 8L(2, JR.). 

2. Contrary to the triple {H6, 0 2 , Ho 0 + 0 Ho}, Ho and 0 do not fit within 
any finite-dimensional Lie algebra. However, under the adjoint action, the 
Lie algebra above acts on the linear space generated by Ho and 0, in view 
of the formulas 

_[02 , Hol = [Ho 0 + 0 Ho , Dl = -2ificD, 

[H6, Dl = -[HoD +DHo, Hol = -2ificHo (8.9) 

these formulas are completely analogous to (7.15), which will be explained 
by Theorem 8.1. 

In the case of Dirac's equation, four-component spinors are needed: then, 1 
denoting the 2 x 2-identity matrix and (T. \1 denoting also the diagonal 2 x 2-
matrix the non-zero entries of which coincide with (T. \1 as previously defined, one 
sets 

( mc21 
R= o -ific (T. \1 

-ific (T. \1) . 
-mc2 1 . (8.10) 

m is a positive number, to be interpreted as the mass of the electron. It is then 
immediate that 

(8.11) 

showing, as is of course well known, that in this case too the construction of Ho 
answers a square root problem. 

We now show that, in the Weyl case, the operators which occur in the de­
composition of the operator Ho under the rotation group (more precisely under 
its twofold covering 8U(2)) are nothing but cases of the operator P introduced 
in the present section: with a slight modification, the same will do in connection 
with the Dirac equation. 

Following Thaller's notation and methods, we introduce polar coordinates 
with x(r,O,cp) defined by 

Xl(r,O,cp) = r sinO coscp, 

X2(r,0, cp) = r sinO sincp, 

x3(r,O,cp) = r cosO, (8.12) 

and the vector er = ~, the unit vector in the radial direction. Then, with p = 
-ifi \1 and L = x 1\ p (the orbital angular momentum), one has [50, (4.101)l 

. . a 1 
-zfi \1 = -zfi e r - - - (er 1\ L) 

or r 
(8.13) 
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this equation holds for scalar functions on ffi.3 or, just as well, componentwise for 
vector-valued functions. Given any two vectors A, Bin ([:3, one has the immediate 
relation 

(u.A)(u.B) = (A.B) 1 + i u.(A /\ B), 

so that (8.13) implies 

-iliu.\1 = -iii (u.er ) 88 +!:.. (u.er ) (u.L) 
r r 

thus, in Weyl's case, 

(8.14) 

(8.15) 

(8.16) 

the analogue of loc.cit., (4.104). It is immediate, from (8.5) and (8.7), to compute 
the commutator c 

[Ho, .oj = -;- (31i + 2u.L) . 
2 

(8.17) 

Next, a separation of variables is considered, embedding L2((0, 00), dr) i8) 

L2(82) (where 8 2 is the unit sphere) into L2(ffi.3) via the map such that fi8)\J! f---t 'l/J, 
with 

'l/J(x(r, (), ¢)) = r- 1 f(r) \J!((), ¢). (8.18) 

On 8 2 , the usual (scalar) spherical harmonics Yim, with l = 0,1,2, ... and m = 
-l, -l + 1, ... , +l, are considered: recall (loc.cit., p.126) that, for m ::::: 0, 

1 

y;m(() "') = [2l + 1 (l- m)!]"2 imcf> om( ()) 
1,'1' 41f (l+m)! e Fl cos (8.19) 

in terms of the Legendre polynomials 

m ( -1 ) m 2 ill dm +l 2 I 
~ (x) = 2fl! (1 - x ) 2 dXm+1 (X - 1) , (8.20) 

and that 
(8.21 ) 

Next, one introduces, for j = !,~, ... and mj = -j, -j + 1, ... , +j, the two­
component functions \J!m±j 1 on 8 2 , with 

J "2 

(8.22) 

and 

(8.23) 
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(again, with Thaller's notation). It has been shown in loc.cit., p.127, that the 
functions w7~! are simultaneous eigenfunctions of the operators (well defined on 

(L2(82))2) fi-lJ2 := fi-lL2 + O".L + ~fi (where L2 is the sum of squares of the 
components of L), h := L3 + fia3/2 and O".L + fi: the eigenvalues are fi times 
respectively j(j + 1), mj and -Ii, where Ii = -(j +!) in the case of the function 
w7~! and Ii = j + ! in the case of the function W7~!. Also (loc.cit., (4.121)), 

(8.24) 

The Hilbert space (L2(82))2 thus appears as the Hilbert direct sum of the 
spaces fJj,mj with j = !,~, ... and mj = -j, ... , +j, where fJj,mj is the two­
dimensional space generated by the functions W7~!. Then the space (L2(]R3))2 

appears as the Hilbert direct sum of the subspaces L2((0, 00), dr) 0fJj,mj if each of 
these spaces is identified with its image under the embedding (8.17): by means of 
the basis {w7~!' w7~~} of fJj,mj' the space L2((0, 00), dr)0fJj,mj can of course be 

identified with (L2((0, 00), dr)?, which provides a realization of endomorphisms 
of this space by 2 x 2-matrices of operators on L2((0, 00), dr). 

The following theorem shows that the pair (P, Q) introduced in Definition 
7.3 is nothing but a restriction of the pair of operators 

-1 1 ( 83 (27ffic) Ho = -.- >l + . !l 
2z7f Ul Z U2 

(8.25) 

to some space in an orthogonal sequence of Hilbert spaces, all isomorphic to 
(L2((0,00),dr))2, associated with the decomposition under the rotation group of 
a Hilbert space of solutions of the Weyl wave equation for the neutrino. 

Theorem 8.1. The restriction to the space L 2((0,00),dr)0fJj,mj rv(L2((0,00),dr))2 
of the operator Ho which occurs on the right-hand side of Weyl's equation (8.2) 
agrees with 27fficP, where P is the operator introduced in (7.13) corresponding 
to the value p = j + ! of the integral parameter there. The operator .Q defined 
in (8.7) preserves the same space and, under the identification of this space with 
(L2((0,00),dr))2, becomes the operator Q = (~o) introduced in (7.13) as well. 

Proof. As an immediate consequence of (8.15), (8.24) together with the actual 
value of Ii as recalled above, and not forgetting that, because of the embedding 
(8.18), it is the operator ddr - ~, acting on functions of r alone, that transfers to 
the operator tr acting on functions on ]R3, one finds the equation 

(8.26) 
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of course, here, one has r > 0 whereas x could be positive or negative in (7.13): 
however, this is not a genuine difference since, in (7.13), we only considered vector­
valued functions on the real line each component of which had a specified parity. 

Concerning D, written in polar coordinates, in the original basis for spinors, 
as D=r( cosO 

e-up sin 0 

one has to check the relations 

and 

e- i ¢ sin 0) 
- cosO ' 

(8.27) 

(8.28) 

Taking (8.22), (8.23) into account, as well as (8.19), one sees that the first of these 
two relations reduces to the pair of equations 

( ) m-! ( ) ( ) m-! () m+! ( ) j - m + 1 PH! 2 cosO - j + m cosO Pj _! 2 cosO = sinO Pj _! 2 cosO, 

m+!( ) m+!( ) ( ) m-! cos 0 Pj _! 2 cos 0 - PH! 2 cos 0 = j + m sin 0 Pj _! 2 (cos 0) (8.29) 

and the second one to the pair of equations 

(8.30) 

all these equations can be found in [31, p.l71]. 
For safety, one may check that 

[P, Q] = 2Z~~ (1 +02P 0) 
" 1- 2p 

or 

[Ii '"'] = fic (1 + 2p 0) 
0,1..i i 0 1 - 2p (8.31) 

in the matrix realization of operators in the space L2((0, (0), dr) Q9 SJj,mj" From 
(8.17), this reduces to remarking that 

u.L + fi = fi J ~ '2 (
. 1 

(8.32) 

which was indeed mentioned between (8.23) and (8.24). o 
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When dealing with the operator Ho taken from Dirac's equation, the com­
putations are slightly more complicated but are done in full in [50J. One first 
introduces the four-component functions 

(8.33) 

note (comparing this to loco cit., (4.111)) the disappearance of the coefficient i from 
the non-zero component of the first of these two functions. This time, as explained 
in loc. cit. , p.127, one must decompose (L2(82))4 by means of the simultaneous 
consideration of the operators J2, hand K, the so-called spin-orbit operator. 
This introduces a family of two-dimensional subspaces J'tmj ,Kj (parametrized by 
j and mj as above, together with lij = =r=(j +!)) of (L2(82))4, in which we take 
{<1>t, K' <1>;:;;,. K.} as a basis. With the same meaning as in (8.26), one finds that, in 

3' J J' J 

the tensor product of L2((0, (0), dr) by this space, the operator Ho is represented 
by the matrix 

.l;~( d Kj)) -ZIt,(; dr - r 
-mc2 • 

(8.34) 

This can be found from loc.cit., (4.134), with the following two differences: we 
have not set Ii = 1, and there is an extra coefficient i in the vector <1>+ ( .+ 1 ) 

mj,'f J 2 

as taken there, so that (4.122) from loc.cit. must be replaced, with O'j = (~ '6), 
by the equation 

(8.35) 

With p = -lij, a non-zero integer, one finds that this operator can also be 
written as 

mc2 
hK· = 27flicP - - (2i7f [P, QJ -1) (8.36) 

J 2lij 

with the operators P and Q as taken from (7.13): in this case, p could also be a 
negative integer, but it would then suffice to switch the two basis vectors to change 
this if so wished. 

We also introduce, this time, the operator (ii 7i) and note, as an easy conse­
quence of Theorem 8.1, that, again, it can be represented by the operator-matrix 
(~ 0) within the space ~j,Kj provided with the isomorphism with (L2((0,00 ),dr))2 
associated to the basis {<1>t, K,<1>;:;;,. K}. Since, in the original four-component 

J' J J' J 

spinor representation, 

[R (0 0)] = (I (31i+ 2u.L) 
0, 0 ° -2mc2 0 

2mc2 0 ) 
I (31i + 2u.L) 

(8.37) 

as follows from (8.17), one may check that the matrix representation, within 
~j ,Kj' of this commutator is the matrix 

fie (1 + 2p 0) + mc2 (0 2r): 
i ° 1 - 2p -2r ° 
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one may thus verify that, indeed, this is the same as the bracket 

[ m2 ] 21fncP + 2p (2i1f [P, Q]- 1), Q 

computed within the algebra generated by the operators P and Q in Proposi­
tion 7.4. 

We finally consider Dirac's equation for the electron subjected to an attractive 
Coulomb potential: the operator Ho in (8.10) must be replaced by 

H = Ho + '1, 
r 

(8.38) 

with 'Y < O. We set a: = - ;c (8.39) 

in the case of the Coulomb problem associated with the hydrogen atom, one has 
2 

'Y = - 4:100' where e is the charge of the electron and co is the fundamental unit 
so denoted, so that a is in this case the fine structure constant, a dimensionless 

1 constant rv 137.036. 

The same additional term ;: then arises in the radial components of the oper­
ator under study, so that, from (8.34), one ends up with the problem of computing 
the eigenvalues and eigenfunctions in (L2((0, (0), dr))2 of the new operator 

( 
mc2+'1-

h" = . d r" 
-znc Cr + r) 

-inc (lr - ~)) 
-mc2 + '1- • 

r 

(8.40) 

Taking when necessary the conjugate under the matrix (~6), it is no loss of 
generality to assume that '" < 0, which we do from now on. 

Following (with slight modifications) the computations in [50, p.209], one is 
led to introducing, with 

s = J",2 - a 2 , (8.41) 

the matrix -ia) 
s -'" ' 

(8.42) 

which diagonalizes the matrix (~b) (-ike" i/l.~") = fie (_~Q -=-i::), where the sec­

ond matrix on the left-hand side arose as the coefficient of ~ in h". Of course, 
this requires that one should have a < 1"'1, and we assume the stronger inequality 

a < J ",2 - ~: it is certainly satisfied in the case of the equation modelling the 

hydrogen atom, since", is a non-zero integer, and it implies that s > ~. Following 
the trick in loc.cit., one is led to computing 

( 
2 

o -i -1 0 i mc 
(-i 0 ) A ( i 0) h" A = -inc (lr _ ~) 

-inc (..4.. + ~)) dr r . 
-mc2 . (8.43) 
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with w = Au, the eigenvalue equation (hI< - E) w = 0 takes the more pleasant 
form 

( 
mc2 

-inc (ir - ~) 
-inc(..!!..+~)) E(-Ii 

dr 2 r U = - !::1. 
-mc 8 -fie 

!::1.) fie U, -Ii 
or 

27rncPsu = Nu, 

with 

( -mc2 
N= o 

-ia ) va2 + 8 2 

note that 

Setting M = (7rfic)-l N, we have to solve the equation 

1 
Psu = "2 Mu 

in (L2((0,oo);dr))2: we may thus apply Proposition 7.14, with 

2 m 2c4 - E2 

f..t = (7rfic) 2 
and 

(8.44) 

(8.45) 

(8.46) 

(8.47) 

(8.48) 

finding in particular that the set of eigenvalues of hI< is the sequence (En)n=O,l, ... 
2 4 2 o?E2 

with En > 0 and m c - En = (s+n)2 and getting the well-known fact [50, p.214J 
that 

as a result. 

En = mc2(8 + n) 
yla2 +(8+n)2 

(8.49) 

The spectral decomposition of the energy operator occurring in the equation 
of the relativistic hydrogen atom is of course well known: we only deemed it worth­
while to emphasize its link with the study of the operator Ps , showing also that 
the analysis of the radial parts of the problem reduces to that of the Ops-version 
of the harmonic oscillator. 

9 The higher-level Weyl calculi 

One of several ways to characterize the Weyl calculus is by the property that it 
sends the symbol (x,~) I-t e2i7r (ax+b~) to the operator exp 2i7r (ax + 2~7r d~). We 
extend this to a definition of the OpP -calculus. 
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Definition 9.1. Given a function h on JR2 the (symplectic) Fourier transform F h 
of which lies in L 1 (JR 2), one defines 

OpP(h) = r (Fh)(Y,TJ) exp(2in(TJQ-yP))dydTJ, (9.1) 
J~2 

with P and Q as introduced in (7.11). 

We must first give the operator exp (2in (TJQ - yP)) a meaning for every 
(y, TJ) E JR2, in other words define a self-adjoint realization ofthe operator TJQ-yP: 
since, obviously, the operator Q (of multiplication by x) is essentially self-adjoint 
in L2(JR) when initially defined on Sp(JR), the same goes for all operators TJQ-yP. 
For, on one hand, Theorem 7.9 shows that all p-metaplectic unit aries preserve the 
space Sp(JR); on the other hand, each operator TJQ - yP is the image of Q under 
the adjoint action of such a unitary. Then all operators exp (2in (TJQ-yP)) are well 
defined unitary operators in L2(JR), so that OpP(h) is well defined as a bounded 
linear operator in this space. 

Theorem 9.2. The OpP -calculus is covariant under the action of the p-metaplectic 
representation, i.e., given h with F hE Ll(JR2 ) and a metaplectic unitary U, one 
has 

UOpP(h) U- 1 = OpP(h 0 O(U)-l), 

where O(U) E 8L(2,JR) has been defined in (7.41). 

(9.2) 

Proof. Since U(-YP+TJQ)U- 1 = -y'P + TJ'Q with (~;) =O(U) (~), one has, 

with (y', TJ') and (y, TJ) linked by this relation, 

UOpP(h)U- 1 = r (Fh)(Y,TJ) exp(2in(TJ'Q-y'P))dydTJ 
J~2 

= r ((Fh)oO(U-1))(Y,TJ) exp(2in(TJQ-yP))dydTJ: (9.3) 
J~2 

since F commutes with the linear action of 8L(2, JR) in JR2, we are done. 0 

In particular, even symbols give rise to operators which send even (resp. odd) 
functions to functions with the same parity. 

Theorem 9.3. Given h satisfying the hypotheses of Definition 9.1, and Z E II, one 
has 

(u~IOPP(h)u~)= r (Fh)(Y,TJ) 
J~2 

(in£)p ((Y'TI)f---7exp(_nly-zTJI2)) dyd'TI (9.4) 
(~)p ,./ 2Imz '/ 
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and 

(U~+1 I OpP(h) U~+1) = { (F h)(y, 1J) 
J~2 

(irf)p+1 ((Y,1J) ~ exp ( 
2 p+1 

where we have used Pochhammer's symbols again. 

7r Iy - Z1J12)) dy d1J, (9.5) 
21m Z 

Proof. Let us first compute (u~le2i7r Q u~). With C(p) = ( ~~:~; ) !, one has, as 

a consequence of (6.13), 

(u~le2i7rQ u~) 

= (C(p))2 

= (C(p))2 

= (C(p))2 

Now, given any point (Y,1J) E JR2\ {O}, choose a p-metaplectic unitary U with 
1JQ-yP = UQU-l, and set B(U) = (~~) E SL(2,JR). Then (Theorem 7.12), for 
some wEe, Iwi = 1, depending only on Z and p, one has U- 1 u~ = W U Pdz - b 

-cz+a 

and one can write 

(uP le2i7r (1)Q-yP) uP) = (up I e2i7r Q uP ) z z dz-b dz-b 
-cz+a -cz+a 

= (C(p))2 (1m (~: = ~))P (- 4~2 ::2 )PIC=1 (T! exp (- 2Im7rt~))) 
(9.7) 

Since, as a consequence of Theorem 7.10, one has (~) = (~~) (~), i.e., b = Y 
and d = 1J, this leads to 
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To finish the proof, we need a lemma. 

Proof Applying Rodrigues' formula relative to Hermite polynomials [31, p.252], 
one can write the left-hand side as 

Connecting this to generalized Laguerre functions (loc.cit., p. 250), this can also 
be written as 

(9.11) 

Noting that ine = !(ycfy + 'TJ:' + 1) acts on functions of t = ~(y2 + 'TJ2) as 

tit +!, we see that the lemma reduces to the assertion that 

( d 1) (d 3) (d 1) -t _ , -t (-!) ) t dt + "2 t dt +"2 ... t dt + p -"2 e - p. e Lp (t. (9.12) 

By induction, we thus have to show that 

This is a consequence of the two relations 

t~ L(-!) = pL(-!) - (p - ~) L(-!) 
dt p p 2 p-l (9.14) 

and 

(p + 1) L(-!) = (2P + ~ - t) L(-!) - (p - ~) L(-!) (9.15) 
pH 2 p 2 p-l 

to be found in (loc.cit.,p. 241). D 

End of the proof of Theorem 9.3. Applying the lemma to (9.8), we get 

(2n)P 1 (in e) ( "( 2 2») (ufIOPP(h) uf) = (1) (F h)(y, 'TJ) (1) p (y, 'TJ) f-t e-"2 y +'7 dy d'TJ, 
2 p ]R2 2 p 

(9.16) 
from which (9.4) follows, using the covariance Theorem 9.2. The formula (9.5) (in 
which p + 1 has been substituted for p) follows just the same lines, since Theorem 
7.12 applies to both cases. D 
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Corollary 9.5. Assume that p is even. If h E L2(JR2), satisfying the hypotheses of 
Definition 9.1, is an even function on JR2, then OPP(h) coincides with opP(h) (as 
introduced in Definition 6.2) on (SP(JR))even, and OpP(h) coincides with opp+l(h) 
on (SP(IR))odd (= (Sp+l(IR))odd). 

Proof. Since 

and F(in£)p = (-in£)p, one can write (9.4) as 

( PIO P(h) P) - r h( C) (-in £)p (Ix - Z~12) d ,JC 
u z P u z - J'R.2 x,." (!)p .2 exp -2n 1m z x...." 

= r h(x,~) (-t:)£)p W(uz,uz)(x,~)dxd~ 
J'R.2 2 P 

= r h(x,~)wigP(u~,u~)(x,~)dxdC (9.18) 
J'R.2 

where we have used (2.27) and (6.21). Since both OpP(h) and oPP(h) act continu­
ously from (SP(IR))even to L~ven(IR), and agree on each function u~, they coincide 
on (SP(IR))even according to Proposition 7.13; the same goes with the odd-odd 
~rl. 0 

Remarks. Though possibly somewhat disconcerting, it would be fully correct to 
simultaneously set 

WP(uP uP) = wigP(uP uP) and WP(up+1 up+1 ) = wigP+1 (up +1 up+1 ) z' z Z' z z , z z 'z . 

The Opp-calculus, restricted to even symbols, contains both the opp-calculus and 
the opp+l-calculus. 

Starting from (6.16), one sees after some formal manipulations that an even 
function h on 1R2 can be uniquely rebuilt from the pair of (respectively ~P­
invariant and ~P+ 1 - invariant) functions 

as 

hP: = 1 + ~P h 
2 

and (9.19) 

(9.20) 

This can be meaningful, for instance in the case when hP and hP+1 , both lying 
in L~ven(1R2), are such that ).. = 0 does not lie in the support of the spectral 
decomposition of the sum on the right-hand side of (9.20). In this case, Theorem 
6.1 (the proof of which has not been reproduced here, and goes back to [56] together 
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with [62, Section 17]) shows that the square of the norm of OpP(h) as a Hilbert­
Schmidt operator in L2(JR) is IIhPlli2(JR2) + IlhP+11Ii2(JR2)" It is only when p = ° 
that this reduces to Ilhlli2(JR2) (since 2;0 = 9 and 2;1 = -9). 

To develop the OpP-calculus further, we need to make exp 2i1f ('f/Q - yP) 
explicit for almost all (y, 'f/), taking advantage of Theorem 7.10. To provide for our 
needs in the present work, however, it suffices to consider only even symbols h, 
which calls for making only cos 21f( 'f/Q - yP) explicit rather than the exponential: 
this simplifies matters greatly, though the sine part can also be analyzed (using 
Legendre functions Qn of the second kind, involving logarithms unless p = 0). 

In our case, only Legendre polynomials Pn (n = 0,1, ... ) will have to be 
used. Recall for instance [31, p.232) Rodrigues' formula 

(9.21) 

The domain on which Legendre polynomials naturally live as a sequence of or­
thogonal polynomials is the interval [-1, 1). 

Theorem 9.6. Assume that p is even 2: 2. Let h be an even function on JR2 sat­
isfying the assumption of Definition 9.1 and assume that the function y-l (y ty + 

'f/t'f/ +l)Fh = y-1 (2i1f£)Fh lies in Ll(JR2) too. Then, for every U E (Sp(JR))even' 
OpP (h) is given by the equation 

(OpP(h)u)(x) = r (F(i1f£h))(y,'f/) dyd'f/ 
ilR2 y 

l lx+Y1 ;,,~(x2_t2) (x2 + t2 _ y2) 
e y Pp-l u(t) dt, 

Ix-yl 2xt 
(9.22) 

and if U E (Sp(1R.))odd' the same formula works after one has changed the subscript 
p - 1 of the Legendre polynomial to p. 

Proof If 'f/ i= 0, set fJ = -~, and start from the equation 

exp 2i1f ('f/Q - yP) = ei7r{3p2 e2i7r'f/Q e-i7r{3p2 , (9.23) 

a consequence of (7.30); recall that B(e-i7r{3p2) = (6 ~). If fJ > 0, the operator 

e-i7r{3p2 is given, on the even or odd subspace, by the formula (7.19) for UT with 
(~ ~) = (6 ~): recall that the value of T corresponding to the even (resp. odd) 
subspace is T = P - ~ (resp. p + ~). The operator cos 21f'f/Q preserves each of the 
two subspaces: its effect is to multiply a function of s by cos 21f'f/s. We may thus 
set 

cos 21f ('f/Q - yP) = ei7r{3p2 cos(21f'f/Q) e-i7r{3p2 

= (AP-! 0) ° AP+! 
(9.24) 
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(according to the decomposition Sp(lR) = (Sp(lR))even EEl (Sp(lR))odd), with the 
formula, valid for x > 0, 

(9.25) 

this formula is also valid if 13 < ° since the two factors e±';(r+1) cancel out. 

Now 21TS COS(21TTJS) = :'" sin(21TTJs), and the operator :'" relative to the pair 

of coordinates (13 = -~, TJ) is the same as the operator TJ-1 (y :Y + TJ :",) relative 
to the coordinates (y, TJ). 

On the other hand, the integral 

(9.26) 

(semi-convergent unless t = Ix ± yl) can be found in [31, p.426]: its value is, if 
T > -~, 

(9.27) 

Thus, for u of a given parity (related to T in the above-mentioned way), and 
x> 0, one has 

11 dydTJ (OpP(h)u)(x) = -2 (Fh)(Y,TJ)-2 
llP Y 

( {) {)) ( lIX+Y' h,!(,,2_t2) (x2 + t2 _ y2) ) 
Y {)y + TJ {)TJ Y Ix-YI e y Pr-~ 2xt u(t) dt . (9.28) 

This leads to Theorem 9.6 after it has been observed that y-2 (y 1u + TJ :",) (y.) = 

y-l (2i1T £) has the operator -(2i1T £) (y-l.) as a transpose, and that -i1T£F = 
i1TF£. 

The proof is over but, for one's peace of mind, one may check that in the 
case of the odd-odd part of the Weyl calculus (p = 0, Pr -! = 1), one gets the 

2 

correct formula: this can be done, letting the operator y-l (Y:Y + TJ:",) remain 
on the same side as in (9.28). The same works, provided one does not appeal to a 
non-existent polynomial P-l> with the even-even part of the Weyl calculus, after 



9. The higher-level Weyl calculi 89 

one has computed the elementary case T = -! of the integral (9.26), and found 
that it is 

(9.29) 

o 

Contrary to the Weyl calculus, the OpP -calculus does not benefit, when p "I-
0, from the Heisenberg covariance, which entails a few differences. In particular, 
the space S. (1li;2) , to be defined now, is better adapted to the new situation than 
S(]]i;2). It is defined as the space of all functions h = h(Y,7]) E COO (]]i;2\{0}) , all 
derivatives of which are rapidly decreasing as Iyl + 17]1 -+ 00, and which have 
the following behaviour at zero: for every pair (a, /3) of non-negative integers, and 
every polynomial P(Y,7]) homogeneous of degree a+,8, the function P(y, 7]) a~a~ h 
extends as a continuous function on ]]i; 2. The space S. (]]i; 2) has a natural Frechet 
topology, and we denote as S:(]]i;2) its topological dual, a subspace of S'(]]i;2). 

Proposition 9.7. The definition 9.1 of OpP(h) extends to the case when h is an 
even tempered distribution with Fh E (S:(]]i;2))even' defining a weakly continuous 
linear operator from Sp(]]i;) to the dual space of Sp(]]i;). 

Proof. Since, under the assumptions of Definition 9.1, one has, for u and v E 

Sp(]]i;) , 

(vIOpP(h)u) = r (Fh)(Y,7])(vlexp2in(7]Q-yP)u)dyd7], 
JJR2 

(9.30) 

one has to show that the function V (y, 7]) (the Fourier transform of the OpP­
concept of Wigner function) defined as 

(V(v, u))(y, 7]) = (vi exp 2in (7]Q - yP) u) (9.31 ) 

lies in S. (]]i; 2). Obviously, the function V ( v, u) is continous and bounded. One has 

2~n (y :y + 7] :7]) . e2i7r (I)Q-yP) = (7]Q - yP) e 2i7r (ryQ-yP) , 

and from the equation (cf. Theorem 7.10) 

valid if 7] "I- 0, we get 

~ 7]~ . e 2i7r (ryQ-yP) = _ p2 e 2i7r (ryQ-yP) + e2i7r (ryQ-yP) p2 . 
in ay 

(9.32) 

(9.33) 

(9.34) 

In view of (7.36), there is a similar formula which permits us to express the y try­

derivative of exp (2in (7]Q - yP)). Finally, [7] t y ' y try] = 7] try - y t y ' so that for 
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every operator D in the linear space generated by y ty ' Y t"l' '" !1u, '" t"l' one can 
express (DV)(y, "') as a linear combination (the coefficients of which are polyno­
mials in y, "') of expressions (Av I exp (2i1f (",Q - yP)) Bu), where A and Bare 
operators in the algebra generated by P and Q (thus acting as endomorphisms of 
Sp(1~)). Then the same holds when substituting for D any element in the algebra 
generated by the four first-order differential operators above. 

What remains to be shown is that, given v and u E Sp(1~), the function 
V(v, u)(y, "') is rapidly decreasing as Iyl + 1",1 -+ 00. To do this, we use the explicit 
formula for V(v, u) provided by Theorem 9.6 (compare (9.30) and (9.22)). Since 
the operator y ty +", t"l has been taken care of by (9.32), this amounts to showing 
that the integral 

-ll""l""v(x)u(t) i..-'1(",2_,2) (x2 _ y2 +t2) y e y Pr 1 

o 0 xt -"2 2xt 

X char (Ix - IYII < t < x + Iyl) dx dt (9.35) 

is rapidly decaying to zero as Iyl + 1",1 -+ 00. This is clear as y -+ 00 since on the 
support of the integrand, either x or t is no smaller than !Iyl; to arrive at the 
same conclusion when 1",1 -+ 00, the easiest way is to use (7.36) again. 0 

For instance, since the first Definition (3.1) of the Eisenstein distribution (E~ 
is actually that of a measure, it is clear that (E~ lies in the space (S:(1~2))even 
when Re v < -1. This still holds when Re v < 0, vi- -1 according to (3.25), 
but not in general. 

For our purposes in the present paper, however, it is much more convenient to 
be satisfied with the following "minimal" definition (cf remark following Proposi­
tion 6.3) of an operator OpP(h): as a weakly continuous operator from the linear 
space algebraically generated by the sets of functions u~ and u~+1, ZEIT, to the 
algebraic dual of this space. For, then, Theorem 9.3, together with a "sesquiholo­
morphic" argument (cf what follows Proposition 6.3) gives OpP(h) a meaning 
whenever h E S'(~2). Observe from (9.18) that if h is homogeneous of degree 
-1 - 2j for some j = 0,1, ... ,p - 1, i.e., (i1f£)ph = 0, then OPP(h) = 0: in 
particular £h = 0 implies OpP(h) = 0 for every p::::: 1. 

In particular, if h = h(x) with h E S~ven(~)' the operator OpP(h) is simply 
the operator of multiplications by h. This is well known in the case of the Weyl 
calculus; on the other hand, a formal argument, starting from (9.1), is immediate. 
However, a more careful proof will at the same time provide us with a formula 
which will be useful later. Using the decomposition (2.13) of a Wigner function 
into its homogeneous parts, one sees that it is sufficient to examine the case when 
h itself is homogeneous, or only that when h(x,~) = Ixl- I - v with Re v < 0, in 
which case Op(h) is just the operator that multiplies a function of x by lxi-I-v: 
for, as a tempered distribution, Ixl- I - v depends on v in a holomorphic way in 
the set defined by vi- 0,2, .... 
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To begin with, one has for every z E II and p ?: 0, 

!±!. 

= (21f) vtl r(p - ~) (rm (_!)) 2 

r(p+!) z 
(9.36) 

When p = 0, i.e., in the case of the Weyl calculus, this of course coincides with 
the scalar product (uzi Op(lxl-1- v )uz). 

Then, (6.21) and Theorem 9.3 (or Corollary 9.5) yield 

/ (i1f£)p I 1-1-v )) 
= \ (!)p x , W(uz,uz 

v+l 

= (-¥)p (2 )~ r( -¥) (r (_!))-2 
(1) 1f (1) m , 

2 P r 2 z 
(9.37) 

and it suffices to compare (9.36) to (9.37): the same can be done with the functions 
u~+1 instead of the functions u~. 

We finally give a rather explicit, if in inductive form, connection of the OPP­
calculus to the Weyl calculus. It is essential, at this point, to consider simultane­
ously even and odd values of p: we thus call functions of the parity related to p 
the functions on IR which are even (resp. odd) according to whether p is. Note 
that, when changing the parity of p, nothing is changed to the fact that, at least 
for the time being, only even symbols on 1R2 are considered. 

One may rewrite Theorem 9.6 as follows: if p ?: 1, U E Sp(lR) has the parity 
related to p and x > 0, one has 

where :F:;1 denotes the inverse Fourier transform with respect to the second vari­
able; if U E Sp(lR) has the other parity, the formula remains true after one has 
replaced p by p + 1 on the right-hand side. 
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Lemma 9.8. If h E (S:OR2))even is homogeneous of degree -1-11, IRe III < 1, one 
has for x> 0, 

(9.39) 

if u E Sp(lR) has the parity related to p; if u has the other parity, the formula 
remains true provided one changes p to p + 1 on the right-hand side. 

Proof Actually, the integral should not be considered as giving a pointwise value of 
OIl' (h )u, rather (after it has been extended to x < 0 by parity) a weak definition 
in S~(IR): the same remains valid in the computations which follow. 

One has i7rEh = -~ h, and 

(F21(i7rEh)) (X22~t2,y) = -i Ix~tl-V (F2 1h) (x;t,x_t) , (9.40) 

so that, for u with the parity related to p and x > 0, 

roo (x + t ) (OpP(h)u)(x) = -II Jo yv-l (F21h) -2-' x - t Ix - tl-V dy 

l lx+y, (X2 + t 2 _ y2) 
Pp- 1 2 u(t)dt (9.41) 

Ix-YI xt 
or 

roo (x+t ) (OpP(h)u)(x) = Jo (F2 1h) -2-' x - t k(x, t) u(t) dt (9.42) 

with 

lx+t (x2 + t 2 _ y2) k(x, t) = -II Ix - tl-V yv-l Pp- 1 2 dy 
Ix-tl xt 

2 2 v_2jl ( 2xt) v;-2 
=-lIxtlx-tl-V(x +t)-2- 1--2--2 s Pp- 1(s)ds. 

-1 x +t 
(9.43) 

According to [31, p.231], 

11 exp (r. 22xt 2 S ) Pp- 1(s)ds= (7r(X2+t2))~ Ip_l. ( ;rxt2). (9.44) 
-1 x + t rxt 2 x + t 

As Re II < 2, we can then use the Gamma integral to find 

Ill) 1 (2 2 v-l 
k(s, t) = - re;V) 7r 2 (xt 21x - tl-V x + t )-2 

100 -v-l ( 2rxt ) x r-2- e-r Ip_l. -2--2 dt, 
o 2 X + t (9.45) 
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where, thanks to [31, p. 92], the value of the integral is 
v-l 

( ) ( Ix2 - t21 ) -2 !_p (x2 + t2 ) 
r p-~ X 2 +t2 l.P'-v2-l Ix2 -t2 1 

(9.46) 

this proves the lemma. o 

Remark. Though the case when p = 0 (the even-even part of the Weyl calculus) 
has been excluded from our computations (since we have used Theorem 9.6, which 
does not apply in this case), the result of Lemma 9.8 is valid nevertheless, since 
[31, p.172] 

(9.47) 

also, since h is homogeneous of degree -1 - v, one has 

I:~!IV (Fi:Ih) (x;t,x_t) = (Fi: Ih ) (x~t,x+t) (9.48) 

Now, on the whole real line, (Fi:Ih)(xtt ,x - t) is the well-known integral kernel 
of Op(h). 

The same verification (though, this time, it is not really necessary) would 
work with the odd-odd part of the Weyl calculus, using (loc. cit.) 

m-~ (x2+t2) ( )-~12 21~ [Ix+tl~ Ix+tl-~l v 1-' 2 = 7rxt 2 x - t 2 -- - -- • 
-v;-llx2 _t2 1 x-t x-t 

(9.49) 

Theorem 9.9. Assume that p ~ 1, and let h satisfy the same assumptions as in 
Lemma 9.8. On functions u E Sp(~) with the parity related to p, OpP(h)u is the 
same as OpP-I(h)u. On functions with the other parity, one has 

OpP(h)u = 1 - p ~ ~ OPP-I(h)u 
P+"2 

I 

+ P - ~ [x OpP-I(h)(x-Iu) + x-I OPP-I(h)(xu)]. 
P+"2 

(9.50) 

Proof. That OPP(h) and OpP-I(h) agree as operators acting on functions with 
the parity related to p is a consequence of Corollary 9.5, which works just as well 
when p - 1 is odd (with the usual switch of the two terms in the decomposition 
of Sp-I(~)). Assume now that p ~ 2, and that u has the parity contrary to that 
related to p. We start from Lemma 9.8, using [31, p. 165] 
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so that, for x> 0, recalling from the proof of Lemma 9.8 that the computations 
which follow must be considered as valid in the weak sense in S~OR), 

(OPP(h)u)(x) = - 2 " -- (47rxt)2Ix2 _ t21-2 -~ + p - 1 (1/) 100 
1 1 

P +"2 2 p-l 0 

I x + t I ~ ~-p (X2 + t2 ) -1 (x + t ) x-t llJ-v2-1 Ix2-t21 (F2 h) -2-,x-t u(t)dt 

2p - 1 ( 1/) 100 
1 2 2 1 (x t ) + --" -- (47rxt)2 Ix - t 1- 2 - + -

P+"2 2 p 0 2t 2x 

I x+tl~ !-p (x2+t2) -1 (x+t ) 
x-t llJ-v2-1 Ix2-t21 (F2 h) -2-,x-t u(t)dt. 

(9.52) 

Paying much attention to the parity of functions involved, we end up with the 
formula (9.50). 

A slightly different proof is required for the part of the Opl-calculus dealing 
with even functions. This time, we use the identity (loc. cit.) 

21/xt - ~ (x2 + t2 ) _! 2 2 ! 
Ix2 _ t211lJ -v2-1 Ix2 _ t21 = (7rxt) 2 Ix - t 12 

X [(1/+2)-1 (1:~~I~+1_I:~~I-~-I) 

-(1/-2)-1 (1:~~I~-1 _1:~~I-~+1) 1 : 
(9.53) 

the proof is quite similar, but we must also use (9.48) again. o 
Corollary 9.10. Let h be an even tempered distribution with Fh E S:OR2). Then, 
for every integer p ~ 1, the operator OpP(h) defined according to Proposition 9.7 
agrees on functions the parity of which is unrelated to p with the operator 

~ [(x) Opp-l ( 2p ~ ~ h) (X-I) + (X-I) Opp-l ( 2p ~ IE h) (x)] 
2 p - Z7r P - m 

+ Opp-l (1 -p ~ i7r E h) . (9.54) 
p - mE 

It agrees with OpP-l(h) on functions the parity of which is related to p. 

Proof. We first observe that the operator (p - i7r £)-1, defined on L2(JR2) by 

(9.55) 
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sends the space S.(~2) defined just before Proposition 9.7 to itself; since the 
transpose (p+in£)-1 of (p-in£)-1 is the same as the conjugate of (p-in£)-1 
under F, the operator (p - in £) -1 is also well defined as an endomorphism of the 
space of even tempered distributions h such that Fh E S:(~2). Formula (9.54) is 
essentially, then, a rephrasing of (9.50), after a decomposition of functions in the 
space S.(~2) into their homogeneous components has taken place. 0 

Remark. It must be emphasized that Corollary 9.10 does not provide a link be­
tween the OpP -symbol and symbols of lower level of the same operator: in other 
words, there is no simple formula for the Weyl symbol of an operator such as 
(x) Op(h) (X-I). This explains why, in Section 12, it will not be an easy task to 
extend our results on the Weyl sharp product of two power functions in Section 
11 to the analogous question in the OpP -calculus. 

10 Can one compose two automorphic operators? 

In this section, we indicate why it is not possible to compose, in the usual sense, 
two operators the Weyl symbols of which are Eisenstein distributions or cusp­
distributions; but that one can do so if one substitutes for the Weyl calculus 
the OpP-calculus, for some number p 2: 2. If one is satisfied with a minimal 
definition of such a product (this concept is introduced just after Proposition 6.3 
and recalled between (9.35) and (9.36)), the condition p 2: 1 suffices. Actually, in 
Definition 13.2, we shall show how a rather indirect definition makes it possible to 
finally work with the Weyl (p = 0) case. The OpP -calculus, however, seems to be 
unavoidable (Theorem 10.7) if one wishes to compose a number N 2: 3 of operators 
with homogeneous automorphic symbols: as mentioned in the introduction, this 
has some bearing on the question of associativity for the partially defined sharp 
operation on automorphic symbols. 

Consider the distribution b~ (n i= 0) defined as 

(10.1) 

in other words 
(10.2) 

It occurs in the Fourier series decomposition (3.25) of the Eisenstein distribution 
I!:~, also in that (4.4) of any cusp-distribution. We are interested in it as a con­
stituent of a r-invariant distribution, so it is just as well to consider instead the 
distribution 

aV = bV 0 (0 -1 ) n n 1 0 , (10.3) 

i.e., 

(10.4) 
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We want to compute OpP( a~) by an application of Theorem 9.6, thus starting with 
the elementary observation that :F a~ = a~v. Let us point out that, in the present 
section, we have to deal with symbols in S'(JR2) not in S~(JR2). Nevertheless, they 
give rise, in the OpP -calculus, to operators at least in the minimal sense: we can 
still use Lemma 9.8 for the computations, as an easy continuity argument shows. 

We first compute the Weyl operator Op(a~) = Opo(a~), using (9.1): since (a 
remembrance from Heisenberg's representation) 

( exp 2i7r ('fiX - ~~) u) (x) = u(x - y) e2i7l"(x-~)'7, 
2Z7r ax 

we find, if Re 1/ > 0, 

(10.5) 

(10.6) 

(this is of course meant in the sense that the result has to be tested against a 
function of x in the space S(JR)). Now the equation ~ + ~ = x is solvable 

only if x 2 ~ 2n and, if x 2 > 2n, it has two solutions y = x ± vx2 - 2n; also, 

y2 - 2n = ±2yv x 2 - 2n and I ~ I = lyl2nl = v'JY~2n. This yields the result, after 
complex continuation has been used: 

Proposition 10.1. For every n =I- 0, 1/ E C, and u E S(JR), Op(a~)u is a function, 
given as 

(Op(a~)u)(x) = Inl-¥ char(x2 > 2n) (x2 - 2n)-! 

x [I x + v' x 2 - 2nl v u ( - v' x 2 - 2n) + I x - v' x 2 - 2n I v u ( v' x 2 - 2n) ] 

(10.7) 

This explains why we cannot use the Weyl calculus in any direct way in our 
present investigations. For, if n > ° and u E S(JR) does not vanish at zero, the 
function Op(a~)u will never lie in L2(JR), because of the factor (x2 - 2n)-!: it 
just fails. This absolutely prevents us from giving a meaning to a product like 
Ope a~~) Ope a~;) with n2 > ° and nl < 0, not even in the minimal sense, which 
would call (starting from the observation that the adjoint of Op(a~) is Op(a~n)) 
for giving at least 

(10.8) 

a meaning for all z: note that we have not even come, yet, to the problem of 
summing with respect to n, which in this case of course makes things even worse. 

The most salient features of the operators Op(a~) in (10.7) or OpP(a~) to 
be analyzed presently, are easily explained in relation to the following lemma. 



10. Can one compose two automorphic operators? 97 

Lemma 10.2. Given p EjO, 1[, define the following two Hilbert spaces of measures: 

and 

L;!en = { U = f; am [0 (x - y'2(p + m)) + 0 (x + y'2(p + m))] 

Ilull~,even: = 2! ~(p + m)! laml2 < 00 } 

L~td = {U = fa am [0 (x - y'2(p+m)) - 0 (x+ y'2(p+m))] 

Ilull~,odd: = 2! ~(p+m)! laml2 < oo} . 
Then L2(~) can be written as the Hilbert direct integral 

L2(~) = EfJ 101 
(L;!en EfJ L~td) dp. 

(10.9) 

(10.10) 

(10.11) 

Proof. Split U E L2(~) into its even and odd parts Ueven and Uodd. Defining 
Up, even and Up,odd as the sums within the right-hand sides of (10.9) and (10.10), 

setting am = ueve~) in the first case, and using in the second one the 
2(p+m) 

same formula with Uodd substituted for Ueven, it suffices to verify the formulas 

U = 101 
Up,even dp + 101 

Up,odd dp , 

IIuI1 2 = 101 [IIUp,evenll~,even + IIUp,oddll~,odd j dp. (10.12) 

D 

Now, consider the commutative subgroup C = {1o (~ ~) ; c E Z, 10 = ±1} of 
r: recall that the p-metaplectic unit aries above (~?) are the two transformations 
U t--> ±ei7rCX2 U, and that the transformations above ((/ ~1) are U t--> ±iu, 
since the transformations above C.~\ 6) are ±e-i7r(~+t) Fp (a consequence of 
(7.8), (7.33), (7.34)). However, it is simpler (so as not to have to use any two-fold 
cover) to use on C the modified representation which agrees with the metaplectic 
representation on elements (~~) and simplifies on the element (r/ ~1) to the 
unitary transform U t--> u. The Hilbert space decomposition referred to in Lemma 
10.2 is none other than the decomposition associated with the set of characters of 
C, i.e., with pairs (±1, p), where p is a real number mod 1: indeed, on L~!enEfJL~td' 
the transformation U t--> ei7rCX2 U acts as the multiplication by e2i7rcp, and the 
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transform u f---t U of course acts on each of the two spaces in the last sum as 
( -1 ) parity . 

As shown by (10.4), a~ 0 (~ ~ )-1 = a~ when c E Z: the covariance of the 
OIl' -calculus under the p-metaplectic representation thus shows that the operator 
OpP(a~) must commute with the decomposition referred to in Lemma 10.2. 

Theorem 10.3. Let a~ be given by (10.4), with IRe vi < 1 and n E ZX. For every 
even p 2: 0, and u E (Sp(lR))even' one has 

(OpP(a~) u)(x) = 2~ (I:I)! (-~) p char (x2 > 2n) 

(Jx~x~2n)! ~~~!v (1 1 -:1) u(Jx2-2n) (10.13) 

and, if u E (Sp(1R))odd, the same formula holds after one has changed p to p + 1 
on the right-hand side and inserted the factor sign x. 

Proof. We apply Lemma 9.8, with 

-1 v (x+t ) '""lx+tl-V
-

1 
( 2n ) (:F2 an) -2 ' x - t = Inl 2 -2 8 x - t - x + t (10.14) 

Now the equation t + ;~t = x is solvable if and only if x 2 2: 2n, and its non­

negative solution is t = JX2 - 2n, Also, 

I 
dt I x + J x 2 - 2n 

d( x - t - ;~t) - 2 J x 2 - 2n . 
(10.15) 

This immediately leads to the sought-after result. o 
We prepare for the analysis of OpP(Q:~) by the remark that, since Q:~ is in­

variant under the linear action of the matrix (~(}) E r, (3.25) may be rewritten, 
if vi=-1,0,1,2, ... ,as 

(Q:~, h) = (( -v) i: Itl- V
-

1(:Fi 1h)(t, 0) dt + ((1 - v) i: Itl-V h(O, t) dt 

+ L Inl-~ O"v(lni) (a~, h) , (10.16) 
n#O 

in other words 

Q:Ux,~) = (( -v) Ixl-v- 1 + ((1 - v) 8(x) I~I-v 

+ L Inl-~ O"v(lni) a~(x,~). 
n#O 

(10.17) 

In Theorem 10.3, we computed the operator A~: = OpP(a~). We now com­
pute the operator corresponding to the second exceptional term. 
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Proposition 10.4. Assume that IRe vi < 1, v # 0 and that p is even. The operator 
Ao: = OpP(o(x) I~I-V) is given as follows: on even functions lying in Sp(IR), it 
coincides with the operator 

with 

( ) _ 2v v- ~ r( 9) (- ~ )p . 
Cp v - 7r r(~) (~)p' 

on odd functions, it coincides with the operator 

u f--7 Cp+l(V) Ixl v - 1 u 

where cp +1 (v) is obtained by substituting p + 1 for p in cp (v) . 

Proof. It is easily found that 

(10.18) 

(10.19) 

(10.20) 

(10.21 ) 

Recall from what immediately follows (6.22) that, on even functions, an operator 

OpP(h) coincides with OpP(~ph) with ~p = (0:7r~~P Q. The same goes for odd 

functions after ~p+l has been substituted for ~p. Proposition 10.4 thus follows 
from the fact, proved just in (9.36)-(9.37), that if h depends only on x, the 
operator OpP(h) is the operator of multiplication by the function h. 0 

Because of Proposition 10.4, the first two terms on the right-hand side of 
(10.17) are quite obvious to deal with: the first one yields, under OpP, a bounded 
operator from Sp(lR) to L2(1R) provided Re v < p - ~, and the second one does 
the same if Re v > ~ - p. Under the condition IRe vi < p - ~, one sees also that 
each of the first two terms on the right-hand side of (10.17) yields, under OpP, a 
bounded operator from L2(1R) to S~(IR) since, as a consequence of (10.1) together 
with the fact that the operators exp (2i7r (T)Q - y P)) are unitary, the adjoint of an 
operator OpP(h) is OpP(h), just as in the Weyl calculus. 

The image, under OpP, of the series on the right-hand side of (10.17), though 
of course more difficult to analyze, actually behaves better in a way. 

To prepare for the proof of a precise result, we need a certain estimate ((10.27) 
below) which goes more than half-way towards the proof of a certain version of 
Cotlar's lemma, all the practitioners of pseudo differential analysis will find essen­
tially familiar: this lemma, proven by Cotlar [14] and shown in the same paper to 
be relevant for the study of such operators as the Hilbert transform, seems to have 
been first applied towards the study of general pseudodifferential operators in the 
paper [9] of Calderon-Vaillancourt. Note, however, that our present version (which 
we used to teach ten years ago, but never properly published) is both stronger 
and easier to prove than the more familiar one (cf. remark below): this is why we 
cannot resist adding the few extra lines from (10.27) to (10.28) so as to complete 
the proof. 
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Lemma 10.5. Let H be a Hilbert space, and (An)n>l a sequence of bounded linear 
operators on H. Set 

and 

(10.22) 

where IBI: = (B* B)~ for every bounded operator B. Assume that there exist two 
constants C1 > 0 and C2 > 0 such that, with j = 1, 2, 

1 1 

~kj(n,m)IZnIIWml~Cj (~lznI2)2 (~lwmI2)2 (10.23) 

for all sequences of numbers (Zn)n>l and (Wm)m>l. Then the operator A defined, 
in the weak sense on H, as A:'.En An, is bounded on H, and satisfies the 

estimate IIAII ~ (CIC2)~' 

Proof. We use the so-called polar decomposition B = UIBI of any bounded linear 
operator B [41], where U is a partial isometry: it is characterized by the given 
relation on the closure ofthe image of IBI and the fact that it vanishes on Ker IBI. 
One then easily sees (taking the square) that IB*I = U IBI U*. As a consequence, 
one finds, for any pair u, v of vectors in H, that 

I(v I Bu)1 ~ IIIBI~u 1IIIIB*I~v II (10.24) 

indeed, 

I(v I Bu)1 = I(v, UIBlu)1 ~ IIIBI~u 1IIIIBI~U*v II; (10.25) 

also, 

IIIBI~U*v 112 = (v I UIBIU*v) = (v IIB*lv) = IIIB*I~v 112. (10.26) 

Thus, for every n, 

1 1 

~ I(v I Anu)1 ~ (~(U IIAnIU)) 2 (~(V IIA~IV)) 2 (10.27) 
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this reduces the problem to the case when An = A~ for all n, a positive semi­
definite operator, in which one may then conclude by 

n,m 

( 1 1 1 1) 
= L AJA~A~uIAJu 

n,m 

n,m 

::; C1 L II A!u 112 

= C1 L(u I AnU ) 

n 

= C1 (u, Au) 

::; C1 II Au IIII u II . (10.28) 

o 

Remark. In the usual Cotlar's lemma, instead ofthe kernels k1 (n, m) and k2 (n, m), 
one has to deal with ki (n, m) = II AnA;'" II! and kb(n, m) = II A~Am II!. The 
preceding lemma is stronger since on one hand 

(10.29) 

and an application of Hadamard's three line theorem (which can be found in many 
places, for instance as Theorem XII.1.3 in [73]) to the function 

(10.30) 

permits us to prove that 

(10.31) 

with partial isometries Un and Um such that IAnl = UnAn and IAml = IAml* = 
A;'" U;', one also gets 

II IAnilAml II = II UnAnA;"'U;'11 

::; II AnA;'" II , 

which justifies this remark. 

(10.32) 

Lemma 10.5 will not really be needed here: only the fact (a consequence of 
(10.27)) that the two conditions L II IAnl II < 00 and L IIIA~III < 00 are sufficient 
to ensure the weak convergence of the series LAn. 
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Theorem 10.6. Consider, for c > 0, the Hilbert space H = L2(~, (1 + x2 )c dx) = 
{u on~: J~oo(l + x2 )c lu(x)12 dx < oo}. Consider the operator 

A = L Inl- lI O"v(lnl) OpP(a~), (10.33) 
n#O 

the OPP -symbol of which is the sum of the series on the right-hand side of (10.17) 
(from which the first two terms have been excluded). If p 2': 2, and IRe vi < 
min(l,p- ~), the operator is well defined, in the weak sense, as a bounded operator 
from H to L2(~), provided that c> 1 + IRe vi. In particular, in the case of the 
Eisenstein distribution <E~A' A E ~, this works as soon as p 2': 2, and c only has to 
be > 1. If v:n1 is an arbitrary cusp-distribution, as defined by the series (4.4), one 

can define in the same way the operator Opp(v:n1) as a bounded operator from H 

to L2(~) as soon as p 2': 3 and c> ~~; this result could be improved to p 2': 2 and 
c> 1 if the non-holomorphic Ramanujan-Petersson conjecture had been proved. 

Proof. Forgetting the constant (i. e., independent of x and n) coefficients on the 
right-hand side of (10.13) (one may then assume that v -=1= 0 if p 2': 1), set 

(B~ u)(x) = Inl-! char (x2 > 2n) 

X 2-P X - n 2 ( ) ! 1 (2 ) 
JX2 _ 2n 1fl-12-V -In-I- u (Vx - 2n) (10.34) 

where u has the parity related to p, and x> 0; the case when the parity of u is 
opposed to that of p works even better (with the same proof), and we shall not 
worry about it. After a change of variable x f-+ J x 2 + 2n, it is immediate that 
the adjoint (B~)* of B~ in L2(~) is given as 

(10.35) 

The two transformations x f-+ J x2 + 2n and x f-+ J x2 - 2n destroy each other in 
the product B~n B~, and I B~ I = (B~n B~)! reduces to the operator of multipli­
cation by the function 

1 2 11.-p (x2+n)1 x f-+ Inl- 2 char (x > -2n) 1fl=-12-V -In-I- . (10.36) 

Recall from [31, p. 153] that 

1 ! _P _ S - 1 2 4 1 + v 1 - v.I. 1 - s () () E_1. ( ) 
r "2 + P 1fl-12-V (s) - s + 1 Ji'l -2-' -2-'"2 + p, -2-

(10.37) 
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When 8 = x~~n and x 2 > -2n, one has 8 2: 1 and 1;8 S 0: recall that the 
hypergeometric function is well defined and CDC on ] - 00,1[. When 1 S 8 S 2, 
we simply write 

(10.38) 

For 8 2: 2, we use the "linear transformation" of the hypergeometric function [31, 
p.48] (recalling that IRe vi < 1, v =J 0) 

( I+V I-v 1 1-8) 
£1 -2-'-2-;"2+ P;-2- = 

~ 

( 
2 ) 2 r(~ + p) r(±v) 

~ 1+8 r(~)r(p±~) (10.39) 

to get the estimate 
1 IRe 1/1-1 

I~~-;!'v (8)1 s C (1 + 8)-2 - . 
-2-

(10.40) 

We are actually asserting that the operator A will be bounded not as an 
operator in L2(~), but as an operator from L2(~, (1 + x2Y dx) to L2(~) for 
suitable E > O. This amounts to a claim concerning the operator A (1 + x2)-~ as 
an operator in L2(~). We thus set 

(10.41) 

so that IC;: I is the operator of multiplication by the function 

(10.42) 

and I (C;:)* I is the operator of multiplication by the function 

(10.43) 

Since both operators IC~ I and I (C~)* I are multiplication operators, finding 
their operator-norms is a trivial task: as is easily seen, all we have to do is to 
consider the supremum of the function on the right-hand side of (10.42) in the 
case when n 2: 1. It is no loss of generality either, diminishing E if needed, to 
assume that 

1 
IRe vi + 1 < E < p - "2 . 

From our preceding review of the hypergeometric function, 

(10.44) 

(10.45) 
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• 2 
If xn :::; 1, and 

(10.46) 

if : ;:::: 1. In view of our assumption that IRe vi < p - ~, the estimate (10.45), 
together with 

Inl ---4 00, (10.4 7) 

is sufficient in the case when Ixl :::; 1; if Ixl ;:::: 1 but x::::; 1, we multiply the 
right-hand side of (10.45) by (;2)~(P-~-E), getting the estimate 

~l-E 

in,v(x) :::; Cn-2-, (10.48) 

sufficient for our purposes thanks to (10.47), as a result. Finally, if "',,2 ;:::: 1, we 
-€:+!'Re 1.11-1 

multiply the right-hand side of (10.46) by (~) 2 and find (10.48) again. 
This concludes the proof of the part of Theorem 10.6 dealing with the operators 
associated to the Eisenstein distributions. 

In the case of a cusp-distribution oot1 in the place of the Eisenstein distribu­
tion, there are only two changes: first, the two exceptional terms from the analogue 
of (10.17) are absent (ef. (4.4)); next, the coefficient Inl-~ O'v(lnl) has to be re­
placed by the coefficient bn from the Fourier series decomposition of M j. Now, it 
is no loss of generality to assume that M j is a Maass-Heeke eigenform, in which 
case, while waiting for a proof of the non-holomorphic Ramanujan conjecture, one 
can be satisfied with the inequality Ibnl :::; Clnli'o+c:, proved by Selberg [43], as 
quoted in [48, p. 220]. D 

As soon as an operator OpP(<5), where <5 E S~ven(IR2), acts from SpeIR) to 
L2(IR), the operator OpP(<5) acts from L2(IR) to S~(IR). Theorem 10.6 thus gives a 
meaning, as an operator from SpeIR) to S~(IR), to a product Op(hI) Op(h2) where 
p;:::: 2 and each h j is an Eisenstein distribution <E~ with IRe vi < 1, or when p;:::: 3 
and each hj is a cusp-distribution or an Eisenstein distribution. 

The OpP -calculus not only makes it possible to compose two operators with 
homogeneous automorphic symbols: it even permits taking the composition of any 
given number of such operators, provided that p is large enough. To see this, 
introduce for c ;:::: 0, 0;:::: 0 the space 

(10.49) 
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Theorem 10.7. Let (c:,8) and (c:',8') satisfy for some a < 1 the following set of 
inequalities: 

8 - 8' ~ a + 1, 
1 

P > --8 
- 2 ' 

3 
P > c:' - 8' + a + -2' 

(c: - 8) - (c:' - 8') > a + 1, 
1 

p ~"2 +8', 
3 

p>8-c:+a+"2. (10.50) 

Let VJt" be any homogeneous automorphic distribution, the Fourier coefficients of 
which satisfy the estimates Ibn I :S C Inl % for n i- 0: any a > IRe vi will do in 
the case when VJt" = IEL and any a > t will do in the case of a cusp-distribution. 
Then the operator OpP (VJt") is bounded as a linear operator from H g ,6 to H g , ,6' . 

Proof. Before we give it, observe that given any pair (c:', 8'), one can find (c:,8) 
and p such that all the inequalities (10.50) are satisfied: this proves our assertion 
concerning the possibility to compose any number of operators with homogeneous 
automorphic symbols in the appropriate OpP -calculus. 

Instead of the operator C~ in (10.41), we now have to consider the operator 

D~ = Ixl-6' (1 + x 2 )"; B~ Ix1 6 (1 + X2)-~ 
= B~ Ix1 6 (x2 + 2n)-~(1 + x2)-~(1 + x 2 + 2n)"; char(x2 > -2n). (10.51) 

Then ID~I is the operator of multiplication by the function 

(10.52) 

and I(D~)*I is obtained in the same way, substituting -n for n and the pairs 
( -c:', -8') and (-c:, -8) for (c:, 8) and (c:', 8') respectively: this substitution leaves 
the set of inequalities (10.50) invariant. Also, the case when n:S -1 reduces by a 
change of variables to that when n ~ 1: using (10.38) and (10.40) as 

(10.53) 

we find 

(10.54) 
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When Ixi :::; 1, since 0 + p - ~ ;::: 0, this is less than C n-i:+ e';6' -~, so that 

L n~ sUPlxl9 9n,v(X) < 00 

n::::l 

under the assumptions made. When Ixl ;::: 1, 

IRe vi 2 6-e +E 1 2 e'-6' IRe vl-p 1 9n,v(X) :::; Cn--2 -(x )-2- 2-i (X + 2n)-2-+--2--i . 

If the exponent of x 2 is ;::: 0, this is 

~ 2 (e'-6')-(e-6)+IRe vl-1 
:::; C n - 2 (X + 2n) 2 2 

(e'-6')-(e-6)-1 
:::; Cn 2 

(10.55) 

(10.56) 

(10.57) 

and the same holds in the case of a cusp-distribution VJt~, in which we must 
substitute iAj for v. If, on the contrary, p < ~ + £ - 0, one has 

In both cases, 

e'-6'-p 1 

9n,v(X):::; Cn-2-- i . 

L n~ sUPlxl::::l 9n,v(X) < 00. 

n::::l 

(10.58) 

(10.59) 

The assumption 0 - 0' ;::: IRe vi + 1 is needed only in the case of an Eisenstein 
distribution where, in conjunction with the inequality (£-0)- (£'-0') ;::: IRe vi-I, 
a stronger version of which has already been assumed, it lets the two exceptional 
terms, which are (Proposition 10.4) the multiplication operators by Ixl±v-l, act 
from Hc;/i to Hc;' ,Ii'. 0 

11 The sharp product of two power-functions: 
the Weyl case 

In this section and the next one, as a preparation for the composition formula of 
P P 

Section 17, we examine a sharp product Ixl-l-v1#1~I-l-v2, where # of course 
denote the sharp product in the OpP -analysis, characterized by the formula 

It is sometimes convenient to analyze separately the commutator and anticommu­
tator part and, in a corresponding way, to make use, on II, of the Poisson bracket 
of two functions together with their pointwise product. 
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Definition 11.1. Given two even symbols hI and h2' such that the product, in any 
order, of OpP(hI) and OpP(h2) makes sense, we set 

(11.1) 

when dealing with the Weyl calculus (the p = 0 case), we shall usually drop the 
superscript p. Given any two functions h, h E COO(II), we set 

J x f = {hh if j = 0, 
I j 2 Hh, Jd if j = 1 , 

(11.2) 

where the "Poisson bracket" is defined, with z = x + iy, as 

{J f } . = 2 (_ 8h 8h 8h 8h ) 
1, 2· Y 8y 8x + 8x 8y . (11.3) 

We need to briefly refresh the reader's memory on the spectral decomposition 
of the (non-automorphic) Laplace-Beltrami operator ~ on II. 

As a consequence of spherical representation theory, if J E CQ"(II), one may 
write (Mehler's formula) 

rOO ( 7r A 7r A) J(z) = lo J>.(z) 2 tanh 2 dA (11.4) 

with 

J>.(z) = 412 ( J(w)I~L!+B.(coshd(z,w))df.L(w), (11.5) 
7r lrr 2 2 

where 1fl_!+B. is the usual Legendre function, d stands for the geodesic distance 
2 2 

on II, and the numerical factor on the right-hand side of (11.4) is Ic( ~ )1-2 in terms 
of Harish-Chandra's c-function. One may note the formula 

7rA 7rA r(¥) r(¥) 
2 tanh 2 = 7r r (i>.) r (-i>.) . 

2 2 

(11.6) 

Let Hi>. be the completion of the space of all J>. (f E CQ"(II)) under the 
norm defined by 

11J>.11~i>' = (47r2)-2 ( J(z) /(w) 1fl_!+B. (coshd(z, w)) df.L(z) df.L(w) lrrxrr 2 2 

= (47r2)-1 (f,J>.)L2(rr). (11.7) 



108 Chapter 2. A Higher-level Weyl Calculus of Operators 

Then 
2 2 roo 12 (1f.>. 1f.>.) Ilfll£2(II) = 41f io 11f>.I1ii), 2 tanh 2 d>", (11.8) 

and since 

(11.9) 

(11.4) and (11.8) express the decomposition of L2(IJ) as a Hilbert direct integral 
of eigenspaces of .6.. 

One way to prove (11.4)-(11.5) without harmonic analysis - but with the 
help of a few special function formulas - is based on the Stieltjes-Stone-Kodaira­
Titschmarsh theorem [41] or [48, p. 111], which gives the spectral density (when it 
exists) 

dEp = ~ [(T - (p + iO) I)-I - (T - (p - iO) I)-I] 
dp 2t1f 

(11.10) 

relative to the spectral decomposition 

T= J pdEp (11.11) 

of some self-adjoint operator T: in our case, T = .6., acting on the Hilbert space 
L2(IJ), so that the dp-integral only takes place on [i, oo[ and we may set p = I~A2; 
we are more interested, actually, in d~ E 1+4A 2 = ~ (~) (p = I~A2). Now the 

resolvant of .6., i.e., the operator (.6. - 1--;2 )-1, is given if Re v < 0 as 

((.6. - 1 ~v2) -1 f) (z) = 2~ Lf(w)D._!_~(COShd(z,W))dP,(W) (11.12) 

in terms of some Legendre function: a proof of this can be found, for instance, in 
[29], or [48, p.270] or [62, p.206]. If .>. > 0 and v = -0 ± i>.., one has 1-/ 
I~A2 ± iO, so that the integral kernel of d!f; at p = I~A2 is given as 

2~1f'2~ [D._!-if-(8)-D._!+if-(8)] (11.13) 

with 8 (z, w) = cosh d( z, w). One can conclude with the help of the equation 

(11.14) 

to be found in [31, p. 164]. 
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One should be careful to notice that, in the spectral decomposition of a 
function f on II, the subscript).. in J>.. always satisfies).. 2: 0, and points towards 
the (generalized) eigenvalue 1+4A2 of ~. On the other hand (cf. (2.13), (2.14)), on 
(even) functions h on ]R2, the subscript ).. in hA can be any real number, and 
points towards the (generalized) eigenvalue - 2: of E, corresponding to functions 
homogeneous of degree -1 - i)... 

Recall from (9.37) the formula 

(11.15) 

v -I=- 0,2, .... We need to extend (11.5) as a definition for some more general 
functions f, built from analogues of (11.15), not even square-integrable in general. 
Even though ~_.!.+D. is an even function of ).., we shall always, for clarity (so that 

2 2 

it should be clear that we are dealing with a spectral decomposition on II, not 
]R2), assume that).. 2: 0 in fA' 

Lemma 11.2. Let 1':1 and 1':2 satisfy 1':1 + 1':2 > -1, h - 1':21 < 1, and let a 
continuous function f on II satisfy 

(11.16) 

or 

(11.17) 

for some constant C > O. Then, for every).. 2: 0, one may define J>..(z) by (11.5), 
where the integral is convergent. 

Proof. According to the decomposition of 

( 1 + i).. 1 - i).. 1 - t) 
~-~+if(t) = 2F1 -2-' -2-; 1; -2- (11.18) 

provided by the first two lines of [31, p. 48], one sees, remembering that the hy­
per geometric series takes the value 1 at the origin, that 

t--+oo. (11.19) 

Then 

I~_.!.+D. (cosh d(z, w)) 1 :::; C (cosh d(z, w))- ~ 
2 2 

d(i,z) 1 

:::; Ce-2- (coshd(i,W))-2 
1 

= Ce d(i z ) (1 + (1m w)2 + (Re W)2)-2 
21mw 

(11.20) 
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(11.21) 

When (11.17) is satisfied, there is an extra factor x2X;y2' which is less than 1. D 

We shall begin our analysis of a product OpP(lxl- 1- V1 ) OpP(I~I-l-v2) by the 
Weyl (p = 0) case. This case is much easier in view of the second (the first, histor­
ically!) covariance property of this calculus, to wit that related to the Heisenberg 
representation. Indeed, recall that the Weyl calculus is related in an easy way to 
the standard, or convolution-first, calculus, the definition of which is given by 

u E S(lR.). (11.22) 

It is immediate that both operators Op( h) and 0Pstd (h) can be defined, whenever 
hE S'(lR.2 ), as linear operators from S(lR.) to S'(lR.). Also, as is well known (cJ. e.g. 
[52, p.15]), the standard symbol f and the Weyl symbol g of the same operator 
are linked by the formula 

( 1 (P) 
g = exp - 4i7r axa~ f, (11.23) 

or 
(11.24) 

where Fl denotes the Fourier transformation with respect to the first variable, 
defined as (Flg)(TJ,~) = J g(x,~) e-2i7rX 'f/ dx. The easiest way to check this formula 
is to check, from (11.22) and (2.1), that (with u = Fu) 

and 

F(Op(h)u)(TJ) = J (Fd) (TJ -~, TJ; ~) u(~) d~. (11.25) 

Defining the product of two operators Op(h1) Op(h2) is always possible when 
the two symbols lie in S'(lR.2 ) and are such that the first one (as a function of 
x,~) depends only on x, and the second only on ~: for, in this case, one may 
take Schwartz's space OM [42, p.99] as an intermediary space (one would take 
Oc if one were interested in the product in the reverse order). Moreover, in this 
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case, the standard symbol of the product of operators above coincides with the 
pointwise product of the two symbols, and (11.24) makes it possible to compute 
the Weyl symbol of the product as well: this is the method we shall use presently. 
More generally, we shall say that a symbol h is polarized if it depends only on 
some (non-zero) linear combination ax + b~ of x and ~. Two polarized symbols 
are transversally polarized if the linear forms they depend on are linearly indepen­
dent: in this case, the two associated operators can be composed in a meaningful 
way, since the conjugation by some metaplectic transformation (recall that all 
metaplectic transformations preserve the space S(JR) as well as its dual) reduces 
the problem to the particular situation of a pair of symbols the first of which de­
pends only on x, the second only on ~ (the intermediary space, however, is not 
preserved). One may recall (2.5) at this point. 

The next theorem is a special case of Lemma 5.1 in [62]. We take this oppor­
tunity to give a few more details about the proof, the previous version of which 
made use of semi-convergent only integrals. We first set 

Itlj: = It!" (sign(t))l, a E C, j = 0, 1. (11.26) 

As a matter of fact, in view of our investigations with automorphic distributions, 
it would be sufficient to consider only sharp products of non-signed powers, i. e., of 
the kind lxi-I-VI #1~I-l-v2. However, the consideration of the more general case 
will be unavoidable in the induction procedure to be carried in the next section 
in relation to the OpP -calculus. Before stating the theorem, let us recall that 
x f-7 Ixl;;I-V is well defined as a tempered distribution, depending holomorphically 
on v, for v =1= k, k + 2, .... 

Theorem 11.3. Let k = 0 or 1, and let VI and V2 be complex numbers with 
IRe (VI - v2)1 < 1, Re (VI + V2) > -1, and VI =1= k, k + 2, ... , V2 =1= k, k + 2, .... 
For j = 0 or 1, and A E JR, set 

. . f( -VI +k )f( -V2+k ) . 1.11+1.12-'1-.\.-5 vl+ v 2- tA -2- -2-
C (V v· k· ZA) = 2 2 7r 2 

J 1, 2, , f(Vl+;+1)f(V2+2k+l) 

f( I+Vl - V42+i.>..+2j )f( I+Vl +V2-i'>"4+2(J+k-2 jk) )f( I-vI +v42+i'>"+2i) 
X ij+k-2jk ~~ __ -2~~~~~ ____ ~~~~~~~~ __ ~~~~ 

f( I-VI +v~-i'>"+2i )f( I- VI-V2+i.>..:2(J+k-2jk) )f( HVI-V~-i'>"+2i) . 

(11.27) 

Let hI (x, 0 = Ixl;;I-Vl and h2(x,~) = 1~1;;I-v2. Then one has, in the weak sense 
in S'(JR2 ), 

(11.28) 

with 
-I-VI +v2-'iA -1+vl-v2-i)., 

h.>..(x,O = L Cj (Vl, V2; k; iA) Ixl j 2 1~lj 2 (11.29) 
j=O,1 
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Proof. The claim is that, for every function WE S(JR2 ), one has 

(11.30) 

Using the estimate [31, p. 13] 

Iyl ~oo, (11.31) 

we first remark that the coefficient ICj (V1, V2; k; i).)1 is majorized by some constant 
times 1).I~Re (Vl+V2). Since 

(x :x + ~ :~) (lxlj-l-Vl~V2-i>' 1~lj-l+Vl;-V2-i>') 

-I-VI +v2-iA -1+v] -V2-iA 

= (-1 - i).) Ixlj 2 1~lj 2 ,(11.32) 

the right-hand side of (11.30) can also be written for any positive integer N as 

i: j~l Cj (V1, V2; k; i).)(l + i).)-N d)' 

( Ixlj-l-Vl~V2-i>' 1~lj-1+Vl;-V2-i>' , (x :x + ~ ~ + 2) N W ), (11.33) 

a convergent integral under the assumptions made on Wand V1, V2. On the other 
hand, as a consequence of (11.23), 

(11.34) 

a holomorphic function of V1, V2 in the domain indicated. This makes it possible 
to assume, without loss of generality, that -1 - Re V2 < Re V1 < Re V2 < o. 
Under this condition, one may write, using (11.24), 

as was done in [62], (5.28), as well as 

I 'TI1-1-V2 
r - - dr 

2 k ' 

(11.36) 



11. The sharp product of two power-functions: the Weyl case 113 

as written in loc.cit., (5.30). To improve the convergence still, one may write 

(11.37) 

with 

(11.38) 

Substituting (hl #h2)c for hl #h2' one is led to inserting the extra factor e-27rcr2 

under the last integral on the right-hand side of (11.36): then one is dealing with 
a genuinely convergent double integral, and the rest of the proof of Lemma 5.1 in 
[62] goes without change. 0 

Reading the rather technical rest of this section is not necessary for the 
sequel. The main interest of Theorem 11.4 is to show why, when coupled with 
spectral decomposition, the bilinear operations # are so closely related to the 

j 

pointwise product and Poisson bracket on II. A similar phenomenon will show 
up in Section 17. Theorem 11.4 and its corollary are also necessary if one tries 
to repair the heuristic proof, given in Section 5, of our main formula: we have 
chosen a different path, in Sections 13 to 15, but the one not expounded would be 
needed if one wanted to treat the case of two Eisenstein factors 1E"'1 and 1E"'1 with 
Re Vl > 1, Re V2 > 1. 

Theorem 11.4. Set 

(11.39) 

Assume that IRe (Vl ± v2)1 < 1, Vl =I=- 0, V2 =I=- o. Then, for all Z E II, one has 

(uzIOp(lxl-l-"'1#1~I-l-"'2)uz) = n 2 f,( -i)j I: 
r et>.) r e-;i>') 

r e-"'1-"'~+i>'+2i) r e-"'1 +"'~-i>'+2j) r (H"'1-"'~-i>'+2i) r (H",1 +"'~+i>'+2j) 
( f"'1 ,"'2) d>' 

J 1>'1 ' 

(11.40) 

where the operation indicated by the last subscript 1>'1 is defined according to 
Lemma 11.2, i.e., by equation (11.5). 
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On the other hand, 

x f( 1-Vl +V~-i>'+2i )f( 1+Vl-V~-iA+2i )f( 1+Vl +V~-i>'+2i )f( 1+Vl +V~+i>'+2j) 

(f V1 ,V2) d>" 
j IAI . 

(11.41) 

Substituting u; for U z on the left-hand side, one has in both cases a similar 
identity after one has plugged the extra factor -i>.. on the right-hand side. 

Proof. With Cj (v1,v2;k;i>..) as defined in (11.27), and h1(X,~) = Ixlk1-V\ 
h2(X,~) = 1~lk1-V2, one has, according to Theorem 11.3, 

j=0,1 

where 

I~1'V2;iA(Z): = (uz I Op (lxlj-l-vltv2-iA 1~lj-l+Vl;-V2-iA) uz ) 

From (2.3) and (2.27), 

drd8 and Ix - zC l 2 = rlz-sl 2 we get 
2(1+82 ) "'""""I+s2' 

(11.42) 

(11.43) 

(11.45) 

On the other hand, the case p = 0 from (9.37) gives (uzIOp(hI)uz): in view 
of (7.48), Fuz agrees with u_+ up to some constant of modulus one, so that, from 
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the covariance formula (2.4), 

One thus has 

(u z I Op(I~I-l-v2)uz) = (Fuz IOp(lxl- 1- v2 )Fuz) 

= (u_~ I Op(lxl-l-V2)U_~). 

f~' ,V2 (z) = 2 (21f) VI t
V2 r (_ ~1) r ( _ ~2) Izl-v1 -1 (1m z) VI +~2+2 
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(11.46) 

(11.47) 

and, as a small computation involving the use of the Poisson bracket (11.3) shows, 

g"V2(Z) 

1 VI +v2 ( Vi) ( V2) 3 VI +V2+ 4 =-2 (21f)-2- (l+vd(1 +V2)r -2 r -2 (Re z) Izl-v1-' (1m Z)-2 -. 

(11.48) 

We may then compute (f~"V2)IAI and (fr" V2)IAI by an application of (11.5), 
in which we have substituted for the Legendre function ~_1+iA(coshd(z,w)) its 

2 2 

integral expression 

1 = (IZ-SI2)-!+%(IW-SI2)-!-% ~ _1 + iA (cosh d( z, w)) = -j I ds 
2 2 1f _= m z 1m W 

(11.49) 

proved in [62, (4.38)]. We thus get 

(f~"V2)IAI (z) =2 VI +?-2 1fVltV2 -3r ( _ ~1) r ( _ ~) In Iwl- Vl-1 (1m w) vI +~2+2 (w) 

df-Lj= (IZ- SI2)-!+% (IW-SI2)-!-% ds. (11.50) 
-00 1m z 1m W 

We integrate first with respect to w, picking from [62], (8.22) the formula 

so that 

(11.52) 
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The computation of Uf1,V2)IAI (z) calls for that of the integral 

-Vi -3 1 iA 

In (Re w) (I~I:) 2 C~r: ~12) -2-' (1m w) v
22+1 d/L(w) 

instead of that on the right-hand side of (11.50). Writing 

( Iwl2 )~ 1 {) ( Iwl2 )=q=! (Rew) -- ----(Imw)-----
1m w - VI + 1 {) Re w 1m w 

and using an integration by parts, so as to finally substitute - ts for aR~ w' one 
can see that this integral is 

1f! r( 3+VJ -::(2+iA )r(3+Vl ~V2-iA )re-V1 ::(2+iA )re+V1 ~V2+iA) S -1-vltv2-i), 

2 r(3~~tl )reiiA)re~:t2) I 11 

Thus Uf1,V2)IAI(z) has an expression fully similar to the right-hand side of (11.52), 
except that each of the four Gamma factors r( l±Vl~V2±iA) has to be replaced by 
re±vl~vdiA), and there is an extra factor -sign(s) in the integrand. 

Setting, for A E JR., 

(11.53) 

a definition of the first factor on the right-hand side, we thus have, comparing 
(11.45) and (11.52), 

• . Vl+V2- i ),-5 Vl+V2- i ),-4 r(-T)r(-~) 
Bj(VI,V2iZA) =(-1)12 2 1f 2 reiV1 )reiV2 ) 

r( l+Vl -V~+iA+2j )r( l+Vl +V~-iA+2i )r( I-Vl +V~+iA+2i )r( l+Vl +V~+iA+2j) 

r( IiiA )r( I2iA) 

In view of (11.42), we thus have 

and, using (11.27) and (11.54), we immediately get 

(11.54) 

(11.55) 

r( IiiA )r( I2iA) 
x r( I-Vl -v~+iA+2j )r( I-Vl +V~-iA+2j )r( l+Vl -v~-iA+2j )r( l+Vl +v~+iA+2j) , 

(11.56) 

which proves (11.40). 
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When changing k from 0 to 1, the change in the left-hand side (from (11.40) 
to (11.41)) is due to the change in the coefficient Cj (1/1 , 1/2; k; i>.) from (11.27). 
There is an extra factor of 

r( I-VI) r( I-V2) r( HVI ) r( HV2) . r( HVI +V2-iA+2-2 j ) r( I- vl-v2+i.>.+2j) 
2 2 2 2 il-2J X 4 4 

r( 2-+;Vl ) r( 2+;2) r( - ~1 ) r( - Vi ) r( I-VI -V21iA+2-2j)r( HVI +V~-iA+2j) . 

(11.57) 

Observing that one of the four Gamma factors below is not the same in the right­
hand sides of (11.40) and (11.41), we see that, going from the right-hand side of 
(11.40) to that of (11.41), there is an extra factor of 

re-V1 ) re-V2 ) re+V1 ) re+V2) re+V1 +V2-iA-2j ) re-Vl-v42+iA+2j) 
i2j +1 2 2 2 2 4 X -::--c---:---"----;-;--:--;:-:-

re-+;Vl ) re-+;V2) r( - ~1 ) r( - i) re-VI-V~+iA-2j) r( HVI +V~-iA+2j) . 

(11.58) 

The expressions (11.57) and (11.58) agree, which concludes the proof of the part 
of Theorem 11.4 dealing with the functions U z . 

When substituting the functions u! for the functions uz , one can see, using 
(2.27) and (2.28), that all one has to do is to replace the factor exp( - I;,1f z Ix- z~12) 
from the integrand of (11.44) by its image under the operator -2i7f £: one can 

-1-1.11 +"'2-i).. -1+Vl-V2-i.>... 

also, instead, let the operator 2i7f £ act on Ixlj 2 1~lj 2 , ending 
up with the extra factor -i>.. D 

Corollary 11.5. The formulas (11.40) and (11.41) still hold if we substitute for the 
assumptions IRe (1/1 ± V2)1 < 1, VI i=- 0, V2 i=- 0, the assumptions 

(11.59) 

together with VI i=- k, k + 2, ... ,V2 i=- k, k + 2,. .. where k has the value 0 or 1 
according to whether we are dealing with the formula (11.40) or (11.41). 

Proof. As a distribution-valued function, the map VI ~ Ixl;;I-Vl is holomorphic 
for VI i=- k, k + 2, .... Thus, the left-hand side of (11.40) or (11.41) is, for fixed 
z E II, a holomorphic function of VI, 1/2 in the indicated domain. So as to simplify 
notation, we consider only the case when k = 0 from now on, as there is no longer 
any difference between the two cases. In view of (9.37), nothing is changed in the 
computation of f~I,V2(z), gl,V2(Z) which led to (11.47) and (11.48). Getting rid 
of the factors which depend only on VI, V2, which are all holomorphic, we see that 
all that has to be done is to show that the integral 

100 r(¥)r(¥) 
-00 r( HiA-V~ -V2+2j )r( l-iA-V~ +V2+2j )r( l-iA+V~ -V2+2j )r( HiA+V~ +V2+2j ) 

d>' { \lJ-!+g (coshd(z, w)) f(w) dJ.L(w) , (11.60) lil 2 2 
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meant as a superposition of integrals (integrating with respect to dJL( w) first), 
converges and depends on VI, v2 in a holomorphic way, in the case when f = gVl,V2 

or f = g~' ,V2, with 

and 

(11.61) 

Now, the convergence of the integral over II on the right-hand side of (11.60) is just 
a consequence of Lemma 11.2, and it remains to take care of the d)"-integration 
as well. In view of (11.31), whenever VI, V2 lies within a compact subset of the 
domain under consideration, one has for some constant C the estimate 

I 
f(¥)f(¥) I 

f( l+i'\-V~ -V2+2j )f( l-i'\-V~ +V2+2 j )f( l-i'\+v~ -V2+2j )f( l+i'\+V~ +V2+2j) 

S; C (1 + 1)..1)1-2j . (11.62) 

On the other hand, an elementary, if tedious, computation, shows (writing ~ = 
(z - z)2 8 2 _) that ~gVl,v2 is a linear combination of gVl,V2 and gVl +2,V2+2 and 

8z8z ' 
that ~g~loV2 is a linear combination of g~"V\ g~' +2,V2+2 and gVl +2,V2+2. Since 

(11.63) 

the d)..-integration is taken care of as well. D 

12 Beyond the symplectic group 

The main aim of this section is to extend Theorem 11.3, the composition of the 
(Weyl) sharp product of two power functions, to the OpP-calculus. A crucial tool 
for this lies in the understanding of a link between the operators OpP(h) and 
OpP(2i7r£ h), h being any distribution in F(S:(lR2))even. 

It is our feeling that these latter considerations may be of some independent 
interest in the Weyl calculus itself, in which it is not more difficult to tackle with 
the n-dimensional case. 

Recall that the definition of the n-dimensional Weyl calculus is just the same 
as (2.1), except for the fact that the exponent 2i7r(x - Y)7] must be replaced by 
2i7r (x - y, 7]), the integration taking place on lR,2n. Again, the linear map Op is an 
isomorphism from S' (lR,2n) onto the space of weakly continuous linear operators 
from S(lR,n) to S'(lR,n). There is one pair (Qj,Pj ) of position and momentum 
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operators for each coordinate: Qj is the operator which multiplies a function of 
x by Xj, and Pj = 2~7r a~j; the Weyl symbols of these two operators are the two 

functions (x,O f--? Xj and (x,O f--? ~j. Multiplying an operator Op(h), on the left 
or on the right, by Pj or Qj, can be traced on the level of symbols by the set of 
formulas 

1 ah 
~#h=~h+ ---

J J 4i7r aXj 

1 ah 
h#~ =~h---

J J 4i7r ax 
.1 

1 ah 
xj#h=xj h--4 · a c .' 

Z7r <"J 

1 ah 
h#x· =x·h+--

J J 4i7r a~j . (12.1) 

Let ~ be the ((2n + I)-dimensional) Lie algebra of the Heisenberg group: since 
{~j, xd = Ojk, ~ can be identified with the space of real-valued affine functions 
(x,~) f--? (a, x) + ({3,~) + c on ]R2n, provided with the structure associated to the 
Poisson bracket. One has ~ = ]R EB p, where p is the subspace of linear functions 
on ]R2n. 

Elements in the symmetric second power of p (over ]R) can be identified to 
homogeneous polynomials of degree 2 with real coefficients, i.e., the functions E, 

E(x,~) = (ax, x) + 2 (bx,~) + (c~, 0 , (12.2) 

where a, b, c are real n x n matrices with real entries and, denoting as a' the 
transpose of a, one has a' = a and c' = c. Then, given any symbol hE S'(]R2n), 
one has (a consequence of (12.1)) 

. ( ) / ah) / ,ah) Z7r E#h - h#E = \ b:£ + ~'ax - \ ax + b ~, a~ , (12.3) 

a function which shall also be denoted as ad i7rE (h). This is the image of h under 
the differential operator ad i7rE with real linear coefficients on ]R2n associated with 
the matrix 

(12.4) 

actually, this matrix is the generic element of the Lie algebra of the symplectic 
group, the dimension of which is 2n2 + n. 

Setting A = Op(h) and L = Op(i7rE), one may write (12.3) as 

adL (A) = Op (ad i7rE (h)). (12.5) 

This is the infinitesimal version of the (n-dimensional version of) the covariance 
relation (2.4) of the Weyl calculus under the metaplectic representation: indeed, 
the operators (i7r)-l L are just the infinitesimal operators, in the sense of Stone's 
theorem, of the unit aries arising from the metaplectic representation. 

As is well known, the analysis of the effect, on an operator, of the operations 
of commutation with a prescribed set of operators plays an important role in 
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pseudodifferential analysis, where it may serve to characterize classes of operators 
defined by conditions relative to their symbols, as R. Beals showed [4J. 

We now want to address the following question: is there any interpretation 
of the second antisymmetric power of p? Alternatively, can one find an operator­
theoretic interpretation of the action on symbols of elements in the Lie algebra 
g[ (2n, lR)? 

Proposition 12.1. With any element 

(12.6) 

with Ek Rk /\ Sk lying in the second antisymmetric power, over lR, of the lin­
ear space generated by all the Qj'S, Pj's, associate the linear operator mad (A) 
("mad" stands for "mixed adjoint") acting on the space of linear operators from 
S(lRn) to S'(lRn), defined as 

with 

mad (A) (A) = in E(Rk ASk - Sk ARk) . 
k 

mad (A)(Op(h)) = Op(mad(inA)(h)) 

mad (inA)(h): = in E(rk#h#sk - sk#h#rk), 
k 

(12.7) 

(12.8) 

(12.9) 

and the space of all operators mad (in A) describes a supplementary subspace 
Dp (n,lR) of sp (n,lR) in g[(2n,lR), it being understood that the differential opera­
tor associated with M = (Mjkh-Sj,k-::;2n E g[ (2n, lR) is E MjkXk a'lj + ~ E M jj , 
with Xj = Xj if j ::::: n, Xj = ~j-n if n + 1 ::::: j ::::: 2n. 

Proof. Only the last assertion requires a proof. It is a consequence of the relations 
(themselves a consequence of (12.1)) 

(12.10) 

Comparing (12.10) to (12.4), one sees that the first two lines of (12.10) provide for 
antisymmetric substitutes for the blocks c and -a taken from the block-matrix in 
(12.4), whereas the third line permits one to obtain matrices ofthe species (g ~): 
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thus, we get a full supplementary space, in g[ (2n, ~), of the Lie algebra 51' (n, ~). 
It is to be noted that, since the linear first-order operator on the right-hand side 
of the last line of (12.10) has to be formally self-adjoint on L2(~2n), it is natural 
that the constant bjk should occur there. 0 

Remarks. 
1. In particular, we now have an operator interpretation for the action on sym­

bols of the operator 2i7r £ = L: Xj a~ + L: ~j a~ + n. Only, one should be 
J ~J 

careful that the operators with symbols h and (x,~) 1--+ tnh(tx, t~) with t > 0 
are not unitarily equivalent in general: this transformation is tantamount to 
a change in "Planck's constant", coupled if needed (i. e, if one wants the 
rescaling to alter only the ~-variables) with a (symplectic) map of the kind 
h 1--+ ((x,~) 1--+ h(C1x, t~)). 

2. You may think of ()p (n,~) as the "diaplectic" subspace of g[ (2n, ~), where 
the prefix is justified by (12.7). The subalgebra 51' (n,~) normalizes ()p (n,~) 
in the Lie algebra g[ (2n, ~). This may be checked from (12.3) and (12.10) by 
a case-by-case study, or by the remark that if R, S, T lie in the linear space 
generated by the Qj's and the Pj 's, so does RTS-T RS = R [S, TJ+[R, TJ S, 
accompanied by the formula [ad (RS), mad (T /\ V)J = mad ((RST - T RS) /\ 
V) + mad ((VRS - RSV) /\ T). 

In the one-dimensional case, the Euler operator 2i7r £ alone enables one to 
bridge the gap from 5[ (2,~) to g[ (2, ~). We proceed towards an analysis of an 
operator-theoretic interpretation of this operator in the Opp-calculus: this is not 
as easy if p > 0 as in the Weyl case, mostly in view of the more complicated 
commutation relation (7.13) between P and Q. 

Lemma 12.2. In the OpP -calculus, the operator 

P e 2i7r (1)Q-yP) Q _ Q e 2i7r (1)Q-yP) P _ ('T]Q _ yP) e 2i7r (1)Q-yP) 

coincides, on functions with a parity related to p, with the operator 

1 ~ 2p e2i7r (1)Q-yP) + ~ [e-2i7r (1)Q-yP) _ e2i7r (1)Q-YP)] ; 
2z7r 2m 

(12.11) 

(12.12) 

the same formula is valid for the action of the operator on functions with a parity 
contrary to p, after one has substituted -p for p in (12.12). 

Proof. Set, for t E ~, 

R(t) = P e 2i7rt (1)Q-yP) Q _ Q e 2i7rt (1)Q-yP) P. (12.13) 

Then 

R'(t) = 2i7r P ('T]Q - yP) e2i7rt (1)Q-yP) Q - 2i7rQ ('T]Q - yP) e2i7rt (1)Q-yP) P 

= 2i7r ('T]Q - yP) R(t) + 2i7r [P, QJ e 2i7rt (1)Q-yP) ('T]Q - yP). (12.14) 
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Also, R(O) = [P, QJ so that, regarding (12.14) as a differential equation, we easily 
get 

R(t) = e2i7ft (rJQ-yP) [P, QJ+ 

2i7r e2i7ft (rJQ-yP) lot e-2i7fs (rJQ-yP) [P, QJ e2i7fs (rJQ-yP) ds (7]Q - yP) . (12.15) 

Next, we compute 2i7r e-2i7frJ Q [P, QJ e2i7frJ Q: since Q is the operator of multipli­
cation by x, the block-form of this matrix is (using also (7.13)) 

(
COS 27r7]x -i sin 27r7]X) (1 + 2p 

-i sin 27r7]x cos 27r7]x 0 
o ) ( cos 27r7]x i sin 27r7]X) 

1 - 2p i sin 27r7]x cos 27r7]x 

= I + 2 ( ~o~ 47r7]x i sin 47r7]x ) 
p -z sm47r7]x - cos 47r7]x 

= 1+ 2pe-4i7frJQ G ~1)· (12.16) 

In view of (9.23), here recalled (valid when 7] -=f. 0) 

(12.17) 

and of the fact that p 2 commutes with [P, QJ, one has 

(12.18) 

an identity also valid if T} = 0 (using (7.36)). Using also the fact that (6 -.91 ), 

which is the block-matrix form of the endomorphism u ...... (-I)P u of Sp OR), 
anticommutes with T}Q - yP, we can make (12.15) explicit as 

R(t) = e2i7ft (rJQ-yP) [P, QJ + t e2i7ft (rJQ-yP) (T}Q - yP) 

+ 2~7r (e-2i7ft (rJQ-YP) - e2i7ft (rJQ-YP)) G ~1)· (12.19) 

Specializing to t = 1, we get (12.12). 0 

Lemma 12.3. Let h be an even distribution in F(S:OR2))even and let A = OpP(h). 
The operators OPP((2p + 2i7r £) h) and 2i7r (PAQ - QAP) agree on the subspace 
of Sp(JR) consisting of functions with the parity related to p, and the operators 
OpP((-2p + 2i7r£) h) and 2i7r(PAQ - QAP) agree on the subspace of Sp(JR) 
consisting of functions with the parity contrary to p. Also, (2p + 2i7r £) h is Ep­
invariant if and only if his Ep+1 -invariant, and (-2p+2i7r £) his Ep+1 -invariant 
if and only if h is Ep-invariant. 
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Proof. First note that OpP(h) and OpP(2i7l'E h) are well defined by Proposition 
9.7. If u and v lie in SpOR) and have the parity related to p, one has 

(vi OpP(h)u) = r (Fh)(y, ry)( vi exp 2i7f (ryQ - yP) u) dydry 
ilR2 

so that, from Lemma 12.2, using the fact that h is even, 

2i7f (vl(PAQ - QAP)u) = 2i7f r (Fh)(y, ry) 
ilR2 

(12.20) 

(vi [(ryQ - yP) e2i7r('1Q-yP) + (1 + 2p) e2i7r('1Q-yP)j u) dydry. (12.21) 

From (9.32), 

2i7f (ryQ - yP) e2i7r('1Q-yP) = (2i7f £ - 1) e2i7r ('1Q-yP) , (12.22) 

where the operator 2i7f £ - 1 transfers to - 2i7f £ - 1 under transposition, then to 
2i7f £ - 1 again under commutation with F. Thus 

2i7f(vl(PAQ - QAP)u) 

= r F((2p+2i7f£)h)(y,ry)(vl exp2i7f(ryQ-yP)u)dydry. (12.23) 
ilR2 

Concerning the second statement, we note that, as a consequence of (6.16), 
one has 

and 

'" ( . CO) (p + i7f £) '" ( . CO) 
Up P + Z7fc- = ( . CO) up+l P + Z7fc­

p-~7fc-

= (p + i7f £) Ep+1 

Ep+1 (p - i7f£) = (p - i7f£) Ep. (12.24) 

o 

It is convenient, at this point, to introduce some terminology. First, recall 
from the proof of Corollary 9.10 that, if p ~ 1, the operator (p + i7f£)-l is well 
defined as an endomorphism of S:OR2): as a consequence, if h E FS:OR2), i.e., 
Qh E S:OR2), one can always define Eph = (0~7r£~!r Qh E S:Cll~2). If Eph, too, lies 

in the space FS:OR2) (in particular, this is the case if h is Ep-invariant), then 

h = (0~7r£~!P Q(Eph) is in S:OR2). All this may look just a little bit confusing, but 

this is only due to the fact that the useful space is FS:OR2) rather than S:OR2). 
Anyway, the developments in this section will yield at each step only symbols 
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actually lying in the intersection FS:OR2) n S:(JR.2). Given a continuous linear 
operator A from Sp(JR.) to S; (JR.) , commuting with the map u 1--+ U, we shall say 
that A admits a lower-type symbol if there exists an even symbol h E FS:(JR.2) 
satisfying ~ph = h such that the restrictions of A and OpP (h) to the subspace 
of Sp(JR.) consisting of all functions with a parity related to p agree: of necessity, 
the symbol h is unique, up to the addition of a linear combination of distributions 
homogeneous of degrees -1 - 2j,0 S j S p - 1 (cf. (9.18)), connected to a 
horocyclic symbol, as follows from Definition 6.2 and Corollary 9.5. Similarly, we 
define the concept of higher-type symbol of A, in relation to the restriction of A 
to the subspace of Sp(JR.) consisting of all functions with a parity contrary to p: 
of course, it is then the involution ~P+l that has to be considered instead of ~p. 
Formula (9.20) permits us, in principle, to fully rebuild any even symbol from its 
lower and higher parts: but, in order that an operator admit an Opp-symbol, it 
may not be sufficient that it should admit both a lower-type symbol and a higher­
type symbol, since there is the problem of applying (in £) -1 to the sum on the 
right-hand side of (9.20). 

One other word of caution is necessary: it is only in the Weyl (p = 0) case that 
any symbol reduces to the sum of its lower and higher parts, for then ~1 = -~o. 
Also, it is not true unless p = 0 that an operator with a ~p-invariant symbol 
should vanish on functions with the parity contrary to p (or vice-versa). 

Remark. The following is an immediate consequence of Lemma 12.3: let p ;:::: 1, 
and let A be a bounded linear operator from Sp(JR.) to S;(JR.) , commuting with 
the map U 1--+ u. If the operator 2in (QAP - PAQ) admits a lower-type symbol 
h1ow , then A admits a higher-type symbol, the image under (2p + 2in£)-1 of 
hlow • 

Within some fixed OPP -calculus, we set, for k = 0 or 1 and vEe, 1/ =I­
k,k+2, ... , 

(12.25) 

after having noted that the symbols involved are well defined as tempered distribu­
tions depending analytically on 1/ in the given range of values of (k,//): actually, 
we take IQI;;1-V to mean the operator of multiplication by Ixl;;1-V even when 
Re 1/ > 0 and define (cf. (7.36)) IPI;;1-v: = F;;1IQI;;1-v Fp; this is the only 
place in this section where we consider symbols possibly not in S~(JR.2). Note that 
in the case when k = 1 the symbols in (12.25) are odd functions on JR.2, so that the 
associated operators change the parity of functions. Their definition can neverthe­
less be regarded as an extension of (9.1): alternatively, one may use the formulas 

We also set 

1P111-v = P 1P1-2-v = 1P1-2-v P . 
(12.26) 

(12.27) 
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assuming throughout this section that, besides VI =I=- k, k+2, ... , V2 =I=- k, k+2, ... , 
one also has IRe (VI - v2)1 < 1, Re (VI + V2) > -1. Even though we are really 
interested only in the case when k = 0, the consideration of the case k = 1 is 
unavoidable. Our main problem is to show that, for all p, the operator AP(Vl, V2; k) 
has an OpP-symbol hP(vl, V2; k); also, to relate this symbol to the Weyl symbol 
hO(Vl,V2;k) = Ixlkl-Vl#I~lkl-V2: that this latter symbol is well defined as a 
tempered distribution is a consequence of the remark following (11.20). 

It is, however, necessary for our purposes to remark a little more, namely 
that both hO(vl, V2; k) and the Fourier tranform (or, what amounts to the same, 
the Q-transform) of this symbol lie in the space (S:(IR2))even used in Proposition 
9.7. To that effect, one may use Theorem 11.3. Indeed, on one hand any sym-

-1-1.11 +v2-i>.. -1+vl-v2-i>.. 

bol Ixlj 2 1~lj 2 lies in this space since it is integrable against any 
continuous function rapidly decreasing at infinity; on the other hand the summa­
tion with respect to >. can be taken care of by means of (11.27). This shows that 
hO(Vl, V2; k) is in (S:CIl~2))even. On the other hand, from Theorem 11.3 again, we 
get the weak decomposition in S;ven(lR2): 

(12.28) 

with 

-I-VI +V2-i>.. -1+Vl-v2-i>.. 

= L D j (Vl, V2; k; i>.) Ixl j 2 1~lj 2 ,(12.29) 
j=O,1 

and 

(12.30) 

the same reasoning as the one applied to hO(vl, V2; k) above can now be applied 
to its Q-transform. 

We now show by induction on p that, under the hypotheses indicated right 
after (12.27), any operator AP(Vl,V2;k) has a lower-type symbol as well as a 
higher-type symbol. 

Lemma 12.4. Under the assumptions that VI =I=- k, k + 2, ... and V2 =I=- k, k + 2, ... , 
together with IRe (VI - v2)1 < 1, Re (VI + V2) > -1, one has 

1 + v2 
AP(Vl, v2; k) Q = Q AP(vl, V2; k) - 2i1T Q AP(VI + 1, V2 + 1; 1 - k). (12.31) 
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Proof. When acting on functions of t of any given parity, P = (2i7r)-I(ft ± If), so 
that 

(12.32) 

in other words 

(12.33) 

Using 

(12.34) 

we get 

(12.35) 

Thus 

AP(Vl, V2; 0) Q = IQI-1-v1 1P1-1-v2 Q 

= IQI-1-v1 Q 1P1-1-v2 _ 1 ~ V2 IQI-1-v1 IPI- 2- v 2 

227r 1 

= Q (IQI-1-V1 1P1-1-v2 _ 1 ~;2 IQI;-2-vl 1P1;-2-v2), (12.36) 

which gives the case k = 0 of the lemma. The proof of the case k = 1 is identical. 
o 

Lemma 12.5. Let p :::: 1 be given. Assume that whenever k = 0 or 1, and VI, V2 
are complex numbers such that VI =1= k, k + 2, ... , V2 =1= k, k + 2, ... and IRe (VI -
v2)1 < 1, Re (VI + V2) > -1, the operator AP(Vl, V2; k) has a lower-type symbol 
hfow (VI, V2; k). Then, such an operator also has a higher- type symbol, given by the 
formula 

(2p + 2i7r E) hbigh (VI, V2; k) 

_ P. (1 + vr)(l + V2) p . 
- -(1 + VI + V2) h1ow (Vl, V2, k) + 2i7r h1ow (Vl + 1, V2 + 1, 1 - k). 

(12.37) 

Proof. First recall from the remarks which followed (12.24) that (2p + 2i7r E)-I 
can indeed be applied to the right-hand side of (12.37) if p =1= 0, thus making this 
equation a valid definition of hbigh(Vl, V2; k): (12.24) then shows that, indeed, this 
symbol is I:p+1-invariant. It is immediate that 

(12.38) 
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On the other hand, using (12.33), then Lemma 12.4 (twice), 

P AP(Vl, V2; k) Q = P IQlk 1- V1 IPlk 1- V2 Q 

= IQlk1- Vl 1P11~k Q - 12~ VI IQll~kVl IPl k1- v2 Q 
Z7r 

1 1 + VI 1 
=Q- AP(Vl-1,V2-l;l-k)Q--.-Q- AP(Vl,V2;k)Q 

2Z7r 

127 

Using the remark just before (12.25), we are done. D 

The preceding lemma gives a pair of equations (k = 0 or 1) entirely concerned 
with the OpP -theory only: we now connect the Opp+l-t heory to the OpP -theory. 

When acting on functions with the parity related to p + 1, the operators 
AP(Vl, V2; 0) and AP+l(Vl, V2; 0) (products of two factors with even symbols) agree. 
This is so fundamental that we give another short proof of this fact, independent 
of Corollary 9.5. It suffices to show that, on the given space of functions, the two 
operators p2, taken from the OpP-theory or the Opp+l-theory, agree. Now, from 

(713) P 2_ 1 (Ap 0) 'h A _(d P)(d l!.)- d2 p(l-p) d 
., - - 47r 2 0 Dp WIt P - dx + x dx - x - (fX2 + ~, an 

D - ( d P) ( d P) - d2 p(1'+I) Th D - A 
l' - dx - x dx + x - dx2 - ~. us P - 1'+1· 

Things are different so far as the operators AP(vl, V2; 1) and AP+l(Vl, V2; 1) 
are concerned. Indeed, 

A1'(Vl' V2; 1) = IQ111- v l 1P111- v 2 

= IQI-2- Vl QP 1P1-2- V2 • (12.40) 

Now, in the Op1'-theory, one has 

QP= _ dx 1 (x.!i. - pO) 
2i7r 0 X d~ + P , 

whereas 

P=_ dx 1 (x.!i. - p - 1 0 ) 
Q 2i7r 0 X d~ + p + 1 

(12.41 ) 

in the Opp+l-theory. This leads to the following: 

Lemma 12.6. Let p ~ 0 be given. Assume that whenever k = 0 or 1, and VI, V2 
are complex numbers such that VI -I- k, k + 2, ... , V2 -I- k, k + 2, ... and IRe (VI -
V2) I < 1, Re (VI + 1/2) > -1, the operator AP (1/1, 1/2; k) has a higher-type symbol 
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hhigh(Vl, V2; k). Then, under the same assumptions regarding VI, V2, any operator 
AP+1(Vl, V2; k) also has a lower-type symbol, given as 

(12.42) 

or 

p+ 1 ( .) _ p ( .) 2p + 1 P ( • h10w VI, v2, 1 - hhigh VI, v2, 1 - -2-'- hhigh VI + 1, V2 + 1,0). 
Z7f 

(12.43) 

Proposition 12.7. Let k = 0 or 1. For every p = 0,1, ... , and every pair (VI, V2) 
of complex numbers with VI -I k, k + 2, ... , V2 -I k, k + 2, ... and IRe (VI - V2) I < 
1, Re (Vl + V2) > -1, the operator AP(Vl,V2;k) admits a unique OpP-symbol 
hP(Vl,V2;k) in the space (SJR2 ))even, with QhP(Vl,V2;k) in the same space. For 
p :2 0, the symbol (1 +i7f E)p hhigh (Vl' V2; k) is a linear combination, the coefficients 
of which are polynomials in VI, V2 of degree :S p depending on p, k, 1', of the 
symbols hgigh(Vl + 1', V2 + 1'; k') with l' = 0,1, ... , 2p, k' = 0 or 1, l' + k' == k 
mod 2; for p :2 1, the symbol (1 + i7f E)p-l hfow(Vl, V2; k) is a linear combination, 
the coefficients of which are polynomials in VI, V2 of degree :S p depending on 
p, k, 1', of the symbols hgigh (VI + 1', V2 + 1'; k') with l' = 0, 1, ... ,2p - 1, k' = 0 or 
1, l' + k' == k mod 2. 

Proof. All linear combinations to be discussed in the present proof are supposed 
to have coefficients which are polynomials in VI, V2. We know from the consider­
ations which preceded Lemma 12.4 that, with hO(Vl,V2;k) = Ixlkl-Vl#Il;lkl-V2, 
both hO(vl, V2; k) and its Q-transform lie in (S:(JR.2 ))even , and the same holds 
with hPow(Vl,V2;k) and hgigh (Vl,V2;k), the images of hO(Vl,V2;k) under the op­
erators ~ (/ ± g). Using (12.37), (12.42) or (12.43), and remembering that, for 
p:2 1, (p+i7fE)-l can be applied to any symbol h in S:(JR.2), we may inductively 
construct two sequences (hfow(Vl, V2; k))p~o and (hhigh (VI, V2; k))p~o oflower-type 
and higher-type symbols of the sequence of operators (AP(Vl, V2; k))p~o. Indeed, 
(12.37) makes it possible to construct the higher-type symbol of AP(Vl, V2; k) from 
the knowledge, for all admissible pairs VI, V2, of the corresponding lower-type sym­
bol, while (12.42) and (12.43) make it possible to compute a lower-type symbol in 
terms of some higher-type symbols, while raising the level p. 

The assertion concerning 

(1 + i7fE)p hhigh(Vl, V2; k), p:2 0, or (1 + i7fE)p-l hfow(Vl, V2; k), p:2 1, 

is immediate by induction, a consequence again of (12.37), (12.42) and (12.43), 
and from what has been said in the paragraph following (12.24), all symbols 
hfow(Vl, V2; k), hhigh (VI, V2; k), Qhfow (VI, V2; k) and Qhhigh (VI, V2; k) lie in S: (JR.2). 
The symbol hP(Vl,V2;k) can then be obtained from (9.20), as 

hP(Vl, V2; k) = (-2i7f E) -1 [(2p - 2i7f E) hfow (VI, V2; k) 

- (2p + 2i7f E) hhigh (vJ, V2; k)] : (12.44) 
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admittedly, it is only for p > 0 that the operator (p + i7r E)-I is well defined 
as an endomorphism of S: CIl~.2). However, we only have to apply (2i7r E)-I, here, 
to symbols of the species hgigh(VI + r, V2 + r; k'), and it follows from (12.5) and 
(12.6), together with 

hgigh (VI + r, v2 + r; k') = ~ [hO(VI + r, V2 + r; k') - Qhgigh (VI + r, V2 + r; k') 1 ' 
(12.45) 

that the function 

1 2 [Cj(VI + r, V2 + r; k'; i).) - Dj(VI + r, V2 + r; k'; i).) 1 

is the spectral density of hgigh (VI + r, V2 + r; k') against the family of homogeneous 
-1-Vl+V2-i~ -1+Vl-V2-i~ 

distributions Ixl j 2 1~lj 2 and that it remains a Coo function of 
D ). after it has been divided by -i)'. 

Lemma 12.8. For every integer r ~ 0, and k = 0 or 1, one can uniquely define four 
polynomials Ar,k, Br,k, Cr,k and Dr,k in three indeterminates, with degree(Ar,k) ::; 
r, degree(Cr,k) ::; r, degree(Br,k) ::; r -1, degree(Dr,k) ::; r -1, with the following 
properties: set k' = 0 or 1, r + k' == k mod 2, and let VI, V2 E C satisfy the 
assumptions of Proposition 12.6. Then 

hgigh(VI + r, V2 + r; k') = [(VI + l)r (V2 + l)r]-I x 

and 

[Ar,k (VI, V2; 2i7r £) hgigh (VI, V2; k) + 2i7r E Br,k (VI, V2; 2i7r £) h?ow (VI, V2; k) 1 
(12.46) 

h?ow(VI + r, V2 + r; k') = [(VI + l)r (V2 + l)r]-I x 

[ Cr,k(VI, V2; 2i7r £) h?ow(VI' V2; k) + 2i7r £ Dr,k(VI, V2; 2i7r £) hgigh (VI, V2; k) ]. 
(12.47) 

Proof. This is obtained by induction, starting from the two equations 

(12.48) 

and 
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the second of which is the case p = 0 of (12.37): in a similar way, the first one 
follows from Lemma 12.3. Alternatively, one can derive (12.48) and (12.49) from 
the identity 

o . l+ lIl+ lI2+2inE 0 
h (lIl + 1, lI2 + 1; k) = 2zn ( )( ) h (lIl, lI2; 1 - k) 

1 + III 1 + lI2 
(12.50) 

and its consequence 

(12.51) 

The easiest way to prove (12.50) is, using Theorem 11.3, to note that the coeffi­
cients Cj(lIb lI2; k; i)..) in (11.22) satisfy 

Cj (lIl + 1, lI2 + 1; 1; i)..) 
Cj(lIb lI2; 0; i)..) 

Cj(lIl + 1, lI2 + 1; 0; i)..) 
Cj (lIl, lI2; 1; i)..) 

2 . 1 + III + lI2 - i).. 
= zn . 

(1 + lIl)(1 + lI2) 
(12.52) 

o 
Theorem 12.9. For k = 0 or 1, and p = 0,1, ... , one can find two polynomi­
als Mp;k(lIl, lI2; X) and Np;k(lIl, lI2; X) in lIl, lI2 and some indeterminate X, the 
degrees of which are at most 2p, such that, whenever k, lib lI2 satisfy the assump­
tions of Proposition 12.7, the identity 

hP ( lIl, lI2;k) 

= [(lIl + 1 hp (lI2 + Ihp (1 + in E)prl Mp;k(lIl, lI2; 2in E) h?ow(lIl, lI2; k) 

+ [(lIl + Ihp (lI2 + Ihp (inE)pj-l Np;k(lIl, lI2; 2inE) hg jgh (lIl' lI2; k) (12.53) 

holds. Recall that 

(12.54) 

and that 

(12.55) 

Proof. It suffices to combine Proposition 12.7 and Lemma 12.8. o 



Chapter 3 

The Sharp Composition of 
Automorphic Distributions 

13 The Roelcke-Selberg expansion of functions 
associated with ~~l # ~~2: the continuous part 

In this section, we begin our proof of the main formula (5.38) (or (5.62). First, 
there are two reasons why we do not follow the lines of the heuristic approach 
in Section 5, neither of which has to do with the difficulty of the approach. The 
first one is that, from the very start, the original definition as a series (3.1) or 
(5.32) of ~t is only valid if Re v > 1 while, from the point of view of the spectral 
analysis of automorphic distributions, the case when v is pure imaginary is more 
important: the method below will take us directly to this case. Still, let us observe 
that it is precisely because our heuristic section was based on the Definition (5.32) 
of ~t that it allowed us to get some true understanding of the role played by the 
Dirichlet-Hecke operators .c( s) in the formula. The second, and related, reason is 
that a proof based on (5.32) would depend on a definition of Eisenstein series which 
could not generalize to more general automorphic distributions. On the contrary, 
our present proof is based on the Fourier series expansion (3.25), which generalizes 
to the case of cusp-distributions (4.4). 

As said at the end of Section 5, one possible way, avoiding the use of the 
OpP -calculus (cf. Theorems 10.6 and 10.7) to try and define the sharp product 
of two Eisenstein distributions could be based on an answer to the question: how 
can one (sometimes) give a definition of the image under 2i7r£ of the symbol h 
of some operator A, without being able to define either h or A? Section 12 gives 
the answer: 

A. Unterberger, Automorphic Pseudodifferential  Analysis  and Higher Level  Weyl  Calculi 
© Springer Basel AG 2003
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Proposition 13.1. Let 6 E S~ven(lR2). For every Z E II, one has 

(13.1) 

and 

(u;IOp(2i7rt" 6) u;) = -3~ [(uz IOp(6) u;) + (u;IOp(6) uz ) 1 

+ 3 (u;IOp(6) u;). (13.2) 

Proof Recalling that in the Weyl calculus, when acting on functions of x, the 
operators Q and P are respectively the operators of multiplication by x and 
2~1f lx' one gets from (6.13) the relations 

PU z = 2~~ (1m (-~)) -~ 2- 1 u;, 

Quz = 2~~ (1m (-~)) -~ u;. 

Since Z-1 - 2- 1 = - 2i 1m (- ~ ), this entails the relation 

1 1 1 
(PuzIAQu z) - (QuzIAPuz) = -2. (uzIAuz ) ' 

t1r 

(13.3) 

(13.4) 

so that (13.1) is a consequence of Lemma 12.3: observe that in the case of the 
Weyl calculus this lemma reduces to the formula 

Op(2i1r E h) = 2i1r (P Op(h) Q - Q Op(h) P). (13.5) 

Recall from Proposition 12.1 that the right-hand side of (13.5) was denoted as 
mad (2i1r (P!\ Q)) Op(h) there. 

The formula (13.2) is proved in the same way, using 

(13.6) 

o 

It is essential to note, now, that the right-hand sides of (13.1) and (13.2) can 
very well be meaningful, thus giving the operator Op(2i1r E 6) a minimal sense 
( i. e., a sense as a linear space from the linear space generated by the functions 
uz , u; to the algebraic dual of this latter space), without it being necessary to 
assign the would-be operator Op(6) any meaning. Also observe that a sesqui­
holomorphic argument permits to find the function (w, z) f--+ (u~IOp(6) u;) from 
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the knowledge of the function z f-7 (u;IOp(6) u;), and that something similar 
holds for the right-hand side of (13.2). This scheme will work in our present inves­
tigations: however, it will be necessary to consider the right-hand side of (13.2) as 
given as just one integral, not the sum of three (divergent) ones. 

Definition 13.2. Let Al and A2 be two linear operators: S(JR) -+ S'(JR), commut­
ing with the map u f-7 it, and let Ar be the formal adjoint of AI. We shall say 
that the operator mad (2i7r (P 1\ Q)) (A 1A 2 ) is well defined in the minimal sense 
if, for every point Z E II, and p = 0, 1 or 2, the distributions Aru~ and A2U~ are 
actually (locally summable) functions on JR, and the integrals 

(13.7) 

and 

I: [ 3 (Aru;)(t) (A2U;)(t) - 3~ (Aruz)(t) (A2U;)(t) 

-3~ (Aru;)(t) (A2uZ )(t)] dt (13.8) 

are convergent as improper integrals. We shall say that the operator mad (2i7r (P 1\ 

Q)) (A 1A2 ) admits a symbol 'I in the minimal sense if there exists a (necessar­
ily unique) symbol 'I E S~ven (JR2) such that these two integrals coincide with 
(uz I Op('I)uz ) and (u; I Op('I)u;) respectively. 

Remark. Again, the operator mad (2i7r (P I\Q)) (A 1A2 ) can be well defined in the 
minimal sense without AIA2 being necessarily so. However, if the first-mentioned 
operator admits a symbol 'I in the minimal sense and if the operator (2i7r £)-1 
can be applied to 'I from the consideration of the decomposition of 'I into homo­
geneous components, then one may define (2i7r£)-I'I as a symbol of A 1 A2 . This 
symbol will at best be defined only up to the addition of an arbitrary (tempered) 
distribution of degree -1: but this is quite coherent with the fact, observed af­
ter (9.35), that, for p ~ 1, the OpP-calculus "forgets" all such distributions. For 
Proposition 13.1 is just a devious trick to avoid the use of the Opi-calculus and 
stay within the Weyl calculus proper. 

Such a definition of a symbol of AIA2 is somewhat indirect, but it is in full 
analogy with the definition of Bezout's distribution in Section 4: from the proof 
of Theorem 3.3, we found that only (2i7r £)223, rather than 23, could be given a 
direct definition by a convergent series as in (3.41): but after we found, for £ ~ 1, 
the spectral decomposition of 23£ in Theorem 4.3, it appeared that it also made 
sense for £ = O. 

Proposition 13.3. If VI, V2 are complex numbers with IRe (VI ± V2)1 < 1, the 
operator mad (2i7r (P I\Q)) (Op(~U Op(~~2)) is well defined in the minimal sense. 
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Proof. Recall from (3.2), (3.27) and (10.4) that, if v =I- -1,0,1, ... , 

;,l ~ 2 -',-" [(-V) Ixl-"-' +(1 - v) .(x) 1<1-" + ;;, al~:~1l ~ 1 (13.9) 

and from (10.7) that 

(Op(a~)u)(t) = Inl-~ char(t2 > 2n) (t2 - 2n)-! 

x L It -cJt2 - 2nlv u (cJt2 - 2n). (13.10) 
e=±l 

To better understand the difficulty involved in defining the product Op(~~,) 
OP(~~2)' let us first examine (from the consideration of (13.9)) the operator 

Op(l:n~-l O",~,'i') a~): clearly, it sends S(JR) to S(JR) since, if lu(t)1 S; C (1 + 
Itl)-2N, one has, for n < 0, 

IRe vi [ J IRe vi I(Op(a~)u)(t)1 S; C Inl-2- (t 2 + 2Inl)-N-l It I + Jt2 + 21nl , (13.11) 

and a term-by-term differentiation can be carried out without any trouble. Since 
(from (13.10) or, in a simpler way, (10.4)) 

(13.12) 

the operator just mentioned sends S'(JR) to S'(JR). As one can thus expect, it will 

indeed be the sum l:nl~-l O"Vl (In]Jl O"v2~n2) a~~ #a~~ that will create difficulties; in 
n2>1 Inll 2 n2 

other words, when exa~ining (Op(~~J u~ I Op(~~2) un and expanding the two 
symbols under consideration by means of (13.9), it is the terms with nl 2: 1 and 
n2 2: 1 which we must be careful of. 

Concerning the second term on the right-hand side of (13.9), it is immediate 
from (2.1), or even more so from (10.19) and (10.20), that if v ~ Il, 

(13.13) 

So as to simplify notation somewhat, we shall change z to -~ before studying 
the expressions (13.7) and (13.8), in which Op(~~) has been substituted for Aj : 

J 

we thus set 

(13.14) 
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and 

f:1,V2(Z) = [: [3 (Op(~~J u~~)(t) (Op(~~2) u~~)(t) 
- 3~ L (Op(~~J u~~)(t) (Op(~~2) U~{)(t)] dt. (13.15) 

p=O,2 

We first examine the simpler integral (13.14), a genuine one as it will turn 
out. Since, with z = x + iy, 

u~~ (t) = C(l) yi te- i7rzt2 (13.16) 

with 0(1) = 2% 7r~, where we have set, more generally, (cf. (6.13)) 

(13.17) 

(13.16), together with (13.9), (13.10), (13.13) and the functional equation (3.19) of 
the zeta function, yields, if IRe vi < 1, recalling (11.26) for the notation concerning 
signed powers, 

(Op(~~) u~~) (t) = C(l) yi [2 -v2-1 ((-v) ItllV - 2 v 21 ((v) Itlrl e-i7rzt2 

+ 2 -v2-1 C(l) yi L o"V(I~I) char(t2 > 2n) 
n#O Inl 

x [It - vt2 - 2nlv -It + vt2 - 2nn e-i7rz(t 2 -2n). (13.18) 

The first two terms add up to a function which is an O(ltl- IRe vi) near zero, and 
rapidly decreasing at infinity; it has also been observed that the sum of all terms 
with n < ° in the sum above is a smooth function, rapidly decreasing at infinity. 
The terms with n > 0, however, must be examined more carefully: first, their sum 
has a mild s~n9ularity, to wit ~ lack of differentiability at the points ±y'2ri:, n ~ 1. 
Since le-mz(t -2n) I = e-7ry(t -2n) and the number of terms to be considered is 

::; t;, only the n's with t2 - 2n = O(logt) may contribute to a total not less, say, 
than O(t-2). But when t2 - 2n = O(logt), t -+ 00, one has 

also, given C > 0, the sum L: v't2 - 2n extended to all integers n such that ° ::; t2 - 2n ::; C logt is an O((logt)~). Finally, u-;.Sn) = (J-v(n) is, for large n, 
an O(logn) if Re v ~ 0, an O(n-Re v logn) if Re v < 0, so that the terms 
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with n > 0 from (13.18) contribute to (Op(~D U~l)(t) a term which is an 

O(ltjlRe "1-1 (logt)~) for large t. 

This estimate shows that, when IRe vII + IRe v21 < 1, the right-hand side 
of (13.14) is a bona fide integral. The improper integral (13.15) is slightly more 
difficult to deal with. Our claim is that the dt-integral, taken from -a to a (-al 
to a2, with al and a2 independent, would be just as well) has a limit as a ~ 00, 

and that this limit is also the sum of the double series of integrals obtained from 
the decomposition (13.19) below: the simple trick is to perform an integration by 
parts (in the integral I~a ... ) in some of the terms involved, namely, with the 
notation below, those with nl ~ 1 and n2 ~ l. 

For P = 0 or 2, and IRe vi < 1, 

(Op(~~) u~~) (t) = C(p) Y 2PI 1 [2 -V2-1 (( -v) Itlp - v - 1 + 2 v 21 ((v) ItIP+V-1] 

x e-i7rzt2 + 2 -v2-1 C(p) Y 2PI 1 L av(lnj) char(t2 > 2n) 
n#O Inl v 

x [It - Jt2 - 2nlv + It + Jt2 - 2nl"] (t2 - 2n)9 e-i7rz(t2-2n). (13.19) 

We develop (Op(~~J U~ll)(t) (resp. (Op(~~2) U~2l)(t)), with PI (resp. P2) = 0 

or 2 but PI + P2 ~ 2 ac~ording to the preceding ~xpansion, with nl (resp. n2) 
substituted for n: as explained right after (13.12), only the terms with nl ~ 

1, n2 ~ 1 are worrisome in the expansion of the product (Op(~~J u~~)(t) x 

(Op(~~2) u~\)(t): since gi~j = :t, they contribute to the integrand on the right­

hand side of (13.15) the function 

g(t) = 2 -V1-;V2-2 3! C(O) C(2) y~ L 

char(t2 > 2max(nl,n2) L It - Cl Jt2 - 2nllv1 It - C2Jt2 - 2n21v2 
cl=±l 
c2=±1 

[ 
2 1 2 1 t2 - 2n2 1 t2 - 2nl 1] 

X 47rY (t - 2nl) 2" (t - 2n2) 2" - ( )2" - ( )2" 
t 2 - 2nl t2 - 2n2 
x ei7rz(t2-2nd e-i7rz(t2-2n2). (13.20) 

This series cannot be integrated on the real line (though each term can) only 
because of the behaviour of g at infinity. However, note that 

(13.21 ) 
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and that the last line in the preceding expression of g( t) can be written as 

Since 

(13.23) 

one may write J~= g(t) dt as J~= h(t) dt with 

h(t) = -2 -V1 -;V2 -2 3~ C(O) C(2) y~ L 

(13.24) 

Splitting the last exponential as e-7J"y(t2-2n, ) e-7J"y(t2- 2n2) and using the Cauchy­
Schwarz inequality for series together with the estimate 

It I --7 00 , (13.25) 

obtained, as in the study of the integral (13.14), by remarking that only the terms 
with t 2 - 2n = O(logt) are important in the sum, we see that, when IRe vII + 
IRe v21 < 1, the function h is integrable. 0 

Lemma 13.4. The functions f~,,1/2 and f;,,1/2 introduced in (13.14) and (13.15) 
are r -invariant. 

Proof. This is obvious for the first one, in view of the covariance of the Weyl 
calculus under the metaplectic representation and the absolute convergence of the 
integral (13.14). Note that the invariance of f; 1/ under translations by integers 

1, 2 

is obvious too. 
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After the preparation provided by the proof of Lemma 13.3, one may write 
the function 2 V1 +;2+2 l!; V2(Z) as a series, the main part of which being 

1, 

(13.26) 

where each scalar product within the bracket is meaningful: this is the same as 

L (TVll(I~~ ~V21(~21) (u~.! I mad(2irr(P 1\ Q)) (Op(a~~) Op(a~;)) u~.!) . 
nl, n 2;fO nl 2 n2 2 Z Z 

(13.27) 

Now, by the metaplectic covariance property, 

(u~~ I mad(2irr(P 1\ Q)) (Op(a~~) Op(a~;)) u~~) 
= (u; I mad(2irr(P 1\ Q)) (Op(b~~) Op(b~;)) u;) 

(13.28) 

with b~ = a~ 0 (~ (/ ), which concludes the proof since one also has 

(13.29) 

(where the extra terms arise from the consideration, for each factor, of the first 
two terms on the right-hand side of (13.9): they are exactly the transforms, under 
the map z 1--+ -~, of the terms we have neglected writing in (13.26)): this series 
expansion has to be understood in the minimal sense, i. e., when testing against a 
pair (uz,uz) or (u!,u!). 0 

Under the assumption that IRe [/11 + IRe [/21 < 1, we shall now consider the 
function fv1 v and expand it as a Fourier series 

1, 2 

f~1'V2(Z) = L a;'(y)e2i7rmx. (13.30) 
mEZ 
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Using (13.21) again, we find, starting from (13.18), 

a6(y) = (C(1))2 y~ L C1 c21°O e-27fyt2 dt 
el=±l -00 

e2=±1 

139 

X [ 2 -'lvl -;"2V2-2 (( -C1 I/r) (( -c2 1/2) Itl-e1 VI - 1021'2 + 2 -VI 7 2- 2 L e41r ny 

n,eD 

aVI (In!) aV2 (In!) char(t2 > 2n) It _ c Vt2 _ 2nlVI It _ c Vt2 _ 2n1V2] 
Inlvl +1'2 1 2 

and, for m -=1= 0, 

a;,,(y) = a1(m; 1/1, 1/2; y) + a1( -m; V2, VI; y) + L a;(m; VI, V2; y) 
n,eD 

n,e-m 

with 

a1 (m;Vl,V2;Y) = (C(1))2y~ L clc2 2-"1V\-V2-2 ((-cl vr) al~\:!) 
el=±1 
e2=±1 

(13.31) 

(13.32) 

i: char(t2 > 2m) Itl-e1v1 It - c2Vt2 - 2mlv2 e-21ry(t 2 -m) dt (13.33) 

and 

a1 (m' V V' y) = (C(1))2 y~ " c c 2 -Vl-;V2-2 aVI (In!) aV2 (In + m!) 
n ,1, 2, e~1 1 2 Inlvl In + mlv2 

e2=±1 

J It - C1 Vt2 - 2nlv1 It - c2Vt2 - 2n - 2mlv2 e-21ry (t2-2n-m) dt, (13.34) 

where the last integral is taken on the domain characterized by t2 > max(2n,2n+ 
2m). 

Lemma 13.5. If IRe (VI ± v2)1 < 1, the function 

(13.35) 

lies in L2(r\II). It remains in this space after it has been applied the Laplacian 
D. any number of times. 
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Proof. Recall that a fundamental domain of f in II is {z E II: Izl > 1, - ~ < 
Re z < H. In view of the classical Fourier expansion (4.5) of E~_v (z) = (*(1 -

2 

v) El::::.!:. (z), it is then immediate that the function 
2 

agrees, up to some error term in L 2 (f\II), with the function 

(13.37) 
which is the same as the term 

101102 (C(1))2 Y~ 2 -'1v1-;'2 v 2-2 ((-10 1 vI) ((-102 V2) I: Itl-C1 Vl-c2V2 e-27ryt2 dt 

(13.38) 
from the right-hand side of the expansion (13.31) of a6(y). 

It thus remains to be shown that the major term 2:n 7"'o'" of a6(y), together 
with the series 2:m7"'O a~(y) e2i7rmx, add up to some function in L 2(f\II). Let us 
first estimate, when z lies in the usual fundamental domain of f in II, so that 

y > 1, and n =I 0, the term 

In(Y) = 1 L 101 102 It - 10 1 vt2 - 2nlV1 It - S2Vt2 - 2nlV2 e- 27ry (t2-2n) dt, 
t2>2n c1=±1 

c2=±1 

(13.39) 
or 

In(Y) = 2 J::n [It - vt2 - 2nlv1+V2 -12nlvl It - vt2 _ 2nl-Vl+V2 

-12n1V21t _ vt2 _ 2nlv1-V2 + 12nlvl+V2lt _ vt2 _ 2nl-VI-V2] e-27ry (t 2 -2n) dt. 

(13.40) 

When n < 0, setting t = J2jnI sinh s, we find 

1= ( vt2 - 2n - t) v e-27ry(t2-2n) dt = (2Inl) v!l l=e-vs e-47rlnly cosh2 
S cosh s ds, 

(13.41 ) 
so that each of the four terms on the right-hand side of (13.40) contributes to 
a6(y) a term which is an O(e- 27rny ) in the fundamental domain. 

When n > 0, setting t = ffn cosh s, one finds 

J::n (t - vt2 - 2n r e-27ry(t2-2n) dt = (2n) v!l 100 e-VS e-47rny sinh2 S sinhsds, 

(13.42) 
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so that 

Vl +v2+l roo . 2 
In(Y) =8(2n) 2 io (sinhvls)(sinhv2s)e-41rlnlysmh S sinhsds: 

(13.43) 

it is clear that the integral is an O((ny)-2). 

Since <71~r~~1) = O"-Vl (Inl) = O(lnlrnax(O,-Re v1) log Inl) and IRe (VI ±V2)1 < 1, 
the series 

~ " I O"VI (In!) O"V2 (In!) Iln l Re (Vl;"V2+l) (n )-2 
y ~ Inlv' +V2 y 

n#O 

converges and contributes an O(y-~), a function in L2(r\II), to a6(y). 
The series Lm#o a;" (y) e2i1rmx remains to be analyzed. Set 

In,m(Y) = J L Cl C2 
el=±1 
E'2=±1 

(13.44) 

It - Cl ../t2 - 2nlv1 It - c2../t2 - 2n - 2mlv2 e-21ry(t2-2n-m) dt, (13.45) 

where the integration takes place on the domain defined by t 2 > max(2n,2n+2m). 
Since, then, t2 - 2n - m > Iml, one gets, using the Cauchy-Schwarz inequality, 

1 

IIn,m(y)1 ~ e-1rlmly [12 I L Cl It - Cl ../t2 - 2nlvll2 e-1ry(t2-2n) dt]2 
t >2n el=±1 

1 

X [1 I L C2It_C2../t2_2n_2mIV212 e-1rY(t2_2n-2m)dt]
2 

t2>2n+2m e2=±1 

(13.46) 

The summability with respect to n is obtained in the same way as the one relative 
to In(Y) above, and the extra factor e-1rlmly takes care of the m-summability, at 
the same time providing for the behaviour of the term Ln#o,-m a;,(m; VI, V2; y) 
from (13.32) at infinity in the fundamental domain. The contribution of the term 
a1(m; VI, V2; y) is taken care of by the estimate t2 - m ~ Iml, valid when t2 > 2m. 

That the application of the Laplacian does not destroy the estimates in all 
that precedes is immediate. 0 

From the Definition (13.35) of g~1,v2 (z), (13.30) and (4.5), one has the Fourier 
expansion 

g~1,V2(Z) = L b;"(y) e2i1rmx, (13.47) 
mEZ 
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with 

b6(y) = (C(1))2y~ L CIC2jOO [2- V1
-;V2-2 L (jvl(I~I~1:V:2(lnl) 

€l=±l -00 n#O I I 
€2=±1 

char(t2 > 2n) It - cl vt2 - 2nlv1 It - C2Vt2 - 2n1V2] e-27ry(t2-2n) dt 

'""' l+eFl +e2 v 2 (1 -cl VI - c2V2 ) 
- 2 ~ Cl C2 7f 2 f 2 (( -cIV l) (( -C2 V2) 

€l=±1 
€2=±1 

and, for m =1= 0, 

We shall apply to the function g~ v the Roelcke-Selberg theorem, already quoted 
1, 2 

in (4.1), in the following version: one has the spectral decomposition 

(13.50) 

where <1>0 is a constant, <I> E L2(JR.) satisfies the symmetry property (4.2) and, 
for every k = 1,2, ... the function (g~l,vJk denotes the projection of g~1,v2 on 
the finite-dimensional space of L2(f\II) corresponding to the discrete eigenvalue 
1+>-2 1+>-2 T: here, of course, (~k:::l denotes the sequence of eigenvalues of the mod-
ular Laplacian enumerated without repetition. 

Here is a recipe for computing the coefficients of the Roelcke-Selberg decom­
position of any function 9 E L2(f\II) with I:1g E L2(f\II)), with the Fourier 
series expansion 

g(z) = L bm(y) e2i7rmx , (13.51) 
mE?', 

taken from [62, Theorem 7.3, Theorem 7.4]: it may be considered as an extension 
of the Rankin-Selberg unfolding method, and is in full generality best phrased 
in hyperfunction-theoretic terms, though a simpler concept will do here. First, 
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the coefficients cl>0 and cI>(A): we shall worry about the discrete part in the next 
section. With the help of the coefficient bo(y) from (13.51), set 

and 

1 _!E. 
c+ ( ) - ~ r b ( ) - ~ (7fY) 2 d ° f.t - 87f } 0 0 y Y f ( _ ¥ ) y 

c-( ) = -~ JOO b ( ) -~ (7fY)-~ d ° f.t 87f lOY Y f( _¥) y. (13.52) 

Then the function ct is holomorphic in the half-plane 1m f.t > 1 and extends as a 
meromorphic function to the half-plane 1m f.t > 0, with an only possible (simple) 
pole at f.t = i: the residue there is (-4i7f)-1 cl>0. The function Co is holomorphic 
in the half-plane 1m f.t < O. If each of the two functions ct happens to extend up 
to the real line as a continuous function, the jump 

CO(A) = Ct(A + iO) - Co (A - iO) 

is related to the spectral density cI> by the relation 

1 7f- if 1 (( -iA) 
CO(A) = 87f f(-~) cI>(-A) = 87f (*(1-iA) cI>(A). 

(13.53) 

(13.54) 

Remark. In particular, assume that the coefficient bo (y) from the Fourier series 
expansion (13.51) of some function 9 E L2(f\II), 6.g E L2(f\II), can be written 
as a finite sum 

bo(Y) = eo(y) + L c£ yet£ , (13.55) 
l 

where IRe all < ~ for all C and the integral It Co(y) y-~-~ dy converges when 
1m f.t < 2. Then the integral 

(13.56) 

is convergent for f.t in the non-void strip max(1, 1- 2minl(Re ad) < 1m f.t < 2. 
It extends as a meromorphic function, still denoted as ¢, in the upper half-plane, 
without poles except i and the numbers i(1 - 2al), and one has 

cI>( -A) = ¢(A + iO) (13.57) 

for every A E ~. Indeed, on the one hand, if 1m f.t > max(1, 1- 2 min£(Re al)) (a 
number < 2), one has 

(13.58) 
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where the left-hand side must be a convergent integral. On the other hand, in the 
lower half-plane, 

a holomorphic function. Thus Co (J-l) extends as a meromorphic function in the 
half-plane 1m J-l < 2, with the points i(l - 2 at) as only possible poles, and the 
function ct(J-l) - Co (J-l), meromorphic in the strip 0 < 1m J-l < 2 with no pos­
sible poles except i and the points i(1 - 2 at), coincides in the strip max(l, 1 -

iJ!. 
2 mint(Re at)) < 1m J-l < 2 with the integral 8~ IoCXl eo(y) y-~ (;r2~~ dy. Con-

sidering Ct(A + iO) - CO(A + iO) and using (13.54), we find the expression for 
<I> ( -A). 

One should also note that, under the conditions above, the constant <I>0 in 
the Roelcke-Selberg decomposition of 9 is given as -4i7r times the residue of the 

iJ!. 

function 8~ r(=~) ¢(J-l) at J-l = i. 

Theorem 13.6. If IRe (VI ± v2)1 < 1, the continuous part of the Roelcke-Selberg 
decomposition (13.50) of the function gt1,v2 introduced in (13.35) is given by the 
spectral density 

<I>(A) = iA7r-'f (~~fl) x c~1 E( C -iEA; VI + V2) (C + iEA; VI - V2) 

The constant term <I>0 is zero. 

x( C + iEA; VI + V2) (C -iEA; VI - V2) 

(13.60) 

Proof. In view of the expression (13.48) of bb(y), the remark above applies: indeed, 
on the one hand IRe ( 101 V1 !C2V2 ) I < !; on the other hand, setting 

cA(y) = (C(1))2 y~ 1CXl e-27ry (t2-2n) dt L El E2 2 -Vr~t2-2 L 
-CXl c1=±1 n,iO 

c2=±1 

O"V1 (In!) O"v2(ln!) char(t2 > 2n) It - E vt2 _ 2nlv1 It - E vt2 _ 2nlv2 (13.61) 
Inlv1 +V2 1 2 , 

we proved in (13.44) that cMy) = O(y-!) for y --+ 00, which proves the conver­

gence of the integral It cMy) y-~-y dy when 1m J-l < 2. We may thus set 

¢1(J-l) = 1CXl cA(y) y-~-~ dy, (13.62) 
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a convergent integral when 1 + IRe v'I~IRe Vll < 1m J-L < 2, which can also be 
written (integrating first with respect to dy) as 

(13.63) 

Denoting as I~(VI' V2) the integral which appears on the second line of this last 
formula, one has, if n ?:: 1, 

(13.64) 
and 

I~n(vl,v2) = (2n) -l+Vl~V2+i" 100 (COShS)iJ.'-1 L CIC2e-(elvl+e2v2)sds. 
-00 el=±1 

e2=±1 
(13.65) 

Both integrals converge if -1 + IRe vII + IRe v21 < 1m J-L < 2 (for the first one, 
the sum must be expressed as the product of two hyperbolic sines, as in (13.43)). 
Also, it is immediate that 

100 I sinhsliJ.'-1 e-vs ds = riJ.' roo t -i,,;v-l 11- tliJ.'-1 dt 
-00 h 

= 2-'1' r . 2 2 
. [r(l-iY-V) r(l-iY+V)] 

(~J-L) re+irV) + r(Hiif+V) 

(13.66) 

if -1 + IRe vi < 1m J-L < 0, and that 

100 r(l-iY-V)r(l-iy+v) 
( h )iJ.'-1 -VS d - 2- i J.' 2 2 cos s e s - r(. ) 

-00 1 - ~J-L 
(13.67) 

if -1 + IRe vi < 1m J-L. 
Observe that these two integrals add up to 

2-iJ.'r(. )r(1-iJ-L-v)r(1-iJ-L+v) [ 1 
~J-L 2 2 re-iif+V) r(HirV) 

1 1] 
+ re-irV)r(Hiif+V) + r(iJ-L)r(1-iJ-L) , (13.68) 
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which is the same as 

2-il"r(' )r(l-iJL-V)r(l-iJL+V) [7r(i JL -V) 7r(iJL+V) .. ] ---;- ZJL 2 2 cos 2 +cos 2 +sm7rZJL 

21- il"r(' )r(l-iJL -V) r(l-iJL+V) 7r(iJL) [ 7rV . 7riJL] =-- zJL cos-- cos-+sm-
7r 2 2 2 2 2 

22- i /L 
• (l-i JL -V) (l-iJL+V) = --r(ZJL)r r 

7r 2 2 
7r(iJL) 7r(l-iJL+v) 7r(l-iJL- v) 

x cos -2 - cos 4 cos 4 

_ 2-il" 2 r(iJL)r(~)r(~) 
-2 7r re"~/fL)re-;ifL)r(3-ir+v)r(1+irv)re-irV)r(1+ir+v)' 

(13.69) 

Using the duplication formula for the Gamma function [31, p.3] 

r(z)=2Z-I7r-!rG) r(Z;l), (13.70) 

this is the same as 

. 1 r(iJ!:.)r(l-il"-v)r(l-il"+v) 
2-'1"" 2 4 4 

7r r( l-;ifL) r( l+irV) r( l+ir+V) . 
(13.71) 

Thus, from this result and (13.63), when 1 + IRe vII + IRe v21 < 1m JL < 2, one 
has 

1 1+i" r( ¥) re-;ifL) re- ifL-:' -W2) re-ifL+:' +W2) 

¢ (JL) = 27r 2 r( l=iI!:.) L E r( 1 +ifL-V1 -W2 ) r( 1 +ifL+V1 +W2 ) 
2 e:=±l 4 4 

X L n -1-V1;-V2+i" aV1 (n)aV2 (n). (13.72) 

n2:1 

On the other hand ([48, p.163] or [25, p.232] or [62, p.144]) a formula due 
to Ramanujan yields 

(C -iJL~Vl +V2) (C -iJL~Vl - V2) (C -iJL~Vl +V2) (C -iJL~Vl -V2) 

(13.73) 
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From the functional equation (3.19) of the zeta function, 

and 

(13.75) 

Thus 

which concludes the proof of Theorem 13.6, with the help of (13.57). D 

Remark. As this is immediate, one may observe (though this has to be true by the 
very construction of <p) that the function 

(*( -i>.) <p(>') = i>.f C;) f (-~>.) X e~1 C 

((1-ic>';VI+V2 ) ((1+ic>';VI-V2 ) (C+ic>';VI+V2 )((1-ic>';VI-V2) 

(13.77) 

is even. 

Theorem 13.7. Assume that IRe (VI ± V2)1 < 1 and set 

(13.78) 

where l:1,V2 has been introduced in (13.15). Then, for every N 2: 0, the function 
/).N g~ v lies in L2 (f\II). The continuous part of the Roelcke-Selberg decomposi-

1, 2 
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tion, analogous to (13.50), 0/ g~1,1/2' is given by the spectral density 

The constant term <1>0 is zero. 

Proof. Just as in (13.30), we now set 

/:1,1/2(Z) = L a;,,(y) e2i7rmx . (13.80) 
mEZ 

Rather than redo the whole proof, let us indicate what is to be changed. From 
the expansion (13.27) of the main contribution to /;1,1/2 (z), and the remark that 
a similar treatment applies to the terms we have neglected writing in (13.16), 
it is clear that, changing a6(Y), a;,(y), a1(m; 111, 112; y) and a~(m; 111, 112; y) to 
a6(Y), a;,,(y), a2(m; 111, 112; y) and a~,(m; 111, 112; y), the calculations between (13.30) 
and (13.34) will apply to /;1,1/2 after we have made the modifications that corre­
spond to applying mad (2i7r(P I\Q)) to each operator involved. For any operator A, 

(u~~ 12i7r(PAQ-QAP)u~~) = (-2i7rPU~~ IAQu~~) - (Qu~~ IA(2i7rP)u~~) 
(13.81) 

and applying Q (resp. 2i7r P) to u~.dt) amounts to multiplying it by t (resp. 

C 1 - 2i7rzt). This provides us with th~ extra factors that must be inserted below 
the various dt-integrals between (13.31) and (13.34) so as to change the notions 
relative to /;;1,1/2 to the corresponding ones relative to /:1,1/2: within the first term 
on the right-hand side of (13.31), which gives a6(Y), insert the extra factor 

(13.82) 

The presence of 101 102 in this extra factor ought to be explained: it originates from 
the application of (13.13) (the same will occur presently with (13.10) instead) and 
the fact that Pu~1. and Qu~1.' contrary to u~1.' are even functions. Within the 

second term from the same integral, insert 
z 

- [ 101 + 2i7rzcl Jt2 - 2n] c2Jt2 - 2n .../t2 - 2n 

- 101 Jt2 - 2n [ 102 - 2i7rZc2Jt2 - 2n] 
.../t2 - 2n 

= 101102 [-2 + 47ry(e - 2n)] (13.83) 
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Under the integral on the right-hand side of (13.33), which gives a1(m; VI, V2; y), 
insert the extra factor 

(13.84) 

finally, within the integral (13.34), insert the extra factor 

[ 
2 1 2 1 1 t - 2n - 2m 2 t - 2n 2 2 1 2 1 

101102 - ( ) - ( ) +47ry(t -2n)2 (t -2n-2m)2 . 
t2 - 2n t2 - 2n - 2m 

(13.85) 

In the proof of Lemma 13.5, the main term (13.37), differing by some error 
term in L2(f\II) from the Eisenstein series (13.36), originated from the integral 
(13.38): in view of the correcting factor (13.82), this integral has to be replaced, 
now, by 

up to an error term in L2(f\II), all this coincides with 

(( -101 vd (( -102 V2) El+O!V1!E2V2 (z), 

(13.87) 

which provides the linear combination of Eisenstein series to be considered on the 
right-hand side of (13.78). 

The rest of the proof of Lemma 13.5 called for the examination of the second 
term L:n#O ... on the right-hand side of (13.32) together with that of the series 
L:m#o a;" (y) e2i7rmx. As observed in the proof of Proposition 13.3, factors like 
t2 - 2n1 or t2 - 2n2 are rather harmless in all estimates, since all can be assumed 
to be o (log t) in the domain of the t-variable where the exponential is not an 
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O(t-N) for N as large as one pleases: however, the presence of CIC2 in the extra 
factors which precede requires that, as in the proof of Proposition 13.3, we should 
appeal to the identity 

(13.88) 

already used between (13.20) and (13.22), and perform, in the terms with nl ::::: 
1, n2 ::::: 1 , the corresponding integration by parts. Let us also recall, from (13.23), 
that 

(13.89) 

a function which, after having been multiplied by (t2 - 2nl)! (t2 - 2n2)! (a factor 
originating from (13.88)) is an O(tiRe /.I11+IRe /.111-1) in a way uniform with respect 
to nl ::::: 1, n2 ::::: l. 

Then the end of the proof of Lemma 13.5 extends to the new situation, which 
proves the first part of Theorem 13.7. 

The second part is of course modelled on the proof of Theorem 13.6. The 
function C6(Y) introduced in (13.61) must be replaced by c5(Y), obtained by plug­
ging the extra factor Cl C2 [-2 + 47fy(t2 - 2n)], from (13.82), under the integral, in 
all terms with n < O. When n > 0, on the other hand, we must use the integration 
by parts provided by (13.88) and (13.89), substituting for the preceding expression 
the new extra factor (which can also be read directly from a comparison between 
(13.20) and (13.24)), in the case when nl = n2 = n, 

(13.90) 

After the dt-integration has been carried, one sees, observing also that 

100 
e-21ry(t 2-2n) [-2 + 47fy(e - 2n)] Y-~ dy = -if-t 100 

e-21ry (t2-2n) y-~ dy, 

(13.91) 

that ¢} (f-t) must be replaced by ¢} (f-t), a function which can be decomposed in 
an analogous way, separating the terms with n < 0 from those with n > 0: the 
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integrals I~(Vl' V2) and I!: .. n(vl, V2), with n;::: 1, have to be replaced by I~(Vl' V2) 
and f:n(Vl, V2), where I:'n(Vl, V2) is obtained from I!:..n(Vl, V2), in (13.65), by 
deleting the factor Cl C2 and multiplying the result by -i{ti also, since the factor 
(13.90) becomes -CIC2 [(cIVl +C2V2) tanhs+ (tanhs?] when t = (2n)~ coshs, 

i;'(Vl,V2) = -(2n) -1+V
1
;iV

2
+il' I: Isinhsl ill (COShS)-l 

L [CIVI + C2V2 + tanh s] e-(ClI/1 +C21/2) S ds: (13.92) 
cl=±l 
c2=±1 

it is essential to note that the integral still converges if -1 + IRe vII + IRe v21 < 
1m {t < 2 since 

- L (cIVl + c2v2) e-(clI/1 +c21/2) S 

cl=±l 
c2=±1 

However, to compute I~(Vl,V2)' it is much easier, relying on an argument 
of analytic continuation at the end, to assume to start with that -1 + IRe vII + 
IRe v21 < 1m {t < 0, in which case the calculations from the proof of Theorem 
13.6 can still be used: when going from I~(Vl' V2) to I~(Vl' V2), all that has to be 
done, again, is to forget the factor Cl C2 and multiply the result by -i{t. Thus, to 
modify the expression (13.76) so as to get ¢2 (/L) in place of ¢l ({t), it suffices to 
delete the factor C and multiply the result by -i{t: this leads to (13.78). 0 

14 The Roelcke-Selberg expansion of functions 
associated with <C~l # <C~2: the discrete part 

We now come to the computation of the orthogonal projection (g~ 1/ )k of g~ 1/ 
1, 2 1, 2 

onto the finite-dimensional subspace of L2(r\II) corresponding to the discrete 

eigenvalue 1+4>-%: we repeat that all the Ak'S are distinct. Again, we start from the 
Fourier series expansion (13.47), which defines the coefficients b;"(y). 

The recipe [62, Theorem 7.4] calls for the examination of the analytic con­
tinuation as meromorphic functions in the entire plane of the functions (m #- 0) 

C ( ) = ~ rc b1 ( ) - ~ (7rY) - 'f- d 
Tn {t 87r J 0 Tn Y Y r ( - T ) y , 

(14.1) 

initially defined when 1m {t > 0: then one has 

(g~ 1/ h(z) = y~ "dmK:0.&(27rlmly)e2i7rmx 
1, 2 ~ 2 

(14.2) 
m#O 
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with 
(14.3) 

Actually, the theorem quoted is slightly different: there, it is assumed that one 
has first substracted from the function 9 = g~ v E L2(r\II) to be analyzed the 

1, 2 

continuous part gcont of its Roelcke-Selberg expansion, and that the coefficients b;" 
are relative to the difference g-gcont. Thus, the contribution to the integral Cm(J.L) 
of what comes from the function 8~ J~ <I>(A) El-i>. dA must be analyzed too: 

2 

this is possible since, from Theorem 13.6, we now know <I>(A) explicitly. In a quite 
comparable situation, the relevant contour deformation argument has been given in 
[62, Theorem 11.1], and there is no need to repeat the rather lengthy proof here: in 
view of the behaviour [31, p.13] at infinity ofthe Gamma function on vertical lines, 
and ofthe classical estimates [49, p.149, 161] of «(a+it), t ----+ 00, within the critical 

strip, or of ((it))-l, (13.60) gives an inequality I<I>(A) S C e-~ IAlb, IAI----+ 00, 

for some b, and the proof of the quoted theorem used exactly the same [62, (11.8)]. 
Let us just emphasize, as a consequence of the analysis, that gcont contributes to 
Cm(J.L) a term which has no poles in some open half-plane containing the closed 
upper half-plane except points -iw, w a non-trivial zero ofthe zeta function. Since 
none of these poles is real, this is of no consequence for our present purposes. 

Despite the fact that f~l v , contrary to g~ V2' does not belong to L2(r\II), ,2 1, 

we may also substitute for Cm the function defined in the same way (but only 
when 1m J.L is large) after a;"(y) has been substituted for b;"(y): this would amount 
to neglecting the extra term on the right-hand side of (13.49), the complex con­
tinuation of which indeed does not contribute to Cm (J.L) any pole on the real line 
since [31, p.91], for 1m J.L > 1 + IRe vII + IRe v21, 

( -l-iJ.L - 1:1 VI - 1:2 V2) 
r 4 . 

(14.4) 

The integrals involved in this section, contrary to the ones that led to The­
orems 13.6 and 13.7, cannot be computed explicitly: the good news is that, now, 
only the singularities of Cm (J.L) as J.L crosses the real line are of interest, so that we 
may neglect all terms which extend holomorphically a little below R In particular, 
we may substitute for Cm (J.L) the function 

(14.5) 

where a;'(m;vl,v2;y) was defined in (13.34). 
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We first remark that, when 1m f.J, is large enough, one can exchange the signs 
of summation and integration, in other words that the series 

'" laVl(lnl)aV2(ln+m!) I x (')O ¥IJ '" 10 10 
~ Inlv1ln+mlv2 io y ~ 1 2 
n#O 0 61=±1 

n#-m 62=±1 

It - 101 Vt2 - 2nlV1 It - c2Vt2 - 2n - 2mlV2 e-27ry(t 2 -2n-m) dtl dy, 

(14.6) 

in which the last integral is carried over the set defined by t2 > max(2n, 2n + 2m), 
is convergent: this has actually been done in (13.46). 

Starting from (13.34), with C(l) = 2~ 1f~, using (14.5) and performing the 
dy-integration first, we get, for 1m f.J, large enough, 

with 

I v1 ,v2(n;m): 

J L 101 102 It - 101 Vt2 - 2nlV1 It - c2Vt2 - 2n - 2mlV2 (t2-2n-m)~-1 dt, 
61=±1 
62=±1 

(14.8) 

where the integral is carried over the same set as above: recall that t2-2n-m > Iml 
on this set. 

Our problem (still under the assumption IRe (V1 ± V2) I < 1) is to understand 
the function em up to an error term which holomorphically extends slightly below 
the real line: it should be emphasized that m is kept fixed throughout. Since 

al~II~!) = a-v(ln!) = O(lnlmax(O,-Re v) log In!) 

as Inl -+ 00, we should begin with an expression of I v1 ,v2(n;m) up to an error 
term in O(lnl"'), with a < -1 + min(O, Re V1) + min(O, Re V2). As 

(14.9) 

it suffices to consider the case when m > 0. 
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The integral IVI ,V2 (n; m) converges as soon as 

When n ----> 00, we set t = ±(2n + 2m)~ coshs, so that 

(14.10) 

when n ----> -00, setting t = 12n + 2ml ~ sinh s, 

-I+VI +V2+ i " 100 

IVI,v2 (n; m) = -412n + 2ml 2 L EI sinh(v2s) 
o cI=±1 

1 (CO,h" + In: ml) I - c, 'inhsl"' (CO,h' s + 120: 2ml) ¥-, co,h s ds. 

(14.11) 

When n---->oo, 2:EIlcoshs-EI(sinh2s+n~m)~IVI goes to -2sinh(vIs) 

and the same holds, when t ----> -00, for 2:EII(cosh2 S + In~ml)~ - EI sinhslvl; 

thus, if 1m fJ < 2, as well as 1m fJ > IRe vII + IRe v21 - 1, 

n ----> ±oo , (14.12) 

with 



14. Composition of Eisenstein distributions: the discrete part 155 

In the case when 1m p, < 1, the error term that remains when replacing I v1 ,v2(n; m) 
-3+Re (VI +v2)-Im p, 

by the right-hand side of (14.12) is an O(lnl 2 ), and the exponent 
-3+Re (V12+v2l-Im I-' is indeed less than -1 + min(O, Re VI) + min(O, Re V2) (cj. 
what immediately precedes (14.9)) as soon as 1m p, > IRe vII + IRe v21-1. As we 
assume IRe (VI ± V2)1 < 1, it follows from (14.7) and (14.12) that, when applying 
(14.2) and (14.3), we may substitute for Cm(p,) the function Dm(P,) defined as 

Dm(P,) = 2il-'7r- 1 (- i;) [ ~ O"Vl(n)O"V2(ln+ml)n -1-V1;V2 +il' 

n¥-=-m 

x C+(VI,V2;p,) + L O"vl(lnI)O"V2(ln+ml)lnl-1- V1 ;V2+ i l' C-(VI,V2;P,)]. 
n<-I 
n#-m 

(14.15) 

A neat simplification occurs when we consider, instead of C+(VI, V2; p,) and 
C-(VI,V2;p,), their sum and difference. In view of the expression (13.71) for the 
sum of the right-hand sides of (13.66) and (13.67), we indeed get 

Similarly, the difference of the right-hand sides of (13.66) and (13.67), i.e., 

can be written, following the same computations as those between (13.68) and 
(13.71), as 

2-il-'r(. )r(l-iP,-V)r(l-iP,+V) [7r(iP,-V) 7r(iP,+V) .. ] -- zp, 2 cos + cos -sm7rzp, 
7r 2 2 2 

22- il-'r(. )r(l-iP,-V)r(l-iP,+V) 7r(ip,). 7r(l-ip,+v) . 7r(l-ip,-v) 
=-7r- ZP, 2 2 cos-2-sm 4 sm 4 

. r(ip,) re-i/L-V) re-i/L+V) _ 22-,1-' 7r2 2 2 
- r(l~i/L)r(l~i/L)r(I-!+V)r(3+!-V)r(1-!-v)r(3+!+V) , 

(14.18) 
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which reduces to 

. 1 f(il!:.) f(3-i/-L-V) f(3-i/-L+V) 
2-'JL" 2 4 4 

n fe-;i/-L) f(3+irV) fe+it+V) . 
(14.19) 

It follows that 

(14.20) 

Finally, we see that (14.2) is valid with 

.>' 

dm = -Sin Iml-~ x residue of Dm(J.t) at J.t = Ak (14.21 ) 

if 

Dm(J.t) = 2iJL- 1 n-1 (- i;) .L [C+(V1' V2; J.t) + (-1)jC- (Vb V2; J.t)] 
3=0,1 

-I-v! -v2+iP. L O"vl(lnl) O"v2(ln + ml) Inlj 2 ,(14.22) 
n#O 

n#-m 

recalling that signed powers have been defined in (11.26). 
To get at the poles and residues of the two Dirichlet series on the right-hand 

side of (14.22), we shall appeal to the pointwise product and Poisson bracket (11.3) 
of the two Eisenstein series Ei-Vl and Ei- V 2. On one hand, trying to find, by an 

-2- --2-

application of the same method, the discrete summands in the spectral decomposi­
tion of these two functions will depend on an examination of the same series: only 
the coefficients will differ. On the other hand, the Roelcke-Selberg decomposition 
ofthese two functions is known [62, Section 14]. Recall from (loc.cit., Section 12), 
that the Poisson bracket under consideration lies in L2 (f\II) and, from (loc.cit., 
Proposition 14.2) that the ordinary product Ei-Vl Ei-V2 lies in this space after 

-2- --2-

one has subtracted from it a sum of four Eisenstein series. For short, we shall still 
call Roelcke-Selberg decomposition of the product the sum of the four Eisenstein 
series (which lies outside L2 (f\II)) and of the usual Roelcke-Selberg decomposi­
tion of the remainder. 

For every k, let us denote as (g~~~2)k (resp. (g~~;~~ym)k) the projection onto 

the subspace of L2(f\II) corresponding to the discrete eigenvalue 1+4A% of the 
product Ei-Vl Ei-V2 (resp. the halved Poisson bracket ~ {Ei-Vl , Ei- V 2}). The 

2 2 2 2 

method expounded in (14.1), (14.2), (14.3) is still applicable. As just said, however, 
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it is necessary to first subtract from the product (this is not necessary when dealing 
with the Poisson bracket) a certain linear combination of four Eisenstein series 
EC(cIVI,c2V2)E1+e1"J!e2v2 (the coefficients of which can be found in [62, (9.10)] 

but are not needed), so as to get a function in L2(r\II) as a result: this is in full 
analogy with the way (13.35) we built the function g~l,v2 from f~l,v2' We denote 
as b'Z,m, oz,m (J-t), rP,xm the Fourier coefficients of the product, the function built 
by (14.1) from these coefficients, finally the coefficient defined by (14.3) from the 
residues of the function C::rm ; something entirely analogous goes for the Poisson 
bracket, using the superscript "antisym" everywhere. 

Lemma 14.1. Assume IRe (VI ± v2)1 < 1. One has 

c~m(J-t) rv r( _~;;~~) L U Vl (In!) u v2 (ln + m!) Inl- l - vl ;v2
+il' x 

2 2 n#O 
n#-m 

r C -iJ-t:VI +V2 ) r C -iJ-t:VI -V2 ) r (l-iJ-t~VI +V2 ) r C -iJ-t~VI -V2 ) 

(14.23) 

up to an error term which extends holomorphically to the half-plane 1m J-t > -1 + 
IRe VII + IRe v21· In a similar way, 

up to an error term which extends holomorphically to the same half-plane. 

Proof. From (4.5), one sees that b'Z,m(y), the coefficient of e2i1Tmx in the expansion 

E * () E* () '" bsym ( ) 2i1Tmx l-Vl Z l-v2 Z = ~ m Y e , 
2 2 

mEZ 

(14.25) 

is given for m =f. 0 as the sum of three terms: those which come from the "constant" 
( i. e., independent of x) terms in the expansion (4.5) of one, or the other, of the 
two factors, which do not contribute to the real poles of C::rm (by (14.4) again), 
and the interesting part 
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Then 

The so-called Weber-Schafueitlin integral on the last line can be expressed 
[31, p. 101] as 

(14.28) 

Since, for fixed m and n --t ±oo, the argument 1 - (ntm)2 of the hypergeometric 
function is quite close to 0, the value of this function is close to 1, and the error 
committed in the integral by substituting the constant 1 for the hypergeometric 
function would be O(lnl-l-~m " -1); since a(lnJ) = O(lnIIR~ VI), the error commit-

Inl2 
ted in c:,rm (J-L) by this substitution extends as a holomorphic function of J-L for 
1m J-L > -1 + IRe l/11 + IRe l/21, a neighborhood of the closed upper half-plane. This 
leads to (14.23). 

We emphasize that, so as to be in position to apply [62, Theorem 7.4], we 
should really consider instead of dZm the coefficient dZm obtained as the residue, 
as in (14.3), of the function em associated to the difference between E~-vJ E~-V2 

2 2 

and the linear combination offour Eisenstein series above: however, from an equa-
tion similar to (14.4), one sees that the function Cm associated through (14.1) to 
an Eisenstein distribution E1+ eFI te2v2 has no real poles. 

Using the formula that gives the derivative of a Bessel function [31, p.67], 
we get 

d I 
- (y"2 K",(27rlnIY) 
dy 2 

III 

= -7r Inl y"2 (K v;-2 (27rlnly) + K V!2 (27rlnly)) + 2. y-"2 K~(27rlnly) 

(14.29) 
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this entails (using (4.5)) 

{E~-v1 , ELv2 } '" 
2 2 

8in L Inll-~ In21-f a"l (Inll) a"2 (ln21) e2i11"(n1 +n2)X C~;:~22(y), (14.30) 
n1n2#O 

with 

ni - n2 2 I 
C~;:~22(y) = 2 Y K;d2n nIly) K~(2nln2Iy) 

+ n Inil n2 y3 (K Vl-2 (2nlnlly) + K v1 +2 (2nlnlly) K 2 (2nln2Iy) 222 
- n ni In21 y3 K ~ (2nlnlly)(K v2-2 (2nln2Iy) + K v2+2 (2nln2Iy), (14.31) 222 

and we have to evaluate the integral 

In1,n2 = 100 y -32"i,.. cn1 ,n2 (y) dy 
111,112 111,£12· 

o 
(14.32) 

It is out of the question to write its lengthy expression, provided by the Weber­
Schafheitlin integral (14.28) as soon as 1m J-L > -3 + IRe vII + IRe v21 (yes, the 
situation has improved): because of the presence offactors like nl, n2, or Inil n2, 
or ni In21, ordinary powers I I'" as well as signed powers I I~ do appear in the 
result of the computation; on the other hand, some of the Gamma factors are to 
be evaluated at 3-i/L~"1±V2, and some at 7-i/L±;1±V2. Keeping only the "main 
term" just as we have done after (14.28), i.e., replacing all the hypergeometric 
functions by 1, we find 

1 -3+i,.. 
[n 1 ,n2 f"V -1r-2-

V1,V2 24 
x r( 3-i/L+;1 +"2) r( 3-i/L+;1 -V2 ) r( 3-i/L-;1 +V2 ) r( 3-i/L-;1 -V2 ) 

re-;i/L) 

x [lnlll-1+i:-V2 In21f _lnll-3+i:-V2 In21;2i2 + -3 4. 
- 2J-L 

[( 3 - iJ-L - VI + V2 3 - iJ-L - VI - V2 
X 4 4 

3 - iJ-L + VI + V2 3 - iJ-L + VI - V2) -3+i,..-V2 V2+2 
+ 4 4 Inil 2 In21I2 

3 - iJ-L + VI - V2 3 - iJ-L - VI - V2 -1+i"'-V2 ~ 
- 4 4 InIl12 In212 

3 - iJ-L + VI + V2 3 - iJ-L - VI + V2 -5+i:-V2 V2+4] ] 
- 4 4 Inill In21 2 (14.33) 

We need to substitute for the pair (nb n2) a pair (-n, n + m) with n =I-
0, -m, and find a main term as n ---+ ±oo: thus, since m is to be kept fixed, 
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In11'" = Inl"', In21 a = In + ml"', In21'l = In + ml'l but In11'l = -Inl'l· After this 
substitution, the main term of I~'"":::} becomes 

1 - ip, -3+,,, -1+i" 24 1[-2-lnI 1 2 

x f( :3-i/1+,t +V2) f( 3-i/1+;" -V2) f( 3- i l-'-,t" +V2) f( 3-il-'-;" -V2) 

fe-;ifL) , 

up to an error term in O(lnl-3-~m "): since 

L Inl!(lRe v11+IRe v21)-!(3+Im /1) < 00 

nolO, -m 

(14.34) 

(14.35) 

as soon as 1m p, > -1 + IRe 1/11 + IRe 1/21, (14.30) shows that, up to an error term 
which extends as a holomorphic function of p, a little below the real line, one has 

cantisym( ) rv i(l - ip,) 1[-~ 
m P, 25 f(-~) 

x f( 3-il-'+;" +V2) f( 3-iJd;t" -V2) f( 3- il-'-;" +V2) f( 3- il-'-;t -V2 ) 

fe-;il-' ) 
-1-V1 -V2+i /-t 

X L O"v1(lnl)O"v2(ln+ml)lnI1 2 (14.36) 
nolO 

n#-m 

this ends the proof of Lemma 14.1. 0 

So as to state the two theorems in this section, some reminders are necessary, 
concerning the spectral theory of the modular Laplacian ,6. on L2(f\II). Recall 

from the discussion between (4.8) and (4.11) that (1+(~;)2) is the sequence of (not 
repeated) even (resp. odd) eigenvalues of ,6. and that the image of the orthogonal 
projection operator P).,+ (resp. P).,-) onto the corresponding eigenspace, consisting 

k k 

solely of even (resp. odd) cusp-forms, has a basis of Maass-Hecke forms denoted 
as (N:e)l<e<n+ (resp. (Nk-e)l<e<n-): it is assumed that )..~ > 0 for all k. So 

, --k ' --k 

far as we know, it has never been proved that the sets of even and odd eigenvalues 
are disjoint, so that the preceding operators should really have been denoted as 
P;+ and P;_: but no confusion can arise. Also, the definition of the L-function 

k k 

L*(.,N±) associated with an even or odd cusp-form has been recalled in (5.27) 
and (5.28): there is a slight difference in the Archimedean factor between the two 
cases. 

1+().,+)2 
Theorem 14.2. Assuming IRe (1/1 ± 1/2)1 < 1, let --4-k - be an even eigenvalue of 
the modular Laplacian, and let 

(14.37) 
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where the function g~1,1/2 has been introduced in (13.35). One has 

1f r( 0/-) f( -i;t ) ( _ ie;t ) 

= e~l f( HieAt4-1/1-1/2) f( l-ieAt :1/1 -1/2 ) f( l-ieAt 4-1/1 +1/2 ) f( HieAt :1/1 +1/2 ) 

X ~L* (1- v~ - v2 , N:e) L* C + v~ - v2 , N:e) IIN:ell-2 N:e . 

(14.38) 

H(A-)2 
In a similar way, if 4 k is an odd eigenvalue, set 

(14.39) 

Then 

1f r( i~/: ) f( -i;/: ) (ie;/: ) 

= e~l f( HieA/: 4-1/1 -1/2 ) f( 3-ieA/: :1/1 -1/2 ) f( 3-ieA/: 4-1/1 +1/2 ) f( HieA/: 4+1/1 +V2 ) 

X LL* (1- v~ - v2 , Nk:e) L* C + v~ - v2 , Nk:e) IINk:ell-2 Nk:e. 
e 

(14.40) 

Proof. One should first realize that, since an Eisenstein series is an even modular 
form (under the symmetry Z f--t - z), so is the product of two Eisenstein series, 
while their Poisson bracket is odd. A function such as g~1,v2 (resp. g~l,V2)' or 
f~1,1/2 (resp. /;1,V2) (cf· (13.14) and (13.15)), on the other hand, has cusp-forms 
of both types in its decomposition, since it has to do with the composition of two 
operators. 

The Roelcke-Selberg decomposition of the pointwise product gLv1 E~-V2 has 
2 2 

been given in [62, Section 14]: with our present notation, introduced just before 
Lemma 14.1, one would write (loc.cit., (14.9) and Theorem 14.5) as 

( sym) =~"'L*(1-VI-V2 N,+)L*(1+V1 -V2 N,+)IIN,+ 11-2N,+. g1/1,1/2 k,+ 2 ~ 2' k,e 2' k,e k,e k,e 
e 

(14.41 ) 

On the other hand, the Fourier coefficients of (g~1,V2)k,+ and (g~~~Jk,+ are given 
in terms of the residues at J1- = At of two functions (taking the place of Ck in 
(14.1)) which are respectively expressed as the even (i.e., j = 0) term in (14.22), 
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and (14.23): now the Dirichlet series involved in both functions are the same, 
only the coefficients differ. Taking the ratio of these two coefficients (recall that 
C+(II1, 112; IL) + C-(1I1, 112; IL) has been made explicit in (14.16)), we find (14.38). 

In a similar way, [62, Theorem 14.8] together with (lac. cit., (12.1) and (14.61)) 
gives the Roelcke-Selberg decomposition of the Poisson bracket {Er-V1 , Er-V2 }: 

2 2 

with our present notations, given an odd eigenvalue H(~;)2, 

( antisym) _ = ..!:.. " L * (1- III - 112 N,- ) L * ( 1 + III - 112 N,- ) IIN,- 11-2 N,- . 
gV1,v2 k, 2i ~ 2' k,e 2' k,e k,e k,p. 

e 
(14.42) 

Now, it is the coefficient of the odd (i.e., j = 1) term from (14.23) that should be 
compared to (14.24), using also (14.20): this leads to (14.40). D 

Theorem 14.3. Under the same assumptions as in Theorem 14.2, set 

(14.43) 

where g~1,v2 was introduced in (13.78). Then 

(14.44) 

and 

1ff(~) fe i;;) ((A~)2) 
= e~l f( 3+ieAk 4-V1 -V2) f( 3-ieAk 4+V1 -V2) f( 3-ieAk 4-V1 +V2) f( 3+ieAk 4+V1 +V2) 

x LL* C -II~ -112 , Ni:,e) L* (1 + II~ -112 , Ni:,e) IINk~ell-2 Ni:,e. 
e 

(14.45) 

Proof. The proof of Theorem 14.2 can be modified into a proof of Theorem 14.3 
along the lines of the end of the proof of Theorem 13.7. To start with, there is 
an extra factor -ilL with the same origin as in (13.91). Next, if we consider the 
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analogue of (14.8) occurring in our present computation, all we have to do, besides 
plugging the extra factor -iJL, is forgetting the factor 6"16"2, thus substituting 
COSh(VlS) and cosh(v2s) for the corresponding hyperbolic sines in (14.13) and 
(14.14): this has already been explained after (13.91). The net result is that, in 
(14.13), (14.14), (14.16) and (14.20), the minus sign in front of the product of 
Gamma factors depending on VI - V2 must disappear: this leads to (14.44) and 
(14.45), from a comparison with (14.38) and (14.40). 0 

15 A proof of the main formula 

In this section, we state and prove the composition formula announced in (5.38) 
or (5.62): one may also look at (15.33) for a fully expanded version of this result. 
We refer to Definition 13.2 for a proper understanding of the following statement. 

Theorem 15.1. Let VI and V2 be complex numbers with IRe (VI ± V2)1 < 1. There 
exists an automorphic (tempered) distribution 6 satisfying for every z E II the 
identities 

(15.1 ) 

and 

(u;IOp(2in £ 6) u;) = I: [ 3 (Op(~~Ju~)(t) Op(~U u~)(t) 

-3! (Op(~Uuz)(t) Op(~~J u~)(t) - 3! (Op(~~Ju~)(t) Op(~~2) uz)(t)] dt : 

(15.2) 

the distribution 6 is unique up to the addition of a multiple of the Eisenstein 
distribution <E~. One choice of 6, denoted as ~~1 #~~2' is given as 

+£,(I+V~+V2) g£,(I+V~-V2) 2-!+i1r£23, (15.3) 

where 23 = 23° is the Bezout distribution properly introduced in the proof of The­
orem 4.3, and £'(s) was introduced in Definition 5.7. 

Remarks. By a sesquiholomorphic argument, the pair (z, z) may be replaced by 
(w, z). The conditions above exactly mean, in the sense of Definition 13.2, that the 
operator mad (2in (PAQ)) (Op(~~J Op(~U) admits the symbol 2in£ (~~1 #~~2) 
in the minimal sense. 

The almost-uniqueness only is due to the equation in £ <E~ = o. 
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All the difficulties of the proof of Theorem 15.1 are behind us: what remains 
is only a matter of piecing various notions and results together. It is useful to give 
another normalization of cusp-distributions, defining 

-l-i)..+ 

(~+ )~ = 2~ (* (iA +) (* (-iA +) IIN.+ 11-2 (91+ )~ (15.4) k,f. k k Ikl,f. k,f. 

when k ;::: 1, At > 0 and all concepts are introduced between (4.10) and (4.11); 
next, A-k = -Ak and (91~k,f.)~ = F (91t,f.)~' We make exactly the analogous 

definition of (~k,f.)~' substituting the superscript - for + everywhere in (15.4). 
The case f = 0 of Theorem 4.3 may then be recalled as follows, recalling also 

" l+v" (cf (3.2)) that Q;~ = 2-2 ~~: 

2-!+i7re ~ = ~ 100 (((iA) (( -iA))-l ~~ dA 4n tA 
-00 

+ ~ L (((iAt) (( -iAt))-l (~t,f.)~ 
k,f. 

kEZ X 

+ ~ L (((iAk ) (( -iAk))-l (~k'£)~ . (15.5) 

Lemma 15.2. One has 

k,f. 
kEZ X 

(15.6) 

Proof The first equation was already given in (3.4). Since (cf (2.7)) 9 = 22i7re F 
and (cf. (4.4)) (91~ f.)~ is homogeneous of degree -1- iA~, one has (not forgetting 

that E F = -FE)', 9 (91~ f.)~ = 2°'; (91~k f.)~' from which the second equation 
follows. " 0 

Lemma 15.3. One has 

£'(s) '1:~ = n!-s r(~ - ~) r (s _ ~) r (s + ~) '1:~ 
Ov re;s + ~) '" 2 '" 2 Ov' 

( s ~) 
r'( )('1:+)~ l-s r"2 - 4 L( .r+ )('1:+)~ 

J..- S 0kf. =n 2 . + S,JV'lklf. 0kf. , 
, re;s + *) " 

r(s+l ~) 
£'(s) (~k f.)~ = n!-s -2- - 4 L(s,N.lkl f.) (~k f.)~ . 

, re;s + *) " (15.7) 

Proof Since ~~ and (~~ £)~ are proportional respectively to Q;~ and (91~ £)~, the 
first identity is a consequ~nce of (5.23) and (5.30); the other two are a cons~quence 
of (5.24) and (5.30). 0 
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The definition of the function s ~ L*(s,M) associated with a cusp-form 
M, recalled in (5.27) and (5.28), is very classical. There is a more precise variant 
adapted to cusp-distributions !.JJ1~ only: recall from (4.4) that any cusp-form M j 

associated to the eigenvalue I~)";, with j ~ 1 and Aj > 0, yields two cusp­
distributions (!.JJ1±j)~, homogeneous of degrees -1- iAj and -1 + iAj respectively. 
The map (!.JJ1j )" ~ M j , on the contrary, is well defined. 

Definition 15.4. For any even cusp-distribution (!.JJ1+)" , homogeneous of degree 
-1- iA+, A+ E JR, we set 

(15.8) 

where M+ is the cusp-form associated with (!.JJ1+)"; similarly, if (!.JJ1-)" is an odd 
cusp-distribution homogeneous of degree -1 - iA -, associated with the cusp-form 
M-, we set 

(15.9) 

Observe that, since 

and 

(15.10) 

the function A(s, (!.JJ1+)~), just like L*(s,M+), is invariant under the symmetry 
s ~ 1- s, and that A(s, (!.JJ1-)~) changes to its negative under the same symmetry. 

To define the action of the operator £' (s) on an automorphic tempered dis­
tribution 6, rather than trying to give a global definition, we assume that 6 
has, in the weak sense in S~ven(JR2), a decomposition into homogeneous compo­
nents, just like ~l' in (4.24), and we define £/(S), componentwise, by means of 
the preceding lemma. In this way: 

Lemma 15.5. Assume that IRe (VI ± V2)1 < 1. Then 

2· ££/(1+VI+V2) g£/(1+VI-V2) T!+i7r£~='I' +'I'+: +'I'-. 
27f 2 2 cont diSC diSC 

(15.11) 
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with 

1 100 ~cont = -4 (-i"\) ~t 
7f -00 

(( 1+ VI ~V2+iA) (( l+Vl -;V2-iA) (( I-v! ~v2-iA) (( I-v! 72+iA) 

((i..\) (( -i"\) d..\, (15.12) 

and 

(15.13) 

finally 

(15.14) 

Proof. That the series and integrals involved are weakly convergent in S~ven(lR2) 
follows the lines of the beginning of the proof of Theorem 4.3. The three terms 
of the decomposition of course refer to the continuous part and the two discrete 
parts of the decomposition of the distribution under study into homogeneous parts. 
From Lemmas 15.2 and 15.3, we find that the image of ~t under the operator 

(15.15) 

is 

(do not forget that 2i7f£ J~A = -i..\J~A)' Using the functional equation ofthe zeta 
function in the form 

r~~~~) ((8) = 7fs-! ((1 - 8) (15.17) 
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this simplifies to 

finally, we change A to -A in the integral, finding (15.12) as a result. 
There is no need to redo the computation in order to find 

(15.19) 

and 

(15.20) 

Recalling Definition 15.4, we may write (since A: k = -At) 

s (~+ )~=A(I+VI+V2 (')1+ )~)A(I+VI-V2 (')1+ )~)(·A+)(~+ )~ 
Vl,V2 k,£ 2' -k,£ 2' k,C Z k -k,e 

(15.21 ) 
and, in a similar way, 

_ ~ ( 1 + VI + V2 _ ~) ( 1 + VI - V2 _ ~) . _ _ ~ 
SVl,V2 (~k,e) =A 2 ,(')1-k,e) A 2 ,(')1k,e) (ZA k ) (~-k,e) . 

(15.22) 
This leads to (15.13) and (15.14) after we have changed k to -k in the series. 0 

Lemma 15.6. One has 

(uzIOp(~~)Uz) = (*(v) E!.=.(z) , 
2 

(u~IOp(~Du~) = -v(*(v) E,-v (z), 
2 

(uzIOp((~t,f)~) u z ) = (*(iAt) (*( -iAt) IIJVI~I,ell-2 JVI~I,e(z) 

and 

(15.23) 
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Pmoj. The first two equations were given in (3.15) and (3.16), to be completed 
by (3.18) and (3.19). Next, recall from (2.21) that OPV2"(h) = Op(2-!+i7r£h) so 
that (4.12) reads 

(15.24) 

The third equation (15.23) is thus a consequence of the Definition (15.4) of (~~ ,Y. 
According to (4.13), substituting u~ for U z on the left-hand side of this last e~ua­
tion just calls for the extra factor -i)"~ on the right-hand side. D 

Proof of Theorem 15.1. Denote as 'I the image of the right-hand side under 2iJr E, 
i.e., 

(15.25) 

where the last three terms have been defined in Lemma 15.5: we may denote as 
'Iside the first term. 

What we have to show is that (u z IOp('I)uz ) agrees with the function f~ l/ (z) 
" 2 

introduced in (13.14), and that (u~IOp('I)u;) agrees with the function R l/ (z) 
" 2 

introduced in (13.15). First, the side terms: we use Lemma 15.6. Since (3.18) 

(*(1 - C:(VI + V2)) Ec(", +V2) = (* (C:(VI + V2) - 1) E I _ c(v, +"2) , 
2 2 

(15.26) 

one has 

(u z IOp('Iside)Uz ) 

L [ ((c:vd ((W2) * 
(C:(VI + V2) -1) (( ( )) ( (C:(VI + V2) -1) E I _"("'+"2) (z) 

c: VI + V2 - 1 2 
c=±l 

((wd (( -W2) * ] + (1- C:(VI - V2) (( ( )) ( (C:(VI - V2) -1)E1_,,(vl-v2) (z) c: VI - V2 - 1 2 

(15.27) 

or 
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This clearly identifies to the function f~1,V2(Z) - g~1'V2(Z) as defined in (13.35): 
indeed, when 101 = 102 = -10 in (13.35), one gets the first term on the right-hand 
side of (15.28); when 101 = -102 = -10, one gets the second one. Comparing the 
exceptional terms on the right-hand sides of (13.35) and (13.78), one sees that, 
in order to find the second ones in terms of the first, one has to insert the factor 
_1+c12c~c2V2 , which is c(1I1 + 1I2) - 1 when £1 = 102 = -10, 1 - c(1I1 - 1I2) when 
£1 = -102 = -10: these are precisely the extra factors to be inserted in the two 
terms on the right-hand side of (15.28) when changing U z to u; on the left-hand 
side, as it follows from a comparison between the first two lines of (15.23). Thus 
(u;IOP('rside)U;) agrees with R1,V2(Z) - g~1,V2(Z). 

Next, the continuous part. Using (15.12) and the first formula (15.23) on one 
hand, (13.50) and (13.60) on the other hand, we must identify the integrals 

1 100
. (*(i>.) 

4rr -00 (-2>') ((i>.) (( -i>.) El-;iA (z) 

((1+Vl-tV2H>") ((1+Vl-;V2-iA) (e-Vl-tV2-iA) (e- V1 -;V2+iA) d>' 
((i>.) (( -i>.) 

(15.29) 

which is immediate since (*(i>.) El-;iA (z) = rr-lf ~~~1) El-;iA (z) is an even func­

tion of >.. Substituting the study of (u;IOP('rcont)U;) for that of (uzIOP('rconduz), 
we must insert under the first of these two integrals the extra factor -i>., thus 
changing ic>. to ->.2 in the second: comparing (13.79) to (13.60), we are done. 

Finally, the discrete parts: we must draw the reader's attention to the fact 
that, in Lemma 15.5, the index k can be positive or negative: but, in Theorems 
14.2 and 14.3, one has k ~ 1 since we are dealing with the Roelcke-Selberg de­
composition on II, not with decompositions into homogeneous parts on lR,2. From 
(15.13) and Lemma 15.6, immediately reducing the domain of k in (15.13) to 
{1, 2, ... }, one gets 

1 (i>.+) (i>.+) (uzIOp('r;tsJuz) = 2; L L (-ic>.t)r -t r --t 
k,£ c=±1 
£21 

X A (1 + 1I~ + 1I2, (l)1tk'£)~) A C + 1I~ - 1I2, (l)1~Ck'£)U) IIJVjkl,£II-2 JVjkl,£(z). 

(15.31) 
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Since, from (15.10), the product of the two A-functions on the last line is also 

1[" L* (I+Vl+V2 N,+ ) L* (I+VI-V2 N,+ ) 
2 ' Ikl,l 2' Ikl,l 

(15.32) 

the right-hand side of (15.31) is just the same as that of (14.38). Exactly the same 
computation works for the 'I'disc part: only 

L * (1 + VI + V2 N,- ) = _ L * (1 -VI - V2 N,- ). 
2 'Ikl,l 2' Ikl,l . 

finally, from Lemma 15.6, substituting u; for U z again calls for inserting the extra 
factor -i>"~ (k E ZX), i.e., -i€>"~ after we have reduced k to the set {1, 2, ... }, 
and a comparison between Theorems 14.2 and 14.3 finishes the proof of Theorem 
15.1. 0 

Remarks. 
1. It is instructive to check the coherent way under which the data and results of 
the formula 

(15.33) 

transform under the symmetries g and T~~t discussed in the remark following 
(5.3), as well as under the complex conjugation. From the functional equation 
Op(g6) = Op( 6) C = C Op( 6), with Cu = iL, valid for every automorphic 
distribution 6, and from Lemma 15.2, one expects the formula ~~Vl #~~V2 = 
~~l #~~2' Using the equation A(1 - s, (lJtt,l)") = ±A(s, (lJtt,l)")' one may check 

that it is indeed satisfied. The equation ~~l #~~V2 = g(~~l #~~J may be veri­
fied in the same way, though it is slightly more fun to check. From the equation 
Op(T~~t6) u = Op(6)*u - note that this is also Op(6)'u where Op(6)' is the 
transpose of Op(6) - together with T~~t~~ = ~~, we see that we must expect 
that ~~2#~~1 = T~~t(~~l #~~2)' which can indeed be asserted from (15.33) and 
the equation T~~t (~~ l)" = ±(~~ l)"' Finally, since taking the complex conjugate 
of some symbol amoU:nts to taki~g the adjoint of the associated operator, one 
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should expect the relation ~~l #~~2 = ~~2 #~~l' To verify this, one may suc­

cessively check that -"'I~I'£ = ±J\tI~I,c (from (4.3)), (I)'lt,c)" = ±(I)'l~k'£)" (from 

(4.12)-(4.13)), (~t c)" = ±(~~k c)" (from (15.4)), finally use the already quoted 

relation A(1 - s, (lJ1t,c)") = ±A(s, (I)'lt,c)")' 

2. The first and second lines of the right-hand side of (15.33) are related. Indeed, 
if one introduces the function 

F p, = ~~" (e+Vd~t2+iy) «( HV1-;V2-iy ) (e-Vd~t2-iY) (e- V1 -;V2+iy ) 

() 471' '/1> «(ip,) «(-ip,) 

(15.34) 

which appears, when p, = ).. E JR, as the integrand in the second line, the first one 
is exactly 2i71' times the sum of the residues of F at the poles of the product of 
four zeta functions upstairs; the other poles of F, which originate from the zeros 
of «(ip,) «( -ip,) , do not contribute to (15.33). 

The reason for all this is the following: Theorem 15.1 extends to more general 
values of (Vl' V2), provided only that Re (Vl ± V2) =f. ±l. But the number of 
exceptional terms (the ones on the first line of the right-hand side of (15.33)) 
is in general four minus the smallest number of times one must cross the union 
of the four lines Re (Vl ± V2) = ±1 to link the actual value of (Re Vl, Re V2) 
to (0,0). Each exceptional term on the right-hand side of (15.33) is connected 
not to a change of contour in the d)"-integral, but to a discontinuity of the d)..­
integral, always taken on JR, whenever (Re Vl, Re V2) crosses any of the four lines 
Re (Vl ± V2) = ±1; something similar occurs in [62, Proposition 14.2]. 

16 Towards the completion of the multiplication table 

In this section, written for the sake of (almost) completeness, we compute, with 
the same meaning as in Theorem 15.1, a sharp product such as ~~#(~;c)" instead 

of ~~l #~~2' An identity , 

(16.1) 

similar to (15.3), will be written: constructing the operator R'e;v, (~~£)") taking 
the place formerly taken by the operator £' (HV~ +V2) 9 .C' e+v~ -V2) will depend 
on "convolution L-functions", a classical concept recalled in (16.19). 

At the end of the section, using Eulerian products, we shall show that - with 
one possible, but unlikely, exception - one can give a unified expression for all 
coefficients involved in the decomposition into homogeneous components of sharp 
products of "elementary" automorphic distributions. 
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Before embarking on the rather lengthy, if straightforward, computations, 
there is one point which we wish to stress. One rather interesting feature of the 
main formula (15.3) for ~tl #~~2 was that it has been possible to factorize, as 
.c/(HV~+V2)g.C'e+V~-V2), the operator transforming 2-!+i7f£~ into the main 
part of ~~1 #~~2: this decomposition was explained, in a heuristic way, in Section 5. 

No such decomposition is possible in our present investigations regarding 
~~#(~;iJ~. The reason is that, for Eisenstein distributions ~~ only, the Hecke 

polyno~ial (corresponding to ~ Ei_v, a normalization chosen so that the first 
2 

Fourier coefficient should be 1) 

1 - (Jv~) X + X2 = (1 - p-'i X) (1 - p'i X) 
p2 

(16.2) 

(where p is prime) factors as a product of two meaningful polynomials: for giving 
~~, rather thanEi_v only, singles out the degree of homogeneity -1 - v from 

-2-

the pair (-1 - v, -1 + v). We do not know how to split into the product of 
two distinguishable factors the Hecke polynomials relative to cusp-distributions, 
a rather deep question which will have to be raised again at the very end of this 
section. 

Coming back to more down-to-earth developments, recall from (4.3), (4.4) 
that if Mlrl is a cusp-form with a Fourier series expansion 

Mlrl(X + iy) = y! L bn Ki;r (27r Inly) e2innx, 

n#Q 

(16.3) 

the associated cusp-distribution 9Jl~ homogeneous of degree -1 - iAr (where Ar 
can be positive or negative) is given by 

(16.4) 

or, in view of (10.1) and (10.3), together with a f-invariance argument, 

(16.5) 

where a~r has been defined in (10.4). 
Recall from (13.9) that the "non-constant" part of ~L i.e., the sum of all 

terms from the right-hand side of (13.9) with the exception of the first two terms 
(the analogues of which are absent from the expansion of cusp-distributions) is 
given by the same expansion, with v substituted for iAr and 

b _ l;v (Jv(lnl) 
n - 2 Inl'i' (16.6) 
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In order to complete our multiplication table (with respect to the sharp prod­
uct of automorphic distributions), thus arriving at a genuine symbolic calculus of 
(pseudodifferential) operators with automorphic symbols, what would remain to 
be done is a set of explicit formulas for the sharp product of an Eisenstein distri­
bution and a cusp-distribution (in any order), or that of two cusp-distributions. 
We shall satisfy ourselves with the first of these two problems: also, let us remark 
that it was precisely with this purpose in mind that we chose the method of proof 
of our main theorem which was developed in the Sections 13-15, rather than that 
suggested by the heuristic considerations of Section 5. 

Indeed, there is very little to modify in our preceding computations, besides 
changing the coefficients bn . As a matter of fact, the new situation is easier, since 
there are no "constant" terms to worry about, and we do not need to substract 
any linear combination of Eisenstein series from the analogues of Iyl y and ly2 y 

1, 2 1, 2 

so as to get a result in the space L2 (f\II); moreover, in order to find the integral 
term of the decomposition, one may appeal to the usual Rankin-Selberg method 
rather than the more elaborate version between (13.51) and (13.59). 

Consider the case of a sharp product (5 = ~t#9JtL with J~ as is usual and 
9Jt~ given by (16.4): we assume that 9Jt~ is associated with an even or odd cusp­
form, i. e., that the coefficients bn are even or odd functions of n. It should be 
understood right away that the meaning to be ascribed to this is only indirect, 
just as in Proposition 13.2: that is, we define only 2i7r E (5 in the minimal sense, 
denoting as f:,wt~ and f~,wt~ the two functions on the right-hand sides of (13.1) 

and (13.2). 
Following the same proof as that of Theorem 13.6, and using (16.6), we must 

2- V l-V2 (T (In!) (T (Inl) 
substitute for the series 2 2 L:n#O vl Inlvl ;:2 which occurs on the right-
hand side of (13.63) the series 

(16.7) 

besides substituting l/ (resp. iAr) for l/1 (resp. l/2) everywhere. In the case when 
Mlrl is an even cusp-form, say Mlrl = JVI~I,I" we must thus substitute for the series 

-1-1.'1 -l.I2+i,.,. 
L:n2:1 n 2 a Y1 (n) aY2 (n) on the right-hand side of (13.72) the expression 

2 -l-t;i>.r L n -l-~+i," ay(n) bn , 

n2:1 

which coincides when Im J.L is large [62, (14.37)] with 

2 -ltAr (1'(1 _. ))-1 L (1 - iJ.L + l/ N,+ ) L (1 - iJ.L - l/ N,+ ) 
., zJ.L 2' Irl,l' 2' Irl,l' 

(16.8) 

(16.9) 

In the case of the odd cusp-form M = Nr-I" the calculation is just the same, 
except for the fact that the difference, as computed between (14.17) and (14.19), 
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of the two integrals in (13.64) and (13.65), rather than their sum as computed 
between (13.68) and (13.71), should occur: comparing the results of the two cal­
culations, we see that the odd case differs from the even case only in that each of 
four Gamma factors on the right-hand side of (13.72) has to be computed at the 

. t 3±iJ1±(Vl +W2) th th l±iJ1±(Vl +W2) pom 4 ra er an 4 . 

Proposition 16.1. Let v be a complex number with IRe vi < 1, and consider the 
cusp-distribution (6'~ f)~ as defined in (15.4): r can be either positive or negative, 
in other words so car/, be the sign of Ar . In analogy with (13.14) and (13.15), set 

(16.10) 

and 

f:,(;J;'£)~ (z) = I: [3 (Op(6'~) u~~ )(t) (Op((6't,f)~) u~~)(t) 
- 3! L (Op(6'~) u~~)(t) (Op((6't,f)~) u~-{)(t)] dt: (16.11) 

p=O,2 

these two functions lie in L2(f\II). 
The spectral density cI>1 in the Roelcke-Selberg decomposition (4.1) of the first 

of these two functions is given by the equation 

{recall that the functions A(s, (9Jt;n~) have been defined in (15.8)), and that asso­
ciated with the function f2 ("'+ )~ is given by the formula 

v, tJr,t 

In the case when attention is paid to an odd cusp-distribution (6'; f)~' the 

spectral density associated with the function P ("'_ )~ or P ("'_ )~ is give~ by the 
~ Or,£ v, U r ,£ 

same pair of formulas, only substituting A; for At. 
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Proof· Start with the function f~,(:J;: £)~. Following the proof of Theorem 13.6 and 

using also (16.9) together with (15.4) '(which provides the extra factor from (l)1;lJ" 
to (J;lJ"), one finds that <I>l(A) = ¢l(-A), where ¢1(/-l) is defined as ' , 

The definition (15.8) of the functions A(s, (9)1;:)") yields the identity 

nil-' r( l-il-'-~-ciAt )r( l-il-'+~+eiAt) xL (1- i/-l+ v N,+ ) L (1- i/-l - v N,+ ) 
r( l+iJ!-~-eiA;t- )r( l+iJ!+~+eiA;t-) 2' Irl,t 2' Iri,t 

=A(I-i/-l+V (1)1+ )") A(I-i/-l-V (1)1+ )") (16.15) 2 '-er,i 2' er,i , 

from which one easily gets the first of the four equations stated. When changing 
f~,(:J;:'£)~ to f:,(:J;:'£)~' all that has to be done (following the proof of Theorem 13.7)) 

is to suppress the sign r:: right after the related summation sign, and multiply the 
net result by iA. 

When substituting an odd cusp-form (J;i)" for (J;t)", one sees (from what 
has been said immediately after (16.9)) that each of the four Gamma factors 
r( l±il-'±(v+ieA+») h bId b r(3±il-'±(v+ieA-») b h' d'J:r d' 4 r as to e rep ace y 4 r: ut t IS luerence IS-

appears from the final formula, since it is taken care of by the extra factors (in 
(15.8) and (15.9)) from L(s,M±) to A(s, (9)1;)"). 0 

Remarks. 
1. For one's peace of mind, one should check that each of the two functions 

A 1-+ (* ( -iA) <I> j (A) is even. In the first case for instance, using the functional 
equation of the function s 1-+ A(s, (J~r,i)")' one may write 

(*(-iA) <I> (A) = iA 11A0~I,iI12 x " r:: 
1 (* (iAn (* ( -iAn e~l 

A(I+iA+V (~+ )") A(I-iA+V (~+ )") (16.16) 2 ,V-er,t 2' Ver,£ , 

from which this is immediate. 

2 Th f IIN!~! £112 lb' II(~+ )"11-2 h 1111 . e actor (*(iAf) (~( -iA;t-) can a so e wntten as V±r,i r, were r 

denotes the norm in the space L2(r\lR2) introduced in Theorem 4.1: this is 
a consequence of (4.7) and (4.4). 
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We prepare for the analysis of the discrete parts from the Roelcke-Selberg 
decompositions of jl ("'± )U and P ("'± )U by that relative to the pointwise product 

V,Ori V,Ort 

and Poisson bracket of the two functi~ns E~_v and -"'I;J,R" First, note that 
2 

r El-v {Ml,M2}dfl= r {El-v,Ml}M2 dfl 
Jr\IT 2 Jr\IT 2 

(16.17) 

for any two cusp-forms Ml and M 2. Indeed, we may assume that each of the two 
forms has a given parity (relative to its transformation under the map z ~ -2). 
Next, the Poisson bracket of two functions with the same (resp. the opposite) 
parity is odd (resp. even): it follows that, if Ml and M2 have the same parity, 
the integrands on the two sides of (16.17) are always odd functions, so that both 
integrals are zero. We thus may assume that Ml and M2 have opposite parities, 
and write the difference ofthe two sides of (16.17) as 1= Jr\ll{Ml, E,;v M2} dfl. 

One of the two functions M 1 and E l-v M 2 must vanish on the arc I z I = 1, -! < 
2 

X < ! since it is odd as well as invariant under the map z ~ - ~: this, and the 
periodicity, permits us to evaluate the integral I by parts (going back to the 
definition (11.3) of Poisson brackets) without any boundary term, thus proving 
(16.17). 

If Ml and M2 are two cusp-forms with the Fourier expansions 

M 1(z) = yk L bn Ki;l (27rlnly) e2i7rnx 
n#O 

and 

M2(Z) = yk L Cn Ki;2 (27rlnly) e2i7rnx , (16.18) 
n#O 

it is customary to define the "convolution L-function" associated with these two 
functions [8, p. 73] or [26, p. 231] (the references just quoted emphasize, rather, the 
case of two holomorphic cusp-forms) by the formula, valid for Re 8 large enough, 
but the function obtained extends as a meromorphic function in the entire plane, 

L(8, Ml x M 2) = ((28) L bnCn n-s . 
n;:::1 

(16.19) 

From the references just given, in particular Lemma 1.6.1 in the first one, one sees 
that, if Ml and M2 are Hecke forms, so that their L-functions have Eulerian 
products: 

L(8, Ml) = II (1 - bpp-s + p-2s)-1 , 
p 

L(8, M2) = II (1- cpP-s + p-2s)-1 , 
p 

(16.20) 
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then the convolution L-function also has such a product, given as 

L(s,M1 x M2) = II II (1- (3;',;2 p-s)-l, 
p E,=±l 

E2=±1 

177 

(16.21 ) 

where the coefficients (3p and ,p are obtained from the Hecke polynomials 

1 - bpX + X2 = (1 - (3pX)(l - (3;1 X) , 

1 - cpX + X2 = (1 - ,pX)(l - ,;1 X) . (16.22) 

The standard Rankin-Selberg method [71, p.268] makes it possible to prove the 
following lemma, the first half of which could also be derived from Moreno's compu­
tation [36] of the spectral decomposition of the pointwise product of an Eisenstein 
series by a (Maass) cusp-form. 

Lemma 16.2. Assume IRe vi < 1. Then, for any two even Maass-Hecke cusp­
forms N~,£, and Nt:"R 2 ' of the same parity, one has (with Nkj'£j = N~,Rj and 

Ak j = A~) 
J 

r - 1 K V 2' 
Jr\TI E1;V (z) Nk, .£, (z) N k2,R2 (z) d!L(z) = 4' r( ~) 

r C-V+i(~k1 +'\k2)) r C-V+i(.\;, -'\k2)) r C-V+i( -:k1 +'\k2)) 

x (((1 - v))-l L C ; v, Nk, ,£, x Nk2.R2) . (16.23) 

In the case of two Maass-Hecke cusp-forms of different parity, one has the 
formula 

(16.24) 

Proof. With M1 = Nt £ and M2 = Nt £ , as in (16.18), the "constant" (i.e., 
1, 1 2, 2 

independent of x) term in the Fourier expansion of the product M1 M2 is (since 
the Fourier coefficients of the Hecke form M2 are real numbers) 

(16.25) 

Thus, the Rankin-Selberg method (lac. cit.) or the extension described between 
(13.51) and (13.59) permits to find the spectral density <P of the Roelcke-Selberg 
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decomposition (13.50) of Ml M2 from the formula 

<1>( -A) = (E1+i>. I Ml M 2) 
2 

= r E1-iA(z)Ml(Z)M2(Z)df.L(z) inn 2 

= 100 ao(y) y -3;-iA dy, (16.26) 

where the last integral is meant as the value at f.L = A obtained by analytic 
continuation from its value for 1m f.L large. From the Weber-Schafheitlin integral 
[31, p. 101], already used in (14.27), we get, if Ml and M2 have the same parity, 

i'x'-l 1 n-2-

<1>( -A) = 4 re-;/A) 

(16.27) 

where, again, the sum of the Dirichlet series really means the value at f.L = A "from 
above": (16.23) follows, using (16.19) and analytic continuation again. 

When integrating the Poisson bracket of two Hecke cusp-forms against an 
Eisenstein series, only the case when the two cusp-forms have a distinct parity 
can yield a non-zero result. With Ml = N.k± 0 and M2 = N.k'f 0 , the constant 

1,.(.1 2,.[.2 

coefficient of interest this time is 

ao(y) = I)n Cn {y! K i;1 (2nlnly) e2i?rnx , y! Ki;2 (2nlnly) e-2i?rnx}. (16.28) 
n¥O 

This can be written as 

ao (y) = 2in L bn Cn C~~~~A2 (y) , (16.29) 
n¥O 

where the last factor has the same signification as the particular case of (14.31): 
thus 100 

ao(y) y -3;-iA dy = 2in L bn Cn I~~~A2 ' 

o n¥O 
(16.30) 

where the last factor has the same signification as in (14.32). 
Fortunately, there is no need to redo the quite heavy calculations between 

(14.28) and (14.34). We must of course change the coefficient 2 O"V1 \tl) from the 
Inl 2 

Fourier expansion (4.5) of the Eisenstein series E~-V1 (z) to bn , and do something 
-2-

similar with the second factor which occurred in our previous computations. Next, 
looking at (14.28), it is immediate that the integer m which occurred there has 
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to be replaced by 0 (we are now dealing with the "constant" part from a Fourier 
series expansion), so that the hypergeometric function reduces to 1 exactly, and 
not only approximately; finally, the equation (14.34) becomes exact for the same 
reason (in Section 13, we were quite satisfied with a main term and an estimate, 
since we were only interested in the singularities ofthe relevant function of J1, when 
crossing the real line, not in its exact value). This leads to (16.24), not forgetting 
a last sign change, due to the fact that the case m = 0 from Section 13 would 
correspond to the pair (-n, n), not (n, -n). 0 

Remark. From (16.23) and (16.24), together with the functional equation (3.18) 
of the function El-v, one sees that the function L *e;v , Nk1,i1 x N k2 '£2) defined 

2 
as 

L * (1 ; 1/, Nk1,il X Nk2,i2) = 7[v-1 L (1; 1/, Nkl,il X Nk2,i2) x 

r C-V+i(~kl +Ak2)) r C-V+i(A
4k1 -Ak2 )) r C-V+i( -;k1 +Ak2)) r C-V-i(~kl +Ak2)) 

(16.31 ) 

if Nk1,il and N k2 ,1!2 have the same parity, and 

L * (1 ; 1/, Nk,,£, X Nk2'£2) = 7[v-1 L (1 ; 1/, Nk]'i1 X Nk2,1!2) x 

r C-V+i(~kl +Ak2)) r C-V+i(~kl -Ak2 )) r C-V+i(-;k1 +Ak2)) r C-V-i(~kl +Ak2)) 

(16.32) 

if the parities of Nk1,il and Nk2 .i2 are opposite, is invariant under the symmetry 
1/ f--+ -1/. This, or at least half of it (Poisson brackets are probably less used than 
pointwise products in number theory, though just as important in pseudodifferen­
tial analysis), is of course certainly well known. 

Recall that the projection operators PA + and PA - onto the eigenspaces of the 
k k 

modular Laplacian consisting solely of even, or odd, cusp-forms, have been defined 
just before Theorem 14.2. From the preceding lemma, together with (16.17), we 
shall get the images, under each of these two operators, of the functions (where 
r ~ 1) 

and antisym 1 {E* ~ r } g .. or = -2 1-2 v ,JVr,1! : v,JVr,i (16.33) 

here, Nr,i could be an Nr;i or an Nr~l!: in the first case, the function g~~Nr'i will 

only have possible non-zero images under operators p, +, and the function g~nNtiSym 
Ak ' r,t 

will only have possible non-zero images under operators Px;;; if Nr,i is a Nr~i' it 
is the other way around. 
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We denote as (g~:Nr,£)k the image of the function g;:Nr,£ under the projec­
tion PAt (resp. PAl:) according to whether Nr,e is an even or odd Maass-Heeke 

cusp-form; we denote as (g~n;}sym)k the image of the function g~n;}sym under the 
, r,R- , r,t 

projection PAl: (resp. PAt) according to whether Nr,e is even or odd. In each case, 
in what follows, Ar or Ak should be provided with the only superscript + or 
which is meaningful. 

Lemma 16.3. Assuming IRe III < 1, one has with the notation just explained 

(16.34) 

and 

(g~"J};~m)k = :i ~L* (1; II, Nr,e x Nk,e) IINk,d-2 Nk,el. (16.35) 

Proof. This is an immediate consequence of Lemma 16.2 and (16.17). o 
Proposition 16.4. Assume that IRe III < 1 and, with r E ZX, consider a cusp­
distribution (~~e)~ as has been defined in (15.4). Recall that the functions f~,(~-::,£)U 

and f2( + )U have been defined in (16.10) and (16.11). The projections of each of 
v, ~r l 

these two /unctions onto the (discrete) eigenspaces of the modular Laplacian are 
given by the formulas 

(f~,(J-::'£)~ )k,+ = (*( -iA;:-) (*(iA~) 11JV!~l,ell-2 x 

~ r (i~t) r ( -i;t) (_ ic~t ) 
c~l r (1+icAt ;"-iA;t-) r C-icAt t"-iA;t-) r C-icAt ;"+iA;t-) r (1+icAt t"+iA;t-) 

x ~L* C; II, JV!~I,e x N:e ) IIN:e/ll-2 N:el 

(16.36) 

together with 

(f~,(~-::,£)U)k,- = (*( -iAn (*(iA~) 11JV!~I,ell-2x 

~r(~) r(~) (~) 
c~l r (3+icA k ;"-iA;t-) r (3-icA k t"-iA;t-) r (3-icAk ;"+iA;t-) r (3+icA k t"+iA;t- ) 

x ~ L * C ; II , JV!~l,e x N~e) IIN~el 11-2 N~el 
(16.37) 



16. Towards the completion of the multiplication table 181 

for the first one, and 

(16.38) 

together with 

U:,(J-; i)" k- = (* (-iA;!-) (* (iAn IIJ\I[~I,£II-2 x 

~ r (~) r (-i~k) «A~)2) 

C:~I r (3+iC:Ak ~V-iAt) r (3-iC:Ak :V-iAt) r (3-iC:Ak ~V+iAt) r (3+iC:Ak :V+iAt) 

x ~L* C; v, J\I[~I'£ X N~£/) IIN~£/1I-2 N~i" 
(16.39) 

for the second one. 

Proof. Let (bn ) be the sequence of Fourier coefficients relative to the Maass-Heeke 
cusp-form J\I[~li the coefficients b~ relative to the cusp-distribution (J~JJ~, ho­

mogeneous of degree -i - iX;:, are given (a consequence of (15.4)) as 

(16.40) 

Following the computations in Section 13, only substituting v (resp. iAt) for VI 

iAt- 1 a (In+ml) 
(resp. V2), and substituting 2-2- b~+m for V2 .!'2., we find that 

In+ml2 

(16.41) 

with 
.'\ 

dm = -8in Iml- f x residue of Dm(P,) at p, = Ak, (16.42) 
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where (compare (14.22)) 

Dm(P,) = 2ip - 2 11"-1 (- i;) (*(i).;!) (*( -i).;!) IINr~I,lll-2 
-l-v+if1. 

x L[C+(v,i).;!;p,)+(-l)jC-(v,i).;!;p,)] L a,,(lnl)bn+mlnlj 2 • 

j=O,1 n#O 
n#-m 

(16.43) 

On the other hand, we need to generalize Lemma 14.1, denoting this time 
as O;i:m(p,) and c~tisym(p,) the functions associated by (14.1) to the functions 

g~yN, or g~n;J.,sym as defined in (16.33). Here, we must replace O" v 2 C1 n+;;1) by 
, Irl,t , Irl,t In+ml 

~ bn+m in order to transform (14.23) and (14.24) into equations valid in our present 
case, thus getting 

csym( ) 2-511"-~ " a,,(lnl) bn +m Inl-1-;+il' 
m p, rv r( -¥) re-;i/L) ::0 

n#-m 

r (1-iP+;-i)..:;:) r (1-iP-;+i)..:;:) r (1-iP-;-i)..i) 
(16.44) 

and 

c~ntisym(p,) rv r( ~;/;(~;i/L) ~ a,,(lnl) bn +m InI 1-
1-;+il' 

n#-m 

x r (3-iP+;+i>.i) r (3-iP+;-i)..i) r (3-iP-;+i)..i) r (3-iP-;-i>.i ) 
(16.45) 

up to an error term which extends holomorphically to the half-plane 1m p, > 
-l+IRevl. 0 

In order to properly state the theorem concerning the decomposition of 
~~#(~;l)" into homogeneous components, it is useful to introduce a definition, 
which should be compared to Definition 5.7 of £(8) and £'(8): actually, it is the 
product £' (1+"~ +"2) 9 £' (1+"~ -"2) from the right-hand side of (15.3) which can 
be so generalized, not its two individual factors on both sides. 

Definition 16.5. Let !JJt~ be a cusp-distribution, homogeneous of degree -1 - i).;!, 
arising by (4.4) from some even Maass-Heeke cusp-form and the choice of a square 
root of ().;!)2. As an operator acting on automorphic (tempered) distributions, we 
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set, when Re s is large, 

R( s, 9Jl~) = ((2s) L t;:: T'irist , 

N?l 

(16.46) 

where the set (bN )NE'ZX is the sequence of Fourier coefficients of the Maass-Heeke 
form under consideration. We also set 

where Reven(s, 9Jl~) (resp. Rodd (s, 9Jl~)) is the linear operator on automorphic dis­
tributions which coincides with R(s,9Jln on distributions of the even (resp. odd) 
type and vanishes on distributions of the odd (resp. even) type (cf. Definition 5.6). 

One can show that R'(s,9Jln extends as an operator-valued meromorphic 
function in the entire s-plane and that it satisfies the equation (which plays the 
role formerly played by (5.31)) 

R'(s,9Jl~) = R'(I- s,g9Jl~). (16.48) 

The easiest way to do this is to calculate the effect of R'(s, 9Jl~) on the distributions 
~t)., (;~t£')~ and (~k,£')~, assuming, say, that 9Jl~ = (sn;'£)~. 

Lemma 16.6. When Re s is large, one has 

+)~ ~ _ ( iA. r+) ( iA. r+ ) R(s, (snr ,£ ) ~iA - L s + 2,JV 1rl ,£ L s - 2,JV 1rl ,£ (16.49) 

and 
(16.50) 

Proof. Let (bN )NEZX and (CN )NE7!/ be the sequences of Fourier coefficients of 
the Maass-Heeke cusp-forms hI~I,£ and hltl/" Then, for N ~ 1, T'irist (~~£')~ = 

CN (~~ £')~ as a consequence of Theorem 4.2 and Proposition 5.2 (together with the 

funda~ental equation TN hI~,,£' = cN hit",): (16.50) thus follows from (16.46) 

and (16.19). On the other hand, T'irist (!!~ = N-'is aAN) (!!~ for comparable reasons 
(or cf. [62, (16.88)]), and (16.49) follows from the equation (lOc.cit., (4.37)) 

L N-'is- s av(N) bN = (((2S))-1 L (s + ~'hI~,,£) L (s - ~'hI~,'£) (16.51) 
N?l 

D 
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With the help of (16.47), (15.4) and (5.27), one derives from (16.49) the 
equation 

R,(I-V (;,y+ )~);,y~ =~i*(iA+)i*(-i'>"+)IIN,+ 11-2;,y~ 2 'T,e 2A 2 ." 1'''' l' I l' I,e 2A 

2 ' 11'1,£ 2' ITI,e 
L * (I-V-iA N,+ ) L * (l-V+iA N,+ ) 

x r (l+V-i~A+At)) r e-"+i~A-At)) r e-V-i~A-At)) r (l+V+i~A+At)) . 

(16.52) 

From (16.50) together with (16.31) and (16.32), one finds 

R' (1 ; v , (;,y~e)~) (;,yt,£')~ = ~ (* (iAn (* (-iAn Ilhj;'l,ell-2 (;,yt,£')~ 

L* e;v,hj;'l,e x hjtl,£,) 
x --~----~~~~----~--~--~--~-7--~--~----~~~ 

r (l+V-i(~t +.At)) r C-V+i(~t -At)) r C-V-i(~t -At)) r (l+V+i(~t +.At)) 

(16.53) 

and 

R' (1 - v (;,y+ )~) (;,y- )~ = _ ~ i* (iA +) i* (-iA +) IIN,+ 11-2 (;,y- )~ 2 'T,e k,£' 2 ." 1'''' l' ITI,e k,£' 

-2-,JVITI,e x JVlkl,e' L * (I-V .r+ .r-) 
x r (3+V-i(~k +At)) r e-V+i(~k -At)) r e-V-i(~k -At)) r (3+V+i(~k +.At)) . 

(16.54) 

Together with Theorem 4.1 (the decomposition of automorphic distributions 
into homogeneous components), the equations (16.52), (16.53) and (16.54) provide 
the analytic continuation of R'(~, (;,y~e)~) as an (operator-valued) function of 

s. The functional equation (16.48) is a consequence of the relation g (;,y~e)~ = 

(;,y!re)~ from Lemma 15.2, the relation A!T = -At as defined right after (4.4), 

and ~f the functional equations relative to the functions s f----+ L*(s,hj;'l,e) and 

s f----+ L*(s,hj;'l,e x hj'k'I,£,)' 

Theorem 16.7. Let vEe satisfy IRe vi < 1. With the same meaning as in 
Theorem 15.1, only substituting ;,y~ and (;,y~€)~ for ;,yL and ;,y~2' one can uniquely 

- up to the addition of a multiple of \C~ - define the automorphic distribution 
(5 = ;,y~#(;,y~e)~' satisfying the identities analogous to (15.1) and (15.2). One has 

;,yti #(;,y+ )~ = R' (1 - v, (;,y+ )ti) . 2-~+i1f E sn . (16.55) 
V r,£ 2 r,£ 
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Proof. Just as in Lemma 15.5, we write (starting from (15.51)) 

with 

as computed in (16.52), (16.53) and (16.54). 

What we need to prove is the pair of equations 

(u z I Op('r)uz ) = f:,(~;,£)~ (z), 

(u; I Op('r)u;) = f~,(~;,£)~ (z), 

185 

(16.56) 

(16.57) 

(16.58) 

(16.59) 

(16.60) 

where the Roelcke-Selberg expansion of the right-hand sides have been computed 
in Proposition 16.1 and Proposition 16.4. Using Lemma 15.6, one sees that what 
remains to be done is to verify the pair of equations 
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So far as the continuous parts from the Roelcke-Selberg decompositions are 
concerned, we must thus check (reducing the integral to that of an even function) 
that 

<1>1('\) i'\ (\]!( -,\) - \]!(,\)) 

(* (i'\) (( i'\) (( -i'\) 

and 

<1>2('\) _,\2 (\]!(_,\) + \]!(,\)) 
(16.63) 

(* (i'\) (( i'\) (( -i'\) 

where the functions <1>1 and <1>2 have been introduced and computed in Proposition 
16.1, or, what amounts to the same in view of the functional equations satisfied 
by these two functions (cf. remark preceding (16.16)) that 

\]!(,\) = _! 7["% ((-i'\) [<1>1('\) <1>2('\)]. (16.64) 
2 r(!f) i,\ + ,\2 

Using (16.57), (16.52) and the equation (a consequence of (15.4) and (15.10) 

A (1 -~ - i,\ , (~:'JI)~) A (1 -~ + i,\ , (~:::r'JI)~) 

~ ((*(i'\;-) (*( _i,\~))21IA1J~I,ell-4 L* (~,AIJ~l,e) L* (~,AIJ~I,JI) 
r (I-V-~A+i>.t) r (HV+~A+i>.t) r (I-V+~>'-i>.t) r (HV-~>'-i>.t) 

(16.65) 

one immediately derives (16.64) from (16.12) and (16.13) (the terms with € = 1 
from the right-hand sides of these two equations cancel out). 

Next, the discrete parts: with ak,JI' and bk,e' as defined in (16.58), (16.59) 
and computed in (16.53), (16.54), we must check that, for k 2: 1, one has 

i~t r c~t) r (- i~t) ~(a_k,e' - ak,e') IIN:JI'II-2 N:e,(z) 

(16.66) 



16. Towards the completion of the multiplication table 187 

and 

finally that 

(A+? (iA+) (iA+) -+r -t r --t ~(a_k,£'+ak,c/)IIN:£'1I-2N:£'(z) 

= (f~,(J;:'£)~ k+ (z) (16.68) 

and 

(r)2 (iA-) (ir) -+r -t r --t ~(Lk,el+bk,£')IIN;I'III-2Nk~£,(z) 

= (f~,(J;,£)~k-(z). (16.69) 

With the help of (16.53) and (16.54) on one side, (16.36)-(16.39) on the other 
side, the verification is straightforward. 0 

Proposition 16.8. The continuous part of the decomposition of J~#(J;',,)~ into 
homogeneous components can also be written as 

" +" _ 11J\j~1,l'112 
(Jv#(Jr,fJ )cont - (*(iAt) (*( -iAt) 

x A C + v; 2i1f £", (J;',,)") 9 A C + v; 2i1f £", (J~r,")U) . (T~+i7r£1J3 tont . 

(16.70) 

Proof. Using the spectral decomposition (15.5) of 2- ~+i7r £ IJ3 and the invariance 
under 9 of this distribution, one may write the right-hand side of (16.70) as 

II ,r+ 112 00 A (l+V+iA ('1:'+ )") A (l+V-iA ('1:'+ )") 
JV'lrl" 1 1 2' 1>r,e 2' 1>-r,l' " 

--,..--'--'-"-----,,- X - J" dA 
(*(iAt)(*(-iAt) 41f -00 ((iA) ((-iA) iA • 

(16.71) 
Now (15.4) and (15.10) yield 

A(I+V-iA (J+ )") =2-1";,>-;,: (*(iA;)(*(-iA;) 
2 '-r,e 11J\j~I,eI12 

1f~ L * (1+ V -iA N,+ ) 
2 ' Irl,l' 

x (16.72) 
r (1+v-ii-iAt) r (l-V+~A-iAt) 
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and, to get the first A-factor on the right-hand side of (16.71), it suffices to change 
(A, A;!) into (-A, -An. This yields (16.70) after one has used (16.52) to compute 
the left-hand side 

1 100 R' (l;V , (~;,£)~) 
47r -00 ((iA) (( -iA) ~~>. dA, 

as given by (16.56), of this equation. o 
The structure of the composition formulas may show in a clearer way from 

a reformulation of the preceding results in terms of Eulerian products: this will 
occupy us for the remainder of this section. 

It will be convenient, here, to use the normalisation Opy'2 of the Weyl cal­
culus as defined in (2.21), and the associated q -product, linked to the usual sharp 
product by the equation 

(16.73) 

this will permit us to get rid of the extra operator 2-k+ i 7l"£ in all its occurrences. 
Recall that our constant use, in these last two sections, of the distributions 

~~ and (~t,£)~ was due to the role they play in the expansion (15.5) of 2-k+ i 7l"£ \]3. 

We now choose another normalization, paying interest, rather, to the distri­
butions ~ IE~ and (1)1t,£)~. The reason for this is that, when p = 0 or 1 and Z E II, 
one has 

and 

(16.74) 

as reported in (3.15), (3.16) and (4.12), (4.13): now, the functions ~ Et_v 
2 

and Njil,£ are normalized by the fact that the coefficient of yk Kf:x(27ry)e2i7rX 

or yk K ~ (27rY) e2i7rX in their Fourier series expansions (4.5) or (4.3) is 1. As a 
2 

consequence, the corresponding L-functions have (for Re s large) the Eulerian 
product expansions 

=((s-~)((s+~) 
= II (1 - pf:x-S)-l (1 - p-f:x-S)-l (16.75) 

p prime 
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and, if (4.3) is the Fourier series expansion of Nli,,l" 

L(s,Nlil,J') = L bn n-s 

n~1 

II (1 - p-s bp + p-2s)-1 
p prime 

II (1 - p-s {3p)-1 (1- p-s {3;1)-1 (16.76) 
p prime 

if the Hecke polynomial 1 - bp X + X 2 factors as (1 - (3p X) (1 + (3;1 X) (cf. [8, 
p. 119]). Let us, for clarity, refer to the unordered pair ({3p, (3;1) as the pth-Hecke 

pair relative to Nli"t: in view of (16.75), the pair (p~ ,p-~) should be thought 

of as the pth-Hecke pair relative to ! ELv. 
2 

With the help of Eulerian products, we would like to get a better grasp of 
the coefficients c(l)1j 1)11, 1)12) which should make the formula 

(16.77) 

valid in general: here, 1)11 or 1)12 could be an ! Q;~ or an (l)1;'t)U, and the excep­
tional terms are present only when both 1)11 and 1)12 are Eisenstein distributions. 
One should have another look at (4.33) to understand the reason for the presence 
of the extra factors (independent of 1)11, 1)12) in the integral or series. 

Before doing this, however, let us remark that building our multiplicative 
table - a task which we shall leave uncompleted - is a lengthy job, involving 
difficulties of several natures: after reduction by some symmetry considerations of 
the kind used at the end of Section 15, we are left with an overall task of completing 
about 19 entries c(l)1j 1)11, 1)12), of which we have made only 7 fully explicit. To 
start with, let us observe that changing an (I)1t £)U to an (1)1; £)U is not quite as 
trivial as it seems since, besides having to be v~ry careful with signs, one must 
also, here and there, trade a pointwise product of automorphic functions for half 
a Poisson bracket of such, or the other way around. Next, the case when 1)1, 1)11 

and 1)12 are all Eisenstein distributions was, from the point of view of analysis, 
the most difficult one, because of severe divergences: it was at this point that the 
usual Rankin-Selberg method proved insufficient. On the other hand, difficulties 
of a number-theoretic nature increase when the number Ii of cusp-distributions 
among 1)1, 1)11 and 1)12 does. For Ii = 0,1 or 2 respectively, c(l)1j 1)11,1)12) can be 
expressed, up to Gamma factors, as a product of four zeta functions, a product 
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of two L-functions or a convolution L-function. As a conjecture, would it be too 
much to expect that, when Ii = 3, the value at s = ~ of a triple L-function as 
defined in [8, p.386] should be required? 

Relying on the present state of our multiplication table, here is a list of 
coefficients c(IJ1;IJh,IJ'h). From (15.33), and the fact that 2!-ill"£~t = Q;L one 
gets 

Still from (15.33), and the fact that 

2!-ill" £ (~± )U = (*(iAt) (*( -iAt) (1J1± )U 
k,l IIN.+ 112 k,l' 

Ikl,l 

with E = 0 if dealing with (IJ1t £ ) U, E = 1 if dealing with (1J1k" e)"' We may already 

observe that, when going fro~ c( ~ Q;~A; ~ Q;~1' ~ Q;~J to c( (lJ1t,e) U; ~ Q;~1 ' ~ Q;~2)' 
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the Gamma factors are identical, except for the substitution of At for A; also, 
if ((3p, (3;1) is the pth_th Hecke pair relative to ~ E~~iA in the first case, and to 

2 

A'I~I,e in the second one, the products of two L-functions apparent in (16.79) and 
(16.80) can both be written as 

[ II (1 - P ~1~~1 ~V2 (3p) (1 _ P ~1~~1 ~V2 (3;1) 

prIme 

X (1- P -'-;'+., (lp) (1- p -'-;,+., (l';') r' 
(16.81 ) 

Thus, when examined with the help of Eulerian products, the formulas for 

c (~IEL; ~ 1E~1' ~ 1E~2) and c ((l)1t,e)~; ~ 1E~1' ~ 1E~2) are identical. However, there 
is no way to get rid of the Gamma factors in the second one, whereas this would 
be possible in the first. 

Starting from (16.70), one finds that 

If ((3p, (3;1) is the pth_th Hecke pair relative to A'I~I,£' one may write the 
product of two L-functions as 

[ II (1- p ~l~,;'+iA (3p) (1- P ~l~,;'+iA (3;1) 

pnme 

X (1 - p -, ;-" (lp) (1- P -'-;-" fl;') r (16.83) 

looking also at the product of Gamma factors on the right-hand side of equa­
tion (16.82), one sees that, again, the Eulerian product version of the coefficient 

c (~ IE~A; ~ IEL (1)1;,£)~) has exactly the same structure as the first two coefficients 

discussed. 
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Finally, let us compute and discuss the coefficient c (U.J1t,c,)U; ~ Q.:~, (l)1;,c)U) . 
(;~+ )u 

From (16.56), (16.58) and (16.53), we see that the coefficient of -21 (+)k('_ +) m 
<: t>'k t>'k 

the expansion of ~~#(~;'c)U is 

~ (*(i'\;) (*( -i'\;) IIJVj~I,cII-2 

L* (l+V .r+ .r+) -2-,JV 1rl ,c X JVlkl,C' 
X --~----~~~--~--~~~~~~~~~~~--~----~--~ 

r (1+V-i(;t +>.t)) r C-V+i(;t ->.t)) r C-V-i(;t ->.t)) r (1+V+i(;t +At)) , 

(16.84) 

where we have used the invariance under s f--+ 1- s of a function L*(s,N+ x N+). 
From (16.31), this is 

~ 7r- v (*(i'\;) (*( -i'\;) IIJVj~I,cll-2 L c; v ,JVj~I,c x JVjkl,c,) 

Thus 

r (1+V-i~; +i>.t) r (1+V+i~; -i>.t ) 
x r C-V+i~t -i>.t) r C-V-i~t +i>.t) . (16.85) 

( 1 + v • r+ • r+ ) 
x L --2--,JVlrl,c x JVlkl,c' . 

(16.86) 

Again, the Archimedean factor is exactly the same as before, mutatis mu­
tandis. Introducing the pth_th Hecke pair (f3p, f3;1) relative to JVj~I,c as before, 

together with the pair (ap ,a;l) relative to JVjkl,C" one gets (using this time 
(16.21)) 

the same as (16.83) except for the substitution of (ap,a;l) for (pif,p-if). 



16. Towards the completion of the multiplication table 193 

Thus a clear conjecture concerning the general structure of coefficients 
c(lJ1; 1J11 , 1J12 ) emerges. Of course, one has to be careful with the Gamma factors 
(c/. (16.57) and (16.39) on one hand, (16.54) on the other, as well as (16.80)) when 
cusp-distributions of the odd type are concerned, and we have to admit that the 
case when 1J1, 1J11 and 1J12 are all cusp-distributions might present some more dif­
ficulties (the other cases are only a question of how patient you are) if one wishes 
to connect the result to the value at s = ~ of some triple L-function, not only to 
the integral on r\II of the product of three Hecke forms or to the integral of a 
Hecke form times the Poisson bracket of two Hecke forms or to the iterated Poisson 
bracket of three Hecke forms. 

Remark. It is clear that all coefficients c(lJ1; 1J11 , 1J12 ) which occur in the decompo­
sition into homogeneous components of a product 1J11q 1J12 of "elementary" auto­
morphic distributions i.e., ~ <E~'s or (lJ1t,i!)~'s, have nice Eulerian products, with a 
fully identical structure: there is one possible exception in the case when all three 
entries are cusp-distributions. 

Our proofs, however, could not be based on (arithmetic) localisation tech­
niques: only an adelic setting, not a classical distribution setting, might make this 
possible, but we would then not be dealing with the same problem. 

An interesting question regards the splitting of the Hecke polynomial 1-
bp X + X2 into two distinguishable factors. An adelic point of view is required here, 
but much more is involved: let us only remark that, so far as the Archimedean 
place is concerned, this is exactly what we have done throughout the present work 
(c/. (16.2)), substituting decompositions into homogeneous components (on l~?) 
for spectral decompositions with respect to .6. (on II). 

We hope to succeed in carrying out a similar program in general in the not 
too distant future. 



Chapter 4 

Further Perspectives 

17 Another way to compose Weyl symbols 

This section serves several purposes. The first one is to give a detailed proof of 
the first theorem to follow, a rather careless version of which was indicated in 
[62], Theorem 5.3. Next, we shall observe (with fewer details) that, contrary to 
the usual formula for the composition of symbols, this theorem extends to the 
OpP -calculus. The reason why this is so is that, for p ::::: 1, the OpP -calculus, 
while still covariant under the p-metaplectic representation, does not admit any 
covariance under the Heisenberg representation: indeed, the point 0 E IR plays a 
very special role in this calculus, which has therefore no translation invariance. In 
Section 19, we shall indicate why, in the general context of quantization, this type 
of formula is prevalent. Last, let us indicate that, as has been proved by Bechata 
[5], the present formula extends to the p-adic Weyl calculus (dealing with complex­
valued functions on p-adic numbers), while, again, the Moyal-type formula would 
be meaningless. 

In the second part of this section, we shall see that there is a close relation 
between the composition of Weyl symbols on one hand, the pair constituted by the 
pointwise product and Poisson bracket of functions on II on the other hand. This 
phenomenon has already been encountered in the last part of Section 11. The same 
holds in the quite different r-invariant environment, as a comparison, say, between 
our present Theorem 13.6 and Theorem 9.6 of [62], or between Theorem 14.2 and 
Theorem 14.5 from loc.cit. would show. In this direction, let us emphasize that 
the arithmetic case cannot be reduced to that which deals with fj. on the "open 
space" II, since one is concerned there with two quite different realizations of the 
Laplacian. On the other hand, we fully used in the present work (especially in 
Section 14) the resources provided by the results from loc.cit. 

The reason for all these resemblances is that, on a rank-one symmetric space 
such as II, there are very few possible covariant bilinear machines: more precisely, 

A. Unterberger, Automorphic Pseudodifferential  Analysis  and Higher Level  Weyl  Calculi 
© Springer Basel AG 2003
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there are essentially two possibilities (one symmetric, one antisymmetric) as soon 
as a maximal spectral decomposition has been carried, with respect to both the 
input and output; of course, there is a considerable variety of possibilities in global 
formulas, i.e .. those which do not use the spectral decomposition. 

Theorem 17.1. Let hI and h2 be two symbols in Seven(lR2). Then one has, in the 
weak sense in S'(lR2), 

hI #h2 = 1: h).. d>", (17.1) 

where h).. is associated through (2.16) to the function hL 

h~(s)= 1:1: d>"ld>"212 Ki)..1,i)..2;i)..(Sl,S2;S) (hd~1 (sd(h2)~2(S2)dsIds2' 
(17.2) 

3 '(->-+>-1 +>-2)-2 
Ki)..1,i)..2;i)..(SI, S2; S) = 2-"2 (2n) 2 

I .. r (1+i(A+)"~ -)..2)+2j ) r (1+i()"-)"~ +)..2)+2j ) r (1+i( -)..-~1-)..2)+2j) 

x .t;(-z)1 r (1+i(-)..-~1+)..2)+2j) r (1+i(-A+~1-)..2)+2j) r (1+i(A+)..~+)..2)+2j) 
x X{)..1,i)..2;i)..(SI,S2;S) , (17.3) 

with 

Actually, in [62, Theorem 5.3J, we gave a more general formula, since symbols 
not necessarily even were considered as well: this will not be needed here, and it 
would complicate notations a little bit. However, though all computations have 
been properly carried in loc.cit., we have not been very careful there in giving all 
justifications, especially in view of the fact that semi-convergent integrals had to 
be used. This was not really important in loc.cit., where the main reason for our 
statement of Theorem 5.3 was to give some extra incentive towards the interest 
in the integral kernels in (17.4), which played an important role in other parts of 
this work. 

We take this opportunity to complete the justification of the theorem under 
discussion. Our first lemma to that effect is Theorem 11.3 or, rather, the case when 
k = 0 of this theorem (then the function Cj(VI, V2; k; i>..) from (11.27) simplifies a 
little bit, to the function Cj(Vl, V2; i>..) in (5.41)). In any case, using signed powers, 
as defined in (11.26) is necessary even when k = o. 
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The next lemma is just (a particular case since we here consider only even 
symbols) Lemma 5.2 in [62J, the proof of which involved only (absolutely) conver­
gent integrals, and will not be rewritten here. We first generalize the Definitions 
(17.4) and (17.3) of X{>'l,i>'2;i>.(SI,S2;S) and K i>'l,i>'2;i>.(81,82;8), letting complex 
numbers 1/1 and 1/2 with possibly non-zero real parts be substituted for i>'1 and i>'2 
everywhere. Of course, we denote the new functions obtained as X~ v .• >.(81, 82; 8) 

1, 2, .. 

and K Vl,v2;i>.(81, 82; 8). 

Lemma 17.2. Assume that 

(17.5) 

Then, with hI (x,~) = Ixl-1- vl , h2(X,~) = 1~I-l-v2, one has in the weak sense in 
S' (JR.2 ) 

(17.6) 

with 

(17.7) 

Corollary 17.3. Let (~~) be given, with ad - be i=- O. With the same assumptions 
as in Theorem 11.3, one has 

(17.8) 

with 

(17.9) 

Proof Setting CD = (ad - be) (~;), it is no loss of generality to assume that 
ad - be = 1. As a consequence of (2.5), 

lax+b~l-l-vl#icx+d~l-l-v2 = i: h>.(ax+b~,cx+d~)d>' 
and from (2.16), then (17.7), 

h>.(ax+b~,cx+d~) = Icx+d~l-l-i>'h~ (:::!~) 

= ICX+d~l-l-i>.l2 K Vl ,V2;i>. (81,82; ::!~) 

(17.10) 

(17.11) 
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Now the kernel K V1 ,V2;i>.(Sl, S2; s) has the fundamental covariance property (im­
mediate, cf [62], (5.16)) that 

Performing a change of variables in (17.11), we thus get 

i.e., 

(17.14) 

with 

9>. (x, ~) = 1~1-1-i>' k2 las1 + bl-1- V1 ICS2 + dl-1- v2 K V1 ,V2;i>. (Sl' S2; ~) dS1 ds2 . 

(17.15) 
Applying (2.15) again, we are done. D 

We need another lemma, so as to bound the last integral in (17.2). 

Lemma 17.4. Set 

Set 

IIIu11111 = sup((1 + IS11)1+cl IU1(Sl)!) ' 

IIIu21112 = sup((1 + IS21)1+c2Iu2(S2)!). (17.17) 

Assume that IC1 ± c21 < 1, so that in particular IlujllvX' ~ III ujillj, j = 1,2. 
Then 

with a constant C depending only on C1, C2. 



17. Another way to compose Weyl symbols 

Proof. Set 

V1(SI) = IS11-1-o1 U1(S1 1), 
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v(s) = Isl- 1u(s-1), (17.19) 

so that IIIvdl1 = Illu11111, IIIv21112 = Ill u 21112, Ilvll£2 = Ilu 11£2' If A is a measurable 
subset of 1It3 , denote as lA the same integral as I after the domain of integration 
has been changed to A. Set A' = {(Sl,S2,S): (sl\s;-\s-l) E A}. Then an 
obvious change of variables shows that lA' is just the same as lA after U1, U2 
and u have been replaced by VI, v2 and v. To prove Lemma 17.4, it thus suffices 
to bound by the required product of norms the integral lA in the case when 
A = {(Sl,S2,S): IS11 ::::; 2, IS21 ::::; 2} or when A = {(Sl,S2,S): IS11 ::::; 1, IS21 :2 2}. 
Consider the first case to start with: set 

J(s) = fl I IS1_s21-Hc21+£2Is2_sl-1-;1+£2Is_s11-1+£i-£2ds1ds2. (17.20) 
JI S 1 ::;2 

IS21:S2 

If lsi::::; 3, then 

J(s)::::; f, I lSI - s21-1+£21+£2 IS21-1-£l+c2 IS11-1+?-C2 dS1 dS2 J!S! ::;5 
IS21:S5 ::::; 1 IS11-1+? +£2 dS1 1 Itl- 1-;1 +£2 11 - tl-1+;1 +£2 dt. (17.21) 
IS11:S5 Itl:srii-r 

Now, in view of the assumptions made about E1, E2, the last integral is less than a 
constant if E2 < 0, less than C1 + C2 I log IS111 if E2 = 0, and less than a constant 
times IS11-02 if E2 > O. This shows that J(s) is bounded for lsi::::; 3; if lsi :2 3, 

(17.22) 

since leI + E21 < 1, so that J(s) ::::; C (1 + Isl)-l for all sand 

lA ::::; sUPls11::;2lu1(sI)1 x sUPls21:S2Iu2(s2)1 x i: (1 + Isl)-l lu(s)1 ds 

::::; C IluIilLoo II u 211u>o Ilull£2' (17.23) 

We now assume that A = {(Sl,S2,S): IS11::::; 1, IS21:2 2}. Then 

lA ::::; C IIu111u>o f IS21- 1+£l+c2 IS2 - sl-1-£21+£2 Is _ sll-1+£21-£2 
JI S l19 

IS212:2 

IU2(s2)u(s)lds1ds2ds. (17.24) 
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Now 

r (1 + IS21)-1-£2Is21-1+~1+'2 IS2 _ sl-1-~J+'2 dS2 

J1s 21 ?2 

:::; r IS21- 3 +'21-'2 IS2 _ sl-l-~l +'2 dS2 

J1s 21 ?2 

:::; C r IS21-3+'r'2 (1 + lsI) -1-~1+'2 dS2 
J2::;l s21::;1¥ 

+ C r (1 + lsI) -1-~1+'2 IS21-1+£1-£2Is2 _ sl-1-~1+'2 dS2 

J1s 21 ?max(2,1¥ ) 
-l-q +e2 

:::; C (1 + lsI) 2 (17.25) 

since IC1 - c21 < 1. Thus 

with 

fA:::; C IIU111u'" r (1 + lsI) -1-~1+'2 Is - sll-1+'r'2 lu(s)1 dS1 ds 
J1s 119 

x sup ((1 + IS21)1+£2 IU2(s2)1) 

:::; C IIU111u'" IIIu21112 x I: K(s) lu(s)1 ds (17.26) 

K(s) = r (1 + lsI) -1-~1+'2 Is - sll-*r'2 dS 1 
J1s119 

:::; C (1 + Isl)-l . (17.27) 

o 
We shall apply Lemma 17.4 presently with C1 = Re VI, C2 = Re V2 and 

U1 = (hd-iIl1' U2 = (h2)~iIl2' finally u = (h3)~' with h1, h2' h3 three functions 
in Seven(I~2). Recall from (2.18), (2.19) that 

(17.28) 

(17.29) 

(one may compare W1 to V1 in (17.19)), and the norm IIIu11111 as defined in 
(17.17) is equivalent to IIu111Loo + IlwtllLoo. Given C1 E]- 1,1[, one dearly has, 
since Re V1 = C1, 

IIIutlll1 :::; sup (Sl f--+ 100 t£l [lh1(tS1, t)1 + Ih1(t, tsdl] dt) 

:::; C(C1) sup((1 + x2 + e) Ih1 (x,~)I) . (17.30) 
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Of course, something entirely similar holds with U2 or U, after one has substituted 
h2 or h3 for hI, and V2 or i).. for VI. 

The basic idea towards the proof of Theorem 17.1 is to reduce it to the case 
when the two factors are polarized in the sense described between (11.25) and 
(11.26), i.e., when each of them only depends on some linear combination of x 
and ~. The formula (2.9) for the Q-transform provides such a decomposition for 
each factor: indeed, it suffices to write 

(17.31) 

and to use polar coordinates, to get the decomposition 

(17.32) 

with 

hO(x) = 2 i: (Qh)(t cos 0, tsinO) e4i1l"tx It I dt. (17.33) 

One may observe that (still under the assumption that h lies in S(JR2 )), the 
function hO (x) is a Coo function of (0, x), and that it satisfies the estimates 

3 
a <-. 

2 

Conversely, assume that a function h on JR2 can be written as 

(17.34) 

(17.35) 

for some function gO E LI(JR), depending as such in a continuous way on O. We 
then compute Qh: if f(x,~) = a(x), it is immediate that (Qf)(x,~) = 8(x)a(2~), 
from which, after a rotation of coordinates, one gets 

(Qh,¢) = 111" dO i: ;;o(2~)¢(~cosO,~sinO)d~ (17.36) 

for any function ¢ E S(JR2 ). Thus 

(17.37) 

it follows that gO has to coincide with hO as defined by (17.33). 
We now need to connect the decomposition of a function h E Seven(JR2 ) 

into homogeneous parts to the decomposition of a symbol into polarized ones, as 
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provided by (17.32), (17.33). Using (17.33) as a definition of (h_ iv )8, and remem­
bering that Q£ = -£Q, one thus gets, for every complex v with -1 < Re v < 1 
and xi=- 0, 

(Liv)8(x) = 2 I: (gh)iv(tcosB, tsinB) e4i7l"tx It I dt 

= - r-V dr e4271"tx It I (gh)(rtcosB,rtsinB)dt 1100 100
. 

7f 0 -00 

(17.38) 

or, finally, noting from (17.33) that, in our case, (h_ iv )8 is an even function, 

(Liv)8(x) = Ixl- 1- v X - rV h8(r) dr, 1 100 

27f 0 
(17.39) 

where the integral converges thanks to (17.34). Since 

(Liv )(x,~) = 171" (h_ iv )8 (x sin B - ~ cos B) dB , (17.40) 

one has 

h~iv(8) = 171" (Liv)8(8sinB - cos B) dB 

= 171" [18sinB - cosBI-1-v X 2~ 1 00 
rV h8(r) dr] dB. (17.41) 

Proof of Theorem 17.1. Set 
3 "'1+ v 2- i ).,-2 

A j (V1, v2; iA) = T2 (27f) 2 

.. r (HVI-V~+iA+2j) r C-Vl +V~+iA+2i) r C-Vl -V~-iA+2j) 

X (_~)J r C-VdV~-iA+2i) r (HVI-V~-iA+2i) r (HVl +V~+iA+2i) , 
(17.42) 

so that (17.3), extended by complex continuation as explained just before Lemma 
17.2, reads 

1 

KVl ,v2;iA (81,82; 8) = L Aj (VI, V2; iA) X~"V2;iA (81,82; 8) . 
j=O 

(17.43) 

Set VI = E1 +iA1 and V2 = E2+iA2, and assume in all that follows that lEI ±E21 < 
1. We first note the estimate 

, (17.44) 
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a consequence of (11.31); a rougher estimate, sufficient for our purposes, is 

(17.45) 

The claim in Theorem 17.1 is that, given any three functions hI, h2' h3 E 
S(JR.2), the first two even (it then does not harm the generality to assume that so 
is the third one), one has 

(17.46) 

where h~ is the integral defined by (17.2). 
We first show that, indeed, h~ is well defined, for all A, as an element of 

L2(lR.). Since (£h j )~j = - ;! (h j )~j' (17.2) can also be written as 

Now, in view of Lemma 17.4 and (17.30), the last integral on the right defines a 
function of sin L2(lR.), with a norm bounded by a constant independent of AI, A2: 
using then (17.45), one can carry the dA1 dA2-integration, which shows that h~ is 
well defined as an element of L2(lR.), with a norm bounded by a constant times 
(1 + A2) i. Now, using (2.16), next (2.14), 

(h)" h3) = L2 h3(X,~) 1~1-1-i'x h~ (~) dx d~ 

=2100 h~(s)ds roo h3(st,t)Ci'xdt 
-00 io 

=47r i: h~(s)(h3)~,X(s)ds. (17.48) 

Using again (h3)~,X = (1 + if )-3 ((1 + i7r£)3 h3)~,X' one sees that the integral on 
the right-hand side of (17.46) is convergent, and that it can be written as 

i: (h,X, h3) dA = 47r i: dA i: h~(s)(h3)~,X(S) ds 

=47r i: dA i:(h3)~,X(S)dS L2t,Aj(iAbiA2;iA)dA1dA2 

r . ~ ~ 
iR.2 ~'xl ,i'x2;i'x (Sl' S2; s )(h1hl (Sl) (h2h2 (S2) dS 1 dS2 , (17.49) 

a convergent 6-tuple integral. 
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The estimates which led to (17.49), primarily based on Lemma 17.4 and 
(17.45), show that, fixing C1 and C2 with IC1 ±c21 < 1 and substituting everywhere 
V1 = C1 + i).l and V2 = C2 + i).2 for i).l and i).2 would let the integral on the 
right-hand side of (17.49) remain convergent. Then a contour deformation shows 
(using (17.43) again) that 

100 (h)" h3) d)' = 471" r r dV1 dV2 
-00 iRe Vl=el iRe V2=e2 i i 

100 d)' r K V1 ,V2;i),(Sl, S2; s) (hI)~iVl (sI) (h2)~iV2 (S2) (h3)~),(S) dS1 dS2 ds 
-00 ilR3 

(17.50) 

for any such pair (c1' c2). We choose C1 < 0, C2 < 0 (still with C1 +c2 > -1) to 
be in a position to apply Lemma 17.4 presently. 

Next, decompose (h 1 )-ivl and (h2 )-iv2 into polarized symbols according to 
(17.40): 

(17.51) 

in the corresponding decomposition of (h2) -iV2' we use of course the angle O2 
instead of 01 . Then, according to (17.39), 

(hd~iVl (sd = 1" b(V1' OI) IS1 sin 01 - cos011-1-vl dOl, (17.52) 

where we have set 

(17.53) 

From (17.34) it follows that, given C1 E]-I, 1[, b(V1' OI) is bounded for 01 E [0,71"] 
and Re V1 = C1: powers of 1m V1 can also be saved, so as to ensure the convergence 
of the following integral with respect to d~l, by the same trick as the one in (17.47). 
Thus 

100 (h)" h3) d)' = 471" r d~l d~2 r r b(vl, OI) b(V2' O2) dOl d02 
-00 i~e Vl=el Z Z io io 

Re V2=£2 

100 d)' r K V1 ,V2;i),(Sl, S2; s) IS1 sin 01 - cos011-1-vl IS2 sin O2 - cos021-1-v2 
-00 ilR3 

(h3)~),(s)ds1ds2ds, (17.54) 

provided we show the convergence of the new integral: this requires some more 
care, in view of the dOl d02-integration, and of the singularity which is to be 
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expected when (h - 01 E 7fZ, i. e., when the linear forms x sin 01 - ~ cos 01 and 
x sin O2 - ~ cos O2 are not transversal (all our preceding lemmas have been based on 
the reduction to the case when these two forms were simply x and ~). Recalling 
(17.43), and noting that 

(17.55) 

when Re VI = cI, Re V2 = c2, one sees that one has to find an appropriate bound 
for the integral 

1(01 , ( 2 ) = r lSI _ s21-1+;1 +e2 1s1 _ sl-1+;1-e2 Is2 _ sl-l-;l +e2 

J~3 
lSI sin 01 - cos 01 1-1- 01 IS2 sin O2 - cos021-1-021(h3)~A(s)1 dSl dS2 ds. 

(17.56) 

Performing when O2 -01 d Z the change of variables 81 f-+ aS1++db , S2 f-+ aS2 ++db, S f-+ 
~ C81 C82 

as+b where (a b) EGis defined as (a b) = (_8-1 cos 112 cos 111) with 8 = sin(02-
cs+d ' cdc d _8-1 sin 112 sin 111 
OI), one sees that Sl sin 01 - cos 01 transforms to cs:~d' that S2 sin O2 - cos O2 

transforms to 8+d , thus 
CS2 

I(OI, ( 2) = 181-1- 02 r lSI _ s21-1+ere2Is1 _ sl-1+;1-'2 Is2 _ sl-l-;l +e2 

J~3 

IS11-1-01Ics+dl-1 l(h3)~A (~;::)I ds1ds2ds. (17.57) 

Now, in the proof of [62], Lemma 5.2 (our present Lemma 17.2), we have computed, 
under the assumptions C1 < 0, C2 < 0, IC1 - c21 < 1, the integral 

r lSI _ s21- 1+;1 +e2 1s1 _ sl-1+e1 -e2 IS2 _ sl-l-~l +e2 IS11-1- o1 dSl dS2 
J~3 

-1-6"1 +E2 

= C(C1' c2) lsi 2 (17.58) 

for some constant C(C1' c2). Since, as a consequence of (2.14) and of the fact that 
h3 E Seven(lR.2), one has l(h3)~A(s)1 ~ C (1 + S2)-! for some C > 0, it follows 
that 

I(0I,02) ~ C(c1' c2) 181-1- 02 x i: Isl-1-;1+e2Ics + dl- 1 

= C(c1' C2) 181-1- 02 J(01,02) ' 

with 

J(Ol' ( 2) = ill Isl-1-;1 +'2 [(as + b)2 + (cs + d)2r! ds 

+ ill Isl- 1
+

er e2 [(bs + a)2 + (ds + c?r! ds. (17.60) 
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On the one hand, the L2-norm of the function s t--+ [(as+b)2+(cs+d)2]-! or 
[(bs+a)2+(ds+c)2]-! does not depend on the matrix (~~) E C. Its Loo-norm, 
however, does, as follows: the minimum of the function s t--+ (as + b)2 + (cs + d)2 
as s describes the real line turns out to be (a2 + C2 )-1, in our case (F; similarly, 
the minimum of (bs + a)2 + (ds + C)2 is 1. Thus 

1 

max8E~ [(as+b)2+(cs+d)2r2 ~ 101-1 (17.61) 

and, if ~ + ~ = 1, p E]2, 00[, one has lis t--+ [(as + b)2 + (cs + d)2]-! Ib ~ 
1 2-p -l-el +e2 

7rP lol-p-. Provided that the function s t--+ lsi 2 lies in U([-l,l]), i.e., 

1-E:~+E:2 > ~,one thus has J(fh,fh) ~ Clol7 and I((h,fh) ~ Clol-2-E:2+%. 

Since 0 = sin(02 - Od, the integral on the right-hand side of (17.54) will be 
convergent if one can choose p with 'E.2 > 1 1+ and C2 < £ - 1, i.e., l!.2 < 1+1 -E:1 E:2 P E:2 
(still with IC1 ±c21 < 1, C1 < 0 and C2 < 0), which is possible. 

In accordance with (17.8), we then set, if 01 - O2 i- 7rZ, 

Ix sin 01 - ~ cos011-1-v1 #Ix sin O2 - ~ cos 021-1- v2 = I: (g~~:~:)>.(x,~) d>", 

(17.62) 

a definition of the function (g~~:~:k (17.48) and Corollary 17.3 show that 

((g~1'~2) ,h3) = 47rJoo (g~1'~2)~(S) (hd_),(s) ds 
1, 2 A -00 1, 2 

= 47rJoo (h3)~),(S) ds ( K V1 ,V2;i),(Sl, S2; s) IS1 sin 01 - cos011-1-v1 -00 i~2 
IS2 sin O2 - cos021-1-v2 dS1 ds2 . (17.63) 

Thus (17.54) reduces to 

Joo (h)"h3)d>..= { ( d~l d~2 r r b(v1,Odb(v2,02) 
-00 iRe V1=E:1 iRe V2=E:2 Z Z io io 

\ Ix sin 01 - ~ cos 011-1- v1 #Ix sin O2 - ~ cos 021-1- v2 , h3) dOl d02 . 

(17.64) 

On the other hand, using (2.13) and a contour integration, next (17.40), 
finally (17.41) and (2.16), we get, whenever C1 > -1, 

h1(X,~)= { (h1)_iV1(X,~)d~1 
iRe V1=E:1 Z 

= { d~l r(hd!.!iV1(xsin01-~coS01)d01 
iRe V1=E:1 Z io 

= { d~l rb(v1,Odlxsin01-~cos011-1-V1d01. (17.65) 
iRe V1=E:1 Z io 
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Thus 

(hI #h2' h3) = ke VFel ke V2=e2 dVl dV2 

\ (10''' b(Vl,(h) \x sin (h - ~ cOS/h\-l-vl dOl) # 

(17f 
b(v2,02)\xsin02 -~COS02\-1-V2d(2) 'h3)' 
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(17.66) 

and the only remaining problem is showing that, given VI and V2 with -1 < 
Re VI < 0, -1 < Re V2 < 0, \Re (VI ± V2)\ < 1, and h3 E Seven(lR.2), one has 

\ (17f 
b(Vl,Od \xsinOl -~COSOl\-l-Vl dOl) # 

(17f 
b(V2' ( 2) \x sin O2 - ~ cos 02\-1-v2 d(2) 'h3) = 17f 17f b(vl, Od b(V2' ( 2) 

< \x sin 01 - ~ cos Ol\-l-Vl #\x sin O2 - ~ cos 02\-1-v2 , h3) dOl d02 . 

(17.67) 

We first show that the two sides of this equation depend analytically on 
VI, v2 in the larger domain -1 < Re VI < 0, -1 < Re V2 < 0, \Re (VI - V2)\ < 1, 
\Re (VI - V2)\ - Re (VI + V2) < 2. Concerning the left-hand side, recall from 
(17.52) that the integral that appears as the first factor there is none other than 
(hl)-ivl (x, ~): in view of the direct Definition (2.18) of such a symbol, it can be 
decomposed, since it is smooth outside ° and homogeneous of degree -1 - VI, as 
the sum of an integrable symbol and a smooth symbol with bounded derivatives 
of all orders: each of the two terms thus produces a bounded operator on L2(lR.). 

To study the right-hand side, we need a lemma. 

Lemma 17.5. Assume that -1 < Re VI < 0, -1 < Re V2 < 0, \Re (VI - V2)\ < 1, 
\Re (VI - V2)\- Re (VI + V2) < 2, and let h3 E S(lR.2). One has, for all 01 and O2 
in ]0,7r[, 

1< \x sin 01 - ~ cos Ol\-l-Vl #\x sin O2 - ~ cos 02\-1-v2 , h3 ) I 
s; C\sin(02 - Od\-l-min(Re vl,Re V2) (17.68) 

with some C > ° independent of 01 , O2. 

Proof. We first give a slightly modified version of Theorem 11.3, using a contour 
deformation i).. I---> -€ + i).., ° < € < 1, ending up with 

(17.69) 
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with 

-l+E-Vl +v2-i). -1+e:+vl-v2- i >.. 

hiHA(X,~)= L Cj(Vl,V2;-c+i.\)IXlj 2 1~lj 2 (17.70) 
j=0,1 

Looking at (11.27) and (11.29), we find that this integral decomposition is valid 
under the new conditions 

-1 < Re Vl < 0, -1 < Re V2 < 0, IRe (Vl - V2) I < 1 - 10, I Re (VI + V2) I > -1 - 10 . 

(17.71) 
This leads to the following modified version of (17.62): 

Ix sin 01 - ~ cos Oll-l-v! #Ix sin O2 - ~ cos 021- l - v2 = 1: (g~~:~:)iC:+A (x,~) d.\, 

(17.72) 
with 

-l-c-1-'l -V2+i>. 

(g~~:~:)iC:+A(x,~)=lsin(02-0dlj 2 L Cj (Vl,V2;-c+i.\) 
j=O,l 

-1+1.::-1/1 +v2-i>.. -1+E+vl-v2-i>.. 

IxsinOl-~COSOllj 2 Ixsin02-~cos02Ij 2 

(17.73) 

where Cj (VI, V2; -10 + i'\) is defined from (11.27) by analytic continuation: indeed, 
when the matrix (::~ ~~ = ~~: ~~) lies in G, i. e., when sine O2 - 01 ) = 1, this follows 
from (17.70) together with (2.5). If this is not the case, a simple homogeneity 
argument will do, after one has divided the first row of the matrix that precedes 
by sin(02 - 01 ). 

Consider, for large N, the integral 

1 -l+E-Re (/.11-1-'2) -l+£+Re (V1- V2) 

1= IxsinOl-~coSOll 2 Ixsin02-~cos021 2 

lJl'.2 

(1 + x2 + e)-N dx d~. (17.74) 

Assuming for instance Re V2 < Re Vl, one may write the integral I, setting 
0= O2 - 01 , as 

(17.75) 
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Thus, recalling from (11.31) that the coefficient Cj (l/l , l/2; -c:+i)..) is bounded 
by a constant times (1 + 1)..1) ~(Re (V1 +V2)-c), we get 

I ( (g~~ :~~ )ic+A, h3) I 
::; C I sin OI-l-£-R~ (V1 +V2) (1 + 1)..1) ~Re (V1 +V2) I sin OI-l+£+R~ (V1 -V2) 

= C I sinOI- l - Re V2 (1 + 1)..I)~Re (V1+V2). (17.76) 

Finally, the d)..-summability is achieved by the use of the integration by parts 
associated with (11.32). D 

End of the proof of Theorem 17.1. Since the exponent of I sin(02 - Odl on the 
right-hand side of (17.68) is > -1, and the two functions b(l/j, OJ) are bounded, 
the integral on the right-hand side of (17.67) is convergent and (just like the 
left-hand side, as observed above), depends analytically on l/l, l/2 in the domain 
characterized by (17.71). One may thus be satisfied with proving (17.67) under the 
additional assumption that Re l/l < -~ and Re l/2 < -~. To that effect, introduce 
the harmonic oscillator L = Op(7r(x2 +e)) and its domain D(L) as a self-adjoint 
operator in L2(1R). Then D(L) c U'''(IR) and D(L), with its proper Hilbert 
space structure, is acted upon in an isometric way by all operators Met (g) , 9 
lying above the subgroup K = 80(2) of C. It then follows (by a reduction to 
the case when 01 = ~) that, since -1 < Re l/l < - ~, the operator Avdh : = 
Op(lx sin 01 -~cosOll-l-V1) sends D(L) to L2(1R), as well as L2(1R) to D(L- l ), 

with a norm independent of 01 , Recalling that the two functions b(l/j, OJ) are 
bounded, we may thus write 

(1" b(l/l' 01 ) A V1 ,(h dOl) (1" b(l/2' O2) A V2 ,02 d02) 

= 1" 1" b(l/l, Od b(l/2' O2) AV1 ,Ol AV2 ,02 dOl d02 , 

(17.77) 

an identity between two bounded operators from D(L) to D(L -1): this concludes 
the proof of Theorem 17.1. D 

Remark. Recall from (11.1) that 

(17.78) 

It is immediate that 

(17.79) 
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From this equation, and Theorem 17.1, it is clear that one gets for hl #h2 (resp. 
o 

hl #h2 ) the same expression as that provided by (17.1), (17.2), after one has kept, 
1 

on the right-hand side of (17.3), only the terms with j = 0 (resp. j = 1). 
We must now recall a few facts concerning the Radon transformation, and 

the result of some computations performed in [62, Section 4]. We parametrize the 
generic elements of the subroups N, A, K occurring in the Iwasawa decomposition 
of G = 8L(2, JR.) = N AK as 

a = (e; e~~) , k = ( co~ ~IJ 
-sm 2 

(17.80) 

Following the normalizations in ([23], ch.II, §3), we set dn = 1f- l db, da = 1f dr, 
dk = (41f)-ldO, which corresponds to the choice of the Haar measure 

dg = e-2p(ioga)dndadk (17.81) 

on G = N AK. Recall that p, the positive half-root, is the element of a* charac­
terized by p ((6 ~d) = 1. 

The homogeneous space G I K is identified with the Poincare upper half­
plane II in the standard way: its base point is i. Since the class of 9 E G in 
GIN is characterized by the left column of the matrix g, the space 3 = GIMN, 
with M = {±I}, can be identified with the quotient of JR.2\ {O} by the equivalence 
relation which identifies two points, the negative of each other: in other words, 
functions on 3 are to be identified with even functions on JR.2\ {O}), and the correct 
measure to be used on 3 is [62, (4.3)] that which corresponds to the Lebesgue 
integral of even functions on the whole of JR.2. Also, the natural base-point of 3 is 
±(1,0). 

One then defines the Radon transform V from functions f on II to functions 
on 3 by the formula 

(V l)(g.(l, 0)) = L f((gn).i) dn (17.82) 

and its dual transform V* (from functions h on 3 to functions on II) as 

(V*h)(g.i) = [h((9k).(1, 0) dk. (17.83) 

The two operators V and V* are formally adjoint of each other under the 
given normalizations of the measures on II and 3. However, V is not an isometry, 
and does not have a dense range in any meaning: the second of these two facts is 
fundamental, but the first one is a defect, which can be repaired with the help of 
the operator 

( 1f)! r (! - i1f£) 1 100 
1 . T = - 2. = 1f-2 (-i1f£) C2 (1 + t)-Ht7rt: dt. 

2 r( -Z1f£) 0 
(17.84) 
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Recall that [is essentially self-adjoint on L~ven(I~2) when given the initial domain 
C~en(Il~.2\{O}), and that t 2i7r£ was made explicit in (2.10). The operator TV is 
an isometry from L2(II) to some subspace of L~ven(I~2), which we shall describe 
presently. Set, as an operator on L~ven(l~2), 

r G + inc) ( )-2i7r£ 
'" = ( I . ) 2n g, r "2 - m[ 

(17.85) 

an involutive unitary transformation. To understand "', one may note ([56], Propo­
sition 4.1) that if h(x,~) = hO(x2 + e), then (",h) (x, ~) = (x2 + e)-lho((x2 + 
e)-I). 

The following is taken from [62, Theorem 4.1]. 

Theorem 17.6. The unitary transformation TV, initially defined on the space of 
continuous functions on II with a compact support, extends as an isometry from 
L2(II) onto the subspace Ran(TV) of L~ven(I~2) consisting of all functions invari­
ant under the symmetry T",T- I . The operator V*T* extends on Ran(TV) as the 
inverse of TV, and is zero on the subspace (Ran(TV))l.. of L~ven(IR.2) consisting 
of all functions h with T",T-Ih = -h. Moreover, the isometry TV intertwines the 
two quasi-regular actions of G = 8L(2, JR) on L2(II) and L2(3) respectively, and 
transforms the operator A - ~ on L2(II) into the operator n2[2 on L2(3). 

We need to recall from [62, (4.34) and (4.36)] the formulas 

(TVf)~(s) = ~(2n)-~ r:~) l ('Zr: :12) -!-if f(z)djL(z) 

and 

r e- i .>.) 100 (Iz - SI2)-!+if 
(V*T*h.>.)(z) = (2n)-! (~) h~(s) r ds. r 2 -00 m z 

Also, from (11.4), (11.6), together with Theorem 17.6, it follows that 

r (Hi.>.) r e- i .>.) 
V*T*(TVf).>. = % r (%) r (4) fl'>'l· 

(17.86) 

(17.87) 

(17.88) 

We are now in a position to relate the Weyl sharp product on even functions 
on JR2 to the pointwise products and Poisson brackets of functions on II. 

Lemma 17.7. Given hE Seven(JR2), one has for all >. E JR, 

(17.89) 

and 
i>. ( i>.) (u~IOp(h.>.)u~) = -2i>. (2n)T r -"2 (V*T*h.>.)(z). (17.90) 



212 Chapter 4. Further Perspectives 

Proof. Recall that the role of the Wigner function W (u, v) associated with a pair 
offunctions u, v E S(JR) was explained in (2.3),and that W(uz, uz) and W(u;, u;) 
were made explicit in (2.27) and (2.28). We need the decomposition of these two 
functions into homogeneous components: with the notation (2.13)-(2.16), it has 
been found in ([62], (13.14), (13.15)) that 

(17.91) 

and 
(W(u;, u;))~ = iA (W(uz , uz))~. (17.92) 

Then, using also (17.48), one has for every hE Seven(JR2 ), 

(uzIOp(h.x)uz ) = (h.x, W(uz , u z )) 

= 47r i: h~(s) W(uz,uz)~.x(s) ds, (17.93) 

so that (17.89) follows from (17.95) and (17.87); (17.90) then follows from (17.96). 
o 

The following theorem should be compared to Theorem 11.4: 

Theorem 17.8. Given hl and h2 E Seven (JR2 ), one has for all A E JR, and all 
Z E II, the equations 

(uzIOp((hl #h2).x)uz ) = 7r2 t,( -i)j i: i: 
r (l-ti.x) r (l2i.x) 

[ (uzIOp((hd.xJuz) x (uzIOP((h2).x2)UZ)] dAl dA2, 
J l.xl 

(17.94) 

and (u;IOp((h l #h2).x)u;) is obtained by the same formula, substituting u; for 
Uz everywhere and inserting the extra factor .x:~2 under the integral. 

Proof. To start with, we need to recall again two formulas from [62]. Propositions 
8.1 and 8.2 there deal with two functions Ul and U2 on the real line, and with 
their lifted-up versions u[ and u~ as homogeneous even functions on JR2 of degrees 
-l-iAl and -1-iA2: the operation u f---> u~ is the reciprocal of the operation h.x f---> 

h~ defined in (2.15), and we shall assume here, to start with, that Ul = (hd~l and 

U2 = (h2)~2 for some functions hl and h2 E Seven(JR2), so that u~ = (hj).xj. The 
regularity assumption in the two quoted propositions is that Ul and U2 should 
belong to the spaces C~l and C~2 of CCXl-vectors of two representations 7ri.xl 
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and 1fiA2 taken from the class one principal series of G: there is no need to define 
these spaces here, as it suffices to recall from [62, (13.17)] that, indeed, h~ does 
belong to the appropriate space Cif whenever hE Seven(lR2). We may then quote 
the two propositions under consideration in one stroke, using the notation (11.2): 
if hl and h2 lie in Seven(lR2), one has for almost all s, and j = 0,1, 

x r(~)r(~)r(~) 
r( 1-;(-"+-"1 +-"2)+2j )r( 1+;(-"--"1 +-"2)+2j )r( l+;(-"+-"~ --"2)+2j )r( 1+i(-"--"~ --"2)+2j ) 

Thus, from (17.99) and Theorem 17.1, 

(hl #h2)A = 41f t,( -i)j i: i: (21f) i(->'+;1 +>'2) 

r (-~A1 ) r (-~A2 ) r (ii ) 

Next, using Lemma 17.7, 

Using also 

a consequence of (17.88), finally, in the same way as in (17.101), 

(17.95) 

(17.96) 

(17.97) 

(17.98) 

(17.99) 

one proves the first part of Theorem 17.8. The second one is the result of a com­
parison of (17.89) and (17.90). D 
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The game can be played in reverse, yielding 

Consider for instance two homogeneous symbols in the commutant of the har­
monic oscillator, introduced just after (17.76) and needed to complete the proof 
of Theorem 17.1: 

Theorem 17.9. Let 7f£(x,~) = 7f(X2 + e) be the symbol of the harmonic oscillator 
-I-VI -1-v2 

L. Assume that -1 < Re l/1 < 1, -1 < Re l/2 < 1. Let h = £ 2 #£-2- be the 
composition of the two Weyl symbols under consideration. Then 

1 Vl+V2-i.>..-1 -l-i.>.. 

h>. = 4(27f) 2 £-2-

x r (1+vr~v2-i>') r (1+Vl4,"2+i>') r (1-VJ ~V2±i>') r (1-VJ 4,"2-i>.) 
r(liVl)r(liV2)r(I;>') 

Proof. From ([53], (1.6) or (1.8)), one has 

Op(e-27r8£) = (1 _ 8 2)-! (~ ~:) L , o<s<1. 

Setting, for 0 < 81, 82 < 1, 

(1 - 81)(1 - 82) 1 - 8 

(1 + 81)(1 + 82) 1 + 8' 

+ 2 (1 8 2 )(1 8 2 ) i.e., 8 = 18+J 8 2 , hence 1 - 8 = - J -2 one sees that 8182 {1+8182)2 , 

a formula still valid, by analytic continuation, for 81 > 0, 82 > O. Since 

( )~ 00 
-1-v 27f 2 1 -27r8£ v-I 

£ 2 = (.!±!) e 8 2 d8, 
r 2 0 

Re l/ > -1, 

one has 

h: = £ -1~VJ #£ -1~V2 

(17.101 ) 

(17.102) 

(17.103) 

(17.104) 

(17.105) 

(17.106) 
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Thus 

(17.107) 

with 

J(VI, V2;'>') = 1= 1= 8;1;1 8;2;1 (81 + 82) -i;-l (1 + 81 8 2) 1\-1 d81 d82 

1 r (H V d;t2-iA) r e+v1 72+iA) r e-Vdt2+iA) r e-V] 7 2- iA ) 
"2 r e-;iA) r e-tiA) 

(17.108) 

1 1 
where the last equality is obtained by the change of variables 81 = t"2 x-"2, 82 = 

t!x!. D 

Remark. One cannot help noticing a certain analogy between the coefficient in 
(17.101) and the one in the integral term of (15.33). This is quite justified, since 
in both cases we are interested in the expansion into homogeneous components 
of the sharp product of two homogeneous objects: only, these are r-invariant in 
(15.33) and K-invariant (K = 80(2)) in (17.101). 

Theorem 17.9 gives a quite different proof of the following formula, first given 
by Mizony, whose proof [33, 34] depends on an ingenious identity concerning the 
function :?2: 

Corollary 17.10. For every Ii ;:::: 1, one has 

(17.109) 
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Proof. From (17.89), then (17.87), it follows that 

(u z IOp(£-l;-iA )uz ) = 2 (27r)i>' r (_ i;) (V*T*£-l;-iA )(z) 

where d is the hyperbolic distance on II: the last equation is a special case of the 
formula 

1 J= (IZ- SI2 )-!+!f-(IW- SI2 )-!-!f-;;: _= 1m Z \ 1m W ds = ~_!+!f-(coshd(z,w)) (17.111) 

proved in [62, (4.38)]. The corollary is then a consequence of Theorem 17.9, 
(17.100) and (17.110), setting 6 = coshd(i,z), together with the observation that 
the integrand on the right-hand side of (17.109) is invariant under the change of 
A to -A. Of course, a symbol such as £-1;-'" does not lie in S(1l~2), but this is 
easy to repair, using instead the approximation 

l+i..\ (Xl 

-l-iA 2 n (27r) 2 r 2 ( ) n 2 i>'-l 
(c + £)-2- e- 7rC:~ = r (¥) Jo e- 7r S+C: 'e- 7rC:S S-2- ds. 

D 

Remarks. A few remarks concerning either the OpP -calculus or a comparison be­
tween the results of Sections 15 and 17, are in order. 

Theorem 17.1 extends to the OpP-calculus, with the sole difference that 
the Gamma factors on the right-hand side of (17.3) (the coefficients denoted as 
Aj(Vl, V2; iA) in (17.43)) should be replaced by some coefficients A~(Vl' V2; iA): for 
the proof of Theorem 17.1 relied entirely on Theorem 11.3 (the spectral decom­
position of the sharp product of two power functions), and it has been proved in 
Theorem 12.9 that Theorem 11.3 extends to the OpP -calculus, at the sole price of 
changing the coefficients Cj(Vl, V2; iA) to p-dependent coefficients. That we do not 
write the OpP -version of Theorem 17.1 explicitly is only due to the fact that the 
results of Section 12 do not make the coefficients CJ(Vl' V2; iA) fully explicit: they 
are given instead by recurrence relations. It is only when p = 0 (the Weyl case) that 
the formulas which are the results of Theorems 17.1 and 17.8 are actually simpler 
for the full calculus than for its even-even and odd-odd parts considered separately. 
This may be the occasion to state that Theorem 17.1 extends to the case when 
symbols which are not necessarily invariant under the map (x,~) ~ (-x, -~) are 
considered. Indeed, this more general case is considered in [62, Theorem 5.3]: even 
though the proof there is far from being as complete as that of Theorem 17.1 in 
the present work, only the algebra differs. 
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Concerning the sharp product of automorphic symbols, our first guess of 
Theorem 15.1 was based on a simultaneous consideration of Theorem 17.1 (in its 
earlier version from loco cit.) and of the results of [62] regarding the Roelcke-Selberg 
decomposition of the product or Poisson bracket of two Eisenstein series. Indeed, 
denote as e the map introduced in Proposition 2.1, which associates with an au­
tomorphic distribution h a pair of automorphic functions on II, namely the two 
functions z f---+ (u~IOp(h)u~), p = 0 or 1. Then Theorem 17.8, a consequence of 
Theorem 17.1, would seem to relate the Roelcke-Selberg decomposition of the im­
age under e of the symbol .Jt #~~2 to that of the two functions Ei-Vl . ELv2 

-2- -2-

and {Ei-Vl , Ei-V2 }. Only Theorems 17.1 and 17.8 are very far from being appli-
2 2 

cable to such singular distributions as ~~l and ~~2' Still, disregarding difficulties 
and concentrating on the computations, we certainly got in this way the right 
result: this was a third verification of the formula for the sharp product of two 
Eisenstein distributions since, besides the genuine proof in Sections 12 to 14, we 
already gave a completely different heuristic "proof" of it in Section 5. 

It is clear, from such formulas as (6.21), that the two main theorems regard­
ing the existence of explicit formulas for ~L #~~2 or ~~#(~;,£)~ should admit 
extensions to the case when #P (p = 1,2, ... ) is substituted for #, in other words 
in the OpP -calculus. That we have not made these formulas explicit is due to 
the following two reasons: first, more readers are likely to be interested in new 
facts concerning the ubiquitous Weyl calculus than in the structure of new calculi; 
next, when p 2 1, the formulas should again be more complicated and involve 
coefficients only determined by recurrence relations. Still, it is important to note 
that, contrary to the case of the Weyl calculus in which the definition of ~~l #~~2 
had to be somewhat indirect, based as it was on Proposition 13.1 (a definition 
of t:(~L #~~2) rather than of ~~l #~U, the definition of ~~l #P~~2 would be 
perfectly natural for p 2 2, in view of Theorem 10.6. 

18 Odd automorphic distributions and 
modular forms of non-zero weight 

Our purpose in this section is to stress that the whole Weyl calculus, not only the 
part associated with even symbols, has interesting connections with modular form 
theory. Our emphasis is not on the interesting new arithmetic facts that emerge 
when substituting for r a congruence subgroup r', or when twisting the definition 
by characters of r': only, doing this is unavoidable in the present context. 

As a consequence of Proposition 2.1, an automorphic distribution <5 can 
be characterized by a pair of non-holomorphic modular forms f O and fl, where 
JP(z) = (u~IOpv'2(<5)u~). That one gets a characterization is due to the fact that, 
by definition, an automorphic distribution is even (since the matrix (-r/ ~l) lies 
in r): consequently, the associated operator commutes with the map u f---+ U. 
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We now generalize the concept of automorphic distribution, allowing a sub­
group r' of r and a character X of r' to enter the picture: a r'-automorphic 
distribution 6 with character X shall be any tempered distribution satisfying the 
equation 

60 g = X(g) 6 (18.1) 

for all g E r'i the left-hand side of (18.1) is still defined by the equation (6 0 g, h) = 

(6, h 0 g-l) for every h E S(]R2). Introducing a non-trivial character is unavoid­
able if one wants, so as to give ]R2 (as opposed to II) its full role, to consider 
odd symbols as well. Indeed, the equation (18.1) cannot be valid, if 6 =I- 0 is 
odd, unless the condition X( ((/ _~\)) = -1 is satisfied (assuming of course that 
-J E r'). 

In the odd case, instead of the above-defined functions jO and j1, we must 
now consider the functions jO,l and p,o, where 

(18.2) 

again they characterize the (odd) distribution 6. As will be seen, the two func­
tions so defined will be modular forms of weights =fl and character X. We take 
from [8, p.135] the definition of a r'-modular form of weight k and character X, 
with X( ((/ ~1)) = (-1) k, as a Coo function j on II, satisfying the automorphy 
condition 

( aZ+b) (a+bZ-1)k 
j cz+d = la+bz-11 X(g)f(z), g = (~~) E r' , (18.3) 

at the same time of moderate growth at infinity (i. e., bounded by some power of 
1m z as 1m z -+ 00) and an eigenfunction of the Maass differential operator [8, 
p.129] 

6.. k = 6.. + ~ kIm - - z - + z ---= . . (1) ( 2 0 -2 0 ) 
z oz OZ 

(18.4) 

One may remember that the usual definition (loc.cit.) involves the mUltiplier 
(1~~t~l)k instead of the one above: the two notions are related by the fact that, 
with 

(Skf)(Z) = (1;1) k j(z) , (18.5) 

the function SkI j is automorphic in the usual sense if and only if the function j 
is automorphic in the sense of (18.3). Our present slash operator thus has to be 
defined as 

a + bz- az + b ( I) ( 1 )-k ( ) 
j kg (z) = la+br 11 j cz+d (18.6) 

and the operator 6.. k is the conjugate, under the Sk-transform, of the usual oper­
ator fi. k = 6.. + ik (1m z) (!}z + !1z) : it is also the conjugate of fi. k under the map 
jf-7j, ](z)=j(-~). 
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One may also recall (loc.cit., p.144) that the study of Maass forms of gen­
eral integral weights can be essentially reduced to that of forms of degrees 0 
and 1. As a matter of fact, it is quite possible to obtain Maass forms of arbi­
trary integral weights j - k in a direct way, substituting for (u~IOP.J2(6)u~) or 
(u~IOP.J2(6)u~-P), with p = 0 or 1, more general expressions (v~IOP.J2(6)v~), 
where the function v~ (not to be mistaken for u{ except in the cases when 
j = 0 or 1) is the j-th eigenfunction of the z-dependent harmonic oscillator 

Lz = Op(rr IXi:::12). However, this may not be necessary since in any case an even 
or odd automorphic distribution is fully characterized by two of the four functions 
(u~IOP.J2(6)ui) with p = 0 or 1, q = 0 or 1. 

Concerning the unavoidable occurrence of the intertwining operator 8k , we 
must emphasize again that the constraint of compatibility with the Weyl calculus 
left us no choice whatsoever (it is essential that one should have Met (g) U z = 
(J(g, z) ug .z for some complex number (J(g, z) of absolute value 1): to see it in 
a different light, let us mention that some formulas would have been simpler if 
we could have worked throughout - as we did in [55] - with the right half-plane 
rather than the upper half-plane. On the other hand, one may observe that no 
automorphy condition could be simpler than (18.1), which concerns automorphic 
distributions rather than modular forms. 

It may be interesting to start with an effective construction of all characters of 
r, which can be neatly done with the help of the metaplectic representation Met: 
recall that this is a representation, in S' (~), of the two-fold covering 8L(2,~) of 
8L(2, ~), and we are interested in its restriction to the part r of 8L(2,~) that 
lies above r. Though it is rather delicate (the Maslov index theory is needed in 
general, and quadratic residue symbols are necessary [44] for the arithmetic case) 
to make the representation Met explicit without any ambiguity, it is quite easy 
to describe it up to the ambiguity factors ±1: indeed, right after (2.4), we have 
recalled that the unitary transformations associated with points 9 that lie above 
the points 9 = (t ~) and (~1 A) of r (these two matrices of course generate 
r) are respectively the operator of multiplication by the exponential exp i7fx2 

and e-¥- times the Fourier transformation. Now, if E is any even-dimensional 
subspace of S'(~) invariant under the metaplectic transformation, and if MetE 
is the metaplectic representation considered as acting only on E, it is clear that, 
defining for any 9 E r the number X(g) as the determinant of MetE(g), one gets 
a character of r which actually can be identified to a character of r (since, up to 
the possible multiplication by -1, MetE(g) only depends on the image of gin r). 

Proposition 18.1. Given any even number N ~ 2, the linear subspace EN of 
S'(~) a basis of which is provided by the distributions VN,q (q mod N) with 

VN,q(X) = L8 (x - (j + ~) -IN) (18.7) 
jEZ 

is invariant under the metaplectic representation restricted to r. 
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More precisely, for every q, one has 

and 

(18.8) 

The associated character XN = det Met EN, as explained just before the state­
ment of Proposition 18.1, is given on generators of r by 

1 0 i7r (N-l)(2N-l) 

XN (( 1 1)) = e 6 and (18.9) 

If 61N, XN generates the group of all characters of r. 

Proof. The first of the two formulas (18.8) is trivial. For the second one, we use 
Poisson's formula 

~e2i7rakX = lal-1 ~8 (x -~) , 
valid for any real number a =I- 0, to find 

(FVN,q)(X) = Le-2i7r (k+ M VNx 
k 

-2i7r~ """ -2i7r k 'IIi x =e vN~e YlV 

k 

N-! -2i7r.!E.. """ J;: ( k) = 2e .,fN ~u x---
k .jN 

N-! """ -2i7r !l.!o'. J;: ( k) = 2~e NU x--- . 
k .jN 

(18.10) 

(18.11) 

Setting k = Nj + r, r mod N, we get the second of the two formulas (18.8). 
The determinant of the matrix associated with the multiplication by ein2 is 
exp ~ (12 + ... + (N _1)2) = expi7r(N-l)~2N-l). The determinant of the matrix 

associated with the transformation e-~ F is e- i
"/, N-If times the determinant 

D. = det (((}qk)O~q,k~N-I), where (} is a primitive Nth-root of unity. In view ofthe 
relation (e-~ F)2 = -iC with Cv = ii, together with CVN,q = VN,-q, it is easier 
to compute D.2, which is det ((bqk)O~q,k~N-l) with bqk = 0 unless q + k = 0 

2 (N -l)(N -2) N 
mod N, in which case bqk = N; thus D. = (-1) 2 N. This yields 

N (N -l)(N -2) 
XN((-'?l ~)) = ci for some c = ±1, since i- x (-1) 2 = -1 as N is 
even. 



18. Odd automorphic distributions and modular forms of non-zero weight 221 

Set s = C~d) and t = on, so that S2 = (st)3 = (/ ~1)' Thus, for 
any character X of r, Xes) must be a fourth root of unity, and X(st) must be 
a sixth root of unity; also, r can have at most 12 characters. Now, as shown 
by what has already been proved of (18.9), XN(S) is a primitive fourth root of 
unity for every N, and XN(t) is a primitive third root of unity whenever N is 
divisible by 3, which proves the last statement in Proposition 18.1. Finally, since 

3 . (N-l)(2N-l) 
X( -st) = Xes t) -ci e'11" 6 is a third root of unity, it follows that 
c=(-l)1¥-+l. 0 

Remark. In particular, there are six characters X of r such that X( (/ ~ 1 )) = -1. 

We first justify the claim above concerning the link between r'-automorphic 
distributions with character X and the corresponding modular forms. 

Theorem 18.2. If 6 is a r' -automorphic distribution with character X, homoge­
neous of degree -1 - i).., the function 

fO,l(z) = (u Z IOPV2(6) u;) 

= (6, T!-i11"£ W(uz, u;)) (18.12) 

is a r'-modular form of weight -1 with character X, on which the operator D.-I 
takes the eigenvalue li,t. 

The same holds with the function f 1,O(z) = (u;IOPV2(6) u z ), only changing 
the weight -1 to 1. 

Proof. First, we establish the equation 

1 ( (1))-! i Ix-z~12 W(uz,u;)(x,~)=27r2 1m -~ ~(x-z~)exp-27r Imz (18.13) 

to do this, we note that the case when z = i, i.e., 

(18.14) 

is an easy consequence of (2.2). Next, observe that when restricted to the subgroup 
N'A of SL(2,lR) = NAK, where N' is the image of N under the conjugation by 
the matrix (~(/), the metaplectic representation can be defined by the formulas 
which follow (2.4), without any need for lifting them to some cover of the (simply 
connected!) group N' A. In particular, setting 

(18.15) 

one sees from (2.24) that Met( (~ a~l )) uf = u~, p = 0 or 1, provided that 

z = a~~i' Then, from the covariance formula (2.6) and the fact that W (1), 'tP) is 
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also the Weyl symbol of the rank-one operator v f-+ (¢lv)'ljI, one finds 

W(uz , u;)(x,~) =21f! (a-Ix + i(cx - a~)) 

x exp -21f[a-2x 2 + (cx - a~)2l, 

the same as (18.13) in view of the equation defining z in terms of a, c. 

(18.16) 

From this identity, one routinely checks the transformation formula (using 
(18.6) with k = -1) 

W(uz,u;)(x'~)I_/ = W(uz,u;)(dx - b~, -cx + a~) 
= W(uz, u;)(g-1.(x,~)) (18.17) 

and the same applies after one has substituted 2-!-i1rE W(uz, u;) for W(uz, u;). 
Then, 

( fo,11 ) (z) = a+bz-1 fo,1 (az+b) 
-1g la+bz-1

1 cz+d 

a+bz-1 / _1-i1rEW( 1)) 
= la+bz-11 \6,2 2 ug.z,ug.z 

= ( 6, (x,~) f-+ T!-i1rE W(uz'U;)(X'~)I_/) 
= \6, (T!-i1rE W(uz , u;)) 0 g-1) , 

(18.18) 

where we have used (18.17) at the end. If 6 is automorphic, the last expression 
coincides with X(g) fO,1(z) when g E r', so we are done for the first part, for what 
concerns the transformation rule. The differential equation will be a consequence 
of the more general lemma that follows. 

Next, 6 is automorphic with character X if 6 is automorphic with character 
X, and P,O(z) is the complex conjugate of (uz IOpy'2(6) u;), which reduces all 
that has to be proven about f 1,0 to the similar facts regarding fO,1. D 

Looking at the formula (18.13) for W(uz, u;)(x, ~), we need to establish that 
all functions in a related class satisfy a certain differential equation, comparable 
to (2.29) but more complicated. 

Lemma 18.3. Given any Coo function ¢ on [0,00[, the images under the operators 
~-1 - ~ and 1f2 £2 of the function 

x-z~ 

z 
(18.19) 
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are the same. It should be understood, of course, that the first (resp. the second) 
of the two operators acts on the given function when considered as a function of 
z (resp. (x, ~)). 

Proof. Start from the function 

(18.20) 

it is the transform, under the involution f f-+ j (cj. what follows (18.6)), of the 
function (1m z)-! ¢(I~ z)' whose image under the operator ilk mentioned right 
after (18.6) is easily computed to be 

- - (1m Z)-2 ¢ -- - 3 (1m Z)-2 ¢' -- - (1m Z)-2 ¢" -- . 3 1(1) 3 (1) 5 (1) 
4 ~z ~z ~z 

(18.21) 

It follows that 

(18.22) 

Now, choosing some matrix 

= (a b) = (-~ x) g cdc d (18.23) 

such that (n = g-l. (..~\), we get 

(18.24) 

We can then apply the fact that the slash operation of weight -1 commutes with 
the operator .6.-1 , finding 

~-, [x~z~ (1m (-Dr' ¢C'r;;,Z;[')] ~X~Z~ (1m (-Dt 
x [_~¢(IX-Z~12) _3Ix-z~12 ¢' (lx-z~12) _ (IX_Z~12)2 ¢" (IX-Z~12)]. 

4 Imz Imz Imz Imz Imz 

(18.25) 
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On the other hand, since x, ~ only enter the function under consideration 
through two homogeneous combinations, it is not difficult to find 

~2t:2 [x~z{ (1m (-Dr' ¢C\;;'Z;12)] ~X~Z{ (1m (-Dr' 
x [_¢(IX-Z~12) _3Ix-z~12 ¢' (IX-Z~12) _ (IX_Z~12)2 ¢" (IX-Z~12)]. 

Imz Imz Imz Imz Imz 

(18.26) 

o 

Needless to say, since W(u~,uz) = W(uz,u~), the consideration of f 1,0 in­
stead of f o,l leads to the consideration of the class of functions analogous to (18.9), 
with z-l (x-z~) replaced by its complex conjugate: then, the same result applies, 
only substituting 6.1 for 6.-1 . 

Remark. Let L be the standard harmonic oscillator considered in Theorem 17.9 
or in the end of the proof of Theorem 17.1, also as the case s = 0 of the operator 
A of Proposition 7.15: L = Op(x2 + e). A complete orthonormal basis of L2(~) 
is provided by the sequence (Vk)k>O, with vk = (k!)-!A*kv, where A* = 

IT! (x - 2~ d~) and v(x) = 2i e-1rX2 • i~ terms ofthe ordinary Hermite polynomials 
Hk, one has 

vk(x) = 2i-~ (k!)-! e-1rX2 Hk (...j2; x) . (18.27) 

More generally, given any point z E II, consider the oscillator 

L - 0 ( Ix - z~12 ) 
z- P IT I . mz 

(18.28) 

Considering the image under the metaplectic representation of some 9 lying above 
the matrix (a ~l)' one sees that, if z = L, the functions vzk defined as c a ac-'l. 

(18.29) 

constitute a complete orthonormal basis of eigenfunctions of the oscillator L z . 

Then, substituting for the function f O,l in (18.12) the function 

(18.30) 

Theorem 18.2 fully extends, only substituting the weight j - k and the operator 
6. j -k for -1 and 6.-1 . 

One can now generalize the Dirac and Bezout distributions: given a subgroup 
r' of r and a character X of r' trivial on the subgroup r'~ = r' n r~, we set, 
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with () and b defined as in (3.29) and (3.30), 

and, formally at least, 

~~rime = 27r L X(g) () 0 g-1 

gEr' /r'~ 

(18.31) 

These are r'-automorphic distributions with character X as defined in (18.1). 
There is of course no convergence problem (in the space of tempered distri­

butions) regarding the first of these two series, but we must again consider the 
second one more carefully. Assuming that -I = (-rl ~1) E r', the case when 
X( -I) = 1 is taken care of by Theorem 3.3, requiring that one should consider, 
for e ;:::: 1, the distribution 

SEi = ~ " X(g) be 0 g-1 (18.32) x 2 ~ 
gEr' /r'~ 

instead of SEx' 
In the case when X( -I) = -1, we need to reconsider our definition slightly 

(cf. the observation that immediately precedes the statement of Theorem 3.3), and 
we introduce instead of be and SE~ the distributions 

ce = (7r2 &2 + ~) (7r2 &2 + ~) ... (7r2 &2 + (e - ~ r) b (18.33) 

(compare (3.40)) and 

(18.34) 

we can now give an analogue of Theorem 3.3. 

Theorem 18.4. Assume that e ;:::: 1. The series defining < ct~ , h) converges when­
ever the function hE S(JR2 ) lies in the image of S(JR2 ) by the operator 2i7r&. 

Proof. Starting from (3.52), and noting that the operator [2i7r&, a - 2~71" tsl = 
a + 2~71" ts is also the operator which occurs on the right-hand side of (3.51), one 
finds the equation (applying (3.52) to h = 2i7r& f rather than f) 

. [ 2 2 l) 47r2 ( ( 1 a) 2 . ) 1n,m(2Z7r& -47r & - 1 f = - m 2 1n,m a + 2i7r as . 2Z7r& f 

+ :: 1n,m ( (a2 + 4:2 :s22) f) , (18.35) 

from which the theorem follows, with the help of Lemma 3.4. o 
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One should note, however, that the function f o,1 associated with <t~ - con­
trary to f1,0 - will be zero for an arbitrary choice of x. For the distribution b 
introduced in (3.30) is invariant under the Fourier transformation :F in (2.7), hence 
2-!-i7rC b is invariant under 9 and, as explained right after (2.9), the operator 
Opy'2(b) = Op(2-!-i7rC b) vanishes on odd functions; so does, then, OPy'2(lEx) 
considered on any space of odd functions on which it is meaningful. However, as­
suming X( -I) = -1, a non-trivial result may be obtained from the consideration 
of 

(18.36) 

where, setting z = x + iy again, 

1 

1 . C ( 7r ) 2 S - za Is - zal 2 
(T2-'7r W(u;,uz))(s,a) = -2 Izl-.-_- exp-7r-'---"""":"'-

y u y 
(18.37) 

Theorem 18.5. For any integer N :::: 1, and any complex number v such that 
Re v < -1, set 

(18.38) 

Then, for every integer £ :::: 1, one has, with <t~ defined in (18.34), the 
identity 

(18.39) 

Proof. Before giving it, we make a few observations. First, the extra factor I~I in 
(18.38) accounts for the operator 81 in (18.5): dropping this factor, one gets a 
f'-modular form of weight 1 with character X in the usual sense, actually, again, 
a Poincare-Selberg series. The number N in the exponent is not needed in the 
present theorem, but would occur, as shown in Proposition 5.3, when the action of 
Heeke's operators is considered. Finally, the series that defines (u; I OPy'2(<t~) uz ) 

is, indeed, convergent, though a direct claim to Theorem 18.4 is not possible. For 
the function W(u;, Ui) conjugate to the one in (18.14) does not lie in the image 
under the operator 2i7rE of any function in S(JR2 ): it can, however, with E: = 0 
or 1, be written as the image of the function 

either of which is either slightly singular at zero or not rapidly decreasing at 
infinity. 
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We start with the equation (a consequence of (18.36), (18.37)) 

(u; I Opyl2(b) uz ) = ~~ (~)! I: (8 - z) e2i7rS e- "18;zI2 d8 

= (27r)! r~ e2i7rZ , 

a result to be compared to (3.56). Then 

(u; I OPyl2( Cl) U z ) 

= (u;IOPyl2((7r2£2+~) ... (7r2£2+(£-~r) b) uz ) 

(18.40) 

=(b' (7r2£2+~) ... (7r2£2+(£-~r) . T!-i7re W(U;,U z )} • (18.41) 

Applying (18.40) and Lemma 18.3, we get 

(u; I Opyl2(Cl)Uz) =~d~I+2) ... (~1+£(£-1)) (u;IOpyl2(b)uz). (18.42) 

We thus compute, with f(z) = I~I e2i7rz , recalling from (18.4) that ~1 = 
~ +. (Z {) + z {)) 

~y i {)z Z {)z ' 

~dy f(z))=y ~f-2£y--£(£-I)f+~y -=-+----::- +- -=-- f , l l [ of . (z of Z Of) £ (Z Z) ] 
oy Z OZ Z oz 2 Z Z 

= [27r (2£ - 1) yHI - £(£ - 1) yl] 1;1 e2i7rZ , (18.43) 

so that 

~1 (~1 + 2)··· (~1 +£(£ -1)) (y.!..-e2i7rZ ) = (47r)£ ~.~ ... (£ -~) yHl.!..-e2i7rZ 
Izi 2 2 2 Izi 

(18.44) 
and 

(u1 lOp (c) u ) = (27r)! (47r)l r (£ + !) yHI .!..- e2i7rZ 
Z yI2 l Z r (~) Izl 

(18.45) 

On the other hand, using (18.13), we get 

( 110 ( -1)) / -1 2- 1 - i7re W( 1 )) Uz Py12 Clog Uz = \ Clog ,2 Uz, Uz 

= (Cl' T!-i7re W(u;, UZ ) 0 g) 
= (U; I OPyl2(C£)uz)llg-l. (18.46) 

The last equation, together with (18.45), leads to Theorem 18.5. o 
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19 New perspectives and problems in 
quantization theory 

The word "quantization" covers a variety of activities. We take it to mean, ap­
proximately (and half-jokingly), pseudo differential analysis plus harmonic analysis 
minus applications to partial differential equations. The rule of the game is to em­
ulate, as best one can, Weyl's 1926 definition of his symbolic calculus. Experience 
shows that there are many possible directions in which this can be achieved. We are 
concerned, here, only with situations in which a good group invariance is present, 
and we shall be especially interested in the structure of the composition formulas. 
We shall also raise a number of questions, some of which seem quite tractable. 

First, let us make it clear from the very start that we do not place much 
emphasis on Planck's constant (or on so-called deformation quantization either): 
as it is necessary to explain our reasons, we shall, very temporarily, introduce such 
a constant and denote it as f, since h has been consistently used in this text to 
denote functions on ]R2. The f-dependent one-dimensional Weyl's quantization 
rule is (compare (2.1)) 

(19.1) 

Let us start with a discussion of the variety of composition formulas available 
in the Weyl calculus, i.e., the variety of ways to analyze the sharp operation, 
defined by 

(19.2) 

Introducing the symplectic form [, ] defined by 

[(y, 17), (z, ()] = -y( + Z17, (19.3) 

the first formula (hereafter referred to as the global integral composition formula) 
appears in two fully equivalent versions, to wit 

(19.4) 

(where it has been found convenient to denote the pair (x,~) as X E ]R2), and 

(19.5) 

where L stands for the operator, on functions of (Y; Z) = ((y, 17); (z, ()), defined 
by 

. L (4·) -1 (82 82
) 

Z1f = Z1f - 8y8( + 8z817 . (19.6) 
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The Moyal formula is obtained after one has expanded the exponential 
exp( i7fEL) as a power series in E: it reads 

(19.7) 

Of course, the right-hand side makes sense, as a finite sum, in the case when the 
symbols hI and h2 are polynomials with respect to, say, the second variable, with 
smooth functions of the first variable as coefficients: these are just the symbols of 
linear differential operators. That the formula (with E = 1) is still correct, in some 
suitable asymptotic sense, when hI and h2 lie in appropriate classes of symbols, 
is part of the subject of pseudodifferential analysis, and may require some care. 

The role of the parameter E is fully justified in the Weyl calculus itself, as 
it is the parameter which distinguishes one particular representation in the main 
"series" of irreducible representations of Heisenberg's group. That a small param­
eter should be considered in the so-called semi-classical analysis of general and 
difficult problems of partial differential equations (the literature on this is im­
mense) is also, of course, beyond doubt. We are not forgetting, either, that the 
pioneers (Bohr, Dirac ... ) of quantum mechanics did put emphasis, in their "corre­
spondence principle", on E as making (through a limiting process) the connection 
from quantum mechanics to classical mechanics possible. However, it would lead 
to a considerable loss of information (and interest) to systematize the role of such 
"small" parameters in situations where a large group is present, in which one can 
do much better, relying instead on the combined resources of harmonic analysis 
and spectral theory. 

In this text, we made almost no use of the Heisenberg representation (of 
Heisenberg's group) into L2 (JR), which one may regard as a projective represen­
tation (i. e., a representation up to the correction by complex factors of modulus 
one) of the additive group of JR2 into L2(JR), namely that defined (we now fix 
E = 1) by 

(T(Y, ry)u)(t) = u(t - y) e2i7f(t-~)1) . (19.8) 

Starting from the function Ui (cf. (2.23)), hereafter denoted as 'I/J, such that 'I/J(t) = 
2t e-7ft2 , one gets a total set ('l/Jz) in L2(JR) if one sets 'l/Jx+iy = T(X,y)'I/J. More 
precisely, IIul1 2 = Ie 1('l/JzluW dxdy for every u E L2(JR) or, equivalently, 

U= [('l/Jz1U)'l/JzdXdy . (19.9) 

Of course, it should be clear to the reader that the subscript z E C in (19.9) 
bears no relation to the subscript z E II in U z , in (2.23). In the first case, it is the 
Heisenberg representation that is involved; in the second case, the metaplectic one. 
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Another symbolic rule (though one can hardly consider it as a symbolic calcu­
lus of operators) is that which assigns to an operator A on £2(JR) (under extremely 
weak assumptions regarding A) its Wick symbol j, the function on C defined by 
j(z) = ('lj!zIA'lj!z)P(IR). In the reverse direction, the operator with anti-Wick symbol 
9 (g living on C too) is defined as 

0Panti-Wick (g) U = [g( x + iy) ('lj!x+iy lu) 'lj!x+iy dx dy . (19.10) 

Recall that, with ~ = - ::2 - fir on C = JR2, any operator with an anti­

Wick symbol 9 has a Weyl symbol h = exp (- t) g, and every operator with a 
Weyl symbol h has a Wick symbol j = exp ( - t) h. Going backwards, however, 
is impossible. 

The rank-one projection operator u f-> ('lj!z lu) 'lj!z has the Dirac mass at the 
point z as its anti-Wick symbol. In the Weyl calculus, the Dirac mass at z = x+iy 
is associated to the involutive operator a z with 

(azu)(t) = u(2x - t) e4i7r(x-t)y (19.11) 

this operator is closely linked to the symmetry S z : W f-> 2z - w on the phase space 
C since 

az Op(h) az = Op(h 0 Sz) (19.12) 

for every symbol h. 
In all that precedes, it is not more difficult to start with JRn rather than 

R This is of course not the case in the non-commutative generalizations about 
which we shall briefly report now, and the rank-one situation, in particular that 
concerned with the upper half-plane II, has been considerably more developed 
than the higher-rank analogues. 

Given any hermitian symmetric space II (admitting a bounded realization), 
the reproducing kernel property of the Bergman space of II or, more generally, of 
Hilbert spaces H of holomorphic £2 sections of appropriate line bundles on II, 
makes it possible to assign to each point z of II a vector 'lj!z in a canonical way, so 
that the Wick-anti-Wick calculus of operators can be generalized right away: this 
was done by Berezin [6, 7], the pair of symbols taking the name of covariant and 
contravariant symbols. The connected component G of the identity in the group 
Aut(lI) of complex automorphisms of II is a Lie group, acting transitively on II 
(then II = G / K with K compact), and there is enough group structure in the 
whole construction to enable Aut(lI) to act on H through a unitary representation 
7f, or at least a projective unitary representation. Instead of generalizing the Wick 
calculus, one can generalize the Weyl calculus in such a way that, just as in (19.11)­
(19.12), the Dirac mass at z E II should give rise to the operator az , a self-adjoint 
operator associated through the representation 7f to the geodesic symmetry Sz on 
II around z. 
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It is not at all our point, in this section, to discuss the merits of the two quan­
tization rules, generalizing Wick's and Weyl's: let us just mention that, in parallel 
with the two species (covariant and contravariant) of symbols in the generalization 
of Wick's, there is a pair of (active and passive) symbols in the generalization of 
Weyl's. When viewed globally (we shall explain what this means in a moment), 
the generalization of the Weyl calculus certainly qualifies as a pseudodifferential 
analysis, at least in the examples which have been treated, while the Berezin cal­
culus does not, as it suffers from the same defect as the Wick calculus: there is no 
going back from the covariant symbol to a contravariant symbol. 

The only hermitian symmetric space II which has been considered in this 
work is the upper half-plane: the family of Hilbert spaces to be considered is then 
the family (HT +1 , T> -1), introduced in Proposition 7.1 (the projective discrete 
series) and the main features of the calculi generalizing Wick's, or Weyl's, have in 
this case been recalled in [62, Section 17]. 

What we wish to emphasize in this last section is that the quantization 
method suggests a variety of problems in harmonic analysis, having to do with 
the concrete spectral decomposition of several interesting operators: a few of them 
have been treated by several authors. 

A typical example of such problems is the spectral characterization of the 
operators on the phase space (this is where symbols live, as opposed to the config­
uration space where, in some realization as functions, elements of H do) linking 
two species of symbols of the same operator: for instance the contravariant and 
covariant ones, or the active and passive ones. The first of these two problems has 
attracted a lot of attention in recent years. Actually, a formula was given by Berezin 
himself [7], who did not have the time to write a proof. A complete proof, not for­
getting the exceptional domains either, was subsequently given in [64], and more 
general situations (for instance that of matrix-valued Berezin kernels) were stud­
ied, very recently, by van Dijk, Hille, Molchanov, Pevzner [16, 17, 18], Zhang [72], 
Neretin [37, 38]. Arazy and Up meier [2] went further in that they first considered 
real symmetric domains (where, of course, one is not, in general, properly dealing 
with symbols of operators, but some of the theory subsists): they also solved [1, 3], 
for all rank-one domains, the question of spectrally analyzing the link between the 
active and passive symbols of one operator. This latter, more difficult, problem, 
had only been solved, previously, in the case of the upper half-plane [55]. 

Many questions, concerned with the explicit spectral theory of invariant (not 
differential) operators in homogeneous spaces, are of great significance in this di­
rection. For instance, can one have a theory that would be valid for phase spaces of 
the symmetric non-Riemannian type? A first approach in this direction was given 
in [35, 60], where the case of the phase space G/MA with G = SL(2,lR.) (the 
one-sheeted hyperboloid, when viewed as an orbit in the coadjoint representation 
of G), was considered. As it turns out, this is the good choice of a phase space if 
you wish to have a symbolic calculus of operators acting on the Hilbert space of a 
representation taken from the principal series of representations of G (recall that 
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the representation V T +1, defined in Proposition 7.1, for which the Wick-type or 
Weyl type calculi are available, is taken from the projective discrete series). 

Another question concerns the use ofthe horocyclic space G/M N = JR.2 /(x,~) 
'" (-x, -~) and its higher-rank generalizations. It is important for the following 
reasons. The operator, referred to above, linking the active and passive symbols 
of the same operator, contrary to that linking the contravariant and covariant 
symbols, is a very nice invertible operator [55], which would (as well as its inverse) 
be called a pseudo differential operator in any symbolic calculus of operators one 
would like to make available, with II taking the role of the configuration, rather 
than phase, space. However, it would be even nicer if this operator, linking the 
two species of symbols, were simply the identity operator. First, one should realize 
that the map: active symbol f---t operator and the map: operator f---t passive symbol 
are the adjoint of each other (the same goes with the pair contravariant-covariant) 
if one considers on one side the space of £2-functions on the phase space, on 
the other side the space of Hilbert-Schmidt operators on the Hilbert space H 
of functions on which operators are supposed to act. It then becomes clear that 
only one species of symbol will do if it realizes an isometry between the Hilbert 
spaces of symbols and operators under consideration: this is satisfied, for instance, 
in the case of the Weyl calculus, and it is a very desirable property. Now, using 
the method of [56], one should be able to implement such a program if, instead 
of using a hermitian symmetric space G / K as a phase space, one would use the 
appropriate space of horocycles. In the case when G = 8£(2, JR.), this led to the 
definition of the horocyclic calculus (cf. Section 6); in the higher-rank case, it 
should work too: the proper harmonic analysis on the phase space itself can be 
found in [23, Chapter 2], and its two most important properties are that invariant 
operators on the horocyclic space are much easier to describe than on the space 
G / K, next that an appropriate Radon transformation connects the analysis on 
the two homogeneous domains. 

We now come to the question of composition formulas: as will be seen, it raises 
a host of interesting questions, again of a spectral-theoretic nature, in a harmonic 
analysis setting. From the beginning of this section, one may expect that several 
answers to this question may be possible. First, we discard the Moyal-type formula 
(19.7) as well as the attempts at generalizing it with hermitian symmetric spaces 
as phase spaces: no such formula can be relevant. Berezin did suggest one in [7], 
but that was after he had identified the ratio of two Gamma functions with the 
asymptotic expansion one can get from an application of Stirling's formula: his 
point of view in this early work was that the parameter which we have denoted as 
T in the case when G = 8£(2, JR.) should be understood as the inverse of a "Planck's 
constant" and, true enough, if you neglect remainders formally lying in O(T- OO ), 

you will be able to give some kind of justification to Berezin's composition formula. 
However, we now explain why this is not a correct point of view. First, there is 
no such thing as a calculus of operators using solely, say, the covariant species of 
symbol: there is a trivial formula enabling one to find the covariant symbol of the 
product of two operators with given contravariant symbols, but there is no going 
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backwards from a covariant symbol to a contravariant symbol. So, let us take 
instead a calculus in which such a composition of symbols can exist, for instance 
the one defined by the passive symbol. In the case when G = 8L(2, ]R), a fully 
explicit "global" such formula was given, a generalization of (19.5). Let us observe 
that the formula (19.5) has three ingredients: a chart <I>x: ]R2 f-+]R2 (that defined 
by <I> x (Y) = X + Y) for every point X of the phase space, the E-dependent 
exponential function, and the operator i1r L on ]R2. In the case when the phase 
space is the upper half-plane, it was found in [58] (one can also find the formula in 
[62, (17.36)]) that a formula with the same kind of structure, and exactly the same 
operator i1r L, works, with the following modifications: first, the chart <I>z becomes 
a z-dependent chart (easily defined in terms of the normal geodesic coordinates 
around z on II) from ]R2 onto II. But next, and most important, the exponential 
( E-dependent) function must be replaced by a certain explicit function Er (i1r L ) 
with an essential singularity at 7 = 00 when its dependence with respect to this 
parameter is concerned: thus, Taylor expansions with respect to 7-1 are essentially 
meaningless. 

We shall not raise the question whether analogues of the formula we have just 
been discussing to the higher-rank case can be found: this is probably untractable, 
and we shall suggest in a moment a different, deeper formulation of the composition 
problem. Meanwhile, let us note that some questions concerning the active (or 
passive, there is no distinction at this point) calculus have been answered in the 
affirmative in some higher-rank cases. The following question is quite natural in 
view of experience with pseudodifferential analysis, and its solution relies as much 
on methods developed in this context [53], in particular the systematic use of 
families of coherent states and the appropriate concept of Wigner function, than 
on harmonic analysis: is it true that symbols on II which are Coo, and satisfy 
the property that they remain bounded functions after having been applied any 
operator in the differential algebra D( G / K), give rise to bounded operators (on the 
relevant Hilbert space)? For two different series of hermitian symmetric domains, 
the positive answer was given in [57], then [66]. A more detailed analysis of the 
characterization of certain classes of operators by properties of their symbols has 
been developed in the case of the upper-half plane[58]. For contravariant symbols, 
of course, no such question is of any interest since very bad symbols yield very 
good operators, in general: of course, poor operators may have excellent covariant 
symbols. 

There is no doubt that Moyal's type formulas like (19.7), which give some 
approximation of the symbol of the product of two operators in terms of local 
operations (such as Taylor expansions), are the quintessence ofthe way pseudodif­
ferential analysis is applied to problems in partial differential equations. It is true, 
too, even though this may have only historical value by now, that the founding 
fathers of quantum mechanics viewed the quantization problem as a link between 
operator theory and geometry on the phase space, based on the use of such tools as 
Poisson brackets and related concepts (canonical transformations ... ). However, 
our point is that one should more properly view the quantization method as a link 
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between the spectral theory of operators on the configuration space and the phase 
space respectively. 

Consider the case when the phase space X is acted upon, in a transitive way, 
by some group G of measure-preserving transformations: assume, also, that the 
symbolic calculus you are considering is covariant (cf. (2.4)) under this action of G 
and a certain representation 1f of Gin H. This means that 1f(g) Op(h) 1f(g)-1 = 
Op(hog-l) for every admissible symbol h and every g E G. In the nicer cases, the 
regular representation of G into L2(X) will decompose as a superposition (both 
a continuous integral part and a series will be needed in general) of irreducible 
unitary representations of G. It thus makes sense to ask for a formula that would 
give the composition of symbols in relation to such a decomposition: in other 
words, we want to put our hands on the terms of the decomposition of hI #h2 in 
terms of those of hI and h2. 

We want to briefly report about cases when this program has been imple­
mented, and tell why we view this way of looking at composition formulas as a 
fundamental one. First, consider the case of the Weyl calculus (the n-dimensional 
case would work just as well). If you are interested in its covariance under the 
Heisenberg representation, the group G to be considered is JR2, acting upon it­
self by translations. Now the differential operators on the phase space JR2 which 
commute with this action are the differential operators with constant coefficients, 
and the joint (generalized) eigenfunctions of this algebra of operators are just the 
exponentials X I--t e2in (A,X), A E JR2: this provides the decomposition of L2(JR2) 
into irreducibles. The formula we are asking for reduces in this case to 

(19.13) 

now the integral composition formula (19.4) is nothing else than this formula, 
coupled with the Fourier inversion formula on JR2. A totally different way to look at 
the (one-dimensional, in this case) Weyl calculus is to forget about the Heisenberg 
representation and interest oneself in the metaplectic representation instead: then 
the geometric action of the group G = 8L(2, JR) on JR2 is the linear action, the 
Euler operator generates the algebra of invariant differential operators on the phase 
space, and the decomposition of L2(JR2) into irreducibles is the decomposition into 
homogeneous components (there are some extra signs to be considered unless, as 
we have done in this work, one is only interested in even symbols: cf [62, Section 
5]). Then the composition formula is nothing but the one the proof of which has 
been detailed as Theorem 17.1. Recall from the remark at the end of Section 17 
that the last formula has an extension to the OpP -calculi. 

Consider now the quantization rules associated with various homogeneous 
spaces of G = 8L(2,JR). Let us start with II = G/K, and the symbolic calculus 
defined by means ofthe passive symbol in the D7 +1 (cf. Proposition 7. I)-calculus: 
Section 17 in [62] contains a complete set of formulas, of a spectral-theoretic nature, 
relating the various calculi available in relation to the representation D7 +1 . The 
Laplacian ~ generates the algebra of G-invariant differential operators on II, and 
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the question is to give the spectral decomposition, as defined by Mehler's formula 
(11.4)-(11.5), of the sharp product (from the D r +1-calculus) of two symbols II 
and 12, (generalized) eigenfunctions of the Laplacian for the eigenvalues l~A~ and 

l~A~ respectively. Here it is, in the case when T = ±~: 

( lI~h) = 2-:-1 L ~)-i)j (iCA~A2)r+! 
A e:=±1 J=O 

x r(~+t+-'f- )r(~+t--'f- )r( T+t+~) r(T+t-~ )r(T+t+~) r(T+t-~) 
r( '+* A-~1-A2)+2j) r( ,+;(-, A-;, +A2)+2j ) r( ,+;(-, A+;,- A 2)+2j ) r( 1+;(, A+~l +A2)+2j ) 

x (II 7 h) A: (19.14) 

recall from (11.2) that II x 12 and II x 12 denote the pointwise product and 
o 1 

half the Poisson bracket of the two functions under consideration. We shall not 
prove this formula here, only explain how this can be done. First, one should break 
the formulas in Theorem 17.1 into two parts, so as to consider the even-even and 

1 

odd-odd parts of the Weyl calculus separately. Next, use the maps Sqlven and 
3 

Sq;dd' as defined in (6.9) and (6.10), to transfer the two parts of the even Weyl 
calculus to two calculi acting on the spaces associated with the two representations 
VI and D;I respectively: what one gets is the two horocyclic calculi (Theorem 

2 2 

6.1) relative to these representations. Now, [62, (17.20) and (17.15)] relates the 
horocyclic symbol of an operator to its passive symbol, in terms making use of 
the Radon transformation. Finally, (17.95) and (17.98) permit one to relate the 
bilinear operations on II in (19.15) to the operations on JR.2 associated with the 
integral kernels X{A1, iA2;iA (81, 82; 8) which occur in the formulation of Theorem 
17.1. In the case when T = 0 (the Hardy space), a formula analogous to (19.14) 
has been given by our student Marzi: the coefficients to be substituted for the 
products of Gamma factors, however, involve [32] two-dimensional integrals. 

From the point of view of harmonic analysis - though possibly not from that 
of pseudodifferential analysis - this way of looking at the composition formula 
has some features which are more essential than the global formula referred to 
above: for it does not really care about which (covariant) symbolic calculus you 
are using. For instance, if you wish to use the active symbol rather than the passive 
symbol, some complicated change is needed in the global formula: but in (19.14), 
all you have to do is to insert three extra factors, depending on AI, A2 and on A 
respectively, making up for the connecting link (expressed in spectral-theoretic 
terms [62, (17.15)]) between the two calculi under consideration. 

Still in the case when G = 8L(2, JR.), one can do the same with the phase 
space X = G/MA (a one-sheeted hyperboloid) instead of G/K. Now [47], the 
decomposition of L2 (G/MA) involves both a continuous part and a discrete part: 
the latter one is the Hilbert sum of the representations D2k , k = 1,2, .... As 
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said before, the space G / M A is a good phase space for the symbolic calculi of 
operators acting on the Hilbert spaces of representations taken from the principal 
series (?riA) (the complementary series would do just as well). As has been proved in 
[63], the discrete part of L 2 ( G / M A) is closed under the sharp product of symbols, 
and there are some fully explicit series of differential bilinear operators permitting 
one to compute the components (under the action of G) of the sharp product 
of any two such symbols: in this case, and for this part of the calculus, there is a 
Moyal-type series (but, again, certainly not a power series in A-I: the Gamma-like 
coefficients, as functions of A, have an essential singularity at infinity), and it even 
converges in the L2 sense. 

One of our incentives towards obtaining such a formula had been the following 
fact, established as a lemma by H.Cohen in [12], and also reported about in [71]: if 
II and 12 are holomorphic modular forms (with respect to any arithmetic group) 
of weights k1 and k2 and j is a non-negative integer, the function 

(19.15) 

is a holomorphic modular form of weight k1 + k2 + 2j. One cannot fail to recognize 
this fact as a fact of covariance and, indeed, the various terms in the composition 
formula, in the case under consideration, are just provided by the Cohen bilinear 
machine, up to the (A-dependent) coefficients [63]. A related idea (without any 
symbolic calculus of operators, though) was developed, independently, in [13]. 

This may be a good place to start introducing considerations relative to 
automorphic function theory. But before doing this, we may raise the question 
of generalizing this way to look at the composition formula to higher-rank cases. 
As said before, we consider it as both more tractable and deeper, at least from 
the point of view of harmonic analyis, than the search for global formulas. It 
might start with the systematic search, on homogeneous spaces X, for invariant 
(in some obvious sense) bilinear operations, defined on pairs of (generalized) joint 
eigenfunctions of the algebra D(X) of invariant differential operators: in the case 
when X is the upper half-plane, there are essentially two such operations, namely 
the operations (II, h) t--+ (II x 12)A which occur in (19.14). More operations are 

j 

to be expected in the higher-rank cases. 
Lifting automorphic functions from r\II to functions on r\G, as is usually 

done [8, p. 242], one may look at the problem of developing automorphic pseu­
dodifferential analysis from a fairly general point of view, very similar to what 
precedes: namely, modular forms appear as the building blocks in the decompo­
sition of the right regular representation of G in the appropriate L2-space, and 
the question is to compute and decompose the sharp product (with respect to 
some calculus) of any two such forms. There are many obvious questions which 
may be raised in this context. In the present work, we have considered only the 
case when r = 8L(2, Z), certainly an interesting one since both a continuous 



19. New perspectives and problems in quantization theory 237 

and a discrete part are involved. Could one do something similar, at least, say, 
when SL(2, Z) is replaced by some congruence subgroup? In the co compact case, 
could one find interesting formulas in connection with, say, quaternion algebras? 
Since any Riemann surface with genus ~ 2 can be realized as a quotient of II 
by such an arithmetic group, this would be a good way to answer the problem 
of quantizing all Riemann surfaces. Of course, higher-rank analogues can be ex­
pected to be much more complicated, since Siegel's domains are to replace the 
upper half-plane: but, looking back at the introduction of [67], one may remember 
that A.Weil had such modular forms in mind when he introduced the metaplectic 
representation. Needless to say, the introduction of a "small parameter" would be 
even more counterproductive in the arithmetic context. 

Finally, let us just mention that, when the parameter T in "Dr+! goes to 00, 

the representation has a non-degenerate limit or, more properly said, contraction: 
in this case it is a representation of the (3-dimensional) Poincare group of lowest 
dimension. There is, then, a perfectly canonical symbolic calculus "in the limit" 
which, under increasing degrees of generality, was developed in [54, 59, 65] under 
the name of "Fuchs calculus". Contrary to all the other calculi mentioned in the 
present section (with the exception of the Weyl calculus), the Fuchs calculus ad­
mits composition formulas of the Moyal type, valid in the asymptotic sense for 
appropriate classes of symbols, which should make it useful as a pseudodifferential 
analysis, though applications to partial differential equations have not yet been 
carried far enough. 

As a byproduct of [59], symbolic calculi meant as calculi of observables fully 
compatible with the principles of special relativity have been developed (the Klein­
Gordon and the Dirac calculi): a very short exposition of the fundamentals of these 
two calculi can be found in [61]. It should be observed that these depend on two 
constants (Planck's constant and the velocity of light), and that the Weyl calculus 
is of course the limit of the Klein-Gordon calculus as c ---+ 00: the point of this 
remark is to recall that, in physics, Planck's constant is far from being the only 
"small constant" of interest. It is only after we had developed the OpP -calculi 
in view of their applications to the automorphic pseudo differential analysis that 
we realized that, again, these calculi can be viewed as the calculi of observables 
(satisfying a certain superselection rule) associated with some elementary particle, 
in this case the neutrino, as was shown in Section 8. 
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