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Preface

When the first edition of Geostatistics for Environmental Scientists was published six
years ago it was an instant success. The book had a long gestation as we tested
our presentation on newcomers to the subject in our taught courses and on
practitioners with a modicum of experience. Responses from readers and from our
students showed that they wanted to understand more, and that wish coincided
with the need to produce a new revised edition. That feedback has led us to
change the emphasis and content. The result is that new material comprises about
20% of the new edition, and we have revised and reorganized Chapters 4, 5 and 6.

The focus of the book remains straightforward linear geostatistics based on
least-squares estimation. The theory and techniques have been around in
mineral exploration and petroleum engineering for some four decades. For
much of that time environmental scientists could not see the merits of the
subject or appreciate how to apply it to their own problems, because of the
context, the jargon and the mathematical presentation of the subject by many
authors. This situation has changed dramatically in the last ten years as soil
scientists, hydrologists, ecologists, geographers and environmental engineers
have seen that the technology is for them if only they could know how to apply
it. Here we have tried to satisfy that need.

The structure of the book follows the order in which an environmental
scientist would tackle an investigation. It begins with sampling, followed by
data screening, summary statistics and graphical display. It includes some of
the empirical methods that have been used for mapping, and the shortcomings
of these that lead to the need for a different approach. This last is based on the
theory of random processes, spatial covariances, and the variogram, which is
central to practical geostatistics. Practitioners will learn how to estimate the
variogram, what models they may legitimately use to describe it mathemati-
cally, and how to fit them. Their attention is also drawn to some of the
difficulties of variography associated with the kinds of data that they might
have to analyse. There is a brief excursion into the frequency domain to show
the equivalence of covariance and spectral analysis.

The book then returns to the principal reason for geostatistics, local estima-
tion by kriging, in particular ordinary kriging. Other kinds of kriging, such as
lognormal kriging, kriging in the presence of trend and factorial kriging, are
described for readers to put into practice as they become more skilled.
Coregionalization is introduced as a means of improving estimates of a primary



variable where data on one or more other variables are to hand or can be
obtained readily. There is an introduction to non-linear methods, including
disjunctive kriging for decision-making. The final chapter is on geostatistical
simulation, which is widely used in the petroleum industry and in hydrology.

In environmental applications the problems are nearly always ones of
estimation in two dimensions and of mapping. Rarely do they extend to three
dimensions or are restricted to only one.

Geostatistics is not easy. No one coming new to the subject will read this book
from cover to cover and remember everything that he or she should do. We
have therefore added an aide-mémoire, which can be read and reread as often
as necessary. This will remind readers of what they should do and the order in
which to do it. It is followed by some simple program instructions in the GenStat
language for carrying out the analyses. These, with a few other commands to
provide the necessary structures to read data and to write and display output,
should enable practitioners to get started, after which they can elaborate their
programs as their confidence and competence grow.

We illustrate the methods with data that we have explored previously in our
research. The data are of soil properties, because we are soil scientists who use
geostatistics in assessing soil resources. Nevertheless, there are close analogies
with other apsects of the environment at or near the land surface, which we
have often had to include in our analyses and which readers will see in the text.

The data come from surveys made by us or with our collaborators. The data
for Broom’s Barn Farm, which we can provide for readers thanks to Dr J. D.
Pidgeon, are from an original survey of the farm soon after Rothamsted bought
it in 1959. Those for the Borders Region (Chapter 2) were collected by the
Edinburgh School of Agriculture over some 20 years between 1960 and 1980,
and are provided by Mr R. B. Speirs. The data from the Jura used to illustrate
coregionalization (Chapter 10) are from a survey made by the École Polytech-
nique Fédérale de Lausanne in 1992 under the direction of Mr J.-P. Dubois.
Chapter 7 is based on a study of gilgai terrain in eastern Australia in 1973 by
one of us when working with CSIRO, and the data from CEDAR Farm used to
illustrate Chapter 10 were kindly provided by Dr Z. L. Frogbrook from her
original study in 1998. The data from the Yattendon Estate (Chapters 6 and 9)
are from a survey by Dr Z. L. Frogbook and one of us at the University of Reading
for the Home-Grown Cereals Authority. We are grateful to the organizations and
people whose data we have used. Finally, we thank our colleagues Dr R. M. Lark
and Dr B. P. Marchant for their help with some of the computing.

The data from Broom’s Barn Farm and all of the maps in colour are on the
book’s website at http://www.wiley.com/go/geostatics2e

Finally, we thank Blackwell Publishing Ltd for allowing us to reproduce
Figures 6.7, 6.9 and 6.10 from a previous paper of ours.

Richard Webster
Margaret Oliver

March 2007
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1

Introduction

1.1 WHY GEOSTATISTICS?

Imagine the situation: a farmer has asked you to survey the soil of his farm. In
particular, he wants you to determine the phosphorus content; but he will not be
satisfied with the mean value for each field as he would have been a few years
ago. He now wants more detail so that he can add fertilizer only where the soil is
deficient, not everywhere. The survey involves taking numerous samples of soil,
which you must transport to the laboratory for analysis. You dry the samples,
crush them, sieve them, extract the phosphorus with some reagent and finally
measure it in the extracts. The entire process is both time-consuming and costly.
Nevertheless, at the end you have data from all the points from which you took
the soil—just what the farmer wants, you might think!

The farmer’s disappointment is evident, however. ‘Oh’, he says, ‘this infor-
mation is for a set of points, but I have to farm continuous tracts of land. I really
want to know how much phosphorus the soil contains everywhere. I realize
that that is impossible; nevertheless, I should really like some information at
places between your sampling points. What can you tell me about those, and
how do your small cores of soil relate to the blocks of land over which my
machinery can spread fertilizer, that is, in bands 24 m wide?’

This raises further issues that you must now think about. Can you say what
values to expect at intervening places between the sample points and over
blocks the width of the farmer’s fertilizer spreader? And how densely should you
sample for such information to be reliable? At all times you must consider the
balance between the cost of providing the information and the financial gains
that will accrue to the farmer by differential fertilizing. In the wider context
there may be an additional gain if you can help to avoid over-fertilizing
and thereby protect the environment from pollution by excess phosphorus.
Your task, as a surveyor, is to be able to use sparse affordable data to estimate,
or predict, the average values of phosphorus in the soil over blocks of land
24 m � 24 m or perhaps longer strips. Can you provide the farmer with
spatially referenced values that he can use in his automated fertilizer spreader?
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This is not fanciful. The technologically minded farmer can position his
machines accurately to 2 m in the field, he can measure and record the yields of
his crops continuously at harvest, he can modulate the amount of fertilizer he
adds to match demand; but providing the information on the nutrient status of
the soil at an affordable price remains a major challenge in modern precision
farming (Lake et al., 1997).

So, how can you achieve this? The answer is to use geostatistics—that is
what it is for.

We can change the context to soil salinity, pollution by heavy metals, arsenic
in ground water, rainfall, barometric pressure, to mention just a few of the
many variables and materials that have been and are of interest to environ-
mental scientists. What is common to them all is that the environment is
continuous, but in general we can afford to measure properties at only a finite
number of places. Elsewhere the best we can do is to estimate, or predict, in a
spatial sense. This is the principal reason for geostatistics—it enables us to do so
without bias and with minimum error. It allows us to deal with properties that
vary in ways that are far from systematic and at all spatial scales.

We can take the matter a stage further. Alert farmers and land managers will
pounce on the word ‘error’. ‘Your estimates are subject to error’, they will say,
‘in other words, they are more or less wrong. So there is a good chance that if
we take your estimates at face value we shall fertilize or remediate where we
need not, and waste money, because you have underestimated, and not fertilize
or fail to remediate where we should.’ The farmer will see that he might
lose yield and profit if he applies too little fertilizer because you overestimate the
nutrient content of the soil; the public health authority might take too relaxed
an attitude if you underestimate the true value of a pollutant. ‘What do you say
to that?’, they may say.

Geostatistics again has the answer. It can never provide complete information,
of course, but, given the data, it can enable you to estimate the probabilities that
true values exceed specified thresholds. This means that you can assess the
farmer’s risks of losing yield by doing nothing where the true values are less than
the threshold or of wasting money by fertilizing where they exceed it.

Again, there are analogies in many fields. In some situations the conditional
probabilities of exceeding thresholds are as important as the estimates themselves
because there are matters of law involved. Examples include limits on the arsenic
content of drinking water (what is the probability that a limit is exceeded at an
unsampled well?) and heavy metals in soil (what is the probability that there is
more cadmium in the soil than the statutory maximum?)

1.1.1 Generalizing

The above is a realistic, if colourful, illustration of a quite general problem.
The environment extends more or less continuously in two dimensions. Its

2 Introduction



properties have arisen as the result of the actions and interactions of many
different processes and factors. Each process might itself operate on several
scales simultaneously, in a non-linear way, and with local positive feedback.
The environment, which is the outcome of these processes varies from place to
place with great complexity and at many spatial scales, from micrometres to
hundreds of kilometres.

The major changes in the environment are obvious enough, especially when
we can see them on aerial photographs and satellite imagery. Others are more
subtle, and properties such as the temperature and chemical composition can
rarely be seen at all, so that we must rely on measurement and the analysis of
samples. By describing the variation at different spatial resolutions we can
often gain insight into the processes and factors that cause or control it, and so
predict in a spatial sense and manage resources.

As above, measurements are made on small volumes of material or areas a
few centimetres to a few metres across, which we may regard as point samples,
known technically as supports. In some instances we enlarge the supports by
taking several small volumes of material and mixing them to produce bulked
samples. In others several measurements might be made over larger areas and
averaged rather than recorded as single measurements. Even so, these supports
are generally very much smaller than the regions themselves and are separated
from one another by distances several orders of magnitude larger than their
own diameters. Nevertheless, they must represent the regions, preferably
without bias.

An additional feature of the environment not mentioned so far is that at some
scale the values of its properties are positively related—autocorrelated, to give the
technical term. Places close to one another tend to have similar values, whereas
ones that are farther apart differ more on average. Environmental scientists
know this intuitively. Geostatistics expresses this intuitive knowledge quantita-
tively and then uses it for prediction. There is inevitably error in our estimates,
but by quantifying the spatial autocorrelation at the scale of interest we can
minimize the errors and estimate them too.

Further, as environmental protection agencies set maximum concentra-
tions, thresholds, for noxious substances in the soil, atmosphere and water
supply, we should also like to know the probabilities, given the data, that the
true values exceed the thresholds at unsampled places. Farmers and graziers
and their advisers are more often concerned with nutrients in the soil and
the herbage it grows, and they may wish to know the probabilities of
deficiency, i.e. the probabilities that true values are less than certain thresh-
olds. With some elaboration of the basic approach geostatistics can also answer
these questions.

The reader may ask in what way geostatistics differs from the classical
methods that have been around since the 1930s; what is the effect of taking
into account the spatial correlation? At their simplest the classical estimators,
based on random sampling, are linear sums of data, all of which carry the same
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weight. If there is spatial correlation, then by stratifying we can estimate more
precisely or sample more efficiently or both. If the strata are of different sizes
then we might vary the weights attributable to their data in proportion. The
means and their variances provided by the classical methods are regional, i.e.
we obtain just one mean for any region of interest, and this is not very useful if
we want local estimates. We can combine classical estimation with stratifica-
tion provided by a classification, such as a map of soil types, and in that way
obtain an estimate for each type of class separately. Then the weights for any
one estimate would be equal for all sampling points in the class in question and
zero in all others. This possibility of local estimation is described in Chapter 3. In
linear geostatistics the predictions are also weighted sums of the data, but with
variable weights determined by the strength of the spatial correlation and the
configuration of the sampling points and the place to be estimated.

Geostatistical prediction differs from classical estimation in one other impor-
tant respect: it relies on spatial models, whereas classical methods do not. In the
latter, survey estimates are put on a probabilistic footing by the design of the
sampling into which some element of randomization is built. This ensures
unbiasedness, and provides estimates of error if the choice of sampling design is
suitable. It requires no assumptions about the nature of the variable itself.
Geostatistics, in contrast, requires the assumption that the variable is random,
that the actuality on the ground, in the sea or in the air is the outcome of one or
more random processes. The models on which predictions are based are of these
random processes. They are not of the data, nor even of the actuality that we
could observe completely if we had infinite time and patience. Newcomers to the
subject usually find this puzzling; we hope that they will no longer do so when
they have read Chapter 4, which is devoted to the subject. One consequence of
the assumption is that sampling design is less important than in classical
survey; we should avoid bias, but otherwise even coverage and sufficient
sampling points are the main considerations.

The desire to predict was evident in weather forecasting and soil survey in the
early twentieth century, to mention just two branches of environmental
science. However, it was in mining and petroleum engineering that such a
desire was matched by the financial incentive and resources for research and
development. Miners wanted to estimate the amounts of metal in ore bodies and
the thicknesses of coal seams, and petroleum engineers wanted to know the
positions and volumes of reservoirs. It was these needs that constituted the force
originally driving geostatistics because better predictions meant larger profits
and smaller risks of loss. The solutions to the problems of spatial estimation are
embodied in geostatistics and they are now used widely in many branches of
science with spatial information. The origins of the subject have also given it its
particular flavour and some of its characteristic terms, such as ‘nugget’ and
‘kriging’.

There are other reasons why we might want geostatistics. The main ones are
description, explanation and control, and we deal with them briefly next.
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1.1.2 Description

Data from classical surveys are typically summarized by means, medians,
modes, variances, skewness, perhaps higher-order moments, and graphs of
the cumulative frequency distribution and histograms and perhaps box-plots.
We should summarize data from a geostatistical survey similarly. In addition,
since geostatistics treats a set of spatial data as a sample from the realization of a
random process, our summary must include the spatial correlation. This will
usually be the experimental or sample variogram in which the variance is
estimated at increasing intervals of distance and several directions. Alterna-
tively, it may be the corresponding set of spatial covariances or autocorrelation
coefficients. These terms are described later. We can display the estimated
semivariances or covariances plotted against sample spacing as a graph. We
may gain further insight into the nature of the variation at this stage by fitting
models to reveal the principal features. A large part of this book is devoted to
such description.

In addition, we must recognize that spatial positions of the sampling points
matter; we should plot the sampling points on a map, sometimes known as a
‘posting’. This will show the extent to which the sample fills the region of
interest, any clustering (the cause of which should be sought), and any obvious
mistakes in recording the positions such as reversed coordinates.

1.1.3 Interpretation

Having obtained the experimental variogram and fitted a model to it, we may
wish to interpret them. The shape of the points in the experimental variogram
can reveal much at this stage about the way that properties change with
distance, and the adequacy of sampling. Variograms computed for different
directions can show whether there is anisotropy and what form it takes. The
variogram and estimates provide a basis for interpreting the causes of spatial
variation and for identifying some of the controlling factors and processes. For
example, Chappell and Oliver (1997) distinguished different processes of soil
erosion from the spatial resolutions of the same soil properties in two adjacent
regions with different physiography. Burrough et al. (1985) detected early field
drains in a field in the Netherlands, and Webster et al. (1994) attempted to
distinguish sources of potentially toxic trace metals from their variograms in the
Swiss Jura.

1.1.4 Control

The idea of controlling a process is often central in time-series analysis. In it
there can be a feedback such that the results of the analysis are used to change
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the process itself. In spatial analysis the concept of control is different. In many
instances we are unlikely to be able to change the spatial characteristics of a
process; they are given. But we may modify our response. Miners use the results
of analysis to decide whether to send blocks of ore for processing if the estimated
metal content is large enough or to waste if not. They may also use the results
to plan the siting of shafts and the expansion of mines. The modern precision
farmer may use estimates from a spatial analysis to control his fertilizer spreader
so that it delivers just the right amount at each point in a field.

1.2 A LITTLE HISTORY

Although mining provided the impetus for geostatistics in the 1960s, the ideas
had arisen previously in other fields, more or less in isolation. The first record
appears in a paper by Mercer and Hall (1911) who had examined the variation
in the yields of crops in numerous small plots at Rothamsted. They showed how
the plot-to-plot variance decreased as the size of plot increased up to some limit.
‘Student’, in his appendix to the paper, was even more percipient. He noticed
that yields in adjacent plots were more similar than between others, and he
proposed two sources of variation, one that was autocorrelated and the other
that he thought was completely random. In total, this paper showed several
fundamental features of modern geostatistics, namely spatial dependence,
correlation range, the support effect, and the nugget, all of which you will
find in later chapters. Mercer and Hall’s data provided numerous budding
statisticians with material on which to practise, but the ideas had little impact
in spatial analysis for two generations.

In 1919 R. A. Fisher began work at Rothamsted. He was concerned primarily
to reveal and estimate responses of crops to agronomic practices and differences
in the varieties. He recognized spatial variation in the field environment, but for
the purposes of his experiments it was a nuisance. His solution to the problems
it created was to design his experiments in such a way as to remove the effects
of both short-range variation, by using large plots, and long-range variation, by
blocking, and he developed his analysis of variance to estimate the effects. This
was so successful that later agronomists came to regard spatial variation as of
little consequence.

Within 10 years Fisher had revolutionized agricultural statistics to great
advantage, and his book (Fisher, 1925) imparted much of his development of
the subject. He might also be said to have hidden the spatial effects and
therefore to have held back our appreciation of them. But two agronomists,
Youden and Mehlich (1937), saw in the analysis of variance a tool for revealing
and estimating spatial variation. Their contribution was to adapt Fisher’s
concepts so as to analyse the spatial scale of variation, to estimate the variation
from different distances, and then to plan further sampling in the light of the
knowledge gained. Perhaps they did not appreciate the significance of their
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research, for they published it in the house journal of their institute, where their
paper lay dormant for many years. The technique had to be rediscovered not
once but several times by, for example, Krumbein and Slack (1956) in geology,
and Hammond et al. (1958) and Webster and Butler (1976) in soil science. We
describe it in Chapter 6.

We next turn to Russia. In the 1930s A. N. Kolmogorov was studying
turbulence in the air and the weather. He wanted to describe the variation and
to predict. He recognized the complexity of the systems with which he was
dealing and found a mathematical description beyond reach. Nowadays we
might call it chaos (Gleick, 1988). However, he also recognized spatial correla-
tion, and he devised his ‘structure function’ to represent it. Further, he worked
out how to use the function plus data to interpolate optimally, i.e. without bias
and with minimum variance (Kolmogorov, 1941); see also Gandin (1965).
Unfortunately, he was unable to use the method for want of a computer in
those days. We now know Kolmogorov’s structure function as the variogram
and his technique for interpolation as kriging. We deal with them in Chapters 4
and 8, respectively.

The 1930s saw major advances in the theory of sampling, and most of the
methods of design-based estimation that we use today were worked out then
and later presented in standard texts such as Cochran’s Sampling Techniques, of
which the third edition (Cochran, 1977) is the most recent, and that by Yates,
which appeared in its fourth edition as Yates (1981). Yates’s (1948) investiga-
tion of systematic sampling introduced the semivariance into field survey. Von
Neumann (1941) had by then already proposed a test for dependence in time
series based on the mean squares of successive differences, which was later
elaborated by Durbin and Watson (1950) to become the Durbin–Watson
statistic. Neither of these leads were followed up in any concerted way for
spatial analysis, however.

Matérn (1960), a Swedish forester, was also concerned with efficient
sampling. He recognized the consequences of spatial correlation. He derived
theoretically from random point processes several of the now familiar functions
for describing spatial covariance, and he showed the effects of these on global
estimates. He acknowledged that these were equivalent to Jowett’s (1955)
‘serial variation function’, which we now know as the variogram, and men-
tioned in passing that Langsaetter (1926) had much earlier used the same way
of expressing spatial variation in Swedish forest surveys.

The 1960s bring us back to mining, and to two men in particular. D. G.
Krige, an engineer in the South African goldfields, had observed that he could
improve his estimates of ore grades in mining blocks if he took into account the
grades in neighbouring blocks. There was an autocorrelation, and he worked
out empirically how to use it to advantage. It became practice in the gold mines.
At the same time G. Matheron, a mathematician in the French mining schools,
had the same concern to provide the best possible estimates of mineral grades
from autocorrelated sample data. He derived solutions to the problem of

A Little History 7



estimation from the fundamental theory of random processes, which in the
context he called the theory of regionalized variables. His doctoral thesis
(Matheron, 1965) was a tour de force.

From mining, geostatistics has spread into several fields of application,
first into petroleum engineering, and then into subjects as diverse as hydro-
geology, meteorology, soil science, agriculture, fisheries, pollution, and envir-
onmental protection. There have been numerous developments in technique,
but Matheron’s thesis remains the theoretical basis of most present-day practice.

1.3 FINDING YOUR WAY

We are soil scientists, and the content of our book is inevitably coloured by our
experience. Nevertheless, in choosing what to include we have been strongly
influenced by the questions that our students, colleagues and associates have
asked us and not just those techniques that we have found useful in our own
research. We assume that our readers are numerate and familiar with
mathematical notation, but not that they have studied mathematics to an
advanced level or have more than a rudimentary understanding of statistics.

We have structured the book largely in the sequence that a practitioner
would follow in a geostatistical project. We start by assuming that the data are
already available. The first task is to summarize them, and Chapter 2 defines the
basic statistical quantities such as mean, variance and skewness. It describes
frequency distributions, the normal distribution and transformations to stabilize
the variance. It also introduces the chi-square distribution for variances. Since
sampling design is less important for geostatistical prediction than it is in
classical estimation, we give it less emphasis than in our earlier Statistical
Methods (Webster and Oliver, 1990). Nevertheless, the simpler designs for
sampling in a two-dimensional space are described so that the parameters of
the population in that space can be estimated without bias and with known
variance and confidence. The basic formulae for the estimators, their variances
and confidence limits are given.

The practitioner who knows that he or she will need to compute variograms
or their equivalents, fit models to them, and then use the models to krige can go
straight to Chapters 4, 5, 6 and 8. Then, depending on the circumstances, the
practitioner may go on to kriging in the presence of trend and factorial kriging
(Chapter 9), or to cokriging in which additional variables are brought into play
(Chapter 10). Chapter 11 deals with disjunctive kriging for estimating the
probabilities of exceeding thresholds.

Before that, however, newcomers to the subject are likely to have come
across various methods of spatial interpolation already and to wonder whether
these will serve their purpose. Chapter 3 describes briefly some of the more
popular methods that have been proposed and are still used frequently for
prediction, concentrating on those that can be represented as linear sums of
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data. It makes plain the shortcomings of these methods. Soil scientists are
generally accustomed to soil classification, and they are shown how it can be
combined with classical estimation for prediction. It has the merit of being the
only means of statistical prediction offered by classical theory. The chapter also
draws attention to its deficiencies, namely the quality of the classification and
its inability to do more than predict at points and estimate for whole classes.

The need for a different approach from those described in Chapter 3, and the
logic that underpins it, are explained in Chapter 4. Next, we give a brief
description of regionalized variable theory or the theory of spatial random
processes upon which geostatistics is based. This is followed by descriptions of
how to estimate the variogram from data. The usual computing formula for the
sample variogram, usually attributed to Matheron (1965), is given and also
that to estimate the covariance.

The sample variogram must then be modelled by the choice of a mathema-
tical function that seems to have the right form and then fitting of that function
to the observed values. There is probably not a more contentious topic in
practical geostatistics than this. The common simple models are listed and
illustrated in Chapter 5. The legitimate ones are few because a model variogram
must be such that it cannot lead to negative variances. Greater complexity can
be modelled by a combination of simple models. We recommend that you fit
apparently plausible models by weighted least-squares approximation, graph
the results, and compare them by statistical criteria.

Chapter 6 is in part new. It deals with several matters that affect the
reliability of estimated variograms. It examines the effects of asymmetrically
distributed data and outliers on experimental variograms and recommends
ways of dealing with such situations. The robust variogram estimators of
Cressie and Hawkins (1980), Dowd (1984) and Genton (1998) are compared
and recommended for data with outliers. The reliability of variograms is also
affected by sample size, and confidence intervals on estimates are wider than
many practitioners like to think. We show that at least 100–150 sampling
points are needed, distributed fairly evenly over the region of interest. The
distances between sampling points are also important, and the chapter
describes how to design nested surveys to discover economically the spatial
scales of variation in the absence of any prior information. Residual maximum
likelihood (REML) is introduced to analyse the components of variance for
unbalanced designs, and we compare the results with the usual least-squares
approach.

For data that appear periodic the covariance analysis may be taken a step
further by computation of power spectra. This detour into the spectral domain is
the topic of Chapter 7.

The reader will now be ready for geostatistical prediction, i.e. kriging.
Chapter 8 gives the equations and their solutions, and guides the reader in
programming them. The equations show how the semivariances from the
modelled variogram are used in geostatistical estimation (kriging). This chapter
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shows how the kriging weights depend on the variogram and the sampling
configuration in relation to the target point or block, how in general only the
nearest data carry significant weight, and the practical consequences that this
has for the actual analysis.

A new Chapter 9 pursues two themes. The first part describes kriging in the
presence of trend. Means of dealing with this difficulty are becoming more
accessible, although still not readily so. The means essentially involve the use of
REML to estimate both the trend and the parameters of the variogram model of
the residuals from the trend. This model is then used for estimation, either
where there is trend in the variable of interest (universal kriging) or where the
variable of interest is correlated with that in an external variable in which there
is trend (kriging with external drift). These can be put into practice by the
empirical best linear unbiased predictor.

Chapter 10 describes how to calculate and model the combined spatial
variation in two or more variables simultaneously and to use the model to
predict one of the variables from it, and others with which it is cross-correlated,
by cokriging.

Chapter 11 tackles another difficult subject, namely disjunctive kriging. The
aim of this method is to estimate the probabilities, given the data, that true
values of a variable at unsampled places exceed specified thresholds.

Finally, a completely new Chapter 12 describes the most common methods of
stochastic simulation. Simulation is widely used by some environmental
scientists to examine potential scenarios of spatial variation with or without
conditioning data. It is also a way of determining the likely error on predictions
independently of the effects of the sampling scheme and of the variogram, both
of which underpin the kriging variances.

In each chapter we have tried to provide sufficient theory to complement
the mechanics of the methods. We then give the formulae, from which you
should be able to program the methods (except for the variogram modelling in
Chapter 5). Then we illustrate the results of applying the methods with
examples from our own experience.
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2

Basic Statistics

Before focusing on the main topic of this book, geostatistics, we want to ensure
that readers have a sound understanding of the basic quantitative methods for
obtaining and summarizing information on the environment. There are two
aspects to consider: one is the choice of variables and how they are measured;
the other, and more important, is how to sample the environment. This chapter
deals with these. Chapter 3 will then consider how such records can be used for
estimation, prediction and mapping in a classical framework.

The environment varies from place to place in almost every aspect. There are
infinitely many places at which we might record what it is like, but practically
we can measure it at only a finite number by sampling. Equally, there are many
properties by which we can describe the environment, and we must choose
those that are relevant. Our choice might be based on prior knowledge of the
most significant descriptors or from a preliminary analysis of data to hand.

2.1 MEASUREMENT AND SUMMARY

The simplest kind of environmental variable is binary, in which there are only
two possible states, such as present or absent, wet or dry, calcareous or non-
calcareous (rock or soil). They may be assigned the values 1 and 0, and they
can be treated as quantitative or numerical data. Other features, such as classes
of soil, soil wetness, stratigraphy, and ecological communities, may be recorded
qualitatively. These qualitative characters can be of two types: unordered and
ranked. The structure of the soil, for example, is an unordered variable and may
be classified into blocky, granular, platy, etc. Soil wetness classes—dry, moist,
wet—are ranked in that they can be placed in order of increasing wetness. In
both cases the classes may be recorded numerically, but the records should not
be treated as if they were measured in any sense. They can be converted to sets
of binary variables, called ‘indicators’ in geostatistics (see Chapter 11), and can
often be analysed by non-parametric statistical methods.
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The most informative records are those for which the variables are measured
fully quantitatively on continuous scales with equal intervals. Examples include
the soil’s thickness, its pH, the cadmium content of rock, and the proportion of
land covered by vegetation. Some such scales have an absolute zero, whereas
for others the zero is arbitrary. Temperature may be recorded in kelvin (absolute
zero) or in degrees Celsius (arbitrary zero). Acidity can be measured by
hydrogen ion concentration (with an absolute zero) or as its negative logarithm
to base 10, pH, for which the zero is arbitrarily taken as � log10 1 (in moles per
litre). In most instances we need not distinguish between them. Some properties
are recorded as counts, e.g. the number of roots in a given volume of soil, the
pollen grains of a given species in a sample from a deposit, the number of plants
of a particular type in an area. Such records can be analysed by many of the
methods used for continuous variables if treated with care.

Properties measured on continuous scales are amenable to all kinds of
mathematical operation and to many kinds of statistical analysis. They are
the ones that we concentrate on because they are the most informative, and
they provide the most precise estimates and predictions. The same statistical
treatment can often be applied to binary data, though because the scale is so
coarse the results may be crude and inference from them uncertain. In some
instances a continuous variable is deliberately converted to binary, or to an
‘indicator’ variable, by cutting its scale at some specific value, as described in
Chapter 11.

Sometimes, environmental variables are recorded on coarse stepped scales in
the field because refined measurement is too expensive. Examples include the
percentage of stones in the soil, the root density, and the soil’s strength. The
steps in their scales are not necessarily equal in terms of measured values, but
they are chosen as the best compromise between increments of equal practical
significance and those with limits that can be detected consistently. These scales
need to be treated with some caution for analysis, but they can often be treated
as fully quantitative.

Some variables, such as colour hue and longitude, have circular scales. They
may often be treated as linear where only a small part of each scale is used. It is
a different matter when a whole circle or part of it is represented. This occurs
with slope aspect and with orientations of stones in till. Special methods are
needed to summarize and analyse such data (see Mardia and Jupp, 2000), and
we shall not consider them in this book.

2.1.1 Notation

Another feature of environmental data is that they have spatial and temporal
components as well as recorded values, which makes them unique or determi-
nistic (we return to this point in Chapter 4). In representing the data we must
distinguish measurement, location and time. For most classical statistical
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analyses location is irrelevant, but for geostatistics the location must be
specified. We shall adhere to the following notation as far as possible through-
out this text. Variables are denoted by italics: an upper-case Z for random
variables and lower-case z for a realization, i.e. the actuality, and also for
sample values of the realization. Spatial position, which may be in one, two or
three dimensions, is denoted by bold x. In most instances the space is two-
dimensional, and so x ¼ fx1; x2g, signifying the vector of the two spatial
coordinates. Thus ZðxÞ means a random variable Z at place x, and zðxÞ is
the actual value of Z at x. In general, we shall use bold lower-case letters for
vectors and bold capitals for matrices.

We shall use lower-case Greek letters for parameters of populations and either
their Latin equivalents or place circumflexes ( )̂, commonly called ‘hats’ by
statisticians, over the Greek for their estimates. For example, the standard
deviation of a population will be denoted by s and its estimate by s or ŝ.

2.1.2 Representing variation

The environment varies in almost every aspect, and our first task is to describe
that variation.

Frequency distribution: the histogram and box-plot

Any set of measurements may be divided into several classes, and we may count
the number of individuals in each class. For a variable measured on a
continuous scale we divide the measured range into classes of equal width
and count the number of individuals falling into each. The resulting set of
frequencies constitutes the frequency distribution, and its graph (with fre-
quency on the ordinate and the variate values on the abscissa) is the histogram.
Figures 2.1 and 2.4 are examples. The number of classes chosen depends on the

Figure 2.1 Histograms: (a) exchangeable potassium (K) in mg l�1; (b) log10 K, for the
topsoil at Broom’s Barn Farm. The curves are of the (lognormal) probability density.
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number of individuals and the spread of values. In general, the fewer the
individuals the fewer the classes needed or justified for representing them.
Having equal class intervals ensures that the area under each bar is propor-
tional to the frequency of the class. If the class intervals are not equal then the
heights of the bars should be calculated so that the areas of the bars are
proportional to the frequencies.

Another popular device for representing a frequency distribution is the box-
plot. This is due to Tukey (1977). The plain ‘box and whisker’ diagram, like
those in Figure 2.2, has a box enclosing the interquartile range, a line showing
the median (see below), and ‘whiskers’ (lines) extending from the limits of the
interquartile range to the extremes of the data, or to some other values such as
the 90th percentiles.

Both the histogram and the box-plot enable us to picture the distribution to
see how it lies about the mean or median and to identify extreme values.

Figure 2.2 Box-plots: (a) exchangeable K; (b) log10K showing the ‘box’ and ‘whiskers’,
and (c) exchangeable K and (d) log10K showing the fences at the quartiles plus and
minus 1.5 times the interquartile range.
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Cumulative distribution

The cumulative distribution of a set of N observations is formed by ordering the
measured values, zi, i ¼ 1;2; . . . ;N, from the smallest to the largest, recording
the order, say k, accumulating them, and then plotting k against z. The resulting
graph represents the proportion of values less than zk for all k ¼ 1;2; . . . ;N. The
histogram can also be converted to a cumulative frequency diagram, though
such a diagram is less informative because the data are grouped.

The methods of representing frequency distribution are illustrated in
Figures 2.1–2.6.

2.1.3 The centre

Three quantities are used to represent the ‘centre’ or ‘average’ of a set of
measurements. These are the mean, the median and the mode, and we deal
with them in turn.

Mean

If we have a set of N observations, zi, i ¼ 1;2; . . . ;N, then we can compute their
arithmetic average, denoted by �z, as

�z ¼ 1

N

XN

i¼1

zi: ð2:1Þ

This, the mean, is the usual measure of central tendency.
The mean takes account of all of the observations, it can be treated

algebraically, and the sample mean is an unbiased estimate of the population
mean. For capacity variables, such as the phosphorus content in the topsoil of
fields or daily rainfall at a weather station, means can be multiplied to obtain
gross values for larger areas or longer periods. Similarly, the mean concentra-
tion of a pollutant metal in the soil can be multiplied by the mass of soil to
obtain a total load in a field or catchment. Further, addition or physical mixing
should give the same result as averaging.

Intensity variables are somewhat different. These are quantities such as
barometric pressure and matric suction of the soil. Adding them or multiplying
them does not make sense, but the average is still valuable as a measure of the
centre. Physical mixing will in general not produce the arithmetic average. Some
properties of the environment are not stable in the sense that bodies of material
react with one another if they are mixed. For example, the average pH of a large
volume of soil or lake water after mixing will not be the same as the average of
the separate bodies of the soil or water that you measured previously. Chemical
equilibration takes place. The same can be true for other exchangeable ions.
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So again, the average of a set of measurements is unlikely to be the same as a
single measurement on a mixture.

Median

The median is the middle value of a set of data when the observations are
ranked from smallest to largest. There are as many values less than the median
as there are greater than it. If a property has been recorded on a coarse scale
then the median is a rough estimate of the true centre. Its principal advantage is
that it unaffected by extreme values, i.e. it is insensitive to outliers, mistaken
records, faulty measurements and exceptional individuals. It is a robust
summary statistic.

Mode

The mode is the most typical value. It implies that the frequency distribution
has a single peak. It is often difficult to determine the numerical value. If in a
histogram the class interval is small then the mid-value of the most frequent
class may be taken as the mode. For a symmetric distribution the mode, the
mean and the median are in principle the same. For an asymmetric one

ðmode � medianÞ � 2 � ðmedian � meanÞ: ð2:2Þ

In asymmetric distributions, e.g. Figures 2.1(a) and 2.4(a), the median and
mode lie further from the longer tail of the distribution than the mean, and the
median lies between the mode and the mean.

2.1.4 Dispersion

There are several measures for describing the spread of a set of measurements:
the range, interquartile range, mean deviation, standard deviation and its
square, the variance. These last two are so much easier to treat mathematically,
and so much more useful therefore, that we concentrate on them almost to the
exclusion of the others.

Variance and standard deviation

The variance of a set of values, which we denote S2, is by definition

S2 ¼ 1

N

XN

i¼1

ðzi � �zÞ2: ð2:3Þ
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The variance is the second moment about the mean. Like the mean, it is based
on all of the observations, it can be treated algebraically, and it is little affected
by sampling fluctuations. It is both additive and positive. Its analysis and use
are backed by a huge body of theory. Its square root is the standard deviation, S.
Below we shall replace the divisor N by N � 1 so that we can use the variance
of a sample to estimate s2, the population variance, without bias.

Coefficient of variation

The standard deviation expresses dispersion in the same units as those in which
the variable is measured. There are situations in which we may want to express
it in relative terms, as where a property has been measured in two different
regions to give two similar values of S but where the means are different. If the
variances are the same we might regard the region with the smaller mean as
more variable than the other in relative terms. The coefficient of variation (CV)
can express this. It is usually presented as a percentage:

CV ¼ 100ðS=�zÞ%: ð2:4Þ

It is useful for comparing the variation of different sets of observations of the
same property. It has little merit for properties with scales having arbitrary
zeros and for comparing different properties except where they can be measured
on the same scale.

Skewness

The skewness measures the asymmetry of the observations. It is defined
formally from the third moment about the mean:

m3 ¼ 1

N

XN

i¼1

ðzi � �zÞ3: ð2:5Þ

The coefficient of skewness is then

g1 ¼ m3

m2
ffiffiffiffiffiffi
m2

p ¼ m3

S3
; ð2:6Þ

where m2 is the variance. Symmetric distributions have g1 ¼ 0. Skewness is the
most common departure from normality (see below) in measured environ-
mental data. If the data are skewed then there is some doubt as to which
measure of centre to use. Comparisons between the means of different sets of
observations are especially unreliable because the variances can differ substan-
tially from one set to another.
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Kurtosis

The kurtosis expresses the peakedness of a distribution. It is obtained from the
fourth moment about the mean:

m4 ¼ 1

N

XN

i¼1

ðzi � �zÞ4: ð2:7Þ

The coefficient of kurtosis is given by

g2 ¼ m4

m2
2

� 3 ¼ m4

ðS2Þ2
� 3: ð2:8Þ

Its significance relates mainly to the normal distribution, for which g2 ¼ 0.
Distributions that are more peaked than normal have g2 > 0; flatter ones have
g2 < 0.

2.2 THE NORMAL DISTRIBUTION

The normal distribution is central to statistical theory. It has been found to
describe remarkably well the errors of observation in physics. Many environ-
mental variables, such as of the soil, are distributed in a way that approximates
the normal distribution. The form of the distribution was discovered indepen-
dently by De Moivre, Laplace and Gauss, but Gauss seems generally to take the
credit for it, and the distribution is often called ‘Gaussian’. It is defined for a
continuous random variable Z in terms of the probability density function (pdf),
f ðzÞ, as

f ðzÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp �ðz � mÞ2

2s2

( )
; ð2:9Þ

where m is the mean of the distribution and s2 is the variance.
The shape of the normal distribution is a vertical cross-section through a bell.

It is continuous and symmetrical, with its peak at the mean of the distribution.
It has two points of inflexion, one on each side of the mean at a distance s. The
ordinate f ðzÞ at any given value of z is the probability density at z. The total area
under the curve is 1, the total probability of the distribution. The area under
any portion of the curve, say between z1 and z2, represents the proportion of the
distribution lying in that range. For instance, slightly more than two-thirds of
the distribution lies within one standard deviation of the mean, i.e. between
m � s and m þ s; about 95% lies in the range m � 2s to m þ 2s; and 99.73%
lies within three standard deviations of the mean.

Just as the frequency distribution can be represented as a cumulative
distribution, so too can the pdf. In this representation the normal distribution

18 Basic Statistics



is characteristically sigmoid as in Figures 2.3(a), 2.3(c), 2.6(a) and 2.6(c). The
main use of the cumulative distribution function is that the probability of a
value’s being less than a specified amount can be read from it. We shall return
to this in Chapter 11.

In many instances distributions are far from normal, and these departures
from normality give rise to unstable estimates and make inference and inter-
pretation less certain than they might otherwise be. As above, we can be in
some doubt as to which measure of centre to take if data are skewed. Perhaps
more seriously, statistical comparisons between means of observations are
unreliable if the variable is skewed because the variances are likely to differ
substantially from one set to another.

2.3 COVARIANCE AND CORRELATION

When we have two variables, z1 and z2, we may have to consider their joint
dispersion. We can express this by their covariance, C1;2, which for a finite set of

Figure 2.3 Cumulative distribution: (a) exchangeable K in the range 0 to 1 and (b) as
normal equivalent deviates, on the original scale (mg l�1); (c) log10 K in the range 0 to 1
and (d) as normal equivalent deviates.
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observations is

C1;2 ¼ 1

N

XN

i¼1

fðz1 � �z1Þðz2 � �z2Þg; ð2:10Þ

in which �z2 and �z2 are the means of the two variables. This expression is
analogous to the variance of a finite set of observations, equation (2.3).

The covariance is affected by the scales on which the properties have been
measured. This makes comparisons between different pairs of variables and sets
of observations difficult unless measurements are on the same scale. Therefore,
the Pearson product-moment correlation coefficient, or simply the correlation
coefficient, is often preferred. It refers specifically to linear correlation and it is
a dimensionless value.

The correlation coefficient is obtained from the covariance by

r ¼ C1;2

S1S2
: ð2:11Þ

This quantity is a measure of the relation between two variables; it can range
between 1 and �1. If units with large values of one variable also have large
values of the other then the two variables are positively correlated, r > 0; if the
large values of the one are matched by small values of the other then the two
are negatively correlated, r < 0. If r ¼ 0 then there is no linear relation.

Just as the normal distribution is of special interest for a single variable, for
two variables we are interested in a joint distribution that is bivariate normal.
The joint pdf for such a distribution is given by

f ðzÞ ¼ 1

2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p exp � ðz1 � m1Þ2

s2
1

("

� 2rðz1 � m1Þðz2 � m2Þ
s1s2

þ ðz2 � m2Þ2

s2
2

)�
2ð1 � r2Þ

#
: ð2:12Þ

In this equation m1 and m2 are the means of z1 and z2, s2
1 and s2

2 are the
variances, and r is the correlation coefficient.

One can imagine the function as a bell shape standing above a plane defined
by z1 and z2 with its peak above the point fm1;m2g. Any vertical cross-section
through it appears as a normal curve, and any horizontal section is an ellipse—
a ‘contour’ of equal probability.

2.4 TRANSFORMATIONS

To overcome the difficulties arising from departures from normality we can
attempt to transform the measured values to a new scale on which the
distribution is more nearly normal. We should then do all further analysis on
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the transformed data, and if necessary transform the results to the original scale
at the end. The following are some of the commonly used transformations for
measured data.

2.4.1 Logarithmic transformation

The geometric mean of a set of data is

�g ¼
YN

i¼1

zi

( )1=N

; ð2:13Þ

so that

log �g ¼ 1

N

XN

i¼1

log zi; ð2:14Þ

in which the logarithm may be either natural (ln) or common (log10). If by
transforming the data zi, i ¼ 1;2; . . . ;N, we obtain log z with a normal
distribution then the variable is said to be lognormally distributed. Its prob-
ability distribution is given by equation (2.9) in which z is replaced by ln z, and
s and m are the parameters on the logarithmic scale.

It is sometimes necessary to shift the origin for the transformation to achieve
the desired result. If subtracting a quantity a from z gives a close approximation
to normality, so that z � a is lognormally distributed, then we have the
probability density

f ðzÞ ¼ 1

sðz � aÞ
ffiffiffiffiffiffi
2p

p exp � 1

2s2
flnðz � aÞ � mg2

� �
: ð2:15Þ

We can write this as

f ðzÞ ¼ 1

sðz � aÞ
ffiffiffiffiffiffi
2p

p exp � 1

2s2
ln

z � a

b

n o2
� �

; ð2:16Þ

where b ¼ expðmÞ. This is known as the three-parameter log-transformation;
the parameters a, b and s represent the position, size and shape, respectively, of
the distribution. You can read more about this distribution in Aitchison and
Brown (1957).

2.4.2 Square root transformation

Taking logarithms will often normalize, or at least make symmetric, distribu-
tions that are strongly positively skewed, i.e. have g1 > 1. Less pronounced
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positive skewness can be removed by taking square roots:

r ¼
ffiffi
z

p
: ð2:17Þ

2.4.3 Angular transformation

This is sometimes used for proportions in the range 0 to 1, or 0 to 100 if
expressed as percentages. If p is the proportion then define

f ¼ sin�1 ffiffiffi
p

p
: ð2:18Þ

The desired transform is the angle whose sine is
ffiffiffi
p

p
.

2.4.4 Logit transformation

If, as above, p is a proportion ð0 < p < 1Þ, then its logit is

l ¼ ln
p

1 � p

� �
: ð2:19Þ

Note that the limits 0 and 1 are excluded; otherwise l would either go to �1 or
þ1. If you have proportions that include 0 or 1 then you must make some little
adjustment to use the logit transformation.

In Chapter 11 we shall see a more elaborate transformation using Hermite
polynomials.

2.5 EXPLORATORY DATA ANALYSIS AND DISPLAY

The physics of the environment might determine what transformation would be
appropriate. More often than not, however, one must decide empirically by
inspecting data. This is part of the preliminary exploration of the data from
survey, which should always be done before more formal analysis. You should
examine data by displaying them as histograms, box-plots and scatter dia-
grams, and compute summary statistics. You should suspect observations that
are very different from their neighbours or from the general spread of values,
and you should investigate abnormal values; they might be true outliers, or
errors of measurement, or recording or transcription mistakes. You must then
decide what to do about them.

If the data are not approximately normal then you can experiment with
transformation to make them so, as outlined in Section 2.4. There are formal
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significance tests for normality, but these are generally not helpful, partly
because they depend on the number of data and partly because they do not tell
you in what way a distribution departs from normal. We illustrate this
weakness below. You can try fitting theoretical distributions from the estimated
parameters of the distribution to the histogram. If the histogram appears erratic
then another way of examining the data for normality is to compute the
cumulative distribution and plot it against the normal probability on normal
probability paper. This paper has an ordinate scaled in such a way that a
normal cumulative distribution appears as a straight line. Alternatively, you
can compute the normal equivalent deviate for probability p; this is the value of
z to the left of which on the graph the area under the standard normal curve is
p. A strong deviation from the line indicates non-normality, and you can try
drawing the cumulative distributions of transformed data to see which gives a
reasonable fit to the line before deciding whether to transform and, if so, in
what way.

To illustrate these effects we turn to the distribution of potassium at Broom’s
Barn Farm. The data are from an original study by Webster and McBratney
(1987). The distribution is shown as a histogram of the measured values in
Figure 2.1(a). To it is fitted the curve of the lognormal distribution with
parameters as given in Table 2.1. It is positively skewed. The histogram of
the logarithms is shown in Figure 2.1(b). It is approximately symmetric, the
normal pdf fits well, and transforming to logarithms has approximately normal-
ized the data. Figure 2.2 shows the corresponding box-plots, as ‘box and
whisker’ plots in which the limits of the boxes enclose the interquartile ranges
and the whiskers extend to the limits of the data, Figure 2.2(a)–(b). In
Figure 2.2(c)–(d) the whiskers extend only to ‘fences’, and any points lying
beyond them are plotted individually. The upper fence is the limit of the upper
quartile plus 1.5 times the interquartile range or the maximum if that is

Table 2.1 Summary statistics for exchangeable potassium (K, mg l�1) at Broom’s Barn
Farm.

K log10K

Minimum 12.0 1.0792
Maximum 96.0 1.9823
Mean 26.31 1.3985
Median 25.0 1.3979
Standard deviation 9.039 0.1342
Variance 81.706 0.01800
Skewness 2.04 0.39
Kurtosis 9.51 0.57
Number of observations 434 434
x2 for normal fit (with 18 degrees of freedom) 174.4 43.6
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smaller; the lower fence is defined analogously. Again, skew is seen to be
removed by taking logarithms. Figure 2.3(a)–(b) shows the cumulative dis-
tributions plotted on the probability scale and as normal equivalent deviates,
respectively. Figure 2.3(c)–(d) shows the same graphs for log10K. These graphs
are close to the normal line, and clearly transformation to logarithms yields a
near-normal distribution in this instance.

Figures 2.4–2.6 show the effects of transformation to common logarithms for
readily extractable copper of the topsoil in the Borders Region of Scotland
(McBratney et al., 1982). For these data, which are summarized in Table 2.2,
taking logarithms normalizes the data very effectively.

The shortcomings of formal testing for a theoretical distribution can be seen
in the x2 values given in Tables 2.1 and 2.2 for fitting the normal distribution.
The values for the untransformed data are huge and clearly significant.

Figure 2.4 Histograms: (a) extractable copper (Cu); (b) log10Cu, in the topsoil of the
Borders Region. The curves are of the (lognormal) probability density.

Table 2.2 Summary statistics for extractable copper (Cu, mg kg�1) in the Borders
Region.

Cu log10Cu

Minimum 0.3 �0.5214
Maximum 15.7 1.1959
Mean 2.221 0.2713
Median 1.85 0.2674
Standard deviation 1.461 0.2544
Variance 2.1346 0.064731
Skewness 2.52 0.06
Kurtosis 12.10 �0.05
Number of observations 1949 1949
x2 for normal fit (with 18 degrees of freedom) 977.6 28.1
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Transforming potassium to logarithms still gives a x2 (43.6) exceeding the 5%
value ðx2

p¼0:05; f¼18 ¼ 28:87Þ, where p signifies the probability and f the degrees
of freedom. Even for log Cu the computed x2 (28.1) is close to the 5% value. The
reason, as mentioned above, lies largely in having so many data, so that the test
is very sensitive.

2.5.1 Spatial aspects

For spatial data the spatial coordinates must also be checked. The positions of
the sampling points can be plotted on a map, referred to in Chapter 1 as a
‘posting’ of the data. Do all the points lie within the region surveyed? If not,
why? Sampling points for a soil survey falling in the sea are obviously wrong,

Figure 2.5 Box-plots: (a) extractable Cu and (b) log10Cu showing the ‘box’ and
‘whiskers’; (c) extractable Cu and (d) log10Cu showing the fences at the quartiles plus
and minus 1.5 times the interquartile range.
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but those on land just outside the region might be valid. Frequently the cause is
a reversal of the coordinates, however.

The data should also be examined for trend, which might be evident as a
gross regional change in the values, which is also smooth and predictable. If
you have sampled on a grid then arrange the data in a two-way table, compute
the means and medians of both rows and columns, and plot them. The results
will show if the data embody trend, at least in the directions of the axes of the
coordinate system, by a progressive increase or decrease in the row or column
means. Figure 2.7 shows the distribution of the sampling points for Broom’s
Barn Farm. The graphs of the row and column means are on the right-hand
side and at the bottom, respectively. These graphs show small fluctuations
about the row and column means, but no evidence of trend.

2.6 SAMPLING AND ESTIMATION

We have made the point above that we can rarely have complete information
about the environment. Soil, for example, forms a continuous mantle on the

Figure 2.6 Cumulative distributions: (a) extractable Cu in the range 0 to 1 and (b) as
normal equivalent deviates, on the original scale ðmg kg�1); (c) log10Cu in the range 0 to
1 and (d) as normal equivalent deviates.
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land except where it is broken by water or rock. Measurements, in contrast, are
made on small cores or on bulked samples from small plots or fields. Similarly,
rainfall is recorded in small gauges separated from one another by large
distances. Data in this sense are fragmentary; they constitute a sample from
whatever region is of interest, and from them we can try to describe the region
in terms of mean values and variation.

The principal advances in sampling theory, sometimes known as classical
theory, were made in the 1930s. The aim was to estimate means, and to a lesser
extent higher-order moments, especially variances. It was not concerned to
express spatial variation, which has become the province of geostatistics.
Nevertheless, many of the ideas and formulae for geostatistics derive from the
classical theory, and we therefore devote a short section to them. For fuller

Figure 2.7 Posting of data for Broom’s Barn Farm with the row and column means
plotted on the right-hand side and at the bottom, respectively.
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treatment you should consult one of the standard texts such as Cochran (1977)
and Yates (1981).

Better still in the context of environmental survey is the new book by de
Gruijter et al. (2006) which deals with spatial sampling for both design-
based estimation (the classical situation) and model-based prediction of
geostatistics.

2.6.1 Target population and units

The first step in sampling theory is to define a target population. This population
comprises a set of units. In environmental survey a population is almost
always circumscribed by the boundary of a physical region, and the units are
all the places within it at which one might measure its properties. Measure-
ments must be made on bodies of material with finite size, and so there is a
finite number of non-overlapping units in the population. The units are
usually so small in relation to the whole region that the population is
effectively infinite. Millions of rain gauges 30 cm across could fit into a region
of several hundred square kilometres without overlapping. The same is true of
boreholes and soil profile pits. Even if the units were fields, there would be
thousands of them. Nevertheless, they are all large enough to encompass
variation, and in any one survey they should be of the same size. In fact, they
should all have the same size, shape and orientation, known as the support of
the sample.

The population is sampled by taking a subset of its units on a defined support.
In classical theory this subset must be chosen with some element of randomiza-
tion to ensure that the estimates from it are unbiased and to provide a
probabilistic basis for inference. Perhaps paradoxically, the units must be
selected according to a design to achieve this, and the technique is often called
‘design-based estimation’ in consequence.

2.6.2 Simple random sampling

This is the simplest form of design. Every unit in the sample is chosen without
regard to any other, and all units have the same chance of selection.

Estimates from a simple random sample

If there are N units in the sample then its mean, �z, estimates the mean of the
parent population, m, by

m̂ ¼ �z ¼ 1

N

XN

i¼1

zi: ð2:20Þ
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The variance of the population is the expected mean squared difference between
m and z, i.e. it is the mean of ðz � mÞ2, denoted by s2. It is estimated by

ŝ2 ¼ s2 ¼ 1

N � 1

XN

i¼1

ðzi � �zÞ2: ð2:21Þ

The divisor is N � 1, not N, and this difference between the formula for the
estimated variance of a population and the variance of a finite set, equation (2.3),
arises because we do not know the true mean, but have only an estimate of it
from the data. The standard deviation of the sample, s, computed using equation
(2.21), estimates s. In like manner we estimate the population covariance
between two variables by replacing the divisor N in equation (2.10) by N � 1.

Estimation variance and standard error

All estimates are subject to error: sample information is never complete, and we
want a measure of the uncertainty. This is usually expressed by the estimation
variance of a mean:

s2ð�zÞ ¼ ŝ2ð�zÞ ¼ s2=N: ð2:22Þ

It estimates the variance we should expect if we were to sample repeatedly and
compute the average squared difference between the mean m and the sample
mean, �z:

E½s2ð�zÞ� ¼ E½ð�z � mÞ2�
¼ s2=N: ð2:23Þ

Its square root is the standard error, sð�zÞ. The equation introduces the symbol E
to signify the expected value of something.

Naturally, s2ð�zÞ should be as small as possible. Evidently we can decrease
s2ð�zÞ, and improve our estimates, by increasing N, the size of the sample. Unless
we can measure every unit in a population, however, we cannot eliminate the
error. Further, simply increasing N confers less and less benefit for the effort
involved, and beyond about 25 the gain in precision is disappointing.

2.6.3 Confidence limits

Having obtained an estimate and its variance we may wish to know within
what interval it lies for any degree of confidence. If the variable has a normal
distribution and the sample is reasonably large then the confidence limits for
the mean are readily obtained as follows.

Sampling and Estimation 29



We consider a standard normal deviate, i.e. a normally distributed variable, y,
with a mean of 0 and variance of 1, sometimes written Nð0;1Þ. Then for any m

and s,

y ¼ z � m

s
: ð2:24Þ

Confidence limits on a mean are given by

�z � ys=
ffiffiffiffi
N

p
and �z þ ys=

ffiffiffiffi
N

p
: ð2:25Þ

These are the lower and upper limits on m, given a sample mean �z and standard
deviation s that estimates s2 precisely, corresponding to some chosen prob-
ability or level of confidence. Values of standard normal deviates and their
cumulative probabilities are published, and we list the values for a few typical
confidences at which people might wish to work and the associated values of y
in Table 2.3. The first entry is usually too liberal, and we include it only to show
that approximately 68% of a normally distributed population lies within the
range �s to þs.

2.6.4 Student’s t

With small samples s2 is a poor estimate of s2, and in these circumstances
one should replace y in expressions (2.25) by Student’s t, which is defined
by

t ¼ �z � m

s=
ffiffiffiffi
N

p : ð2:26Þ

The true mean, m, is unknown of course, but t has been worked out and
tabulated for N up to 120. So one chooses the confidence level, and then finds
from the published table the value of t corresponding to N � 1 degrees of freedom.
The confidence limits of the mean are then

�z � ts=
ffiffiffiffi
N

p
and �z þ ts=

ffiffiffiffi
N

p
: ð2:27Þ

As N increases so t approaches y, and for N � 60 the differences are trivially
small. So we need use t only when N < 60.

Table 2.3 Typical confidences and their associated standard normal deviates, y.

Confidence (%) 68 75 80 90 95 99
y 1.0 1.15 1.28 1.64 1.96 2.58
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2.6.5 The x2 distribution

Let y1; y2; . . . ; ym be m values drawn from a standard normal distribution. Their
sum of squares is

x2 ¼
Xm

i¼1

y2
i : ð2:28Þ

This quantity has the distribution

f ðxÞ ¼ f2f=2G ðf=2Þg�1xðf=2Þ�1 expð�x=2Þ for x � 0; ð2:29Þ

where f is the number of degrees of freedom, equal to N � 1 in our case, and G

is the gamma function defined for any k > 0 by

G ðkÞ ¼
ð1

0

xk�1 expð�xÞdx:

Values of x2 have been worked out and tabulated, and can be found in any
good book of statistical tables, such as that by Fisher and Yates (1963). They
are also available in many statistical packages on computers.

The variance estimated from a sample is, from equation (2.21),

s2 ¼ 1

N � 1

XN

i¼1

ðzi � mÞ2: ð2:30Þ

Dividing through by s2 gives

s2

s2
¼ 1

N � 1

XN

i¼1

ðzi � mÞ2

s2
; ð2:31Þ

and so

s2=s2 ¼ x2=ðN � 1Þ and x2 ¼ ðN � 1Þs2=s2

with N � 1 degrees of freedom, provided the original population was normally
distributed.

Rearranging the last expression gives the following limits for a variance:

ðN � 1Þs2

x2
p1

� s2 � ðN � 1Þs2

x2
p2

; ð2:32Þ
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where p1 and p2 are the probabilities and for which we can obtain values of x2

from the published tables.

2.6.6 Central limit theorem

In the foregoing discussion of confidence limits (Section 2.6.3) we have
restricted the formulae to those for the normal distribution, the properties of
which are so well established. It lends weight to our argument for transforming
variables to normal if that is possible. However, even if a variable is not
normally distributed it is often still possible to use the tabulated values and
formulae when working with grouped data. As it happens, the distributions of
sample means tend to be more nearly normal than those of the original
populations. Further, the bigger is a sample the closer is the distribution
of the sample mean to normality. This is the central limit theorem. It
means that we can use a large body of theory when studying samples from
the real world.

We might, of course, have to work with raw data that cannot readily be
transformed to normal, and in these circumstances we should see whether the
data follow some other known distribution. If they do then the same line of
reasoning can be used to arrive at confidence limits for the parameters.

2.6.7 Increasing precision and efficiency

The confidence limits on means computed from simple random samples can be
alarmingly wide, and the sizes of sample needed to obtain satisfactory precision
can also be alarmingly large. One reason when sampling space with a simple
random design is that it is inefficient. Its cover is uneven; there are usually parts
of the region that are sparsely sampled while elsewhere there are clusters of
sampling points. If a variable z is spatially autocorrelated, which is likely at some
scale, then clustered points duplicate information. Large gaps between sampling
points mean that information that could have been obtained is lacking.
Consequently, more points are needed to achieve a given precision, as measured
by s2ð�zÞ, than if the points are spread more evenly. There are several better
designs for areas, and we consider the two most common ones, stratified random
and systematic.

Stratified sampling

In stratified designs the region of interest, R, is divided into small subdivisions
(strata). These are typically small squares, but they may be other shapes, of
equal area. At least two sampling points are chosen randomly within each
stratum. For this scheme the largest possible gap is then less than four strata.
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The variance within a stratum k is estimated from nk data in it by

s2
k ¼ 1

nk � 1

Xnk

i¼1

ðzik � �zkÞ2; ð2:33Þ

in which zik are the measured values and �zk is their mean. If there are K strata
then by averaging their variances we can obtain the estimated variance for the
region:

s2ð�z; stratifiedÞ ¼ 1

K2

XK

k¼1

s2
k

nk
: ð2:34Þ

Its square root is the standard error.
The quantity ð1=KÞ

PK
k¼1 s2

k is the pooled within-stratum variance, denoted
by s2

W. If there is any spatial dependence then it will be less than s2, and so the
variance and standard error of a stratified sample will be less than that of a
simple random sample for the same effort, the same size of sample.

The ratio s2ð�zÞ=s2ð�z, stratified) is the relative precision of stratification.
If we were happy with the precision achieved by simple random sampling

then we could get the same precision by stratification with a smaller sample.
Stratified sampling is more efficient by the factor

Nrandom=Nstratified:

Systematic sampling

Systematic sampling provides the most even cover. In one dimension the
sampling points are placed at equal intervals along a line, a transect. In two
dimensions the points may be placed at the intersections of an equilateral
triangular grid for maximum precision or efficiency. With this configuration the
maximum distance between any unsampled point and the nearest point on the
sampling grid is the least. However, rectangular grids are more practical, and
the loss of precision compared with triangular ones is usually so small that they
are preferred.

The main disadvantage of systematic sampling is that classical theory
provides no means of determining the variance or standard error without
bias from the sample because once one sampling point has been chosen (and
the orientation in two dimensions) there is no randomization. An approxima-
tion may be obtained by dividing the region into strata and computing the
pooled within-stratum variance as if sampling were random within the strata.
The result will almost certainly be an overestimate, and conservative therefore.
A closer approximation, and one that will almost certainly be close enough, can
usually be obtained by Yates’s method of balanced differences (Yates, 1981).
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Estimates of error by balanced differences are computed as follows. Consider
first regular sampling on a transect, i.e. in one dimension. The transect is
viewed through a small window containing, say, m sampling points with values
z1; z2; . . . ; zm. We then compute for the window the differences:

dm ¼ 1
2 z1 � z2 þ z3 � z4 þ � � � þ 1

2 zm: ð2:35Þ

A value of m ¼ 9 is convenient. We then move the window along the transect
in steps and compute dm at each new position. If the transect is short then the
positions should overlap; if not, a satisfactory procedure is to choose the first
sampling point in a new position as the last one in the previous position. In this
way every sampling point contributes, and with equation (2.35) all contribute
equally. Then the variance for the transect mean is the sum

s2ðbalanced differencesÞ ¼ 1

Jðm � 2 þ 0:5Þ
XJ

J¼1

d2
mj; ð2:36Þ

where J is the number of steps or positions of the window, and the quantity
m � 2 þ 0:5 is the sum of the squares of the coefficients in equation (2.35).

For a two-dimensional grid the procedure is analogous. One chooses a square
window. For illustration let it be of side 4. The coefficients can be assigned as
follows:

�0:25 þ0:5 �0:5 þ0:25
þ0:5 �1:0 þ1:0 �0:5
�0:5 þ1:0 �1:0 þ0:5
þ0:25 �0:5 þ0:5 �0:25

The variance is calculated as in equation (2.36), now with the divisor J � 6:25,
the value 6.25 being the sum of the squares of the coefficients above. Again, the
positions of the window may overlap, but usually it is sufficient to arrange them
so that only the sides are in common, and with this arrangement and the
coefficients listed all points count and carry equal weight.

What these schemes do in both one and two dimensions, and in three if the
scheme is extended, is to filter out long-range fluctuation, just as stratification
does.

Where there is trend across the sampled region or periodicity, as, for example,
in an orchard or as a result of land drainage, systematic sampling can give
biased estimates of means. Such bias can be avoided by randomizing system-
atically within the grid. The result is unaligned sampling (see Webster and Oliver,
1990). It gives almost even cover. The disadvantage is the same as that of strict
grid sampling in that the error cannot be estimated very accurately. The best
procedure again is to stratify the region and compute the pooled within-stratum
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variance. Empirical studies have shown some big gains in precision and
efficiency from both systematic and unaligned sampling (again, see Webster
and Oliver, 1990, for an example).

2.6.8 Soil classification

Another way of stratifying a region to improve the precision of estimates is to
divide it on the basis of certain attributes. This practice is widespread in land
resource surveys, and it was the norm in soil survey. Soil surveyors stratify, i.e.
classify, regions on the appearance of the soil in profile and on related features
in the landscape.

Regional mean

If the classification is good then the within-class variance of a stratum, i.e. the
pooled within-stratum variance, is smaller than the total variance. Classifica-
tion should therefore improve the precision or efficiency in estimating the
regional mean.

The classes of soil are rarely equal in area, and so the formula, equation
(2.34), must be adjusted accordingly. We define a weight, wk, for the kth
stratum or class in proportion to the area it covers:

wk ¼
area of stratum k

total area
:

The mean, m, for the whole area is then estimated by the weighted average:

�z ¼
XK

k¼1

wk�zk; ð2:37Þ

where �zk is the estimated mean of the kth stratum. The estimation variance is

s2ð�z; stratifiedÞ ¼
XK

k¼1

w2
k s2

k

nk

( )
: ð2:38Þ

The average within-class variance and other diagnostics of a classification can
be estimated from data by analysis of variance, which is both elegant and
powerful. It can also serve for prediction, and we therefore defer its treatment to
the next chapter.
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3

Prediction and Interpolation

3.1 SPATIAL INTERPOLATION

As mentioned in Chapter 2, measurements of the environment, of soil, weather,
rock and water, are made on small bodies of material (supports) separated from
one another by relatively large distances. They constitute a sample from a
continuum that cannot be recorded everywhere. Yet the people who make the
measurements or their clients would almost always like to know what the
values are in the intervening space; they want to predict in a spatial sense from
their more or less sparse data. For example, meteorologists want to predict
rainfall from their rain gauges, hydrologists want to predict flow properties in
rock from their measurements in boreholes, mining engineers want to estimate
ore grades from diamond drill cores, and pedologists and agronomists want to
estimate concentrations of elements in the soil from auger samples. Further,
they usually want to map the spatial distributions of these variables. Their
desires are almost as old the subjects themselves, and there have been many
attempts to satisfy them quantitatively. They constitute the principal force
driving geostatistics to meet practical needs; first in ore evaluation because of
the huge costs of mining and metal extraction, but now in other branches of
environmental science such as those we have listed.

Most attempts at spatial prediction have been mathematical, based on geo-
metry and some appreciation of the physical nature of the phenomena. Most take
account of only systematic or deterministic variation, but not of any error. In
these respects, as we shall see, they fall short of what is needed practically. In
some ways geostatistical prediction, kriging, is the logical conclusion of these
attempts in that it builds on them and overcomes their weaknesses.

Nearly all the methods of prediction, including the simpler forms of kriging,
can be seen as weighted averages of data. Thus we have the general prediction
formula

z�ðx0Þ ¼
XN

i¼1

lizðxiÞ; ð3:1Þ
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where x0 is a target point for which we want a value; the zðxiÞ, i ¼ 1;2; . . . ;N,
at places xi are the measured data; and li are the weights assigned to them. For
now we shall denote the prediction by z�ðx0Þ. First we examine how the weights
are assigned for some of the common methods, and we leave kriging until
Chapter 8 after we have dealt with its underlying theory.

3.1.1 Thiessen polygons (Voronoi polygons,
Dirichlet tessellation)

This method is one of the earliest and simplest. The region sampled, R, is divided
by perpendicular bisectors between the N sampling points into polygons or tiles,
Vi, i ¼ 1;2; . . . ;N, such that in each polygon all points are nearer to its enclosed
sampling point xi than to any other sampling point. The prediction at each point
in Vi is the measured value at xi, i.e. z�ðx0Þ ¼ zðxiÞ. The weights are

li ¼
1 if xi 2 Vi;
0 otherwise:

�
ð3:2Þ

The shortcomings of the method are evident; each prediction is based on just
one measurement, there is no estimate of the error, and information from
neighbouring points is ignored. When used for mapping the result is crude; the
interpolated surface consists of a series of steps.

3.1.2 Triangulation

Another early group of interpolators comprises those deriving from triangula-
tion. The sampling points are linked to their neighbours by straight lines to
create triangles that do not contain any of the points. The measured values are
envisaged as standing above the basal plane at a height proportional to those
values so that the whole set of data forms a polyhedron consisting of more or
less tilted triangular plates. The aim is to determine the height of the plate at x0

from the apices of the triangle by linear interpolation.
This can be represented as a weighted average with weights determined as

follows. We denote the coordinates of the three apices by fx11; x12g, fx21; x22g and
fx31; x32g and those of the target point by fx01; x02g. Then the weights are given by

l1 ¼ ðx01 � x31Þðx22 � x32Þ � ðx02 � x32Þðx21 � x31Þ
ðx11 � x31Þðx22 � x32Þ � ðx12 � x32Þðx21 � x31Þ

: ð3:3Þ

An analogous equation for l2 is obtained by the exchange of x11 for x21; x12 for
x22; x12 for x21 and x21 for x11. A similar set of exchanges will give the value l3.
All other weights are 0.
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The technique is simple and local. The disadvantages are that, although it is
somewhat better than the Thiessen method, each prediction still depends on
only three data; it makes no use of data further away, and there is again no
measure of error. Unlike the Thiessen method, the resulting surface is contin-
uous, but it has abrupt changes in gradient at the margins of the triangles. If
the principal aim is to predict rather than to make a map with smooth isolines
then the discontinuities in the derivative are immaterial. Another difficulty
is that there is no obvious triangulation that is better than any other; even for a
rectangular grid there are two options.

3.1.3 Natural neighbour interpolation

Sibson (1981) combined the best features of the two methods above in what he
called ‘natural neighbour interpolation’. The first step is a triangulation of the
data by Delauney’s method in which the apices of the triangles are those
sampling points in adjacent Dirichlet tiles. This triangulation is unique except
where the data are on a regular rectangular grid. To determine the value at any
other point, x0, that point is inserted into the tessellation, and its neighbours,
the set T (the points within its bounding Dirichlet tiles), are used for the
interpolation. Sibson called these points ‘natural neighbours’.

For each neighbour the area, A, of the portion of its original Dirichlet tile that
became incorporated in the tile of the new point is calculated. These areas,
when scaled to sum to 1, become the weights. We can represent this by the
general formula:

li ¼
AiPN

k¼1 Ak

for all i ¼ 1;2; . . . ;N: ð3:4Þ

This means that if a point xi is a natural neighbour, i.e. xi 2 T, then Ai has a
value and the point carries a positive weight. If xi is not a natural neighbour
then it has no area in common with the target and its weight, li, is zero.

This interpolator is continuous and smooth except at the data points where
its derivative is discontinuous. Sibson called it the natural neighbour C0

interpolant.
He did not like abrupt change in the surface at the data points, and so he

elaborated the method by calculating the gradients of the statistical surface at
these from their natural neighbours. These gradients were then combined with
the weighted measurements to provide the height at the new point. The result is
a smooth, once differentiable surface. Like the simple polyhedral interpolator, it
returns the actual values at the measured points, i.e. it is an exact interpolator.
Sibson showed that it reproduces continuous mathematical functions faithfully.
However, both we and Laslett et al. (1987) have found that it produces
unacceptable results where data are noisy. At local maxima and minima in
such data it generates ‘Prussian helmets’, which Sibson wished to avoid.
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3.1.4 Inverse functions of distance

Somewhat more elaborate than triangulation, and much more popular, are the
methods based on inverse functions of distance in which the weights are defined by

li ¼ 1=jxi � x0jb with b > 0; ð3:5Þ

and again scaled so that they sum to 1. The result is that data points near to the
target point carry larger weight than those further away. The most popular
choice of b is 2 so that the data are inversely weighted as the square of distance.
As with triangulation, if x0 coincides with any xi then li becomes infinite, the
other weights are immaterial, and zðx0Þ takes the value zðxiÞ. Interpolation is
exact. An attractive feature of weighting by inverse squared distance is that the
relative weights diminish rapidly as the distance increases, and so the inter-
polation is sensibly local. Further, because the weights never become zero there
are no discontinuities. Its disadvantages are that the choice of the weighting
function is arbitrary, and there is no measure of error. Further, it takes no
account of the configuration of the sampling. So where data are clustered two
or more may be at approximately the same distance and direction from x0, and
each point will carry the same weight as an isolated point a similar distance
away but in a different direction. This is clearly undesirable, and some
implementations for mapping have elaborated the scheme to overcome this—
see, for example, Shepard’s (1968) solution in the once popular SYMAP
program. The interpolated surface will have a gradient of zero at the data
points, and maxima and minima can occur only there.

3.1.5 Trend surfaces

A method that became popular among earth scientists, especially petroleum
geologists, when they first had access to computers was trend surface analysis.
This is a form of multiple regression in which the predictors are the spatial
coordinates. For example,

zðx1; x2Þ ¼ f ðx1; x2Þ þ "; ð3:6Þ

where zðx1; x2Þ is the predicted value at fx1; x2g and f denotes a function of the
spatial coordinates there. The model contains an error term, ", and in regres-
sion this is assumed to be independently and identically distributed with mean 0
and variance s2

" . Plausible functions, usually simple polynomials such as
planes, quadratics or cubics, are fitted by least squares to the spatial coordi-
nates, and the resulting regression equation is used for the prediction. Thus for
a plane the regression equation would be

z ¼ b0 þ b1x1 þ b2x2; ð3:7Þ

40 Prediction and Interpolation



and for a quadratic surface

z ¼ b0 þ b1x1 þ b2x2 þ b3x2
1 þ b4x2

2 þ b5x1x2: ð3:8Þ

The predictor can be expressed as a weighted average of the data used to
obtain the trend surface as follows. We represent the spatial coordinates and
their powers by a matrix X with N rows for the N sampling points and as many
columns as coefficients b to be estimated. For a first-order surface we can write
the spatial coordinates as the matrix

X ¼

1 x11 x12

1 x12 x22

..

. ..
. ..

.

1 xN2 xN2

2
6664

3
7775;

in which the first column is a dummy variate of 1s, and the recorded values of z
at those places as the vector

z ¼

zðx1Þ
zðx2Þ
..
.

zðxNÞ

2
6664

3
7775:

The coefficients b are obtained from the matrix multiplication

b ¼ ðXTXÞ�1XTz; ð3:9Þ

and the predictions are then given by

z�0 ¼ x0b; ð3:10Þ

in which x0 is the row vector ½1 x01 x02�. Thus the weights are given by
equation (3.9). For a more complex surface the matrix X is simply extended by
adding columns for the additional powers of x1 and x2.

Initially trend surfaces seemed attractive, but enthusiasm soon turned to
disappointment. In most instances spatial variation is so complex that a
polynomial of very high order is needed to describe it, and the resulting matrix
equations are usually unstable. The residuals from the trend are autocorrelated,
and so one of the assumptions of regression is violated. As a consequence the
errors calculated by the usual formula, such as equation (6.49) in Webster and
Oliver (1990), are incorrect. The random component is often large and masks
the deterministic trend, and fitting in one part of a region affects the predictions
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everywhere. Thus, in a region containing both mountains and plain the
prediction of topographic height on the plain will be determined by the much
larger fluctuations in the mountains. Trend surfaces are not sufficiently local,
and they do not return the values at data points.

Nevertheless, simple regression surfaces can represent long-range trend in
some instances. The technique has its merits therefore in revealing long-range
structures and filtering them to leave variation of shorter range that can be
analysed by other techniques—see Moffat et al. (1986) for an example. We
return to this matter in Chapter 9.

3.1.6 Splines

A spline function also consists of polynomials, but each polynomial of degree p
is local rather than global. The polynomials describe pieces of a line or surface,
and they are fitted together so that they join smoothly, and their p � 1
derivatives are continuous. The places at which the pieces join are known as
‘knots’, and the choice of knots confers an arbitrariness on the technique.
Splines can be constrained to pass through the data. Alternatively, by choosing
knots away from the data points they can be fitted by least squares or some
other method to produce smoothing splines. Typically the splines are of degree
3; these are cubic splines.

3.2 SPATIAL CLASSIFICATION AND PREDICTING
FROM SOIL MAPS

We conclude this chapter with a look at prediction using spatial classification.
Surveyors in most branches of environmental science divide the regions that
they study into classes by boundaries, and they characterize each class so
derived from sample data. The maps, choropleth maps to give them their
technical name, are commonplace. The soil map showing a patchwork of colour
is a familiar one, as are similar maps in geology and ecology. The intention,
usually implied rather than expressed, is that the characteristic information for
any one class, any one colour on the map, may be used to predict conditions
elsewhere in the same class. Rarely, however, is this put in statistical terms, yet
it is the only sound application of classical statistics to spatial prediction. Indeed,
it combines classical survey in such fields as geology and soil science
with classical statistics. Several scientists have analysed soil maps in this
framework—for example, Kantey and Williams (1962), Morse and Thornburn
(1961), and Webster and Beckett (1970)—but as far as we know, the subject is
not covered in any textbook. We therefore describe it in some detail, drawing on
the thorough analysis by Leenhardt et al. (1994).
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3.2.1 Theory

We start with a region of interest, R, that has been classified into K classes,
separated by boundaries. Every point in R, i.e. every unit of the population,
belongs to one and only one class.

For any class k in R we can express the value of any point xi, i.e. any unit i,
selected at random as

Z ik ¼ m þ ak þ "ik; ð3:11Þ

where Z ik is the value of z at xi in class k, m is the general mean of z, ak is the
difference between m and the mean of the class k, and "ik is a random
component with mean zero and variance s2

k , the variance within class k.
The mean of class k, mk ¼ m þ ak, is estimated from nk observations by

m̂k ¼
1

nk

Xnk

i¼1

zi; ð3:12Þ

with variance

s2ðm̂kÞ ¼ s2
k=nk: ð3:13Þ

In the absence of other information mk is also the best predictor of z at any
xi; i 2 k, and in keeping with our general formula for linear predictors,
equation (3.1), we can represent it as

z�ðx0Þ ¼ m̂k ¼
XN

i¼1

lizðxiÞ; ð3:14Þ

in which

li ¼
1=nk for xi 2 k;

0 otherwise:

�
ð3:15Þ

Its prediction variance is the expected mean squared difference (MSE) between
the true value and the predicted one:

MSEk ¼ Ei½fZik � mkg2� ¼ s2
k : ð3:16Þ

In practice we never know mk; we only ever have an estimate, m̂k. So its
variance, var [m̂k], is an additional source of error in our prediction. Further,
there is the possibility that our estimate of mk is biased. So a term representing
the bias should be added, and the full squared prediction error becomes

MSEk ¼ s2
k þ var½m̂k� þ bias2½m̂k�: ð3:17Þ
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If we sample randomly and estimate mk by the arithmetic average of nk, the
observed values in k, then there is no bias, and var½m̂k� equals s2

k=nk.
Equation (3.17) then becomes

MSEk ¼ s2
k þ s2

k=nk ¼ s2
k ð1 þ 1=nkÞ: ð3:18Þ

An immediate practical problem is to estimate s2
k . Confidence limits on

variances are typically wide (Chapter 2) for small samples, and for a map with
many classes surveyors rarely have the resources to record at more than a
few sites within each class. Consequently equation (3.18) is likely to lead
to crude estimates of the MSE. To solve this problem we therefore make
a further assumption, namely that the variance within classes is the same
for all. In conventional soil mapping, for example, surveyors try to maintain
the same categoric level for all the classes in any one survey, say, all soil
series or all soil families. The intention, expressed or implied, is that classes
are equally variable. In these circumstances s2

k in the above equations may
be replaced by s2

W, the average or pooled within-class variance. Our
task now is to estimate it, and this is best done by an analysis of variance
(see Chapter 2).

The total variance of Z in the region, designated by s2
T, can be written as

s2
T ¼ s2

W þ s2
B; ð3:19Þ

where s2
B is the between-class variance. These quantities immediately lead to

expressions of the efficacy of a classification at partitioning the variance of Z by,
for example, the intraclass correlation:

ri ¼
s2

B

s2
B þ s2

W

¼ 1 � ðs2
W=s2

TÞ: ð3:20Þ

Evidently, the larger is s2
B and the smaller is s2

W, and hence the larger is ri, the
better we should regard the classification.

Prediction using a random sample

If we sample a region by selecting points at random and with numbers
proportional to the areas covered by the classes then s2

W and s2
B are estimated

by s2
W and s2

B, respectively, without bias in a one-way analysis of variance. This
leads equally to an unbiased estimate of ri by ri (Webster and Beckett, 1968).
Alternatively, we may take s2

T as an estimate of s2
T and compute

R2
i ¼ 1 � ðs2

W=s2
TÞ, which is the proportion of variance in the data explained

by the classification and analogous to R2 in regression analysis.
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We can now insert the pooled within-class variance, s2
W, into equation (3.18)

in place of s2
k to obtain

MSEk ¼ s2
Wð1 þ 1=nkÞ: ð3:21Þ

Further, we can compute an average prediction error, MSE, for the region by

MSE ¼
XK

k¼1

Aks
2
Wð1 þ 1=nkÞ; ð3:22Þ

where Ak is the proportion of the area of class k in R.

Prediction from a purposively chosen sample

Consider now predicting Z from a purposively chosen representative profile, p, in
class j with value zpj. The latter replaces m̂j as an estimate of Zij. It is fixed,
however, so var½zpj� ¼ 0, and the difference dj ¼ zpj � mj is the bias of equation
(3.17). The prediction variance is

MSEpj ¼ s2
j þ d2

j : ð3:23Þ

Under the assumption of a common within-class variance, we obtain the
expected mean squared error of prediction from class representatives for the
whole region by

MSEp ¼ Ej½MSEpj� ¼ s2
W þ

XJ

j¼1

Ajd
2
j : ð3:24Þ

The minimum value of MSEp is s2
W, which is reached when the zpj ¼ mj for all j.

3.2.2 Summary

Whether we predict Z using the means of random samples or from purposively
chosen representatives, s2

W sets a lower limit to the mean squared error of
prediction. In the former case we can approach this minimum by increasing the
size of sample; in the latter by selecting the representatives to match the mean
values as closely as possible. If we want to improve prediction further using the
conventional approach, we must diminish the within-class variance by refining
the classification. This might be done by increasing the scale so that boundaries
can be delineated more accurately and intricately, or by subdividing the soil
more finely, i.e. by increasing the number of classes. In practice the second is
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likely to demand the first: there is no point in creating classes that cannot be
displayed at the chosen scale. Alternatively, we might devise a special classi-
fication for each property we wish to predict.

The effectiveness of the conventional procedure for soil survey depends both
on the quality of the classification and its mapping and on the ability of the
surveyor to select representative soil profiles in the field, where the values of the
properties of interest approximate the class means. In particular, MSEp should
be less than 2s2

W, otherwise the selection is worthless, and 2s2
W should be less

than s2
T þ s2

T=N, where N is the total size of sample, otherwise classification
confers no benefit.

For the whole procedure to be successful we want

s2
W < MSEp < 2s2

W < s2
T þ s2

T=N: ð3:25Þ

To complete the picture we have to estimate MSEp. Let us assume that we
have for each class j, j ¼ 1;2; . . . ; J, one representative with value zpj and VðjÞ
validation points chosen probabilistically with values Zvj, v ¼ 1;2; . . . ;VðjÞ,
and that there are Nv validation points in all. Then

d̂p ¼
1

Nv

XJ

j¼1

XVðjÞ

v¼1

ðZvj � zpjÞ ð3:26Þ

and

dMSEp ¼
1

Nv

XJ

j¼1

XVðjÞ

v¼1

ðZvj � zpjÞ2: ð3:27Þ
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4

Characterizing Spatial
Processes: The Covariance

and Variogram

4.1 INTRODUCTION

The previous chapter describes several of the common methods of spatial
interpolation. Some of them are crude, so that maps made using them display
the spatial variation poorly. The interpolators also fail to provide any estimates
of the error, which are desirable for prediction. The conventional approach to
spatial prediction in soil science combines classical estimation with spatial
classification and thereby overcomes some of these weaknesses. It is the only
method described in Chapter 3 that gives sound estimates of error. However, it
requires replicated sampling for each class to provide individual estimates for
that class and some degree of randomization of the sample. The sampling effort
can be large, but even with such effort the predicted values at all points within a
given class are simply the mean of that class for the property of interest. The
precision of prediction is limited by the goodness of the classification; variation
within classes is ignored, and local variation is not resolved.

Mathematical functions of the spatial coordinates seemed at one time to have
promise. They could be defined fully, and they could therefore be used
repeatably. Most were also intuitively reasonable. Some, such as the inverse
functions of distance and triangulation, however, were also quite arbitrary,
taking no account of more general knowledge of the variation in the region.
Trend surface analysis, the only function described in Chapter 3 that does
recognize the generality, has other defects.

The methods are deterministic, and to that extent they accord with
our understanding that the variation in the environment has physical causes,
i.e. is physically determined. However, the environment and its component
attributes, such as the soil, result from many physical and biological processes
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that interact, some in highly non-linear and chaotic ways. The outcome is so
complex that the variation appears to be random. This complexity, together
with our current, far from complete, understanding of the processes, means that
mathematical functions are not adequate to describe any but the simplest
components.

A fully deterministic solution to our problems seems out of reach at present.
To make progress we must look at spatial variation differently. Recapitulating,
we have two needs: to describe quantitatively how soil varies spatially, and to
predict its values at places where we have not sampled. In addition we want
estimates of the errors on these predictions so that we can judge what
confidence to place in them; estimates of errors are lacking in the classical
methods of interpolation. We need a model for prediction, and since there is no
deterministic one the solution seems to lie in a probabilistic or stochastic
approach.

4.2 A STOCHASTIC APPROACH TO SPATIAL VARIATION:
THE THEORY OF REGIONALIZED VARIABLES

4.2.1 Random variables

The fact that spatial variation appears to be random suggests a way forward.
Consider throwing a die; on any one throw we obtain a number, for instance, a
6. This is the outcome of throwing the die once, of drawing one value from a
distribution that consists of the set f1;2;3;4;5;6g with equal probability. One
can argue that the result is physically determined in that it depends on the
position of the die in the cup and of the cup itself at the start, the forces imparted
to it by the thrower, and the nature of the surface on which it lands (Matheron,
1989). Nevertheless, these are so imperfectly known and so far beyond our
control that we regard the process as random and as unbiased. Similarly, since
the factors that determine the values of environmental variables are numerous,
largely unknown in detail, and interact with a complexity that we cannot
disentangle, we can regard their outcomes as random.

If we adopt a stochastic view then at each point in space there is not just one
value for a property but a whole set of values. We regard the observed value
there as one drawn at random according to some law, from some probability
distribution. This means that at each point in space there is variation, a concept
that has no place in classical estimation. Thus, at a point x a property, ZðxÞ, is
treated as a random variable with a mean, m, a variance, s2, and higher-order
moments, and a cumulative distribution function (cdf). It has a full probability
distribution, and it is from this that the actual value is drawn. If we know
approximately what that distribution might be we can estimate values at
unrecorded places from data in the neighbourhood and put errors on our
estimates.
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Most environmental variables, such as the soil’s pH and potassium concen-
tration, are continuous. For these a value zðxÞ can be thought of as one of an
infinite number of possible values, with a cdf that is the probability that Z takes
any value less than or equal to a particular value zc:

FfZðx; zÞg ¼ Prob½ZðxÞ � zc� for all z: ð4:1Þ

The probabilility FfZðx; zÞg takes values between 0 and 1. Its derivative is the
probability density function, the pdf:

ffZðxÞg ¼ dFfZðx; zÞg
dz

; ð4:2Þ

which we described in Chapter 2. The distribution may be bounded, as in the
case of a proportion or percentage, but the most useful assumption is that it is
not, so that �1 � ZðxÞ � þ1.

4.2.2 Random functions

The description above for an individual point x applies to the infinitely many points
in the space; at each point xi; i ¼ 1;2; . . . , ZðxiÞ has its own distribution and cdf.
The range of possible values constitutes an ensemble, and one member of the
ensemble is the realization. The idea is illustrated in Figure 4.1 in which the curves
are imagined to protrude vertically out of the plane of the page. The set of random
variables, Zðx1Þ; Zðx2Þ; . . . ; constitute a random function, a random process, or a
stochastic process. The set of actual values of Z that comprise the realization of the
random function is known as a regionalized variable. Just as in Chapter 2 we
regarded a region as made up of a population of units, so we can think of a random
function ZðxÞ as a superpopulation, with an infinite number of units in space and
an infinite number of values of Z at each point in the space. It is doubly infinite.

Figure 4.1 The normal distributions of the random variables at five sites.
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4.3 SPATIAL COVARIANCE

To define the variation we need to describe the ensemble simply. For the
possible outcomes of throwing the die it is easy because they are independent.
The values of regionalized variables, on the other hand, tend to be related. In
general, values at two places near to one another are similar, whereas those at
more widely separated places are less so. This can be seen in Figure 4.2, which
represents pixel values for the normalized difference vegetation index (NDVI),
where

NDVI ¼ ðinfrared � redÞ=ðinfrared þ redÞ; ð4:3Þ

along one row of a SPOT (Système Probatoire de l’Observation de la Terre)
image (from Oliver et al., 2000). The fine line joining the pixel values in the

Figure 4.2 Transect across a SPOT image for normalized difference vegetation index.
The fine line in the upper graph joins the data, and the bold line is a smoothing spline
fitted through them. The lower graph is an enlarged version of the section in the circle.
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upper graph illustrates the locally erratic nature of the variation. Wherever
we look we see some fluctuation, but in most short sections of the transect the
values are similar. Over longer distances, however, the values vary more
substantially, with some sections having small values on average and others
where they are large. This becomes clear when the locally erratic variation has
been filtered by a smoothing spline, the bold line in the graph. Where the
property is continuous, as in this example and as is the case for most properties
of the environment, its values must be related at some scale. This is illustrated
further in the lower graph where a small section of the transect is magnified
and the pixel values are plotted in more detail. What appeared to be entirely
erratic in the upper graph can be seen at the larger resolution as structured in
the sense that neighbouring values are similar to one another on average. We
want to describe these relations, and we do so using the concept of covariance.

We are likely to be familiar with using the covariance to determine
the relation between two variables for paired observations. For n pairs of
observations, zi;1; zi;2; i ¼ 1;2; . . . ; n, of two variables, z1 and z2, the covariance
is given by

Ĉðz1; z2Þ ¼
1

n

Xn

i¼1

fzi;1 � �z1gfzi;2 � �z2g; ð4:4Þ

where �z1 and �z2 are the means of z1 and z2, respectively. If the units,
i ¼ 1;2; . . . ; n, on which the observations were made were drawn at random
then Ĉðz1; z2Þ estimates the population covariance without bias.

We can extend this definition for relating two random variables. The concept
and its mathematical expression were developed originally for analysing time
series during the 1920s and 1930s, and they have been much used for
processing signals and for forecasting. They are now described in many text-
books, of which we can recommend Jenkins and Watts (1968) and Priestley
(1981). They have their analogies in space, and Yaglom (1987) presents them
in this context as underpinning spatial prediction.

In our new spatial setting z1 and z2 become Zðx1Þ and Zðx2Þ, i.e. they are the
sets of values of the same property, Z, at the two places x1 and x2, and we have
switched the notation to capital Z to signify that they are random variables.
Their covariance is

Cðx1; x2Þ ¼ E½fZðx1Þ � mðx1ÞgfZðx2Þ � mðx2Þg�; ð4:5Þ

where mðx1Þ and mðx2Þ are the means of Z at x1 and x2. The equation is
analogous to equation (4.4). Unfortunately, however, its solution is unavailable
because we have only the one realization of Z at each point; we cannot know the
means. Thus we seem to have reached an impasse, and we can progress only by
making further assumptions of stationarity which allow us to treat the values at
different places as though they are different realizations of the property.
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4.3.1 Stationarity

By stationarity we mean that the distribution of the random process has certain
attributes that are the same everywhere. Starting with the first moment, we
assume that the mean, m ¼ E½ZðxÞ�, about which individual realizations
fluctuate, is constant for all x. This enables us to replace mðx1Þ and mðx2Þ by
the single value m, which we can estimate by repetitive sampling.

We next consider the second moments. Equation (4.5) as written is restricted
to the two particular points x1 and x2, which is not very useful. We want to
generalize it so that it describes the process, and to do so we must make further
assumptions. The first concerns what happens when x1 and x2 coincide.
Equation (4.5) then defines the variance, s2 ¼ E½fZðxÞ � mg2�, sometimes
called the a priori variance of the process. We assume this to be finite and,
like the mean, to be the same everywhere. Second, when x1 and x2 do not
coincide their covariance depends on their separation and not on their absolute
positions: this applies to any pair of points xi; xj separated by the vector
h ¼ xi � xj, so that we have

Cðxi; xjÞ ¼ E½fZðxiÞ � mgfZðxjÞ � mÞg�; ð4:6Þ

which is constant for any given h. This constancy of the mean, variance and
covariances that depend only on separation and not on absolute positions, i.e.
constancy of the first and second moments of the ensemble or process,
constitutes second-order stationarity or weak stationarity. Note that the moments
are of the imaginary random process of which we have the one realization and
that we can never know their values exactly. We can estimate them, and a
general formula for doing so is given below in equation (4.43).

Just as each random function has its cdf, each pair of random functions ZðxiÞ
and ZðxjÞ will have a joint cdf:

FfZðxi; xj; zÞg ¼ Prob½ZðxiÞ � z; ZðxjÞ � z� for all z; ð4:7Þ

and a corresponding pdf, the derivative of equation (4.7). Chapter 2 gives the
formula for the pdf of a bivariate normal distribution. As an example, if we have
a set of points regularly spaced along a line at positions x1; x2; . . . ; xN then we
expect the joint cdf FfZðx1; x2; zÞg to be the same as FfZðx2; x3; zÞg, as . . . , and
as FfZðxN�1; xN ; zÞg. Further, it enables us to obtain a picture of the joint
distribution of pairs of points one interval apart by sampling at these positions
and plotting their values on a scatter diagram as a representation of the pdf.
This is described in greater detail below and illustrated in Figure 4.10. There
will be N � 1 pairs one interval apart, N � 2 pairs two intervals apart, and
N � h pairs h intervals apart. This is illustrated in Figure 4.10(a). In two and
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three dimensions the separation is a vector with both distance and direction,
which we denote by h, and is known as the lag.

The joint cdf will have higher-order moments. If these also depend on the
separation only then the process is said to be strictly or fully stationary. It is not
always wise to assume such strong stationarity, but in practice it might not
matter. If the distribution is normal (Gaussian) then the moments of order 3
and more are known constants, and we need not concern ourselves with them.
This is another motivation for transforming non-normal data to normality if
possible. Therefore, we can usually limit ourselves to nothing more demanding
than second-order stationarity and concentrate on the covariance.

4.3.2 Ergodicity

Ergodicity is closely related to stationarity. A process is said to be ergodic when
the moments of the single observable realization in space approach those of the
ensemble as the regional bounds expand towards infinity. It is of mainly
theoretical interest rather than of practical value because the regions we study
are finite, and we never know the ensemble averages. Nevertheless, we some-
times have to distinguish, especially when choosing estimators.

4.4 THE COVARIANCE FUNCTION

We can rewrite equation (4.6) as

cov½ZðxÞ; Zðx þ hÞ� ¼ E½fZðxÞ � mgfZðx þ hÞ � mg�
¼ E½fZðxÞgfZðx þ hÞg � m2�
¼ CðhÞ: ð4:8Þ

In words, the covariance is a function of the lag, h, and the lag only. It is the
autocovariance function—auto because it represents the covariance of Z with
itself. Unless there is any ambiguity, we shall refer to it simply as the covariance
function. It describes the dependence between values of ZðxÞ with changing
lag. If ZðxÞ has a multivariate normal distribution for all positions then the
mean and the covariance function completely characterize the process because
all of the higher-order moments are constant.

The autocovariance depends on the scale on which Z is measured, and it is
often more convenient and easier to appreciate if we make it dimensionless by
converting it to the autocorrelation:

rðhÞ ¼ CðhÞ=Cð0Þ; ð4:9Þ

where Cð0Þ is the covariance at lag 0, i.e. s2.
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4.5 INTRINSIC VARIATION AND THE VARIOGRAM

We can represent a stationary random process by the model

ZðxÞ ¼ m þ "ðxÞ: ð4:10Þ

This states simply that the value of Z at x is the mean of the process plus a
random component drawn from a distribution with mean zero and covariance
function

CðhÞ ¼ E½"ðxÞ"ðx þ hÞ�: ð4:11Þ

Quite the most serious worry and widespread departure from weak stationarity is that
the mean appears to change across a region and the variance to increase without
bound as the area of interest increases. In these circumstances the covariance cannot
be defined. We cannot insert a value for m in equation (4.8), for example.

Matheron (1965) recognized the problem that this created, and his solution
was a major contribution to practical geostatistics. He took the view that,
whereas in general the mean might not be constant, it would be so for small jhj
at least, so that the expected differences would be zero:

E½ZðxÞ � Zðx þ hÞ� ¼ 0: ð4:12Þ

Further, he replaced the covariances by the variances of differences as measures
of spatial relation, which, like the covariance, depended on the lag and not on
absolute position. This led to

var½ZðxÞ � Zðx þ hÞ� ¼ E½fZðxÞ � Zðx þ hÞg2�
¼ 2gðhÞ:

ð4:13Þ

Equations (4.12) and (4.13) constitute Matheron’s intrinsic hypothesis. This step
released practitioners from the constraints of second-order stationarity where
the assumptions either did not hold or were doubtful. It opened up a wider field
of application. The quantity gðhÞ is known as the semivariance at lag h. The
‘semi’ evidently refers to the fact that it is half of a variance; it is half the
variance of a difference in this instance. It is, nevertheless, the variance per
point when the points are considered in pairs, and it had been recognized by
Yates (1948). As a function of h it is the semivariogram, now usually termed
simply the variogram.

4.5.1 Equivalence with covariance

For second-order stationary processes the variogram and the covariance are
equivalent, and from their definitions in equations (4.8) and (4.13) we have

gðhÞ ¼ Cð0Þ � CðhÞ: ð4:14Þ
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Thus, a graph of the variogram is simply a mirror image of the covariance
function about a line or plane parallel to the abscissa. We can also relate the
semivariance to the autocorrelation coefficient by combining equations (4.14)
and (4.9):

gðhÞ ¼ s2f1 � rðhÞg: ð4:15Þ

If a process is intrinsic only there is no equivalence because the covariance
function does not exist. The variogram is still valid, nevertheless, and it is its
validity in the wider range of circumstances that has made it so much more
useful than the covariance. As a consequence its has become the cornerstone of
practical geostatistics. For this reason we look at its properties in detail both in
the remainder of this chapter and in the following two.

4.5.2 Quasi-stationarity

In practice it often happens that the variogram is of interest only very locally—
we shall see this later when we deal with kriging. In these circumstances we
can restrict the mean, m, to that in small neighbourhoods, V, so that equation
(4.10) becomes

ZðxÞ ¼ mV þ "ðxÞ: ð4:16Þ

Provided h remains within the bounds of V the variogram is unaffected.

4.6 CHARACTERISTICS OF THE SPATIAL CORRELATION
FUNCTIONS

We now consider the more important characteristics of the covariance and
autocorrelation functions and the variogram. Figure 4.3 illustrates some of
these.

Autocorrelation. Like the ordinary product–moment correlation coefficient, the
autocorrelation function varies between 1 and �1. From equation (4.9), its
value at lag 0 is 1.

Symmetry. Because of our assumption of stationarity,

CðhÞ ¼ E½fZðxÞ � mgfZðx þ hÞ � mg�

¼ E½Zðx � hÞZðxÞ � m2�

¼ E½ZðxÞZðx � hÞ � m2�

¼ Cð�hÞ: ð4:17Þ
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In words, the autocovariance is symmetric in space. The same is true of the
variogram; i.e. gðhÞ ¼ gð�hÞ for all h. So all three functions are even. This
means that we need consider only the positive lags, and indeed this is the
convention. In the graphs of the functions, such as those in Figure 4.3, we show
only the right-hand halves of the functions.

Figure 4.3 Theoretical functions for spatial correlation: (a) typical variogram and
equivalent covariance function; (b) bounded variogram showing the sill and range;
(c) bounded variogram with a nugget variance; (d) pure nugget variogram;
(e) unbounded variogram; (f) variogram and covariance function illustrating the hole
effect.
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Positive semidefiniteness. The covariance matrix for any number of points is
positive semidefinite. That is to say that for a matrix of order n its determinant

Cðx1; x1Þ Cðx1; x2Þ � � � Cðx1; xnÞ
Cðx2; x1Þ Cðx2; x2Þ � � � Cðx2; xnÞ

..

. ..
.

� � � ..
.

Cðxn; x1Þ Cðxn; x2Þ � � � Cðxn; xnÞ

����������

����������
and all its principal minors are positive or zero. This is necessary because the
variance of any linear sum of the random variables,

YðxÞ ¼ l1Zðx1Þ þ l2Zðx2Þ þ � � � þ lnZðxnÞ; ð4:18Þ

must be positive or zero; a variance cannot be negative. The covariance and
autocorrelation functions are positive semidefinite. In like manner, the vario-
gram must be negative semidefinite. We shall develop this in Chapter 5 where
we shall see that this limits the choice of legitimate mathematical functions to
describe the covariance function.

Continuity. As mentioned above, most environmental variables are continu-
ous; the stochastic processes that we believe to represent them are continuous,
and so also are the autocovariance functions and variograms of a continuous
lag. Crucially, CðhÞ and gðhÞ are continuous at h ¼ 0, and if that is so they
must be continuous everywhere. So CðhÞ declines from some positive value,
Cð0Þ ¼ s2, at 0 to smaller values at longer lag distances; see Figure 4.3(a). Its
mirror image, the variogram, increases from 0 at h ¼ 0, i.e. it must pass
through the origin if the process is continuous; see Figure 4.3(a)–(b).

If this were not so then we should have a continuous sequence of positions in
space, the values at which are not related. It seems impossible, yet in practice
data often suggest that a spatial process is discontinuous. It manifests itself most
evidently in the sample variogram; the calculated values appear to approach
some positive value on the ordinate as the lag distance approaches 0, whereas,
at h ¼ 0, gð0Þ must be 0; Figure 4.3(c). This discrepancy is known as the
nugget variance. The term arose in gold mining from the notion that gold
nuggets occur quite independently of one another at random; they are sparse
and certainly not continuous at the working scale. They have a variance that
jumps from 0 at lag zero to positive immediately away from the origin, and we
can recognize this by defining

gðhÞ ¼ s2f1 � dðhÞg; ð4:19Þ

where dðhÞ is the Kronecker delta function taking the values 1 when h ¼ 0 and
0 otherwise.
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The data themselves differ from their neighbours in irregular steps, large or
small, rather than in smooth progression. It seems as though they derive from
two or more components, one uncorrelated superimposed on another that is
correlated. In other words, we seem to have one source of variation in which
contiguous positions in space do take values of Z that are totally unrelated.

Engineers recognize this uncorrelated variation as ‘white noise’. They usually
express it by its covariance function:

CðhÞ ¼ s2dðhÞ; ð4:20Þ

where now dðhÞ is the Dirac function taking the values 0 when jhj 6¼ 0 and
infinity when jhj ¼ 0. Thus for white noise CðhÞ ¼ 0 for all jhj > 0 and
Cð0Þ ¼ 1. The representation might seem bizarre, but it is the only way that
we can describe white noise using covariances. Its equivalent is a ‘pure nugget’
variogram; Figure 4.3(d).

For properties that vary continuously in space, such as the soil’s pH, the
concentrations of trace metals, air temperature and rainfall, the apparent nugget
variance comprises measurement error plus variation that occurs over distances
less than the shortest sampling interval. The latter is usually dominant.

Monotonic increasing. The variograms in Figure 4.3(b)–(c) are monotonically
increasing functions, i.e. the variance increases with increasing lag distance.
The small values of gðhÞ at short jhj show that the ZðxÞ are similar, and that as
jhj increases ZðxÞ and Zðx þ hÞ become increasingly dissimilar on average.
Looked at from the point of view of correlation, rðhÞ increases as the lag
distance shortens, and the process is therefore said to be autocorrelated or
spatially dependent.

Sill and range. The variograms of second-order stationary processes reach
upper bounds at which they remain after their initial increases, as in Figure
4.3(b)–(c). The maximum is known as the sill variance; it is the a priori
variance, s2, of the process.

A variogram may reach its sill at a finite lag distance, in which case it has a
range, also known as the correlation range since this is the range at which the
autocorrelation becomes 0; Figure 4.3(c). This separation marks the limit of
spatial dependence. Places further apart than this are spatially independent.
Some variograms approach their sills asymptotically, and so they have no strict
ranges. For practical purposes their effective ranges are usually taken as the lag
distances at which they reach 0.95 of their sills.

Unbounded variogram. If, as in Figure 4.3(e), the variogram increases indefi-
nitely with increasing lag distance then the process is not second-order
stationary. It might be intrinsic, but the covariance does not exist.

Hole effect. In some instances the variogram decreases from its maximum to a
local minimum and then increases again, as in Figure 4.3(f). This maximum is
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equivalent to a minimum in the covariance function, which appears as a ‘hole’.
This form arises from fairly regular repetition in the process. A variogram that
continues to fluctuate with a wave-like form with increasing lag distance
signifies greater regularity.

Anisotropy. Spatial variation is not necessarily the same in all directions. If the
process is anisotropic then so is the variogram, as is the covariance function if it
exists. Anisotropy may take several forms. The initial gradient may vary. If the
variogram has a sill then variation in the gradient will lead to variation in the
range, or effective range. If the variation with changing direction is such that a
simple transformation of the spatial coordinates will remove it then we have
geometric anisotropy (see Chapter 5).

A region may contain preferentially oriented zones with different mean
values. In these circumstances the variance encountered changes with change
in direction so that the sill fluctuates. This is called zonal anisotropy.

Trend. In some instances the experimental variograms (see below for their
definition) follow smooth curves that approach the origin with decreasing
gradient: the curves have concave upwards forms. This shape can arise from
local trend or drift, i.e. smooth change in the underlying variable. The dashed line
in Figure 5.3 is an example. In other instances the experimental estimates
increase sharply after having appeared to reach sills, as in Figure 9.2(a); this
is often a sign of long-range trend in the variation superimposed on
relatively short-range random variation. In both circumstances the expected
value, E½ZðxÞ�, is not constant, even within small neighbourhoods, but is a
function of position. We have then to elaborate our model for spatial variation to

ZðxÞ ¼ uðxÞ þ "ðxÞ: ð4:21Þ

The quantity uðxÞ is the local trend, and it replaces the means in equations
(4.10) and (4.16). The assumption of second-order stationarity does not hold,
nor does the intrinsic hypothesis. The experimental semivariances calculated
from the raw data no longer estimate the expected squared differences between
the residuals at two places. The residuals are given by

"ðxÞ ¼ ZðxÞ � uðxÞ: ð4:22Þ

They constitute the random process with its associated variogram,

gðhÞ ¼ 1

2
E f"ðxÞ � "ðx þ hÞg2
h i

: ð4:23Þ

A more general description of non-stationarity is as an intrinsic random
function of order k (IRFk):

ZðxÞ ¼ ZkðxÞ þ uðxÞ: ð4:24Þ
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We describe some ways of dealing with the difficulties of non-stationarity in
Chapter 9.

4.7 WHICH VARIOGRAM?

The variogram (and covariance function) as treated above is a function of an
underlying stochastic process. We may regard it as the theoretical variogram. It
may be thought of as the average of the variograms from all possible realiza-
tions of the process. Following Matheron (1965), we need to distinguish it from
two others, namely the regional and the experimental.

The regional variogram is the variogram of the particular realization in a finite
region, R. It is the one that you might compute if you had complete information
of the region, as, for example, from the simulated fields in Figures 5.5, 5.6, 5.8
and 5.11, and from many digital images (see Muñoz-Pardo, 1987). The
regional variogram does not necessarily represent the whole ensemble. A
process that is second-order stationary might appear unbounded in a small
region, especially if the distance across the region is smaller than the correlation
range. The regional variogram is called the non-ergodic variogram by some
workers, e.g. Brus and de Gruijter (1994), for this reason. It is more or less
accessible, depending on the effort we are prepared to devote to sampling the
realization, and this leads us to the third variogram, below.

The experimental variogram is computed from data, zðxiÞ; i ¼ 1;2; . . . , which
constitute a sample from the region. It is also called the sample variogram. We
describe it in Section 4.9. It necessarily applies to an actual realization, and it
estimates the regional variogram for that realization. It is usually the only
variogram that we know, and any inference from it requires modelling, as
described in Chapter 5.

4.8 SUPPORT AND KRIGE’S RELATION

Spatial dependence within a finite region has both theoretical and practical
consequences, which we now explore.

The variance of ZðxÞ within a region R of area jRj is the double integral of the
variogram:

s2
R ¼ �gðR;RÞ ¼ 1

jRj2
Z

R

Z
R

gðx � x0Þdxdx0; ð4:25Þ

where x and x0 sweep independently over R. In geostatistics this variance is
called the dispersion variance of ZðxÞ in R. Unless the variogram is all nugget the
dispersion variance for a finite R is less than the a priori variance of the process,
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if it is second-order stationarity. Figure 4.4 shows the relation between the two
for a one-dimensional process; in it the shaded areas are equal. Evidently, as R is
made smaller s2

R diminishes, until in the limit we are left with a point, at which
s2

R disappears.
The region R (see Figure 4.5) limits the extent of a realization. At the small

end of our spatial scale we encounter another limit. Measurements must be
made on finite volumes, whether of samples taken into the laboratory or the
surroundings of instruments placed in the field. The volume, with its particular
size, shape and orientation, is known as the support of the sample. The supports
have finite cross-sectional areas in R2, and they are effectively small but finite
regions, each with its own dispersion variance. If we denote them by b, each

Figure 4.4 Relation between the variogram and the dispersion variance in a finite
region, R.

Figure 4.5 Krige’s relation for a region, R, a block, B, and a small support, b.
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with area jbj (see Figure 4.5), then their dispersion variances are given by the
analogue of equation (4.25):

s2
b ¼ �gðb; bÞ ¼ 1

jbj2
Z

b

Z
b

gðx � x0Þdxdx0: ð4:26Þ

One practical consequence of this is that the support of the sample sets a
minimum to the resolution of the spatial variation that can be detected and
measured by that sample: engineers will understand this as ‘band-limited’
measurement.

In many applications we are interested in blocks, B, of intermediate size, jBj
(see Figure 4.5). They may be mining blocks, plots in an experiment, or fields
on a farm, as examples. They too will have dispersion variances, s2

B, defined in
a way analogous to s2

R and s2
b , and with intermediate values. We now relate

the three.
Consider first the supports b. Though small, they have finite size, and so in a

finite region they are finite in number if they do not overlap. If there are nb
R of

them with values zb
i ; i ¼ 1;2; . . . ; nb

R; then their variance in R is

s2ðb 2 RÞ ¼ 1

nb
R

Xnb
R

i¼1

f�zR � zb
i g

2; ð4:27Þ

where �zR is the mean of the zb
i . In like manner their variance in a block B with

mean �zB is

s2ðb 2 BÞ ¼ 1

nb
B

Xnb
B

i¼1

f�zB � zb
i g

2; ð4:28Þ

which can be averaged over all B 2 R to give �s2ðb 2 BÞ. Finally, we consider the
blocks, B, themselves. Their variance in R is

s2ðB 2 RÞ ¼ 1

nB
R

XnB
R

j¼1

f�zR � �zB
j g

2; ð4:29Þ

where �zB
j is the mean of Z in the jth block.

For any finite region that is divided in the above way into blocks, which in
turn are further subdivided, whether into small supports or smaller blocks, the
dispersion variance is partitioned quite simply as

s2ðb 2 RÞ ¼ �s2ðb 2 BÞ þ s2ðB 2 RÞ: ð4:30Þ

In words, the dispersion variance of Z of supports b in region R is the sum of the
variance of the supports with blocks B plus the variance of the blocks within R.
This is Krige’s relation. It is strictly analogous to the partition of the total
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variance into within and between classes in the simple one-way analysis of
variance.

The expectations of the dispersion variances are all readily obtained from the
variogram by

s2ðb 2 RÞ ¼ �gðR;RÞ � �gðb; bÞ;
s2ðB 2 RÞ ¼ �gðR;RÞ � �gðB;BÞ;
s2ðb 2 BÞ ¼ �gðB;BÞ � �gðb; bÞ; ð4:31Þ

and so Krige’s relation applies to them equally.

4.8.1 Regularization

Another consequence of the finite sample support is that the variogram in
practice is a function of the support. The larger the support is the more
variation each measurement encompasses, and the less there is in the inter-
vening space to appear in the variogram. This inevitably diminishes the sill or
gradient and tends to make the variogram concave upwards near to the origin.
It is a physical regularization, the statistical aspects of which we describe below.
Results should always refer specifically to the particular support, which should
therefore remain the same throughout any one investigation.

The variogram on one support can be related, at least theoretically, to that on
another. The semivariance for two supports bðxÞ and bðx þ hÞ, the centroids of
which are h apart, is

gbðhÞ ¼ E½fZbðxÞ � Zbðx þ hÞg2�; ð4:32Þ

where ZbðxÞ and Zbðx þ hÞ are the integrals of ZðxÞ over the supports b. This is
composed of two parts, the average squared difference between the points in
one support and those in the other less the dispersion variance within supports.
The first is given by

�gðb; bhÞ ¼
1

jbj2
Z

b

Z
b

gðx � xhÞdxdxh; ð4:33Þ

where x sweeps one support and xh sweeps the other independently, as
in Figure 4.6. The second is the integral of the variogram within the support
b:

�gðb; bÞ ¼ 1

jbj2
Z

b

Z
b

gðx � x0Þdxdx0; ð4:34Þ
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where x and x0 sweep b independently, illustrated in Chapter 8 (Figure 8.1). The
variogram on the new supports thus becomes

gbðhÞ ¼ �gðb; bhÞ � �gðb; bÞ: ð4:35Þ

If jhj is large relative to the distances across the support then �gðb; bhÞ is
approximately the punctual semivariance at lag h, and

gbðhÞ � gðhÞ � �gðb; bÞ: ð4:36Þ

So when jhj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area of b

p
the regularized variogram is derived from the

punctual one simply by subtraction of the dispersion variance of the
support.

This procedure in which the variogram for one support is obtained from that
of a smaller support is known as regularization. Figure 4.7 shows what can
happen to the variogram. In this figure two punctual variograms appear as the
dashed lines, (a) without a nugget component and (b) with one. The solid lines
are variograms derived by regularization with blocks of size 0:5 � 0:5 units.
Notice the sills are diminished, the nugget variance disappears and the
approach of the variogram at the origin is somewhat concave upwards. It is
especially important when bulking samples, for two reasons. The first is that the
supports can be large. Second, if the variogram is known for very small supports
on which the variable has been measured then that for samples bulked over
larger areas, the regularized variogram, can be determined from it and surveys
be planned with greater efficiency.

Figure 4.6 The block-to-block integration of the variogram.
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4.9 ESTIMATING SEMIVARIANCES AND COVARIANCES

As mentioned above, the variogram is the cornerstone of geostatistics, and it is
therefore vital to estimate, interpret and model it correctly. This section
concerns its estimation using the usual computing equation, Matheron’s
method-of-moments estimator, and how it applies to various kinds of sampling.
We also describe how to determine the possible presence of anisotropy and non-
stationarity in the process of interest.

4.9.1 The variogram cloud

For any set of data we can compute the variances for every pair of points, xi and
xj, as

gðxi; xjÞ ¼
1

2
fzðxiÞ � zðxjÞg2: ð4:37Þ

These values can then be plotted against the lag distance as a scatter diagram,
called the ‘variogram cloud’ by Chauvet (1982). Figure 4.8 shows the variogram
cloud for log10K at Broom’s Barn to a lag of 600 m. It contains all of the
information on the spatial relations in the data to that lag. In principle we could
fit a model to it to represent the regional variogram, but in practice it is almost
impossible to judge from it if there is any spatial correlation present, what form it
might have, and how we could model it. A more practicable approach is to
average the variances for each of a few lags and then examine the result.
Nevertheless, the variogram cloud shows the spread of values at each lag, and it
might enable us to detect outliers or anomalies. The tighter this distribution is the
stronger is the spatial continuity in the data.

Figure 4.7 Regularization of punctual variograms (dashed) to ones with block supports
of 0:5 � 0:5 (solid lines): (a) without a nugget component; (b) with a nugget component.
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4.9.2 h-Scattergrams

The h-scattergram of zðxÞ plotted against zðx þ hÞ for each lag interval shows
the joint distribution of pairs of points that interval apart as mentioned above
(section 4.3.1), which represents the pdf. The closer the points lie to the
diagonal line with gradient 1, the stronger is the correlation, r̂ðhÞ, and the
smaller is the semivariance, ĝðhÞ. Figure 4.9 shows the h-scattergrams for four
lag intervals, 40 m, 80 m, 120 m and 160 m, computed from the data on
log10K on Broom’s Barn Farm. The autocorrelation coefficients and semivar-
iances listed in Table 4.1 describe quantitatively what happens as the lag
interval increases; the correlations between pairs of points decrease and the
semivariances increase.

Figure 4.8 The variogram cloud of log10K at Broom’s Barn Farm.

Table 4.1 Autocorrelation coefficients and semivariances for log 10K at
Broom’s Barn Farm computed for lag distances 40 m (lag 1), 80 m (lag 2),
120 m (lag 3) and 1600 m (lag 4).

Lag distance/m Autocorrelation coefficient Semivariance

40 0.590 0.00726
80 0.470 0.00942

120 0.399 0.01065
160 0.311 0.01228
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4.9.3 Average semivariances

If we recall the definition of the semivariance from equation (4.13) as

gðhÞ ¼ 1

2
E fZðxÞ � Zðx þ hÞg2
h i

ð4:38Þ

then its estimator is

ĝðhÞ ¼ 1

2
mean fzðxÞ � zðx þ hÞg2

h i
; ð4:39Þ

Figure 4.9 The h-scattergrams for four lags computed from the data of log10 K at
Broom’s Barn Farm.
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where the zðxÞ and zðx þ hÞ represent actual values of Z at places separated by
h. For a set of data zðxiÞ; i ¼ 1;2; . . . ; we can compute

ĝðhÞ ¼ 1

2mðhÞ
XmðhÞ

i¼1

fzðxiÞ � zðxi þ hÞg2; ð4:40Þ

where mðhÞ is the number of pairs of data points separated by the particular lag
vector h. By changing h we obtain an ordered set of semivariances, which
constitute the experimental variogram or sample variogram. Equation (4.39) is the
usual formula for computing semivariances; it is commonly known as
Matheron’s method-of-moments estimator. The way that it is implemented as
an algorithm depends on the configuration of the data, and we consider the
possibilities below.

Regular sampling in one dimension

For regular sampling in one dimension along transects and down boreholes we
can denote the data by zi ¼ zðxiÞ; i ¼ 1;2; . . . ;N. The lag becomes a scalar,
h ¼ jhj, for which ĝ can be computed only at integral multiples of the sampling
interval. The semivariance is then computed as

ĝðhÞ ¼ 1

2ðN � hÞ
XN�h

i¼1

fzi � ziþhg2: ð4:41Þ

Figure 4.10(a) shows the situation. First, the squared differences between
neighbouring pairs of values, z1 and z2, z2 and z3, and so on, i.e. for h ¼ 1, are
determined for each position and averaged. All of the observations at lag interval
h are used twice except for those at the ends of the transect, and so there are N � 1
comparisons. If there are missing values at some locations, as in Figure 4.10(b),
then there will be fewer comparisons, and the divisor is diminished accordingly.
By increasing h to 2 the comparisons are then z1 with z3, z2 with z4, etc., and we
can repeat the procedure for h ¼ 3;4; . . . . The result is a set of semivariances
ĝð1Þ; ĝð2Þ; ĝð3Þ; . . . that is ordered as a function of h. It is a one-dimensional
experimental variogram, and we can plot ĝðhÞ against h as in Figure 4.11.

Irregular sampling in one dimension

If data are irregularly scattered then the average semivariance for any
particular lag can be derived only by grouping the individual lag distances
between pairs of points into ‘bins’ as in a histogram. Otherwise we have
individual semivariances as in the variogram cloud. Typically the averaging
is done by choosing a set of lags, hj; j ¼ 1;2; . . . ; at arbitrary constant
increments d, and then associating with each hj a bin of width d, bounded by
hj � d=2 and hj þ d=2. Each pair of points separated by hj � d=2 is used to
estimate gðhjÞ. In this way each comparison contributes to one and only one
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Figure 4.10 Comparisons for computing a variogram from regular sampling on a
transect: (a) with a complete set of data, indicated with 	; (b) with missing values,
indicated by 
.

Figure 4.11 Sample variogram of log10K at Broom’s Barn, obtained by discretization
of the lags into bins as in Figure 4.13.
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estimate. Sometimes there are more comparisons at the shorter lags, especially
where sampling has been nested (see Chapter 6), and then it can be advanta-
geous to increase the increments, and with them d, as h increases.

The lag increments can affect the resulting variogram, and so d should be
chosen with care. If the increment is small then there might be too few
comparisons at each lag, leading to semivariances that are estimated crudely
and an experimental variogram that appears erratic. If, on the other hand, d is
large then there are likely to be few estimates and detail is lost by unnecessary
smoothing. The best compromise will depend on the number of data, the
evenness of the sampling and the form of the underlying variogram. A useful
starting point is to use the average separation between nearest neighbours as
the interval.

Sampling on transects to represent variation in two dimensions

Sometimes investigators sample regularly along transects to explore variation
in two dimensions and, in particular, to identify and estimate anisotropy, i.e.
directional differences. The computational procedure is the same as for the
regular one-dimensional sampling, and equation (4.41) produces a separate set
of estimates for each transect. These need to be seen together as a whole and
not as separate variograms. The variogram in two dimensions is itself two-
dimensional, and the ordered sets of semivariances computed from transects are
effectively samples of sections through the two-dimensional function. To
identify and estimate anisotropy, transects must be aligned in at least three
directions. If the directional variogram appears to have markedly different
gradients or ranges in the different directions then it is likely that the under-
lying variation is anisotropic, and it should be modelled accordingly (see
Chapter 5). If the variation seems isotropic, i.e. if there are no directional
differences, then the separate estimates can be averaged over all directions to
give the isotropic variogram where the vector h can be replaced by the scalar
h ¼ jhj.

Regular sampling in two dimensions

For data recorded at regular intervals on a rectangular grid the above formula
(4.41), for one dimension, is readily extended. If the grid has m rows and n
columns then we compute

ĝðp; qÞ ¼ 1

2ðm � pÞðn � qÞ
Xm�p

i¼1

Xn�q

j¼1

fzði; jÞ � zði þ p; j þ qÞg2;

ĝðp;�qÞ ¼ 1

2ðm � pÞðn � qÞ
Xm�p

i¼1

Xn�q

j¼qþ1

fzði; jÞ � zði þ p; j � qÞg2; ð4:42Þ
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where p and q are the lags along the rows and down the columns of the grid,
respectively. In general, the lag increment is simply the grid interval. These
equations enable half the variogram to be computed for lags from �q to q and
from 0 to p. The variogram is symmetrical about its centre, and the full set of
semivariances is obtained by computing

ĝð�p; qÞ ¼ ĝðp;�qÞ;

ĝð�p;�qÞ ¼ ĝðp; qÞ:

The procedure can be envisaged as moving the grid over itself to the right
and up or down to new positions, as in Figure 4.12, and making the
comparisons between the values at the points that coincide. In Figure 4.12(a)
the grid has been moved to the right by three units, i.e. p ¼ 3 and q ¼ 0, as
represented by the horizontal line. In Figure 4.12(b) the grid has been moved
down one unit in addition, so that now q ¼ �1; the horizontal and
vertical shifts are shown in the triangle, with its hypotenuse showing the
resultant.

Figure 4.12 also shows that as p and q are increased so the number of
coincident points diminishes rapidly from the original 55. As a consquence the
semivariances become less and less well estimated, a matter to which we return
in Chapter 6.

Where data are missing, the quantities (m � p)(n � q) in the denominators of
equation (4.42) must be replaced by the actual numbers of comparisons.

Figure 4.12 Computing a two-dimensional variogram from a regular grid of data by
sliding the grid over itself: (a) by three units to the right; (b) by one unit down in
addition, with resultant lag given by the hypotenuse of the triangle.
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Irregular sampling in two dimensions

Survey data in two dimensions are often unevenly distributed. Each pair of
observations is separated by a potentially unique lag in both distance and
direction. To obtain averages containing directional information we must group
the separations by direction as well as by distance. Figure 4.13 shows the
geometry of the grouping. We choose a lag interval, the multiples of which will
form a regular progression of nominal lag distances as in the one-dimensional
case. We then choose a range in distance, w in Figure 4.13, usually equal to the
lag interval. The nominal lag distance is represented by the line OH of length h.
We also choose a set of directions, one of which is shown as # in Figure 4.13, and
a range in direction, a, such that a ¼ p=n, where n is the number of directions,
and # progresses in steps of a from 0 to p=ðn � 1Þ. For example, if we choose four
directions ðn ¼ 4) then a sensible progression for # would be 0, p=4, p=2, 3p=4,
i.e. 0, 45, 90, 135 degrees, with a ¼ p=4 (45�). This ensures complete coverage
and no overlap between the different directions. For six directions a would be 30�.
Then for a point xi at O with a second point xi þ h within the stippled zone
fzðxiÞ � zðxi þ hÞg2 contributes to ĝðhÞ ¼ ĝðh; #Þ. When all comparisons have
been made the experimental variogram will consist of the set of averages for the
nominal lags in both distance and direction. We can extend this further by

Figure 4.13 The geometry for discretizing the lag into bins by distance and direction in
two dimensions.
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computing the average experimental variogram over all directions (ominidirec-
tional) by setting a ¼ p (180
). Appendix B gives the GenStat instructions for
computing directional and omnidirectional variograms.

Exploring and displaying anisotropy

So far we have concentrated on explaining the computation in one and two
dimensions, but there is also the matter of representing the results of the two
spatial dimensions on a plane, and of exploring differences in the variation in
two dimensions.

Where data are on a rectangular grid we can plot the semivariances along
the rows and columns and those on the principal diagonals separately, bearing
in mind that the lag intervals will not be the same in all four directions. No
directional information is lost, and the results can then be examined for
directional differences. Where data are irregularly scattered and we have to
group the angular separations then we inevitably lose some of the directional
information. The wider is a the more information we lose, until when a ¼ p

(180
) all is lost. Choosing a is therefore a compromise between a stable
estimate based on many comparisons over a wide angle that will underestimate
variance in the direction of the maximum and overestimate that in the direction
of the minimum, and one that is subject to large error but which gets closer to
the true values in the directions of maximum and minimum. At the outset a
reasonable rule of thumb is to let a ¼ p=4. If this appears to reveal anisotropy
then try reducing a until the resulting variogram becomes too erratic. The
larger is a, the more the anisotropy ratio will be underestimated when models
are fitted (see Chapter 6). If the variation is isotropic the vector h can be
replaced by the scalar h ¼ jhj in distance only, and the general computing
formula, equation (4.40), can be used. In this case we set a ¼ p to compute the
omnidirectional variogram.

Whereas it is easy to draw and comprehend a graph of the experimental
variogram for either one-dimensional data or one averaged over all directions in
two dimensions, it is much less so for the two-dimensional experimental
variogram. One simple way is to plot the values with a unique symbol for
each direction on the same pair of axes (Figure 4.14). Alternatively, some kind
of statistical surface can be fitted to the two-dimensional variogram to represent
it as an isarithmic chart or perspective diagram (Figures 4.15 and 4.16). When
the variogram has been modelled, this surface can be that of the model. The
ideal solution would be to draw it as a stereogram.

4.9.4 The experimental covariance function

All of the above considerations also apply to the estimation of spatial covar-
iances, and the equations are analogous. Remember, however, that the
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covariance requires stationarity of the mean and the variance of the underlying
process. The general computing formula for the experimental covariance at lag
h, the analogue of equation (4.40), is

ĈðhÞ ¼ 1

mðhÞ
XmðhÞ

i¼1

fzðxiÞzðxi þ hÞg � �z2; ð4:43Þ

where �z is the mean of all the data. The analogous correlation function, the
sample correlogram, is readily derived from ĈðhÞ by

r̂ðhÞ ¼ ĈðhÞ
s2

; ð4:44Þ

where s2 is the variance of the data.
If ZðxÞ is second-order stationary then ĈðhÞ � Ĉð0Þ � ĝðhÞ for all h. If there

is trend in the variation then Ĉð0Þ � ĝðhÞ will tend to be larger than ĈðhÞ
computed by equation (4.43). This tendency can be counteracted by replacing
the regional mean �z by two distinct means, one the mean of the

Figure 4.14 A two-dimensional variogram with a distinct symbol for each of four
directions.
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Figure 4.15 An isarithmic chart of a two-dimensional variogram. The origin is in the
middle of the left-hand side.

Figure 4.16 A persective diagram of a two-dimensional variogram. The origin is in the
middle at the left front.
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zðxiÞ; i ¼ 1;2; . . . , say �z1, and the other the mean of the zðxi þ hÞ, �z2, and
computing

ĈðhÞ ¼ 1

mðhÞ
XmðhÞ

i¼1

fzðxiÞ � �z1gfzðxi þ hÞ � �z2g: ð4:45Þ

This measure of the covariance corresponds with that often used in statistics.
We no longer assume implicitly that �z1 is the same as �z2. Several spatial
analysts, e.g. Deutsch and Journel (1992) and Isaaks and Srivastava (1989),
use this formula as a matter of course. They call the quantities �z1 and �z2 the
means of the ‘heads’ and of the ‘tails’, respectively.

Similarly the autocorrelation coefficients can be estimated by

r̂ðhÞ ¼ ĈðhÞ
s1s2

; ð4:46Þ

where s1 and s2 are the standard deviations of the heads and tails. These
formulae are used by time-series analysts, but Yule and Kendall (1950) warn
against using equation (4.46) if you have rather few data.
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5

Modelling the Variogram

In Chapter 4 we saw that when we compute an empirical variogram we obtain
an ordered set of values, the experimental or sample variogram, consisting of
ĝðh1Þ; ĝðh2Þ; . . . ; at particular lags, h1;h2; . . . . This variogram summarizes the
spatial relations in the data. We usually want more than that, however; we
want a variogram to describe the variance of the region. Each calculated
semivariance for a particular lag is only an estimate of a mean semivariance for
that lag. As such it is subject to error.

This error, which arises largely from sampling fluctuation, can give the
experimental variogram a more or less erratic appearance, as depicted by the
plotted points in the graphs in the left-hand column of Figure 5.1. We computed
this experimental variogram from 87 values of log10K from the Broom’s Barn
data by taking every fifth value from the file. In the right-hand column is the
experimental variogram computed from all 434 data; the points lie on a
relatively smooth curve. Evidently the sampling fluctuation is more pronounced
where the data points are further apart and there are fewer of them. We explore
the effects of the number of data points on the reliability of the variogram in
more detail in Chapter 6, and we explain the smooth curves drawn through the
experimental values later in this chapter.

The true variogram representing the regional variation is continuous, and it
is this variogram that we should really like to know. We can use our observed
values as approximations to the function by imagining a curve passing through
them, such as the ones we have drawn in Figure 5.1. In two dimensions we
have to imagine a surface, for the variogram of a two-dimensional field is itself
two-dimensional. How closely should we attempt to follow the experimental
variogram? Answering this is difficult because we do not know how much of
the observed fluctuation is due to error and how much is structural.

The solution usually taken is that of Occam’s razor; namely, fit the simplest
function that makes sense, subject to certain mathematical constraints which
are considered below. We ignore the point-to-point fluctuation and concentrate
on the general trends.

Geostatistics for Environmental Scientists/2nd Edition R. Webster and M.A. Oliver
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Figure 5.1 Experimental variograms plotted, as points, of log10K at Broom’s Barn
computed from 87 data in the left-hand column and from all 434 data in the right-hand
column. The solid lines from top to bottom are: the circular, spherical, exponential and
power models fitted to them.
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Another reason for fitting a continuous function is to describe the spatial
variation so that we can estimate or predict values at unsampled places and in
larger blocks of land optimally by kriging (see Chapter 8). This requires
semivariances at lags for which we have no direct comparisons, and we must
be able to calculate these from such a function. The function must therefore be
mathematically defined for all real h.

There are a few principal features that a function must be able to represent.
These include:

(1) a monotonic increase with increasing lag distance from the ordinate of
appropriate shape;

(2) a constant maximum or asymptote, or ‘sill’;
(3) a positive intercept on the ordinate, or ‘nugget’;
(4) periodic fluctuation, or a ‘hole’;
(5) anisotropy.

5.1 LIMITATIONS ON VARIOGRAM FUNCTIONS

5.1.1 Mathematical constraints

Not any close-fitting function will serve. The model we choose must describe
random variation, and the function must be such that it will not give rise to
‘negative variances’ of combinations of random variables. This is explained
below.

Let zðxiÞ; i ¼ 1;2; . . . ; n; be a realization of the random variable ZðxÞ
with covariance function CðhÞ and variogram gðhÞ. Now consider the linear
sum

y ¼
Xn

i¼1

lizðxiÞ;

where the li are any arbitrary weights.
The variable Y from which y derives is itself random with variance

var½Y� ¼
Xn

i¼1

Xn

j¼1

liljCðxi � xjÞ; ð5:1Þ

where Cðxi � xjÞ is the covariance of Z between xi and xj. The variance of Y
may be positive or zero; but it may not be negative. The right-hand side of
equation (5.1) must ensure this. The covariance function, CðhÞ, must be positive
semidefinite. Equation (5.1) can be written

var½Y� ¼ lTCl � 0; ð5:2Þ
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where l is the vector of weights and C is the matrix of covariances. If the latter is
positive semidefinite then so is the covariance function. In fact, since we are dealing
with ‘variables’, the variance cannot be zero, and so CðhÞ must be positive definite.

If the covariance does not exist, because the variable is intrinsic only and not
second-order stationary, then we rewrite equation (5.1) as

var½Y� ¼ Cð0Þ
Xn

i¼1

li

Xn

j¼1

lj �
Xn

i¼1

Xn

j¼1

liljgðxi � xjÞ; ð5:3Þ

where gðxi � xjÞ is the semivariance of Z between xi and xj. The first term on
the right-hand side of equation (5.3) contains Cð0Þ, the covariance at lag 0,
which we do not know, but we can eliminate it by making the weights sum to 0
without loss of generality. Then

var½Y� ¼ �
Xn

i¼1

Xn

j¼1

liljgðxi � xjÞ: ð5:4Þ

This may not be negative either; but notice the minus sign. So, the variogram
must be conditional negative semidefinite (CNSD), the condition being that the
weights in equation (5.4) sum to zero.

Only functions that ensure non-zero variances may be used for variograms. They
are called authorized models or functions in much of the literature.

5.1.2 Behaviour near the origin

The way in which the variogram approaches the origin is determined by the
continuity (or lack of continuity) of the variable, ZðxÞ, itself. We may
distinguish the following features, which are illustrated in Figure 5.2. As
mentioned in Chapter 4, the variogram is symmetric about the origin, and
for reasons that will become evident both halves appear in this figure.

Figure 5.2 Behaviour of the variogram near to the origin: (a) postive intercept
(nugget); (b) linear approach, not differentiable; (c) continuous and differentiable.
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Positive intercept. The semivariance at jhj ¼ 0 is by definition 0. It often happens,
however, that any line or surface projected through the experimental values to
the ordinate intersects it at some positive value, as in Figure 5.2(a). This implies a
discontinuity in ZðxÞ. The feature appeared often in gold mining, and the mining
engineers attributed it to the spatially independent occurrence of gold nuggets in
ore bodies. They called the phenomenon the ‘nugget effect’ and the intercept
‘nugget variance’. It is easy to imagine discontinuities arising from the dispersal of
small nuggets of gold in a large body of rock. The same might be true for
certain features of the soil, such as stones and concretions among the fine earth.
Discontinuities in the soil’s physical and chemical properties are harder to
imagine, and any apparent nugget variance usually arises from errors of
measurement and spatial variation within the shortest sampling interval.

Linear approach. The variogram may approach the origin approximately linearly
with decreasing lag distance:

gðhÞ � bjhj as jhj ! 0; ð5:5Þ

where b is the gradient. The variogram passes through the origin, as in Figure
5.2(b), unlike in Figure 5.2(a), but its first derivative is discontinuous there: its
gradient changes abruptly from negative to positive. Nevertheless, it signifies
continuity in ZðxÞ itself, and because

lim E½fZðxÞ � Zðx þ hÞg2� ¼ 0 as jhj ! 0; ð5:6Þ

ZðxÞ is often said to be ‘mean-square’ continuous. It is not differentiable,
however, nor is the process it describes because it is random (see Chapter 4).

Parabolic approach. Figure 5.2(c) illustrates the situation in which a variogram is
parabolic at the origin; it passes smoothly through the origin with a gradient of
0 there, so that

gðhÞ ¼ bjhj2 as jhj ! 0: ð5:7Þ

The variogram is twice differentiable at the origin, and ZðxÞ is itself differenti-
able: it varies smoothly, and it is no longer random. The exponent 2 represents
a strict limit to power functions for describing random processes.

A raw variogram that appears parabolic at the origin suggests that there is
local trend, i.e. short-range deterministic variation. This feature is described in
Chapter 4, and we deal with it again in Chapter 9. The expectation of ZðxÞ is
not stationary but depends on position x, thus:

E½ZðxÞ� ¼ uðxÞ; ð5:8Þ

from equation (4.21).
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5.1.3 Behaviour towards infinity

The way that a variogram behaves with increasing lag distance is constrained by

lim
gðhÞ
jhj2

¼ 0 as jhj ! 1: ð5:9Þ

The variogram must increase less than the square of the lag distance as the
latter approaches infinity; if it does not then the process is not entirely random.
The limit is shown in Figure 5.3, in which the parameter a in the power
function is set to 2. Any function that increases more, such as that shown by
the dashed line with a ¼ 3, is not CNSD and so is not compatible with the
intrinsic hypothesis.

A variogram that increases faster than jhj2 suggests that there is long-range
trend, again deterministic in the statistical sense (see Chapters 4 and 6). As
above, the expectation of ZðxÞ is not stationary but depends on position x; see
equation (5.8).

5.2 AUTHORIZED MODELS

There are two main families of simple functions that encompass the features
listed above and that are CNSD. One represents unbounded variation, the other
bounded. We deal with them in turn in their isotropic form, so that the lag
vector jhj becomes a scalar measure in distance only, h. All of the ones that we
describe are used in practice.

Figure 5.3 Graphs of the power function, gðhÞ ¼ wha, with a ¼ 0:2; 0:6; 1:0; 1:4;
and 2.0 (the limiting value for a), and with w set to 1, shown by solid lines. The dashed
line represents gðhÞ ¼ h3 and is not an authorized function for a variogram.
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5.2.1 Unbounded random variation

The idea of unbounded, i.e. infinite, variance may seem strange. After all, we live
on a finite earth, and there must be some limit to the amount of variation in the
soil. Yet the evidence from surveys of small parts of the planet suggests that if we
were to increase the region surveyed we should encounter ever more variation;
our extrapolation of the experimental variogram is one that continues to increase.

The simplest models for unbounded variation are the power functions:

gðhÞ ¼ wha for 0 < a < 2; ð5:10Þ
where w describes the intensity of variation and a describes the curvature. If
a ¼ 1 then the variogram is linear, and w is simply the gradient. If a < 1 then
the variogram is convex upwards. If a > 1 then the variogram is concave
upwards. The limits 0 and 2 are excluded. If a ¼ 0 then we are left with a
constant variance for all h > 0; if a ¼ 2 then the function is parabolic with
gradient 0 at the origin and represents differentiable variation in the underlying
process, which is not random, as mentioned above.

Figure 5.3 shows examples with several values of a, including the upper
bound, a ¼ 2; at the lower limit a ¼ 0 would represent white noise, and hence
discontinuous variation. Nevertheless, some experimental variograms seem flat,
and we return to this matter below.

One way of looking at these unbounded functions is to consider Brownian
motion in one dimension. Suppose a particle moves in this dimension with a
velocity or momentum at position x þ h that depends on its velocity or
momentum at a close previous position x. It can be represented by the equation

Zðx þ hÞ ¼ bZðxÞ þ "; ð5:11Þ

where " is an independent Gaussian random deviate and b is a parameter. At its
simplest b ¼ 1, and its variogram is then

2gðhÞ ¼ E½fZðx þ hÞ � ZðxÞg2� ¼ jhjk: ð5:12Þ

If the exponent k in equation (5.12) is 1 then we obtain the linear model, with
gðjhjÞ ! 1 as jhj ! 1. This is also known as a random walk model.

In ordinary Brownian motion the "s are independent of one another. If,
however, the "s in equation (5.11) are spatially correlated then a trace is
generated that is smoother than that of pure Brownian motion. The exponent,
k, now exceeds 1, and the curve is concave upwards. If, on the other hand, the
"s are negatively correlated then a trace is generated that is rougher, or
‘noisier’, than that of pure Brownian motion. The exponent k in equation
(5.12) is now less than 1, and the curve is convex upwards.

If the "s are perfectly correlated then k ¼ 2 and the trace is completely smooth,
i.e. there is no longer any randomness. As k ! 0, the noise increases until in the
limit we have white noise, or pure nugget, as described in Chapter 4.
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Priestley (1981) gives a much more comprehensive account of these random
processes. Chapter 3 of that book is especially relevant, and we must leave the
reader to pursue the matter there.

5.2.2 Bounded models

In our experience bounded variation is more common than unbounded variation,
and the variograms have more varied shapes. In most of these models the
variance has a maximum, which is the a priori variance of the process, known in
geostatistics as the sill variance. The variogram may reach its sill at a finite lag
distance, the range. Alternatively, the variogram may approach its sill asympto-
tically. In some models the semivariance reaches a maximum, only to decrease
again and perhaps fluctuate about its a priori variance. These variograms
represent second-order stationary processes and so have equivalent covariance
functions. They are illustrated in Figures 5.4 and 5.5.

Figure 5.4 Bounded models with fixed ranges: (a) bounded linear; (b) circular;
(c) spherical; (d) pentaspherical.
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Bounded linear model

The simplest function for describing bounded variation consists of two straight
lines, as in Figure 5.4(a). The first increases and the other has a constant
variance:

gðhÞ ¼
c

h

a

� �
for h � a

c for h > a;

8><
>: ð5:13Þ

where c is the sill variance and a is the range. Evidently its slope at the origin is
c=a. It is CNSD in one dimension ðR1Þ only; it may not be used to describe
variation in two and three dimensions.

We can derive the variogram for the bounded linear model heuristically as
follows. We start with a stationary ‘white noise’ process, YðxÞ, in one dimen-
sion, i.e. a random process with random variables at all positions along a line
but in which there is no spatial dependence or autocorrelation. It has a mean m

and variance s2
Y . Suppose that we pass the process through a simple linear filter

of finite length a to obtain

ZðxÞ � m ¼ 1

a

Z xþa

x

YðvÞdv: ð5:14Þ

Thus, we average YðxÞ within the interval a to obtain the corresponding ZðxÞ.
Consider now the variable ZðxÞ derived from two segments of the process YðxÞ,
one from x1 to x2 and the other from x3 to x4. They may overlap or not, as below.

Evidently, if the two segments do not overlap, as in the upper example, then we
should expect their means in ZðxÞ to be independent. But if they do overlap, as
in the lower example, then they will share some of the original white noise
series; their means will not be independent, and we should expect some
autocorrelation. In general, the closer is x1 to x3 (and x2 to x4) and the longer
is a, the stronger should be the correlation. In fact when x1 coincides with x3

(and x2 with x4) we should have perfect correlation. The only question is what
form the correlation takes as x3 approaches x1.

Authorized Models 85



To answer this we consider the discrete analogue of equation (5.14):

Zðx þ dÞ � m ¼ l0Yðx þ dÞ þ l1Yðx þ d þ 1Þ þ l2Yðx þ d þ 2Þ
þ � � � þ la�1Yðx þ d þ a � 1Þ; ð5:15Þ

where the l0; l1; . . . ; la�1 are weights, here all equal to 1=a, and d ¼ 1=2a is
half the distance between two successive points in the sequence. All more
distant members, say Yðx þ d þ a � 1 þ bÞ, of the series carry zero weight.
Suppose that YðxÞ is a white noise process; then ZðxÞ is a moving average
process of order a � 1. Further, if the variance of YðxÞ is s2

Y then that of ZðxÞ is

s2
Z ¼ l2

0s2
Y þ l2

1s2
Y þ l2

2s2
Y þ � � � þ l2

a�1s2
Y

¼ s2
Y

Xa�1

i¼0

lili

¼ s2
Y=a; ð5:16Þ

which is familiar as the variance of a mean. It is also the covariance at lag 0,
Cð0Þ. We now want the covariances for the larger lags. These are obtained
simply by extension from the above equation:

CðhÞ ¼ s2
Y

Xa�1�h

i¼0

liliþh ¼ s2
Y

a � h

a2
: ð5:17Þ

The covariances are in order, for h ¼ 0;1;2; . . . ; a � 1; a,

a � 0

a2
s2

Y ;
a � 1

a2
s2

Y ;
a � 2

a2
s2

Y ; . . . ;
a � a þ 1

a2
s2

Y ;
a � a

a2
s2

Y :

Dividing through by the Cð0Þ we obtain the autocorrelations, rðhÞ, as

1; ða � 1Þ=a; ða � 2Þ=a; . . . ; ða � a þ 1Þ=a; 0:

In words, the covariance and autocorrelation functions decay linearly with
increasing h until h ¼ a, at which point it is 0. Then the autocorrelation
coefficient at any h is simply equal to the proportion of the filter that overlaps
when the filter is translated by h. The variogram is obtained simply from
relation (4.14) by

gðhÞ ¼ Cð0Þ � CðhÞ

¼ s2
Y

a � h

a2
¼ s2

a

h

a

� �
¼ c

h

a

� �
; ð5:18Þ

since c ¼ s2
Y=a ¼ Cð0Þ.
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Circular model

The formula for the circular variogram is

gðhÞ ¼ c 1 � 2

p
cos�1 h

a

� �
þ 2h

pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � h2

a2

r( )
for h � a;

c for h > a:

8><
>: ð5:19Þ

The parameters c and a are again the sill and range. The function curves tightly
as it approaches the range (see Figure 5.4(b)) and its gradient at the origin is
4c=pa. It is CNSD in R1 and R2, but not in R3.

This model can be derived in a way analogous to that of the bounded linear
model from the area of intersection, A, of two discs of diameter a, the centres of
which are separated by distance h. Matérn (1960) did this by considering the
densities with which points are distributed at random by a Poisson process in
two overlapping circles. This area is

A ¼
1

2
a2cos�1 h

a

� �
� h

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � h2

p
for h � a;

0 for h > a:

8<
: ð5:20Þ

If we express this as a fraction of the area, pa2=4, of one of the circles, in the
same way as we expressed the fraction of the linear filter that overlapped along
the line above, then we obtain the autocorrelation for the separation:

rðhÞ ¼ 2

p
cos�1 h

a

� �
� h

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � h2

a2

r( )
for h � a: ð5:21Þ

Then from relation (4.14) the variogram, equation (5.19) above, follows.

Spherical model

By a similar line of reasoning we can derive the three-dimensional analogue of the
circular model to obtain the spherical correlation function and variogram. The
volume of intersection of two spheres of diameter a with their centres h apart is

V ¼
p

4
c

2

3
a3 � a2h þ 1

3
h3

� �
for h � a;

0 otherwise:

8><
>: ð5:22Þ

The volume of a sphere is 1
6 pa3, and so dividing by it gives the autocorrelation

rðhÞ ¼ 1 � 3h

2a
þ 1

2

h

a

� �3

for h � a;

0 for h > a;

8><
>: ð5:23Þ
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and the variogram is

gðhÞ ¼ c
3h

2a
� 1

2

h

a

� �3
( )

for h � a;

c for h > a:

8><
>: ð5:24Þ

The spherical model seems the obvious one to describe variation in three-
dimensional bodies of rock, and it has proved well suited to them. It would seem
less obviously suited for describing the variation in one and two dimensions,
which is usually what is needed in soil and land resource survey. Yet it nearly
always fits experimental results from soil sampling better than the one- and
two-dimensional analogues. The function curves more gradually than they do
Figure 5.4(c), and the reason is probably that there are additional sources of
variation at other scales that it can represent. Its gradient at the origin is 3c=2a.
It is CNSD in R2 and R1 as well as in R3.

The spherical function is one of the most frequently used models in geostatis-
tics, in one, two and three dimensions. It represents transition features that have
a common extent and which appear as patches, some with large values and
others with small ones. The average diameter of the patches is represented by the
range of the model. One can see this interpretation by simulating a large field of
values using the function as the generator. Figures 5.5 and 5.6(a) are examples in
which values have been simulated on a 256 � 256 square grid with unit interval.
The model had a sill variance, c ¼ 1:0, and ranges of a ¼ 15;25 and 50 units in
Figures 5.5(a), 5.5(b) and 5.6(a), respectively. The maps show that the extents of
the patches with large and small values increase as the range increases. The
patches have a fairly regular form.

Pentaspherical model

Following Matérn (1960), McBratney and Webster (1986) extended the line of
reasoning to obtain the five-dimensional analogue of the above, the pentasphe-
rical function:

gðhÞ ¼ c
15

8

h

a
� 5

4

h

a

� �3

þ3

8

h

a

� �5
( )

for h � a;

c for h > a :

8><
>: ð5:25Þ

It is useful in that its curve is somewhat more gradual than that of the spherical
model Figure 5.4(d). Its gradient at the origin is 15c=8a. Again it is CNSD in R1,
R2 and R3.

Exponential model

A function that is also much used in geostatistics is the negative exponential:

gðhÞ ¼ c 1 � exp � h

r

� �� �
; ð5:26Þ
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with sill c, and a distance parameter, r, that defines the spatial extent of the
model. The function approaches its sill asymptotically, and so it does not have a
finite range. Nevertheless, for practical purposes it is convenient to assign it an
effective range, and this is usually taken as the distance at which g equals 95%
of the sill variance, approximately 3r. Its slope at the origin is c=r. Figure 5.7(a)
shows it.

The function has an important place in statistical theory. It represents the
essence of randomness in space. It is the variogram of first-order autoregressive
and Markov processes. Its equivalent autocorrelation function has been the
basis of several theoretical studies of the efficiency of sampling designs by, for
example, Cochran (1946), Yates (1948), Quenouille (1949) and Matérn
(1960). We should expect variograms of this form where differences in soil

Figure 5.5 Simulated fields of values using spherical functions, equation (5.24), with
distance parameters (a) a ¼ 15, (b) a ¼ 25.
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type are the main contributors to soil variation and where the boundaries
between types occur at random as a Poisson process. Burgess and Webster
(1984) found this to be the situation in many instances. If the intensity of the
process is h then the mean distance between boundaries is �d ¼ 1=h and the
variogram is

gðhÞ ¼ cf1 � expð�h=�dÞg
¼ cf1 � expð�hhÞg:

ð5:27Þ

Put another way, this is the variogram of a transition process in which the
structures have random extents.

Figure 5.6 Simulated fields of values using: (a) a spherical function, equation (5.24),
with distance parameter a ¼ 50; (b) a pure nugget variogram, equation (5.33).
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Simulated fields obtained from an exponential function with an asymptote
approaching 1.0 and distance parameters, r, of 5 and 16 are shown in
Figure 5.8(a) and 5.8(b), respectively. The patches of large and small values
in the two fields are similarly irregular, but the average sizes of the patches
show the different spatial scales of the generator.

Figure 5.7 Models with asymptotic bounds. All are scaled so that the effective range
where the function reaches 0.95 of its sill is approximately 1, marked by the vertical lines
on the graphs. (a) a ¼ 1 (exponential), r ¼ 0:333; (b) Whittle, r ¼ 0:25; (c) a ¼ 1:25
(stable), r ¼ 0:416; (d) a ¼ 1:5 (stable), r ¼ 0:478; (e) a ¼ 1:75 (stable), r ¼ 0:533; (f)
a ¼ 2 (Gaussian), r ¼ 1=

ffiffiffi
3

p
.
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Whittle’s elementary correlation

Whittle (1954) showed that a simple stochastic diffusion process also has an
exponential variogram in one and three dimensions. In R2, however, the
process leads to Whittle’s elementary correlation, given by

gðhÞ ¼ c 1 � h

r
K1

h

r

� �� �
: ð5:28Þ

The parameter c is the sill, as before, the a priori variance of the process, r is a
distance parameter, and K1 is the modified Bessel function of the second
kind. Like the exponential function, Whittle’s function approaches its sill

Figure 5.8 Simulated fields of values from exponential functions (equation (5.26)),
with distance parameters (a) r ¼ 5, (b) r ¼ 16.
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asymptotically and so has no definite range. Its effective range may be chosen
as for the exponential function where the semivariance reaches 95% of the sill,
and this is at approximately 4r. The function approaches the origin with a
decreasing gradient, however, and appears slightly sigmoid when plotted,
Figure 5.7(b).

Gaussian model

Another function with reverse curvature near the origin recurs again and again
in geostatistical texts and software packages. It is the so-called Gaussian model
(Figure 5.7(f)) with equation

gðhÞ ¼ c 1 � exp � h2

r2

� �� �
: ð5:29Þ

Once more, c is the sill and r is a distance parameter. The function approaches
its sill asymptotically, and it can be regarded as having an effective range of
approximately

ffiffiffi
3

p
r where it reaches 95% of its sill variance.

A serious disadvantage of the model is that it approaches the origin with zero
gradient, which we saw above as the limit for random variation and at which
the underlying variation becomes continuous and twice differentiable. This can
lead to unstable kriging equations, which we present in Chapter 8, and bizarre
effects when used for estimation—see Wackernagel (2003) for examples.

In general we deprecate this model. If a variogram appears somewhat
sigmoid then we recommend the theoretically attractive Whittle function.
Alternatively, if the reverse curvature is stronger you may replace the exponent
2 in equation (5.29) by an additional parameter, say a, with a value less
than 2:

gðhÞ ¼ c 1 � exp � ha

ra

� �� �
: ð5:30Þ

Wackernagel (2003) calls these ‘stable models’. Some examples of them are
shown in Figure 5.7(c)–(e) with various values of a, and we have used the model
with a ¼ 1:965 to describe topographic variation (Webster and Oliver, 2006).

Cubic model

Another bounded model with reverse curvature near the origin is the cubic
function. Its formula is

gðhÞ ¼ c 7
h

a

� �2

�8:75
h

a

� �3

þ3:5
h

a

� �5

�0:75
h

a

� �7
( )

for h � a;

c for h > a:

8><
>: ð5:31Þ
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The parameter a is a finite range which is approached much more gradually
than in the spherical and pentaspherical models.

There are other simple models used in particular disciplines because of their
theoretical attractions. Examples include the prismato-gravimetric and prismato-
magnetic functions developed in geophysics to model gravimetric and magnetic
anomalies (see Armstrong, 1998). If you work in such a special field then you
should ask whether there are preferred functions for the particular applications.

Matérn function

The Materén function is a generalization of several of the functions mentioned
above and so appears attractive for this reason. Its formula is

gðhÞ ¼ c 1 � 1

2n�1GðnÞ
h

r

� �n

Kn
h

r

� �� �
: ð5:32Þ

As in the exponential, Whittle and Gaussian models the function has a distance
parameter r, and c is the sill. It also has a smoothness parameter, n, analogous
to a in the stable models (equation (5.30)), though whereas a is limited to
between 0 and 2, n can vary in the range 0 (very rough) to infinity (very
smooth). It includes the special cases of exponential when n ¼ 0:5 and Whittle’s
function when n ¼ 1. Figure 5.9 shows variograms for several values of n.

Figure 5.9 The Matérn function (5.32) with a priori variance c ¼ 1 and distance
parameter r ¼ 20 and five values of the smoothness parameter n, giving the five curves.
The curve with n ¼ 0:5 is the exponential and that with n ¼ 1 is Whittle’s function.
After Minasny and McBratney (2005).
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Unfortunately, when Minasny and McBratney (2005) examined its potential
for describing soil properties they had difficulty fitting it to experimental
variograms. They found that n was poorly estimated by the usual method of
weighted least squares (see below).

Pure nugget

Although the limiting value 0 of the exponent of equation (5.10) for the power
function was excluded because it would give a constant variance, we do need
some way of expressing such a constant because that is what appears in
practice. We do so by defining a ‘pure nugget’ variogram as follows:

gðhÞ ¼ c0f1 � dðhÞg; ð5:33Þ

where c0 is the variance of the process, and dðhÞ is the Kronecker d which takes
the value 1 when h ¼ 0 and is zero otherwise. If the variable is continuous, as
almost all properties of the soil and natural environment are, then a variogram
that appears as pure nugget has almost certainly failed to detect the spatially
correlated variation because the sampling interval was greater than the scale of
spatial variation.

Since the nugget variance is constant for all h; jhj > 0, it is usually denoted
simply by the variance c0. Figure 5.6(b) shows the simulated field from a pure
nugget variogram. There is no detectable pattern in the variation as there is in
Figures 5.5, 5.6(a) and 5.8.

5.3 COMBINING MODELS

As is apparent in Figures 5.3, 5.4 and 5.7, all the above functions have simple
shapes. In many instances, however, especially where we have many data,
variograms appear more complex, and we may therefore seek more complex
functions to describe them. The best way to do this is to combine two or more
simple models. Any combination of CNSD functions is itself CNSD. Do not look
for complex mathematical solutions the properties of which are unknown.

The most common requirement is for a model that has a nugget component
in addition to an increasing, or structured, portion. So, for example, the
equation for an exponential variogram with a nugget may be written as

gðhÞ ¼ c0 þ c 1 � exp � h

r

� �� �
; ð5:34Þ

and an example is shown in Figure 5.10(a). Figure 5.11 shows the simulated
fields for an exponential variogram with parameters c0 ¼ 0:333, c ¼ 0:667 and
distance parameters, r, of 5 and 16 as before. The speckled appearance within
the patches is the result of the nugget variance.
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Figure 5.10. Combined (nested) models: (a) single exponential with sill 0.75 plus a
nugget variance of 0.25; (b) double spherical with ranges 0.35 and 1.25 and correspond-
ing sills 0.3 and 0.5 plus a nugget variance of 0.2 with the components shown separately.

Figure 5.11 Simulated fields of values from exponential functions with nugget variance
one-third of the total variance, equation (5.34): with distance parameters (a) r ¼ 5;
(b) r ¼ 16.
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Spatial dependence may occur at two distinct scales, and these may be
represented in the variogram as two spatial components. The nested spherical,
or double spherical, function is the one that has been used most often in these
circumstances. Its equation is

gðhÞ ¼

c1
3h

2a1
�1

2

h

a1

� �3
( )

þ c2
3h

2a2
�1

2

h

a2

� �3
( )

for 0 < h � a1;

c1 þ c2
3h

2a2
�1

2

h

a2

� �3
( )

for a1 < h � a2;

c1 þ c2 for h > a2;

8>>>>>><
>>>>>>: ð5:35Þ

where c1 and a1 are the sill and range of the short-range component of the
variation, and c2 and a2 are the sill and range of the long-range component. If it
appears to need a nugget then that can be added as a third component, and
Figure 5.10(b) shows this combination.

5.4 PERIODICITY

A variogram may seem to fluctuate more or less periodically, rather than increase
monotonically, and we might try to describe it with a periodic function. The
simplest such function is a sine wave, as shown in Figure 5.12(a), with equation

gðhÞ ¼ W 1 � cos
2ph

v

� �� �
; ð5:36Þ

where W and v are the amplitude and length of the wave, respectively.
The gradient at the origin is 0, which, as mentioned above, is undesirable.

Usually, however, we find that the periodicity is superimposed on some other
source of variation and that the combined model increases from the origin more
steeply. Figure 5.12(b) shows an example of it superimposed on an exponential
function. An example from actual soil survey is illustrated in Chapter 7.

We might be tempted to move the curve along the abscissa to fit the
experimental values so that it increases more nearly linearly from lag 0. We
have drawn such a function as the dashed line in Figure 5.12(a). In other
words, we have introduced a phase shift, f. If we designate the angle 2ph=v as
u for simplicity then the equation becomes

gðhÞ ¼ Wf1 � cosðu � fÞg: ð5:37Þ

Unfortunately, the resulting function is not guaranteed to be CNSD, and so the
temptation should be resisted.

Equation (5.36) is valid for one dimension only; it is not CNSD in R2 and R3.
In two and three dimensions the fluctuation must damp, i.e. become less
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pronounced with increasing lag distance. Damping can be achieved by division
of the sine or cosine function by a function of the lag distance. Choosing again
the simplest function, we can write

gðhÞ ¼ W 1 � 1

u
sinu

� �
; ð5:38Þ

which increases from zero at h ¼ 0, and this appears in Figure 5.12(c).
This model is valid in one, two and three dimensions. Journel and Huijbregts

(1978) show that it has a relative amplitude, which they define as

b ¼ 1

c
fmax½gðhÞ� � cg; ð5:39Þ

where max½gðhÞ� is the maximum semivariance of the function, and c is the
a priori variance, the horizontal line in Figure 5.12(c). In equation (5.38) b is
approximately 0.217, and it occurs where 2:5ph=v � 5:6. It is the maximum
for a periodic model in R3.

Figure 5.12 Periodic and hole effect models: (a) simple sine wave of length 2p (solid)
and with phase shift (dashed line); (b) sine wave superimposed on an exponential
function; (c) damped sine wave of period 2:5p (with maximum marked at h � 5:6);
(d) model with Bessel function J0, equation (5.40), with distance parameter set to 10
(giving maximum at h � 5:6).

98 Modelling the Variogram



Usually in such cases the damping is such that only the first undulation is
substantial. The corresponding covariance function, (see Figure 4.3(f)), appears
to have a single depression in it: it is said to exhibit a hole effect.

Another model that might describe a less pronounced hole effect satisfactorily
embodies the Bessel function J0:

gðhÞ ¼ c 1 � exp � h

r

� �
J0

2ph

vJ

� �� �
; ð5:40Þ

where J0 is the Bessel function of the first kind, and vJ is a distance parameter
corresponding roughly to wavelength. The maximum is only 0.118 times the
variance of the process. Figure 5.12(d) shows an example in which vJ has been
set to 10 to give a maximum at the same lag distance, 5.6, as in the truly
periodic models.

Practitioners should treat wavy experimental variograms with caution. The
experimental values are themselves correlated, the more so as the correlation in
the original data strengthens. One consequence of this is that any underlying
wave-like fluctuation tends to be exaggerated in the estimates: the wave does
not damp as much as you might expect, even with moderately long runs
(200–300) of data. Before trying to fit a periodic function to such a set of points,
the user should ask what evidence there is of periodicity in the phenomenon
being investigated. If there is none and the apparent periodicity or hole is weak
then do not try to force a periodic model on the variogram. This is a specific case
of the more general advice that any variogram model should accord with what
you know of the underlying variable, such as the soil, geology, landscape, or
sources of pollution that you are studying.

5.5 ANISOTROPY

Variation can itself vary with direction. If it can be made to seem isotropic by
transformation of the horizontal scales then it is called geometric or affine
anisotropy. Such anisotropy can be taken into account by a simple linear
transformation of the rectangular coordinates. It is perhaps best envisaged for a
process with a spherical variogram in which the range, instead of being a cons-
tant, describes an ellipse in the plane of the lag. This is shown in Figure 5.13,
where A is the maximum diameter of the ellipse, i.e. the range in the direction of
greatest continuity (least change with separating distance), and B is the minimum
diameter, perpendicular to the first, and is the range in the direction of least
continuity (greatest change with separating distance). The angle ’ is the direction
in which the continuity is greatest. The equation for transformation is then

Vð#Þ ¼ fA2cos2ð#� ’Þ þ B2sin2ð#� ’Þg1=2; ð5:41Þ

where V defines the anisotropy, and # is the direction of the lag.
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If we insert Vð#Þ into the spherical function then we have

gðh; #Þ ¼ c
3jhj

2Vð#Þ �
1

2

jhj
Vð#Þ

� �3
( )

for 0 < jhj � Vð#Þ;

c for jhj > Vð#Þ:

8><
>: ð5:42Þ

Figure 5.14 shows an example of its surface in two dimensions as a prespective
diagram.

Figure 5.13 A representation of geometric anisotropy in which the ellipse describes the
range of a spherical variogram in two dimensions. The diameter A is the maximum range
of the model, B is the minimum range, and ’ is the direction of the maximum range.

Figure 5.14 Perspective diagram of an anisotropic spherical variogram.
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We can derive from equation (5.41) an anisotropy ratio, R ¼ A=B, and it
may be convenient to rewrite equation (5.41) with this replacing B:

Vð#Þ ¼ A2cos2ð#� ’Þ þ A

R

� �2

sin2ð#� ’Þ
( )1=2

: ð5:43Þ

This transformation in effect allows the variation to be represented in an
isotropic form. It is as if the soil were on a rubber sheet and stretched in the
direction parallel to B until B ¼ A and the ellipse becomes a circle.

The function Vð#Þ can be applied to the power function for unbounded
variation:

gðh; #Þ ¼ ½fA2cos2ð#� ’Þ þ B2sin2ð#� ’Þg1=2jhj�a

¼ ½Vð#Þjhj�a: ð5:44Þ

Here the roles of A and B are inverted; they are now gradients with A, the
larger, being the gradient in the direction of greatest rate of change and B, the
smaller, being the gradient in the direction of the smallest rate.

5.6 FITTING MODELS

The models described above are those that are commonly used for variograms
in resource survey. All are theoretically based. Our task now is to fit them to the
experimental or sample values. One might have thought that after so many
years of geostatistical development and practice—more than 40 since Matheron
(1965) published his seminal thesis and more than 30 since the first textbooks
appeared—that the task would be straightforward with standard algorithms
and well-tried software. If so one would be wrong. Choosing models and fitting
them to data remain among the most controversial topics in geostatistics.

There are still practitioners who fit models by eye and who defend their
practice with vigour. They may justify their attitude on the grounds that when
kriging the resulting estimates are much the same for all reasonable models of
the variogram—so why worry about refinement? There are others who fit
models numerically and automatically using ‘black-box’ software, often with-
out any choice, judgement or control. This too can have unfortunate con-
sequences. However, there is controversy among those who fit models
mathematically about which methods to use and by what criteria they should
judge success.

Fitting models is difficult for several reasons, including the following:

(i) the accuracy of the observed semivariances is not constant.
(ii) the variation may be anisotropic.
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(iii) the experimental variogram may contain much point-to-point fluctuation.
(iv) most models are non-linear in one or more parameters.

Items (i)–(iii) make fitting by eye unreliable. The first two impair one’s intuition,
firstly because the brain cannot judge the weights to attribute to the semivar-
iances, and secondly because one cannot see the variogram in three dimensions
without constructing a stereogram or physical model, and for three-dimen-
sional variation one needs a fourth dimension. Scatter, item (iii), usually means
that any one of several models might be drawn through the values. It can also
lead to unstable mathematical solutions, and it exacerbates the consequences of
item (iv) because the non-linear parameters must be found by iteration.
Further, at the end one should be able to put standard errors on the estimates
of the parameters.

We also warn against a practice, still common, of choosing the dispersion
variance in a finite region to estimate the sill of a bounded model for the regional
variogram. For such a region the sill is always greater than the dispersion
variance. Their relation is shown in Figure 4.4. The curve is the variogram of a
second-order stationary process in one dimension of finite length, as on a
transect. The variogram is extended to the limit of the transect, and in these
circumstances the two shaded portions of the graph should be equal. Clearly the
sill, the a priori variance of the process, must exceed the dispersion variance,
which is estimated by the variance of the data.

We recommend a procedure that embodies both visual inspection and
statistical fitting, as follows. First plot the experimental variogram. Then choose,
from the models listed above, one or more with approximately the right shape
and with sufficient detail to honour the principal trends in the experimental
values that you wish to represent. Then fit each model in turn by weighted least
squares, i.e. by minimizing the sums of squares, suitably weighted (see below),
between the experimental and fitted values. Finally, inspect the result graphi-
cally by plotting the fitted model on the same pair of axes as the experimental
variogram. Does the fitted function look reasonable? If all the plausible models
seem to fit well you might choose from among them the one with smallest
residual sum of squares or smallest mean square.

The experimental isotropic variogram on the left-hand side of Figure 5.1 was
computed from a fairly small subset of the Broom’s Barn data of 87 sites. It
shows how much point-to-point fluctuation can occur with rather few data (see
Chapter 6), emphasizing the point in item (iii) above. We fitted circular,
spherical, exponential and power functions to these experimental values, and
they appear in that order as the solid lines in the figure. No one model evidently
fits better than any other, and this impression is supported by the small
differences between the mean squared residuals (MSR) in Table 5.1. The
experimental variogram computed from the full data for Broom’s Barn of 434
sites appears on the right-hand side of the figure with the same set of functions
fitted. The form of this sequence is simple; it increases smoothly in a gentle
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curve from near the origin and seems to flatten near the maximum lag to which
it has been computed. There are much larger differences among the mean
squared residuals in this case because the smooth form of the experimental
variogram enables a much more accurate fit of the model. The spherical
function clearly fits best according to its MSR. The MSRs for the full set of
data are substantially smaller than are those for the subset, except for the power
function. There are also considerable differences among the model parameters
for the two variograms; in particular the nugget variances are larger for the
variogram of the subset and the distance parameters are all smaller. These
differences in the estimates of the parameters are important because they carry
through to affect the accuracy of kriged predictions (see Chapter 8).

Never accept a fit without inspecting it afterwards; it might be poor because

(i) you chose an unsuitable model in the first place;
(ii) you gave poor estimates of the parameters at the start of the iteration;

(iii) there was lot of scatter in the experimental variogram; or
(iv) the computer program was faulty.

Further, bear in mind the advice above, namely, that the model should accord
with what you know of the region.

Table 5.1 Models fitted to the variogram of log10K at Broom’s Barn Farm for the full
data (434 sites) and a subset of these (87 sites), their parameter values, and the mean
squared residual (MSR). The symbols are as defined in the text.

Model c0 c a=m r=m w a MSR

Circular 0.00512 0.01462 386.6 0.000172
(434)

Circular 0.00925 0.01043 362.0 0.000777
(87)

Spherical 0.00466 0.01515 432.0 0.000155
(434)

Spherical 0.00824 0.01136 376.4 0.000774
(87)

Pentaspherical 0.00421 0.01570 514.1 0.000248
(434)

Pentaspherical 0.00757 0.01203 434.0 0.000775
(87)

Exponential 0.00196 0.01973 251.0 0.001054
(434)

Exponential 0.00405 0.01618 130.8 0.000776
(87)

Power function 0 0.00173 0.400 0.003295
(434)

Power function 0 0.00431 0.251 0.000828
(87)
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Fitting models in this way is a form of non-linear regression, and you might
think of writing your own program to do it. We recommend that unless you are
proficient in numerical analysis you do not. There are now several well-tried
programs written by professionals that fit models by weighted least squares.
These include GenStat (Payne, 2006) in which the standard models listed above
are already programmed and which is what we use, and SAS (SAS Institute,
1999). The last uses the Levenberg–Marquardt method, which has almost
become a standard for non-linear model fitting (Marquardt, 1963). We give an
example of a GenStat program for fitting non-linear models in Appendix B. If
you do not have access to any of these programs then you might take the code
for the Marquardt algorithm in Fortran from Press et al. (1992). Ratkowsky
(1983) also tackles the subject in a clear and practical way, and the book
includes a suite of subroutines for modelling.

We can call the above approach ‘fit statistically, view afterwards’. Another
approach is the reverse: ‘fit visually, statistics afterwards’. Pannatier (1995)
takes this route with his program Variowin, which is interactive in a Windows
environment. In Variowin you form the experimental variogram from sample
data and you display it on the computer’s screen. You select a plausible model
from those embodied in the program—there are few—and give starting values
for its parameters from which the machine draws a graph. The program
simultaneously computes a goodness-of-fit criterion, which is a standardized
residual sum of squares. You then adjust the values of the parameters to try to
improve the fit visually, and as you do so the program redraws the model in real
time and recomputes the goodness-of-fit criterion. It also compares the criterion
with the best it has found to date and stores the criterion’s value and the
associated values of the parameters if the new fit is better. You terminate the
fitting when you are satisfied with the approximation or no further improve-
ment seems possible. In our experience it works well, though never better than
GenStat (Webster and Oliver, 1997).

5.6.1 What weights?

We mentioned above that the experimental semivariances, ĝðhÞ, vary in their
reliability, partly because they are based on varying numbers of paired
comparisons, mðhÞ in equation (4.40), and partly because the confidence in
an estimate of variance decreases as the variance increases. In general, there-
fore, assigning equal weight to all ĝðhÞ is unsatisfactory, especially if the mðhÞ
vary widely with changing h. We can take the latter into account simply by
weighting in proportion m. The inverse relation between the reliability of an
estimate of variance and the variance itself led Cressie (1985) to propose a more
elaborate weight at a lag hj in the form

mðhjÞ=g�2ðhjÞ;
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where g�2ðhjÞ is the value of semivariance predicted by the model. McBratney
and Webster (1986) refined this further as

mðhjÞĝðhjÞ=g�3ðhjÞ;

where ĝðhjÞ is the observed value of the semivariance at hj. Both of the last two
schemes tend to give more weight at the shorter lags than does weighting on
the numbers of pairs alone, and so the fitting is closer there. This is usually
desirable for kriging (see Chapter 8), though it might be less desirable if the aim
is to estimate the spatial scale of variation.

The process of fitting must iterate even where all the parameters are linear
because the weights in the two schemes depend on the values expected from the
model. Our experience is that in most instances there is little change after the
first iteration, which is therefore enough.

5.6.2 How complex?

Let us return to the question we posed in the beginning of the chapter: how
closely should the model follow the fluctuation in the experimental variogram?
The best simple model, with few parameters, might fit the experimental
variogram poorly, especially if there is much point-to-point scatter. We might
seek a more complex model, therefore, bearing in mind that it is almost always
possible to improve the fit in the least-squares sense by increasing the numbers
of parameters, say p. We could continue to increase p until the model fitted
perfectly, but clearly that is not a sensible answer. We must compromise
between parsimony (few parameters) and close fit (more parameters), and
one way of achieving that is to use Akaike’s (1973) information criterion (AIC):

AIC ¼ �2 lnðmaximized likelihoodÞ þ 2ðnumber of parametersÞ:

The AIC is estimated by

dAIC ¼ n ln
2p

n

� �
þ n þ 2

� �
þ nlnR þ 2p; ð5:45Þ

where n is the number of points on the variogram, p is the number of
parameters in the model, and R is the mean of the squared residuals between
the experimental values and the fitted model. We may then choose the model
for which dAIC is least. The quantity in braces is constant for any one
experimental variogram, so we need compute only

Â ¼ n lnR þ 2p: ð5:46Þ
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Least-squares fitting minimizes R. If, however, R is further diminished only by
increasing p (n is constant) we might discover that Â is increased; we should
have paid an unacceptable penalty for the greater complexity to achieve the
closer fit.

We illustrate the application of the AIC to modelling the variogram of
available copper in the topsoil of the Borders Region of Scotland. The data
are from an original study by McBratney et al. (1982). There were some 2000
values from the eastern portion of the Region. They were transformed to their

Figure 5.15 Experimental variogram of log10Cu in the Borders Region of Scotland
with fitted models: (a) single spherical; (b) exponential; (c) double (nested) spherical;
(d) double exponential.
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common logarithms to stabilize their variances, and an isotropic experimental
variogram was computed. It appears as the plotted points in Figure 5.15. Any
smooth curve through the points will have an intercept, so we include a nugget
variance in the model. By fitting single spherical and exponential functions,
with weights proportional to the numbers of pairs, we obtain the curves of best
fit shown in Figure 5.15(a) and (b), respectively. Clearly both fit poorly near the
ordinate. The values of the parameters, the residual sum of squares and Â are
listed in Table 5.2, from which it is evident that the exponential function is the
better. If we add another spherical or exponential component we obtain
the more detailed curves in Figure 5.15(c) and (d), respectively. Now the
double spherical is evidently the best, with the smallest mean squared residual.
It also has the smallest Â, and so in this instance we choose this more elaborate
model.

This solution is valid for weighted least-squares fitting provided the weights
remain constant, as when they are simply set in proportion to the numbers of
paired comparisons.

Webster and McBratney (1989) discuss the AIC in some detail, show its
equivalence to an F test for nested models, and suggest other possible criteria.

Another method for judging the goodness of a model is cross-validation. This
involves comparing kriged estimates and their variances, and we defer it until
we have described kriging.

Table 5.2 Models fitted to the variogram of log10Cu in the Borders Region, estimates
of their parameters, the mean squared residual (MSR), and the variable part of the
Akaike information criterion ðÂÞ. The symbols are as defined in the text.

Distance
Sills parameters/km

Model c0 c1 c2 a1 a2 r1 r2 MSR Â

Spherical 0.05027 0.01805 18.0 0.06822 �128:3
Exponential 0.04549 0.02403 6.65 0.06046 �134:3
Double

spherical 0.02767 0.02585 0.01505 2.7 20.5 0.02994 �165:4
Double

exponential 0.00567 0.04566 0.01975 0.59 9.99 0.03616 �155:7
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6

Reliability of the
Experimental Variogram

and Nested Sampling

We mentioned in Chapters 4 and 5 the importance of estimating the variogram
accurately and of modelling it correctly. This chapter deals with factors that
affect the reliability of the experimental variogram, in particular the statistical
distribution of the data, the effect of sample size on the confidence we can have
in the variogram, and the importance of a suitable separating interval between
sampling points. In addition to our aim to estimate the regional variogram
reliably, we show how to use limited resources wisely to determine suitable and
affordable sampling intervals.

6.1 RELIABILITY OF THE EXPERIMENTAL VARIOGRAM

Apart from the matter of anisotropy, equation (4.40) provides asymptotically
unbiased estimates of gðhÞ for Z in the region of interest, R. However, the
experimental variogram obtained will fluctuate more or less, and so will its
reliability. We now examine factors that affect these.

6.1.1 Statistical distribution

We made the point in Chapter 2 that sample variances of strongly asymmetric
or skewed (typically g1 � 1 or g1 � 1) variables are unstable. The estimates
obtained with the usual method-of-moments formula for the variogram,
equation (4.40), are variances and so are sensitive to departures from a normal
distribution. If the distribution of the variable is skewed then the confidence
limits on the variogram are wider than they would be otherwise and as a result
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the semivariances are less reliable. Skewness can result from a long upper or
lower tail in the underlying process or from the presence of a secondary process
that contaminates the primary process—values from the latter may appear as
outliers. Kerry and Oliver (2007a, 2007b) have studied the effects of asym-
metry in the underlying process and outliers on the variogram using simulated
fields. We summarize their results below.

Methods of estimating variograms reliably from skewed data have been
sought, and it is clear that the cause of asymmetry affects what one should
do. If the skewness coefficient exceeds the bounds given above then the
histogram or box-plot should be examined to reveal the detail of the asymmetry.
In addition to these usual graphical methods, you can identify exceptional
contributions to the semivariances by drawing an h-scattergram for a given
lag, h. As described in Chapter 4, an h-scattergram is a graph in which the zðxÞ
are plotted against the zðx þ hÞ with which they are compared in computing
ĝðhÞ. In general, the plotted points appear as more or less inflated clusters, as in
the usual kind of scatter graph.

Underlying asymmetry or skewness

Where asymmetry arises from a long tail, especially a long upper tail, in the
distribution ‘standard best practice’ has been to transform the data, as described
in Chapter 2. The variogram is then computed on the transformed data.
Transformation is not essential, however; the variogram computed from the
original data and predictions using it are unbiased, though they are not
necessarily the most precise. Perhaps more surprising is that the characteristic
form of the variogram may be changed little by transformation. So, you should
examine the experimental variograms of both raw and transformed data before
deciding which to work with.

Kerry and Oliver (2007a) explored the effects of varying skewness and sample
size, and of different transformations on random fields created by simulated
annealing (see Chapter 12 for a description of the method). They simulated
values on a square 5-m grid of 1600 points from a spherical function (equation
(5.24)), with a range, a, of 75 m, a total sill variance, c0 þ c, of 1, and
nugget:sill ratios of 0, 0.25, 0.5, 0.75 and 1. They simulated similar fields of
400 points and 100 points with grid intervals of 10 m and 20 m, respectively.
Values in the fields were raised to a power a to create a long upper tail in the
distribution. Five values of a were used to give skewness coefficients, g1, of 0.5,
1.0, 1.5, 2.0 and 5.0. Here we illustrate what can happen with their results for
a ¼ 75 m, c0 ¼ 0 and c ¼ 1.

Figure 6.1 shows the h-scattergrams at lag 10 m (lag 1) from four fields
simulated on a 10 m grid. Each field has a unique coefficient of skewness,
g1 ¼ 0;1:0;1:5 and 2.0, caused by underlying asymmetry. The scatter of points
for the normal distribution is clustered fairly tightly along the diagonal line in
Figure 6.1(a). As the coefficient of skewness increases, the scatter becomes more
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dispersed for the larger values in the tail of the distribution reflecting the
positive skew, Figure 6.1(b)–(d). Table 6.1 lists the values of r̂ðhÞ and ĝðhÞ for
the comparisons from these fields. The correlation coefficients decrease some-
what with increasing skewness, and the semivariances increase correspond-
ingly. The effects of underlying asymmetry at the first lag interval are evident,
but they are not remarkable.

Figure 6.1 The h-scattergrams for simulated fields of 400 points with underlying
asymmetry resulting in coefficients of skewness of (a) 0, (b) 1.0, (c) 1.5, (d) 2.0.

Table 6.1 Autocorrelation coefficients and semivariances for lag distance 10 m (lag 1)
computed from data simulated on a 10-m grid with four degrees of underlying skewness.

Skewness coefficient Autocorrelation coefficient Semivariance

0 0.7188 0.2700
1.0 0.6990 0.2863
1.5 0.6860 0.2984
2.0 0.6739 0.3093
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Omnidirectional variograms computed from the simulated fields by the
method of moments are displayed in Figure 6.2. Figure 6.2(a) shows that as
asymmetry increases the change in shape of the variogram is small for the field
on a 5 m grid. This was true even for g1 ¼ 5:0 (not shown). For the sample size
of 400 (10 m grid) the change in the shapes of the variograms is not
large, Figure 6.2(b), except for g1 ¼ 2:0. For the smaller coefficients the
semivariances are close to the generating function for the first five lags, but
beyond these they depart progessively from the sill of the generating
model. For the sample size of 100 (20-m grid), shown in Figure 6.2(c), the
semivariances at the first two lags are similar to the generating model for
g1 ¼ 0:5, 1.0, 1.5 and 2.0, but beyond this they depart progressively more
from the sill variance of 1. The variogram computed from data with g1 ¼ 5:0
appeared as pure nugget. Evidently the effect of asymmetry decreases as the
sample size increases; it is greatest for the sample of 100 points and least for
that with 1600.

Figure 6.2 Experimental variograms (shown by point symbols) computed from
simulated fields of various sizes: (a) 1600 points (5-m grid), (b) 400 points (10-m
grid), (c) 100 points (20-m grid), with skewness caused by underlying asymmetry. The
solid lines represent the spherical generating function.
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Kerry and Oliver (2007a) found that transformation conferred little advan-
tage for large sets of data. Therefore, you should assess the desirability of any
transformation by comparing the variograms of raw and transformed data
visually before deciding whether to transform. In general, if there are no
marked differences between the shapes of the experimental variograms then
work on the raw data. This advice applies in particular if your aim is prediction,
for then the predicted values will be on the original scale of measurement,
which is what most practitioners want, and no back-transformation is needed
(see Chapter 8).

Outliers

The variogram is sensitive to outliers and to extreme values in general.
Histograms and box-plots, as described in Chapter 2, will usually reveal outliers
in the marginal distributions if they are present. All outliers must be regarded
with suspicion and investigated. Erroneous values should be corrected or
excised, and values that remain suspect are best removed, too. If by removing
one or a very few values you can reduce the skewness then it is reasonable to do
so to avoid the need for transformation or the use of robust variogram
estimators. For contaminated sites it is the exceptionally large values that are
often of interest. In this situation the variogram can be computed without the
outliers to ensure its stability, and then the values can be reinstated for
estimation and other analyses. Some practitioners remove the 98th or even
the 95th percentiles. This is too prescriptive in our view, and only values that
are obvious outliers should be removed.

It will be evident from equation (4.40) that each observed zðxÞ can contribute
to several estimates of gðhÞ. So one exceptionally large or small zðxÞ will tend to
swell ĝðhÞ wherever it is compared with other values. The result is to inflate the
average. The effect is not uniform, however. If an extreme is near the edge of
the region it will contribute to fewer comparisons than if it is near the centre.
The end point on a regular transect, for example, contributes to the average just
once for each lag, whereas points near the middle contribute many times. If
data are unevenly scattered then the relative contributions of extreme values
are even less predictable. The result is that the experimental variogram is not
inflated equally over its range, and this can add to its erratic appearance.

Kerry and Oliver (2007b) examined the effect of outliers on the variogram for
skewness coefficients 0, 0.5, 1.0, 1.5, 2.0 and 3.0, and for randomly located
and grouped outliers. They created normally distributed data by simulated
annealing as above for the same sizes of field. These primary fields were then
contaminated by randomly located and spatially aggregated outliers from a
secondary process.

Figure 6.3 shows four h-scattergrams at lag 10 m (lag 1), from four fields
simulated on a 10-m grid with randomly located outliers to give coefficients of
skewness g1 ¼ 0, 1.0, 1.5 and 2.0. The scatter of points becomes more
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pronounced as the skewness increases from a normal distribution. For a
coefficient of skewness of 1.0, Figure 6.3(b), there is already a wide scatter of
points around a central core that represents the primary Gaussian population.
For g1 ¼ 2:0 there are now two distinct groups of points, separated from the
main group, that reflect the contaminating population. Table 6.2 supports these

Figure 6.3 The h-scattergrams for a simulated primary Gaussian field of 400 points
contaminated by outliers to give coefficients of skewness (a) 0, (b) 1.0, (c) 1.5, (d) 2.0.

Table 6.2. Autocorrelation coefficients and semivariances for lag distance 10 m (lag 1)
computed from data simulated on a 10-m grid with skewness caused by outliers.

Skewness coefficient Autocorrelation coefficient Semivariance

0 0.7188 0.270
1.0 0.3938 1.013
1.5 0.3122 1.429
2.0 0.2476 1.942
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graphical observations; the correlation coefficients diminish markedly as skew-
ness caused by outliers increases, and also the semivariances increase drama-
tically.

The results in Figures 6.1 and 6.3 show how different the effects are from
different causes of asymmetry. They add strength to the statement above that
different solutions are likely to be required.

Kerry and Oliver (2007b) computed variograms as before by Matheron’s
method of moments and also by three robust variogram estimators proposed by
Cressie and Hawkins (1980), Dowd (1984) and Genton (1998). The estimator
of Cressie and Hawkins (1980), ĝCHðhÞ, essentially damps the effect of outliers
from the secondary process. It is based on the fourth root of the squared
differences and is given by

2ĝCHðhÞ ¼
1

mðhÞ
PmðhÞ

i¼1 jzðxiÞ � zðxi þ hÞj
1
2

� �4

0:457 þ 0:494
mðhÞ þ 0:045

m2ðhÞ
: ð6:1Þ

The denominator in equation (6.1) is a correction based on the assumption that
the underlying process to be estimated has normally distributed differences over
all lags.

Dowd’s (1984) estimator, ĝDðhÞ, and Genton’s (1998), ĝGðhÞ, estimate the
variogram for a dominant intrinsic process in the presence of outliers. Dowd’s
estimator is given by

2ĝDðhÞ ¼ 2:198fmedianjyiðhÞjg2; ð6:2Þ

where yiðhÞ ¼ zðxiÞ � zðxi þ hÞ; i ¼ 1;2; . . . ;mðhÞ. The term within the braces
of equation (6.2) is the median absolute pair difference (MAPD) for lag h,
which is a scale estimator only for variables where the expectation of the
differences is zero. The constant in the equation is a correction for consistency
that scales the MAPD to the standard deviation of a normally distributed
population.

Genton’s (1998) estimator is based on the scale estimator, QN , of Rousseeuw
and Croux (1992, 1993), where in the general case N is the number of data.
The quantity QN is given by

QN ¼ 2:219fjXi � Xjj; i < jgðH
2Þ; ð6:3Þ

where the constant 2.219 is a correction for consistency with the
standard deviation of the normal distribution, and H is the integral part of
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ðN=2Þ þ 1. Genton’s estimator uses equation (6.3) as an estimator of scale
applied to the differences at each lag; it is given by

2ĝGðhÞ ¼ 2:219fjyiðhÞ � yjðhÞj; i < jgðH
2Þ

� �2

; ð6:4Þ

but now with H being the integral part of fmðhÞ=2g þ 1.
The underlying assumption of robust variogram estimators is that the data

have a contaminated normal distribution. Lark (2000) showed that these
estimators should be used for such distributions and not for those where the
primary process has a simple underlying asymmetry.

Figure 6.4 shows the experimental variograms for the three sizes of field with
randomly located outliers and for several coefficients of skewness. As the

Figure 6.4 Experimental variograms (shown by point symbols) computed from
simulated fields of various sizes: (a) 1600 points (5-m grid); (b) 400 points (10-m
grid); (c) 100 points (20-m grid), with skewness caused by randomly located outliers. The
solid lines represent the spherical generating function.
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skewness increases, the nugget and sill variances increase markedly. The
nugget:sill ratios increase as skewness increases, even though the fields were
generated by a variogram function with zero nugget. The size of field has far less
effect than that observed where asymmetry was caused by a long tail in the
distribution, as in Figure 6.2. For skewness coefficients up to 1.5 the variograms
tend to retain their shape, but for g1 ¼ 3:0 (not shown) the variograms were
almost pure nugget. Variograms computed from fields with aggregated outliers
are very different from those where the outliers were randomly located.
Figure 6.5(a) shows the variograms computed from the fields on a 10 m grid
(400 values) with outliers aggregated near the edge and for several coefficients of
skewness. The nugget variances are close to zero, but the sill variances increase
with increasing skewness. Nevertheless, these sill variances are less than those for
the randomly located outliers, Figure 6.4(b). For outliers grouped near the centres
of the fields on the 10-m grid, shown in Figure 6.5(b), the variograms have small
or zero nugget variances. The sill variances, however, increase more with
increasing skewness than do those in Figure 6.5(a); they are more similar to
those for the randomly located outliers, Figure 6.4(b).

Kerry and Oliver (2007b) transformed the data to square roots and loga-
rithms, but these transformations were not as effective in dealing with the
observed effects of the outliers as the robust variogram estimators. Figure 6.6(a)
shows that Matheron’s method-of-moments estimator and the three robust
estimators described above result in similar experimental variograms for the
normal field. The method-of-moments variogram is closest to the generating

Figure 6.5 Experimental variograms (shown by point symbols) computed from fields
of 400 points (10-m grid) contaminated by spatially aggregated outliers (a) at the edges;
(b) at the centre of fields, and for five coefficients of skewness. The solid lines represent
the spherical generating function.
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model, however. Figure 6.6(b)–(d) shows that as skewness increases Mather-
on’s variogram departs much more from the generating function than the
robust variograms. Of the latter, Dowd’s and Genton’s variograms remain closer
to the original model than does that of Cressie and Hawkins.

Kerry and Oliver (2007b) concluded from their results that skewness caused
by outliers must be dealt with regardless of the number of data. Furthermore,
the results suggested practitioners should act when the skewness, g1, exceeds
0.5. Robust estimators provide a solution, but they did not perform equally well
in all the situations examined. The current ‘best practice’ approach of removing
outliers before computing the variogram appears to be the most appropriate
where they are randomly located and will not be returned to the data for
kriging. However, where outliers are crucial in an investigation, as on
contaminated sites, practitioners should compute several robust variograms
and compare them by cross-validation (see Chapter 8).

Figure 6.6 Experimental variograms computed by Matheron’s method-of-moments
estimator (�) and Cressie and Hawkins’s (�), Dowd’s (�) and Genton’s (?) robust
estimators from fields of 400 points (10-m grid) with skewness coefficients of (a) 0,
(b) 1.0, (c) 1.5, (d) 2.0, caused by randomly located outliers. The solid lines are of the
spherical generating function.
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6.1.2 Sample size and design

The reliability of the experimental variogram is affected not only by the
statistical distribution of the data but also by the size of the sample (or its
inverse, the density of data), and the configuration or design of the sample.

Hundreds, if not thousands, of experimental variograms are now displayed in
published papers, reports, theses and books. They are derived from samples of as
few as 24 individual measurements up to several thousands, though typically
they are computed from 100–200 data. Those based on fewer than 50 data are
often erratic sequences of experimental values with little or no evident
structure. Figure 6.7 shows some examples. As the size of sample is increased
such scatter decreases and the form of the variogram becomes clearer: the
plotted points tend to be closer to an increasing line. Evidently the larger is the
sample from which the variogram is computed the more precisely it is
estimated. In most instances, however, the precision is unknown, and we
cannot determine how large a sample to take to achieve some desired precision.
The classical formulae for determining confidence intervals cannot be applied
unless the sampling itself is designed for the purpose, as suggested by Brus and
de Gruijter (1994). Practitioners who attempt to assign error to their estimates
based on these formulae are misguided. There are several reasons why:

(i) the same data are used more than once in each estimate;
(ii) the estimates are correlated;
(iii) the sampling is not sufficiently randomized.

Figure 6.7 Graphs of sample variograms with 49 data. Reproduced with permission
Journal of Soil Science, Vol. 43, # Blackwell Publishing.
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Before we proceed further we must be clear which variogram we are
attempting to estimate from the experimental one. In Chapter 4 we identified
two distinct functions, one the theoretical variogram and the other the local or
regional variogram. The first is the variogram of the underlying stochastic
process, whereas the local variogram is that of the particular realization in the
region and called the non-ergodic variogram by Brus and de Gruijter (1994).
An experimental variogram may contain error deriving from different realiza-
tions of the random function or from different samples of the particular
realization, or both. In the first case the error arises from fluctuation in the
generator, whereas in the second the error arises from the sampling. We take
the view here that for most practical purposes we are concerned with just one
realization in the region, so we should try to estimate the sampling error
expressed in the estimation variance or confidence limits.

Matheron (1965) gave a formula to provide a first approximation to the
estimation variances of the local variogram:

var½ĝRðhÞ� �
1

N0 4gðhÞs2
D; ð6:5Þ

where gðhÞ is the value of the theoretical variogram at lag h; ĝRðhÞ is the
estimate of the regional semivariance at that lag, and s2

D is the total variance
in the region, i.e. the dispersion variance. Matheron describes N0 as the
number of points effectively used, i.e. the number of points that are super-
posed in the intersection of the region with itself when translated by the
vector h. For a regular transect of length M it is the number of paired
comparisons (M � h) contributing to the estimate of gRðhÞ. It is from this that
confusion has arisen about the number of observations needed to estimate
the variogram reliably and in particular a suggested minimum of 30–50
paired comparisons for any one ĝRðhÞ (Journel and Huijbregts, 1978). The
advice seems to have been intended for one dimension, but unfortunately it
has been applied widely in two dimensions and has given practitioners a false
sense of security when computing variograms from small samples.

Muñoz-Pardo (1987) pursued Matheron’s idea for estimating the estimation
variances for variograms with a sill (bounded). He derived the following
expression for the estimation variance of a semivariance:

var½ĝRðhÞ� ¼
1

2S02

Z 0

S

Z
S

f ðx; y;hÞdxdy þ 1

2N02ðhÞ
XN0ðhÞ

i¼1

XN0ðhÞ

j¼1

f ðxi; xj;hÞ

� 1

N0ðhÞS0

XN0ðhÞ

i¼1

Z 0

S

f ðxi; x;hÞdx;

ð6:6Þ
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where

f ðx; y;hÞ ¼ fgðx � y þ hÞ þ gðx � y � hÞ � 2gðx � yÞg2 ð6:7Þ

for any value of i and j. In equation (6.6) ĝRðhÞ denotes the estimated value of the
regional variogram at lag h; S0 is the area of intersection when the region is
translated by the vector h;N0 is the number of sampling points in the intersection,
and x and y are two points that describe the region independently. Muñoz-Pardo
solved the equation by numerical integration. He showed that the estimation
variance depended on the effective range of the variogram in relation to the size of
the region as well as on the size of the sample.

One way of obtaining confidence limits on variograms is by Monte Carlo
methods (Webster and Oliver, 1992). There are two possible approaches,
depending on which variogram (theoretical or regional) we are concerned
with. If it is the first then one simulates many realizations from a particular
model and computes the experimental variogram of each, as did McBratney and
Webster (1986), Taylor and Burrough (1986) and Shafer and Varljen (1990).
The result will show the fluctuation arising from the generator, and the
quantiles of the observed values for each lag would be reasonable estimates
of the confidence intervals for new realizations.

Environmental scientists are more often concerned with single particular
realizations, which they must sample, and so they are interested in the
sampling fluctuation. Here the Monte Carlo approach is to generate a
single large field of ‘data’ from a plausible model of the variation in the region,
sample repeatedly from it, and for each sample compute the sample variogram.
The variation in the variograms thereby obtained will be sampling fluctuation,
and the quantiles of the semivariances may be used as confidence limits on the
regional variogram.

Webster and Oliver (1992) explored this approach by simulating large
autocorrelated random fields, which they then sampled on grids and transects
of varying size and density with random starting points. We illustrate the
approach here with one of their examples.

A field of 65 536 random values on a 256 � 256 square grid with unit
interval was generated by sequential Gaussian simulation (Deutsch and Journel,
1992) and an exponential variogram (equation (5.26)) with distance para-
meter r ¼ 16 units. It is displayed in Figure 5.8(b). We can imagine it as one of
exchangeable K in the soil. There are distinct patches with large and small
values showing that spatial dependence extends on average to about 50 units,
which is about 3 times the distance parameter (as explained in Chapter 5). The
variogram from the exhaustive data is close to the generating function (Figure
6.8). The field was then sampled on regular square grids with the sample sizes
and sampling intervals in Table 6.3. No position was used more than once, and
so no comparisons were duplicated.
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We computed the variograms for all the samples, and in Figure 6.9 we plot
the results on the same set of axes. The variograms of the samples of 25
show the wide spread of estimates around the variogram of the generating
function. The dotted lines are the 90th percentiles, i.e. the symmetrical 90%
confidence limits. The other graphs in the sequence show how the confidence
intervals narrow as the size of the sample increases. A sample of 100 points
appears to give moderate confidence, but to attain satisfaction at least 144
measurements seem necessary. Increasing the sample to 225 points provides
rather little improvement, whereas 400 data enable the variogram to be
estimated with great precision.

The results can be summarized in a graph of the standard deviation of the
observed semivariances against the size of the sample (Figure 6.10). The
standard deviation decreases, and the 90th percentiles narrow, with increasing
sample size. We can also judge from Figure 6.10 approximately what size of
sample to use to achieve some particular confidence.

The results show clearly that sample variograms from only 25 and 49 data
have wide confidence intervals, and are therefore imprecise. Samples of 100
might be acceptable in some circumstances, and ones of 144 are likely to be
adequate, at least with normally distributed isotropic data as in the generated
fields. Variograms computed from samples of 225 will almost certainly be
reliable, and samples of 400 seem extravagant. Based on this evidence we
recommend that you have no fewer than 100 sampling points and ideally 150
to estimate the variogram reliably in two dimensions if the variation is isotropic.

Figure 6.8 The exhaustive variogram computed from Figure 5.5(a).

Table 6.3 Sample size, spacing and number of iterations.

Size 25 49 199 144 225 400
Interval 20 15 10 8 7 5
Iterations 100 100 100 64 49 25
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For anisotropic variation we recommend at least 250 sample points because of
the need to compute variograms in several directions.

The results also show the importance of interpreting N0 of equation (6.5)
correctly. Forty-nine points on a square grid gave us 84–240 paired compar-
isons, which would have seemed more than enough against the 30–50
comparisons regarded by some authorities as adequate. With 100 points there
were 180–774 comparisons, and still the variograms were somewhat erratic.

Figure 6.9 Semivariances computed on samples of various sizes from Figure 5.5(a)
and 90% confidence limits obtained. Reproduced with permission Journal of Soil Science,
Vol. 43, # Blackwell Publishing.
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Brus and de Gruijter (1994) viewed the problem differently. They pointed out
that until you know the variogram accurately you cannot simulate realistic
fields of values from which to sample. If the variogram used for the simulation
has been estimated from few data then the realization generated might
represent the true situation in the region poorly and lead to misleading
confidence limits. They proposed a procedure based on classical sampling
theory. For each lag, h, they repeatedly selected pairs of points, the first of
each pair at random and the second determined by h. In the simplest design,
simple random sampling (Chapter 2), the first point is chosen without regard to
any other, and all points have an equal chance of inclusion. If the variation is
isotropic then the second point can be chosen at distance h ¼ jhj from the first
but in a random direction. The mean of the individual squared differences
obtained with equation (4.40), ĝðhÞ, is an unbiased estimate of gðhÞ.

Since the pairs of points are chosen independently of one another the
calculated squared differences are independent, and so the sampling variance
of ĝðhÞ can be estimated by the classical formula. If we denote the squared
difference at lag h by d2ðhÞ then, following Cochran (1977), we can write the
variance of the semivariance as

var½ĝðhÞ� ¼ var½0:5d2ðhÞ�=mðhÞ

¼
1
4

PmðhÞ
i¼1 fd2

i ðhÞ � d2ðhÞg2

mðhÞfmðhÞ � 1g ; ð6:8Þ

Figure 6.10 Standard deviations of semivariances for the several grid samplings from
Figure 5.5(a). Reproduced with permission Journal of Soil Science, Vol. 43, # Blackwell
Publishing.
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where d2ðhÞ is the mean of the squared difference at lag h. Further, choosing
fresh pairs of points for each h or h provides independent estimates for the
different lags.

As we saw in Chapter 2, simple random sampling is inefficient, and the precision
or efficiency can be improved by better design. Brus and de Gruijter (1994) elaborate
the procedure for stratified sampling and give the formulae for the estimator and the
estimation variance. The formulae can be modified for other designs.

The estimation variance has still to be converted into confidence limits, and
for this one must assume a distribution. It is not immediately evident what that
distribution should be. One might expect the individual d2ðhÞ to be distributed
as x2. Their means, however, are likely to approach normality with increasing
mðhÞ in accordance with the central limit theorem. Brus and de Gruijter
calculated limits on this assumption but found that it was not entirely
satisfactory for the fairly small mðhÞ in their study: they obtained several
negative lower limits at the 90% level, suggesting that the confidence interval is
not symmetric, at least for the small samples they took. This contrasts with our
finding, with larger samples, that limits were approximately symmetrical.

Despite this weakness, the method proposed by Brus and de Gruijter gives sound
unbiased estimates of the sampling variance of gðhÞ, but large samples are needed
to obtain precise estimates. In addition, the sampling scheme with pairs of points
scattered irregularly and unevenly is inefficient for subsequent kriging (Chapter 8).

Although the above approaches to the problem differ, both show that the
confidence intervals are very wide with small samples: you need a large sample
to estimate the variogram by Matheron’s method of moments reliably.

Pardo-Igúzquiza (1998) suggested that ‘a few dozen data may suffice’ to
estimate variogram parameters by residual maximum likelihood (REML) because
of the efficiency of the method; see Section 9.2 for more detail. In this approach
the model parameters are estimated directly from the generalized increments of a
covariance matrix of the full data. As a consequence there is no smoothing of the
spatial structure because there is no ad hoc definition of lag classes. Kerry and
Oliver (2007c) compared variograms computed by the method of moments and
REML as described by Pardo-Igúzquiza (1997) for various numbers of empirical
data. Their results show that where there are fewer than 100 data, but more than
50, the REML variograms gave more accurate predictions as assesed by cross-
validation (see Chapter 8) than did the method-of-moments variograms. Never-
theless, even with REML variograms the accuracy of prediction decreased when
there were fewer than 100 sites, and practitioners should still aim for at least 100
data for accurate predictions.

Practitioners might wonder why computing variograms by REML is not a
standard approach. There are several drawbacks to the method:

� the need for second-order stationarity;
� the very limited range of variogram functions that can be fitted by the

readily available software;
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� it is computationally intensive;
� the limitations to the methods for maximizing the log-likelihood function—

see equation (9.25).

In spite of these, Kerry and Oliver (2007c) concluded that the REML variogram
is valuable where it is impractical to obtain as many as 100 data.

6.1.3 Sample spacing

In general, as the size of sample increases so the spacing between sampling
points decreases for a given region. Nevertheless, we cannot simply allow the
sample spacing to be dictated by the size of sample. The spacing must relate to
the scale or scales of variation in the region. Otherwise we might sample too
sparsely to identify correlation. We should therefore know roughly the spatial
scale of variation in Z so as to choose a sensible sampling density.

Some variables, such as vegetation, have visible patterns, and their
spatial scales are obvious. Many properties of soil, rocks, atmosphere and water,
on the other hand, are invisible, and so one cannot judge the spatial scales on
which they vary without first sampling. They can also vary on scales that differ
by several orders of magnitude simultaneously, as described in Chapter 4. In some
instances an approximate scale of variation can be judged from that of other
features, such as landform or vegetation, but often it is more elusive.

Let us consider the following situations.

1. Terra incognita. If we know nothing of the pattern or scale of the variation
then it is difficult to choose a sampling interval rationally. A large interval
might be too large to capture the autocorrelation. If we choose a small
interval then we might have to restrict the area sampled to stay within a
budget and fail to estimate long-range variation. If we were to sample a
whole region densely and the variation turned out to be entirely long-range
then we should have wasted money trying to estimate short-range varia-
tion. We want some means of estimating, even roughly, the spatial scale of
variation effectively and economically.

2. We have data from a previous survey, but their experimental vario-
gram(s) seem(s) flat, or pure nugget, i.e. there is no evident spatial
correlation. If the variables are continuous then we can assume that
the correlation range is less than the smallest sampling interval. We can
know no more than that.

3. We have variograms with apparent ‘structure’, but feel that some parts of
the region are undersampled and others oversampled, and that some
sampling points could be positioned more effectively to optimize estimation.

The problems faced in 1 and 2 can be resolved by starting with a nested survey
and analysis, which we now describe.
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6.2 THEORY OF NESTED SAMPLING AND ANALYSIS

The model of nested variation is based on the notion that a population can be
divided into classes at two or more categoric levels in a hierarchy. The
population can then be sampled with a multi-stage (multi-level) or nested
scheme to estimate the variance at each level. The population is divided initially
into classes at stage 1, and these are subdivided at stage 2 into subclasses,
which in turn can be subdivided further at stage 3 to give finer classes, and so
on, to form a nested or hierarchical classification with m stages. In each case
the class at the lower level is contained completely within the one immediately
above it, and each sampling point is contained in one and only one class at each
and every level. The system is a strict hierarchy, and a single observation
embodies variation contributed by each of the stages, including an unresolved
variance within the classes at the finest level of resolution. We can estimate
these contributions to the variance by a hierarchical analysis of variance
(ANOVA).

Youden and Mehlich (1937) saw that for an attribute distributed in space the
stages could be represented by a hierarchy corresponding to different distances.
They adapted classical multi-stage sampling so that each stage in the hierarchy
represented a distance between sampling points. They sampled at random, with
only the distances between pairs fixed, and so the random effects model, model
II of Marcuse (1949), is appropriate for the ANOVA.

For a design with m stages the data are modelled as

Zijk...m ¼ m þ Ai þ Bij þ 	 	 	 þ "ijk...m; ð6:9Þ

where Zijk...m is the value of the mth unit in . . ., in the kth class at stage 3, in the
jth class at stage 2, and in the ith class at stage 1. The general mean is m; Ai is
the difference between m and the mean of class i in the first category; Bij is the
difference between the mean of the jth subclass in class i and the mean of class i;
and so on. The final quantity "ijk...m represents the deviation of the observed
value from its class mean at the last stage of subdivision. The quantities
Ai;Bij;Cijk; . . . ; "ijk...m are assumed to be independent random variables asso-
ciated with stages 1;2;3; . . . ;m, respectively, having means of zero and
variances s2

1; s
2
2; s

2
3; . . . ; s

2
m. The latter are the components of variance for

the respective stages. They are estimated according to the scheme in Table 6.4.
The quantities n1; n2; n3; . . . ; nm, in the table are the numbers of subdivisions of
each class at the several levels. If for each stage, say j, nj is constant then the
design is balanced. All the nj; j ¼ 1;2; . . . ; nm, are known for any particular
design, and so we can determine the components of variance for all stages in
the classification and the residual variance from the right-hand column of
Table 6.4.
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The individual component for a given stage measures the variation attribu-
table to that stage, and together they sum to the total variance:

s2 ¼ s2
1 þ s2

2 þ s2
3 þ 	 	 	 þ s2

m: ð6:10Þ

The components of variance for each spacing from this analysis reveal over what
part of the spatial scale most of the variation occurs. The particular merit of the
method is that a wide range of spatial scales can be covered in a single analysis.

6.2.1 Link with regionalized variable theory

Although the hierarchical ANOVA derives from classical statistics, Miesch
(1975) showed its links with geostatistics. He also showed that it can provide
a first approximation to the variogram if the components of variance are
accumulated, starting with the smallest spacing. For the m stages of subdivision
we have the corresponding distances dm; dm�1; . . . ; d1, where dm is the shortest
distance at the mth stage and d1 is the largest distance at the first stage. Then
the equivalence is given by

s2
m ¼ gðdmÞ;

s2
m�1 þ s2

m ¼ gðdm�1Þ;
s2

m�2 þ s2
m�1 þ s2

m ¼ gðdm�2Þ;
ð6:11Þ

and so on. In practice, the distances are chosen in geometric progression in
which each is at least 3 times the previous one; in this way the branches of the
hierarchy do not overlap on the ground, and it is clear to which each sampling
belongs at every stage. The components tend to be fairly imprecise estimates of
the true semivariances because each is usually based on few degrees of freedom,
at least in the first few stages. We should also bear in mind that they are not

Table 6.4 Hierarchical analysis of variance: parameters estimated.

Source Degrees of freedom Parameters estimated

Stage 1 n1 � 1 s2
m þ nms2

m�1 þ 	 	 	 þ nmnm�1 . . . n3s2
2

þnmnm�1 . . . n3n2s2
1

Stage 2 n1ðn2 � 1Þ s2
m þ nms2

m�1 þ 	 	 	 þ nmnm�1 . . . n3s2
2

Stage 3 n1n2ðn3 � 1Þ s2
m þ nms2

m�1 þ 	 	 	 þ nmnm�1 . . . n4s2
3

..

. ..
. ..

.

Stage m � 1 n1n2n3 . . . ðnm�1 � 1Þ s2
m þ nms2

m�1

Stage m(residual) n1n2n3 . . . nm�1ðnm � 1Þ s2
m

Total n1n2n3 . . . nm�1nm � 1
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entirely independent of one another and that variation in different directions
cannot be distinguished.

The values gðdiÞ are the equivalent semivariances. When plotted against
distance they provide a first approximation to the variogram. The result might
be rough, but it indicates how Z varies in space in the region over several orders
of magnitude of distance in a single analysis and with modest sampling. For this
reason it is ideal for reconnaissance where little or nothing is known. Once the
spatial scale is known then a subsequent survey can be planned to estimate the
variogram precisely (Oliver and Webster, 1986) or to plan a more general
survey over a larger area. Alternatively, the analysis might show that all the
variation occurs over very short distances, and that attempting to measure
spatial correlation and map the variable(s) is pointless or would be too costly.

6.2.2 Case study: Youden and Mehlich’s survey

We illustrate the technique with an example from Youden and Mehlich’s
(1937) original paper. The authors’ sampling scheme to survey the soil in
Broome County in New York State had four stages (Table 6.5). They applied it
to two soil series: the Culvers and the Sassafras. On each soil type they selected
nine primary centres 1.6 km apart forming level 1 in the hierarchy. At the next
level (level 2) one subcentre was selected 305 m away from each of the main
centres (18 locations). At level 3 two sampling points were chosen 30.5 m from
the main centre and the subcentre (36 locations). At level 4 each site was
replicated with another 3.05 m away, to give 72 sampling points in all. The
survey was fully balanced, so that all classes at a particular level were
subdivided equally to form the hierarchy (Figure 6.11). The progression of
the sampling intervals was geometric, as above, with a 10-fold multiplication of
the distances except at the highest level. As a result the authors felt able to
regard the components of variance as independent, thereby allowing confidence
intervals to be determined. At each sampling point the pH was determined on
soil taken from a depth of 0–15 cm.

Table 6.5 Components of variance of pH in two soil series sampled by Youden and
Mehlich (1937).

Culvers series 0–15 cm Sassafras series 0–15 cm

Degrees of Estimated Percentage Estimated Percentage
Stage Spacing/m freedom component of variance component of variance

1 1600.0 8 0.02819 39.7 0 0
2 305.0 9 0.02340 32.9 0.04440 60.3
3 30.5 18 0.00552 7.8 0.00698 9.8
4 3.05 36 0.01391 19.6 0.02225 30.2
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For each soil series the variation associated with each sampling interval was
determined by a nested ANOVA as in Table 6.4. First the sums of squares of the
deviations of the means of the classes at level 1 from the general mean were
computed, and then each was multiplied by the number of observations that
made up the class mean. For each class at level 2, the difference between its
mean and the mean of the class to which it belongs in level 1 was squared and
multiplied by the number of observations in that class. The sum of these values
is the appropriate sum of squares. This was repeated for each stage, and the
sums of squares of the individual levels sum to the total sum of squares. The
mean squares were obtained by dividing the sums of squares of each stage by
the appropriate degrees of freedom (Table 6.4). The mean square at each level,
apart from the lowest, contains a unique contribution to the variance from that
level, plus contributions from the components at all levels below (Table 6.4).
For instance, the unique contribution to the variance at level 2 (Table 6.4) is
nmnm�1 . . . n3s2

2. This enables each component to be determined separately from
its mean square. For a balanced design the value of each component can be
tested to judge whether it is larger than zero by the F ratio:

F ¼ mean square at level m

mean square at level m þ 1
: ð6:12Þ

Table 6.5 gives the results of the analysis. The components of variance can
now be accumulated, starting with that for the lowest level, and plotted against
sample spacing (Figure 6.12). This gives a first approximation to the variogram,
a reconnaissance variogram. Figure 6.12 shows the accumulated components
of variance for the Culvers and Sassafras series plotted against distance on a
logarithmic scale. The variance for the Culvers series increases substantially as
the distance between sampling points increases and without limit (unbounded).
The sample variance for the Sassafras series does reach a maximum (bounded),

Figure 6.11 Topological structure of the balanced nested sampling design of Youden
and Mehlich (1937).
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and we might therefore treat the variation as second-order stationary. If we
project the variances to spacings less than the smallest, 3 m, then both seem to
approach limits larger than 0. Such limits are examples of what we now
recognize as nugget variance.

6.2.3 Unequal sampling

The sampling designs described above are fully balanced in the sense that all
classes at each particular stage are subdivided equally. For the particular design
in Broome County the sample size doubles with each additional stage in the
hierarchy after the first. To achieve good spatial resolution might require many
stages and result in prohibitively expensive sampling for reconnaissance. It
would to some extent defeat the object whereby one is trying to obtain
preliminary information for modest effort. As it happens, full replication at
each stage is unnecessary because the mean squares for the lower stages are
estimated more precisely than those for the higher ones. Economy can be
achieved by replicating only a proportion of the sampling centres in the lower
stages. Oliver and Webster (1986) used five stages, but in more recent
applications, Webster and Boag (1992), Badr et al. (1993) and Oliver and
Badr (1995) have used seven. The resulting schemes are unbalanced, and this
makes estimating the components somewhat more complex because the

Figure 6.12 Variograms of pH from Youden and Mehlich’s surveys of pH in Culvers
and Sassafras soil series by accumulation of the components of variance. Note the
logarithmic scale for distance on the abscissa.
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coefficients of the components are no longer simple multiples of the number of
divisions in the levels as they are in Table 6.4, which must be replaced by a
table such as Table 6.6 for a sample of size N.

Gower (1962) provided formulae for calculating the coefficients, ui;j, and they
were included in the sixth edition of Snedecor and Cochran’s (1967) standard
text (but not in the later editions). They can all be expressed in the following
formulae:

qi;j ¼
XCi

k¼1

Xci
jk

p¼1

n2
jp

Nik
and ui;j ¼

1

Di
fqi;j � qi�1;jg: ð6:13Þ

In these equations ui;j is the coefficient at stage i for the jth component; Ci is the
number of groups at the ith stage; ci

jk is the number of subgroups in stage j
within the kth group at level i; njp is the number of individual sampling points in
the pth subgroup in stage j (within group k at stage i), with i � j, and Di is the
number of degrees of freedom at stage i (see Table 6.6).

One consequence of the lack of balance is that the coefficients for a given
component in the expected values for the mean squares are in general different
at different levels, as Table 6.6 shows. As a result one cannot use a simple F
ratio to test whether a component, s2

j , is significantly greater than 0.

Residual maximum likelihood estimation

For balanced designs the estimates of the components provided by ANOVA are
the same as those one obtains by computing the sample variogram (Miesch,
1975), but for unbalanced designs the estimators will in general differ (Pettitt
and McBratney, 1993). Further, several methods of constructing ANOVA
tables have been invented for the general unbalanced analysis, and although
the estimators are unbiased they are not necessarily the same (see Searle et al.,
1992). If one assumes that the random effects are normally distributed then
one can calculate maximum likelihood estimates of the variance components
from equation (6.9). This puts the estimation for all designs in a coherent
framework.

Table 6.6 Hierarchical analysis of variance: unbalanced design.

Source Degrees of freedom Parameters estimated

Level 1 D1 ¼ f1 � 1 u1;1s2
1 þ u1;2s2

2 þ u1;3s2
3 þ s2

4

Level 2 D2 ¼ f2 � f1 u2;2s2
2 þ u2;3s2

3 þ s2
4

Level 3 D3 ¼ f3 � f2 u3;3s2
3 þ s2

4

Residual D4 ¼ N � f3 s2
4

Total N � 1
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Maximum likelihood estimation from equation (6.9) calculates the likelihood
of the data, z, in terms of the variance components and then uses the estimators
of those components that maximize the log-likelihood. With small samples,
however, the estimators are biased; they underestimate the true values because
the fixed degrees of freedom are not removed before the components are
estimated. Patterson and Thompson (1971) developed the method of residual
maximum likelihood (REML), sometimes called ‘restricted maximum likelihood’,
that adjusts for the fixed degrees of freedom before estimating the variance
components. In the present context there is only one fixed effect, namely the
grand mean, m, and so the differences between the estimates from REML and
ANOVA are fairly small. Webster et al. (2006) describe the method in full; here
we provide a summary.

The set of data with N points can be considered as a set of N orthogonal
contrasts. If there are p fixed degrees of freedom then p contrasts will have
expectations that are functions of the fixed effects, and the remaining N � p
contrasts have zero expectation. By maximizing the likelihood of the contrasts
with zero expectation we can obtain (REML) estimates of the variance compo-
nents that take account of the degrees of freedom used in estimating fixed
effects. The contrasts with zero expectation are directly related to the contrasts
that contribute to the residual sums of squares, and hence the estimated
variance components, in ANOVA. In the balanced case, the REML estimates
of variance components are the same as those from ANOVA.

To determine the REML log-likelihood for the data one must define the full
variance–covariance matrix of the data. We do this using design matrices to
indicate the structure of the sampling scheme. The design matrix Uk at stage k has
p columns, where p is the total number of sampling points at stage k. The rows of
the matrix correspond to measurements. Each row of Uk takes the value 1 in
column j if the measurement arose from sampling point j at stage k, and zero
otherwise. Then the variance–covariance matrix of the data can be expressed as

V ¼
Xm

i¼1

s2
i UiU

T
i ¼

Xm�1

i¼1

s2
i UiU

T
i þ s2

mIN ; ð6:14Þ

as there is no further sub-sampling at stage m. The matrix IN is the N-
dimensional identity matrix. The logarithm of the residual likelihood, ln(RL),
is then

�2 � lnðRLÞ ¼ ln jVj þ ln jXTV�1Xj þ yTPy; ð6:15Þ

where X ¼ 1N is the design matrix for the fixed effects in the model, and P is
defined as

P ¼ V�1 � V�1XðXTV�1XÞ�1XTV�1: ð6:16Þ
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One cannot usually maximize ln(RL) analytically; rather one must use an
iterative algorithm. Lark and Cullis (2004) describe REML estimation in some
detail in a geostatistical context, and further information can be found in Searle
et al. (1992). Most general-purpose statistical packages, such as GenStat and
SAS, have facilities for REML estimation in linear mixed models.

The variance components are defined as the variances of a set of random
effects, and so s2

i � 0 for i ¼ 1;2; . . . ;m. However, when considered as a
composite variance model V, as above, it is necessary only that V is positive
definite (and therefore permissible), i.e. aTVa > 0 for all real vectors a 6¼ 0. In
this case individual components might be negative. This might arise in practice
if there is some underlying regular feature in the landscape such as an ancient
ploughing pattern. More usually, the true value of a variance component for
which the estimate is negative is positive but close to zero, in which case the
negative estimate can easily arise by chance.

6.2.4 Case study: Wyre Forest survey

Our survey of the soil in the Wyre Forest, in the English Midlands (Oliver and
Webster, 1987), illustrates the unbalanced nested design. The sample vario-
grams from an earlier survey were flat; all the variation in the properties
examined appeared to occur within 167 m, the average distance between
sampling sites in that survey. The nested survey was designed to discover
how the variation is distributed over distances less than 167 m. The scheme
had five stages covering a range of sampling intervals from 6 m increasing in a
geometrical progression of approximately threefold increments (Table 6.7) to
600 m. This design was expected to encompass most of the spatial variation,
and to ensure that there was no overlap between different branches of the
hierarchy, as above. The 600-m interval was incorporated in case there were
long-range spatial structures.

Nine main centres were located at the nodes of a 600-m square grid oriented
randomly over the region. All other points were then placed on random
orientations from these as follows to comply with the random effects model.

Table 6.7 Nested sampling design for determining the scale of spatial variation in the
soil of the Wyre Forest.

Stage Sampling interval/m Number of sampling points

1 600 8
2 190 18
3 60 36
4 19 72
5 6 108
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From each grid node a second site was chosen 190 m away to provide the
second stage. From each of the now 18 sites another point was chosen 60 m
away (stage 3). The procedure was repeated at stage 4 to locate points 19 m
away from those of stage 3, giving 72 points. At the fifth stage just half of the
fourth-stage points were replicated by sampling 6 m away. This gave a
sample of 108 points rather than 144 for a fully balanced survey. Table 6.7
summarizes the design, Figure 6.13 illustrates the hierarchical structure used
for one centre, and Figure 6.14 shows the configuration of sampling points for

Figure 6.13 Topology for one main centre of the unbalanced nested sampling as
implemented in the soil survey of the Wyre Forest by Oliver and Webster (1987).

Figure 6.14 Sampling plan for one main centre of the Wyre Forest survey (not strictly
to scale).
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one first-stage centre. The design achieved a 25% economy in effort compared
with a fully balanced scheme. Figure 6.15 shows the economy possible
with even more stages. At each sampling point several properties of the soil
were recorded at four fixed depths in the soil profile: 0–5 cm (1), 10–15 cm (2),
25–30 cm (3), and 50–55 cm (4).

Each variable was analysed by ANOVA according to the scheme outlined in
Table 6.8 and by REML with and without the components’ being constrained to
be non-negative. The estimated components of variance for sand content at the
four depths are listed in Table 6.8 for ANOVA. Figure 6.16(a) shows the
accumulated components of variance for each depth in the profile plotted

Figure 6.15 Graph showing the economy achieved by not doubling the sampling at
every level in the hierarchy. The symbols are � balanced design, � Wyre Forest scheme
including extension to stages 6 and 7, ? scheme used by Webster and Boag (1992) in
their surveys of nematode infestations.

Table 6.8 Components of variance of sand content of the soil at four depths in the
survey of the Wyre Forest estimated by analysis of variance.

Component of variance

Depth/cm

Stage 0–5 10–15 25–30 50–55

1 (600 m) 32.44 17.54 27.95 32.63
2 (190 m) �51:90 �64:82 �81:97 �103:44
3 (60 m) 88.77 141.79 172.02 316.28
4 (19 m) 139.44 101.10 135.21 �45.79
5 (6 m) 55.58 68.42 116.33 309.73
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against separating distance on a logarithmic scale to give first approximations
to the variograms. The graph shows that at least 80% of the variation at the
four depths for sand content occurs within 60 m; this was the case for all of the
other properties. Stages 1 and 2, i.e. distances of 190–600 m and 60–190 m,
respectively, account for less than 20% of the variation. The estimated
components of variance for stage 2 were generally negative. This suggests
that either there is some repetition in soil character at that distance, or that the
components estimate zero because there is no contribution to the variance at
this stage. The confidence limits of the components are wide, and so we cannot
be sure how to interpret these negative values. Even at stage 5 there is still a
considerable contribution to the total variance. This represents the unresolved
variation within 6 m plus errors of measurement.

Let us now look at the estimates of the variance components by REML.
Table 6.9 lists the results, first without any constraint and then with the
estimates constrained to be non-negative. The unconstrained estimates are
somewhat different from those from ANOVA, but they show the same general
pattern. Constraining the estimates to a minimum of 0 caused little change in
the positive components in the lowest stage, but appreciable changes in all
stages above those that were negative in the unconstrained analysis.

As described above, the experimental variogram depends on the spatial scale
over which we measure it. If a large extent is covered with wide sampling
intervals then all of the variance might appear as nugget. Alternatively, if small
intervals are chosen to resolve the short-range variance then the sampling
required to estimate the contributions to the larger distances would be too
costly. A nested survey identifies the scale at which most of the variation occurs

Figure 6.16 Variograms of soil properties in the Wyre Forest: (a) obtained by
accumulation of the components of variance estimated by REML, with the lag distance
on a logarithmic scale; (b) estimated from subsequent transect sampling at 5 m intervals.
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at the level of our investigation. The reconnaissance variograms for the soil
properties of the Wyre Forest showed that most of the spatial variation occurred
over distances less than 60 m.

From this information we could design a survey to estimate the variogram
more precisely by linear sampling. We did so using ten transects each 100 m
long and one of 500 m with a sampling interval of 5 m. The conventional
variograms that resulted, Figure 6.16(b), showed correlation extending to little
more than about 40 m.

We could have used the results of the nested survey to design an overall
survey with a maximum sampling interval equal to half the correlation range
identified. This would have been 30 m. In the event, having estimated the
variograms more precisely along transects and established an effective range of
40 m, we sampled at a 20-m interval from which to interpolate for mapping.
You can read a full account in Oliver and Webster (1987).

6.2.5 Summary

Nested survey and analysis can reveal the spatial scale(s) of variation in a
region with modest sampling effort. The data can be analysed by straightfor-
ward analysis of variance for balanced designs or, preferably, by residual
maximum likelihood for unbalanced ones. We recommend it as a first step in
the description of variation in a hitherto little known region. Armed with the
results, one can plan a second stage of survey to estimate the variogram
precisely over the range that matters. The results from nested survey could be
used to plan a regional survey if one particular component proved dominant.

Table 6.9 Components of variance of sand content of the soil at four depths in the
survey of the Wyre Forest, estimated by REML without constraints and constrained to be
non-negative.

Component of variance Constrained variance

Depth/cm Depth/cm

Stage 0–5 10–15 25–30 50–55 0–5 10–15 25–30 50–55

1 (600 m) 38.12 21.07 18.68 33.75 19.70 0.44 0 0
2 (190 m) �58.03 �63.17 �90.02 �100.19 0 0 0 0
3 (60 m) 102.50 137.58 198.51 314.81 63.58 96.06 125.26 235.89
4 (19 m) 131.50 97.65 131.95 �38.89 131.43 97.65 131.03 0
5 (6 m) 54.97 66.54 108.56 303.26 54.88 66.27 109.87 276.06
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7

Spectral Analysis

In some places the land varies laterally in a regular fashion. The most obvious
regular patterns are man-made. They include the characteristic ridge and
furrow of the English clay lands, and orchards and plantations in which fruit
trees and other crops are arranged in lines with constant intervals between
them. The dynamic properties of the soil are likely to vary in tune with them
and so also have a regularity. Forest is established on peaty soil by planting
young trees on the upturned sod after deep ploughing in lines. Less obvious are
the long-lasting patterns of former ploughing on crop yield, revealed by
McBratney and Webster (1981), and the effects of earlier drainage schemes
on the present-day soil described by Burrough et al. (1985). In all these the
regularity is deliberate.

Natural features may also seem regular. Examples are the frost polygons of
the Arctic region and their fossil relics in the Northern temperate zone (e.g.
Hodge and Seale, 1966), the patterns of termite mounds in Africa, especially
evident on some of the East African plains (e.g. Scott et al., 1971) and in the
miombo woodland of Zambia and Congo and the gilgai of Australia (e.g.
Hallsworth et al., 1955; Webster, 1977).

The experimental variograms of such patterns fluctuate with evident peri-
odicity, as Webster (1977) discovered. Other periodic patterns can arise from
cultivation and land management (McBratney and Webster, 1981; Burrough
et al., 1985). Chapter 5 mentioned basic periodic functions that might be used
to describe the fluctuation, but we deferred illustration until now so that we can
deal with it and spectral analysis together.

7.1 LINEAR SEQUENCES

More often than not we encounter periodicity in linear, i.e. one-dimensional,
sequences of data comprising records made at regular intervals in either time or
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space (see, for example, Oliver et al., 1997). Spatial examples include:

� photographic and radiometric survey by aircraft;
� bathymetric and sonar survey from ships;
� electric logs of boreholes for oil exploration;
� pollen counts through peat;
� isotope measurements through polar ice;
� transect surveys of soil.

In some instances each line is one of several or many in R2 or R3. In others the
lines are isolated representatives of two-dimensional scenes. Variables, such as
temperature, may also be recorded at regular intervals in time, and in that
instance there is only one dimension. We can analyse the data by all of the
standard geostatistical methods described above. However, if there is periodicity
then it is often profitable to express the variation in relation to frequency rather
than space or time, and this takes us into the realm of spectral analysis.

7.2 GILGAI TRANSECT

To illustrate an analysis of periodic variation we use the data from a survey by
Webster (1977) of salinity on the Bland Plain of eastern Australia. This
virtually flat plain is part of the Murray–Darling Basin. Its soil is dominantly
clay, but with a more sandy surface horizon of variable thickness, alkaline and
locally saline. One of its most remarkable features is its patterns of gilgai. The
gilgais are small, almost circular depressions from a few centimetres to as much
as 50 cm deep in the plain and several metres across. The soil in their bottoms is
usually clay and wetter than that elsewhere.

A paddock at Caragabal, NSW, was sampled at regular 4-m intervals along a
transect almost 1.5 km long. At each of 365 sampling points a core of soil,
75 mm in diameter, was taken to 1 m, and segments of it were analysed in the
laboratory. For present purposes we shall concern ourselves with just one
variable, the electrical conductivity at 30–40 cm. Table 7.1 summarizes the
data, which were strongly skewed and therefore transformed to logarithms for
further analysis. Figure 7.1 shows the logarithm of conductivity plotted against
position as the fine line. The bold line is a smoothing spline fitted to the data to
filter out the short-range variation and reveal a fluctuation of longer range that
appears regular.

The experimental variogram of the data is shown in Figure 7.2 as the plotted
points, to which we have fitted a model with a periodic component. The full
model is given by

gðhÞ ¼ c0 þ wh þ cfsphðaÞg þ c1 cos
2ph

v

� �
þ c2 sin

2ph

v

� �
: ð7:1Þ
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It comprises a small nugget, c0, a linear component, wh, a spherical function
with a short range, cfsphðaÞg, and a sine wave, c1 cosð2ph=vÞ þ c2 sinð2ph=vÞ.
The values of these parameters are given in Table 7.2. The spherical component
contributes most to the variance, with a sill of approximately 0.15
log2 (mS cm�1). It represents repetitive variation of a kind that is not periodic.
For present purposes the periodic component, though representing less of the
variance with an amplitude of only 0.012, is of most interest. Its wavelength is
8.67 sampling units or 35 m. This is approximately equal to the average
distance between the centres of the gilgai on the transect. It has a phase shift of
�0:43 rad (about �25�). The linear component has only a very gentle gradient;
it is of little practical consequence, and we may regard the underlying variation
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Figure 7.1 Trace of common logarithm of electrical conductivity at Caragabal (fine
line) with a smoothing spline (bold) added as an aid to see the suspected periodicity.

Table 7.1 Summary statistics of electrical conductivity in the soil at
30–40 cm at Caragabal.

Electrical conductivity

mS cm�1 log10(mS cm�1)

Minimum 0.06 �1:214
Maximum 5.10 0.707
Mean 0.958 �0:2298
Median 0.54 �0:2668
Variance 0.95948 0.19205
Standard deviation 0.975 0.438
Skewness 1.642 0.101
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as second-order stationary. The nugget variance is also very small. In passing,
we note that the periodic component does not damp, and so the model is valid
in one dimension only.

7.3 POWER SPECTRA

Let us now consider how to examine this variation in the frequency domain.
We start by assuming that the underlying variable, ZðxÞ, is random, spatially
correlated, and second-order stationary. Since we are dealing with only one

Figure 7.2 Variogram of log electrical conductivity. The points are the sample values,
the heavy line is the fitted model comprising the four components shown with the lighter
lines. The parameter values are listed in Table 7.2.

Table 7.2 Parameter values of model fitted to variogram of log
electrical conductivity in the soil at 30–40 cm at Caragabal. Distances
are in sampling intervals of 4 m, and angles are in radians.

Component Parameter Value

Nugget constant, c0 0.01760
Linear gradient, w 0.000772
Spherical sill, c 0.1498

range, a 3.323
Periodic amplitude, W, 0.01230

wavelength, v 8.667
phase, f �0:435
c1 �0:01116
c2 0.005181
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dimension for the time being, we can replace x by x ¼ jxj and h by h ¼ jhj. Its
covariance function, in the notation of Chapter 4, is

CðhÞ ¼ E½fZðxÞ � mgfZðx þ hÞ � mg� ¼ E½ZðxÞZðx þ hÞ � m2�; ð7:2Þ

where m is the mean of the process.
The covariance function in the spatial domain has an equivalent in the

frequency domain where the variance, instead of being a function of distance
(or time), is distributed as a function of frequency, f . This function, denoted by
Rðf Þ, is the spectrum, or power spectrum. It is the Fourier transform of the
covariance function defined for the interval from positions �X=2 to X=2, i.e.
�X=2 � ZðxÞ � X=2:

Rðf Þ ¼ lim
X!1

1

2p

ð2X

�2X

f1 � ðjhj=2XÞg expð�jfhÞCðhÞ dh; ð7:3Þ

where j is
ffiffiffiffiffiffiffi
�1

p
. Provided CðhÞ approaches 0 as h approaches 1, the limiting

value of Rðf Þ is given by

Rðf Þ ¼ 1

2p

ð1
�1

expð�jfhÞCðhÞ dh: ð7:4Þ

The covariance function is symmetric; it is an ‘even’ function of h, i.e.
CðhÞ ¼ Cð�hÞ; see Chapter 4. As a consequence, the complex term in the
integral in equation (7.4) can be replaced by a simple cosine, and Rðf Þ reduces
to

Rðf Þ ¼ 1

2p

ð1
�1

cosðfhÞCðhÞ dh: ð7:5Þ

Just as the spectrum, Rðf Þ, is the Fourier transform of the covariance
function, the latter, CðhÞ, is the Fourier transform of Rðf Þ:

CðhÞ ¼ 1

2p

ð1
�1

cosðfhÞRðf Þ df : ð7:6Þ

In other words, the relation is invertible.
We can equally well transform the autocorrelation function, rðhÞ ¼ CðhÞ=Cð0Þ,

to obtain the normalized spectrum:

rðf Þ ¼ 1

2p

ð1
�1

cosðfhÞrðhÞ dh: ð7:7Þ

This relation too is invertible.
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7.3.1 Estimating the spectrum

Equations (7.4) and (7.5) above define the spectrum of a real continuous
second-order stationary random process in R1. We want now to estimate the
spectrum. As in the example of the gilgai transect, we have data,
zðx1Þ; zðx2Þ; . . . ; zðxNÞ, at regular intervals on a line. The value N is the length
of the series, and replaces X to accord with geostatistical convention. From the
data we compute

ĈðhÞ ¼ 1

N � h

XN�h

i¼1

fzðiÞ � �zgfzði þ hÞ � �zg; ð7:8Þ

where the zðiÞ and zði þ hÞ are observed values, and �z is the average of the data
in the sequence, and by incrementing h one step at a time we obtain the
experimental covariance function. Thus the lag, h, is in units of the sampling
interval.

This set of covariances can be transformed to the corresponding experimental
spectrum by

R̂ðf Þ ¼ 1

2p
Ĉð0Þ þ 2

XL�1

k¼1

ĈðkÞwðkÞ cosðpfkÞ
( )

ð7:9Þ

for frequency, f , in the range 0 to 1
2 cycle. In this equation L is the maximum lag

from which the transform is computed and k is the lag.
The quantity L can be regarded as the width of a ‘window’ through which the

covariance is viewed for transformation, and it is for us to choose it. We could set
it to the maximum possible from the data. We know from experience that as the
lag increases so the experimental covariances become increasingly unreliable,
and in Chapter 4 we suggested that the covariance be computed to a lag of no
more than about one-fifth of the total length of a series. If we incorporate the
uncertainty in estimating CðhÞ at long lags in equation (7.9) then we shall obtain
detail in the computed spectrum that is untrustworthy. In fact, the longer is L,
the more detailed is the spectrum and the less reliable is that detail. On the other
hand, if we choose too small a value of L then we shall lose detail that might be
significant. The window is effectively a smoothing function, and the narrower it
is in the spatial domain the more precise are the estimates at the expense of
greater bias and loss of detail. So the choice of L is always a compromise.

Some of the fluctuation in the spectrum that arises from choosing a large L
can be diminished by changing the ‘shape’ of the window. The window in
equation (7.9) is rectangular (see Figure 7.3). If jkj � L then CðkÞ carries weight
1=L, otherwise its weight is 0:

wRðkÞ ¼ 1=L for 0 � jkj � L;
0 for jkj > L:

�
ð7:10Þ
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It is symmetric about the ordinate, and so we show only the positive half. Its
Fourier transform is given by

WRðf Þ ¼ 2L
sinð2pfLÞ

2pfL

� �
for �1 � f � 1: ð7:11Þ

The transform of the rectangular lag window fluctuates as the frequency increases
with a period of 1=L; the power takes a long while to damp. This is shown in
Figure 7.4 in which there are several peaks of decreasing height. In the jargon of

Figure 7.3 Rectangular, Bartlett and Parzen lag windows, with a basal width of 60
sampling intervals.
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Figure 7.4 Rectangular, Bartlett and Parzen spectral windows. These are the Fourier
transforms of the lag windows shown in Figure 7.3.

Power Spectra 145



spectral analysis, the rectangular window is ‘leaky’, and it is generally regarded as
unsatisfactory. The top corners of the rectangles tend to contribute most of the
leakage. This leakage can be diminished substantially by cutting the corners.

Much research has been devoted to finding an optimal shape, ‘window
carpentry’ as Jenkins and Watts (1968) called it. The simplest solution is due
to Bartlett (1966) and is known as the Bartlett window. It is defined in the
spatial domain as follows:

wBðkÞ ¼
1 � ðjkj=LÞ for 0 � jkj � L;
0 for jkj > L:

�
ð7:12Þ

The Bartlett lag window may be envisaged as an isosceles triangle with its peak
at its centre and its height decaying linearly to its lower corners where jkj of
equation (7.9) equals L. It is shown in Figure 7.3 for 0 � k � L. Like the spectral
window, the lag window is symmetrical about the ordinate, and so again only
the positive half is shown. It is incorporated in the transformation equation as

R̂ðf Þ ¼ 1

2p
Ĉð0Þ þ 2

XL�1

k¼1

ĈðkÞwBðkÞ cosðpfkÞ
( )

: ð7:13Þ

The Fourier transform of the Bartlett lag window is

WBðf Þ ¼ L
sinð2pfLÞ

2pfL

� �2

for �1 � f � 1; ð7:14Þ

and this is shown in Figure 7.4. It fluctuates rather less than the rectangular
window, but nevertheless is not entirely satisfactory because of its leakage. Two
other popular windows are those defined by J. W. Tukey (see Blackman and
Tukey, 1958) and Parzen (1961), and these too are referred to by their authors’
names. A shortcoming of Tukey’s window is that it can return negative
estimates of the spectral density, which must be positive. Parzen’s window is
more reliable. Its definition is

wPðkÞ ¼
1 � 6

k

L

� �2

þ6
jkj
L

� �3

for 0 � jkj � L=2;

2 1 � jkj
L

� �3

for L=2 < jkj � L;

0 for jkj > L; :

8>>>>><
>>>>>:

ð7:15Þ

and its Fourier transform is

WPðf Þ ¼
3

4
L

sinðpfL=2Þ
pfL=2

� �4

for �1 � f � 1: ð7:16Þ
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In the transformation equation (7.13), for the Parzen window wBðkÞ is
replaced by wPðkÞ. Figure 7.4 shows that this transform does not fluctuate,
but decays to 0 at a frequency of approximately 2=L. Although Parzen’s
window seems the most attractive theoretically, it generally requires a
more reliable set of covariances and therefore more data in the
first place.

To estimate the spectrum from a series of data we compute the experi-
mental covariance function to the maximum lag that is likely to be of interest.
This is the initial width, L, of the lag window. We then choose the shape of
the window (we recommend the Parzen window as a start), and we compute
the spectral density at frequencies between 0 and 1

2 cycle. We then plot the
results and join the points. The steps by which f is incremented need bear no
relation to the lag increments, as some authorities claim. In fact, it is better to
choose numerous short steps for f so as to produce a smooth figure for the
spectrum, which is a continuous function. We then shorten L and repeat the
procedure. Figure 7.5 shows results of using this procedure with 100
frequencies.

An alternative method for computing spectra from data is the fast Fourier
transform (see Brigham, 1974). Cooley and Tukey (1965) devised an
algorithm for its computation in the days when computers were orders of
magnitude slower than they are now, and code for it is included in Press et al.
(1992).
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7.3.2 Smoothing characteristics of windows

The windows used to estimate the spectrum are effectively smoothing functions.
The estimates have smaller variances than those of the full sample spectrum. To
express this quantitatively, we first integrate over the window to obtain a
quantity I:

I ¼
ð1
�1

w2ðkÞ dk: ð7:17Þ

So, for example, I for Bartlett’s window is the integral from �L to L:

IB ¼
ðL

�L

1 � jkj
L

� �2

dk ¼ 2
3 L: ð7:18Þ

The equivalent integral of the Parzen window of equation (7.15) is IP ¼ L=1:86.
To distinguish the various spectral estimates we use Rðf Þ to denote the full

spectrum, as in equation (7.9), and �R subscripted with the name of the window
and its width for the smoothed estimates. For example, �RP;L¼25ðf Þ means the
estimate of Rðf Þ at frequency f smoothed with a Parzen window of width 25 lag
intervals. The variance of Rðf Þ is simply R2ðf Þ.

We are interested in the reduction in variance brought about by the
smoothing, i.e. the ratio of the variance of the smoothed estimate, var½ �Rðf Þ�,
to R2ðf Þ. It turns out that this is simply

var½ �Rðf Þ�
R2ðf Þ ¼ 1

L

ð1
�1

w2ðkÞ dk ¼ I

L
: ð7:19Þ

So, for example, combining this equation with equation (7.18), we find that the
variance ratio for a Bartlett window of L=N is 2L=3N ¼ 0:667L=N. For the
Parzen window it is L=1:86N ¼ 0:538L=N. Typically L=N is of the order of 0.1,
and so the variance ratio is around 0.067 for the Bartlett window and 0.054 for
the Parzen window—these are big gains in precision.

Bandwidth

As above, each window in the spatial domain has its equivalent in the
frequency domain. For a given shape, the wider is the window in the spatial
domain the narrower is its transform. Also, because the weight of the lag
windows of the same basal width is increasingly concentrated in the order
rectangular < Bartlett < Parzen, they behave as if they were increasingly wide
in the frequency domain—compare Figures 7.3 and 7.4. It is as though one
were viewing the spectrum through a slit of increasing width. The spectral
windows do not have strict bounds, however, and it is helpful to have some
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measure of width for comparison. One approach to this is to define the width of
a rectangular window in the frequency domain such that

Wðf Þ ¼ 1

m
; for � 1

2m � f � 1
2m: ð7:20Þ

If we denote its bandwidth by b then b ¼ m. The variance of the spectral
estimator is

var½ �Rðf Þ� ¼ R2ðf Þ
N

1

m
¼ R2ðf Þ

Nb
: ð7:21Þ

The bandwidths of the other windows are then defined as those widths that give
the same variance as that of the rectangular window,

var½ �Rðf Þ� � R2ðf Þ
N

1

b
¼ R2ðf Þ

N

ð1
�1

w2ðkÞk; ð7:22Þ

and so the bandwidth is b ¼ 1=I. The bandwidth for the rectangular window is
thus 0:5=L, and that of the Bartlett window is 1:5=L. The Parzen window’s
bandwidth is 1:86=L. Evidently the Bartlett and Parzen windows are substan-
tially wider than the rectangular windows.

7.3.3 Confidence

Confidence intervals for the spectral densities can be determined. We first define
a quantity n, which is effectively the degrees of freedom:

n ¼ 2NÐ1
�1 w2ðkÞ dk

¼ 2N

I
; ð7:23Þ

where N is the total number of observations in the series. Notice that it depends
on the width and shape of the window, wðkÞ. The quantity nR̂ðf Þ=Rðf Þ is
distributed as x2

n , and so

Prob x2
n;a=2 <

nR̂ðf Þ
Rðf Þ � x2

n;1�a=2

� �
¼ 1 � a; ð7:24Þ

where Prob stands for the probability and 1 � a is the confidence level at which
one wants to work. The 100 1 � 1

2 aÞ%
�

and 100 1
2 a
� �

% confidence limits for
Rðf Þ are then

nR̂ðf Þ
x2

n 1 � 1
2 a

� � and
nR̂ðf Þ

x2
n

1
2 a
� � : ð7:25Þ
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The integral in equation (7.23) can be worked out for the particular size and
shape of window, and, since the length of the sequence, N, is known, n can be
determined. The values of x2 for n and for 1

2 a and 1 � 1
2 a can be obtained

readily from tables, such as those by Fisher and Yates (1963), or with a
statistical program. This ability to calculate confidence limits gives the spectrum
a substantial advantage over the covariance function and variograms.

7.4 SPECTRAL ANALYSIS OF THE CARAGABAL TRANSECT

The spectrum for the log of electrical conductivity has been computed with a
Parzen lag window for four widths: 10, 25, 40 and 60 sampling intervals
(Figure 7.5). It is evident that the more covariances are included in the window
the more detail there is in the spectrum. One might think there is too much
detail with the window set to 60, but with L set to 10 almost all detail has been
lost, and only the general decline in power with increasing frequency is evident.
Choosing L ¼ 40 seems to show the principal features of the spectrum most
clearly.

Let us now interpret the spectrum in Figure 7.5. The most prominent feature
is the marked decrease in power at the low-frequency end of the spectrum. This
corresponds to the spherical and linear components in the variogram. The other
striking feature is the peak at around 0.12 cycles. It corresponds to a
wavelength of 8.4 sampling intervals or 34 m, which is very close to the
wavelength (35 m) of the model fitted to the variogram. Evidently, the spectrum
and the variogram are complementary ways of viewing the periodicity and
estimating the period.

There is a smaller peak at 0.23 cycles. This is almost certainly a harmonic of
the main peak at twice its frequency and may be disregarded. When the
spectrum is viewed through a wide window (i.e. computed with the narrowest
lag window, L ¼ 10 in Figure 7.5) the spectral peak is lost. In this example the
bandwidth of the spectral window is much wider than the peak, as Figure 7.5
shows. Therefore, the spectral window must be narrower than the features that
one wishes to reveal.

7.4.1 Bandwidths and confidence intervals for Caragabal

In addition to the smoothed spectral estimates, Figure 7.5 shows the band-
widths by the length of the line corresponding to the lag windows 10, 25, 40
and 60. These are calculated for the Parzen windows simply by division of these
widths into 1.86 (Figure 7.5). They are listed in Table 7.3.

The corresponding degrees of freedom, from equation (7.23), are 3N=L for
the Bartlett window and 3:71N=L for the Parzen window, and Table 7.3 also
lists their values for the transect.
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We can now obtain the confidence limits on the spectral density for any
particular frequency. Let us take the Parzen lag window 10. With 365
sampling points this gives 3:71 � 365=10 ¼ 135:4 degrees of freedom. If we
choose to work at the 90% confidence level, equivalent to a ¼ 0:1, then we
need x2 for 1 � 1

2 a and 1
2 a. These are 109.5 and 163.6, respectively. We now

apply equation (7.25). If, for example, we want the confidence limits on our
spectral estimate at frequency 0.15, which is R̂Pð0:15Þ ¼ 0:2286, then we
calculate

clower ¼
135:4

163:6
� 0:2286 ¼ 0:189; cupper ¼

135:4

109:5
� 0:2286 ¼ 0:282:

These could be drawn on Figure 7.5(a), but if you are especially interested in
the confidence of spectral estimates it is better to express the intervals on a
logarithmic scale. Equation (7.25) becomes

log R̂ðf Þ þ log
n

x2
n 1 � 1

2 a
� � and log R̂ðf Þ þ log

n

x2
n

1
2 a
� � : ð7:26Þ

The interval is constant and symmetric about the logarithm of the estimate.
Taking the example above, we compute the logarithm (to base 10) of 0.2286
(which is �0:636) and of the 90% confidence limits. The latter are �0:723 and
�0:589, giving a confidence interval of width 0.134 in the logarithms. There-
fore if the spectrum itself is drawn on a logarithmic scale then the confidence
interval can be represented as a single vertical line on the graph.

In Figure 7.5(b) the estimates of Figure 7.5(a) are converted to logarithms,
and the results for the 90% confidence intervals are shown by the lengths of the
vertical lines. The width of a confidence interval clearly depends on the width of
the corresponding lag window. The wider is that window, and the narrower the
bandwidth, the wider is the interval.

Table 7.3 Bandwidths and degrees of freedom for the smoothed spectrum of log
electrical conductivity at Caragabal.

Bartlett window Parzen window

Lag window Bandwidth Deg. freedom Bandwidth Deg. freedom

10 0.1500 109.5 0.1860 135.4
25 0.0600 43.8 0.0744 54.2
40 0.0375 27.4 0.0465 33.8
60 0.0250 18.3 0.0310 22.6
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7.5 FURTHER READING ON SPECTRAL ANALYSIS

The theory of spectral analysis is extensive and complex, and it has numerous
applications in many branches of science and engineering. Its principal merits
in soil and environmental science are where there is periodicity. It is possible to
detect periodicity in variograms and to model it. However, it is often easier to
see the periodicity and to estimate it in the spectrum. If periodic variation is
suspected from the variogram then spectral analysis can be used to confirm that
it is present. Oliver et al. (1997) used geostatistics and spectral analysis in such
a complementary way.

Two books that deal with spectral analysis at not too advanced a level are by
Jenkins and Watts (1968) and by Priestley (1981). The first is intended for
engineers, and numerate soil scientists should be able to cope with it. The
second, though more mathematical, emphasizes the ideas.
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8

Local Estimation or
Prediction: Kriging

Most properties of the environment could be measured at any of an infinite
number of places, but in practice they are measured at rather few, mainly for
reasons of economy. If we wish to know their values elsewhere then we must
estimate them from the data that we can obtain. The same holds if we want
estimates over larger areas for which it has not been possible to measure or
observe the properties directly. In Chapter 3 we considered the general
problem of estimating values at unsampled places using either a discrete
model of spatial variation and classification or a continuous model with
deterministic interpolators. Many statisticians prefer to call the procedure
prediction to distinguish it from estimating parameters of a distribution. In
geostatistics, however, it is almost always called estimation for reasons
explained by Matheron (1989); we shall use the two terms interchangeably
unless there is any risk of misunderstanding. Estimation is the task for which
geostatistics was developed initially, and it is generally called kriging after D.
G. Krige, a mining engineer in the gold fields of South Africa (see Krige, 1966).
The term was coined originally as krigeage by P. Carlier, but Matheron (1963)
brought it into the English language in recognition of Krige’s contribution to
improving the precision of estimating concentrations of gold and other metals
in ore bodies and recoverable reserves. Although much of the credit for
formalizing the technique goes to Matheron and his colleagues at the
Paris School of Mines, the mathematics of simple kriging had been worked
out by A. N. Kolmogorov in the 1930s (Kolmogorov, 1939, 1941; see
also Gandin, 1965), by Wold (1938) for time-series analysis, and only a little
later by Wiener (1949). You can read a brief history of the subject in
Cressie (1990).
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8.1 GENERAL CHARACTERISTICS OF KRIGING

Kriging provides a solution to the problem of estimation based on a continuous
model of stochastic spatial variation. It makes the best use of existing knowledge
by taking account of the way that a property varies in space through the
variogram model. In its original formulation a kriged estimate at a place was
simply a linear sum or weighted average of the data in its neighbourhood. Since
then kriging has been elaborated to tackle increasingly complex problems in
mining, petroleum engineering, pollution control and abatement, and public
health. The term is now generic, embracing several distinct kinds of kriging,
both linear and non-linear. In this chapter we deal with the simpler linear
methods, and in Chapter 11 we consider non-linear ones. In linear kriging the
estimates are weighted linear combinations of the data. The weights are
allocated to the sample data within the neighbourhood of the point or block
to be estimated in such a way as to minimize the estimation or kriging variance,
and the estimates are unbiased. Kriging is optimal in this sense.

8.1.1 Kinds of Kriging

Kriging covers a range of least-squares methods of spatial prediction.

� Ordinary kriging of a single variable, as described in Section 8.2, is the most
robust method and the one most used.

� Simple kriging (Section 8.9) is rather little used as it stands because we
usually do not know the mean. It finds application in other forms such as
indicator and disjunctive kriging in which the data are transformed to have
known means.

� Lognormal kriging (Section 8.10) is ordinary kriging of the logarithms of the
measured values. It is used for strongly positively skewed data that
approximate a lognormal distribution.

� Kriging with drift (Chapter 9), also known as universal kriging, recognizes
both non-stationary deterministic and random components in a variable,
estimates the trend in the former and the variogram of the latter, and
recombines the two for prediction. This introduces residual maximum
likelihood into the kriging procedure (see Section 9.2).

� Factorial kriging or kriging analysis (Chapter 9) is of particular value where
the variation is nested, i.e. more than one scale of variation is present.
Factorial kriging estimates the individual components of variation sepa-
rately, but in a single analysis.

� Ordinary cokriging (Chapter 10) is the extension of ordinary kriging of a
single variable to two or more variables. There must be some coregionaliza-
tion among the variables for it to be profitable. It is particularly useful if
some property that can be measured cheaply at many sites is spatially
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correlated with one or more others that are expensive to measure and are
measured at many fewer sites. It enables us to estimate the more sparsely
sampled property with more precision by cokriging using the spatial
information from the more intensely measured one.

� Indicator kriging (see Chapter 11) is a non-linear, non-parametric form
of kriging in which continuous variables are converted to binary
ones (indicators). It is becoming popular because it can handle distribu-
tions of almost any kind, and empirical cumulative distributions of
estimates can be computed and thereby provide confidence limits on
them. It can also accommodate ‘soft’ qualitative information to improve
prediction.

� Disjunctive kriging (see Chapter 11) is also a non-linear method of kriging,
but it is strictly parametric. It is valuable for decision-making because the
probabilities of exceeding or not exceeding a predefined threshold are
determined in addition to the kriged estimates.

� Probability kriging (not described further in this book) was proposed by
Sullivan (1984) because indicator kriging does not take into account the
proximity of a value to the threshold, but only its position. It uses the rank
order for each value, zðxÞ, normalized to 1 as the secondary variable to
estimate the indicator by cokriging. Chilès and Delfiner (1999) and Goo-
vaerts (1997) describe the method briefly.

� Bayesian kriging (not described further in this book) was introduced by Omre
(1987) for situations in which there is some prior knowledge about the drift.
It is intermediate between simple kriging, used when there is no drift, and
universal kriging where there is known to be drift. The kriging equations are
those of simple kriging, but with non-stationary covariances (Chilès and
Delfiner, 1999).

8.2 THEORY OF ORDINARY KRIGING

The aim of kriging is to estimate the value of a random variable, Z, at one or
more unsampled points or over larger blocks, from more or less sparse sample
data on a given support, say zðx1Þ; zðx2Þ; . . . ; zðxNÞ, at points x1; x2; . . . ; xN .
The data may be distributed in one, two or three dimensions, though
applications in the environmental sciences are usually two-dimensional.

Ordinary kriging is by far the most common type of kriging in practice,
and for this reason we focus on its theory here. It is based on the assumption
that we do not know the mean. If we consider punctual estimation first, then we
estimate Z at a point x0 by Ẑðx0Þ, with the same support as the data, by

Ẑðx0Þ ¼
XN

i¼1

lizðxiÞ; ð8:1Þ
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where li are the weights. To ensure that the estimate is unbiased the weights
are made to sum to 1,

XN

i¼1

li ¼ 1;

and the expected error is E½Ẑðx0Þ � Zðx0Þ� ¼ 0. The estimation variance is

var½Ẑðx0Þ� ¼ E½fẐðx0Þ � Zðx0Þg2�

¼ 2
XN

i¼1

ligðxi; x0Þ �
XN

i¼1

XN

j¼1

liljgðxi; xjÞ; ð8:2Þ

where gðxi; xjÞ is the semivariance of Z between the data points xi and xj, and
gðxi; x0Þ is the semivariance between the ith data point and the target point x0.

In the more general case we may wish to estimate Z in a block B, which may be
a line, an area or a volume depending on whether it is in one, two or three spatial
dimensions. The kriged estimate in B is still a simple weighted average of the data,

ẐðBÞ ¼
XN

i¼1

lizðxiÞ; ð8:3Þ

but with x0 of equation (8.1) replaced by B. Its variance is

var½ẐðBÞ� ¼ E½fẐðBÞ � ZðBÞg2�

¼ 2
XN

i¼1

li�gðxi;BÞ �
XN

i¼1

XN

j¼1

liljgðxi; xjÞ � �gðB;BÞ: ð8:4Þ

The quantity �gðxi;BÞ is the average semivariance between the ith sampling
point and the block B and is the integral

�gðxi;BÞ ¼ 1

jBj

Z
B

gðxi; xÞdx; ð8:5Þ

where gðxi; xÞ denotes the semivariance between the sampling point xi and a
point x describing the block, Figure 8.1(a). The third term on the right-hand
side of equation (8.4) is the double integral

�gðB;BÞ ¼ 1

jBj2
Z

B

Z
B

gðx; x0Þdxdx0; ð8:6Þ

where gðx; x0Þ is the semivariance between two points x and x0 that sweep
independently over B, Figure 8.1(b). It is the within-block variance. In punctual
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kriging �gðB;BÞ becomes gðx0; x0Þ ¼ 0, which is why equation (8.2) has two
terms rather than three.

For each kriged estimate there is an associated kriging variance, which we
can denote by s2ðx0Þ and s2ðBÞ for the point and block, respectively, and which
are defined in equations (8.2) and (8.4). The next step in kriging is to find the
weights that minimize these variances, subject to the constraint that they sum
to 1. We achieve this using the method of Lagrange multipliers.

We define an auxiliary function f ðli;cÞ that contains the variance we wish
to minimize plus a term containing a Lagrange multiplier, c. For punctual
kriging it is

Tðli;cÞ ¼ var½Ẑðx0Þ � zðx0Þ� � 2c
XN

i¼1

li � 1

( )
: ð8:7Þ

We then set the partial derivatives of the function with respect to the weights
to 0:

@f ðli;cÞ
@li

¼ 0;

@f ðli;cÞ
@c

¼ 0; ð8:8Þ

for i ¼ 1;2; . . . ;N. This leads to a set of N þ 1 equations in N þ 1 unknowns:

XN

i¼1

ligðxi; xjÞ þ cðx0Þ ¼ gðxj; x0Þ for all j;

XN

i¼1

li ¼ 1: ð8:9Þ

Figure 8.1 Integration of the variogram: (a) between a sampling point and a block; (b)
within a block.
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This is the ordinary kriging system for points. Its solution provides the weights, li,
which are entered into equation (8.1), and from which the estimation variance
(prediction variance or specifically kriging variance) can be obtained as

s2ðx0Þ ¼
XN

i¼1

ligðxi; x0Þ þ cðx0Þ: ð8:10Þ

If a target point, x0, happens to be one of the data points, say xj, then s2ðx0Þ is
minimized when lðxjÞ ¼ 1 and all of the other weights are 0. In fact, s2ðx0Þ ¼ 0,
and by inserting the weights into equation (8.1) we obtain the recorded value,
zðxjÞ, as our estimate of zðx0Þ. Punctual kriging is thus an exact interpolator.

The equivalent kriging system for blocks is

XN

i¼1

ligðxi; xjÞ þ cðBÞ ¼ �gðxj;BÞ for all j;

XN

i¼1

li ¼ 1; ð8:11Þ

with the associated variance obtained as

s2ðBÞ ¼
XN

i¼1

li�gðxi;BÞ þ cðBÞ � �gðB;BÞ: ð8:12Þ

The kriging equations can be represented in matrix form. For punctual
kriging they are

Al ¼ b ð8:13Þ

where

A ¼

gðx1; x1Þ gðx1; x2Þ � � � gðx1; xNÞ 1

gðx2; x1Þ gðx2; x2Þ � � � gðx2; xNÞ 1

..

. ..
.

� � � ..
. ..

.

gðxN ; x1Þ gðxN ; x2Þ � � � gðxN ; xNÞ 1

1 1 � � � 1 0

2
66666664

3
77777775
;

l ¼

l1

l2

..

.

lN

cðx0Þ

2
66666664

3
77777775

and b ¼

gðx1; x0Þ
gðx2; x0Þ

..

.

gðxN ; x0Þ
1

2
66666664

3
77777775
:
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Matrix A is inverted, and the weights and the Lagrange multiplier are obtained
as

l ¼ A�1b: ð8:14Þ

The kriging variance is given by

ŝ2ðx0Þ ¼ bTl: ð8:15Þ

For block kriging the only differences are that

b ¼

�gðx1;BÞ
�gðx2;BÞ

..

.

�gðxN ;BÞ
1

2
666666664

3
777777775

and

ŝ2ðBÞ ¼ bTl� �gðB;BÞ: ð8:16Þ

8.3 WEIGHTS

When the kriging equations are solved to obtain the weights, li, in general the
only large weights are those of the points near to the point or block to be kriged.
The nearest four or five might contribute 80% of the total weight, and the next
nearest ten almost all of the remainder. The weights also depend on the
configuration of the sampling. We can summarize the factors affecting the
weights as follows.

1. Near points carry more weight than more distant ones. Their relative
proportions depend on the positions of the sampling points and on the
variogram: the larger is the nugget variance, the smaller are the weights of
the points that are nearest to target point or block.

2. The relative weights of points also depend on the block size: as the block size
increases, the weights of the nearest points decrease and those of the more
distant points increase (Figure 8.9), until the weights become nearly equal.

3. Clustered points carry less weight individually than isolated ones at the
same distance (Figure 8.12).
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4. Data points can be screened by ones lying between them and the target
(Figure 8.12).

These effects are all intuitively desirable, and the first shows that kriging is local.
They will become evident in the examples below. They also have practical
implications. The most important for present purposes is that because only the
nearest few data points to the target carry significant weight, matrix A in the
kriging system need never be large and its inversion will be swift. We can
replace N in equations (8.9) and (8.11) by some much smaller number, say
n � N. We shall reiterate this below after the examples in which we set n to 16.

8.4 EXAMPLES

This section shows the effects of a changing variogram, target point and
sampling intensity on the weights in a way analogous to the kriging exercises
in GSLIB (Deutsch and Journel, 1992). It uses the data on pH from Broom’s
Barn Farm for the purpose. We have chosen pH because it is easy to appreciate
changes in the estimated values and because we can start with a simple
isotropic exponential model without nugget (Figure 8.2), which is the best-
fitting model:

gðhÞ ¼ cf1 � expð�h=rÞg; ð8:17Þ

with c ¼ 0:382 and r ¼ 90:53 m, i.e. an effective range ða0 ¼ 3rÞ of approxi-
mately 272 m (Table 8.1). We have also selected n ¼ 16 points on a 4 � 4 lattice
from the full set of data (Figure 8.3). There are also three separate target points,
one at the centre of the lattice, Figure 8.3(a), one off-centre, Figure 8.3(b), and a
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Figure 8.2 Variogram of pH at Broom’s Barn Farm. The points are the experimental
semivariances, and the solid line is the best fitting exponential model, the parameters of
which are given in the text.
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third coinciding with one of the sampling points, Figure 8.11(c). Using equation
(8.9) and the 16 points we estimated the values at the target points as follows.

8.4.1 Kriging at the centre of the lattice

Changing the ratio of nugget:sill variance

Figure 8.4(a) shows the weights derived using the best-fitting model to pH
(exponential N1, Table 8.1; and exponential R2, Table 8.2). The weights of the
four points nearest to the target point are large and positive, and their sum
exceeds 1. To ensure unbiasedness the sum of all the weights must be 1, and
hence the weights of the outer points are negative. In this case the outer points
are close to 0 and so have little influence on the estimate.

We now change the variogram by introducing a nugget variance, c0 ¼ 0:1
(the model parameters are those of exponential N2 in Table 8.1). The resulting

Figure 8.3 The grid of 16 sample values selected from Broom’s Barn Farm with the pH
values given for each sampling location. The point to be estimated is located: (a)
centrally; (b) off-centre.

Table 8.1 Model parameters with changing ratio of nugget:sill variance and fixed
distance parameter, r ¼ 90:53 m, equivalent to an effective range of 271.6 m.

Model c0 c

Exponential N1 0 0.3820
Exponential N2 0.1 0.2820
Exponential N3 0.3 0.0820
Exponential N4 0.382 0
(Pure nugget) 1 0
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Figure 8.4 Kriging weights from punctual kriging of pH with an exponential function
with the distance parameter r ¼ 90:53 m, and changing the nugget:sill variance:
(a) c0 ¼ 0, c ¼ 0:382; (b) c0 ¼ 0:1, c ¼ 0:282; (c) c0 ¼ 0:3, c ¼ 0:082; (d) c0 ¼
0:382, c ¼ 0.

Table 8.2 Model parameters with changing distance parameter, r, for exponential
model.

Model c0 c r/m Effective range/m

Exponential R1 0 0.382 133.3 400.00
Exponential R2 0 0.382 90.53 271.59
Exponential R3 0 0.382 26.67 80.00
Exponential R4 0 0.382 6.67 20.00
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weights are shown in Figure 8.4(b): those of the inner four points have
decreased somewhat, whilst those of the outer points have increased and are
now all positive. The weights of the corner points of the lattice are the smallest
because they are the furthest from x0.

Figure 8.4(c) shows the weights obtained by increasing the proportion of
nugget more substantially so that it dominates (the model parameters are those of
exponential N3 in Table 8.1). The weights of the inner points have decreased
considerably, and those of the outer ones have increased correspondingly.

For a pure nugget variogram, with parameters exponential (N4) in Table 8.1,
the weights are all the same (Figure 8.4(d)). The result is the same as if we had
sampled at random in classical estimation; the kriging variance is the variance
of the process, c0, plus the variance of the mean, given by cðx0). The solution of
equation (8.15) is

c0 þ cðx0Þ ¼ 0:382 þ 0:0625 ¼ 0:4445: ð8:18Þ

Figure 8.5(a) summarizes the shapes of the exponential variogram models
that resulted from changing the ratio of nugget:sill variance and keeping the
distance parameter constant.

The estimated value for pH and kriging variance are given for each of the
above examples (Figure 8.4). The estimated value changes each time: we can
assume that 7.04 is the optimal estimate because it was derived from the
best-fitting model. The average pH of the 16 values is 7.11, which is also the
estimate returned with a pure nugget variogram and for which the kriging
variance is the largest. The kriging variance increases as the nugget variance

Figure 8.5 (a) Exponential variograms used to obtain the weights in Figure 8.4 with
the distance parameter r ¼ 90:53 m, and changing the nugget:sill variance: 0:0.382;
0.1:0.282; 0.3:0.082; 0.382:0. (b) Effect on the exponential variogram of changing the
effective range (a0 ¼ 3r) with c0 ¼ 0 and c ¼ 0:382: a0 ¼ 400, 271.59, 80, 20.
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increases, as we should expect, because the greater the variance that remains
unresolved the more uncertain is the estimate. The estimates and their
associated variances illustrate two points:

(i) A nugget variance increases the kriging variance, and for punctual kriging
it sets a lower limit to that variance (see Figures 8.17 and 11.8(b)).

(ii) It is important to fit the model correctly to the sample semivariances
because of the effect of the model on both the estimates and their variances.

Although the kriging variances are smaller for a smaller nugget variance, the
model must represent the nugget effect realistically. If it does not then the
estimates could be judged to be more or less reliable than they really are.

Changing the range or sampling intensity

We now explore the effect of decreasing the range of spatial dependence, or, what
amounts to the same thing, decreasing the sampling density. The nugget variance
and the sill of the spatially dependent component, c, were kept constant and we
changed the distance parameter, as shown in Table 8.2. Figure 8.5(b) shows the
effect on the shape of the exponential variogram, and Figure 8.6(a) shows the
weights for exponential R1, where the effective range of dependence (a0 ¼ 3r) is
400 m. The weights of the inner four points are the largest, and the outer ones
contribute little or nothing. If we compare this with Figure 8.6(b) for the best-
fitting exponential model R2, it is clear that they are similar. As the effective range
lengthens, however, the inner points gain weight in accordance with the increase
in spatial continuity in the variation. If we reduce the effective range substantially
to 80 m (exponential (R3)), then the weights of the inner points decrease and
those of the outer ones increase (Figure 8.6(c)). When we reduce the effective
range to half the sampling interval, i.e. 20 m (exponential R4), the variogram is
effectively pure nugget. Figure 8.6(d) shows the weights which are now small for
all of the points, though they are not all the same: the inner ones are somewhat
larger than the outer ones, because with the exponential model the distance
parameter does not disappear completely. Nevertheless, the estimate is the mean
of the data as in the previous example, Figure 8.4(a), but the kriging variance is a
little less because of the effect of the differences in the weights.

Since changing the distance parameter of a spherical model has a different
effect, we include the results of changing the range of the best-fitting spherical
function to the 16 points. The spherical function is given by

gðhÞ ¼ c0 þ c
3h

2a
� 1

2

h

a

� �3
( )

; ð8:19Þ

with the parameter values c0 ¼ 0:0309; c ¼ 0:3211 and a ¼ 203:2 m for the
best-fitting spherical function.
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There are several interesting differences between the results of these models.
Figure 8.7(a) shows the best-fitting spherical and exponential models fitted to
pH, and Figure 8.7(b) shows the effect of changing the range on the shape of
the spherical model.

To compare the weights with those for the exponential model we started with
spherical A1 of Table 8.3, with a range of 400 m. The weights of the inner

Figure 8.6 Kriging weights from punctual kriging of pH with an exponential function
with c0 ¼ 0 and c ¼ 0:382, and changing the effective range (a0 ¼ 3r): (a) a0 ¼ 400; (b)
a0 ¼ 203:2; (c) a0 ¼ 80:0; (d) a0 ¼ 20:0.
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points are smaller, and those of the outer ones larger, than those for the
exponential model, Figure 8.8(a). This is because the spherical model has a
small nugget variance, whereas the exponential had none, and there is a
difference in the curvature of these two models (Figure 8.7(a)). Figure 8.8(b)
shows the weights obtained when using the best-fitting spherical function,
spherical A2; the inner weights are larger and the outer ones slightly smaller. It
is a reversal of the effect with the exponential model. When the range is reduced
to 80 m, spherical (A3), the inner weights, Figure 8.8(c), are much larger than
for the equivalent exponential model, Figure 8.6(c), again because of the effect
of the model’s curvature. Finally, when the range is 20 m the weights are all the
same, Figure 8.8(d), and the observed effect is the same as that for the pure
nugget variogram. In this situation all of the variation occurs within the
sampling interval. It illustrates clearly that if the distance over which most of
the variation occurs is less than the sampling interval then the simple formula for
random sampling gives the best estimate for an unsampled point, which is the
mean of the data. It also shows the importance of sampling sufficiently densely to
estimate the variogram at the spatial scale of the investigation.

Figure 8.7 (a) The best-fitting spherical (solid line) and exponential (dashed line) fitted
to the experimental variogram of pH. (b) Spherical variograms used to obtain the weights
in Figure 8.8 with c0 ¼ 0:031, c ¼ 0:321, and range a ¼ 203:2 m, 160 m, 80 m, 20 m.

Table 8.3 Parameters with the range changing for spherical model.

Model c0 c Range/m

Spherical A1 0.0309 0.3211 400.0
Spherical A2 0.0309 0.3211 203.2
Spherical A3 0.0309 0.3211 80.0
Spherical A4 0.0309 0.3211 20.0
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In summary, Figure 8.8(a)–(c) shows that as the distance parameter
decreases the weights of the inner points increase and those of the outer ones
decrease. Apart from Figure 8.8(a), the estimates are sensibly the same as those
for the exponential model, but the kriging variances for the spherical model are
smaller in every case.

Figure 8.8 Kriging weights from punctual kriging of pH with a spherical function with
c0 ¼ 0:031, c ¼ 0:321, and changing the distance parameter (range): (a) a ¼ 400 m;
(b) a ¼ 203:2 m; (c) a ¼ 80 m; (d) a ¼ 20 m.
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Kriging over a block

The results for block kriging over a centrally located 80 m � 80 m block with
the parameters of the best-fitting exponential model (N1 in Table 8.1), are
shown in Figure 8.9(a), and those with exponential (N2) in Figure 8.9(b). A
comparison of the weights in Figures 8.4(a) and 8.9(a) shows that by increas-
ing the block size the inner weights decrease and the outer ones increase. The
differences between the two figures are small, but the kriging variance for block
kriging with this model is only a little more than a third of that for punctual
kriging. With a modest nugget variance, exponential N2, the relative decrease
in the inner weights for block kriging, Figure 8.9(b), is somewhat less than in
Figure 8.4(b), but the decrease in the kriging variance over that of punctual
kriging is even more marked; it is now less than a quarter. Nevertheless, the
estimated values are the same in each case.

This comparison shows two effects of the nugget variance as follows:

1. The nugget variance sets a lower limit to the punctual kriging variance.
2. The nugget variance disappears from the block-kriging variance; see

equations (8.4) and (8.12). Therefore, the larger is the proportion of
the nugget variance, which is taken out of consideration, the smaller
is the block-kriging variance and the greater is the difference between it and
the punctual kriging variance.

It also raises an important issue of confidence. When practitioners fit models to
variograms, whether by eye or by minimizing some function of the residuals, they

Figure 8.9 Kriging weights from block kriging of pH over a centrally located block of
80 m � 80 m: (a) for the best-fitting exponential model with c0 ¼ 0, c ¼ 0:382 and
r ¼ 90:53 m; (b) with c0 ¼ 0:1, c ¼ 0:282 and r ¼ 90:53 m.
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project their models towards the ordinate with the least change in curvature. They
know nothing about the shape of the variogram at distances less than the shortest
lag interval, and the practice may be regarded as prudent. The intercept gives them
a nugget variance that is almost certainly larger than any error of measurement or
short-range spatial component. When the model is used for punctual kriging the
errors will, therefore, tend to be on the large side; the estimates are conservative.
However, when the same model is used for block kriging, if the nugget variance is
exaggerated then the kriging variance will be too small for the reasons given
above, and the practitioner will obtain a false sense of confidence.

The effect of anisotropy

We examine the effect of geometric anisotropy on the weights by punctual
kriging with the exponential model

gðh; #Þ ¼ cf1 � expð�h=VÞg; ð8:20Þ

where

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 cos2ð#� ’Þ þ B2 sin2ð#� ’Þ

q
; ð8:21Þ

in which A ¼ 271:6; B ¼ 90:5 and ’ ¼ p=2 ¼ 0:7854 rad or 45�. The angle
’ is the direction of maximum continuity, i.e. largest effective range, as in
Figure 5.13. The ratio A=B is the anisotropy ratio, and is 3 ¼ 271:6=90:5.
Figure 8.10(a) shows the weights for the isotropic variogram and Figure 8.10(b)
those for the anisotropic function. The largest weights are at the points adjacent
to the target point along the 45� diagonal.

There is a marked decrease in the weights of the adjacent points at right
angles. The changes in the weights of the outer points are far less marked.
If we change ’ to 0.2618 rad, or 15� (75� in geographical notation) then
Figure 8.10(c) ensues; the distribution of the weights has changed. The increase
in the weights of the nearest points is less dramatic, but the outer weights close
to the (15�) line have increased substantially to 0.153.

8.4.2 Kriging off-centre in the lattice and at a sampling point

Let us now use the exponential models (Table 8.1), one with no nugget N1 and
the other with a nugget variance of 0.1 N2, to estimate the value at a target
point that is off-centre but on a diagonal of the grid (Figure 8.11). In both
Figure 8.11(a) and 8.11(b) the point closest to the target has the largest weight,
and the point diagonally opposite has the smallest weight of the four inner
points. The other two inner points have the same weights because they are
equidistant from the target. The weights of the outer points now show the effect
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of screening. Figure 8.11(a) shows that the unscreened outer points have
positive weights, whereas those that are screened are negative.

The weights in Figure 8.11(c) were obtained by solution of the kriging system
for punctual kriging at the target point coinciding with the sampling location
indicated. They are 1 at the sampling point and 0 elsewhere, which is what we
should expect from theory. The estimate is the sample value, and the estimation
variance is 0, so illustrating that ordinary punctual kriging is an exact
interpolator. The weights in Figure 8.11(d) were obtained with the same model

Figure 8.10 Kriging weights from punctual kriging of pH: (a) for the best-fitting
exponential model with c0 ¼ 0, c ¼ 0:382, and r ¼ 90:53 m; (b) for an anisotropic
exponential model with the direction of maximum variation p=2 radians and an
anisotropy ratio of 3; (c) with the direction of maximum variation 1.309 rad.
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and kriging over a 80 m � 80 m block centred at the same sampling point. The
weight at the sampling location is an order of magnitude larger than those of
the surrounding nearest points, while those of the outer edges are negative. The
estimate is substantially different from the measured value at the centre of the

Figure 8.11 Kriging weights of pH with the exponential function: punctual kriging
with the point to be estimated off-centre and the model: (a) c0 ¼ 0, c ¼ 0:382,
r ¼ 90:53 m; (b) c0 ¼ 0:1, c ¼ 0:282, r ¼ 90:53 m; (c) with the point to be estimated
at a sampling location with c0 ¼ 0, c ¼ 0:382, r ¼ 90:53 m; (d) block kriging with an
80 m � 80 m block centred at a sampling point with c0 ¼ 0, c ¼ 0:382 and r ¼ 90:53 m.

Examples 171



block and shows the smoothing effect of block kriging. The kriging variance is
also very small, but not zero.

8.4.3 Kriging from irregularly spaced data

Figure 8.12 shows an irregular configuration of nine sampling points plus a
target point; the nine are a selection from the 16 values used previously, but
some of the locations were changed. The weights in Figure 8.12(a) were
obtained with the best-fitting exponential model N1, and punctual kriging.
Those in Figure 8.12(b) were derived with exponential N2. The two diagrams
show more clearly than those for the grid the effect of the data configuration on
the weights. Points that are clustered carry less weight relative to isolated ones.
The point to the north of the target carries almost twice the weight of the next
most important point because it is far from any other point. The points that are
screened by others have negative weights.

8.5 NEIGHBOURHOOD

The notion of the neighbourhood embodies the local nature of kriging, and it
confers advantages on the method, as follows.

1. Only the nearest few points to the target point or block carry significant
weight, therefore the kriging system need never be large and inverting
matrix A will be swift. We can replace N in equations (8.9) and (8.11) by a
much smaller n � N. This might not matter when kriging only one point
or block, but for mapping in which many estimates are needed it can make
a big difference because the time required to invert a matrix is approxi-

Figure 8.12 Kriging weights from punctual kriging of pH with an exponential model
and irregularly scattered sampling points: (a) c0 ¼ 0, c ¼ 0:382 and r ¼ 90:53 m;
(b) c0 ¼ 0:2, c ¼ 0:182 and r ¼ 90:53 m.
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mately proportional to the cube of its order. It also avoids instability that
can arise with large matrices.

2. If only the points near to the target carry significant weight then the
variogram need be estimated and modelled well only at short lag distances,
and in fact this is usually where the variogram is best estimated. The
widening of the confidence intervals on the experimental variogram is
somewhat less serious than it might appear from Chapter 5. This adds to
the desirability of giving most weight to the experimental semivariances at
the short lags when modelling the variogram.

3. The local nature of ordinary kriging means that what happens over large
distances is of little consequence for the estimates. We can accept the notion
of quasi-stationarity, i.e. local stationarity (Chapter 4), compute the
variogram over only short distances, and apply it without taking account
of long-range fluctuations in E½ZðxÞ�. The assumptions underpinning the
method are not violated. It is perhaps this feature that has made ordinary
kriging the ‘workhorse’ of geostatistics.

There are no strict rules for defining the neighbourhood, but we suggest some
guidelines as follows:

1. If the variogram is bounded and has a small nugget variance and the data are
dense then the radius of the neighbourhood can be set close to the range or
effective range. Any data beyond the range will have negligible weights.

2. If data are sparse, however, points beyond the range from the target might
carry sufficient weight to be important, and the neighbourhood should be
such as to include them.

3. If the nugget variance is large, then again distant points are likely to carry
significant weight.

4. As an alternative, the user may choose the nearest n data points, and
effectively let this number limit the neighbourhood. If the sampling con-
figuration is irregular then the size of the neighbourhood will vary more or
less as the target point is moved. We have found that a maximum of n � 20
is usually enough.

5. If you set a maximum radius for the neighbourhood then you may also
need to set a minimum for n, especially to cater for targets near the
boundary of a region. A value of n � 7 is likely to be satisfactory.

6. Where the scatter is very uneven good practice is to divide the space around
the target point into octants and take the nearest two points in each.
Several kriging programs do this as a matter of course.

We recommend that when you start to analyse new data you examine what
happens to the kriging weights as you change the neighbourhood. This is especi-
ally important in mapping where you move the neighbourhood. In these circum-
stances the most distant points should have zero weight so that the estimated
surface appears seamless; see Laslett et al. (1987) for an illustrated discussion.
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8.6 ORDINARY KRIGING FOR MAPPING

Kriging was developed in mining originally to estimate the amounts of metal in
blocks of rock, and it is still used in this way. In these circumstances every block
of rock is potentially of interest, and its metal content will be estimated. The
miner may then decide whether the rock contains sufficient metal to be mined
and sent for processing. Environmental scientists, and pedologists in particular,
have used kriging in a rather different way, namely optimal interpolation at
many places for mapping. The earliest examples are those by Burgess and
Webster (1980a, 1980b) and Burgess et al. (1981), who used ordinary kriging.
There have been many since, for example Mulla (1997), Frogbrook (1999) and
Frogbrook et al. (1999) in precision agriculture.

To map a variable the values are kriged at the nodes of a fine grid. Isarithms
are then threaded through this grid, and there are now many programs and
packages, such as Surfer (Golden Software, 2002) and Gsharp, and geographi-
cal information systems, such as Arc/Info, that will do this with excellent
graphics. Computing the isarithms involves another interpolation which is
rarely optimal in the kriging sense, but if the kriged grid is fine enough this lack
of optimality is immaterial. In most instances kriging at intervals of 2 mm on
the finished map will be adequate.

The kriging variances and their square roots, the kriging errors, can be
mapped similarly, and these maps give an idea of the reliability of the maps of
estimates.

Creating a grid of kriged values to make a map can involve heavy computa-
tion. In principle all the estimates and their variances could be found from a
single inversion of matrix A in equation (8.13) that contains all of the
semivariances between the sampling sites. As above, however, this is unwise
or even impossible when the matrices are large. In practice, therefore, one
enters into A only the semivariances for some n data points, i.e. within the
neighbourhood, near each grid node. This keeps the matrix small, but increases
the number of inversions needed. Inversion can be accelerated if you work with
the covariances instead of the semivariances because in the usual method of
matrix inversion the largest element in each row, which serves as a pivot, is
always in the diagonal of the covariance matrix and need not be sought.

For variables that are second-order stationary all the formulae for finding the
weights from the variogram also apply to the covariance function with only
changes of sign. For variables that are intrinsic only, the technique can still be
used if you take some arbitrary large value for the covariance at h ¼ 0.

Other economies can be made depending on the location of the sampling
points. If they are irregularly scattered then the same few data will often be used
to estimate ZðxÞ at several grid nodes within a small area. Furthermore, the
finer the interpolation grid the more nodes can be interpolated from the same
observations. Matrix A remains the same and needs inverting only once. Much
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larger economies are possible where the data are on a regular grid because the
same configuration recurs many times. Not only does the variogram remain
constant, but so also does matrix A for any given configuration. Each config-
uration requires only one matrix inversion. If sampling has been done on a
square grid and the interpolation grid fits on to it with interval 1=r times that of
the sampling grid then there are only r2 possible configurations except near to
the edge of the map. Where variation is isotropic the spatial relations have a
fourfold symmetry, so even fewer solutions are needed.

8.7 CASE STUDY

To illustrate the application of kriging to mapping we return to the analysis of
exchangeable potassium (K) from Broom’s Barn Farm. Since the distribution of
K is skewed (skewness 2.04, Table 2.1) we transformed the values to common
logarithms (log10K) which reduced the skewness to 0.39.

The variogram was computed on the transformed data, and the experimental
semivariances were fitted best by a spherical function, equation (8.19), by
weighted least-squares approximation as described in Chapter 5. The resulting
coefficients are c0 ¼ 0:0048; c ¼ 0:015 19 and a ¼ 439:2 m. Figure 8.13
shows the experimental variogram (symbols) and the fitted spherical model
(solid line). This function was then used for the kriging. We set the maximum
radius of the neighbourhood to 400 m, and we set the minimum number of

Figure 8.13 Variogram of exchangeable potassium at Broom’s Barn Farm trans-
formed to common logarithms. The points are the experimental semivariances, and the
solid line is the best-fitting spherical model, the parameters of which are given in the text.
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points to seven and the maximum to 20. We kriged at intervals of 10 m, and for
the block kriging our blocks were 50 m � 50 m. The estimated values and
kriging variances have been mapped with Gsharp.

Figure 8.14 is a map of the punctual estimates. For it we deliberately placed
the kriging grid over the sampling grid so that the sampling points lay on it to
illustrate the nugget effect. The map is somewhat ‘spotty’ because we have
kriged at the data points. The spatial pattern of log10K is distinctly patchy, as we
should expect from the spherical variogram; there are patches of large values
and patches of small ones. The average extent of the patches is about 400 m.

In the alternative representation as a perspective diagram (Figure 8.15), the
spots now appear as spectacular spikes, both above and below the surface. The
reason is that at the sampling points punctual kriging returns the measured
values there, whereas elsewhere it forms weighted averages of the data. The
nugget variance in the variogram represents a discontinuity (Chapter 5), and
this continues through to the kriging. Another way of viewing the effect is to
consider the estimate as comprising two parts: the nugget variance and the
continuous autocorrelated variation. Combining these two components pro-
duces the effect. The larger is the nugget variance as a proportion of the total
variance the more pronounced this effect becomes; when all of the variance is
nugget the surface becomes flat between the sampling points.

Figure 8.16 is a map of the block estimates which has lost the ‘spotty’
appearance of Figure 8.14. Nevertheless, the same broad pattern in the
distribution of log10K is evident. The block-kriged surface is smoother, and
this is evident in the perspective diagram of this surface, shown in Figure 8.17.

Figure 8.14 Map of exchangeable potassium, transformed to common logarithms, at
Broom’s Barn Farm made by punctual kriging on a 10 m � 10 m grid that coincided
with the sampling grid. The units are log10(mg K l�1Þ.
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The punctual kriging variances are shown in Figure 8.18. In general they are
much larger than those for the block kriging (see Figure 8.20), and the
technique therefore appears much less precise. At the data points, however,
they are zero. The perspective diagram (Figure 8.19), shows both features.
Between the sampling points the nugget variance sets a minimum to the
kriging variance, and at the sampling points the surface descends to zero.

Figure 8.15 Perspective diagram of exchangeable potassium transformed to common
logarithms at Broom’s Barn Farm made by punctual kriging on a 10 m � 10 m grid that
coincided with the sampling grid.

Figure 8.16 Map of log10(mg K l�1) at Broom’s Barn Farm made by kriging
50 m � 50 m blocks on a 10 m � 10 m grid.
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Figure 8.17 Perspective diagram of exchangeable potassium at Broom’s Barn made by
kriging 50 m � 50 m blocks on a 10 m � 10 m grid.

Figure 8.18 Map of the estimation variances of log10(mg K l�1) at Broom’s Barn Farm
for punctual kriging.

Figure 8.19 Perspective diagram of the estimation variances of log10(mg K l�1) at
Broom’s Barn Farm for punctual kriging.
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The block-kriging variances (Figures 8.20 and 8.21) are in general small, but
they increase rapidly near the boundaries of the farm, beyond which there are no
data, and similarly around the farm buildings (left above centre). The small ridge
on the right of Figure 8.21 is an access road, again without any data along it,
and the small hump on the lower left-hand side is where two data were lost.

Figure 8.20 Map of the estimation variances of log10(mg K l�1) at Broom’s Barn Farm
for block kriging over 50 m � 50 m blocks on a 10 m � 10 m grid.

Figure 8.21 Perspective diagram of the estimation variances of exchangeable potassium
at Broom’s Barn Farm for block kriging over 50 m � 50 m blocks on a 10 m � 10 m grid.

Case Study 179



8.7.1 Kriging with known measurement error

Throughout the above description of kriging and in the examples, we have
proceeded as if there were no errors in the measurements. We have treated the
nugget variance as if it were purely short-range spatial variation. Yet in
Chapter 5 we recognized that the nugget variance was likely to include
measurement error in addition to short-range variation. Like many practi-
tioners, we tend to ignore the former because it is usually much smaller than
the spatial component of the nugget, and often we do not know it. We should
recognize, however, that practitioners would like to estimate the true values at
unsampled places, not the values there plus measurement error. To do this, we
proceed as follows.

First, we distinguish the two sources of variance in the nugget as

c0 ¼ cs þ cm; ð8:22Þ

in which cs is the limit of the spatial component of gðhÞ as h approaches 0,
and cm is the variance of the measurement error. We can then use this
decomposition in kriging, as follows. In the punctual kriging system (equa-
tion (8.9)), we inserted 0 in the right-hand side where a target point, x0,
coincides with a data point, xj, on the assumption that there is no difference
between the true value and the observed one. If, however, we know cm then
we insert that value instead. The rest of the kriging system and the kriging
systems for other points remain as we give them in equation (8.9). Incorpor-
ating the measurement error affects only estimates at data points, which are
no longer the same as the observed values. In these circumstances punctual
kriging is no longer an exact interpolator. Finally, all the kriging variances
are diminished by cm:

s2
mðx0Þ ¼

XN

i¼1

ligðxi; x0Þ þ cðx0Þ � cm: ð8:23Þ

8.7.2 Summary

In practice exact interpolation might not be as attractive as one imagines,
because of the nugget effect. Nevertheless, we can avoid this effect of the nugget
variance either by offsetting the kriging grid so that estimates are not made at
any data points or by omitting any data point when it coincides with a target
point.

We can use the maps or diagrams of the estimation variance as a guide to the
reliability of our estimates, but with caution. The reliability of kriging depends
on how accurately the variation is represented by the chosen spatial model. If
the nugget variance is overestimated then so will be the punctual kriging
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variances, and our estimates will be more reliable than they appear to be. With
block kriging the reverse can be the case, and we might imagine our estimates
to be more reliable than they are. The block estimation variance comprises
three terms, one of which is the within-block variance. The latter is estimated
by integrating the variogram from jhj ¼ 0 to the limit of the block; see
Figure 8.1(b). If the semivariance is overestimated at short lags then the
within-block variance will also be overestimated, at least for small blocks
the sides of which are less than the shortest sampling interval of the variogram.
The estimates might therefore be less reliable than they appear. For larger
blocks estimates should be reliable because the contribution to the within-block
variance from the short lags will be a small proportion of the whole.

8.8 REGIONAL ESTIMATION

In the limit we can think of the whole region, R, of interest as a single large block
for which we could estimate the mean of Z, ẐðRÞ, by including all the data. In
classical estimation this is precisely what we do, giving all data the same weight;
see equation (2.34). The solution takes no account of known spatial correlation,
and kriging should do better by assigning differential weights.

We assume first that ZðxÞ is second-order stationary with mean m and
variance s2. As R increases so the average distance between pairs of points in it
increases, and the average semivariances, �gðxi;BÞ, in equation (8.11) approach
s2, the sill of the variogram. If the distance across R is much larger than the
effective range of the variogram then the �gðxi;BÞ will be so close to s2 that the
two can be taken as equal. The kriging system (8.11) can therefore be rewritten
as XN

i¼1

ligðxi; xjÞ þ cðRÞ ¼ ŝ2 for all j;

XN

i¼1

li ¼ 1: ð8:24Þ

The kriging weights are found in the usual way, and the kriging variance, from
equation (8.16), is

s2ðRÞ ¼ bTl� s2

¼ s2
XN

i¼1

li þ cðRÞ � �gðR;RÞ:
ð8:25Þ

The sum
PN

i¼1 li ¼ 1, and so we have that

s2ðRÞ ¼ cðRÞ: ð8:26Þ
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Since ZðxÞ must be second-order stationary, the covariances exist, and the
kriging system is usually expressed in terms of covariances:

XN

i¼1

liCðxi; xjÞ � cðRÞ ¼ 0 for all j;

XN

i¼1

li ¼ 1; ð8:27Þ

from which it follows immediately that s2ðRÞ ¼ bTlþ cðRÞ.
Kriging the mean is undoubtedly attractive from a theoretical point of view.

Unfortunately there are reasons why the approach cannot or should not be
pursued.

1. It is unwise to assume that a property, which is locally stationary in the
mean and semivariances, maintains that stationarity throughout a large
region.

2. The experimental variogram is usually known accurately only for the first
few lags; it almost certainly will not be well estimated for lags approaching
the distance across a large region.

3. A large sample could produce kriging matrices that are too large to invert
or that become unstable.

A practical alternative that avoids the difficulties is to divide the region into
small rectangular blocks or strata, estimate the mean in each by kriging, and
then compute the average of the estimates. If for some reason the blocks are not
all of the same size then their estimates can be weighted according to their
areas. For a region, R, divided into n blocks, Bi; i ¼ 1;2; . . . ; n; of area Hi, the
global mean, ZðRÞ, is estimated by

ẐðRÞ ¼
Xn

i¼1

HiẐðBiÞ
Xn

i¼1

Hi

,
; ð8:28Þ

where ẐðBiÞ is the kriged estimate of Z within the ith block. If the blocks are of
equal size then the Hi cancel, and ẐðRÞ ¼

Pn
i¼1 ẐðBÞ=n.

A problem arises in calculating the estimation variance. The error in the
global average equals the sum of the errors in the local estimates:

ẐðRÞ � ZðRÞ ¼
Xn

i¼1

HifẐðBiÞ � ZðBiÞg
Xn

i¼1

Hi

,
: ð8:29Þ

The estimation variance, s2ðRÞ ¼ E½fẐðRÞ � ZðRÞg2�, cannot be estimated
without bias by a simple sum, however, because the estimates in the neigh-
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bouring blocks are not independent; some of the data from which they are
computed are common. We can solve the problem by considering the error that
results from using the value at a sampling point to estimate the average value
over the portion of the region that is nearer to it than to any other, i.e. for its
Thiessen polygon or Dirichlet tile. For a rectangular grid each polygon is a
rectangle with an observation at its centre, xc, and sides equal to the sampling
intervals along the principal axes of the grid. The variance of the estimate of its
average is

s2ðBÞ ¼ 2�gðxc;BÞ � �gðB;BÞ; ð8:30Þ

where �gðxc;BÞ is the average semivariance between the centre and all other
points in the rectangle, and �gðB;BÞ is the variance within the polygon. Since
the estimated values for these rectangles are ẐðBiÞ; i ¼ 1;2; . . . ; n, the average
for the region is approximately

ẐBðRÞ ¼ 1

n

Xn

i¼1

ẐðBiÞ: ð8:31Þ

The error of this estimate is approximately ZðRÞ � ẐBðRÞ, and the correspond-
ing variance of the regional mean is

E½fZðRÞ � ẐBðRÞg2� � 1

n2

Xn

i¼1

E½fZðBiÞ � ZðxiÞg2�

¼ 1

n
s2ðBÞ: ð8:32Þ

The approximation improves as n increases.
Thus the error of the regional estimate depends on the variances within small

rectangular blocks, and these are likely to be much smaller than the variance
within the entire region.

8.9 SIMPLE KRIGING

Sometimes we know or can assume the mean of a random variable from the
nature of the problem. In these circumstances we should use that knowledge to
improve our estimates, and we can do so by ‘simple kriging’. Our kriged
estimate is still a linear sum, but now incorporating the mean, m, of the
process, which must be second-order stationary. Prediction by simple kriging is
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not an option for processes that are intrinsic only, a variogram with an upper
bound is needed. For punctual kriging the equation is

ẐSKðx0Þ ¼
XN

i¼1

lizðxiÞ þ 1 �
XN

i¼1

li

( )
m: ð8:33Þ

The li are the weights, as before, but they are no longer constrained to sum to
1. The unbiasedness is assured by inclusion of the second term on the right-
hand side of equation (8.33). Also, because the weights no longer sum to 1 we
have to work with the covariances, C, instead of the semivariances, g. We write
the simple kriging system as

XN

N¼1

liCðxi; xjÞ ¼ Cðx0; xjÞ for j ¼ 1;2; . . . ;N: ð8:34Þ

There is no Lagrange multiplier: there are only N equations in N unknowns.
The kriging variance is given by

s2
SKðx0Þ ¼ Cð0Þ �

XN

i¼1

liCðxi; x0Þ; ð8:35Þ

where Cð0Þ is the variance of the process.
As with ordinary kriging the technique can be generalized for blocks, B,

larger than the supports of the sample by replacing the Cðx0; xjÞ on the right-
hand side of equation (8.34) by the averages �CðB; xjÞ. Also, N, the total size of
the sample, can usually be replaced by n � N data in close proximity to x0 or B.

In general, the variances obtained by simple kriging are somewhat smaller
than those from ordinary kriging, and we might think that we could improve
the predictions by introducing the mean estimated from the data, m̂.
Wackernagel (2003) shows that if we use the kriged mean, i.e. by putting
m̂ ¼ ẐðRÞ, we obtain the ordinary kriging predictor with variance

s2
OKðx0Þ ¼ s2

SKðx0Þ þ 1 �
XN

i¼1

lSK
i

( )2

cðRÞ: ð8:36Þ

In words, the ordinary kriging variance is the sum of the simple kriging
variance plus the variance arising from the estimate of the mean. There is
nothing to be gained by taking this approach because there is no more
information. If the mean is estimated from many data, as will usually be the
case, then cðRÞ will be small in relation to s2

SKðx0Þ, and provided the sum of the
simple kriging weights is close to 1 the second term on the right-hand side of
equation (8.36) is likely to be very small indeed.
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8.10 LOGNORMAL KRIGING

A more common situation in the environmental sciences, and in mining and
petroleum engineering too, is that the data are markedly skewed and non-
normal. As mentioned in Chapter 6, the variogram is sensitive to strong positive
skewness because a few exceptionally large values contribute to so many squared
differences. Such skewness can often be removed and the variances stabilized by
taking logarithms. If by transforming to logarithms the distribution is made near-
normal then it is said to be lognormal. This leads to lognormal kriging.

The data zðx1Þ; zðx2Þ; . . . are transformed to their corresponding natural
logarithms, say yðx1Þ; yðx2Þ; . . . , which represent a sample from the random
variable YðxÞ ¼ lnZðxÞ; which is assumed to be second-order stationary. The
variogram of YðxÞ is computed and modelled and then used with the trans-
formed data to estimate Y at the target points or blocks by either ordinary or
simple kriging. The estimated values are in logarithms.

For some purposes, as for example at Broom’s Barn Farm where an index of
soil fertility is wanted, the logarithms can serve well. However, in many other
disciplines, such as mining, exploration geochemistry, and pollution monitor-
ing, surveyors want estimates expressed in the original units, and the loga-
rithms must be transformed back to concentration.

The back-transformation of a punctual estimate is fairly straightforward. If
we denote the kriged estimate of the natural logarithm at x0 as Ŷðx0Þ and its
variance as s2ðx0Þ then the formulae for the back-transformation of the
estimates are, for simple kriging,

ẐSKðx0Þ ¼ expfŶSKðx0Þ þ s2
SKðx0Þ=2g; ð8:37Þ

and for ordinary kriging,

ẐOKðx0Þ ¼ exp ŶOKðx0Þ þ s2
OKðx0Þ=2 � cðx0Þ

� �
; ð8:38Þ

where c is the Lagrange multiplier in ordinary kriging. The estimation variance
of Zðx0Þ for simple kriging is

varSK½Ẑðx0Þ� ¼ m2 expðs2
SKÞ 1 � exp �s2

SKðx0Þ=2
� �� �

; ð8:39Þ

where m is the mean of ZðxÞ. We cannot obtain an unbiased back-transform of
the ordinary kriging variance because the mean, m, is not known.

In many fields of application people prefer to work with common logarithms.
The variogram of log10ZðxÞ replaces that of lnZðxÞ, and the back-transform for
ordinary kriging is given by

Ẑðx0Þ ¼ exp Ŷðx0Þ � ln 10 þ 0:5s2
Yðx0Þ � ðln 10Þ2 � cðx0Þ � ðln 10Þ2

n o
:

ð8:40Þ
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Journel and Huijbregts (1978) point out that the expression in equation
(8.37) for the back-transformation is sensitive to departures from lognormality
and that in consequence the estimates of Z can be biased. They suggest a check
for bias by comparing the mean of the estimates, Ẑ, with the mean of the data,
zðxiÞ; i ¼ 1;2; . . . ;N. If we denote the ratio of the means, mean½Ẑ� : �z, by Q then
we modify equation (8.37) to

ẐSKðx0Þ ¼ Q exp ŶSKðx0Þ þ s2
SKðx0Þ=2

� �
; ð8:41Þ

or equation (8.38) in like manner if we have used ordinary kriging. In our
experience Q has always been so close to 1 that we have not needed the
elaboration. Figure 8.22 shows the back-transformed values of the block-kriged
estimates of log10K.

You can find an up-to-date review of the problems associated with back-
transformation and solutions for several situations in Cressie (2006).

8.11 OPTIMAL SAMPLING FOR MAPPING

From equations (8.2) and (8.4) it is evident that the kriging weights depend on
the configuration of the sampling points in relation to the target point or block
and on the variogram. They do not depend at all on the observed values at
those points. The same applies to the kriging variances, see equation (8.2).

Figure 8.22 Map of block-kriged estimates of potassium at Broom’s Barn Farm after
back-transformation.
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Therefore, if we know the variogram then we can determine the kriging errors
for any sampling configuration before doing the sampling, and we can design a
sampling scheme to meet a specified tolerance or precision.

In general, mapping is most efficient if survey is done on a regular grid in
the sense that the maximum kriging error is minimized. Where there is spatial
dependence the information from an observation pertains to an area sur-
rounding it, and specifically to the neighbourhood within its range if the
variable is second-order stationary. If the neighbourhoods of two observations
overlap then information is duplicated to some extent. Any kind of clustering
of points, such as arises with random sampling, means that information can
be replicated while elsewhere there is underrepresentation or even big gaps.
We can minimize redundancy by placing the sampling points as far away
from their neighbours as possible for a given sampling density. This approach
also minimizes the area that is underrepresented. Triangular configurations
are the most efficient in this respect. For a grid with one node per unit area
neighbouring sampling points are 1.0746 units of distance apart, and no
point is more than 0.6204 units away from another. We denote this
maximum distance dmax. Rectangular grids have some neighbours that are
closer and others that are further away. For a square grid with one node per
unit area the sampling interval is 1, and dmax ¼ 1=

ffiffiffi
2

p
¼ 0:7071. For a

hexagonal grid with unit sampling density dmax ¼ 0:8772. From this we
should expect triangular sampling configurations to be the most efficient.
Matérn (1960) and Dalenius et al. (1961) showed that where the variogram is
exponential the triangular grid is optimal for estimating the mean of a region,
and in most circumstances with bounded variograms that have finite ranges.
The same is also true if the variogram is unbounded. In certain restricted
circumstances with variograms with a finite range, a hexagonal grid can be
the most efficient (Yfantis et al., 1987). In general, however, rectangular grids
are preferred because they are easier to work with in the field. Figure 8.23(a)
shows that the difference in precision between a triangular configuration and
a square one is small, and that we can choose the type of grid that we prefer to
work with.

The variogram then enables us to optimize the sampling interval to estimate
both the regional mean and local values for mapping. For estimation by kriging,
or indeed any other method of interpolation, the distances between neighbour-
ing sampling points should be well within the correlation range. As we have
seen above, if they are beyond the range then kriging simply returns the mean
of the points in the neighbourhood.

The kriging errors are not the same everywhere. With punctual kriging there
is no error at the sampling points, see Figure 8.11(c), and, in general, the
further a target point is from the data the larger the error. If we sample on a
regular grid we minimize dmax, which is the distance between a target point at
the centre of a grid cell and its nearest sampling point on the grid node. We also
minimize the maximum kriging error, except near the margins of the map.
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8.11.1 Isotropic variation

Burgess et al. (1981) and McBratney et al. (1981) showed how the kriging
equations can be solved to design an optimal sampling scheme. For punctual
kriging we solve equations (8.9), and determine the kriging variances and
errors by equation (8.10) at the centres of grid cells for a range of sampling
intervals. The variances are then plotted against the grid spacing. If we have in
mind a maximum variance or error that we can tolerate then we can draw a
horizontal line across the graph until it meets the maximum kriging variance. A
perpendicular from this point gives the optimal sample spacing.

To illustrate the procedure we use the variogram log10K for Broom’s Barn
Farm (Figure 8.13 and Table 5.1). Figure 8.23(a) shows the maximum
punctual kriging variance for square and triangular grids. Note that the
difference between the curves for the square and triangular grids is not nearly
as large as the 12% difference in dmax for the two grids. The line drawn across
the graph at 0.003 is the kriging variance on the logarithmic scale that is
approximately equivalent to a 90% confidence interval of 10 mg l�1 at the
deficiency threshold of 25 mg l�1. The kriging variances are large, and all
exceed this tolerance.

Figure 8.23 Graph of kriging variance against sampling interval to map exchangeable
potassium at Broom’s Barn Farm: (a) for punctual kriging on a square grid and a triangular
grid; (b) for block kriging with 24 m � 24 m and 100 m � 100 m blocks (lower lines are
the variances centred on grid nodes and the upper ones centred in grid cells).
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Figure 8.23(a) illustrates two other features of punctual kriging. If we set the
maximum tolerable kriging variance at 0.003 then it is impossible to design a
satisfactory sampling scheme because we cannot diminish s2

max to less than the
nugget variance, 0.004 78. Second, s2

max increases to a maximum at which it
flattens. This maximum is somewhat larger than the sill of the variogram; in
fact it is the sill plus the Lagrange multiplier, c, of equation (8.9). Once dmax

exceeds the range of the variogram, 439 m in this case, all the semivariances in
the kriging system are equal, as are the weights, as we saw in the example
above. The additional quantity c represents the additional uncertainty of
predicting the value at a place from only local data.

The same reasoning and procedure apply to block kriging, equation (8.11).
However, it is less straightforward, and the result depends on the block size. For
blocks of side much smaller than the sampling interval the kriging variance will
be largest when the blocks are in the centres of grid cells. As the block is
increased in size the kriging variance decreases—contrast the 24 m � 24 m
blocks with the 100 m � 100 m blocks in Figure 8.23(b). Consider, however, a
block centred on a grid node. If the block is no larger than the sample support
this is effectively punctual kriging and the kriging variance is zero. As the block
size increases, its kriging variance initially increases because the dominant
effect of the observation at its centre declines. Only when it is big enough for the
nearest neighbours to be more influential does the kriging variance start to
decline. This difference in the configuration has another important effect. As the
block increases in size the weights of the sampling points nearest its centre
decrease, whereas the weights of those further away increase (see Figure 8.9). A
block size is eventually reached at which its estimation variance equals that for
a block centred in a grid cell. If the block size becomes larger still the kriging
variance can be greater than that of a block of the same size centred in a grid
cell. Therefore, for block kriging one must decide where to determine the kriging
variances, i.e. whether for blocks centred on grid cells or ones centred on grid
nodes. The position at which the kriging variance is greatest for a given block
size is the one to choose. Burgess et al. (1981) describe these effects in detail.

In Figure 8.23(b) the kriging variances for blocks centred at the cell centres
and grid nodes are plotted against distance for a square grid for blocks of side
24 m and 100 m. At the chosen tolerance the horizontal line intersects the
graph of the variances for blocks about 80 m apart for blocks of side 24 m and
about 130 m apart for 100 m blocks.

For block kriging of potassium at Broom’s Barn Farm the results suggest that
sampling might have been denser than necessary for mapping.

Using the variogram and the kriging equations one can design a new survey
to be optimal in the sense that sampling is just sufficiently intense to meet the
specified tolerance. Near the margins of the region some modifications might be
needed if sampling cannot be extended outside it because the variance increases
at the margin (see Figures 8.19 and 8.21); sampling would need to be increased
near the margin to keep within the tolerance.
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We can also use this approach if we feel that part of a region is under-
sampled. We can see whether adding further points will increase the precision
before sampling more. Also, if we have a network of stations for monitoring
rainfall or pollutants in ground water the effect of adding stations, moving
them or removing them can be assessed. This is what McCullagh (1976) did
with the Trent telemetry network. Barnes (1989) used different strategies to
optimize the placement of a new sampling station—depending on whether the
need was to improve the worst situation or to diminish the estimation variance
on average.

This approach allows sampling to be optimized in the sense of minimizing
effort.

8.11.2 Anisotropic variation

One can take anisotropy into account when planning sampling. The grid
spacing is adjusted so that the sampling is more intense in the direction of
minimum continuity, i.e. the direction with the maximum rate of spatial
change, than in other directions. The problem is to keep within the specified
tolerable error for least effort. The optimum solution depends on the form of the
anisotropy. The one that we illustrate is for strict geometric anisotropy (Burgess
et al., 1981).

Consider the linear variogram

gðh; #Þ ¼ Vð#Þjhj; ð8:42Þ

in which Vð#Þ is the sinusoidal function

Vð#Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2cos2ð#� ’Þ þ B2sin2ð#� ’Þ

q
: ð8:43Þ

In this equation ’ is the direction of maximum variation, A is the gradient of the
variogram in that direction, and B is the gradient in the perpendicular
direction, ’ þ p=2. When # ¼ ’, equation (8.42) reduces to

g1ðhÞ ¼ Ah; ð8:44Þ

and when # ¼ ’ þ p=2 it becomes

g2ðhÞ ¼ Bh: ð8:45Þ

As above, we can define an anisotropy ratio R:

R ¼ A=B ¼ g1ðhÞ=g2ðhÞ: ð8:46Þ
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The semivariance in direction ’ at any lag h is thus equal to the semivariance at
lag Rh in the direction ’ þ p=2:

g1ðhÞ ¼ g2ðRhÞ: ð8:47Þ

Using equation (8.47) we find the most economical sampling scheme as
follows. We treat the problem as though variation were isotropic with the
variogram g1ðhÞ. The sampling interval d is found in exactly the same way as
for the square grid. This then becomes the sampling interval in direction ’. We
take the anisotropy into account by making the sampling interval in the
perpendicular direction, ’ þ p=2, equal to Rd.

8.12 CROSS-VALIDATION

In Chapter 5 we fitted models by minimizing the deviations between the
observed semivariances and the ones expected from the model, and we chose
finally from among different kinds of model those for which the squared
deviations were least on average. We weighted the experimental values in
proportion to the numbers of pairs contributing to them, but we paid no
regard to the lag except incidentally when we refined the weighting as a
function of the expected value. This is not necessarily the best for kriging
because points near to the target point or block get more weight than more
distant ones. So we should really like the variogram to be accurate at short
lags, if necessary at the expense of less accuracy at longer lags. But how should
we choose?

One way of choosing between competing models is to use them for kriging
and see how well they perform. We can do this rigorously by having a separate
set of sample data against which to compare kriged estimates. Except in
research studies this would waste information, and validation usually is done
by a process known as ‘cross-validation’. It works as follows.

1. An experimental variogram is computed from the whole set of sample data,
and plausible models are fitted to it.

2. For each model, Z is estimated from the data and the model by kriging at
each sampling point in turn after excluding the sample value there. The
kriging variance is also calculated.

3. Three diagnostic statistics are calculated from the results:

(a) the mean deviation or mean error, ME, given by

ME ¼ 1

N

XN

i¼1

fzðxiÞ � ẐðxiÞg; ð8:48Þ
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(b) the mean squared deviation or mean squared error, MSE:

MSE ¼ 1

N

XN

i¼1

fzðxiÞ � ẐðxiÞg2; ð8:49Þ

(c) and the mean squared deviation ratio, MSDR, computed from the
squared errors and kriging variances, ŝ2ðxÞ, by

MSDR ¼ 1

N

XN

i¼1

fzðxiÞ � ẐðxiÞg2

ŝ2ðxiÞ
: ð8:50Þ

The mean error should ideally be 0 because kriging is unbiased. The calculated
ME, however, is a weak diagnostic because kriging is insensitive to inaccuracies
in the variogram. We want the MSE to be small, of course. If the model for the
variogram is accurate then the MSE should equal the kriging variance; and so
the MSDR should be 1.

Let us see how the models for log10K at Broom’s Barn Farm compare in this
test. The three test criteria are listed in Table 8.4 for the five models summarized
in Table 5.1, from which we have transferred the mean square residuals for
comparison.

The first three models in the table, the circular, spherical and pentasphe-
rical, have similar values for each of the three diagnostics. The MSDRs
suggest that the kriging variances progressively underestimate the true
estimation variances in that sequence, though not seriously. The MSE for
the exponential model looks a little worrying, and we see that its mean
squared residual is substantially larger than that of the first three models. The
power function clearly performs poorly on the cross-validation with an MSDR
of only 0.18. The kriging variance grossly exaggerates the true estimation

Table 8.4 Mean error (ME), mean squared error (MSE), and mean squared deviation
ratio (MSDR) for ordinary kriging of log10K with five models. The mean squared
residuals are added for comparison.

Mean squared
Model ME MSE MSDR residual

Circular 0.000321 0.007739 1.010 0.000172
Spherical 0.000327 0.007639 1.044 0.000155
Pentaspherical 0.000346 0.007584 1.081 0.000248
Exponential 0.000682 0.007314 1.232 0.001054
Power function 0.000726 0.007465 0.184 0.003295
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variance. The mean squared residual tells the same story; that of the power
function is quite the largest. Figure 5.1 suggests that its MSDR is so small
because the model values exceed the observed ones at the short lags between
the data and the target points, which are the ones that dominate the kriging
systems.

8.12.1 Scatter and regression

Another way of examining the behaviour of kriging is to plot the scatter of the
true values against their estimates. We should like the two to be the same, but
perfection of this kind is elusive in nature. The best we can expect is that our
estimator is conditionally unbiased, by which we mean

E½Zðx0ÞjẐðx0Þ� ¼ Ẑðx0Þ: ð8:51Þ

From this it follows that the regression of Zðx0Þ on Ẑðx0Þ is 1, therefore the
covariance between the true values and their estimates must equal the variance
of the estimates.

Figure 8.24 Scatter diagram of the true log10K for Broom’s Barn Farm plotted against
the punctually kriged estimates. The ellipse is a probability contour, the dashed line is its
longer diameter, and the solid diagonal line is the regression of zðx0Þ on Ẑðx0Þ.
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Armstrong (1998) shows that the above hold for simple kriging. For ordinary
kriging, however, the variance of the estimates includes the Lagrange multi-
plier, and so the regression coefficient is somewhat less than 1.

Figure 8.24 illustrates the situation in which the true values, zðx0Þ are
plotted against their estimates for log10K at Broom’s Barn Farm. The scatter
forms an elliptical cloud with a few points lying outside it. The ellipse itself is a
probability ‘contour’ (see Chapter 2) drawn to include all but a few of the
points. Its diameters are proportional to the standard deviations along the
principal axes, the longer of which is drawn with a dashed line. They and the
orientation have been estimated by a principal component analysis. The
regression of zðx0Þ on Ẑðx0Þ is the 1:1 line, the diagonal joining the corners
of the frame and passing through the points where the vertical tangents touch
the ellipse. The actual regression coefficients for simple and ordinary kriging
estimated in this way are 1.035 and 1.024, respectively. They are barely
distinguishable from 1. Like the mean error, this regression is a poor diagnostic
because the kriged estimates are so insensitive to the model.

Figure 8.24 shows another feature of kriging. The long axis of the ellipse is
oriented at about 56� from the horizontal; it is substantially more than 45�. The
variance of the estimates, 0.009 79 on the abscissa, is less than that of the true
values, 0.018 00 on the ordinate. In other words, kriging has lost variance;
kriging smooths. It underestimates the larger values and overestimates the
smaller ones, as in the simpler forms of regression.
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9

Kriging in the Presence of
Trend and Factorial Kriging

9.1 NON-STATIONARITY IN THE MEAN

The several kinds of kriging described in Chapter 8 are for realizations of
stationary processes. They are based on the simple model given in equation
(4.10) and repeated here:

ZðxÞ ¼ m þ "ðxÞ; ð9:1Þ

in which m is the mean, which is constant, and "ðxÞ is a random variable with
mean zero and variogram gðhÞ. If the process is second-order stationary then
"ðxÞ also has a covariance function CðhÞ, given in equation (4.11). We now
turn our attention to spatial processes in which m varies.

As we mentioned in Chapter 4 some spatial processes include trend, or ‘drift’
as it is commonly known in geostatistics; they are not stationary in the mean.
The variation in ZðxÞ then contains a systematic component in addition to the
random one. Equation (4.21) expressed this by

ZðxÞ ¼ uðxÞ þ "ðxÞ; ð9:2Þ

where uðxÞ, which varies smoothly and is deterministic, replaces the mean, m,
in equation (9.1). In these circumstances E½fZðxÞ � Zðx þ hÞg2� does not equal
E½f"ðxÞ � "ðx þ hÞg2�, and the raw semivariances computed by equation (4.40)
will be biased estimates of gðhÞ, the variogram of the residuals from the trend,
i.e. of

"ðxÞ ¼ ZðxÞ � uðxÞ: ð9:3Þ

To estimate gðhÞ, or equivalently CðhÞ, without bias we must separate uðxÞ
from "ðxÞ. We know neither; all we have are data, zðxiÞ; i ¼ 1;2; . . . ;N.
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The trend, uðxÞ, can usually be expressed as a simple functional form

uðxÞ ¼
XK

k¼0

bk fkðxÞ; ð9:4Þ

in which bk; k ¼ 0;1; . . . ;K, are unknown coefficients, and the fkðxÞ are known
functions of x of our choosing. If we combine equations (9.3) and (9.4) then we
can represent a process with trend by the model

ZðxÞ ¼ uðxÞ þ "ðxÞ ¼
XK

k¼0

bk fkðxÞ þ "ðxÞ: ð9:5Þ

Typically a spatial trend can be modelled as a low-order polynomial in the
geographical coordinates. So, in the simplest case of linear trend we can expand
equation (9.5) to

ZðxÞ ¼ b0 þ b1x1 þ b2x2 þ "ðxÞ; ð9:6Þ

in which x1 and x2 are the spatial coordinates, and for which K þ 1 ¼ 3.
If K ¼ 0 then f0 ¼ 1, uðxÞ ¼ b0 ¼ m, and we have a stationary process as

represented by equation (9.1) with the usual variogram, which is unbiased and
which we can use for ordinary or simple kriging. If K > 0 then we have a more
complex problem to which we must find a solution. Nevertheless, ultimately our
task is to estimate ZðxÞ at unsampled places as in ordinary or simple kriging.

9.1.1 Some background

The problem outlined above has been recognized for many years. Matheron
(1969) solved the prediction part of the problem with his universal kriging. A
punctual estimate of Z at x0 from N data is still a linear sum:

Ẑðx0Þ ¼
XN

i¼1

li fkðxiÞ: ð9:7Þ

Its expectation is

E½Ẑðx0Þ� ¼
XK

k¼0

XN

i¼1

bkli fkðxiÞ; ð9:8Þ

and the estimator is unbiased if

XN

i¼1

lifkðxiÞ ¼ fkðx0Þ for all k ¼ 0;1; . . . ;K: ð9:9Þ
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Matheron elaborated the ordinary kriging system to take into account the fixed
effects of the trend in addition to the random component as

XN

i¼1

ligðxi; xjÞ þ c0 þ
XK

k¼0

ckfkðxjÞ ¼ gðx0; xjÞ for all j ¼ 1;2: . . . ;N;

XN

i¼1

li ¼ 1; ð9:10Þ

XN

i¼1

lifkðxiÞ ¼ fkðx0Þ for all k ¼ 0;1; . . . ;K:

The values gðxi; xjÞ are the semivariances of the residuals between the data
points xi and xj, and the gðx0; xjÞ are the semivariances between the target point
and the data points. The functions fkðxÞ refer to an origin x ¼ 0 for the target
point x0. For a linear drift there are three functions, i.e. K þ 1 ¼ 3, with values

f0 ¼ 1; f1 ¼ x1; f2 ¼ x2:

For quadratic drift there are three additional functions:

f3 ¼ x2
1; f4 ¼ x1x2; f5 ¼ x2

2:

In addition there are now three Lagrange multipliers, c0; c1 and c2, for the
linear drift and three more, c3; c4 and c5, for quadratic drift.

The universal kriging system, like that for ordinary kriging, is a set of linear
equations which we can represent in matrix notation by

Al ¼ b; ð9:11Þ

as in equation (8.13). Now, however, the matrix A and the vectors l and b are aug-
mented with functions of the spatial positions of the data points and of the target:

A ¼

gðx1;x1Þ gðx1;x2Þ � � � gðx1;xNÞ 1 f1ðx1Þ f2ðx1Þ � � � fKðx1Þ
gðx2;x1Þ gðx2;x2Þ � � � gðx2;xNÞ 1 f1ðx2Þ f2ðx2Þ � � � fKðx2Þ

..

. ..
.

� � � ..
. ..

. ..
. ..

.
� � � ..

.

gðxN ;x1Þ gðxN ;x2Þ � � � gðxN ;xNÞ 1 f1ðxNÞ f2ðxNÞ � � � fKðxNÞ
1 1 � � � 1 0 0 0 � � � 0

f1ðxÞ1 f1ðx2Þ � � � f1ðxNÞ 0 0 0 � � � 0

f2ðxÞ1 f2ðx2Þ � � � f2ðxNÞ 0 0 0 � � � 0

..

. ..
.

� � � ..
. ..

. ..
. ..

.
� � � ..

.

fKðxÞ1 fKðx2Þ � � � fKðxNÞ 0 0 0 � � � 0

2
6666666666666666664

3
7777777777777777775

;
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l ¼

l1

l2

..

.

lN

c0

c1

c2

..

.

cK

2
6666666666666666664

3
7777777777777777775

and b ¼

gðx1; x0Þ
gðx2; x0Þ

..

.

gðxN ; x0Þ
1

f1ðx0Þ
f2ðx0Þ

..

.

fKðx0Þ

2
6666666666666666664

3
7777777777777777775

:

As in ordinary kriging, A is inverted, and the weights and the Lagrange
multipliers are obtained as

l ¼ A�1b: ð9:12Þ

The weights are inserted into equation (9.7), and the kriging variance is given
by

s2
UK ¼ bTl: ð9:13Þ

Also as in ordinary kriging, we can usually work within a window with many
fewer data than the whole set of size N.

Thus, universal kriging looks remarkably like ordinary kriging, and like
ordinary kriging the procedure is automatic once you have a satisfactory
function for the variogram. The difficult task is obtaining such a function. In
fact, it is the biggest impediment to kriging in the presence of drift.

Olea (1975) spelled out in detail steps by which one could estimate the
variogram of the random component from data by a structural analysis, but
only where those data are at regular intervals on transects or grids. Matheron’s
(1973) intrinsic random functions, which we mentioned as a solution on
page 59, see equation (4.24), are similarly constrained. Environmental scien-
tists typically do not have such data; their data more often come from
observations irregularly distributed over the land or in the sea. If they can
recognize some simple long-range trend then one legitimate way forward has
been to compute and model the variogram in the direction perpendicular to the
trend, as advocated by Goovaerts (1997) and applied to soil, for example, by
Meul and Van Meirvenne (2003). Their model will represent the random
process free of trend on the assumption that the process is isotropic, and it
can be used for kriging. A weakness of the method is that there might be few
pairs of data in that direction, so that the variogram is estimated poorly, and the
drift might be more complex.
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Another way of dealing with drift has been to model it first, as in trend
surface analysis (Section 3.1.5), and remove it from the data. The residuals are
treated as realizations of stationary correlated random variables, the variogram
is computed and modelled and then used to krige. Finally the trend is added
back to the kriged estimates. The method is attractive, especially if the trend is
interesting in its own right, as was the conformation of the Chalk (Cenomanian)
strata beneath the Chiltern Hills in southern England investigated by Moffat
et al. (1986). Since then it has become popular in earth sciences under the title
‘regression kriging’ (e.g. Knotters et al., 1995; Odeh et al., 1994, 1995). The
estimates, both of the trend and of the random residuals are unbiased provided
that the data are unbiased in the first place. The method is equivalent to
universal kriging for a given variogram provided that all the data are used in
the kriging system and not only those in a local window.

There are two disadvantages of regression kriging. First, the trend is generally
estimated by ordinary least squares (OLS), which is unbiased, but does not yield
estimates of minimum variance unless the sampling sites have been selected
independently at random. Such selection is rare in resource surveys, and so
other methods of analysis should be used.

The second disadvantage is that the estimates of the semivariances obtained
from residuals from the trend are biased. This is because they depend in a non-
linear way on the trend parameters, which are themselves estimated with error.
As a result the variogram is underestimated, and the bias increases with
increasing lag distance (Cressie, 1993). Lark et al. (2006) illustrate this effect well.

One proposed solution to these problems is to use generalized least squares to
estimate the trend parameters. The generalized least-squares method itself
requires a variogram for the residuals, so an iterative procedure is followed.
The OLS estimates are obtained, and a variogram is fitted to the residuals. This
variogram is then used in generalized least squares to re-estimate the trend
parameters, and the procedure is repeated until the estimates stabilize (e.g.
Hengl et al., 2004). This approach reduces the error variance of the trend
parameters, but it does not remove the bias from the estimates in the variogram
because these still depend on the trend parameters (Gambolati and Galeati,
1987). This bias might not matter where data are dense because it is typically
very small at short lag distances, and we have seen above that only data at such
short distances from target points or blocks carry appreciable weight in the
kriging systems.

Finally, even if we ignore the bias of the prediction variances of both the trend
and the kriging from the residuals, regression kriging does not allow us to
combine them into a valid prediction variance for the kriging estimate,
although we could compute the universal kriging variance, as did Hengl
et al. (2004).

In summary, to predict values of environmental variables that have both
pronounced spatial trend and spatially dependent random variation requires us
to obtain minimum-variance estimates of the trend, to estimate the variogram
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of the residuals from the trend without bias and to estimate the sum of the trend
and the random variation at unsampled sites with known variance. A practical
way of doing this is to compute the empirical best linear unbiased predictor
(E-BLUP) with a variogram estimated by residual maximum likelihood (REML).
The method was recommended by Stein (1999), and now with ever increasing
computing power and sophisticated software it is becoming feasible in practice.
Lark and Webster (2006) used it to re-estimate the heights of the Cenomanian
surface beneath the Chiltern Hills of England.

9.2 APPLICATION OF RESIDUAL MAXIMUM LIKELIHOOD

9.2.1 Estimation of the variogram by REML

From here on we shall use matrix notation for compactness. We start by writing
equation (9.6) as

ZðxÞ ¼ wbþ "ðxÞ; ð9:14Þ

in which the vector w, with K þ 1 columns, contains the K þ 1 elements, 1,
x1; . . . ; xk of the trend function, and the vector b contains the coefficients.
Statisticians call this a linear mixed model of fixed and random effects; these are
the wb and "ðxÞ, respectively, in the above equation.

Now let us represent a set of data in a similar way:

zðXdÞ ¼ Wdbþ eðXdÞ; ð9:15Þ

in which the subscript d denotes data points. For N data the vectors z and e
have N rows. The vector w of equation (9.14) is replaced by matrix Wd, known
as a ‘design matrix’, with N rows and K þ 1 columns. Matrix Xd denotes the
positions of the points. We assume that the random components are second-
order stationary and jointly normally distributed with zero means and a
covariance matrix Cdd.

The covariance matrix is obtained from the covariance function CðhÞ which,
since the process is second-order stationary, has its equivalence in the vario-
gram:

CðhÞ ¼ Cð0Þ � gðhÞ ¼ s2 � gðhÞ: ð9:16Þ

As we have seen in Chapter 5, most apparently bounded experimental
variograms are readily fitted by simple functions with three parameters, namely
a nugget variance, c0, a sill of the correlated structure, c, and a distance
parameter, a. We shall find it convenient to denote these by the vector
u ¼ ½c0; c; a�.
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The parameters u must be estimated from the data. To do this we must
separate the random component from the trend, otherwise they will be biased
because they depend non-linearly on b. The solution involves the transforma-
tion of the non-stationary data, z, into stationary increments, s.

We first define what is technically known as a projection matrix, P (see
Kitanidis, 1983; Pardo-Igúzquiza, 1997):

P ¼ I � WdðWT
d WdÞ�1WT

d : ð9:17Þ

We can use this matrix to transform the data in z into generalized stationary
increments, y, by

y ¼ PzðXdÞ: ð9:18Þ

Matrix P has the property that

PWd ¼ 0: ð9:19Þ

So

PzðXdÞ ¼ PWdbþ PeðXdÞ
¼ PeðXdÞ:

ð9:20Þ

In words, pre-multiplying the data by P filters out the fixed effects, the trend,
whatever the (unknown) coefficients of b are.

As there are K þ 1 terms in the trend function, K þ 1 of the stationary
increments depend linearly on the others, and so we can remove any K þ 1
rows from matrix P and still retain all the information. We denote this matrix by
H, and then define the reduced set of m ¼ N � K � 1 stationary increments as

s ¼ HzðXdÞ: ð9:21Þ

Further, as for matrix P,

HWd ¼ 0: ð9:22Þ

So we have that

E½s� ¼ 0 ð9:23Þ

and

E½ssT� ¼ HE½zzT�HT ¼ HCddHT: ð9:24Þ

The increments are assumed to be normally distributed. Note also that the
vector s is of length m ¼ N � K � 1 and that ssT has dimensions m � m.
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The parameters of the variogram model, u, are obtained by maximizing the
log-likelihood of the residuals. Given the data, this is

L½u j zðXdÞ� ¼
1

2
lnðmÞ � 1

2
m lnð2pÞ � 1

2
m

� 1

2
ln jHCddHTj � 1

2
m ln sTðHCddHTÞ�1s

�
:

� ð9:25Þ

Those values of c0; c and a in u that maximize the log-likelihood, L, are found
numerically, and, knowing these, we can proceed with the estimation.

The prediction

From the values we have obtained for the parameters in u we compute the
estimated covariance matrix, Ĉdd. We then use this to obtain estimates of b by
generalized least squares:

b̂ ¼ ðWT
d Ĉ�1

dd WdÞ�1WT
d Ĉ�1

dd zðXdÞ: ð9:26Þ

We can now predict Z at x0, the target point, by

Ẑðx0Þ ¼ fwðx0Þ � ĉT
d0Ĉ�1

dd Wdgb̂þ ĉT
d0Ĉ�1

dd zðXdÞ: ð9:27Þ

Here vector wðx0Þ is the ‘design matrix’ of the target point, x0, with one row
and K þ 1 columns, and vector ĉd0 contains the estimated covariances between
the data points and x0.

Equation (9.27) represents the E-BLUP of Lark and Cullis (2004); empirical
because it is derived empirically from sample data. It has two distinct parts. The
first term on the right-hand side is the generalized least-squares estimate of the
trend component at x0. Notice that it is more elaborate than the OLS estimate
given by equations (3.9) and (3.10). The second term is the simple kriging
estimate, simple because the mean of the residuals is 0 by definition. The two
terms added together give us our final prediction.

The prediction variance is given by

s2
E-BLUPðx0Þ ¼

�
Wðx0Þ � ĉT

d0Ĉ�1
dd Wd

�
U�1

�
Wðx0Þ � ĉT

d0Ĉ�1
dd Wd

�T

þ
�

ĉðx0Þ � ĉT
d0Ĉ�1

dd ĉd0

�
;

ð9:28Þ

where U ¼ WT
d Ĉ�1

dd Wd. Note that Ĉdd contains the nugget variance comprising
both measurement error and very short-range spatial variation which are
separated by Lark et al. (2006).

202 Kriging in the Presence of Trend and Factorial Kriging



9.2.2 Practicalities

Although the principles of REML estimation in geostatistics have been recog-
nized for some 20 years—see, for example, Kitanidis (1983, 1987) and
Zimmermann and Zimmermann (1991)—practitioners have only recently
started to apply them. One reason is that the full covariance matrices must
be held and inverted in the computer’s memory. Twenty years ago few
computers were big enough or fast enough for such tasks. The size and power
of modern computers now makes the method feasible with reasonably large sets
of data. The other handicap has been the lack of readily available software for
geostatistical applications. Pardo-Igúzquiza’s (1997) MLREML Fortran program
is in the public domain and provides options for three variogram models, the
exponential, spherical and Gaussian. The program also has five options for
minimizing negative log-likelihood functions. Of these the author considers the
simplex method of Nelder and Mead (1965) to be the most effective; Kerry and
Oliver (2007c) also found this to work well. The few options for the variogram
in general packages seriously limit what can be done. ASReml (Gilmour et al.,
2002) is exceptional; its AI algorithm can handle very large sets of data.
Another problem arises with functions such as the spherical model, for which
the algorithm can all too readily converge to a local optimum. Lark and Cullis
(2004) recognized this shortcoming and wrote a program that uses simulated
annealing for the purpose, but it is still in the research phase.

9.2.3 Kriging with external drift

In presenting kriging in the presence of trend we have shown how to separate
the deterministic trend from the random component and how to estimate the
contributions from the two components by REML. The case we considered in
which the trend in the target variable is a function of the spatial coordinates is
one of a more general class of linear mixed models. In other cases the
deterministic, or fixed, effect might be another variable, say y, or several
variables, y1; y2; . . ., related linearly to Z, and we might be able to measure
or calculate it at both target sites and where we know Z. In these circumstances
we can modify equations (9.4) and (9.5) to

ZðxÞ ¼
XK

k¼0

bkykðxÞ þ "ðxÞ

¼ b0 þ b1y1ðxÞ þ b2y2ðxÞ þ � � � þ bKyKðxÞ þ "ðxÞ:
ð9:29Þ

What we have done is to replace the functions of the coordinates by the values
of one or more other variables at those places. The y1ðxÞ; y2ðxÞ; . . . ; yKðxÞ
are known and the bk are unknown coefficients to be determined.
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The yk; k ¼ 1;2; . . . ; are ‘external’ variables, as distinct from the internal ZðxÞ,
and kriging with them is known as ‘kriging with external drift’ (KED). The term
is used to contrast it with universal kriging in which the drift is in the ‘internal’
variable.

The KED estimator is

ẐKEDðx0Þ ¼
XN

i¼1

lKED
i zðxiÞ: ð9:30Þ

Its expectation is

E½ẐKEDðx0Þ� ¼
XK

k¼0

XN

i¼1

bkl
KED
i ykðxiÞ; ð9:31Þ

and the estimator is unbiased if

XN

i¼1

lKED
i ykðxiÞ ¼ ykðx0Þ for all k ¼ 0;1; . . . ;K: ð9:32Þ

The kriging weights, lKED
i , are obtained by solution of the following system of

equations:

XN

i¼1

lKED
i gðxi; xjÞ þ c0 þ

XK

k¼1

ckykðxjÞ ¼ gðx0; xjÞ for all j; j ¼ 1;2; . . . ;N;

XN

i¼1

lKED
i ¼ 1; ð9:33Þ

XN

i¼1

lKED
i ykðxiÞ ¼ ykðx0Þ for k ¼ 1;2; . . . ;K;

where gðxi; xjÞ are the semivariances of the residuals between the data points xi

and xj, the gðx0; xjÞ are the semivariances between the target point and the data
points, and the ck; k ¼ 0;1; . . . ;K, are Lagrange multipliers. The system is
solved to provide the weights, which are then inserted in equation (9.30) for the
prediction, and the kriging variance is obtained by vector multiplication as in
equation (9.13).

The form of the equations is the same as for universal kriging; all we have
done is to replace the functions of the spatial coordinates, f ðxÞ, by the ykðxÞ.
In this way KED incorporates secondary drift variables into the kriging
system; it combines information from the deterministic ykðxÞ with that of the
random ZðxÞ. Typically it is used to predict ZðxÞ more precisely than from
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measurements of Z alone. It was developed in the petroleum and gas exploration
industries where boreholes from which accurate measurements can be obtained
are few but can be supplemented with seismic data from many sites. Delhomme
(1978) combined seismic data (y, the external drift variable) with measure-
ments of height of the top of a reservoir (Z in our terms above) to map the latter.
The method has since been applied, for example, to estimate transmissivity of an
aquifer (Ahmed and de Marsily, 1987) with specific capacity as the external
drift variable, and regional temperature (Hudson and Wackernagel, 1994) and
soil mineral nitrogen (Baxter and Oliver, 2005) with height of the land as
external drift.

Before we illustrate the kriging with external drift we emphasize three points.

� The subsidiary variable(s), y, should vary smoothly at the scale of the
survey. If any y does not then it should be treated as a random variable and
used as a covariate in cokriging (Chapter 10).

� One must know or be able to calculate the values of the subsidiary
variable(s) at all target points and all points for which the primary variable
Z has been recorded.

� The variogram from which the entries in the kriging system are drawn is
that of the residuals "ðxÞ from the external drift y. If we have an independent
estimate of it then we may use it. Usually we do not, and we have to separate
its effect from the fixed effect in our data zðxiÞ, just as in universal kriging,
and again we can now use REML to solve the problem this poses.

9.3 CASE STUDY

We illustrate kriging in the presence of trend with the results from recent
research on precision farming for the British Home-Grown Cereals Authority
(HGCA) by Oliver and Carroll (2004). The study was done in a 23-ha field,
National Grid reference SU 458174, on the Yattendon Estate in Berkshire,
England. It is on the Chalk downland of southern England and has the typical
undulating topography of the region. The soil, which is moderately to well
drained, varies from sandy loam to clay loam, and it is its sand content in the
topsoil that we use for this illustration.

Samples of topsoil (0–15 cm) were taken at the nodes of a 30 m � 30 m grid.
At each node ten cores of soil were taken with an auger of 3 cm diameter from a
support of 5 m � 2 m and bulked. Additional observations were made at 15-m
intervals along short transects from randomly selected grid nodes. The sand
content was measured by laser diffraction grain sizing. Figure 9.1 is a scatter
map showing the sampling scheme and the percentages of sand at the sampling
points on a grey scale. There is evidently a trend across the field. Table 9.1
summarizes the statistics. The sand content varies widely from 14% to 83%,
with a symmetric distribution that is less peaked than normal.
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The experimental variogram of the data computed by the usual method of
moments, equation (4.40), is shown as the plotted points in Figure 9.2(a). The
values appear to reach a sill and then increase again; the latter increase is
symptomatic of regional trend. The solid line is a model fitted to lag 300 m, a
matter to which we return below.

To explore the data we fitted trend surface models on the coordinates by OLS.
The linear trend surface (an inclined plane) accounts for 28% of the variance
and the quadratic accounts for more than 46%. Therefore, we assume the trend
to have a quadratic form in further analyses.

Figure 9.2(b) shows the experimental variogram of the OLS residuals from
the quadratic trend (symbols) and the fitted pentaspherical function (solid line).
Table 9.2 gives the parameters of the model that we used to krige the quadratic

Figure 9.1 Scatter map of the sand content of the topsoil at Yattendon.

Table 9.1 Summary statistics for topsoil sand content (%)
at Yattendon.

Minimum 14.00
Maximum 83.00
Mean 50.84
Median 51.00
Standard deviation 14.40
Variance 207.4
Skewness 0.02
Kurtosis �0.60
Number of observations 230
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residuals. We then added back the trend to the predictions of the residuals to
give the final estimates. These estimates are shown as a map in Figure 9.3(b),
and Figure 9.4(b) is that of the associated kriging variances. The latter are for
the residuals only; they show that the estimation variances are smallest in the
region of the short transects and also at the sampling points and become large
only near the field boundary.

Figure 9.2 Variograms of the sand content: (a) experimental variogram computed
from the raw data by the method of moments and spherical model fitted to lag 300 m;
(b) experimental variogram of the OLS residuals from a quadratic trend surface with
pentaspherical model fitted; (c) variogram of the REML residuals from the quadratic
trend (solid line) with the experimental semivariances of the REML residuals plotted as
points; (d) variogram of the REML residuals after the ECa has been fitted as an external
drift (solid line) with the experimental semivariances for the OLS residuals from the
external drift plotted as points.
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Table 9.2 Model parameters of the variograms computed on the topsoil sand content
at Yattendon. The symbols are the familar c0 for the nugget variance, c for the sill of the
autocorrelated variance, and a for the range.

Variogram Model c0 c c0 þ c a/m c0=ðc0 þ cÞ

Raw data Spherical 27.5 208.1 235.6 254.9 0.117
OLS

residuals Pentaspherical 15.6 110.2 125.8 146.6 0.124
REML Spherical 16.6 159.8 176.4 175.8 0.104
REML

with ECa Spherical 21.7 129.9 151.6 208.7 0.167

Figure 9.3 Maps of punctually kriged estimates of sand content: (a) made by ordinary
kriging of raw data; (b) made by kriging of OLS residuals from a quadratic trend and
adding back the trend; (c) made by REML estimation, taking into account the quadratic
trend (universal kriging); (d) made by REML estimation with ECa as external drift.
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As above, dealing with trend by OLS can no longer be regarded as best
practice, and we now illustrate how do it with a REML analysis. The experi-
mental variogram of the quadratic residuals (the plotted points) and the model
estimated by REML for the residuals (the solid line) are shown in Figure 9.2(c).
We remind readers that there are no experimental semivariances for the REML
variogram. The model parameters are given in Table 9.2.

Let us now compare these models. The most marked difference is in the sill
variances, c0 þ c; that for the OLS residuals is substantially smaller than that
estimated by REML. The range of the former is the shorter of the two by some 30 m.

With the parameters of the REML variogram we can now predict the sand
content by E-BLUP taking into account the quadratic trend, which is equivalent to
universal kriging, as above. Figure 9.3(c) is the resulting map, and Figure 9.4(c)
shows the associated variances.

Another variable with a strong quadratic form of trend in this field is the soil’s
apparent electrical conductivity (ECa). This is also strongly associated with the

Figure 9.4 Maps of punctual kriging variances of sand content: (a) ordinary kriging
variances of raw data; (b) ordinary kriging variances of OLS residuals from a quadratic
trend; (c) universal kriging variances for REML estimation, taking into account the
quadratic trend; (d) variances for kriging by REML with ECa as external drift.
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soil’s particle size distribution. Carroll and Oliver (2005) measured the ECa by
an electromagnetic induction sensor, an EM38 (Geonics1 Ltd—see McNeill,
1990) in the vertical position (i.e. with the coils aligned vertically), at the nodes
of a dense grid and at all the positions where sand content was recorded. The
Pearson correlation coefficient computed between it and sand from collocated
data at the time of the survey was �0:8.

This strong correlation, the dense grid on which ECa was measured and the
marked trend in it make it a potentially useful external drift variable for kriging.
Our aim is to use it to improve the accuracy of the predictions of the sand
content, the primary variable.

The ECa was estimated by ordinary punctual kriging at the nodes of the
5 m � 5 m grid as for sand. The relation between sand content and ECa is linear,
and Figure 9.5 shows both the OLS regression (dotted) and the weighted least-
squares regression (solid) of sand on ECa. The REML variogram for sand was
computed on the random residuals from the relation. Figure 9.2(d) shows this
variogram, together with the experimental variogram of the OLS residuals, and
Table 9.2 gives the model parameters. These parameters were then used for
kriging sand with ECa on the 5 m � 5 m grid as the external drift. Figure 9.3(d)
is the resulting map of estimated sand content from this analysis, and
Figure 9.4(d) shows the associated E-BLUP kriging variances.

The four variograms (Figure 9.2) appear substantially different from one
another, and their model parameters confirm this impression. The variogram of
the raw data, Figure 9.2(a), has the largest sill variance. The variogram of the
OLS quadratic residuals, Figure 9.2(b), has the smallest sill variance, showing

Figure 9.5 Scatter diagram of sand content and ECa. The solid line is the weighted
least-squares regression of sand on ECa, sand ¼ 65:7 � 0:76 � ECa, from which the
experimental semivariances in Figure 9.2(d) are computed.
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that removal of the trend has lost more of the variance than REML has done.
The REML variogram of the residuals from the quadratic trend, Figure 9.2(c),
has a larger sill variance as has the REML variogram computed on the residuals
from the relation between sand and ECa, Figure 9.2(d).

We mentioned above that there is a dearth of software in the public domain
for spatial prediction by REML. Readers, having seen Figure 9.2(a) in which
the experimental sequence of semivariances follows what looks like a
spherical form to about 300 m, and having also seen in Chapter 8 that only
data close to a target point carry significant weight, might wonder whether
in this case they could use ordinary kriging with the raw data. Let us see
what happens if we take this approach. A spherical function, the solid line in
Figure 9.2(a), fits the experimental variogram well to 300 m. Table 9.2 gives its
parameters. We used this model with the raw data to estimate values at the
nodes of the 5 m � 5 m grid by ordinary punctual kriging. Figure 9.3(a) shows
the resulting map, which looks little different from those made with REML. The
map of the kriging variances, however, shows that the kriging errors are
greater.

We can summarize the four outcomes of the procedures. All four estimators
are unbiased, and because kriging is so robust the estimates themselves are
similar. They differ substantially in their variances, which are summarized in
Table 9.3. Ordinary kriging is the least precise, with a median variance of
53.1.

Universal kriging by REML reduces the variance to a median of 41.6. Kriging
with external drift has a very similar median variance, 41.3. In both, making
use of the additional information, either in the trend or in the subsidiary
correlated variable, ECa, improves the precision of the predictions. Note,
however, that the kriging variances from the KED have a smaller standard
deviation; they are less variable than those from universal kriging, and from the
other two techniques. The median kriging variance of the OLS residuals of 41.6
is remarkably similar to those of the REML predictions in this instance. Note,
however, that the OLS kriging variances underestimate the true kriging
variances of that method because the errors arising from the OLS fitting of
the trend are not taken into account. The fact that they are so similar to the
REML variances is fortuitous.

Table 9.3 Summary statistics of variances for four forms of kriging.

Kriging Mean Median Std dev.

Raw data 63.2 53.1 21.0
OLS residuals 52.0 41.6 21.7
REML, universal 53.5 41.6 26.3
REML, external drift 48.2 41.3 14.6
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9.4 FACTORIAL KRIGING ANALYSIS

9.4.1 Nested variation

Spatial variation in the environment can occur on scales that differ by several
orders of magnitude simultaneously. This is because the physical processes
responsible for the variation operate and interact at different spatial scales. In
any region there may be several sources and scales of variability present. For
example, variation in the soil could arise from the effects of microbial activity,
worms, roots, tree-throw, relief, or geology. Variation of this kind is widespread
in the environment; for example, Serra (1968) found seven different scales of
spatial variation in the Lorraine iron ore deposit, ranging from 15 mm to several
hundred metres. The result is a nested structure in the variation that we have
already observed through the nested variogram functions in Chapter 5.

Although nested variation has been recognized for some time, there is now a
greater need than before to investigate it. This need has arisen from the
increasingly rich sets of data emerging from new technology, such as satellite
imagery, ground-penetrating radar, and sensors that measure electrical conduc-
tivity. Such data often cover large areas at an intermediate spatial resolution of
about 30 m � 30 m, for example, or are very intensive, such as the 1-m pixel
resolution Hymap imagery. Because such sources of data provide full cover of the
areas of interest, nested variation is often evident (Oliver et al., 2000).

9.4.2 Theory

We can formalize nested variation in a geostatistical framework as follows. A
particular random process, ZðxÞ, may be treated as a combination of several
independent processes, one nested within another and acting at different
characteristic spatial scales. In these circumstances the variogram of ZðxÞ is
itself a nested combination of two or more, say S, individual variograms:

gðhÞ ¼ g1ðhÞ þ g2ðhÞ þ � � � þ gSðhÞ; ð9:34Þ

where the superscripts refer to the separate variograms (not powers).
If we assume that the processes are uncorrelated then we can represent

equation (9.34) by the sum of S basic variograms:

gðhÞ ¼
XS

k¼1

bkgkðhÞ; ð9:35Þ

where gkðhÞ is the kth basic variogram function, and bk is a coefficient that
measures the relative contribution of the variance of gkðhÞ to the sum. The
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nested variogram comprises the S variograms with different coefficients bk. This
is known as the linear model of regionalization. It reflects the real world in
which factors such as relief, geology, the soil, vegetation, and fauna each
operate on their own characteristic spatial scale(s) and each with its particular
form and parameters, bk, for k ¼ 1;2; . . . ; S.

9.4.3 Kriging analysis

The aim of kriging analysis is to estimate separately the independent compo-
nents of ZðxÞ. Matheron (1982) devised the technique of kriging analysis or
factorial kriging to do this in a single operation from the data and the
variogram. For this the random function ZðxÞ with a nested variogram is
regarded as the sum of S orthogonal random functions, each with its particular
contributory variogram, bkgkðhÞ in equation (9.35). Provided ZðxÞ is second-
order stationary this sum can be represented as

ZðxÞ ¼
XS

k¼1

ZkðxÞ þ m; ð9:36Þ

in which m is the mean of the process. Each ZkðxÞ has expectation 0, and the
squared differences are

1

2
E½fZkðxÞ � Zkðx þ hÞgfZk0 ðxÞ � Zk0 ðx þ hÞg� ¼ bkgkðhÞ if k ¼ k0;

0 otherwise:

(

ð9:37Þ

It is possible that the last component, ZSðxÞ, is intrinsic only, so that gSðhÞ in
equation (9.35) is unbounded with gradient bS. For two components equation
(9.36) reduces to

ZðxÞ ¼ Z1ðxÞ þ Z2ðxÞ þ m: ð9:38Þ

Relation (9.37) expresses the mutual independence of the S random functions
ZkðxÞ. With this assumption, the nested model in equation (9.35) is easily
retrieved from the relation in equation (9.36).

We recall that in ordinary kriging we usually estimate Z at any place x0 as a
linear combination of the n observations in the neighbourhood of x0:

Ẑðx0Þ ¼
Xn

i¼1

lizðxiÞ: ð9:39Þ
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The weights, li; i ¼ 1;2; . . . ;N, are obtained by solution of the kriging system

Xn

j¼1

ljgðxi; xjÞ � cðx0Þ ¼ gðxi; x0Þ for all i ¼ 1;2; . . . ; n;

Xn

j¼1

lj ¼ 1;

ð9:40Þ

in which cðx0Þ is a Lagrange multiplier introduced to ensure that the
estimation variance is minimized.

In kriging analysis we can estimate each spatial component ZkðxÞ separately
as a linear combination of the observations zðxÞ; i ¼ 1;2; . . . ; n:

Ẑkðx0Þ ¼
Xn

i¼1

lk
i zðxiÞ: ð9:41Þ

The lk
i ðx0Þ are the weights assigned to the observations as before; but now they

must sum to 0, not to 1, to ensure that the estimate is unbiased and to accord
with equation (9.36). Subject to this condition, they are again chosen so that
the estimation variance is minimal. This leads to the kriging system

Xn

j¼1

lk
j gðxi; xjÞ � ckðx0Þ ¼ bkgkðxi; x0Þ for all i ¼ 1;2; . . . ; n;

Xn

j¼1

lk
j ¼ 0;

ð9:42Þ

where ck ðx0Þis the Lagrange multiplier for the kth component. This system is
solved for each spatial component, k, to find the weights, lk

i , which are then
inserted into equation (9.41) for that component. In general the weights for the
different components will be different, and as a result we can extract from data
the individual components of the spatial variation that we identified from the
experimental variogram. Estimates are made for each spatial scale, i.e. each k,
by solving equations (9.42).

In many instances data contain long-range trend. This need not complicate
the analysis because the kriging is usually done in fairly small moving
neighbourhoods centred on x0, as for ordinary kriging (Chapter 8). Thus
it is necessary only that ZðxÞ is locally stationary, or quasi-stationary.
Equation (9.36) may then be rewritten as

ZðxÞ ¼
XS

k¼1

ZkðxÞ þ mðxÞ; ð9:43Þ
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where mðxÞ is a local mean which can be considered as a long-range spatial
component. Matheron (1982) showed that this relation is also verified in terms
of estimators, i.e.

ẐðxÞ ¼
XS

k¼1

ẐkðxÞ þ m̂ðxÞ: ð9:44Þ

We have also to krige the local mean, which is again a linear combination of
the observations zðxiÞ:

m̂ðx0Þ ¼
Xn

j¼1

ljzðxjÞ: ð9:45Þ

The weights are obtained by solving the kriging system

Xn

j¼1

ljgðxi; xiÞ � cðx0Þ ¼ 0 for all i ¼ 1;2; . . . ; n;

Xn

j¼1

lj ¼ 1:

ð9:46Þ

Estimation of the long-range component, i.e. the local mean mðxÞ and the
spatial component with the largest range, can be affected by the size of the
moving neighbourhood (Galli et al., 1984). In fact, to estimate a spatial
component with a given range the distance across the neighbourhood should
be at least equal to that range. It happens frequently when the sampling density
and the range are large that there are so many data within the chosen
neighbourhood that only a small proportion of them is retained. Although
modern computers can handle many data at a time, the number of data used
must be limited to avoid instabilities when inverting large variance matrices.
Further, even if all the data could be retained, only the nearest ones contribute
to the estimate because they screen the more distant data. Consequently, the
neighbourhood actually used is smaller than the neighbourhood specified,
which means that the range of the estimated spatial component is smaller
than the range apparent from the structural analysis. Galli et al. (1984)
recognized this, and where data lie on a regular grid they proposed using
only every second or every fourth point to cover a large enough area, but still
with sufficient data. Such selection is somewhat arbitrary, and we recommend
an alternative proposed by Jaquet (1989) and used by Goovaerts and Webster
(1994) which involves adding to the long-range spatial component the estimate
of the local mean.
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Figure 9.6 Maps of copper in the topsoil of the Borders Region of Scotland:
(a) ordinary kriged estimates; (b) estimates of short-range component; (c) estimates of
long-range component; (d) kriging variances.
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9.4.4 Illustration

We illustrate factorial kriging with the available copper data in the topsoil of the
Borders Region of Scotland. These data were described in Chapter 6 to illustrate the
application of the Akaike information criterion (AIC). Table 9.4 lists the summary
statistics, which show that these data have a large skewness coefficient of 2.52.
After transformation to common logarithms, log10Cu, the distribution becomes
almost normal. The experimental variogram was computed on the transformed
log10Cu values, and a double spherical function fitted the experimental values best
both in terms of the mean squared residual and the AIC (Figure 5.15 and Table
5.2). This function was then used for factorial punctual kriging. We kriged at
intervals of 500 m with the maximum radius of the neighbourhood set to 20 km,
the range of the long-range spatial component. The minimum and maximum
numbers of points in the neighbourhood were set to seven and 20, respectively.

Figure 9.6(a) is a map of the punctually kriged estimates of log10Cu. There is a
band of large values that extend across the region from southwest to northeast,
with smaller concentrations of log10Cu to the north and south. The extent of
these patches of large and small concentrations represents the long-range
component of the variation of 20.5 km. These larger areas embrace many
distinct small patches of larger or smaller values which represent the short-range
component of variation of 2.7 km. Figure 9.6(b) shows the kriging variances;
these are large at the margins of the study area and in other areas where
sampling was also sparse. Figure 9.6(c) shows the short-range predictions that
have been extracted by factorial kriging. They show the more intricate local
variation that is superimposed on the broader-scale variation shown in Figure
9.6(d). It is possible to match several of the small patches of large and small
values in Figure 9.6(a) with those in Figure 9.6(c). The long-range variation is
associated with the major geological units and soil parent materials in the region.
The areas with small copper concentrations are on the sedimentary rocks of the
Old Red Sandstone, whereas on the other rocks concentrations are generally
larger. Some of the smaller patches of large Cu values are around the towns and
others are associated with outcrops of volcanic rocks.

Table 9.4 Summary statistics and variogram parameters of available copper in the
topsoil of the Borders Region of Scotland. Original measurements were in mg kg�1 soil.

Mean Median Variance Std dev. Skewness

Measurements, Cu 2.22 1.85 2.135 1.46 2.52
log10Cu 0.271 0.267 0.06502 0.255 0.06

Double spherical variogram parameters

c0 c1 c2 a1/km a2/km

0.02767 0.02585 0.01505 2.7 20.5
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10

Cross-Correlation,
Coregionalization

and Cokriging

10.1 INTRODUCTION

In this chapter we develop the ideas of spatial correlation in individual variables
for use in situations in which two or more environmental variables interest us
simultaneously. We shall assume that each variable individually can be treated
as if it were random, so that all of the statistical theory and techniques of
Chapters 4–7 apply. We shall use the data from two surveys to illustrate the
development. One set comprises the exchangeable potassium (K), available
phosphorus (P) and yield of barley in the topsoil of a 6.4 ha field in southeast
England (CEDAR Farm, Centre for Dairy Research); and the other comprises the
concentrations of potentially toxic trace metals in the Swiss Jura. Table 10.1
summarizes the data for the Farm, and Table 10.5 that of the Jura.

There are now two additional features of the variation to consider. One
comprises the relations between variables, regardless of space, as expressed in
the ordinary product-moment correlation, r, of equation (2.11). The correlation
matrix for CEDAR Farm is given in Table 10.2. Evidently K, P and yield are
related, though not strongly. In the Swiss Jura the correlations among the trace
metals in the soil are stronger (Table 10.6), and we might wish to consider
them all together in assessing the risk of pollution. The other feature concerns
the spatial aspects of this correlation: one variable may be spatially related with
another in the sense that its values at places are correlated with the values of
the other variable. For example, the potassium and phosphorus in the soil at
CEDAR Farm might be spatially correlated with the crop yield, and the
cadmium with the zinc in the Jura. In these circumstances we might be able
to take advantage of the correlation and the information contained in the
several variables to predict any one of them.
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We formalize these ideas under the general heading of coregionalization. We
start by considering two regionalized variables, ZuðxÞ and ZvðxÞ, which we
shall denote u and v, both obeying the intrinsic hypothesis. Thus for variable u
we have, from Chapter 4,

E½ZuðxÞ � Zuðx þ hÞ� ¼ 0:

The variable will also have a variogram, specifically an autovariogram:

guuðhÞ ¼ 1
2E½fZuðxÞ � Zuðx þ hÞg2�: ð10:1Þ

The reason for the double uu will become apparent presently. Similarly for v, the
expected differences are 0, and its autovariogram is gvvðhÞ, consisting of the
expected squared differences in v.

The two variables will also have a cross-variogram, guvðhÞ, defined as

guvðhÞ ¼ 1
2E½fZuðxÞ � Zuðx þ hÞgfZvðxÞ � Zvðx þ hÞg�: ð10:2Þ

This function describes the way in which u is related spatially to v.
If both variables are second-order stationary with means mu and mv, then

both will have covariance functions:

CuuðhÞ ¼ E½fZuðxÞ � mugfZuðx þ hÞ � mug� ð10:3Þ

Table 10.1 Summary statistics of K, P and yield of barley at CEDAR Farm based on a
sample of N ¼ 160.

K P Yield

Minimum 101.0 16.8 1.28
Maximum 243.0 89.0 4.43
Mean 155.7 49.4 3.03
Median 151.0 50.9 3.11
St. dev. 28.7 14.4 0.50
Variance 825.65 206.84 0.249
Skewness 0.91 �0.24 �0.72

Table 10.2 Correlation matrix for K, P and yield at
CEDAR Farm with 158 degrees of freedom.

K 1
P 0.585 1
Yield �0.329 �0.395 1

K P Yield
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and analogously for CvvðhÞ. They will also have a cross-covariance function:

CuvðhÞ ¼ E½fZuðxÞ � mugfZvðx þ hÞ � mvg�: ð10:4Þ

As in the univariate case, there is a spatial cross-correlation coefficient,
ruvðhÞ, which is given by

ruvðhÞ ¼
CuvðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cuuð0ÞCvvð0Þ
p : ð10:5Þ

Equation (10.5) is the extension of the ordinary Pearson product-moment
correlation coefficient (Chapter 2) into the spatial domain for ZuðxÞ and
Zvðx þ hÞ. When h ¼ 0 it is the Pearson coefficient. Note, however, that
ruvð0Þ ¼ 0, i.e. no linear correlation in the usual sense, does not mean no
correlation at lag distances greater than zero.

Equation (10.4) contains another new feature, namely asymmetry, for in
general

E½fZuðxÞ � mugfZvðx þ hÞ � mvg� 6¼ E½fZvðxÞ � mvgfZuðx þ hÞ � mug�:
ð10:6Þ

In words, the cross-covariance between u and v in one direction is in general
different from that in the opposite direction; the function is asymmetric:

CuvðhÞ 6¼ Cuvð�hÞ or equivalently CuvðhÞ 6¼ CvuðhÞ;

since

CuvðhÞ ¼ Cvuð�hÞ:

Asymmetry in time is common. The temperature of the air during the day
reaches its maximum after the sun has reached its zenith and its minimum occurs
after midnight, and the air’s mean daily temperature has maxima and minima
after the solstices. There is a delay between the elevation of the sun and the
temperature of the air. Analogous asymmetry in one dimension in space is easy
to envisage. The topsoil might be related asymmetrically to the subsoil on a slope
as a result of soil creep, and irrigation by periodic flooding from the same end of a
field might redistribute salts differentially down the profile. However, unless the
evidence for asymmetry is strong or there is some physical rationale for spatial
asymmetry, one might treat differences in estimates, equation (10.10) below, as
sampling effects and proceed as though the cross-correlation is symmetric.

The cross-variogram and the cross-covariance function (if it exists) are
related, and as in the univariate case the variogram can be obtained from
the covariance function by extension of equation (4.5), as follows:

guvðhÞ ¼ Cuvð0Þ � 1
2fCuvðhÞ þ Cuvð�hÞg: ð10:7Þ
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However, this conversion does not retain all of the information, as we can see
by splitting the cross-covariance into an even and an odd term:

CuvðhÞ ¼ 1
2fCuvðþhÞ þ Cuvð�hÞg þ 1

2fCuvðþhÞ � Cuvð�hÞg: ð10:8Þ

The odd term, the second term on the right-hand side of equation (10.8), does
not appear in equation (10.7). Unlike the cross-covariance, therefore, the cross-
variogram is an even function, i.e. it is symmetric:

guvðhÞ ¼ gvuðhÞ for all h:

The cross-variogram cannot express asymmetry, and it should not be used
where asymmetry is thought to be significant.

Another way of expressing the spatial relations between the two variables is
by the codispersion coefficient. For a lag h, this is

nuvðhÞ ¼
guvðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

guuðhÞgvvðhÞ
p : ð10:9Þ

This coefficient may be thought of as the correlation between the spatial
differences of u and v. Its merit is that it is symmetric, and so its estimate
might be preferred to the cross-correlogram (10.5) for describing the cross-
correlation. For second-order stationarity, nuvðhÞ approaches ruvð0Þ as jhj
approaches infinity.

10.2 ESTIMATING AND MODELLING
THE CROSS-CORRELATION

Providing there are sites where both u and v have been measured, guvðhÞ can be
estimated in a way similar to that for autosemivariances by

ĝuvðhÞ ¼
1

2mðhÞ
XmðhÞ

i¼1

fzuðxiÞ � zuðxi þ hÞgfzvðxiÞ � zvðxi þ hÞg: ð10:10Þ

The result is an experimental cross-variogram for u and v.
The cross-variogram can be modelled in the same way as the autovariogram,

and the same restricted set of functions is available. To describe the coregiona-
lization there is an added condition. Any linear combination of the variables is
itself a regionalized variable, and its variance must be positive or zero: it may
not be negative. This is ensured as follows.

We adopt what is called the linear model of coregionalization. In it we assume
that each variable ZuðxÞ is a linear sum of orthogonal, i.e. independent, random
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variables Yk
j ðxÞ, each with mean 0 and variance 1, and in which the superscript

k is simply an index, not a power:

ZuðxÞ ¼
XK

k¼1

X2

j¼1

ak
ujY

k
j ðxÞ þ mu: ð10:11Þ

In this expression

E½ZuðxÞ� ¼ mu;

E½Yk
j ðxÞ� ¼ 0 for all k and j;

and

1
2E½fYk

j ðxÞ � Yk
j ðx þ hÞgfYk0

j0 ðxÞ � Yk0

j0 ðx þ hÞg�

¼
gkðhÞ > 0 for k ¼ k0 and j ¼ j0;

0 otherwise:

�

Then the variogram for any pair of variables u and v is

guvðhÞ ¼
XK

k¼1

X2

j¼1

ak
uja

k
vjgkðhÞ: ð10:12Þ

We can replace the products in the second summation by bk
uv to obtain

guvðhÞ ¼
XK

k¼1

bk
uvgkðhÞ: ð10:13Þ

These bk
uv are the variances and covariances, i.e. nugget and sill variances, for

the independent components if they are bounded. The result might look like the
set of spherical-plus-nugget functions in Figure 10.3 below. The intercepts are
the three nugget variances, b1, and the differences between these and the
maxima are the sills of the correlated variances, b2. For unbounded variograms
the bk

uv are the nugget variances and gradients. The coefficients bk
uv ¼ bk

vu for all
k, and for each k the matrix of coefficients

bk
uu bk

uv

bk
vu bk

vv

" #

must be positive definite. Since the matrix is symmetric, it is sufficient that
bk

uu � 0 and bk
vv � 0 and that its determinant is positive or zero:

jbk
uvj ¼ jbk

vuj �
ffiffiffiffiffiffiffiffiffiffiffiffi
bk

uubk
vv

q
:

This is Schwarz’s inequality.
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For V coregionalized variables the full matrix of coefficients, ½bij�, will be of
order V, and its determinant and all its principal minors must be positive or zero.

Schwarz’s inequality has the following consequences for each pair of
variables:

1. Every basic structure, gkðhÞ, represented in a cross-variogram must also
appear in the two autovariograms, i.e. bk

uu 6¼ 0 and bk
vv 6¼ 0 if bk

uv 6¼ 0. As a
corollary, if a basic structure gkðhÞ is absent from either autovariogram,
then it may not be included in the cross-variogram.

2. The reverse is not so: bk
uv may be zero when bk

uu > 0, and structures may be
present in the autovariograms without their appearing in the cross-variogram.

In practice, fitting an optimal model to the coregionalization with these
constraints seems formidable. Nevertheless, Goulard and Voltz (1992) have
provided an algorithm that converges swiftly. One chooses a suitable combina-
tion of basic variogram functions, say nugget plus spherical, and for the
autocorrelated function(s) one provides the distance parameters. These can
be approximated in advance by fitting models independently to the experi-
mental variograms. Starting with reasonable values for the coefficients, bk

uv, the
computer fits the model and then iterates to minimize the residual sum of
squares, checking at each step that the solution is CNSD.

As a check on the validity of a model of coregionalization one can plot the
cross experimental variogram for any pair of variables and the model for them
plus the limiting values that would hold if correlation were perfect. This last
gives what Wackernagel (2003) calls the ‘hull of perfect correlation’, and for
any pair of variables u and v it is obtained from the coefficients bk

uu and bk
vv by

hull½guvðhÞ� ¼ �
XK

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
bk

uubk
vv

q
gkðhÞ: ð10:14Þ

The proximity of the line of the model to the experimental points shows the
goodness of fit, as before (Chapter 5). The line must also lie within the hull to be
acceptable. But perhaps most revealing is the proximity of the cross-variogram
to the hull. If the two are close then the cross-correlation is strong. If, in
contrast, the cross-variogram lies far from the bounds then the correlation is
weak. This feature may be appreciated by examining Figure 10.3, and we shall
discuss it in the first example below.

10.2.1 Intrinsic coregionalization

In general, the ratios of the coefficients to one another vary from one basic
function to another. In Figure 10.1(a), for example, we have a simple nugget-
plus-spherical variogram,

gðhÞ ¼ 2 þ 8 sph ð1:7Þ;
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shown as a solid line. If we multiply the nugget, 2, by 1.2 and the spherical
component by 2 we obtain the dashed line, which has a different shape from the
solid line. If our two multipliers are 2 and 1.2 then we obtain the dotted line,
which is of a similar shape to the first, but with a different nugget: sill ratio. The
range is the same, but the proportions of nugget to sill are all different.

It sometimes happens, however, that all the auto- and cross-variograms are
proportional to a single variogram function, so that in terms of equation (10.13)
all the coefficients bk

uv are the same for all k for each combination of u and v, thus:

guvðhÞ ¼
XK

k¼1

buvgkðhÞ; ð10:15Þ

in which we replace the bk
uv, k ¼ 1;2; . . . ;K, by the single coefficient buv. They

are simply multiples of one another with the same basic shape. As an example,
Figure 10.1(b) shows the basic spherical variogram. If we multiply the two
original components in turn by 1.2 and 2, representing buu, bvv and buv, then we
obtain the two additional variograms, represented by the dashed and dotted
lines, respectively. These are the same apart from the vertical scale.

Where the variables are second-order stationary,

guvðhÞ ¼ Cuvð0ÞgðhÞ; ð10:16Þ

with gðhÞ ! 1 as jhj ! 1. Spatial cross-correlation of this kind is said to be
intrinsic. The term is somewhat unfortunate in that this usage of ‘intrinsic’
differs from that in the ‘intrinsic hypothesis’.

Where spatial correlation is intrinsic the codispersion coefficient nuvðhÞ
remains constant for all h, i.e.

nuvðhÞ ¼
buvffiffiffiffiffiffiffiffiffiffiffiffi
buubvv

p ¼ Cuvð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cuuð0ÞCvvð0Þ

p ¼ nuvð0Þ:

Figure 10.1 Spherical variograms with constant range, 1.7: (a) of differing shapes and
differing nugget: sill ratios in the general case; (b) of constant nugget: sill ratios in the
intrinsic case. See text for further explanation.

Estimating and Modelling the Cross-Correlation 225



10.3 EXAMPLE: CEDAR FARM

We illustrate the procedure and some of the features of coregionalization using the
survey data of a field on CEDAR Farm in southeast England. They derive from an
original study of precision farming by Dr Z. L. Frogbrook, who kindly provided
them and to whom we are grateful. The field covers approximately 6.4 ha of fairly
flat land on clay and is cultivated to produce cereals. Its topsoil (0–15 cm) was
sampled at 160 places on 5 m � 2 m supports at 20 m intervals on a square grid.
The yield of barley was measured on the same supports in 1998. The principal
plant nutrients, exchangeable potassium (K) and available phosphorus (P), were
measured. The data are summarized in Table 10.1. Potassium and yield are
somewhat skewed, but not so seriously as to warrant transformation. The three
variables are correlated, though not strongly, as Table 10.2 shows.

By applying equation (10.10) and treating the variation as isotropic, we obtain
the experimental auto- and cross-variograms. The experimental variograms have
simple forms. Figure 10.2 shows an example; it is the autovariogram of K with a
spherical model fitted to it by weighted least squares, as described in Chapter 5. The
model’s coefficients are listed in Table 10.3. The other experimental variograms
appear in Figure 10.3 as the point symbols. Four of them, namely the autovario-
gram of yield (Figure 10.3(e)), and the three cross-variograms, Figures 10.3(b),
10.3(d) and 10.3(f), are evidently bounded, and again the spherical model fitted
them well. The coefficients of fitting the model independently are listed in
Table 10.3. The autovariogram of P does not reach a bound within the field.

The five bounded variograms have approximately the same range, and so we
can reasonably fit the linear model of coregionalization with two basic
components, g1ð0Þ, i.e. nugget, and g2ðjhjÞ. We set the range of g2ðjhjÞ to
144 m, the average of the five bounded variogram models. The resulting
coefficients bk

uv are listed in Table 10.4, and the solid lines in Figure 10.3
are those of the linear model of coregionalization. We can see by comparing
Figure 10.2 with Figure 10.3(a) for K that the model of coregionalization fits

Figure 10.2 Variogram of potassium at CEDAR Farm with experimental values plotted
as point symbols and the spherical model shown as the solid line.
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somewhat less well than the model fitted to K alone, and we can imagine that
we could fit the other variograms better if we treated them individually.
Nevertheless, the fit is generally good, and even for P the model fits fairly
well over most of the working lag distance. The dashed lines in the graphs in the
right-hand column of Figure 10.3 are the hulls of perfect correlation for the
cross-variograms. In all three the model is some way from the hulls, showing
that the spatial cross-correlations are at best moderate and like the ordinary
simple correlations (Table 10.2).

Finally, we comment on the practical meaning of the coregionalization. The
correlation between K and P is positive, and all the cross-semivariances are
positive. The two variables characterize the nutrient status of the soil. The
correlations between yield and K and P are all negative, and this might come as
a surprise. Farmers and their advisers have been used to thinking that more K
and P in the soil would result in greater yield. Now that yield can be recorded
automatically at harvest, they are discovering that large yields deplete the soil
locally and that they should fertilize differentially to maintain sufficient K and
P over the whole of each field. Large concentrations of K and P indicate small
off-take of these nutrients by the crop and thus smaller yields. Webster, in Lake
et al. (1997, pp. 74–77), has shown another example from the same district.

Table 10.3 Coefficients of spherical model fitted independently to auto- and cross-
variograms of K, P and barley yield at CEDAR Farm. The parameters c0, c and a are the
nugget, sill of the correlated variance and the range, respectively.

c0 c a/m

K 63.7 855.4 121.9
P 25.2 – –
Yield 0.121 0.167 151.0
K � P �20.48 294.6 150.2
K � yield 1.51 �7.94 130.1
P � yield 0.550 �4.548 168.5

Table 10.4 Coefficients bk
uv of the linear coregionalization with nugget plus spherical

for K, P and yield at CEDAR Farm.

K P Yield

Nugget, b1
uv

K 157.28
P �21.34 2.8960

Yield 0.8683 �0.11305 0.15027
Correlated variance, b2

uv

K 785.15
P 291.39 218.1996

Yield �7.4239 �3.5149 0.13027
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10.4 COKRIGING

Having learned how to model the coregionalization, we can use our knowledge
of the spatial relations between two or more variables to predict their values
by cokriging. Typically the aim is to estimate just one variable, which we
may regard as the principal or target variable, at a point x0 or in a block B, from

Figure 10.3 Autovariograms (left) and cross-variograms (right) of K, P and barley
yield at CEDAR Farm. The experimental values are plotted as points and the solid lines
are of the model of coregionalization. The dashed lines in the right-hand graphs are the
hulls of perfect correlation.
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data on it plus those of one or more other variables, which we regard as
subsidiary variables. Cokriging is simply an extension of autokriging in that
it takes into account additional correlated information in the subsidiary
variables. It appears more complex because the additional variables increase
the notation.

Let there be V variables, l ¼ 1;2; . . . ;V, and let us denote the one we wish to
predict as u; this will usually have been less densely sampled than the others. In
ordinary cokriging we form the linear sum

ẐuðBÞ ¼
XV

l¼1

Xnl

i¼1

lilzlðxiÞ; ð10:17Þ

where the subscript i refers to the sites, of which there are nl where the variable
l has been measured. The lil are weights, satisfying

Xnl

i¼1

lil ¼
1 l ¼ u;
0 l 6¼ u:

�
ð10:18Þ

These are the non-bias conditions, and subject to them the estimation variance
of ẐuðBÞ for a block, B, is minimized by solution of the kriging system, which, in
full, is

XV

l¼1

Xnl

i¼1

lilg lvðxi; xjÞ þ cv ¼ �guvðxj;BÞ;

Xnl

i¼1

lil ¼
1 l ¼ u;

0 l 6¼ u:

� ð10:19Þ

for all v ¼ 1;2; . . . ;V and all j ¼ 1;2; . . . ; nv. The quantity g lvðxi; xjÞ is the
(cross-)semivariance between variables l and v at sites i and j, separated by the
vector xi � xj; �guvðxj;BÞ is the average (cross-)semivariance between a site j and
the block B; and cv is the Lagrange multiplier for the vth variable. We print
‘cross’ in parentheses because if l ¼ v or u ¼ v the semivariances are the
autosemivariances. This set of equations is the extension of the autokriging
system, equations (8.11).

Solving equations (10.19) gives the weights, l, which are inserted into
equation (10.17) to estimate ZuðBÞ, and the estimation variance, the cokriging
variance, is obtained from

s2
uðBÞ ¼

XV

l¼1

Xnl

j¼1

ljl�gulðxj;BÞ þ cu � �guuðB;BÞ; ð10:20Þ
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where �guuðB;BÞ is the integral of guuðhÞ over B, i.e. the within-block variance
of u.

The equations can be represented in matrix form. For simplicity consider two
variables, u and v, only. The matrices are easily extended to more. Let Guv

denote a matrix of semivariances (including cross-semivariances where u 6¼ v)
between sampling points in a neighbourhood. Let there be nu places at which
variable u was measured and nv where v was measured. The order of the matrix
is nu � nv:

Guv ¼

guvðx1; x1Þ guvðx1; x2Þ � � � guvðx1; xnv
Þ

guvðx2; x1Þ guvðx2; x2Þ � � � guvðx2; xnv
Þ

..

. ..
.

� � � ..
.

guvðxnu
; x1Þ guvðxnu

; x2Þ � � � guvðxnu
; xnv

Þ

2
6664

3
7775:

We denote by buu and by buv the vectors of autosemivariances for variable u and
cross-semivariances:

buu ¼

�guuðx1;BÞ
�guuðx2;BÞ

..

.

�guuðxnu
;BÞ

2
6664

3
7775; buv ¼

�guvðx1;BÞ
�guvðx2;BÞ

..

.

�guvðxnv
;BÞ

2
6664

3
7775:

The matrix equation is then

10
10

Guu Guv
..
...
.

10
01
01

Gvu Gvv
..
...
.

01
11 . . .1 00 . . .0 00
00 . . .0 11 . . .1 00

2
6666666666666664

3
7777777777777775

�

l1u

l2u

..

.

lnuu

l1v

l2v

..

.

lnvv

cu

cv

2
66666666666666664

3
77777777777777775

¼

buu

buv

1
0

2
666666666666664

3
777777777777775

:

If we denote the augmented matrix of Gs by G, the vector of weights and
Lagrange multipliers by l, and the right-hand side vector by b, then we can
write the solution of the equation succinctly as

l ¼ G�1b: ð10:21Þ
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The cokriging (prediction) variance is given by

ŝ2
uðBÞ ¼ bTl� �guuðB;BÞ: ð10:22Þ

As in autokriging, the block B may be of any reasonable size and shape, and
it may be reduced to a point, x0, having the same dimensions as the support on
which the data were obtained. In these circumstances the averages �guvðxj;BÞ
become guvðxj; x0Þ, and �guuðB;BÞ is zero and hence disappears, thus:

buu ¼

guuðx1; x0Þ
guuðx2; x0Þ

..

.

guuðxnu
; x0Þ

2
6664

3
7775; buv ¼

guvðx1; x0Þ
guvðx2; x0Þ

..

.

guvðxnv
; x0Þ

2
6664

3
7775;

and

ŝ2
uðx0Þ ¼ bTl: ð10:23Þ

Myers (1982) presents the equations for cokriging somewhat differently and
comprehensively.

10.4.1 Is cokriging worth the trouble?

Cokriging is more complex than autokriging, and the practitioner can and
should ask whether the extra complexity improves the results: are the estimates
better in any sense?

We distinguish two situations. First consider the undersampled case. By
undersampling we mean that the variable to be estimated, the primary variable
u in the kriging equations, is sampled less intensely than the others, usually at a
subset of the sampling points. In this case the spatial correlation in the other
variables and their relation to u add information that is lacking in that of u
alone. As a result cokriging increases the precision, i.e. it reduces the estimation
variance. By how much depends on the degree of undersampling. In general,
the smaller the sampling intensity of u in relation to that of the other(s) the
greater is the benefit of cokriging. We illustrate this below.

In the fully sampled case, all variables are recorded at all sampling points.
Here the principal advantage is coherence. Kriging is coherent when the kriged
estimate of the sum of a set of variables, say Ŝ, equals the sum of their
individually kriged estimates:

ŜðBÞ ¼
Xnl

i¼1

li

XV

l¼1

zlðxiÞ ¼
XV

k¼1

XV

l¼1

Xnl

i¼1

lilzlðxiÞ: ð10:24Þ
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Cokriging ensures coherence. Otherwise the equality depends on the nature of
the coregionalization.

As an example, consider estimating the thickness of a soil horizon. A field
surveyor might have recorded the depths from the surface to the top and
bottom of the horizon in question at the sampling points. At each point the
thickness is simply the difference between the two. We could krige the thickness
to estimate it at unrecorded positions. Alternatively, we could krige the depths
to the top and the bottom of the horizon and compute their differences. If we
were to do that for each variable independently then we should find that in
general the differences between the kriged estimates were not the same as the
kriged differences, i.e. the kriged thickness. If, however, we were to cokrige the
depths to top and bottom then the differences between the kriged estimates
would equal the kriged thickness.

Where the variables are intrinsically coregionalized, i.e. all the variograms
are related linearly to a single basic model, autokriging of any variable gives the
same result as cokriging. The spatial information for the one variable is all there
is in the data, there is no more in that of the others, and there is no merit in the
more complex procedure.

Where the variogram of the primary variable, u, is linearly related to the
cross-variogram(s), autokriging u again gives results identical with cokriging.
The cross-correlation adds nothing.

In other situations the results are in general different. However, with full
sampling the differences are likely to be small, and experience suggests that the
differences are usually so small that they can be ignored unless coherence is
essential.

10.4.2 Example of benefits of cokriging

We can see something of the benefits of cokriging by following the same logic as
in Chapter 8, where we calculated the kriging variances for various sample
spacings from a model variogram. We placed sampling points on regular grids,
and we computed the variances at the centres of the grid cells where for
punctual kriging they were greatest. For block kriging the maxima can occur
when the target block is centred on a grid node, and so we calculated the
variance in those positions also. We displayed the results as curves of maximum
kriging variance against grid spacing (Figure 8.23).

For cokriging we have two or more variables. We can choose the primary
grid for the undersampled target variable, u, in the same way as for autokriging.
We can then superimpose denser grids for the subsidiary variables. With the
points at the nodes of these two grids we can set up and solve the cokriging
equations. The maximum kriging variances are no longer necessarily at the
centres of grids cells or centred over grid nodes, and so their positions must be
found by searching. As the density of the subsidiary grid is increased so the
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kriging variance of the target variable should decrease, and doing the calcula-
tions as above and plotting the results will show just how beneficial cokriging is
at various scales. McBratney and Webster (1983) describe the procedure in
detail.

We illustrate the approach with the coregionalization at CEDAR Farm. As we
mentioned above, measuring nutrients in the soil is expensive in relation to the
benefits to be gained from knowing the concentrations. Arable farmers in
Britain can afford to sample their soil at a density of approximately one per
hectare; not more. Yet they would like to know the nutrient concentration at a
much finer resolution to vary their application of fertilizers. Automatic record-
ing of yield as the grain passes through the harvester is now quite feasible and
produces abundant dense data. So if the relation between yield and nutrient
status is sufficiently strong the farmer might use the dense data on yield to
improve his prediction of nutrient concentration. So let us see to what extent we
might use this approach in the situation at this farm.

We suppose that available phosphorus (P) is the target variable and we shall
use yield as the subsidiary variable. We take the parameters for the cokriging
from the coregionalization model (Table 10.4). We have chosen intervals for the
primary grid from near 0 to 400 m. We have imposed subsidiary grids with
intervals of 1/2, 1/3, 1/4 and 1/5 of the primary grid, giving sampling ratios of
4, 9, 16 and 25. The smallest intervals are impracticable because the cutter bar
of a modern harvester is typically 4 m wide on British farms, but we include
them to complete the picture and for theoretical interest. We have solved the
kriging systems for punctual kriging and also computed the kriging variances
for blocks 24 m � 24 m. We choose this size because the standard farm
machinery spreads fertilizer in bands this wide.

The results are plotted as graphs of maximum kriging variance against
sample spacing in Figure 10.4. In each graph the uppermost solid curve is for
autokriging and the ones beneath it are in order from top to bottom for
cokriging with the subsidiary grid interval 1/2, 1/3, 1/4 and 1/5 of that of
the primary grid.

The upper pair of graphs, Figure 10.4(a) for punctual kriging and
Figure 10.4(b) for block kriging, show that with the actual model of coregio-
nalization for this field the reductions in kriging variance from adding yield in
the kriging equations to predict P are modest. The reason is that the correlation
between the two is itself modest. If the cost of installing a recorder to measure
yield and handling the data is much less than that of analysing the soil for P
then it might be worth the trouble, but in any event the farmer cannot expect
large gains in precision or to save much in soil sampling and analysis.

In passing, we note that the block-kriging variance is less than the variance
of punctual kriging with the same sampling configuration by an amount
approximately equal to the within-block variance of P.

The outlook might be rosier with stronger association between target and
subsidiary variables, and to illustrate this we have repeated the exercise using
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a model of perfect correlation, the lower part of the hull in Figure 10.3(f).
Figure 10.4(c)–(d) displays the results. Now large differences emerge as the
density of the subsidiary grid increases. With a sampling ratio of 25 for the
subsidiary variable we can reduce the maximum kriging variance to one-third
of that from autokriging. The farmer could increase the ratio further and gain
even bigger benefits in such circumstances.

Figure 10.4 Graphs of maximum kriging variance of phosphorus (P) against sample
spacings on a primary grid with denser observations of yield on subsidiary grids.
(a) Punctual kriging of P using the fitted model of coregionalization (Table 10.4);
(b) kriging of 24 m � 24 m blocks with the same model; (c) punctual kriging of P using a
model of perfect correlation (Figure 10.3); (d) block kriging (24 m � 24 m blocks) with
the perfect model. In each graph the uppermost curve is that for autokriging and the
ones below are in order for spacings on the subsidiary grid of 1/2, 1/3, 1/4 and 1/5 of
those on the primary grid.
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10.5 PRINCIPAL COMPONENTS
OF COREGIONALIZATION MATRICES

The full coregionalization model of V variables has V � ðV þ 1Þ=2 variograms,
and if each has K basic functions then there are K � V coefficients. We have
already seen the set of auto- and cross-variograms for CEDAR Farm, with three
variables and K ¼ 2 basic functions (Table 10.4 and Figure 10.3). The
correlations are moderate, and though we have used the relation between P
and yield to illustrate cokriging there is not a great deal of interest in exploring
them further. Where the correlations are stronger, however, it may be worth
analysing the coregionalization matrices to see how the correlation varies with
scale. To illustrate this we turn to an original investigation of heavy metals in
the soil in the Swiss Jura by Atteia et al. (1994) and Webster et al. (1994).

Some 14.5 km2 near La Chaux-de-Fonds in the Jura were surveyed to
determine the concentrations of seven potentially toxic metals, namely cad-
mium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and
zinc (Zn), in the topsoil. Soil was removed with a cylindrical corer of 5 cm
diameter to a depth of 25 cm, which therefore defined the support of the sample.
Cores were taken at 214 intersections of a 250 m grid plus an additional 152
points arranged in nests around 38 of the grid nodes. The ‘total’ metal was
extracted from each sample by strong acid and measured. Atteia et al. (1994)
describe the sampling and analytical procedure in detail.

Table 10.5 summarizes the data from the 366 sites. It shows immediately
that the frequency distributions of four of the metals—Cd, Cu, Pb and Zn—were

Table 10.5 Summary statistics for heavy metals at La Chaux-de-Fonds on the original
scales (mg kg�1) and with Cd, Cu, Pb and Zn transformed to their common logarithms.

Cd Co Cr Cu Ni Pb Zn

Minimum 0.14 1.55 3.32 3.55 1.98 18.7 25.0
Maximum 5.13 20.6 70.0 242 53.2 382.0 338.0
Mean 1.31 9.45 35.2 24.6 20.2 57.0 78.5
Median 1.11 9.82 34.8 17.4 20.8 46.8 74.0
Variance 0.7598 12.56 118.3 638.8 67.91 1527.9 1147.0
St. dev. 0.87 3.54 10.9 25.3 8.24 39.1 33.9
Skewness 1.43 �0.20 0.34 3.87 0.17 4.22 2.74
Kurtosis 2.44 �0.60 0.33 18.1 0.31 23.6 12.9

Logarithms
Mean 0.022 1.26 1.70 1.86
Variance 0.0868 0.1046 0.0414 0.0306
St. dev. 0.29 0.34 0.21 0.18
Skewness �0.30 0.51 1.10 0.07
Kurtosis �0.30 0.66 2.64 0.96
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strongly skewed, and so the data for these were transformed to their common
logarithms to stabilize their variances.

Further, the correlation matrix, Table 10.6, shows some fairly strong cor-
relations—between Co and Ni, and between Cu and Pb, for example. The
general strength of correlation in the data may be judged by converting the
matrix to principal components. The results are summarized in Table 10.7.
The two leading principal components account for 78% of the variance in the
matrix, given in the right-hand column. The correlation may then be displayed
in the plane of the first two axes by computing the correlation coefficients, cij,
between the principal component scores and the original variables, as follows:

cij ¼ aij

ffiffiffiffiffiffiffiffiffiffiffi
nj=s

2
i

q
; ð10:25Þ

where aij is the ith element of the jth eigenvector, nj is the jth eigenvalue, and s2
i

is the variance of the ith original variable. We then plot these coefficients in
circles of unit radius in the planes of the leading components. Figure 10.5(a)
shows the result. The first axis represents the magnitude of the concentrations:
large concentrations of one metal are associated with large concentrations of
the others. Axis 2 spreads the metals out, and it is evident that Cu and Pb are

Table 10.6 Correlation matrix for seven heavy metals in the soil at La Chaux-de-Fonds
in the Swiss Jura with 364 degrees of freedom.

Log cadmium 1
Cobalt 0.393 1
Chromium 0.653 0.473 1
Log copper 0.243 0.271 0.300 1
Nickel 0.634 0.727 0.717 0.326 1
Log lead 0.346 0.212 0.335 0.795 0.372 1
Log zinc 0.677 0.523 0.669 0.700 0.687 0.685 1

Cd Co Cr Cu Ni Pb Zn

Table 10.7 Eigenvalues of correlation matrix for seven heavy metals in the soil at
La Chaux-de-Fonds.

Order Eigenvalue Percentage Accumulated percentage

1 4.123 58.90 58.90
2 1.342 19.17 78.07
3 0.681 9.72 87.79
4 0.344 4.91 92.70
5 0.229 3.27 95.97
6 0.162 2.31 98.28
7 0.120 1.72 100.00
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closely associated, as are the transition metals Co, Ni and Cr. Cadmium seems to
be related to these metals, while Zn lies about half-way between the two groups.
The occurrence of all the points close to the circumference of the circle is one
more reflection of there being only little more information in the other
dimensions.

The principal component analysis has another advantage: the leading
components should concentrate the information on the spatial structure.
Figure 10.6 shows the variograms of the first two components. The plotted
points are the experimental values and the solid lines are the fitted models. We
fitted double spherical functions with nugget variances (see Chapter 5) to both,
and the coefficients for the models are listed in Table 10.8. The nested structure
of the first component is clear, with two distinct ranges, a1 � 0:2 km and
a2 � 1:3 km.

The first principal component contains such a large proportion of the total
variation that we have taken its spatial structure and its distance parameters,

Figure 10.5 Projections of the correlations between the original (standardized)
variables and the principal component scores into unit circles in the plain of the first
two principal components for the heavy metals in the Swiss Jura: (a) the ordinary
product-moment correlation matrix; (b) the nugget matrix; (c) the short-range matrix;
(d) the long-range matrix.
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the two ranges, as typical of the full set of data. We set these ranges as
constants, and then found the sills of the seven autovariograms and the 21
cross-variograms iteratively by the Goulard and Voltz algorithm. These sills are
listed in Table 10.9. Figure 10.7 shows the autovariograms with the model
fitted to them, and readers can see the full set including the cross-variograms in
Webster et al. (1994).

The differences between the metals are striking. The spatial correlation of Cd,
Pb and Cu is dominantly of short range, whereas that of Co and Ni is of long

Figure 10.6 Variograms: (a) the first; (b) the second principal components of the
heavy metals. The points show the experimental values and the solid lines are of the
independently fitted double spherical models, the coefficients of which are listed in
Table 10.8.

Table 10.8 Coefficients of double spherical model fitted to principal components for
La Chaux-de-Fonds.

c0 c1 c2 a1 a2

Component 1 0.547 1.473 2.580 0.198 1.376
Component 2 0.543 0.513 0.330 0.377 1.976
Component 3 0.174 0.287 0.239 0.161 1.297

Table 10.9 Coefficients, bk, of double spherical model of coregionalization for
standardized autovariograms of the seven heavy metals in the soil at La Chaux-de-Fonds.
All of the scales have been standardized to variance equal to 1 for comparison.

Cd Co Cr Cu Ni Pb Zn

Nugget, b1 0.396 0.146 0.225 0.160 0.168 0.244 0.113
Short range, b2 0.267 0.092 0.524 0.621 0.073 0.408 0.454
Long range, b3 0.384 0.844 0.288 0.291 0.961 0.344 0.508
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range. Somewhat surprisingly, the variogram of Cr is dominated by the short-
range component. Zinc has an intermediate structure.

We can take the analysis one stage further by finding the principal compo-
nents of the coregionalization matrices, as follows. The coefficients, bk

uv, for all
u ¼ 1;2; . . . ;V and all v ¼ 1;2; . . . ;V, constitute a V � V variance–covariance

Figure 10.7 Experimental autovariograms of the seven heavy metals in the soil of the
Swiss Jura shown by point symbols and the fitted model of coregionalization shown by
solid lines. All of the scales have been standardized to variance equal to 1 for comparison.
The coefficients are listed in Table 10.9.
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matrix, Bk, and principal components of these can be found in exactly the same
way as those of any other variance–covariance or correlation matrix. The
elements of the matrix, which are listed in Table 10.10, are converted to
correlation coefficients by dividing by the square roots of the variances on the
diagonal so that all variables have equal weight. The eigenvalues, n, and
eigenvectors, a, are then extracted. To explore the relations among the variables
we computed the correlations between the original variables and the principal
components at each scale using equation (10.25), replacing s2

i by the relevant bk
uu.

Figure 10.5(b)–(d) shows the results for the nugget, short-range and long-
range components, respectively. The first two eigenvalues account for more
than 85% of the variance in all three matrices (Table 10.11), and in con-
sequence all the points plot near the circumferences. The contributions of
the nugget variance appear as a scatter of points to the left of centre in
Figure 10.5(b). In Figure 10.5(c), representing the short-range components, Cu
and Pb are close neighbours—evidently they are closely correlated at this

Table 10.10 Nugget and structural correlation coefficients in lower triangles for seven
heavy metals in the soil at La Chaux-de-Fonds.

Nugget variances
log Cadmium 1
Cobalt �0.051 1
Chromium 0.399 0.217 1
log Copper 0.118 �0.253 �0.137 1
Nickel 0.347 0.197 0.446 �0.040 1
log Lead 0.322 �0.276 0.037 0.249 0.021 1
log Zinc 0.521 �0.093 0.249 0.094 0.237 0.233 1

Short-range components
log Cadmium 1
Cobalt 0.167 1
Chromium 0.358 0.050 1
log Copper 0.126 0.174 0.292 1
Nickel 0.097 �0.021 0.579 0.422 1
log Lead 0.028 0.210 0.326 0.637 0.153 1
log Zinc 0.316 0.193 0.502 0.609 0.152 0.421 1

Long-range components
log Cadmium 1
Cobalt 0.427 1
Chromium 0.459 0.786 1
log Copper 0.237 0.578 0.292 1
Nickel 0.578 0.766 0.499 0.302 1
log Lead 0.363 0.412 0.127 0.327 0.481 1
log Zinc 0.485 0.719 0.398 0.370 0.837 0.461 1

Cd Co Cr Cu Ni Pb Zn
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scale—whereas the uncorrelated Co and Ni make little contribution at this scale
and so lie closer to the centre. The reverse is the case at the long range (Figure
10.5(d)), in which the strong correlation between Co and Ni is apparent.

Webster et al. (1994) thought that the two distinct patterns of variation
might result from two distinct sources of the metals: the lithophile metals Co
and Ni deriving from the rocks, and Cu, Pb, Zn and perhaps Cd having been
added in manure, fertilizer, sewage sludge or urban waste. They used the results
to explore these possibilities.

10.6 PSEUDO-CROSS-VARIOGRAM

It will be evident from the computing formula, equation (10.10), that cross-
semivariances can be calculated only from points where both variables u and v
have been measured. In the examples from Broom’s Barn Farm and the Jura
there are few missing data, and the restriction is of little consequence. There are
other situations, however, where it is difficult or even impossible to measure the
two variables at the same place, as when sampling is destructive. This happens
in soil monitoring. Soil material may be taken away initially for analysis and is
not there subsequently, so on later occasions the soil must be measured at
different places (see Papritz et al., 1993; Papritz and Webster, 1995a, 1995b).
Nevertheless, one may have many observations from which to assess spatial
relations and one would like to use them.

Clark et al. (1989) recognized the desire, and they proposed a ‘pseudo-cross-
variogram’. They introduced it with the following definition:

gC
uvðhÞ ¼ 1

2E½fZuðxÞ � Zvðx þ hÞg2�: ð10:26Þ

Table 10.11 Eigenvalues of structural variance–covariance matrices for La Chaux-de-
Fonds.

Nugget Short range Long range

Accumulated Accumulated Accumulated
Order Eigenvalue percentage Eigenvalue percentage Eigenvalue percentage

1 0.7498 52.20 1.5965 65.44 2.8339 78.27
2 0.4792 85.61 0.4979 85.85 0.3608 88.23
3 0.0974 92.39 0.1930 93.76 0.2546 95.26
4 0.0685 97.16 0.1018 97.93 0.1215 98.62
5 0.0406 99.99 0.0504 100.00 0.0497 99.99
6 0.0001 100.00 0.0000 100.00 0.0003 100.00
7 0.0000 100.00 0.0000 100.00 0.0000 100.00
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This is unsatisfactory because, unless mu ¼ mv, gC
uvðhÞ is not equal to half of the

variance of the difference. Myers (1991) recognized this shortcoming and
redefined the pseudo-cross-variogram as the variance:

gP
uvðhÞ ¼ 1

2 var ½ZuðxÞ � Zvðx þ hÞ�: ð10:27Þ

If the means of u and v are equal then gC
uvðhÞ ¼ gP

uvðhÞ; otherwise the function
defined by Clark et al. equals gP

uvðhÞ þ ðmu � mvÞ2.
For second-order stationary processes gP

uvðhÞ is related to the cross-
covariance function by

gP
uvðhÞ ¼ 1

2fCuuð0Þ þ Cvvð0Þg � CuvðhÞ: ð10:28Þ

Like the cross-covariance function, it is in general not symmetric in h. It is also
related to the ordinary cross-variogram by

gP
uvðhÞ þ gP

vuðhÞ
¼ guuðhÞ þ gvvðhÞ þ 2guvðhÞ
� ½fZuðxÞ � Zvðx þ hÞg; fZvðxÞ � Zuðx þ hÞg�; ð10:29Þ

and for second-order stationary processes with symmetric cross-covariances

gP
uvðhÞ ¼ guvðhÞ þ 1

2fCuuð0Þ þ Cvvð0Þ � 2Cuvð0Þg: ð10:30Þ

Papritz et al. (1993) explored the properties of the pseudo-cross-variogram
and discovered that it has rather restricted validity, though in the right
conditions it can be modelled with the ordinary autovariograms and used for
cokriging, and this is likely to be its main attraction. More generally, the
inability to estimate the usual cross-variogram for want of comparisons
between variables at lag zero is tantalizing. Papritz et al. (1993) suggested a
way forward for situations in which the pseudo-cross-variogram is valid, but
the computational load still seems prohibitive for the size of sample needed for
reliable estimation.

At present we leave the reader with the pseudo-cross-variogram as a possible
function to describe cross-correlation. It is far from ideal, and it seems to us
preferable to plan surveys in such a way that there are always enough sites at
which all the variables are or can be measured.

For further details and explanation, see Journel and Huijbregts (1978),
Matheron (1979), Myers (1982), McBratney and Webster (1983), Papritz
et al. (1993) and Wackernagel (1994, 2003).
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11

Disjunctive Kriging

11.1 INTRODUCTION

Ordinary kriging is the most common form of geostatistical estimation. As
described in Chapter 8, it estimates the values of regionalized variables at
unsampled places, i.e. at the target points or blocks, as simple linear combina-
tions of measured values in the neighbourhoods of those targets. The estimates
are the best of their kind in the sense that they are unbiased and the variance,
which is also estimated, is the minimum. Sometimes we should like to have
more information than this; for instance, we might want to know, given the
data, the likelihood or probability that the true values at the target points
exceed some threshold. These probabilities are not linear combinations of the
data. To estimate them we need more elaborate techniques that depend on the
statistical distributions of the variables at the target points. The following
examples illustrate where this need arises.

In developed countries, in particular, there is a desire to clean up and protect
the environment. In some cases laws have been passed to limit the concentra-
tions of certain materials in the air, water and soil. For example, the European
Union has stipulated a permissible maximum for the concentration of nitrate in
drinking water of 50 mg l�1. This has given local authorities in England and
Wales powers to prosecute farmers who cause this to be exceeded in water
supplies. The Swiss federal government has specified maxima for the concen-
trations of heavy metals in the soil of the country (FOEFL, 1987). For cadmium
and lead, as examples, they are 0.8 mg kg�1 and 50 mg kg�1, respectively. They
are guide values, but if they are exceeded then the cantonal administrations
must act appropriately. The quality of the air may be judged on the amount of
SO2 it contains, and governments may again set limits to what is tolerable. If a
limit, denoted zc, is exceeded then the law-enforcement agency may order
polluters to cut their emissions.

In agriculture there are similar situations. In humid temperate climates the
soil tends to be acid, cropping there increases the tendency, and farmers need to
apply lime to counteract it. There is often a critical value of pH that signifies the
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need for lime. If the soil’s pH falls below that value then it is time to act by
addition of lime to the land. The farmer would like to know, therefore, whether
the pH is less than this threshold for each point on the farm. If it exceeds the
critical value then the farmer need do nothing. Farmers in drier regions often
have to control salinity and alkalinity. Again there are critical values of
electrical conductivity in the soil solution (for salinity) and exchangeable
sodium percentage (for alkalinity), and if these are exceeded then the farmer
should apply gypsum and try to leach the soluble salt out. Here the thresholds,
zc, are maxima. In other situations there are minimum recommended concen-
trations for certain nutrient elements in soil. This is especially true of the trace
metals copper and cobalt which are essential in the diets of grazing livestock,
and graziers should ensure that the herbage, and therefore the soil on which it
grows, contains enough.

What is common to these situations is that true values are known only at
sample points. Elsewhere the environmental protection agency, the farmer, the
grazier, must estimate or predict the values, and these estimates are subject to
error. Decisions, however, must be based on these estimates despite the errors.
Where an estimate exceeds a threshold widely or is much less than it the
decision-maker can take it at its face value and act or not as is appropriate.
Difficulty arises where the estimate is close to the threshold and might result in
a misjudgement that could have serious or expensive consequences, or both.
For example, if the true concentration of nitrate in the ground water is less than
50 mg l�1, the zc, and the water authority estimates it as more then farmers
might be constrained or fined unnecessarily, whereas if the situation is the
reverse then consumers might suffer.

Similarly, if the true pH of the soil is less than 5.5, the relevant threshold for a
given crop, and the farmer estimates it to be more then he will not add lime. The
likely outcome is a loss of yield and profit. If on the other hand the true value
exceeds 5.5 and the farmer’s estimate is less then he could spend money
unnecessarily on lime. If the grazier overestimates the concentration of cobalt in
soil that is deficient and as a result does nothing to correct the deficiency then
his sheep will not thrive and may die prematurely. If he underestimates the
concentration in soil containing sufficient cobalt then he might add cobalt to
the soil or to the animals’ diet unnecessarily or, more expensively, have his
animals’ blood tested.

In such situations the land manager might attempt to remedy a soil condition
that did not exist, or an agency could have a false sense of security and fail to
deal with a threat that did exist. To avoid unnecessary expenditure or treatment
or the risk of losing yield or perpetuating environmental damage and suffering if
nothing is done, the land manager or law enforcer needs to know the risks of
taking their estimates at face value.

Miners face a similar problem. At any particular time there is a price of metal
and the cost of processing its ore, and there is a threshold concentration greater
than which it is profitable to extract each block of rock and less than which it is

244 Disjunctive Kriging



not. As Journel and Huijbregts (1978) remark, ‘decisions are based on
estimates, whereas profits depend on the true values’. Miners take financial
risks when treating estimates as if they are true.

If we use linear kriging to estimate Z at the nodes of a fine grid we could
examine the effect of the threshold by threading an isarithm at zc through the
grid and display the result as a map. This would show two classes: one where
the estimates of Z exceed zc and the other where they do not. As with the
individual estimates, the map would be more or less in error, and there would
be a risk in taking the map at its face value.

In all of these situations we need estimates of the probability, given the data,
that the true values exceed (or do not exceed) the threshold, zc, at an unsampled
location x0. It can be expressed formally by

Prob½Zðx0Þ > zjzðxiÞ; i ¼ 1;2; . . . ;N� ¼ 1 � Prob½Zðx0Þ � zc j zðxiÞ�; ð11:1Þ

where N is the number of data points.
To determine the probabilities we need to know the conditional expectation or

expected value at each target point, which depends on knowing the probability
distribution of ZðxÞ. Unfortunately, the full multivariate distribution of ZðxÞ is
inaccessible, partly because we have only one realization and partly because the
actual probability distributions depart more or less from theoretical ones.

Two solutions have been proposed to overcome this difficulty; both involve
transformations of data, and both are used in practice. The simpler is indicator
kriging (Journel, 1983); it needs no assumption of a theoretical distribution,
and in this sense it is non-parametric. It converts a variable that has been
measured on a continuous scale to several indicator variables, each taking the
values 0 or 1 at the sample sites, and estimating their values elsewhere. It is
appealing for these reasons. The other solution, disjunctive kriging, is due to
Matheron (1976). It transforms the data to a standard normal distribution
using Hermite polynomials and then compares the estimated values with the
normal distribution to obtain the required probabilities.

Although indicator and disjunctive kriging are described as non-linear meth-
ods, both are linear krigings of non-linear transforms of data. Indicator kriging
involves simple or ordinary kriging of indicators, and disjunctive kriging is a
simple kriging of Hermite polynomials. Both lead to estimates of the probabilities
that the true values exceed (or not) specified thresholds at unknown points or
blocks in the neighbourhood of data. In this way they enable us to assess the risk
we take by accepting the estimates at their face values.

Many case studies using the techniques have been reported. Examples of
indicator kriging in mining include ones by Journel (1983) and Lemmer
(1984), and in environmental protection by Bierkens and Burrough (1993a,
1993b), Journel (1988), Goovaerts (1994) and Goovaerts et al. (1997).
Matheron developed disjunctive kriging specifically for mining, and its potential
benefits for that industry are evident (Rendu, 1980; Maréchal, 1976; Rivoirard,
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1994). Nevertheless, it is proving well suited for environmental protection and
land management. Applications in soil science have been especially successful.
Yates et al. (1986a, 1986b) set it in the context of soil water, and Yates and
Yates (1988) used it to estimate viral contamination of soil by sewage. We have
applied it to several case studies in soil science (Webster and Oliver, 1989;
Wood et al. 1990; Webster, 1991, 1994; Oliver et al., 1996).

In this chapter we describe Gaussian disjunctive kriging, but before going
into detail we devote a short section to indicators in general.

11.2 THE INDICATOR APPROACH

11.2.1 Indicator coding

An indicator variable, often abbreviated to ‘indicator’ in geostatistical parlance,
is essentially a binary variable; it is one that takes the values 1 and 0 only.
Typically such variables denote presence or absence. In soil science we could
score a soil sample with a 1 for earthworms if they were present and 0 if they
were not. We might score the presence of roots and stones similarly.

We can also create an indicator, vðxÞ, from a continuous variable, zðxÞ, quite
simply by scoring it 1 if zðxÞ is less than or equal to a specified threshold or cut-
off, zc, and 0 otherwise:

vðxÞ ¼ 1 if zðxÞ � zc;
0 otherwise:

�
ð11:2Þ

We thereby dissect the scale of z into two parts, one for which zðxÞ � zc and one
for which zðxÞ > zc, and assign to them the values 1 and 0, respectively. This is
what is meant by disjunctive coding. If zðxÞ is a realization of a random process,
ZðxÞ, then vðxÞ may be regarded as the realization of the indicator random
function, V½ZðxÞ � zc�. This is a new binary random process.

It will be convenient to abbreviate the notation somewhat for these variables
to vðx; zcÞ for the realization and Vðx; zcÞ for the random function.

The relevance of this transformation to environmental protection is evident. If
we have a threshold, zc, for the concentration of a pollutant that may not be
exceeded then the continuous random variable, ZðxÞ, is converted to an indicator
function for which the value 1 means clean or acceptable and 0 means polluted
and unacceptable. We have already mentioned examples for nitrate in drinking
water in the European Union and heavy metals in the soil of Switzerland.

Converting a continuous variable to an indicator clearly loses much of the
information in the original data, and it might seem prodigal to transform
quantitative data in this way. There are reasons for doing it, however. In some
instances the statistical distribution is such that transforming it to one that is
known is difficult. This is often the case where there are many zeros in the record.
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There may be outliers, the effects of which we want to retain. Pollutants, for
which only the outliers exceed the statutory thresholds, often fall into this class.

If this were all, however, the transformation would be of little practical
significance. What makes it of value is that several thresholds can be defined
and a new indicator variable created for each. Thus, if we define S thresholds as
zcð1Þ; zcð2Þ; . . . ; zcðSÞ, then we shall obtain S indicators from the data,
v1;v2; . . . ; vS:

v1ðxÞ ¼ 1 if zðxÞ � zcð1Þ; else 0;

v2ðxÞ ¼ 1 if zðxÞ � zcð2Þ; else 0;

..

.

vSðxÞ ¼ 1 if zðxÞ � zcðSÞ; else 0:

ð11:3Þ

These may be regarded as the realizations of the corresponding random
functions VsðxÞ, s ¼ 1;2; . . . ; S, for which

VsðxÞ ¼ 1 if ZðxÞ � zcðsÞ; else 0: ð11:4Þ

The expectation of the indicator, E½V½ZðxÞ � zc��, is the probability, Prob½zc�,
that ZðxÞ does not exceed zc:

Prob½zc� ¼ Prob½ZðxÞ � zc� ¼ E½V½ZðxÞ � zc��: ð11:5Þ

This probability, Prob½ZðxÞ � zc�, is the cumulative distribution

Prob½ZðxÞ � zc� ¼ 1 � Prob½ZðxÞ > zc�
¼ G½Zðx; zcÞ�: ð11:6Þ

Many environmental variables are multi-state characters, such as types of
rock, soil and vegetation, that have more than two classes. These can also be
converted to indicators by coding each class as present or absent. If we wished
to distinguish podzols, brown earths, rendzinas and gleys in a region then we
could set up four binary variables, one for each class and code each in turn as
1 or 0. The classes are mutually exclusive, and so in this instance just one of the
four would be coded 1 and the other three as 0.

11.2.2 Indicator variograms

An indicator random function has a variogram

gV
zc
ðhÞ ¼ 1

2 E½fVðx; zcÞ � Vðx þ h; zcÞg2�; ð11:7Þ
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which is analogous to the variogram of a continuous variable, equation (4.13).
The expected semivariances can be estimated from indicator data by

ĝV
zc
ðhÞ ¼ 1

2mðhÞ
XmðhÞ

i¼1

fvðxi; zcÞ � vðxi þ h; zcÞg2: ð11:8Þ

Figure 11.1 Indicator variograms of potassium at Broom’s Barn Farm for thresholds of
20, 25 and 30 mg l�1: (a) autovariograms; (b) cross-variograms.
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Figure 11.1(a) shows some examples. Further, the ordered sets, ĝV
zc
ðhÞ, obtained

by applying this formula with changing h and for all thresholds, zc, can be
modelled as described in Chapter 5.

Cross-indicator variograms

For any two thresholds, say zu and zv, we can define a cross-indicator variogram
and estimate it by elaborating the above formulae:

gV
uvðhÞ ¼ 1

2 E½fV½Zðx; zuÞ� � V½Zðx þ h; zuÞ�g
� fV½Zðx; zvÞ� � V½Zðx þ h; zvÞ�g�: ð11:9Þ

Examples of cross-variograms of indicators appear in Figure 11.1(b).

Indicator covariance functions

If the processes are second-order stationary then the spatial correlations among
the indicators can all be expressed in terms of covariances:

CV
zc
ðhÞ ¼ cov½V½Zðx; zcÞ�;V½Zðx þ h; zcÞ��

¼ E½V½Zðx; zcÞ�V½Zðx þ h; zcÞ�� � fE½V½Zðx; zcÞ��g2: ð11:10Þ

Similarly, the cross-covariance at lag h of the indicators for thresholds zu and zv

is

CV
uvðhÞ ¼ cov½V½Zðx; zuÞ�;V½Zðx þ h; zvÞ��

¼ E½V½Zðx; zuÞ�V½Zðx þ h; zvÞ��
� E½V½Zðx; zuÞ��E½V½Zðx; zvÞ��: ð11:11Þ

11.3 INDICATOR KRIGING

As above, we can krige an indicator variable. So for each target point or block
we compute

V̂ðx0; zcÞ ¼
XN

i¼1

livðxi; zcÞ; ð11:12Þ

where the li are the weights as usual. This is the ordinary kriged estimate. The
indicator is necessarily bounded, and its sample mean (�v; zc), is usually taken as
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its expectation. We can therefore use simple kriging to estimate Vðx0; zcÞ:

V̂ðx0; zcÞ ¼
XN

i¼1

livðxi; zcÞ þ 1 �
XN

i¼1

li

( )
ð�v; zcÞ; ð11:13Þ

with weights obtained by solving the simple kriging system

XN

i¼1

lig
Vðxi; xj; zcÞ ¼ gVðx0; xj; zcÞ for j ¼ 1;2; . . . ;N; ð11:14Þ

where gVðxi; xj; zcÞ is the indicator semivariance between the ith and jth
sampling points at threshold zc and gVðx0; xj; zcÞ is the semivariance of the
indicator between the target point x0 and point xj for the same threshold. As
when kriging continuous variables, we can replace N by n � N in the
neighbourhood of x0.

The result is a value lying between 0 and 1 (with exceptions because the
kriging minimizes the variance without any constraint on the estimates it
returns). Such a value is effectively the probability, given the data, that the true
value is 1, i.e.

Prob½Vðx0; zcÞ ¼ 1 jvðxiÞ; i ¼ 1;2; . . . ; n� ¼ Ffx0jðnÞg; ð11:15Þ

where we use ðnÞ to mean all the data in the particular neighbourhood. The
quantity Ffx0jðnÞg denotes the conditional or ‘posterior’ probability that Vðx0Þ
is 1.

If now we return to our problem, namely to estimate the probability, given
data, that the true value of Z at an unsampled place x0 does not exceed zc, then
we can write

Prob½Zðx0Þ4zcjzðxiÞ; i ¼ 1;2; . . . ;N�
¼ 1 � Prob½Zðx0Þ > zcjzðxiÞ; i ¼ 1;2; . . . ;N�: ð11:16Þ

Notice that the two sides of equation (11.16) are complementary.
At first sight it might seem that the way to tackle the problem is to transform

the data to indicators determined by the particular threshold. However, we soon
see that an individual probability estimated in this way is crude. Much of the
rich information in the original data has been lost by dissecting the scale into
just two classes.

This loss can be made good to a large extent by repeating the process for
several thresholds in the range of Z and constructing a cumulative distribution
function, conditional on the data, for each target point by accumulating the
F̂ðx0; zsÞ, s ¼ 1;2; . . . ; S.
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The procedure is somewhat tedious because the variograms for all the
thresholds must be computed and modelled. Furthermore, because the
F̂ðx0; zsÞ for the different zs are computed independently of one another, there
is no guarantee that they will sum to 1, or that the cumulative function will
increase monotonically, or that the estimated probabilities will lie in the range 0
to 1. Some adjustment of the results may therefore be needed to ensure that the
bounds are honoured and the order relations maintained. Nevertheless, an
empirical distribution function can be obtained and then used to refine the
estimate of the conditional probability that Zðx0Þ � zc.

Goovaerts (1997) describes the procedure fully and illustrates it with
examples using the computer programs in GSLIB (Deutsch and Journel,
1992), while Olea (1999) devotes a section of his book to the topic. We shall
not repeat the detail here.

11.4 DISJUNCTIVE KRIGING

Disjunctive kriging provides another way of estimating an indicator transform
of continuous data. It does so without losing information, though requiring
rather stronger assumptions than does indicator kriging as described above. It
may take several forms (see Rivoirard, 1994), the most common of which is
Gaussian disjunctive kriging and the one we describe.

11.4.1 Assumptions of Gaussian disjunctive kriging

The assumptions underlying Gaussian disjunctive kriging are as follows. First,
zðxÞ is a realization of a second-order stationary process ZðxÞ with mean m,
variance s2 and covariance function CðhÞ. The underlying variogram must
therefore be bounded. Second, the bivariate distribution for the n þ 1 variates, i.e.
for each target site and the sample locations in its neighbourhood, is known and
is stable throughout the region. If the distribution of ZðxÞ is normal (Gaussian)
and the process is second-order stationary then we can assume that the bivariate
distribution for each pair of locations is also normal. Each pair of variates has the
same bivariate density, and this density function is determined from the spatial
autocorrelation coefficient. These assumptions allow the conditional expectations
to be written in terms of the autocorrelation coefficients, as we shall show.

The variable ZðxÞ is spatially continuous, so that in going from a small value
at one place to a large one elsewhere it must pass through intermediate values
en route. It is an example of a Gaussian diffusion process. One test of this
assumption is to compare the variograms of the indicators for several thresholds
within the bounds of the measured z. The cross-indicator variograms should be
more ‘structured’ than the autovariograms. Figure 11.1 shows this to be so for
potassium at Broom’s Barn Farm.
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11.4.2 Hermite polynomials

The requirement of normality is a strong one that is rarely met in practice, even
though many environmental properties seem approximately normal. The first
task therefore is to transform an actual distribution of ZðxÞ, which may have
almost any form, to a standard normal one, YðxÞ, such that

ZðxÞ ¼ F½YðxÞ�: ð11:17Þ

This can be done with Hermite polynomials.
We recall, from Chapter 2, the equation of the standard normal distribution

with probability density given by

gðyÞ ¼ 1ffiffiffiffiffiffi
2p

p exp � y2

2

� �
: ð11:18Þ

Hermite polynomials are related to this function and are defined by Rodrigues’s
formula as

HkðyÞ ¼ 1ffiffiffiffi
k!

p
gðyÞ

dkgðyÞ
dyk

: ð11:19Þ

Here k is the degree of the polynomial, taking values 0;1; . . . , and 1=
ffiffiffiffi
k!

p
is a

standardizing factor (Matheron, 1976). The first two Hermite polynomials, i.e.
for k ¼ 0 and k ¼ 1, are

H0ðyÞ ¼ 1; ð11:20Þ

H1ðyÞ ¼ �y; ð11:21Þ

and thereafter the higher-order polynomials obey the recurrence relation

HkðyÞ ¼ � 1ffiffiffi
k

p yHk�1ðyÞ �
ffiffiffiffiffiffiffiffiffiffiffi
k � 1

k

r
Hk�2ðyÞ: ð11:22Þ

So the polynomials can be calculated up to any order for a standard normal
distribution.

The Hermite polynomials are orthogonal with respect to the weighting
function expð�y2=2Þ on the interval �1 to þ1. They are independent
components of the normal distribution of ever increasing detail.

Almost any function of YðxÞ can be represented as the sum of Hermite
polynomials:

ffYðxÞg ¼ f0H0fYðxÞg þ f1H1fYðxÞg þ f2H2fYðxÞg þ � � � ; ð11:23Þ
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and since the Hermite polynomials are orthogonal

E½ffYðxÞgHkfYðxÞg� ¼ E HkfYðxÞg
X1
l¼0

flHlfYðxÞg
" #

¼
X1
l¼0

flE½HlfYðxÞgHkfYðxÞg�

¼ fk: ð11:24Þ

This enables us to calculate the coefficients fk of F½YðxÞ� in equation (11.17) as

ZðxÞ ¼ F½YðxÞ�
¼ f0H0fYðxÞg þ f1H1fYðxÞg þ f2H2fYðxÞg þ � � �

¼
X1
k¼0

fkHkfYðxÞg: ð11:25Þ

The transform is also invertible, which means that the results can be expressed
in the same units as the original measurements.

Determining the Hermite coefficients

To determine the coefficients of the transformation, fk, for a particular set of
data we proceed as follows. We arrange the N data in ascending order:

z1 < z2 < z3 < � � � < zN ;

and we denote their relative frequencies by

q1; q2; q3; . . . ; qN ;

such that the sum of the frequencies is 1:
PN

i¼1 qi ¼ 1. Their cumulative
frequencies are

Fðz1Þ ¼ Prob½ZðxÞ < z1� ¼ 0;

Fðz2Þ ¼ Prob½ZðxÞ < z2� ¼ q1;

Fðz3Þ ¼ Prob½ZðxÞ < z3� ¼ q1 þ q2;

..

.

FðziÞ ¼ Prob½ZðxÞ < zi� ¼
Xi�1

j¼1

qj;

..

.

FðzNÞ ¼ Prob½ZðxÞ < zN � ¼ 1 � qN :
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The cumulative frequencies have equivalents on the standard normal
distribution:

FðziÞ ¼ GðyiÞ: ð11:26Þ

Thus

Fðziþ1Þ � FðziÞ ¼ Gðyiþ1Þ � GðyiÞ; ð11:27Þ

and so

Prob½zi � ZðxÞ < ziþ1� ¼ Prob½yi � YðxÞ < yiþ1�;
Prob½ZðxÞ ¼ zi� ¼ Prob½yi � YðxÞ < yiþ1�:

ð11:28Þ

In words, ZðxÞ equals zi when the standard normal equivalent lies between
yi and yiþ1. We can then determine the transformation coefficients as follows:

f0 ¼ E½FfYðxÞg� ¼ E½ZðxÞ� ¼
XN

i¼1

qizi; ð11:29Þ

and thereafter

fk ¼ E½ZðxÞHkfYðxÞg�

¼
Z þ1

�1
FðyÞHkðyÞgðyÞ dy

¼
XN

i¼1

Z yiþ1

yi

ziHkðyÞgðyÞ dy

¼
XN

i¼1

zi
1ffiffiffi

k
p Hk�1ðyiþ1Þgðyiþ1Þ �

1ffiffiffi
k

p Hk�1ðyiÞgðyiÞ
� �

¼
XN

i¼2

ðzi�1 � ziÞ
1ffiffiffi

k
p Hk�1ðyiÞgðyiÞ ð11:30Þ

because gðy0Þ ¼ gð�1Þ ¼ 0, and gðyNþ1Þ ¼ gðþ1Þ ¼ 0 also.

11.4.3 Disjunctive kriging for a Hermite polynomial

Since the polynomials are orthogonal any pair of values, YðxÞ and Yðx þ hÞ,
drawn from a bivariate normal distribution with correlation coefficient r has
expectation

E½HkfYðxÞgjYðx þ hÞ� ¼ rkðhÞHkfYðx þ hÞg: ð11:31Þ
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The covariance between two functions of Y at x and x þ h is

cov½HkfYðxÞg;HlfYðx þ hÞg�
¼ E½HkfYðxÞgHlfYðx þ hÞg�
¼ E½HkfYðxÞgE½HlfYðx þ hÞg� jYðx þ hÞ�

¼ rkðhÞE½HkfYðxÞgHlfYðxÞg�: ð11:32Þ

When k ¼ l this equation gives the covariance of HkfYðxÞg, which equals rkðhÞ,
since YðxÞ is a standard normal variate. The correlation coefficient, rðhÞ,
h 6¼ 0, must lie between �1 and þ1; so rkðhÞ rapidly approaches 0 as k
increases, and the spatial dependence in HkfYðxÞg declines to nothing, i.e.
HkfYðxÞg becomes pure nugget.

Any pair of Hermite polynomials is spatially independent, so they are the
independent factors of the bivariate normal model. By kriging them separately
the estimates have only to be summed to give the disjunctive kriging estimator:

ẐDKðxÞ ¼ f0 þ f1ĤK
1fYðxÞg þ f2ĤK

2fYðxÞg þ � � � : ð11:33Þ

So, if we have n points in the neighbourhood of x0 where we want an estimate,
we estimate the Hermite polynomials by

ĤK
k fYðx0Þg ¼

Xn

i¼1

likHkfYðxiÞg; ð11:34Þ

and we insert them into equation (11.33). The lik are the kriging weights,
which are found by solving the equations for simple kriging because we can
assume the mean is known:

Xn

i¼1

likcov½HkfYðxjÞg;HkfYðxiÞg�

¼ cov½HkfYðxjÞg;HkfYðx0Þg� for all j; ð11:35Þ

or alternatively,

Xn

i¼1

likr
kðxi � xjÞ ¼ rkðxj � x0Þ for all j; ð11:36Þ

from equation (11.31). In particular, the procedure enables us to estimate
Zðx0Þ by

Ẑðx0Þ ¼ FfŶðx0Þg ¼ f0 þ f1½ĤK
1fyðx0Þg� þ f2½ĤK

2fyðx0Þg� þ � � � : ð11:37Þ
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11.4.4 Estimation variance

The kriging variance of ĤkfYðxÞg is

s2
k ðx0Þ ¼ 1 �

Xn

i¼1

likr
kðxi � x0Þ; ð11:38Þ

and the disjunctive kriging variance of f̂ ½Yðx0Þ� is

s2
DKðx0Þ ¼

X1
k¼1

f 2
k s2

k ðx0Þ: ð11:39Þ

11.4.5 Conditional probability

Once the Hermite polynomials have been estimated at a target point we can
estimate the conditional probability that the true value there exceeds the critical
value, zc. The transformation ZðxÞ ¼ F½YðxÞ� means that zc has an equivalent
yc on the standard normal scale. Since the two scales are monotonically related
their indicators are the same:

V½ZðxÞ � zc� ¼ V½YðxÞ � yc�: ð11:40Þ

For V½YðxÞ > yc�, which is the complement of V½YðxÞ � yc�, the kth Hermite
coefficient is

fk ¼
Z þ1

�1
V½y � yc�HkðyÞgðyÞ dy

¼
Z yc

�1
HkðyÞgðyÞ dy: ð11:41Þ

The coefficient for k ¼ 0 is the cumulative distribution to yc,

f0 ¼ GðycÞ;

and for larger k,

fk ¼
1ffiffiffi

k
p Hk�1ðycÞgðycÞ: ð11:42Þ

The indicator can be expressed in terms of the cumulative distribution and the
Hermite polynomials:

V½YðxÞ � yc� ¼ GðycÞ þ
X1
k¼1

1ffiffiffi
k

p Hk�1ðycÞgðycÞHkfYðxÞg: ð11:43Þ
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Its disjunctive kriging estimate is obtained by

V̂DK½yðx0Þ � yc� ¼ GðycÞ þ
XL

k¼1

1ffiffiffi
k

p Hk�1ðycÞgðycÞĤK
k fyðx0Þg; ð11:44Þ

where L is some small number. The kriged estimates ĤK
k fyðx0Þg approach 0

rapidly with increasing k, and so summation need extend over only a few terms
even though the ð1=

ffiffiffi
k

p
ÞHk�1ðycÞgðycÞ are considerable. Of course, this is the same

as V̂DK½zðx0Þ � zc�. Conversely, to obtain the probability of excess we can compute

V̂DK½zðx0Þ > zc� ¼ V̂DK½yðx0Þ > yc�

¼ 1 � GðycÞ �
XL

k¼1

1ffiffiffi
k

p Hk�1ðycÞgðycÞĤK
k fyðx0Þg: ð11:45Þ

11.4.6 Change of support

In describing disjunctive kriging above we have treated each target as a ‘point’
with the same support as the data. The simple kriging equations are readily
modified to estimate the Hermite polynomials and hence ZðxÞ over larger blocks
B by replacing the covariances on their right-hand sides with block averages.
The result is a block kriging, i.e. an estimate of the average value of Z within a
target block, say ZðBÞ. It will also produce an estimate of the average
probability that ZðxÞ � zc in B, but note that this probability is not same as
the probability that the average of Z in B is less than or equal to zc.

As we saw above, in Chapter 4, the distribution of a spatially correlated
variable changes as the support changes. In particular, the variance diminishes
as the support increases and this is evident in the regularized variogram of
Figure 4.7. If we are to estimate the conditional probabilities that block
averages exceed zc then we need to take into account the larger support and
to model the change of support. Webster (1991) summarizes the theory and
illustrates it with an example from agricultural science, and Rivoirard (1994)
treats it more didactically, again with an illustration using the same data. The
subject is beyond the scope of this book, but you can read about the theory and
technique in the two works cited.

11.5 CASE STUDY

To illustrate the method and to enable the results of disjunctive kriging to be
compared with those of ordinary kriging in Chapter 8, we use the data on
exchangeable potassium from the soil survey of Broom’s Barn Farm. Chapter 2
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describes them in full, and here we repeat only the most salient features.
Table 11.1 summarizes the statistics of the data and the transforms to standard
normal deviates using Hermite polynomials. It includes the summary for the
common logarithms for comparison.

Figure 11.2 shows the general nature of the problem. Figure 11.2(a) is the
cumulative distribution of exchangeable K as observed. For a defined threshold
concentration, zc, we should like to know its equivalent on the standard normal
curve, because then we can calculate confidence limits. We suppose for illustra-
tion that it is 20 mg l�1 of soil. From Figure 11.2(a) we see that the cumulative
sum is approximately 0.24. Tracing this value across by the horizontal dashed
lines to the standard normal distribution on Figure 11.2(b), we see that its
equivalent normal deviate is �0:69, shown by the vertical dashed line there. The
first task therefore is to transform the data to a standard normal distribution so
that we have the equivalences for all reasonable values of z.

The distribution on the original scale (mg l�1) is strongly skewed, g1 ¼ 2:04
(Figure 11.3(a) and Table 11.1). Taking logarithms removes most of the
skewness, with g1 ¼ 0:39, as shown in Figure 2.1(b).

Figure 11.2 The cumulative distribution: (a) of potassium; (b) of a standard normal
distribution. The vertical dashed line in (a) is for a threshold of 20 mg l�1, and the others
show how it equates in (b); see text.

Table 11.1 Summary statistics.

Hermite-
Statistic K log10 K transformed K

Mean 26.3 1.40 0.0740
Median 25.0 1.40 0.104
Standard deviation 9.04 0.134 0.974
Variance 81.706 0.018 00 0.9495
Skewness 2.04 0.39 �0.03
Kurtosis 9.45 0.57 0.07
Deficiency threshold 25.0 1.40 0.104
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Transforming with Hermite polynomials up to order 7 is more effective,
giving approximate standard normal deviates. The mean and variance depart
somewhat from 0 and 1, respectively. The skewness is virtually nil (�0:03), as
is the kurtosis (0.07), see Figure 11.3(b) and Table 11.1. Figure 11.4(a) shows
the transform function with the measured values plotted against the Hermite
transformed ones. The graph is concave upwards, resulting from the positive
skewness of the data. For a normal distribution the transform function would
be a straight line; the departure from this is a measure of the non-normality. We
show the logarithmic transformation function in Figure 11.4(b) for comparison.

Figure 11.5 shows other features of the transformation, again with those of
the logarithms alongside for comparison. In Figure 11.5(a) and (b) are the
cumulative distributions with GðyÞ plotted against y, the transformed values.
Both are characteristically sigmoid, as expected for data from a normal
distribution. In Figure 11.5(c) and (d) we have plotted the normal equivalent
deviates of the cumulative distributions against y. The normal equivalent

Figure 11.3 Histograms of potassium: (a) as measured in mg l�1; (b) after transforma-
tion by Hermite polynomials with the curve of the normal distribution fitted.

Figure 11.4 Transform functions of potassium at Broom’s Barn Farm: (a) for Hermite
polynomials; (b) for logarithms.
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deviate is the area beneath a curve of the standard normal pdf from �1 to gðyÞ,
equivalent to GðyÞ. For a normal distribution this function plots as a straight
line. For the Hermite transformation of potassium it is straight, apart from local
fluctuation. For the logarithms, however, there is still detectable curvature.

We mentioned above our assumption that zðxÞ is the outcome of a Gaussian
diffusion process for which the cross-variograms of the indicators should be
more structured than the autovariograms. To check that the exchangeable K
conforms we computed the relevant variograms for K > Kc for c ¼ 20;25 and
30 mg l�1, which correspond closely to the quartiles of the cumulative distribu-
tion; they are the cumulants 0.24, 0.51 and 0.75, respectively. The results are
shown in Figure 11.1 with the autoindicator variograms on the left and the
cross-indicator variograms on the right. We have not fitted models to them, but
quite evidently the latter are more structured; any curve fitted closely to the
experimental values will project on to the ordinate near the origin, whereas all
three autovariograms will have substantial nugget variances.

We computed the experimental variogram from the Hermite-transformed
values and fitted an isotropic spherical model to it:

ĝðhÞ ¼ 0:216 þ 0:784 sphð434Þ; ð11:46Þ

Figure 11.5 Cumulative distributions of potassium at Broom’s Barn Farm: (a) the
cumulative sum for the Hermite transform, and (b) for the logarithms; (c) and (d) the
cumulants plotted as normal equivalent deviates.
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in which sphð434Þ indicates the spherical function with a range of 434 m.
Figure 11.6 shows the experimental values as points and the fitted model as a
solid line. Using this model and the transformed values, we estimated the
concentrations of potassium at the nodes of a square grid at 10-m intervals by
punctual kriging of the Hermite polynomials, as described above.

For cereal crops at the time the survey was made, a critical value for readily
exchangeable potassium was 25 mg l�1; this was the threshold below which the
Ministry of Agriculture, Fisheries and Food (1986) recommended farmers to
fertilize cereal crops. We computed the conditional probabilities of the values’
being less than or equal to this threshold at the same grid nodes.

Figure 11.7 is the map of the disjunctively kriged estimates of exchangeable
K. As it happens in this instance, it is little different from the map made by
lognormal kriging (Figure 8.22), because the transform functions are similar.
We can see this by plotting the disjunctively and lognormally kriged estimates
against each other, as in Figure 11.8(a). There is little scatter in the points from
the solid line of perfect correlation on the graph, and the correlation is
r ¼ 0:994. Figure 11.8(b) is the scatter diagram of the disjunctively kriged
estimates plotted against the kriging variance. This shows clearly the effect of
the nugget variance in punctual kriging. The nugget variance sets a lower
limited to the precision of the estimates, and this is evident in the horizontal line
at a kriging variance of about 25 (mg l�1)2.

In addition, disjunctive kriging enables us to map the estimated conditional
probabilities of deficiency or excess from the same set of target points. Figures
11.9(a) and 11.9(b) are maps of the probabilities for thresholds of 25 mg l�1

and 20 mg l�1, respectively.
In Figure 11.8(c) we have plotted the conditional probabilities that the

exchangeable K � 25 mg l�1 against the disjunctively kriged estimates. It is
evident from this graph that some of the estimates exceeding the threshold have

Figure 11.6 Variogram of potassium after transformation by Hermite polynomials.
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associated with them fairly large probabilities of deficiency; evidently
we should not judge the likelihood of deficiency from the estimates alone.
You may also notice that some of the points on the graph lie outside the
bounds of 0 and 1 for the probabilities. This is because they are themselves
estimates.

In environmental management we are often concerned with the probabilities
that some substance exceeds a threshold. If potassium were a pollutant then we
might plot the probabilities of its exceeding the threshold of 25 mg l�1. We
should then obtain Figure 11.8(d), the inverse of Figure 11.8(c).

In a situation concerning deficiency the farmer would fertilize where the map
showed exchangeable K to be less than 25 mg l�1, the pale grey and white areas
of Figure 11.7. However, the farmer would not want to risk losing yield where
the estimated concentration of K is more than the threshold and the probability
of deficiency is moderate. If he were prepared to set the maximum risk at a
probability of 0.3 then he should fertilize the areas in Figure 11.9(a) where the
probability is greater, i.e. areas of medium and dark grey and black. The area is
considerable. When the map of probabilities is compared with that of the
estimates it is clear that the farmer could risk loss of yield by taking the

Figure 11.7 Map of exchangeable potassium at Broom’s Barn Farm, estimated by
disjunctive kriging.
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estimates at face value—the area requiring fertilizer is considerably greater
than that where K � 25 mg l�1.

11.6 OTHER CASE STUDIES

Wood et al. (1990) described an application of disjunctive kriging to estimating
the salinity of the soil in the Bet Shean Valley to the west of the River Jordan in
Israel. The combination of climate, irrigation and smectite clay soil has
resulted in significant concentrations of sodium salts in the topsoil. In general,
salinity limits the range of crops that can be grown as well as reducing the
yields of those that can tolerate it. A critical threshold, zc, of electrical
conductivity (EC) is 4 mS cm�1: it is widely recognized as marking the onset
of salinization of the soil. The principal crops that are affected by too much salt
in the valley are lucerne, wheat and dates. The losses of yield of lucerne and
dates become serious when this threshold is exceeded. Winter wheat, however,
will still grow, but when the threshold is exceeded it germinates poorly.

Figure 11.8 Scatter of: (a) disjunctively kriged estimates against lognormally kriged
ones; (b) estimates obtained by disjunctive kriging against their estimation variances;
(c) estimated probabilities of deficiency (� 25 mg l�1) against estimates; (d) estimated
probabilities of excess (> 25 mg l�1) against estimates.
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Figure 11.9 Maps of probabilities of potassium deficiency at Broom’s Barn Farm with
thresholds of (a) 25 mg l�1; (b) 20 mg l�1.
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The EC of the soil solution in November before the onset of winter rain is the
most telling, and it was measured at some 200 points in a part of the valley at
that time to indicate salinity. The EC was then estimated at the nodes of a fine
grid and mapped. The conditional probabilities of the ECs exceeding 4 mS cm�1

were also determined and mapped, and in the event they exceeded 0.3 over
most of the region. There was a moderate risk of salinity in most of the region.
Farmers would find it too costly to remediate the entire area, but they could use
the map of probabilities as a guide for deciding on the priority of areas for
remediation.

Webster and Oliver (1989), Webster and Rivoirard (1991) and Webster
(1994) used the data from the original survey by McBratney et al. (1982)
of copper and cobalt in the soil of southeast Scotland to study the merit and
relevance of disjunctive kriging in agriculture. Deficiencies of copper
and cobalt in the soil of the region cause poor health in grazing sheep and
cattle there. The critical value, zc, for copper in the soil is 1 mg kg�1 and for
cobalt 0.25 mg kg�1. Data from some 3500 sampling points were available,
and from them they computed the probabilities of the soil’s being deficient in
the two trace metals by disjunctive kriging. The concentration of copper
exceeded the 1 mg kg�1 threshold almost everywhere. The concentration is
near to the threshold in only small parts of the region where the estimated
probability of deficiency was typically in the range 0.2–0.3. For cobalt,
however, for which the mean concentration was almost exactly equal to
the threshold of 0.25 mg kg�1, the estimates for approximately half the
region were less than the threshold with an estimated probability
of deficiency greater than 0.5, and elsewhere most of the computed
probabilities exceeded 0.2. The potential loss of thrift in the animals and
therefore profit to the farmer is considerable, whereas preventive measures
such as supplementary cobalt in the animals’ feed or additions in the
fertilizer are cheap. In these circumstances the farmer would be advised to
take one of these courses of action where the probability of deficiency
exceeded 0.2.

Maps of probabilities also help environmental scientists to design pro-
grammes of remediation for areas considered to be polluted. Once the users
have decided what risks they are prepared to take, the scientist can use such
maps to recommend suitable action. If there are strictly limited funds for
remediation the map of probabilities enables them to assign priorities for
action; the parts of the region where the probabilities are greatest can be
tackled first.

Von Steiger et al. (1996) estimated the concentrations of heavy metals in
polluted soil in part of northeast Switzerland by disjunctive kriging. The
soil contained lead in excess of the Swiss Federal Guide value of 50 mg kg�1.
The probabilities exceeded 0.3 to the north and east of the town of
Weinfelden, suggesting that these areas should be monitored to ensure
that the burden in the soil does not exceed the existing concentrations.
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11.7 SUMMARY

The principles described in this chapter can be applied to various substances
in the environment, whether they are nutrients that might be deficient or
heavy metals and xenobiotics, excesses of which are toxic. The probabilities
of exceeding specific thresholds enable the risk of inaction to be assessed
quantitatively. Disjunctive kriging, in particular, provides environmental ana-
lysts with a useful decision-making tool, especially where failure to act could
result in litigation, damage to health or loss of revenue. Assessing this risk is
now feasible in an optimal way.
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12

Stochastic Simulation

12.1 INTRODUCTION

To introduce stochastic simulation we return to the final section of Chapter 8
and recapitulate on the effect of kriging. Figure 8.24 shows that kriging tends to
underestimate values that are larger than average and to overestimate those
that are smaller. It behaves in the same way as ordinary regression; its
estimates are less variable than the true values. In the example, the variance
of the estimates, 0.009 79, is only a little more than half that of the sample
values, s2 ¼ 0:018 00. Thus, kriging has lost variance that was in the original
data. In general, when we display the statistical surface we estimate as maps, as
in Figures 8.16 and 8.17, we obtain a smoothed representation of reality. The
spikes in the punctually kriged surface at the sampling points (Figure 8.15) are
due to the nugget component in the variogram. Nevertheless, they show that a
smoothed representation can give a misleading picture of reality, and we
appreciate this only because for this example we included the kriged estimates
at the sampling points where they are equal to the observed values. If we
remove the predictions at the data points or krige at nodes of a prediction grid
that is offset from the sampling grid, then the surface would be smooth, as in
Figures 8.16 and 8.17. Although these figures are from block-kriged estimates,
the maps for punctual kriging on a grid offset from the original were little
different.

We can formalize the reasons for the smoothing as follows. Starting with
sample data, zðxiÞ; i ¼ 1;2; . . . ;N, from a region of interest, R, we compute the
experimental variogram, ĝðhÞ. To this we fit a plausible model, gðhÞ, which we
regard as the underlying variogram of the process. With this model and our
data, we estimate values of z at unsampled places by kriging. These estimates
are unbiased and for each estimate the variance is minimized,

s2
Kðx0Þ ¼ E fzðx0Þ � Ẑðx0Þg2

h i
; ð12:1Þ
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where zðx0Þ is the true value at x0 and Ẑðx0Þ is our estimate. To map Z over the
region kriging is repeated at numerous positions on a grid and these kriged
estimates can be used to create either pixel or isarithmic (‘contour’) maps. As
mentioned above, the variance of the estimates is less than that of the data, s2.
It is also less than the dispersion variance, s2

R, in the region, which can
be obtained by integration of the variogram model, equation (4.25). This
difference is approximately

s2ðRÞ � s2
KðRÞ � s2

Kðx0Þ � 2cðx0Þ: ð12:2Þ

In this equation s2
KðRÞ is the dispersion variance of the estimates, s2

Kðx0Þ is the
average kriging variance of the estimates, and cðx0Þ is the average of Lagrange
multipliers.

Usually the c for any x0 is much smaller than the corresponding s2
Kðx0Þ, and

if the kriging system embraces all the data then it is negligible. In these
circumstances we can rewrite equation (12.2) as

s2
KðRÞ � s2ðRÞ � s2

Kðx0Þ: ð12:3Þ

This equation shows crucially how variance is lost when we krige over the
region, and how kriging smooths. The larger is the kriging variance on
average the more variance is lost. The kriging variance is large where more
of the variance is unexplained, i.e. with a large nugget variance, and where
sample sites are sparse. In the limit, when all the variance is nugget it
dominates the kriging variance, and if we have a single kriging system then
predictions will be uniform, i.e. we are left with no variation.

Although a kriged map shows our best estimates of Z, it does not represent
the variation well; this loss of information and detail in the variation could
mislead. To obtain a statistical surface that retains the variation we know or
believe to be present, then, we need some other technique. Simulation is such a
technique.

12.2 SIMULATION FROM A RANDOM PROCESS

In geostatistics the term ‘simulation’ is used to mean the creation of values of
one or more variables that emulate the general characteristics of those we
observe in the real world. The variables may be categorical or continuous.
Values can be created at positions in one, two or three dimensions that are the
outcomes of stochastic processes we choose to represent reality. In Chapter 4 we
introduced the idea of treating any particular physical variable, zðxÞ, as a
realization of a stochastic process, ZðxÞ, in R. If the process is second-order
stationary then we can characterize it by its mean and covariance function; if it
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is intrinsic only then its variogram characterizes the variation. In principle
these functions could give rise to any number of realizations, of which the
actuality is but one. We can simulate many equally probable realizations that
are as likely as the actuality and have the same statistical characteristics. In this
way we can obtain dense fields of values from sparse data, just as we do by
kriging, but the variance in the original data is retained.

Stochastic simulation differs from kriging in two ways, as follows.

1. Kriging provides the ‘best’, i.e. minimum variance, local estimates without
regard to the resulting statistics of those estimates. In simulation, however,
the aim is to reproduce the global statistics and maintain the texture of the
variation, and these take precedence over local accuracy.

2. A kriged estimate at any place has associated with it a variance, and hence
an uncertainty, that is independent of estimates at all other places.
Confidence about it is usually based on an assumed Gaussian distribution
with the mean equal to the estimate and a cumulative distribution
function. We can modify equation (4.1) to take into account the n data
in the neighbourhoods and in the kriging systems to give

Prob ½ZðxjÞ � zcjnj� ¼ FfZðxjÞ; zcjnjg for j ¼ 1;2 . . . : ð12:4Þ

This enables us to judge the probability that some threshold is exceeded at
each target point. However, we cannot derive from it the probability that
the values at two or more, say J, places in a neighbourhood jointly exceed
a threshold,

Prob ½ZðxjÞ � zc; j ¼ 1;2; . . . ; Jjnj� 6¼
YJ

j¼1

FfZðxjÞ; zcjnjg; ð12:5Þ

unless the ZðxÞ themselves are independent, a situation that is of little
interest to us. We can assess the joint probability by simulating numerous,
say M, realizations at the J locations and averaging the probabilities,

Prob ½ZðxjÞ � zc; j ¼ 1;2; . . . ; Jjnj� �
1

M

XM

m¼1

YJ

j¼1

vmðxj; zcÞ; ð12:6Þ

where vmðxj; zcÞ is an indicator taking the value 1 if the simulated value of
z is less than or equal to zc, and 0 otherwise. Goovaerts (1997) deals with
the matter at length.

The simulation may be ‘unconditional’, meaning that we place no con-
straints on the values generated other than they should have the mean and
variogram that we specify. Alternatively, we may ‘condition’ the simulation to
return the known values at sampling points in addition.
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12.2.1 Unconditional simulation

Unconditional simulation is simply an application of the general Monte Carlo
technique whereby values are created with a particular covariance function or
variogram. There are several ways of doing it.

Perhaps the simplest to envisage is in two dimensions as follows. Draw values
at random and independently of one another from a standard normal distribu-
tion and place them at the nodes of a square grid. This will give a set yðxÞ in
which there is no correlation. Place a circle of diameter a at each node in turn
and average the values inside. This will give a series of autocorrelated means,
�yðxÞ. These constitute a realization of a second-order stationary autocorrelated
random function ZðxÞ which has a circular isotropic variogram with range a
(see Matérn, 1960). The values can be scaled to a desired variance and a mean
added to match some reality. If a nugget component is required it can be
introduced by drawing further values at random from the distribution, scaling
them and adding them to the existing simulation.

The same principle can be used to simulate values on a line, in which case the
variogram will be the bounded linear model. The three-dimensional analogue
has a spherical variogram. Other combinations of dimensionality and model
require more sophisticated techniques (see below).

12.2.2 Conditional simulation

In unconditional simulation all we ask is that the result has the correct mean
and variogram or covariance function. In conditional simulation, however, the
generator must return the data values at places where we know them in
addition to creating plausible values of ZðxÞ elsewhere. We condition the
simulation on the sample data, zðxiÞ; i ¼ 1;2; . . . ;N. Let us denote the con-
ditionally simulated values by z�cðxjÞ; j ¼ 1;2; . . . ; T. Where we have data we
want the simulated values to be the same:

z�cðxiÞ ¼ zðxiÞ for all i ¼ 1;2; . . . ;N: ð12:7Þ

Elsewhere z�cðxÞ may depart from the true but unknown values in accord with
the model of spatial dependence adopted.

Consider what happens when we krige Z at x0 where we have no measure-
ment; the true value there, zðx0Þ, is estimated by Ẑðx0Þ with an error
zðx0Þ � Ẑðx0Þ which is unknown:

zðx0Þ ¼ Ẑðx0Þ þ fzðx0Þ � Ẑðx0Þg: ð12:8Þ

A characteristic of kriging is that the error is independent of the estimate, i.e.

E½ẐðyÞfzðxÞ � ẐðxÞg� ¼ 0 for all x; y: ð12:9Þ

This feature is used to condition the simulation.

270 Stochastic Simulation



We create a simulated field from the same covariance function or variogram
as that of the conditioning data to give values z�s ðxjÞ; j ¼ 1;2; . . . ; T, that include
the sampling points, xi; i ¼ 1;2; . . . ;N. We then krige at x0 from the simulated
values at the sampling points to give an estimate Ẑ�

s ðx0Þ. Its error,
z�s ðx0Þ � Ẑ�

s ðx0Þ, comes from the same distribution as the kriging error in
equation (12.8), yet the two are independent. We can use it to replace the
kriging error to give our conditionally simulated value as

z�cðx0Þ ¼ Ẑðx0Þ þ fz�s ðx0Þ � Ẑ�
s ðx0Þg: ð12:10Þ

The result has the properties we desire, as below.

1. The simulated values are realizations of a random process with the same
expectation as the original:

E½Z�
s ðxÞ� ¼ E½ZðxÞ� ¼ m for all x; ð12:11Þ

where m is the mean.
2. The simulated values should have the same variogram as the original.
3. At the data points the kriging errors zðx0Þ � Ẑðx0Þ and z�s ðx0Þ � Ẑ�

s ðx0Þ are
0, and z�cðx0Þ ¼ zðx0Þ.

Another interesting property of the simulated value at x0 is that it is the sum
of two independent quantities, namely Ẑðx0Þ and z�s ðx0Þ � Ẑ�

s ðx0Þ. The variance
of the first is E½fzðx0Þ � Ẑðx0Þg2�, but so is the second because we made it so.
Consequently,

E½fzðx0Þ � Z�
cðx0Þg2� ¼ 2E½fzðx0Þ � Ẑðx0Þg2�

¼ 2s2
Kðx0Þ: ð12:12Þ

The variance of a simulated value is twice that of a kriged value; put another
way, kriging is twice as good as conditional simulation at estimation. Therefore,
we do not simulate if our purpose is estimation. Conditional simulation is more
appropriate than kriging where our interest is in the local variability of the
property and too much information would be lost by the smoothing effects of
kriging. A suite of conditional simulations also provides a measure of uncer-
tainty about the spatial distribution of the property of interest.

12.3 TECHNICALITIES

The simple way of simulating values by averaging data as described above is too
restrictive in practice. Typically in environmental science we deal with two
dimensions and want to be able to simulate from the models that describe our
data best. These include the popular spherical, exponential and power func-
tions, in addition to the circular model and others described in Chapter 5 and
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yet others. Analysts have now programmed several simulation techniques that
enable practitioners to use these functions. Three are now in common use; they
are lower–upper (LU) decomposition, sequential Gaussian simulation and
simulated annealing. All three methods can be conditional or unconditional,
although LU decomposition is more often used for unconditional simulation. A
fourth method, the turning bands method, was once popular, but its disadvan-
tages now outweigh its merits and it has fallen out of favour. We describe the
first three in some detail.

12.3.1 Lower–upper decomposition

The LU decomposition technique is based on a standard result in matrix theory
that any square symmetric positive definite matrix, C, can be represented as a
lower triangular form such that its upper triangular counterpart is its transpose:

C ¼ LU ¼ LLT; ð12:13Þ

where L and U are the lower and upper triangular matrices. The technique is
due to Cholesky and is known also as the Cholesky decomposition. All
covariance matrices, such as those in kriging systems, are amenable to LU
decomposition.

To simulate a field of values unconditionally, we start with a variogram or
covariance function of a standard normal variate. For this we compute the
covariance matrix for the field, C, with elements cij for all i and j. The matrix C
is decomposed to obtain L. We then create a vector, g, of random numbers
drawn from a standard normal distribution, Nð0;1Þ. Multiplying L by g gives
the required vector of simulated values:

y ¼ Lg; ð12:14Þ
and

E½yyT� ¼ C ¼ LU: ð12:15Þ

It is elegant.
For conditional simulation, let there be N data with which to simulate at T

unsampled positions. Thus, we have to consider N þ T points in total. The
symmetric covariance matrix, C, is also of dimension N þ T, and it comprises
four sub-matrices. It is decomposed as

CNN CNT

CTN CTT

� �
¼ LNN 0

LTN LTT

� �
UNN UNT

0 UTT

� �
: ð12:16Þ
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The values of T are drawn independently and at random from a standard
normal distribution as above to give the vector g. In addition, the N condition-
ing data are transformed as necessary to standard normal form and are denoted
by the vector z. The vector of conditionally simulated values, y, of length N þ T
is

y ¼ zN

LTNL�1
NN þ LTTgT

� �
: ð12:17Þ

The resulting vector can be transformed back to the original scale.
The LU technique is neat and readily programmed to take advantage of

efficient numerical library subroutines. Its major disadvantage is that it
becomes computationally impracticable for many points because matrix C
must be held in memory and it becomes too large to decompose. This limits
the number of sites to about 1000 (N þ T), but this could well increase as
computer memory grows. However, if one wants many realizations for a small
field of values it is very fast because matrix C has to be decomposed only once.
All that has to be done is to generate more vectors of random numbers drawn
from a standard normal distribution.

12.3.2 Sequential Gaussian simulation

The sequential approach is the most straightforward method for simulating a
multivariate Gaussian field. Each value is simulated sequentially according to
its normal conditional cumulative distribution function, which must be deter-
mined at each location to be simulated. The conditioning data comprise all the
original data and all previously simulated values within the neighbourhood of
the point being simulated.

Sequential Gaussian simulation starts with the assumption that the kriging
error is normally distributed with mean 0 and variance s2

Kðx0Þ, i.e.
Nð0; s2

Kðx0ÞÞ. In these circumstances the probability distribution for the true
values is NðẐðx0Þ; s2

Kðx0ÞÞ; it is simply shifted by Ẑðx0Þ.
To implement the technique the following are the steps needed.

1. Ensure that the data are approximately normal; transform to a standard
normal distribution if necessary.

2. Compute and model the variogram.
3. Specify the coordinates of the points at which you want to simulate. These

will usually be on a grid.
4. Determine the sequence in which the points, xj; j ¼ 1;2; . . . , will be visited

for the simulation. Choosing the points at random will maximize the
diversity of different realizations.
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5. Simulate at each of these points as follows.

(a) Use simple kriging with the variogram model to obtain ẐðxiÞ and
s2

KðxiÞ.
(b) Draw a value at random from a normal distribution NðẐðxiÞ, s2

KðxiÞÞ.
(c) Insert this value into the grid at xi, and add it to the data.
(d) Proceed to the next node and simulate the value at this point in the

grid.
(e) Repeat steps (a) to (c) until all of the nodes have been simulated.

6. Back-transform the simulated values if there is a need to.

12.3.3 Simulated annealing

Simulated annealing is a generic term for a set of algorithms that optimize
rather than strictly simulate. The method is based on the general principle of
stochastic relaxation described by Kirkpatrick et al. (1983), which Geman and
Geman (1984) showed could be used to process and restore images. The
concept derives from the way a molten metal cools. When the metal cools
rapidly it solidifies to a more or less disordered state comprising many small
crystals. If the solid is then heated for a long time and allowed to cool slowly the
molecules in it rearrange themselves into larger crystals in which the free
energy is less. This is the process of annealing. Deutsch and Journel (1992)
introduced simulated annealing into geostatistics for creating random fields
with specific characteristics. In geostatistics the values of a regionalized variable
are equivalent to the molecules. These values can be moved around or replaced
by the method so as to minimize some objective function that measures the
deviation between the target and present characteristics of the realization at
each ith perturbation of the data. The objective function embodied in Deutsch
and Journel’s (1992) GSLIB is to reproduce the variogram model, G,

Gi ¼
XM

m¼1

fĝ iðhÞm � gðhÞmg
2: ð12:18Þ

In this equation the gðhÞm;m ¼ 1;2; . . . ;M, are the values of the empirical
model, and the ĝ iðhÞm are the values computed for the current realization on
the full grid and give the value G. The quantity M defines the limit within which
G is to be computed. If the variation is isotropic then M is the maximum
number of intervals on the grid.

The steps in simulated annealing are as follows.

1. The process starts with data, observed values of ZðxÞ for which we have an
empirical model of the variogram gðhÞ, and the simulation is conditioned
on those data. The process generates additional values on a fine grid.
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Ideally the data themselves should occupy nodes on this grid, but if any do
not then in most algorithms they are moved to their nearest grid nodes. The
unoccupied nodes of the grid are assigned values drawn at random from the
same frequency distribution as the data.

2. Compute the initial value of the objective function from the initial
realization

Gð0Þ ¼
XM

m¼1

fĝ0ðhÞm � gðhÞmg
2: ð12:19Þ

Typically ĝ0ðhÞm for the initial realization will appear flat because the
values were drawn independently of one another at the originally unoccu-
pied nodes.

3. Perturb the realization by swapping pairs of values, as in the first version of
GSLIB (Deutsch and Journel, 1992) or by replacement, as in the second
version of the program (Deutsch and Journel, 1998).

Swapping. Values at two nodes, say zðxiÞ and zðxjÞ, are chosen at random
and swapped, and G is recomputed. If G is diminished it means that the
new experimental variogram, ĝ iðhÞ, is closer to gðhÞ than the first, and so
the swap is retained. This is analogous to a molecular rearrangement in
annealing that results in a decrease in the Gibbs free energy. The process
continues with a swap of two more values, the recalculation of G, and the
retention of the swap if G is diminished.

Replacement. The value at a randomly chosen node is replaced by another
value drawn at random from the same distribution as that of the original
values, and G is recomputed. As in the swapping mode, the new value is
retained if G is diminished.

4. The process ends when either G has become sufficiently small or the
number of swaps has reached some preset limit.

Although there is little that is geostatistical in the process, the final outcome
depends on (a) the initial random selection of values at the unoccupied nodes of
the grid and (b) the random choice of pairs to be swapped or choice of grid node at
which the value is to be replaced and the value that replaces it. There are
therefore very many possible final outcomes with the desired variogram, and the
one we obtain can therefore still be regarded as a realization of a random function.

The broad strategy is outlined above, but there are additional details to
observe.

1. The observed values or conditioning data on the grid are never swapped or
replaced.

2. Equation (12.18) gives equal weight to all the semivariances. Yet we know
in general that those near the ordinate, i.e. those at short lag distances, are
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more reliable than those further away. If we divide the squared differences
by the squares of the model values then we shall give greater weight to the
comparisons near the ordinate, thus:

Gi ¼
XM

m¼1

fĝ iðhÞm � gðhÞmg
2

g2ðhÞm

: ð12:20Þ

3. If we reject all swaps or replacements that fail to diminish G the result
might be a local optimum far from the global one that we desire. So, some
swaps that fail the above test are retained. Therefore, we have to refine our
rule for accepting swaps, and we do so again with reference to physical
annealing. The frequency with which apparently unfavourable swaps are
retained is set to be proportional to

exp
Gold � Gnew

t

� �
:

The value of t is set large at the start and then decreased slowly, and in this
way convergence to a local minimum is avoided. This quantity t mimics the
temperature in the Boltzmann distribution, which decreases as a metal
anneals. The precise steps by which t is diminished are found to some
extent by trial and error. Goovaerts (1997) suggests that you start with a
large t such that many apparently unfavourable swaps are retained. You
then decrease t by some common factor b; b < 1; when you have accepted
enough swaps or too many have been tried (Farmer, 1991; Press et al.,
1986). The maximum number of accepted or attempted swaps is chosen as
some multiple of the total number of grid nodes, T.

Finally, bear in mind that simulated annealing generates fields by making the
experimental variograms converge to the input models. Therefore, this method
should not be used to study fluctuations arising in the generating process.

12.3.4 Simulation by turning bands

The method known as ‘Turning bands’, due to Matheron (1973) and Journel
(1974), was the earliest for simulating autocorrelated random processes in
three dimensions, R3. It involves first simulating independent one-dimensional
realizations along lines radiating from a central point in the volume of interest.
Then each point in the three-dimensional space for which a value is required is
projected orthogonally on to every line, and the values at the nearest points to
the projections are averaged.

Crucially, the one-dimensional covariance function must be known, C1ðhÞ,
corresponding to that in three dimensions, C3ðhÞ. These are easily obtained for
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the common three-dimensional functions such as the spherical and exponential
models. Finding the correct one-dimensional functions corresponding to them
in two dimensions, C2ðhÞ, turns out to be much more complex. This is
presumably why most software packages do not include the turning bands
method for R2. Even more worrying is that some of those that do include the
method produce patterns of values in which the bands are plainly evident; see,
for example, Figure V.8 on page 148 in Deutsch and Journel (1998). Such
results are unacceptable.

Partly for the above reasons and partly because sequential Gaussian simula-
tion and simulated annealing have proved so successful, the turning bands
method has lost favour. We do not devote further attention to it therefore.
Olea (1999) provides a detailed exposé of the method for those who are
interested.

12.3.5 Algorithms

The above algorithms are expanded with proofs in Olea (1999). Goovaerts
(1997) also describes them and illustrates their application with the data of
Atteia et al. (1994) on soil of the Swiss Jura. The LU decomposition can be
programmed readily in GenStat, MATLAB and S-Plus, for example, although it
is also available in GSLIB (Deutsch and Journel, 1998), as are sequential
Gaussian simulation and simulated annealing. The turning bands method
was in the first edition only of GSLIB (Deutsch and Journel, 1992) and it is
for three dimensions in that library.

12.4 USES OF SIMULATED FIELDS

As above, simulation is not a substitute for estimation; that is not its purpose.
What it does do is give us pictures of the variation to expect between sampling
points as distinct from the smoothed form provided by kriging. By conditioning
the simulation on data we ensure that the fields generated do not stray far from
reality.

Unconditional and conditional simulation can give us dense fields of values
on which we can study dispersion and sampling fluctuation, and from which
we can construct confidence intervals on estimates of the variogram, as in the
examples in Chapter 5.

We have already mentioned that repeated simulations enable us to judge the
probability that a variable exceeds a threshold at two or more places in a
neighbourhood. This is valuable for the delimitation of zones of pollution (for
examples, see Goovaerts, 1997; Fabbri and Trevisani, 2005) and for estimating
the travel time of water and solute through an aquifer which depends on the
joint distribution of transmittivities (see Gotway, 1994).
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12.5 ILLUSTRATION

Figures 5.5 and 5.6 are examples of random fields produced by unconditional
simulation. We illustrate the results of conditioning by returning to the case
study at Broom’s Barn Farm.

The potassium data for Broom’s Barn Farm were transformed first to normal
scores and the variogram computed on the transformed values. A spherical
function fitted the experimental values with c0 ¼ 0:2536, c ¼ 0:8410 and
a ¼ 458 m; it is shown in Figure 12.1(a). The GSLIB (Deutsch and Journel,
1998) simulation program assumes that the sill variance of the normal score
transform will be unity, and so the above model parameters were adjusted
proportionately to c0 ¼ 0:2326 and c ¼ 0:7674 to ensure this; see
Figure 12.1(b). The latter was used to generate values by sequential Gaussian
simulation on a 10 m � 10 m grid with the normal scores of K at 40-m
intervals. Eight simulations were done with a unique random number seed
each time, and the simulated normal scores were transformed back to the
original scales. Their means and variances were calculated (Table 12.1), and
are close to those of the data. Figure 12.2 shows the maps of the eight fields.
There are differences in the local detail, but they reflect the general pattern of
variation shown in Figure 8.22. In particular, there is more local variation in
the maps of the simulated fields than in the kriged maps. Figure 12.3 shows the
corresponding experimental variograms plotted as points at 40-m intervals.
There are small differences among them for the individual fields, but all lie close
to the generating function. We fitted spherical functions to each individually,

Figure 12.1 (a) Experimental variogram of the normal scores of K at Broom’s Barn
and the fitted function; (b) the variogram rescaled to a sill of 1 and used for the sequential
Gaussian simulation.
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Figure 12.2 Maps of eight fields of values produced by sequential Gaussian simulation
for K at Broom’s Barn.
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Figure 12.3 Experimental variograms for the eight sequential Gaussian simulated
fields plotted as points with the generating variogram shown in Figure 12.5(b) added to
each as the solid line.

Table 12.1 Means, variances and standard deviations for eight fields simulated by
sequential Gaussian simulation conditioned by the potassium data from Broom’s Barn Farm.

Simulation Mean Variance Standard deviation

1 25.56 70.76 8.412
2 26.25 62.13 7.882
3 26.27 68.81 8.295
4 26.43 59.34 7.703
5 25.91 63.79 7.987
6 26.33 61.96 7.872
7 26.50 59.85 7.736
8 25.74 58.94 7.677

Raw data 26.31 81.71 9.039
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and Table 12.2 gives their model parameters. There are small differences in the
nugget variances, but somewhat larger differences in the ranges from the
generating function.

We also illustrate results using simulated annealing on the same grid and
conditioned on the same normal scores of K. Figure 12.4 shows the stages in
the annealing process. The first map, Figure 12.4(a), includes the data and
additional values drawn from a normal distribution with the same mean and
variance as the data. The field appears to lack any pattern, and its experimental
variogram, shown in Figure 12.5(a), is effectively flat. The objective function at
this stage, the beginning, is 1. Figure 12.4(b) shows the results after 65 000
swaps, at which stage the objective function had decreased from 1 to 0.5289. A
broad pattern is beginning to develop and is just detectable. The variogram of
the field, presented in Figure 12.5(b), shows only weak structure at this stage,
which manifests itself as long-range autocorrelation. The experimental vario-
gram is still fairly flat near the ordinate, however. After approximately 190 000
swaps the objective function reached 0.0004, and the experimental variogram
is close to the theoretical curve, as is apparent in Figure 12.5(c). The main
features of the spatial pattern are evident in Figure 12.4(c), and this map
resembles those from sequential Gaussian simulation (Figure 12.2) with the
same broad features as those from block kriging (Figure 8.22). Nevertheless, it
is not as similar to the latter as are those in Figure 12.2. The maps in Figure
12.4(d) and (e) are for two more simulations that converged after some
195 000 swaps and an objective function of 0.0002. Figure 12.5(d) and (e)
shows their variograms.

The maps in Figure 12(c)–(e) are clearly different from one another and seem
to vary more than do those for sequential Gaussian simulation; there are more

Table 12.2 Model parameters for the spherical function fitted to experimental
variograms from eight fields simulated by sequential Gaussian simulation conditioned by
the potassium data standardized to mean 0 and variance 1 from Broom’s Barn Farm.

Simulation c0 c a/m Residual Mean Square

1 0.2660 0.7406 412.7 48.68
2 0.2942 0.6209 420.0 227.7
3 0.2546 0.7578 459.6 43.11
4 0.2618 0.6588 395.6 44.80
5 0.2691 0.6744 364.3 151.5
6 0.2635 0.6966 418.8 60.05
7 0.2523 0.6840 409.3 12.01
8 0.2899 0.6818 455.2 186.0

Generator 0.2536 0.8410 454.0
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Figure 12.4 Stages in the annealing process: (a) the data plus additional values drawn
from a normal distribution; (b) the result after 65 000 swaps; (c), (d) and (e) the results
after some 190 000 swaps and convergence of the experimental variogram to the
generator, Figure 12.1(a).
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differences among them in the detail. Clearly, they all show more local detail
than appears in the kriged map.

Figure 12.5 Experimental variograms of the fields from the simulated annealing in
Figure 12.4: (a) of the initial field; (b) after 65 000 swaps; (c), (d) and (e) after
convergence with some 190 000 swaps. The solid line in each graph is the variogram,
shown in Figure 12.1(a), of the function to which the annealing converges.
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Appendix A

Aide-mémoire for
Spatial Analysis

A.1 INTRODUCTION

This appendix summarizes the steps that a scientist should take in a geostatis-
tical analysis of survey data, beginning with error detection, summary statistics,
exploratory data analysis, the variogram and its modelling, kriging, and
mapping. In many instances data from remote imaging require the same
treatment, and where that is so we mention it.

A.2 NOTATION

The notation is the same as used in the main text, but we repeat it here for
completeness. The geographic coordinates of the sampling points and target
points for prediction are denoted x1 for eastings (or across the map from left to
right) and x2 for northings (or from bottom to top on the map). The pair
fx1; x2g are given the symbol x in vector notation. The variates are denoted
z1; z2; . . . ; and the measured values are denoted zðxiÞ for i ¼ 1;2; . . ., for any
one variate.

A.3 SCREENING

Few large files of data are free of mistakes caused by instrumental malfunction
and human error. When you receive data, whether from the field or laboratory
or from remote scanners, check for such mistakes.

Position. Examine the positions of the data in relation to the bounds of the
region. Plot them on a map, known as a ‘posting’.
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� Do all the points lie within the region?
� Are there sampling points in the sea when they should be on the land? If so

why?
� Have the coordinates been reversed inadvertently so that northings precede

eastings, i.e. the x2 precede the x1?
� Do the points approximately fill the region?
� Are the coordinates properly scaled?

Measurements. Screen the measured values, zðx1Þ; zðx2Þ; . . .. Pass them
through a program that compares each value in the file against the minimum
and maximum possilbe of the scale and flags any that lie outside these bounds.
Print out the minimum and maximum for each z and check that they are
sensible.

A.4 HISTOGRAM AND SUMMARY

For each variate compute a histogram and plot it, ensuring that all classes are of
the same width. Examine it for outliers, i.e. individuals or small groups that are
isolated from the main body of data. In addition, if you prefer box-plots,
compute them for the zs, to show outliers.

Outliers. If there are outliers identify their positions on the map.

� Are they mistakes? If not, what do they represent?
� Are they part of the ‘target population’?

If not (e.g. water when you are interested only in land) then replace the
recorded values by a symbol to indicate missing or not applicable.

The statistical treatment of outliers is a complex subject, and if you wish to
retain outliers in your analysis then consult a statistician.

Frequency distribution. Study the shape of the histogram.

� Has it more than one peak?

If so, the scene or region almost certainly contains at least two distinct
populations, e.g. land and water, farmland and forest.

� Is the distribution symmetric?
� If it is skewed is the longer tail towards the small values or towards the

large?

Summary. Summarize the statistics for each variate by computing:

� the number of sampling points and the number of valid values;
� the minimum and maximum;
� the mean;

286 Aide-mémoire for Spatial Analysis



� the median;
� the variance;
� the standard deviation (the square root of the variance);
� the coefficient of variation (optional);
� the skewness (coefficient g1); and
� the kurtosis (g2, optional).

A.5 NORMALITY AND TRANSFORMATION

Geostatistical analysis is most efficient when done on variables that have
normal, or Gaussian, distributions. Some analyses assume normality. You
should therefore examine the form of the distribution of each z.

Symmetric histogram. If the frequency distribution appears symmetric, with
a single central peak, try fitting a normal curve to it. If the fit ‘looks good’ then
accept the variate as normal. If not, in what way does it depart from normal?
For example, is it flat-topped, or light in the tails? These features may be
matched with the coefficient of kurtosis, g2. A flat-topped distribution suggests
that you have more than one population in the image or region—see multiple
peaks (Frequency distribution, Section A.4).

Skewed histogram. Asymmetry is the most common form of departure from
normality, and in particular positive skewness (long upper tail, coefficient
g1 > 0). In these circumstances the variance is likely to change from one
part of the image or region to another, thereby violating one of the assumptions
of stationarity on which analysis is usually based. Consider transforming the
recorded z to stabilize the variance. Options are as follows.

� Skew positive, 0 < g1 < 0:5. Do not transform.
� Skew positive, 0:5 < g1 < 1. Consider transformation to square roots, i.e.

y ¼
ffiffi
z

p
.

� Skew positive, g1 > 1. Transform. Try logarithmic transformation first, i.e.
y ¼ ln z or y ¼ log10 z. Examine the resultant distribution. If it is approxi-
mately normal then accept it. If the result is still skewed then try subtracting
a positional constant, a, so that y ¼ lnðz � aÞ.
You might be able to find a suitable value for a fitting the two- and three-
parameter lognormal functions to the z.

Other transformations are available if these prove unsatisfactory.
Significance tests for normality are available. Disregard them when analysing

images! With many pixels you will almost surely discover that the distributions
are ‘significantly’ non-normal. They can be helpful if you have only 100 or so
measurements from ground survey.
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A.6 SPATIAL DISTRIBUTION

Explore the spatial distribution of each z. Here you might need to treat image
data differently from ground data.

Ground data. Make an isarithmic (‘contour’) map using a reputable program
with a well-behaved algorithm for interpolation, such as inverse squared
distance weighting or simple bilinear interpolation if the data are dense, and
layer shading to indicate the magnitude of z, or y ¼ f ðzÞ.
If the data are on a grid then compute the row and column means.
Alternatively, find the medians of each row and column.
Is there any trend in them?

Images. If you are analysing images then map the distribution of pixel values
using a computer program that will show the individual pixels coloured, or
shaded grey, on a scale according to recorded values, or transformed to
y ¼ f ðzÞ. Compute the row and column means or medians as for gridded
ground data.

Examine either kind of map for trends and patches.

Trend. Is there any evident long-range trend over the scene or region?

� If so, what is its form and principal direction?

Patches. Are there patches?

� If so, how big are they on average?
� Are they isotropic?
� If not in which direction are they elongated?

Long-range trend is incompatible with the assumptions of stationarity on which
most geostatistical analysis is based. If the trend is strong then consider
removing it by some kind of filter, such as a global trend surface, before
proceeding further.

Alternatively, adopt a model for z that incorporates the non-stationary trend.
This will take you into more advanced technique, and you should consult a
specialist about it.

A.7 SPATIAL ANALYSIS: THE VARIOGRAM

The variogram summarizes the spatial distribution of z in the absence of trend.
Three variograms are to be distinguished: the experimental variogram; the
regional variogram; and the theoretical variogram.
The experimental variogram. This is the variogram that you compute
from the data, zðxiÞ, i ¼ 1;2; . . . . For ground data and images on regular
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rectangular grids compute the semivariances separately along the rows and
columns of the grid, incrementing the lag by one sampling interval or pixel at a
time, and along the principal diagonals of the grid at intervals of

ffiffiffi
2

p
sampling

intervals.
For irregularly scattered data, and provided you have sufficient (several

hundred), compute a variogram in four or more directions by discretizing the
lag by both distance and direction. Compute also the variogram ignoring
direction, i.e. with lag in distance only.

Plot the results as variance against lag distance with a unique symbol for
each direction. Identify the main features, as follows.

Anisotropy. Does the variogram have approximately the same form and values
in all directions? If so, then accept it as isotropic and compute an average
experimental variogram over all the directions. If not, then in what way do the
directions differ?

Different spatial scale. This indicates geometric anisotropy, which might
be removed by a simple transformation of the spatial coordinates.

Different semivariances. These indicate ‘zonal’ anisotropy—there is simply
more variance in some directions than in others.

Different form. Look especially for contrasts between convex (decreas-
ing gradient with increasing lag distance) and concave (increasing
gradient). This suggests trend in the direction of increasing gradient, and
it should be compared with the evidence from the exploratory analysis,
above.

Bounds. Does the variogram appear bounded, i.e. does the semivariance
reach a maximum within the distance computed or appear as though it would
reach a maximum if the lag distance was extended somewhat (bounded)?
Alternatively, does it look as though it would increase without limit
(unbounded)?

Nugget. Does an imaginary line drawn through the experimental values when
projected cut the ordinate at a positive value (not 0)? If so, this intercept is
known as the nugget variance.

The regional variogram. This is the variogram that you would compute if
you had complete information in the region. It is approximated by the
experimental variogram.

The theoretical variogram. This is the variogram of the process that you
must imagine generated the field of which the measured data or pixels are a
sample.

To proceed further you must fit a mathematical function to the experimental
variogram as a model or approximation to the theoretical variogram (see
below).
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A.8 MODELLING THE VARIOGRAM

1. Match the form of the experimental variogram with those of the common
simple valid models for variance in two dimensions. Choose several that
appear to have the right form.

2. Fit each of these models in turn using a numerically sound and well-tried
program by minimizing a weighted least-squares criterion. Choose weights
in proportion to the number of paired comparisons in the experimental
values, and set approximate starting values for the non-linear parameters.
Tabulate the residual sum of squares and residual mean square as criteria.
You may use a more elaborate scheme of weights such as one of those
mentioned in Chapter 6 if you wish to model the variogram better near the
ordinate.

3. Select the function for which the criteria are least. Plot the fitted function
on the same pair of axes as the experimental semivariances. Does the
fit appear good on the graph? If not, inspect another. If none appear to fit
well, then consider fitting a more complex model by combining two
or more simple models from the standard repertoire, and repeat the
process.

In principle, you can always improve the fit of a model by making it more
complex, i.e. by increasing the number of parameters in it. To compare
functions with different numbers of parameters, calculate the Akaike
information criterion (AIC), and choose the model for which the AIC is
least. This trades simplicity against goodness of fit. The AIC is defined as

AIC ¼ �2 lnðmaximized likelihoodÞ þ 2 � ðnumber of parametersÞ:

For any given experimental variogram it has a variable part:

Â ¼ n ln R þ 2p;

where n is the number of experimental values, R is the mean squared
residual, and p is the number of parameters.
Least-squares fitting minimizes R, but if R is diminished further only by an
increase in p (n is constant) then there is a penalty, which might be too big.

4. Check that the models that appear to fit accord with prior knowledge. If
they do not then investigate further. You might need to shorten the interval
between successive lags, narrow the angular discretization, or extend the
maximum distance over which you compute the experimental variogram.
You might need to try fitting other models.

5. Tabulate the parameters of the final best model and any others that
are almost equally good. You will need the parameters for kriging
(below).
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A.9 SPATIAL ESTIMATION OR PREDICTION: KRIGING

The aim is to estimate or predict in a spatial sense the values of z at unsampled
places, or ‘targets’, from the data. For images such targets are likely only where
there are gaps in a scene. Ordinary kriging smoothes, however, and you might
choose to use it to remove short-range noise in the image so that you can
see a more general pattern. For ground surveys they are commonplace, and in
this section ground survey is assumed. Further, ordinary kriging of z (or
y ¼ ln z for lognormal kriging) is likely to serve in 90% of cases, and only this is
covered.

You will need the original data and a legitimate model of the variogram. You
now have several choices before you.

Punctual or block kriging. The targets may be points, say x0, in which case
the technique is punctual kriging. Alternatively, they may be small blocks, B,
which may be of any reasonable size and shape but are usually square; this is
block kriging. The size of block should be determined by the application: what
size of block does the user of the predictions want? It should not be determined
by the data or the cosmetics of mapping (see below).

Number of data points. Ordinary kriging computes a weighted average of
the data. The weights are determined by the configuration of the data in
relation to the target in combination with the variogram model. They do not
depend on the measured values, the zðxiÞ. Unless the model has a large
proportion of nugget variance only the nearest few sampling points carry
apprecialbe weight; more distant points have negligilbe weight. So kriging is
local.

Take the nearest 20 points to the target. If the data points are exceptionally
unevenly scattered then take the nearest two or three points in each octant
around the target.

Form the kriging equations, and solve them to obtain the weights, the
predicted values and the prediction variances (kriging variances).

If you are uncertain how many points to take then experiment with numbers
between 4 and 40 and plot their positions in relation to the target and their
weights. Do not be alarmed if some weights are negative, provided they are
fairly close to 0.

Transformation. For lognormal kriging the data must transformed to y ¼ ln z
or y ¼ log10z, and the variogram model must be of y. If you want estimates to
be of z then you must transform the predicted y back to z.

Kriging for mapping. Krige at the nodes of a fine square grid. Write the kriged
estimates and kriging variances to a file. For an isarithmic display the interval of
the grid should be chosen such that it is no more than 2 mm on the final hard
copy. The optimality of kriging will not then be noticeably degraded by non-
optimal interpolation in the graphics program.

Spatial Estimation or Prediction: Kriging 291



The grid interval need not be related to the block size if you block-krige. The
blocks may overlap, or there may be gaps between them.

A.10 MAPPING

Pass the file of kriged estimates and variances to a graphics program for the
final display of the results as isarithms or small square cells. Choose colours or
grey levels to represent the magnitude of the estimates and variances, as above.

Do not use graphics programs or geographic information systems for
geostatistics unless you are in complete control and you know that they do
exactly what you want.
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Appendix B

GenStat Instructions
for Analysis

The analyses summarized in Appendix A can be done in GenStat, the latest
version of which is release 9 (Payne, 2006), for which we give commands
below. The data used as the example are of the exchangeable potassium (K) in
the soil of a 80-ha farm (Broom’s Barn) in Eastern England. The farm was
sampled at 40-m intervals on a square grid, and bulked cores of soil to 20 cm
were taken and analysed in the laboratory to give 435 values for each variable.

The measured variable (z) is here denoted by z, and the spatial coordinates
(fx1; x2g) by x and y in units of 40 m. Unless otherwise defined, variables are
vectors, or in the GenStat language, variates.

B.1 SUMMARY STATISTICS

GenStat enables you to obtain a statistical summary readily by means of
standard functions:

calculate zbar¼mean(z)
calculate zmed¼median(z)
calculate zmax¼maximum(z)
calculate zmin¼minimum(z)
calculate zmed¼median(z)
calculate zvar¼var(z)

and

calculate zsdev¼sqrt(zvar)

These and other summary statistics can be obtained alternatively with the
GenStat procedure describe; thus
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describe [selection¼nobs, mean, median, min, max,\
range, var, sd, skew, kurtosis] z

in which nobs is the number of non-missing observations and the other
options are evident from their names.

B.2 HISTOGRAM

The histogram of z is formed simply by the command

histogram [title¼!t(‘Potassium’)] z

for a device such as a line printer, and by

dhistogram [title¼!t(‘Potassium’)] z

for a high-quality graph. The title within the square brackets is an option.
You are likely to want to specify the limits to the classes, or ‘bins’ in statistical

jargon. So define a variate containing them:

variate [values¼10,15. . .100] binlims

Then write

dhistogram [limits¼binlims; title¼!t(‘Potassium’)] z

If you want to see what the frequency distribution looks like on the logarithmic
scale then z is readily transformed by

calculate lz¼log10(z)

and you can then replace z by lz in the above commands.

B.3 CUMULATIVE DISTRIBUTION

The cumulative distribution of z can be formed by the following set of
commands

calculate az¼sort(z)
calculate cz¼cum(az)
calculate nz¼nobservations(z)
calculate pz¼(!(1. . .nz)�0.5)/nz

in which sort assembles the values in z in order from smallest to largest, and
cz contains the accumulated sum.

To draw a graph of the cumulative distribution you can write the command

dgraph x¼az; y¼pz
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Further, to show it on a normal probability scale you can convert pz to ‘normal
equivalent deviates’, as follows:

calculate nd¼ned(pz)
dgraph x¼az; y¼nd

The normal equivalent deviate is the area beneath the standard normal curve of
the probability density from �1 to GðzÞ.

B.4 POSTING

You can plot the data as a posting as follows. You should assemble the outline
of the region of interest as pairs of coordinates in two variates, say ox and oy.
Then you can write

pen 1; linestyle¼0; method¼point; symbols¼4
pen 2; linestyle¼1; method¼line; symbols¼0; join¼given
dgraph y¼y,ox; x¼x,oy; pen¼1,2

B.5 THE VARIOGRAM

B.5.1 Experimental variogram

You will first want to compute (form) the experimental or sample variogram
from your data. You can do it using the command fvariogram. It is followed
by options and parameters. Below is an example, in which the fvariogram
command is preceded by the declarations of two variates to hold the directions
in which you want to compute the variogram and the angles subtended by the
segments:

variate [nvalues¼4] angles; values¼!(0,45,90,135)
variate [nvalues¼4] segs; values¼!(45,45,45,45)
fvariogram [y¼y; x¼x; step¼1; xmax¼13; \
directions¼angles; segments¼segs] z;\
variogram¼zgam; counts¼zcounts; distances¼midpts

The lag is incremented in steps of 1, which is the interval on the grid, to a
maximum of 13. The identifiers zgam, zcounts and midpts are matrices,
and you will usually want the results as vectors (variates). These are readily
obtained from the matrices by

variate vgram [#angles], lag [#angles], count [#angles]
calculate vgram [ ]¼zgam$[*;1. . .4]
calculate lag [ ]¼midpts$[*;1. . .4]
calculate counts [ ]¼zcounts$[*;1. . .4]

which you can then print and graph.
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An average or omnidirectional variogram can be computed with the
fvariogram command, again preceded by the declarations of two variates
to hold the directions and the segments:

variate [nvalues¼1] angles; values¼!(0)
variate [nvalues¼1] segs; values¼!(180)
fvariogram [y¼y; x¼x; step¼1; xmax¼13; \
directions¼angles; segments¼segs] data¼z;\
variogram¼zgam; counts¼zcounts; distances¼midpts

Vectors of the identifiers zgam, zcounts and midpts are obtained as follows:

variate vgram [#angles], lag [#angles], count [#angles]
calculate vgram [ ]¼zgam$[*;1]
calculate lag [ ]¼midpts$[*;1]
calculate counts [ ]¼zcounts$[*;1]

B.5.2 Fitting a model

GenStat has a procedure, mvariogram, for fitting several standard models to
experimental variograms. You can call it by, for example,

mvariogram [model¼spherical; print¼model, summary,\
estimates; weighting¼counts] zgam; counts¼zcounts;\
distances¼midpts

This will fit a spherical model to the experimental variogram in zgam and
midpts with weights proportional to the counts in zcounts. The models
available are unbounded linear, bounded linear, circular, spherical, pentasphe-
rical, stable (including exponential), Gaussian, Whittle’s (besselk1), cubic,
cardinalsine and power.

The procedure makes use of the fitnonlinear command in GenStat, and
you can write models of your own choosing with this command. For example,
to fit a spherical model you can write:

expression spherical; \
value¼!e(c¼((1.5*lag/a�0.5*(lag/a)**3*(lag.le.a)\
+ (lag.gt.a))))

model [weights¼counts] vrgam
rcycle a; initial¼10
fitnonlinear [calculation¼spherical] c

The expression lag.le.a gives the value 1 if the lag is less than or equal
to the range, a, and 0 otherwise. In like manner lag.gt.a returns 1 if the lag
is greater than a and 0 otherwise. These two conditions ensure that the
function remains constant once the lag exceeds the range. Notice that only
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the non-linear part of the model has to be described in the value command.
The rcycle command sets an initial value for a. This is to ensure that the
search for a solution starts in roughly the right place. Otherwise the program
might never converge.

B.6 KRIGING

The kriging facility in GenStat creates a grid of estimates (predictions) for
mapping using the command krige, as follows.

krige [x¼x; y¼y; youter¼!(1,31); xouter¼!(1,18); \
yinner¼!(5,20); xinner¼!(3,15); block¼!(0,0);\
radius¼ 4.5; minpoints¼7; maxpoints¼20; interval¼0.5] \
z; isotropy¼isotropic; model¼spherical; nugget¼0.00476; \
sill¼0.01528; range¼10.8; predictions¼krigest;\
variances¼krigvar

B.7 COREGIONALIZATION

The commands for computing cross-variograms, for modelling the linear
coregionalization and cokriging have the same general form as those for the
autovariogram and kriging in Sections B.5 and B.6, but there are significant
differences.

B.7.1 Auto- and cross-variograms

The command for forming the experimental variograms is fcovariogram,
and an example for Broom’s Barn might be

fcovariogram [step¼1; maxlag¼13; \
directions¼angles; segments¼segs; covariogram¼zcovgam] \
data¼z1,z2; x1¼x; x2¼y

Note that there are now at least two variates of measurements, here denoted z1
and z2. The identifier zcovgam is a pointer to store the auto- and cross-
variograms and is called when the coregionalization is modelled.

As for the autovariograms alone, you can compute average or omnidirec-
tional variograms with the the fcovariogram command preceded by the
declarations of two variates to hold the directions and the segments:

variate [nvalues¼1] angles; values¼!(0)
variate [nvalues¼1] segs; values¼!(180)
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B.7.2 Fitting a model of coregionalization

The GenStat procedure for fitting a model to a set of variograms is mcovar-
iogram, and the same widely used functions as those for single variograms are
available. You can call the procedure by, for example,

mcovariogram [print¼model, summary, estimates; \
weighting¼counts; maxlag¼13; covariogram¼zcovgam] \
model¼nugget,spherical; estimates¼mcovparam

This will fit a spherical model plus nugget to the whole set of experimental
variograms in zcovgam with weights proportional to the counts. Note that in
mcovariogram you specify the combination of models you want in the
model parameter. This gives you a wider range of combinations than
mvariogram does. The input is provided from fcovariogram in the pointer
zcovgam, and the output, the estimates of the model parameters, are stored in
the pointer mcovparam. The procedure uses the algorithm of Goulard and
Voltz (1992) but with the additional optimization of the distance parameters.

B.7.3 Cokriging

The cokrige directive computes estimates using the model fitted by mco-
variogram. Again, it is similar to that for autokriging:

cokrige [y¼z1; x1outer¼!(1,31); x2outer¼!(1,18); \
x1inner¼!(5,20); x2inner¼!(3,15);\
blockdimensions¼ !(0,0); \
radii¼4.5; minpoints¼7; maxpoints¼20; x1interval¼0.5; \
x2interval¼0.5; searchneighbourhood¼local] \
data¼z1,z2; x1¼x; x2¼y; estimates¼mcovparam; \
predictions¼cokrigest; variances¼cokrigvar

The directive cokrige has many options, which you can find in Payne
(2006). We point out here only two features in the above code. The target
variable must be specified by the y option, and that variable must also appear in
the parameter list of data. By default cokrige uses all the data for each
prediction. This might not be what you desire or be sensible in the circum-
stances, and you can ensure that predictions are based on local data only by
restricting the searches with the option searchneighbourhood¼local as
above. Note that the variogram parameters are transferred from mcovario-
gram in the pointer mcovparam.

B.8 CONTROL

Remember to terminate each GenStat job with
stop
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Papritz, A., Künsch, H. R. and Webster, R. (1993) On the pseudo cross-variogram.
Mathematical Geology, 25, 1015–1026.
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Gaussian 251
Hermite polynomial 252–255
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regional 181–183
simple random samples 28–32
stratification 32–33
systematic sampling 33–35
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experimental covariance function 73–74
experimental spectrum, see spectral analysis
experimental variogram 60, 68–73, 288,
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experimental semivariances 60, 68–73,
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exploratory data analysis and display
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GenStat 290, 296
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Fourier transform, see spectral analysis
frequency distribution 13–15, 286
frequency domain, see spectral analysis
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Gaussian diffusion process 251
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Gaussian distribution 18
Gaussian variogram model 93
Gaussian simulation 273–274, 278–281
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geometric mean 21
geostatistics, general 1–6
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overview 1–6
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Hermite transformation 252–257

Hermite polynomials 252–257
hierarchical analysis of variance

127–132
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131–132
histogram 13, 286, 294
hole effect 56, 58
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indictor variables (indicators) 246
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indicator variograms 247
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interpolation 37–42
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intrinsic corgionalization 224–225
intrinsic hypothesis 54

intrinsic random function of order k 59
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inverse functions of distance 40
isarithmic chart 73, 75
isotropic variation 70, 82, 124, 160, 187,

289, 297
isotropic variograms 70, 73

joint cdf 52
joint distribution 20, 52, 66
joint pdf 20

Krige’s relation 60–61, 63
kriging 153 et seq., 291, 297

Bayesian 155
block kriging 156–159
cokriging 228–234
disjunctive kriging 243 et seq.
factorial kriging 212–217
general characteristics 154
general theory 155–159
indicator kriging 249
kriging with external drift 203–205
kriging equations 172–173
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kriging variance 158, 159, 163,

178–180, 182, 184, 185,
188–189, 198, 209, 211,
256

kriging weights 159–160
kriging with trend 195–211

E-BLUP 202
kriging with external drift 203–205
universal kriging 196–203

lognormal kriging 184–185
mapping 173–174, 181–191
ordinary kriging 155–160

ordinary kriging equations
probability kriging 155
regression kriging 199
simple kriging 183–184
universal kriging 196–203

universal kriging equations 197–198
Kronecker delta 57, 95
kurtosis 18

lag 53, 57
increments, interval 69–73
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Lagrange multiplier 157
least-squares methods 40, 102–103, 105,

199, 290
Levenberg–Marquardt method 103
linear drift 197
linear mixed model 134, 200
linear sequences 139–140
local estimation 153 et seq.
logarithmic transformation 21, 259,

287
logit transformation 22
log-likelihood 202
lognormal kriging 184–185
long-range trend 82, 198, 215

mapping 291–292
interpolation 37–42
kriging 173–174
optimal sampling 185–191
posting 27

Marcuse model II 127
Matérn variogram function 94
MATLAB 277
mean 15
mean error (ME) 191
mean squared deviation ratio (MSDR)

192
mean squared difference (MSE)

191
mean squared error, prediction (MSE)

45–46
mean squared residual (MSR) 107
measurement error in kriging 180
median 16
missing values 68, 70, 286
mode 16
model fitting, see fitting models
Monte Carlo methods 121, 270
multiple regression 40
multi-stage sampling 127

natural neighbours 39
interpolation 39

negative exponential variogram model, see
exponential variogram model

nested sampling and analysis
127–138

balanced designs 127, 128

components of variance 127, 128
REML estimation 132–138
unbalanced designs 131–132
Wyre Forest 132–138

nested spherical variogram model, see
double spherical variogram
model

non-ergodic variogram 60, 120
non-linear regression 103
normal distribution 18–20, 252, 287

random variables 49
normalized difference vegetation index

(NDVI) 47
notation 12
nugget, nugget variance 56–58, 79–84,

131
nugget:sill ratio 110, 161–163

nugget variogram 95

Occam’s razor 77
ordinary kriging 155–160
outliers 22, 65, 113–118

Pearson product-moment correlation
coefficient 20

pentaspherical variogram model 84,
88

periodic variation 97–99, 139–152
amplitude 97–98
periodic variogram model 97–99
phase 97–98

point samples 3
Poisson process 87, 90
positive intercept 79, 81
positive semidefiniteness 57, 79
posting 5, 25, 27, 285, 295
power function variogram 83
power spectrum, see spectral analysis
prediction 37, 153–194

general formula 37
kriging 153 et seq.
prediction error 43
prediction variance 43
purposively chosen sample 45
random sample 44

probability density 18, 49
probability density function 49

process control 5
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projection matrix 201
pseudo-cross-variogram 241–242
punctual kriging 155 et seq.
pure nugget, pure nugget variogram 56,

95

quadratic trend surface 40, 41
quadratic drift 197, 207

quasi-stationarity 55

random effects model 127, 200
random sample, prediction 28
random variables 49 et seq.

random functions, random process
49

random variation 49, 59, 79
random walk model 83
range 84

effective range 89
realization 49
regional estimation 181–183
regional variogram 49, 60, 121
regionalized variables, theory 48–60
regression 40–44
regression kriging 199
regression surfaces, see trend surfaces
regular sampling for variogram

in one dimension 68–69
in two dimensions 70–71

regularization 63–65
regularized variogram 64

relative precision 33
residual maximum likelihood (REML)

132–134, 200–202
components of variance 133–134
variogram estimation 202

sample correlogram 74
sample mean 15, 29
sample variogram, see experimental

variogram
sampling 26 et seq.

design, plan 28, 186
intensity, density, spacing 164, 186 et seq.
sample size for variogram estimation

119–126
theory 28 et seq.

SAS 103

scatter diagram 22, 66, 193, 210,
263

Schwarz’s inequality 223
screening 285
second moments 17, 52
second-order polynomial, see quadratic
second-order stationarity 52
semivariance 54 et seq.

estimation 65 et seq.
short-range drift 59, 81
sill 56, 79

sill variance 84
simple kriging 183–184
simple random sampling 28–30

estimation 28
estimation variance 29
standard error 29

simulation, stochastic 267–283
case study, illustration 278–283
Cholesky (LU) decomposition

272–273
conditional 270–271

purpose 271
sequential Gaussian 273–274
simulated annealing 274–276
turning bands 276
unconditional 270

sinusoidal function 97–98
skewness 17, 287

skewed histogram 24, 287
smoothing function, see spectral

analysis
soil classification 42–44
soil maps 42–44
spatial analysis, aide mémoire

285–292
spatial classification 42–44
spatial correlation 55 et seq.

spatial correlation functions,
characteristics 55–60

spatial covariance 50
spatial dependence 58

spatial distribution 288
spatial domain, see spectral analysis
spatial estimation, see kriging
spatial interpolation 37–40
spatial prediction 37–46
spatial processes 47 et seq.
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spectral analysis 139–152
Bartlett windows 145
Caragabal transect 140–142, 147,

150–151
confidence limits and intervals 149
estimation 144
Fourier transformation 143
frequency domain 143
Parzen windows 146
power spectrum 143–144
smoothing 145–146
spatial domain 140, 142
spectral density 140
theory 140–143

spectrum see spectral analysis
spherical variogram, spherical model 84,

87–88, 100, 164, 166
splines 42
SPOT 50
S-Plus 277
square root transformation 21
stable variogram models 91, 93
standard deviation 13
standard error 29
standard normal deviate 30
standard normal distribution 31
stationarity 52 et seq.
statistical fitting 102
statistics, basic 11 et seq.
stochastic process 49
stratified sampling 32

estimates 32
precision 32
stratification 32
full stationarity 53

structural variance–covariance matrices,
see coregionalization matrices

Student’s t 30
sum of squares 31, 130
summary statistics 13 et seq., 293
support 61
Swiss Jura 235–241

coregionalization 237–240
principal component analysis 236
trace metals 235–241
variograms 238–239

symmetric distributions 16
systematic sampling 33–35

target population 28
theoretical variogram 60, 288
Thiessen polygons 38
transformations 20–22, 99

back-transformation 185
Fourier transformation 143

et seq.
Hermite transformation

252–254
trend 40, 59, 81, 195 et seq.

trend surfaces 40–42
triangulation 38
two-dimensional variogram, see

variogram

unaligned sampling 34
unbalanced sampling design

131–132
unbounded random variation 83

unbounded variogram 58
units, see sampling
universal kriging 196–203

variance 16, 29
variance ratio 130
variogram 54–76, 288, 295

behaviour near the origin
80–82

behaviour towards infinity 82
block-to-block integration 64
definition 54
equivalence with covariance 54
estimation 65–76, 295
linear approach to origin 81
modelling 77–107, 296
parabolic approach to

origin 81
regularized variogram 63–65
reliability 109 et seq.

variogram cloud 65–66
variogram functions, limitations on

79–80
Voronoi polygons, see Thiessen

polygons

weak stationarity 52
weighted average 37
weighted least squares 102, 104
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weighting function 252
weights

interpolation weights 38–40
kriging weights 159–172

white noise 58, 83
Whittle elementary correlation 92

Whittle variogram model 92
within-class variance 44

Wyre Forest survey 134–138
nested sampling and analysis 134–138

Yattendon 205–211
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REML estimation 208–211
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