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Preface

A growth curve is an empirical model of the evolution of a quantity over time.
Growth curve models (GCM) in longitudinal studies are widely used in many
disciplines besides biology, particularly in statistics, population studies, economics,
biological sciences, statistical quality control, environment, sociology, nano-
biotechnology, fluid mechanics and for quantities such as population size, body
height, biomass, and fungal growth. An important precursor of the GCM is the
classical GCM considered by S N Roy and R. Potthoff in early 1960s and C R
Rao about the same time. That leads to the development of repeated measurement
designs, longitudinal models, and related evolutionary models in epidemiology and
bioinformatics. Even the Chaos theory comes under such models. It has important
applications in psychometry and psychiatry. The evolutionary models are also akin
to GCM. Growth and nutrition of Indian children has not improved much in spite of
India’s economic prosperity.

This conference proceeding presents some ideas about the research works on
GCM that is going on by the scientists of Indian Statistical Institute in different
branches of science. The genesis of this work started several years back when the
editor and his colleagues conducted growth experiments in the agricultural firm at
Indian Statistical Institute, Giridih, Jharkhand; a tribal area. At that time Editor took
academic & administrative responsibility of ISI Giridih as Coordinator on the third
tier in a three-tier administrative system. Continued research for several years on
plant growth posed some theoretical and applied problems that are recorded in this
proceeding. We also thought it will be a nice idea if the researchers working in
GCM had an opportunity to exchange ideas about their field of interest. To this end, a
workshop was organized in the year 2011 that was followed by a national conference
on GCM in the year 2012 at Giridih. Another workshop on GCM was conducted at
ISI Giridih during 21-22 March, 2013. We invited some well-known researchers to
contribute to this conference proceeding and further invited the participants of the
conference to submit more than one paper, if possible for the proceedings. All the
papers were peer reviewed. The result is the compilation of 15 papers in different
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branches of science in this proceeding. The endeavor will be considered successful
if this can give some idea about solving theoretical and practical problems in this
broad area of GCM to which many researchers are interested in.

December 2012 Ratan Dasgupta
Kolkata, India
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Chapter 1
Yam Growth Experiment and Above-Ground
Biomass as Possible Predictor

Ratan Dasgupta

Summary. Prediction problem of agricultural yield in terms of observable quan-
tities in an efficient manner raises a number of theoretical issues that involve
identification of important predictors and subsequent interpretation. For under-
ground crops, one such possible predictor is above-ground biomass. Yam is a staple
food for poor tribes. Growth experiments with Elephant foot yam are conducted
at Indian Statistical Institute’s Giridih, Jharkhand Farm to study the relationship
between yield of Yam with initial seed weight and seed surface texture. Five
different grading of skin texture levelled as 1-5 are considered, 1 being roughest
(and smallest surface area) and 5 being smoothest (and largest) skin surface of cut
seed-corms. For each of these five grading of seed skin, five different levels of seed
weight are also considered viz., 200g, 350g, 500g, 650g, 800g. Yam yield is seen
to have association with weight and surface texture of seed corm. The third level
of surface i.e., moderately rough skin texture of the seed corm with medium-sized
surface area, having weight of about 650 g is recommended for best production in
lateritic gravel soil like that of Giridih, Jharkhand. A Yam-corm cut with weight of
200g is seen to be critical for sprouting & survival of the plant, irrespective of skin
texture of the seed. Estimated ratios of final yield vs. seed weight are as follows.
A little bit of organic manure like vermicompost and cow-dung when added in
pit preparation of the Yam corm resulted in the ratio 4.79 of final yield to initial
seed-weight. The ratio was significantly high at 5.84, when a little bit of coal ash
was additionally administered as manure in the pits at initial stage additionally and
sprouted Yam corms were planted, which resulted in a massive growth of plant
biomass at later stages. As many as 14 sprouts from a single seed at a time in
this situation were observed. “Squared residual” for error of prediction seemed to
decrease with increase in the number of yam sprouts, indicating higher prediction
accuracy of yield with large number of sprouts.

R. Dasgupta (P<)
Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Kolkata, India
e-mail: ratandasgupta@gmail.com

R. Dasgupta (ed.), Advances in Growth Curve Models, Springer Proceedings 1
in Mathematics & Statistics 46, DOI 10.1007/978-1-4614-6862-2_1,
© Springer Science+Business Media New York 2013
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The ratio of Yam yield to initial seed weight was 3.03 when cut seed corms before
sprouting were used and no manure was given. In a fertile land the expected return of
Yam is to the tune of 5 times the initial weight. Thus Giridih farm soil is about 60%
fertile compared to fertile land of Nadia in West Bengal for Yam cultivation. The
production can be greatly enhanced to 5.84 times the initial weight when already
sprouted (cut) Yam corm having moderately rough skin texture is used as seed and
a little bit of organic manure along with coal ash are applied. Seed skin textures that
are too smooth or too rough seem inferior to moderately rough skin for high yield.

The estimated growth curve takes a sharp upward turn towards end of the
production period, even with slight increase in age of yam plant. Thus Yam
deposition is highly dependent on the length of production season, although farmers
sometimes prefer early harvesting from financial considerations. This special feature
of yam growth curve indicates presence of a spike towards end.

Yam yield is observed to be approximately linear with maximum height of stem
in logarithmic scale. Stem girth at base is highly correlated with height of stem.
Thus above-ground biomass that can be approximated by nonlinear combination
of observable predictors like product of stem-density and approximately cylindrical
stem-volume, along with expansive leaf structures on the top that can be recorded
continuously over time, may turn out to be a good predictor of underground Yam
deposition. Available data indicates such possibilities in the light of theoretical
considerations. The procedures developed may be adopted in general cases while
analyzing hidden variables based on the observable variables. A lower bound of the
expected yield based on the proposed log linear model is obtained.

Positive effect of initial weight (X') on final weight (Y') is further analysed by
considering the logarithm of ratio, k = log K = log(Y/X). Invoking a theorem
on nonstationary Gaussian process, we investigate a model ¥ = e*X, where
u ~ N(u,0?). Bootstrapped distribution of the mean of k = log(Y/X) seems
to be normal; estimated 20 confidence interval of percentage return of yam is
(440, 520)% in that region.

Model sensitivity is quantified as change in distribution of random variables
under slight change in the values of the parameters. Such change of distribution may
be measured by generalised Mahalanobis distance (Dasgupta, 2008, Proc. of ISI
Platinum Jubilee conference, World Scientific, pp 367-382) that induces a quadratic
differential metric. The same is also induced by Fisher’s information matrix. For
correlated normal random variables Fisher information matrix has a simpler form,
thus facilitating the calculation of model sensitivity.

MSC classification 2010: Primary 62P10; Secondary 62J02

1.1 Introduction

Amorphophallus paeoniifolius (Densst) Nicolson(Aracea), also known as Elephant
foot yam, is a potential tropical tuber crop. The Yam tubers are rich in nutrients.
The trace elements and key minerals present in Elephant foot yam are calcium, iron,
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copper, zinc, selenium, phosphorus, magnesium and potassium. Vegetable curry,
pickles and many indigenous medicinal preparations are made using its tubers.
Stems of yam are edible vegetable. Yam being a cash crop, area under its cultivation
is increasing. It has origin in South-east Asia and grows wild in the Philippines,
Malaysia, Indonesia and South-eastern Asian countries. The production of Elephant
foot yam is a boon to farmers in barren land, see Dasgupta (2013a), Bretona
and Musiela (1987), Venkatram et al. (2007). In fertile land of West Bengal the
production can be five times the initial seed weight. It can grow even in lateritic soil
texture full of gravels like that of Giridih, Jharkhand although the production may
be comparatively less in such type of soil. For poor tribes Elephant foot yam is a
staple food when boiled with tamarind leaves and/or a sour taste local fruit named
red kudrum to reduce itching sensation due to calcium oxalate raphides present
in yam. Besides wild variety of yam available in forest, tribals also cultivate yam
along with ragi, maize, kudrum, pulses, niger, gondli a rice like crop, horse gram,
etc.; apart from seasonal vegetables in their land in forest and plains. Government
financial help is scare for land cultivation in forest zone; so is scarcity of irrigation
in dry season of Jharkhand. Benefit of “Kisan Credit Card” is yet to reach that poor
segment without financial sureties. In this socioeconomic background cultivation of
Elephant foot yam as a staple food plays a major role for tribal areas like Jharkhand.
Kaun paddy, a similar crop like gondli, is still cultivated in Bangladesh and nearby
areas, as a rice substitute. Cheaply available yam has no serious side effect in regular
consumption as food.

Cut yam, much like a vertical slice of apple, containing a part of “main eye” from
whole yam is usually planted by farmers around February—April and one irrigation is
given after plantation. Sprouting starts in the next month. Massive vegetative growth
of Yam stem above surface is an indication of much deposition of carbohydratesi.e.,
underground yam due to higher level of photosynthesis. Yam-stem also has good
market value as a tasty edible vegetable. Usually within 7-10 months the stems
and leaves of the plant become yellowish and the crop is ready to harvest. If the
corm is left undisturbed under earth, then this sprouts once again in the next season
to produce a larger yam. Some farmers wait for several years after planting seed
corms. These are initially about 20-25 g each and take about 3—4 seasons to develop
into corms weighing 8—10 kg each, as sometimes seen in agricultural exhibitions.
Mature yam may be stored in the field of cultivation and farmers dig it up at times
of demand of market supply, so as to avoid low price. There is no loss of quality and
nutrients for such storage till harvest even if it is delayed for several months after
mature yam plants die at the end of season. At very low humidity, dehydration takes
place and at high humidity rotting is a problem for storage of harvested yam.

In growth experiments of Elephant foot yam, the weight and surface texture of
corm are recorded before plantation, and subsequently the growth of main-stem and
the secondary sprouts may be frequently recorded to monitor the growth of Yam
developed underground.

With the variety Bidhan-Kusum of Elephant foot yam, experiments are
conducted with four 5 x 5 Graeco-Latin square design with 5 Yam seed weight
levels viz., 200g, 350g, 500g, 650g, 800g and five levels of skin texture for Yam
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seed from roughest to smoothest, to see the effect of seed weight and skin texture
on final Yam yield.

In Sect. 1.2 we analyse the yield data from farm and observe that (cut) seed corm
of moderately rough skin texture and moderately large surface area of skin, having
seed weight of about 650g may be recommended for lateritic soil full of gravels as
in Giridih, Jharkhand. The study takes into account skin texture of Yam seed-corm
in analysis. A strong correlation between the growth of main stem (which can be
continuously recorded over time) and the yield of yam is observed in logarithmic
scale. Height of plant and girth of plant at base is seen to be highly correlated. These
are some of the indications that yield and above-ground biomass may be highly
correlated, as we shall see later in Sect. 1.3 that the latter variable can be expressed
in terms of former variables in an approximate nonlinear form that can be linearized
in logarithmic scale.

In Sect. 1.2 our analysis suggests that early sprouting of planted seed-corm has
positive effect on yield, the growth curve takes a sharp upward turn towards end,
even with slight increase in age of yam plant.

A lot of vegetative growth is observed when sprouted seed-corms are planted,
resulting in high number of stems per seed-corm and higher yield of yam. With
large number of stems for a seed corm, one is sure about higher yield, but for less
number of stems per seed-corm it can be either way; yield may be less or high.
Magnitude of least square residuals show decreasing trend as number of sprouts
increases indicating higher precision of yield prediction for large number of sprouts.
Invoking a theorem (Theorem 1) of Dasgupta (2013b) on nonstationary Gaussian
process we estimate the parameters of a proposed log-linear model of yam based on
initial weight. Yam plant accumulates much carbohydrates towards end. Sensitive
yam plant if critically endangered by accident, takes a drastic turnaround to store
yam underground during the remaining short lifespan in a significantly faster rate
compared to other healthy plants, possible explanation is that the injured plant could
foresee the end while facing terminal illness, and adopt an intelligent decision to
hurry up unfinished task. This is observed in a recent experiment.

Section 1.3 provides a motivation to consider above-ground biomass as a possible
good predictor. Under certain assumptions above-ground biomass over time is
computed based on some observed variables that can be collected frequently over
growth period. Tenacity of the assumption that biomass is a potentially good
predictor for underground yam is planned to be tested in future field experiments.
A lower bound for expected yam yield is obtained with live data.

Interrelations between model sensitivity, Fisher information matrix and gener-
alised Mahalanobis distance are investigated in Sect. 1.4.

1.2 Data Analysis and Search for a Nonlinear Predictor

Two Latin squares are said to be mutually orthogonal if the two squares when
superimposed have the property that each pair of letters or symbols from two squares
appears only once. The superimposed square is called a Graeco-Latin square. A 5x5
Graeco-Latin square is shown below.
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Aae BB Cy D6 Ee
By C§8 De Ea AP
Ce Da EB Ay B§
DB Ey A§ Be Cua
Es Ae Ba CB Dy

In the field experiment two characteristics of the corm i.e., seed yam tested are
represented by Latin and Greek letters viz., weight and surface area, respectively.
Here the Latin letters A = 200, B = 350,C = 500,D = 650, E = 800 are
weights in grams of the seed-corm (levelled as 1-5, respectively), and the Greek
letter o represents largest and smoothest surface area of the seed (level 5), B being
the second largest and smoothest (level 4) and so on; € represents the smallest and
roughest surface area (level 1).

In the years reported below, the experiment is replicated four times in nearby
plots with 25 x 4 = 100 combinations of corm size and skin texture. We provide a
brief summary of data analysis associated with graphical presentation.

Analysis of Yam Production Data for the Year 2008. The growth experiment
was conducted in an unfertile piece of land, where for the first time yam is grown.
All the 25 x 4 = 100 combination germinated to fully grown plants except two Ae
combinations out of four such and one A8 combination, thus indicating presence
of main effect and possibly interaction of weight and surface area. The data, main-
variable: yield, along with some auxiliary variables of multiple-stem growth like
height of the plant (x;), girth at the base (x,), at middle (x3), and at top of the stem
(x4), are analysed in the following.

An estimate of the ratio of final production to the total initial weight is 3.03.

In Fig. 1.1 we plot the three-dimensional picture of Final average yield for the
5 x 5 = 25 combinations of seed weight and skin texture, based on least squares
estimates in linear model. The size and roughness of yam corm affect the final
yield. We observe that y i.e., area level 3, with D (650 g) i.e., weight level 4,
may be recommended to farmers. In the same category of skin texture y, next
level of seed weight 800 g provides an additional yield weight of about 82 g on
the average whereas initial additional investment in seed weight is 150 g. Thus
the combination Dy is recommended to farmers instead of the highest bar in the
diagram corresponding to Ey, in Fig. 1.1.

In Fig. 1.2 we plot Principal component 1 (PC 1) with coefficients (0.468,0.517,
0.511, 0.503) vs. Principal component 2 (PC 2) with coefficients (—0.853, 0.0,
0.347, 0.388) for the variables x1, x», X3, x4, respectively. PC 1 seems to represent
mean of all the variables, an average growth or size characteristic. PC 2 assigns zero
coefficient for x,. The four eigen values are 1.896688, 0.5379271, 0.2798609 and
0.1867836. The first two PC explain about 84% of the variation in data. No visible
trend is found in the scatterplot of PC 1 vs. PC 2, in Fig. 1.2.

Figure 1.3 shows that height of plant and girth of plant at base are highly
correlated (r = 0.8476). Lowess curve and least square regression line fit are also
shown to be close. Similar features are revealed in Figs. 1.4 and 1.5 where height of
the plant vs. girth in middle and at the top of stem are considered, respectively.
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Fig. 1.1 Final average Final average yield (kg)
yield (kg) 3 B Weight A
o5 B Weight B
) OWeight C
O Weight D
1.5 B Weight E
1
Weight E
0.5 Weight D
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Weight B
P 2 o > 5 Weight A
S

Fig. 1.2 Principal component 1 vs. principal component 2

We observed a strong correlation between the growth of main stem (which
can be continuously recorded over time) and the yield of yam in Fig. 1.6. The
relationship is more prominent in logarithmic scale in Fig. 1.7. The retransformed
least square fit on log-data is shown in Fig. 1.8. The least square curve almost
overlaps with nonparametric lowess curve except at the far end, indicating that log-
scale is appropriate for the concerned variables, without any model assumptions.

We also observed a relationship between the “Age of the plant at yield” and
the yield-amount; see Fig. 1.9. While fitting a nonparametric lowess regression,
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correlation = 0.8476
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towards the right of the scatterplot on the top, the curve takes a sharp upward turn
indicating that a small increase of “Age of the plant at yield” near the extreme has
sharp increasing effect on yam yield. Thus, early sprouting has a sharp increasing
effect on the yield-amount. The relationships become more prominent in the log
scale of yield as seen in Fig. 1.10. The features of Figs. 1.9, 1.10 remain unchanged
in the corresponding Figs. 1.11, 1.12, where initial seed weight is deducted from the
final yield for regression.

Yam corm with surface level 3, i.e., moderate roughness is seen to cause early
sprouting with high upward trend of lowess curve of yield vs. age of plant; see
Fig. 1.13. The feature remains same even in log scale of yield as seen from Fig. 1.14.

Analysis of Data for the Year 2009. A significant difference here is that the
experiment started late, and there was already a tendency of sprouting from the
“surface eyes” before plantation. As a result the numbers of sprouts per corm
were higher compared to earlier year. There were a lot of vegetative growth and
the final Yam yield had a positive correlation with the number of sprouts for each
level of surface area.

Positive associations of number of sprouts vs. yield are seen in Figs. 1.15-1.19
for seed area levels 1-5, respectively. Figure 1.20 shows the same for all data
combined. Also see Figs. 1.21-1.25 for “Number of sprouts” vs. “Residual-squared”
plots at seed area levels 1-5, respectively. Except for level 2 in Fig. 1.22, all other
figures show downward trend in lowess regression (black curves) and cubic spline
regression (slightly curly yellow curves going beyond data range that may be used
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Fig. 1.10 log(Yield) vs. Age of plant
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Fig. 1.13 Yield vs. Age of plant (level 3 seed area only)
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for prediction purpose), indicating that magnitude of residual in prediction is less
for large number of sprouts. With high number of sprouts one can be reasonably
sure that the final yield is high, whereas for small number of sprouts, there is more
variation in final yield, as evident from the plot of number of sprouts vs. squared
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15

residuals of prediction. Figure 1.26 shows the similar downward trend for all data
points merged together.

Row, column, their interaction, four replication effect of Latin Squares, area,
interaction of initial weight and surface area were all insignificant. So we are
analysing an (unbalanced) design with 19 missing observations out of total 100
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observations. Multiple R? of Yam yield on maximum number of sprouts at a time,
and on all 25 weight-surface area combinations of seed corm is 0.5556. It is further
seen that the effect of number of sprouts, eliminating the effect of initial Yam corm
weight is insignificant (P value is .02415263). However initial weight remained
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Fig. 1.23 Squared residuals vs. maximum number of sprouts (Area 3)

significant even after sequentially eliminating the effect of maximum number of
sprouts and surface area of seed (P value is .00081304).

Thus, the initial weight has the dominant effect on yield (given that the sprouts
are germinating from surface eyes before plantation).

An estimate of the ratio of final production to the total initial weight is 5.84,
considering only surviving plants. The ratio is 5.01, when “no yield” is taken as



18 R. Dasgupta

15+
i)
©
S
S 10
7]
o o
°
e
© o
]
o3
w 5
o
o N\o
0 o <] Cl o ° o
T T T T T T T
2 4 6 8 10 12 14

Maximum number of sprouts at any time
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zero and all the 100 pit observations are considered. The ratio is higher than the
previous year’s estimate 3.03, when there were early plantations with no indication
of sprouting from surface eyes before plantation. No significant difference is seen
if weight-levels are taken separately in regression or a least square fit is made for
initial weight vs. final weight of Yam, R?> = 0.313(0.2913); broken lines joining
the five group means are quite close to the least square regression line of whole data
set (Fig. 1.27).

Thus we conclude that the yield may be almost double if sprouting-seeds are
planted, in comparison with non-sprouted seeds before plantation. The previous
experiment also suggested that early sprouting has a positive effect on final yield.

Analysis of Data for the Year 2010. Some organic manure like vermicompost
and cow dung were applied while preparing the plots for cultivation. This resulted
in improved production to the ratio 4.79, even though the seed corms were planted
before sprouting this time. Three observations with Ae, Ao, Ay combination had nil
yield out of 100 observations, indicating that the initial weight of A = 200 gram is
critical irrespective of the condition of surface level of the cut seed corm for lateritic
soil with gravels in Giridih.

The following data relates to weights in kilogram of 100 yams from a growth
experiment conducted in the year 2010 at Indian Statistical Institute, Giridih farm
in the above mentioned serial order from 1 to 100.

4.50, 3.20, 2.60, 3.15, 2.05, 2.10, 2.65, 0.80, 1.70, 1.15, 2.90, 3.50, 4.35, 3.85, 3.60,
1.30, 2.20, 1.70, 3.70, 2.50, 3.40, 3.10, 4.45, 5.60, 4.15, 1.50, 1.90, 2.00, 3.10, 3.00,
3.10,2.25, 2.65, 2.90, 3.60, 1.50, 1.20, 0.70, 2.80, 2.70, 3.75, 2.05, 1.60, 1.50, 3.60,
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2.20, 1.40, 1.20, 0.00, 2.40, 2.50, 1.45, 1.05, 0.70, 0.00, 2.25, 2.00, 2.45, 1.55, 0.90,
0.75,2.65,2.25, 1.20, 2.25, 2.00, 3.80, 3.00, 3.00, 2.35, 1.05, 0.80, 3.80, 2.30, 3.80,
1.60, 0.00, 3.60, 1.60, 4.00, 3.00, 1.95, 2.00, 3.65, 3.60, 1.40, 1.40, 1.30, 3.90, 3.60,
5.50, 2.90, 2.60, 1.70, 2.80, 1.90, 1.70, 1.80, 1.10, 2.80.
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We may analyse this yam data in terms of proportionate return. Ratio K of the
final weight (Y) to initial weight (X) is given below in same serial.

5.625,4.923077,5.2,9.0, 10.25,2.625, 4.076923, 1.6, 4.857143,5.75, 14.5, 4.375,
6.692308, 7.7, 10.285714, 6.5, 2.75, 2.615385, 7.4, 7.142857, 9.714286, 15.5,
5.5625, 8.615385, 8.3, 4.285714, 9.5, 2.5, 4.769231, 6.0, 6.2, 6.428571, 13.25,
3.625, 5.538462, 3.0, 3.428571, 3.5, 3.5, 4.153846, 5.769231, 4.1, 4.571429, 7.5,
4.5, 3.384615, 2.8, 3.428571, 0.0, 3.0, 3.125, 2.230769, 2.1, 2.0, 0.0, 2.8125,
3.076923, 4.9, 4.428571, 4.5, 3.75, 3.3125, 3.461538, 2.4, 6.428571, 10.0, 4.75,
4.615385,6.0,6.714286,3.0,4.0,4.75,3.538462,7.6,4.571429,0.0, 4.5,2.461538,
8.0,6.0,5.571429,10.0,4.5625,5.538462,2.8,4.0,6.5,4.875,5.538462, 8.461538,
5.8,7.428571,8.5, 3.5, 2.923077, 3.4, 5.142857,5.5, 3.5

One should be cautious in interpreting a very high value of ratio, especially
those grater than 10. These refer to the lowest seed weight 200 g, which is also
critical weight for survival of the plants at Giridih farm. If such a plant survives
over time it may deposit a moderate-sized yam underground, due to post survival
care of administering manure and nutrients. The ratio is then quite high as seed size
appearing in the denominator is small, although the respective yam yield is moderate
or small.

Histogram of the ratio K = Y /X is seen to be positively skew as shown in
Fig. 1.28. The median is at 4.68, mode is at 5.0. A model of the type Y = KX + E
with error component E to be normal may not be appropriate.

However, histogram of logarithm of the ratio, k = log(Y/X) = log K as shown
in Fig. 1.29, ignoring the nil yields, is seen to be symmetric. The quantile—quantile
plot of Fig. 1.30 suggests k to be normally distributed, indicating a strong possibility
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of the model Y = e“X, whereu ~ N(u, 02), estimated values of mean and variance

are (1 = 1.577681, 02 =021 16378), from data. Expected return of yam-yield is
then about ¢!>77681 = 4 84371 times, in the year 2010.



22 R. Dasgupta

NormalQuantile
0
1

0.5 1.0 1.5 2.0 25

Fig. 1.30 Normal quantile vs. k quantile plot

As already pointed out, such a model may have poor performance for small
values of X, near the critical seed-corm weight for germination.

The model Y =e"X, where u~ N(iu,0?) seems plausible when we consider
yam-yield per unit gram of seed corm planted Y /X, is subjected to many inde-
pendent causes, each of which may take a dominant role, e.g., humidity in soil
and other favorable conditions during sprouting, availability of manure and soil
nutrients, meteorological parameters at desired level, plant care, etc. Thus arise the
possibility of a multiplicative model, where (Y / X)) can be represented as product of
many independent random variables each of which is positive, leading to a normal
distribution for k = log(Y/X).

In view of the fact that 100 yam pits of conducted growth experiment are
adjacent, leading to possibility of correlation amongst observations, estimation of
parameters from such correlated Gaussian observations needs a theoretical justifi-
cation. The crop over 100 pits has different lifetime and are harvested at different
time points. These may be thought of realization of a process at different time points.
To analyse quantile—quantile plot for k = log(Y/X) of the year 2010 shown in
Fig. 1.30 indicating normal distribution, we need to study empirical distribution
of observations on nonstationary Gaussian process realized on non-equispaced
time points. Apart from possible correlation amongst observations these may be
nonhomogeneous. Some yam plants may have short life span. Nonhomogeneity
within soil structure, plant care, etc. may lead to a nonhomogeneous process.
The following result for weakly correlated process with polynomially decaying
correlation function is proved in Dasgupta (2013b), validating estimation of relevant
parameters of limiting Gaussian process from realized data set.
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Theorem. Consider a Gaussian process X(t), 0 < t < T with mean m(t) and
covariance kernel o (t,u) = o(t)o(uw)p(t,u), where m(t) — 0, o(t) — 0; t — oo.
Assume X (t) has the weak limit denoted by X(oo) and the correlation function
lo(t,u)| < K|t—u|=f, K >0, B > 0. Consider the empirical distribution function
of the process based on the observations at time points t,t,,- - , t, which are not
necessarily equispaced. Let the time interval [0, T') of recording the observations be
subdivided into k subintervals and the length of each subinterval and the number of
observations in each subinterval increase to co. Also let the time gap between two
consecutive observations within each subinterval be homogeneous and the number
n* of “isolated” observations which do not fall in any one of the homogeneous
subintervals, be negligible comparedton, i.e., n* = o(n). Then the empirical distri-
bution function of the recorded observations from the process is a strongly consistent
estimate for distribution function of the limiting variable X (c0), as n — 00.

Limit n — oo in the above has to be interpreted as (large) number of yam
yield harvested sequentially in a production season, and continued over different
production seasons in the same or similar experimental block(s). The assumption
of polynomially decaying correlation function is mild in the sense that if two yam-
pits are harvested at wide time gaps, one of the plants cease to exist to influence
the other yam harvested long after. Assumption m(t) — 0, o(t) — o; t — o©
are natural when error means are centered and the process stabilizes. Proof of the
theorem given in Dasgupta (2013b) indicates that the conclusion remains valid
in presence of a negligible number of outliers that may appear in any conducted
experiment, justifying exclusion of nil yields. With an application of above theorem
normal distribution on logarithmic scale for yam yield seems appropriate, as seen
on approximately linear quantile—quantile plot of Fig. 1.30.

An alternative model logY = alog X 4+ E may also be examined. Ratio a of
logarithm of final weight (Y') to that of initial weight (X') for 97 nonnegative Y
values are shown in Fig. 1.31. The histogram is negatively skew with mode at —0.5.
In comparison, we may accept the former model Y = e“X, where u ~ N(u,0?).

One may bootstrap the distribution the mean of the hundred K = Y /X values.
With 100 sample values taken from the original K values by simple random
sampling with replacement, bootstrap mean is calculated; and the histogram based
on 10% bootstrap simulation for mean ratio is shown in Fig. 1.32. Distribution
appears to be nearly normal.

Figure 1.33 shows the same for bootstrap median of ratio. Here the rugged nature
of histogram is due to skew histogram of K, see Fig. 1.28.

For smoothing the ruggedness, a small perturbation of magnitude N (0, 0%), with
0% = 1/100 is added to the K values and the smoothed version of Figs. 1.32, 1.33
is shown in Figs. 1.34, 1.35, respectively. In Fig. 1.35 the mode is at 4.65, and the
histogram is still rugged.

Estimation of common ratio via ratio of the total of X, Y values is known to
be efficient. Figure 1.36 shows the bootstrap distribution of ratio estimate based on
total of variate values. The distribution seems to be normal with mean 4.805 and
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variance 0.0425; the mode of histogram is at 4.8. The 20 confidence interval for
percentage return of yam yield is (440-520)%.

Confirmatory studies were made for growth curve, an upward trend in lowess
regression is seen for yam weight vs. plant age (in days) in Fig. 1.37, exhibiting
a spike in growth curve towards end; much like the yam growth curve shown in
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Fig. 1.9, indicating that slight increase in plant-life towards end results in relatively
high yield.

Analysis of Data for the Year 2011. Almost same feature is also observed
in Fig. 1.38 for the yam growth curve of experiment no. 2 of the year 2011.
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Fig. 1.38 Growth curve of Yam yield, year 2011, Expt. 2

Upward trend near spike is slightly dampened at the end by a single observation
corresponding to the combination E, i.e., seed weight 800 g, but the roughest and
worst seed-skin condition made it not conducive for a high yield.

Sometimes it may so happen that the plants at the middle of a season may turn
yellow and pale due to harsh environment that is quite common in Jharkhand region
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that occasionally faces dry spell of weather. Lifeless plants may turn back to lush
and green condition consuming a part of yam deposited underground when climate
is conducive with several showers, see Fig. 1.39; where a sharp rise is seen in growth
towards end after a little bit fall of the curve for experiment no. 4 conducted in
unfertile soil, having little irrigation.

For the same experiment, arithmetic mean from non-zero entities of 100 pit
observations is shown in Fig. 1.40, categorised with respect to 25 combinations
of seed weight and seed skin textures. Combination Dy (cut seed-corm of weight
650 g, with moderately rough skin texture) turns out to be optimal for yam yield in
unfertile land. Compare Fig. 1.40 with Fig. 1.1, where least square estimates from
linear model provides a similar result for growth experiment conducted in another
unfertile piece of land in the year 2008.

Extensive sprouting like maximum number of sprouts 14, as seen in the year 2009
were not observed further in subsequent years. However, data from experiment no.
2 suggest a positive association between the number of sprouts and yam yield in
Fig. 1.41, where mean yield for a fixed number of sprouts show upward trend as
number of sprouts increased. We may ignore one observation towards end of figure,
this plant had 8 light sprouts with small girth at base.

We have the following recommendation to farmers for cultivation in unfertile,
lateritic soil texture full of gravels. The sprouted corm (cut corms will also suffice),
with moderately rough surface having approximate weight 650 g is appropriate for
the lateritic and gravel mixed soil of Giridih region of Jharkhand for best production.
A little bit of cow dung/vermicompost and coal ash as manure at initial stage can
greatly enhance the crop return to about 584% of initial seed weight.
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1.3 Above-Ground Biomass as a Predictor
and Model Selection

In the previous section we have seen that a linear relationship may hold amongst the
variables in logarithmic scale. We explore this possibility for above-ground biomass
as a predictor of yam-yield.

The volume of an approximate cylindrical stem may be written as V; = nr?h,
where r is the stem radius that is obtainable from the girth (277 ) at base/middle/top
of the stem, and % is height of the stem. Recall that girth at base has a very high
correlation with height (4) of stem. One may obtain approximate weight of the
stem as Ws(l) = V,d, where d is the density of yam stem obtainable via destructive
testing.

Weight Ws(z) of the approximately circular leaf structure on the top of the stem
should also be taken into account for biomass. Large spread of this umbrella
like structure contributes to photosynthesis in presence of sunlight resulting in
underground carbohydrate deposition of Yam. Diameter (or radius) readings of this
may be taken at a point on circumference (6 = 0) through which the diameter is
maximum, along with additional diameter readings at angles 6 = /3, 27/3; for a
particular stem. Average a of these readings may be taken for diameter. Branching
of leaf structure from stem in a curved manner causes depth of structure towards
top of stem for accumulated biomass, i.e., high value of vertical distance (h*)
between top of leaf surface and stem before branching is an indication of high
leaf mass. More curved and far the leaf structure is from the top of stem where
branching starts, denser is the vegetation resulting in more leaf weight, especially
at later stages of plant growth, when the matured leafs start hanging. Weight WY(Z)
can then be approximately expressed as W? = ma?h*d*/4, where d* is leaf
weight per cubic unit of length, obtainable via destructive testing. Alternatively,
for a flexible leaf structure one may find area of approximately circular yam leaf
structure with diameter a after straightening yam leaf lightly at the time of taking
readings for a. Then multiply area by leaf weight per square unit of length (obtained
via independent destructive testing) to estimate leaf weight.

A sturdy and heavy stem can hold the proportionate heavy mass on the top
of it. Assume that the stem weight and the weight of leaf structure on the top
are proportional to a first degree, making allowance for measurement errors; i.e.,
VVS(I) p” I/VS(Z).

In such a situation one may write the total vegetative mass W = Ws(l) + Ws(z)
that satisfies an approximate relation, W Ws(l)’ and W « WY(Z) .

In other words W o< 4/ WS(I) Ws(z), which leads us to conclude that W has a linear
regression in logarithmic scale with the variables considered above: height of stem,
girth of stem, diameter of the circular leaf structure on the top, densities d and d*,
depth h*, etc.
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To be precise, the shape of a typical yam stem is more like a truncated cone that is
gradually tapered towards top from base at ground level. Volume of such truncated
cone can be expressed as V; = w X h X ("12 + r22 + rirp)/3, where rq and r; are the
radius of the conical stem at base and at the top, respectively. As before, this can be
approximately linearised in logarithmic scale when average girth is considered.

We have already seen that yam yield has a very high correlation with stem height
in logarithmic scale. So, it is quite likely that a more precise relation may hold
in linear regression of yam yield in logarithmic scale with inclusion of additional
predictor variables mentioned above, as multiple regression is non-decreasing in
inclusion of additional variables. Inclusion of informative variable will, however,
increase the value of R>.

Tenacity of the above assumptions made is planned to be conducted in field
experiments. An affirmative test would point out that above-ground biomass is an
important predictor for yield.

Under a multiplicative model that can be linearised considering logarithm,
Geometric mean (G.M) is more appropriate than arithmetic mean (A.M) to represent
average value. In the above, one may consider G.M. (provided none of the
observations is zero), in presence of repeated measurements.

Now write the linear model in logarithmic scale as

P
10gy=a0+2ailogx,-+e (1.1

i=1

where y is the yield, {x;,i = 1,---, p} are predictor variables mentioned above,
aop,ai,--- ,a, are constants to be determined by the method of least squares, and
E(€) = 0; being expectation of error term. Under general conditions the least square
estimates d; are strongly consistent fora;,i = 0, 1,---, p; for example, see Bretona
and Musiela (1987).

Thus, for the predicted value y of yield, we have

p
E(log §) ~do + Y _ d; logxi = §(x) (1.2)

i=1
say. This provides a lower bound for expected yield,
E(y) z e (1.3)

by an application of Jensen’s inequality, as log x is a concave function. The function
g(x) =ao+ Zf;:l a; log x; is obtained by the method of least squares.

The model Y = e“X, where u ~ N(j1, 0%) verified in the earlier section for yam
data of the year 2010 is a special case of (1.1). Allowing an intercept term, the least
square regression line for yam data of the year 2010 is

logY = 1.222024 + 0.5418401 log X (1.4)
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In other words, based on data of the year 2010, the expected yam production at
Giridih with initial seed weight X has the following lower bound.

E(Y) > 3.39405 X 0->418401 (1.5)

Let us interpret the above result. For the lowest seed weight in conducted experi-
ments X = 0.2 kg, i.e., 200g, the expected return is above 1.41 kg i.e., more than
7 times. For seed weight 350g, the expected return is above 1.92 kg i.e., more than
5.49 times, etc. For the highest seed weight viz., 800g considered in the experiments,
the expected return is above 3 kg i.e., more than 3.75 times. Finally, when seed
weight is 1 kg (seed weight usually do not exceed 1 kg) the expected yield is greater
than 3.39 kg.

1.4 Model Sensitivity and Generalized Mahalanobis Distance

For two distribution functions Fj, F, having densities f;(x) and f>(x) with respect
to some measure v, the generalised Mahalanobis distance square A? is defined as

A% =—8logdy s, (1.6)

where d = dp, 5, = [{fi1(x) f2(x)}!/?dv is the Hellinger affinity or Bhattacharya
affinity between fi(x) and f>(x); see Dasgupta (2008).

For o € (0, 1) one may consider a generalisation of the above affinity d as d @ =
d}'f’)fz = [ f'™® fdv. Assume that the densities are separated by §6 in parameter

space, ie.. fi = f(0). f» = f(0 + 86). Then, d@ = [ [%]a F(O)dv.
For small §6, by binomial theorem with rational index one may write this as
d@ ~ 1 - DR )80 = 1 — 2220(0)(80)%, where i = i(0) =
E(f'/f)*is the information in a single observation. For the class of distance d ),
sensitivity of the variable for small change in parameter depends on information i
at 0. The measure d @, o € (0, 1) is optimized with affinity closerto O at o = 1/2,
suggesting a symmetric index in f and f5, leading to Hellinger affinity.

Intrinsic accuracy of a distribution with respect to a set of parameters
(61,---,6,) = © may be judged by the extent to which the distribution is altered
by a small change in the value of the parameter from ® to ® + §0. Proceeding
like the case of a single parameter 6, where we had d® ~ 1 — Mz’ (9)(80)%, by
multivariate Taylor expansion of Hellinger affinity d with o = 1/2 one can show

dlog fo dlog fo
36, 06;

1
dfo. forso ™ [1 - §(5®)1(5®)/] I =(Iij). Iij = E(
(1.7)

for small §®, see (5a.4.4)—(5a.4.5) of Rao (1974) where I = I(®) is the Fisher’s
information matrix. Hence from (1.6), one may write
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N forse ® BO(EO) =" " 1,;56,80; (1.8)

Thus generalized Mahalanobis distance induces a quadratic differential metric in
the r.h.s of (1.8) associated with Fisher information matrix in multiparameter set-up,
measuring the sensitivity of the model. A model with high sensitivity is desirable
one.

The sensitivity of the variable y under the model (1.1) is given by (1.8), specified
by the distribution of variables €. For pits dug in nearby plots residuals ¢ may be
correlated. Growth experiments on Yam at Giridih farm are conducted in a square
plot consisting of 4 blocks of 5 x 5 Graeco-Latin squares, consisting of 100 pits in
a clustered region numbered as i = 1,---,100. Linear model seems appropriate
at logarithmic scale in observed data; one may then assume the random variables
€,i = 1,---,100 in (1.1) to be multivariate normal for which Fisher information
matrix in (1.8) has a nice form.

For extended Mahalanobis distance of two (asymptotically) multivariate normal
distributions N, (w1, X1) and N, (2, X») with possibly two distinct dispersions, if
the dispersion matrices are independent of parametersi.e., ¥ (®) = X then (i, j)-th
element of the information matrix based on difference of two sample means (x!) —
x?) L Np(,u(l) —u?, f—ll + %), assuming the ratio of sample sizes n;/n, —
I,n =ny +n, - o0,is I;; = T/, where (£V)) = =71 = (%)_1, O =
uD — 1@ See also (3.10)—(3.13) of Dasgupta (2013a).

If the magnitude of the matrices (in terms of trace or determinant, say) are small,
then this provides a sensitive model in multivariate normal set-up with possibly
different dispersion matrices under null and alternative.
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Chapter 2
Some Statistical Perspectives of Growth Models
in Health Care Plans

Pranab K. Sen

Abstract Growth (and wear) curve models, having genesis in epidemiology and
system biology, have cropped up in every walk of life and science. In statistics,
such growth curve models have led to an evolution of multivariate analysis with
better performance characteristics and enhanced scope of applications in many
interdisciplinary field of research. Recent advances in bioinformatics and genomic
science have opened the Pandora’s box with high-dimensional data models, often
with relatively smaller sample sizes. Growth curve models are especially useful in
such contexts. There are also other areas where growth curve model-based analyses
are in high demand. In this vein, the scope and perspectives of growth models are
appraised with special emphasis on some health care and health study plans.

2.1 Introduction

In exploratory studies, especially in experimental biology, developmental biology,
medicine, epidemiology, socio-economics, psychology, and more recently, in
biotechnology, information technology, toxico-genomics and bioinformatics, such
growth models have been systematically studied under the terminology longitudinal
data models and repeated measurement models; classical growth curve models
(GCM) in simple parametric setups are regarded as precursors. Box (1950) initiated
the study of growth and wear curves in simple biometric setups. C.R. Rao (1958,
1965) made significant contributions to GCM while Potthoff and Roy (1964)
systematically integrated GCMs in the main stream of multivariate analysis
of variance (MANOVA) and linked it to multivariate analysis of covariance
(MANOCOVA). Rao (1959) developed procedures for parameter estimation and
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estimation of confidence bands for the response curve. Cole and Grizzle (1966) and
Grizzle and Allen (1969) formulated some innovative statistical analysis of growth
and dose response curves. Geisser (1970, 1981) annexed Bayesian methodology
in GCMs. Khatri (1966) elaborated the connection of GCM and MANO(CO)VA.
Timm (1981) and Zerbe and Walker (1977) studied further MANO(CO)VA of
repeated measurement designs incorporating the basics of parametric GCM. This
also laid down the foundation of random-effects and mixed-effects models in
MANOCOVA. In some medical (and dental) research problems, often, area under
the curve (AUC) has been used. It is also possible to relate AUC to GCM and obtain
better performance of statistical tests and estimates (Preisser et al. 2011).

In most of these developments, as has been systematically accounted in Gnanade-
sikan et al. (1971), it has been tacitly assumed that (i) the underlying response
variables are continuous, (ii) additivity of the effects hold, and (iii) the under-
lying probability distributions are all multivariate normal. The latter assumption
is accompanied by the homogeneity of their dispersion matrices, the so-called,
homoscedasticity condition in a general multivariate setup. Both the linearity of
the model and multinormality of the errors have been critically appraised in the
past 50 years, raising concern of the scope of adaptability of normal MANOCOVA
models in various applications. Nonparametric (mostly based on marginal ranks)
MANO(CO)VA evolved during the 1960s and reported in Puri and Sen (1971,
1985). For GCM, such nonparametrics have been incorporated by Ghosh et al.
(1973) and Sen (1973, 1985), among others. The past three decades have witnessed
the development of semi-parametric GCM and longitudinal data models. Both
spatial and temporal variations are accounted in such models.

In epidemiology, epidemic models are earlier examples of growth models. The
growth of a disease or disorder (in a population) follows another track of discrete
GCM where typically the response variable is the number of infected people or
their proportion in the target population. In population dynamics, such discrete
GCM are commonly perceived wherein various demographic features account for
explanatory or design variables. For example, for the HIV afflicted population in a
spatiotemporal setups, discrete GCM are quite appealing, albeit the multi-normality
or the linearity of effects assumption may not be reasonable. In system biology,
for example, the growth of a tumor or spread of cancerous cells, growth (curve)
models are very appealing, albeit they come under high-dimensional or functional
data clouds. The classical fMRI models also pertain to growth models, although
the commonly assumed multi-normality condition may not be generally tenable in
such contexts. In many stochastic models, such as the diffusion process, birth and
death process, and morbidity (illness) process, such GCM may appear, not only with
some longitudinal or temporal features of the expectation parameters but also with
subtle change in the shape or dispersion parameters. For example, the drift versus
dispersion in generalized random walk models. From white noise to signal detection
in high dimension (as related to chaos theory) is another example of this sort.
Markov processes have also been atuned to GCM with appropriate growth condition
on the failure rate or reliability functions. Nonhomogeneous Poisson processes and
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their natural extension to doubly stochastic Poisson processes bear growth features
in a stochastic mode. Also, GCM in HIV (AIDS) models come in a completely
different setup. It is therefore perceived that conventional MANO(CO)VA-related
GCM may not be universally adaptable in many other fields of applications. Beyond
parametrics in GCM is therefore a natural avenue to traverse.

There is a class of scenarios of growth (or decay) models which are characterized
by evolutionary growth or decay but subject to extraneous restraints. For example,
in a branching process model the outcome variable may lead to an extinction if
it reaches the absorbing state (0). On the other hand it can explode to an infinite
state under plausible conditions on the branching parameters. In some toxicological
models, such growth patterns may have similarity with GCMs but are subject to
suitable upper bounds due to experimental constraints. For example, when the
output variable attains an upper threshold level, the system moves to a different
stage, and a new process model comes in the picture. This may be regarded as
a GCM annexation to the classical change-point model which typically relates to
either a change in location (regression) or scale parameter at an unknown time-
point. The problems is much more complex in this general growth model. A
typical example is the growth of HIV-AIDS afflicted population following some
break-through medical intervention. For growth models with a finite upper bound,
the classical Gompertz (1825) model, motivated by a distribution function to fit
mortality tables is a precursor to other models such as the logistic model and its
ramifications (Johnson and Kotz 1970). With this genesis, logistic regression models
pertain to stochastic growth curves in more general formulations. Likewise, Poisson
regression models pertain to such GCM (Sen et al. 2010).

This volume has a primary emphasis on GCM in conventional agricultural
setups with emphasis on the elephant foot yam. In modern interdisciplinary
research, typically, high-dimensional data models are encountered where some
times the sample size may be relatively smaller, thus giving rise to the so-called
high dimension low sample size (HDLSS) models. This is particularly the case
with bioinformatics and toxico-genomics studies. Even in many socioeconomic
investigations, HDLSS models are encountered in very nonstandard setups. The
scope for traditional MANOCOVA tools in HDLSS has been critically appraised
in the recent past (Sen 2006, 2008). In this context, the dimension reduction can
be effectively done with appropriate GCM in beyond parametrics setups (Sen et al.
2007). Nevertheless, conventional statistical tools are of very limited utility in such
HDLSS-related GCM setups. This study focuses on some high-dimensional models
arising in some socioeconomic research problems where GCM may have a natural
appeal. The nest section is devoted to the preliminary notion on the evolution of
GCM from simple parametric to beyond parametric setups, encompassing HDLSS
models as well. Some of these beyond parametrics perspectives are elaborated in
Sect. 2.3. The main results on GCM approach on some general socioeconomic
models are disseminated in Sect. 2.4. The concluding section is devoted to some
general observations and remarks.
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2.2 Preliminary Notion

Typically, GCM relates to some multi-sample or blocked design models where (in a
general setup), there are n observations, each observation has p characteristics
and observed at g time points. For example, in an environmental health hazard
study for identifying environmental dioxin pollution (Chen et al. 2012), finger-
print analysis comparing the polychlorinated dibenzo-p-dioxin and dibenzofuran
(PCDD/F) congener profile patterns of collected samples with those of potential
dioxin emission source(s), has been advocated as an important tool. There are
p (= 17) PCDD/F congeners comprising a fingerprint and data collected in a
longitudinal setup. This typically relate to a MANOVA model, albeit the sample
sizes are small, and moreover, the underlying distributions are distinctly not
multivariate normal; multivariate gamma distributions appear to be more reasonable
in this setup for which the dispersion matrix depends on the mean levels and shape
parameters, and hence, the homogeneity of the dispersion matrices may not hold.
For a stochastic p-vector X following a multivariate normal distribution with mean
vector u and dispersion matrix X, in a conventional setup, it is tacitly assumed that
the dispersion matrix does not depend on the mean vector. This basic assumption
may not generally hold in GCM where heteroscedasticity, possible collinearity and
nonlinear relationship of dispersion matrix and mean vectors may mar the simplicity
of the standard GCM analysis schemes. In the above cited PCDD/F model, we
have nonnegative component variables which brings the relevance of compositional
data models. If the p coordinate variables of X are independent gamma variables
with shape parameters a;y, - - - , &, respectively (all positive), and a scale parameter
v(> 0), and if we define the proportion vector as Y = (X’1)7'X, then Y has
the Dirichlet distribution whose mean vector and the (singular) covariance matrix
depend on the scale as well as shape parameters. This particular feature not only
renders a singular covariance matrix but also invalidates the routine adaption of
the so-called principal component model PCM) or canonical correlation analysis.
Bearing in mind such examples, we first consider a simple GCM and motivate more
general ones arising thereof.

Let #;1,-- , ;4 be the time points for the i th subject and let
Yi = ((Yijk)) j=1. pk=1.g, L = 1,--- .0, (2.1)
where Yjjx = Yij(ti),k = 1,---,q. In a balanced design, t;x = #.Vi =
1,---,n;k = 1,---,¢. In a conventional parametric setup, it is typically assumed
that Y; has a matrix-valued multi-normal distribution with unknown mean (matrix)
©; and unknown dispersion matrix I' (of order pg x pg), fori = 1,--- ,n. Itis

thus tacitly assumed that the dispersion matrix I' is common for all observations;
this condition as noted earlier is violated for multivariate gamma and other non-
normal distributions. In a conventional GCM setup,

®i=vAi+BCi,i=1,---,n, (22)
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where v is a p x k matrix of unknown (intercept) parameters, A; are matrices of
known design variables (constants), C; is a r X g matrix of known constants, and
B = ((B,1)) is a pxr matrix of unknown parameters. In the k sample model, the jth
column of A; is equal to 1 and other columns are 0, according the ith observation
belongs to the jth sample or not. In more complex designs, the choice of the known
A; and k depends on the design matrix. Typically, r < ¢ (to facilitate dimension
reduction in a GCM setup). In the balanced design case, the C; are all equal. By
(2.1) and (2.2), we have

Y, =vA;, +BC;, +E;,i=1,--- ,n, 2.3)

where the E; are independent and identically distributed random matrices with null
mean and dispersion matrix I'. One may use the vec notation to convert these Y; into
pq-vectors and then apply the usual MANOVA tools to draw statistical conclusions
on B. Typically, r is much smaller than g, and hence, the GCM approach works out
well in having a more powerful statistical analysis when the postulated model in
(2.2) holds. We refer to Rao (1965) and Gnanadesikan et al. (1971) for a systematic
account of these developments.

In most of the fields of application, be it in biometry or clinical trials, system
biology or bioinformatics, or the vast area of modern interdisciplinary research,
usual MANOVA model assumptions are mostly untenable. In multivariate normal
models, the covariance matrix is functionally independent of the mean vector,
but this is not generally true for other multivariate distributions. We may refer to
the fingerprint analysis problem where not only multi-normality assumption may
be dubious but also homogeneity of the dispersion matrices is untenable. In the
univariate setup, the Box and Cox (1964) transformation has been widely used to
achieve approximate linearity of the model and improve normality approximation
of such transformed variables. However, such nonlinear transformations while im-
proving the normality approximation may adversely affect the underlying additivity
structures as well as the homoscedasticity assumption. In some simple univariate
models, Bartlett variance stabilizing transformations work out well. But such trans-
formations are of not much help in stabilizing the dispersion matrices. For example,
in multivariate gamma distributions, the dispersion matrix may functionally depend
on the mean vector and hence the homoscedasticity condition may not hold. Because
of these impasses, in multivariate GCM, in beyond parametrics approaches, some
alternative analysis schemes are advocated; these are to be considered in the
next section.

2.3 Beyond Parametrics Formulations

Whereas in parametric GCM, conventionally, it is assumed that the error distri-
butions are (multi-)normal, in beyond parametrics, not only this multi-normality
assumption is deemphasized but also other robustness issues are appropriately
appraised. In this perspective, first consider the conventional parametric models.
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In the balanced design case, all the C; are the same, and without loss of generality
it may be assumed that they are of rank r(<q). We make a similar assumption for
the general unbalanced case as well. Let us then consider a set of g x g matrices L;
and partition it as

Li = (Lii,Lip), i =1,--- ,n, 2.4)
where
L = C,(C;C)™" (2.5)
is of order ¢ x r and L;, is of order g x (¢ —r) fori = 1,--- ,n. Let then
Z; =Y;L; = (Zy\,Z»), (2.0)

fori = 1,---,n. As in Potthoff and Roy (1964) and Rao (1965), we note that the
BC,L;; = B while we choose the L;, in such a way that C;L;, = 0 are null matrices
of order r x (¢ —r). By (2.3) and (2.6), we have on writing E' = E;L; = (E}},E,
and Az* = A,‘Li,

Z; = vA’ + B(L,,0) + (E},E5), 2.7)

fori = 1,-.-,n. This perfectly fits in to a MANOCOVA model which under the
multi-normality condition has been thoroughly studied in the literature (Rao 1965,
and others).

In a simple nonparametric approach (Puri and Sen 1971), it is assumed that the
E; have jointly a pg variate continuous distribution, for all i = 1,---,n. Then
linear rank statistics are constructed for each of the pg coordinates of the Z;,1 <
i < n of which pr statistics relate to the case where B is present in addition to the
partitioned part of vA*, while the remaining p(g — r) linear rank statistics relate to
the part where B does not appear but the complementary part of vA* appears. If the
null hypothesis of relates to Hy : B = 0, i.e., no regression on the time points, then
we can proceed in two ways. From the first part, we use the R-estimators of B as in
Jureckova and Sen (1996) and use a Wald-type test statistic. Alternatively, assuming
B = 0, we estimate v from the entire set of linear rank statistics. In the second place,
we align the Z; by using these R-estimators of v, and on the aligned linear rank
statistics for the p x r sub-matrix, we construct an aligned rank MANOCOVA test
statistic as in Puri and Sen (1971, 1985) wherein the p(g—r) linear rank statistics are
treated as covariate statistics. Such tests are based on the Chatterjee and Sen (1964)
rank permutation principle and are conditionally distribution-free under hypotheses
of invariance. For large sample sizes, under these hypotheses of invariance, they
have approximately chi-square distribution with appropriate degrees of freedom.
Being based on the marginal ranks of the Z;, i = 1,---,n, these tests are robust
against plausible model departures.
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A second approach is based on rank (or R-) estimators of v, B from individual
observations. Note that by (2.7), for each i(= 1,---,n), we can obtain linear
estimates of v and B from Z;. Given these n independent estimators of B, it may be
possible to use the weighted least squares methodology to obtain a combined sample
estimator of B and also, to estimate its dispersion matrix (of order pr x pr). Tests for
suitable hypotheses on B can be based on these estimates using the classical Wald
statistics. Such tests are, however, generally not robust due to the poor robustness
properties of the estimated dispersion matrix. On the other hand, based on these
Bi.i = 1,---.,n (all of the order p x r), the general theory of R-estimators
developed in deta11 in Jureckova and Sen (1996) can be incorporated to obtain robust
estimators of B and also to test for suitable hypotheses on B.

We illustrate this methodology with a simple situation where the n observations
can be regarded as the composite of k(> 2) samples of sizes ny,--- , ny, respec-
tively, so that n = Zf=1 ng. For an observation from the sth sample, referred to
(2.2), the A; are equal to some Ay, fors = 1,--- , k. In this setup, t = p + k where
the additional k relates to the individual population effects (vectors). As such, we
may proceed to test for the null hypothesis that the k columns of v are the same,
treating B as a nuisance parameter (matrix). Thus, using R-estimators of B, we may
use aligned rank test based on the k x ¢ linear rank statistics. We refer to Puri and
Sen (1985) and omit the details. Alternatively, if the null hypothesis relates to B = 0
(i.e., no regression over time), treating v as nuisance, then one can use aligned rank
statistics. The dimension reduction (from pg to pr when r << ¢q) generally leads
to increased statistical precision.

A further source of concern is the very basic assumption of linear models in
GCM. It is not uncommon in toxicology and physiologically based pharmaco-
kinetics (PBPK) models to have distinct nonlinear GCM where even if normality
assumption can be approximately justified, the homogeneity of the error variances
may not be tenable. Further, in PBPK and certain systems models, often (stochastic)
differential equations (SPDE) are incorporated to explain better the underlying
kinetics. In such a case, typically, the response pattern is nonlinear and multidi-
mensional (viz., Mandal et al. 2012). Though such nonlinear systems are often
approximated by linear ones (under the usual delta method), the reliability and
validity of such linearization may be open to questions. In PBPK modeling, the
composite response is the synergic and chain body resistance and metabolic changes
through a number of organs along with their impact on the blood circulation system.
As such, a multicomponent model is usually advocated, though in most of the
mathematical modeling, for drawing statistical conclusions a simplistic approach
is considered. A suitable growth model connecting the impact of these organs in
relation to the body reaction to external stimulus will certainly be a better solution.
The GCM approach has therefore a natural appeal in this context.

In HDLSS models, though it may be tempting to use projection pursuit for
dimension reduction, its scope may be limited to distributions admitting linear
structure so that the classical principal component model (PCM)-based statistical
methodology is appropriate. In many contexts, this linear manifold is not tenable
and hence this approach may not be adaptable either. In some simple models, this
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approach was elaborated by Sen (1973). There is scope for expansion in more
general GCM (viz., Preisser et al. 2011). They treated the Gingivitis problem
resulting from absenting from brushing or flossing of tooth. It had 7 time points
consisting of the induction and resolution phases and 31 biomarkers on 22 subjects.
Although the area under the individual subject and biomarker data were initially
considered, the number of subjects (22) being smaller than the number of data
points (186), conventional MANOVA tools were not adaptable. Moreover, the
assumption of multinormality was difficult to justify. First, in the usual way in
GCM, a dimension reduction was suggested, resulting in 4 response variables for
each biomarker. Second, signed-rank tests were used in the univariate as well as
multivariate setups (viz., Sen and Puri 1967), resulting in more robust procedures.
Further, the Chen—Stein theorem (Chen 1975) was adapted to control Type I error
and related measures. This produced a better inferential procedure.

In the environmental pollution problem (Chen et al. 2012), the GCM appeal was
overwhelming. However, in that fingerprint analysis comparing the poly-chlorinated
dibenzo-p-dioxin and dibenzofuran (PCDD/F) congener profile patterns of collected
samples with those of potential dioxin emission sources, there were 17 PCDD/F
congeners comprising a fingerprint which did not look like to have multi-normal
distribution. They differ in their emission rate and exposure pattern, and hence,
it was decided to have the proportion of these 17 compounds relative to their
sum. This has of course given rise to a response vector on a 16-simplex (in a
compositional data model) for which the variance-covariance matrix is intricately
dependent on the mean vector and a multi-normal distribution is far from being
tenable. Based on plausible assumptions, multivariate gamma-type distributions
were thought to be more appropriate. That led to the so-called Dirichlet type
distribution. A discouraging feature is that the dispersion matrix for this multivariate
random vector depends not only on the mean vector but also on the shape parameters
of the underlying gamma distributions. As such, conventional growth curve model-
based analysis was not pursued. It turned out that the usual procedure based on
multivariate ranks (Puri and Sen 1971) have much more robustness perspectives,
thus performing better than the multi-normality-based likelihood ratio type tests.
Thus, beyond parametrics seems to have a better appeal.

A third illustration relates to rank analysis of covariance (R-ANOCOVA) in
some nonstandard data models (Sen et al. 2013). There, the R-ANOCOVA has
been extended to a more general class of linear or nonlinear models (including
measurement errors or misspecified models). This would make GCM for such more
nonstandard cases manageable under beyond parametric schemes.

2.4 GCM in Health Care Studies

The development and management of a health care plan is a global problem, albeit
drastically different from one country to another, or even within a country, from
one region to another. A health care plan may either pertain to a general (overall)
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population or certain subclass, termed a target population, demarcated by various
socioeconomic or demographic features. Some of these features are qualitative or
categorical while some others are quantitative. A health care plan is designed to
assess the need for welfare or financial support for the target population for needy
people when inflicted with certain type of disease or disorder. Of course, to run
that, it needs sustainable funding through health insurance, government support,
and other resources. Therefore, it is needed to have a complete inventory of diseases
and disorders which are to be covered under the health care plan. It also needs
to assess the available resources to cover the cost of providing health care for the
target population. Such resources not only include the financial aspects but also
the availability of ambulatory care personnel and facility, medical and paramedical
personnel, general awareness of the population for some of the pertinent health
hazards, lifestyle of the population concerned, and a thousand and one other
associated factors, some of which may not even be properly ascribable. In this
respect, the quality of life (QoL) and general attitude towards life have an important
bearing too. There is naturally a temporal factor that relates to the adequacy or
deterioration of a health care plan over time as is commonly perceived in many
countries (Sen 2012). The growth of population susceptible to various diseases
and disorders, by sector, spatial and temporal factors, the temporal change in the
enrolment and compliance to a health care plan, growth of various burdens of
disease (including virus mutations which may alter the nature of some of these
diseases), (mal-)nutrition, poverty and affluence and other factors have significant
bearing on such health care plans.

In most of the countries in the Western Europe, the social welfare system
provides a significant support to available health care plans, although such schemes
are difficult to implement in developing countries, especially, the over-populated
ones, including the Indian subcontinent and China. The burden of population and the
vast inequality of wealth and living standards create impasses for a unified health
plan that could suit equally well the people from all walks of life. In capitalistic
countries, USA is no exception, a health care insurance plan is not affordable across
the various sectors of the population, and no wonder, still a big number of people are
deprived of equitable health care insurance and facilities. The prevalence of certain
diseases or disorders can impact a health care plan drastically. For example, diabetes
is a major concern in India, China, and many other countries where consumption of
carbohydrates is significantly higher. In this respect, the familial or genetic effects
are very much noticeable. Breast cancer is more likely for daughters of mothers who
has had such affliction. The fast changing lifestyle of a major sector of population
be it in the West or in the third world countries is having an impactful aftermath on
many cardio-vascular diseases. Hypertension is another big concern. On top of that,
HIV (AIDS) has become a global threat, and all over the world, is having a huge
toll in terms of mortality and morbidity. Arthritis and gout affect a significant part of
any population, especially at golden ages. For cholera, quite prevalent in the coastal
areas of the Indian subcontinent, it has been observed that there has been a mutation
in the microbes which can now fight back many of the drugs (salines) which were
quite effective a few years ago. Arsenic contamination of ground water is a major
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health concern in a vast coastal area in the eastern part of India as well as the entire
southern part of Bangladesh. Most of the working class people have their daily need
of drinking, cooking, washing clothes and dishes too, and even bathing, intake a
perceptible amount of arsenates which may not only have carcinogenic impact on
their skin, hands and feet but also have impactful effect on their ingestion system.
Combined with that improper disposition of human waste adds more misery to this
contamination. Dementia, Parkinson’s disease, and Alzheimer may be occurring at
a higher incidence rate. Smoking and lung cancer may be good relation although
they have not been linked causally. Environmental smoking effect is a significant
health hazard, more so in metropolitan areas where automobile exhausts contribute
liberally to this pollution. In any composite health care plan, the galaxy of diseases
and disorders need to accounted for, although the prevalence pattern and relative
cost for cure could be quite dissimilar.

The models discussed in Sect. 2.3 can be adapted for such health care plans.
However, a much more complex and interacting modeling is necessary. First and
foremost, let D(s,?) stand for the galaxy of diseases or disorders, at time ¢, ¢ €
T, s € S, which are to be covered under the plan. Here 7 stands for the time
domain and S stands for the domain of other spatial as well as explanatory variables.
Secondly, some of the diseases or disorders are chronic and have long-range impact,
while some others are relatively short duration with a (stochastically) much smaller
in-disease period. Therefore, it may be better to include statistical information
on the time under treatment or service of various diseases and disorders. In this
respect, the age at onset, duration of the service and the level (ambulatory, in-house
assistance or hospitalization) distributions are needed to be charted. The prevalence
of various diseases or disorders may vary considerably across the demographic
and economic strata of an overall population. The coverage of health plans may
also depend on such socioeconomic strata. Thus, we will have a multi-dimensional
stochastic vector, say, W(s,?), t € T, s € S wherein all the other information are
to be included as covariates. There may be a growth of prevalence of the diseases
or disorders (in some cases the opposite way), and the information on available
(para-)medical or clinical help and the associated cost analysis all are needed for
an in-depth assessment. The (age-specific) life expectancy as further categorized by
sex, ethnicity, and other demographic features can be viewed as a very useful piece
of information in this respect. This needs development of a suitable index of health
status of individuals covered under the health care system that can be incorporated
in the formulation of a general exposure risk measure R(s,z), t € T, s € S
whose distribution over the target population constitutes an essential component
of a stochastic modeling of the overall picture. Some other factors like most of the
high-cost surgeries need to be attuned to a possible health plan in such a way that
a complete coverage may push up the cost factor so much that on cost ground such
plans may not be affordable for a greater part of the society. Therefore, sustainability
and afford-ability issues are to be weighed in objectively so as to make a plan
adaptable. That also needs statistical modeling.
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No plans can be sustained without a complete provision of funding through
health insurance, cost sharing by the patients and government or other funding.
An accounting of the relative support, their potential change over time and their
matching the cost of providing the health care service is therefore desirable before
any undertaking can be planned. As such, we have a complex of variable, some
being response variables while others as covariates or explanatory variables, and
statistical appraisal of this picture is a prerequisite. This is needed to model a
composite cost-factor analysis based on a stochastic time-dependent C(s,t),s €
S, t € T which are to be attuned to the other stochastic matrices described before.

Statistically speaking, we need to have the collection of stochastic systems:

D(s, 1), W(s,t),R(s,1),C(s,2)), t €T, s €S, (2.8)

which are to be incorporated in to a growth model for a composite model. It is
also necessary to account for U(s,?),t € T, s € S, the cost for providing health
care contrasted with the resources to match that factor. This is intricately related
to fixation of the health insurance premiums, projection of clinical and medical
personnel cost and revenue sharing from other sources. Even in USA and other
developed countries in the West, the escalating health care cost is a nightmare for
concerned administrations; the problem is undoubtedly much more complex in the
Indian sub-continent and China. This is highly a nonlinear system, and routine
use of standard MANOCOVA or GCM may be grossly inappropriate. It may be
appealing to incorporate some SPDE (as in the PBPK models). However, given the
usual assumptions of white noises following suitable Gaussian laws in such SPDE,
it could be difficult to formulate computationally manageable methodological
justifications of SPDE sans those Gaussian components.

An essential feature of these stochastic processes is that they are not stationary
even in a very broad sense. Time dependence of not only the basic marginal
functions but also their association structures may generally cause tremendous
roadblocks to implement standard GCM models even in a component-wise formu-
lation. Generally, these stochastic processes have some tendency to acquire some
aggregative effects, resulting in usually nonlinear trends. Thus detrending is an
essential task. In the presence of nonlinear trends, usual parametric models may not
only be inadequate but also too irrelevant. Beyond parametrics approaches based on
wave-length methodology and nonparametric smoothing are therefore advocated.
That may invariably need relatively much larger sample size and could run into
cost constraints. It seems that taking into account the basic extraneous factors
a multidimensional, nonstationary, and non-Gaussian process with appropriate
systematic factors (most relevant to the GCM) can only be dome in a more
nonparametric setup with adherence to local (sub- or semi-)martingale features may
lead to more meaningful resolutions. The basic issue may be can there be sufficient
statistical validation and interpretation of data collection and monitoring to induce
the impact of GCM in this largely exploratory field?
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2.5 Concluding Remarks

It is indeed a challenge, especially in the developing countries, to collect reliable
data sets pertaining to the detailed statistical perspective as listed in the preceding
section. In most of the cases, there may be data sets pertaining to marginal morbidity
and mortality rates due to various (competing) causes such as the major diseases
or disorders but not that much of their synergic effects, and on top of that, very
little information on the health care facilities, insurance coverage, actual illness
and disease-free state sojourns, cost of services and individual health insurance
premium, etc. In health care and health services, especially for the senior people,
composite impact of more than one disease or disorder needs to be investigated.
This information can only be obtained through intensive sample surveys. The
sampling frame, cost of sample survey, adequacy of sample size information,
possible adjustment for non-responses, and the need for follow-up sampling, all are
to be formulated in a sound statistical manner. Collecting the relevant information
from census or official publications is likely to be grossly incomplete. In USA and
some other countries, the Bureau of Census, regularly conducts sample surveys to
update the census figures and collect some additional information. Still, they are not
enough to chart out the whole complex of growth models presented in Sect. 2.4.
In the Indian subcontinent, possibly the State Statistical Bureaus and the Central
Statistical Organization can undertake a network of sampling scheme but would
probably require statistical expertise to do it in depth and in a valid way to match the
need of the general objectives of health care plans and health study protocols. There
has been a sustained development of statistical thinking in public health (Sen and
Rao 2000) but their adaption in health care system is one step further that requires
immediate attention. My feeling is that this is a more complex problem beyond
the reach of these organizations present state of activities. On top of that some
other public health enterprises in India may not have the expertise and resources
to undertake such schemes. It is my hope that given such exploratory studies, the
implementation of actual health care plans will be facilitated. A much more detailed
statistical study is indeed needed and intended in the near future.
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Chapter 3
Testing of Growth Curves with Cubic
Smoothing Splines

Tapio Nummi and Nicholas Mesue

Abstract In this paper we present a novel method for testing growth curves when
the analysis is based on spline functions. The new method is based on the use
of a spline approximation. For the approximated spline model an exact F-test is
developed. This method also applies under a certain type of correlation structures
that are especially important in the analysis of repeated measures and growth data.
We tested this method on the glucose data of Zerbe (J Am Stat Assoc 74:215-221,
1979) and also investigated it by simulation experiments. The new method proved
to be a very powerful modeling and testing tool especially in situations, where the
growth curve may not be easy to approximate using simple parametric models.

3.1 Introduction

Longitudinal research has an important role in various fields of science, for example
in medicine, economics, social sciences, and engineering. The aim is to analyze
the change caused, e.g., by growth, degradation, maturation, and ageing when
individuals are followed over time or according to some other ordered sequence
of measurements. In this paper the focus is on complete and balanced data. One
of the most important statistical models for these data is the growth curve model
of Potthoff and Roy (1964). The early development of this model was mainly
based on the unstructured MANOVA assumption of the covariance matrix of
independent random vectors (e.g., Khatri 1966 and Grizzle and Allen 1969). Later,
however, more attention has been paid to modeling the covariance matrix by using
parsimonious covariance structures (see, e.g., Azzalini 1987, Lee 1988 and Nummi
1997). For excellent reviews of the growth curve model we refer to the books by
Kshirsagar and Smith (1995) and Pan and Fang (2002).
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Our approach is to use cubic smoothing splines to model the mean growth
curve. As is very well known cubic smoothing splines are very flexible curves
with interesting mathematical properties (see, e.g., Green and Silverman 1994). For
an up-to-date summary of recent methods of smoothing splines and nonparametric
regression we refer to Wu and Zhang (2006). Approximate inference with smooth-
ing splines have been studied, e.g., in Eubank and Spiegelman (1990), Schimek
(2000), and Cantoni and Hastie (2002). In their simulation study Liu and Wang
(2004) compared six testing statistics. Nummi et al. (2011) provided a test of a
regression model against spline alternative for correlated data. The main focus in
these studies have been on testing the order of the polynomial model against a
spline alternative. However, testing if two or more splines are equal would be very
important in many applications. Nummi and Koskela (2008) introduced some results
for the estimation and rough testing of growth curves when the analysis is based on
spline functions. However, very little research about testing equality of smoothing
splines, especially for correlated data, has been carried out so far. In this paper
we focus on testing if the progression in time is equal over the set of correlated
observations.

In Sect. 3.2 we introduce the basic growth model and its estimation using cubic
smoothing splines. In Sect. 3.3 a spline approximation is introduced and a test for
mean curves is developed. In Sect. 3.4 a computational example of Glucose data is
presented and the method is also investigated by simulation experiments.

3.2 Basic Spline Growth Model and Some Properties

One of the most important statistical models for balanced complete multivariate
repeated measures data is the GMANOVA (Generalized Multivariate Analysis of
Variance Model) of Potthoff and Roy (1964). The model is often also refered to as
the growth curve model. This model can be written as

Y = TBA' +E, 3.1)

where Y = (y1,¥2,...,¥») is the matrix of independent response vectors, T is a
q % p within-individual design matrix, A is an n x m between-individual design
matrix, B is an unknown p X m parameter matrix to be estimated, and E is a
q x n matrix of random errors. It is assumed that the columns ey, ..., e, of E are
independently normally distributed as e; ~ N(0,X), i = 1,...,n. In the original
model formulation ¥ was assumed to be an unstructured covariance matrix and
the analyses were mainly based on the methods developed for linear models and
multivariate analysis.

Often when analyzing growth data the true growth function is more or less
unknown and there may not be any theoretical justification for any specific
parametric form of the curve. Parametric models are then used for descriptive
purposes rather than interpretative to summarize the information of development
profile. A natural first choice in such situations is a low order polynomial curve.
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However, in many cases these models may fail to reveal important features of the
growth process and more complicated models are therefore also needed.

Our approach is to use the cubic smoothing splines to model the mean growth
curve. As is very well known cubic smoothing splines are very flexible curves
with interesting mathematical properties (see, e.g., Green and Silverman 1994). We
can write the model (3.1) in a slightly more general form as (see also Nummi and
Koskela 2008)

Y = GA' +E, (3.2)
where G = (g1,...,8n,) is the matrix of smooth mean growth curves in time
points #1, 1, ...,%;. We assume that the covariance matrix ¥ takes certain type of

parsimonious structure ¥ = o?R(6) with covariance parameters . In sequel we
refer to this model as the spline growth model (SGM). The growth curve model of
Potthoff and Roy (1964) is now the special case G = TB. The smooth solution for
G can be obtained by minimizing the penalized least squares (PLS) criterion

0 = t[(Y — GYH(Y — G) + «G’KG], (3.3)

where we denote G = GA’ ,H = R7!, and K is the so-called roughness matrix
arising from the common roughness penalty RP = f g"”? and « is a fixed smoothing
parameter. For cubic smoothing splines the roughness matrix is

K=VA~'V, (3.4)

where the nonzero elements of banded ¢ x (¢ — 2) and (¢ — 2) X (¢ — 2) matrices
V and A, respectively, are

1 1 1
V = —, V = — [ — — ], V = 35
ke = g0 Vi (hk + hk+1) k+2.k e (3.5)
and
h hy +h
Aijsr = Mgk = kgl, Ay = % (3.6)

where h; = xj41—x;,j =1,2,...,(¢q—1),andk =1,2,...,(¢g —2). Itcan be
shown that Q can be rewritten in an alternative form

0 = tu[{G — (H+ «K)"'HY}Y(H + ¢K){G — (H+ «K)"'HY} +¢]. (3.7
where ¢ is a constant and (H + «K) is a positive definite matrix. The function Q

is minimized for given & and H when G = (H + oK)~ 'HY. This gives the spline
estimator

G = (H+aK) 'HYAA'A) . (3.8)
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However, the covariance matrix H may not be known and therefore the estimator
(3.8) maybe difficult to use in practical situations. Fortunately, it can be shown that
in certain important special cases the general spline estimator (3.8) simplifies to
simple linear functions of the original observations Y. One obvious condition for
such kind of simplification is

KR =K (3.9
and since now K = KH the spline estimators G can be simplified as
G=(I+aK)'YA(A'A)™' =SYAA'A)"", (3.10)

where the smoother matrix is S = (I + «K)™!. Covariance matrices satisfying the
condition (3.9) have been studied in Nummi and Koskela (2008) and Nummi et al.
(2011). Some important special cases of these structures useful for growth data are
R=LR=1I+ 0511’, R=1I+ crfl,XX’ and R = I 4+ XDX/, where X = (1,x)
and x is a vector of ¢ measuring times.

If we apply the result vec(ABC) = (C’ ® A)vec(B), where the vec operation
rearranges the columns of a matrix underneath each other, we can write the basic
model (3.2) in a vector form

y=@A®I)e

where y = vec(Y) and g = vec(G). If the spline estimates are written in vector
form we have

g=[(AA) A’ ® Sly
and the smoother of the whole data is
y = (P, ®S)y = S.y, (3.11)

where we denote P, = A(A’A)"'A’ and S« = (P, ® S). The effective degrees of
freedom of the smoother can now be given as

edf, = tr(Sy) = tr(P, ® S) = tr(P,)tr(S) = m x edf, (3.12)

where edf = tr(S) is the effective degrees of freedom of the smoother S. It is further
easy to see that the generalized cross-validation criteria for choosing the smoothing
parameter « take the form

- qu—‘bﬁ - )71‘]2

GCV(a) = q ’_’mx -
_ edf \2
(1 —2xedh)

, (3.13)

where y; and y; are individual elements of the observed and smoothed vectors y and
y, respectively.
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3.3 Testing of Mean Curves

It is very well known that exact tests may be difficult to develop when making
statistical inference based on smoothing splines. Our interest in this study focuses
on testing if the progression in time is the same in treatment groups considered. In
this study an exact test based on spline approximations for testing growth curves is
developed.

3.3.1 Spline Approximation

It has been demonstrated by Nummi et al. (2011) that the approximation discussed
in this paper is quite good for relatively smooth data. More detailed consideration
of spline approximations can be found, e.g., in Hastie (1996). In a general case
the smoother matrix S is not a projection matrix and therefore certain results, e.g.
in testing, developed for general linear models are not directly applicable. Our
approach is to utilize an approximation for the smoother matrix S with the properties
of a projection matrix. As discussed by Hastie (1996) the smoother matrix can be
written as

S =MI+aA)"'M, (3.14)

where M is the matrix of ¢ orthogonal eigenvectors of K and A is a diagonal matrix
of corresponding g eigenvalues. It is easily seen that K and S share the same set

of eigenvectors my, my, ..., m, and the eigenvalues are connected such that the
eigenvalues of S are y = 1/(1 + aA). In sequel we assume that eigenvectors
m;,my, ..., my are ordered according to the eigenvalues of S. It is well known

that the sequence of eigenvectors appears to increase in complexity like a sequence
of orthogonal polynomials. The first two eigenvalues of S are always 1. We can
set m; = 1//n and my = t,, where t, = (t —71)/S;, 7 is the mean and
S = /> ]_,(t —1)* is the square root of the sum of squares of the time
points 71, ..., f,;. Therefore the first two eigenvectors m; and m; span the subspace
corresponding to the straight line model. In the mixed model formulation of the
spline solution (e.g. Verbyla et al. 1999) this corresponds to the fixed part of the
model. It is also easily observed that if the value of the smoothing parameter o
increases the fit approaches the straight line model and the fitted line (fixed part) is
not influenced by any specific choice of .
Clearly, one obvious approximation of the spline fit (3.10) is the spline model

G=P,YA(A'A)", (3.15)

where P,, = MM, and M, contains the ¢(< g) first eigenvectors of M. This
corresponds to minimizing the least squares (LS) criteria

Q' =t(Y-G)(Y-G), (3.16)
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where G = GA'’. Note that the smoother matrix S and the smoothing parameter
need not be computed here. However, the number of eigenvectors ¢ from K used in
the approximation needs to be estimated. This is easily done by, for example, using
a modified generalized cross-validation criteria

é YLy = wil

* —_—
GCV7(c) = q_mr (3.17)
nq
where y; is now computed using the formula (3.11) with S replaced by P,,.
3.3.2 Constructing a Test for Mean Spline Curves
First, consider the set of fitted spline curves
Y=GA. (3.18)
As discussed in the previous section we may use the approximation
Y = GA’ = ML.QA/, (3.19)

where we denoted 2 = M/, YA(A’A)~". All the relevant information for testing
mean profiles is now in the matrix fZ, which can now be considered to be an unbiased
estimate of the unknown parameter matrix of the statistical model E(Y) = M. QA’.
Therefore in sequel we confine in testing linear hypothesis of the form

H() :CQD = 0,

where C and D are known v x ¢ and m x g matrices with ranks v and g, respectively.
Since vec(ABC) = (C' ® A)vec(2), the vector form of Hj is given by

Hy: (D' ®D)w =0,
where w = vec(R2). If we take the vector form of Q, we get
@ = vee(Q) = [(A’'A)T'A’ ® M.]y. (3.20)
It is now easily seen that the covariance matrix of @ is
Var(®) = o*[(A’A)™! ® M, RM,]. (3.21)
If we denote Var(D’ ® C)® = W, it is then obvious that under the null hypothesis

W 2D’ @ C)d ~ Nyg(0,1)
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and
0720, =d'DRCHW (D' ® C)d ~ 13,

By using the results tr(AZ'BZC) = (vec Z)'(CA ® B)vec Z, it is further easy to
see that O, can be rewritten as

0. = tr{[D'(A’A)"'D] "} [CQD] [CM,RM,.C'] " [CD]. (3.22)

If 02 is estimated by

1
6= ——uYI-P,)Y, (3.23)
n(g—c)

it can be shown that n(g — ¢) x 62 ~ Xﬁ (¢—c) @nd since Q.+ and 62 are independent
testing can be based on the F-ratio. Then under the null hypothesis

Ox«/vg

F ===
52

~ Flvg,n(qg —¢c)]. (3.24)

Testing can then be based on the quantiles of the F-distribution. However, in
practical situations the matrix R contains unknown parameters that need to be
estimated and therefore the distribution of F' in general case is only approximate.
However, if we are only interested in progression in time we can drop the first
eigenvector m; corresponding to the constant term in the approximation model
(see Sect. 3.3.1). Therefore we can take C = [0, 1], and if we assume the uniform
covariance model R = d211’ + I, it can be shown that

CM,RM..C' = C{d% ¢, +I}C' =1, (3.25)
where e; = (1,0,...,0)". Therefore the term Q. simplifies to
0. = t[CQD){[D'(A’A)~' D]~ [CHDY, (3.26)

which does not contain unknown parameters of the covariance matrix and therefore
for this special case the distribution of the F-statistic is exact. This is an important
result since the uniform covariance model is quite common and a good approxi-
mation in many situations. The F'-test proposed here provides means to test if the
progression in time is the same over treatment groups when the models are based on
spline curves. Following the same kind of considerations it would be easy to develop
an exact F'-statistic to test if the progression around the fitted straight line (the so-
called random part in mixed model formulation) is the same over treatment groups
with the more general assumption of linear correlation structure R = XDX' + 1.
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3.4 Computational Examples
3.4.1 Standard Glucose Tolerance Test

As the first computational example we consider the glucose data of Zerbe (1979).
In these data glucose tolerance tests were administered to 13 control and 20 obese
patients. Plasma inorganic phosphate measurements determined from blood samples
drawn 0, 0.5, 1, 1.5, 2, 3, 4, and 5h after standard oral glucose dose were taken.
The curves plotted for the control and obese patients are plotted in Fig. 3.1. In
Fig. 3.1, two features of the plotted curves are quite obvious. First, there is a
considerable variation in patient’s individual levels. Secondly, the functional form
of the dependency of plasma inorganic phosphate and time is quite complicated and
possibly different for control and obese patients. In Zerbe (1979) a polynomial of
degree of 4 was used to model this relationship.

To set up the spline growth model the between-individual design matrix A was

first defined. For 13 control patients the rows of A are (1,0), i = 1,..., 13 and for
Control patients Obese patients
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Fig. 3.1 Plasma inorganic phosphate measurements for control and obese patients
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20 obese patients the rows of A are (0, 1), i = 14,...,33. The minimum value of
GCV = 0.4484152 is obtained at « = 0.09410597. This gives the total effective
degrees of freedom ed fi. = 9.310273. The fitted curves are plotted in Fig. 3.1. It can
be observed that the fitted spline curves very nicely depict the mean performance of
measurements in both groups.

To test if the progression in time is the same in both groups we first determined
the dimension ¢ needed in the spline approximation. Minimizing the modified
generalized cross-validation criterion gives ¢ = 5. To test the null hypothesis
we took

C=[01] and D=]1,-1].
Next we calculated the estimate CS2D. This yields
CQD = (0.74897422, —0.03613939, 0.46201190, 0.54998030)'

and the residual variance estimate for this setup is 6> = 0.09408348. For the
covariance matrix R we assumed the uniform correlation model and therefore the
exact version of the test statistics can be used. Then the value of Q. is given as

0. = t[CD]{[D'(A’A)~'D] ! [COD] = 8.494923

and the value of the test statistics is then

Q./vg _ 8.494923/4

F = — =
62 0.09408343

= 22.57283.

If this is compared to the critical value Fy95(4,99) = 2.447, the null hypothesis
of equal progression in mean plasma inorganic phosphate for control and obese
patients is clearly rejected.

3.4.2 A Simulation Study

In order to demonstrate the advances of the methodology presented we conducted a
simulation study. In this study two models were tested

y=1+05x1t+e¢, (3.27)
y=1+4+0.5x%x1t+a xcos(0.47t) + €, (3.28)
with ¢ = 1,...,10 and independent random errors €; ~ N(0, 1). The coefficient

a takes the values 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. The first group of growth
curves consists of 100 random vectors generated from model 3.27 and the second
consists of 100 random vectors generated from model 3.28. So, for each value
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Fig. 3.2 Proportion of the rejections in 1,000 repetitions under models (3.27) and (3.28)

of a these two sets of growth curves were generated. The mean growth curves
are then tested against the null hypothesis that the progression in time is the same
in both groups. Two methods were utilized. The spline testing method presented
in this paper and the second method utilized here was the basic parametric least
squares fit of the third degree polynomial model. The power was estimated with
the significance level 0.05 by counting the percentage of rejections in the 1,000
repetitions.

The results are shown in Fig. 3.2. Clearly, the spline test presented in this paper
performed better than the test based on the least squares fit of the third degree
polynomial. This is obviously due to the fact that the fit provided by the splines
better depicts the peculiarities of the unknown growth function.

3.5 Concluding Remarks

Traditional analyses of growth curves are often based on simple parametric curves,
which may not satisfactorily depict all the features of the growth process during
the testing period. The method presented in this paper is based on cubic smoothing
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splines, which provides a very flexible modeling tool for the analysis. However, very
little research on the statistical inference (especially testing) of cubic smoothing
splines for correlated data has been carried out. The novel test presented in this
paper seems to provide a good alternative, especially when more accurate modeling
of growth process is required.
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Chapter 4

Nonuniform Rates of Convergence to Normality
for Two-Sample U -Statistics in Non IID Case
with Applications

Ratan Dasgupta

Abstract Rates of convergence to normality are studied for two-sample
U-statistics in non iid case under certain conditions which ensures that all
moments of the kernel exist but the moment generating function of the kernel
may not exist. Applications are made to compute normal approximation zone
for the tail probability, nonuniform L, version of Berry—Esseen theorem and
moment type convergences of a standardized U -statistic. The normal approximation
zone goes beyond moderate deviation and extends up to large deviation. As an
application, efficiency of U -statistic-based tests, when the basic observations are
discretized, is studied. It is seen that sometimes test efficiency may increase after
discretization. Possible explanation is provided for such intriguing phenomena.
A further application is made of deviation probabilities to compare agricultural
production scenarios, e.g., growth of Elephant-foot-yam, over years. Yam stem
growth is a good predictor for underground yam deposition. A nonparametric
robust procedure to estimate derivative of a function based on discrete data is
proposed. Performance of the proposed technique that is insensitive to outliers is
investigated and found to be satisfactory. The procedure of analysis adopted in yam
data may be extended to the cases where variables of interest are continuous growth
curves that need to be compared over different time cycles in terms of rare events.
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4.1 Introduction

The class of U-statistics is a highly fruitful extension of the usual sample mean
to a natural higher level of generality. Since their inception in 1948 the basic
probability theory of U -statistics has become long established, see Sen (1992) for
some historical references. The asymptotics of U -statistics, defined on a sample
space from some distribution, entails a hierarchy of limit results depending on the
order of degeneracy of the underlying kernel, starting with asymptotic normality,
followed by weighted sum of chi-squares as the limit random variable and then the
higher order cases best described in terms of multiple Wiener integral.

Amongst the results on uniform rates of convergence in CLT for U -statistics
based on # iidrvs, Callert and Janssen (1978) obtained the optimal rate O (n~'/?)
under the existence of the third absolute moment of the kernel; recently Bentkus
et al. (2009) obtained rates for adjusted normal approximation involving third
derivative of standard normal cdf, in terms of error bound for main linear part
involving iidrvs via Hoeffding decomposition plus the variance of the remainder.

In this paper we consider nonuniform rates of convergence to normality for 2-
sample U -statistic in non iid case under some exponential type moment conditions.
The genesis of the present problem was launched in Ghosh and Dasgupta (1980)
and has seen further developments in Dasgupta (1988, 1989, 2006, 2008, 2010).

Let U, ,, be a two-sample U -statistic based on the independent but not necessar-

ily identically distributed random variables X,--- , X,, and Y}, --- , Y, with kernel
¢ and degree (7; s) i.e.,
U = (nc,me,)”" > 0. CYEEEID (A9 SREEENS I8 8
l1<ij<---<i,<n 4.1)

Il=ji<--<js=m

where the kernel ¢ is symmetric in its arguments X;s and Y;s. Without loss of
generality let,

E(Xior X3 ¥y Vi) =0, Vi din jid - #jo (42)

An example of such a statistic is Wilcoxon 2-sample statistic. Nonuniform rates of
convergence in CLT for two-sample U -statistics is studied in Dasgupta (2008) when
a finite (>2) moment of the kernel ¢ exist. A Berry—Esseen bound for random index
was also established therein.

We study nonuniform rates of convergence to normality for two-sample
U-statistics in non iid case under certain conditions which ensures that all the
moments of the kernel exist but the moment generating function of the kernel may
not exist. As an application of these rates, we compute normal approximation zone
for the tail probability of standardized two-sample U -statistic that go beyond the
moderate deviation zone. The results in this paper obtained under assumptions
that are stronger than those obtained in Dasgupta (2008), which seems to be first
of this kind in literature for two-sample U -statistic. We show that the normal
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approximation zone is of comparable order with that for standardized sum of iid
random variables obtained under similar moment assumptions. We also show that
for Wilcoxon 2-sample statistic, the normal approximation zone is the same as that
for standardized sum of iid random variables. Nonuniform L, version of Berry—
Esseen theorem and moment type convergences of a standardized U -statistic are
also studied.

In Sect.4.2 we outline the decomposition for two-sample U -statistics. In
Sects. 4.3 and 4.4 we study convergence rates in CLT along with allied results,
based on two different types of moment bound for the kernel ¢. Let m = O,(n)
and v be the number of arguments in ¢. For the first type of moment bound which
ensures E exp[s{log,(1 + |¢[)}*/“V] < oo, s > 0, normal approximation zone
is O((logn)"/®=Y), v > 1. These zones are larger than moderate deviation zone,
as v > 1. The second type of moment bound ensures E exp(s|¢|'/”) < oo, s > 0,
and the corresponding normal approximation zone turns out to be o (n!/C+v+1)),
a large deviation zone. It is known that Chernoff-type large deviation behaviour
is different for U -statistics from that of iidrvs, whereas here it is shown that w.r.t.
Linnik type large deviation these are equivalent (Remark 3, regarding Wilcoxon
statistic), for two-sample case in iid/non iid set-up.

Bayes Risk Efficiency (BRE) considers testing problem in terms of rare events.
The concept of BRE in its large deviation counterpart studied in Dasgupta (2010)
revolves around comparing tiny errors. In Sect. 4.5, we assess the efficiency of a test
based on U -statistic when the basic observations are discretized with possibilities
of ties in data. Random (data dependent) scaling is now quite frequent in limit
theorems inter alia, and one may use (random) variance calculated from sample
for such purposes of scaling, as advocated in this paper. A remarkable feature
revealed in our study is that sometimes test efficiency increases after discretization,
although there is a possible loss of information when the basic observations are
discretized. Statistical implications of the result are discussed. A further application
is made in agricultural statistics to compare production scenarios over years in
Sect.4.6. A nonparametric technique to estimate growth rate based on lowess
(locally weighted scatterplot smoothing) regression is proposed to examine whether
the rate falls below a level and the crop is ready for harvest. Among all non
parametric regression techniques, lowess smoothing has a special role compared
to others. The procedure down weights an outlier over several iterations, so as
to remain insensitive towards it. This is one of the motivations to develop a new
technique for estimating derivatives based on lowess. The technique is explained
by live yam data from Indian Statistical Institute, Giridih farmhouse. The proposed
technique of estimating derivative of a function based on discrete data has potential
of general applications. Law of iterated logarithm (LIL), which has application to
develop tests of power 1, is related to normal approximation zone of order (log log n)
by Tomkins theorem, is also a consequence of nonuniform bounds in CLT; requiring
only a little bit more (viz., logarithmic power > 1) than the second moment of
individual random variables in the set-up of triangular array of independent random
variables. We indicate another application of LIL; production scenarios are proposed
to be compared in terms of relative frequencies of rare events in large deviation
zone and by LIL. The technique may be extended to the cases where a large
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number of observations are continuously/sequentially recorded over time. Proof of
Proposition 2, a technical result on equivalence of moment bound and m.g.f. of the
transformed random variable is given in Appendix.

4.2 Decomposition of 2-Sample U -Statistic and Estimate
of Remainder

For completeness and reader’s convenience, we indicate the steps of decomposition,
as shown in Dasgupta (2008), for r = 2 and s = 2. It is possible to generalize for
other values of (7, s), see also Ghosh and Dasgupta (1980). Define

wiigl,h,u(x"l) = ¢;21,i3,i4(xi1) = E[¢(Xila Xiza i3 )IXII - le] (43)

similarly define 1//,1 s i)

¢{1’?2(xi19xi2) = E[‘P(Xi]?Xiza i3 )|Xll - xl]a Xi2 = xiz]v (44)

13,04

similarly, define ¢ (i, vi,)-

11,12

l";l llf(xll’xlz) = ’li l’j(xil’xiZ) - 1211 14('x11) 11 i3, 14(x12) (45)

similarly, define ¥ (y;,. yi,)-

11,02

¢ll 2 13(x11vxlzvylz) = E[p(Xi), Xi,, Yiy, Yi)|Xi = xiy, Xi, = X3, Yiy = yis].
(4.6)

W” = ls(xn s Xiy,s Viz) = ¢ll = ls(xn s Xiys Viz) — W,’;,’f(le s Xiy) 4.7
- Irl/tlzlzlj (xfl ’ yi3) - Irl/tllzzl: (xiZ’ yi3) - wlz i3.i4 (xll) wzl 3,04 (xlz) 1//11 in.ig (y’%)

In the same fashion similar terms can be defined.
Finally, let

wll,lqus,h@ (xil l} xiza yi3 l} yi4) (48)
- ¢(x11 s Xiys Vi yl4) - ’1 & ”(‘xll » Xips yl3) ’1 2 14(-x11 s Xigs yl4)

ll i, '4()611 s Vigs Vig) — ’2 B M(x,z, Yizs Vi)

ll‘;l zl42 (xiys Xiy) — ;21 1’: (Xiys Yis) — wzlzlllj (Xiys Yiy)

lz i3 lz In 3,i4

11 i ('xll’ yl3) - 11 i3 (xizv yi4) - wii:iz (yiS’ yi4)
_wlzlz 14( ll) l] 3, 14( i2)_ 1112l4(y13) lllzlz(yl4)
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Write,
—(1) _
1/’ (Xll) m Z 1213 14( ’1)
iy=1,-.n
ir # i1
1<iz<iz<m
—() n — j
v (Y =[(m—1)"C] ! Z 1/’;13,,‘2,,'4(Yi3)’
i4 = 1’... ,m
iy # i3
1<iij<ir<n
—(2) z i
W (Xllelz) - (mCz) ! Z 131 142(X117X12)
1<iz<ig<m
(2) _ . .
14 (Xlw Yi,) = [(n — 1)(m —1)] ! Z 1/’1‘121,’;;()(!‘1’ Yi),
ip=1,---,n; ir #1i)
g =1, ,m; iy #i3
(3) _
(X”’Xlza i}) = (m - 1) ! Z ll 12 13(X117X127 '3)7
ig=1,---,m; isg #i3
(3) —_ l 13,0
V(X Y, Y) = (n—1) ! Z 1 > 4(Xll7 i35 Yig)s

ib=1,---,n; ih#I

define other terms similarly.

Then, with

(1) (1)
va (Xi) + = Zw (¥,

11—1 lz 1

—1 —1

n —(©2 m —(2)
"2:(2> v (X,-l,xiz)+<2) DA )
1<ij<iz<n 1<iz<ig<m
—(2)

+% Z 14 (Xtiis)’

il :1’...’]1
i3=1’...’m

Vs = (m"Cy)~"! Y 72X, X, V)
1<ii<i;<n
iy=1,---,m

H(n " Cy)! > 7Y (X, Y, Y, and
1<iz<is<m
iv=1,---.,n



66 R. Dasgupta

Vy = (mc, ne,)™! > YiriBi(X; X, YY),
1<ii<ir<n
1<iz<iz<m

one has,

U=Vi+W+V+V, 4.9)
=Vi+ Rym; where R,,, =Vo+ V34 V,.

In the above representation V; is the main part. To be precise, one should write
the main partas V; = 2n~"' Y _| ES?(XH) +2m~' Yy E;i(Yi}), which is a
weighted sum of independent differently distributed random variables with different
functions ES? (.) and E;Z (.) for which application of standard theory is possible. In
fact, we use the set-up of triangular array for random variables where variables in
each array are independent. The arrays may themselves be dependent.

Although to simplify complex notations in non iid case we suppress the lower
suffixes 1i; and 2i3 in y, the presence of these is to be understood from the
corresponding random variables of 1st type and 2nd type X;, and Y,, respectively,
present within the first brackets; it should not be misunderstood as if W(lfl)() =

—(1 — . . . . .
W(zi; ()= 1//(1:1) The same liberty is taken in notation of other types of conditional

expectation, and even there the meaning of the notations is precise in presence
of the random variables X; ,Y;,, etc., within . The quantities W,E etc., are
obtained via conditional expectation of kernel ¢. These retain the independent
structure if the associated random variables in v,V etc., are non overlapping.
Results on triangular array of independent random variables thus become applicable.
By Jensen’s inequality for conditional expectation and C», inequality, the moment
bounds of ¥ or ¥ are ultimately connected to ¢, and these are of same order as that
for ¢.

The remaining parts in (4.9) viz., V», V3, and V, are comparatively negligible
than the main part V;. The following moment estimates of V>, V3, Vi, and the
remainder R, , hold, see Dasgupta (2008).

Proposition 1. Let (4.2) holds and for an integer g > 1,

8g = supl(3) ()1 > E|p(Xi. Xi,. Yiy, Yy < 0.
m>2 1<ii<iz<n (4.10)
n=>?2 1<iz<is<m
Then,
E(V>)* < (0™ + m™ + (mn)~%) LY(29)15,. 4.11)

E(V3)* < (m™%n™21 + n~9m™24) L1(3¢)'5,, (4.12)
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E(Vy)* < (mn)™2 L1(4¢)'5,, (4.13)

where L(> 1) is a constant independent of m, n and q. Finally, from (4.11) to
(4.13), for R, ,, defined in (4.9), one has

ERY, <n™2 Li(vg)! &, (4.14)

under the assumption m = O, (n), where v is the number of arguments in ¢.
In the decomposition (4.3)-(4.9), v=r + s = 4.

4.3 Rates of Convergence and Deviation Probabilities: Part 1

The representation (4.9) permits us to compute the convergence rates and the
deviation probabilities of two-sample U -statistics. Consider m = O,(n). Then from
4.9),

2 1 2 S
U=Vi+ Ry where Vi = =3 3000 + = 37" w)

i=1 i=1

is the weighted sum of (i + n) independent random variables.
Assume that the kernel ¢ satisfies

sup (”szcz)_l Z E | ¢(Xi17Xi2’ le7 sz) |2q: 8(1 =< Lew{,q”
n>1.m>1
1<ij<ir<n (4.15)

I<ji<j=<m

Vq > 1, and for some L > 1, where w, > 0, v > 1. In Appendix we show that
condition (4.15) is equivalent to the following:

sup  (ne,me,) ™' 3o E expls{log, (1 + ¢}/ ~V] < oo
n>1,m>1
Il<ii<ia=n (4.16)

I<ji<jp<m

where ¢ = ¢(X;,, X;,,Y;,,Y},), and s = w;l/(v_l).

This ensures existence of m.g.f. for v/(v — 1)th power of a logarithmic function
of ¢. The assumption implies ¢ has a wider moment-bound compared to a random
variable with finite m.g.f. The bound on moment-growth for ¢ is of such a high order
that, v/ (v — 1)th power of the tamed variable log(1 + ¢) admits m.g.f., instead of
kernel ¢. Although finiteness of all moments of ¢ is ensured, this assumption is very
mild compared to stringent assumption of finite m.g.f. for ¢.
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Now write,

U =0y, = [var(V)]" Uy = [var(V)]™?Vi + R}, (4.17)

m

—(1 —(1 _
where, Vi = 2¥"_ 3V x) + 25, 5V RE, = ar(V)]T V2 Ry,

o® = va(h) = 4= EW(X0P/n® + Y ER (R /mY) =
Oc(37). 02 = 02, = (n+m)?0*? = (n + m)>var(Vy) = Oc(n +m) = O(n),

provided
NS D g2 N D g2
inf n §_1:wa (X > 0. inf m §_1:E[w YR >0. (@18

Let L > 1 be a generic constant. The first term in the r.h.s. of (4.17) is
then standardized sum of independent random variables and the second term is a
remainder with E(R*,)% < n™4 L9(vq)! §,. Now, e >> Li(vg)!, w*>0,
v > 1. Thus,

ER;,)M <n~? Le" ", w>w, (4.19)

for a different (large) choice of L. The next theorem states the normal approximation
zone for tail probability of the standardized two-sample U -statistic.

Theorem 1. Let m = O,(n). Under the assumptions (4.2), (4.15)/(4.16) and
(4.18), for the standardized U -statistic U,} defined in (4.17), one has

1-PU} <ty) ~P(—t,) ~ P(UF < —ty) for

2 <a(logn)”/"D + M, M >0, t, — oo,

where o = (2 — e)w(,_l/(v_l)(v — D™D g = w;l/(v_l), € > 0 is arbitrary
small, w, and v are defined in (4.15) and M > 0 may be arbitrary large.

Proof. Write,

|P(Uy <1) = @@1)| < [P(var(1))™"?Vi <t £a,(1)) = D(t £a, ()] (4.20)
H O £ an (1) — O] + PR, | > an(1)).

Under (4.16), first term of the r.h.s. of (4.20) may be approximated from
Theorem 2.1 of Dasgupta (1989); the condition (4.5) therein is satisfied for
independent random variables 7" (X;) and W(l)(Yj) with g(x) = exp[s’{log, (1 +
|x)}/0=D] s < s, since from Jensen’s inequality for conditional expectation
and Cy, inequality, the 2¢th moment bounds for 7" (X;) and W(l)(Yj) are of
same order as that for ¢. Also recall the steps of truncation of random variables
in Theorem 2.1 of Dasgupta (1989). There were n independent random variables in
nth array, and the variables were truncated at rs, |¢|, where s,% is the sum of variances
of variables in that array, s> = O, (n). In the present case of U-statistics we have
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sum of (n + m) independent random variables in V| with variance of the sum as
0*? = var(V}) = 0€(n4+m)‘ So, an appropriate truncation point of the random
variables %E(l)(X,-) and ’%E(l)(Yj) in V; would be ra*|t|.

In other words the truncation points for W(l)(X ;) and E(l)(Y ;) would be roy,|t],
as 02 = (n +m)?0** = O,(n + m). Since the value of constant r € (0,1/2) is
adjustable, O, terms arising out of truncation can also be adjusted appropriately in
the set-up.

Take a, = n™7, y > 0, small. Then following the steps of (4.23) of Dasgupta
(1989), for 1 < t? < 2(logt + log g(ro,t)), one gets

|P(var(V))™' 2V <t £ a, (1) — D £ a,(1)] < bexp(=( £n77)?/2)

n 2
x|t £n77 | exp(O(t £n77 P 0 2) — 11+ Y P (X5) > rao* 1))
n

i=1
2 .
+ D PP (Y)) > o)),
j=1
< bexp(—/)t| M exp(O(e n™ ) — 1]+ > P

i=1

(X,) > rlO’n|l|)

+ 3 P@ () > racylt]), @21

=1

for some 4,0 < A < 1, and let (> 0) be a generic constant. The factor A appears
as we considered ¢ & a, (¢) in the above inequality. Next,

|B(t £ ay(1)) — D) < b ay(t)e > =bn Ve ™"/ (4.22)

Finally, consider
P(IR%,| > a,(1)) < a, () n™ Le"?" = P*, say.
The minimum of the above is attained when,
j—qlogP* = —2loga, — logn + wwg" ! = 0 = g = [loga, +
logn)/(ww)]/=D.
So,log P* = w(l1—v)g"+log L = w(1—v)[(2loga,+logn)/(wv)]"/~D +log L.
Then
log P* = w(l —v)[(1 —2y)(logn) /(wv)]"/~D +log L. That s,

P(IR%,| > an(t)) = Ofe™"@=D{0=2ogn) /G C=D ) 4.23)
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For normal approximation zone, one requires the terms in r.h.s of (4.20) to be
0(®(—1)), where ®(—1) ~ Lﬁ 1~1e™*/2, { — oo. The restriction from the first
v

term on the r.h.s. of (4.21) states ¢ = o(n'/).

From second and third term on the r.h.s. of (4.21) the restriction is t> < 2(logt +
log g(rioyt)).

A similar condition 1 < > < 2(logt + log g(ro,t)) is required for validity of
(4.21). Now, 1> < 2(logt + logg(ro,t)) ~ 2logt + 2s'[log(ro) + %logn +
logt]/ D r > 0,06 > 0 = > < 25'(logn)"/*~Y(1 + o(1)), and logt <

2(\}”—_1) loglogn (1 + o(1)). Hence the conditions from (4.21) simplify to

1 v/(v=1)
12 <25 |:§ logn + log logn):| + ] loglogn + M, (4.24)

v
2(v—1)

s’ <s=w/" and M > 0.
Next the restriction from (4.22) for normal approximation is t = o(n").
Finally, with a small choice of y (> 0), restriction from (4.23) is

t,f < 2W1_1/(U_1)(U — D0 Dogn)”CD wi > w>w,, v > 1. (4.25)

It therefore follows that (4.24) and (4.25) determine the normal approximation
zone. The leading term in (4.24) is 2 < 2s’(% logn)"/=D, Comparing this with
425 withwy ~ w, = 5!, 5’ ~ 5 = wy/"™ and observing that v¥ > (v —
1)”_1, v > 1 it follows that the zone (4.25) is more restrictive, and hence determines
the normal approximation zone. The theorem follows by taking w; arbitrary close

to w, in (4.25).

Remark 1. The leading term for t,f in Theorem 1 is of order (logn)"/®~!. The
normal approximation zone for standardized sample sum of iid random variables is
also of same order, as given by (4.24); see also Theorem 2.3 of Dasgupta (1989).
These zones are larger than moderate deviation zone, as v > 1. Moderate deviation
results hold when some finite moment (>2) exists. In (4.15)/(4.16) we assumed
existence of all the moments for kernel ¢, and hence the resulting zone gets
extended beyond moderate deviation.

Denote G,(t) = P(U,” < t). The next theorem provides an overall nonuniform
bound in the CLT for standardized U -statistics.

Theorem 2. Under the assumptions of Theorem 1, there exists a constant b > 0,
depending on w and v such that the following holds.

G, (t) — ®(t)] < b n~2Hene=cloeHIMTO™Y 1y o 6 o4 <00, (4.26)

where ¢ = w(v — 1){2/(wv)}"/0=D > 0, and €, = (2c)~"" D/’ (logn)~/" =
O((logn)™"") = 0, as n — oc.
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Remark 2. Observe that in the nonuniform bound (4.26), the part depending on |¢|
decreases at a faster rate than any polynomial power of |¢|. Further observe that the
uniform bound of the rate approaches to the optimal bound O(n~'/?), as the excess
€, = O((logn)™'") = 0,n — oo.

Proof of Theorem 2. Leta,(t) = prten ¢, then proceeding like (4.21), we have
for the region 1 < ¢*> < 2(logt + log g(roy,t)),

|P(var(V1)) ™V 2Vi <t £ a,(1)) — D1 £ a,(1))| (4.27)

< bexp(—/D)t| M exp(O(t n™ ) — 11+ 3 P@" (X)) > raoultl)

i=1

+3° P@(¥)) > raaulel).

j=1
forsome 1,0 < A < 1. Also,
|O(1 £ a, (1)) — ()| < bn~ 2T |t]e™"/2. (4.28)
Next, proceeding like (4.23)
P(IRY,| > ay(1)) = O[e™ ¢~ DIClozanlozm/ ol (4.29)

< pe W=D logn+logt)/(wv)]”/ =D
—c[(en logn)“/("_l)+(logz‘)“/("_l)] _ _ v/(v=1)
<be , c=wl—=1D{2/(wv)}

— O[n~1/2e—clog(1+]e))”/0=D Case, = (2¢) 1 (ogn)" 1/,
g

In the complementary zone, i.e., for t> > 2(logt + log g(ro,t)), from Theo-
rem 2.5 of Dasgupta (1989), we have in place of (4.27), the following:

|P(var(V1)™" 2 Vi <1 £ a,(1)) — (1 £ a, ()| < O(|t|g(r Aoy |t]) ™" e

+ Y PE (X)) > raclt) + Y. PG (X)) > raouli),

i=1 j=l1
(4.30)

forsome A, 0 <A < 1,ande¢,;, — 0,asn — oo.

For the remaining zone > < 1, an uniform bound O(n_%“”) is available for
|G, (t) — ®(¢)] letting a,, = n_%“", i.e., taking |¢| = 1 in a,(¢) and proceeding
as before and then using the inequality ||F(X + Y) — ®|| < [|F(X) — ®|| +
(\/E)_lan + P(|Y| > an).
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From the above uniform bound and from (4.27) to (4.30), we may now have an
overall nonuniform bound for |G, () — ®(¢)|. The order of the last two terms in
the rh.s. of (4.27)/(4.30) is O(|t|g(rAc,|t]))™", where g(x) = exp[s’{log,(1 +
XD/ 6, = 0.(n'?), s < s = w7, the coefficient of (log(1 +
[£1))*/®"=D in the exponent on r.h.s. of (4.29) dominates. Hence the theorem.

As a consequence of Theorem 2, the following two theorems on nonuniform
L, version of Berry—Esseen theorem and moment type convergence are immediate,
when one uses the representation, |EA(U,) — Eh(T)| < fooo HOP(UY| <t)—
P(IT| < t)|dt, for h(x) = x%g(x); see also Theorems 2.7 and 2.8 of Dasgupta
(1989).

Theorem 3. Under the assumptions of Theorem 2,
e DT (1 [y (Gu(0) = @@)], = O™ ). (@31

for p > landanyq > 1.

Theorem 4. Under the assumptions of Theorem 2 and for a non-negative even
Sfunction g with

d o
d—[ng(x)] = O((1 + x) " 1ecUoe+D"C™0y "y S 0 andg > 1; (4.32)
X

the following holds for standardized U -statistic U} and a N(0, 1) variable T.

|E(U2g(U) — E(T?g(T))| = O(n~2F). (4.33)

4.4 Rates of Convergence and Deviation Probabilities: Part 2

Next consider a different moment bound for the kernel ¢ in place of (4.15)/(4.16).
Assume that

sup (nc'szZ)_l > E|¢(Xy.X,,Y;,.Y},) |24= 8y < Lievalogq

n>1l,m>1

1 <ij<ir<n (4.34)
l=ji<jp=m
Vq > 1, where L > 0, v > 1. The above condition is implied by
sup (1, me,)”"! 2 Eexp(s|g['/") < oo,
n>1m>1
- (4.35)

1<ii<ir<n
l=ji<jp=m

where 0 < 5 <5, = ve 'L™V" and ¢ = ¢(X;,, Xip, ¥}y, Yj)-
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This follows along the lines of Dasgupta (2006), see Proposition 2.1 and
Remark 2.2 therein. Although this is a stronger assumption than (4.15)/(4.16), it
is still a milder restriction compared to assuming existence of m.g.f. for ¢, which
correspondsto v = 1.

The following theorem provides a normal approximation zone under this moment
bound. For the special case ¢ = ¢(X;,, X;,,Y},,Y},), onehasv = 4.

Theorem 5. Let m = O,(n). Under the assumptions (4.2), (4.34)/(4.35) and
(4.18), for the standardized U -statistic U} defined in (4.17), one has
1—PU} <t) ~ ®(~ty) ~ P(UF < —ty), t, — 00, for t, = o(n'/COTv+1))

Proof. Leta,(t) = n~7, and proceed like (4.20)—(4.23) to have similar expressions
for the present moment bound with g(x) = exp(s|x|"/").

Over the zone 1 < 1> < 2(logt + log g(ro,t)) (= 1 <t < 2s(ro,t)"/" =
1 <t? <en”/®=Y for some € > 0), one has

|P(var(V))"V2V <t £ a, (1)) — Ot £ a,(1))]

< b exp(=1*/2)[t|" [exp(O(|t* n™"/?) — 1]+

+ 3 P@ X)) > raalt) + Y P@V(¥) > racylt]),  (436)

i=1 j=1

forsome A, 0 < A < 1.

Order of last two terms in the rh.s. of (4.36) is O(|t|g(rho,t))™! =
o(t™'e /2, for 1 < en”/@=D_ for some ¢ > 0, as g(x) = exp(s|x|"").
Again,

|B(t £ ay (1)) — D) < b an(t)e > =bn7e /2 4.37)
Next, in view of E(R*,)*? <n~% L4(vq)! §,, we have from (4.34)

E(R* )* <n~1 Lietvaloed g > 1, (4.38)
PR, | > a,(t)) <a;*(t)n™ 7 LieVtViloed — p* gy (4.39)

Then, log P* = —2qloga, —qlogn + qlog L + (v 4+ v)qlogg.

;—qlogP* = —2loga, —logn +logL + (v+v)+ (v+v)logg =0

= (v+v)logg = 2loga, +logn —log L — (v +v) = g = (a?nL=")/ Vel
Thus, minimizing the r.h.s. of (4.39) with the above value of g, one gets

1/(v+v) p—1

P(IR},| > ay(1) < P* = ™0 = = 0H0(@nl™h (4.40)

Now the restriction from (4.37) for normal approximation zone is t = o(n?).
From (4.40) the restriction is 1 < e(a2n)/COT) = {p!=2r}1/COD) for some
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€ > 0. Equating the powers of n from these two restrictions one gets y = 1/(2(v +
v+ 1)). The restrictions from (4.36) are t = o(n'/®) and t < en”/?*=1) for some
€ > 0; these turn out to be broader zone than t = o(n?), y = 1/Q2(Wv + v + 1)).
Thus the former two restrictions with y = 1/(2(v + v + 1)) determine the zone.
Hence the theorem.

Remark 3. The kernel of Wilcoxon 2-sample statistic is an indicator function and
therefore bounded. Consequently §, = O(L?), and v may be taken to be 0 in
the calculations (4.38)—(4.40). For random variables having finite m.g.f., restriction
from (4.36) for the main part of projection is ¢ = o(n'/°), see also Dasgupta (1989).
The number of arguments v in the kernel ¢ for Wilcoxon 2-sample statistics is
2. Thus from the above calculations, normal approximation zone for Wilcoxon 2-
sample statistic is = o(n”) = o(n'/%),as y = 1/ 4+ v + 1)) = 1/6, with
v = 0, v = 2. This zone, in general, is the best possible zone even for iid random
variables, see Theorem 2.3 of Dasgupta (1989).

The next theorem provides an overall nonuniform bound for |G, (t) — ©(¢)].

Theorem 6. Under the assumptions of Theorem 5, there exists a constant b > 0,
depending on B, v and § such that the following holds:

/3|,|(1/V)A(2/(v+v))
9

|G (t) — ®(t)| < b n~2(logn)’e™ oo <t <00,  (441)

where B > 0, may be arbitrary large and § > (v 4+ v)/2; may be arbitrary near to
v+v)/2.

Proof. To obtain an overall nonuniform bound in this case consider a different
choice a, (t) = n_%(log n)|t|, § > 0, to be chosen later. Proceeding like (4.36),
we have for the region 1 < t> < 2(logt + log g(ro,t)).

|P(var(V1)) ™ 2Vi <1 % a, (1) — (1 £ a, (1))

< bexp(—2/D)t[ M exp(O( P n™2) = 1|+ 3 P@" (X)) > raoult])

i=1
N —()

+Y P (X)) > rdoyli)).
j=1

(4.42)

forsome A, 0 < A < 1. Also,

|®(t £ a,(t)) — B()| < bn~7(logn)’|t|e""/. (4.43)
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Next, proceeding like (4.40)

P(|R;m| > a,(t)) < e—(v+v)(a,%(t)nL—l)1/(\»+v)e—1 (4.44)

< pp— V2Bl
where 8 > 0, may be taken arbitrarily large, selecting § > (v 4 v)/2.

In the complementary zone, i.e., for t> > 2(logt + log g(ro,t)), from Theo-
rem 2.5 of Dasgupta (1989), we have in place of (4.36), the following:

[POar() ™2 Vi <t %4, (1)) = O £ 4, ()] < O(t|g(rAay )~

+ 3 P X)) > raalt) + Y P@V(Y)) > racylt]), (445

i=1 j=1

forsome A, 0 <A < 1,ande¢,; — 0,as n — oo.

From (4.42) to (4.45), we may have an overall nonuniform bound for |G, (¢) —
®(¢)|. The order of the last two terms in the r.h.s. of (4.42)/(4.45) is
O(|t|g(rAo,t])) ™! < bn=12e =PI a5 g(x) = exp(s|x|/").

For the zone t> < 1, an uniform bound O(n_%(log n)%), § > (v + v)/2 holds
for |G, (t) — ®(¢)|, letting a, = nz (logn)® and proceeding like Theorem 2.

Hence the theorem. Observe that the part involving |¢| in (4.41) decreases at a
faster rate than that of Theorem 2.

As a consequence of Theorem 6, the following two theorems is immediate.

Theorem 7. Under the assumptions of Theorem 5, for any p > 1

[P (G (1) — @)1, = O™ (logn)?), (4.46)
where B(> 0) may be arbitrary large; and § > (v + v)/2, may be taken arbitrary
nearto (v +v)/2.

Theorem 8. Under the assumptions of Theorem 5, and for a non-negative even
function g with

d V)N VTV

)] = 0(ePHY T Dy s o, (4.47)
X

where B(> 0) may be arbitrary large, the following holds for standardized

U -statistic U)f and a N(0, 1) variable T.

|EUg(U)) — E(T?g(T))| = O(n™ > (logn)"). (4.48)

Remark 4. The condition m = O,(n) may be relaxed. One needs to assume that
(n,m) are nondecreasing in each coordinate, while both the coordinates tend to
infinity. The moment bound of remainder components in (4.11)-(4.13) depends on
m as well as n, sometimes in an isolated manner. The results on nonuniform rates
in CLT and allied subsequent results then hold with n replaced by m A n.
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4.5 Application I: Efficiency and Discretization

The null distribution of Wilcoxon 2-sample statistic is distribution free when the
samples are drawn from a continuous distribution F,as X > Y & F(X) > F(Y).
In the following we study the effect of discretization on the efficiency of U -statistics
considering the parent distribution to be U(0, 1) relative to discretized version of
U(Q,1).

There are possibilities of ties while sampling from a discrete distribution. The
kernel ¢ associated with Wilcoxon two-sample statistics is an indicator function
taking the values O and 1 when there are no ties. In case of a tie between x, y values
it assumes the mid value 1/2.

Consider m = n. The mean and variance of the U-statistic U, and the
corresponding discretized version U, are as follows:

EU,) =n*/2 = EU)). (4.49)
V(U,) = n*(2n + 1)/12, V(U)) = n*2n + 1 —€/n(2n — 1)}/12,  (4.50)

where e = >, (ai’ — ay); ay being the number of observations in k block of ties
when all the x, y observations are pooled together and ordered.

Discretization and subsequent presence of ties in observations in U -statistics are
known to slow down the convergence to limiting normal distribution. We would like
to study the performance of U, and U,, as test statistics in terms of type I and type
II errors for moderately large values of n.

For standardized U -statistics U,* and U,*, normal approximation for tail prob-
ability on the zone t = o(n'/°) is possible in the limit as n — oo, see Remark 3.
This is a large deviation zone. Proposition 1 of Dasgupta (2010) extends the result
of Rubin and Sethuraman (1965) from moderate deviations to large deviations of
the form an®?, a > 0, a > 0.

For a statistic 7 = T, = T,(x), consider a large deviation zone as critical region
w=w(a,n,a) = {||T,|| > an®/?} for testing H, : E(T) = 0vs. H, : E(T) # 0.
In iid set-up of p-dimensional normal random vectors Xi,---,X,; E(X) = ¢
with T, = /n X,, one may write (see Dasgupta 2010, Rubin and Sethuraman
1965), the type I risk of the above critical region in Bayesian framework as 7 =
7, ~ K(n~'logn)?+*=2/2 = Kd, say, where A = A, = a’n®/logn, a >0,
o > 0. Here A depends on W = W(¢) o ||¢||*, the weight function, defined
as prior density times the loss due to accepting H, : { = 0 when H, is false.
The type II error is logn times type I error. Efficiency of a test statistic may then
be interpreted in terms of the slope K. The slope K affects the decrease in error,
lower value corresponds to the superior test statistic. The ratio of two type I errors
corresponding to two test statistics approximately equals to the ratio of two slopes.
Similar relationship holds for type II errors.
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One may compare two test statistics for testing H, in terms of type I and type
II errors as done subsequently, for large deviation critical region w, from a general
point of view, not necessarily Bayesian.

To assess the relative performance of U* and U,*, we compare the type I and type
II errors for large deviation type critical regions. Since there are 2n independent
observations in Héjek’s projection of U -statistic, 2n takes the role of n. The
truncation point considered in the critical region (2n)'/60! satisfies t = o(n'/°)
of Remark 3. The framework of the theory has been used to fix the set-up of
simulation with finite sample sizes. We simulate the exact tail probabilities based
on a large number of random simulations to compare U, and U,*, as there are
situations when theory of normal approximation and simulations may not quite
agree, and related constants have a role for moderately large sample size. Observe
that, (2n)"/¢01 ~ 3.156, (3.481) for n = 500, (950), in the range of simulation.
These truncation points fall beyond 3¢ limit, satisfying the criteria of rare events as
in large deviation.

In the following table, the probabilities P(|T,,| > (2n)'/%") are simulated for
T, =Ur, Un/*, where the observations x, y are from Uniform (0, 1); in the discrete
version U’, observations x, y are rounded up after first decimal place. For different
values of n € [500, 950], the type I error 7 for U, appear in second column, and the
power (1 — B) of the test under the alternative hypothesis H; : x ~ U(0,1), y ~
U(0.1,1.1) are given in third column of Table 4.1. Fourth and fifth columns refer to
the same for discretized version of Wilcoxon two-sample statistic, when the basic
observations (x, y) are rounded up at first decimal place. The sixth column refer to
ratio (7/7’) of type I errors, for U,* and U,*. The seventh column refers to the ratio
(B/B’) for type I errors. The results given in Table 4.1 are based on 5 x 10* random
simulations performed in S-PLUS with assigned seed value 1111.

The behaviour of type I and type II errors reflect the performance of U, and U,
for moderately large values of n, placing U, in a superior position.

We further explain Table 4.1. For n = 500, the first entry in second column
viz., .00174 is the simulated type I error of U, estimated as the relative frequency
of the cases where (|U¥| > (2n)/%1), out of 5 x 10* simulations. The next value
.00158 in the first row refers to the same for U,*. The next entry .98294 is the power
of the critical region {|U*| > (2n)'/¢1}, simulated under alternative hypothesis
Hy : x ~U@Q©,1), y ~ U(0.1,1.1). The fifth entry .98338 refers to the same
for discretized version U, *. The sixth entry 1.10127 is the ratio of two type I errors
.00174 and .00158. The seventh entry 1.02647 (= (1—.98294) /(1 —.98338)) refers
to ratio of type II errors of U,* and U,".

The last two columns represent the efficiency of discretized version of U -statistic
U,f* compared to U,*, as ratio of errors, over different values of n.

Simulation supplements theory, especially for examining the closeness to limit-
ing behaviour in a sample of finite size. Estimate of the ratio of slopes are directly
computed via simulation.

It is surprising to observe that discretized version U,* perform relatively better
than the original U. Mean and median of K/K’ values corresponding to type I
errors are 1.070844 and 1.08255, respectively. The values corresponding to type II
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Table 4.1 Simulated errors and estimated slope ratio (seed 1111)

Type I error Power K/K' =~
n 7 ' 1—5 1—p /7’ B/B’
500 .00174 .00158 98294 98338 1.10127 1.02647
550 .00116 .00110 .99070 99090 1.05455 1.02198
600 .00114 .00114 .99396 .99456 1.0 1.11029
650 .00100 .00094 99676 199690 1.06383 1.04516
700 .00088 .00090 .99836 .99858 0.97778 1.15493
750 .00066 .00070 .99894 .99902 0.94286 1.08163
800 .00070 .00060 199936 199954 1.16667 1.39130
850 .00066 .00056 .99966 .99970 1.17857 1.13333
900 .00038 .00034 .99986 .99992 1.11765 1.75
950 .00042 .00038 199988 199990 1.10526 1.2

Table 4.2 Simulated errors and estimated slope ratio (seed 123)

Type I error Power K/K' ~

n b4 7’ 1—-8 1-p /7 B/B
500 .00188 .00180 .98226 98216 1.04444 0.99439
550 .00128 .00128 98910 .98952 1.0 1.04008
600 .00116 .00122 99362 .99380 0.95082 1.02903
650 .00104 .00096 .99662 .99642 1.08333 0.94413
700 .00108 .00106 99782 99788 1.01887 1.02830
750 .00090 .00080 .99892 .99884 1.125 0.93103
800 .00078 .00076 .99932 .99940 1.02632 1.13333
850 .00076 .00080 .99946 .99948 0.95 1.03846
900 .00066 .00056 .99974 .99980 1.17857 1.3

950 .00044 .00040 .99996 .99996 1.1 1.0

errors are 1.191509 and 1.12181, respectively. The procedure was repeated thrice
with assigned seed values as 123, 15 and 57; for different data realization and the
results are given in Tables 4.2—4.4, revealing similar features.

From Table 4.2, mean and median of K /K’ values corresponding to type I errors
are 1.047735 and 1.03538, respectively. The values corresponding to type II errors
are 1.043875 and 1.028665, respectively.

From Table 4.3, mean and median of K /K’ values corresponding to type I errors
are 1.086323 and 1.04533, respectively. The values corresponding to type II errors
are 1.065862 and 1.04301, respectively.

From Table 4.4, mean and median of K /K’ values corresponding to type I errors
are 1.067166 and 1.06936, respectively. The values corresponding to type II errors
are 1.1156 and 1.03703, respectively.

The values remain stable over different simulations as seen from Tables 4.1
to 4.4.

For type I errors, pooled mean and median estimates of efficiency K/K’,
combining values from Tables 4.1 to 4.4, are 1.068017 and 1.05919, respectively.
The values corresponding to type II errors are 1.104212 and 1.04301, respectively.
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Table 4.3 Simulated errors and estimated slope ratio (seed 15)

Type I error Power K/K' =~

n 7 ' 1—5 1—p /7’ B/B’
500 .00172 .00170 98166 98238 1.01177 1.04086
550 .00132 .00132 99016 .99044 1.0 1.02929
600 .00106 .00104 .99434 .99446 1.01923 1.02166
650 .00136 .00120 199640 199668 1.13333 1.04516
700 .00088 .00090 .99826 99822 0.97778 1.08434
750 .00090 .00076 .99886 .99898 1.18421 1.11765
800 .00060 .00056 199940 199950 1.07143 1.2

850 .00062 .00046 99968 .99974 1.34783 1.23077
900 .00048 .00048 .99984 99982 1.0 0.88889
950 .00038 .00034 199990 199990 1.11765 1.0

Table 4.4 Simulated errors and estimated slope ratio (seed 57)

Type I error Power K/K' ~

n b4 7’ 1—-8 1-p /7 B/B
500 .00172 .00148 98170 .98258 1.16216 1.05052
550 .00118 .00118 .98962 .98960 1.0 0.99808
600 .00102 .00092 .99396 .99374 1.10870 0.96486
650 .00092 .00084 .99644 .99654 1.09524 1.04516
700 .00102 .00100 99796 .99802 1.02 1.02890
750 .00064 .00068 .99888 .99882 0.94118 0.94915
800 .00052 .00058 .99920 .99930 0.89655 1.14286
850 .00066 .00060 .99960 .99966 1.1 1.17647
900 .00060 .00046 .99982 .99990 1.30435 1.8

950 .00048 .00046 .99984 .99984 1.04348 1.0

Combining all the entries of K/K’ for type I and type Il errors from
Tables 4.1 to 4.4, the grand pooled mean and median estimate for efficiency are
mean = 1.086114, median = 1.04516.

Median being a robust estimator one may conclude that an estimate of efficiency
for the discrete version to be e = 1.04516.

Remark 5. The result in favour of discretization may be explained as follows. Under
the null hypothesis there are possibilities of more frequent ties in combined observa-
tions compared to that under alternative hypothesis; when the basic observations are
discretized. Ties in discretized version of U affects the variance of the distribution
in such a manner that in two different situations i.e., depending on whether the null
hypothesis is true or false, the distribution is squeezed or spread, respectively, near
the tail, after the distribution of U’ is scaled by Var!/ Z(Un’), as specified in (4.50).
As aresult type I error shrinks and power is enlarged for test based on U’ compared
to those for U, when critical region is taken to be a large deviation zone. The result
indicates that discretization of continuous data may not be always detrimental to the
interest of a statistician who may be concerned about the size and power of a test.
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4.6 Application II: Yam-Yield Comparison and Growth
Rate Estimation

Elephant foot yam is a tuber crop with good market value. The above-ground
biomass or vegetative growth, along with main and auxiliary stems growth of
Elephant foot yam can be frequently recorded over time, and these are good
indicators for underground yam growth. Timely application of growth nutrients has
positive effect on yam. Denote the unknown mean and dispersion of growth by u; (¢)
and o; (¢), respectively, over productive time ¢ for two different years i = 1,2.
Suppose that growth observations x;(¢),i = 1,2 are taken over discretized time
points t = ¢;, j = 1,---,m in productive growth periods e.g., March-November
for yam, over years i = 1,2. Yam-stems also have good market value as edible
vegetable. The stems are about to turn pale and stooping when the underground yam
is mature for harvesting. If the growth rates of stems fall below a preassigned level,
farmer may like to harvest both yam and stems for marketing. We shall estimate
growth rate and compare the production scenarios over years.

Let the estimates of (u;(¢), 0; (t)) based on the observations x; (t),t = t;,j =
1,---,mbe (1;(t),6;(t)),i = 1,2. To compare growth rates in different years we
compute for j # k, the approximate values of rate given by (fi; (tx) — [1; (¢;))/ (te —
1) = ;Z’i(tj (k)), say. Similarly define o'; (t)). Let y;(i), 2ji) be lowess estimates
of rate of change of the mean u and standard deviation ¢ at time ¢ = #; for the
years i = 1,2; based on ;Z’ .0’ values, respectively. Comparison of growth rate
is also relevant in economic time series, change in atmospheric carbon dioxide
concentration, demography etc. The lowess estimates are insensitive to outliers.

We explain the technique by an example. Tests on growth models are being
conducted in Indian Statistical Institute’s Giridih farm at Jharkhand, India. One
of the goals in growth experiments is to check the effect of seed weight and
surface texture on yam produced. Growth of main stem is a potential indicator of
underground yam deposition. In Fig.4.1 we plot the main stem growth x(¢) of an
yam plant, from a seed corm with weight 350 g and having moderately rough surface
texture, over different time points t = f1,---,%;. Figure 4.1 also provides the
lowess estimate (1(¢;) of the growth by locally smoothing the points x(¢;). Squared
residuals of basic points from response curve provide estimates of dispersion.
Variance estimate may be obtained by lowess smoothing of the above, following
a similar procedure adopted for estimating mean. Computation of derivative for
mean component is described below. Same may be applied for derivative of standard
deviation. Consistency and other properties of such lowess estimates are studied in
Dasgupta (2013). Estimated growth rate for time point #; is weighted average of
,12’ ; (¢ (k)), with smoothing weight wy for kth point; a choice is to let wi decrease
proportionally to power or exponential of the distance between jth and kth time
point, e.g., w,({l)(tj) o« |t; — 1|71, or wf)(tj) o et~y is normalised; sum
of the weights being unity. Thus distant points are given less weight. The averaged
points so obtained are lowess smoothed to have a robust estimate of the growth
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Fig. 4.1 Lowess fit for height curve of yam plant 9, stem 1
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Fig. 4.2 Height velocity curve with local averaging through x”(—1.5)

rate curve. The resultant rate curve is insensitive to outliers, as lowess regression
is so. In next two figures we plot estimated growth rate for different j, as the
weighted average of growth rates w(t ; (k)) averaged over k, as basic points. These
are connected by lines and the lowess estimate y; of growth rate with weights wD
and w® are shown as points in Figs. 4.2 and 4.3, respectively.
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Fig. 4.3 Height velocity curve with local averaging through exp(—x)
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Fig. 4.4 Lowess fit for f(x) = log x

In a similar fashion derivative values z, i.e., rate of change of standard deviation
o over time may be estimated first by estimating o (¢) based on the residuals (x — ).
We check performance of the proposed technique in estimating the growth rate
of the function f(x) = logx. In Fig. 4.4 we plot the points y = f(x) =logx,x €
{1,---,100}, along with the lowess estimate. In Fig. 4.5 we plot estimated derivative
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log n

Estimated derivative of y

Fig. 4.5

logn

Estimated derivative of y

Fig. 4.6 Estimated derivative with local averaging through exp(—x)

via averaged values of ;2’ with weight function w') along with the smooth lowess
curve. The curve is close to the corresponding theoretical function f’(x) = 1/x.
Figure 4.6 repeats the same as that of Fig. 4.5 with exponentially decaying weight
function w® .
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Fig. 4.7 Estimated 2nd derivative with local averaging through x”(—1.5)

The method may be used to estimate the higher order derivatives as well, in a
robust manner. As for example, take the lowess values obtained from the program
for first derivative as the input values at second stage to estimate the second
derivative. In Fig.4.7 we plot the curves corresponding to second derivative of
f(x) = log x, along with theoretical curve f”(x) = —1/x2. The assigned weight
function is w"). Performance of the proposed technique is seen to be satisfactory,
see also Dasgupta (2013).

The quantities (), Zj)) so obtained may be plotted over years i = 1,2 to see
whether there are significant variations over years.

Consider 2-sample Wilcoxon U -statistics based on y and/or z values to compare
their variation over 2 years in a nonparametric manner. Lowess may induce
dependence in resultant variables. However, we may ignore this when the fraction
of data used in smoothing is small and weight functions decrease fast towards
tail. Wilcoxon statistic is robust against outliers. Rare event of falling in the large
deviation zone of the standardized U -statistics will indicate production scenarios
are indeed different over years.

The values of standardized U based on y are computed progressively over t =
1,---,n; as n 1 m, where m is large. Similar calculations are made for z-based
U -statistics. We then compute the proportions of standardized U, falling within the
large deviation zone {u : u > (2n)'/%1} as considered in Sect. 4.5, corresponding to
y and z for sufficiently large values of n in a neighbourhood of m, i.e., withn = m—
k,---,m; for some integer k > 0. Cluster of standardized U in large deviation zone
is a rare event under the null hypothesis H, of no variation of production scenarios.
We shall see that under alternative H; = H; the sequence of standardized U-
statistics diverge and will cross the large deviation boundary (21)"/¢%!, under H;.
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A test for H, of similar production scenario in 2 years is given by standardized U,
and U, . From replicated independent observations from different farm productions
in a year calculate the proportion of standardized U, or U, falling in critical zone
{u : u > (2n)"/%%1}, this has to be compared with normal approximation
®(—(2n)/60) of large deviation probability, with ratio of the probabilities con-
verging to 1. One may reject H, if the relative error exceeds 1%, say.

To see the convergence rate for the ratio of probabilities to unity, note that for
Wilcoxon test ¢ is indicator function with third semi-invariant zero under H,.
Consequently for the main part V; the normal approximation zone is up to o(n/%),
and the speed of convergence for normal approximation at t = o(n'/°) is quite fast,
P((var(V)))~2Vy > 1)/ ®(—t) = O(exp(o(n™'/3))) = 1 + o(n~'/3) from (3.1)
of Dasgupta (2010); truncation for bounded random variables is not needed, so the
last term in (3.1) therein may be disregarded. However, the contributions from other
two components in (4.37) and (4.40) of this paper provide added constants (277)~!/?
and e?/¢, respectively, in o(1) term in the above approximation. Observe that L = 1
for bounded kernel of indicator function, and v = 0,v = 2.

One may analyse the data on weights of yams that are harvested sequentially in
a production session. The stems are sold as edible vegetable before it becomes hard
and pale over time with no market value. Yams with retarded growth of stems, which
are going to turn pale, are in the first group for digging out. Thus, there is a natural
sequence for weights of yam arrival to be stored in farm. Let these sequence for the
yeari = 1,2bewji),i = 1,2;j = 1,---,m. The number of yams produced m
is usually quite large in a year for a yam farm. Data of yam weight being readily
available over 2 different years, one may obtain an estimate of P(w) < w())
and associated standard error from the observed value of Wilcoxon U -statistic and
its variance. Study of “progressive fluctuation” during yam production time period
of U, values may facilitate comparison of production scenarios, and this can be
accomplished by the LIL.

Let {T,,n > 1} be a sequence of random variables. We say that {7,
n > 1} satisfies the LIL, if Var(7,) > 0 for almost all # > 1 and

lim Ly =1, lim Ly =—
"0 /2Var(T,) log log Var(T,) =170 /2Var(1;,) log log Var(7;)

The main component V; in Hoeffding decomposition is dominant and behaves
like independent random variables (with zero mean) for which LIL holds.

Bounded LIL for one sample U -statistics for a kernel of arbitrary order is given
by Adamczak and Latala (2008), also see the references therein.

Any marked and systematically sharp divergence of the quantities {U*(n) =
U,—n2/2
A/2Var(u,) loglog Var(u,)
indication that H, is not true. This large sample analysis is robust and takes into
account the longitudinal variation, the time effect during a production season, e.g.,

March to November in a calendar year for Elephant foot yam production.

In Fig. 4.8, we show U *(n) values of standardised U, appearing in LIL expres-
sion above forn = 1,---,1000; the basic kernel is /(X < Y), where Xy,---, X,
are iid Uniform (0, 1) and Yi,---,Y, are iid Uniform (0.1, 1.1) under H;. The

: n > 1}, when plotted over n, may be interpreted as an
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Fig. 4.8 Trajectory of U*(n) under non null case (shift =".1)
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Fig. 4.9 Trajectory of U*(n) under non null case (shift =.2)

lowess curve, which smooth out the irregularity of the fluctuations, appears as a
broad line.

The theoretical path Eg, (U*(n)) + 1 o n'/2, for n large is shown by the thin
and smooth curved line.

Figure 4.9 plots the similar quantities with additional shift for the distribution of
Y, here Yy, .-, Y, are taken as iid Uniform (0.2, 1.2) under H;. The figures explain
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Fig. 4.10 Trajectory of U*(n) under null case

the divergence of the curves for increasing 7. These also explain the effect of shift
in alternative hypothesis H.

In Fig. 4.10, we plot the U *(n) values when H, is true; the lowess curve appears
to be stable towards 1.

In a particular year the number of yams produced is quite large, so the proposed
comparison is possible for two different years in a particular geographical region.
The same analysis for comparison may be done for above-ground biomass.

The simulations are done by SPLUS with assigned seed values 15, 57 and 143
for Figs. 4.8—4.10, respectively.

Similar analysis of tail comparison of the distribution of standardized U -statistics
may be adopted when the response is a continuous curve over time, or when a large
number of sequential observations in a time cycle are made available for comparison
in two different time segments, e.g., comparison for meteorological data over years.

Appendix. We now state a result providing a moment-bound for a random variable
X when m.g.f. of the transformed random variable {log,(1 + |X|)}"/©~D, v > 1
exist. The result is similar to A1 of Dasgupta (1988).

Proposition 2. E exp[s{log,(1 + [X)}"/*™ ] < 00, v > 1, 5 > 0 =
E|X|™ < Le"™™ ,Nm, for some L > 1, where w, = s'™" = E exp[s'{log,(1 +
|X|)}U/(V_l)] <00, 0<s <s(v— 1)U—V/(V—1)(< 5).

Proof. Write, exp[s{log,(1 + [x])}*/®7D] = (1 + |x[)s Qoge (LD 4
EIX|" < EQ + X" = E(@ + [X)"I[s{log,(1 + [X])}/O7V > m]
+E(1 + | X[)"I[s{log, (1 + [X}/O™D < m].
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The first term of the above in r.h.s. is finite from the assumption made. Now,
s{log, (1 + [x)}/07D <m = (1 + |x])™ < e,

To show the second part of the implication write P(|X| > t) < t7"E|X|" <
t™"Le"™ = P* say. Minimizing P* w.rt. m one gets, P(|X| > t) =
O (e==Dwollog(1+0/(wov)}" ™) Now for a differentiable function & > 0, h(0) = 0,
use the relation EA(X) = fooo W (t)P(|X| > t)dt, and take h(x) = exp[s’{log,(1+
|x[)}*/=D] — 1, to get the result.
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Chapter 5
Correlated Bivariate Linear Growth Models:
Optimal Designs for Slope Parameter Estimation

P.S.S.N.V.P. Rao and Bikas K. Sinha

Abstract Considered is a linear growth model involving each of two continuous
measurable characteristics ¥ and Z. Along an equispaced time scale, experimental
units (eus) are recruited/selected and measurements are recorded for both the
characteristics. An eu may be enrolled at a time point i and may be kept under
study continuously up to a time point j without any further “recall”. We assume
the total duration of the study to be (2k + 1) units of time and set the time points
as {—k,—(k —1),---,-2,-1,0,1,2,--- ,k — 1,k} sothat -k < i < j < k.
Denote by ¢ an arbitrary time point and by Y; and Z, random realizations of
the characteristics ¥ and Z at time point ¢. Generally, four types of correlation
structures are readily involved: Corr(Y;, Z,); Corr(Y;, Y,), r # t, Corr(Z,, Z,),
r #t,Corr(Y;, Z,), r #t.

We assume a mean model: E(Y;) = o + ¢ and E(Z,) = y + §¢. Our purpose
is to suggest an optimal design for most efficient joint estimation of the slope
parameters § and § in the above model with suitable covariance structures. Our
study is closely based on that of Abt et al. (Optimal designs in growth curve models:
Part I: Correlated model for linear growth: Optimal designs for slope parameter
estimation and growth prediction. J Stat Plan Infer 64:141-150, 1997). Essentially
we suggest using either a single pair of time points —k and k, each with 50%
recruit, or the stretch of all time points (—k,—(k — 1),...,—1,0,1,...,k — 1,k),
depending on the nature of correlations. This is based on A- and D-optimality
criteria. Extensions to other mean models (such as linear—quadratic and quadratic—
quadratic) are wide open.
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5.1 Introduction and Literature Review

This study is a sequel to [Abt-Liski-Mandal-Sinha, Journal of Statistical Planning
and Inference, 1997, 64, pp. 141-150] (Abt et al. 1997) and [Abt—Gaffke-Liski—
Sinha, Journal of Statistical Planning and Inference, 1998, 67, pp. 287-296] (Abt
et al. 1998). These two references are abbreviated henceforth as ALMS (1997) and
AGLS (1998) in this order.

Not to obscure the essential steps of reasoning in the complicated set-up we
intend to present here, in this section, we will briefly review the results in the above
two references involving one continuous response variable in the context of linear
and quadratic regression models.

Let Y denote the response variable and let n;; denote the number of experimental
units recruited at time point i and followed through time points till j. For any single
eu in this category, Yj; denotes the column vector of order (j —i + 1) given by
Y = (Y; : Yiqq 1 --- 0 Yy ¢ Y;). Further, whenever j > i, observations on
the same eu are naturally correlated and two different correlation structures were
studied in the above two papers. These correspond to (i) intraclass correlation and
(ii) autocorrelation.

Again, at each of the (j — i + 1) time points from i through j we have
n;; observations. Thus the total number of observations N is given by N =
22 —i+ ).

The design matrix Xj; is given by
X = (15 ),

where 1;; denotes the column vector of order (j —i 4 1) with each element 1 and
t;; is also a column vector of the same order given by t§j =@:0(+1D):0+2):
(=D,

The approach to search for an optimal design is through introduction of a
continuous version of the allocation design. This is done by assigning a positive
mass &;; corresponding to the pair of time points (i, j) such that ) > &;(j —i +
1)=1.

For a linear growth model E(Y;) = o + B¢, with usual assumptions on the
errors, ALMS (1997) investigated the nature of optimal designs for most efficient
estimation of the B parameter under intraclass correlation structure. The idea was
to dwell in the framework of continuous design theory and maximize information
on B by appropriate choice of £. Towards this, the role of symmetry of the
factor space was fully explored. A design £ is said to be symmetric whenever
&, = &_;_; for all possible choices of i < j. Otherwise, it is said to be
“asymmetric”. Any asymmetric design £ can be “symmetrized” by redefining it as
E((;;)) = E((j)j,_,-) = [&uj) + §—,—i]/2 whenever for a pair i < j, & # & ;.
This is done for all such pairs with positive mass. In ALMS (1997), it was argued
that any asymmetric design can be “improved” by its symmetric counterpart in the
sense of “information domination” for the S-parameter. Next, only four possible
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types of “core” symmetric designs were identified and it was resolved that only two
of them, viz., é(l) CEk—ry = 1/2 = §gry and é(z) D€k = 1/(2k + 1) are
worth the consideration. Finally, the performances of these two symmetric designs
were compared and it was resolved that whenever p < (2k — 1)/(3k — 1), €1 is
better than the other. Note that for p = 0, it is well known that the design which
places 50% of the observations at each of the extreme points performs the best for
estimation of the slope parameter. ALMS (1997) then proceeded in other directions
of optimality studies For a single measurable characteristic like Y, between two
observations at two different time periods on the same experimental unit, there is
likely to be a correlation and this is denoted above by p.

In AGLS (1998), the investigations were continued for quadratic growth model
viz., E(Y;) = a + Bt + yt?, with both the error structures mentioned above. The
optimality criteria functions studied were more general as in traditional optimality
studies. The role of symmetry of the factor space and invariance of the optimality
criteria functions were once again exploited. It was argued that only point and
mass symmetric designs are of relevance and two “core” symmetric designs were
identified viz., é(l) D&k = 1/2 = &gy and E(z) €k = 1/2k+1).
Moreover, it was also observed that the single-point design £ with the entire mass
at 0 could be suitably combined with either or both of the above two. In its most
general form, non-negative “weights” assigned to the three core symmetric designs
are denoted by w, w® w( respectively, so that w() +w® +w© =1,

With special reference to joint estimation of § and y in the above quadratic
growth model and with respect to the D-optimality criterion, here are some
numerical results for the intraclass correlation model when k = 5:

(@) 0<p<0.3:wh =0.6667w" =0.3333
(b) p=0.45:wh =0.0890, w? = 0.9110
(©) p=0.60:wh =0.0104, w® = 0.9896
(d) p=>0.75:w®? = 1.00.

For higher values of k, the first choice extends for values of p up to 0.45. As we
see, the last choice takes over for higher values of p. It may also be noted that for a
linear growth model and for higher values of p, the last choice here also coincides
with the optimal design £® suggested above.

AGLS (1998) dealt with other optimality criteria and the other error structure
as well. Theoretical derivations, followed by numerical computations, provided
necessary clue as to the nature of optimal designs.

Though we will exclusively deal with the linear growth model for joint estimation
of the slope parameters of two continuous measurable characteristics, the above
review for a quadratic growth model points out the difficulty level involved in
handling optimality issues.
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5.2 Bivariate Response Model and Optimality Issues

We follow an approach similar to that of ALMS (1997) with slight changes in the
notations. Considered is a linear growth model involving each of two continuous
measurable characteristics ¥ and Z. Along an equispaced time scale, experimental
units [eus] are recruited/selected and measurements are recorded for both the
characteristics. An eu may be enrolled at a time point i and may be kept under study
continuously up to a time j without any further “recall”. Let n;; be the number of
such eus between the time points 7 and j, thatis, n;; eus are recruited at time point
and followed through time points till j. Further, foru = 1,2, --- , n;;, let the column

vectors Y,(-;) and Z(u)y;, each of order (j — i + 1) x 1, denote the measurements of
characteristics Y and Z, respectively, of the eu u during the time period between
i and j. We assume the total duration of the study to be (2k + 1) units of time
and set the time points as {—k,—(k — 1),---,—-2,-1,0,1,2,--- ,k — 1, k} so that
—k<i<j<k.

An experimental design, for a given total number of bivariate observations (N ),
is defined as the combination of the triplets {(i, j);n;; } subject to their satisfying
the condition: N = "> "(j —i + Dny;.

We assume the model: for the observations taken at time points i through j

E(Yl(.}‘)) = ae; + Bti; and E(Z;}’)) = ye; + 0t
where t;; denotes the column vector (i i +1 --- ;)" and e;; denotes the column
vector (1 1 --- 1), having the following variance—covariance structures:

Var(Y;) = 2\

G var@y) =27 and Cov(Yy.Zy) =327

The dispersion matrix of (Y;;, Z;;), say W;;, is given by

() Yz)
X, Xy P Q
W,‘j = = , say
22 = QR
for simplicity of notation and let the inverse of W;; be represented as
PQ\ ' [AB
-1 _ —
W, = =
QR B C

Now we make the following structural assumptions for the variance—covariance
matrices:

) = o —pr)l+ prd} Z) = 02{(1— p)I+ pzd} and
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ZEJU) = 0y0z{(px — pxx )l + pasxd}.

Notice that under these variance—covariance structure assumptions, all the matrices
A, B and C are of the form ul + vJ for some scalars u and v. So let us assume

A=al+a);, B=bIl+5bJ and C=cI1+ cJ.
The design matrix X;; is given by

€;j t,'j 0 0
X;; = ,
0 0 €;j t,'j

where the notations are already explained before. Then the information matrix I;;
for the parameters &, 8, y and § is given by n;; X;j W,-;IXU, that is,

eﬁjAe,'j eﬁjAtij enge,»j engtij
tnge,'j t;jAtij tﬁjBeij t;jBtij
eﬁjBeij engt,'j e§jCeij eﬁthij
tijeij t;jBtij tnge,'j tﬁthij

I,'j = nl]XijWij Xl] = n,]

SR ™ R

Rewrite this as

B tAt; tBt; t/Ae; t/Be;
I 8 - tngtij t;Ct;; tBe;; t/;Ce;
o e, At;; ¢ Bt;; e/ Ae;; ¢;Be;;
14 e, Bt; e, Ct;; e Be;; e/, Ce;

Next, towards formation of a symmetrized version of a pair of allocations n;; and
n—;j—i, covering time points i to j and —j to —i, respectively, with i < j, we add
the corresponding information matrices. This yields

B p
K A

o o

y ¥

X R oo™

(nij+n—j—)t; Aty (ny;+n_;— )t Bty (n;—n_;—)t;Aey (ny;—n—;—;)t;Be;;
(nij+n—j—)t;Bty; (ny;+n—;—)t;;Ct;; (njj—n_;—i)t;;Bey (n—n—;—;)t;Ce;
(n,-j—n,j,,-)efjAt,-j (n,-j—n,j,,-)eijt,-j (n,-j+n,j,,-)efjAe,-j (n,-j+n,j,,-)eije,-j

(n,-j—n,j,,-)eijt,-j (nl-j—n,j,,-)eijt,-j (n,-j+n,j,,-)eije,-j (n,-j+n,j,,-)eije,-j
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The above expressions as well as the expressions below follow by noting that (i) all
the matrices A, B, C are of the form uI + vJ, and (ii) for a matrix S¢; —; +1)x(j—i+1)
of the form S = 511 + 5,J,

t’_j_,.St_j_,- = tngtij = Slt§jtij + Sz(tgjeij)z,

e ;_Se_;_; =e;Se; =(j —i+Dsi+( —i+1s)]
and t’_j_,-Se_j_,- = —tije,-j = —tgjeij [s1 +( —i+ 1)s2].

As a result, for the symmetrized version of the above pair of allocations, that is,
for the design satisfying 71;; = n—;—; = (n;; + n—;—;)/2, the above information

matrix I;; reduces to a block diagonal matrix with each block a square matrix of
order 2, the one corresponding to the parameters B and § being given by (writing t
for t;; and e for e;;)

ait't+ a(t'e)> bit't + bz(t’e)z)

(nij +n—j-1) (blt’t + ba(te) cit't + ca(t'e)’

Now, in a very general sense, we will partition the total information matrix I, and
writing §&; = n;; /N, we have

=YY &l

(LI
S \LL)
Therefore, the information matrix for the slope parameters 8 and § is given by

I (ﬂ) = - LIJ'L)]

R R =™
X R &= ™®»

)

The following results, which are easy to verify, will be used in the sequel.

Lemma 1. Let P,x, = p11+ prJ and R, x,, = ril + r2J. Then

(@) PER = (p1 £r)Il+ (p2 £ 1)l
(b) PR = piril+ (pira + par1 + npara)l.
(c) P71 = (1/p)1—{ps/ pi(p1 + np2)}J.

Let P and R be as defined above and let Qux, = qi1 + q2J. Recall that the
dispersion matrix of Y;;,Zsj is denoted by W;; and under the assumed structure
of the variance—covariance matrices, it has the representation:

P Q
W, = ,
QR
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where n is to be replaced by (j —i + 1).

Lemma 2. For a positive definite variance—covariance structure, it readily follows
that (i) piry — g7 > 0 and (ii) (p1 + np2)(r1 + nr2) — (q1 +ng2)* > 0.

The proof rests on computations of (i) generalized variance of a pair (Y| —
Y2, Z| — Z5); and (ii) generalized variance of (3_Y,>_ Z).

Set Dy = (piri — q}), D2 = (par2 — q3) and D3 = [(p1 + np2)(ri + nra) —
(g1 + nq»)?). Recall

A B
W,;lz
B C

Then it is not difficult to verify that
Apxn = arI + arJ, Byxy = b1l + byJ and Cux, = c1I + caJ,
where a; = (r1/D1),by = (—=q1/D1),c1 = (p1/Dy) and

ar = [(q1 + nq2)(qar1 — qir2) + (r1 + nr2)(q1q2 — pa2r1)]/(D1D3),

by = =[(q1 + nq2)(q192 — p2r1) + (p1 + np2)(q2r1 — q172)]/ (D1 D3)
= —[(g1 + n92)(q192 — p1r2) + (r1 + nr2)(p1g2 — p2q1)]/ (D1 D3),

c2 = [(q1 + nq2)(p1g2 — p2q1) + (p1 + np2)(q192 — p112)]/ (D1 D3).

Further,

aic; —bi = 1/(piri —qi) = (1/Dy),

arcy —b3 = (para — q3)/(D1D3) = D»/(D1D;)
and

a\cy + axcy — 2b1by = [2q2(q1 + nqz) — ra(p1 + np2) — pa(r1 + nry)l/ (D1 D3).

Lemma 3. Under the assumptions that p;, 12 > q1 + ¢2, 42, with as, bs and cs
defined as in the above, (i) ay < 0; (ii) ¢, < 0; (iii) (azcr — b%) > 0.

Proof. Note that by Lemma 2, D; > 0 and D3 > 0. Further, in view of the
assumptions made, D, > 0. So, claim (iii) trivially follows from the representation
in terms of D1, D,, D3 above. Also it is enough to verify (i) and, that too, only in
terms of the numerator of a,. Note that the coefficient of 7 in the expression for a,
is given by ¢2(q192 — par1) + pa(qari — qira) = —qi(r2p2 — q3) = —q1 D2 < 0.
Hence, with n = 1, we simplify the numerator of a, as (q; + ¢2)(g2r1 — q172) +
(r1 + r)(q1q2 — par1) = qi(gar1 — qir2) + 11g3 + ri(qi1qa — par1) — riraps =
—q1 + rilat + 29192 + 43 — pa(r1 + 1)l = —q7 — r1[p2 — (q1 + 92)*] < O since,
by the assumption made above, p» > q; + g2 > (g1 + ¢»)>. Hence the claim.
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We are now in a position to establish a general result.

Theorem. For estimation of the slope parameters, given any general asymmetric
design, its symmetrized version performs better wrt both D- and A-optimality
criteria. That is, the latter provides a larger value of the determinant of the
information matrix and also it provides least value of the trace of the inverse of
the information matrix.

Proof. The arguments are given in two steps as follows:

Step 1. Note that the information matrix I for all the four model parameters is a
pd matrix and so are its main block diagonal components viz., I} and I3. In
its most general form, the design comprises both asymmetric and symmetric
components. For every symmetric component, the contribution towards I, is a
null matrix whereas for every asymmetric component, it is a non-null matrix. On
the other hand, the contribution towards I; and I5 are positive from both types
of components. These are all readily verified from the various versions of the
information matrix displayed before.

Step 2. Next we invoke symmetrization in each asymmetric component of the
design. This we can do one at a time or all at a time. It’s only a matter
of slowing down or hastening the process of “improved” performance of the
resulting design which will necessarily have all symmetric components at the
end. That is precisely our claim in the theorem. We have discussed the process of
symmetrization before. It is readily seen that under symmetry, information matrix
for the slope parameters dominates the same without symmetry in the sense of
D- and A-optimality. Therefore, even if one component is left as asymmetric
in our choice of a design, the performance of the design can be improved by
symmetrization. In other words, a design with all components symmetrized
simultaneously will do better wrt both the optimality criteria. Hence the claim.

Henceforth, we consider only symmetric designs and deal with the information
matrix for the slope parameters 8 and § which is given by
I (/3) . (alt’t +ar(t'e)> bit't+ bz(t’e)z)

§ )  \bit't+ by(te)® cit't+ca(t’e)> )’

At this stage, it may be noted that we are primarily interested in the estimation
of the slope parameters 8 and § and consequently, towards comparison of different
designs, the scale parameters oy and oz may be ignored from the analysis to follow.

Following ALMS (1997), we will now confine to three competing types of
symmetric designs and further establish that those of Type (III) can be improved
upon by a typical member of Type (II) or of Type (I) wrt the D- and A-optimality
criteria. This time we need to argue closely.

Recall Type I symmetric designs which are of the form £(1) : §ci—n=1/2=
Eunst = 1,2,... .k and those of Type I/ are of the form g2n E—n =1/t +
1),t = 1,2,...,k. On the other hand, third type of symmetric designs exhibits
three sub-structures, viz.,
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E by =Een = 1/RGE—s+ D00<s <t <k
3,0,
g0 o =fon = 1/R@E+ D00 <t <k

s T = ey = 1/RE+s+D).0<s#1 <k

For each of these sub-structures, computation of t'e is routine and it is non-zero.

Next, note that the information matrix of a symmetric design which is a 2 x 2
matrix can be conveniently expressed as |:(t/ t) (Zl b_l ) + [(t'e)?] (Zz 122 )},

1 2 €2

and, most importantly, the second part involves a positive multiplier [(t'e)?].
However, we have shown above in Lemma 3 that the associated matrix has negative
diagonal elements and a positive determinant value. Therefore, this is a negative
definite matrix. And this is true of every member of Type (III) family of component
designs. Hence, in the sense of Loewner domination, the first part dominates the
whole. In other words, wrt both D- and A-optimality, the second part can be
removed. We now show that the contribution from the first part is dominated by
one member of Type (IT) viz., E®%) : £ _4 4y = 1/(2k + 1) or one member of Type
D viz., EM0 £ k) = 1/2 = Ekr). That will demonstrate that it is enough to
confine to component designs which are mixtures of Types (I) and (II).

For this tail-end argument, note that we only need to compare (t't)/2N(t) for
various choices of the vector t among three sub-types of Type (III) designs, where
N (t) is the number of one-sided support points of the design under consideration.
It follows that among all such choices, t = (—k, —(k—1)) [together with its counter-
part —t = (k — 1, k)] maximizes (t't)/2N(t) and this simplifies to [k? + (k —1)?]/4
while the contribution from §2%) : £_; 4y = 1/(2k + 1) towards I; amounts to
k(k 4+ 1)/3. Next we observe that k(k + 1)/3 exceeds [k? + (k — 1)?]/4 whenever
k < 4.For k > 5, it will be seen that the Type (III) component is dominated by the
chosen member of Type (I).

For the design £€'%) : £y _x) = 1/2 = ), it follows that the information
matrix for § and § is given by

| ('B) = (k*/dy) ( ! _'0*) ,
8 —px 1
where d; = (1 — p2).

We want to derive conditions for matrix domination involving Type (I) design
information matrix and first part of chosen Type (III) design information matrix.
The conditions are

@) 4D k?* > [k2 + (k — 1)2]r1(1 — pi);
(i) 4D1k* > [k* + (k — 1) pi(1 - p3):
(i) [4D1k* — [k + (k — 1)%ri(1 — p2)][4D1k* — [k + (k — 1) pi (1 — p3)]
> [4D1k*ps — [k* + (k — 1)q1 (1 — p2)]*.
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Condition (i) can be simplified to some extent and it amounts to verifying

@ 2[(1 = py)(1 = p2) = (ox — p3s] = (1 = p3)(1 = py).
Likewise, condition (ii) amounts to a similar inequality by replacing p, in the RHS

of (i)’ by py.
Next, we replace condition (iii) by a simpler condition, viz.,

(i)’ [2Dy —ri(1 — p)]2D1 — p1(1 — p2)] = 2D1px — g1 (1 — p2)]*.

Routine simplification of the above, in view of the relation D; = p;r; — qlz, leads
to the condition

(ii)” 4Dy —2(p1 + 11 —2q1) + (1 — p2) > 0.

These conditions notwithstanding, we can readily verify the applicability of the
conditions on the correlation parameters. For example, when ps. = p«sx = poo and
py = p. = po, conditions (i) or (ii) further simplify to poo < po < [1 + p3,1/2,
while condition (iii)” simplifies to
po < (1 — poo)/2, or, po > (1 + poo)/2. By combining the two conditions, we
deduce that the claim holds whenever py < (1 — poo)/2.

Thus, finally, the condition to be satisfied is: poo < po < (1 — poo)/2.

The above analysis relates to matrix domination which covers all convex
optimality criteria such as A- and D-optimality, vide Pukelsheim (1993). We could
push the arguments further and derive less stringent conditions on the correlation
parameters. Instead of matrix domination, let us consider only D-optimality. In that
case, the two expressions to be compared are the determinants of the above matrices.

For Type (I) matrix, it is given by k*/(1 — p2) and for the Type (III) matrix
[considering only the first part involving t't], it is given by [k + (k — 1)*]>/16D;.
Replacing (k — 1)? by k2, the ratio of the above two expressions will exceed unity
if 4Dy > (1 — p2). In the particular case: py = p; = po; Px = Pxx = Poo, this
condition simplifies to: pp < (1 + P(%o /2)/2. On the other hand, matrix domination
required: pg < (1 — poo)/2 which is more stringent than what is required under
determinant domination.

The above analysis suggests that the parametric relations may enable us to make
a choice of Type (I) or Type (II) design as a replacement for all types of Type (III)
designs.

Remark. Whenever the above conditions are met, we may confine to only these two
types of designs and proceed to find an optimum design. Otherwise, it is a matter of
comparison among three competitors—one of each type.
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5.3 Towards D-Optimality: Comparison of Type (I)
and Type (II) Designs

We can now take up a relative comparison of the above two symmetric designs and
this we do with reference to the model parameters viz., p,, p;, p*, p**. The ratio of
9K [(1—py) (1—pa)—(p*—p**)’]
(k+1)2(1—p*2) ’
For simplicity, we assume, as before, p, = p, = po; p* = p** = p;. Then,
Ry = L_p")zz. Fork =1, R = 9(1_—”02)2 and we can derive conditions for this
(k+1)2(1—p}) 4(1=p7)
to exceed 1. For example, when py = p;, we need the condition py < 5/13. Again,

when pg = 2p;, we need the condition py < 9_1—‘631). Note also that, trivially, in

case of pg = p; = 0, Ry = 9k?/(k + 1)?> > 1, as expected. For the case of k = 5,

Rs = %. For Rs > 1, we need the condition 25(1 — pp)> > 4(1 — pf)
—F1

which (i) for pg = p;, amounts to pg < 21/29; (ii) for pyp = 2p;, amounts to “no
restriction” on pg > 0 at all, and (iii) for p; = 0, amounts to py < 3/5. These
findings are generally in accordance with D-optimal designs for high values of p.

the above two determinants is given by Ry =

5.4 Concluding Remarks

Following previous work, we have dealt with linear growth models for two
continuous response variables and studied some aspects of optimality for most
efficient estimation of the slope parameters involved in the two models. Model
variations incorporating quadratic growth for either/both the response variables
would be highly interesting to pursue in future. Following earlier studies, optimal
prediction problems could be taken up as well. It transpires that optimality study is
a highly non-trivial exercise.
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Chapter 6
Optimal-Time Harvest of Elephant Foot Yam
and Related Theoretical Issues

Ratan Dasgupta

Abstract We assess the optimal harvest time based on growth curve and growth
derivative by analysing real data sets on yam stems from farm. We estimate the
derivative of stem growth and proliferation rate by a robust technique proposed in
(Dasgupta 2013a, Nonuniform rates of convergence to normality for two sample U -
statistics in non iid case with applications, in this volume). Large sample properties
of the technique are investigated. Common pattern of growth from several observed
growth curves is studied. With an application of extended Mahalanobis distance
(Dasgupta, 2008, Proceedings of ISI Platinum Jubilee conference, World Scientific,
pp 367-382), we compare the harvest scenarios over different years. Distribution
of extended Mahalanobis distance in multinormal case is shown to be weighted
average of two independent components, viz. an F variable and a limiting Chi-
square variable. Limiting distribution is also obtained in general set-up without
multinormal assumption. In this context distribution robustness, power robustness
and high-dimensional data analysis are also discussed. The method of estimating
growth rates may have applications in cancer treatment related studies and for
stopping time rules in general. Some modeling issues are discussed. Several classes
of theoretical growth curves and their limiting properties are investigated. The
procedures developed are applicable while taking decisions of hidden variables
based on observable variables.
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6.1 Introduction

Production of Elephant foot Yam is a boon to farmers in barren land. In fertile
land of West Bengal the production can be five times the initial seed weight. It can
grow in lateritic soil like that of Giridih, Jharkhand although the production may
comparatively be less in such types of soil full of gravels. Yam is a staple food
for poor; this is also cultivated by tribals in barren land inside forest. Cultivators
sometimes leave many un-harvested as emergency food. Un-harvested yam of a
season sprouts in the next season resulting in a larger sized yam. Massive growth of
Yam-stems above surface is an indication of much deposition of carbohydrates i.e.,
large underground yam due to higher level of photosynthesis.

Yam-stem has good market value as tasty edible vegetable. Multiple stems may
sprout from a single seed-corm. If the stems are not harvested in time it may become
hard and then pale with little market price. On the other hand, if stems are harvested
at a young stage, then it may reduce the size of underground yam incurring financial
loss. Thus, it is important to find out the optimal time for Yam harvest depending on
the rate of stem growth so that farmers may benefit from selling both Yam and its
stem. If the rate of stem growth becomes insignificant after a time period, farmers
may decide to harvest the crop, rather than waiting further for a little more additional
increase in yam weight. They may like to save time, sell both yam and stem for
enhanced income and proceed for cultivating the next crop.

The growth of stems e.g., height, girth at different locations of stem, may be
continuously recorded over time. The weight of the stem can be indirectly assessed
by multiplying the volume of the stem that is tapered towards the top of stem, with
stem density obtained via separate destructive testing. The plant leaves are edible
at tender stage. At latter stages these may be used for compost manure. Flower
of Elephant Foot Yam can also be used as edible vegetable having good market
price. Total vegetation above surface is termed above-ground biomass and this
nonlinear combination of variables may turn out to be a potentially good predictor
of underground Yam.

From growth records, a mean response curve for stem growth may be computed
by non-parametric lowess regression; see Cleveland (1981). Estimate of growth
derivatives may also be derived by a robust technique (Dasgupta 2013a) to decide
about the right time for harvest. Combining growth curves of different stems
sprouted from a single seed-corm, one may get an overall growth curve and
growth rate.

We consider the problem of comparing the yield scenarios over different years.
The aim is to get a single index combining two or more associated variables.
Both stem and yam are considered in the production scenario in a year. The
problem could be solved in an indirect manner by converting the income from
each segment in money value and then adding these up. However, it has to be
noted that the proposed index should take care of association between variables,
be free from inflation and variation of market price for commodities over years.
As for example, retail price of potato in West Bengal varied highly from Rs. 3 to
25 in recent years. Thus an index based on selling price may not properly reflect
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the production scenarios. Mahalanobis distance between two populations takes into
account correlation structure of variables, and a relevant index may be based on such
considerations.

We develop appropriate analysis when (i) the dispersion matrix of the variables
remain same over years and (ii) the matrices vary over years. Invoking the extended
definition of Mahalanobis distance A> = A% + A%, (Dasgupta 2008) for cases
where dispersion matrices are distinct we propose a measure R; = A%, /A% of
dispersion-matrix heterogeneity, relative to mean heterogeneity towards diversity
in different populations. This reveals relative importance of each component in
extended Mahalanobis distance. Under the multivariate normal set-up, we obtain a
limiting null distribution for two independent components in extended Mahalanobis
distance. This turns out to be a weighted average of an F variable and a limiting
Chi-square variable. The same is investigated for general non-normal case.

The growth model {y(¢),¢ > 0} developed has implication in study of cancerous
tumour in patients. When availability of nutrients is limited in a confined space,
the growth rate increases in the beginning; and then it gradually slows down.
Depending on the nature of proliferation rate F(y) = %% y(t), Gomphertz curve
with infinite proliferation rate at origin, or a suitable modification of it may explain
the nature of growth in cancerous tumour. Level of anticancer antibody detected via
Anti-Malignin Antibody in Serum (AMAS) blood test if found to be greater than
135 micrograms per milliliter (mcg/mL) is a (95%—99%) sure indicator of cancer.
Doctor may change/stop medication to patients depending on the rate of change in
anticancer antibody level.

High degree of observed association of predictor variables with response variable
e.g., Yam-stem/above-ground biomass (anticancer antibody level) for underground
Yam (cancerous tumour) may lead to an appropriate model. The problem is non-
trivial as it may not always be possible to observe the response variable continuously
over time, whereas for predictor variables it may be possible. For example, trans-
rectal ultrasound (TRUS) guided prostate biopsy may cause significant discomfort
and pain. Recovery progress may be monitored by direct measurement on sparsely
selected time points, although indirect assessment is possible in many situations
leading to a growth model for the latter to be theoretically inferred on the former
(hidden) variable of interest.

Analysis of dispersion and subsequent covariance adjustment with structural
parameters, as in growth model due to Rao; Pothoff and Roy, viz., (U,XB, X ®
I,b);B=0©)+ OH,iec., (U—-X0O(XOH, X ® I,) is of little use here, since we
have only restricted recordings of response-growth; whereas observable auxiliary
variables are continuously recorded over time, providing valuable information;
selection of concomitant variables in yields of plants should be made with caution
in least squares analysis, (Rao 1974, p 288, 561).

In cancer studies, when it comes to observe the growth of tumors, which may
not have a regular geometric shape, the usual three-dimensional coordinates may
not convey the entire information. MRI and other functional data analysis models
are more commonly used in this respect. A similar situation may arise even for
Elephant-foot yam. However, for the cultivated variety “Bidhan-kusum” of Yam
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in fertile land with homogeneous texture we observed near spherical shapes (with
slight suppression near the main stem) of circular cross section in Yam for most
of the cases. In many cases tumour development in some particular regions e.g.,
fibroid tumour and breast tumour may have near spherical shapes. In unfertile
lateritic Jharkhand soil full of gravels that may sometime block uninterrupted
growth underground, yam may look like a cylinder, or a right sign, an inverted
comma, and may even like an abstract art piece of irregular shape occasionally.
Yam stems resemble tapered cylinders. Such conical-segment shape of stem can
be reconstructed from the measurement of girth taken on various location of a
stem along its height. These tapered shaped stems have circular cross sections with
decreasing diameter towards the top of a plant.

Stopping time problems may sometimes involve consideration of derivatives. As
for example see Xie and Schlick (2000), where an iterative univariate minimizer
in each step of a descent method for minimizing a multivariate function is used.
The proposed techniques of derivative estimation may have applications in similar
studies when suitably adapted to multivariate random vectors.

The paper is arranged as follows. In Sect. 6.2 we explain the technique of
estimating growth rate and proliferation rate. Consistency of the proposed technique
is investigated. In Sect. 6.3 we examine a production index based on statistical
distance between two populations. Of the two components of extended Maha-
lanobis distance, the second distance-component involving dispersions is related
to likelihood ratio test statistic for testing homogeneity of dispersion matrices.
Limiting distributions of the distance components are investigated with/without
multivariate normal assumption. Estimations of the indices are possible even when
the observation vectors are highly dependent over different individuals.

In Sect. 6.4 we analyse growth data of two different stems sprouting from a
yam seed-corm. Similar features of growth curves lead to the possibility of further
exploring a combined pattern; see Fig. 6.9, where growth of four sprouts from a
seed corm is plotted. The common pattern of growth is plotted in Figs. 6.11-6.14.
The proliferation rates are shown in Figs. 6.15-6.20.

In Sect. 6.5 we analyse two sets of multivariate longitudinal growth data over
the production periods in years 2008 and 2009 from Indian Statistical Institute,
Giridih farm. Yam production of second year with sprouted seed-corm seems to be
better. In observed data, variation of mean components compared to heterogeneity
of dispersion matrices is seen to be prominent in the relative index R; proposed
from extended Mahalanobis distance.

Section 6.6 investigates the common pattern in growth over different sprouts and
estimation of growth rate. Several techniques for obtaining an overall growth curve
are suggested and implemented with real data. Their performances are assessed
in estimating a smooth curve (Figs. 6.11-6.14). Proliferation rates (Figs. 6.15—
6.20) are also studied in Sect. 6.6 to check the suitability of Gomphertz model
that is commonly used to explain tumour growth. It is observed that proliferation
rate remain bounded within a neighbourhood of origin in observed data; the
rate is finite at origin for a logistic function having initial stage of growth as
approximately exponential; this indicates some modification to Gomphertz curve
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may be appropriate to model stem growth/above-ground biomass of Yam, to be
inferred on yam yield. Identification of suitable combination of variables, possibly
non-linear; as a potentially good predictor for underground yam, could suggest a
similar growth curve for yam.

Pattern of the observed proliferation rates provide ample indication about
the appropriate class of growth curves suitable for a particular situation. Such
possibilities are explored in Sect. 6.6 and limiting behaviour of models based on
proliferation rates is investigated to identify some well-known growth curves that
appear in the limit.

6.2 Estimation of Growth Rate

For estimation of growth rate, there has been an extensive literature, starting from
the Robbins—Monro and Kiefer—Wolfowitz stochastic approximations in the early
1950 to modern exploratory high-dimensional data analysis. See the references
Clarke et al. (2008), Kiefer and Wolfowitz (1952), Robbins and Monro (1951).
In this paper, the technique of estimating growth rate adopted, as proposed in
Dasgupta (2013a), is somewhat different. First of all, individual slopes near a point
are calculated and then these are suitably weighted & combined for that particular
point. These estimates are next smoothed by non-parametric regression over the
entire range to estimate growth rate curve. The issue of smoothing is pertinent
in respect of fast convergence. The proposed technique of computation adopted
via lowess smoothing, a non-parametric regression technique; of the highly non-
robust divided differences is shown to be quite satisfactory by different examples in
Dasgupta (2013a). As mentioned therein lowess technique plays a significant role
in non parametric regression by down weighting, but not totally ignoring outliers;
prompting us to evaluate derivative by this method.

Lowess, a local polynomial regression estimator with smooth tricubic kernel
and variable bandwidth based on k-th nearest neighbour, employs weighted least
square criterion that assigns less weights to distant observations, to have a robust
estimate of response curve insensitive to large-residual outliers, by down-weighting
these over several iterations. However, lowess does not provide an explicit func-
tional form of response variable with predictor variables.

Denote (x;, y;),i = 1,---,n to be the stem growth records y; at time x;. Let
¥ be lowess estimate of response and 8 = 8, = maX|<j<;|x; — x;41| — 0, as
n — oo.

Let y; = g(x;) + €;, where g is continuously differentiable and ¢; are errors.
Convergence results may be derived under distribution assumptions on (X, Y') with
realized values (x, y) and response g(x) = E(Y|X = x). For each value of
x = x; compute for the neighbourhood points the following crude estimates of
slope: m; (j) = (i — y;)/(xi —x;),j = 1,---,n;j # i. These are assigned
weights depending on the normalized distance d = d; ; = |x; —x;|/B. A particular
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choice could be wi = wi(d) = wi(dij) = wi(d(x; — x;)) x d7'° = O(|x; —
x;|71%). Weight functions like w(d) « e @ o > 0 may also be considered,
assigning comparatively lower weight to distant points. Weights wy(d;;), wa(d;;)
are standardized with sum of the weights over j as one. From m;(j) values,

i = 1,---,n, one may calculate 7;, the weighted average Zj w(d;j)m;(j), or
other measures of central tendency like median or trimmed mean etc.
Lowess regression to (x;,n;),i = 1,---,n with weight as smooth tricubic

functione.g., u(x) = £(1—|x|3)3, |x| < 1,u(x) = 0, otherwise; provide estimated
derivatives of the growth curve at different time points. The kernel u(x) is smooth at
—1 and 1. For robustness at two stages, one may like to use tricubic weight function
based on nearest neighbour in place of w in the first stage itself. Selection of weight
function will be discussed in more detail in Sect. 6.4, in relation to some practical
examples.

We sketch underlying justification of the technique. Growth estimate from lowess
curve is weighted least square (/s) fit of a low degree polynomial p usually
of degree < 2, to (x;,y;),i = 1,---,n; locally at the point x = x;, i.e.,
Fi = p()|iex, = p¥(x;). With smooth weight function the estimates p(x)
are smooth and continuous, |p[(§) (x) — p[(g)(x)| — 0, as |x;, —x;| — 0, for
X =Xx;,X; €la,b].

Let lowess estimate satisfy y; = g(x;) + R where R = R, = 0o(1), n — oo.
We assume that R is a locally Lipschitz function of order o > 1.

As B — 0, there are sufficiently many observations in a small neighbourhood of
x;, where the derivative of response is continuous. Empirical slope estimates in that
neighbourhood are close to the derivative, and weighted average of empirical slopes
is then a consistent estimate. Note that distant x values from x; are down-weighted
to have negligible contribution to the sum 77;.

In other words, for small grid spacing,

d
Gxi) =Y (xXi+1)/(xXi = Xit1) = Ep(xﬂx:xi(l +o(1)) (6.1

as |x; — x;+1| — 0. Again,

P (xi) = P(xit1))/ (xi — xi41) = &' (xi) + o(1), (6.2)

asy; = g(x;) + R = g(x;) + o(1), n — oo, and R is Lipschitz.
Thus, m; (j) = (5i — 7)/(xi — ;) = ¢ (xi) + o(1) when |x; —x;| = 0.
m; =3 w(dij)mi(j) = g'(x;) + o(1), as w(d;;), j # i is concentrated near x;.
The o(1) term is negligible for sufficiently large n and small grid spacing.
n; are linear combination of y values, these in turn are least square estimates and
hence linear function of basic observations y;,i = 1,--- ,n.
Under standard assumptions CLT holds for an average statistic like 77; that
has convergence rate O(n~'/?) in Berry—Esseen theorem see e.g., Helmers (1981),
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Helmers and Huskova (1984), Bjerve (1977) for error bound in normal approxima-
tion with appropriate conditions on weight function in L-statistics.

In lowess regression the parameter f specifies the fraction of sample considered
for local regression at a point, observations outside that nearest neighbour are
assigned zero weight, much like a trimmed L-statistic, see e.g., Bjerve (1977),
Ghosh and Dasgupta (1978).

Under similar conditions and standardization, one may have O(n~'/?) as error
bound in normal approximation for standardized m;, an intermediate estimate of
growth derivative g’.

Finally, lowess smoothing of (x;,n%;),i = 1,---,n; with tricubic weight
u, is taken as the estimate of g’. As the issue of smoothing is pertinent for
fast convergence, proposed smooth lowess estimates of derivatives have sharper
convergence rates than usual Berry — Esseen bound.

Higher order derivatives of g may be obtained in a similar manner.

From (6.1), one may like to consider p’(x;) as an alternate estimate of g’(x;).
However, the proposed estimate based on two stage smoothing is expected to
perform better.

Performance of the proposed technique is seen to be good while calculating g’(x)
in some examples, see Dasgupta (2013a) for g(x) = logx, x > 0.

Convergence results and CLT for local M-type of regression estimators with
variable bandwidth under appropriate assumptions are also obtained by Fan and
Jiang (1997), Hall (2010).

One may decide to harvest the yam and its stem if the computed rate of growth
for response curve falls below a preassigned value over time.

Estimation of the proliferation rate F(y) = %% y(t) = % log y(¢) follows the
similar steps.

6.3 Generalized Mahalanobis Distance,
Yam Production Index

Both Yam and its stem have contribution to farmers’ income. For a valid comparison
over different years observations on these two variables have to be taken into
account. The above-ground biomass i.e., weight of Yam stems and leaves above
ground and their relations to yield of Yam are being studied at ISI Giridih farm.
These two variables are closely related, as a high level of biomass is an indicator
of high yield of underground Yam production due to extensive photosynthesis in
sunlight.

Elephant foot yam flower also has a market value as an edible tasty item, see
http://1atha468.wordpress.com/kadukum-kariveppum- vattalmulakum/.

In the following analysis one may also incorporate farmers’ income from this
third component.


http://latha468.wordpress.com/kadukum-kariveppum-vattalmulakum/
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For two populations with means (") and ® (the mean yield/income of several
component variables like weight of yam, stem, flower; considered over years
i = 1,2) with a common dispersion matrix y_, the Mahalanobis distance squared
between the two means or, two populations is defined as,

A 1) = (O — @y Y ) (6.3)
Let xil), e ,x,(lll) be a sample of size n;, from a population with mean vector
and dispersion matrix as (1", ") and x%z), e ,x,g) be a sample of size n,, from

(u?,3)). Then, estimate of u) is ¥V = Z?‘:lxi(l)/nl, of u® is x@ =
>z x,-(z) /n and an unbiased estimate S of the common dispersion matrix Y is
given by,

ni n2
(m +n—2)8 =Y (" =¥V —xVy + 3 () - ¥9) () —xy
i=1 i=1 (64)
e, nS=m—DS1+(n,—1)S2, n=n1+n,—2

An estimate of A? above is provided by sample Mahalanobis distance squared,
D? = (M —x?ys7I(xM —x?) (6.5)

The following results of Dasgupta (2008) state the properties of Mahalanobis
distance for two highly correlated variables. These are relevant for dimension
reduction. For the sake of completeness we restate the results. Here n is the sample
size and p is population correlation coefficient between two highly correlated
variables and these may represent e.g., yield of Yam and its vegetative growth.

Proposition A. The D? statistic is unperturbed when an additional variable with
high correlation is included to the set of variables. Under the assumption of linear
regression, the error term in the limiting D? approximation by A?, deleting the
correlated coordinate from A%, is O,(n~'(1 — p*)™1).

Remark A. The condition of linear regression is satisfied for normal distribution.
When |p| = 1, then both ¥ and S are singular and the Mahalanobis distance is
not defined. If the absolute value of correlation between any two variables in the
set of variables is high |p| is near 1, any one of the two correlated variables may be
dropped. The growth of n has to be proportional to (1 — p?)~!, |p| — 1, so that
error of approximation is small.

Remark B. Approximation rate of Proposition A may hold ‘“almost surely”.
By Marcinkiewicz—Zygmund strong law of large numbers (MZSLLN) see e.g.,
Chow and Teicher (1978), one may obtain X, — i = o(n™"/(+) as., where
X, X1, X»,--+ are iid random variables with EX = u and E|X|'T7 < oo,



6 Optimal-Time Harvest of Elephant Foot Yam and Related Theoretical Issues 109

0 < y < 1. Thus, assuming the existence of fourth moment of coordinate
random variables, each element of the matrix S converges to corresponding
population value at the rate o(n?") as., 0 < p* < 1, with an application
of MZSLLN to x?, y?, x;y;, etc. The matrix S is then “almost surely”
within o(n~"") neighbourhood of the parameter X, ie., S = (1 + o(n 7)),
a.s. Next, recall spectral decomposition of a matrix and use the relationship,

—1 /7 4—1
A+UVH)t = 471 — %, where A is non-singular and U and V
are two column vectors, to obtain S™!' = I7!(1 + o(n™"")), as. The error
rate in approximation (by deleting the correlated variable in A2) mentioned in

Proposition A is then |A2 — D2 = o(n™"" (1 — p*)~ ) as., 0 < y* < 1.

Remark C. In agricultural productions the yields of nearby plots/pits may some-
times be dependent due to leakage of nutrients and treatments within adjacent plots,
yields from far distant plots may be taken to be independent. Proposition A, Re-
marks A and B remain valid even if the random variables (over different individuals)
are nonstationary and strong-mixing with polynomial decay, as MZSLLN holds for
such variables, see Dasgupta (2013b).

In view of Proposition A and Remark A one may concentrate on the single
variable for comparison if the correlation coefficient is found to be high from
repeated experiments, e,g., if p> ~ 0.9. The error of approximation in Mahalanobis
distance A2, D? based on yearly records of yield by a single coordinate is of
approximate order n=' (1 — p?)~L.

One may estimate p by sample correlation, then test for high value of p to decide
about deleting the highly dependent variable from calculation of Mahalanobis
distance.

When correlation is moderate between two variables, one may not be able
to delete any component and an yield index should take into account of all the
variables.

When the dispersion matrix of the variables remain same in different scenarios, a
quality index based on D? statistic is proposed by Dasgupta (2008). One may have
a similar measure for agricultural production. Consider a multivariate population
with mean p and dispersion matrix X. The Mahalanobis distance of the point u
from origin O (considered as the base point or ground level with no production) is
W ' o= AL @ = (u1,....@p). Let p;, the i th coordinate of 1, denote
the mean of i th characteristic x; of an agricultural product; higher the value of
characteristic, better is the production. As before, the components in A% may be
replaced by estimates from sample.

One may interpret the distance Aoy as an yield index of the agricultural
production, with respect to the base level 0, and proceed for yield comparison. The
index is invariant under change of scale of measurements.

Further note that the choice of origin as “base level” is natural in this case, as
zero weight of Yam, stem and yam-flower mean no production.
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Proposition 2. Under the assumption of a common dispersion matrix, the index
A%, combining more than one variable can be estimated from yield production
data and may be compared over years to find the particular year farmer had best
production. Larger the value of the index better is the production situation.

Now assume that the dispersion matrices are different in two different production
scenario. Let Fj, F, be two distribution function with densities fj(x) and
f2(x) with respect to some measure v. Bhattacharyya affinity between these two
populations is defined as,

d=dy = / ) (03 2dy 66)

see Bhattacharyya (1943, 1946). Consideration of the function d goes back to
Hellinger (1909), and sometimes this is also refereed as Hellinger affinity. Calcula-
tion of Bhattacharya affinity for two multinormal distribution leads to an analogue
of Mahalanobis distance (Dasgupta 2008).

The extended definition of A2 to the case ¥, £ 3,, for two multivariate normal
densities ¢1 = N,,(u(l), Y1) and ¢ = N, (;1,(2), 3,), reduces to,

|2

AY gy = (P = @Y= (Y — u @) + 4log——————:
192 (12112212

= (2 +X)/2.
6.7)

Mahalanobis distance in general case is related to Hellinger distance, a measure
whose general properties are extensively studied. As a result this inherits all the
nice properties of the latter distance. It has to be observed that the above expression
(6.7) reduces to usual Mahalanobis distance squared when the dispersion matrices
are equal. The above can be estimated from sample by,

S|

D2 _—
(IS11182[)'7/

Gy = @D —x@Y§1ED — %) 4 4 1og

(6.8)

where § = ¥ = (fll + XAIZ)/Z,
= (S1+ S$2)/2.

Multivariate CLT holds under mild assumptions and by SLLN D? converges to
A2, thus extending Mahalanobis distance (6.7), (6.8) in a general set-up without
multinormal assumption, where dispersions in two populations may be different.

Index (6.8) may then be interpreted as distance-squared between two production
scenarios. Distance from origin is obtained by dropping one of the coordinates
u® . X etc. in the above, and the resulting expression A2 pi=0s D?|gi—g.i =
1,2; can be interpreted as a production index for the second and first years,
respectively. Here X is the mean of X, and ¥,. The geometric mean of |X;| and
| 3,| appears in the expression in denominator.
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Distribution of Extended Mahalanobis Distance and High
Dimensional Data

A straightforward generalization may be made in a situation where we have to
compare the production scenario over k years with varying dispersion matrices

¥, , 2. The production index in i th population and sample are then
2 @)y s—=1¢,,0) | %] 2 2
Ai :(,LL )E (,LL )+410gW:A1,1+A1,11 (69)
N

D? = @Dy S7(®D) + 4 log = D?; + D?,;. say; (6.10)

1

(IS1] 1Sk

where ¥ = (X +--- + Xp)/k, S=%= (f]1+---+ﬁ]k)/k,
=(Si+-+ Su)/k.

The quantities A? may be estimated by D? in the sample, i = 1,--- , k.

It is interesting to note that for equal sample sizes, the second component in A?
is related to the likelihood ratio test (LRT) statistic for the hypothesis of equality
of dispersion matrices, H, : ¥; = .-+ = 3. Extended Mahalanobis distance
depends on diversity of dispersion matrices partially. The ratio of two compo-
nents in extended Mahalanobis distance Ry = A7,,/A7, represents a measure
of dispersion-heterogeneity, relative to mean heterogeneity towards diversity in
different populations.

It is true that conventional use of Mahalanobis (studentized) D? statistics rests
heavily on the assumption that the underlying distributions are all multivariate
normal. In such applications, this stringent assumption may be rarely justified.
As such, researchers have investigated ellipsoidal symmetric (ES) multivariate
distributions for which Mahalanobis distance plays a basic role in maintaining
affine equivariance (invariance) structures. Even for such ES distributions, the
exact sampling distribution of the Mahalanobis distance is not precisely known.
In multinormal case we shall shortly derive exact sampling distribution of extended
Mahalanobis distance based on pooled dispersion. Also for general case it is possi-
ble to obtain a limiting null distribution for components in extended Mahalanobis
distance, as the exponent of the limiting multivariate normal distribution is a Chi-
square distribution. To see this write the terms in (6.8) for general case as

S|

D? = xV-x?y§ ' x"-x@)+4 log———
( V5 AR TE

= D?+D3,, say. (6.11)
Now, by SLLN under the assumption of existence of the two dispersion matrices

one may write

S=S=C4+2)/2=(814+85)/2> (1 +%)/2=%, §'>3x7,
(6.12)
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almost surely. Assume that n;/n, — 1. The first component of (6.11) is
approximately a Chi-square variable with an application of multivariate central
limit theorem

b by

O % LN (u‘” Y L _2) (6.13)
ni ny

D% =D —xOySxD —5?) (6.14)

= @D —x)YsIED —x@) (1 4 0,(1)

P
nD} = (1+o0,(1) ) &, (6.15)
i=1
where (§,---,§,) is asymptotically N,(0,7,). The characteristic function of
P_, € converges to that of a Chi-square variable. i
Asymptotic distribution of the second component D7, = 4logw

is considered by Bai et al. (2009) even for non-Gaussian case. After suitable
standardization based on sample sizes n;, n, and dimension p, the statistic D% ]
follows normal law in the limit.

It is also possible to obtain a more precise form of the distribution of D? =

GED—xy§-1(x"_x?)44 1ogW given in (6.11) for multivariate normal
set-up. Under the assumption of same multivariate normal distribution in two
population, distribution of proposed index Dl-2 in (6.9) is a weighted convolution of
F and alimiting Chi-square variable, the variables being independent. Noncentrality
parameters appear along with the above in non-null case when two multivariate
distributions have different parameters. Similar observations hold for the estimated
ratio Iéd.

These result may be obtained with an application of standard results on Wishart
distribution as follows. ‘

Let W) = Wp(l) = Wp(’)(ki, 3¥),i = 1,2 be two independent p-dimensional
central Wishart variables with parameter ¥ and degrees of freedom k;. Then

) . . Owe) . .
m, i = 1,2 are independent of WO+ W Thus % is independent

of W 4 W®_ Since the mean vector and the matrix S = (S, + S,)/2 are
independent in multivariate normal set-up, it follows that the two components D%
and D% ; in (6.11) are independently distributed.

In multinormal set-up the two components in (6.11) are independently dis-
tributed, first component is a Hotelling’s generalized T? variable having an F
distribution and the second component is related to the likelihood ratio test (LRT)
statistics for testing equality of dispersion in multivariate normal set-up, having a
limiting Chi-square distribution with %p(p + 1) degrees of freedom.

Approximate values of the critical points for the distribution of extended
Mahalanobis distance (6.11) may easily be formed via simulation from these two
independent distributions.
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Additional covariates such as weather characteristics, fertilizer, labour expertise
and cost, irritation level in yam (in presence of calcium oxalate crystals), market
demand and texture of cooked yam, may be taken into account, as in high
dimensional data analysis. The number p of important variables we identified in
farm experiment on yam is about 10, which is moderate.

Dimension reduction is possible in a set of highly correlated variables, e.g., see
Proposition A.

As the dimension p increases the d.f. of limiting Chi-square distribution increases
like O, (p?). This problem of high dimension may be solved by considering limiting
normal distribution of the modified test statistic after suitable standardisation.

The pseudo-likelihood ratio test for high dimensions, as proposed in Bai et al.
(2009) performs well even in small or moderate dimensions p.

Assumption on normality of variables is a stringent assumption. However, in
(6.14)—(6.15) CLT may be used. Berry—Esseen bound provides a rate of convergence
to normality as O(n~'/?). The value of n = n; + n, considered here is around
200. CLT has applications in a broad class of real life situations, thereby allowing
computation of limiting distribution of the first component nD? in general case.

Proposed statistic D% is robust in the sense that one need not be confined to
Gaussian distributions, as we require only multivariate CLT that holds under mild
assumption of finite dispersion matrices. Standardized D% ; has a limit distribution
in general, vide (Bai et al. 2009).

Power Robustness

To address the issue of power-robustness in the context of subtle departures from
multinormal to elliptically symmetric to general multivariate distributions, note
that the proposed measure is derived from Hellinger distance. dy (f1, f2) = 1 —
d(fi, ) =1-— f{ﬁ(x)fz(x)}1/2dv is continuous in its arguments, in the sense
that those subtle departures of fi, f> from multinormal, say in terms of normal
mixtures with main part plus a second part with negligible mixing proportion of the
form a¢p; + (1 — )¢, @ 1 1 results in negligible change in Hellinger distance and
that in turn causes little perturbation of order (1 4+ o(1)) on the statistic based on
Hellinger distance, with a little change in probability of the critical region under
alternative, preserving power-robustness.

To see this consider f; = f(0), f» = f(u) two multinormal densities and
5 =afr + (1 —a)f(n+ éu), a multinormal mixture; ||5u|| is small and o 1 1.

Next write £, = f(u)+(1—a)D f(u)du(14+0(1)), where D f () is the vector
of first derivative of f at u and o(1) term goes to zero as ||§u|| — O.

Then d(fi, ;) = [{AG) L)} 2dv = d(f(8), f(w)(1 + O((1 -
a)|[8pel])).

Since d(f(0), f(n)) is related to the extended Mahalabobis distance squared,
see (1.6) of Dasgupta (2013c) and Dasgupta (2008), r.h.s. of the above expression
indicates that perturbation of statistic of interest is negligible, being of order



114 R. Dasgupta

O((1 — )||6u]]); thus ensuring power robustness for subtle departure from
multinormality.

The second components in the expressions of A? and Di2 in (6.9), (6.10) do not
involve i, ranking of the scenarios may then be done by the first components, viz.,
A?, = (uD) =71 (uD) and its estimate D?, = (xV)’S~!(x")). Calculation of the
first components, however, requires the informationon X1, ---, X via Sy, -+ , Sk.
We have the following.

Proposition 3. When the dispersion matrices vary over scenarios, the one which
has the largest value of DiZJ = DY S~ ®Y), among all years of production is
the best production scenario.

In the above proposition, comparisons are made with base level O i.e., nil
production.

6.4 Analysis of Yam-Stem Growth

Data for analysis in this and subsequent sections are from experiments on growth
curve estimation based on Elephant foot yam cultivation conducted at Indian
Statistical Institute’s Giridih farm at Jharkhand.

Consideration of the cost function is implicit in the fact that the farmers would
not like to keep crop in farmland unless there is some gain in growth e.g., if the
growth rate is below a level they would like to harvest the crop. This part is taken
into account while estimating the growth rate and checking when the rate falls below
alevel. In Fig. 6.1 we show the growth of main stem that sprouted from a seed corm
of weight 350 g with moderately rough seed skin texture. The lowess estimate of
growth curve is also shown. In Figs. 6.1-6.8, lowess estimates are shown by points.

Figure 6.2 shows the growth of second stem connected by lines along with
the smooth lowess estimate of growth curve shown by points. Averaged values of
estimated growth rate m; = Y ; w(|x; — x;[)m;(j), with polynomially decaying
weights w(d) oc d ' for different time point x; are shown in Fig. 6.3, the figure
also shows lowess estimate (with f = 1/3, regulating the proportion of data
set used by lowess smoothing) of growth rate. Figure 6.4 shows the same with
exponentially decaying weights w(d) oc e~!¢. The weights are standardized, the
sum of weights being one. Estimated growth rate via lowess curve does not depend
much on the choice of weight function used in m;, the weighted mean over all j.
Lowess estimates are close to original curves.

Similar figures for the main stem of the same corm are shown in Dasgupta
(2013a), those are of same type as that for secondary stem shown here in Figs. 6.2—
6.4. For main stem, in Figs. 6.5, 6.6 we plot the growth rate with weight functions
w(d) o< d="° and w(d) o< e='¥ for f = 1/3 by lowess regression. These figures
are counterparts of Figs. 6.3, 6.4.

It will be appropriate now to discuss about the choice of the weight function and
whether one should consider median or some other robust estimate instead of mean
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Fig. 6.1 Lowess fit for height curve of Yam plant 9, stem 1
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Fig. 6.2 Lowess fit for height curve of Yam plant 9, stem 2

while combining m; (j) values. We observed that using too much localized estimate
like considering median instead of mean, along with selecting sharp exponential
decrease of weights e.g., w(d) oc e~ do not produce smooth growth rate curve.
On the other hand a trimmed mean of successive three observations viz., average
of unique median plus values immediately above and below it/median as average
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Fig. 6.3 Height velocity curve with local averaging through x”(—1.5)
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Fig. 6.4 Height velocity curve with local averaging through exp(—.1x)

of two order statistic in the middle when there is no unique median, with lower
exponential decay of weights e.g., w(d) o« e~ ¢ with f = 1/3 are more
appropriate for lowess regression that provides smooth growth rate of yam-stem.
Figures 6.7, 6.8 represent two such growth-rate curves for stem 2 and stem 1,
respectively, based on trimmed mean.
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Fig. 6.5 Height velocity curve with local averaging through x”(—1.5)
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Fig. 6.6 Height velocity curve with local averaging through exp(—.1x)

In Fig. 6.9 we plot the growth curve of all the four stems viz., main stem (stem 1),
and three other auxiliary stems. Among these stems, the main stem and stem 2
showed similar growths over a long period of time; other two stems were short
lived.
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Fig. 6.7 Height velocity curve with trimmed mean through exp(—.01x)
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Fig. 6.8 Height velocity curve with trimmed mean through exp(—.01x)

We observe that the figures reveal similar patterns for two stems, thus we explore
the possibility of combining the features to obtain a precise estimate of growth rate
in Sect. 6.6. The starting points of stem 3 and stem 4 may also be shifted to origin
from where the other two stems started, to get additional information about the
common pattern of the growth curve for this seed-corm.
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Fig. 6.9 Growth of four stems of plant number 9

6.5 Comparison of Yield Scenarios Over
Two Production Periods

We analyse yam data for 2 years taking into account several variables of interest. For
each seed-corm, yam weight at final harvest (x; ), maximum height of stem attained
(x2), and number of sprouts (x3) above 10 cm of height are considered.

Farmers are mainly interested in the first variable. However, other two variables
relate to vegetative growth above surface and are responsible for underground yam
deposition; the latter variables are also of interest from economical point of view as
yam-stems have market value. In growth experiments conducted at Indian Statistical
Institute’s Giridih farm out of 100 plantations in year 2008, three seed-corms did
not germinate. In the repeated experiment of next year 2009, the number of sprouts
per seed-corm was higher compared to that for the year 2008, as the seed-corms
were already in sprouting stage when plantations were made a little bit late in time.
That year 18 seed-corms did not germinate, 19 yield observations were nil, one
seed-corm germinated and the stem-height crossed the threshold mark of 10 cm for
consideration in analysis, but it died prematurely resulting in nil yield for yam.

Yam weight being a continuous variable, high mass concentration at a single
point is unusual, this is incompatible with the assumption of approximate normal
distribution (with possibility of distinct dispersion matrices) under which the
analogue of Mahalanobis distance is derived in Dasgupta (2008), appealing to the
criterion of “Bhattacharya-affinity” of two densities. We compare the scenarios
via Mahalanobis distance criterion deleting the null vectors, i.e., observations with
(x1,x2,x3) = 0. Another way of comparison is to bootstrap the large deviation
probabilities (Dasgupta 2010, 2013a).
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Although in the experiment, pits of nongerminating seed-corm remained empty
till the end of experiment, a farmer may either replace these by new seed-corms or
utilize the vacant space for intercropping with some other vegetables such as chilli,
brinjal, etc.

The estimated mean vector and dispersion matrix of x = (xy, xp, x3) are as
follows.

For the year 2008, X" = (1.5637629, 62.73608, 2.288660);

0.60670110 6.2782555 —0.07193084
S1 =1 6.27825552 119.3014970 —0.50739905
—0.07193084 —0.5073991 0.87414089

For the year 2009, x? = (3.111481,74.27284, 6.243902);

2.993733 29.98738 2.231375
Sy = | 29.987376 498.54175 34.102238
2.231375 34.10224 11.516049

Recall that for comparison over 2 years k = 2, and distance squared from origin

N

D} = xVYST'xD) + 4log——r,
( () + 4 logrgs, i

D? =20.09078, D3 = 22.14735.

The second year is of higher production scenario, as this one is more ‘“Mahalanobis-
distant” from origin than the first year. This finding is in consistent with the fact
that the second mean vector is higher than the first mean vector in each coordinate.
Estimated Mahalanobis distance squared between two populations is 4.537006,
of which the contribution from the logarithmic term involving heterogeneity of

dispersion matrix is 4 logw = 1.112433.

From two components in the distance-squared A2, a measure of relative hetero-
geneity (from p, = 0) due to dispersions w.r.t. mean vectors of several multivariate
populations is R, (i) = A3,/A?,, with the convention that 0/0 = 1. For a selected
ideal value of mean u, # 0, one may consider (i — ,) in place of p in the above
definition. Small value of R; is an indication of less contribution from dispersion-
heterogeneity, relative to mean towards diversity in populations reflected in extended
Mahalanobis distance.

As an estimate of the above one may consider Ry i) = D%i / Dlzi.

Estimated value of these in the present case are as follows.

For the year 2008, Ry(1) = 1.1 12433/(20.09078 — 1.112433) = 0.05861591,
and for the year 2009, Ry (2) = 1.112433/(22.14735— 1.112433) = 0.05288507.

Contribution to heterogeneity of scenarios comes mainly from mean part rather
than dispersion.

Figure 6.10 shows coefficient of variation of all the three variables (x1, x, X3),
this exhibit decreasing trend in the second year, and so does the line connecting the
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Fig. 6.10 Comparison of production scenarios over 2 years

values of 1/D. Decrease in coefficient of variation for (x;, x5, x3) from the year
2008 to 2009 is as follows; from 0.8580084 to 0.4312164 for x;, from 0.2801604 to
0.2366433 for x,, and from 1.0875337 to 0.3986281 for x3.

6.6 Some Standard Growth Models

The observed growth of Yam-stems to some extent resembles Gomphertz curve
y(t) = aexp(bexp(ct));a >0,b <0,c <0. (6.16)

The curve and its modifications have been successfully used to explain the growth of
cancerous tumours. In a confined space where the availability of nutrients is limited,
growth rate is high in the beginning and then it slows down due to competition for
nutrients.

Selecting different form of proliferation rate F(y) = % log y(#), one may obtain
logistic, generalized logistic, Gomphertz, and other type of growth curves. For
logistic curve the proliferation rate F(y) is finite, whereas for Gomphertz curve
this is unbounded.

An appropriate model may be selected from the observed pattern of proliferation
rate F(y) = 1 £y(t) = & log y(0).

For cancerous tumours it may be difficult to directly and continuously record
the stages of growth. However, indirect assessment is possible via Anti-Malignin
Antibody in Serum (AMAS) blood test. Anticancer antibody with threshold value
135 micrograms per milliliter (mcg/mL) is seen to be present amongst 95%-99%
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Fig. 6.11 Lowess (on AM of x values) for combined height of plant 9

patients at early stage of cancer and during treatment, except in terminal cases. Thus,
one may monitor the stage of cancerous tumour and response to treatment via the
AMAS level recorded frequently over time, rather than intrusive and often painful
direct observations. Doctor may like to change medication if the rate of decrease
of antibody level is not satisfactory. Presences of hormones are important indicative
agents in sex-related cancers such as cancer of the breast, uterus, prostate, ovary,
and testis, and of thyroid cancer and bone cancer. Some visible symptoms such
as unexplained weight loss, fatigue and red pinpoints in skin are common in child
cancer. These variables may continuously be observed over time, rather than direct
observation on tumour. A similar analysis of Yam-like growth in a confined space
with limited nutrients thus seems possible.

We may combine the four stem-growth curves of plant 9 as shown in Fig. 6.9,
to obtain an overall picture of growth pattern. For studying the common features
in stems from start time zero, the time of individual sprouting are all considered
to be zero. Imagine that all the four curves are shifted to origin by translation,
without disturbing the patterns. The observed values of y are ordered and the largest
value of y, up to which at least one of the curves is monotone (nondecreasing)
is found. Then for each observed y, the x values i.e., quantiles are obtained by
linear interpolation from the stem-growth curves if that value of y falls within the
admissible (monotonic) range of a particular curve after translation; otherwise that
curve is rejected from consideration for that y value. Next the average of these
admissible quantiles (x-values) is plotted against the y value in (x, y) plane. A
lowess curve fitted to this scatter plot is shown in Fig. 6.11 as a continuous curve, to
be interpreted as overall growth curve of plant with seed-corm no. 9. In Figs. 6.11-
6.20, lowess estimates are shown as continuous broken lines.
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Fig. 6.12 Lowess (on GM of x values) for combined height of plant 9
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Fig. 6.13 Lowess (on AM of y values) for combined height of plant 9

Figure 6.12 shows the same characteristics like Fig. 6.11, where we consider
Geometric Mean (GM) of the quantiles instead of Arithmetic Mean (AM). Under a
multiplicative model GM is proper measure of central tendency. The lowess curve
shows slight indication of bi-phasic growth in Fig. 6.12.
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Fig. 6.14 Lowess (on GM of y values) for combined height of plant 9
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Fig. 6.15 Proliferation rate of plant 9 with weight ~d”(—1.5) Ref. Fig. 6.11

In Fig. 6.13, for each observed value of x, we consider the average of correspond-
ing y values obtained from different curves to get the scatter plot. The lowess curve
is shown as a continuous broken line. Figure 6.14 shows the same, where instead of
AM the GM of y values is considered.
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Fig. 6.16 Proliferation rate of plant 9 with weight~e” (—d), Ref. Fig.6.11
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Fig. 6.17 Proliferation rate of plant 9 with weight~d” (—1.5) Ref. Fig.6.13

Although the curves show more or less similar features, curves computed from
AM seem to be a little bit smoother than those from GM.

Figure 6.15 plots the point estimate of proliferation rate % log y(¢) obtained by
the technique of computing derivative explained in Sect. 6.2, taking the (lowess)
estimates given in Fig. 6.11 as input values. A lowess curve is fitted to the point
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Fig. 6.18 Proliferation rate of plant 9 with weight~e”(—d), Ref. Fig. 6.13
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Fig. 6.19 Proliferation rate of plant 9 with weight~d” (—1.5) Ref. Fig. 6.14

estimates of Fig. 6.15 with weight function w; = w(d) oc d !, this is shown as a
continuous broken line in Fig. 6.15. Figure 6.16 plots proliferation rate with input
from Fig. 6.11, and lowess estimate with weight function w, = w(d) o e™.
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Fig. 6.20 Proliferation rate of plant 9 with weight~e”(—d), Ref. Fig. 6.14

Figure 6.17 refers to proliferation rate with input from Fig. 6.13, and correspond-
ing lowess estimate with weight function w;. Figure 6.18 is similar to Fig. 6.17 with
a different choice of weight function wy.

Among the two curves computed from GM, Fig. 6.14 is relatively smoother than
Fig. 6.12. In Figs. 6.19 and 6.20 we show the proliferation rate from the smooth
growth curve in Fig. 6.14, based on weight functions w; and w, respectively.

The figures suggest that the proliferation rate is about 0.003 near origin.
Gomphertz curve has limiting proliferation rate unbounded at origin. For o > 0,
v > 0, Gomphertz curve may be obtained as limiting form (v — oo) of generalized
logistic function with proliferation rate of the type

1/v
V(0 = v [1 -2 ] ~ ~alog(y()/K) = alog(k/y(1)) (6.17)

as v — oo, where k(> 0) is the maximum attainable size .

With finite v the rate in (6.17) is finite at origin; however, the limiting form
involves log y(¢), and proliferation rate is infinite at origin with y(0) = 0.

The type of growth curve that is appropriate for a particular situation may be
found from the lowess curve fitted on the basic points of proliferation rate, obtained
as derivative of growth observations as suggested in Sect. 6.2 and implemented
above. One may consider proliferation decaying in a slower rate than that for
generalized logistic function, e.g., consider
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1/v
Y(©)/y(0) = av |1~ {10g (1 e 1)%)}

%

—alog{log (1 + (e — 1)%)} (6.18)

as v — oo. A faster decay of proliferation rate may also be considered, e.g., for
§ > 0, consider

(6.19)

8
V(1)) y(t) = av[l — etOO/K =1/ g ] — {M}

k

as v — oo. It is interesting to observe that in the limit v — oo, one obtains
generalized logistic function with polynomially decaying proliferation rate in the
r.h.s. of (6.19).

Once an appropriate class of growth curve is identified for a particular situation,
the effect of nutrients, soil and seed types, environment, etc. may be reflected in the
parameters of the fitted growth curve in more general situations and comparison of
growth scenarios are possible in terms of relevant parameters.
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Chapter 7
Evolution of Scour and Velocity Fluctuations
Due to Turbulence Around Cylinders

H. Maity, R. Dasgupta, and B.S. Mazumder

Abstract The study is aimed at investigating the turbulence characteristics in scour
geometry developed near a circular cylinder placed over the sand bed transverse to
the flow. An obstacle of length 10 cm, placed on a sand bed develops a crescent-
shaped scour mark on the bed. The scour is caused by generation of vortex
developed on the upstream side of the obstacle. The turbulent flow field within the
scour mark was measured using an acoustic Doppler velocimeter (ADV). We es-
timate the joint probability density function of fluctuating velocity components
(', ') applying the cumulant-discard method to the Gram-Charlier series at
different locations over the scour mark. The scour marks named as current crescents
preserved in geological record are traditionally used as indicators of palaeo-current
direction. We further study the evolution of scour width till a state of equilibrium
is attained. The scour-width growth curve is estimated by lowess nonparametric
regression and smoothing spline techniques. Scour geometry is an indicator of
velocity of past waterflow, preservation of fossils in ancient riverbed, etc. With an
application of a robust nonparametric method (Dasgupta, 2013, Non uniform Rates
of Convergence to Normality for Two sample U -statistics in Non IID Case with
Applications, appearing in this volume as chapter 4) we estimate the first and higher
order derivatives of growth curve in the present context and interpret the results.
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7.1 Introduction

Scour mark around any object placed in the sediment bed usually develops due to the
interaction of the local flow field with the sediment bed and the object. Investigations
had been made to quantify the mean flow across the scour marks generated by
different types of obstacles placed on sand bed (non-cohesive). The obstacle marks
named as current crescent preserved in geological record are traditionally used as an
indicator of palaeo-current direction (Sengupta 1966; Melville and Raudkivi 1977,
Allen 1982; Karcz 1968), which are available in cross-bedded sediments depending
on the orientation and plunge of the long axes of the pebbles. Sengupta et al. (2005)
conducted experiments in a laboratory flume to generate the crescent scour mark
using obstacles placed on sand bed. The formation of scour mark at the upstream
of cylinder showed like a crescent scour structure, which is morphologically akin to
the current crescent preserved in geological record (Sengupta 1966, 2007). Catano-
Lopera and Garcia (2007) investigated experimentally the geometry of scour hole
and the flow structure around short cylinders under the action of wave alone and
combined wave and current. Their experimental evidence indicates both width and
length of the scour hole generated due to the short cylinder primarily depend on
the Keulegan—Carpenter number and the cylinder aspect ratio. Recently, Mazumder
etal. (2011) investigated the mean flow and turbulence statistics in equilibrium scour
marks developed near the static short circular cylinder placed over the sand bed
transverse to the flow. They showed that the dimensionless scour-width increases
with increase of cylinder Reynolds number, for a fixed sediment Froude number; and
proposed a relation between the scour-width, the sediment Froude number, and the
cylinder diameter. They also reported the process of evolution of scour mark around
the object using digital photo camera. However, our knowledge on the evolution of
scour width with time associated with statistical distributions is deficient (Fig.7.1).

This investigation is aimed at studying the evolution of scour mark generated
around the static short circular cylinders placed over the sediment bed transverse to
the flow and to estimate the joint probability density function of fluctuating velocity
components (1, w’) over the equilibrium scour geometry. We study the growth of
scour-width upto a state of equilibrium and model scour width growth curve by
lowess nonparametric regression and smoothing spline techniques. Scour geometry
is related to velocity of past waterflow and its direction, preservation of fossils
in ancient riverbed, etc. With an application of a robust nonparametric method
proposed in Dasgupta (2013), we estimate the first and higher order derivatives of
the growth curve and discuss their applications.

7.2 Experimental Setup

Experiments were conducted in a re-circulating “closed circuit” laboratory flume
(Mazumder et al. 2005) specially designed at the Fluvial Mechanics Laboratory
(FML) of Physics and Earth Science Division, Indian Statistical Institute, Calcutta.
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Fig. 7.2 Schematic diagram of the experimental set-up

Both the experimental and the re-circulating channels of the flume have identical
dimensions of 10m length, 0.50m width, and 0.50m height. For details of test
channel, experiments, experimental conditions, and the results associated with the
mean flows and turbulence characteristics around the scour geometry, the paper by
Mazumder et al. (2011) may be refereed.

A sand bed of thickness // = 4 cm and 5m long covering the entire width
(50 cm) of the flume was laid at the bottom. The median particle diameter ds5, of the
sand was 0.25 mm and the standard geometric deviation o, = 0.685. The specific
gravity of sediments used for the experiments was 2.65. A series of experiments
was conducted over the sediment bed of known grain-size distribution using three
different circular cylinders of diameters D, = 3.2, 4.2, and 6 cm of fixed length
L = 10 cm placed at the center line of the flume. For each experiment, single
cylinder was placed at the center line over the sand bed transverse to the flow at
the measuring station 6m downstream of the channel inlet (Fig.7.2). Flow depth
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Table 7.1 Experimental values of flow parameters

D.(cm) a, 0 x 1072(m3/s) uy(cm/s) Fr(= “';h) F,  Re(=") wy(cm)

32 032 1.472 26.63 0.167 4.19 69,238 3.5
4.2 042 1.472 26.20 0.164 4.12 68,120 4.5
6.0 0.60 1.472 26.45 0.166 4.16 68,770 6.5

where u, is the maximum fluid velocity, a,(= D.L) is the cylinder aspect ratio, Fy, =
/A (Vs — 1)gdso), is the sediment Froude number, and wy is the width of the scour hole

was kept constant at H, = 0.30 m. A flow discharge of Q =0.015 m?/s
was chosen in such a way that the local flow velocity was less than the critical
velocity to initiate the sediment particle movement. The discharge setup was left
undisturbed to form a scour-shaped structure around the cylinder and consequently
to attain perfect equilibrium conditions in the scour mark. The hydraulic slope of
the flume was negligible and it was an order of 0.0001. Once the equilibrium is
attained, the vertical velocity profiles from upstream to downstream along the flume
centerline were measured using a SonTek Scm down-looking three-dimensional
Micro-acoustic Doppler velocimeter (ADV) for 3 min at a sampling rate of 40Hz
to ensure full characterization of the turbulence phenomena. The velocity data were
collected along the scour marks with the lowest point in each profile being 0.30 cm
above the flume bed and the highest point being 18 cm for each profile for the flow
Reynolds number Re(= u,,h/v approx 6.87 x 10* (where u,, is the maximum fluid
velocity, h = H,,—h’ is the depth of water above the sand bed, and v is the kinematic
viscosity of fluid) and the Froude number Fr(= u,,/ \/g_h) ~ 0.165. The values
of the flow parameters used for the experiments are provided in Table 7.1.

7.3 Experimental Observations and Results

7.3.1 Evolution of Scour Marks Around Cylinders

A series of photographs (Fig.7.6al-al2) was taken about 15-20 min interval
during the experiment starting from the initial stage of flat bed condition to the
equilibrium to envisage the time-dependent evolution of scour mark around a short
cylinder diameter of 3.2 cm under the low flow discharge. It is observed from the
figures that the initial scour takes place mostly at the upstream of the cylinder;
and consequently the deposition takes place at the downstream of the cylinder.
During the process of evolution the scour mark in the upstream side parallel to the
cylinder was not symmetric, which may be due to the nonlinearity of turbulence
and wakes; but eventually with time (after about 2h) the scour mark tends to
become symmetric in size and shape with deepening about the center line of the
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a
S
Flow Direction

Fig. 7.4 The equilibrium scour holes developed at the upstream of three different cylinders of
diameters (D, = 3.2, 4.2, and 6.0 cm) 6.0 cm) for Q = 0.015 m3/s (after Mazumder et al. 2011)

cylinder (Fig. 7.6al—al2), which shows the transitional phenomena of the process.
In fact, these vortices are the responsible ingredients to transport sediment and scour
around the cylinder. In a similar way, two more experiments using two different
short cylinders of diameters D = 4.2 and 6.0 cm of identical length with the
same flow Reynolds number or discharge were performed; and the photographs
of equilibrium scour marks developed in the upstream sides of all three cylinders
were taken for analysis (Fig.7.4). The diameter of cylinder leads to increase the
width of scour mark. The equilibrium conditions occur at different times (¢, = 178,
195 and 300 min) for different diameters of the cylinders. Observed values of depth
and width of scour marks, length of the ridge, width of left-end and right-end scour
marks generated due to three different cylinder diameters are tabulated in Table 7.2.
Detailed explanations are given in paper by Mazumder et al. (2011).
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Table 7.2 Values of observed parameters for the Reynolds number Re =

6.76 x 10*

D.(cm) wg(cm) t.(min) sp(cm) ro(cm) L.(cm) R, (cm)
3.2 3.5 178 2.56 20.0 3.5 3.5

4.2 4.5 195 2.76 16.5 4.0 4.0

6.0 6.5 300 2.86 7.5 5.0 5.0

where 7, is the time for equilibrium scour-width, s;, is the equilibrium scour
depth, r, is the equilibrium ridge length, L. is the left-end scour width, and
R, is the right-end scour width

7.3.2 Gram-Charlier Series, Fourier Transform and Density
Estimation Via Moments

For the instantaneous velocity components (u, v, w) in the (x, y, z)-directions, the
following three relations can be written as

u=u+u,v=v+vV,w=w+w (7.1)

where over bar denotes time-averaged velocity and the prime denotes its fluctu-
ations. The collected velocity data are processed to calculate the mean flow and
turbulence characteristics at each point. The time averaged stream-wise velocity

u, vertical mean velocity w, stream-wise turbulence intensity \/ﬁ, and vertical
turbulence intensity vV w2 are defined as

(7.2)

(7.3)

(7.4)

(7.5)

where 7 is the total number of velocity observations at each point.

In order to estimate the joint density function p(i&, w) using the cumulant
discard method, we summarize here briefly the method and related theory following
Nakagawa and Nezu (1977) and Raupach (1981). We normalize the velocity
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fluctuations 1’ and w' by standard deviation (r.m.s) in each direction so that &t = u'/
Vu2, and W = w'/v'w?. Denote the joint probability density function of # and
w by p(i, w), its characteristic function by y(c, 8), moment of #*w! by my, and
corresponding cumulant by gy,, the joint probability density function p (&, w) can
be related to

2@ B) = / / ) i) div (7.6)
—00

where y(c, B) is the Fourier transform of p(it, w), and « and 8 are its arguments.
Here mj; and g, correspond, respectively, to the coefficients in Taylor series
expansions of y(«, ) and In y(«, B); and hence the relationships between the
moments m;; and the cumulants g;; are successively obtained (Nakagawa and Nezu
1977). Using inverse transform of (7.6) in which the terms of y(«, 8) less than
fourth order are taken into account, p (i, w) can be written as

pi W) = % / / e WHih) ¥ (o, B) do dB (1.7)

Since p(it, w) be the joint density function of & and w it has zero mean and unit
variance. Assuming all the moments of & and w exist and some other conditions
(Chambers 1967), the joint density function p (&, w) can be expanded as a series of
derivatives of the standard bivariate normal density function ¢ (i, w) (Mardia 1970).

4

p(i, w) = ¢ (@i, w)[1 + %Hn(ﬁ, )] (7.8)
[
where
A A 1 — PR +e?
PN = st T (7.9)

and Hj, (i1, w) is Hermite polynomial of order (s+¢) in two variables. Equation (7.8)
represents a joint probability density distribution of the Gram—Charlier type in
bivariate case. Approximation of neglecting quintuple terms is closely related to
the “quasi-normal” relation, which has been often assumed in the statistical theory
of homogeneous turbulence. There is some doubt on the validity of the cumulant
discard approximation for intense turbulence.

The joint probability density function p (&, w) given by Eqgs. (7.8) and (7.9) using
Gram—Charlier type is shown in Fig. 7.5 at the bed level (zero level) at the location
D over the scour hole generated by the cylinder diameter D, = 3.2 cm. This
probability density function has been plotted for corresponding time interval given
in Fig. 7.6. It is clearly observed from the figures that initially the joint probability
density function shows normal distribution, while as time increases it deviates from
the normality, but gradually it recovers to some extent after a certain time.
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(a1) (@2) (a3)

(a4) (ad) (a6)

Fig. 7.6 Evolution of scour hole over time around cylinder of diameter (D, = 3.2 cm) for
discharge Q = 0.015 m?/s (after Mazumder et al. 2011)
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7.3.3 Growth of Scour Width and State of Equilibrium

Consider a flow with a fixed velocity in an open channel flume. Numerical
measurements on some important characteristics of scour are taken over the time
till equilibrium is achieved and subsequent data analysis helps to understand the
evolution of scour. Importance of such evolutionary study and related literatures is
discussed in this section. Analysis of scour-width evolution data arising out of a
flume experiment is also carried out.

Relevance of Scour Growth Model and Related Studies. As the scour on
riverbeds develops over time due to water flow, modeling the growth over time is
relevant to understand the underlying process. Scour formation is highly dependent
on the shape of obstacles as observed in simulated laboratory experiments, e.g., see,
Thompson and McCarrick (2010).

Possibility of preservation of fossil more or less intact in ancient riverbeds to an
extent depends on size of the resultant scour formed due to flow velocity and size
of object. This investigation on change in velocity profile and scour formation in
presence of obstacle in flow is relevant for study on scour geometry i.e., relative
scour depth, scour length, scour width, and scour volume on riverbeds. Sizes of
scour in case of preserved fossils found on riverbeds are related to the shape of
ancient living being or object causing the scour.

Dimension of scours are of interest even on Martian land, see the image taken on
August 19,2012, of “Goulburn Scour” having a width of 2.5 ft approximately, due to
flow of water in a very distant past causing sandy conglomerate, a sedimentary layer
on presently dried Mars surface; velocity of past water flow may be determined from
the scour geometry, as seen in http://www.jpl.nasa.gov/spaceimages/details.php?id=
PIA16187.

Water may have moved at a speed of about 3 feet (1 m) per second, at a depth
somewhere between ankle and hip deep, in some regions.

Growth of scour depends on the bed texture exposed to water flow. In flume
experiments with sand bed, the scour depth increases with time in a nonlinear
fashion and then stabilizes to reach a state of equilibrium, whereas in clay bed
experiments, scour depth increases with time in a linear fashion to reach an upper
bound e.g., see Khassaf (2007).

In flume experiments, scour formation on sand bed and clay bed are of different
types due to dissimilar erosion processes.

Fossils preserved in ancient riverbeds are hidden around the scour formed by
the object. Some fossils of phragmacone found in Himalayan riverbeds seem to be
well preserved. Associated with these are other preserved beings of ancient years,
e.g., sometimes trilobites are found preserved within phragmocones, where they
crawled in for refuge, fossils of host and those hide inside the scour forming object
in riverbed are discovered together. Size and shape of fossils found in riverbeds
may be related to the width of the scour formed by the obstacle of interest that
imprinted its shape in river flow. An almost complete fossil skeleton of a 47
feet long sauropod from the early Jurassic period (about 160 million years back)


http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA16187
http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA16187
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Fig. 7.7 Schematic diagram Flow Direction
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developed at the upstream of : A E L

cylinder of diameter
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locations of measurements
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z/h

x/h

was discovered by Indian Statistical Institute geologists during a 1958 exploration
in the Pranhita—Godavari valley. Subsequently, two near complete reptilian fossil
specimens from the basal siltstone were found by some local villagers from a
quarry around 1970. River Godavari, its tributaries like Manjra river, Mula river and
surrounding basin located in south India, are well known for a number of discovered
fossils, see e.g., http://biosciencediscovery.com/attachments/File/baber.pdf, http://
palaeontologicalsociety.in/vol41/v1.pdf

In this context one may study the growth of scour over time in experimental
flume till a state of equilibrium, if and when attained in order to infer about such
phenomenon in riverbed. Scour characteristics, those are directly associated with
the scour width, as for example area of scour, or volume of scour may have a linear
relationship in logarithmic scale with scour width. Studying growth of scour width
also sheds light on development of these characteristics over time.

Studies conducted with the purpose of predicting scour have resulted in various
empirical equations those are based on laboratory results and field data. These differ
from each other with respect to the factors considered in constructing the scour
model. See e.g., Khwairakpam et al. (2012).

Empirical equations with Froude number and relative flow depth (inflow depth
per pier diameter) are considered therein to model entire scour geometry at
equilibrium, in a flume experiment on scour hole characteristics around a single
vertical pier in Clearwater conditions (Fig. 7.7).

Analysis of Scour Growth. In the present flume experiment with unidirectional
flow, scour is formed around the cylindrical obstacle placed on flume bed, axis
of cylinder is placed perpendicular to flow direction. Scour width increases with
the flow velocity for a particular cylinder diameter. With a fixed moderate velocity,
width increases with time and reaches a steady state after a certain time. For a fixed
velocity, width of scour increases with cylinder diameter. Here we analyse scour
width due to a short cylinder of diameter 3.2 cm of fixed length L = 10 cm under
the low flow discharge Q = 0.015 m?/s.

One may examine flume experimental data via nonparametric regression tech-
niques to see the evolution of scour over time till an equilibrium is achieved.
Such nonparametric modeling is robust with respect to presence of outliers in the
collected data and may correctly capture the inherent features present in a data set.


http://biosciencediscovery.com/attachments/File/baber.pdf
http://palaeontologicalsociety.in/vol41/v1.pdf
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Fig. 7.8 Growth curve (spline) of scour width

To estimate the growth curve of the response variable scour width p(¢) from the
set of data (¢;, y;);i = 1,---,m; stabilizing after a long period, we may assume
the model y; = u(¢;) + €;, where ¢€; are zero mean, identically distributed random
variables with common variance o2. A cubic smoothing spline s(¢) that minimizes
JA) = Y {yi —s@)¥ + A [{s"(t)}*dt with A as “constant of roughness
penalty” is chosen. The procedure is a balance between ordinary least square and
smoothing of data set. A may be taken as .001, so as to preserve the main features of
the diagram joining the points by straight line. The resultant growth curve is shown
in Fig. 7.8, after an extra point is added at 350 min with same y value as that for
300 min, to check for equilibrium towards the end of the curve. Estimated growth
curve is close to most of the observed data points.

Another nonparametric regression technique insensitive to outliers is locally
weighted scatterplot smoothing (lowess). The technique attempts to fit a weighted
linear least squares regression over the span of data assigning little weight to distant
observations. A smoothing parameter f regulates the ruggedness of data points.
The lowess estimates with f = 0.61 joined by lines is shown in Fig. 7.9. The graph
maintains the main features of data set intact and seems to be insensitive towards
some distant points near the end.

One may compute derivative of the growth function i.e., velocity function of the
scour width, in order to find the time of maximum velocity of growth and to check
whether equilibrium is really achieved towards the end of data collection.

With an application of a robust nonparametric technique proposed in Dasgupta
(2013), we estimate the derivative of a function at a point based on slope estimates
m;(j) at x; on the basis of neighbor data points (x;,y;),j # i.Let J be lowess
estimate of y at x for the observed point (x, ).

Consider m; (j) = (i — y;)/(xi — x;), j # i the slope of the line joining the
points {(x;, ¥i), (x;, ¥;)}. A robust estimate of derivative of the function at x; with



7 Evolution of Scour and Velocity Fluctuations Due to Turbulence Around Cylinders 145

o -
E o
o
Kz}
=

o4 o

0 100 200 300
Time(min)

Fig. 7.9 Growth curve (lowess) of scour width
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Fig. 7.10 Scour width velocity with trimmed mean, wt. exp (—.01 x)

f = .61, (say) is lowess estimate obtained from m; (j) suitably averaged over j
by a normalized weight function w(d) of polynomial/ exponential decay based on
distance d = |x; — x|, w(d) typically assigns more weight to nearby points.

In Fig. 7.10 we consider w(d) o e~ and plot the trimmed mean of successive
three observations viz., average of unique median plus values immediately above
and below it, of the quantities w(|x; —x; |)m; (j), for a fixed i over different j, j # i.

These trimmed mean values are shown by points and the corresponding lowess
estimates (f = .61) of growth rate based on these trimmed mean values are joined
by line in the same figure, viz. Fig. 7.10.

From the figure it is seen that the peak velocity is around 85 min.
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Fig. 7.11 Scour width velocity with trimmed mean, wt. exp (—.01 x)

The picture remains almost same when calculated velocity is based on smooth
spline estimates of Fig. 7.9, where observations y; are closer to spline estimates.
The resultant growth rates, with similar calculations as that of Fig. 7.10, are shown
in Fig. 7.11.

Study of second derivative of growth curve is of interest from curvature
viewpoint and may be obtained in a similar fashion. Recall the procedure of
calculating first derivative, based on the inputs of smooth spline growth estimates as
shown in Fig. 7.9. We repeat the same procedure with input points as in Fig. 7.11.
Differentiating the first derivative (shown in Fig. 7.11) again, we obtain the second
derivative or, instantaneous acceleration of growth, see Fig. 7.12.

The function in Fig. 7.12 lies below the line y = 0. With negative second deriva-
tive, the growth function curves downwards. Magnitude of curvature/acceleration is
seen to be maximum at 230 min.

It appears from Figs. 7.10 to 7.12 that first and second derivatives of scour width
growth are small and approaching zero, but still away from zero towards the end
of experiment indicating that equilibrium is yet to be achieved. Experimental data
collection should probably have continued for some more time.

We may further calculate the jerk (or jolt) of the scour width growth curve.
The rate of change of acceleration named jolt has analogue in the sensation of
varying thrust on a passenger exerted from seatrest in a moving car with varying
rate of acceleration.

Proceeding in a similar manner it is possible to obtain the third derivative (jerk)
of growth curve taking the inputs from Fig. 7.12 and differentiating the graph again.
The basic points and the smooth spline estimates (joined by line) of third derivative
are shown in Fig. 7.13. The highest magnitude of jolt is observed at 60 min from the
start of experiment.
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Fig. 7.13 Scour-width third derivative with trimmed mean, wt. exp (—.01 x)

7.4 Conclusions

This work was focused on the study of scouring processes around short cylinders of
fixed length with different diameters placed over the sand bed transverse to the flow.
The main objective of this work was to understand of the scouring processes with
time. This study would be helpful for engineers to modify their structural designs
or using some protective measures for meeting the problems faced due to scouring.
Also studying the processes involved in scour formation would help to address many
sediment transport problems. It may be mentioned here that the current crescents
preserved in geological record are traditionally used as indicators of palaeo-current



148 H. Maity et al.

direction, e.g., see Fig. 7.3. Scour geometry is related to preservation of fossils
in ancient riverbeds. Studies on growth curves presented here are relevant for
assessment of foundation scour in a bridge that is created by turbulence around a
footing, design for Camshaft-gear in automobile engines, trajectory planning while
integrating sensors in robotic environments, etc.
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Chapter 8
South Pole Ozone Profile and Lower
Tolerance Limit

Ratan Dasgupta

Abstract Ozone layer is protecting this green planet from ultraviolet radiation.
Ozone in high altitude region is constantly destroyed by chemical reaction involving
chlorine and fluorine from human produced chlorofluorocarbons (CFCs), and thus
creating an ozone-hole. We study the ozone profile in polar region, model this in
terms of Gaussian process, fit a smooth growth curve and predict the lower tolerance
limit of ozone concentration that is seen to hold up to the year 2012. The problem
is reanalyzed in nonparametric setup and bootstrap resampling technique.

MSC classification 2000: Primary 62P12, 62G15; Secondary 62G32

8.1 Introduction: Ultraviolet Radiation and Ozone Layer

The sun emits radiation over a broad range of wavelengths to which the human eye
responds in the region from approximately 400 to 700 nm. Wavelengths from 320 to
400 nm are known as UV-A, that from 280 to 320 nm are called UV-B, and from 200
to 280 nm are known as UV-C; X-rays and gamma ray radiations are in the region
0-200 nm.

Our concern is mainly on UV-B as the atmosphere absorbs virtually all UV-C.
Radiation UV-B is partially absorbed by the ozone layer, a thin band in the
stratosphere, protecting the earth from its harmful effects.

Depletion of the ozone layer allows the UV radiation to reach earth, causing skin
cancer, eye cataract, reduced plant yields, and damage to ocean ecological system.

R. Dasgupta (P<)
Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Kolkata, India
e-mail: ratandasgupta@gmail.com

R. Dasgupta (ed.), Advances in Growth Curve Models, Springer Proceedings 149
in Mathematics & Statistics 46, DOI 10.1007/978-1-4614-6862-2_8,
© Springer Science+Business Media New York 2013


mailto:ratandasgupta@gmail.com

150 R. Dasgupta

Several pollutants attack the ozone layer. Chief among these is the class of
chemicals known as chlorofluorocarbons (CFCs) that contain both chlorine and
fluorine. The CFCs are used as the propellants in gaseous suspension of fine solid or
liquid particles; in refrigeration technology as solvents and foam producing agents.
The CFCs do not break up in the lower atmosphere, known as the troposphere.
Instead these slowly migrate to stratosphere, the altitude region 10-50km above
sea level. There these react with other chemicals under the influence of ultraviolet
radiation and release chlorine. Chlorine acts as a catalyst to destroy ozone in
the stratosphere. Other pollutants, including nitrous oxide from fertilizers and the
pesticide methyl bromide, also attack atmospheric ozone. The balloon borne ozone
instruments launched at regular intervals since the year 1986 at the Amundsen-
Scott South Pole Station show ozone depletion in the September to October period,
following sunrise, when ozone in the 6—14 mile altitude region is almost totally
destroyed by chemical reaction of CFCs where stratospheric clouds are formed,
thus creating an ozone hole, i.e., a polar region with vertical ozone profile of values
below 220 Dobson units (DU).

Air parcels move on isentropic surfaces, i.e., surfaces of equal potential tempera-
ture, rather than pressure surfaces. Cold polar air is trapped by the very strong winds
of polar night jet, thus forming polar vortex; measured in the units of million square
km. During the winter/spring period, when the polar vortex is strongest, warm air
outside of the vortex cannot enter inside the vortex of cold polar air. About 17km
above sea level in the south polar region and in-between the 70 and 50 millibar
(mb) pressure surfaces, ozone is in greatest abundance in the vertical profile. At that
altitude, the peak of the Antarctic polar vortex was about 35 million square km,
during September end and early October 2006. Further above, about 28 km above
sea level in the south polar region, and in-between the 30 and 20 mb pressure
surfaces, the peak area of the polar vortex was about 42 million square km during
August 2006. Temperature below —78 °C forms Polar Stratospheric Clouds (PSC)
with nitric acid trihydrate and ice within polar vortex. These particles grow in size
and number to create cloud-like features. Heterogeneous photochemical destruction
of ozone takes place within these PSCs. As the area of low temperatures becomes
larger, there is a greater possibility of PSCs forming which cause accumulation
of reactive chlorine gases. This destroys ozone, once sunlight returns to the polar
region.

Warm air from the mid latitudes cannot mix with the cold polar air and the
polar air gets colder due to loss of heat by radiation. The depleted ozone in the
vortex is not replenished with ozone rich air from outside the vortex. Cold air
remains trapped until mid to late spring when the polar vortex gradually weakens
and eventually breaks down. After this, thorough mixing occurs and ozone amounts
are replenished. If phasing out of all ozone-depleting substances is continued under
the Montreal Protocol, it may take 50—100 years to fully recover the ozone level.

After major volcanic eruptions, particles of sulfuric acid form in the stratosphere.
These particles spread around the world and cause ozone depletion up to 1-2 years
till the sulfur particles fall from the stratosphere.
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The UV radiation of 180-240nm helps ozone formation and radiation of
200-320nm causes ozone breakdown. The rate of breakdown can be greatly
accelerated by catalysts such as chlorine and nitric oxide.

Vortex at the other pole, viz., arctic polar vortex is much weaker than the
Antarctic. The arctic temperatures are several degrees higher, and PSCs are much
less common. There PSCs tend to break up earlier in the spring. Thus there is ozone
depletion, although no “ozone hole” in the northern hemisphere till now.

At the ground level, chemical reactions between volatile organic compounds,
nitrogen oxides, and sunlight produce ozone molecules. This, however, is not a
remedy for the damage caused by ozone hole, as the area of the latter is much
larger compared to the pockets of ozone in ground level. Ground level ozone causes
breathing difficulties and adversely affects plant-photosynthesis. Greenhouse effect
of ground level ozone allows the higher atmosphere to cool. Thus more stratospheric
clouds are formed with worse effect on ozone hole. Hopefully, this year (2012) the
size of the ozone hole was the second smallest in the last 20 years.

The paper is arranged as follows. In Sect. 8.2, we describe measurement of
ozone concentration in polar region. Ozone concentrations of past years are also
studied. In this context, we study a B-content tolerance limit, i.e., a bound that
contains at least 1008% of the future observations above it, by modeling the
observations as sum total of mean-response p(¢) varying over time ¢ and a
remainder €(z) modeled by a correlated Gaussian process. We establish an almost
sure convergence of empirical distribution of observations, recorded from a weakly
correlated nonstationary Gaussian process, to the limiting stationary distribution;
the recorded observations need not be equispaced in time. The result stated in
Theorem 1 may be of independent interest. In Theorem 2 of Sect. 8.3, a tolerance
limit is obtained based on minimum of correlated normal random variables; see also
Dasgupta and Bhaumik (1995) where the maximum of iid normal random variables
are considered. Using Theorem 2, we compute a lower tolerance limit of total ozone
for a future year based on ozone-data of the years 1986-2006, in Sect. 8.4. Efficacy
of the computed lower tolerance limit is seen to hold by minimum of total ozone
level observed in next several years during 2007-2012. Alternative solutions are
investigated by bootstrap and analyzing directly the 21 recorded yearly minimum
ozone levels. Proof of the results are provided in Appendix.

8.2 Measurement and Analysis of Ozone Concentration

South pole ozone profiles are measured by balloon-borne electrochemical concen-
tration cell (ECC) ozonesondes. An ozonesonde consists of a small piston pump that
bubbles ambient air into a cell containing potassium iodide, unbuffered solution.
The reaction of ozone and iodide produces a small electrical current in the cell,
which is proportional to the amount of ozone. The ozonesonde is also interfaced
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with a radiosonde, which measures air temperature, pressure, relative humidity and
transmits all of the data back to a ground receiving station. Total column ozone
is calculated by integrating the ozone partial pressure profile up to the balloon
burst altitude and adding a residual amount, based on climatologically ozone tables,
to account for ozone above the balloon burst altitude. Data on such experiments are
available from internet, e.g., NOAA website.

Usually circular shaped in August and September, the Antarctic polar vortex
tends to elongate in October, stretching towards inhabited areas of South America.
By November, the polar vortex begins to weaken and ozone rich air begins to mix
with the air in the “ozone hole” region. The “ozone hole” is usually gone by late
November/early December.

The minimum ozone profiles, i.e., the ozone pressure (in mPa) vs. altitude
(in km) along with yearly minimum total ozone from 1986 up to the year 2005
are shown in Fig. 8.1. From this chart we see that minimum typically occurs in early
October. However, in 2003, 106 DU was measured on September 26, which is about
13 days earlier than normal. The minimum ozone level for the year 2006 is 93 DU
recorded on October 9.

In mid-August, about 6 weeks before the minimum occurs, the ozone profile
over south pole generally has a well-defined peak in ozone concentration, occurring
at 18km. In the year 2001, the peak in ozone concentration occurred on 25 June
with total ozone 273 DU. Then total ozone drops rapidly at a rate 3—5 DU per day.
Nearly all of the ozone destruction centers around the ozone peak in a layer from 14
to 22 km. The record minimum 89 DU was observed on October 12, 1993. Since that
year the 14-22 km layer has consistently shown near complete ozone destruction.

The severe ozone hole for the year 2001 occurred on 28 September with total
ozone 100 DU, see Fig. 8.2. In each plot in that figure the third curve that starts from
the extreme right is the temperature (in °C) vs. altitude (in km) curve.

The 52 observations on total ozone spread over the year 2001 are shown in
Table 8.1. To estimate the response curve p(¢) from the set of data (¢;, y;);i =
1,---,m;(m = 52 here), we may assume the model y; = u(#;) + ¢; where ¢;
are zero mean, identically distributed random variables with common variance 03.
A cubic smoothing spline s(¢), which minimizes the criterion J(A) = >/ {y; —
s(t:)¥* + A [{s”(t)}*dt is used. The “constant of roughness penalty” A is taken
as .002, so as to preserve the main features of the diagram joining the points by
straight line. See Figs. 8.3—-8.6. The components of residual €, vide Fig. 8.7, are
measurement errors, sudden climate changes, variation in time, location and altitude
of balloon burst, etc. Thus the residuals € arising from several independent causes
may be assumed to be normally distributed with mean zero.

The goodness of fit test for normality described above extends to continuous time
Gaussian process. The form of the response curves p over different years exhibits
a similar pattern and by separating this systematic part from the observations
we obtain the random variable of interest viz. the residuals €(¢), where the time
variable ¢ spans over the days of all the successive years. The residuals need not be
independent. However, there is a possibility of residuals €(¢) achieving a stationary
weak limit as 1 — oo. Indeed, in the most ideal situation when there is no ozone
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Table 8.1 Total ozone over the year 2001

Day Ozone Residual

Date no. (¢;) (DU) (e) €/0,

1.1.01 1 282 1.7472 0.1623
7.1.01 7 270 —2.1466 —0.1994
14.1.01 14 262 —1.4526 —0.1350
21.1.01 21 260 4.6530 0.4323
28.1.01 28 254 6.7436 0.6265
4.2.01 35 228 13.3455 —1.2399
11.2.01 42 241 —0.8736 —0.0812
18.2.02 49 240 —7.6571 —0.7114
4.3.01 63 278 22.5801 2.0978
11.3.01 70 251 7.0895 0.6587
18.3.01 77 224 —1.4473 —0.1345
25.3.01 84 183 —27.9701 —2.5986
8.4.01 98 227 14.4721 1.3445
15.4.01 105 211 —5.8190 —0.5406
22.4.01 112 232 11.4432 1.0631
29.4.01 119 216 —17.3637 —0.6841
6.5.01 126 208 —20.5960 —1.9135
13.5.01 133 264 28.8132 2.6769
20.5.01 140 238 29118 0.2705
27.5.01 147 222 —9.4305 —0.8761
10.6.01 161 224 —12.1891 —1.1324
25.6.01 176 *273 12.0903 1.1233
8.7.01 189 271 3.5907 0.3336
16.7.01 197 260 —4.2343 —0.3934
23.7.01 204 253 —8.2115 —0.7629
4.8.01 216 257 1.5560 0.1446
8.8.01 220 264 13.4029 1.2452
12.8.01 224 242 —1.3461 —0.1251
19.8.01 231 224 —3.2521 —0.3021
24.8.01 236 197 —18.2548 —1.6960
28.8.01 240 205 —0.8485 —0.0788
1.9.01 244 220 24.8779 2.3113
3.9.01 246 186 —2.7222 —0.2529
8.9.01 251 179 8.9651 0.8329
13.9.01 256 151 1.7262 0.1604
15.9.01 258 140 —1.1737 —0.1090
17.9.01 260 122 —11.5917 —1.0770
21.9.01 264 119 —1.7905 —0.1663
23.9.01 266 117 1.2506 0.1162
26.9.01 269 105 —5.0553 —0.4697
28.9.01 271 *100 —7.5853 —0.7047
2.10.01 275 116 10.3225 0.9590
4.10.01 277 101 —5.0164 —0.4661
6.10.01 279 105 2.1707 —0.2071

(continued)
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Table 8.1 (continued)
Day Ozone Residual

Date no. (t;) (DU) (¢) €/,
8.10.01 281 111 1.9026 0.1768
11.10.01 284 109 —4.2778 —0.3974
14.10.01 287 116 —2.7950 —0.2597
17.10.01 290 130 4.7533 0.4416
20.10.01 293 131 —1.1340 —0.1054
25.10.01 298 161 17.4035 1.6169
28.10.01 301 139 —11.0267 —1.0244
1.11.01 305 159 0.4826 0.0448

The observations marked by a * represent the maximum and minimum of the
observations. Here, i = 1.913 x 10715,52 = 115.856, 6. = 10.7636.

As already stated, one may model the residuals €s as normal random variables
with mean zero; and the y? test based on 52 residuals in the present case
supports this assumption
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Fig. 8.3 Scatter diagram of ozone for the year 2001
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destruction due to complete ban on human produced harmful chemicals, the mean
part may be a constant over time and the ozone observations may attain a stationary

distribution in the limit as t — oo.

It is known that the empirical distribution of a weakly correlated (nonstationary)
Gaussian process is a consistent estimate of the limiting stationary distribution,
e.g., see Al of Dasgupta (2006). A convergence result, asserting that the empirical
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Fig. 8.4 Diagram joining the points by straight line for the year 2001
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Fig. 8.5 Smoothing the points by nearest neighborhood method for the year 2001



158 R. Dasgupta

300 v T T Sim— 13 L ¥

240 i

2201 -

2001 7

180+ b

160 - -

140+ 7

120 1

100 1 1 il 1 i d A
0 50 100 150 200 250 300 350 400
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Table 8.2 Normal fit for

residuals Class interval of (¢ / G.) 0; e;
(—o0, —1.28] 3 52
(—1.28,—0.84] 5 52
(—0.84, —0.52] 5 52
(—0.52,—0.25] 7 52
(—0.25, 0.00] 10 52
(0.00, 0.25] 6 52
(0.25,0.52] 4 52
(0.52,0.84] 3 52
(0.84,1.28] 4 52
(1.28, 00) 5 52
Total 52 52
The test statistic, y> = Z0?/e; — m = 7.62 with
8 degrees of freedom; y2s, = 15.51. p value of

significance is p = 0.47.

distribution of a nonstationary Gaussian process is a consistent estimate of the
limiting stationary distribution, where the recorded observations are not equispaced
in time; holds provided the correlation function of the process is polynomially
decaying. Specifically, we prove the following in Appendix A.1.

Theorem 1. Consider a Gaussian process X(t), 0 <t < T with mean m(t) and
covariance kernel o (t,u) = o (t)o(u)p(t, u), where m(t) -0, o(t) > o0; t - 0.
Assume X(t) has the weak limit denoted by X(o0) and the correlation function
lo(t,u)| < K|t—u|=f, K >0, B > 0. Consider the empirical distribution function
of the process based on the observations at time points t,t,,- - , t, which are not
necessarily equispaced. Let the time interval [0, T') of recording the observations be
subdivided into k subintervals and the length of each subinterval and the number of
observations in each subinterval increase to co. Also let the time gap between two
consecutive observations within each subinterval be homogeneous and the number
n* of “isolated” observations which do not fall in any one of the homogeneous
subintervals, be negligible compared to n, i.e., n* = o(n). Then the empirical
distribution function of the recorded observations from the process is a strongly
consistent estimate for distribution function of the limiting variable X(00), as
n — oo.

Thus the above x> goodness of fit test for (limiting stationary) normal distribution
for a nonstationary Gaussian process €(¢) based on the realizations¢;, i = 1,--- ,n;
(n = 52 here) which are non equispaced in time, is valid as the empirical distribution
of ¢, i = 1,---,n; converges to the normal distribution, provided the correlation
function is polynomially decaying.

Note that in one of the class intervals of Table 8.2, the observed frequency is as
high as 10. An approximate normal test of observed frequency 10 against expected
frequency 5.2 for the fifth class interval of Table 8.2, under the model, is provided
by t = 2.22, to be compared with tabulated 705 = 1.96, to; = 2.58. However
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Fig. 8.8 Scatter diagram of ozone for the year 2006

this test is conservative. A more appropriate test would be based on extreme value
theory of correlated normal random variables. We state a large sample result in this
case; see, e.g., Galambos (1987).

Theorem A. Let Z,(r) be the maximum of a Gaussian stationary sequence
X1, X2,--+, X, with zero expectation, unit variance, and correlations r,, =

EX1Xi4m. Leta, = bl” — iby(loglogn + log4m), b, = (2logn)™"/2.

Then (Z,(r) — a,)/by i H;p(x) = exp(—e™),—00 < x < oo provided,
rmlogm — 0, as m — oo.

Thus, defining W,(r) = min;<;<, X;, one has (W, (r) — ¢,)/d, i) L(x) =
1 —e,x € (—o0,0), with ¢, = —a,,d, = b,.

Hence the number 7 = 2.22, mentioned before may be compared with an
approximate H3(x) random variable with a, = 1.362, b, = .466, where n = 10.
Here, for the multinomial cell frequency r = —%(1—%) =~ 0. p value of significance
for T = 2.22 with respect to H3 o is p = 0.147.

Another scatter plot of 52 observations on total ozone spread over the year 2006
is shown in Fig. 8.8. The estimated response curve with cubic smoothing spline
and roughness penalty A = .001, .002, and .005 are shown in Figs.8.9-8.11,
respectively. A smooth growth curve fitted on yearly minimum ozone level for 21
years from 1986 to 2006 is shown in Fig. 8.12. This suggests a possibility of higher
value of minimum ozone in the year 2007 compared to the year 2006.

It was indeed so as the minimum ozone value corresponding to the year 2007 is
125DU.



8 South Pole Ozone Profile and Lower Tolerance Limit 161

100 1 ) I

I I L L L
0 50 100 150 200 250 300 350 400
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Fig. 8.10 Estimation of mean response for 2006 with roughness penalty .002
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Fig. 8.11 Estimation of mean response for 2006 with roughness penalty .005
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8.3 Lower -Content Tolerance Limit of Minimum Ozone

A B content tolerance region S contains at least 1008 % of the future minimum with
a high probability y.

As our aim is to safeguard the minimum level of ozone concentration, we would
like to construct a lower bound using the minimum level of ozone concentration of
the past years, such that at least 1008 % of the future minimum observations would
be above that bound with a high probability y.

We observe that the minimum ozone concentration at the south pole over the
years 19862006 occurred within the time period September 26—October 12, the
record minimum being 89 DU on October 12, 1989.

Let {X; : i > 1} be weakly correlated N(0,1) random variables with
logarithmically decaying correlation function and W, = min(Xy,---, X,,) then

(W, — c)/dy > W, with POW < x) = 1 — exp(—e”), —00 < x < 00 and ¢, =
—a, = —(2logn)"?+1(loglogn+log4m)/(2logn)'/?, d, = b, = (2logn)~'/2,
vide Theorem A.

In our application the scaled residuals take the role of normal variables {X; :
i > 1}. The y* goodness of fit vide Table 8.2 may be supplemented by checking
convergence of distribution function mentioned in Theorem 1. Equivalently, the ob-
served quantiles should converge to the corresponding theoretical normal quantiles.
The quantile—quantile plot for 52 scaled residuals €/, of Table 8.1 is given in
Fig.8.13. The observed data is seen to cluster around the line y = x, as expected.
The best fitted line to the data has intercept —0.0526 (~0) and slope 0.9734 (~1),
with R? of linear regression as 0.9645. For the given data points, ratio of sum of

observed quantiles

T I L 1 T
-2 -1 0 1 2
theoretical quantiles

Fig. 8.13 Normal plot for standardized residuals
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squares of distances from the best fitted line, to the sum of squares of distances from
the theoretical line y = x is 0.9003. This indicates the estimations via graphical
methods may be quite efficient.

Over the years 19862006, the minimum level of ozone occurred during the
period September 26 (corresponding to the year 2003) to October 12 (corresponding
to the year 1993) and the number of days in that span is n = 17. Consider
Yy1,---, Y, the total ozone level on those 17 days. Since the response curve g ()
is continuous and may be taken to be a constant p within a short range of time,
denoting w; = min(Y},--- ,Y,) and observing that the residual ¢;s may be taken to
be weakly correlated N (0, 02) random variables, one may write

wr—w/o~Ww, gcn +d,W, ie,w, L4 w+o(c, +d,W)=u*+oc*w,

where u* = u + ¢,0, 0* = d,o.

Next, consider the record minimum of ozone level Z iy over k years, i.e., Z) =
min(Zy, -+, Zy). Here Zy = 89DU with k = 21 years from 1986 to 2006. Let
8(1t,0) = {iu + o log(=log B)}/ [ + o log{—log(1 — (1 — y)/¥)}].

We have the following result.

Theorem 2. Let the response curve j1(t) of total ozone Y spread over the years be
continuous and the residuals €s be weakly correlated N(0,0?) random variables
with logarithmically decaying correlation function. Then Z6(Q*,6%) is an
approximate B content lower tolerance limit for minimum ozone level Z for a future
year, i.e.,

Pz, [PY{Z = Z0)8(0*,6™)} = Bl =y + o(1), as k — oo,

where I* and 6* are consistent estimates of 1* and o* respectively.

Proof of the theorem is given in Appendix A.2.

In the present case k = 21, Z(;) = 89, 6 = 10.7636, i may be taken average of
W over the period September 26—October 12. From the response curve of 2001 data
[t = 105.86, estimated as average for these days, see Appendix A.3. Recommended
values of B and y are B = .9, y = .95.

8.4 Lower Tolerance Limit Based on Data of the Years
1986-2006

We take n = 17, the number of days in the time period September 26—October 12.
Then,

1
¢n = —(2logm)'/? + (loglogn + log4m)/(2 log m)'/* = —1.63

d, = (2logn)™"/? = 0.42
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These are centering and scaling factors of extreme value distribution based on
N(0, 1) random variables.

Regarding the choice of n = 17, note that values of ¢, and d,, are logarithmic
and lower order function of n and thus insensitive to slight variation of n; e.g.,
dsy = 0.385, ¢3p = —1.6. Hence this technique of computing the lower bound is
robust with regard to slight variation of the particular date when actual minimum of
yearly total ozone is attained.

Next, the centering and scaling factor of extreme value distribution based on
minimum ozone of a single year are as follows:

[ = [i + cu6 = 88.315,
6* =d,06 =4.521.

Also, §(1*,6*) = .8541, which is a shrinking factor of record minimum to obtain
the lower tolerance limit for a future minimum. We obtain Z)8(A*,6*) = 76.02.
The above may be interpreted as 90% of the future minimum of yearly total
ozone is going to be >76.02 DU with a high probability nearly .95.
One may like to use an estimate of o based only on the data of the time period
September 26—October 12, when minimum ozone concentration occurred over the
years 1986-2006. Then, ¢ = 5.622 from the data of the year 2001. In that case

A* = fi + a6 = 96.696,
6* = d,6 = 2.3612.

Also, §(1*,6*) = .9291. We obtain Z)§(1*,6*) = 82.69.

One may fit the extreme value distribution L,,(x) = P(w < x) = 1 —
exp(—e%) to the yearly minimum of ozone level for 21 years during 1986-2006,
by probability plot, see Fig. 8.14. The estimated value of © and o from the plot is
i = 121.4818,6 = 19.1939. The value of R? for linear regression is quite high;
R?> = .8344 indicating a good fit. Estimate of P(Y > 82.69) is L;5(82.69) =
.8319. This is slightly lower than the specified value of 8 = .9.

We may also bootstrap the empirical distribution of the minimum ozone over
years to obtain another solution of the problem. The sample median and the sample
interquartile range may be taken as nonparametric estimates of the corresponding
location and scale parameters of the distribution. Equating the empirical distribution
with L, (x) at three quartiles X4, Xmea. X374, We may obtain the following
nonparametric estimates of the location and scale parameters pu and o. These
estimates are slight variations of the usual nonparametric estimates:

0 = [X374 — X1/4]/[loglog 4 —loglog(4/3)]; i = Xmea — G loglog2  (8.1)
The estimates based only on X,,¢4, X3/4 are as follows:

G = [X3/4 — Xmea]/ 1082 ; [l = Xpeq — 6 loglog2 (8.2)
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Fig. 8.14 Extreme value fit of ozone level for 21 years

The distribution L, ,(x) being negatively skewed, the third sample quartile is more
stable than the first. Thus the estimates given in (8.2) are expected to perform better.

Bootstrapping the distribution of the minimum ozone over 21 years are done as
follows. Draw a simple random sample xl.*, 1 <i < 21 of size 21 with replacement
from the empirical distribution of the minimum ozone over 21 years and obtain

standardized pseudo minimum values 3 &_’L from (8.1)/(8.2); to be denoted by B1
and B2, respectively. The whole procedure is repeated 10 times, providing 210
pseudo minimum values in each case of B1 and B2. The probability plots of these
values over a representative run are shown in Figs. 8.15 and 8.16. The R? value for
linear regression is .7631 for B1 and .7664 for B2, these are quite high indicating
the possibility of extreme value distribution as a model.

However, anticipated superiority of the estimates (8.2) over (8.1) could not be
established in terms of better fit measured by R? over different runs.

Next, to have a nonparametric solution of the problem we may compute the
estimates given by (8.1) from 21 observed yearly minimum ozone level and obtain
the standardized value of lowest ozone level observed so far as y = 897_" =
—1.1227.

The relative proportion of observations above this value in Figs. 8.15 and 8.16
are 0.909 and 0.869, respectively, indicating that future minimum will be higher
than the minimum already observed up to the year 2006, with a high probability
nearing 0.9.

The minimum of yearly total ozone in DU for the 6 years 2007-2012 are,
respectively, as follows: 125, 107, 98, 122, 102, 136.

See e.g., http://www.esrl.noaa.gov/gmd/dv/spo_oz/spmin.html.


http://www.esrl.noaa.gov/gmd/dv/spo_oz/spmin.html
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Fig. 8.16 Bootstrap 2 extreme value fit of ozone level for 21 years

All these values lie above the lower tolerance limit predicted from model.
Recently Antarctic ozone hole is getting smaller possibly due to regulation

adherence, the average area covered by the Antarctic ozone hole in the year 2012
was the second smallest in the last 20 years.
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Appendix

A.1 Empirical Distribution of Observations
on Nonstationary Gaussian Process Realized
on Non-equispaced Time Points

Here we prove Theorem 1. We follow the steps (5.2)—(5.5), pp. 32-33 of Dasgupta
(2006). As the condition (5.5.3) of Cramér and Leadbetter (1967) is satisfied, from
(5.6) Dasgupta (2006),

T
%/0 H(X(@)<d)—EIX(t) <d)]dt -0 (8.3)

with probability one, as T — oo.

(In Table 8.1, the observations are not equispaced, there are weekly observations
taken at a stretch, observations are taken biweekly, or at a gap of 2/3/4/5 days.)

Subdivide the interval [0, T') into k subintervals, where the time gap is homoge-
neous between two consecutive observations in each subdivision. In the jth time
segment [TU), TU+D) j = 0,1,--- k — 1, there are n; observations, where
T® = 0,7® = T. We may obtain from (5.8), p. 34 of Dasgupta (2006) the
following:

Vlj—l
ni Z HKX(TY +iTU ™V /n;) <d} — ®(d/o) = P(X(c0) < d) as. (8.4)
7 i=o

In other words,
nj -1
Z XY + iT(H'l)/nj) <d}—n;®(d/o) =o0(n;) as.
i=0
Consider all the components with inter-homogeneous time gaps; weekly,
biweekly, etc. A few “isolated” observations which may not fall in a group have

negligible contribution to the above sum of indicator variables, as the divisor is 7.
Combining, it follows that

n—1

> I{X; <d}—n®(d/o) = o(n). as.

i=0
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as n — oo, where n is the total number of observations, X;, i =0,1,2,---,n — 1.
Hence,

1 n—1

- Y I{X; <d} — ®(d/o) as. (8.5)

i=0

In our application, X; are the residual e€s of ozone recordings from the mean
response (. (t) at n time points.

A.2 Construction of Lower Tolerance Limit

Here we prove Theorem 2. Denote
Lyo(x)=Pw<x)=1—exp(—e ) (8.6)

Let z; be distributed as L, , approximately and z(1y = min(zy, -+ , 2x).

A reasonable tolerance limit for a future observation Z with approximate
distribution L would be zyé(1, §) where § is a positive function of 1 and o. Thus
we need

Py[PLZ > za)d(p,0)} = Bl =y (8.7)

Hence at least 1008 % of the future observations would be above z(1)6 (i, o) with
a high probability y. From (8.7) we get,

P[1 — L(z1)d(u,8)) = Bl =y, ie., Plza)d(p,0) < L_I(E)] =Y

where B =1 — 8 and L~ is the inverse function of L.

ie. Plaay > L' (B)/8(n.0)] = 1~y

i.e., GF[L™'(B)/8(1n.0)] 2 1 — y, from Theorem A,

where G = 1 —L,ie., LIL7'(B)/8(n,0)] ~ 1 — (1 —y)'/*
i.e.,

§(p0) > L L (B)/ Ly (1= (1—y)'/%) (8.8)

In the present case, L;’lg(y) = u + olog{—log(1 — y)}, from (8.6) and the

yearly minimum ozone, Z 2 u* + o*W ~ L,xo+, where P(W < x) =
1 — exp(—e¥),—00 < x < oo. Now the right hand side of (8.8) is a continuous
function of i, 0. The result follows as j1* and 6* are consistent estimates of u* and
o*, respectively.
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A.3 Estimate of p = E(Y;) for Random ¢

Let ¢t € [a,b] be uniformly distributed on the interval. Then, E(Y;) =
T fab E(Yy)ds ~ L3 ;. where i refers to the day numbers lying on the
time interval [a,b] and w; is mean ozone level of ith day. In our application,
m = 17 and i € [September 26, October 12]; u; may be taken as value of ith
day mean ozone level given by the response curve, interpolated by the method of
smoothing spline from the whole data set. This provides i = 105.86.

One may estimate the above directly from the ozone observations in the
segment [a,b]. We assume that the correlation function of the Gaussian
process decays polynomially. Following the same arguments of (8.3) in A.l,

ﬁ fab [Y; — E(Yy)]ds ~ 0; see also A2 of Dasgupta (2006). Hence, E(Y;) =

A PEYyds ~ G [PYds ~ &> i—iw;Y;, the weighted mean of
observations in that time period where the weights w; are proportional to the
time gap between consecutive recorded ozone observations Y;, j = 1,---,7. For
example, w; = 2,wp, = 2,w3 = 4,wy = 2,ws = 2,wg = 2,w7 = 3; m =
17,n=7,m= Z;':l w;. Thus we get, i = 107.94.

In the first method, the whole data set is used to estimate , whereas observations
falling in the specific time interval [a, b] are used in the latter method of estimation.
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Chapter 9

A New Technique for Estimating Population
Distribution of Growth Curve Parameters
with Longitudinal and Cross-sectional Data

Sedigheh Mirzaei Salehabadi and Debasis Sengupta

Abstract In this paper, we present a new approach for estimating the population
distribution of biological parameters related to individual growth. The most attrac-
tive feature of the proposed method is that, while some amount of longitudinal data
is required, information contained in sparse longitudinal as well as completely cross-
sectional data can also be harnessed. Although the method is not Bayesian, it can be
implemented through recursions based on Gibb’s sampling. Computer simulations
in the special case of the Preece—Baines growth model show that inclusion of
some cross-sectional data indeed reduces the mean squared errors of the estimators.
The method is then used to compare the population distribution of human growth
parameters among the male and female subjects of a study conducted some years
ago by the Indian Statistical Institute.

9.1 Introduction

Consider longitudinal growth data having the form (%1, yi1), (ti2, Yi2), ---, (tin;
Yin;)» I = 1,...,n, where n is the number of individuals, n; is the number of
observations for the ith individual, I < i < n, and y;; is the observed size variable
at age 1;;. For such data, one often postulates a parametric random effects model of
the form

yith(tij;T,‘)-l-S,'j, j=12,....n,i=12,...,n, 9.1

where the function 4 has a known functional form, with a random vector parameter
T; controlling its shape, ¢;;, j = 1,2,...,n;,i = 1,2,...,n are samples from
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a zero-mean error distribution with density ¢ with vector parameter 5, and T;
(independent of the errors) are samples from a distribution with density f with
vector parameter . The function / is referred to as the individual growth curve,
while the ¢;; s are regarded as measurement errors. The ;s account for the variation
of the growth curve from one individual to another. The distribution (/) of these
individual-specific parameters, captured here through the parameter @, is a matter
of general interest in a wide variety of applied areas, including biology, psychology,
economics, and sociology. In this paper, we consider the problem of estimating this
parameter.

Potthoff and Roy (1964) considered a model of % that is possibly nonlinear
(e.g., polynomial) in the age variable, but is linear in the parameter t;. Since this
model falls into the framework of multivariate linear models, Potthoff and Roy’s
(1964) work was followed up by many other researchers. However, when there
are only a handful of observations per individual, a parsimonious model can be
fitted to individual growth data only if the model is allowed to be nonlinear in
the parameters. Simplest examples of such models include the exponential growth
model and the logistic growth model, while more complex models with larger
number of parameters have also been considered (see Falkner and Tanner 1986,
Hauspie et al. 2004). We consider a popular model, proposed by Preece and Baines
(1978) in the next section.

Work in this area had begun with the Potthoff-Roy model (see Rao 1965) and
has continued ever since (see Laird and Ware 1982, Cnaan et al. 1997, Huggins and
Loesch 1998, Duncan et al. 2006, and Donnet et al. 2010). The methods proposed
by these authors rely heavily on the structure of the data. In particular, a healthy
number of observations per individual are needed. Such data may be obtained
through longitudinal studies (Diggle et al. 2002), which are time consuming and
expensive. On the other hand, data from cross sectional studies are not suitable for
the methods mentioned above. Because of this difficulty, some studies are designed
to track different individuals over different age ranges. The different age ranges used
in the study may have only partial overlap. This way, the duration of the study can
be shorter. Huggins and Loesch (1998) considered analysis of this type of data.

However, many large scale studies on human growth happen to be entirely cross-
sectional. Thus, one might seek to combine the strengths of the two types of data,
for solving longitudinal data problems. We present in this paper a general method
for estimating 6 of (9.1) on the basis of a combination of longitudinal and cross-
sectional data. We illustrate it by analysing a classic data set on human growth
through a popular model (see Dasgupta and Hauspie 2001, Falkner and Tanner
1986).

There have been some attempts to use a combination of cross-sectional and
longitudinal data for various types of analysis. For example, Verbeke et al. (2001)
consider a linear mixed model and go into the issue of estimation of the model
parameters. However, their focus is on the estimation of overall trend (a shared
attribute in all individuals). They regard the population-specific parameters as
nuisance parameters and do not go into the question of the distribution of these
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parameters across different individuals in the population. We focus on the latter
problem, for which there is no comparable method available as yet.

Independence of the errors ¢;;, j = 1,2,...,n;, i = 1,2,...,n is crucial to
the methodology developed in this paper. While various researchers have attempted
to model in different ways the possible dependence of observations for a single
individual, the model used here amounts to assuming that such dependence is
adequately taken into account through the shared random parameter, t;.

9.2 A Growth Model

The following model proposed by Preece and Baines (1978) has been one of the
most popular models for human growth:

2(hmax - h@)

]’l(l; T) = Npmax — m

9.2)
Here, T consists of five parameters. Out of these, s and §; are parameters controlling
the rates of growth at different stages, /,,,, is the final size, and Ay is the size at a
threshold age 6. For the sake of identifiability, it is assumed that sy < 1.

The derivative of the growth function, known as the velocity function, has the
following form for the Preece—Baines model:

soeso(f—9) + Slesl(t_e)

P
W T) = —h( )= g o

9.3)

There are several biological parameters of interest that can be linked to the five
mathematical parameters of the model:

(a) Peak Height Velocity (PV) is a measure of the maximum rate of growth in size
during a growth spurt.

(b) Age at PV is the age corresponding to maximum velocity of growth.

(c) Take off Velocity (TO) is a measure of the minimum rate of growth in size
during a growth spurt.

(d) Age at TO is the age corresponding to minimum velocity of growth.

(e) Final size is the limiting £ for large age.

Figure 9.1 shows the plot of a typical growth curve and the corresponding
velocity curve, in the special case where the size in question is the stature of a
person (in cm), and age is measured in years. The biological parameters are also
indicated in the plot. The final size is the largest value attained by the growth curve.
The age at TO and the age at PV are the locations of first minimum and the unique
maximum of the velocity function, respectively. The TO velocity and PV are the
values of the velocity function at these points of inflection.
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Fig. 9.1 Biological parameters of interest

All the parameters of the Preece—Baines curve are required to be positive. There
are further constraints. In order that the growth function is strictly increasing, it is
necessary that

hmax > hg. (9.4)
Another constraint is necessary in order that the velocity curve has two distinct
points of inflection. To see this, let ¢ (t;t) = —h'(t; )/ h(t; T), so that we have
from (9.3)

W'(t:7) = hit:7) [¢*(t:7) — ¢'(1:7)] -

The points of inflection of the velocity function satisfy the condition ¢>(¢; 7)—
@' (t; T) = 0, which simplifies to

2 (50 4 Slesl(t—e))z = (20 4 2 (=) (2= L pu1G=6))

. - —0)\2 -
ie., (soe“‘)(’ 0 4 5en0 9)) = (51 _SO)Ze(so+sl)(t 28

. — — Gots=0)

ie., (soe™ 0 4 gpemt 0)) = (s —so)e  *
) v (s1=50)(—=0)
ie., 5o+ 51700 — (g —g0)e 2 .
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The last equation is a quadratic one in e B , which has distinct solutions if
and only if (s; — 50)2 — 45051 > 0, i.e.,
s
1>342V2 9.5)
S0

Thus, the parameter space of the Preece—Baines model (9.2) is the orthant corre-
sponding to positive values of the five parameters, subject to the restrictions (9.4)
and (9.5).

We end this section by relating the five biological parameters mentioned above
to the mathematical parameter 7. The final size has already been identified as /4.
It also follows from the quadratic equation given above that

2 R e vy
Age at TO = log <(Sl 50) — v/ (s1 — 50) SlSO) Lo
S1 — So

251

_ _ 2
(51— s0) + /(51 — 50) 45150) Lo
2S1

2
Age at PV = log (
S1 — 5o

The remaining two parameters, viz., TO velocity and PV, are obtained by substitut-
ing the above ages in (9.3).

9.3 A Data Example

This work is motivated by an anthropometric study conducted by the Indian
Statistical Institute under the leadership of Professor S.R. Das during the 1950s
and 1960s, from the Sarshuna—Barisha (S-B) region of Kolkata (Das et al. 1985).
The data set of male subjects obtained from this study reflects 298 individuals and
that of female subjects represents 253 individuals, many of whom were tracked
over the said period for different durations. The variables include age, stature, and a
few other anthropometric characteristics. The number of observations per individual
range from 1 to 21, for the age interval 0.5-21. Lack of samples in the 19-or-more
and 10-or-less age ranges come in the way of fitting a reasonable parametric model
in most of the cases. The fitting of individual-specific growth curves is further
restricted by convergence problems in some cases. Fitting of the Preece—Baines
model is possible in the cases of only 36 male and 15 female subjects. On the other
hand, the total number of observations is substantial, and these may be tapped for
improved estimation.
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9.4 Estimating Population Distribution of Parameters

The parameter t; in (9.1) completely determines the growth function /. Therefore,
any functional of %, such as the biological parameters mentioned in Sect. 9.2, can be
written as a function of t;. The population distribution of such parameters can
be determined from the population distribution of 7;, namely, f(z;; @). It transpires
that the task of estimating the population distribution of any functional of / reduces
to the problem of estimating , in the presence of the nuisance parameter 7.

The likelihood for @ and 7 is

[1/G@i:0) [Te Wy —htgzokn). 9.6)

i=1 j=1

Since 71, 73,..., T, are unobserved, these can be treated as nuisance parameters.
Maximizing the likelihood in the presence of the nuisance parameters is generally
rather difficult. A standard approach to this problem is to maximize the likelihood
(9.6) with respectto @, 5, and 1, T2, ..., T,. The other approach is to integrate the
likelihood with respect to the nuisance parameters, i.e., to maximize the integrated
likelihood

I / f(r,,f))]_lw vy — ey 7)) m) d. ©.7)

i=1

The EM algorithm and Gibb’s sampling (see McLachlan and Krishnan 1997)
provide computational methods for solving such problems. Even so, the nonlinear
nature of the function 4 complicates the optimization problem that needs to be
solved at each step of an iterative procedure.

As a computationally feasible alternative, we use a heuristic approach. Let 6 be
a functional parameter, i.e., well defined for any given distribution with appropriate
support. Further, let the observations described in Sect. 9.1 be generated through a
random sampling mechanism, which may involve successive stages of generating
(a) the parameter 7; for an individual, (b) the number of observations n; for
that individual, (c) the times #;,...,f,, of size measurement of that individual,
and (d) the corresponding size measurements y;i, ..., yi»,. Consider the “posterior
distribution” of the random parameter 7; obtained from the usual formula by using
the correct (but unknown) distribution as prior. The expected value of this posterior,
taken with respect to all the distributions underlying the sampling mechanism
described above, is equal to the prior. Therefore, the functional parameter 6 obtained
from the prior distribution f is identical to that obtained from the expected posterior.

The expected value of the posterior can be approximated, for the purpose of
estimation, by the sample average. Thus, one can define an estimator of 6 by
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the estimating equation, which equates the functional parameter obtained from the
sample average of posteriors to the parameter value used in the prior:

0(f) —90 (Z,’:l nigiX(:Z”y’l:ll'v"' vJ’in,-)) ) (98)
i=1"

In the above equation, 6 (-) is the functional representation of the parameter #, and
gi is the posterior distribution based on the ith set of observations (¢, yi1), - - -

(tini ) yi,n,')7

gi (Tilyin, ..., yin) ¢ f(T::0) 1_[ (7 ([yij —h(ti; )l 17) . 9.9

=1

The estimating equation (9.8) defines a frequentist estimator, even though the
argument used to motivate it is based on a posterior representation. The argument
also differs from the empirical Bayes approach (see Carlin and Louis 2000), as there
is no difference between the prior and the posterior parameters in (9.8).

The estimating equation (9.8) can be solved iteratively. In data sets such as
the one described in Sect. 9.3, there would be a longitudinal part, where fitting of
individual-specific growth functions would be possible. We can obtain preliminary
estimates of 7; for these individuals, use these estimated ;s to estimate # and 6,
and substitute the latter in f to get an empirical version of the prior density. We can
then iterate over this entire process, by treating the average posterior distribution at
a particular step as the prior distribution at the next step, until the “prior” and the
average of the posteriors come sufficiently close.

The proposed frequentist method can benefit from the Markov Chain Monte
Carlo technique, a tool developed primarily for Bayesian computations. The crux
of the problem is to avoid computing the proportionality constant of (9.9), even
though the samples need to be drawn from an average of the posterior densities (and
not the posterior densities themselves). In order to make this possible, the average
of the posterior densities is viewed as a mixture distribution, so that the samples
from the targeted density can be obtained by judiciously pooling samples from the
posterior densities of the individuals.

The steps to be used, adapted from the Metropolis—Hastings algorithm (Albert
2007), are as follows:

Step I. For those individuals i with sufficiently large n; (i.e., exceeding the
dimension of t;), estimate 7; through nonlinear least squares (Bates and Watts
2007). Estimate @ by using these estimates as observed data and denote the
estimator by 8®. Also estimate 7 from the mean-corrected data pooled from
the above individuals and denote the estimator by 7. Set the index of iteration
k=0.

Step II. Generate samples from the posterior density of t;, defined for each
individual i by (9.9) with # and 5 replaced by 8® and §, respectively, as
follows. Generate M samples from a proposal distribution, say ={,t5,...,7};.
For j =1,2,..., M, compute
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8i <T7|J7i17 e 7yini;0(k)v ﬁ)

8i (TO|J’i1,---,yin,-;0(k),ﬁ)

rij =

where 7 is the mean of the distribution f for § = 0® 1t rij > 1, accept the
sample r;k»; else, accept it with probability r;;. Let M; be the number of selected
samples.

Step III. Draw N samples from the average posterior as follows. Let

}’li](Mi > O)

Di = =5 , fori =1,2,...,n,
LT (M > 0)
and (my,my,...,m,) be multinomial with parameters N, pi, p2, ..., pn. Then,
fori = 1,2,...,n, the desired sample would consist of m; samples selected

with replacement from the M; samples generated from the posterior density of
7;, as mentioned in Step II.

Step IV. Define the updated estimate 0 **D as that obtained from the sample of
size N generated in Step III.

Steps II-IV are iterated until the estimates of @ from successive steps come
sufficiently close. The population distribution of any function of =; can be obtained
from f evaluated at the converged value of 6.

While stochastic convergence of the iterative procedure has not been established
as yet, no instance of non-convergence was found in any of the simulations or data
analysis reported in the next two sections.

9.5 Simulation Results

We examine the performance of the proposed estimator in the following special
case. We assume that the density ¢ of the measurement errors is normal with mean
0 and variance 2. As for the growth function A, we work with the Preece—Baines
model (9.2) having five parameters. The conditions for the simulation study are
largely determined by the characteristics of the S—B data mentioned in Sect. 9.3.

Any computational method for the model parameters may be affected by the
different orders of their magnitude and the various constraints. It follows from a
preliminary analysis of the S-B data that an unconstrained set of parameters of
somewhat uniform magnitude is

3S0
1//1=10g(1_3S0), vy =&,
-~ (220 V3 = 10g(huax — ho).
, =

1 G20 [Ty = log(hy).

S1
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The distribution of these transformed parameters, obtained from the nonlinear least
squares fit of the longitudinal part of the S—B data, appeared to be normal, with a
rank 2 variance—covariance matrix. Accordingly, the first two principal components,
with empirically determined coefficients, were used for the simulations. Thus,
the random parameter used here is a vector with two components, such that the
parameters v, ..., Y5 are linear functions of these, and the model parameters s,
S1, 0, hynax and hy are nonlinear functions thereof. Independent normal distributions
N(0,0.1634) and N(0,0.0391) for the two principal components v; and v, are
assumed. The parameter o2 of the measurement error distributions is chosen as 1.
The equations relating the transformed mathematical parameters to the principal
components are as follows:

Vi —0.3289 0.8108 —0.8457
V) ~0.9365 ~0.3406 | / —0.0167
vs | =| 0.0378 0.0573 ( )+ 1.4687
Vs 0.1142 —0.4710 | \"? 2.5090
Vs —0.0186 0.0380 5.0386

As for estimation of parameters of the distribution of v, we assume that the
distribution is bivariate normal and estimate its parameters through the sample mean
and the sample variance—covariance matrix. The parameter o2 is estimated from the
longitudinal part of the data by averaging over the error sum of squares, after the
parameter T has been estimated through nonlinear regression, separately for each
individual that permits such fitting. The proposal distribution is considered to be the
bivariate normal distributions, with mean and dispersion matrix given by the current
mean and dispersion matrix of the components of 7.

We seek to address the following questions while evaluating the proposed method
for a mixture of longitudinal and cross-sectional data. (a) Is there any value addition
to the original estimate (obtained from the longitudinal part of the data) from the
cross-sectional part of the data? (b) Would the performance be substantially better if
the cross-sectional part of the data are replaced by equivalent amount of longitudinal
data? In order to answer these questions, we repeatedly (100 times) generate three
types of data. The first type of data consists of 50 individuals each with 10 data
points (height at ages 4-21). The second type comprises 10 individuals each with 10
data points and 400 individuals with only one data point (i.e., cross-sectional data).
The third type of data is a subset of the second one, where only the longitudinal part
of the data are included.

By using the above method, we can find the estimated parameters of the
distribution ( /') of individual specific biological parameters and study their bias and
standard deviation. Table 9.1 gives a comparison of the bias, the standard deviation
and the root mean square error (RMSE) of the biological parameters estimated from
the three types of data. Table 9.2 gives a similar comparison for the parameters
of the mathematical model. As expected, the bias, the standard deviation, and the
mean square error for the second type of data (mixture of 20% longitudinal and
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Table 9.1 Bias, standard error, and RMSE of estimated biological parameters

Age at Takeoff Age at peak Peak

Property of takeoft velocity velocity velocity Final
Data type estimator (year) (cm/year) (year) (cm/year) size (cm)
1 Bias 0.080 0.028 —0.027 —0.231 —0.146
Standard error ~ 0.049 0.024 0.018 0.035 0.079
RMSE 0.094 0.037 0.032 0.234 0.166
11 Bias 0.605 —0.086 0.521 0.286 1.560
Standard error 0.494 0.106 0.364 0.088 1.300
RMSE 0.781 0.136 0.636 0.299 2.031
I Bias 0.681 —0.119 0.554 0.292 1.927
Standard error  0.518 0.155 0.368 0.142 1.786
RMSE 0.856 0.195 0.665 0.325 2.627

Table 9.2 Bias, standard error, and RMSE of estimated mathematical parameters

Property of
Data type  estimator So (cm/year) sy (cm/year) 0 (year) gy (cm)  hg (cm)
1 Bias —0.001 —0.035 0.018 —0.146 —0.190
Standard error 0.001 0.017 0.015 0.079 0.149
RMSE 0.001 0.039 0.023 0.166 0.241
1T Bias 0.004 0.063 0.496 1.560 1.832
Standard error 0.003 0.028 0.364 1.300 1.485
RMSE 0.005 0.069 0.615 2.031 2.358
1 Bias 0.006 0.072 0.534 1.927 2.315
Standard error 0.004 0.054 0.382 1.786 1.925
RMSE 0.007 0.090 0.657 2.627 3.011

80% cross-sectional data) lie in between those of the other two types. Substantial
reduction in bias and variance is found to have occurred from the use of the cross-
sectional part of the data, though an equivalent amount of additional longitudinal
data would have produced even greater improvement.

9.6 Data Analysis

As for the male subjects of the Sarshuna—Barisha data, there are 36 cases with 10—
18 data points in the range 7-18 years, where estimation of the model parameters
subject to the constraint (9.5) is possible. For the remaining 262 cases, there are
many with only a few observations, including 16 cases with only one observation.
Among the female subjects, there are 30 cases where initial model fitting is possible.
For the remaining 223 cases, there are many with only a few observations, including
16 cases with only one observation. This makes it difficult to estimate the popu-
lation distribution of individual specific biological parameters, using conventional
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Table 9.3 Mean and standard error of estimated biological and mathematical parame-
ters, using full data and some part of data set for boys

All 298 cases 36 cases of longitudinal data
Parameter Mean Standard error  Mean Standard error
Age at takeoff (year) 10.27 0.0813 10.49 0.5531
Takeoff velocity (cm/year) — 4.012 0.0419 4.115 0.1805
Age at peak velocity (year)  14.33 0.0298 14.32 0.1761
Peak velocity (cm/year) 7.908 0.0528 8.370 0.2454
Final size (cm) 166.2 0.1020 166.5 0.4662
So (cm/year) 0.0934  0.0020 0.1007  0.0125
51 (cm/year) 1.100 0.0210 1.176 0.1445
0 (year) 14.75 0.0299 14.73 0.1545
Nipgy (cm) 166.2 0.1020 166.5 0.4662
hg (cm) 153.4 0.2453 154.3 1.3462

Table 9.4 Mean and standard error of estimated biological and mathematical parame-
ters, using full data and some part of data set for girls

All 253 cases 30 cases of longitudinal data
Parameter Mean  Standard error  Mean  Standard error
Age at takeoff (year) 9.180  0.4207 8.407  0.9094
Takeoff velocity (cm/year) 3.864  0.1293 3983 0.3971
Age at peak velocity (year) 12.42  0.1220 11.81  0.7370
Peak velocity (cm/year) 7.786  0.1886 7.331  0.6789
Final size (cm) 149.0  0.3054 147.9  0.7496
So (cm/year) 0.122  0.0080 0.092  0.0128
51 (cm/year) 1.334  0.0923 1.165  0.2622
0 (year) 12.85  0.1066 12.21  0.1965
Nypax (cm) 149.0 0.3054 147.9  0.7496
hg (cm) 138.8  0.9393 136.7 1.4124

methods. Application of the method proposed in this paper gives rise to the summary
of mean and standard error of biological and mathematical parameters, reported
in Table 9.3 for boys data and in Table 9.4 for girls data. For comparison, the
summary from the longitudinal part of the data is also reported alongside. The
standard deviations show substantial improvement when the additional cases (262
for boys; 223 for girls) are included in the analysis.

As a further illustration of the utility of the proposed approach, we test for
significance of the mean difference between boys and girls in the Sarshuna—Barisha
data for the different parameters. Table 9.5 summarizes the results of the tests carried
out from the 36 longitudinal samples for boys and the 30 longitudinal cases for
girls. The corresponding results for the entire data set (298 boys and 253 girls) are
reported alongside. It is found that the mean difference for two parameters (so and
s1) are found to be significant only when the full data set is used. For the mean
differences of all the parameters, the p-values computed from the full data set are
found to be smaller.
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Table 9.5 Results of Z test of mean difference between boys and girls in respect of the five
biological and mathematical parameters, using full data and some parts of data

All data Selected longitudinal data

Mean 2 sided Mean 2 sided
Parameter difference Z value p value difference Z value  p value
Age at TO (year) 1.087 2537  0.0111 2.087 1.960 0.0500
TO velocity (cm/year) 0.148 1.091 0.2751 0.132 0.303 0.7616
Age at PV (year) 1.913 15.25 0.0000 3.132 4.134 0.0000
PV (cm/year) 0.122 0.625 0.5320 1.039 1.439 0.1503
Final size (cm) 17.28 53.68 0.0000 18.58 21.04 0.0000
So (cm/year) —0.029 —3.449  0.0006 0.009 0.489 0.6248
s1 (cm/year) —0.234 —2.471 0.0135 0.011 0.036 0.9713
0 (year) 1.902 17.18 0.0000 2.514 10.06 0.0000
Dpax (cm) 17.28 53.68 0.0000 18.57 21.44 0.0000
hg (cm) 14.66 15.10 0.0000 17.60 9.021 0.0000
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Chapter 10
Tuber Crop Growth and Pareto Model

Ratan Dasgupta

Abstract Pareto distribution has wide applications in natural sciences. We show
that yield of some crops may be modeled by a Pareto like density from growth
viewpoint of additional tubers. Extending a result of Dasgupta (Discrete distribu-
tions with application to lifestyle data. In International conference on productivity,
quality, reliability, optimization and modeling proceedings (Vol. 1, pp. 502-520),
New Delhi: Allied Publishers, 2011), we obtain an analytic expression for density
of the variable that is a mixture of exponential densities relevant in real life
situations; a beta prior induced on exponential of intensity function for variables
with memoryless property (viz., exponential random variables) results in a heavy
tailed distribution much like a Pareto variable. This may be appropriate for modeling
some real life situations when memoryless property of a variable may hold only in
subgroups. The results are applied to model yield of tuber crops with real data sets.

MS subject classification 2010: Primary: 62E15, secondary: 62P99

10.1 Introduction

Pareto model may be used to explain real data set arising out of different branches of
science, especially in economics and actuarial studies, e.g. see Krishnaji (1970) for
modeling underreported income. In Dasgupta (2011), it is shown that exponential
distribution in different subgroups with exponential of intensity following a beta
distribution may result in a heavy tailed Pareto like distribution for aggregated
data. Such a situation may arise when an exponential model may seem appropriate
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from theoretical consideration, although a heavy tailed distribution may fit real data
set more closely. Yield data of Elephant foot yam crossing a threshold is seen
to exhibit Pareto like polynomial decay towards the tail of the distribution, see
Dasgupta (2013). Small value of the estimated Pareto index indicates a heavy tailed
distribution for yield i.e., abundance of crops.

An important tuber crop is potato. The above ground biomass of potato plant is
an indicator of final yield after harvest. Following centuries of selective breeding
from the wild variety, there are now over a thousand different types of potatoes. Of
these subspecies, a variety that at one point grew in the Chiloe Archipelago left its
germplasm on over 99% of the cultivated potatoes worldwide.

Potato plant growth may be divided into five phases. During the first phase,
sprouts emerge from the seed potatoes and root growth at the base of emerging
sprouts begins. During the second, photosynthesis begins as the plant develops
leaves and branches, roots and stolons develop at below ground nodes. In the
third phase stolons develop further and tubers develop as swellings at stolon tips.
At the fourth step tuber cells expand with accumulation of water, nutrients and
carbohydrates, as their sugar content convert to starches. In the final phase of
maturation, photosynthesis decreases, plant canopy dies, tuber growth slows, tuber
dry matter content reaches to a maximum, and the tuber skins harden. New tubers
may arise at the soil surface. Since exposure to light leads to greening of the skins
and the development of toxic solanine, such tubers need to be covered either by
piling additional soil around the base or by mulching with straw, plastic, etc., as
these continue emerging.

Growth of additional tubers from a well-nourished plant at later stages irrespec-
tive of those already developed resembles memoryless property of a distribution.
Plants may grow more tubers underground to store carbohydrates, independent of
number of tubers already developed, when sufficient nutrients are available. Such
a model is plausible, as groomed potato plants are seen to have more tubers. For
continuous distributions this memoryless property is shared only by exponential
distribution.

Potato plant is a low-growing, branching perennial herb with weak stems, a leaf
is divided into five to nine oval leaflets; these constitute above ground biomass, an
indicator of underground yield. In a related study, yield of Elephant foot yam is seen
to be highly correlated with stem-growth above ground.

The potatoes are large tubers food-storing bodies that grow from the end of
underground stems, below the fibrous roots. Each tuber bears several buds, i.e., eyes
of the potato, from which new plants grow.

In the eighteenth century potato began to replace cereals in the diet of the poor.
The failure of this staple food in Ireland in the years 1845-1846 due to plant decease
resulted in a severe famine. Pareto index estimated from the tail of yield data may
reveal a crop production scenario when such a theoretical model fits appropriately
to real data set. Lower values of index indicate better production scenarios.

As already mentioned, an exponential random variable with random intensity
following a beta prior results in a heavy tailed distribution much like a Pareto
variable. Here memoryless property holds for an individual with fixed intensity.
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The property is lost when aggregated over individuals having different intensities,
resulting in a heavy tailed distribution. The model is seen to be appropriate in some
specific cases like yield of Elephant foot yam with weight exceeding a threshold
value, among others including environmental data.

In this paper we obtain an expression of the above-mentioned mixture density in
terms of digamma function, providing a compact analytic form of resultant density
in a nice form. We further check the appropriateness of the mixture model with real
data set arising out of growth experiments on potato conducted at Indian Statistical
Institute’s Giridih farmhouse in Jharkhand. Comparison of two crop production
scenarios is also made by the proposed model.

The paper is organized as follows. In Sect. 10.2 we discuss modeling problem
related to yield of potato and obtain an expression of the density having decay like
a Pareto density. Section 10.3 deals with Pareto fit for two sets of yield data on a
tuber crop potato. Section 10.4 provides a discussion on the results obtained along
with applications.

10.2 Modeling Crop Yield and Derivation
of Compound Density

The number and size of tubers arising out of underground stems vary over potato
plants. However, for a particular plant the sizes of tuber are more or less similar.
Additional underground stems may develop in a potato plant at a later stage
irrespective of how many such stems the plant already developed. Total size of
tubers in a particular plant may then follow an exponential variable with an intensity
specific to the plant. This gives rise to the possibility that the yield of potato over
plants is a mixture of exponential variables having intensities specific to the plants.
We prove the following result extending Theorem 2 of Dasgupta (2011).

Theorem 1. Let the random variable X be exponentially distributed with density
function g(x|0) = (—log6)0*, x > 0,0 < 0 < 1, where 0 has a prior beta
density

(e + B)

a—171 _ p\B—1
—F(a)F(,B)H 1-6", a>0, g>0.

Jap(0) =

Then the marginal distribution of X is given by

f()_F(ot—}-,B) I'o + x)
Y= I@) T(@+x+pB)

[Vola +x + B) — Yo(a + x)]

where Yo = F// I is a digamma function.

Proof. Write,
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where ¥y (x) = 1;((;)) = j—x log I'(x) is digamma function and ¥(x) is increasing
for x > 0. See e.g., Arfken (1985) for properties of digamma and polygamma
functions that appear in the expression of f and its derivatives. The density function

f in (10.2) is continuous.

Remark 1. One may consider variate values crossing a threshold x > ¢ in the above
formulation. Exponential distribution possesses memoryless property, and the form
of the resultant density in (10.2) remains same, with x replaced by x — c¢(> 0). The
initial value of ¢ may be estimated from the observed minimum in the data set. The
values may then be modified sequentially to have a better fit towards the tail of the
distribution.

In Dasgupta (2011) by a series expansion it is shown that (10.2) has decay similar
to Pareto density, viz.,

_T@+p Ta+x)rB+1)  1T(@+p) T+ x)C'(B+2)
T T@ILB)Cla+x+B8+1) 2T0@TB) Ta+x+p+2)
I1T(+pB) '+ x)I'(B +3)
3T(@)(B) T(a +x + B +3)

J(x)

+.0.= 0, ((x +a) FtD) x>0
(10.3)

Remark 2. Mode of the distribution (10.2) is at the starting point. Differentiating
(10.2) with respect to x (> 0), one gets

Ta+B) (!

— 6*~1(1 — )P~ (log 0)26*d6 10.4
F@T®) o ( )’ (log ) (10.4)

') =
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f’(x) <0, forall x > 0. From (10.3) one gets,

B [1+1 B+1 1 B+1 B+2
a+p 2a+B+1 3a+B+la+p+2
1 B+1  B+2  B+3

- + ..
da+pB+la+B+2a+p+3

J0) =

] (10.5)

One may estimate the unknown parameters appearing in the prior used in mixture
density from observed data.

Parameter f, the Pareto index may be estimated from the tail behavior of the
observed frequency distribution. An estimate of & may then be obtained from
expression in (10.2) or, (10.5) coupled with height of the observed histogram near
the starting point as origin (or, ¢).

10.3 Fitting the Model and Analysis of Yield Data

We analyze two sets of potato yield data from Indian Statistical Institute, Giridih.
Seed size varies from 10 to 30 g. Plantation date for the first set of 100 seeds in
a fertile piece of farmland in Indian Statistical Institute was 19 January 2012 and
harvesting date was 15 April 2012. The bunch of tubers (potatoes) harvested in each
plant are properly developed, except for plantations nos. 4 and 37 having nil yield
possibly due to infection incurred.

The second set of 100 seed were planted to a different piece of barren unfertile
land in main Rosevilla campus of Indian Statistical Institute, cultivated for the first
time. Plantation date for this set is 29 January 2012 and harvesting date is 16 April
2012. The tubers developed in this unfertile land are undernourished and relatively
smaller in size than the first set. Also the period of growth is comparatively short for
the second set (about 10 days less than that for first set). Weather in April is harsh
in Giridih, Jharkhand. Most of the plant canopies in two experiments dried up at the
time of harvest.

The two set of yield observations in grams are as follows:

Data set 1

142, 242,128, 0, 66, 310, 178,170, 128, 156, 92, 74, 136,206, 244,24, 184, 4,122,
96,490, 312, 86,242,254,136,68,192,56, 1, 182, 4,22,244,34,62,0,112,94,280,
108, 520, 288, 66, 418, 156, 238, 126, 110,224,192,350,318, 30,382, 184,234, 48,
222,66,2,106,170, 18, 164,70, 44,236, 1, 212, 32, 134, 18, 12, 44,10, 84,154,
202,90, 104, 28,104,192, 254,304,152, 78,162, 166, 104, 246, 278, 1, 336, 142,
140, 128, 80, 492

Data set 2

32,70, 30,20, 16,104, 64, 16, 52, 48, 4, 80, 70, 50, 46, 70, 66,32, 6, 18,28, 14,42,
50, 32, 80, 40, 82, 26, 10, 82, 32,22, 2, 46, 68,26, 22,32, 10, 44, 16,88, 46,12, 6,25,
10, 10, 96, 58, 94, 66, 98, 62,42,52,8,1,2,12,60,92, 1, 60, 12, 66,42, 22,28, 20,
8,46,70,72,24,6,16,26,24,56,14,28,34,26,42,6, 18, 66, 32,62, 52,12, 6, 64,
48,8, 30, 30, 46
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—log(1-Fn(x))

Fig. 10.1 Pareto fit for potato yield Expt. 1

Figure 10.1 shows the data set 1 (of Experiment no. 1) along with linear
regression fit for Pareto model; R? of linear regression with 98 non zero yield (two
nil yield excluded) is low, R?> = 0.5127.

Next we fit a Pareto model to the yield values crossing a threshold, we check
whether these relatively high yield do conform to the assumption on exponential
distribution with random intensity specific to the plant. Such a possibility arises in
view of the fact that homogeneous and fully developed tubers are seen to be present
in well-nourished plants in a farmland in the middle of season, with a possibility
of growing more tubers in plants. In presence of conducive environmental factors
such as darkness and humidity for development of additional stolons at a later stage,
additional tubers in a plant may grow in conformity of the memoryless property of
an exponential distribution. In a recent experiment it is seen that such a memoryless
property holds in case of potato tubers.

In Fig. 10.2, R? of Pareto fit in linear regression for the values {x : logx > 5}
in Experiment no. 1 is quite high, R> = 0.9508. Estimated value of the slope is
B = 2.8125.

To obtain maximum likelihood estimate (mle) of the index one may use the result
that if X is Pareto-distributed with minimum a and index B, then Y = log(X/a) is
exponentially distributed with intensity 8. One may estimate the intensity from the
mean of transformed variables. Thus the mle of the Pareto index based on the data
set {x:logx>5}=(152, 154,156, 156,162, 164,166,170, 170, 178, 182, 184, 184,
192,192,192,202,206,212,222,224,234,236,238,242,242,244,244,246,254,
254, 278, 280, 288, 304, 310, 312, 318, 336, 350, 382,418,490, 492,520) after
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Fig. 10.2 Pareto fit for potato yield Expt. 1: log x > 5

—log(1-Fn(x))

Fig. 10.3 Pareto fit for potato yield Expt. 2

trimming the upper one and lower four values i.e., deleting the extreme observations
152, 154, 156, 156, and 520 is § = 1/0.384784 =2.598861, with a = 162.

Data set of Experiment no. 2, along with linear regression fit for Pareto model,
is shown in Fig. 10.3. R? of linear regression with 100 nonzero yield is low, R?> =
0.5638.
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Fig. 10.4 Pareto fit for potato yield Expt. 2: log x > 3.8
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Fig. 10.5 Pareto fit for potato yield Expt. 2: log x > 4

In Fig.10.4, R? of linear regression for the values {x : logx > 3.8} in
Experiment no.2 is 0.898.

The value of R? improves with slight increase in the threshold value. In Fig. 10.5,
R? of linear regression for the values {x : log x > 4} in Experiment no. 2 is 0.9296.
Estimated value of the slope is § = 4.9834.
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Fig. 10.6 Mixture density function

In a similar manner the mle of the Pareto index based on the data set
{x :logx > 4}=(56, 58, 60, 60, 62, 62, 64, 64, 66, 66, 66, 66, 68, 70, 70, 70, 70, 72,
80, 80, 82, 82, 88,92,94,96,98,104) after trimming the upper two and lower
two values i.e., deleting the extreme observations 56, 58 and 98, 104 is
B =1/0.184562 = 5.418233, with a = 60.

The two indices corresponding to two different yield scenarios may be compared
to judge for the better yield. The Pareto index is unchanged with a different initial
point of start, the conditional probability distribution of a Pareto-distributed random
variable, given the event that it is greater than or equal to a particular number a,
exceeding a, is a Pareto distribution with the same Pareto index, but with minimum
a; instead of a.

For the first data set the mle of the Pareto index is 2.598861, which is lower than
that for the second set with index 5.418233. Thus the first production scenario is
superior in a Pareto model-based analysis, as yield distribution has a heavier tail in
the first case. An index of performance may be considered as the ratio of Pareto
exponents, viz., e;, = f»/Bi. For the present case ¢, = 2.084849. Value of
threshold c is also higher in the first data set.

Figure 10.6 plots some representative densities of the form (10.3) for different
values of (c, §). The graph nearest to the x axis is with (¢ = 1, § = .005). Peak of
the densities sequentially increases from second to sixth graphs with the following
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Fig. 10.7 Histogram of yield: data set 1

changes in the values of parameters: (1, .05), (1,.5), (1, 1), (1.8,5), (1,5). The case
of equal ignorance for the intensity i.e., (0« = 1, 8 = 1) corresponds to the fourth
graph from below.

Histograms of data sets 1 and 2 are shown in Figs. 10.7 and 10.8, respectively.
Once the values of 8 are obtained from the tail behavior of the distribution, the
other parameter @ may be obtained by equating the height of the relative histogram
observed with f(0) given in (10.3)/(10.5). Figures 10.7 and 10.8 suggest that f(O)
is smaller for data set 1 compared to that for data set 2; the values are 0.35 and 1.55,
respectively. This indicates the modeled yield-distribution is of heavier tail for first
experiment than the second, suggesting that the yield scenario in first experiment is
better.

We next proceed to see the appropriateness of the mixture model (10.2)/(10.3)
over entire data sets. As mentioned before, fixing the value of B from the tail
behavior, we start with an initial value o by equating the heights of observed relative
histogram with the theoretical value and iteratively proceed to obtain an estimate of
o that minimizes the Kolmogorov—Smirnov distance.

For data set 1 with 98 nonzero observations, the estimated value of @ so obtained
is @ = 349 and the value of K-S statistic is «/nD,, = /98(0.1162808) = 1.151121
that is insignificant at 10% level. Empirical cdf and theoretical cdf with estimated
parameters ¢ = 349, B = 2.598861 are shown in Fig. 10.9.

Similarly, for data set 2 all the 100 observations are nonzero and the estimated
value of « to minimize K-S distance is & = 83 and the resultant value of K-S
statistic is /7D, = +/100(0.12361) = 1.2361, is barely significant at 10% level;
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0.6 0.8 1.0
| |

F(x)

0.4

0.2

0.0
|

I I I I I I
0 100 200 300 400 500

Fig. 10.9 Empirical and theoretical cdf: data set 1
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Fig. 10.10 Empirical and theoretical cdf: data set 2

K-S statistic at 10% level is 1.23. Empirical cdf and theoretical cdf with estimated
parameters ¢ = 83, B = 5.418233 are shown in Fig. 10.10.
The mixture model provides satisfactory fit to observed data sets 1 and 2.

10.4 Discussion

In some real-life situations exponential distribution having memoryless property
may seem to be an appropriate model. However, realized data may sometimes
suggest that a heavy tailed distribution could provide a better fit. In this paper we
derive a precise expression, in terms of digamma function, for the density function
of a variable which is a mixture of exponential density having random intensity
related to a beta distribution. The derived family of distributions start from origin
(or some positive point ¢) like an exponential random variable and have a relatively
slower rate of decay towards the tail; much like polynomial decay of a Pareto
random variable. The peak of the density f(x) = O.((x + a)~#*V) x > 0,
increases at origin; f(x) 1 coas x | 0and « | 0. This includes the possibility of
modeling variables with high concentration near the starting point, and polynomial
decay of density towards tail.
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From (10.3) it is clear that from a large value of truncation point onward,
the decay of the mixture density is polynomial, like Pareto. And Pareto has this
nice property: truncation towards tail is once again Pareto with same index S,
but different initial point. So, if the mixture model is appropriate for a data set,
then gradually moving towards the tail, there will be some stage where Pareto fit
via straight line of regression on remaining data points exceeding a threshold will
show a very high value of R?, providing a reliable estimate of index 8 for Pareto.
The same index also appears in the mixture model in (10.2)/(10.3). This is what
is achieved in Figs. 10.1-10.5, for gradually moving truncation points. One may
not choose a very high threshold, which may reduce the number of data points
exceeding that high value, thereby reducing the efficacy of 8 estimate based on small
number of observations. Now the value of other parameter («) in the mixture model
is estimated via minimizing the K-S statistics. The benefit is twofold, it shows if the
mixture model is good over the whole range of data (when K-S value is low) and
provides corresponding reliable estimate of «; thus specifying the model.

For some data we had to go for a high threshold, for some not so high. The
mixture densities are shown in Fig. 10.6. There are many cases where Pareto has a
good fit towards tail (may be due to some change in the behavior of random variable,
like a phase change at high values), although for moderate values the variable may
behave differently; such phenomena also occurs for some high temperature states.

The results may be applied to symmetric random variables via a mirror image of
the density considered. This has polynomially decaying density towards both tails,
in contrast to exponentially decaying Laplace density. Such modeling of tuber-crop
yield data leads to a comparison of production scenarios in two different locations
in terms of Pareto index associated with the model.
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Chapter 11

Effect of Past Demographic Events

on the mtDNA Diversity Among the Adi Tribe
of Arunachal Pradesh, India

S. Krithika and T.S. Vasulu

Abstract The effect of past demographic upheavals of population growth and
evolutionary changes in population size on the genetic diversity of the regional sub-
tribes of Adi, a Tibeto-Burman speaking population of central Arunachal Pradesh,
India, are studied. Demographic expansion or population growth experienced in the
past from a state of equilibrium is examined by comparison of the Mitochondrial
DNA sequences via different statistical techniques including Tajima’s D statistic.

11.1 Introduction

Population genetics deals with change in gene frequency and its influencing factors
over generations. Type and mode of such evolutionary changes may be examined
from Hardy-Weinberg (HW) law. Deviation from the law takes into account the
changes that can be expected under each of the evolutionary forces and their
interaction. In addition, the genetic diversity may also be affected by population
growth or variation in population size (Tajima 1989a; Rogers and Harpending 1992).
In general, changes in population size and other demographic variables exhibit
similar pattern of genetic diversity that is indistinguishable from the influences
of selection and evolutionary factors (Tajima 1989a; Stajich and Hahn 2005; Li
2011). To understand the relative roles of demographic events and the influences
of evolutionary forces on the genetic diversity it is important to get an insight into
the antiquity and origin of Man at the global level and to investigate microevolution

S. Krithika (B<)
University of Toronto, Toronto, Mississagua, ON, Canada
e-mail: krithika.sundararaman @utoronto.ca

T.S. Vasulu
Indian Statistical Institute, Kolkata, India
e-mail: vasulu@gmail.com

R. Dasgupta (ed.), Advances in Growth Curve Models, Springer Proceedings 199
in Mathematics & Statistics 46, DOI 10.1007/978-1-4614-6862-2_11,
© Springer Science+Business Media New York 2013


mailto:krithika.sundararaman@utoronto.ca
mailto:vasulu@gmail.com

200 S. Krithika and T.S. Vasulu

of local and regional human populations (Tajima 1989b; Harpending et al. 1993;
Kimmel et al. 1998; Rogers and Harpending 1992; Harpending 1994; Harpending
and Rogers 2000; Stajich and Hahn 2005; Li 2011).

The DNA sequence (both nuclear and mitochondrial genome) contains the
biological (genetic) information encrypted in each cell that is responsible for the
ability of the organism to survive in a given eco-niche. In addition, it is also a
storehouse of evolutionary information including its putative origin, affinity, and
diversity within and between species (Cann et al. 1987; Rogers and Harpending
1992; Rogers and Jorde 1995). Both the nuclear and mtDNA genome contain
the functional “coding part” that is essential for the genotypic and phenotypic
expression and therefore are under the influence of evolutionary forces of selection.
The noncoding part does not involve in the genotypic or phenotypic expression and
is little influenced by selection. By comparing the DNA sequences in a population,
one can investigate the past genetic history and detect the signatures of demographic
effects of migration, bottleneck effect and population expansion and the effect of
different evolutionary forces e.g., selection etc. on the gene pool. It can also help to
detect the influences of past population structure (e.g., fission-fusion) and its genetic
consequences in a regional population.

11.2 Mitochondrial Genome: mtDNA—Non-coding Region

The theoretical models that help us to examine the evolutionary implications in
different populations vary with respect to the type of genetic information. In
case of nuclear genome (DNA sequences pertaining to genes), the influence of
evolutionary forces and the confounding factors could be different when compared
to the noncoding regions of the mitochondrial genome. In case of coding regions,
selection could be one of the basic evolutionary forces which can lead to micro-
evolutionary changes in the gene pool of the population.

In case of mtDNA noncoding regions, the selection is of little value, since these
are basically influenced by segregating and mutational process and recombination
is almost absent or a very rare event. To infer the influence of demographic factors
on the distribution pattern of noncoding mitochondrial genome one has to take care
of segregating and mutational process. The mtDNA is maternally inherited and the
mutations and the segregating sites are passed on from the ancestral individuals
(populations) to their descendents over generations (Anderson et al. 1981). By
comparing the sequence information about the mutations and the segregating sites
in a population it is possible to trace their mtDNA maternal lineage and putative
ancestors who possibly had lived in the remote past (Kumar et al. 2008). From the
extant pairwise distribution of sequence information from a suitable population, it
is possible to estimate the origin of these mutations or to trace back the remote
ancestral population and also examine the estimates of past population size—
“the effective size” of the ancestral populations and the effects of past changes
in population growth (demographic changes that the population had experienced
in recent past) on the nucleotide sequence diversity. The basis of such inferences
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is based on theoretical models on pairwise comparison of mtDNA sequences;
“mismatch distribution” (MMD) and its influence on the genetic diversity in a
population (Saltkin and Hudson 1991; Rogers and Harpending 1992).

Using population genetic models, this study investigates variation in mitochon-
drial genome (specific to hypervariable regions I and II: HVRI and HVRII) of a few
extant human regional populations to infer the influence and significant effect of
earlier demographic events in the recent past as against the evolutionary factors that
had resulted or shaped the distribution of the mitochondrial genome of the extant
regional populations. The Adi, a Tibeto-Burman speaking tribe in central Arunachal
Pradesh, offers a suitable example to investigate the influence of recent changes in
population size on the genetic diversity among its subpopulations.

Adi tribe retains folklore tradition which describes their putative origin, migra-
tion, and dispersal from upper northeastern Himalayan region towards southern
lower Himalayan region around Siang river valley for four to five hundred years.
The folklore information also describes past events concerning recent history of
upheaval in population size and formation of splinter groups as a result of inter-
tribal warfare and feuds, etc. This is characteristic of fission—fusion process of
population structure commonly observed among tribes practicing hunting-gathering
and shifting cultivation. A detailed account of the population structure and the
genetic consequences of fission and fusion process has been described by Neel
and others among South American Indian tribes (Neel 1970, 1973, 1978; Neel and
Salzano 1967; Rosenberg and Morton 1970; Fleishman 1980) and among Semai
Senoi of Malaysia (Fix 1975, 1978; Fix and Lie-Injo 1975). The internal tribal
warfare, in the recent past, is characterized by events of sudden and drastic change
in the demographic size and subsequent population growth over generations among
its splinter groups or subpopulations. Such events affect their genetic diversity, leave
their mark in the genome, and pose a test case to investigate the effects of fission
and fusion population structure on the genetic diversity of the sub-tribes of Adi. The
study investigates the effects of past demographic upheavals of population growth
and changes in population size on the genetic diversity of the regional sub-tribes of
Adi, a Tibeto-Burman speaking population of central Arunachal Pradesh, India. This
study, perhaps for the first time, investigates the genetic status of six sub-groups of
Adi tribe based on the mitochondrial DNA markers.

11.3 Materials and Methods

11.3.1 Theoretical Considerations

The theoretical models that describe the effect of demographic factors from
the segregating and/or mutational changes assume a variety of population structure
models. Those are: the Tajima’ D, Fu’s F; and Fay and Wu’s H. Each of these
models has its advantages in terms of efficiency and power of detecting the effect of
demographic factors on the genetic diversity in a population.
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11.3.1.1 Tajima’sD
Let us assume that “s” generations ago, a population at equilibrium of size Ny
experiences a demographic expansion or population growth and let N; be the size
after expansion (after “#” generations). Then under “infinite site mutation model”
(Kimura 1969), that assumes that every new mutation occurs at a different site,
Kimura has derived an expression for the probability of observing “i” differences
between two sequences (genes) taken at random is expressed:

F (01,00, t) = Fi (8;) +exp[-t (0; + 1) /01)]x
Shizo (Y/j!) [Fisj (80) —Fisj (01)]

where 68y = 2Ngu, 0; = 2N; @, T = 2 pt and | is the total mutation rate per
generation per site, “t” is generations.

In a population, at equilibrium, F; (0) is also the probability of observing
differences between two sequences (sites/genes).

Interestingly Waterson (1975) has shown that if the population remains constant
over time, then F; (8) converges toward an equilibrium distribution.

1332
1

Fi(6) =6'/(0+ 1)
The mean and variance of the distribution, respectively, are
E[F®)]=0; VIFO]=060+1)

The population genetics theory of molecular evolution concerning the nucleotide
sequences specifies:

The number of nucleotide positions of a sequence which is polymorphic at the
position or the number of segregating sites k,

The average nucleotide diversity per site or sequence is defined as ¢ = X x; x; 8;;/N,
where x; is the frequency of ith haplotype, &; is the number of nucleotide
differences between haplotypes i and j, and N is the total length of the sequence.

Under infinite-site model of DNA sequence evolution, it can be shown that
E(W) =06 and E(x) =0x"'1/i

Therefore, 6y = k and 6, = k/ %" '1/i where v is the average heterozygosity
at nucleotide sites in the sample and k is the observed number of segregating sites.

Under neutral equilibrium and if the population is at equilibrium w.r.t drift and
mutation, then the two estimates of 6, and 0, are statistically indistinguishable from
one another, or

D = E (8y — 6,) should be distinguishable from zero.

This is Tajima’s D statistic (Tajima 1989b). D can be either positive or negative.
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This can serve as a statistic to assess if the given data is consistent with the
theoretical expectation of mutation-drift equilibrium. In short, D provides an insight
to investigate the evolutionary history of a particular nucleotide sequences in a
population. In case estimated,

Tajima’s D = 0O: It indicates no change in population size or role of selection acting
on the locus;

Tajima’s D < 0O: It indicates the population size may be increasing or expanding or
it might also indicate purifying selection;

Tajima’s D > 0: It indicates the population might have experienced bottleneck or
fluctuation of size or might suggest over dominant selection.

Though Tajma’s D is very useful and can help us to investigate if the given
nucleotide sequence is under mutation-drift equilibrium and/or search for other
possible scenarios of molecular evolution. It has been suggested by Zheng et al.
(2006) that it does not account for some aspects of population structure variables, as
such may not be powerful to detect evolutionary history of sequence of a particular
locus in a population. Therefore, to augment the results of Tajima’s D, it is necessary
to consider a statistics proposed by Fu’s Fs (Fu 1997), which was based on the
“infinite sites mutation” model.

11.3.1.2 Fu’s F's

In general, excess of rare alleles or recent mutations can behave in a pattern different
to the pattern of polymorphisms that can result from background selection than
logistic population growth or genetic hitchhiking. In this regard, Fu’s Fs test is
more powerful for detecting the presence of evolutionary forces resulting from a
population of excess of young mutations. Fu (1997) proposed a statistic, based on
“estimating the probability of observing a random sample with a number of allele
equal to or smaller than the observed value under assumption of selective neutrality
criteria” (Holsinger 2006). If S is the above-mentioned probability, then Fu’s Fs
statistic is defined as:

Fs=1In{s/ (1 —s)}

A negative value of the statistic F's is an indication of an excess number of
alleles as would be expected from a recent population expansion or from genetic
hitchhiking. A positive value is an indication for deficiency alleles as that can be
expected from a recent population bottleneck or from over dominant selection. Fu’s
F's is more sensitive to population expansion and genetic hitchhiking. Further Fay
and Wu (2000) have proposed a statistic H to detect departures from neutrality for
the DNA sequence evolutionary scenario:

H=0,—0g
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H measures departures from neutrality that are a result of differences between
high-frequency and intermediate-frequency alleles. Thus D is sensitive to population
expansion as the number of segregating sites responds more rapidly to changes in
population size than nucleotide heterozygosity. H will not detect this. Both tests
therefore help us to distinguish between the effects of population expansion from
that of purifying selection.

11.3.1.3 Harpending’s Raggedness Index ““r”

The mismatch distribution obtained from a high resolution nonrecombinant mtDNA
pairwise data is generally expected to show a smooth distribution for the range
of differences corresponding to the nucleotide diversity of a population; however,
in case of low-resolution nonrecombinant mtDNA sometimes one may not obtain
characteristic smooth distribution and might show several modes. As one can infer
from the Saltkin and Hudson (1991), theoretical distribution or simulated mismatch
distribution shows different pattern of distribution under different demographic
scenarios of population expansion, stationary for a long time, or experienced short
and sudden burst of population expansion. These show characteristic smooth curve
in case of expanding population scenarios and show “raggedness” for others.
Harpending et al. (1993) have developed an index: “raggedness index ‘r’”, a statistic
to distinguish the observed MMD from a population as against the theoretical
expected distribution under the assumption of expanding population.

If there are a maximum d differences in the mismatch distribution x, then the
raggedness index defined by Harpending (1994) is:

d+1

r= Z Xi—Xi—1)*
i=1

where X; is the pairwise differences and d is the number of differences between pair
of sequences.

11.4 Population Samples

11.4.1 ADI Tribe of Arunachal Pradesh

Adi, one of the largest tribes of Arunachal Pradesh, is a collection of regional tribes
speaking Adi language and is distributed in the temperate and sub-tropical regions
within the districts of West Siang, East Siang, Upper Siang, Upper Subansiri, and
Dibang Valley in central Arunachal Pradesh (Rapson 1955; Elwin 1959; Gordon
2005; Singh 1998; APHD Report 2006; Tabi 2006). They share similar physical
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features of East Asian populations and speak Adi language (was a dialect a decade
ago), which belongs to North-Assam branch of Tibeto-Burman sub-linguistic family
(Majumdar 1980; Ruhlen 1991; Gordon 2005). The ethno-history suggests their
origin from southern regions of Tibet (China). Migration and settlement history
of their ancestors (the “Tani” group) at different time periods during about fifth
to seventh century AD can also be traced (Tabi 2006; Lego 2005; Nath 2000;
Roy 1997). There are about 12 sub-tribes of Adi, categorized under two major
clusters based on their dialect, culture, clan-structure or kinship criterion, ethno-
historical migration and distribution along the Siang river valley. While one cluster
consists of seven regional tribes; the Minyong, Padam, Shimong, Milan, Pasi,
Panggi, and Komkar sub-tribes, the rest five form another cluster that includes:
Gallong, Ramo, Bokar, Pailobo, and Bori sub-tribes. Among these 12 sub-tribes,
Minyong and Padam are numerically large (about several thousands), the rest
being small (in hundreds) (Nath 2000; Roy 1997) and live in isolation in upper
mountain regions. Their ethno-historical records suggest that these sub-tribes are as
a resultant of fission—fusion processes due to inter-tribal warfares in the recent past
of their settlement history (Lego 2005; Tabi 2006). Some of the remotely located (in
mountainous terrains) Adi sub-populations practice hunting-gathering, while some
others located over plain lands, in close proximity to urban area, practice settled
agriculture. Those living in towns are educated and work in various offices and
business enterprises. These wide variations in population structure, coupled with
the vast diversity in their culture including religious beliefs, customs, dialect, house
types, food habits, dress and ornaments’ pattern and demography, render importance
to these groups from a population genetic perspective (Nath 2000; Blackburn
2003/2004). There are a few studies on the culture and social organization, and
however biological studies among these tribes are hardly found, except for reports
of ABO blood group data in some of the sub-tribes and hemoglobin types and recent
molecular genetic studies among a few individuals of Adi (Dhani 1960; Das et al.
1980; Roychoudhury 1981; Walter et al. 1986; Deka et al. 1988; Bhasin and Walter
2001; Krithika et al. 2006, 2007; Cordaux et al. 2004).

For the molecular genetics study among the sub-tribes of the Adi, we have
collected 836 blood samples from six regional Adi populations. A total of 530 DNA
samples were tested for polymorphism for 15 autosomal microsatellite loci and the
results were published elsewhere (Krithika et al. 2006, 2008). For the mitochondrial
genome analysis, a total of 97 samples were selected so that at least one individual
represents the various clans in each of the regional populations. The sample size for
the sub-tribes for mitochondrial region varies from 17 in Adi Padam to 23 in Adi
Panggi (Table 11.1). The location of the studied populations is shown in Fig. 11.1.

Based on the mtDNA sequences of the studied six populations, the gene diversity,
nucleotide diversity, and the mean number of pairwise differences along with
standard deviations were estimated (Nei and Jin 1989) to understand the extent
of genetic variation and the within-population genetic heterogeneity of the Adi
subpopulations. These were computed using software package ARLEQUIN 3.01
(Excoffier et al. 2005). With the help of the software package Fst distances (Mega
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Table 11.1 Diversity parameters deduced from mtDNA HV1 and HV2 sequences of Adi sub-
populations

Number of Mean
Number of polymorphic Gene Nucleotide pairwise

Population sequences sites diversity diversity differences
Adi Pasi 19 49 1.0000£  0.207185 & 10.152047 +

0.0171 0.110673 4.852679
Adi Minyong 14 47 1.0000£  0.235806 &+ 11.318681 &

0.0270 0.127870 5.467784
Adi Panggi 19 34 1.0000£  0.298747 + 10.456140 +

0.0171 0.159287 4.988735
Adi Komkar 18 40 1.0000£  0.207875 * 8.522876

0.0185 0.112763 4.134276
Adi Padam 13 37 1.0000£  0.255128 &+ 10.205128 +

0.0302 0.140121 4.986200
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Fig. 11.1 Map of Arunachal Pradesh showing the geographical distribution of the studied Adi
sub-tribes

3.1 software package) and associated P-values based on 1,000 simulations were
computed for the studied populations. Subsequently the Fst distance matrix was
used to construct the neighbor-joining (NJ) tree-rectangular and radiation forms by
employing Mega 3.1 software package. Further to characterize the clustering trends,
the data dimensionality was reduced by performing a covariance analysis between
factors (principal component analysis—PCA). Based on Fst distance matrix PCA
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was performed using SPSS (version 11.0) Chicago, IL, USA. Analysis of molecular
variance (AMOVA) based on HV1 and HV2 sequences of the studied groups was
performed to understand the possible role of geography and ethno-history towards
the genetic differentiation of Adi. However the results of the PCA plot and AMOVA
are not included in this report.

11.4.2 Population Genetic Models: Parameter Estimates

Various demographic parameters of the populations including mismatch distri-
butions, Fu’s “Fs” statistic and associated P-values based on 1,000 simulations,
raggedness index “r” and Tajima’s D value were also computed by employing AR-
LEQUIN (version 3.01). Signatures of past population expansions were examined
from the above obtained demographic parameters. Unimodal mismatch distributions
were interpreted as signs of demographic expansion while multimodal distributions
were interpreted as signs of constant population size over time (Harpending et al.
1993). Also, values of raggedness index “r’ lower than 0.05 and negative values,
differing significantly from zero of Fu’s “F” statistic were inferred as signs of
population demographic expansion (Fu 1997; Harpending et al. 1993).

The strength of genetic drift depends on the population size. If a population is at a
constant size with constant mutation rate, the gene frequencies for several of the loci
or the DNA sequences at different sites will reach equilibrium. This equilibrium has
important properties, including the number of segregating sites S and the number of
nucleotide differences between pairs sampled (these are called pairwise differences).
To standardize the pairwise differences, the mean or “average” number of pairwise
differences is used. This is simply the sum of the pairwise differences divided by the
number of pairs and is signified by . The clarification of the effects of demographic
effects can be examined by statistic Tajima’s D.

A negative Tajima’s D signifies an excess of low frequency polymorphisms,
indicating population size expansion. A positive Tajima’s D signifies low and high
frequency polymorphisms, indicating a decrease in population size and/or balancing
selection. This test is based on the fact that under the neutral model, estimates of the
number of segregating sites and of the average number of nucleotide differences are
correlated. The bioinformatics software DnaSP calculates the confidence limits of
D (two-tailed test) assuming that this statistic follows a beta distribution. Molecular
evolutionary software MEGA (Tamura et al. 2007) is used to estimate the rates
of molecular evolution, inferring ancestral sequences, and testing evolutionary
hypotheses. Based on the mismatch distribution of the six regional populations
of the Adi, we tested deviation from neutrality expectations by the statistics: the
Tajima’s D and Fu’s F.
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11.5 Results

11.5.1 Mitochondrial DNA Diversity

The extent of diversity measured by estimators such as gene diversity, nucleotide
diversity, and the mean pairwise differences (MPD) among the Adi regional
populations is shown in Table 11.1. In general, the sub-groups show a high level
of gene (haplotype) diversity, similarly a high range of nucleotide diversity (0.207-
0.298). Pasi and Komkar show the least and Panggi shows the highest nucleotide
diversity values among the six Adi populations. Similar high range of nucleotide
diversity has been reported from a composite sample of Adi (Cordaux et al. 2004).
Mean pairwise differences (MPD) among the Adi vary from 8.523 among Adi
Kokmar to 11.32 among the Adi Minyong, the average MPD of the six Adi groups
is 10.13.

11.5.2 Genetic Affinity Among Adi Sub-groups

The dendrogram (figure not shown) obtained by rooted and unrooted methods
depicts a close cluster of three populations: Panggi, Minyong, and Pasi, among the
six studied Adi sub-groups. Padam and Komkar show a longer branch length and
stand away from the major cluster. The PCA plots (two and three components) also
show close clustering of the three sub-groups and distant location of Padam and
Komkar groups (figures not shown).

11.5.3 Mismatch Distributions of the Adi Sub-groups

Mismatch distribution for the six studied Adi sub-tribes is shown in Fig. 11.2.
Examining the distribution of pairwise nucleotide differences is expected to give
considerable insight into the recent demographic history of the Adi sub-groups.
The size, shape, and the pattern of the MMD observed among each of the five
Adi sub-groups show considerable variation and also significantly differ from the
theoretical expectations. We find that Adi Pasi and Adi Minyong tend to show
unimodal distribution, though there is slight variation in the shape. On the contrary,
Adi Komkar exhibit bimodal tendency and Adi Panggi show multimodal distribution
(one crest followed by two small crests). Adi Padam display three major crests of
increasing intensity. Although, Pasi and Minyong and also Komkar (to an extent)
appear to correspond to the expected MMD in case of demographic expansion
model, the expected distributions do not fit well with the observed distributions.
In view of the nature of the distribution curves, the statistical estimates of the mean
and variance hardly describe the characteristics of the distribution except in case of
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Fig. 11.2 Mitochondrial mismatch distributions for the six studied Adi sub-tribes

Pasi and Minyong groups. The different distributions suggest the past demographic
upheavals that had recorded its signatures in the extant tribes—Padam and Panggi
and to certain extent in Komkar. The observed mismatch mean for the populations
is around 10 except in case of Komkar (8.5) and the observed mismatch variance
falls within 12—13 range excepting for Panggi (35.838).

11.5.4 Demographic Parameters of the Studied Adi Sub-groups

Based on the mtDNA HV1 and HV2 sequences, an attempt is made to understand
the past demographic events among the Adi sub-tribes. The different demographic
parameters, including the Fu’s Fg statistic; raggedness index “r” and Tajima’s D,
estimated to obtain considerable insight into the population expansion of the studied
Adi groups is shown in Table 11.2.

The studied sub-tribes of Adi show significantly large negative Fu’s “Fs” values,
with an approximate range from —5 (in Minyong and Padam groups) to —11 (in
Pasi, Komkar, and Panggi groups). Negative values of Fs among the five sub-groups
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Table 11.2 Demographic indices deduced from mtDNA HV1 and HV2 sequences of Adi sub-
populations

Number of Raggedness Index
Population sequences Fu’s Fs (P value) “r” (P value) Tajima’s D (P value)
Adi Pasi 19 —11.21824 (0.000)  0.0132 (0.576) —1.1216 (0.092)
Adi Minyong 14 —5.97461 (0.011) 0.0272 (0.490) —1.02473 (0.116)
Adi Panggi 19 —10.98509 (0.000)  0.0176 (0.454) 0.2991 (0.602)
Adi Komkar 18 —11.53593 (0.000)  0.0127 (0.855) —1.08973 (0.096)
Adi Padam 13 —5.64377 (0.005) 0.0362 (0.394) —0.63823 (0.242)

of Adi are indicative of their demographic expansion in the past. We observe that the
raggedness index “r” is lower than 0.05 in all the studied Adi sub-populations. The
values of “r” range from 0.012 to 0.03, with high p values denoting nonsignificance.
Padam and Minyong, the two largest populations of the Adi and were the earlier
settlers of the region, show higher “r”” values than the remaining smaller three groups
(0.012 to 0.017). These values of “r” lower than 0.05 also suggest demographic
expansion among the studied groups. Except for Panggi, the remaining populations
show negative values for Tajima’s “D” indicative of low frequency polymorphisms
and population size expansion. Positive Tajima’s “D” value signifies high levels
of intermediate frequency polymorphisms in the population, probably indicating
population bottleneck in Panggi.

11.6 Discussion

The values of mean number of pairwise differences (MPD) too indicate the diversity
among the Adi sub-groups. In fact Adi sub-groups show higher MPD values when
compared to that reported by Cordaux et al. (2004) among the groups of north-
east India [5.73 £ 2.79 (Apatani) to 7.17 £ 3.51 (Tipperah)]. The highest value of
MPD (11.318681+ 5.467784) in Adi Minyong reflects their high diversity when
compared to other groups. This scenario in case of Adi Minyong may probably
be attributed to their large size and distribution over plain region in proximity to
the urban locality. As a consequence of this, the population might plausibly have
experienced external gene flow leading to high diversity within the group. On the
contrary, the lowest MPD value is exhibited by Adi Panggi (8.522876 £ 4.134276)
which is likely considering their small size and isolated location in remote moun-
tainous terrain. However, the higher Fgr value 0.1333 obtained through Analysis
of Molecular Variance (AMOVA) indicates considerable genetic differentiation
among Adi (the results of AMOVA is not presented). This suggests the probable
involvement of different processes, governed by the population structure including
the marriage patterns, during the differentiation of the females of Adi sub-groups.
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The mitochondrial DNA mismatch distribution shows an overall unimodal
distribution, accompanied by some discrepancy, among Pasi and Minyong groups
indicating their recent population expansion. Adi Padam which, like Minyong,
is also settled over the plains near the urban area, however, shows multimodal
distribution. This is unexpected in view of their large size and urban settlement.
However this requires further investigation in the background of their history
of settlement and details of their population structure. Panggi and Komkar are
small populations comprising of a couple of thousand individuals residing in
remote mountainous terrains and surviving on hunting-gathering economy. The
population structure is characteristic of preferential marriages among close kin and
high endogamy. This is expected to reflect in their genetic profiles. The observed
multimodal and bimodal distributions among Panggi and Komkar sub-groups and
their larger negatives values of Fu’s Fg statistic and lower values of raggedness index
indeed reflect their population structure.

In Panggi, about 70% of the husbands and wives in general belong to seven
surnames (Maji et al. 2007; Maji and Vasulu 2008). However in recent years there
are other non-Panggi surnames entering into the population through marriages
with non-Panggi females among the younger generations living in the Geku town.
Possibly if the population samples analyzed for mtDNA variation consist of both
non-Panggi and Panggi females, the resultant mismatch distribution is expected to
be multimodal with higher variance and also positive Tajima’s D value. That is
what we observe in case of Adi Panggi. The bimodal distribution observed among
Adi Komkar needs to be explained in view of their population structure.

11.7 Conclusions

The considerable cultural differences and geographic isolation, exhibited by the
different sub-tribes of Adi, are reflected (to an extent) in their mitochondrial DNA
profile, where these groups tend to show differentiation to a certain extent. The
genetic affinity among the Adi sub-tribes is in agreement with their ethno-historical
records and folklore traditions that describe the antiquity and the settlement history
of the formation of sub-groups. The mtDNA study shows signatures of demographic
upheavals undergone by the sub-tribes in the recent past. The results indicate the
possibility of bottleneck effect among the small and isolated Panggi group as a
result of internal tribal warfare, where the Panggi possibly had significant effect on
their group size and history of settlement. The validity of folklore narration about
the fission—fusion population structure and its possible genetic consequences are
illustrated in mtDNA mismatch distribution among the regional Adi tribes.
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Chapter 12

Growth Curve Model in Relation to Extremal
Processes Based on Stationary Random
Variables

Ratan Dasgupta

Abstract We study the growth models of Elephant foot yam in relation to a Markov
process and explain the adequacy of the model. The said Markov process may
be bounded by two extremal processes based on stationary sequence of random
variables. Properties of such extremal processes are investigated. Parameters of the
model are estimated from observed growth by minimising the maximum distance
between the realised growth curve and simulated theoretical process. The proposed
Markov process depends on the behaviour of basic variables crossing a threshold.
A characterisation for uniform distribution based on specified linear regression of
conditional quantiles on unrestricted quantiles, while crossing a threshold is proved.

MS classification 2010: Primary 62P10; Secondary 60J99, 62J02

12.1 Introduction

Consider the problem of studying effect of seed weight and seed skin texture through
growth experiments on Elephant foot yam when the size of the seed corm is around
the critical weight. Indian Statistical Institute’s Giridih farmland consists mainly of
lateritic soil full of gravels, and 200g weight of cut yam seed is seen to be critical
for sprouting and subsequent survival of the plant therein. Farmers sometimes use
cut and underweight yam corm rather than the whole corm, in absence of adequate
supply of yam seed to cover a large area of farmland. The yam plants grown may
then turn out to be relatively tender, slim and undernourished.
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Yam is considered to be a staple food among tribals. Yam stems and petioles of
young unexpanded yam leaves are good source of leaf protein and minerals. These
tender yam leaves are edible when thoroughly cooked. Dasgupta (1995) proposed
locally more accurate confidence intervals of leaf protein content in plants.

If the seed corms are already in sprouting stage before plantation, then the critical
corm weight for subsequent yam-plant survival may be lowered further. Experience
shows that sprouted corms may later fully develop as plants having more than one
stem and has higher chances of survival. Experiments are now being conducted
with cut-seed weights 100g, 200g, 300g, 400g and 500g along with five grading
of the seed-skin textures in a 5 x 5 Graeco-Latin square design. The seeds are cut
from yam-corms, which were already sprouting from “main eye”. The lowest weight
viz., 100g of cut corm is then seen to be critical for plant survival in a preliminary
investigation.

This scenario of undernourished plants may be rectified by appropriate aftercare
of plants from tender stage onward by periodically administering different fertilisers
and manual care so as to increase above ground vegetative mass that has a positive
impact on the yam yield. Plant hormones may also be used as growth regulators
that determine formation of leaves, stems, flowers and underground yam. Kim et al.
(2005) suggested combined treatment of Chinese yam plants with gibberalic acid
and jasmonic acid with low concentration (GA 50ppm and JA 5ppm) to promote
tuber yield, by a single treatment. Higher doses may produce contrary results.

Manual care such as loosening the soil, weeding and mulching, may produce
higher vegetative growth. Casual farm labourers gradually become experienced in
their work as the plants grow over time. Gradual growth of yam over different stages
of time may be compared with a non-decreasing process, e.g., an extremal process
based on a stationary sequence of random variables.

A question may arise whether variation of nutrients administered by different
inexperienced farm-labours over large area of farmland and subsequent heteroge-
neous absorption of nutrients by plants at initial stages be ignored in data analysis
part when we are mainly interested in distinguishing the effects of seed size and
seed skin texture on yield.

We propose a growth model, which is close to the lowess curve of observed
growth, and we show that under the proposed model it is possible to answer the
above question in affirmative.

In the next section we propose a transient Markov process as growth curve
model for yam. In general, this process has upper and lower bounds in terms of
two extremal processes, see Dasgupta et al. (1981). We find that if the expertise of
the labourers develop fast over the lifetime of yam plants, then one may ignore the
variation arising out of heterogeneous nourishment administered by inexperienced
labourers in the beginning, thereby allowing the effect of the main parts viz., seed
weight and seed skin texture to be tested.

In general, problems where one may compensate for deficiency in initial inputs
by subsequent remedial measures, a similar analysis may be adopted.
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It may not be always possible to sequentially order the impact period of causal
variables in a production session as time progresses. One may then consider a model
based on day to day additional increments on yield, e.g., the Markov model (12.6)
of next section.

The growth curve of the yam stems is simulated by a transient Markov process
based on uniform random variables for comparison with observed growth. All the
variate values are equally likely for uniform random variables, these are used as
basic inputs in the present growth curve simulation.

Similarity of patterns noted in simulated and observed growth curves indi-
cates that the model is satisfactory. Parameters associated with the model is
estimated from observed data so as to minimise the maximum absolute distance
between observed and theoretical growth curves, much like the idea of minimising
Kolmogorov—Smirnov distance. A similar model may be used for underground
yam deposition over time as above ground vegetative growth is found to be highly
correlated with yam yield.

The proposed Markov model depends on the behaviour of the random variables
crossing a threshold. This behaviour may be described in terms of conditional
quantiles. A characterisation for uniform distribution based on linear regression of
conditional quantiles on unrestricted quantiles, while crossing a threshold is proved.

12.2 Growth Model and a Characterisation
of Uniform Distribution

We state a theorem on extremal process for stationary sequence of random variables.
The proof is given in Appendix of Dasgupta (2011).

Theorem A. Let (X;,i > 1) be a sequence of stationary random variables and there
exist constants a,,, b,, such that the standardised maximum,

Zy = br;l(lllll_a}m Xi —am) = 0,(1), (12.1)

i.e., the distribution of {Z,,, m > 1} is tight. Alsolet¢;; (0 <c¢; <1, ¢; - 1) be
a sequence of non-decreasing constants and let i, = i,(n) be a sequence of positive
integers satisfying
n"liy(n) >0, c(ip) = cio(n)) = 1—o( a,'byl): n > 1. (12.2)
Then for any Y,, satisfying

max ¢;X; <Y, < max X;; one has, (12.3)
1<i<m 1<i<m

b (Y — Jmax X;) — 0, in probability. (12.4)
<i<m
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Further if,
f@) =1 aib'| (= o0) (12.5)
is non-decreasing in i and EHOO% < o0, for every fixed § > 0, then the

condition (12.2) on ¢ is implied by c(i) = 1 — o(|a; 'b;).

Remark 1. From the proof given in Dasgupta (2011) it is seen that stationarity
assumption of the random variables may be relaxed by a weaker assumption, which
should ensure that maximum value of an expanding set of random variables is
attained in an index with large value. As for example, it is enough to have a weaker
assumption that for a fixed sequence i, = io(n) = o(n) - oo, P{U]_, . (X; =
maxi<j<, X;)} > 1— %; Vn > 2, to replace stationarity assumption for validity
of Theorem A.

This mild assumption excludes the possibility that maximum of a sequence of
random variables be confined only within a finite segment in the beginning of the
sequence. It should also be possible to locate maximum beyond a finite range of the
sequence (i.e., towards tail) as well.

Later we shall identify the variables X; to be fresh random input of growth or,
ideal possible growth in a time segment in presence of a large number of causal
variables at optimal level. While modeling growth curves, relaxation of stationarity
assumption of X; thus provides a wide coverage of real life situations when growth
inputs or, ideal possible growth in different time segments may not be homogeneous
(or stationary) due to non-homogeneity of basic causal variables.

Consider a yam seed-corm with fixed weight and skin texture. In the above

representation identify X = X; to be the ideal possible growth of a response
variable e.g., growth of stem or, above ground biomass due to photosynthesis
in presence of i = 1,---,m auxiliary variables, like climatic conditions e.g.,

sunshine/cloudy weather/rain, humidity, temperature, etc.; absorption level of nu-
trients administered, manual care e.g., appropriate weeding, irrigation, fungicide,
insecticide, plant hormone treatment, etc.; that are relevant for growth experiment,
when all these characteristics remain at perfect level for ideal growth of response
in a time segment; m being large when the number of these causal and uncertain
characteristics is large. Sometimes these may have simultaneous effect on proper
growth of the crop.

We shall assume the following. Deviation from the ideal situation may at most
dampen the ideal growth during plant lifetime by a scale ¢; due to dominant i-
th characteristic in a time segment, resulting in a lower bound of growth ¢; X;
as in (12.3), when the status of other characteristics are within permissible limit.
It therefore follows from (12.4) that the maximum growth variation due to these
uncertain variables are of negligible order o0,(b,,), compared to the main part
O, (by,) as mentioned in (12.1); for all the plants when ¢; — 1 at an appropriate
rate. In some occasions it is possible to sequentially order the impact period of
causal variables, growth deficiency due one causal variable may be compensated by
possible subsequent adjustment of the others, as a result lower bound of growth due
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to i-th characteristic may be improved upon by favorable j-th characteristic (i<j)
at a later stage. Different stages of growth may be seen in most of the plants’ life
cycle.

As for an example, the life cycle of cannabis is usually complete in four to
nine months. First stage is germination during the warmth of spring. Water is
absorbed and the embryo’s tissues swell and grow, splitting the seed along its edge.
Temperature and water are two important factors at this stage. Anchored by the roots
and receiving water and nutrients, the embryonic leaves (cotyledons) unfold.

The formation of the second pair of leaves begins the seedling stage. This stage is
complete when the plant has reached the maximum leaves per blade, usually within
four to six weeks. Depending on variety, they reach their maximum number. Next
is period of vegetative growth which depend on the availability of nutrients. In the
preflowering stage, a period of one to two weeks, the growth slows considerably
till the appearance of the first flowers. At the flowering and seed set stage causal
variables conducive to pollination is most important.

The actual time of life cycle is regulated by local growing conditions, specifically
the photoperiod (length of day vs. night). Cannabis is a long night (or short day)
plant. When exposed to a period of two weeks of long nights (13h or more of
continuous darkness each night), the plants respond by flowering. This allows the
grower to control the life cycle of the plant and adapt it to local growing conditions
or unique situations. Since one can control flowering, one can control maturation
and, hence, the age of the plants at harvest. A few causal variables assume dominant
role depending on a particular stage of life cycle.

In the beginning of life cycle when growth of Yam-plant is fast, frequent
recordings are taken compared to sparse recording towards end. Rainy season
may provide adequate supply of water to yam plants in the beginning, which has
to be supplemented by regular irrigation at later stages of plant growth. There
are secondary sprouting of the plants resulting in higher vegetative growth as the
experiment proceeds. The total number of stems may therefore increase over time.
Above ground biomass takes into account overall growth of all the stems. The
random variable Y, may be taken as a good predictor like “above ground biomass”
for underground yam deposition.

The assumption ¢; 1 1 is reasonable in view of the fact that the temporarily
employed farm workers gradually gain expertise of plant care over time.

There are situations when it is not possible to sequentially order the impact period
of causal variables in a production session as time progresses. Modeling may then be
done by viewing the growth over successive time segments of daytime when a plant
starts a new cycle of photosynthesis after a night rest. Suppose in ideal scenario,
on i-th daytime of the production session, the plant gets a fresh (random) input for
growth represented by X = X;. An alternative model for total growth in terms of
sequentially ordered time intervals may then be made as follows. The cutting model
described in Dasgupta et al. (1981) is Markov.

Ty =caX Th=Ti+a(X—-T)", T, = Thmi+e(Xu—T—)) ' ... (12.6)
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where X* = X Vv 0. The sequence T, is non-decreasing, additional contribution
at n-th stage is ¢, (X, — T,—1) ", to be interpreted as additional growth at n-th time
period. This is justified in the following fashion. If X,, > T,_, then a part of surplus
input after maintaining the present requirement of plant at state 7,,—; may be added
to growth at n-th stage. A part of excess carbohydrates gathered from photosynthesis
is deposited in underground yam. Under this model additional growth of stem/above
ground biomass ¢, (X, — Tn_1)+ decreases as the magnitude 7,,—; of these variables
at (n — 1)-th time interval increases. The fraction ¢ = ¢, 1 1 may partly represent
appropriate care for growth of the plant by experienced labours towards mature stage
of plant. The above representation (12.6) provides a similar bound (12.3) for 7, see
Dasgupta et al. (1981). The component due to perturbation in causal variables is
once again of negligible order.

The variables Xy, -+, X},, -+ are assumed to be stationary and the constants c;
may be assumed to represent the combined dampening effect, being off the target,
of the causal variables on the response variable at i-th time period, 0 < ¢; < 1;
small values of ¢ indicate more dampening, whereas values of ¢ near 1 indicate less
dampening of the additional part (X, — T,,—1) ™.

A similar model may be proposed to the underground yam deposition Z;, over
time segments i = 1,---,n,--- with a different sequence of constants d; €
(0,1), d; converging to 1; thus uncontrolled and random perturbations in causal
variables on yam deposition is of negligible order as before under the model.

Remark 2. Instead of a single sequence {c;} of dampening factor, there may be a
number of sequences of dampening factors {c;i1},--- ., {c;,} over different regions
of land and associated with different farm workers nourishing the plants in these
regions over time, where each sequence of ¢ satisfies the conditions of the theorem.
These sequences of factors may be of different magnitudes. In such a situation, let
the variable Y; for i-th characteristic be either dampened by one of the sequence of
¢’s depending on that particular region of land, or let it be the full magnitude X;.
The resultant variable Y then satisfies the following.

~min  max ¢;X; <Y, < max X;. (12.7)

Jj=l-.pl<i<m 1<i<m

Towards the end of Appendix in Dasgupta (2011), a modified proof is outlined
extending Theorem A for Y, satisfying the bound (12.7). Once again error term is
of order 0, (b,,) compared to the main part O, (b.,).

Based on a stationary sequence of random variables, we consider transient
Markov process (12.6) and check whether this has behaviour similar to observed
growth curve. The process resembles actual growth of yam-stem for some specific
choice of constants and that provides a good visual approximation in growth curve
simulation.

Figures 12.1 and 12.2 show realised growth curves (i.e., observed points joined
by straight lines) of yam-stems and corresponding non-parametric lowess regression
fit marked by small circles for two different stems of same seed corm.

These observed patterns are simulated in Figs. 12.3 and 12.4 by transient Markov
process (12.6) based on U(0, 1) random variables withc = ¢; = 1 —i~% and ¢ =
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Fig. 12.1 Lowess fit for height curve of Yam plant 9, stem 1
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Fig. 12.2 Lowess fit for height curve of Yam plant 9, stem 2

¢ = 1—=i—07 respectively, fori = 1,---,200. In absence of precise information of
soil and other field conditions, these uncertain variables may be assumed to generate
uniform random impulse within equispaced time points towards plant growth.
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Fig. 12.3 Transient Markov process
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Fig. 12.4 Transient Markov process

Choice of m = 200 is made from the fact that Yam plant is harvested in about six
months; in this particular case harvest was made after 200 days. Thus the number of
time segments was taken to be m = 200. The concavity of the realised growth curve
provides an appropriate choice of constants. Fast growth means that the coefficients
¢ approach 1 fast. The growth observed at the half lifetime (100-th day) in the
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smooth lowess curve may be equated with theoretical growth (1—i ~%)(X, —T,—;) "
around the point of time i = 100 that has a positive growth. The second part
(X, — T,—1)™" is obtainable from simulation, thus the product term when equated
to growth in lowess curve estimated from observed data around that time point
provides an initial value of «. Adjusting this value to minimise the maximum
distance between the lowess growth curve of observed data and the simulated
process where the jumps occur at 200 points, an appropriate choice of o may be
made.

It was observed that a slight change in the choice of o from .04 (.007) increases
the maximum distance between the lowess and simulated theoretical model with
specific choice of seed value made, for the first (second) growth curve.

In other words, the value of « is so selected as to minimise the absolute distance
between the realised lowess and simulated growth curves, much like the idea of
minimising Kolmogorov—Smirnov statistics.

For the first process simulating the observed pattern of Stem 1 (Fig. 12.1), the
growth is faster as reflected in the rate at which ¢ = ¢; = 1 —i % 4 1, compared
to that for Stem 2 with estimated ¢ = ¢; = 1 —i %7 4 1. An index for relative
growth of Stem 1 and Stem 2 may then be defined as the ratio of the power indices,
viz. I1, = .04/.007 ~ 6. Note that for uniform random variables X the scaling
factor for max;..; X; isb; = i"'. Forc = ¢ = 1 —o(i™") 1 1, the limiting
behaviour of 7; is similar to that of max; ... ; X;.

It was shown in Dasgupta et al. (1981) that for a fixed constant ¢ € (0, 1),
limiting behaviour of T; is different from that of max, ... ; X ;. Here we see that for ¢
with magnitude in between viz., c = c¢; = 1 —0(™%), a € (0,1), it is possible to
approximate the growth curve of yam-stem by the Markov model of T; in (12.6).

Since the empirical study shows that the growth of Stem and Yam deposition has
high correlation, one may explore similar model for predicting yam yield.

In the Markov model (12.6) one may take into account the situation where
expertise-gain of the farm workers may have a random component. In other words,
one may consider a more general model where ¢; 1 1, are random and independent
of X.

Instead of assuming ¢; = 1—i~"" assume that¢; = 1 —wi_'04, where w; are non-
decreasing with £ (w;) = i. This construction is achieved by considering successive
increments in w values to be iid uniform random variables with expectation 1, rather
than a fixed constant 1, as considered for drawing Figs. 12.3 and 12.4. In Fig. 12.5
the process (12.6) is simulated with random ¢ as suggested above and with same set
of uniform X values as considered in Fig. 12.3. There is no significant difference
in Figs. 12.3 and 12.5, indicating that random gain in expertise may not affect the
growth curves significantly.

Similar patterns are observed between Figs. 12.4 and 12.6, where in the latter
figure we consider random coefficients ¢; = 1 — wi_'007, keeping the choice of
variables X in (12.6) to be same as that for Fig. 12.4, where we consider constant
coefficients ¢; = 1 — i 97 agsociated with increments X.

Simulations are done by SPLUS software with assigned seed value 1234.

.04
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Fig. 12.5 Transient Markov process (Fig. 12.3) with random ¢
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Fig. 12.6 Transient Markov process (Fig. 12.4) with random ¢

In the formulation (12.6) note that growth at n-th stage depends on whether
the realised value of the variable X, crosses a threshold 7,_;. It is therefore
important to study the behaviour of the random variable X exceeding a threshold.
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Uniform distribution has the property that the conditional p-th quantile, given that
the variable exceeds a threshold ug, is linear in uy.
Without loss of generality consider uniform distribution on [0, 1]. The equation

PU > ulU > ug) = (1-u)/(1=up) = 1=p. p € (0.1), 0 up su =1 (12.8)

provides the value of conditional p-th quantile as u = p + uo(1 — p), expressible in
terms of unconditional p-th quantile plus shift o multiplied with diminishing slope
(1 — p). Such a property characterises uniform distribution as seen in the following
theorem.

Theorem 1. Let X be a non-negative and non-degenarate random variable with
distribution function F that is continuously differentiable except possibly at the end
points where F = 0 and F = 1. Let xo € (0,€), where € > 0 may be taken
arbitrarily small. Let the p-th quantile of the distribution under the restriction X >
Xo, be of the form of a linear regression a + Bxo, where o is the unrestricted p-th
quantile of X and the slope B does not depend on x. The above property holds for a
dense choice of p € (0,1) with B = (1 — p) iff F is a uniform distribution function
on an interval.

Proof. First part of the theorem follows easily as seen from (12.8) above. To see the
“necessary part” observe that

PX>x|X>x)=(0-Fx)/(1=F(x)=1—p, x=a+ Bxo (12.9)
provides the relation,
F(a + Bxo) = F(a) + (1 — F(a)) F(xo0) (12.10)

Differentiating both sides with respect to xo, one gets the following relationship
for the density f, which is assumed to be continuous.

Bf(a+ Bxo) = (1 — F(w)) f(x0) (12.11)

Let xo | 0, to get Bf (o) = (1 — p) f(0) over a dense set of p € (0, 1), where
a=F7'(p).

In other words f() = (1 — p) f(0)/B, as B # 0O; since X is non-degenarate.
This provides a characterisation of uniform distribution f(e) = f(0), Y € (0, 6),
for§ = F7'(1)iff B = (1 — p).

Remark 3. The form of linear regression @ + fx, for conditional quantiles given
X > xo, where « is the unrestricted p-th quantile of X may hold for distributions
other than uniform with a slope § # (1 — p). As for example, consider F(x) =
1—(1—x)", where y > 0is rational and x € [0, 1]. With an application of binomial
theorem for rational index, linear regression of conditional p-th quantile hold for
p € (0,1), where 8 # (1 — p); the slope § then involves higher powers of p.
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Chapter 13

Projection of Indian Population by Using Leslie
Matrix with Changing Age Specific Mortality
Rate, Age Specific Fertility Rate and Age
Specific Marital Fertility Rate

Prasanta Pathak and Vivek Verma

13.1 Introduction

The importance of projection in national and state level planning and policy
formulation is quite well recognized in any country which attempts at achieving
sustainability in human development and improving the quality of life. Population
projection exercises are basically a part of forecasting growth of human population
in the future years over a time horizon. There are various means of extrapolating
past trend of change in human population over the future years. These means are
determined by the assumptions that are made on the determinants of population
change such as time, pattern of changes in fertility, mortality, and migration and
other associated factors. The success of population projection depends not only
on the technique of projection but also on the proximity of the assumptions
to reality so that changes in the future years get estimated with least possible
errors. Projections, however, might not suffice when there are significant deviations
from the assumption that prevailing conditions would continue unchanged in the
future. Also, the projection might not be satisfactory due to failure to incorporate
adequately the changes in the policy parameters, technological changes, changes
in the migration pattern, etc. Forecasting attempts at overcoming these drawbacks
by incorporating the elements of judgment in the projection exercise. Forecasting
enjoys the advantage of being based upon one or more assumptions that are likely
to be realized in the future years. Thus, forecasts give more realistic picture of the
future.

There are various mathematical models for population projection as discussed
in Lee and Carter (1992), Islam (2009), and Gayawan et al. (2010). These are also
used for finding out the determinants of population growth. The models are either
stochastic with certain distributional assumptions on the variables or deterministic
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as discussed in Zakria (2009). For forecasting population under the assumption
that migration plays an insignificant role, models have been derived in de Jong
and Tickle (2006), Yashin et al. (2000), Islam (2009, 2011), and Gayawan et al.
(2010), incorporating fertility and mortality determinants. Two common forecasting
methods are exponential smoothing, discussed in Brown et al. (1961) and Trigg and
Leach (1967) and regression, discussed in any standard statistical textbook.

This study attempts at projecting the Indian population by applying the Leslie
matrix, discussed in Lewis (1942) and Leslie (1945). The use of such matrix as an
operator for projection of distribution of population by ages in the future has not
been reported so far in the Indian context. Previously, the Indian population got
projected by the World Bank and the Census Directorate by using predominantly
the cohort-component method. The method and the references on the history of its
development are given in O’Neill et al. (2001). Differences in assumptions based
on expert opinions have made them obtain different projections. These assumptions
are not known in detail, but both have done the projection with some assumptions
on the targeted life expectancy and total fertility rate at the end of the projection
period. Time series data on life expectancy and total fertility were assumed to follow
the logistic and the Gompertz forms, respectively. The logical guidelines of cohort-
component method have been followed also in the application of the Leslie matrix.
The use of such matrix has been found predominantly in the context of various living
organisms and animals as discussed in Jensen (1974), Werner and Caswell (1977),
Cheke (1978), Van Groenendael et al. (1988), and Gauthier et al. (2007). It has been
used in demography and health by Gross et al. (2006), Kajin et al. (2012), Thomas
and Clark (2008), and few others. Changes in the policy parameters over time could
be incorporated in a model based on Leslie matrix by modifying the matrix elements
appropriately. Dependence of population growth on population density, however, is
not taken into account in such a model. An attempt is made to use the matrix for
age group wise projection of Indian population and compare the projection with the
ones obtained by the World Bank and the Census. It does not assume any targets for
life expectancy and total fertility rate at the end of the projection period nor does it
impose any standard functional form like Gompertz or logistic function to describe
the temporal change in the fertility and the mortality. It uses the best fitted statistical
models to capture the temporal changes in the age specific fertility, the mortality,
and the sex ratio while projecting population.

13.2 Methodology

The sources of data for this study are mainly the following web sites of the
Census of India, the Ministry of Statistics and Programme Implementation, the
Central Bureau of Health Intelligence, the World and the Ministry of Health and
Family Welfare. http://www.indiastat.com/demographics/7/population/217/16662/
census.aspx (Census of India, MOSPI), http://cbhidghs.nic.in/content%282002
%?29.asp (Central Bureau Of Health Intelligence—India), http://data.worldbank.


http://www.indiastat.com/demographics/7/population/217/16662/census.aspx
http://www.indiastat.com/demographics/7/population/217/16662/census.aspx
http://cbhidghs.nic.in/content%282002%29.asp
http://cbhidghs.nic.in/content%282002%29.asp
http://data.worldbank.org/data-catalog/
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org/data-catalog/ (The World Bank), http://nrhm-mis.nic.in/UI/Public%20Periodic/
Population_Projection_Report_2006.pdf, http://nrhm-mis.nic.in/ (Ministry of Health
& Family Welfare).

It is assumed that the female population is the only contributor of the population
growth and their childbearing ages are between 15 and 49 years. It is also assumed
that births are given only by the married females. All females are considered in 5-
year age interval namely 0—4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40—
44, 4549, 50-54, 55-59, 60-64, 65-69, 70-74 and projections are also made for
the same intervals. The population at ages above 74 is ignored due to nonavailability
of sufficiently reliable data. They constitute about 3% of the total population. It
is assumed that each age specific rate remains constant over each 5-year interval
and there is a perfect balance in emigration and immigration over the period of
projection.

Under the above assumptions, the cohort-component method of population
projection gives rise to the following 16 equations.

s i 5 psys oL L s o 5 ptsys oL
S (s P A3 PP IsF( = ) 4+ 5 G P +3 PT) 5 F 5= ) +
2 1o 2 1o
1 L 13.1
"+_(4515Pt+ispl+5)45151:(0_) (3D
2 Ip
— 3PS
2L
o P! g—L)=§Pt+5 (13.2)
0
5L
PCEE) 5 s (13.16)
70

where [P' = Female Population in the age interval (x,x + n) at time t. } F= Age
Specific Fertility Rates (or Age Specific Marital Fertility Rates) in the age interval
(x,x + n). ;L represents the person-years lived by the cohort between years x to
(x + n) and lp represents the number of persons surviving at exact age 0.

The above set of equation can be written as the following matrix equation.


http://data.worldbank.org/data-catalog/
http://nrhm-mis.nic.in/UI/Public%20Periodic/Population_Projection_Report_2006.pdf
http://nrhm-mis.nic.in/UI/Public%20Periodic/Population_Projection_Report_2006.pdf
http://nrhm-mis.nic.in/
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Equation (13.1) provides the number of female babies in the age class (0—4) at
time (t + 5) and they are those daughters who are born between time (t) and (t 4 5).
It is the sum of products of number of females in the childbearing age classes, i.e.
from (15-19) to (45—49) at time (t), fecundities in their respective childbearing age
classes, and their survival chance from previous age at time (t) to current age at time
(t+5). Equation (13.2) represents the number of females in the age class (5-9) at
time (t + 5) and they are those females in the age class (0—4) at time (t) who continue
to survive at time (t+ 5). In general, Egs. (13.3)—(13.16) represent the number of
females in the age class labeled (m + 1) at time (t + 5), and they are those females
in age class labeled (m) at time (t) who continue to survive at time (t + 5). The label
m stands for {(5-9), (10-14), (15-19), (20-24), ..., (70-74)} form =1, 2, 3, 4,
.., 14

The above matrix equation in abbreviated form becomes

Pt+5 — LPt

where P'*> and P’ represent the population by age vector of order (16 x 1) in the
year (t+5) and t, respectively, and L is the Leslie Matrix consisting of elements
which are functions of fertility and mortality parameters.

The age specific mortality rates (ASMR) are available intermittently for the 20
different years in the period 1981-2009 and the age specific fertility rates (ASFR)
are available intermittently for 12 different years in the period 1980-2009. Age
specific marital fertility rates (ASMFR) are available intermittently for 13 different
years in the period 1984-2009. Inconsistencies in the available data on ASFR and
ASMER prior to 2000 made the study depend only on 7-year data, available in the
period 2000-2009.

The ASMREs are projected till 2020 by using either polynomial regression models
or exponential smoothing algorithm. The projection is done for each age interval.
The choice of the appropriate technique has been made based on the comparison of
the root mean square errors (RMSE) over all the age intervals. The same strategy
has been adopted for projecting the ASFR and ASMFR. A brief description on the
algorithm of the exponential smoothing is given in the appendix.



13 Projection of Indian Population by Using Leslie Matrix with Changing . . . 231
13.3 Findings

Table 13.1 below gives for different age groups the degrees of fit of polynomial
regression models along with degrees of best fitted polynomials and the degrees
of fit obtained by exponential smoothing to estimates on ASMR in different years
along with RMSE and their differences. It shows that exponential smoothing is a
better choice for projection of ASMR. Table 13.2 gives age group wise ASMR
projections for 2010, 2015, and 2020 by exponential smoothing. The projections,
in general, indicate downward trend of the ASMRs for all the age groups except the
age groups like 30-34 years, 35-39 years, 50-54 years, and 70-74 years. The near
constancy of the projections for these age groups needs to be investigated at greater
depth.

Table 13.3 above gives for different reproductive age groups the degrees of fit of
polynomial regression models along with degrees of best fitted polynomials and
the degrees of fit obtained by exponential smoothing to estimates on ASFR in
different years along with RMSE and their differences. It shows that polynomial
regressions are better choices for projection of ASFR. Table 13.4 below gives the
ASFR projections for 2010, 2015, and 2020 for each reproductive age group by
using polynomial regressions. The projections for each age group show a downward
trend with varying rate of falling.

Table 13.5 below gives for different reproductive age groups, the degrees of fit
of polynomial regression models along with degrees of best fitted polynomials and

Table 13.1 The degrees of fit of polynomial regression models along with degrees
of polynomials and the degrees of fit for exponential smoothing to estimates on age
specific mortality rates in different years along with RMSEs and their differences

Age interval RMSE using polynomial ~ RMSE using exponential ~ RMSE(reg.)

(year) regression [RMSE(reg.)] smoothing [RMSE(exp)] —RMSE(exp)
04 1.314 [1] (0.967) 1.27 (0.970) 0.044
5-9 0.225 [1] (0.917) 0.209 (0.928) 0.016
10-14 0.080 [1] (0.895) 0.073 (0.913) 0.007
15-19 0.129 [1] (0.827) 0.102 (0.890) 0.026
20-24 0.155 [1] (0.833) 0.138 (0.868) 0.017
25-29 0.170 [1] (0.734) 0.189 (0.672) —0.019
30-34 0.268 [1] (0.337) 0.249 (0.428) 0.019
35-39 0.272 [1] (0.305) 0.174 (0.716) 0.098
40-44 0.271 [1] (0.688) 0.262 (0.709) 0.009
4549 0.320 [1] (0.832) 0.319 (0.834) 0.001
50-54 0.690 [1] (0.816) 0.871 (0.706) —0.181
55-59 1.071 [17 (0.795) 0.986 (0.827) 0.085
60-64 1.745 [1] (0.786) 1.737 (0.789) 0.008
65-69 2.007 [1] (0.813) 2.173 (0.782) —0.166
70-74 9.327 [1] (0.697) 8.134 (0.774) 1.193

N.B.: Degree of polynomial regression is indicated within [ ] and degree of fit
(R? = 1—Error sum of square/Total sum of square) is indicated within ( )
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Table 13.2 ASMR

projections by age group for
2010, 2015, and 2020

P. Pathak and V. Verma

ASMR per 1,000

Age interval (years) 2010 2015 2020
04 13.41 10.0 9.32
5-9 0.91 0.41 0.04
10-14 0.85 0.70 0.59
15-19 1.34 1.15 1.01
20-24 1.85 1.64 1.47
25-29 2.07 1.88 1.74
30-34 2.47 2.47 2.47
35-39 3.34 3.32 3.32
4044 3.94 3.63 3.40
45-49 5.37 4.38 3.76
50-54 8.59 8.59 8.59
55-59 11.95 10.52 9.44
60-64 20.22 18.08 16.48
65-69 31.21 2844 2637
70-74 5240 5240 52.40

Table 13.3 The degrees of fit of polynomial regression models along with degrees of
polynomials and the degrees of fit for exponential smoothing to estimates on age specific
fertility rates in different years along with RMSEs and their differences

Age interval RMSE using polynomial =~ RMSE using exponential ~RMSE(reg.)
(years) regression [RMSE(reg.)] smoothing [RMSE(exp)] — RMSE(exp)
15-19 0.613 [1] (0.976) 0.699 (0.969) —0.085
20-24 2.378 [1] (0.843) 2.808 (0.780) —0.431
25-29 1.605 [1] (0.971) 1.699 (0.967) —0.094
30-34 2.305 [1] (0.951) 2.643 (0.936) —0.338
35-39 1.219 [1] (0.979) 1.453 (0.970) —0.234
40-44 0.454 [1] (0.986) 0.790 (0.957) —0.335
4549 0.202 [1] (0.962) 0.270 (0.933) —0.068

N.B.: Degree of polynomial regression is indicated within [ ] and

(R? =1 — Error sum of square/Total sum of square) is indicated within ()

Table 13.4 ASFR

projections by age group for
2010, 2015, and 2020

degree of fit

ASFR per 1,000

ASFR 2010 2015 2020
15-19 355 30.6 26.3
2024 2025 1948 187.1
25-29 1546 1429 131.2
30-34 72.0 57.0 42.0
35-39 28.1 16.7 5.2
40-44 10.3 4.7 1.0
45-49 4.3 1.7 1.0

the degrees of fit obtained by exponential smoothing to estimates on ASMFR in
different years along with RMSE and their differences. It shows that polynomial
regressions are better choices for projection of ASMFR. Table 13.6 below gives
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Table 13.5 The degrees of fit of polynomial regression models along with degrees of
polynomials and the degrees of fit for exponential smoothing to estimates on age specific
marital fertility rates in different years along with RMSEs and their differences

Age interval RMSE using polynomial ~ RMSE using exponential ~ RMSE(reg.)

(years) regression [RMSE(reg.)] smoothing [RMSE(exp)] — RMSE(exp)
15-19 8.216 [3] (0.998) 5.648 (0.999) 2.568
20-24 3.072 [4] (0.910) 10.251 (0.870) —7.1790
25-29 1.780 [2] (0.970) 2.516 (0.940) —0.736
30-34 2.457 [2] (0.950) 2.983 (0.927) —0.527
35-39 1.177 [2] (0.983) 1.529 (0.971) —0.353
40-44 0.558 [2] (0.983) 0.915 (0.953) —0.357
45-49 0.403 [2] (0.891) 0.287 (0.945) 0.116

N.B.: Degree of polynomial regression is indicated within [ ] and degree of fit
(R? = 1 — Error sum of square/Total sum of square) is indicated within ()

Table 13.6 Age group wise

ASMER projections for 2010, ASMER per 1,000

2015, and 2020 Age interval (years) 2010 2015 2020
15-19 245.0 223.6 1825
20-24 2959 2753 2465
25-29 172.9 158.8 14438
30-34 75.8 60.8 45.9
35-39 29.7 17.6 55
40-44 11.2 5.9 0.5
45-49 4.7 3.0 1.2

the ASMFR projections for 2010, 2015, and 2020 for each reproductive age group
by using polynomial regressions. The projections for each age group again show a
downward trend with varying rate of falling.

The age distributions of the female’s population based on the World Bank
estimates in 2010 and the Census estimates in 2011 are shown graphically in
Fig. 13.1 along with age distribution of female population based on the World Bank
estimates in 2025 and the Census estimates in 2026. These show major differences
in the Census and the World Bank estimates inclusive of the major shifts of the
age distribution towards the right in the case of the Census estimates. In the same
figure, the age distributions of female population in 2015 and 2025, projected based
on our current methodology and the ASFR estimates, show that the change in the
age distribution will be only in the age interval of 0-10 years. The distributions
match closely with the age distribution obtained as per the World Bank estimates of
2010 for the remaining ages. It indicates that the change occurs mainly in respect of
gradual increase in chances of survival of the children aged below 10 years.

The age distributions of the female population based on the World Bank estimates
in 2010 and the Census estimates in 2011 are shown graphically in Fig. 13.2 along
with age distribution of female population based on the World Bank estimates in
2025 and the Census estimates in 2026. In the same figure, the age distributions of
the female population in 2015 and 2025, projected based on our methodology and
the ASMFR estimates, show much more clearly that major changes will occur only
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Fig. 13.1 Age distribution of female population in 2010 and 2025 (2011 and 2026 for the Census)
based on the World Bank and Census estimates compared with the projected age distributions of
females in 2015 and 2025 using ASFR
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Fig. 13.2 Age distributions of female population in 2010 and 2025 (2011 and 2026 for the Census)
based on the World Bank and the Census estimates compared with the projected age distributions
of females in 2015 and 2025 using ASMFR

in the age interval 0-10 years. For all other ages, the distributions match closely
with the age distribution, obtained based on 2010 estimates of the World Bank.

The age distributions of the total population, obtained as per the World Bank and
the Census estimates, show major shift towards the age range of 20—45 years in the
period 2010-2025 (2011-2026 for the Census estimates), indicating an aging of the
population (as shown graphically in Fig. 13.3). Our methodology, however, does
not establish such major shift except increase of population at ages below 10 years
when total population is estimated for each age group from the age distributions of
the female population by utilizing temporally changing sex ratio for corresponding
age group.
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Fig. 13.3 Age distribution of total population in 2010 and 2025 (2011 and 2026 for the Census)
based on the World Bank and the Census estimates compared with the projected age distribution
of the total population in 2025 using ASFR and ASMFR

13.4 Conclusion

The projections, in general, indicate downward trend of ASMR, ASFR, and
ASMFR. The study establishes that the projections of population made by the
World Bank and the Census Directorate at higher ages are generally much on the
higher side, indicating significant aging of the population. This might be due to prior
assumptions on achieving targeted life expectancy and total fertility rate at the end
of the projection period, following some functional path. Our projections are not
based on such assumptions and it does not indicate such significant aging of the
population; rather the age distribution is likely to follow the 2010 age distribution
at ages above 10 years and the population at ages below 10 years are likely to
increase significantly due to increase in their chances of survival and decreasing
gender discrimination under ongoing reproductive and child health programmes.
Our method incorporates temporal changes in the ASMR and ASFR/ASMEFR,
effected by changes in health and population policies and also health and family
welfare programmes. It also incorporates by age group, temporal changes in the sex
ratio for more precise projection of the population.
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A.1 Appendix

A.1.1 Exponential Smoothing

It is one of the most popular types of automatic forecasting algorithms, which
is used for the determination of an appropriate time series model, estimate of
the parameters and compute the forecasts. Exponential smoothing methods were
originally classified by Pegels’ (1969) taxonomy. This was later extended by
Gardner (1985), modified by Hyndman et al. (2002), and extended again by Taylor
(2003), giving a total of 15 methods seen in Table A.1.

A.1.2 Point Forecasts for All Methods

We denote the observed time series by y;...Yy,. A forecast of y,;, based on all
of the data up to time t is denoted by Py To illustrate the method, we give
the point forecasts and updating equations for method (A, A), the Holt—Winters’
additive method:

Level: [y =a(y: —si—m) + (1 —a) (li—1 + bi—1)
Growth: by = B, — ) + (1 —B) b
Seasonal : s, =y (yr — L1 —bi—1) + (1 — y) Si—m

Forecast:  Piyn =1l +bh +5,_

m+h,_,f

where m is the length of seasonality (e.g., the number of months or quarters
in a year), [, represents the level of the series, b, denotes the growth, s; is

Table A.1 The fifteen exponential smoothing methods

Seasonal component

Trend component N (none) A (additive) M (multiplicative)
N (none) N, N N, A N, M

A (additive) AN A A AM

A4 (additive damped) A4, N Ag, A A4, M

M (multiplicative) M, N M, A M, M

My (multiplicative damped) My, N My, A My, M
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the seasonal component, Yy is the forecast for h periods ahead, and ht =
[(h—1) mod m]+1.To use this mentioned method, we need values for the initial
states Iy, bo and s1—, . . . , So, and for the smoothing parameters o, 8 and y. All of
these will be estimated from the observed data (Table A.2).

The triplet (E, T, S), which refers to the three components: Error, Trend, and
Seasonality, is added to the models for discrimination among the additive and
multiplicative errors. So the model ETS (A, A, N) has additive errors, additive trend
and no seasonality—in other words, this is Holt’s linear method with additive errors.
Similarly, ETS (M, My, M) refers to a model with multiplicative errors, a damped
multiplicative trend and multiplicative seasonality. The notation ETS (e, *, ) helps
in remembering the order in which the components are specified.

A.1.3 Models for All Exponential Smoothing Methods

The general model involves a state vector x, = (I,,b;,8:,8—1,...,8—m+1) and
state space equations of the form

Ve =w(x—1) +71(x;-1) & (13.17)

xp=f(xi)+g(xi—1)é (13.18)

where {g;} is a Gaussian white noise process with mean zero and variance o2 and
s = w( x;-1). The model with additive errors has r (x,—;) = 1, so that y, = u, +
&;. The model with multiplicative error has r (x,—;) = i, so that y, = u,(1 + &).
Thus, &; = (y; — )/ 1: s the relative error for the multiplicative model.

All of the methods in Table A.2 can be written in the form (13.17) and (13.18).
The specific form for each model is given in Hyndman et al. (2008).

A.1.4 Estimation

In order to use these models for forecasting, we need to know the values of x( and
the parameters a, f, y, and ¢. It is easy to compute the likelihood of the above
innovations state space model, and so obtain maximum likelihood estimates. Ord et
al. (1997) show that

n n
L*(0.x0) = nlog(d &) +2) log|r(xi—1)|
t=1 t=1
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is equal to twice the negative logarithm of the likelihood function (with constant
terms eliminated), conditional on the parameters 8 = (o, B, v, ¢) and the initial
states xo = (lo, bo, S0, S—1, . . .,5—m+1), where n is the number of observations.
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Chapter 14
Growth Curve Analysis of Cumulative
Automobile Defects

Ratan Dasgupta and Avinash Dharmadhikari

Abstract We study properties of cumulative defects for an industrial production
through growth curve model in presence of nondecaying correlation structure within
the number of successive defects accumulated over time. In automobile industry
incidence per thousand vehicles (IPTV) is computed as number of failures observed
in a month divided by sale quantity of a specified production batch for a specific
lag period (from production to sale); the ratio is then multiplied by 1,000 to be
called IPTV. For a batch of sold items it is seen that IPTV and the cumulative
IPTV up to a time point may be approximated by Weibull distributions to a first
degree. Such intriguing phenomena rules out independence of variables, as Weibull
distribution is not closed under convolution. Postulating a simple model we show
that such phenomena may be attributed to the presence of long range correlation in
reported defects over consecutive time segments of sold objects from a production
batch due to a common cause that regulates the growth pattern of cumulative IPTV.
The observed correlation structure may be explained by the model.

MS subject classification: Primary : 62E17, secondary : 62P30.

14.1 Introduction and Some Empirical Observations

Weibull distribution has applications in reliability theory among others and may
explain distribution of different industrial characteristics, see Engineering statis-
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tics handbook (2008), Huang et al. (2012), Sagias and Karagiannidis (2005),
and Weibull (1951). This may also be an appropriate model for number of defects
in some cases, e.g., see http://arxiv.org/ftp/arxiv/papers/0905/0905.2288.pdf.

The number of defects across computer programs is seen to follow Weibull
distribution when the programs are ranked by their sizes in Lines of Code metric.

In this paper we consider an automobile production process where the produced
cars in different production batches are serviced within the warranty period for
different types of reported defects viz., EE (Electronics and electrical), PT (Power
train), UB (Upper body), LB (Lower body) defects. Aggregate defects under these
categories may sometimes be represented by 4, B, C, D or, 1, 2, 3, 4; under some
sequencing.

A defective car sent for servicing is repaired and sent back to be exposed again in
the traffic condition outside. The repaired car may not behave like a new car and may
come back for further processing in case of subsequent problems, if any; especially
under warranty period. A car may have more than one problem to be rectified. In
Huang et al. (2012) event tree analysis method is used to determine the risk flow of
automobile defects. The characteristics of the production process in factory and the
intensity of exposure to road traffic may continue to affect subsequent life period of
a vehicle.

Failure data observed was classified using lag month (difference between sale
month and production month) and aggregate in terms of EE, PT, UB and LB.
Further the sale quantity was used to calculate the IPTV i.e., incidents per thousand
vehicles, which is computed as number of failures observed in that month divided
by sale quantity of specified production batch for that lag, the ratio is then
multiplied by 1,000 to get IPTV per thousand. This measure is similar to hazard
rate. IPTV for different lag months were calculated separately. Next for various
production months, U(¢) the monthly IPTV; i.e., IPTV reported in ¢ = first month,
second month, etc., over different “months in service” (MIS=Complaint reported
Month—Sale Month) are considered; X (¢) the cumulative IPTV up to time ¢ for
various production months and over different MIS were also considered. The
measure X (¢) of cumulative IPTV is similar to integrated hazard rate. The variable
KMS, kilometres covered by a vehicle is also recorded. Data structure consist of
chassis no, month of production, date of sale, complaint report date, aggregate type
of defect, complaint description, kilometres at which failure occurred. Classification
of the data thus looks like: (Chassis ID, Lag, Type of failed aggregate, MIS, KMS).
For cleaning the data the production batches for which sale is less than 10% of
the median for that lag are removed. Cars having frequent problems are analysed
separate of this analysis. During the lag months, unsold cars are stored in a protective
environment. We analyse the data to study the failure pattern of a vehicle type.

Weibull distribution F(x) = 1 —exp(—(x/0)¥),a > 0,0 > 0;x > 0 is a well-
known model to explain item failure. This distribution is fitted for U(¢) and X (¢)
separately with respect to lag, aggregate, MIS. Analysis is also done with respect to
KMS, the kilometres covered by a vehicle.
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It was observed that Weibull distribution provides a good fit for the IPTV U(t),
as well as the cumulative IPTV X(¢). Such a result rules out the possibility of U(¢)
being independent, as Weibull distribution is not closed under convolution.

The correlation structure computed from observed failure data indicates that
the observations arise from a long memory stochastic process with nondecaying
correlation, see Table 14.1. The correlation between number of defects in two
successive months may sometimes turn out to be negative e.g., when some remedial
measures are taken based on reported defects in a previous month. Here maximum
likelihood estimates of the Weibull parameters are considered and computed by
Minitab software.

14.2 A Simple Model

As seen from the observed data correlation structure, there seem to be a common
cause that affects the observations in general. For an individual automobile, let X ;
be the j-th item (aggregate) characteristic of the assembled components in the job
that lingers throughout the lifetime of the automobile. The assembled items in an
automobile face exposure to traffic conditions outside, coupled with expertise of
driver.

At the i-th instant of problem reporting of a specified kind by j-th item
aggregate, assume that the magnitude of the characteristic of interest be

Y,‘j ZC,‘XJ' + eij (14.1)

where ¢; s are constants and e;; may be considered error components. Then
DYy =X;Y i+ Y e; =6X;+e, (14.2)
i i i

with§ = ), ¢; and e ; = ), e;;. It therefore follows that if X i.e., ¥;; in (14.1)
are approximately Weibull, then the cumulative sum ), ¥;; is also approximately
Weibull, if the error components are negligible compared to the main part. One can
compute the correlation between two values of Y as follows.

L(oh 9%
p(Yij. Yij) ~sgn(cic) Y 1= 5= | 5 + — (14.3)

2 2
20 C; Ci

to a first degree of approximation, where 0> = Var(X,), o;; = Var(e;;).
The above simple model indicates that it is possible for correlated variables those
are approximate Weibull to have sum as an approximate Weibull random variable.



R. Dasgupta and A. Dharmadhikari

244

00T 90 €80 O9I'0— S0 680 OI'0— 650 [I80 LTO— 640 080 L0 STO— 950 0CO0— II'0O 00 81
9¢0 o001 10 I1'0 LOO ¢€C0 8I'0 1[I0 <¢C0 O0I'0— 6I'0 60 910 0¢0 0¢0 100 <ZFO 0F0 LI
€80 1C0 001 TI'0— €80 60 SY0— 080 S60 <CI'0O— #60 €S0 €60 LI'0O— £€80 ¥CO0— 1€0— €0 91
oro— I11o <¢ro— o00r LOO— ¥00— v00 €00— ¥I'0 <60 6I'0— 610 S€0— &0 CI'0 #90 850 £#0 Gl
§¢0 LOO €80 LOO— 00T ¢80 IS0— 680 90 LOO #80 #rO €80 800— #20 LOO O6V0— LSO VI
¢80 €T0 60 V00— <80 001 LVO— 60 L60 LOO— 960 #90 60 €1'0— #£0 SO0— 0CT0— £80 €I
01'o— 810 S¥'0— +00 IS0— L¥VO— 001 ¥$S0— OV0— LOO 8¥0— LOO— LVO— SO0— OV'0— I1'0— £90 ¢£¥0— CI
650 1T0 080 €00— 680 6,0 vS0— 001 [0 €00 #80 950 [80 SO0— §90 SI'0 9v0— 650 11
80 TCo s60 vI'0O 9.0 L60 OVO— [0 001 OI'0 880 850 ¢80 <TOO0 <80 LOO— 800— 980 OI
LT0— 0I'0— ¢I'0— ¢c60 LOO LOO— LOO €00 OI'0 007 TCO— ¥00 S€0— §£0 ¥I'0 #90 60 STO 6
6,0 610 #60 60— #80 960 8Y'0— #80 880 <CTO0— 0071 950 660 10— [0 O0I'0— 9¢0— &0 8
080 6,0 €S0 610 #pF0O #90 LOO— 950 850 ¥00 950 001 &0 910 LEO TEO 9¢0 #0 L
L0 910 €60 S€0— €80 <60 LvO— [80 <80 S€0— 660 &0 001 ¢€£€0— 690 V¥C0— S¥0— ¢90 9
§C0— 00 LI'0O— 880 800— €I'0— SO0— SO0— <00 €20 1T0— 910 ¢€€0— 001 9C0 [SO SO 9¢0 ¢
960 0¢£0 €80 SI'0O pLO #L0O OVO— §90 <80 VvI'0 [0 LEO 690 9T0 001 9C0— CCO0— L90 ¥
00— 100 vC0— #90 LOO SO0— II'0O— SI'0O LOO— #90 OI'0— CE0 +C0— [0 9T0— 001 0£0 8TO ¢
110 Z¥0 1€0— 850 6v0— 0T0— £90 90— 800— 60 9¢0— 9¢0 S¥0— &S¢0 <TCO0— 00 001 0CO0 <
ALdI
0L0 00 £L0 EFO LSO €80 €70— 650 980 STO €0 #0 T90 90 £90 8TO 0TO 007 1 AWuon
81 L1 91 9! 4! €l 4! I 0l 6 8 L 9 S 14 € C 1

ALdI ATysuoy

ALdI JO XLjew uone[a110) 4 dqEL



14 Growth Curve Analysis of Cumulative Automobile Defects 245
14.3 Model for Data Analysis

After cleaning the data, monthly IPTV are calculated for each aggregate of each
production batch for each lag. Similarly, cumulative IPTVs are also calculated.
Denote U; to be the j MIS (month in service) IPTV of a particular production
batch, X; to be the cumulative IPTV upto i MIS of a particular production batch,
then X; = le=l Uj.

We mimic the simple model of Sect. 14.2 to write for the cumulative IPTV of
i-th month, /-th lag, s-th subsystem (or aggregate) for p-th production batch in the

following.
Xilsp = CilsXp + €ilsp (14.4)

wherei = 1,2,---, 18 represents MIS (month in service); / = 1,2, 3, 4 represents
“lag month” i.e., the lag period a produced car remains in factory before being sold;
s = 1,2,3,4 is the type of reported defect EE, PT, etc., and p = 1,2,--- ,n is
the production batch in month; e represents error components. A structure based
on X, similar to (14.4) when written for Ujj,,, the individual IPTV, leads to the
proposed model (14.4), since cumulative IPTV leaves the model unchanged under
summation; see Eq. (14.2). Thus the observed phenomena that IPTV and cumulative
IPTYV are all approximately Weibull rest on the fact that in the proposed model X ,,
for a particular production batch p, is assumed to be a Weibull random variable, and
this determining factor in the model is responsible for growth pattern in IPTV and
cumulative IPTV.

Here c;;; are unknown constants and X, is a Weibull random variable whose
value has to be estimated from realised data by

Xp =X, = ZXilsp/ Z 1 (14.5)

ils ils

Thus, from (14.4) one may compute

~ Xilsp
Cilsp = —= (14.6)
P X,
For every production batch p, the coefficients ¢;;y = c;;5, may be separately

estimated from data within that batch. One may then have a pooled estimate
n
Gits = Y Citsp/n (14.7)
p=1

Since e in (14.4) represents error components, one may also write

Xp = Xilsp/éils (148)
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Growth model (14.4) has the following interpretation. For every production batch
there is an (unknown) Weibull random variable X ,, such that IPTV/cumulative
IPTV is essentially a fraction ¢ of it, where ¢ depend on other indices. Such a model
identifies the associated weights that determine the magnitude of number of defects
attributed factors represented by different indices. All the unknown quantities in the
model are estimable as explained above.

14.4 Data Analysis

We observed that there are lot of variation in U; and X; for every aggregate A, B, C
and D.

Next, we plot graphs for the cumulative IPTV for different lag for each aggregate.
An example of cumulative IPTV vs. Month in service is given in Fig. 14.1. It may
be noticed that there are four curves each of which is for production batch of April
2010. The graph at the bottom and nearest to X axis indicates the pattern of [IPTV
occurrence of subsystem A of vehicle which was sold in the same month (Lag 1),

1 Monthly IPTV i
2 Monthly IPTV \ o\
3 Monthly IPTV | 4
4 Monthly IPTV
5 Monthly IPTV
6 Monthly IPTV
7 Monthly IPTV
& Monthly IPTV |
9 Monthly IPTV

10 Monthly IPTV

11 Monthly IPTV

12 Monthly IPTV

13 Monthly IPTV

14 Monthly IPTV

15 Monthly IPTV

16 Monthly IPTV

17 Monthly IPTV

18 Monthly IPTV

Fig. 14.1 Cumulative IPTV graph for subsystem A
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17 Monthly IPTV
18 Monthly IPTV

Fig. 14.2 Cumulative IPTV graph for subsystem B

whereas the topmost graph indicates the occurrence of IPTV of subsystem A with
Lag 4.

Similar graphs for subsystem B, C, D are shown in Figs. 14.2—-14.4. Lag effect
can be observed in the IPTVs. Lag 1 IPTVs are observed to be less as compared to
that of lag 2, lag 3 and lag 4 IPTV.

However, this pattern was not observed to be true for all subsystem and in all
production batches.

It is observed in Figs. 14.5-14.8 that U;s and X;s follow approximately Weibull
distribution, which is not expected under independence, as sum of independent
Weibull variables is not Weibull. It is also observed that U;s are correlated, that
is IPTV for j-th month depends on IPTV of 1,2,3,---,(j — 1) month.

Based on the data of 4-15 MIS for 13 production batches, the number of
observations is N = 13 x 12 = 156 and the estimated value of shape parameter
for aggregate A is @ = 3.498, the scale parameter is ¢ = 377.2; the regression line
fitted in Fig. 14.5 is log(—log(1 —i/n)) = —16.6 +2.791og(A), with R? = 0.935.

For B, the estimated parameters are « = 1.309,0 = 499.7, the regression line
fitted in Fig. 14.6 with N = 156 is log(—log(1 —i/n)) = —10.8 + 1.751og(B),
with R? = 0.863.

For C, the estimated parameters are « = 1.266,0 = 474.8, the regression line
fitted in Fig. 14.7 with N = 156 is log(—log(1 —i/n)) = —9.51 + 1.551log(C),
with R? = 0.877.

For D, the estimated parameters are @« = 1.047, 0 = 480.5, the regression line
fitted in Fig. 14.8 with N = 1561is log(—log(1—i/n)) = —7.514+1.221og(D), with
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Fig. 14.3 Cumulative IPTV graph for subsystem C

Fig. 14.4 Cumulative IPTV graph for subsystem D
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Scatterplot of In(-In(1-i / n) ) vs In(A)
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Fig. 14.5 Regression of In(—In(1—i/n)) on In(A)

Scatterplot of In(-In(1-i / n) ) vs In(B)
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4 5 6 7 8
In(B)

Fig. 14.6 Regression of In(—In(1—i/n)) on In(B)

R? = 0.885. To a first degree of approximation the points are close to regression
lines, except near the start in some figures. Just like Weibull plot by Minitab,
the above regression analysis indicates the region where departure from model is
prominent.
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Fig. 14.7 Regression of In(—In(1—i/n)) on In(C)
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Fig. 14.8 Regression of In(—In(1—i/n)) on In(D)

Next, for 13 production batches for A (12 batches for B—D, four entries in
Table 14.2 are considered outliers and kept outside the analysis of graphical plots)
averaged over different lags, we estimate X, values for subsystems A-D, see
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Table 14.2 Estimates of Xp and Xps for different production batches

Xps

Xp Xp Estimates for A B C D
237.54 Production Month 1 395 308 118 180
260.77 Production Month 2 299 488 186 70
425.10 Production Month 3 500 280 328 592
361.14 Production Month 4 404 370 426 245
443.11 Production Month 5 477 511 323 461
*1344.16 Production Month 6 103 *1,454 *1,601 *2,219
124.44 Production Month 7 155 136 139 68
470.50 Production Month 8 436 526 427 494
396.63 Production Month 9 360 440 300 486
274.92 Production Month 10 443 166 321 170
25491 Production Month 11 354 335 214 117
392.41 Production Month 12 119 337 546 567
393.05 Production Month 13 119 337 546 570

*Not considered while plotting, as these seem to be outliers

Table 14.3 Regression characteristics of log(—log(1 — i/n)) on log(aggregate)

Fitted line Intercept Slope R™2 n SSE MSE
For aggregate A, B, C&D —=3.76 0.01 0.954 12 0221 0.018
over different MIS,
Lag & aggregates
For A —9.92 1.69 0.88 13 1.56 0.142
For B —14.51 2.44 0.94 12 0729  0.07
For C —12.2 2.08 0.97 12 0315 0.031
For D —7.23 1.23 0.92 12 0.849  0.085

Eq. (14.4) specialised for different subsystems A-D with X, = X,,; a formula
similar to (14.5) viz., the following formula (14.9) is used to compute X

Xps=Xps =Y Xitgp/ D1 (14.9)
il il

The X ps values are shown in Table 14.2. Characteristics of the regression lines fitted
on {log x,log(—1log(1 —i/n))} are shown in Table 14.3, the values of R? are high,
indicating that the Weibull fit is satisfactory to a first approximation.

Plots for Weibull fit of X ps by Minitab are shown in Figs. 14.9-14.12, estimated
Weibull parameters are also shown in corresponding figures.

Next, we compute the X, values for 13 production batches averaged over
different subsystems and different lags by Eq. (14.5), and the corresponding Weibull
fit with parameters are shown in Fig. 14.13.

The coefficients ¢ are computed from Eq. (14.6), reflect the weight/importance
of different indices to the reported defects in automobiles for taking corrective
measures. These are shown in Table 14.4. With increase in MIS the ¢ values
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Fig. 14.9 Weibull plot of Xp for sub system A
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Fig. 14.10 Weibull plot of Xp for sub system B
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Fig. 14.11 Weibull plot of Xp for sub system C
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Fig. 14.12 Weibull plot of Xp for sub system D
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Fig. 14.13 Weibull plot for Xp calculated over different aggregates and different lags

increase. Lag in sale also has increasing effect, in general. Entries in the last row
corresponding to sub system D with lag month 4, more or less dominates other
rows over different MIS.

Analysis with respect to kilometers travelled (KMS) when complaint is reported
is shown in Tables 14.5 and 14.6. Weibull fit to a first approximation hold for U(¢)
and X (¢) in this case as well, like the earlier analysis.

Concluding remarks: Here, use of growth curve to study the properties of
cumulative defects for a industrial production is made. Interestingly, batch-specific
IPTV and cumulative IPTV have been found to follow Weibull distribution up to
a time point and this has been attributed to the observed long range correlation
in reported defects over consecutive time segments of sold automobiles. The
correlation structure led to the assumption of the presence of a common cause that
is believed to regulate the growth pattern of cumulative IPTV.

This piece of information could be gainfully used for controlling and minimizing
the incidence of IPTV/cumulative IPTV in automobiles subject to identification
of the production-batch-specific common cause in different time domains. Some
follow up studies in this direction are planned.

Acknowledgements Ms. Aditi Savant and Ms. Upasana Roychoudhury of Tata Motors helped in
data analysis. Thanks to a reviewer for constructive comments.
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Table 14.5 Kilometer analysis for A when Weibull was fitted to U(¢)

KMS Shape Scale AD P

less than 3,000 2.348 56.41 0.182 > 0.250
5,000-8,000 3.01 47.67 0.179 > 0.250
8,000-12,000 2.366 30.75 0.209 > 0.250
12,000-17,000 1.558 34.39 0.442 > 0.250
17,000-23,000 2.011 31.52 0.364 > 0.250
23,000-28,000 1.201 38.13 0.492 0.21
28,000-33,000 1.675 32,5 0.318 > 0.250
33,000-38,000 0.874 27.67 0.73 0.046
38,000—43,000 0.8043 21.92 1.107 < 0.010
43,000-48,000 1.723 25.9 0.437 > 0.250
48,000-53,000 1.628 29.96 0.171 > 0.250
53,000-58,000 2.661 6.414 0.375 > 0.250
58,000-63,000 1.131 12.97 0.339 > 0.250
63,000 Onwards 0.8121 12.55 0.736 0.042

Table 14.6 Kilometer analysis for A when Weibull was fitted to X(¢)

KMS Shape Scale AD P

less than 3,000 2.348 56.41 0.182 > 0.250
5,000-8,000 2.74 95.12 0.219 > 0.250
8,000-12,000 2.581 113.3 0.571 0.139
12,000-17,000 2.637 146.5 0.556 0.155
17,000-23,000 2.526 173.7 0.495 0.212
23,000-28,000 2.179 198.5 0.593 0.119
28,000-33,000 2.021 222.5 0.422 > 0.250
33,000-38,000 1.774 234.4 0.577 0.134
38,000—-43,000 2.196 218.3 0.366 > 0.250
43,000-48,000 2.105 232.2 0.407 > 0.250
48,000-53,000 2.006 240.6 0.447 > 0.250
53,000-58,000 2.009 241.7 0.427 > 0.250
58,000-63,000 1.995 242.5 0.429 > 0.250
63,000 Onwards 1.987 243.7 0.429 > 0.250
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Chapter 15

Growth and Nutritional Status of Pre-School
Children: A Comparative Study of Jharkhand,
Bihar and West Bengal

Susmita Bharati, Manoranjan Pal, and Premananda Bharati

Abstract This paper compares the growth and nutritional status of pre-school
children of three states of India, namely, Jharkhand, Bihar and West Bengal using
third National Family Health Survey (NFHS-3) data. The sample sizes of Jharkhand,
Bihar and West Bengal are 951, 1,373 and 1,600, respectively. Data on socio-
demographic background of the households such as sex composition, place of
residence, religion, level of education of mothers, mother’s age groups, and wealth
index of the family are taken to see the differential effects of these variables on the
child health status.

It has been found that the distributions of weight and height around the means
remain remarkably stable over age in those three states. It has also been found that
the rates of growth of mean weights and heights are far lower in Bihar and Jharkhand
than in West Bengal and India. The low growth rates of the mean values during the
first year for both weight and height translate to high rates of undernutrition and
stunting. It is also seen that high rate of stunting and underweight in Jharkhand and
Bihar starts from 9 months and onwards while in West Bengal and India it starts
from 12 months and onwards. Percentage of undernourished children is the highest
in Bihar followed by Jharkhand and West Bengal. Comparatively higher growth rate
of nutritional status and the low intensity of under nutrition of children are found in
the socio-economic groups of male gender, urban areas, other communities and of
secondary and higher educated mothers. Another notable finding is seen that only
in West Bengal, reduction of underweight is directly related to upward movement
of literacy along with wealth index but in Jharkhand and Bihar, there is no impact
of literacy on reducing underweight and only higher wealth index is responsible for
reducing underweight and stunting.
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15.1 Introduction

Undernutrition during childhood may affect the growth potential and risk of
morbidity and mortality in future life of an adult. Undernourished children are more
likely to grow into undernourished adult who face high risk of disease and death.
South Asia has the highest prevalence of underweight and stunted children (Bamji
2003). India is home to the largest number of underweight and stunted children in
the world. India is a vast country with 1/6th of the population living in 35 states and
union territories. There are substantial variations in the economic, social, nutrition
and health profile between states. More than half of the children suffer from under
nutrition in the states of Madhya Pradesh, Orissa, Rajasthan, Uttar Pradesh, Bihar
and Jharkhand. In Bihar, prevalence of both under weight and stunting among
children is very high. In fact malnutrition rose by 4% from NFHS-2 to NFHS-3
(Bihar Road map 2007).

Late introduction of semisolid foods is a major problem with high risk of
morbidity and under nutrition in Bihar and Jharkhand (Ramchandran 2007). In
Bihar, more than 50% people are below poverty line, illiteracy among women
was above 50% (Census 2001), and because of poor access to health and nutrition
services, there is high under nutrition among children. In West Bengal poverty ratios
declined substantially during 2000 but in Bihar it remained the same. One of the
reasons is that a substantial portion of the people is still engaged in manual work
for their livelihood and requires higher energy intake than is actually consumed.
In this context, it is necessary to investigate the socio-economic condition such
as education of parents, place of residence or economic conditions in order to
understand the retardation of growth and nutrition.

Here the main objectives of the paper are (1) to study the growth and nutrition
status of 0- to 59-month children on the basis of different age-groups in three states
of India, namely, Jharkhand, Bihar and West Bengal and to see their comparative
account with that of all India results and (2) to delineate the responsible socio-
economic factors leading to growth and nutrition.

15.2 Materials and Methods

The data on growth and nutritional status of children was accessed from the third
round National Family Health Survey (NFHS-3) of 2005-2006. The survey was co-
ordinated by International Institute for Population Sciences (IIPS) in collaboration
with the Ministry of Health and Family Welfare. Children of age 0—59 months are
taken to form eight age-groups in our study. The sample sizes for the three states—
Jharkhand, Bihar and West Bengal—are 951, 1,373 and 1,600, respectively and for
India, it is 31,105. This survey collected data on weight and height of the children
as well as computed “z” scores of under nutrition through weight for age and height
for age indices.
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Z-score value “—2” was used as a cut-off point for prevalence estimation (WHO
1995). Z-score is defined as the deviation of the value observed for an individual
from the median of the reference population, divided by the standard deviation (SD)
of the reference population i.e.

(observed value) — (median of the reference population)

Z-score = ;
SD of the reference population

The classifications of Z-score (followed by NCHS/WHO) are “below normal”
(< -2), “normal” (= —2 & < +2) and “above average” (> +2). Places of
residence are taken as “rural” and “urban”. Caste and community wise four groups
have been taken namely scheduled castes, scheduled tribes, other backward classes
and “others”. Mother’s educational status is grouped into four categories such
as illiterate (those who can neither read nor write), primary (literate up to class
IV standard), secondary (class V to class X standard) and the fourth group is
class XI and onwards (i.e. higher secondary, graduate or postgraduate, etc.). Age
groups of mother during child birth are grouped into three categories such as 15—
24 years (younger mother) and 25-34 years (middle-aged) mother and 35 years
and above (older mother). Wealth index is a measure of the economic status of the
household (Rutstein 1999). Though it is an indicator of the level of the wealth in
the household, it is consistent with expenditure and income measure. It is based on
33 household assets and housing characteristics such as household electrification,
type of windows, sources of drinking water, types of toilet facility, flooring, roofing,
cooking fuel and house ownership, material of exterior walls, number of household
members per sleeping room, ownership of a bank or post-office account, ownership
of a mattress, a pressure cooker, a chair, a cot/bed, a table, an electric fan, a
radio/transistor, a black & white television, a colour television, a sewing machine,
a mobile telephone, and any other telephone, a computer, a refrigerator, a watch or
clock, a bicycle, a motorcycle or scooter, an animal-drawn cart, a car, a water pump,
a thresher and a tractor. Here each household asset was assigned a weight generated
through principal component analysis and the resulting score was standardized in
relation to a normal distribution and each household was assigned a score for each
asset and the scores were summed for each household and individuals were ranked
according to the score of the household and the scores were divided into five quintile
groups starting from lower strata to higher strata like poorest, poorer, medium, richer
and richest.

To see the relative and effective intervention, the risk of Z-score value for
under nutrition was regressed on socio-economic variables using categorical logistic
regression analysis. Dependent variables are taken as binary. Children with Z-scores
below —2 are coded as “1” and with Z-scores —2 or higher are coded as “0”. An
estimated odd ratio of “1” indicates that the nature of dependent variable is not
different from the reference category. If the estimated odd ratio is > 1, the probability
of becoming affected is more in this category compared to the reference category,
and if it is <1, then it is just opposite to that of “>1" case.
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15.3 Results

Table 15.1 and Fig. 15.1a, b describe the mean and SD of weight and height for
each of eight sub-groups of age of 0- to 59-month children in three states of India,
namely, Jharkhand, Bihar and West Bengal as well as total India. It is seen that
all along the age-groups, there has been a positive trend for both the weight and
height though the magnitude of changes was different in different age groups. West
Bengal is seen to be in a better position at least in the higher age groups compared
to Bihar and Jharkhand for the height and weight. Even the figures of West Bengal
outperform the All India figures in the higher age-groups.

Table 15.2 and Fig. 15.2a, b give the percentage distribution of age-group wise
different categories of under nutrition like underweight and stunting among 0- to
59-month children in the three states of India as well as total India. The percentages
of stunted children are 46.2%, 49.9%, 37.8% and 40.7%, respectively in Jharkhand,
Bihar, West Bengal and All India and the corresponding percentages of underweight
are 53.3%, 54.0%, 32.9% and 35.7% respectively. It is evident that in case of
stunting, percentage changes are positive from 9 to 35 months children for all
the three states as well as India. After 35 months, the percentages go downwards.
Same trend is found for underweight also. Percentages of underweight and stunted
children are below all India level only for West Bengal whereas the percentages are
quite high above the all India percentages for Jharkhand and Bihar.

Tables 15.3 and 15.4 describe the relationship of mean weight and height by
socio-economic variables. It is seen that mean weight and height are significantly
different among the categories irrespective of different socio-economic variables.
For example, positive highest mean weight and height are seen among the children
of the male gender, urban areas, other communities (i.e., which do not belong
to scheduled tribes, scheduled castes or other backward classes), secondary and
higher educated mothers. These results are statistically significant at 1% level of
significance except height for gender differences in Jharkhand and for religion in all
the three states.

Now we turn to the changes in the incidence of undernutrition by socio-economic
variables (Tables 15.5 and 15.6). It is seen that children are invariably affected
by stunting and underweight and show degrees of variation among the different
categories of socio-economic variables. It is seen through the table that the children
of rural areas, scheduled caste & scheduled tribe communities, illiterate and aged
mothers and belonging to the poorest wealth index households are mostly affected.
The results are statistically significant at 1% level of significance. Gender differ-
ences of the nutritional level were not found to be significant in any of the states.

Results of Table 15.7 demonstrate the effect of socio-economic variables on
stunting and underweight. Underweight is significantly regulated by education and
wealth index in West Bengal but in Bihar and Jharkhand, only highest wealth index
is responsible for reducing stunting.
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Fig. 15.1 (a) Mean height of 0—59 months children. (b) Mean weight of 0-59 months children

15.4 Discussion

This paper makes a comparative study of growth and nutrition of 0- to 59-month
children in three states of India and also compares the deviation of growth and
nutrition in the perspective of total India. It is seen that means of both weight
and height of pre-school children in West Bengal are greater than all India figures
whereas the corresponding average for Jharkhand, Bihar are much lower than all
India figures. It is also seen that high rate of stunting and underweight in Jharkhand
and Bihar starts from 9 months and onwards while in West Bengal and India it starts
from 12 months and onwards. The percentage of undernourished children is highest
in Bihar. It is followed by Jharkhand. West Bengal is in the lowest rung of the ladder.
Magnitude of higher growth and low intensity of undernutrition in respect of socio-
economic variables are seen among the children of the male gender, urban areas,
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Fig. 15.2 (a) Percentage distribution of stunted children. (b) Percentage distribution of under-
weight children

other communities and secondary and higher educated mothers. Another notable
finding is that only in West Bengal, reduction of under-weight is directly related
to upward movement of literacy but in Jharkhand and Bihar, there is no impact of
literacy on reducing underweight. It is also seen that wealth index is inversely related
to stunting and underweight in West Bengal, Jharkhand and Bihar implying that
wealth index has a significant effect on reduction of both stunting and underweight.
In Bihar and Jharkhand, under nutrition is very high which may be due to low per
capita income and poor access to health that increase the morbidity. The reason for
high underweight state may also be due to high illiteracy among women, causing
low women status (Bihar Road map 2007). Besides this, the coverage of ICDS
developmental programme for children in Bihar has ranked in the bottom ten (World
Bank Report 2000).
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So, it is thus said that India is far from being a homogenous country in terms
of malnutrition as there is wide inter-state variation. It can also be said from the
growth pattern of Bihar and Jharkhand that the poor economic status is the sole
factor towards reduction in the under nutrition. West Bengal is in much better
condition than Bihar and Jharkhand in respect of mother’s literacy, which has also
much prominent role in reducing the under nutrition.

Thus it can be concluded that mother’s education and income may be adjudged
as the most effective factors to reduce underweight whereas income is seen to be the
only effective factor to reduce the stunting, i.e. long-term undernutrition.
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