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Preface 

This is an introductory textbook on the generalized linear model (GLM). We 
intend this book for anyone who has completed a course in regression analysis 
that covers basic model-fitting and statistical inference at the level of an upper-
division or first-year graduate course. Some previous background in maximum 
likelihood estimation for linear regression and some exposure to nonlinear 
regression is helpful. However, Chapters 2 and 3 cover these topics in sufficient 
detail. 

This book has several unique features. First, we give a thorough treatment of 
logistic and Poisson regression. Although these are special cases of the GLM, 
they are very important in their own right, and they deserve special attention. 
More importantly, the treatment of these two cases provides a solid foundation 
for the GLM. Second, we provide an introduction to generalized estimating 
equations, which is a topic closely related to GLM. Third, this text provides an 
introduction to the generalized linear mixed model (GLMM). Both generalized 
estimating equations and GLMMs are of increasing importance to many 
practitioners. Important application areas include biology, to analyze long-
itudinal data, and the physical sciences and engineering, to analyze correlated 
observations. 

Another useful feature of this book is the many examples of the GLM, in 
settings ranging from the "classical" applications in biology and biopharma-
ceuticals, to engineering, quality assurance, and designed experiments. We use 
real data throughout to illustrate all of the methodologies and analyses. We 
think that the range of topics and applications gives the book broad appeal 
both to practicing professionals in a variety of fields and as a textbook for a 
second course in regression. Finally, we provide considerable guidance on 
computing. This text illustrates how to use R, SAS, SAS-JMP, and MINITAB 
to fit GLMs, to perform inference, and to do diagnostic checking. 

Generalized Linear Models, Second Edition, by Myers, Montgomery, Vining, and Robinson 
Copyright © 2010 John Wiley & Sons, Inc. 
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xii PREFACE 

We fully intend this book as an introductory text that makes this material 
accessible to a wide audience. There are many other excellent works on GLM, but 
many of these are written at a much higher level and are aimed primarily at 
theoretical statisticians. There are other texts that are primarily monographs and 
much narrower in scope than our book. We intend this book to be an excellent 
medium for a broad group of engineers, scientists, and statisticians to learn about 
the GLM, including both the underlying theory and the proper application of these 
methods. The website 

ftp://ftp.wiley.com/public/sci_tech_med/generalized_linear 
contains electronic versions of all data sets found in this text. 

Chapter 1 is an introduction designed to give the reader some insight into 
what types of problems support the use of GLM. It also establishes a tone that 
we use throughout this book of motivating GLMs from classical, normal-
theory linear models and regression. 

Chapter 2 provides an overview of many of the basic concepts of multiple 
linear regression. We discuss such fundamental concepts as the least squares 
and the maximum likelihood estimation procedures. We present confidence 
interval estimation, hypothesis testing procedures, and model diagnostic 
checking techniques such as residual plots and influence diagnostics. We also 
discuss procedures for dealing with nonhomogenous variance through trans-
formations and through weighted least squares estimation. The chapter 
concludes with a discussion of experimental design. We expect that many 
readers will find much of this material as review. Nonetheless, this material 
serves as our starting point for appreciating GLMs, which make extensive use 
of maximum likelihood estimation and the basic concepts underlying weighted 
least squares estimation and transformations. 

Chapter 3 is a concise presentation of the fundamental ideas of nonlinear 
regression. It begins by drawing a clear distinction between linear and nonlinear 
models. It also points out that many nonlinear models are the results of 
solutions to differential equations. We then discuss both least squares and 
maximum likelihood estimation procedures. It concludes with a discussion on 
experimental design for nonlinear models. Chapter 3 is extremely important for 
our discussion of GLMs, which often are nonlinear in nature. 

In Chapter 4 we develop and illustrate both logistic and Poisson 
regression, which are two special cases of the GLM. Poisson and logistic 
regression find many applications in the biological, medical, and social 
sciences. Many physical scientists and engineers are discovering their value 
as well. This chapter's theoretical development provides á foundation that 
makes the GLM much easier to grasp. We present examples from a wide 
array of fields. These examples include both observational studies and 
designed experiments. 

Chapter 5 introduces the exponential family of distributions and moti-
vates the model-building process for a GLM through the use of a link 
function. We fully develop the connection between weighted least squares 

ftp://ftp.wiley.com/public/sci_tech_med/generalized_linear
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and maximum likelihood estimation of the GLM. We make extensive use 
of the "gamma family" to illustrate the proper analysis of GLMs. This 
chapter discusses appropriate residual plots to check the adequacy of our 
model assumptions. 

Chapter 6 presents generalized estimating equations (GEEs). GEEs are 
extensions of the GLM involving more general correlation structures. Typi-
cally, these correlation structures are the result of repeated observations within 
large experimental units or across time within subjects. We discuss the use of 
GEEs with certain types of industrial experimental designs and in biomedical 
applications. 

In Chapter 7 we extend the GLM to mixed models, where some of the 
regressors are fixed (nonrandom) effects and some of the regressors are random 
effects. The generalized linear mixed model (GLMM) has many applications. 
This chapter begins by reviewing the classical, normal-theory linear mixed 
model and its analysis. It then extends these ideas to other distributions from 
the exponential family. The dependence of the response's variance upon the 
response's mean complicates the estimation, analysis, and interpretation of the 
results. This chapter fully discusses all of these issues. It concludes with a brief 
discussion of the Bayesian approach to the GLMM. 

Chapter 8 is a collection of topics on experimental designs for the GLM. It 
discusses optimal design for the GLM. It also examines the relationship 
between the choice of the link function and design orthogonality. It presents 
results on the impact of using standard experimental designs. It also considers 
screening experiments. 

We thank the many students at Arizona State University, the University of 
Wyoming, and Virginia Tech who have relayed their comments to us from the 
courses we have taught. Their feedback and criticism have proved invaluable. We 
also thank Dr. Katina Skinner, Dr. Duangporn Jearkpaporn, and Dr. Sharon 
Lewis for providing valuable computing assistance for the first edition. 

RAYMOND H. MYERS 
DOUGLAS C. MONTGOMERY 
G. GEOFFREY VINING 
TIMOTHY J. ROBINSON 

January 2010 





C H A P T E R 1 

Introduction to Generalized 
Linear Models 

1.1 LINEAR MODELS 

A model is just a simple abstraction of reality in that it provides an 
approximation of some relatively more complex phenomenon. Models may 
be broadly classified as deterministic or probabilistic. In a deterministic model, 
the system outcomes and responses are precisely defined, often by a set of 
equations. Deterministic models abound in the sciences and engineering; 
examples include Ohm's law (E=IR), the ideal gas law (PV=nRT), and the 
first law of thermodynamics (<f dW=J§ dQ). In probabilistic models, the 
system outcomes or responses exhibit variability, because the model either 
contains random elements or is impacted in some way by random forces. 

There is certainly no more important class of probabilistic model than the 
probabilistic linear model 

y = ß0 + ßxx\ + ß2xi + · · · + ßkXk + ß (1.1) 

where y is the outcome or response variable, xh x2, ..., Xk are a set of predictor 
or regressor variables, ß0, ß\, ..., ßk are a set of unknown parameters, and ε is 
the random error term. Sometimes the regressor variables x \ i X2-> ··'·> %k a r e 
called covariates. Often Equation (1.1) is called the linear regression model. We 
typically assume that the error term ε has expected value zero. Therefore the 
expected value (or expectation function) of the response y in our linear 
regression model is 

E(y) = βο + βχχχ + β2χι + · · · + ßkxk (1.2) 

Generalized Linear Models, Second Edition, by Myers, Montgomery, Vining, and Robinson 
Copyright © 2010 John Wiley & Sons, Inc. 
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2 INTRODUCTION TO GENERALIZED LINEAR MODELS 

Equation (1.1) is called a linear model because the mean response is a linear 
function of the unknown parameters /?0, ßu ···> ßk- That means that an 
interaction model in, for example, k=2 variables 

y = ßo + ß\x\ +β2Χ2 + β\2
χ\χ2+ε (1.3) 

or a second-order polynomial in k=2 variables 

y = ßo + ßxx\ + ß2x2 + ßnx\xi + ßnx] + ß22x\ + e (1.4) 

or even a model with transcendental terms such as 

y = ß0 + ßlsm\^j +^2C0S\JY) +ε 

are all linear models. The linear regression model in Equation (1.1) is 
usually called the first-order linear model. When it is used in conjunction 
with the analysis of data from a designed experiment, Equation (1.1) is 
typically called a main-effects model. The interaction model (1.3) and the 
second-order model (1.4) also arise often in the field of designed 
experiments. 

Linear regression models are used widely for several reasons. First, they are 
natural approximating polynomials for more complex functional relationships. 
That is, if the expectation function E(y) =f(x) is the true relationship between 
the response and a predictor variable x, then the first-order Taylor series 
approximation to this relationship at some point of interest x0 is 

E(y)~f(x0) + dfix) (x - XQ) + R 
d x ix=x0 

= 0o + £i(*-*o) 

which, ignoring the remainder R (and apart from the error term), is a linear 
regression model in one variable. When k predictor variables are involved, the 
first-order Taylor series approximation leads directly to a first-order linear 
regression model in k variables. Use of a second-order Taylor series results in 
the second-order model Equation (1.4) or if the pure second-order derivatives 
are omitted we get an interaction model, of which Equation (1.3) is an 
example. Because linear regression models are used so often (and so success-
fully) as approximating polynomials, we sometimes refer to them as empirical 
models. 

The second reason for the popularity of linear regression models is that it is 
straightforward to estimate the unknown parameters ßo.ßu · · ·» ßk- The method 
of least squares is a parameter estimation technique that dates from the early 
part of the nineteenth century. When this method is applied to a linear model, 
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the analyst has only to solve a set of p=k+1 simultaneous linear equations in 
the p=k+l unknowns /?0, j?i, ..., ßk- There are many statistical software 
packages (and hand calculators and spreadsheet programs) that have imple-
mented the method of least squares for linear models so regression model fitting 
is very easy. 

Finally, there is a really nice, elegant, and well-developed statistical theory 
for the linear model. If we assume that the errors (ε) in the linear model are 
normally and independently distributed with constant variance, then statistical 
tests on the model parameters, confidence intervals on the parameters, and 
confidence and prediction intervals for the mean response can easily be 
obtained. Furthermore, these procedures have been implemented nicely in 
many statistics software packages and so they are easy to perform. In our view, 
there is no more elegant theory in statistics than that of the linear model, 
because it not only contains mathematical aesthetics, but it actually works 
easily and effectively in practical problems as well. 

On the way to learning about generalized linear models (the main objective of 
this book), we have to be comfortable with some of the theory and practical 
aspects of using the linear regression model. Chapter 2 covers the essentials. 

1.2 NONLINEAR MODELS 

Linear regression models often arise as empirical models for more complex, and 
generally unknown phenomena. However, there are situations where the 
phenomenon is well understood and can be described by a mathematical 
relationship. For example, consider Newton's law of cooling, which states that 
the rate of change of temperature of an object is proportional to the difference 
between the object's current temperature and the temperature of the surround-
ing environment. Thus if/is the current temperature and TA is the ambient or 
environmental temperature, then 

4L=-ßtf-TA) (1.5) 

where ß is the constant of proportionality. The value of ß depends on the 
thermal conductivity of the object and other factors. Now the actual tempera-
ture of the object at time t is the solution to Equation (1.5), or 

f(tJ) = TA + (Tl-TA)efit (1.6) 

where T\ is the initial temperature of the object. In practice, a person measures 
the temperature at time / with an instrument, and both the person and the 
instrument are potential sources of variability not accounted for in Equation 
(1.6). Combining these and all other sources of variability into an error term ε, 
we may write the actual observed value of temperature at time t as 
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y=f(t,ß) + e 
(1.7) 

= ΓΑ + ( Γ Ι - Γ Α ) ^ / + ε 

Equation (1.7) is an example of a nonlinear model, because the response is 
not a linear function of the unknown parameter β. Sometimes we say that 
Equation (1.7) is an example of a nonlinear regression model. Nonlinear 
regression models play a very important role in science and engineering, and 
they usually arise from our knowledge of the underlying mechanism that 
describes the phenomena. Indeed, nonlinear models are sometimes called 
mechanistic models, distinguishing them from linear models, which are typically 
thought of as empirical models. Many nonlinear models are developed directly 
from the solution to differential equations, as was illustrated in Equation (1.7). 

Just as in the case of the linear regression model, it is necessary to estimate the 
parameters in a nonlinear regression model, and to test hypotheses and construct 
confidence intervals. There is a statistical theory supporting inference for the 
nonlinear model. This theory makes use of the normal distribution, and typically 
assumes that observations are independent with constant variance. The essential 
elements of nonlinear regression models are summarized in Chapter 3. 

1.3 THE GENERALIZED LINEAR MODEL 

It should be clear that in dealing with the linear and nonlinear regression 
models of the previous two sections, the normal distribution played a central 
role. Inference procedures for both linear and nonlinear regression models in 
fact assume that the response variable y follows the normal distribution. There 
are a lot of practical situations where this assumption is not going to be even 
approximately satisfied. For example, suppose that the response variable is a 
discrete variable, such as a count. We often encounter counts of defects or other 
rare events, such as injuries, patients with particular diseases, and even the 
occurrence of natural phenomena including earthquakes and Atlantic hurri-
canes. Another possibility is a binary response variable. Situations where the 
response variable is either success or failure (i.e., 0 or 1) are fairly common in 
nearly all areas of science and engineering. 

As an example, consider the space shuttle Challenger accident, which 
occurred on January 28, 1986. The space shuttle was made up of the Challenger 
orbiter, an external liquid fuel tank containing liquid hydrogen fuel and liquid 
oxygen oxidizer, and two solid rocket boosters. At 11:39 EST about 73 seconds 
after launch, the space shuttle exploded and crashed into the Atlantic Ocean off 
the coast of Florida, killing all seven astronauts aboard. The cause of the 
accident was eventually traced to the failure of O-rings on the solid rocket 
booster. The O-rings failed because they lost flexibility at low temperatures, 
and the temperature that morning was 31°F, far below the lowest temperature 
recorded for previous launches. 
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Table 1.1 Temperature and O-Ring Failure Data from the Challenger Accident 

Temperature at At Least One Temperature at At Least One 
Launch (°F) O-Ring Failure Launch (°F) O-Ring Failure 

53 
56 
57 
63 
66 
67 
67 
67 
68 
69 
70 
70 

1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 

70 
70 
72 
73 
75 
75 
76 
76 
78 
79 
80 
81 

Table 1.1 presents the temperature at the 24 launches or static tests 
preceding the Challenger launch along with an indicator variable denoting 
whether or not O-ring failure or damage had occurred (0 indicates no failure, 1 
indicates failure). A scatter diagram of the data is shown in Figure 1.1. There 
does appear to be some relationship between failure and temperature, with a 
higher likelihood of failure at lower temperatures, but it is not immediately 
obvious what kind of model might describe this relationship. A linear regres-
sion model does not seem appropriate, because there are likely some tempera-
tures for which the fitted or predicted value of failure would either be greater 
than unity or less than zero, clearly impossible values. This is a situation where 
some type of generalized linear model is more appropriate than an ordinary 
linear regression model. 

There are also situations where the response variable is continuous, but the 
assumption of normality is not reasonable. Examples include the distribution 
of stresses in mechanical components and the failure times of systems or 
components. These types of responses are nonnegative and typically have a 
highly right-skewed behavior. GLMs are often better models for these situa-
tions than ordinary linear regression models. 

The generalized linear model or (GLM) allows us to fit regression models for 
univariate response data that follow a very general distribution called the 
exponential family. The exponential family includes the normal, binomial, 
Poisson, geometric, negative binomial, exponential, gamma, and inverse 
normal distributions. Furthermore, if the yh z=l, 2, ..., «, represent the 
response values, then the GLM is 

g(ß,)=g[E(y,)]=i(!ffi 

where x, is a vector of regressor variables or covariates for the /th observation 
and p is the vector of parameters or regression coefficients. Every generalized 



6 INTRODUCTION TO GENERALIZED LINEAR MODELS 

1 . 0 -

t °·5 
c 
ir 
ó 

0.0 
I I I I 

50 60 70 80 
Temperature (°F) 

Figure 1.1 Scatter diagram of O-ring failures versus temperature. 

linear model has three components: a response variable distribution (sometimes 
called the error structure), a linear predictor that involves the regressor 
variables or covariates, and a link function g that connects the linear predictor 
to the natural mean of the response variable. 

For example, consider the linear regression model in Equation (1.1). The 
response distribution is normal, the linear predictor is 

x'ß = 0o + /Mi + 02*2 + · · · + ßkXk 

and the link function is an identity link, g(a) = a, or 

E{y) = μ 

= β0 + β{Χ\ + 02*2 + * · * + ßh*k 

Thus the standard linear regression model in Equation (1.1) is a GLM. 
Depending on the choice of the link function g, a GLM can include a nonlinear 
model. For example, if we use a log link, g(a) = \n(a), then 

E(y) = μ 
— eßo+ß\Xl+ßlX2+~'+ßkXk 

For the case of a binomial distribution, a fairly standard choice of link function 
is the logit link. For the Challenger data, where there is a single regressor 
variable, this leads to the model 

exp(0o + 0i*) 
l+expQ?o + 0ix) 
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We show in Chapter 4 that the estimates of the model parameters in this 
equation, ß0 and ßu are Z>0

= 10.875 and ¿?j = —0.17132. Therefore the fitted 
function is 

exp(10.875-0.17132*) 
7 l+exp(10.875-0.17132*) 

This is called a logistic regression model, and it is a very common way to model 
binomial response data. A graph of the fitted function is shown in Figure 1.2. 
Notice that the model will not result in fitted values outside the 0-1 range, 
regardless of the value of temperature. 

The generalized linear model may be viewed as a unification of linear and 
nonlinear regression models that incorporates a rich family of normal and 
nonnormal response distributions. Model fitting and inference can all be 
performed under the same framework. Furthermore, computer software that 
supports this unified approach has become widely available and easy to use. 
Thus while the earliest use of GLMs was confined to the life sciences and the 
biopharmaceutical industries, applications to other areas of science and 
engineering have been growing rapidly. Chapters 4 and 5 give a detailed 
presentation of generalized linear models along with examples from several 
areas of science and engineering. 

The usual GLM assumes that the observations are independent. There are 
situations where this assumption is inappropriate; examples include data where 
there are multiple measurements on the same subject or experimental unit, 
split-plot and other types of experiments that have restrictions on randomiza-
tion, and experiments involving both random and fixed factors (the mixed 

ω 

LL 

Temperature (°F) 

Figure 1.2 Graph of the fitted logistic regression model (from JMP) for the Challenger O-ring 
failure data. 
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model). Generalized estimating equations (GEEs) are introduced to account for 
a correlation structure between observations in the generalized linear model. 
Chapter 6 discusses GEEs and presents several applications. GLMs can also 
include random effects, just as in linear models. Chapter 7 presents methods for 
including random factors in GLMs. Designed experiments are widely used in 
fitting linear models and can also be used with GLMs. Some aspects of this are 
discussed in Chapter 8. 

As we will see in subsequent chapters, GLMs, GLMMs, and GEEs are 
powerful extensions to the familiar linear and nonlinear regression models that 
have proved to be so useful in many scientific and engineering fields. There are 
many other books devoted to GLMs and related techniques, including Agresti 
(1990), Collett (1991), Dobson (1990), Fahrmeir and Tutz (1994), Lindsey 
(1994), McCullagh and Neider (1987), Hosmer and Lemeshow (2002), and 
Kleinbaum (1994). These books are either specialized texts devoted to special 
subjects of GLM methodology, or they are higher-level works targeted at 
technical specialists or researchers. Our objective is to provide an introduction 
to GLMs and GEEs for a broad audience of potential users, including 
statisticians, engineers, physical, chemical, medical, and life scientists, and 
other readers with a background in linear regression methods. We also 
illustrate how the implementation of these techniques in modern computer 
software facilitates their application. 



C H A P T E R 2 

Linear Regression Models 

2.1 THE LINEAR REGRESSION MODEL AND ITS APPLICATION 

Regression analysis is a collection of statistical techniques for modeling and 
investigating the relationship between a response variable of interest y and a set 
of regressor or predictor variables xu x2, ..., Xk· Applications of regression are 
numerous and occur in almost every applied field including engineering and the 
chemical/physical sciences, life and biological sciences, the social sciences, 
management and economics. A very important type of regression model is 
the linear regression model 

y = β0 + βχχχ + ß2x2 + ■ · · + ßkxk + ε (2.1) 

in which the response is a linear function of the unknown model parameters or 
regression coefficients /?0, ßu ···> ßk- Linear regression models are widely used 
as empirical models to approximate some more complex and usually unknown 
functional relationship between the response and the regressor variables. 

In this chapter we summarize the techniques for estimating the parameters in 
multiple regression models. We also present the standard methods for testing 
hypotheses and constructing confidence intervals for these models, as well as 
methods for checking model adequacy and quality of fit. We discuss two 
important parameter estimation techniques for the linear regression model: the 
method of least squares and the method of maximum likelihood. The 
important role of the normal distribution in linear regression is discussed. 
This chapter ends with a discussion of designing experiments. 

Generalized Linear Models, Second Edition, by Myers, Montgomery, Vining, and Robinson 
Copyright © 2010 John Wiley & Sons, Inc. 

9 
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2.2 MULTIPLE REGRESSION MODELS 

2.2.1 Parameter Estimation with Ordinary Least Squares 

The method of least squares is typically used to estimate the regression 
coefficients in a multiple linear regression model. Suppose that n > k 
observations on the response variable are available, say, yu yi,..., yn. Along 
with each observed response yh we have an observation on each regressor 
variable, and let xy denote the z'th observation or level of variable xj. Table 2.1 
summarizes the structure of our dataset. We assume that the error term ε in the 
model has mean zero and constant variance σ2, that is, Ε(ε) = 0 and Var(e) = 
σ2, and that the {ε,·} are uncorrelated random variables. 

We may write the model equation (Equation (2.1)) in terms of the observa-
tions in Table 2.1 as 

y i = β0 + βλχη + ß2xi2 + · · · + ßkXik + ε,-
k 

= ßo + YtßJXij + Si, i = l , 2 , . . . , / i (2.2) 
y=i 

The method of least squares chooses the ß's in Equation (2.2) so that the sum of 
the squares of the errors, the ε,-, is minimized. The least squares function is 

n 
2 s = Et 

i=\ 

n 

The function S is to be minimized with respect to β0, βι, ..., ßk- The least 
squares estimators, say, b0, b\, ..., bi¡, must satisfy 

dS 

dßo 
= -2 ¿ L - ¿o - ¿ bjxy) = 0 (2.4a) 

b0,b\,...A i=\ \ j=\ / 

Table 2.1 

y 

Data for Multiple Linear Regression 

X\ X2 . . . Xk 

yi *2\ ΧΎ1 · · · Xlk 

yn Xn j Xn2 · · · Xnk 
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and 

11 

as 
dßj 

= - 2 £ ( ^ ~ * ° " £ V ( / ) ^ = 0> y = 1,2,...,* (2.4b) 

Simplifying Equation (2.4), we obtain 

n n n n 

nb0 + b\ Y^xn = b2 Σ
Χα + ''' + ** Σ * * = Σ·̂ ' 

/=1 /=1 i=l /=1 
n n n n n 

/=1 1=1 /=! i=\ i = l 

¿>o5^**+¿iΣxikXi\+¿>2 ]Pχ*χν + · · · + ^ Σ * * = Σ x * ^ ' (2·5) 
i = l i=l 1=1 1=1 i = l 

These equations are called the least squares normal equations. Note that there 
are p = k + 1 normal equations, one for each of the unknown regression 
coefficients. The solution to the normal equations will be the least squares 
estimators of the regression coefficients b0, b\, ..., bk. 

It is simpler to solve the normal equations if they are expressed in matrix 
notation. We now give a matrix development of the normal equations that 
parallels the development of Equation (2.5). The model in terms of the 
observations, Equation (2.2), may be written in matrix notation as 

where 

y = 

y\ 

yi 

yn 

ßo 

ßl 

, x 

γ = Χβ + ε 

1 xn xn 

1 X2\ X22 

1 Xn\ Xn2 

£2 

■ · · x\k 

"- xik 

'" Xnk 

, and ε 
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In general, y is an (n x 1) vector of the observations, X is an (n x p) matrix of the 
levels of the independent variables expanded to the form of the model (which in 
this case includes an intercept, leading to the first column containing all elements 
of unity), ß is a (p x 1) vector of the regression coefficients, and ε is an (n x 1) 
vector of random errors. The X matrix is often called the model matrix. 

We wish to find the vector of least squares estimators, b, that minimizes 

5(β) = £ ε ? = ε'ε = ( Υ -Χβ) '^-Χβ) 
/=! 

Note that S(ß) may be expressed as 

sm = y'y - ß'X'y - y'Xß + ß'x'Xß 
= y'y-2ß'X'y + ß'X'Xß (2.6) 

since ß'X'y is a (1 x 1) matrix, or a scalar, and its transpose (ß'X'y)' = y'Xß is the 
same scalar. The least squares estimators must satisfy 

as 
öß 

= -2X'y + 2X'Xb = 0 

which simplifies to 

X'Xb = X'y (2.7) 

Equation (2.7) gives the least squares normal equations in matrix form. It is 
identical to Equation (2.5). As long as the columns of the model matrix X are not 
collinear, X'X is positive definite; thus to solve the normal equations, multiply 
both sides of Equation (2.7) by the inverse of X'X. Consequently, the least squares 
estimator of ß is 

b = (X'xr'x'y (2.8) 

We also call b the ordinary least squares estimator of ß to distinguish it from other 
estimators based on the least squares idea. It is easy to see that the matrix form of 
the normal equations is identical to the scalar form. Writing out Equation (2.7) in 
detail, we obtain 

n Σ * π Σ*ΐ2 
/=1 /=1 

n n n 

Σ*/1 Σ*Π Σ*/1*/2 
i=\ i=\ 1=1 

Σ xik Σ xikXn Σ xikXa 
i=\ 1=1 1=1 

i=\ 
n 

Y,Xi\Xik 
i=\ 

Σ4 

¿0 

bk 

Σ* 
1=1 

n 

Σ xnyi 
i=\ 

Σ x*yi 
i=\ 
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If the indicated matrix multiplication is performed, the scalar forms of the normal 
equations (i.e., Equation (2.5)) result. In this form it is easy to see that X'X is a 
(pxp) symmetric matrix and X'y is a (p x 1) column vector. Note the special 
structure of the X'X matrix. The diagonal elements of X'X are the sums of squares 
of the elements in the columns of X, and the off-diagonal elements are the sums of 
cross-products of the elements in the columns of X. Furthermore, note that the 
elements of X'y are the sums of cross-products of the columns of X and the 
observations {yt). 

The fitted regression model is 

y = Xb (2.9) 

In scalar notion, the fitted model is 

k 

γΐ = ο0 + Σ^χνι * ' = 1 , 2 , . . . , Λ 
7=1 

The difference between the observation y¡ and the fitted value y¿ is a residual, 
say, e¡ = y¡ - y¡. The (nxl) vector of residuals is denoted by 

e = y - y (2.10) 

Example 2.1. The Transistor Gain Data. Myers, Montgomery, and 
Anderson-Cook (2009) describe a study in which the transistor gain in an 
integrated circuit device between emitter and collector (fiFE) is reported along 

Table 2.2 Data on Transistor Gain (y) for Example 2.1 

nation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

x\ (drive-in 
time, minutes) 

195 
255 
195 
255 
225 
225 
225 
195 
255 
225 
225 
225 
225 
230 

x2 (dose, 
ions x 1014) 

4.00 
4.00 
4.60 
4.60 
4.20 
4.10 
4.60 
4.30 
4.30 
4.00 
4.70 
4.30 
4.72 
4.30 

y (gain 
or hFE) 

1004 
1636 
852 
1506 
1272 
1270 
1269 
903 
1555 
1260 
1146 
1276 
1225 
1321 
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with two variables that can be controlled at the deposition process—emitter 
drive-in time (x\, in minutes) and emitter dose (x2> in ions x 1014). Fourteen 
observations were obtained following deposition, and the resulting data are 
shown in Table 2.2. We fit a linear regression model using gain as the response 
and emitter drive-in time and emitter dose as the regressor variables. 

We fit the model 

y = ßo + ßxXi+ß2X2 + * 

The X matrix and y vector are 

"1 195 
1 255 

X = 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

195 
255 
225 
225 
225 
195 
255 
225 
225 
225 
225 
230 

4.00" 

4.00 

4.60 

4.60 

4.20 

4.10 

4.60 

4.30 

4.30 

4.00 

4.70 

4.30 

4.72 

4.30 

, y = 

"10041 

1636 
852 
1506 

1272 

1270 

1269 

903 

1555 

1260 

1146 

1276 

1225 

1321 

The X'X matrix is 

XX = 

" 1 

195 

4.00 

1 

255 · 

4.00 · 

1 1 

• 230 

• 4.30 _ 

"1 195 4.001 

1 255 4.00 

1 230 4.30 J 

14 3155 60.72 

3155 716,425 13,683.5 

60.72 13,683.5 264.2584 

The X'y vector is 
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x'y = 

^ 

" 1 1 

195 255 

4.00 4.00 ·· 

' 7,495 " 

4,001,120 

75,738.30 

The least squares estimate of ß is 

b = (X'X)" 

1 

230 

4.30 

*x'y 

1004" 

1636 

1321 

or 

b = 

30.247596 

-0.041712 

-4.789945 

-520.1 " 

10.7812 

-152.15 

-0.041712 

0.000184 

0.000038 

-4.789945" 

0.000038 

1.102439 

" 17,495 

4,001,120 

75,738.30 

The fitted regression model is 

y = -520.1 + 10.7812x1 - 152.15x2 

Table 2.3 shows the observed values of y¡, the corresponding fitted values y¡, and 
the residuals from this model. There are several other quantities given in this table 
that will be defined and discussed later. Figure 2.1 shows the fitted regression 
model response surface and the contour plot for this model. The regression model 
for gain is a plane laying above the time-dose space. D 

2.2.2 Properties of the Least Squares Estimator and Estimation of σ2 

The method of least squares produces an unbiased estimator of the parameter β 
in the multiple linear regression model. This property may easily be demon-
strated by finding the expected value of b as follows: 
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£(b) = £[(X'X)-'X'y] 

= £[(Χ'Χ)-'Χ'(Χβ + ε)] 

= £[(Χ'Χ)_1Χ'Χβ + (Χ'ΧΓ'χ'ε] 

= ß 

because £(ε) = 0 and (Χ'ΧΓ'Χ'Χ = I. Thus b is an unbiased estimator of β. The 
variance property of b is expressed by the covariance matrix 

Cov(b) = E{[b - E(b)][b - E(b))'} 

The covariance matrix of b is a (p xp) symmetric matrix whose jj th element is 
the variance of (bj) and whose (/, y)th element is the covariance between b¡ and 
bj. The covariance matrix of b is 

Cov(b) = Var(b) (2.11) 

= VarKX'Xr'X'y] 

= (X,X)-1X,Var(y)X(X,X)-1 

= σ^Χ'Χ^Χ'ΧίΧ'Χ)-1 

= σ^Χ'Χ)-1 

Table 2.3 Observations, Fitted Values, Residuals, and Other Summary Information 
for Example 2.1 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

y¡ 

1004.0 
1636.0 
852.0 
1506.0 
1272.0 
1270.0 
1269.0 
903.0 
1555.0 
1260.0 
1146.0 
1276.0 
1225.0 
1321.0 

y* 

973.7 
1620.5 
882.4 
1529.2 
1266.7 
1281.9 
1205.8 
928.0 
1574.9 
1297.1 
1190.6 
1251.4 
1187.5 
1305.3 

e¿ 

30.3 
15.5 

-30.4 
-23.2 
5.3 

-11.9 
63.2 

-25.0 
-19.9 
-37.1 
-44.6 
24.6 
37.5 
15.7 

hu 

0.367 
0.358 
0.317 
0.310 
0.092 
0.133 
0.148 
0.243 
0.235 
0.197 
0.217 
0.073 
0.233 
0.077 

n 
1.092 
0.553 

-1.052 
-0.801 
0.160 

-0.365 
1.960 

-0.823 
-0.651 
-1.185 
-1.442 
0.730 
1.225 
0.466 

U 

1.103 
0.535 

-1.057 
-0.787 
0.153 

-0.350 
2.316 

-0.810 
-0.633 
-1.209 
-1.527 
0.714 
1.256 
0.449 

Dt 

0.231 
0.057 
0.171 
0.096 
0.001 
0.007 
0.222 
0.072 
0.043 
0.115 
0.192 
0.014 
0.152 
0.006 
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UJ 
iL· 1116 

°'*J 4.000 195.0 Vf? 

(a) 
4.720 

4.000 
195.0 205.0 215.0 225.0 235.0 245.0 255.0 

ξ1(ίΐπΓΐθ) min) 

(b) 

Figure 2.1 (a) Response surface for gain, Example 2.1. (b) The gain contour plot. 

Appendices A.l and A.2 provide some useful background material on the 
statistical properties of b. Appendix A. 3 demonstrates that b is the best linear 
unbiased estimator. The best linear unbiased estimator means that, of all linear 
functions of the observations, b is the best in the sense that it is an unbiased 
estimator with minimum variance. 
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It is also usually necessary to estimate σ2. To develop an estimator of this 
parameter, consider the sum of squares of the residuals, say, 

n 

-Σ.4 
= e'e 

Substituting e = y — y = y — Xb, we have 

SSres = ( y - X b ) ' ( y - X b ) 

= y'y - b'X'y - y'Xb + b'X'Xb 

= y'y - 2b'X'y + b'X'Xb 

Because X'Xb = X'y, this last equation becomes 

S S r ^ y ' y - b ' X ' y (2.12) 

Equation (2.12) is called the error or residual sum of squares, and it has n-p 
degrees of freedom associated with it. It can be shown that 

E[SSres]=a2(n-p) 

so an unbiased estimator of σ2 is given by 

σ 2 = ^ (2.13) 
n — p 

Example 2.2. The Transistor Gain Data. We estimate σ2 for the regression 
model from Example 2.1. Because 

14 

yV = & ' = 2 2 ' 5 2 7 ' 8 8 9 · 0 

i = l 

and 
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b'X'y= [-520.1 10.7812 -152.15] 
17,495 
4,001,120 
75,738.30 

22,514,467.9 

the residual sum of squares is 

ssres = y'y - b'x'y 

= 22,527,889.0 - 22,514,467.9 
= 13,421.1 

Therefore the estimate of σ2 is computed from Equation (2.13) as follows: 

SS„ 13,421.1 
1 4 - 3 = 1220.1 

The estimate of σ2 produced by Equation (2.13) is model dependent. That is, 
it depends on the form of the model that is fit to the data. To illustrate this 
point, suppose that we fit a quadratic model to the gain data, say, 

y = 00 + 01*1 + 02*2 + 011*1 + 022*2 + 012*1*2 + ε 

In this model it can be shown that SSres = 12,479.8. Because the number of 
model parameters, p, equals 6, the estimate of σ2 based on this model is 

* = 1 ^ = 1 5 5 9 . 9 7 5 1 4 - 6 

This estimate of σ2 is actually larger than the estimate obtained from the first-
order model, suggesting that the first-order model is superior to the quadratic 
in that there is less unexplained variability resulting from the first-order fit. If 
replicate runs are available (i.e., more than one observation on y at the same 
x-levels), then a model-independent estimate of σ2 can be obtained. D 

2.2.3 Hypothesis Testing in Multiple Regression 

In multiple linear regression problems, certain tests of hypotheses about the 
model parameters are helpful in measuring the usefulness of the model. In this 
section we describe several important hypothesis-testing procedures. These 
procedures require that the errors e, in the model be normally and indepen-
dently distributed with mean zero and constant but unknown variance σ2, 
abbreviated ε ~ NID (0, σ2). By this assumption, the observations y¡ are 
normally and independently distributed and variance σ2. If we assume that the 
correct model is first-order, then the mean of these responses is 
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k 

7=1 

Test for Significance of Regression 
The test for significance of regression is a test to determine if there is a linear 
relationship between the response variable y and a subset of the regressor 
variables xu x2, ..., x/c- The appropriate hypotheses are 

Ho:ß{=ß2 = "' = ßk = 0 

Hx : ßj·,φ 0 for at least one./ (2.14) 

Rejection of H0: in (2.14) implies that at least one of the regressor variables x\9 

x2, , JCjt contributes significantly to the model. The test procedure involves 
partitioning the corrected total sum of squares, SST, into a sum of squares due 
to the model (or to regression) and a sum of squares due to residual, say, 

SST = SSR + SSres (2.15) 

"Corrected" means that the sum of squares is adjusted for the presence of the 
intercept. 

Now if the null hypothesis H0 : β\ = β2 = · · · = /?* = 0 is true, then SSR/a2 

is distributed as χ\9 where the number of degrees of freedom for χ2, the number 
of regressor variables in the model. Also, we can show that SSTes/a

2 is 
distributed as xl_k_\ and that SSns and SSR are independent. The test 
procedure for H0 : β\ = β2 = · · · = ßk = 0 is to compute 

SSR/k MSR 
Γο SSrJ(n-k-\) MSm

 { ' ] 

and to reject H0 if F0 exceeds Fa, k9 n-k-\> Alternatively, one could use the 
JP-value approach to hypothesis testing and thus reject H0 if the P-value for the 
statistic F0 is less than a. The test is usually summarized in a table such as 
Table 2.4. This test procedure is called an analysis of variance because it is based 
on a decomposition of the total variability in the response variable y. 

A computational formula for SSR may be found easily. We have derived a 
computational formula for SSres in Equation (2.12), that is, 

Table 2.4 Analysis of Variance for Significance of Regression in Multiple Regression 

Source of Degrees of 
Variation Sum of Squares Freedom Mean Square F0 

MSR/MSK Regression 
Residual 
Total 

ssK 
»SSres 
SST 

k 
n - k - \ 

n- 1 

MSR 

MSres 
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SSTes = y'y - b'X'y 

Now, because SST = £? = 1 > ¿ - (ZU Vi?/" = y'y ~ (Σ"=ι >Ό2/«» we may 
rewrite the foregoing equation as 

ssres = y'y -
s*y b'X'y- £") 

2η 

or 

SSTQS = SSj — SSR 

Therefore the regression sum of squares is 

f n 

SSR = b'X'y - ^ — 

the residual sum of squares is 

SStes = y'y - b'X'y 

and the corrected total sum of squares is 

SST = y ' y - ^ L ^ 

(2.17) 

(2.18) 

(2.19) 

Example 2.3. The Transistor Gain Data. We test for significance of 
regression using the model fit to the transistor gain data for Example 2.1. 
Note that 

14 

Σ Λ 
55T = y'y - v ~ ' 

14 

= 22,527,889.0 -
(17,495)2 

14 

665,387.2 
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/ 1 4 

SSR = b'X'y - V/=1 

14 
= 22,514,467.9-21,862,501. 
= 651,966.1 

and 

'J'Jres — SSj — M R 

= 665,387.2-651,966.1 
= 13,421.1 

The analysis of variance is shown in Table 2.5. If we select a = 0.05, then we 
would reject H0 : β\ = βι = 0 because F0 = 267.2 > Fo.05,2,11 = 3.98. Also note 
that the P-value for F0 (shown in Table 2.5) is considerably smaller than 
a = 0.05. D 

The coefficient of multiple determination R2 is defined as 

^f^'-i? < 2 · 2 0 ) 

R2 is a measure of the amount of variability of y explained by using the regressor 
variables the model. From inspection of the analysis of 
variance identity equation (Equation (2.15)), we see that 0 < R2 < 1. However, 
a large value of/?2 does not necessarily imply that the regression model is a good 
one. Adding a variable to the model cannot decrease R2, regardless of whether 
the additional variable is statistically significant or not. Thus it is possible for 
models that have large values of R2 to yield poor predictions of new observa-
tions or estimates of the mean response. 

To illustrate, consider the first-order model for the transistor gain data. The 
value of R2 for this model is 

Table 2.5 Test for Significance of Regression, Example 2.3 

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square F0 P-Value 

Regression 
Residual 
Total 

651,996.1 
13,421.1 

665,387.2 

2 
11 
13 

325,983.0 
1220.1 

267.2 4.74 x 10"10 
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That is, the first-order model explains about 97.98% of the variability observed 
in gain. Now, if we add quadratic terms to this model, we can show that the 
value of R2 increases to 0.9812. This increase in R2 is relatively small, implying 
that the quadratic terms do not really improve the model. 

Because R2 cannot decrease as we add terms to the model, some regression 
model builders prefer to use an adjusted R2 statistic defined as 

*-'-10-'-(£>■-*> ("■) 
In general, the adjusted R2 statistic may not increase as variables are added to 
the model. In fact, if unnecessary terms are added, the value of R^ will often 
decrease. 

For example, consider the transistor gain data. The adjusted R2 for the first-
order model is 

* - · - (£ )<>-*■> 
1(1-0.9798) S-0' 

= 0.9762 

which is very close to the ordinary R2 for the first-order model. When R2 and 
Rld- differ dramatically, there is a good chance that nonsignificant terms have 
been included in the model. Now, when the quadratic terms are added to the 
first-order model, we can show that R2^ = 0.9695; that is, the adjusted R2 

actually decreases when the quadratic terms are included in the model. This is a 
strong indication that the quadratic terms are unnecessary. 

Tests on Individual Regression Coefficients and Groups of Coefficients 
We are frequently interested in testing hypotheses on the individual regression 
coefficients. Such tests would be useful in determining the value of each of the 
regressor variables in the regression model. For example, the model might be 
more effective with the inclusion of additional variables, or perhaps with the 
deletion of one or more of the variables already in the model. 

Adding a variable to the regression model cannot cause the sum of squares 
for regression to decrease and the error sum of squares cannot increase. We 
must decide whether any increase in the regression sum of squares is sufficient 
to warrant using the additional variable in the model. Furthermore, adding an 
unimportant variable to the model can actually increase the mean square error, 
thereby decreasing the usefulness of the model. 

The hypotheses for testing the significance of any individual regression 
coefficient, say, ßj, are 
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Ho :ßj = 0 

Ηχ :ßj^0 

If H0 : ßj: = 0 is not rejected, then this indicates that Xj can be deleted from the 
model. The test statistic for this hypothesis is 

where C¿, is the diagonal element of (X'X)-1 corresponding to bj. The null 
hypothesis H0 :ßj = 0 is rejected if |f0| > ¿a/2> n-k-h Note that this is really a 
partial or marginal test, because the regression coefficient bj depends on all the 
other regressor variables x¡ (i φ j) that are in the model. 

The denominator of Equation (2.22), ^a2Cjj, is often called the estimated 
standard error of the regression coefficient bj. That is, 

se(bj) = ^Cji (2.23) 

Therefore an equivalent way to write the test statistic in Equation (2.22) is 

se(bj) 

Example 2.4. The Transistor Gain Data. To illustrate the use of the i-test, 
consider the regression model for the transistor gain data. We construct the t-
statistic for the hypotheses H0 : β\ = 0 and H0 : β2 = 0. The main diagonal 
elements of (X'X)-1 corresponding to β\ and β2 are C\\ = 0.000184 and 
C22 = 1.102439, respectively, so the two /-statistics are computed as follows. 

For Η0:βχ= 0, 

'0"7Ρο7 
10 781? 10.781?. 

22.73 
y/( 1220.1) (0.000184) 0.4743 

For Η0:β2 = 0, 

b2 -152.5 
to 

JWOn v/(1220.1)(l. 102439) 

± ^ = - 4 . 1 5 
36.68 
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The absolute values of these /-statistics would be compared to ¿0.025, 11 = 2.201 
(assuming that we select a = 0.05). Both /-statistics are larger than this criterion. 
Consequently, we would conclude that ß\ φ 0, which implies that x\ contributes 
significantly to the model given that x2 is included, and that β2 φ 0, which implies 
that x2 contributes significantly to the model given that x\ is included. D 

We may also directly examine the contribution to the regression sum of 
squares for a particular variable, say, χβ given that other variables x¿ (i^j) are 
included in the model. The procedure used to do this is called the extra sum of 
squares method. This procedure can also be used to investigate the contribution of 
a subset of the regressor variables to the model. Consider the regression model 
with k regressor variables: 

y = Xß + £ 

where y is (n x 1), X is (n x /?), ß is (p x 1), ε is (n x 1), and/? = k + I. We would 
like to determine if the subset of regressor variables xu *2, ..., xr (r < k) 
contributes significantly to the regression model. Let the vector of regression 
coefficients be partitioned as follows: 

ß = 

where βι is (r x 1) and ß2 is [{p - r) x 1]. We wish to test the hypotheses 

Ιϊο : ßi = 0 
Huh^O (2.25) 

The model may be written as 

y = Xß + ε = Xiß! + X2ß2 + ε (2.26) 

where Xi represents the columns of X associated with ßi, and X2 represents the 
columns of X associated with ß2. 

For the full model (including both ß b and ß2), we know that b = (X'X)-1 X'y. 
Also, the regression sum of squares for all variables including the intercept is 

SSR{$) = b'X'y (p degrees of freedom) 

and the mean square residual for the full model is 

n — p 
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55R(ß) refers to the uncorrected regression sum of squares due to ß. To find 
the contribution of the terms in βϊ to the regression, fit the model assuming 
the null hypothesis H0 : β} = 0 to be true. The reduced model is found from 
Equation (2.26) with ß, = 0: 

y = X2ß2 + E (2.27) 

The least squares estimator of ß2 is b2 = (X'2X2)_1 X'2y, and 

*S5R(ß2) = b;2X2y (p — r degrees of freedom) (2.28) 

The regression sum of squares due to ßi given that ß2 is already in the model is 

5SR(ßi Ifc) = SSK(fi - SSR(P2) (2.29) 

This sum of squares has r degrees of freedom. It is the extra sum of squares due to 
ßi. Note that 5,5,

R(ßi|ß2) is the increase in the regression sum of squares due to 
including the variables x\, x2,..., xr in the model. Now SSR(ßi |ß2) is independent 
of MSres, and the null hypothesis ßi = 0 may be tested by the statistic 

*_*tíjp: (2.30) 

If F0 > Fa, r, n_p, we reject H0, concluding that at least one of the parameters in ßi 
is not zero, and consequently at least one of the variables xu x2i ..., xr in Xi 
contributes significantly to the regression model. Some authors call the test in 
Equation (2.30) a partial F-test. 

The partial F-test is very useful. We can use it to measure the contribution of Xj 
as if it were the last variable added to the model by computing 

SSK<ßj\ßo,ßi,...,ßj-ußj+u...,ßk) 

This is the increase in the regression sum of squares due to adding Xj to a model 
that already includes xu ..., Xj-u */+/, ···> **■ Note that the partial F-test on a 
single variable Xj is equivalent to the r-test in Equation (2.22). However, the 
partial F-test is a more general procedure in that we can measure the effect of sets 
of variables. This procedure is used often in response surface work. For example, 
suppose that we are considering fitting the second-order model 

y = ßo + 01*1 + 02*2 + 011*1 + 022*2 + 012*1*2 + ß 

and we wish to test the contribution of the second-order terms over and 
above the contribution from the first-order model. Therefore the hypotheses 
of interest are 
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Ho:ßll=ß72=ßl2=0 

Η\:βηφΟ and/or ß22 φ 0 and/or ßl2 φ 0 

In the notation of this section, βΊ = [βπ, β22, βΐ2] and β2 = [βο, βι, ß2l· a nd 
the columns of X¡ and X2 are the columns of the original X matrix 
associated with the second order and linear terms in the model, respectively. 

Example 2.5. The Extra Sum of Square Procedure. Consider the transistor 
gain data in Example 2.1. We have previously fit a first-order model to these 
data, but now suppose that we want to consider using a higher-order model, the 
full quadratic: 

y = ßo + 01*1 + 02 + 012*1*2 + j8n*i + 022*2 + £ 

We can use the extra sum of squares method to investigate the contribution of 
the second-order terms to this model. We need to calculate 

SSR(ßl2,ßluß22\ß0,ßl,ß2) 

= SSR{ß0,ßuß2,ßl2,ßluß22)-SSR(ß0,ßuß2) 

= SSR(ßuß2,ßl2J{Uß22\ß0)-SSR(ßuß2\ß0) 

The regression sum of squares SSR(ßuß2\ß0) is calculated in Example 2.3, where 
we were testing for significance of regression as SSR(ß\,ß2\ß0) = 651,966.1. If we 
fit the complete second-order model to these data, the regression sum of squares 
for this model is SSR(ßi,ß2ßi2,ßu,ß22\ß0) = 652,907.4. The error mean square 
for this full model is MSres = 1560. Therefore the extra sum of squares for the 
quadratic terms is 

SSR(ßl2,ßluß22\ßußlJo) 

= SSK(ßuß2,ßl2,ßn,ß22\ß0)-SSK(ßuß2\ß0) 

= 652,907.4-651,966.1 
= 941.3 

with r = 3 degrees of freedom. To test the hypotheses 

#o :0i2 = 0n =022 = 0 
H\ : At least one β φ 0 

we use the F-statistic in Equation (2.30): 
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SSR(ßl2,ßu,ß22\ßußuß0) 
F = 

MSrt 

941.3 
1560 

= 0.60 

This F-statistic has three numerator and eight denominator degrees of freedom. 
Because F0.os, 3, 8 = 4.07, there is insufficient evidence to reject the null hypoth-
esis, so we conclude that the first-order model is adequate and we do not need the 
higher-order terms. D 

This extra sum of squares procedure can also be applied to testing the 
contribution of a single variable to the regression model. For example, suppose 
that we wish to investigate the contribution of the variable x2 = dose to the 
original first-order model. That is, the hypotheses we want to test are 

H0 : ß2 = 0 
Hi : ßi Φ 0 

This requires the extra sum of squares due to β2, or 

SSRG82|/*I,Ä>) =SSR(ß0,ßuß2) - SSR(fi0,fit) 

=SSR(ßuß2\ß0)-SSR(ßi\ß0) 

Now from Example 2.3, where we tested for significance of regression, we have 
(from Table 2.5) 

SSR(ßuß2\ß0) = 651,966.1 

This sum of squares has 2 degrees of freedom. The reduced model is 

y = ßo + ß\*\ +ε 

The least squares fit for this model is 

y = -1181.1 + 10.7864*, 

and the regression sum of squares for this model (with 1 degree of freedom) is 

SSR(/?,|A,) = 630,967.9 

Therefore 
SSK(ß2\ß0,ß\) = 651,966.1 - 630,967.9 

= 20,998.2 
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with 2 -1 = 1 degree of freedom. This is the increase in the regression sum 
of squares that results from adding x2 to a model already containing x\. To test 
Ho : ß2

 = 0, from the test statistic in Equation (2.30) we obtain 

SSK(ß2\ß0,ßj)/l 20,998.2/1 
Fo= MS^S

 = 1220.1 = 1 7 · 2 1 

Note that MSres from the full model (Table 2.5) is used in the denominator of F0. 
Now, because F00s, i, 11 = 4.84, we would reject H0: ß2 = 0 and conclude that x2 

(dose) contributes significantly to the model. 
Because this partial F-test involves only a single regressor, it is equivalent to 

the /-test introduced earlier, because the square of a t random variable with υ 
degrees of freedom is an F random variable with 1 and υ degrees of freedom. To 
see this, recall that the ί-statistic for H0 : β2 = 0 resulted in t0 = -4.15 and that 
/2 = (-4.15)2 = 17.22 ~ F 0 . 

2.2.4 Confidence Intervals in Multiple Regression 

It is often necessary to construct confidence interval estimates for the regression 
coefficients {ßj} and for other quantities of interest from the regression model. 
The development of a procedure for obtaining these confidence intervals 
requires that we assume the errors {ε,·} to be normally and independently 
distributed with mean zero and variance σ2, the same assumption made in the 
section on hypothesis testing (Section 2.2.3). 

Confidence Intervals on the Individual Regression Coefficients 
Because the least squares estimator b is a linear combination of the observa-
tions, it follows that b is normally distributed with mean vector β and 
covariance matrix σ2(Χ'Χ)-1. Then each of the statistics 

^ A , i = 0,l,··.,* (2.31) 
Vff2cJi 

is distributed as t with n-p degrees of freedom, where CJJ is theyyth element of 
the (X'X)-1 matrix, and σ2 is the estimate of the error variance, obtained from 
Equation (2.13). Therefore a 100(l-a)% confidence interval for the regression 
coefficient ßßj = 0, 1, ..., k, is 

V) — la/2,n-p < ßj < bj + t*l2,n-p \¡^C~jj (2.32) 

Note that this confidence interval could also be written as 

bj - ta/2^pse{bj) < ßj < bj + ta/2^pse(bj) 
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Example 2.6. We construct a 95% confidence interval for the parameter ß\ 
in Example 2.1. Now b\ = 10.7812, and because σ2 = 1220.1 and se(b\) = 
0.4743, we find that 

b\ - tomsMse(bi) < β\ < b\ + ío.025,n¿e(¿i) 
10,7812-2.201(0.4743) < βχ < 10.7813 + 2.201(0.4743) 

10.7812- 1.0439 < βχ < 10.7812+1.0439 

and the 95% confidence interval on βχ is 

9.7373 <βχ < 11.8251 D 

A Joint Confidence Region on the Regression Coefficients β 
The confidence intervals in the previous section should be thought of as one-at-
a-time intervals; that is, the confidence coefficient 1-a applies only to one such 
interval. Some problems require that several confidence intervals be con-
structed from the same data. In such cases, the analyst is usually interested 
in specifying a confidence coefficient that applies to the entire set of confidence 
intervals. Such intervals are called simultaneous confidence intervals. 

It is relatively easy to specify a joint confidence region for the parameters ß in 
a multiple regression model. We may show that 

(b-pyx'x(b-ß) 
PAÍSES 

has an F distribution with p numerator and n-p denominator degrees of 
freedom, and this implies that 

f ( b - ß ) ' X ' X ( b - ß ) ^ 
φ,η-ρ \ = 1 - a 

Consequently, a 100(l-a)% joint confidence region for all the parameters in β is 

( b - ß ) ' X ' X ( b - ß ) 
pMSn 

■<F*,p,n-p (2.33) 

This inequality describes an elliptically shaped region. Montgomery, Peck, and 
Vining (2006) and Myers (1990) demonstrate the construction of this region for 
p = 2. When there are only two parameters, finding this region is relatively 
simple; however, when more than two parameters are involved, the construction 
problem is considerably harder. 

There are other methods for finding joint simultaneous intervals on regres-
sion coefficients. Montgomery, Peck and Vining (2006) and Myers (1990) 
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discuss and illustrate some of these methods. They also present methods for 
finding several other types of interval estimates. 

Confidence Interval on the Mean Response 
We may also obtain a confidence interval on the mean response at a particular 
point, say, x0b *02> ···-. *ok- Define the vector 

1 

xo = I x°2 

*0k 

The mean response at this point is 

Vy\xo =ßo + 01*01 + 02*02 + ■ · · + ßkX0k = *oß 

The estimated mean response at this point is 

j>(xo)=x'0b (2.34) 

This estimator is unbiased, because i?[p(xo)] = £(x¿b) = χ(,β = μ^χ , and the 
variance of j(xo) is 

Var[y(x0)] = σ2χ'0(Χ'Χ)-ιχ0 (2.35) 

Therefore a 100(l-a)% confidence interval on the mean response at the point 
■*01> *02> · · · ? x0k 1 S 

;P(xo) - ί ί / 2 ^ ^ ( Χ ' Χ ) !χο 

< ^ |Xo < J)(X0) + ία/2,«^^2χΟ(Χ,Χ)~1χ0 (2·36) 

Example 2.7. Suppose that we wish to find a 95% confidence interval on the 
mean response for the transistor gain problem for the point x0i = 225 min and 
•*02 = 4.36 x 1014 ions, so that 

xo 

" 1 " 
225 
4.36 



32 LINEAR REGRESSION MODELS 

The estimate of the mean response at this point is computed from Equation 
(2.34) as 

y(x0)=x'0b = [1,225,4.36] 
-520.1 
10.7812 

-152.15 
= 1242.3 

Now from Equation (2.35), we find Var[j>(xo)] as 

Var[y(x0)]=<T2x¿(X'X)-|xo 

σ2[1,225,4.36] 

= σ2 (0.072027) 

30.247596 -0.041712 -4.789945 

-0.041712 0.000184 0.000038 

-4.789945 0.000038 1.102439 

1 

225 

4.36 

Using σ2 = MSres — 1220.1 and Equation (2.36), we find the confidence 
interval as 

J>(X0) - ί«/2,«-/>\Α2χΟ(Χ'Χ) '"O 

< ßy\X0 < KM) + Ιχ/2,„-ρ\/σ
2χ'0(Χ'Χ) 'χο 

1242.3 - 2.201 γ/1220.1(0.072027) 

or 

< μ ^ < 1242.3 + 2.201 y/1220.1(0.072027) 

1242.3 - 20.6 < μ ^ < 1242.3 + 20.6 

1221.7 <μήχο < 1262.9 D 

2.2.5 Prediction of New Response Observations 

A regression model can be used to predict future observations on the response y 
corresponding to particular values of the regressor variables, say, xoi, Xo2> ···> 
xoic- If x'o = [l>*oi,*o2>·· · ,*ok\, then a point estimate for the future observation 
y0 at the point x0i» *02> ·.., Xok is computed from Equation (2.34): 

j>(x0) = x'0b 
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x2 

1 
Φ 

Iff 
*c I 

i *02h 

Original range J 
Γ for *t 1 

Figure 2.2 An example of extrapolation in multiple regression. 

A 100(l-a)% prediction interval for this future observation is 

j>(x0) - ^ ^ ^ ( l + x ^ X ' X ) " 1 ^ ) 

<7o<j(xo) + ta/2»-pJd*(l+i$(X'Xrlxo (2-37) 

In predicting new observations and in estimating the mean response at a 
given point x0\, Xoi, ···> *ok, one must be careful about extrapolating beyond 
the region containing the original observations. It is very possible that a model 
that fits well in the region of the original data will no longer fit well outside that 
region. In multiple regression it is often easy to inadvertently extrapolate, since 
the levels of the variables (xu, xi2, ..., χ&), / = 1, 2, ..., /i, jointly define the 
region containing the data. As an example, consider Figure 2.2, which 
illustrates the region containing the observations for a two-variable regression 
model. Note that the point (x0b ^02) lies within the ranges of both regressor 
variables xu and x2, but it is outside the region of the original observations. 
Thus either predicting the value of a new observation or estimating the mean 
response at this point is an extrapolation of the original regression model. 

Example 2.8. Suppose that we wish to find a 95% prediction interval on the 
next observation on transistor gain at the point x0i = 225 min and 
XQ2 = 4.36 x 1014 ions. The predicted value of gain at this point is 
j>(x0) = xób = 1242.3. From Example 2.7 we know that 

χ(>(Χ'Χ)-1χο = 0.072027 
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Therefore, using Equation (2.37), we can find the 95% prediction interval on y0 

as follows: 

Jp(xo) - ' « A ^ ^ ( l - f x ^ X ' X j - ' x o ) < y0 

< JK*>) + re/2f „ - ^ ( Ι + Χ ^ Χ ' Χ Γ ' Χ Ο ) 

1242.3 - 2.201 ̂ 1220.1(1+ 0.072027) < y0 

< 1242.3 + 2.201^1220.1(1+0.072027) 

1242.3 - 79.6 < y0 < 1242.3 + 79.6 

or 

1162.7 <y0< 1321.9 

If we compare the width of the prediction interval at this point with the width 
of the confidence interval on the mean gain at the same point from Example 
2.7, we observe that the prediction interval is much wider. This reflects the fact 
that it is much more difficult to predict an individual future value of a random 
variable than it is to estimate the mean of the probability distribution from 
which that future observation will be drawn. D 

2.2.6 Linear Regression Computer Output 

There are many statistics software packages with excellent linear regression 
modeling capability. The output for the linear regression model for the transistor 
gain data from JMP is shown in Table 2.6. Notice that some of the computer 
results are slightly different from those reported earlier. This is the result of either 
rounding intermediate calculations or truncation of values reported by JMP. 

Most of the quantities in the output have been explained previously. The 
PRESS statistic is discussed in Section 2.4.3. Notice that JMP computes the 
sequential sums of squares SSR(ß\ | ß0) and SSR(ß2 I ß\, ßo) using the extra sum 
of squares method from Section 2.2.3. There is also a plot of actual gain versus 
predicted gain, a plot of residuals versus the predicted gain (this is discussed in 
Section 2.4.1), and a prediction profile, an interactive tool for predicting the 
response at different levels of the x's. 

2.3 PARAMETER ESTIMATION USING MAXIMUM LIKELIHOOD 

2.3.1 Parameter Estimation Under the Normal-Theory Assumptions 

The method of least squares can be used to estimate the parameters in a linear 
regression model regardless of the form of the distribution of the response 
variable ;;. Appendix A.3 shows that least squares produces best linear unbiased 
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Table 2.6 JMP Multiple Regression Output for the Transistor Gain Data 

Response y Gain 
Whole Model 
Actual by Predicted Plot 

800 900 1100 1300 1500 1700 

y Gain predicted P<.0001 
RSq=0.98 RMSE=34.93 

Summary of F i t 
RSquare 0 .97983 
RSquareAdj ' 0 .976162 
Root Mean Squa re E r r o r 34 .92995 
Mean of Response 1249 .643 
O b s e r v a t i o n s (or SumWgts) 14 

A n a l y s i s of Var iance 
Source 
Model 
Error 
C. Total 

DF 
2 
11 
13 

Sum of Squares Mean Square 
651966.10 
13421.12 
665387.21 

Parameter Estimates 
Term 
Intercept 
xl Drive-in 
x2 Dose 

time 

Estimate Std Error 
-520.0767 192.1071 

10.781158 0.47432 
-152.1489 36.67544 

325983 
1220 

t Ratio 
-2.71 
22.73 
-4.15 

F Ratio 
267.1770 
Prob > F 
<.0001 

Prob>|t| 
0.0204 
<.0001 
0.0016 

(Continued) 

estimators (BLUEs) of the model parameters. However, other inference 
procedures such as hypothesis tests and confidence intervals assume that the 
response is normally distributed. If the form of the response distribution is 
known, another method of parameter estimation, the method of maximum 
likelihood, can be used. 
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Table 2.6 Continued 

Residual by Predicted Plot 

an 
ou 
6 0 -

7S 4 0 -

"S3 20 -
2> 
c n 
CO U 

>< -20 -

- 4 0 -

—ou 

■ 

■ ■ 

-
■ * 

• 

I I 
800 900 1100 1300 1500 17 

Press 
P r e s s 
22225.010037 

y Gain predicted 

P r e s s RMSE 
39 .8434526 

Prediction Profiler 

1600 

eg CM 1400 -
•I S -
(¡} O) lO 

»s¡ § 
^ -H 

1200 

1000 -\ 

800 
1 I I Γ Ί I I I I I I I Γ 

190 200 210 220 230 240 250 260 3.9 4.1 4.3 
l I I Γ 

4.5 4.7 

225.357 

x1 Drive-
in time 

Sequential (Type 1) Tests 
Source Nparm DF 
xl Drive-in time 1 1 
x2 Dose 1 1 

SeqSS 
630967.86 
20998.23 

4.33714 
x2 Dose 

F R a t i o 
517 .1438 

17 .2102 

Prob > F 
< . 0 0 0 1 
0 .0016 

Consider the linear regression model 

y = Xß + e 

Suppose that the errors in this model are normally and independently 
distributed with mean zero and constant variance σ2 (NID(0, σ2)). Then the 
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observations Y are normally and independently distributed with mean 
Xß and variance σΐ. The likelihood function is found from the joint probability 
distribution of the observations. If we consider this joint distribution with 
the observations given and the parameters as unknown we have the 
likelihood function. For the linear regression model the likelihood function is 

^(y|ß,<72) = 7 ^ ^ ( - 1 / 2 f f 2 ) ( y - X P ) ' ( y - X P ) (2-38) 

The maximum likelihood estimators are the values of the parameters β and σ2 

that maximize the likelihood function. 
Maximizing the likelihood function i f is equivalent to maximizing the log-

likelihood, ln(if). The log-likelihood is 

ln[¿?(y|ß,<72)]= - \ In (2π) - \ In (σ2) - ¿ (y - Xß)'(y - Xß) (2-39) 

The derivative of the log-likelihood is called the score function. Taking the 
partial derivatives of the log-likelihood with respect to the parameters ß and 
equating to zero yields 

^ p = - ¿ (-2b'X'y + y'X'Xb) = 0 

or 

7¿ X'(y - Xb) = 0 (2.40) 

The p x p system of Equations (2.40) are called the maximum likelihood score 
equations. The solution to the score equations is the maximum likelihood 
estimator (MLE) 

b^X'XJ^X'y (2.41) 

The maximum likelihood estimator of σ2 is the solution to 

^ - - ¿ - ¿ < > - » κ > - » > -
which is 

< x 2 = - ( y - X b ) ' ( y - X b ) (2.42) 

Notice that the MLE b for the normal-theory linear regression model is identical 
to the ordinary least squares estimator. It is clear from examining the likelihood 
function in Equation (2.38) or the log-likelihood, that maximizing the likelihood 
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function involves minimizing the quantity in the exponent, which is the least 
squares function S(ß). Furthermore, the maximum likelihood score equations are 
identical to the least squares normal equations, since X'(y-Xb) = X'y-X'Xb = 0 
or X Xb = X'y. 

2.3.2 Properties of the Maximum Likelihood Estimators 

In general, maximum likelihood estimators have better statistical properties 
than estimators obtained by least squares. This occurs at the expense of 
additional assumptions, however, as the MLE requires that the observations 
be normally distributed while the least squares procedure does not. Maximum 
likelihood estimators are either unbiased or asymptotically unbiased, that is, 
unbiased as n becomes large. For example, the MLE b is an unbiased estimator, 
and since 

G = σ 
n 

the MLE of σ is unbiased as n becomes large. In the linear regression model, the 
MLEs have minimum variance when compared to all other unbiased 
estimators. 

The second derivative of the log-likelihood function is called the Hessian, 
and for the linear regression model the Hessian is 

d /flln(JSf)\ _d2\n(&)_ XX 
dß V öß ) ~ dtf " ~^~ 

The negative of the Hessian, or Χ'Χ/σ2, is sometimes called the information 
matrix. Another way to find the information matrix is as the variance of the 
score. That is, the variance of the left-hand side of (2.40) is 

Var ¿X'(y-Xb) = \x!X 

The inverse of the negative of the Hessian is the covariance matrix of the 
MLEs. In the case of the linear regression model, this is just the familiar 

Var(b) = σ^Χ'Χ)"1 

Strictly speaking, these are large-sample properties of the MLE, but they 
happen to hold exactly in the case of the linear regression model. 

The MLE is also a consistent estimator (consistency is another large-sample 
property indicating that the estimator differs from the true value of the parameter 
by a very small amount as n becomes large). Furthermore, the MLEs form a set 
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of sufficient statistics, which implies that the estimators contain all of the 
information about the parameters contained in the original sample of size n. 

2.4 MODEL ADEQUACY CHECKING 

It is always necessary to (1) examine a fitted regression model to ensure that it 
provides an adequate approximation to the true system and (2) verify that none 
of the least squares regression assumptions are violated. The model for 
prediction or estimation will give poor or misleading results unless the model 
is an adequate fit. In this section we present several techniques for checking 
model adequacy. 

2.4.1 Residual Analysis 

The residuals from the least squares fit, defined by e¡ = y¿ — j>„ i = 1, 2, ..., η, 
play an important role in judging model adequacy. The residuals from Example 
2.1 are shown in column 3 of Table 2.3. 

A check of the normality assumption may be made by constructing a 
normal probability plot of the residuals, as in Figure 2.3. If the residuals plot 
approximately along a straight line, then the normality assumption is 
satisfied. Figure 2.3 reveals no apparent problem with normality. The straight 
line in this normal probability plot was determined by eye, concentrating on 
the central portion of the data. When this plot indicates problems with the 
normality assumption, we often transform the response variable as a remedial 
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Figure 2.3 Normal probability plot of residuals, Example 2.1. 
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measure. For more details, see Montgomery, Peck, and Vining (2006) and 
Myers (1990). 

Figure 2.4 presents a plot of residuals e¡ versus the predicted response y¡. The 
general impression is that the residuals scatter randomly on the display, 
suggesting that the variance of the original observations is constant for all 
values of y. If the variance of the response depends on the mean level of y, then 
this plot will often exhibit a funnel-shaped pattern. This is also suggestive of the 
need for transformation of the response variable y. 

It is also useful to plot the residuals in time or run order and versus each of the 
individual regressors. Nonrandom patterns on these plots would indicate model 
inadequacy. In some of these cases, transformations may stabilize the situation. 
See Montgomery, Peck, and Vining (2006) and Myers (1990) for more details. 

Example 2.9. The Worsted Yarn Data. The data in Table 2.7 (taken from 
Box and Draper, 1987) show the number of cycles to failure of worsted yarn (y) 
and three factors defined as follows: 

Length of test specimen (mm): x\ 
length - 300 

50 
Amplitude of load cycle (mm): X2 = amplitude - 9 

_ A( . l o a d - 4 5 
Load(grams): x-s = 

These factors form a 33 factorial experiment. This experiment will support a 
complete second-order polynomial. The least squares fit is 

63.20 h 

45.24 

27.27 

9.31 h 

L · 
• · I 

Γ # I 

| · H 

L · · J 

3 

-8.66 

-26.62 

-44.58 
882 1005 1128 1251 1374 1497 1621 

Predicted hFE 

Figure 2.4 Plot of residuals versus predicted response j)/, Example 2.1. 
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Table 2.7 The Worsted Yarn Data 
Run Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Length, x\ 

-1 
0 

-1 
0 

-1 
0 

-1 
0 

-1 
0 

-1 
0 

-1 
0 

-1 
0 

-1 
0 
1 

Amplitude, x2 

-1 
-1 
-1 
0 
0 
0 

-1 
— 1 
— 1 
0 
0 
0 

— 1 
— 1 
-1 
0 
0 
0 
1 
1 
1 

Load, X3 

— 1 
— 1 
— 1 
— 1 
— 1 
— 1 
— 1 
-1 
— 1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Cycles to Failure, y 

674 
1414 
3636 
338 
1022 
1368 
170 
442 
1140 
370 
1198 
3184 
266 
620 
1070 
118 
332 
884 
292 
634 
2000 
210 
438 
566 
90 
220 
360 

y = 550.7 + 660JCI-535.9X 2 - 310.8x3 + 238.7x? + 275.7^ 

- 48 .3^ - 456.5xiJC2 - 235.7xix3 + 143.0JC2.*3 

The R2 value is 0.975. An analysis of variance is given in Table 2.8. The fit 
appears to be reasonable and both the first- and second-order terms appear to 
be necessary. 

Figure 2.5 is a plot of residuals versus the predicted cycles to failure y for this 
model. There is an indication of an outward-opening funnel in this plot, 
implying possible inequality of variance. 

When a natural log transformation is used for y, we obtain the following model: 

In y = 6.33 + 0.82*i - 0.63x2 - 0.38x3 

or v = „6.33+0.82*1-0.63x2-0.38*3 
y *-
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Table 2.8 Analysis of Variance for the Quadratic Model for the Worsted Yarn Data 

Source of Variability 

First-order terms 
Added second-order terms 
Residual 
Total 

Sum of Squares 
( x 1(Γ3) 

14,748.5 
4,224.3 
1,256.6 

20,229.4 

Degrees of 
Freedom 

3 
6 

17 
26 

Mean Square 
( x 1(Γ3) 

4,916.2 
704.1 
73.9 
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Λ 

y 
Figure 2.5 Plot of residuals versus predicted cycles of failure for the worsted yarn data, quadratic 
mode. 

This model has R2 = 0.963 and has only three model terms (apart from the 
intercept). None of the second-order terms are significant. Here, as in most 
modeling exercises, simplicity is of vital importance. The elimination of the 
quadratic terms and interaction terms with the change in response metric not 
only allows a better fit than the second-order model with the natural metric, but the 
impact of the design variables x\, x2, and x3 on the response is clear. 

Figure 2.6 is a plot of residuals versus the predicted response for the log model. 
There is still some indication of inequality of variance, but the log model, overall, is 
an improvement on the original quadratic fit. D 
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Figure 2.6 Plot of residuals versus predicted response for the worsted yarn data, log model. 

2.4.2 Transformation of the Response Variable Using the Box-Cox Method 

In the previous section we discussed the problem of nonconstant variance in the 
response variable y in linear regression and noted that this is a departure from 
the standard least squares assumptions. This inequality of variance problem 
occurs relatively often in practice, frequently in conjunction with a nonnormal 
response variable. Examples would include a count of defects or particles, 
proportion data such as yield or fraction defective, or a response variable that 
follows some skewed distribution (one tail of the response distribution is longer 
than the other). We introduced and illustrated transformation of the response 
variable as an appropriate method for stabilizing the variance of the response. 
In our example we selected a log transformation empirically, by noting that it 
greatly improved the appearance of the residual plots. 

Generally, transformations are used for three purposes: stabilizing response 
variance, making the distribution of the response variable closer to the normal 
distribution, and improving the fit of the model to the data. This last objective 
could include model simplification, say, by eliminating interaction or higher-
order polynomial terms. Sometimes a transformation will be reasonably 
effective in simultaneously accomplishing more than one of these objectives. 

We often find that the power family of transformations y* = yx is very useful, 
where λ is the parameter of the transformation to be determined (e.g., λ = \ 
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means use the square root of the original response). Box and Cox (1964) have 
shown how the transformation parameter λ may be estimated simultaneously 
with the other model parameters (overall mean and treatment effects). The 
theory underlying their method uses the method of maximum likelihood. The 
actual computational procedure consists of performing, for various values of A, 
a standard analysis of variance on 

I V - i 
yW λφθ 

λγλ~ι ' " ' ~ (2.43) 
ylny, λ = 0 

where y = In-1 [(l/n)Ilny] is the geometric mean of the observations. The 
maximum likelihood estimate of λ is the value for which the error sum of 
squares, say, SSres(X), is a minimum. This value of λ is usually found by plotting 
a graph of SSTes(X) versus λ and then reading the value of λ that minimizes in 
each case SSres(X) from the graph. Usually between 10 and 20 values of A are 
sufficient for estimation of the optimum value. A second iteration using a finer 
mesh of values could be performed if a more accurate estimate of λ is necessary. 

Notice that we cannot select the value of λ by directly comparing residual sums 
of squares from analyses of variance on yk because for each value of λ the residual 
sum of squares is measured on a different scale. Furthermore, a problem arises in 
y when λ = 0; namely, as λ approaches zero, yk approaches unity. That is, when 
λ = 0, all the response values are a constant. The component (yk-\)ß of Equation 
(2.43) alleviates this problem because as λ tends to zero, (yA-l)/A goes to a limit of 
In y. The divisor component yk~l in Equation (2.43) rescales the responses so that 
the residual sums of squares are directly comparable. 

In applying the Box-Cox method, we recommend using simple choices for λ 
because the practical difference between λ = 0.5 and λ = 0.58 is likely to be 
small, but the square root transformation (A = 0.5) is much easier to interpret. 
Obviously, values of A close to unity would suggest that no transformation is 
necessary. 

Once a value of A is selected by the Box-Cox method, the experimenter can 
analyze the data using yA as the response, unless of course A = 0, in which he/ 
she can use In y. It is perfectly acceptable to use y{X) as the actual response, 
although the model parameter estimates will have a scale difference and origin 
shift in comparison to the results obtained using yx (or In y). 

An approximate 100(l-a)% confidence interval for A can be found by 
computing 

SS* = SSmw(l+'-^\ (2.44) 

where v is the number of degrees of freedom, and plotting a line parallel to the λ 
axis at height SS* on the graph oiSSTes(X) versus λ. Then by locating the points 
on the λ axis where SS* cuts the curve SSres(Á), we can read confidence limits on 
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Box-Cox plot for power transforms 
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Figure 2.7 The Box-Cox procedure applied to the worsted yarn data in Table 2.7. 

λ directly from the graph. If this confidence interval includes the value λ = 1, 
this implies (as noted above) that the data do not support the need for 
transformation. 

Several software packages have implemented the Box-Cox procedure. 
Figure 2.7 shows the output graphics from Design-Expert when the Box-Cox 
procedure is applied to the worsted yarn data in Table 2.7. The optimum value 
of λ is -0.24, and the 95% confidence interval for A contains zero, so the use of a 
log transformation is indicated. 

2.4.3 Scaling Residuals 

Standardized and Studentized Residuals 
Many analysts prefer to work with scaled residuals, in contrast to the ordinary 
least squares residuals. These scaled residuals often convey more information 
than do the ordinary residuals. 

One type of scaled residual is the standardized residual: 

<4 = ? , i = l ,2,.. . , f i (2.45) 
σ 

where we generally use σ = y/MSres in the computation. These standardized 
residuals have mean zero and approximately unit variance; consequently, they 
are useful in looking for outliers. Most of the standardized residuals should lie 

l l l π i i r 

J I I M i l I L 
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in the interval -3 < dx < 3, and any observation with a standardized residual 
outside this interval is potentially unusual with respect to its observed response. 
These outliers should be examined carefully, because they may represent 
something as simple as a data recording error or something of more serious 
concern, such as a region of the regressor variable space where the fitted model 
is a poor approximation to the true response surface. 

The standardizing process in Equation (2.45) scales the residuals by dividing 
them by their average standard deviation. In some data sets, residuals may have 
standard deviations that differ greatly. We now present a scaling that takes this 
into account. 

The vector of fitted values y, corresponding to the observed values y is 

y = Xb 

= X(X'X)_1X'y 

= Hy (2.46) 

The n x n matrix H = X(X'X)_1X' is usually called the hat matrix because it 
maps the vector of observed values into a vector of fitted values. The hat matrix 
and its properties play a central role in regression analysis. 

The residuals from the fitted model may conveniently be written in matrix 
notation as 

e = y - y (2.47) 

There are several other ways to express the vector of residuals e that will prove 
useful, including 

e = y - Xb (2.48) 

= y - H y 
= (I - H)y (2.49) 

The hat matrix has several useful properties. It is symmetric (FT = H) and 
idempotent (HH = H). Similarly, the matrix I-H is symmetric and idempotent. 

The covariance matrix of the residuals is 

Var(e) = Var[(I - H)y] 
= ( I - H ) V a r ( y ) ( I - H ) ' 
= σ 2 ( Ι - Η ) (2.50) 

because Var(y) = σ2Ι and I-H is symmetric and idempotent. The matrix I-H is 
generally not diagonal, so the residuals have different variances and they are 
correlated. 
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The variance of the /th residual is 

Var(^)=(72(l-A / /) (2.51) 

where Al7 is the /th diagonal element of H. Because 0 < ha < 1, using the 
residual mean square MSTes to estimate the variance of the residuals actually 
overestimates Var(e,·). Furthermore, because A,·,· is a measure of the location of 
the /th point in x-space, the variance of e¡ depends on where the point x¡ lies. 
Generally, residuals near the center of the x-space have larger variance than do 
residuals at more remote locations. Violations of model assumptions are more 
likely at remote points, and these violations may be hard to detect from 
inspection of e¡, (or d¡) because their residuals will usually be smaller. 

We recommend taking this inequality of variance into account when scaling 
the residuals. We suggest plotting the studentized residuals: 

n= ,"[ , * = 1 , 2 , - , ι ι (2.52) 
νσ2(1 -ha) 

with σ2 = MSVes instead of e¿ (or d¡). The studentized residuals have constant 
variance Var(r,) = 1 regardless of the location of xh when the form of the 
model is correct. In many situations the variance of the residuals stabilizes, 
particularly for large data sets. In these cases there may be little difference 
between the standardized and studentized residuals. Thus standardized and 
studentized residuals often convey equivalent information. However, because 
any point with a large residual and a large A/z· is potentially highly influential 
on the least squares fit, examination of the studentized residuals is generally 
recommended. 

PRESS Residuals and the PRESS Statistic 
The prediction error sum of squares (PRESS) proposed by Allen (1971, 1974) 
provides a useful residual scaling. To calculate PRESS, select an observation— 
for example, yt. Fit the regression model to the remaining n-\ observations and 
use this equation to predict the withheld observation y¡. Denoting this predicted 
value j>(/), we may find the prediction error for point / as e^ = y¡ — j>(/). The 
prediction error is often called the /th PRESS residual. This procedure is 
repeated for each observation / = 1, 2,..., n, producing a set of n PRESS 
residuals e(1), <?(2),..., ein). 

The PRESS statistic is defined as the sum of squares of the n PRESS 
residuals: 

PRESS = ¿ 4 , = £ > - j>(/>]2 (2.53) 
/=1 i=\ 

Thus PRESS uses each possible subset of n-\ observations as an estimation 
data set, and every observation in turn is used to form a prediction data set. 
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It would initially seem that calculating PRESS requires fitting n different 
regressions. However, it is possible to calculate PRESS from the results of a 
single least squares fit to all n observations. It turns out that the ith PRESS 
residual is 

Hi) I-hu 
(2.54) 

Thus, because PRESS is just the sum of the squares of the PRESS residuals, a 
simple computing formula is 

PRESS = V - ¡ -T- (2·55) ■έω 
From Equation (2.54) it is easy to see that the PRESS residual is just the 
ordinary residual weighted according to the diagonal elements of the hat matrix 
hn. Data points for which hü are large will have large PRESS residuals. These 
observations will generally be high-influence points. Generally, a large differ-
ence between the ordinary residual and the PRESS residual will indicate a point 
where the model fits the data well, but a model built without that point predicts 
poorly. In the next section we discuss some other measures of influence. 

The variance of the /th PRESS residual is 

Var[ew] = Var 
\-hü 

1 [^(l-A*)] 
O-*«)2 

σ2 

1 - A,·/ 

so that the standardized PRESS residual is 

e{i) = g | / ( l - / r / i ) 

which if we use MSres to estimate σ2 is just the studentized residual discussed 
previously. 

Finally, we note that PRESS can be used to compute an approximate R2 for 
prediction, say, 
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^prediction ~ l ^ {2.56) 

This statistic gives some indication of the predictive capability of the regression 
model. 

For the transistor gain model we can compute the PRESS residuals using the 
ordinary residuals and the values of hü found in Table 2.3. The resulting value is 
PRESS = 22,225.0. This was also computed by JMP and reported in Table 2.6. 
Then 

2 PRESS 
^prediction L r>r< 

22,225.0 
"665,387.2 

= 0.9666 

Therefore we could expect this model to explain about 96.66% of the variability 
in predicting new observations, as compared to the approximately 97.98% of 
the variability in the original data explained by the least squares fit. The overall 
predictive capability of the model based on this criterion seems very 
satisfactory. 

R-Student 
The studentized residual r,· discussed above is often considered an outlier 
diagnostic. It is customary to use MSres as an estimate of σ2 in computing r,·. 
This is referred to as internal scaling of the residual because MSTes is an 
internally generated estimate of σ2 obtained from fitting the model to all n 
observations. Another approach would be to use an estimate of σ2 based on a 
data set with the /th observation removed. Denote the estimate of σ2 so 
obtained by Sh. We can show that 

,2 _(*-p)MSm-¿¡/(l-hu) 
n — p — 1 

S2
{i) = i" yj^y-c,,^ n „ , ( 2 5 7 ) 

The estimate of σ2 in Equation (2.57) is used instead of MSies to produce an 
externally studentized residual, usually called Λ-student, given by 

= 1,2,... ,« (2.58) 

In many situations t¿ will differ little from the studentized residual r,·. 
However, if the /th observation is influential, then Sh can differ significantly 
from MSTes, and thus the Λ-student will be more sensitive to this point. 
Furthermore, under the standard assumptions rz has tn-p-i distribution. Thus 
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Ä-student offers a more formal procedure for outlier detection via hypothesis 
testing. One could use a simultaneous inference procedure called the Bonferroni 
approach and compare all n values of \t¡\ to t^^nx-p-h to provide guidance 
regarding outliers. However, it is our view that a formal approach is usually not 
necessary and that only relatively crude cutoff values need be considered. In 
general, a diagnostic view as opposed to a strict statistical hypothesis-testing 
view is best. Furthermore, detection of outliers needs to be considered 
simultaneously with detection of influential observations. 

Example 2.10. The Transistor Gain Data. Table 2.3 presents the studen-
tized residuals r¡ and the Ä-student values t¡ defined in Equations (2.52) and 
(2.58) for the transistor gain data. None of these values are large enough to 
cause any concern regarding outliers. 

Figure 2.8 is a normal probability plot of the studentized residuals. It 
conveys exactly the same information as the normal probability plot of the 
ordinary residuals e¡ in Figure 2.3. This is because most of the htí values are 
relatively similar and there are no unusually large residuals. In some applica-
tions, however, the Aj7 can differ considerably, and in those cases plotting the 
studentized residuals is the best approach. D 

2.4.4 Influence Diagnostics 

We occasionally find that a small subset of the data exerts a disproportionate 
influence on the fitted regression model. That is, parameter estimates or 
predictions may depend more on the influential subset than on the majority 
of the data. We would like to locate these influential points and assess their 

99 

95 
& 90 
1 80 
| 70 

t5o 

9 30 
| 20 
Z 10 

5 

1 

-1.442-0.875-0.308 0.259 0.826 1.393 1.960 

Studentized residual 

Figure 2.8 Normal probability plot of the studentized residuals for the transistor gain data. 
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impact on the model. If these influential points are bad values, then they should 
be eliminated. On the other hand, there may be nothing wrong with these 
points, but if they control key model properties, we would like to know it 
because it could affect the use of the model. In this section we describe and 
illustrate several useful measure of influence. 

Leverage Points 
The disposition of points in x-space is important in determining model 
properties. In particular, remote observations potentially have disproportion-
ate leverage on the parameter estimates, predicted values, and the usual 
summary statistics. 

The hat matrix H = X(X'X)-1X' is very useful in identifying influential 
observations. As noted earlier, H determines the variances and covariances 
of y and e because Var(y) = σ2Η and Var(e) = σ2(Ι-Η). The elements hy of H 
may be interpreted as the amount of leverage exerted by yj on y¡. Thus 
inspection of the elements of H can reveal points that are potentially influential 
by virtue of their location in x-space. Attention is usually focused on the 
diagonal elements Al7. Because ]T"=1 hu = rank(H) = rank(X) = /?, the average 
size of the diagonal element of the H matrix is p\n. As a rough guideline, then, if 
a diagonal element hü is greater than 2p/n, observation / is a high-leverage 
point. To apply this to the transistor gain data in Example 2.1, note that 2p\ 
n = 2(3)/14 = 0.43. 

Table 2.3 gives the hat diagonals hu for the first-order model; and because 
none of the hü exceed 0.43, we would conclude that there are no leverage points 
in these data. For more information about the hat matrix, see Myers (1990) and 
Montgomery, Peck, and Vining (2006). 

Influence on Regression Coefficients 
The hat diagonals identify points that are potentially influential due to their 
location in x-space. It is desirable to consider both the location of the point and 
the response variable in measuring influence. Cook (1977, 1979) has suggested 
using a measure of the squared distance between the least squares estimate 
based on all n points b, and the estimate obtained by deleting the ith point, say, 
b(/). This distance measure can be expressed in a general form as 

„ , ( M , t ) = < t a H > , , - 1 , 2 , . . . . - (2.59) 
C 

The usual choices of M and c are M = X'X and c = pMSres, so that Equation 
(2.59) becomes / 

0 / (M, c) ,A = ! t í M , ;=1,2,...,« (2.60) 
pMSTes 

Points with large values of D¡ have considerable influence on the least squares 
estimates b. The magnitude of D¡ may be assessed by comparing it to F^p^p. If 
D¡ ~ Fo.s,p,n-p, then deleting point / would move b to the boundary of a 50% 
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confidence region for ß based on the complete data set. This is a large 
displacement and indicates that the least squares estimate is sensitive to the ith 
data point. Because Fo.5,P,n-P — 1, we usually consider points for which D¡ > 1 to 
be influential. Practical experience has shown the cutoff value of 1 works well in 
identifying influential points. 

The Di statistic may be rewritten as 

Βι = ±ψ£ψ = ±>* , = 1,2,.. . ,* (2.61) 
p Var(e,·) p (1 - A,·,·) 

Thus we see that apart from the constant/?, D¡ is the product of the square of the 
ith studentized residual and A///(1-Al7). This ratio can be shown to be the distance 
from the vector x,· to the centroid of the remaining data. Thus Dt is made up of a 
component that reflects how well the model fits the ith observation y¡ and a 
component that measures how far that point is from the rest of the data. Either 
component (or both) may contribute to a larger value of D¡. 

Table 2.3 presents the values of D¡ for the first-order model fit to the 
transistor gain data in Example 2.1. None of these values of D¿ exceed 1, so 
there is no strong evidence of influential observations in these data. 

2.5 USING R TO PERFORM LINEAR REGRESSION ANALYSIS 

R is a popular statistical software package, primarily because it is freely 
available at www.r-project.org. An easier but limited version of R is R 
Commander. According to the project's webpage: 

The R Foundation is a not for profit organization working in the public interest. It 
has been founded by the members of the R Development Core Team in order to 

• Provide support for the R project and other innovations in statistical computing. 
We believe that R has become a mature and valuable tool and we would like to 
ensure its continued development and the development of future innovations in 
software for statistical and computational research. 

• Provide a reference point for individuals, institutions or commercial enterprises 
that want to support or interact with the R development community. 

• Hold and administer the copyright of R software and documentation. 

R is an official part of the Free Software Foundation's GNU project, and the R 
Foundation has similar goals to other open source software foundations like the 
Apache Foundation or the GNOME Foundation. 

Among the goals of the R Foundation are the support of continued development of 
R, the exploration of new methodology, teaching and training of statistical comput-
ing and the organization of meetings and conferences with a statistical computing 
orientation. 
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R is a very sophisticated statistical software environment, even though it 
is freely available. The contributors include many of the top researchers 
in statistical computing. In many ways, it reflects the very latest statistical 
methodologies. 

R itself is a high-level programming language. Most of its commands are 
prewritten functions. It does have the ability to run loops and call other routines, 
for example, in C. Since it is primarily a programming language, it often presents 
challenges to novice users. The purpose of this section is to introduce the reader as 
to how to use R to analyze multiple linear regression data sets. 

The first step is to create the data set. One method inputs the data into a text 
file using spaces for delimiters. Each row of the data file is a record. The top row 
should give the names for each variable. All other rows are the actual data 
records. For example, consider the transistor gain data from Example 2.1 given 
in Table 2.2. Let transistor.txt be the name of the data file. The first row of the 
text file gives the variable names: 

xl x2 y 

The next row is the first data record, with spaces delimiting each data item: 

195 4.00 1004 

The R code to read the data into the package is 

t r a n s < - r e a d . t a b l e ( " t r a n s i s t o r . t x t " , h e a d e r = T R U E , sep="") 

The object trans is the R data set, and "transistor.txt" is the original data file. 
The phrase header = TRUE tells R that the first row is the variable names. The 
phrase sep = " " tells R that the data are space delimited. 
The commands 

t rans.model <- lm(y~xl+x2, da ta=t rans) 
summary(trans.model) 
p r i n t ( influence.measures(trans.model)) 

tellR 

• to estimate the model, 
• to print the analysis of variance, the estimated coefficients, and their tests, and 
• to print the influence measures. 

The commands 

yhat <- trans .model$ñt 
t <- rstudent(trans.model) 
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qqnorm (t) 
plot(yhat,t) 
plot(trans$xl,t) 
plot(trans$x2/t) 

set up and then create the appropriate residual plots based on R-student. 
Generally, R does not produce satisfactory plots of data. The commands 

t rans2 < - c b i n d ( t r a n s , y h a t , t ) 
w r i t e . t a b l e ( t r a n s 2 , " t r a n s i s t o r _ o u t p u t . t x t " ) 

create a file "transistor_putput.txt" which the user can import into his/her 
favorite package for doing graphics. 

R Commander is an add-on package to R. It also is freely available. It 
provides an easy-to-use user interface, much like MINITAB and JMP, to the 
parent R product. R Commander makes it much more convenient to use R; 
however, it does not provide much flexibility in its analysis. For example, R 
Commander does not allow the user to use R-student for the residual plots. 
R Commander is a good way for users to get familiar with R. Ultimately, 
however, we recommend the use of the parent R product. 

2.6 PARAMETER ESTIMATION BY WEIGHTED LEAST SQUARES 

2.6.1 The Constant Variance Assumption 

In both the ordinary least squares and maximum likelihood approaches to 
parameter estimation, we made the assumption of constant variance. By this 
assumption we mean that the variance of an observation is the same 
regardless of the values of the predictor or regressor variables associated 
with it. Since the regressor variables determine the mean or expected value 
of the observation, we are in effect assuming that the variance of the 
observation is unrelated to its mean. 

There are a lot of practical situations where the constant variance 
assumption turns out to be inappropriate. Perhaps the observation yt is 
an average of several (e.g., n,) observations at a point in the predictor 
variable space. If this is the case and the original observations have constant 
variance, then the actual observations have variance Var(y/) = σ2/^·. An 
important source of variability may be the measurement system used, and it 
is not unusual to find that in many such systems the size of the measure-
ment error is proportional to the size of the measured quantity (i.e., the 
measurement error as a percentage of the mean is constant). Also, if the 
underlying distribution of the response variable is not normal, but is a 
continuous, skewed distribution, such as the lognormal, gamma, or Weibull 
distribution, we often find that the constant variance assumption is violated. 
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In this case the inequality of variance is directly related to the nonnormality 
of the response variable distribution, as for a skewed distribution, the 
variance is a function of the mean. An important point here is that the 
constant variance assumption is often linked to the assumption of a normal 
distribution for the response. 

When the constant variance assumption is not satisfied, one approach to the 
problem is through data transformation, as illustrated in Example 2.9. Another 
approach is based on generalized or weighted least squares, a variation of the 
least squares procedure that takes the inequality of variance in the observations 
into account. Weighted least squares play a very important role in parameter 
estimation for generalized linear models. 

2.6.2 Generalized and Weighted Least Squares 

Generalized Least Squares 
We now consider what modifications to the ordinary least squares procedure 
are necessary when Var (y) = σ2 V, where V is a known n x n matrix. This 
situation has an easy interpretation; if V is diagonal but with unequal diagonal 
elements, then the observations y are uncorrelated but have unequal variances, 
while if some of the off-diagonal elements of V are nonzero, then the 
observations are correlated. 

When the model is 

y = Χβ + ε 
Ε(ε) = 0, Var(£) = σ2\ (2.62) 

the ordinary least squares estimator b = (X'X)_1X'y is no longer optimal. We 
approach this problem by transforming the model to a new set of observations 
that satisfy the standard least squares assumptions. Then we use ordinary least 
squares on the transformed data. Since σ2\ is the covariance matrix of the 
errors, V must be nonsingular and positive definite, so there exists an n x n 
nonsingular symmetric matrix K, where K'K = KK = V. The matrix K is often 
called the square root of V. 

Define the new variables 

ζ = Κ~^, Β = Κ_1Χ, g = K"1£ (2.63) 

so that the regression model y = Χβ + ε becomes K-1y = Κ_1Χβ + Κ_1ε, or 

z = Ββ + g (2.64) 

The errors in this transformed model have zero expectation; that is, E(g) = 
Κ~ιΕ(ε) = 0. Furthermore, the covariance matrix of g is 
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Var(g) = ¿r{[g-£(g)] [g-£(g)] '} 

= £(gg') 
= £(Κ-'εε'Κ-') 

= Κ-1£(εε')Κ-1 

= σ2Κ-'νΚ-' 

= σ2Κ'ΚΚΚ-' 

= σ21 (2.65) 

Thus the elements of g have mean zero and constant variance and are 
uncorrelated. Since the errors g in the model (2.64) satisfy the usual assump-
tions, we may apply ordinary least squares. The least squares function is 

S'(ß) = g'g = 8,V-1E 

= ( y - X ß ) , V 1 ( y - X ß ) 

The least squares normal equations are 

= (X'V-'X)b = (X'V- ly) 

and the solution to these equations is 

b = (x'v-lxylx'\-ly 

(2.66) 

(2.67) 

(2.68) 

Here b is called the generalized least squares estimator of ß. 
It is not difficult to show that b is an unbiased estimator of ß. The covariance 

matrix of b is 

l v \ l Var(b) = σ2(Β'ΒΠ = ^(X 'V- 'X) (2.69) 

Furthermore, under the assumption of normal errors in (2.62), b is the best 
linear unbiased estimator of β. The analysis of variance in terms of generalized 
least squares is summarized in Table 2.9. 

Weighted Least Squares 
When the errors ε are uncorrelated but have unequal variances so that the 
covariance matrix of ε is 

0 

σ2Υ = σ2 

JL 
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Table 2.9 Analysis of Variance for Generalized Least Squares 

Degrees of Mean 
Source Sum of Squares Freedom Square F0 

Regression $SR = b'B'z 
= y ' V - 1 X ( X / V - 1 X ) " 1 X , V - 1 j 

Residual SSres = z'z - b'B'z 
= y , V " 1 y - y , V - 1 X ( X , V - 1 X ) " 1 X ' V - 1 y 

Total z z = yfyfy 

the estimation procedure is usually called weighted least squares. Let W = V"1. 
Since V is a diagonal matrix, W is also diagonal with diagonal elements or 
weights wi, vv2,..., wn. From (2.65), the weighted least squares normal equations 
are 

(X,WX)b = X'Wy (2.70) 

and 

b = (X'WX)_1X'Wy (2.71) 

which is the weighted least squares estimator. Note that observations with large 
variances have smaller weights than observations with small variances. 

To use weighted least squares in a practical sense, we must know the 
weights w\, w2,..., w„. Sometimes prior knowledge or experience or 
information based on underlying theoretical considerations can be used to 
determine the weights. In other situations we may find empirically that the 
variability in the response is a function of one or more regressors, and so a 
model may be fit to predict the variance of each observation and hence 
determine the weights. In some cases we may have to estimate the weights, 
perform the analysis, reestimate a new set of weights based on these results, 
and then perform the analysis again. Several iterations may be necessary to 
obtain both reasonable weights and a reasonable solution to the overall 
model-fitting problem. We call a procedure such as this iteratively re-
weighted least squares (IRLS). There are several applications of IRLS in 
regression, including generalized linear models. 

When weights are known, the inference procedures associated with weighted 
and generalized least squares are exact, as long as the response distribution is 
normal. However, when the weights are estimated, the inference procedures are 
only approximate. This is less of an issue when the sample size used is not too 
small. 

p SSR/p MSRI 
MSres 

n-p SSTJ 
in-p) 
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2.6.3 Generalized Least Squares and Maximum Likelihood 

Recall that in Section 2.3 we showed that, under the normality assumption for 
the linear regression model, the method of maximum likelihood results in the 
same estimator as ordinary least squares. Exactly the same thing happens in 
the generalized (or weighted) least squares case. 

Suppose that y is a vector of n observations and X is the corresponding 
matrix of predictor variables. Let the joint distribution of y be the multivariate 
normal distribution with mean vector Xß and covariance matrix σ2\. The 
likelihood function for the n observations is 

^ ( y , β, σ2χ) = J ^^-(i/2.2)(y-XßyV-'(y-Xß) ( 2 / 7 2 ) 

It is clear from examining Equation (2.72) that to maximize the likelihood 
function, we must minimize the expression in the exponent, namely, [(y-Xß)'] 
V_1(y-Xß). However, this is exactly the same as the generalized least squares 
criterion used in Equation (2.66). Therefore generalized and weighted least 
squares estimators are maximum likelihood estimators under normal theory. 

2.7 DESIGNS FOR REGRESSION MODELS 

Typically, regression analysis uses either historical data or data from an 
observational study. However, there are many cases where we apply regression 
analysis to designed experiments. The question then becomes: If we could 
choose the levels of the regressor variables, what values should we use? The 
experimental design problem in regression consists of selecting the elements of a 
design matrix, which in turn determines the elements of the model matrix, X. 

Classical experimentation often focuses on factorial designs. Complete 
factorial experiments use as their distinct design runs all of the possible 
combinations of the levels for the factors involved. Classical second-order 
experimental designs include the central composite design (Box and Wilson, 
1951) and the Box-Behnken design (Box and Behnken, 1960). Myers, Mont-
gomery, and Anderson-Cook (2009) summarize the classical designs typically 
used in response surface methodology. 

For example, suppose that we are fitting a first-order linear regression 
model. A factorial experiment often is a very good design for fitting this model. 
To illustrate, consider the following first-order model with the two-factor 
interaction in two variables: 

y i = ßo + β\χη + ß2xn + ßnxaxa + ß/ 

A reasonable choice of factorial design for fitting this model is a design with 
both factors at two levels, say, +1. This results in a design with four runs, each 
run located at the corner of the square, and is commonly called a 22 factorial 
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design. If this design is replicated twice to give eight runs, the model matrix in 
the coded units is 

X = 

The resulting X'X matrix is 

XX = 

8 0 0 0 
0 8 0 0 
0 0 8 0 
0 0 0 8 

The 22 factorial design is an orthogonal design for fitting this model. This 
particular structure greatly simplifies the model fitting, statistical inference, 
and practical interpretation of the fitted model. In general, the 2k factorial 
design is an orthogonal design for fitting the first-order model with 
interactions. Orthogonality is an important property for many experimental 
designs. Good experimental designs often are either orthogonal or nearly 
orthogonal. 

Optimal design theory provides one approach for developing experimental 
designs. Most optimal design criteria are variance based. The popular 
criteria are: D-optimality, G-optimality, A-optimality, E-optimality, and 
I-optimality. D-, A-, and E-optimalities are examples of Φ -optimal designs, 
which is an attempt to unify several of the basic variance-based optimality 
criteria. 

D-optimality is the single most popular approach, probably because it was 
the first programmed (Mitchell, 1974). Under normal theory, the D-optimal 
design minimizes the volume of the confidence ellipsoid around the vector of 
coefficient estimates. Another way to express this concept is that the 
D-optimal design minimizes the generalized variance of the estimated 
coefficients. This approach maximizes the determinant of X'X, which in 
turn minimizes the determinant of (X'X)-1. This criterion's focus on the 
determinant leads to its name. Another way to view D-optimality is that 
the D-optimal design maximizes the product of the eigenvalues of X'X. 
This focus on the eigenvalues of X'X underlies much of optimal design 
theory. 
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Under normal theory, G-optimality minimizes the maximum value 
of the variance for a predicted value over the region of interest. The 
G refers to global. Operationally, the G-optimal design minimizes the 
maximum of the function x'(X'X)_1x over the experimental region. For a 
G-optimal design the largest prediction variance occurs at the design 
points and is σ2φ/η, where p is the number of parameters in the model 
and n is the total number of runs in the design. In general, it is difficult 
to construct G-optimal designs, but it is easy to confirm weather a spe-
cific design is G-optimal. Asymptotically, D- and G-optimalities are 
equivalent. 

A-optimality minimizes the sum of the variances of the estimated 
coefficients. It thus minimizes trace [(X'X)]"1]. The trace is the sum of 
the diagonal elements of a matrix. It also is the sum of the eigenvalues. 
As a result, this criterion minimizes the sum of the eigenvalues of (X'X)"1. 
If ¿i, λ2,..., Κ a r e ^ e eigenvalues of X'X, then \\λ\, \/λ2,..., 1Μ/> are the 
eigenvalues of (X'X)"1. 

E-optimality minimizes the maximum value of z'(X'X)-1z subject to the 
constraint z'z = 1. It thus minimizes the largest eigenvalue of (X'X)-1, 
which is equivalent to maximizing the smallest eigenvalue of X'X. It is 
closely related to G-optimality, but not identical. Most people who use 
E-optimality design experiments involving categorical factors. As a result, 
they generally focus on contrasts, which are of limited interest in regression 
analysis. 

Φ-optimality is a unifying concept often seen in the optimal design literature. 
The Φ0 design is D-optimal; the Φ\ design is A-optimal, and the Φοο is 
E-optimal. 

I-optimality seeks to choose the design to minimize the average prediction 
variance over the experimental region. Actually, Box and Draper (1959) first 
mentioned this criterion, which they called V-optimality. The average predic-
tion variance over the region is defined by 

ij ivarGOrfx 

i^V(X'X)-'xdx 

where R is the design region and Ψ = fRdx is the volume of the region. Clearly, 
/- and G-optimalities are related; however, they are not identical. 

The designs recommended as being optimal depend heavily upon 

• the assumed form of the model and 
• the shape of the experimental region of interest. 
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In addition, these designs are optimal only in terms of a very specific and 
narrow criterion. These designs are very useful for nonstandard regions, usually 
due to constraints, situations requiring a total number of runs not covered by 
classical designs, and for augmenting a set of additional runs to a previously 
run experiment. An example of a very irregular design region is the mixture 
design problem as a result of necessary constraints on the factor levels. See 
Cornell (2002), Montgomery (2009), and Myers, Montgomery, and Anderson-
Cook (2009) for more information. 

The original computer codes for generating optimal designs required a 
list of candidate points. Such codes created an initial design based on the 
desired model form and number of experimental runs. It then used a point 
exchange algorithm to improve the design's performance in terms of the 
specific criterion, almost always D-optimality. One advantage to this 
approach was that all levels in the recommended design were convenient, 
for example, ± 1. 

Many current software packages use a coordinate exchange algorithm (Meyer 
and Nachtsheim, 1995) to select the design. This algorithm finds designs with 
better values for the specific criterion; however, there is no guarantee that all of 
the resulting design levels are convenient. 

Box (1982) outlines what he considers to be vital in the appropriate 
selection of an experimental design. Fundamental to Box's perspective are 
two points. First, "all models are wrong; some models are useful." Second, 
all scientific inquiry involves experimentation; and all scientific experimen-
tation involves a series of experiments. Each experimental phase must build 
on what is learned from the previous phases. Both of these points stand in 
stark contrast to much of optimal design theory, which typically assumes a 
single, one-shot experiment to estimate a known model form. In this paper, 
Box discusses his fourteen points. According to Box, a good experiment 
design 

1. provides a satisfactory distribution of information, 
2. gives a fitted value as close as possible to the true, 
3. provides the ability to test for lack of fit, 
4. allows transformations, 
5. allows for blocking, 
6. allows sequential assembly (design augmentation), 
7. provides an internal estimate of error, 
8. is insensitive to the presence of outliers, 
9. uses a near minimum number of runs, 

10. provides data patterns that allow visual appreciation of the information 
in the data, 

11. ensures simplicity of calculation, 
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12. behaves well when there are errors in the factors, 
13. requires only a few levels for the factors, and 
14. provides a check of the constancy of variance assumption. 

Underlying many of these points is the concept of projection properties, 
which consider the design's structure if one or more of the experimental 
factors proves insignificant in the analysis. Good projection properties ensure 
that the experimental design in the remaining factors maintains a good 
structure. 

Box's major point is that most classical experimental designs perform 
well in terms of these fourteen points in addition to performing well, 
although not necessarily best, in terms of the various optimality criteria. In 
this light, he strongly recommends the use of such classical experimental 
designs as the 2k factorial system and the central composite design. For 
example, recall the simple, replicated 22 factorial designed that we intro-
duced at the beginning of this section. If the levels + 1 are at the extremes 
of the design region, then this design is optimal in terms of all the criteria 
we have outlined. In addition, it meets almost all of the criteria outlined by 
Box. It is an excellent example of an optimal design that is also a good 
design. 

One may or may not agree with all of Box's fourteen points; however, 
they do underscore an extremely important issue. The final choice of any 
experimental design involves a complex compromise across many competing 
and often contradictory criteria. For example, the ability to detect lack of fit 
requires a certain number of experimental runs that may provide no 
meaningful information for estimating the presumed model. In a similar 
manner, pure error estimates of the σ2 involve replication that often provides 
no additional information for estimating the model. Most statistical software 
packages that produce optimal designs try to take these issues into 
consideration. In most cases, the packages outline the specifics in their 
help manuals. 

Example 2.11. Optimal Designs for a Second-Order Model. To illustrate 
constructing optimal designs, suppose that we want to fit a second-order 
model in k = 4 variables. A central composite design has at least 25 runs (16 
factorial runs, 8 axial runs, and at least one center point) and probably closer 
to 30 runs, because the center point would typically be replicated several 
times. The second-order model only has 15 parameters, so we could logically 
be interested in a smaller experiment. We use JMP to construct both a 
D-optimal and an I-optimal design with 18 runs where the runs are restricted 
to a cube. 

Table 2.10 shows some of the output from JMP for the D-optimal design. 
The prediction variance profiler is set to the place in the design space where 
the prediction variance is maximized. The output also contains a fraction of 
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Table 2.10 A D-Optimal Design from J M P for a Second-Order Model in k = 4 Factors 

D e s i g n 
Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

XI 
0 
1 

- 1 
- 1 
- 1 
- 1 

0 
1 
1 

- 1 
1 
0 

- 1 
1 

- 1 
- 1 

1 
1 

X2 
- 1 
- 1 
- 1 

1 
- 1 
- 1 

0 
- 1 

0 
- 1 
- 1 

1 
1 
1 
0 
1 
1 
1 

X3 
0 

- 1 
- 1 
- 1 

1 
1 

- 1 
- 1 

1 
- 1 

1 
1 
1 

- 1 
0 

- 1 
1 
0 

X4 
0 

- 1 
1 

- 1 
- 1 

1 
- 1 

1 
- 1 
- 1 

0 
- 1 

0 
0 
0 
1 
1 

- 1 
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Table 2.11 

Run 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1 
1 
1 
1 
1 
1 
1 
1 
1 

An /-Optimal Design from JMP a 

XI 
1 
0 

- 1 
1 
1 

- 1 
- 1 

0 
1 
0 
1 
2 
3 
4 
5 
6 
7 
8 

X2 
- 1 

1 
0 
1 

- 1 
- 1 

1 
1 
1 

- 1 
- 1 

0 
0 
0 
0 
1 
1 
1 

Second-Order Model in k = 

X3 
0 
0 
0 
1 

- 1 
- 1 

0 
- 1 

1 
- 1 

1 
0 

- 1 
0 
0 
1 

- 1 
0 

X4 
1 
0 

- 1 
1 

- 1 
0 
1 

- 1 
- 1 

1 
1 
1 
0 

- 1 
0 

- 1 
1 
0 

= 4 Factors 

1 
- 1 

0 
- 1 

1 
0 
1 
0 
0 
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(Continued) 

design (FDS) space plot, which is a plot of the prediction variance (apart 
from σ2) versus the fraction of the design space. The cross-hairs on the FDS 
plot show that over about 50% of the design space the prediction variance 
will be less that about 0.7σ2. Table 2.11 shows the I-optimal design from 
JMP. Notice from the prediction variance profiler that the maximum 
prediction variance occurs at the boundary of the experimental region and 
is greater than the maximum prediction variance for the D-optimal design 
(2.22σ2 versus 1.77σ2). However, the FDS plot reveals that the prediction 
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Fraction of Design Space Plot 
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variance is much smaller over most of the deign region than in the D-optimal 
design. The I-optimal design basically trades smaller prediction variance on the 
average over the design space for a larger variance at the extremes of the 
region. 

EXERCISES 

2.1 The following data were collected on the wear of a bearing y, the oil 
viscosity x\, and load x2. 

y 

193 
230 
172 
91 
113 
125 

*1 

1.6 
15.5 
22.0 
43.0 
33.0 
40.0 

x2 

851 
816 
1058 
1201 
1357 
1115 

(a) Fit a multiple linear regression model to these data. 
(b) Test for significance of regression. 
(c) Compute /-statistics for each of the regression coefficients and 

provide an interpretation. 
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2.2 Reconsider the bearing data from Exercise 2.1. Expand the multiple 
regression model to include an interaction term. 
(a) Test for significance of regression. 
(b) Compute /-statistics for each of the regression coefficients and 

provide an interpretation. Specifically, does the model require an 
interaction term? 

(c) Use the partial F-test procedure to determine whether the model 
requires an interaction term. Is this procedure equivalent to the /-test 
computed in part (b)? 

2.3 Suppose that we wish to use the models from Exercises 2.1 and 2.2 to 
estimate the mean bearing wear when xx = 25 and x2 = 1000. 
(a) Compute point estimates of the mean wear using both models. 
(b) Find a 95% confidence interval on the mean response at the point 

x\ = 25 and x2 = 1000 for both models. Which interval is narrower? 
Does this provide any insight about which model is preferable? 

2.4 The pull strength of a wire bond is an important characteristic. The table 
below gives information on pull strength (y), die height (x\), post height 
(x2), loop height (x3), wire length (x4), bond width on the die (xs), and 
bond width on the post (x6). 
(a) Fit a multiple linear regression model using x2, x$, x4, and x5 as the 

regressors. 
(b) Test for significance of regression using the analysis of variance with 

a = 0.05. What are your conclusions? 
(c) Use the model from part (a) to predict pull strength when x2 = 20, 

x3 = 30, χΛ = 90, and x5 = 2.0. 

y 

8.0 
8.3 
8.5 
8.8 
9.0 
9.3 
9.3 
9.5 
9.8 

10.0 
10.3 
10.5 
10.8 
11.0 
11.3 

* 1 

5.2 
5.2 
5.8 
6.4 
5.8 
5.2 
5.6 
6.0 
5.2 
5.8 
6.4 
6.0 
6.2 
6.2 
6.2 

* 2 

19.6 
19.8 
19.6 
19.4 
18.6 
18.8 
20.4 
19.0 
20.8 
19.9 
18.0 
20.6 
20.2 
20.2 
19.2 

* 3 

29.6 
32.4 
31.0 
32.4 
28.6 
30.6 
32.4 
32.6 
32.2 
31.8 
32.6 
33.4 
31.8 
32.4 
31.4 

x4 

94.9 
89.7 
96.2 
95.6 
86.5 
84.5 
88.8 
85.7 
93.6 
86.0 
87.1 
93.1 
83.4 
94.5 
83.4 

* 5 

2.1 
2.1 
2.0 
2.2 
2.0 
2.1 
2.2 
2.1 
2.3 
2.1 
2.0 
2.1 
2.2 
2.1 
1.9 

* 6 

2.3 
1.8 
2.0 
2.1 
1.8 
2.1 
1.9 
1.9 
2.1 
1.8 
1.6 
2.1 
2.1 
1.9 
1.8 
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y 

11.5 
11.8 
12.3 
12.5 

X\ 

5.6 
6.0 
5.8 
5.6 

* 2 

17.0 
19.8 
18.8 
18.6 

x3 

33.2 
35.4 
34.0 
34.2 

x4 

85.2 
84.1 
86.9 
83.0 

* 5 

2.1 
2.0 
2.1 
1.9 

* 6 

2.1 
1.8 
1.8 
2.0 

2.5 Consider the wire bond pull strength data in Exercise 2.4. 
(a) Estimate σ2 for this model. 
(b) Find the standard errors for each of the regression coefficients. 
(c) Calculate the ¿-test statistic for each regression coefficient. Using 

σ = 0.05, what conclusions can you draw? Do all variables contribute 
to the model? 

2.6 For the regression model for the wire bond pull strength data in Exercise 2.4: 
(a) Plot the residuals versus y and versus the regressors used in the model. 

What information is provided by these plots? 
(b) Construct a normal probability plot of the residuals. Are there 

reasons to doubt the normality assumption for this model? 
(c) Are there any indications of influential observations in the data? 

2.7 Consider the wire bond pull strength data in Exercise 2.4. 
(a) Find 95% confidence intervals on the regression coefficients. 
(b) Find a 95% confidence interval on mean pull strength when x2 = 20, 

x3 = 30, x4 = 90, and x5 = 2.0. 

2.8 Consider the wire bond pull strength data in Exercise 2.4. Fit a regressor 
model using all six regressors. 
(a) Is there an indication that this model is superior to the one from 

Exercise 2.4? 
(b) Find a 95% confidence interval on mean pull strength when x0 = 6.0, 

x2 = 20, x3 = 30, x4 = 90, x5 = 2.0, and x6 = 2.1. Compare the 
length of this interval to the one from Exercise 2.7, part (b). 

2.9 An engineer at a semiconductor company wants to model the relationship 
between the device gain or hFE(y) and three parameters: emitter-RS (JCI), 

base-RS (x2), and emitter-to-base-RS (x3). The data are shown below: 

* i *i *3 y 

Emitter-RS Base-RS E-B-RS hFE-lM-5V 

14.620 226.00 7.000 128.40 
15.630 220.00 3.375 52.62 
14.620 217.40 6.375 113.90 
15.000 220.00 6.000 98.01 
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*1 

Emitter-RS 

14.500 
15.250 
16.120 
15.130 
15.500 
15.130 
15.500 
16.120 
15.130 
15.630 
15.380 
15.500 
14.250 
14.500 
14.620 

*2 
Base-RS 

226.50 
224.10 
220.50 
223.50 
217.60 
228.50 
230.20 
226.50 
226.60 
225.60 
234.00 
230.00 
224.30 
240.50 
223.70 

*3 
E-B-RS 

7.625 
6.000 
3.375 
6.125 
5.000 
6.625 
5.750 
3.750 
6.125 
5.375 
8.875 
4.000 
8.000 
10.870 
7.375 

y 
hFE-\M-5V 

139.90 
102.60 
48.14 
109.60 
82.68 
112.60 
97.52 
59.06 
111.80 
89.09 
171.90 
66.80 
157.10 
208.40 
133.40 

(a) Fit a multiple linear regression model to the data. 
(b) Predict hFE when xx = 14.5, x2 = 220, and x3 = 5.0. 
(c) Test for significance of regression using the analysis of variance with 

a = 0.05. What conclusions can you draw? 
(d) Estimate σ2 for the model you have fit to the data. 
(e) Find the standard errors of the regression coefficients. 
(f) Calculate the Mest statistic for each regression coefficient. Using 

a = 0.05, what conclusions can you draw? 
(g) Find 99% confidence intervals on the regression coefficients. 
(h) Find a 99% prediction interval on hFE when x\ = 14.5, x2 = 220, and 

x3 = 5.0. 
(i) Find a 99% confidence interval on mean hFE when x\, = 14.5, 

x2 = 220, and x3 = 5.0. 

2.10 Consider the semiconductor hFE data in Exercise 2.9. 
(a) Plot the residuals from this model versus y. Comment on the 

information in this plot. 
(b) What is the value of R2 for this model? 
(c) Refit the model using In hFE as the response variable. 
(d) Plot the residuals versus predicted In hFE for the model in part (c). 

Does this give any information about which model is preferable? 
(e) Plot the residuals from the model in part (d), versus the regressor x3. 

Comment on this plot. 
(f) Refit the model to In hFE using xu x2, and l/x3 as the regressors. 

Comment on the effect of this change in the model. 



EXERCISES 69 

2.11 Heat treating is often used to carburize metal parts, such as gears. The 
thickness of the carburized layer is considered an important feature of 
the gear, and it contributes to the overall reliability of the part. Because 
of the critical nature of this feature, two different lab tests are performed 
on each furnace load. One test is run on a sample pin that accompanies 
each load. The other test is a destructive test, where an actual part is 
cross-sectioned. This test involved running a carbon analysis on the 
surface of both the gear pitch (top of the gear tooth) and the gear root 
(between the gear teeth). The data below are the results of the pitch 
carbon analysis test for 32 parts. 

Temp 

1650 
1650 
1650 
1650 
1600 
1600 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1650 
1700 
1650 
1650 
1700 
1700 

Soaktime 

0.58 
0.66 
0.66 
0.66 
0.66 
0.66 
1.00 
1.17 
1.17 
1.17 
1.17 
1.17 
1.17 
1.20 
2.00 
2.00 
2.20 
2.20 
2.20 
2.20 
2.20 
2.20 
3.00 
3.00 
3.00 
3.00 
3.33 
4.00 
4.00 
4.00 
12.50 
18.50 

Soakpct 

1.10 
1.10 
1.10 
1.10 
1.15 
1.15 
1.10 
1.10 
1.10 
1.10 
1.10 
1.10 
1.15 
1.15 
1.15 
1.10 
1.10 
1.10 
1.15 
1.10 
1.10 
1.10 
1.15 
1.10 
1.10 
1.15 
1.10 
1.10 
1.10 
1.15 
1.00 
1.00 

Difftime 

0.25 
0.33 
0.33 
0.33 
0.33 
0.33 
0.50 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
1.10 
1.00 
1.10 
1.10 
1.10 
1.10 
1.10 
1.10 
1.50 
1.50 
1.50 
1.50 
1.66 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 

Diffpct 

0.90 
0.90 
0.90 
0.95 
1.00 
1.00 
0.80 
0.80 
0.80 
0.80 
0.90 
0.90 
0.90 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.90 
0.90 
0.90 
0.80 
0.70 
0.75 
0.85 
0.80 
0.70 
0.70 
0.85 
0.70 
0.70 

Pitch 

0.013 
0.016 
0.015 
0.016 
0.015 
0.016 
0.014 
0.021 
0.018 
0.019 
0.021 
0.019 
0.021 
0.025 
0.025 
0.026 
0.024 
0.025 
0.024 
0.025 
0.027 
0.026 
0.029 
0.030 
0.028 
0.032 
0.033 
0.039 
0.040 
0.035 
0.056 
0.068 
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(a) Fit a linear regression model relating the results of the pitch carbon 
analysis test (PITCH) to the five regressor variables. 

(b) Test for significance of regression. Use a = 0.05. 
(c) Estimate σ2 for the model. 
(d) Find the standard errors of the regression coefficients. 
(e) Evaluate the contribution of each regressor to the model using the t-

test with σ = 0.05. 
(f) Plot residuals and comment on model adequacy. 
(g) Find 95% confidence intervals on the regression coefficients. 
(h) Find a 95% confidence interval on mean PITCH for TEMP = 1650, 

SOAK-TIME = 1.00, SOAKPCT = 1.10, DIFFTIME = 1.00, and 
DIFFPCT = 0.80. 

2.12 Reconsider the heat treating data from Exercise 2.11. 
(a) Fit a new model to the response PITCH using new regressors 

x, = SOAKTIME x SOAKPCT and x2 = DIFFTIME x DIFFPCT. 
(b) Test the model in part (a) for significance of regression using 

a = 0.05. Also calculate the /-test for each regressor, and draw 
conclusions. 

(c) Estimate σ2 for the model from part (a), and compare this to the 
estimate of σ2 obtained in Exercise 2.11, part (c). Which estimate is 
smaller? Does this offer any insight regarding which model might be 
preferable? 

2.13 Reconsider the heat treating data in Exercises 2.11 and 2.12, where we fit 
a model to PITCH using regressors xx = SOAKTIME x SOAKPCT and 
x2 = DIFFTIME x DIFFPCT. 
(a) Using the model with regressors χλ and x2, find a 95% confidence 

interval on mean PITCH when SOAKTIME = 1.00, SOAKPCT = 
1.10, DIFFTIME = 1.00, and DIFFPCT = 0.80. 

(b) Compare the length of this confidence interval with the length of the 
confidence interval on mean PITCH at the same point from Exercise 
2.11, part (h), where an additive model in SOAKTIME, SOAKPCT, 
DIFFTIME, and DIFFPCT was used. Which confidence interval 
is shorter? Does this tell you anything about which model is 
preferable? 

2.14 An article in the Journal of Pharmaceuticals Sciences (Vol. 80, 1991, 
pp. 971-977) presents data on the observed mole fraction solubility of 
a solute at a constant temperature to the dispersion, dipolar, and 
hydrogen bonding Hansen partial solubility parameters. The data are 
as follows: 
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/ation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

y 

0.22200 
0.39500 
0.42200 
0.43700 
0.42800 
0.46700 
0.44400 
0.37800 
0.49400 
0.45600 
0.45200 
0.11200 
0.43200 
0.10100 
0.23200 
0.30600 
0.09230 
0.11600 
0.07640 
0.43900 
0.09440 
0.11700 
0.07260 
0.04120 
0.25100 
0.00002 

x\ 

7.3 
8.7 
8.8 
8.1 
9.0 
8.7 
9.3 
7.6 
10.0 
8.4 
9.3 
7.7 
9.8 
7.3 
8.5 
9.5 
7.4 
7.8 
7.7 
10.3 
7.8 
7.1 
7.7 
7.4 
7.3 
7.6 

x2 

0.0 
0.0 
0.7 
4.0 
0.5 
1.5 
2.1 
5.1 
0.0 
3.7 
3.6 
2.8 
4.2 
2.5 
2.0 
2.5 
2.8 
2.8 
3.0 
1.7 
3.3 
3.9 
4.3 
6.0 
2.0 
7.8 

*3 

0.0 
0.3 
1.0 
0.2 
1.0 
2.8 
1.0 
3.4 
0.3 
4.1 
2.0 
7.1 
2.0 
6.8 
6.6 
5.0 
7.8 
7.7 
8.0 
4.2 
8.5 
6.6 
9.5 
10.9 
5.2 

20.7 

where y is the negative logarithm of the mole fraction solubility, x\ is 
the dispersion Hansen partial solubility, x2 is the dipolar partial 
solubility, and x3 is the hydrogen bonding partial solubility. 

(a) Fit the model 
y = 00 + 01*1 + 02*2 + 03*3 + 012*1*2 + 013*1*3 + 023*2*3 + 0ιι*ι 

+ 022*2 +033*3 + £ · 
(b) Test for significance of regression, using a = 0.05. 
(c) Plot the residuals and comment on model adequacy. 
(d) Use the extra sum of squares method to test the contribution of the 

second-order terms, using a = 0.05. 

2.15 In an effort to develop a preliminary personnel equation for estimation 
of worker-hours per month expended in surgical services at Naval 
hospitals, the U.S. Navy collected data on y (worker-hours per month) 
and x (surgical cases) from 15 hospitals. The data (taken from the Navy's 
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Procedures and Analyses for Staffing Standards Development: Data/Regres-
sion Analysis Handbook, are shown in the table below. 

)rker-hours 
r month) 

1275 
1350 
1650 
2000 
3750 
4222 
5018 
6125 
6200 
8150 
9975 

12,200 
12,750 
13,014 
13,275 

x Surgical 
Cases 

230 
235 
250 
277 
522 
545 
625 
713 
735 
820 
992 
1322 
1900 
2022 
2155 

Fit the following models to these data. 
(a) y = ßo + ßxX + ε. 
(b) Iny = ß0 + ßl(l/x) + z. 

(c) \/y = β0 + βχ(\/χ) + ε. 
(d) y = ßo + βιχ + ß2x

2 + ε. 
(e) Comment on the adequacy of each of these models. 

In a study in collaboration with the Engineering Sciences and Me-
chanics Department at Virginia Tech, personnel at the Statistics 
Consulting Center were called upon to analyze a data set dealing 
with cathodic debonding of elastomeric metal bonds. A model relating 
the amount of debonding as a function of time (jq), voltage (x2), pH at 
time of bonding (x3), and temperature (JC4) was sought. The following 
data were collected. 

y (cm) x\ (min) x2 (volts) JC3 (pH) x4 (°F) 

2.240 
3.581 
5.131 
5.715 
0.889 

24.00 
43.00 
84.00 
159.00 
3.79 

1000 
1000 
1000 
1000 
1100 

8.47 
8.55 
8.53 
8.60 
7.72 

299 
299 
299 
297 
300 
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y (cm) x\ (min) x2 (volts) x3 (pH) x4 (°F) 

2.845 
6.147 
7.016 
7.747 
8.286 
9.321 
9.195 
1.895 
3.708 
3.467 
5.049 
4.846 
6.108 
7.137 
8.295 
1.168 
2.865 
3.912 
3.726 
4.521 
5.664 
7.620 
9.766 
12.497 
2.174 
8.153 
10.757 

17.00 
37.00 
54.20 
58.00 
85.00 
89.00 
95.00 
1.85 
5.88 
7.02 
13.88 
17.19 
19.80 
33.80 
40.80 
0.83 
8.08 

21.08 
21.08 
7.00 
15.00 
27.00 
52.00 
65.00 
1.76 
7.90 

20.90 

1100 
1100 
1100 
1100 
1100 
1100 
1100 
1420 
1420 
1420 
1420 
1420 
1420 
1420 
1420 
1825 
1825 
1825 
1825 
1400 
1400 
1400 
1400 
1400 
1310 
1310 
1310 

7.83 
4.91 
3.79 
3.69 
3.70 
3.91 
3.57 
4.43 
3.67 
2.89 
2.56 
2.56 
2.84 
3.22 
3.54 
3.73 
3.45 
2.85 
2.85 
8.88 
8.88 
8.88 
8.88 
8.88 
5.46 
2.15 
2.55 

299 
299 
299 
299 
298 
297 
296 
298 
298 
298 
298 
298 
298 
298 
298 
298 
295 
298 
298 
303 
303 
303 
303 
303 
313 
309 
312 

(a) Fit a standard multiple linear regression model to these data and 
comment on model adequacy. 

(b) Use a Box-Cox power transformation on the response, and find the 
appropriate transform y \ 

(c) Does a confidence interval estimate on λ indicate whether or not there 
is a need to work with a transformed response rather than the natural 
metric yl Explain. 

(d) If transformation is needed, fit a new regression using yx as the new 
response and indicate further evidence of the improved regression. 

2.17 Consider the following data set in which nitrogen dioxide concentrations 
in parts per million are collected for 26 days in September 1984 at a 
monitoring facility in the San Francisco Bay area. These data were taken 
from Chatterjee and Hadi (1988). 
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*i Windspeed X2 Maximum x3 Insolation 
;e mph) 

11.1 
12.1 
12.0 
17.8 
9.5 
7.2 
11.5 
13.4 
10.8 
13.8 
14.6 
12.1 
8.0 
8.8 
12.9 
12.7 
12.1 
11.1 
11.3 
9.0 
9.2 
8.4 
8.0 
13.8 
17.8 

Temperature (°F) 

90 
86 
80 
70 
90 
100 
92 
74 
87 
78 
73 
85 
94 
91 
84 
68 
81 
78 
74 
78 
84 
90 
90 
80 
68 

(langleys per day) 

382 
380 
372 
352 
358 
362 
302 
316 
339 
328 
278 
339 
241 
193 
268 
113 
313 
317 
324 
312 
349 
290 
295 
283 
259 

NO 

6 
5 
5 
3 
7 
9 
6 
2 
10 
7 
3 
4 
13 
10 
7 
3 
6 
5 
4 
9 
11 
8 
9 
6 
2 

(a) Fit a standard multiple regression model to these data and comment 
on model adequacy. 

(b) Consider a transformation for the response. Use the Box-Cox proce-
dure to determine an appropriate transformation. 

(c) Does a model with transformed response seem more reasonable than 
the model in part (a)? 

2.18 The data in the following table come from a factorial experiment 
conducted to study the effect of reaction time and reaction temperature 
on the concentration of a chemical product. 

Temperature 

Time(h) 50°C 75°C 100°C 

2 4.70,2.68 5.52,3.75 3.98,4.22 
4 6.35,6.10 5.88,7.69 6.28,7.12 
6 7.85,9.25 9.00,9.78 11.43,9.62 
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(a) Fit the main effects model y = β0 + ßxxx + β2χ2 + ε to the data, 
where the x's are coded variables taking on the values — 1, 0, +1 
corresponding to the low, medium, and high levels of the design 
factors time and temperature. 

(b) Test for significance of regression. 
(c) Analyze the residuals and comment on model adequacy. 
(d) Expand the model in part (a) to include an interaction term, say, 

y = ßo + βι*ι + /?2*2 + ßi2*i*2 + ε· Does ^ e interaction term im-
prove the fit of the model to the data? 

2.19 Reconsider the data from the factorial experiment in Exercise 2.18. Use 
the Box-Cox method to determine if a transformation on the response is 
necessary. 

2.20 Consider a multiple regression model with k regressors. Show that the 
test statistic for significance of regression can be written as 

(1 - # ) / ( * - * - 1) 

Suppose that n = 20, k = 4, and R2 = 0.90. If a = 0.05, what conclusion 
would you draw about the relationship between y and the four 
regressors? 

2.21 A regression model is used to relate a response y to k = 4 regressors. 
What is the smallest value of R2 that will result in a significant regression 
if a = 0.05? Use the results of the previous exercise. Are you surprised by 
how small the value of R2 is? 

2.22 Show that we can express the residuals from a multiple regression model as 

e = ( I - H ) y , where H = XCX'X)"1^ 

2.23 Show that the variance of the /th residual et in a multiple regression 
model is <J2(1—Aj7) and that the covariance between eh and ej is —A/7, where 
the Ä's are the elements of H = X(X'X)_1X'. 

2.24 Consider the model 

Υ = Χβ + ε 
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where Ε(ε) = 0, and Var[e] = V. Show that 

^ = (x'y-lxylx'\-ly 

is BLUE. 

2.25 Suppose that you want to fit a first-order model with all of the two-factor 
interactions in three factors over the +1 range using n = 12 runs. Find a 
D-optimal design for this situation. 

2.26 Suppose that you want to fit a first-order model in three factors with all 
of the two-factor interactions in over the +1 range using n = 12 runs. 
Find an I-optimal design for this situation. 

2.27 Suppose that you want to fit a first-order model in two factors over the 
± 1 range using n = 8 runs. The design chosen is a full 22 design 
augmented with four center runs (x\ = x2 = 0) Is this a D-optimal 
design? 

2.28 Suppose that you want to fit a main-effects first-order model in three 
factors over the ± 1 range using n = 8 runs. Find a D-optimal design for 
this situation. 

2.29 Suppose that you want to fit a second-order model in three factors using 
n = 15 runs. Find a D-optimal design for this situation. 

2.30 Suppose that you want to fit a second-order model in three factors using 
n = 15 runs. Find an I-optimal design for this situation. 

2.31 Suppose that you want to fit a second-order model in three factors using 
n = 12 runs. Find a D-optimal design for this situation. 

2.32 Suppose that you want to fit a second-order model in three factors using 
n = 12 runs. Find a I-optimal design for this situation. 
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Nonlinear Regression Models 

The linear regression models of Chapter 2 provide a flexible framework that suits 
the needs of many model builders and data analysts. However, linear regression 
models are not appropriate for all situations. There are many situations where 
the response variable and the predictor variables are related through a known 
nonlinear function. This leads to a nonlinear regression model. Parameter estima-
tion and model inference is somewhat more involved for nonlinear regression 
models than it is in the linear case. For example, when the method of least squares 
is applied to a nonlinear regression model, the resulting normal equations are 
nonlinear and often difficult to solve. The usual approach is to directly minimize 
the residual sum of squares by an iterative procedure. Furthermore, the normal-
theory inference used in the linear regression model does not apply exactly to 
nonlinear regression models. Instead, inference based on asymptotic or large-
sample theory must be employed. In this chapter we present a description of 
estimating the parameters in a nonlinear regression model, and show how to 
make appropriate inferences on the model parameters. 

3.1 LINEAR AND NONLINEAR REGRESSION MODELS 

3.1.1 Linear Regression Models 

In Chapter 2 we focused on the linear regression model 

y = ß0 + ßxxx + ß2x2 + ~' + ßkXk+e (3.1) 

We observed that linear regression models include not only first-order relation-
ships, such as Equation (3.1), but polynomial models and other more complex 
relationships as well. In fact we could write a linear regression model as 

y = ß0 + ßlZ{+ ß2z2 + · · · + ßrzr + ε (3.2) 

Generalized Linear Models, Second Edition, by Myers, Montgomery, Vining, and Robinson 
Copyright © 2010 John Wiley & Sons, Inc. 
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where z¿ represents any function of the original regressors x\, x2,..., **, including 
expressions such as exp(jc,), y/x}, and sin_1(*/)· The reason that these models are 
called linear regression models is that they are linear in the unknown parameters ßj, 
7 = 1 , 2 , . . . , * . 

We may write the linear regression model (3.1) in a general form as 

y=f(x,V)+e (3.3) 

where /(x, ß) = ß0 4- βχχχ + j82^2 + ... + ßkXk and x' = [x\, *2>···> **]· Since 
the expected value of the model errors is zero, the expected value of the 
response variable is 

E(y) = E\f{x,9)+B] 

= / ( « , » 

Consequently, /(χ,β) is often called the expectation function for the model. 
Obviously, the expectation function here is just a linear function of the 
unknown parameters. 

3.1.2 Nonlinear Regression Models 

There are many situations where a linear regression model is not appropriate. 
For example, the analyst has direct knowledge of the form of the relationship 
between the response variable and the regressors, perhaps from the theory 
underlying the phenomena. The true relationship between the response and the 
regressors is a differential equation, or the solution to a differential equation. 
So the model must be of nonlinear form.. 

Any model that is not linear in the unknown parameters is a nonlinear 
regression model. For example, the model 

y = ßiek* + e (3.4) 

is not linear in the unknown parameters ß\, and ß2. In general, we can write a 
nonlinear regression model as 

y=f(xffi)+e (3.5) 

where ß is a p x 1 vector of unknown parameters, and ε is an uncorrelated 
random error term with Ε(ε) = 0 and Var(e) = σ2. We often assume that the 
errors are normally distributed, as in linear regression. Since 

E(y)=E\f{x#)+e] 

= /(χ,β) (3.6) 
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we call/(x, ß) the expectation function for the nonlinear regression model. This 
is very similar to the linear regression case, except that now the expectation 
function is a nonlinear function of the parameters. 

In a nonlinear regression model, at least one of the partial derivatives of the 
expectation function with respect to the parameters depends on at least one of 
the parameters. In linear regression, these derivatives are not functions of the 
unknown parameters. To illustrate, consider the linear regression model in 
Equation (3.1), for which the expectation function is 

k 

f(xfi)=ß0 + ^2ßjxj 

The partial derivatives of the expectation function are 

ö/(x,ß) 
dßj 

Xji j — U, 1 , . . . , /c 

where x0 = 1 is a dummy variable representing the intercept. Notice that the 
partial derivatives are not functions of the unknown parameters. Now consider 
the nonlinear regression model 

y=f(x,V) + s 

= ßle
ß*x + s (3.7) 

The partial derivatives of the expectation function with respect to ß\ and 
β2 are 

a/(*.P) = j 2 * 
dßx 

Because the partial derivatives are a function of the unknown parameters ß\ 
and ß2, the model is nonlinear. 

3.1.3 Origins of Nonlinear Models 

Nonlinear regression models often strike people as being very ad hoc because 
these models typically involve mathematical functions that are nonintuitive to 
people outside the specific application area. Too often, people fail to appreciate 
the scientific theory underlying these nonlinear regression models. The scientific 
method uses mathematical models to describe physical phenomena. In many 
cases, the theory describing the physical relationships involves the solution of a 
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set of differential equations, especially whenever rates of change are the basis 
for the mathematical model. This section outlines how the differential equa-
tions that form the heart of the theory describing physical behavior lead to 
nonlinear models. Our motivating example deals with reaction rates. Our key 
point is that nonlinear regression models are almost always deeply rooted in the 
appropriate science. 

Example 3.1. A Chemical Kinetics Model. We first consider formally 
incorporating the effect of temperature into a second-order reaction kinetics 
model. For example, the hydrolysis of ethyl acetate is well modeled by a 
second-order kinetics model. Let At be the amount of ethyl acetate at time t. 
The second-order model is 

dt " kA< 

where k is the rate constant. Rate constants depend on temperature, which we 
will incorporate into our model later. Let A0 be the amount of ethyl acetate at 
time zero. The solution to the rate equation is 

At A0 

With some algebra, we obtain 

At = 
\+A0tk 

We next consider the impact of temperature on the rate constant. The 
Arrhenius equation states 

* = C i exp(-A 

where Ea is the activation energy and C\ is a constant. Substituting the 
Arrhenius equation into the rate equation yields 

A , -
l+A0tCiexp(-Ea/RT) 

Thus an appropriate nonlinear regression model is 

where j8, = A0, ß2 = dA0, and ß3 = EJR. D 
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3.2 TRANSFORMING TO A LINEAR MODEL 

Sometimes an analyst will consider transforming the nonlinear regression 
model into a linear model. Often only the expectation function is considered 
when selecting the transformation. For example, consider the model 

y=f(x,V)+e 

= ß{e
ß>x + s (3.8) 

Now, since the expectation function is E(y) = / ( x , ß ) = ß\eß2'x, we can easily 
linearize the expectation function just by taking logarithms: 

In E{y) = \nßx + ß2x 

Therefore it is tempting to consider rewriting the regression model as 

ln(y) = ]nßx+ß2x + e 

= oco + (X\x + s (3.9) 

and using linear regression to estimate the parameters a0 and oci in this new 
equation. 

Considerable care must be exercised in this approach. In general, the linear 
least square estimates of the parameters in Equation (3.9) are not equivalent 
to the nonlinear parameter estimates in the original model of Equation (3.8). 
The reason is that in the original nonlinear model, least squares implies 
minimization of the sum of squared residuals on y, whereas in the trans-
formed model we are minimizing the sum of squared residuals on the logarithm 
of y. 

Note that in the original nonlinear model of Equation (3.8) the error 
structure is additive, so taking logarithms cannot produce the model in 
Equation (3.9). However, if the error structure is multiplicative, then 

;>= / (* , β)(1+β) 
= ß{e

ß>xs* (3.10) 

and taking logarithms is appropriate because 

\n(y) = In βλ + ß2x + In ε* 
= α0 + αιχ + ε** (3.11) 

Now if the new error term ε** follows a normal distribution with constant 
variance all of the standard linear regression model properties and inference 
procedures apply. 
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A nonlinear regression model that can be transformed into an equivalent 
linear regression model is said to be intrinsically linear. However, the issue often 
revolves around the error structure. That is, do the standard assumptions apply 
to the errors in the transformed or linearized model? This is often not easy to 
determine. 

Example 3.2. The Puromycin Data. Bates and Watts (1988) present data 
on the velocity of an enzymatic reaction, where the substrate has been treated 
with puromycin at several concentrations. The velocity and concentration data 
are shown in Table 3.1 and a scatter diagram is given in Figure 3.1. Bates and 
Watts propose fitting the Michaelis—Menten model for chemical kinetics 

¿to) =/(*/,» = ö ^ - (3-12) 

to the data. Note that the expectation function of the Michaelis—Menten 
model can easily be linearized because 

1 = ¿?2+*/ 
/(*i\ß) ß\Xi 

ßi ßi Xi 

= αο + αιζ,· 

where z, = 1/jc,·. Therefore we are tempted to fit the linear regression model 

y* =ao + aiZ/ + e,· 

where y* = l/y¡ is the reciprocal of the observed velocity. The least squares fit is 

j>* = 0.005107 + 0.0002472z, D 

Figure 3.2a presents a scatter diagram of the transformed data with this 
straight-line fit superimposed. Since there are replicates in the data, it is relatively 

Table 3.1 Reaction Velocity and Substrate Concentration for 
Puromycin Experiment 

Substrate Concentration (ppm) Velocity (counts/min2) 

0.02 47 76 
0.06 97 107 
0.11 123 139 
0.22 152 159 
0.56 191 201 
1.10 200 207 
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Figure 3.1 Plot of reaction velocity versus substrate concentration for the puromycin experiment. 
(Adapted from Bates and Watts, 1988, with permission of the publisher.) 

easy to see from Figure 3.1 that the variance of the original response data is 
nearly constant, but Figure 3.2a reveals that the variance of the response in the 
transformed scale is far from constant. 

Now the relationship between the parameters is 

a o = ¿ 
and 

ai = ■ 

Therefore we may set 

and 

0.005107 = — 

0.0002472 = ^ 
b\ 
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Figure 3.2 (a) Plot of inverse velocity versus inverse concentration for the puromycin data, (b) Fitted 
curve in the original scale. (Adapted from Bates and Watts, 1988, with permission of the publisher.) 

So we can estimate βχ, and yS2 in the original nonlinear model as 

b\ = 195.81 

and 

b2 = 0.04841 

Figure 3.2b shows the fitted nonlinear model in the original scale super-
imposed on the scatter plot of the data. Observe from the plot that the fitted 
asymptote is too small, and the model does not fit the data well at high 
concentrations. The variance of the replicated response observations at the 
low concentrations has been distorted by the transformation, so runs with low 
concentration (or high reciprocal concentration) have too much influence on 
the least squares fit. 

3.3 PARAMETER ESTIMATION IN A NONLINEAR SYSTEM 

3.3.1 Nonlinear Least Squares 

Suppose that we have a sample of n observations on the response and the 
regressors, say, yh xn, x¿2,..., x,*, for ι = 1,2,..., n. We have observed 
previously that the method of least squares in linear regression involves 
minimizing the least squares function 
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■sí» = Σ 

Because this is a linear regression model, when we differentiate S(ß) with 
respect to the unknown parameters and equate the derivatives to zero, the 
resulting normal equations are linear equations, and consequently they are easy 
to solve. 

Now consider the nonlinear regression situation. The general form of the 
model is 

>Ί-=/(Χι,β)+β/,ί= 1,2,...,/ι 

where x'· = [JC/I, JC/2, . . . , ^ ] for / = 1,2,..., n. The least squares function is 

S(ß) = £ [ F / - / ( x , , ß ) ] 2 (3.13) 

To find the least squares estimates, we must differentiate (3.13) with respect to 
ß. This will provide a set of p normal equations for the nonlinear regression 
situation. The normal equations are 

¿b/-/(x,-,ß)] 
/=1 

In a nonlinear regression model the derivatives in the large square brackets will 
be functions of the unknown parameters. Furthermore, the expectation 
function is also a nonlinear function, so the normal equations can be very 
difficult to solve. 

Example 3.3. Finding the Normal Equations for a Specific Model. Consider 
the nonlinear regression model in Equation (3.4): 

γ = βχ<Αχ + ε 

The least squares normal equations for this model are as follows: 

^2[yi-bieb2Xi]eb2Xi =0 
i=\ 

n 

5 3 [yi-b\eb^]b\Xie
b'Xi = 0 (3.15) 

f=l 

\ 7=1 / 

έ>/(Χήβ) 

dßj 
= 0 for 7 = 1,2,...,p (3.14) 

6=b 
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After simplification the normal equations are 

/=1 i = l 

J2yiXieb2Xi - bx J^Xie2b2Xi = 0 (3.16) 
i=l /=1 

These equations are not linear in bx and b2, and no simple closed-form solution 
exists. In general, iterative methods must be used to find the values of bx and b2. 
To further complicate the problem, sometimes there are multiple solutions to 
the normal equations. That is, there are multiple stationary values for the 
residual sum of squares function S(ß). D 

3.3.2 The Geometry of Linear and Nonlinear Least Squares 

Examining the geometry of the least squares problem is helpful in under-
standing the complexities introduced by a nonlinear model. For a given sample, 
the residual sum of squares function £(β) depends only on the model 
parameters β. Thus, in the parameter space (the space defined by the ßu 

βΐτ · · ·, ßP), we can represent the function 5(β) with a contour plot, where each 
contour on the surface is a line of constant residual sum of squares. 

Suppose that the regression model is linear. Figure 3.3a shows the contour 
plot for this situation. If the model is linear in the unknown parameters, the 
contours are ellipsoidal and have a unique global minimum at the least squares 
estimator b. 

When the model is nonlinear, the contours often appear as in Figure 3.3b. 
Notice that these contours are not elliptical, and are in fact quite elongated 
and irregular in shape. A banana-shaped appearance is very typical. The 
specific shape and orientation of the residual sum of squares contours 
depend on the form of the nonlinear model and the sample of data that 
has been obtained. Often the surface will be very elongated near the 
optimum, so many solutions for β produce a residual sum of squares that 
is close to the global minimum. This results in a problem that is 
illconditioned, and in such problems it is often difficult to find the global 
minimum for ß. In some situations the contours may be so irregular that 
there are several local minimum, and perhaps more than one global 
minimum. Figure 3.3c shows a situation where there is one local minimum 
and one global minimum. 

3.3.3 Maximum Likelihood Estimation 

We have concentrated on least squares in the nonlinear case. If we know the 
distribution of the error then we can use the method of maximum likelihood to 
estimate the model parameters. If the errors are normally and independently 
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ft> 
b«(X'X)-1X'y 

(a) Linear model 

ft, 

A 

b (the minimizing value) 

(b) Nonlinear model 

A 

Local minimum 

b (global 
minimum) 

(c) Nonlinear model with two local minima 

Figure 3.3 Contours of the residual sum of squares function: (a) linear model, (b) nonlinear 
model, and (c) nonlinear model with one local and one global minimum. 
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distributed with constant variance, application of the method of maximum 
likelihood to the estimation problem will lead to least squares. For example, 
consider the model 

>Ί·=/(χ/,β)+ε„ ι = 1 ,2 , . . . ,Λ (3.17) 

If the errors are normally and independently distributed with mean zero and 
variance σ2, then the likelihood function is 

^(β ,σ 2 ) = 1 
(2πσ2) 2\"/2 exp - 2? Σ [*-/(*'»]' 

1=1 

(3.18) 

Recall that maximizing the likelihood function is equivalent to maximizing the 
log-likelihood, which is 

In ̂ (β,σ2)= -"- 1η(2π<τ2) - ¿ ¿ > - / (x„ß)] 2 (3.19) 
i=\ 

Clearly, choosing the vector of parameters b that maximizes the log-likelihood 
is equivalent to minimizing the residual sum of squares. Therefore, in the 
normal-theory case, least squares estimates in nonlinear regression are the same 
as maximum likelihood estimates. 

From Equation (3.14) the maximum likelihood estimates must satisfy the 
score equations 

-2 Σ^<·-/(*<·'ß)] 
ö/(x/,p) 

dßi 
= 0fory= 1,2,...,/? 

ß=b 

ß=b 
for i = 1,2,..., n and Let μ / =f(xh β) for i = 1,2,..., n and D¿j = ψ ^ 

j = 1,2,..., p. Then the score equations for a nonlinear regression model can be 
written in matrix notation as 

- i y ( y -A ) = o (3.20) 

where μ' = \pu μτ,..., μ„], D = [Dy], and μ denotes the expectation function 
with the parameters β replaced with their estimators b. Note that the score 
equations are nonlinear equations. Furthermore, in linear regression we have 
D = X and μ, = Xß, so the score equations for nonlinear regression are directly 
analogous to the score equations for linear regression. Score equations very 
similar to Equation (3.20) arise in subsequent chapters for generalized linear 
models. 
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3.3.4 Linearization and the Gauss-Newton Method 

A widely used method for least squares estimation of the parameters in 
nonlinear regression is linearization of the expectation function followed by 
the Gauss—Newton iteration method. Linearization is accomplished by a 
Taylor series expansion of f(xh ß) about a point bo = [6io>¿20>· · · >¿/?o] with 
only the linear terms retained. The point b0 is usually an initial estimate or a set 
of starting values for the model parameters ß. The Taylor series expansion 
yields 

^,·=/(χ, · ,β) + β,· 

=/(x/fbo) + ¿ ö/(x/,ß) 
dßj 

(ßj-bjo)+sh i= 1,2,. 
P=b0 

If we set 

ö/(*,ß) 
dßj 

ß=bo 

tf = (ßj-bjo) 

then we can write Equation (3.21) as 

(3.21) 

^ Σ ^ + ̂  i=l,2,. . . ,« (3.22) 

This is a linear regression model with unknown parameters ffj,j= 1,2,..., p. 
In matrix notation Equation (3.22) is 

y0 = DoOo + ε 

and the least squares estimate of θο is 

θο = (D/oDo)-1DOy0 

= (D'oDo)-1DO(y-f0) 

Now because θ0 = β - bo, we can use 

bi = b0 + θ0 

(3.23) 

(3.24) 

(3.25) 
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as a revised estimate of the unknown parameters ß. We usually call θο the vector 
of increments. Now we may use the revised parameter estimates bi in Equation 
(3.21) in the same role originally played by the starting values b0, obtaining 
another set of revised estimates, say, b2. In general, at the k th of these iterations 
we have 

bfc+i = bk+Qk 

- b . + ^ D . r ' D U y - f , ) (3.26) 

where 

f* = [/iV2\ ...,/„*]' 
b¿ = [b\k,b2k,· -'ibpk]' 

This iterative process continues until convergence, that is, until there is little 
meaningful change in the estimates of the parameters. Typically the conver-
gence criteria is based on 

\bj,k+i ~ bjk 

bjk 
<δ, j= 1,2,...,/? 

where δ is some small number, say, 10~6. At each iteration the residual sum of 
squares should also be evaluated to ensure that a reduction in its value has been 
obtained. 

Example 3.4. The Puromycin Data. We reconsider the puromycin data 
from Example 3.2, and use the Gauss—Newton linearization scheme to fit the 
Michaelis—Menten model. We use as the starting values for the parameters 
b\Q = 205 and b2o

 = 0.08, based on the chemist's, suggestion. Later we show 
another approach for obtaining the starting values. The data and other quan-
tities necessary to perform the linearization procedure are given in Table 3.2. 

To see how the required quantities are calculated, note that the derivatives of 
the expectation function for the Michaelis—Menten model are 

df(xJuß2)_ x 
dß{ ß2 + x 

and 

df{x,ßußi)_ -ßxx 
dß2 {ß2+x) 2 
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Table 3.2 Data, Derivatives, / ° and y¡ - y¡° for the Puromycin Data at the Starting 
Values b0 = 1205,0.081' 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

x¡ 

0.02 
0.02 
0.06 
0.06 
0.11 
0.11 
0.22 
0.22 
0.56 
0.56 
1.10 
1.10 

y¡ 

76 
47 
97 
107 
123 
139 
159 
152 
191 
201 
207 
200 

fi° 
41.00 
41.00 
87.86 
87.86 
118.68 
118.68 
150.33 
150.33 
179.38 
179.38 
191.10 
191.10 

yt-f» 
35.00 
6.00 
9.14 
19.14 
4.32 
20.32 
8.67 
1.67 

11.62 
21.62 
15.90 
8.90 

^ 

0.2000 
0.2000 
0.4286 
0.4286 
0.5789 
0.5789 
0.7333 
0.7333 
0.8750 
0.8750 
0.9322 
0.9322 

&a 
-410.00 
-410.00 
-627.55 
-627.55 
-624.65 
-624.65 
-501.11 
-501.11 
-280.27 
-280.27 
-161.95 
-161.95 

The first observation on x is xx = 0.02, so we have 

D° 

ΰ 

χ\ 0.02 

ß2+x\ 

-0ι*ι 

/}2=0.08 0.08 + 0.02 
0.2000 

12 {ßi + xxf 0, =205, ft=0.08 

(-205)(0.02) 

(0.08 + 0.02)2 
= -410.00 

The derivatives £>° are collected into the matrix D0 and the vector of increments 
calculated from Equation (3.24) as 

θ0 = 
8.03 

-0.017 

The revised estimate of the parameters bj, from (3.25) is 

bi = b0 + θο 

Γ 205.001 

. 0.08 . 
r213.03-

L 0.063 . 

+ 
Γ 8.03 "I 

.-0.017 j 



92 NONLINEAR REGRESSION MODELS 

The residual sum of squares at this point is S(bi) = 1206, which is considerably 
smaller than S(b0). Therefore bi, is adopted as the revised estimate of ß and 
another iteration would be performed. 

The Gauss-Newton algorithm converged at the solution b' = [212.7,0.0641]' 
with S(b) = 1195. Therefore the fitted model obtained by linearization is 

y = 
b\Xi 2X2.1 Xi 

b2+Xi 0.0641 +x¡ 

Figure 3.4 shows the fitted model. Notice that the nonlinear model provides a 
much better fit to the data than did the transformation followed by linear 
regression did in Example 3.3 (compare Figure 3.4 and Figure 3.2b). D 

Residuals can be obtained from a fitted nonlinear regression model in the 
usual way; that is, 

ei=yi~9h i= 1,2,...,« 

240 h 

200 h 

> 

0 0.2 0.4 0.6 0.8 1 1.2 

x, Concentration 

Figure 3.4 Plot of fitted nonlinear regression model, Example 3.4. 
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In the last example the residuals are computed from 

e¡ = y i -
b\Xj 

Pi + Xi 
= yt 

212.7*,· 
0.0641 +x¡ 

i = l , 2 , . . . , 1 0 

The residuals are plotted versus the predicted values in Figure 3.5. A normal 
probability plot of the residuals is shown in Figure 3.6. There is one moderately 
large residual; however, the overall fit is satisfactory, and a substantial improve-
ment from that obtained by the transformation approach in Example 3.2. 

Estimation of 'σ2 

When the estimation procedure converges to a final vector of parameter 
estimates b, we can obtain an estimate of the error variance σ2 from the 
residual mean square 

tiyi-hf t\yi-fi*iM]2 

σ2 = MSres 
1=1 1=1 

n-p n-p n-p 
(3.27) 
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Figure 3.5 Plot of residuals versus predicted. Example 3.4. 
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Figure 3.6 Normal probability plot of residuals, Example 3.4. 

where p is the number of parameters in the nonlinear regression model. For the 
puromycin data in Example 3.4, we found that the residual sum of squares at 
the final iteration was S(b) = 1195, so the estimate of σ2 is 

. 2 = ^ b ) = U 9 5 n 9 5 

n-p 1 0 - 2 

Graduate level mathematical statistics texts, such as Bickel and Doksum 
(2001), outline the statistical properties of the score function. From these 
properties the asymptotic (large-sample) covariance matrix of the parameter 
vector b can be estimated by 

Var(b) = ^ (D 'D)" 1 

where D is the matrix of partial derivatives defined previously, evaluated at the 
final-iteration least squares parameter estimates b. This asymptotic covariance 
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is the inverse of the information matrix, which can be found from the score 
equation in (3.20); that is, 

1(b) = Var 1 
tf(y-rt = Í D D 

The covariance matrix of the b vector for the Michaelis—Menten model in 
Example 3.4 is 

= 119.5 

Var(b) = ^(D'D) - 1 

0.4037 36.82 x 10"5 

36.82 x 10"5 57.36 x 10"8 

The main diagonal elements of this matrix are approximate variances of the 
estimates of the regression coefficients. Therefore approximate standard errors 
on the coefficients are 

se(bi) = ^/Var(éi) = \Λ 19.5(0.4037) = 6.95 

and 

seih) = VVar(*2) = \Λ 19.5(57.36 x 10"8) = 8.28 x 10"3 

and the correlation between b\ and b2 is approximately 

36.82 x 10"5 

^0.4037(57.36 x 10"8) 
0.77 

A Graphical Perspective on Linearization 
We have observed that the residual sum of squares function 5(b) for a nonlinear 
regression model is usually an irregular banana-shaped function, as shown in 
Figure 3.3b,c. On the other hand the residual sum of squares function for linear 
least squares is very well behaved; in fact, it is elliptical and has the global 
minimum at the bottom of the bowl. Refer to Figure 3.3a. The linearization 
technique converts the nonlinear regression problem into a sequence of linear 
ones, starting at the point b0. 

The first iteration of linearization replaces the irregular contours with a set 
of elliptical contours. The irregular contours of *S(ß) pass exactly through the 
starting point b0, as shown in Figure 3.7a. When we solve the linearized 
problem, we are moving to the global minimum on the set of elliptical contours. 
This is done by ordinary linear least squares, and it yields the solution b^ Then 
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b 
(Global 

minimum) 

Isum of squares contour 
in jhe linearized problem 

-b t (linearized solution 
first iteration) 

bo (starting value) 

(a) First iteration A 

A 

A 
(b) Evolution of successive linearization iterations 

Figure 3.7 A geometric view of linearization: (a) first iteration and (b) evolution of successive 
linearization iterations. 

the next iteration just repeats the process, starting at the new solution bi. The 
eventual evolution of linearization is a sequence of linear problems for which 
the solutions close in on the global minimum of the nonlinear function. This is 
illustrated in Figure 3.7b. Provided that the nonlinear problem is not too ill 
conditioned, either because of a poorly specified model or inadequate data, the 
linearization procedure should converge to a good estimate of the global 
minimum in a few iterations. 

Linearization is facilitated by a good starting value b0; that is, one that is 
reasonably close to the true parameter values producing a global minimum on 
the residual sum of squares surface. When b0 is close to the true vector of 
parameter values ß, the actual residual sum of squares contours of the 
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nonlinear problem are usually well approximated by the contours of 
the linearized problem. We discuss obtaining starting values in Section 3.3.7. 

Computer Solution 
Many statistics software packages have nonlinear regression modeling cap-
ability. For example, the SAS procedure PROC NLIN is a widely used 
program. It has several procedures for parameter estimation. The program 
estimates the required derivatives numerically or allows the user to input the 
derivatives directly. Many PC-based statistics packages also have nonlinear 
regression model-fitting capability. Table 3.3 gives the appropriate SAS code to 
analyze the puromycin data. Table 3.4 presents the resulting output from 

Table 3.3 SAS Code for Puromycin Data Set 
data puromycin; 
input x y; 
cards; 
0.02 76 
0.02 47 
0.06 97 
0.06 107 
0.11 123 
0.11 139 
0.22 159 
0.22 152 
0.56 191 
0.56 201 
1.10 207 
1.10 200 
Proc nlin; 

parms tl = 195.81 
t2 = 0.04841; 

model y = tl*x/ (t2 + x) ; 
der.tl = x/ (t2 + x) ; 
der.t2 = -tl*x/ ( (t2 + x) * (t2 + x) ) ; 
output out = puro2 student = rs p = yp; 

run; 
goptions device = win hsize = 6 vsize = 6; 
symbol value = star; 

proc gplot data = puro2 ; 
plot rs*yp rs*x; 
plot y*x = x x * ' 'yp*x = x % + ' ' /overlay; 

run; 
proc capability data = puro2 ; 
var rs ; 
qqplot rs; 

run; 
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Table 3.4 Output from SAS PROC NLIN for the Puromycin Data 

N o n l i n e a r L e a s t S q u a r e s I t e r a t i v e Phase 
Dependent Var iab le Y 
I t e r 

0 
1 
2 
3 
4 
5 

A 
205 .000000 
213 .028894 
212 .603375 
212 .675434 
212 .682940 
212 .683666 

Method: Gauss 
B 

0 .080000 
0 .062892 
0 .063988 
0 .064108 
0 .064120 
0 .064121 

-Newton 
Sum of S q u a r e s 

3155 .004234 
1205 .661845 
1195 .477124 
1195 .449080 
1195.448817 
1195 .448814 

NOTE: Convergence criterion met. 

Nonlinear Least Squares 
Summary Statistics 

Dependent Variable Y 

Source 
Regression 
Residual 
Uncorrected Total 
(Corrected Total) 

Parameter Estimate 

DF Sum of Squares Mean Square 
2 
10 
12 
11 

270213.55119 
1195.44881 

271409.00000 
30858.91667 

135106.77559 
119.54488 

Asymptotic 
Std. Error 

212.6836658 6.9471509268 
0.0641212 0.0082809366 

Asymptotic 95% 
Confidence Interval 
Lower Upper 

197.20435150 228.16298000 
0.04566997 0.08257235 

Asymptotic Correlation Matrix 

Corr A B 

A 
B 0.7650835687 

0.7650835687 
1 

the SAS PROC NLIN. Notice that five iterations were required to produce the 
least squares estimates of the parameters. 

The computer output in Table 3.3 for the puromycin data closely resembles 
the output from a standard linear regression computer program. The table 
presents the parameter estimates, where the labels A and B represent b\, and b2 

respectively. We used the same starting values in these calculations as we did in 
Example 3.4, 610 = 205 and b2o = 0.08. The solution found is virtually identical 
to the linearization and Gauss-Newton iteration solution from Example 3.4. 
The output also contains the standard errors of the parameter estimates. These 
are very similar to the results given earlier. 
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Notice that one could construct a Mike ratio for each coefficient that is 
computed as 

b _ coefficient estimate 
se(b) standard error of the coefficient 

In linear regression we would recognize this as a ¿-statistic for testing the null 
hypothesis H0: ß = 0. Table 3.3 also presents an analysis of variance partition-
ing of the total variability in the response y. We could construct a ratio of 
the regression mean square to the error or residual mean square. In linear 
regression, this would be the familiar F-statistic for testing significance of 
regression, or H0 : ßu = ß2 = 0. In nonlinear regression these ratios are not 
exact t- or F-statistics, but they can usually be interpreted as approximate t- or 
F-statistics. Statistical inference on the model in nonlinear regression rests on 
asymptotic or large-sample results. In Section 3.4 we discuss some useful aspects 
of inference for nonlinear regression models. 

3.3.5 Using R to Perform Nonlinear Regression Analysis 

In this section we outline the appropriate R code to analyze the puromycin 
data. This analysis assumes that the data are in a file named "puromycin.txt". 
The R code to read the data into the package is 

puro < - r e a d . t a b l e ("puromycin. txt" , header=TRUE/ sep="") 

The object puro is the R data set. The commands 

p u r o . m o d e K - n l s (y~tl*x/ (t2+x) , s t a r t = l i s t ( t l=205 /12=. 08) , data= 
puro)) 
summary (puro.model) 

tell R to estimate the model and to print the estimated coefficients and their 
tests. The commands 

yhat < - fitted (puro.model) 
e < - r e s i d u a l s ( t rans.model) 
qqnorm (e) 
p l o t (yhat, e) 
p l o t (puro$x, t ) 

set up and then create the appropriate residual plots. The commands 

puro2 < - cbind (puro, yha t , e) 
w r i t e . t a b l e (puro2, "puromycin_output . txt") 
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create a file "puromycin_output.txt" which the user can then import into his/ 
her favorite package for doing graphics. 

3.3.6 Other Parameter Estimation Methods 

The basic linearization method for parameter estimation in nonlinear regres-
sion described in Section 3.3.4 may converge very slowly in some problems. In 
other problems it may generate a move in the wrong direction, with the residual 
sum of squares function S(bk) actually increasing at the kth iteration, or in 
extreme situations linearization and Gauss-Newton may fail to converge at 
all. Consequently, several other techniques for solving the nonlinear regression 
problem have been developed. Some of them are modifications and refinements 
of the linearization scheme. In this section we give a brief description of some of 
these procedures. 

The Method of Steepest Descent 
The method of steepest descent attempts to find the global minimum on the 
residual sum of squares function by direct minimization. The objective is to 
move from an initial starting point b0 in the vector direction with components 
given by the derivatives of the residual sum of squares function with respect to 
the elements of the parameter vector ß. Usually these derivatives are estimated 
by fitting a first-order or planar approximation around the point b0. The 
regression coefficients in the first-order model are taken as approximations to 
the first derivatives. 

The method of steepest descent is widely used in response surface metho-
dology to move from an initial estimate of the optimum conditions for a 
process to a region more likely to contain the optimum. The major disadvan-
tage of this method in solving the nonlinear regression problem is that it may 
converge very slowly. Steepest descent usually works best when the starting 
point is a long way from the optimum. However, as the current solution gets 
closer to the optimum, the procedure produces shorter and shorter moves and 
zig-zag behavior. This is the convergence problem mentioned previously. 

Fractional Increments 
A standard modification to the linearization technique is the use of fractional 
increments. To describe this method, we let fy be the standard increment vector 
in Equation (3.26) at the kth iteration, but continue to the next iteration only if 
S(l>A:+i) < S(bk). If S(bA:+i) > S(bk), we use β*/2 as the vector of increments. 
This halving could be used several times during an iteration, if necessary. If 
after a specified number of trials a reduction in S(bk) is not obtained, the 
procedure is terminated. The general idea behind this method is to keep 
the linearization procedure from taking a step at any iteration that is too 
big. The fractional increments technique is helpful when convergence problems 
are encountered in the basic linearization procedure. 



PARAMETER ESTIMATION IN A NONLINEAR SYSTEM 101 

Marquardt*s Compromise 
Another popular modification to the basic linearization algorithm was devel-
oped by Marquardt (1963). He proposed computing the vector of increments at 
the fcth iteration from 

(iy*D* + tf,)é* = iy*(y-fO (3.28) 

where λ > 0. Note the similarity to ridge regression (see Myers, 1990, and 
Montgomery, Peck, and Vining, 2006). Since the regressor variables are 
derivatives of the same function, the linearized function invites multi-
collinearity. Thus the ridgelike procedure in (3.28) is intuitively reasonable. 
Marquardt (1963) used a search procedure to find a value of λ that would 
reduce the residual sum of squares at each stage. 

Different computer programs select λ in different ways. For example, PROC 
NLIN in SAS begins with λ = 10~8. A series of trial-and-error computations 
are done at each iteration with λ repeatedly multiplied by 10 until 

S(bk+l)<S(bk) (3.29) 

The procedure also involves reducing λ by a factor of 10 at each iteration as long 
as (3.29) is satisfied. The strategy is to keep λ as small as possible while ensuring 
that the residual sum of squares is reduced at each iteration. This general 
procedure is often called Marquardt's compromise because the resulting vector 
of increments produced by his method usually lies between the Gauss-Newton 
vector in the linearization procedure and the direction of steepest descent. 

3.3.7 Starting Values 

Fitting a nonlinear regression model requires starting values b0 of the model 
parameters. Good starting values, that is, values of b0 that are close to the 
true parameter values, minimize convergence difficulties. Modifications to 
the linearization procedure such as Marquardt's compromise make the proce-
dure less sensitive to the choice of starting values, but it is always a good idea to 
select b0 carefully. A poor choice could cause convergence to a local minimum 
on the function, and we might be completely unaware that a suboptimal 
solution has been obtained. 

In nonlinear regression models the parameters often have some physical 
meaning, and this can be very helpful in obtaining starting values. It may also 
be helpful to plot the expectation function for several values of the parameters 
to become familiar with the behavior of the model and how changes in the 
parameter values affect this behavior. 

For example, in the Michaelis-Menten function used for the puromycin 
data, the parameter b\ is the asymptotic velocity of the reaction, that is, the 
maximum value of /as x-^oo. Similarly b2 represents the half-concentration or 
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the value of JC such that when the concentration reaches that value, the velocity 
is one-half the maximum value. 

The chemist in Example 3.4 took this basic approach. She examined the 
scatter diagram in Figure 3.1 and concluded that b\Q = 205 and 62o = 0.08. 

In some cases we may transform the expectation function to obtain starting 
values. For example, the Michaelis—Menten model can be linearized by taking 
the reciprocal of the expectation function. Linear least squares can be used 
on the reciprocal data, as we did in Example 3.2, resulting in estimates of the 
linear parameters. These estimates can then be used to obtain the necessary 
starting values b0. Graphical transformation can also be very effective. A nice 
example of this is given in Bates and Watts (1988, p. 47). 

3.4 STATISTICAL INFERENCE IN NONLINEAR REGRESSION 

In a linear regression model, when the errors are normally and independently 
distributed, exact statistical tests and confidence intervals based on the t and F 
distributions are available, and the least squares (or equivalentiy the maximum 
likelihood) parameter estimates have useful and attractive statistical proper-
ties. However, this is not the case in nonlinear regression, even when the errors 
are normally and independently distributed. That is, in nonlinear regression 
the least squares (or maximum likelihood) estimates of the model parameters 
do not enjoy any of the attractive properties that their counterparts do in 
linear regression, such as unbiasedness, minimum variance, or normal sam-
pling distributions. Statistical inference in nonlinear regression depends on 
large-sample or asymptotic results. The large-sample theory generally applies 
both for normally and nonnormally distributed response variables. 

The key asymptotic results may briefly be summarized as follows. In general, 
when the sample size n is large, the expected value of b is approximately equal 
to ß, the true vector of parameter values. Furthermore, the sampling distribu-
tion of b is approximately normal. The asymptotic covariance of b is the inverse 
of the information matrix. Recall from our discussion of maximum likelihood 
estimation in linear regression (Chapter 2) that the information matrix is the 
negative of the Hessian matrix, which is just the matrix of second derivatives 
of the log-likelihood function. For a normal response distribution, the Hessian 
is —(DO) / σ2, where D is the matrix of partial derivatives of the model 
expectation function evaluated at the final-iteration least squares estimate b. 
Therefore the asymptotic covariance matrix of b is 

Var(b) = a2(D'D)_1 (3.30) 

As we indicated earlier, we can arrive at this result by finding the information 
matrix as the variance of the score, and the covariance matrix of b is the inverse 
of this information matrix. Consequently, statistical inference for nonlinear 
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regression when the sample size is large is carried out much as it is for linear 
regression. For example, to test the hypothesis that an individual regression 
coefficient is equal to zero, or 

Η0:β = 0 
ΗχΐβφΟ (3.31) 

we use a ratio similar to a i-statistic given by 

' 0 = ^ 7 7 (3.32) 
se(b) 

where se{b) is the estimated standard error of b, which we would obtain as a 
diagonal element of Var(b) = a2(D'D)_1. The asymptotic distribution of t0 is 
N(0,1) when the null hypothesis is true. This large-sample approach to statis-
tical inference is usually called Wald inference. An approximate 100(1 - a)% 
Wald confidence interval on the parameter ß is 

b - za/2 se(b) <ß<b + za/2 se(b) (3.33) 

In many applications the model builder is interested in a function of the 
parameters in a nonlinear model, and the function is nonlinear in the elements 
of ß. For example, one may be interested in a confidence interval on the mean 
response or a prediction interval on a future observed response. In general, 
suppose that we are interested in a nonlinear function of the elements of ß, say, 
g(ß). The point estimate of g(ß) is g(b), and g(b) is approximately (asymptoti-
cally) normally distributed. The mean and variance of g(b) are found by 
expanding g(b) in a first-order Taylor series around ß and applying the expected 
value and variance operators to the resulting expression (this is also sometimes 
called the delta method). The first-order Taylor series expansion is 

g(b)=g(ß)+d ' (b-ß) + * (3.34) 

where R is the remainder and d' = [dg(ff)/dßu dg(P)/dß2,..., dg($)/dßp] eval-
uated at ß = b. Now ignoring the remainder, the expected value of g(b) is 

£U(b)]=g(ß) (3.35) 

and the covariance matrix of g(b) is 

Var [g(b)] SÍ ^ ' (D 'D)" 1 d (3.36) 
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The applications of these results to obtaining confidence intervals on the 
mean response and prediction intervals in nonlinear regression are straightfor-
ward. Suppose that x0 is the location for which one wishes to obtain the point 
estimate or prediction of the response and the corresponding interval. In these 
applications the vector of derivatives d is just 

< = [d/(x0, ß)/0,, df(x0, ß)/j82>..., df(xo, ß)//y 
Consequently, an estimate of the mean response at the point of interest x0 is 

>>(xo)=/(xo,b) (3.37) 

and the approximate standard error of the estimate of the mean response at 
x0 is 

se\y(x0)} = yJ&é¡>(pO)-láo (3.38) 

Therefore the approximate 100(1 — oe)% confidence interval on the mean 
response at the point x0, say, μγ\Χο, is 

j>(xo) - ^ ^ d ^ D ' D J - ' d o < μ,,Χ0 < j>(xo) + ze/2^/a2di(D'D)-1do (3.39) 

By analogy with the results from linear regression, the 100(1 - a) prediction 
interval on the future observation at the point x0 is 

J>(xo) - ^ ^ ( Ι + ^ ^ - ^ ο ) 

< yo < y(xo) + z«/2 V ^ l + d ^ D ' D r ' d o ) (3.40) 

These are Wald tests and confidence intervals, which are only approximate 
procedures. 

Example 3.5. The Puromycin Data. Reconsider the Michaelis—Menten 
model for the puromycin data from Example 3.2. The computer output for 
the model is shown in Table 3.3. To test for significance of regression (i.e., H0 : 
ß\ = ßi = 0), we could use the ratio 

r MSModei 135,106,77 
Fo = ^tsZ-= 119.54 = 1 1 3 0 · 2 2 

and compute an approximate P-value from the F2, io distribution. This P-value 
is considerably less than 0.0001 (1.66E - 12), so we are safe in rejecting the null 
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hypothesis and concluding that at least one of the model parameters is nonzero. 
To test hypotheses on the individual model parameters, H0: ßx = 0 and H0: 
ß2 = 0, we could compute the Wald test statistics from Equation (3.32) as 

- bl - 212.6836658 
t0 ~ se{bx) " 6.9471509268 " 

and 

_ b2 _ 0.0641212 
to ~ se{b2) ~ 0.0082809366 " ' 

The approximate P-values for these two test statistics are obtained from the 
N(0, 1) distribution and are obviously small. Therefore we would conclude that 
both model parameters are nonzero. 

Approximate 95% confidence intervals on βχ and β2 are found from 
Equation (3.33) as follows: 

b\ - ¿0.025 ^ ( * 1 ) ^ ß\ ^ ¿1 + z0.025Se(b\) 

212.6836658 - 1.96(6.9471509268) < βλ < 212.6836658 + 1.96(6.9471509268) 

199.0672 < βχ < 226.3001 

and 

bi - zom5se(b2) <ß2< zom5se(b2) 

0.0641212- 1.96(0.0082809366) <β2 <0.0641212+ 1.96(0.0082809366) 

0.0479 <β2< 0.0804 

respectively. In comparing these results to the results from the computer output 
in Table 3.3, we note that the confidence intervals computed by SAS are slightly 
different. This is because SAS used the /-distribution with 10 degrees of 
freedom to construct the confidence intervals. D 

Validity of Approximate Inference 
Since the test procedures and confidence intervals in nonlinear regression are 
based on large-sample theory, and typically the sample size in a nonlinear 
regression problem may not be all that large, it is logical to inquire about the 
validity of the procedures. It would be desirable to have a simple guideline, or 
rule of thumb, that would tell us when the sample size is large enough so that 
the asymptotic results are valid. Unfortunately, no such general guideline is 
available. However, there are some indicators that the results may be valid in a 
particular application. 
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1. If the nonlinear regression estimation algorithm converges in only a few 
iterations, then this indicates that the linear approximation used in 
solving the problem was very satisfactory, and it is likely that the 
asymptotic results will apply nicely. If convergence requires many 
iterations, this can be a symptom that the asymptotic results may not 
apply, and other adequacy checks should be considered. 

2. There are several measures of model curvature and nonlinearity that have 
been developed. Bates and Watts (1988) discuss these procedures. These 
measures describe quantitatively the adequacy of the linear approxima-
tion. Once again, an inadequate linear approximation would indicate that 
the asymptotic inference results are questionable. 

3. A resampling technique called the bootstrap can be used to study the 
sampling distribution of estimators, to compute approximate standard 
errors, and to find approximate confidence intervals. We could compute 
bootstrap estimates of these quantities and compare them to the 
approximate standard errors and confidence intervals produced by 
the asymptotic results. Good agreement with the bootstrap estimates is 
an indication that the large-sample inference results are valid. 

When there is some indication that the asymptotic inference results are not 
valid, the model builder has only a few choices. One possibility is to consider an 
alternate form of the model, if one exists, or perhaps a different nonlinear 
regression model, or perhaps a generalized linear model. Sometimes graphs of 
the data and graphs of different nonlinear model expectation functions are 
helpful in selecting another nonlinear model. Alternatively, one could use the 
inference results from resampling or the bootstrap. However, if the model is 
wrong, or poorly specified, there is little reason to believe that resampling 
results will be any more valid than the results from large-sample inference. 

3.5 WEIGHTED NONLINEAR REGRESSION 

The reader quickly discovers that in the analysis of generalized linear models 
the standard least squares procedure discussed in this chapter does not apply 
because the response distributions involved (binomial, Poisson) do not possess 
the property of constant variance. As a result, the maximum likelihood 
procedure, which in the normal response case reduces to least squares, has 
an important connection to weighted least squares. The reader should recall the 
generalized and weighted least squares estimators in linear regression models 
given by Equations (2.68) and (2.71) and the variance-co variance matrix of the 
estimator given by Equation (2.69). Also recall that the linearization procedure 
that stems from the use of the Taylor series heavily involves the derivative 
matrix D. Now, in a situation where one is confronted with a nonlinear model 
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with E(yt) = μ,, and Var(y,·) = diag(ff|, σ^,... ,σ^), the operative procedure is to 
apply generalized least squares just as in the linear regression model case, and 
thus choose ß so as to minimize 

1 = (γ-μ)'χ-ι(γ-μ) 

with resulting score function 

Β , ν - 1 ( γ - μ ) = 0 (3.41) 

At this point we assume that the matrix of weights V is known. In Chapters 4 
and 5 the elements of V invariably are functions of the model parameters. If V 
is known, Equation (3.41) can be solved through the Gauss—Newton proce-
dure with the yth iteration producing 

bj = by_! + (D ,V-1D)"1D ,V-1(y - μ) 

Here, D contains β replaced by b,_ \. Note the similarity to the situation in which 
V = I. The procedure is continued to convergence. As before, the asymptotic 
variance-co variance matrix is obtained from the information matrix as 

1(b) = Var(score) = D ' V 1 VV"1 D = D V 1 D 

Thus asymptotically 

Var(b) = (D /V-1D)"1 

Once again, note how similar this result is to the case of weighted least squares for 
linear regression where D = X and Var(b) = (X'V^X)""1. 

3.6 EXAMPLES OF NONLINEAR REGRESSION MODELS 

Ideally, a nonlinear regression model is chosen based on theoretical considera-
tions from the subject matter field. That is, specific chemical, physical, or 
biological knowledge leads to a mechanistic model for the expectation function 
rather than an empirical one. Many nonlinear regression models fall into 
categories designed for specific situations or environments. In this section we 
discuss a few of these models. 

Perhaps the best known category of nonlinear models is growth models. 
These models are used to describe how something grows with changes in a 
regressor variable. Often the regressor variable is time. Typical applications are 
in biology, where plants and organisms grow with time, but there are also many 
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applications in economics and engineering. For example, the reliability growth 
in a complex system over time may often be described with a nonlinear 
regression model. 

The logistic growth model is 

'-x+häi-h**· (342) 

The parameters in this model have a simple physical interpretation. For x = 0, 
y = βι/(\ + ß2) is the level of y at time (or level) zero. The parameter ßu is the 
limit to growth as x-+ oo. The values of ß2 and j?3 must be positive. Also the 
term -ß?>x in the denominator exponent of Equation (3.42) could be replaced 
by a more general structure in several regressors. 

The Gompertz model given by 

3> = / ϊ , β χ ρ ( - 0 2 * - Λ * ) + β (3.43) 

is another widely used growth model. At x = 0 we have y = ß\e~^2 and βΪ9 is 
the limit to growth as *-► oo. 

The Weibull growth model is 

y = ßi-ß2exp{-ß3Xß*) + * (3.44) 

When x = 0, we have y = ß\ — ß2, while the limiting growth is βχ, as x-> oo. 
In some applications the expected response is given by the solution to a set of 

linear differential equations. These models are often called compartment models 
and since chemical reactions can frequently be described by linear systems of 
first-order differential equations, they have frequent application in chemistry, 
chemical engineering, and pharmacokinetics. Other situations specify the 
expectation function as the solution to a nonlinear differential equation or 
an integral equation that has no analytic solution. There are special techniques 
for the modeling and solution of these problems. The interested reader is 
referred to Bates and Watts (1988). 

3.7 DESIGNS FOR NONLINEAR REGRESSION MODELS 

Section 2.7 outlines the basic issues for designing experiments that we plan to 
analyze by linear regression analysis. These same basic issues carry over 
to experimental designs for nonlinear models. However, now the situation is 
more complex since the variance—covariance matrix for the estimated coeffi-
cients depends on the very unknown parameters that we seek to estimate. 
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The most common optimality criterion used to generate nonlinear designs 
is D. For the linear regression situation, 

Var(b) = σ2(Χ'Χ)_1 

The D-optimal design maximizes the determinant of X'X. In this case, X does 
not depend on β. As a result, finding the D-optimal design is a fairly 
straightforward exercise in nonlinear programming. 

For the nonlinear regression situation, the asymptotic variance of the vector 
of estimated coefficients is 

Var(b) = tf2(D'D)_1 

where D is the matrix of first derivatives of the nonlinear function with respect 
to the unknown parameters. The D-optimal design minimizes the generalized 
variance, which is equivalent to maximizing the determinant of D'D. However, 
D O is a function of these unknown coefficients. The issue then becomes how to 
overcome this problem. 

Box and Lucas (1959) treated the starting values to be used in the estimation 
procedure as the known values for the coefficients. They then assumed that the 
optimal design consisted of/? distinct runs, where p is the number of unknown 
parameters. They established that the optimal design maximizes the determi-
nant of D'D. 

Consider the a D-optimal design for situation for the puromycin data. The 
model is y — ^ ί - + ε The resulting derivatives are 

dy _ x dy _ —β\Χ 

Wx~J^~* an dß~2~(ß2+x)2 

There are two parameters to estimate, which implies that an optimal design 
may require only two runs. As a result, 

Γ *i -ft*1.! 
_ &+*! (ß2+Xl)

2 

*2 ~βχΧ2 

&+*2 (β2+Χ2)
2 

The resulting determinant is 

βχΧ\Χΐ(Χ2-Χ\) 

032+*ΐ)2(& + *2)2 

which is maximized when x2 = xmax, where xmax is the largest theoretical value 
for x, and 

Hi P2^max -*max 

•*max -*max 

+ 2β2 2 
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Table 3.4 A Bayesian D-Optimal 
Design for the Puromycin Experiment 

x 
0.043422 
0.043422 
0.043422 
0.1 
0.026428 
0.026428 
0.1 
0.1 
0.043422 
0.1 
0.1 
0.1 

If the researcher believes that the largest theoretical value for x is 0.1, then the 
approximate D-optimal experiment has half the runs at x = 0.10 and half at 
x = 0.05. 

It is important to note that this design is approximately optimal only in a 
very narrow sense. For example, this optimal design does not allow any test for 
lack of fit. In addition, this design strategy requires a fairly strong assumption 
that the proposed starting values are valid. Bates and Watts (1988) find the 
original puromycin experiment given in Table 3.1 "eminently sensible" when 
compared to the approximate D-optimal design. 

Another approach uses a Bayesian D-optimal design. This approach assumes 
a prior distribution for the coefficients ß. The Bayesian D-optimal design is the 
one that maximizes the expected value of log [DO] with respect to this prior 
distribution. Chaloner and Larntz (1984) and Chaloner and Verdinelli (1995) 
discuss this approach. Gotwalt, Jones, and Steinberg (2009) develop a clever 
quadrature scheme for evaluating this integral. 

JMP provides this feature. By default, JMP assumes a normal distribution 
for each coefficient over the range of the starting value + one-half of the 
starting value. For the puromycin data, the starting value for ßx is 205 and for 
/?2 is 0.08. Thus JMP uses as its prior distribution for ß\ a normal distribution 
over the range (102.5, 307.5) and as its prior distribution for ß2 a normal 
distribution over the range (0.4, 0.12). The range of possible values for x given 
to JMP is 0.0 to 0.10. Table 3.4 gives the resulting 12-run Bayesian D-optimal 
design. This design uses half the runs at 0.10 like the approximate D-optimal 
design. Interestingly, it uses four runs at 0.043422, which is near the 0.5 used by 
the approximate design. It also uses two runs at 0.026428. The use of three 
levels does give the experimenter the opportunity to test for lack of fit. 



EXERCISES 111 

EXERCISES 

3.1 Consider the Michaelis-Men ten model in Equation (3.12). Graph the 
expected value of the response for ßx = 100 and β2 = 0.04, 0.06, 0.08, and 
0.10. Overlay these plots on the same axes. What is the effect of the 
parameter β2 on the expected response? 

3.2 Consider the Michaelis-Menten model in Equation (3.12). Graph the 
expected value of the response for ßx = 100, 150, 200, and 250 for 
ß2 = 0.10. Overlay these plots on the same axes. What is the effect of 
the parameter ßx on the expected response? 

3.3 Consider the logistic model in Equation (3.42). Graph the expected value 
of the response for ßx = 10, ß2 = 2, and ß3 = 0.5, 1, 2, and 3, respectively. 
Overlay these plots on the same axes. What is the effect of the parameter 
j?3 on the expected response? 

3.4 Consider the logistic model in Equation (3.42). Graph the expected value 
of the response for ß\ = 1, ß3 = 1, and ß2 = 1, 4, and 8, respectively. 
Overlay these plots on the same axes. What is the effect of the parameter 
ß2 on the expected response? 

3.5 Consider the Gompertz model in Equation (3.43). Graph the expected value 
of the response for ß\ = 1, ß3 = 1, and ß2 = 1/8, 1, 8, and 64, respectively, 
over the range 0 < x < 10. Overlay these plots on the same axes. 
(a) What is the effect of the parameter ß2 on the expected response? 
(b) Discuss the behavior of the response from this model as x-> oo. 

3.6 For the models shown below, determine whether it is a linear model, an 
intrinsically linear model, or a nonlinear model. If the model is intrinsi-
cally linear, show how it can be linearized by a suitable transformation. 
(a) y = ßxeh+^x + ß. 

(b) γ = β0 + βχχχ+β2χ
β
2
3+ε. 

(c) y = βχ + (β2/βχ)χ + ε. 
(d) y = ßlx*>x£+*. 
(e) y = ßx+ß2e^x + £. 

3.7 Reconsider the regression models in Exercise 3.6 parts (a) to (e). Suppose 
that the error terms in these models were multiplicative. Rework the 
problem under this new assumption regarding the error structure. 

3.8 Consider the data shown below. Suppose that we are considering fitting 
the nonlinear model 
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to these data. 

x y 

0.5 0.68 1.58 
1 0.45 2.66 
2 2.50 2.04 
4 6.19 7.85 
8 56.1 54.2 
9 89.8 90.2 

10 147.7 146.3 

(a) Discuss how you would find starting values for the parameter estimates. 
(b) Fit the model to the data. 
(c) Test for significance of regression. 
(d) Estimate the error variance σ2. 

(e) Test the hypotheses H0: βλ = 0 and H0: βι = 0. Are the model 
parameters different from zero? If not, refit an appropriate model. 

(f) Analyze the residuals from this model and comment on model 
adequacy. 

3.9 Reconsider the data from the previous exercise. Suppose that the 
response data were collected on two different days. Fit a new model to 
the data, say, 

y = ßle
ß** + ßsz + e 

where z is an indicator variable with z = 0 if the observation was made 
on the first day and z = 1 if the observation was made on the second day. 
Is there any indication that there is a difference between the two days? 

3.10 The model y = βλ — ß2e~^x + ε is called the Mitcherlich equation, and it 
is often used in chemical engineering to model the relationship between 
yield and reaction time. 
(a) Is this a nonlinear regression model? 
(b) Discuss how you would obtain starting values for the parameter 

estimates. 
(c) Graph the expected response for β\ = 0.5, β2 = - 0 . 1 , and β3 = 0.1. 

Discuss the shape of the curve. 
(d) Graph the expected response for β\ = 0.5, β2 = 0.1, and j53 = 0.1. 

Discuss the shape of the curve. How does it compare to the curve 
obtained in part (c)? 
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3.11 The data in the following table represent the fraction of active chlorine in 
a chemical product at a measured time following manufacturing. 

Available Chlorine 

0.49, 
0.48, 
0.46, 
0.45, 
0.44, 
0.46, 
0.42, 
0.41, 
0.42, 
0.41, 
0.41, 
0.40, 
0.41, 
0.40 
0.41, 
0.40, 
0.39 
0.39 

y 

0.49 
0.47, 
0.46, 
0.43, 
0.43, 
0.45 
0.42, 
0.41, 
0.40, 
0.40, 
0.40 
0.40, 
0.40 

0.38 
0.40 

0.48, 
0.45, 
0.43 
0.43 

0.43 
0.40 
0.40 
0.41 

0.38 

0.77 
0.43 

Time 
X 

8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 

(a) Construct a scatter diagram of the data. 
(b) Fit the Mitcherlich model to these data. Discuss how you obtained 

the starting values for the parameter estimates. 
(c) Test for significance of regression. 
(d) Find 95% confidence intervals on the model parameters. Do these 

confidence intervals indicate that the model parameters are different 
from zero? 

(e) Find an estimate of σ2 for this model. 

3.12 Reconsider the data from Exercise 2.18. Suppose that we now wish 
to consider fitting a nonlinear model to these data, say, y = 

(a) Fit the nonlinear model to the data. 
(b) Test for significance of regression. 
(c) Does it appear that both of the design variables have important 

effects? 
(d) Analyze the residuals and comment on model adequacy. 
(e) Which model do you prefer, the linear model from Exercise 2.18 or 

the nonlinear model? Explain why. 
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3.13 Repeat Exercise 3.12 using the model y = ßi(x\)ßl(x2)h(x\X2)ßA+& 
Discuss the difficulties that you encounter. 

3.14 Reconsider the surgical services data introduced in Exercise 2.15. Fit the 
nonlinear model 

to these data. Investigate fully the adequacy of the fit of this model to the 
data. How does the nonlinear model compare to the models obtained in 
Exercise 2.15? 

3.15 A major problem associated with many mining projects is subsidence, or 
sinking of the ground above the excavation. The mining engineer needs to 
control the amount and distribution of this subsidence. This will ensure 
that structures on the surface survive the excavation. There are several 
factors that affect the amount and nature of the subsidence. Among these 
are the depth of the mine and the width of the excavation. An important 
variable, which aids in characterizing the condition, is known as the angle 
of draw, y. It is defined as the angle between the perpendicular at the edge 
of the excavation and the line that connects the same edge of excavation 
with the point on the surface for which there is zero subsidence. Engineers 
generally feel that the angle of draw should relate well to the ratio of the 
width (w) of the excavation to the depth (d) of the mine. It also is suspected 
that any relationship involved is nonlinear. The following is a data set 
collected by the Mining Engineering Department at Virginia Tech for 
mining excavations in West Virginia. 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Mfi) 
610 
450 
450 
430 
410 
500 
500 
500 
450 
450 
480 
475 
485 
474 
485 
600 

d(ft) 

550 
500 
520 
740 
800 
230 
235 
240 
600 
650 
230 
1400 
615 
515 
700 
750 

y (deg) 

33.6 
22.3 
22.0 
18.7 
20.2 
31.0 
30.0 
32.0 
26.6 
15.1 
30.0 
13.5 
26.8 
25.0 
20.4 
15.0 
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(a) Fit a linear regression model of the form y = ß0 + ß\ w + ß2d + ε to 
these data. Investigate the adequacy of this model. 

(b) Fit the nonlinear model 

y = ßx[l-ap(-ß2Q)]+e 

to these data. Investigate the adequacy of this model. 
(c) Which model do you prefer? Explain why. 

3.16 In the field of ecology, the relationship between the concentration of 
available dissolved organic substrate and the rate of uptake (velocity) 
of that substrate by heterotrophic microbial communities has been 
described by the Michaelis-Menten model. The velocity (y) and con-
centration (x) data shown in the following table were collected by the 
Department of Biology at Virginia Tech. 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

y 

0.0773895 
0.0688714 
0.0819351 
0.0737034 
0.0738753 
0.0712396 
0.0650420 
0.0547667 
0.0497128 
0.0642727 
0.0613005 
0.0643576 
0.0393892 

X 

0.417 
0.417 
0.417 
0.833 
0.833 
0.833 
1.670 
1.670 
3.750 
3.750 
6.250 
6.250 
6.250 

Fit the Michaelis-Menten model to the data. Investigate the adequacy 
of this model. 

3.17 In a study to develop the growth behavior for protozoa colonization in a 
particular lake, an experiment was conducted in which 15 sponges were 
placed in a lake and 3 sponges at a time were gathered. Then the number 
of protozoa were counted at 1, 3, 6, 15, and 21 days. In this case the 
MacArthur-Wilson equation was used to describe the growth mechan-
ism. The model is given by 

y = ßdl-e-k') 
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where 

y = total protozoa on the sponge 
βι = species equilibrium constant 
ß2 = parameter that measures how quickly growth rises 

t = time, number of days 

The data (collected by the Department of Biology at Virginia Tech) are as 
follows: 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Day 

1 
1 
1 
3 
3 
3 
6 
6 
6 

15 
15 
15 
21 
21 
21 

y (Total Protozoa) 

17 
21 
16 
30 
25 
25 
33 
31 
32 
34 
33 
33 
39 
35 
36 

(a) Estimate ß\ and ß2 using nonlinear regression. Supply your own 
starting values. 

(b) Give estimated standard errors of the parameter estimates. 

3.18 An investigation was made to study age and growth characteristics of 
selected freshwater mussel species in southwest Virginia. For a particular 
type of mussel, age and length were measured for 20 females with the 
following results: 

Observation 

1 
2 
3 
4 
5 
6 
7 

Length (in.) 

29.2 
28.6 
29.4 
33.0 
28.2 
33.9 
33.1 

Age (yr) 

4 
4 
5 
5 
6 
6 
6 
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Observation 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Length (in.) 

33.2 
31.4 
37.8 
36.9 
40.2 
39.2 
40.6 
35.2 
43.3 
42.3 
41.4 
45.2 
47.1 

Age (yr) 

7 
7 
7 
8 
8 
9 
9 

10 
10 
13 
13 
14 
18 

(a) Use nonlinear regression to fit the model 

y = ßx - exp[-( j8 2+j8 3*)]+e 

where y is the length and x the age, respectively, for a mussel. Supply 
your own starting values. 

(b) Give an estimate of the variance—co variance matrix of the para-
meter estimates ßu ß2, and ß3. 

3.19 The following data were collected on specific gravity and spectrophot-
ometer analysis for 26 mixtures of NG (nitroglycerine), TA (triacetin), 
and 2 NDPA (2-nitrodiphenylamine). 

Mixture 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

JCI (% NG) 

79.98 
80.06 
80.10 
77.61 
77.60 
77.63 
77.34 
75.02 
75.03 
74.99 
74.98 
72.50 
72.50 
72.50 
72.49 

x2 (% TA) 

19.85 
18.91 
16.87 
22.36 
21.38 
20.35 
19.65 
24.96 
23.95 
22.99 
22.00 
27.47 
26.48 
25.48 
24.49 

x3 (% 2 NDPA) 

0 
1.00 
3.00 
0 
1.00 
2.00 
2.99 
0 
1.00 
2.00 
3.00 
0 
1.00 
2.00 
3.00 

y (Specific 
Gravity) 

1.4774 
1.4807 
1.4829 
1.4664 
1.4677 
1.4686 
1.4684 
1.4524 
1.4537 
1.4549 
1.4565 
1.4410 
1.4414 
1.4426 
1.4438 
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Mixture 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

JCI (% NG) 

69.98 
69.98 
69.99 
69.99 
67.51 
67.50 
67.48 
67.49 
64.98 
64.98 
64.99 

x2 (% TA) 

29.99 
29.00 
27.99 
26.99 
32.47 
31.47 
30.50 
29.49 
34.00 
33.00 
31.99 

x3 (% 2 NDPA) 

0 
1.00 
2.00 
3.00 
0 
1.00 
2.00 
3.00 
1.00 
2.00 
3.00 

y (Specific 
Gravity) 

1.4279 
1.4287 
1.4291 
1.4301 
1.4157 
1.4172 
1.4183 
1.4188 
1.4042 
1.4060 
1.4068 

Source: Raymond H. Myers, Technometrics, vol. 6, no. 4 (November 1964): 343-356. 

There is a need to estimate activity coefficients from the model 

1 
y~ ßxX\+ßxX2 + ß*x* + £ 

The quantity parameters ßu β2, and β3 are ratios of activity coefficients to 
the individual specific gravity of the NG, TA, and 2 NDPA, respectively. 
(a) Determine starting values for the model parameters. 
(b) Use nonlinear regression to fit the model. 
(c) Investigate the adequacy of the nonlinear model. 
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Logistic and Poisson 
Regression Models 

In this chapter we make use of the material in preceding chapters to develop the 
technical machinery for two very important members of the family of general-
ized linear models, namely, logistic regression and Poisson regression. Both find 
extensive application in biological, biomedical, and environmental problems. 
However, they also are finding increasing usage in industrial statistics. One 
important application of logistic regression is dose-response curve develop-
ment, which dates back to the 1950s. Dose-response curves define relationships 
developed by toxicologists and biologists in which one is interested in modeling 
the response, for example, fraction of patients in remission, as the result of a 
particular type of intervention, such as a specific chemotherapy protocol. 
Examples of dose-response relationships are shown later in this chapter. 

4.1 REGRESSION MODELS WHERE THE VARIANCE 
IS A FUNCTION OF THE MEAN 

Both logistic and Poisson regression models have a common property that we find 
in many models that fall under the generalized linear model (GLM) umbrella, 
namely, that the mean response, which is the expected response at each data point, 
and the variance of the response are related. Consider first a regression structure in 
which the response is binary (0 or 1) as one might experience if the endpoint of an 
experimental run is whether or not a patient responds to a drug or whether or not 
one item in an industrial process is defective. It is reasonable to assume that at the 
ith data point, the response is a Bernoulli random variable yh where 

E{yi) = nt = n(xi) 

Generalized Linear Models, Second Edition, by Myers, Montgomery, Vining, and Robinson 
Copyright © 2010 John Wiley & Sons, Inc. 
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and 

Var(j>/) = π,·(1 - π , ) 

for / = 1,2,...,«. Here π,- is a probability in a Bernoulli process and x,· is a vector of 
predictor variables. The parameter π,- and consequently the variance, is a function 
of the regressors, xf. As a result, the variance is a function of the mean. 

Consider a second scenario in which the response values are Poisson counts. 
They might represent the result of endpoints in a biomedical experiment 
involving the number of cancer cell colonies, or they may represent the number 
of defects observed in a microelectronic device. We can write the model for the 
mean as 

E{yi) =μ(χ,·), i = 1,2,...,« 

where μ is the parameter of the Poisson distribution. Note that again the mean 
changes over the observations in the experiment due to changing values of the 
regressors. However, it is well known that in the case of a Poisson distribution 
the variance is equal to the mean, and as a result Var(y/) = E(y¡) = μ(χ,). 

From the preceding examples, it becomes apparent that in these two 
scenarios the use of ordinary least squares estimation is inappropriate for 
estimation of the model parameters. As we move into the development of 
GLMs in Chapter 5, we illustrate other types of regression models used with 
other response distributions in which the variance is a function of the mean. 
This suggests that the material on weighted least squares discussed in Chapter 2 
might be used in some form. We demonstrate that there is an interesting 
analytic connection between the weighted least squares concept and maximum 
likelihood estimation for the two models discussed here and other members of 
the family of generalized linear models. 

4.2 LOGISTIC REGRESSION MODELS 

4.2.1 Models with a Binary Response Variable 

Consider the situation where the response variable in a regression problem 
takes on only two possible values, 0 and 1. These could be arbitrary assign-
ments resulting from observing a qualitative response. For example, the 
response could be the outcome of a functional electrical test on a semiconduc-
tor device for which the results are either a success, which means the device 
works properly, or a failure, which could be due to a short, an open circuit, or 
some other functional problem. 

Suppose that the model has the form 

yi = x'fl + ei (4.1) 
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where xj = [1, xh *#, . . . , Xik], β' = [ßo, ßu fe···, /?*]> and the response variable 
y i takes on the value either 0 or 1. We assume that the response variable y¿ is a 
Bernoulli random variable with probability distribution as follows: 

y¡ Probability 
1 Piyt = 1) = π, 
0 P(y, = 0) = 1 - ig 

Now since E(e¡) = 0, the expected value of the response variable is 

E{yi) = 1(π,) + 0 ( 1 - π,) = π, 

This implies that 
E{yi) = x # = n¡ 

This means that the expected response given by the response function E(y¡) = 
Χ/Ρ is just the probability that the response variable takes on the value 1. 

There are some very basic problems with the regression model in Eq. (4.1). 
First, note that if the response is binary, then the error terms ε, can only take on 
two values, namely, 

e,· = 1 — χ·β when y¡ = 1 
Si = — χ'β when y¡ = 0 

Consequently, the errors in this model cannot possibly be normal. Second, the 
error variance is not constant, since 

σ\ = E{y¡ - E(yi)}
2 = (1 - π,·)2π,· + (0 - m)\\ - π,) = π/(1 - π,·) 

Notice that this last expression is just 

a2
yi = E{y,) [1 - E{yt)\ 

since E(y¡) = χίβ = n¿. This indicates that the variance of the observations 
(which is the same as the variance of the errors because εζ = y¡ — ni9 and π,- is a 
constant) is a function of the mean. Finally, there is a constraint on the 
response function, because 

0 < E{yi) = m < 1 

This restriction can cause serious problems with the choice of a linear response 
function, as we have initially assumed in Equation (4.1). It would be possible to 
fit a model to the data for which the predicted values of the response lie outside 
the 0, 1 interval. 
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Figure 4.1 Examples of the logistic response function: (a) E{y) = 1/(1 + e 
1 °*); (c) E(y) = 1/(1 + e" 5 0 + °6 5 x ' + 0Ax2); and (d) E{y) = 1/(1 + JC"5 0 + '°«5x ' + °·15*»**). 

-6.O-l.0x). ( b ) E{y) = {/ 

Generally, when the response variable is binary, there is considerable 
empirical evidence indicating that the shape of the response function should 
be nonlinear. A monotonically increasing (or decreasing) S-shaped (or reverse 
S-shaped) function, such as shown in Figure 4.1 is usually employed. This 
function is called the logistic response function and has the form 

1 exp(x'ß) = 
yy) 1 + exp (x'ß) 1 + exp (-x'ß) (4.2) 

The logistic response function can easily be linearized. One approach defines 
the structural portion of the model in terms of a function of the response 
function mean. Let 

be the linear predictor where η is defined by the transformation 

π 
η = In 1 -π 

(4.3) 

(4.4) 

This transformation is often called the logit transformation of the probability π. 
The logit transformation is a very popular approach for modeling Bernoulli or 
binomial data. It maps π, which is bounded between 0 and 1, to the real number 
line. The ratio π/(1 - π) in the transformation is called the odds. Sometimes the 
logit transformation is called the log-odds. 
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4.2.2 Estimating the Parameters in a Logistic Regression Model 
The general form of the logistic regression model is 

y¡ ~ Bernouilli(7i/) (4.5) 

where the y¡ are assumed to be independent of one another and each with 
expected value 

Note for the logistic model, we do not write the model as 

y i = E(yi) + st 

as was done for the linear models discussed in Chapter 2. Similar to the linear 
model, however, we do express the mean as a function of the regressors in the 
logistic model. So, for the logistic model, the individual responses (i.e. the y¡) 
are modeled when we state that their distribution is Bernouilli whose mean is a 
function of the regressors. As was done in the linear model, normal error 
setting, we use the method of maximum likelihood to estimate the parameters in 
the linear predictor xjß. 

Since each sample observation is assumed to follow a Bernouilli distribution, 
the probability distribution for the /th observation is given by 

/ϋ'/) = π?'(1-πΙ·)1^', ι = 1,2,...,/! 

and each observation y¡ takes on the value of either 0 or 1. Since the 
observations are independent, the likelihood function is 

^(β^ι,Λ,.·.,Λ) = Π/(^/)=Ππ?'(1-π') i-y i 

n¿ yi - iH) 

i=\ i=\ 

It is more convenient to work with the log-likelihood 
n 

i=\ 

-δΚϊ^;)]+§-<'-*> 
Now since 1 - π, = [1 + exp(x-ß)] l and */,· = 1η[π//(1 - πζ)] = Χ/β, the log-
likelihood can be written as 

In JS?(P; y) = £ W ' p - £ In [1 + exp(xtf)] 
i = l i = l 

= ß 'X 'y-£ln[ l+exp(xt f ) ] (4.7) 
/=! 
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Typically, in logistic regression we have repeated observations or trials at each 
level of the predictor (x) variables. This happens often in designed experiments. 
Let y i be the number of l's observed at the /th observation and n¡ be the number 
of trials at each level of the predictor, with n = n{ + n2 + · · · + nm. Then the 
kernel of the log-likelihood is 

In <£ (ß; y)= ß'Xy - £ n, ln[l + exp(x#)] (4.8) 
i=\ 

where X is the traditional model matrix in linear regression discussed in 
Chapter 2 and y is the response vector. We must now differentiate (4.8) with 
respect to ß: 

ölnJ?(ß; y) 
öß 

χν-Σ 
ι=1 1 + έ*Ί* 

e^Hi 

Now, since ex;p/(l + ex®) = 1/(1 + ¿Γχ;β) = nh we have 

d In Jäf (ß; y) 
öß 

X'y-^niUiXi 
i=\ 

Since n¡Tíi represents the mean of the binomial random variable, we can express 
the right-hand side above in matrix notation as X'(y - μ), where 

Pi 

and μ, = Λ,-π/. The μ notation is motivated by the fact that at the /th data point 
the mean of the binomial distribution is given by Λ,-,π,·. As a result the maximum 
likelihood estimator (MLE) is the solution to the score equation 

Χ ' ( γ - μ ) = 0 (4.9) 

Now, it may appear that Equation (4.9) is trivial, but one must keep in mind 
that the ß's appear in μ and the elements of μ are nonlinear according to the 
model 

μί i + *-**' / = l,2....m 

Consequently, a reasonable procedure to solve these equations uses an 
iteratively reweighted least squares much like that described in Chapter 3. 
Such an iterative procedure produces ¿0» bu b2,..., ¿k, the estimators of βο, βι, 
ß2,..., β&, the p = k + \ parameters in the logistic regression model. 

We can easily tie the maximum likelihood estimation for logistic regression 
to the development in Section 3.6, since the logistic model is nonlinear in the 
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parameters. In addition, the binomial variance of the random variable y¿ is 
Λ,·π,{1— πζ·), and thus the variance is a function of the mean. The distinction 
between this situation and the one described in Chapter 3 lies in the fact that 
distribution of the response at each data point here is binomial. 

Relationship to Weighted Least Squares 
Consider the score function in Equation (4.9) for logistic regression. It is 
interesting that a relationship exists between weighted least squares and 
Equation (4.9), which was developed completely from maximum likelihood. 
In this section we give an informal outline of the relationship. Appendix A.4 
gives a more formal presentation. 

Take, for example, the use of the weighted residual sum of squares given by 

m 

1=1 

where μ, = w/π,· and σ? is the binomial variance at the ith data point with 

σ,- = /ι,π, [1 - π,] = Λ , — —¿ 
(1 +e?-x'ß) 

Recall that iteratively reweighted least squares in Chapter 3 was based on the 
notion of fixed weights, or weights with fixed ß, or the current ß in an iterative 
procedure. In the same spirit we have 

'(yt-ßi)2] 
σ< \ 

with fixed variance σ?. As a result, we differentiate only the numerator of S and 
obtain 

( * ) 

Now <9μ,/<9β = Λ,·π,·[1 - π,·]χ,· = ofx,·. Thus the solution given by minimization 
of the weighted residual sum of squares with fixed weights σ] is given by 

m 

i = l 

which is identical to X'(y - μ) = 0 given by the score equation in Equation (4.9). 
As a result an iteratively reweighted least squares (IRLS) procedure can be used 
here to produce the solution to the score equations and thus obtain numerical 
values b0, éi,...,¿?k of the MLE. 

(yt-μιΫ (4.10) 

min S = min Υ^ 
ß tí 

- 2 ι=1 
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There are several computer programs that can be used to fit the logistic 
regression model. SAS PROC LOGISTIC and SAS PROC GENMOD have 
excellent capability, as do the desktop packages JMP and MINITAB. It is also 
possible to use R to fit logistic regression models. 

Let b be the final estimate of the model parameters that the IRLS algorithm 
produces. If the model assumptions are correct, then we can show that 
asymptotically 

E(b) = ß and Var(b) = (X'VX)"1 (4.11) 

where the matrix V is an n x n diagonal matrix containing the estimated 
variance of each observation on the main diagonal; that is, the /th diagonal 
element of V is 

F,v = «/ft/(l-ft/) 

The estimated value of the linear predictor is r\i = x)b and the fitted value of the 
logistic regression model is written as 

expfo) = exp(x;-b) = 1 
yi ' 1 + expfo) 1 + exp(X; b) 1 + exp( - x) b) K ' } 

Example 4.1. The Challenger Data. We fit the logistic regression model to 
the Challenger O-ring failure data first described in Chapter 1. For convenience, we 
have given the data again in Table 4.1. Figure 4.2, gives a scatter plot of the data. 

As we mentioned above, there are several excellent software packages for 
fitting logistic regression models. Some of the output from MINITAB is shown 
in Table 4.2. From the logistic regression table portion of the output, we find 
that the estimates of the parameters in the linear predictor are b0 = 10.8753 and 
b\ = -0.171321, so the fitted logistic regression model is 

Table 4.1 Temperature and O-Ring Failure Data from the Challenger Accident 
Temperature at 
Launch (°F) 

53 
56 
57 
63 
66 
67 
67 
67 
68 
69 
70 
70 

At Least One 
O-Ring Failure 

1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 

Temperature at 
Launch (°F) 

70 
70 
72 
73 
75 
75 
76 
76 
78 
79 
80 
81 

At Least One 
O-Ring Failure 

1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
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Temperature (°F) 

Figure 4.2 Scatter diagram of O-ring failures versus temperature. 

Λ _ exp(10.8753-0.171321*) 
l+exp(10 .8753-0 .171321 .x ) 

1 

exp(-10 .8753+ 0.171321*) 

Table 4.3 presents the corresponding output from JMP. To obtain the fitted 
model from JMP it is necessary to utilize the value ordering feature in the data 
table so that the program recognizes the value 1 as failure (the default is that 

Table 4.2 MINITAB Logistic Regression Output for the Challenger Data 

Binary Logistic Regression: Failure versus Temperature 

Link Function: Logit 

Response information 

Variable 
Failure 

Value 
1 
0 

Total 

Count 
7 
17 
24 

(Event) 

Logistic Regression Table 
Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper 
Constant 10.8753 5.70313 1.91 0.057 
Temperature-0.171321 0.0834420 -2.05 0.040 0.84 0.72 0.99 

Log-Likelihood=-11.515 
Test that all slopes are zero: G = 5 . 944, DF = 1, P-Value = 0 .015 
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failure = 0). Failure to do this will produce a curve that is opposite to the one 
given here; that is, it descends toward zero as the temperature decreases. The 
JMP output also contains a plot of the fitted logistic regression model. This plot 
contains a set of plotted points between zero and one corresponding to each 
observed level of temperature. The visualization is to imagine these points 
exerting a pressure that determines the parameters of the logistic curve, just as 
the pressure of a gas contained in the plot region would determine where a 
barrier (the fitted curve) would go. The probability measured from the base to 
the curve is for Failure = 0, and the probability measured from the curve to the 
top is Failure = 1, as is labeled on the right of the plot. 

Both the MINITAB and JMP computer outputs contain other information 
about the fitted logistic regression model These quantities will be explained in 
subsequent sections. D 

MINITAB and JMP also calculate and display the covariance matrix of 
the estimated model parameters. For the model of the Challenger data, the 
covariance matrix is 

Γ 37.5257 -0.4739181 
Var(b) = v J |_ -0.473918 0.006963 J 

The estimated standard errors of the model parameter estimates reported in 
Tables 4.2 and 4.3 are the square roots of the main diagonal elements of this 
matrix. 

4.2.3 Interpertation of the Parameters in a Logistic Regression Model 

It is relatively easy to interpret the parameters in a logistic regression model. 
Consider first the case where the linear predictor has only a single regressor, so 
that the fitted value of the linear predictor at a particular value of x, say, xh is 

9¡{XÍ) =b0 + b\Xi 

The fitted value at x¡ + 1 is 

ή(χί+1) =b0 + bl(xi+\) 

and the difference in the two predicted values is 

ή{Χι + \)-ή(χί) =bx 

Now r¡(x¡) is just the log-odds when the regressor variable is equal to xu and 
ή(χί + 1) is just the log-odds when the regressor is equal to JC,· + 1. Therefore the 
difference in the two fitted values is 

ή(χί + 1) - ή(χί) = ln(oddsXf.+i) - ln(oddsX/) 
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Table 4.3 JMP Logistic Regression Output for the Challenger Data 

Ordinal Logistic Fit for Failure Logistic Plot 

Ordinal logistic fit for failure 
logistic plot 

1.00 

Temperature 

Whole Model Test 
Model -LogLikelihood 
Difference 2,972069 
Full 11.515225 
Reduced 14.487294 

RSquare (U) 
Observations (or Sum Wgts) 

DF 
1 

ChiSquare 
5.944137 

Lack Of Fit 
Source 
Lack Of Fit 
Saturated 
Fitted 

DF 
15 
16 
1 

0.2052 
24 

-LogLikelihood 
7.879590 
3.635635 
11.515225 

Prob>ChiSq 
0.0148 

ChiSquare 
15.75918 

Prob>ChiSq 
0.3982 

Parameter Estimates 
Term Estimate Std Chi- Prob> Lower Upper 

Error Square ChiSq 95% 95% 
Intercept[1] 10.8753 5.7031342 3.64 0.0565 
Temperature -0.1713205 0.083442 4.22 0.0401 0.3779007 0.03055 

Effect Wald Tests 
Source Nparm 
Temperature 1 

Effect Likelihood Ratio Tests 
Source Npam 
Temperature 1 

DF 
1 

rests 
DF 
1 

Wald ChiSquare 
4.21550393 

L-R ChiSquare 
5.94413724 

Prob>ChiSq 
0.0401 

Prob>ChiSq 
0.0148 
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If we take antilogs, we obtain the estimated odds ratio 

The estimated odds ratio can be interpreted as the estimated increase in the 
odds of success associated with a one-unit change in the value of the predictor 
variable. In general, the estimated increase in the odds ratio associated with a 
change of d units in the predictor variable is exp(db\). 

Example 4.2. The Challenger Data. In Example 4.1 we fit the logistic 
regression model 

y = 
1 

l+e 10.8753 - 0.17132x 

to the Challenger O-ring failure data of Table 4.1. Since the linear predictor 
contains only one regressor variable and b\ = -0.171321, we can compute the 
odds ratio from Equation (4.13) as 

0K = eb' = e-°
m34 = 0.84 (4.14) 

This implies that every additional degree of temperature reduces the odds of 
failure by 16%. If the temperature increases by d=5 degrees then the 
odds ratio becomes exp(db\) = exp[5(—0.171321)] = 0.42. This indicates 
that the odds of failure are reduced by over 50% with a 5-degree increase in 
temperature. D 

There is a close connection between the odds ratio in logistic regression and the 
2 x 2 contingency table that is widely used in the analysis of categorical data. 
Consider Table 4.4, which presents a 2 x 2 contingency table where the 
categorical response variable represents the outcome (infected, not infected) 
for a group of patients treated with either an active drug or a placebo. The η# 
are the numbers of patients in each cell. The odds ratio in the 2 x 2 contingency 
table is defined as 

odds infected | placebo drug _ n\\/no\ _n\\ · «oo 
odds infected | active "io/^oo >* 10 · no\ 

Consider a logistic regression model for these data. The linear predictor is 

l n(r^Ho+^ 
When x\ = 0, we have 

/ » ( y = l | s , = 0 ) 
ß«-lnp(y = 0\Xl=0) 
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Table 4.4 A 2 x 2 Contingency Table 
Response x\ = 0, Active Drug 
y = 0, not infected w0o 
>> = 1, infected nXQ 

xx = = 1, Placebo 

«01 

«11 

Now let X\ = 1: 

Κϊ4ϊ)=Λ + Α*ι 
/ > ( y = l | x 1 = l ) = P ( y = 1 | ^ = 0 ) 

1P(J = 0|X! = 1) J>(y = 0 | * i = 0 ) 

Solving for β{ yields 

ñ = . f ( y - i 1 *i = i) · Piy = Q1 *i = Q) = l n * i i ^ o o 
P l p(y = 0|jci = l ) . / > ( y = l | x , = 0 ) /loi-fio 

so expijSj) is equivalent to the odds ratio in the 2 x 2 contingency table. 
However, the odds ratio from logistic regression is much more general than 
the traditional 2 x 2 contingency table odds ratio. Logistic regression can 
incorporate other predictor variables, and the presence of these variables can 
impact the odds ratio. For example, suppose that another variable, x2 = age, is 
available for each patient in the drug study depicted in Table 4.4. Now the 
linear predictor for the logistic regression model for the data would be 

l n ( l ~ ) = β ) + 0ι*ι+02*2 

This model allows the predictor variable age to impact the estimate of the odds 
ratio for the drug variable. The drug odds ratio is still exp(/?i), but the estimate 
of β\ is potentially affected by the inclusion of x2 = age in the model. It would 
also be possible to include an interaction term between drug and age in the 
model, say, 

1η(γΖ~) = 00 + 01*1 + 02*2 + 012*1*2 

In this model the odds ratio for drug depends on the level of age and would be 
computed as exp(/?! + ß^xi)· This is an example of an adjusted odds ratio where 
the odds ratio associated with one regressor depends upon the specific values of 
other regressors. 

The interpretation of the regression coefficients in the multiple logistic 
regression model is similar to that for the case where the linear predictor 
contains only one regressor. That is, the quantity exp(j8/) is the odds ratio for 
regressor Xj, assuming that all other predictor variables are constant. 
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4.2.4 Statistical Inference on Model Parameters 

Statistical inference in logistic regression is based on certain properties of 
maximum likelihood estimators and on likelihood ratio tests. These are large-
sample or asymptotic results. This section discusses and illustrates these procedures 
using the logistic regression model fit to the Challenger data from Example 4.1. 

Likelihood Ratio Tests 
A likelihood ratio test can be used to compare a full model with a reduced model 
that is of interest. This is analogous to the extra-sum-of-squares technique that 
we have used previously to compare full and reduced models. The likelihood 
ratio test procedure compares twice the logarithm of the value of the likelihood 
function for the full model (FM) to twice the logarithm of the value of the 
likelihood function of the reduced model (RM) to obtain a test statistic, say, 

LR = 2 1 n f | ^ = 2[lnif(FM) - hi X(RM)] (4.15) 

For large samples, when the reduced model is correct, the test statistic LR 
follows a chi-square distribution with degrees of freedom equal to the difference 
in the number of parameters between the full and reduced models. Therefore, if 
the test statistic LR exceeds the upper a percentage point of this chi-square 
distribution, we would reject the claim that the reduced model is appropriate. 

The likelihood ratio approach can be used to provide a test for significance of 
regression in logistic regression. This test uses the current model that has been fit 
to the data as the full model and compares it to a reduced model that has constant 
probability of success. This constant-probability-of-success model is 

EM = " = TT7f° 
that is, a logistic regression model with no regressor variables. The maximum 
likelihood estimate of the constant probability of success is just y/n, where y is the 
total number of successes that have been observed and n is the number 
of observations. Substituting this into the log-likelihood function in Equation 
(4.8) gives the maximum value of the log-likelihood function for the reduced 
model as 

In <£{RM) = y ln(y) + (n-y) ln(n - y) - n ln(/i) 

Therefore the likelihood ratio test statistic for testing significance of regression is 

{ n n 

Σ y¡ In π,+ ^ («, - y,) In (1 - ft,) 
- [ylnO0 + ( » - j 0 1 n ( n - j 0 - n l n ( i ! ) ] l (4.16) 
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A large value of this test statistic would indicate that at least one of the regressor 
variables in the logistic regression model is important because it has a nonzero 
regression coefficient. 

MINITAB computes the likelihood ratio test for significance of regression 
in logistic regression. In the MINITAB output in Table 4.2 the test statistic in 
Equation (4.16) is reported as G = 5.944 with one degree of freedom (because 
the full model has only one predictor). The reported P-value is 0.015, so the 
overall model is significant. 

JMP also computes this statistic. It is the chi-square value reported in the 
Whole Model Test section of the output in Table 4.3. The P-value reported 
is 0.0148. JMP also reports the negative of the log-likelihood for the full 
and reduced models as 11.515225 and 14.487294, respectively. The LR in 
Equation (4.16) is just twice the difference in these two quantities, or 

LR = 2[-11.515225 - (-14.487294)] 
= 2(2.972069) 
= 5.944138 

which is (apart from rounding) the value reported by MINITAB. 

Testing Goodness of Fit with Deviance 
The goodness of fit of the logistic regression model can also be assessed 
using a likelihood ratio test procedure. This test compares the current model 
to a saturated model, where each unique covariate pattern is allowed to have its 
own parameter (i.e., a success probability). These parameters or success 
probabilities are yi/nh where yt is the number of successes and n¡ is the number 
of observations associated with covariate pattern /. The deviance is defined as 
twice the difference in log-likelihoods between this saturated model and the full 
model (which is the current model) that has been fit to the data with estimated 
success probability ft,· = exp(x-b)/[l + exp(x-b)]. The deviance is defined as 

X(FM) ¿ - Γ \n,a,J Kl γ" \η,(1-π,))\ 

(4.17) 

In calculating the deviance, note that yln(y/nn) = 0 if y = 0, and if y = n we 
have (n—y)\n[(n—y)/n(\ — ft)] = 0. When the logistic regression model is an 
adequate fit to the data and the sample size is large, the deviance has a chi-
square distribution with n — p degrees of freedom, where p is the number of 
parameters in the model. Small values of the deviance (or a large P-value imply 
that the model provides a satisfactory fit to the data, while large values of 
the deviance imply that the current model is not adequate. A good rule of 
thumb for logistic regression is to divide the deviance by its number of degrees 
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Table 4.5 Prison Sentencing Data Ignoring Gender 

Business crime/No prior arrest 
Business crime/Prior arrest 
Home crime/No prior arrest 
Home crime/Prior arrest 

Prison 

17 
42 
54 
33 

No Prison 

75 
109 
359 
175 

Ni 

92 
151 
413 
208 

of freedom. If the ratio D/(n — p) is much greater than unity, the current model 
is not an adequate fit to the data. 

The deviance goodness-of-fit statistic is only appropriate when the regressors 
are categorical, or when we have grouped data as predictors. We illustrate the 
calculation of the deviance statistic using the data on prison sentencing from 
Stokes, Davis, and Koch (1995) shown in Table 4.5. These data report on 
whether or not an offender received a prison sentence as a function of whether 
the crime involved a business or a home and whether or not the offender had a 
prior arrest record (later on we use another version of this data that includes the 
gender of the offender). In the SAS code provided in Table 4.12, ibus = 1 if 
person committed a business crime and ibus = 0 if person committed a home 
crime. For iprior, we have that iprior = 1 if person had some prior arrest 
history and iprior = 0 if no prior arrest history. 

The deviance statistic compares the fitted model to that of the saturated 
model. It is a likelihood ratio test of all higher-order interactions. For the 
prison data when we fit a model with predictor variables ibus and iprior, the 
saturated model contains the variables ibus and iprior plus the interaction term 
ibus x iprior. The SAS code for fitting the model with the variables ibus 
and iprior using PROC LOGISTIC is shown at the bottom of Table 4.12 and 
Table 4.6 contains the output. Table 4.7 shows the computation of the deviance 
for the prison data. This test is a special case of the likelihood ratio test 
presented earlier but this time the full model is the saturated model, and the 
reduced model is the fitted model. The test statistic is also sometimes called 
Wilks's statistic. 

To physically compute the deviance statistic for goodness-of-fit we need the 
log likelihood associated with the saturated model where the saturated model 
has the variables ibus, iprior, ibus x iprior, and the intercept. This is done using 
the code in the display below. 

proc l o g i s t i c data=sentence descending; 
t i t l e 3 'Example For Pearson Chi-Square and Deviance' ; 
model pr i son=ibus i p r i o r i b u s * i p r i o r / aggregate scale=N ; 
weight count; 
output out=home. good p=phat ; 
run; 
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Table 4.6 SAS P R O C LOGISTIC Output for the Prison Data 

The LOGISTIC Procedure 
Data Set: WORK. SENTENCE 
Response Variable: PRISON Prison Sentence? 
Response Levels: 2 
Number of Observations : 16 
Weight Variable: COUNT 
Sum of Weights: 864 
Link Function: Logit 

Response Profile 
Ordered Total 
Value PRISON Count Weight 

1 Y 8 146.00000 
2 N 8 718.00000 

Deviance and Pearson Goodness-of-Fit Statistics 
Pr > 

Criterion DF Value Value/DF 
Deviance 1 0.5779 0.5779 
Pearson 1 0.5717 0.5717 

Number of unique profiles : 4 
Model Fitting Information and Testing Global Null Hypothesis BETA=0 

Intercept 
Intercept and 

Chi-Square for Covariates 

15.496 with 2 DF (p=0.0004) 
16.200 with 2 DF (p=0 . 0003) 

Chi-Square 
0.4471 
0.4496 

C r i t e r i o n 
AIC 
SC 
2 LOGL 
Score 

Only 
786.974 
787.747 
784.974 

. 

o v a r i a t e s 
775.478 
777.796 
769.478 

Table 4.7 Construction of Deviance Chi-Square 

Type of 
Crime 
business 
business 
business 
business 
home 
home 
home 
home 

Prior 
Arrest? 
None 
None 
Some 
Some 
None 
None 
Some 
Some 

Prison 
Sentence? 

N 
Y 
N 
Y 
N 
Y 
N 
Y 

Model-
based 

Probability 
of Prison 
0.20553 
0.20553 
0.26551 
0.26551 
0.12613 
0.12613 
0.16783 
0.16783 

Observed 
count 

75 
17 

109 
42 

359 
54 

175 
33 

Ni 
92 
92 

151 
151 
413 
413 
208 
208 

Pi 
0.79447 
0.20553 
0.73449 
0.26551 
0.87387 
0.12613 
0.83217 
0.16783 

Expected 
Count 
73.091 
18.909 

110.909 
40.091 

360.909 
52.091 

173.091 
34.909 

Chi-Square 
Contribution i 

3.86675 
-3.61784 
-3.78430 

3.90680 
-3.80723 

3.88644 
3.83831 

-3.71103 
0.5779 
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Table 4.8 SAS Output for the Saturated Model for the Prison Data 

Response Profile 
Ordered 
Value PRISON 

1 Y 
2 N 

Deviance and Pearson Goodness-

Criterion DF Value 
Deviance 0 0 
Pearson 0 1.56E-22 

Total 
Count 

8 
8 

Weight 
146.00000 
718.00000 

-of-Fit Statistics 

Value/DF 
Pr > 

Chi-Square 
. 
. 

Criterion 

AIC 
SC 
-2 LOG L 
Score 

Intercept 
Only 

786.974 
787.747 
784.974 

Number of unique profiles : 4 
Model Fitting Information and Testing Global Null Hypothesis 

BETA=0 
Intercept Chi-Square for Covariates 

and 
Covariates 

776.900 
779.991 
768.900 16.074 with 3 DF (p=0.0011) 

17.434 with 3 DF (p=0.0006) 

The SAS output from the saturated model is in Table 4.8. The deviance statistic 
can be computed as 

G2 = -21og(J^(ßÄ))-21og(if(pF)) 
G2 = 769.478 - 768.900 = 0.578 

Sample size guidelines for the deviance goodness-of-fit test are 

• Marginal sample sizes at least 10 
• 80% of predicted counts at least 5 
• All other expected counts are greater than 2 

Testing Hypotheses on Subsects of Parameters Using Deviance 
We can also use the deviance to test hypotheses on subsets of the model 
parameters, just as we used the difference in regression (or error) sums of 
squares to test similar hypotheses in the normal-error linear regression model 
case. Recall that the linear predictor can be written as 

η = Χβ = Χ1β1+Χ2β2 (4.18) 

where the full model has p parameters, βι contains/? — r of these parameters, ß2 
contains r of these parameters, and the columns of the matrices Xi and X2 
contain the variables associated with these parameters. 
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The deviance of the full model is denoted by £>(ß). Suppose that we wish to 
test the hypotheses 

/ / 0 : ß 2 = 0, i / i : ß 2 ^ 0 (4.19) 

Therefore the reduced model linear predictor is 

η = Χιβ, (4.20) 

Assume that the reduced model is fit, and let £>(βι) be the deviance for the 
reduced model. The deviance for the reduced model is never smaller than 
the deviance for the full model, because the reduced model contains fewer 
parameters. However, if the deviance for the reduced model is not much larger 
than the deviance for the full model, then the reduced model is about as good a 
fit as the full model, so it is likely that the parameters in β2 are equal to zero. 
That is, we cannot reject the null hypothesis above. However, if the difference 
in deviance is large, at least one of the parameters in β2 is likely not zero, and we 
should reject the null hypothesis. Formally, the difference in deviance is 

0(P2lfc) = ß (ß i ) -0 (ß ) (4-21) 

and this quantity has n - (p - r) - (n - p) = r degrees of freedom. If the null 
hypothesis is true and if« is large, the difference in deviance in Equation. (4.21) 
has a chi-square distribution with r degrees of freedom. Therefore the test 
statistic and decision criteria are 

if D (ß2|ßi)> Za,r reJect the nuN hypothesis 
if D (ß2|ß,) <xlr do not reject the null hypothesis (4.22) 

Sometimes the difference in deviance Ζ)(β2/βι) is called the partial deviance. 

Example 4.3. The Challenger Data. Once again, reconsider the Challenger 
O-ring failure data of Table 4.1. The model we initially fit to the data is 

Λ _ A 1 
y ~ π ~ l _|_ e0.8753-0.17132x 

Suppose that we wish to determine whether adding a quadratic term for 
temperature in the linear predictor would improve the model. Therefore we 
consider the full model to be 

1 
y ~~ i +ér(A>+ft*+0n*2) 

Table 4.9 contains the output from JMP for this model. Notice that JMP 
automatically centers the quadratic temperature term so that the linear 
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Table 4.9 JMP Output of the Challenger Data with a Quadratic Term in Temperature 

Ordinal Logistic Fit for Failure 
Whole Model Test 
Model -LogLikelihood DF ChiSquare 
Difference 3.192790 2 6.38558 
Full 11.294504 
Reduced 14.487294 
RSquare (U) 0.2204 
Observations (or SumWgts) 24 
Converged by Gradient 

ProbChiSq 
0.0411* 

Lack Of Fit 
Source 
Lack Of Fit 
Saturated 
Fitted 

DF -LogLiKelihood 
14 7.658869 
16 3.635635 
2 11.294504 

Parameter Estimates 
Term 
Intercept[1] 
Temperature 
(Temperature 
(Temperature-

Estimate Std Error 

ChiSquare 
15.31774 
Prob ChiSq 
0.3568 

ChiSquare 
8.369397 6.5171295 1.65 

-0.1384684 0.09171 
69.9167)* 
-69.9167) 

Effect Wald Tests 0.00629863 0.00962 

Source 
Temperature 
Temperature* 
Temperature 

2.28 

0.43 
Wald 

Prob ChiSq 
0.1991 
0.131 

0.5130 

Nparm DF ChiSquare Prob ChiSq 
1 1 2 . 
1 1 0 . 

27962158 
4279422 

0.1311 
0.5130 

Effect Likelihood Ratio Tests 

Source 
Temperature 
Temperature* 
Temperature 

Nparm 
1 
1 

DF 
1 
1 

L-R 
ChiSquare 
2.95011644 
0.44144276 

Prob ChiSq 
0.0859 
0.5064 

predictor in the fitted model is ß0 + ßx x ßn(x - 69.9167)2, where 69.9167 is 
the average observed temperature. Now the linear predictor for the full model 
can be written as 

= Xlßi +X2ß2 

= j?o + 0i* + M*-69.9167) 2 
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From Table 4.8, we find that the deviance for the full model is 

Z)(ß) = 15.31774 

with n-p = 17—3 = 14 degrees of freedom. The reduced model linear predictor 
has X^! = ß0 + βχχ, so X2ß2 = ßw (x-69.9167)2. Table 4.3 shows the deviance 
for the reduced model to be 

Z)(ft) = 15.75918 

with p-r = Z-\ = 2 degrees of freedom. Therefore the difference in deviance 
between the full and reduced model using Equation. (4.21) is 

ß(fclßi) = 0 (ß i ) -0 (ß ) 
= 15.75918-15.31774 
= 0.44144 

which should be referred to a chi-square distribution with r = 1 degree of 
freedom. The P-value associated with the difference in deviance is 0.5061, so we 
conclude that there is no value in including the quadratic term in the regressor 
variable x = temperature. D 

Tests on Individual Model Coefficients 
Tests on individual model coefficients, such as 

H0:ßj = 0, Hnßj^O (4.23) 

can be conducted by using the difference-in-deviance method as illustrated 
in Example 4.3. There is another approach, also based on the theory of 
maximum likelihood estimators. For large samples, the distribution of a 
maximum likelihood estimator is approximately normal. The estimator has 
little or no bias. Furthermore, the variances and covariances of a set of 
maximum likelihood estimators can be found from the second partial deriva-
tives of the log-likelihood function with respect to the model parameters, 
evaluated at the maximum-likelihood estimates. A /-like statistic called the 
Wald statistic can be constructed to test the above hypotheses. 

Let G denote the p x p matrix of second partial derivatives of the log-
likelihood function, that is, 



140 LOGISTIC AND POISSON REGRESSION MODELS 

G is called the Hessian matrix. If the elements of the Hessian are evaluated at 
the maximum likelihood estimators ß = b, the large-sample approximate 
covariance matrix of the regression coefficients is 

Var(b)= -G(b) - 1 = (X'VX)"1 (4.24) 

Notice that this is just the estimated covariance matrix of b given earlier. 
The square roots of the diagonal elements of this covariance matrix are the 
large-sample estimated standard errors of the regression coefficients, so the test 
statistic for the null hypothesis in 

H0:ßj = 0, Hnßj^O 

ß, (4.25) 

se(ßj) 

The reference distribution for this statistic is the standard normal distribution. 
Some computer packages square the Z0 statistic and compare it to a chi-square 
distribution with one degree of freedom. 

Example 4.4. The Challenger Data. Table 4.9 contains output from JMP 
for the data, originally given in Table 4.1. The fitted model is 

Λ _ 1 
~~ 1 _ | _ ^ 8 . 3 6 9 5 9 7 - 0 . 1 3 8 4 6 8 4 Λ : + 0 . 0 0 6 2 9 8 6 3 ( Λ : - 6 9 . 9 1 6 7 ) 2 

The JMP output gives the standard errors of each model coefficient. Using 
Equation (4.25), The Z0 test statistic for the squared term in temperature is 

0.00629863 
Z0 0.0096284 

= 0.65417 

JMP reports the square of this statistic: 

Zg = (0.65417)2 

= 0.42794 

~ 0.43 

This is compared to a chi-square distribution with one degree of freedom, resulting 
in a F-value of 0.5130. Thus, the squared term in temperature is not needed. D 

Recall from the previous example that when we tested for the significance of 
ßw using the partial deviance method we obtained a different P-value. In linear 
regression, the Mest on a single regressor is equivalent to the partial F-test on a 
single variable (recall that the square of the /-statistic is equal to the partial 
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F statistic). However, this equivalence is only true for linear models, and the 
GLM is a nonlinear model. 

Confidence Intervals 
It is straightforward to use Wald statistics to construct confidence intervals in 
logistic regression. Consider first finding confidence intervals on individual 
regression coefficients in the linear prediction. An approximate 100(1 - a) 
percent confidence interval on the yth model coefficient is 

bj - Za/2se(bj) < ßj < bj + Z^seibj) (4.26) 

Example 4.5. The Challenger Data. Using the JMP output in Table 4.9, we 
can find an approximate 95% confidence interval on ßw from Equation (4.26) 
as follows: 

b\\ - Zom5se(bn) < ßn < ¿ii +Z0.025^(¿ii) 

0.00629863 - 1.96(0.0096284) < ßn < 0.00629863 + 1.96(0.0096284) 

-0.01257 <ßu < 0.02517 

Notice that the confidence interval includes zero, so at the 5% significance level, 
we would not reject the hypothesis that this model coefficient is zero. D 

The regression coefficient ßj is also the logarithm of the odds ratio. Because we 
know how to find a confidence interval (CI) for ßj, it is easy to find a CI for 
the odds ratio. The point estimate of the odds ratio is ÖR = exp(£/) and the 
100(1 - a) percent CI for the odds ratio is 

exp [bj - Za/2se(bj)} < 0R < exp [bj + Za/2se(bj)] (4.27) 

The CI for the odds ratio is generally not symmetric around the point estimate. 
Furthermore, the point estimate ¿)R = exp(¿y) actually estimates the median of 
the sampling distribution of OR. 

Example 4.6. The Challenger Data. Reconsider the original logistic regres-
sion model that we fit to the Challenger O-ring data in Example 4.1. JMP does 
not repeat the odds ratio but MINITAB does. From the MINITAB output for 
this data shown in Table 4.2 we find that the estimate of ß\ is b\ = -0.171321 
and the odds ratio OR = exp(b\)= 0.84. Because the estimated standard error 
of b\ is se(bx) = 0.0834420, we can find a 95% CI on the odds ratio as follows: 

exp[-0.171321-1.96(0.0834420)] < 0K < exp[-0.171321+l.96(0.0834420)] 

exp ( - 0.33487) < OR < exp(-0.00777) 

0.72 < OR < 0.99 

This agrees with the 95% CI reported by MINITAB in Table 4.2. D 
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It is possible to find a CI on the linear predictor at any set of values of the 
predictor variables that is of interest. Let x^ = [1, xoi, X02, · · ·»xo&] be the values 
of the regressor variables that are of interest. The linear predictor evaluated at 
xo is XQI). The estimated variance of the linear predictor at this point is 

Var(x0b) = x0Var(b)x0 = xó(X'VX)_1x0 

so the lOO(l-oe) percent CI on the linear predictor is 

x0b - Z a / 2 ^ ( X ' V X r ' x o < xóP < x'ob + Z a / 2 ^ ( X ' V X r ' x o (4.28) 

The CI on the linear predictor given in Equation (4.28) enables us to find a CI 
on the estimated probability of success π0 at the point of interest 
x'o = [l,*oi,*02>... ,*o*l· L e t 

L(xo) = x0b - Za/2y/i^(X'\X)-lxo 

and 

l/(xo) = x0b - Ζα/2^/χ0(Χ'ΥΧ)-ιχο 

be the lower and upper 100(1-a) percent confidence bounds on the linear 
predictor at the point x0 from Equation (4.28). Then the point estimate of 
the probability of success at this point is KQ = exp(xgb)/[l -f exp(x¡>b)] and the 
100(1-a) percent CI on the probability of success at x0 is 

exp[L(x0)] < π ο < exp[t/(x0)] ( 4 ^ 
1 + exp[L(x0)] - - 1 + exp[C/(x0)] 

Example 4.7. The Challenger Data. Suppose that we want to find a 95% CI 
on the probability of O-ring failure when the temperature is x = 60 degrees. 
From the fitted logistic regression model in Example (4.1), we calculate a point 
estimate of the probability at 60 degrees as 

e10.8753-0.171321(60) ^0.59604 
710 = 1 _¡_ ^10.8753-0.1713211(60) ~ \ _|_ e0.59604 = 0 > 6 4 4 ° 

To find the CI, we need to calculate the estimated variance of the linear 
predictor at this point. The estimated variance is 

Var(x 0b)=x 0(x'Vx) 'x0 

= [1 60] 
32.5257 -0.473918 

-0.473918 0.006963 

1 

60 
= 0.72234 
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Now 
L(x0) = 0.59604 - 1.96\/0.72234= -1.06978 

and 
t/(xo) = 0.59604 x 1.96^0.72234= -2.26186 

Therefore the 95% CI on the estimated probability of O-ring failure when the 
temperature is X = 60 degrees is 

exp[L(xp)] exp[£/(xp)] 
l+exp[L(x0)] - ° - l+exp[t/(xo)] 

e x p ( - 1.06978) κ exp( - 2.26186) 
1 + exp( - 1.06978) - π° - l + e x p ( - 2.26186) 

0.2555 < π0 < 0.9057 D 

4.2.5 Lack-of-Fit Tests in Logistic Regression 

An important question in any regression analysis is whether the proposed model 
adequately fits the data, which leads naturally to the notion of a formal test for 
lack-of-fit. Put simply, lack-of-fit represents what we could have fit to the data 
but chose not to fit. The deviance test outlined in the previous section is such a 
test since it formally tests the current logistic regression model against the 
saturated model. This approach is most valuable for comparing nested models 
with grouped data. 

A second statistic offered in most statistical software packages is the Pearson 
chi-square statistic. To provide some intuitive background, consider the simple 
linear regression model 

y i = ßo + ßi*u + £i 

and the scatterplot in Figure 4.3 displaying the relationship between y and x. 

Ί ."^1·.... 
/ · 

/ · 

X 

Figure 4.3 A Scatterplot for Linear Regression. 
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Table 4.10 Data Classification of Observed Counts and Model Predicted Cell Counts 
for a Logistic Model with Categorical Regressors 

Covariate 
Pattern 

xi 
* 2 

^m 

Response 

Y=\ Y=0 

On (En) Ol2(El2) 
#21 (E2X) 022 (E22) 

Om\ (Em\) Om2 (Em2) 

Row 
Marginals 

Nx 

N2 

Nm 

To assess fit in the simple linear regression model, we compare the fitted 
values, the j)/'s, to the observed responses, the j>/s. A basic summary of the 
quality of fit is the sum of squared errors given by Σ" = 1 {y i — j>/)2· We note that 
the smaller the sum of squared errors, the better the fit. This notion of 
comparing the observed values to the model predicted values to assess quality 
of fit extends to logistic regression. The appropriate summary of model fit 
depends largely on the structure of the regressors. When the regressors are all 
categorical or when the covariate patterns of the regressors can be described 
easily using a contingency table, the Pearson chi-square or deviance chi-square 
is appropriate. 

A contingency table, such as in Table 4.10, is a powerful way to summarize 
the data and the model predicted counts when we have a binary response and 
categorical regressors. The m rows correspond to the m possible covariate 
patterns, and the columns correspond to the two response categories. The Or-
denóte the number of observed responses that occur in covariate pattern i and 
response category j . The model predicted counts for the first response category, 
the Eñ, are calculated as the sum of the N¡ fitted probabilities for subjects in 
covariate pattern /, and Ei2 = N¡ — En. The Pearson chi-square goodness-of-fit, 
which compares the observed to expected counts, is 

X2 = tt{0iJ~F
E'j)2 (4-3°) 

This test statistic has an approximate null chi-square distribution with m — k—l, 
where k is the number of regressors in the model. When the chi-square statistic in 
Equation (4.30) is larger than χ]_Λάΐ, one rejects the hypothesis of adequate 
model fit. It is helpful to illustrate the procedure with an example. 

Example 4.8. The Prison Sentence Data. Recall the Stokes, Davis, and 
Koch (1995) data from the last section which involved a prison study whose 
goal was to model the relationship between receiving a prison sentence (y) and 
three regressors: type of crime committed (Type), history of prior arrest (Prior), 
and gender (Gender). The full data are provided in Table 4.11 in a contingency 
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Table 4.11 Prison Data 

Gender Type 

Male Business 

Home 

Female Business 

Home 

Source: Stokes, Davis, and Roch (1995). 

table format. Note for this example that each of the regressors has a qualitative 
scale. 

Prior 

Some 
None 
Some 
None 
Some 
None 
Some 
None 

Prison Sentence 

Yes 

28 
7 

19 
27 
14 
10 
14 
27 

No 

59 
35 
75 

200 
50 
40 

100 
159 

Consider the logistic model 

l n I YZ^.) =ßo + ßi*n + ß2xa (4.31) 

where n¡ denotes the probability that the ith person will receive a prison 
sentence, xn = 1 if the /th person commits a business crime and xn = 0 if the ith 
person commits a home crime, and xa = 1 if the ith person has some prior 
arrest history and xi2 = 0 if the ith person has no prior arrest history. Table 
4.12 gives the SAS code to analyze these data by PROC LOGISTIC. The code 
uses the Descending option in order to ensure appropriate modeling of 
reception of prison sentence. The Aggregate option in the Model Statement 
requests the Pearson chi-square and deviance chi-square goodness-of-fit tests. 
Table 4.13 summarizes the output. 

The Pearson chi-square and deviance chi-square goodness-of-fit statistics are 
produced by SAS in the section Deviance and Pearson Goodness-of-Fit Statis-
tics. Calculation of the Pearson chi-square is easily seen upon observing the 
information in Table 4.14. In Table 4.14, the covariate patterns are listed in the 
first two columns and then the response categories for each covariate pattern are 
given in column 3. The model-based probability of receiving a prison sentence 
(based upon the fit of model 4.31) are provided in the fourth column. The column 
denoted by "Pi" provides the probabilities of receiving a prison sentence as well 
as the probability of not receiving a prison sentence and doing element wise 
multiplication with the row totals in the column denoted by 'Ni\ the expected 
counts in column 8 are generated. The last column, "Chi-Square Contribution" 
contains the value of each of the (Oy — Ε$\Ε$ and the sum of these entries yields 



146 LOGISTIC AND POISSON REGRESSION MODELS 

Table 4.12 SAS Code for Analyzing the Prison Data 
data sentence; 
attrib type label=,Type of crime' 

prior label= ' Prior Arrest? ' 
prison label= ' Prison Sentence? ' ; 

input type $ prior $ prison $ gender $ count @@; 
cards; 
business Some Y F 14 business Some N F 50 
business None Y F 10 business None N F 40 
home Some Y F 14 home Some N F 100 
home None Y F 27 home None N F 159 
business Some Y M 28 business Some N M 59 
business None Y M 7 business None N M 35 
home Some Y M 19 home Some N M 75 
home None Y M 27 home None N M 200 

run; 

*Creating indicator variables for type of crime and prior arrest 
history 

data sentence; set sentence; 
ibus=(type='business'); 
iprior=(prior='Some'); 
imale=(gender='M'); 
run; 
*Running Proc Logist for Model 4.31 
proc logistic data=sentence descending; 
title3 'Example For Pearson Chi-Square and Deviance' ; 
model prison=ibus iprior / aggregate scale=N ; 
weight count; 
output out=home. good p=phat ; 
run; 

the Pearson chi-square statistic that is found in the Deviance and Pearson 
Goodness-of-Fit Statistics part of the output in Table 4.13. D 

Note that when the Pearson chi-square concludes significant lack-of-fit, one can 
look at the contribution of each of the covariate patterns to the overall test 
statistic value to diagnose where the model is fitting poorly. Since the Pearson 
chi-square statistic (as well as the deviance chi-square discussed earlier) only 
follows a chi-square distribution asymptotically, it is important to keep in mind 
sample size guidelines when using this goodness-of-fit statistic. Specifically, the 
marginal sample sizes (the N/s) should all be at least 10, 80% of the predicted 
counts (the E¿fs) should be > 5, and all other expected counts should be greater 
than 2. 
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Table 4.13 Output from P R O C LOGISTIC for the Prison Data 

The LOGISTIC Procedure 
Data Set: WORK. SENTENCE 
Response Variable: PRISON Prison Sentence? 
Response Levels: 2 
Number of Observations: 16 
Weight Variable: COUNT 
Sum of Weights: 864 
Link Function: Logit 

Response Profile 
Ordered Total 

Value PRISON Count Weight 
1 Y 8 146.00000 
2 N 8 718.00000 

Deviance and Pearson Goodness-of-Fit Statistics 
Pr > 

Criterion DF Value Value/DF Chi-Square 
Deviance 1 0.5779 0.5779 0.4471 
Pearson 1 0.5717 0.5717 0.4496 

Number of unique profiles : 4 
Model Fitting Information and Testing Global Null 
Hypothesis 

BETA=0 
Intercept 
and 
Covariates Chi-Square for Covariates 
775.478 
777.796 
769.478 15.496 with 2 DF (p=0.0004) 

16.200 with 2 DF (p=0.0003) 

Assessing Model Fit When Continuous Regressors are Present 
While the Pearson and deviance chi-squares are reasonable tests for lack-of-fit 
when all of the regressors in the logistic model are categorical, they are not 
appropriate when continuous regressors are present since the number of 
distinct covariate patterns approaches the sample size, n, thus producing small 
expected cell counts. To address this shortcoming, Hosmer and Lemeshow 
(1989) proposed an alternative chi-square test, commonly referred to as 
the Hosmer-Lemeshow test, for assessing fit in logistic regression models. 
The Hosmer-Lemeshow test first orders all responses according to their model 
fitted probabilities and then classifies them into 10 (or possibly less) deciles of 
risk groups. This grouping by fitted probabilities provides a convenient 
substitute for the grouping of responses according to distinct covariate patterns 
that the Pearson and deviance statistics use. A general form of the contingency 
table constructed by the Hosmer-Lemeshow test is provided in Table 4.15. 

Criterion 
AIC 
SC 
-2 LOG L 
Score 

Intercept 
Only 
786.974 
787.747 
784.974 
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Table 4.14 Construction of the Pearson Chi-Square Statistic for the Logistic Analysis of the Model in Equation (4.30) 

Model-based Chi-Square 
Type of Prior Prison Probability Observed Expected Contribution 
Crime Arrest? Sentence? of Prison count Ni Pi Count i 
business None N 0.20553 75 92 0.79447 73.091 0.04984 
business None Y 0.20553 17 92 0.20553 18.909 0.19266 
business Some N 0.26551 109 151 0.73449 110.909 0.03285 
business Some Y 0.26551 42 151 0.26551 40.091 0.09087 
home None N 0.12613 359 413 0.87387 360.909 0.01009 
home None Y 0.12613 54 413 0.12613 52.091 0.6994 
home Some N 0.16783 175 208 0.83217 173.091 0.02105 
home Some Y 0.16783 33 208 0.16783 34.909 0.10436 

0.57166 
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Table 4.15 Contingency Table Constructed in the Hosmer-Lemeshow Procedure 

Deciles of Risk 

Decile 1 
Decile 2 

Decile 10 

Response 

7 = 1 Y=0 

On (En) Oxl (EX2) 
#21 (Ei\) 022 (E22) 

#10,1 (£l0,l) 010,2 (£l0,2) 

Row Marginals 

N2 

Nm 

Model-based expected counts (the 2s,/s) are computed in the same manner as 
they were constructed for the deviance and Pearson statistics and the test 
statistic is given by 

2 _ v ^ y ^ (°v - Ev) 
i=\ j=\ ^'J 

where g denotes the number of decile groups. The degrees of freedom 
associated with x2

H_L is g—2. The Hosmer-Lemeshow statistic is widely 
available in most statistical software packages that accommodate generalized 
linear models. While the Hosmer-Lemeshow statistic is appropriate for 
assessing fit from logistic regression models involving continuous regressor 
variables, it has been shown to have low power when there are both continuous 
and categorical variables in the logistic regression model. Also, when lack-of-fit 
is diagnosed with the Hosmer-Lemeshow statistic, it is often difficult to 
ascertain where the model fits poorly. 

Assessing Model Fit When Both Categorical and Continuous 
Regressors are Present 
Pulkstenis and Robinson (2002) propose two statistics that combine the 
strengths of the Pearson chi-square and deviance tests with a modification 
for continuous covariates similar to that provided by the Hosmer-Lemeshow 
procedure. The Pulkstenis-Robinson procedures utilize a two-level sub group-
ing within each categorical covariate pattern based on fitted probabilities 
within the specific covariate patterns. Table 4.16 helps to illustrate this 
procedure. For each covariate pattern in this table, model-based fitted 
probabilities are sorted, and two sub categories are produced based on the 
median of fitted probabilities within each of the m rows. Table 4.16 gives 
the resulting contingency table, where Oihj and Eihj denote the observed and 
model-based predicted counts, respectively, for the rth covariate pattern, the 
h\h sub division, and they'th response category. Note that Table 4.16 is similar 
to the Pearson chi-square in Table 4.9. Table 4.16, however, has twice as many 
rows due to the grouping by the median of fitted probabilities within each of the 
m categorical regressor covariate patterns. 
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Table 4.16 Contingency Table of Observed and Model-Based Expected Cell Counts 
Utilized in the Pulkstenis-Robinson Procedures 

Covariate Pattern 

Xii 
"12 
X21 
X22 

"ml 
"m2 

Y 

O l l i 
0 , 2 1 

0211 
0221 

O m i i 
0OT21 

Response 
= 1 

(£111) 
(£121) 

(£211) 
(£■221) 

(Em\\) 
(Em2\) 

Y 

0 , 1 2 
0 , 2 2 
O212 
O222 

O m i 2 
O m 22 

= 0 

(Exn) 
(£ .22) 

(£212) 
(£222) 

(£«12) 
(Em2l) 

Row Marginals 

JV11 
Nl2 

N2i 

Np 

Nmi 

Nm2 

Model-based expected counts are computed exactly as described for the 
other methods. The Pulkstenis-Robinson statistics are 

a-K=£tt(0ihj:Eihj)2 (4·32) 
and 

1=1 h=\ j=\ 

2 2 

"ihj 

= 1 h=\ y=l Eihj 

The degrees of freedom for xl_R and Dp_R are 2m — k — 2, where 2m refers to 
the number of rows of the contingency table and k is the number of categorical 
regressors in the model. These degrees of freedom are analogous to the g — 2 
degrees of freedom for the Hosmer-Lemeshow statistic; however, the Pulk-
stenis-Robinson statistics must subtract k for the number of categorical 
variables in the model. The Pulkstenis-Robinson statistics provide some ability 
to diagnose which covariate patterns do not fit well when the null hypothesis is 
rejected because these statistics incorporate the design structure of the catego-
rical regressors in the contingency table formulation. Pulkstenis and Robinson 
show that these statistics are more powerful than the Hosmer-Lemeshow test in 
many settings. Certainly an important consideration with the Pulkstenis-
Robinson tests involves sample size since these statistics double the number 
of categorical covariate patterns used in the Pearson chi-square. As a sample 
size guideline, the authors suggest that the majority (80%) of the model-based 
expected cell counts exceed five. The authors do not recommend the Pulkstenis-
Robinson tests statistics when there are only categorical covariates or only 
continuous covariates present. 
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Example 4.9. Treatment of Aneurysms. Pulkstenis and Robinson (2002) 
consider a clinical trial designed to compare an endovascular approach to a 
standard surgical procedure for the treatment of abdominal aneurysms. In the 
study, 102 surgical control subjects were compared to 266 treated subjects with 
respect to the incidence of moderate and severe bleeding complications within 30 
days of surgery (comp30 = 1 if moderate to severe and 0 if not). Covariates of 
interest included treatment group (control = 1 if subject had standard procedure 
and 0 if endovascular approach), gender (male = 1 if subject is male and 0 if 
female), early investigator experience (early = 1 if investigator had limited 
experience and 0 if investigator had more experience), and baseline aneurysm 
diameter (diameter). Table 4.17 gives the appropriate PROC LOGISTIC code 
for the main effects logistic model. Table 4.18 summarizes the results for the 
fitted model. Data can be found in aneurysms.xls on the accompanying ftp site. 

The results indicate that the control group (those that undergo the standard 
surgery) tend to have more bleeding complications than those who undergo the 
endovascular approach. Recall that the odds ratio value corresponding to 
they'th model term is exp(j?7), where ßj is the corresponding coefficient. For these 
data the adjusted odds of having bleeding complications when one undergoes 
the standard surgery (the control group) versus when one has the endovascular 
approach is 

Pr(y=l)_ π 
Pr(j = 0) " 1 - π 

_ exp(/?0 + βχcontrol = 1 + /?2male + /pearly + /?4diameter) 
exp(/?0 + βχ control = 0 + /?2male + /pearly + /?4diameter) 

= exp(j8i) 

Since the slope coefficient is positive from Table 4.14, the odds of having 
bleeding complications when one undergoes the standard procedure is greater 
than for those who undergo the less invasive endovascular approach. More 
specifically, the estimated odds of having bleeding complications if one has the 
standard procedure are exp(1.69) = 5.42 greater than the estimated odds of 
having bleeding complications if you undergo the endovascular approach. Note 
that this is an adjusted odds ratio as the values of the coefficients have been 
adjusted for the presence of the other variables in the model. The estimated 

Table 4.17 PROC LOGISTIC Code for the Aneurysm Data Set 

proc l o g i s t i c data=aneurysm descending; 
model comp30 = con t ro l male e a r l y diameter / lackfit; 
output out=phats p=phats ; 
run; 
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Table 4.18 
Data 

PROC LOGISTIC Output for the Main-Effects Model of the Aneurysm 

Data Set 
Response Variable 
Number of Response Levels 
Model 
Optimization Technique 

Number of Observations Road 
Number of Observations Used 

Model Information 
WORK.ANEURYSM 
comp30 
2 
binary logit 
Fisher's scoring 

379 
368 

comp30 

Response Frofile 
Ordered Total 
Value comp3 0 Frequency 
1 1 83 
2 0 285 

Probability modeled is comp30=l. 
NOTE: 11 observations were deleted due to missing values for the 
response or explanatory variables . 

Model Convergence Status 
Convergence criterion (GC0NV=lE-8) satisfied. 

Model Fit Statistics 
Intercept 

Intercept and 
Criterion only 
AIC 
SC 
2 Log L 

Test: 
Test 
Likelihood Rat 
Score 
Wald 

394.903 
398.811 
392.903 

Covariates 
355.808 
375.348 
345.808 

Lng Global Null Hypothesis: BETA=0 
Chi-Square 

io 47.0952 
46.5724 
39.5528 

DF 
4 
4 
4 

The LOGISTIC Procedure 

Pr > ChiSq 
<0.0001 
<0.0001 
<0.0001 

Analysis of Maximum Likelihood Estimates 

Parameter DF 
Intercept 1 
Control 1 
male 1 
early 1 
diameter 1 

Effect 

Standard 
Estimate Error 
2.6099 0.8414 
1.6911 0.3219 
1.0539 0.3446 
1.2430 0.3516 
0.0242 0.0135 

Wald 
Chi-Square 
9.6212 

Pr > ChiSq 
0.0019 

27.5943 <0.0001 
9.3548 
12.4953 
3.2088 

Odds Ratio Estimates 
Point 95% Wald 

Estimate Confidence Limits 
Control 5.425 2. 
male 
early 

0.349 0. 
3.466 1. 

diameter 1.024 0. 

887 10.196 
177 0.685 
740 6.905 
998 1.052 

0.0022 
0.0004 
0.0732 

(Continued) 
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Table 418 Continued 

Associa t ion of P red ic ted P r o b a b i l i t i e s and Observed Responses 
Percent concordant 73.4 Somers 'D 0.473 
Percent Discordant 26.1 Gamma 0.475 
Percent Tied 0.5 Tau-a 0.166 
Pa i r s 23655 c 0.736 

P a r t i t i o n for the Hosmer and Lemeshow Test 

Group 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Total 
38 
40 
34 
37 
37 
37 
37 
37 
37 
34 

comp3 0 = 1 
Observed 

1 
3 
1 
5 
9 
9 

10 
17 
13 
15 

Expected 
2.59 
3.19 
3.00 
3.77 
6.62 
8.62 

10.40 
11.95 
14.00 
18.86 

Hosmer and Lemeshow Goodness-
Chi-Square 

9. ,0885 
DF 
8 

comp30 = 0 
Observed 
37 
37 
33 
32 
28 
28 
27 
20 
24 
19 

■of-Fit Test 
Pr > ChiSq 
0. 3349 

Expected 
35.41 
36.81 
31.00 
33.23 
30.38 
28.38 
26.60 
25.05 
23.00 
15.14 

odds ratios that correspond to the other factors can be interpreted in a similar 
fashion. In general, it appears that males are less likely to experience bleeding 
(p = 0.0022), and that subjects with larger aneurysm diameters are marginally 
more likely to experience bleeding (p = 0.0732). Finally, a learning curve 
appears to exist in terms of those performing the procedure since bleeding 
complications decrease for experienced physicians as compared to those with 
little experience (p = 0.0004). 

Note that the model of interest involves both categorical predictors (control, 
male, and early) and a continuous predictor (diameter). The Hosmer-Leme-
show goodness-of-fit statistic is requested using the lackfit option the PROC 
LOGISTIC Model statement. The contingency table produced in the Hosmer-
Lemeshow procedure appears in the Partition for the Hosmer and Lemeshow 
Test section of the output. The Hosmer-Lemeshow test results appear in the 
Hosmer and Lemeshow Goodness-of-Fit Test section of the output. We note that 
the test suggests no significant lack of fit in the main-effects model. Using the 
Pulkstenis-Robinson statistics, the Xp_K and Dp_R statistics result in 
p = 0.0083 and p = 0.0118, respectively, suggesting significant lack of fit. 
Table 4.19 Summarizes the contingency table produced by the Pulkstenis-
Robinson procedures. 

Upon first inspection, we note that 33% (8/24) of the model-based expected 
cell counts in Table 4.19 are less than 5; so we should proceed with caution 
regarding the use of the Pulkstenis-Robinson procedures. Direct comparison of 
the observed and expected counts as well as the contributions to the Dp_R 
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Table 4.19 Contingency Table Produced by the Pulkstenis-Robinson Procedure 

Response £*P-R ^ P - R 
Investigator Contribution Contribution 

Group Experience Gender Y=\ Y = 0 ( F = l ) ( ^ = 0 ) 

Treatment Late Female 5 (2.0) 5 (8.0) <M4 -4.70 
Treatment Late Female 3(2.6) 7(7.4) 0.79 -0.72 
Treatment Late Male 4(6.0) 77(75.0) -3.28 4.11 
Treatment Late Male 7(8.3) 74(72.7) -2.45 2.70 
Treatment Early Female 1(1.8) 3(2.2) -1.16 1.83 
Treatment Early Female 3(2.1) 1(1.9) 2.25 -1.32 
Treatment Early Male 10(8.3) 28(29.7) 3.77 -1.33 
Treatment Early Male 9(10.9) 29(27.1) -3.39 3.86 
Control Late Female 2(6.1) 9(4.9) -4.43 10.81 
Control Late Female 7(6.5) 3(3.5) 1.14 -1.01 
Control Late Male 19(12.7) 22(28.3) 15.28 11.06 
Control Late Male 13 (15.8) 27 (24.2) 5.03 5.86 
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Table 4.20 The PROC LOGISTIC Output for the Main-Effects Plus the Gender by 
Treatment Interaction Model 

Parameter 

Intercept 

Control 

male 

early 

diameter 

control*ma 

Analysis 

Lie 

DF 
1 
1 
1 
1 
1 
1 

The LOGISTIC Procedure 

of Maximum Likelihood Estimates 

Estimate 

1.9405 

0.4410 

1.8007 

1.3350 

0.0223 

1.6238 

Standard 

Error 

0.8858 

0.6068 

0.4564 

0.3674 

0.0137 

0.6769 

Wald 

Chi-Square 

4.7990 

0.5283 

15.5665 

13.2021 

2.6389 

5.7548 

Pr : 

0, 
0, 
< 
0 
0 
0 

> ChiSq 

.0285 

.4673 

.0001 

.0003 

.1043 

.0164 

statistic on a cell-by-cell basis reveals that the largest contribution to Dp_R is 
15.28, which occurs with male patients who undergo the standard surgery with 
an experienced physician. The next highest contribution to the Dp_R value is 
10.81, which involves female patients who undergo the standard surgery with 
an experienced physician. The indication is that, for female controls, too many 
events are being predicted (since the contribution to Dp_K when Y = 1 is a 
relatively large negative value (-4.43) while for male controls, too few are being 
predicted (since the contribution to £>p_R when Y = 1 is large positive (15.28). 
Since the effect of the treatment seems to depend on the gender, one would be 
inclined to model a treatment by gender interaction term. Table 4.20 provides 
the relevant PROC LOGISTIC output for the main-effects plus the gender by 
treatment interaction model. 

As suspected, the gender by treatment interaction is statistically significant 
(p = 0.0164). Once this term is added, the χΙ_κ and Dp_K statistics result in 
p = 0.0578 and p = 0.0566, respectively. These values are nonsignificant and 
one may reasonably assume that the model is now adequate. This example 
illustrates the general fact that when both categorical and continuous regressors 
are present in the logistic model, the Hosmer-Lemeshow statistic often lacks 
the power to detect important factor interactions and the Pulkstenis-Robinson 
statistics offer a reasonable alternative. SAS macros for performing the 
Pulkstenis-Robinson procedure can be obtained by downloading GOF.zip at 
http://lib.stat.cmu.edu/general/. Pulkstenis and Robinson (2004) extended their 
procedures for the ordinal response case and the corresponding macros for this 
situation can be obtained by downloading GOF_ordinal.zip at http://lib.stat. 
emu .edu/general/. D 

4.2.6 Diagnostic Checking in Logistic Regression 

Residuals can be used for diagnostic checking and investigating model 
adequacy in logistic regression. The ordinary residuals are defined as usual, 

■yi ■ JiiKi. 1,2, 
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In linear regression the ordinary residuals are components of the residual sum 
of squares; that is, if the residuals are squared and summed, the residual sum of 
squares results. In logistic regression, the quantity analogous to the residual 
sum of squares is the deviance. This leads to a deviance residual, defined as 

*-±{2Κ&)+(*-*>-(ο)]Γ· ι=1,2,...,/ι (4.34) 

The sign of the deviance residual is the same as the sign of the corresponding 
ordinary residual; also, when j>/ = 0, d¡ = —^/—2n ln(l — ft/), and when 
y i = «/, d¡ = yj—lrti In ft/. Similarly, we can define a Pearson residual 

y i - niUi 
i= 1,2,...,« (4.35) 

>/rt|Äi(l-ft/)' 

It is also possible to define a hat matrix analog for logistic regression, 

H = Yl'2X(X'\X)-lX'V1'2 (4.36) 

where V is the diagonal matrix defined earlier that has the variances of each 
observation on the main diagonal, Κ,·,· = Λ,·π/(1 — ft/), and these estimated 
variances are calculated using the estimated probabilities that result from the 
fitted logistic regression model. The diagonal elements of H, hih can be thought of 
as leverage values, and can be used to calculate a standardized Pearson residual 

rSi = 
yi-fiiUi 

λ/1-Λ// V'(1 -A//)«/ft/(l-ft/) 
, Ι = 1 , 2 , . . . , Λ (4.37) 

The deviance and Pearson residuals are the most appropriate for conducting 
model adequacy checks. Plots of these residuals versus the estimated probability 
and a normal probability plot of the deviance residuals are useful in checking 
the fit of the model at individual data points and in checking for possible 
outliers. 

Table 4.21 displays the deviance residuals, Pearson residuals, hat matrix 
diagonals, leverage values, and the standardized Pearson residuals for the 
Challenger data. To illustrate the calculations, consider the deviance residual 
for the first observation (53 degrees). From Equation (4.34) 

*HM&)+(*-»><-»)]F 
= + H 1 l n ( l (0.857583489))+(1 " 1 ) l n ( l (1-0Λ57583489))]} 

1/2 

= 0.554322544 (4.38) 



Table 4.21 Diagnostic Quantities for the Challenger Logistic Regression Model 

Predicted Standardized 
Temperature Failure Pearson Pearson Deviance Delta Delta 
(°F) Failure Probability Residuals Residuals Residuals Chi-Square Deviance Delta Beta Leverage 

53 
56 
57 
63 
66 
67 
67 
67 
68 
69 
70 
70 
70 
70 
72 
73 
75 
75 
76 
76 
78 
79 
80 
81 

0.857583489 
0.782688179 
0.752144136 
0.520527851 
0.393695655 
0.353629202 

0.315518366 
0.279737227 
0.246552215 

0.188509095 
0.163686925 
0.121993265 

0.407513467 
0.52692316 
0.574049128 
-1.041934199 
-0.805814301 
-1.281131837 

-0.678940041 
-0.623203162 
2.336164369 

-0.481974793 
-0.442407572 
1.633419311 

0.463124821 
0.595849145 
0.645398893 

-1.105340324 
-0.836046251 
-1.422642575 

-0.699468274 
-0.641140954 
2.642316474 

-0.496443489 
-0.456272987 
1.750266891 

0.554322544 
0.700029857 
0.7547546666 
-1.212492862 
-1.00037313 
-1.618113621 

-0.870739302 
-0.81011008 
2.113906067 

-0.64634681 
-0.59791679 
1.301995466 

0.2144846 
0.355036203 
0.416539731 
1.221777232 
0.698973335 
2.023911897 

0.489255866 
0.411061722 
6.981836347 

0.246456138 
0.208185038 
3.063434189 

0.355690857 
0.567429988 
0.656661935 
1.606289296 
1.050383046 
3.000904805 

0.786483219 
0.678957883 
5.992771248 

0.431920635 
0.369965067 
2.090567738 

0.048417374 
0.077388187 
0.08700733 
0.136150356 
0.049636647 
0.382613114 

0.028296287 
0.022679542 
1.524172387 

0.014156437 
0.012460579 
0.395375544 

0.225738231 
0.217972663 
0.208881226 
0.111436318 
0.071013649 
0.189046329 

0.057835356 
0.055173081 
0.218305373 

0.057439984 
0.059853382 
0.129062849 

0.104798542 -0.483873933 -0.519503781 -0.665451705 0.269884178 0.478576166 0.035750195 0.132464954 

0.076728513 -0.288279447 -0.298552964 -0.399579661 0.089133872 0.165692738 0.006028833 0.067637953 
0.065438269 -0.264613445 -0.273990377 -0.367906502 0.075070727 0.140405646 0.005050452 0.067275913 
0.055709091 -0.242890278 -0.251358575 -0.338588228 0.063181133 0.118827434 0.004185446 0.066245188 
0.047353127 -0.222950452 -0.230522722 -0.311483503 0.053140725 0.100455794 0.003433821 0.064617503 
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which closely matches the value reported in Table 4.21. The sign of the deviance 
residual d\ is positive because the ordinary residual e\=y\—n\n\ = 
1 - 0.857583489 = 0.142416511 is positive. 

Figure 4.4 is the normal probability plot of the deviance residuals and 
Figure 4.5 plots the deviance residuals versus the estimated probability of failure. 
These plots indicate that there are no obvious problems with the model fit. 

In linear regression we often find it useful to assess the effect that deleting 
individual observations has on the estimates of the model parameters (e.g., see 
Section 2.4.4). It is possible to obtain similar measures for logistic regression. 
For example, the influence that the /th individual observation has on the vector 
of model parameters to a linear approximation, is given by 

A b = ( b - b ( . 0 ) / ( X / V X ) ( b - b ( _ i ) ) 
r]hü 

(1-Λ,/)2 

Hosmer and Lemeshow (2002) point out that by using similar linear approx-
imations, the decrease in the value of the Pearson chi-square statistic due to 
deletion of the rth individual observation is 

99 
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Deviance residuals 

Figure 4.4 Normal probability plot of deviance residuals, Challenger data. 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Predicted failure probability 

Figure 4.5 Plot of deviance residuals versus predicted failure probability, Challenger data. 

Δζ? = 
r? 

1 - h„ (4.40) 

= n 
The change in deviance is 

AD¡ = df + a . ή hu 

If we replace r\ by df we have 

ΔΑ = 

I - * « 

d? 
1 - hu 

(4.41) 

(4.42) 

These diagnostics can be very useful in identifying observations that have an 
unusual impact on the estimates of the model parameters or that fit poorly in 
terms of the deviance and Pearson chi-square statistics. Generally, values of 
these quantities larger than 4 indicate influential observations. 

It is usually a good idea to assess these statistics graphically. Plotting 
Ab,, Δχ?, and AD¡ versus the estimated probabilities from the logistic 
regression model ft,· and against the leverage values A/7 is usually recommended. 
Figures 4.6 through 4.11 present plots of these quantities for the Challenger 
O-ring failure data. The values of Δχ? and ΔΖ>, for the observation where 
temperature is 70 degrees are 6.98 and 5.99, respectively, indicating that this 
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Figure 4.6 Plot of Δχ? versus the estimated probabilities for the Challenger O-ring failure data. 
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Figure 4.7 Plot of AD, versus the estimated probabilities for the Challenger O-ring failure data. 
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Figure 4.8 Plot of Ab, versus the estimated probabilities for the Challenger O-ring failure data. 
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Figure 4.9 Plot of Αχ} versus leverage for the Challenger O-ring failure data. 
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Figure 4.10 Plot of AD, versus leverage for the Challenger O-ring failure data. 
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Figure 4.11 Plot of Ab, versus leverage for the Challenger O-ring failure data. 
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level of temperature is not fit very well by the model. This result is not too 
surprising because the estimated probability of failure at 70 degrees is quite low 
(0.24655), yet three of the four observations at 70 degrees resulted in failure. 
This results in large Pearson and deviance residuals, and the large values of Δχ? 
and AD¡. 

4.2.7 Classification and the Receiver Operating Characteristic Curve 

A simple and intuitive way to summarize the results of fitting a logistic 
regression model is through a classification table. This table is produced by 
cross-classifying the response variable with predicted responses that are 
derived from the fitted model. To obtain the predictions, we need to define 
a cut point c, and compare each estimated probability to it. If the esti-
mated probability exceeds c, then the predicted response is unity. If the 
estimated probability is less than c, the predicted response is zero. The usual 
value for the cut point is c = 0.5; however, c = 0.5 is not always the optimal 
value. 

Table 4.22 is the classification table for the Challenger O-ring failure data 
using c = 0.5. The overall rate of correct classification is 

1 0 0 X " ~ ^ = 7 9 ' 2 % 

with 

100 x | | = 94.12% 

of the successful launches being correctly classified and only 

100 x | = 42.86% 

of the failures being correctly classified. Classification is sensitive to the size of 
the two groups, and the larger group always has a higher probability of correct 
classification, regardless of how well the model fits the data. 

Table 4.22 Classification Table for the Challenger O-Ring Failure Data 

Observed 
Predicted Failure = 0 Failure = 1 Total 
Failure = 0 16 4 20 
Failure =1 1 3 4 
Total 17 7 24 
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The probability of detecting the true signal (which in the Challenger case is 
an O-ring failure) is called sensitivity. For the Challenger data this probability is 
just the probability of a failed launch being correctly classified, which is 0.4286. 
The probability of detecting the null signal is called specificity. For the 
Challengers data, this is the probability of correctly detecting a successful 
launch, or 0.9412. 

The sensitivity and specificity depend on the cut point c that is chosen. One 
could construct classification tables for a range of different cut points to see 
how the logistic regression model works as a classifier. A better way to do this is 
given by the area under the receiver operating characteristic (ROC) curve. This 
graph plots the probability of detecting the signal of interest (sensitivity) 
against the probability of getting a false signal (1 -specificity) for a range of 
possible cut points. The area under the ROC curve lies between zero and unity 
and measures the ability of the model to discriminate between observations that 
will lead to the response of interest and those that will not. JMP can display the 
ROC curve and provide the area under the ROC curve. Figure 4.12 shows this 
plot for the logistic regression model for the Challenger data. The area under 
the ROC curve is reported by JMP as 0.7227. 

Hosmer and Lemeshow (2002) suggest that the area under the ROC curve is a 
general guide to how well the model discriminates, with the following guidelines: 

• ROC = 0.5, no discrimination — you could do as well by tossing a coin. 
• 0.7 < ROC < 0.8, acceptable discrimination. 

0.00 0.20 0.40 0.60 0.80 1.00 

1 -Specificity 

Legend Failure Area 
1 

0 0.7227 

Figure 4.12 ROC curve (from JMP) for the logistic regression model for the Challenger data. 
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• 0.8 < ROC < 0.9, excellent discrimination. 
• ROC > 0.9, outstanding discrimination. 

Therefore we conclude that the logistic regression model or the Challenger 
O-ring failure data exhibits acceptable discrimination ability. 

4.2.8 A Biological Example of Logistic Regression 

This example illustrates the use of logistic regression to analyze a single agent 
quantal bioassay of a toxicity experiment. The results show the effect of different 
doses of nicotine on the common fruit fly. Table 4.23 gives the data. 

The purpose of the study was to use logistic regression to arrive at 
an appropriate model and to estimate two so-called effective doses (EDs), 
that is, values of the nicotine dose that result in a centain probability, π,- of fly 
death. These quantities are often used to characterize the results of an assay 
type experiment. For example, an ED50 might be used. In the experiment it was 
of interest to estimate both the ED50 and the ED90, where ΕΌπ is the value of x 
that produces a probability π χ 100 of an event, in this case the probability that 
an exposed fruit fly is killed. 

Table 4.24 presents the MINITAB logistic regression model output. The 
fitted logistic regression model is 

-1.73611+6.29539* 

y-
\+e -1.73611+6.29539* 

The test for significance of regression indicates that the concentration variable 
is significant, and the Homer-Lemeshow test does not indicate any problems 
with model adequacy. Table 4.25 contains the diagnostic statistics (Pearson 
residuals, standardized Pearson residuals, deviance residuals, Δχ2, AD, Ab, 
leverage values) and the estimated probabilities from the fitted model. None of 
the values of Δχ2 or AD exceeds 4 and none of the values of Ab exceeds unity. 
A normal probability plot of the deviance residuals is shown in Figure 4.13. 
This plot is satisfactory. Figure 4.14 is a scatterplot of the observed proportion 

Table 4.23 Toxicity Experiment Data 
x Concentration 
(g/100 cc) 

0.10 
0.15 
0.20 
0.30 
0.50 
0.70 
0.95 

n Number 
of Insects 

47 
53 
55 
52 
46 
54 
52 

y Number 
Killed 

8 
14 
24 
32 
38 
50 
50 

Percentage 
Killed 

17.0 
26.4 
43.6 
61.5 
82.6 
92.6 
96.2 
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Table 4.24 MINITAB Output for the Toxicity Data 

Binary Logistic Regression: No. Killed, No. of Insects versus 
Concentration 
Link Function: Logit 
Response Information 
Variable Value Count 
No. Killed Event 216 

Non-event 143 
No. of Insects Total 359 
Logistic Regression Table 

Odds 
Predictor Coef SE Coef Z P ratio 
Constant -1.73611 0.242042 -7.17 0.000 
Concentration 6.29539 0.742229 8.48 0.000 542.07 126.55 2321.94 
Log-Likelihood 171.305 

G140.122 

95% CI 
Lower Upper 

DF 1, P-Value 0.000 

DF 
5 
5 
5 

P 
0 .265 
0 .316 
0 .265 

Test that all slopes are zero: 
Goodness-of-Fit Tests 
Method Chi-Square 
Pearson 6.44510 
Deviance 5.89952 
Hosmer-lemeshow 6.44510 
Table of Observed and Expected Frequencies : 

(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic) 
Group 

Total 

216 

Value 
Event 

Obs 
Exp 

Non-even t 
Obs 
Exp 

T o t a l 

1 

8 
11 .7 

39 
3 5 . 3 
47 

2 

14 
1 6 . 5 

39 
3 6 . 5 
53 

3 

24 
2 1 . 1 

31 
3 3 . 9 
55 

4 5 

32 38 
2 8 . 0 3 7 . 0 

20 8 
2 4 . 0 9 .0 
52 46 

6 7 

50 50 
5 0 . 5 51 

4 2 
3 . 5 0. 

54 52 

143 

359 

Table 4.25 Diagnostic Quantities and Estimated Probabilities for the Toxicity Data 

Pearson 
Residuals 

Standardized 
Pearson 

Residuals 
Deviance 
Residuals Δχ2 AD Ab 

Estimated 
Leverage Probability 

1.24213 
0.74859 
0.81483 
1.11853 
0.37710 
0.27918 
•1.48547 

-1.48284 
-0.89068 

0.95057 
1.27518 
0.46130 

-0.35599 
-1.65619 

-1.29453 
-0.76012 

0.80858 
1.12530 
0.38276 

-0.27328 
-1.22664 

2.19881 
0.79332 
0.90357 
1.62607 
0.21280 
0.12673 
2.74296 

2.33172 
0.81071 
0.89343 
1.64128 
0.21710 
0.12347 
2.04099 

0.655918 
0.232927 
0.239619 
0.374973 
0.070600 
0.048790 
0.536345 

0.298305 
0.293612 
0.265190 
0.230600 
0.331762 
0.384995 
0.195535 

0.248511 
0.311783 
0.382954 
0.538054 
0.804016 
0.935273 
0.985860 
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Figure 4.13 Normal probability plot of the deviance residuals for the toxicity data. 
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Figure 4.14 Scatterplot of the observed and estimated proportion of insects killed. 

of insects that are killed and the estimated probability from the logistic 
regression models versus concentration. There is reasonably close agreement 
between the observed and estimated proportions of insects killed. We conclude 
that there are no obvious problems with the logistic regression model fit. 

In quantal assay experiments it is fairly common practice to use the 
logarithm of concentration as the predictor variable (see Finney, 1950). This 
can be particularly effective in cases where the range of the predictor variable is 
large. Table 4.26 is the MINITAB output the for the log model. The summary 
statistics and goodness of fit tests do not indicate any problems with this model. 
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Table 4.26 MINITAB Output for the Logistic Regression Model for the Toxicity 
Data using Log Concentration 

Binary Logistic Regression: Killed, Nuxnber versus Log Concentration 
Link Function: Logit 
Response Information 
Variable Value Count 
Killed Success 216 

Failure 143 
Number Total 359 
Logistic Regression Table 

Predic tor 
Constant 
Log 
Concentrat ion 

Coef 
3 . 1 2 3 6 1 
2 . 1 2 7 8 5 

Log-Likelihood=— 168. 
Test that a l l ε 

■σ 

Φ 

£ 
n 
(0 
n o £ Q. 

Φ 
W 

E 
to 
LU 

Odds 95% CI 
SE Cpef Z P R a t i o Lower Upper 
0 . 3 3 4 9 2 1 9 . 3 3 0 . 0 0 0 
0 . 2 2 1 4 0 8 9 . 6 1 0 . 0 0 0 8 . 4 0 5 . 4 4 1 2 . 9 6 

722 
l o p e s a r e z e r o : G = 1 4 5 . 2 8 8 , DF = 1 , P - V a l u e = 0 . 0 0 0 
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Figure 4.15 Scatterplot of the observed and estimated proportion of insects killed from the model 
using log concentration. 

Figure 4.15 is a scatterplot of the observed proportions of insects killed and the 
estimated proportion of insects killed from the logistic regression model using 
log concentration as the predictor variable. There is little difference in the 
agreement between the observed and predicted responses between the two 
models. 

Recall that one of the primary goals of this study is to determine the 
concentration in g/100cc that lead to 50% and 90% kill rates, i.e. the ED50 and 
ED90 levels. The ED50 is the value for concentration (x) such that π(χ) = 0.5. 
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Similarly, the ED90 is the value for X such that π(χ) = 0.9. From the simple 
logistic model, we have 

1 η ( τ ^ ) = / * 0 + / ? ι * 

and ln(-p^3)= 0. Thus, to estimate the ED50 we set b0 + b\X equal to 0 and 
solve for x as follows 

-1.73611+6.29539* = 0 
x= 1.73611/6.29539 

= 0.276 

Thus the estimated Ed50 is a concentration of 0.2762g/100cc. Note from 
Figure 4.14 that indeed this concentration level corresponds to an estimated 
50% kill rate. 

4.2.9 Other Models for Binary Response Data 

So far, our discussion of logistic regression uses the logit, defined as 1η[π/(1— π)], 
to force the estimated probabilities to lie between zero and unity, which leads to 
the logistic regression model 

exp(x'ß) 
l+exp(x 'ß) 

Another possibility for modeling a binary response uses the cumulative normal 
distribution, say, Φ_1(π). The function Φ_1(π) is called the probit. A linear 
predictor can be related to the probit, χ'β = Φ_1(π), resulting in a regression 
model 

π = Φ(χ'β) 

Another possible model is provided by the complementary log-log relationship 
log [-log(l—π)] = χ'β, which leads to the regression model 

π = 1 - exp[-exp(x'ß)] 

Figure 4.16 gives a comparison of all three possible models for the linear predictor 
x'ß = 1 + 5x. The logit and probit functions are very similar, except when the 
estimated probabilities are very close to either 0 or 1. Both of these functions have 
estimated probability π =j when x = —ßo/ß\ and exhibit symmetric behavior 
around this value. The complementary log-log function is not symmetric. In general, 
it is very difficult to see meaningful differences between these three models when 
sample sizes are small. A number of software packages including MINITAB will 
fit the logistic regression model using all three of these functions. 



LOGISTIC REGRESSION MODELS 169 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

if 

I I I 

^+τψψ++* 

Variable 
- ♦ - Logit 
- * - Probit 
■♦'Comp log-log | 

I I 

-1.0 -0.5 0.0 
x 

0.5 1.0 

Figure 4.16 Logit, probit, and complementary log-log functions for the linear predictor χ'β : 

1 + 5x. 

4.2.10 More than Two Categorical Outcomes 

Logistic regression considers the situation where the response variable is 
categorical, with only two outcomes. We can extend the classical logistic 
regression model to cases involving more than two categorical outcomes. First 
consider a case where there are m + 1 possible categorical outcomes, but the 
outcomes are nominal. By this we mean that there is no natural ordering of 
the response categories. Let the outcomes be represented by 0,1,2,..., m. The 
probabilities that the responses on observation i take on one of the m 4- 1 
possible outcomes can be modeled as 

P& = 0)=- 1 

P{y¡ = i) 

+ f>pkßwl 
7=1 L J 

expJx'/ßW] 

l + f>p[x;.ßw l 
j=i L J 

(4.43) 

P{yt - m) 
exp [x'/ßW] 

i + f>P[x;ßW] 
j=i L -I 
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Notice that there are m parameter vectors. Comparing each response category 
to a baseline categroy produces logits 

In piy> 

In 

p(y> 
p(yt 

p{y> 

— Ü = x',ß0> 
= 0) 

^ = x',.ß(2) 
0) (4.44) 

p{yi = o) 

where our choice of zero as the baseline category is arbitrary. Maximum 
likelihood estimation of the parameters in these models is fairly straightforward. 

Example 4.10. Customer Invoicing Preference. Table 4.27 presents the results 
of a customer survey conducted by a company to solicit information about their 
preference for invoicing. There were 202 customers surveyed and each customer 
was asked to express his/her preference for invoicing and payment. The invoicing 
choices are traditional mail, electronic invoice, and through a web portal. 
Customers were classified as to whether they were repeat customers and the size 
of their accounts. Notice that the three response categories cannot be ordered, so 
this is a nominal response. Since the web portal is a relatively new procedure, it will 
be selected as the baseline category for modeling purposes. 

Table 4.28 presents the MINITAB output for the nominal logistic regression 
model. Based on the p-values associated with Repeat (i.e., 0.362 for mail vs. 
web and 0.420 for electronic vs. web), we conclude that whether the customer 
is a repeat customer or not is not important in determining the invoicing 
preference. We refit the model with only account size as a predictor, and obtain 
the results in Table 4.29. 

The first logistic regression model compares the preference of a mailed invoice to 
the use of a web portal, resulting in the following maximum likelihood prediction 
equation: 

In Ki,mail -1.48160 + 0.879429* 

Table 4.27 Customer Inovice Preference Survey 

Repeat 
Customer 

Size of 
Account 

Invoice 
Mail 

Invoice 
Electronically 

Invoice by 
Web Portal Total 

Yes 
Yes 
No 
No 
Totals 

Small 
Large 
Small 
Large 

12 
7 

11 
8 

38 

17 
12 
15 
12 
56 

26 
36 
16 
30 

108 

55 
55 
42 
50 

202 
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Table 4.28 Initial MINITAB Output for the Invoice Preference Data 
in Example 4.10 

Nominal Logistic Regression: Preference versus Repeat, Size 
Response Information 
Variable Value Count 
Preference Web Portal 108 (Reference Event) 

Mail 38 
Electronic 56 
Total 202 

Frequency: Frequency 
Logistic Regression Table 

odds 
Predictor Coef SE Coef Z P Ratio 
Logit 1: (Mail/Web Portal) 
Constant -1.30344 0.341447 3.82 0.000 
Repeat 
Yes 0.350678 0.384588 0.91 0.362 0.70 

Size 
Small 0.899940 0.387862 2.32 0.020 2.46 

Logit 2 : (Electronic/Web Portal) 
Constant -0.871234 0.292536 2.98 0.003 
Repeat 
Yes 0.270969 0.335846 0.81 0.420 0.76 

Size 
Small 0.755478 0.335801 2.25 0.024 2.13 

95% CI 
Predictor Lower Upper 
Logit 1: (Mail/Web Portal) 
Constant 
Repeat 
Yes 0.33 1.50 

Size 
Small 1.15 5.26 

Logit 2 : (Electronic/Web Portal) 
Constant 
Repeat 
Yes 0.39 1.47 

Size 
Small 1.10 4.11 

Log-Likelihood 198.435 
Test that all slopes are zero: G 9.034, DF-4-P-Value -0.060 

Goodness-of-Fit Tests 

Method Chi-Square DF P 
Pearson 0.0704557 2 0.965 
Deviance 0.0704649 2 0.965 
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(Reference Event) 

Table 4.29 Final MINITAB Output for the Invoice Preference Data in Example 4.10 
Nominal Logistic Regression: Preference versus Size 
Response Information 
Variable Value Count 
Preference Web Portal 108 

Mail 38 
Electronic 56 

Total 202 
Frequency: Frequency 
Logistic Regression Table 

Predictor Coef SE Coef 
Logit I: (Mail/Web Portal) 
Constant -1.48160 0.286039 
Size 
Small 0.879429 0.386142 

Logit 2 : (Electronic/Web Portal) 
Constant -1.01160 0.238366 
Size 
Small 0.739667 0.334481 

Predictor Lower 
Logit 1: (Mail/Web Portal) 
Constant 
Size 
Small 1.13 5.14 

Logit 2 : (Electronic/Web Portal) 
Constant 
Size 
Small 1.09 4.04 

Log-Likelihood 199.000 
Test that all slopes are zero: G 7.905 DE 2, P-Value 0.019 

z 

5.18 

2.28 

4.24 

2.21 
95% CI 

P 

0.000 

0.023 

0.000 

0.027 

Upper 

Odds 
Ratio 

2.41 

2.10 

where x is the account size indicator variable, with x = 1 indicating a small account 
and x = 0 indicating a large account. Using the equation above, the estimated 
coefficients can be interpreted just like coefficients in a binary logit model. 
Specifically, exponentiating the coefficient for x (i.e. Size), we get 
0̂.879429 = 2409, implying that the odds of a small account customer preferring 

mailed invoices to invoices via the web are 2.4 times greater than the odds of large 
account customers preferring mailed invoices over web invoices. 

The second logistic regression model compares the preference of electronic 
invoicing with web invoicing. The resulting prediction model is 

In K i,electronic \ 

ft i, web J 
-1.01160 + 0.739667.x 
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Using this equation and exponentiating the coefficient for x (i.e. Size), we get 
eo.739667 = 2095, implying that the odds of small account customers preferring 
electronic invoicing to web invoicing are 2.1 times greater than the odds of large 
account customers preferring electronic invoicing to web invoicing. D 

A second case involving a multilevel categorical response is an ordinal 
response. For example, customer satisfaction may be measured on a scale as 
not satisfied, indifferent, somewhat satisfied, and very satisfied. These outcomes 
would be coded as 1,2, 3, and 4 respectively. The usual approach for modeling 
this type of response data is to use logits of cumulative probabilities: 

l n T^H^ = a / t + x ; p '* = 1 ' - -" m - 1 (4-45) 

The cumulative probabilities are then 

^ < ^ ) - / X P ( a ^ X ; P L , ^ l , . . . ^ - l (4.46) 
v " - ) 1 + exp(a¿ + xjß) ' ' v ; 

The cumulative logit models presented above are also known as proportional 
odds models since the only difference in the models from one response category 
to the next is the intercepts. The effects of the regresssors in xz are assumed to be 
the same for all response categories. 

Example 4.11. Modeling Customer Satisfaction. Table 4.30 presents the 
results of a customer satisfaction survey conducted by a automobile parts 
wholesaler. There were 210 customers surveyed, and each customer was asked 
to respond on a five-point scale as to whether he/she was very dissatisfied, 
dissatisfied, neutral, satisfied, or very satisfied with the company service. 
Customers were classified as to whether they were repeat customers and the 
size of their order. Since there was only one customer in the very dissatisfied or 
dissatisfied categories, it was decided to analyze only the responses in the top 

Table 4.30 

Repeat 
Customer 

Yes 
Yes 
No 
No 
Total 

Ordinal 

Size of 
Order 

Small 
Large 
Small 
Large 

Response 

Very 

Data from Customer Surveys 

Dissatisfied 
(1) 
0 
0 
0 
0 
0 

Dissatisfied 
(2) 
0 
0 
1 
0 
1 

Neutral 
(3) 

7 
5 

15 
16 
43 

Satisfied 
(4) 
10 
13 
33 
28 
84 

Very 
Satisfied 

(5) 
30 
25 
15 
12 
82 

Total 

37 
43 
63 
56 

210 
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Coef 
0.818167 
1.16322 

SE Coef Z 
0.237466 3.45 
0.246020 4.73 

P 
0.001 
0.000 

Table 4.31 Initial MIN IT AB Output for the Customer Satisfaction Data 
in Example 4.10 

Ordinal Logistic Regression: Response versus Repeat, Order 
Link Function: Logit 
Response Information 
Variable Value Count 
Response 1 43 

2 84 
3 82 

T o t a l 209 
F r e q u e n c y : S a t i s f a c t i o n 
L o g i s t i c R e g r e s s i o n T a b l e 

Odds 95% CI 
P r e d i c t o r Coef SE Coef Z P R a t i o Lower Upper 
Cons t (1) 
Cons t (2) 
Repea t 

Yes - 1 . 4 4 3 5 4 0 .281491 5 .13 0 .000 0 .24 0 .14 0 . 4 1 
Order 

Smal l - 0 . 1 6 9 7 5 7 0 .265338 0 .64 0 .522 0 .84 0 .50 1.42 
L o g - L i k e l i h o o d = - 2 0 7 . 3 0 9 
T e s t t h a t a l l s l o p e s a r e z e r o : G = 2 7 . 9 3 4 , DF = 2 , P -Va lue = 0 .000 
G o o d n e s s - o f - F i t T e s t s 
Method C h i - S q u a r e DF P 
P e a r s o n 6 .06526 4 0 .194 
Dev iance 5 .67720 4 0 .225 

three categories, which we renumber as Neutral = 1, Satisfied = 2, and Very 
Satisfied = 3. 

Table 4.31 presents the MINITAB output for the main effects ordinal logistic 
regression model of the Customer Satisfaction example (Example 4.11). Based 
on the p-value for Order, we conclude that the size of the customer order is not 
important in determining customer satisfaction. As a result, we refit the model 
with only repeat order information (i.e. Repeat) as a predictor and obtain the 
results in Table 4.32. Note that with 3 response categories, the model has two 
intercepts (i.e. the a¿'s). Generally the intercepts are only of interest when 
estimating response probabilities. The estimated effect of being a repeat 
customer is b = -1.43736. Interpreting this coefficient, the estimated odds of 
a repeat customer being in a less satisfied status direction as compared to a new 
customer is e~l*43736 = 0.2376 times the estimated odds for new customers. Stated 
differently, the odds of new customers being less satisfied is 1/0.2376 = 4.21 times 
greater than repeat customers. 

If one were interested in computing the estimated probabilities of repeat 
customers and new customers falling into each of the three response categories, 
we could do so by first computing the estimated cumulative probabilities 
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Table 4.32 Final MINITAB Output for the Customer Satisfaction Data in 
Example 4.10 

Link Funct ion: Logit 
Response Information 
Variable 
Response 

Value 
1 
2 
3 

Total 

Count 
43 
84 
82 
209 

Frequency: S a t i s f a c t i o n 
Log i s t i c Regression Table 

Predictor Coef SE Coef 
Const (1) -0.907220 0.193595 
Const (2) 1.07114 0.199297 
Repeat 
Yes -1.43736 0.281192 

Log-Likelihood= -207.515 
Test that all slopes are zero: 
Goodness-of-Fit Tests 
Method Chi-Square 
Pearson 4.93210 
Deviance 4.71868 

Z 
4.69 
5.37 

5.11 

G = 27. 

DF 
1 
1 

P 
0.000 
0.000 

0.000 

,524, DF 

0 
0 

Odds 
Ratio 

0.24 

= 1, P-

P 
.026 
.030 

95% CI 
Lower Upper 

0.14 0.41 

-Value = 0.000 

associated with each response category. For repeat customers, the estimated 
cumulative probabilites are 

P{yi < „ , = , ) = .^-^lllzXM]lt[xL·=0.087 
1 + exp[-0.90722 - 1.43736(1)] 

and 

P(y<2\x=l) = exp[l-07114-1.43736(1)] 
F[y,s¿\x i) 1 + e x p [ 1 . 07 l 14-1.43736(1)] _ U ' 4 U y 

and, trivially, P(y¡ < 3\x — 1) = 1.0. The individual category probabilities are 
then just the differences of cumulative probabilities. So, P(yj = l\x = 1) = 
0.087, P{y, = 2\x = 1) = P{y, < 2\x = 1) - P{yj = l\x = 1) = 0.409 - 0.087 = 
0.322 and finally, P{y, = 3|x = 1) = 1.0 - P(yi < 2) = 1.0 - 0.409 = 0.591. 
Going through this same process for new customers, the estimated cumulative 
probabilities are 

P(y; < l | x = 0) exp[-0.90722] 
1 + exp[-0.90722] 0.287 



176 LOGISTIC AND POISSON REGRESSION MODELS 

and 

n ^ <C 21^ = 0) = t
 e X P [ 1

r ? 7 ' \ 4 L Ί = 0.7448 v ' ' ; l+exp[1.07114] 
and, P(yi < 3|x = 0) = 1.0. The individual category probabilities are then just 
the differences of cumulative probabilities. So, P(yl■= \\x = 0) = 0.287, 
Ptyi = 2\x = 0) = 0.7448 - 0.287 = 0.4578 and finally, P(y¡ = 3\x = 0) = 
1 - 0.7448 = 0.2552. 

Note the p-values associated with test of i/0: adequate model fit given in 
Table 4.32 under the section Goodness-of-Fit Tests. The Pearson chi-square and 
Deviance chi-square goodness-of-fit tests are general tests of fit and both reject 
the notion of model fit in this example. While these tests reject the notion of 
adequate model fit here, the expected counts for repeat customers in the neutral 
category and the satisfied category are quite small. Given the fact that two of 
the six cells in the cross-classification of the response categories with repeat/new 
are small, we have reason to doubt the reliability of the results from these 
statistics. A general rule of thumb is that 80% of the cross-classified expected 
cell counts should exceed 5. As discussed for binary logistic regression, when 
continuous covariates are the model, the Pearson and Deviance chi-squares are 
inappropriate and an ordinal version of the Hosmer-Lemeshow test is best for 
models with only continuous covariates and the ordinal version of the 
Pulkstenis-Robinson test is best when both categorical and continuous covari-
ates are present [see Pulkstenis and Robinson (2004)]. D 

4.3 POISSON REGRESSION 

We now consider another regression modeling scenario where the response 
variable of interest is not normally distributed. In this situation, the res-
ponse variable represents a count of some relatively rare event, such as defects 
in a unit of manufactured product, errors or bugs in software, or a count of 
particulate matter or other pollutants in the environment. The analyst is 
interested, in modeling the relationship between the observed counts and 
potentially useful regressor or predictor variables. For example, an engineer 
could be interested in modeling the relationship between the observed number 
of defects in a unit of product and production conditions when the unit was 
actually manufactured. 

We assume that the response variable y¡ is a count, such that the observation 
y ir = 0,1,2,.... A reasonable probability model for count data is often the 
Poisson distribution 

f{yi) = e~jf~' Λ = 0,1,2,... (4.47) 

where the parameter μ,- > 0. The Poisson is another example of a probability 
distribution where the mean and variance are related. In fact, its is easy to show 
that for a Poisson random variable, 
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E{y) = μ and Var{y) = μ (4.48) 

Note that the mean and variance of the Poisson distribution are equal to the 
parameter μ. 

As was the case in the logistic regression model, we do not write the model as 

yi = E(y¡) + ε/ 

but rather, we write the model in terms of the mean of the response. In 
particular, we assume that there exists a function, g, that relates the mean of the 
response to a linear predictor, say 

g(ßi) = Άι = ßo + 0ι*ι + - - - + ßk*k = x{ß (4-49) 

The function g is usually called the link function. The relationship between the 
mean and the linear predictor is 

M/ = r I ( f l / ) = r 1 ( x i P ) (4.50) 

There are several link functions that are commonly used with the Poisson 
distribution. One of these is the identity link 

g^) = μ, = x'# (4.51) 

When this link is used, E(yt) = μ, = χ,'β since μ, = g~l (χίβ) = χ,'β. Another 
popular link function for the Poisson distribution is the log link 

S(/i,) = Info) = χ!·β (4-52) 

For the log link in Equation (4.52), the relationship between the mean of the 
response variable and the linear predictor is 

^ = r ' ( x i ß ) = ^ (4-53) 

The log link is particularly attractive for Poisson regression because it ensures 
that all of the predicted values for the response variable will be nonnegative. 

The method of maximum likelihood is used to estimate the parameters in 
Poisson regression. The development follows closely the approach used for 
logistic regression. If we have a random sample of n observations on the 
response y and the predictors x, then the likelihood function is 

n / n 

" „-<·■„* Π μ ? ε χ ρ ( - Σ μ ; 
^(ß;y) = Í[f,(yd = U—y- = „V ,=l J (4-54) 

'=' <=' yi- E U ! 
¿ = 1 
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where μι■ = g { (χ',· β). Once the link function is selected, we maximize the log-
likelihood 

In JS?(ß; y) = ¿ * In (μ,) - ¿ μ , - ¿ In (y¡\) (4.55) 
1 = 1 ι = 1 ι = 1 

Iteratively reweighted least squares can be used to find the maximum likelihood 
estimates of the parameters in Poisson regression, following an approach 
similar to that used for logistic regression. Once the parameter estimates b 
are obtained, the fitted Poisson regression model is 

yi=g-l(x'ib) (4.56) 

For example, if the identity link is used, the prediction equation becomes 

Ä = r1(xib) = x/
/b 

and if the log link is selected, then 

j>,=S-1(x;.b) = exp(x;.b) 

Inference on the model and its parameters follows exactly the same approach as 
used for logistic regression. That is, model deviance and the Pearson chi-square 
statistic are overall measures of goodness of fit, and tests on subsets of model 
parameters can be performed using the difference in deviance between the full and 
reduced models. These are likelihood ratio tests. Wald inference, based on large-
sample properties of maximum likelihood estimators, can be used to test 
hypotheses and construct confidence intervals on individual model parameters. 

Example 4.12. The Aircraft Damage Data. During the Vietnam War, the 
United States Navy operated several types of attack (a bomber in USN parlance) 
aircraft, often for low-altitude strike missions against bridges, roads, and other 
transportation facilities. Two of these included the McDonnell Douglas A-4 
Skyhawk and the Grumman A-6 Intruder. The A-4 is a single-engine, single-
place light-attack aircraft used mainly in daylight. It was also flown by the Blue 
Angels, the Navy's flight demonstration team, for many years. The A-6 is a twin-
engine, dual-place, all-weather medium-attack aircraft with excellent day/night 
capabilities. However, the Intruder could not be operated from the smaller Essex-
class aircraft carriers, many of which were still in service during the conflict. 

Considerable resources were deployed against the A-4 and A-6, including 
small arms, AAA or antiaircraft artillery, and surface-to-air missiles. Table 4.33 
contains data from 30 strike missions involving these two types of aircraft. The 
regressor xx is an indicator variable (A-4 = 0 and A-6 = 1), and the other 
regressors x2 and x3 are bomb load (in tons) and total months of aircrew 
experience. The response variable is the number of locations where damage was 
inflicted on the aircraft. 
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Table 4.33 Aircraft Damage Data 
Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

y 
0 
1 
0 
0 
0 
0 
1 
0 
0 
2 
1 
1 
1 
1 
2 
3 
1 
1 
1 
2 
0 
1 
1 
2 
5 
1 
1 
5 
5 
7 

*1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

*2 

4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
7 
7 
7 
10 
10 
10 
12 
12 
12 
8 
8 
8 
14 
14 
14 

x3 

91.5 
84.0 
76.5 
69.0 
61.5 
80.0 
72.5 
65.0 
57.5 
50.0 
103.0 
95.5 
88.0 
80.5 
73.0 
116.1 
100.6 
85.0 
69.4 
53.9 
112.3 
96.7 
81.1 
65.6 
50.0 
120.0 
104.4 
88.9 
73.7 
57.8 

We model the damage response as a function of the three regressors. Since 
the response is a count, we use a Poisson regression model with the log link. 
Table 4.34 presents some of the output from JMP for this model. 

The model adequacy checks based on deviance and the Pearson chi-square 
statistics are satisfactory, but we notice that x3 = crew experience is not 
significant, using the Wald test (notice that the Wald statistic reported is [b/ 
se(b)]2, which is referred to a chi-square distribution with a single degree of 
freedom). This is a reasonable indication that x3 can be removed from the 
model. The aircraft type also has a relatively large P-value indicating 
the this factor may have little predictive power. When x3 is removed, it turns 
out that now xx = type of aircraft is no longer significant (you can easily verify 
that wald statistic for X\ in this model has a P-value of 0.2598). A moment of 
reflection on the data in Table 4.33 reveals that there is a lot of multicollinearity 
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Table 4.34 J M P Poisson Regression Output for the Aircraft Damage Data 

Generalized Linear Model Fit 
Response: y 
Distribution: Poisson 
Link: Log 
E s t i m a t i o n Method: Maximum L i k e l i h o o d 
O b s e r v a t i o n s (or SumWgts) = 2 8 
Whole Model T e s t 
Model 
D i f f e r e n c e 
F u l l 
Reduced 

- L o g L i k e l i h o o d 
8 

36 
4 5 , 

Goodness Of F i t 
S t a t i s t i c 
P e a r s o n 
Dev iance 
E f f e c t T e s t s 
Source 
x l 
x2 
x 3 

DF 
1 
1 
1 

.36410065 

.6397945 

.0038951 
C h i S q u a r e 

21 .0158 
2 3 . 3 9 1 1 

L-R C h i S q u a r e 
2 .4058919 
2 .8959626 
1.6075308 

Parameter E s t i m a t e s 
Term 
I n t e r c e p t 
x l 
x2 
x 3 

L - ] 

DF 

24 
24 

E s t i m a t e s S t d E r r o r 
- 0 . 4 1 4 0 8 3 0 .8827815 

0 .7934384 0 .5167237 
0 .1228425 0 .0717472 

- 0 . 0 1 0 9 5 8 0 .0086652 

R. C h i S q u a r e DF 
16 .7282 3 

P r o b > C h i S q 

0 .6378 
0 .4968 

P r o b > C h i S q 
0 .1209 
0 .0888 
0 .2048 

L-R C h i S q u a r e 
0 .2238464 
2 .4058919 
2 .8959626 
1.6075308 

P r o b > C h i S q 
0 .0008* 

P r o b > C h i S q 
0 .6361 
0 .1209 
0 .0888 
0 .2048 

in the data. Essentially, the A-6 is a larger aircraft so it can carry a heavier 
bomb load, and because it has a two-person crew, it may tend to have more 
total months of crew experience. Therefore, as x{ increases, there is a tendency 
for both of the other regressors to also increase. 

To investigate the potential usefulness of various subset models, we fit all 
three two-variable models and all three one-variable models to the data in 
Table 4.33. A brief summary of the results obtained is as follows: 

Model 

X\X2Xs 

xxx2 

X\Xl 

x2x$ 

X\ 
x2 

x* 

Deviance 

23.3911 
26.9914 
26.2871 
26.7280 
35.2362 
29.2059 
42.0783 

Difference in Deviance 
Compared to Full Model 

3.6003 
2.8960 
3.3369 

11.8451 
5.8679 

18.6872 

P-Value 

0.0578 
0.0888 
0.0677 
0.0006 
0.0154 

< 0.0001 
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Table 4.35 Mine Fracture Data 

y 

2 
1 
0 
4 
1 
2 
0 
0 
4 
4 
1 
4 
1 
5 
2 
5 
5 
5 
0 
5 
1 
1 

x\ 

50 
230 
125 
75 
70 
65 
65 
350 
350 
160 
145 
145 
180 
43 
42 
42 
45 
83 
300 
190 
145 
510 

*2 

70 
65 
70 
65 
65 
70 
60 
60 
90 
80 
65 
85 
70 
80 
85 
85 
85 
85 
65 
90 
90 
80 

*3 

52 
42 
45 
68 
53 
46 
62 
54 
54 
38 
38 
38 
42 
40 
51 
51 
42 
48 
68 
84 
54 
57 

x* 

1.00 
6.0 
1.0 
0.5 
0.5 
3.0 
1.0 
0.5 
0.5 
0.0 
10.0 
0.0 
2.0 
0.0 
12.0 
0.0 
0.0 
10.0 
10.0 
6.0 
12.0 
10.0 

y 

3 
3 
2 
2 
0 
1 
5 
2 
3 
3 
3 
0 
0 
2 
0 
.0 
3 
2 
3 
5 
0 
3 

*1 

65 
470 
300 
275 
420 
65 
40 
900 
95 
40 
140 
150 
80 
80 
145 
100 
150 
150 
210 
11 
100 
50 

*2 

75 
90 
80 
90 
50 
80 
75 
90 
88 
85 
90 
50 
60 
85 
65 
65 
80 
80 
75 
75 
65 
88 

*3 

68 
90 
165 
40 
44 
48 
51 
48 
36 
57 
38 
44 
96 
96 
72 
72 
48 
48 
42 
42 
60 
60 

X4 

5.0 
9.0 
9.0 
4.0 
17.0 
15.0 
15.0 
35.0 
20.0 
10.0 
7.0 
5.0 
5.0 
5.0 
9.0 
9.0 
3.0 
0.0 
2.0 
0.0 

25.0 
20.0 

From examining the difference in deviances between each of the subset models 
and the full model, we notice that all of the subset models are significantly 
worse than the full model. This leaves us with the full model as the final choice, 
even though it has one nonsignificant variable and one borderline significant 
factor. When there is multicollinearity in the regressors this is not an unusual 
result. 

Example 4.13. Mine Fractures. Counts were observed on the number of 
injuries or fractures that occur in the upper seam of mines in the coal fields of 
the Appalachian region in western Virginia. A total of 44 observations were 
collected on mines in this area. Four variables were measured. They all 
were functions of the material in the land and the mining area. 

The data are shown in Table 4.35. The variables are as follows: 

xim. Inner burden thickness in feet (INB) 
x2: Percent extraction of the lower previously mined seam (EXTRP) 
x3\ Lower seam height (feet) 
x4: Time that the mine has been opened (years) 
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Consider a Poisson regression model with log link fit to the data using all of the 
variables. The full model is 

E{y) = μ = exp [β0 + βλχλ + β2χ2 + β3Χ3 + £4*4] 

where μ is the mean number of fractures. In order to illustrate a model selection 
process, the deviance was found for all possible subset models, and the results 
are as follows (the * indicates the minimum deviance model of each subset size): 

Model 

* 1 

x2 

* 3 

X4 

X\, X2 

X\, X3 

X\, X4 

Xl, * 3 

X2, X4 

X3, X4 

X\, Xi, 

X\i X2i 

X\, X3 , 

X2, X3 , 

X\, X2, 

* 3 

X4 

X4 

X4 

X3, X4 

Deviance 

71.84 
48.62* 
73.84 
72.12 
42.09 
71.07 
70.43 
47.59 
41.63* 
71.28 
41.75 
38.03* 
69.81 
41.02 
37.86 

One should keep in mind that models with small deviance are models with 
large log-likelihood. Also, as in the case of the error sum of squares in a linear 
least squares model, the addition of a new term to the model must lower 
(at least cannot increase) the deviance. For example, consider the model with x\ 
and x4 with a deviance of 70.43. Relatively speaking, this is not an attractive 
model, but it gives a smaller deviance than either xx or x4, which individually 
are not attractive models. 

The analyst can arrive at reasonable models through the use of deviance tests 
involving hierarchical subsets. For instance, if we compare a model with only x2 

to a model with x2 and x4, we might question whether x4 is needed in the 
presence of x2. So, to test the significance of x4, we have the reduction in 
deviance by including x4 as 

D(x4\x2) = D(x2) - D(x2,x4) 

= 48.62-41.63 

= 6.99 

with 1 df, which is a significant χ2 value at less than the 0.01 level. Thus we need 
x4 in the presence of x2. Now focus on the model (x\, x2, x4). Is there a sufficient 
reduction in deviance by including xx in the presence of (JC2, XAP> We have 
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D(x\ \x2X4) = D{x2,X4) — D(X\, X2J X4) 

= 41.63-38.03 

= 3.60 

This χ2 statistic is significant at the 0.057 level. Thus X\ is certainly worthy of 
consideration. What about the full model? 

D(x3\xlx2x4) = 38.03 - 37.86 = 0.17 

which, of course, is not significant, indicating that the (xx, x2, X4) subset model 
is equivalent to the full model. Table 4.36 gives some summary information 
about the model (*i, x2, *4) . Note that the lack-of-fit information gives quite 
pleasing results. The deviance divided by degrees of freedom gives a value close 
to 1.0. Consider the Wald inference labeled Analysis of Parameter Estimates. 
Note that P-values are not identical to P-values computed earlier in the 
likelihood inference accomplished through difference in deviance. The final 
fitted model is given by 

μ = exp [-3.7207 - 0.0015*i + 0.0627x2 - 0.0317x4] 

As in the case of binary regression, an important aspect of the analysis of 
Poisson regression is the interpretation of coefficients. The nature of the 
interpretation depends a great deal on the model structure. Effects of individual 
factors can be computed. For example, consider the role of variable x4, the 
time that the mine has been opened. Since the coefficient of x4 in the linear 
predictor is negative, the aging of the mine reduces the mean number of 
fractures. For every 10 years of age, the mean number of fractures is reduced by 
100(1 -0.317\ _ ) = 27.2%, assuming fixed settings for xx and x2. Similar 
interpretations can be offered for each variable. These effects play the same 
role as odds ratios play in the logistic regression case. D 

Table 4.36 Model Summary Information for Mining Data with Variables Xi, X2, and x4 

Analysis of Parameter Estimates 
Parameter 
Intercept 

xi 
x4 

df 
1 
1 
1 
1 

Estimate 
-3.721 
-0.001479 

0.06270 
-0.03165 

deviance/df 

Standard Error 
0.9786 
0.0008242 
0.01227 
0.01631 

Chi Square 
14.4471 
3.2197 

26.1082 
3.7662 

P r > X 
0.0014 
0.072 
0.0001 
0.0523 
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4.4 OVERDISPERSION IN LOGISTIC AND POISSON REGRESSION 

Overdispersion is an important concept that can impact both logistic and 
Poisson regression models. We initially focus on the logistic regression case. Up 
to this point a poor fit of the logistic regression model would seem to arise from 
one of the following sources: 

1. The binomial assumption is incorrect. 
2. The choice of the logit model is improper (perhaps probit or comple-

mentary log-log is more appropriate). 
3. The structure used in the linear predictor is incorrect. Perhaps there are 

additional terms like interactions or other higher-order terms that were 
ignored, or perhaps the log of a regressor variable should be used rather 
than a linear term. 

4. There are outliers in the data. 

The practitioner has at his/her disposal the use of lack-of-fit information. The 
Hosmer-Lemeshow, Pearson chi-square, or Pulkstenis-Robinson tests may be 
used, or one may simply look at the rule of thumb that the mean deviance, that 
is, deviance/df should be close to unity. The latter is particularly effective when 
the data are grouped and there is a reasonable sample size in each group. 

The choice of distribution and model may indeed be appropriate, and the 
data set may be void of outliers, yet the mean deviance may signal a problem. 
The problem often encountered is called extra binomial variation or over-
dispersion. Overdispersion results when the variability accounted for by the 
binomial assumption, rat(l — π), is not sufficient. In other words, we say that 
the model is overdispersed. Consequently, there is an extra parameter involved, 
a scale parameter, say, σ2 > 1, so the variance of an individual observation 
becomes wc(l -π)σ2 rather than nn(\ - n). If σ2 < 1, we call the phenomenon 
underdispersion. However, this problem does not occur in practice as often as 
overdispersion. There are reasonable explanations of overdispersion, and we 
discuss these subsequently. Analysts should not leap to the conclusion of 
overdispersion until all effort has been put forth to find the correct model. 
The symptoms of a poorly specified model is the same as the symptom of 
overdispersion. Thus we have a situation very similar to what is encountered in 
standard linear regression analysis. A large mean squared error, s2, in linear 
regression can come from one of three sources. The experimental error variance 
may be large, there may be outliers in the data, or the model may be grossly 
under specified. The symptom is the same, a large error mean square. In logistic 
regression the mean deviance replaces the error mean square. We now turn our 
attention to what causes overdispersion and what is its impact on the logistic 
regression results. This is important because researchers can often anticipate 
the existence of overdispersion based on the application. 

Almost any cause of overdispersion results when experimental units are not 
homogeneous. The reader should certainly recognize the analogy with linear 
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regression or simple analysis of variance where nonhomogeneity in experi-
mental units may lead to incorrect F-tests and an improper estimate of residual 
variance. For the case of logistic regression suppose that the study involves 
experimental units that are animals, say, rabbits, and a study may involve litters 
of different rabbits. This type of nonhomogeneity can easily produce binomi-
ally distributed responses that result in two different animals in the same group, 
that is, exposed to the same experimental condition but having different 
binomial probabilities. One might also describe this condition as one in which 
two rabbits in the same litter have responses that are positively correlated. The 
explanation produces the same result; namely, the variance of a response 
exceeds that which is accounted for by binomial variability. 

One fairly simple way of analytically illustrating overdispersion is to assume 
some type of variability in the binomial parameter π. Let p be the random 
variable replacing the known binomial parameter, where p has a distribution 
with mean μ and variance φ>0. Then, if Y is the binomial random variable, 

Ε(Υ) = Ε[Ε(Υ\ρ)}=ηΕ(ρ)=ημ 

but 

Var( Y) = Var [£( Y\p)} + £[Var( Y \ p)] 

Now Var[£(F | p)] = Var[«/>] = η2φ and £[Var(y I /?)] = nE\p{\ - /?)]. The 
term nE[p{\ - p)] = n[E{p) - E(p2)] = η[μ - (φ + μ2)]. As a result 

Var( Y) = η2φ + ημ- φημ2 

= ημ(\ - μ)+ηφ(η- 1) 

>ημ(\ -μ) 

Thus if we visualize that the non homogeneiry of experimental units produces 
an effect equivalent to randomly varying /?, it is clear that the variance of the 
binomial random variable increases beyond that explained by binomial 
variance. On the other hand, if φ = 0, this Var(Y) reduces to the variance of 
an ordinary binomial random variable. 

The effect that overdispersion has on the results of a fitted logistic regression 
is similar to what one would suspect from what we know about standard linear 
regression. In standard linear regression if the model residual variability is 
inflated through faulty modeling that leaves the error mean square large, then 
standard errors of regression coefficients are underestimated. Using linear 
regression notation, this is because the variance covariance matrix of estimators 
is estimated by (X'X)-1^2, where s2 is the error mean square and s2 is inflated. In 
the case of overdispersion in logistic regression, the scale parameter σ2 > 1 
enters the variance-covariance matrix in the same fashion: 

Var(b) = (X'VX)~ V 
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and thus standard errors are underestimated since σ2> 1.0 are ignored. Now, in 
the case of overdispersion with the proper model, the maximum likelihood 
estimators of the /Ts remain asymptotically unbiased. 

It is important to note what areas of application are prone to lead to 
overdispersion. Overdispersion is obviously prominent in biological and 
biomedical applications where animals are experimental units. In other 
biological or environmental applications, where laboratory procedures and 
conditions give rise to clearly independent experimental units, overdispersion is 
not expected. In industrial applications experimental units are not independent 
at times by design, which leads to correlation among observations via a repeated 
measures scenario as in, for example split plot designs. We discuss this in more 
detail in Chapters 6 and 7, which covers generalized estimating equations and 
generalized linear mixed models. 

Based on the above discussion it appears as if reasonable adjustments can be 
made to correct standard errors of coefficients. In grouped logistic regression 
where the sample size in each group is reasonably large, it is reasonable to 
estimate the scale parameter by the mean deviance, that is, deviance/df which is 
analogous to the error mean square in standard linear regression. Another 
estimate that is just as intuitive is the Pearson χ2 statistic divided by n - p 
degrees of freedom, that is, 

i m 

— Σ {yi-hf 
/ι,·π,(η,π,(1 -ft,·)) 

X2 

The intuition here should be clear. The division of the squared residual by the 
binomial variance standardizes for binomial variance. However, an over-
dispersed situation has the factor σ2 also imbedded in Var(y/). Thus the 
quantity above estimates 1.0 in a pure binomial situation but estimates 
σ2> 1.0 in an overdispersed situation when the overdispersion model involves 
the single scale parameter σ2 in Var(j>;). An appropriate correction for the 
standard error is to multiply the ordinary standard errors by the factor 
yjdeviance/{n — p) or \/χ2/(η — p). Obviously, if these two factors give similar 
results, there is a level of comfort for the analyst. It is also clear that 
overdispersion impacts the Wald χ2 statistics. 

Example 4.14. Grain Beetles. The data in Table 4.37 are the results of an 
experiment designed to investigate the effectiveness of ethylene oxide as a 
fumigant against the grain beetle. The data are included in Bliss (1940) and 
further illustrated in Collett (1991). Various concentrations of the fumigant are 
included with sample sizes and the number of insects affected. Due to the 
nature of the experimental unit, one may well suspect that overdispersion is 
present here. Logistic regression is used with the model 

1 
π = l+exp[-(jßo + jßilnx)] 
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Table 4.37 Number of Grain Beetles Affected by Exposure to Concentrations of 
Ethylene Oxide 
Concentration (mg/L) Number Exposed 

24.8 
24.6 
23.0 
21.0 
20.6 
18.2 
16.8 
15.8 
14.7 

The lack-of-fit information is 

Model 

Intercept 
Intercept + In 

30 
30 
31 
30 
26 
27 
31 
30 
31 

Deviance 

138.00 
x 36.44 

10 
10 

Number of Insects Affected 

df 

- 1 = 
- 2 = 

= 9 
= 8 

23 
30 
29 
22 
23 

7 
12 
17 
10 

One must bear in mind that the mean deviance 36.44/8 = 4.56 does suggest a 
problem with the model. A plot of the logit of π versus In x taken from Collett 
is shown in Figure 4.17. If the model is correct, one would expect to see no 
systematic variation around a straight line. This plot shows no such variation. 
As a result the rather large value for the mean deviance does suggest 
overdispersion. The estimated parameters are b0 = -17.87 and b\ = 6.27 
with standard errors 2.272 and 0.779, respectively. These maximum likelihood 
estimators are appropriate, but the standard errors are subject to doubt. Before 
we adjust for overdispersion, consider a likelihood inference approach to 
testing. H0 : β\ = 0. This approach should give the reader a clear illustration of 
the analog between deviance and error sum of squares. It also introduces what 
becomes a generalization of analysis of variance—namely, analysis of deviance, 
given in Table 4.38. Just as ratios of mean squares are F-ratios in ordinary 
normal error linear regression, ratios of mean deviance are approximately 
F-ratios as ratios of %2/df variates. The P-value provides strong evidence of a 
significant log concentration term in the logistic regression model. 

We now adjust the standard error for overdispersion. Recall that the estimated 
standard errors are taken from the square root of the diagonal elements of 
(X'VX)-1 defined earlier in this chapter. The adjustment involves multiplication 
by ^36.44/8 = 2.13. After the adjustment the standard errors are 4.84 for the 
intercept term and 1.66 for the log concentration term. Since the multiplication 

adjustment on (X'VX)-1 involves multiplying by a yxl/i varíate then 

Coefficient 
Adjusted standard error 
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Table 4.38 Analysis of Deviance for Data of Table 4.33 

Source of Variation 

log (cone.) adjusted for intercept 
Residual deviance 
Total (intercept only) 

d.f. 

1 
8 
9 

138 

Deviance 

-36.44-101.56 
36.44 

138.00 

Mean 
Deviance 

101.56 
4.56 

F-Ratio 

22.3 (P £ 0.002) 

is approximately a normal random variable divided by yxl/i so a /-statistic is 
reasonable or one can use t2 = F\& Thus we have 

^1,8 = 
6.27 
L66 

^ 14.4 

which is significant at a level less than 0.01. D 

Overdispersion also can occur in Poisson regression models. As in 
logistic regression, we model this with a multiplicative dispersion factor φ, so that 

Var(^) = φμ 

The Poisson regression model is fit in the usual manner, and the parameter 
estimates are not affected by the value of φ. We can estimate φ by the deviance 
divided by degrees of freedom. The standard errors of the parameter estimates are 
multipled by the square root of the deviance divided by the degrees of freedom. 
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Another common approach to over dispersed data is the use of the negative 
binomial distribution rather than the Poisson. The negative binomial distribu-
tion inherently allows for greater dispersion than the Poisson. Several software 
packages including SAS PROC GENMOD and the glm, nb function in the 
MASS library of R, can be used for negative binomial regression. 

EXERCISES 

4.1 Show that the binomial deviance function D(ß) is given by 

2 Ζ*®+%*~»ΗΉ 
4.2 Show for both Poisson regression and logistic regression that if an 

intercept is contained in the linear predictor then 

i = l 

4.3 In Chapter 3 we learned that the Gauss-Newton procedure for computa-
tion of coefficients in a nonlinear model with nonhomogeneous variance 
involves computing 

b = bo + (D,V_1D)-1D,V-1(y - μ) 
where 

V = diag{(j?} 

and D is the matrix of derivatives of the type <9μ/9β and β0 is a starting 
value. Now this clearly is a candidate for iteratively reweighted least 
squares for both logistic and Poisson regression. Show that this reduces to 

b = bo + (X'\XylX,(y-μ) 

for Poisson and logistic regression. 

4.4 Let us suppose that a 2 x 2 factorial with variable coded to ± 1 is used to 
fit a logistic regression model in a drug study in which 20 subjects were 
allocated to each of the 4 treatment combinations. If the response is 
successful, then y = 1, and if the response is unsuccessful, then y = 0. The 
coefficients in the model are b0 = 1.4, b\ = 4.2, and b2 = 7.1. No interac-
tion was found. Do the following: 
(a) Compute the odds ratio for each coefficient and draw practical 

interpretations. 
(b) Compute the asymptotic 95% confidence intervals for each odds 

ratio. 
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4.5 Anand (1997) discusses an experiment to improve the yield of silica gel in 
a chemical plant. The factors were (A) sodium silicate density, (B) pH, (C) 
setting time, and (D) drying temperature. The response was the percent of 
batches judged to be second grade material out of 1000 batches. The data 
follow. 
(a) Use the logit link and logistic regression to analyze these data. 
(b) Repeat this analysis using the probit link. 
(c) Discuss the two analyses. 
(d) The limiting distribution for the binomial is the Poisson. Repeat part 

(a) using Poisson regression. Discuss the differences. 

A 

1.125 
1.125 
1.125 
1.125 
1.125 
1.125 
1.125 
1.125 
1.125 
1.121 
1.121 
1.121 
1.121 
1.121 
1.121 
1.121 
1.121 
1.121 
1.123 
1.123 
1.123 
1.123 
1.123 
1.123 
1.123 
1.123 
1.123 

B 

3.5 
3.5 
3.5 
3.0 
3.0 
3.0 
4.0 
4.0 
4.0 
3.5 
3.5 
3.5 
3.0 
3.0 
3.0 
4.0 
4.0 
4.0 
3.5 
3.5 
3.5 
3.0 
3.0 
3.0 
4.0 
4.0 
4.0 

C 

40 
50 
30 
40 
50 
30 
40 
50 
30 
40 
50 
30 
40 
50 
30 
40 
50 
30 
40 
50 
30 
40 
50 
30 
40 
50 
30 

D 

150 
120 
135 
120 
135 
150 
135 
150 
120 
120 
135 
150 
135 
150 
120 
150 
120 
135 
135 
150 
120 
150 
120 
135 
120 
135 
150 

P 

14.0 
13.5 
18.3 
17.4 
16.3 
13.9 
14.1 
12.0 
12.0 
17.0 
10.5 
15.3 
21.0 
20.5 
19.8 
12.3 
11.3 
10.5 
15.2 
12.3 
12.0 
11.1 
12.8 
13.4 
10.3 
10.4 
11.7 

4.6 Nelson (1982, pp. 407-409) discusses an experiment to determine the 
relationship of time in use to the number of fissures that develop in 
furbine wheels. The data follow. 
(a) Use the logit link and logistic regression to analyze these data. 
(b) Repeat this analysis using the probit link. 
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(c) Discuss the two analyses. 
(d) The limiting distribution for the binomial is the Poisson. Repeat part 

(a) using Poisson regression. Discuss the differences. 

Hours 

400 
1000 
1400 
1800 
2200 
2600 
3000 
3400 
3800 
4200 
4600 

Total Turbines 
Studied 

39 
53 
33 
73 
30 
39 
42 
13 
34 
40 
36 

Number with 
Fissures 

0 
4 
2 
7 
5 
9 
9 
6 

22 
21 
21 

4.7 A major aircraft manufacturer studied the number of failures of an alloy 
fastener after each fastener was subjected to a pressure load. The data follow. 
(a) Use the logit link and logistic regression to analyze these data. 
(b) Repeat this analysis using the probit link. 
(c) Discuss the two analyses. 
(d) The limiting distribution for the binomial is the Poisson. Repeat part 

(a) using Poisson regression. Discuss the differences. 

Pressure 

2500 
2700 
2900 
3100 
3300 
3500 
3700 
3900 
4100 
4300 

Total Fasteners 
Studied 

50 
70 

100 
60 
40 
85 
90 
50 
80 
65 

Number 
Failing 

10 
17 
30 
21 
18 
43 
54 
33 
60 
51 

4.8 Maruthi and Joseph (1999-2000) conducted an experiment to improve the 
yield of high, dense, inner-layer circuits in a printed circuit board 
operation. The factors were (A) surface preparation, (B) preheat, (C) 
lamination speed, (D) lamination pressure, (E) lamination temperature, 
(F) exposure step, (G) developer speed, and (H) oxidation-reduction 
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potential. They measured two responses. The first response, yu was the 
percentage of shorts out of 400 opportunities. The second response, y2, 
was the percent of opens age out of 800 opportunities. The data follow. 
(a) For both responses, individually, use the logit link and logistic 

regression to analyze these data. 
(b) 'Repeat this analysis using the probit link. 
(c) Discuss the two analyses. 
(d) The limiting distribution for the binomial is the Poisson. Repeat part 

(a) using the Poisson regression. Discuss the differences. 

A B 

- 1 - 1 
- 1 -1 
- 1 -1 

0 -1 
0 -1 
7 -1 
1 -1 
1 - ] 

1 - ] 

- 1 
- 1 1 
- 1 

0 
0 
0 
1 
1 
1 

C D 

- 1 - 1 
0 
1 -

- 1 
0 -
1 

- 1 - 1 
L 0 

1 -
I - 1 

0 -
I 1 
I - 1 -
I 0 
I 1 -
I - 1 
I 0 -
I 1 

E 

Í - 1 

0 
I 1 
I 0 
I 1 
I - 1 
I - 1 
I 0 
I 1 
I 1 
I - 1 
I 0 
1 1 
I - 1 
I 0 
I 0 
I 1 
I - 1 

F 

- 1 
0 
1 
0 
1 

- 1 
1 

- 1 
0 
0 
1 

- 1 
- 1 

0 
1 
1 

- 1 
0 

G 

- 1 
0 
1 
1 

- 1 
0 
0 
1 

- 1 
0 
1 

- 1 
1 

- 1 
0 

- 1 
0 
1 

H 

- 1 
0 
1 
1 

- 1 
0 
1 

- 1 
0 

- 1 
0 
1 
0 
1 

- 1 
0 
1 

- 1 

y\ 

26.0 
19.0 
12.6 
16.4 
11.8 
16.9 
12.8 
19.0 
17.5 
11.9 
9.8 

13.3 
16.9 
11.6 
9.2 
7.5 

21.2 
16.4 

yi 

12.2 
16.6 
16.4 
23.0 
18.6 
7.7 

17.8 
19.4 
20.5 
21.2 
17.2 
12.5 
18.6 
13.3 
20.5 
16.9 
20.0 
17.2 

4.9 Chowdhury, Gijo, and Raghavan (2000) conducted an experiment to 
decrease the number of defects on a printed circuit assembly-encoder. The 
factors were (A) bath temperature, (B) wave height, (Q overhead preheater, 
(D) preheater 2, (E) preheater 1, (F) air knife, and (G) the vibration of 
the solder wave. The response was the total number of defects on a unit. The 
data follow. Analyze these data by Poisson regression. 

Experiment 

1 
2 
3 

(A) 
Bath 

Tempe-
rature 
(°Q 

248 
248 
248 

(B) 
Wave 
Height 

4.38 
4.38 
4.38 

(O 
Overhead 
Preheater 

(°C) 

340 
360 
380 

(D) 
Pre-

heater 
2(°C) 

340 
360 
380 

(E) 
Pre-

heater 
K°Q 
340 
360 
380 

(F) 
Air 

Knife 

0 
3 
6 

(G) 
Omega 

0 
2 
4 

1 

4 
2 
1 
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Experiment 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

(A) 
Bath 

Tempe-
rature 
(°C) 

248 
248 
248 
248 
248 
248 
252 
252 
252 
252 
252 
252 
252 
252 
252 

(B) 
Wave 
Height 

4.4 
4.4 
4.4 
4.42 
4.42 
4.42 
4.38 
4.38 
4.38 
4.4 
4.4 
4.4 
4.42 
4.42 
4.42 

(Q 
Overhead 
Preheater 
(°Q 
340 
360 
380 
340 
360 
380 
340 
360 
380 
340 
360 
380 
340 
360 
380 

(D) 
Pre-
heater 
2(°C) 

340 
360 
380 
360 
380 
340 
380 
340 
360 
360 
380 
340 
380 
340 
360 

(E) 
Pre-
heater 
K°Q 
360 
380 
340 
340 
360 
380 
380 
340 
360 
380 
340 
360 
360 
380 
340 

(ñ 
Air 
Knife 

3 
6 
0 
6 
0 
3 
3 
6 
0 
0 
3 
6 
6 
0 
3 

(G) 
Omega 

4 
0 
2 
2 
4 
0 
2 
4 
0 
4 
0 
2 
0 
2 
4 

1 

2 
6 
15 
9 
5 
8 
5 
4 
11 
10 
15 
4 
12 
6 
7 

4.10 A student conducted a project looking at the impact of popping tempera-
ture, amount of oil, and the popping time on the number of inedible kernels 
of popcorn. The data follow. Analyze these data using Poisson regression. 

Temperature 

7 
5 
7 
7 
6 
6 
5 
6 
5 
6 
5 
7 
6 
6 
6 

Oil 

4 
3 
3 
2 
4 
3 
3 
2 
4 
2 
2 
3 
3 
3 
4 

Time 

90 
105 
105 
90 
105 
90 
75 
105 
90 
75 
90 
75 
90 
90 
75 

y 

24 
28 
40 
42 
11 
16 
126 
34 
32 
32 
34 
17 
30 
17 
50 

4.11 Zhang and Zelterman (1999) discuss an experiment where female mice 
were fed extremely low doses of a known carcinogen, 2-acetylamino-
fluorene (2-AAF). The following table summarizes the results of the 
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incidences of bladder and liver cancers. Perform an appropriate analysis 
for each cancer. 

Dose 
(parts per 
104 2-AAF) 

0 
0.3 
0.35 
0.45 
0.6 
0.75 
1.0 
1.5 

Bladder Cancer 

Mice Exposed 

101 
443 
200 
103 
66 
75 
31 
11 

Incidence 

1 
5 
0 
2 
2 

12 
21 
11 

Liver Cancer 

Mice Exposed 

555 
2014 
1102 
550 
441 
382 
213 
211 

Incidence 

6 
34 
20 
15 
13 
17 
19 
24 

4.12 Slaton, Piegorsch, and Durham (2000) discuss an experiment that 
examined the in utero damage in laboratory rodents after exposure to 
boric acid. This particular experiment used four levels of boric acid. The 
experimenters recorded the number of rodents in the litter and the 
number of dead embryos. The data are in the table below. Perform an 
appropriate analysis of them data. 

Dose = 0 

Dead 

0 
0 
1 
1 
1 
2 
0 
0 
1 
2 
0 
0 
3 
1 
0 
0 
2 
3 
0 
2 
0 
0 
2 

Litter Size 

15 
3 
9 

12 
13 
13 
16 
11 
11 
8 

14 
13 
14 
13 
8 

13 
14 
14 
11 
12 
15 
15 
14 

Dose 

Dead 

0 
1 
1 
0 
2 
0 
0 
3 
0 
2 
3 
1 
1 
0 
0 
0 
1 
0 
2 
2 
2 
3 
1 

= 0.1 

Litter Size 

6 
14 
12 
10 
14 
12 
14 
14 
10 
12 
13 
11 
11 
11 
13 
10 
12 
11 
10 
12 
15 
12 
12 

Dose 

Dead 

1 
0 
0 
0 
0 
0 
4 
0 
0 
1 
2 
0 
1 
1 
0 
0 
1 
0 
1 
0 
0 
1 
2 

= 0.2 

Litter Size 

12 
12 
11 
13 
12 
14 
15 
14 
12 
6 

13 
10 
14 
12 
10 
9 

12 
13 
14 
13 
14 
13 
12 

Dose 

Dead 

12 
1 
0 
2 
2 
4 
0 
1 
0 
1 
3 
0 
1 
0 
3 
2 
3 
3 
1 
1 
8 
0 
2 

: = 0.3 

Litter Size 

12 
12 
13 
8 

12 
13 
13 
13 
12 
9 
9 

11 
14 
10 
12 
21 
10 
11 
11 
11 
14 
15 
13 
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Dose = 0 

Dead Litter Size 

1 11 
1 16 
0 12 
0 14 

Dose 

Dead 

0 
1 
1 
1 

= 0.1 

Litter Size 

12 
12 
13 
15 

Dose 

Dead 

1 
0 
0 
1 

= 0.2 

Litter Size 

14 
13 
12 
7 

Dose 

Dead 

8 
4 
2 

; = 0.3 

Litter Size 

11 
12 
12 

4.13 Bailer and Piegorsch (2000) report on an experiment that examines the 
effect of a herbicide, nitrofen, on the umber of offspring produced by a 
particular freshwater invertebrate Zooplankton. The data follow. Per-
form an appropriate analysis of these data. 

Dose 

Control 
80 
160 
235 
310 

27 
33 
29 
23 
6 

32 
33 
29 
21 

6 

34 
35 
23 

7 
7 

Number of 

33 
33 
27 
12 
0 

36 
36 
30 
27 
15 

Offspring 

34 
26 
31 
16 
5 

33 
27 
30 
13 
6 

30 
31 
26 
15 
4 

24 
32 
29 
21 
6 

31 
29 
29 
17 
5 

4.14 The table below presents the test-firing results for 25 surface-to-air 
antiaircraft missiles at targets of varying speed. The result of each test is 
either a hit (y = 1) or a miss (y = 0). 

Test 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Target Speed x (knots) 

400 
220 
490 
210 
500 
270 
200 
470 
480 
310 
240 
490 
420 

y 

0 
1 
0 
1 
0 
0 
1 
0 
0 
1 
1 
0 
0 

Test 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Target Speed x (knots) 

330 
280 
210 
300 
470 
230 
430 
460 
220 
250 
200 
390 

y 

1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
1 
0 

(a) Fit a logistic regression model to the response variable y. Use a simple 
linear regression model as the structure for the linear predictor. 
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(b) Does the model deviance indicate that the logistic regression model 
from part (a) is adequate? 

(c) Provide an interpretation of the parameter ßx in this model. 
(d) Expand the linear predictor to include a quadratic term in target 

speed. Is there any evidence that this quadratic term is required in the 
model? 

4.15 A study was conducted attempting to relate home ownership to family 
income. Twenty households were selected and family income was 
estimated, along with information concerning home ownership (y = 1 
indicates yes and y = 0 indicates no). The data are shown below. 

Household 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Income 

38,000 
51,200 
39,600 
43,400 
47,700 
53,000 
41,500 
40,800 
45,400 
52,400 

Home 
Ownership 

Status 

0 
1 
0 
1 
0 
0 
1 
0 
1 
1 

Household 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Income 

38,700 
40,100 
49,500 
38,000 
42,000 
54,000 
51,700 
39,400 
40,900 
52,800 

Home 
Ownership 

Status 

1 
0 
1 
0 
1 
1 
1 
0 
0 
1 

(a) Fit a logistic regression model to the response variable y. Use 
a simple linear regression model as the structure for the linear 
predictor. 

(b) Does the model deviance indicate that the logistic regression model 
from part (a) is adequate? 

(c) Provide an interpretation of the parameter ßx in this model. 
(d) Expand the linear predictor to include a quadratic term in income. 

Is there any evidence that this quadratic term is required in the 
model? 

4.16 The compressive strength of an alloy fastener used in aircraft construc-
tion is being studied. Ten loads were selected over the range 2500-4300 
psi and a number of fasteners were tested at those loads. The numbers of 
fasteners failing at each load were recorded. The complete test data are 
shown below. 
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Load, 
x (psi) 

2500 
2700 
2900 
3100 
3300 
3500 
3700 
3900 
4100 
4300 

Sample 
Size, n 

50 
70 
100 
60 
40 
85 
90 
50 
80 
65 

Number 
Failing, r 

10 
17 
30 
21 
18 
43 
54 
33 
60 
51 

(a) Fit a logistic regression model to the data. Use a simple linear 
regression model as the structure for the linear predictor. 

(b) Does the model deviance indicate that the logistic regression model 
from part (a) is adequate? 

(c) Expand the linear predictor to include a quadratic term. Is there any 
evidence that this quadratic term is required in the model? 

(d) For the quadratic model in part (c), find Wald statistics for each 
individual model parameter. 

(e) Find approximate 95% confidence intervals on the model parameters 
for the quadratic model from part (c). 

4.17 The market research department of a soft drink manufacturer is investi-
gating the effectiveness of a price discount coupon on the purchase of a 
two-liter beverage product. A sample of 5500 customers was given 
coupons for varying price discounts between 5 and 25 cents. The response 
variable was the number of coupons in each price discount category 
redeemed after one month. The data are shown below. 

Discount, x Sample Size, n Number Redeemed, r 

5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 

500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 

100 
122 
147 
176 
211 
244 
277 
310 
343 
372 
391 
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(a) Fit a logistic regression model to the data. Use a simple linear 
regression model as the structure for the linear predictor. 

(b) Does the model deviance indicate that the logistic regression model 
from part (a) is adequate? 

(c) Draw a graph of the data and the fitted logistic regression model. 
(d) Expand the linear predictor to include a quadratic term. Is 

there any evidence that this quadratic term is required in the 
model? 

(e) Draw a graph of this new model on the same plot that you prepared in 
part (c). Does the expanded model visually provide a better fit to the 
data than the original model from part (a)? 

(f) For the quadratic model in part (d), find Wald statistics for each 
individual model parameter. 

(g) Find approximate 95% confidence intervals on the model parameters 
for the quadratic logistic regression model from part (d). 

4.18 A study was performed to investigate new automobile purchases. A 
sample of 20 families was selected. Each family was surveyed to 
determine the age of their oldest vehicle and their total family income. 
A follow-up survey was conducted 6 months later to determine if they 
had actually purchased a new vehicle during that time period (y = 1 
indicates yes and y = 0 indicates no). The data from this study are shown 
in the following table. 

Income, X\ 

45,000 
40,000 
60,000 
50,000 
55,000 
50,000 
35,000 
65,000 
53,000 
48,000 

Age, x2 

2 
4 
3 
2 
2 
5 
7 
2 
2 
1 

y 

~ΊΓ 
0 
1 
1 
0 
1 
1 
1 
0 
0 

Income, x{ 

37,000 
31,000 
40,000 
75,000 
43,000 
49,000 
37,500 
71,000 
34,000 
27,000 

Age, x2 

5 
7 
4 
2 
9 
2 
4 
1 
5 
6 

y 

~T~ 
1 
1 
0 
1 
0 
1 
0 
0 
0 

(a) Fit a logistic regression model to the data. 
(b) Does the model deviance indicate that the logistic regression model 

from part (a) is adequate? 
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(c) Interpret the model coefficients βλ and β2. 
(d) What is the estimated probability that a family with an income of 

$45,000 and a car that is 5 years old will purchase a new vehicle in the 
next 6 months? 

(e) Expand the linear predictor to include an interaction term. Is there 
any evidence that this term is required in the model? 

(f) For the model in part (a), find statistics for each individual model 
parameter. 

(g) Find approximate 95% confidence intervals on the model parameters 
for the logistic regression model from part (a). 

4.19 A chemical manufacturer has maintained records on the number 
of failures of a particular type of valve used in its processing unit and 
the length of time (months) since the valve was installed. The data are 
shown below. 

Valve 

1 
2 
3 
4 
5 
6 
7 
8 

Number of 
Failures 

5 
3 
0 
1 
4 
0 
0 
1 

Months 

18 
15 
11 
14 
23 
10 
5 
8 

Valve 

9 
10 
11 
12 
13 
14 
15 

Number of 
Failures 

0 
0 
0 
1 
0 
7 
0 

Months 

7 
12 
3 
7 
2 

30 
9 

(a) Fit a Poisson regression model to the data. 
(b) Does the model deviance indicate that the Poisson regression model 

from part (a) is adequate? 
(c) Construct a graph of the fitted model versus months. Also plot the 

observed number of failures on this graph. 
(d) Expand the linear predictor to include a quadratic term. Is there any 

evidence that this term is required in the model? 
(e) For the model in part a, find Wald statistics for each individual model 

parameter. 
(f) Find approximate 95% confidence intervals on the model parameters 

for the Poisson regression model from part (a). 
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4.20 The following data come from a dose-response study that investigated a 
new pharmaceutical product. 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Dose 
(mg) 

180 
182 
184 
186 
185 
188 
190 
192 
195 
194 
196 
199 
200 
204 
205 

Patient 
Response 

0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
1 
1 
0 
0 
1 

Observation 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Dose 
(mg) 

210 
212 
215 
216 
218 
220 
222 
225 
228 
230 
232 
234 
235 
236 
240 

Patient 
Response 

0 

0 

0 

0 

(a) Fit a logistic regression model to these data. 
(b) Prepare a graph of the fitted function. Does it adequately describe the 

data? 
(c) Investigate the lack of fit of the model. What are your conclusions? 
(d) Find 95% confidence intervals on the model parameters. 
(e) Estimate the probability of a successful response if the dose is 226 mg. 
(f) Find a 96% confidence interval on the probability of success when the 

dose is 226 mg. 

4.21 The following table presents data on the reproduction of Ceriodaphnia 
organisms in a controlled environment in which a varying concentration 
of a component of jet engine fuel is introduced. We expect that as the 
concentration increases the mean number of counts of the organisms 
should decrease. Information is also provided on two different strains of 
the organism. 

Observation 

1 
3 
5 
7 

y 

82 
106 
63 
99 

X 

0 
0 
0 
0 

Strain 

1 
1 
1 
1 

Observation 

2 
4 
6 
8 

y 

58 
58 
62 
58 

X 

0 
0 
0 
0 

Strain 

2 
2 
2 
2 
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Observation 

9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 
51 
53 
55 
57 
59 
61 
63 
65 
67 
69 

y 
101 
45 
34 
26 
44 
42 
31 
22 
16 
30 
29 
22 
14 
10 
21 
20 
15 
8 
6 
14 
13 
10 
8 
11 
10 
10 
8 
8 
3 
8 
1 

x Strain 

0 1 
0.5 1 
0.5 1 
0.5 1 
0.5 1 
0.5 1 
0.75 1 
0.75 1 
0.75 1 
0.75 1 
0.75 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1.25 1 
1.25 1 
1.25 1 
1.25 1 
1.25 1 
1.5 1 
1.5 1 
1.5 1 
1.5 1 
1.5 1 
1.75 1 
1.75 1 
1.75 1 
1.75 1 
1.75 1 

Observation 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 

y 

73 
27 
28 
31 
28 
38 
19 
20 
22 
20 
28 
14 
14 
15 
14 
21 
9 
10 
12 
10 
16 
7 
3 
1 
8 
7 
4 
3 
2 
8 
4 

X 

0 
0.5 
0.5 
0.5 
0.5 
0.5 
0.75 
0.75 
0.75 
0.75 
0.75 
1 
1 
1 
1 
1 
1.25 
1.25 
1.25 
1.25 
1.25 
1.5 
1.5 
1.5 
1.5 
1.5 
1.75 
1.75 
1.75 
1.75 
1.75 

Strain 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

(a) Fit a Poisson regression model to these data including both concen-
tration and strain in the linear predictor. 

(b) Is there any evidence of lack of fit in the model? 
(c) Construct a normal probability plot of the deviance residuals. Is the 

plot satisfactory? 
(d) Is the strain of the organism significant? 
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The Generalized Linear Model 

As we introduce the notion of generalized linear models, two important issues 
surface: the distribution of the response and the model that relates the mean 
response to the regression variables. These two issues are not independent of each 
other because certain types of models are more appropriate for some distribu-
tions than for others. For example, the logistic model forces the inequality 

0 < π < 1 

where π is the binomial probability. A model that allows π to be either negative 
or greater than 1.0 is undesirable. In addition the Poisson regression model as 
discussed in Chapter 4, forces the mean number of counts to be nonnegative. 
This result, of course, is quite pleasing. In this chapter we use GLM to denote the 
basic methodology associated with generalized linear models. 

5.1 THE EXPONENTIAL FAMILY OF DISTRIBUTIONS 

An important unifying concept underlying the GLM is the exponential family of 
distributions. Members of the exponential family of distributions all have 
probability density functions for an observed response y that can be expressed 
in the form 

ny-,θ,φ) = e x p | ^ )
( g ) + c ( j , 0 ) | (5.1) 

where a( ·), b( ·), and c( ·) are specific functions. The parameter Θ is a natural 
location parameter, and φ is often called a dispersion parameter. The function 

Generalized Linear Models, Second Edition, by Myers, Montgomery, Vining, and Robinson 
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α(φ) is generally of the form α(φ) = φ · ω, where ω is a known constant. 
The binomial, Poisson, and normal distributions are members of this 
family. For some common members of the family, φ = 1.0—like the binomial 
and Poisson—except in situations of overdispersion, in which case the 
analyst needs to deal with an additional parameter as discussed in the previous 
chapter. 

The most prominent member of the exponential family is the familiar 
normal distribution. The probability density function for a normal random 
variable y with parameters μ and σ is given by 

f(y; μ,σ) = exp j - [ y - μ]2/2σ2} 
1 

'ΐπσ 

= exp jüT* - μ2/2)/σ2 - l-\y2/a2 + 1η(2πσ2)]} 

This density function is of the form given in Equation (5.1) with θ = μ, 
6(0) = μ2/2, α(φ) = φ, φ = σ2, and 

Φ>Ψ)=-2 
Γ ^ + 1η(2πσ

2) 

The location parameter is μ and the natural scale parameter is σ2, as expected. 
Consider now the Poisson distribution. We know that the probability 

function is given by 

= exp[y In μ - μ - ln(y\)] 

As a result, Θ = In μ, b(6) = ee\ and c(y, φ) = - ln(y!). Thus the location 
parameter is μ, and the scale parameter is φ = 1.0. We do not present all of the 
details in the case of the binomial distribution. If we assume y is binomial with 
parameters n and π, we have 

ο(θ) = TI ln(l + e") 

φ = 1.0 

α{φ) = 1 

c{ ■) = In 
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From mathematical statistics (e.g., Bickel and Doksom, 2001), we can show 
that for members of the exponential family 

and 

ZdMnifX /dlnJ^V A 

We then apply the results (see Exercise 5.8) to obtain 

d2b(6) 

de2 νΆΧ{γ) = —^Ια{φ) = ν{θ)α{φ) 

Let Var,, be the variance of the response, y, apart from α(φ); Var,, denotes the 
dependence of the variance of the response on its mean. Thus 

_ Var(>>) _ άμ 
Άμ~ α(φ) * dd 

As a result we have 

άθ _ 1 
άμ Var^ 

One can easily check these results for the normal, binomial, or the Poisson case. 
For example, in the normal case, 

θ = μ 

α(φ) = a2 

V a r ( , ) = ^ W ) = a2 
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For the Poisson case, we have 

Thus 

θ = 1η(μ) and μ = exp(ö) 
biß) = μ 

α(φ) = 1 
c(y, φ) = -\n(y\) 

E{y) _ dW) _ db(e) ^μ 
άθ άμ άθ 

However, since 

the mean of the Poisson distribution is 

E(y) = 1.μ = μ 

The variance of the Poisson distribution is 

yy) de de μ 

which, of course, is the Poisson mean. 
Among the other distributions in the exponential family are the exponential, 

gamma, inverse Gaussian, and geometric distributions. Some of the distribu-
tions are discussed at length later in this chapter. An important distribution 
that is not a member of the exponential family is the Weilbull. 

At this point it is important to discuss the formality of model structure, that 
is, how the foregoing determines the structure of the model. As this develop-
ment ensues, we must determine what the characteristics are that define the 
class of generalized linear models. 

5.2 FORMAL STRUCTURE FOR THE CLASS OF GENERALIZED 
LINEAR MODELS 

We now consider the following structure as an extension of the Poisson and 
binomial development in the previous chapters. The context of this extension is 
the exponential family defined by the probability distribution given in Equation 
(5.1). The structure is: 
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1. We have y\, y2,...,yn independent response observations with means μ1? 

μ2,..., μη, respectively. 
2. The observation y¡ has a distribution that is a member of the exponential 

family. 
3. The systematic portion of the model involves regressor or predictor 

variables x\, x2,..., Xk-
4. The model is constructed around the linear predictor η = χ'β = β0+ 

Σ/=ι ßixh The involvement of this linear predictor suggests the terminol-
ogy generalized linear models. 

5. The model is found through the use of a link function. 

ni=g{ßi), *'= 1, 2, . . . , n (5.2) 

The term link is derived from the fact that the function is the link between 
the mean and the linear predictor. Note that the expected response is 

£(*) = *-'(»»,) = rV,ß) 
In fact, in multiple linear regression the model 

μί = ηιr = xjß, ι = 1, 2, . . . , η 

suggests a special case in which gQi¡) = μ,, and thus the link function used 
is the identity link. 

6. The link function is a monotonic differentiable function. 
7. The variance σ,·2 (/ = 1, 2,. . . , ri) is a function of the mean μ,. 

The reader is referred to McCullagh and Neider (1987) for further details on the 
structure of the GLM. 

There are many possible choices of the link function. If we choose 

r\i = 0t (5.3) 

then we say that η{ is the canonical link. The link function from this formulation 
results in some interesting theoretical properties that are demonstrated later. 
Table 5.1 shows the canonical links for the most common choices of distribu-
tions employed with the generalized linear model. 

There are other link functions that could be used with a generalized linear 
model, including: 

1. The probit link 

ηι = φ-ι[Ε(γί)} 

where Φ represents the cumulative standard normal distribution function. 
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Table 5.1 Canonical Links for the Generalized Linear Model 

Distribution Canonical Link 

ηί = μ, (identity link) 
*/ = 1 η ( τ ^ ) (logistic link) 
ηί = \η(μί) (log link) 
Y\{ = j (reciprocal link) 
ηί = j (reciprocal link) 

2. The complimentary log-log link, 

^. = ln{ln[l- f t]} 

3. The power family link 

ί ΐή, λ φ 0 
η' \ Ιφ,], λ = 0 

A very fundamental idea is that there are two components to a generalized linear 
model: the response distribution (also called the error distribution) and the link 
function. We can view the selection of the link function in a vein similar to the 
choice of a transformation on the response. However, it is important to under-
stand that the link function is a transformation on the population mean, not the 
data. Unlike a transformation, the link function takes advantage of the natural 
distribution of the response. Just as not using an appropriate transformation can 
result in problems with a fitted linear model, improper choices of the link function 
can also result in significant problems with a generalized linear model. 

5.3 LIKELIHOOD EQUATIONS FOR GENERALIZED 
LINEAR MODELS 

The method of maximum likelihood is the theoretical basis for parameter 
estimation in the GLM. However, the actual implementation of maximum 
likelihood results in an algorithm based on iteratively reweighted least squares. 
This is exactly what we saw previously for the special cases of logistic and 
Poisson regression. 

Consider the method of maximum likelihood applied to GLM, and suppose 
that we use the canonical link. The log-likelihood function is 

L = logJS?(ß;y) = ¿{[y,fl, - b(0¡)]/a(4>) + c(y,, φ)} 

Normal 
Binomial 

Poisson 
Exponential 
Gamma 
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For the canonical link we have ηί = #(μ/) = χ'β; therefore 

<9L_dL 30/ 
~d$~Wi öß 

1 = Σ fcr«(¿) 
yi--

db{ei) 

00/ X| 

Use of the canonical link simplifies the mathematics greatly. We can find the 
maximum likelihood estimates of the parameters by solving the following 
system of equations for β: 

έ^ (*·-μ ' · )χ '-=ο 

In most cases, α(φ) is a constant, so these equations become 

n 

i=\ 

This is actually a system ofp = k + 1 equations, one for each model parameter. 
In matrix form these equations are 

Χ ' ( γ - μ ) = 0 (5.4) 

where μ' = [μΐ9 μ2»···» Μ«]· These are called the maximum likelihood score 
equations, and they are the same equations that we saw previously in the cases 
of logistic and Poisson regression. Thus the score function, which was operative 
for multiple linear regression (normal errors), logistic regression, and Poisson 
regression, is relevant for a broader class of models, namely, for generalized 
linear models in which the canonical link is used. Appendix A.5 outlines how we 
can use iteratively reweighted least squares to solve these score equations. 

Let b be the final value that the algorithm above produces as the estimate of 
β. If the model assumptions, including the choice of the link function, are 
correct, then we can show that asymptotically 

E(b) = β 

since b is the solution to the score equations (5.4). The information matrix 1(b) 
of estimators given by the variance of the score is 

ιΜ=Η^Φ)[χ,{γ-μ)]}= xvx 
\α(Φ)}2 
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where V = diag{o?} and of, which is a function of μ,, depends on the 
distribution in question. Thus the asymptotic variance-covariance matrix of 
b is given by 

Var(b) = I"1 (b) = [X'VX]"1 [α(φ)}2 (5.5) 

Estimated standard errors of coefficients come from square roots of the 
diagonal elements of the matrix in Equation (5.5) with elements of V replaced 
by their appropriate estimators. 

Consider the three distributions that we have dealt with until this point. For 
the normal case all of = σ2,α(φ) = o, and hence we have the familiar 

Var(b) = ( X ' x r V 

For the logistic and Poisson models α(φ) = 1.0, and as we indicated in 
Chapter 4, 

Var(b) = (X'VX)-1 (5.6) 

where for the Poisson case o? = ex'$ and for the binomial 

σ ' = " ί π ' ( 1 - π ' · ) = ( Γ Τ 7 ^ 
As we indicated in Chapter 4, the variances on the diagonal elements of 
Equation (5.6) can be inflated in the case of overdispersion. 

Later in this chapter we discuss distributions in which the parameter α(φ) φ 
1.0, and thus φ must also be estimated. Maximum likelihood can be used to do 
this. The most widely used distribution with a scale parameter is the gamma 
distribution, which has applications in many fields. 

It is important to point out that while the canonical link is the most natural 
link to consider, given the distribution involved, this by no means implies that a 
noncanonical link function should not be considered. Choosing a link is 
tantamount to the exercise of model selection in standard multiple linear 
regression, while one attempts the model that best describes the data mechan-
ism. For example, if the ranges on the regressors are sufficiently narrow that a 
linear model is sufficient, then an identity link might be considered. We see 
examples later in this chapter in which the log link is reasonable for an 
exponential or a gamma response. Thus it is important to review what changes 
are relevant in the foregoing when one uses a noncanonical link. 

If we do not use the canonical link, then */,· φ 0h and the appropriate 
derivative of the log-likelihood is 
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We note that 

dL 
ΚΦ)ΐ 

y¡-
db(e¡) 

de¡ 4«t 
Σ Cv/ - ßd 

and 

Putting this all together yields 

9L· ^γι-μ,άθ, 
öß L> α(φ) άη,*1 

Typically α(φ) is a constant. We then can express the score equations as 

Χ'Δ(γ-μ) = 0 (5.7) 

where Δ = diag{i/0//d&/,·}. Appendix A.6 outlines the computational method for 
finding the solution to the score equations. The information matrix for the 
resulting MLE, b, of the coefficients, β, is 

1(b) = 
X'AVAX 

ΗΦ)? 

Thus the asymptotic variance-covariance matrix of b is 

Var(b) = (X'AVAX)"1 [a(0)]2 

While the score equation for the canonical link is simpler than that for the 
general case in Equation (5.7), it is clear that μ and dQi\dr\i are both nonlinear in 
general. To gain some sense of the complexity that is involved, consider an 
example with the Poisson distribution. Even in the case of the canonical link we 
have 

£(j,-^P)x, = 0 
1=1 

which, of course, cannot be solved in closed form since it is nonlinear in β. Now 
suppose that it is decided that an identity link can be justified, thereby resulting 
in a model that is linear, even though the link is not the canonical link. We have 
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μ = χ'β, and <90,/<9f/, = (l/χ,β), and thus using Equation (5.7), we can give the 
score equation by 

"(y,· - χ;·β)χ,·1 = 

. *!ß J 

which must be solved iteratively even though the model is linear. Thus iterative 
procedures must be used. 

Some important observations about the GLM are: 

1. Typically, when experimenters and data analysts use a transformation, 
they use ordinary least squares (OLS) to fit the model in the transformed 
scale. 

2. In the GLM we recognize that the variance of the response is not 
constant, and we use weighted least squares as the basis of parameter 
estimation. 

3. This suggests that the GLM should outperform standard analyses that 
depend on transformations when a problem remains with constant 
variance after the transformation. Chapter 8 discusses this issue in 
more detail. 

4. All of the inference we described previously on logistic regression carries 
over directly to the GLM. That is, model deviance can be used to test for 
overall model fit, and the difference in deviance between a full and a 
reduced model can be used to test hypotheses about subsets of parameters 
in the model. Wald inference can be applied to test hypotheses and 
construct confidence intervals about individual model parameters. 

5.4 QUASI-LIKELIHOOD 

In Chapter 4 and in this chapter we emphasize the use of maximum likelihood 
estimation for the parameter vector ß in the GLM. The distributions involved 
are members of the exponential family, and the very important assumption of 
independence is made. However, these are certainly many modeling problems 
encountered in situations where (1) responses are independent but do not obey 
one of the members of the exponential family, even though the variance is a 
function of the mean; and (2) responses have variances that are a function of 
the mean but the responses are correlated. It is the latter situation that occurs 
often in practice in biomedical, industrial process, and ecological studies, as 
well as many other areas. 

The motivation of quasi-likelihood stems from the concept of weighted least 
squares, or more generally generalized least squares for the case where responses 
are correlated. Wedderburn (1974) developed the notion of quasi-likelihood, 
which exploits the fact that the score function involves the distribution of the 

n 

Σ 
; i 
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response only though the first two moments. In addition, his work indicates 
that the use of generalized least squares produces asymptotic properties that are 
quite similar to those of maximum likelihood estimators. As a result, good 
efficiency can be obtained even when the likelihood is not known. Also see 
Carroll and Ruppert (1988) for more information on quasi-likelihood. 

We begin with the general case in which the V matrix is positive definite but 
not necessarily diagonal. The method of generalized least squares focuses on 
the function (y - μ)'Χ~ \y - μ), which gives as the score function 

ΌΎ-\γ-μ)=0 (5.8) 

where D is a matrix of derivatives άμ/ά$. This D matrix is very much like the D 
matrix from Chapter 3 in the nonlinear regression model. Since Chapters 6 and 
7 contain the important material on the GLM with correlated data, we 
postpone discussion of the solution of Equation (5.8) in this general case. 

In the special case in which responses are independent, though not 
necessarily members of the exponential family, V = {σ?} and Equation (5.8) 
reduces to 

v ^ (y¡ - μ,·) dßj _ 

where σ] = α(φ) · Var μ,. The above is then solved for ß. In the event that the 
link function and thus the model involve the linear predictor χ'β, then the score 
function reduces to 

or in matrix form 

Χ'Γ\-ι(γ-μ)=0 (5.9) 

where Γ = diag[cfyi//d*7/] and V = diag{a?}. 
It is of interest to note that Equation (5.9) does not invoke properties of the 

exponential family. In particular, it does not use the relationship ομ,/ομ, = σ? 
(apart from α(φ)). But if the response is a member of the exponential family, 
θμΐ/δηι = δμΐ/Θθί · δ,- · x,·, and thus we obtain X'A(y — μ) = 0, which is the most 
general GLM score function in Equation (5.7). 

One must keep in mind that this methodology assumes situations where 
inferences need to be drawn from experiments in which a likelihood function 
may not be constructed. For example, we may have a model that is reasonable 
and Var(y) is known but one does not have information that suggests the 
distribution of the response. 
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5.5 OTHER IMPORTANT DISTRIBUTIONS FOR GENERALIZED 
LINEAR MODELS 

The foregoing material in this chapter deals with generalized linear models in 
the general framework along with illustrations as to how it applies in the special 
cases of the binomial and Poisson cases. However, other important distribu-
tions occur in practice that deserve attention. Two very important response 
distributions are the exponential and gamma distributions. The exponential 
distribution is a special case of the gamma, but each enjoys important 
applications. We initially consider the exponential distribution. 

The exponential distribution for a response in a regression setting often is 
found in inter-arrival time problems, such as certain engineering applications, 
or survival time problems in biomedical applications. In both applications its 
use is reasonable when the hazard function, which measures the instantaneous 
risk of death or failure, is constant; see Cox (1972). The density function for the 
exponential distribution is 

f[y)=\e-yß, J > 0 ; A > 0 

In the form of the exponential family, we have 

/00=expj[-l] 

Thus 
α(φ)=-1 

b{0) = In Θ 

c(.) = 0 

μ = λ 

The canonical link selects f/, = 0„ which produces 1/λ = χ'β; thus the form of 
the link function is 

- = χ'β 
μ 

which is termed the reciprocal link, giving the model form for the mean 

i m i + l n A | 

" = χη> (5.10) 
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5.5.1 The Gamma Family 

Like the exponential distribution, the gamma distribution also finds applica-
tions in inter-arrival time problems. In addition, the gamma distribution has 
potential applications in regression problems in which the response is contin-
uous and the variance is not constant but rather is proportional to the square of 
the mean. Such a condition implies a constant coefficient of variation. There are 
other alternatives to the use of the gamma distribution in this case. One possible 
option is to use a natural log transformation on the response, which stabilizes 
the variance. In the case of this transformation, all coefficients are unbiased 
except the intercept. This approach inherently assumes that the distribution of 
the response is log-normal. The intercept is biased by (σ/μ)2/2, since, from a 
Taylor series expansion, we know that 

Ε\\η{γ)\=\ημ-^ψ-

A second approach assumes a gamma distribution and appeals to the 
framework of GLMs. Consider the density function for the gamma distribu-
tion, which is 

/ w = r J ö G ) ^ / A / _ i ' ·>^ο>''>ο'Α>ο 

If we put the density into the form of the exponential family, we have (after 
further simplification; see Exercise 5.6) 

Xr μ 

μ = rX 

r μ2 

α(φ)=Γι 

*(θ) = -ln( - θ) 

ο{φ) = r In r - In Γ(Γ) + (r - l)lnj; 

The parameter r is a scale parameter. When r = 1, the distribution reduces 
to the exponential distribution. The parameter r is assumed here not to vary but 
to be constant throughout the regression data set, which implies that the mean 
is changing through the parameter λ. Though there are many applica-
tions involving gamma responses, the distribution arises in a natural way 
for integer values of r as the time to the rth event in a Poisson process. 
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For general applications, the parameter r can be estimated by maximum 
likelihood methods. 

5.5.2 Canonical Link Function for the Gamma Distribution 

From the foregoing it is clear that the canonical parameter Θ = x'ß gives the 
following model for the mean, 

μ - ' = χ ' β 

which is the reciprocal link just as in the special case of the exponential 
distribution. The resulting model for the mean is 

There are certain dangers that occur in using the canonical link in this case. 
Recall the nonnegative response values of the gamma distribution models. 
However, there is always the possibility that certain estimates of b might lead to 
negative values of the predicted response. Thus the reciprocal link does not 
guarantee that the predicted response y is positive, which may be problematic. 

5.5.3 Log Link for the Gamma Distribution 

While technically the log link is not the canonical link, one often may have 
some success using the log link. Unlike the reciprocal link, the log link does not 
give rise to negative estimated responses. In addition, the log link conceptually 
has a close connection to the use of a linear model with ln(y) as the response. In 
the one case we are transforming data, and in the other we are transforming the 
mean. We should keep in mind that transforming the mean does not alter the 
error distribution, whereas transforming the observations (i.e., the / s ) , does. In 
the case of the log transformation, if we call σ2 the residual variance, our least 
squares estimation gives (Χ'Χ) - 1σ2 as the variance-covariance matrix of 
regression estimators where σ2 is the square of the coefficient of variation. 
Now, if we use a generalized linear model that employs the log link, we obtain 
(X'X)~ ισ2 as the asymptotic variance-covariance matrix. To see this, consider 
the asymptotic variance-covariance matrix using the noncanonical link: 

Var(b) = (Χ'ΔνΔΧ) -1 · [α(φ)\2 

For the gamma distribution and log link, In μ = χ'β, and Θ = - \/μ = e _ x p , so 
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Since Var(>>) = μ2/τ = e2x$/r, we have AVA = diag{l/r, l/r,..., 1/r}. Thus 
asymptotically, 

Var(b) = (X'AVAX)"1 · (α(φ))2 

= (X 'X) - 1 ( i ) 

Since l/r is the square of the coefficient of variation, this result is equivalent to 
that found if we were to perform a log transformation on the response itself, 
which should not seem surprising. 

5.6 A CLASS OF LINK FUNCTIONS—THE POWER FUNCTION 

We have seen that each member of the exponential family of distributions has a 
natural or canonical link developed from the relationship 6¿ = r\i = x¡ β. 
However, we have emphasized that there are times when the canonical link 
may not be appropriate. 

For example, the log link, which is the canonical link for the Poisson 
distribution, may also be very useful for analysis of regression problems with 
gamma responses. The identity link may very well have application with almost 
any response distribution when the ranges of the regressor variables are quite 
narrow and the problem does not require complexity beyond a linear model. 
Quite often, however, the search for the link and, thus the model, is a time-
consuming process. One tool that is often used, though perhaps not often 
enough, is the class of power functions, which includes several other links as 
special cases. In Section 2.4.2 we outlined the classic Box-Cox (1964) trans-
formations. The power transformations within the class of generalized linear 
models utilize the same technology, but like all link functions, the transforma-
tion is made on the mean μ. 

The power transformation link is given by 

μΑ = χ'β, λφθ 
(5.11) 

1ημ = χ'β, λ = 0 

Formally, in order to have continuity at λ = 0, we write the link function as 

It is easy to see that 1ίιηλ_>ο [ (μ λ - 1)M] = log μ. In the Box-Cox approach 
in linear regression, the error sum of squares (adjusted for scale) is plot-
ted against λ. In generalized linear models, the value of the deviance can be 
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plotted against λ in order to gain insight regarding what range of Vs give 
models that best describe the data. In fact, confidence intervals on λ can be 
found much like they are found in the Box-Cox approach. These bounds can be 
very helpful in determining what values of λ and thus what power transforma-
tions are compatible with the data. 

The maximum likelihood estimator of λ can be computed if one needs to 
have the optimum value of λ. Usually the user will be quite satisfied with 
natural values for λ, say, λ = 0 => log link, λ = 1 => identity link, λ = ^ => 
square root link, and soon as long as one of these values gives a deviance not 
significantly different from the minimum value. 

The iterative procedure for finding the optimum λ proposed by Pregibon 
(1980) is based on a Taylor series expansion of μλ around a preliminary 
estimate μλ°, 

μλ ^ μ^ + (λ - λ0)μ
λοΙημ (5.12) 

As a result 

μλο =μ?*-(χ-^)μ
λ«\ημ 

Since μλ = χ'β, we can write 

μλ° = χ'β - (λ - Λο) μλοΙημ (5.13) 

The strategy follows from Equation (5.13). The power function μλο with known 
λ0 is used with the x data, but the linear predictor contains an additional 
regressor, namely, μ^ log£0, where the μ0 are fitted values found in the analysis 
using the guess λ0 without the additional regressor. Fron^Equation (5.13) it can 
be seen that the coefficient of the new regressor is λ—λο and produces the 
adjustment to λ0. The procedure continues to convergence. A one-step 
procedure here might show if a significant improvement can be made on the 
starting value λ0 and thus on the initial choice of link. An example of the use of 
the power link accompanies other examples in a later section. The power link 
family accounts for the identity, square root, negative square root, reciprocal 
negative square, and log links. 

5.7 INFERENCE AND RESIDUAL ANALYSIS FOR GENERALIZED 
LINEAR MODELS 

Inference 
In this section we discuss the use of likelihood and Wald inference that we 
introduced in Chapter 4 in the context of logistic and Poisson regression. The 
general goals and applications of both forms of inference extend to the family 
of generalized linear models. For tests of hypotheses on individual coefficients, 
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Wald inference makes use of the asymptotic normality of the MLE. Thus under 
H0 : ßj = 0, 

has a γ\ distribution for large samples. The confidence intervals on mean 
response and prediction intervals on an individual observation are found just as 
reported in Chapter 4. The model deviance 

0«>=-2Ι"[ϋ] 
is nominally used as a goodness-of-fit statistic, if (β) is the likelihood under the 
model considered, and <£(μ) is the likelihood of the saturated model. Asymp-
totically, Ζ>(β) has a χ2 distribution with n—p degrees of freedom. However, as 
we indicated in Chapter 4, the use of the test may not be appropriate in small-
sample problems. On the other hand, the use of deviance or analysis of deviance 
for nested tests or stepwise procedures is quite appropriate. A good rule of 
thumb is that lack of fit may be a problem when deviance/Oz -p) exceeds 1.0 by 
a substantial amount. Pearson's χ2 statistic discussed in Chapter 4 applies in the 
general case for the GLM. This intuitively appealing statistic is 

1=1 \vVarj>// 

and is asymptotically distributed as χΙ_ρ. 
Examples with illustrations of these tools are given later in this chapter. It is 

of interest for the reader to see expressions for the deviance for various 
distributions. This display motivates the use of specific types of residuals and 
residual plots. The deviance expressions are 

n 

Normal: ^ (y - μ)2 

ι=1 

n 

Poisson: 2 ] T \y In (y/μ) - (y - μ)] 
ι=1 

n 

Binomial: 2 ^ {yIn (y/μ) 4- (m - y)ln[(m — y)/(m -μ)]} 
i = l 

n 

Gamma: 2 ^ [ - ln(y//i) + iy ~ A) / A] 
i=l 
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In Chapter 4 we illustrate the development of deviance for the Poisson case. If 
the linear predictor contains an intercept, the deviance for the Poisson and 
gamma cases reduces to 

/=i L v * i / 
(5.14) 

See Exercise 5.11. The deviance expression in Equation (5.14) also holds for the 
exponential distribution. 

Use of Residuals 
In standard linear regression, the set of regression residuals, the y¡ - fih is often 
used to detect such violations of assumptions as nonhomogeneous variance and 
model specification. In the GLM the ordinary or raw residuals y¡ — μ, are 
technically not appropriate, since Var (y¡) is not constant. The type of residual 
that is most intuitive is the Pearson residual, 

y V a r j / 

A second type of residual that can be plotted is the deviance residual, which we 
introduced in Section 4.2.6. The deviance value is written in the form 
Σ"=\ di = ¿Kß)· The individual components defined as the deviance residuals 
are 

dUr = [sgn(j>¿ - μ,·)] · y/dh i = 1, 2, . . . , n 

and thus 

i=\ 

The deviance residual has the property that it carries the same sign as y¡ — μ^ 
and the sum of their squares is the deviance. 

An interesting question is finding which of these types of residuals is most 
appropriate for diagnostic plotting purposes. Pierce and Schäfer (1986) give a 
nice discussion of residuals in models based on members of the exponential 
family. Their work suggests that deviance residuals are very nearly the same as 
those generated by the best possible normalizing transformation. As a result 
they recommend that analysts use the deviance residuals for constructing 
diagnostic plots. 

McCullagh and Neider (1989) recommend plotting the deviance residuals 
against the fitted values, transformed to the constant variance scale or constant 
information of the error distribution, and against the regressors. These plots 
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Table 5.2 Transformations to Constant Information 

Distribution Transformation 

Normal μ 
Binomial 2s in- ,

v /£ 
Poisson ly/μ 
Exponential 2 log μ 
Gamma 2 log μ 

are exactly analogous to the common residual plots used in multiple regression. 
They have exactly the same interpretation. McCullagh and Neider also suggest 
plotting the absolute values of the deviance residuals against the fitted values, 
again transformed to the constant variance scale. A poorly chosen variance 
function should produce a trend in this plot. The use of the constant vari-
ance scale for both sets of plots, in general, is for aesthetic reasons. For the most 
part, this transformation spreads the data out across the horizontal axis. Table 
5.2 gives the appropriate transformation to a constant information scale for 
several common error distributions. McCullagh and Neider also recommend a 
normal probability plot of the deviance residuals. Again, the interpretation 
of this plot is directly analogous to the normal probability plot in multiple 
regression. 

5.8 EXAMPLES WITH THE GAMMA DISTRIBUTION 

Example 5.7. The Resistivity Data. This example illustrates the use of the 
log link with an assumed gamma distribution. Myers and Montgomery (1997) 
discuss the experiment summarized in Table 5.3, which is an unreplicated 
factorial design that was run at a certain step in a semiconductor manufactur-
ing process. The response variable is the resistivity of the test wafer. Resistivity 
is well known to have a distribution with a heavy right tail, and thus a gamma 
distribution may be appropriate. Initially, consider a log transformation on the 
response, where only three main effects are significant. The model fit is 

lnOO = 2.351+0.027*1 - 0.065x2 + 0.039JC3 

As we indicated earlier, a log transformation stabilizes variance in the use of the 
gamma distribution. As an alternative analysis, consider a generalized linear 
model with a gamma distribution and log link that was fit using SAS PROC 
GENMOD, a SAS procedure that can be used to fit the GLM. The initial 
model chosen is the main-effects plus two-factor interaction model. The PROC 
GENMOD output is given in Table 5.4. Several things should be noted. First, 
there is also a scale parameter, r, in the table that is estimated by maximum 
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Table 5.3 Resistivity Data 
Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

* 1 

— 
+ 
— 
+ 
— 
+ 
— 
+ 
— 
+ 
— 
+ 
-
+ 
-
+ 

* 2 

— 
-
+ 
+ 
-
-
+ 
+ 
— 
-
+ 
+ 
-
-
+ 
+ 

* 3 

— 
— 
-
-
+ 
+ 
+ 
+ 
— 
— 
-
-
+ 
+ 
+ 
+ 

X4 

— 
— 
— 
-
— 
— 
— 
— 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Resistivity (y) 
193.4 
247.6 
168.2 
205.0 
303.4 
339.9 
226.3 
208.3 
220.0 
256.4 
165.7 
203.5 
285.0 
268.0 
169.1 
208.5 

likelihood, and the value is 472.3951. The interpretation here is that the quantity 
is the square of the reciprocal of the constant coefficient of variation (CV), 
which in this case is 0.046. Next, notice that the standard errors of the coefficient 
are all equal to 0.0115. Recall in our discussion of the gamma distribution that 
Var = (X'X)~ l/r. The orthogonality of the design here renders X'X and hence 
(X'X) ~ l diagonal, the latter being diag(l/16). As a result the standard errors are 
(l/4){l/y/r) = (0.25)(0.046) = 0.0115. This is one of the cases in which the 
variance-covariance matrix of coefficients is a multiple of (X'X) - 1 . More 
discussion of this is given in Chapter 8. The scaled deviance here involves 
division of the deviance by l/r = 1/472.3951. This scaling accounts for \/α(φ) in 
the likelihood. In GENMOD, the estimate is r, not l/r. 

Note also that unlike the case of the transformed response, three interactions 
as well as the additional main effect (x4) are significant. All these interactions 
involve x3 and thus may well have important engineering significance, which 
was not discovered in the analysis with the transformation. Table 5.5 gives the 
PROC GENMOD output for the reduced model which eliminates the x 
and x2*4 two factor interactions. Figures 5.1-5.8 give the appropriate diagnostic 
plots of the deviance residuals generated by S-Plus. The fitted model is 

y = ea 

where a = 5.414 + 0.0617*i -0 .150x 2 + 0.090x3 -0 .028x4-0.040xiJc3 -
0.044x2*3 - 0.046x3X4. These effects are multiplicative rather than additive. 
The interpretation of an effect is more tedious because of the existence of 
interaction. One simple interpretation of, say, the coefficient 0.0613 on xx is that 
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Table 5.4 PROC GENMOD Output for the Resistivity Experiment 

The GENMOD Procedure Model Information 

Description 

Data set 
Distribution 
Link function 
Dependent vari able 
Observations used 

Value 

WORK.RESIT 
GAMMA 
LOG 
RESIST 
16 

Criteria for Assessing Goodness of Fit 

Criterion 
Deviance 
Scaled deviance 
Pearson chi-square 
Scaled Pearson X2 
Log-likelihood 

DF 
5 
5 
5 
5 

Value 
0.0339 

16.0056 
0.0338 

155.9695 
-60.0555 

Value/DF 
0.0068 
3.2011 
0.0068 
3.1939 

Analysis of Parameter Estimates 

Parameter 
INTERCEPT 
XI 
X2 
X1*X2 
X3 
X1*X3 
X2*X3 
X4 
Xl*X4 
X2*X4 
X3*X4 
Scale 

DF 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Estimate 
5.4141 
0.0617 

-0.1496 
0.0050 
0.0900 

-0.0386 
-0.0441 
-0.0280 
0.0020 
-0.0110 
-0.0456 

472.3951 

Std Err 
0.0115 
0.0115 
0.0115 
0.0115 
0.0115 
0.0115 
0.0115 
0.0115 
0.0115 
0.0115 
0.0115 

166.9580 

Chi-Square 
221556.929 

28.6969 
169.0053 
0.1888 

61.2434 
11.2652 
14.6967 
5.9088 
0.0292 
0.9097 

15.7072 

Pr > Chi 
0.0000 
0.0000 
0.0000 
0.6640 
0.0000 
0.0008 
0.0001 
0.0151 
0.8644 
0.3402 
0.0001 

if X\ is changed from the low (— 1) to high ( + 1) level while JC3 is held constant 
at the middle (zero) level, then the resistivity would increase by a factor of 
2̂(0.0613) _ j = 0.13 or 13%. On the other hand, if the same change in xx is made 

with x3 held at + 1 , the mean resistivity would increase by only 
ô.i226-2(0.0389) _ j = 0 0 4 5 8 ) o r o n l y 4.530/^ w h i c h reflects the role of the 

X1X3 interaction. Similar interpretations can be made of other effects. Table 
5.5 also provides the deviance, chi-square, and raw residuals discussed in 
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Table 5.5 Edited Model for the Resistivity Data 

The GENMOD Procedure Model Information 

Description Value 

Data set 
Distribution 
Link function 
Dependent variable 
Observation used 

WORK.RESIT 
GAMMA 
LOG 
RESIST 
16 

Criteria for Assessing Goodness of Fit 

Criterion 
Deviance 
Scaled deviance 
Pearson chi-square 
Scaled Pearson X2 
Log-likelihood 

DF 
8 
8 
8 
8 

Value 
0.0363 
16.0060 
0.0362 
15.9769 

-60.5996 

Value/DF 
0.0045 
2.0008 
0.0045 
1.9971 

Analysis of Parameter Estimates 

Parameter 
INTERCEPT 
XI 
X2 
X3 
X4 
X1*X3 
X2*X3 
X3*X4 
Scale 

DF 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Estimate 
5.4142 
0.0613 
-0.1496 
0.0899 
-0.0278 
-0.0389 
-0.0441 
-0.0455 

441.3557 

Std Err 
0.0119 
0.0119 
0.0119 
0.0119 
0.0119 
0.0119 
0.0119 
0.0119 

155.9839 

Chi-Square 
207004.927 

26.5041 
157.9262 
57.1267 
5.4555 
10.6690 
13.7078 
14.6046 

Pr > Chi 
0.0000 
0.0000 
0.0000 
0.0000 
0.0195 
0.0011 
0.0002 
0.0001 

Observation Statistics 

RESIST Pred Xbeta Std HessWgt Lower Upper 

193. 
247. 
168. 
205 
303. 
339. 
226. 
208, 

.4 

.6 

.2 

.4 

.9 

.3 

.3 

202. 
247, 
164, 
200, 
313, 
328, 
213, 
222 

.7457 

.7051 

.1771 

.5838 

.7789 

.1536 

.0273 

.7864 

5, 
5, 
5, 
5, 
5, 
5, 
5, 
5. 

.3120 

.5122 

.1009 

.3012 

.7487 

.7935 

.3614 

.4062 

0. 
0. 
0. 
0. 
0. 
0, 
0, 
0, 

.0339 

.0338 

.0336 

.0334 

.0334 

.0339 

.0336 

.0337 

421, 
441, 
452, 
451, 
426, 
457, 
468, 
412 

.0111 

.1684 

.1705 

.0729 

.7570 

.1542 

.8546 

.6571 

189, 
231. 
153, 
187, 
293, 
307, 
199, 
208 

.6955 

.8400 

.7250 

.8837 

.8678 

.0883 

.4401 

.5402 

216. 
264, 
175. 
214. 
335. 
350, 
227, 
238 

.6937 

.6560 

.3398 

.1424 

.0390 

.6639 

.5400 

.0058 

(Continued) 
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Table 5.5 Continued 

5, 
5, 
5, 
5 
5 
5, 
5 
5 

.3473 

.5476 

.1363 

.3366 

.6021 

.6469 

.2148 

.2596 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0, 

Observat 

.0334 

.0336 

.0338 

.0339 

.0337 

.0336 

.0339 

.0334 

462. 
440, 
429, 
432, 
464, 
417, 
405, 
478, 

.2725 

.9710 

.9688 

.2107 

.1590 

.3527 

.6524 

.2588 

ion Statistics 

196. 
240. 
159. 
194. 
253, 
265, 
172, 
180, 

.7463 

.2862 

.1943 

.4299 

.6693 

.3369 

.1728 

.2022 

224. 
274, 
181, 
222, 
289, 
302, 
196, 
205, 

.2437 

.0721 

.7276 

.1019 

.5115 

.7213 

.6039 

.4487 

Resraw 
-9.3457 
-0.1051 
4.0229 
4.4162 
10.3789 
11.7464 
13.2727 
14.4864 
9.9545 
-0.2237 
-4.3882 
-4.3058 
14.0015 
15.4134 
14.8833 
16.0881 

Reschi 
-0.0461 
-0.000424 
0.0245 
0.0220 

-0.0331 
0.0358 
0.0623 

-0.0650 
0.0474 

-0.000872 
-0.0258 
-0.0207 
0.0517 

-0.0544 
-0.0809 
0.0836 

Resdev 
-0.0468 
-0.000425 
0.0243 
0.0219 

-0.0334 
0.0354 
0.0611 

-0.0665 
0.0467 
-0.000872 
-0.0260 
-0.0209 
0.0508 

-0.0554 
-0.0832 
0.0814 

previous sections. Also note the lower and upper confidence limits on the mean 
response; the calculation was made on the normal-theory upper and lower 
confidence interval on the linear predictor. The residual plots reveal no serious 
problems. Editing the model substantially reduced the mean scaled deviance, 
much like the mean squared error in standard linear models. D 

Example 5.2. The Worsted Yarn Experiment. Table 5.6 contains data from 
an experiment conducted to investigate the effects of three factors xx = length, 
x2 = amplitude, and x3 = load on the cycles to effects of failure, y, of worsted 
yarn. The regressor variables are coded, and readers who have familiarity with 
designed experiments recognize that the experiment used here is a 33 factorial 
design. The data also appear in Box and Draper (1987) and Myers, Mon-
tgomery, and Anderson-Cook (2009). These authors use the data to illustrate 
the utility of variance-stabilizing transformations. Both Box and Draper (1987) 
and Myers, Montgometry, and Anderson-Cook (2009) show that the log 

220 
256. 
165. 
203. 
285 
268 
169. 
208. 

,4 
.7 
.5 

.1 

.5 

210. 
256, 
170, 
207, 
270 
283, 
183 
192 

.0455 

.6237 

.0882 

.8058 

.9985 

.4134 

.9833 

.4119 
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Figure 5.1 Plot of the deviance residuals versus the fitted values for the resistivity data. 
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Figure 5.2 Plot of the signed square root of the deviance residuals versus the predicted values of 
the linear predictors for the resistivity data. 

transformation is very effective in stabilizing the variance of the cycles-to-
failure response. We also provide this analysis in Section 2.4.1. When a natural 
log transformation is used for y, the following fitted model is obtained 

y = βχρ(6.33+0.82*ι - 0.63x2 - 0.38x3) 

The response variable in this experiment is an example of a nonnegative 
response that would be expected to have an asymmetric distribution with a long 
right tail. Failure data are frequently modeled with exponential, Weibull, 
lognormal, or gamma distributions both because they possess the anticipated 
shape and because sometimes there is theoretical or empirical justification for a 
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Figure 5.3 Plot of the observed values versus predicted values for the resistivity data. 
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Figure 5.4 Plot of the deviance residuals versus X\ for the resistivity data. 

particular distribution. We model the cycles-to-failure data with a GLM using 
the gamma distribution and the log link with a first-order predictor. 

Table 5.7 presents some summary output information from SAS PROC 
GENMOD. The appropriate SAS code is 

proc genmod; 
model y = xx x2 x3 / dist = gamma link = log typel type3 ; 

Notice that the fitted model is 

y = βχρ(6.354-0.84χ! - 0.63χ2 - 0.39JC3) 
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-0.7 -0.2 0.3 

Figure 5.5 Plot of the deviance residuals versus x2 for the resistivity data. 
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Figure 5.6 Plot of the deviance residuals versus x3 for the resistivity data. 

which is virtually identical to the model obtained via data transformation. 
Actually, since the log transformation works very well here, it is not too 
surprising that the GLM produces an almost identical model. Recall that we 
observed that the GLM is most likely to be an effective alternative to a data 
transformation when the transformation fails to produce the desired properties 
of constant variance and approximate normality in the response variable. 

For the gamma response case, it is appropriate to use the scaled deviance in the 
SAS output as a measure of the overall fit of the model. This quantity is compared 
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Figure 5.7 Plot of the deviance residuals versus x4 for the resistivity data. 
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Figure 5.8 Normal probability plot of the Pearson residuals for the resistivity data. 

to the chi-square distribution with n—p degrees of freedom, as usual. From 
Table 5.7 we find that the scaled deviance is 27.1276, and referring this to a chi-
square distribution with 23 degrees of freedom gives a P-value of approximately 
0.25; so there is no indication of model inadequacy from the deviance criterion. 
Notice that the scaled deviance divided by its degrees of freedom is also close to 
unity. Table 5.7 also gives the Wald tests and the partial deviance statistics (both 
type 1 or effects added in order and type 3 or effects added last analyses) for each 
regressor in the model. These test statistics indicate that all three regressors are 
important predictors and should be included in the model. D 
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Table 5.6 Data from the Worsted Yarn Experiment 

*1 

-1 
0 

-1 
0 

-1 
0 

- 1 
0 

- 1 
0 

— 1 

— 1 

— 1 

-1 
0 
1 

*2 

-1 
-1 
-1 
0 
0 
0 
1 
1 
1 

-1 
-1 
-1 
0 
0 
0 
1 
1 
1 

-1 
-1 
-1 
0 
0 
0 
1 
1 
1 

x3 

— 1 
- 1 
- 1 
- 1 
- 1 
— 1 
- 1 
- 1 
— 1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

x4 

674 
1414 
3636 
338 
1022 
1568 
170 
442 
1140 
370 
1198 
3184 
266 
620 
1070 
118 
332 
884 
292 
634 
2000 
210 
438 
566 
90 
220 
360 

5.9 USING R TO PERFORM GLM ANALYSIS 

The glm function within the MASS library is the most popular function for 
analyzing GLMs in R. The basic form of the statement is 

glm(formula, family, data) 

The formula specification is exactly the same as for a standard linear model. 
For example, the formula for the model η = ßo + ß\X\ + ßi*! is 

y~xl+x2 

The choices for family and the links available are: 

• binomial (logit, probit, log, complementary log-log), 
• gaussian (identity, log, inverse), 
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Table 5.7 SAS PROC G E N M O D Output for the Worsted Yarn Experiment 

The GENMOD Procedure 
Model Information 

Description 
Data Set 
Distribution 
Link Function 
Dependent Variable 
Observations Used 

Value 
WORK.WOOL 
GAMMA 
LOG 
CYCLES 
27 

Criteria for Assessing Goodness of Fit 

Criterion 
Deviance 
Scaled Deviance 
Pearson Chi [Square 
Scaled Pearson X2 
Log Likelihood 

DF 
23 
23 
23 
23 

Value 
0.7694 

27.1276 
0.7274 

25.6456 
-161.3784 

Value / DF 
0.0335 
1.1795 
0.0316 
1.1150 

Analysis of Parameter Estimates 

Parameter 
INTERCEPT 
A 
B 
C 
SCALE 

DF 
1 
1 
1 
1 
1 

Estimate 
6.3489 
0.8425 
-0.6313 
-0.3851 
35.2585 

Std Err 
0.0324 
0.0402 
0.0396 
0.0402 
9.5511 

Chi Square 
38373.0419 

438.3606 
253.7576 
91.8566 

Pr > Chi 
0.0001 
0.0001 
0.0001 
0.0001 

Note: The scale parameter was estimated by maximum likelihood. 

LR Statistics for Type 1 Analysis 

Source 
INTERCEPT 
A 
B 
C 

Deviance 
22.8861 
10.2104 
3.3459 
0.7694 

DF 
0 
1 
1 
1 

Chi Square 

23.6755 
31.2171 
40.1106 

Pr > Chi 

0.0001 
0.0001 
0.0001 

LR Statistics for Type 3 Analysis 

Source 
A 
B 
C 

DF 
1 
1 
1 

Chi Square 
77.2935 
63.4324 
40.1106 

Pr > Chi 
0.0001 
0.0001 
0.0001 
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• Gamma (identity, inverse, log) 
• inverse.gaussian (l/μ2, identity, inverse, log) 
• poisson (identity, log, square root), and 
• quasi (logit, probit, complementary log-log, identity, inverse, log, 1/μ2, 

square root). 

R is case-sensitive, so the family is Gamma, not gamma. By default, R uses 
the canonical link. To specify the probit link for the binomial family, the 
appropriate family phrase is binomial(link = probit). 

R can produce two different predicted values. The fit is the vector of predicted 
values on the original scale. The linear.predictor is the vector of the pre-
dicted values for the linear predictor. R can produce the raw, the Pearson, 
and the deviance residuals. R also can produce the influence.measures, which are 
the individual observation deleted statistics. The easiest way to put all this 
together is through examples. 

5.9.1 Logistic Regression, Each Response is a Success or Failure 

Consider the Challenger O-ring data. Suppose these data are in the file 
"challenger-data.txt". The appropriate R code to analyze these data is 

o_ring < - r e a d . t a b l e ("challenger_data.txt",header=TRUE, sep="") 
o_ring.model < - g lm(fai l - temp, family=binomial / data=o_ring) 
summary(o_ring.model) 
pred_prob < - o_ring.model$fit 
e ta_hat < - o_r ing .mode l$ l inear .p red ic to r 
dev_res < - r e s i d u a l s ( o _ r i n g . m o d e l , c="deviance") 
influence.measures(o_ring.model) 
df < - dfbetas(o_ring.model) 
df_int < - df L I ] 
df_temp < - d f [ , 2 ] 
hat < - hatvalues(o_ring.model) 
qqnorm(dev_res) 
plot(pred_prob,dev_res) 
plot (eta_hat,dev_res) 
plot(o_ring$temp,dev_res) 
plot(hat,dev_res) 
plot(pred_prob /df_temp) 
plot(hat ,df_temp) 
o_ring2 < - cb ind(o_r ing ,pred_prob ,e ta_ha t ,dev_res , df_int,df_ 

temp,hat) 
w r i t e . t a b l e ( o _ r i n g 2 , "cha l l enger_ou tpu t . tx t " ) 

In this code, pred_prob is the predicted probability of an O-ring failure. The 
term etajiat is the vector of predicted value for the linear predictor. The term 
devjes is the vector of deviance residuals. The terms dfjnt, df_temp, and hat 
are the influence measures looking at the change in the estimated intercept, 
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change in the estimated coefficient for temperature, and the hat diagonal, 
respectively. The write.table statement produces a file suitable for plotting the 
results via another software package, such as EXCEL. 

5.9.2 Logistic Regression, Response is the Number of Successes 
out of n Trials 

The best way to illustrate the R code is through an example. Ashford (1959) 
considers the proportion of coal miners who exhibit symptoms of severe 
pneumoconiosis as a function of the number of years exposure. The data set 
is small; so we do not need a separate data file. The R code is 

> years <- 0(5.8, 15.0, 21.5, 27.5, 33.5 39.5, 46.0, 51.5) 
> cases <- c(0, 1, 3, 8, 9, 8, 10, 5) 
> miners <- c(98, 54, 43, 48, 51, 38, 28, 11) 
> ymat <- cbind(cases, miners-cases) 
> ashford <- data.frame(ymat, years) 
> anal <- glm(ymat ~ years, family=binomial, data=ashford) 
summary (anal) 
pred_prob <- anal$fit 
eta_hat <- anal$linear.predictor 
dev_res <- residuals(anal, c=Hdeviance") 
influence.measures(anal) 
df <- dfbetas (anal) 
df_int <- df [,1] 
df_years < - df[,2] 
hat <-hatvalues (anal) 
qqnorm(dev_res) 
plot(pred_prob,dev_res) 
plot(eta_hat,dev_res) 
plot (years,dev_res) 
plot(hat,dev_res) 
plot (pred_prob,df_years) 
plot(hat,df_years) 
ashford2 <-cbind(ashford,pred_prob,eta_hat,dev_res,df_int, 

df_years,hat) 
write.table(ashford2, "ashford_output.txt") 

5.9.3 Poisson Regression 

We next consider the aircraft damage example from Chapter 4. The data are in 
the file "aircraft_damage_data.txt". The appropriate R code is 

a i r < - read . table("a i rcraf t_damage_data . tx t" ,header=TRUE, sep="") 
air.model < - glm(y~xl+x2+x3, family="poisson", data=air) 
summary ( a i r . model) 
print(influence.measures(air .model)) 
yhat < - air.model$fit 
dev_res < - res idua l s (a i r .mode l , c="deviance") 
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qqnorm(dev_res) 
plot(yhat ,dev_res) 
p lo t (a i r$x l ,dev_res ) 
p lot (a i r$x2,dev_res) 
p lot (a i r$x3,dev_res) 
a i r2 < - cb ind(a i r ,yha t / dev_res) 
w r i t e . t a b l e (a i r2 , " a i r c r a f t damage_output.txt") 

5.9.4 Using the Gamma Distribution with a Log Link 

Now, consider the worsted yarn example from Section 5.8. The data are in the 
file "worsted_data.txt". The appropriate R code is 

yarn < - r e a d . t a b l e ("worsted_data.txt",header=TRUE / sep="") 
yarn.model < - glm(y~xl+x2+x3, family=Gamma(link=log) , da ta=a i r ) 
summary(yarn.mode1) 
p r i n t (influence.measures (yarn model) ) 
yhat < - a i r .model$ñt 
dev_res < - r e s idua l s (ya rn .mode l , c="deviance") 
qqnorm(dev_res) 
p lo t (yha t , dev_ re s ) 
p lo t (ya rn$x l ,dev_res ) 
p lo t (yarn$x2,dev_res) 
p lo t (yarn$x3,dev_res) 
yarn2 < - c b i n d ( y a r n , y h a t , d e v _ r e s ) 
w r i t e . t a b l e ( y a r n 2 , "ya rn_ou tpu t . tx t " ) 

5.10 GLM AND DATA TRANSFORMATION 

In various parts of Chapter 4 and this chapter we have compared GLMs 
with data transformations where the response, y, is transformed. In the case 
of a data transformation, one typically uses ordinary least squares to fit a 
linear model to the transformed data. A common motivation for the 
transformation is to achieve an approximately stable variance in the 
response. In other cases, practitioners use a transformation when the model 
errors do not appear to follow a normal distribution. When the variance is 
a function of the mean, the analyst may use an appropriate variance-
stabilizing transformation. The reader should not confuse these uses of 
transformations with the link function in the GLM. The link function serves 
not as a transformation on the data, y, but as a transformation of the 
population mean, μ. 

In practice, data transformations work reasonably well in many cases. 
However, when the response is nonnormal, it may be impossible for the 
same transformation to create normally distributed random errors, to stabilize 
the variance, and to lead to a linear model. The GLM does not require the 
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assumption that the data follow a normal distribution since the GLM exploits 
the apparent distribution of the data. Furthermore, constant variance is not an 
issue in the GLM, which bases its analysis on the natural variance of the data's 
distribution, as we described in Chapter 4 and parts of this chapter. In addition, 
the choice of the link function provides the analyst with a great deal of 
flexibility in the nonlinear models used to fit the data. Finally, with the GLM 
one loses none of the major elements of ordinary linear models data analysis 
strategy. The GLM accommodates well the notions of model editing, diag-
nostic plots, effect plots, and so on. Hamada and Neider (1997) and Lewis, 
Montgomery, and Myers (2001a) go further in making comparisons between 
the GLM and data transformations. The examples that follow illustrate the 
superiority of the GLM over data transformations. 

Example 5.3. The Worsted Yarn Experiment. In Example 5.2 we intro-
duced the worsted yarn experiment, an unreplicated 33 factorial design 
investigating the performance of worsted yarn under cyclic loading (the data 
are shown in Table 5.6). In Section 2.4.2 we use the Box-Cox method and find 
that a log transformation leads to a fairly simple model, namely, 

{) _ ^6.33+0.83*1-0.63x2-0.39x3 

This model has good fit to the data and has satisfactory residual plots. 
Assuming a gamma distribution and log link, the fitted gamma GLM is 

Λ _ e6.35+0.84jc,-0.63jc2-0.39jc3 

One measure of performance used for comparing a linear model fir to the log-
transformed response to the gamma GLM fit to the data is the lengths of the 
95% (ex. can be found using SAS PROC GENMOD) confidence intervals 
around the mean predicted values. Table 5.8 shows the estimates of the means 
and the lower and upper 95% confidence intervals for each observation using 
both the ordinary least squares fit to the log-transformed data and the gamma 
GLM fit to the raw data. Note that the generalized linear model has 
consistently shorter confidence intervals than those found from the ordinary 
least squares fit to the transformed data. 

Contour plots showing a two-dimensional graphical representation of the 
relationship between the response variable and the design factors were also 
constructed for this experiment. These plots are shown in Figure 5.9. Figure 
5.9a shows the contour plots for the ordinary least squares model, and Figure 
5.9b shows the contour plots for the GLM. Both sets of contour plots are very 
similar, indicating that both models produce similar point estimates of cycles to 
failure. However, Table 5.8 clearly indicates that the GLM confidence intervals 
are uniformly shorter than their least squares counterparts; consequently, we 
would expect estimation and response prediction to be more reliable using the 
GLM. 



Table 5.8 Comparison of 95% Confidence Intervals on the Means for Models Generated with Data Transformations and GLM 
for Worsted Yarn Experiment 

Using Least Squares Methods with Log Data Transformation 

Using the Generalized Length of 95% 
Transformed Untransformed Linear Model Confidence Interval 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Estimate 
of Mean 

2.83 
2.66 
2.49 
2.56 
2.39 
2.22 
2.29 
2.12 
1.94 
3.20 
3.02 
2.85 
2.92 
2.75 

95% Confidence 
Interval 

(2.76, 2.91) 
(2.60, 2.73) 
(2.42, 2.57) 
(2.50, 2.62) 
(2.34, 2.44) 
(2.15,2.28) 
(2.21, 2.36) 
(2.05, 2.18) 
(1.87, 2.02) 
(3.13, 3.26) 
(2.97, 3.08) 
(2.79, 2.92) 
(2.87, 2.97) 
(2.72, 2.78) 

Estimate 
of Mean 

682.50 
460.26 
310.38 
363.25 
244.96 
165.20 
193.33 
130.38 
87.92 

1569.28 
1058.28 
713.67 
835.41 
563.25 

95% Confidence 
Interval 

(573.85,811.52) 
(397.01, 533.46) 
(260.98, 369.06) 
(313.33,421.11) 
(217.92, 275.30) 
(142.50, 191.47) 
(162.55, 229.93) 
(112.46, 151.15) 
(73.93, 104.54) 
(1353.94, 1819.28) 
(941.67, 1189.60) 
(615.60, 827.37) 
(743.19,938.86) 
(523.24, 606.46) 

Estimate 
of Mean 

680.52 
463.00 
315.01 
361.96 
246.26 
167.55 
192.52 
130.98 
89.12 

1580.00 
1075.00 
731.50 
840.54 
571.87 

95% Confidence 
Interval 

(583.83, 793.22) 
(407.05, 526.64) 
(271.49, 365.49) 
(317.75, 412.33) 
(222.55, 272.51) 
(147.67, 190.10) 
(165.69, 223.70) 
(115.43, 148.64) 
(76.87, 103.32) 
(1390.00, 1797.00) 
(972.52, 1189.00) 
(644.35, 830.44) 
(759.65, 930.04) 
(536.67, 609.38) 

Least 
Squares 

237.67 
136.45 
108.09 
107.79 
57.37 
48.97 
67.38 
38.69 
30.62 

465.34 
247.92 
211.77 
195.67 
83.22 

GLM 

209.39 
119.59 
94.00 
94.58 
49.96 
42.42 
58.01 
33.22 
26.45 

407.00 
216.48 
186.09 
170.39 
72.70 

Ut (Continued) 
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Using Least Squares Methods with Log Data Transformation 
Using the Generalized Length of 95% 

Transformed Untransformed Linear Model Confidence Interval 

Observation 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Estimate 
of Mean 

2.58 
2.65 
2.48 
2.31 
3.56 
3.39 
3.22 
3.28 
3.11 
2.94 
3.01 
2.84 
2.67 

95% Confidence 
Interval 

(2.53, 2.63) 
(2.58, 2.71) 
(2.43, 2.53) 
(2.24, 2.37) 
(3.48, 3.63) 
(3.32, 3.45) 
(3.14,3.29) 
(3.22, 3.35) 
(3.06, 3.16) 
(2.88, 3.01) 
(2.93, 3.08) 
(2.77, 2.90) 
(2.59, 2.74) 

Estimate 
of Mean 

379.84 
444.63 
299.85 
202.16 

3609.11 
3433.88 
1641.35 
1920.88 
1295.39 
873.57 

1022.35 
689.45 
464.94 

95% Confidence 
Interval 

(337.99, 426.97) 
(383.53, 515.35) 
(266.75, 336.98) 
(174.42, 234.37) 
(3034.59, 4292.40) 
(2099.42,2821.63) 
(1380.07, 1951.64) 
(1656.91, 2226.90) 
(1152.66, 1455.79) 
(753.53, 1012.74) 
(859.81, 1215.91) 
(594.70, 799.28) 
(390.93, 552.97) 

Estimate 
of Mean 

389.08 
447.07 
304.17 
206.95 

3670.00 
2497.00 
1699.00 
1952.00 
1328.00 
903.51 

1038.00 
706.34 
480.57 

95% Confidence 
Interval 

(351.64,430.51 ) 
(393.81, 507.54) 
(275.13,336.28) 
(182.03, 235.27 ) 
(3165.00, 4254.00) 
(2200.00, 2833.00) 
(1462.00, 1974.00) 
(1720.00, 2215.00) 
(1200.00, 1470.00) 
(793.15, 1029.00) 
(894.79, 1205.00) 
(620.99, 803.43) 
(412.29,560.15) 

Least 
Squares 

88.99 
131.82 
70.23 
59.95 

1257.81 
722.21 
571.57 
569.98 
303.14 
259.22 
356.10 
204.58 
162.04 

GLM 

78.87 
113.74 
61.15 
53.23 

1089.00 
633.00 
512.00 
495.00 
270.00 
235.85 
310.21 
182.44 
147.86 
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Figure 5.9 Contour plots for worsted yarn experiment: (a) least squares model and (b) GLM 
model. 
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Example 5.4. The Semiconductor Manufacturing Experiment. A spherical 
central composite design (CCD) was used to investigate the count of defects on 
wafers in a semiconductor manufacturing process. The design matrix and 
response data are shown in Table 5.9. Defects are nonnegative counts and are 
usually assumed to follow the Poisson distribution. To obtain the properties 
necessary to use ordinary least squares methods, the square root transforma-
tion would typically be used. This transformation is found to yield an adequate 
model in the variables, xu x2, X3, x\Xi, and x\ on the basis of Mests on the 
individual variables, nonsignificance of the lack-of-fit test, and acceptable 
residual plots. For the GLM model the Poisson distribution with a log link 
is selected. The best GLM also uses the variables xu Xi, ^3, ·Χι*2> and x\. The 
ordinary least squares model fit with the square root transformation is 

y = (2.606 + 0.894.x + 1.195x2 - 0.569x3 - 0J32xix2 + 0.694^)2 

The GLM fit using a Poisson distribution and log link is 

y 
9174.690+1523302χ1+66Ό17χ2+49.607χ3+22.572χιΛΓ2+13.820χ2 

As before, the measure of performance used to compare the ordinary least 
squares model and the GLM is the length of the 95% confidence intervals 
around the estimate of the mean response for each observation. Table 5.10 
presents the estimates of the means and the 95% confidence intervals for each 

Table 5.9 Defects Data Experiment Design Matrix and Response Data 

x, * 2 x3 Observational Value Square Root of Observation 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

.732 

.732 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
-1 
1 
1 

-1 
-1 
1 
1 
0 
0 

-1.732 
1.732 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

-1.732 
1.732 
0 
0 
0 
0 

1 
15 
24 
35 
0 

13 
16 
13 
1 

17 
7 

43 
14 
3 
4 
7 

1.000 
3.873 
4.899 
5.916 
0.000 
3.606 
4.000 
3.606 
1.000 
4.123 
2.646 
6.557 
3.742 
1.732 
2.000 
2.646 
2.828 
2.450 



Table 5.10 Comparison of 95% Confidence Intervals on the Means for Models Generated with Data Transformations and GLM for Defects 
Data Example 

Using Least Squares Methods with Log General Linear Model Length of 95% 
Data Transformation (Gamma Regression Confidence 

Transformed Untransformed with Log Link) Interval 

95% Confidence 95% Confidence 95% Confidence 
Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

h 
1.05 
4.30 
4.90 
5.23 

-0 .09 
3.16 
3.76 
4.09 
1.06 
4.15 
2.62 
6.75 
3.59 
1.62 
2.61 
2.61 
2.61 
2.61 

Interval 

(0.53, 1.56) 
(3.79, 4.81) 
(4.39, 5.42) 
(4.71, 5.74) 
(-0.60,0.42) 
(2.65, 3.68) 
(3.25, 4.28) 
(3.58, 4.60) 
(0.61, 1.51) 
(3.70, 4.61) 
(1.99, 3.25) 
(6.12, 7.38) 
(3.14,4.04) 
(1.17,2.08) 
(2.35, 2.86) 
(2.35, 2.86) 
(2.35, 2.86) 
(2.35, 2.86) 

h 
1.10 

18.50 
24.03 
27.31 
0.01 

10.01 
14.17 
16.72 
1.12 

17.25 
6.85 

45.58 
12.89 
2.63 
6.79 
6.79 
6.79 
6.79 

Interval 

(0.29, 2.44) 
(14.34,23.18) 
(19.26, 29.33) 
(22.21, 32.95) 

* 
(7.02, 13.52) 
(10.57, 18.30) 
(12.78,21.18) 
(0.37, 2.29) 
(13.69,21.21) 
(3.96, 10.53) 
(37.49,54.46) 
(9.84, 16.35) 
(1.37,4.31) 
(5.54, 8.17) 
(5.54, 8.17) 
(5.54, 8.17) 
(5.54, 8.17) 

h 
2.00 

19.27 
23.19 
27.73 
0.99 
9.51 

11.44 
13.69 
2.39 

19.79 
4.28 

48.79 
12.67 
3.74 
6.88 
6.88 
6.88 
6.88 

Interval 

(1.04, 3.86) 
(13.67,27.16) 
(17.01,31.60) 
(20.92, 36.76) 
(0.50, 1.96) 
(6.52, 13.86) 
(8.01, 16.34) 
(9.94, 18.45) 
(1.49, 3.84) 
(14.56, 26.90) 
(2.18, 8.40) 
(37.66, 63.20) 
(9.29, 17.29) 
(2.49, 5.60) 
(5.51, 8.60) 
(5.51, 8.60) 
(5.51, 8.60) 
(5.51, 8.60) 

OLS 

2.15 
8.84 

10.07 
10.74 

* 
6.50 
7.74 
8.40 
1.92 
7.52 
6.58 

16.97 
6.50 
2.94 
2.62 
2.62 
2.62 
2.62 

GLM 

2.82 
13.49 
14.59 
15.84 
1.47 
7.33 
8.33 
8.91 
2.35 

12.34 
6.23 

25.54 
8.00 
3.11 
3.09 
3.09 
3.09 
3.09 

Note: Indicates a negative predicted value. No inverse transformation is made. 



240 THE GENERALIZED LINEAR MODEL 

observation for both models. The intervals are narrower for the ordinary least 
squares fit than their GLM counterparts for most portions of the design space. 
However, for the ordinary least squares fit, the fifth experimental run shows a 
negative estimate of the mean, which is clearly a nonsensical value. This is a run 
where variable x3 is at the + 1 level, and it is probably a region of the design 
space where it may be desirable to run the process, since it results in a low 
number of defects. Therefore the ordinary least squares model actually per-
forms poorly in the region where it is likely to be most useful to the 
experimenters. Contour plots for this experiment are shown in Figure 5.10. 
Figure 5.10a shows the contour plots for the ordinary least squares model, and 
Figure 5.10b shows the contour plots for the GLM. However, the contour plot 
in the original units for the least squares model is not meaningful when 
x3 = + 1 because negative predicted values result. Only the GLM contours 
are useful in the region of likely interest. D 

5.11 MODELING BOTH A PROCESS MEAN AND PROCESS 
VARIANCE USING GLM 

An important industrial problem involves modeling both the process mean and 
the process variance. This problem lends itself to the use of generalized linear 
models rather nicely. This section discusses two different approaches: when 
there is true replication, and when there is no replication, in which case we use 
the residuals as the basis for modeling the variance. 

5.11.1 The Replicated Case 

True replication allows us to generate information on the variance independent of 
the model structure, since we can generate the sample variances, sj, at the replicated 
points. The analysis still depends on the distribution of the data. However, if the 
data follow a normal distribution, then the sample mean and the sample variance at 
each of the replicated points are independent of one another. In addition 

^ - - X l - , (3.15) 

which is also a gamma distribution with λ = 2 and r = ¿, 1, |, As a result we 
may use a GLM to generate a model for the variances. We then may use that model 
for the variances to generate the appropriate weights to perform generalized least 
squares to create an appropriate model for the process mean. 

An example helps to illustrate this process. Vining and Myers (1990) use a 
dual response approach for modeling the process mean and process variance on 
a printing ink study from Box and Draper (1987). The purpose of the 
experiment is to study the effect of speed, xu pressure, x2, and distance, x3, 
on a printing machine's ability to apply coloring inks upon package labels. 
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X, - - l . 

(a) (b) 

Figure 5.10 Contour plots for defects experiment: (a) least squares model and (b) GLM model. 
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Vining and Myers use ordinary least squares with a square root transformation 
on the sample variances (thus they analyze the sample standard deviations). 
Vining and Myers comment that limitations in the software available for the 
analysis dictated this approach. The data are in Table 5.11. Note that two of the 
sample standard deviations are 0. This can lead to complications, particularly 
with a log link. As a result we add one to each standard deviation when we fit 
the model. 

We fit a quasi-likelihood model with a log link. We assume that the 
remaining variance is constant. Table 5.12 gives the summary of the fit obtained 
from S-Plus. The resulting prediction model is 

f= exp{3.737 + 0.678jc3} 

Figures 5.11 through 5.13 give the residual plots, which appear satisfactory but 
not great. Historically, analysts have assumed that the process variance is 

Table 5.11 The Printing Ink Experiment (33 Factorial) 

*1 

-1.00 
0.00 
1.00 

-1.00 
0.00 
1.00 

-1.00 
0.00 
1.00 

-1.00 
0.00 
1.00 

-1.00 
0.00 
1.00 

-1.00 
0.00 
1.00 

-1.00 
0.00 
1.00 

-1.00 
0.00 
1.00 

-1.00 
0.00 
1.00 

*2 

-1.00 
-1.00 
-1.00 
0.00 
0.00 
0.00 
1.00 
1.00 
1.00 

-1.00 
-1.00 
-1.00 
0.00 
0.00 
0.00 
1.00 
1.00 
1.00 

-1.00 
-1.00 
-1.00 
0.00 
0.00 
0.00 
1.00 
1.00 
1.00 

*3 

-1.00 
-1.00 
-1.00 
-1.00 
-1.00 
-1.00 
-1.00 
-1.00 
-1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

yt 

24 
120.3 
213.7 
86 

176.7 
340.7 
112.3 
256.3 
271.7 
81 

101.7 
357 
171.3 
372 
501.7 
264 
427 
730.7 
220.7 
239.7 
422 
199 

485.3 
673.7 
176.7 
501 
1010 

*/ 
12.5 
8.4 

42.8 
3.7 
80.4 
16.2 
27.6 
4.6 
23.6 
0 

17.7 
32.9 
15 
0 

92.5 
63.5 
88.6 
21.1 
133.8 
23.5 
18.5 
29.4 
44.6 
158.2 
55.5 
138.9 
142.4 
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Table 5.12 S-Plus Summary of the Quasi-likelihood Fit for the Process Variance 
Model 

*** Generalized Linear Model *** 

Call: glm (formula = smod ~ x3 , family = quasi (link = log, 
variance = "constant"), data = vining.myers, 
na.action = na.exclude, control = list (epsilon 
= 0.0001, maxit = 50, trace = F) ) 
Deviance Residuals: 

Min IQ 
-63.20802 - 2 6 . 0 9 2 0 4 

Median 3Q Max 
- 8 . 0 7 6 0 6 4 35 .07394 76 .49198 

C o e f f i c i e n t s : 
V a l u e 

( I n t e r c e p t ) 3 .737100 
x3 0 .678217 

S t d . E r r o r 
0 .2346486 
0 .2615315 

t v a l u e 
15 .926366 

2 .593252 

( D i s p e r s i o n P a r a m e t e r f o r Q u a s i - l i k e l i h o o d f a m i l y t a k e n t o be 
1723.607) 

N u l l D e v i a n c e : 59790 .8 on 26 d e g r e e s of freedom 

R e s i d u a l D e v i a n c e : 43 090 .17 on 25 d e g r e e s of freedom 

Number of F i s h e r S c o r i n g I t e r a t i o n s : 5 

constant. As a result it is no surprise to see a reasonable but not great fit for the 
process variance model. There is sufficient evidence to suggest the use of a 
linear model, but it is not a strong linear relationship. 

We next can take the estimated model for the process variance as the basis for 
generating the weights for a weighted least squares estimate of the model for the 
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Figure 5.11 Deviance residuals versus fitted values for the process variance model. 
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Figure 5.12 Plot of the signed square root of the deviance residuals versus the predicted values of 
the linear predictors for the process variance. 

process mean. Table 5.13 summarizes the resulting output from MINITAB. 
Interestingly, the final model contains no pure quadratic terms. Instead, it 
contains all the main effects as well as all interactions, including the three-factor 
interaction. Figures 5.14 through 5.18 give the appropriate residual plots. Notice 
that the residual plots do not reveal anything alarming about the chosen model. 

5.11.2 The Unreplicated Case 

In the case of unreplicated experiments more complications arise in the case of the 
variance model as was pointed out in earlier discussions in this chapter. In fact, as 

- 2 - 1 0 1 
Quartiles of standard normal 

Figure 5.13 Normal probability plot of the residuals for the process variance. 
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Table 5.13 Weighted Least Squares Regression Output for the Printing Ink Data 

Weighted analysis using weights in w 

The regression equation is 
y = 320 + 177 xl + 119 x2 + 144 x3 + 61.2 xl2 + 76.7 xl3 + 68.7 x23 +70.5 

xl23 

Predi .ctor 
Constant 
xl 
x2 
x3 
xl2 
xl3 
x23 
xl23 

Coef 
319.76 
177.50 
119.30 
144.41 
61.21 
76.69 
68.68 
70.53 

StDev 
14.50 
17.76 
17.76 
16.16 
21.75 
19.79 
19.79 
24.24 

T 
22.05 
9.99 
6.72 
8.94 
2.81 
3.88 
3.47 
2.91 

P 
0.000 
0.000 
0.000 
0.000 
0.011 
0.001 
0.003 
0.009 

S = 1.453 R-Sq=93.7% R-Sq(adj ) = 91. 4% 

Analysis of Variance 

Source 
Regression 
Residual Error 
Total 

Source 
xl 
x2 
x3 
xl2 
xl3 
x23 
xl23 

DF 
1 
1 
1 
1 
1 
1 
1 

DF 
7 
19 
26 

SS 
599.746 
40.130 
639.876 

Seq SS 
266.585 
87.891 

168.694 
1.536 

31.718 
25.437 
17.885 

MS F 
85.678 40.57 
2.112 

P 
0.000 

before, it should be noted that the quality of the variance model is very much 
dependent on a proper choice of the model for the mean since the source of 
variability is the squared residual e¡ = (y i — x¿b)2 for the / = 1,2,..., AI design runs. 

For the fundamental variance model we still deal with the log linear structure. 
In order to motivate the potential use of the GLM for this case, consider the 
unobserved conceptual model error ε, = y¡ - χ'β. Let u, be the /th setting for 
the regressors used in the variance model. As a starting point, we assume that x, = u, 

<ή = Ε(ή)=<?* 

where sf ~ G¡2X\ and γ is the vector of the variance model coefficients. 



246 THE GENERALIZED LINEAR MODEL 

3 

1 2 

Ό 

2 1 

I 0 
''S 

* · 
co -2 

-3 

- I 

• 

(response is y) 
1 

• 

• ·....·.· · » · · · 
• 

· · · · 
• 

• 
1 

1 H 

•1 

1 J 
0 500 1000 

Fitted value 
Figure 5.14 Residuals versus the fitted values for the printing ink study (response is y). 

Maximum Likelihood Estimation of ß and γ Using GLM 
In the dual modeling procedure for unreplicated experiments, it is helpful to 
achieve efficiency of joint estimation of the mean model coefficients β and the 
variance model coefficients y through maximum likelihood with GLM as the 
analytical tool. We can write the mean model as y = Χβ + 8withVar(£) = V„ x „ 
and again σ? = en¡Y. Now, the MLE for β is merely weighted least squares, 

b=(X /V-1X)~1X /V~1y (5.16) 

If we use the random vector ε' = (ef, ε^ · · · ε1) w e have a set of independent χ] 
random variables that follow a gamma distribution with a scale parameter of 2. It 
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Figure 5.15 Residuals versus xi for the printing ink study (response is y). 
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Figure 5.16 Residuals versus *2 for the printing ink study (response is y). 

is interesting, though not surprising, that if we consider the MLE for ß and y two 
separate algorithms emerge. However, the maximum likelihood estimator of ß 
involves y through the V matrix, and the MLE of y clearly involves ß since the data 
in the variance model, namely, the ε,-, involves β. As a result, an iterative 
procedure is required. We do not write the likelihood function here but details 
appear in Aitkin (1987). Aitkin also points out the simplicity provided by the fact 
that computation of the MLE for β and y can both be done with GLMs with an 
identity link and normal distribution on the mean model for estimation of β and 
log link with a gamma distribution on the variance model for estimation of y. 
Indeed, these two procedures can be put together into an iterative procedure. The 
scale parameter for the gamma link is again equal to 2. We must use the squared 

(response is y) 

Figure 5.17 Residuals versus JC3 for the printing ink study (response is y). 
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Figure 5.18 Normal probability plot of the residuals in the printing ink study (response is y). 

residuals e] = (y¡ - x-b)2 as the data for the gamma GLM and we use the y i values 
as data for the normal GLM. The method follows: 

1. Use OLS to obtain b0 for the mean model y¡ = χ',-β + ε,·. 
2. Use b0 to compute n residuals where e¡ = y¿< — χ',βο for / = 1, 2,. . . , n. 
3. Use the e] as data to fit the variance model with regressors u and a log 

link with scale parameter 2. This is done via IRLS with GLM technology. 
A 

4. Use the parameter estimates from step 3, namely the y¡ to form the V 
matrix. 

5. Use V with weighted least squares to update b0 to say, bi. 
6. Go back to step 2 with bi replacing b0. 
7. Continue to convergence. 

The complete algorithm for the model is not difficult to construct and is 
certainly a useful alternative for dual estimation of the mean and variance 
model. However, one disadvantage is that the estimation of the parameters in 
the variance model are biased because the MLE of y does not account for 
estimation of ß in formation of the residuals. A somewhat different procedure 
serves as an alternative. This procedure makes use of restricted maximum 
likelihood (REML). The REML procedure does adjust nicely for the bias due to 
estimation of ß in the squared residuals. In addition, this procedure can also be 
put into a GLM framework. 

Restricted Maximum Likelihood for Dual Modeling 
The source of the possible difficulties with ordinary MLE as discussed above is 
that the response data for the variance model, namely, the e] are not truly 
reflecting σ2 unless the estimator b is the true parameter β. As a result, one 
cannot expect the estimator of γ from the procedure to be unbiased. Of course, 

2 

Φ 1 

I 
Λ 0 
δ z 

-1 

-2 
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the amount of bias may be quite small. We deal with this subsequently. 
However, the IRLS procedure developed for REML is quite simple and should 
be considered by the practitioner. Consider now E(ef) for / = 1,2,..., n. We 
know that for a weighted least squares procedure 

Var(e) = Var Var[I - X t X ' V - ' x p X ' V - ^ y 

= [i - xix'v-'xr'x'v-^vp - x(x,v-1x)_1x/v-1] 
= \-X{X,\-]X)~lXf (5.17) 

Since E(e¡) = 0, then E{e2) = Var(é>,). The matrix X(X'V" lX>~lX' may seem 
like a hat matrix as defined in ordinary multiple regression. However, the 
matrix that is most like a hat matrix for weighted regression is 

H = V-x'2X(X'\-lX)-lX'V-1'2 (5.18) 

The matrix H is idempotent and plays the same role as X(X'X)~ !X' does for 
standard nonweighted regression. Now, H has the same diagonal elements as 
X(X'V - lX) - *X'V - \ Thus the diagonal elements in X(XV'V " !X>" λΧ' are the 
diagonals of HV. As a result, if we consider only the diagonal element 
involvement in Var(e), 

E(e2) = σ2 - hu σ2 (5.19) 

where hü is the /th hat diagonal, that is, the /th diagonal of H. Thus the 
adjustment on the response is to use e] + Α,-,-σ,·2 rather than e2. Here A/,· σ2 is a 
bias correction. The estimation of β and γ are interwoven and thus an iterative 
scheme is used, once again with the aid of GLM. The iterative procedure is: 

1. Calculate b0 from OLS. 
2. Calculate the e¡ and a set of responses zo/ = e2 + has2, where the hu are the 

OLS hat diagonals from X(X'X)~ !X', and s2 is the error mean square. 
3. Use the z0/, (/ = 1, 2,. . . , n) as responses in a GLM with gamma 

distribution and log link to calculate the initial γ, say, γ0. 
4. Use the γ0 to produce weights from σ2 = eu^° and calculate the weight 

matrix V0. Calculate the estimate of β as bi = ( X % X) -1X'V0 y. 
5. Calculate new residuals from bu and that new z/ = e2 + A« σζ

2, where A/7 
is the /th diagonal from the hat matrix. Here the V matrix is diagonal with 
the current values σ2 on the main diagonal. 
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6. Use the new z¡ as responses with a gamma GLM and log link to calculate 
a new γ. The procedure continues the methodology of using variance 
fitted values for weights in the development of the mean model. The mean 
model continues to provide the residuals from which the z, are developed. 
Upon convergence, both mean and variance models emerge. 

The reader should note the close resemblance between the iterative proce-
dure here and the MLE in the previous section. The structure is the same except 
that at each iteration the gamma GLM is conducted with an adjusted response, 
the adjustment coming via A/,· · σ?, where σ,2 is the estimator of 072 from the 
previous iteration. The procedure does maximize a restricted log-likelihood 
which is not shown here. For more details the reader should see Engel and 
Huele (1996). Neider and Lee (1991), and Lee and Neider (1998a, b). For more 
information on the computational details, consult Harvey (1976). 

Obviously, the correction for bias introduced through REML may be very 
helpful. However, for large experiments in which n » p, where/? is the number 
of parameters, the bias adjustment often is negligible. 

5.12 QUALITY OF ASYMPTOTIC RESULTS AND RELATED ISSUES 

Many of the inference procedures associated with the GLM make use of 
asymptotic results. We believe that the use of asymptotic results are satisfactory 
in most real-life situations in which GLMs are used. Obviously, it is not 
possible to study all distributions, links, sample sizes, and design scenarios, and 
each of these, even the design, plays a role. However, our experience based 
simulation studies, most of which focused on the use of two-level factorial 
designs, indicates that the asymptotic results seem to hold well in practical 
situations. Some of these results are shown in this section. The studies deal 
generally with the nature of accuracy of asymptotic variance-covariance 
matrices of parameter estimates and the accuracy of coverage probabilities 
on confidence intervals on the mean response. 

In terms of accuracy of variances of parameter estimates, our experience 
suggests that for 8 run designs, the actual or small-sample variance may be, on 
the average, roughly 5-10% higher than the computed asymptotic variance. 
This, of course, implies that P-value calculations may be slightly under-
estimated. However, for 16 run designs, the practitioner can feel confident 
about the use of the computed asymptotic variance. Our simulation results 
consistently revealed values that are well within the simulation error. 

5.12.1 Development of an Alternative Wald Confidence Interval 

We first investigate the coverage properties of Wald-type confidence intervals 
on the mean response in situations involving designed experiments with 8, 16, 
and 32 runs. We use the Wald inference confidence intervals from SAS PROC 
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GENMOD. Recall that the confidence interval on the mean response at the 
point x'o = [1, xio, *20>.·., *ko] is 

r1 x'0b ± za/2 \/x¿(D'V 1D)-1x0 

where g is the link function. 
There is another way to develop a Wald confidence interval on the mean 

response in the GLM. Recall that in normal-theory linear regression, a 
confidence interval on E(y\x = x0) for a model with p parameters is 

j>(x0) ± fe/2f n_p ^ ( Χ ' Χ Γ ' χ ο (5.20) 

Myers and Montgomery (1997) present an analogous expression for general-
ized linear models. The asymptotic 100(1-a)% confidence interval on the 
mean response at the point x0 is 

£(xo) ±z a / 2 yd^D'V^Df 'do (5.21) 

where D is the matrix of derivatives induced by the Taylor series expansion 
used in the GLM, d0 isjhe vector of these derivatives evaluated at the point of 
interest xo, V = diag{Var(>>,·)} is a diagonal matrix whose main diagonal 
elements are the estimated variances of the response variable, and μ(χο) is 
the estimate of the mean response at the point of interest x0. The variance of the 
response is a function of the mean through the relationships established for the 
exponential family. The scale parameter α(φ) in the exponential family is 
incorporated in the variance of the response y¡ and hence in V. 

The development of Equation (5.21) is fairly straightforward. From McCullagh 
and Neider (1989, p. 28) the form of the log-likelihood of y for the exponential 
family is L(0) = {yd - Κθ)}/α(φ) + c(y\ φ). In addition μ = V{ß) and Var(y) = 
ο"(θ)α(φ). For a link, say, #(μ) = χ'β, we have μ = g~ *(χ'β) and μ = g_1(x'b), 
where b is the maximum likelihood estimator. In general, μ is a nonlinear function 
of β. Important results stem from the asymptotic covariance matrix of b. The 
information matrix 1(b) can be written several ways. One useful form is 

I(b) = D,V"lD 

where D is a matrix whose z'th row is (d/^/öß)', which is the derivative of the mean 
function with respect to the parameters. The matrix V = diag{Var(yz)}. We know 
from characteristics of the exponential family that 

θμ _ θμ θθ 
οβ = £0#^β Χ 
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which produces D = \\Χ/α(φ). Thus D'V- 'D = X'W \Χ/[α(φ)]2 = X'WX/ 
[α(φ)]2. The matrix W is the Hessian weight matrix that has been described 
throughout the text. Here the matrix Δ = diag{<90,/(?x',ß}. For the canonical link, 
Θ = x'ß and 

I(b) = ^ 2 ^ (5.22) 
[α(φ)}2 

We must keep in mind that α(φ) is also involved in V through the expression 
VarO) = ν\θ)α{φ). 

For the confidence interval on μ(χο), we must use the delta method to 
approximate Var[/z(x0)]. The delta method allows for approximation of the 
variance of a quantity that is a nonlinear function of random variables whose 
variances are known. In this context, μ(χο) is a nonlinear function of parameter 
estimates in b. The application of the delta method results in 

Var[£(xo)] = df
0 [Var(b)] d0 

where d0 is a vector of derivatives of μ(χ0) with respect to b; that is, 
do = dß(xo)/db. Now Var[(b)] is the asymptotic variance-covariance matrix of 
b, which is given by 1(b)~l = (ΌΎ~ιΌ)~ι. As a result Var[/i(xo)] is approxi-
mated by d'0(D'V !D) ~ ιά0. We then have that the asymptotic distribution of 

μ(χρ) - μ(χ 0) 

^ ( D ' V - ^ - ' d o 

is N(0, 1), and thus the approximate 100(1 — oc)% confidence interval on μ(χο) is 

μ(χ„) ± za/2^/d¿(D'V"'D)-|do 

This is a useful general form. Let us consider some special cases. Through the chain 
rule and relationships in the exponential family, αμ/dfi = (θμ/θθ)[θθ/δ(\'Ρ )] 
[d(x'ß)/dß] = Var(j)Ax/a(0). So for a canonical link, δ = 1 and D = [VX/ 
α(φ)](ΌΎ~ O ) - ' = (X'VX)- \α(φ)]2, d0 = \\&τ(γο)]\ο/α(φ), and thus we have 
as the desired confidence interval 

A(xo) ± 2fl/2Var^0) V ^ Ö ™ ) 7 ^ 

Note that even though α(φ) cancels, it still appears in the variance of the response 
and in the matrix V. In the normal case, since V = σ 2I and Var(y) = σ2, we have 

μ ( χ 0 ) ± ζ α / 2 σ ) / χ ' 0 ( Χ ' Χ ) - 1 Χ ο 
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Table 5.14 Wald Confidence Intervals on the Mean Response for Canonical Link 
Models for Various Exponential Family Members 

Distribution Link Model Confidence Intervals 

y(xi)±ta/2,H-psJx'i(X'X)-lxi 

ex> ± Zaße^y/x'iiX'VKy^i 

Note: υ is the gamma scale parameter. 

Replacing σ by s and ζα/2 by ta¡2 gives the familiar expression shown in Equation 
(5.20). We also can obtain the same results if we use I - !(b) and Equation (5.22). 
Tables 5.14 and 5.15 summarize several of these Wald confidence intervals for 
binomial, Poisson, and gamma responses for both canonical and noncanonical 
links. 

Lewis, Montgomery, and Myers (2001b) evaluate the coverage and precision 
(i.e., the length) of confidence intervals on the mean response in the GLM using 
Monte Carlo simulation. They study two-level factorial designs with n = 8, 16, 
and 32 runs fitted with the GLM. For each experimental design situation, a 
model is built with known parameters and a known true mean for each 
experimental run. That is, a model μ/ = ^"1(χ/β) is generated with known 
parameters β, a design matrix X, and therefore a known mean μ£, for each 
experimental run. The actual observation is obtained by adding an error drawn 
at random from a specified distribution to the linear predictor, namely, 
^/ = ^"1(χ/·β) + ε/. A GLM is fit to the data using the SAS GENMOD 
procedure and the 95% confidence intervals examined. Each treatment combi-
nation is simulated 5000 times. Coverage and precision are calculated over all 
the observational points. Therefore, for the 8 run designs, a total of 40,000 (i.e., 
5000 x 8) observational points are used in the coverage calculation; 80,000 

Table 5.15 Wald Confidence Intervals on the Mean Response for some Noncanonical 
Link Models for Various Exponential Family Members 

Distribution Link Model Confidence Intervals 

(x;.b)±z(l/2V/x;(X'AVAX)-,xi 

(x}b) ± z^y^X'AVAXr'x,· 

Note: υ is the gamma scale parameter. 

Normal Identity μ, = χ'/β 

Binomial Logit μ,, = 1 /(1 + e " x/p)) 

Gamma Inverse μ, = 1/χ',β 

Poisson Log μ, = e)p' 

Binomial Identity μ = χ',β 

Gamma Log μ = ex 'p 

Poisson Identity μ = χ'/β 
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Table 5.16 Scenarios Evaluated in Monte Carlo Simulation 
Distribution 

Binomial 
Binomial 
Gamma 
Gamma 
Poisson 
Poisson 

Link 

Logit (canonical) 
Identity (noncanonical) 
Inverse (canonical) 
Log (noncanonical) 
Log (canonical) 
Identity (noncanonical) 

Linear Predictor 

3 + 2*i + *2 

10 + 5*i + 3*2 

100 + 50*i + 30x2 

10 + 5*i + 3x2 

10 + 5*i + 3*2 
100 + 50*! + 30*2 

(i.e., 5000 x 16) observational points for the 16 run designs; and 160,000 (i.e., 
5000 x 32) observational points for the 32 run designs. The specific scenarios 
selected for the analysis of confidence interval coverage and precision studies 
are shown in Table 5.16 

In each case, two design factors, xu and x2, are included. A 22 factorial 
design is used to generate the X matrix for each specific scenario. That is, two 
replicates of the 22 factorial are used to generate the 8 experimental run design 
matrix. Four replicates of the 22 give the 16 experimental run design matrix, 
and eight replicates of the 22 give the 32 experimental run design matrix. 

Illustration of Binomial Distribution with Logit (Canonical) Link 
To illustrate, the true model used in the Monte Carlo simulation for the 
binomial response distribution with logit link situation is μιr = g~l (3 + 2xn + 
xi2). Therefore the model parameters are β0 = 3, ßj = 2, and ß2 = 1. A 22 

factorial is used and the response is modeled as a full factorial with 2 replicates 
for the 8 run design, 4 replicates for the 16 run design, and 8 replicates for the 
32 run design. As discussed previously, the binomial distribution is used to 
produce an observation y¡ for each experimental run. This process is repeated 
for 5000 iterations. Results are collected and summarized across experimental 
runs and over all the 5000 iterations. 

Tables 5.17, 5.18, and 5.19 give the Monte Carlo results for the binomial 
distribution with the logit link for n = 8, 16, and 32, respectively. Each table 
shows the results for both the SAS approximate 95% confidence intervals and 
the 95% Wald confidence intervals. The columns labeled "Coverage" show the 
number of times the 95% confidence interval contained the true mean out of 
the 5000 trials. For example, for trial 1, 4752 of the 5000 simulation runs 
resulted in a confidence interval containing the true mean. The columns labeled 
"Precision" show the average length of the confidence interval obtained for 
each of the experimental trials. For example, for trial 1, the precision is 0.0684. 
As a point of reference for the precision value, the true mean for trial 1 is 0. 

Monte Carlo Simulation Confidence Interval Coverage and Precision Results 
Table 5.20 and 5.21 give a summary of the Monte Carlo simulations for all of 
the models in Table 5.17. The coverage for the SAS confidence intervals are in 
Table 5.20 and the coverage for the Wald confidence intervals are in Table 5.21. 
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Table 5.17 Confidence Interval Results for Binomial Distribution with Logit 
(Canonical) Link for 22 Factorial with 8 Runs 

SAS PROC GENMOD CI Wald CI 

Trial 

1 
2 
3 
4 
5 
6 
7 
8 

Total 
Coverage % 

Coverage 

4752 
4812 
4767 
4822 
4752 
4812 
4767 
4822 
38306 

95.77% 

Note: Target confidence level is 95%. 

Precision 

0.0684 
0.0203 
0.0447 
0.0033 
0.0684 
0.0203 
0.0447 
0.0033 

Coverage 

4742 
4770 
4724 
4662 
4742 
4770 
4724 
4662 
37796 

94.49% 

Precision 

0.0688 
0.0177 
0.0442 
0.0028 
0.0688 
0.0177 
0.0442 
0.0028 

Table 5.18 Confidence Interval Results for Binomial Distribution with Logit 
(Canonical) Link for 22 Factorial with 16 Runs 

SAS PROC GENMOD CI Wald CI 

Trial 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
Total 
Coverage % 

Coverage 

4762 
4761 
4749 
4751 
4762 
4761 
4749 
4751 
4762 
4761 
4749 
4751 
4762 
4761 
4749 
4751 
76092 

95.12% 

Note: Target confidence level is 95%. 

Precision 

0.0154 
0.0039 
0.0099 
0.0006 
0.0154 
0.0039 
0.0099 
0.0006 
0.0154 
0.0039 
0.0099 
0.0006 
0.0154 
0.0039 
0.0099 
0.0006 

Coverage 

4761 
4764 
4753 
4731 
4761 
4764 
4753 
4731 
4761 
4764 
4753 
4731 
4761 
4764 
4753 
4731 
76036 

95.05% 

Precision 

0.0154 
0.0039 
0.0099 
0.0006 
0.0154 
0.0039 
0.0099 
0.0006 
0.0154 
0.0039 
0.0099 
0.0006 
0.0154 
0.0039 
0.0099 
0.0006 

Inspection of Tables 5.20 and 5.21 shows that the SAS approximate 
confidence intervals calculated using PROC G E N M O D closely match the 
Wald confidence intervals for the binomial and Poisson distributions. As 
important, the results also show that the coverage observed in the Monte 
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Table 5.19 Confidence Interval Results for Binomial Distribution with Logit 
(Canonical) Link for 22 Factorial with 32 Runs 

SAS PROC GENMOD CI Wald CI 

Trial 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
Total 
Coverage % 

Coverage 

4694 
4622 
4702 
4644 
4694 
4622 
4702 
4644 
4694 
4622 
4702 
4644 
4694 
4622 
4702 
4644 
4694 
4622 
4702 
4644 
4694 
4622 
4702 
4644 
4694 
4622 
4702 
4644 
4694 
4622 
4702 
4644 
149296 
93.31% 

Precision 

0.0333 
0.0090 
0.0215 
0.0014 
0.0333 
0.0090 
0.0215 
0.0014 
0.0333 
0.0090 
0.0215 
0.0014 
0.0333 
0.0090 
0.0215 
0.0014 
0.0333 
0.0090 
0.0215 
0.0014 
0.0333 
0.0090 
0.0215 
0.0014 
0.0333 
0.0090 
0.0215 
0.0014 
0.0333 
0.0090 
0.0215 
0.0014 

Coverage 

4691 
4741 
4687 
4759 
4691 
4741 
4687 
4759 
4691 
4741 
4687 
4759 
4691 
4741 
4687 
4759 
4691 
4741 
4687 
4759 
4691 
4741 
4687 
4759 
4691 
4741 
4687 
4759 
4691 
4741 
4687 
4759 
151024 
94.39% 

Precision 

0.0334 
0.0087 
0.0215 
0.0014 
0.0334 
0.0087 
0.0215 
0.0014 
0.0334 
0.0087 
0.0215 
0.0014 
0.0334 
0.0087 
0.0215 
0.0014 
0.0334 
0.0087 
0.0215 
0.0014 
0.0334 
0.0087 
0.0215 
0.0014 
0.0334 
0.0087 
0.0215 
0.0014 
0.0334 
0.0087 
0.0215 
0.0014 

Note: Target confidence level is 95%. 

Carlo simulation for small samples is very close to the asymptotic theoretical 
claim of 95%. In particular, for the binomial and Poisson distributions, with as 
few as 8 runs, the coverage is very close to 95%, which is a crucial finding. It 
implies that confidence interval lengths are an appropriate way to evaluate 
the predictive performance of models built from designed experiments using the 
GLM and that they compare well with other approaches. 



Table 5.20 Summary of SAS Approximate Confidence Intervals 

Runs 

8 
16 
32 

Canonical 
Logit Link 

95.77 
95.12 
93.31 

Binomial 

Noncanonical 
Identity Link 

95.48 
93.98 
94.51 

Canonical 
Log Link 

95.11 
94.93 
95.28 

Poisson 

Noncanonical 
Identity Link 

94.92 
95.02 
95.20 

Canonical 
Inverse Link 

86.39 
93.31 
95.41 

Gamma 

Noncanonical 
Log Link 

89.77 
93.16 
95.06 

Note: Target confidence level is 95%. 

in 



Is) 
00 

Table 5.21 Summary of Wald Confidence Intervals 

Runs 
8 

16 
32 

Canonical 
Logit Link 

94.49 
95.05 
94.39 

Binomial 

Noncanonical 
Identity Link 

95.48 
93.98 
94.52 

Canonical 
Log Link 

95.07 
94.94 
95.25 

Poisson 1 

Noncanonical 
Identity Link 

94.92 
95.02 
95.20 

Canonical 
Inverse Link 

79.94 
89.65 
92.99 

Gamma 

Noncanonical 
Log Link 

85.27 
89.35 
93.73 

Note: Target confidence level 95%. 
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We do not display the precision results; however, in all instances, as the 
number of experimental runs increases, the precision of estimation improves. 
That is, the interval tightens around the correct mean value. (See Lewis, 1998, 
for detailed precision results.) 

The coverage results for the gamma distribution are somewhat less im-
pressive for the 8 run designs, but quickly approach 95% as the number of 
experimental runs increases to 16 and then to 32. One possible explanation for 
the less impressive results observed with the gamma distribution involves the 
scale parameter υ. This parameter is unknown for the gamma distribution and 
must be estimated. There are several methods for estimating υ, and they do 
affect the coverage results. The next section examines this issue further. 

5.12.2 Estimation of Exponential Family Scale Parameter 

Myers and Montgomery (1997) and McCullagh and Neider (1989), among 
others, suggest several methods for estimating the scale parameter. The scale 
parameter can be estimated based on the deviance or Pearson's χ2, or it can be 
estimated directly using maximum likelihood. To investigate the behavior of 
the various methods for estimating the exponential family scale parameter υ, 
Myers and Montgomery (1997) run a Monte Carlo simulation model for the 
gamma distribution using each of the three estimation methods. They consider 
both the inverse link (canonical) and the log link (noncanonical). Table 5.22 gives 
the coverage results. Since precision, as well as coverage, is important, precision is 
examined through plots showing the average length of the confidence interval 
over the 5000 simulation runs at the design points. Figure 5.19 is a plot of average 
confidence interval endpoints for the particular trial in which the true mean 
is 7.39. 

Inspection of Table 5.22 shows that the deviance-based and Pearson's χ2-
based estimation methods give similar results for confidence interval coverage. 
The maximum likelihood based estimator exhibits a slightly reduced coverage in 
comparison to the other estimators. However, examination of Figure 5.19 shows 
that the maximum likelihood estimator yields shorter intervals; that is, a more 
precise estimate is obtained. Similarly, Pearson's χ2 estimator appears slightly 
more precise than the deviance-based estimator. Both confidence interval 
coverage and precision are important in evaluating model performance. 

Table 5.22 Coverage Results for Gamma Distribution with Inverse (Canonical) and 
Identity (Noncanonical) Links for 22 Factorial with 8 Runs Using Various Methods of 
Estimating the Scale Parameter 

Canonical Link 
Noncanonical Link 

Deviance 

86.39% 
89.77% 

Pearson's χ2 

86.40% 
87.60% 

Maximum Likelihood 

82.34% 
82.41% 

Note: Target confidence level is 95%. 
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m¿ = 7.39 

Deviance method Pearson's X 2 Maximum likelihood 

Figure 5.19 Average confidence interval endpoints for various scale parameter estimators for 
Monte Carlo simulations of gamma distribution with log link. 

5.12.3 Impact of Link Misspecification on Confidence Interval 
Coverage and Precision 

As mentioned earlier, one of the three components in any generalized linear 
model is the choice of link function. In some situations the canonical link may 
be chosen by default, possibly for ease of interpretation. In other situations the 
appropriate link may not be obvious. Therefore it is useful to consider the 
impact of misspecifying the link function on the confidence interval coverage 
and precision. In a sense, misspecification of the link is tantamount to model 
misspecification. Three situations involving misspecified links (see Table 5.23) 
are investigated for the n = 8, 16, and 32 run designs. 

5.12.4 Illustration of Binomial Distribution with a True Identity Link but 
with Logit Link Assumed 

One common situation is a designed experiment where the response is a 
binomial variable. Often binomial data are modeled using a logit transforma-
tion. Therefore an experimenter can easily elect to use the canonical logit link in 
the model-building process. However, suppose that the true link is well 
approximated by an identity link. That is, the binomial parameter is very 
nearly linear in the design variables, but the experimenter chooses a logit link. 
To investigate the impact on model performance, the confidence interval 
coverage and precision are examined. 

To simulate this situation, a 22 factorial design is selected, and the true 
model is generated with a set of known parameters, and therefore a known 

Table 5.23 Modeling Situations Used to Evaluate Impact of Link Misspecification 

Situation Distribution True Link Assumed Link 

1 
2 
3 

Binomial 
Poisson 
Gamma 

Identity (Noncanonical) 
Identity (Noncanonical) 
Inverse (Canonical) 

Logit (Canonical) 
Log (Canonical) 
Log (Noncanonical) 
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mean for each experimental run. For the true model Lewis, Montgomery, and 
Myers (2001b) choose μί = g~l (χ',-β) = g~l (10 + 5xn + 3x/2). The true model 
involves an identity link and a binomial distribution to produce an observation 
for each experimental run. A GLM is built for the observations using a 
binomial distribution. However, rather than applying the correct identity link, 
the model is fit with a logit link. This situation is simulated 5000 times. This 
process is repeated for the n = 8, 16, and 32 run designs. 

A summary of confidence interval coverage for this situation is given in 
Table 5.24. When the incorrect link is assumed, the coverage decreases as the 
number of experimental runs increases. Again, without displaying the precision 
results, we report that as the number of experimental runs increases the 
intervals become shorter. However, in the case of a misspecified link, the 
intervals tighten around the wrong mean value. Consider the first observation 
in this example. The average length of the confidence interval changes from 
0.0374 for n = 8, to 0.0260 for n = 16, and to 0.0183 for the n = 32 run case. 
See Lewis (1998) for detailed precision results. 

Clearly, link misspecification affects the ability of the model to provide 
reliable estimates of the mean response. Therefore a complementary issue is 
whether the model fit with the incorrect link exhibits any behavior that 
the experimenter can use to identify the problem. For example, consider one 
of the 8 run designs from the simulation. Since model adequacy is often 
reflected in the model residuals, a normal probability plot of deviance residuals 
for this particular design is constructed and shown in Figure 5.20. Examination 
of the plot does suggest potential inadequacies in the model fit. A model builder 
could make use of such plots as a potential diagnostic. An unusual pattern on 
the normal probability plot of the deviance residuals could indicate a link 
misspecification. 

We caution readers that only the deviance residuals should be plotted. The 
ordinary residuals from a GLM and the Pearson residuals do not have equal 
variance. The sum of the squared deviance residuals is equal to the model 
deviance, and in the case of a normal distribution and the identity link the 
deviance is equal to the residual sum of squares. Furthermore, the asymptotic 
distribution of the deviance is approximately chi-square. Thus plotting 
deviance residuals is somewhat analogous to plotting the usual normal-theory 
residuals. Note also that the deviance residuals are not independent, just as the 

Table 5.24 Summary of Impact on Confidence Interval Coverage for Binomial 
Distribution with True Identity Link but Assumed Log Link 
Experimental Runs True Link Assumed Incorrect Link Assumed 

8 95.48% 81.24% 
16 93.98% 69.54% 
32 94.51% 53.58% 

Note: Target confidence level is 95%. 
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Figure 5.20 Normal probability plot of deviance residuals for binomial response with true identity 
link but assumed logit link, n = 8. 

usual normal-theory residuals are not independent, so deviance residual plots 
based on small sample sizes need to be interpreted cautiously. 

5.12.5 Poisson Distribution with a True Identity Link 
but with Log Link Assumed 

Another common situation is a designed experiment where the response is a 
Poisson variable. Often Poisson data are modeled using a log transformation. 
Therefore an experimenter is likely to elect to use a log link in the model-
building process. However, suppose that a situation arises where the true link is 
well approximated by an identity link so that the model is approximately linear, 
but the experimenter chooses the log link. To investigate the impact on 
potential model performance, the confidence interval on the mean response is 
examined. As in the binomial illustration, a 22 factorial design is used and the 
true model is generated with a set of known parameters, and therefore a known 
mean for each experimental run. Lewis, Montgomery, and Myers (2001b) 
choose the true model as μί■ = g~l (100 + 50xn + 30xa). The true model is 
assumed to involve an identity link and the Poisson distribution is used to 
obtain an observation for each experimental run. A GLM is built using a 
Poisson distribution. However, rather than the correct identity link, the model 
is fit with a log link. This situation is simulated 5000 times. 

Table 5.25 gives a summary of the confidence interval coverage for this 
situation. When the incorrect link is assumed, the coverage declines drastically 
from the correct link situation. Additionally, as the number of experimental 
runs increases, the coverage declines even further. In general, the intervals 
become shorter as the number of experimental runs increases. However, in the 
case of a misspecified link, they tighten around the wrong mean value. 

In this situation, link misspecification severely impacts model performance. 
Just as in the binomial illustration, deviance residuals can be used to provide an 
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Table 5.25 Summary of Impact on Confidence Interval Coverage for Poisson 
Distribution with True Identity Link but Assumed Log Link 

Experimental Runs True Link Assumed Incorrect Link Assumed 

8 94.92% 31.60% 
16 95.02% 25.67% 
32 95.20% 2.33% 

Note: Target confidence level is 95%. 

indication of model inadequacy. Using one of the 5000 simulations trials of the 
8 run design, a normal probability plot of deviance residuals for this run is 
constructed and shown in Figure 5.21. The central portion of this plot does not 
deviate much from linearity, but the tails do, indicating potential inadequacies 
in the model fit. However, as noted previously, these plots need to be 
interpreted cautiously. 

5.12.6 Gamma Distribution with a True Inverse Link 
but with Log Link Assumed 

The final modeling situation of misspecification considered arises with the 
gamma-distributed response variable. Often a gamma distributed response 
variable is analyzed following a log transformation. Therefore an experimenter 
may likely choose a log link in the model-building process. A 22 factorial design 
is selected and, as before, the true model is generated with a set of known 
parameters. The true model chosen by Lewis, Montgomery, and Myers (2001b) 
is μιr = g~l (10 + 50x/i + 3x/2)· A gamma distribution with the inverse link was 
then used to generate the observations for this experiment. A GLM model is 
built using a gamma distribution. However, rather than the correct inverse link, 
the model is fitted with a log link. This situation is simulated 5000 times. 

A summary of the confidence interval coverage results obtained over 
the 5000 runs is provided in Table 5.26. The results for the same model with 

Figure 5.21 Normal probability plot of deviance residuals for Poisson response with true identity 
link but assumed log link, n = 8. 
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Table 5.26 Summary of Impact on Confidence Interval Coverage for Gamma 
Distribution with True Identity Link but Assumed Log Link 
Experimental Runs True Link Assumed Incorrect Link Assumed 

8 86.39% 88.65% 
16 93.31% 88.72% 
32 95.41% 84.25% 

Note: Target confidence level is 95%. 

the correct link chosen are also shown for comparison purposes. In this 
situation, link misspecification does not seriously affect confidence interval 
coverage. This is similar behavior to that experienced when a log transforma-
tion or an inverse transformation is made to long right-tailed distributions, such 
as the gamma distribution. That is, both transformations often produce similar 
results. This behavior likely explains the similar confidence interval coverage 
results obtained from using either the log or inverse link functions. Notice also 
that for the n = 8 run design, the coverage is actually slightly worse when the 
correct link is used than when the incorrect link is used. This is likely due to 
unstable behavior of the inverse link for small sample sizes. It can be shown that 
using the incorrect link generally leads to lower precision of estimation. 

5.12.7 Summary of Link Misspecification on Confidence Interval 
Coverage and Precision 

The impact of link misspecification is serious for the binomial and Poisson 
distributions. The severity of the loss in coverage appears to increase as the 
number of experimental runs increases. The lengths of the confidence intervals 
also appear to increase from the model analyzed with a correct link to the same 
model analyzed with an incorrect link. The length of the confidence intervals 
always decreases as the number of experimental runs increases. However, for the 
incorrect link, the intervals tighten around the wrong estimate of the response 
mean. 

The impact of link misspecification, for the specific scenario considered, was 
much less severe for the gamma distribution in terms of confidence interval 
coverage. This is not completely surprising, since often, in practice, the gamma 
distribution is well modeled with either the log or the inverse link. That is, good 
models can often be produced using either link. However, the precision of the 
intervals is substantially less for the incorrect link models. Therefore consider-
able care is selecting the most appropriate link necessary to optimize the 
capability of the model in response variable estimation and prediction. 

5.12.8 Impact of Model Misspecification on Confidence Interval 
Coverage and Precision 

Clearly, one of the important tasks involved in analyzing designed experiments 
is the selection of variables to include in the model. We now briefly examine the 
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Table 5.27 24 " ! Fractional Factorial Design and True Mean Poisson Response 

Run x\ x2 X3 X4 Response 
1 
2 + 
3 
4 + 
5 
6 + 
7 

impact of selecting the wrong subset of variables to include in the model on 
confidence interval coverage and precision. To perform this investigation, a 
fractional factorial design is used. This experiment involves a 2 4 - 1 design with 
a Poisson response distribution and identity link. The true model in the coded 
variables is μ, = 100 + 20x/i + 30x/2 + 35x/3 + \5xnxi2 + llxax^. The design 
matrix is shown in Table 5.27. 

Examination of the resulting SAS generated Wald χ2 statistics (not provided 
here) reveals that only the main effects xu x2, *3, and the X\x2 interaction should 
be retained in the model. To make these decisions, one could utilize other model 
selection and evaluation statistics, such as PRESS. If one uses a PRESS statistic 
for variable selection, variable x2x-$ would have been retained in the model as 
well. However, suppose that the experimenter relies on only the Wald statistics 
for variable selection and chooses to leave out the interaction x2x3. The 
confidence interval coverage and precision results comparing the misspecified 
model results to the correctly specified model are given in Table 5.28. 

Inspection of Table 5.28 shows a significant degradation in confidence 
interval coverage; that is, from 94.9% for the correct model to 68.5% for the 
incorrect model. It is interesting to note that variable x2x^ has the smallest 
effect in the true model, yet it has a large impact on coverage if omitted from 
the model. Therefore just as in standard least squares model building, selecting 
the correct subset of variables in a GLM is critical. This is certainly not 
surprising. In other words, not only is the choice of link function crucial, but so 
also is the choice of variables in the linear predictor. 

Summary 
One major finding in the Lewis, Montgomery, and Myers (2001b) work is that 
confidence interval coverage for the GLM when applied to data from designed 
experiments performs closely to theoretical claims even for very small samples. 
This means that confidence intervals provide an effective method for evaluating 
the estimates of the mean response given by a particular model and for making 
comparisons to other models. The binomial, Poisson, and gamma distributions, 
each with a canonical and noncanonical link, are considered. The only cases 
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Table 5.28 Confidence Interval Coverage and Precision Results for 24 ! Design for 
Correct Model Specification and Incorrect Model Specification 

Correct Model Specification Incorrect Model Specification 
Variables xu x2, xs, x\X2, and x2x3 Variables xu x2, JC3, and x\x2 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 

Total 
Coverage % 

% Coverage 

4729 
4753 
4732 
4756 
4758 
4723 
4750 
4759 

37,960 
94.90 

Precision 

23.14 
25.29 
26.04 
37.50 
30.55 
31.35 
39.74 
43.88 

% Coverage 

4141 
4204 
3938 
4094 
2978 
3192 
1712 
3042 

27,301 
68.25 

Precision 

20.54 
22.82 
27.24 
36.78 
28.71 
29.64 
30.04 
37.92 

Note: Target confidence level is 95%. 

showing moderate departures from advertised coverage are for the gamma 
distribution at n = 8 and n = 16 runs. For the binomial and Poisson distribu-
tions, the SAS PROC GENMOD confidence intervals and the Wald confidence 
intervals have very similar performance. However, some discrepancy is ob-
served for the gamma distribution. The method of estimating the scale 
parameter is likely responsible for the discrepancies. 

An important consideration in fitting a generalized linear model is the choice 
of link function. We have shown that there is serious degradation in coverage 
for a misspecified link when using the binomial and Poisson distributions. 
Furthermore, as the number of experimental runs increases, the precision of 
estimation increases as well, but the confidence interval tightens around the 
wrong predicted value. We also show that misspecifying the link with the 
gamma distribution (i.e., assuming a log link, when the true link is inverse) 
exhibits some degradation in coverage, but not nearly as extreme as observed 
for the binomial and Poisson cases. In practice, GLMs using the gamma 
distribution commonly employ both the log and inverse link. This suggests 
that, in practice, often the incorrect link is selected. Yet the results of the 
analysis often still provide the experimenter with an adequate model. Showing 
that actual coverage is close to the advertised value whether the correct or 
incorrect link is used offers an explanation as to why a gamma-distributed 
response analysis often tolerates the misspecified link. 

Lewis, Montgomery, and Myers (2001b) also investigated the effect of 
misspecifying the model variables in terms of the effect on the confidence intervals 
on the mean response for the model. They show that serious degradation in 
confidence interval coverage can occur with the omission of even one variable. 

Lewis, Montgomery, and Myers (2001b) recommend the use of confidence 
intervals to evaluate the potential performance of competing models from designed 
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experiments. They caution, however, that this comparison assumes that (1) the 
correct link is selected and (2) the appropriate subset of variables is selected. If 
uncertainty exists with a chosen link, the authors recommend that the experimenter 
rebuild the model with other link functions and observe the outcome. 

EXERCISES 

5.1 Consider the binomial distribution with n = 1. 
(a) Put the probability function in the form of the exponential family 

and show that 

b(e) = log(\+ee) 

(b) Use b{6) in part (a) to show that 

μ = π 

Var(j) = π(1 — π) 

5.2 For both logistic and Poisson regression, show that elements in X'y are 
sufficient statistics for β. 

5.3 Show formally for a normal distribution and identity link that 

0(» = Σ-
i=\ 

5.4 Consider a situation in which a normal distribution is assumed with a log 
link. 
(a) Describe the score function for maximum likelihood estimation. 
(b) Give the asymptotic covariance matrix for b and explain all terms. 

5.5 Consider an exponential distribution with log link. 
(a) Write out the score function in terms of the linear predictor χ'β. 
(b) Show that the information matrix is X'X. Comment. 

5.6 Consider the gamma distribution in the context of the GLM. Put the 
density function into the form of the exponential family and show that 
θ = Ι/μ and Var (y¡) = /¿2/r. 
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5.7 Fit a generalized linear model in which the gamma distribution is 
assumed with an identity link. Write out the score function in terms of 
linear predictor x'ß. Give an expression for the asymptotic variance-
covariance matrix of ß. 

5.8 It is well known from principles of statistical inference that 

Use these expressions to show that for the generalized linear model 

ΥΒΐ{γ) = ο(θ)α(φ) 

where b"(ß) = <926(0)/<902. 

5.9 Consider an experiment with replications, namely, r¡ observations at 
each of m design points. In addition, suppose that the response is Poisson 
and overdispersion is expected. Can you suggest an estimator of the 
overdispersion parameter σ2 which is free of the deviance D(ß)? Explain. 

5.10 In linear regression much is made of the so-called Hat matrix and 
resulting set of Hat diagonals that are used in standard regression 
diagnostics. If such diagnostics were to be necessary in generalized linear 
models, what matrix would be used to replace the Hat matrix? Be sure to 
define all terms. 

5.11 Show that if the model contains an intercept term, then the deviance for 
both the Poisson and gamma cases reduces to Equation (5.14). 

5.12 Show that Equations (5.7) and (5.9) are in fact equivalent. 

5.13 Derive the score equations for generalized linear models when α(φ) is not 
constant. Find the solution to the resulting score equations. 

5.14 Chapman (1997-98) conducted an experiment using accelerated life 
testing to determine the estimated shelf life of a photographic developer. 
The data follow. Lifetimes often follow an exponential distribution. This 
company has found that the maximum density is a good indicator of 
overall developer/film performance; correspondingly using generalized 
linear models. Perform appropriate residual analysis of your final model. 
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'(h) 

72 
144 
216 
288 
360 
432 
504 

^max 

(72°C) 

3.55 
3.27 
2.89 
2.55 
2.34 
2.14 
1.77 

f(h) 

48 
96 
144 
192 
240 
288 
336 

^max 

(82°C) 

3.52 
3.35 
2.50 
2.10 
1.90 
1.47 
1.19 

'(h) 

24 
48 
72 
96 
120 
144 
168 

^max 

(92°C) 

3.46 
2.91 
2.27 
1.49 
1.20 
1.04 
0.65 

5.15 Gupta and Das (2000) performed an experiment to improve the resistivity 
of a urea formaldehyde resin. The factors were amount of sodium 
hydroxide, A, reflux time, B, solvent distillate, C, phthalic anhydride, Z>, 
water collection time, £, and solvent distillate collection time, F. The data 
follow, where y{ is the resistivity from the first replicate of the experiment 
and y2 is the resistivity from the second replicate. Assume a gamma 
distribution. Use both the canonical and the log link to analyze these data. 
Perform appropriate residual analysis of your final models. 

5.17 

D 

5.16 Consider the semiconductor dai 

Perform appropriate residual ana 
results. 

y\ yi 

1 - 1 
1 -1 

1 — 
1 -

1 -
1 -

1 -
1 — 

60 
220 
85 
330 
95 
190 

I 145 
300 

I 110 
Í 125 

300 
I 65 
I 170 
I 70 
I 380 
I 105 

135 
160 
180 
110 
130 
175 
200 
210 
100 
130 
170 
160 
90 
250 
80 
200 

a in Exercise 2.9. Assume a gamma 
distribution. Analyze these data using both the canonical and log links. 

yses of your final models. Discuss your 

Consider the staffing of naval hospitals data in Exercise 2.15. Analyze 
these data assuming a Poisson distribution. Use both the canonical and 
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the power links. Perform appropriate residual analyses of your final 
models. Discuss your results. 

5.18 Consider the cathodic bonding of elastomeric metal bond data in 
Exercise 2.16. Fit a GLM to these data. Perform appropriate residual 
analyses of your final models. Analyze these data with a power link. 

5.19 Consider the nitrogen dioxide data in Exercise 2.17. Analyze these data 
assuming a Poisson distribution. Use both the canonical and the log 
links. Perform appropriate residual analyses of your final models. 
Discuss your results. 

5.20 Bast et al. (1983) measured the levels of the antibody CA 125 in blood 
serums of patients with specific cancers. Antigen levels of 35 and of 65 
units per mL were considered significant. The data follow. Fit an 
appropriate GLM and perform the diagnostic analysis of these data. 

Group 

Healthy males 
Healthy females 
Patients, benign diseases 
Patients, pancreatic cancer 
Patients, lung cancer 
Patients, breast cancer 
Patients, colorectal cancer 
Patients, gastrointestinal 
Patients, nongastrointestinal 
Patients, ovarian cancer 

Total 
Tested 

537 
351 
143 
29 
25 
25 
71 
30 
20 

101 

> 35 Units/ 
mL 

4 
5 
9 

17 
8 
3 

16 
8 
5 

83 

> 65 Ui 
mL 

2 
0 
3 

13 
6 
2 

12 
6 
5 

75 

5.21 The negative binomial distribution is often used to model the number of 
trials until the r th success. However, this distribution provides an interesting 
alternative to the Poisson distribution in the presence of overdispersion. The 
probability function for the negative binomial distribution is 

/>ΟΟ = ( ' Ι 1
1 ) * ' ( Ι - * Γ Γ 

(a) Show that this distribution belongs to the exponential family. 
(b) Derive the mean and the variance for this distribution. 
(c) Derive the canonical link for this distribution. 
(d) Assume that the Poisson mean follows a gamma distribution. Show 

that the compound distribution becomes the negative binomial. 
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5.22 Schubert et al. (1992) conducted an experiment using a catapult to 
determine the effects of hook (x\)9 arm length (x2), start angle (x3), and 
stop angle (x4) on the distance that the catapult throws a ball. They 
threw the ball three times for each setting of the factors. The data follow. 

X[ X2 x$ X4 y 

- 1 - 1 
- 1 - 1 
- 1 1 
- 1 1 

1 - 1 
1 - 1 
1 1 
1 1 

- 1 - 1 
1 1 

- 1 1 
1 - 1 

- 1 1 
1 - 1 

- 1 - 1 
1 1 

28.0 
46.3 
21.9 
52.9 
75.0 
127.7 
86.2 
195.0 

27.1 
43.5 
21.0 
53.7 
73.1 
126.9 
86.5 
195.9 

26.1 
46.5 
20.1 
52.0 
74.3 
128.7 
87.0 
195.7 

(a) Use GLMs to fit an appropriate model for the variance. 
(b) Use this model as a basis for a weighted least squares estimation of 

the model for the distance. 
(c) Discuss your results. 

5.23 Byrne and Taguchi (1987) discuss an experiment to see the effect of 
interference (x\), connector wall thickness (x2), insertion depth (x3), and 
amount of adhesive (x4) on the pull-off force for an elastometric 
connector to a nylon tube in an automotive application. The data follow. 

*1 

-1 
-1 
-1 
0 
0 
0 
1 
1 
1 

x2 

-1 
0 
1 

-1 
0 
1 

-1 
0 
1 

x3 

-1 
0 
1 
0 
1 

-1 
1 

-1 
0 

x4 

-1 
0 
1 
1 

-1 
0 
0 
1 

-1 

15.6 
15.0 
16.3 
18.3 
19.7 
16.2 
16.4 
14.2 
16.1 

9.5 
16.2 
16.7 
17.4 
18.6 
16.3 
19.1 
15.6 
19.9 

16.9 
19.4 
19.1 
18.9 
19.4 
20.0 
18.4 
15.1 
19.3 

y 

19.9 
19.2 
15.6 
18.6 
25.1 
19.8 
23.6 
16.8 
17.3 

19.6 
19.7 
22.6 
21.0 
25.6 
14.7 
16.8 
17.8 
23.1 

19.6 
19.8 
18.2 
18.9 
21.4 
19.6 
18.6 
19.6 
22.7 

20.0 
24.2 
23.3 
23.2 
27.5 
22.5 
24.3 
23.2 
22.6 

19.1 
21.9 
20.4 
24.7 
25.3 
24.7 
21.6 
24.2 
28.6 

(a) Use GLMs to fit an appropriate model for the variance. 
(b) Use this model as a basis for a weighted least squares estimation of 

the model for the distance. 
(c) Discuss your results. 
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Generalized Estimating Equations 

While applications of generalized linear models are abundant, there are many 
situations in which repeated response measurements are made on the same unit, 
and thus this information forms a cluster of correlated observations. The 
classical example is a longitudinal study where the responses are being 
measured repeatedly on the same subject across time. The defining advantage 
with this type of study is that one can distinguish changes over time within 
individuals from differences at fixed times. In this example the unit that 
characterizes a cluster is the subject. Observations on the same subject are 
correlated. The assumption of correlated observations is not confined to 
biomedical studies. In agriculture studies we may have observations on the 
same small plot of ground. One may envision industrial studies in which 
observations taken in the same oven are correlated. 

The basic modeling tool considered in this chapter remains generalized 
linear models. However, the need to account for the correlation among 
observations in a cluster does provide some complications (see Liang and 
Zeger, 1986, and Zeger and Liang, 1986). The presence of correlation renders 
the use of standard maximum likelihood methods to be problematic, at best. As 
a result we make use of quasi-likelihood methods that were touched on briefly 
in Chapter 5. In the following section we introduce the data layout for a 
situation involving longitudinal data. 

6.1 DATA LAYOUT FOR LONGITUDINAL STUDIES 

One must keep in mind that the clustering of response observations that 
results in the violation of the independence assumption can come from 
several different sources, depending on the application. The oven, plot of 

Generalized Linear Models, Second Edition, by Myers, Montgomery, Vining, and Robinson 
Copyright © 2010 John Wiley & Sons, Inc. 
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ground, or batch of raw materials that represent the unit describing the 
structure is referred to rather generically as the subject, and thus observa-
tions on the same subject are correlated. As a result the data structure is as 
follows. 

Subject 

1 x n X21 · · · x*i yj 

2 X12 X22 · · · x*2 y 2 

: : : Í6-1) 

s x l 5 x2s · · · Xks ys 

The vector x,·, contains values of the /th variable or covaríate on the 7th subject. 
The vector y7 contains response values on the jth subject. The vectors are t-
dimensional. That is, there are / regression observations on each subject. The 
rationale for the notation t comes from biomedical applications in which t 
refers to the number of time periods and the data are taken over time for each 
subject. In these applications the variables x\, x2,...,Xk may be dose values of a 
specific drug or some covariate characteristic associated with the subject, such 
as heart rate or blood pressure. Typically, the response values obey distribu-
tions from the exponential family. Initially, we consider the normal distribution, 
identity link case. As a result the model is linear, and we are dealing with the 
multivaríate normal distribution. Consider the model 

> l " 

Γ 2 

[y,_ 

= 

-xr 
X2 

-X*. 

ß+ 

"«ιΊ 

Zl 

.ZS-

Here the matrices Xl5 X2,...,Xy are model matrices that put the regressor 
information in Equation (6.1) in model form; thus these X,· define the 
contributions to the model of the main effects, any interactions, categorical 
variables, quadratic terms, and so on. As a result, X/,y = 1,2,..., s, is t xp. If 
the model is linear in the x 's, then p = k + 1. For a specific subject, say, subject 
j \ we have the linear model 

yj = Xfi + Ej, j= l , 2 , . . . , s 

where β is p x 1 and y7 is multivariate normal with mean vector Χ7β and 
variance-covariance matrix Vy. The matrix \jis tx t and accounts for correla-
tion of observations on subject j . Let N = t s be the total sample size in the 
experiment. 
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6.2 IMPACT OF THE CORRELATION MATRIX R 

Much of the notation for this case transfers over to the nonnormal case. 
However, for the latter situation there are further details that raise concerns. In 
the normal case each subject possesses the same V, matrix, since the correlation 
structure is assumed the same for each subject and the variance is homo-
geneous, described by the scale parameter σ2. Thus 

Varis,) = V; 

σ\2 

= R σ1 

σ\ι 

#23 " " σ2ι 

V/J (6.3) 

where R is a / x t correlation matrix with typical element p / y = corr (yji,yj,i>) 
for ιφ V at subject/ The overall variance-covariance matrix for the random 
errors is 

Vi 

0 
V Var(s) = V* 

0 

which is block diagonal with equal variance-covariance matrices displayed 
for each subject. It is instructive to consider an iterative procedure here for 
estimation of β since many of the same principles apply in situations discussed 
later. However, it is important to discuss R first. 

In the methodology that is termed generalized estimating equations, the user 
may impart a correlation structure that is often called a working correlation 
matrix. One often does not know what the true correlation is, hence, the term 
working correlation. Common correlation structures include: 

1. Unspecified. This implies that all correlations are to be independently 
estimated from the data. 

2. Exchangeable. All correlations within subjects are equal. 
3. Independent. All correlations are assumed to be zero. 
4. \-Dependent. Only correlations between adjacent observations (adjacent 

time periods) have nonzero (and equal) correlations. 
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5. Autoregressive (AR). Adjacent correlations are higher in magnitude than 
nonadjacent ones. Those observations further away in time possess the 
smallest correlations. The relationship is given by 

where p is estimated from the data. 

The iterative routine for estimation of regression coefficients also provides 
iterative estimation of correlation with methodology that utilizes and is 
consistent with the structure that is chosen by the user. Examples are given 
later. The user must understand that the correlation structure chosen should be 
one that best describes the scenario involved. However, the generalized 
estimating equation methodology provides a consistent estimator of ß, even 
if the correlation structure is incorrect because our procedures use consistent 
estimates of the variance-covariance structure. We shed more light on the 
assumption of correlation structure subsequently. 

6.3 ITERATIVE PROCEDURE IN THE NORMAL CASE, 
IDENTITY LINK 

Let the matrix R* describe the correlation structure through the entire 
experiment. Thus 

R 
R 

R* = (6.4) 

where R* is ts x ts. Since V* = a2R, we can replace V* by R* in a generalized 
least squares estimator for ß. As a result an iterative scheme for estimation is as 
follows. 

Step 1. Use OLS for estimation of ß. Call it b0. 
Step 2. Use b0 to compute residuals and hence correlations in conjunction 

with the assumed correlation structure. 
Step 3. Use estimated correlations and compute 

, , A * — 1 v 1 . A * — 1 

b = (X'R X)"'X'R y 
A * 

where R contains the estimated correlations. 
Step 4. Go back to step 2 to compute residuals and correlations. 
Step 5. Iterate to convergence. 
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The Scale Parameter, σ2 

The computation of the correlations, as well as the standard errors of 
coefficients, involves the scale parameter a2. We must deal with similar 
considerations when we leave the normal case. For the normal case the scale 
parameter estimation is fairly straightforward, 

σ2 tr 
^ (y y -X y b) (y v -X y b) ' 

¿r N-p 
(6.5) 

where X,b is the vector of estimated mean responses. Note that (y7— Xjb) 
(yj—Xjby is a sum of squares and products matrix of residuals for the y'th 
subject. The Σ]=\ operator essentially performs a pooling across subjects, since 
it is assumed that the variance-covariance matrix V is the same for all subjects. 
The trace operator in Equation (6.5) produces the residual sum of squares over 
N = t-s data point, while N-p plays the role of error degrees of freedom. It 
should be understood that the simplicity of the estimate of σ2 stems from the 
assumption of homogeneous variance in the case of the normal distribution. 
When we discuss other distributions in GLM, the residuals are standardized to 
account for the nonconstant variance. 

Standard Errors of Coefficients 
The iterative procedure described is tantamount to iteratively reweighted least 
squares where the weights in R are updated at each iteration. There are two 
schools of thought on the computation of the variance-covariance properties 
of b, the estimator of β. Some advocate a model-based estimate of the 
variance-covariance matrix of coefficients. This procedure is based on the 
assumption that the assumed correlation structure is correct. One must keep in 
mind that the notion of a working correlation suggests that while much 
thought should go into the selection of the structure in R, the estimator of β 
is a consistent estimator even ifR is not correct. If R is correct, then standard 
generalized least squares procedures suggest that the model-based variance-
covariance of b is 

Var(b) = (X'R- ιΧ)~1σ2 (6.6) 

Thus the standard errors come from the diagonal elements of the matrix 

(Χ ,Κ*-1Χ)"1·σ2 = Σ (*7*Λ) • < 7 2 

L/ = i 

An alternative estimation procedure for the standard error of coefficients 
allows for a more robust estimator, that is, one that is insensitive to incorrect 
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specification of R. The genesis of this robust estimator comes from the use of 
the variance operator on the generalized least square estimator. Ideally, 

Var(b) = Var [X'R-' X] X'R*~' y 

= [X'R*-1X]"1X'R*-1[Var(y)]R*-'X[X'R*-1X]" (6.7) 

Now Var(y) = V* is the true, but unknown, variance-covariance matrix. Note 
that if the correlation structure R is correct, then V* = R* σ2, and Equation 
(6.7) reduces to (6.6). However, the robust approach estimates V* in (6.7) 
empirically from the data. For this reason the estimator that is derived from 
Equation (6.7) is also called the empirical estimator. As a result V* in (6.7) is 
replaced by 

V* = 

0 

where V is the matrix in (6.5) from which the trace is taken. Often the empirical 
or robust estimator and the model-based estimator give similar results, which 
implies that the correlation structure assumed is a good practical choice. There 
is more discussion later in this chapter with examples regarding these two types 
of estimators of standard errors. 

6.4 GENERALIZED ESTIMATING EQUATIONS FOR MORE 
GENERALIZED LINEAR MODELS 

The foundation for the use of generalized estimating equations for nonnormal 
responses is similar to what we have developed for normally distributed 
responses. Chapters 4 and 5 lay the foundation for the complications brought 
about by the case of nonnormal responses. Suppose now that the response has a 
distribution from the exponential family and that within subjects observations 
exhibit a correlation structure as defined in Equations (6.1), (6.2), and (6.3). 
The regression data and model are again characterized by 

-xr 
X2 

x = 



278 GENERALIZED ESTIMATING EQUATIONS 

where X7 is t x /?, as before. In this situation, however, the variance-covariance 
matrix V* is given by the block diagonal matrix 

y* 

V, 

v2 

where the V's are different from subject to subject. These differences result 
from the fact that from subject to subject the regressor values (or design levels) 
are different; thus the mean responses differ, and the response variances are 
functions of the mean. Let us define a mean vector as 

μι 
μ2 

where μ) is E(y'j) and is ¿-dimensional. 

6.4.1 Structure of V, 

We assume that a scale parameter σ2 > 0 exists such that vJh the variance ofyß 
the zth observation on the yth subject, is given by 

σ an (6.8) 

In Equation (6.8), dp is the component of the variance delivered by the 
characterization of the distribution. For example, in the case of the binomial 
distribution, αβ = ηβ μβ(\—μβ). For the Poisson, α,β = μ,γ. As a result we can write 

Y/ A] / 2RA]/2 · σ2 (6.9) 

where 
αβ 

aft 

Φ 

Φ 
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and as before, R is the correlation matrix which is common to all subjects. As a 
result \j, the variance-covariance matrix of observations on the yth subject, 
contains variances (αβ · σ2) on the main diagonals and covariance (derived from 
R) on the off-diagonals. In what follows we must once again define R* as a ts x ts 
block diagonal matrix containing R on all diagonal blocks. 

Quasi-likelihood Estimation 
As we indicated earlier, the existence of the correlation among observations in 
the same subject takes the problem to multivariate analysis. However, the 
operative method of estimation does not make use of the multivariate 
distribution involved. It uses certain information associated with the marginal 
distribution rather than the actual likelihoods. The application of generalized 
least squares in this context is referred to as quasi-likelihood estimation, which 
we introduced in Section 5.4. 

Let us assume that the basic marginal distribution of the response is one of the 
members of the exponential family, such as binomial, Poisson, or gamma, and 
that correlations exist within subjects as discussed earlier in this section. Let us 
also assume that the link #(μ) = χ'β, and thus μ = g-1(x'ß), is used. Quasi-
likelihood estimation involves the use of generalized least squares as we discussed 
in Chapter 5. Iterative minimization of the quadratic form (y-^)'V_1(y—μ) with 
V fixed but updated at each iteration leads to the score function 

Ο , ν - 1 ( γ - μ ) = 0 (6.10) 

where D is, once again, the n x p matrix of partial derivatives with the (ij) element 
ομ,/οβ,, / = 1, 2,..., N\j = 1,2,...,/?. The D matrix can be partitioned like the X 
matrix, namely, as 

D 

Di 

D2 

Obviously, the D matrices differ from subject to subject since the means differ 
through changing regressor values. Thus an alternative way to write the score 
function is given by 

¿ p ; V 7 , ( y y ^ ) = 0 (6.11) 
7=1 

As in the discussion of the nonlinear regression material in Chapter 3, the 
solution of the score equation involves a Gauss-Newton procedure with 
the adjustment to the initial coefficient estimate bo being 

b, = bo + (D0V0-1Do)-1D0V0-l(y - Ho) (6.12) 
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The rationale for Equation (6.12) is much like that discussed in Chapter 3. The V 
matrix above, as well as D and μ, make use of the initial estimate b0 through 
Equation (6.9). The scale parameter σ2 can be ignored, since it cancels out 
in (6.12). The vector b0 is also contained in both R and A,·, j = 1, 2,. . . , s. 
The iterative procedure is then as follows: 

Step 1. Obtain an initial estimate b0. 
Step 2. Use b0 to obtain residuals, R, Ay, V0, D0, and μ0. 
Step 3. Use Equation (6.12) to obtain the new estimator b\. 
Step 4. Substitute bi, for b0 and go back to step 2. 
Step 5. Continue iterating to convergence. 

Properties of Quasi-likelihood Estimators 
We consider here model-based and empirical standard error estimates. Again, 
we note that the elements described by the iterative procedure are not a 
maximum likelihood estimator. The properties of the quasi-likelihood estima-
tor of β, however, resemble the properties of a maximum likelihood estimator. 
If the correlation structure is correct, the estimator b is asymptotically normal 
with mean β and variance-covariance matrix 

Var(b) = (D'V^D) (6.13) 

As in the normal response case described earlier in this chapter, the estimator b is 
a consistent estimator of β, even if the user-specified correlation structure is 
wrong. In this sense we are once again incorporating a working correlation 
matrix. Obviously, if the correlation matrix is correct, the estimator will be more 
efficient than the case of an estimator used that is not correct. However, one can 
certainly be quite successful using generalized estimating equations with a 
specified structure on R that is incorrect. We display more evidence on this 
issue in a subsequent section. Indeed, Liang and Zeger (1986) show that the 
generalized estimating equations procedure for selecting b is considerably more 
robust to the choice of R than the estimation of standard errors that come from 
Equation (6.13). Clearly, if one uses (6.13), the standard errors come from the 

square root of the diagonal elements of (DV D) σ2, where D, V, and σ2 make 
use of the estimator b. The estimate of the scale parameter σ2 is computed much 
like that in Equation (6.5) for the normal case. However, the residuals must be 
standardized to account for the natural nonhomogeneous variance that stems 
from the distribution involved. Since Var(yy7) (ith observation fory'th subject) = 
G2ajh then the squared residual (yß - μβ)

2 must be scaled by αβ. As a result the 
scale parameter is estimated by 

<x2 = tr y(yj-A/)A7'(y/-Ay)' 
L/-I N~P 

(6.14) 
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Note that the above displays the sum of the squares of the Pearson residuals that 
we discussed in Chapter 5. 

Equation (6.13) produces a model-based set of standard errors of the 
regression coefficients. These model-based standard errors strictly depend on 
the chosen structure in R and thus may not always be appropriate. Once again, 
as in the normal response case an empirical or robust set of estimates of 
standard errors can be used. This empirical variance-covariance matrix is 
derived by incorporating a variance operator on the structure in Equation 
(6.12) that was based on generalized least squares. Again, much of this 
development is much like that of the normal case discussed in Section 6.3. 
For the general case, asymptotically 

Var(b) = (D ,V-1D)"1D /V-1[Var(y)]V-1D(D ,V-1D)"1 (6.15) 

The [Var(y)] portion of Equation (6.15) is then found without the use of the 
input R but rather from actual residuals in the data; that is, it is found 
empirically. As we substitute empirical information for [Var(y)], it is informa-
tive to partition D and V in the center of the expression in Equation (6.15). 
Thus the robust (to choice of R) or empirical estimator of Var (b) is 

Var(b) = [D'V 'D] Σ Α / Λ — I . A — l A 

L/=I 

A Λ - 1 . 1 - 1 

D'V D (6.16) 

Comments on Empirical Estimates 
The estimates of the variance-covariance estimator in Equation (6.16) are 
consistent estimators despite the input structure on R, the correlation matrix. In 
addition, the reader should notice that it does not require the estimator of the 
scale parameter σ2 since V = Ra2 and σ2 cancels out in (6.16). As a result the V} 
in (6.16) for specific subjects can truly be replaced by Ry. Two very important 
issues that do reflect some fragility in this robust estimator should, however, be 
pointed out. First, it is important to use a high-quality estimate of Var(y) in 
Equation (6.16) because it is purely based on residuals and thus depends on the 
model specification in μ, developed through the link. Sloppy model specification 
on the mean can lead to poor estimation of standard errors. Second, if the data set 
contains few subjects, the empirical estimator in (6.16) can be very poor. This 
stems from the fact that Var(y) is based on so few residuals. For example, one 
may encounter an industrial situation in which the generalized estimating 
equations technology is used in a split plot type of experiment where we have 
few whole plots (e.g., ovens in a manufacturing scenario). The empirical 
estimator in (6.16) may suffer considerably. For more information on this, 
one should consult Robinson and Myers (2001). Those cases where the model-
based estimator and the empirical estimator give similar results provide support 
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for the choice of the correlation structure. However, if the correlation structure 
chosen is faulty, one would expect that the model-based standard errors would 
be too optimistic and hence smaller than those given by the empirical or robust 
method. 

Adjustment for Leverage 
It is well known that the use of residuals for estimation of variances and 
covariances can be hazardous since the fitted values, μ, tend to be close to the 
observed value, y, rendering the residual too small. The term (yy—fty)(y/—ft,·)' *s 

a consistent estimator of the appropriate variance covariance matrix, but in 
small samples (i.e., for a small number of subjects), the quantity may exhibit 
bias that is not negligible. The end result is to make standard errors of 
regression coefficients too small. A simple illustration of this concept in simple 
linear regression with iid errors brings forth the point. Suppose we have the 
model 

yi = ßo + ß\Xi + ei (i = 1 , 2 , . . . ,Λ ) 

with the 6/ being iid Af(0, σ). We know that the squared residual e? = 
(y¡ - bo — b\Xi)2 is not unbiased for σ2. Indeed, E(ej) = σ2 (1— A/,·), where A„ 
is the hat-diagonal at the ith data point. We know from regression theory that 
A,·,· is positive but bounded from above by 1. It can be shown that 

Σ«? , 2 

1 = 1 

= «r2£(l-A„) 
1 = 1 

= σ2(η~ρ) 

Thus we have the familiar result which involves a correction for leverage. 
Much like the simple case above, Mancl and De Rouen (2001) provide an 

adjustment for leverage on (y7- - μ7·) (y,—μ,·)' in the expression in Equation (6.16). 
They point out that 

Eiyj-μ,) {yj-VLj)' = (lj-Hjj) [Var(y)](I ,-%)' 

and thus the adjustment in the empirical estimator is to replace (y,—ft/) (y,—ft/)' 
in Equation (6.16) by 

^-^j)~\yj-^(yj-^j)f^-^' 

In the above H#r = D^D'V^D^D^.Vr 1 and I,· is an identity matrix of 
dimension t. Mancl and De Rouen demonstrate the superiority of the adjusted 
estimator for cases with relatively small data sets. 
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6.4.2 Iterative Computation of Elements in R 

As we indicated in the discussion of the iterative scheme for the computation 
of the quasi-likelihood estimate, the residuals are used at each iteration to 
update R. This repeated update is done with pooling over the time slots that 
have common correlation as stipulated by the input correlation structure. For 
example, in an exchangeable correlation structure only one correlation coeffi-
cient is computed, and thus pooling of information is done over all pairs of 
time points. To gain more insight for details, consider the unspecified structure, 
where there is essentially no fixed structure and different empirical correlations 
are calculated for each pair of time points. Thus the estimated correlations of 
a particular iteration are calculated from the off-diagonal elements of the 
matrix 

Α;1/2(γ7·-μ7·)(γ7·-μ7·)ν/2 

C = V J wy Γ' yJ , J/ J (6.17) 

Notice that the numerator in Equation (6.17) is a matrix containing empirical 
covariances for each pair of time points divided by the product of the standard 
deviations, which are in elements of A· ·σ. 

Consider an example with an exchangeable correlation structure. In this case 
a single correlation, a, is computed as 

i s 

«4ΣΣ W-\)/2}-p, 

where ryí = (yp—fiji)/y/aj[, which is the (ji)th Pearson residual. As an additional 
example, consider the 1-dependence case. This structure assumes that only one 
type of nonzero correlation exists; thus let a = con(yJh yjj+ι) for ally. Here a is 
the single correlation among adjacent observations on the same subject. 
Consequently, we have 

^fy^(t-\)s-p 

6.5 EXAMPLES 

Example 6.1. The Respiratory Example. We begin with a simple example 
taken from the biomedical literature, which we refer to as the respiratory 
example. The data are from Stokes, Davis, and Koch (1995) and appear in Table 
6.1. The data involve the use of two treatments A and P, where A is an active drug 
and P is a placebo. During treatment the respiratory status was described as 
0 = good and 1 = poor at each of four visits. A baseline measurement was taken 
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Table 6.1 Data for the Respiratory Example 

Patient Trt Sex Age Baseline Visit 1 Visit2 Visit3 Visit4 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

P 
P 
A 
P 
P 
A 
P 
A 
A 
P 
A 
A 
P 
P 
P 
A 
P 
A 
P 
A 
A 
A 
A 
A 
P 
A 
P 
P 
P 
A 
P 
A 
A 
P 
A 
P 
A 
A 
P 
P 
P 
A 
P 
P 

M 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
F 
F 
M 
M 
M 
M 
M 
F 
M 
M 
F 
M 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
M 
M 

46 1 
28 1 
23 1 
44 1 
13 1 
34 1 
43 1 
28 1 
31 1 
37 1 
30 1 
14 1 
23 1 
30 ( 
20 1 
22 1 
25 1 
47 1 
31 ( 
20 1 
26 1 
46 1 
32 1 
48 1 
35 1 
26 1 
23 
36 ( 
19 
28 
37 ( 
23 
30 
15 
26 
45 
31 
50 
28 
26 ( 
14 
31 
13 
27 

1 
0 

0 

) 0 

0 
0 

) 1 

I 0 

I 0 

I 0 
I 1 
I 0 
) 0 
I 0 
I 0 
I 1 
1 0 

1 
0 
0 
1 
1 
0 
0 
0 
1 
1 
1 
1 
0 
0 
1 
0 
0 
1 
1 
1 
0 
1 
1 
1 
1 
0 
0 
1 
1 
0 
1 
0 
1 
1 
0 
1 
0 
1 
0 
0 
0 
0 
1 
0 

1 
0 
0 
1 
1 
0 
1 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
1 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
1 
0 
1 
0 
0 
0 
0 
1 
0 
1 
1 
0 
1 
0 
0 
1 

1 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
1 
0 

(Continued) 
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Table 6.1 Continued 

Patient Trt Sex Age Baseline Visit 1 Visit2 Visit3 Visit4 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

P 
P 
P 
A 
P 
A 
A 
P 
A 
A 
P 
A 

M 
M 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 

26 
49 
63 
57 
27 
22 
15 
43 
32 
11 
24 
25 

0 
1 
1 
1 
1 
0 
0 
1 
1 
1 
1 
0 

1 
1 
1 
1 
1 
0 
0 
1 
1 
0 
1 
0 

1 
0 
1 
0 
1 
0 
0 
0 
0 
0 
1 
0 

as well. Covariates include sex, baseline status, and age in years. Tables 6.2 and 
6.3 give the SAS PROC GENMOD output for assumed independent and AR(1) 
correlation structures, respectively. Table 6.4 gives the appropriate SAS PROC 
GENMOD code. Table 6.5 gives the appropiate R code. 

The reader should note that two correlation structures are used for the 
analysis, independent and AR(1). Also note that the four observations on the 
same subject create the cluster that necessitates the consideration of correlation. 
The regressors include the categorical variable treatment (P and A), sex, and 
baseline observation (0 or 1). The quantitative variable age is also used. Much 
of the output under "Independent Correlation Structure" is standard output 
for the independence case. A binomial response is used. The goodness-of-flt 
information suggests no appreciable lack of fit using the logit link. The material 
under Analysis of Initial Parameter Estimates involves Wald inference using 
standard GLM technology with the model-based standard error. Note that 
significant effects include treatment, sex, and age, with active treatment being 
effective as compared to placebo. In addition, older patients tend to have 
poorer results as expected. Female patients also tend to get poorer results 
compared to males. 

Note that the empirical variance-covariance matrix appears as well as the 
model-based variance-covariance matrix. For the most part the two matrices 
are not radically different. The Analysis of GEE Parameter Estimates uses 
empirical standard errors. As expected, the parameter estimates are identical to 
those from Analysis of Initial Parameter Estimates, since both are based on 
independence, but the standard errors are different because they come from 
different sources. In other words, despite the assumption of independence in the 
estimation procedure, standard errors are computed in a way that is robust to 
the failure of the independence assumption. The slightly different standard 
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Table 6.2 
Structure 

Output for Analysis of Respiratory Data with an Independent Correlation 

The GENMOD Procedure Independent Correlation Structure 
Model Information 

Description 
Data set 
Distribution 
Link function 
Dependent variable 
Observations used 
Number of events 
Number of trials 

Value 
W0RK.RESP2 
BINOMIAL 
LOGIT 
OUTCOME 
224 
115 
224 

Class Level Information 
Class 
PATIENT 

TRT 
SEX 
BASELINE 

Parameter 
PRMl 
PRM2 
PRM3 
PRM4 
PRM5 
PRM6 
PRM7 
PRM8 

Levels 
56 

2 
2 
2 

Paramet 
Effect 
INTERCEPT 
AGE 
TRT 
TRT 
SEX 
SEX 
BASELINE 
BASELINE 

Values 
1 2 3 4 5 6 7 8 9 10 11 12 13 
14 15 16 17 18 19 20 21 22 23 
24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 
44 45 46 47 48 49 50 51 52 53 
54 55 56 
A P 
F M 
0 1 

er Information 
TRT SEX BASELINE 

A 
P 

F 
M 

0 
1 

Criteria for Assessing Goodness of Fit 

Criterion DF 
Deviance 219 
Scaled deviance 219 
Pearson chi-square 219 
Scaled Pearson X2 219 

Value Value/DF 
263.7478 1.2043 
263.7478 1.2043 
223.3980 1.0201 
223.3980 1.0201 

Analysis of Initial Parameter Estimates 
Parameter 
INTERCEPT 
AGE 
TRT 
TRT 

A 
P 

DF 
1 
1 
1 
0 

Estimate 
-1.0136 
0.0481 
-1.0702 
0.0000 

Std Err 
0.4513 
0.0138 
0.3093 
0.0000 

Chi Square 
5.0455 
12.0938 
11.9687 

— 

Pr > Chi 
0.0247 
0.0005 
0.0005 

(Continued) 
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Table 6.2 Continued 

287 

SEX 
SEX 
BASELINE 
BASELINE 
Scale5 

F 
M 
0 
1 

1 
0 
1 
0 
0 

2.1780 
0.0000 

-0.4980 
0.0000 
1.0000 

0.6819 
0.0000 
0.5046 
0.0000 
0.0000 

10.2006 
-

0.9740 
-
-

0.0014 
-

0.3237 
-
-

GEE Model Information 
Description Value 
Correlation structure Independent 
Subject effect PATIENT (56 levels) 
Number of clusters 56 
Correlation matrix dimension 4 
Maximum cluster size 4 
Minimum cluster size 4 

Covariance Matrix (Model-Based) C ovar i anees Are Above the 
Diagonal and Correlations Are Below 

Parameter 
Number 
PRM1 
PRM2 
PRM3 
PRM5 
PRM7 

PRM1 
0.20308 
-0.86224 
-0.27192 
-0.001288 
-0.14631 

PRM2 
-0.005363 
0.0001905 
-0.10373 
-0.02717 
-0.05091 

PRM3 
-0.03785 
-0.000442 
0.09543 

-0.04784 
0.26325 

PRM5 
-0.000395 
-0.000255 
-0.01006 
0.46378 

-0.32809 

PRM7 
-0.03323 
-0.000354 
0.04098 
-0.11260 
0.25395 

Covariance Matrix (Empirical) 
Covariances Are Above the 

Diagonal and Correlations Are Below 
Parameter 
Number 
PRM1 
PRM2 
PRM3 
PRM5 
PRM7 

PRM1 
0.27128 

-0.85321 
-0.50127 
-0.08442 
-0.10213 

ROWl 
ROW2 
ROW3 
ROW4 

PRM2 PRM3 PRM5 
-0.005800 -0.08586 -0.02986 
0.0001704 0.0004291 0.0003803 
0.09998 0.10814 0.003484 
0.04290 0.01560 0.46123 
0.02489 0.09679 -0.68288 

Working Correlation Matrix 
COLl COL2 COL3 COL4 
1.0000 0.0000 0.0000 0.0000 
0.0000 1.0000 0.0000 0.0000 
0.0000 0.0000 1.0000 0.0000 
0.0000 0.0000 0.0000 1.0000 

-0 
0 
0 

-0 
0 

PRM7 
.04526 
.0002764 
.02708 
.39458 
.72387 

Parameter 
INTERCEPT 

Analysis of GEE Parameter Estimates 
Empirical Standard Error Estimates 

Empirical 95% Confidence Limits 
Estimate Std Err Lower Upper Z Pr>|z| 
-1.0136 0.5208 -2.0345 0.0072 -1.946 0.0516 

(Continued) 
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Table 6.2 Continued 

AGE 
TRT 
TRT 
SEX 
SEX 
BASELINE 
BASELINE 
Scale* 

A 
P 
F 
M 
0 
1 

0. 
-1. 
0. 
2. 
0. 

-0. 
0. 
0, 

.0481 

.0702 

.0000 

.1780 

.0000 

.4980 

.0000 

.9987 

0. 
0. 
0. 
0. 
0. 
0. 
0, 

.0131 

.3288 

.0000 

.6791 

.0000 

.8508 

.0000 
-

0, 
-1. 
0, 
0. 
0, 

-2. 
0, 

.0225 

.7147 

.0000 

.8469 

.0000 

.1656 

.0000 
-

0, 
-0, 
0, 
3 
0, 
1, 
0 

.0736 

.4256 

.0000 

.5091 

.0000 

.1695 

.0000 
-

3, 
-3, 
0, 
3, 
0, 

-0, 
0, 

.6826 

.254 

.0000 

.2070 

.0000 

.5853 

.0000 
-

0, 
0, 
0. 
0, 
0. 
0, 
0, 

.0002 

.0011 

.0000 

.0013 

.0000 

.5583 

.0000 
-

aThe scale parameter is held fixed. 
ÄThe scale parameter for GEE estimation is computed as the square root of the normalized 
Pearson's chi-square. 

errors have little effect on the conclusion made earlier. Note that, as expected, 
the working correlation is the identity matrix. 

The next set of output in Table 6.3 is based on the AR(1) assumption on the 
correlation structure. The R code for the GEE analysis with AR(1) structure is 
given in Table 6.5 and the associated output appears in Table 6.6. It is standard 
for the GENMOD procedure to begin with analysis of initial parameter 
estimates despite the assumed structure. However, following this, the model-
based and empirical variance-covariance matrices are given. Next are the 
generalized estimating equations parameter estimates, standard errors, and 
Wald inference information. The following should be noted: 

1. Using model-based estimates, the assumption of independence generally 
gives smaller variances of parameter estimates than those in which AR(1) 
is assumed. This supports the general rule that not taking correlation into 
account results in overoptimism regarding variability in parameter 
estimates. 

2. For this case (though not in general) when one considers parameter 
estimates and empirical standard errors, the results for the independence 
assumption and the AR(1) assumption are remarkably close, suggesting 
that the independence assumption would be quite appropriate. This is 
further supported by the working correlation matrix, which shows 
correlations that are quite mild. 

3. The odds ratio in this situation must be dealt with somewhat differently, 
since a 0 is good and a 1.0 is poor. The probability of a desirable result is 
then interpreted to be l -π . Thus the appropriate odds ratio is 

[(1 -π ) /π ] Α , 00ll 

[(1-π)/π]ρ 

Consequently the odds of a favorable result increase by a factor of about 
2.7 with the use of the drug. One could model the outcome as a success by 
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Table 6.3 Output for the Analysis of the Respiratory Data with an AR(1) Correlation 
Structure 

The GENMOD Procedure 
Model Information 

Description Value 
Data set WORK. RESP2 
Distribution BINOMIAL 
Link function LOGIT 
Dependent variable OUTCOME 
Observations used 224 
Number of events 115 
Number of trials 224 

Class Level Information 
Class Levels Values 
PATIENT 

TRT 
SEX 
BASELINE 

Parameter 
PRM1 
PRM2 
PRM3 
PRM4 
PRM5 
PRM6 
PRM7 
PRM8 

56 1 2 3 4 5 6 7 8 9 10 11 12 13 
14 15 16 17 18 19 20 21 22 23 
24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 
44 45 46 47 48 49 50 51 52 53 
54 55 56 

2 A P 
2 FM 
2 0 1 

Parameter Information 
Effect TRT SEX BASELINE 
INTERCEPT 
AGE 
TRT A 
TRT P 
SEX F 
SEX M 
BASELINE 0 
BASELINE 1 

Criteria for Assessing Goodness of Fit 
Criterion 
Deviance 
Scaled devi 
Pearson chi 

DF Value Value/DF 
219 263.7478 1.2043 

anee 219 263.7478 1.2043 
-square 219 223.3980 1.0201 

Scaled Pearson X2 219 223.3980 1.0201 
Log-likelihood - -131.8739 

Analysis of Initial Parameter Estimates 
Parameter DF Estimate Std Err Chi Square Pr>Chi 
INTERCEPT 1 -1.0136 0.4513 5.0455 0.0247 
AGE 1 0.0481 0.0138 12.0938 0.0005 

(Continued) 
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Table 6.3 Continued 

TRT 
TRT 
SEX 
SEX 
BASELINE 
BASELINE 
Scale3 

A 
P 
F 
M 
0 
1 

1 
0 
1 
0 
1 
0 
0 

-1.0702 
0.0000 
2.1780 
0.0000 

-0.4980 
0.0000 
1.0000 

0.3093 
0.0000 
0.6819 
0.0000 
0.5046 
0.0000 
0.0000 

11.9687 
-

10.2006 
-

0.9740 
-
-

0. 

0. 

0. 

.0005 
-

.0014 
-

.3237 
-
-

GEE Model Information 
Description Value 
Correlation AR(1) 
Subject effect PATIENT (56 levels) 
Number of clusters 56 
Correlation matrix dimension 4 
Maximum cluster size 4 
Minimum cluster size 4 

Covariance Matrix (Model-Based) Covariances Are Above the 
Diagonal and Correlations Are Below 

Parameter 
Number 
PRM1 
PRM2 
PRM3 
PRM5 
PRM7 

PRM1 
0.28149 

-0.86150 
-0.28914 
0.002127 
-0.15129 

PRM2 
-0.007354 
0.0002589 

-0.08569 
-0.03846 
-0.04216 

PRM3 
-0.05568 
-0.0005 
0.13176 

-0.03979 
0.25803 

PRM5 
0.000866 

-0.000475 
-0.01108 
0.58870 
-0.33609 

PRM7 
-0.04762 
-0.000402 
0.05557 

-0.15301 
0.35205 

Covariance Matrix (Empirical) Covariances Are Above the 
Diagonal and Correlations Are Below 

Paramet 
Number 
PRM1 
PRM2 
PRM3 
PRM5 
PRM7 

:er 
PRM1 

0.26575 
-0.84598 
-0.53537 
-0.08368 
-0.10771 

PRM2 
-0.005558 
0.0001624 
0.12394 
0.02896 
0.03338 

PRM3 
-0.09011 
0.0005158 
0.10661 
0.03651 
0.09455 

PRM5 
-0.02891 
0.0002474 
0.007989 
0.44917 

-0.67076 

PRM7 
-0.04658 
0.0003569 
0.02589 
-0.37709 
0.70360 

Working Correlation Matrix 
COL1 COL2 

ROW1 1.0000 0.2749 
ROW2 0.2749 1.0000 
ROW3 0.0756 0.2749 
ROW4 0.0208 0.0756 

COL3 COL4 
0.0756 0.0208 
0.2749 0.0756 
1.0000 0.2749 
0.2749 1.0000 

Analysis of GEE Parameter 
Estimates Empirical Standard Error Estimates 

Empirical 95% Confidence Limits 
Parameter Estimate Std Err Lower Upper z Pr > | Z | 
INTERCEPT -0.8866 0.5155 -1.8970 0.1237 -1.720 0.0854 

(Continued) 
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Table 6.3 Continued 

AGE 
TRT 
TRT 
SEX 
SEX 
BASELINE 
BASELINE 
Scale* 

A 
P 
F 
M 
0 
1 

0. 
-1. 
0, 
2, 
0. 

-0, 
0, 
0, 

.0431 

.0011 

.0000 

.0029 

.0000 

.4918 

.0000 

.9802 

0. 
0, 
0, 
0, 
0, 
0 
0 

.0127 

.3265 

.0000 

.6702 

.0000 

.8388 

.0000 
-

0, 
-1. 
0. 
0, 
0, 

-2 
0 

.0181 

.6411 

.0000 

.6893 

.0000 

.1358 

.0000 
-

0. 
-0. 
0. 
3. 
0, 
1, 
0, 

.0681 

.3612 

.0000 

.3165 

.0000 

.1522 

.0000 
-

3« 
-3. 
0. 
2, 
0, 

-0, 
0, 

.3801 

.066 

.0000 

.9885 

.0000 

.5863 

.0000 
-

0. 
0. 
0. 
0, 
0. 
0, 
0, 

.0007 

.0022 

.0000 

.0028 

.0000 

.5577 

.0000 
-

aThe scale parameter is held fixed. 
''The scale parameter for GEE estimation is computed as the square root of the normalized 
Pearson's chi-square. 

Table 6.4 SAS PROC GENMOD Code for Output in Tables 6.2 and 6.3 

*Code for producing output in Table 6 .2 

proc genmod data=RESP2 desc ; 
Class PATIENT TRT SEX BASELINE; 
model y = AGE TRT SEX BASELINE/dist=bin l i n k = l o g i t ; 
repea ted subject=PATIENT/ type=ind corrw covb; 
output out=reout p red=pred ic t ; 
run; 

*Code for producing output in Table 6 . 3 

SAS Code: 

proc genmod data=RESP2 desc; 

Class PATIENT TRT SEX BASELINE; 
model y = AGE TRT SEX BASELINE/dist=bin link=logit; 
repeated subject=PATIENT/ type=ar corrw covb; 
output out=reout pred=predict; 
run; 

Table 6.5 R Code for Producing the AR(1) Analysis of Respiratory Data 

l i b r a ry (gee ) 

modell < gee(y~AGE + factor(TRT) + factor(SEX) + factor(BASELINE), 
family=binomial(logit), data=RESP2,id=PATIENT,corstr=HAR-M") 

summary(modell) 

omitting the desc option in the proc statement. In such a case, the signs of 
the estimated coefficients change and the odds ratio comparing the active 
drug to the placebo is βχρφΎκτ)- D 



*3 Table 6.6 R Output for the AR(1) Analysis of Respiratory Data 

> modell <-gee(y~AGE + factor(TRT) + factor(SEX)+factor(BASELINE), 
family=binomial(logit),data=RESP2,id=PATIENT,corstr="AR-M") 

running glm to get initial regression estimate 

(Intercept) AGE factor(TRT)P factor(SEX)M 
-0.40380749 0.04806584 1.07015398 -2.17798295 

factor(BASELINE)1 
0.49801320 

> summary(modell) 

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA 

Model: 

Link: Logit 
Variance to Mean Relation: Binomial 
Correlation Structure: AR-M, M = 1 

Call: 
gee(formula = y ~ AGE + factor(TRT) +factor(SEX) + factor(BASELINE), 

id = PATIENT, data = RESP2, family = binomial(logit) , corstr = "AR-M") 

Summary of Residuals: 

Min IQ Median 3Q Max 
-0.89801467 -0.36534284 0.04500683 0.44631869 0.80437516 



Coefficients: 

(Intercept) 
Age 
factor(Trt)P 
factor(Sex)M 
factor (Baseline )1 

Estimate 
-0.37667898 
0.04308092 
1.00112346 
-2.00288235 
0.49180418 

Naive S.E. 
0.97640432 
0.01627185 
0.36710405 
0.77598136 
0.60007660 

-0 
2 
2 
-2 
0 

Naive z 
.3857818 
.6475734 
.7270837 
.5810959 
.8195690 

Robust S.E. 
0.71241177 
0.01274542 
0.32651206 
0.67020167 
0.83881069 

Robust z 
-0.5287377 
3.3801107 
3.0661148 
-2.9884771 
0.5863113 

Estimated Scale Parameter: 0.9828147 
Number of Iterations: 3 

Working Correlation 

[,1] 
[1,] 1.00000000 
[2,] 0.27486468 
[3,] 0.07555059 
[4,] 0.02076619 

[,2] [,3] [,4] 
0.2748647 0.0755506 0.02076619 
1.0000000 0.2748647 0.07555059 
0.2748647 1.0000000 0.27486468 
0.0755506 0.2748647 1.00000000 
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In the preceding example the correlations are sufficiently small that the use 
of the independence correlation structure appears to be satisfactory, which 
often is the case when all correlations are smaller in magnitude than about 0.3. 
Some empirical evidence of this appears in Liang and Zeger (1986). D 

Example 6.2. Leukemia. This is a biomedical example with 30 subjects 
(rats) that have a leukemic condition. Three chemotherapy type drugs are used. 
White and red blood cell counts are collected as covariates and the response is 
the number of cancer cell colonies. The data are collected on each subject at 
four different time periods. Poisson responses using a log link are assumed. 
Recall that the log is the canonical link for this situation. The data appear in 
Table 6.7. Both independence and AR(1) correlation structures are used for 
purposes of illustration. The results are in Table 6.8 and 6.9 for the independent 
and AR(1) analyses, respectively. 

Table 6.7 Data on Leukemic Study in Rats 
OBS SUBJECT D R U G WBC1 WBC2 WBC3 WBC4 RBC1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

15 
8 
4 
16 
6 
22 
18 
4 
14 
10 
14 
7 
9 
21 
18 
3 
8 
29 
8 
5 
16 
13 
7 
9 
18 
23 
27 
30 
17 
12 

18 
11 
5 
14 
4 
20 
17 
7 
12 
10 
14 
7 
8 
20 
17 
6 
9 
30 
8 
4 
17 
11 
8 
8 
19 
25 
28 
32 
19 
12 

19 
14 
6 
14 
4 
21 
17 
4 
12 
10 
16 
6 
9 
20 
17 
6 
9 
29 
8 
4 
17 
12 
6 
9 
21 
24 
27 
33 
20 
13 

24 
14 
4 
12 
4 
18 
16 
4 
10 
10 
17 
5 
11 
20 
17 
2 
8 
29 
7 
3 
18 
12 
5 
9 
20 
24 
30 
35 
21 
11 

2 
2 
7 
3 
7 
4 
5 
8 
3 
3 
6 
4 
8 
3 
4 
10 
3 
6 
9 
8 
2 
6 
3 
4 
3 
5 
7 
6 
4 
3 

RBC2 RBC3 RBC4 Yl Y2 Y3 Y4 

3 
4 
5 
4 
6 
3 
3 
7 
4 
4 
6 
4 
8 
3 
4 
10 
3 
6 
9 
7 
3 
4 
2 
5 
2 
5 
6 
7 
3 
5 

2 
4 
4 
4 
5 
3 
5 
4 
4 
5 
7 
4 
7 
4 
2 
8 
2 
5 
8 
7 
4 
5 
2 
3 
5 
4 
6 
8 
3 
4 

5 
5 
4 
2 
2 
2 
2 
4 
5 
2 
6 
2 
4 
3 
2 
7 
2 
4 
8 
7 
2 
4 
3 
3 
4 
4 
4 
7 
2 
5 

14 
17 
23 
13 
24 
12 
16 
28 
14 
16 
16 
36 
18 
14 
19 
38 
18 
8 
19 
36 
15 
17 
28 
29 
11 
8 
7 
4 
14 
17 

14 
18 
20 
12 
20 
12 
16 
26 
13 
15 
15 
32 
16 
13 
19 
38 
18 
8 
19 
35 
16 
16 
25 
30 
12 
10 
8 
5 
13 
15 

12 11 
18 16 
19 19 
12 11 
20 19 
10 9 
14 12 
26 26 
12 10 
15 14 
15 14 
30 29 
17 15 
13 12 
18 17 
37 37 
17 16 
7 6 
18 17 
30 29 
17 15 
16 18 
27 31 
32 30 
12 13 
9 8 
8 7 
5 4 
13 12 
16 16 
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Table 6.8 Output for the Independent Correlation Structure Analysis of the Rat Data 

The GENMOD Procedure 
Model Information 

Description 
Data set 
Distribution 
Link function 
Dependent variable 
Observations used 

Value 
WORK.RAT 
POISSON 
LOG 
Y 
120 

Class Level Information 
Class Levels 
DRUG 3 
SUBJECT 30 

Values 
12 3 

Label 

Yl 

1 2 3 4 5 6 7 8 9 10 11 12 13 
14 15 16 17 18 19 20 21 22 23 
24 25 26 27 28 29 30 

Parameter Information 
Parameter Effect DRUG 
PRM1 INTERCEPT 
PRM2 DRUG 1 
PRM3 DRUG 2 
PRM4 DRUG 3 
PRM5 RBC 
PRM6 WBC 

Criteria for Assessing Goodness of Fit 

Criterion DF 
Deviance 115 
Scaled deviance 115 
Pearson chi-square 115 
Scaled Pearson X2 115 
Log-likelihood 

Value Value/DF 
88.2076 0.7670 
88.2076 0.7670 
88.6115 0.7705 
88.6115 0.7705 

4037.5056 

Analysis of Initial Parameter Estimates 
Parameter 
INTERCEPT 
DRUG 1 
DRUG 2 
DRUG 3 
RBC 
WBC 
Scale3 

DF 
1 
1 
1 
0 
1 
1 
0 

Dei 

Estimate 
3.6285 
-0.2403 
-0.0068 
0.0000 
0.0021 

-0.0563 
1.0000 

GEE Model 
scription 

Std Err 
0.0836 
0.0588 
0.0598 
0.0000 
0.0113 
0.0035 
0.0000 

Informat 

Correlation structure 
Subject effect SUBJECT 
Number of clusters 

Chi Square Pr > Chi 
1886.1181 0.0001 
16.7341 0.0001 
0.0129 0.9096 
-

0.0355 0.8506 
255.1377 0.0001 

-

ion 
Value 
Independent 
(30 levels) 
30 

(Continued) 

EXAMPLES 
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Table 6.8 Continued 

GENERALIZED ESTIMATING EQUATIONS 

Correlation matrix dimension 4 
Maximum cluster size 4 
Minimum cluster size 4 

Covariance Matrix (Model-Based) Covariances Are Above the 
Diagonal and Correlations Are Below 

Paramet 
Number 
PRM1 
PRM2 
PRM3 
PRM5 
PRM6 

er 
PRM1 

0.005155 
-0.48733 
-0.30517 
-0.62774 
-0.70832 

PRM2 
-0.001766 
0.002549 
0.55998 

-0.02501 
0.26826 

PRM3 
-0.001126 
0.001453 
0.002640 

-0.33263 
0.24211 

PRM5 
-0.000439 
-0.000012 
-0.000167 
0.000095 
0.17308 

PRM6 
-0.000154 
0.000041 
0.0000377 
5.1105E-6 
9.1756E-6 

Covariance Matrix (Empirical) Covariances Are Above the 
Diagonal and Correlations Are Below 

Parameter 
Number 
PRM1 
PRM2 
PRM3 
PRM5 
PRM6 

PRM1 
0.01667 
-0.58762 
-0.25078 
-0.6445 
-0.69376 

ROW1 
ROW2 
ROW3 
ROW4 

PRM2 
-0.006315 
0.006928 
0.53315 

-0.02004 
0.53844 

PRM3 PRM5 
-0.003207 -0.001676 
0.004396 -0.000034 
0.009811 -0.000563 

-0.28224 0.0004056 
0.27341 0.07439 

Working Correlation Matrix 
COL1 ( 

1.0000 0. 
0.0000 1. 
0.0000 0. 
0.0000 0, 

:OL2 COL3 COL4 
,0000 0.0000 0.0000 
,0000 0.0000 0.0000 
,0000 1.0000 0.0000 
,0000 0.0000 1.0000 

-0 
0 
0 
6 
0 

PRM6 
.000373 
.0001867 
.0001128 
.2419E-6 
.0000174 

Analysis of GEE Parameter Estimates 
Empirical Standard Error Estimates 

Empirical 95% Confidence Limits 
Parameter 
INTERCEPT 
DRUG 1 
DRUG 2 
DRUG 3 
RBC -
WBC 
Scale23 

Estimat 
3.6285 
-0.2403 
-0.0068 
0.0000 
0.0021 

-0.0563 
0.8593 

eStd Err 
0.1291 
0.0832 
0.0990 
0.0000 
0.0201 
0.0042 
-

Lower 
3.3755 

-0.4035 
-0.2009 
0.0000 

-0.0373 
-0.0645 

-

Upper 
3.8816 
-0.0772 
0.1873 
0.0000 
0.0416 

-0.0481 
-

28, 
2, 
-0 
0 
0 

13 

z Pr 
.103 0. 
.887 0. 
.06860. 
.00000. 
.10610. 
.51 0. 
-

> |z| 
.0000 
.0039 
.9453 
.0000 
.9155 
.0000 
-

°The scale parameter is held fixed. 
frThe scale parameter for GEE estimation is computed as the square root of the normalized 
Pearson's chi-square. 
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Table 6.9 Output for the AR(1) Correlation Structure Analysis for the Rat Data 

The GENMOD Procedure 
Model Information 

Description 
Data 
Distribution 
Link function 
Dependent variable 
Observations used 

Value Label 
set WORK.RAT 
POISSON 
LOG 
Y Yl 
120 

Class Level Information 
Class Levels 
DRUG 3 
SUBJECT 30 

Values 
12 3 
1 2 3 4 5 6 7 8 9 10 11 12 13 
14 15 16 17 18 19 20 21 22 23 
24 25 26 27 28 29 30 

Parameter Information 
Parameter Effect DRUG 
PRM1 INTERCEPT 
PRM2 DRUG 1 
PRM3 DRUG 2 
PRM4 DRUG 3 
PRM5 RBC 
PRM6 WBC 

Criteria for Assessing Goodness of Fit 
Criterion DF Value Value/DF 
Deviance 115 
Scaled deviance 115 
Pearson < ^hi-square 115 
Scaled Pearson X2 115 
Log-likelihood 

Analys 
Parameter 
INTERCEPT 
DRUG 1 
DRUG 2 
DRUG 3 
RBC 
WBC 
Scale3 

DF 
1 
1 
1 
0 
1 
1 
0 

;is of Initia 
Estimate 
3.6285 
-0.2403 
-0.0068 
0.0000 
0.0021 
-0.0563 
1.0000 

88.2076 0.7670 
88.2076 0.7670 
88.6115 0.7705 
88.6115 0.7705 

4037.5056 

1 Parameter Estimates 
Std Err Chi Square 
0.0836 1886.1181 
0.0588 16.7341 
0.0598 0.0129 
0.0000 
0.0113 0.0355 
0.0035 255.1377 
0.0000 

GEE Model Information 
Description Value 
Correlation structure AR(1) 

Pr 
0. 
0. 
0. 

0. 
0. 

> Ch: 
,0001 
.0001 
.9096 
-

.8506 

.0001 
-

(Continued) 

EXAMPLES 
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Table 6.9 Continued 

Subject effect SUBJECT (30 levels) 
Number of clusters 30 
Correlation matrix dimension 4 
Maximum cluster size 4 
Minimum cluster size 4 

Covariance Matrix (Model-Based) Covariances Are Above the 
Diagonal and Correlations Are Below 

Parameter 
Number 
PRM1 
PRM2 
PRM3 
PRM5 
PRM6 

PRM1 
0.01438 

-0.64682 
-0.64963 
-0.26917 
-0.63750 

-0 
0 
0 

-0 
0 

PRM2 
.009524 
.01508 
.56767 
.008250 
.23474 

-0, 
0, 
0, 

-0, 
0, 

PRM3 
.009142 
.008180 
.01377 
.11905 
.25324 

-0, 
8, 

-0, 
0, 

-0, 

PRM5 
.000263 
.256E-6 
.000114 
.0000664 
.03314 

-0, 
0, 
0, 

-1, 
0, 

PRM6 
.000381 
.0001435 
.0001479 
.345E-6 
.0000248 

Covariance Matrix (Empirical) Covariances Are Above the 
Diagonal and Correlations Are Below 

Parameter 
Number 
PRM1 
PRM2 
PRM3 
PRM5 
PRM6 

PRM1 
0.02374 
-0.86326 
-0.79266 
-0.21805 
-0.68623 

-0, 
0, 
0, 
0, 
0, 

PRM2 
.01721 
.01674 
.73717 
.18373 
.36916 

-0. 
-0. 
-0. 
-0. 
0. 

PRM3 
.01816 
.01418 
.02212 
.05385 
.44773 

-0. 
0. 
0. 
0, 

-0, 

PRM5 
.000218 
.0001546 
.0000521 
.0000423 
.05363 

-0, 
0. 
0. 
1. 
0, 

PRM6 
.000535 
.0002418 
.0003371 
.766E-6 
.0000256 

Working Correlation Matrix 
COL1 COL2 

ROW1 1.0000 0.9228 
ROW2 0.9228 1.0000 
ROW3 0.8516 0.9228 
ROW4 0.7858 0.8516 

COL3 COL4 
0.8516 0.7858 
0.9228 0.8516 
1.0000 0.9228 
0.9228 1.0000 

Analysis of GEE Parameter Estimates 
Empirical Standard Error Estimates 

Empirical 95% Confidence Limits 
Parameter 
INTERCEPT 
DRUG 1 
DRUG 2 
DRUG 3 
RBC -
WBC -
Scaleb 

Estimate Std Err 
3.1360 
-0.1242 
0.0953 
0.0000 
0.0221 
0.0305 
1.1152 

0.1541 
0.1294 
0.1487 
0.0000 
0.0065 
0.0051 

-

Lower 
2.8341 
-0.3778 
-0.1962 
0.0000 
0.0094 

-0.0404 
-

Upper 
3.4380 
0.1293 
0.3868 
0.0000 
0.0349 

-0.0206 
-

20. 
-0. 
0. 
0, 
3. 
6. 

z 
.355 
.9601 
.6408 
.0000 
.4024 
.028 
-

Pr 
0. 
0. 
0. 
0. 
0. 
0. 

> |z| 
.0000 
.3370 
.5217 
.0000 
.0007 
.0000 
-

aThe scale parameter is held fixed. 
^The scale parameter for GEE estimation is computed as the square root of the normalized 
Pearson's chi-square. 
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Note that once again we have the lack-of-fit material. However, it should be 
emphasized that this output is only valid when observations are uncorrelated, 
since the likelihood material makes use of the independence assumption. As 
before, the Analysis of Initial Parameter Estimates presumes independence and 
uses the model-based standard errors. Note here in this very preliminary 
analysis that drug 1 is significant and the negative sign suggests a negative 
(reduction) effect on the mean counts. A clear indication of an erroneous 
choice of the correlation structure (independence at this point) is that a 
large discrepancy occurs between the model-based and empirical variance-
covariance structures. The analysis using empirical standard errors gives 
somewhat different results. At this point there is every reason to believe that 
a nonindependence correlation structure is preferable. 

The output under the AR(1) structure in Table 6.9 begins with the same 
lack-of-fit information as before and the same analysis of initial parameter 
estimates. The first result that deals with the new correlation structure is 
the model-based variance-covariance structure followed by the empirical 
variance-covariance structure. There certainly are some discrepancies here, 
and the empirical structure is probably more appropriate. The working 
correlation under the AR(1) structure supports the need to accommodate 
the correlation within subjects. The final portion of the analysis gives 
the results of the Wald inference. Note that the parameter estimates are 
quite different from what they were in the independence case. The 
comparison is a classic case of the independence analysis producing overly 
optimistic results. The extremely large correlations results in much larger 
standard errors associated with the drugs, and indeed, the analysis shows 
insufficient evidence to support any one of the drugs over the other two. 
The only significant model terms in the exponential model are the white and 
red blood cell counts. D 

Example 6.3. Substrate Camber. This example is taken from Myers, 
Montgomery, and Anderson-Cook (2009). It involves a designed experiment 
in a semiconductor plant. Six factors are employed, and it is of interest to study 
the curvature or camber of the substrate devices produced in the plant. There is 
a lamination process, and the camber measurement is made four times on the 
same device produced. The goal is to model the camber taken in 10-4 in./in. as 
a function of the design variables. Each design variable is taken at two levels 
and the design is a 26 - 2 fractional factorial. The camber measurement is known 
to be nonnormal with a heavy right-tailed distribution. In addition, it is clear 
that the measurement taken on the same device may well be correlated. As a 
result we have repeated measures, which represent the source of the correlation. 
A gamma response is assumed with a log link. Thus 

Inμ = β0 + β{χ{ + ß2xi + ß3*3 + ß4*4 + ßsx5 + 06*6 
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Table 6.10 Factor Levels in the Semiconductor Experiment 

Lamination Lamination Firing Firing Firing 
Temperature Lamination Pressure Temperature Cycle Dew 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

(°Q 

-1 
+ 1 
-1 
+ 1 
-1 
+ 1 
-1 
+ 1 
-1 
+ 1 
-1 
+ 1 
-1 
+ 1 
-1 
+ 1 

Trime (s) 

-1 
-1 
+ 1 
+ 1 
-1 
-1 
+ 1 
+ 1 
-1 
-1 
+ 1 
+ 1 
-1 
-1 
+ 1 
+ 1 

(ton) 

-1 
-1 
-1 
-1 
+ 1 
+ 1 
+ 1 
+ 1 
-1 
-1 
-1 
-1 
+ 1 
+ 1 
+ 1 
+ 1 

(°C) 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
+ 1 
+ 1 
+ 1 
+ 1 
+ 1 
+ 1 
+ 1 
4-1 

Time (h) 

-1 
+ 1 
+ 1 
-1 
+ 1 
-1 
-1 
+ 1 
-1 
+ 1 
+ 1 
-1 
+ 1 
-1 
-1 
+ 1 

Point 

— 
+ 
-
+ 
+ 
— 
+ 
-
+ 
-
+ 
— 
-
+ 
— 
+ 

Table 6.11 Response Data in the Semiconductor Experiment 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

1 

0.0167 
0.0062 
0.0041 
0.0073 
0.0047 
0.0219 
0.0121 
0.0255 
0.0032 
0.0078 
0.0043 
0.0186 
0.0110 
0.0065 
0.0155 
0.0093 

2 

0.0128 
0.0066 
0.0043 
0.0071 
0.0047 
0.0258 
0.0090 
0.0250 
0.0023 
0.0158 
0.0027 
0.0137 
0.0086 
0.0109 
0.0158 
0.0124 

3 

0.0149 
0.0044 
0.0042 
0.0039 
0.0040 
0.0147 
0.0092 
0.0226 
0.0077 
0.0060 
0.0028 
0.0158 
0.0101 
0.0126 
0.0145 
0.0110 

4 

0.0185 
0.0020 
0.0050 
0.0030 
0.0089 
0.0296 
0.0086 
0.0169 
0.0069 
0.0045 
0.0028 
0.0159 
0.0158 
0.0071 
0.0145 
0.0133 

Note: Camber for measurement (in./in.). 

Tables 6.10 and 6.11 give data for a ± 1 coding on the design variables. 
Table 6.12 is an abbreviated printout from SAS PROC GENMOD. An AR(1) 
correlation structure is assumed. All of the printout shown reflects the AR(1) 
analysis. 



Table 6.12 GENMOD Results for the Semiconductor Experiment 

Parameter 
Number 
PRM1 
PRM2 
PRM3 
PRM4 
PRM5 
PRM6 
PRM7 

0, 
3, 

-6, 
-1, 
-1, 
1. 

-7. 

Covar 

PRM1 
.003162 
.876E-17 
.53E-17 
.9E-17 
.9E-17 
.565E-17 
.47E-18 

Covariance Matrix (Model-Based) 
iances Are Above the Diagonal and Correlations Are Below 

PRM2 
1.226E-19 
0.003162 

-4.21E-17 
-1.9E-17 
-1.9E-17 
4.091E-18 
2.721E-17 

PRM3 
-2.06E-19 
-1.33E-19 
0.003162 
4.091E-18 
2.721E-17 
-1.9E-17 
4.091E-18 

PRM4 
-6.02E-20 
-6.02E-20 
1.294E-20 
0.003162 
2.721E-17 
-4.21E-17 
-1.9E-17 

PRM5 
-6.02E-20 
-6.02E-20 
8.604E-20 
8.604E-20 
0.003612 
4.091E-18 
-1.9E-17 

PRM6 
4.9494E-20 
1.294E-20 

-6.02E-20 
-1.33E-19 
1.294E-20 
0.003162 
2.721E-17 

-2. 
8. 
1. 

-6. 
-6. 
8. 
0. 

PRM7 
.36E-20 
.604E-20 
.294E-20 
.02E-20 
.02E-20 
. 604E-20 
.003162 

Analysis of GEE Parameter Estimates 
Model-Based Standard Error Estimates 

Model-Based 95% Confidence Limits 
Parameter 
INTERCEPT 
XI 
X2 
X3 
X4 
X5 
X6 
Scale 

Estimate 
-4.6789 
0.1620 
0.0107 
0.3039 

-0.0288 
-0.1971 
-0.3790 
0.3486 

Std Err 
0.0562 
0.0562 
0.0562 
0.0562 
0.0562 
0.0562 
0.0562 

-

Lower 
-4.7891 
0.0518 

-0.0996 
0.1937 

-0.1390 
-0.3074 
-0.4892 

-

Upper 
-4.5686 
0.2722 
0.1209 
0.4141 
0.0814 

-0.0869 
-0.2688 

-

z 
-83.20 
2.8804 
0.1895 
5.4042 

-0.5122 
-3.506 
-6.739 

-

Pr > |Z| 
0.0000 
0.0040 
0.8497 
0.0000 
0.6085 
0.0005 
0.0000 

-

(Continued) 



Table 6.12 Continued 

Parameter 
Number 
PRM1 
PRM2 
PRM3 
PRM4 
PRM5 
PRM6 
PRM7 

0, 
-0, 
0. 

-0. 
-0. 
-0. 
-0. 

Covari. 

PRM1 
.003412 
.10638 
.10134 
.23796 
.26479 
.13284 
,30607 

Covariance Matrix (Empirical) 
anees Are Above the Diagonal and Correlations Are Bel 

PRM2 
-0.000363 
0.003412 
0.31717 
0.65881 
0.63231 
0.25706 
0.74584 

ROWl 
ROW2 
ROW3 
ROW4 

PRM3 PRM4 
0.0003458 -0.000812 
0.001082 0.002248 
0.003412 0.000877 
0.25706 0.003412 
0.18946 0.74584 
0.65881 0.31717 
0.23550 0.63231 

Working Correlation Ma trix 
COLl COL2 COL3 
1.0000 0.3632 0.1319 
-0.3632 1.0000 0.3632 
0.1319 0.3632 1.0000 
0.0479 0.1319 0.3632 

PRM5 
-0.000903 
0.002157 
0.0006464 
0.002545 
0.003412 
0.23550 
0.65881 

COL4 
0.0479 
0.1319 
0.3632 
1.0000 

ow 

-0. 
-0, 
0, 

-0, 
-0, 
-0. 
-0, 

PRM6 
.000453 
.000877 
.002248 
.001082 
.0008035 
.003412 
.18946 

-0, 
0, 
0, 
0. 
0. 
0. 
0. 

PRM7 
.001044 
.002545 
.0008035 
.002157 
.002248 
.0006464 
.003412 

Analysis of GEE Parameter Estimates 
Empirical Standard Error Estimates 
Empirical 95% Confidence Limits 

Parameter 
INTERCEPT 
XI 
X2 
X3 
X4 
X5 
X6 
Scale 

Estimate 
-4.6789 
0.1620 
0.0107 
0.3039 

-0.0288 
-0.1971 
-0.3790 
0.3486 

Std Err 
0.0584 
0.0584 
0.0584 
0.0584 
0.0584 
0.0584 
0.0584 

-

Lower 
-4.7933 
0.0475 

-0.1038 
0.1894 

-0.1433 
-0.3116 
-0.4935 

-

Upper 
-4.5644 
0.2765 
0.1251 
0.4184 
0.0857 

-0.0827 
-0.2645 

-

z 
-80.10 
2.7731 
0.1824 
5.2029 

-0.4932 
3.375 
6.488 

-

Pr > |Z 
0.0000 
0.0056 
0.8552 
0.0000 
0.6219 

-0.0007 
0.0000 

-

Note: The scale parameter for GEE estimation is computed as the square root of the normalized Pearson's chi-square. 
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Note that there is essentially no difference between the analysis with the 
model-based standard errors and the analysis using the empirical standard 
errors. Variables xu JC3, x5, and x6 have a significant effect on the camber. 
Note that the working correlation matrix reflects fairly small correlations. Two of 
these variables, xu and x3, have positive effects while x5 and x6 have negative 
effects on curvature. The effect x6 may be defined as the ratio of mean response 
at high level to that of low level. In this experiment, this estimated effect is 
e2b6 _ £-0.758 = o 4ß. thug ^ m e a n camber at the high level is 46% ofthat at the 
low level. The multiplicative effects of the other variables may be computed as well. 

One very important experimental design issue should be considered here. Since 
the log link was used with the gamma distribution, an ordinary GLM analysis with 
assumption of no correlation yields a diagonal asymptotic variance-covariance 
matrix of parameter estimates as we discussed in Chapter 5. Note also in this case 
that the model-based and the empirical variance-covariance matrices of parameter 
estimates are diagonal with equal values on the main diagonal. This simplification 
produces equal standard errors in both cases. Chapter 8 provides more discussion 
on the effect of experimental design. D 

Example 6.4. Wafer Resistivity. This study involves five factors in a 
manufacturing process for an integrated circuit in a 25_1 fractional factorial 
design in which it was of interest to learn how the factors influence the 
resistivity of the wafer. The five factors are A = implant dose, B = temperature, 
C = time, D = oxide thickness, and E = furnace position. Each factor is run at 
two levels. As in the previous example there is a lack of complete randomiza-
tion that forces a correlation structure, but in addition there are design levels 
that define whole plots and subplots in a split plot type structure. Table 6.13 

Table 6.13 Resistivity Experiment 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

A 

— 
+ 
— 
+ 
— 
+ 
-
+ 
-
+ 
-
+ 
-
+ 
— 
+ 

B 

— 
-
+ 
+ 
— 
— 
+ 
+ 
— 
-
+ 
+ 
-
— 
+ 
+ 

C 

— 
-
-
— 
+ 
+ 
+ 
+ 
— 
— 
— 
— 
+ 
+ 
+ 
+ 

D 

— 
-
— 
— 
-
— 
-
— 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

E = ABCD 

+ 
-
— 
+ 
— 
+ 
+ 
— 
— 
+ 
+ 
— 
+ 
— 
— 
+ 

Resistivity 

15.1 
20.6 
68.7 

101.0 
32.9 
46.1 
87.5 

119.0 
11.3 
19.6 
62.1 

103.2 
27.1 
40.3 
87.7 

128.3 
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gives the data. The implementation of the design could not be accom-
plished in a completely randomized fashion due to cost constraints. The 
temperature variable was difficult to change; hence all of the low (-1) 
values are run first followed by the high ( + 1) values. As a result the 
implementation is that of a split plot design with temperature as the whole 
plot variable and the other variables as subplot variables. Consequently, 
the observations within each whole plot are assumed to be correlated with 
an exchangeable correlation structure. Resistivity is known to approxi-
mately obey a gamma distribution. A log link is used, and all main effects 
are included in addition to the two-factor interaction, AB. Included in 
Table 6.14 is the SAS PROC GENMOD output for generalized estimating 
equations. Note from the analysis using model-based estimates of the 
standard errors, that the main effects, A, B, and C, are significant. The 
only modeled interaction, AB, is not statistically significant. Also included 
in the analysis is the model-based estimate of the variance-covariance 
matrix of parameter estimates. It is of interest to note that the correlations 
(below the main diagonal) are quite small. Much of this, of course, is 
derived from the quality of the experimental design, which is an orthogonal 
design in the case of linear models. Also listed here is the working 
correlation matrix, which suggests that the correlation among observations 
within whole plots is quite mild. Thus the analysis shows that correlation 
is near zero. 

It may be instructive to reveal an analysis of the same data set using 
generalized linear models with a gamma distribution, log link, and indepen-
dent observations. The following shows the Wald inference for this analysis. 
The parameter estimates vary little from those using the generalized estimating 
equations analysis. 

Coefficient Estimate Standard Error P-Value 

Inferent 
B 
C 
A 
D 
E 
AB 
Scale 

3.8643 
0.6705 
0.2592 
0.1995 

-0.0428 
0.0032 
0.0031 

44.7379 

0.0374 
0.0374 
0.0374 
0.0374 
0.0374 
0.0374 
0.0374 
15.7586 

0.0001 
0.0001 
0.0001 
0.0001 
0.2523 
0.9339 
0.9342 

The empirical standard errors are not shown. It is not likely that these 
estimates are appropriate because there are only two whole plots. These 
whole plots play the role of subjects in the generalized estimating equations 
scenario. As a result the pooling over subjects does not allow sufficient 



Table 6.14 GENMOD Output for Analysis of Resistivity Data with 25 ' Design in a Split Plot Structure 

Analysis of GEE Parameter Estimates 
Model-Based Standard Error Estimates 

Model-Based 95% Confidence Limits 
Parameter 
INTERCEPT 
B 
C 
A 
D 
E 
AB 
Scale 

Estimate 
3.8648 
0.6707 
0.2597 
0.1992 

-0.0440 
0.0095 
0.0055 
0.1483 

Std Err 
0.0406 
0.0406 
0.0373 
0.0338 
0.0394 
0.0354 
0.0338 
-

Lower 
3.7853 
0.5912 
0.1867 
0.1329 

-0.1212 
-0.0599 
-0.0608 
-

Upper 
3.9443 
0.7502 
0.3327 
0.2656 
0.0332 
0.0789 
0.0718 
-

z 
95.264 
16.532 
6.9713 
5.8861 
-1.116 
0.2691 
0.1636 
-

Pr > |Z 
0.0000 
0.0000 
0.0000 
0.0000 
0.2643 
0.7878 
0.8700 
-

Covariance Matrix (Empirical) 
Covariances Aire Above the Diagonal and Correlations Are Below 

£ 
<* 

Number 
PRM1 
PRM2 
PRM3 
PRM4 
PRM5 
PRM6 
PRM7 

0, 
3, 

-2, 
-2, 
1, 

-2, 
-6. 

PRM1 
.001646 
.568E-19 
.86E-17 
.91E-17 
.031E-16 
.64E-17 
.68E-18 

5, 
0. 

-2, 
-5, 
2. 
9. 

-2. 

PRJVI2 

.873E-22 

.001646 

.25E-18 

.49E-18 

.076E-17 

.01LE-17 

.9E-17 

-4, 
-3. 
0, 
0. 
0. 
1. 
4, 

PRM3 
.33E-20 
.4E-21 
.001388 
.02735 
.03156 
.528E-I7 
.712E-17 

-7, 
0, 
0, 
0, 

-2, 
-1. 

PRM4 
.-4E-20 
.54E-21 
.0000345 
.001146 
.02882 
.08E-17 
.47E-17 

1. 
3. 
0. 
0. 
0. 
2. 
1. 

PRM5 
.648E-19 
.317E-20 
.0000463 
.0000384 
.001551 
.184E-17 
.436E-17 

-3. 
1, 
2, 

-2, 
3, 
0, 
0. 

PRM6 
.79E-20 
.294E-19 
.015E-20 
.5E-20 
.046E-20 
.001254 
.02517 

-9, 
-3, 
5, 

-1, 
1. 
0, 
0. 

PRM7 
.17E-21 
.98E-20 
.938E-20 
.68E-20 
.914E-20 
.0000302 
.001144 

(Continued) 
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Table 6.14 Continued 

Working Correlation Matrix 

C0L1 COL2 C0L3 COL4 C0L5 COL6 C0L7 COL8 
ROW1 1.0000 -0.1329 -0.1329 -0.1329 -0.1329 -0.1329 -0.1329 -0.1329 
ROW2 -0.1329 1.0000 -0.1329 -0.1329 -0.1329 -0.1329 -0.1329 -0.1329 
ROW3 -0.1329 -0.1329 1.0000 -0.1329 -0.1329 -0.1329 -0.1329 -0.1329 
ROW4 -0.1329 -0.1329 -0.1329 1.0000 -0.1329 -0.1329 -0.1329 -0.1329 
ROW5 -0.1329 -0.1329 -0.1329 -0.1329 1.0000 -0.1329 -0.1329 -0.1329 
ROW6 -0.1329 -0.1329 -0.1329 -0.1329 -0.1329 1.0000 -0.1329 -0.1329 
ROW7 -0.1329 -0.1329 -0.1329 -0.1329 -0.1329 -0.1329 1.0000 -0.1329 
ROW8 -0.1329 -0.1329 -0.1329 -0.1329 -0.1329 -0.1329 -0.1329 1.0000 
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information for estimation of the variance-covariance matrix of parameter 
estimates. 

In each analysis temperature appears to be the most significant factor. 
Increasing the temperature increases the resistivity. The multiplicative effect is 
to increase the resistivity by a factor of e2(0"6705) = 3.822 as one changes the 
temperature from the - 1 level to the + 1 level. 

Example 6.5. Yield of Grits. This example is taken from the SAS PROC 
MIXED user's guide in which four factors are varied and their effect on 
yield of grits is sought. The process involves milling of corn in which the 
corn is milled into a grit product. The factors are A, moisture content of 
the corn, B, roll gap, C, screen size, and D, roller speed. One factor, 
moisture content, is very difficult to change. The experiment is displayed 
in Table 6.15. The response is the number of grams of grits per 1000 
grams of corn. Note that all four factors are at three levels and there are 
10 batches, indicating batches of corn. Three experiments are run on each 
batch. A second-order model is fit to the data. A normally distributed 
response is assumed with an identity link and, of course, constant 
variances. Observations within the same batch are assumed to be corre-
lated via an exchangeable correlation structure. Table 6.16 gives the GEE 
analysis and Table 6.17 provides results from using ordinary least squares 
and thus ignoring the correlation. The estimated standard errors in Table 
6.17 come from the matrix (X'X)_ 1-j2 , which assumes that the analyst 
ignored the correlation in total. Table 6.18 provides the estimated 
correlation matrix. Note that the correlations are substantially higher 
than the correlations that appear in the previous example. As a result the 
discrepancy among like coefficients between GEE and OLS is marked. 
Note also that the GEE analysis produced a significant value for the 
linear and quadratic term in B while the OLS analysis resulted in 
insignificant values. In addition, the quadratic term in C is marginally 
significant using GEE's and quite insignificant using OLS. Note that the 
resulting conclusions using the model-based and empirical standard errors 
are essentially the same even though the actual standard errors differ a 
great deal in some cases. 

This example provides a distinct lesson. If the correlations within the 
whole plot are not moderate or small, the GEE analysis can provide 
completely different conclusions from that of an OLS approach. While 
there is no clear yardstick, correlations along the order of 0.3 or higher 
need to be considered seriously and then taken into account. Values of 0.3 
or lower may well indicate that independence and their OLS is quite 
appropriate. In addition, one should be quite careful in the use of the 
empirical method for computing standard error when the render of whole 
plots/subplots is small. D 
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Table 6.15 

Batch 

Design Matrix and Response Data for Grits Example 

Factor 
A B C D Yield 

9 
9 
9 
10 
10 
10 

505 
493 
491 
498 
504 
500 
494 
498 
498 
496 
503 
496 
503 
495 
494 
486 
501 
490 
494 
497 
492 
503 
499 
493 
505 
500 
490 
494 
497 
495 

6.6 S U M M A R Y 

The use of generalized estimating equations can be a valuable tool in either 
biological or industrial applications when response values are clearly correlated 
and the user is primarily interested in a marginal model. The analyst has 
available several decisions to make over and above those discussed in previous 
chapters for analysis. In addition to linear predictor terms, distributions, and 
link decisions, one is faced with the issue of what type of correlation structure 
to use. However, independence should always be considered. In many cases if 
one deviates from independence, the results may be quite insensitive to the 
choice of correlation statute, a concept that we saw illustrated in our examples. 



Table 6.16 GEE Analysis for Corn Data Using Exchangeable Correlation Structure 

Analysis 

Parameter 
A 
B 
C 
D 
AA 
BB 
CC 
DD 
AB 
AC 
AD 
BC 
BD 
CD 
Scale3 

Parameter 
INTERCEPT 
A 
B 
C 
D 

of GEE Parameter Estimates Empírica 
Empi 

Estimate 
1.6475 
1.6054 
2.7427 
-0.0726 
0.0524 
2.7439 
1.429 
0.4941 
2.1386 
0.429 

-0.4261 
0.3674 

-1.599 
2.5858 
2.2220 

Analys: 

rical 95% Confidence : 
Std Err 
0.4478 
0.3137 
0.3109 
0.0943 
2.0077 
1.3892 
0.9651 
0.9771 
0.2726 
0.3912 
0.2146 
0.2336 
0.3608 
0.3116 

-

Lower 
0.7698 
0.9905 
2.1333 
-0.2574 
-3.8827 
0.0211 

-0.4625 
-1.4211 
1.6043 

-0.3378 
-0.8468 
-0.0905 
-2.3061 
1.975 

-

1 Standard Error Estimates 
Limits 

Upper 
2.5251 
2.2203 
3.352 
0.1122 
3.9875 
5.4668 
3.3206 
2.4092 
2.6730 
1.1957 
-0.0054 
0.8253 

-0.8918 
3.1966 

-
LS of GEE Parameter Estimates 

Model-Based Standard Error Estimates 
Model 

Estimate 
492.8582 
1.6475 
1.6054 
2.7427 
-0.0726 

-Based 95% Confidence 
Std Err 
1.5588 
0.6584 
0.3656 
0.3930 
0.3377 

Lower 
489.8030 
0.3570 
0.8889 
1.9724 

-0.7344 

Limits 
Upper 

495.9134 
2.9379 
2.3219 
3.5130 
0.5893 

Z 
3.6792 
5.117 
8.8217 

-0.7696 
0.0261 
1.9752 
1.4807 
0.5056 
7.8439 
1.0966 

-1.985 
1.5727 

-4.432 
8.2976 

-

Z 
316.18 
2.5021 
4.3915 
6.9785 

-0.2149 

Pr > | Z| 
0.0002 
0.0000 
0.0000 
0.4416 
0.9792 
0.0482 
0.1387 
0.6131 
0.0000 
0.2728 
0.0471 
0.1158 
0.0000 
0.0000 

-

Pr > |Z| 
0.0000 
0.0123 
0.0000 
0.0000 
0.8298 

(Continued) 
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Table 6.16 Continued 

AA 
BB 
CC 
DD 
AB 

AC 
AD 
BC 
BD 
CD 
Scalea 

0.0524 
2.7439 
1.4290 
0.4941 
2.1386 

0.4290 
-0.4261 
0.3674 
-1.5990 
2.5858 
2.2220 

1.4784 
0.9221 
0.8145 
0.8703 
0.3892 

0.4589 
0.3973 
0.4087 
0.4483 
0.4031 

-

-2.8453 
0.9366 

-0.1673 
-1.2116 
1.3759 

-0.4705 
-1.2047 
-0.4335 
-2.4775 
1.7959 

-

2.9501 
4.5513 
3.0254 
2.1998 
2.9014 

1.3285 
0.3526 
1.1684 
-0.7204 
3.3758 

-

0.0355 
2.9756 
1.7545 
0.5677 
5.4952 

0.9348 
-1.072 
0.8991 

-3.567 
6.4155 

-

0.9717 
0.0029 
0.0793 
0.5702 
0.0000 

0.3499 
0.2835 
0.3686 
0.0004 
0.0000 

-. 
aThe scale parameter of GEE estimation is computed as the square root the normalized Pearson's chi-square. 
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Table 6.17 OLS Analysis Results Using Corn Data 

Source 

A 
B 
C 
D 
AA 
BB 
CC 
DD 
AB 
AC 
AD 
BC 
BD 
CD 

b 

1.763 
1.023 
2.626 

-0.067 
0.022 
1.592 
1.060 
0.476 
2.304 
0.388 

-0.156 
0.311 

-2.127 
3.006 

OLS 

Standard 

0.616 
0.608 
0.608 
0.608 
1.398 
1.385 
1.398 
1.394 
0.671 
0.678 
0.690 
0.669 
0.684 
0.687 

/7-value 

0.0119 
0.1133 
0.0006 
0.9134 
0.9879 
0.2685 
0.4598 
0.7374 
0.0037 
0.5754 
0.8236 
0.6486 
0.0072 
0.0005 

Table 6.18 Estimated Correlation Matrix Using Corn Data 

ROWl 
ROW2 
ROW3 

Working 

COL1 

1.0000 
0.5237 
0.5237 

Correlation Matrix 

COL2 COL3 

0.5237 0.5237 
1.0000 0.5237 
0.5237 1.0000 

Nevertheless, a sense of comfort is realized if the analyst performs the analysis 
with the use of more than one type of structure. In the next chapter we discuss 
models for correlated data which offer both subject-specific and marginal 
interpretations. 

EXERCISES 

6.1 An engineer studied the effect of pulp preparation and processing 
temperature on the strength of paper. The nature of the process dictated 
that pulp preparation was hard-to-change. As a result one large batch of 
pulp was split into smaller batches, which then receive the temperature 
treatment. Thus the experimental structure is a split plot. The data follow. 
Use generalized estimating equations to analyze these data. 
(a) Assume an exchangeable structure. 
(b) The engineers actually conducted the experiment by ramping up the 

temperature, which means that the first batch from a large pulp batch 
always receives a temperature of 200, the next receives a temperature 
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of 225, and so on. In such a case, an AR(1) structure may make sense. 
Perform the analysis accordingly. 

(c) Discuss these analyses. 

Replicate Replicate Replicate 
(or Block) 1 (or Block) 2 (or Block) 3 

Pulp Preparation Method 

Temperature (°F) 
200 
225 
250 
275 

1 

30 
35 
37 
36 

2 

34 
41 
38 
42 

3 

29 
26 
33 
36 

1 

28 
32 
40 
41 

2 

31 
36 
42 
40 

3 

31 
30 
32 
40 

1 

31 
37 
41 
40 

2 

35 
40 
39 
44 

3 

32 
34 
39 
45 

6.2 Steel is normalized by heating above the critical temperature, soaking, 
and then air cooling. This process increases the strength of the steel, 
refines the grain, and homogenizes the structure. An experiment is 
performed to determine the effect of temperature and heat treatment 
time on the strength of normalized steel. Two temperatures and three 
times are selected. The experiment is performed by heating the oven to a 
randomly selected temperature and inserting three specimens. After 10 
minutes one specimen is removed, after 20 minutes the second is removed, 
and after 30 minutes the final specimen is removed. Then the temperature 
is changed to the other level and the process is repeated. Four shifts are 
required to collect the data, as are shown below. 
(a) Analyze assuming an exchangeable structure. 
(b) By the actual conduct of the experiment an AR(1) structure is 

reasonable. Reanalyze accordingly. 
(c) Discuss these analyses. 

Shift 

1 

2 

3 

4 

Time (min) 

10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 

Temperature (°F) 

1500 

63 
54 
61 
50 
52 
59 
48 
74 
71 
54 
48 
59 

1600 

89 
91 
62 
80 
72 
69 
73 
81 
69 
88 
92 
64 
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6.3 An experiment is designed to study pigment dispersion in paint. 
Four different mixes of a particular pigment are studied. The 
procedure consists of preparing a particular mix and then applying 
that mix to a panel by three application methods (brushing, spraying, 
and rolling). The response measured is the percentage reflectance of 
pigment. Three days are required to run the experiment, and the data 
obtained follow. Analyze these data, assuming an exchangeable 
structure. 

Day 

1 

2 

3 

Application 
Method 

1 
2 
3 
1 
2 
3 
1 
2 
3 

1 

64.5 
68.3 
70.3 
65.2 
69.2 
71.2 
66.2 
69.0 
70.8 

Mix 

2 

66.3 
69.5 
73.1 
65.0 
70.3 
72.8 
66.5 
69.0 
74.2 

3 

74.1 
73.8 
78.0 
73.8 
74.5 
79.1 
72.3 
75.4 
80.1 

4 

66.5 
70.0 
72.3 
64.8 
68.3 
71.5 
67.7 
68.6 
72.4 

6.4 Reiczigel (1999) analyzed an experiment that studies the effect of 
cholagogues on changes in gallbladder volume (GBV) of dogs. The 
experiment used two different cholagogues (A and B) and tap water (W) 
as a control. Six healthy dogs were assigned to each treatment. The GBVs 
were measured by ultrasound every ten minutes for two hours. The data 
follow. 
(a) It is probably reasonable to assume an AR(1); therefore perform a 

thorough analysis of these data using this assumption. 
(b) Repeat part (a) using the robust approach. 
(c) Discuss any differences, if any, in these two analyses. 

6.5 Stiger, Barnhart, and Williamson (1999) analyzed a double-blind clinical 
trail that compared a hypnotic drug to a placebo in subjects with 
insomnia. The researchers surveyed each patient about the amount of 
time it took them to go to sleep prior to treatment and again after 2 weeks 
of treatment. The data follow. Perform a thorough analysis of these data 
using the robust approach. 



Treatment Dog 0 10 20 30 40 

Cholecystokinin 

8CIanobutin 

Control 

1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 

17.70 
17.22 
14.24 
39.58 
13.33 
16.16 
16.35 
15.65 
12.68 
21.88 
12.78 
15.58 
20.75 
13.88 
11.92 
26.38 
13.30 
13.80 

10.35 
11.30 
9.20 
26.88 
7.15 
8.36 
13.65 
13.08 
9.68 
15.92 
9.03 
11.5 
19.83 
13.60 
11.74 
26.90 
13.18 
13.86 

10.78 
11.30 
9.40 
26.20 
7.82 
9.53 
13.10 
12.35 
10.70 
15.18 
9.28 
11.88 
19.98 
13.73 
11.84 
27.73 
13.52 
13.06 

11.44 
13.28 
9.62 
29.80 
7.94 
9.80 
13.58 
12.76 
10.98 
17.04 
9.54 
12.06 
18.84 
13.16 
10.90 
27.73 
13.43 
13.76 

11.20 
14.08 
10.10 
31.50 
8.40 
9.64 
14.03 
13.78 
11.12 
18.6 
9.38 
12.58 
19.10 
13.44 
11.75 
27.56 
13.4 
13.82 

Minutes after treatment 

50 60 70 80 

12.38 12.68 12.30 14.00 
13.98 14.74 15.63 17.60 
10.08 9.60 9.70 11.23 
32.75 34.45 35.64 36.62 
8.94 9.28 9.95 10.40 
9.84 10.70 11.26 12.12 
15.45 15.58 15.56 15.62 
13.76 13.54 14.18 14.40 
11.78 12.02 11.95 12.16 
18.98 19.26 20.38 21.32 
9.88 9.94 10.14 10.34 
12.98 13.00 13.00 13.04 
19.50 19.75 19.64 20.00 
13.62 13.86 13.58 14.28 
11.45 11.98 12.38 11.70 
28.43 27.54 26.50 27.94 
13.25 13.28 13.24 13.44 
13.80 13.86 13.84 13.76 

90 100 110 120 

14.64 14.96 14.18 16.78 
17.34 17.38 17.36 17.64 
11.20 11.96 12.20 13.98 
38.65 38.56 39.20 39.36 
10.95 11.70 12.10 12.35 
12.60 13.98 14.52 14.78 
16.10 16.28 16.74 16.25 
15.16 15.20 15.18 13.40 
12.25 12.40 12.55 12.54 
21.03 21.8 21.08 22.65 
11.5 11.83 11.78 12.08 
13.18 13.88 13.43 13.85 
19.13 20.15 19.45 19.43 
14.10 13.12 13.53 13.42 
11.48 11.80 11.20 12.03 
27.58 27.56 27.64 28.83 
12.98 12.60 13.48 13.08 
13.82 13.50 13.72 13.70 
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Time to Falling asleep (min) 
Follow-up 

Treatment 

Active 

Total 
Proposition 
Placebo 

Total 
Proportion 

Initial 

< 20 
20-30 
30-60 
> 60 

< 20 
20-30 
30-60 
> 60 

< 20 

7 
11 
13 
9 

40 
0.336 
7 

14 
6 
4 

31 
0.258 

20-30 

4 
5 

23 
17 
49 

0.412 
4 
5 
9 

11 
29 
0.242 

30-60 

1 
2 
3 

13 
19 
0.16 
2 
1 

18 
14 
35 
0.292 

> 60 

0 
2 
1 
8 

11 
0.092 
1 
0 
2 

22 
25 
0.208 

Total 

12 
20 
40 
47 

119 

14 
20 
35 
51 

120 

Proportion 

0 101 
0 168 
0 336 
0 395 

0 1 1 7 
0 167 
0-292 
0-425 

6.6 Potthoff and Roy (1964) analyzed a longitudinal study of dental growth in 
children. Specifically, they measured the distance from the center of 
the pituitary gland to the maxillary fissure for children at ages 8, 10, 12, 
and 14. The data follow. 

Individual 
Girl 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

8 

21 
21 
20.5 
23.5 
21.5 
20 
21.5 
23 
20 
16.5 
24.5 

Age (in years) 

10 

20 
21.5 
24 
24.5 
23 
21 
22.5 
23 
21 
19 
25 

12 

21.5 
24 
24.5 
25 
22.5 
21 
23 
23.5 
22 
19 
28 

14 

23 
25.5 
26 
26.5 
23.5 
22.5 
25 
24 
21.5 
19.5 
28 

Individual 
Boy 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

8 

26 
21.5 
23 
25.5 
20 
24.5 
22 
24 
23 
27.5 
23 
21.5 
17 
22.5 
23 
22 

Age (in 

10 

25 
22.5 
22.5 
27.5 
23.5 
25.5 
22 
21.5 
20.5 
28 
23 
23.5 
24.5 
25.5 
24.5 
21.5 

i years) 

12 

29 
23 
24 
26.5 
22.5 
27 
24.5 
24.5 
31 
31 
23.5 
24 
26 
25.5 
26 
23.5 

14 

31 
26.5 
27.5 
27 
26 
28.5 
26.5 
25.5 
26 
31.5 
25 
28 
29.5 
26 
30 
25 

(a) Perform a thorough analysis of these data assuming an exchangeable 
structure. 

(b) Repeat part (a) assuming an AR(1) structure. 
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(c) Repeat (a) part using the robust approach. 
(d) Compare and contrast the three analyses. Which seems most 

appropriate? 

6.7 Thall and Vail (1990) compared a new treatment medication for epilepsy 
to a placebo. They recorded each patient's age and 8-week baseline seizure 
counts. They then monitored the 2-week seizure counts for each patient 
during four successive but nonoverlapping periods. The data follow. 
Perform a thorough analysis of these data. Is there a problem with 
overdispersion? Discuss the effect of the assumed correlation structure on 
your results. 

Y\ Yi Yi YA Trt Base Age 
5 
3 
2 
4 
7 
5 
6 
40 
5 
14 
26 
12 
4 
7 
16 
11 
0 
37 
3 
3 
3 
3 
2 
8 
18 
2 
3 
13 
11 
8 
0 
3 

3 
5 
4 
4 
18 
2 
4 
20 
6 
13 
12 
6 
4 
9 
24 
0 
0 
29 
5 
0 
4 
4 
3 
12 
24 
1 
1 
15 
14 
7 
4 
6 

3 
3 
0 
1 
9 
8 
0 
23 
6 
6 
6 
8 
6 
12 
10 
0 
3 
28 
2 
6 
3 
3 
3 
2 
76 
2 
4 
13 
9 
9 
3 
1 

3 
3 
5 
4 
21 
7 
2 
12 
5 
0 
22 
4 
2 
14 
9 
5 
3 
29 
5 
7 
4 
4 
5 
8 
25 
1 
2 
12 
8 
4 
0 
3 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 

11 
11 
6 
8 
66 
27 
12 
52 
23 
10 
52 
33 
18 
42 
87 
50 
18 
111 
18 
20 
12 
9 
17 
28 
55 
9 
10 
47 
76 
38 
19 
10 

31 
30 
25 
36 
22 
29 
31 
42 
37 
28 
36 
24 
23 
36 
26 
26 
28 
31 
32 
21 
29 
21 
32 
25 
30 
40 
19 
22 
18 
32 
20 
30 
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Υι Y2 Υ3 YA Trt Base Age 
2 
4 
22 
5 
2 
3 
4 
2 
0 
5 
11 
10 
19 
1 
6 
2 

102 
4 
8 
1 
18 
6 
3 
1 
2 
0 
1 

6 
3 
17 
4 
4 
7 
18 
1 
2 
4 
14 
5 
7 
1 
10 
1 
65 
3 
6 
3 
11 
3 
5 
23 
3 
0 
4 

7 
1 
19 
7 
0 
7 
2 
1 
4 
0 
25 
3 
6 
2 
8 
0 
72 
2 
5 
1 
28 
4 
4 
19 
0 
0 
3 

4 1 
3 1 
16 1 
4 1 
4 1 
7 1 
5 1 
0 1 
0 1 
3 1 
15 1 
8 1 
7 1 
3 1 
8 
0 
63 
4 
7 
5 
13 
0 
3 
8 
1 
0 
2 

19 
24 
31 
14 
11 
67 
41 
7 
22 
13 
46 

I 36 
Í 38 
I 1 
I 36 
I 11 
I 151 
I 22 
I 41 
I 32 
I 56 
I 24 
I 16 
I 22 
I 25 
I 13 
1 12 

18 
24 
30 
35 
27 
20 
22 
28 
23 
40 
33 
21 
35 
25 
26 
25 
22 
32 
25 
35 
21 
41 
32 
26 
21 
36 
37 

6.8 Lipsitz, Kim, and Zhao (1994) analyzed data from an arthritis clinical 
trail. Patients were randomly assigned to receive either auranofin or a 
placebo. They surveyed each patient at baseline, 1 month, 2 months, and 3 
months on how they felt. A value of 3 indicated "good," a value of 2 
indicated "fair," and a value of 1 indicated "poor." The data follow. They 
report data on 23 patients; however, we have dropped the three patients 
that have missing values for at least one survey. Perform a thorough 
analysis of these data. 

Self-assessment 

Sex Age Treatment Baseline 1 month 2 months 3 months 

M 49 P 3 3 3 3 
M 59 A 3 2 1 1 
M 65 P 2 3 2 3 
M 60 P 3 2 2 3 



Sex Age Treatment Baseline 

M 
M 
M 
M 
F 
M 
M 
F 
M 
F 
F 
F 
F 
F 
F 
M 

56 
34 
53 
36 
31 
66 
55 
60 
28 
47 
44 
55 
31 
27 
63 
55 

P 
A 
A 
A 
A 
P 
A 
A 
A 
P 
P 
P 
P 
A 
A 
P 

2 
1 
2 
3 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 

GENERALIZED ESTIMATING EQUATIONS 

Self-assessment 
1 month 2 months 3 months 

2 
3 
1 
3 
2 
2 
3 
2 
1 
3 
3 
2 
1 
2 
2 
1 

1 
3 
1 
3 
2 
2 
3 
2 
3 
1 
3 
1 
2 
3 
2 
2 

2 
3 
2 
3 
2 
2 
3 
2 
1 
2 
2 
2 
2 
3 
3 
2 
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Random Effects in Generalized 
Linear Models 

To this point, our statistical models involved only fixed effects. For all of our 
models up to now, the levels of the regressors used in the study were the only levels 
of interest to the analyst. As a result, we were restricted to making statistical 
inferences only over these specific levels. For example, the transistor gain study 
from Example 2.1 examined the impact of emitter drive-in time and emitter dose 
on transistor gain for an integrated circuit. The levels for drive-in time ranged 
from 195 to 255, and the levels for dose ranged from 4.00 to 4.72. These levels 
were not randomly selected from a much larger population. 

The key notion underlying fixed effects is that the levels we use in the study 
are not randomly selected. Almost always, quantitative regressors are fixed 
effects. Categorical regressors are fixed effects when the levels used are the only 
ones available, and the analyst is content to making inferences over these 
specific levels. 

The levels used in a study for random effects represent a random sample 
from a much larger population of possible levels. For example, patients in a 
biomedical study are often random effects. The analyst selects the patients for 
the study from a large population of possible people. The focus of all statistical 
inference is not on the specific patients selected; rather, the focus is on the 
population of all possible patients. The key point underlying all random effects 
is this focus on the population and not on the specific units selected for the 
study. Random effects are almost always categorical. 

Many studies involve mixed effects models where some regressors are fixed 
effects and some are random effects. Mixed effects models are useful for a wide 
array of study types. For instance, in medical studies, a subject's response to 
some treatment is monitored over time (a longitudinal study). Subjects in these 
studies are selected at random from a population of possible subjects. In 

Generalized Linear Models, Second Edition, by Myers, Montgomery, Vining, and Robinson 
Copyright © 2010 John Wiley & Sons, Inc. 
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wildlife studies, the abundance of some species is determined for each of several 
observation stations (transects) over several years. Observation stations such as 
transects are selected at random from an entire study area. In industrial split 
plot designs, several sub plot observations are taken for each whole plot unit. 
The whole plot units in the study are selected at random from a population of 
possible whole plot units. The common thread through these applications is 
that the data are grouped into clusters according to the levels of one or more 
classification factors (by subjects, transects, whole plot units, etc.). Unlike 
classical linear regression models (Chapter 2), nonlinear regression models 
(Chapter 3), and generalized linear models (Chapters 4 and 5), mixed effects 
models are built to accommodate the inherent correlation that exists among 
observations within the same cluster. These models also enable the user to 
consider the clusters of observations (subjects, transects, whole plots, etc.) as 
random samples from a common probability distribution, thus enabling the 
user to make more general interpretations. 

This chapter discusses the extension of linear regression models to linear 
mixed effect models (Section 7.1) and generalized linear models to generalized 
linear mixed models (Section 7.2). Section 7.3 outlines a Bayesian approach to 
generalized linear mixed models. The emphasis of this section is on some of the 
advantages afforded by such an approach. 

7.1 LINEAR MIXED EFFECTS MODELS 

7.1.1 Linear Regression Models 

To begin our discussion, assume that we wish to model some response, y9 as a 
function of a set of k regressors, X\,x2,...,Xk· Also, assume that the structure of 
the data involves m clusters of observations, each with n¡ observations (/ = 1, 
2,...w). One approach would allow for separate intercepts and slopes for each 
of the clusters of observations. As an example, suppose that the response is a 
function of a single, continuous regressor x. A possible linear model is 

m—1 m—\ 

where z, denotes the indicator variable for theyth cluster, yy is the intercept term 
for the yth cluster, (/fy)7 is the slope term for the jth cluster, and the ε are 
assumed normal with mean zero and constant variance, σ\. In matrix notation, 
the Equation (7.1) is 

y^Xß + ε (7.2) 
m 

where y is the (nxl) vector of responses with n— J^/i/, X is the the (n xp) 

model matrix with p = 2 + 2(ra— 1), β is the associated (p x 1) vector of model 
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parameters, and ε is the (nx \) vector of model errors. Equation (7.2) is similar 
to the linear model discussed in Chapter 2 except the vector of model errors 
now is a multivariate normal with Ε(ε) = 0, Var (e) = S, and S = σ\\η. The 
regression parameters in Equation (7.2) are the parameters in β as well as 
the y/s and the (ßy)/s. The parameters ß0 and ß\ represent the intercept and 
slope for the reference station, and yj and (ßy)j represent the intercept and slope 
deviation, respectively, from the reference for they'th station. 

Example 7.1. Kukupa Counts. Westbrooke and Robinson (2009) reported 
on monitoring efforts of the Kukupa, New Zealand's only native pigeon, in a 
study area exposed to intensive pest control. The nesting success rates of the 
Kukupa, which are slow breeders, have been hampered by the presence of 
stoats and rats. The pest control effort was designed to reduce the popula-
tions of stoats and rats in this study area. Biologists noted average Kukupa 
counts at 10 observation stations over 12 years from 1995 to 2006. The 10 
observation stations were randomly chosen locations in a large study area. 

Given the fact that each station was repeatedly observed over the study 
period, we can structure the data in clusters by observation station. A 
portion of the data are provided in Table 7.1. In this case, the data are 
balanced; that is, there are equal numbers of observations (i.e., n¡ = 12) for 
each of the 10 observation stations, yielding a total of n = 120 points in the 
data set. A goal of the study is to determine if there is a significant trend in 
the average counts (AvgjCount) over time. The entire data set is in 
Kukupu.xls at ftp://ftp.wiley.com/public/sci_tech_med/generalized_linear. 

A naive approach to this problem fits the multiple linear regression model 
from Equation (7.1) in order to allow for different intercepts and slope for 
each of the observation stations. Such an approach requires the estimation of 
a total of p = 20 regression parameters since there are 10 observation 
stations. Figure 7.1 shows the scatterplots and corresponding model fits 
for each of the 10 observation stations. 

Fitting the model in Equation (7.1) enables the user to determine if there is a 
significant effect across time on an observation station by observation station 
basis with (ß0 + yj) and (ß + (ßy)J) denoting the intercept and slope, respectively, 
for theyth station (j = 1,2,...,9). Figure 7.1 suggests that Kukupa numbers are 
increasing over time for the stations observed in this study. D 

Although useful in a preliminary sense, fitting the model in Equation (7.1) is 
problematic on two fronts: (1) the repeated observations taken at each station 
over time are not independent; and perhaps more importantly, (2) it is not the 
desire of the biologist to make inferences only regarding these stations. Instead, 
the biologist needs to determine (1) if there is a significant time effect for the 
entire study area, and (2) how variable the time effects are from one station to 
the next. The analyst can broaden the scope of inference by treating the sta-
tion variable as a random effect whose levels correspond to the different station 
numbers. 

ftp://ftp.wiley.com/public/sci_tech_med/generalized_linear
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Table 7.1 Data Structure for Kukupa Data Set 

Station 
Average Count 
(Avg_Count) Year 

Total Noise 
(Tot_Noise) 

81 
81 

80 
80 
80 

0.000 
0.167 

0.833 
0.500 
2.167 

1995 
1996 

2004 
2005 
2006 

2.333 
1.833 

0.500 
0.833 
0.500 

3 

2.0 

1.5 

1.0 

0.5 

0.0 4l 

2 4 6 81012 
J I I I I L I I I I I L 

81 82 83 84 

i—r—i—i—i—f—i—r—i—f—i—r—ι—r—ι—r—ι—r—ι—r—ι—rr 
2 4 6 81012 

Year 
2 4 6 81012 

2.0 

\- 1.5 
1.0 

0.5 

0.0 

Figure 7.1 Simple linear regression fits to the Kukupa data. 

7.1.2 General Linear Mixed Effects Models 

To begin our discussion of the general linear mixed model, we return to the sce-
nario of having m clusters of data where we are interested in modeling the 
response as a function of a single regressor variable. The linear mixed model is 

y = ßo + ßx + Σ Ö^ZJ + Σ δχΜχ + ε (7.3) 
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where z,· denotes the indicator variable for the y'th cluster, S0j is the random 
intercept term for they'th cluster with Soj~N(0, ajQ), S\j is the random slope term 
for they'th cluster with S\j~N(0,al ), and the ε are as assumed in Equation 
(7.1). The variance component σ\ represents how variable the intercepts are 
from one cluster to the next, and likewise, σ\ represents how the slopes vary 
from one cluster to the next. The regression parameters β0 and β\ denote the 
average intercept and slope across all clusters in the population. 

Although Equations (7.1) and (7.3) look similar in that they both accom-
modate a separate intercept and slope for each of the m clusters, there are several 
important differences. We compare Equations (7.1) and (7.3) using the Kukupa 
example as a reference. When treating the stations as fixed indicators as 
in Equation (7.1) the relationship of E(y) to x for the reference station is 
E(y) = β0 + βχχ. The relationship of y to x for t he / A non reference station is 
E(y) = (ßo + ?j) + (ß + (ßy)j)x- Thus yj and (ßy)j represent how the intercept and 
slope for the yth station deviates from the intercept and slope of the reference 
station. On the other hand, Equation (7.3) presents the general linear mixed 
model. In this case /?0 and ß\ denote the average intercept and slope across the 
population from which the stations are drawn (e.g., the entire study areas). We 
then can attribute any deviations that exist from station to station as random 
fluctuations. For instance, S0J and <5lj7 represent random deviations in the 
intercept and slope, respectively, for the yth station. Both models allow for 
differences in the intercepts and slopes across the clusters. Equation (7.1) only 
allows the analyst to compare the specific m clusters in the study. Equation (7.3) 
focuses not on the specific clusters in the study but rather on the population from 
which the clusters are drawn. As such, the ¿ 0 / s and S\Js are known as random 
effects since they correspond to the yth cluster that is randomly drawn from a 
population of clusters. The proper analysis based on Equation (7.3) centers on σ%ο 

and σ2
δχ, since they describe the entire population of interest. 

Another difference in the two models is that the linear mixed model implies 
that observations made on the same cluster are correlated whereas no correla-
tion is implied by Equation (7.1). Specifically, in Equation (7.3), the covariance 
between any two observations yß and yjk (i^k), in the same cluster, is 
Cow(yß,yjk) = σ2

δο + aOQÖXxjk + σδοδ,χβ + o\xjkxß. If the cluster to cluster varia-
bility is negligible (i.e., σ\ , σ | = 0), then observations within the same cluster 
are independent. 

General Linear Mixed Model in Matrix Form 
Before discussing parameter estimation for the general linear mixed model, it is 
helpful to express the general linear mixed model in matrix notation. We write 
the general linear mixed model as 

y ^ X ß + Ζδ + ε (7.4) 

where X, β, and ε are as defined in Equation (7.2), Z is the (n x qm) matrix of 
predictor variables for the random effects, and δ is the associated {qm x 1) 
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vector containing the m levels of each of the q random effects. Furthermore, δ is 
assumed multivariate normal with E(8) = 0 and Var (δ) = D with D being a 
(qm x qm) positive definite matrix. Typically, the model errors and the random 
effects are assumed to be independent (i.e., Cov (ε,δ) = 0). Relating the fixed 
effects portion of Equation (7.4) to the fixed effects in Equation (7.3), 

X 

l«m 

X/7l 

X«2 

*nm-\ 

χηηι 

> y = 

y«i 

y«2 

y«m-i 

y«m 

, and β = 'βο] 
ß \ \ 

(7.5) 

with ln being a (njX 1) vector of ones, x„. is the (rijX 1) vector of regressor 
values for the yth cluster, yn. is the (rtjX 1) vector of responses for the yth 
cluster, and ß0 and ß\ denote the population averaged intercept and slope, 
respectively. Exemplifying this notation with the Kukupa example, lMl, xMl, yW|, 
and ß are 

\\~ 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

[l 

X«i — 

" 1 " 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

? y « i — 

"0.00] 

0.17 

0.17 

0.50 

0.75 

0.67 

0.00 

0.00 

1.00 

0.33 

0.17 

0.00 J 

, and ß 
iß. 

(7.6) 

respectively, where x„, represents the fixed effects vector of study years for 
which observations were conducted at station 1 and yn] is the corresponding 
vector of average counts (Avg-count) at station 1. The fixed effects ß0 and ß\ 
represent the intercept and slope parameters, respectively, for the line that 
relates the mean Kukupa count, across the population of observation stations, 
to time. 
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Relating the r andom effects port ion of Equat ion (7.4) to that of Equat ion (7.3), 

Z = 

1«, 
o„2 

0«m-, 

o»m 

o„, · 
K ■ 

on„,-, · 
o„m · 

■· o„, 

• o„2 

· · o„m_, 
*rim 

X/Í1 

o„2 

o* . . , 
o„m 

o„, 
X«2 

o«m_ 
o«m 

o„, ■ 

o„2 

'«/n-1 

X « m 

and6 = 

¿o,i 1 

¿0,2 

¿0,m 

¿1,1 
¿1,2 

¿l,m 

(7.7) 

In thinking of the contribution of the r andom effects, it is often helpful to partit ion 
Z and δ according to the number of r andom factors. Partitioning Z and δ from 
Equat ion (7.7), we have 

Z = z* 7 * 
^ 2 

and δ = 
δρ 

δ? 
where 

ζί = 

i«, 
^«2 

0„ 
1 "2 l*/I2 

1„„ 

z* = 

^«2 

U « m - 1 

0„„ 

^«2 

0«m_ 

(7.8) 

and 

«r 

"¿0,1 " 

¿0,2 

1 ¿0,m 

, « ? = 

"¿U 1 
¿1,2 

<>l,m 

(7.9) 

with δ* and δ* representing the vectors containing the m levels of the r andom 
intercept and slope terms, respectively. Using this notion of partitions, the general 
linear mixed model in Equat ion (7.4) is sometimes written as 

y = Xß + £z*6*+8 (7.10) 
l=\ 
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where δ* is the vector whose values comprise the levels of the /th random effect and 
Z* is the associated matrix of model terms. 

For the Kukupa example, if stations differed from one another only in terms 
of the intercept, the appropriate general linear mixed model is 

γ = Χβ + Ζ*δΐ + ε (7.11) 

where X is as defined in Equation (7.5), β = , and Z* and δ* are as defined Po 
ßx 

in Equations (7.8) and (7.9), respectively, with rij = 12 and j = 1, 2,...,10. If, 
however, the stations differ from one another due to random fluctuations in 
both the intercept and slope parameters, the appropriate general linear mixed 
model is 

γ = Χβ + Ζ*δ*+Ζ*δ* + ε (7.12) 

where X, β, Z*, and δ* are identical to what is written in Equation (7.11) and Z* 
and δ* are defined in Equations (7.8) and (7.9), respectively. 

7.1.3 Covariance Matrix, V 

Recall that the classical multiple linear regression model assumes that all the 
observations have equal variances and that the observations are uncorrelated. 
In such a case, the variance-covariance matrix of y, Var(y) = V = σ2

ε\η. When 
the data structure is such that observations are clustered and random effects are 
present in the model, the clusters themselves are assumed to be independent, but 
observations within the same cluster are correlated. Thus the variance-covariance 
matrix of y is no longer diagonal but block diagonal. The variance-
covariance matrix of y can be derived by taking the variance operator through 
the general linear mixed model from Equation (7.4). Thus 

Var(y) = V = Var(Xß + Ζδ + ε) 

Since the model errors and the random effects are assumed to be uncorrelated (i.e., 
Cov (ε,δ) = 0), 

V = Var(Xß) + Var(ZÖ) + Var(£) 

Taking advantage of the fact that Xß is the fixed effects portion of our model, Var 
(Xß) = 0. In addition, Z is a matrix of constants; thus we can simplify V to 

V = ZVar(ö)Z' + Var(£) (7.13) 
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We see that the covariance matrix of the responses in a general linear mixed model 
is composed of two parts: (1) the residual variation that is manifested in the 
dispersion among the model errors (i.e., the ε's) and (2) the random effect variation 
given by ZVar (δ)Ζ'. The variation among the model errors is equivalent to the 
variance of the conditional response, that is, 

Var(£) = Var(y|6) = S (7.14) 

which is often referred to as the within-subjects variation. Classical linear regression 
assumes that S is diagonal with S = σ\\η. Let D denote Var (δ). Since the random 
effects are assumed to follow normal distributions, we have 
δ ~ MVN (0,D). The diagonal elements of D tell us about how the levels of 
the random factors vary from subject to subject, after adjusting for the fixed 
effect covariates. As a result, we say that D models the between-subjects 
variation since it reflects the natural dispersion from one cluster (or one subject) 
to another. The covariance matrix of the responses in a general linear mixed 
model is then 

V = ZDZ' + S (7.15) 

The analysis of the general linear model makes various assumptions about 
the structures of D and S, depending on the problem at hand. When the 
variation among model errors (the e's) is due to sampling error or just random 
fluctuations, they are typically taken to be independently and identically 
distributed with constant variance, σ\. However, in situations where the 
observations within a cluster have a clear ordering or structure, we should 
assume that the correlation among the ε 's is non zero and varies in a systematic 
fashion. For instance, when observations are taken at equally spaced points in 
time, a common assumption is a first-order autoregressive structure (AR(1)) for 
the model errors within each of they clusters. As an example, suppose there are 
four observations in each cluster. In this case, the covariance matrix of the 
model errors in the yth cluster is 

Var(cy)=S,- = ^R / = ^ 

1 

P 

P2 

P3 

P 
1 

P 

P2 

P2 

P 
1 

P 

P3 

P2 

P 
1 

(7.16) 

where p denotes the correlation among any two adjacent model errors in the 
cluster. Here, Ry denotes the correlation matrix associated with observations 
within clustery. The structure of Ry is generally specified by the user. When the 
data are balanced, the R,· are all identical such that R,· = R for y = l,2,...,/w. In 
many situations, observations are not ordered based on time or space, and an 
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exchangeable (also known as compound symmetric) correlation structure is 
assumed where 

% 

1 P 
P 1 

P P 

• p 

• p 

The exchangeable (compound symmetric) structure assumes that observations 
within the cluster are equally correlated. Split plot experiments often assume 
such a structure. 

Example 7.2. Industrial Split Plot Plastic Strength Experiment. Kowalski, 
Parker, and Vining (2007) consider a response surface approach to an industrial 
split plot experiment involving the strength of a plastic, y. Four factors are 
identified as potentially important: 1—baking temperature (temp), 2—additive 
percentage (add), 3—agitation rate (rate), and 4—processing time (time). Each 
factor has two levels: low = -1 and high = 1. Temperature is a much harder to 
change factor than the other three factors. Consequently, the experiment 
randomly assigns the eight combinations of the other factors within each 
setting of temperature. Table 7.2 summarizes the data. Note that there are 
four whole plots (clusters) and within each whole plot there are eight sub 
plot units. Since the sub plot treatment combinations are randomly assigned 
within each whole plot, observations on sub plots within a whole plot are 
correlated. There is no natural time or space ordering among each of the eight 
observations within a whole plot. One approach to modeling this data is the 
marginal model 

y = Xß + £ (7.17) 

where X is the assumed model matrix involving the intercept and the four 
experimental factors, along with their interactions and it is assumed that 
Ε(ε) = 0 and Var (ε) = S. 

Assuming an exchangeable (compound symmetric) structure, the variance-
covariance matrix of the responses is given by 

TR. 

V = S = at 
R2 

R3 

0 1 

R4 
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Table 7.2 Industrial Split Plot Data for Plastic Experiment 

Oven Setting Temperature Additive Rate Time Strength 

2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 

-
- ] 

— 
— 
-
— 
— 
— 
-
-
-
-
— 
— 
-
-

-1 

—. 

- ] 

—. 

1 - ] 

— 

1 -

I - 1 
L -
I -

I -

I -

I -

I -

1 -

1 

—. 

—; 

— 

- ] 

- ] 

— 
— 

1 -
I -

— 

1 -
I -

I -

— 
1 

—. 

-1 
—' 

- ] 

— 

I -

I -
I -

I -

— 

1 -
I -

— 

1 -
I -

68.5 
66.8 
58.5 
70.8 
61.3 
51.8 
58.5 
66.2 
57.4 

I 57.5 
I 56.5 
I 63.8 

56.4 
I 58.1 
I 53.2 
I 58.5 
I 66.6 
I 63.8 
I 62.6 
I 63.2 
I 56.1 
I 63.3 
I 62.7 
I 65 
I 58.5 
I 64 
I 68 
I 65.6 
I 58.6 
I 73.3 
I 61.5 
I 64.2 

where each of the R,· (j = 1,2,3,4) is an (8 x 8) exchangeable correlation matrix. 
Equation (7.17) is a marginal model since it involves only fixed effect regression 
coefficients and the correlation among the sub plot observations within the 
same whole plot is handled solely through the variance-covariance of the 
model errors. 

As with Example 7.1, it may be of interest not only to model the relationship 
between the response and the experimental factors but also the variability from 
one whole plot to another. Having separate estimates of whole plot variation 
and subplot variation is often useful in terms of quality improvement. 
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Kowalski, Parker, and Vining fit the following first-order plus interactions 
mixed effects model for this design: 

y = ßo + ß\ temP + &wp + faadd + ß3rate + ß4time + 
ß23add*temp + ß24add * time + ß34rate * time + 
ßntemp * add + ßntemp * rate + ßl4temp * ¿/rae + ε 

(7.18) 

where ¿Β/, ~ Λ (̂0, σ )̂ denotes the random effect associated with the random 
oven settings and ε is the model error term. In matrix notation, the model is 

y = Χβ + Ζδ + ε (7.19) 

with y denoting the (32 x 1) vector of responses, X is the (32 x 11) model 
matrix, β is the associated ( l l x l ) vector of fixed effects model parameters, Z is 
the (32 x 32) matrix 

Z = 

u 
o8 
o8 
o8 

Og 

h 
o8 
o8 

o8 
o8 
18 
o8 

081 
o8 
Og 

18J 
and the single random effect, δ has levels given by the vector 

■a,· 

δ2 
δ = 

¿3 

L<54J 

The model errors are represented by the (32 x 1) vector ε = with Sj 

(j = 1,2,3,4) denoting the (8x1) vector of model errors in theyth whole plot 
(i.e. jth cluster). Note that Z has the identical format as Z* in equation (7.8). Since 
the subplot treatment level combinations of add, rate, and time are randomly 
assigned within a fixed level oí temp, the model errors could logically be assumed to 
be independent for a fixed whole plot. Consequently, taking the variance operator 
through (7.19), we can write the variance-covariance matrix of the responses as 

V = σ^ΖΖ' + S 

= ^ Z Z ; + σ% 
(7.20) 



LINEAR MIXED EFFECTS MODELS 331 

Thus for the y'th cluster, 

V a r ( y y ) = ^ 

1 1 · · · 1 
1 1 · · · 1 

1 1 1 

+ σ% (7.21) 

The covariance among any two observations, yß and yjk (i φ k), within the 
same whole plot j is Cov(j>y/,j>y¿) = σ\. The variance-covariance structure given 
in Equation (7.20) for the mixed model is an exchangeable structure with 

P = 
_ υδ 

°ί + σ\ 
Thus whether one utilizes the marginal model in Equation (7.17) or 

the subject-specific model in Equation (7.19) to model the data, the variance-
covariance matrix of the responses for both models has an exchangeable 
structure. The difference is that, in the marginal model, the correlation is 
treated as a nuisance, but in Equation (7.19) the cluster (i.e., whole plot) 
variance is of specific interest and is thus explicitly modeled. We return to the 
analysis of the model in Equation (7.19) later. 

Just as the structure of S is an important decision in the analysis of a general 
linear mixed model, the structure of D is also important. Recall that the 
diagonal elements of D tell us how much the individual random effects vary 
from cluster to cluster. In many applications, the random effects can be 
assumed to be independent, and thus D is a diagonal matrix. However, in 
situations that require random coefficient models, such as in Example 7.1, one 
may need to allow for correlation between the random intercept and the 
random slopes. In these situations, the correlation is assumed to occur for 
coefficients describing the same cluster, but coefficients on different clusters are 
assumed uncorrelated. In the Kukupa example, where we are allowing for a 
random intercept and a random slope, the covariance matrix of the random 
effect vector at the yth station would be 

Var(6y) = D y = Var 
JSo Cow (So j,5\j) 

Cov(<50,y,<5ij) 
(7.22) 

Regarding the notation in Equation (7.22), ajo denotes the variance associated 
with the random intercepts, σ\ denotes the variance among the random slopes, 
and Cov (¿0,7, <5i,y) denotes the correlation of the random intercept and slope 
at station/ If we assume independence among the random intercept and slope at 
station/ Cov (<50,> ¿i, #) = 0. It may not be immediately obvious when one needs 
to allow for a non zero correlation between ö0j and S\j. Since the response in the 
Kukupa example involves average Kukupa counts, it is possible that a station 
where large counts were observed at the beginning of the study suggests a 
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favorable habitat at that particular station. Thus given the fact that the study 
area was observed during a predator reduction period, counts may increase 
over time at a greater rate for stations with favorable habitats than for stations 
with less favorable habitats. Large counts at the beginning of the study would 
result in a larger intercept, and these stations may have steeper slopes over time. 
In such a setting, the random intercept and slope would be positively 
correlated. This phenomenon does not seem to occur in our example as 
observed in Figure 7.1. It thus may be more appropriate to assume Cov (¿0i/-, 
S\J) = 0. Just as the user must specify the structure of S in the software, the user 
also must specify the structure of D. The default structures of S and D are 
diagonal, which corresponds to independent model errors and independent 
random effects, respectively. 

It is important to keep in mind that different assumptions regarding the 
structures of S,· and Dy influence the number of parameters that one must 
estimate. For instance, in Example 7.1, if the user were to assume independence 
and equal variance among the model errors and independent random intercepts 
and slopes, only three variance parameters are estimated. Specifically, σ\, since 
Sy = ffglty, ajo (random intercept variance), and σ\χ (random slope variance). 
If, however, the user assumes that the random intercepts and slopes are 
correlated, four parameters must be estimated. Specifically, three parameters 
in D(^o,tf^,and σδ δι) and one parameter in S, the model error variance, σ\. 
In SAS, the user specifies the structure of the S,· in the REPEATED statement 
in PROC MIXED. The structure of D, is specified using the RANDOM 
statement in PROC MIXED. We illustrate the specification of various 
structures using both SAS and R when we revisit the examples. It is important 
to keep in mind that the structures for S7 and Dy are assumed to be consistent 
for every cluster. 

7.1.4 Parameter Estimation in the General Linear Mixed Model 

For the responses in the general linear mixed model, the marginal distribution 
of the response vector is 

y~MK7V(Xß,V) (7.23) 

As discussed in Section 2.5, the ordinary least squares estimator b = (X'X)-1X'y 
of the regression parameters is no longer optimal when V φ σ2

ε\η. Instead, the 
optimal solution is the generalized least squares estimate 

bGLS = (x'y-'xVVvV (7.24) 

where V is assumed known. When V is known, this estimate is also the 
maximum likelihood estimate of β. 

Clearly, in practice, the covariance matrix V is not known and must be 
estimated from the data. One of the most commonly used methods to estimate 
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V is restricted maximum likelihood (REML), an approach developed by 
Patterson and Thompson (1971). REML addresses the bias that is present in 
the maximum likelihood estimates of the variance components. Essentially, 
REML estimates the variance components by maximizing the likelihood 
function of a set of error contrasts given by C = Hy, where H is a ((n—p) x n) 
matrix whose columns are orthogonal to the fixed effects model matrix X. For 
the general linear mixed model, C follows a normal distribution with mean 0 
and covariance matrix HVH'. Working with a set of error contrasts produces a 
likelihood that does not depend on the fixed effects parameters in ß. Instead, 
the resulting likelihood is only a function of the variance components in V. 
Since the likelihood used for variance component estimation is based on this 
restricted set of error contrasts, estimates obtained from it are known as the 
restricted maximum likelihood estimates. Littell et al. (2006) show that the log-
likelihood of C can be written as 

/REMLOc-^lnlVI-^lnlX'VXI ¿(y- X b ^ V - ^ y - X b 0 1 ^ ) (7.25) 

Let a denote the ((#+1) x 1) vector of unknown parameters in the covariance 
matrix so that V = V(a). Also, let l'REML(a) = £/*(*) and £E M L (a) = 

d2 

Q β , /REML(«)· N o t e t h a t J'REML IS a ((q+ 1) x 1) vector and that ÍREML IS a 

({q+ 1) x (q+ 1)) matrix. The REML estimate is then calculated using an 
iterative procedure with the value at the (s + l)st iteration given by 

a(*+l) _ a(s) + M-'(«M)4EML («<*>) (7.26) 

where M (αω) is a matrix evaluated at OL(S\ The Scoring procedure uses M 
(a(j)) = -£[ /REML(« ( 5 ) ) ]> while the Newton-Raphson procedure sets M (a(j)) = 
- /REML(« ( Ä )) · The former quantity is the information matrix. Wolfinger et al. 
(1993) indicate that the Scoring algorithm in SAS drops second-order deriva-
tives involving V(a) and is less computationally demanding than the Newton-
Raphson approach. Generally, the procedure continues until the change 
between c¿s) and a (5+1) is sufficiently small. The resulting REML estimate of 
a is taken to be ά = α(5+1) and V = V(ä). 

For instance, in Example 7.2, the variance-covariance matrix for the 
responses in theyth whole plot, written in Equation (7.21), would be estimated by 

Vj(&) 

¿2 _L¿-2 

σε +σδ 
Λ2 

¿2 

z2 

Λ2 ¿2 _L_ ¿ · 2 
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where ά = 
σ? 

is the vector of converged REML variance component 

estimates. Once the variance parameters are estimated, the fixed effects model 
coefficients are estimated by 

b = ( x ' V ^ x V ' x ' V ^ y (7.27) 

The estimated variance-covariance matrix of b, is 

Var(b) = (x'V^x)"1 (7.28) 

The estimated standard errors of the regression coefficients are the square roots 
of the diagonal elements of Equation (7.28) and are used in hypothesis tests and 
confidence intervals involving the coefficients. 

7.1.5 Statistical Inference on Regression Coefficients and Variance 
Components 

The general linear mixed model, like the generalized linear model, lends itself to 
both Wald and likelihood inference. As observed in our discussions about Wald 
inference in Sections 4.2.4, 5.7, and 5.12, a possible test statistic for the 

hypothesis H0: ßj = 0 is (^=γ4 ] which is asymptotically χ] under H0. How-
ever, Kenward and Roger (1997) and Searle, Casella, and McCulloch (1992) 
point out that the estimated standard errors obtained from Equation (7.28) 
may underestimate the true standard errors of the coefficient estimates because 
they do not take into account the variability introduced by estimating the 
variance components in a. To resolve this, some analysts approximate the 

(bj - ßj) 
distribution of ^. ^ by appropriate /- or F-statistics. In general, the t-

se(bj) 

statistic takes on the form 

where the estimated standard errors can be obtained from Equation (7.28). If 
one is interested in testing a contrast involving the vector of fixed effect 
coefficients, that is, H0: Cß = 0, where C is a (c x k) matrix of contrasts, the 
general form of the F-statistic is 
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In practice, there are several methods for obtaining the appropriate error 
degrees of freedom for these tests. A popular choice within SAS PROC 
MIXED is a Satterthwaite type of approximation. For other methods and 
for a more detailed discussion of this matter see Little et al. (2006) and Verbeke 
and Molenberghs (1997, Section 3.5.2). Kenward and Roger (1997) propose 
corrected t- and F-statistics, which incorporate bias-adjusted standard errors 
instead of those obtained from Equation (7.28). SAS PROC MIXED also 
implements the Kenward - Roger approach. Wulff and Robinson (2009) use a 
simulation study to compare various standard error estimates for the general 
linear mixed model. They show that the Kenward - Roger approach is quite 
robust to a range of possible covariance structures. 

Often, an important question is whether the model should include a specific 
random effect. Under certain circumstances, if the /th variance component is 
not significantly different from 0, the analyst reduces the covariance matrix in 
Equation (7.15) by removing the associated random component (i.e., δ* ) from 
the general linear mixed model in Equation (7.10). Any decision to remove a 
variance component must take into account how the data were collected, 
especially with regard to the randomization. Typically, we conduct a REML 
likelihood ratio test. 

Let /REML denote the restricted log-likelihood given in Equation (7.25) for the 
full model. In this case, by full we mean the model with the more complicated 
covariance structure. Similarly, let /R |M L denote the restricted log-likelihood in 
Equation (7.25) for the reduced model. The REML likelihood ratio test statistic is 

9 /Full 
3 _ ^ R E M L _ 9/Red , "wFull (η -5ΐ\ 
Λ — o/Red ~~ - Z ' R E M L "T" Z / R E M L \'·*1) 

Z'REML 

The distribution of the REML likelihood ratio test statistic depends on whether or 
not any of the parameters being tested fall on the boundary of the variance 
parameter space as defined by Self and Liang (1987) and Verbeke and Molen-
berghs (2000, Section 6.3.4). Although different scenarios of model comparisons 
exist, three general cases are common. We outline the distribution of the 
likelihood ratio statistic given in Equation (7.31) for each scenario: 

Scenario 1. If v variance parameters are tested and none of the parameters 
specified under H0 as well as any nuisance parameters lie on the 
boundary, the p-value is 

p = Pr(xl>l) (7.32) 

This situation occurs when the user specifies a random intercept and 
a random slope and wants to see if there is a covariance between the two 
random effects. In this situation, Ho : σ^δχ = 0, where <50 and δ\ denote 
the two random effects and v = 1. 
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Scenario 2. One parameter is specified under i/0> and it falls on the 
boundary. If no other parameters are on the boundary, p is calculated 
using a mixture of a χΐ and γ\ distribution as 

p = 0.5 P r ^ > 1) + 0.5Pr(Z? > X) (7.33) 

This situation occurs when one compares a model with both a random 
intercept and random slope, independent of one another, versus a model 
with only a random intercept. In this situation, Ho : σ\ = 0, where δ{ 

denotes the random slope term. Verbeke and Molenberghs (2003) extend 
this situation to the case that tests the removal of j random effects from 
j+k uncorrelated random effects. 

Scenario 3. When testing the removal of a random effect from an unstruc-
tured D matrix, where D is the variance-covariance matrix of random 
effects, p is calculated as 

p = 0.5/v(j¿ > λ) + 0.5/v(Z t , > λ) (7.34) 

where k is the number of random effects in the full model. This situation 
occurs when one tests whether a model that includes a correlated random 
intercept and random slope is significantly different from one that 
includes only a random intercept. Here, Ho : σ\ = σ ^ , = 0 and k = 2. 

All tests used to compare covariance structures require the full fixed effects 
vector, β. Thus one must determine the appropriate covariance structure before 
conducting significance tests for the fixed effects terms. We illustrate the use of 
the REML likelihood ratio tests when the examples are revisited later. 

The restricted log-likelihood is also a popular statistic for comparing model 
fit among models containing the same fixed effects: the smaller the value 
of -2/RE^JL the better the fit for the model. It should be noted, however, that 
one can always make this value smaller by adding more parameters to the 
model. Two alternative information criteria for assessing model fit are Akaike's 
Information Criterion (AIC) (Akaike, 1974) and the Bayesian Information 
Criterion (BIC) (Schwarz, 1978). The AIC is 

AIC = - 2 f i e l
L + V (7.35) 

where q denotes the number of parameters in the variance-covariance matrix 
of the responses, V. In some software packages, such as R, q denotes the total 
number of parameters in the model, that is, the number of fixed effects 
parameters plus the number of parameters in V. The BIC is 

BIC = - 2 / ^ ' L + ?*/«(«) (7.36) 



LINEAR MIXED EFFECTS MODELS 337 

where m is the number of clusters. In R, q once again denotes the total number 
of parameters in the model and m = N, the total number of observations in the 
data set. 

7.1.6 Conditional and Marginal Means 

As we proceed with mixed models, it is important to understand the difference 
in the conditional response mean and the marginal response mean. By 
conditional, we mean the average response conditioned on the random effects. 
In general, the conditional mean is 

E(y\S) = Χβ + Ζδ (7.37) 

More specifically, the conditional mean for the yth cluster is 

E(yHj\6j)=Xj^ + Zj6j (7.38) 

where y„ is the vector of responses for they'th cluster, X7 is the {rij x p) matrix of 
fixed effect model terms associated with the yth cluster, β is the corresponding 
( p x l ) vector of fixed effect regression coefficients, a, is the (q x 1) vector of 
random factor levels associated with theyth cluster, and Zy is the corresponding 
matrix of predictors for they'th cluster. Note the difference in notation between 
the 5j in Equation (7.38) and the Sf in Equation (7.10). The Sf represent each of 
the q random factors whereas <57 denotes the levels of the q random factors at 

the yth cluster. So, for the yth cluster, 6/ 
>V 

6qJ 

Similarly, the Z* represent 

the matrix predictors for each of the q random effects and the Z,· are the 
matrices of predictors for each of the j clusters. It is helpful to illustrate this 
notation using the Kukupa example. The model for the conditional mean at 
observations station 1, for instance, is 

£ ( γ Λ | | δ ι ) = Χ ι β + Ζ1δι (7.39) 

where yn, is as defined in Equation (7.6), Xi=[ln ,xn i] with 1„, and x„, defined 

in Equation (7.6), δ\ = ¿ ' with ¿0,i and <5U denoting the levels of the 

random intercept and random slope factors, respectively, for station 1, and 
Ζι=[1Λι χ„,]. 
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The mean response across all clusters is 

E(y) = E[E(ynj\Sj)] = Xl· (7.40) 

The expressions in Equations (7.39) and (7.40) are commonly referred to as the 
subject-specific and population-averaged means, respectively. From Equations 
(7.39) and (7.40) it is once again intuitive to see why the δ, are referred to as 
random effects. They are effects since Ζ,-δ,- represents the deviation in the 
conditional mean at cluster j and the mean across all clusters. The effects 
represented by the parameters in δ7 are random because they correspond directly 
to the the y'th cluster and the yth cluster is assumed to be a randomly selected 
cluster from the population of clusters. D 

7.1.7 Estimation of the Random Coefficients 

The coefficients for the random effects in Equation (7.10), the δ* 's, are assumed 
to have normal distributions with zero means. Their specific values for a given 
cluster are just realizations from normal distributions. For instance, in the 
Kukupa example, ¿0,iand δ\\ are considered realizations of the random intercept 
and random slope, respectively, at station 1. Although the random effects are 
assumed to each have a mean of zero, it is possible to obtain predicted values for 
the realizations associated with each cluster. We can obtain the predicted values 
for the <5*'s in Equation (7.10) by maximizing the joint likelihood of the 
distribution of the random effects and the distribution of the conditional 
response. When we write the conditional response, yw.|6/, we mean the responses 
within the y'th cluster. The levels of the random effects are fixed by the 
conditioning; thus the only stochastic component now is the model errors for 
theyth cluster given by Sj. From Equations (7.38) and (7.14) we have that 

y|8~W(Xß + Z6,S) (7.41) 

Thus the likelihood for the conditional response is 

L(Ms;y) ex Is-^exp j - i ( y - Xß - Z&)'S'l(y - Χβ - Ζ δ ) | (7.42) 

where ds is the vector whose elements comprise the unknown variance and 
covariance parameters in S. Since the random effects are assumed to have mean 0 
and variance-covariance matrix D, the likelihood of the random effects is 

JS?(«D;6) OC i D - ' l e x p i - ^ ' D - ^ j (7.43) 

where <xD is the vector whose elements comprise the unknown variance and 
covariance parameters in D. Utilizing the assumption that Cov (ε, δ) = 0 from 
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Section 7.1.3, the joint likelihood is obtained by multiplying the two likelihood 
expressions in (7.42) and (7.43). Upon taking the log of the joint likelihood we 
have 

ln[¿?(Ms,6,az);y)] = - i { l n | S | + (y - Xß - ZA)'S'l(y - Χβ - Ζδ) 
1 (7.44) 

+ ln|D| + δ'Β_1δ} + constant 

The predicted values for the random effects, commonly referred to as the best 
linear unbiased predictors or BLUP are then found by differentiating the log-
likelihood in Equation (7.44) with respect to δ and then solving. It can be shown 
that this process yields 

6 = DZ ,V"1(y-Xß) (7.45) 

where V = ZDZ' + S. The estimated generalized least squares estimates of ß, 
A — 1 1 A — 1 

b = (XV X) XV y, are then supplied for ß in the expression above and the 
REML estimates of the variance-covariance matrices (D and S, and thus V) 
are also substituted in the above. Once the random coefficients are estimated, 
then the vector of estimated conditional means is 

£(y |6) = μ|δ = Xb + Ζδ (7.46) 

A (1 - a) 100% confidence interval on the conditional mean, E(y\ δ) is 

μ\δ±ζι.Λ/2?β(μ\δ) (7.47) 

where ί̂ (μ|<5) denotes the estimated standard error of the estimated conditional 
mean. SAS PROC MIXED and R provide the lower and upper confidence 
bounds for the conditional mean at user specified locations. In a similar fashion, 
the vector of estimated marginal means is 

% ) = μ = Xb (7.48) 

A (1 - a )100% confidence interval on the marginal mean, E{y), is 

μ ± ζ,_β/2Λ?(?ϊ) (7·49) 

where ?<?(μ) denotes the estimated standard error of the estimated marginal 
mean. SAS PROC MIXED and R provide the lower and upper confidence 
bounds for the marginal mean at user specified locations. Estimation of the 
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random effects, and subsequently the conditional and marginal means, are 
illustrated with the Kukupa example in the next section. 

7.1.8 Examples Revisited 

Example 7.3. Kukupa Data Revisited. Consider again Example 7.1 in 
which averaged Kukupa counts are observed for each of ten stations over a 
12-year period. The biologist seeks to determine whether or not Kukupa 
numbers have changed significantly over the study period. 

Based on some exploratory analyses, a square root transformation of the 
response was deemed to be appropriate. Also, to provide meaningful results for 
the intercept, the Year variable was centered as Year-6.5. 

The first step in a general linear mixed model analysis is to decide on the 
appropriate covariance structure of the data. Figure 7.1, which plots the raw 
data along with separate linear model fits for each station, suggests that there is 
more variability among the slopes than the intercepts. We consider five 
potential linear mixed models and the results from each are given in Table 7.3. 

Each of the models fit in Table 7.3 contains the single fixed effect, Year, but 
different covariance patterns are fit. The first model does not use random 
effects to model the correlation among observations within the same cluster. 
Instead, it specifies a first-order auto regressive (AR(1)) structure for the 
repeated observations. An unstructured variance-covariance matrix was 
originally specified for the repeated observations but convergence was an issue. 
The model is 

Table 7.3 Estimated Parameters for Models Fit to Kukupa Data Using Different 
Covariance Structures 

Independent Dependent Random 

Intercept 
Year 

°\ 
P 

< 4 
<$o,<5i 

- 2 log L 
AIC 
BIC 

No Random 
Effects + 

AR(1) 

0.4417 
0.0521 
0.1008 
0.2311 

— 
— 
— 

69.4 
73.4 
74.0 

Random 
Intercepts + 

Independence 

0.4420 
0.0525 
0.0888 

— 
0.0121 

— 
— 

69.9 
73.9 
74.5 

Random 
Slopes + 

Independence 

0.4420 
0.0525 
0.0934 

— 
— 

0.0006 
— 

73 
77 
77.6 

Random Slopes 
and Intercepts+ 

Independence 

0.4420 
0.0525 
0.0807 

— 
0.0128 
0.0007 

— 
66.7 
72.7 
73.6 

Slopes and 
Intercepts + 
Independence 

0.4420 
0.0525 
0.0807 

— 
0.0128 
0.0007 
0.0015 

65.7 
73.7 
75.0 



LINEAR MIXED EFFECTS MODELS 341 

where we take the variance-co variance of the responses in theyth cluster to be 

given by V,· = S,· = σ\ 

response by y, keep in mind that for the analyses presented y denotes the 
square root of the counts. 

In the second model, we allow for random intercepts among stations and 
assume independent model errors for the observations across time within a 
cluster. The model is 

γ = Χβ + Ζΐδ* + ε 

with Z* defined as in Equation (7.8) and δ* defined as in Equation (7.9), 
m = 10, and the variance-co variance matrix of responses is 

ν = < Ζ * Ζ ? + σε
2Ι„ 

In the third model, we allow only for random slopes and independent model 
errors. The resulting model is 

y = Xß + Z*6£ + £ 

with Z* defined as in Equation (7.8) and δ* defined as in Equation (7.9). The 
variance-covariance matrix of responses is 

\ = σΙΖ*Ζ'* + σ2
εΙη 

The fourth model allows for independent random intercepts and random 
slopes with independent model errors. The model is explicitly 

and the resulting variance-covariance matrix takes the form 

V = <Z*Z'* + ir2,iZ*Z*+a2S 

Here, Z*, Z*, δ*, and δ* are as defined for models 2 and 3. 
The final model specifies random intercepts and random slopes; however, 

it also allows for the two random effects to be correlated. Thus the 

1 P 
P 1 ,10 

. Although we designate the 

p11 p10 
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response model is the same as it is for model 4 but the variance-covariance 
matrix is now 

V = ZDZ'+<S 

where Z is as defined in Equation (7.7) and D, the variance-covariance matrix 
of the two random effects, is 

D= 
δο δο,δ\ 

(Τδο,δ]
 σ 1 

Model 5 fits best in terms of — 2l^^L and model 4, which is a more 
parsimonious model in terms of covariance structure, fits best in terms of AIC 
and BIC. The next best fitting model is model 1, which uses no random effects. 
Instead, it models the covariance structure solely through the model errors. 

One can construct a likelihood ratio test to compare formally the covariance 
structures in models 4 and 5. Such a test takes the difference of the -2l^^L 

values from both models, resulting in 

* = -2/REML4 + A ' = 66.7 - 65.7 = 1.0 

As pointed out in Section 7.1.5, one needs to be careful when thinking about 
the null distribution of this statistic. Here, Ho : σ ^ , = 0 and from Section 
7.1.5 one can easily see that the test of interest here falls under scenario 1. Thus 
the p-value is computed as 

= Pr(i2
v>l) = Pr(x]> \) = 0.3173 

which suggests that one cannot reject H0. The implication here is that there is 
no need to model a covariance term for the two random effects. 

One can take a similar approach to determine if a more parsimonious model fits 
as well as model 4. Consider model 2 where only the random intercept is specified. 
Now, the null hypothesis is Η$\ σ2

δ = 0. The REML ratio test statistic is 

* = - 2 Ä 2 + C L 4 = 69.9 - 66.7 = 3.2 

In this case, our test falls under scenario 2. The /»-value is then 

/> = 0.5¿Y(já>3.2)+0.5/Y(jtf>3.2) 

which is essentially one-half of the p-value from a χ] distribution. We have then 
Pr(x] > 3.2) = 0.074. Thus the/?-value of our test is approximately 0.037, and we 
conclude that the variance associated with the random slope is significantly 
different from zero. 
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Table 7.4 SAS PROC MIXED Code for Running the Analyses of Models 1 and 4 
Specified for the Kukupa Data 

SAS Code Kukupa Data: 

*Model 1 CS and no random e f f e c t s ; 

proc mixed data=Kukupa; 
c l a s s s t a t i o n Cal_year; 
model sqcount = year / cor rb s; 
repea ted Cal_year / type=cs s u b j e c t = s t a t i o n r ; 
ods output covparms=cov; 
run; 

*Model 4 random intercept and random slope and independent errors; 

ods html ; 
proc mixed data=Kukupa; 
class station; 
model sqcount = year / ddfm=Satterthwaite residual s 
outpred=outpred outpredm=outpredm; 
random int year / subject=station G; 
run; 
ods output solutionR=random; *produces da ta s e t of b lups ; 
ods html c l o s e ; 

We can proceed with the analysis as we would with any other regression model 
once we have selected the appropriate covariance structure. If we have multiple 
regressor variables, we may need to reduce the model for the mean so as to obtain 
a more parsimonious one based on tests for the fixed effects. Table 7.4 gives the 
appropriate SAS PROC MIXED code to fit model 4. Table 7.5 summarizes 
the results. The first section of code fits model 1, the marginal model with the 
exchangeable correlation structure. 

The information in the Dimensions section provides the number of covar-
iance parameters, which is 3: σ^,σ] , and σ| . The two columns in X 
correspond to the overall intercept and overall slope corresponding to the 
time trend. The two columns in Z correspond to the random intercept and 
random slope. The material in the Estimated G Matrix section is a result of the 
G option in the Random statement and provides the estimated variance-
covariance matrix of random effects for station 81. Since we only have two 
random effects, this is a (2 x 2) matrix with the diagonal entries being 
σ2

δο= 0.01281 and σ\χ =0.000681. The estimate for o\ is reported adjacent 
to Residual in the next set of output labeled as Covariance Parameter 
Estimates. 
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Table 7.5 Output for Model 4 Analysis of Kukupa Data 

The Mixed Procedure 

Model Information 
Data Set 
Dependent Variable 
Covariance Structure 
Subject Effect 
Estimation Method 
Residual Variance Method 
Fixed Effects SE Method 

WORK.BHEAD 
sqcount 
Variance Components 
Station 
REML 
Profile 
Model-Based 

Degrees of Freedom Method Satterthwaite 

Class Level Information 
Class Levels Values 
Station 10 81 82 83 84 85 86 87 88 89 90 

Dimensions 
Covariance Parameters 3 
Columns in X 2 
Columns in Z Per Subject 2 
Subjects 10 
Max Obs Per Subject 12 

Number of Observations 
Number of Observations Read 120 
Number of Observations Used 120 
Number of Observations Not Used 0 

Iteration History 
Iteration Evaluations -2 Res Log Like Criterion 
0 1 75.07378128 
1 1 66.66645496 0.00000000 

Estimated G Matrix 
Row Effect Station 
1 Intercept 81 
2 year2 81 

Coll 
0.01281 

Covariance Parameter Estimates 
Cov Parm 
Intercept 
year2 
Residual 

Subject 
Station 
Station 

Estimate 
0.01281 
0.000681 
0.08072 

Col2 

0.000681 

Fit Statistics 
-2 Res Log Likelihood 66.7 
AIC (smaller is better) 72.7 
AICC (smaller is better) 72.9 
BIC (smaller is better) 73.6 

(Continued) 
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Table 7.5 Continued 

S o l u t i o n f o r F i x e d E f f e c t s 
E f f e c t E s t i m a t e S t a n d a r d E r r o r DF t V a l u e P r > | t | 
I n t e r c e p t 0 .4420 0 .04420 9 1 0 . 0 0 < . 0 0 0 1 
y e a r 2 0 .05247 0 .01116 9 4 . 7 0 0 .0011 

S o l u t i o n f o r Random E f f e c t s 
Effect í 

Intercept 
year 

Intercept 
year 

Intercept 
year 

Intercept 
year 

Intercept 
year 

Intercept 
year 

Intercept 
year 

Intercept 
year 

Intercept 
year 

Intercept 
year 

Station 
81 
81 
82 
82 
83 
83 
84 
84 
85 
85 
86 
86 
87 
87 
88 
88 
89 
89 
90 
90 

Estimate 
-0.00614 
-0.03016 
0.1296 

-0.01325 
-0.08934 
-0.01345 
-0.1588 
-0.00541 
0.004781 
-0.00510 
0.1250 
0.01347 
-0.03060 
0.01339 
0.03436 
0.01085 

-0.06676 
-0.00877 
0.05786 
0.03844 

Std Err Pred DF 
0.07246 
0.01860 
0.07246 
0.01860 
0.07246 
0.01860 
0.07246 
0.01860 
0.07246 
0.01860 
0.07246 
0.01860 
0.07246 
0.01860 
0.07246 
0.01860 
0.07246 
0.01860 
0.07246 
0.01860 

15.1 
8.56 
15.1 
8.56 

15.1 
8.56 

15.1 
8.56 

15.1 
8.56 

15.1 
8.56 

15.1 
8.56 
15.1 
8.56 

15.1 
8.56 

15.1 
8.56 

t Value 
-0.08 
-1.62 
1.79 

-0.71 
-1.23 
-0.29 
-2.19 
-0.29 
0.07 
-0.27 
1.73 
0.29 
-0.42 
0.72 
0.47 
0.58 

-0.92 
-0.47 
0.80 
2.07 

Pr 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0 

> |t| 
.9336 
.1411 
.0938 
.4951 
.2364 
.4888 
.0445 
.7780 
.9483 
.7904 
.1049 
.4882 
.6787 
.4907 
.6422 
.5747 
.3714 
.6491 
.4370 
.0704 

The Solution for Fixed Effects section is a result of the S option in 
the Model statement and provides the generalized least squares estimates of 
the parameters in ß. The estimated standard errors of b provided in this section 
are the square roots of the diagonal elements of Equation (7.28). In this 
example, the Kenward-Rogers adjustment does not result in different standard 
errors for the fixed effects estimates. The degrees of freedom are calculated 
using the Satterthwaite approximation due to the specification of ddfm= 
S a t t e r t h w a i t e as an option in the Model statement. Note that average 
Kukupa counts are increasing over time. The estimated marginal relationship 
of average Kukupa counts to Year is 

y = 0.442 + 0.0525 x (Year - 6.5) = 0.1008 + 0.0525 x Year 

The estimated marginal means are output to the outpredm data set by specifying 
outpredm=outpredm as an option in the Model statement. The estimated 
profile for the yth station is obtained by taking 
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y\¿Qj,oij = b0 + ¿>oj + b\ x {Year - 6.5) + ö\j x (Year - 6.5) 

= (b0 + ¿oj) + (*i + ¿i,/) x (Year - 6.5) 

where ¿o,/ and ¿>\j denote the random intercept and random slope BLUPs, 
respectively, for they'th station. The estimated conditional means are output to 
the outpred data set using the outpred=outpred option in the Model 
statement. The BLUPs are found in the section "Solution for Random 
Effects". As an illustration, the estimated profile for station 81 (station 81 is 
the first station) is 

y | 50,i,5i,i = (0.442 - 0.0061) + (0.0525 - 0.0302) x (Year - 6.5) 
= 0.2909 + 0.0223 x Year. 

Figure 7.2 gives the profiles for each of the stations along with the overall mean 
square root count (dark profile) versus. Year produced by MINITAB after 
exporting the outpred (data set of conditional means) and the outpredm (data 
set of marginal means). 

7.1.9 Diagnostics 

The general linear mixed model in Equation (7.4) makes two main sets of 
assumptions. The first set involves the model errors, the e's. Recall that the 
model errors reflect the natural dispersion among observations within a cluster. 
Thus the model errors describe how the conditional responses, the y\S's, vary 
around their cluster means. We assume (1) the model errors are normally 

1.0 A 

§ 0.8 J 
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2 0.6 \ 
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ST 0.4 J 

1 
•2 

I °'2 1 

0.0 \ 
Ή 1 1 1 1 i 1 ' 
0 2 4 6 8 10 12 

Year of study 
Figure 7.2 Plot of conditional mean square root counts for each station over time along with the 
marginal mean square root count over time (dark profile). 
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distributed with mean zero and constant variance; (2) their variance-covariance 
matrix follows a specified structure, S; and (3) they are independent of the 
random effects. Since the model errors are 

ε = y - Χβ - Ζδ 

the proper residuals to investigate assumptions regarding the e's are 

ec = y - % | δ ) = y - Xb - Ζδ 

We use the notation ec to denote the fact that these residuals are calculated 
using the conditional mean, and we refer to them as the conditional residuals. 
Gregoire, Schabenberger, and Barrett (1995) suggest using studentized resi-
duals for investigating assumptions regarding the model errors where the 
studentized residual for the jth observation in the fth cluster is 

4;Stud = e y V ^ 4 ) ( 7 · 5 0 ) 

where yVar(^) is the estimated standard error of e^. The studentized 
conditional residuals are output to the outpred data set by specifying 
residual as an option in the Model statement. Figure 7.3 gives the boxplots 
of the studentized e^ for each of the stations after exporting the data set outpred 
to MINITAB. It appears that the studentized conditional residuals are in fact 
centered at zero with approximately constant variance. Figure 7.4 gives the 
normal Q-Q plot of the studentized conditional residuals produced by 

1 
1 1 

Ί Π 

T 

i 1 1 1 1 1 1 1 1 r 

81 82 83 84 85 86 87 88 89 90 

Station 

Figure 7.3 Boxplots of studentized, conditional residuals for each station. 
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Figure 7.4 Normal Q-Q plot of studentized, conditional residuals. 
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Figure 7.6 Scatterplot of random slopes versus corresponding intercepts. 

MINITAB to assess the normality assumption. This plot does not indicate any 
obvious violation of the normality assumption of the model errors. 

The next set of assumptions concerns the random effects, the ¿'s. The 
random effects are assumed to each be normally distributed with mean zero 
and constant variance. We can check for normality by doing Q-Q plots for each 
of the random effects. The ods output solutionR=random statement 
produces the BLUPs associated with the random intercept and slope terms. 
Figure 7.5a is the normal Q-Q plot for the random intercepts. Figure 7.5b is the 
normal Q-Q plot for both the random slopes. The normality assumptions for 
the random effects seem OK. 

Model 4 also assumes that the random intercept and slope effects are 
independent; that is, 

/ x f i doj 

Var(äy) =Var ' nj 
Oj 

is a diagonal matrix for j = 1, 2,...,m. To check this assumption, we use the 
scatterplot of the estimated random intercepts and slopes given in Figure 7.6. 
With the exception of one of the stations, the scatter appears quite random, 
suggesting independence between the two factors. D 

Example 7.4. Industrial Split Plot Plastic Experiment Revisited. Example 
7.2 considers the relationship between the strength of plastic, y, and four 
factors: baking temperature {temp), additive percentage {add), agitation rate 
{rate), and processing time {time). Each factor has two levels: low = —1 and 
high = 1. The factor temp is a hard-to-change, whole plot factor. There are four 
whole plots (clusters), representing the randomized levels of temp. Within each 
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Table 7.6 Model Fit Statistics and Estimated Variance 
Components From Example 7.4 

* 
σίο 
-2 log L 
AIC 
BIC 

No Random (Independent V) 

14.213 
— 

153.40 
177.44 
189.97 

Random Intercept 
9.782 
5.802 

149.11 
175.11 
188.69 

whole plot, the eight combinations of the other factor levels are randomly 
assigned. Unlike the Kukupa example, there is no natural time ordering among 
the eight observations within a cluster (a whole plot). Thus an exchangeable 
correlation structure seems sensible. To fit a compound symmetric correlation 
structure, the user can specify a random effect whose levels correspond to the 
individual whole plots, like a random intercept model, the user can specify the 
compound symmetric structure through S. However, one of the engineer's 
interest is to ascertain the magnitude of the whole plot variability for quality 
improvement purposes. As a result, a mixed model where the whole plot 
variability is explicitly modeled is more appropriate. Equation (7.18) gives the 
expression for the model. For comparison purposes, we also fit the marginal 
model in Equation (7.17); however, we assume that Var(s) = S = σ^Γ^, which 
assumes independence among sub plot observations within each whole plot. 

This specific experimental design is OLS-GLS equivalent (see Vining, 
Kowalski, and Montgomery, 2005). One consequence of OLS-GLS design is 
that the fixed effects coefficient estimates do not depend on the variance 
structure. As a result, the fixed effects estimates are the same for both models. 
Table 7.6 summarizes the variance component estimates and model fit statistics. 
The random intercept model, implying an exchangeable covariance structure, is 
better than the model assuming an independent covariance structure in terms of 
AIC and BIC. This result is no surprise given the experimental protocol. 

One can conduct a REML likelihood ratio test of i/o · o¿0 = 0 
versus H\ : σ]ο φ 0 by taking the difference of the —2/g?gJfL values from both 
models as follows: 

- 2 « - ( - 2 / ^ M L ) = 153.4 - 149.11 = 4.29 

As pointed out in the analysis of Example 7.1 as well as in Section 7.1.5, the null 
distribution of the statistic above is a mixture of χ, and χΐ distributions. The 
/7-value is essentially one-half of Pr(jfi > 4.29) = 0.038. Thus the/rvalue of our 
test is approximately 0.019, implying that G\Q φ 0. The random intercept is 
indeed needed and the full model is preferred. 

The analysis of the model in Equation (7.18) is done here in R. Table 7.7 
gives the appropriate R code. Table 7.8 provides the corresponding results. The 
first set of output in Table 7.8 consists of the model fit statistics AIC, BIC, and 
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Table 7.7 R Code for the Mixed Effects analysis of Data in Example 7.4 

R Code Example 7.2Data: 

#plastics is the name of the data set 

plastics <- read.table("plastics.csv", header=TRUE, sep="/"/ 
na.strings="NA", dec=".", strip.white=TRUE) 

model 1<-1 me (Strength- Temp + Add + Rate + Time + I (Temp*Add) + 
I (Temp*Rate) + I (Temp*Time) +1 (Add*Rate) + 
I (Add*Time) +1 (Rate*Time) , 
random = ~ 1 |OvenSet, data=plastics) 

summary(model1) 

#obtain the blups from model 1 

blupmodl <- ranef(modell) 
eblupmodl 

#extract the estimated V matrix from model 1 for first whole plot 
#Need to install the mgcv package to do this 

library (mgcv) 
extract.lme.cov2(modell,plastics,start.level=l) 

# standardized residuals vs fitted is from first plot statement 
# Normal Q-Q plot is the second plot and is from qqnorm statement 
# Code for producing Figure 7 .7 

par(mfrow=c(2,1)) 
p lo t ( res iduals (modell) ~ fitted (modell) , xlab=" F i t t e d values" , 

ylab="Standardized res iduals" ) 
abline(h=0) 

qqnorm (res iduals (modell) , xlab = "Normal quan t i l e s " , 
ylab="Standardized r e s idua l s " , main="") 

qql ine(res iduals(model l ) ) 

#Figure 7 .9 produces Normal Q-Q p lo t for blups 

qqnorm (ranef (modell) [, 1] , xlab= "Normal quan t i l e s " , 
ylab=" Estimated BLUPS", main="") 

the REML log-likelihood. Recall that in likelihood ratio testing, the log-
likelihood should be multiplied by -2 . The material under Random Effects 
provides the estimated standard deviation of the random intercept under 
(Intercept) and the estimated standard deviation of the model errors, σε, under 
Residual. The squared values of these quantities appear in Table 7.6 Next in the 
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Table 7.8 R Output for Analysis of Strength in Plastics Data in Example 7.4 

Linear Mixed-Effects Model Fit by REML 
Data: Plastics 

AIC BIC logLik 
175.11 188.69 -74.553 

Random Effects: 
Formula: ~1 | OvenSet 

(Intercept) Residual 
StdDev: 2.4087 3.1276 

Fixed Effects : Strength-
I(Temp * Rate) + I(Temp * 

- Temp + Add + Rate + Time + I (Temp * Add) + 
Time) + I (Add * Rate) + I (Add * Time) + 
I(Rate * Time) 

(Intercept) 
Temp 
Add 
Rate 
Time 
I(Temp * Add) 
I (Temp * Rate) 
I (Temp * Time) 
I (Add * Rate) 
I (Add * Time) 
I (Rate * Time) 

Value 
62.003 
1.634 
1.191 
1.134 
1.541 
0.184 
1.566 
1.397 
0.934 
0.303 
1.172 

Std.Error 
1.32520 
1.32520 
0.55289 
0.55289 
0.55289 
0.55289 
0.55289 
0.55289 
0.55289 
0.55289 
0.55289 

DF 
19 
2 
19 
19 
19 
19 
19 
19 
19 
19 
19 

t-value 
46.788 
1.233 
2.153 
2.052 
2.786 
0.333 
2.832 
2.526 
1.690 
0.548 
2.120 

p-
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0 
0, 

-value 
.0000 
.3427 
.0443 
.0542 
.0118 
.7424 
.0107 
.0206 
.1074 
.5899 
.0474 

Estimated BLUPS 
(Intercept) 

1 -0.57815 
2 -2.11129 
3 2.11129 
4 0.57815 

Estimated Covariance Matrix for First Whole Plot 
1 2 3 

1 15.5839 5.8019 5.8019 
2 5.8019 15.5839 5.8019 
3 5.8019 5.8019 15.5839 
4 5.8019 5.8019 5.8019 
5 5.8019 5.8019 5.8019 
6 5.8019 5.8019 5.8019 
7 5.8019 5.8019 5.8019 
8 5.8019 5.8019 5.8019 

5. 
5. 
5. 

4 
.8019 
.8019 
.8019 

5 
5.8019 
5.8019 
5.8019 

15.5839 5.8019 
5, 
5, 
5, 
5. 

.8019 

.8019 

.8019 

.8019 

6 
5.8019 
5.8019 
5.8019 
5.8019 

15.5839 5.8019 
5.8019 
5.8019 
5.8019 

7 
5.8019 
5.8019 
5.8019 
5.8019 
5.8019 

15.5839 5.8019 
5.8019 
5.8019 

8 
5.8019 
5.8019 
5.8019 
5.8019 
5.8019 
5.8019 

15.5839 5.8019 
5.8019 15.5839 
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output is the summary table of the analysis of the fixed effect coefficients. 
R does not provide the Satterthwaite adjustments and the Kenward-Rogers 
adjustments. Apparently, those in charge of the lme routine, have issues with 
both approaches. All of the output produced to this point is a result of the 
summary (mode 11) statement in the R code. The material in EstimatedBL UPS 
is a result of the statement ranef(modell) and summarizes the estimated values of 
¿o,i, ¿o,2, <5o,3, and¿o,4, which are the estimated levels of the random intercept 
corresponding to whole plots 1 through 4, respectively. The Estimated Covar-
iance Matrix For First Whole Plot is a result of e x t r a c t . lme . cov2 
( m o d e l l , p l a s t i c s , s t a r t . l e v e l = l ) . This section of output is the first 
(8 x 8) block of the estimated (32 x 32) variance-coyariance matrix of responses, 
V. The (1,1) entry of this first block, Vi, denotes Var ()>ii), where 

Var(jn) = σζ
δο +σζ

ε= 2.40872 + 3.12762 = 15.5837 

In this case V! has the compound symmetric structure described in 
Section 7.1.3. 

Figure 7.7a gives the plot of the studentized conditional residuals as defined 
by Equation (7.50) versus the predicted values for the conditional mean. 
Figure 7.7b gives the normal Q-Q plot of the conditional residuals. Other 
than a couple of unusually large standardized residuals, the assumptions 
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Figure 7.7 (a) Standardized conditional residuals versus the predicted conditional means and 
(b) normal probability plot of conditional residuals. 
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Figure 7.8 Normal probability plot of estimated BLUPs from plastics data. 

regarding the model errors appear to be met. Figure 7.8 gives the normal 
Q-Q plot of the estimated BLUPs. This plot suggests that the levels of the 
random intercepts follow a normal distribution. Documentation in the R 
code in Table 7.7 specifies the code used to produce the plots in Figures 7.7 
and 7.8 D 

7.2 GENERALIZED LINEAR MIXED MODELS 

Chapters 4 and 5 develop a flexible class of models for non normal data known 
as generalized linear models. Inherent to this development is the assumption of 
independent data. As pointed out in Section 7.1, many situations exist in which 
there is a need for models that involve both fixed and random effects. 
Generalized linear models that contain random effects are known as generalized 
linear mixed models (GLMMs). These models, like linear mixed effects models, 
are useful for a wide breadth of study types. 

Example 7.5. Epileptic Seizure Data. Thall and Vail (1990) present data 
from a clinical trial of 59 epileptics (see Exercise 6.7). This study records for 
each patient the number of epileptic seizures experienced every 2 weeks for a 
period of 8 weeks. Half of the patients receive an anti-epileptic drug, progabide, 
and the other half receive a placebo. The goals of the study are to study the rate 
of seizures over the course of the study for both the placebo and treatment 
group and to characterize the patient-to-patient variability in terms of the 
seizure rates over time for both treatment groups. Since the observations at 
each time point are counts, a Poisson distribution is a natural choice for 
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modeling. Although patients are independent of one another, the multiple 
responses on each patient over time are likely correlated. One can address this 
correlation by introducing one or more random effects to the Poisson general-
ized linear model. D 

Example 7.6. Film Manufacturing Experiment. Robinson et al. (2004) 
consider a film manufacturing experiment involving both mixture and process 
variables. The film manufacturer produces rolls of film using a screw extruder 
and wishes to investigate the affect of six factors on film quality. In manu-
facturing, three mixture components (xu x2, and x3) are melted and mixed in an 
extruder, eventually producing a solid roll of film. This particular experiment 
contains five distinct recipes involving the combinations of the three mixture 
variables, some of which are replicated, to give a total of 13 batches. Once a roll 
of film is produced, the roll is cut into pieces and the pieces are randomly 
assigned to the levels of the process variables (p\,p2, and/?3) according to a 23 - 1 

design. For practical purposes, two separate randomizations take place. The 
first level of randomization involves the order in which the mixture combina-
tions are used for film formulation. The second level of randomization occurs 
after the roll is produced and involves the levels of the process variables being 
randomly assigned to cut pieces of film. Figure 7.9 shows schematically 
the process. Figure 7.10 gives the mixture design region. The primary goal 
of the experiment is to determine factor levels that optimize the amount of 
polarized light that passes through the film. Engineering knowledge of the 

Inlet Thickness Gauge 
V 7 

wm-t Chill Rolls 

Winder 

Thermocouples H e a t e f s M o , t e n 

Polymer 
Web 

Figure 7.9 Schematic of film manufacturing process. 
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Figure 7.10 Mixture design region for film manufacturing data. For each mixture formulation, a 
23_1 design is run in the process variables. 

Table 7.9 Data for Film Manufacturing Example 7.6 in Coded Variables 

Mixture Formulation 

Batch Number {xu*2, X3) 

1 (0.35,0.35,0.3) 
4 (0.8,0,0.2) 
5 (0.6,0,0.4) 
8 (0,0.8,0.2) 
9 (0,0.6,0.4) 

17 (0.8,0,0.2) 
21 (0,0.8,0.2) 
24 (0,0.6,0.4) 
29 (0.35,0.35,0.3) 
32 (0.8,0,0.2) 
33 (0.6,0,0.4) 
36 (0,0.8,0.2) 
37 (0,0.6,0.4) 

( 1 , - 1 , - 1 ) 

397.88 
136.3 
56.17 

125.89 
5.57 

230.29 
91.14 
74.89 

367.15 
146.03 
53.77 
83.52 
14.77 

Process Variables (ρι,ρ2, Ρ3) 

(-1,-1,1) 

127.41 
92.78 

113.02 
48.29 
17.11 

114.39 
26.22 
11.06 

133.64 
38.16 
50.11 
20.99 

7.22 

(1,1,1) 

356.35 
406.3 

74.26 
33.59 
12.35 

242.39 
77.67 
45.79 

175.24 
169.1 
71.82 
51.58 
38.32 

( -1 ,1 , -D 

70.93 
284.71 
119.99 

7.19 
4.52 

92.74 
11.85 
8.98 

89.27 
81.97 

124.26 
7.01 
3.21 

process suggests that the response follows a gamma distribution. Observed 
values of the response on sub plots (pieces of film) within a given whole plot are 
correlated. One can account for this correlation by introducing a random effect 
into the gamma generalized linear model. Table 7.9 provides the data. D 
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7.2.1 The Generalized Linear Mixed Model 

It is natural to begin by considering a model for the conditional mean because 
the observations are grouped into clusters. The generalized linear mixed model 
(GLMM) relates the conditional mean for the y'th cluster to the fixed and 
random effects as follows: 

£(y«jV) = * -1 (n,·) = s~x (x/P+ZA) (7.51) 

where yn. is the vector of responses at the yth cluster, g is a differentiate 
monotonic link function, x\j is the linear predictor given by η, = Χ/β + Ζ,-δ,-, Xj is 
the (nj x p) matrix of fixed effects model terms associated with the jih cluster, 
β is the corresponding (p x 1) vector of fixed effects regression coefficients, δ, is 
the (q x 1) vector of random factor levels associated with they'th cluster, and Z7 

is the corresponding matrix of predictors for the jih cluster. There are nj 
observations in the yth cluster for a total of w = £ w y observations. The 

conditional response, y\S, is assumed to have an exponential family member 
distribution. Each of the q random effects are assumed normally distributed 
with mean zero. The variance-covariance matrix of the vector of random 
effects in they'th cluster is denoted Dy. The Dy are typically taken to be the same 
for each cluster. For the linear mixed model discussed in Section 7.1, the link 
function, g, is simply the identity link. As we discuss estimation and other 
topics in this section, we refer to the general expression of the conditional mean 
given by 

E{y\&)=g-l(n)=g-\XV + ZB) (7.52) 

The variance-covariance matrix of the vector of conditional responses is Var 
(y|6) = S, where 

S = Al'2(n)RAl'2{n) (7.53) 

with Α(η) being the diagonal matrix that contains the variance functions 
associated with the assumed probability distribution of the response. See 
Section 6.4.1 regarding specific forms of Α(η). The variance functions are 
evaluated at the linear predictor, η. R is the user specified correlation matrix, 
which is common to all clusters. 

To illustrate the model notation, consider the epilepsy data set. Suppose that 
we wish to model the number of seizures over time for the control group 
patients (i.e., trt = 0). We specify a random patient effect because the patients 
in the study are a random sample of patients from a population of possible 
patients. We consider both a random intercept for each cluster as well as a 
random slope for each cluster, like the Kukupa data set in Example 7.1. We 
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begin with a random intercept model. Since we are interested in modeling a 
count, we assume that the number of seizures for a given patient, y\S, follows a 
Poisson distribution. Using a log link to relate E (y|6) to time, x, the random 
intercept model for the conditional mean is 

£(y|«t)=r,(n) = exP(xß + z6i) 

where the fixed effects components are 

'in, 

i«2 

1/127 

[1«28 

X«i 

Xfl2 

X«27 

X«28 _ 

,y = 

Regarding notation, ln. is an (nj x 1) vector of ones, \n. is the (nj x 1) vector of 
time points for theyth cluster, y„. is the (njX 1) vector of responses for the 
yth cluster, and rtj = 5 for each of they = 1, 2,.. . , 28 clusters in this data set. The 
parameters ß0 and ßx denote the population averaged intercept and slope, 
respectively. Regarding the random effects, 

1«, 
o„2 

o„27 

o«28 

o„, 
h2 

Kl 

o«28 

where the levels of δ* correspond to the number of patients in the control 
group. In summary, the conditional response y\ö is assumed to follow a Poisson 
distribution with mean E(y\S*) = g~~l (η) = exp(/J0 + βχχ + δ*). The variability 
from patient to patient is expressed by the random intercept δ*. It is this 
random intercept term that accounts for the correlation among the repeated 
observations for each patient. 

For the industrial split plot film manufacturing example, prior data and an 
engineering understanding of the process suggests a gamma response. Thus we 
have that yß\r, \/Xji~Gamma{r, l/λβ), where yß denotes the film quality for the 
¿th piece of film from the jth batch (roll). Section 5.5.1 uses the following 
parameterization of the gamma density for y~Gamma(r, 1/X), 

, and p = ßo 
ßx 

(7.54) 

0„, 

and δ* 

¿0,1 

¿0,2 

<V 28 
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" Γ ( Γ ) 
fy(y)=K 'r,_, (7-55) 

Robinson, Myers, and Montgomery (2004) choose a log link [i.e., g(ßß\Sj) = In 
(μ7ϊΙ<5/)] to model the response as a function of the mixture and process 
variables. Thus the linear predictor is 

ηβ\δ] = \η(μβ\δ^=χ'βρ + δ; (7.56) 

where 

3 3 2 3 

xy/ß = Σ ^ x ^ v + ßi2xV*x2Ji + Σ 7 c ^ 7 + Σ Σ YbcXbjiPcji (7.57) 
6=1 c = l 6=1 c = l 

and ¿y is the random effect associated with the y'th batch. The random batch 
effects, the <5/s, are assumed to be i.i.d. Normal^), af). In this equation, the /Ts 
are the first- and second- order mixture terms, the y's are the linear process 
terms, and the i/̂ 's represent the mixture-by-process interactions. The linear 
predictor does not include an intercept since we are fitting a second-order 
Scheffe model for mixture components. Relating the model in Equation (7.56) 
to the general formulation in Equation (7.52), we have that g ( ) = l n ( ) , y is 
the (52 x 1) vector of observations starting with the four observations from 
the first roll and so on, Z is a 52 x 13 classification matrix of ones and zeros 
where the kith entry is a one if the kth observation (k = 1,...,52) belongs to 
the Ith roll (/ = 1, ,13). The rows of the 52 x 13 model matrix X are formed 
by Xy for each observation. In summary, we assume that the conditional 
distribution of yß\öj is gamma and the conditional mean, μβ\δβ depends on r, xjV 

β, and Sj. 
The major difference between generalized linear mixed models (GLMMs) 

and generalized linear models (GLMs) is the presence of the random effects 
in the GLMMs. When we use GLMMs, the data consists of clusters (e.g., 
patients, whole plots) and the levels of the random effects correspond to the 
clusters. Recall from Chapter 6 that we also can use GEE models for data 
structured in clusters. GEE models are most useful when the interest is solely 
in the marginal mean. We can use GLMMs to model both the conditional 
and marginal means. GLMMs have the added advantage of explicitly 
modeling variance components. In GLMs the data are not structured into 
clusters and the observations are assumed independent of one another. In 
GLMMs, we assume that the conditional response (i.e., the response 
conditioned on a fixed setting of the random effects) follows a probability 
distribution that is part of the exponential family. For GLMs, however, we 
assume that the unconditional response, y, follows an exponential family 
member distribution. 
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7.2.2 Parameter Estimation in the GLMM 

Sections 4.2.2 and 4.3 presented the details of maximum likelihood estimation 
of the parameters in the linear predictor, the jS's, for binary and Poisson 
responses, respectively. Section 5.3 outlines maximum likelihood equations for 
any member of the exponential family. Section 7.1 points out that we can base 
our inferences on maximizing the marginal likelihood of the response for the 
linear mixed model. Section 7.1 also pointed out that we typically base our 
inferences on maximizing the marginal residual likelihood of the data, REML. 
When the random effects and the data are normal, and we have an identity link, 
we have the standard linear mixed model 

y = Xp + Ζδ + ε 

The marginal distribution of y is easily obtained by taking the expectation and 
variance operators through the model, producing E(y) = Xp and Var(y) = 
ZDZ' + S. We know that y - N (Xp, ZDZ' + S) since a linear combination 
of normal variables is also normal. For GLMMs, however, we assume a non 
normal conditional response, y\ö, and normal random effects. In these cases, 
obtaining the marginal distribution of y is a more challenging task. 

There are three general approaches for coming up with the marginal 
likelihood in GLMM settings:(l) linearizing the conditional mean and then 
repeatedly applying linear mixed models techniques to the approximated 
model; (2) using numerical methods to approximate the integrals involved in 
the marginal likelihood and developing a set of estimating equations based on 
this approximation; and (3) using a Bayesian approach. In this section we 
outline two linearization methods: pseudo-likelihood (PQL) and marginal 
quasi-likelihood (MQL) for parameter estimation. These methods are broadly 
applicable and have intuitive appeal. PQL is the default method in the SAS 
procedure GLIMMIX. Despite their utility, PQL and MQL can produce biased 
estimates in situations where the sample size is small, particularly for binary 
data. As a result, an increasingly popular method for the analysis of GLMMs 
numerically approximates the integrals involved in the marginal likelihood. The 
procedure then sets up the estimating equations for parameter estimation based 
on the approximated integrals. Breslow and Lin (1995) and Pinheiro and Chao 
(2006) discuss the limitations of PQL and MQL. A user can specify the integral 
approximation methods in PROC GLIMMIX through the METHOD = 
option where the user may request the Laplace or the quadrature approxima-
tions. Schabenberger (2007) gives details and examples of the use of these 
methods. Section 7.3 outlines the Bayesian approach. 

Pseudo-Likelihood Parameter Estimation for GLMMs 
GLMMs use the conditional response, y\S, to model the variation among 
observations within the same cluster. Variation among the clusters is attributed 
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to the random effects in δ. Thus the joint density of y|6 and δ describes the total 
variability in the data. Under the assumption that the model errors are 
independent of the random effects in mixed models, this joint density is 

/y.*(y|*i«) =Λιβ(γ|β)*Λ(») (7.58) 

where fy\^() denotes the joint density of y|6 and δ, / y | ö ( ) denotes the 
conditional distribution of the response given the random effects, and fe( ·) 
denotes the distribution of the random effects. We obtain the marginal 
distribution of the response by integrating over the distribution of the q 
random effects as follows: 

/y(y) = |Λ|δ(γ|δ)*Λ(δ)Λ (7.59) 

Unfortunately, this integral rarely exists in closed form; hence the need for the 
Laplace and quadrature methods to approximate this integral for the purpose 
of setting up parameter estimation equations. The linearization methods such 
as PQL and MQL do not work with the marginal distribution in Equation 
(7.59) directly. Instead, they work with the pseudo response, proposed by 
Breslow and Clayton (1993) and Wolfinger and O'Connell (1993). 

A Subject-Specific Approach 
The PQL linearization method first constructs a pseudo-modelinvolving pseudo-
data based on a first-order Taylor series approximation of the conditional 
mean. The conditional mean is 

£(y|6) = r 1 ( X ß + Z8) 

= ί _ , ( η ) = μ|* 

A first-order Taylor series approximation of μ δ about given estimates of ß and 
δ, b and δ, results in 

r'foW-'W-AÍüdi-íi) (7.60) 

where Δ* « is an n x n diagonal matrix of derivatives with the (i,i) entry 
A r - i -i - 1 

(<5g~ \Άί)Ι^Άί) evaluated at ή = Xb + Ζδ. Multiplying both sides by A*=J 
and re arranging terms, we obtain 

A* 
i - i ( r ^ - r W + x b + zSwxp + ze (7.6i) 
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Replacing g \r\) with the vector of responses, y, we have a vector of pseudo-
responses, y, 

A* . 
- 1 

(y - rW+Xb + zS (7.62) 

It is easy to see that E(y) in Equation (7.62), assuming fixed b and δ, is just the 
left-hand side of Equation (7.61). The variance-covariance matrix of y|6 is 

Var(y|8)=^:'<1]"1Var(y|6)[A¿ 

[AS-JJ'VWRA»/^) 1 n=n 
1-1 

where R is a user specified correlation matrix common to all clusters as 
discussed in Section 6.4. Thus one can consider estimation of model parameters 
using the linear mixed model 

y = Χβ + Ζδ + ε (7.63) 

where y is the vector of pseudo-responses calculated using Equation (7.62), β is 
the vector of fixed effect parameters, δ is the vector of random effects whose 
variance-covariance matrix is given by D, while the variance-covariance matrix 
of the model errors, Var(e) = Var(y|6). The variance-covariance matrix of the 
pseudo-responses is 

Vy = ZDZ' + 
- 1 

(7.64) 

where S = A1/2 (ti)RA1/2 (η). The model for the pseudo-response in (7.63) is 
identical to the linear mixed model given by Equation (7.4) in Section 7.1 except 
for an additional step where the vector of pseudo-responses, y, depends on 
estimates of D, R, β, and δ. 

The iterative procedure that fits the model in Equation (7.63) initially uses 
the raw data as the value of y and the identity matrix I for S. The procedure 
then fits a normal linear mixed model using a method such as REML to 
estimate the variance components in D. It then substitutes these estimates into 
Equation (7.64) to obtain an estimated variance-covariance matrix Vy. An 
estimated value for ß, b, can then be calculated using 

(x'vy:'x) XV, y (7.65) 

which has an estimated variance-covariance matrix 

Var(b) = (x'V^ X)~ (7.66) 
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The estimate of the random effect vector is 

¿ = D Z V ^ ( y - X b ) (7.67) 

and the pseudo-response vector is then re calculated from these estimates and a 
second linear mixed model is fit. The process continues until estimates of the 
fixed effects and variance components converge. It is important to note that 
the estimated regression coefficients in b and the estimated BLUPs in δ have 
asymptotic normal distributions. 

Since the estimation method described above is based on a linearization of 
A 

the conditional expectation as a function of ή = Xb + Ζδ, calculation of the 
pseudo-response involves the vector of estimated random effects δ. As a result 
the value of δ affects the estimates of β. Since the levels of δ correspond to 
individual clusters or subjects, this methodology is commonly referred to in the 
literature as a subject-specific estimation procedure. Substituting the results 
from Equations (7.65) and (7.67) into Equation (7.52) yields the estimated 
conditional mean, 

j i | 6=g- 1 (xb + Z6) (7.68) 

Plots of the profiles of the estimates of the conditional means for each of the 
clusters enable the user to visualize the variability from one cluster to the next. 

A Population-Averaged Approach 
In many applications, the user is more interested in estimating the uncondi-
tional or the marginal mean of the response than in estimating the conditional 
mean. For the general linear mixed model discussed in Section 7.1, where 
£(y|8) = Χβ + Ζδ, one easily can find the estimate of the marginal mean by 
taking the expectation of the conditional mean with respect to the random 
effects as follows: 

Z?(y)=£[£(y |6) ]=Xß 

Obtaining the marginal mean for a GLMM is more cumbersome since it 
involves the evaluation of the integral in Equation (7.59). In general, unless the 
link function is the identity, or δ = 0, in which case the GLMM is actually a 
GLM, one must resort to approximations. Approximate expressions for the 
marginal mean and variance involve linearizing the conditional mean, given in 
Equation (7.52), via a first-order Taylor series expansion about E(r\) = Χβ. The 
expansion here is about the average value of the linear predictor over the 
random effects. 
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A first-order Taylor series expansion of E(y\6) about the expectation of the 
£(η) = Χβ yields 

i « ) = g~' (η) » g~' (XP) + A ¿ x p ( n - Χβ) (7.69) 

where Αη=Χρ is an n x « diagonal matrix of derivatives with the (/,/) entry 
(¿^(η^/δη, · ) evaluated at Χβ. Taking the expectation of this expression gives 
the following approximation of the unconditional mean: 

£(y) = £[£(y |8)]«g- 1 (XP) (7-70) 

This approximation is exact for a linear link function and is more accurate 
when the variance components associated with δ are close to zero. When the 
variance components are not close to zero, second-order Taylor series expan-
sions may be preferable. 

The approximate unconditional variance-covariance matrix of y can be 
determined from the relation 

Var(y) = Var[£(y|6)] + £[Var(y|5)] (7.71) 

The operations over the square brackets are calculated over the distribution of 
the random effects. The unconditional variance, Var [E (y|6)], is the sum of the 
variation in the average response across different batches. The expected 
conditional variance is E [Var (y|6)]. Using Equation (7.71), the unconditional 
variance can be approximated by 

Var(y) « A^ZDZ'A^+S* (7.72) 

where the variance of the conditional expectation is obtained by taking the 
variance operator across the expression in Equation (7.69). The expectation of 
the conditional variance is found by taking the expectation of the expression in 
Equation (7.53). The linear predictor η is evaluated here at η0 = Χβο for a given 
value β0. The matrix D is the same variance-covariance matrix associated with 
the specified random effects that was discussed in Section 7.1.3. 

Wolfinger and O'Connell (1993) develop an approach known as marginal 
quasi-likelihood (MQL) for estimating the fixed effects regression parameters 
when the interest primarily focuses on the unconditional mean. This method is 
similar to the pseudo-likelihood method described for the subject-specific 
approach except that the linearization in MQL is conducted about ή0 = Xb, 
the estimated expectation of the linear predictor. Since the linearization in 
MQL occurs about the population average of the linear predictor, the approach 
is known as a population-averaged estimation procedure. 

Performing this linearization, we have 

^ η ) « ί Γ Η η ο ) - < ή ( η - ή ο ) (7-73) 
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where Δ*=ή is an nxn diagonal matrix of derivatives with the (/,/) entry 
(5g_1(^)/<5^ evaluated at ή0 = Xb. Multiplying both sides by \^i=i{ and 
rearranging terms, we obtain 

η=η 0 (r1(n)-^"I(no))+xb«xß + z6 

The population-averaged pseudo-responses, ypa, are 
i - i 

yPa=[<4]_ (y-r'(%))+xb 

Consider the linear mixed model 
ypa = Xß+Z6 + E 

(7.74) 

(7.75) 

for estimation of the model parameters. The expressions in Equations (7.73)-
(7.75) are the same as those in Equations (7.60), (7.62), and (7.63), respectively, 
except now they are functions of ή0, rather than ή. Also, the pseudo-response is 
no longer a function of δ; however, the right-hand side of the equation is still a 
function of δ. As a result there is no need to calculate δ as was done in the 
subject-specific method when computing the pseudo-response. 

The estimates in b now are 

b - ( X 'V y
: >)" ' X 'V y

: >P (7.76) 

which are impacted by the random effects only through the estimated variance-
covariance matrix, V̂  . Like the estimates in b for PQL, these estimates also 
have asymptotic normal distributions. The variance-covariance matrix of these 
estimates is 

Var(b) = (x 'Vy>) 

with 

V« =ZDZ' + 
Jpa 

Ag -
- 1 

(7.77) 

(7.78) 

In general, the estimated fixed effect parameters, the b's, obtained via the 
subject-specific method, are not the same as those obtained via the population-, 
averaged method. Once the final estimates of β and Vy a are obtained from 
MQL, the estimated marginal (population-averaged) mean response is 

A=r'(xb) (7.79) 

where b is given by Equation (7.76). 
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7.2.3 Statistical Inference on Regression Coefficients and Variance 
Components 

Inference involving the regression coefficients and variance components in 
GLMMs proceeds similarly to what was in Section 7.1 for the linear mixed 
model. An appropriate test on the variance component associated with a 
particular random effect determines if that effect belongs in the model, which 
in turn allows the analysts to reduce the covariance matrix in Equation (7.64) 
or (7.78). One can compare two covariance structures through a REML 
pseudo-likelihood ratio test (LRT). In SAS 9.2, the REML pseudo-likelihood 
ratio test for comparing two covariance structures uses the COVTEST 
statement in SAS PROC GLIMMIX. This approach fits the full model, which 
is the model with the most complex covariance structure of interest, and 
then takes the pseudo-data from the last iteration to calculate the associated 
REML pseudo-likelihood value. Let /pULL denote this restricted log-pseudo-
likelihood value. The procedure then uses the same pseudo-data to fit the 
reduced model and computes the corresponding pseudo-likelihood. Let /R E D 
denote this restricted log-pseudo-likelihood value. The appropriate likelihood 
ratio test statistic, A, is 

λ = F̂ULL ~ ^RED (7.80) 

Once again, the distribution of this test statistic depends on whether any of the 
parameters fall on the boundary of the variance parameter space as defined by 
Self and Liang (1987) and Verbeke and Molenberghs (2000, Section 6.3.4). 
The SAS GLIMMIX procedure allows for the Scenarios 1-3 outlined in 
Section 7.1.5 when computing p-values. See SAS/STAT 9.2 User's Guide 
Statistical Inference for Covariance Parameters for more details. Similar to 
what was done for linear mixed models, the tests used to compare covariance 
structures for GLMMs are conducted with the full fixed effects vector, β. We 
illustrate tests for comparing covariance structures in the next section. 

Once the form of the covariance matrix is determined, it is necessary to test 
the significance of the fixed effects for the model in Equation (7.75). Again, we 
can utilize Wald tests. To test the hypothesis H0 : & = 0 versus Ha : /?/ ̂  0, 
where /?,· is the /th element of ß, the Wald test statistic is 

í í=^h < 7 · 8 1 ) 

se[bi) 
where b¿ is the corresponding element in b and se(bi) is the square root of the 
corresponding diagonal element of var (b) given in Equation (7.66) for subject-
specific inference and in Equation (7.77) for population-averaged inference. 
The null distribution of this test statistic is a /-distribution. 

Quite often, there is also interest in conducting inference on the conditional 
and/or marginal mean response at a specific point, x0. Since the estimated 
conditional and marginal means are nonlinear functions, inference focuses on 
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the linear predictor. Taking the inverse of the link function provides the 
corresponding inference for the means. For instance, from Equation (7.68) the 
estimated conditional mean for clustery at x0 is 

fi(x0)\clusterj = g~x (x'0b + £ δ λ (7.82) 

where the Sy represent the BLUPs for they'th subject associated with each of the 
q random effects. The linear predictor is then 

q 
r\(xo)\clusterj = x'0b + ^ P Sy (7.83) 

i=\ 

Since the parameter estimates in r)\clustery are asymptotically normal, r)\clustery 
is also asymptotically normal. The approximate (1 — a)100% confidence 
interval on r\\clusterj is 

r)\clusterj±z{aL/2se{ri\clusterj) (7.84) 

GLIMMIX and R both provide estimates of the standard error of the 
conditional linear predictor, se(r\\clusterj). The corresponding (1 — a) 100% 
confidence interval on μ(χο) I clustery is 

g - 1 \fi\clusterj-z{jx,2se(q\clusterj)),g~l (r)\clusterj+z{_^se(Y\\clusterj)) 

(7.85) 

Similarly, from Equation (7.79), the estimated marginal mean at x0 is 

A ( x 0 ) = r l ( x » (7-86) 

The corresponding estimated linear predictor is 

¿7(xo)=xób (7.87) 

where b is defined in Equation (7.76). Like the conditional linear predictor in 
Equation (7.82), the marginal linear predictor in Equation (7.87) has an 
asymptotic normal distribution. The approximate (1 - a)100% confidence 
interval on η is 

ti±zl-a/2se{ft (7.88) 
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GLIMMIX and R both provide estimates for the standard error of the 
marginal linear predictor, se{9¡). The corresponding (1 - a) 100% confidence 
interval on μ(χο) is 

[g-\r¡-z^lMn)U~\H^-^e{r¡))] (7-89) 

We illustrate the construction of confidence limits for both the conditional and 
marginal means later with the epilepsy data. 

7.2.4 Subject-Specific Versus Population-Averaged Prediction Models 

As previously mentioned, prediction models for GLMMs depend on the scope 
of inference desired by the practitioner. Subject-specific models are particularly 
useful in repeated measures studies where the focus is the individual profiles of 
subjects across time. From Equation (7.68) these models yield estimates of the 
mean that are conditional on the levels of the random effects. When interest is 
in estimating general trends across the entire population of random effects, the 
population-averaged models are more useful. For instance, in the film manu-
facturing example, the engineer is likely more interested in the average film 
quality across a population of rolls of film rather than the individual prediction 
models for each specific roll of film. A popular approach for estimating the 
marginal mean using the subject-specific predictions given by Equation (7.68) is 
to simply set δ = 0 since E(6) = 0. However, this estimate of the marginal mean 
differs from the estimate of the mean produced by the population-averaged 
modeling approach. 

To illustrate this point, consider the following GLMM 

Ε(γ\δ) = exp{\ + X + δ} (7.90) 

where we assume that δ ~ N (0, 0.652) and that X takes on values between -1.0 
and 1.0. We also assume a gamma distribution for the conditional response, 
y\S. We generated five random values for the δ. The dotted plots in Figure 7.11 
are the profiles corresponding to each of the five levels of δ. Recall that the 
levels of the random effect, <5, correspond to specific clusters of observations. By 
generating five random normal variates for <5, we are simulating the presence of 
five clusters of observations. The distance between the conditional profiles is a 
function of the magnitude of Var(<5) and represents the cluster to cluster 
variability. The larger Var(<5) is, the more spread out the profiles are. Note the 
histogram of the gamma distribution to the right of Figure 7.11. While the 
normal distribution represents the natural variation from one cluster to 
another, the gamma distribution represents the natural variation among 
observations within the same cluster. 

We can provide an estimate for the marginal mean by simply taking the 
average of the five random normal variates generated for δ and substituting 
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llhl·^ 
Unexplained 
variation among 
observations 
within the same 
cluster follows a 
gamma 
distribution 

Figure 7.11 Profiles of the conditional mean, Ε(γ\δ) = exp {1 + X + <5}, for five random normal 
realizations of δ (δ = -0.28, -1.08, 1.05, -0.745, and 0.774; profiles represented by dotted curves). 
Profile of the estimated marginal mean when δ=δ (represented by bold dashed curve) and for the true 
marginal mean, E{y) = exp {1.211 + X) (represented by bold solid curve). 

this average for δ into Equation (7.90). The bold, dashed curve in Figure 7.11 is 
the profile for this estimate of the marginal mean. We obtain the true average 
profile by integrating out the ¿'s from Equation (7.90) as follows: 

E[E(y\ö)}= f exp{l+X+<5}/(<5) (7.91) 

where f{ ·) denotes the normal density centered at 0 with variance 0.652. Note 
that E[E(y\S)] = E(y) is the quantity actually modeled in population-averaged 
GLMM. Evaluating this integral we have 

E{y)=exp{\.2U+X} (7.92) 

The bold solid curve in Figure 7.11 is the profile corresponding to the true 
marginal mean. Please note the difference between the approximate marginal 
mean obtained by substituting the average of the deltas into Equation (7.90) 
(the bold dashed curve) and the true marginal mean from Equation (7.92) (the 
bold solid curve). The practical implication of this difference is that any 
estimate of the marginal mean based on the subject-specific prediction model 
is not the same as the estimate of the marginal mean based on the population-
averaged prediction model. If interest is in the marginal mean, one should use a 
GLMM that specifically models the marginal mean. 

7.2.5 Examples Revisited 

Example 7.7. Epilepsy Data Revisited. Consider again Example 7.5. One 
goal of the study is to examine the rate of seizures over the course of the study 
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for both the placebo and treatment groups. The number of seizures at the first 
time point (year = 0) is the baseline number of seizures experienced 8 weeks. 
The seizure counts at each of the other time points are observed over a 2 week 
period. We let treat represent the indicator variable for treatment where 

{ 0 for placebo subjects 
1 for progabide subjects 

Following Thall and Vail (1990) we define läge = In (age) and ¡base = In 
(baseline / 4). We divide baseline by 4 to put it on the same scale for seizure 
counts as the counts observed at each of the other time periods. Two patients, 
207 and 227, have what appears to be very unusual data. Consequently, we omit 
them from the analysis. Thus there are a total of 57 subjects in the modeled data. 
The main goals are to determine if the average number of seizures for those on 
progabide is less than for those on the placebo and to see if the seizure rates 
decline over the time periods (period). Interest also lies in determining if seizure 
rates vary from one subject to another. Since the patients in the study are a 
random sample of patients, random slopes and intercepts are of interest if seizure 
rates vary from one subject to another. As a result, we utilize the subject-specific 
PQL approach to the analysis of the Poisson GLMM. 

The first step is to decide on the appropriate covariance structure of the data. 
We consider four potential GLMMs. Table 7.10 summarizes the results for each. 
Each of the four models contains four fixed effects: treat, period, läge, and Ibase. 
However, we fit different covariance structures to each model. This analysis 
assumes a log link. 

The first model does not use random effects to model the correlation among 
observations within the same cluster, where each subject is a cluster. Instead, 
this model specifies a first-order auto regressive (AR(1)) structure for the 

Table 7.10 Summary of Model Fits to the Epilepsy Data 

Intercept 
treat 

period 
läge 
Ibase 

** 
«Í 
Φ 
P 

No Random 
Effects + 
AR(1) R 

-2.2218 
-0.1900 
-0.0613 

0.7450 
0.9573 

— 
— 

3.2190 
0.4145 

Random 
Intercepts + 

Independent R 

-0.8359 
-0.3039 
-0.0663 

0.3551 
0.9038 
0.2415 

— 
— 
— 

Random 
Slopes + 

Independent R 

-2.4033 
-0.2333 
-0.1111 

0.8384 
0.9330 
— 

0.0285 
— 
— 

Independent Random 
Intercepts and 

Slopes + Independent R 

-1.2264 
-0.3154 
-0.0733 

0.4751 
0.9094 
0.2296 
0.0083 
— 
— 

-2Res\n(PL) 515.10 506.77 565.79 504.06 
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repeated observations. An unstructured correlation structure for R turns out not 
to be feasible due to convergence issues, which is something that often 
occurs with an unstructured specification. Directly specifying the covariance 
structure of the responses in a GLMM and not using random effects to account 
for the correlation structure is said to be modeling with R-side effects. These 
models are strictly marginal models. GLMMs specified using only R-side 
effects to account for the correlation directly parallel what is done in GEE 
models. 

In the linear mixed model the R-side covariance is the covariance structure of 
the residuals. There are applications when one may be interested in modeling 
with both random effects as well as R-side effects. Schabenberger (2007) provides 
more details. The first model under consideration is 

£(y) = g-f(i|) = exp(Xß) (7.93) 

Regarding notation, 

x l w i χ 2 « ι χ 3 « ι x 4 « i 

X l « 2 X2/l2 X 3 « 2 X 4 « 2 

1«58 X l « 5 6 X2«56 X3«56 X4«56 

A«59 X l « 5 7 X2«57 X3«57 X4«57 

y «i 

Jni 

y«56 

y«57 

, and β = 

-ßo 
ßy 
ßl 
ft 
ß4 

(7.94) 

where each of the lnJ is a (4 x 1) vector of ones, x\n is a (4 x 1) vector of ones if 
theyth subject is taking the drub progabide and is a (4 x 1) vector of zeros if on 
the placebo, x^. is the (4x1) vector of periods, and x$nj and x4nj are the (4x1) 
vectors representing log age and log baseline number of seizures divided by four, 
respectively, for the/th subject. Finally, yn. is the (4x1) vector of responses for 
the/th subject with rij = 4 for each of they = 1,2, ..., 57 subjects in this data set. 
The parameters ß0, ßu ßi> β^ and β4 denote the population averaged intercept 
and slopes, respectively. If our only interest is to make inferences on the 
population-averaged parameters, β0, βχ, β2, β3, and β4, a marginal analysis, 
such as MQL, is more appropriate. In our situation, we seek to determine the 
range of the period effect across the subjects. The variance-covariance matrix of 
the responses for the y'th subject is 

Mh Var(y y)=S / = A /
1 / ^ ) R A y

1 / ^ ) (7.95) 

This expression for the variance-covariance matrix differs from the S7 that 
compose S^ in Equation (7.72). Equation (7.95) has no component associated 
with the random effects since it only uses the R-side effects to account for the 
correlation structure. For Equation (7.95), 
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Α/(η) = 

a¡\ 

Φ 

aj2 

αβ 

Φ 

αμ 

(7.96) 

where αβ is the component of the variance delivered by the Poisson distribution 
for the ith observation on the jth subject. So, here, αβ = μβ = exp 
(ßo + βιχΐβ+β2*2β+ß3*3ß+ß&qd with xlß denoting whether subject j took the 
placebo or progabide, x2ß denoting the zth period of the study, χ3β is the log age, 
and χ4β is the log baseline number of seizures divided by four, respectively, for 
theyth subject. As discussed in Section 6.4, φ is the natural scale parameter for 
the Poisson distribution. The matrix R is the common correlation matrix for each 
subject. This model uses a first-order autoregressive structure. 

Models 2-4 use random effects to account for the correlation among 
observations taken on the same subject. Model 2 allows for random intercepts 
among the subjects. It also assumes an common identity correlation matrix for 
all the subjects. The model is 

^ ( y ) = r 1 ( ^ = e x p ( X ß + Zi6i) (7.97) 

where X and ß are as defined in Equation (7.94), Z* is defined as in Equation 
(7.8), and δ* is defined as in Equation (7.9). For the expressions in Equations 
(7.8) and (7.9), m, the number of clusters is 57. The only difference in this model 
and model 2 of the Kukupa example from Table 7.3 is that we have a Poisson 
model with log link here and the Kukupa example assumed normal data with an 
identity link. For model 2 here, the variance-covariance matrix of responses, 
given generally in Equation (7.72), is approximately 

Var(y) ΛΪ. * Z i Z i 'Af=%+A(Tl0) (7.98) 

Model 3 fits a random slope without a random intercept. The model is 

^ ( y ) = r 1 ^ ) = exp(Xß + Z*ö*) (7.99) 

Here, X and ß are defined the same as in Equation (7.97), δ* is defined exactly as 
in Equation (7.9), and Z* is 

z* = 

X2«, 0„ 

o„ X2n2 

o„, 

X2»57 

(7.100) 
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with \2rij denoting the rij time points for subject j . The variance-covariance 
matrix of responses, given generally in Equation (7.72), is approximately 

Var(y) « a ^ / X ^ + A ^ ) (7.101) 

Model 4 allows for both random intercepts as well as random slopes, where 
we assume that these two random effects are independent of one another. For the 
R-side effects we take R to be the identity matrix, as we did for models 2 and 3. 
The resulting model is 

E(y) = S_I(i|) = exp(Xß + Ζ*δ* + Ζ*δ*) (7.102) 

with X, β, Ίϊ[, ZJ, h\, and h\ defined exactly as in Equations (7.97) and (7.99). 
The variance-covariance matrix of responses is then approximately 

Var(y) * ^(σ2
δοΖ\ζ\' + ^|Ζ*2Ζ*2')Δ^ηο+Α(η0) (7.103) 

Although convergence was an issue, we also considered a model that fit random 
intercepts and slopes; however, an allowance was made for the two random 
effects to be correlated. Theoretically, the model is the same as Equation (7.102) 
with the variance-covariance matrix of responses given by 

Var(y) « ^ ( Z D Z O A ^ + A f o ) (7.104) 

where D is 

D: 
σδοΑ 

σδοΑ 

and 

Z = 

^ 5 6 

o„, · 
1 - 2 · 

<W · 
0-57 · 

• o„, 
· · o„2 

• <W 
1/157 

X2«, 

o„2 

o«56 

o«5, 

o„, 
X2«2 

<W 
o„57 

o„, 
o„2 

<W 
X2«57 

and δ = 

¿ο,ι " 
<5o,2 

¿0,57 

¿1,1 

¿1,2 

'1,57 
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In order to decide on the best of the three random effects models (models 2-4 
in Table 7.10), we use the REML pseudo-likelihood ratio test discussed in 
Section 7.2.4. Table 7.11 gives the SAS GLIMMIX code used to fit each of the 
models. 

Since model 4 involves the more complex covariance structure, we consider it 
to be the full model. We test i/o \σ\χ = 0 to determine if the covariance structure 
from the random intercept only model (model 2) fits as well as the covariance 
structure from the full model. We test i/o : a\Q = 0 to determine if the covariance 
structure from the random slope only model (model 3) fits as well as the 
covariance structure from the full model. Recall from Section 7.1.5 that these 
testing scenarios fall under scenario 2. Thus the p-values for either of these tests is 
calculated using a mixture of a χΐ and χ] distribution as 

p = 0.5Pr(xl>X)+0.5Pr(x]>l) 

Table 7.11 SAS GLIMMIX Code for Epilepsy Data 

SAS Code Epilepsy Data: 

ods h tml ; 
ods graphics on; 

*method=rspl for subject-specific, method=rmpl for marginal 
analysis; 
proc glimmix data=epinewmethod=rspl plots= (studentpanel (blup) ) ; 
class patient; 
model seizure = treat period läge lbase / solution ddfm=satterth 
link=log dist=poisson; 
random int period / subject = patient solution g; 

*Next, Model 4 vs . Model 2 using REML pseudo-likelihood ratio test; 
covtest . 0; 

*Next, Model 4 vs. Model 3 using REML pseudo-likelihood ratio test; 
covtest 0 .; 

output out=sresult pred(blup ilink) =pred pred(blup) = lpred 
stderr (blup) =selpred lcl (blup) = lowlink 

ucl (blup) = uplink lcl (blup ilink) =slower ucl (blup ilink) =supper 
resid(blup ilink) =resid resid(blup) =invresid; 

run; 

ods output solutionR=random; ^produces data set of blups; 
ods graphics off; 
ods html close; 
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where λ = /FULL ~~ /RED· ^n GLIMMIX, /FULL denotes the restricted log-pseudo-
likelihood value corresponding to the pseudo-data from the last iteration of the 
full model fit. Using the same pseudo-data and fitting the reduced model (model 
2 or model 3), /£ED is the corresponding restricted log-pseudo-likelihood value. 
This value for /£ED in general is different from the restricted log-psuedo 
likelihood value for the reduced model fit to the raw data. This analysis uses 
the COVTEST statement in GLIMMIX to conduct these tests. Table 7.12 gives 
the full model (model 4) GLIMMIX analysis of the epilepsy data. In the section 
of output entitled Fit Statistics /FULL = ~~ 2 Res Log Pseudo-Likelihood = 
504.06, which is the restricted log-pseudo-likelihood value corresponding to 
the pseudo-data from the last iteration of the model 4 fit. Consequently, to test if 
model 2, the random intercept model, fits as well as model 4 (i.e., H§ : σ^ = 0 ), 
we construct the test statistic 

"λ = ZFULL - 'RED = 5 0 9 · 3 4 - 504.06 = 5 · 2 8 

where the value of /£ED is found in the section of output entitled Tests of 
Covariance Parameters Based on the Residual Pseudo-Likelihood. This value of 
/RED differs from the - 2 Res Log Pseudo-Likelihood value for model 2 that 
appears in the last line of the second column of Table 7.10, due to how SAS 
conducts this test as described earlier in this Chapter. The corresponding p-value 
is approximately one-half the /7-value from a χ\ distribution. More specifically, 
the/7-value « Ρ(χ] > 5.28) = 0.5*0.0216 = 0.0108. Judging from the/7-values in 
Tests of Covariance Parameters Based on the Residual Pseudo-Likelihood for 
H0 : σ\ =0(0.0108) and H0 : σ2

δο = 0(<0.0001), we conclude that the full 
model, model 4, is best. 

Now that the appropriate covariance structure has been selected, we proceed 
with an explanation of the rest of the output in Table 7.12. The material in 
Dimensions yields relevant information for the matrix form of our model given 
explicitly in Equation (7.102). The number of G-side Cov. Parameters represent 
the number of unknowns in the variance-covariance matrix of the random 
effects, which we have denoted as D. Clearly, the two unknowns in D are σ\ and 
σ\ . The fixed effects model matrix, X, has five columns since there are four fixed 
effects plus the intercept, and the random effects model matrix, 
Z = Z* | Z* I has two columns corresponding to the two random effects 
δ* and δ* in (7.102). Since there are 57 subjects, the variance-covariance matrix 
of responses, V, is a (57 x 57) block-diagonal matrix. The Iteration History shows 
the changes in the restricted log-pseudo-likelihood values. 

In Fit Statistics, the ratio of the generalized chi-square statistic and its 
associated degrees of freedom is close to 1 (actual value is 1.39). This is an 
indication that there is little to no residual overdispersion in the data, suggesting 
that the Poisson distribution is adequate. If overdispersion were present here, the 
negative binomial distribution would be a logical alternative. The material in 
Estimated G Matrix suggests that o¿ = 0.2296 and oj = 0.0083. It is important 
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Table 7.12 Model 4 GLIMMIX Analysis of Epilepsy Data 

Model Information 

Data Set 
Response Variable 
Response Distribution 
Link Function 
Variance Function 
Variance Matrix Blocked By 
Estimation Technique 
Degrees of Freedom Method 

WORK.EPINEW 
Seizure 
Poisson 
Log 
Default 
Patient 
Residual PL 
Satterthwaite 

Class Level Information 
Class Levels Values 
patient 57 101 102 103 104 106 107 108 110 111 112 113 114 116 117 

118 121 122 123 124 126 128 129 130 135 137 139 141 143 
145 147 201 202 203 204 205 206 208 209 210 211 213 214 
215 217 218 219 220 221222 225 226 228 230 232 234 236 
238 

Number of Observations Read 228 
Number of Observations Used 228 

Dimensions 
G-side Cov. Parameters 2 
Columns in X 5 
Columns in Z per Subject 2 
Subjects (Blocks in V) 57 
Max Obs per Subject 4 

Iteration History 
Itera-
tion 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Restarts 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Subiter-
ations 

6 
5 
5 
3 
2 
1 
1 
1 
1 
0 

■ Objective 
function 

438.35229416 
496.25152187 
503.78517582 
504.05640172 
504.06054074 
504.06060667 
504.06061107 
504.06060731 
504.06060349 
504.06060746 

Change 

0.51422975 
0.24640954 
0.02029656 
0.00066869 
0.00001142 
0.00000141 
0.00000121 
0.00000131 
0.00000128 
0.00000000 

Max 
Gradient 
9.916E-6 
0.009429 
7.572E-6 
6.177E-7 
2.625E-7 
0.000812 
6.465E-6 
0.000851 
3.124E-6 
7.736E-6 

Convergence criterion (PCONV = 1.11022E-8) satisfied. 

(Continued) 
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Table 7.12 Continued 

377 

Fit Statistics 
-2 Res Log Pseudo-Likelihood 
Generalized Chi-Square 
Gener. -Square / DF 

Estimated G Matrix 
Effect Row Coll 
Intercept 1 0.2296 
Period 2 

504. 
310. 

1. 

,06 
.08 
,39 

Col2 

0 .008301 

Covariance Parameter Estimates 
Cov Parm Subject Estimate Standard Error 
Intercept patient 0.2296 0.06470 
period patient 0.008301 0.005020 

Solutions for Fixed Effects 
Effect Estimate 
Intercept -1.2264 
treat 
period 
läge 
lbase 

Effect 
treat 
period 
läge 
lbase 

Effect 
Intercept 
period 
Intercept 
period 
Intercept 
period 
Intercept 
period 
Intercept 
period 

-0.3154 
-0.07334 
0.4751 
0.9094 

Standard Error DF 
1.2037 
0.1530 
0.02752 
0.3444 
0.1087 

46. 
46. 

! 78. 
45. 
45. 

57 
29 
53 
84 
7 

Type III Tests of Fixed Effects 
Num DF 

1 
1 
1 
1 

Den DF 
46.29 
78.53 
45.84 
45.7 

F Value 
4 
7 
1 

70 

Solution for Random Effect 
Subject 
patient 101 
patient 101 
patient 102 
patient 102 
patient 103 
patient 103 
patient 104 
patient 104 
patient 106 
patient 106 

Estimate ί 
0.05289 

-0.01509 
0.008613 

-0.01512 
-0.3192 
-0.02451 
0.09182 

-0.00550 
0.07885 
0.008066 

.25 

.10 

.90 

.03 

:s 
3td Err Pred 
0.2681 
0.07278 
0.2555 
0.07579 
0.3214 
0.08280 
0.2919 
0.08033 
0.2918 
0.08024 

57. 
13. 
61. 
11. 
78. 
7, 

74, 
8, 

74, 
9, 

t Value I 
-1 
-2 
-2 
1 
8 

.02 

.06 

.66 

.38 

.37 

Pr > F 
0.0449 
0.0094 
0.1744 
<.0001 

DF t Value ] 
.06 
.12 
.37 
.26 
.39 
.991 
.92 
.995 
.36 
.038 

0.20 
-0.21 
0.03 

-0.20 
-0.99 
-0.30 
0.31 

-0.07 
0.27 
0.10 

?r > 111 
0.3136 
0.0449 
0.0094 
0.1744 
<.0001 

Pr > 111 
0.8443 
0.8390 
0.9732 
0.8454 
0.3237 
0.7748 
0.7540 
0.9469 
0.7878 
0.9221 

Tests of Covariance Parameters 
Based on the Residual Pseudo-Likelihood 

Label DF -2 Res Log P-Like ChiSq Pr > ChiSq Note 
Parameter list 1 509.34 5.28 0.0108 MI 
Parameter list 1 555.56 51.50 <.0001 MI 
MI: P-value based on a mixture of chi-squares . 
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to note that these variance estimates are on the log-scale. Although the standard 
errors for the estimated variance components are found in the section Covar-
iance Parameter Estimates, the results here should not be used to conduct Wald 
inference on variance components unless none of the parameters being tested lie 
on the boundary of the parameter space. 

The solutions for the fixed intercept and slope coefficients are found in 
Solutions for Fixed Effects. Given the parameterization of the treat variable, we 
have the following expressions for the mean number of seizures, apart from the 
estimated random effects, for the progabide treatment group and the placebo 
group: 

Adrug — exP(^o + b\ treat + biperiod + b^lage + bébase) 

and 

Apiacebo = exp(¿o + b2period + b3lage + bébase) 

respectively. Taking the ratio of the two means, we have 

^ / ¿ p l a c e b o = SXP{bi) = e XP(-°·3 1 5 4) = ° · 7 2 9 

Thus for subjects of the same age and baseline number of seizures, at a fixed time 
period in the study, subjects on progabide experience on average 27.1% fewer 
seizures than subjects on the placebo. The groups are significantly different at the 
0.0449 level. In terms of the population-averaged change in average seizures from 
period t to the next period (f +1) holding fixed age, baseline, and treatment 
group, 

^ο6{ί^)/μρ&ήοά{ή = exp(¿>2) = exp(-0.0733) = 0.929 

Thus, on average, the number of seizures declines by approximately 7.1% every 2 
weeks. The trend across time is significant at the 0.0094 level. It appears that 
adjusting for the log of the baseline number of seizures is important (¿?<0.0001). 

It is also of interest to see how the period effect varies from patient to patient. 
For the yth patient, the estimated mean number of seizures is 

fi\patientj = exp ( bo + b\ treat + biperiod + b^lage + bébase + <5q/ + öyperiodj 

(7.105) 

where ¿Q/ a n d Sy are the random intercept and slope BLUPs, respectively, for the 
y'th patient. Thus, for they'th patient, the average change in the number of seizures 
from period t to period (t+1) is . / N 
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The estimated BLUPs for the random intercept and slope for patients 101-106 
are provided in the section Solutions for Random Effects. So, for patient 101, the 
average change in seizures from period t to period (/+ 1) is 

^ ω ( ί + 1 ) | 1 0 ΐ / ^ ω ( ( ) | 1 0 1 =exp(-0.0733- 0.015) =0.915 

or an 8.5% decline every 2 weeks. Figure 7.12 shows the range of period effects 
across patients separated by treatment groups. Period effects for each patient are 
calculated just as we did above for patient 101 and output to the SAS data set 
random using the ods output solutionR = random statement in Table 7.11. Figure 
7.12 gives the boxplots generated by MINITAB based on the data exported from 
SAS. For both treatment groups, the percent change ranges from a little over a 
15% decline to just under a 5% increase in seizures every 2 weeks. 

As discussed in Section 7.2.4, the (1 — a)100% confidence interval for the 
conditional mean for a given setting of the regressors is 

\g~] \fi\clusterj - z^a^se^cluster^Yg'1 \f¡\clusterj + z ̂ jx^se (^clusterj)j 

So, for patient 101 during the first period, we have 

ή\\0\ = (-1.2264 - 0.3154(1) + -0.0733(1) 
+ 0.4751(2.89) + 0.9094(2.944) + 0.053 

= 2.474 
0.015) 

(7.106) 

In the OUTPUT statement from GLIMMIX in Table 7.11, the keyword 
pred(blup) = lpred produces values for the estimated linear predictors, 
stderr(blup) = selpred produces standard errors of estimated linear pre-
dictors, lcl(blup) = lowlink and ucl(blup) = uplink produce the lower and upper 
confidence limits for the linear predictors, respectively, pred(blup ilink) = pred 

5 

0 

-b -

-10 J 

-15 

Treatment Group 

1 

Figure 7.12 Boxplots showing average percent change from period / to period (t + 1) for patients 
in both treatment groups. 
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yields the estimated conditional means, and lcl(blup ilink) = slower and ucl(blup 
ilink) = supper yield the lower and upper confidence limits on the conditional 
means, respectively. A variety of residual types can also be requested and we 
describe some of these later. Table 7.13 provides the aforementioned statistics as 
produced by GLIMMIX, along with some others, related to patient 101. The 
value of the variable sslpred in the first row gives the calculated estimate of the 
linear predictor based on Equation (7.106). The variable pred is the estimated 
conditional mean and is simply g~l (ή\ 101) = exp(2.474) = 11.869. The variables 
lowlink and uplink give the 95% confidence limits on the linear predictor for 
patient 101. So, for patient 101 during period 1, the 95% confidence limits based 
on Equation (7.84) are 

^|101±ζ,_α/2ίέ(ί/|101) 

2.474 ±1.96*0.174 

[2.132,2.815] 

The corresponding confidence interval for the conditional mean is then [exp 
(2.132), exp (2.815)] = [8.431,16.693]. Table 7.13 gives these limits in the first row 
under slower and supper, respectively. This confidence interval reflects the 
uncertainty in the conditional mean in terms of the hypothetical sense of patient 
101 repeatedly going through this clinical trial. Note that this uncertainty is a 
replication type of uncertainty. In many observational studies, such as this one, 
the practical meaning is somewhat abstract. The interval does not, however, 
reflect the uncertainty in the mean that exists across all subjects. To develop an 
interval on the population-averaged mean, one must use a method such as 
marginal quasi-likelihood as discussed in A Population-Averaged Approach in 
Section 7.2.3. PROC GLIMMIX can run this method by specifying the 
method = rmpl option in the GLIMMIX procedural statement. Although the 
details of this analysis are not shown here, the resulting marginal mean estimate is 

μ = exp(Z?o + b\ treat + biperiod + b^lage + bébase) 

where the ¿'s are estimated by Equation (7.76). The variable margmn is this result 
in Table 7.13. The variables marglcl and margucl give the corresponding 95% 
confidence limits on the marginal mean. For 18 year olds (i.e. e2S9) who report 19 
(i.e. e2944) biweekly seizures as baseline and take progabide, we are 95% 
confident that the average number of seizures after 2 weeks on treatment is 
between 0.795 and 190.836. Note the vast difference in widths between the 
intervals on the conditional mean and the marginal mean. One would expect a 
wider interval for the marginal mean than for the conditional mean since the 
interval for the marginal mean reflects the uncertainty from patient to patient as 
well as the uncertainty existing from patients repeatedly going through the 
clinical trial. 



Table 7.13 Estimated Conditional Mean Number of Seizures (Link and Inverse Link Scales), Estimated Population-Averaged Number of 
Seizures (Inverse Link Scale), and Associated 95% Confidence Limits for Patient 101 in Epilepsy Data 

patient seizure treat period läge Ibase Ipred pred selpred lowlink uplink slower supper margmn marglcl margucl 

101 
101 
101 
101 

11 
14 
9 
8 

1 
1 
1 
1 

1 
2 
3 
4 

2.890 
2.890 
2.890 
2.890 

2.944 
2.944 
2.944 
2.944 

2.474 
2.385 
2.297 
2.208 

11.869 
10.861 
9.942 
9.101 

0.174 
0.149 
0.160 
0.200 

2.132 
2.091 
1.982 
1.811 

2.815 
2.679 
2.612 
2.606 

8.431 
8.092 
7.257 
6.115 

16.693 
14.578 
13.621 
13.544 

12.320 
11.571 
10.867 
10.206 

0.795 
0.749 
0.674 
0.581 

190.836 
178.784 
175.274 
179.449 
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Conditional Studentized Residuals 
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Figure 7.13 Studentized residual plots for the model 4 analysis of the epilepsy data: (a) studentized 
residuals (pseudo-data—linear predictor) versus linear predictor, (b) histogram of studentized 
residuals, (c) normal Q-Q plot of studentized residuals, and (d) boxplot of studentized residuals. 

7.2.6 Diagnostics 

Equation (7.51) requires two sets of assumptions: one set for the conditional 
responses, the j|<5's, and another set for the random effects, the ¿'s. We require 
different diagnostics for each set of assumptions. 

First, consider the conditional responses. In general, we assume that (1) the 
data follow an exponential family member distribution; (2) a specified link 
function, g, relates the conditional mean linearly to the regression parameters 
gfa\8fs) = χ'β + 5^<5/ (3) the variance-covariance matrix of the conditional 
responses follows a specified structure, S = Α/2(η)ΚΑ/2(η) with R as the 
common correlation matrix for each cluster; and (4) the conditional responses 
are independent of the random effects. 

In the epilepsy data, the conditional responses are counts of observed 
seizures per 2 week period. Again, the Poisson distribution is a natural choice 
for count data. From Table 7.10 in the section entitled Fit Statistics, we observe 
that the ratio of the generalized chi-square and its degrees of freedom is 1.39, 
which is quite close to 1. Such a value implies that there are no issues with 
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overdispersion. The suitability of the specified link can be examined by plotting 
the studentized conditional residuals on the link scale versus the linear 
predictor. The vector of studentized residuals is 

se(y - ή) 

where y is the vector of pseudo-responses given in (7.62), ή = Xb + Ζδ, the 
estimated linear predictor, and se(-) denotes the estimated standard error. 
Figure 7.13 a shows the studentized residuals from model 4 plotted by the 
estimated linear predictor for the epilepsy data. The random scatter suggests 
no violation of the assumed log link. Recall from the analysis discussion in 
Section 7.2.3, A Subject-Specific Approach, the pseudo-response model in 
Equation (7.63) is a normal, linear mixed model. Figures 7.13b, 7.13c, and 
7.13d, produced by the plots = (studentpanel(blup)) option in the GLIMMIX 
procedural statement, examine this normality assumption via a histogram, 
normal Q-Q plot, and boxplot of the studentized residuals. None of these plots 
suggests any violation of the normality assumption of the pseudo-responses. 

We next consider the assumptions surrounding the random effects. The 
random effects (random intercept and random slope in the epilepsy example) 
are each assumed to be normally distributed with mean zero and constant 
variance. We can check for normality by doing Q-Q plots for the random 
intercepts and slopes. Figures 7.14a and 7.14b display the Q-Q plots for the 
random intercepts and random slopes, respectively. Neither plot indicates any 

Normal - 95% CI 
-0.1 0.0 0.1 

Figure 7.14 Normal Q-Q plots: (a) estimated random intercepts and (b) estimated random slopes 
from model 4 fit of the epilepsy data. 
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Figure 7.15 Scatterplot of estimated slopes versus estimated intercepts from model 4 fit to the 
epilepsy data. 

issues with the normality assumptions. Finally, for model 4 we also assume 
independent random intercepts and slopes. Figure 7.15 allows us to check this 
assumption via a scatterplot of the estimated slopes versus the estimated 
intercepts. The observed random scatter implies independence between the 
random intercept and random slope parameters. 

Example 7.8. Film Manufacturing Experiment Revisited. In Example 7.6, 
the film manufacturer models the response, a measure of film quality, as a 
function of six factors. Three of the factors, xu x2, and x3, are mixture 
components and the other three factors, pu p2, and /?3, are process factors. 
Their model assumes a gamma response with a log link based on previous 
knowledge. The split plot structure of the experiment requires a random effect 
corresponding to the batches to account for the correlation among the sub plots 
within each whole plot. The linear predictor is 

(7.107) nji\dj = \n^ji\dj)=xf
j$ + öj Ί 

where 
3 

Σ: 
b=\ 

3 

Σ 
C=\ 

^ / ß = Σ foXb* + Pl2X\jiX2ji + Σ ycJiPcJi + Σ Σ YbcXbJtPcJi (7 .108) 

2 3 

HZ 
b=\ c=\ 

and Sj is the random effect associated with theyth batch. As with all GLMMs, 
the random effects are assumed to be i.i.d. Normal(0, σ|). In this case the linear 
predictor does not include a fixed effect intercept since we are fitting a Scheffe 
model for mixture experiments. 

We use R to fit a gamma GLMM with log link and the linear predictor given in 
Equation (7.107) using the Imer function from the lme4 library. The lme4 library 
is not part of the default installation of R; however, it is easy to download it from 
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Table 7.14 R Code for lmer PQL Analysis of Film Data 

R Code Film Data: 

film <- read.csv("film_data.csv") 
names(film) 

#Next line loads the lme4 library 
library(lme4) 

#ml is a gamma GLMM with log link and linear predictor as given in 
(7.105) 

ml < - lmer (y 1 + xl + x2 + x3 + xlx2 + pi + p2 + p3 + xlpl 
+ xlp2 + xlp3 + x2pl + x2p2 + x2p3 + (11 batch), 
data=film/ method="PQL",family=Gamma(link="log")) 

summary (ml) 

preds <-fitted (ml) 

#Code below does Q-Q plot of the estimated random intercepts 

blups <- ranef(ml) 
qqnorm (unlist(blups) ) 

the R-project website. Table 7.14 gives the R commands for a PQL analysis. The 
function lmer from the lme4 R library also incorporates the integral approxima-
tion methods (e.g., Laplace and quadrature) for parameter estimation that were 
briefly mentioned in Section 7.2.3. For consistency of presentation, we demon-
strate the PQL analysis here. Table 7.15 summarizes the output from the lmer 
analysis. To specify the use of the quadrature methods, replace the phrase 
method = "PQL" by method = "LaPlace" or method = "Quad" in the lmer 
sentence. The random batch effect is specified within the parentheses using 
(1 |batch). The summary(.) command provides the basic output from the model. 
The lmer analysis only provides i-statistics for the model coefficients and not 
the corresponding/?-values. The estimated variance components are given in the 
section Random Effects. The preds object contains the estimated conditional 
means. The ranef(.) function extracts the BLUPs that are useful for checking the 
normality assumption of the random effects. Figure 7.16 provides the normal 
Q-Q plot for the estimated random intercepts. 

Unlike SAS PROC GLIMMIX, R at the present time does not produce 
confidence limits for the conditional and marginal means. Residual diagnostics 
can be obtained using the glmmPQL command from the MASS library. 
Table 7.16 provides the R commands for the glmmPQL analysis of the full 
model. Since the glmmPQL analysis is identical to that produced by lmer, the 
output from glmmPQL is not provided in a separate table. The advantage of lmer 
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Table 7.15 Output from Lmer Analysis of Film Data 

Generalized Linear Mixed Model Fit Using PQL 

Formula: y ~ -1 + xl + x2 + x3 + xlx2 + pi + p2 + p3 + xlpl + xlp2 + xlp3 + 
x2pl + x2p2 + x2p3 + (1 | batch) 

Data: Film 
F a m i l y : Gamma ( l o g l i n k ) 
AIC BIC l o g L i k d e v i a n c e 
4 7 . 7 8 7 5 . 1 - 9 . 8 9 1 9 . 7 8 

Random E f f e c t s : 
Groups Name V a r i a n c e 
b a t c h ( I n t e r c e p t ) 0 .052548 

R e s i d u a l 0 .162660 

number of o b s : 52 , g r o u p s : b a t c h , 13 
F i x e d E f f e c t s : 

xl 
x2 
x3 
xlx2 

Pi 
P2 
P3 
xlpl 
xlp2 
xlp3 
x2pl 
x2p2 
x2p3 

Estimate 
6.1132 
3.9847 
1.2413 

10.7063 
-0.6767 
0.3587 
0.2911 
1.1695 
-0.2134 
-0.4696 
1.9483 
-1.0219 
-0.1283 

Std. Error 
0.3062 
0.3190 
0.6648 
1.9181 
0.4372 
0.4372 
0.4372 
0.6111 
0.6111 
0.6111 
0.6251 
0.6251 
0.6251 

t value 
19.966 
12.490 
1.867 
5.582 
-1.548 
0.820 
0.666 
1.914 

-0.349 
-0.768 
3.117 
-1.635 
-0.205 

over glmmPQL is that glmmPQL only allows for the PQL GLMM analysis; 
whereas the lmer analysis allows for PQL, Laplace, and the quadrature methods 
of estimation. However, glmmPQL offers features such as the production of 
residuals and fitted values on both the link and inverse link scales. Figure 7.17 
shows the diagnostics for the conditional residuals on the link scale. In 
Figure 7.17a we observe random scatter when the conditional residuals are 
plotted against the linear predictor, which implies that there are no violations of 
the assumed log link. Recall from the analysis discussion in Section 7.2.3, "A 
Subject-Specific Approach," the pseudo-response model in Equation (7.63) 
assumes a normal, linear mixed model. Figures 7.17b-d suggest that this assumed 
normality is reasonable. D 

Std.Dev 
0.22923 
0.40331 
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Figure 7.16 Normal Q-Q plot for estimated random intercepts in film example. 

Table 7.16 R Code for glmmPQL Analysis of Film Data 

R Code Film Data: 

#For residual diagnostics, need to re-analyze using glmmPQL 
function from MASS library 

library(MASS) 

m2 < - glmmPQL (y ~ -1 + xl + x2 + x3 + xlx2 + pi + p2 + p3 + 
xlpl + x2pl + x3pl + x2pl + x2p2 + x2p3, random = ~1 

|batch,data=film/family = Gamma("log")) 

summary (m2) 

ttlresids are residuals to the pseudo-data 
lresids <- residuals(m4) 

#lpreds contains estimated linear predictor 
lpreds <- predict(m4,type="link") 

#residual diagnostic plots produced in lines below 

par(mfrow=c(2,2)) 
plot (predsm4/ resids/xlab= "Linear Predictor"/ylab="Residuals") 
hist (resids, f req=FALSE, main="", xlab="Residuals", ylab=" Percent") 
qqnorm(resids, xlab= "Quantile", ylab= "Residuals") 
boxplot(resids,ylab="Residuals") 
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Figure 7.17 Residual diagnostics from PQL analysis of film data: (a) conditional residuals on link 
scale versus linear predictor, (b) histogram of conditional residuals on link scale, (c) normal Q-Q 
plot of conditional residuals on link scale, and (d) boxplot of conditional residuals on link scale. 

7.3 GENERALIZED LINEAR MIXED MODELS USING 
BAYESIAN METHODS 

7.3.1 Model Formulation 

Another important approach for modeling correlated, non normal data is 
hierarchical generalized linear models (HGLMs) (Lee and Neider, 1996). 
Hierarchical generalized linear models include GLMMs as a special case but 
do not constrain the random effects to have a normal distribution. HGLMs can 
be implemented via the GenStat procedures written by Lee and Neider. 

In this section, we consider a Bayesian approach to modeling exponential 
family data with random effects. While the GLMM, HGLM, and GEE 
approaches tend to focus primarily on inference for the population mean, the 
Bayesian approach offers a great deal of flexibility in terms of the types of 
distribution characteristics. We begin by defining an extended class of general-
ized linear models with random effects, which consists of two parts: 

1. The vector of responses, conditional on they'th cluster, follows a GLM 
family in which 

E(ynj to) = g-1 (η,) = g-1 (x,ß + ζ,δ,) (7.109) 
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Once again, g is a differentiable monotonic link function, and the 
parameters in Equation (7.109) are defined exactly as those in Equation 
(7.51). 

2. δ,- and Z,· are defined exactly as in Equation (7.51) except now the δ, are 
assumed to be independent and to follow a specified probability 
distribution. 

Note that the model in Equation (7.109) is the same as that for GLMMs given 
in Equation (7.51) when the random effects in δ7 are assumed i.i.d. normal with 
mean 0 and diagonal variance-covariance matrix D,·. HGLMs are included in 
this framework when one assumes that the 6y follow a distribution conjugate to 
a GLM family. HGLMs also assume that the linear predictor takes the form 
η, = Χ,β + Ζ,·δ*, where δ* = g(Sj). 

As discussed in Section 7.2.4, statistical inference for GLMMs requires 
asymptotic theory involving likelihoods and pseudo-likelihoods. The same is 
true regarding HGLMs. Provided one is comfortable with the sample size 
assumptions being met, point and interval estimates as well as a wide array of 
hypothesis test results involving the conditional and marginal means are 
available as output from SAS PROC GLIMMIX or R. 

This section outlines an approach that does not rely on asymptotics; instead, 
it builds on assumptions regarding prior densities on the model parameters. 
The Bayesian approach is useful not only for conducting inference on the 
conditional and/or marginal mean but also for other characteristics of 
the response such as quantiles and exceedance probabilities. For instance, in 
the film manufacturing example, suppose that pieces of film whose response 
exceeds 150 are considered high quality and can be sold as premium. A natural 
question of the manufacturer might be "What proportion of film pieces (across 
all rolls) are of premium grade?" Since this question involves all rolls of film 
produced, it involves an exceedance probability associated with the marginal 
distribution of the response. Technically speaking, the question involves 
estimation of P(y> 150) where 

oo oo 

P(y> 150)= f j fyls¿(y,o)dódy 
150 - o o 

oo oo 

/ j fywmmdy 
(7.110) 

oo oo K 

150 -oo 

and fy\d,d(y) is the marginal density defined in matrix-vector notation in 
Equation (7.58). For the film manufacturing example, fy\s,siy) is a mixture of 
gamma densities for the individual rolls integrated over the normal distribution 
of random effects <5. As a result, it would be difficult, at best, to ascertain the 
distribution of any estimate of P(y > 150). The Bayesian approach, however, 
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offers a straightforward method of conducting inference characteristics such as 
the one given in Equation (7.110). 

7.3.2 Bayesian Inference 

The Bayesian approach to inference combines prior information about the 
model parameters with the information in the data. Let Θ denote the vector of 
model parameters and π(Θ) represent the joint density of the model parameters 
before any data are observed. In Example 7.4, there are 28 unknowns in the 
theoretical GLMM. Thus, Θ' = (r,6', β', σδ), where r is the gamma shape 
parameter from Equation (7.55), δ' is the 1x13 vector of random roll effects, β' 
denotes the 1x13 vector of regression coefficients in Equation (7.108), and σδ 

denotes the standard deviation of the random effect distribution. In frequentist 
approaches, such as the PQL approach described in Section 7.2, the vector of 
model parameters is assumed to be fixed, and information regarding the model 
parameters comes solely from the data. Bayesian approaches, on the other 
hand, assume prior probability densities on each of the model parameters. The 
Bayesian approach uses any additional information regarding model para-
meters from the data to update the assumed prior densities. If little is known a 
priori regarding the model parameters, most analysts choose diffuse prior 
densities, which allow for the possibility of a wide range of values for the 
parameters. 

For Example 7.6, we assume that little is known about the model para-
meters; hence, we choose diffuse proper prior distributions. Specifically, for the 
regression coefficients (the parameters in β) and for r, we use Normal(0,10002) 
and Uniform(0,100) forfßK (·) (k = 7,...,75) and/a(·), respectively. For a¿, we 
use the diffuse prior distribution Uniform(0,100) for/ff¿ (·). The diffuse prior 
Uniform(0,100) is suggested by Gelman (2006) for the standard deviation of the 
random effects distribution in hierarchical models. Figures 7.18 a-c illustrate 
the shape of each of these prior densities. It is important to point out that the 
choice of parameters to specify diffuse prior distributions is problem specific; 
for example, in Example 7.6, we expect the /Ts to be at most in the 10's; 
however, we choose prior distributions that allow for the possibility that the /Ts 
are a couple orders of magnitude larger. 

The foundation of the Bayesian analysis is the prior distribution for the 
parameters. As a result, this approach requires additional assumptions for 
the distributional forms of these priors, which makes many frequentists quite 
uncomfortable. On the other hand, frequentist approaches often rely on 
asymptotic assumptions for estimates of uncertainty on the quantities of 
interest. Bayesian methods do not require such asymptotic theory. In the final 
analysis the overall number of assumptions for both analyses, frequentist and 
Bayesian, seems to be relatively similar. 

The data sampling model, /y(y|0), commonly known as the likelihood, 
captures the information in the data. For Example 7.6, the likelihood/y(y|0) 
has the form 
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Figure 7.18 Assumed prior densities for the parameters in Θ for the Bayesian modeling of the film data 
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/y(y|®) = ΠΠ/'feM;; = Vr) 
7=1 i = l 

(7.111) 

with μβ given in Equation (7.107) where μ,γ depends on x'Jh β, and Sj. The 
posterior density, π (0|y), describes the combined information from the data 
and the specified prior distributions. The posterior density is then evaluated 
using Bayes' Theorem (Degroot (1970) p. 28) as 

*(«|y) α / ( γ | θ ) π ( θ ) . 

The prior density π (Θ) has the form 

π(Θ) α ίΠΛΦΙ**)) \UfßM)fa(*)faM, (7.112) 
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where f¿( ·) is the Normal(0, aj ) density assumed for the random batch effects 
(i.e. the <5j\s). 

A popular approach to the Bayesian analysis is to approximate the form of 
the posterior distribution, π(Θ|γ), using recent advances in Bayesian computing 
such as Markov chain Monte Carlo algorithms (see Gelfand and Smith (1990), 
Casella and George (1992), Chib and Greenberg (1995) for details). Essentially, 
Markov chain Monte Carlo (MCMC) algorithms produce samples from the 
joint posterior distribution of Θ by sequentially updating each model para-
meter, conditional on the current values of the other model parameters. These 
samples of the posterior distribution of Θ are easy to work with in evaluating 
various performance criteria, which are functions of Θ. A popular software 
package for conducting the MCMC analysis is the freely downloadable (http:// 
www.mrc-bsu.cam.ac.uk/bugs/) program, WinBUGS (Spiegelhalter, Thomas, 
Best, and Lunn (2004)). Table 7.17 provides the WinBUGS code for the 
analysis of Example 7.6. The structure of the WinBUGS code is similar to SAS 
PROC GLIMMIX as well as what is used in lmer and glmmPQL in R. The 
model statement specifies the fixed effects first. A separate statement specifies 
the random effects (like the RANDOM statement in GLIMMIX and (11 Batch) 
in lmer and Random = in glmmPQL). 

In WinBUGS, the parameterization for the gamma density is y ~ Gamma 
(r,{) where 

Ä W = ΓίΤ' ( 7 · 1 1 3 ) 

The parameterization in Equation (7.113) is identical Equation (7.55) with 
ξ = VA· 1° producing the MCMC samples (or draws) from the posterior, 
WinBUGS uses the first 4000 draws of Θ (referred to as burn-in) to tune the 
algorithm for subsequent draws. After the burn-in, it is recommended to have 
WinBUGS generate enough MCMC samples in order to thin the samples so as 
to have a final set of independent samples. In this analysis, we generated 
1,000,000 samples then systematically selected every 100th draw for a sample of 
10,000 independent draws of Θ. The final samples of 10,000 draws are 
essentially empirical representations of the posterior distributions for each of 
the parameters in Θ. The draws are easily exported to a text file from 
WinBUGS, which can then be imported into a software package, such as R, 
for further analysis. Using R, the medians from each sample of 10,000 draws 
(the empirical posteriors) are calculated for each of the parameters in Θ. Table 
7.18 gives the fixed effect parameter estimates, and Table 7.19 gives the random 
effect parameter estimates, along with the median of the posteriors for r and σ^ 
Both tables also give the corresponding estimates from PQL. The Bayesian and 
PQL summaries are similar in both tables. The major difference between the 
Bayesian analysis and the frequentist analysis is that the Bayesian approach can 
work directly with the posteriors of each of the parameters for doing inference 
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Table 7.17 WinBUGS Code for the Analysis of Data from Example 7.6 

WINBUGS Code Film Data: 

Model { 

For ( i in 1:52) { 
y[i] -dgamma(alpha,theta[i]) 
#gamma mean is alpha/theta[i] 
#var is alpha/theta[i]Λ2 
theta [ i ] < -alpha/mu [ i ] 
mu [i] <-exp( 
beta[l]*xl[i]+beta[2] 
*x2[i]+beta[3]*x3[i]+ beta 
[4]*xlx2[i]+0*xlx3[i] 
+0*x2x3[i]+ beta [5]*pl[i] 
+ beta [6]*p2[i] 
+ beta [7] *p3 [i]+ beta 
[8]*xlpl[i] 
+ beta [9]*x2pl[i]+0*x3pl[i]+beta [10]*xlp2[i] 
+ beta [Il]*x2p2[i]+0*x3p2[i]+beta [12]*xlp3[i] 
+ beta [13]*x2p3[i]+0*x3p3[i]+0*plp2[i] 
+0*plp3[i]+0*p2p3[i] + delta[roll[i]]) 

} 

for (j in 1:13) { 
delta[j]~dnorm(0,taudelta) 
#taudelta is a whole plot precision 

} 

t p r i o r s 
t a u d e l t a < -
l /pow(sigmadel ta , 2) 

s igmadel ta-dunif (0 ,100) 
for(k in 1:13) { 

b e t a [ k ] ~ dnorm(0 . 0 , 1 . 0E-6) 
#1.OE-6 i s a p r e c i s i o n 

} 
alpha-dunif (0 ,100) 

while the frequentist analysis (e.q., PQL) must rely on asymptotics. For 
instance, in the Bayesian approach, if one wishes to provide a 95% confidence 
interval for, say, ßu one need only take the 250th smallest and 9750th largest 
observations from the 10,000 empirical values from the posterior of ßx. 
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Table 7.18 
Analyses 

Effect 

* 1 

* 2 

* 3 

xY*x2 

P\ 
Pi 

Pi 

X\*Pi 

X\*Pi 

X\*P3 

*2*P\ 

*2*P2 

X2*P3 

Fixed Effect Estimates and Standard Errors for Bayesian and PQL 

Bayesian Analysis 

Estimate 

6.146 
4.022 
1.332 

10.510 
-0.697 

0.272 
0.224 
1.190 

-0.098 
-0.380 

1.981 
-0.897 
-0.036 

Standard Deviation 

0.408 
0.407 
0.878 
2.472 
0.584 
0.533 
0.597 
0.827 
0.753 
0.840 
0.820 
0.758 
0.843 

GLMM PQL Analysis 

Estimate 

6.113 
3.984 
1.241 

10.706 
-0.677 

0.359 
0.291 
1.170 

-0.213 
-0.469 

1.948 
-1.022 
-0.128 

Standard Error 

0.306 
0.319 
0.665 
1.918 
0.437 
0.437 
0.437 
0.611 
0.611 
0.611 
0.625 
0.625 
0.625 

Table 7.19 Parameter Estimates for the Gamma Shape Parameter (r), Random 
Effects (δ/s), and Random Effect Variance (ul) 

Effect 

a 
¿1 
¿2 

¿3 
¿4 
¿5 
δ6 

«7 

äs 
δ9 

<5ιο 
«5η 
<5i2 

<5.3 

*2 

Bayesian Analysis 

Estimate0 

4.2580 
0.0174 
0.0710 
0.1350 
0.0663 

-0.2095 
-0.0108 

0.0806 
0.1526 

-0.0205 
-0.1953 

0.0347 
-0.0286 
-0.1298 

0.0572 

Standard Deviation 

1.1300 
0.2442 
0.2209 
0.2352 
0.2124 
0.2648 
0.2087 
0.2169 
0.2370 
0.2443 
0.2564 
0.2165 
0.2082 
0.2303 
0.1098 

GLMM PQL Analysis 

Estimate 

4.7214 
0.0408 
0.1298 
0.2299 
0.1273 

-0.3346 
-0.0268 

0.1540 
0.2606 

-0.0408 
-0.3290 

0.0715 
-0.0553 
-0.2274 

0.0837 

Standard Error* 

1.2190 
0.2410 
0.2165 
0.2179 
0.2165 
0.2117 
0.2165 
0.2165 
0.2117 
0.2410 
0.2165 
0.2179 
0.2165 
0.2117 
0.0659 

a Bayesian estimates are medians of posteriors. 
b Note that the standard error of the estimated gamma shape parameter 
estimated using the delta method since SAS does not provide the standard 
parameter but rather the reciprocal of the shape parameter. 

from GLMM was 
error for the shape 
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7.3.3 Inference on Response Distribution Characteristics 

It is relatively straightforward to extend this analysis to making inference 
on response distribution characteristics. Consider both the mean and an 
exceedance probability associated with the marginal distribution of the 
response. Robinson, Anderson-Cook, and Hamada (2009) discuss examples 
of Bayesian inference on characteristics of the conditional response distribution 
as well as other details of Bayesian inference. 

Once again, consider Example 7.6. Suppose we need to make inferences for 
the setting on characteristics of the marginal response distribution at x\ = 0.35, 
x2 = 0.35, and x3 = 0.30 and the process variable levels atp\ = l,p2 = —I, and 
/?3 = - l . In thinking of inference, it is helpful to recall the sources of 
uncertainty, which in this case are a function of parameter estimation, roll-
to-roll variability, and the variation due to the response distribution. The 
uncertainty due to parameter estimation is reflected in the joint posterior 
distribution of Θ. Roll-to-roll variation is summarized by the parameter σ\ and 
the conditional response distribution. Here, we use the gamma distribution 
to describe the uncertainty that exists in the response from one piece of film to 
another for a given roll. 

Instead of deriving an explicit expression for the marginal distribution, a 
more straightforward approach uses simulation by exploiting the posterior 
draws which make up the empirical posterior of Θ. For each realization in Θ, 
one can generate a large number (say, 1000) of S¿ realizations from a normal 
distribution with mean 0 and variance σ\ to represent the population of rolls. 
Table 7.20 provides the first three realizations of the posterior distributions of 
/?i,/?2, ·. · ,βΐ3, σ<5, and r. Here, βη denotes the 13th model parameter in the linear 
predictor in Equation (7.108), so β\3 = φ23· From Table 7.20, the first genera-
tion of 1000 Si realizations used a normal distribution with mean 0 and standard 
deviation as = 0.15. Next, for each of the 1000 <5£ realizations, a large number of 
film pieces (say, 1000) are generated from the gamma density with parameters r 
and λβ = For the first realization in Θ (i.e., first row in Table 7.20), an 

Table 7.20 First Three Realizations of the Posterior Distributions' of ßuß2> · · · >0i3> 
σδ, and r Obtained from WinBuGS 

ßl 

5.64 
5.80 
5.84 

ßl 

3.74 
4.46 
3.92 

013 

-0.20 
-0.30 

0.11 

α 

4.20 
6.58 
4.21 

<*b 

0.15 
0.31 
0.15 

°(Note that /?13 denotes the 13th model parameter in the linear predictor in expression (7.108), so 

βη = Ψιύ-
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1000 

Unconditional Mean 

Figure 7.19 Empirical posterior of marginal mean. 

entire population of roll effects are simulated (i.e., the 1000 <5/s), and for each 
roll, an entire population of film pieces are simulated (i.e., 1000 gamma random 
variates using r and λβ = 

E{yji\dj)/r. 
here, r and E(yß\Sj) are determined by the 

first row in Table 7.20 along with the specified link function). A realization of the 
marginal mean posterior distribution is simply the mean of these 
1000 x 1000 = 1,000,000 observations. Similarly, a realization of posterior of 
P(y > 150) is the proportion of these 1,000,000 observations that exceed 150. By 
conducting this exercise for all 10,000 draws in the posterior distributions of©, 
one essentially has an empirical representation of the posterior distributions for 
the marginal mean and the proportion of film pieces that exceed 150. Figure 7.19 
is a plot of the empirical posterior of the marginal mean. We do not provide the 
empirical posterior distribution of P(y > 150); however, it is straightforward to 
obtain. Finally, if one wishes to obtain, say, a 95% credible interval on the 
marginal mean or the proportion of film pieces of film whose response exceeds 
150, one needs only to choose the 250th and 9,750th order statistics of the 
appropriate posteriors for the lower and upper bounds of the credible interval. 

Not only does the Bayesian approach allow the user to easily make 
inference on a variety of characteristics of the conditional and marginal 
response distributions, it is flexible enough to be used with any exponential 
family response distribution. Unlike the frequentist approach to GLMMs, the 
Bayesian method can easily be used for other assumed distributions for 
the random effects. While the Bayesian approach does not rely on asymptotic 
distributional assumptions, it does rely on assumptions regarding the priors 
for the model parameters. Although not presented here, basic diagnostic 
checks using summaries from the posterior distributions easily allow for 
exploration of the residuals to see if the assumptions are appropriate. For a 
more detailed treatment of the Bayesian approach to generalized linear models 
with non normal responses, see Robinson, Anderson-Cook, and Hamada 
(2009). 
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EXERCISES 

7.1 Jensen, Birch, and Woodall (2008) considered profile monitoring of a 
calibration data set in which the data consists of 22 calibration samples. 
One of the purposes of the experiment was to determine the relationship 
between an absorbance measure (absorbance) of a chemical solution to 
the volume at which the solution was prepared (volume). The raw data are 
provided in calibration.xls. 

(a) Graphically investigate the relationship between absorbance and 
volume in a sample specific manner. 

(b) Determine which model—(1) random intercept model, (2) random slope 
but common intercept, or (3) random intercept plus random slope 
model—is most appropriate for these data, shown in the following 
table. Use hypothesis testing with a significance level of 0.05 to make 
your decision. 

(c) Based on the model in part (b), estimate the common variance-
covariance matrix for each sample. 

(d) Provide an expression for the marginal mean relationship between 
absorbance and volume. 

(e) Provide an expression for the conditional mean relationship between 
absorbance and volume. 

Data for Exercise 7.1 (Calibration Data) 

Sample Volume Absorbance Repeat 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 1 
4 1 
3 1 
4 1 

-9 1 
3 1 
3 1 
2 1 

-6 1 
2 1 
1 1 

-7 1 
5 1 
3 1 

-8 1 
4 1 
2 1 
2 1 
0 1 
1 1 
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Sample Volume Absorbance Repeat 

21 
22 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
1 
2 

0 
0 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
150 
150 

-9 1 
-8 1 
104 1 
104 1 
105 1 
104 1 
92 1 
107 1 
104 1 
105 1 
95 1 
104 1 
103 1 
94 1 
105 1 
106 1 
94 1 
104 1 
105 1 
104 1 
101 1 
104 1 
92 1 
95 1 
206 1 
206 1 
207 1 
206 1 
195 1 
209 1 
207 1 
208 1 
196 1 
206 1 
205 1 
198 1 
210 1 
208 1 
196 1 
207 1 
206 1 
206 1 
203 1 
206 1 
194 1 
195 1 
307 1 
308 1 
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Sample Volume Absorbance Repeat 



Sample Volume Absorbance Repeat 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 

206 
199 
208 
207 
199 
210 
208 
206 
206 
208 
194 
199 
308 
307 
309 
312 
299 
308 
308 
309 
300 
310 
307 
301 
315 
308 
302 
310 
310 
308 
307 
309 
297 
301 
412 
413 
411 
413 
400 
410 
410 
412 
401 
412 
411 
402 
415 
414 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

X
 

n
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Sample 

15 
16 
17 
18 
19 
20 
21 
22 

Volume 

200 
200 
200 
200 
200 
200 
200 
200 

Absorbance 

404 
413 
413 
409 
411 
414 
398 
403 

Repeat 

2 
2 
2 
2 
2 
2 
2 
2 

7.2 Robinson, Wulff, Montgomery, and Khuri (2006) consider a wafer 
etching process in semi conductor manufacturing. During the etching 
process, some of the variables are not perfectly controllable and the net 
effect is that wafers produced on any given day (i.e., within the same 
batch) may be different from wafers produced on another day (i.e., wafers 
produced in different batches). Variation due to time is designed into the 
experimentation process by using test wafers chosen at random across 
several days. If there are significant interactions between any of the 
control variables and time of production (consider batch as a proxy for 
time of production), then it may be possible to minimize the impact of the 
variation due to time by manipulating the levels of these control variables. 
Resistivity is the response of interest and the following control variables 
were considered: gas flow rate (jq), temperature (x2)> and pressure (x3). 
A resistivity of 350 is desirable and process engineers hope to obtain 
operating conditions that result in minimal prediction variance. Previous 
experience with the process suggests that resistivity follows a gamma 
distribution. Batches of wafers from 11 different days are used in the 
experiment and the levels of the control variables are manipulated 
according to a central composite design with four center runs. The data 
set is provided in the table below. 
(a) Fit the full, marginal gamma mixed model with log link, where 

batches are considered random. Be sure to fit the main effects, the 
two-factor interactions, and the pure quadratics in the control 
variables. Also fit the interactions between all of the fixed effects 
and the random batch effect. 

(b) Simplify the response variance-covariance matrix via hypothesis 
testing. 

(c) Obtain an explicit expression for the marginal mean response in terms 
of the significant control factor terms. 

(d) Obtain an explicit expression for the estimated prediction variance of 
the marginal mean response. 

(e) Propose a method for finding the optimal control factor settings such 
that the marginal mean is constrained to be 350 while minimizing the 
variance of the estimated marginal mean. 



Coded Settings Response 

*i *2 x 3 Batch 1 Batch2 Batch3 Batch4 Batch5 Batchó Batch7 Batch8 Batch9 Batch 10 Batch 11 

.6818 
1.6818 

-1 
1 

-1 
1 

-1 
1 
0 
0 

-1.6818 
1.6818 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

-1.6818 
1.6818 
0 
0 
0 
0 

186.56 
378.06 
196.32 
265.31 
442.54 
327.29 
128.22 
205.31 
232.07 
293.59 
381.57 
138.67 
215.31 
300.00 
400.39 
340.11 
381.70 
397.16 

274.03 
374.53 
219.53 
294.17 
301.11 
321.55 
212.22 
178.25 
248.85 
252.31 
229.30 
227.13 
517.09 
332.85 
296.12 
237.53 
205.66 
262.74 

323.62 
379.89 
244.17 
362.81 
224.29 
197.20 
146.31 
130.01 
274.92 
330.11 
289.35 
110.53 
477.31 
252.49 
324.95 
189.76 
267.14 
289.68 

185.80 
336.44 
268.18 
179.73 
159.76 
278.44 
89.72 
78.59 
139.97 
192.82 
177.20 
119.70 
289.59 
90.27 

228.89 
206.69 
188.08 
226.40 

386.65 
373.96 
187.78 
256.60 
367.49 
566.95 
231.17 
273.14 
264.33 
368.85 
401.81 
211.23 
394.24 
428.11 
303.66 
416.08 
375.61 
572.07 

321.98 
589.72 
185.34 
402.19 
266.03 
276.37 
262.77 
102.83 
305.75 
297.27 
310.84 
153.19 
642.83 
221.10 
153.87 
260.55 
291.52 
307.89 

59.39 
219.17 
65.73 
62.26 

587.50 
546.48 
304.92 
329.75 
189.35 
189.42 
255.30 
135.20 
31.03 

719.12 
240.72 
129.83 
256.51 
223.15 

404.40 
504.36 
327.87 
444.72 
145.87 
153.76 
101.37 
87.67 
192.82 
271.05 
255.23 
128.78 
873.86 
73.41 

276.95 
174.99 
232.91 
272.82 

208.24 
328.44 
145.12 
279.84 
352.47 
288.26 
180.55 
175.30 
157.59 
266.92 
368.72 
138.06 
364.32 
354.05 
269.38 
250.79 
191.50 
310.37 

186.52 
367.63 
219.77 
266.38 
233.24 
293.87 
87.66 
126.09 
141.47 
241.99 
256.91 
100.39 
330.26 
206.78 
231.07 
166.19 
170.39 
347.19 

366.65 
438.12 
204.44 
403.77 
110.84 
75.35 
62.30 
77.12 
174.31 
288.50 
305.37 
155.58 
468.26 
25.52 

226.14 
228.51 
189.15 
261.68 
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7.3 Schall (1991) considers data from an experiment to measure the mortality 
of cancer cells under radiation. Four hundred cells were placed on a dish, 
and three dishes were irradiated at a time, or occasion. The zero-dose data 
provided here were obtained from OzDASL and are found in cell__survive.xls. 
(a) Consider occasion of irradiation as a fixed effect and assume that the 

three dishes irradiated at a given time represent a random sample of 
possible dishes of cells that could be irradiated at a given time. Fit an 
appropriate logistic regression model to determine if there is a 
significant difference among the occasions. 

(b) Now assume that both occasion and dish are random effects and re-fit 
your logistic model to determine if there is a difference between the 
occasions. 

(c) How does the interpretation of your hypothesis test in part (b) differ 
from the interpretation of the hypothesis test in part (a)? 

(d) Provide an estimate of the overall proportion of cells that survive 
using the model in part (a) as well as the model in part (b). 

Data for Exercise 7.3 

Occasion 

1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
9 
9 
9 

Survived 

178 
193 
217 
109 
112 
115 
66 
75 
80 
118 
125 
137 
123 
146 
170 
115 
130 
133 
200 
189 
173 
88 
76 
90 
121 
124 
136 
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7.4 Weiss (2005, p. 353) describes a patient controlled analgesia study 
presented by Henderson and Shimakura (2003). The number of self-
administered doses in a 4-hour period was recorded for each patient for 
each of 12 consecutive periods. Two groups of patients were considered: a 
1-milligram (mg) per dose group and a 2 milligram. The variables in the 
data set are id (subject id), grouplmg = 1 for subjects in the 1-mg group, 0 
in the 2-mg group, count (# of self-administered dosages), and time (dose 
period). The data is found in selfdose.xls. 
(a) Plot count and \n(count) versus time and comment on which trans-

formation of count appears to be most appropriate. Does there 
appear to be a linear relationship of ln(count) with time! 

(b) When considering a model with both categorical and continuous 
regressors, the interpretation of model coefficients is often aided by 
centering the continuous regressors (here time could be considered 
continuous). After centering time, determine the most appropriate 
Poisson mixed effects model. 

(c) Overlay plots of the estimated marginal mean number of self-
administered doses for the 1-mg group and 2-mg groups over time 
and interpret the plot. 

7.5 In Exercise 6.2 a process for steel normalization was discussed. 
(a) Propose an appropriate mixed model for the data described. 
(b) Provide an estimate of the marginal mean strength of normalized steel 

and compare this estimate to the GEE estimate. 
(c) What advantages can you see to analyzing this data using a mixed 

model versus the GEE approach? 

7.6 In Exercise 6.8, an arthritis clinical trial was described. 
(a) Assume the patients represent a random sample from a population of 

possible patients and refit the data using an appropriate logistic mixed 
effects model (be sure to argue whether a model with random intercepts, 
random slopes, or both should be used). In fitting the logistic model, let 
y = liftheself-assesmentwas'good'andy = 0 if'good' was not indicated. 

(b) Determine if there is a significant treatment effect. 
(c) Determine if there is a significant treatment by time interaction. 
(d) Suppose we would like to estimate the difference in the proportion of 

patients who felt "poor" at baseline and those who felt "poor" after 3 
months in the study. Fit an appropriate mixed effects model for 
estimating this difference. 

(e) Provide a 90% confidence interval on the difference in the proportion 
of patients who felt "poor" at baseline and those who felt "poor" 
after 3 months in the study. 
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7.7 In Example 6.5, a milling process for corn was discussed in terms of yield 
of grits. 
(a) Assume Batch is a random effect and fit an appropriate linear mixed 

model. 
(b) Produce an appropriate set of residual diagnostic plots and comment 

on whether or not you feel there are any unusual observations. 
(c) Produce a normal Q-Q plot for the random Batch effect and comment 

on whether or not you feel that the assumed distribution for the Batch 
effect is appropriate. 

7.8 Somner (1982) reported on an Indonesian Children's Health Study 
designed to determine the effects of vitamin A deficiency in preschool 
children. The investigators were particularly interested in whether chil-
dren with vitamin A deficiency were at increased risk of developing 
respiratory infection. Each child was measured at six times: 0, 3, 6, 9, 12, 
and 15 months. The following is a description of the variabes in the subset 
of the actual data set which is considered here: bage (baseline age in 
years), gender (gender = 1 if female and 0 if male), vita (vitamin A 
deficient = 1 if yes and = 0 if not), infect (respiratory infection = 1 if 
yes and 0 if not), and time (time of examination). The data is found in 
Somner.xls. 
(a) Compute appropriate summary statistics for the response across the 

levels of the regressors and comment on some preliminary relation-
ships that appear to exist. 

(b) Fit a random intercept logistic model along with a random intercept 
and random slope logistic model and determine which is most 
appropriate via hypothesis testing. 

(c) Produce an interaction plot involving vita and time and interpret. 
(d) After removing nonsignificant terms, compute the estimated odds of a 

child developing a respiratory infection when he/she is vitamin A 
deficient. Do the same for children who are not vitamin A deficient 
and then construct the estimated odds ratio comparing the two 
groups. Interpret this estimated odds ratio. 

(e) Characterize the children who seem to have the greatest chance of 
developing a respiratory infection. 

7.9 McKnight and van den Eeden (1993) analyzed a multi period, two-
treatment crossover experiment to establish whether the artificial sweet-
ener aspartame caused headaches. The trial involved randomly assigning 
27 patients to different sequences of placebo and aspartame. The variables 
in headache.xls are Case (subject id number), Week (week of measure-
ment), Aspartame (patient took aspartame = 1 if not = 0), Headaches 
(number of reported headaches), and Exp-days (the number days for 
which headaches counted). 
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(a) Many times with Poisson models, the counts reported should be 
analyzed as rates instead of the raw count due to unequal amounts of 
effort for each subject (e.g., here, some patients had headaches 
counted over differing numbers of days compared to other patients). 
The amount of time for which a count was recorded is commonly 
referred to as an offset and one models the count/time. For the log-
link, the offset is then ln(time). Fit an appropriate random effects 
Poisson model with Exp-days specified as the offset variable. 

(b) Does there appear to be a relationship between the number of 
reported headaches and whether or not a person took aspartame? 
Explain. 

(c) Interpret the coefficients from the final model. 
(d) Provide an expression for the marginal mean number of headaches 

and interpret. 



C H A P T E R 8 

Designed Experiments and the 
Generalized Linear Model 

8.1 INTRODUCTION 

We have illustrated applications of the GLM in a variety of settings, including 
data from both unplanned or observational studies and designed experiments. 
GLMs arise in the context of designed experiments in two ways. First, one of 
the responses in a multiresponse experiment may be nonnormal and require the 
use of a GLM to obtain a satisfactory model. This response may not necessarily 
be the primary response of interest when the experiment is designed, or the 
experimenter may not suspect that it is nonnormal and requires the use of 
the GLM. In this situation, a factorial design, or perhaps a response surface 
design, or even an optimal design may have been selected. Second, the 
experimenter may be very interested in this response and know at the outset 
of the study that the response is nonnormal. In this situation, the experimenter 
should design the experiment with this information in mind. 

This chapter presents several topics that involve designed experiments and 
GLMs. We discuss designed experiments for the GLM and show one 
approach to constructing optimal designs for the GLM using the popular 
D-optimality criterion. This technique can be useful in the situation described 
above where the experimenter knows in advance that he/she requires the GLM 
to obtain an adequate model for the response. We also present an approach to 
evaluating the efficiency of standard designs employed with a response that 
should be modeled with the GLM. This provides some insight on the utility of 
standard designs when the need for a GLM arises after a standard experiment 
has been conducted. We also provide some guidance on how GLMs can be 
used in the analysis of screening experiments, which are often fractional 
factorial designs. 

Generalized Linear Models, Second Edition, by Myers, Montgomery, Vining, and Robinson 
Copyright © 2010 John Wiley & Sons, Inc. 
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8.2 EXPERIMENTAL DESIGNS FOR GENERALIZED 
LINEAR MODELS 

It should be clear to the reader by now that when regressor variables can be 
controlled in a situation with nonnormal responses then the selection of proper 
settings of the variables through design of experiments may be very important. 
Even in the case of a single variable dose-response situation the selection of the 
number of drug doses and location of the doses can have an impact on quality 
of the inference, namely, on the estimation of model coefficients. Before we 
embark on a discussion of difficulties associated with design choice, we review 
some important and well-known design concepts for the case of linear models 
with normal responses. 

8.2.1 Review of Two-Level Factorial and Fractional Factorial Designs 

Two-level factorial and fractional factorial designs for linear models that 
contain first-order and interaction cross-product terms possess the property 
of orthogonality. For example, see Box and Hunter (1961a, b), Montgomery 
(2009), and Myers, Montgomery, and Anderson-Cook (2009). Consider the 
model matrix X in the model formulation 

y = Xß + e 

that was used in the linear regression review in Chapter 2. The property of 
orthogonality implies that the columns of the X matrix are mutually orthogo-
nal. For example, if the coded levels of the design variables are at + 1 , then in 
the case of a 22 factorial with model terms x\, x2, x\X2, and a constant term, the 
X matrix is given by 

X2 

-1 

1 

-1 

1 

X\X2 

1" 

-1 

-1 

1 

and the orthogonality of the columns of X gives that X'X = 4I4 and thus 
(X'X)"1 = i l4 . Here the standard errors of model coefficients are given by 
a/y/4 = σ/2, where σ is the population standard deviation. It turns out that on 
a per run basis these standard errors are as small as possible given the restriction 
that design levels remain within the [—1,+1] ranges. This extends to any 
orthogonal design with levels at ± 1 for models containing main-effect (x,) 
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terms and interaction (x^xj) terms for / ± j . A proof of this result is found in 
Myers, Montgomery, and Anderson-Cook (2009). 

The orthogonal design for models described above is often termed the 
variance optimal design, and it relies on the orthogonality and the placing of all 
points in the design to the ± 1 extremes. Indeed, this variance optimal 
characterization extends to alphabetic optimality such as D and G-optimality. 
Many of these alphabetic optimality criteria are due to Kiefer (1959) and Kiefer 
and Wolfowitz (1959). Here we only define D-optimality. (For a practical 
discussion of alphabetic optimality, see Myers, Khuri, and Carter, 1989.) 
A D-optimal design is one that minimizes the generalized variance of the 
estimated coefficients. Thus the design is chosen for which 

D = \ — I (8 .1) 
I n I 

is maximized. The matrix (X'X)/n is often called the moment matrix. From a 
practical interpretation viewpoint, a D-optimal design results in a simultaneous 
confidence region on the model parameters that has the smallest possible volume. 

While we do not discuss the practical utility of D-optimality further here, we 
should point out that D-optimality is used widely in industry as a design 
selection criterion. In addition, any design criterion that has variance of 
coefficients as the basis of its motivation involves the information matrix 
and, of course, for linear models with i.i.d. N(0, σ2) errors the information 
matrix is proportional to X'X. D-optimality is merely one criterion whose 
characterization involves maximizing the determinant of the information matrix 
(put in moment matrix form so that one is maximizing information on a per run 
basis). The notion of choosing the experimental plan to maximize some norm 
on the information certainly makes intuitive sense, since it offers a plan that is 
most efficient, with the type of efficiency depending on what norm on the 
information matrix is used. Good fortune abounds for this approach in the case 
where the model is linear in the parameters because X'X is parameter free. As a 
result optimal experimental designs can be found that require only the knowl-
edge of the form of the model. Thus even if the model contains terms that are 
additional to the x¡ and xfXj for / Φ), the determination of an optimal design is 
not a major task. 

There is one further intuitive point that should be made that provides some 
more justification of the property of orthogonality. The reader who is not 
entirely familiar with the literature on industrial design of experiments may 
have some understanding of the linear regression topic multicollinearity. This 
area deals with the study of diagnostics that determine the extent of any linear 
dependencies among the regressor variables. Eigenvalues of the correlation 
matrix as well as variance inflation factors are used. If the design is orthogonal 
there are no linear dependencies among the design variables. In this case the 
correlation matrix is the identity matrix with all eigenvalues and variance 
inflation factors equal to unity. 
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8.2.2 Finding Optimal Designs in GLMs 

As in the case of normal error linear models it would seem reasonable that 
optimal designs for GLMs should also be derived from the information matrix. 
Recall from Chapters 4 and 5 that for the most general of the GLMs, the 
information matrix is given by (apart from the constant α(φ)) the matrix 

X'AVAX = X'WX (8.2) 

where W is the Hessian weight matrix. Now we know that for the case of the 
identity link and normal errors, the information matrix is given by X'X (apart 
from the divisor l/σ2). However, for other GLMs we know that the diagonal 
elements in V are functions of the means and hence the χ'β (i.e., the unknown 
model parameters), and the diagonal elements of Δ are also a function of the 
unknown parameters apart from the case of the canonical link in which Δ = I. 
As a result, for many generalized linear models, the optimal design cannot be 
found without knowledge of the parameters. For many years there have been 
few attempts to obtain a practical solution to the design problem for obvious 
reasons. 

Despite the practical difficulty in the implementation of an optimal design in 
generalized linear models, there has been some attention given to the problem, 
particularly in the case of logistic regression. However, the majority of the 
research in this area has been confined to the case of a single design variable. Some 
of the contributions in this area include Abdelbasit and Plackett (1983), Sitter 
(1992), Heise and Myers (1996), Myers, Myers, and Carter (1994), Minkin 
(1987), and Kalish and Rosenberger (1978). For the two-variable problem, there 
are contributions in both Poisson and logistic regression models. See, for 
example, Branden, Vidmar, and McKean (1988), Jia and Myers (2001), Van 
Mullekom and Myers (2001), and Sitter and Torsney (1995). Minkin (1993) has 
dealt with designs for the single-variable Poisson regression model where a 
special application involving impairment of reproduction applies. 

Because the information matrix contains unknown parameters, the experi-
menter has to have an estimate or guessed values of these parameters in order to 
find an optimal design. Some useful references include Dror and Steinberg (2006), 
Ford, Kitsos, and Titterington (1989), Khuri, Mukherjee, Sinh and Ghosh 
(2006). As should be obvious, the requirement of knowledge of parameters, or 
rather parameter guesses, breeds even more difficulty when one moves beyond a 
single design variable. However, break-throughs have been made in special types 
of applications. The impairment of reproduction situation mentioned above 
finds applications where responses are Poisson random variables that come from 
a system (cancer cell colonies or important organisms in our ecosystem) and 
the design variables represent doses of combinations of drugs/pollutants that 
impair the growth of the system. In these applications simplifications allow 
estimated optimal designs to come from parameter knowledge that has as its 
source guessed information easily derivable from characteristics of individual 
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Figure 8.1 D-optimal design for two variables using logistic regression. 

drugs or pollutants. In these applications and certain others, the use of design 
optimality can be combined with either Bayesian approaches or two-stage 
procedures to produce efficient designs or robust designs. In fact, in the impairment 
of reproduction application discussed above, efficient factorial or even fractional 
factorial designs can be developed for any number of drugs/pollutants. 

The requirement of parameter guessing has as its foundation the placing of 
points which accommodates the variance function involved, since in the case 
of members of the experimental family the variance is a function of the mean. 
For example, in a single variable logistic regression model the D-optimal design 
is to place \ of the experimental units at the ED17 6 and the other half at the 
ED82.4. The guess of the design level, or drug dose, that produces 
the probabilities 0.176 and 0.824 must be made. Now, of course, in a practical 
setting a two-point design is rarely embraced by a practitioner. In the case of 
two design variables there is greater difficulty that surrounds the guessing. The 
points must be placed on ED contours, once again with an attempt to account 
for the changing variance structure in the design space. For example, any 
parallelogram bounded by the lines of constant ED22.7 and ED77.3 as in Figure 
8.1 is indeed the D-optimal design. Jia and Myers (2001) established that the D-
criterion is invariant to the location and angle in the parallelogram. Figure 8.2 
illustrates this point. However, if the design becomes larger because of wider 
ranges the D criterion becomes larger, and thus the design is more efficient. 
Here we have an analog to factorial experiments in which increased ranges 
decrease variances of parameter estimates. Points must, however, accommo-
date the binomial variance structure by being on the special ED lines (see 
Figure 8.3). Similar situations occur in Poisson regression particularly in the 
impairment of reproduction application. 
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^ < ED22 7 

Figure 8.2 Logistic regression: invariance to location. 

* 2 

ED 77.3 

ED 22.7 

Figure 8.3 Logistic regression: design is improved with larger range. 

One approach to the optimal design problem for a GLM is to guess or 
estimate values of the unknown parameters. In this case the information matrix 
is a function of the design points only and a D-optimal design can be found. 
More properly, this design should be called a conditional D-optimal design, 
because it depends on the estimated values of the unknown parameters. A two-
stage or sequential procedure could also be employed, where the initial design is 
run and preliminary estimates of the model parameters obtained, then the 
initial design is augmented with additional runs to complete the experiment. 

A third alternative is to employ a Bayesian approach. This would involve 
assessing a prior distribution on the unknown parameters and integrating them 
out of the information matrix. If the prior distribution is/(ß), then the criterion 
that we will use is the Bayesian D-optimality criterion developed by Chaloner 
and Larntz (1989): 

0 = Jln(|I(ß|)/(ß)rfß (8.3) 

where I(ß) is the information matrix. Also see Chaloner and Verdinelli (1995). 
Finding a design that maximizes this criterion is a very computationally 
intensive process as typically it requires that a multidimensional integral be 
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evaluated many times. Gotwalt, Jones, and Steinberg (2009) develop a clever 
quadrature scheme that provides extremely accurate values of this integral and 
is very computationally efficient. JMP uses this procedure with a coordinate 
exchange procedure developed by Meyer and Nachtsheim (1995) that can be 
used to find designs for a variety of nonlinear models, including GLMs. We 
now present several examples of this procedure. 

Example 8.1. Logistic Regression with Two Predictor Variables. An ex-
perimenter wants to fit a logistic regression model in two variables x{ and x2, 
where both variables are in coded units in the range - 1 < x, < 1. Therefore the 
model we plan to fit is 

E{y) 
eßo+ß\X\+ß2*2 

1 + eßo+ß\X\+ß2X2 

Our prior information about the model suggests that reasonable ranges for the 
model parameters are 

1 < ßo < 3 
1-5 <j?, <4.5 

- l < / ? 2 < - 3 

Table 8.1 JMP Bayesian D-Optimal Design for Example 8.1 
Nonlinear Design 

Parameters 

Name 
bO 
bl 
b2 

Design 
Run 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Role 
Continuous 
Continuous 
Continuous 

xl 
-0.57255 
-0.44157 
-1 
-0.57255 
-1 
-1 
-0.57255 
0.402077 

-1 
0.402077 
0.402077 
1 

Values 
1 
1.5 
-1 

x2 
1 
-1 
-0.02109 
1 
-1 
-1 
1 
1 
-1 
1 
1 
1 

3 
4 . 5 

-3 
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Figure 8.4 JMP Bayesian D-optimal design for Example 8.1. 

The experimenter believes that a normal distribution defined over these ranges 
constitutes a reasonable summary of the prior information. A design with 
n = 12 runs is desired. 

Table 8.1 and Figure 8.4 present the Bayesian D-optimal design found by 
JMP. Notice that there are six distinct design points and the model has three 
parameters. Runs 2, 3, and 12 from Table 8.1 are not replicated, while runs (5,6, 
9), (1, 4, 7), and (8, 10, 11) comprise the replicates for the other three distinct 
design points. D 

Example 8.2. The Impact of Changing the Prior Distribution. In Example 8.1 
we used a normal prior distribution to summarize the information about the 
unknown model parameters in the logistic regression model. We now consider 
the impact of using a different prior. JMP allows us to use the normal, lognormal, 
uniform, and exponential distributions as priors. Suppose that we use exactly the 
same information as we did in Example 8.1 but now select the uniform 
distribution as the prior. That is, the model parameters are uniformly distributed 
over the ranges 

1 < ßo < 3 
1.5 < ßx <4 .5 

- 1 < j S 2 < - 3 

Table 8.2 and Figure 8.5 present the Bayesian D-optimal design found by JMP. 
This design is slightly different from the design that we found using the normal 
prior. It has five distinct design points rather than six. Runs 8 and 9 from Table 
8.2 are unreplicated, while runs (1, 6, 10, 12), (2, 3, 4), and (5, 7, 11) are the 
replicates for the other three distinct design points. While there is some impact of 
the choice of prior distribution, it is not dramatic in this example. D 
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Table 8.2 JMP Bayesian D-Optimal Design for Example 8.2, Uniform Prior 

N o n l i n e a r Des ign 

Parameters 

Name 
bO 
bl 
b2 

Design 
Run 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Role 
Continuous 
Continuous 
Continuous 

xl 
-1 
-0.50204 
-0.50204 
-0.50204 
0.56504 

-1 
0.56504 

-1 
0.336435 
-1 
0.56504 

-1 

Values 
1 
1.5 

-1 

x2 
-1 

1 
1 

-1 
1 

-1 
1 
0.25356É 
1 

- 1 
1 

- 1 

3 
4 . 5 

-3 

x1 

Figure 8.5 JMP Bayesian D-optimal design for Example 8.2. 

Example 8.3. Logistic Regression with Interaction. We now reconsider the 
logistic regression model from Example 8.1 but include an interaction in the 
linear predictor. Therefore the model is now 
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E(y) = 
eß0+ßxXX+ß2X2+ßnX\Xl 

\ _|_ eft,+ßi*|+02*2+012*1*2 

As in Example 8.1, we assume that a normal prior distribution is appropriate. 
The likely ranges for the model parameters are 

1 < ßo < 3 
1.5 < ßx <4.5 

- 1 < j ? 2 < - 3 
-0 .5</J 1 2 < -1.5 

The ranges for ß0, ßu and ß2 are identical to those chosen in Example 8.1. We 
want to use a design with 12 runs. 

Table 8.3 and Figure 8.6 present the Bayesian D-optimal design. This design 
is rather different from the designs for the no-interaction model. It has seven 
distinct design points for a model with four parameters with runs 3, 6, and 10 
from Table 8.3 unreplicated and runs (1, 12), (2, 11), (4, 5, 8), and (7, 9) forming 
the other four points. D 

Table 8.3 Bayesian D-Optimal Design From JMP for a Logistic Regression Model 
with Two Predictors and an Interaction Term 

Nonlinear Design 

Parameters 

Name 
bO 
bl 
b2 
bl2 

Design 
Run 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Role 
Continuous 
Continuous 
Continuous 
Continuous 

xl 
1 
-1 
-0.39451 
-1 
-1 
0.261768 
-0.03877 
-1 
-0.03877 
-0.24769 
-1 
1 

Values 
1 
1.5 
-1 
-0.5 

x2 
1 
1 

-1 
-1 
-1 
1 

-0.15756 
-1 
-0.15756 
1 
1 
1 

3 
4. 
-3 
-1. 

,5 

,5 
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Figure 8.6 JMP Bayesian D-optimal design for Example 8.3. 

Example 8.4. Logistic Regression with a Quadratic Model in the Linear 
Predictor. Suppose that we want to fit a logistic regression model in two 
predictor variables but that a quadratic model in the linear predictor should be 
used. That is, the model is 

E(y) = 
e/Wl*l+02*2+0i2*l.V2+0ll*^22*2 

1 + eßo+ß\X\+ß2X2+ßnXiX2+ßnx]+ß22X2
2 

Suppose that the prior information about the model parameters can be 
summarized with a normal distribution and that 

1 < ßo < 3 
1.5 < ft <4 .5 
- 1 < & < - 3 

- 0 . 5 < j 8 1 2 < - 1 . 5 
1.5<j8n <4 .5 
- 2 < ß22 < - 6 

The model that we want to fit has six unknown parameters. Suppose we decide 
to use a 12-run design. 

The JMP Bayesian D-optimal design is shown in Table 8.4 and Figure 8.7. 
Notice that all 12 runs are distinct; that is, there is no replication. There are 
eight levels of both factors in the design. 
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Table 8.4 12-Run Bayesian D-Optimal Design From JMP for a Logistic Regression 
Model with a Full Quadratic in the Linear Predictor 

Nonlinear Design 

Parameters 

Name 
bO 
bl 
b2 
bll 
bl2 
b22 

Design 
Run 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Role 
Continuous 
Continuous 
Continuous 
Continuous 
Continuous 
Continuous 

xl 
-0.05222 
0.466732 
0.959903 
-0.09415 
-1 
-1 
-1 
-1 
1 
-0.15693 
0.560026 

-1 

Values 
1 
1.5 

-1 
1.5 

-0.5 
-2 

x2 
-1 
-1 
1 
0.1796 
0.25415 

-1 
-0.62031 
1 
0.796762 
0.539652 
1 
0.680569 

3 
4 
-3 
4 
-1 
-6 

5 

5 
5 

x1 

Figure 8.7 12-Run JMP Bayesian D-optimal design for Example 8.4. 
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Table 8.5 16-Run Bayesian D-Optimal Design From JMP for a Logistic Regression 
Model with a Full Quadratic in the Linear Predictor 

Nonlinear Design 

Parameters 
Name 
bO 
bl 
b2 
bll 
bl2 
b22 

Design 
Run 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Role 
Continuous 
Continuous 
Continuous 
Continuous 
Continuous 
Continuous 

xl 
1 

-0.19592 
0.050948 
-1 
-1 
-0.48048 
0.411704 

-0.19592 
1 
-0.16357 
-1 
0.050948 

-1 
0.797396 
0.620068 

-1 

Values 
1 
1.5 

-1 
1.5 

-0.5 
-2 

x2 
0.776367 
0.562149 

-1 
0.366591 

-1 
-1 
1 
0.562149 
0.776367 
0.059825 
0.366591 

- 1 
- 0 . 5 3 6 2 3 

1 
- 1 

1 

3 
4 . 5 

-3 
4 . 5 

- 1 . 5 
-6 

1 

0.5 

3 OH 

-0.5 -| 

-1 

— i · ι — 
-1 -0.5 0 

x1 

—i ■ r 
0.5 1 

Figure 8.8 16-Run JMP Bayesian D-optimal Design for Example 8.4. 
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Table 8.5 and Figure 8.8 show what happens when we increase the number 
of runs to 16. There are still 12 distinct design points, but now there are nine 
levels of x{ and eight levels of x2. Runs (1, 9), (2, 8), (3, 12), and (4, 11) from 
Table 8.5 are replicates. D 

Example 8.5. Poisson Regression with a Full Quadratic in Two Predictor 
Variables. An experimenter wants to fit a Poisson regression model in 
two variables xx and x2, where both variables are in coded units in the 
range — 1 < x¡ < 1. It is suspected that a quadratic model in the linear 
predictor is required to provide an adequate model of the response. Therefore 
the model is 

£fy\=eßo+ß\Xl+ß2X2+ßl2XlX2+ßuXi+ß22X2 

The prior information about the model parameters can be summarized with a 
normal distribution where the ranges of the parameters are 

1 < ßo < 3 
0.25 < βλ < 0.75 
-0.1 < j? 2 <-0 .3 
-0.5 < ßl2 < -1.5 
0.45 < ft! < 1.35 
-0.2 < β22 < -0.6 

Notice that the experimenter is anticipating a stronger effect in the X\ direction 
than in the x2 direction. The model has six parameters that must be estimated 
and a design with 14 runs is desired. 

Table 8.6 and Figure 8.9 present the Bayesian Z)-optimal design from 
JMP. There are nine distinct design points; the replicates are runs (2, 8), 
(3, 4), (4, 7), and (5, 9, 11). There are four levels of x\ and seven levels 
of x2. D 

8.2.3 The Use of Standard Designs in Generalized Linear Models 

It is clear from the discussion in Section 8.2.2 that in general (quite apart 
from special applications) the use of design optimality requires either 
sequential experimental design or Bayesian design. These approaches may 
not be available to all experimenter. This suggests the question, What about 
classic standard designs that are used in conjunction with ordinary least 
squares estimation with linear models? Suppose that are consider the 
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Table 8.6 14-Run Bayesian D-Optimal Design From JMP for a Poisson Regression 
Model with a Full Quadratic in the Linear Predictor 

Nonlinear Design 

Parameters 
Name 
bO 
bl 
b2 
bll 
bl2 
b22 

Design 
Run 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Role 
Continuous 
Continuous 
Continuous 
Continuous 
Continuous 
Continuous 

xl 
0 
1 
1 
1 

-1 
-1 
1 
1 

-1 
0.495294 
-1 
-1 
-1 
1 

V a l u e s 
1 
0 .25 

- 0 . 1 
0 .45 

- 0 . 5 
- 0 . 2 

x2 
0 
1 

- 0 . 2 2 7 9 4 
- 1 

1 
- 1 
- 1 

1 
1 

- 1 
1 

- 0 . 9 2 3 1 3 
0 .005825 

- 0 . 2 2 6 8 8 

3 
0 .75 

-0 .3 
1.35 

- 1 . 5 
-0 .6 

x1 

Figure 8.9 14-Run JMP Bayesian D-optimal design for the poisson regression model in Table 8.5. 
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two-level factorial or fractional factorial designs. As we indicated earlier, 
these designs were developed and intended for standard conditions, quite 
unlike the nonlinear structure in GLMs and the concomitant complication 
of nonhomogeneous variance. And yet the examples given in Chapters 4, 5, 
and 6 gave evidence that under certain circumstances they can be very 
efficient. 

We know that the property of orthogonality discussed in Section 8.2.1 is the 
key that produces the minimum variance property possessed by these designs 
under standard conditions. In addition, this orthogonality property has its 
roots in the conditioning of the information matrix. In Section 8.2.2 we wrote 
the information matrix for the general GLM as 

I(b)=X'WX (8.1) 

where W = AVA is called the Hessian weight matrix, a diagonal matrix that 
contains weights w\, w2,..., wm which are functions of parameters. This form of 
the information is discussed at length in Chapters 4 and 5. Suppose that we 
define 

z=w'/2 

where Wl/2 is diagonal with ,th diagonal element w/ . As a result Equation 
(8.1) can be written 

I(b)=Z'Z (8.2) 

where Z is n x p. Here we have the information matrix in a form not unlike its 
appearance for the case of a linear model with the exception that Z, in general, 
contains parameters and thus cannot be controlled. Now consider the diagonal 
and off-diagonal elements of Z'Z, particularly for the case of a two-level design 
with levels at ±1 . The diagonal elements are equal and they all take on the 
value 

I ( b ) a = I > ' '=l>2,...,/> (8.3) 

where Wj is they'th Hessian weight, that is, theyth diagonal element of W. The 
question is: Is the two-level factorial or fractional design orthogonal for the 
GLM situation? Orthogonality here implies that the columns of the Z matrix 
are mutually orthogonal. This information matrix a diagonal and renders the 
model coefficient estimators asymptotically independent. 
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8.2.4 Orthogonal Designs in GLM: The Variance-Stabilizing Link 

It should be emphasized that while the information matrix in Equation (8.2) 
does not look particularly imposing, the values in the information matrix 
depend on parameters that are functions of the distribution involved as well as 
the chosen link function. In fact, given a particular distribution, the choice of 
certain link functions can certainly alter the properties of the designs through 
the information matrix. 

One important type of link function corresponds to the function that is 
applied as a transformation to the raw response and stabilizes the variance 
when the transformed response is fit with a linear model. For example, for a 
Poisson distribution it is well known that a linear model that regresses yl¡2 

against the regressors stabilizes the residual variance. In Chapter 5 we discuss 
the difference between transforming response and the use of generalized linear 
models. For the case of the former, where the response is Poisson, the 
homogeneous variance model is 

E{yx'2) = x'ß (8.4) 

whereas the GLM model, with a square root link is 

μχ'2 = x'ß (8.5) 

For the model in (8.4) the data are being transformed, whereas the GLM model 
of Equation (8.5) features a transformation on the population mean itself. For 
the Poisson distribution the square root transformation in (8.5) is the variance-
stabilizing transformation. This is illustrated easily through the use of the Taylor 
series expansion of yx¡2 around y = μγ through first order: 

0>-μ,)=4'2+&ι;Ι/2)0>-^) 

Thus a Taylor series approximation of Var(y1/2) is Var(y)/[4/xv]. Consequently, 
when Var(y) = μγ as in the Poisson distribution, we have 

Var(y / 2 )^ i (8.6) 

Thus the variance-stabilizing link for the Poisson distribution is the square root 
link. Similarly, it can be shown that the variance-stabilizing link for the 
exponential distribution is the log link. The log link is also the variance-
stabilizing link for the gamma distribution. 

The reader should recall Example 5.1 in Section 5.8 involving the gamma 
distribution where a two-level factorial design was used. The variances of the 

y / 2 ^ . / 2 + W) 
dy 
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parameter estimators were all equal when the variance stabilizing link was used. 
It should be emphasized that the term variance-stabilizing link does not imply 
that the variance of the distribution of y is constant. The Poisson, exponential, 
and other distributions certainly have variances that are functions of the mean. 
The variance-stabilizing aspect of the terminology simply means that the same 
function applied to the data, meaning applied to y, results in approximate 
stabilization of variance. 

It turns out that a two-level factorial or fractional factorial of resolution of 
at least III is an orthogonal design when the variance-stabilizing link is used. This 
can be proved without difficulty and the proof is instructive, so we provide it 
here. Recall the Hessian weight matrix of Equation (8.2), that is, W = AVA. 
Using the notation and terminology introduced in Chapter 4, we have that the 
matrix Δ is a diagonal matrix with 

Wu=W^yi=xx--n ( 8 · 7 ) 

and V is diagonal with diagonal elements 

Όι = νΆΐ{γί)Λ (8.8) 

apart from the scale parameter ¿ζ(φ). At this point we drop α(φ), since it only 
remains as a proportionality constant. 

Consider the link function g(ß) = χ'β. If this transformation were on >>, then 
the model E[g(y)] = χ'β would need to be considered. Expanding g(y) in a 
Taylor series around y = μγ, we have that 

where ¿(μ) = {dg/dy) . Therefore an approximate expression for Var[g(y)] 
is [g'(Afy)]2[Var(y)]. Thus if g(y) is a variance-stabilizing function, [£'(μ>,)]2 is 
proportional to 1/Var(j/) with the constant of proportionality being indepen-
dent of the mean μ .̂ This is the condition that must be satisfied in order that 
#(μ) is the variance-stabilizing link function. Let us assume this condition and 
consider the information matrix given by Equation (8.2). The design is 
orthogonal if 

AVA = W = kl 

where k is a constant, that is, if all of the Hessian weights are equal. Now 
consider that the /th diagonal element w„ of W can be written 

wu = á?Var(y,·) 
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where δ, = d0,/d(xtf). Thus wtt = (00//αχ)β)(0μΛ/00,)(00//α(χ)β), which can 
be written using the chain rule 

w« 
δθ, \ ( δμγι \ (8.9) 

Now assume that the variance-stabilizing link is used. This implies that 

te(ßyi))-\y*r(yd]=r (8-10) 

where k* is some constant. Since #(μ) = χ'β, 

^ ; . ß \ /ö(x'/ß)\ (dH 
dßyl \ δμγ. de¡ 

= k* 

and 
'd{xffij 

9μγι 

ató« 
Mi 

= k* (8.11) 

Now in light of Equations (8.11) and (8.9), we have that since the proportion-
ality constant k* does not involve model parameters, 

= — = k for all / 
k* 

(8.12) 

a scalar constant. Clearly, all Hessian weights are equal, and the information 
matrix in Equation (8.2) is of the form 

" ΘΘ, ' 

Ö(X;W. -i 0(»;E)" Ά*,9ϊ 
. Mi . 

Ill = X'WX = fc(X'X) (8.13) 

Thus (Z 'Z) - 1 = (1/*)(X'X)_I. So in the case of the variance-stabilizing link, a 
two-level design that is orthogonal for the linear model with ± 1 scaling is 
orthogonal for the GLM model with the variance-stabilizing link. Here, 
(X'X) = ΛΊ, where TV is the total number of runs, and thus the asymptotic 
variance of model coefficients are the diagonal elements of (Z'Z) - 1 which are 

V a r ( é , ) = ~ , 7 = 0 ,1 ,2 , . . . (8.14) 

where k is the common Hessian weight given by Equation (8.12). Here the 
covariance is asymptotically zero. 
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Example 8.6. The Poisson Case. Consider the Poisson case where a square 
root link is used. The common Hessian weight can be determined easily 
by Equation (8.12). For the square root link, μί/2 = χ'β and Θ = In μγ. 
Thus μγ = eG and χ'β = eQ/2. So ^(xf$)|^μy = \/2μ~ ,2. In addition, <9χ'β/<90 = 
/θ/2/2. But eQl2 = μ/ . The common Hessian weight from Equation (8.12) is 
(1/4)-1 = 4. So all coefficients have asymptotic variances that are diagonals of 
(X'X)-1 · 1/4. This result is extremely intuitive, since a square root transforma-
tion on y would produce Var(y1/2) = 1/4 from Equation (8.6). In Section 5.8 an 
example that makes use of resistivity data was discussed where the gamma 
distribution was used with a log link (variance-stabilizing link). The design was 
orthogonal. In this case the variance-covariance matrix of coefficient estima-
tors was given by 

Var(b) = (X'X)-,Q 

where r is the scale parameter for the gamma distribution. This same result can 
be found using Equations (8.2) and (8.13). D 

8.2.5 Use of Other Links 

The use of the variance-stabilizing link in conjunction with a two-level factorial 
or fraction with design resolution greater than III produces results that are very 
pleasing. The orthogonality is maintained in the GLM via the information 
matrix, yielding asymptotically independent estimates of coefficients and equal 
variances. But what if other link functions are required? Does there remain a 
kind of robustness under which the design properties remain pleasing? There is 
certainly considerable evidence that this is the case in many instances. The 
factorial structure alone is a commonsense approach to experimentation that 
has scientific and intuitive appeal, even if standard assumptions do not hold. 
Indeed, there are situations in which the efficiency of a two-level factorial or 
fractional factorial design is quite high without a variance-stabilizing link. The 
whole idea of efficiency becomes a bit more difficult to conceptualize in GLM 
scenarios. Let us review the situation with the variance-stabilizing link. For the 
case of the variance-stabilizing link the information matrix in Equation (8.1) 
contains a Hessian weight matrix W in which W diag{wi, w2,..., wn) contains 
equal weights down the main diagonal, and hence 

1(b) = X'WX = fc(X'X). 

Thus it is clear that if X'X is diagonal from choice of design, then all parameter 
estimate variances are equal and are uncorrelated. Suppose, however, that 
the link chosen is not the variance-stabilizing link. Now the w¡ are not equal, 
and 1(b) = Z'Z, where Z = W1/2X. This is best illustrated by an example. 



428 DESIGNED EXPERIMENTS AND THE GENERALIZED LINEAR MODEL 

Suppose that we have a 23 factorial in three variables *i , x2, and x3 and a GLM 
given by 

gfa)=ßo + ßlXl+ß2X2 + ßlXl 

Then the Z matrix is given by 

Z = 

1/2 1/2 1/2 1/2 

wy w{ x\\ w{ x\2 w{ xn 
1/2 1/2 1/2 1/2 

W2 W| X21 W| *22 Wj *23 

1/2 1/2 1/2 1/2 
HV Wo7 X8 1 WJ X82 Wo7 X 8 3 

where xy is the /th level of theyth variable. The columns of the X matrix here are 
orthogonal, but the columns of Z are orthogonal only if the Hessian weights 
are equal. As we indicated earlier, the diagonal elements of 1(b) = Z'Z are 
Σ/Li wi- Now the off-diagonal elements are contrasts in the w's, where the 
contrast constants are products of I's and —I's that are mixed in sign unless 
factors are confounded, which they are not. In fact, the form of the information 
matrix is 

1(b) = 

Σ,χν contra contri? contrC 
Σ™ contvAB cont rae 

Σ w contr^C 

Σ^ 

In the above, "contr" is simply a contrast or effect of A on the Hessian weights; 
a similar definition holds for contr B and contr C. Contr AB is the contrast or 
AB interaction effect on the Hessian weights, and similarly for contr AC and 
contr BC. As a result the information matrix is well conditioned if these so-
called effects are near zero. The interaction effects appear even though there are 
no interactions in the model. Thus the conditioning of the information matrix is 
good if the diagonal elements dominate. This depends on the nature of the 
Hessian weights. In most instances one expects the sum of Hessian weights to 
dominate contrasts in the Hessian weights. If there is no interaction in the 
model, one would expect interaction contrasts in these weights to be relatively 
small. One must keep in mind though that the weights are functions of the 
mean, and that in the case of the canonical link, the weights are equal to 
the variances. Consider the case of a binomial distribution. In most applica-
tions the binomial variances are quite unlikely to vary a great deal across the 
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experiment, and thus the efficiency of a standard two-level design is usually 
expected to be quite good. 

As a hypothetical example, consider a 22 factorial with 10 samples drawn 
at each data point and the following estimated probabilities. Assume a logit 
link. 

Λ{χχ) Β(χ2) Hessian Weights 
- 1 
- 1 

1 
1 

- 1 
1 

- 1 
1 

0.440 
0.750 
0.250 
0.490 

2.464 
1.875 
1.875 
2.499 

As a result of the above, the information matrix I = X'VX is 

1(b) = (X'VX) 

8.713 0.035 0.035 
0.035 8.713 1.213 
0.035 1.213 8.713 

Note that the value contr AB is much larger than either contr A or contr 2?, even 
though there is no detectable interaction between the two factors as far as the 
effect on the binomial response p is concerned. The asymptotic variance-
covariance matrix is 

1(b)-' = 

0.1148 -0.0004 -0.0004 
-0.0004 0.1170 -0.0163 
-0.0004 -0.0163 0.1170 

From this result it is clear that even though a variance-stabilizing link is 
not used, the information matrix is well conditioned, and thus the design is 
efficient. Further verification comes from observing the correlation matrix or 
any number of methods for computing design efficiencies. The correlation 
matrix is 

CORR = 
1 -0.00345 -0.00345 

-0.00345 1 -0.1393 
-0.00345 -0.1393 1 

One interesting measure of design efficiency is to compare the variances of 
individual coefficients (or perhaps the determinant of the information matrix) 
with that obtained if in fact the same Hessian weights were observed in an 
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Table 8.7 A 24 Design with 20 Bernoulli Observations at 
each Design Point 

A B C D y 

_ 

— ] 

— ] 

— 

— 

— 

— 

— 

— 

— 
-

— 
— 

— 
— 

1 - 1 
I - 1 
I - 1 
I - 1 

1 
I 1 
I 1 
I 1 
I - 1 
I - 1 
I - 1 
I - 1 
I 1 
I 1 
I 1 
I 1 

_ 
-
-
-
- ] 

— 
-
-1 

4 
I 1 0 

5 
7 
8 
6 

I 8 
10 
4 
7 
5 

I 1 4 
7 
9 
7 

I 7 

orthogonal design. This gives a sense of level of ill conditioning of the 
information matrix. In this hypothetical illustration, the coefficient variance 
for an orthogonal design would be 1/8.713 = 0.1148. Clearly, the efficiencies 
are 99.97%, 97.85%, and 97.85%, respectively, for the intercept and two linear 
coefficients. As a result the lack of use of a variance-stabilizing link does not 
produce a poor design. This is particularly true in the case of binomial 
experiments, since binomial variances are often relatively stable, except in 
rare extreme cases. 

Consider a second example for illustrative purposes. The design is a 24 

factorial in which 20 Bernoulli observations at each design point are simulated. 
The logit link is used, and thus the design is not orthogonal. There is no proper 
variance-stabilizing link for this case. The data are given in Table 8.7. 

After model editing the parameter estimates, standard errors, Wald chi-
square values, and observational statistics are listed in Table 8.8. Note the 
relative stability of the Hessian weights. The sum of the Hessian weights is 
70.6392. As a result the efficiencies of the parameter estimates are 

A: 97.6% 

C: 97.5% 

D: 98.8% 

AC: 98% 

AD: 98.8% 
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Table 8.8 GLM for Data in Table 8.7 

Parameter 
INTERCEPT 
A 
C 
D 
AC 
AD 
Scale 

Y 
4 

10 
5 
7 
8 
6 
8 

10 
4 
7 
5 

14 
7 
9 
7 
7 

N 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

] 

0. 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0 
0 
0 
0 
0 
0 

Analysis of Parameter Estimates 

DF 
1 
1 
1 
1 
1 
1 
0 

Pred 
.2260 
.5770 
.2250 
.3730 
.3780 
.3020 
.3750 
.4980 
.2250 
.3730 
.3250 
.5770 
.3750 
.4980 
.3760 
.3020 

Estimate 
-0.5687 
0.0351 
0.1019 
0.2075 

-0.2611 
0.2075 
1.000 

Std Err 
0.1204 
0.1204 
0.1203 
0.1197 
0.1203 
0.1197 
0.0000 

Chi Square Pr 
22. 
6. 
0. 
3. 
4. 
3. 
-

Observation Statistics 
Xbeta 

-1.2368 
0.3105 
-1.2368 
-0.5194 
-0.5108 
-0.8378 
-0.5108 
-0.007889 
-1.2388 
-0.5194 
-1.2368 
0.3106 

-0.5108 
-0.007959 
-0.6108 
-0.8378 

Std 
0.3198 
0.2791 
0.3188 
0.2832 
0.2897 
0.2928 
0.2897 
0.2788 
0.3198 
0.2832 
0.3198 
0.2791 
0.2897 
0.2768 
0.2897 
0.2928 

HessWgt 
3.4875 
4.8814 
3.4875 
4.6774 
4.6875 
4.2159 
4.6875 
4.9999 
3.4876 
4.6774 
3.4875 
4.8814 
4.6875 
4.9999 
4.6875 
4.2150 

3187 
4213 
7167 
0036 
7078 
0036 

Lower 
0.1343 
0.4411 
0.1343 
0.2546 
0.2538 
0.1960 
0.2538 
0.3657 
0.1343 
0.2546 
0.1343 
0.4411 
0.2538 
0.3657 
0.2538 
0.1960 

0, 
0, 
0, 
0, 
0, 
0, 
-

> Chi 
.0001 
.0113 
.3972 
.0831 
.0300 
.0631 

Upper 
0.3521 
0.7021 
0.3521 
0.5089 
0.5142 
0.4344 
0.5142 
0.6305 
0.8521 
0.5088 
0.3521 
0.7021 
0.5142 
0.6806 
0.5142 
0.4544 

Thus for this 24 factorial the logistic regression model yields very nearly 
an orthogonal design. Note how stable the standard errors of the coeffi-
cients are. 

Example 8.7. Spermatozoa Survival. This example deals with a spermato-
zoa survival study in a sperm bank. The endpoints in the experiments are 
survive or not survive according to ability to impregnate. The spermatozoa are 
stored in sodium citrate and glycerol, and the amounts of these substances were 
varied along with equilibration time in a factorial array. Fifty samples of 
material were used in each design point. The purpose of the experiment is to 
assess the effects of the factors on proportion survival. Table 8.9 gives the data. 
The analysis included a logistic regression model that contains all main effects 
and two-factor interactions. 
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Table 8.9 Survival Data for Example 8.7 

x\ (Sodium Citrate) x2 (Glycerol) Λ:3 (Equilibrium Time) y (Number Surviving) 

-1 
-1 
-1 

34 
20 
8 

21 
30 
20 
10 
25 

SAS PROC LOGISTIC is first used to fit the full model (main effects and 
two-factor interactions): 

1 
π = 1 + e - (ßo + ß\X\ + β2

χ2 + j?3*3 + j?12*l*2 + j?13*l*3 + &3*2*3) 

One may initially test the overall model, which involves the hypotheses 

i/o : ß = 0 Hx : β φ 0 

where β contains all six parameters, eliminating the intercept. This is analogous 
to doing an F-test for the entire model in standard linear models. Using 
likelihood inference in this situation, we have for the reduced model 
π = 1 / ( ΐ + έ ? - Λ ) , 

- 2 In <£ = 544.234 

whereas for the full model containing seven parameters 

- 2 In i f =496.055 

The appropriate likelihood ratio test statistic is a chi-square statistic, which is 

-2 In 
if(reduced) 

JSf(full) 
544.234-496.055 = 48.179 

with 7 - 1 = 6 degrees of freedom. The value of the test statistic is significant at 
a level p < 0.0001, and thus we conclude that at least one model term impacts 
the probability of survival. The MLEs with Wald inference showing practical 
χ2 values are given in Table 8.10. 

It would appear that ß0, jS2, a n d ß\i are the important model terms. If the 
researcher feels strongly that the adopted model must obey hierarchy, then ßu 

would also be included. 
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Table 8.10 Maximum Likelihood Estimates and Wald Inference on Individual 
Coefficients for Data of Example 8.7 

Model Term df Parameter Estimate Standard Error Wald χ2 P-Value 

Intercept 
x\ 
*2 

*3 

X\X2 

*1*3 

*2*3 

I -0.3770 
I 0.0933 
I -0.4632 
I 0.0259 
I 0.5851 
I 0.0544 
I 0.1122 

0.1101 
0.1101 
0.1101 
0.1092 
0.1101 
0.1093 
0.1088 

11.7198 
0.7175 
17.7104 
0.0563 

28.2603 
0.2474 
1.0624 

0.0006 
0.3970 
0.0001 
0.8124 
0.0001 
0.6189 
0.3027 

The logistic procedure in SAS provide a stepwise procedure that is based 
on likelihood inference. Model terms enter according to the amount that log-
likelihood is increased, much like the decrease in error sum of squares that is 
used in standard linear models. Suppose that initially the model contains an 
intercept. The model term that is placed in the model in the presence of the 
intercept is that which increased the log-likelihood by the largest amount. The 
results are: 

Step 1. Variable χλχ2 enters 

Intercept Only Intercept and Covariates χ2 

- 2 In S£ 544.234 516.116 28.118 with 1 df 
(p < 0.0001) 

Step 2. Variable x2 enters 

Intercept Only Intercept and Covariates χ2 

- 2 In i f 544.234 498.287 45.947 with 2 df 
(p < 0.0001) 

No additional variables met the 0.05 significance level for entry into the model. 
As in the case of linear models, the significance level for entry can be changed. 
The final analysis with Wald inference is: 

Variable df Parameter Estimate Standard Error χ2 P-Value 

Intercept 1 -0.3637 0.1081 11.3116 0.0008 
x2 1 -0.4505 0.1084 17.2677 0.0001 
xxx2 1 0.5747 0.1086 27.9923 0.0001 
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Thus the fitted model for estimating probability of survival is 

Λ 1 
71 — Y , ^-(-0.3637-0.4505 JC2+0.5747 .x,.xr2) 

The model reflects a main effect for the amount of glycerol and an interaction 
between glycerol and the amount of sodium citrate. From the fitted model 
above it is easily established that when the sodium citrate level is low, the 
amount of glycerol has a negative effect on probability of survival. By that we 
mean that a low level of glycerol produces the desired result (P close to 1.0). 
On the other hand, if the sodium citrate level is high, the amount of glycerol 
has very little effect. The most desirable result occurs when both X\ and x2 are 
simultaneously at the low level; whereas the worst case scenario in terms of 
survival occurs when sodium citrate is low and glycerol is high. One must 
keep in mind that as in any designed experiment the conclusions drawn here 
are very much a function of the ranges chosen in the experiment. In addition, 
standard items like the use of residuals and other diagnostic information are 
covered in Chapters 5 and 7 as we deal with generalizing to the exponential 
family of distributions (generalized linear models). However, more should be 
presented at this point on the use of odds ratios and what they mean in this 
example. 

The odds ratios for the model terms x2 and X\x2 as given in SAS PROC 
LOGISTIC are 

Variable Odds Ratio 

x2 0.637 = eh 
χλχ2 \.lll = ebn 

The odds ratio for x2 is calculated as ebl = e~°A505 = 0.637. This can be 
viewed as the analog to an effect in standard linear models with a designed 
experiment. A value of 1.0 obviously implies no effect. Note that in general the 
odds, π/(1 — π), of survival is 

1 - π 

which is given by e^+^lX2+^nXxXl this example. If the model contains no 
interaction, then the value e^2 is the ratio of the odds of survival at x2 = +1 
to the odds of survival at x2 = 0. Thus e2^2 represents the ratio of odds at 
x2 = +1 to that at x2 = — 1. Obviously, this is the case no matter how many 
other first-order terms appear in the model. However, the existence of 
interaction in the model produces a slight complication in the interpretation 
of an effect. In the case of this example with interaction, the odds ratio 
eb2 = 0.637 is the ratio of odds of survival at x2 = 1 to the odds at x2 = 0 
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Table 8.11 Statistical Output for Example 8.7 

Term 

Intercept 
Xl 

X2 

*3 

X\ X2 

X\ Λ:3 

* 2 * 3 

Coefficient 

-0.3770 
0.0933 

-0.4632 
0.059 
0.5851 
0.0544 
0.1122 

Standard Error 

0.1101 
0.1101 
0.1101 
0.1092 
0.1101 
0.1093 
0.1088 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 

Hessian Weights 

11.0149 
12.0737 
6.9775 

12.1158 
11.9205 
11.9205 
7.7673 

12.4971 

when x\ = 0. Note that since the odds ratio is much Owalla than 1.0, the 
implication is that a high value for x2, the amount of glycerol, is undesirable. 
Obviously, other odds ratios can be demonstrated. For example, the ratio of 
odds of survival at x2 = +1 to that of x2 = 0 for xx = - 1 is ebl~bn or 
ebl/ebn, which in this case is 0.637/1.777 ^ 0.36. This number illustrates 
how the effect (far removed from 1.0) of glycerol is so much greater in 
reducing odds of survival at the high level when xx = - 1 than at x{ = 0. On 
the other hand, if we let xx = +1, the odds ratio for x2 is ebl+bn = e°l25, 
which is close to 1.0. So, even if interactions reside in the model, the odds 
ratio values computed by SAS can be manipulated to find interpretable 
effects. 

Now consider the efficiency of the 23 design for this experiment. Table 8.11 
gives the coefficients and standard errors again along with the Hessian weights. 
The sum of the Hessian weights is 86.2873. Thus the ideal variance of each 
coefficient, as obtained with an orthogonal design, is (86.2873)"{ = 0.011589. 
Thus the efficiency of estimation for the intercept, for example, is 

0 0 1 1 5 9 0.956 
(0.1101)2 

or 95.6%. The remaining efficiencies are 

xi : 

x2 : 

x3 : 

x2 : 

x3 : 

95.6% 

95.6% 

97.2% 

95.6% 

97.1% 

x2x3 : 97.9% 
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Thus in this example, as is often the case for logistic regression fit to data with a 
standard two-level design, the efficiencies when compared to that of an 
orthogonal design, are quite good. D 

8.2.6 Further Comments Concerning the Nature of the Design 

In most real-life situation a two-level factorial or fractional factorial design is at 
least reasonably efficient even if the variance-stabilizing link is not used. In fact 
many designs are very nearly orthogonal. The variances of coefficients are also 
very nearly equal in many cases, with the largest variation belonging to the 
variance of the estimated intercept term. It is interesting to see the patterns 
that are present in the information matrix and thus the variance-covariance 
matrix when interactions are present. For example, consider the survival data 
for Example 8.7, where the logit link was used with a binomial response. 
Initially, the logistic regression model contained the terms xu x2, *3, X\X2 and 
X2X3 in addition to the constant term in the linear predictor. Here, the off-
diagonal elements in the information matrix proved very interesting. The 
contrasts in the Hessian weights that appeared are the generalized interaction 
contrasts. The generalized interactions are interactions between the terms that 
are present in the margins that jointly define the cell in the matrix. To illustrate, 
we have 

X\Xi 

control Λ'3 

contra 

con tr.v 1X2*3 

contr.Yi 

contr.Y2.Y3 

Σ»· 

-V2-V3 

contrvi .Y3 

contr.Yi.Y2.Y3 

contra 

contra 

contr.Yi.Y3 

c0ntr.Yj.Y2 

Σ»· 

Note how often there are repeat values in the information matrix. We saw this 
in the previous examples, and the same thing appears in an example later in this 
section. The existence of these off-diagonal terms does not imply that the 
designs in question are inefficient. The contrasts in the Hessian weights that 
appear on the off-diagonal elements often are small relative to the diagonal 
elements. In our experience, the highest efficiencies accompany examples with 
the binomial distribution, and lower efficiencies occur in the Poisson distribu-
tion with the log link when there are zero counts and/or extremely large effects. 

1(b) 

X\ Λ'2 -Y3 X\X2 

J2W contra contra contra contr.Yi.Y2 

Y^w contr.Yi X2 contr.Yi Λ3 contr.x^ 

Σw contr*2*3 control 

Σ\ν contr.Yi.Y2.Y3 

symm 
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Here, effects on the Hessian weights are effects on the mean itself, since the 
mean is equal to the variance. Ironically, large effects bring lack of efficiency 
here, but pragmatically, the latter may not be a problem because design 
efficiency is not needed to detect such large effects. 

The efficiencies that we describe here in our examples in Section 8.2.5 are 
based on fixed diagonal elements. One must keep in mind that these 
important diagonal elements of the information matrix, namely, the sum 
of the Hessian weights, are very much a function of both the design and the 
link function. This relationship underscores again the crucial difference 
between controlling design performance for linear models and for nonlinear 
models. For linear models, the diagonal elements of X'X are controlled by 
design scaling (±1), and the designs, if orthogonal, are optimal conditioned 
on the ranges of the design variables. However, in the GLM situation one 
cannot control the diagonal elements of 1(b) = X'WX, since they depend 
heavily on unknown parameters. As a result, in the absence of guessing 
parameters and laboriously computing optimal designs, we are evaluating 
efficiencies based on a comparison of a given design (after data are collected) 
against one that exhibits the same Hessian weights but is orthogonal. In that 
way, the efficiency is an evaluation of the conditioning of the information 
matrix. 

8.3 GLM ANALYSIS OF SCREENING EXPERIMENTS 

The 2k factorial and 2k~p fractional factorial design are widely used as screening 
experiments. In such experiments the objective is to identify the subset of the 
experimental factors that has the greatest effect on the response. Usually 
the sparsity of effects principle prevails; that is, only a relatively small subset 
of the factors and their interactions is active. Montgomery (2009) describes the 
construction and analysis of these designs in detail. 

A typical approach to the analysis of the 2k (2k~p) design in a screening 
experiment is to plot the effect estimates (or model coefficient estimates b) on a 
normal probability plot. This approach is very effective because the estimates 
have equal variance and are uncorrelated. In the GLM, model coefficients are 
not generally uncorrelated and may not have equal variances. However, a 
normal probability plot of coefficient estimates divided by their standard errors 
often provides useful guidance in the selection of active factors, unless the 
correlations between the estimates is large. As noted in Section 8.2, use of the 
variance-stabilizing links results in uncorrelated parameter estimates. Thus the 
normal probability plot of these parameter estimates is very useful in identify-
ing active effects. 

Example 8.8. The Drill Experiment. The drill experiment was originally 
described by Daniel (1976). Four factors (x¡ = drill load, x2 = flow, x3 = speed, 
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Table 8.12 Drill Data Design Matrix and Response Data for Example 8.8 

Advance Rate 
x\ x2 *3 x4 (Original Data) 

1 
2 + 
3 
4 + 
5 
6 + 
7 
8 + 
9 

10 + 
11 
12 + 
13 
14 + 
15 
16 + 

x4 = type of mud) were studied, and the response variable was the drill advance 
rate (y). The experiment, shown in Table 8.12, is a 24 factorial. Many authors 
have analyzed these data, including Box, Hunter, and Hunter (2005) and 
Montgomery (2009), who use a log transformation and find that three of the 
four mean effects (JC2, X3, and x4) are active. 

We analyze the drill data using a GLM with a gamma distribution and the 
log link. Since this is the variance-stabilizing link, the model coefficients are 
uncorrelated with constant variance. This is confirmed by examining the 
co variance matrix in Table 8.13 and the correlation form of the co variance 
matrix in Table 8.14. The half-normal plot shown in Figure 8.10 indicates that 
factors x2, X3, and x4 are clearly active. This conclusion conforms to previous 
work. Interpretation of this plot is straightforward since the parameter 
estimates are uncorrelated. D 

Example 8.9. The Grille Defects Experiment. This example is taken 
from Bisgaard and Fuller (1994-1995). The experiment involves a 16 run two-
level fractional factorial design in 9 factors. The purpose of this experiment is 
to screen out the insignificant factors. The generators for this 29 ~ 5 resolution 
III design are E = BD, F = BCD, G = AC, H = ACD, and J = AB. The 
experimental responses in this case are counts of defects per grille, which is 
usually assumed to be a Poisson distributed variable. The design matrix, the count 
of defects, c, and the aliasing pattern are shown in Table 8.15. 

Bisgaard and Fuller analyzed these data by taking the square root of 
the counts and also by using the Freeman and Tukey modified transformation 
(y/d + y/c + l)/2. Myers and Montgomery (1997) reanalyzed these data using the 



Table 8.13 Covariance Matrix of Parameter Estimates for the Drill Experiment, Gamma Response, and Log Link 
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Table 8.14 Correlation Matrix of Parameter Estimates for the Drill Experiment, Gamma Response, and Log Link 
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Figure 8.10 Half-normal probability plot for drill data using the GLM with the gamma 
distribution and log link. 

Table 8.15 Design Matrix, the Responses, and Aliasing Pattern for Car Grille Data 

Observations A B C D E F H V~c 
Freeman-Tukey 
Modification 

10 
11 
12 
13 
14 
15 
16 

56 
17 
2 
4 
3 
4 

50 
2 
1 
0 
3 

12 
3 
4 
0 
0 

7.48 
4.12 
1.41 
2.00 
1.73 
2.00 
7.07 
1.41 
1.00 
0.00 
1.73 
3.46 
1.73 
2.00 
0.00 
0.00 

7.52 
4.18 
1.57 
2.12 
1.87 
2.12 
7.11 
1.57 
1.21 
0.50 
1.87 
3.53 
1.87 
2.12 
0.50 
0.50 

Note: /, = A+BJ+CG 
l2 = B+AJ+DE 
h = J+AB+FH 
U = C+AG+EF 
15 = G+AC+DH 
16 = BC+DF+GJ 
17 = BG+CJ+EH 
k = D+BE+GH 

l9 = AD+CH+EJ 
/ l 0 = E+BD+CF 
lu = CD+AH+BF 
ll2 = JD+AE+FG 
/13 = H+DG+FJ 
/,4 = F+CE+HJ 
I is = AF+BH+EG 
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Figure 8.11 Half-normal probability plot for grille defects experiment using GLM with a Poisson 
response distribution and log link. 
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Figure 8.12 Half-normal probability plot for grille defects experiment using GLM with a Poisson 
response distribution and square root link. 

generalized linear model with the Poisson distribution and the log link. They used 
the analysis of deviance to determine the significant factors. 

In this example, the car grille data are again subjected to a GLM analysis with 
both log and square root (variance-stabilizing) links, and the half-normal 
probability plot is used to identify the active factors. The half-normal plot using 
the generalized linear model on Poisson responses with log and square root 
(variance-stabilizing) links are shown in Figures 8.11 and 8.12. The covariance 



Table 8.16 Covariance Matrix Using GLM with Poisson Distribution and Square Root Link for the Grille Defects Example 

Intercept 
\A 
\B 
C 
D 
\E 
\F 
G 
H 
J 
BC 
BG 
AD 
CD 
JD 
AF 

Intercept 

0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

A 

0.00 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

B 

0.00 
0.00 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

c 
0.00 
0.00 
0.00 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

D 

0.00 
0.00 
0.00 
0.00 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

E 

0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

F 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

G 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

H 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

J 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

BC 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 

BG 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.00 
0.00 
0.00 
0.00 

AD 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.00 
0.00 
0.00 

CD 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.00 
0.00 

JD 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.00 

AF 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 



Table 8.17 Correlation Matrix Using GLM with Poisson Distribution and Square Root Link for the Grille Defects Example 

Intercept 
\A 
\B 

\c 
\D 
\E 
\F 
G 
H 
J 
BC 
BG 
AD 
CD 
JD 
AF 

Intercept 

1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

A 

0.00 
1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

B 

0.00 
0.00 
1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

c 
0.00 
0.00 
0.00 
1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

D 

0.00 
0.00 
0.00 
0.00 
1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

E 

0.00 
0.00 
0.00 
0.00 
0.00 
1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

F 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

G 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

H 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

J 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

BC 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 
0.00 
0.00 
0.00 
0.00 
0.00 

BG 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1:00 
0.00 
0.00 
0.00 
0.00 

AD 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 
0.00 
0.00 
0.00 

CD 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 
0.00 
0.00 

JD 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 
0.00 

AF 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 



Table 8.18 Covariance Matrix Using GLM with Poisson Distribution and Log Link for the Grille Defects Example 

Intercept 
\A 
B 

\c 
\D 
E 
F 
G 
H 
J 
BC 
BG 
AD 
CD 
JD 
AF 

Intercept 

472.78 
157.58 
157.59 
157.59 
472.77 
157.58 
472.77 

-157.58 
-157.59 
-157.59 
472.77 
157.59 
157.58 
157.59 

-157.59 
157.58 

A 

157.58 
472.78 
157.59 

-157.58 
157.58 

-157.59 
157.58 
157.59 
157.59 
157.59 
157.59 
472.77 
472.77 

-157.59 
157.58 
472.77 

B 

157.59 
-157.59 
472.78 
472.77 
157.58 
472.77 
157.59 
157.59 
157.58 
157.58 
157.59 

-157.58 
-157.59 
472.77 
157.58 

-157.59 

C 

157.59 
-57.58 
472.77 
472.78 
157.59 
472.77 
157.58 
157.58 
157.58 
157.59 
157.59 

-157.59 
-157.59 
472.77 
157.58 

-157.59 

D 

472.77 
157.58 
157.58 
157.59 
472.78 
157.59 
472.77 

-157.59 
-157.58 
-157.59 
472.77 

-157.58 
157.58 
157.59 

-157.59 
157.59 

E 

157.58 
-157.59 
472.77 
472.77 
157.59 
472.78 
157.59 
157.58 
157.59 
157.58 
157.59 

-157.59 
-157.59 
472.77 
157.58 

-157.58 

F 

472.77 
157.58 
157.59 
157.58 
472.77 
157.59 
472.78 

-157.59 
-157.59 
-157.59 
472.77 
157.58 
157.59 
157.59 

-157.58 
157.58 

G 

-157.58 
157.59 
157.59 
157.58 

-157.59 
157.58 

-157.59 
472.78 
472.77 
472.77 

-157.59 
157.59 
157.59 
157.58 
472.77 
157.58 

H 

-157.59 
157.59 
157.58 
157.58 

-157.58 
157.59 

-157.59 
472.77 
472.78 
472.77 

-157.59 
157.58 
157.59 
157.58 
472.77 
157.59 

J 

-157.59 
157.59 
157.58 
157.59 

-157.59 
157.58 

-157.59 
472.77 
472.77 
472.78 

-157.58 
157.59 
157.58 
157.58 
472.77 
157.59 

BC 

472.77 
157.59 
157.59 
157.59 
472.77 
157.59 
472.77 

-157.59 
-157.59 
-157.58 
472.78 
157.58 
157.58 
157.58 

-157.59 
157.58 

BG 

157.59 
472.77 

-157.58 
-157.59 
157.58 

-157.59 
157.58 
157.59 
157.58 
157.59 
157.58 
472.78 
472.77 

-157.59 
157.59 
472.77 

AD 

157.58 
472.77 

-157.59 
-157.59 
157.58 

-157.59 
157.59 
157.59 
157.59 
157.58 
157.58 
472.77 
472.78 

-157.58 
157.59 
472.77 

CD 

157.59 
-157.59 

Mini 
472.77 
157.59 
472.77 
157.59 
157.58 
157.58 
157.58 
157.58 

-157.59 
-157.58 
472.78 
157.59 

-157.59 

JD 

-157.59 
-157.58 
157.58 
157.58 

-157.59 
157.58 

-157.58 
472.77 
472.77 
472.77 

-157.59 
157.59 
157.59 
157.59 
472.78 
157.59 

AF 

157.58 
472.77 

-157.59 
-157.59 
157.59 

-157.58 
157.58 
157.58 
157.59 
157.59 
157.58 
472.44 
472.77 

-157.59 
157.59 
472.78 
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Table 8.19 Correlation Matrix Using GLM with Poisson Distribution and Log Link for the Grille Defects Example 

Intercept A B C D E F G H J BC BG AD CD JD AF 

Intercept 1.00 0.33 0.33 0.33 1.00 0.33 1.00 -0.33 ' -0.33 -0.33 1.00 ~ 0.33 0.33~ 0.33 ^ Ö 3 3 ~ 0.33 
A. 0.33 1.00 -0.33 -0.33 0.33 -0.33 0.33 0.33 0.33 0.33 0.33 1.00 1.00 -0.33 0.33 1.00 
_ß 0.33 -0.33 1.00 1.00 0.33 1.00 0.33 0.33 0.33 0.33 0.33 -0.33 -0.33 1.00 0.33 -0.33 
£ 0.33 -0.33 1.00 1.00 0.33 1.00 0.33 0.33 0.33 0.33 0.33 -0.33 0.33 1.00 0.33 -0.33 
D 1.00 0.33 0.33 0.33 1.00 0.33 1.00 -0.33 -0.33 -0.33 1.00 0.33 0.33 0.33 -0.33 0.33 
E_ 0.33 -0.33 1.00 1.00 0.33 1.00 0.33 0.33 0.33 0.33 0.33 -0.33 -0.33 1.00 0.33 -0.33 
F 1.00 0.33 0.33 0.33 1.00 0.33 1.00 -0.33 -0.33 -0.33 1.00 0.33 0.33 0.33 -0.33 0.33 
£ -0.33 0.33 0.33 0.33 -0.33 0.33 -0.33 1.00 1.00 1.00 -0.33 0.33 0.33 0.33 1.00 0.33 
H_ -0.33 0.33 0.33 0.33 -0.33 0.33 -0.33 1.00 1.00 1.00 -0.33 0.33 0.33 0.33 1.00 0.33 
I -0.33 0.33 0.33 0.33 -0.33 0.33 -0.33 1.00 1.00 1.00 -0.33 0.33 0.33 0.33 1.00 0.33 
BC 1.00 0.33 0.33 0.33 1.00 0.33 1.00 -0.33 -0.33 -0.33 1.00 0.33 0.33 0.33 -0.33 0.33 
BG 0.33 1.00 -0.33 -0.33 0.33 -0.33 0.33 0.33 0.33 0.33 0.33 1.00 1.00 -0.33 0.33 1.00 
AD 0.33 1.00 -0.33 -0.33 0.33 -0.33 0.33 0.33 0.33 0.33 0.33 1.00 1.00 -0.33 0.33 1.00 
CD 0.33 -0.33 1.00 1.00 0.33 1.00 0.33 0.33 0.33 0.33 0.33 -0.33 -0.33 1.00 0.33 -0.33 
JO -0.33 0.33 0.33 0.33 -0.33 0.33 -0.33 1.00 1.00 1.00 -0.33 0.33 0.33 0.33 1.00 0.33 
AF | 0.33 | 1.00 1-0.33 | —0.33 | 0.33 j —0.33 | 0.33 | 0.33 | 0.33 [ 0.33 | 0.33 | 1.00 | 1.00 [-0.33 | 0.33 | 1.00 
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Figure 8.13 Normal probability plot for deviance residuals using GLM with factors Z), F, BC, and 
BG and log link. 
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Figure 8.14 Normal probability plot for deviance residuals using GLM with factors /), F, and BG 
and square root link. 

and correlation matrices using GLM with the square root and log link are also 
provided in Tables 8.16-8.19. Notice that when the log link is used, there are 
moderate to large correlations between the parameter estimates. However, when 
the variance-stabilizing square root link is used, the parameter estimates are 
uncorrelated. 

Figure 8.11 shows that the main effects D and F, the interaction BC+DF+GJ, 
and possibly the interaction BG+CJ+EH are important when fitting the model 
with a log link. On the other hand, Figure 8.12 indicates only the main effects Z), 



1 Table 8.20 Comparison of 95% Confidence Intervals on the Mean Responses for Model Generated with Freeman-Tukey Modified Sqi 
Root Data Transformation GLM with Poisson and Square 

Observation 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Using OLS with Freeman-Tukey Square Root 

Transformed 

Predicted 
Value 

5.49 
3.95 
1.53 
3.06 
1.53 
3.06 
5.49 
3.95 
1.07 

-0.47 
1.95 
3.49 
1.95 
3.49 
1.07 

-0.47 

95% 
Confidence 

Intervals 
(4.13, 6.84) 
(2.60, 5.3) 
(0.18,2.88) 
(1.71,4.42) 
(0.18,2.88) 
(1.71, 4.42) 
(4.13,6.84) 
(2.60, 5.3) 

(-0.28, 2.42) 
(-1.82,0.88) 

(0.60, 3.31) 
(2.14,4.84) 
(0.60, 3.31) 
(2.14,4.84) 

(-0.28, 2.42) 
(-1.82,0.88) 

Untransformed 

Predicted 
Value 
29.64 
15.11 

1.87 
8.87 
1.87 
8.87 

29.64 
15.11 
0.70 
* 
3.32 

11.69 
3.32 

11.69 
0.70 
* 

95% Confidence 
Intervals 

(16.56, 46.29) 
(6.27, 27.59) 
(1.46, 7.80) 

(2.45, 19.04) 
(1.46,7.80) 

(2.45, 19.04) 
(16.56, 46.29) 
(6.27, 27.59) 

(*, 5.37) 
(*, 0.36) 

(0.03, 10.46) 
(4.09, 22.93) 
(0.03, 10.46) 
(4.09, 22.93) 

(*, 5.37) 
(*, 0.36) 

Root Link Defects for Example 8.9 

GLM Using Poisson 
Distribution and Square 

Predicted 
Value 
35.20 
17.01 
1.68 
9.63 
1.68 
9.63 

35.20 
17.01 
0.47 
1.27 
2.91 

12.34 
2.91 

12.34 
0.47 
1.27 

Root Link 

95% Confidence 
Intervals 

(29.39,41.01) 
(12.97, 21.05) 

(0.41, 2.95) 
(6.59, 12.67) 
(0.41, 2.95) 
(6.59, 12.67) 

(29.39,41.01) 
(12.97, 21.05) 

(0.00, 1.14) 
(0.16, 2.37) 
(1.24,4.58) 
(8.90, 15.78) 
(1.24,4.58) 
(8.90, 15.78) 
(0.00, 1.14) 
(0.16, 2.37) 

GLM Using Poisson 
Distribution and Log 

Predicted 
Values 
50.85 
11.65 
1.21 
5.29 
1.21 
5.29 

50.85 
11.65 
0.41 
0.09 
2.05 
8.95 
2.05 
8.95 
0.41 
0.09 

Link 

95% Confidence 
Intervals 

(41.18, 60.53) 
(7.37, 15.92) 
(0.45, 1.98) 
(2.39,8.19) 
(0.45, 1.98) 
(2.39,8.19) 

(41.18,60.53) 
(7.37, 15.92) 

(0, 1.19) 
(0, 0.28) 

(0.97,3.13) 
(5.15, 12.75) 
(0.97,3.13) 

(5.15, 12.75) 
(0, 1.19) 
(0, 028) 

Length < of 95% Conf 
Intervals 

GLM 
Square 

Transformation Root 
29.73 
21.32 

6.34 
16.59 
6.34 

16.59 
29.73 
21.32 

* 
* 

10.43 
18.84 
10.43 
18.84 

* 
* 

11.63 
8.08 
2.54 
6.08 
2.54 
6.08 

11.63 
8.08 
1.14 
2.21 
3.34 
6.89 
3.34 
6.89 
1.14 
2.21 

tiare 

idence 

GLM 
Log 
19.35 
8.55 
1.53 
5.80 
1.53 
5.80 

19.35 
8.55 
1.57 
0.36 
2.16 
7.60 
2.16 
7.60 
1.57 
0.36 
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F, and the interaction BG (and its aliases) have large effects when using the square 
root as the link function. This result corresponds to Bisgaard and Fuller (1994— 
1995), and the Myers and Montgomery (1997) analysis. The straight-line part of 
the effects in Figure 8.11 may appear slightly straighter than in Figure 8.12. 
Nevertheless, both models include the main effect Z), F, and the interaction BG. 
We use the normal plot of deviance residuals to check the adequacy of the model. 
Those plots are shown in Figures 8.13 and 8.14. The normal probability plot of 
the deviance residuals indicates that the model with factors D and F and the 
interactions BC and BG is not as good as the model based on the square root link, 
which implies that the interaction term BC+DF+GJ is not important and should 
not be included in the model. However, the generalized linear model with main 
effects D and F and interactions BC and BG based on the log link is used in the 
comparison. 

The model for the defect response using the Freeman - Tukey modified square 
root transformation is 

where μ = 2.513 - 0.996Z) - 1.21F - 0.712BG. The reduced model using a 
generalized linear model with Poisson responses and log link with factors D and F 
and interactions BC and BG is 

¿ _ £<).985-1.075Z)-1.338F-0.2075C-0.737ÄG 

The reduced model using generalized linear model with Poisson responses and 
square root link with factors D, i% and BG is 

c = (2.404 - 1.210Z) - 1.415F - 0.904BG)2 

Table 8.20 shows the predicted values at each design point for all three 
models. Since some of the predicted values in the transformed scale are 
negative, no untransformed prediction can be reliably made. Both GLMs 
produce reasonable predicted values. We also construct 95% confidence 
intervals on the mean response at each design point for all three models. The 
lengths of the confidence intervals for both GLMs are very comparable. Based 
on a simpler model and more attractive residuals, we conclude that the 
important factors are Z), F, and BG. D 

Example 8.10. The Wave Solder Experiment. This experiment deals with 
an electronic circuit card assembly and a wave-soldering process. The response 
is the number of defects in the solder joint. The process involves baking and 
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Table 8.21 27 3 Factorial for the Wave Solder Experiment with Number 
of Defects 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

A 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
+ 1 
+ 1 
+ 1 
+ 1 
+ 1 
+ 1 
+ 1 
+ 1 

B 

-1 
-1 
-1 
-1 
+ 1 
+1 
+1 
+ 1 
-1 
-1 
-1 
-1 
+ 1 
+ 1 
+ 1 
+ 1 

Factor 

c 
-1 
-1 
+ 1 
+ 1 
-1 
-1 
+1 
+ 1 
-1 
-1 
+ 1 
+ 1 
-1 
-1 
+ 1 
+ 1 

D 

-1 
+ 1 
-1 
+ 1 
-1 
+ 1 
-1 
+ 1 
-1 
+ 1 
-1 
+ 1 
-1 
+ 1 
-1 
+ 1 

E 

-1 
+ 1 
-1 
+ 1 
+ 1 
-1 
+1 
-1 
+ 1 
-1 
+ 1 
-1 
-1 
+ 1 
-1 
+ 1 

F 

-1 
+ 1 
+ 1 
-1 
-1 
+ 1 
+1 
-1 
+ 1 
-1 
-1 
+ 1 
+ 1 
-1 
-1 
+ 1 

G 

-1 
+ 1 
+ 1 
-1 
+ 1 
-1 
-1 
+ 1 
-1 
+ 1 
+ 1 
-1 
+ 1 
-1 
-1 
+ 1 

1 

13 
4 
20 
42 
14 
10 
36 
5 
29 
10 
28 
100 
11 
17 
53 
23 

y 

2 

30 
16 
15 
43 
15 
17 
29 
9 
0 
26 
— 
129 
15 
11 
70 
22 

3 

26 
11 
20 
64 
17 
16 
53 
16 
14 
9 
19 
151 
11 
17 
89 
7 

preheating the circuit card and passing it through a solder wave by conveyor. 
Condra (1993) presented the results, which Hamada and Neider (1997) later 
reanalyzed. The seven factors are (̂ 4) prebake condition, (B) flux density, ( Q 
conveyor speed, (D) preheat condition, (E) cooling time, (F) ultrasonic solder 
agitator, and (G) solder temperature. Table 8.21 summarizes these results. Each 
factor is at two levels and the experimental design is a 2 7 - 3 fractional factorial. 
Note that data point 11 has only two observations. A third observation was 
reported, but strong evidence suggested that it was an outlier (Hamada and 
Neider, 1997). 

Table 8.22 gives the PROC GENMOD output, which displays a full model 
for a Poisson response old she log link with all seven main effects and six 
interactions that were considered potentially important. Note that the mean 
deviance, which is deviance/(« — /?), exceeds one considerably, so there is an 
indication of overdispersion. To gain some insight on the impact of ignoring 
overdispersion, let us continue with the analysis. Recall that the danger here 
is the underestimation of standard errors of coefficients. Incidentally, note that 
the standard errors of the coefficients are similar but not identical, because the 
design is not orthogonal due to the missing observation. Note that all main 
effects are significant apart from D and F. The DC, AD, BC, and BD are also 
significant. Obviously, there may be a case here for including D in the edited 
model to preserve hierarchy. 
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Table 8.22 G E N M O D Output for Full Model, Wave Solder Data 

The GENMOD Procedure 
Model Information 

Description 
Data set 
Distribution 
Link function 
Dependent variable 
Observations used 

Value 
WORK.DEFECT 
POISSON 
LOG 
Y 
47 

Criteria for Assessing Goodness-of-Fit 

Criterion 
Deviance 
Scaled deviance 
Pearson chi-square 
Scaled Pearson X2 
Log-likelihood 

DF 
33 
33 
33 
33 
-

Value 
139.7227 
139.7227 
122.9190 
122.9190 
3837.9339 

Value/DF 
4.2340 
4.2340 
3.7248 
3.7248 

-

Analysis of Parameter Estimates 

Parameter 
INTERCEPT 
A 
B 
C 
D 
E 
F 
G 
AB 
AC 
AD 
BC 
BD 
CD 
Scale 

DF 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 

Estimate 
3.0721 
0.1126 
-0.1349 
0.4168 

-0.0577 
-0.0942 
-0.0176 
-0.3803 
-0.0175 
0.1741 
0.0919 

-0.0788 
-0.2996 
0.0466 
1.0000 

Std Err 
0.0344 
0.0332 
0.0344 
0.0345 
0.0344 
0.0334 
0.0339 
0.0343 
0.0334 
0.0339 
0.0332 
0.0343 
0.0344 
0.0345 
0.0000 

Chi Square 
7981.4934 

11.4710 
15.3837 
146.1672 
2.8118 
7.9508 
0.2696 

122.9944 
0.2760 

26.3925 
7.6421 
5.2798 

75.8633 
1.8275 

-

Pr > Chi 
0.0001 
0.0007 
0.0001 
0.0001 
0.0936 
0.0048 
0.6036 
0.0001 
0.5993 
0.0001 
0.0057 
0.0216 
0.0001 
0.1764 

-
Note: The scle parameter was held fixed. 

The PROC GENMOD output in Table 8.23 has the standard error 
adjusted for overdispersion as discussed previously. Note in Table 8.23 
that the coefficients are the same as those obtained with the unadjusted 
analysis. However, the standard errors are larger by a factor of 
^deviance/33 = V4.234 = 2.0577. Now the model terms that are significant 
on the basis of χ2 values are only C, G, AC, and BD. This conclusion is 
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Table 8.23 GENMOD Output for Wave Solder Data Adjusted for Overdispersion 

Description 
Data set 
Distribution 
Link function 
Dependent variable 
Observations used 

Value 
WORK.DEFECT 
POISSON 
LOG 
Y 
47 

Criteria for Assessing Goodness-of-Fit 

Criterion 
Deviance 
Scaled deviance 
Pearson chi--square 
Scaled Pearson X2 
Log-

Parameter 
INTERCEPT 
A 
B 
C 
D 
E 
F 
G 
AB 
AC 
AD 
BC 
BD 
CD 
Scale 

-likelihood 

Analys 
DF 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 

DF 
33 
33 
33 
33 
-

Value Value/DF 
139 
33. 
122 
29. 
906 

.7227 4. 
0000 1. 
.9190 3. 
0313 0. 
.4510 

iis of Parameter Estimates 
Estimate 
3.0721 
0.1126 
-0.1349 
0.4168 
-0.0577 
-0.0942 
-0.0176 
-0.3803 
-0.0175 
0.1741 
0.0919 

-0.0788 
-0.2996 
0.0466 
2.0577 

Std Err 

,2340 
,0000 
,7248 
,8797 
-

Chi Square Pr > Chi 
0.0708 1885.0853 
0.0684 
0.0708 
0.0709 
0.0708 
0.0687 
0.0697 
0.0706 
0.0687 
0.0697 
0.0684 
0.0706 
0.0708 
0.0709 
0.0000 

2.7092 
3.6334 

34.5221 
0.6641 
1.8778 
0.0637 

29.0491 
0.0652 
6.2334 
1.8049 
1.2470 
17.9175 
0.4316 

-

0.0001 
0.0998 
0.0566 
0.0001 
0.4151 
0.1706 
0.8008 
0.0001 
0.7985 
0.0125 
0.1791 
0.2641 
0.0001 
0.5112 

-

Note: The scle parameter was estimated by the square root of deviance/df. 

quite different from the initial analysis where overdispersion was not taken 
into account. We used χ2 tests on the parameter estimates. There certainly 
may be a case for /-tests derived from coeff/standard errors, since the 
diagonal elements of the variance-covariance matrix are multiplied by a 
scale parameter. However, consider the edited model with output shown 
in Table 8.24. To gain some insight on individual effects, consider factor 
G, which has a negative effect. If one were to change from the middle of 
the solder temperature (coded value = 0) to the high level, the number 
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Table 8.24 Edited Model for Wave Solder Data 
Link function LOG 
Dependent variable Y 
Observations used 47 

Criteria for Assessing Goodncss-of-Fit 

Criterion 
Deviance 
Scaled deviance 
Pearson chi-square 
Scaled pearson X2 
Log-likelihood 

DF 
42 
42 
42 
42 
-

Value 
241.7755 
42.0000 
237.3981 
41.2396 
657.8421 

Value/DF 
5.7566 
1.0000 
5.6523 
0.9819 

-

Analysis of Parameter Estimates 

Parameter 
INTERCEPT 
C 
G 
AC 
BD 
Scale 

DF 
1 
1 
1 
1 
1 
0 

Estimate 
3.0769 
0.4405 

-0.4030 
0.2821 

-0.3113 
2.3993 

Std Err 
0.0825 
0.0808 
0.0808 
0.0667 
0.0808 
0.0000 

Chi Square 
1391.0260 
29.7429 
24.8954 
17.9039 
14.8557 

— 

Pr > Chi 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 

-

Note: The scale parameter was estimated by the square root of deviance/df. 

of defects is reduced by a factor of e - 0 4 0 3 = 0.65. obviously the individual 
effect of factor C cannot be evaluated without taking into account the 
interaction. 

Consider using the square root link on these data. The analysis for the 
full model and the reduced model is shown in Tables 8.25 and 8.26, respectively. 

The log link and the power link give lack-of-fit performances that are 
approximately the same. However, it is interesting that the conclusions 
regarding the roles of the variables are somewhat different, suggesting that 
the analyst may often wish to try more than one link. Figures 8.15-8.23 
summarize the appropriate residual plots. These plots indicate some minor 
problems with the variability in the residuals, but not enough to significantly 
affect the analysis. 

We see that exercising the d-scale option in SAS gives an estimated 
scale parameter. Notice that A9 2?, C, E, and G are significant although 
A, B, and E do not have large effects. The significant interactions are 
the same as found using the log link scale. The explanation is 
that the effects are now additive on the square root, so sizes of 
coefficients cannot be compared to those in the previous analysis. Notice 
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Table 8.25 Analysis for the Wave Solder Data Using Power ('/i) Link 

The GENMOD Procedure 
Model Information 

Description 
Data set 
Distribution 
Link function 
Dependent variable 
Observations used 

Value 
WORK.DEFECT 
POISSON 
POWER (0.5) 
Y 
47 

Criteria for Assessing Goodness of Fit 

Criterion 
Deviance 
Scaled deviance 
Pearson chi-square 
Scaled Pearson X2 
Log-likelihood 

DF 
33 
33 
33 
33 
-

Value 
148.2599 
33.0000 
134.4467 
29.9254 
853.3053 

Value/DF 
4.2927 
1.0000 
4.0741 
0.9068 

-

Analysis of Parameter Estimates 

Parameter 
INTERCEPT 
A 
B 
C 
D 
E 
F 
G 
AB 
AC 
AD 
BC 
BD 
CD 
Scale 

DF 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 

Estimate 
4.9953 
0.4302 
-0.4041 
1.1957 
0.0096 
-0.3938 
0.0435 

-1.1105 
-0.1292 
0.5650 
0.2621 

-0.2802 
-0.9461 
0.2139 
2.1196 

Std Err 
0.1549 
0.1552 
0.1552 
0.1552 
0.1549 
0.1552 
0.1552 
0.1552 
0.1552 
0.1552 
0.1552 
0.1552 
0.1552 
0.1552 
0.0000 

Chi Square 
1040.1954 

7.6866 
6.7831 

59.3566 
0.0038 
6.4392 
0.0786 

51.2249 
0.6937 

13.2518 
2.8525 
3.2603 
37.1730 
1.9000 

-

Pr > Chi 
0.0001 
0.0056 
0.0092 
0.0001 
0.9507 
0.0112 
0.7792 
0.0001 
0.4049 
0.0003 
0.0912 
0.0710 
0.0001 
0.1681 

-

Note: The scale parameter was estimated by the square root of deviance/df. 

also that the standard errors are not quite equal. Recall that one of the 
observations was removed, rendering the design not quite orthogonal. 
Table 8.26 shows the analysis of the edited model. The standard errors 
are found from approximately the square roots of diagonals of 
(X'X) -1 · (2.2078)2. D 



Table 8.26 Edited Model for the Wave Solder Data 

The GENMOD Procedure 
Model Information 

Description 
Data set 
Distribution 
Link function 
Dependent variable 
Observation used 

Value 
WORK.DEFECT 
POISSON 
POWER(0.5) 
Y 
47 

Criteria for Assessing Goodness of Fit 

Criterion 
Deviance 
Scaled deviance 
Pearson chi-square 
Scaled Pearson X2 
Log-likelihood 

DF 
39 
39 
39 
39 
-

Value 
190.1069 
39.0000 
173.1641 
35.5242 
782.1753 

Value/DF 
4.8745 
1.0000 
4.4401 
0.9109 

-

Analysis of Parameter Estimates 

Parameter 
INTERCEPT 
A 
B 
C 
E 
G 
AC 
BD 
Scale 

DF 
1 
1 
1 
1 
1 
1 
1 
1 
0 

Estimate 
5.0178 
0.4315 
-0.4053 
1.1935 

-0.3864 
-1.1038 
0.5833 

-0.9587 
2.2078 

Std Err 
0.1609 
0.1611 
0.1615 
0.1612 
0.1616 
0.1614 
0.1611 
0.1611 
0.0000 

Chi-Square 
972.7881 
7.1719 
6.2968 

54.8031 
5.7193 

46.7910 
13.1014 
35.4251 

-

Pr > Chi 
0.0001 
0.0074 
0.0121 
0.0001 
0.0168 
0.0001 
0.0003 
0.0001 

-

Note: The scale parameter was estimated by the square root of deviance/df. 
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Figure 8.15 Deviance residuals plotted against the fitted values for the solder wave data. 
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Figure 8.16 Signed deviance residuals plotted against the fitted values for the wave solder data. 
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Figure 8.17 Plot of the observed values versus the fitted values for the wave solder data. 
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Figure 8.18 Plot of the signed deviance residuals versus x\. 
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Figure 8.19 Plot of the signed deviance residuals versus x2. 
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Figure 8.20 Plot of the signed deviance residuals versus *3. 
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Figure 8.21 Plot of the signed deviance residuals versus .v5. 
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Figure 8.22 Plot of the signed deviance residuals versus χη. 
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Figure 8.23 Normal probability plot of the Pearson residuals for the wave solder data. 

EXERCISES 

8.1 Suppose that you want to design an experiment to fit a logistic regression 
model in two predictors. A first-order model is assumed. Based on prior 
information about the experimental situation, reasonable ranges for the 
model parameters are 

0.5 <β0<5 
2<ßx<6 

\<β2<4 



EXERCISES 459 

and the normal distribution is a reasonable prior. Find a Bayesian D-
optimal design with 10 runs for this experiment. 

8.2 Reconsider the situation in Exercise 8.1. Suppose that a uniform prior 
distribution is selected. Find a Bayesian D-optimal design with 10 runs for 
this experiment. Compare this to the design found in Exercise 8.1. 

8.3 Suppose that you want to design an experiment to fit a logistic regression 
model in two predictors. A first-order model with interaction is assumed. 
Based on prior information about the experimental situation, reasonable 
ranges for the model parameters are 

0.5 < j80 < 8 
1 < ß\ < 5 
1 < ß2 < 3 

0.5 < jS12 < 1.5 

and the normal distribution is a reasonable prior. Find a Bayesian D-
optimal design with 16 runs for this experiment. 

8.4 Reconsider the situation in Exercise 8.3. Suppose that a uniform prior 
distribution is selected. Find a Bayesian D-optimal design with 16 runs for 
this experiment. Compare this to the design found in Exercise 8.3. 

8.5 Consider the spermatozoa survival study in Table 8.7. Suppose that we 
want to construct a Bayesian D-optimal design for this experiment. We 
have some prior information about the anticipated results, which we have 
summarized with the following ranges of the parameters: 

- 1 <j?o<0.5 
0 < ßx < 0.5 

- 1 < j3 2 <0 .5 
0<β3< 0.5 

0.5 < yS12 < 1.5 
0 < βη < 0.75 
0 < £ 2 3 < 0 . 5 

Assume that the normal distribution is a reasonable prior. 
(a) Find a Bayesian D-optimal design with 8 runs for this experiment. 

How does this design compare to the 23 design that the experimen-
ters actually used? 
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(b) Find a Bayesian D-optimal design with 16 runs for this experiment. 

8.6 Rework Exercise 8.5 using a uniform prior. What difference does this 
make in the designs obtained? 

8.7 Suppose that you want to design an experiment to fit a Poisson regression 
model in two predictors. A first-order model is assumed. Based on prior 
information about the experimental situation, reasonable ranges for the 
model parameters are 

0.5 < ß0 < 3 

1 < ß\ < 3 
0.25 < ß2 < 0.75 

and the normal distribution is a reasonable prior. Find a Bayesian 
D-optimal design with 16 runs for this experiment. 

8.8 Reconsider the situation in Exercise 8.7. Suppose that a uniform prior 
distribution is selected. Find a Bayesian D-optimal design with 16 runs for 
this experiment. Compare this to the design found in Exercise 8.7. 

8.9 Suppose that you want to design an experiment to fit a Poisson regression 
model in two predictors. A first-order model with interaction is assumed. 
Based on prior information about the experimental situation, reasonable 
ranges for the model parameters are 

0.5 < ß0 < 3 

1 < ß\ < 3 
0.25 < ß2 < 0.75 
0.1 < 012 < 0.5 

and the normal distribution is a reasonable prior. Find a Bayesian 
D-optimal design with 16 runs for this experiment. 

8.10 Reconsider the situation in Exercise 8.9. Suppose that a uniform prior 
distribution is selected. Find a Bayesian D-optimal design with 16 runs 
for this experiment. Compare this to the design found in Exercise 8.9. 

8.11 Consider a 23 factorial design with ±1 coding for the design variables. 
Assume that the response follows a gamma distribution, and suppose we 
wish to use the canonical link. Assume that the true values for the 
coefficients in the linear predictor are ß0 = 1, ß\ = 3, ß2 = —4, andjS3 = 2. 
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(a) What are the design efficiencies associated with the estimation of 
the four parameters? 

(b) Give the values for the eight Hessian weights. 
(c) Give the correlation matrix for the estimated parameters. 

8.12 Consider a 24 factorial design with ± 1 coding for the design variables. 
Assume that the response follows a Poisson distribution, and suppose we 
wish to use the log link. Assume that the true values for the coefficients in the 
linear predictor are ß0 = 1.5, ß\ = -1.0, ß2 = - 3 , ß3 = 1.5, and βΛ = 2.0 
(a) What are the design efficiencies associated with the estimation of 

the four parameters? 
(b) Give the values for the sixteen Hessian weights. 
(c) Give the correlation matrix for the estimated parameters. 

8.13 Consider Exercise 8.11. Suppose now that the linear predictor also 
includes the X\x2 and the X\x3 interactions with βλ2 = 0.5 and j?l3 = -2 . 
Calculate all the design efficiencies for the more complicated model. 

8.14 Consider Exercise 8.11, where we use an identity link with a Poisson 
response. Assume the model 

E(y) = 1.0 + 3xi + 2x2-x3 

Compute the design efficiencies and the correlation matrix of the 
estimated parameters. 

8.15 Consider a 22 factorial experiment. Suppose that the response follows a 
Poisson distribution and that the linear predictor is #(μ) = 3.5 
+2.0x\+\.5x2, where the design variables are coded as + 1. 
(a) Use a log link and generate three replicates of this experiment using 

a Poisson random number generator with the mean calculated from 
the link function and the linear predictor. 

(b) Fit the GLM using the log link. 
(c) Find the covariance and correlation matrix of the estimated 

parameters. Comment on the variances and the correlations. 
(d) Calculate the fitted values at each design point. 
(e) Compare your empirical results and then compare to the theoretical 

results. 
(f) Rework parts (b), (c), and (d) using the square root link and 

comment on your results. 
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8.16 Consider the situation in Exercise 8.15. Suppose now that the linear 
predictor is #(μ) = 3.5+2.0*1+1.5Χ2+0.5Λ;ΙΛ:2. Rework all the parts of 
Exercise 8.15 with this new model. 

8.17 Consider a 23 factorial experiment. Suppose that the response follows 
an exponential distribution and that the linear predictor is #(μ) = 8.0 
+2.0χ1+3.0χ2+*3— 1.5xiX2> where the design variables are coded as +1. 
(a) Use the inverse link and generate two replicates of this experiment 

using an exponential random number generator with the mean 
calculated from the link function and the linear predictor. 

(b) Fit the GLM using the inverse link. 
(c) Find the covariance and correlation matrix of the estimated 

parameters. Comment on the variances and the correlations. 
(d) Calculate the fitted values at each design point. 
(e) Compare your empirical results and then compare to the theoretical 

results. 
( 0 Rework parts (b), (c), and (d) using the log link and comment on 

your results. 

8.18 Reconsider the situation in Exercise 8.17. Rework part (a) using the log 
link, and then rework parts (b) and (c) using the new data. 

8.19 Consider the situation in Exercise 8.15. Use the linear predictor and log 
link to generate 500 samples of three replicates each. 
(a) For each of the 500 samples fit the GLM assuming a Poisson 

response and log link. 
(b) Calculate the predicted response at X\ = 1 and x2 = - 1 for each of 

the 500 samples. 
(c) Prepare histograms of the estimated model coefficients and the 

predicted values obtained in parts (a) and (b). Do these histograms 
look reasonable in light of the asymptotic properties of the para-
meter estimates? 

(d) Compute 95% confidence intervals for βχ and for the mean 
response when xi = 1 and x2 = 1 for each of the 500 samples. 
How often do these intervals cover the true values for β\ and the 
true mean response when x\ = 1 and x2 = — 1? 

8.20 Consider the situation in Exercise 8.17. Use the linear predictor and log 
link to generate 500 samples of two replicates each. 
(a) For each of the 500 samples fit the GLM assuming an exponential 

response and log link. 
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(b) Calculate the predicted response at x\ = 1, x2 = 1, and x3 = 1 for 
each of the 500 samples. 

(c) Prepare histograms of the estimated model coefficients and the 
predicted values obtained in parts (a) and (b). Do these histograms 
look reasonable in light of the asymptotic properties of the para-
meter estimates? 

(d) Compute 95% confidence intervals for ß\ and for the mean 
response when x\ = 1, x2 = 1, and x3 = 1 for each of the 500 
samples. How often do these intervals cover the true values for ß\ 
and the true mean response when at x\ = 1, x2 = 1, and JC3 = 1? 



A P P E N D I X A.l 

Background on Basic Test Statistics 

We indicate that Y is a random variable that follows a normal distribution with 
mean μ and variance σ2 by 

Υ~Ν(μ, σ2) 

Central Distributions 
1. Let Yu Y2,·., Yn be independent normally distributed random variables 

with E(Y¡) = jU/, and Var(T¿) = σ,·2. Let a^ a2,..., an be known constants. 
If we define the linear combination of the 7/s by 

υ = Σ«ίγί 
i=\ 

then 

U~N [Y^a^Y^aW 

The key point is that linear combinations of normally distributed random 
variables also follow normal distributions. 

2. If Υ~Ν(μ, σ\ then 

Z = ^ - ^ ~ JV(0,1) σ 

where Z is the standard normal random variable. 
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3. Let Z = (Y- μ)/σ. If Υ~Ν(μ, σ2), then Z2 follows a χ2 distribution with 
one degree of freedom, which we denote by 

The key point is that the square of a standard normal random variable is 
a χ2 random variable with one degree of freedom. 

4. Let Υχ, Y2,...,Y„ be independent normally distributed random variables 
with E(Yt) = μι and Var(y,·) = σ,2, and let 

z, = 2 ^ · 

then 

Σζ?~*2 
The key points are (a) the sum of« independent squared standard normal 
random variables follows a χ2 distribution with n degrees of freedom, and 
(b) the sum of χ2 random variables also follows a χ2 distribution. 

5. (Central limit theorem) If Yu Γ2,..., Υη are independent and identically 
distributed random variables with E{Y¡) = μ and Var(T,) = σ2 < oo, then 

Ϋ-μ 
σ/y/ñ 

converges in distribution to a standard normal distribution as n -► oo. 
The key point is that if n is sufficiently large, then Ϋ approximately 
follows a normal distribution. What constitutes sufficiently large depends 
on the underlying distribution of the Y¡%. 

6. If Z~JV(0, 1), V ~ xl, and Z and Fare independent, then 

where tv is the / distribution with v degrees of freedom. 
7. Let Κ~χ2, and let W~x2. If Fand Ware independent, then 

V/v 
1 V,M 

W/η 

where Εν,η is the F distribution with v and η degrees of freedom. The key 
point is that the ratio of two independent χ2 random variables, each 
divided by their respective degrees of freedom, follows an F distribution. 
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Noncentral Distributions 
1. Let Υ~Ν{δ, 1), and let V~y}v. If Fand Kare independent, then 

Ύ/ν 
<** 

where tf
vS is the noncentral / distribution with v degrees of freedom and 

noncentrality parameter δ. 
2. If Υ~Ν(δ, 1), then 

where χ2' 2 is the noncentral χ2 distribution with one degree of freedom 
and noncentrality parameter <52. 

3. If Y\, Yi,.·, Yn are independent normally distributed random variables 
with Έ(Υ,) = δί9 and Var(F/) = 1, then 

i=l 

where the noncentrality parameter, λ, is 

* = Σ«? 2 

i=\ 

4. Let ν~χΙ'λ, and let W~x2. If V and W are independent, then 

Hi F> 
W/n ν·"·Α 

where F1 ¿is a noncentral F distribution with v and η degrees of freedom 
and noncentrality parameter λ. 



A P P E N D I X A.2 

Background from the Theory 
of Linear Models 

Basic Definitions 
1. (Rank of a matrix) The rank of a matrix, A, is the number of linearly 

independent columns. Equivalently, it is the number of linearly inde-
pendent rows. 

2. (Identity matrix) The identity matrix of order k, denoted by I or I¿, is a 
kxk square matrix whose diagonal elements are l's and whose non-
diagonal elements are O's; thus 

1 0 0 · · 0 
0 1 0 . . . 0 

0 0 0 . . . 1 

3. (Inverse of a matrix) Let A be a k x k matrix. The inverse of A, denoted 
by A - 1 , is another kxk matrix such that 

AA * = A - 1 A = I 

If the inverse exists, it is unique. 
4. (Transpose of a matrix) Let A be a n x k matrix. The transpose of A, 

denoted by A' or A r , is a k x n matrix whose columns are the rows of A; 
thus if 
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then 

A': 

« i i «12 · · · a\k 

a2\ «22 · · . a-ik 

an\ an2 

«11 «21 

«12 «22 

««A: 

«/il 

«*2 

ß\k ulk · · · ««A:. 

Note that if A is a « x m matrix and B i s a m x / ? matrix, then 

(AB)' = B'A' 

5. (Symmetric matrix) Let A be a k x k matrix. A is said to be symmetric if 
A = A'. 

6. (Idempotent matrix) Let A be a k x k matrix. A is called idempotent if 

A = AA 

If A is also symmetric, A is called symmetric idempotent. If A is 
symmetric idempotent, then I - A is also symmetric idempotent. 

7. (Orthonormal matrix) Let A be a k x k matrix. If A is an orthonormal 
matrix, then A'A = I. As a consequence, if A is an orthonormal matrix, 
then A"1 = A'. 

8. (Quadratic form) Let y be a k x 1 vector, and let A be a k x k matrix. 
The function 

k k 

ι=1 j=\ 

is called a quadratic form. A is called the matrix of the quadratic form. 
9. (Positive definite and positive semidefinite matrices) Let A be a k x k 

matrix. A is said to be positive definite if the following conditions hold: 
(a) A = A' (A is symmetric), and 
(b) y'Ay > 0 V y e R*,y φ 0. 
A is said to be positive semidefinite if the following conditions hold: 
(a) A = A' (A is symmetric), 
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(b) y'Ay > 0 Vye Rk, and 
(c) y'Ay = 0 for some y ^ O . 

10. (Trace of a matrix) Let A be a k x k matrix. The trace of A, denoted by 
tr (A), is the sum of the diagonal elements of A; thus 

k 

tr(A) = $ ^ 

Note that 
(a) If A is a m x n matrix and B is a n x m matrix, then 

tr(AB) = tr(BA) 

(b) If the matrices are appropriately conformable, then 

tr(ABC) = tr(CAB) 

(c) If A and B are k x k matrices and a and b are scalars, then 

tr(aA + bB) = a tr(A) + b tr(B) 

11. (Rank of an idempotent matrix) Let A be an idempotent matrix. The 
rank of A is its trace. 

12. (Important identity for a partitioned matrix) Let X be a n x p matrix 
partitioned such that 

X = [X1X2] 

We note that 

X(X'X)_1X'X = X 
X(X,X)"IX,[XiX2]=X 

X(X,X)"1X,[X1X2]= [X,X2] 

Consequently, 

X(X'X)_1X'Xi =Xi 
X(X,X)"1X,X2 = X2 

Similarly, 

Χ',ΧίΧ'ΧΓ'χ' =X', 
χ ' ^ χ ' χ ^ χ ' =x'2 
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Matrix Derivatives 
Let A be a k x k matrix of constants, a be a k x 1 vector of constants, and y be a 
k x 1 vector of variables. 

1. If z = a'y, then 
dz _ 9a'y _ 
dy dy 

2. If z = y'y, then 
d z ^ d y ' y 
dy dy y 

3. If z = a'Ay, then 
dz _ da'Ay _ , 
dy dy 

4. If z = y'Ay, then 
dz 9y'Ay A . 
dy dy 
If A is symmetric, then 

Expectations 
Let A be a A: x A: matrix of constants, a be a k x 1 vector of constants, and y be a 
& x 1 random vector with mean μ and nonsingular variance-covariance matrix V. 

1. E (a'y) = β'μ. 
2. E (Ay) = A μ. 
3. Var (a'y) = a'Va. 
4. Var(Ay) = AVA'. Note that if V = σ2Ι, then Var(Ay) = σ2ΑΑ'. 
5. E(y'Ay) = tr(AV) + μ'Αμ. Note that if V = σ2Ι, then E(y'Ay) = σ2 

tr(A) + μ' Αμ. 

Distribution Theory 
Let A be a A: x A: matrix of constants, and y be a k x 1 multivariate normal random 
vector with mean μ and nonsingular variance-covariance matrix V; thus 

Let U be the quadratic form defined by U = y'Ay. 

1. If AV or VA is an idempotent matrix of rank p, then 

where λ = μ'Αμ. k^x 
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2. Let V = σ2Ι, which is a typical assumption. If A is idempotent with rank 
p, then 

where λ = μ' Αμ/σ2. 
3. Let B be a q x k matrix, and let W be the linear form given by W = By. 

The quadratic form U = y' Ay and W are independent if 

BVA = 0 

Note that if V = <r2I, then U and W are independent if BA = 0. 
4. Let B be a & x k matrix. Let V = y'By. The two quadratic forms, U and V, 

are independent if 

AVB = 0 

Note that if V = σ2Ι, then U and V are independent if AB = 0. 



A P P E N D I X A3 

The Gauss-Markov Theorem, 
Var(8) = σ2Ι 

The Gauss-Markov theorem establishes that the ordinary least squares (OLS) 
estimator of ß, b = (X'X)-1 X'y, is BLUE (best linear unbiased estimator). By 
best, we mean that b has the smallest variance, in some meaningful sense, 
among the class of all unbiased estimators that are linear combinations of the 
data. One problem is that b is a vector; hence its variance is actually a matrix. 
Consequently, we seek to show that b minimizes the variance for any linear 
combination of the estimated coefficients, /'b. We note that 

Var(l'b) = l,Var(b)l 

= 1'[σ2(Χ'Χ)-ΐ]ΐ 

= σ2\'{Χ'Χ)-ι\ 

which is a scalar. Let β be another unbiased estimator of β that is a linear 
combination of the data. Our goal then is to show that 

Var(l'ß) > σ ^ Χ ' Χ Γ ' ΐ 

with at least one 1 such that 

Var(l ,ß)>a2l ,(X ,X)-1l 

We first note that we can write any other estimator of ß that is a linear 
combination of the data as 

b = (X'Xr'x' + BJy + bo 
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where B is a p x n matrix and b0 is a p x 1 vector of constants that appropriately 
adjusts the OLS estimator to form the alternative estimate. We next note that if 
the model is correct, then 

£(ß) = E ([(X'X)-' X' + B] y + bo) 

= [(x'xr'x' + BjtföO + bo 

= i(X'X)-,X' + Blxß + b0 

= (X'X)~lX/Xß + BXß+.bo 

= ß + BXß + bo 

Consequently, ß is unbiased if and only if both b0 = 0 and BX = 0. The 
variance of ß is 

Var(ß) = Var([(X'X)-'x' + ß]y) 

= [(X'X)"'X' + B]var(y)[(X'X)"1X' + B ] ' 

= [(Χ'Χ)"1Χ' + Β]σ2ΐ[(Χ'Χ)"1Χ' + Β]' 

= σ2 [(Χ'Χ)"'Χ' + B] [X(X'X)-1 + B'l 

= σ2[(Χ'Χ)_1+ΒΒ'] 

because BX = 0, which in turn implies that (BX)' = X'B' = 0. As a result 

Var(l'ß) = l'Var(ß)I 

= 1'(σ2[(Χ'Χ)-1+ΒΒ'])ΐ 

= σ21'(Χ'Χ)"Ί + σ21'ΒΒΊ 

= Var(b) + σ21'ΒΒΊ 

We note that BB' is at least positive semidefinite matrix; hence σ2ΓΒΒΊ > 0. So 
we can define 1* = B'l. As a result 

l'BB'l = r r = ^ l f 2 

/=! 

which must be strictly greater than 0 for some 1 φ 0 unless B = 0. Thus the OLS 
estimate of β is the best linear unbiased estimator. 



A P P E N D I X A.4 

The Relationship Between 
Maximum Likelihood Estimation 
of the Logistic Regression Model 
and Weighted Least Squares 

In Chapter 4, we showed that the maximum likelihood estimator solves 

Χ'(γ-μ) = 0 

where y' = \yu j^»···* JVl and μ' = [η\Κ\, n2n2,..., nmnm]. This set of equations is 
often called the maximum likelihood score equations. The Newton-Raphson 
method is typically used to solve the score equations. This procedure observes 
that in the neighborhood of the solution, we can use a first-order Taylor series 
expansion to form the approximation 

£-*-(!)'«·-» < A · 4 " 
where β* is the value of β that solves the score equations. Now //, = χ',β, and 

drh_Y 
c>ß ~ Xi 

so 

π = exp(fr) 
1 + exp(>/,·) 
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By the chain rule 

Therefore we can rewrite (A.4.1) as 

yi 

s.,»(gy l (r.B 

n, \dti,J 

£K*> 
where η* is the value of ηέ evaluated at β*. We note that 

exp(iff.) 
1 + exp(i/y) 

Thus we can write 

diii exp(f/;) expfo) -.2 

(A.4.2) 

θηί 1 + expfo) |_1 + expfo,·)] 
= π,·(1 - π , ) 

Consequently, 

>>,· - Λ/π/ « [/ι,·π/(1 - πί)](η* - */,·) 

Now the variance of the linear predictor η* = χ'β* is, to a first approximation, 

1 1 
Varfa?) /ι,·π/(1 -π7·) VarCv,·) 

Thus 

y i - riiUi « Var(y,) · (77* - 77,·) 

and we may rewrite the score equations as 

m 

5 > a r ( y , ) · fa?-»,,·) = <) 
i=l 
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or in matrix notation, 

X'V(tl* - η) = 0 

where V is a diagonal matrix of the weights formed from the variances of the y¡. 
Because η = Χβ we may write the score equations as 

Χ'Υ(η* - Χβ) = 0 

and the maximum likelihood estimate of β is 

b = (X'VX)_1X'Vii* · 

However, there is a problem because we don't know η*. Our solution to this 
problem uses Equation (A.4.2): 

which we can solve for η*, 

Let Zj = r\i + (yi/rij — π^δ^/δπ/ and z' = [z\, z2,..., zn], Then the Newton-
Raphson estimate of β is 

b = (X,VX)"1X,Vz 

In this case, V = diagfwc/O-Tc,·)}. Thus the IRLS algorithm based on the 
Newton-Raphson method can be described as follows: 

1. Use ordinary least squares to obtain an initial estimate of β, say, bo-
2. Use b0 to estimate V and π. 
3. Let t|o = Xb0. 
4. Base Z\ on η0. 
5. Obtain a new estimate b1? and iterate until some suitable convergence 

criterion is satisfied. 

If b is the final value that the above algorithm produces and if the model 
assumptions are correct, then we can show that asymptotically 

£(b) = ß and Var(b) = (X'V^X)"1 
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The fitted value of the logistic regression model is often written as 

„ exp(x;.b) 
%i l+exp(x;b) 

1 
~ 1 + exp(-x;b) 



A P P E N D I X A.5 

Computational Details for GLMs 
for a Canonical Link 

Recall that the log-likelihood function for GLMs is 

L = In J2?(y,ß) = ¿ \yfit - ο(θί)]/α(φ) + c(yh φ) 
i=\ 

For the canonical link we have r\i = g[£O>/)] = g(ßt) = Χ/β, and the score 
equations are 

¿ ) Σ ^ - ^ = » (A-5.1) 

In matrix form these equations are 

Χ'(γ-μ)=0 

where μ '= [μΪ9 μ2,...9 μη]. 
To solve the score equations, we can use iteratively reweighted least squares 

(IRLS), just as we did in the cases of logistic and Poisson regression. We start 
by finding a first-orderTaylor series approximation in the neighborhood of the 
solution, η*, which is 

¿tot * Λ 
η-μ,ν^Ι,-'Ι,) 

Now for a canonical link ηί = 6h and 

dVi( * \ 
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Therefore we have 

i,*-*,* to-ft)H (A.5.2) 

Recall that 

Thus we can reexpress 

Var - ^ V a r" άθ, 

Equation (A.5.2) as 

which implies that 

y i - μι » Var„ · ( ^ - ij) (A.5.3) 

Substituting Equation (A.5.3) into (A.5.1) yields 

¿ y Σ W-»//)· Var, ·χ, = 0 (Α.5.4) 

Let V = diagiVar^}. In matrix form Equation (A.5.4) is 

If α{φ) is constant, we rewrite the score equations as follows: 

Χ'(γ-μ)=0 

Χ , ν " 1 ( η * - η ) = 0 

Χ , ν 1 ( η * - Χ β ) = 0 

Thus the maximum likelihood estimate of β is 

b = (x,v-1x)_1x,v-1^ 

Now just as we saw in the logistic regression situation, we do not know η*, so 
we pursue an iterative scheme based on 

Zi = ii + (yi-Vi)-r-
άμί 
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Using iteratively reweighted least squares with the Newton-Raphson method, 
we find the solution from 

b = (X /V1X)" IX ,V"1z 

Asymptotically the random component of z comes from the observations yh 

To take an example, consider the logistic regression case: 

Thus 

^ = lnH v \ i — 71/ 

drji = drj1 = </1η[π,·/(1 - π ) ] · 
άμί dn¿ dui 

1 — π,-
- + 1 - π / ( Ι -π , · ) 2 

π,·(1 - π , ) 1 + π,-
1 — 7Γ/ 

π,-
1 — π, + 71/ 

1 - π , 
1 

π,·(1 - π / ) 

Zi = «i + ( P ' - ^ = «i + W — ) 

and V = diagf /} xj, which is exactly what we obtained previously. There-
fore IRLS based on the Newton-Raphson method can be described as follows: 

1. Obtain an initial estimate of ß, say, b0. 
2. Use b0 to estimate V and μ. 
3. Let η0 = Xb0. 
4. Base zx on η0. 
5. Obtain a new estimate bi, and iterate until some suitable convergence 

criterion is satisfied. 



A P P E N D I X A.6 

Computational Details for GLMs 
for a Noncanonical Link 

If we don't use the canonical link, then ηι φ Ö„ and the appropriate derivative of 
the log-likelihood is 

dL _ dL ddj άμί 0ηι 

~d$= Ίθί'άμ^ dß 

Note that 

dL 1 
' 1θΊ~αξφ) 

„ d6, 
2. -rL = 

άμι 

y¡-
db(e¡) 

d9t α(φ) 
(y¡ - μι) 

1 
Var„ 

3 ^ ί - χ · 3· öß - X' 
Putting all this together yields 

= Σ dL^yi-μι 1 άμί 

öß t r <Φ)
 Var" ¿i/ ' 

Once again, we can use a Taylor series expansion to obtain 

¿Pit * x 

The score equations then become 
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¿f α(φ) V a r . W ' 

It is straightforward to show that 

V a r f o i - ^ a M - V a v ^ y 

As a result we can reexpress Equation (A.6.1) as 

(A.6.1) 

Σ; nl - n¡ -x/ = 0 
^fVarfaJ-fj,.) 

Let V̂  = diag{Var(?/* - ryz·)}. The score equations in matrix form are 

Χ /Υ- 1 (ηΦ -η)=0 

x/v-1W-xß) = o 

The MLE of ß is 

Χ ,ν-1η*-Χ ,ν"1Χβ = 0 

b = (X'V^X^X'V" Y 

which is generalized least squares on η*. Again, we do not know η*, so we 
pursue an iterative scheme based on 

* = *+ (*-*) 3k 

Using iteratively reweighted least squares with the Newton-Raphson method, 
we find the solution from 

b = (x'v^xr'x'v-'z 

Asymptotically the random component of z comes from the observations y¡. 
The use of a noncanonical link still leads to iteratively reweighted least squares; 
however, the weights are no longer Var(y,). 

Following an argument similar to that employed before, let Δ be a diagonal 
matrix whose diagonal elements are 
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We can show for a noncanonical link that the score equations become 

Χ ' Δ ( γ - μ ) = 0 

and eventually we can show that 

dß ¿fa(0)Var(>í,.) ' 

Equating this last expression to zero and writing it in matrix form, we obtain 

Χ ,ν-1(η*-η) = 0 

or since η = Χβ, 

Χ ,ν _ 1 (η*-ΧΡ)=0 

The Newton-Raphson solution is based on 

b = (X/V"1X)"1X,V-1z 

where 

Zi-li + bi-ß,)^ 

Just as in the case of the canonical link, the matrix V is a diagonal matrix 
formed from the variances of the estimated linear predictors, apart from a (φ). 
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