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General introduction

General Relativity is a theory proposed by Einstein in 1915 as a unified theory of
space, time and gravitation. The theory’s roots extend over almost the entire previous
history of physics and mathematics.

Its immediate predecessor, Special Relativity, established in its final form by
Minkowski in 1908, accomplished the unification of space and time in the geometry
of a 4-dimensional affine manifold, a geometry of simplicity and perfection on par
with that of the Euclidean geometry of space. The root of Special Relativity is
Electromagnetic Theory, in particular Maxwell’s incorporation of Optics, the theory
of light, into Electrodynamics.

General Relativity is based on and extends Newton’s theory of Gravitation as
well as Newton’s equations of motion. It is thus fundamentally rooted in Classical
Mechanics.

Perhaps the most fundamental aspect of General Relativity however, is its geo-
metric nature. The theory can be seen as a development of Riemannian geometry,
itself an extension of Gauss’ intrinsic theory of curved surfaces in Euclidean space.

The connection between gravitation and Riemannian geometry arose in Einstein’s
mind in his effort to uncover the meaning of what in Newtonian theory is the fortuitous
equality of the inertial and the gravitational mass. Identification, via the equivalence
principle, of the gravitational tidal force with spacetime curvature at once gave a
physical interpretation of curvature of the spacetime manifold and also revealed the
geometrical meaning of gravitation.

One sees here that descent to a deeper level of understanding of physical reality is
connected with ascent to a higher level of mathematics. General Relativity constitutes
a triumph of the geometric approach to physical science.

But there is more to General Relativity than merely a physical interpretation of
a variant of Riemannian Geometry. For, the theory contains physical laws in the
form of equations — Einstein’s equations — imposed on the geometric structure. This
gives a tightness which makes the resulting mathematical structure one of surpassing
subtlety and beauty. An analogous situation is found by comparing the theory of
differentiable functions of two real variables with the theory of differentiable functions
of one complex variable. The latter gains, by the imposition of the Cauchy—Riemann
equations, a tighter structure which leads to a greater richness of results.

The domain of application of General Relativity, beyond that of Newtonian the-
ory, is astronomical systems, stellar or galactic, where the gravitational field is so
strong that it implies the potential presence of velocities which are not negligible in
comparison with the velocity of light. The ultimate domain of application is the study
of the structure and evolution of the universe as a whole.
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General Relativity has perhaps the most satisfying structure of all physical the-
ories from the mathematical point of view. It is a wonderful research field for a
mathematician. Here, results obtained by purely mathematical means have direct
physical consequences.

One example of this is the incompleteness theorem of R. Penrose and its extensions
due to Hawking and Penrose known as the “singularity theorems". This result is
relevant to the study of the phenomenon of gravitational collapse. It shall be covered
in the second volume of the present work. The methods used to establish the result
are purely geometrical — the theory of conjugate points. In fact, part of the main
argument is already present in the theory of focal points in the Euclidean framework,
a theory developed in antiquity.

Another example is the positive energy theorem, the first proof of which, due to
R. Schoen and S. T. Yau, is based on the theory of minimal surfaces and is covered
in the the present volume. In this example a combination of geometric and analytic
methods are employed.

A last example is the theory of gravitational radiation, a main theme for both
volumes of this work. Here also we have a combination of geometric and analytic
methods. A particular result in the theory of gravitational radiation is the so-called
memory effect [11], which is due to the non-linear character of the asymptotic laws at
future null infinity and has direct bearing on experiments planned for the near future.
This result will also be covered in our second volume.

The laws of General Relativity, Einstein’s equations, constitute, when written in
any system of local coordinates, a non-linear system of partial differential equations
for the metric components. Because of the compatibility conditions of the metric with
the underlying manifold, when piecing together local solutions to obtain the global
picture, it is the geometric manifold, namely the pair consisting of the manifold itself
together with its metric, which is the real unknown in General Relativity.

The Einstein equations are of hyperbolic character, as is explained in detail in this
first volume. As a consequence, the initial value problem is the natural mathematical
problem for these equations. This conclusion, reached mathematically, agrees with
what one expects physically. For, the initial value problem is the problem of deter-
mining the evolution of a system from given initial conditions, as in the prototype
example of Newton’s equations of motion. The initial conditions for Einstein’s equa-
tions, the analogues of initial position and velocity of Newtonian mechanics, are the
intrinsic geometry of the initial spacelike hypersurface and its rate of change under a
virtual normal displacement, the second fundamental form. In contrast to the case of
Newtonian mechanics however, these initial conditions are, by virtue of the Einstein
equations themselves, subject to constraints, and it is part of the initial value problem
in General Relativity — a preliminary part — to analyze these constraints. Important
results can be obtained on the basis of this analysis alone and the positive energy
theorem is an example of such a result.
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An important notion in physics is that of an isolated system. In the context of the
theory of gravitation, examples of such systems are a planet with its moons, a star
with its planetary system, a binary or multiple star, a cluster of stars, a galaxy, a pair or
multiplet of interacting galaxies, or, as an extreme example, a cluster of galaxies — but
not the universe as a whole. What is common in these examples is that each of these
systems can be thought of as having an asymptotic region in which conditions are
trivial. Within General Relativity the trivial case is the flat Minkowski spacetime of
Special Relativity. Thus the desire to describe isolated gravitating systems in General
Relativity leads us to consider spacetimes with asymptotically Minkowskian regions.
However it is important to remember at this point the point of view of the initial
value problem: a spacetime is determined as a solution of the Einstein equations
from its initial data. Consequently, we are not free to impose our own requirements
on a spacetime. We are only free to impose requirements on the initial data — to the
extent that the requirements are consistent with the constraint equations. Thus the
correct notion of an isolated system in the context of General Relativity is a spacetime
arising from asymptotically flat initial conditions, namely an intrinsic geometry which
is asymptotically Euclidean and is a second fundamental form which tends to zero at
infinity in an appropriate way. This is discussed in detail in this volume.

Trivial initial data for the Einstein equations consists of Euclidean intrinsic ge-
ometry and a vanishing second fundamental form. Trivial initial data gives rise to the
trivial solution, namely the Minkowski spacetime. A natural question in the context
of the initial value problem for the vacuum Einstein equations is whether or not every
asymptotically flat initial data which is globally close to the trivial data gives rise
to a solution which is a complete spacetime tending to the Minkowski spacetime at
infinity along any geodesic. This question was answered in the affirmative in the joint
work of the present author with Sergiu Klainerman, which appeared in the monograph
[14]. One of the aims of the present work is to present the methods which went into
that work in a more general context, so that the reader may more fully understand
their origin and development as well as be able to apply them to other problems. In
fact, problems coming from fields other than General Relativity are also treated in the
present work. These fields are Continuum Mechanics, Electrodynamics of Continu-
ous Media and Classical Gauge Theories (such as arise in the mesoscopic description
of superfluidity and superconductivity). What is common to all these problems from
our perspective is the mathematical methods involved.

One of the main mathematical methods analyzed and exploited in the present
work is the general method of constructing a set of quantities whose growth can be
controlled in terms of the quantities themselves. This method is an extension of the
celebrated theorem of Noether, a theorem in the framework of the action principle,
which associates a conserved quantity to each 1-parameter group of symmetries of
the action (see [12]). This extension is involved at a most elementary level in the
very definition of the notion of hyperbolicity for an Euler—Lagrange system of partial
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differential equations, as discussed in detail in this first volume. In fact we may
say that such a system is hyperbolic at a particular background solution if linear
perturbations about this solution possess positive energy in the high frequency limit.

The application of Noether’s Principle to General Relativity requires the intro-
duction of a background vacuum solution possessing a non-trivial isometry group,
as is explained in this first volume. Taking Minkowski spacetime as the background,
we have the symmetries of time translations, space translations, rotations and boosts,
which give rise to the conservation laws of energy, linear momentum, angular momen-
tum and center of mass integrals, respectively. However, as is explained in this first
volume, these quantities have geometric significance only for spacetimes which are
asymptotic at infinity to the background Minkowski spacetime, so that the symmetries
are in fact asymptotic symmetries of the actual spacetime.

The other main mathematical method analyzed and exploited in the present work
is the systematic use of characteristic (null) hypersurfaces. The geometry of null hy-
persurfaces has already been employed by R. Penrose in his incompleteness theorem
mentioned above. What is involved in that theorem is the study of a neighborhood
of a given null geodesic generator of such a hypersurface. On the other hand, in the
work on the stability of Minkowski spacetime, the global geometry of a characteristic
hypersurface comes into play. In addition, the properties of a foliation of spacetime
by such hypersurfaces, also come into play. This method is used in conjunction with
the first method, for, such characteristic foliations are used to define the actions of
groups in spacetime which may be called quasi-conformal isometries, as they are
globally as close as possible to conformal isometries and tend as rapidly as possible
to conformal isometries at infinity. The method is introduced in this first volume
and will be treated much more fully in the second volume. It has applications be-
yond General Relativity to problems in Fluid Mechanics and, more generally, to the
Mechanics and Electrodynamics of Continuous Media.

This book is based on Nachdiplom Lectures held at the Eidgendssische Tech-
nische Hochschule Zurich during the Winter Semester 2002/2003. The author wishes
to thank his former student Lydia Bieri for taking the notes of this lecture, from which
a first draft was written, and for making the illustrations.



1 Introduction

The general theory of relativity is a unified theory of space, time and gravitation. The
fundamental concept of the theory is the concept of a spacetime manifold.

Definition 1. A spacetime manifold is a 4-dimensional oriented differentiable mani-
fold M, endowed with a Lorentzian metric g.

Definition 2. A Lorentzian metric g is a continuous assignment of a non-degenerate
quadratic form g,, of index 1,in 7, M ateach p € M.

Here we denote by 7, M the tangent space to M at p. Also, non-degenerate
means
gepX.Y)=0VYeT,M = X =0,

while of index 1 means that the maximal dimension of a subspace of T, M, on which
gp is negative definite, is 1.
An equivalent definition is the following.

Definition 3. A quadratic form g, in T, M is called Lorentzian if there exists a vector
V € T, M such that g,(V, V) < 0 while setting

Yy =1{X: gp(X,V) =0} (the“gp,-orthogonal complement of '),
gplx, is positive definite.

We can then choose an orthonormal frame (Eg, E1, E, E3) at p, by setting
Vv

\% _g(Vv V)

and choosing an orthonormal basis (E1, E», E3) for Xy. Givenany vector X € T,M
we can expand

Eo =

X =X"Eo+ X'Ey + X?E» + X3E;

= ZXME”' (w=0,1,2,3).
"
Then

g(E,, Ey) = nyy =diag(—1,1,1,1),
gX.X)=—-(X"?+ (X" + (XH*+ (X?)?

= Z T)MVXMXV.
v
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Definition 4. The null cone at p € M,
Ny ={X#0eT,M: g,(X,X) =0},

is a double cone N, = N,F UN,".

Denote by 1,5 the interior of N," and by 1, the interior of N".
Definition 5. The set of timelike vectors at p € M is defined as

Iy=11 U I ={XeTyM: g,(X.X) <0},
where I, is an open set.
Definition 6. The set of spacelike vectors at p € M is defined as
Sp i ={X eT,M: gp(X.X) >0},

where §), is the exterior of N, a connected open set.

Time orientability. We assume that a continuous choice of positive (future) compo-
nent / p+ of I, at each p € M, is possible. Once such a choice has been made, the
spacetime manifold M is called time oriented.

Definition 7. A causal curve in M is a differentiable curve y whose tangent vector
y at each point p € M belongs to I, U Np, that is, it is either timelike or null.

Then either y, € 1 p+ U Np+ at each p along y in which case y is called future-
directed, or y, € I, U N, ateach p along y in which case y is called past-directed.
Given a point p € M, we can then define the causal future of p.

Definition 8. The causal future of p, denoted by J *(p), is the set of all points g € M
for which there exists a future-directed causal curve initiating at p and ending at g.

Similarly, we can define J ~(p), the causal past of p.

Definition 9. The arc length of a causal curve y between the points corresponding
to the parameter values A = a, A = b is

b
Llyl(a.b) =/ V=g(y(A).7(A)) dA.

If g € JT(p), we define the temporal distance of ¢ from p by
t(q.p) = sup  Lly].

all future-directed causal
curves from p to g

The arc length is independent of the parametrization of the curve.
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Let us recall the Hopf—Rinow theorem in Riemannian geometry:

Theorem 1 (Hopf—-Rinow). On a complete Riemannian manifold any two points can
be joined by a minimizing geodesic.

In Lorentzian geometry the analogous statement is in general false. It holds how-
ever when the spacetime admits a Cauchy hypersurface (the definition of this concept
will follow). When the supremum in the above definition is achieved and the metric
is C'! the maximizing curve is a causal geodesic; after suitable reparametrization the
tangent vector is parallelly transported along the curve.

Examples of spacetime manifolds. We take as our model the

* Riemannian spaces of constant curvature:

1
— |dx*. k=011,
(1+ %jx2)2

where | - | is the Euclidean magnitude, [v| = />_;(v')?. When k = —1 the
manifold is the ball of radius 2 in R”, |x| < 2.
By analogy, we have the

* Lorentzian spaces of constant curvature:

1

———(dx,dx).

(1+% (x,x))
Here (-, -) is the Minkowski quadratic form. (u,v) = —u%° + Zln;ll ulvt.
For k = 1 we have what is called de-Sitter-space while for k = —1 we
have what is called Anti-de-Sitter-space. In the case k = —1 the manifold is

{x e R": (x,x) < 4}.

Figure 1
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In Anti-de-Sitter space there are points p and ¢ as shown for which 7(p, g) = oc.
For, the length of the timelike segment of the causal curve joining p and ¢ in the
figure can be made arbitrarily large by making the segment approach the hyperboloid
at infinity (x, x) = 4.

Definition 10. We define the causal future J T (K) and the causal past J ~(K) of any
set K C M, in particular a closed set, by

JEK)={qgeM: qeJ*(p)forsome p e K}.

The boundaries of J1(K), J~(K), i.e. 3J T (K), 8J(K) for closed sets K,
are null hypersurfaces. They are realized as level sets of functions u satisfying
the eikonal equation g#Vd,ud,u = 0. These hypersurfaces are generated by null
geodesic segments, as shall be shown below. They are thus analogous to ruled surfaces
in Euclidean geometry. Moreover, the null geodesics generating J ™ (K) have past
end-points only on K and those generating J ~ (K) have future end-points only on K.
The null geodesics generating J +(K) may have future end-points, even when K is a
single point. The set of these end-points forms the future null cut locus corresponding
to K. Similarly for J ~(K). (Null cut loci shall be discussed at length in the second
volume.)

p

Figure 2. The future null cut locus of a point p. Each of the points marked by a dot is a point
where a pair of null geodesics issuing from p intersect.

Definition 11. H is called a null hypersurface if at each point x € H the induced

metric 8x|r is degenerate.
xH

Thus there exists an L % 0 € Ty H such that

gx(L.X)=0 VX eTH.
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Now Ty H is a hyperplane in T, M. Such a hyperplane is defined by a covector
EeTIM,
TxH={XeTyM: £-X =0}

Representing H as the (0-)level set of a function u, we can take
& = du(x).
If we set L* = —g"V9,u (components with respect to an arbitrary frame), we have
gL, X)=—du-X
and L is g-orthogonal to H. Then H is a null hypersurface if and only if
L,eT:H VxeH.

Now let u be a function, each of the level sets of which is a null hypersurface.
Taking then X = L we obtain

g(L,L)y=0 (gul"L"=0),

hence L is at each point a null vector, a condition which, expressed in terms of du,
reads
gh’a udyu =0,

which is the eikonal equation.
In fact, L is a geodesic vector field, that is, the integral curves of L are null
geodesics. The proof of this fact is as follows.

(Vo L)* = LYV, L*, (1)
gua(VLL)" = LYV, L;, 2)
where L) = g, 2 L* = —0,u. Now the Hessian of a function is symmetric:
Vi (0ru) = Vi(dyu). 3)
Thus,
L'V,L, = L"V, L,
~ (L) = @
that is,

VL =0. (5)
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Definition 12. A hypersurface H is called spacelike if at each x € H, the induced
metric

gx‘TxH =:8x

is positive definite.

Then (H, g) is a proper Riemannian manifold. The g-orthogonal complement of
Ty H is a 1-dimensional subspace of Tx M on which g, is negative definite. Thus
there exists a vector Ny € I of unit magnitude

gx(Nx’ Nx) = -1

whose span is this 1-dimensional subspace. We call N (the so-defined vector field
along H) the future-directed unit normal to H.

Definition 13. The 2" fundamental form k of H is a 2-covariant symmetric tensor
field on H, or quadratic form in Ty H at each x € H, defined by

k(X.Y)=g(VxN,Y) VX, Y eTH. (6)

Definition 14. A Cauchy hypersurface is a complete spacelike hypersurface H in M
(i.e., (H, g) is a complete Riemannian manifold) such that if y is any causal curve
through any point p € M, then y intersects H at exactly one point.

Examples of Cauchy hypersurfaces

* A spacelike hyperplane in Minkowski spacetime M is a Cauchy hypersurface
for M.

* A spacelike hyperboloid in Minkowski spacetime,

3
—(x%? + Xz(xi)2 =-1, x>0,
i=1
is a complete Riemannian manifold (of constant negative curvature) but not a
Cauchy hypersurface for M. Itis however a Cauchy hypersurface for / 0+ CcM.
* The Anti-de-Sitter space does not admit a Cauchy hypersurface.

If we consider only future evolution the above definition is replaced by one in which
y is taken to be any past-directed causal curve. Then M is a manifold with boundary
and H is the past boundary of M.

Definition 15. A spacetime admitting a Cauchy hypersurface is called globally hy-
perbolic.
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Under the hypothesis of global hyperbolicity we can define a time function. This
is a differentiable function ¢ such that

di-X >0 VXelf VpeM. )

The manifold M is then diffeomorphic to the product R x M where M is a 3-manifold,
each level set X, of ¢ being diffeomorphic to M. H = X is a Cauchy hypersurface.

Definition 16. The lapse function corresponding to a time function ¢ is the function
® = (—g"D,10,1) 2. ®)

This measures the normal separation of the leaves 3; (of the foliation by the level
sets of t). Consider the vector field

TH = —d2ghv,1. )

The integral curves of T are the orthogonal curves to the 3;-foliation. Moreover,
Tt = TH9,t = 1. Thus the orthogonal curves are parametrized by 7. That is, the 1-
parameter group ¢, generated by T takes the leaves onto each other: ¢, (X;) = ;4 +.
Thus T is a time translation vector field. The unit normal N is given by

N =0T (10)

The integral curves of N are the same orthogonal curves but parametrized by arc
length s. It follows that, along an orthogonal curve,

9 _ g (11)
dt
We can identify M with £g = H. The mapping of M into R x M or [0, 00) x M,
taking p € M to the pair (z, q) if p lies on X; and along the orthogonal curve through

q € Xy, is a diffeomorphism.
In terms of this representation of M we can write

g=—-9%di* +3, (12)
where g = g(¢) is the induced metric on X;, which is positive definite. Moreover,
0 _ 1
at’ P at’
Assume that (E, E», E3) is a frame field for X, which is Lie transported along (the
integral curves of) T, that is,

T =

[T.E;]=0, i=1223. (13)
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(In particular we may take (x!, x2, x3) to be local coordinates on H = X, and set
E; = %.) Then we have

1
kij = k(Er. Ej) = 5(8(VE,N. E)) + g(Ve, N. E)
1
= ﬁ(g(in T.Ej)+g(Vg; T, Ej))
1
= ﬁ(g(VTEi» Ej) + g(VrEj. Ei))
1
= 55! Q(Ei. E))):
that is _
1 9gi;
20 ot
where g;; = g(E;, E;) = g(E;, E;) are the components of the induced metric on
3;. The above equation is called the 1% variational formula.

kij = (14)



2 The laws of General Relativity

2.1 The Einstein equations

The laws of General Relativity are the Einstein equations linking the curvature of
spacetime to its matter content:

1
Guv = Ry — ngR =2T,,. (15)

(We are using rationalized units where 4 times Newton’s gravitational constant as
well as the speed of light in vacuum are set equal to 1.) Here T}, is the energy-
momentum tensor of matter, G, the Einstein tensor, R, the Ricci tensor and R the
scalar curvature of the metric g,,. From the original Bianchi identity

V[oeRﬂy]Se = VaRﬂySe + Vﬂ RyaSe + VyRaBSE =0, (16)

one obtains
VVGuy =0, 17)

the twice contracted Bianchi identity. This identity (17) implies
VT =0, (18)
the equations of motion of matter. The Einstein vacuum equations
Guw =0 (19)
correspond to the absence of matter: T, = 0. The equations are then equivalent to
R,y =0. (20)

The connection coefficients F;L and the curvature and Ricci tensor components in
arbitrary local coordinates read as follows:

1
Féfﬂ = Eglw(aagﬁv + 08av — v &ap), (20
B
R%,, = WTh, — 0,5, + 5, T8, — T, 0, (22)
Ryuy = R%,, = 0,1, — 0,T%, + Tg,TE —T5 T/, (23)

Denoting by P.P. the principal part, that is, the part containing the highest (2"%) deriva-
tives of the metric, we have

1
P-P-{R,uv} = Egaﬂ{auaagﬂv + avaagﬂu, - auavgaﬂ - aaaﬂguv}- (24)
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We shall presently discuss the character of the Einstein equations as reflected in their
symbol. The symbol is defined by replacing in the principal part

auavgotﬂ by Suévgaﬂa

where £, are the components of a covector and g, the components of a possible
variation of g. We then obtain the symbol o¢ at a point p € M and a covector
& € Ty M, for a given background metric g:

1
(O&' ' g);w = Egaﬂ(guéag.ﬂv + g:vgagﬂu - guévgaﬂ - Eaéﬂguv)~

Let us denote

(ie8)v = &% Eadpy,

(€.6) = g"PEatp.

(S ® g)uv = sugv,
gaﬂgaﬂ = trg'
We can then write
1
(0z-§) = 5{8 Qisg +igg ®E—wgE®E&— (5,68}

The notion of the symbol of a system of Euler—Lagrange equations is as follows. Let
us denote by x, the independent variables: x*, u = 1,...,n; by ¢, the dependent

variables: g%, a = 1,...,m; and by v, the 1% derivatives of dependent variables: v%,
n x m matrices. Then the Lagrangian L is a given function of (x, g, v),
L =L(x,q,v).
A set of functions (u%(x) : a = 1,...,m) is a solution of the Euler-Lagrange
equations, if substituting
q“ = u(x),
du?
a __
U = Gxn (x)
we have
a (0L aL
(o u@, B ) — S . B =0 29
dxH \dvf, aq®
Defining
aL
pZL = a a ’
Vi
oL
fa = )
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the Euler—Lagrange equations become

opa
Oxk Ja-

The g, v, p, f are analogous to position, velocity, momentum and force, respectively,
in classical mechanics.
The principal part of the Euler-Lagrange equations is

2..b
wo 07U
ab Jxidxv

(x, u(x), du(x)),

where 5
0°L
nv
p = = (x.q,v).
a dva dvk
Let us consider the equations of variation. These are the linearized equations, satisfied
by a variation through solutions. If we denote by 11 the variations of the functions u¢,

the principal part of the linearized equations is

b
j73Y;
hy, (x, u(x), du(x)) PRI
Consider in fact oscillatory solutions
u® = we'® (26)

of the equations of variation. Writing % in place of @, substituting in the linearized
equations and keeping only the leading terms as € — 0 (high frequency limit), we

obtain
p 00 00 _

dxH dxV

The left-hand side is the symbol o¢ - w, where §, = (.g%. Thus, the symbol of the
Euler-Lagrange equations is in general given by

(08 )" = W& E0° = gap(E)i®, (28)

hZLI‘:(x, u(x), du(x)) w

(27)

where
Xab(€) = iy &6y (29)

is an m X m matrix whose entries are homogeneous quadratic polynomials in £.

From a global perspective, the x*, u = 1,...,n are local coordinates on an
n-dimensional manifold M and x denotes an arbitrary point on M, while the g¢,
a = 1,...,m are local coordinates on an m-dimensional manifold N and ¢ denotes
an arbitrary point on N. The unknown u is then a mapping u: M — N and the
functions (u?(x), a = 1,...,m) describe this mapping in terms of the given local
coordinates.
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Definition 17. Let M be an n-dimensional manifold. Then the characteristic subset
Cr C T}M is defined by

C; ={6 #0eT; M : nullspace of oz # 0}
— (640 TM : det y(£) = 0.

Thus & € C} if and only if £ # 0 and the null space of o is non-trivial.
The simplest example of an Euler-Lagrange equation with a non-empty charac-
teristic is the linear wave equation

Ou := gh"V,(dyu) = 0.

This equation arises from the Lagrangian

1
L = Eg“”vuvv.

The symbol is o¢ - 11 = (g"V§,,§, )1 and the characteristic is
C: = {‘i: 7é 0¢€ T;M : (évé) = guvéuév = O},

that is, C; is the null cone in 7,F M associated to the metric g.
Let us now return to the symbol for the Einstein equations. Let us set

§=(Q+E®C (30)

for an arbitrary covector { € T," M. Then

igg= (5§ £+(£.86¢ (31)
——
=ghvEuk,
and
trg =2(¢,6). (32)
We see that
og- ¢ =0. (33)

Therefore the null space of o¢ is non-trivial for every covector £. This degeneracy is
due to the fact that the equations are generally covariant. That is, if g is a solution
of the Einstein equations and f is a diffeomorphism of the manifold onto itself, then
the pullback f*g is also a solution. If X is a (complete) vector field on M, then X
generates a 1-parameter group { f; } of diffeomorphisms of M and

d ..
Lxg = Ef’ 8l _y (34)
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the Lie derivative with respect to X of g, is a solution of the linearized equations.
Let us recall that the Lie derivative of g with respect to a vector field X is given
by
(£x)(Y.Z2) = g(Vy X, Z) + g(Vz X, Y).
Setting Y = E, and Z = E,, where (E;; u = 0,...,3) is an arbitrary frame, we

can write
(xQuv = Vu Xy + Vi Xy,

where X, = g2 X %, The symbol of a Lie derivative is given by

guv = E/Lgv + Ev;uw where é‘,u = X/L-

A simple analogue. The Maxwell equations for the electromagnetic field F),,,
VYFuy = g"*V) Fyuy = 0, (35)

provide a simple analogue to this situation. Let us recall that F' = dA, or F},, =
0, Ay — 0y Ay, where A, is the electromagnetic potential, a 1-form. The Maxwell
equations are the Euler—Lagrange equations of the Lagrangian

1

L= F"Fuy

where F*’ = ghkgVA F 5 The symbol for these equations is

(08 - Ay = " 61 (EnAv — E,AL),
that is

og - A= (5, AE — (£.6)A.

Consider the variation

A=L¢

for any real number A. Then
og-A=0.

Thus we have a degeneracy here as well: the null space of o is non-trivial for all
& € T M. This is due to the gauge invariance of the Maxwell equations. If 4 is a
solution, so is

A=A+df

for any function f. In fact A is considered to be equivalent to A, just as f*g is
considered to be equivalent to g. Thus (by linearity) A p = 0, f is a solution of the
linearized equations, for any function f. To remove the degeneracy we must factor
out these trivial solutions. Correspondingly in General Relativity we must factor out
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the solutions of the form £y g = ¢ for any vector field X. At the level of the symbol
the gauge transformation is

AM:AM+§uf-

So, we introduce the equivalence relation
A1~A2 — A2=A1+AE, AeR.

We then obtain a quotient space Q of dimension 4 — 1 = 3. Consider now the
null space of o¢ with o¢ defined on Q. We distinguish two cases: in the first case
(&€,&) # 0 and in the second case (§,&) = 0.

Case 1. (£,£) # 0. Then

og-A=0 = A=2A¢, r= &

¢.6)°

thatis A ~ 0. Thus we have the trivial null space if £ is not a null covector.

Case 2. (£,&) = 0. In this case we may choose another covector £ in the same com-
ponent of the null cone such that (&, &) = —2. There is then a unique representative

A in each equivalence class in Q such that
(. A) =0.

For, take another element A’ out of the equivalence class of A, thatis A’ = A + A€
for some A € R. Then
0= (g,A/) =(§.4)-2A

implies that A is the unique representative of its equivalence class with (&, A) = 0.
Let us work with this representation. Then it holds that

op- A= (£, =0, §£0 < (£,4) =0

We conclude that the null space of og consists of the spacelike 2-dimensional plane
I1, the g-orthogonal complement of the timelike plane spanned by & and &. So, I1
is the space of the degrees of freedom of the electromagnetic field at a point (two
polarizations).
Returning to the symbol for the Einstein equations, the symbol for the Lie deriva-
tive
(cfXg)p,v = V}LXV + VvXM

reads, as noted above,
EM Xv + Ev XM ,
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where the X . are the components of an arbitrary covector. Consider then the equiv-
alence relation

g1~8 = £H=+{QE+ERL eTM,

which gives a quotient space Q.
Again we distinguish the two cases according as to whether the covector & satisfies

(§.8) #0or (5.6 =0.
Case 1. (§,§) # 0. If § is not null, then o¢ - ¢ = 0 implies that

: (igg — 5 r §§)
§=0{®§+ERL, where(:—S 2 ,
£.8)

thus og has only trivial null space on Q.

Case 2. (§,§) = 0. If £ is null, we can choose § in the same component of the null
cone Ny in T M such that (§,§) = —2. There is then a unique representative ¢ in
each equivalence class {¢} € Q such that

ieg = 0.

So,
0e-8=0 <= (Qigg+ig®E-EREUE =0.
Taking the inner product with § we see that (igg.§) = (igg. &) = 0, hence
—2igg+2&trg =0.
Taking again the inner product with § gives
—4trg =0, thatis, trg =0.

Substituting this above yields
igg =0.

Conversely, igg = igg = 0 and tr ¢ = 0 implies that ¢ lies in the null space of o¢.
Therefore, if € € N, then the null space of ¢ can be identified with the space of
trace-free quadratic forms on the 2-dimensional spacelike plane IT, the g-orthogonal
complement of the linear span of & and &. This is the space of gravitational degrees
of freedom at a point (two polarizations).
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2.1.1 Regular ellipticity and regular hyperbolicity. We have already introduced
the quadratic form
32

v
b = Jva dvb (x.q.v)
in the general context of a Lagrangian theory of mappings u: M — N. A point
X € M is represented in terms of local coordinates in M by (x* : u = 1,...,n).
The position ¢ is a possible value of u(x), that is, a point in N, represented by
(@ : a = 1,...,m) in terms of local coordinates in /', while the velocity v is a
possible value of du(x) and is represented by the n x m-matrix vj; = ngZ (x). Here
n=dimM and m = dim N .

Before stating the definition of regular ellipticity let us have a closer look at the
necessary notions. Let u: M — N be a background solution, x € M, g = u(x),
and let § € T)M, Q € T,N. Then Q is a variation in position, the value at x
of a possible variation 1 of the background solution. The corresponding variation
in velocity v is a linear map from 7, M to Ty N: v € L(TyM,Ty4N). For any
X € Tx M the components of the vector Q = v- X € TN are Q¢ = v X*, where
the X* are the components of X and the v¢ are the components of ¥. The space

"
S2(£(Tx M, Ty N)) of quadratic forms on £(7x M, T, N') splits into the direct sum

S = 8524 & S,

where S, consists of the even quadratic forms and S,— of the odd quadratic forms.
Thus, a quadratic form & on &£(7x M, T;N') decomposes into

h=hy+h,

where /4 and /i are, respectively, the even and odd parts of 2. In terms of components

we have
nY v J73Y
hap = Wap + - gp

+ab
where
VUL UV
hba - hab
(h being a symmetric bilinear form), and
T 1 VR A A
h+ab - h+ba - h+ab’
Vi g pv v
h—ab - h—ba - _h—ab‘

We also need the following notion:

Definition 18. Rank-1-elements of £(7x M, T;N) are the elements v of the form
V=6 Q@ Q, Ee€T;M, QeTyN,

thatis, v - X = (§- X)Q forall X in Tx M.
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Now consider the quadratic form h(v,v) = hgg injf on the velocity varia-
tions vy;.

Regular ellipticity (Legendre-Hadamard condition). A Lagrangian L is called
regularly elliptic at (x, q, v) if the quadratic form h = %ZTI; (x,g,v)onL(TxyM,TyN)
is positive definite on the set of rank-1-elements v} = £,0¢ with § € Ty M and
0 eTyN.

If L and L' are two Lagrangians giving rise to the same Euler—Lagrange equations,
then the difference & — A’ of the corresponding quadratic forms is an odd quadratic
form.

Remark. The definition of regular ellipticity is independent of the choice of La-
grangian for the same Euler—Lagrange equations because odd quadratic forms vanish
on the set of rank-1-elements.

Next we define regular hyperbolicity, a notion expounded in [12].

Definition 19. A Lagrangian L is called regularly hyperbolic at (x,q,v) if the
quadratic form 2 = %%(x,q, v) on £(TyM,T;N) has the following property:
There exists a pair (§, X) in Ty M x TxyM with £ - X > 0 such that:
1. h is negative definite on the space
Le={6Q®0Q: QeTyN}
2. h is positive definite on the set of rank-1-elements of the subspace

Sy = {0 € L(TM.T,N): ©-X =0}

Note that this definition is also independent of the choice of Lagrangian giving
rise to the same Euler-Lagrange equations.

Definition 20. Given a quadratic form & on £(7xM,T,;N) and a pair (£, X) in
TrMxTxM with§-X > 0, we define anew quadratic formm (&, X)on £(Tx M, T4 N)
depending linearly on ¢ and X by

m(§, X)(01,02) = (§ - X)h(V1,02) — h(§ ® V1 - X, 02) — h(V1.§ ® V2 - X). (36)
We call this the Noether transform of / defined by (£, X).

Proposition 1. A Lagrangian L is regularly hyperbolic at (x, q, v) if and only if there
exists a pair (£, X) in Ty M x TxM with & - X > 0 such that the Noether transform
m(&, X) of h corresponding to (&, X) is positive definite on the set

Re={(®@P+{®Q:VY{eTIM, VP QecT,N

(which is a set of special rank-2-elements).
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Remark. If /2 is an odd quadratic form, then the Noether transform of / corresponding
to (§, X) vanishes on Rg.

Given s and § # 0 € T M, we define x(§), a quadratic form in 7, N, by

x(E)(Q1.02) = h(E ® 01.§ ® O2). (37
That is,
Xab(g:) = hg;;é,uév-
Then the characteristic subset C;} of T, M is defined by
Cr={E#0eT M : (&) is singular}. (38)
Also, given Q # 0 € T;N, we define a quadratic form W(Q) in 7,) M as follows:

V(Q)(61.62) =h(6:1 ® 0.521 Q). (39)

that is,
W (Q) = hlyy 090",

Next, for a given £ € C; we define

A€) = {¥(Q)-§: Q # 0 € null space of x(§)}

40
CYE={XeTxM:£-X =0} (ahyperplanein TxM). (40)

Here W(Q) is considered as a linear map of 7) M into T, M,

Eu > VEY(Q)E,.

A(§) is a positive cone in X¢. Thatis, if X € A(§) and A > 0, then A X lies in A(§).
Also the following holds:

A(u) = AE) Ypu>0.

If £ is a regular point of C}, then the null space of y (&) has dimension 1 and A(£) is
aray. Otherwise the maximal dimension of A(§) is dim X¢ =n — 1.

Definition 21. The characteristic subset C, of Tx M is defined by

Cx= J A®. (41)

geCy
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2.2 The Cauchy problem

2.2.1 Cauchy problem for the Einstein equations: local in time, existence and
uniqueness of solutions. In this chapter we shall discuss the work of Y. Choquet-
Bruhat in [8]. This work is based on the reduction of the Einstein equations to wave
equations. To accomplish this reduction one has to introduce harmonic, or wave,
coordinates.

Definition 22. Let (M, g) be a Riemannian manifold. Then a function ® is called
harmonic if
Ag® =0, (42)

where Ay ® = gH” V,,(0,D).

If the metric g is Lorentzian, then the equation A ® = 0 is the wave equation.
Now the problem is the following: Given a coordinate chart (U, x) with x =
(x%, x1, x2, x3), find functions ®*, u =0,1,2,3, each of which is a solution of the
wave equation in U,
Agd=0 inU,

and such that, setting
i = o*(x0, x! X2, x3),

we have a diffeomorphism of the range V' in R* of the given chart onto another domain
V in R*.

VO

o

|R4

Figure 3

We thus have another chart (U, X) with domain U, i.e. another system of local
coordinates in U. The equation A, ® = 0 in an arbitrary system of local coordinates
reads

92 9D )
=0. (43)

A, ® = g ( —re 2
g g OxHaxV Ll P
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Suppose now that we use the functions (x°, !, X2, X3) as the local coordinates in U,

i.e. we express things relative to the new chart (U, x). Setting ® equal to each one
of the x# for B =0,1,2,3, we have a solution of the above equation. Since

B
X7 =8P
oxY 4
we have
92xP
dxHaxv

So, the equation reads B
0= A, =—g"Th .

Dropping the bars we can say that a system of local coordinates is harmonic if and
only if the connection coefficients in these coordinates satisfy the condition

= gh're =0, (44)

Let us set
Iy := gaﬁl"ﬂ.

Then we can write i
Ty =g 0agp, — Eg“ﬂ du8ap-

Hence the principal part of d,,I", + 9, is the following:
P.P. {0, T, + 0,0} = g% {000,8pv + 000088 — 010v8ap)-
Denoting by R, the components of the Ricci curvature tensor, let us define
1

Hyy = Ryy — E(BMI“, + 0,T). (45)

Then the principal part of H, is
1 op

P‘P-{H;w} = - Eg 8aaﬂg,u,v,

and we have
1
H;w = - Egaﬂaaaﬁguv + Bzeklpgaagxkaﬂgpa: (46)

where B is arational function of the metric g of degree —2, the ratio of a homogeneous
polynomial in g of degree 6 to (det g)2. Replacing the Einstein equations

Ry =0 47)
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by the reduced (Einstein) equations
H,, =0, (48)

we have a system of non-linear wave equations for the metric components g .
In the approach of Choquet-Bruhat one studies the Cauchy problem for these
reduced equations. Let us write

1
Ruv = le + ES,W, 49)
where
S = SMF,, + 8vFu-
We have
1 1 1 1
Ruv - EguvR = Hu,v - EguvH + 5 Suv - Egu,vS s
and
1 ~
vv(Suv - EgMVS) = gVAvASuv (50)
— —
3
= gM(alguv - FZMSKU - FL,SMK)- (51)

If we have a solution of the reduced equations, then by virtue of the twice contracted
Bianchi identities

V(R — 38uR) = 0. (52)
this solution also satisfies the equations
V'S, =0. (53)
Now, we have S = 20"T", with 0¥ = g”)L d;. Therefore
Suv = 3, Ty + 3Ty — g0 T
The principal part of V¥ S wy 18

P.P.{V'S,,} = 0,(3"T,) + 8”9, — 8, (3*T)
= g°89,05T,.

In fact, we have .
V'S = 8% 0,05T ) + A% 04T,
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where A is a linear form in dg with coefficients which are homogeneous rational
functions of g. Therefore the equations

A

V'S =0

constitute a system of homogeneous linear wave equations for the I';,. Consequently
the I';, vanish identically provided that the initial conditions vanish, that is

Tulz, =0, (54)
doluls, =0, (55)

where X is the initial hypersurface x® = 0. Given now initial data for the Einstein
equations

A

R,», =0 or equivalently, R;,, =0, (56)
where A 1
Ry = Ry — Eg”“”R’
we construct initial data
guv| o (57
do&uv|zo (58)

for the reduced equations H,,,, = 0, such that the conditions
Fulgo =0, 00ulg, =0

are satisfied. Then the solution g, of the Cauchy problem for the reduced equations
shall, according to the above, also satisfy the conditions I';, = 0, therefore shall be a
solution of the original Einstein equations.

Initial data for the Einstein equations consist of a pair (g;;, k;;) where g;; is a
Riemannian metric and k;; a 2-covariant symmetric tensor field on the 3-manifold
M , which is to be identified with the initial hypersurface Xy. Once we have a solution
(M, g) with M = [0,T) x X9 and £y = M, then g;; and k;; shall be, respectively,
the 1% and 2" fundamental form of £ = {0} x X¢ in (M, g). Thus

&ij = &ijlzes 1,J =1,2,3.
We choose the coordinates to be Gaussian normal along X, that is

giolz, =0, (59)
goolzy = —1. (60)

Then
do8ijlzo = 2kij. (61)
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We then choose
do goi |>:0, do g00|20

s0 as to satisfy the conditions
Iulsy =0.

A short calculation shows that dg goi|z, = I; and 9 goolz, = 2trk, where T;
are the corresponding (3-dimensional) quantities for the induced metric g;;. (Re-
call: trk = g"k;;.) This completes the specification of initial data for the reduced
equations. Now consider the following: For a solution of the reduced equations,

A 1 A 1 1
Roilzy = ESOilEo = 5{301"1' +0; T —gOi(axFAhEO = 530Fi|20
and
5 1, 1 N 1
Roolzy = ESoo|>:0 = 5{230F0 —800(" Ty, = 530F0|20-
Therefore, if the initial data (g;;, k;;) verify the constraint equations
Roils, = 0. (62)
Roolx, =0, (63)

then the conditions doI';,|x, = 0 are satisfied as well.

In the original work of Choquet-Bruhat a local problem was posed, the initial data
being given on a domain Q2 C Xg. As a first step the initial data for the reduced
equations is extended to the whole of R3 in such a way that it becomes trivial outside
a larger domain ', where Q' D , with compact closure in R3.

i

S~

Q

Figure 4

The next step in the construction of the solution is based on the domain of depen-
dence theorem, to be formulated below. Let (M, g) be the known spacetime, where
M =[0,T] x Xp.
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Definition 23. The domain of dependence of €2 in the spacetime (M, g) is the subset
of M for which €2 is a (incomplete) Cauchy hypersurface.

So, the domain of dependence £ (£2) of €2 in M is the set of points p € M such
that each past-directed causal curve in M through p intersects €2. (It follows that it
cannot intersect more than once.)

[

Figure 5

In D(2) the solution depends only on the initial data in 2. In particular, since the
constraint equations are satisfied in 2, we have that I';, and doI';, all vanish in Q.
So, by the domain of dependence theorem applied to the (linear homogeneous) wave
equations for I',, the I'), vanish throughout £ (€2). Therefore the solution of the
reduced equations is in fact a solution of the Einstein equations

R,y =0 in D(RQ).

If the 3-manifold M is compact, one can cover M with a finite number of coordinate
charts and construct a local time solution by putting together these local solutions.
This works by virtue of the domain of dependence theorem for the Einstein equations.
For, suppose that €2; and 2, are two such coordinate charts with Q; N Q, # @.
Since we are given initial data (g, k) on the whole 3-manifold M, the representations
of these data, given by the two charts, are related by the diffeomorphism in the overlap.
Thus there exists a diffeomorphism f of €7 N Q; onto itself such that

2= f"81. ko= fTki.

After making this transformation we may assume that the initial data coincide in
Q1 N2,. If g; and g, are the two solutions of the reduced equations, corresponding
to the initial conditions in €2; and €2, respectively, the domain of dependence theorem
says that g; and g, coincide in the domain of dependence of €2; N €2, relative to
either g or g».

We can therefore extend either solution

(‘:D(Ql)’gl)v (@(Qz),gz)

to the union, the domain of dependence of €2; U €25.
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‘A

\QXQ/
1 2

Figure 6

Remark. The domain of dependence theorem is a refined uniqueness theorem.

Definition 24. Given initial data (2, g, k) where (€2, g) is not required to be com-
plete, we say that a spacetime (U, g) is a development of this data, if Q is a Cauchy
hypersurface for U. So € is the past boundary of U and g and k are respectively the
first and second fundamental forms of the hypersurface €2 in (U, g). Moreover, g
satisfies the Einstein equations

R, =0.

An argument analogous to the one just presented shows that if U; and U, are
developments of the data (€2, g, k), then we can define a development with domain
U; U U, which extends the corresponding metrics g; and g,. Therefore, the union
of all developments of given initial data is also a development of the same data, the
maximal development of that data.

Theorem 2 (Y. Choquet-Bruhat, R. Geroch [9]). Any initial data set (M,g.k)
(completeness of (M, g) not assumed) satisfying the constraint equations, gives rise
to a unique maximal development.

We shall now give an exposition of the domain of dependence theorem in a gen-
eral Lagrangian setting. Recall the Lagrangian for a mapping u: M — N from
Section 2.1.1. Given a background solution uy, we defined the quadratic form

_ 2L : Sy — MV ea b wv _ 92L —
h = 55(vo) with h(v,0) = hg;, vj0, where h,; = saoh and vg = dug(x).

Let us denote by {L} the equivalence class of Lagrangians giving rise to the same
Euler-Lagrange equations. Recall Definition 19 from Section 2.1.1.

Definition 25. We say that {L} is regularly hyperbolic at vy if the quadratic form £
fulfills the following:
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1. There is a covector £ € T;F M such that / is negative definite on
Ly ={®0:0€eTyN}CL(TMTyN),

that is, the elements of the form 1')/‘1 =§,0%

2. There is a vector X € T, M with £ - X > 0 such that 4 is positive definite on
the set X }( of rank-1-elements of the subspace

Sy ={ve L(TxM,TyN):v-X =0},
that is, the elements of the form v}, = ¢, P* where {,, X" = 0.
Definition 26. Let /i be regularly hyperbolic. Set
I7 ={§ € T)M : his negative definite on L¢} (64)
and
Jx = {X € Ty M : h is positive definite on X} }. (65)
Proposition 2. [} and Jy are open cones each of which has two components
I¥=1rurs,
Jy=JFuJ_,

where 1~ and J are the sets of opposites of elements in I+ and J I, respectively.
Moreover, each component is convex. The boundary 01} is a component (the inner
component) of C, the characteristic in Ty M, and 0J is a component (the inner
component) of Cy, the characteristic in Tx M.

Proof. The proof is in the book [12]. O

Recall the definition of the Noether transform m (&, X) of h corresponding to a
pair (§, X) € TYM x TyM with&§ - X > 0:

m(&, X)(01,02) = (§, X)h(01,02) —h(§ ® U1 - X, 02) — h(V1,§ ® V2 - X).
Proposition 3. Let U} C TFM x TxM be given by
U ={(6.X): £-X >0}

Consider the subset of U consisting of those (£, X) with m(&, X) positive definite
onRe ={§QP+{®Q:V{eTIM, VY P,Q € TyN}. Then this subset is given
by

(IXFxJHuy xJ;).

Moreover, on the boundary of this set m(&, X) has nullity.



2.2 The Cauchy problem 27

Let us discuss briefly the notion of variation of a mapping ug: M — N. A
variation of ug, namely u, is a section of u57 N (the pullback by ug of TN). In
general, if 8 is a bundle over N and ug: M — N, we denote by uyB the pullback
bundle, namely the following bundle over M:

u;i)) = U {x} X :Buo(x),
xXEM

where B, is the fibre of B overg € N.

Figure 7

Thus, a variation # maps x € M + 1(x) € Ty x)N. Foragivenx € M,u(x)is
the tangent vector at u(x) of the curve ¢ — u,(x) in N, where u, is a differentiable
1-parameter family of mappings u,: M — N, ie., u(x) = d”ét(x) —o

We now explain the meaning of the subset J, C T, M: Jy is the set of possible
values at x € M of avector field X on M with the property that the reduced equations
obtained by considering mappings which are invariant under the corresponding 1-
parameter group of diffeomorphisms of M, form a regularly elliptic system.

On the other hand, the subset /f C T} M defines the notion of a spacelike
hypersurface.

Definition 27. A hypersurface H in M is called spacelike, if at each x € H the
double ray {A€ : A #£ 0 € R} defined by the hyperplane Tx H in T M,

TeH ={Y e TxM :£-Y =0}, (66)
is contained in /.

Definition 28. /., the causal subset of Ty M, is the set of all vectors X € Ty M such
that§ - X # Oforall§ € ).

I isa closed subset of 7x M with I, = I7UI_, where I is the set of opposites
of elements in /. One can show that each component is convex. If X € 91, then
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there exists a covector § € d/; such that § - X = 0. It follows that each component
IX% and 1}~ lies to one side of the plane

My ={£€TM: £-X =0}

and Iy contains a ray of 31 respectively d/*~. Thus if 91 is differentiable at
this double ray, then ITy is the tangent plane to /; at this double ray.

Definition 29. A causal curve y in M is a curve in M whose tangent vector y (¢) at
each point y(¢) belongs to 1, ().

The following statements are valid for the future and past components of I, and J
separately. In general, we have I D Jx. Infact, J, is the interior of the inner com-
ponent of C, while I is the convex hull of the outer component of Cy. (Remember
that Cy, is the characteristic in the tangent space Tx M .)

I*
* T

Iy, =dualof I}

\/

M M
Figure 8

We have in general m-sheets in the case dim N = m.

Next, let us give two equivalent definitions of domain of dependence:

Definition 30. Let R be adomain in M on which a solution u of the Euler-Lagrange
equations is defined. Consider a domain £ C R and a hypersurface ¥ in R, which
is spacelike relative to du.

1. We say that D is a development of X if we can express

(D = U Et
t€l0,T]

where {¥; : t € [0, T]}is a foliation and where each X is a spacelike (relative
to du) hypersurface in R homologous to ¥y = X. (In particular, d¥; = 0%
forallt € [0,T].)
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2. D is a development of X if each causal curve in R through any point of D
intersects X at a single point.

We sketch the proof of the equivalence of the above two definitions.

Sketch of proof. Suppose that D is a development of X according to Definition 30.2.
Then for each point p € D the causal past J ~(p) (we are considering future develop-
ments; X is the past boundary of £) is compact. We define 7(p) to be the volume of
J~(p), given a volume form € on R. This defines a time functionin D\ XZ: dt-X > 0
for any vector X € I S withx € D\ . The level sets of 7 then define a foliation
{X;} as required in Definition 30.1. Conversely, suppose that O is a development of
3 according to Definition 30.1. Then any causal curve in £ can be parametrized by
¢ in a non-singular manner. It follows that each past-directed causal curve from any
point of & must intersect X. One can show that if $; and D, are developments of
3, then £; U D5 is also a development. So given a domain of definition R and a
spacelike hypersurface X, we can define the domain of dependence of 3 in R relative
to du to be the maximal development. O

To state the domain of dependence theorem in a precise and general manner, we
reformulate the general Lagrangian setup from a global perspective. Consider maps
u: M — N. The configuration space is C = M x N. The velocity space 'V is a
bundle over C:

V= ) LTMT,N).
(x,q)eC

We have a projection

7:V—C,
veL(TxM, TyN) — (x.q) € C,
where we write 7y pr formjon: V — C — M and we write ry_y for mpom: V —

C —> N.
Let us list at this point the relevant notions.

M, the tangent bundle of M,
AM, the bundle of (fully antisymmetric) r-forms on M,
SoM, the bundle of quadratic (symmetric bilinear) forms on M,
and, with n = dim M,
AnM, the bundle of top-degree-forms on M.

So, A, M is a bundle over M and

ﬂv,MZ'V—>M
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is the projection defined above. Then the pullback bundle is
n;}’ u AnM,

a bundle over V. An element of this is w € (A,M), with x € M, and this w is
attached to an element v € £(TyM,T,;N). The Lagrangian L is actually a C*°-
section of 73, ,, Ay M over V. So,

vi> L(v) € (ApM)y; veZ(TyM, T;N).

Thus
L(w)(Y1,...,Y),

with Y1, ...,Y, € Ty M, is an n-linear fully antisymmetric form on 7, M .

Definition 31. Given a Lagrangian L, the action of a map u defined in a domain R
in M, corresponding to a subdomain D C R is

A [u; D] =[ Lodu. (67)
D

Note that L o du is a section of A, M over R ((L o du)(x) = L(du(x)) €
(AnM)y). Also, note that with dim M = n, dim N = m, we have dim C = n + m,
dmV = (n +m) +nm.

Suppose that M is oriented and € is a C* volume form on M. That is, € is a
C°-section of A, M suchthatif (Eq, ..., E,) is a positive basis for Tx M (a positive
frame at x), then €(E1, ..., E;) > 0. Given then a C*° function L* on 'V, we define
the corresponding Lagrangian L by

L@)(Yi,....Y,) = L*@) e(Y1,...,Yp)

with v € £(TxM,Ty;N) and Y;,....Y, in TyM. The function L* was called
“Lagrangian” in the previous.
Finally, we state the domain of dependence theorem.

Theorem 3 (Domain of dependence theorem). Let ug be a C? solution of the Euler—
Lagrange equations corresponding to a C* Lagrangian L; and let uy be defined in
adomain R in M. Let ¥ be a hypersurface in R, which is spacelike relative to duy.
Let also uy be another solution of the Euler—Lagrange equations defined and C'
on R. Suppose that

dug|s = du|x.

Then u coincides with ug in the domain of dependence of ¥ in R relative to duy.
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2.3 Decomposition of the Einstein equations with respect to the
foliation by the level sets #, of a time function ¢

We consider first Lorenzian geometry without the Einstein equations, and afterwards
we impose the Einstein equations.

Figure 9

Let (E1, E», E3) be a (local) frame field for #,. We extend the E;,i = 1,2, 3,
to the spacetime by the condition

[T, Ei] =0. (68)

Then the (Eq, E», E3) define a frame field for each #;. The spacetime manifold M

is represented as the product [0, T'] x #p. In this representation 7" = Ba_t and

g =—d%dt* + 3,

where g(¢) is the induced metric on J¢; and @ is the lapse function. Recall the first
variation equations
33y
ot
Here k is the second fundamental form of #; and the indices i, j refer to the frame
(E; : i =1,2,3). The second variation equations are

ok;;

a_ti/ = ViV;® — (Rigjo — kimk[") . (70)

=2®k;;, kij =k(E;, Ej). (69)

Here V is the covariant derivative operator intrinsic to J#;, that is, relative to the
Riemannian connection of (#;, g(¢)). Also, Rigjo = R(E;, Eo, E;, Ey), the frame
field (E;, E», E3) being completed by Eg = % a%’ the future-directed unit normal to
the J;, to a frame field for M. Remark that goo = —1, go; = O and g;; = g;; =
g(Ei. Ej).
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In addition to the 1 and 2" variation equations we have the Codazzi and Gauss
equations of the embedding of J¢; in M. The Codazzi equations are

Vikjm — Vikim = Rmoij. (71)

and the Gauss equations are

Rimjn + kijkmn - kinkmj = Rimjn~ (72)

Here R;mjn are the components of the curvature tensor of (H#;, g(t)).
We proceed to impose the Einstein equations. Taking the trace of the Gauss
equations we obtain

Rij + trkkij — kimk" = Rij + Riojo. (73)

Next we substitute for R;q;o from these equations into the 2" variation equations to
conclude that the part R;; = 0 of the vacuum Einstein equations is equivalent to

okij == -
8—[/ = ViV, ® — (Rjj + kjj trk — 2kimk]")P. (74)

The trace of the Codazzi equations is
ﬁik,j—ajtrszoj. (75)

The part Ry; = 0 of the vacuum Einstein equations is thus equivalent to the constraint
equation 3
Vlk,'j—ajtrk=0. (76)

The double trace of the Gauss equations is
R + (trk)? — |k|> = R 4 2Rgo = 2Rg0. (77)

where |k|? = k] k™ and Ruy = Ry — 1&uv R. Thus the vacuum Einstein equation
Ryo = 01is equivalent to the constraint equation

R+ (trk)®> — k> = 0. (78)
The constraint equations constrain the initial data
(8.k) on Ho.

To derive the 2™ variation equations we must obtain an expression for the accel-
eration of the orthogonal family of curves.
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Acceleration of the integral curves of T'. Let us denote the unit normal £y = N.
Then the geodesic curvature of the orthogonal family of curves is given by

VyN = 71V, (79)

and VO is the gradient of @ intrinsic to #;, a vector field tangent to #; with com-
ponents

Vieo =g"v;o,
where V;® = E;®. Recall that T = ®N (the integral curves of T and N are
the same, but differ only by parametrization; 7" is parametrized by ¢ while N is
parametrized by s, namely arc length.) The formula (79) is derived as follows. We
have (in arbitrary local coordinates)

Ny = guwN" = =P, 1. (80)
Hence, we can write

N"V,N, = —N"V,(®d,1)
= —N"9,09,t — PNV, (1)
= & !NYN,0,® + N" OV, (D7 'N,).

The last term is

—-® 'N'N, 3, &+ N"V,N, =719,
_—T ——
= =30, (N"Ny)=o0
N——

=1

Thus,
N V,N* = &~ 1T1*9, ®,

where [T*Y = gl¥ + NHNV = g”"Hﬁ and Hi‘ defines the orthogonal projection
to the J¢;:
IMm-X =X+4+g(N.X)N

on any vector X € TM. We have thus obtained the formula (79). Since T = ®N,
an expression for the acceleration V7T of the integral curves of 7" readily follows.
Now let X, Y be vector fields tangential to the #; and satisfying

[T, X]=[T.Y] =0.

Atthe end we shall set X = E; and Y = E; to obtain Tk(E;, E;) = %. We have

k(X,Y)=g(VxN,Y)
=0 lg(VxT,Y).
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Therefore
T(k(X,Y)) = T(®'g(VxT,Y)).

Now,
T(g(VxT,Y)) = g(VrVxT,Y) + g(VxT,VrY).

For the first term we apply the definition of the curvature:
VrVxT = VxVrT + V[T’X]T + R(T,X)T
and
gV, R(T,X)T)=R(Y,T,T,X)=—R(X,T,Y, T).
For the second term we use
VrY —=VyT =[T,Y] =0,
to write

Substituting 7 = ®N, we can express the vector field Z := Vy N in terms of k. In
fact Z is tangential to the #;, hence Z = Z'E; and Z' g;; = g(Z, E;) = k(X, E).
The 2™ variation equations (70) follow in this manner after substituting for V7 T from
the formula (79) for Vy N.

To derive the Gauss equations, we recall from Riemannian geometry that the
covariant derivative V intrinsic to (#;, g(¢)) is characterized by the property

VxY = 11-VyY,

where X, Y are any vector fields tangential to the #;. We apply this to the definition
of the curvature of (#;, g(¢)). Let X, Y, Z be arbitrary vector fields tangential to ;.
Then

R(X,Y)Z =VxVyZ —VyVxZ —Vixy|Z. (81)

Now let W be another arbitrary vector field tangential to #;. Then we can write

RW,Z,X.Y)=g(W, R(X,Y)Z) (82)
=g(W, VxVyZ — VyVx Z — Vix.y1Z), (83)

since g(W,I1-U) = g(W, U) for any vector field U. At this point we substitute
VxZ =11-VxZ = VxZ + g(N,Vx Z)N.

Thus in Vy (ﬁx Z) there are terms, in addition to Vy Vx Z, which involve Vy N, thus
the second fundamental form k. The Gauss equations (72) follow in this manner.
The Codazzi equations (71) are straightforward.



3 Asymptotic flatness at spacelike infinity and
conserved quantities in General Relativity

3.1 Conserved quantities

In this chapter we discuss the definitions of total energy, linear momentum and angular
momentum in General Relativity. We then give an overview followed by a rigorous
discussion of the associated conservation laws.

We begin with the definitions of a manifold which is Euclidean at infinity, of an
asymptotically Euclidean Riemannian manifold and of an asymptotically flat initial
data set.

Definition 32. A 3-manifold # is said to be Euclidean at infinity if there exists a
compact set X C H such that # \ X is diffeomorphic to R3 \ 8B, where 8 is a ball
in R3. Thus # \ X is contained in the domain of a chart.

Definition 33. An asymptotically Euclidean Riemannian manifold (J, g) is a com-
plete Riemannian manifold which is Euclidean at infinity and there exists a coordinate
system ()c1 ,x2, x3) in the complement of K above relative to which the metric com-

ponents g;; — 5,',- asr = 4/ 2?21(Xi)2 — Q.

Definition 34. An asymptotically flat initial data set (#, g, k) is an initial data set
where (#, g) is an asymptotically Euclidean Riemannian manifold and the compo-
nents of k approach 0 relative to the coordinate system above as r — oc.

The fall-off of g;; — J;; and k;; with r should be sufficiently rapid for the notions
of total energy, linear momentum and angular momentum below to be well defined
and finite.

The standard definition of these notions is the following:

Definition 35 (Arnowitt, Deser, Misner (ADM) [1]). Let S, = {|x| = r} be the
coordinate sphere of radius 7 and dS; the Euclidean oriented area element of S,. We
then define

* the total energy

= — lim [S > @igij —0;2i1) dS;. (84)

4 r—oo
)
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e the linear momentum

pi = _irlﬂﬁlo/ (kij — gijtrk) dS;, (85)
* the angular momentum
. 1 .
2r—o00 Jg,

The total energy, linear momentum and angular momentum are conserved quan-
tities at spacelike infinity, as shall be shown in the sequel.

We now begin the discussion of where these quantities come from. Let us recall
the fundamental theorem of Noether.

Theorem 4 (Noether’s theorem [22]). In the framework of a Lagrangian theory, to
each continuous group of transformations leaving the Lagrangian invariant there
corresponds a quantity which is conserved.

In particular:

— energy corresponds to time translations,

— linear momentum corresponds to space translations,

— angular momentum corresponds to space rotations.

As discussed in the previous chapter, a Lagrangian corresponds in a local coordi-
nate description to a function

L* = L*(x,q,v).

We denote by x* (with u = 1,...,n) the independent variables, g% = u%(x) (with

a = 1,...,m) the dependent Vanables and vy 3x = ~(x) the first derivatives of the
dependent variables. The canonical momentum is given by
oL*
o= . 87
p a av Z ( )

We define the canonical stress by
T* = prtod — L*5k. (88)

In the following we restrict ourselves to transformations acting only on the domain
of the independent variables. Let X* be a vector field generating a 1-parameter group
of transformations of this domain leaving invariant the Lagrangian form

L*d"x, d"x =dx"A---Adx". (89)
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Then the Noether current
JH = T:”X" (90)

is divergence-free, that is
A =0. on

By the divergence theorem we conclude that the following conservation law holds:
If ¥, and X, are homologous hypersurfaces (in particular 0¥, = dX,), then

/ J*dx, =/ TS, (92)
22 Z:l

We now turn to General Relativity. The Einstein equations are derived from

Hilbert’s action principle. This corresponds to the following Lagrangian for gravity:
L= ! Rd
= 1 Mg,

where R is the scalar curvature of the metric g and dug the volume form of g. This
Lagrangian is the only one (up to an additive constant multiple of the volume form)
which gives rise to second order (Euler-Lagrange) equations. Here the metric com-
ponents g, are the unknown functions and R depends on their second derivatives.
Moreover, it is the only geometric invariant (up to an additive constant) which con-
tains the second derivatives only linearly. (All other invariants give rise to 4" order
equations.) But Noether’s theorem depends on having a Lagrangian containing only
the first derivatives of the unknown functions. Thus it cannot be applied directly to
Hilbert’s principle.
To deal with this difficulty, Einstein and Weyl introduced the Lagrangian

1
_ZR + 0% = L%,
where [* = —% J—g (g"' Iy, —g"*T'},). Then

" 1
L*=-27% g (rh,re, —rh e )
differs from Hilbert’s invariant Lagrangian —%R /—g by a divergence, therefore
gives rise to the same field equations. So, one can define
aL*

p*;,ux,B —
V0B

to be the canonical momentum, where v, = (3,848)(x) (¢* corresponding to
gap (x)). The canonical stress is then

Tyt = p™oBu,q — L*8L.
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This is called the Einstein pseudo-tensor. The Lagrangian L* is invariant under
translations: x* +— x* + c¢*, where the ¢* are constants. Let

0
JH =TFXY, where X" =c¢" (X = c”a—v),
x
so X is a vector field generating a 1-parameter group of translations. By Noether’s
theorem the current J ** is divergence free, that is

A JH =0.
Since the c* are arbitrary constants, the following differential conservation laws hold:
A, T =0.

Hermann Weyl wrote the following comments about these conservation laws. We
quote from the book [29], p. 273:

In the original German:

Dennoch scheint es physikalisch sinnlos zu sein, die 7, als Energiekom-
ponenten des Gravitationsfeldes einzufiihren; denn diese Grossen bilden
weder einen Tensor noch sind sie symmetrisch. In der Tat konnen durch
geeignete Wahl eines Koordinatensystems alle 75" an einer Stelle stets
zum Verschwinden gebracht werden; man braucht dazu das Koordi-
natensystem nur als ein geodétisches zu wihlen. Und auf der andern
Seite bekommt man in einer ‘Euklidischen’, vollig gravitationslosen
Welt bei Benutzung eines krummlinigen Koordinatensystems 7,"", die
verschieden von 0 sind, wo doch von der Existenz einer Gravitations-
energie nicht wohl die Rede sein kann. Sind daher auch die Differential-
relationen (oben) ohne wirkliche physikalische Bedeutung, so entsteht
doch aus ihnen durch Integration iiber ein isoliertes System ein invari-
anter Erhaltungssatz.

In English translation:

Nevertheless it seems to be physically meaningless to introduce the 7} *
as energy components of the gravitational field; for, these quantities
are neither a tensor nor are they symmetric. In fact by choosing an
appropriate coordinate system all the 7,* can be made to vanish at
any given point; for this purpose one only needs to choose a geodesic
(normal) coordinate system. And on the other hand one gets T, # 0
in a ‘Euclidean’ completely gravitationless world when using a curved
coordinate system, but where no gravitational energy exists. Although
the differential relations (3,,7," = 0, above) are without a physical
meaning, nevertheless by integrating them over an isolated system one
gets invariant conserved quantities.
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Consider the transformation

x> x = f(x),

g frg.
In components,
= f*(x)
and
i} _ afofP ,
guv > v gu,v(x) = Yo Wgaﬂ(x)

(x = f71(X)). As an example we have, in particular, linear transformations
Xt =alix? 4+ bH,
where a and b are constants. Then we have
() = ajial gap (3.

If { f;} is a 1-parameter group of transformations generated by a vector field X, then

d .
- fe| = 2xs (93)

is the Lie derivative of g with respect to X. We have
(€xQuv = Vu Xy + Vi Xy,

where X, = g, X". We say that an integrated quantity Q is gauge invariant if for
every such 1-parameter group { f;},

o[f gl = Qlgl- (94)

This requirement implies

. d . B
0=—0lf7g)| _ =0 ©95)

and conversely. In view of (93), the last reads

0:=D,0 £xg=0. (96)

Here, we think of Q as a differentiable function of g.
Now, the metric g is not a mapping of the (spacetime) manifold M into another
manifold N, but rather a section of a tensor bundle over M . Thus, Noether’s theorem
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must be extended to sections of tensor bundles. In any case, we have derived, by
considering translations,

u Tv*“ =0. 97
Let us now consider rotations. The vector fields
Xin =x' 9 ;2 i, j =123
(u)—xm_x ol L] =122

are the generators of rotations in the (i, j)-plane. In 3-space-dimensions the vector
fields

X(i) = GinX] Ik
generate rotations about the i coordinate axis. In Minkowski spacetime the vector

field
0 ad

Xap) = Xag g = Xpy 5o X = NuX"

generates spacetime-rotations in the (x%, x#)-coordinate plane. Here 5 =
diag(—1,1,1,1) is the Minkowski metric in rectangular coordinates. We denote
the vector field generating translations along the «-coordinate axis by

0

Ixe’

X =

Now, Noether’s theorem in the case of translations applies as it stands if we take the
naive point of view of considering g as a matrix-valued function on M = R*. This
yields

Opud gy =0, where Joy =T X0, = Tj"

On the other hand, for spacetime rotations in the (¢, §)-plane we have

Tapy = T Xlup) = XaTg

(@p g —xpTg"

and

auJ(Z’é) = f;m’?au =T g
noting that d,xq = 78 55 = Ngu. The last vanishes if and only if the matrix with
entries

Saﬂ = nauT;M

is symmetric, that is Sog = Sgo. But this is false. Therefore the above argument
does not yield a conservation law corresponding to spacetime rotations. This is not
surprising: The naive point of view fails for rotations, because rotations, in contrast
to translations, bring the tensor character of g into play.
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We shall presently discuss Noether’s theorem from a global geometric point of
view. Consider maps
u:M — N

with dim M = n and dim N = m. As in Section 2.2, we denote by V the velocity
bundle
V= L(TM. T,N).
(x.9)
where u(x) = g € N and du(x) = v € £(TyM,Ty;N). A diffeomorphism f of
M onto itself induces a diffeomorphism f, of V onto itself by

v e L(TeM. Ty N) > fu(v) € L(TyioyM. Ty N). (98)

where
fe) Y =v-df 1Y) VY eTryM. (99)

If X is a vector field on M generating the 1-parameter group { f;}, we call the induced
1-parameter group { f;«} of diffeomorphisms of 'V the Lie flow generated by X on V.
Recall that a Lagrangian L is a section of the bundle n%‘}’ m AnM over 'V, the pullback
by the projection wy pr: V — M of the bundle A, M of top-degree-forms on M.
The pullback f* by f of L is defined by

(L)) - (Y1,.... Yn) = L(fe(v)) - (df - Y1.....df - Yp) (100)

for all v € £(TxM,TyN) and all Y;,....Y, € TxyM. (Recall that fi(v) €
L(TrxyM, TyN).) The Lie derivative £x L of L with respect to a vector field X on
M is the derivative of L with respect to the Lie flow generated by X on 'V:

d
L=—F"L 101
Lx dtft t=0 (101)

where { f;} is the 1-parameter group generated by X. A current J is a section of
n;} MA,,_IM . Given a volume form € on M we consider J as equivalent to J*, a
section of JT; pu M, as follows:

J(U) . (Yl,. --,Yn—l) = G(J*(U),Yl,.. .y Yn_l), (102)

forall v € £(TyM,TyN) and all Yy,...,Y,—1 € TxM. We now refer to the
following notion from [12].

Definition 36. Given a Lagrangian L, we say that a current J is compatible with
L, if there exists a section K of 3, ,, A, M such that for every solution u of the
Euler—Lagrange equations corresponding to L we have

d (Jodu) = Kodu. (103)
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In the above definition J o du is an (n — 1)-form on M while K o du is an n form
on M.

An interesting question is the following: What are all the possible currents com-
patible with a given Lagrangian? In n = 1 dimension all currents are compatible.
However, the question becomes non-trivial in n > 1 dimensions. In fact, the Noether
theorem provides a class of compatible currents in any dimension n of the domain
manifold M.

Definition 37. The domain Noether current corresponding to a Lagrangian L and a
vector field X on M is the current J, given by

JH = T, (104)

where T, are the components of the canonical stress. Recall that 7,"* = pg"v4 —
L*§8 and L(v) = L*(v)e(x) while p;* = L™ are the components of the canonical

T ovy
momentum.

We can now state Noether’s theorem in the domain case.

Theorem 5 (Noether’s theorem in the domain case). The Noether current is a com-
patible current and the corresponding section K of 73, ,, Ay M is given by

K=—-%xL. (105)

In particular, if X generates a Lie flow leaving the Lagrangian invariant, then J is
conserved, that is for every solution u of the Euler—Lagrange equations we have

d(J odu) = 0. (106)

Hence, for two homologous hypersurfaces 1 and X, it holds that

/ Jodu=/ J odu. (107)
)P} D

Sections of Tensor Bundles over M. Having in mind the application to General
Relativity we consider the case of the bundle S, M of 2-covariant symmetric tensors
on M. In fact, the configuration space € in General Relativity is the open subbundle
LM of Lorentzian metrics on M :

€=LM= ] L.M. (108)
XEM
where L M is the set of quadratic forms on Tx M of index 1, an open subset of the
space S, M of quadratic forms on 7 M. The velocity bundle V is

V= L(TM. S M).
xeM
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The Lagrangian is defined on the bundle product

Cxy V=) LM x L(T:M. S M).
xXeM

(Note that dim(€ xar V) = dim € + dim V — dim M = n 4 20550 4 22041

Given a diffeomorphism f of M onto itself we shall define the action of f on €,
V and on € xys V. Consider a section s of € (over M). Thus, s is a Lorentzian
metric on M. We must associate to s a derived section which is a section of 'V (over
M). Here, a connection I' (on TM) is needed. We assume that " is symmetric.
The derived section is then Vs, the covariant derivative of s with respect to I". To
represent things in terms of duals, we must also choose a volume form € on M. This
must be compatible with I, that is we must have

Ve = 0.
Such a choice is possible if and only if
trR(X,Y)=0 VX, Y eTyM, Vx e M,

where R(X, Y) is the curvature transformation associated to I". (In an arbitrary local
frame this condition reads R" 0.) We now give the following definitions:

nep =
Definition 38. The action of f on € is defined by
g €C fix(q) €Crx), x€EM, (109)
where
fel@) - (Y1, Y2) = q-(df ' - Yi,df ' - Yp) forall Yy, Ysin TryM.
Definition 39. The action of f on "V is defined by

veV,= i(TxM, SoxM) — f*(v) S 'Vf(x) = ;C(Tf(x)M, Szf(x)M), xXeM,
(110)
where
fx) Y = fiu(v-(df'-Y)) forall Y in TypM.

The Lagrangian L is a section of
”éva,MAnM'
Thus, if (g, v) € LyM x £(TxM, S> M), then

L(g,v) € ApxM,
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where A,xM is the space of totally antisymmetric n-linear forms in Txy M. The
pullback by f of L, namely f*L, is given by

(f*L)(g.v)- (M.....Yn) = L(fu(@). fx(0) - (@f -Y1.....df -Yn)  (111)

forall Y1,...,Y, in T,yM. If X is a vector field on M generating the 1-parameter
group { f; } of diffeomorphisms of M onto itself, the induced 1-parameter group { f;«}
of diffeomorphisms of € x s V onto itself, is the Lie flow generated by X on € xs V.
It is actually generated by a vector field X« on € Xxps V which is expressed as the
sum of its horizontal and vertical parts:

X.=XxXE + x7. (112)
We have
drexyvm - XE =X (113)
and
dmexy, v - X, =0, (114)

The horizontal part X = X* is the horizontal lift of X to € x37 'V defined by the
connection I'. The vertical part is given by
z=o)’

V fix(q)
Vit

(an element of S,y M x £(TyM, S»,M)) which is a vector tangent to the fibre

€y x £(TxM, S>x M), an open set in the linear space Sox M x L(Ty M, Sy M).!

Here, f;«(g) is a field of Lorentzian tensors along the curve f;(x), namely the inte-

gral curve of X through x.

V fix(v)

=0Vt

X @0 =

S (@)

Ji(x)

M

Figure 10

Recall that a tangent vector at a point in a linear space can be thought of as an element of the linear
space (a tangent vector at the origin).
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Consider an arbitrary system of local coordinates on M. We can expand g € €
and v € £(Tx M, S2x M) in this system as

q = qap dx*(x) ® dxP (x),
where ggo = gop, S0 g is symmetric, non-degenerate and of index 1. Moreover we
can expand
V= Upgp dxM(x) ® dx®(x) ® dxP (x),

0

where v g0 = V. Given X € Ty M, we have X = X% 55

|x and
v-X=(v- X)aﬂ dxa(X) & dxﬂ(x)’
(V- X)op = vuap X"

The (g4p) constitute a system of linear coordinates for €, and the (v,4g) constitute
a system of linear coordinates for V,. We can then express
)vus s )
1=0/ pap uep )’

xm,v):((mt:ﬂ) 0 (Vﬁ*w)

Vi ap aCIaﬂ ' Vi
where
V fix(q)
(T t=0)a/3 = ~GypVa X" (¥) = oy Vg X7 (x),
\Y v
( ﬁ*( ) ) — _UvaﬂvpLXv('x) — UMV’BVQXV(X) - vuavvﬁxv(x).
Vit t=0/ pnap

In conclusion, for any differentiable function F' on € x,s 'V we have
XoF = X*F — (¢, Va X" + quyVpX?)

oF oF
— (vva/gVMXv + vw,,gVaX” =+ vlwwV5Xv)

0qap M yap
The derivative of L with respect to the Lie flow generated by X is
d f*L
LxL = —=1 : 115
X dt lt=o0 (115)
where L = % > Ly, dx*t A --- A dx*n. We have
n
ax*
(€xL)ay.n, = Xu(Lpy..2,) + Z Tk Ly <>k

i=1

Here, by < A; > k we mean that in the i place the suffix A; is missing and in its
place we have the suffix k. Writing L = L*¢, where ¢ is a differentiable volume
form on M (Ve = 0), we have

(£xL)* = Xo(L*) + (V X*)L*. (116)

We now give the following definition.
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Definition 40. In a theory of Lorentzian metrics, the Noether current corresponding
to a vector field X is

J*M(q’ v) = p*/mﬂ(vavaﬂ + QvﬂVaXv + Qavvﬂxv) —L* X" (117)

The Euler—Lagrange equations are, in terms of the canonical momentum p*#®# =

agi;s and the canonical force f *af _quD;’
Vi (P 0 (5, V5) = f*F o (5, Vs). (118)

We then compute

Vi (J* o (5, Vs))
=V, (p* 0 (5,V5)) (X" Vysap + 50pVa X" + 56V X")
+ p*HP o (5, V) {X "V, Visap + 50 Vi Va XY + 50V, Vg XV
+ (Vi XV)(Vusap) + (Visug) (Vo XV) + (Visa) (VX))

*

L
—xtn -]

af

o (s, Vs)Vxseg

aL*

0V 08

o (s, Vs)Vx (Vysap) — (V XH)L®,

and we have

JL*

(£xL)* = XH(L*) -
a(’IOlﬂ

aL*

Vjap

(QV,B Vo X' + ‘IotvvﬂXv)

(vvaﬂVMXv + vaﬂVaXv + v,wwVBXv) + (VMX’U“)L*.

Hence, by the definitions of canonical momentum and force as well as the Euler—
Lagrange equations,
Vi (J* o (s,Vs)) + (£xL)* o (s, Vs)
= p* o (5,Vs) {X"V, VuSap — Vx Viisap (119)
+ SvB VMVaXv + Savv,uvﬂ Xv}.
We have

XV (ViViseg — Vi Viusep) = =XV (R(’iws,qg + Rguvsa,().
Let us recall that
VuVo X4+ Ry X = (ExT)),

VKU
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Consequently, the right-hand side of (119) is
P 0 (5, Vs) {sup (LxT)}ig + Sav (£xT))50- (120)
In fact, the Lie derivative of a connection I is defined by:
(£xD) (Y, 2) = [X,Vy Z] = Vix y1Z — VY [X, Z] (121)

for any three vector fields X, Y, Z. One can readily check that (£xI") (Y, Z) is
bilinear in ¥ and Z with respect to multiplication by the ring of differentiable func-
tions. (That is, we have (£xI')(fY,Z) = f(£x]) (Y, Z) and (£xD)(Y, fZ) =
f(£xT) (Y, Z), for any differentiable function f.) Moreover, the fact that I is a
symmetric connection implies that (£x)I" (Y, Z) is symmetric in Y, Z. It follows
that £x T isa T, tensor field which is symmetric in the lower indices. Since we have
[U,V] = VyV — VyU for any pair of vector fields U, V, (121) is equivalent to

(£xT) (Y, Z) = VxVyZ — Vv, zX —Vixy|Z —VyVxZ + VyVzX

) (122)
= RX.Y)Z+ VX (Y, 2).
Substituting a frame field, we obtain
(SKXF);’M = RXWX" + V.V, X", (123)

in agreement with the formula above.
We conclude from the above that the following form of Noether’s theorem holds
for sections of €:

Theorem 6 (Noether’s theorem for sections of €). The Noether current (from Defi-
nition 40) is a compatible current, that is

d (Jo(s,Vs))=Kol(s,Vs), (124)
and we have
K=-%xL-T, (125)
where
T** = —phf (g5 (LxT)y + dan (£xT) ") (126)

In particular, if X generates a flow on M leaving T invariant as well as a Lie flow
on € xpr 'V leaving L invariant, then for every solution s of the Euler—Lagrange
equations we have

d (Jo(s,Vs)) = 0. (127)
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We are now going to apply the above to General Relativity.
o
We introduce a background metric & (in addition to the actual metric g). The
o
background metric is not to be varied in the variational principle. To & is associated

o [e]
its metric connection I" and volume forme = d e (which is of course ["-compatible).
We write

1 o o
3 (R= " Ryn) diig = (L= Vo 1) dpg. (128)

Defining the positive function w by

diug = du;, (129)
L* is given by
1
L* = —4@ g (Af 0% — AP NS ). (130)
where A is the difference of the two connections:
ol
A%, =T9,—T
el . . (131)
= 58" (Vu gpv+ Vo 8pu— Vi o).
Now L* is a true Lagrangian, as it depends only on g and % g. Moreover,
1
1% = 1 w (g™ AZV — g“"‘A‘;w). (132)

The Euler-Lagrange equations corresponding to L* coincide with the Einstein equa-

tions, provided that §‘ is itself a solution of the Einstein equations, that is
Ruw=0. (133)

We take & to be flat from this point on. The background spacetime is then the
Minkowski spacetime. Let the vector field X generate a 1-parameter group of isome-

o o
tries of &. Then X leaves T, as well as d ,U,E = ¢, invariant. Moreover, the Lie flow

generated by X leaves L* invariant,
X«(L*) =0. (134)

We can thus apply Noether’s theorem to conclude that we have a conserved current
Jx associated to X.
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Now, the background Minkowski spacetime has a 10-parameter isometry group,
the Poincaré group. In Minkowski spacetime there is a special preferred class of
coordinates, the rectangular coordinates, in which the metric components are

8uv= Nuv = diag(—1,1,1,1), (135)

and
du; =dx® Adx! Adx? Adx3.

Moreover, it holds (as in all linear coordinates) that

T,,=0. (136)

The generators of the Poincaré group are expressed in rectangular coordinates by

generators of spacetime translations
along the x*-coordinate axis,

Xop) = Xa pyv i X T generators of spacetime rotations in the
x x
(x?, xP )-coordinate plane, where Xy = 148 x5,
In terms of components in rectangular coordinates,
mo_
X =
X(op) = XaSy — xp8Y.

We therefore have the conserved Noether currents:

J@) associated to the translations X ),

J@p) associated to the rotations X ,g).

Substituting in Definition 40 the generators of translations along the x*-coordinate
axis we obtain

Ty = Tiay- (137)

The associated conservation laws coincide with the Einstein—Weyl energy-momentum
conservation laws, discussed in the preceding. But whereas the Einstein—Weyl ap-
proach provides no conservation law corresponding to spacetime rotations, the present
approach does.

Consider the Noether current Jy associated to a vector field X generating a 1-

o
parameter group of isometries of the background Minkowski metric £. We have
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shown above that Jy is conserved. This means that for every solution g of the
Euler—Lagrange equations (the Einstein equations) we have

d (Jxo(g.Vg) =0, (138)

which implies that if 3; and X, are homologous hypersurfaces (in particular 0¥, =
0X1), then the following holds:

/ Jx 0 (8.V g) =/ Jx 0 (g.V g). (139)
N ol

Next we are going to show that in fact Jx is a boundary current. In the general setting
of a Lagrangian theory of maps u of the domain manifold M into another manifold
N, we have the following definition.

Definition 41. A current J is called a boundary current if there exists a section G
of 73, s An—2M (with dim M = n), such that for every solution u of the Euler—
Lagrange equations we have

Jodu=d (G odu). (140)

A boundary current is a conserved current; in fact

/Jodu:/ G odu. (141)
b E))

The integral conservation law

[ Jodu=/ Jodu
s o

trivially follows from the fact that dX, = 0X; whenever X, is homologous to X;.
Let us go back to the definition of the Noether current corresponding to a vector
field X in a Lagrangian theory of Lorentzian metrics on M . Inrectangular coordinates

of the background Minkowski metric § ,

o

g;,wz Ny VM: a“,, det §= —1,
and we have

I = TXY 4 p P (gupda XY + gavdp X). (142)

Taking X to be a Killing field of § , we have

X (‘2 )= Sk for the generators of spacetime
Yr = translations,
X(’fxﬂ) = xo,Sg — xp8, X, = nuvx”  for the generators of spacetime

rotations.
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It holds then that
0,0, X% =0,

which is the equation
£x I'=0.

Now, in General Relativity it turns out that we have, identically,
1 N
TH =9, FV*M —5V- detg R, (143)

where F,* *isan expression which is antisymmetric in  and A, to be given below.
(Recall that ﬁuv = R,y — %gwR and Iéff = g‘”ﬁ;w.) Fixing the index v let us
write .

Twyapy = T €papy (144)

and
o

1
Fuwap = S F"* €unap (145)
Then by (143) for every solution g of the Einstein equations we have

Twy) = d F), (146)

when composed with (g, dg). The F,™" * are given by

Fyrd = Aoy g, (147)
where
J/—detg
A[vL)LKO(ﬂ — € {5“ (g;uc AB /Lﬂ) + 5/3 (g/uc Aa g/llcg/wt)
+ Zg""’ (8l g™ — 53g‘“) + g% (g5} — gl (148)

+ g (g"*8) — gh*st)).

Using (143) we deduce that for any Killing field X of § and every solution of the
Einstein equations we have
= 8,63 (149)

where N N
*UA kA pv * U
Gy " =F"™X" + Ky,

and K ;” * is an expression which is antisymmetric in @ and A:

Ky = LR 87— 1) X — (V78 £ — ) 0K ),
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In fact we have the identity
1 .
T = 9,63 — 5V detg REX". (150)

Thus, for any Killing field X of § and every solution of the Einstein equations we
have

Jx = dGy,
where
(Gx)op = %G*’M € urap -
We shall now investigate the invariance properties of integrated quantities under

gauge transformations, to be explained presently. Remark that we are free to pull-
back the metric g by an arbitrary (orientation preserving) diffeomorphism f of M

while keeping the background Minkowski metric § fixed:

g — f'g,

where

afe aff
("8 ) = 2o () L (s (1)),

We consider the quantity Q associated to X, a given Killing field of § ,and to §, a
2-surface which is homologous to 0 (S = 90X for some bounded hypersurface X):

Ox(S) = /S Gx, (151)

with Gy = Gx(g, dg) defined above. Here, S and X are part of the background
Minkowski structure. They are not affected by f. So, f acts like a gauge transfor-
mation. Consider then a 1-parameter group { f; } generated by a vector field Y.

=£Lyg.
=0 Y8

. d o,
g=_1¢
We investigate

@m=ﬁ@.

If Ox(S) were to vanish for all vector fields Y, then Qx (S) would be a geometric
invariant. This would be so if Gy were of the form

Gx = dlx,
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with Iy a 1-form. For, we would then have

/GX:0
S

as 0S5 = 0. However, this is unfortunately false.
Nevertheless, we shall presently show that, in the case that X is a spacetime

translation, if g is asymptotic to E‘ at spacelike infinity in an appropriate manner, then
Gy is in fact asymptotically of the form d I . The case that X is a spacetime rotation
shall be treated later.

Setting §,, = guvY"” we have

S = (iYg);w = Vuév + vau

(152)
= Yla/lguv + g)tvau,Y/l + g,u)kavy/l-

The last equation holds in any system of coordinates, in particular, in the rectangular

o
coordinates of &.

Nowlet g, —nuw = 02(r~%). Here,r = \/Zle(xiﬁ and we say that a function

f of the spacetime coordinates is og (r~*) if f is C¥ and its partial derivatives with
respect to the spacetime coordinates of order / are o (r~*!), foralll =0, ..., k. We
are only allowing ‘gauge transformations’ which do not affect this fall-off property.
That is, we assume that

gu = 03(’,1—01).

Then we have
Suv = 0y + 0Eu + 01(r2%). (153)

Note that for translations X ) = 3i

xl) ’

* A A
GXZJ) = Fv*“ . (154)
Now, we have
Frd = fudceBy o5 +ARMCBY 60p, (155)
N—
01(r—172)
hence
SEkUA o HAkap —1—2«
F =4, 0 (3ap + 0pEa) + 01(r ). (156)

Let Bg be the largest coordinate ball (r < R) contained in S. Then, if @ > %

/ o(r172*) = o(R'"*) - 0
N
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as R — oo. It thus suffices to show that there is a 1-form [,y such that

| omnikap

3 A, O (0oEp + 08&q) Z,UJWSZ Ay Lys — 05 1)y - (157)

In fact, defining the totally antisymmetric expressions

ISP = TS PR — 07ER) 8f (7E — 0°) 4 8 (8P — P )

we have
o Akap

A, O (3ap + 0pEy) = 0,1*PH%,

Hence, setting
1 o
Iwyr = gl(jﬁu‘;‘ﬂy €aByis

(157) indeed holds. We conclude the following:

Proposition 4. Let S, be the coordinate sphere of radius r on a complete asymptot-
ically flat Cauchy hypersurface X. Then the limiting quantity

Ox(Seo) := lim Qx(S;) (158)

associated to a translation X is a geometric invariant provided that g, — Ny =

02(r=%) for some a > %

3.2 Asymptotic flatness

What we have just shown implies that the fotal energy-momentum is a geometric
invariant, provided that the metric g,,, is asymptotically flat in the following sense:
There is a coordinate system in the neighbourhood of spatial infinity with respect to
which the metric components satisfy

guv = Ny +02(r™%), a> % (159)
We shall now show that the energy E and the linear momentum P~/ are well defined
under the same assumption. The argument here follows [4]. Since we have shown
these quantities to be independent of the particular choice of such a coordinate system,
we may use coordinates such that the spatial coordinate lines (x’ = ¢!, i = 1,2, 3)
are orthogonal to the hypersurfaces x° = ¢?, that is we can set

goi = 0.
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(We have goog = —®2, gij = &ij.) We then find

Ffo = —¢', (160)
where
. /detg . . . B
¢ =— £ @™~ 578" 0 Gmn- (161)
Thus, the energy is given by
E= lim | ¢dS; (162)
r—>o0 S,—

(in agreement with the ADM expression). Also, we find

; . Jdetg . i
FPO = pf = =5 @ = 8 k). (163)
where
. detg _. j
= LU ik, — ey (164

and kjj = 5= % is the 2" fundamental form of the hypersurfaces x° = ¢°. Thus,

the linear momentum is given by
P/ = lim | p}dS; (165)

(in agreement with the ADM expression).
The hypotheses on ®, g;; and k;; corresponding to (159) are

D =1+02(r77%),
gij = Sij + 02(r_a)a (166)
1
kij =o01(r™ 7%, a> .
2
In the following, given a function f defined on a hypersurface x° = ¢, we shall
take f = ox(r~%) to mean that f is a C* function of the spatial coordinates and its
partial derivatives with respect to the spatial coordinates of order / are o(r~*!), for
alll =0,...,k. Moreover, if a compact interval [t1, f] of values of ¢ is considered,
uniformity of the limit as r — oo with respect to ¢ is implied. In particular, the
hypotheses (166) are to be meant in this sense.
We first show that under the hypotheses (166) the limit r — oo in (162) and (165)
exists. In fact we show a stronger result, namely that there exists a limit independent
of the exhaustion. That is, we do not assume that the exhaustion of X is by concentric
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coordinate balls. Consider then nested domains B, (i.e., B,+1 D B,) such that
U,, B» = X and suppose that the S, = 9B, are C'. We claim that

lim e dS; = E, (167)
n—>oo Sn

lim [ pidS; =P/ (168)
n—>o0 Sn

To show this recall that for the 4-dimensional spacetime manifold we have

1
0 1% = 1 R \/—detg + L*.

The analogous formula for the 3-dimensional manifold (X, g) is

_. 1 — _
0;1' = 1 R \/detg + L*,
where in fact
I =eé.

Also, we have

_ 1 .
L* == g™ (LT =TT,

mi* nj mn-= j
We now appeal to the constraint equation
R+ (trk)?> —|k*>=0
(the twice contracted Gauss equation) to conclude that, under the hypotheses (166),
R =o0,(r"72),

Also, we have B
L* = ol(r_z_zo‘).

Consider then two domains B and B’ with B’ O B such that B contains the coordinate
ball of radius R. Then we have

/ el ds; —/ el ds; =/ 9’ d3x
’ S B'\B

<C P22 g3y
B¢

<CR'"™% >0 asR — oo,

since o > % This establishes our claim in the case of E.
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The case of P/ is similar. Writing

. 1 _ .
0 py = —5 i {V/det& (§"kjm — 85 wh)s,
we see that
. 1 _ . . _ . .
9 pj = ~3 Vdetg {V; (kj — 8 trk) + I} (ky, — 8, trk)}.
We now appeal to the constraint equation
Vi (ki —8itrk) =0,
(the contracted Codazzi equation) to conclude that, under the hypotheses (166),
0; pj detg (k,"n — Sin trk)
= o(r_2 2y,

Thus the same argument applies.
We proceed to discuss conservation of the total energy-momentum. Consider first
the total energy. We have

E(t) — E(t) = hm / / —dS dt (169)
and from (161),
de! oGgimn. 0gmn
TG G, (Yo
ot oy Ci8mnt I\ o
where _
Gijmn — Vdgtg (gimgjn +gingj 2gljgmn)
Since 9z
gii
3g:2®hﬁ
we have

2 Gijmn aj (q)kmn) -2 Gijmn (Cbajkmn + (aj CI))kmn)
—— ——
o(r=27@)  o(r—272%)
Thus we obtain ;
de'

o = o(r=27%)
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hence )
r? o -0
at

uniformly as r — oo. Therefore we conclude that
E(t;) — E(t;) =0. (170)

Consider next the total linear momentum. We have

. . 5] api.
P/ () — P/ (1) = lim / / a—t’ dS;dt (171)
r—>00 f 8
and from (164)
opi 1 L oki Ak
—L = —— Jdetg {Dtrk (ki —8itrk) + —L —§! 172
ot y Vg vk (k) fr)+8z 7ot (172)

(Note that a—vgft‘g = dtrk /detg.) Appealing to the 2" variational formula

okij = = —
a—;j = V[qu) - (R,'j — 2kimkjm + k,’j trk),
and using the assumptions (166), we deduce that
o+
—a;] =o(r 279).
Using this we obtain
8p".
S —2—a\.
5, = o0
hence .
ap',
r? & — 0
at

uniformly as r — oco. Therefore we conclude that

Pl (t;) — P/ (t;) = 0. (173)

3.2.1 The maximal time function. Up to this point we have not made any particular
choice of time function and this arbitrariness is reflected in the fact that the lapse
function ® is not subject to any equation.

We now require the level sets X; of the time function ¢ to be maximal spacelike
hypersurfaces. That is, any compact perturbation of ¥, decreases its volume. Thus
¥, satisfies the maximal hypersurface equation

trk = 0. (174)
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In fact, for a spacetime which is asymptotically flat (in the sense above) and satisfying
a certain barrier condition, there exists a unique complete maximal hypersurface
asymptotic to a spacelike coordinate hyperplane at spatial infinity. This has been
established by R. Bartnic in [3].

Definition 42. A maximal time function is a time function # whose level sets are
maximal spacelike hypersurfaces which are complete and tend to parallel spacelike
coordinate hyperplanes at spatial infinity. Moreover, the associated lapse function @
is required to tend to 1 at spatial infinity.

Remark. We have one such function (up to an additive constant) for each choice
of family of parallel spacelike hyperplanes in the background Minkowski spacetime.
Two such families are related by the action of an element of the Lorentz group.

We now fix the family by requiring
Pl =0, (175)

that is, we require the total linear momentum to vanish. Then for any spacetime other
than Minkowski spacetime we obtain a unique time function ¢ (up to an additive
constant) the canonical maximal time function. This is a consequence of the fact that
any non-trivial spacetime has positive energy, which is the positive energy theorem,
to be discussed in the next section. The choice (175) corresponds to the center-of-
mass-frame in Newtonian mechanics.

Let us consider now the Einstein equations relative to a maximal time function,

trk = 0.

The constraint equations read
Codazzi:  V/ k;j =0, (176)
Gauss: R = |k]?. 177)

The evolution equations read

97
1 variation: % =20k, (178)
4 ki == = m

28¢ variation: 7 =V,;V;®d—(R;j —2 kimkj ) . (179)

Moreover, the trace of the 2" variation equations yields by virtue of the maximality
condition the lapse equation,

AD—|k|>®=0. (180)
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Choosing now the canonical maximal time function, we have

1 .
Pj = —— lim p} dSl =0

2 r—oo S,

with p; = k} This allows us to impose stronger fall-off on k;;. We thus introduce
the notion of a strongly asymptotically flat initial data set.

Definition 43. A strongly asymptotically flat initial data set is an initial data set
(M, g, k) such that:

1. M is Euclidean at infinity.

2. There exists a coordinate system in the neighbourhood of infinity in M (that
ison M \ X) in which the metric components satisfy

_ 2M _
g = (1420 ) 8y + 0207, a8y
3. In the same coordinate system we have
kij = 01(r™2). (182)
The total energy is then given by

E=4n M. (183)

3.2.2 Positivity of the energy. We shall now discuss the positive energy theorem of
Schoen and Yau.

Theorem 7 (Positive energy theorem, Schoen—Yau [26]).
1. Under the assumption
- 2M -
gij = (1 + T) 8ij + 02(r72). (184)

it holds that
M > 0. (185)

2. If also the remainder is O4(r—2), then
M=0 (186)

implies that g is the Euclidean metric.
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Here and in the following f = O (r~%) signifies that f is a C* function and its
partial derivatives of order / are O(r—4~%) foralll =0, ..., k.

Proof. The theorem concerns strongly asymptotically Euclidean 3-manifolds (M, g)
with non-negative scalar curvature R > 0. To simplify the notation, we drop the
overlines in the present section.

Proof of Part 1. M > 0. This consists of three steps.

Step 0: Given such g with M < 0, we can find another metric g close enough to g
so that also M < 0 and such that R > 0 everywhere.

Step 1: If M < 0, then barriers would exist for minimal surfaces which can be used
to construct a complete area-minimizing minimal surface.

Step 2: Using the 2" variation formula for area we show that the existence of the
minimal surface in Step 1 contradicts the fact that R > 0 everywhere.

Step 0. Under a conformal change of g,
g=0a'g (187)
the scalar curvature R of g is related to the scalar curvature R of g by
R=®%(RD—8AD). (188)

Here A is the Laplacian of the metric g. Let us choose a smooth positive function f
on M such that

f=0,0r"%).
We then wish to find ® such that

R=®*R+e¢f

where € is a positive constant. We shall show that this is possible for suitably small €.
Now, by (188), ® is subject to the equation

1
Ad=——¢cf®°.
8
Setting ® = 1 + W, this equation reads
1
Aqf=—§ef(1+\y)5.
The implicit function theorem applies if € is suitably small to give us the existence

of a solution W such that
U= 0,(er ™).
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In particular, ® = 1 + W is everywhere positive and
M =M + O(e) <0, (189)
if € is suitably small. In fact, we have M =M +2N , Where

1
N = lim (r¥) = —— / AW,
r—00 4 Jiz

Step 1. This is based on the following lemma.

Lemma. Let S be a C? minimal hypersurface (that is, a critical point for the area
functional), in an n-dimensional smooth Riemannian manifold (M, g) (dim S =
n — 1), which is compact with boundary. Let f be a C? function on M such that the
values A, for A € [Ag, 00), are non-critical and the corresponding level sets 3 have
positive mean curvature with respect to the unit normal pointing in the direction of
increase of f. Then f < Ao on 0S implies f < Agoon S.

Proof of the lemma. We consider the restriction f of f to the hypersurface S. If the
lemma is not true, then the subset U of S, where f > A¢ is non-empty, U is open;
f then attains a maximum A; > A¢ at a point pys € U. We have

(V) (pm) =0
and o
(V2 /) (pm) < 0.
Choosing a local frame field (E,;, a = 1,...,n — 1) for S in a neighbourhood of

pm in S, we write o B
VoV f for V2f . (Eg, Ep).
We have
VoV f = Ea(Eb f) = (VE,Eb)
= Eq(Ep f) — (IIVE, Ep) |
where IT is the orthogonal projection to S,
HVEaEb = VEaEb — g(N, VEaEb) N,
with N the unit normal to S. Moreover, we have
g(N, Vg, Ep) = —g(Vg,N, Ep)
= —Vab
with 6 the 2™ fundamental form of S. We thus arrive at the formula
VaVo f = VaVs f = 0 Nf (190)

onS.
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Next we take the trace of (190) with respect to the induced metric g, g, =
g(Eq, Ep), to obtain o
Af =gV f. (191)

recalling that tr & = 0 as S is a minimal hypersurface. At an interior maximum point
Pum, the Hessian matrix (V,Vy, f)(puy) is negative semi-definite. We thus have

(& f)(pm) = (@*°VaVy /)(pm) < 0. (192)

Consider, on the other hand, the level sets X, of f in M. The unit normal vector
field to X, N’, pointing in the direction of increase of f is

N — ol 3jf.
V£l

Now, since pyy is acritical pointof f, the tangent planes Ty, Sand Ty, X, coincide:

N'(pm) = N(pm).

Therefore, the induced metric is the same at pps. Let (E),a = 1,...,n — 1) be a
local frame field for X, in a neighbourhood of pjs coinciding at pys with the frame
field (Eq,a = 1,...,n — 1) for S. Then the 2" fundamental form of X, G;b, is
given in this frame field by

Glllb = g(VE(/JN/, El/))

7 o0 f '
= gij Eff Vk(g’l—wfl) E)

ViV f
vy S

The last term vanishes. We thus obtain

V(B By
a V7]

|V /1

_ kil
R By i

In particular, at pps we have E/ = E, hence

o (o) — Fa¥o. ) (om0
b PM= NG f o)

Therefore the following holds:

(& VaVp f)(pm) = w0 (pm) IV f(pm)] > 0. (193)

In view of equation (191), (193) contradicts (192). This establishes the lemma. [
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We now consider the circles C, with o a constant on the coordinate plane x3=0
in the neighbourhood of infinity on the manifold (M, g).

Co = {(x',x2,0): (xH? + (x?)? = 02).

We can find a surface of least area S, spanning C,. Taking a sequence o, 1 0o, and
we want to find barriers which will allow us to conclude that we can extract a conver-
gent subsequence and thus, passing to the limit, obtain a complete minimal surface S.

x3=h

-

— X =

Figure 11

We apply the lemma to the functions f = (x!)?+(x?)2and f = x3. Inthe first case
the level sets are the coordinate cylinders K, = {(x!, x2,x3) : (x1)?+(x?)? = 0%}
and in the second case the level sets are the coordinate planes x3 = ), the P, . For
K, the mean curvature is

1
—4+00™H>0
o

for sufficiently large o. For Pj, and P_j, where / is a positive constant, the mean

curvature is
—2Mh

5t o@r™3). (194)

If M < 0, this is also > 0, provided that / is taken suitably large. In fact, the x; and
X are coordinates on the planes Pj and we have

VaVp x> = -T2,

M
= 3 (¥"83 + x2843 — x3845) + O 7).
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Applying then the formula

yields (194). Let
Eop = {(xl,xz,x3) (Y2 + ()2 <oand—h < x3 < h}.

By virtue of the lemma, the surfaces S,,, are contained in £y, . We can then appeal to
interior regularity theory for minimal surfaces to obtain uniform interior C 3 estimates
and thus conclude that we can extract a subsequence Sy, converging uniformly on
compact domains to a complete C? area minimizing surface S. This completes the
proof of Step 1.

Proof of Step 2. The surface constructed in Step 1 leads to a contradiction when
considering the 2" variational formula for area. A variation of a complete surface S
is a 1-parameter family S; such that So = S. The family {S;} may not be a foliation.
Nevertheless, the same approach as for a foliation applies if we consider a smooth

mapping
h: (—€,e) xS —> M.

The curves
hp: (—€,€) > M

with i, (t) = h(t, p) may not be orthogonal to the surfaces
St = h(S)

with h,(p) = h(t, p). We can nevertheless construct an orthogonal family and thus
redefine the homotopy /. The following formulas hold relative to such a normalized

homotopy:
A :/dug,
N
dA

- =/Sftr0 dug.

This is the first variation of the area. Here f is the lapse function (which measures
the normal separation of the S;), defined by

0
— — fN
ot SN,

(195)

where N is the unit normal to S;. In fact the 1% variation equations

ag’ab
—— =26
9t f ab
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imply
a‘;# = fu6dug.
The second variation of the area is then
d?A datr6 af
— = tr0)? + -2 trf; dug. 196
= S e+ S dug (196)

In our case S is a minimal surface.

Definition 44. A minimal surface S is a surface for which the first variation of area
vanishes.

This is equivalent to

trf = 0. 197)
Then 5
d“A 8tr0
7 198
dt2 li=o / S = (198)
For a surface of least area one must have
d?A
— >
dt? li=
To obtain a suitable expression for a“ 9 we consider the 2" variation equations
96 m_ oS
e S Oim0" = ViV f — f RinNjN-
(Here, we have an arbitrary local frame (E;) for S, complemented with N.) We have
trf = gij 0; s
atré —im = jn 0Zmn i 89,']‘
=— 0;
ot e TE
; 00;
=-2160Y0; —L
f0760; 8" =5

g7 Rinjy =Ric(N,N) (= R;;N'N/).
Thus, taking the trace of the 2"¢ variation equations we obtain

atr O
ot

We now substitute for Ric(N, N) from the (twice contracted) Gauss equation (note
that Ru = Kgij, R = 2K, with K the Gauss curvature of S)

= —Af — f (18 + Ric(N, N)).

2K — (tr0)? + |6|> = R — 2Ric(N, N)
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to obtain -
tr _ 1 1 1

=—A K-~ z2__ 2——R).
= (k-5 w3

Substituting in (198) and taking into account the fact that tr 6 = 0 atz = 0 yields

d?A
dt?

- =/S {—f Af+f? (K—%lGlz—%R)} dig.

This must be > 0 (surface of least area). Integrating by parts in the first term, this
condition reads

1 —
| K dug = [ 50+ R £ dus — [ 19 Pdus 199
Let O, be the closure of the interior of the coordinate cylinder C,,

Qp ={(x",x%x%) : (x1)? + (x)? = p?}.

Setting
1 onS N Qp,
f= log(¢) onS N(Q
log p p? \ QP)’
0 onS N Q;z,
we have
S 2 o2
[ wre e = [ /P dug
S Sm(sz\Qp)

> a (1o (ﬁ) 2
fcf — Er rdr
P dr log p

B C /"2 dr
(logp)? J, r

e
~ logp

—0 asp— 0.
Taking then in (199) the limit p — oo yields

1
/ K dug z[ ~(101> + R) dugz > 0. (200)
s s 2

(Recall that by Step 0 we can assume that R > 0 everywhere.) It follows that S is
homeomorphic to a disk. (Recall the Cohn-Vossen inequality: [¢ K dug < 27 x(S),



68 3 Asymptotic flatness at spacelike infinity and conserved quantities

where x () is the Euler characteristic of S.) We then consider the disks D, = SN Q,
and apply the Gauss—Bonnet theorem with boundary:

Kdug:27t—/ K ds,

D, 0D,

where k is the geodesic curvature of 0D ,. The argument proceeds by showing that
lim sup / kds>2m.
p—>oo JaD,
Taking a sequence p; — 00, achieving the lim sup then yields

lim Kduz <0

i—00 D"i
in contradiction with (200). This establishes Part 1.

Proof of Part 2. M = 0 implies that g is flat. The proof has two steps.

Step 0: If M = 0 and R does not vanish identically, then there exists a metric g
in the conformal class of g such that M < 0 (N. O’Murchadha and J. York

[21D).
By Part 1 we can then conclude that M = 0 implies that R vanishes identically.
Proof of Step 0. Setting § = ®*g we solve the equation R = 0 for @ (see (188)):

—8A; @+ RP=RD° =0.

We solve this linear equation under the asymptotic condition & — 1 at infinity.
Since R > 0 the maximum principle applies and we obtain a function ® which is
everywhere positive (and less than or equal to 1). Since M = 0 the mass M of gis
contained in the function ®. In fact we have

M =2 lim r(®—1)
r—>00

1
——— | A®d
7 i Hg
1
——— | R®du, <o.
167 Ji e =

This proves Step 0.

Step 1: We are now given a metric g with R = 0 and M = 0. Consider the following
variation of g (which may not be admissible because it may not satisfy the condition
that the scalar curvature remains > 0):

g: = g +tRic(g),
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with ¢ € (—e, €) where € is to be chosen suitably small. In general,

d R(g:) _
dt lt=0
is given in terms of ¢ = %L:O by
R=V'V/g—Atrg—g;R”. (201)

(Here, V is the covariant derivative with respect to go = g.) The derivation of this
formula is the following. Since R = g"/ R;; we have

R=—g"g/" ¢mnRij +8" Rij.
———
~§ij RV

Moreover, ) ) )
R;j = le“i’;‘ -V, r»

mj>

where Fl';’ is the corresponding variation of the connection, the tensor field

. 1 . . .
It = 3 g"" (Vigjn + Vj&in — Vngij).
Substituting in Ri ; and taking the trace gij Ri ; the result (201) follows.

Consider now the formula for R in the case of the variation g;; = R;;. Then
trg = R = 0and V/g;; = V/R;; = 0 which is the twice contracted Bianchi
identity in the case R = 0. Then (201) reduces to

R = —|Ric|?.

Next, we correct the family g; by a suitable conformal change to obtain an admissible
family g,. In fact we require R, = 0. Thus with g, = ®%g, we stipulate (see (188))

1
Agt®t_§th)t:Ov CD,—)latoo.

Here the maximum principle does not apply as R; may not be > 0 but since Ry =
R = 0, if € is suitably small the problem can be solved by appealing to the implicit
function theorem and yields ®, > 0 everywhere. Now, since R;; = O(r~3) the
mass of g, is that of g, namely 0. Then the mass of g, is contained in the function
®; and is given by

1
M, =—— R; @, d . 202
t 167 i t Prdllg, ( )

Now for each t € (—¢,¢€), € suitably small, the metric g, defined in this way is
admissible, that is, it satisfies the hypotheses of the theorem. Thus the result of Part 1
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applies and we obtain M, > (0. Moreover, since MO = M = 0, a minimum is
achieved at 1 = 0. We thus have

dM,
dt
Since Ry = 0 and &y = 1, the formula (202) gives

t=0

dM 1 . 1
! =——— | Rdu; =—/ | Ric|? dugz.
dt lt=o0 167 Jig 167 Jig

The vanishing of this implies Ric(g) = 0 hence g is flat, M being 3-dimensional.
This establishes Part 2. And with this the whole proof is completed. O

3.3 Angular momentum

Let us recall (see (149), (151), (158)) that the asymptotic quantity associated to the
Killing field X of the background Minkowski metric is given by

Ox = rll)rgo G;}Oi das;. (203)

Sr

The part of G;}Oi which involves the first derivatives of X vanishes for the angular
momentum (but does not vanish for the center of mass integrals (see below)). Taking
X to be the generator of space rotations about the x¢ coordinate axis, we obtain the
angular momentum component

Jo=1lim [ eu; xP pi dS;, (204)
r—00 Sy ——
=:4},

where p} = k; — 8; trk, k; = §'™Mkp;, and €,p, is the fully antisymmetric 3-dimen-
sional symbol.

Let us now assume that we have a complete spacelike hypersurface # which is
strongly asymptotically flat. More precisely, let us assume that in an admissible chart
in the neighbourhood of infinity in # we have

oM
8ij = (1 + T) 5,']' + 02(}’_1_6), (205)
kij = O1(r™279) (206)

for some € > 0. This implies that P; = 0.
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3.3.1 Independence from exhaustion. Let U, D U; be domains in # with U D
Bpgr where By, is the coordinate ball of radius R. Then we have

/ Al dSi—[ Al dS; :/ 9 AL d3x.
8‘1,(2 a‘l,(] u2\ul

. . b
0i Ay = €aij P; + €apj X" 0i pj,

Writing

the first term is :
5 €aij (p]l - plj)
and the difference pj. — pij reads pj. — pij = (g™ — 8™k — (7™ — 8™ Vkmi

Thus, 5 €qij (P} — p}) = O(r~3¢). Inregard to the second term we express
;i ph = Vipi =T}, pl + T ppy

Since by the Codazzi constraint V; pj. = 0, we then obtain 0; pj". = O(r~%¢). Thus,
the second term is O(r~37¢) as well. Therefore,

’ / 81- AZ d3x
U2\ U,y

3.3.2 Conservation of angular momentum. Consider the following limit on each
level hypersurface of the canonical maximal time function:

2 8A£z(r§)
ot

<C / Fr37€d3x < C'R¢ > 0. (207)
U2\ U

= BL(§). (208)

lim r
r—>00

for each £ € S? C R? (r, £ are polar coordinates in R®). Then we have

0Jq
ot

— [ BL© & du 209)
£eS?

where di¢ is the standard measure on S? = {|§| = 1} C R3. Since trk = 0, A,
reduces to

A;:—— €anj X7 y/det g ki (210)

Taking account of the fact that

dydetg det — Jdetg Dk =0,

we then have )
A! 1 b _ 0k
a[a = _E €abj X detg _atj . (211)
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Substituting from (178), (179) this becomes

oAl 1 S0 o R
oo L cupy 2 AGLE (V70— R, @1

Now, only the part of VIV;® — E}CD which is O(r~3) contributes to the limit BL.
Under the assumptions (205), (206), the lapse equation (180) implies

N
d=1-——+0(r"'79),
r
where N = ;L [, A ®dpg = 2~ [, [k|*® dug. Hence

N .
Vid= =&+ 0,777,
r

and _ _
. (8. —3E'€;) N s
VIVi@ = —————— 4+ 0(77).
Also (205) implies
- M . . .
R = = (8 —3E'E) + 0(r>7°).

It follows that B (£) is given by

B (6) =~ cany £ (N = M) 6] 3'6))
= (N = M) e &,

which implies
B, (®) & =o0. (213)

In view of the formula (209) the conservation of angular momentum follows.

3.4 The center of mass integrals

The center of mass integrals C; correspond to the vector fields

.0
Xjy=x" —+1-— (214)
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which generate Lorentz boosts. We have (see (149), (160), (163))
Gy" = F% x/ +1 F% + K" (215)

o ] B _ . _
:—e’xf—i—tp}—kz{(l—d) ly/detg)Sj’-—i—(S}—Cb detg g) 3.

The center of mass integrals C; are then given by
C; = — lim G'dS; = lim / (' x/ —1 pi —q}) dS;. (216)
r—00 Sy r—o00 Sy
Remark. Note that
Jim, [ Py dSi =P
and P; = 0 by (206). Thus, (216) simplifies to
C; = lim (e x/ —q})dS;. (217)

We are going to present a sketch of the proof that the limit (217) exists for an exhaustion
by coordinate spheres.

Sketch of the proof. Given rp, > r; we express

/s (e' x7 —qj"-)dSi —/ (e' x/ —qj-)dSi

rp Srl

:/ 3; (¢' x) —q}) d’x
Br2\3r1 N—
=wj;

=/ {/SS 018 dps | 1 dr.

=:D(r1,r2)

The hypotheses (205) and (206) imply that

0 ()= £+ 077

where K is a quadratic expression in M, N, and thus depends only on 7. Since

/ §j dpg =0,
£eS2
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we then obtain

/ w; (rg) dug = o@r—379).
£eS?

It follows that

r2
|D(r1,12)| < C/ riTedr
.

1
<C'r{¢*—0, asr; — oo.

This proves that the limit (217) exists.

We now investigate the gauge invariance of the C;; that is, the invariance of the
C; under spatial gauge transformations. Recall that thus we are subjecting the metric
g to a diffeomorphism but we are not subjecting the background Minkowski structure
to any transformation. Moreover, we are only allowing transformations which do not
change the asymptotic form (205) and (206).

However, we do not expect the C; to be invariant under those transformations
which are asymptotic to non-trivial space translations at infinity. For, in Classical
Mechanics the center of mass integrals are affected by space translations. We thus
restrict ourselves to transformations which are asymptotic to the identity at infinity.
Such transformations are generated by vector fields ¥ whose components Y/ in an
admissible coordinate system in the neighbourhood of infinity satisfy

Yi = 03(7'_6).
The variations of ® and g;; are
P=2Lyd=Y 9, ®= 0,029, (218)
g =Ly8 =Y* 0k gij+ &k 0 Y* + gix 0, Y*
=0; Y/ +03; Y +0,(777°). (219)
N—
=0,(r~17¢)

We then obtain
R »
e =— (8" =680 0 Y+ 0, Y™+ O(r_3_€)
411 (220)
=7 O (O Y-8 Y5 + 0.

Furthermore we have

. 1 . ..
gj = 7 {—(/det@) & — (vdet2 V) } + 0(™7)
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and

(Vdetg) = o Y+ 0079,
(Vdetg g7y =8l o YE =0, Y/ =0, Y + 00>,

Therefore we obtain
. 1 . . .
q; = -5 C 8 0 YK —0; Y/ —9;Y)) + 0(r™279). (221)

The terms of order O(r~37¢) in (220) and O(r~27¢) in (221) do not contribute to C;.
Thus, one finds

. 1 . .
¢y = Jlim - / (O 0 Y —8; YF) x/
Sy

+25f. Y —0, Y/ -9, Y} dS,
= lim - / 3: {0k (O Y —9; YF)x/

+285 0 YA —0; Y/ —0; Y'} dPx.

Now 9; 0x (0 Y' — 0; Yk) =0and J;x/ = 81’ Therefore the integrant in the volume
integrals is

O Y7 —0;Y5) 20,0, YF— 9,0, Y/ =9, 9,Y' =0, (224)
which proves the gauge invariance of the C;.

Remark. In the expression for C; we can replace q; by é;

_ 1 = i ; = _jj
= Z{(1 —y/det g) §; + (8; — y/detg g)}, (225)
obtained by replacing ® by 1 in the expression for q]’

Proof of the remark. Under a variation §® of ® we have

§C; = lim -4 qj dsS;
r—>0o0 S
(226)
= _Z lim / (@~ 25’ z7)8 @ \/detg dS;.
r—>0o0

Now, with
N
d=——4+00"1°
r
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the following hold:
—2 i —u i 2M i —1—€
8 — = 2 — &+ —148 +0( ),
SN
8 =——+ O(r_l_e).
r
Consequently,
=:C
1 ON (N + M) C
8C; = = lim ———dS; =~ £ dug =0
2 r—oo S, r 2 £eS,

which proves the above remark.

We have thus reached the conclusion that the

C; = lim (e x/ —q}) dS;

r—oo Jo

are invariant under gauge transformations which are asymptotic to the identity at
infinity. They correspond in Classical Mechanics to the components of the moment
of a mass distribution about a given origin, the product of the total mass times the
components of the position vector of the center of mass relative to that origin.

3.4.1 Conservation of center of mass integrals. Consider

dC;
dt

— [0 ®du. @27)
£es?

where B
D)) = lim s (%i[xj aqt«f)(rs).

From (225) we obtain

ag! 1 95! 1 N

(Recall that for a maximal time function we have det g = 0.) Similarly,
de’ =1 sin zjm _ zij -mn > —4—¢
- = detg — (&' g/" =gV §"") 0; (0r mn) +O(r™"7°)
ot 4 ——

=28k p
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and

3j (@ kmn) = V; (@ kmn) + Tk @ kin + Th, @ kg
= V; (® kmn) + O ™)
=@V kn + 0F*7°).

Hence we obtain

de’ 1 - i 4
=3 Vdetg @ (V; kY — g7 Vitwk) + O(r—*7°)
= 0@~ %),
the first term vanishing by virtue of the Codazzi equations.
The above imply that
del . 3G}
D; (§) = lim r?(—x/ -2 = 0. 228
j© = tm 2 (x-S ) o) 28)
We conclude that 5C
J
— =0. 229
37 (229)

We have thus established the conservation of the center of mass integrals.



4 The global stability of Minkowski spacetime

In this chapter we shall first state the problem of the global stability of Minkowski
spacetime. We shall then treat simpler analogous problems arising in field theories in
a given spacetime. Finally we shall conclude the volume with a sketch of the proof
of the global stability theorem of Minkowski spacetime.

4.1 Statement of the problem

The Minkowski spacetime is the simplest solution of the Einstein equations. This is
the spacetime manifold of Special Relativity,

(R*,n), where Nuv = diag(—1, 1, 1, 1) in rectangular coordinates.

This is geodesically complete: Every geodesic can be continued ad infinitum in affine
parameter.

The function x" corresponding to any rectangular coordinate system is a canonical
maximal time function. The level sets ¥, (x° = ¢) are maximal spacelike hyper-
surfaces. Here they happen to be totally geodesic (not only istrk = Obutk;; =0
identically). They are also globally parallel, that is the lapse function is & = 1
identically. (Recall the equation A® — |k|>?® = 0.)

0

Cauchy problem with initial data on a complete asymptotically flat maximal
hypersurface. Consider initial data sets (Hg, go, ko) with #, diffeomorphic to R>
and tr kg = 0, which are strongly asymptotically flat. That is, there exists a coordinate
system in the neighbourhood of infinity in which the metric coefficients obey

oM
%o, = (1 + _)3,, 40, (1), €0, (230)
r
and we have
ko = 01 (r™27°). (231)

Note that the total linear momentum of such an initial data set vanishes: P’ = 0.
The initial data set is, moreover, required to satisfy the constraint equations

Codazzi equations: A kij =0, (232)
Gauss equation: R = |k|. (233)
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Our hypotheses are that we are given such an initial data set. Now the problem is
the following:

Problem. Supplement these hypotheses by a suitable smallness condition and show
that we can then construct a geodesically complete solution of the Einstein equations,
tending to the Minkowski spacetime along any geodesic.

4.1.1 Field theories in a given spacetime. Consider Lagrangians of the form
L=L"du,,

where L™* is a scalar function, constructed out of the fields, their exterior or more
generally covariant derivatives, the metric and connection coefficients. We give the
following three examples.

Example 1 (Scalar field ®). Let

o=g"d, P9, P,
L* = L* (0).

Here only exterior derivatives are involved. So, the Lagrangian does not depend on
the connection coefficients.

Example 2 (Electromagnetic field F),,). Here the spacetime manifold is 4-dimen-
sional and we have

F=dA (FlL\I:a,U,AV_BVAM)7
@=F" Fui =g g iy,

1
,B :FMV *Fl“;; *Fy,v = _FKA €Ay,

2
L*=L" (a, B).

Also here, only exterior derivatives are involved and the Lagrangian does not depend
on the connection coefficients.

Example 3 (Problem in Riemannian Geometry). Let (M, g) be a compact Riemann-
ian manifold. Find a vector field U generating an approximate isometry of (M, g).
The solution is the following: Consider

T = éﬁug,
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the deformation tensor corresponding to U. This measures the deviation of the 1-pa-
rameter group of diffeomorphisms generated by U from a group of isometries. We

then minimize
2
[ 1P i
M

[ 0P dug =1
M

The Euler-Lagrange equation is the eigenvalue problem

under the constraint

divr + AU =0,
that is
V; 77 + AU =0,

where A is the Lagrange multiplier or eigenvalue. For the analogous problem on a
spacetime manifold

L* dpg = 7"’ myy dpg,
T = g g e,
Ty = Luguw =V, Uy +V, Uy,
U, =guw U".

Here L* depends on the covariant derivatives of U, therefore the connection coeffi-
cients corresponding to g.

This problem has a direct application to a problem in General Relativity. The
problem in General Relativity is that of preservation of symmetry. Namely, to show
that if the initial conditions possess a continuous isometry group, then the solution
also possesses the same isometry group. The difficulty in General Relativity, which
is absent for the analogous problem in the case of a theory in a given spacetime, is to
extend the action of the group from the initial hypersurface to the spacetime manifold.
More precisely, the problem can be formulated as follows. Given an initial data set
(¥, g, k) for the Einstein equations for which there exists a vector field U on # such
that £5¢ = L5k = 0, the problem is to extend U to a vector field U defined on the
maximal development (M, g) so that U is a Killing field of g: £y g = 0. It turns
out that a suitable way to define U is to require that it satisfies the Euler-Lagrange
equation corresponding to the above Lagrangian, namely the equation

divr = 0.

For a field theory in a given spacetime, the Lagrangian not depending on any other
underlying structure on the manifold other than the metric and the corresponding



4.1 Statement of the problem 81

connection coefficients, we can define the gravitational stress T"' by considering
the response of the action

A[U]:[uLd/Lg

to variations of the underlying metric g. We define T#" by the condition that

. 1 )
A= ) /‘u T gy dpg

for all variations g, with support in U, for any domain U with compact closure in
M . By definition TH*" is symmetric. Thus

TV =TH,

Proposition 5. By virtue of the Euler—Lagrange equations for the matter fields, T""
is conserved. That is
VvV, T* = 0.

Proof. Let us denote by ® the collection of matter fields. Consider any smooth
vector field X with compact support in U. This generates a 1-parameter group { f;}
of diffeomorphisms of U onto itself leaving the action invariant. That is, if we denote
the action by #[g, ®; U], then, replacing g by g; = f,*g and ® by &, = f*®
(schematically; whatever the action of f; on @ is; for example, if @ is a vector field,
the action is f_;«, the push-forward by f_, = f;~!) we have

A [gr, Pr; U] = A [g, D; U]
So A(t) := A[g:, Ps; U] is independent of ¢. We thus have
oo i
dt

E is the variation of 4 with respect to ®, which vanishes by virtue of the Euler—
Lagrange equations. Moreover, one has

1 .
= —=TH ¢ E®idu, =0.
=0 [u % ) v + Heg

g=%Lxg &=V X, +V, X,
Thus we find

1
oz_/ ~TH (Vu Xy + YV, X,0) dpig
u 2
=_/ TH V, X, djug
Uu

- [u(vv TH") X, dyig.

As this holds for arbitrary smooth X of compact support in U, the result follows.
O
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Let us write down the gravitational stress corresponding to the three examples
above.

Example 1 (Scalar field). We have

do
agj - BM ) 3v (I)
Then JL*
THY =2 ot ®9” d— L* gh.
do

Example 2 (Electromagnetic field). We have

do
aghv =2 Fuc Bf
and
B 1 . o w1
Ggi =3 B guv, inview of the identity F, *F,* = 1 B guv-

(It is straightforward to check this identity in an arbitrary orthonormal frame.) The
gravitational stress is then given by

aL*

T =4
do

pepes (210 g

Example 3. In this case,
Under a variation of g,

We then have
. 1
fT;w = onguv =U" VK g,uv +g/<v VM U* +gKM Vu UK,
and, integrating by parts,
/‘un”" T ditg = /‘u{ Ve U 7"y + 7"V UH + 7"V, UV } g0 dig.

We thus find that

TH =47k 7" — 7% 75 g"Y + 4 { Ve (U ") =7V V, UF — 7" V, U" }.
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Let us now consider the conformal properties.

Proposition 6. Ifthe action in a domain U is invariant under conformal transforma-
tions of the metric which differ from the identity in a subdomain with compact closure
in U, then the gravitational stress is trace-free.

For, with
g=9%g,
where 2 differs from 1 in a domain with compact closure in U, let
A g Ul = A g U
Then with
g=Ag, wheredl=2QQ

has compact support in U, we have
A =0.

Since
1

A= 2 [u T &uv dpug,

this reads

1
O=——/Aterug.
2 Ju

As this holds for an arbitrary function A with compact support in U, it follows that
trT = 0.

Example (Maxwell Lagrangian for electromagnetic theory in a vacuum, L* = 1 ).

— 1
Under the transformation g — Q2g we have
Fuv = Fuy, *Fuv " Fuy,
L*+— Q4 L* L=L*ug+ L*dug =L,
the spacetime manifold being 4-dimensional. Thus the action is conformally invariant.
Then
1
TH = Fl' F* — 2 F** Fe g
and indeed we have
tr7 =0.
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Now let X be a vector field on M. Consider the vector field
Pl =—-TH X",
We have
V.P=—V,THX"-T;Vv, X

1
=-3 T (V, Xy + V, X)),

by virtue of the symmetry of 7#". That is,

1
V-P= _E T TTuv,

where m = £x g. Moreover, if T#" is trace-free, we can replace 7, by its trace-free
part 77, in the above formula. In the case that dim M = 4 this trace-free part is

R 1
Ty = Ty — Z gy tr .

We conclude that — in general — if X generates a 1-parameter group of isometries of
(M, g) (that is, X is a Killing field), then P is divergence-free:

V.P=0.

If A is conformally invariant, the same holds if X generates a 1-parameter group of
conformal isometries of (M, g) (that is, X is a conformal Killing field). Let us recall
here that a diffeomorphism [ of M is called an isometry if f*g = g. Itis called a
conformal isometry if there exists a positive function © such that f*g = Q2g.

In the case that the canonical stress is related to the gravitational stress by

Ty = THrg,, (234)

the conservation of P is equivalent to Noether’s theorem, since P then coincides with
the Noether current.
The divergence theorem gives an integral conservation law corresponding to the
differential law
V.-P=0.

We consider the dual 3-form *P, writing
"Papy = P" €uapy- (235)

Then it holds that
V-P=0 << d*P =0. (236)
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That is, P being divergence-free is equivalent to *P being closed.
Let H and H, be homologous hypersurfacesin M. If H; and H, have boundary,
then 0H; = dH,. We can then apply the divergence theorem to the domain bounded

by H; and H; to obtain
/ P — / “p
H> Hy

We can also apply the theorem to two complete Cauchy hypersurfaces H; and H as
in Figure 12.

H,

H,
Figure 12

If we can show that the lateral contribution tends to 0, we again obtain the conservation

law
/ “p =f P
H> H,

Otherwise, we can take the lateral hypersurface to be an incoming null hypersurface
as in Figure 13, in which case its contribution will be non-negative by virtue of the
physical requirement which follows. We then obtain the inequality

/ *Pg/ *P.
H> Hy

H;

H,

Figure 13

The following physical requirement is introduced.

Postulate. The energy-momentum tensor (gravitational stress) satisfies the following
positivity condition. Let 7'(, ) be the corresponding quadratic form in the tangent
space at each point. Then we have

T(X,Y)>0 (237)
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whenever X, Y are future-directed timelike vectors at a point.

Strong version. We have equality only if the field is trivial at that point.

Remark. The postulate implies that 7(X, Y) > 0 whenever X, Y are future-directed
non-spacelike vectors at a point.

If now # is a Cauchy hypersurface with unit future-directed timelike normal N,

then
f *p =/ PN d,u,g—, :[ T(X,N) dﬂg, (238)
H H H

where PV is the N-component of P. That is, complementing N = E, with a frame
(E1, E», E3) for J at a point to a frame for M at that point, we expand:

3
P=PNN+>" PE,. (239)

i=1
Then, since g(N, N) = —1, we have
PN =_g(N,P)=T (X,N). (240)

The postulate then implies that the integral (238) is > 0 whenever X is non-spacelike
future-directed.

We shall now give an example of a case where the above theory, which is based on
the gravitational stress, does not apply, nevertheless Noether’s theorem still applies.

Example (Electromagnetic theory in a medium). Consider a medium at rest in some
Lorentz frame, the properties of which are invariant under the corresponding time
translations. That is, there is a parallel timelike future-directed unit vector field u
which is the material 4-velocity, and the material properties are invariant under the
group generated by u. Then there are rectangular coordinates (x°, x!, x2, x3) such
that
U= 70 x°=1)
and
L=L(x' E,B;i=1223),

where
E'=F%  F;=e€j B*

("fFOi = _—Bi). As usual, F = dA, or, in components, Fy, = 9,4, —0d,A,. The
E' and B’ are the components of the electric and magnetic field respectively. The
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corresponding displacements are defined by

oL

COET
oL

~ 0BT

D' =

i

87

The Euler-Lagrange equations are Maxwell’s equations (in the absence of charges

and currents):

V-D =0,
oD

VxH—-—=0.
ot

We also have the condition d F = 0 which reads

V-B =0,
0B
VxE+ — =0.
dt

The simplest case is that of a homogeneous and isotropic medium.

Homogeneous medium. L is invariant under space translations:
oL
oxi

thus
L=L(E B :i=1273).

Isotropic medium. L is invariant under space rotations.

If the medium is homogeneous and isotropic, then we have

L=L(|EP? |B? E-B).

(241)

(242)

(243)

Noting that« = F*VF,,, = 2(—|E|*> + |B|*) and B = F*" *F,, = 4E - B, we
see that even in this case the Lagrangian is more general than that of Example 2. This
is due to the fact that the vector field u is an additional structure on M, besides the

metric g.

Nevertheless, Noether’s theorem still applies to the general medium above. The

invariance under time translations gives rise to the conservation of energy:

& =/ ed3x,
)y

(244)
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where ¢ = E - D + L is the energy density and X, is the hyperplane x° = ¢. In fact,
we have the differential conservation law

ad
¥ iv.f=o, (245)
ot
where f is the energy flux,
f=ExH, (246)
the vector field 3
_— .V 247
€30 +f (247)

being the Noether current corresponding to time translations.

We shall confine ourselves in the following to geometric Lagrangians. Such a
Lagrangian possesses the symmetries of the metric, therefore the pullback by an
isometry of a solution of the Euler—Lagrange equations corresponding to a given
metric is also a solution of the same equations. In the case that the Euler—Lagrange
equations are linear, the difference of two solutions is also a solution. It follows that
the Lie derivative of a solution with respect to a vector field generating a 1-parameter
group of isometries is also, in the linear case, a solution, being the limit of a difference
quotient. Moreover, if the action is conformally invariant, the same applies to the
case of a vector field generating a 1-parameter group of conformal isometries.

Given a field W, consider the derived fields

U, =Ly, ...&Ly, ¥ (248)

withiy, ..., i, ={1,...,m},and {Y1, ..., Y, } asetof generators of the m parameter
subgroup of the isometry (or conformal isometry) group of g (Killing or conformal
Killing vector fields of g). The construction of the previous paragraph gives a pos-
itive conserved quantity associated to W, and to each vector field X generating a
1-parameter subgroup of the isometry (or conformal isometry) group of g which is,
moreover, non-spacelike and future-directed. If we have enough positive conserved
quantities of this type, then Sobolev inequalities imply the uniform decay of solutions.

In the non-linear case the Lie derivative with respect to a Killing vector field
(or conformal Killing vector field) is no longer a solution of the original Euler—
Lagrange equations but it is a solution of the equations of variation, namely the
Euler-Lagrange equations corresponding to the linearized Lagrangian about the given
solution. The underlying structure on which this linearized Lagrangian depends is
not only the metric but also the background solution. Thus the construction which
we have discussed will not yield a conserved quantity unless the background solution
is invariant under the 1-parameter group in question. In general, we will have error
terms which involve the Lie derivative of the background solution with respect to the
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corresponding vector field. The difference of the quantity corresponding to a spacelike
or null hypersurface from the same quantity corresponding to the initial hypersurface
will be the integral of the error terms over the spacetime domain bounded by these
two hypersurfaces.

The aim in the non-linear case is then to achieve closure: obtain enough positive
quantities such that the error integrals can be bounded in terms of the quantities
themselves. Once closure is achieved the global existence theorem for small initial
data will follow by a continuity argument.

We now consider in more detail the conformal group of Minkowski spacetime.

Conformal group of Minkowski spacetime. This group consists of:

1. Spacetime translations. These form an Abelian group. They are generated by
the vector fields (rectangular coordinates)

d
M_ax_ﬂ’ M—O,1,2,3, (249)

of degree —1. T}, generates translations along the p-th coordinate axis.
2. Spacetime rotations (Lorentz transformations). These constitute the Lorentz

group SO(3, 1). They are generated by the vector fields

ad 0
Q““:x”“ax_v_x"&c_ﬂ’ w,v=0,1,2,3, p<v, (250)

of degree 0. Here
Xp = NuaX®.
€2, generates rotations in the y, v-coordinate plane.

3. Scale transformations (x — ax, a > 0). They are generated by the vector
field 3

S =xt — 251
X (251)

of degree 0, which commutes with the spacetime rotations.

4. Inverted spacetime translations. These also form an Abelian group. They are
generated by the vector fields

Ky=-2x,S4x.x) Ty, p=0,123, (252)

of degree 1. Here

(x,x) = ngp x* xB.

The K|, are the generators of the 1-parameter groups

IP,I, (253)
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where P, is a translation along the p-coordinate axis
P, x = O xP 4 XY,

and [ is the inversion, a discrete conformal isometry of Minkowski spacetime,
defined below.

The inversion I is defined by

- X

Tifx = 2o ((00) = muxy"). (254)
Note that

(X, X)(x,x) = 1.
The inverse is
Il x> %= (xxx). (255)
Thus
I™'=1 or Iol =id.

We have

axh SE 2FMF,
ke (%x) (%2

The pullback by I of the Minkowski metric 1 then reads

" . ax* dxV
v Ylaﬂ) (x) = 8)7" 8)73 Nuv (x)
= Q7% (X) - Mg,
where
QX)) = —(x,%).
Thus we have
I*n=Q 2, (256)

that is, 7 is a conformal isometry of 7.
We shall restrict the inversion mapping to I *(0) in the x-coordinates. (I (0) is
the chronological future of the origin.) Then (x, x), (¥,X) < 0. So, 2 > 0.

Proposition 7. The inversion maps I (0) (in x) to I ~(0) (in X). Infact, the inversion
maps light cones onto light cones.
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X-coordinates

x-coordinates

Figure 14
Proof. The light cone with vertex ¢ is given by
(x—c, x—c)=0.
Then we have
(X—¢, Xx—¢)= (%, X)—2(x, ¢) + (¢, 0)
1 (x,c) + 1
() T (nx)(eo) | (cio)

_ (x—c,x—0)
N (x,x)(c,c)

This proves the proposition. O

=0.

In particular, future light cones are mapped onto future light cones and past light
cones onto past light cones.

Remark. The entire causal future of a point ¢ € I+ (0) is mapped onto a bounded
region in I ~(0).

Xx-coordinates

x-coordinates

Figure 15

The infinity in 7 7 (0) (in x) is mapped onto 9/ ~(0) (in X). The cone 91 ~(0)\0 is
the future null infinity denoted by 4, a concept introduced by R. Penrose (see [24]),
and the origin 0 is the future timelike infinity. Any null geodesic in x is mapped onto
a null geodesic in X with a future end-point on 4. Any timelike geodesic in x is
mapped onto a timelike curve in X ending at 0.
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hyperboloid plane

X-coordinates

x-coordinates

o

Figure 16
The inverse image of a spacelike hyperplane P,
{ = —k, k apositive constant
(F=3%F= X)),
is a spacelike hyperboloid H:

f= oy : 2+ 2
= %k 2% g
(t=x° r=/37_,(x))?)

This is a hyperboloid through x® =  on the x-axis, which is asymptotic to 81 *(c),
where c is the point x0 = ﬁ on the x° axis. This hyperboloid is intrinsically a space
of constant negative curvature —(2k)?.

We shall consider examples where the initial data have compact support as well
as an example where the initial data have non-compact support.

" x-coordinates X-coordinates:

Figure 17
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Given initial data of compact support, let B be the smallest closed ball on the initial
hyperplane containing the support of the data. We choose the x°-axis to be the straight
line in Minkowski space orthogonal to the initial hyperplane through the center of B.

Let O’ be the point on the x%-axis whose future light cone intersects the initial
hyperplane at 9B. We then translate the origin of the (rectangular) spacetime coor-
dinates to a point O on the x°-axis which lies properly to the past of the point O’
and we perform the inversion mapping relative to this new origin. We define the
positive constant k so that % is equal to the interval O O’ and consider the hyperplane
P : i = —k in the X-space and the corresponding hyperboloid H in the x-space. H
passes through the point O’.

We suppose that our system of equations is derived from a Lagrangian and that it
admits a trivial global solution, at which it is regularly hyperbolic, with characteristic
cones coinciding with the light cones of the underlying Minkowski spacetime.

Then, if the initial data is sufficiently close to the trivial data, a solution will exist
in the closed spacetime slab (in the original x-space) bounded in the future by the
initial hyperplane and in the past by the parallel hyperplane through O’. Moreover,
by the domain of dependence theorem, the solution is trivial outside the union of the
causal future and causal past of B, in particular in the non-compact portion of H
lying to the future of the initial hyperplane.

We shall investigate below the conditions under which the Lagrangian transforms
under the inversion map into a regular Lagrangian in the X-space. The corresponding
system of Euler—Lagrange equations will then be a regular system in the X-space
equivalent to the original system.

We can then consider the Cauchy problem in the X-space with initial data on the
hyperplane P coming through the inversion mapping from the induced data on H.
This initial data is trivial in a neighborhood of the intersection P N J T, therefore
extends trivially on P outside this intersection. If the initial data on P is sufficiently
close to trivial, which is the case if we require the original data (in x-space) to be
suitably close to trivial, then the solution of the transformed system in X-space will
exist in the entire closed slab bounded in the past by P and in the future by the parallel
hyperplane through the origin. Transforming then the solution back to the original
x-space, we obtain a global solution for the given initial data. In this way a global
existence theorem for small initial data is proven. This approach was first generally
expounded in [10].

Setting

g=1"n,
the metric g, given by
g=Q%. (257)

coincides, according to (256), with the Minkowski metric 1:

g=n.
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Note that = 0 on 3/~ (0) = 4T U 0 in X-space, which corresponds to infinity in
the x-space. In the case of a scalar field ®, we also set

d=Q ! (258)
Then we have

o=g"9,®9, P
=Q2g" 3, (QD)d, (L D)
=Q* 3" (0, ®+ D0, logQ) (3, D+ & 3, log Q).

X-coordinates

Figure 18
Consider the Lagrangian
L=odug.

The corresponding Euler—Lagrange equation is the linear wave equation for ® in the
metric g:
O =0.

Since
d/'Lg = 9_4 d/Lg?

we then have
L=3g" 9, ®+®d,logQ) (8, D+ D9, log Q) dug
=G +23" P I ® 9, log Q2 + " D2 0, 1og Q2 9, log Q) dug

where

Now

28" @3, d,logQ =3, (P?) g" 3, logQ
= 6# (@2 " 9, log Q) — B2 Olog Q.
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Consider the vector field
VE =% g1, log Q. (259)

Then y
Vi VH*du F: (260)

is anull Lagrangian: we can subtract it from L without affecting the Euler-Lagrange
equations. After this subtraction the Lagrangian becomes

L=1{6+®*(-OlogQ + " 3, logQ 3, log Q)} djuz. (261)

Here 3 .
—OlogQ + g" 9,logQdylogQ =Q0OQ ! =0. (262)

For,

Aot =g ( 1 )—0
“T e TG/ T
Therefore, we obtain )
L=cdug.

Thus, the Euler—Lagrange equation is equivalent to the linear wave equation for @ in
the metric g:
Oé =0.

Example 1 (Non-linear wave equation in Minkowski spacetime). Consider now a
general Lagrangian of the form

L*=L"(0) (L=L"dug).
The corresponding Euler-Lagrange equation is the non-linear wave equation

dL*
V. (G(0)d"P) =0 where G = o (263)
o

By subtraction of an appropriate constant from L* and multiplication by another such
constant we arrive at L* of the form

L*(0) = 0 + 02F(0),

where F is a smooth function in a neighbourhood of 0. The contribution to L of the
non-linear term in L* is

07 F(0) dug = (3" 0, (2 ) 3, (R B))>F(Q7 g™ 0, (Q ) 0, (R D)) dpez
=:Ndug.
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The total Lagrangian is thus equivalent to
(6 + N)dug,
where N is regular at 2 = 0. In fact, we have
Nlg=o = (8" 9, Q 8, Q)2 - > F (0) =0
because the hypersurface Q@ = 0, i.e. 47 is null:

g"v9,20,2 =0 along the hypersurface Q = 0.
A particular example of the above kind is the following.

Example (Minimal timelike surfaces in 5-dimensional Minkowski spacetime). Con-
sider the Minkowski metric on R>:

3
—(dx°)? + ) (dx')? + (dx*). (264)
i=1
Then an arbitrary graph of x* over the 4-dimensional Minkowski spacetime is of the
form
x*=0 (xO, x!, x2, x3).
The area element of such a graph is

V14 o0dx,

and the equation of minimal surfaces is the Euler-Lagrange equation corresponding
to this Lagrangian.

Example 2 (Non-linear electrodynamics in Minkowski spacetime). Let

o= F" F,,. p=F"F\,

and
L=L"(x, B)dug. (265)
We stipulate that under a conformal transformation g — g = Q2g, the 2-form
F=)" Fudx" ndx (266)
n<v

remains unchanged. Thus, we have

(X:g;ucgv/l FK)L FMV=Q4 gMKng FKA F;w

=

=Q*a.



4.1 Statement of the problem 97

Expressing
1 1
A A
F;Iv = EFK €Ay = ngpg UFpUEK)Lp,v,
and taking into account the fact that €, 3, , the volume form of g, is related to €, .,
the volume form of g, by
ExApy = Q™ g/c/luv,

we see that {
* = )L *
F;w 2ng ‘ Fpa Exduy = Fp,v‘

Therefore,
B = g"* g"* Fey Fy,
_ 94 Sk ~vA Fo, Fjv
=Q*B.
Subtracting from L* an appropriate constant we can bring L* to the form
L*=aG(a,p)+ B H (a,B),
where G and H are smooth functions in a neighbourhood of (0, 0). Thus,
={a G (.p)+ B H (a. B)}dpg.
Since djug = Q7 *djugz, we then have
={a G (%, Q*B) + B H (Q*a, Q*B)} du;.
This is regular at 2 = 0. In fact,
Llg=o = {& G (0,0) + B H (0,0)} dps.
For a general electromagnetic Lagrangian, the displacement G*" is defined by

aL*
OF

G = (267)

(Note: In taking the partial derivative with respect to Fy,,, the equality F,,, = —Fj,
is to be taken into account. Thus, lim;_o t Y {L*(F +1F)—L*(F)} = ; B%TLM F =)
So, for the Lagrangian giving rise to the linear Maxwell equations,

1

L* = —q,
4

G = F.
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In general, in terms of a splitting into time and space (as given by the choice of a time
coordinate x°):

FO% = Ei is the electric field,

Fij = €iji B* s the magnetic field
(F*%" = —B*, Fr= €k EX), and we have

o =-2|E|*+2|B|*>, B=2E-B.

Then with
; aL*
4
. oL*
1
the displacement reads:
G% = D! electric displacement,
Gij = €k H k magnetic displacement
(G*% = —_H¥, G} = €k D¥). Also, setting
Yy =G" Guy, 8§=G" Gypy (270)
we have
y=-=2|D?+2/H|?>, §=2D-H.
Let us consider the mapping
F—G (271)
We have
do _ 4, ap _ 4 e,
BFM aFuv
hence
aL* oL*
G* =4 " F“"’+4WF*‘“’. (272)

(Note that F;; = —Fy,y.) It follows that the mapping

(a. p) = (v. &) (273)
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oL\ aLr? , OL* oL
V= (8a)_(8,3) «t+25 P

is given by

(274)
g _p oLt oLt ol (oL 2 (aL*\? p
=— o — .
da 0P do ap
The Maxwell equations
dF=0 (F=dA4) (275)
take the form
V-B=0, (276)
B
VxE+ — =0. 277)
ot
The remaining Maxwell equations are the Euler-Lagrange equations
d G* =0. (278)
These take the form
V-D =0, (279)
aD
VxH—Ezo. (280)

The initial conditions consist of the specification of B and D at t = 0 subject to the
constraint equations

V-B =0, (281)
V-D=0. (282)

Initial data (Bg, Do) which are C*° and of compact support can readily be constructed
by taking curls of C*° vector fields of compact support.

Example 3 (Gauge theory of a complex line bundle over Minkowski spacetime). We
have a complex line bundle over Minkowski spacetime, equipped with a Hermitian
metric. The bundle is topologically trivial, being diffeomorphic to the product R* x C.
Let us choose an orthonormal basis section o, that is |o| = 1. Here | - | is the norm
corresponding to the Hermitian inner product on each complex line fibre. As each
fibre has only one complex dimension, only the condition || = 1 has to be fulfilled.
The imaginary line being the Lie algebra of U(1), one has connection coefficients
iA,, defined by the covariant derivative

D,o =iAyo0.
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The wave function is a section s of the complex line bundle,
s = do,
where @ is a complex-valued function in Minkowski spacetime. We have
|s| = [®],
where |®(x)| is the absolute value of the complex number ®(x). We then find
D,s= (D, ) o,

where
D,®=0,P+i A,

The Lagrangian of the theory reads

L=L"dug
with
* 1 Y3 A 4 1 y7aY;
L* =2 Dy @DF®+ 2 |®f + o F Fpy. (283)

Here, F = dA, thatis F},,, = 0, A, — 0, Ay, i FF being the curvature of the bundle.
The 1-form A is identified with the electromagnetic potential and the 2-form F with
the electromagnetic field. The theory describes a charged scalar field in interaction
with the electromagnetic field. The Euler—Lagrange equations are

V, F¥ = J* = Im(® D" ®),

) (284)
D" D, ® = A |P|” D.
Here, J# is the electric current density. Under change of basis section
o+ el o,
we have
> e D,
(285)

Ay A+ 0, .

The last pair of transformations are the gauge transformations.

Proposition 8. The equivalence class of L is conformally invariant.
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Proof. The last term in (283) is

1
Zadﬂg

which we have shown to be conformally invariant, being equal to

1.
Zadug.

The middle term in (283) is also conformally invariant, being equal to
1 ~ ~ -
1 |®* dug; @ =Q7'o.
The first term is %ad Mg, Where now
o=g¢g"D,®D,
= Q% g" D, () D,(QD)
=Q* g (D ®+ @3, logQ) (D,® + D 3, log Q)
=Q*G +V, VA,
Vi = |90, log Q

(see (262)). Therefore,

1 . .
—~ o0 dug isequivalent to

3 0 dug

N =

and the proposition is proven. O

The initial conditions consist of the specification of ®, Dy®, E, B att = 0.
These are subject to the constraint equations

V.-B =0,

286
VeE_p (286)

where .
p=J%=Im(® D° ®)

is the electric charge density. Here we can take all the data except E to have compact
support. Writing
E=U+Vh,

where U is a C* compactly supported divergence-free vector field, V - U = 0, the
function & must satisty Ah = p. Therefore / is a harmonic function outside the ball
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of support of the rest of the initial data. Outside the future of this ball in Minkowski
spacetime we have

B =0, (287)
E =V h, independent of ¢.

For, (287) is a solution of (284). By the domain of dependence theorem it must be
the solution in the domain in question corresponding to the given initial data.
In 3-dimensional Euclidean space (R?, ¢) we consider the inversion map

x
x> x =il x) = -
;

where r = |x|. With ' = |x'|, we have r’ = r~!. Then
i*e=Q%e,

where @ = r’?. Thus, setting g = i*e, g = e, we have ¢’ = Q2g. Moreover,
. 1
setting also i’ = Q72 h, we have

Ah=0 < AW =0.

Now our function % is harmonic in [R3\§ R, where Bp is the smallest closed ball
containing the support of the data for ®, Dy ®, B, U and thus the support of p. It
follows that /' is analytic in Bg/, where R” = R~!. We have a convergent Taylor
expansion at the origin, which represents the infinity of the original Euclidean space.
This Taylor expansion

i .
x/j +...

W =a+b; x" +cyx
(with A’ =0 & tre¢/ =0,...) corresponds to the multipole expansion of h.
Translating the origin in Minkowski spacetime to a point along the straight line
orthogonal to the initial hyperplane through the center of the ball Bg, a point lying
properly to the past of the point the future light cone of which intersects the initial
hyperplane at dBg, we see that the spacetime inversion map I~! in the exterior
of the causal future and past of Bp, takes the static solution discussed above to a
solution of the same equations in the image of this domain which admits an analytic
extension through J*. The arguments outlined previously then apply yielding a
global existence and decay theorem for small initial data. The decay of the original
fields follows trivially from the boundedness of the transformed fields.
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4.2 Sketch of the proof of the global stability of Minkowski
spacetime

4.2.1 The problem in General Relativity — two main difficulties

1. The definition of the energy-momentum tensor appropriate to a geometric La-
grangian, namely by considering the variation of the action with respect to the
underlying metric, clearly fails, because this variation vanishes for the gravi-

tational Lagrangian

1

This vanishing is the statement of the Euler—Lagrange equations for gravitation,
namely the Einstein (vacuum) equations.

An alternative approach is to appeal to Noether’s theorem after subtracting an
appropriate divergence relative to a background metric, as we have done in
defining the total energy (), linear momentum (P'), angular momentum (J )
and center of mass integrals (C’). Among these the energy has been shown
to be positive. But, the energy (a quantity which scales like length) gives us
control on the solutions only after the isoperimetric constant, a dimensionless
quantity, is assumed under control. Therefore, the energy cannot be used, by
itself, to prove regularity.

2. A general spacetime has no symmetries: the conformal isometry group of a
general spacetime is trivial. Therefore we have no conformal Killing vector
fields at our disposal, to use, in conjunction with energy-momentum tensors,
to construct integral conserved quantities.

4.2.2 Resolution of the first difficulty. The idea of how to overcome the first diffi-
culty is based on the following analogy with Maxwell’s equations of electromagnetic
theory.

Our aim is to derive estimates for the spacetime curvature which will give us the
necessary control on regularity. The idea is to consider the Bianchi identities

Vie Rgy1se =0, [aBy] a cyclic permutation, (288)
as differential equations for the curvature, and the Einstein equations
Ry = g% Roupy =0 (289)

as algebraic conditions on the curvature. Breaking the connection between the metric
and the curvature, we define a Weyl field W,g,,5 on a given 4-dimensional spacetime
manifold (M, g,,») to be a tensor field with the same algebraic properties as the Weyl
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(or conformal) curvature tensor. Namely:

Wgays = Wapsy = —Wapys antisymmetry in the first two as well as in the
last two indices,

Waigys) =0 cyclic condition,

and the trace condition
gotﬂ Wauﬂv =0,

the analogue of the Einstein equations. The first two properties imply the symmetry
under exchange of the first and second pair of indices: Wy, sap = Wogys.

Given a Weyl field W we can define a right dual W* as well as a left dual *W .
The left dual is defined as

1 v
afys = 5 €uvap w yé (290)

*

by freezing the second pair of indices and considering W as a 2-form relative to the
first pair. The right dual is defined as

1
apys = 5 Wap™" €uvys (291)

by freezing the first pair of indices and considering W as a 2-form in the second pair.
However, by virtue of the algebraic properties of W the two duals coincide:

Wo=Ww*. (292)

We shall thus write only *W in the following. Moreover, *W is also a Weyl field. In
fact, the cyclic condition for *W is equivalent (modulo the other conditions) to the
trace condition for W and vice versa.

A Weyl field is subject, in the absence of sources, to the vacuum Bianchi differential

equations:
Vi« Wgy15¢ = 0. (293)
We can write these as
DW=0 (294)

to emphasize the analogy with the exterior derivative. These are the analogues of the
Maxwell equations
dF =0.

However, D is not an exterior differential operator, so D? # 0. The equation
D2W = 0, a differential consequence of the vacuum Bianchi equations, is in fact the
algebraic condition

R *W,up, — RV *W0p, = 0. (295)
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Here, Rggy s is the curvature of the underlying metric g,,,,. One can ask: What about
the analogues of the other Maxwell equations

d F* =0 (in the absence of sources)?
The remarkable fact is that the equations
D*W =0 (DW*=0) (296)

are equivalent to the equations DW = 0. In components, the equations D *W = 0
read
V* Wapgys = 0. (297)

We shall presently define an energy-momentum tensor analogous to that for
Maxwell’s equations:

1 *
Oup = > ( Fap Fﬂp+F;p Fg ° (298)
(on a 4-dimensional spacetime manifold). This tensor had already been discovered
by L. Bel and I. Robinson in the case W = R of a metric g satisfying the Einstein
vacuum equations. We define

1
Y ( Wapy(r W, p(g 7 + *W(xpyO' *W p5 7 ) (299)

Qa,By8 = 2 B B

We call this tensor the Bel-Robinson tensor. It is a totally symmetric quartic form in
the tangent space at each point (a 4-covariant tensor field) which is trace-free with
respect to any pair of indices.
Recall that the electromagnetic energy-momentum tensor satisfies the positivity
condition
0 (X1,X2) >0

for any pair X, X, of future-directed timelike vectors at a point with equality if and
only if F vanishes at that point.
Similarly, the Bel-Robinson tensor has the property

0 (X1, X2, X3, X4) >0 (300)

for any quadruplet X1, X5, X3, X4 of vectors at a point all of which are future-directed
timelike, with equality if and only if W vanishes at this point. The above are the
algebraic properties of Q, all of which follow from the algebraic properties of W.
Moreover, if W is a solution of the vacuum Bianchi equations, then Q is divergence-
free:

VY Qupys = 0. (301)
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(This is analogous to the fact that, in electromagnetic theory, dFF = Oand d*F = 0
imply V¥Qup = 0.)

Suppose now that we are given three vector fields X, Y, Z all of which are future-
directed, non-spacelike and generate conformal isometries of (M, g). We denote
by

Oz = Fyg (302)

the trace-free part of £y g for any vector field U. If U generates conformal isometries,
then
Wz =o. (303)

We consider the vector field

w_— _ Ok ayB 7y
P_QaﬁyXYZ.

Then, we have
Vi P* = —(V, Q% ) X2 YP 27
N——

=0

— 0%y, (VWX YP Z7 (304)
fay X& (Vi YB) zv
— 0%y, X° YP (v, z).
We write
1
Qhp, (Vi X*)YFP Z7 = 5 M (Vi Xa + Ve X)) YP Z7
1
_ 2 oMo (X) B 7v
=59 Tua Y2 Z
1

> ngy (X)ﬁu,oc Y8 zv

where we have used the symmetric and trace-free nature of Q, and similarly with X,
Y, Z replacedby Y, Z, X and Z, X, Y respectively. Thus, recalling again the totally
symmetric nature of Q, (304) becomes

1 N
Vi P == 0"s, e YP 27
Y)~
+ 0 x* Wiy 27 (305)
+ Q;;ﬂy xey? Dz,
=0.



4.2 Sketch of the proof of the global stability of Minkowski spacetime 107

For, M7 = Mg = @7 =0, as X, Y, Z are by assumption conformal Killing
fields. Defining then the corresponding 3-form *P

*vak = pH €Kl
the fact that P is divergence-free is equivalent to the fact that *P is closed:
d*P =0. (306)

We consider the following three cases.

Case 1. We integrate (306) over the domain bounded by the initial Cauchy hypersur-
face #o and a Cauchy hypersurface #; to the future of #,.

v

Figure 19

Case 2. We integrate (306) over the domain bounded by the initial Cauchy hypersur-
face #y and an outgoing null hypersurface C,,.

Cu

Ho

Figure 20
Case 3. We integrate (306) over the domain bounded by the initial Cauchy hypersur-

face o and an outgoing null hypersurface C, capped in the past by a portion of the
(complete) Cauchy hypersurface F;.

Hi

Ho
Figure 21
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‘We then obtain

*p =/ *P  inCase 1, (307)
H; FHo
/ *p 5/ *P  in Case 2, (308)
u Jfo
/ *p f/ *P  in Case 3, (309)
CcS o

where C is Cy, capped by #; in the past. Here, all quantities are non-negative.
In particular,

/ P :/ PN dug, :/ QO (N, X, Y Z)dpg, =0,
Hr Hy Hy

where N is the future-directed unit (timelike) normal to #; and dug, the volume
element of the induced metric g; on #;.

Now, given a Weyl field W and a vector field X, the Lie derivative with respect to
X of W, that is £x W, is not in general a Weyl field, because it does not satisfy the
vanishing trace condition. We can however define a modified Lie derivative £y W
which is a Weyl field:

A 1, A
Lx Wapys = Lx Wapys — 5 (R Wapys + " Wapuys
RS Wepus + 75" Wapy) (310)

1
— g trm Waﬂyg.

Here, as in the preceding, 7wyg = £xgap and 7ap is the trace-free part of myg.
The modified Lie derivative commutes with the Hodge dual,

Ex *W = *Ex W. (311)

Conformal properties of the Bianchi equations. We consider next the conformal
properties of the Bianchi equations.
Let f be a conformal isometry of the underlying manifold (M, g),

frg=Q%g. 312)

If W is a Weyl field satisfying DW = 0 on (M, g), then Q7! f*W is also a Weyl
field satisfying the same equation on (M, g). This follows from the fact, readily
established by a straightforward calculation, that if W is a Weyl field satisfying the
equation DW = 0 on (M, g), then, for any conformal factor €2, W = QW is also
a Weyl field satisfying the equation DW = 0 on (M, §), where § = Q2g.
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Remark. Recall that if W is the conformal curvature tensor of (M, g), then the
conformal curvature tensor W of (M, g) with g = Q7 2g is

wW=Q72w.
So the transformation W — Q~1W considered above is not related to this.

Suppose now that X is a vector field generating a 1-parameter group { f;} of
conformal isometries of (M, g) (a conformal Killing field). Then if W is a solution
of the Bianchi equations, so is Q; ! f;*W for each . By the linearity of the Bianchi
equations

d

- Q_l * w
dt ! Ji t
is likewise a solution of the same equations. We see that the term —% trxWin Ex W
comes from the conformal weight Q~!. Thus, if (M, g) possesses a non-trivial
conformal isometry group, we can derive conserved quantities of arbitrary order by
placing in the role of W the iterated (modified) Lie derivatives,

,= Ex W (313)

Lx, ... Lx, W.

an n-th order Weyl field. Here, i1, ...,i, € {1,...,m}, with m being the dimension
of the conformal group of (M, g) and {X}, ..., X;,} being the generating conformal
Killing fields.

4.2.3 Resolution of the second difficulty. We turn to the second difficulty, namely
the fact that a general spacetime has only a trivial conformal isometry group.

The crucial observation here is that a spacetime which arises from arbitrary asymp-
totically flat initial data is itself expected to be asymptotically flat at spacelike infinity
and at future null infinity in general, and also, under a suitable smallness restriction
of the initial data, at timelike infinity as well.

We thus expect that, under the present circumstances, the spacetime approaches
the Minkowski spacetime as the time tends to infinity. Now, the Minkowski spacetime
possesses a large conformal isometry group. We thus expect to be able to define ‘in the
limit’ # — oo the action of a subgroup, at least, of the conformal group of Minkowski
spacetime, as the action of a conformal isometry group in the limit ¢ — oo.

Then the problem is to extend this action backwards in time up to the initial
hypersurface in such a way as to obtain an action of the said subgroup globally, which
is globally close to being the action of a conformal isometry group, in the sense that
the deformation tensors 77 of the generating vector fields are globally small, and tend
suitably fast to 0 as t — oo.

It turns out that we can only define the action of the subgroup of the conformal
group of Minkowski spacetime corresponding to:
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1. The time translations.

2. The scale transformations.

3. The inverted time translations.
4. The spatial rotation group O(3).

This is due to the fact that a non-trivial spacetime, corresponding to asymptotically
flat initial data, has a non-zero total mass, therefore a non-zero energy-momentum
vector (which can be considered to be a vector at the ideal point at spacelike infinity).
Therefore an O(3) subgroup is singled out which leaves this vector invariant.

The group of time translations is the easiest to define. This corresponds to the
choice of a canonical time function ¢. This is the canonical maximal time function
relative to which the (spatial) linear momentum P’ vanishes. The generating vector
field T has already been defined. The integral curves of T are the family of timelike
curves orthogonal to the maximal hypersurfaces #¢; and are parametrized by ¢. The
corresponding group { f;} is such that f; is a diffeomorphism of J¢; onto #; ;.

The rotation group O(3) is to satisfy the condition that it takes any given hyper-
surface #; onto itself. To define the action of O(3) on #; we must define the orbit of
O(3) through a given point p. The construction is accomplished with the introduction
of another function u, which is called an ‘optical function’ as it is a solution of the
eikonal equation

g’ o, udyu=0. (314)

This equation expresses the fact that the level sets C, of u are null hypersurfaces.
Then the 2-surfaces of intersection,

St = N Cy, (315)

shall be the orbits of the rotation group O(3) on each #;. Moreover, the function u
shall also be used to define the vector fields S and K generating the scale transfor-
mations and inverted time translations respectively.

Construction of the optical function u. Thus, the most essential step is the construc-
tion of the appropriate function u. The construction starts by choosing a 2-surface
So,0, diffeomorphic to S 2 in the initial hypersurface #y. We consider 9.J +(So,0),
the boundary of the future of Sy g, in the spacetime which is assumed to have been
constructed. This has an outer as well as an inner component. The outer component
is generated by the congruence of outgoing null geodesic normals to Sp ¢ and the
inner component is generated by the congruence of incoming null geodesic normals
to So,0. We define the level set Cy (the 0-level set of 1) to be this outer component.
It is an outgoing null hypersurface.
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S[,u = Jgt n Cu
Figure 22

Now, there is considerable freedom in the choice of So0. However, the choice is
subject to the condition that the null geodesic generators of Cy have no future end-
points.

We must now define the other level sets C,, with u # 0. These shall also be
outgoing null hypersurfaces, thus u will, by construction, be a solution of the eikonal
equation (314)

g a, ud, u=0.

Figure 23
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Consider the surfaces (315)
St,u = th N Cu

We want to impose the following condition: The surfaces Sy, , in #;, must become
equally spaced as t, — oo. That is, u|g,, must tend to minus the signed distance
function from S;, o on J;, as tx — oo.

St*,()

Figure 24

The global stability theorem is established by a continuity argument, in the course
of which we are constructing a spacetime slab bounded in the future by the maximal
hypersurface #;, . The obvious choice of u on #;, , namely minus the signed distance
function from Sy, o, is inappropriate, because this distance function is only as smooth
as the induced metric g;,, not one order of differentiability better, which would
be the maximal possible for a function on (H#;,, gz,). This loss of one order of
differentiability would result in failure of closure of the estimates. The continuity
argument would then fail.

To overcome this difficulty, we define u on #;, in a different way, namely by
solving a certain equation of motion of surfaces on #;,, the initial surface being
St..0- To keep the discussion simple, we neglect the second fundamental form k;, of
H;, , and consider the motion of a surface on a (3-dimensional) Riemannian manifold.

Given a function u on such a manifold, a function whose level sets define locally
a foliation, we have the associated lapse function

a= (g7 0;udju)y?, (316)

which measures the normal separation of the leaves. We can think of a as the normal
velocity of a surface, leaf of the foliation. An equation of motion of surfaces is then
a rule which assigns a positive function a to a given surface. Given a surface S
diffeomorphic to S2, let f be the function

f=K—%mm% (317)
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where K is the Gauss curvature of S. (So, f = 0 for a round sphere in Euclidean
space.) The rule which defines the equation of motion is

Kloga=f—f, (318)
where 4& is the Laplacian of the induced metric y on S. In general, for any function
f on S we denote by f_ the mean value of f on S. Equation (318) determines a up
to a positive multiplicative constant. The freedom which is left corresponds to the
freedom in relabeling the level sets of u. (We can remove the freedom by requiring
loga = 0.

To see what this equation of motion accomplishes, consider the trace of the 2
variation equation for a 2-surface on a 3-dimensional Riemannian manifold, once the
Gauss equation has been employed to express Rs33, e3 being the unit outward normal
to S, in terms of R and K. The Gauss equation reads

2K — (tr6)®> + |0|*> = 2R — Rs3.

Note also that since u is to decrease outwards, we have ez = —al%. The general
formula we then obtain is the following:
atr6 1 —
5 = X a+§a(R+|9|2+(tr9)2—2K). (319)
U

Now, neglecting the second fundamental form k of #;, , the Gauss constraint equation
of the imbedding of #;, in spacetime becomes simply

R =0. (320)
It follows that if a is subject to equation (318) above, (319) reduces to the following
propagation equation for tr 6:

1 otr @
a ou

1 A 1 _
:5|0|2+§(tr9)2+|X910ga|2—f. (321)

Here, § is the trace-free part of 8. All the curvature terms on the right-hand side have
been eliminated. Moreover, by the Gauss—Bonnet theorem

Kdu, = 4m,
Sp

hence
1 4

F _Am L 2
f—z [gpfdﬂy— 1 (1 = /Sp(tre) dﬂy)a (322)

where A is the area of S,. This propagation equation of tr 6 is to be considered in
connection with the Codazzi equations

B A 1 _
v @B—EWAHQ=RM (323)
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(complementing e3 with (e4 : A = 1,2) an arbitrary local frame field for S). These
form an elliptic system on S for 6 given tr 6. Also, in estimating 77 loga from the
equation of motion, we appeal to the Gauss equation which expresses K as

1 1o~y =
K= Z (tr@)z—E |0]> — Ra3. (324)

Because of the fact that there are no curvature terms on the right-hand side of the
propagation equation (321) and the fact that one order of differentiability is gained
in inverting the 1% order elliptic operator in (323), we are able to obtain estimates
for the second fundamental form 6 of the level sets of u which are of one order of
differentiability higher than the estimates for the curvature assumed. Then the level
sets of u and u itself is shown to be three orders of differentiability smoother than the
curvature or one order of differentiability smoother than the metric, as required.

The meaning of the equation of motion of surfaces. Here, we will consider the
Hawking mass m (see [17]) of a surface S diffeomorphic to § 2 in a 3-dimensional

Riemannian manifold of vanishing scalar curvature: R = 0. (The energy of S is
47rm.) We first define the area-radius r of S by

Area (S) = 4nr?.

Definition 45. The Hawking mass m of a surface S diffeomorphic to S2 in a 3-
dimensional Riemannian manifold is

m= %( - é/s(tref duy). (325)

If B is a small geodesic ball with center at a point p, then
i, eiw = T (320

Recall that for the general (non-vacuum) Einstein equations,
R=4T% (327)

on a hypersurface with vanishing second fundamental form. We see that the limit at
a point (326) captures only the energy density of matter. There is no gravitational
contribution to the density at a point, the gravitational energy being of non-local
character.

Proposition 9. For suitable families of surfaces S whose interiors exhaust the 3-

manifold we have
m(S)—> M, (328)

the total mass, provided the 3-manifold is strongly asymptotically Euclidean.
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Proof. We are assuming that

M 4
8ij = (1 + 5) 8i; + 02 (p7'7), €>0, (329)

where p = |x|. The term O, (p~17¢) does not contribute to the limit of 7. Thus the
proposition follows if we show that the Hawking mass m(S) of the coordinate sphere
S, — M as p — oo in the case of the metric

M\
gij = (1 + Z) 8ij (330)
the Schwarzschild metric. In fact, for any metric of the form
g=x*ldxP, x=x(x,

changing to polar coordinates, we have

g = 1" (dp* +p* vVap ) dyidy®), x=x(p).

standard metric on S2

The arc length s along the rays from the origin is
-
s = /0 X~ (p) dp.

The induced metric on S, is y4p = o2yt )3 4B. Then the second fundamental form
B4 of S, is given by

Oup = dy4B
2 0ds
_L Ovas
20> op

1(1+2d)()
=—=\-t- ) vaB.
x*\p  xdp

2 2p d)()
N (1 L2
pX* x dp

Hence

and /dety = p? y*y det )c; Thus, we have

20 dx\>
/(tr@)zduy=16n(l+—p—x).
s x dp
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Moreover, since 47r? = Area(S,) = fSp du, = 4mp?y* we have r = py>. We
thus obtain .
m(Sp)=%,o)(2|:l —(1—}-27'0;%) i|
In the particular case y = 1 + 12\/1_p we find
m (S,) = M.
Remark. ‘Suitable’ family of surfaces may be taken to mean the following:

2 A
rd==4+00"19, €>0 r=,—,
r 4r

and .
6] = 0(~'79).

It is these two properties of the surfaces which are required in the above proof.
O

Definition 46. Given an arbitrary local foliation with lapse function a, the mass
aspect function of each leaf is

1
p=—/loga+ K — 1 (tr )2, (331)

By the Gauss—Bonnet theorem, f s K du, = 4m; hence we have

1
/ wdp, = 4w ( 1-— 16 /(tr@)2 duy)
s - T Js (332)
- r
Thus 2
_ m
= POl (333)

Consider now the variation of m as we move through the foliation. We have

dm 1 dr 2m r d

2
—_— = — = —— . 4
du 2du r 327w du [S(trQ) dity (334)

Now, the general formula (319) reduces in the case R = 0 under consideration to

otrf
ou

=/ a+%a(|0|2+(tr9)2—21().
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We express this in terms of u to obtain

1 dtrd 1 | BN
=T = S ) + 5 0P + I logal? - .
a Ju 2 2
Using the fact that
dd Ly

o =—atrf du,,

we then deduce that
d 2 Hi2 X} 2
0 (tr6)* dp, = Satr9{|9| +2 |V logal®—2pu}du,.

On the other hand, since

dr dA
SHra = ™ = —/S atr diy,
we obtain
ﬂ =l aud
du 2 @ty

Now, in the formula for j—u [ (tr 60)?du, we have the term

-2 /atr@ud,u,,.
S

Writing
w= - +pn
we have
16
-2 / atrf jidn, = —8nrratrf ji = — T atrf,
S r
by (333). Therefore, substituting (336) and (337) in (334), —ﬁ

first term on the right in (334). We thus remain with

dm_ r 1 5 2)
E_E{—/Satre(iw —|—|X510ga| duy

+/(atr9—m) (n—[) dpey }
s
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(335)

(336)

(337)

(338)

- (338) cancels the

(339)

where we have made use of the fact that (« — (i) has vanishing mean to rewrite

/atr@(u—,ll)d,uy as /(atr@—atr@)(u—/l)duy.
S S



118 4 The global stability of Minkowski spacetime

The first integral in (339) is > 0, provided that tr & > 0. Thus, under this condition,
the vanishing of the second integral implies that m is a non-increasing function of u.
The second integral vanishes in the following two cases:

Case 1. atr 0 = atr@: This is inverse mean curvature flow.

Case 2. n = j: This is the equation of motion of surfaces, which we discussed
above and which has the smoothing property required in the continuity argument.

Case 1 is a parabolic equation. The problem can be solved in this case in the
outward direction only.

Case 2 may be thought of as an ordinary differential equation in the space of
surfaces. For, the rule assigning the positive function a to a given surface S according
to (318) assigns a function of the same differentiability class as the surface itself. This
is because in inverting the 2" order elliptic operator 4X , two orders of differentiability
are gained. The equation of motion of surfaces can be solved in both directions. We
shall discuss general ordinary differential equations in the space of surfaces in a given
3-dimensional Riemannian manifold at the end of the present section.

The problem in Case 2 is actually solved outward globally (that is, for all ¥ < 0)
and inward up to a surface of area equal to a given fraction of the area of So(= S;, o).
(Note that Sy is the O-level set of u.) It turns out that R33, R43, R4p have different
decay properties. For fixed u and ¢, large they decay like 2, r=2, r~!, respectively.

The proof of this semiglobal existence theorem for the equation of motion of
surfaces is based on the hypothesis that there exists a background function u’ with
level sets S;/, such that S() = So, and suitable assumptions hold on the g_eometric
properties of this background foliation as well as on the components of R;; in the
decomposition with respect to the unit normal and the tangent plane to S/,. Once
the surfaces Sy, , have been constructed, we define C,, for u # O to be the inner
component of the causal past of S;, . In this way the optical function u is constructed
in the spacetime slab bounded by #;, and F.

Next we define the vector fields S (scaling) and K (inverted time translation). The
vector field T (time translation) has already been defined by the maximal foliation.

Consider a surface S;, = J; N Cy,. At each point on S;, we have two null
normals L and L, respectively outgoing and incoming, normalized by the condition
that their components along 7" are equal to 7. The integral curves of L are the null
geodesic generators of the C,,, parametrized by ¢.

We define the function

u=u-+2r,
where
r(tu) = /Area(S,,u)‘
4
Note that

1
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Now let us define S and K according to

(uL+ul),
(w> L+u”L).

To define the action O(3) in the spacetime slab, we first consider the ‘final’ maximal
hypersurface #;,. We consider on #¢;, the vector field U:

U'=a*3" 9; u.

The integral curves of U are orthogonal to the level sets of u on #;,_, namely the
surfaces Sy, ,, and are parametrized by u. (So, Uu = 1.) Let { x, } be the 1-parameter
group generated by U. Then y, restricts to a diffeomorphism of S;, ,, onto St, y+o-
In particular,

Xu: St*,O - St*,u

is a diffeomorphism. The pullback to S;, o of the induced metric on S, , rescaled
by 2, namely

X T2 Y)s0 00
is shown to converge, as ¥ — —oo (that is, at spacelike infinity on #;, ), to a metric
7(/):* of Gauss curvature equal to 1. Therefore, (S, o, ;t*) is isometric to the standard

sphere. The rotation group O(3) then acts as the isometry group of (S, 0. )3,*), the
‘sphere at infinity’.

We then define the action of O(3) on #;, by conjugation: Given apoint p € S;, 4
and an element O € O(3), we consider the integral curve

o= Yo (P)
of U through p. As 0 — —o0, this tends to a point ¢ on the ‘sphere at infinity’. In

o
other words since (S;, 0, ¥+, ) is our model for the sphere at infinity, we can simply

identify g with the point y—,(p) € St.,0. Then Ogq € (S4,.0, )3,*) is well defined.
Finally, the point Op is the point x,(Ogq) € S;, .. The vector fields Q@ with
a = 1,2, 3 generating this action then satisfy

U, Q@] =0,

[(H)Q’ (b)Q] = €be Q@

and are tangential to the surfaces S;, ;. The last equations are the commutation
relations of the Lie algebra of O(3).
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This action of O(3) on #;, is then extended to the spacetime slab bounded by
H;, and Hy by conjugation with the flow of L. The integral curves of L are the
null geodesic generators of the hypersurfaces C, and are parametrized by ¢. The
1-parameter group of diffeomorphisms generated by L maps the surfaces S;, cor-
responding to the same value of u but different values of ¢ onto each other. Given a
point p € S;,, and an element O € O(3), we follow the integral curve of L through
p at parameter value ¢ to the point p. € Sy, , at parameter value 7,. The action of
O(3) on H;, defined above leads us to the point Ops € Sy, ,,. Finally, Op € S;,
is defined to be the point at parameter value ¢ along the integral curve of L through
Op. at parameter value 7.

Figure 25

The Q@ also satisfy
L, Q@] =0,

Q@ Q®] = ¢,y Q©

and are tangential to the surfaces S; ;. Again, the last equations are the commutation
relations of the Lie algebra of O(3).

General equations of motion of surfaces. We now give a general discussion of
ordinary differential equations in the space of surfaces in a given Riemannian manifold
(M, g), outlining how a local existence theorem for such equations is established. Let
4 be a rule which assigns to each surface S in M a positive function A(S) on S,
of the same differentiability class as S. Then the problem we are considering is
the following. Given an initial surface So in M, find a function u defined in a
neighborhood of Sy in M, such that u = 0 on Sy and for each level surface S, of u,

|du = A(Sy). (340)

|_1|Su
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Here du denotes the differential of u. To solve this problem we first consider the
following simpler problem. Given an initial surface Sp in M and a positive function
a defined in a neighborhood of Sy in M, find a function u defined in a smaller
neighborhood of Sy in M, such that u = 0 on Sy and

ldu|™! = a (341)

in this neighborhood. In other words, find locally a function u whose O-level set is
So and whose associated lapse function is the given function a.
Equation (341) is a special case of the stationary Hamilton—Jacobi equation

H(d¢) = E (342)

for a function ¢ on a manifold M, the configuration space. Here H is the Hamilto-
nian,a function on T* M , the phase space, and E is the energy constant. A particular
class of Hamiltonians are Hamiltonians of the form

1
H@):EmF+V@)VpEZﬁquGM. (343)

A Hamiltonian of this form describes the motion of a particle of mass 1 in a potential
V in M. Equation (341) results if we set

1
¢ =u, V=—?r% E=0. (344)

We shall presently discuss how solutions to the general stationary Hamilton—Jacobi
equation (342) are constructed. We consider the canonical equations associated to
the Hamiltonian H. Let (¢',...,¢") be local coordinates on M. Then for g in the
domain of this chart, we can expand p € T 'M as

p = pidq'|,.
The coefficients (p1, ..., pn) of the expansion constitute a system of linear coordi-
nates for 7,°M. Then (q'.....q": p1...., pn) are local coordinates on 7*M and

the Hamiltonian is represented by a function of these. The canonical equations take
in terms of such local coordinates the form
dg'  0H  dp; 0H
ar Top di g
Denoting by ¢ +— (g(¢), p(¢)) a solution of the canonical equations, a variation

through solutions of a given solution, denoted by ¢ — (§(z), p(¢)), satisfies the
equations of variation

i=1,....n. (345)

dg¢*  #H ., H
dt  9p;dq’ dpidp;
d p; 0’ H y 0°H |
= a9 5 Pi
dt aq'dq/ dg'adp;

Pj-
(346)
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The canonical form of T*M is the 1-form 6 on T*M, given in the above local
coordinates by .
0 = p;idq'. (347)

Evaluating 6 on a variation through solutions (g, p) of a given solution (g, p) we
have

0-(q.p) = pid'. (348)
where the right-hand side is a function of ¢. A basic proposition of Classical Mechan-
ics, which readily follows from the above equations, is

d
;0 @.p) =dL-(q.p) (349)

where L is the Lagrangian, which in the Hamiltonian picture is a function on 7* M,
represented by

oH
L=pj— —H. (350)
api
Also d L is the differential of L, thus
.. oL ., dJL
dL-(q,p) = 4" + ——pi- (351)
g’ api

Given now a closed surface So in M, we construct a solution ¢ of (342) vanishing on
So as follows. To each point go € S¢ we associate a covector py € Tq*OM which is
required to vanish on Ty, So and satisty H(qo. po) = E. Lett — (q(t:qo). p(t: qo))
be the solution of the canonical equations (345) corresponding to the initial conditions
(90, po). We then set along each solution trajectory

t

6(q(t:q0)) = /0 L q0). p(t'qo)dd + Et Vgo € So.  (352)

This defines ¢ in a neighborhood of Sy in M, and obviously ¢ vanishes on Sy. We
shall presently show that ¢ satisfies (342). Consider a curve y: (—1,1) — So on Sp
through the point go : y(0) = go. Let X € T, So be the tangent vector to this curve
atqo : X = p(0). Consider then the 1-parameter family of solutions of the canonical
equations

1= (@@ y(9), pt:y(9) = s € (=11
The derivative with respect to s at s = 0 is a variation through solutions ¢ >

(q4(t; (g0, X)), p(t; (qo, X))) of the solution ¢ +— (q(¢;q0), p(t;qo)). This varia-
tion is the solution of the equations of variation (346) corresponding to the initial
conditions

d
q(0:(g0. X)) = X, p(0.(g0. X)) = —=Po(y ()| _ -
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Let us take the derivative of both sides of the equation

t
By = [ Laiyo) pCivenar + B (35
with respect to s at s = 0. We obtain, for the left-hand side,
d¢ i
— t;(qo, X)),
3 Iq can] (t;(q0, X))

and for the right-hand side,

t(oL JaL
[ G o 0+ 5 o, X0
0 Di

t
= [ Ap a0 @ o X0}
o at
= pi(t;q0)q"' (t; (qo, X))
by (349). Here we have taken account of the fact that
2i(0:0)¢" (0; (q0, X)) = po- X = 0.

It follows that

(8_qf

On the other hand, taking the derivative of both sides of (352) with respect to ¢ we
obtain, for the left-hand side,

~pi(40) )i (0 (0. X) =0 VX € TSy (359

q(t;90)

dq'

q(t; qo)W( 40):

dq’
and for the right-hand side,
dq

L(q(t:90), p(t:90)) + E = (L + H)(q(t:90), p(t;90)) = pi(t; qo) - 40)

by (350) and the first of the canonical equations (345). For, the canonical equations
imply that the Hamiltonian is constant along trajectories, hence

H(q(t:q0), p(t:q0)) = E. (355)

It follows that

dq’
— pi(t; —(t; = 0. 356
ey~ PE00)) G t50) (356

(50
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Equations (354) and (356) together imply
¢
9 = Di, (357)
provided that the set of vectors
{4 (1: (90, X)) : X € TyySo}

together with the vector

span Ty (s.4,)M . Moreover, in view of (355) and (357), ¢ is a solution of the stationary
Hamilton—Jacobi equation (342).

We shall now show how the above is applied to construct a local solution of the
problem associated to (340). We set up an iteration as follows. Given a positive
function a,, defined in a neighborhood of the surface Sy in M, we define the function
u, to be the solution of the stationary Hamilton—Jacobi equation

Hy(duy) = 0, (358)

which is negative in the exterior and positive in the interior of So. Here H, is the
Hamiltonian

1, I,
H, = §|p| +Vu, Vu= _Ea" . (359)
We then define the new positive function a,+1 by
an+1ls, = A(Sn) (360)

for each level surface S, of the function u,. The starting point of the iteration is the
function ag = 1, in which case u is the signed distance function from So on M. The
study of the convergence of this iteration then establishes a limit, lim,—co U, = U,
which is a local solution of the equation of motion of surfaces (340).

4.2.4 The controlling quantity. Having defined the approximate conformal Killing
fields, we consider the 1-form

P = Py+ Pi + P, (361)
where

=—-0 (R (-K.T. ). (362)

=—0 (Lo R) (K. K. T)-Q (41 B) (K, K, K), (363)

pa— 2 K K
=-0H R (K.K.T)-Q (Lo £rR) (K f( X (364)
K.k,

— 0 (£s £7R) (K, K. K) - 0 (£% R) (- K).
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Here, K = K + T is everywhere timelike future-directed (for ¢ > 0). Also, Q(W)
is the Bel-Robinson tensor associated to the Weyl field W. Moreover, O stands for
{ @Q: a =1,2, 3}, the generators of the action of O(3).

We define
E, = sup/ *P, (365)
t Jae,
E, = sup/ *P. (366)
u u
Then the controlling quantity is
E = max{E;, E,}. (367)

The quantities E; E, are defined in the spacetime slab U,, = Ure[o,z*] H;. So, E
depends in fact on 7.

Remark. P; and P, vanish for solutions which are invariant under rotations and time
translations. They give us effective control on the solutions because of the following
two facts:

1. The only spherically symmetric solution of the vacuum Einstein equations
besides Minkowski spacetime is the Schwarzschild solution.

2. The only static solution of the vacuum Einstein equations besides Minkowski
spacetime is the Schwarzschild solution.

Note that a static spacetime means a spacetime admitting a hypersurface orthogonal
Killing field which is timelike at infinity. Here the Schwarzschild solution is excluded
in view of the fact that the topology of the maximal hypersurfaces is R3. To control
the spacetime curvature in terms of the quantity £, we consider separately the exterior
region & and its complement, the interior region 4. The region & is defined by the
inequality

Area(S; ) > 0 Area(St0).

where 6 is a constant, 0 < 6 < 1.
Remark. The lastterm Q (fZT R)(-, K, K, K)in P, is used in controlling the space-

time curvature in the ‘wave zone’, that is, in a neighbourhood of Cy of the form
Uue[_c,c] C,, for a fixed positive constant c.

Remark. The term Q(f s cféTR)(- ,K,K,K)in P, is used to control the top order
derivatives of the spacetime curvature in the interior region.
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Note that the vector field S is timelike future-directed in the interior of Cy, it is null
future-directed on Cy, and it is uniformly timelike in the region {. We shall presently
outline how control of the spacetime curvature in the interior region is achieved. We
consider the decomposition of a Weyl field W with respect to a family of spacelike
hypersurfaces with unit future-directed timelike normal eg. Complementing eo with
an arbitrary local frame field (e; : i = 1,2, 3) for these hypersurfaces, we define:

Definition 47. The electric and magnetic parts of a Weyl field W with respect to a
given family of spacelike hypersurfaces are the symmetric trace-free tensor fields £
and H on these hypersurfaces given by

Eij = Wigjo, (368)

Hij = —*Wiojo. (369)

Here we consider the electric-magnetic decomposition relative to the canonical
maximal foliation {#; }. The Bianchi equations for a Weyl field W in the presence of

a source J are the equations
DW=J. (370)

The source J is called a Weyl current. Relative to an electric-magnetic decomposition
these equations take the form

div E = pg., (371)
curl E + 0, H = of. (372)

div H = py, (373)
curl H — £, E = 0. (374)

The right-hand sides here contain lower order terms involving the second fundamental
form and lapse function of the foliation as well as the components of the current. Now
if £sW is already controlled, we can decompose &£, W into a term proportional to
£ s W which we can place on the right-hand side plus a term of the form £ x W, where
X is a vector field tangential to the leaves of the foliation and satisfying

Xz <6 <1, (375)
(6 a positive constant) in the interior region /. Then we obtain a system of the form
divE = pf, (376)

curl E + ExH = o, (377)

div H = ply, (378)

curl H — £x E = o};. (379)

This system is uniformly elliptic in / by virtue of (375), allowing us to obtain interior
estimates for E and H.
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4.2.5 The continuity argument. Since the vector fields 7', S, K, @DQ:a=1,2,3,
are not exact conformal Killing fields, d * P does not vanish. Thus, the integrals
S, *P and [ *P differ from an integral over J{o by error integrals which are
spacetime integrals over the part of the spacetime slab bounded by #¢; and #, or
C, and H,, of expressions which are quadratic in the Weyl fields W and linear in
the deformation tensors 77 of the vector fields. The point is to estimate these error
integrals in terms of the controlling quantity E (see Step 2 below).

We introduce a certain set of assumptions on the main geometric properties of the
two foliations, namely the {J#; } and {C,, }. These are called the bootstrap assumptions.
They involve in particular

1. the quantities
sup(r? K), inf (r* K),
St St
where K is the Gauss curvature of S; , and 4rr? = Area(S;y);

2. the quantities
supa, infa, sup®, inf P,
St,u St,u S,’u St.u

where a and @ are the lapse functions of the two foliations

@2 = gV 0udju, 7= —g"d,10,0).

The isoperimetric constant of each S;, depends on the quantities 1. The Sobolev
inequalities on each J¢; depend on these as well as the first of the quantities 2. The
Sobolev inequalities of each C,, depend on the quantities 1 as well as the second of
the quantities 2. The assumption is that the above quantities differ from their standard
values (here: 1) by at most €.

The above are the most important of the geometric quantities, as they control
the Sobolev constants. There is a long list of additional assumptions involving the
remaining geometric quantities, such as supg, , (- ‘2”9) and infg, ,, ( #), where 6 is
the second fundamental form of S;,, relative to J;. All these are also to differ from
their standard values by at most €.

The continuity argument involves the following four steps. There is in addition a
Step 0, which we shall discuss afterwards. We consider the maximal closed spacetime
slab U;, = Ute[O,t*] J; for which the bootstrap assumptions on the geometric
properties of the two foliations {#; } and {C,, } hold with a constant €.

Step 1 (Estimate of deformation tensors). We show that the bootstrap assumptions
imply that the deformation tensors 7 of the fundamental vector fields 7', S, K, @gq
are bounded in U, , in appropriate norms, by another small constant €; (depending
continuously on € and tending to 0 as €9 — 0).
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Step 2 (Error estimates). Using the result of Step 1 we estimate the error integrals as
follows:
|error integrals| < C ¢; E.

This yields the conclusion
E<CD+CeE.

Here, E is the controlling quantity and D is a quantity involving only the initial data.
So, if € is suitably small, we have

E <CD.

Step 3. By analyzing the structure equations of the two foliations, we deduce that
the geometric quantities entering the bootstrap assumptions are in fact bounded by
CE. Therefore, by Step 2, under a suitable smallness restriction on D (the size of the
initial data) we can conclude that the said geometric quantities are in fact bounded by
%0. Thus the inequalities in the bootstrap assumptions are not saturated up to time z..

Step 4. We extend the solution to the slab U, ¢[;, ;,+s) #¢» for some suitably small
8 > 0. We first extend the optical function u,,, which was defined on the slab U,,
(with final data on #;, the solution of the equation of motion of surfaces starting from
St..0), by extending its level sets as null hypersurfaces, that is, by extending each null
geodesic generator to the parameter interval [, t. + §]. We use this extension, which
we denote by u} , or rather its restriction to #;, 15, in the role of the background
foliation, on the basis of which we construct new final data on #;, s by solving the
equation of motion of surfaces on #;, s starting from the surface S;, 45 ¢. With this
final data we then construct the new optical function u,,  §. We consider the geometric
quantities associated to the maximal foliation {J, } extended to the interval [0, t, + §]
and to the null foliation {C, }, where u is now u,, 5. By continuity, if § is chosen
suitably small, these quantities remain < €, contradicting the maximality of #, unless
of course 7, = 00, in which case the theorem is proved.

We shall now discuss Step 0. This concerns the hypothesis on the initial data.
Take a point p € H, and a positive real number A (representing a length). Let d, be
the distance function on #, from p. Setting

D (p, A) =sup{A2 (d; + 123 |Ric|?}
H

0

3

4+ 173 { / D}V K dpg (380)
#o 1=0

1
3@V B dug.

0 1=0
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we define the invariant

D= inf D(p, A 381
pe;erg’bo (p,A) (381)

optimizing the choice of p and A. This invariant represents the size of the initial data.
In (380), B is the Bach tensor.

Definition 48. On a 3-dimensional Riemannian manifold the tensor field given by

ab g R 1. =
Bij =€ Vg | Rip — 7 8ib R (382)
is called the Bach tensor.
Remark. We can write
Bij = curl I%ij
(383)

1 N _ 2
= D) (eiab Va Rpj + ejab Va Rpi),

where R; ;7 1s the trace-free part of the Ricci curvature of the 3-manifold, namely

A

~ 1 _

Rij = Rij — 7 &ij R.
3

Thus, the Bach tensor is symmetric and trace-free.

Theorem 8 (Bach [2]). The vanishing of the Bach tensor is necessary and sufficient
for the 3-manifold to be locally conformally flat. That is,

Bij=0 < gj=x"ey, (384)
where e;; is flat, thus locally isometric to the Euclidean metric.

Recall the hypothesis that (), g) be strongly asymptotically Euclidean:

_ M \* 3
gij = (1 + m) 8ij + o (Ix[72)
in an appropriate coordinate system in a neighbourhood of infinity. The principal part
at spatial infinity is conformally flat, hence has vanishing contribution to the Bach
tensor.

We now state Step 0.

Step 0. On the basis of the hypothesis that

sup { A7% (d; + A*)* |Ric|* }
Ho
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is suitably small for some p € F#y and A > 0, we show that exp,,, the exponential
mapping with base point p is a diffeomorphism of 7, #, onto #,. We then have a
foliation {S, } of H, by the geodesic spheres with center p and radius p. We consider

the following Hodge-type elliptic system for the traceless symmetric tensor field R; Iz

= 1 - — 1 -
divRic = c dR = c d (|k|?), (385)
curl Ric = B. (386)

(tr Ric = 0). Here, we denote by d f the differential of a function f on H,.

Remark. The equation (385) is simply the Bianchi identity:
¥/ Ry— 0 R=0,

Note that D(p, 1) gives us control on k and B, thus on the right-hand sides of (385),
(386). The theory of such elliptic systems then gives us estimates for the components

of R, 7, hence for the components of R; 7, relative to the foliation by the {S,}. Denoting

Hia H]b Eab = aab’
', Rij N/ = by,
Eij Ni Nj =C,

we 1in fact obtain
| (@432 1 dug < € D (9. .
Ho
| @432 b dsg = € D (. 0,
Ho

/ (d2 + 227 |c — &P dpz < C D (p. ),
Ho

where ¢ is the mean value of ¢ on S, and 4 is the trace-free part of a. Moreover, we
have
tra+c =R = |k|?

and
ép>— 2M asp— oo (p= dpls,)-
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4.2.6 Estimates for the geometric quantities associated to the maximal foliation
{H#:}. We shall now sketch how Step 3 is accomplished. We begin with the recovery
of the bootstrap assumptions concerning the maximal foliation {#;}. This is done
by considering the structure equations of the foliation.

1. The intrinsic geometry of the #; is controlled through the contracted Gauss
equation B
Rij —kim k"; = Eij. (387)
Here, E;; is the electric part of the Weyl curvature.

2. The extrinsic geometry of J; is controlled through the uncontracted Codazzi
equations 3 3
Vikjm— Vj kim = €;" Hnn. (388)
Here, H;; is the magnetic part of the Weyl curvature.

3. The lapse function ® of the maximal foliation is controlled through the lapse
equation B
AD—|k|>d=0. (389)

The contraction of the Codazzi equations gives the constraint equation
V7 kij—0;itrk = 0. (390)

Here, tr k = 0, consequently equations (388) are equivalent to the following Hodge-
type system for the symmetric trace-free tensor field k:
divk =0,

391
curlk = H. (391)

This is seen from the following remark.

Remark. Let S;; be a symmetric 2-covariant tensor field on a 3-manifold (M, g 7).
Consider B
€%V, Sp; = Cyj.

Then the antisymmetric part
is equivalent to its dual
1 ..
5 (C,'j — le') Gljm.
This is equal to

€€ Va Spy = (37 8L — g7° 8,8) Va Sy

=V/ Spmj — OmtrS.
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On the other hand the symmetric part is

1

5 (Cij + Cji) = (curl S);;
by definition.

4.2.7 Estimates for the geometric quantities associated to the null foliation {C,,}.
We proceed to discuss the recovery of the bootstrap assumptions concerning the null
foliation {C,, }.

Figure 26

The geometry of a given null hypersurface C,, is described in terms of its sections
{S¢..} by the maximal hypersurfaces #;. Let e3 be the unit outward normal to S;
in #;. Set

U= —ae;. (392)

The vector field U is characterized by the properties that it is tangential to the #;,
orthogonal to the {S; ,} foliation of each #; and satisfies

Uu=1.

Let {yo} be the 1-parameter group of diffeomorphisms generated by U. Then y,
maps S;, onto S; 4. Let eg be the unit future-directed timelike normal to #;.
Then

T=oe (Tt=1).

Let {1;} be the 1-parameter group of diffeomorphisms generated by L. Then v,
maps S, onto Sy ,. We introduce the normalized null normals e, e_ to S; ,, by

e =ep +e3, (393)
e_ = eg — e3.
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Then

L=de, (Lt=1),
L=de_ (Lt=1).

The geometry of a given C,, is described by:

1. The intrinsic geometry of its sections Sy, that is, the induced metric y and
corresponding Gauss curvature K.

2. The second fundamental form y of S;,, in Cy,. This measures the deformation
of S}, under displacement along its outgoing null normal e, which is intrinsic
to Cy,. Completing e, e_ witheq, A = 1,2, an arbitrary local frame for S; ,,,
X 1is given by

xaB = & (Ve, ey, ep). (394)

The stacking of the C,, in the foliation {C,} is described by:

3. The function a, where

a2=g"0;udju. (395)

That is, a is the lapse function of the foliation of each #; by the traces of the
level sets of u. The deformation of S;, under displacement along its incoming null
normal e_, which is transversal to C,,, is measured by X given by

Xup =8 (Ves e ep). (396)
We have
x=0+n x=-0+n (397)
where 0 is the second fundamental form of S; ,, relative to #;,
0ap = & (Ve, €3, ep), (398)

and 7 is the restriction of k, the second fundamental form of the maximal hypersurface
Hito Stu,

nap = (Ve €0,ep) = k(ea, ep). (399)
The estimate of k;; , therefore in particular of 74 g, has been discussed in the preceding
section. The estimate of y4p shall be outlined below. The intrinsic geometry of Sy ,,
is controlled by the equation for the Gauss curvature K:

1
K—i—ztr)(trl— 1 X=-p (400)

1

2

with p = %R(e_, e4+,e_,ey). Here y and X are the trace-free parts of y and y
respectively.



134 4 The global stability of Minkowski spacetime

We now outline the estimate of y. Recall that C,, is defined to be the inner
component of the boundary of the past of the surface S;, , on the final maximal
hypersurface #;,. Now, tr y satisfies the following propagation equation along each
generator of C,, (parametrized by 7):

1 dtry 1 5 a2
— ——==vtry— = (t — . 401
o o ~Vrx— 5 @t —Iil (401)
Here
1
v = —Eg(Ve+e+,e_), S0 Ve, ei =vey. (402)
We have
v =Vzlog® + S5, 6 =kazs. 403)

The propagation equation (401) is considered with a final condition on #;,, namely
tr y for the surface &;, .

Important fact. By virtue of the Einstein equations no curvature term appears on
the right-hand side of (401).

The propagation equation (401) is considered in conjunction with the null Codazzi

equations:
W B 1 X} Y 1
AaB —SWatry=e XAB—EGAUX_,BA- (404)

Here €4 = ky3 and 84 = %R(eA, ey+,e_,eyq). The equations (404) constitute an
elliptic system for y, given tr y. Because of the fact that there are no curvature terms
on the right-hand side of the propagation equation for tr y and the fact that one order
of differentiability is gained in inverting the 1% order elliptic operator (dj/(/ acting on
trace-free symmetric 2-covariant S;,, tensor fields) in (404), we are able to obtain
estimates for y which are of one order of differentiability higher than the estimates
for the spacetime curvature assumed.

To estimate a we consider the S; ,-tangential 1-form

{ =¥ loga—e. (405)
We have
4 = % g (Ve_ey, eq). (406)
We also define
ra =g (Veye,eq). (407)
We have

A=Y log® +e. (408)
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Now, with IT the projection to S; ,, it holds that
II[es, e-] = -2 (¢ —A). (409)

Thus (¢—A) is the obstruction to integrability of the distribution of orthogonal timelike
planes

{(Tp Stw) L: pe M. (410)

This manifests itself in the non-commutativity of the 1-parameter groups generated
by L and U:

L, Ul=®a@—2) # 0. @11)

We consider the mass aspect function, defined in general by

1
;L=—d%/§+K+Ztr)(trl. (412)

This reduces to the expression (331) when k;; = 0. The Hawking mass is defined in
general by

"1+ [ wyuya (413)
m=— — rytr
2 l6r Jg AT L Gy
and we have
_ 2m
r

The mass aspect function p satisfies along the generators of C,, the following prop-
agation equation:

1 du PR 5
5 trUX=20-(0 &0 -2¢-p

XA S 22 p) ws)
FE-0-0F oy —ewp) - JugliP
ey
Here,
O & Dan =5 OFals+¥ 5 Ca—yan dff )

is the trace-free part of the symmetrized covariant derivative of { in S; ,,.

Important fact. By virtue of the Einstein equations the right-hand side of (415) does
not contain derivatives of the curvature.
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The propagation equation (415) with final data on #;, , the mass aspect function
of the surface Sy, 4, is considered in conjunction with the following elliptic equation
for a on S;,, which is simply a re-writing of the definition of yu:

1
¢loga:—,u+dj/(fe+K+Ztr)(trl. (416)

Because of the fact that there are no curvature terms on the right-hand side of the
propagation equation for y and the fact that two orders of differentiability are gained
in inverting the 2" order elliptic operator 4X in (416), we are able to obtain estimates
for a which are of two orders of differentiability higher than the estimates for the
spacetime curvature assumed.

The equation of motion of surfaces on the final maximal hypersurface #;, , takes
in the general case the same form as in the special case where k;; = 0, namely

W= ji; 417)
however pu is now given by formula (412).

Remarks. 743 = kyp is the leading part of k;;, namely the part having the slowest
decay. In fact, n can only be bounded by:

7l < C {13! 3 4 € T} (418)

The weight functions 7, t—, are defined by

Ty =+14+u? 1 =+1+u2 (419)

Note that
trn+6=trk =0.

For the remaining components of k;; we derive the bounds
€] <C{eoti>t7% + 2132}, (420)

_s
5] <C{eot.? +e€5 17} 421)
On the other hand, we derive for y the bounds

|)?| < C ¢g I"_z,

422
)%trx—l‘fCeor_l. (422)

Consider the behavior on a given C, as t — oo. Then

r7] tends to a non-trivial limit,
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while
ré —0.
Since we have
x=0+n,
x=-0+n
it follows that
—trf — 1,

while

r — —r n tends to a non-trivial limit,

r ¥y —2rn tendsto anon-trivial limit.

In particular, |é |2 /(tr )2 tends to a non-trivial limit. Consequently, the surfaces S; ,,
on a given C,, do not become umbilical as t — oo. In fact, the last limit is proportional
to the amount of energy radiated per unit time per unit solid angle at a given retarded
time and a given direction.

4.2.8 Decomposition of a Weyl field with respect to the surfaces S;,. In con-
cluding our sketch of the proof of the global stability of Minkowski spacetime, we
shall show in detail some of the more delicate estimates in Step 2. The discussion
shall make use of the decomposition of a Weyl field and its associated Bel-Robinson
tensor with respect to the surfaces S; 4.

Consider the null frame e, e_ supplemented by e4, A = 1, 2, alocal frame field
for S . The components of a Weyl field W in such a frame are

agp = W (e4, e+, ep, e4), aup = Wlea, e-, ea, e-),
1 1
B = EW(EA, er, e_, er), B, = 5 W (eq, e—, e_, ey),
1 1
p = wa(e_,e+,e_,e+), Ge@m,63)==§ W (ea, ep, e, e4).

o, o are symmetric trace-free 2-covariant tensor fields on S; ,, B, B are 1-forms on
Stu, p,o are functions on S; .
Here, € is the area 2-form of S; ,,.

Each of o, o has two algebraically independent components,
each of 8, 8 has two components,
and p, o are two functions.

So, there are ten component-functions in all.
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The components of Q (W), the Bel-Robinson tensor associated to W, in the
(timelike) plane spanned by e, e_, are:

O (W) (e, e, e, e) =2af, (423)

O (W) (et. e, e, e ) =4|B]% (424)

O (W) (4, eq, e—, e_) =4 (p* + 0°), (425)

O (W) (e4. ex. eq, e2) = 4|BI%, (426)

O (W) (eq. eq. eq, ex) =2lal”. (427)

Note that eg = %(e+ + e_) is the unit future-directed normal to #;, and that

1

T=0®¢ = 5 D (ey +eo), (428)
_ 1

K=K+T = 3 ® (13 eq + tleo), (429)

the weight functions 7, 7_ being given by (419).

Recall now the controlling quantity £ = max{E1, E,}, where E; is defined in
(365) as the supremum over ¢ of an integral on J#; and E, in (366) as the supremum
over u of an integral on C,,.

In what follows we shall use the following notation. Let f, g be positive functions.
Then f ~ g denotes that there exists a constant C > 0 such that:

Cl'f<g=Cf
Let us consider the integrants in £ and the ones in E,. The integrants in E; are
O (W)(K.K, T.eq) forW =£oR,£4R,
0 W)K,K,K,eq) forW=%ErR, LofrR, LsELTR
and we have
QW) (K, K. T e0) ~ tilal> + 223 |B* + i (p* + o + [BI> + [a>)  (430)
QW)(K. K. K.e0) ~ tlaf + v*23 |BP + 221} (0 +02) + 1S (1B + lef?).

(431)
The integrants in E, are
O (W)(K. K. T.ey) forW=2LoR, £3R,
0 W)(K, K, K, eq) forW=2%LrR, £o0f7R, £sE£rR
and we have
QW) (K. K.T.ex) ~t2|B]> + 217 (0> + ) + 1 (1B + a®).  (432)

QW) K,K,K,ey) ~ rf|ﬁ|2 + rfri(pz +0%) + rfri|,3|2 + ri|oz|2. (433)
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4.2.9 Theborderline error integrals. We now show how some of the error integrals
in Step 2, requiring more careful treatment, are handled. These are the following:

1. y O (W =£oRor £3R)pys © 7% K7 T4 dyu,.,
Ix
2, (W =S£oRor £5R)ap,s D7 KV K% du,,
Ix
3. QW =2%rRor£olrRor £5€7R)upys O K K® dp,.
Uy

For the error integrals 1 the worst term is

5 O (W)apys ®r48 K¥ T8 dp,
Ix

because K)74p contains ti XA which is the part with the slowest decay. In fact
this is merely bounded pointwise by Ce;. Moreover, the leading part of the integrant
is obtained by taking the part of K with the largest weight, namely %CIDIJZFeJF, and the
%cbe_ partof T':

K ~
[u 08 AN g =Cer [ 10amec] 3 di.
1£3

Ix
Now, we have
Qap+- W) ={-2B&B+2y (p*+0>) }as.
Here, we denote
(X®Y)4B = X4V + yaxp — yap(x - y).

We estimate

[ B & Bl 2 dug
U

el (e (L e

§CE/1__2du=CE,

comparing with (432) and noting that fjozo =2 du = 7. Since the geometric mean
of the weights of 8, f in (432) is the weight of (p, 0), the term in (p, 0) in Q4p+—
can be estimated in the same way. We thus obtain

| error integrals 1| < C €1 E.
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For the error integrals 2 the worst term is
[0 amys D4 KYRY d
Ix

because )74 p contains 74 p which decays pointwise only like tlltjl. The lead-
ing part of this comes from the part of K¥ K® of the largest weight, namely from
(A @)2ctel el

[u Q4+ Da4B |t dp, < C € / |Qa++| 13 =" dug.
Ix

Ix

Now, we have
OQup++ =12V IBP+2pa—20*a}ss

where * denotes duality on S;,. We estimate

[ 16,00l 7t e
ut*

1 1
2 2
< /du =’ (/ 27 (0 +oz>) (/ at |a|2)
Cy Cy
SCE/rfszSCE,
comparing with (432). We thus find

| error integrals 2 | < C € E.

For the error integrals 3 the worst term is
K)~AB gy 16
/u Quays ©a*% K K% dyg
Ix

and the leading part of this comes from (1®)2t4e! €%, the part of K¥ K? of the
largest weight. Also, (K)frA B is pointwise bounded by Ce;. Hence, we have

/‘u 104B++ Orapl 14 dug < C € / |QaB++| T4 dpug.
Ix

Ix

Here, the terms 2y|8|? and 2(pa — o *a) in Q 4B+ + (see formula above) are on equal
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footing. We estimate

[ 1601wl et dn
U

1 1
2 2
< /du { 2 (/ o ri (p* + 02)) (/ rfL |a|2) }
Cy Cy
SCE/}?duECE

comparing with (433). A similar estimate holds for

[ 182t dig.
ut*

We thus find
| error integrals 3| < C ¢; E.

Note that in the error integrals 1 the principal part is Q 4 p+— multiplied by ri 748,
Thus only the trace-free relative to Sy, part of Q4p4+— enters. In any case, the
corresponding spacetime trace is 0. That is,

AB _
y*" Qupy— — Q4—4— =0.
————— N——
trace relative to S;.y  =4(p2+02)

The absence of an uncontrollable term linear in each of «, &, x is an instance of
the following general identity: For any three symmetric trace-free 2-dimensional
matrices A, B, C we have

tr(A BC)=0.

Equivalently, there is no product in the space of symmetric trace-free 2-dimensional
matrices, because for any two such matrices A, B we have

AB+BA—-tu(AB)I =0.

The leading role played by symmetric trace-free 2-dimensional matrices can be traced
back to the symbol of the Einstein equations. For, as we have seen in Chapter 2, the
space of dynamical degrees of freedom of the gravitational field at a point can be
identified with the space of such matrices.
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