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Preface

With the proliferation of cloud computing and Internet online services, more and
more data and computation are migrated to geographical distributed Internet data
centers (IDCs), which can provide reliability, management, and cost benefits.
However, IDC operators encounter several major problems in IDC operations, such
as huge energy consumption and energy cost, and high carbon emission. To deal
with the above problems, IDC operators have to efficiently manage the way of
energy consumption and energy supply. Considering the potential of smart grid, we
focus on the energy management of IDCs in smart grid from several perspectives,
i.e., power outage, carbon emission, heterogeneous service delay guarantees, and
operation risk.

With the introduction of smart grid, some cyber-related vulnerabilities may also
be created and may ultimately lead to power outages when cyber attacks are
launched. When power outages occur in main grids, the energy cost of IDC
operators increases. If power outages caused by cyber attacks occur frequently, the
increased energy cost of IDC operators become very large. Therefore, it is neces-
sary to consider power outages when running the IDCs in smart grid. In this book,
we study the problem of minimizing the long-term energy cost of distributed IDCs
in smart grid considering power outages. Moreover, we propose an operation
algorithm to achieve the above aim based on Lyapunov optimization technique by
jointly considering the use of renewable and backup generators, battery manage-
ment, and electricity purchasing/selling. Note that the proposed algorithm can
operate without requiring any statistical information about system dynamics.

Some socially responsible IDC operators (e.g., Google) expect to reduce energy
cost and carbon emission simultaneously. In this book, we consider the problem of
minimizing the long-term weighted summation of energy cost and carbon emission
with guaranteed quality of service for incoming requests in smart grid by deciding
the service request distribution, number of active servers, operations of energy
storage, schedule of backup generators, and quantity of power transactions between
microgrids and main grids. Moreover, we propose an operation algorithm and
analyze the feasibility of the proposed algorithm as well as its performance
guarantee.
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Providing homogeneous service delay (or average delay) guarantees may lead to
violations of service level agreements for delay-tolerant requests. Moreover, IDC
operators could reduce energy cost by fully exploiting the temporal diversity of
electricity price when heterogeneous service delay guarantees are provided. Thus, it
is necessary for IDC operators to provide heterogeneous service delay guarantees
for delay-tolerant requests. In this book, we investigate the problem of minimizing
the energy cost for an IDC in deregulated electricity markets considering hetero-
geneous service delay guarantees for delay-tolerant requests. Moreover, energy
storage devices are adopted to fully exploit the temporal diversity of electricity
price. In addition, we design an operation algorithm to schedule workload and
battery jointly.

When IDC operators only procure electricity from spot electricity markets to
supply IDCs, the spatial and temporal diversities of prices could be fully utilized to
reduce energy cost. Meanwhile, spot price and workload uncertainties will result in
the uncertain energy cost in the future, which is a risk for IDC operators as they
may experience high probability of having high energy cost. To manage such risk,
we study the problem of risk-constrained operation for IDCs in deregulated elec-
tricity markets. Moreover, we propose an operation algorithm to achieve the opti-
mal tradeoff between operation risk and expected energy cost according to the risk
preferences of IDC operators.

All comments and suggestions for improvements to this book are welcome.

Tao Jiang
Liang Yu
Yang Cao
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Chapter 1
Introduction

Abstract This chapter introduces the background knowledge on smart grid and
Internet data centers. Specifically, the definitions, characteristics, components of
smart grid, and the architecture of Internet data centers are elaborated. Since the
operations of Internet data centers lead to large power consumption, high energy
cost, and carbon emission, Internet data center operators need to manage the way of
consuming and procuring energy efficiently. Then, we discuss the energy manage-
ment of Internet data centers in smart grid and some challenges in energy manage-
ment. Next, we review the existing works on energy management of Internet data
centers and point out the drawbacks within them. Finally, we give the contents and
organizations of this book.

Keywords Smart grid · Internet data centers · Energy management

1.1 Smart Grid

A smart grid, also called smart electrical/power grid, or intelligent grid, is regarded
as the next generation power grid. In the traditional power grids, power is generally
carried froma few central generators to a large number of users or customers as shown
in Fig. 1.1. In contrast, smart grid uses two-way flows of electricity and information to
create an automated and distributed advanced energy delivery network that is clean,
safe, secure, reliable, resilient, efficient, and sustainable [1].

When mentioning the definition of smart grid, different organizations and
researchers have given different answers, for example “The smart grid has come to
describe a next-generation electrical power system that is typified by the increased use
of communications and information technology in the generation, delivery, and con-
sumption of electrical energy1” (from IEEE); “The smart grid will be characterized
by a two-way flow of electricity and information and will be capable of monitoring
everything from power plants to customer preferences to individual appliances. It
incorporates into the grid the benefits of distributed computing and communications
to deliver real-time information and enable the near-instantaneous balance of supply

1 http://smartgrid.ieee.org/ieee-smart-grid, Sept. 2013.
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Fig. 1.1 An example of the traditional power grid

and demand at the device level2” (fromDepartment of Energy in USA). Note that the
above definitions share the same idea that the smart grid needs to be integrated with
information and communication infrastructures in order to be “smart.” According
to a report from NETL (National Energy Technology Laboratory [2]) in USA, the
smart grid has several unique characteristics listed as follows when compared with
the traditional grid.

• It will enable the active demand-side participation: Specifically, the smart grid
can give electricity consumers information, control, and options that allow them
to engage in new electricity markets.

• It will accommodate all generation and storage options: Specifically, the smart
grid can seamlessly integrate all types and sizes of electrical generation and storage
systems using simplified interconnection processes and universal interoperability
standards to support a “plug-and-play” level of convenience.

• It will enable new products, services, and markets: Specifically, the smart grid
can support the creation of new electricity markets ranging from the home energy
management system at the consumers’ premises to the technologies that allow
consumers and third parties to bid their energy resources into the electricitymarket.

• It will assure optimal power quality for all electricity consumers who require
it: Specifically, the smart grid can monitor, diagnose, and respond to power qual-
ity deficiencies, leading to a dramatic reduction in the business losses currently
experienced by consumers due to insufficient power quality.

• It will optimize asset utilization and operate efficiently: Specifically, the smart
grid can improve load factors, lower system losses, and dramatically improve
outage management performance.

• It will anticipate and respond to system disturbances: Specifically, the smart
grid can monitor all critical components of the power system to enable automated
maintenance and outage prevention.

• It will operate resiliently against attack and natural disaster: Specifically, the
smart grid can incorporate a system-wide solution that reduces physical and cyber
attacks and enables a rapid recovery from disruptions.

In order to realize the above characteristics, NIST (National Institute of Standards
and Technology [3]) proposed a conceptualmodel of smart grid as in Fig. 1.2 from the

2 http://energy.gov/oe/downloads/smart-grid-introduction-0, Sept. 2013.
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Fig. 1.2 The conceptual model of smart grid

perspective of functionality, which consists of seven domains, i.e., bulk generation,
transmission, distribution, customers, service provider, operations, and markets. In
the following part, we will describe the function of each domain.

• Bulk generation: This domain generates electricity in bulk quantities by using
resources like oil, coal, nuclear fission, flowing water, sunlight, wind, and tide.
Moreover, it may also store electricity to manage the variability of renewable
resources such that the surplus electricity generated at times of resource richness
can be stored up for redistribution at times of resource scarcity.

• Transmission: This domain transmits electricity to the distribution domain via
multiple substations and transmission lines. Moreover, it may also support small-
scale energy generation and storage.

• Distribution: The distribution domain takes the responsibility of delivering elec-
tricity to energy consumers according to the user demands and the energy avail-
ability. This domain may also store and generate electricity.

• Operations: This domain maintains efficient and optimal operations of the trans-
mission and distribution domains using an energymanagement system in the trans-
mission domain and a distribution management system in the distribution domain.

• Markets: The market domain maintains the balance between the supply and the
demand of electricity. Moreover, this domain consists of retailers who supply elec-
tricity to end users, suppliers of bulk electricity, traders who buy electricity from
suppliers and sell it to retailers, and aggregators who combine smaller distributed
generation resources for sale.

• Customers: The customer domain consumes, generates, or stores electricity.
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• Service provider: The service provider domain provides services to electrical
customers and utilities, e.g., billing and customer account management for utility
companies.

Based on the above descriptions, we know that distributed generation and energy
storage widely exist in several domains (e.g., transmission domain, distribution
domain, customers domain), which promotes the development of microgrids. Specif-
ically, a microgrid is a localized grouping of electricity generations, energy storages,
and loads. In the normal operation, it is connected to a power grid (i.e., macrogrid or
main grid). When disturbances and blackouts occur in the macrogrid, the microgrid
would operate in the islanding mode. Thus, microgrid can provide highly reliable
electricity supply. In addition, microgrid can help to integrate renewable energy
sources, improve energy efficiency and power quality, and stabilize price.3

1.2 Internet Data Centers

A data center is a facility used to house an enterprise’s IT equipment (such as servers,
telecommunication, and storage systems) and supporting infrastructures (such as
power delivery and cooling systems). Data centers range widely in size, from closet-
sized rooms to warehouse-sized custom buildings. An Internet data center (IDC) is a
large-scale data center, which consists of thousands of servers. Typical IDC operators
are Google, Microsoft, Yahoo, eBay, or Amazon. With the proliferation of cloud
computing and Internet online services, more and more data and computation are
migrated to or hosted on Internet data centers (IDCs) [4], which can provide several
services for enterprises (content service providers, application service providers),
such as server hosting/renting, Internet access service and DNS service. IDC offers
many benefits including data reliability, ease of management for end users, and
low amortized cost of ownership. For example, distributed IDCs use geographical
distribution and replication to improve data reliability. Also, IDC operators can use
economies of scale and statisticalmultiplexing to amortize the total cost of ownership
over a large number of machines and users.

A typical architecture of multiple IDCs under smart grid environment is shown
in Fig. 1.3, where several components could be identified, i.e., front-end servers
and IDCs. The front-end server acts as a load balancer which receives incoming
requests from the Internet and dispatches workload to IDCs located in different
electric regions for processing according to a designed load balancing rule. The front-
end server is also responsible for sending dynamic cluster server configurations and
CPU frequency scaling commands to back-end servers in different IDCs to wake
up or shut down servers and adjust the servers’ current CPU operating frequencies
and voltages. To maintain the normal operation, IDCs have to draw enough power

3 http://www.smartgridnews.com, Sept. 2013.

http://www.smartgridnews.com
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Fig. 1.3 A typical architecture of multiple IDCs

from the smart grid. Specifically, IDC operators can buy electricity in forward/spot
markets in main grid and also buy electricity from the microgrids (energy sources
could be backup generators/renewable generators, or energy storage). According to
a recent study, many IDC operators (e.g., Microsoft and Google) spend more than
$30 million on their annual electricity costs, which contribute to a large portion
of IDC operational expenditure [5]. Meanwhile, the electricity cost is increasing
rapidly [6]. In addition, the environmental impacts of IDCs is severe, for example
carbon emission of data centers was 0.6% of the global carbon emissions in 2008
and the proportion is expected to reach 2.6% by 2020 [6]. For socially responsible
IDC operators, they are expected to mitigate the above problems simultaneously
[5]. In order to minimize the energy cost or/and carbon emission of IDCs, lots of
optimal load balancing schemes have been designed in existing works, which will
be explained later.

1.3 Energy Management of Internet Data Centers
in Smart Grid and Challenges

To reduce energy cost/consumption and/or carbon emission, IDC operators should
take effective measures to manage the way of consuming energy and procuring
energy. Specifically, IDCoperators should decide the optimal load balancing scheme,
the number of active servers, the quantity of power obtained from the main grid, the
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quantity of power drawn from distributed generation and distributed energy storage
so as to minimize energy consumption/cost or carbon emission while providing the
QoS for incoming service requests.

On the other hand, electrical power system is evolving toward smart grid, which
has come to describe a next-generation electrical power system that is typified by
the increased use of communications and information technology in the generation,
delivery, and consumption of electrical energy [7]. Due to its efficiency and potential,
lots of works have been done to run distributed IDCs in smart grid environment
[8–11], and the benefits are manifold: (1) smart grid technologies (e.g., distributed
generation and distributed electricity storage) can provide energy efficiency savings
in IDCs [12]; (2) by accessing smart grid’s real-time states (e.g., power price, power
demand, power availability, carbon emission), the spatial and temporal variations of
electricity price and renewable energy could be exploited to reduce energy cost [13];
and (3) IDC can make profits by participating in demand response programs to
provide services for smart grid [13].

Considering the advantages of smart grid, this book studies the energy manage-
ment of IDCs in smart grid. The significance of this study for different entities can
be described as follows:

• IDC Operators: reducing energy consumption/cost by managing energy effi-
ciently.

• Smart Grid: improving the reliability of smart grid when IDCs are involved in
demand response.

• Sociality: reducing carbon emission. Take USA for example, reducing electricity
1KWh would lead to the reduction of 0.5Kg carbon emission. Thus, if all data
centers in USA can save 0.1 billion KWh electricity, the emission of 0.5 million
tons CO2 can be avoided, whichwill contribute to solving environmental problems
such as global warming.

• Nation: “Green” extent can affect the image of a nation in international soci-
ety. Thus, reducing carbon emission can help a nation to improve international
impression and status, e.g., increasing the possibility of applying for the Olympic
Games.

When managing the way of energy consumption and energy procurement, IDC
operators have to face several challenges, which can be classified as follows. The first
challenge comes from uncertainty. Specifically, the future electricity price, workload,
renewable energy output, carbon emission, and power grid state (normal or blackout)
are volatile and cannot be accurately predicted. When some long-term performance
objectives are considered, IDC operators have to make decisions under uncertainty.
The second challenge lies in the conflict of performance objectives, such as energy
cost versus carbon emission, energy cost versus operation risk, and energy cost versus
bandwidth cost. How to achieve the optimal tradeoff among them according to the
preferences of IDC operators remains a open and challenging problem. The third
challenge is how to provide QoS guarantees for incoming requests when minimizing
energy cost, since degraded QoS may disappoint clients and lead to high churn rate
as well as business loss.
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1.4 Related Works

In this section, we review the existing works and point out some essential aspects
that have not been well investigated yet.

1.4.1 Existing Works

We can divide the existing works into three categories, namely cost-aware energy
management, carbon-aware energymanagement and smart grid impact-aware energy
management.

1.4.1.1 Cost-Aware Energy Management

Bydecreasing power consumption and utilizing the price diversity, IDCoperators can
reduce energy cost. Specifically, lots of technologies have been proposed to decrease
power consumption, such as energy-efficient chips, dynamic speed scaling, dynamic
server provisioning, and efficient job scheduling. In deregulated electricity markets,
spot prices exhibit both temporal and spatial variations [5], which can be exploited
to reduce energy cost for IDCs. In [14], Rao et al. proposed a geographical load bal-
ancing scheme to minimize energy cost by utilizing the spatial diversity of electricity
price. Shao et al. [15] proposed a geographical load balancing scheme considering
transmission delay. Li et al. [16] investigated the problem of minimizing energy cost
considering bandwidth cost. In [17], the authors developed an online algorithm to
minimize energy cost with batteries, which can utilize the temporal diversity of elec-
tricity price. In [18],Yao et al. studied the problemofminimizing energy cost for IDCs
considering delay-tolerant workloads. In [19], a scheme was proposed to minimize
the energy cost of IDCs considering delay-tolerant and delay-sensitive workloads,
which can utilize the spatial and temporal diversities of electricity price. Li et al. [20]
proposed an integrated model considering the impacts of electricity prices and power
management capability of IDCs. Guo et al. [21] presented a method to minimize the
energy cost of sustainable IDCs considering thermal storage and delay-tolerantwork-
loads. In [22], Luo et al. proposed a temporal load balancing scheme to minimize the
energy cost of an IDC, which can utilize the temporal diversity of electricity price.

1.4.1.2 Carbon-Aware Energy Management

In addition to energy cost, socially responsible IDC operators also care about the
environmental impact of their IDCs [5]. Liu et al. [23] proposed a green geographical
load balancing scheme, which considers energy cost and the lost revenue due to the
delay violation. Zhang et al. [24] proposed a strategy to maximize the use of renew-
able energy given the energy cost budget. Gao et al. [6] proposed a request-routing
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framework that provides a three-way tradeoff between access latency, electricity
cost, and carbon footprint. In [25], Gao et al. analyzed the feasibility of achieving
“entirely green” cloud-scale services for a distributed IDC system by exploiting mul-
tiple uncorrelated wind energy sources. In [26], Ghamkhari et al. studied the problem
of minimizing the weighted sum of energy cost and service delay for renewable dis-
tributed IDCs. Deng et al. [27] designed a control algorithm to minimize energy
cost for an IDC considering some complementary renewable energy sources. Zhou
et al. [28] proposed a carbon-aware load balancing scheme to minimize energy cost
of IDCs given the carbon budget.

1.4.1.3 Smart Grid Impact-Aware Energy Management

IDCs are large power consumers and their power consumption can be adjusted flex-
ibly, thus, IDCs are very suitable to participate in demand response programs. Com-
paredwith the centralized large power consumers, IDC can provide ancillary services
to smart grid without sacrificing the user experiences. In [29], Mohsenian-Rad et al.
pointed out that IDC can contribute to improve the reliability of smart grid. In [30],
Ghamkhari et al. proposed a demand response method for IDCs to make profits.
In [31], Chen et al. proposed a demand response method based on virtual machine
migration.

1.4.2 Observations

In existing works, some essential aspects have not been well investigated, which are
listed below.

1. Power Outages: With the introduction of smart grid, some cyber-related vulner-
abilities may also be created if no appropriate security control is deployed [32].
Therefore, when cyber attacks are launched, power gridmay become unstable due
to the cyber-power interdependencies in smart grid [33], which may ultimately
lead to power outages. At this time, backup generators would startup. Since the
duration caused by power outages is usually several hours and the generation
costs of backup generators are far larger than average electricity prices in power
grid, higher energy cost would be introduced. When power outages caused by
cyber attacks occur frequently, the increased energy cost of IDC operators would
be very large. Therefore, it is necessary to consider power outages when running
the distributed IDCs in smart grid environment.

2. Carbon Emission: Socially responsible IDC operators are expected to reduce
energy cost and carbon emission simultaneously. Currently, many IDC operators
consider renewable energy sources in IDC operations. However, the output of
renewable energy sources is random. In existing works, some schemes have been
proposed to maximize the usage of renewable energy. However, when power
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supply is larger than power demand, surplus renewable energy is wasted. In fact,
the excess energy could be sold back to main grid to save energy cost.

3. Heterogeneous Service Delay Guarantees: Whenminimizing energy cost, IDC
operators should guarantee service level agreements (SLAs) for all requests since
SLAviolationwould result in the loss of business revenue. The SLA requirements
of different requests are different, for example average delay (or 95th percentile
delay) is usually adopted as the SLA metric for delay-sensitive requests (e.g.,
web search requests), while service delay deadline (or completion time) is used
as the SLA metric for delay-tolerant requests (e.g., batch jobs). In most existing
work on delay-tolerant requests, average delay (or the same worst-case delay, or
the same service delay guarantee) is considered in IDC operations, which may
lead to SLAviolations for delay-tolerant requests.Moreover, IDC operators could
reduce energy cost by fully exploiting the temporal diversity of electricity price
when heterogeneous service delay guarantees are provided. Thus, it is necessary
for IDC operators to provide heterogeneous service delay guarantees for delay-
tolerant requests.

4. Operation Risk: In smart grid, IDC operators can reduce the energy cost by
utilizing the spatial and temporal diversities of spot prices. When IDC operators
only buy electricity from spot markets to supply IDCs, the spatial and temporal
diversities of prices could be fully utilized to reduce energy cost. Meanwhile,
prices in spot markets and workloads are volatile, price and workload forecast-
ing tend to be less accurate with the increase of planning horizon (e.g., from
day to month or year). Consequently, the future energy cost of IDCs is uncertain
(or random), which is a risk for IDC operators since they may experience high
probability of having high energy cost in the future. To manage the risk men-
tioned above, the risk metric should be proposed. In existing work, the variance
is adopted as the operation risk metric. Minimizing the risk metric can help IDC
operators to reduce the downside and upside deviations from expected cost. How-
ever, downside deviations from expected cost are desirable. Thus, variance is not
very suitable for measuring the risk in IDC operations.

The above aspects are related to the opportunities and challenges faced by IDC
operators in smart grid. On one hand, IDC operators can reduce energy cost and
carbon emission in smart grid. On the other hand, IDC operators have to face the
challenges brought by smart grid environment, such as operation risk and power
outages.

1.5 Contents and Organizations

Taking the above observations into consideration, we study the energy management
of Internet data centers in smart grid from four perspectives. Specifically, we inves-
tigate the problem of minimizing energy cost for distributed IDCs in smart grid
considering power outages and carbon emission in Chaps. 2 and 3, respectively. In
Chap.4, we investigate the problem of minimizing the long-term energy cost for an

http://dx.doi.org/10.1007/978-3-662-45676-7_2
http://dx.doi.org/10.1007/978-3-662-45676-7_3
http://dx.doi.org/10.1007/978-3-662-45676-7_4
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IDC in deregulated electricity markets while providing heterogeneous service delay
guarantees for delay-tolerant workloads. In Chap.5, we study the problem of man-
aging the risk in IDC operations in deregulated electricity markets. Finally, further
research directions are discussed in Chap.6.
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Chapter 2
Energy Cost Minimization for Internet Data
Centers Considering Power Outages

Abstract With the adoption of smart grid, some cyber-related vulnerabilities may
also be introduced. When cyber attacks are launched, the power grid may become
unstable and ultimately power outages may occur. In this situation, backup generators
would be scheduled to support the operation of Internet data centers. Since the gener-
ation cost of backup generators are far higher than the average price of electricity in
main grids, higher energy cost for Internet data center operators would be incurred.
When power outages caused by cyber attacks occur frequently, the increased energy
cost of Internet data center operators would be very large. Thus, it is necessary to
consider the operation of Internet data centers in power outage environment. Since
Internet data center operators can reduce energy cost by fully utilizing the spatial and
temporal diversities of renewable energy in smart microgrids when there are power
outages, we consider a scenario that running Internet data centers in smart microgrids
and propose an efficient algorithm to minimize the long-term energy cost.

Keywords Smart microgrid · Internet data centers · Energy cost · Energy storage ·
Power outages

2.1 Introduction

The past decade has witnessed tremendous growth of online applications and ser-
vices. Together with the recent trend of cloud computing, massive Internet data
centers (IDCs) are deployed for reliability, management, and cost benefits. For IDC
operations, a critical issue is the energy consumption. According to a recent study,
many IDC operators (e.g., Microsoft and Google) spend more than $30 million on
their annual electricity costs, which contribute to a large portion of IDC operational
expenditure [1, 2].

On the other hand, electrical power system is evolving toward smart grid, which
has come to describe a next-generation electrical power system that is typified by
the increased use of communications and information technology in the generation,
delivery, and consumption of electrical energy [3]. Due to its efficiency and potential,
lots of research has been done to run distributed IDCs in smart grid environment
[4–6], and the benefits are manifold: (1) smart grid technologies (e.g., distributed
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generation and distributed electricity storage) can provide energy efficiency savings
in IDCs [7]; (2) by accessing smart grid’s real-time states (e.g., power price, power
demand, power availability), the spatial and temporal variations of electricity price
and renewable energy could be exploited to reduce energy cost [8].

With the introduction of smart grid, some cyber-related vulnerabilities may also
be created if no appropriate security control is deployed [9]. Therefore, when cyber
attacks are launched, power grid may become unstable due to the cyber-power inter-
dependencies in smart grid [10], which may ultimately lead to power outages [11–13].
When power outages occur in main grids to which distributed IDCs are connected,
the energy cost of distributed IDCs would increase. The reason is that: (1) fewer
spatial and temporal diversities of electricity price could be utilized; (2) backup gen-
erators (typically, diesel generators are adopted) in IDCs have to run for a long time
(usually several hours [12]) when local renewable energy is in shortage or uninter-
ruptible power system (UPS) capacity is limited. Since the generation cost of backup
generators is far higher than the average real-time electricity prices [14–16], higher
energy cost would be incurred. When power outages caused by cyber attacks occur
frequently, the increased energy cost of IDC operators would be very large. There-
fore, it is necessary to consider power outages when running the distributed IDCs in
smart grid environment.

To reduce energy cost caused by power outages, it is possible to operate distributed
IDCs in smart microgrids (SMGs, which are evolved from microgrids in smart grid
environment [17]). The reason is that IDC operators can still exploit the spatial and
temporal diversities of renewable energy to reduce energy cost, even if there are
power outages in main grids. Specifically, by scheduling workload to the SMGs
with abundant renewable energy, the dependence on backup generators in the SMGs
with inadequate renewable energy could be reduced, resulting in lower energy cost
(i.e., spatial diversity is utilized). On the other hand, energy storage devices can
be scheduled to store excess renewable energy and to discharge energy when IDC
demands are high, leading to reduced reliance on backup generators and lower energy
cost (i.e., temporal diversity is utilized).

As motivated, we study the problem of minimizing the energy cost of distributed
IDCs in SMGs considering power outages. Specifically, we consider an IDC operator
having some IDCs geographically distributed in several of its own SMGs, which are
located in independent electric regions (ERs). Moreover, the IDC operator needs to
meet the power demand of IDCs using backup generators, renewable energy sources,
and energy storage devices in SMGs and the power purchased from main grids in
case of no power outages. The objective of the IDC operator is to minimize the long-
term energy cost by deciding the service request distribution, the number of active
servers, the operation of energy storage devices, the schedule of backup and renew-
able generators, as well as the power transactions between SMGs and main grids.

To achieve the above target, the challenge is how to effectively manage the oper-
ation of energy storage devices in SMGs [18–20]. Since energy storage devices can
bring the time coupling effects to the system, the formulated optimization problem is
very difficult to solve. In existing work on data centers [21, 22], several schemes
have been developed for exploiting energy storage devices based on Lyapunov
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optimization technique [23], which can operate without any statistical information
about future uncertain parameters. However, the existing works do not consider run-
ning IDCs in SMGs and power outage environment. Thus, new design and analysis
are required for an operation algorithm.

The main contributions of this chapter are summarized below:

• By taking SMGs and power outage into account, we formulate a stochastic pro-
gram problem to minimize the long-term energy cost of distributed IDCs, which
captures the service request distribution, server provisioning, battery management,
generator scheduling, power transactions between SMGs and main grids.

• We design an operation algorithm to solve the problem based on Lyapunov opti-
mization technique by jointly considering the use of renewable and backup gener-
ators, battery management, and electricity purchasing/selling. Moreover, the pro-
posed algorithm can operate without requiring any statistical information about
system dynamics.

• We provide the performance guarantee of the proposed algorithm when future
random parameters are independent and identically distributed (i.i.d.) over slots.
Theoretical analysis shows that the proposed algorithm enables an explicit tradeoff
between energy cost saving and battery investment cost.

• Extensive evaluations based on real-world data show the effectiveness of the pro-
posed operation algorithm.

The rest of this chapter is organized as follows. Section 2.2 describes the sys-
tem model. Problem formulation and algorithm design are conducted in Sect. 2.3.
Section 2.4 gives the algorithmic performance analysis and simulations. Finally, con-
clusions are made in Sect. 2.5.

2.2 System Model

We consider an IDC operator with some SMGs located in some independent ERs as
shown in Fig. 2.1, where these SMGs are connected to main grids in corresponding
ERs. IDCs act as the load in SMGs, while a front-end server acts as a load balancer
that receives incoming service requests and dispatches them to IDCs for processing.
The architecture of SMG under study is given in Fig. 2.2, where several parts could be
highlighted, i.e., generators, loads, storage banks, and energy management system.
Generators include backup generators (typically diesel generators) and renewable
generators (e.g., solar panels or wind turbines). In this chapter, diesel generators and
wind turbines are considered. Diesel generators are fast-responding and dispatch-
able, and they are typically incorporated in data centers for reliability considerations
[2, 24]. By contrast, wind turbines are nondispatchable and their generation outputs
depend on weather conditions. Loads in Fig. 2.2 denote IDCs, while storage bank
denotes battery. SMGs have two operation modes, i.e., grid-connected and islanded.
When there are power outages in main grids, SMGs can isolate themselves from
main grids and supply their IDCs using energy storage devices, renewable energy
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Fig. 2.1 System model

Energy management system

Control signalPower flow

Generators Loads Storage bank

Main grid

Switch on/off HV/LV

Fig. 2.2 SMG architecture under study

sources as well as backup generators. In the grid-connected mode, power transactions
between SMGs and main grids can be conducted.

2.2.1 Models Related to Front-End Servers
and Internet Data Centers

2.2.1.1 Workload Allocation Model

We consider an IDC operator having N IDCs geographically distributed in N inde-
pendent ERs, and each IDC acts as the load in an SMG connected to a main grid,
i.e., N SMGs and N main grids are considered. For simplicity, we use the common
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index i for IDCs, SMGs, and main grids, where 1 ≤ i ≤ N . In this chapter, we mainly
focus on delay-sensitive workloads (e.g., “request-response” type web services [5]).
Suppose IDC i have Mi homogeneous servers and mi(t) of them are turned on to
process service requests at slot t. Define m(t) = (m1(t), . . . , mN (t)) as the active
server vector. Moreover, mi(t) is assumed to be unchanged at slot t due to the relia-
bility considerations [25]. We denote the arrival rate of requests at front-end server f
(1 ≤ f ≤ F) as Rf (t). Let R(t) = (R1(t), . . . , RF(t)) be the workload arrival vector,
where F is the total number of front-end servers. Let λf ,i(t) be the workload that is
assigned from front-end f to the servers at IDC i at slot t. λ(t) = (λf ,i(t), ∀f , i) is
denoted as the service request distribution. In order to assure that all service requests
would be handled, we have

N∑

i=1

λf ,i(t) = Rf (t). (2.1)

2.2.1.2 Service Delay Model

To satisfy the quality of service requirements, the average response delay for incom-
ing service requests should be limited within a certain range that is specified in
service level agreement (SLA).1 Otherwise, penalties would be incurred. In this
chapter, the M/M/n queueing model is adopted to process the incoming workload as
in the previous work [4]. Note that the queueing model is not necessarily the most
accurate for the practical workload, but it will not affect the nature of the energy
cost minimization problem and the proposed operation algorithm. Adopting some
general queuing models (e.g., G/G/n as in [26]) would be considered in future work.
Let Dmax

i be the threshold that identifies the revenue/penalty region at IDC i, μi be
the average service rate of servers in IDC i. To avoid penalty, the average response
delay constraints should be satisfied, i.e.,

1

mi(t)μi − ∑F
f =1 λf ,i(t)

+ 1

μi
≤ Dmax

i , (2.2)

0 ≤ mi(t) ≤ Mi. (2.3)

2.2.1.3 Power Consumption Model

The energy efficiency of an IDC is always measured by power usage effectiveness
(PUE), which is defined as the ratio of the total power consumption at an IDC to the
power consumption at IT equipment. Currently, the typical value of PUE is 2 [1].
Let PUEi be the PUE of IDC i, Pidle

i and Ppeak
i represent the idle power and peak

power of a server in IDC i, respectively. Let Ui(t) be the average server utilization at

1 Here, a simple SLA is adopted as in [26]. Other more complicated SLAs could also be incorporated.
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slot t, which is equal to λi(t)/(mi(t)μi). Denote the total power consumption of IDC
i at slot t as Pi(t) and P(t) = (P1(t), . . . , PN (t)) as the power consumption vector.
Following the models in [1], Pi(t) can be estimated by

Pi(t) = mi(t)(ϕiUi(t) + γi), (2.4)

where ϕi � Ppeak
i −Pidle

i , γi � Pidle
i +(PUEi −1)Ppeak

i . Note that servers in each IDC
are assumed to be homogeneous in the above model. For more general situations,
the corresponding model can also be incorporated easily.

2.2.2 Models Related to Smart Microgrids

2.2.2.1 Power Supply Model

Suppose that each SMG has a wind farm comprising several identical wind tur-
bines. Then, the total output of the wind farm is the summation of power outputs
at different points of the spatial field. Let Gr

i(t) be the available wind energy in
SMG i at slot t, which can be approximated by the model in [27]. Let Gr(t) =
(Gr

1(t), . . . , Gr
i(t), . . . , Gr

N (t)) be the vector of available wind energy at slot t.
As in [28, 29], the piecewise linear production cost model is adopted to model the

energy cost of diesel generators in SMGs. Suppose piecewise linear production cost
curve has NB segments, each segment b (1 ≤ b ≤ NB) introduces a binary variable
Zg

i,j,b(t) and a continuous variable Qi,j,b(t), where 1 ≤ j ≤ Nd
i , Nd

i denotes the total
number of diesel generators in SMG i. If the energy produced by the diesel generator j
in SMG i at slot t falls into the range [gmin

i,j,b, gmax
i,j,b], Zg

i,j,b(t) = 1; Otherwise, Zg
i,j,b(t) =

0. Qi,j,b(t) denotes the specific energy quantity when the energy generation of the
diesel generator j in SMG i at slot t fall into the range above. Then, we have

Zg
i,j,b(t) ∈ {0, 1}, (2.5)

NB∑

b=1

Zg
i,j,b(t) ≤ 1, (2.6)

gmin
i,j,bZg

i,j,b(t) ≤ Qi,j,b(t) ≤ gmax
i,j,bZg

i,j,b(t), (2.7)

where gmin
i,j,b and gmax

i,j,b are the lower and upper limit of energy generation of the
diesel generator j in SMG i corresponding to the segment b of the piecewise linear
production cost model, respectively.

Let Ga
i (t) be the total power produced by diesel generators in SMG i at slot t.

Then, Ga
i (t) is given as

Ga
i (t) =

Nd
i∑

j=1

NB∑

b=1

Qi,j,b(t)/ΔT , (2.8)
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where ΔT is the duration of a slot. Let Hi,j,b and αi,j,b be the slope and Y-intercept of
the segment b associated with the diesel generator j in SMG i. Then, the total energy
cost of diesel generators in SMG i during time slot t is given by2

Ki(t) =
Nd

i∑

j=1

NB∑

b=1

(Hi,j,bQi,j,b(t) + αi,j,bZg
i,j,b(t)). (2.9)

2.2.2.2 Battery Model

Gg2
i (t) and G2g

i (t) represent the power purchased from and sold back to the main grid
i at slot t, respectively. Gb2

i (t) and G2b
i (t) are the discharging and charging power for

the battery in SMG i at slot t. To balance the power supply and demand in SMG i,
we have

Ga
i (t) + Gr

i(t) + Gg2
i (t) + Gb2

i (t) = Pi(t) + G2b
i (t) + G2g

i (t). (2.10)

To indicate whether SMG i is buying or selling power or not at slot t, two binary
variables are adopted, i.e., Zg2

i (t) and Z2g
i (t). Specifically, Zg2

i (t) = 1 if SMG i

is purchasing power from main grid i at slot t; Otherwise, Zg2
i (t) = 0. Similarly,

Zg2
i (t) = 1 if SMG i is selling power back to main grid i at slot t; Otherwise,

Zg2
i (t) = 0. Since it is not reasonable to purchase and sell energy on the market at

the same time, we have

Zg2
i (t), Z2g

i (t) ∈ {0, 1}, (2.11)

Zg2
i (t) + Z2g

i (t) ≤ 1, (2.12)

0 ≤ Gg2
i (t) ≤ Gbmax

i Zg2
i (t), (2.13)

0 ≤ G2g
i (t) ≤ Gsmax

i Z2g
i (t), (2.14)

where Gbmax
i and Gsmax

i denote the maximum purchasing power from main grid i
and maximum selling power to main grid i, respectively.

Let Ei(t) be the energy level of the battery in SMG i at slot t. Then, Ei(t) is
bounded by the following constraints,

Emin
i ≤ Ei(t) ≤ Emax

i , (2.15)

2 For diesel generators, its minimum on/off periods could be regarded as zero and ramping-up/-
down rate could be assumed to be ∞ [30]. Thus, some constraints about minimum on/off periods
and ramping-up/-down rate are neglected. In addition, due to the lack of public knowledge about
startup cost of diesel generators, we also neglect such cost.
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where Emax
i ≥ 0 is the maximum capacity, and Emin

i ≥ 0 is the minimum capacity,
which may be set by the battery deep discharge protection settings. As in [21], we do
not explicitly consider some practical issues, such as energy leakage in the battery
or DC/AC conversion loss, which can be readily incorporated. Then, Ei(t) has the
following dynamics at SMG i:

Ei(t + 1) = Ei(t) + ΔT(G2b
i (t) − Gb2

i (t)). (2.16)

To indicate whether the battery in SMG i is charging or not at slot t, two binary
variables are introduced, i.e., Zbc

i (t) and Zbd
i (t). Specifically, Zbc

i (t) = 1 if that
battery is charging; Otherwise, Zbc

i (t) = 0. Similarly, Zbd
i (t) = 1 if that battery

is discharging; Otherwise, Zbd
i (t) = 0. Without loss of generality, we assume that

charging and discharging cannot be done simultaneously [2]. Then, we have

Zbc
i (t), Zbd

i (t) ∈ {0, 1}, (2.17)

Zbc
i (t) + Zbd

i (t) ≤ 1, (2.18)

0 ≤ G2b
i (t) ≤ Gcm

i Zbc
i (t), (2.19)

0 ≤ Gb2
i (t) ≤ Gdm

i Zbd
i (t), (2.20)

where Gcm
i and Gdm

i are the maximum charging and discharging power for the battery
in SMG i, respectively.

2.2.3 Models Related to Main Grids

2.2.3.1 Power Outage Model

Power outages could be planned or unplanned. Reasons for unplanned power out-
ages are manifold, for example the faults of transformers and transmission lines
caused by environmental or maintenance issues [31], the failures of protective relay-
ing and SCADA caused by cyber attacks [11, 12]. In this chapter, we mainly consider
the power outages caused by cyber attacks. Note that the naturally occurring out-
ages could also be incorporated [13]. To analyze the impacts of cyber attacks, RICA
approach had been proposed in [12], where power outages caused by cyber attacks are
mainly measured by two parameters, i.e., the interval between successful attacks and
the time needed to recover from outages, which can be modeled using an exponential-
distributed random variable and selected mean time to attack (MTTA) and mean time
to recover (MTTR). Let Zp

i (t) be an indicator variable that takes the value one when-
ever there is no power outage in main grid i at slot t, and takes the value zero otherwise.
Let Zp(t) = (Zp

1 (t), . . . , Zp
N (t)) be the power outage vector. Since power transactions

between SMG i and main grid i are not allowed when there is power outage, we have

0 ≤ Zg2
i (t) + Z2g

i (t) ≤ Zp
i (t). (2.21)
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2.2.4 Energy Cost Model

Let C(t) be the total energy cost of IDC operators at slot t. Then, C(t) is composed
of several parts, i.e., the energy cost (revenue) associated with buying (selling) elec-
tricity, the cost caused by the negative effect of the charging and discharging power
[21], and the generation cost of diesel generators in SMGs. That is, C(t) is given by

C(t) =
N∑

i=1

{Gg2
i (t)Si(t) − G2g

i (t)Wi(t)}ΔT +
N∑

i=1

Ki(t) +
N∑

i=1

(Zbc
i (t) + Zbd

i (t))ρb
i ,

(2.22)

where ρb
i denotes the cost incurred by battery charging and discharging per time,

which are assumed to be the same [2, 21]. Si(t) and Wi(t) denote the price for
purchasing and selling electricity from and to main grid i at slot t, respectively. Let
S(t) = (S1(t), . . . , SN (t)) and W(t) = (W1(t), . . . , WN (t)) be the purchasing and
selling price vector, respectively. We suppose that Si(t) ∈ [Smin

i , Smax
i ], Wi(t) ∈

[Wmin
i , Wmax

i ], which are announced by the utility markets at the beginning of each
slot and remains constant in the slot [32].

2.2.5 Some Discussions About Models

Battery Model: Gbmax
i and Gsmax

i are determined by the capacity of transformers
and power transmission lines [32]. For simplicity, we assume that the transmission
loss is negligible and the capacity of transformers and power transmission lines is
large enough [32], i.e., Gbmax

i ≥ max
t

{Pi(t) + G2b
i (t)} and Gsmax

i ≥ max
t

{Ga
i (t)

+ Gr
i(t) + Gb2

i (t)}.
Power Outage Model: (1) In RICA approach [12], RICA attack model assumes cer-
tain characteristics about the adversary that may not adequately characterize the entire
attacker spectrum. For more attacker types, RICA approach needs to be extended
[13]; (2) For simplicity, power grid states (i.e., with/without power outages) are
assumed to be constant during a slot, but they can change over slots. The assumption
is reasonable since the duration of outages caused by cyber attacks is usually several
hours [12], which is far larger than ΔT (e.g., 15 min or 1 h).
Energy Cost Model: (1) We ignore all fixed costs associated with wind generation
(e.g., capital expenditure and fixed operational and maintenance cost) in the energy
cost model since these parts would not affect the optimization results of the formu-
lated problems P2.1–P2.4. Moreover, according to [33], the variable operational and
maintenance cost of wind turbines is negligible. Therefore, the generation cost of
wind energy can be assumed to be zero; (2) We assume Si(t) and Wi(t) are inde-
pendent of the amount of energy to be purchased or sold at slot t. In addition, we
suppose Si(t) ≥ Wi(t) for all t [32]. That is, SMG cannot make profit by greedily
purchasing energy from the market and then selling it back to the market at a higher
price simultaneously.
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2.3 Problem Formulation and Algorithm Design

In this chapter, we are interested in minimizing the time-average expected energy
cost (i.e., the expected energy cost averaged over the infinite time horizon). Com-
pared with existing works on energy cost reduction for data centers [2, 21], we
formulate the minimization problem (i.e., P2.1) by taking SMGs and power outage
into account. Specifically, the formulated problem jointly consider the renewable and
backup generators, battery management, electricity purchasing and selling, as well
as power outage.

(P2.1) min lim sup
T→∞

1

T

T−1∑

t=0

E{C(t)}, (2.23a)

s.t. (2.1)−(2.3), (2.5)−(2.7), (2.10)−(2.21), (2.23b)

where the expectation above is with respect to the stationary distribution of {S(t),
W(t), R(t),Gr(t), Zp(t)} and possibly random control decisions that are made in
reaction to the observed {S(t), W(t), R(t), Gr(t), Zp(t)}. Specifically, these control
decisions are m(t), λ(t), G(t), Z(t) and Q(t). The definitions of G(t), Z(t) and Q(t)
are given as follows:

G(t) = {Gg2
i (t), G2g

i (t), G2b
i (t), Gb2

i (t)}, (2.24)

Z(t) = {Zbc
i (t), Zbd

i (t), Zg
i,j,b(t), Zg2

i (t), Z2g
i (t)}, (2.25)

Q(t) = {Qi,j,b(t)}. (2.26)

There are two challenges to solve P2.1. First, the future parameters are unknown,
including workload, electricity price, renewable generation output, and power out-
age state. Second, the constraints on the energy level of battery bring the “time
coupling” property to P2.1, which means that the current decision can impact the
future decision. Previous methods to handle the “time coupling” problem are usually
based on dynamic programming, which suffers from the “the curse of dimension-
ality” problem. In this section, we design an operation algorithm based on Lya-
punov optimization technique. Because of the time-coupling constraint (2.16), we
first consider a relaxed problem, which fits into the framework of Lyapunov opti-
mization. Then, we design our algorithm base on the insights provided by the relaxed
problem.

2.3.1 Relaxed Problem

In this subsection, a relaxed problem of P2.1 is considered. Defining the time-average
expectation of charging and discharging power of the battery at IDC i under any
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feasible control policy of P2.1 as follows,

G2b
i = lim sup

T→∞
1

T

T−1∑

t=0

E{G2b
i (t)}, (2.27)

Gb2
i = lim sup

T→∞
1

T

T−1∑

t=0

E{Gb2
i (t)}. (2.28)

Since battery energy levels update according to (2.16), summing over all t ∈
{0, 1, 2, . . . , T − 1}, taking expectation of both sides and dividing both sides with

T and letting T → ∞, we have G2b
i = Gb2

i . Then, a relaxed problem is given as
follows, called P2.2.

(P2.2) min lim sup
T→∞

1

T

T−1∑

t=0

E{C(t)}, (2.29a)

s.t. (2.1)−(2.3), (2.5)−(2.7), (2.10)−(2.14), (2.17)−(2.21), (2.29b)

G2b
i = Gb2

i . (2.29c)

Let y∗ and yrel be the optimal solution of P2.1 and P2.2, respectively. As mentioned
before, any feasible solution to P2.1 is also a feasible solution to P2.2. Therefore,
we have yrel ≤ y∗. Obviously, P2.2 is easier to solve than P2.1 due to the removal of
“time coupling” property. From the framework of Lyapunov optimization [23], we
have the following Theorem for the solution to P2.2:

Theorem 1 If {S(t), W(t), R(t), Gr(t), Zp(t)} are i.i.d. over slots, then there exists
a stationary and randomized policy that takes control decisions (i.e., m̂(t), λ̂(t),
Ĝ(t), Q̂(t) and Ẑ(t)) every slot t as a pure (possibly randomized) function of the
observed {S(t), W(t), R(t), Gr(t), Zp(t)} while satisfying the constraints of P2.2
and providing the following guarantees.

E{Ĝ2b
i (t)} = E{Ĝb2

i (t)}, (2.30)

E{Ĉ(t)} = yrel, (2.31)

where the expectation operations above are with respect to the stationary distribution
of {S(t),W(t),R(t), Gr(t), Zp(t)}, and randomized control decisions. Ĉ(t) denotes
the value of (2.22) under the stationary and randomized policy.

The proof can be obtained according to Theorem of Optimality over ω-only
Policies in [23]. Thus, it is omitted for brevity. To obtain such a control policy,
we need to know the statistical distributions of all combinations of {S(t), W(t),
R(t), Gr(t), Zp(t)}, which may be unknown and difficult to obtain. Moreover, the
control policy may be infeasible for the original problem P2.1 as it could violate
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the constraint (2.15). However, the existence of such a control policy can help us to
derive the performance guarantee of the proposed operation algorithm as shown in
the part 3 of the Theorem 2.

2.3.2 Proposed Operation Algorithm

The key idea of the proposed operation algorithm is described as follows:

• transforming P2.2 into a queue stability problem according to the framework of
Lyapunov optimization technique;

• obtaining the drift-plus-penalty term according to the theory of Lyapunov opti-
mization technique;

• minimizing the R.H.S. of the upper bound of the drift-plus-penalty term.

Note that the decisions of the proposed operation algorithm do not necessarily satisfy
the constraints of P2.1, therefore, we should check the feasibility of the proposed
operation algorithm, which would be given in Sect. 2.4.

According to the above key idea, first, we introduce battery virtual queues Xi(t)
in order to transform P2.2 into a queue stability problem, where

Xi(t) = Ei(t) − Emin
i − Vθmax

i − ΔTGdm
i , (2.32)

where θmax
i = max{Smax

i , Wmax
i , Hmax

i }, Hmax
i = maxj,b{Hi,j,b}. V ∈ [0, Vmax] is a

constant for the tradeoff between minimizing expected energy cost and ensuring the
stability of virtue queues. The constant Vmax is carefully selected to ensure that the
evolution of the battery energy levels satisfies the constraints in (2.15). Continually,
we have

Xi(t + 1) = Xi(t) + ΔT(G2b
i (t) − Gb2

i (t)). (2.33)

Then, according to the framework of Lyapunov optimization in [23], P2.2 can be
equivalently transformed to a queue stability problem as follows, named P2.3

(P2.3) min lim sup
T→∞

1

T

T−1∑

t=0

E{C(t)}, (2.34a)

s.t. (2.1)−(2.3), (2.5)−(2.7), (2.10)−(2.14), (2.17)−(2.21), (2.34b)

Queues Xi(t) are mean rate stable. (2.34c)

To solve P2.3, we would develop an operation algorithm based on Lyapunov
optimization technique. First, we define a Lyapunov function as follows,

L(t)
Δ= 1

2

N∑

i=1

(Xi(t))
2. (2.35)
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Then, the one-slot conditional Lyapunov drift is given by

Δ(t) = E{L(t + 1) − L(t)|X(t)}, (2.36)

where X(t) = (X1(t), . . . , XN (t)), the expectation is taken with respect to the ran-
domness of workload, electricity price, renewable generation output, and power
outage rate, as well as the randomness in choosing the control decisions. We define
χi(t) = G2b

i (t) − Gb2
i (t), then

L(t + 1) − L(t) = 1

2

N∑

i=1

[
(Xi(t + 1))2 − (Xi(t))

2] ≤
N∑

i=1

[
ωi + Xi(t)ΔTχi(t)

]
,

(2.37)

where ωi � (ΔT max{Gcm
i ,Gdm

i })2

2 . Thus, we have

Δ(t) ≤
N∑

i=1

ωi +
N∑

i=1

E{Xi(t)ΔTχi(t)|X(t)}. (2.38)

Continually, following the Lyapunov optimization framework, we add a function
of the expected energy cost over one period (i.e., the penalty function) to (2.36) to
obtain the drift-plus-penalty term as follows,

ΔY(t) = Δ(t) + VE{C(t)|X(t)} ≤
N∑

i=1

ωi + E
{ N∑

i=1

Xi(t)ΔTχi(t) + VC(t)|X(t)
}
.

(2.39)

Note that the proposed operation algorithm intends to minimize the R.H.S. of the
upper bound of the drift-plus-penalty term subject to the constraints in P2.3, which
is equivalent to minimize P2.4 based on the observed system states at the begin-
ning of slot t. Consequently, the proposed operation algorithm can be described by
Algorithm 1.

(P2.4) min
N∑

i=1

{Xi(t)ΔTχi(t)} + VC(t) (2.40a)

s.t. (2.1)−(2.3), (2.5)−(2.7), (2.10)−(2.14), (2.17)−(2.21), (2.40b)

Algorithm 1 : Operation Algorithm for IDC Operators
1: For each slot t do
2: At the beginning of slot t, observe system states: Xi(t), Wi(t), Rf (t), Si(t), Gr

i(t) and Zp
i (t);

3: Choose control decisions m(t), λ(t), G(t), Q(t), and Z(t) as the solution to P2.4;
4: Update Xi(t) according to (2.33);
5: End
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2.3.3 Solution

To solve P2.4, which is a MILP, its certain structure can be exploited, i.e., by fixing
the integer variables first, the resulting problem becomes convex for continuous
variables. Therefore, Benders’ decomposition [34] can be adopted to solve P2.4 in
this chapter, which can decompose P2.4 into two problems, i.e., master problem and
subproblem. In addition, considering that there are huge number of servers in IDCs
and a large fraction of them are active, we can relax the integer constraint on mi(t)
without significant energy cost penalties [4].

Before giving the algorithm to solve P2.4, we define some problems in the fol-
lowing part.

Let x � Z(t) and z � {m(t),λ(t), G(t), Q(t)}. If x is fixed to feasible integer
configuration x � Z(t), then, P2.4 can be reduced to P2.5 as follows,

(P2.5) min
z

∑

i

{Xi(t)ΔT(G2b
i (t) − Gb2

i (t))}

+
∑

i

{V(Gg2
i (t)Si(t) − G2g

i (t)Wi(t))ΔT}

+
∑

i

∑

j

∑

b

VHi,j,bQi,j,b(t) (2.41a)

s.t. Γ (z) ≤ 0, (2.41b)

where Γ (z) is obtained by fixing the discrete parameters in (2.1)–(2.3), (2.7), (2.10),
(2.13), (2.14), (2.19), (2.20) with x.

Let P2.6 be the dual of the P2.5, and the objective function of P2.6 is denoted as
Υ (x,φ), the constraints of P2.6 are described by Λ(φ) ≤ 0. Then, P2.6 is given by

(P2.6) max
φ

Υ (x,φ) (2.42a)

s.t. Λ(φ) ≤ 0. (2.42b)

Continually, the Benders’ subproblem can be defined as follows (P2.7, which is
a linear programming problem and can be solved in polynomial time),

(P2.7) Ψ ∗ = max
φ

∑

i

V(Zbc
i (t) + Zbd

i (t))ρb
i + Υ (x,φ)

+
∑

i

∑

j

∑

b

Vαi,j,bZg
i,j,b(t) (2.43a)

s.t. Λ(φ) ≤ 0. (2.43b)

We define the Benders’ master problem below (called P2.8, which is a 0–1 integer
programming problem and could be solved by a pseudo-polynomial time algorithm)

(P2.8) Ω∗ = min
x

Ω (2.44a)
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s.t. Ω ≥
∑

i

V(Zbc
i (t) + Zbd

i (t))ρb
i + Υ (x,φk2)

+
∑

i

∑

j

∑

b

Vαi,j,bZg
i,j,b(t), 1 ≤ k2 ≤ K2, (2.44b)

Υ (x,φk1) ≤ 0, 1 ≤ k1 ≤ K1, (2.44c)

(2.5), (2.6), (2.11), (2.12), (2.17), (2.18), (2.21), (2.44d)

where the Benders’ optimality cut (4b) and the Benders’ feasibility cut (4c) are incor-
porated when the Benders’ subproblem P2.7 is bounded and unbounded, respectively.
K1 and K2 are the number of feasibility cut and optimality cut, respectively. φk1 and
φk2 are the unbounded rays and the extreme points, respectively, where the method
to obtain the unbound rays can be found in [35].

Based on above optimization problems, an iterative algorithm based on Benders’
decomposition to solve P2.4 is proposed in Algorithm 1. Since K1 and K2 are finite,
the iterative algorithm is expected to converge to the optimal solution within a finite
number of iterations.

Algorithm 2 : Procedures of solving P2.4
1: Input: An initial feasible solution x1

and a convergence tolerant parameter ε >0
2: Output: An optimal solution x∗ and z∗
3: {Initialization}
4: Given initial feasible integer solution x1

5: LB1:=−∞
6: UB1:=∞
7: q=1, K1=0, K2=0;
8: for iteration q do
9: {solve subproblem P2.7}
10: if unbounded then
11: Get unbounded ray φK1+1, K1=K1+1
12: Add feasibility cut Υ (x,φK1 ) ≤ 0 to P2.8
13: else
14: Get extreme point φK2+1, K2=K2+1
15: Add optimality cut Ω ≥ ∑

i
V(Zbc

i (t) + Zbd
i (t))ρb

i + ∑
i

∑
j

∑
b

Vαi,j,bZg
i,j,b(t) + Υ (x,φK2 )

to P2.8
16: UBq:=min{UBq−1, Ψ ∗}
17: end
18: {solve master problem P2.8}
19: LBq:=Ω∗
20: if LBq + ε > UBq then
21: Obtain the optimal x∗
22: Solve P2.4 to recover solution by fixing x with x∗
23: return optimal solution x∗ and z∗
24: else
25: q = q + 1
26: end
27: end
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2.4 Analysis and Simulations

As explained in Sect. 2.3.2, we need to check the feasibility of the proposed oper-
ation algorithm. In this section, we present a lemma about the operation of battery.
Then, based on the lemma, we give a theorem about the feasibility of the proposed
algorithm, i.e., the proposed algorithm can operate without requiring any statistical
knowledge. Moreover, we provide the performance guarantee of the proposed algo-
rithm when {S(t), W(t), R(t), Gr(t), Zp(t)} are i.i.d. over slots. Note that algorithms
developed based on Lyapunov optimization technique are also robust to non-i.i.d.
and non-ergodic behaviors of the stochastic processes (e.g., [23]). Therefore, per-
formance evaluations in next section are conducted based on practical data without
any specific distribution assumption, which shows the robustness of the proposed
operation algorithm.

2.4.1 Analysis

First, we present a Lemma that is useful for the analysis of algorithmic performance.

Lemma 1 Let θmin
i = min{Smin

i , Wmin
i , Hmin

i }, Hmin
i = minj,b{Hi,j,b}, The optimal

solution to P2.4 has the following properties:

1. If Xi(t) < −Vθmax
i , the optimal solution always choose Gb2

i (t) = 0,
2. If Xi(t) > −Vθmin

i , the optimal solution always choose G2b
i (t) = 0.

Proof

1. For each SMG i, suppose that Xi(t) < −Vθmax
i and Gb2

i (t) > 0, then, we have
G2b

i (t) = 0. Let Γ1(t) denote the optimal value of the objective in P2.4, which
is the summation of Γ1,i(t) at all IDCs. To prove that the above decision is not
optimal, we choose G̃b2

i (t) = 0, and G̃2b
i (t) = 0. Let Γ2(t) denote the value of

the objective in P2.4, which is the summation of Γ2,i(t) at all IDCs. Given the
power demand Pi(t), the decisions about power supply for IDCs can be divided
into the following cases:
Case 1: If Gg2

i (t) = G2g
i (t) = 0, we set G̃g2

i (t) = Gg2
i (t), G̃2g

i (t) = G2g
i (t), then,

Ga
i (t) + Gb2

i (t) = G̃a
i (t). Continually, we have

Γ1,i(t) − Γ2,i(t) ≥ −(Xi(t) + VHmax
i )ΔTGb2

i (t) + Vρb
i > 0. (2.45)

Case 2: If Gg2
i (t) >0, G2g

i (t) = 0, we set G̃2g
i (t) = G2g

i (t), G̃a
i (t) = Ga

i (t). Then,

Gg2
i (t) + Gb2

i (t) = G̃g2
i (t). Continually, we have

Γ1,i(t) − Γ2,i(t) ≥ −(Xi(t) + VSmax
i )ΔTGb2

i (t) + Vρb
i > 0. (2.46)
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Case 3: If Gg2
i (t) = 0, G2g

i (t) > 0, we set G̃g2
i (t) = Gg2

i (t), G̃a
i (t) = Ga

i (t). Then,

G2g
i (t) − Gb2

i (t) = G̃2g
i (t). Continually, we have

Γ1,i(t) − Γ2,i(t) ≥ −(Xi(t) + VWmax
i )ΔTGb2

i (t) + Vρb
i > 0. (2.47)

Taking three cases into consideration, we know that when Xi(t) < −Vθmax
i , the

optimal decision always choose Gb2
i (t) = 0.

2. Similar to the part 1 of Lemma 1, part 2 can be proved. Thus, the proof of this
part is omitted for brevity.

Then, we analyze the feasibility and performance guarantee of the proposed oper-
ation algorithm in the following Theorem.

Theorem 2 Suppose the initial battery energy level Ei(0) ∈ [Emin
i , Emax

i ]. Imple-
menting the proposed operation algorithm with any fixed parameter V ∈ (0, Vmax],
we have the following properties:

1. The battery energy level Ei(t) is always in the range [Emin
i , Emax

i ] for all slots.
Moreover, queues Xi(t) are mean rate stable.

2. The decisions of the proposed operation algorithm are feasible to P2.1, i.e.,
the proposed operation algorithm can operate without requiring any statistical
knowledge about system dynamics.

3. If {S(t), W(t), R(t), Gr(t), Zp(t)} are i.i.d. over slots and ω = ∑
i ωi, then the

time-average expected energy cost under the proposed operation algorithm is
within bound ω/V of the optimal value: lim sup

T→∞
1
T

∑T−1
t=0 E{C(t)} ≤ y∗ + ω

V .

Proof

1. To show Ei(t) ∈ [Emin
i , Emax

i ], according to the definition of Xi(t), it is equivalent
to show that for each IDC i,

Xi(t) ≥ −Vθmax
i − ΔTGdm

i , (2.48)

and

Xi(t) ≤ Emax
i − Emin

i − Vθmax
i − ΔTGdm

i . (2.49)

As Emin
i ≤ Ei(0) ≤ Emax

i , the above inequalities hold for t = 0. We prove
that the constraints are satisfied for all periods by induction. Suppose the above
inequalities hold for slot t, we need to prove that they also hold for slot t + 1.

• If −Vθmax
i − ΔTGdm

i ≤ Xi(t) < −Vθmax
i , then, according to Lemma 1,

the optimal decision would choose Gb2
i (t) = 0. Thus, Xi(t + 1) ≥ Xi(t) ≥

−Vθmax
i − ΔTGdm

i . If −Vθmax
i ≤ Xi(t) < Emax

i − Emin
i − Vθmax

i − ΔTGdm
i ,

then, according to the dynamics of Xi(t), Xi(t + 1) ≥ −Vθmax
i − ΔTGb2

i (t) >

−Vθmax
i − ΔTGdm

i .
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• If −Vθmin
i < Xi(t) ≤ Emax

i − Emin
i − Vθmax

i − ΔTGdm
i , then, According to

Lemma 1, the optimal decision would choose G2b
i (t) = 0. Thus, Xi(t + 1) ≤

Xi(t) ≤ Emax
i − Emin

i − Vθmax
i − ΔTGdm

i . If −Vθmax
i − ΔTGdm

i ≤ Xi(t) ≤
−Vθmin

i , then, Xi(t + 1) ≤ −Vθmin
i + ΔTGcm

i ≤ Emax
i − Emin

i − Vθmax
i −

ΔTGdm
i , where we have used the following condition,

V ≤ Emax
i − Emin

i − ΔT(Gcm
i + Gdm

i )

θmax
i − θmin

i

. (2.50)

Continually, the upper bound of parameter V is given by

Vmax = min
i

Emax
i − Emin

i − ΔT(Gcm
i + Gdm

i )

θmax
i − θmin

i

, (2.51)

where θmin
i = min{Wmin

i , Smin
i , Hmin

i }, Hmin
i = minj,b{Hi,j,b}. Since lim supT→∞

1
T E{|Xi(T)|}= 0, we can know that queues Xi(t) are mean rate stable.

2. The proposed operation algorithm can make decisions to satisfy all constraints in
P2.4 and update Xi(t) normally (i.e., update Ei(t)). Meanwhile, taking the part 1 of
Theorem 2 into consideration, we know that all constraints in P2.1 can be satisfied
by the decisions of the proposed algorithm. That is, the proposed algorithm can
operate without requiring any statistical knowledge.

3. By plugging the policy mentioned in Theorem 1 into the R.H.S. of drift-plus-
penalty term, then, we have

ΔY(t) ≤ ω + VE{Ĉ(t)} ≤ ω + Vy∗. (2.52)

Taking the expectation of both sides, using the law of iterative expectation,
we have

E[ΔY(t)] = E[Δ(t)] + VE[C(t)] ≤ ω + Vy∗. (2.53)

Then, summing the above equations over t ∈ {0, 1, 2, . . . , T − 1}, we have

V
T−1∑
t=0

E{C(t)} ≤ ωT + VTy∗ − E{L(T)} + E{L(0)}. (2.54)

Dividing both side by VT , and taking a lim sup of both sides. Let T → ∞, and
using the facts that E{L(0)} is finite and E{L(T)} is nonnegative, we arrive at the
following performance guarantee,

lim sup
T→∞

1

T

T−1∑

t=0

E{C(t)} ≤ y∗ + ω

V
. (2.55)
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It is worth noting that the choice of V controls the optimality of the proposed
operation algorithm. Specifically, a larger V leads to a tighter optimality gap.
However, according to the definition of Vmax, we know that larger V requires
larger investment on battery capacity, which would result in larger investment
cost since batteries are very expensive currently. Therefore, there is a tradeoff
between energy cost saving and battery investment cost.

2.4.2 Simulations

In this section, we evaluate the performance of the proposed operation algorithm
based on real-world traces. Our purpose is twofold: (1) to show the effectiveness of
our proposed operation algorithm under power outage environment; (2) to show the
tradeoff between energy cost saving and battery investment cost.

2.4.2.1 Real-World Traces and Experimental Setup

System Parameters. We consider a scenario that the total workload from one front-
end web portal server is forwarded to two back-end IDCs located in two independent
ERs, i.e., F = 1, N = 2. Some parameters about servers in IDCs are set as follows:
Ppeak

1 = 250 W, Ppeak
2 = 240 W, Pidle

1 = 175 W, Pidle
2 = 168 W, PUE1 = 2.5,

PUE2 = 2.4 [1], M1 = 22, 000, M2 = 35, 000, μ1 = 2 requests/s, μ2 = 1.75
requests/s, Dmax

i = 0.7 s, ΔT = 1 h [2]. In this chapter, we assume that generators
in each IDC have the capacity to power the whole IDC, which is quite common in
industry. Specifically, each IDC has 10 diesel generators with model TP-C2000-T2-
60 (2 MW) and 5 diesel generators with model TP-C100-T1-60 (100 kW) [14], where
the parameters Hi,j,b and αi,j,b can be estimated as in [29, 36]. According to the recent
empirical experiments, we assume that the limits of battery charging/discharging
rates are Pcm = Pdm = 0.5 MW, and charging/discharging cost is ρb

i = 0.1 dollars
[21]. In addition, we set V = Vmax.
Wind Energy Data. The wind speed information is obtained from the dataset pub-
lished by the National Renewable Energy Laboratory.3 Based on the 1 min raw data,
we calculate the average wind speed during the disjoint hour. We adopt the V90 wind
turbine model in this chapter.4

Electricity Price Data. The real-time electricity price traces of the U.S. NYISO and
ERCOT markets in 2012 are used. Based on the traces, we calculate the average
electricity price during the disjoint hour. Moreover, we set Wi(t) = 0.9Si(t) [37].
Workload Data. The real-world workload data is taken from FIFA’s 1998 World
Cup web traces between June 10 and June 30, 1998.5 Considering the increase of

3 http://www.nrel.gov/midc, Sept. 2013.
4 http://www.vestas.com/en/wind-power-plants/, Sept. 2013.
5 http://ita.ee.lbl.gov/html/traces.html, Sept. 2013.

http://www.nrel.gov/midc
http://www.vestas.com/en/wind-power-plants/
http://ita.ee.lbl.gov/html/traces.html
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Fig. 2.3 CDF of energy levels with varying V

Internet traffic in the past decade, we modify the original workload by enlarging 60
times6 and repeat it to get a 365-day workload trace.
Power Outage Data. Power outage process in each ER is modeled using an
exponential-distributed random variable and some selected MTTA and MTTR [12].
We set MTTA1 = MTTA2 = 876 h, MTTR1 = MTTR2 = 8 h, where MTTA-i and
MTTR-i are the parameters associated with the main grid i. The method of generating
the power outage process can be found in [13].
Benchmark. To show the effectiveness of the proposed algorithm, we adopt a bench-
mark called cost-aware dynamic provisioning (CDP) based on the scheme proposed
by Rao et al. [5]. Note that CDP can exploit the spatial diversity of electricity price
by traffic routing. However, renewable energy and battery are not considered in [5].
For more fair comparison, renewable energy is adopted in CDP, which intends to
minimize the total energy cost in each slot based on the observed system states.

2.4.2.2 Experimental Results

Figure 2.3 illustrates the cumulative distribution function (CDF) of energy levels
under the proposed algorithm and varying control parameter V . It can be observed

6 E.g., the average workload is smaller than 2 million requests/h, while the average workload of
Google search is 121 million requests/h.
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Fig. 2.4 Energy levels at different IDCs

that the proposed algorithm is feasible since the energy levels are fluctuating in their
normal ranges. As shown by Fig. 2.4, smaller V would lead to more frequent discharg-
ing or charging process since the proposed algorithm at this time put more weight
on maintaining the energy queue stability rather than energy cost minimization.

As depicted in Fig. 2.5, larger V would lead to lower energy cost under the
proposed algorithm, which validates the algorithmic performance in the part 3 of
Theorem 2. Though the part 3 of Theorem 2 holds when {S(t), W(t), R(t), Gr(t),
Zp(t)} are i.i.d. over slots, the simulation results based on real-world traces (without
any specific distribution assumption) show that the proposed algorithm is robust to
non-i.i.d. and non-ergodic cases (note that the theoretical basis for such robustness
can be found in [23]).

In addition, it can be seen that power outages would lead to the increase of total
energy cost under two schemes. Specifically, the increased energy cost is 59,097
dollars and 55,067 dollars under the CDP and the proposed algorithm, respectively.
It is expected that the increased energy cost would become larger as MTTA decreases
and MTTR increases. Compared with the CDP, the proposed algorithm achieves the
better performance and the performance gap between the proposed algorithm and
the CDP is larger as V increases. The reason is given as follows: larger V means
larger battery capacity, which can better utilize the spatial and temporal diversities
of electricity price and wind energy. In contrast, CDP can merely exploit the spatial
diversities of electricity price and wind energy. The same reason can be used to
explain the phenomenon in Fig. 2.6, i.e., the profit under the proposed algorithm is
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increasing as V increases. In addition, it is obvious that the profit due to electricity
selling is lower when there are power outages since power transactions under the
above situation are not allowed.

2.5 Summary

In this chapter, we studied the problem of minimizing the long-term energy cost of
distributed IDCs in smart microgrids considering power outages. At first, we for-
mulated the problem as a stochastic program by taking SMGs and power outage
into consideration. To solve the problem, an operation algorithm was designed based
on Lyapunov optimization technique. Moreover, we provided the algorithmic per-
formance guarantee when random parameters are i.i.d. over slots. In addition, the
proposed algorithm enables an explicit tradeoff between energy cost saving and bat-
tery investment cost. Finally, extensive evaluations based on real-world data showed
the effectiveness of the proposed algorithm.

References

1. Qureshi A, Weber R, Balakrishnan H, Guttag J, Maggs B (2009) Cutting the electric bill for
internet-scale systems. In: Proceedings of ACM special interest group on data communication
(SIGCOMM)

2. Guo Y, Fang Y (2013) Electricity cost saving strategy in data centers by using energy storage.
IEEE Trans Parallel Distrib Syst 24(6):1149–1160

3. http://smartgrid.ieee.org/ieee-smart-grid. Accessed 23 Sept 2013
4. Wang P, Rao L, Liu X, Qi Y (2012) D-pro dynamic data center operations with demand-

responsive electricity prices in smart grid. IEEE Trans Smart Grid 4(3):1–12
5. Rao L, Liu X, Xie L, Liu W (2012) Coordinated energy cost management of distributed internet

data centers in smart grid. IEEE Trans Smart Grid 3(1):50–58
6. Yu L, Jiang T, Cao Y, Yang S, Wang Z (2012) Risk management in internet data center operations

under smart grid environment. In: Proceedings of IEEE international conference on smart grid
communications (SmartGridComm)

7. Salomonsson D, Soder L, Sannino A (2008) An adaptive control system for a DC microgrid
for data centers. IEEE Trans Ind Appl 44(6):2414–2421

8. Rahman A, Liu X, Kong F (2014) A survey on geographic load balancing based data center
power management in the smart grid environment. IEEE Commun Surv Tutor 16(1):214–233

9. Mo Y, Kim TH-J, Brancik K, Dickinson D, Lee H, Perrig A, Sinopoli B (2011) Cyber-physical
security of a smart grid infrastructure. Proc IEEE 100(1):195–209

10. Falahati B, Fu Y, Wu L (2012) Reliability assessment of smart grid considering direct cyber-
power interdependencies. IEEE Trans Smart Grid 3(3):1515–1524

11. Kirschen D, Bouffard F (2009) Keep the lights on and the information flowing, a new framework
for analyzing power system security. IEEE Power Energy Mag 7(1):50–60

12. Stamp J, McIntyre A, Ricardson B (2009) Reliability impacts from cyber attack on electric
power systems. In: Proceedings of power systems conference and exposition (PSCE)

13. Stamp J, Colbaugh R, Laviolette R, McIntyre A, Richardson B (2009) Impacts analysis for
cyber attack on electric power systems (National SCADA Test Bed FY08). SAND2009-1673

http://smartgrid.ieee.org/ieee-smart-grid


36 2 Energy Cost Minimization for Internet Data Centers Considering Power Outages

14. Dufo-López R, Bernal-Agustín JL, Yusta-Loyo JM et al (2011) Multi-objective optimization
minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries
storage. Appl Energy 88(11):4033–4041

15. Gasoline and Diesel Fuel Update. Available via DIALOG. http://www.eia.gov/petroleum/
gasdiesel/. Accessed 23 Sept 2013

16. Federal Energy Regulatory Commission. Available via DIALOG. http://www.ferc.gov/.
Accessed 23 Sept 2013

17. Erol-Kantarci M, Kantarci B, Mouftah HT (2011) Reliable overlay topology design for the
smart microgrid network. IEEE Netw 25(5):38–43

18. Wang D, Ren C, Sivasubramaniam A, Urgaonkar B, Fathy H (2013) Energy storage in datacen-
ters: what, where, and how much? Available via DIALOG. http://www.cse.psu.edu/bhuvan/
papers/ps/sigmetrics12.pdf. Accessed 23 Sept 2013

19. Goiri Í, Katsak W, Le K, Nguyen TD, Bianchini R (2013) Parasol and greenswitch: man-
aging datacenters powered by renewable energy. In: Proceedings of architectural support for
programming languages and OS (ASPLOS)

20. Cao Y, Jiang T, Zhang Q (2012) Reducing electricity cost of smart appliances via energy
buffering framework in smart grid. IEEE Trans Parallel Distrib Syst 23(9):1572–1582

21. Urgaonkar R, Urgaonkar B, Neely MJ, Sivasubramaniam A (2011) Optimal power cost man-
agement using stored energy in data centers. In: Proceedings of ACM special interest group on
measurement and evaluation (SIGMETRICS)

22. Yao Y, Huang L, Sharma A, Golubchik L, Neely M (2013) Power cost reduction in distributed
data centers: a two time scale approach for delay tolerant workloads. IEEE Trans Parallel
Distrib Syst 25(1):200–211

23. Neely MJ (2010) Stochastic network optimization with application to communication and
queueing systems. Morgan & Claypool, San Rafael

24. Arno R, Friedl A, Gross P, Schuerger RJ (2012) Reliability of data centers by tier classification.
IEEE Trans Ind Appl 48(2):777–783

25. Li J, Li Z, Ren K, Liu X, Su H (2011) Towards optimal electric demand management for
internet data centers. IEEE Trans Smart Grid 2(4):1–9

26. Chen Y, Das A, Qin W, Sivasubramaniam A, Wang Q, Gautam N (2005) Managing server
energy and operational costs in hosting centers. In: Proceedings of ACM special interest group
on measurement and evaluation (SIGMETRICS)

27. Damousis IG, Alexiadis MC, Theocharis JB, Dokopoulos PS (2004) A fuzzy model for wind
speed prediction and power generation in wind parks using spatial correlation. IEEE Trans
Energy Convers 19(2):352–361

28. Carrión M, Philpott AB, Conejo AJ, Arroyo JM (2007) A stochastic programming approach
to electric energy procurement for large consumers. IEEE Trans Power Syst 22(2):744–754

29. Palma-Behnke R, Benavides C, Lanas F et al (2013) A microgrid energy management system
based on the rolling horizon strategy. IEEE Trans Smart Grid 4(2):996–1006

30. Lu L (2013) Online energy generation scheduling for microgrids with intermittent energy
sources and co-generation. The Chinese University of Hong Kong, Hong Kong

31. San Diego’s AIS Rides Out Power Outage. http://www.datacenterknowledge.com/archives/
2011/09/09/san-diegos-ais-rides-out-power-outage/. Accessed 23 Sept 2013

32. Huang Y, Mao S, Nelms RM (2014) Adaptive electricity scheduling in microgrids. IEEE Trans
Smart Grid 5(1):270–281

33. National Renewable Energy Labortorary (2012) Variance analysis of wind and natural gas
generation under different market structures: some observations

34. Costa AM (2005) A survey on benders decomposition applied to fixed-charge network design
problems. Comput Oper Res 32(6):1429–1450

35. Çakır O (2009) Benders decomposition applied to multi-commodity, multi-mode distribution
planning. Expert Syst Appl 36:8212–8217

36. http://generatorjoe.net/html/fueluse.asp. Accessed 23 Sept 2013
37. Zhang Y, Gatsis N, Giannakis GB (2012) Robust management of distributed energy resources

for microgrids with renewables. In: Proceedings of IEEE international conference on smart
grid communications (SmartGridComm)

http://www.eia.gov/petroleum/gasdiesel/
http://www.eia.gov/petroleum/gasdiesel/
http://www.ferc.gov/
http://www.cse.psu.edu/bhuvan/papers/ps/sigmetrics12.pdf
http://www.cse.psu.edu/bhuvan/papers/ps/sigmetrics12.pdf
http://www.datacenterknowledge.com/archives/2011/09/09/san-diegos-ais-rides-out-power-outage/
http://www.datacenterknowledge.com/archives/2011/09/09/san-diegos-ais-rides-out-power-outage/
http://generatorjoe.net/html/fueluse.asp


Chapter 3
Carbon-Aware Energy Cost Minimization
for Internet Data Centers

Abstract In Internet data center operations, the operators are facedwith high energy
cost and carbon emission. Moreover, for socially responsible Internet data center
operators, they are expected to minimize energy cost and carbon emission simulta-
neously. Since smart microgrids have many advantages in supporting the operations
of Internet data centers (e.g., low electricity distribution loss, high utilization ratio in
renewable energy), we consider the problem of minimizing the long-term weighted
summation of energy cost and carbon emission for Internet data center operators
in smart microgrids. To achieve the above aim, we propose an efficient operation
algorithm considering the uncertainties in renewable generation output, electricity
price, workload, and carbon emission rate.

Keywords Internet data centers · Smart microgrids · Carbon-aware · Energy
management

3.1 Introduction

With the proliferation of cloud computing and Internet online services, more and
more data and computation are migrated to geographically distributed Internet data
centers (IDCs) for reliability, management, and cost benefits. For IDC operators, they
encounter two major problems in IDC operations: (1) Huge power consumption and
electricity bills, e.g., the annual power consumption and electricity cost of Google
are larger than 6.3 × 105MWh and 38 million dollars, respectively [1]. (2) Severe
environmental impacts, e.g., carbon emission of data centers was 0.6% of the global
carbon emissions in 2008 and the proportion is expected to reach 2.6% by 2020 [2].
For socially responsible IDC operators, they expect to mitigate the above problems
simultaneously [1].

On the other hand, electrical power system is evolving toward smart grid [3],
which is recognized as one of the important applications of Internet of Things (IoT)
[4–7]. In smart grid environment, microgrids are evolving toward smart micro-
grids (SMGs) [8, 9], which have the ability to provide fault isolation and ease of
distributed generation handling. When running IDCs in SMGs, there are some
benefits: (1) Direct current microgrids can contribute to reduce distribution loss
and cooling power consumption, resulting in lower energy cost [10]; (2) Power
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transactions between SMGs and main grids can help to reduce the waste of
renewable energy and decrease carbon emission [11]; (3) When there are power
outages in main grids [12], SMGs would operate in the islanded mode, the spatial
and temporal variations of renewable energy and carbon emission rate could still be
exploited to save energy cost and reduce carbon emission [13].

Since socially responsible IDC operators are expected to reduce energy cost and
carbon emission simultaneously, we consider a scenario that runs distributed IDCs in
SMGs. Specifically, a socially responsible IDC operator has some IDCs geographi-
cally distributed in several self-owned SMGs located in independent electric regions
(ERs). Moreover, the IDC operator intends to minimize the long-termweighted sum-
mation of energy cost and carbon emission with guaranteed quality of service (QoS)
for service requests by deciding service request distribution, the number of active
servers, the operations of energy storage, the schedule of backup generators, and the
quantity of power transactions between SMGs and main grids.

The above problem is challenging since we need to efficiently manage energy
storage devices in SMGs considering their time coupling effects. In existing works
on data centers [14–20], several schemes have been developed for exploiting energy
storage devices. However, these studies do not consider the SMG environment. In
this chapter, we focus on jointly minimizing energy cost and carbon emission of
distributed IDCs in SMG environment, whichmakes the design of efficient operation
algorithm more difficult.

The main contributions of this chapter are stated as follows:

• By taking smart microgrids into consideration, we formulate an optimization prob-
lem to minimize the time-averaged expectation of the weighted summation of
energy cost and carbon emission with the uncertainties in electricity price, work-
load, renewable energy generation, and carbon emission rate.

• We design an operation algorithm to solve the problem based on Lyapunov opti-
mization technique without requiring any statistical knowledge of the system
dynamics. Moreover, we analyze the feasibility of the proposed algorithm and
its performance guarantee.

• Evaluations based on real-world data show that the proposed algorithm can achieve
lower energy cost and carbon emission simultaneously compared with the existing
carbon-oblivious algorithm.

The rest of this chapter is organized as follows. Section3.2 describes the sys-
tem model. Problem formulation and algorithm design are conducted in Sect. 3.3.
Section3.4 gives the algorithmic performance analysis and simulations. Finally, con-
clusions are made in Sect. 3.5.

3.2 System Model

In Fig. 3.1, the system model is given, where front-end servers, IDCs, SMGs, and
main grids could be identified. A front-end server receives incoming service requests
and dispatches them to IDCs that located in multiple ERs for processing. We assume
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Fig. 3.1 System model

that an IDC operator owns some SMGs located in some independent ERs. The main
components in a SMG under study include generators, IDCs, energy storage units,
and energy management system. Generators include backup generators (fuel types
most common are diesel, natural gas and gasoline [21]), and renewable generators
(e.g., solar panels or wind turbines). In this chapter, diesel generators and wind tur-
bines are considered (note that the proposed operation algorithm is also applicable
to other kinds of power sources). Diesel generators are fast responding and dispatch-
able, and they are typically incorporated in data centers for reliability considerations.
By contrast, wind turbines are nondispatchable and their generation outputs depend
on weather conditions. SMGs have two operation modes, i.e., grid connected and
islanded. In the islanded mode, energy management system enables SMGs to take
independent decisions from main grids. In the grid-connected mode, power transac-
tions between SMGs and main grids could be conducted.

3.2.1 Models Related to Front-End Servers
and Internet Data Centers

3.2.1.1 Workload Allocation Model

We assume there is an IDC operator with N IDCs geographically distributed in N
independent electric regions (ERs) to offer Internet services, and each IDC acts as
the load in a SMG connected to a main grid, i.e., N SMGs and N main grids are
considered. For simplicity, we use the common index i for IDCs, SMGs, and main
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grids, where 1 ≤ i ≤ N, i ∈ Z +. In this chapter, we mainly focus on delay-sensitive
workloads (e.g., “request-response” type web services [22]). In IDC i, we assume
there are Mi homogeneous servers and mi(t) of them are turned on to process service
requests at slot t. Define m(t) = (m1(t), . . . , mN (t)) as the active server vector.
Moreover, mi(t) is assumed to be unchanged within slot t since activating servers
typically costs a nonnegligible amount of time and frequently switching back and
forth between active and sleep states can result in reliability problems [23].We denote
the average arrival rate of workload at front-end server f (1 ≤ f ≤ F) as Rf (t) (in
requests per slot, req/slot) and R(t) = (R1(t), . . . , RF(t)) as the workload arrival
vector, where F is the total number of front-end servers. Let λf ,i(t) (in req/slot) be
the workload that assigned from front-end web server f to the servers in IDC i at slot
t. λ(t) = (λf ,i(t), ∀f , i) denotes the service request distribution. In order to assure
that all service requests would be handled, we have

N∑

i=1

λf ,i(t) = Rf (t). (3.1)

3.2.1.2 Service Delay Model

For delay-sensitive requests, their average response delay should be bounded in a
certain range that is specified in service level agreement (SLA) since SLA violation
would result in lost business revenue [24]. In this chapter, theM/M/n queueingmodel
is adopted to process the incoming workload as in the previous work [25]. Note that
the queueing model is not necessarily the most accurate for the practical workload,
but it will not affect the nature of the carbon-aware energy cost minimization problem
and the proposed operation algorithm. General queuing models would be considered
in future work. Since the average response delay should be smaller than Dmax

i (i.e.,
the threshold that identifies the revenue/penalty region at IDC i), we have1

1

mi(t)μi − ∑F
f =1 λf ,i(t)

+ 1

μi
≤ Dmax

i , (3.2)

where μi (in req/slot) is the average service rate of servers in IDC i, 0 ≤ mi(t) ≤ Mi.

3.2.1.3 Power Consumption Model

The energy efficiency of an IDC is always measured by power usage effectiveness
(PUE), which is defined as the ratio of the total power consumption at an IDC
to the power consumption at IT equipment. Let PUEi be the PUE of IDC i, Pidle

i

1 Here, a simple SLA is adopted as in [26]. Other more complicated SLAs would be considered in
future work.
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and Ppeak
i be the idle power and peak power of a server in IDC i, respectively. Let

ui(t) be the average server utilization at slot t, which is equal to λi(t)/(mi(t)μi).
Denote the total power consumption at IDC i within slot t as Pi(t) (in MW) and
P(t) = (P1(t), . . . , PN (t)) as the power consumption vector. As in previous work
[1], Pi(t) can be estimated by

Pi(t) = mi(t)(ϕiui(t) + γi), (3.3)

where ϕi � Ppeak
i − Pidle

i , γi � Pidle
i + (PUEi − 1)Ppeak

i . Note that servers in each
IDC are assumed to be homogeneous in the above power consumption model. For
more general situations, the corresponding model can also be incorporated easily.

3.2.2 Models Related to Smart Microgrids

3.2.2.1 Power Supply Model

As mentioned above, wind turbines and diesel generators are considered in each
SMG. Based on the wind energy generation model in [27], we can estimate the
output of wind turbines at slot t in SMG i, i.e., Gr

i(t) (in MW).
As in [28, 29], the piecewise linear production cost model is adopted to model

the energy cost of diesel generators in SMGs. Suppose there are NB piecewise linear
segments in the adopted piecewise linear production cost model, each piecewise
linear segment b (1 ≤ b ≤ NB) introduces a binary variable Zg

i,j,b(t) and a continuous

variableQi,j,b(t), where 1 ≤ j ≤ Nd
i ,N

d
i denotes the total number of diesel generators

in SMG i. If the energy produced by the diesel generator j in SMG i at slot t falls into
the range gmin

i,j,b to gmax
i,j,b, Zg

i,j,b(t) = 1; Otherwise, Zg
i,j,b(t) = 0. Qi,j,b(t) (in MWh) is

adopted to represent the specific energy quantity when the energy generation of the
diesel generator j in SMG i at slot t fall into the range above. Then, we have

Zg
i,j,b(t) ∈ {0, 1}, (3.4)

NB∑

b=1

Zg
i,j,b(t) ≤ 1, (3.5)

gmin
i,j,bZg

i,j,b(t) ≤ Qi,j,b(t) ≤ gmax
i,j,bZg

i,j,b(t), (3.6)

where gmin
i,j,b and gmax

i,j,b (both in MWh) are the lower and upper limit of energy gen-
eration of the diesel generator j in SMG i corresponding to the segment b of the
piecewise linear production cost model, respectively.

Let Ga
i (t) (in MW) be the total power produced by diesel generators at SMG i at

slot t. Then, Ga
i (t) is given as
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Ga
i (t) =

Nd
i∑

j=1

NB∑

b=1

Qi,j,b(t)/ΔT , (3.7)

where ΔT (in hour) is the duration of a time slot. Let Hi,j,b (in $/MWh) and αi,j,b
(in $) be the slope and Y-intercept of the segment b associated with the diesel gen-
erator j in SMG i. Then, the total energy cost of diesel generators in SMG i at slot t
is given by.2

Ki(t) =
Nd

i∑

j=1

NB∑

b=1

(Hi,j,bQi,j,b(t) + αi,j,bZg
i,j,b(t)). (3.8)

3.2.2.2 Battery Model

Gg2
i (t) and G2g

i (t) represent the power purchased from and sold back to the main grid
i at slot t, respectively. Gb2

i (t) and G2b
i (t) are the discharging and charging power for

the battery in SMG i at slot t. To balance the power supply and demand in SMG i,
we have

Ga
i (t) + Gr

i(t) + Gg2
i (t) + Gb2

i (t) = Pi(t) + G2b
i (t) + G2g

i (t). (3.9)

To indicate whether SMG i is buying or selling power or not at slot t, two binary
variables are adopted, i.e., Zg2

i (t) and Z2g
i (t). Specifically, Zg2

i (t) = 1 if SMG i

is purchasing power from main grid i at slot t; Otherwise, Zg2
i (t) = 0. Similarly,

Zg2
i (t) = 1 if SMG i is selling power back to main grid i at slot t; Otherwise,

Zg2
i (t) = 0. Since it is not reasonable to purchase and sell energy on the market at

the same time, we have the following constraints,

Zg2
i (t), Z2g

i (t) ∈ {0, 1}, (3.10)

Zg2
i (t) + Z2g

i (t) ≤ 1, (3.11)

0 ≤ Gg2
i (t) ≤ Gbmax

i Zg2
i (t), (3.12)

0 ≤ G2g
i (t) ≤ Gsmax

i Z2g
i (t), (3.13)

where Gbmax
i and Gsmax

i denote the maximum purchasing power from main grid i
and maximum selling power to man grid i, respectively, and these parameters are

2 For fast-responding diesel generators, its minimum on/off periods could be regarded as zero and
ramping-up/-down rate could be assumed to be ∞ [30]. Thus, some constraints about minimum
on/off periods and ramping-up/-down rate are neglected. In addition, due to the lack of public knowl-
edge about start-up cost of diesel generators, we also neglect such cost. More realistic generation
cost models would be considered in future work.
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determined by the capacity of the transformers and power transmission lines [31].
For simplicity, we assume that the transmission loss is negligible in the process
of purchasing or selling electricity [31]. Moreover, we assume that the capacity
of the transformers and power transmission lines is large enough, i.e., Gbmax

i ≥
max

t
{Pi(t) + G2b

i (t)} and Gsmax
i ≥ max

t
{Ga

i (t) + Gr
i(t) + Gb2

i (t)}.
Let Ei(t) be the energy level of the battery in SMG i at slot t. Then, Ei(t) is

bounded by

Emin
i ≤ Ei(t) ≤ Emax

i , (3.14)

where Emax
i ≥ 0 is the maximum capacity, and Emin

i ≥ 0 is the minimum capacity,
which may be set by the battery deep discharge protection settings. Assume that
there is no conversion loss either in charging or discharging the batteries, noting that
this can be easily generalized to the case where a fraction of G2b

i (t) and Gb2
i (t) is

lost. Moreover, we assume that the battery energy leakage is negligible, which is a
reasonable assumption when the timescale over which the loss takes place is much
larger than that of interest to us [15]. Then, the dynamics over time of Ei(t) can be
described as

Ei(t + 1) = Ei(t) + ΔT(G2b
i (t) − Gb2

i (t)). (3.15)

To indicate whether the battery in SMG i is charging or not at slot t, two binary
variables are introduced, i.e., Zbc

i (t) and Zbd
i (t). Specifically, Zbc

i (t) = 1 if that
battery is charging; Otherwise, Zbc

i (t) = 0. Similarly, Zbd
i (t) = 1 if that battery

is discharging; Otherwise, Zbd
i (t) = 0. Without loss of generality, we assume that

charging and discharging cannot be done simultaneously [13]. Then, we have

Zbc
i (t), Zbd

i (t) ∈ {0, 1}, (3.16)

Zbc
i (t) + Zbd

i (t) ≤ 1, (3.17)

0 ≤ G2b
i (t) ≤ Gcm

i Zbc
i (t), (3.18)

0 ≤ Gb2
i (t) ≤ Gdm

i Zbd
i (t), (3.19)

whereGcm
i andGdm

i are themaximum charging and discharging power for the battery
in SMG i, respectively.

3.2.2.3 Carbon Emission Model

As shown in [2], carbon emission rate shows spatial and temporal variations. By
summing the weighted contribution from each fuel type, we can estimate the carbon
emission rate in ER i at slot t (ei(t)). Let e(t) = (e1(t), . . . , eN (t)) be the carbon
emission rate vector. Then, the total carbon emission Ai(t) (in g) in SMG i is given by
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Ai(t) = (
ei(t)G

g2
i (t) + Gr

i(t)a1 + Ga
i (t)a2

)
ΔT , (3.20)

where a1 and a2 are the carbon emission rate for wind and diesel oil, respectively.
Typically, a1 = 22.5, a2 = 890 (both in g/kWh) [2].

3.3 Problem Formulation and Algorithm Design

LetC(t) (in $) be the total energy cost of IDCoperators at slot t, which consists of four
parts, namely, the energy cost associated with buying electricity frommain grids, the
revenue from selling electricity tomain grids, the cost due to the negative effect of the
charging and discharging power (charging/discharging power too much may reduce
the lifetime of the battery), and the generation cost of diesel generators in SMGs.
Note that we ignore all fixed costs associated with wind generation (e.g., capital
expenditure and fixed operational and maintenance cost) since these parts would not
affect the optimization results of the formulated problem as in (3.22a, 3.22b). As a
result, the generation cost of wind energy can be assumed to be zero since the variable
operational and maintenance costs of wind turbines is negligible [32]. Based on the
above analysis, the total energy cost C(t) is given by

C(t) =
N∑

i=1

{Gg2
i (t)Si(t) − G2g

i (t)Wi(t)}ΔT +
N∑

i=1

Ki(t)

+
N∑

i=1

(Zbc
i (t) + Zbd

i (t))ρb
i , (3.21)

where ρb
i denotes the cost incurred by battery charging and discharging per time [15].

Si(t) andWi(t) (both in $/MWh) denote the price for purchasing and selling electricity
from and to main grid i at slot t, respectively. We assume Si(t) ∈ [Smin

i , Smax
i ],

Wi(t) ∈ [Wmin
i , Wmax

i ], which are announced by the utility market at the beginning
of each time slot and remains constant during the time slot [31]. We assume Si(t) and
Wi(t) are independent of the amount of energy to be purchased or sold in that time slot.
Let S(t) = (S1(t), . . . , SN (t)) and W(t) = (W1(t), . . . , WN (t)) be the purchasing
and selling price vector, respectively. Moreover, we assume Smax

i ≥ Wmax
i , Smin

i ≥
Wmin

i and Si(t) ≥ Wi(t) for all t [31]. That is, SMG cannot make profit by greedily
purchasing energy from the market and then selling it back to the market at a higher
price simultaneously.

Asmentioned inSect. 3.1, socially responsible IDCoperators intend to jointly con-
sider the energy cost and carbon emission with guaranteed QoS for service requests.
Then, we formulate the carbon-aware energy cost minimization problem as follows,
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(P3.1) min lim sup
T→∞

1

T

T−1∑

t=0

E{C(t) + ϑ

N∑

i=1

Ai(t)}, (3.22a)

s.t. (3.1)–(3.6), (3.9)–(3.19), (3.22b)

where ϑ (in $/g) is a scaler (i.e., weighted parameter) that transfers the carbon
emission into energy cost. Note that the combination of two performance metrics is
a common approach in multi-objective optimization [33]. Moreover, ϑ is equivalent
to the corresponding Lagrangian multiplier if we formulate the carbon emission as
a constraint. The expectation above is with respect to the stationary distribution of
{S(t), W(t), R(t), Gr(t), e(t)} and possibly random control decisions that are made
in reaction to the observed {S(t), W(t), R(t), Gr(t), e(t)}. Specifically, these control
decisions are m(t), λ(t), G(t), and Z(t). The definitions of G(t) and Z(t) are given
as follows:

G(t) = {Gg2
i (t), G2g

i (t), Ga
i (t), G2b

i (t), Gb2
i (t)}, (3.23)

Z(t) = {Zg2
i (t), Z2g

i (t), Zbc
i (t), Zbd

i (t)}. (3.24)

To solve P1, we need to know the statistical information about the system para-
meters, such as electricity price, workload, renewable generation output, and carbon
emission rate. However, these parameters are not available or difficult to obtain in
practice. In addition, the constraints on energy level of battery bring the “time cou-
pling” property to P3.1, which means that the current decision can impact the future
decisions. Previousmethods to handle the “time coupling” problem are usually based
on dynamic programming,which suffers from the “the curse of dimensionality” prob-
lem. Therefore, we propose an operation algorithm to solve P3.1. Before proposing
the operation algorithm, we consider the following relaxed problem, which can pro-
vide some intuitions to solve P3.1.

3.3.1 Relaxed Problem

Defining the time-averaged expectation of charging and discharging power of the
battery at IDC i under any feasible control policy of P3.1 as follows,

G2b
i = lim sup

T→∞
1

T

T−1∑

t=0

E{G2b
i (t)}, (3.25)

Gb2
i = lim sup

T→∞
1

T

T−1∑

t=0

E{Gb2
i (t)}. (3.26)
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Since battery energy levels update according to (3.15), summing over all t ∈
{0, 1, 2, . . . , T − 1}, taking expectation of both sides and dividing both sides with T

and letting T → ∞, we have G2b
i = Gb2

i . Then, a relaxed problem of P3.1 is given
as follows, called P3.2.

(P3.2) min lim sup
T→∞

1

T

T−1∑

t=0

E{C(t) + ϑ

N∑

i=1

Ai(t)}, (3.27a)

s.t. (3.1)–(3.6), (3.9)–(3.13), (3.16)–(3.19), (3.27b)

G2b
i = Gb2

i . (3.27c)

Let y∗ and yrel be the optimal solution of P3.1 and P3.2, respectively.Asmentioned
before, any feasible solution to P3.1 is also a feasible solution to P3.2. Therefore,
we have yrel ≤ y∗. Obviously, P3.2 is easier to solve than P3.1 due to the removal of
“time coupling” property. From the framework of Lyapunov optimization [34], we
have the following Theorem for the solution to P3.2:

Theorem 1 If {S(t), W(t), R(t), Gr(t), e(t)} are i.i.d. over slots, then there exists
a stationary and randomized policy that takes control decisions m̂(t), λ̂(t), Ĝ(t)
and Ẑ(t) every time slot t as a pure (possibly randomized) function of the observed
{S(t), W(t), R(t), Gr(t), e(t)} while satisfying the constraints of P3.2 and providing
the following guarantees.

E{Ĝ2b
i (t)} = E{Ĝb2

i (t)}, (3.28)

E{Ĉ(t) + ϑ

N∑

i=1

Âi(t)} = yrel, (3.29)

where the expectation operations above are with respect to the stationary distribution
of {S(t), W(t), R(t), Gr(t), e(t)} and randomized control decisions. Ĉ(t) and Âi(t)
are the values defined in (3.21) and (3.20), respectively, under the stationary and
randomized policy.

The proof can be obtained according to Theorem of Optimality over ω-only Poli-
cies in [34]. Thus, it is omitted for brevity. To obtain such a control policy, we need
to know the statistical distributions of all combinations of {S(t), W(t), R(t), Gr(t),
e(t)}, which may be unknown and difficult to obtain. Moreover, the control policy
may be infeasible for the original problem P3.1 as it could violate the constraint
(3.14). However, the existence of such a control policy ca help us to derive the
performance results of the proposed operation algorithm as shown in the part 4 of
Theorem2.
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3.3.2 Proposed Operation Algorithm

In this subsection, we propose an online operation algorithm that approximately
solves P3.1. The key idea of the proposed operation algorithm is described as follows:

• transforming P3.2 into a queue stability problem according to the framework of
Lyapunov optimization technique;

• obtaining the drift-plus-penalty term according to the theory of Lyapunov opti-
mization technique;

• minimizing the R.H.S. of the upper bound of the drift-plus-penalty term.

According to the above key idea, we introduce battery virtual queues X(t) in order
to transform P3.2 into a queue stability problem, where

Xi(t) = Ei(t) − Emin
i − θmax

i − ΔTGdm
i , (3.30)

where θmax
i is a constant to be explained later. Continually, we have

Xi(t + 1) = Xi(t) + ΔT(G2b
i (t) − Gb2

i (t)). (3.31)

According to the framework of Lyapunov optimization in [34], P3.2 can be equiv-
alently transformed to a queue stability problem as follows, named P3.3

(P3.3) min lim sup
T→∞

1

T

T−1∑

t=0

E{C(t) + ϑ

N∑

i=1

Ai(t)}, (3.32a)

s.t. (3.1)–(3.6), (3.9)–(3.13), (3.16)–(3.19), (3.32b)

Queues Xi(t) are mean rate stable. (3.32c)

To obtain the operation algorithm for P3.3, Lyapunov optimization technique is
applied. On one hand, the proposed operation algorithm needs to push the queues
toward stability. On the other hand, the proposed operation algorithm intends to
minimize the objective function. To achieve the trade-off between the aims above, the
proposedoperation algorithmgreedilyminimizes theR.H.S. of the upper boundof the
drift-plus-penalty term (3.37) in every time slot t subjecting to the constraints in P3.3,
where the trade-off is implemented by adjusting parameterV . IfV = 0, it corresponds
to the pure system stability problembyminimizing the one-slot conditional Lyapunov
drift (3.35). In Theorem2, we will prove that queues Xi(t) are mean rate stable.

Specifically, we define a Lyapunov function as follows,

L(t)
Δ= 1

2

N∑

i=1

{Xi(t)
2}. (3.33)
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Then, the one-slot conditional Lyapunov drift is given by

Δ(t) = E{L(t + 1) − L(t)|X(t)}. (3.34)

where X(t) = (X1(t), . . . , XN (t)), the expectation is taken over the randomness of
workload, electricity price, renewable generation output, and carbon emission rate,
as well as the randomness in choosing the control decisions. We define χi(t) =
G2b

i (t) − Gb2
i (t), then

L(t + 1) − L(t) ≤ ω +
N∑

i=1

{
Xi(t)ΔTχi(t)

}
, (3.35)

where ω �
∑N

i=1
(ΔT max{Gcm

i ,Gdm
i })2

2 . Thus, we have

Δ(t) ≤ ω +
N∑

i=1

E{Xi(t)ΔTχi(t)|X(t)}. (3.36)

Then, following the Lyapunov optimization framework, we add a function of
the expected weighted summation of energy cost and carbon emission over one
period (i.e., the penalty function) to (3.34) to obtain the following drift-plus-penalty
expression,

ΔY(t) = Δ(t) + VE{C(t) + ϑ

N∑

i=1

Ai(t)|X(t)}

≤ ω + E
{ N∑

i=1

[Xi(t)ΔTχi(t) + ϑVAi(t)] + VC(t)|X(t)
}
. (3.37)

Note that the proposed operation algorithm intends to minimize the R.H.S. of
the upper bound of the drift-plus-penalty term subject to the constraints in P3.3,
which is equivalent to minimize P3.4 as described in Algorithm 1, since the pro-
posed operation algorithmmakes scheduling decisions only based on current system
states without requiring any statistical knowledge of system parameters. To solve
P3.4, which is a MILP, its certain structure can be exploited, i.e., by fixing the dis-
crete variables first, the resulting problem becomes convex for continuous variables.
Therefore, Benders decomposition [35] can be adopted to solve P3.4, which can
decompose P3.4 into two subproblems. Due to limitations of space, we omit the
procedure of Benders decomposition to solve P3.4.

(P3.4) min
N∑

i=1

{Xi(t)ΔTχi(t) + ϑVAi(t)} + VC(t) (3.38a)

s.t. (3.1)–(3.6), (3.9)–(3.13), (3.16)–(3.19). (3.38b)
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Algorithm 1 : Operation Algorithm for IDC Operators
1: For each time slot t do
2: At the beginning of time slot t, obtain system states: Si(t),Wi(t),Rf (t),Gr

i(t),ei(t),Xi(t);
3: Choose control decisions m(t), λ(t), G(t), and Z(t) as the solution to P3.4;
4: Update Xi(t) according to (3.31).
5: End

3.4 Analysis and Simulations

In this subsection, we analyze the feasibility and algorithmic performance of the
proposed operation algorithm.

To start with, we define an upper bound Vmax on parameter V as follows, i.e.,

Vmax = min
i

{V |θmax
i − θmin

i ≤ Emax
i − Emin

i − �}, (3.39)

where � = ΔT(Gcm
i +Gdm

i ), θmax
i = max{VHmax

i + ϑVa2, ϑVemax
i +VSmax

i , VWmax
i },

Hmax
i = maxj,b{Hi,j,b}, emax

i = maxt{ei(t)}, θmin
i = min{VWmin

i , VSmin
i + ϑVemin

i ,

VHmin
i + ϑVa2}, emin

i = min
t

{ei(t)}, Hmin
i = min

j,b
{Hi,j,b}. Note that how to choose

the above parameters is the key to design an efficient operation algorithm. In fact,
these parameters can be obtained from the proof procedure of the following Lemma
and Theorem.

3.4.1 Analysis

Note that the optimal solution to P3.4 has the following properties that are useful for
the following analysis of algorithmic performance.

Lemma 1 The optimal solution to P3.4 has the following properties:

1. If Xi(t) < −θmax
i , the optimal solution always choose Gb2

i (t) = 0.
2. If Xi(t) > −θmin

i , the optimal solution always choose G2b
i (t) = 0.

Proof

1. For each SMG i, suppose that Xi(t) < −θmax
i and Gb2

i (t) > 0, then, we have
G2b

i (t) = 0. Let Γ1(t) denote the optimal value of the objective in P3.4, which is
the summation of Γ1,i(t) at all IDCs.
To prove that the above decision is not optimal, we choose G̃b2

i (t) = 0, and
G̃2b

i (t) = 0. Let Γ2(t) denote the value of the objective in P3.4, which is the
summation of Γ2,i(t) at all IDCs. According to (3.9), the decisions about power
supply for IDCs given the power demand Pi(t) can be divided into the following
cases:
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Case 1: If Gg2
i (t) = G2g

i (t) = 0, we set G̃g2
i (t) = Gg2

i (t), G̃2g
i (t) = G2g

i (t), then,
we haveGa

i (t)+Gb2
i (t) = G̃a

i (t). Continually, we can obtain thatΓ1,i(t) > Γ2,i(t)
when Xi(t) < −(VHmax

i + ϑVa2).

Case 2: If Gg2
i (t) > 0, G2g

i (t) = 0, we set G̃2g
i (t) = G2g

i (t), G̃a
i (t) = Ga

i (t). Then,

we have Gg2
i (t) + Gb2

i (t) = G̃g2
i (t). Continually, we can obtain that Γ1,i(t) >

Γ2,i(t) when Xi(t) < −(VSmax
i + ϑVemax

i ). Note that if we set G̃2g
i (t) = G2g

i (t),

and G̃g2
i (t) = Gg2

i (t) under this case, the situation is the same as the case 1.

Case 3: If Gg2
i (t) = 0, G2g

i (t) > 0, we set G̃g2
i (t) = Gg2

i (t), G̃a
i (t) = Ga

i (t). Then,

we have G2g
i (t) − Gb2

i (t) = G̃2g
i (t). Continually, we can obtain that Γ1,i(t) >

Γ2,i(t)whenXi(t) < −VWmax
i . Note that if we set G̃g2

i (t) = Gg2
i (t), and G̃2g

i (t) =
G2g

i (t) under this case, the situation is the same as the case 1.
Taking three cases into consideration, we know that when Xi(t) < −θmax

i , the
optimal decision always choose Gb2

i (t) = 0.
2. For each SMG i, if Xi(t) > −θmin

i and G2b
i (t) > 0, we have Gb2

i (t) = 0. Let Γ3(t)
be the optimal value of the objective of P3.4, which is the summation of Γ3,i(t)
at all IDCs. To prove the above decision is not optimal, we choose G̃2b

i (t) = 0
and G̃b2

i (t) = 0. Then, the value of the objective of P3.4 Γ4(t) is the summation
of Γ4,i(t) at all IDCs. According to (3.9), the decisions about power supply for
IDCs given the power demand Pi(t) can be divided into the following cases:
Case 1: If G̃g2

i (t) = Gg2
i (t), G̃2g

i (t) = G2g
i (t), then, Ga

i (t) − G2b
i (t) = G̃a

i (t).
Continually, we can obtain thatΓ3,i(t) > Γ4,i(t)whenXi(t) > −(VHmin

i +ϑVa2).

Case 2: If Gg2
i (t) > 0, G2g

i (t) = 0, we set G̃2g
i (t) = G2g

i (t), G̃a
i (t) = Ga

i (t), then

Gg2
i (t)−G2b

i (t) = G̃g2
i (t). Continually, we can obtain that Γ3,i(t) > Γ4,i(t)when

Xi(t) > −(VSmin
i + ϑVemin

i ).

Case 3: If Gg2
i (t) = 0, G2g

i (t) > 0, we set G̃g2
i (t) = Gg2

i (t), G̃a
i (t) = Ga

i (t), then

G2g
i (t)+G2b

i (t) = G̃2g
i (t). Continually, we can obtain that Γ3,i(t) > Γ4,i(t)when

Xi(t) > −VWmin
i . Taking three cases into consideration, we know that when

Xi(t) > −θmin
i , the optimal decision always choose G2b

i (t) = 0.

Theorem 2 Suppose the initial battery energy level Ei(0) ∈ [Emin
i , Emax

i ]. Imple-
menting the proposed operation algorithm with any fixed parameter V ∈ (0, Vmax],
we have the following performance guarantees for each IDC i:

1. The battery energy level Ei(t) is always in the range [Emin
i , Emax

i ] for all time
slots.

2. All control decisions are feasible.
3. Queues Xi(t) are mean rate stable.
4. If {S(t), W(t), R(t), Gr(t), e(t)} are i.i.d. over slots, then the time-averaged

expectation of objective function under the proposed operation algorithm is within
bound ω/V of the optimal value:
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lim sup
T→∞

1

T

T−1∑

t=0

E{C(t) + ϑ

N∑

i=1

Ai(t)} ≤ y∗ + ω

V
. (3.40)

Proof

1. To show Ei(t) ∈ [Emin
i , Emax

i ], according to the definition of Xi(t), it is equivalent
to show that for each IDC i, −θmax

i − ΔTGdm
i ≤ Xi(t) ≤ Emax

i − Emin
i − θmax

i −
ΔTGdm

i , As Emin
i ≤ Ei(0) ≤ Emax

i , the above inequalities hold for t = 0. We
prove that the above inequalities are satisfied for all periods by induction. Suppose
the above inequalities about Xi(t) hold for time slot t, we need to prove that the
inequalities are also hold for time slot t + 1.

• If −θmax
i − ΔTGdm

i ≤ Xi(t) < −θmax
i , then, according to Lemma1, the

optimal decision would choose Gb2
i (t) = 0. Thus, Xi(t + 1) ≥ Xi(t) ≥

−θmax
i − ΔTGdm

i . If −θmax
i ≤ Xi(t) < Emax

i − Emin
i − θmax

i − ΔTGdm
i , then,

according to (3.30), Xi(t + 1) ≥ −θmax
i − ΔTGb2

i (t) > −θmax
i − ΔTGdm

i .
• If −θmin

i < Xi(t) ≤ Emax
i − Emin

i − θmax
i − ΔTGdm

i , then, according to
Lemma1, the optimal decision would choose G2b

i (t) = 0. Thus, Xi(t + 1) ≤
Xi(t) ≤ Emax

i −Emin
i −θmax

i −ΔTGdm
i . If−θmax

i −ΔTGdm
i ≤ Xi(t) ≤ −θmin

i ,
then,Xi(t+1) ≤ −θmin

i +ΔTGcm
i ≤ Emax

i −Emin
i −θmax

i −ΔTGdm
i , where we

have used the following condition, θmax
i − θmin

i ≤ Emax
i − Emin

i −ΔT(Gcm
i +

Gdm
i ).

2. From the part 1 of Theorem2, we know that Emin
i ≤ Ei(t) ≤ Emax

i holds for
any time slot t and i. Furthermore, the proposed algorithm makes decision to
satisfy all constraints in P3.4. Considering the definition of Xi(t), we know that
all constraints of P3.1 could be satisfied. Therefore, the control decisions are
feasible to P3.1.

3. According to the part 1 of Theorem2, we have

lim sup
T→∞

1

T
E{|Xi(T)|} = 0. (3.41)

Thus, queues Xi(t) are mean rate stable.
4. By plugging the policy mentioned in Theorem1 into the R.H.S. of (3.37), then

we have

ΔY(t) ≤ω + VE{Ĉ(t) + ϑ

N∑

i=1

Âi(t)} = ω + Vyrel ≤ ω + Vy∗. (3.42)

Taking the expectation of both sides, using the law of iterative expectation. Then,
summing the result over t ∈ {0, 1, 2, . . . , T − 1}, we have



52 3 Carbon-Aware Energy Cost Minimization for Internet Data Centers

V
T−1∑

t=0

E{C(t) + ϑ

N∑

i=1

Ai(t)} ≤ ωT + VTy∗ − E{L(T)} + E{L(0)}. (3.43)

Dividing both side by VT , and taking a lim sup of both sides. Let T → ∞, and
using the facts that E{L(0)} is finite and E{L(T)} is nonnegative, we obtain the
result as in (3.40).

3.4.2 Simulations

In this section, we describe the system parameters and real-world data used in simu-
lations. The carbon-oblivious algorithm in [22] is chosen as the baseline, which only
consider buying electricity from the grid. For fair comparison, renewable energy is
incorporated in the baseline.

3.4.2.1 Real-World Traces and Experimental Setup

Weconsider a scenario that the total workload from one front-endweb portal server is
forwarded to two back-end IDCs located in two independent ERs, i.e.,F = 1,N = 2.
Some parameters about servers in IDCs are set as follows: Ppeak

1 = 250W, Ppeak
2 =

240W, Pidle
1 = 175W, Pidle

2 = 168W, PUE1 = 2.5, PUE2 = 2.4 [1], M1 =22,000,
M2 =35,000, μ1 = 2 requests/second, μ2 = 1.75 requests/second, Dmax

i = 0.7s,
ΔT = 1h. In this chapter, we assume that generators in each IDC have the capacity to
power the whole IDC, which is quite common in industry. Specifically, each IDC has
10 diesel generators with model TP-C2000-T2-60 (2MW) and 5 diesel generators
withmodel TP-C100-T1-60 (100kW) [36], where the parametersHi,j,b and αi,j,b can
be estimated as in [29, 37].According to the recent empirical experiments,we assume
that the limits of battery charging/discharging rates are Pcm = Pdm = 0.5MW, and
charging/discharging cost is ρb

i = 0.1 dollars [15], V = Vmax. As in [22], we
assume that two IDCs are located in California and Houston, respectively. Then,
the corresponding carbon emission rates in these locations are [200–399]g/kWh and
[400–599]g/kWh, respectively [2]. For simplicity, we assume that carbon emission
rate follows a uniform distribution. The wind speed information is obtained from
the dataset published by the National Renewable Energy Laboratory. In addition,
V90 wind turbine is adopted in this chapter.3 The real-time electricity price traces
of the U.S. NYISO and ERCOT markets in 2012 are used. Based on the traces,
we calculate the average electricity price during the disjoint hour. Moreover, we set
Wi(t) = 0.9Si(t) [38]. The real-worldworkload data is taken fromFIFA’s 1998World
Cup web traces. Moreover, the original workload is enlarged by 60 times taking into

3 http://www.vestas.com/en/wind-power-plants/, Sept. 2013.

http://www.vestas.com/en/wind-power-plants/
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account the increase of Internet traffic in the past decade.4 In simulations, we choose
Emin

i = 0, Emax
1 = 6.875MWh, Emax

2 = 10.08MWh. Note that the storage capacity
can power the peak demand of two IDCs for 30min, which is the duration that UPS
units can usually support in existing data centers [15].

3.4.2.2 Simulation Results

In Fig. 3.2, Vmax and the weighted summation of energy cost and carbon emission
with varying ϑ are depicted. It can be observed that Vmax increases with the increase
of ϑ , which leads to the increased weighted summation as shown by the part 4 of
Theorem2. Though the part 4 of Theorem2 holds when future random parameters
are i.i.d. over slots, the simulation results based on real-world traces (without any
specific distribution assumption) show that the proposed algorithm is robust to non-
i.i.d. and nonergodic cases (note that the theoretical basis for such robustness can be
found in [34]).

As shown in Figs. 3.3 and 3.4, with the increase of ϑ , there is a trade-off between
energy cost and carbon emission under the proposed algorithm. The rationale of
such a trade-off is that larger ϑ would lead to a larger weight on minimizing carbon
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Fig. 3.2 Vmax and weighted summation under different ϑ

4 E.g., the average workload is smaller than 2 million requests/h, while the average workload of
Google search is 121 million requests/h.
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emission. As a result, the proposed algorithm would migrate an appropriate amount
of workload from the IDCs in low-price ERs to the IDCs in low-carbon ERs, leading
to both carbon emission reduction and energy cost rise.

The proposed algorithm can achieve lower energy cost and lower carbon emission
than the benchmark when ϑ is larger than 9× 10−5. Specifically, compared with the
benchmark, the proposed algorithm can reduce the energy cost by 6 × 105 dollars
without increasing carbon emission when ϑ = 9 × 10−5. When ϑ = 100, the
proposed algorithm can reduce carbon emission and energy cost by 3,316 tons and
210,610 dollars, respectively. The reason can be explained as follows: the surplus
renewable energy in a SMG can be stored into the battery for future use or sold to
the main grid for profit under the proposed algorithm, but it would be wasted under
the benchmark.

3.5 Summary

In this chapter, we investigated the problem of minimizing carbon-aware energy
cost for distributed IDCs in smart microgrids. First, we formulated the problem
as a stochastic optimization problem to minimize the time-averaged expectation
of the weighted sum of energy cost and carbon emission with the uncertainties
in electricity price, workload, renewable energy output, and carbon emission rate.
To solve the formulated problem, we designed an operation algorithm based on
Lyapunov optimization technique without requiring any system statistics. Finally,
evaluations based on real-world data showed that the effectiveness of the proposed
algorithm.
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Chapter 4
Joint Workload and Battery Scheduling
for Data Center Energy Cost Minimization

Abstract In practice, some workloads are delay-tolerant, which can be adopted to
reduce energy cost of Internet data centers by utilizing the temporal diversity of
electricity prices, i.e., executing the workloads when prices are low and delay the
workloads when prices are high. To avoid the penalty for violating the service level
agreements, heterogeneous service delay guarantees must be provided by Internet
data center operators. Moreover, to fully utilize the temporal diversity of electricity
prices, energy storage devices are incorporated. Thus, in this chapter, we focus on
designing a jointworkload and energy storage schedulingwith heterogeneous service
delay guarantees for data center energy cost minimization and propose an effective
algorithm to save energy cost.

Keywords Internet data center · Energy cost · Heterogeneous service delay
guarantees · Energy storage

4.1 Introduction

With the proliferation of cloud computing and Internet online services, massive
Internet data centers (IDCs) have been built to meet the skyrocketing demand. In
IDC operations, a critical issue is the energy cost. According to a recent study,
many IDC operators (e.g., Microsoft and Google) spend more than $30 million on
their annual electricity costs, which contribute to a large portion of IDC operational
expenditure [1].

To reduce energy cost for IDCs, lots of work have been done that exploit the
temporal and spatial variations of electricity price in deregulated electricity markets
[2–6]. When minimizing energy cost, IDC operators should guarantee service level
agreements (SLAs) for all requests since SLA violation would result in lost business
revenue [7]. For different requests, their SLA requirements may be very different [8].
For example, average delay (or 95th percentile delay) is usually adopted as the SLA
metric for delay-sensitive requests (e.g., web search requests) [2, 5], while service
delay deadline (or completion time) is used as the SLA metric for delay-tolerant
requests (e.g., batch jobs) [9, 10]. In most existing work on delay-tolerant requests,
average delay [6, 11] (or the same worst-case delay [4, 12], or the same service delay
guarantee [3]) is considered in IDC operations, whichmay lead to SLA violations for
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delay-tolerant requests. Moreover, IDC operators could reduce energy cost by fully
exploiting the temporal diversity of electricity price when heterogeneous service
delay guarantees are provided. Thus, it is necessary for IDC operators to provide
heterogeneous service delay guarantees for delay-tolerant requests.

Based on the above observations, we investigate the problem of minimizing the
energy cost for an IDC in deregulated electricity markets considering heterogeneous
service delay guarantees for delay-tolerant requests. Moreover, batteries (which are
usually incorporated in an IDC for reliability considerations [4, 5]) are adopted to
fully exploit the temporal diversity of electricity price. Specifically, we consider an
IDC operator who intends to minimize the long-term energy cost for an IDC by
scheduling workload and battery jointly.

To achieve the above target, the challenge is how to efficiently manage the battery
operation and simultaneously provide heterogeneous service delay guarantees for
admitted requests. In existing works on data centers [4–6, 12–16], several schemes
have been developed to exploit battery based on Lyapunov optimization technique
[17]. However, these schemes can only provide the same worst-case service delay,
rather than heterogeneous service delay guarantees. Thus, we need to design a new
operation algorithm.

In this chapter, we propose a novel three-stage decision framework shown in
Fig. 4.1 to deal with the above challenge. Specifically, in the first stage, admission
control module decides to accept or reject the incoming requests based on available
capacity. In the second stage, workload scheduling module allocates capacity to the
accepted requests (which are enqueued into aFIFOqueue), so that their service delays
could be guaranteed and the energy cost of finishing each request is minimized. In
the third stage, battery scheduling module decides the optimal battery operation with
obtained energy demand information. Toobtain the optimal decisions in above stages,
we design a low-complexity operation algorithm based on Lyapunov optimization
technique.

The main contributions of this chapter can be listed below:

• By taking heterogeneous service delay guarantees and battery management into
consideration, we formulate a stochastic optimization problem to minimize the
total energy cost of an IDC.

Fig. 4.1 The proposed three-stage decision framework
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• We design a low-complexity operation algorithm to solve the problem based on
Lyapunov optimization technique. Moreover, we analyze the feasibility of the
proposed algorithm and its performance guarantee.

• Extensive evaluations based on real-world data show that the proposed algorithm
can achieve lower energy cost than the existing schemes.

The rest of this chapter is organized as follows. Section4.2 describes the sys-
tem model. Problem formulation and algorithm design are conducted in Sect. 4.3.
Section4.4 gives the algorithmic performance analysis and simulations. Finally, con-
clusions are made in Sect. 4.5.

4.2 System Model

In this section, we model an IDC system and formulate a long-term energy cost
minimization problem. First, we describe IDC capacity, workloadmodel, and battery
model. Then, we formulate a stochastic optimization problem to minimize the total
energy cost for an IDC.

4.2.1 Internet Data Center Capacity

We consider a discrete-time system evolving over a sequence of equal-length time
slots. As in [3], we quantify the capacity of an IDC by the maximum amount of
work that can be done with all IDC resources in a time slot. All IDC resources
are quantified in unit of basic resource unit. A basic resource unit may include a
number of microprocessor cores, an amount of memory and so on. Thus, an IDC
capacity is in unit of basic resource unit·time slot. When an IDC receiving service
requests, it needs to allocate a certain amount of capacity for them. Generally, there
are two type of service requests in an IDC, i.e., delay-sensitive and delay-tolerant
requests [3]. In this chapter, we focus on the jobs in delay-tolerant requests, assuming
that the management of delay-sensitive requests has been determined by previous
schemes [2]. As many-core computing and massive-scale deployment of commodity
computers become the norm in data centers, interest in parallelizing applications
keeps growing. Target parallelized applications, we assume that a service request can
be decomposed into several tasks that are small enough to finish in one time slot [3].

4.2.2 Workload Model

Let N (t) represent the set of jobs or requests that arrive in time slot t, while n(t)
represents the number of jobs in N (t), i.e., n(t) = |N (t)|, where | · | denotes
the cardinality of a set. Suppose that there are N types of jobs, and each type may



62 4 Joint Workload and Battery Scheduling for Data Center Energy Cost Minimization

correspond to a specific application. Assume that all jobs are computation-intensive,
and CPU resource is the bottleneck resource. For simplicity, we assume that all jobs
arrive at the beginning of each slot. A job i with type f (1 ≤ f ≤ N) arrives in
time slot t could be represented by a tuple: (i, t, f , ai(t), di(t), Di(t), Ai(t)), where
i ∈ N (t), ai(t) is an indicator variable to show whether job i is admitted or not, di(t)
denotes the computation demand1 (in basic resource unit·time slot), Di(t) denotes
the maximum number of time slots allowed for finishing the job i from its arrival
time t, i.e., the job i must be served before the beginning of time slot t + Di(t). Let
Dmax be the maximum completion time allowed for any job, i.e., Dmax � max

i,t
Di(t).

Let Ai(t) be the capacity allocation vector for job i that arrives in time slot t, which
can be expressed by

(
ei(0), . . . , ei(j), . . . , ei(Di(t) − 1)

)
, where ei(j) denotes the

allocated capacity in slot t + j (0 ≤ j ≤ Di(t) − 1). If a job i arrives at slot t is
admitted into the system, then, we have

Di(t)−1∑

j=0

ei(j) = di(t), (4.1)

0 ≤ ei(j) ≤ Λ(t + j), (4.2)

whereΛ(t + j) represents the residual IDC capacity in time slot t + j (0 ≤ Λ(t + j) ≤
M, M denotes IDC capacity). Then, the total residual IDC capacity for job i is∑Di(t)−1

j=0 Λ(t + j).

4.2.3 Battery Model

Let G(t) be the power purchased from the main grid at slot t. Gb2(t) and G2b(t) are
the discharging and charging power for the battery at slot t, respectively. Let P(t)
be total power consumption of servers at time slot t. Then, according to the power
balance, we have

G(t) + Gb2(t) = P(t) + G2b(t), (4.3)

where G(t) ≤ Gbmax, Gbmax denotes the maximum purchasing power from the main
grid, which is determined by the capacity of transformers and power transmission
lines [18]. For simplicity, we assume that the transmission loss is negligible and
the capacity of transformers and power transmission lines is large enough [18], i.e.,
Gbmax ≥ max

t
{P(t) + G2b(t)}.

1 In this study, we neglect the job’s service demands in terms of memory, storage, network for
simplicity. Note that they can also be considered if we extend the service demand from a scalar to
a vector in which each element corresponds to one type of demand.
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Let E(t) be the energy level of the battery at the beginning of slot t. Then, we have

Emin ≤ E(t) ≤ Emax, (4.4)

where Emax ≥ 0 is the maximum capacity, and Emin ≥ 0 is the minimum capacity,
which may be set by the battery deep discharge protection settings. As in [4], we do
not explicitly consider some practical issues, such as energy leakage in the battery
or DC/AC conversion loss, which can be readily incorporated. Then, the energy
dynamics of the battery can be described as follows:

E(t + 1) = E(t) + ΔT(G2b(t) − Gb2(t)), (4.5)

where ΔT denotes the length of a time slot.
To indicate whether the battery is charging or not at slot t, two binary variables

are introduced, i.e., Zbc(t) and Zbd(t). Specifically, Zbc(t) = 1 if that battery is
charging; Otherwise, Zbc(t) = 0. Similarly, Zbd(t) = 1 if that battery is discharging;
Otherwise, Zbd(t) = 0. Without loss of generality, we assume that charging and
discharging cannot be done simultaneously [5]. Then, we have

Zbc(t), Zbd(t) ∈ {0, 1}, (4.6)

Zbc(t) + Zbd(t) ≤ 1, (4.7)

0 ≤ G2b(t) ≤ GcmZbc(t), (4.8)

0 ≤ Gb2(t) ≤ GdmZbd(t), (4.9)

whereGcm andGdm are themaximumcharging and discharging power for the battery,
respectively.

4.2.4 Energy Cost Model

Let C(t) be the total energy cost of the data center at slot t. Then, C(t) is composed
of two parts, i.e., the energy cost associated with buying electricity and the cost due
to the negative effect of the charging and discharging power [4]. Based on the above
analysis, C(t) is given by

C(t) = G(t)S(t)ΔT + (Zbc(t) + Zbd(t))ρb, (4.10)

where ρb denotes the cost incurred by battery charging and discharging per time,
which are assumed to be the same [4, 5]. S(t) denotes the electricity price at slot t.We
suppose that S(t) ∈ [Smin, Smax], and S(t) is independent of the amount of energy to
be purchased at slot t. As in [19], we assume that the short-term estimated electricity
price can be accurately forecasted, i.e., we know S(t) = (S(t), S(t + 1), . . . ,
S(t + Dmax − 1)). Meanwhile, in later parts, we will discuss the case that S(t) is not
accurately estimated.
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4.3 Problem Formulation and Algorithm Design

In this chapter, we are interested in minimizing the time-averaged expected energy
cost (i.e., the expected energy cost averaged over the infinite time horizon). Compared
with existing work on energy cost reduction for data centers [3, 4], we formulate
the minimization problem (i.e., P4.1) by jointly considering heterogeneous service
delay guarantees for delay-tolerant requests and battery management.

(P4.1) min lim sup
T→∞

1

T

T−1∑

t=0

E{C(t)}, (4.11a)

s.t. (4.1)−(4.9), (4.11b)

where the expectation above is with respect to the stationary distribution of {n(t),
di(t), S(t + k), k ≥ Dmax} and possibly random control decisions that are made in
reaction to the observed system states. Specifically, these control decisions are ei(j),
G2b(t), Gb2(t), G(t), Zbc(t), Zbd(t).

According to (4.3) and (4.10), we can rewrite P4.1 as follows:

min lim sup
T→∞

1

T

T−1∑

t=0

E{(G2b(t) − Gb2(t))S(t)ΔT

+ P(t)S(t)ΔT + (Zbc(t) + Zbd(t))ρb}, (4.12a)

s.t. (4.1), (4.2), (4.4)−(4.9). (4.12b)

Notice that lim supT→∞
∑T−1

t=0 P(t)S(t)ΔT represents the total energy cost,
which is equal to the summation of the energy cost for executing all jobs. That
is,

lim sup
T→∞

T−1∑

t=0

P(t)S(t)ΔT = lim sup
T→∞

T−1∑

t=0

ñ(t)∑

i=1

Di(t)−1∑

j=0

ei(j)S(t + j)η, (4.13)

where η denotes the amount of consumed energy to execute one unit of computation
demand [3], and ñ(t) denotes the number of jobs that are admitted into the system,
i.e., 0 ≤ ñ(t) ≤ n(t). Obviously, IDC operators expect that ñ(t) = n(t), i.e., there
is no workload drop. To evaluate the extent of workload drop, we define workload
drop ratio (WDR) as the ratio of the total workload dropped to the total workload
arriving at the IDC:

WDR = 1 −
∑T−1

t=0
∑ñ(t)

i=1 di(t)
∑T−1

t=0
∑n(t)

i=1 di(t)
. (4.14)
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Now, we can reformulate P4.1 as follows:

(P4.2) min lim sup
T→∞

1

T

T−1∑

t=0

E{F(t)}, (4.15a)

s.t. (4.1), (4.2), (4.4)−(4.9), (4.15b)

where F(t) �
∑ñ(t)

i=1

∑Di(t)−1
j=0 ei(j)S(t + j)η + (G2b(t) − Gb2(t))S(t)ΔT + (Zbc(t)

+ Zbd(t))ρb.
There are two challenges to solve P4.2.Onone hand, the future randomparameters

are not known. On the other hand, the constraints on the energy level of battery
bring the “time coupling” property to P4.2, which means that the current decision
can impact the future decisions. Previous methods to handle the “time coupling”
problem are usually based on dynamic programming, which suffers from the “the
curse of dimensionality” problem.

In this section, we design a joint workload and battery scheduling algorithm based
on Lyapunov optimization technique. Because of the time coupling constraint (4.5),
we first consider a relaxed problem, which fits into the framework of Lyapunov
optimization. Then, we design our algorithm based on the insights provided by the
relaxed problem.

4.3.1 Relaxed Problem

In this subsection, a relaxed problem of P4.2 is considered. Defining the time-
averaged expectation of charging and discharging power of the battery at the IDC
under any feasible control policy of P4.2 as follows,

G2b = lim sup
T→∞

1

T

T−1∑

t=0

E{G2b(t)}, (4.16)

Gb2 = lim sup
T→∞

1

T

T−1∑

t=0

E{Gb2(t)}. (4.17)

Since battery energy levels update according to (4.5), summing over all t ∈ {0, 1,
2, . . . , T − 1}, taking expectation of both sides and dividing both sides with T and
letting T → ∞, we have G2b = Gb2. Then, a relaxed problem is given as follows,
called P4.3.

(P4.3) min lim sup
T→∞

1

T

T−1∑

t=0

E{F(t)}, (4.18a)

s.t. (4.1), (4.2), (4.6)−(4.9), (4.18b)
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G2b = Gb2. (4.18c)

Let y∗ and yrel be the optimal solution of P4.2 and P4.3, respectively.Asmentioned
before, any feasible solution to P4.2 is also a feasible solution to P4.3. Therefore,
we have yrel ≤ y∗. Obviously, P4.3 is easier to solve than P4.2 due to the removal of
“time coupling” property. From the framework of Lyapunov optimization [17], we
have the following Theorem for the solution to P4.3:

Theorem 1 If {n(t), di(t), S(t + k), k > Dmax,∀i, t, k} are i.i.d. over slots, then
there exists a stationary and randomized policy that takes control decisions every
slot t as a pure (possibly randomized) function of the observed system states, while
satisfying the constraints of P4.2 and providing the following guarantees.

E{Ĝ2b(t)} = E{Ĝb2(t)}, (4.19)

E{F̂(t)} = yrel, (4.20)

where the expectation operations above are taken with respect to the randomness
in {n(t), di(t), S(t + k), k > Dmax,∀i, t, k} and (potentially) randomized control
decisions. F̂(t) denotes the value of F(t) under the stationary and randomized policy.

The proof can be obtained according to Theorem of Optimality over ω-only Poli-
cies in [17]. Thus, it is omitted for brevity.

To obtain such a control policy, we need to know the statistical distribution of
{n(t), di(t), S(t + k), k > Dmax,∀i, t, k}, which may be unknown and difficult to
obtain. Moreover, the control policy may be infeasible for P4.2 as it could violate
the constraint (4.4). However, the existence of such a control policy can help us to
derive the performance guarantee of the proposed operation algorithm as shown in
the part 3 of Theorem 2.

4.3.2 Proposed Operation Algorithm

The key idea of the proposed operation algorithm is described as follows:

• transforming P4.3 into a queue stability problem according to the framework of
Lyapunov optimization technique;

• obtaining the drift-plus-penalty term according to the theory of Lyapunov opti-
mization technique;

• minimizing the R.H.S. of the upper bound of the drift-plus-penalty term.

According to the above key idea, we introduce battery virtual queues X(t) in order
to transform P4.3 into a queue stability problem, where

X(t) = E(t) − θ, (4.21)
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where θ is a constant to be explained later. Continually, we have

X(t + 1) = X(t) + ΔT(G2b(t) − Gb2(t)). (4.22)

Then, according to the framework of Lyapunov optimization in [17], P4.3 can be
equivalently transformed to a queue stability problem as follows, named P4

(P4) min lim sup
T→∞

1

T

T−1∑

t=0

E{F(t)}, (4.23a)

s.t. (4.1), (4.2), (4.6)−(4.9), (4.23b)

Queues X(t) are mean rate stable. (4.23c)

To solve P4, we develop an operation algorithm based on Lyapunov optimization
technique. First, we define a Lyapunov function as follows:

Γ (t) =1

2
[X(t)]2 = 1

2
[E(t) − θ]2, (4.24)

Now, we define a one-slot conditional Lyapunov drift as follows:

	(t) � E{Γ (t + 1) − Γ (t)|E(t)}. (4.25)

Here, the expectation is taken over the randomness of job arrival, computation
demand, electricity price as well as the randomness in choosing the control actions.
Then, following the Lyapunov optimization framework, we add a function of the
expected cost over one slot (i.e., the penalty function) to (4.25) to obtain the follow-
ing drift-plus-penalty term:

ΔY(t) = Δ(t) + VE{F(t)|E(t)}, (4.26)

where V is a positive control parameter to be specified later. Then, we have the
following lemma regarding the drift-plus-penalty term:

Lemma 1 For any feasible action under constraints (1), (2), (6)–(9) that can be
implemented at slot t, we have

ΔY(t) ≤ E{X(t)	Tχ(t) + VF(t)|E(t)} + ω, (4.27)

where χ(t) = G2b(t) − Gb2(t), ω is the constant given by the following:

ω �
[ (ΔT)2 max{(Gcm)2, (Gdm)2}

2

]
. (4.28)
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Proof From E(t + 1) = E(t) + ΔT(G2b(t) − Gb2(t)), subtracting both sides by θ,
and squaring both sides, we obtain

[E(t + 1) − θ]2 − [E(t) − θ]2
2

= [ΔTχ(t)]2
2

+ (E(t) − θ)ΔTχ(t)

≤ ω + X(t)ΔTχ(t). (4.29)

Taking the expectation with respect to E(t) on both sides, adding penalty term
VE{F(t)|E(t)} to both sides of the above inequality, we obtain the conclusion as
in (4.27).

Note that our proposed scheduling algorithm intends to minimize the R.H.S. of
the upper bound of the drift-plus-penalty term subject to the constraints in P4, which
is equivalent to minimize P4.5 based on the instant system states at the beginning of
slot t.

(P4.5) min {X(t)	Tχ(t) + VF(t)}, (4.30a)

s.t. (4.1), (4.2), (4.6)−(4.9). (4.30b)

The objective function of P5 can be written as follows: V
∑ñ(t)

i=1

∑Di(t)−1
j=0 ei(j)

S(t + j)η + (X(t) + VS(t))	Tχ(t) + V(Zbc(t) + Zbd(t))ρb. To provide service
delay guarantees for each admitted job, admission control is required, i.e., admit-
ting a job when there is enough capacity, and rejecting it otherwise. Therefore, the
proposed operation algorithm comprises of three parts, i.e., admission control, work-
load scheduling, and battery scheduling. The relationships among these parts can be
illustrated by Fig. 4.1. Specifically, the incoming jobs are firstly accepted or rejected
by the admission control module according to the residual IDC capacity informa-
tion. Then, the accepted jobs are scheduled to be executed in the future. Next, the
residual IDC capacity is updated and used as the input of admission control mod-
ule. At the beginning of a time slot, after all incoming jobs are processed by the
admission control module and workload scheduling module, the energy demand
in the current slot is determined. Finally, based on the energy demand informa-
tion and price information, battery scheduling module decides the optimal battery
operation.

Proposed Operation Algorithm: At the beginning of slot t, n(t) and di(t) are
observed. For each incoming job, steps (1) and (2) are executed. After all incoming
jobs are processed, the proposed algorithm goes to steps (3) and (4).

1. Admission Control: Admission control module decides to accept or reject an
incoming job based on the present and future resource availability. Specifically,
if the residual capacity for job i at slot t exceeds the required computation
demand di(t), then, job i would be accepted. Otherwise, job i would be rejected.
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Suppose ai(t) = 1 if job i arrives at slot t is accepted. Otherwise, ai(t) = 0. Then,
we have

ai(t) =

⎧
⎪⎨

⎪⎩
1, di(t) ≤

Di(t)−1∑
j=0

Λ(t + j),

0, Otherwise.

(4.31)

2. Workload Scheduling: Every admitted job will be enqueued into a FIFO queue.
For each job i in the queue, workload scheduling module allocates capacity for it
with the aim of minimizing the energy cost, i.e.,

(P4.6) min
Ai(t)

Di(t)−1∑

j=0

ei(j)S(t + j)η, (4.32a)

s.t. (4.1), (4.2). (4.32b)

Then, the residual IDC capacity in each time slot will be updated, i.e., Λ(t + j) =
Λ(t + j) − ei(j) (0 ≤ j ≤ Di(t) − 1). Next, admission control module will
process the next job until all incoming jobs are processed. Note that S(t + j)
(0 ≤ j ≤ Dmax−1) is assumed to be accurately predicted in P4.6 as mentioned in
Sect. 4.2.4. In fact, we do not need a precisely estimated electricity price sequence
S(t) to yield the optimal solution of P4.6. As long as the sort order of each element
in Dmax-term sequence S(t) is the same as that of each element in S̃(t), where
S̃(t) = (S̃(t), S̃(t + 1), . . . , S̃(t + Dmax − 1)) (S̃(t) is the actual electricity
price), then the proposed operation algorithm can achieve the optimal solution.
In other words, the proposed algorithm has a moderate requirement for accuracy
in electricity price estimation.

3. Battery Scheduling: With obtained energy demand at slot t, battery scheduling
module decides the optimal operation of battery based on the solution of the
following optimization problem:

(P4.7) min (X(t) + VS(t))	Tχ(t) + V(Zbc(t) + Zbd(t))ρb, (4.33a)

s.t. (4.6)−(4.9), (4.33b)

where the decision variables are G2b(t), Gb2(t), Zbc(t), and Zbd(t).
4. Queue Update: Updating X(t) according to the dynamics (4.22).

Note that P4.6 is a linear programming problem, which can be solved by in polyno-
mial time. Moreover, the optimal solution to P4.7 has the following simple threshold
structure.

1. If X(t) + VS(t) > 0, then G2b(t) = 0. Moreover, if −(X(t) + VS(t)) ∗ (min
{Gdm, E(t), P(t)}) + Vρb < 0, we have Gb2(t) = min{Gdm, E(t), P(t)}. Other-
wise, Gb2(t) = 0.

2. If X(t) + VS(t) ≤ 0, then Gb2(t) = 0. Moreover, if (X(t) + VS(t)) ∗ (min{Gcm,

Emax −E(t)})+Vρb < 0, we have G2b(t) = min{Gcm, Emax −E(t)}. Otherwise,
G2b(t) = 0.
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Wewill prove that the above solution is feasible and does not violate the finite battery
constraint (4.4) in Sect. 4.2.3.

4.4 Analysis and Simulations

In this section, we analyze the feasibility of the proposed operation algorithm. More-
over, we provide the performance guarantees of the proposed operation algorithm
when {n(t), di(t), S(t + k), k > Dmax,∀i, t, k} are i.i.d. over slots. Note that accord-
ing to the framework of Lyapunov optimization [17], the performance guarantees can
also be extended to the more general settings, for example {n(t), di(t), S(t + k), k >

Dmax,∀i, t, k} evolves according to some finite state irreducible and aperiodic
Markov chain.

4.4.1 Analysis

Firstly, we present a lemma that is useful for the analysis of algorithmic performance.

Lemma 2 The optimal solution to P4.5 has the following properties:

1. If X(t) < −VSmax, the optimal solution always choose Gb2(t) = 0,
2. If X(t) > −VSmin, the optimal solution always choose G2b(t) = 0.

Proof 1. Suppose that X(t) < −VSmax and Gb2(t) > 0, then we have G2b(t) = 0.
Let Θ1(t) denote the optimal value of the objective in P4.5, i.e.,

Θ1(t) = − (X(t) + VS(t))Gb2(t)	T + Vρb + V
ñ(t)∑

i=1

Di(t)−1∑

j=0

ei(j)S(t + j)η.

(4.34)

To prove that the above decision is not optimal, we choose G̃b2
i (t) = 0, and

G̃2b
i (t) = 0. Let Θ2(t) denote the value of the objective in P4.5, i.e.,

Θ2(t) = V
ñ(t)∑

i=1

Di(t)−1∑

j=0

ei(j)S(t + j)η. (4.35)

Obviously,Θ1(t) > Θ2(t). Thus, the optimal solution always chooseGb2(t) = 0
when X(t) < −VSmax.

2. Suppose that X(t) > −VSmin and G2b(t) > 0, then, we have Gb2(t) = 0. Let
Θ3(t) denote the optimal value of the objective in P4.5, i.e.,

Θ3(t) = (X(t) + VS(t))G2b(t)	T + Vρb + V
ñ(t)∑

i=1

Di(t)−1∑

j=0

ei(j)S(t + j)η.

(4.36)
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To prove that the above decision is not optimal, we choose G̃b2
i (t) = 0, and

G̃2b
i (t) = 0. Let Θ4(t) denote the value of the objective in P4.5, i.e.,

Θ4(t) = V
ñ(t)∑

i=1

Di(t)−1∑

j=0

ei(j)S(t + j)η. (4.37)

Obviously, Θ3(t) > Θ4(t). Thus, the optimal solution always choose G2b(t) = 0
when X(t) > −VSmin.

Theorem 2 Suppose the initial battery energy level E(0) ∈ [Emin, Emax]. Imple-
menting the proposed operation algorithm with any fixed parameter V ∈ (0, Vmax],
Vmax will be explained later, θ = Emin + VSmax + ΔTGdm, we have the following
properties:

1. The battery energy level E(t) is always in the range [Emin, Emax] for all slots.
2. The decisions of the proposed operation algorithm are feasible to P4.2, i.e.,

the proposed operation algorithm can operate without requiring any statistical
knowledge about system dynamics.

3. If {n(t), di(t), S(t + k), k > Dmax,∀i, t, k} are i.i.d. over slots, then the time-
averaged expected energy cost under the proposed operation algorithm is within
bound ω/V of the optimal value: lim supT→∞ 1

T

∑T−1
t=0 E{F(t)} ≤ y∗ + ω

V .

Proof 1. To show E(t) ∈ [Emin, Emax], according to the definition of X(t), it is
equivalent to show

X(t) ≥ −VSmax − ΔTGdm, (4.38)

and

X(t) ≤ Emax − Emin − VSmax − ΔTGdm. (4.39)

As Emin ≤ E(0) ≤ Emax, the above inequalities hold for t = 0. We prove that
the constraints are satisfied for all periods by induction. Suppose inequalities
(4.38), (4.39) hold for slot t, we need to prove that they also hold for slot t + 1.

• If −VSmax − ΔTGdm ≤ X(t) < −VSmax, then, according to Lemma 2, the
optimal decision would choose Gb2(t) = 0. Thus, X(t + 1) ≥ X(t) ≥
−VSmax−ΔTGdm. If−VSmax ≤ X(t) < Emax−Emin−VSmax−ΔTGdm, then
according to (4.22), X(t + 1) ≥ −VSmax − ΔTGb2(t) > −VSmax − ΔTGdm.

• If −VSmin < X(t) ≤ Emax − Emin − VSmax − ΔTGdm, then, According to
Lemma 2, the optimal decision would choose G2b(t) = 0. Thus, X(t + 1) ≤
X(t) ≤ Emax − Emin − VSmax − ΔTGdm. If −VSmax − ΔTGdm ≤ X(t) ≤
−VSmin, then, X(t + 1) ≤ −VSmin + ΔTGcm ≤ Emax − Emin − VSmax −
ΔTGdm, where we have used the following condition,

V ≤ Emax − Emin − ΔT(Gcm + Gdm)

Smax − Smin . (4.40)
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Continually, the upper bound of parameter V is given by

Vmax = Emax − Emin − ΔT(Gcm + Gdm)

Smax − Smin . (4.41)

2. The proposed operation algorithm can make decisions to satisfy all constraints
in P4.5 and update X(t) normally (i.e., update E(t))). Meanwhile, taking the
part 1 of Theorem 2 into consideration, we know that all constraints in P4.2 can
be satisfied by the decisions of the proposed algorithm. That is, the proposed
algorithm can operate without requiring any statistical knowledge.

3. As we have mentioned before, the proposed operation algorithm is always trying
to greedily minimize the R.H.S. of the upper bound of the drift-plus-penalty
term at slot t over all possible feasible control policies including the optimal and
stationary policy given in Lemma 1. By plugging this policy into the R.H.S. of
the inequality of the drift-plus-penalty term, we have

ΔY(t) ≤ ω + VE{F̂(t)} ≤ ω + Vy∗. (4.42)

Taking the expectation of both sides, using the law of iterative expectation,
we have

E[ΔY(t)] = E[Δ(t)] + VE[F(t)] ≤ ω + Vy∗. (4.43)

Then, summing the above equations over t ∈ {0, 1, 2, . . . , T − 1}, we have

V
T−1∑

t=0

E{F(t)} ≤ ωT + VTy∗ − E{L(T)} + E{L(0)}. (4.44)

Dividing both side by VT , and taking a lim sup of both sides. Let T → ∞, and
using the facts that E{L(0)} is finite and E{L(T)} is nonnegative, we arrive at
the following performance guarantee,

lim sup
T→∞

1

T

T−1∑

t=0

E{F(t)} ≤ y∗ + ω

V
. (4.45)

4.4.2 Simulations

In this section, we evaluate the performances of the proposed operation algorithm in
aspects of total energy cost (TEC), completiondelay, andworkloaddrop ratio (WDR).

4.4.2.1 Experimental Setup

System parameters. We consider an IDC with 20,000 servers, the peak power con-
sumption of a server in the IDC is 300W. Suppose IDC can support 100 units of
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computation demand when servers are busy, i.e., M = 100. The length of a time slot
is set to 5min and the time horizon in the evaluations is 2,880 slots. Then, we have
η = 0.005MWh/unit of computation demand. We use the 5min locational marginal
prices (LMP) in real-time electricitymarket,2 and the time horizonwe consider in this
chapter is fromFebruary 1 to February 10, 2013.As in [6], we assume that the number
of jobs arrive in each slot n(t) follows a Poisson distribution with parameter 4 and the
computation demand follows a uniform distribution with parameters 5 and 10. We
assume that the limits of battery charging/discharging rates are Pcm = Pdm = 3MW,
and charging/discharging cost is ρb

i = 0.1 dollars [4]. In addition, we set V = Vmax.
Algorithms for comparison. We consider the following six algorithms in this
chapter:

• Baseline-1 (B1): no completion delay is incurred and no battery is considered.
• Baseline-2 (B2): no completion delay is incurred and battery is considered.
• Baseline-3 (B3): homogeneous service delay guarantee is considered and battery
is not adopted. This scheme is similar to the Algo-3 in [3].

• Baseline-4 (B4): homogeneous service delay guarantee is considered and battery
is adopted. This scheme is modified from the proposed algorithm by setting the
service delay guarantees provided for all requests to be the same.

• Baseline-5 (B5): heterogeneous service delay guarantees are considered and bat-
tery is not adopted.

• Proposed algorithm (Proposed): heterogeneous service delay guarantees are con-
sidered and battery is adopted.

Since battery scheduling lags behind job scheduling, B1 and B2 (or B3 and B4,
or B5 and Proposed) have the same completion delay and workload drop ratio.

4.4.2.2 Simulation Results

Without loss of generality, we consider three types of jobs and their completion
times are 5, 7, and 9 (i.e., their completion delays are 4, 6, and 8.), respectively. We
set V = 0.1983. Moreover, we plot the cumulative distribution function (CDF) of
completion delay under the proposed algorithm in the upper part of Fig. 4.2, where
we can find that the proposed algorithm indeed provides the heterogeneous service
delay guarantees for different types of jobs. If homogeneous service delay guarantee
is considered, the maximum completion delay would be 4 slots, so that there is no
SLA violation, and the CDF of completion delay under such case is shown in the
lower part of Fig. 4.2.

In addition, the TEC under different algorithms is illustrated in Fig. 4.3 (note that
WDR of all algorithms under this scenario is zero, andworkload intensity ξ = 0.303,
where ξ is defined as the ratio of the time-averaged computation demand over the
given time horizon to the IDC capacity), where the proposed algorithm achieves the
lowest TEC. The reason is that the proposed algorithm can fully exploit the temporal

2 http://www.nyiso.com/, Sept. 2013.

http://www.nyiso.com/
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diversity of electricity price by jointly scheduling workload and battery. Specifically,
the proposed algorithm can reduce TEC by 24.74, 21.02, 7.25, 3.15 and 4.11%when
compared with the B1, the B2, the B3, the B4 and the B5, respectively. Furthermore,
it can be seen that there is a trade-off between completion time and TEC given the
same WDR, which is obvious since larger completion time would result in more
opportunities of exploiting the temporal diversity of electricity price.

We evaluate the impact of varying parameterV onTECas shown in Fig. 4.4, where
we make the following observations: (1) As V increases, the TEC becomes lower
under the proposed algorithm, the B2 and the B4, which validates the part 3 of the
Theorem 2. Though the part 3 of Theorem 2 holds when {n(t), di(t), S(t + k), k >

Dmax,∀i, t, k} are i.i.d. over slots, the simulation results based on real-world traces
show that the proposed algorithm is robust to non-i.i.d. and nonergodic cases (note
that the theoretical basis for such robustness can be found in [17]); (2) According to
the definition of Vmax, we know that larger V requires larger investment on battery
capacity, which would result in larger investment cost since batteries are expensive
currently. Therefore, there is a trade-off between energy cost saving and battery
investment cost. In Fig. 4.5, we plot the CDF of energy level when V = 0.1983 (i.e.,
the battery capacity is 60MWh). It can be found that the battery energy level is always
fluctuating in the normal range, which validates the parts 1 and 2 of Theorem 2.

In this subsection, we evaluate the impact of different workload intensities and
completion times on WDR. To this end, we enlarge the values of completion
time by 1, 1.5, 2, 2.5, and 3 times to simulate the variations of completion time.
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Moreover, by adjusting the arrival rate of jobs, we can obtain different workload
intensities. As shown in Fig. 4.6, larger completion times would result in lower
WDRs, becausemore jobs are admitted into the system due to the increase of residual
capacity for each incoming job.

In the right-hand side of Fig. 4.6, we can find that the B3 achieves lower WDR
than the proposed algorithm when completion time is small. This phenomenon can
be explained as follows: given a large workload intensity (e.g., ξ = 0.745), the
capacity allocation for the jobs with larger completion times are more likely to
make the residual capacity for the future jobs with smaller completion times to be
zero when compared with the situation that all jobs have the same completion time.
However, given a large workload intensity, if the completion times are sufficiently
large, the WDR under above two algorithms would be the same, i.e., zero. At this
time, by providing heterogeneous service delay guarantees, the proposed algorithm
can achieve lower TEC than the B3.

Based on the above observations,we know that the proposed algorithm is very suit-
able for the scenario with small workload intensity (as shown in the left-hand side of
Fig. 4.6) or large completion time (as shown in the right-hand side of Fig. 4.6). When
workload intensity is large and completion time is small, the B4 would be the best
choice since it achieves lower energy cost than the B3 without sacrificing WDR and
completion delay. Note that the B4 is a modified version of the proposed algorithm
(i.e., by setting service delay guarantees provided for all requests to be the same), we
can summarize that the proposed algorithm is applicable to the general scenarios.
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4.5 Summary

In this chapter, we studied the problem of minimizing the long-term energy cost
for an IDC in deregulated electricity markets. First, we formulated a time-averaged
expected energy cost minimization problem taking into account heterogeneous ser-
vice delay guarantees and battery management. Then, we designed a low-complexity
operation algorithm to solve the problem based on Lyapunov optimization technique.
Moreover,we analyzed the feasibility of the proposed operation algorithmand its per-
formance guarantee. Finally, extensive evaluations based on real-world data showed
the effectiveness of the proposed operation algorithm.
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Chapter 5
Risk-Constrained Operation for Internet
Data Centers in Deregulated
Electricity Markets

Abstract In deregulated electricity markets, there exist multiple markets of
different time scales, e.g., forward markets and spot markets. When Internet data
center operators only procure energy from spot markets, they can save energy cost
by fully exploiting the temporal and spatial variations of spot prices. Meanwhile,
prices in spot markets and workloads are volatile, and forecasted prices and work-
loads tend to be less accurate with the increase of planning horizon, consequently,
the future energy cost of Internet data centers is full of uncertainty (or randomness),
which is a risk for Internet data center operators since they may experience high
probability of having high energy cost in the future. Thus, in this chapter, we con-
sider the risk-constrained operation for Internet data centers in deregulated electricity
markets and propose a stochastic programming-based decision framework to decide
the optimal quantity of electricity that should be purchased in forward markets given
the risk preference of Internet data center operators.

Keywords Internet data center · Deregulated electricity markets · Uncertainty ·
Operation risk · Energy cost

5.1 Introduction

The past decade has witnessed tremendous growth of online applications and ser-
vices. Together with the recent trend of cloud computing, more and more data and
computations are migrated to or hosted on Internet data centers (IDCs), for reliabil-
ity, management, and cost benefits. In IDC operations, a critical issue is the energy
consumption. According to a recent study, many IDC operators spend more than
$30 million on their annual energy costs, which occupies 30–50 % of total opera-
tional expenses [1, 2]. On the other hand, the deregulation of electricity markets
provides the opportunity for IDC operators to reduce energy cost since the spatial
and temporal price variations could be utilized [1]. Based on the price characteristics
in deregulated electricity markets, lots of research has been done to reduce energy
cost for IDC operators [2–10].
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Though several schemes have been proposed to reduce energy cost for IDC oper-
ators, few attention has been paid to manage the uncertainties in IDC operations in
deregulated electricity markets, where multiple markets of different time scales exist,
such as forward markets and spot markets (including day-ahead and real-time spot
markets) [11, 12]. When IDC operators only procure electricity from spot markets
to supply IDCs, the spatial and temporal diversities of prices in deregulated elec-
tricity markets could be fully utilized to reduce energy cost. Meanwhile, prices in
spot markets and workloads are volatile, and forecasted prices and workloads tend
to be less accurate with the increase of planning horizon [13, 14] (e.g., from days to
months/years), consequently, the future energy cost of IDCs is full of uncertainty (or
randomness), which is a risk for IDC operators since they may experience high prob-
ability of having high energy cost in the future. To manage the risk mentioned above,
purchasing electricity from forward markets is an effective way since IDC operators
can buy a certain amount of electricity at a pre-specified contract price, at certain
time in the future, reducing the level of exposure to price risk [15]. However, buying
electricity from forward markets could increase the expected energy cost of IDC
operators due to the positive risk premium (i.e., the difference between forward price
and expected spot price during the delivery period) in short-term forward contracts
(e.g., daily/weekly/monthly forward contracts) [16, 17]. Moreover, it is important to
highlight that such short-term forward contracts are needed if IDC operators are very
risk averse since the long-term power demands of distributed IDCs are difficult to
forecast accurately due to the workload and price volatility and cannot be perfectly
covered by long-term forward contracts (e.g., quarterly/yearly forward contracts).
Thus, IDC operators face a tradeoff between operation risk (i.e., the risk associated
with energy cost) and expected energy cost when managing the uncertainties in IDC
operations in deregulated electricity markets.

As motivated, we study the problem of risk-constrained operation for IDCs in
deregulated electricity markets. Specifically, we consider an IDC operator, which
has some IDCs geographically distributed in several independent electric regions.
Moreover, the IDC operator needs to meet the power demand of distributed IDCs from
multiple energy sources, such as forward markets and spot markets. The objective
of an IDC operator is to achieve the optimal tradeoff between operation risk and
expected energy cost according to the given risk preferences.

To achieve the target above, the challenge is how to optimally decide the energy
procurement strategy for IDCs with the uncertainties in spot price and workload.
In existing works, several energy procurement strategies have been developed for
large consumers [18, 19]. In these works, no distributed systems (e.g., distributed
IDCs) are considered and power demand in the future is assumed to be known
since some consumers may have precise knowledge about their own consumption.
However, for distributed IDCs, the power demand depends on price and workload,
both of which cannot be controlled by IDC operators. Thus, the power demand
of distributed IDCs in the future is more difficult to be accurately predicted. In
[20], uncertainties in IDC operations were first considered and electricity forward
contracts (EFCs) [15] in forward markets were adopted to minimize operation risk
in IDC operations. However, merely minimizing the operation risk would lead to the
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highest expected energy cost for IDC operators when the tradeoff between operation
risk and expected energy cost is not considered. In addition, variance is adopted as
the risk metric for IDCs in [20]. However, when IDC operators are managing the risk
for IDCs, they may only care about reducing the upside deviations from expected
energy cost, rather than reducing downside and upside deviations simultaneously
because downside deviations are desirable. Thus, variance is not very suitable for
measuring the operation risk.

In this chapter, we propose a risk-constrained stochastic programming decision
framework for IDC operators, which can achieve the optimal tradeoff between opera-
tion risk and expected energy cost according to the risk preferences of IDC operators.
First, a risk-constrained expected energy cost minimization problem under the pro-
posed decision framework is formulated based on a two-stage stochastic program-
ming model with recourse. Specifically, the first-stage decisions are made about
signing EFCs in forward markets under the uncertainties of future spot price and
workload, with the aim of minimizing the weighted sum of expected energy cost and
operation risk (note that operation risk in this study is measured by the conditional
value-at-risk (CVaR) methodology [21], which can measure the risk just associated
with upside deviations from expected energy cost); while the second-stage decisions
are made to minimize energy cost after uncertain spot price and workload are un-
veiled. Moreover, we solve the formulated problem using a decomposition-based
cutting plane algorithm, which can decompose the original large-scale optimization
problem into independent smaller subproblems by exploiting the block structure of
the original problem.

The main contributions of this chapter are summarized as follows:

1. We present a risk-constrained stochastic programming decision framework for
IDC operators to achieve the optimal tradeoff between operation risk and expected
energy cost according to the risk preferences of IDC operators, where operation
risk is measured by the CVaR methodology which has better characteristics than
variance as mentioned in Sect. 5.3.4.

2. We formulate a risk-constrained expected energy cost minimization problem un-
der the proposed decision framework based on a two-stage stochastic program-
ming model with recourse.

3. We solve the formulated problem using a decomposition-based cutting plane
algorithm, which exploits the block structure of the problem.

4. Extensive evaluations based on real-life data are conducted to show the effective-
ness of the proposed decision framework.

The rest of this chapter is organized as follows. Section 5.2 describes the proposed
decision framework. Section 5.3 gives system model. Problem formulation and al-
gorithm design are conducted in Sect. 5.4. Simulations are given in Sect. 5.5. Finally,
conclusions are made in Sect. 5.6.
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5.2 Proposed Decision Framework

In this section, we propose a risk-constrained stochastic programming decision
framework as in Fig. 5.1, where two kinds of energy sources are considered, that is for-
ward markets and spot markets. In forward markets, IDC operators should decide the
optimal quantity of EFCs to be purchased so that operation risk could be controlled.
Thus, we briefly introduce electricity forward markets. Then, the decision framework
under uncertainty is described. Finally, the uncertainty characterization is given.

5.2.1 Electricity Forward Markets

In electricity forward markets, there are some electricity derivatives, such as EFCs,
electricity future/option contracts [15]. In this study, we focus on EFCs since they are
primary instruments used in electricity price risk management [15]. EFCs represent
the obligation to buy or sell a fixed amount of electricity at a pre-specified contract
price (i.e., forward price), at certain time in the future (call maturity or expiration time)
[15]. That obligation is discharged in one of two ways depending on contract spec-
ification, i.e., physical delivery and financial settlement. For the physical delivery,
the seller must deliver a certain amount of electricity to the buyer at a fixed forward
price. By contrast, financial settlement only requires the exchange of cash based on
the difference between the agreed forward price and spot price. Generally, EFCs with
short maturity like 1 h or 1 day are often physical contracts, and those with maturity
of weeks or months can be either physical contracts or financial contracts [15].

5.2.2 Risk-Constrained Decision Framework

In this subsection, we propose a risk-constrained stochastic programming decision
framework as shown in Fig. 5.1, where two different decisions can be distinguished,

Decisions in
forward markets

Electricity
delivery period

Slot 2 Slot NdSlot 1
Time

Decisions in spot markets

Fig. 5.1 Decision framework under uncertainty
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i.e., decisions in forward markets and decisions in spot markets.1 Specifically, in
forward markets, IDC operators should decide the quantity of EFCs under the uncer-
tainties of spot price and workload. In spot markets, with the unknown parameters
gradually revealed in the delivery period, IDC operators would accordingly minimize
the energy cost in each time slot.2 Since uncertainties in future spot price and work-
load are only involved in the decisions in forward markets, the above decision-making
problem under uncertainty can be cast as a two-stage stochastic programming model
with recourse [24]. Specifically, the decisions in forward markets are the first-stage
decisions, with the aim of minimizing the weighted sum of expected energy cost and
operation risk according to a given risk preference of IDC operators, while the deci-
sions in spot markets are the second-stage decisions, with the purpose of minimizing
the energy cost at each slot based on gradually unveiled spot price and workload.
Note that the decision variables of the first-stage decisions are the quantities of dif-
ferent EFCs, while the decision variables of the second-stage decisions are service
request distribution, the number of active servers, and power purchasing/selling in
spot markets.

5.2.3 Uncertainty Characterization

In stochastic programming, each uncertain parameter constitutes a random variable
[24]. A random variable whose value evolves over time is known as a stochastic
process. In this study, the spot price and workload over the delivery period are
stochastic processes, which can be represented by a set of scenarios. Each scenario
represents a realization of spot price and workload over the delivery period. Let Ω

be the set of scenarios and NΩ be the number of scenarios considered. Let N and F
be the number of IDCs and front-end web servers, respectively, and Nd be number
of time slots in the delivery period, and St

i (ω) (in $/MWh) be the spot price at slot
t (1 ≤ t ≤ Nd , in hour) and scenario ω at IDC location i (ω ∈ Ω), Rt

f (ω) (in
requests per slot, req/slot) be the total workload arrived at the front-end web server
f (1 ≤ f ≤ F) at slot t and scenario ω. Then, each scenario ω in this chapter
comprises a vector of spot prices at all IDC locations and a vector of workloads at
all front-end web servers, i.e.,

ω = {St
1, St

2, . . . , St
N , Rt

1, Rt
2, . . . , Rt

F }t=1,...,Nd . (5.1)

In addition, each scenario ω has a probability of occurrence π(ω), and
∑

ω∈Ω π(ω)

= 1. To generate scenarios for optimization problems, some techniques could be
adopted, such as path-based methods [25], scenario reduction methods [26], and

1 In this study, we focus on day-ahead spot markets and assume that prices and workloads in the
next day can be accurately predicted [22, 23].
2 A time-slotted system is considered in this chapter, where each slot represents a time interval in
a given delivery period of EFCs, e.g., 1 h.
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moment matching [27]. In this chapter, a procedure in [28] is adopted to generate
scenarios, which combines both path-based methods and scenario reduction tech-
niques: (1) a large enough number of scenarios are generated by time series models
(e.g., ARIMA model) and (2) a scenario-reduction technique is used to obtain a suf-
ficiently small number of scenarios. As to model the uncertainty of workload, the
similar time series models could be adopted.

5.3 System Model

In this section, we first introduce the system model. Then, we describe the mod-
els related to three components in the system model. Finally, the risk-constrained
expected energy cost minimization problem is formulated. The system model we
considered in this chapter is shown in Fig. 5.2, where several components could be
identified, namely front-end servers, IDCs, spot markets and forward markets. A
front-end server acts as a load balancer that receives incoming service requests and
dispatches them to geographically distributed IDCs that located in multiple electric
regions (ERs) for processing. To satisfy the power demand of distributed IDCs, two
energy sources are considered, i.e., spot markets and forward markets.

Fig. 5.2 System model
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5.3.1 Models Related to Front-End Servers
and Internet Data Centers

5.3.1.1 Workload Allocation Model

We consider an IDC operator with N IDCs geographically distributed in N indepen-
dent electric regions (ERs) to offer Internet services. In this chapter, we mainly focus
on delay-sensitive workloads (e.g., “request-response” type web services [5]). The
consideration of delay-tolerant workloads (e.g., compute-intensive or data-intensive
requests [29]) would be considered in future work. IDC i (1 ≤ i ≤ N ) with Mi

homogeneous servers and mt
i (ω) of them are turned on to process service requests

at slot t and scenario ω (0 ≤ mt
i (ω) ≤ Mi ). Moreover, mt

i (ω) is assumed to be
unchanged at slot t since activating servers typically cost a non-negligible amount
of time and frequently switching back and forth between active and sleep states can
result in reliability problems [4, 9]. Let λt

f,i (ω) (in req/slot) be the workload that
assigned from front-end web server f to the servers at IDC i at slot t and scenario
ω. For simplicity, we assume that the workload allocation would not alter spot price
and market behavior [1], i.e., workload and spot prices are independent. In order to
assure that all service requests will be handled, we have the following constraints

N∑

i=1

λt
f,i (ω) = Rt

f (ω). (5.2)

5.3.1.2 Power Consumption Model

The total power consumption at an IDC is obtained by adding the total power con-
sumption at IT equipment (e.g., servers, storage and network devices) to the total
power consumption at the facility (e.g., cooling, lighting, power distribution) [30].
Moreover, the ratio of the total power consumption at an IDC to the power consump-
tion at IT equipment is referred to as power usage effectiveness (PUE), which is a
measure of energy efficiency. Currently, the typical value of PUE is 2 [1, 31]. Let
PUEi be the PUE at IDC i , Pidle,i and Ppeak,i (both in Watt) represent the idle power
and peak power of a server at IDC i , respectively. Let U t

i (ω) be the average server
utilization at slot t and scenario ω, which is equal to λt

i (ω)/(mt
i (ω)μi ), where μi (in

req/slot) denotes the average service rate of servers at IDC i . As in previous work
[1, 32], the total power consumption of IDC i at slot t and scenario ω (Pt

i (ω), in
MW) can be estimated by

Pt
i (ω) = mt

i (ω)[ϕiU
t
i (ω) + γi ], (5.3)
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where

ϕi � Ppeak,i − Pidle,i , (5.4)

γi � Pidle,i + (PUEi − 1)Ppeak,i . (5.5)

Note that servers in each IDC are assumed to be homogeneous in the above power
consumption model. For more general situations (e.g., each IDC with heterogeneous
servers and servers with dynamic service rate [4]), the corresponding model can also
be incorporated easily.

5.3.1.3 Service Delay Model

To satisfy the quality-of-service requirements, the average response delay for incom-
ing service requests should be limited within a certain range that is determined by the
Service Level Agreement (SLA). Otherwise, penalties would be incurred [32–34]. In
this study, M/M/n queueing model is adopted to process the incoming workload as
in previous works [20, 23, 33]. Note that this queueing model is not necessarily the
most accurate for the practical workload, but it will not affect the nature of the pro-
posed risk-constrained stochastic programming decision framework. Let Dmax

i (in
seconds) be the threshold that identifies the revenue/penalty region at IDC i . To avoid
the penalty for violating the SLA, the following constraints should be satisfied,3 i.e.,

1

mt
i (ω)μi −

F∑
f =1

λt
f,i (ω)

+ 1

μi
≤ Dmax

i . (5.6)

5.3.2 Model Related to Electricity Forward Contracts

Let qi,x (in MW) be the quantity of electricity purchased via EFC x (with forward
price Fi,x in $/MWh) in a given delivery period, qmax

i,x (in MW) be the upper limits
of power that can be purchased via EFC x over the given delivery period. Then, we
have the following constraint,

0 ≤ qi,x ≤ qmax
i,x , (5.7)

where the lower limits of power that can be purchased via EFC x are assumed to
be zero, which is not always hold in practice. However, the assumption only affects

3 Here, a simple SLA is adopted as in [33, 35]. Other more complicated SLAs would be considered
in future work.
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the achievable tradeoff range between expected energy cost and operation risk, and
does not change the tradeoff nature of the proposed decision framework.

Let Bi be the number of EFCs available at IDC i during the given delivery period.
Then, the total quantity of electricity qt

i (in MW) purchased via EFCs for slot t at
IDC i is given by

qt
i =

Bi∑

x=1

qi,x . (5.8)

Let Zt
1 (in $) be the cost associated with the purchasing of energy via EFCs for

slot t , Δt be the duration of a time slot (in hour). Then, we have

Zt
1 =

N∑

i=1

Bi∑

x=1

qi,x Fi,x�t. (5.9)

In spot markets, the cost of purchasing (selling) electricity at slot t and scenario
ω (Zt

2(ω), in $) is computed by

Zt
2(ω) =

N∑

i=1

[Pt
i (ω) − qt

i ]St
i (ω)�t. (5.10)

Note that if Pt
i (ω) is larger (smaller) than qt

i , it indicates that the IDC operator would
purchase (sell) |Pt

i (ω) − qt
i | units of electricity from (to) spot markets, |ς | denotes

the absolute value of ς .

5.3.3 Expected Energy Cost

Let Z(ω) (in $) be the total energy cost of IDC operators under scenario ω. Then,
we have

Z(ω) =
Nd∑

t=1

[Zt
1 + Zt

2(ω)]. (5.11)

Then, the expected energy cost (in $) in the delivery period is
∑

ω∈Ω π(ω)Z(ω).

5.3.4 Operation Risk

In existing work [20], variance is adopted as the risk metric in IDC operations. How-
ever, when IDC operators are managing the risk, they may only care about reducing
the upside deviations from expected energy cost, rather than reducing downside and
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upside deviations simultaneously because downside deviations are desirable. There-
fore, variance is not very suitable for measuring the operation risk since it reduces
downside and upside deviations simultaneously. Compared with variance, condi-
tional value-at-risk (CVaR) [36] can measure the weighted average value of the tail
events, for a given fractile, for example CVaR can measure the risk just associated
with the upside deviations from expected energy cost. Moreover, CVaR is a positively
homogeneous and convex coherent risk measure [21]. Hence, we use CVaR as the
risk measure in this chapter. The definition of CVaR of a random variable A(ω) at
the confidence level α is given by

CVaRα(A(ω)) = inf
η∈R

{η + 1

1 − α
E[(A(ω) − η)+]}, (5.12)

where we let (·)+ = max(0, ·), E[·] denotes usual mathematical expectation operator.
It is well known that the infimum in (5.12) is attained at aα-quantile of A(ω). Note that
for discrete distributions of A(ω), CVaRα(A(ω)) is approximately as the expected
value of the (1 − α) × 100 % scenarios with the highest energy cost.

5.4 Problem Formulation and Algorithm Design

As described in Sect. 5.2.2, the decisions faced by IDC operators can be cast as
a two-stage stochastic programming problem with recourse, where the first-stage
decisions take place in forward markets, with the aim of minimizing the weighted
sum of expected energy cost and operation risk, while the second-stage decisions
are made in spot markets to minimize the energy cost.

5.4.1 The First-Stage Problem

As explained in Sect. 5.2.3, the future spot price and workload over the delivery period
are random processes, which can be represented by a set of scenarios. Let Ω be the
sample space (i.e., the set of scenarios), � be a σ -algebra on Ω (i.e., a set of subsets of
Ω), Π be a probability measure on Ω . Let ω̃ be a random vector (comprising future
spot price and workload) defined on a probability space (Ω, �,Π). Suppose scenario
ω is a realization of ω̃, then, the event {ω} ⊆ Ω with probability Π({ω}) = π(ω).
Let E[·] denote the usual mathematical expectation operator taken with respect to the
probability distribution of the random vector ω̃. In the first stage, the minimization
problem is formulated by

(P5.1) min{E[Q(ω̃)] + βCVaRα(Q(ω̃))}
= min{E[Q(ω̃)] + β(η + 1

1 − α
E[(Q(ω̃) − η)+])} (5.13a)
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s.t. 0 ≤ qi,x ≤ qmax
i,x , (5.13b)

η ∈ R, (5.13c)

where Q(ω̃) denotes the recourse cost function, which is the objective function of
the second-stage problem. The objective function to be minimized in P5.1 consists
of two parts, the first term is expected energy cost, and the second term is a scaled
operation risk measure (CVaR). The tradeoff between expected energy cost and
operation risk is enforced through the weighting factor β ∈[0,+∞). If risk is not
considered (risk-neutral IDC operators), the value of β is set to 0. The more risk
averse the IDC operators are, the higher the value of β is. In practice, β is specified
according to the risk preferences of IDC operators. The detailed discussion on how
to select the optimal β is beyond the scope of this chapter. The decision variables of
P5.1 are qi,x and η.

5.4.2 The Second-Stage Problem

In the second stage, IDC operators intend to minimize energy cost under a given
realization ω of ω̃. Moreover, qix and η are known in this stage. Then, the second-
stage problem is cast as follows, named P5.2:

(P5.2) Q(ω) = min Z(ω) (5.14a)

s.t. mt
i (ω) ≤ Mi , mt

i (ω) ∈ N , (5.14b)

mt
i (ω) ≥ 1

μi
[(Dmax

i − 1

μi
)−1 +

F∑

f =1

λt
f,i (ω)], (5.14c)

N∑

i=1

λt
f,i (ω) = Rt

f (ω), (5.14d)

mt
i (ω) ≥ 0, λt

f,i (ω) ≥ 0. (5.14e)

The decision variables of P5.2 are mt
i (ω) and λt

f,i (ω). Basically, the second-stage
decisions represent the operational decisions for IDCs, which change depending on
the realized values of random spot price and workload.

5.4.3 Deterministic Equivalent Programming Problem

Suppose ω̃ has a finite support on Ω , then, the two-stage stochastic programming
problem in (5.13a–5.13c)–(5.14a–5.14e) can be equivalently expressed by the fol-
lowing problem [24], named P5.3:
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(P5.3) min
∑

ω∈Ω

π(ω)Z(ω) + βη + β

1 − α

∑

ω∈Ω

π(ω)(Z(ω) − η)+ (5.15a)

s.t. mt
i (ω) ≤ Mi , mt

i (ω) ∈ N , (5.15b)

mt
i (ω) ≥ 1

μi
[(Dmax

i − 1

μi
)−1 +

F∑

f =1

λt
f,i (ω)], (5.15c)

N∑

i=1

λt
f,i (ω) = Rt

f (ω), (5.15d)

0 ≤ qi,x ≤ qmax
i,x , (5.15e)

mt
i (ω) ≥ 0, λt

f,i (ω) ≥ 0, η ∈ R. (5.15f)

where decision variables are qi,x , η, mt
i (ω), and λt

f,i (ω). To make P5.3 more easy
to solve, the linear formulation of CVaR is usually adopted [18]. Then, P5.3 can be
transformed to P5.4 as follows:

(P5.4) min
∑

ω∈Ω

π(ω)Z(ω) + β[η + 1

1 − α

∑

ω∈Ω

π(ω)χ(ω)] (5.16a)

s.t. Z(ω) − η − χ(ω) ≤ 0, (5.16b)

χ(ω) ≥ 0, (5.16c)

(5.15b)−(5.15f). (5.16d)

5.4.4 Algorithm Design

P5.4 could be input to an off-the-shelf mixed integer programming (MIP) solver.
However, due to the large number of scenarios in practical problem, P5.4 can be a
large-scale mixed-integer programming problem, which imposes large memory and
computational burden on the solver. One approach to deal with this difficulty is to
work with smaller problems by decomposing P5.4 into a first-stage problem and a
collection of second-stage scenario problems, which can be solved independently.
In addition, considering that there are huge number of servers in IDCs and a large
proportion of them are active, we can relax the integer constraint on mt

i (ω) without
significant energy cost penalties [10, 37]. Based on the above discussions, P5.4
can be approximately described by P5.5 as follows, where the integer constraint on
mt

i (ω) in P5.4 is relaxed and the translation-equivariant property of CVaR is used
(i.e., CVaRα(A + h) = CVaRα(A) + h, where h is a constant [21]),

(P5.5) min (1 + β)

Nd∑

t=1

Zt
1 +

∑

ω∈Ω

π(ω)

Nd∑

t=1

Zt
2(ω) + β[η + 1

1 − α

∑

ω∈Ω

π(ω)χ(ω)]
(5.17a)
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s.t. mt
i (ω) ≤ Mi , (5.17b)

Z(ω) − η − χ(ω) ≤ 0, (5.17c)

χ(ω) ≥ 0, (5.17d)

(5.16c)−(5.16f). (5.17e)

In this chapter, we adopt the decomposition-based cutting plane algorithm in [38]
to solve P5.5. The key idea of the decomposition-based cutting plane algorithm is
similar to the L-shaped algorithm [24], which is widely used in stochastic program-
ming. In the L-shaped algorithm, the expected recourse function in the two-stage
model is represented by a single variable θ , whose optimal value is determined it-
eratively by using linear programming duality to construct a piecewise linear outer
approximation of the expected recourse function as well as its effective domain.
To achieve this aim, optimality cuts and feasibility cuts are generated, respectively.
Different from the L-shaped algorithm, the decomposition-based cutting plane algo-
rithm needs to generate cuts to approximate the optimal expected value function and
CVaR of the recourse cost, instead of just expected value function.

In the decomposition-based cutting plane algorithm, additional variables νl(ω)

and ηl are introduced to construct optimality cuts associated with CVaR of the re-
course cost. The procedure of solving P5.5 is described as follows,

1. Initialization. Set a = 0 (optimality cut number), b = 0 (iteration number).
2. Set b = b + 1. Solve the following problem, named P5.6:

(P5.6) min (1 + β)

Nd∑

t=1

Zt
1 + θ1 + βθ2 (5.18a)

s.t. 0 ≤ qi,x ≤ qmax
i,x , (5.18b)

Φl(θ1, qi,x ) ≥ 0, (5.18c)

θ2 ≥ ηl + 1

1 − α

∑

ω∈Ω

π(ω)νl(ω), (5.18d)

Ψl(νl(ω), qi,x , ηl) ≥ 0, (5.18e)

νl(ω) ≥ 0, ηl ∈ R, (5.18f)

where 0 ≤ l ≤ a. Let (qb
i,x , θb

1 , θb
2 ) be the optimal solution of P5.6 at the iteration

b. Then, the optimal value θb = (1 + β)
Nd∑

t=1
Zt

1 + θb
1 + βθb

2 . If a = 0, θb
1 and

θb
2 are set equal to −∞ and are not considered in the computation of qb

i,x . Note
that Φl(θ1, qi,x ) denotes the optimality cuts for expected value function, while
Ψl(νl(ω), qi,x , ηl) describes the relationship between νl(ω) and ηl in computing
the optimality cuts for CVaR, and the specific expressions of Φl(θ1, qi,x ) and
Ψl(νl(ω), qi,x , ηl) would be given in the step 8). Similar to the existing work
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about stochastic programming, we give the computational complexity of P5.5
and P5.6 in Table 5.1 from the perspective of problem sizes. In Table 5.1, it can
be seen that the computational complexity of P5.6 is far smaller than that of P5.5
(note that the empirical results in the simulations showed that the value of a is
2 or 3), i.e., the decomposition-based cutting plane algorithm can greatly reduce
the computational complexity of P5.5.

3. For ω ∈ Ω , solve the following problem, named P5.7:

(P5.7) max
N∑

i=1

Nd∑

t=1

Mi v
t
i +

N∑

i=1

Nd∑

t=1

yt
i [(Dmax

i − 1

μi
)−1]

+
F∑

f =1

Nd∑

t=1

et
f Rt

f (ω) (5.19a)

s.t. vt
i + μi yt

i ≤ γi St
i (ω)Δt, (5.19b)

− yt
i + et

f ≤ φi

μi
St

i (ω)Δt, (5.19c)

vt
i ≤ 0, yt

i ≥ 0, et
f ∈ R, (5.19d)

where vt
i , yt

i , and et
f are simplex multipliers. In P5.7, the number of variables is

(2N + F)Nd , and the number of constraints is (F + 1)N Nd . Thus, the size of
P5.7 is independent of the number of scenarios. Let Γ (ω) be the optimal value

of P5.7. Then, we define Γ1(ω) = Γ (ω) +
Nd∑

t=1

N∑
i=1

Bi∑
x=1

qb
i,x (Fi,x − St

i (ω))Δt .

4. Using the definition of CVaR to obtain CVaRα , where A(ω) is replaced by Γ1(ω).
5. Let CVaRb

α be the optimal CVaRα . Since the translation-equivariant property of

CVaR is used, the actual CVaRα is computed by CVaRb
α +

Nd∑
t=1

N∑
i=1

Bi∑
x=1

qb
i,x Fi,xΔt .

6. Denote θ∗ as the mean-risk function value of the recourse cost at iteration b.
Then, we have

θ∗ =
∑

ω∈Ω

π(ω)Γ1(ω) + βCVaRα.

7. If θb > θ∗, then, stop the algorithm. qb
i,x is the optimal first-stage decision vector.

8. If θb ≤ θ∗, then, add optimality cuts into P5.6. Specifically, Φa+1(θ1, qi,x ) is
given by

Φa+1(θ1, qi,x ) = θ1 +
∑

ω∈Ω

π(ω){
Nd∑

t=1

N∑

i=1

Bi∑

x=1

qi,x St
i (ω)Δt}
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Table 5.1 Computational size comparison between P5.5 and P5.6

Number of variables in P5.5 (2N + F)NΩ Nd + NΩ +
N∑

i=1
Bi + 1

Number of constraints in P5.5 (2N + F)NΩ Nd + NΩ +
N∑

i=1
Bi

Number of variables in P5.6 NΩa + a +
N∑

i=1
Bi + 2

Number of constraints in P5.6 3a +
N∑

i=1
Bi

−
N∑

i=1

Nd∑

t=1

Mi v
t
i,b −

N∑

i=1

Nd∑

t=1

yt
i,b[(Dmax

i − 1

μi
)−1]

−
∑

ω∈Ω

π(ω){
F∑

f =1

Nd∑

t=1

et
f,b Rt

f (ω)}.

where vt
i,b, yt

i,b, et
f,b are the optimal decisions of P5.7 at the iteration b. Moreover,

Ψa+1(νa+1(ω), qi,x , ηa+1) is described by

Ψa+1(νa+1(ω), qi,x , ηa+1) = νa+1(ω) +
Nd∑

t=1

N∑

i=1

Bi∑

x=1

qi,x St
i (ω)Δt

−
N∑

i=1

Nd∑

t=1

Mi v
t
i,b −

N∑

i=1

Nd∑

t=1

yt
i,b[(Dmax

i − 1

μi
)−1]

−
F∑

f =1

Nd∑

t=1

et
f,b Rt

f (ω) + ηa+1.

9. a = a + 1. Go to step (2).

5.5 Simulations

In this section, extensive simulations are conducted to evaluate the optimal tradeoff
performance between expected energy cost and operation risk under different risk
preferences of IDC operators. For comparison, the scheme in [20] is adopted as the
baseline, which intends to minimize operation risk.
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5.5.1 Simulation Settings

Suppose the total workload from one front-end web server is forwarded to two
IDCs in two independent ERs, i.e., F = 1, N = 2. To reduce operation risk,
IDC operators can participate in forward markets by signing EFCs. In this chapter,
monthly EFCs with financial settlement are considered. The delivery period is set to
be Nd = 744 h, Δt = 1. In the delivery period, three monthly EFCs are available
in two ERs, and the parameters defining each EFC are provided in Table 5.2, where
forward price Fi,x is the summation of S̄i and ΔSi , S̄i denotes the expected spot
price in the delivery period, and ΔSi represents the positive risk premium [16]. Some
parameters related to IDCs are summarized in Table 5.3 [1, 7, 20]. Confidence level
α is set to 0.95 [18]. To generate scenarios, the day-ahead spot prices in U.S. NYISO
(N.Y.C. bus is considered)4 and ERCOT markets (HUDSON-8 bus is considered)5

are adopted to construct time series models as in Sect. 5.3. Then, we use the fast-
forward scenario reduction algorithm in [39] to obtain the price scenarios in two ERs
and their corresponding probability distributions. For workload, we use the data of
1998 World Cup during June 10, 1998 to June 30, 19986 and modify the original
workload by enlarging 60 times considering the increase of Internet traffic in the past
decades, for example the average workload of World Cup 1998 is smaller than 2
million requests/h [40], while the average workload of Google search is 121 million

Table 5.2 Forward contract
data

i x Fi,x ($/MWh) qmax
i (MW)

1 1 S̄1 + �S1 10.93

2 S̄1 + �S1 23.4

3 S̄1 + �S1 6.778

2 1 S̄2 + �S2 10.93

2 S̄2 + �S2 23.4

3 S̄2 + �S2 6.778

Table 5.3 Simulation
parameters

Parameter Value Unit

i 1 2 –

Mi 2.2 × 104 3.5 × 104 –

Ppeak,i 250 240 Watt

Pidle,i 175 168 Watt

PUEi 2.5 2.4 –

Dmax
i 0.7 0.7 s

μi 2 1.25 Req/s

4 http://www.nyiso.com/public/index.jsp, Sept. 2013.
5 http://www.ercot.com/mktinfo/, Sept. 2013.
6 http://ita.ee.lbl.gov/html/contrib/WorldCup.html, Sept. 2013.

http://www.nyiso.com/public/index.jsp
http://www.ercot.com/mktinfo/
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
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requests/h [41]. In this chapter, 200 workload scenarios are generated. Using the
scenario reduction algorithm, the generated scenarios are reduced to 20 for spot
prices in two ERs and workload. Thus, there are totally 8,000 joint scenarios since
prices in two ERs and workload. Moreover, the probability of each resulting scenario
is equal to the joint probability of price scenario in two ERs and workload scenario at
the front-end web server. Note that we focus on the method to implement the tradeoff
between expected energy cost and operation risk given a set of scenarios and their
probability distributions, instead of obtaining a reduced scenario set that can yield
a good approximation to the optimal value of the original problem (corresponding
to the situation that no scenario is reduced). For more details about yielding a good
approximation, refer to [42].

5.5.2 Simulation Results

In Fig. 5.3, the tradeoff curves between expected energy cost (EEC) and operation
risk (two risk metrics are adopted, i.e., CVaR and standard deviation) are shown under
different risk preferences of IDC operators, where risk preferenceβ is decreasing with
the increase of CVaR and standard deviation. Since the impact of β on the tradeoff
performance may be quite different under different combinations of ΔS1 and ΔS2,

3.05 3.1 3.15 3.2

x 10
5

3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

3.85
x 10

5

EEC (dollars)

C
V

aR
 (

do
lla

rs
)

3.05 3.1 3.15 3.2

x 10
5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

EEC (dollars)

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 e

ne
rg

y 
co

st
 (

do
lla

rs
)

Δ S
1
=1.346, Δ S

2
=1.348

Δ S
1
=1.846, Δ S

2
=1.848

Δ S
1
=1.346, Δ S

2
=1.348

Δ S
1
=1.846, Δ S

2
=1.848

Fig. 5.3 Expected energy cost versus operation risk



96 5 Risk-Constrained Operation for Internet Data Centers . . .

we choose different β for different combinations of ΔS1 and ΔS2. Specifically, {1 0.5
0.18 0.15 0.12 0} (corresponding to ΔS1 = 1.346 and ΔS2 = 1.348) and {5 3 1 0.3
0.25 0} (corresponding to ΔS1 = 1.846 and ΔS2 = 1.848) are chosen as the value of
β in simulations. Taking into account positive risk premiums, IDC operators would
experience the increase of expected energy cost and the decrease of operation risk
when signing EFCs in forward markets. Therefore, it is expected that expected energy
cost attains the lowest and operation risk achieves the highest (i.e., largest CVaR
and standard deviation) when β = 0. In existing work [20], the tradeoff between
operation risk and expected energy cost is not considered. Thus, minimizing the
operation risk would incur the highest expected energy cost, for example compared
with one risk-neutral situation, (β = 0, ΔS1 = 1.846 and ΔS2 = 1.848), minimizing
operation risk would lead to a reduction of 9.42 % (64.51 %) in the CVaR (standard
deviation) and an increase of 5.21 % in the expected energy cost. Similarly, compared
with another risk-neutral situation, (β = 0, ΔS1 = 1.346 and ΔS2 = 1.348),
minimizing operation risk would lead to a reduction of 11.18 % (64.52 %) in the
CVaR (standard deviation) and an increase of 2.99 % in the expected energy cost.
By contrast, under the proposed decision framework, the flexible tradeoff between
expected energy cost and operation risk could be achieved according to the risk
preferences of IDC operators.

In Fig. 5.4, it can be seen that larger β would lead to the increased quantity of
electricity purchased via EFCs. This is due to the fact that IDC operators tend to
procure more electricity from forward markets to reduce operation risk if they are
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more risk averse. Moreover, with the increase of risk premiums, the quantity of
electricity purchased vias EFCs is decreasing for a given β. The reason is that higher
risk premiums would lead to higher expected energy cost if the quantity of electricity
purchased via EFCs remains unchanged, which is equivalent to reduce the importance
weight on minimizing CVaR in the objective function as in (5.13a–5.13c), resulting
in the decreased quantity of electricity purchased via EFCs.

5.6 Summary

In this chapter, we investigated the risk-constrained operation for distributed Internet
data centers in deregulated electricity markets. First, a risk-constrained decision
framework was proposed to achieve the flexible tradeoff between operation risk and
expected energy cost according to the risk preferences of IDC operators. Note that
the proposed decision framework in this study can be easily extended to the scenarios
that take into account other kinds of energy sources, such as future/option contracts in
future markets and self-generation. Second, a risk-constrained expected energy cost
minimization problem was formulated based on a two-stage stochastic programming
model with recourse. Third, we proposed a solution to solve the problem. Extensive
simulation results based on real-life data showed the effectiveness of the proposed
decision framework.

References

1. Qureshi A, Weber R, Balakrishnan H, Guttag J, Maggs B (2009) Cutting the electric bill for
internet-scale systems. In: Proceedings of ACM special interest group on data communication
(SIGCOMM)

2. Guo Y, Fang Y (2013) Electricity cost saving strategy in data centers by using energy storage.
IEEE Trans Parallel Distrib Syst 24(6):1149–1160

3. Rao L, Liu X, Xie L, Liu W (2010) Minimizing electricity cost: optimization of distributed
internet data centers in a multi-electricity market environment. In: Proceedings of IEEE inter-
national conference on computer communications (INFOCOM)

4. Li J, Li Z, Ren K, Liu X, Su H (2011) Towards optimal electric demand management for
internet data centers. IEEE Trans Smart Grid 2(4):1–9

5. Rao L, Liu X, Xie L, Liu W (2012) Coordinated energy cost management of distributed internet
data centers in smart grid. IEEE Trans Smart Grid 3(1):50–58

6. Xu D, Liu X, Fan B (2011) Minimizing energy cost for internet-scale datacenters with dynamic
traffic. In: Proceedings of international workshop on quality of service (IWQoS)

7. Le K, Bianchini R, Martonosi M, Nguyen TD (2009) Cost and energy-aware load distribution
across data centers. In: Proceedings of workshop on power-aware computing and systems
(HotPower)

8. Luo J, Rao L, Liu X (2013) Temporal load balancing with service delay guarantees for data
center energy cost optimization. IEEE Trans Parallel Distrib Syst 25(3):775–784

9. Yao Y, Huang L, Sharma A, Golubchik L, Neely M (2013) Power cost reduction in distributed
data centers: a two time scale approach for delay tolerant workloads. IEEE Trans Parallel
Distrib Syst 25(1):200–211



98 5 Risk-Constrained Operation for Internet Data Centers . . .

10. Guo Y, Ding Z, Fang Y, Wu D (2011) Cutting down electricity cost in internet data centers by
using energy storage. In: Proceedings of IEEE international conference on global communica-
tions (GLOBECOM)

11. Xu J, Luh PB, White FB, Ni E, Kasiviswanathan K (2006) Power portfolio optimization in
deregulated electricity markets with risk management. IEEE Trans Power Syst 21(4):1653–
1662

12. Electric Power Markets: PJM. Available via DIALOG. http://www.ferc.gov/market-oversight/
mkt-electric/pjm.asp. Accessed 23 Sept 2013

13. Stevenson WJ (2012) Loose-leaf operations management, 11th edn. McGraw-Hill Higher Ed-
ucation, New York

14. Weron R (2006) Modeling and forecasting electricity loads and prices: a statistical approach.
Wiley, New Jersey

15. Deng SJ, Oren SS (2006) Electricity derivatives and risk management. Energy 31:940–953
16. Benth FE, Cartea Á, Kiesel R (2008) Pricing forward contracts in power markets by the cer-

tainty equivalence principle: explaining the sign of the market risk premium. J Bank Financ
32(10):2006–2021

17. Benth FE, Sgarra C (2012) The risk premium and the Esscher transform in power markets.
Stoch Anal Appl 30(1):20–43

18. Carrión M, Philpott AB, Conejo AJ, Arroyo JM (2007) A stochastic programming approach
to electric energy procurement for large consumers. IEEE Trans Power Syst 22(2):744–754

19. Zare K, Moghaddam MP, Sheikh-El-Eslami MK (2011) Risk-based electricity procurement
for large consumers. IEEE Trans Power Syst 26(4):1826–1835

20. Rao L, Liu X, Xie L, Pang Z (2011) Hedging against uncertainty: a tale of internet data center
operations under smart grid environment. IEEE Trans Smart Grid 2(3):555–563

21. Pflug G (2000) Some remarks on the value-at-risk and the conditional value-at-risk. Proba-
bilistic constrained optimization: methodology and applications. Kluwer Academic Publishers,
Dordrecht

22. Wu L, Shahidehpour M (2010) A hybrid model for day-ahead price forecasting. IEEE Trans
Power Syst 25(3):1519–1530

23. Yao J, Liu X, He W, Rahman A (2012) Dynamic control of electricity cost with power de-
mand smoothing and peak shaving for distributed internet data centers. In: Proceedings of
international conference on distributed computing systems (ICDCS)

24. Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, New York
25. Dupac̆ová J, Consigli G, Wallace SW (2000) Scenarios for multistage stochastic programs.

Ann Oper Res 100(1–4):25–53
26. Heitsch H, Römisch W (2003) Scenario reduction algorithms in stochastic programming. Com-

put Optim Appl 24:187–206
27. Høyland K, Kaut M, Wallace SW (2003) A heuristic for moment-matching scenario generation.

Comput Optim Appl 24:169–185
28. Conejo AJ, Carrión M, Morales JM (2010) Decision making under uncertainty in electricity

markets. Springer, New York
29. Chen G, He W, Liu J, Nath S, Rigas L, Xiao L, Zhao F (2008) Energy-aware server provisioning

and load dispatching for connection-intensive internet services. In: Proceedings of networked
systems design and implementation (NSDI)

30. Googles Green Data Centers. Available via DIALOG. http://www.google.com/green/
bigpicture. Accessed 23 Sept 2013

31. Gao PX, Curtis AR, Wong B, Keshav S (2012) It’s not easy being green. In: Proceedings of
ACM special interest group on data communication (SIGCOMM)

32. Ghamkhari M, Mohsenian-Rad H (2013) Energy and performance management of green data
centers: a profit maximization approach. IEEE Trans Smart Grid PP(99):1–9

33. Kusic D, Kephart JO, Hanson JE, Kandasamy N, Jiang G (2009) Power and performance
management of virtualized computing environments via lookahead control. Clust Comput
12(1):1–15

http://www.ferc.gov/market-oversight/mkt-electric/pjm.asp
http://www.ferc.gov/market-oversight/mkt-electric/pjm.asp
http://www.google.com/green/bigpicture
http://www.google.com/green/bigpicture


References 99

34. Ardagna D, Trubian M, Zhang L (2007) SLA based resource allocation policies in autonomic
environments. J Parallel Distrib Comput 67:259–270

35. Chen Y, Das A, Qin W, Sivasubramaniam A, Wang Q, Gautam N (2005) Managing server
energy and operational costs in hosting centers. In: Proceedings of special interest group on
measurement and evaluation (SIGMETRICS)

36. Hatami AR, Seifi H, Sheikh-El-Eslami MK (2009) Optimal selling price and energy procure-
ment strategies for a retailer in an electricity market. Electr Power Syst Res 79(1):246–254

37. Wang P, Rao L, Liu X, Qi Y (2012) D-pro dynamic data center operations with demand-
responsive electricity prices in smart grid. IEEE Trans Smart Grid 4(3):1–12

38. Ahmed S (2006) Convexity and decomposition of mean-risk stochastic programs. Math Pro-
gram 106(3):433–446

39. Gröwe-Kuska N, Heitsch H, Römisch W (2003) Scenario reduction and scenario tree con-
struction for power management problems. In: Proceedings IEEE Bologna power technology
conference

40. Arlitt M, Jin T (1999) Workload characterization of the 1998 world cup web site. HPL-1999-
35(R.1)

41. McGee M (2013) By the numbers: twitter versus facebook versus google buzz. Available
via DIALOG. http://searchengineland.com/by-the-numbers-twitter-vs-facebook-vs-google-
buzz-36709. Accessed 23 Sept 2013

42. Morales JM, Pineda S, Conejo AJ, Carrión M (2009) Scenario reduction for futures market
trading in electricity markets. IEEE Trans Power Syst 24(2):878–888

http://searchengineland.com/by-the-numbers-twitter-vs-facebook-vs-google-buzz-36709
http://searchengineland.com/by-the-numbers-twitter-vs-facebook-vs-google-buzz-36709


Chapter 6
Conclusions

In this book, we have studied the energy management of Internet data centers in
smart grid from several perspectives, which can be described as follows.

1. In Chap.2, we investigated the problem of minimizing energy cost for distributed
IDCs in smart microgrids considering power outages. We designed an opera-
tion algorithm based on the Lyapunov optimization technique, which enables an
explicit tradeoff between energy cost saving and battery investment cost. Finally,
the effectiveness of the proposed algorithm was evaluated.

2. In Chap.3, we investigated the problem of minimizing carbon-aware energy cost
for distributed IDCs in smart microgrids. We designed an operation algorithm
based on Lyapunov optimization technique without requiring any knowledge
about system statistics. Finally, evaluations showed that the proposed algorithm
can achieve lower energy cost and carbon emission simultaneously compared
with the carbon-oblivious algorithm.

3. In Chap.4, we investigated the problem of minimizing the long-term energy cost
for an IDC in deregulated electricity markets taking heterogeneous service delay
guarantees into account. We designed a joint workload and battery scheduling
algorithm based on Lyapunov optimization technique. Meanwhile, we analyzed
the feasibility and performance guarantee of the proposed algorithm. Finally,
extensive simulation results show the effectiveness of the proposed algorithm.

4. In Chap.5, we investigated the problem of achieving the optimal tradeoff between
operation risk and expected energy cost for IDC operators in deregulated elec-
tricity markets. We proposed a risk-constrained stochastic programming decision
framework. To solve the formulated problem, we used a decomposition-based
cutting plane algorithm. Finally, extensive evaluations showed the effectiveness
of the proposed decision framework.

Though someworks have been done, there are somedirections deserved for further
research.

1. In this book, we have assumed that IDCs are price-takers, i.e., IDC power con-
sumption and electricity prices are independent. However, there are two clear
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cases where IDC power consumption will affect electricity prices. First, IDCs
have very high power densities compared to homes. This concentrated consump-
tion can cause transmission congestion in the power grid and if IDCs were to
rapidly ramp their power up or down, they could cause localized disturbances
that affect electricity prices. Second, electricity prices would be affected if the
power-demand being shifted represents the marginal load in the electric region,
i.e., if adding that load to the electric region will require the activation of an addi-
tional power plant or if removing it will allow a running plant to be shut down.
Furthermore, if many IDCs in a electric region implement load balancing, even
one operator’s power-demand is not enough to affect electricity prices, the aggre-
gate demand from multiple operators could be large enough to affect electricity
prices. Therefore, IDCs could be price-markers, i.e., IDC power consumption
could change the electricity prices. In this situation, the algorithms proposed in
this book should be redesigned.

2. IDCs represent large loads for the power grid and the power consumption of
IDCs can be adjusted flexibly by scheduling workloads or changing the state of
IT equipments (e.g., servers, storage and networking devices) and cooling facility.
Therefore, IDCs are particularly suitable for participation in demand response pro-
grams to obtain financial benefits. However, there are some challenges that limit
IDC participation in demand response, namely (1) price-based demand response
programs require predicting the flexibility of IDCs accurately in order to set prices
efficiently, which is especially difficult for distributed IDCs; (2) participation in
incentive-based demand response programs is highly regulated and the bidding
necessary to extract profits is typically difficult to automate and incorporate into
IDC management system; and (3) how to design new demand response programs
that can efficiently extract IDC flexibility?
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