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1. Summary of ETH talk contents

In this section let me summarize the contents of the talks at the ETH and Zürich.

(1) The first talk was on an extension of the Cameron Martin quasi-invariance
theorem to manifolds. This lecture is not contained in these notes. The
interested reader may consult Driver [39, 40] for the original papers. For
more expository papers on this topic see [41, 43]. (These papers are com-
plimentary to these notes.) The reader should also consult Hsu [80], Norris
[112], and Enchev and Stroock [56, 57] for the state of the art in this topic.

(2) The second lecture encompassed sections 1-2.3 of these notes. This is an
introduction to embedded submanifolds and the Riemannian geometry on
them which is induced from the ambient space.

(3) The third lecture covered sections 2.4-2.7. The topics were parallel trans-
lation, the development map, and the differential of the development map.
This was all done for smooth paths.

(4) The fourth lecture covered parts of sections 3 and 4. Here we touched
on stochastic development map and its differential. Integration by parts
formula for the path space and some spectral properties of an “Ornstein-
Uhlenbeck” like operator on the path space.

2. Manifold Primer

Conventions: Given two sets A and B, the notation f : A→ B will mean that f
is a function from a subset D(f) ⊂ A to B. (We will allow D(f) to be the empty set.)
The set D(f) ⊂ A is called the domain of f and the subset R(f) .

= f(D(f)) ⊂ B
is called the range of f. If f is injective we let f−1 : B → A denote the inverse
function with domain D(f−1) = R(f) and range R(f−1) = D(f). If f : A → B
and g : B → C, the g ◦ f denotes the composite function from A to C with domain
D(g ◦ f) .

= f−1(D(g)) and range R(g ◦ f) .
= g ◦ f(D(g ◦ f)) = g(R(f) ∩D(g)).

Notation 2.1. Throughout these notes, let E and V denote finite dimensional
vector spaces. A function F : E → V is said to be smooth if D(F ) is open in
E (empty set ok) and F : D(F ) → V is infinitely differentiable. Given a smooth
function F : E → V, let F 0(x) denote the differential of F at x ∈ D(F ). Explicitly,
F 0(x) denotes the linear map from E to V determined by

(2.1) F 0(x)a .
=

d

dt
|0F (x+ ta), ∀a ∈ E.
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2.1. Embedded Submanifolds. Rather than describe the most abstract setting
for Riemannian geometry, for simplicity we choose to restrict our attention to em-
bedded submanifolds of a Euclidean space E.1 Let N .

= dim(E).

Definition 2.2. A subset M of E (see Figure 1) is a d-dimensional embedded
submanifold of E iff for all m ∈M, there is a function z : E → RN such that:

(1) D(z) is an open neighborhood of E containing m,
(2) R(z) is an open subset of RN ,
(3) z : D(z)→ R(z) is a diffeomorphism (a smooth invertible map with smooth

inverse), and
(4) z(M ∩D(z)) = R(z) ∩ (Rd × {0}) ⊂ RN .
(We write Md if we wish to emphasize that M is a d-dimensional manifold.)

Figure 1. An embedded submanifold.

Notation 2.3. Given an embedded submanifold and diffeomorphism z as in the
above definition, we will write z = (z<, z>) where z< is the first d components
of z and z> consists of the last N − d components of z. Also let x : M → Rd
denote the function defined by: D(x) .

= M ∩ D(z), and x
.
= z<|D(x). Notice that

R(x) .
= x(D(x)) is an open subset of Rd and that x−1 : R(x) → D(x), thought

of as a function taking values in E, is smooth. The bijection x : D(x) → R(x) is
called a chart on M. Let A = A(M) denote the collection of charts on M. The
collection of charts A = A(M) is often referred to an Atlas for M.

Remark 2.4. The embedded submanifold M is made into a topological space using
the induced topology from E. With this topology, each chart x ∈ A(M) is a
homeomorphism from D(x) ⊂o M to R(x) ⊂o Rd.
Theorem 2.5 (A Basic Construction of Manifolds). Let F : E → RN−d be a smooth
function and M .

= F−1({0}) ⊂ E which we assume to be non-empty. Suppose that

1Because of the Whitney imbedding theorem (see for example Theorem 6-3 in Auslander and
MacKenzie [17]), this is actually not a restriction.
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F 0(m) : E → RN−d is surjective for all m ∈ M, then M is a d — dimensional
embedded submanifold of E.

Proof. We will begin by construction a smooth function G : E → Rd such that
(G,F )0(m) : E → RN = Rd × RN−d is invertible. To do this, let X = Nul(F 0(m))
and Y be a complementary subspace so that E = X⊕Y and let P : E → X be the
associated projection map. Notice that F 0(m) : Y → RN−d is a linear isomorphism
of vector spaces and hence

dim(X) = dim(E)− dim(Y ) = N − (N − d) = d.

In particular, X and Rd are isomorphic as vector spaces. Set G(m) = APm where
A : X → Rd is any linear isomorphism of vector spaces. Then for x ∈ X and y ∈ Y,

(G,F )0(m)(x+ y) = (G0(m)(x+ y), F 0(m)(x+ y))

= (AP (x+ y), F 0(m)y) = (Ax,F 0(m)y) ∈ Rd ×RN−d

from which it follows that (G,F )0(m) is an isomorphism.
By the implicit function theorem, there exists a neighborhood U ⊂o E of m

such that V := (G,F )(U) ⊂o RN and (G,F ) : U → V is a diffeomorphism. Let
z = (G,F ) with D(z) = U and R(z) = V then z is a chart of E about m satisfying
the conditions of Definition 2.2. Indeed, items 1) — 3) are clear by construction. If
p ∈M∩D(z) then z(p) = (G(p), F (p)) = (G(p), 0) ∈ R(z)∩(Rd×{0}) and p ∈ D(z)
is a point such that z(p) = (G(p), F (p)) ∈ R(z) ∩ (Rd × {0}), then F (p) = 0 and
hence p ∈M ∩D(z).
Example 2.6. Let gl(n,R) denote the set of all n×n real matrices. The following
are examples of embedded submanifolds.

(1) Any open subset M of E.
(2) Graphs of smooth functions. (Why? You should produce a chart z.)
(3) SN−1 .

= {x ∈ RN|x · x = 1}, take E = RN and F (x)
.
= x · x− 1.

(4) GL(n,R) .
= {g ∈ gl(n,R)|det(g) 6= 0}, see item 1.

(5) SL(n,R) .
= {g ∈ gl(n,R)|det(g) = 1}, take E = gl(n,R) and F (g)

.
=

det(g). Recall that

(2.2) det 0(g)A = det(g)tr(g−1A)

for all g ∈ GL(n,R). Let us recall the proof of Eq. (2.2). By definition we
have

det 0(g)A =
d

dt
|0 det(g + tA) = det(g)

d

dt
|0 det(I + tg−1A).

So it suffices to prove d
dt |0 det(I + tB) =tr(B) for all matrices B. Now

this is easily checked if B is upper triangular since then det(I + tB) =Qd
i=1(1 + tBii) and hence by the product rule,

d

dt
|0 det(I + tB) =

dX
i=1

Bii = tr(B).

This completes the proof because: 1) every matrix can be put into up-
per triangular form by a similarity transformation and 2) det and tr are
invariant under similarity transformations.
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(6) O(n)
.
= {g ∈ gl(n,R)|gtg = I}, take F (g)

.
= gtg − I thought of as a

function from E = gl(n,R) to S(n), the symmetric matrices in gl(n,R).
To show F 0(g) is surjective, show

F 0(g)(gB) = B +Bt for all g ∈ O(n) and B ∈ gl(n,R).
(7) SO(n)

.
= {g ∈ O(n)|det(g) = 1}, this is an open subset of O(n).

(8) M ×N, where M and N are embedded submanifolds.
(9) Tn .

= {z ∈ Cn : |zi| = 1 for i = 1, 2, . . . , n} = (S1)n.

Definition 2.7. Let E and V be two finite dimensional vector spaces andMd ⊂ E
and Nk ⊂ V be two embedded submanifolds. A function f :M → N is said to be
smooth if for all charts x ∈ A(M) and y ∈ A(N) the function y ◦f ◦x−1 : Rd → Rk
is smooth.

Exercise 2.8. Let Md ⊂ E and Nk ⊂ V be two embedded submanifolds as in
Definition 2.7.

(1) Show that a function f : Rk →M is smooth iff f is smooth when thought
of as a function from Rk to E.

(2) If F : E → V is a smooth function such that F (M ∩ D(F )) ⊂ N, show
that f .

= F |M :M → N is smooth.
(3) Show the composition of smooth maps between embedded submanifolds is

smooth.

Suppose that f : M → N is smooth, m ∈ M and n = f(m). Since M ⊂ E
and N ⊂ V are embeddded submanifolds, there are charts z and w on M and N
respectively such that m ∈ D(z) and n ∈ D(w). By shrinking the domain of z if
necessary, we may assmue that R(z) = U ×W where U ⊂o Rd and W ⊂o RN−d
in which case z(M ∩D(z)) = U × {0} . For ξ ∈ D(z), let F (ξ) := f(z−1(z<(ξ), 0)).
Then F : D(z)→ N is a smooth function such that F |M∩D(z) = f |M∩D(z). To see
that F is smooth, we notice that

w< ◦ F = w< ◦ f(z−1(z<(ξ), 0)) = w< ◦ f ◦ x−1 ◦ (z<(·), 0)
where x = z<|D(z)∩M . By assumption w< ◦ f ◦ x−1 is smooth and since ξ →
(z<(ξ), 0), it follows w< ◦ F is smooth showing F is smooth as claimed. Using a
partition of unity argument (which we omit), one may use these ideas to prove the
following fact.

Fact 2.9. Assuming the notation in Definition 2.7, a function f :M → N is smooth
iff there is a smooth function F : E → V such that f = F |M .

2.2. Tangent Planes and Spaces.

Definition 2.10. Given an embedded submanifoldM ⊂ E andm ∈M, let τmM ⊂
E denote the collection of all vectors v ∈ E such there exists a smooth curve
σ : (−�, �) → M with σ(0) = m and v = d

ds |0σ(s). The subset τmM is called the
tangent plane to M and m.

Theorem 2.11. For each m ∈ M, τmM is a d-dimensional subspace of E. If
z : E → RN is as in Definition 2.2, then τmM = nul(z0>(m)). If x is a chart on M
such that m ∈ D(x), then

{ d
ds
|0x−1(x(m) + sei)}di=1
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Figure 2. The tangent plane

is a basis for τmM, where {ei}di=1 is the standard basis for Rd.
Proof. Let σ : (−�, �)→M be a smooth curve with σ(0) = m and v = d

ds |0σ(s)
and z be a chart around m as in Definition 2.2. Then z>(σ(s)) = 0 for all s and
therefore,

0 =
d

ds
|0z>(σ(s)) = z0>(m)v

which shows that v ∈nul(z0>(m)), i.e. τmM ⊂nul(z0>(m)). Conversely, suppose that
v ∈nul(z0>(m)). Let w = z0<(m)v ∈ Rd and σ(s) := x−1(z<(m) + sw) ∈ M —
defined for s near 0. Then by definition σ0(0) ∈ τmM which implies nul(z0>(m)) ⊂
τmM =nul(z0>(m)) because σ0(0) = v. Indeed, differenitating the indentity z−1◦z =
id at m shows ¡

z−1
¢0
(z(m))z0(m) = I

and hence

σ0(0) =
d

ds
|0x−1(z<(m) + sw) =

d

ds
|0z−1(z<(m) + sw, 0)

=
¡
z−1

¢0
((z<(m), 0))(z

0
<(m)v, 0) =

¡
z−1

¢0
(z(m))z0(m)v

= v.

This completes the proof that τmM =nul(z0>(m)).
Since z0<(m) : τmM → Rd is a linear isomorphism, the above argument has also

shown, for any w ∈ Rd, that
d

ds
|0x−1(x(m) + sw) = (z0<(m)|τmM )

−1
w ∈ τmM.

In particular it follows that

{ d
ds
|0x−1(x(m) + sei)}di=1 = {(z0<(m)|τmM )

−1
ei}di=1

is a is a basis for τmM,
The following proposition is an easy consequence of Theorem 2.11 and the proof

of Theorem 2.5.

Proposition 2.12. Suppose that M is an embedded submanifold constructed as in
Theorem 2.5, then

τmM = nul{F 0(m)}.
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Exercise 2.13. Show:
(1) τmM = E, if M is an open subset of E.
(2) τgGL(n,R) = gl(n,R), for all g ∈ GL(n,R).
(3) τmS

N−1 = {m}⊥ for all m in the (N − 1)-dimensional sphere SN−1.
(4) τgSL(n,R) = {A ∈ gl(n,R)|tr(g−1A) = 0}.
(5) τgO(n) = {A ∈ gl(n,R)|g−1A is skew symmetric}. Hint: g−1 = gt for all

g ∈ O(n).
(6) if M ⊂ E and N ⊂ V are embedded submanifolds then

τ(m,n)(M ×N) = τmM × τnN ⊂ E × V.

Since it is quite possible that τmM = τm0M for some m 6= m0, with m and m0 in
M (think of the sphere), it is helpful to label each of the tangent planes with their
base point. For this reason we introduce the following definition.

Definition 2.14. The tangent space (TmM) to M at m is given by

TmM
.
= {m} × τmM ⊂M ×E.

Let
TM

.
= ∪m∈MTmM,

and call TM the tangent space (or tangent bundle) of M. A tangent vector
is a point vm ≡ (m, v) ∈ TM. Each tangent space is made into a vector space using
vector space operations: c(vm) ≡ (cv)m and vm + wm

.
= (v + w)m.

Exercise 2.15. Prove that TM is an embedded submanifold of E × E. Hint:
suppose that z : E → RN is a function as in the Definition 2.2. Define D(Z) .

=
D(z) × E and Z : D(Z) → RN × RN by Z(x, a)

.
= (z(x), z0(x)a). Use Z’s of this

type to check TM satisfies Definition 2.2.

Given a smooth curve σ : (−�, �)→M , let

σ0(0) .
= (σ(0),

d

ds
|0σ(s)) ∈ Tσ(0)M.

By definition, we know that all tangent vectors are constructed this way. Given a
chart x = (x1, x2, . . . , xd) on M and m ∈ D(x), let ∂/∂xi|m denote the element
TmM determined by ∂/∂xi|m = σ0(0), where σ(s) .

= x−1(x(m) + sei), i.e.

(2.3) ∂/∂xi|m = (m,
d

ds
|0x−1(x(m) + sei)),

see Figure 3. (The reason for this strange notation should become clear shortly.)
Because of Theorem 2.11, {∂/∂xi|m}di=1 is a basis for TmM.

Definition 2.16. Suppose that f :M → V is a smooth function, vm ∈ TmM , and
m ∈ D(f). Write

dfhvmi = d

ds
|0f(σ(s)),

where σ is any smooth curve in M such that σ0(0) = vm. We also write dfhvmi as
vmf. The function df : TM → V will be called the differential of f.

To understand the notation in (2.3), suppose that f = F ◦ x = F (x1, x2, . . . , xd)
where F : Rd → R is a smooth function and x is a chart on M. Then

∂f(m)/∂xi = (DiF )(x(m)),

where Di denotes the ith partial derivative of F.
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Figure 3. Forming a basis of tangent vectors.

Figure 4. The differential of f.

Remark 2.17 (Product Rule). Suppose that f : M → V and g : M → End(V ) are
smooth functions, then

vm(gf) =
d

ds
|0g(σ(s))f(σ(s)) = vmg · f(m) + g(m)vmf

or equivalently

d(gf)hvmi = dghvmif(m) + g(m)dfhvmi.
This last equation will be abbreviated d(gf) = dg · f + gdf.

Definition 2.18. Let f : M → N be a smooth map of embedded submanifolds.
Define the differential (f∗) of f by

f∗vm = (f ◦ σ)0(0) ∈ Tf(m)N,

where vm = σ0(0) ∈ TmM, and m ∈ D(f).

Lemma 2.19. The differentials defined in Definitions 2.16 and 2.18 are well de-
fined linear maps on TmM for each m ∈ D(f).
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Proof. I will only prove that f∗ is well defined, since the case of df is similar.
By Fact 2.9, there is a smooth function F : E → V, such that f = F |M . Therefore
by the chain rule

(2.4) f∗vm = (f ◦ σ)0(0) .
= (f(σ(0)),

d

ds
|0f(σ(s))) = (f(m), F 0(m)v),

where σ is a smooth curve in M such that σ0(0) = vm. It follows from (2.4) that
f∗vm does not depend on the choice of the curve σ. It is also clear from (2.4), that
f∗ is linear on TmM.

Remark 2.20. Suppose that F : E → V is a smooth function and that f .
= F |M .

Then as in the proof of the above lemma,

(2.5) dfhvmi = F 0(m)v

for all vm ∈ TmM , and m ∈ D(f). Incidentally, since the left hand sides of (2.4)
and (2.5) are defined “intrinsically,” the right members of (2.4) and (2.5) are inde-
pendent of the choice of the functions F extending f.

Lemma 2.21 (Chain Rules). Suppose thatM, N, and P are embedded submanifolds
and V is a finite dimensional vector space. Let f : M → N , g : N → P, and
h : N → V be smooth functions. Then:

(2.6) (g ◦ f)∗vm = g∗(f∗vm), ∀vm ∈ TM

and

(2.7) d(h ◦ f)hvmi = dhhf∗vmi, ∀vm ∈ TM.

These equations may be written more concisely as (g◦f)∗ = g∗f∗ and d(h◦f) = dhf∗
respectively.

Proof. Let σ be a smooth curve in M such that vm = σ0(0). Then, see Figure
5,

(g ◦ f)∗vm ≡ (g ◦ f ◦ σ)0(0) = g∗(f ◦ σ)0(0)
= g∗f∗σ0(0) = g∗f∗vm.

Similarly,

d(h ◦ f)hvmi ≡ d

ds
|0(h ◦ f ◦ σ)(s) = dhh(f ◦ σ)0(0)i

= dhhf∗σ0(0)i = dhhf∗vmi.

If f :M → V is a smooth function, x is a chart onM , andm ∈ D(f)∩ D(x), we
will write ∂f(m)/∂xi for hdf, ∂/∂xi|mi. An easy computation using the definitions
shows that dxih∂/∂xj |mi = δij , from which it follows that {dxi}di=1 is the dual
basis of {∂/∂xi|m}di=1. Therefore

dfhvmi =
dX
i=1

∂f(m)

∂xi
dxihvmi,

which we will be abbreviated as

(2.8) df =
dX
i=1

∂f

∂xi
dxi.
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Figure 5. The chain rule.

Suppose that f :Md → Nk is a smooth map of embedded submanifolds, m ∈M,
x is a chart onM such thatm ∈ D(x), and y is a chart onN such that f(m) ∈ D(y).
Then the matrix of

f∗m ≡ f∗|TmM : TmM → Tf(m)N

relative to the basis {∂/∂xi|m}di=1 of TmM and {∂/∂yj |f(m)}kj=1 of Tf(m)N is (∂(yj◦
f)(m)/∂xi). Indeed, if vm =

P
vi∂/∂xi|m, then

f∗vm =
kX

j=1

dyjhf∗vmi∂/∂yj |f(m)

=
kX

j=1

d(yj ◦ f)hvmi∂/∂yj |f(m) (by (2.7))

=
kX

j=1

dX
i=1

∂(yj ◦ f)(m)/∂xi · dxihvmi∂/∂yj |f(m) (by (2.8))

=
kX

j=1

dX
i=1

[∂(yj ◦ f)(m)/∂xi]vi∂/∂yj |f(m).

Example 2.22. Let M = O(n), k ∈ O(n), and f : O(n) → O(n) be defined by
f(g) ≡ kg. Then f is a smooth function on O(n) because it is the restriction of a
smooth function on gl(n,R). Given Ag ∈ TgO(n), by Eq. (2.4),

f∗Ag = (kg, kA) = (kA)kg

(In the future we denote f by Lk, Lk is left translation by k ∈ O(n).)

Exercise 2.23 (Continuation of Exercise 2.15). Show for each chart x on M that
the function

φ(vm)
.
= (x(m), dxhvmi) = x∗vm

is a chart on TM. Note that D(φ) .
= ∪m∈ D(x)TmM.
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The following lemma gives an important example of a smooth function on M
which will be needed when we consider the Riemannian geometry of M.

Lemma 2.24. Suppose that (E, (·, ·)) is an inner product space and the M ⊂ E
is an embedded submanifold. For each m ∈ M, let P (m) denote the orthogonal
projection of E onto τmM (the tangent plane to M and m) and Q(m) ≡ Id−P (m)
denote the orthogonal projection onto τmM⊥. Then P and Q are smooth functions
from M to gl(E), where gl(E) denotes the vector space of linear maps from E to
E.

Proof. Let z : E → RN be as in Definition 2.2. To simplify notation, let F (p) ≡
z>(p) for all p ∈ D(z), so that τmM = nulF 0(m) for all m ∈ D(x) = D(z) ∩M.
It is easy to check that F 0(m) : E → RN−d is surjective for all m ∈ D(x). It is now
an exercise in linear algebra to show that

(F 0(m)F 0(m)∗) : RN−d → RN−d

is invertible for all m ∈ D(x) and that
(2.9) Q(m) = F 0(m)∗(F 0(m)F 0(m)∗)−1F 0(m).

Since being invertible is an open condition, (F 0(·)F 0(·)∗) is invertible in an open
neighborhood N ⊂ E of D(x). Hence Q has a smooth extension Q̃ to N given by

Q̃(x) ≡ F 0(x)∗(F 0(x)F 0(x)∗)−1F 0(x).

Since Q| D(x) = Q̃| D(x) and Q̃ is smooth on N , Q| D(x) is also smooth. Since
z as in Definition 2.2 was arbitrary, it follows that Q is smooth on M. Clearly,
P ≡ id−Q is also a smooth function on M.

Definition 2.25. A local vector field Y on M is a smooth function Y :M → TM
such that Y (m) ∈ TmM for all m ∈ D(Y ), where D(Y ) is assumed to be an open
subset ofM. Let Γ(TM) denote the collection of globally defined (i.e. D(Y ) =M)
smooth vector-fields Y on M.

Note that ∂/∂xi are local vector-fields on M for each chart x ∈ A(M) and
i = 1, 2, . . . , d. The next exercise asserts that these vector fields are smooth.

Exercise 2.26. Let Y be a vector field on M and x ∈ A(M) be a chart on M.
Then

Y (m) ≡
X

dxihY (m)i∂/∂xi|m,
which we abbreviate as Y =

P
Y i∂/∂xi. Show that the condition that Y is smooth

translates into the statement that the functions Y i ≡ dxihY i are smooth on M.

Exercise 2.27. Let Y : M → TM, be a vector field. Then Y (m) = (m, y(m)) =
y(m)m for some function y : M → E such that y(m) ∈ τmM for all m ∈ D(Y ) =
D(y). Show that Y is smooth iff y :M → E is smooth.

Example 2.28. Let M = SL(n,R), and A ∈ gl(n,R) such that trA = 0. Then
Ã(g) ≡ (g, gA) for g ∈M is a smooth vector field on M.

Example 2.29. Keep the notation of Lemma 2.24. Let y :M → E be any smooth
function. Then Y (m) ≡ (m,P (m)y(m)) for all m ∈ M is a smooth vector-field on
M.
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Definition 2.30. Given Y ∈ Γ(TM) and f ∈ C∞(M), let Y f ∈ C∞(M) be defined
by (Y f)(m) ≡ dfhY (m)i, for all m ∈ D(f)∩ D(Y ). In this way the vector-field Y
may be viewed as a first order differential operator on C∞(M).

Exercise 2.31. Let Y andW be two smooth vector-fields onM. Let [Y,W ] denote
the linear operator on C∞(M) determined by

(2.10) [Y,W ]f ≡ Y (Wf)−W (Y f), ∀f ∈ C∞(M).

Show that [Y,W ] is again a first order differential operator on C∞(M) coming from
a vector-field. In particular, suppose that x is a chart on M and Y =

P
Y i∂/∂xi

and W =
P

W i∂/∂xi, then

(2.11) [Y,W ] =
X
(YW i −WY i)∂/∂xi on D(x).

Also prove

(2.12) [Y,W ](m) = (m, (Y w −Wy)(m)) = (m,dwhY (m)i− dyhW (m)i),
where Y (m) = (m, y(m)), W (m) = (m,w(m)) and y,w : M → E are smooth
functions such that y(m), w(m) ∈ τmM.
Hint: To prove (2.12): recall that f , y, and w have extensions to smooth func-

tions on E. To see that (Y w −Wy)(m) ∈ τmM for all m ∈ M, let z = (z<, z>)
be as in Definition 2.2. Then using 0 = (YW − WY )z> and the fact that
mixed partial derivatives commute, one learns that z0>(m){Y (m)w −W (m)y} =
z0>(m){dwhY (m)i− dyhW (m)i} = 0.

3. Riemannian Geometry Primer

In this section, we consider the following objects: 1) Riemannian metrics, 2)
Riemannian volume forms, 3) gradients, 4) divergences, 5) Laplacians, 6) covariant
derivatives, 7) parallel translations, and 8) curvatures.

3.1. Riemannian Metrics.

Definition 3.1. A Riemannian metric, h·, ·i, on M is a smoothly varying choice of
inner product, h·, ·im, on each of the tangent spaces TmM, m ∈ M. Where h·, ·i is
said to be smooth provided that the function (m → hX(m), Y (m)im) : M → R is
smooth for all smooth vector fields X and Y on M.

It is customary to write ds2 for the function on TM defined by

ds2hvmi .
= hvm, vmim.

Clearly, the Riemannian metric h·, ·i is uniquely determined by the function ds2.
Given a chart x on M and

vm =
X

dxihvmi∂/∂xi|m ∈ TmM,

then

(3.1) ds2hvmi =
X
i,j

h∂/∂xi|m, ∂/∂xj |mimdxihvmidxjhvmi.

We will abbreviate this equation in the future by writing

(3.2) ds2 =
X

gxijdx
idxj

where gxi,j(m)
.
= h∂/∂xi|m, ∂/∂xj |mim. Typically gxi,j will be abbreviated by gij if

no confusion is likely to arise.
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Example 3.2. Let M = RN and let x = (x1, x2, . . . , xN ) denote the standard
chart on M, i.e. x(m) = m for all m ∈ M. The standard Riemannian metric on
RN is determined by

ds2 =
X
i

(dxi)2,

i.e. gx is the identity matrix. The general Riemannian metric on RN is determined
by ds2 =

P
gijdx

idxj , where g = (gij) is smooth gl(N,R) valued function on RN ,
such that g(m) is positive definite for all m ∈ RN .
Example 3.3. Let M = SL(n,R), and define

(3.3) ds2hAgi .
= tr((g−1A)∗g−1A)

for all Ag ∈ TM. This metric is invariant under left translations, i.e. ds2hLk∗Agi =
ds2hAgi, for all k ∈M and Ag ∈ TM. While the metric

(3.4) ds2hAgi .
= tr(A∗A)

is not invariant under left translations.

Let M be an embedded submanifold of a finite dimensional inner product space
(E, (·, ·)). The manifold M inherits a metric from E determined by ds2hvmi =
(v, v) for all vm ∈ TM. It is a well known deep fact that all finite dimensional
Riemannian manifolds may be constructed in this way, see Nash [108] and Moser
[106, 107].

Remark 3.4. The metric in Eq. (3.4) of Example 3.3 is the inherited metric from
the inner product space E = gl(n,R) with inner product (A,B) .

= tr(A∗B).

To simplify the exposition, in the sequel we will assume that (E, (·, ·)) is an inner
product space, Md ⊂ E is an embedded submanifold, and the Riemannian metric
on M is determined by

hvm, wmi = (v, w), ∀vm, wm ∈ TmM and m ∈M.

In this setting the components gxi,j of the metric ds
2 relative to a chart x may be

computed as gxi,j(m) = (φ;i(x(m)), φ;j(x(m))), where φ
.
= x−1, φ;i(a)

.
= d

dt |0φ(a +
tei), and {ei}di=1 is the standard basis for Rd.
Example 3.5. LetM = R3 and choose spherical coordinates (r, θ, φ) for the chart,
see Figure 6, then

(3.5) ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2.

Here r, θ, and φ are taken to be functions on

R3 \ {p ∈ R3 : p2 = 0 and p1 > 0}.
Explicitly r(p) = |p|, θ(p) = cos−1(p3/|p|) ∈ (0, π), and φ(p) ∈ (0, 2π) is given by
φ(p) = tan−1(p2/p1) if p1 > 0 and p2 > 0 with similar formulas for (p1, p2) in the
other three quadrants of R2.

It would be instructive for the reader to compute components of the standard
metric relative to spherical coordinates using the methods just described. Here, I
will present a slightly different and perhaps more intuitive method.
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Figure 6. Spherical Coordinates.

Note that x1 = r sin θ cosφ, x2 = r sin θ sinφ, and x3 = r cos θ. Therefore

dx1 = ∂x1/∂rdr + ∂x1/∂θdθ + ∂x1/∂φdφ

= sin θ cosφdr + r cos θ cosφdθ − r sin θ sinφdφ,

dx2 = sin θ sinφdr + r cos θ sinφdθ + r sin θ cosφdφ,

and
dx3 = cos θdr − r sin θdθ.

An elementary calculation now shows that

ds2 =
3X
i=1

(dxi)2 = dr2 + r2dθ2 + r2 sin2 θdφ2.

From this last equation, we see that

(3.6) g(r,θ,φ) =

 1 0 0
0 r2 0
0 0 r2 sin2 θ

 .
Exercise 3.6. Let M .

= {x ∈ R3||x|2 = R2}, so that M is a sphere of radius
R in R3. By a similar computation or using the results of the above example, the
induced metric ds2 on M is given by

(3.7) ds2 = R2dθ2 +R2 sin2 θdφ2,

so that

(3.8) g(θ,φ) =

·
R2 0
0 R2 sin2 θ

¸
.

3.2. Integration and the volume measure.

Definition 3.7. Let f ∈ C∞c (M) (the smooth functions on Md with compact
support) and assume the support of f is contained in D(x), where x is some chart
on M. Set Z

M

fdx =

Z
R(x)

f ◦ x−1(a)da,

where da denotes Lebesgue measure on Rd.
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Figure 7. The Riemannian volume element.

The problem with this notion of integration is that (as the notation indicates)R
M
fdx depends on the choice of chart x. To remedy this, consider a small cube

C(δ) of side δ contained in R(x), see Figure 7. We wish to estimate “the volume”
of x−1(C(δ)). Heuristically, we expect the volume of x−1(C(δ)) to be approximately
equal to the volume of the parallelepiped P (δ) in the tangent space TmM deter-
mined by

P (δ) ≡ {
dX
i=1

siδ · φ;i(m)|0 ≤ si ≤ 1, for i = 1, 2, . . . , d},

where we are using the notation proceeding Example 3.5. Since TmM is an inner
product space, the volume of P (δ) may be defined. For example choose an isometry
θ : TmM → Rd and define the volume of P (δ) to be the volume of θ(P (δ)) in Rd.
Using this definition and the properties of the determinant, one shows that the
volume of P (δ) is δd

p
det g(m), where gij ≡ hφ;i(x(m)), φ;j(x(m))im = gxij(m).

Because of the above computation, it is reasonable to try to define a new integral
on M by Z

M

f dvol ≡
Z
M

f
√
gxdx,

where
√
gx ≡ √det gx—a smooth positive function on D(x).

Lemma 3.8. Suppose that y and x are two charts on M, then

(3.9) gyl,k =
X
i,j

gxi,j(∂x
i/∂yk)(∂xj/∂yl).

Proof. Inserting the identities

dxi =
X
k

∂xi/∂ykdyk

and
dxj =

X
l

∂xj/∂yldyl
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into the formula
ds2 =

X
i,j

gxi,jdx
idxj,

gives
ds2 =

X
i,j,k,l

gxi,j(∂x
i/∂yk)(∂xj/∂yl)dyldyk

from which (3.9) follows.

Exercise 3.9. Suppose that x and y are two charts on M and f ∈ C∞c (M) such
that the support of f is contained in D(x) ∩ D(y). Using Lemma 3.8 and the
change of variable formula show thatZ

f
√
gxdx =

Z
f
√
gydy.

Hence, it makes sense to define
R
f dvol as

R
f
√
gxdx. We summarize this definition

by writing

(3.10) dvol =
√
gxdx.

Because of Lemma 3.8 and Exercise 3.9, we may define the integral
R
M
f dvol for

any continuous function f onM with compact support. To this end, choose a finite
collection of charts {xi}mi=1 such that the support of f is contained in ∪mi=1 D(xi).
Define U1

.
= D(x1) and Ui .

= D(xi)\(∪i−1j=1 D(xj)) for i = 2, 3, . . . ,m. Let χi
.
= 1Ui

be the characteristic function of the set Ui and set fi
.
= χif. Then defineZ

M

f dvol .=
mX
i=1

Z
M

fi
√
gxidxi.

Because of the above exercise, it is possible to check that
R
M
f dvol is well defined

independent of the choice of charts {xi}mi=1.
Example 3.10. Let M = R3 with the standard Riemannian metric, and let x
denote the standard coordinates on M determined by x(m) = m for all m ∈ M.
Then dvol = dx. We may also easily express dvol is spherical coordinates. Using
(3.6),

p
g(r,θ,φ) = r2 sin θ and hence

dvol = r2 sin θdrdθdφ.

Similarly using Eq. (3.8), it follows that dvol = R2 sin θdθdφ is the volume element
on the sphere of radius R in R3.

Exercise 3.11. Compute the volume element of R3 in cylindrical coordinates.

3.3. Gradients, Divergence, and Laplacians. In the sequel, let M be a
Riemannian manifold, x be a chart on M, gij ≡ h∂/∂xi, ∂/∂xji, and ds2 =P

i,j gijdx
idxj .

Definition 3.12. Let gij denote the i,j-matrix element of the inverse matrix to
(gij).

Given f ∈ C∞(M) and m ∈ M, dfm ≡ df |TmM is a linear functional on TmM.
Hence there is a unique vector vm ∈ TmM such that dfm = hvm, ·im.
Definition 3.13. The vector vm above is called the gradient of f at m and will
be denoted by gradf(m).
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Exercise 3.14. Show that

(3.11) gradf(m) =
dX

i,j=1

gij(m)
∂f(m)

∂xi
∂

∂xj
|m ∀m ∈ D(x).

Notice that gradf is a vector field on M . Moreover, gradf is smooth as can be
seen from (3.11).

Remark 3.15. Suppose M ⊂ RN is an embedded submanifold with the induced
Riemannian structure. Let F : RN → R be a smooth function and set f ≡ F |M .

Then gradf(m) = (P (m)�∇F (m))m, where �∇F (m) denotes the usual gradient on
RN , and P (m) denotes orthogonal projection of RN onto τmM.

We now introduce the divergence of a vector field Y on M.

Lemma 3.16. To every smooth vector field Y on M there is a unique smooth
function divY on M such that

(3.12)
Z

Y f dvol = −
Z
divY · f dvol, ∀f ∈ C∞c (M).

Moreover on D(x),

(3.13) divY =
X
i

1√
g

∂(
√
gY i)

∂xi
=
X
i

{∂Y
i

∂xi
+

∂ log
√
g

∂xi
Y i}

where Y i ≡ dxihY i.
Proof. (Sketch) Suppose that f ∈ C∞c (M) such that the support of f is con-

tained in D(x). Because Y f =PY i∂f/∂xi,Z
Y f dvol =

Z X
Y i∂f/∂xi ·√gdx

= −
Z X

f
∂(
√
gY i)

∂xi
dx

= −
Z

f
X
i

1√
g

∂(
√
gY i)

∂xi
dvol,

where the second equality follows by an integration by parts. This shows that
if divY exists it must be given on D(x) by (3.13). This proves the uniqueness
assertion. Using what we have already proved, it is easy to conclude that the
formula for divY is chart independent. Hence we may define smooth function divY
on M using (3.13) in each coordinate chart x on M. It is then possible to show
(using a partition of unity argument) that this function satisfies (3.12).

Remark 3.17. We may write (3.12) as

(3.14)
Z
hY, gradfi dvol = −

Z
divY · f dvol, ∀f ∈ C∞c (M),

so that div is the negative of the formal adjoint of grad.

Lemma 3.18 (Integration by Parts). Suppose that Y ∈ Γ(TM), f ∈ C∞c (M), and
h ∈ C∞(M), then Z

M

Y f · h dvol =
Z
M

f{−Y h− hdivY } dvol.
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Proof. By the definition of divY and the product rule, we haveZ
M

fhdivY dvol = −
Z
M

Y (fh) dvol

= −
Z
M

{hY f + fY h} dvol.

Definition 3.19. Let ∆ : C∞(M) → C∞(M) be the second order differential
operator defined by

(3.15) ∆f ≡ div(gradf).
In a local chart x,

(3.16) ∆f =
1√
g

X
i,j

∂i{√ggij∂jf},

where ∂i = ∂/∂xi, g = gx,
√
g =
√
det g, and (gij) = (gij)−1.

Remark 3.20. The Laplacian may be characterized by the equation:Z
M

∆f · hdvol = −
Z
M

hgradf, gradhi dvol,

which is to hold for all f ∈ C∞(M) and g ∈ C∞c (M).

Example 3.21. Suppose that M = RN with the standard Riemannian metric
ds2 =

PN
i=1(dx

i)2, then the standard formulas

gradf =
NX
i=1

∂f/∂xi · ∂/∂xi

divY =
NX
i=1

∂Y i/∂xi

and

∆f =
NX
i=1

∂2f/(∂xi)2,

are easily verified, where f is a smooth function on RN and Y =
PN

i=1 Y
i∂/∂xi is

a smooth vector-field.

Exercise 3.22. Let M = R3, (r, θ, φ) be spherical coordinates on R3, ∂r = ∂/∂r,
∂θ = ∂/∂θ, and ∂φ = ∂/∂φ. Given a smooth function f and a vector-field Y =
Yr∂r + Yθ∂θ + Yφ∂φ on R3 verify:

gradf = (∂rf)∂r +
1

r2
(∂θf)∂θ +

1

r2 sin2 θ
(∂φf)∂φ,

divY =
1

r2 sin θ
{∂r(r2 sin θYr) + ∂θ(r

2 sin θYθ) + r2 sin θ∂φYφ}

=
1

r2
∂r(r

2Yr) +
1

sin θ
∂θ(sin θYθ) + ∂φYφ,

and

∆f =
1

r2
∂r(r

2∂rf) + +
1

r2 sin θ
∂θ(sin θ∂θf) +

1

r2 sin2 θ
∂2φf.
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Figure 8. Levi-Civita covariant derivative.

3.4. Covariant Derivatives and Curvature. This section is motivated by the
desire to have the notion of the derivative of a smooth path W (s) ∈ TM. On one
hand, since TM is a manifold, we may writeW 0(s) as an element of TTM. However,
this is not what we will want for later purposes. We would like the derivative of
W to be again a curve back in TM, not in TTM. In order to construct such a
derivative, we will have to use more than just the manifold structure of M.
In the sequel, we assume that Md is an embedded submanifold of an inner

product space (E, (·, ·)), and that M is equipped with the inherited Riemannian
metric. Also let P (m) denote orthogonal projection of E onto τmM for all m ∈M
and Q(m)

.
= id− P (m) be orthogonal projection onto (τmM)⊥.

Definition 3.23 (Levi-Civita Covariant Derivative). Let W (s) = (σ(s), w(s)) =
w(s)σ(s) be a smooth path in TM, define

(3.17) ∇W (s)/ds
.
= (σ(s), P (σ(s))

d

ds
w(s)).

that ∇W (s)/ds is still a smooth path in TM, see Figure 8.

Proposition 3.24 (Properties of ∇). Let W (s) = (σ(s), w(s)) and V (s) =
(σ(s), v(s)) be two smooth paths in TM “over” σ in M. Then ∇W (s)/ds may
be computed as:

(3.18) ∇W (s)/ds
.
= (σ(s),

d

ds
w(s) + (dQhσ0(s)i)w(s)),

and ∇ is Metric compatible, i.e.

(3.19)
d

ds
hW (s), V (s)i = h∇W (s)/ds, V (s)i+ hW (s),∇V (s)/dsi.

Now suppose that (s, t) → σ(s, t) is a smooth function into M and the W (s, t) =
(σ(s, t), w(s, t)) is a smooth function into TM. (Notice by assumption that
w(s, t) ∈ Tσ(s,t)M for all (s, t).) Let σ0(s, t) .

= (σ(s, t), d
dsσ(s, t)) and σ̇(s, t) =
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(σ(s, t), d
dtσ(s, t)). Then:

(3.20) ∇σ0/dt = ∇σ̇/ds (Zero Torsion)

(3.21) [∇/dt,∇/ds]W .
= (
∇
dt

∇
ds
− ∇

ds

∇
dt
)W = Rhσ̇, σ0iW

where R is the curvature tensor of ∇ given by
(3.22) Rhum, vmiwm = (m, [dQhumi, dQhvmi]w)
and

[dQhumi, dQhvmi] .= (dQhumi)dQhvmi− (dQhvmi)dQhumi.
Proof. To prove (3.18), differentiate the equation P (σ(s))w(s) = w(s) relative

to s to learn that

(dP hσ0(s)i)w(s) + P (σ(s))
d

ds
w(s) =

d

ds
w(s),

so that

P (σ(s))
d

ds
w(s) =

d

ds
w(s)− (dP hσ0(s)i)w(s) = d

ds
w(s) + (dQhσ0(s)i)w(s),

where in the last equality we have used the fact that Q + P = id. The above
displayed equation clearly implies (3.18).
For (3.19) just compute:

d

ds
hW (s), V (s)i = d

ds
(w(s), v(s))

= (
d

ds
w(s), v(s)) + (w(s),

d

ds
v(s))

= (
d

ds
w(s), P (σ(s))v(s)) + (P (σ(s))w(s),

d

ds
v(s))

= (P (σ(s))
d

ds
w(s), v(s)) + (w(s), P (σ(s))

d

ds
v(s))

= h∇W (s)/ds, V (s)i+ hW (s),∇V (s)/dsi,
where the third equality relies on v(s) and w(s) being in Tσ(s)M and the forth
equality on the orthogonality of the projection P (σ(s)).
A direct computation using the definitions shows that

∇σ0(s, t)/dt = (σ(t, s), P (σ(s, t)) ∂2

∂t∂s
σ(t, s)).

Since mixed partial derivatives commute we have

∇σ0(s, t)/dt = (σ(t, s), P (σ(s, t)) ∂2

∂s∂t
σ(t, s)) = ∇σ̇(s, t)/ds,

which proves (3.20).
For Eq. (3.21) note that,

∇
dt

∇
ds

W (s, t) =
∇
dt
(σ(s, t),

d

ds
w(s, t) + (dQhσ0(s, t)i)w(s, t))

= (σ(s, t), η+(s, t))
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where (with the arguments (s, t) suppressed from the notation)

η+ =
d

dt
{ d
ds

w + (dQhσ0i)w}+ dQhσ̇i{ d
ds

w + (dQhσ0i)w}

=
d

dt

d

ds
w + [

d

dt
(dQhσ0i)]w + dQhσ0i d

dt
w + dQhσ̇i d

ds
w + dQhσ̇i(dQhσ0i)w.

Therefore
[∇/dt,∇/ds]W = (σ, η+ − η−),

where η− is defined the same as η+ with all s and t derivatives interchanged. Hence,
it follows using that fact that d

dt
d
dsw =

d
ds

d
dtw that

[∇/dt,∇/ds]W = (σ, [
d

dt
(dQhσ0i)]w − [ d

ds
(dQhσ̇i)]w + [dQhσ̇i, dQhσ0i]w).

The proof is finished because

[
d

dt
(dQhσ0i)]w − [ d

ds
(dQhσ̇i)]w = [ d

dt

d

ds
(Q ◦ σ)]w − [ d

ds

d

dt
(Q ◦ σ)]w = 0.

Example 3.25. Let M = {x ∈ RN : |x| = ρ} be the sphere of radius ρ. In this
case Q(m) = 1

ρ2mmt for all m ∈M. Therefore

dQhvmi = 1

ρ2
{vmt +mvt},

for all vm ∈ TmM. Thus

dQhumidQhvmi = 1

ρ4
{umt +mut}{vmt +mvt}

=
1

ρ4
{ρ2uvt + (u · v)Q(m)}.

Therefore for the sphere of Radius ρ the curvature tensor is given by

Rhum, vmiwm = (m,
1

ρ2
{uvt − vut}w) = (m,

1

ρ2
{(v · w)u− (u · w)v}).

Exercise 3.26. Show the curvature tensor of a cylinder (M = {(x, y, z) ∈ R3|x2+
y2 = 1}) is zero.
Definition 3.27 (Covariant Derivative on Γ(TM)). Suppose that Y is a vector
field on M and vm ∈ TmM. Define ∇vmY ∈ TmM by

∇vmY
.
= ∇Y (σ(s))/ds|s=0,

where σ is any smooth curve in M such that σ0(0) = vm. Notice that if Y (m) =
(m,y(m)), then

∇vmY = (m,P (m)dyhvmi) = (m, dyhvmi+ dQhvmiy(m)),
so that ∇vmY is well defined.

The following proposition relates curvature and torsion to the covariant deriva-
tive ∇ on vector fields.
Proposition 3.28. Let m ∈ M, v ∈ TmM, X, Y,Z ∈ Γ(TM), and f ∈ C∞(M),
then

1. Product Rule:: ∇v(fX) = dfhvi ·X(m) + f(m)∇vX,
2. Zero Torsion:: ∇XY −∇YX − [X,Y ] = 0,
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3. Zero Torsion:: For all vm, wm ∈ TmM, dQhvmiwm = dQhwmivm, and
4. Curvature Tensor:: RhX,Y iZ = [∇X ,∇Y ]Z−∇[X,Y ]Z, where [∇X ,∇Y ]Z ≡
∇X(∇Y Z)−∇Y (∇XZ).

Proof. The product rule is easily checked and may be left to the reader. For
the second and third items, write X(m) = (m,x(m)), Y (m) = (m, y(m)), and
Z(m) = (m, z(m)) where x, y, z : M → RN are smooth functions such that x(m),
y(m), and z(m) are in τmM for all m ∈M. Then using Eq. (2.12), we have

(∇XY −∇YX)(m) = (m,P (m)(dyhX(m)i− dxhY (m)i))
= (m, (dyhX(m)i− dxhY (m)i)) = [X,Y ](m),

which proves the second item. Noting that (∇XY )(m) is also given by
(∇XY )(m) = (m, dyhX(m)i+dQhX(m)iy(m)), this last equation may be expressed
as dQhX(m)iy(m) = dQhY (m)ix(m) which implies the third item.
Similarly for the last item:

∇X∇Y Z = ∇X(·, Y z + (Y Q)z)
= (·,XY z + (XYQ)z + (Y Q)Xz + (XQ)(Y z + (Y Q)z)),

where Y Q ≡ dQhY i and Y z ≡ dzhY i. InterchangingX and Y in this last expression
and then subtracting gives:

[∇X ,∇Y ]Z = (·, [X,Y ]z + ([X,Y ]Q)z + [XQ,Y Q]z)

= ∇[X,Y ]Z +RhX,Y iZ.

3.5. Formulas for the Divergence and the Laplacian.

Theorem 3.29. Let Y be a vector field on M, then

(3.23) divY = tr(∇Y ).
(Note: (vm → ∇vmY ) ∈ End(TmM) for each m ∈M, so it makes sense to take the
trace.) Consequently, if f is a smooth function on M, then

(3.24) ∆f = tr(∇gradf).
Proof. Let x be a chart on M , ∂i

.
= ∂/∂xi, ∇i

.
= ∇∂i , and Y i .

= dxihY i. Then
by the product rule and the fact that ∇ is Torsion free (item 2. of the Proposition
3.28),

∇iY =
X
j

∇i(Y
j∂j) =

X
j

(∂iY
j∂j + Y j∇i∂j),

and ∇i∂j = ∇j∂i. Hence,

tr(∇Y ) =
dX
i=1

dxih∇iY i =
X
i

∂iY
i +

X
i,j

dxihY j∇i∂ji

=
X
i

∂iY
i +

X
i,j

dxihY j∇j∂ii.

Therefore, according to Eq. (3.13), to finish the proof it suffices to show thatX
i

dxih∇j∂ii = ∂j log
√
g.
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Now

∂j log
√
g =

1

2
∂j log(det g) =

1

2
tr(g−1∂jg)

=
1

2

X
k,l

gkl∂jgkl,

and using (3.19),

∂jgkl = ∂jh∂k, ∂li = h∇j∂k, ∂li+ h∂k,∇j∂li.
Combining the two above equations along with the symmetry of gkl,

∂j log
√
g =

X
k,l

gklh∇j∂k, ∂li =
X
k

dxkh∇j∂ki,

where we have used X
k

gklh·, ∂li = dxk.

This last equality is easily verified by applying both sides of this equation to ∂i for
i = 1, 2, . . . , n.

Definition 3.30 (One forms). A one form ω onM is a smooth function ω : TM →
R such that ωm ≡ ω|TmM is linear for all m ∈ M. Note: if x is a chart of M with
m ∈ D(x), then

ωm =
X

ωi(m)dx
i|TmM ,

where ωi ≡ ωh∂/∂xii. The condition that ω be smooth is equivalent to the condition
that each of the functions ωi is smooth on M. Let Ω1(M) denote the smooth one-
forms on M.

Given a ω ∈ Ω1(M), there is a unique vector field X on M such that ωm =
hX(m), ·im for all m ∈M. Using this observation, we may extend the definition of
∇ to one forms by requiring
(3.25) ∇vmω ≡ (∇vmX, ·) ∈ T ∗mM ≡ (TmM)∗.
Lemma 3.31 (Product Rule). Keep the notation of the above paragraph. Let
Y ∈ Γ(TM), then

(3.26) vm(ωhY i) = (∇vmω)hY (m)i+ ωh∇vmY i.
Moreover, if θ :M → (RN )∗ is a smooth function and

ωhvmi ≡ θ(m)v

for all vm ∈ TM, then

(3.27) (∇vmω)hwmi = dθhvmiw − θ(m)dQhvmiw = (d(θP )hvmi)w,
where (θP )(m) ≡ θ(m)P (m) ∈ (RN )∗.
Proof. Using the metric compatibility of ∇,

vm(ωhY i) = vm(hX,Y i) = h∇vmX,Y (m)i+ hX(m),∇vmY i
= (∇vmω)hY (m)i+ ωh∇vmY i.
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Writing Y (m) = (m, y(m)) = y(m)m and using (3.26), it follows that

(∇vmω)hY (m)i = vm(ωhY i)− ωh∇vmY i
= vm(θ(·)y(·))− θ(m)(dyhvmi+ dQhvmiy(m))
= (dθhvmi)y(m)− θ(m)(dQhvmi)y(m).

Choosing Y such that Y (m) = wm proves the first equality in(3.27). The second
equality in (3.27) is a simple consequence of the formula

d(θP ) = dθh·iP + θdP = dθh·iP − θdQ.

Definition 3.32. For f ∈ C∞(M) and vm, wm in TmM , let

∇dfhvm, wmi ≡ (∇vmdf)hwmi,
so that

∇df : ∪m∈M (TmM × TmM)→ R.
We call ∇df the Hessian of f.
In the next lemma, ∂v will denote the vector field on RN defined by ∂v(x) =

vx =
d
dt |0(x+ tv). So if F ∈ C∞(RN), then (∂vF )(x) ≡ d

dt |0F (x+ tv).

Lemma 3.33. Let f ∈ C∞(M) and F ∈ C∞(RN ) such that f = F |M .

(1) If X,Y ∈ Γ(TM), then ∇dfhX,Y i = XY f − dfh∇XY i.
(2) If vm, wm ∈ TmM then

∇dfhvm, wmi = F 00(m)hv, wi− F 0(m)dQhvmiw,
where F 00(m)hv, wi ≡ (∂v∂wF )(m) for all v, w ∈ RN .

(3) If vm, wm ∈ TmM then

∇dfhvm, wmi = ∇dfhwm, vmi.
Proof. Using the product rule (Eq. (3.26)):

XY f = X(dfhY i) = (∇Xdf)hY i+ dfh∇XY i,
so that

∇dfhX,Y i = (∇Xdf)hY i = XY f − dfh∇XY i.
This proves item 1. From this last equation and Proposition 3.28 (∇ has zero
torsion), it follows that

∇dfhX,Y i−∇dfhY,Xi = [X,Y ]f − dfh∇XY −∇YXi = 0.
This proves the third item upon choosing X and Y such that X(m) = vm and
Y (m) = wm. Item 2 follows easily from Lemma 3.31 applied to θ = F 0.

Corollary 3.34. Suppose that F ∈ C∞(RN ), f ≡ F |M , and m ∈ M. Let {ei}di=1
be an orthonormal basis for τmM and let {Ei}di=1 be an orthonormal frame near
m ∈M. That is each Ei is a smooth local vector field onM defined in a neighborhood
N of m such that {Ei(p)}di=1 is an orthonormal basis for TpM for p ∈ N . Then

(3.28) ∆f(m) =
dX
i=1

∇dfhEi(m), Ei(m)i
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or equivalently

(3.29) ∆f(m) =
dX
i=1

{EiEif)(m)− dfh∇Ei(m)Eii},

and

(3.30) ∆f(m) =
dX
i=1

F 00(m)hei, eii− F 0(m)hdQheiieii.

Proof. By Theorem 3.29, ∆f =
Pd

i=1(∇Eigradf,Ei) and by Eq. (3.25),
∇Eidf = (∇Eigradf, ·). Therefore

∆f =
dX
i=1

(∇Eidf)hEii =
dX
i=1

∇dfhEi, Eii,

which proves (3.28). Eqs. (3.29) and (3.30) follow form (3.28) and Lemma 3.33.

3.6. Parallel Translation. Let π : TM → M denote the projection defined by
π(vm) = m for all vm = (m, v) ∈ TM. We say a smooth curve s→ V (s) in TM is
a vector-field along a smooth curve s→ σ(s) in M if π ◦ V (s) = σ(s) for all s,
i.e. V (s) ∈ Tσ(s)M for all s. Note that if V is a smooth curve in TM then V is a
vector-field along σ ≡ π ◦ V.
Definition 3.35. Let V be a smooth curve in TM. V is said to parallel or co-
variantly constant iff ∇V (s)/ds ≡ 0.
Theorem 3.36. Let σ be a smooth curve in M and (v0)σ(0) ∈ Tσ(0)M. Then
there exists a unique smooth vector field V along σ such that V is parallel and
V (0) = (v0)σ(0). Moreover hV (s), V (s)i = h(v0)σ(0), (v0)σ(0)i for all s.
Proof. First note that if V is parallel then

d

ds
hV (s), V (s)i = 2h∇V (s)/ds, V (s)i = 0,

so the last assertion of the theorem is true.
If a parallel vector field V (s) = (σ(s), v(s)) along σ(s) is to exist, then

(3.31) dv(s)/ds+ dQhσ0(s)iv(s) = 0 and v(0) = v0.

By existence and uniqueness of solutions to ordinary differential equations, there is
exactly one solution to (3.31). Hence, if V exists it is unique.
Now let v be the unique solution to (3.31) and set V (s) ≡ (σ(s), v(s)). To finish

the proof it suffices to show that v(s) ∈ τσ(s)M. Equivalently, we must show that
w(s) ≡ q(s)v(s) is identically zero, where q(s) ≡ Q(σ(s)). To simplify notation, I
will write v0(s) for dv(s)/ds and p(s) for P (σ(s)). Notice that w(0) = 0 and that

w0 = q0v + qv0 = q0v − qq0v = pq0v,

where we have used the differential equation for v and the fact that q0 = dQhσ0i.
Now differentiating the equation 0 = pq implies that pq0 = −p0q = q0q. Therefore
w solves the linear differential equation

w0 = q0w = dQhσ0iw with w(0) = 0,

and hence by uniqueness of solutions w ≡ 0.
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Definition 3.37. Given a smooth curve σ, let //s(σ) : Tσ(0)M → Tσ(s)M be
defined by //s(σ)(v0)σ(0) = V (s), where V is the unique vector parallel vector field
along σ such that V (0) = (v0)σ(0). We call //s(σ) parallel translation along σ
up to s.

Remark 3.38. Notice that //s(σ)vσ(0) = (u(s)v)σ(0), where s → u(s) ∈
End(τσ(0)M,RN ) is the unique solution to the differential equation

(3.32) u0(s) + dQhσ0(s)iu(s) = 0 with u(0) = u0,

where u0v ≡ v for all v ∈ τσ(0)M. Because of Theorem 3.36, u(s) : τσ(0)M → RN is
an isometry for all s and the range of u(s) is τσ(s)M.

The remainder of this section discusses a covariant derivative on M ×RN which
“extends” ∇ defined above. This will be needed in Section 4, where it will be
convenient to have a covariant derivative on the “normal bundle”

N(M) ≡ ∪m∈M ({m} × τmM
⊥) ⊂M ×RN .

Analogous to the definition of ∇ on TM, it is reasonable to extend ∇ to the
normal bundle N(M) by setting

∇V (s)/ds = (σ(s),Q(σ(s))v0(s)) = (σ(s), v0(s) + dP hσ0(s)iv(s)),
for all smooth curves s → V (s) = (σ(s), v(s)) in N(M). Then this covariant de-
rivative on the normal bundle satisfies analogous properties to ∇ on the tangent
bundle TM. These two covariant derivatives can be put together to make a covari-
ant derivative on M × RN . Explicitly, if V (s) = (σ(s), v(s)) is a smooth curve in
M ×RN , let p(s) ≡ P (σ(s)), q(s) ≡ Q(σ(s)), and

∇V (s)/ds ≡ (σ(s), p(s) d
ds
{p(s)v(s)}+ q(s)

d

ds
{q(s)v(s)})

= (σ(s),
d

ds
{p(s)v(s)}+ q0(s)p(s)v(s)

+
d

ds
{q(s)v(s)}+ p0(s)q(s)v(s))

= (σ(s), v0(s) + q0(s)p(s)v(s) + p0(s)q(s)v(s))

= (σ(s), v0(s) + dQhσ0(s)iP (σ(s))v(s) + dP hσ0(s)iQ(σ(s))v(s)).
This may be written as

(3.33) ∇V (s)/ds = (σ(s), v0(s) + Γhσ0(s)iv(s))
where

(3.34) Γhwmiv ≡ dQhwmiP (m)v + dP hwmiQ(m)v
for all wm ∈ TM and v ∈ RN .
It should be clear from the above computation that the covariant derivative

defined in (3.33) agrees with those already defined on on TM and N(M). Many of
the properties of the covariant derivative on TM follow quite naturally from this
fact and Eq. (3.33).

Lemma 3.39. For each wm ∈ TM, Γhwmi is a skew symmetric N × N-matrix.
Hence, if u(s) is the solution to the differential equation

(3.35) u0(s) + Γhσ0(s)iu(s) = 0 with u(0) = I,

then u is an orthogonal matrix for all s.
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Proof. Since Γ = dQP + dPQ and P and Q are orthogonal projections and
hence symmetric, the adjoint Γtr of Γ is given by Γtr = PdQ+QdP. Thus Γtr = −Γ
because PdQ = −dPQ and QdP = −dQP. Hence Γ is a skew-symmetric valued
one form. Now let u denote the solution to (3.35) and A(s) ≡ Γhσ0(s)i. Then

d

ds
utru = (−Au)tru+ utr(−Au) = utr(A−A)u = 0,

which shows that utr(s)u(s) = utr(0)u(0) = I for all s.

Lemma 3.40. Let u be the solution to (3.35). Then

(3.36) u(s)(τσ(0)M) = τσ(s)M

and

(3.37) u(s)(τσ(0)M)
⊥ = τσ(s)M

⊥.

In particular, if v ∈ τσ(0)M (v ∈ τσ(0)M
⊥) then V (s) ≡ (σ(s), u(s)v) is the parallel

vector field along σ in TM (N(M)) such that V (0) = vσ(0).

Proof. Let p(s) = P (σ(s)) and q(s) ≡ Q(σ(s)), so that Γhσ0i = q0p+ p0q. Then
making use of the identities pq0 = −p0q and q0p = −qp0, it follows that

d

ds
{utrpu} = utr{(q0p+ p0q)p+ p0 − p(q0p+ p0q)}u

= utr{q0p+ p0 + pq0}u
= utr{−p0p+ p0 − pp0}u
= utr{(p− p2)0}u = 0.

Therefore, utr(s)p(s)u(s) = p(0) for all s. By Lemma 3.39, utr = u−1, so

p(s)u(s) = u(s)p(0) ∀s.
This last equation is equivalent to (3.36). Eq. (3.37) has completely analogous
proof or can be seen easily from the fact that p+ q = I.

3.7. Smooth Development Map. To avoid technical complications of possible
explosions to certain differential equations, we will assume for the remainder of this
chapter that M is a compact manifold. Let o ∈M be a fixed base point.

Theorem 3.41 (Development Map). Suppose that b is a smooth curve in T0M
such that b(0) = 0o ∈ ToM. Then there exists a unique smooth curve σ in M such
that

(3.38) σ0(s) ≡ (σ(s), dσ(s)/ds) = //s(σ)b
0(s) and σ(0) = o,

where //s(σ) denotes parallel translation along σ and b0(s) = (o, db(s)/ds) ∈ ToM.

Proof. In the proof, I will not distinguish between b0(s) and db(s)/ds. The
meaning should be clear from the context. Suppose that σ is a solution to (3.38)
and //s(σ)vo = (o, u(s)v), where u(s) : τoM → RN . Then u satisfies the differential
equation

(3.39) du(s)/ds+ dQhσ0(s)iu(s) = 0 with u(0) = u0,

where u0v ≡ v for all v ∈ τ0M . Hence (3.38) is equivalent to the following pair of
coupled ordinary differential equations:

(3.40) dσ(s)/ds = u(s)b0(s) with σ(0) = o,
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and

(3.41) du(s)/ds+ dQh(σ(s), u(s)b0(s)iu(s) = 0 with u(0) = u0.

Therefore the uniqueness assertion follows from standard uniqueness theorems for
ordinary differential equations.
For existence, first notice that by looking at the proof of Lemma 2.24, that Q

has an extension to a neighborhood in RN of m ∈ M in such a way that Q(x) is
still an orthogonal projection onto nul(F 0(x)), where F (x) = z>(x) is as in Lemma
2.24. Hence for small s, we may define σ and u to be the unique solutions to (3.40)
and (3.41) with values in RN and End(τ0M,RN ) respectively. The key point now
is to show that σ(s) ∈M and that the range of u(s) is τσ(s)M.
Using the same proof as in Theorem 3.36, it is easy to show that w(s) ≡

Q(σ(s))u(s) solves the differential equation

dw(s)/ds = dQhσ0(s)iw(s) with w(0) = 0,

so that w ≡ 0. Thus
ranu(s) ⊂ nulQ(σ(s)) = nulF 0(σ(s)),

and hence

dF (σ(s))/ds = F 0(σ(s))dσ(s)/ds = F 0(σ(s))u(s)b0(s) = 0

for small s. Since F (σ(0)) = F (o) = 0, it follows that F (σ(s)) = 0 and that
σ(s) ∈M. So we have shown that there is a solution (σ, u) to (3.40) and (3.41) for
small s such that σ stays inM and u(s) is parallel translation along s. By standard
methods, there is a maximal solution (σ, u) with these properties. Notice that (σ, u)
is a path in M × Iso(T0M,RN ), where Iso(T0M,RN ) is the set of isometries from
T0M to RN . Since M × Iso(T0M,RN ) is a compact space, (σ, u) can not exploded.
Therefore (σ, u) is defined on the same interval where b is defined.

3.8. The Differential of Development Map and Its Inverse. Let

Wo ≡ {b ∈ C([0, 1]→ ToM)|b(0) = 0o ∈ ToM},
W∞o ≡Wo ∩ C∞([0, 1]→ ToM),

Wo(M) ≡ {σ ∈ C([0, 1]→M)|σ(0) = o},
and

W∞o (M) ≡W0(M) ∩ C∞([0, 1]→M).

Let φ :W∞o →W∞o (M) be the map b→ σ, where σ is the solution to (3.38). It is
easy to construct the inverse map Ψ ≡ φ−1. Namely, Ψ(σ) = b, where

b(s) ≡
Z s

0

//s̃(σ)
−1σ0(s̃)ds̃.

We now conclude this section with the important computation of the differential of
Ψ.

Theorem 3.42 (Differential of Ψ). Let (t, s) → Σ(t, s) be a smooth map into M
such that Σ(t, ·) ∈W∞o (M) for all t. Let

H(s) ≡ Σ̇(0, s) ≡ (Σ(0, s), dΣ(t, s)/dt|t=0),
so that H is a vector-field along σ ≡ Σ(0, ·). One should view H as an element of the
“tangent space” to W∞o (M) at σ, see Figure 9. Let u(s) ≡ //s(σ), (Ωuha, ci)(s) ≡
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Figure 9. Variation of σ.

u(s)−1Rhu(s)a, u(s)ciu(s) for all a, c ∈ ToM, h(s) ≡ //s(σ)
−1H(s) and b ≡ Ψ(σ).

Then

(3.42) dΨhHi = dΨ(Σ(t, ·))/dt|t=0 = h+

Z
0

(

Z
0

Ωuhh, δbi)δb,

where δb(s) is short hand notation for b(s)ds, and
R
0
fδb denotes the function s→R s

0
f(s̃)b0(s̃)ds̃ when f is a path of matrices.

Proof. To simplify notation let . = d
dt |0, 0 = d

ds , B(t, s) ≡ Ψ(Σ(t, ·))(s), U(t, s) ≡
//s(Σ(t, ·)), u(s) ≡ //s(σ) = U(0, s) and

ḃ(s) ≡ (dΨhHi)(s) ≡ dB(t, s)/dt|t=0.
I will also suppress (t, s) from the notation when possible. With this notation

(3.43) Σ0 = UB0, Σ̇ = H = uh,

and

(3.44) ∇U/ds = 0,
where Σ0 and Σ̇ mean (Σ, dΣ/ds) and (Σ(0, ·), dΣ(t, ·)|t=0) respectively. Taking
∇/dt of (3.43) at t = 0 gives, with the aid of Proposition 3.24,

(∇U/dt)|t=0b0 + uḃ0 = ∇Σ0/dt|t=0 = ∇Σ̇/ds = uh0.

Therefore,

(3.45) ḃ0 = h0 +Ab0,

where A ≡ −U−1∇U/dt|t=0, i.e.
∇U/dt(0, ·) = −uA.

Taking ∇/ds of this last equation and using again Proposition 3.24 and ∇u/ds = 0,
one shows

−uA0 = ∇
ds

∇
dt
U |t=0 = [∇

ds
,
∇
dt
]U |t=0 = Rhσ0,Hiu

and hence
A0 = Ωuhh, b0i.

Since A(0) = 0 because

∇U(t, 0)/dt|t=0 = ∇//0(Σ(t, ·))/dt|t=0 = ∇(I)/dt|t=0,
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it follows that

(3.46) A =

Z
0

Ωuhh, δbi.

The theorem now follows, using (3.46) and the fact that ḃ(0) = 0, by integrating
(3.45) relative to s.

Theorem 3.43 (Differential of φ). Let b, k ∈W∞o and (t, s)→ B(t, s) be a smooth
map into ToM such that B(t, ·) ∈ W∞o , B(0, s) = b(s), and Ḃ(0, s) = k(s). (For
example take B(t, s) = b(s) + tk(s).) Then

φ∗hkbi ≡ d

dt
|0φ(B(t, ·)) = //·(σ)h,

where σ ≡ φ(b) and h is the first component in the solution (h,A) to the pair of
coupled differential equations:

(3.47) k0 = h0 +Ab0, with h(0) = 0

and

(3.48) A0 = Ωuhh, b0i with A(0) = 0.

Proof. This theorem has an analogous proof to that of Theorem 3.42. We can
also deduce the result from Theorem 3.42 by defining Σ by Σ(t, s) ≡ φs(B(t, ·)).
We now assume the same notation used in Theorem 3.42 and its proof. Then
B(t, ·) = Ψ(Σ(t, ·)) and hence by Theorem 3.43

k =
d

dt
|0Ψ(Σ(t, ·)) = dΨhHi = h+

Z
0

(

Z
0

Ωuhh, δbi)δb.

Therefore, defining A ≡ R
0
Ωuhh, δbi and differentiating this last equation relative

to s, it follows that A solves (3.48) and that h solves (3.47).
The following theorem is a mild extension of Theorem 3.42 to include the pos-

sibility that Σ(t, ·) /∈ W∞o (M) when t 6= 0, i.e. the base point may change. The
proof of the next theorem is identical to the proof of Theorem 3.42 and hence will
be left to the reader.

Theorem 3.44. Let (t, s) → Σ(t, s) be a smooth map into M such that σ ≡
Σ(0, ·) ∈ W∞o (M). Define H(s) ≡ dΣ(t, s)/dt|t=0, σ ≡ Σ(0, ·), and h(s) ≡
//s(σ)

−1H(s). (Note: H(0) and h(0) are no longer necessarily equal to zero.)
Let

U(t, s) ≡ //s(Σ(t, ·))//t(Σ(·, 0)) : ToM → TΣ(t,s)M,

so that ∇U(t, 0)/dt = 0 and ∇U(t, s)/ds ≡ 0. Set B(t, s) ≡ R s
0
U(t, s̃)−1Σ0(t, s̃)ds̃,

then

(3.49) ḃ(s) ≡ d

dt
|0B(t, s) = h+

Z
0

(

Z
0

Ωuhh, δbi)δb,

where as before b ≡ Ψ(σ).
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4. Stochastic Calculus on Manifolds

In this section, let (Ω, { Fs}s≥0, F , µ) be a filtered probability space satisfying
the “usual hypothesis.” Namely, F is µ−complete, Fs contains all of the null
sets in F , and Fs is right continuous. For simplicity, we will call a function
X : R+ × Ω → V (V a vector space) a process if Xs = X(s) ≡ X(s, ·) is Fs-
measurable for all s ∈ R+ ≡ [0,∞), i.e. a process will mean an adapted process.
As above, we will always assume that M is an embedded submanifold of RN with
the induced Riemannian structure.

Definition 4.1. An M−valued semi-martingale is a continuous RN -valued
semi-martingale (σ) such that σ(s, ω) ∈M for all (s, ω) ∈ R+ ×Ω.
Since f ∈ C∞(M) is the restriction of a smooth function F on RN , it follows

by Itô’s lemma that f ◦ σ is a real-valued semi-martingale if σ is an M -valued
semi-martingale. Conversely, if σ is an M -valued process and f ◦ σ is a real-valued
semi-martingale for all f ∈ C∞(M) then σ is anM -valued semi-martingale. Indeed,
let x = (x1, . . . , xN ) be the standard coordinates on RN , then σi ≡ xi ◦ σ is a real
semi-martingale for each i, which implies that σ is a RN - valued semi-martingale.

4.1. Line Integrals. For a, b ∈ RN , let a ·b ≡PN
i=1 aibi denote the standard inner

product on RN . Also let gl(N) be the set of N ×N real matrices.

Theorem 4.2. Let Q : RN → gl(N) be a smooth function such that Q(m) is
orthogonal projection onto τmM

⊥ for all m ∈ M. Then for any M-valued semi-
martingale σ, Q(σ)δσ = δσ where δσ denotes the Stratonovich differential of σ,
i.e.

σs − σ0 =

Z s

0

Q(σs0)δσs0 .

Remark 4.3. Let f ∈ C∞(M), we will defineZ s

0

f(σ)δσ = lim
|π|→0

X 1

2
{f(σs∧si) + f(σs∧si+1)}(σs∧si+1 − σs∧si) ∈ RN ,

where s ∧ t ≡ min{s, t} and the limit is taken in probability. Here π = {0 = s0 <
s1 < s2 < · · · } is a partition of R+ and |π| ≡ supi |si+1 − si| is the mesh size of
π. Notice that this limit exists since f ◦ σ is a real valued semi-martingale and the
limit is equal to

R s
0
F (σ)δσ where F is any smooth function on RN such f = F |M .

We may similarly define
R s
0
f(σ)δσ ∈ V whenever V is a finite dimensional vector

space and f is a smooth map on M with values in the linear transformations from
RN to V.

Proof of Theorem 4.2. First assume that M is the level set of a function F as in
Theorem 2.5. Then we may assume that

Q(x) = φ(x)F 0(x)∗(F 0(x)F 0(x)∗)−1F 0(x),

where φ is smooth function on RN such that φ ≡ 1 in a neighborhood ofM and the
support of φ is contained in the set: {x ∈ RN |F 0(x) is surjective}. By Itô ’s lemma

0 = δ0 = δ(F (σ)) = F 0(σ)δσ.

The lemma follows in this special case by multiplying the above equation through
by φ(σ)F 0(σ)∗(F 0(σ)F 0(σ)∗)−1.



32 BRUCE K. DRIVER†

For the general case, choose two open covers {Vi} and {Ui} of M such that each
V̄i is compactly contained in Ui, there is a smooth function Fi ∈ C∞c (Ui → RN−d)
such that Vi ∩M = Vi ∩ {F−1i ({0})} and Fi has a surjective differential on Vi ∩M.
Choose φi ∈ C∞c (RN ) such that the support of φi is contained in Vi and

P
φi = 1

on M, with the sum being locally finite. (For the existence of such covers and
functions, see the discussion of partitions of unity in any reasonable book about
manifolds.) Notice that φiFi ≡ 0 and that Fiφ0i ≡ 0 on M so that

0 = δ{φi(σ)Fi(σ)} = (φ0i(σ)δσ)Fi(σ) + φi(σ)F
0
i (σ)δσ

= φi(σ)F
0
i (σ)δσ.

Multiplying this equation by Ψi(σ)F 0i (σ)
∗(F 0i (σ)F

0
i (σ)

∗)−1, where each Ψi is a
smooth function on RN such that Ψi ≡ 1 on the support of φi and the support of
Ψi is contained in the set where F 0i is surjective, we learn that

(4.1) 0 = φi(σ)F
0
i (σ)

∗(F 0i (σ)F
0
i (σ)

∗)−1F 0i (σ)δσ = φi(σ)Q(σ)δσ

for all i. By a stopping time argument we may assume that σ never leaves a compact
set, and therefore we may choose a finite subset I of the indices {i} such thatP

i∈ I φi(σ)Q(σ) = Q(σ). Hence summing over i ∈ I in equation (4.1) shows that
0 = Q(σ)δσ.

Corollary 4.4. If σ is an M valued semi-martingale, then P (σ)δσ = δσ.

We now would like to define line integrals along a semi-martingale σ. For this we
need a little notation. Given a one-form α on M let α̃ :M → (RN )∗ be defined by
(4.2) α̃(m)v ≡ αh(P (m)v)mi
for all m ∈ M and v ∈ RN . Let Γ(T ∗M ⊗ T ∗M) denote the set of functions
ρ : ∪m∈MTmM ⊗ TmM → R such that ρm ≡ ρ|TmM⊗TmM is linear, and m →
ρhX(m) ⊗ Y (m)i is a smooth function on M for all smooth vector-fields X,Y ∈
Γ(TM). Riemannian metrics and Hessians of smooth functions are examples of
elements of Γ(T ∗M ⊗T ∗M). For ρ ∈ Γ(T ∗M ⊗T ∗M), let ρ̃ :M → (RN ⊗RN )∗ be
defined by

(4.3) ρ̃(m)hv ⊗ wi ≡ ρh(P (m)v)m ⊗ (P (m)w)mi.
Definition 4.5. Let α be a one form on M, ρ ∈ Γ(T ∗M ⊗ T ∗M), and σ be an
M -valued semi-martingale. Then the Stratonovich integral of α along σ is:

(4.4)
Z

αhδσi ≡
Z

α̃(σ)δσ,

the Itô integral is given by:

(4.5)
Z

αhd̄σi ≡
Z

α̃(σ)dσ,

where the stochastic integrals on the right hand sides of Eqs. (4.4) and (4.5) are
Stratonovich and Itô integrals respectively. Formally, d̄σ ≡ P (σ)dσ. We also define
quadratic integral:

(4.6)
Z

ρhdσ ⊗ dσi ≡
Z

ρ̃(σ)hdσ ⊗ dσi ≡
NX

i,j=1

Z
ρ̃(σ)hei ⊗ ejid[σi, σj ],

where {ei}Ni=1 is an orthonormal basis for RN , σi ≡ ei ·σ, and [σi, σj ] is the mutual
quadratic variation of σi and σj .
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Remark 4.6. The above definitions may be generalized as follows. Suppose that α
is now a T ∗M -valued semi-martingale and σ is the M valued semi-martingale such
that α(s) ∈ T ∗σ(s)M for all s. Then we may define

α̃(s)v ≡ α(s)h(P (σ(s))v)σ(s)i,

(4.7)
Z

αhδσi ≡
Z

α̃δσ,

and

(4.8)
Z

αhd̄σi ≡
Z

α̃dσ.

Similarly, if ρ is a process in T ∗M ⊗ T ∗M such that ρ(s) ∈ T ∗σ(s)M ⊗ T ∗σ(s)M , let

(4.9)
Z

ρhdσ ⊗ dσi =
Z

ρ̃hdσ ⊗ dσi,
where

ρ̃(s)hv ⊗ wi ≡ ρ(s)h(P (σ(s))v)σ(s) ⊗ (P (σ(s))v)σ(s)i
and

dσ ⊗ dσ =
NX

i,j=1

ei ⊗ ejd[σ
i, σj ]

as in Eq. (4.6).

Lemma 4.7. Suppose that α = fdg for some f, g ∈ C∞(M), thenZ
αhδσi =

Z
f(σ)δ[g(σ)].

Since any one form α on M may be written as a finite linear combination α =P
i fidgi, it follows that the Stratonovich integral is intrinsically defined independent

of how M is embedded in RN .

Proof. Let G be a smooth function on RN such that g = G|M . Then α̃(m) =
f(m)G0(m)P (m), so thatZ

αhδσi =
Z

f(σ)G0(σ)P (σ)δσ

=

Z
f(σ)G0(σ)δσ (by Corollary 4.4)

=

Z
f(σ)δ[G(σ)] (by Itô’s Lemma)

=

Z
f(σ)δ[g(σ)]. (g(σ) = G(σ))

Lemma 4.8. Suppose that ρ = fdh⊗ dg, where f, g, h ∈ C∞(M), thenZ
ρhdσ ⊗ dσi =

Z
f(σ)d[h(σ), g(σ)].

Since any ρ ∈ Γ(T ∗M ⊗ T ∗M) may be written as a finite linear combination
ρ =

P
i fidhi ⊗ dgi, it follows that the quadratic integral is intrinsically defined

independent of the embedding.
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Proof. By Corollary 4.4 δσ = P (σ)δσ, so that

σis = σi0 +

Z
(ei, P (σ)dσ) +B.V.

= σi0 +
X
k

Z
(ei, P (σ)ek)dσ

k +B.V.,

where B.V. above stands for a process of bounded variation. Therefore

(4.10) d[σi, σj ] =
X
k,l

(ei, P (σ)ek)(ei, P (σ)el)d[σ
k, σl].

Now let H and G be in C∞(RN ) such that h = H|M and g = G|M . By Itô’s lemma
and the above equation,

d[h(σ), g(σ)] =
X
i,j,k,l

(H 0(σ)ei)(G0(σ)ej)(ei, P (σ)ek)(ei, P (σ)el)d[σk, σl]

=
X
k,l

(H 0(σ)P (σ)ek)(G0(σ)P (σ)el)d[σk, σl].

Since

ρ̃(m) = f(m) · (H 0(m)P (m))⊗ (G0(m)P (m)),

it follows from Eq. (4.6) and the two above displayed equations thatZ
f(σ)d[h(σ), g(σ)] ≡

Z X
k,l

f(σ)(H 0(σ)P (σ)ek)(G0(σ)P (σ)el)d[σk, σl]

=

Z
ρ̃(σ)hdσ ⊗ dσi

≡
Z

ρhdσ ⊗ dσi.

Theorem 4.9. Let α be a one form on M , and σ be a M-valued semi-martingale.
Then

(4.11)
Z

αhδσi =
Z

αhd̄σi+ 1
2

Z
∇αhdσ ⊗ dσi,

where ∇αhvm ⊗ wmi ≡ (∇vmα)hwmi. (This show that the Itô integral depends not
only on the manifold structure of M but on the geometry of M as reflected in the
covariant derivative ∇.)

Proof. Let α̃ be as in Eq. (4.2). For the purposes of the proof, suppose that
α̃ : M → (RN )∗ has been extended to a smooth function from RN → (RN )∗. We
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still denote this extension by α̃. Then using Eq. (4.10),Z
αhδσi ≡

Z
α̃(σ)δσ

=

Z
α̃(σ)dσ +

1

2

Z
α̃0(σ)hdσidσ

=

Z
αhd̄σi

+
1

2

X
i,j,k,l

Z
α̃0(σ)heiiej(ei, P (σ)ek)(ei, P (σ)el)d[σk, σl]

=

Z
αhd̄σi+ 1

2

X
k,l

Z
α̃0(σ)hP (σ)ekiP (σ)eld[σk, σl]

=

Z
αhd̄σi+ 1

2

X
k,l

Z
dα̃h(P (σ)ek)σiP (σ)eld[σk, σl].

But by Eq. (3.27), we know for all vm, wm ∈ TM that

∇αhvm ⊗ wmi = dα̃hvmiw − α̃(m)dQhvmiw.
Since α̃(m) = α̃(m)P (m) and PdQ = dQQ, we find

α̃(m)dQhvmiw = α̃(m)dQhvmiQ(m)w = 0 ∀vm, wm ∈ TM.

Hence combining the three above displayed equations shows thatZ
αhδσi =

Z
αhd̄σi+ 1

2

X
k,l

Z
∇αh(P (σ)ek)σ ⊗ (P (σ)el)σid[σk, σl]

=

Z
αhd̄σi+ 1

2

X
k,l

Z
∇αhdσ ⊗ dσi.

Corollary 4.10. Suppose that f ∈ C∞(M) and σ is an M−valued semi-
martingale, then

(4.12) d[f(σ)] = dfhδσi = dfhd̄σi+ 1
2
∇dfhdσ ⊗ dσi.

Proof. Let F ∈ C∞(RN ) such that f = F |M . Then by Itô’s lemma and Corol-
lary 4.4,

d[F (σ)] = F 0(σ)δσ = F 0(σ)P (σ)δσ = dfhδσi,
which proves the first equality in (4.12). The second equality follows directly from
Theorem 4.9.

4.2. Martingales and Brownian Motions.

Definition 4.11. An M -valued semi-martingale σ is said to be a martingale
(more precisely a ∇-martingale) if

(4.13)
Z

dfhd̄σi = f(σ)− f(σ0)− 1
2

Z
∇dfhdσ ⊗ dσi
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is a local martingale for all f ∈ C∞(M). The process σ is said to be a Brownian
motion if

(4.14) f(σ)− f(σ0)− 1
2

Z
∆f(σ)dλ

is a local martingale for all f ∈ C∞(M), where λ(s) ≡ s and
R
∆f(σ)dλ denotes

the process s→ R s
0
∆f(σ)dλ.

Lemma 4.12 (Lévy-criteria). For each m ∈M, let I(m) ≡Pd
i=1Ei ⊗ Ei, where

{Ei}di=1 is an orthonormal basis for TmM. An M-valued semi-martingale (σ) is a
Brownian motion iff σ is a Martingale and

(4.15) dσ ⊗ dσ = I(σ)dλ.
More precisely, this last condition is to be interpreted as:

(4.16)
Z

ρhdσ ⊗ dσi =
Z

ρh I(σ)idλ ∀ρ ∈ Γ(T ∗M ⊗ T ∗M).

Proof. (⇒) Suppose that σ is a Brownian motion on M. Let f, g ∈ C∞(M).
Then on one hand

d(f(σ)g(σ)) = df(σ) · g(σ) + f(σ)dg(σ) + d[f(σ), g(σ)]

∼= 1

2
{∆f(σ)g(σ) + f(σ)∆g(σ)}dλ+ d[f(σ), g(σ)],

where “ ∼=” denotes equality up to the differential of a local martingale. While on
the other hand,

d(f(σ)g(σ)) ∼= 1

2
∆(fg)(σ)dλ

=
1

2
{∆f(σ)g(σ) + f(σ)∆g(σ) + 2hgradf, gradgi(σ)}dλ.

Comparing the above two equations implies that

d[f(σ), g(σ)] = hgradf, gradgi(σ)dλ = df ⊗ dgh I(σ)idλ.
Therefore by Lemma 4.8, if ρ = hdf ⊗ dg thenZ

ρhdσ ⊗ dσi =
Z

h(σ)d[f(σ), g(σ)]

=

Z
h(σ)(df ⊗ dg)h I(σ)idλ

=

Z
ρh I(σ)idλ.

Since the general element ρ of Γ(T ∗M ⊗ T ∗M) is a finite linear combination of
expressions of the form hdf ⊗dg, it follows that (4.19) holds. In particular, we have
that

∇dfhdσ ⊗ dσi = ∇dfh I(σ)idλ = ∆f(σ)dλ.
Hence (4.13) is also a consequence of (4.14). Conversely assuming (4.15), then
∇dfhdσ ⊗ dσi = ∆f(σ)dλ and hence (4.14) now follows from (4.13).
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Definition 4.13. Suppose α is a one form on M and V is a TM−valued semi-
martingale, i.e. V (s) = (σ(s), v(s)), where σ is anM -valued semi-martingale and v
is a RN -valued semi-martingale such that v(s) ∈ τσ(s)M for all s. Then we define:

(4.17)
Z

αh∇V i ≡
Z

α̃(σ)δv.

Remark 4.14. Suppose that αhvmi = θ(m)v, where θ : M → (RN)∗ is a smooth
function. ThenZ

αh∇V i ≡
Z

θ(σ)P (σ)δv =

Z
θ(σ){δv + dQhδσiv},

where we have used the identity:

P (σ)δv = δv + dQhδσiv.
This is derived by taking the differential of the equation v = P (σ)v as in the proof
of Proposition 3.24.

Proposition 4.15 (Product Rule). Keeping the notation of above, we have

(4.18) δ(αhV i) = ∇αhδσ ⊗ V i+ αh∇V i,
where ∇αhδσ ⊗ V i ≡ γhδσi and γ is the T ∗M -valued semi-martingale defined by
γh·i ≡ ∇αh(·)⊗ V i.
Proof. Let θ : RN → (RN )∗ be a smooth map such that α̃(m) = θ(m)|τmM

for all m ∈ M. By Lemma 4.7 δ(θ(σ)P (σ)) = d(θP )hδσi and hence by Lemma
3.31 δ(θ(σ)P (σ))v = ∇αhδσ ⊗ V i, where ∇αhvm ⊗ wmi ≡ (∇vmα)hwmi for all
vm, wm ∈ TM. Therefore:

δ(αhV i) = δ(θ(σ)v) = δ(θ(σ)P (σ)v)

= (d(θP )hδσi)v + θ(σ)P (σ)δv

= (d(θP )hδσi)v + α̃(σ)δv

= ∇αhδσ ⊗ V i+ αh∇V i.

4.3. Parallel Translation and the Development Map.

Definition 4.16. A TM -valued semi-martingale V is said to be parallel if ∇V ≡ 0,
i.e. Z

αh∇V i ≡ 0
for all one forms α on M.

Proposition 4.17. A TM valued semi-martingale V = (σ, v) is parallel iff

(4.19)
Z

P (σ)δv =

Z
{δv + dQhδσiv} ≡ 0.

Proof. Let x = (x1, . . . , xN ) denote the standard coordinates on RN . Then if V
is parallel,

0 ≡
Z

dxih∇V i =
Z
(ei, P (σ)δv)

for each i. This implies (4.19). The converse follows from Remark 4.14.
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Theorems 4.18 and 4.20 are stochastic analogs of Lemma 3.39 and Theorem 3.41
above. The proofs of Theorems 4.18 and 4.20 are quite analogous to their smooth
cousins and hence will be omitted. The reader is referred to Section 3 of Driver
[39] for a detailed exposition written in the setting of these notes. In the following
theorem, V0 is said to be a measurable vector-field onM if V0(m) = (m, v(m)) with
v :M → RN being a measurable function such that v(m) ∈ τmM for all m ∈M.

Theorem 4.18 (Stochastic Parallel Translation onM×RN ). Let σ be anM-valued
semi-martingale, and V0(m) = (m, v(m)) be a measurable vector-field on M, then
there is a unique parallel TM valued semi-martingale V such that V (0) = V0(σ(0))
and V (s) ∈ Tσ(s)M for all s. Moreover, if u denotes the solution to the stochastic
differential equation:

(4.20) δu+ Γhδσiu = 0 with u(0) = I ∈ End(RN ),

then V (s) = (σ(s), u(s)v(σ(0)). The process u defined in (4.20) is orthogonal for
all s and satisfies P (σ(s))u(s) = u(s)P (σ(0)).

Definition 4.19 (Stochastic Parallel Translation). Given v ∈ RN and M valued
semi-martingale σ, let //s(σ)vσ(0) = (σ(s), u(s)v), where u solves (4.20). (Note:
V (s) = //s(σ)V (0).)

In the remainder of these notes, I will often abuse notation and write u(s) instead
of //s(σ) and v(s) rather than V (s) = (σ(s), v(s)). For example, the reader should
sometimes interpret u(s)v as //s(σ)vσ(0) depending on the context. Essentially,
we will be identifying τmM with TmM when no particular confusion will arise. To
avoid technical problems with possible explosions of stochastic differential equations
in the sequel, we make the following assumption.

Standing Assumption Unless otherwise stated, in the remainder of these notes,
M will be a compact manifold embedded in RN .

We also fix a base point o ∈ M and unless otherwise noted, all M -valued semi-
martingales (σ) are now assumed to satisfy σ(0) = o (a.s.). Now suppose σ is a
M -valued semi-martingale, let Ψ(σ) ≡ b where

b ≡
Z

u−1δσ =
Z

utrδσ.

Then b = Ψ(σ) is ToM -valued semi-martingale such that b(0) = 0o. Conversely we
have,

Theorem 4.20 (Stochastic Development Map). Suppose that o ∈M is given and
b is a ToM -valued semi-martingale. Then there exists a unique M-valued semi-
martingale σ such that

(4.21) δσ = uδb with σ(0) = o

and u solves (4.20). As in the smooth case, we will write σ = φ(b).

In what follows, we will assume that b, u (//s(σ)), and σ are related by Equations
(4.21) and (4.20). Recall that d̄σ is the Itô differential of σ defined in Definition
4.5.

Proposition 4.21. The relation between d̄σ and db is

(4.22) d̄σ = P (σ)dσ = udb.
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Also

(4.23) dσ ⊗ dσ = udb⊗ udb ≡
dX
i=1

uei ⊗ ueid[b
i, bj ],

where {ei}di=1 is an orthonormal basis for ToM and

b =
X
i

biei.

More precisely Z
ρhdσ ⊗ dσi =

Z dX
i=1

ρhuei ⊗ ueiid[bi, bj ],

for all ρ ∈ Γ(T ∗M ⊗ T ∗M).

Proof. Consider the identity:

dσ = uδb = udb+
1

2
dudb

= udb− 1
2
Γhδσiudb

= udb− 1
2
Γhudbiudb.

Hence

d̄σ = P (σ)dσ = udb− 1
2

dX
i=1

P (σ)Γh(uei)σiuejd[bi, bj ].

The proof of (4.22) is finished upon noting that

PΓP = P{dQP + dPQ}P = PdQP = −PQdP = 0.
The proof of (4.23) is easy and will be left for the reader.

Theorem 4.22. Let σ, u, and b be as above, then:
(1) σ is a martingale iff b is a ToM-valued local martingale, and
(2) σ is a Brownian motion iff b is a ToM-valued Brownian motion.

Proof. Keep the same notation as in Proposition 4.21. Let f ∈ C∞(M), then
by Proposition 4.21, if b is a local martingale, then

R
dfhd̄σi = R dfhudbi is also a

local martingale and hence σ is a martingale. Also by Proposition 4.21,

d[f(σ)] = dfhd̄σi+ 1
2
∇dfhdσ ⊗ dσi

= dfhudbi+ 1
2
∇dfhudb⊗ udbi.

If b is a Brownian motion, udb⊗udb = I(σ)dλ (u is an isometry). Hence d[f(σ)] =
dfhudbi+ 1

2∆f(σ)dλ from which it follows that σ is a Brownian motion.
Conversely, if σ is a M -valued martingale, then

N ≡
NX
i=1

(

Z
dxihd̄σi)ei =

NX
i=1

(

Z
(ei, udb)ei =

Z
udb
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is a local martingale, where x = (x1, . . . , xN ) are standard coordinates on RN
and {ei} is the standard basis for RN . From the above equation it follows that
b =

R
u−1dN is also a local martingale.

Now suppose that σ is an M -valued Brownian motion, then we have already
proved that b is a local martingale. To finish the proof is suffices by Lévy’s theorem
to show that db⊗ db = I(o)dλ, where for m ∈M, I(m) =Pn

i=1 vi ⊗ vi provided
that {vi}ni=1 is an orthonormal basis of τmM. Now using the fact that σ = N +
(bounded variation), it follows that

db⊗ db = u−1dN ⊗ u−1dN

= (u−1 ⊗ u−1)(dσ ⊗ dσ)

= (u−1 ⊗ u−1) I(σ)dλ (by (4.15))

= I(o)dλ (because u is orthogonal.)

4.4. Projection Construction of Brownian Motion. In the last theorem, we
saw how to construct a Brownian motion onM starting with a Brownian motion on
ToM. In this section, we will show how to construct anM -valued Brownian motion
starting with a Brownian motion on RN . As in Section 3, for m ∈M, let P (m) be
the orthogonal projection of RN onto τmM and Q(m) ≡ I − P (m).

Theorem 4.23. Suppose that B is a semi-martingale on RN , then there exists a
unique M-valued semi-martingale satisfying the Stratonovich stochastic differential
equation

(4.24) δσ = P (σ)δB with σ(0) = o ∈M,

see Figure 10. Moreover, σ is an M -valued martingale if B is a local martingale
and σ is a Brownian motion on M if B is a Brownian motion on RN .

Figure 10. Projection construction of Brownian motion on M.

For the proof this theorem we will need the following lemma. First some more
notation. Let Γ be the one form on M with values in the skew symmetric N ×N
matrices defined by Γ = dQP + dPQ as in (3.34). Given an M−valued semi-
martingale σ, let u denote parallel translation along σ as defined in Eq. (4.20) of
Theorem 4.18.
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Lemma 4.24. Suppose that B is as in Theorem 4.23 and σ is the solution to
(4.24), then

P (σ)dB ⊗Q(σ)dB = 0.

The explicit meaning of this statement should become clear from the proof.

Proof. Let {ei}Ni=1 be an orthonormal basis for RN and set

β ≡
Z

u−1dB,

βi ≡ (ei, β) =
Z
(uei, dB),

and Bi ≡ (ei, B). ThenX
i,j

uei ⊗ uejd[β
i, βj ] =

X
i,j,k,l

uei ⊗ uej(uei, ek)(uej , el)d[B
k, Bl]

=
X
k,l

ek ⊗ eld[B
k, Bl]

= dB ⊗ dB.

Therefore

P (σ)dB ⊗Q(σ)dB = (P (σ)⊗Q(σ))(dB ⊗ dB)

=
X
i,j

P (σ)uei ⊗Q(σ)uej · d[βi, βj ].

=
X
i,j

uP (o)ei ⊗ uQ(o)ej · d[βi, βj ],

wherein we have used P (σ)u = uP (o) and Q(σ)u = uQ(o), see Theorem 4.18. This
last expression is easily seen to be zero by choosing {ei} such that P (o)ei = ei for
i = 1, 2, . . . , d.
Proof. (Proof of Theorem 4.23.) For the existence and uniqueness of solutions

to (4.24) we refer the reader to Theorem 3.1. of Section 3 in [39]. Now let σ be the
unique solution to (4.24) and note by Theorem 4.9 that

d(P (σ)) = dP hd̄σi+ (BV )
= dP hP (σ)P (σ)dB + d(BV ))i+ (BV )
= dP hP (σ)dBi+ (BV ),

where (BV ) denotes a process of bounded variation. Therefore, by definition of σ,

dσ = P (σ)δB = P (σ)dB +
1

2
dP hP (σ)dBidB

= P (σ)dB +
1

2
dP hP (σ)dBiP (σ)dB + 1

2
dP hP (σ)dBiQ(σ)dB

= P (σ)dB +
1

2
dP hP (σ)dBiP (σ)dB,

where in the last equality we have used Lemma 4.24 to concluded that dP hP (σ)dBiQ(σ)dB =
0. Since

P (dP )P = −P (dQ)P = PQdP = 0,

it follows that

(4.25) d̄σ = P (σ)dσ = P (σ)dB.
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From this identity it clearly follows that if B is a local martingale, then so isR
dfhd̄σi for all f ∈ C∞(M). Moreover, if B is a Brownian motion then

dσ ⊗ dσ = P (σ)dB ⊗ P (σ)dB =
NX
i=1

P (σ)ei ⊗ P (σ)eidλ,

where {ei} is any orthonormal basis of RN . Since

(4.26)
NX
i=1

P (m)ei ⊗ P (m)ei = (P (m)⊗ P (m))
NX
i=1

ei ⊗ ei

is independent of the choice of orthonormal basis for RN , we may choose {ei} such
that {ei}di=1 is an orthonormal basis for τmM. Then the sum in (4.26) becomes
I(m). Therefore dσ ⊗ dσ = I(σ)dλ, and hence σ is a Brownian motion on M by
the Lévy criteria in Lemma 4.12.

4.5. Starting Point Differential of the Projection Brownian Motion. Let
Σ(s, x) denote the solution to the stochastic differential equation:

(4.27) Σ(δs, x) = P (Σ(s, x)B(δs) with Σ(0, x) = x ∈M.

It is well known, see Kunita [91] that there is a version of Σ which is continuous in
s and smooth in x, moreover the differential of Σ relative to x solves a stochastic
differential equation found by differentiating (4.27). Let α(t) be a smooth curve
in M such that α(0) = o ∈ M. By abuse of notation, let Σ(s, t) = Σ(s, α(t)),
σ(s) ≡ Σ(s, 0), u(s) denote stochastic parallel translation along σ (see Eq. 4.20),
and v and V are defined by

V (s) =
d

dt
|0Σ(s, t) =: (σ(s), v(s)) = v(s)σ(s) ∈ Tσ(s)M.

We wish to derive a convenient form for the stochastic differential equation which
v solves. The next two theorems play a key role in Aida’s and Elworthy’s proof of
a Logarithmic Sobolev Inequality on the path space of a Riemannian manifold M,
see [8].

Theorem 4.25. Keeping the notation in the above paragraph, let a ≡ u−1v. Then
a solves the Itô stochastic differential equation

da = −u−1P (σ)dQhV idB − 1
2
u−1RichV idλ

= u−1dQhV iQ(σ)dB − 1
2
u−1RichV idλ,

with a(0) = α̇(0) ∈ τoM, where Ric is the Ricci tensor defined by

Richvmi ≡
dX
i=1

Rhvm, eiiei

where {ei}di=1 is an orthonormal basis for τmM.

Proof. First suppose that ξ(s) ∈ RN is any continuous semimartingale such
that ξ(s) ∈ τσ(s)M for all s and let w ∈ End(RN ) be the unique solution to the
stochastic differential equation

δw − wΓhδσi = 0 with w(0) = I.
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A simple computation shows that δ(wu) = 0. Since wu = I at s = 0 it follows that
wu = I for all s and hence w = u−1. Therefore

d(u−1ξ) = u−1{Γhδσiξ + δξ}
= u−1{dQhδσiξ + δξ},

wherein we have used the definition of Γ in (3.34) and the assumption that
Q(σ(s))ξ(s) = 0. To simplify notation, write p(s) ≡ P (σ(s)) and q(s) = Q(σ(s)).
Since δq = dQhδσi and qξ = 0, the last displayed equation may be written as

(4.28) d(u−1ξ) = u−1{δq · ξ + qδξ + pδξ} = u−1{δ(qξ) + pδξ} = u−1pδξ.

Taking ξ = v shows that

da = u−1pδv = u−1pdv +
1

2
(d(u−1p))dv.

For any c ∈ RN , we may apply (4.28) to ξ = pc to find that d(u−1pc) = u−1pδpc,
i.e. d(u−1p) = u−1pδp. Therefore we have shown that

(4.29) da = u−1pdv +
1

2
u−1pdpdv.

Recall that Σ(s, t) solves

(4.30) δΣ = P (Σ)δB with Σ(0, t) = α(t),

where δΣ(s, t) ≡ Σ(δs, t) is the Stratonovich differential of Σ in the s parameter.
Hence, differentiating (4.30) at with respect to t at t = 0 show that v satisfies
δv = ṗδB, where

ṗ(s) ≡ d

dt
|0P (Σ(s, t)) = dP hv(s)σ(s)i.

Hence dv = ṗdB + 1
2dṗdB which in combination with (4.29) shows that

da = u−1pṗdB +
1

2
u−1{pdṗdB + pdpṗdB}.

= −u−1P (σ)dQhV idB + 1
2
u−1{S}.(4.31)

Differentiating the identity P (Σ) = P (Σ)2 with respect to t at t = 0 implies ṗ =
pṗ+ ṗp and hence

δṗ = δpṗ+ ṗδp+ pδṗ+ δṗp.

Solving for pδṗ gives:
pδṗ = δṗq − δpṗ− ṗδp.

Therefore, letting S ≡ {pdṗ+ pdpṗ}dB, we have
S = {dṗq − dpṗ− ṗdp+ pdpṗ}dB
= {dṗq − qdpṗ− ṗdp}dB.

By Lemma 4.24 and the identity

qdpṗdB = dpṗqdB = P hpdBiṗqdB,
it follows that qdpṗdB = 0 and hence S = {dṗq − ṗdp}dB. To deal with the term
dṗ, let θ(m, ξ) ≡ dP h(P (m)ξ)mi for all ξ ∈ RN and m ∈ M. Then ṗ = θ(σ, v), so
that

dṗqdB = θ0(σ, v)hpdBiqdB + θ(σ, dv)qdB,
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where θ0(m, ξ)hwi ≡ wm(θ(·, ξ)) for all wm ∈ TM and ξ ∈ RN . Again by Lemma
4.24, it follows that θ0(σ, v)hpdBiqdB = 0, so that

dṗqdB = dP h(pdv)σiqdB = dP h(pṗdB)σiqdB = dP h(ṗqdB)σiqdB.
Hence

S = dP h(ṗqdB)σiqdB − ṗdpdB

= dP h(dP hvσiQ(σ)dBiQ(σ)dB − dP hvσidP hP (σ)dBidB
= ρhvσidλ,

where

ρhvmi ≡
NX
i=1

{dP h(dP hvmiQ(m)eiiQ(m)ei − dP hvmidP hP (m)eiiei}

≡
NX
i=1

(dP h(dP hvmiQ(m)eiiQ(m)ei − dP hP (m)eiidP hvmiei)

−
NX
i=1

[dP hvmi, dP hP (m)eii]ei.

For givenm ∈M, choose the basis {ei} such that {ei}di=1 is an orthonormal basis for
τmM and write nj ≡ ei+j for j = 1, 2, . . . , N−d, so that {nj}N−dj=1 is an orthonormal
basis for τmM⊥. Noting that

[dP hvmi, dP hP (m)eii] = Rhvm, P (m)eii,
we find that

ρhvmi =
N−dX
j=1

dP h(dP hvminjinj −
dX
i=1

dP heiidP hvmiei −Richvmi.

Assembling the last four equation with (4.31), the Theorem follows if we can show

0 =
N−dX
j=1

dP h(dP hvminjinj −
dX
i=1

dP heiidP hvmiei

=
N−dX
j=1

dQh(dQhvminjinj −
dX
i=1

dQheiidQhvmiei,

or equivalently that

(4.32)
N−dX
j=1

dQhdQhvinjinj =
dX
i=1

dQheiidQhviei ∀v ∈ τmM.

Because both sides of (4.32) are in τmM , to prove (4.32) it suffices to show

(4.33)
N−dX
j=1

(dQhdQhvinjinj , w) =
dX
i=1

(dQheiidQhviei, w)

for all v and w in τmM. Using the fact that dQhvi is symmetric and the identity
(see Proposition 3.28):

(4.34) dQhvmiw = dQhwmiv ∀vm, wm ∈ TmM,
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Eq. (4.33) is equivalent to:

(4.35)
N−dX
j=1

(nj , dQhvidQhwinj) =
dX
i=1

(dQhviei, dQhwiei).

Thus (4.32) is valid iff

(4.36) tr[Q(m)dQhvidQhwi] = tr[P (m)dQhwidQhvi]

But

tr[P (m)dQhwidQhvi] = −tr[dP hwiQ(m)dQhvi]
= tr[dQhwiQ(m)dQhvi]
= tr[Q(m)dQhvidQhwi].

Lemma 4.26. Let B be any RN -valued semi-martingale, σ is the solution to δσ =
P (σ)δB with σ(0) = o, and b ≡ R u−1δσ = R u−1P (σ)δB. Then
(4.37) b =

Z
u−1P (σ)dB.

Moreover if B is a standard Brownian motion then (b, β) is a standard Brownian
motion on RN , where

(4.38) β ≡
Z

u−1Q(σ)dB.

In particular, the “normal” Brownian motion β is independent of b and hence σ
and u.

Proof. Again let p = P (σ), then

d(u−1P (σ))dB = u−1{ΓhδσipdB + dP hδσidB}
= u−1{dQhpdBipdB − dQhpdBidB}
= u−1{dQhpdBipdB − dQhpdBipdB} = 0,

where we have again used pdB ⊗ qdB = 0. This proves (4.37).
Now suppose that B is a Brownian motion. Since (b, β) =

R
u−1dB and u is an

orthogonal process, it easily follow’s using Lévy’s criteria that (b, β) is a standard
Brownian motion. Since (σ, u) satisfies the coupled pair of stochastic differential
equations

dσ = uδb with σ(0) = o

and

du+ Γhuδbiu = 0 with u(0) = id ∈ End(RN ),

it follows that (σ, u) is a functional of b and hence σ and u are independent of β.
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5. Calculus on W (M)

In this section, we will introduce a geometry on W (M). This induces a gradient
D and a divergence operator D∗ for W (M). We will investigate the necessary
integration by parts formulas to conclude that D∗ is densely defined. Then we will
examine S. Fang’s beautiful theorem on the existence of a mass or spectral gap
for the Ornstein Uhlenbeck operator L = D∗D. It has been shown in Driver and
Röckner [48] that this operator generates a diffusion onW (M). This last result also
holds for pinned paths on M and free loops on RN , see [16] for the RN case.

5.1. Tangent spaces and Riemannian metrics onW (M). Let σ be a Brownian
motion onM starting at o. We will associate the processes u and b to σ in the usual
way so that u is parallel translation along σ and b is a ToM -valued Brownian motion.
In this section, we assume that the filtration { Fs} on Ω is the one generated by
the Brownian motion b (or equivalently σ).

Definition 5.1. The continuous tangent space to W (M) at σ ∈ W (M) is the
set CTσW (M) of continuous vector-fields along σ which are zero at s = 0 :
(5.1)

CTσW (M) = {X ∈ C([0, 1], TM)|X(s) ∈ Tσ(s)M ∀ s ∈ [0, 1] and X(0) = 0}.
To motivate the above definition, consider a differentiable curve in W (M) going

through σ at t = 0 : (t → f(t, ·)) : (−1, 1, ) → W (M). The derivative X(s) ≡
d
dt |0f(t, s) of such a curve should by definition be a tangent vector W (M) at σ.
This is indeed the case.
We now wish to define a Riemannian metric on W (M). We know from the case

that M = Rd, that the continuous tangent space is too large for most purposes, see
for example the Cameron-Martin theorem. We will have to introduce the Riemann-
ian structure on a sub-bundle which we call the Cameron-Martin tangent space. In
the sequel, set

H ≡ {h : [0, 1]→ ToM : h(0) = 0, and (h, h) ≡
Z 1

0

|h0(s)|2ToMds <∞}.

H is just the usual Cameron-Martin space with Rd replaced by the isometric inner-
product space (ToM).

Definition 5.2. A Cameron-Martin process h is a ToM -valued process such that
s→ h(s) is in H a.s.. Contrary to our earlier assumptions, we do not assume that
h is adapted unless explicitly stated.

Definition 5.3. A TM -valued process X is said to be a Cameron-Martin vector-
field if h(s) ≡ u−1(s)X(s) is a Cameron-Martin process and

(5.2) hhX,Xii ≡ E[(h, h)H ] <∞.

A Cameron-Martin vector field X is said to be adapted if h ≡ u−1X is adapted.
The set of Cameron-Martin vector-fields will be denoted by X and those which are
adapted will be denoted by X a.

Remark 5.4. Notice that X is a Hilbert space with the inner product determined
by hh·, ·ii in (5.2). Furthermore, X a is a Hilbert-subspace of X .
Notation 5.5. Given Cameron-Martin process h, let Xh ≡ uh. In this way we
may identify Cameron-Martin processes with Cameron-Martin vector fields.
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We define a “metric” (G) on X by

(5.3) GhXh,Xhi = (h, h).
With this notation we may write

hhX,Xii = EGhX,Xi.
Remark 5.6. Notice, if σ is a smooth curve then the expression in (5.3) could be
written as

GhX,Xi =
Z 1

0

gh∇
ds

X(s),
∇
ds

X(s)ids,
where ∇ds denotes the covariant derivative along the curve σ which is induced from
the covariant derivative ∇. This is a typical metric used by differential geometers
on path and loop spaces.

The function G is to be interpreted as a Riemannian metric on W (M).

5.2. Divergence and Integration by Parts.

Definition 5.7. A function f : W (M) → R is called a smooth cylinder if there
exists a partition {0 = s0 < s1 < s2 · · · < sn = 1} of [0, 1] and F ∈ C∞(Mn+1)
such that f(σ) = F (σ(s0), σ(s1), . . . , σ(sn)).

Given a Cameron-Martin vector field X on W (M), let Xf denote the random
variable

(5.4) Xf ≡
nX
i=0

(gradif(σ(s)),X(si)),

where gradif denotes the gradient of f relative to the i’th variable. We also define
the gradient operator D on smooth cylinder functions onW (M) by requiring Df to
be the unique Cameron-Martin process such that GhDf,Xi = Xf for all X ∈ X .
The explicit formula for D is

Df(s) = u(s)
nX
i=0

s ∧ siu(si)−1gradif(σ(s)).

In the next Theorem, it will be shown that X is in the domain of D∗ when X is an
adapted Cameron-Martin vector field. From this fact it will easily follow that D∗

is densely defined.

Theorem 5.8. Let X be an adapted Cameron-Martin vector field on W (M), and
h ≡ u−1X. Then X ∈ D(D∗) and

(5.5) D∗X =

Z 1

0

h0 · db+ 1
2

Z 1

0

Ricuhhi · db ≡
Z 1

0

B(h) · db,

where B is the random linear operator mapping H to L2(ds, ToM) given by

(5.6) B(h) ≡ h0 +
1

2
Ricuhhi,

and Ricuhhi ≡ u−1Richuhi. (Recall that v · w denotes the standard dot product of
v,w ∈ RN .)
Remark 5.9. Notice that for each ω ∈ Ω (recall Ω is the probability space) Bω(h) ≡
h0+ 1

2Ricu(ω)hhi is a bounded linear operator fromH to L2(ds, ToM) and the bound
can be chosen independent of ω. The bound only depends on the Ricci tensor.
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Proof. I will only sketch the proof here, the interested reader may find complete
details in [46]. We start by proving the theorem under the additional assumption
that h ≡ u−1X satisfies

sup
s∈[0,1]

|h0s| ≤ C,

where C is a non-random constant. Using Theorem 3.42 as motivation, the “pull
back” X by the development map (b → σ) should be the “vector-field” Y on
W (ToM) given by:

Y = h+

Z
(

Z
Ωuhh, δbi)δb.

Writing this in Itô form:

Y =

Z
Cdb+

Z
rdλ,

where C ≡ R Ωuhh, δbi and
r = h0 +

1

2
Ricuhhi.

Key Point: The process C is skew-adjoint because of the skew-symmetry proper-

ties of the curvature tensor, see Eq. 3.22.

Following Bismut, (also see Fang and Malliavin), for each t ∈ R let B(t, ·) be the
process given by:

(5.7) B(t, ·) =
Z

etCdb+ t

Z
rdλ.

Notice that B(t, ·) is not the flow of the vector-field Y but does have the property
that d

dt |0B(t, ·) = Y. It is also easy to concluded by Girsanov’s theorem that B(t, ·)
(for fixed t) is a Brownian motion relative to Zt · µ, where

(5.8) Zt = exp−
½Z 1

0

t(r, etCdb) +
1

2
t2
Z 1

0

(r, r)ds

¾
.

For t ∈ R, let Σ(t, ·) ≡ φ(B(t, ·)) as in Theorem 4.20. After choosing a good
version of Σ it is possible to show using a stochastic analogue of Theorem 3.43 that
Σ̇(0, ·) = X, so the Xf = d

dt |0f(Σ(t, ·)). Now if f is a smooth cylinder function on
W (M), then

E(f(Σ(t, ·)Zt) = Ef(σ)

for all t. Differentiating this last expression relative to t at t = 0 gives:

E(Xf(σ))−E(f

Z 1

0

(r, db)) = 0.

This last equation may be written alternatively as

hhDf,Xii = EG(Df,X) = (f,

Z 1

0

B(h) · db))L2 .

Hence it follows that X ∈ D(D∗) and

D∗X =

Z 1

0

B(h) · db.

This proves the theorem in the special case that h0 is uniformly bounded.
LetX be a general adapted Cameron-Martin vector-field and h ≡ u−1X. For each

n ∈ N, let hn(s, σ) ≡
R s
0
h0(τ, σ)·1|h0(τ,σ)|≤ndτ. (Notice that hn is still adapted.) Set
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Xn ≡ uhn, then by the special case above we know that Xn ∈ D(D∗) and D∗Xn =R 1
0
B(hn) ·db. It is easy to check that hhX−Xn,X−Xnii = E(h−hn, h−hn)H → 0

as n→∞. Furthermore,

E[D∗(Xm −Xn),D∗(Xm −Xn)] = E

Z 1

0

|B(hm − hn)|2ds
≤ CE(hm − hn, hm − hn)H ,

from which it follows that D∗Xm is convergent. Because D∗ is a closed operator,
it follows that X ∈ D(D∗) and

D∗X = lim
n→∞D∗Xn = lim

n→∞

Z 1

0

B(hn) · db =
Z 1

0

B(h) · db,

since

E

Z 1

0

|B(h − hn)|2ds ≤ CE(h− hn, h− hn)H → 0 as n→∞.

Corollary 5.10. The operator D∗ is densely defined. In particular D is closable.
(Let D̄ denote the closure of D.)

Proof. Let h ∈ H, Xh ≡ uh, and f and g be a smooth cylinder functions. Then
by the product rule:

hhDf, gXhii+E[f(Dg,Xh)] = hhgDf + fDg,Xhii
= hhD(fg),Xhii = E(fgD∗Xh),

from which we learn that gXh ∈ D(D∗) (the domain of D∗) and
D∗(gXh) = gD∗Xh − (Dg,Xh).

Since {gXh|h ∈ H and g is a cylinder function} is a dense subset of X , D∗ is
densely defined.
Theorem 5.11 may be extended to allow for vector-fields on the paths ofM which

are not based. This is important for Hsu’s proof of Logarithmic Sobolev inequalities
for the Ornstein-Uhlenbeck operator L = D∗D̄.

Theorem 5.11. Let h be an adapted ToM-valued process such that h(0) is indepen-
dent of ω and h−h(0) is a Cameron-Martin process. Let Ex denote the path space
expectation for a Brownian motion starting at x ∈M. Let f : C([0, 1]→M)→ R,
be a cylinder function as in 5.7. As before let X ≡ Xh ≡ uh and Xhf be defined
as in (5.4). Then

(5.9) Eo[X
hf ] = Eo[fD

∗Xh] + hd(E(·)f), h(0)oi,
where

D∗Xh ≡
Z 1

0

h0 · db+ 1
2

Z 1

0

Ricuhhi · db ≡
Z 1

0

B(h) · db,
as in (5.5) and B(h) is defined in (5.6).

Proof. Start by choosing a smooth curve α in M such that α̇(0) = h(0)o. Let
C, r, B(t, ·), and Zt be defined by the same formulas as in the proof of the previous
theorem. Let u0(t) denote parallel translation along α, that is

du0(t)/dt+ Γhα̇(t)iu0(t) = 0 with u0(0) = id.
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For t ∈ R, define Σ(t, ·) by
Σ(t, δs) = u(t, δs)B(t, δs) with Σ(t, 0) = α(t)

and
u(t, δs) + Γhu(t, s)B(t, δs)iu(t, s) = 0 with u(t, 0) = uo(t).

Appealing to a stochastic version of Theorem 3.44 (after choosing a good version
of Σ) it is possible to show that Σ̇(0, ·) = X, so the Xf = d

dt |0f(Σ(t, ·)). As in the
above proof B(t, ·) is a Brownian motion relative to the expectation Et defined by
Et(F ) ≡ E(ZtF ). From this it is easy to see that Σ(t, ·) is a Brownian motion
on M starting at α(t) relative to the expectation Et. Therefore, if f is a smooth
cylinder function on W (M), then

E(f(Σ(t, ·)Zt) = Eα(t)f

for all t. Differentiating this last expression relative to t at t = 0 gives:

E(Xf(σ))−E(f

Z 1

0

r · db) = hdE(·)f, h(0)oi.
The rest of the proof is identical to the previous proof.

5.3. Hsu’ s Derivative Formula. As a corollary Theorem 5.11 we get Elton Hsu’s
derivative formula which plays a key role in his proof of a Logarithmic Sobolev
inequality on W (M), see [82]. Hsu’s original proof was by a coupling argument.
The idea is similar, the only question is how one describes the perturbed process
Σ(t, ·) of the last proof.
Corollary 5.12 (Hsu’s Derivative Formula). Let vo ∈ ToM . Define h to be the
adapted ToM-valued process solving the differential equation:

(5.10) h0 +
1

2
Ricuhhi = 0 with h(0) = vo.

Then

(5.11) hd(E(·)f), voi = Eo[X
hf ].

Proof. Apply the previous theorem to Xh with h defined by (5.10). Notice that
h has been constructed so that B(h) ≡ 0, i.e. D∗Xh = 0.
The following theorem was first proved by Hsu [82] with an independent proof

given shortly thereafter by Aida and Elworthy [8]. Hsu’s proof relies on a mod-
ification of the additivity property for Logarithmic Sobolev inequalities adapted
to the case where there is a Markov dependence. A key point in Hsu’s proof is
Corollary 5.12. On the other hand Aida and Elworthy show, using the projection
construction of Brownian motion, the logarithmic Sobolev inequality on W (M) is
a consequence of Gross’ [69] original logarithmic Sobolev inequality on the classical
Wiener space W (RN ). As mentioned earlier, Theorem 4.25 is a key step in Aida’s
and Elworthy’s proof.

Theorem 5.13 (Logarithmic Sobolev Inequality). LetM be a compact Riemannian
manifold, then there is a constant C depending on M such that

E(f2 log f2) ≤ CE(Df,Df) +Ef2 logEf2,

for all smooth cylinder function f on W (M).

For a proof of this theorem the reader is referred to [82, 8]. These paper should
be quite accessible after reading these notes.
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5.4. Fang’s Spectral Gap Theorem and Proof. It is well known that logarith-
mic Sobolev inequalities imply “spectral gap” inequalities. Hence a spectral gap
inequality on W (M) is a Corollary of 5.13. In fact, this inequality was already
known by the work of Fang [58]. In this section, I will present Fang’s [58] spectral
gap theorem and his elegant proof.

Theorem 5.14. Let D̄ be the closure of D and L be the selfadjoint operator on
L2(W (M)) defined by L = D∗D̄. (Note, if M = Rn then L would be an infinite
dimensional Ornstein Uhlenbeck operator.) Then the null-space of L consists of
the constant functions on W (M) and L has a spectral gap, i.e. there is a constant
c > 0 such that ( Lf, f)L2 ≥ c(f, f)L2 for all f ∈ D( L) which are perpendicular
to the constant functions.

The proof of this theorem will be given at the end of this subsection. We first
will need to represent F in terms of DF.

Lemma 5.15. For each F ∈ L2(µ), there is a unique adapted Cameron-Martin
vector field X on W (M) such that

F = E(F ) +D∗X.

Proof. By the Martingale representation theorem (see Corollary 6.2 in the
appendix below), there is a predictable ToM—valued process (a) (which is not in
general continuous) such that

E

Z 1

0

|as|2ds <∞,

and

(5.12) F = E(F ) +

Z 1

0

as · db(s).

Define h ≡ B−1(a), i.e. let h be the solution to the differential equation:

(5.13) h0s +Ashs = as with h0 = 0,

where for any ξ ∈ ToM,

Asξ ≡ 1
2
Ricushξi.

Claim: B−1ω is a bounded linear map from L2(ds, ToM)→ H for each ω ∈ Ω, and
furthermore the norm of B−1ω is bounded independent of ω ∈ Ω.
To prove the claim, let Ms be the End(ToM)—valued solution to the differential

equation

(5.14) M 0
s +AsMs = 0 with M0 = I,

then the solution to (5.13) can be written as:

(5.15) hs =

Z s

0

MsM
−1
τ aτdτ.

Since, ρs ≡MsM
−1
τ solves the differential equation

ρ0s +Asρs = 0 with ρτ = I
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it is easy to show from the boundedness of A and an application of Gronwall’s in-
equality that |MsM

−1
τ | = |ρs| ≤ C, where C is a non-random constant independent

of s and τ. Therefore,

(h, h)H =

Z 1

0

|as −Ashs|2ds

≤ 2
Z 1

0

|as|2ds+ 2
Z 1

0

|Ashs|2ds

≤ 2(1 + C2K2)

Z 1

0

|as|2ds,
where K is a bound on the process As. This proves the claim.
Because of the claim, h ≡ B−1(a) satisfies E(h, h)H < ∞. It is also easy to

see that h is adapted (see (5.15)). Hence, X ≡ uh is an adapted Cameron-Martin
vector field and

D∗X =

Z 1

0

B(h) · db =
Z 1

0

a · db.
The existence part of the theorem now follows from this equation and equation
(5.12).
The uniqueness assertion follows from the energy identity:

E(D∗X)2 = E

Z 1

0

|B(h)(s)|2ds ≥ CE(h, h)H .

Indeed if D∗X = 0, then h = 0 and hence X = uh = 0.
The next goal is to find an expression for the vector-field X in the above Lemma

in terms of the function F itself. This will be the content of the next theorem.

Notation 5.16. Let

L2a(P : L
2(ds, ToM)) = {v ∈ L2(P : L2(ds, ToM))|v is adapted}.

Define the bounded linear operator B̄ from X a to L2a(P : L
2(ds, ToM)) by B̄(X) =

B(u−1X). Also let Q : X → X denote the orthogonal projection of X onto X a.

Remark 5.17. Notice that D∗X =
R 1
0
B̄(X) · db for all X ∈ X a.We have seen that

B̄ has a bounded inverse, in fact B̄−1(a) = uB−1(a).

Theorem 5.18. As above let D̄ denote the closure of D. Also let T : X → X a be
the bounded linear operator defined by

T (X) = (B̄∗B̄)−1 QX
for all X ∈ X . Then for all F ∈ D(D̄),
(5.16) F = EF +D∗TD̄F.

It is worth pointing out that B̄∗ is not uB∗ but is instead given by QuB∗. This
is because uB∗ does not take adapted processes to adapted processes. This is the
reason it is necessary to introduce the orthogonal projection.
Proof. Let Y ∈ X a be given, X ∈ X a such that F = EF +D∗X. Then

hhY, QD̄F ii = hhY, D̄F ii = E(D∗Y · F )
= E(D∗Y ·D∗X) = E(B̄(Y ), B̄(X))L2(ds)

= hhY, B̄∗B̄(X)ii,
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where in going from the first to the second line we have used E(D∗Y ) = 0. From
the above displayed equation it follows that QD̄F = B̄∗B̄(X) and hence X =
(B̄∗B̄)−1 QD̄F = T (D̄F ).
Proof. Proof of Theorem 5.14. Let F ∈ D(D̄), then by the above theorem

E(F −EF )2 = E(D∗TD̄F )2 = E|B̄(TD̄F )|2L2(ds,ToM) ≤ ChhD̄F, D̄F ii.
In particular if F ∈ D( L), then hhD̄F, D̄F ii = E[ LF · F ], and hence

( LF,F )L2 ≥ C−1(F −EF,F − EF )L2 .

Therefore, if F ∈ nul( L), it follows that F = EF, i.e. F is a constant. Moreover if
F ⊥ 1 (i.e. EF = 0) then

( LF,F )L2 ≥ C−1(F,F )L2 ,

proving Theorem 5.14 with c = C−1.

6. Appendix: Martingale Representation Theorem

We continue the notation of Sections 4 and 5. In particular σ is a Brownian
motion on M starting at o ∈ M and b = Ψ(σ) is the Brownian motion on Rn
associated to σ described before Theorem 4.20.

Lemma 6.1. Let F be the smooth cylinder function on W (M),

F (σ) = f(σ(s1), . . . , σ(sn)),

where 0 < s1 < s2 · · · < sn ≤ 1. Then

(6.1) F = E(F ) +

Z 1

0

as · db(s),

where as is a bounded, piecewise-continuous (in s), and predictable process. Fur-
thermore, the jumps points of a are contained in the set {s1, . . . , sn} and as ≡ 0 is
s ≥ sn.

Proof. The proof will be by induction on n. First assume that n = 1, so that
F (σ) = f(σ(τ)) for some 0 < τ ≤ 1. Let H(s,m) ≡ (e(τ−s)∆/2f)(m) for 0 ≤ s ≤ τ
and m ∈M. Then it is easy to compute:

dH(s, σ(s)) = gradH(s, σ(s)) · usdb(s).
Hence upon integrating this last equation from 0 to τ gives:

F (σ) = (eτ∆/2f)(o) +

Z τ

0

u−1s gradH(s, σ(s)) · db(s) = E(F ) +

Z 1

0

as · db(s),

where as = 1s≤τu−1s gradH(s, σ(s)). This proves the n = 1 case. To finish the proof
it suffices to show that we may reduce the assertion of the lemma at the level n to
the assertion at the level n− 1.
Let F (σ) = f(σ(s1), . . . , σ(sn)), where 0 < s1 < s2 · · · < sn ≤ 1. Let

(∆nf)(x1, x2, . . . , xn) = (∆g)(xn)

where g(x) ≡ f(x1, x2, . . . , xn−1, x). Similarly, let gradn denote the gradient acting
on the n’th variable of a function f ∈ C∞(Mn). Set

H(s, σ) ≡ (e(sn−s)∆n/2f)(σ(s1), . . . , σ(sn−1), σ(s))
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for sn−1 ≤ s ≤ sn. Again it is easy to show that

dH(s, σ) = (gradne
(sn−s)∆n/2f)(σ(s1), . . . , σ(sn−1), σ(s)) · usdb(s)

for sn−1 ≤ s ≤ sn. Integrating this last expression from sn−1 to sn yields:

F (σ) = (e(sn−sn−1)∆n/2f)(σ(s1), . . . , σ(sn−1), σ(sn−1))

+

Z sn

sn−1
(gradne

(sn−s)∆n/2f)(σ(s1), . . . , σ(sn−1), σ(s)) · usdb(s)

= (e(sn−sn−1)∆n/2f)(σ(s1), . . . , σ(sn−1), σ(sn−1)) +
Z sn

sn−1
αs · db(s),

where αs ≡ u−1s (gradne
(sn−s)∆n/2f)(σ(s1), . . . , σ(sn−1), σ(s)) for s ∈ (sn−1, sn).

By induction we know that the smooth cylinder function

(e(sn−sn−1)∆n/2f)(σ(s1), . . . , σ(sn−1), σ(sn−1))

may be written as a constant plus
R 1
0
u−1as·db(s), where as is bounded and piecewise

continuous and as ≡ 0 if s ≥ sn−1. Hence it follows by replacing as by as +
1(sn−1,sn)(s)αs that

F (σ) = C +

Z sn

0

as · db(s)
for some constant C. By taking expectations of both sides of this equation, it follows
that C = EF (σ).

Corollary 6.2. Let F ∈ L2(µ), then there is a predictable process (a) such that
E
R 1
0
|as|2ds <∞, and F = E(F ) +

R 1
0
as · db.

Proof. Choose a sequence of smooth cylinder functions {Fn} such that Fn → F
as n→∞. By replacing F by F −EF and Fn by Fn −EFn, we may assume that
EF = 0 and EFn = 0. Let an be predictable processes such that Fn =

R 1
0
an · db.

Notice that

E

Z 1

0

|ans − ams |2ds = E(Fn − Fm)
2 → 0 as m,n→∞.

Hence, if a ≡ L2(ds× dµ)− limn→∞ an, then

Fn =

Z 1

0

an · db→
Z 1

0

a · db as n→∞.

This show that F =
R 1
0
a · db.

Corollary 6.3. Let F be a smooth cylinder function, then there is a predictable,
piecewise continuously differentiable Cameron-Martin vector field X such that F =
E(F ) +D∗X.

Proof. Just follow the proof of Lemma 5.15 using Lemma 6.1 in place of Corol-
lary 6.2.

7. Comments on References

A rather large number of references are given below. This list is long but by no
means complete. Some of the references have been cited in the text above where
as most have not. In this section I will make a few miscellaneous remarks about
some of the articles listed below. It is left to the reader to glean from the titles the
contents of any articles in the References not explicitly mentioned in the text.
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7.1. Articles by Topic.
(1) Manifolds and Geometry: See [1, 17, 22, 34, 37, 64, 68, 77, 86, 87, 88,

89, 90, 114, 122]. The classic texts among these are those by Kobayashi and
Nomizu. I also highly recommend [64] and [37]. The books by Klingenberg
give an idea of why differential geometers are interested in loop spaces.

(2) Lie Groups: There are a vast number of books on Lie groups. Here are
two which I have found very useful, [18, 125].

(3) Stochastic Calculus on Manifolds: See [21, 23, 24, 49, 50, 51, 55, 83,
95, 105, 111, 116, 117, 118, 126]. The books by Elworthy [51], Emery [55],
and Ikeda and Watanabe [83] are highly recommended. Also see the articles
by Elworthy [52], Meyer [105], and Norris [111].

(4) Integration by Parts Formulas: Many people have now proved some
version of integration by parts for path and loop spaces in one context
or another, see for example [24, 25, 26, 27, 28, 39, 40, 43, 56, 57, 61, 63,
94, 104, 112, 119, 120, 121]. We have followed Bismut in these notes who
proved integration by parts formulas for cylinder functions depending on
one time. However, as is pointed out by Leandre and Malliavin and Fang,
Bismut’s technique works with out any essential change for arbitrary cylin-
der functions. In [39, 40], the flow associated to a general class of vector
fields on paths and loop spaces of a manifold were constructed. Moreover,
it was shown that these flows left Wiener measure quasi-invariant. From
these facts one can also derive integration by parts formulas.

(5) Spectral Gap and Logarithmic Sobolev Inequalities: See [8, 58, 69,
71, 82]. The paper by S. Fang was the first to show that the operator L
defined in Section 5 has a spectral gap. The paper [69] by Gross was the
pioneering work on logarithmic Sobolev inequalities. It is shown there that
logarithmic Sobolev inequalities hold for Gaussian measure spaces and in
particular path and loop spaces on Euclidean spaces. The first proof of
a logarithmic Sobolev inequality for paths on a general Riemannian man-
ifold was given by E. Hsu in [82]. Shortly after Aida and Elworthy gave
a “non-intrinsic” proof of the same result. The issue of the spectral gap
and Logarithmic Sobolev inequalities for general loop spaces is still an open
problem. In [71], Gross has prove a Logarithmic Sobolev inequality with
an added potential term for a special geometry on loop groups. Here
Gross uses pinned Wiener measure as the reference measure. In Driver and
Lohrenz [47], it is shown that a Logarithmic Sobolev inequality without
a potential term does hold on the Loop group provided one replace pinned
Wiener measure by a “heat kernel” measure. The question as to when or if
the potential is needed in Gross’s setting for logarithmic Sobolev inequal-
ities is still an open question. It is worth pointing out that the potential
term is definitely needed if the group is not simply connected, see [71] for
an explanation.
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