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Abstra
tWe prove a Harna
k inequality for level sets of p-Lapla
e phase transitionminimizers. In parti
ular, if a level set is in
luded in a 
at 
ylinder, then, in theinterior, it is in
luded in a 
atter one. The extension of a result 
onje
tured byDe Giorgi and re
ently proven by the third author for p = 2 follows.
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CHAPTER 1Introdu
tionGiven a domain 
 � RN , we de�ne the following fun
tional on W 1;p(
):F
(u) = Z
 jru(x)jpp + h0(u(x)) dx :Here above and in the sequel, we suppose that 1 < p < 1 and that h0 2C0([�1; 1℄) \ C1;1((�1; 1)) 
an be extended to a fun
tion whi
h is C1 in a neigh-borhood of [�1; 1℄. We will also assume that, for some 0 < 
 < 1 < C and some�? 2 (0; 1), we havefor any � 2 [0; 1℄, 
 �p � h0(�1 + �) � C �p and
 �p � h0(1� �) � C �p,(1.1) for any � 2 [0; ��), h00(�1 + �) � 
�p�1 andh00(1� �) � �
�p�1.(1.2)We also assume that h00 is monotone in
reasing in (�1;�1 + �?) [ (1 � �?; 1).Quantities depending only on the 
onstants above will be referred to as \universal
onstants". As a model example for a potential h0 satisfying the 
onditions statedhere above, one may 
onsider h0(�) := (1� �2)p :In the literature, h0 is often referred to as a \double-well" potential, and its deriv-ative as a \bi-stable nonlinearity".In the light of (1.1) and (1.2), we have that, with no loss of generality, possiblyredu
ing the size of �?, we may and do assume thatfor any � 2 [�1 + �?; 1� �?℄,h0(�) � max[�1;�1+�?℄[[1��?;1℄ h0,(1.3) 1



2 1. INTRODUCTIONNoti
e that, if u 2 W 1;p(
), juj � 1, is1 
riti
al for F
, then u satis�es in the weaksense the following singular/degenrate ellipti
 equation of p-Lapla
ian type:(1.5) �pu(x) = h00(u(x)) ;for any x 2 
. Here and in what follows, we make use of the standard notation�pu := div �jrujp�2ru� :In parti
ular, we will 
onsider lo
al minimizers for the fun
tional above. We saythat u is a lo
al minimizer for F in the domain 
 ifF
(u) � F
(u+ �) ;for any � 2 C10 (
). In the literature, it is also 
ustomary to say that u is a ClassA minimizer for F if FK(u) � FK(u+ �) ;for any 
ompa
t setK � RN and any � 2 C10 (K). That is, u is a Class A minimizerif it is a lo
al minimizer in any domain.The fun
tional F here above has been widely studied both for pure mathemat-i
al reasons and for physi
al appli
ations. For instan
e, this fun
tional is a modelfor interfa
es appearing in physi
al problems when two phases (the phase \
loseto +1" and the one \
lose to �1") 
oexist. On one side, the \potential" h0 tendsto drive the minima of the fun
tional towards the \pure states" �1; on the otherhand, the \kineti
 term" jrujp prevents the system from sudden phase 
hanges.The balan
e between these tenden
ies (or, in the physi
al language, the e�e
t ofthe surfa
e tension) leads interfa
es of minimal solution to minimize area. Thephysi
al relevan
e of the interfa
es and the mathemati
al interest arising from geo-metri
 measure theory thus motivated an extensive study of the transition layers,i.e., of the level sets of solutions of (1.5). We refer to [3℄, [7℄, [14℄, [23℄, [25℄, [26℄,[33℄, [27℄, [28℄, [29℄, [27℄, [28℄, [30℄ and [36℄ for more detailed dis
ussions on thephysi
al relevan
e of the above fun
tional and for its relation with the theory ofminimal surfa
es.The main result that will be proved in this paper is the following Harna
kinequality for level sets of minimizers. Roughly speaking, su
h results says that,on
e one knows that the zero level set of a minimizer is trapped in a re
tanglewhose height is small enough, then, in a smaller neighborhood, it 
an be trapped ina re
tangle with even smaller height. More pre
isely, we have the following result:Theorem 1.1. Let l > 0, � > 0. Let u be a lo
al minimizer for F inn(x0; xN ) 2 RN�1 � R ��� jx0j < l ; jxN j < lo :Assume that u(0) = 0 and thatfu = 0g � fjxN j < �g :1 Many results of this paper are obtained without assuming juj < 1, but assuming onlyjuj � 1. For future use, however, we re
all that the 
ondition juj < 1 is ful�lled by any solutionu su
h that juj � 1 with juj not identi
ally equal to �1, under suitable assumptions on h0. Thisholds, for instan
e, if we suppose that(1.4) h00(�1 + �) � 
0�p�1 and h00(1� �) � �
0�p�1 ;for any � 2 [0; ��). For the proof of this observation, see, e.g., footnote 7 in [30℄. The 
ase p = 2was also dealt with in Theorem 1.1 of [17℄.



1. INTRODUCTION 3Then, there exists a universal 
onstant 
 2 (0; 1) so that, for any �0 > 0 there exists"0(�0) > 0 su
h that, if �l � "0(�0) and � � �0 ;then fu = 0g \ fjx0j < 
lg � fjxN j < (1� 
) �g :
O

{u=0}

2l

2θ

The Harna
k-type result of Theorem 1.1Theorem 1.1 is an extension of a similar result obtained in [31℄ for p = 2. Also,some results from [7℄, [28℄ and [30℄ will be needed in the 
ourse of the proof.The proof of Theorem 1.1 is quite long, both be
ause we will need some �neanalysis on the measure estimates of the tou
hing points between u and someappropriate barriers, and be
ause some deli
ate details and te
hni
al points willappear in the 
ourse of the proof. Very roughly, we 
an say that the �nal target ofthe proof 
onsists in dedu
ing a measure estimates on the above mentioned 
onta
tpoints, whi
h, in 
ase the statement of Theorem 1.1 were false, would 
ontradi
tthe minimality of u. Su
h estimates will be obtained by sliding suitable barriers,
onstru
ted via the one-dimensional hetero
lini
 solution.The ideas of su
h proof be
ome more transparent in the easier 
ase of a uni-formly ellipti
 equation involving prin
ipal 
urvatures (of the typePNi=1 ai�i = 0):see [32℄.Following the ideas of [31℄, several results may be dedu
ed from Theorem 1.1.First, we dedu
e the following \
atness improvement" result, stating that, on
e alevel set is trapped inside a 
at 
ylinder, then, possibly 
hanging 
oordinates, it istrapped in an even 
atter 
ylinder in the interior. More pre
isely, we have:



4 1. INTRODUCTIONTheorem 1.2. Let l > 0, � > 0. Let u be a lo
al minimizer for F inn(x0; xN ) 2 RN�1 � R ��� jx0j < l ; jxN j < lo :Assume that u(0) = 0 and thatfu = 0g � fjxN j < �g :Then, there exist universal 
onstants �1; �2 > 0, with 0 < �1 < �2 < 1, su
h that,for any �0 > 0, there exists "1(�0) > 0 su
h that, if�l � "1(�0) and � � �0 ;then fu = 0g \ �fj�� xj < �2lg � fj(x � �)j < �2lg� �� �fj��xj < �2lg � fj(x � �)j < �1�g�for some unit ve
tor �.
{u=0}

2l

2θ

ξ

The 
atness improvement of Theorem 1.2Several ideas related with Theorem 1.2 have been extensively used by De Giorgiand his s
hool in the minimal surfa
e setting (e.g., for proving smoothness andanalyti
 regularity): see, for instan
e, 
hapters 6{8 in [20℄.The extension of a result 
onje
tured by De Giorgi in [14℄ for p = 2 also follows,namely we have the following two 
atness results:Theorem 1.3. Let N � 7. Then, level sets of Class A minimizers of F arehyperplanes.



1. INTRODUCTION 5Theorem 1.4. Let u 2 W 1;plo
 (RN ) be a solution of (1.5). Let h0 ful�ll theassumptions on page 1 and2 (1.4). Assume that juj � 1, �Nu > 0 andlimxN!�1u(�; xN ) = �1 :Assume also that either N � 8 or that fu = 0g has at most linear growth at in�nity.Then, level sets of u are hyperplanes.Results of these type have been proved in [21℄ for p = N = 2 and [2℄ for p = 2and N = 3 (and a
tually for any nonlinearity, see [1℄). Extensions of the results in[21℄ and [2℄ to p-Lapla
e equations have been 
onsidered in [11℄. See also [5, 13,12, 16, 4, 6, 22℄ for related results. Results analogous to Theorems 1.3 and 1.4for p = 2 have been re
ently given by the third author in [31℄. In x9 here below,we will see that Theorem 1.4 is a 
onsequen
e of the fa
t that monotone solutionsof (1.5) are minimizers (see, e.g., [24℄ or [31℄) under a �1-limit assumption.This paper is organized in the following way. In x2 we 
onstru
t the barriersto be used in the 
ourse of the proofs of the main results. Roughly speaking, su
hbarriers are obtained by modifying the hetero
lini
 one-dimensional solutions givenby the potential h0 and by taking 
at or rotational extensions. The study of thetou
hing points between these barriers and our solution o

upies x3. Parti
ularemphasis is given to the measure of the proje
tion of the set of \�rst time" tou
hes.In x4, some 
overing lemmas are presented, whose proof has been deferred to theAppendix. The results of x3 and x4 are then used in x5 to obtain an estimate on theproje
tion of the tou
hing points between an appropriate barrier and our solution.The proofs of the main results o

upy x6|x9. The Appendix 
ontains the proof ofthe 
overing lemmas and some elementary an
illary results.

2In parti
ular, the result of Theorem 1.4 holds for h0(�) := (1 � �2)p.





CHAPTER 2Modi�
ations of the potential and ofone-dimensional solutionsWe now 
onstru
t some barriers, whi
h will be of use in the proof of the mainresults. Su
h barriers will be obtained by appropriate modi�
ations on the potentialh0, whi
h indu
e 
orresponding modi�
ations on one-dimensional solutions.Here and below, we �x C0 > 0, to be 
onveniently 
hosen in the following(a
tually, during the proof of Proposition 2.13 here below). We will also �x R,to be assumed suitably large (with respe
t to C0 and some universal 
onstants).The �rst fun
tion needed in our 
onstru
tion is the following modi�
ation of thepotential h0 in the interval [-3/4,3/4℄:Definition 2.1. Fix js0j � 1=4. For any jsj � 3=4, we de�ne1(2.1) 's0;R(s) = '(s) := h0(s)RphR� C0(s� s0)( pp�1h0(s)) 1p ip :Note that, by 
onstru
tion,(2.2) 1� pp�1'(s)� 1p = 1� pp�1h0(s)� 1p � C0R (s� s0) :Roughly speaking, for large R, ' is 
lose to h0: this is the reason for whi
h we
onsider ' as a modi�ed potential in [�3=4; 3=4℄. We now 
onsider some propertiesenjoyed by '. First of all, we estimate ' in terms of h0 in [�3=4;�1=2℄[ [1=2; 3=4℄:Lemma 2.2. The following inequalities hold:(2.3) '(s) < h0(s)� 2 bC0R if s 2 ��34 ;�12�and(2.4) '(s) > h0(s) + 2 bC0R if s 2 �12 ; 34� ;provided that R and C0= bC0 are suitably large. Also, bC0 may be taken large if so isC0. Proof. To prove (2.3), note that for s 2 [� 34 ;� 12 ℄ we have C0(s � s0) 2[�C0; �C04 ℄. Also, from (1.1), there exists k > 0 su
h that(2.5) 0 < k � inf�2[�3=4;�1=2℄[[1=2;3=4℄� pp� 1h0(�)� 1p :1Noti
e that R � C0(s� s0)( pp�1h0(s)) 1p > 0 for any jsj � 3=4 and js0j � 1=4, if R is largeenough, thus the de�nition of ' is well posed. 7



8 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSTherefore, '(s) = h0(s)RphR� C0(s� s0)( pp�1h0(s)) 1p ip �� h0(s)Rp(R + C04 k)p == h0(s) + h0(s)Rp � h0(s)(R + C04 k)p(R + C04 k)p �� h0(s)� 
onstR � (R+ 
onstC0)p �RpRp�1 :Using the fa
t that limx!+1 (x+ a)p � xpxp�1 = pa ;and taking R suitably large, we get'(s) � h0(s)� 
onstC0R � h0(s)� 2 bC0R ;for C0 > 
onst bC0, proving (2.3). Let us now prove (2.4). Re
alling (2.5) andarguing as above, for s 2 [1=2; 3=4℄, we get that C0(s� s0) 2 [C04 ; C0℄ and so'(s) = h0(s)RphR� C0(s� s0)( pp�1h0(s)) 1p ip �� h0(s)Rp(R � C04 k)p �� h0(s) + 
onstR � Rp � (R � 
onstC0)pRp�1 :Using the fa
t that limx!+1 xp � (x� a)pxp�1 = pa ;we thus gather that, for R large,'(s) � h0(s) + 
onstC0R � h0(s) + 2 bC0R ;for C0 > 
onst bC0, proving (2.4). �Now, for R large enough, we de�ne sR 2 (�1; ��) as the point su
h that(2.6) h0(sR) = 1R :From (1.1), we have that(2.7) 
(1 + sR) � 1R1=p � C(1 + sR) :For further estimates, in the next two lemmas, we now point out some elementarybounds for sR:



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 9Lemma 2.3. Let C a positive universal 
onstant. Then, for R large (with respe
tto C), we have that(2.8) (1 + �)p � (1 + sR)p � CR (� � sR) > 0 if sR < � < 0and(2.9) Z 0sR d��(1 + �)p � (1 + sR)p � CR (� � sR)�1=p � eC log R ;for a suitable 
onstant eC > 0.Proof. For � 2 [sR; 0℄, letg(�) := (1 + �)p � CR (1 + �) :Then, by (2.7), g0(�) = p(1 + �)p�1 � CR �� p(1 + sR)p�1 � CR �� 
onstR(p�1)=p � CR > 0 ;if R is large enough, then
e g(�) > g(sR), proving (2.8).In order to estimate the integral in (2.9), we introdu
e the notation b = 1+ sR.Sin
e, for R large, sR is near �1, we may assume 1b > 2. We use the substitution� = 1 + �bobtaining a bound for the above integral given byZ 1=b1 d���p � 1� CRbp b(� � 1)�1=p � Z 1=b1 d�(�p � 1� C 0b(� � 1))1=p �� Z 21 d�(�p � 1� C 0b(� � 1))1=p + Z 1=b2 d�(�p � 1� C 0b(� � 1))1=p :where we used the fa
t that bp � 1R (see (2.7)).Noti
ing that �p � 1 � 2p � 12p �pif � � 2, and that �p � 1 � � � 1if � � 1, we bound the quantity here above by
onst 0B�Z 21 d�((1� C 0b)(� � 1))1=p + Z 1=b2 d���p(1� C0b(��1)�p )� 1p 1CA :



10 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSNow, if R is large, then b is small, and therefore we may assume that (1�C 0b) 1p > 12 .Thus, �1� C 0b(� � 1)�p � 1p � �1� C 0b�p�1� 1p �� (1� C 0b) 1p > 12 :This yieldsZ 0sR d��(1 + �)p � (1 + sR)p � CR (� � sR)�1=p � 
onst �1 + log 12b� ;whi
h proves (2.9). �Let us now estimate how sR varies as a fun
tion of R:Lemma 2.4. There exists a suitable universal 
onstant C > 0 so that� CR(p+1)=p � �RsR < 0 :Proof. Di�erentiating (2.6),� 1R2 = h00(sR) �RsR ;thus �RsR < 0 thanks to (1.2), and so, by (2.7),1R2 = h00(sR) j�RsRj �� 
onst (1 + sR)p�1 j�RsRj �� 
onstR(p�1)=p j�RsRj : �We now de�ne a modi�
ation of the potential h0 in the whole interval [�1; 1℄in the following way:Definition 2.5. We de�ne hs0;R : [sR; 1℄! R by
hs0;R(s) := 8>>>>>>>>>>><>>>>>>>>>>>:

h0(s)� h0(sR)� bC0R (s� sR)if sR � s � � 12'(s)if � 12 < s < 12h0(s) + h0(sR) + bC0R (1� s)if 12 � s � 1:Noti
e that hs0;R may be dis
ontinuous at s = �1=2. Let us now point outsome easy properties enjoyed by the above potential:



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 11Lemma 2.6. The following inequalities hold. If s 2 [�3=4; �1=2℄, thenhs0;R(s) > h0(s)� 2 bC0R > '(s) :If s 2 [1=2; 3=4℄, then hs0;R(s) < h0(s) + 2 bC0R < '(s) :Proof. Let s 2 [�3=4; �1=2℄. If bC0 is taken suitably large, then, re
allingLemma 2.2, we have thaths0;R(s) = h0(s)� 1R � bC0R (s� sR) �� h0(s)� 2 bC0R > '(s)where we have used the fa
t that s� sR � 1.In the same way, if s 2 [1=2; 3=4℄, taking bC0 suitably large, and using Lemma 2.2,we gather that hs0;R < h0(s) + 1R + bC02R << h0(s) + 2 bC0R < '(s) : �Lemma 2.7. Let R1 � R2 be suitably large. Then,2(2.10) hs0;R1(s) � hs0;R2(s) if sR1 � s � s0and(2.11) hs0;R1(s) � hs0;R2(s) if s0 � s � 1 :Proof. Let us prove (2.10). For this purpose, let s � s0. Two 
ases arepossible: either s > �1=2 or s � �1=2. Let us �rst deal with the �rst 
ase.Noti
e that, by (2.1), 's0;R is in
reasing in R, sin
e �1=2 < s � s0 � 1=4 < 1=2,thus, from De�nition 2.5 we gather thaths0;R1(s) = 's0;R1(s) �� 's0;R2(s) = hs0;R2(s) ;whi
h proves (2.10) if s > �1=2.Let us now deal with the 
ase s � �1=2. Fixed R1 large and s 2 [sR; �1=2℄,let us de�ne g(R) := 1R + bC0R (s� sR) :2Noti
e that, for R1 � R2 suitably large, using (1.2), (2.6) and (2.7), one hash0(sR1) = 1R1 � 1R2 = h0(sR2 ) ;so that sR1 � sR2 .



12 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSBy means of Lemma 2.4, g0(R) � � 1R2 + 
onst bC0R2+1=p < 0 ;then
e 1R2 + bC0R2 (s� sR2) = g(R2) �� g(R1) = 1R1 + bC0R1 (s� sR1) :Therefore, if s � �1=2, from De�nition 2.5,hs0;R1(s) = h0(s)� 1R1 � bC0R1 (s� sR1) �� h0(s)� 1R2 � bC0R2 (s� sR2) == hs0;R2(s) ;thus proving (2.10).Having 
ompleted the proof of (2.10), we now deal with the proof of (2.11).Two 
ases are possible: either s < 1=2 or s � 1=2. Let us �rst deal with the �rst
ase. Noti
e that, by (2.1) and the fa
t that s0 � s < 1=2, 's0 ;R is de
reasing inR. Hen
e, from De�nition 2.5, hs0;R1(s) = 's0;R1(s) �� 's0;R2(s) = hs0;R2(s) ;whi
h proves (2.11) if s < 1=2.Let us now deal with the 
ase s � 1=2. In this 
ase, by De�nition 2.5,hs0;R1(s)� hs0;R2(s) = 1R1 � 1R2 + bC0(1� s) � 1R1 � 1R2� � 0 ;proving (2.11) for s � 1=2 and thus 
ompleting the proof of Lemma 2.7. �Let now(2.12) H0(s) := Z s0 (p� 1) 1p(p h0(�)) 1p d� ; for any s 2 (�1; 1).Noti
e that the inverse of H0 is a \one-dimensional" solution of (1.5). Indeed, ifg0 := H�10 , by Lemma B.3, we obtain that�pg0 = (jg0jp�2g0)0 == (p� 1)jg0jp�2g00 == h00(g0) :We would like now to 
ompare g0 with all other solutions.To this aim, using De�nition 2.5 we now introdu
e suitable modi�
ations of H0(and thus of g0), whi
h will be used in the 
ourse of the proof:



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 13Definition 2.8. We de�ne, for s 2 [sR; 1℄,Hs0;R(s) := H0(s0) + Z ss0 (p� 1) 1p(p hs0;R(�)) 1p d� :We noti
e that, by Lemmas B.1 and 2.3, we get(2.13) hs0;R > 0 ;then
e Hs0;R is well de�ned.Remark 2.9. By De�nition 2.8, exploiting Lemma 2.7, it follows that, if R1 �R2,(2.14) Hs0;R1(s) � Hs0;R2(s) if sR1 � s � 1 :Let us now analyze some properties of the above de�ned quantity:Lemma 2.10. Assuming R suitably large, there exists a positive 
onstant C1 sothat the following inequalities hold:Hs0;R(sR) � �C1 logR ;(2.15) Hs0;R(1) � C1 logR ;(2.16) dds (Hs0;R(s)) > 0 ; 8s 2 (sR; 1) :(2.17)Proof. Note that, if R is suitably big, De�nition 2.1 implies that(2.18) infjsj�1=2'(s) > 0 :Hen
e, re
alling Lemma B.1 and (2.7), we have thatHs0;R(sR) � H0(s0)� Z � 12sR 
onst d��(1 + �)p � (1 + sR)p � CR (� � sR)�1=p �� Z s0� 12 (p� 1) 1p(p'(�)) 1p d� �� � 
onst � Z 0sR 
onst d��(1 + �)p � (1 + sR)p � CR (� � sR)�1=p �� �C1 logR ;for a suitable C1, where we used Lemma 2.3 to estimate the integral above. Thisproves (2.15).We now prove (2.16). By De�nition 2.5, (1.1), (2.18) and (2.6), we have thatHs0;R(1) � H0(s0) + Z 12s0 (p� 1) 1p(p'(�)) 1p d� + Z 112 
onst d��(1� �)p + 1R�1=p �� 
onst + Z 11=2 
onst d�(1� �) + 1R1=p �� 
onst �1 + log R1=p + 22 � �� C1 logR ;



14 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSproving (2.16). Finally, (2.17) follows from De�nition 2.8 and (2.13). �Using (2.17), we may now give the following de�nition:Definition 2.11. We de�ne gs0;R(t) : (�1; Hs0;R(1)℄! R bygs0;R(t) := � sR if t � Hs0;R(sR) ;H�1s0;R(t) if Hs0;R(sR) < t < Hs0;R(1) :We now state some notation. GivenX 2 RN+1 we de�ne x 2 RN and xN+1 2 Rin su
h a way X = (x; xN+1) 2 RN � R :Also, we will often denote x = (x0; xN ) 2 RN�1 � R :We now de�ne a hypersurfa
e in RN+1 , whi
h will provide a useful barrier:Definition 2.12. Given Y 2 RN+1 with jyN+1j � 14 and R large as above, let(2.19) S(Y;R) := nx 2 RN+1 ���xN+1 = gyN+1;R�H0(yN+1) + jx� yj �R�o :In the above de�nition, we will sometimes refer to Y as the \
enter" and to Ras the \radius" of S. For short, we also denote(2.20) gS(Y;R)(x) := gyN+1;R(H0(yN+1) + jx� yj �R) ;so that (2.19) be
omesS(Y;R) = nx 2 RN+1 ���xN+1 = gS(Y;R)(x)o :Let us now prove that gS(Y;R) is a stri
t supersolution in the vis
osity sense (for thede�nition of vis
osity super/sub/solutions, see, e.g., [30℄):Proposition 2.13. Let Y 2 RN+1 with jyN+1j � 14 . Then, gS(Y;R) is a stri
tsupersolution of (1.5) in the vis
osity sense at any x 2 RN for whi
h gS(Y;R)(x) 2[sR; �1=2℄\ [1=2; 1).Moreover, there are not smooth fun
tions tou
hing gS(Y;R) by below at x ifjgS(Y;R)(x)j = 12 .Proof. We use the notations = gyN+1;R(t) and t = H0(yN+1) + jx� yj �RIn this setting, we have to prove the desired supersolution property for sR � s ��1=2 and for 1=2 � s < 1.Let us �rst 
onsider the 
ase s = sR, that is t � HyN+1;R(sR). In this 
ase,gyN+1;R(t) is 
onstantly equal to sR, thus any paraboloid tou
hing from above musthave vanishing gradient at the 
onta
t point and negative de�nite Hessian matrix.Thus, �p(gyN+1;R(t)) = 0 < h00(sR)in the vis
osity sense.



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 15Let us now 
onsider the 
ase HyN+1;R(sR) < t < HyN+1;R(� 12 ) (that is, sR <s < � 12 ): in this 
ase, gyN+1;R is smooth so that we 
an 
ompute all the derivativesin the 
lassi
 sense. As a matter of fa
t, by Lemma B.3,g0yN+1;R(t) = � pp� 1 hyN+1;R(gyN+1;R(t))�1=pg00yN+1;R(t) = �p hyN+1;R(gyN+1;R(t))�(2�p)=p(p� 1)2=p h0yN+1;R(gyN+1;R(t)) :Hen
e, exploiting Lemma B.2, we get�p(gyN+1;R(t)) = h0yN+1;R(s) + N � 1jx� yj� pp� 1 hyN+1;R(s)� p�1p :Noti
e that, from Lemma 2.10,�C1 logR � HyN+1;R(sR) < t == H0(yN+1) + jx� yj �R �� 
onst + jx� yj �R ;and therefore, if R is big enough,(2.21) jx� yj � R2 :Thus, we get�p(gyN+1;R(t)) � h00(s)� bC0R + 2(N � 1)R � pp� 1 h0(s)� p�1p << h00(s)provided that C0 (and so bC0) is 
hosen 
onveniently large. This proves the desiredresult for HyN+1;R(sR) < t < HyN+1;R(� 12 ).If, on the other hand, HyN+1;R( 12 ) < t < HyN+1;R(1) (that is, 12 < s < 1),arguing in the same way, we get�p(gyN+1;R(t)) � h00(s)� bC0R + 2(N � 1)R � pp� 1 hyN+1;R(s)� p�1p < h00(s) ;provided that bC0 is 
onveniently large. This 
ompletes the proof in the 
aseHyN+1;R( 12 ) < t < HyN+1;R(1).Up to now, we have therefore proved the desired result fort 2 ��1; HyN+1;R(�12)� [ �HyN+1;R(12); HyN+1;R(1)� ;that is, for s 2 hsR;�12� [ �12 ; 1� ;To 
omplete the proof of the 
laim, we have therefore to take now into a

ount the
ase jsj = 1=2.



16 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSLet us now deal with the 
ase jsj = 1=2. Re
alling Lemma 2.6, by (2.2), wehave lims!� 12�H 0yN+1;R(s) < lims!� 12+H 0yN+1;R(s) ;lims! 12�H 0yN+1;R(s) < lims! 12+H 0yN+1;R(s) ;so that limt!HyN+1;R(� 12 )�g0yN+1;R(t) > limt!HyN+1;R(� 12 )+g0yN+1;R(t) ;limt!HyN+1;R( 12 )�g0yN+1;R(t) > limt!HyN+1;R( 12 )+g0yN+1;R(t) :(2.22)Let now w be a smooth fun
tion whose graph tou
hes S(Y;R) by below at (x0; 1=2)(the 
ase of tou
hing at the �1=2-level is analogous). Let us 
onsider the radialdire
tion �0 = x0�yjx0�yj and let us de�ne, for � 2 R,g(�) := gS(Y;R)(x0 + ��0)� w(x0 + ��0) :Then, by 
onstru
tion, g(0) = 0 � g(�), therefore0 � lim�!0+ g(�)� g(0)� == lim�!0+ gyN+1;R(t0 + �)� gyN+1;R(t0)� � ��0w(x0) == limt!HyN+1;R(1=2)+ g0yN+1;R(t)� ��0w(x0) ;where t0 := H0(yN+1) + jx0 � yj �R = HyN+1;R(1=2) :By arguing in the same way, we also get that0 � lim�!0� g(�)� g(0)� == limt!HyN+1;R(1=2)� g0yN+1;R(t)� ��0w(x0) :Then
e, limt!HyN+1;R(1=2)� g0yN+1;R(t) � ��0w(x0) � limt!HyN+1;R(1=2)+ g0yN+1;R(t) ;whi
h is a 
ontradi
tion with (2.22). Therefore, no smooth fun
tion may tou
hgS(Y;R) by below at �1=2-level sets, showing, in parti
ular, the 
laimed supersolu-tion property. This 
ompletes the proof of Proposition 2.13. �As a 
onsequen
e of the above result, we show now that tou
hing points betweenS(Y;R) and a subsolution of (1.5) may only o

ur when jxN+1j < 1=2 (and thisfa
t will be of great help in future 
omputations, thanks to the expli
it form of thebarrier in jxN+1j < 1=2):Corollary 2.14. Let U 2 C1(
) be a weak Sobolev subsolution of (1.5), withjU j � 1. Assume that U � gS(Y;R) and that U(x?) = gS(Y;R)(x?) for some x? in the
losure of 
. Then, either x? 2 �
 or jgS(Y;R)(x?)j < 1=2.



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 17Proof. Let us assume that x? 62 �
 We �rst prove that gS(Y;R)(x?) 6= 1. Weargue by 
ontradi
tion, assuming gS(Y;R)(x?) = 1. Noti
e that, due to De�nition2.5, lims�!1� dHyN+1;Rds (s) = lims�!1� 1� pp�1hyN+1;R(s)�1=p == � (p� 1)Rp �1=p ;thus g0yN+1;R(t) > 0 if t = HyN+1;R(1). Then, if�? := x? � yjx? � yjis the radial dire
tion, this yields(2.23) �gS(Y;R)��? (x?) > 0 :However, sin
e U 2 C1(RN ), U(x?) = 1 and U � 1,(2.24) rU(x?) = 0 :Similarly, sin
e U � gS(Y;R) and U(x?) = gS(Y;R)(x?),(2.25) �gS(Y;R)��? (x?) � �U��? (x?) :Thus, a 
ontradi
tion easily follows from (2.23), (2.24) and (2.25), showing thatgS(Y;R)(x?) 6= 1.Also we 
laim that gS(Y;R)(x?) 62 [sR; �1=2℄ [ [1=2; 1).Let us �rst show that gS(Y;R)(x?) 6= sR. We argue by 
ontradi
tion and assumethat gS(Y;R)(x?) = sR. We re
all that, by De�nitions 2.11 and 2.12, gS(Y;R) is
onstantly equal to sR in Br(y), withr = r(R) := R+HyN+1;R(sR)�H0(yN+1)and3 that r > 0 by (2.15). Then, there would be � > 0 so that
? := Br(y) \ B�(x?) � ngS(Y;R) = sRo :Possibly taking � smaller, we may assume also that(2.26) 
? � nU < �1 + ��oand, sin
e x? 62 �
 by our assumption, that(2.27) 
? is 
ontained in the interior of 
.3 Pro
eeding as done here and exploiting (2.16), one may also prove that gS(Y;R) rea
hes thevalue 1 well inside the ball of radius R +R 13 =2 around y.



18 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSNote that U 
annot 
oin
ide with gS(Y;R) in 
?, otherwise0 = � Z jrU jp�2rU � r'� Z h00(U)'= Z h00(sR)'> 0 ;for any non-negative smooth test-fun
tion ' supported in 
?. Then, there exists�x 2 
? and �0 > 0 so that U < gS(Y;R) in the interior of B�0(�x) � 
?, but thereexists �x 2 �B�0 for whi
h U(�x) = gS(Y;R)(�x). SettingU? = sR � Uit follows U? = gS(Y;R)� U > 0in B�0(�x) and U?(�x) = 0. Moreover,(2.28) ��pU? = �pU � h00(U) :Hen
e, h00(U) > 0 in the light of (1.2) and (2.26). Then
e, from (2.28), ��pU? > 0.Therefore, by Theorem B.6 (applied with 
 = g = 0),(2.29) ��U(�x) = ���U?(�x) > 0 ;where � := �x� �xj�x� �xjis the outer normal of B�0(�x) at �x.On the 
ontrary, note that �x is in the interior of the domain of U thanks to(2.27), and so, sin
e U tou
hes gS(Y;R) at �x and rgS(Y;R) vanishes on fgS(Y;R) = sRg,we have that ��U(�x) = ��gS(Y;R)(�x) = 0 ;against (2.29). This 
ontradi
tion shows that x? does not lie in fgS(Y;R) = sRg.Let us now prove that(2.30) gS(Y;R)(x?) 62 �sR ; �12� :First, we re
all that gS(Y;R) is smooth with non-vanishing gradient in
0 := �gS(Y;R)(x) 2 �sR ; �12�� ;



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 19then
e it is a 
lassi
al stri
t supersolution of (1.5) in 
0. This implies that U 
annot
oin
ide with gS(Y;R) in fgS(Y;R)(x?) 2 (sR ; � 12 )g, otherwise,Z h00(gS(Y;R))' > � Z jrgS(Y;R)jp�2rgS(Y;R) � r' == � Z jrU jp�2rU � r' �� Z h00(U)'= Z h00(gS(Y;R))' ;for any non-negative smooth test-fun
tion ' supported in 
0, whi
h is an obvious
ontradi
tion. Therefore, sin
e U and gS(Y;R) do not agree in 
0 and rgS(Y;R)never vanishes there, we 
an exploit Corollary B.5 and get that U < gS(Y;R) in 
0.Then
e, no tou
hing point may o

ur in fgS(Y;R)(x) 2 (sR ; � 12 )g, proving (2.30).Also, gS(Y;R)(x?) 6= � 12 by Proposition 2.13. The fa
t that gS(Y;R)(x?) 62[1=2 ; 1) follows with similar arguments. �We will now de�ne another hypersurfa
e in RN+1 , whi
h will be denoted byeS(Y;R) and we investigate its relation with S(Y;R). While S(Y;R) is 
ontinuousbut not smooth, eS(Y;R) will be smooth, and thus it will be easier to deal withduring the 
al
ulations. Also, the two surfa
es will 
oin
ide in fjxN+1j � 12g andS(Y;R) will always stay below eS(Y;R). Therefore, eS(Y;R) will provide, in somesense, a sharp barrier for S(Y;R) whi
h will be more expli
it to treat. Let us nowapproa
h the de�nition of the hypersurfa
e eS(Y;R).Setting(2.31) eHs0;R(s) := H0(s)� C02R (s� s0)2then, by (2.12), we have(2.32) dds � eHs0;R(s)� = 1( pp�1h0(s)) 1p � C0R (s� s0) > 0for jsj � 34 , provided that R is big enough. Therefore, for jsj � 34 we have thateHs0;R is stri
tly in
reasing and we 
an give the followingDefinition 2.15. We de�ne�s0;R(t) : � eHs0;R(�34) ; eHs0;R(34)� �! ��34 ; 34�by(2.33) �s0;R(t) := eH�1s0;R(t) :Moreover, given Y 2 RN+1 with jyN+1j � 14 and R large as above, we de�ne(2.34) eS(Y;R) := fx 2 RN+1 jxN+1 = �yN+1;R(H0(yN+1) + jx� yj �R)g



20 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSAs done on page 14, it is 
onvenient to introdu
e the notation(2.35) geS(Y;R)(x) := �yN+1;R(H0(yN+1) + jx� yj � R) ;so that (2.34) be
omeseS(Y;R) = nx 2 RN+1 ���xN+1 = geS(Y;R)(x)o :Noti
e also that, by 
onstru
tion, for any x for whi
h geS(Y;R) is de�ned4, we havethat(2.37) jgeS(Y;R)(x)j � 34 :Moreover, a straightforward 
omputation gives that(2.38) eHs0;R1(s)� eHs0;R2(s) = C02 (s� s0)2 � 1R2 � 1R1� ;for any jsj � 3=4. Also, if x is in the domain of geS(Y;R), then x and y must besuitably far from ea
h other, as next result points out:Lemma 2.16. Let x 2 RN be so that geS(Y;R) is well de�ned (that is, let x besu
h that (2.36) holds). Then, jx� yj � R� C ;for a suitable universal 
onstant C > 0.Proof. From (2.37), we get thats := geS(Y;R)(x) 2 [�3=4; 3=4℄ :So, by means of (2.31) and (2.33),jx� yj = R�H0(yN+1) +H0(s)� C02R (s� yN+1)2 �� R� 
onst : �Let us now show that the surfa
e S(Y;R) 
oin
ides with eS(Y;R) in the setjxN+1j � 12 and that S(Y;R) stays below eS(Y;R) at all other points where eS(Y;R)is de�ned:Lemma 2.17. If jsj � 1=2, then(2.39) Hs0;R(s) = eHs0;R(s) :If 12 < jsj < 34 , then Hs0;R(s) > eHs0;R(s) :(2.40)Also, let x 2 RN be so that geS(Y;R) is well de�ned (that is, let x be su
h that (2.36)holds). Then,(2.41) geS(Y;R)(x) � gS(Y;R)(x) :4 I.e., for any x so that(2.36) H0(yN+1) + jx� yj � R 2 h eHs0;R(�34 ) ; eHs0;R( 34 )i :



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 21Furthermore, if jgeS(Y;R)(x)j � 12 , then(2.42) geS(Y;R)(x) = gS(Y;R)(x) :Proof. We use the notation s := geS(Y;R). Let jsj � 1=2. By De�nitions 2.5and 2.8, re
alling also (2.2), we have thatHs0;R(s) = H0(s0) + Z ss0 d�( pp�1h0(s)) 1p � Z ss0 C0R (s� s0) == H0(s)� C02R (s� s0)2 == eHs0;R(s) :(2.43)This and (2.31) prove (2.39) and (2.42). We now prove (2.40) and (2.41). Let us
onsider only the 
ase s 2 [�3=4; �1=2℄, the 
ase s 2 [1=2; 3=4℄ being analogous.In this 
ase, s < s0, and thus, exploiting Lemma 2.6, we getHs0;R(s) = H0(s0)� Z s0s 1� pp�1hs0;R�1=p >> H0(s0)� Z s0s 1� pp�1'�1=p == H0(s0)� Z s0s 1� pp�1h0�1=p � C02R (s� s0)2 == H0(s)� C02R (s� s0)2 ;proving (2.40) and (2.41). �Sin
e, by 
onstru
tion, the fun
tion geS(Y;R) de�ned above is smooth (and, dueto (2.32, its gradient never vanishes), we 
an 
ompute its derivatives (and its p-Lapla
ian) in the 
lassi
 sense. In parti
ular, we 
an sharply estimate how fargeS(Y;R) is from being a solution of (1.5), thanks to the following result:Proposition 2.18. Let Y 2 RN+1 with jyN+1j � 14 . Then, there exists apositive universal 
onstant C > 0 su
h thath00�geS(Y;R)(x)�� CR � �pgeS(Y;R)(x) � h00�geS(Y;R)(x)�+ CR ;for any x for whi
h geS(Y;R) is de�ned (i.e., for any x so that (2.36) holds).Proof. We will use the notationt := H0(yN+1) + jx� yj �R and(2.44) s := �yN+1;R(t) = geS(Y;R)(x) :Let us note that, from (2.31) and (2.2),(2.45) ddt�yN+1;R(t) = 1H 00(s)� C0R (s� yN+1) = � pp� 1'(s)� 1p :



22 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSHen
e, di�erentiating again, a straightforward 
al
ulation leads to(2.46) d2dt2 �yN+1;R(t) = (p'(s)) 2�pp(p� 1) 2p '0(s) :Therefore, by Lemma B.2,(2.47) �p(�yN+1;R(t)) = '0(s) + N � 1jx� yj� pp� 1 '(s)� p�1p :Furthermore, note that, by di�erentiating (2.2), one obtains(2.48) �1p 0� pp�1'0(s)( pp�1'(s)) p+1p 1A = �1p 0� pp�1h00(s)( pp�1h0(s)) p+1p 1A� C0Rso that(2.49) '0(s) = � '(s)h0(s)� p+1p h00(s) + pC0R � pp� 1� 1p �'(s)� p+1p ;when
e, from (2.1),'0(s) = h00(s)++ 1R (h00(s)R "� RR� a�p+1 � 1#+ pC0� pp� 1� 1p �'(s)� p+1p ) ;(2.50)with a = a(s) := C0 (s� s0)� pp� 1 h0(s)�1=p :Using now the fa
t thatlimx!0+ �������� 11�xa�p+1 � 1x ������� = j(p+ 1)aj < +1 ;we obtain, if R is suitably large, that�����h00(s)R "� RR� a�p+1 � 1#+ pC0� pp� 1� 1p �'(s)� p+1p ����� � 
onst ;(2.51)so that, from (2.47) and the fa
t that ' � 0,h00(s)� 
onstR � �p(�yN+1;R(t)) ;whi
h proves one side of the 
laimed inequality.The other side of the inequality is obtained by arguing in the same way, makinguse also of Lemma 2.16. �For further referen
e, we point out some easy 
al
ulations on the above barrier:Lemma 2.19. At any x for whi
h geS(Y;R) is de�ned, we have that�H 00 �geS(Y;R)(x)�� C0R �geS(Y;R)(x) � yN+1�� rgeS(Y;R)(x) == x� yjx� yj :(2.52)



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 23Also, there exists a universal 
onstant C > 0 so that(2.53) ���H 00 �geS(Y;R)(x)� ���rgeS(Y;R)(x)���� 1��� � CRand ���H 000 �geS(Y;R)(x)� �igeS(Y;R)(x)�jgeS(Y;R)(x) ++ H 00 �geS(Y;R)(x)� �ijgeS(Y;R)(x)��� �� CR ;(2.54)provided that R is large enough.Proof. Using the notation in (2.44) and the �rst equality in (2.45), the 
laimin (2.52) easily follows. From (2.52) and (2.37), one easily gets (2.53).Let us now prove (2.54). From (2.31) and (2.33), we have that� = H0��yN+1;R(�)�� C02R��yN+1;R(�)� yN+1�2 ;for any � for whi
h �yN+1;R is de�ned; then, di�erentiating twi
e and re
alling(2.37), ���H 000 (�yN+1;R(�)) ��0yN+1;R(�)�2++H 00(�yN+1;R(�)) �00yN+1;R(�)��� � 
onstR :(2.55)Furthermore, di�erentiating twi
e the relationgeS(Y;R)(x) = �yN+1;R�H0(yN+1) + jx� yj �R� ;a dire
t 
omputation gives�ijgeS(Y;R)(x) == Rij�00yN+1;R(t) +� Æijjx� yj � Rijjx� yj� �0yN+1;R(t) ;where we de�ne, for short, Rij := (xi � yi) (xj � yj)jx� yj2 :In other words,(2.56) �ijgeS(Y;R)(x) = Rij�00yN+1;R(t) + Sijfor a suitable Sij satisfying jSij j � 
onst =jx� yj. Therefore, using (2.56) and thefa
t that(2.57) �igeS(Y;R)(x) = �0yN+1;R(t) xi � yijx� yj ;



24 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSwe get that H 000 �geS(Y;R)(x)� �igeS(Y;R)(x)�jgeS(Y;R)(x) ++H 00 �geS(Y;R)(x)� �ijgeS(Y;R)(x) == H 000 (�yN+1;R(t)) ��yN+1;R(t)�2 Rij ++H 00(�yN+1;R(t)) �Rij�00yN+1;R(t) + Sij� == RijhH 000 ��yN+1;R(t)���yN+1;R(t)�2 ++H 00��yN+1;R(t)� �00yN+1;R(t)i+ Tij ;with jTij j � 
onst =jx� yj. Thus, from (2.55),���H 000 �geS(Y;R)(x)��igeS(Y;R)(x)�jgeS(Y;R)(x) ++H 00�geS(Y;R)(x)��ijgeS(Y;R)(x)��� �� 
onst � 1R + 1jx� yj� :Therefore, (2.54) is proved thanks to Lemma 2.16. �We now re
all a result, proved in [30℄, 
on
erning another barrier whi
h willbe used in the 
ourse of the proof of the main results:Lemma 2.20. There exist universal 
onstants �l > 1 and 0 < �
 � 1=2, so that,if l � �l, we 
an �nd Tl 2 [�
l; l=2℄ and a nonde
reasing fun
tiongl 2 C0(�1; Tl) \ C1;1(�1; 0) \ C2((��
l; Tl) n f0g)whi
h is 
onstant in (�1;�l=2℄, with g0l > 0 in [��
l; Tl℄, satisfying gl(0) = 0,gl(Tl) = 1 and su
h that, if we de�ne(2.58) 	y;l(x) := gl(jx� yj � l) ;then 	y;l(x) is a stri
t supersolution of (1.5) in the vis
osity sense, in BTl+l(y) n�Bl(y).More pre
isely, gl is 
onstru
ted as follows. There exists a suitable 
onstants0 < 
1 < C1; C2 so that, if we de�nesl := e�
1l ;hl(s) := 8>>>>><>>>>>: h0(s)� h0(sl � 1)� C2l ((1 + s)p � spl )if (sl � 1) < s < 0h0(s) + h0(1� sl) + C2l �(1� s)p + s(p�1)l (1� s)�if 0 � s < 1;Hl(s) := Z s0 (p� 1) 1p(p hl(�)) 1p d� ;H0(s) := Z s0 (p� 1) 1p(p h0(�)) 1p d� ; for any s 2 (�1; 1),then the following holds:



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 25(i) hl(s) > 0 in (sl � 1) < s < 1; in parti
ular, Hl is well de�ned and stri
tlyin
reasing for (sl � 1) < s < 1 and thus we may de�ne gl(t) := H�1l (t)for t 2 Hl(sl � 1; 1);(ii) gl(t) is de�ned to be 
onstantly equal to sl � 1 for t � Hl(sl � 1);(iii) the following estimates on Hl hold:Hl(1) � l2 ;(2.59) Hl(sl � 1) � � l2 ;(2.60) H0(s) � Hl(s)� C1l log(1� jsj) 8jsj < 1� e� 
1l2 ;(2.61) Hl(1� e� 
1l2 ) � �
 l ;(2.62) Hl(e� 
1l2 � 1) � ��
 l :(2.63)A detailed proof of Lemma 2.20 is 
ontained in [30℄ (see, in parti
ular, Lemma5.1 there).We now point out some properties of the tou
hing points between the barrier	y;l and a (sub)solution of (1.5). To this end, we noti
e that, by 
onstru
tion, theradially in
reasing fun
tion 	y;l built in Lemma 2.20 is so that:� 	y;l is de�ned in BTl+l(y), and it is greater than sl � 1;� there exists �l 2 [�
l; l=2℄ so that the only 
riti
al points of 	y;l are inBl��l(y), where 	y;l is 
at;� 	y;l = 0 on �Bl(y).The geometry of su
h spheres is related with possible tou
hing points, as next resultshows:Lemma 2.21. Fix y 2 RN and let l > 0 be suitably large. Let u be a weakSobolev subsolution of (1.5) in some domain 
. Suppose that u 2 C1(
) and thatjuj � 1. Then the following results hold:� If 	y;l tou
hes the graph of u from above at some point x? in the 
losureof 
 \ BTl+l(y), then, either x? 2 �
 or u(x?) = 	y;l(x?) = 0.� If Bl+Tl(y) � fx 2 
 j u(x) � �1 + ��g ;then, u(x) < 	y;l(x) ;for any x 2 Bl+Tl(y).For the proof of Lemma 2.21, we refer to [30℄ (see, in parti
ular, Lemma 6.2and Corollary 6.4 there). We now noti
e that a statement analogous to Lemma 2.20holds for a subsolution (instead of supersolution) property:Lemma 2.22. There exist universal 
onstants �l > 1 and 0 < �
 � 1=2, so that,if l � �l, we 
an �nd Tl 2 [�
l; l=2℄ and a nonde
reasing fun
tionegl 2 C0(�Tl;+1) \ C1;1(0;+1) \ C2((�Tl; �
l) n f0g)whi
h is 
onstant in [l=2;+1), with eg0l > 0 in [�Tl; �
l℄, satisfying egl(0) = 0,egl(�Tl) = �1 and su
h that, if we de�nee	y;l(x) := egl(l � jx� yj) ;



26 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSthen e	y;l(x) is a stri
t subsolution of (1.5) in the vis
osity sense, in BTl+l(y) n�Bl(y).Also, if we de�ne eh0(s) := h0(�s) andeH0(t) := Z t0 (p� 1)1=p d�(peh0(�))1=p ;then, there exists a stri
tly in
reasing fun
tion eHl and a positive fun
tion hl, su
hthat eH 0l(s) = (p� 1)1=p(pehl(s))1=p ;so that the following holds:(i) ehl(s) is de�ned and stri
tly positive in �1 < s < 1� sl; eHl is de�ned andstri
tly in
reasing for �1 < s < 1�sl; egl(t) = eH�1l (t) for t 2 eHl(1; 1�sl);(ii) egl(t) is 
onstantly equal to 1� sl for t � eHl(1� sl);(iii) the following estimates on eHl hold:eHl(�1) � � l2 ;eHl(1� sl) � l2 ;eH0(s) � eHl(s) + C1l log(1� jsj) 8jsj < 1� e� 
1l2 ;eHl(�1 + e� 
1l2 ) � ��
 l ;Hl(1� e� 
1l2 ) � �
 l :Proof. Noti
e that eh0 satis�es the same assumption as h0, thus, we 
an useLemma 2.20 with eh0 repla
ing h0: let us denote by h℄l , H℄l and g℄l the fun
tionsthus obtained via Lemma 2.20 with eh0 repla
ing h0. Then, de�neehl(s) := h℄l (�s) :Thus, eHl(s) := Z s0 (p� 1)1=p(pehl)1=p = �H℄l (�s)and therefore egl(t) = �g℄l (�t) :With this, let us show that e	y;l is a stri
t vis
osity subsolution of (1.5) outside�Bl(y). Indeed, if � is a smooth fun
tion tou
hing e	y;l from above at x? 62 �Bl(y),then '(x) := ��(x) tou
hes from below at the point x? the stri
t vis
osity super-solution �e	y;l(x) = g℄l (jx� yj � l) :Thus, by Lemma 2.20,�p� = ��p' > �(h℄l)0(') = eh0l(�') = eh0l(�)at the point x?, whi
h shows the desired subsolution property of e	y;l.It is easy to see that egl and eHl also enjoy the properties listed above. �



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 27We are now in the position of showing that minimizers are trapped in betweenthe fun
tions 
onstru
ted in Lemmata 2.20-2.22 (an exponential de
ay was alsopointed out in x9 of [30℄):Lemma 2.23. Let l > 0, � > 0. Let u be a lo
al minimizer for F inn(x0; xN ) 2 RN�1 � R ��� jx0j < l ; jxN j < lo :Assume that juj � 1, that �=l is suitably small, that u(0) = 0, that u(x) > 0if xN � � and that u(x) < 0 if xN � ��. Then, there exist suitable 
onstants�; e�; �̂ 2 (0; 1℄ so that ege�l(xN � �) � u(x) � g�l(xN + �) ;at any point x 2 [��̂l; �̂l℄N , provided that the fun
tions above are de�ned at x.
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Trapping a minimizer between two barriers, as in Lemma 2.23Proof. We proof the latter inequality, the �rst one being analogous. FromTheorem 1.1 of [28℄ and the fa
t that fu = 0g � fjxN j � �g, it easily follows that(2.64) u(x) < �1 + �? for any x 2 RN with xN � �? and jx0j � l=2,for some 
onstant �? (whi
h may depend on �? and other universal 
onstants).Then, from (2.64) and the se
ond item in Lemma 2.21,u(x) � 	y;�l(x) ;



28 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSwhere y := (0; : : : ; 0;�l=2). Let now e 2 SN�1, with eN > 0 and let us slide 	y;�lin the e-dire
tion until it tou
hes u. Noti
e indeed that there exists a suitable
onstant �
 2 (0; 1) so that if(2.65) eN � �
 ;then 	y+te;�l does tou
h u for some t = t(e) > 0 at some point x? = x?(e) 2 [�l; l℄N ,that is(2.66) u(x) � 	y+te;�l(x) = g�l(jx� (y + te)j � �l) ;for any x 2 BT�l+�l(y + te), being the latter the domain where 	y+te;�l is de�ned,and u(x?) = 	y+te;�l(x?) :In the light of the �rst item in Lemma 2.21, we have thatu(x?) = 	y+te;�l(x?) = 0and so, sin
e, by our hypotheses fx j u(x) = 0g � fjxN j � �g, we have thatjx?N j � � :Let us now 
onsider, for d � 0, the pointx = x(e) := x? + deN :Then, jx� (y + te)j � jx� x?j+ jx? � (y + te)j == d+ �l == xN � x?N + �l� xN + � + �l :Therefore, sin
e gl is in
reasing, (2.66) implies that(2.67) u(x) � g�l(xN + �) ;provided x 2 BT�l+�l(y + te).With this inequality, we are now in the position of 
hoosing e here above in orderto infer the desired result. We pro
eed in the following way: take x = (x0; xN ) 2[��̂l; �̂l℄N�1 � [��̂l; �̂l℄ and 
onsider two 
ases.If(2.68) fx 2 [��̂l; �̂l℄N j xN � xNg \ fu = 0g 6= ; ;take x? so that (x?)0 = x0, u(x?) = 0 and x?N as low as possible (in parti
ular, from(2.68), x?N � xN ). Let also, as above, y := (0; : : : ; 0;�l=2). Then, 
hoosinge := x? � yjx? � yj ;we have that x and x? here agree with x(e) and x?(e) 
onstru
ted here above andthat (2.65) is ful�lled provided �̂ is small enough. Thus, the desired result follows,in this 
ase, from (2.67).If, on the other hand,(2.69) fx 2 [��̂l; �̂l℄N j xN � xNg \ fu = 0g = ; ;noti
e that xN + � + �l � � + (�� �̂)l > 0, provided that �̂ � � and de�ney? := x� (xN + � + �l)eN



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 29and e := y? � yjy? � yj :Noti
e also that y?N + �l = ��, hen
eB�l(y?) � [��l; �l℄N�1 � (�1;��℄ � fu < 0g :Therefore, by the �rst item in Lemma 2.21, we have that 	y+te;�l does not tou
hu for t 2 [0; jy? � yj℄. In parti
ular, for t = jy? � yj,u(x) � 	y+te;�l(x) == 	y?;�l(x) == g�l(xN + �) :This proves the desired result also in 
ase (2.69) holds and it 
ompletes the proofof Lemma 2.23. �Corollary 2.24. Let l > 0, � > 0. Let u be a lo
al minimizer for F in
 := n(x0; xN ) 2 RN�1 � R ��� jx0j < l ; jxN j < lo :Assume that juj � 1, that �=l is suitably small, that u(0) = 0, that u(x) > 0 ifxN � � and that u(x) < 0 if xN � ��. Then, there exists a suitable 
onstant
 2 (0; 1℄ so that (�1 + s
l; 1� s
l) � u(
) :Proof. By Lemma 2.23 and the fa
t that gl(t) = �1 + sl if t � �l=2 (re
allLemma 2.20), we have that, if xN � �3�l=4,u(x) � g�l(xN + �) = �1 + s�l ;provided that �=l small enough. Analogously, by Lemma 2.23 and the fa
t thategl(t) = 1� sl if t � l=2 (re
all Lemma 2.22), we get that, if xN � 3e�l=4,u(x) � ege�l(xN � �) = 1� se�l :The inequalities above and the 
ontinuity of u (see [15℄ or [34℄) imply the desiredresult. �In the following, we will often slide the barriers in a given dire
tion. More pre-
isely, we will start from a 
on�guration in whi
h the barrier is above a subsolutionu and then we slide the barrier until it tou
hes the graph of u. With some poetry,we may think that the barrier is like a ship whi
h moves forward until it tou
hesthe land u: of 
ourse, the ship will tou
h the land with the fore, not with the aft.Next result gives a formal justi�
ation of this fa
t:Lemma 2.25. Let u 2 C(
). Let � = (�1; : : : ; �N ) 2 RN with j�j = 1 andlet �̂ := (�; 0) 2 RN+1 . Assume that gS(Y�t�̂;R) > u in their 
ommon domain ofde�nition for any t 2 (0; 1℄. Assume also that gS(Y;R) tou
hes u from above at somepoint X = (x; xN+1), that is, assume that gS(Y;R) � u and gS(Y;R)(x) = u(x) =xN+1. Then, (x� y) � � � 0 :



30 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSProof. By 
onstru
tion,gyN+1;R�jx� yj+H0(yN+1)�R� == gS(Y;R)(x) == u(x) �� gS(Y�t�̂;R)(x) == gyN+1;R�jx� y + t�j+H0(yN+1)�R�for any t 2 [0; 1℄, from whi
h jx� yj � jx� y + t�jfor any t 2 [0; 1℄. This says that the fun
tionf(t) := jx� y + t�j2attains its minimum in the domain [0; 1℄ at t = 0. Thus, f 0(0) � 0, whi
h gives thedesired estimate. �



CHAPTER 3Geometry of the tou
hing pointsThis se
tion, whi
h is very te
hni
al, follows many of the ideas in Chapter 4 of[31℄ (we provide full details for the reader's fa
ility). The main result of this se
tionwill be Proposition 3.14, in whi
h we investigate the measure theoreti
 propertiesof (an N -dimensional proje
tion of) the set of possible tou
hing points betweena subsolution of (1.5) and the barrier S(Y;R) introdu
ed here above. Roughlyspeaking, we will prove in Proposition 3.14 that the measure of the proje
tion ofthe \�rst o

urren
e" tou
hing points 
ontrols the measure of the proje
tion of the
enters of the 
orresponding surfa
es.For this s
ope, given(3.1) � := (�1; : : : ; �N ; 0) 2 RN+1 ;with j�j = 1, we de�ne P� as the hyperplane in RN+1 orthogonal to �, i.e.,P� := fX 2 RN+1 j � �X = 0gWe also denote by �� the proje
tion onto P�, i.e.,��(X) := X � (� �X)� ; 8X 2 RN+1 :With a slight abuse of notation, we will sometimes identify � with its N -dimensionalproje
tion, impli
itly dropping the zero in the last 
oordinate, that is, we will write� := (�1; : : : ; �N ) 2 RN ;instead of (3.1).Let now u 2 C1([�C℄l ; C℄l℄N ) be a weak Sobolev subsolution of (1.5), withjuj � 1. Here we will �x C℄ suitably large (also, l and R are �xed and suitablylarge, and l=R is assumed 
onveniently small). Let us now de�ne the set of �rst
onta
t points as follows. Given a 
ompa
t set1 A � P� � RN , we de�neeA = eAA := fY 2 RN+1 s.t.9Ŷ 2 A; tŶ 2 R s.t. Y = Ŷ + tŶ � ;gS(Ŷ+t�;R) > u for any t < tŶ ,gS(Y;R) � uand 9x 2 RN+1 s.t. gS(Y;R)(x) = u(x)g :1The 
losure of A will be used to dedu
e 
losure and measurability properties of sets ofinterest: see, e.g., Lemma 3.2 and Proposition 3.14 here below.31



32 3. GEOMETRY OF THE TOUCHING POINTSWe refer to eA as the set of the \
enters". Moreover, we de�neeB = eBA := fX = (x; xN+1) 2 RN+1 s.t. 9Y 2 eA s.t.gS(Y;R) � u andgS(Y;R)(x) = u(x) = xN+1gand we refer to eB as the set of \�rst 
onta
t points". Roughly speaking, we aresliding our barriers until it tou
hes the graph of u for the �rst time: the set eB
olle
ts all su
h �rst o

urren
e 
onta
t points, while eA 
olle
ts the 
orresponding
enters. In this se
tion, we will assume that(3.2) A � [�C℄l=2; C℄l=2℄N � [�1=4; 1=4℄and thatnX = (x; xN+1) 2 RN+1 s:t: 9Y 2 RN+1 s:t: ��Y 2 A ; gS(Y;R) � u andgS(Y;R)(x) = u(x)o \ �[�C℄l; C℄l℄N = ; :(3.3)We also de�ne B := ��( eB) :We also denote the graph of u by G, that is we set(3.4) G := fxN+1 = u(x)g :We now show some properties of the above de�ned sets. First of all, from (3.3)and Corollary 2.14, we have that:Lemma 3.1. eB � fX 2 RN+1 j jxN+1j < 1=2g :We now show that the 
ompa
tness property of A is inherited by the other setsde�ned above:Lemma 3.2. If l=R is small enough, then eA, B and eB are 
ompa
t sets.Proof. Note that eB 2 [�C℄l; C℄l℄N� [�1; 1℄, hen
e eB is bounded. Therefore,B and eA are also bounded. Then
e, we only need to show that the above sets are
losed. Let us �rst show that eA is 
losed. For this, let Yk 2 eA 
onverge to someY1. We need to show that Y1 2 eA.For this s
ope, note that, sin
e A is 
losed and ��Yk 2 ��(eA) � A, we have that��Y1 2 A. Also, sin
e Yk 2 eA, we have that there existsXk 2 [�C℄l; C℄l℄N�[�1; 1℄so that(3.5) 8<: gS(Yk;R)(xk) = u(xk)gS(Yk;R) � u andgS(Yk�t�;R) > u ;for any t > 0. Of 
ourse, up to subsequen
e, we may assume that Xk 
onverges tosome point X1. Thus, passing to the limit (3.5), we obtain that8<: gS(Y1;R)(x1) = u(x1)gS(Y1;R) � u andgS(Y1�t�;R) � u ;



3. GEOMETRY OF THE TOUCHING POINTS 33for any t > 0. Hen
e, to show that Y1 2 eA, we need to prove the stri
t inequalityin the last relation here above, i.e., we need to show that(3.6) gS(Y1�t�;R) > ufor any t > 0. We argue by 
ontradi
tion: assume that there exists x℄ so thatjx℄j � 
onst l and t℄ > 0, su
h thatgS(Y1�t℄�;R)(x℄) = u(x℄) :Note that, by (3.3) and Corollary 2.14, jgS(Y1;R)(x1)j � 1=2, thus(3.7) jx1 � y1j � 
onstR :Also, by (3.2), we get thatj��(x1 � y1)j � jx1j+ j��y1j == jx1j+ j�eN (��Y1)j �� 
onst l :Thus, from (3.7), we have that(3.8) \(x1 � y1; �) � 
onst l=R :Furthermore, from Lemma 2.25,(x1 � y1) � � � 0 :This, (3.8) and (3.7) say that(x1 � y1) � � = j(x1 � y1) � �j == jx1 � y1j 
os\(x1 � y1; �) �� 
onstR ;provided that l=R is small enough. For this reason,(x℄ � y1) � � � (x1 � y1) � � � jx1j � jx℄j �� 
onstR � 
onst l �� 0 ;(3.9)if l=R is small enough. Thus, from (3.9), we dedu
e thatjx℄ � y1 + t℄�j2 = jx℄ � y1j2 + t2℄ + 2t℄� � (x℄ � y1) >> jx℄ � y1j2 :As a result, we infer thatu(x℄) = gS(Y1�t℄�;R)(x℄) == gy1;N+1;R�jx℄ � y1 + t℄�j+H0(y1;N+1)�R� >> gy1;N+1;R�jx℄ � y1j+H0(y1;N+1)�R� == gS(Y1;R)(x℄) �� u(x℄) :This 
ontradi
tion proves (3.6). Hen
e, Y1 2 eA and therefore eA is 
losed.



34 3. GEOMETRY OF THE TOUCHING POINTSNote now that on
e we know that eB is 
losed, it easily follows that B is also
losed. Thus, to end the proof of this result, we need to prove that eB is 
losed. Forthis, let us 
onsider a sequen
e Xk 2 eB so thatlimk!+1Xk = X1 :Our aim is to show that X1 2 eB. For this, observe that, sin
e Xk 2 eB, there existsYk 2 eA su
h that gS(Yk;R) � u and gS(Yk;R)(xk) = u(xk) = xk;N+1. Sin
e we provedthat eA is 
ompa
t, possibly taking subsequen
es, we may assume that Yk tends toY1 2 eA. Thus, passing to the limit here above we dedu
e that gS(Y1;R) � u andgS(Y1;R)(x1) = u(x1) = x1;N+1, with Y1 2 eA. This proves that X1 2 eB, then
eeB is 
losed. �Lemma 3.3. For any X 2 RN+1 with X 2 eS(Y;R) and � 2 SN , let2�eS(Y;R)(X) := ��rgeS(Y;R)(x); 1�q1 + jrgeS(Y;R)(x)j2 2 RN+1 ;!(X; �) := RC0 � �N+1j(�1; : : : ; �N )j �H 00(xN+1)� 2 R ;�(X; �) := �C02R!2(X; �) +H0(xN+1)�H0(xN+1 + !(X; �)) +R 2 R ;F (X; �) := �x+ (�1; : : : ; �N )j(�1; : : : ; �N )j�(X; �); xN+1 + !(X; �)� 2 RN+1 :Then,(3.10) Y = F (X; �eS(Y;R)(X)) ;for any X 2 eS(Y;R).Proof. For short, we will set here eS := eS(Y;R). Re
alling Lemma B.11, wesee that there exists � 2 R so thatx� y = � (�eS1(X); : : : ; �eSN (X))j(�eS1(X); : : : ; �eSN (X))j :Using that xN+1 = geS(Y;R)(x), (2.31), (2.33) and (2.35), we also gather thatH0(yN+1) + jx� yj �R = H0(xN+1)� C02R (xN+1 � yN+1)2 :Hen
e, if ! := yN+1 � xN+1, we gather� = jx� yj = H0(xN+1)�H0(xN+1 + !) +R� C02R!2 :This determines �, as desired, we now need to determine !. Using (2.2) (withs0 := yN+1 and s := xN+1) and De�nition 2.5 (with the fa
t that jsj < 1=2 as2Of 
ourse, �eS(Y;R)(X) is normal to eS(Y;R) at the point X.



3. GEOMETRY OF THE TOUCHING POINTS 35pointed out above), we get! = �(xN+1 � yN+1) == RC0 0B� 1� pp�1'(xN+1)�1=p � 1� pp�1h0(xN+1)�1=p1CA == RC0 0B� 1� pp�1hs0;R(xN+1)�1=p � 1� pp�1h0(xN+1)�1=p1CA :Thus, from De�nition 2.12 and (2.42), we have that! = RC0 �H 0s0;R(xN+1)�H 00(xN+1)� == RC0 � 1jrgeS(Y;R)(x)j �H 00(xN+1)� ;and, therefore, ! = RC0 � �eSN+1(X)j(�eS1(X); : : : ; �eSN (X))j �H 00(xN+1)� ;whi
h determines !. �Corollary 3.4. Let the notation of Lemma 3.3 holds. For X = (x; xN+1) 2RN , with xN+1 = u(x), let3�u(X) := ��ru(x); 1�p1 + jru(x)j2 2 RN+1 ;(3.11)Let X;Y 2 RN be so that gS(Y;R)(z) � u(z) 8z 2 RN ;gS(Y;R)(x) = u(x) = xN+1 :(3.12)Then, Y = F (X; �u(X)).Proof. By (3.12), we have that the graph of u and the surfa
e S(Y;R) aretangent at the point X , therefore�u(X) = �S(Y;R)(X) ;hen
e the 
laim follows from Lemma 3.3. �Lemma 3.5. In the notation of Corollary 3.4, if X 2 eB, then there exists apositive 
onstant 
 so that 
 � �uN+1(X) � 1� 
 :3Note that �u(X) is a unit ve
tor, normal to the graph of u at the point X = (x; u(x)).



36 3. GEOMETRY OF THE TOUCHING POINTSProof. Sin
e, by Lemma 3.1, jxN+1j � 1=2,jru(x)j = jrgS(Y;R)(x)j = ������ pp� 1hs0;R(xN+1)�1=p����� 2 [1=C; C℄ ;for a suitable 
onstant C, whi
h implies the desired 
laim. �Lemma 3.6. Let the notation of Lemma 3.3 and Corollary 3.4 hold. LetY(X) := F (X; �u(X))and let DXY be the di�erential map. Then, there exists a positive 
onstant C su
hthat jDXY(X)j � C ;for any X 2 eB.Proof. By dire
t inspe
tion,(3.13) DXY(X) = DXF (X; �u(X)) +D�F (X; �u(X))DX�u(X) :On the other hand, by di�erentiating (3.10),(3.14) 0 = DXF (X; �S(Y;R)(X)) +D�F (X; �S(Y;R)(X))DX�S(Y;R)(X) :Moreover, if X 2 eB, then(3.15) rgeS(Y;R)(x) = ru(x) ;and so �u(X) = �eS(Y;R)(X) :Thus, from (3.13) and (3.14), we gather thatDXY(X) = D�F (X; �eS(Y;R)(X))�DX�u(X)�DX�eS(Y;R)(X)� ;for any X 2 eB. By the de�nitions given in Lemma 3.3, one sees thatjD�F (X; �eS(Y;R)(X))j � 
onstR ;and so we get from the above relation thatjDXY(X)j � 
onstR ���DX�u(X)�DX�eS(Y;R)(X)��� :Therefore, in the light of (3.15), Lemma B.12, Remark B.13 and Lemma 3.5,jDXY(X)j � 
onstR ���D2u(x)�D2geS(Y;R)(x)��� :Also, sin
e geS(Y;R) tou
hes u from above at X , we have that(3.16) D2geS(Y;R)(x) �D2u(x) is a non-negative de�nite matrixand therefore 
onst ���D2u(x)�D2geS(Y;R)(x)��� � ��geS(Y;R) � u�(x) :Then
e, we have obtained the following estimate:(3.17) jDXY(X)j � 
onstR��geS(Y;R) � u�(x) :



3. GEOMETRY OF THE TOUCHING POINTS 37Noti
e now that u is C2 near X by standard ellipti
 results, sin
e ru(x) 6= 0 thanksto (3.15). Then
e, making use of (3.15), we get�pgeS(Y;R)(x)��pu(x) == jrgeS(Y;R)(x)jp�2 ��geS(Y;R)(x) ��u(x)� ++(p� 2) jrgeS(Y;R)(x)jp�4rgeS(Y;R)(x) �(3.18) � h�D2geS(Y;R)(x) �D2u(x)� � rgeS(Y;R)(x)i :We need now to distinguish two 
ases. If p � 2, we use Lemma 3.5 and (3.16) inorder to dedu
e from (3.18) that�pgeS(Y;R)(x)��pu(x) �� jrgeS(Y;R)(x)jp�2 ��geS(Y;R)(x) ��u(x)� �� 
onst��geS(Y;R)(x) ��u(x)� :(3.19)On the other hand, if 1 < p < 2, (3.18), Lemma 3.5 and (3.16) give that�pgeS(Y;R)(x)��pu(x) �� jrgeS(Y;R)(x)jp�2 ��geS(Y;R)(x) ��u(x)� �� (2� p) jrgeS(Y;R)(x)jp�2 jD2geS(Y;R)(x) �D2u(x)j �� jrgeS(Y;R)(x)jp�2 [1� (2� p)℄��geS(Y;R)(x) ��u(x)� �� 
onst (p� 1)��geS(Y;R)(x) ��u(x)� :(3.20)In any 
ase, for any p 2 (1;+1), (3.19) and (3.20) give that�pgeS(Y;R)(x)��pu(x) �� 
onst��geS(Y;R)(x) ��u(x)� :(3.21)Furthermore, exploiting Proposition 2.18 and the fa
t that u is a subsolution of(1.5), we have that(3.22) �pgeS(Y;R)(x) ��pu(x) � CR :The desired result now follows from (3.17), (3.21) and (3.22). �Re
alling (3.4), we de�ne S := Y(G) :The 
onstru
tion of eA and eB easily implies the following observation:Lemma 3.7. eA and eB belong to Lips
hitz surfa
es. More pre
isely, eB lies inG while eA lies in S.The next observation will say that eA and eB are graphs with respe
t to the�-dire
tion:Lemma 3.8. �� is inje
tive on eA and on eB.



38 3. GEOMETRY OF THE TOUCHING POINTSProof. �� in inje
tive on eA by 
onstru
tion. Let us show that is also inje
tiveon eB. Assume, by 
ontradi
tion, that X(1) 2 B and X(2) = X(1) + �� 2 B, with� > 0. Let also Y (1) and Y (2) be the 
orresponding 
enters in eA, i.e., for i = 1; 2,let Y (i) 2 eA be so that gS(Y (i) ;R) tou
hes u for the �rst time at X(i).Sin
e �N+1 = 0, x(1)N+1 = x(2)N+1 ;therefore, gS(Y (1) ;R)(x(1)) = x(1)N+1 = u(x(1)) == x(2)N+1 = gS(Y (2);R)(x(2)) = u(x(2)) :(3.23)If now we 
onsider �Y := Y (2) � ��it follows that(3.24) gS(�Y;R)(x(1)) = gS(Y (2)���;R)(x(2) � ��) = gS(Y (2) ;R)(x(2)) = u(x(1)) :On the other hand, sin
e Y (2) 2 eA, gS(�Y ;R) > u, in 
ontradi
tion with (3.24). �Given X 2 RN+1 , we now de�ne(3.25) �X := fZ j X 2 eS(Z;R)g :In other words, given a point X , �X is the surfa
e 
ontaining all the 
enters of thesurfa
es eS(�; R) to whi
h X belongs. Let us now investigate the properties of �X :Lemma 3.9. Let Y be as in Lemma 3.6. Then, Y(X) 2 �X for any X 2 eB.Proof. Sin
e X 2 eB, there exists Y so that (3.12) holds. Then, by Corol-lary 3.4, �X 3 Y = F (X; �u(X)) = Y(X) : �We denote by ��X (Z) the unit normal ve
tor to the surfa
e �X at a pointZ 2 �X (in a �xed orientation). Su
h de�nition is well posed, sin
e �X is aLips
hitz surfa
e, as we show here below. Also, we 
an express ��X in terms of thenormal to eS(Y;R), a

ording to the following result:Lemma 3.10. Let Y be as in Lemma 3.6 and let X 2 eB. Then �X is aLips
hitz rotation surfa
e with axis parallel to eN+1 and passing through X. Also,��X (Y(X)) belongs to the spa
e spanned by eN+1 and �eS(Y(X);R)(X).Proof. Let us �rst show that �X is a Lips
hitz rotation surfa
e. By (2.35),we have that Z 2 �X if and only ifxN+1 = geS(Z;R)(x) = �zN+1;R(H0(zN+1) + jz � xj �R) ;that is, by (2.33) and (2.31), if and only ifH0(xN+1)� C02R (xN+1 � zN+1)2 = H0(zN+1) + jz � xj �R :We now de�ne HxN+1;R(�) := H0(�) + C02R (xN+1 � �)2 :



3. GEOMETRY OF THE TOUCHING POINTS 39Then, H is stri
tly in
reasing in [�1=2; 1=2℄; thus Z 2 �X if and only ifzN+1 = H�1xN+1;R�H0(xN+1) +R� jz � xj� :This proves the rotational symmetry and the Lips
htiz properties of �X .Consequently, by Lemma B.10, we gather that ��X (Y(X)) is in the spa
espanned by (�eN+1Y(X) � x) and eN+1. But �eS(Y(X);R)(X) is also in the spa
espanned by (�eN+1Y(X) � x) and eN+1, as follows by the radial symmetry ofeS(Y(X); R) and Lemma B.10 again; moreover, �eS(Y(X);R)(X) is not parallel to eN+1(be
ause jxN+1j � 1=2 due to Lemma 3.1 and so rgS(Y(X);R)(x) 6= 0). Therefore,��X (Y(X)) belongs to the spa
e spanned by �eS(Y(X);R)(X) and eN+1. �Lemma 3.11. There exists a positive 
onstant C su
h thatj��X (Y(X)) � �j � C j�u(X) � �j ;for any X 2 eB.Proof. From Lemma 3.10, for any X 2 eB, we have that(3.26) ��X (Y(X)) = ��̂ + �eN+1 ;for some � = �(X) and � = �(X) 2 R, where we denoted�̂ := ��eS(Y(X);R)1 (X); : : : ; �eS(Y(X);R)N (X); 0� :Obviously, sin
e X 2 eB, �̂ = ��u1 (X); : : : ; �uN (X); 0� :Then
e, by exploiting Lemma 3.5, we see thatj�̂j2 = 1� j�eS(Y(X);R)N+1 (X)j2 � 1� (1� 
)2 � 
 :Thus, (3.26) implies that
 j�j � j��̂ � �̂j == ������X (Y(X))� �eN+1� � �̂��� == �����X (Y(X)) � �̂��� �� 1 ;that is j�j � 
onst :Hen
e, being �N+1 = 0, (3.26) gives thatj��X (Y(X)) � �j = j��̂ � �j � 
onst j�̂ � �j = 
onst j�u � �j : �Lemma 3.12. Let X 2 G, with jxN+1j � 1=2. Assume that geS(Y;R) � u. Then,Y is above �X (with respe
t to the eN+1-dire
tion).



40 3. GEOMETRY OF THE TOUCHING POINTSProof. Assume that (y; y�N+1) 2 �X . We need to show that y�N+1 � yN+1.For this purpose, note that, by 
onstru
tion, X 2 eS((y; y�N+1); R), whi
h says that(3.27) geS((y;y�N+1);R)(x) = xN+1 = u(x) � geS(Y;R)(x) :Fix now R, x and y. For j�j � 1=2, we de�nef(�) := geS((y;�);R)(x) :Re
alling (2.35) and (2.31), we have thatH0(f(�)) � C02R (� � f(�))2 = H0(�) + jx� yj �R :Di�erentiating with respe
t to �, we get thatH 00(f(�)) f 0(�) � H 00(�)� 
onstR :In parti
ular, sin
e by de�nition jf(�)j � 1=2, we get that f 0(�) > 0 if R is largeenough, then
e f is in
reasing. Sin
e, by (3.27), we have thatf(y�N+1) � f(yN+1) ;we dedu
e that y�N+1 � yN+1, as desired. �Lemma 3.13. Let X 2 eB. Then eA tou
hes �X from above at Y(X).Proof. First, note that Y(X) 2 Y( eB) � eA :On the other hand, Y(X) 2 �X by Lemma 3.9. Thus, to end the proof of thisresult we need to show that eA is above �X (with respe
t to the eN+1-dire
tion).For this purpose, take Y 2 eA. Then, by 
onstru
tion, geS(Y;R) � u (and equalityholds at some point). Thus, by Lemma 3.12, Y is above �X . �The following is the main result of this se
tion, in whi
h a measure estimatefor 
onta
t points is given:Proposition 3.14. Let 1=
 � l � 
R, for a suitably small positive 
onstant 
.Assume (3.2) and (3.3). Assume also that A is the 
losure of an open set and thatfor any Y 2 A there exist t 2 R and x 2 RN , su
h thatgS(Y+t�;R)(x) � u(x).(3.28)Then, denoting the N-dimensional Lebesgue measure by LN , we have thatLN (A) � C LN (B) ;for a suitable positive universal 
onstant C.Proof. Note that A is 
losed by hypothesis and so is B thanks to Lemma 3.2;in parti
ular, A and B are measurable sets. Also, by (3.28), A = ��(eA). What ismore, sin
e A is the 
losure of an open set, Lemma 3.7 and Lemma 3.8 say that eAis a Lips
hitz surfa
e whi
h is also a 
ontinuous4 graph over A in the �-dire
tion.4 The 
ontinuity of (�����eA)�1 follows from the following elementary property: if f : K �!f(K) is 
ontinuous and inje
tive and K is 
ompa
t, then f�1 is 
ontinuous.



3. GEOMETRY OF THE TOUCHING POINTS 41In parti
ular, the normal �eA is well de�ned. Thanks to Lemma 3.13, we also havethat ��X (Y(X)) = �eA(Y(X))for anyX 2 eB, provided that ��(Y(X)) lies in the interior of A (up to an orientation
hoi
e). Therefore, by Lemma 3.11,(3.29) j�eA(Y(X)) � �j � 
onst j�u(X) � �j ;where �u(X) is the normal to G at X , for any X 2 eB, provided that ��(Y(X)) liesin the interior of A. We denote by eB0 this set, that iseB0 := n X 2 eB, with ��(Y(X)) in the interior of A o :Also, applying the divergen
e theorem to (the interior of) eA, we have that(3.30) LN (A) � ZeA j�eA � �j ;where the above is a surfa
e integral.For " > 0, let us now de�neeB" := [X2eB0B"(Y ) \G ;where G, as in (3.4), denotes the graph of u. Then, eB" is a Lips
hitz surfa
e
ontained in G . By the divergen
e theorem,LN���( eB")� = ZeB" �eB" � � ;where �eB" is the external normal of the surfa
e eB". Obviously, up to the sign, �eB"agrees with �u. Sending " to zero, we thus get(3.31) LN (B) = LN���( eB)� � LN���( eB0)� = ZeB0 �eB" � � :Also, by Lemma 3.8, the exterior normal �eB" in eB has the signed assigned by theproperty that �eB" � � � 0. Therefore,j�u � �j = j�eB" � �j = �eB" � �in eB. Thus, by (3.31), we get that(3.32) LN (B) � ZeB0 j�u � �j :Also, by 
onstru
tion, Y sends eB into eA; hen
e, by (3.30), the 
hange of variablesformula (see, e.g., page 99 in [18℄) and Lemma 3.6, we get thatLN (A) � ZeA j�eA(Y ) � �j dY �� ZeB0 j�eA(Y(X)) � �j j detDY(X)j dX �� 
onst ZeB0 j�eA(Y(X)) � �j dX :(3.33)



42 3. GEOMETRY OF THE TOUCHING POINTSThen
e, from (3.32), (3.29) and (3.33), we have thatLN (A) � 
onst ZeB0 j�eA(Y(X)) � �j dX� 
onst ZeB0 j�u(X) � �j dX� LN (B) : �



CHAPTER 4Measure theoreti
 resultsThis se
tion 
olle
ts some measure theory lemmata, whi
h are extensions ofanalogous results in [31℄. These lemmata will be used in the sequel for estimatingthe measure of the proje
tion of the set in whi
h a suitable barrier tou
hes a minimalsolution of (1.5). For the reader's 
onvenien
e, the proofs of the lemmata of thisse
tion are deferred to the Appendix.Given two ve
tors v and w, we de�ne \(v; w) to be the angle1 between theseve
tors, i.e., \(v; w) := ar

os v � wjvj jwj :By elementary geometri
 
onsideration, if jvj = jwj = 1,(4.1) jv � wj � \(v; w) :We also de�ne, for l > 0,L := n(x0; 0; xN+1) 2 RN�1 � R � R j jxN+1j � 1=2o ;Ql := n(x0; 0; xN+1) 2 L j jx0j � lo :Of 
ourse, LN (Ql) = 
onst lN�1 :For X = (x1; : : : ; xN+1) 2 RN+1 , and 1 � i � N + 1, we de�ne�iX := (x1; : : : ; xi�1; 0; xi+1; xN+1) :Also, given X 2 RN+1 , we will often write X = (x0; xN ; xN+1) 2 RN+1 � R � R,i.e., the notation x0 will often denote the �rst (N � 1) entries of X .Then, with the above notation, we have the following results:Lemma 4.1. Let u be a solution of (1.5). Suppose that S(Y;R) tou
hes thegraph of u by above at X0 = (x0; u(x0)) = (x0; gS(Y;R)(x0)). Assume that(4.2) \� ru(x0)jru(x0)j ; eN� � �8 :Then, there exists a universal a0 > 1 so that, for any a � a0, there exist a universal� > 1 and a suitable C > 1, whi
h depends only on a and on universal 
onstants,su
h that the following holds. For any point Z 2 L \ Ba(�NX0) there exists xsatisfying the following properties:� jx� x0j � �a,� Z = �N (x; u(x)),� (x� x0) � ru(x0)jru(x0)j � H0(u(x)) �H0(u(x0)) + CR ,1As usual, the angle of the ar

os ranges between 0 and �.43



44 4. MEASURE THEORETIC RESULTSprovided that R is large enough (possibly in dependen
e of a).Lemma 4.2. Let u be a C1-subsolution of (1:5) in fjx0j < lg � fjxN j < lg.Assume that S(Y0; R) is above the graph of u and that S(Y0; R) tou
hes the graphof u at the point (x0; u(x0)). Suppose that� ju(x0)j < 1=2, jx0N j < l=4, q := jx00j < l=4;� \� ru(x0)jru(x0)j ; eN� � �8 .Then, there exist universal 
onstants C1; C2 > 1 > 
 > 0 su
h that, ifq � C1 and 4 3pR � l � 
R ;the following holds. Let � be the set of points (x; u(x)) 2 RN � R satisfying thefollowing properties:� jx0j < q=15, ju(x)j < 1=2, jx� x0j < 2q;� there exists Y 2 RN � [�1=4; 1=4℄ su
h that S(Y;R=C2) is above u and ittou
hes u at (x; u(x));� \� ru(x)jru(x)j ; ru(x0)jru(x0)j� � C1 qR ;� (x� x0) � ru(x0)jru(x0)j � C1 q2R +H0(u(x))�H0(u(x0)).Then, LN��N (�)� � 
qN�1 :Lemma 4.3. Let C � 2, 
 > 0. Let us 
onsider, for k 2 N, a family of setsDk � L, so that Dk � Dk+1 for any k 2 N. Assume that the following propertieshold, for some l > Ca � 2a > 
 > 0:(P1) D0 \Ql 6= ;;(P2) for any Z0 2 Dk \Q2l and any Z1 2 L, with a � jZ1 � Z0j � 2l, one hasthatLN�Dk+1 \ BjZ1�Z0j=10(Z1)� � 
LN�L \ BjZ1�Z0j(Z1)� :De�ne, for any k 2 N(4.3) Ek := nZ 2 L j dist (Z;Dk) � ao :Then, there exists a0 > 1 > 
0 > 0 universal 
onstants and 
? > 0, whi
h dependsonly on a, 
 and universal 
onstants, su
h thatLN�Ql nEk� � (1� 
?)LN (Ql) ;provided that a � a0 and 
; C�1 2 (0; 
0℄.
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overing sets of Lemma 4.3Full details of the proofs of the above lemmata will be provided in the Appendix.





CHAPTER 5Estimates on the measure of the proje
tion of the
onta
t setWe now show how to use Proposition 3.14 and the measure theoreti
 lemmatastated in x4 in order to dedu
e a measure estimate on the proje
tion of the 
onta
tsets between barriers and minimal solutions of (1.5). To this aim, we �rst need anestimate on the 
onta
t sets obtained by tou
hing u by above \for the �rst time",as dealt with by the following result.Lemma 5.1. Let C; C 0 > 1 be suitably large 
onstants. Let Kl := fjx0j <C lg � fjxN j < C lg. Let u 2 W 1;p(Kl) be a lo
al minimizer for F in Kl. Assumethat u(0) = 0 and that u(x) < 0 if xN < ��, for some � > 0. De�ne R0 := l2=(C�).Let � be the set of points (x; u(x)) 2 Kl satisfying:� jx0j � l, ju(x)j < 1=2;� there exists Y 2 RN � [�1=4; 1=4℄ su
h that S(Y;R0) is above the graph ofu in fjx0j < C 0 lg�fjxN j < C 0 lg and it tou
hes the graph of u at (x; u(x));� \� ru(x)jru(x)j ; eN� � 8lR0 ;� xN � �4 +H0(u(x)).Then, there exists a universal 
onstant 
 > 0 su
h that, for any �0 > 0 there exists"0(�0) > 0 for whi
h, if �l � "0(�0) ; � � �0 ;one has that LN��N (�)� � 
 lN�1 :Proof. Exploiting Lemma 2.23, we have that, if C is large enough,(5.1) u(x) � gl(xN + �)for any x so that jx0j � C 0l and jxN j � C 0l, with C 0 large if so is C. Let us de�ne(5.2) R0 := l2=(C�)and, for C 00 > 0 
onveniently large, let us 
onsider the seteO := nY = (y; yN+1) 2 RN+1 su
h thatjy0j � l=C 00 ; jyN+1j � 1=4and so that, if (0; : : : ; 0; xN ; 0) 2 S(Y;R0) then xN � 0 o :47



48 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SETWe 
laim that gS(Y;R0)(x) > gl(xN + �) for any Y 2 eO,provided that x 2 Kl and jx0j 2 (l; C 0l).(5.3)To prove this, let Y 2 eO and de�ne� := fgS(Y;R0) = 0g = S(Y;R0) \ fxN+1 = 0g :Then, the last 
ondition in the de�nition of eO reads(5.4) if (0; : : : ; 0; xN ) 2 �, then xN � 0.Re
alling the de�nitions on page 14 and (2.39), one sees that � is an (N � 1)-dimensional sphere, namely � = fjx� yj = rgwith(5.5) r := R0 �H0(yN+1)� C02R0 y2N+1 :Let us now estimate r by noti
ing that, if l (and therefore R0) is suitably large, wehave that 2l23C� = 23R0 � R0 � 
onst �� r �� R0 + 
onst � 32R0 = 3l22C� :(5.6)Noti
e also that x in (5.3) must lie in the interse
tion between Kl and the domainof gS(Y;R0), otherwise there is nothing to prove; therefore,jx� yj � 
onst (C 0l +R0) � 
onstR0 ;and so, by (5.6),(5.7) jx� yj � 
onst r :We now point out that � is below the hyperplane xN = �=8, that is(5.8) xN � �=8, for any x 2 �.In order to prove (5.8), let�y := y � y1e1 � � � � � yN�1eN�1 = (0; : : : ; 0; yN) ;so that, by the de�nition of eO,(5.9) jy � �yj = jy0j � lC 00 ;whi
h is less than r due to (5.6), provided that �=l is small enough. Thus, let ~t > 0be so that ~y := �y + ~teN 2 � :
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The geometry related with ~yThen ~y = (0; : : : ; 0; yN + ~t), thus, from (5.4),(5.10) yN � �~t :Also, from (5.9), ~t2 = r2 � jy � �yj2 � r2 �� lC 00�2 ;therefore, in the light of (5.10) and (5.6),yN + r � r � ~t �� r �sr2 �� lC 00�2 �(5.11) � �8 ;provided that C 00 is large enough, 
ompleting the proof of (5.8).Let us now go ba
k to the proof of (5.3). For this, we introdu
e the followingnotation: de�ne d1(x) := jx� yj � r ;d2(x) := xN + � :Let now x be as requested in (5.3). From (5.7),(5.12) 0 � r + d1(x) � 
onst r :Also, jx0 � y0j � jx0j � jy0j � l2 � lC 0 � 25 l ;



50 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SETif C 0 � 10, thus, �r + d1(x)�2 = jx� yj2 == jx0 � y0j2 + jxN � yN j2 �� 425 l2 + jxN � yN j2 ;(5.13)thus, from (5.13) and (5.11), we infer thatxN � yN +r�r + d1(x)�2 � 425 l2 �� �8 � r +r�r + d1(x)�2 � 425 l2 :This, (5.12) and (5.6) imply thatxN � �2� + d1(x)and, therefore, d1(x) � xN + 2� = d2(x) + � ;proving that(5.14) d1 � d2 + �in Kl \ fjx0j 2 (l; C 0l)g.We now observe that(5.15) HyN+1;R0(s)�HyN+1;R0(0) � H0(s) + 2C0R0 ;for any s 2 [sR0 ; 1℄. To prove this, re
all De�nition 2.8 to getHyN+1;R0(s)�HyN+1;R0(0) = Z s0 (p� 1) 1p(p hs0;R(�)) 1p d� ;and use De�nition 2.5 and (2.2) to dedu
e (5.15).Therefore, from (5.15) and (5.2), if l is large enough, we get that(5.16) HyN+1;R0(s)�HyN+1;R0(0) < H0(s) + �2 :Noti
e now that, by (2.7), (5.2) and the de�nition of sl given in Lemma 2.20,we have that sR0 � �1 + 
onstR1=p0 = �1 + 
onst �1=pl2=p > �1 + sl :In parti
ular, the fun
tion hyN+1;R0(s)� hl(s)is de�ned for any s so thatsR0 = maxfsR0 ; �1 + slg � s � 1 :Also, if 
� > 0 is suitably small (possibly in dependen
e also of �0) andsR0 � s � �1 + 
�=l1=p ;



5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SET 51we infer from (2.6), the de�nition of hl given in Lemma 2.20 and the one of hs0;Rgiven on page 10 that hyN+1;R0(s)� hl(s) == �h0(sR)� bC0R0 (s� sR0) ++h0(sl � 1) + C2l ((1 + s)p � spl ) �� � 1R0 + e� 
onst l + C2 
p�l2 �� �C�0l2 + e� 
onst l + C2 
p�l2 � 0 ;that is(5.17) hyN+1;R0(s) � hl(s) for any s 2 [sR0 ; �1 + 
�=l1=p℄,provided that 
� is small enough. Analogously, one 
an show that(5.18) hyN+1;R0(s) � hl(s) for any s 2 [1� 
�=l1=p; 1℄.From (5.17), (5.18) and the de�nitions of HyN+1;R0 and Hl (see pages 13 and 24),we dedu
e that the maximum of the fun
tion[sR0 ; 1℄ 3 s 7! HyN+1;R0(s)�Hl(s)o

urs for jsj � 1 � 
�=l1=p. For these values of s, estimate (2.61) in Lemma 2.20implies that H0(s) � Hl(s)� 
onstl log(1� jsj) �� Hl(s) + 
onstl log l1=p
� �� Hl(s) + �02 ;provided that l is suitably large. Thus, summarizing the above observations andusing (5.16), we have thatmax[sR0 ; 1℄�HyN+1;R0 �Hl� == max[�1+
�=l1=p; 1�
�=l1=p℄�HyN+1;R0 �Hl� << max[�1+
�=l1=p; 1�
�=l1=p℄�H0 �Hl�+ �2 +HyN+1;R0(0) �� �02 + �2 +HyN+1;R0(0) :Hen
e,(5.19) HyN+1;R0(s)�HyN+1;R0(0) < Hl(s) + � ;for any s 2 (sR0 ; 1℄. From (5.19), by inverting HyN+1;R0 , we haves < gyN+1;R0�HyN+1;R0(0) +Hl(s) + �� ;



52 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SETfor any s 2 (sR0 ; 1℄ and so, for s := gl(d1(x)� �), we getgl(d1(x)� �) < gyN+1;R0�d1(x) +HyN+1;R0(0)� :Therefore, re
alling also (5.14),gyN+1;R0�jx� yj � r +HyN+1;R0(0)� == gyN+1;R0�d1(x) +HyN+1;R0(0)� >> gl(d1(x)� �) �� gl(d2(x)) == gl(xN + �) :This 
ompletes the proof of (5.3).By (5.3) and (5.1), we have that(5.20)gS(Y;R0)(x) > u(x) for any Y 2 eO, provided that jx0j 2 (l; C 0l) and jxN j � C 0l.Let now e� be the set of (x; u(x))'s des
ribed in the statement of Lemma 5.1.Let us also de�ne � := �eN e� and O := �eN eO. Of 
ourse,O = nY = (y0; 0; yN+1) 2 RN+1 su
h that jy0j � l=C 00 ; jyN+1j � 1=4o ;therefore(5.21) LN (O) � 
onst lN�1 :For any Y 2 O, from (5.1) and the fa
t that S(Y;R0) takes value 1 on the boundaryof its domain of de�nition, we know that S(Y � teN ; R0) is above the graph ofu in the interse
tion between fjx0j � C 0lg � fjxN j � C 0lg and the domain ofde�nition of S(Y � teN ; R0), provided that t is large enough. Also, by looking atthe 
onstru
tion of �y on page 48, it follows easily, by de
reasing t, that there willbe a suitable t� for whi
h S(Y � t�eN ; R0) tou
hes for the �rst time the graph of u,say at the point eX . We denote by eG the set of su
h tou
hing points eX's and de�nealso G := �eN eG.We 
laim that(5.22) G � � :For proving this, take any eX 2 eG be a tou
hing point between S(Y � t�eN ; R0) andthe graph of u, as des
ribed above. Let us observe that, sin
e u(0) = 0, the �rsttou
hing property of eX implies that if �X = (0; : : : ; �xN ; 0) 2 S(Y � t�eN ; R0), then�xN � 0, hen
e eO 3 Y � t�eN =: eY :From this and (5.20), we gather that(5.23) jex0j � l :We now show that(5.24) ex is in the interior of fjx0j � C 0lg � fjxN j � C 0lg .Note that, thanks to (5.23), this will be proved if we show that jexN j < C 0l.



5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SET 53Let us �rst show that exN > �C 0l. If, by 
ontradi
tion, exN = �C 0l, we gatherfrom (2.7) and (5.1) that�1 + 
onst �1=p0l2=p � �1 + 
onstR1=p0 �� sR0 �� gS(eY;R0)(ex) == u(ex) �� gl(exN + �) �� gl�� C 0 l2 � == �1 + e� 
onst l ;whi
h is a 
ontradi
tion for large l. This shows that exN > �C 0l and thus we nowshow that exN < C 0l, in order to 
omplete the proof of (5.24). That exN < C 0lwill be a
tually obtained from the fa
t that the domain of S(eY ;R0) is below thehyperplane fxN � l=2g. To prove this, �rst note that, by (5.11), we have that(5.25) eyN � �r + �8 ;Also, if x is in the domain of S(eY ;R0), we have thatxN � eyN +HeyN+1;R0(1)�H0(eyN+1) +R0 :Thus, (5.25), (5.5) and (2.16) yield thatxN � 
onst (1 + logR0) � l2 ;hen
e the domain of S(eY ;R0) is below fxN � l=2g and therefore exN < C 0l.This ends the proof of (5.24).Proposition 2.13 and (5.24) yield that(5.26) ju(ex)j � 1=2 :We now noti
e that, from (5.26) and (2.20),�12 � u(ex) == gS(eY;R0)(ex) == geyN+1;R0�H0(eyN+1) + jex� eyj �R0� ;and so, by De�nition 2.11,H0(eyN+1) + jex� eyj �R0 � HeyN+1;R0(�1=2) ;from whi
h we dedu
e that(5.27) jex� eyj � R0 � 
onst � R0=2 ;



54 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SETprovided that l (and so R0) is large enough. On the other hand, exploiting (5.23)and the de�nition of eO given on page 47, we have thatjex0 � ey0j � jex0j+ jey0j � l+ lC 00 � 2l :Hen
e, from (5.27), jexN � eyN j2jex� eyj2 = 1 � jex0 � ey0j2jex� eyj2 �� 1� 16l2R20 ;and, therefore,1� 14 �\� ex� eyjex� eyj ; eN��2 � 
os2 �\� ex� eyjex� eyj ; eN�� == jexN � eyN j2jex� eyj2 �� 1� 16l2R20 ;that is(5.28) \� ex� eyjex� eyj ; eN� � 8lR0 :Moreover, from the tou
hing property of eX and (2.20), we have that\� ru(ex)jru(ex)j ; eN� = \ rgS(eY;R0)(ex)jrgS(eY;R0)(ex)j ; eN! == \� ex� eyjex� eyj ; eN� :Therefore, from (5.28),(5.29) \� ru(ex)jru(ex)j ; eN� � 8lR0 :Furthermore, re
alling (2.39),HeyN+1;R0(u(ex))�HeyN+1;R0(0) == HeyN+1;R0�gS(eY ;R0)(ex)��HeyN+1;R0(0) == HeyN+1;R0�gS(eY ;R0)(ex)�+ C02R0 ey2N+1 ;



5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SET 55thus, from (2.33) and (2.35),HeyN+1;R0(u(ex))�HeyN+1;R0(0) == HeyN+1;R0��eyN+1;R0(H0(eyN+1) + jex� eyj �R0)�++ C02R0 ey2N+1 == H0(eyN+1) + jex� eyj � R0 + C02R0 ey2N+1 :Hen
e, by (5.5), HeyN+1;R0(u(ex))�HeyN+1;R0(0) == jex� eyj � r :(5.30)We now 
laim that(5.31) exN � H0(u(ex)) + �4 :For proving this, we denote by bx the interse
tion point between the sphere fgS(eY;R0) =0g and the half-line from ey towards ex. Then, by (5.8),bxN � �=8 :We now distinguish two 
ases: either bx is inside or it is outside the sphere fgS(eY;R0) =0g. If it is inside, then jex� eyj � r = jbx� exj �� jbxN � exN j �� exN � bxN �� exN � �=8 :Thus, from the latter estimate, (5.30) and (5.15), we have thatexN � jex� eyj � r + �8 == HeyN+1(u(ex))�HeyN+1(0) + �8 �� H0(u(ex)) + 2C0R0 + �8 :Therefore, if l (and so R0) is large enough, (5.31) follows in this 
ase. Let us nowdeal with the 
ase in whi
h bx is outside the sphere fgS(eY;R0) = 0g. By (5.29), weinfer in this 
ase that bxN � exN and thatbxN � exN = jbxN � exN j == jbx� exj 
os�\(bx� ex; eN )� �� jbx� exj �1� 
onst l2R20 � :



56 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SETTherefore, (5.30) and (5.15) yield thatH0(u(ex)) + 2C0R0 � jey � exj � r == �jbx� exj �� exN � bxN1� 
onst l2R20 �� exN � (�=8)1� 
onst l2R20 ;whi
h easily implies (5.31) in this 
ase. This 
ompletes the proof of (5.31).Thus, in the light of (5.23), (5.26), (5.29) and (5.31), we have that eX 2 e� and,therefore, that �eN eX 2 �, ending the proof of (5.22).Now we exploit Proposition 3.14, applied to G and O: from that, (5.22) and(5.21), LN (�) � LN (G) �� 
onstLN (O) �� 
onst lN�1 :This 
ompletes the proof of Lemma 5.1. �The next one is the main result of this se
tion:Proposition 5.2. Let C be a suitably large 
onstant. Let Kl := fjx0j < C lg�fjxN j < C lg. Let u 2 W 1;p(Kl) be a lo
al minimizer for F in Kl. Assume thatu(0) = 0 and that u(x) < 0 if xN < ��, for some � > 0. Fix �C > 0 and k 2 N. Let� be the set of points (x; u(x)) satisfying the following properties:� jx0j � l, jxN+1j � 1=2;� xN � �Ck � +H0(u(x)).Then, there exist positive universal 
onstants 
 and 
̂ for whi
h the following holds.For any �0 > 0, there exists "0(�0) > 0, so that, if�l � "0(�0) ; � � �0 and �Ck �l � 
̂ ;then LN��N (�)� � (1� (1� 
)k)LN (Ql) :Proof. Let R0 := l2=(C�), with C suitably large. For any k 2 N, let Rk :=R0 �C�k, where �C is a positive universal 
onstant, to be 
hosen suitably large in thesequel. We de�ne Dk � RN+1 as the set of points (x; u(x)) satisfying the followingproperties:� jx0j � C l=2, ju(x)j < 1=2;� there exists Y 2 RN � [�1=4; 1=4℄ so that S(Y;Rk) is above the graphof u in fjx0j < C l=2g � fjxN j < C l=2g and it tou
hes the graph of u at(x; u(x));� \� ru(x)jru(x)j ; eN� � �Ck lR0 ;



5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SET 57� xN � �Ck �4 +H0(u(x)).We also set Dk := �N (Dk). We would like to apply Lemma 4.3 to Dk, and wetherefore now prove that Dk ful�lls the assumption of Lemma 4.3. For this, �rst ofall, noti
e that, by Lemma 5.1,(5.32) D0 \Ql 6= ; :Let us now �x Zk 2 Dk \ Q2l. By 
onstru
tion, there exists (xk ; u(xk)) 2 Dk sothat Zk = �N (xk ; u(xk)). Take also ~Z 2 L, with a � j ~Z � Zkj =: q � 2l, andsuppose a suitably large. We 
laim that(5.33) LN�Dk+1 \Bq=10( ~Z)� � LN�L \ Bq( ~Z)� :In order to prove the above inequality, we denote by Ĉ > 0 a 
onstant, to be suitably
hosen in the sequel, and we de�ne ~� as the set of points (x; u(x)) satisfying thefollowing properties:� jx0 � ~z0j � q=15, jx� xkj < 4l, ju(x)j < 1=2;� there exists Y 2 RN � [�1=4; 1=4℄ so that S(Y;Rk+1) is above the graphof u in fjx0 � ~z0j < C l=2g� fjxN j < C l=2g and it tou
hes the graph of uat (x; u(x));� \� ru(x)jru(x)j ; ru(xk)jru(xk)j� � Ĉ �Ck lR0 ;� (x� xk) � ru(xk)jru(xk)j � Ĉ �Ck l24R0 +H0(u(x)) �H0(u(xk)).Noti
e that, by means1 of Lemma 4.2 (applied in fjx0 � ~z0j � 8lg � fjxN j � 8lg),(5.34) LN (�N (~�) \ Bq=10( ~Z)) � 
onst qN�1 � 
onstLN�L \ Bq( ~Z)� :Let us now dedu
e some easy properties of ~�. First of all, by the de�nitions of ~�and Dk, we have that, for any (x; u(x)) 2 ~�,\� ru(x)jru(x)j ; eN� � \� ru(x)jru(x)j ; ru(xk)jru(xk)j�+ \� ru(xk)jru(xk)j ; eN� �� Ĉ �Ck lR0 + �Ck lR0 �� �Ck+1 lR0 ;(5.35)1We apply here Lemma 4.2 with Rk repla
ing what there was denoted by R. Note also thatpj ~Z � Zkj2 � 4 � jx0k � ~z0kj � pj ~Z � Zkj2 + 4 ;thus jx0k � ~z0kj 2 � 910 q; 1110 q� ;if a is large enough. Finally, observe that, by 
onstru
tion,�N (~�) � Bq=10( ~Z) :



58 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SETprovided that �C is big enough with respe
t to Ĉ . Furthermore, by (4.1) and thede�nition of Dk, ���� ru(xk)jru(xk)j � eN ���� � \� ru(xk)jru(xk)j ; eN� �� �Ck lR0 ;(5.36)and so(5.37) ����(x� xk) � � ru(xk)jru(xk)j � eN����� � 4 �Ck l2R0 ;provided that jx � xk j � 4l (and observe that this 
ondition is ful�lled by any(x; u(x)) 2 ~�). By using the latter inequality and the de�nition of ~�, it also followsthat(x� xk) � eN � (x� xk) � ru(xk)jru(xk)j + ����(x� xk) � � ru(xk)jru(xk)j � eN����� �� Ĉ �Ck l24R0 + 4 �Ck l2R0 +H0(u(x)) �H0(u(xk)) ;(5.38)for any (x; u(x)) 2 ~�; from (5.38), the de�nition of R0 and the assumptions ofProposition 5.2, we thus dedu
e thatxN � �Ck+1 �4 +H0(u(x)) ;(5.39)for any (x; u(x)) 2 ~�, if �C is large enough. Therefore, thanks to (5.35) and (5.39),we have that ~� � Dk+1. From this and (5.34), we gather (5.33), as desired. Thissays that the hypotheses of Lemma 4.3 are ful�lled by Dk, thus we will freely usesu
h result in what follows.Let now Ek be as in (4.3). From Lemma 4.1, and taking Ĉ suitably large,we dedu
e that, for ea
h Z 2 Ek there exists x = x(Z) and xk = xk(Z) so that(xk; u(xk)) 2 Dk, jx� xkj � Ĉ, Z = �N (x; u(x)) and(5.40) (x� xk) � ru(xk)jru(xk)j � H0(u(x)) �H0(u(xk)) + 
onst ĈRk :Thus, from (5.37) and (5.40),(x� xk) � eN � (x� xk) � ru(xk)jru(xk)j + ����(x� xk) � � ru(xk)jru(xk)j � eN����� �� H0(u(x))�H0(u(xk)) + 
onst ĈRk + 4 �Ck l2R0 ;whi
h implies, thanks to the de�nition of R0 and the assumptions of Proposition 5.2,that xN � �Ck+1 � +H0(u(x)) :Hen
e, if � is as de�ned here above in the statement of Proposition 5.2,(5.41) Ek � � :Also, by Lemma 4.3,(5.42) LN�Ek \Ql� � (1� (1� 
)k)LN (Ql) ;



5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SET 59for some 
 2 (0; 1). Thus, the 
laim in Proposition 5.2 follows from (5.41) and(5.42). �





CHAPTER 6Proof of Theorem 1.1First of all, note that u must attain both positive and negative values thanksto the density estimates in [28℄. Thus, possibly repla
ing l by C l, we may assumethat u is a lo
al minimizer for F in fjx0j < C lg � fjxN j < C lg, that u(0) = 0 andthat(6.1) u(x) > 0 if xN > � > 0 and u(x) < 0 if xN < ��.The strategy for proving Theorem 1.1 
onsists in assuming, by 
ontradi
tion, thatthere exists a point in fu = 0g \ fjx0j < l=4g 
lose to xN = ��. The 
ontradi
tionwill be, then, that the energy of u is larger than it should.The �rst step in proving Theorem 1.1 is thus the following: we assume, by
ontradi
ting Theorem 1.1, thatfu = 0g \ fjx0j < �C�k0 l=4g \ fxN < (�1 + �C�k0=4)�g 6= ; ;with k0 2 N large and �l small (possibly in dependen
e of k0). We also set�0 := n(x; u(x)) 2 RN � R s:t:xN � H0(u(x))� �=2 ; jx0 � (x�)0j � l=2 ; ju(x)j � 1=2o :Then, we 
laim that(6.2) LN��N (�0)� � (1� (1� 
0)k0 )LN (Ql=2) ;for a suitable 
onstant 
0 > 0. To prove this, letx� 2 fu = 0g \ fjx0j < �C�k0 l=4g \ fxN < (�1 + �C�k0=4)�gDe�ne �� := �=(4 �Ck0) and v(x) := u(x + x�). Noti
e that v(0) = 0 and v(x) < 0if xN < ���. Also v is a lo
al minimizer for F . Then, if we de�ne�� := n(z; v(z)) 2 RN � R s:t: jz0j � l=2zN � H0(v(z)) + �Ck0�� ; jv(z)j � 1=2o ;we dedu
e by Proposition 5.2 thatLN��N (��)� � (1� (1� 
0)k0)LN (Ql=2) :By elementary 
omputations, one also sees that�� + (x�; 0) � �0 ;thus proving (6.2). 61



62 6. PROOF OF THEOREM 1.1Let now�1 := n(x; u(x)) 2 RN � R s:t:xN � H0(u(x)) � �=4 ; jx0j � l=2 ; ju(x)j � 1=2o :Then, we 
laim that(6.3) LN��N (�1)� � 
1LN (Ql=2) ;for a suitable 
onstant 
1 > 0, provided that �=l is suitably small. To prove (6.3),let eu(x) = eu(x0; xN ) := �u(x0;�xN ) ;eh0(s) : = h0(�s) :Then, eh0 satis�es the same assumptions as h0 and eu is a lo
al minimizer for thefun
tional eF(v) := Z jrvjpp + eh0(v) :Hen
e, we may apply Lemma 5.1 with h0 repla
ed by eh0, and dedu
e that, ife�1 := n(x; eu(x)) 2 RN � R s:t:xN � eH0(eu(x)) + �=4 ; jx0j � l=2 ; ju(x)j � 1=2o ;then LN��N (e�1)� � 
onst lN�1 :From this, (6.3) easily follows.We now make some remarks on the measure properties of the above sets. Firstnote that, by 
onstru
tion, �N (�0) � Q l2+ l4 �Ck0 ;therefore LN��N (�0) nQl=2� � LN�Q l2+ l4 �Ck0 nQl=2� �� 
onst lN�1�C(N�1)k0 �� 
onst�C(N�1)k0 LN (Ql=2) :This and (6.2), by assuming k0 large enough, yield thatLN��N (�0) \Ql=2� ��1� (1� 
0)k0 � 
onst�C(N�1)k0 �LN (Ql=2) ���1� 
12 � LN (Ql=2) ;where 
1 is the 
onstant introdu
ed here above. Thus,LN�Ql=2 n ��N (�0) \Ql=2�� � 
12 LN (Ql=2) :



6. PROOF OF THEOREM 1.1 63From this, (6.3) and the fa
t that �N (�1) � Ql=2, we gather that
1LN (Ql=2) � LN��N (�1)� �� LN��N (�1) \ ��N (�0) \Ql=2��++ LN��N (�1) n ��N (�0) \Ql=2�� �� LN��N (�0) \ �N (�1)�++ LN�Ql=2 n ��N (�0) \Ql=2�� �� LN��N (�0) \ �N (�1)�+ 
12 LN (Ql=2) ;that is(6.4) LN��N (�0) \ �N (�1)� � 
12 LN (Ql=2) :On the other hand,(6.5) �0 \ �1 � ���4 � xN �H0(u(x)) � ��2� = ; :Let nowV := nZ 2 Ql=2 ��� 9~x 6= x̂ ; s:t: Z = �N�~x; u(~x)� = �N�x̂; u(x̂)�o :By (6.5), we have that V � �N (�0) \ �N (�1) ;thus, due to (6.4),(6.6) LN (V) � 
onst lN�1 :With these inequalities in hand, we now start to estimate the fun
tional, inorder to show that the energy of u is too large, and hen
e obtaining a 
ontradi
tion.First of all, for any x0 2 RN with jx0j � l, let us de�neTx0(xN ) := u(x0; xN ) ;Cx0 := fxN 2 R j DTx0(xN ) = 0g :By standard regularity results (see [15℄ and [34℄), we have that Tx0 is C1. Hen
e,by Sard's Lemma,(6.7) LN�Tx0(Cx0)� = 0 :Thus, using that Tx0 is lo
ally invertible on the 
omplement of Cx0 , we may writethe latter set as [a Ja;x0 ;



64 6. PROOF OF THEOREM 1.1in su
h a way Tx0���Ja;x0 is a di�eomorphism. Therefore, by Young's inequality (writ-ing q for the dual exponent of p) and by 
hanging variable xN+1 := Tx0(xN ),ZJa;x0 jru(x0; xN )jpp + h0(u(x0; xN )) dxN �� ZJa;x0 j�Nu(x0; xN )jpp + h0(u(x0; xN )) dxN == ZJa;x0 jDTx0(xN )jpp + h0(Tx0(xN )) dxN �� ZJa;x0 �q h0(Tx0(xN ))�1=q jDTx0(xN )j dxN == ZTx0 (Ja;x0 ) �q h0(xN+1)�1=q dxN+1 ;therefore, Xa Zjx0j�l ZTx0 (Ja;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 �� Xa Zjx0j�l ZJa;x0 jru(x0; xN )jpp + h0(u(x0; xN )) dxN dx0 == Zjx0j�l Z[�Cl;Cl℄nCx0 jru(x0; xN )jpp + h0(u(x0; xN )) dxN dx0 �� FAl(u) ;(6.8)where Al := fjx0j < lg � fjxN j < Clg. Now, we noti
e thatV � n(x0; 0; xN+1) ��� jx0j � l; xN+1 2 Tx0(Ja;x0) \ Tx0(Jâ;x0) for some a 6= âo ;and that V � Ql � fjxN+1j � 1=2g ;hen
e, re
alling also (6.6),Zjx0j�l ZxN+12Sa6=â Tx0 (Ja;x0 )\Tx0 (Jâ;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 �� ZV �q h0(xN+1)�1=q d(x0; xN+1) �� inf[�1=2; 1=2℄(q h0)1=q LN (V) �� ~
1 lN�1 inf[�1=2; 1=2℄(q h0)1=q �� ~
1 lN�1 inf[�1=2;1=2℄(q h0)1=q ;



6. PROOF OF THEOREM 1.1 65for a suitably small positive 
onstant ~
1. Therefore, we gather from the aboveinequality thatXa Zjx0j�l ZTx0 (Ja;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 �� Zjx0j�l ZSa Tx0 (Ja;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 ++ Zjx0j�l ZxN+12Sa6=â Tx0 (Ja;x0 )\Tx0 (Jâ;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 �� Zjx0j�l ZxN+12u(x0;[�Cl;Cl℄nCx0) �q h0(xN+1)�1=q dxN+1 dx0 ++~
1 lN�1 inf[�1=2;1=2℄(q h0)1=q :Thus, due to (6.7),Xa Zjx0j�l ZTx0 (Ja;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 �� Zjx0j�l ZxN+12u(x0;[�l;l℄) �q h0(xN+1)�1=q dxN+1 dx0 ++~
1 lN�1 inf[�1=2;1=2℄(q h0)1=q :(6.9)On the other hand, from Corollary 2.24, we get thatZjx0j�l ZxN+12u(x0;[�l;l℄) �q h0(xN+1)�1=q dxN+1 dx0 �� Zjx0j�l Z 1�sl�1+sl �q h0(xN+1)�1=q dxN+1 dx0 == !N�1 lN�1 Z 1�sl�1+sl �q h0(xN+1)�1=q dxN+1 ;(6.10)where !N�1, as usual, denotes the volume of the (N � 1)-dimensional unit ball.From (6.9) and (6.10), we thus obtain thatXa Zjx0j�l ZTx0 (Ja;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 �� !N�1 lN�1 Z 1�sl�1+sl �q h0(xN+1)�1=q dxN+1 ++~
1 lN�1 inf[�1=2;1=2℄(q h0)1=q ;and, therefore, thanks to (6.8),FAl(u) �� !N�1 lN�1 Z 1�sl�1+sl �q h0(xN+1)�1=q dxN+1 ++~
1 lN�1 inf[�1=2;1=2℄(q h0)1=q :(6.11)



66 6. PROOF OF THEOREM 1.1We now noti
e that, if 
2 and 
3 are positive 
onstants, suitably small with respe
tto ~
1, one has !N�1 lN�1 Z[�1;�1+
2℄[[1�
2;1℄ �q h0(xN+1)�1=q dxN+1 �� 2
2!N�1 lN�1 sup[�1;1℄(q h0(xN+1))1=q �� ~
12 lN�1 inf[�1=2;1=2℄(q h0)1=q(6.12)and(6.13) 
3 lN�1 � ~
12 lN�1 inf[�1=2;1=2℄(q h0)1=q :We now assume l big enough so that sl < 
2: then, by means of (6.11), (6.12) and(6.13), FAl(u) � !N�1 lN�1 Z 1�1 �q h0(xN+1)�1=q dxN+1 ++
3 lN�1 :(6.14)This estimate will say that the energy of u is too large (thanks to the term\
3 lN�1" here above), and it will provide the desired 
ontradi
tion. For this, letus de�ne the res
aled fun
tionalF"
(v) := Z
 "p�1jrv(x)jpp + 1"h0(v(x)) dx :Then, if " := 1=l and u"(x) := u(x="), by s
aling (6.14), we dedu
e thatF"A1(u") = "N�1 FAl(u) �� !N�1 Z 1�1 �q h0(xN+1)�1=q dxN+1 + 
3 :(6.15)On the other hand, by x3 of [7℄, up to subsequen
es, we have that u" 
onvergesalmost everywhere and in L1lo
 to the step fun
tion �E � �RNnE , for a suitable setE � RN , and that(6.16) lim"!0+F"A1(u") = Per (E;A1) Z 1�1 �q h0�1=q ;where, given A � B, we denote the perimeter of A in B as Per (A;B) (see, for in-stan
e, [20℄ for full details on su
h de�nition). As a matter of fa
t, in our situation,the set E may be better spe
i�ed, in the following way. From (6.1), there exists� > 0 so that u(x) � � if jx0j � l and xN � 2� and u(x) � �� if jx0j � l andxN � �2�.Therefore, u"(x) � � if jx0j � 1 and xN � 2"� and u(x) � �� if jx0j � 1 andxN � �2"�. In parti
ular, for almost any x 2 A1,lim"!0+ u"(x) � � if xN > 0 andlim"!0+ u"(x) � �� if xN > 0.



6. PROOF OF THEOREM 1.1 67This implies that E = A1 \ fxN > 0g. And so Per (E;A1) = !N�1. Therefore,from (6.16) lim"!0+F"A1(u") = !N�1 Z 1�1 �q h0�1=q :This 
ontradi
ts (6.15) and �nishes the proof of Theorem 1.1.





CHAPTER 7Proof of Theorem 1.2The proof of Theorem 1.2 will be performed by 
ompa
tness, by using Theorem1.1 and a result of [30℄.We �x �0 > 0 and we assume by 
ontradi
tion that there exist uk ; �k ; lk forwhi
h(C1) uk is a lo
al minimizer for F in fjx0j < lkg�fjxN j < lkg, with uk(0) = 0.(C2) fuk = 0g � fjx0j < lkg � fjxN j < �kg, with �k � �0 and �klk �!0 whenk !1 ,but the thesis of Theorem 1.2 does not hold. Let us 
onsider the following res
aling:(7.1) y0 = x0lk ; yN = xN�ksay (y0; yN ) = T (x0; xN ). De�neAk := �(y0; yN) s:t: T�1(y0; yN ) 2 fuk = 0g	 = T�fuk = 0g� :STEP 1: There exists a H�older 
ontinuous fun
tion w : RN�1 ! R su
h that:if we de�ne A1 := �(y0; w(y0)) ; jy0j � 12	then, for any " > 0, Ak \ fjy0j � 1=2g lies in a "-neighborhood of A1, for ksuÆ
iently large.Proof of step 1.Let us suppose thaty0 = (y00; y0N ) 2 Ak with jy00j � 1=2 :Then, uk(lky00; �ky0N ) = 0, and so, by means of (C2), j�ky0N j < �k; therefore,using again (C2), we infer thatfuk = 0g � fjxN � �ky0N j < 2�kg :Then
e, we 
an exploit Theorem 1.1 in the 
ylinderfjx0 � lky00j < lk2 g � fjxN � �ky0N j < 2�kg �� fjx0j < lkg � fjxN j < lkg ;(7.2)and get that there exists a universal 
onstant �0 > 0 su
h thatfuk = 0g \ fjx0 � lky00j < �0 lk2 g � fjxN � �ky0N j < 2(1� �0)�kg ;69



70 7. PROOF OF THEOREM 1.2provided 4�klk � "0(2�0) ;where "0(�) is the one given by Theorem 1.1. Res
aling ba
k, we getAk \ fjy0 � y00j < �02 g � fjyN � y0N j < 2(1� �0)g :By iterating, we get(7.3) Ak \ fjy0 � y00j < �m02 g � fjyN � y0N j < 2(1� �0)mg ;provided(7.4) 4�klk � �m�10 "0�2(1� �0)m�1�0� :We now �x m0 2 N and 
onsider m � m0 (later on, during a limiting pro
edureperformed on page 71, we let m0 �! +1). Note that, in this setting, (7.4) (andtherefore (7.3)) is ful�lled for k suitably large, say k � k?(m0). We 
laim thatAk \ fjy0j � 1=2g is above the graph of(7.5) 	y0;k(y0) = y0N � 2(1� �0)m0 � �jy0 � y00j�where � and � > 0 depend only on �0.To prove this, let (y0; yN ) 2 Ak \ fjy0j � 1=2g. Sin
e jy00j � 12 we have thatjy0 � y00j � 1. Now, we 
onsider three di�erent 
ases: the 
ase jy0 � y00j � �m002 , the
ase �m002 � jy0 � y00j � 12 , and the 
ase 12 � jy0 � y00j � 1.In 
ase jy0 � y00j � �m002 , (7.5) follows immediately from (7.3), with m = m0. If, onthe other hand, �m002 � jy0 � y00j � 12 , then we argue as follows. We �rst note that,in this 
ase, there exists m with 0 � m � m0, su
h that(7.6) �m+102 � jy0 � y00j � �m02 :Consequently, from (7.3), we have that(7.7) 2(1� �0)m � jyN � y0N jBy (7.6) and the fa
t that 0 < �0 < 1, we also getm � � ln(2jy0 � y00j)ln( 1�0 ) � m+ 1 :In parti
ular, it follows that(1� �0)m � (1� �0)�� ln(2jy0�y00j)ln( 1�0 ) �1� == 1(1� �0)e� ln(2jy0�y00j) = (2jy0 � y00j)�(1� �0) ;where � := � ln(1��0)ln( 1�0 ) .Therefore, re
alling (7.7), it followsjyN � y0N j � 2�+1(1� �0) jy0 � y00j�



7. PROOF OF THEOREM 1.2 71whi
h is the desired result, with � := 2�+1=(1� �0).Finally, eventually adding1 a 
onstant to �, the result also follows for the 
asejy0 � y00j 2 [1=2; 1℄. This ends the proof of (7.5).Note now that, as y0 varies, 	y0;k are H�older 
ontinuous fun
tions with H�oldermodulus of 
ontinuity bounded via the fun
tion �t� (re
all that m0 is �xed for themoment, and that � and � depend only on �0). Therefore, if we set k(y0) := supjy00j� 12y02Ak 	y0;k(y0)then,  k is a H�older 
ontinuous fun
tion (with H�older modulus of 
ontinuity boundedvia the fun
tion �t�), and Ak \ fjy0j � 1=2g is above the graph of  k.Arguing in the same way, possibly taking � and � larger (depending only on�0), we also get that, if we de�ne�y0;k(y0) := y0N + 2(1� �0)m0 + �jy0 � y00j� ;then Ak \ fjy0j � 1=2g is below the graph of �y0;k. Arguing as above, we de�ne�k(y0) := infjy00j� 12y02Ak �y0;k(y0) ;so that �k is a H�older 
ontinuous fun
tion (with H�older modulus of 
ontinuitybounded via the fun
tion �t�), and Ak \ fjy0j � 1=2g is below the graph of �k.In parti
ular, Ak \ fjy0j � 1=2g lies between the graphs of  k(y0) and �k(y0)for any k � k?(m0) and, by 
onstru
tion,(7.8) 0 � �k(y0)�  k(y0) � 4(1� �0)m0 :Also, for m0 �xed, by As
oli-Arzel�a Theorem, letting k !1, it follows that  k(y0)uniformly 
onverges to a H�older 
ontinuous fun
tion whi
h depends on m0, saylimk�!+1 k(y0)! w�m0(y0) :Analogously, we �nd a H�older 
ontinuous fun
tion w+m0 , su
h thatlimk�!+1�k(y0)! w+m0(y0)uniformly. Also, by 
onstru
tion, we have that w�m0 � w+m0 and thatAk \ fjy0j � 1=2g lies betweenthe graphs of w�m0 � "=2 and w+m0 + "=2,(7.9)for k large.Let now m0 ! 1. In this 
ase, by As
oli-Arzel�a Theorem2, we get that thereexists a H�older 
ontinuous fun
tion w su
h that w�m0 uniformly 
onverges to w. By(7.8), also w+m0 uniformly 
onverges to w. The 
laim thus follows from (7.9).STEP 2: The fun
tion w 
onstru
ted in the �rst step is harmoni
.1Noti
e indeed that, by (C2), we have thatjyN � y0N j � jyN j+ jy0N j � 2 :2We remark that, by the 
onstru
tion of � and � above, the H�older 
onstants of w�m0 dependon �0, but are independent of m0.



72 7. PROOF OF THEOREM 1.2Proof of step 2.We prove that w is harmoni
 in the vis
osity sense. Then it follows that it isharmoni
 in the 
lassi
 sense (see, e.g., Theorem 6.6 in [8℄).For this, let P be the quadrati
 polynomialP (y0) := 12y0TMy0 + � � y0 :Assume, by 
ontradi
tion, that �P > 0, that P tou
hes the graph of w, say at 0for simpli
ity and that P stays below it in jy0j < 2r, for some r 2 (0; 1). Let nowÆ0 > 0 be the universal 
onstant of Lemma 9.3 in [30℄ and let us de�neÆ := min���P2�0 � 12 ; 12�0 kMk ; 12�0 j�j ; � Æ02�0� 12 ; r� :Thus, Æ is su
h that�P > 2Æ2�0 ; kMk � 12Æ�0 ; j�j � 12Æ�0 ;(7.10) Æ2�0 � Æ02 :Note that, eventually repla
ing Æ with 2Æ and P (y0) with P (y0) � Æjy0j2, wemay assume, with no lose of generality, that P tou
hes the graph of w at 0 andstays stri
tly below it in jy0j < 2Æ < 2. therefore, sin
e Ak \ fjy0j � 1=2g uniformly
onverges to the graph of w, it follows that, for k large, we �nd points yk = (y0k; ykN )
lose to 0, su
h that P (y0) � Kk tou
hes Ak at (y0k; ykN ) and stays below it injy0 � y0kj � Æ, for an appropriate Kk 2 R. In parti
ular, we have(7.11) ykN +Kk = 12y0Tk My0k + � � y0k :Let us now 
onsider the following translationz0 = y0 � y0k zN = yN � (ykN +Kk)Exploiting (7.11) we �nd a surfa
e�zN = 12z0TMz0 + �k � z0	 ;with �k := My0k + �that tou
hes Ak by below at the origin and stays below it in jz0j < Æ. Noti
e alsothat, by 
onstru
tion,(7.12) j�k j � 1Æ�0 :Res
aling ba
k, we get that the surfa
enxN = �kl2k 12x0TMx0 + �klk �k � x0otou
hes fuk = 0g at the origin and stays below it, if jx0j < Ælk.We write now the above surfa
e in the formnxN = Æ2�k(Ælk)2 12x0TMx0 + Æ2�kÆlk 1Æ �k � x0o



7. PROOF OF THEOREM 1.2 73and we exploit3 Lemma 9.3 in [30℄, thus gathering that�P � Æ2�0 ;against the assumption. This 
ontradi
tion shows that �P � 0. By arguing in thesame way, one may prove that �P � 0 if P tou
hes w by above, so that the 
laimof Step 2 on page 71 is proved.CONCLUSION: Sin
e w is harmoni
, by standard ellipti
 estimates (see,e.g., Theorem 2.10 in [19℄), we �nd a positive universal 
onstant C, su
h thatkD2wk � CTherefore, sin
e by 
onstru
tion w(0) = 0, by Taylor's formula, it follows thatjw(y0)�rw(0) � y0j < C 0�22 for jy0j < 2�2 :In parti
ular, for �2 suÆ
iently small, setting�0 := rw(0) ;we get that there exist positive 
onstants 0 < �1 < �2 < 1, for whi
h(7.13) jw(y0)� �0 � y0j < �12 for jy0j < 2�2 :Now, let us 
onsider(7.14) �k := ( �klk �0;�1)r �2kl2k j�0j2 + 1 :Considering the res
aling given by (7.1), elementary geometri
 
onsiderations showthat(7.15) fj��kxj < �2lkg � fjx � �k j < �2lkg � fjx0j < 2lk�2g � fjx0j < lk=2g :Sin
e Ak \ fjy0j � 1=2g uniformly 
onverges to the graph of w, for k suÆ
ientlylarge (thanks to Step 1 on page 69), we may suppose that Ak \ fjy0j � 1=2g is ina �14 -neighborhood of the graph of w. Consequently, by (7.13), taking into a

ountthe res
aling, it follows thatfuk = 0g \ fjx0j � lk=2g � �jxN � �klk �0 � x0j < 34�k�1	 :From (7.14), we then
e get thatfuk = 0g \ fjx0j � lk=2g � �jx � �k j < 34�k�1	 ;whi
h, together with (7.15), is a 
ontradi
tion with the fa
t that uk does not satis�esthe statement of Theorem 1.2. This ends the proof of Theorem 1.2.
3Notation remark: Lemma 9.3 in [30℄ is used here with M1 :=M , Æ := Æ2�0, � := Æ2�k (notethat Æ � � sin
e �0 � �k), l := Ælk , and � := 1Æ �k (therefore j�j � 1Æ2�0 , thanks to (7.12)). Inparti
ular, with this setting, sin
e �klk ! 0, then �l ! 0. Also, sin
e � (Æ) > 0 (where � (Æ) is asin Lemma 9.3 in [30℄), then the 
ondition �l < � (Æ) (i.e. Æ�klk < � (Æ)) is ful�lled for k suÆ
ientlylarge.





CHAPTER 8Proof of Theorem 1.3The following Lemma 8.1 is an intermediate step towards the proof of Theo-rem 1.3 and it is also useful for the proof of Theorem 1.4. The proof of Lemma 8.1is based on an iteration of Theorem 1.2.Lemma 8.1. Let u be a Class A minimizer for F in RN with u(0) = 0. Supposethat there exist sequen
es of positive numbers �k ; lk and unit ve
tors �k, with(8.1) lk !1 and �klk ! 0 ;su
h that(8.2) fu = 0g \ �fj��k xj < lkg � fjx � �kj < lkg� � fjx � �kj � �kg:Then, the 0 level set fu = 0g is a hyperplane in RN .Proof. Let �x �0 > 0 and " � "1(�0), with "1(�0) given by Theorem 1.2. We
onsider k so large in that(8.3) �klk � " � "1(�0) :Two 
ases are now possible: either, for in�nitely many k's �k � �0, or for in�nitelymany k's �k > �0.In the �rst 
ase, we take the subsequen
e of k's for whi
h �k � �0 and weassume, by possibly extra
ting a further subsequen
e, that �k 
onverges to a suitableunit ve
tor �. We 
onsider a y-frame of 
oordinates in whi
h yN is parallel to �.Consequently, by (8.1) and (8.2), we dedu
e that, in this system of 
oordinates,fu = 0g � fjyN j � �0g :Then
e, sin
e �0 is arbitrary, fu = 0g � fyN = 0g ;whi
h proves the desired result.If, on the other hand, �k > �0 for in�nitely many k's, then we �x k largeenough to ful�ll (8.3) and we apply Theorem 1.2 repeatedly as mu
h as we 
an.More pre
isely, for h � 0, let l(h)k := �h2 lk and �(h)k := �h1 �k. Then, if �(h)k > �0, we
an keep applying Theorem 1.2; we stop this pro
edure when h is so large that�(h)k � �0 :More pre
isely, we stop the iterative appli
ation of Theorem 1.2 when h � 1 is sothat �(h�1)k > �0 � �(h)k :75



76 8. PROOF OF THEOREM 1.3For su
h h, we get, by 
onstru
tion, that�0 � �(h)k � �1�0 :Also, by 
onstru
tion, �(h)kl(h)k = ��1�2�h �klk � " :In parti
ular,(8.4) l(h)k � �1�0" :What is more, the repeated use of Theorem 1.2, has driven us to proving that, insome system of 
oordinates,fu = 0g \ �fjy0j < l(h)k g � fjyN j < l(h)k g� � fjyN j � �(h)k g ;that is, fu = 0g \ �njy0j < �1�0" o� njyN j < �1�0" o� � fjyN j � �0g ;thanks to to (8.4). Therefore, letting " �! 0, it follows thatfu = 0g � fjyN j � �0g:Sin
e �0 was arbitrary, the lemma is proved. �By means of Lemma 8.1, we are now in the position of 
ompleting the proof ofTheorem 1.3, by arguing as follows.Let us 
onsider the res
aled fun
tionalF"
(v) := Z
 "p�1jrv(x)jpp + 1"h0(v(x)) dx :Then, for any 
 � RN , u"(x) := u(x=") is a lo
al minimizer for F"
.Therefore, by x3 of [7℄, up to subsequen
es, we have that u" 
onverges almosteverywhere and in L1lo
 to the step fun
tion �E ��RNnE , for a suitable set E � RNwith minimal perimeter.We 
laim now thatfu"k = 0g uniformly 
onverges to �E on 
ompa
t sets.Assume that this is not true and note that in this 
ase there exist Æ > 0, and apoint z0 2 RN and points xk , su
h thatxk 2 fu"k = 0g \ B(z0; Æ) with B(z0; 2Æ) \ �E = ;Assume e.g. B(z0; 2Æ) � E and note that in this 
ase, exploiting the densityestimate in [28℄, we get a 
ontradi
tion with the fa
t that u" 
onverges almosteverywhere and in L1lo
 to the step fun
tion �E � �RNnE (in the same way we geta 
ontradi
tion if B(z0; 2Æ) � RN nE).Sin
e �E is a minimal surfa
e in RN , and we assumed that N � 7, then �E isa hyperplane (see, for instan
e, Theorem 17.3 in [20℄). Also, sin
e u"k (0) = 0 andfu"k = 0g uniformly 
onverges to �E, it follows that 0 2 �E.This implies that, in some system of 
oordinates(8.5) fu"k = 0g \ B1 � fjxN j � Ækg



8. PROOF OF THEOREM 1.3 77with Æk ! 0. Res
aling ba
k we get that(8.6) fu = 0g \ B 1"k � fjxN j � Æk"k gTwo 
ases are now possible: either Æk="k is bounded away from zero, or, up tosubsequen
es, Æk="k �! 0. In the latter 
ase, we pass to the limit (8.5) by sendingk �! +1, getting that fu = 0g is a hyperplane. If, on the other hand, Æk="k � �0,for some �0 > 0, we de�ne lk := 12"k ; �k := Æk"kand we observe that �klk = Æk2 �! 0 ;then, it follows that the assumptions of Lemma 8.1 are ful�lled. Thus, the appli-
ation of Lemma 8.1 proves that fu = 0g is a hyperplane, whi
h is the desiredresult.





CHAPTER 9Proof of Theorem 1.4First, we prove the minimality of u:Lemma 9.1. Let h0 satisfy (1.1), (1.2), (1.3) and (1.4). Let u be a weak Sobolevsolution of (1.5) in the whole RN , satisfying juj � 1, �Nu > 0 and limxN!+1 u =�1. Then, u is a 
lass A minimizer.Proof. Sin
e u is stri
tly in
reasing, juj < 1. Let B � RN be a 
losed balland let v be a minimizer for FB with v = u on �B. Our aim is to show that u = vin B. Let us argue by 
ontradi
tion and assume, say, that(9.1) v(x?) > u(x?) ;for some x? 2 B. Possibly 
utting v on the �1-levels (whi
h de
reases FB), wemay and do assume that jvj � 1. More pre
isely, as mentioned in the footnote onpage 2, by (1.4) it follows that jvj < 1.Then, sin
e jruj � 
onst thanks to [15℄ or [34℄, and limxN!+1 u = �1, we dedu
ethat(9.2) u(x+ teN ) � v(x)for any x 2 B, provided that t is large enough. Indeed, to prove (9.2), let us argueby 
ontradi
tion and assume that u(xt + teN ) < v(xt) for some xt 2 B and adiverging sequen
e of t; let also � > 0 so that v � 1��. Then, up to subsequen
e,we may assume that xt 
onverges to x1 2 B; but then1 = limt!+1 u(x1 + teN) �� limt!+1 u(xt + teN ) + 
onst jxt � x1j == limt!+1 u(xt + teN ) �� limt!+1 v(xt) �� 1� � :This 
ontradi
tion proves (9.2).Thanks to (9.2), we thus slide u(� + teN) towards the eN -dire
tion until wetou
h v from above. Say this happen at �x 2 B for t = �t. In the light of (9.1), wehave that u(x? + �teN ) � v(x?) >> u(x?) ;then
e, sin
e u is stri
tly in
reasing in the eN -dire
tion,�t > 0 :79



80 9. PROOF OF THEOREM 1.4Sin
e now �Nu > 0 we have that ru(� + �teN) 6= 0. Therefore, it follows that theassumptions of the Strong Comparison Prin
iple for p-Lapla
e equations in [9℄ (seeCorollary B.5 here) applies to u(� + �teN ) and v and so this tou
hing point musto

ur on �B, that is �x 2 �B. Sin
e u = v on �B, it follows that v(�x) = u(�x).Consequently, sin
e u is stri
tly in
reasing in the eN -dire
tion,u(�x) = v(�x) = u(�x+ �teN ) > u(�x) :This 
ontradi
tion shows that (9.1) 
annot hold, hen
e v � u. Analogously, onesees that v � u, then
e v = u. �By means of Lemma 9.1, we 
an 
omplete the proof of Theorem 1.4, by arguingas follows. With no loss of generality, we assume that u(0) = 0. Then, for " > 0,setting u"(x) := u(x="), we know from Lemma 9.1 and the results of [7℄ that u"L1lo
-
onverges (and thus a.e.-
onverges), up to subsequen
e, to �E � �RNnE , for asuitable E with minimal perimeter.Sin
e �Nu > 0 and limxN!+1 u = �1, we have that the zero level set of u is agraph in the eN -dire
tion; more pre
isely, there exists 
 : RN�1 �! R so thatfu < 0g = fxN < 
(x0)g :By s
aling, we thus dedu
e that(9.3) fu" < 0g = fxN < 
"(x0)g ;with 
"(x0) := "
(x0=") :We now 
laim that(9.4) �fxN<
"(x0)g 
onverges in L1lo
 to �RNnE .Indeed: we know that u" 
onverges to �E � �RNnE in RN n Z, for a suitable set Zwith LN (Z) = 0; thus, if x 2 E n Z,lim"�!0+ u"(x) = �E(x)� �RNnE(x) = 1 ;therefore lim"�!0+ �fu"<0g(x) = 0 = �RNnE(x) ;while if x 2 (RN nE) n Z thenlim"�!0+ u"(x) = �E(x)� �RNnE(x) = �1 ;therefore lim"�!0+ �fu"<0g(x) = 1 = �RNnE(x) :This shows that �fu"<0g 
onverges almost everywhere to �RNnE . Thus, (9.4) followsfrom the Dominated Convergen
e Theorem and (9.3).In the light of (9.4) and Lemma 16.3 of [20℄, we have that RN nE is a subgraphof a measurable fun
tion whi
h is the a.e.-limit of 
" up to subsequen
es, and whi
hmay attain the values �1; that is, there exists 
? : RN�1 �! [�1;+1℄ in su
h away that(9.5) 
?(x) = lim"!0+ 
"(x)



9. PROOF OF THEOREM 1.4 81for almost any x, up to subsequen
e, andRN nE = fxN < 
?(x0)g :Sin
e �E is a minimal perimeter, we have that 
? is a quasi-solution of the minimalsurfa
e equation, a

ording to De�nition 16.1 of [20℄.We now prove that �E is a hyperplane. We distinguish two 
ases, a

ordingto our hypotheses. If N � 8, we have that 
� is an entire quasi-solution of theminimal surfa
e equation in a spa
e with dimension less or equal than 7; therefore,by Theorem 17.8 and Remark 17.9 of [20℄, we have that �E = fxN = 
?(x0)g is ahyperplane. If, on the other hand, fu = 0g has at most linear growth, thenfu = 0g � fjxN j � K (jx0j+ 1)g ;for a suitable K > 0. This says thatfxN = 
"(x0)g = fu" = 0g �� fjxN j � K (jx0j+ ")g �� fjxN j � K (jx0j+ 1)g ;i.e., j
"(x0)j � K (jx0j+ 1). Thus, by means of (9.5), we gather that(9.6) j
?(x0)j � K (jx0j+ 1) ;thus 
? is lo
ally bounded. Hen
e, 
? is a solution of the minimal surfa
e equation(see [20℄, page 183). Therefore, �E is a hyperplane thanks to (9.6) and Theorem17.6 of [20℄.In any 
ase, we have proved that �E is a hyperplane, then
e�E = n� � x = 0o ;for a suitable � 2 RN with j�j = 1. Thanks to [28℄, we know that fu" = 0g L1lo
-
onverges �E, hen
e, for any k 2 N, there exists "k > 0 as small as we wish, sothat B2 \ fu"k = 0g � nj� � xj � 1=ko :By s
aling ba
k the variables, we then
e obtain thatfu = 0g \ �fjx � �j � 1="kg � fj��xj � 1="kg� � nj� � xj � 1=(k"k)o :We now invoke Lemma 8.1, used here with �k := �, lk := 1="k, �k := 1=(k"k), andwe infer that fu = 0g is a hyperplane. This 
ompletes the proof of Theorem 1.4.





APPENDIX AProof of the measure theoreti
 resultsA.1. Proof of Lemma 4.1By the hypotheses of the lemma and (2.41), eS(Y;R) tou
hes the graph of uby above at X0. Noti
e also that, in the notation of Lemma 3.3, sin
e Y =F (X0; �eS(Y;R)(X0)),y = x0 + ��eS(Y;R)1 (X0); : : : ; �eS(Y;R)N (X0)������eS(Y;R)1 (X0); : : : ; �eS(Y;R)N (X0)���� �(X0; �eS(Y;R)(X0)) ;and thus j(x0 � y) � eN j =(A.1) = ����eS(Y;R)N (X0)��������eS(Y;R)1 (X0); : : : ; �eS(Y;R)N (X0)���� ����(X0; �eS(Y;R)(X0))��� == j�Nu(x0)jjru(x0)j hR++H0(x0 � eN+1)�H0�x0 � eN+1 ++!(X0; �eS(Y;R)(X0))�� C02R!2(X0; �eS(Y;R)(X0))i :Also, from Lemma 3.3,��14 ; 14� 3 yN+1 = xN+1 + !�X0; �eS(Y;R)(X0)�and so(A.2) ���!�X0; �eS(Y;R)(X0)���� � 14 + 12 < 1 :Therefore, from (A.1), (A.2) and (4.2),j(x0 � y) � eN j � 
onstR ;provided that C0 is large enough; more pre
isely, sin
e, from (4.2),x0 � yjx0 � yj � eN = ru(x0)jru(x0)j � eN > 0 ;we have that (x0 � y) � eN � 
onstR :Therefore,(A.3) xN � yN � 
onstR ;83



84 A. PROOF OF THE MEASURE THEORETIC RESULTSfor any X 2 B3a(X0), if R is large enough.We now point out that, if X 2 B3a(X0) \ eS(Y;R),(A.4) �NgeS(Y;R)(x) � 
onst > 0 :In order to prove the above inequality, �rst noti
e that, by a dire
t 
omputation,using (2.35), (2.33) and (2.37), one gets that(A.5) �NgeS(Y;R)(x) � 
onst xN � yNjx� yj :Also, if x is in the domain of geS(Y;R), thenjx� yj � 
onstR :The latter inequality, together with (A.5) and (A.3), ends the proof of (A.4).Let now R(x1; : : : ; xN�1; xN+1) :=:= h�H0(xN+1)� C02R (xN+1 � yN+1)2 +R�H0(yN+1)�2 ��N�1Xj=1 jxi � yij2i1=2 :Let also �N : RN+1 �! fxN = 0g be the natural proje
tion, i.e.,�N (x1; : : : ; xN+1) := (x1; : : : ; xN�1; 0; xN+1) :We now show that(A.6) �N ���eS(Y;R)\B3a(X0) is a di�eomorphism.For proving this, take anyX = �x; geS(Y;R)(x)� 2 eS(Y;R) \ B3a(X0) ;and 
onsider �N (X) = �x1; : : : ; xN�1; 0; geS(Y;R)(x)� :Then, by (2.31) and (2.33),��1N �x1; : : : ; xN�1; 0; geS(Y;R)(x)� = X ;with xN so that jxN � yN j = R(x1; : : : ; xN�1; xN+1) ;where R has been de�ned here above. From (A.3), we get that R � 
onstR > 0,thus R is smooth for X 2 B3a(X0). Also, using again (A.3), we see that xN > yNfor any X 2 eS(Y;R) \ B3a(X0): that is��1N �x1; : : : ; xN�1; 0; geS(Y;R)(x)� == �x1; : : : ; xN�1; yN +R(x1; : : : ; xN�1; xN+1); xN+1� ;then
e (A.6) is proved.Let now �N+1 : RN+1 �! fxN+1 = 0g be the natural proje
tion, i.e.,�N+1(x1; : : : ; xN+1) := (x1; : : : ; xN ; 0) :



A.1. PROOF OF LEMMA 4.1 85Noti
e that, if X = (x; geS(Y;R)(x)) 2 eS(Y;R), then �N+1(X) = (x; 0) and so��1N+1(x; 0) = �x; geS(Y;R)(x)� ;showing that(A.7) �N+1���eS(Y;R)\B3a(X0) is a di�eomorphism.Thus, we de�neT := �N+1���eS(Y;R)\B3a(X0) Æ ��1N ���eS(Y;R)\B3a(X0)Let also introdu
e the following domains:O1 := T�fxN = 0g \ fjxN+1j < 3=4g \ Ba+2(�N (X0))�O2 := T�fxN = 0g \ fjxN+1j < 5=8g \ Ba+1(�N (X0))� :Of 
ourse, x0 2 O2 � O1 and, more pre
isely, by (A.6) and (A.7),(A.8) dist (O2; �O1) � 
onst :Let us now noti
e that, in the light of Proposition 2.18,�pgeS(Y;R) ��pu � �h00(geS(Y;R))� h00(u)�+ 
onstR �� ��(geS(Y;R) + 1R )� u� :Hen
e, if X 2 O1,��pu+�u � ��p�geS(Y;R) + 1R�+��geS(Y;R) + 1R� ;where � := sup[�3=4; 3=4℄ jh00j. Hen
e, from the Harna
k-type 
omparison inequalityfor1 p-Lapla
ian (see, for instan
e [9℄, [35℄ or [10℄), we get that(A.9) supO2 (geS(Y;R) � u) � C 0R ;for a suitable C 0 > 1, whi
h may also depend on a.Fix now Z 2 L \ Ba(�NX0). Then, from (A.6), there existsX(1) = (x(1); x(1)N+1) 2 eS(Y;R) \ B3a(X0)so that �N ���eS(Y;R)\B3a(X0)(X(1)) = Z ;that is(A.10) X(1) = Z + t(1)eNfor some t(1) 2 R, and(A.11) X(1) 2 eS(Y;R) :1 We re
all that the gradient of u does not vanish in the region we are 
onsidering, so thatthe assumptions needed in [9, 35, 10℄ are ful�lled.



86 A. PROOF OF THE MEASURE THEORETIC RESULTSAlso, by (A.6),jX(1) �X0j � �����N ���eS(Y;R)\B3a(X0)��1(Z � �NX0)��� �� 
onst jZ � �NX0j �� 
onsta :(A.12)Moreover, from (A.4), we have that, for any t � 0,geS(Y;R)(x(1) + teN) � 
onst t+ geS(Y;R)(x(1)) == 
onst t+ x(1)N+1 == 
onst t+ zN+1 :Therefore, from (A.9),(A.13) u(x(1) + teN ) > zN+1 ;provided that t � C 00=R, for a suitable C 00 > 1, whi
h may also depend on a.Analogously,(A.14) u(x(1) � teN ) < zN+1 ;provided that t � C 00=R. From (A.13) and (A.14), we dedu
e the existen
e oft(2) 2 [�C 00=R; C 00=R℄ so thatu(x(1) + t(2)eN ) = zN+1 :Let us de�ne X(2) := X(1) + t(2)eN . The point x(2) = x(2)(Z) will be the onesatisfying the thesis of Lemma 4.1, as we are now going to show. Noti
e that, by
onstru
tion, ���X(1) �X(2)��� � C 00R and(A.15) x(2)N+1 = zN+1 = u(x(2)) :In parti
ular, �N�x(2); u(x(2))� = Zand jx(2) � x0j ��jx(1) � x0j+ C 00R �� 
onsta+ C 00R �� 
onsta ;(A.16)
thanks to (A.12).We now show that(A.17) �x(1) � x0� � ru(x0)jru(x0)j � H0(zN+1)�H0(u(x0)) + C 000R ;for some C 000 > 0 whi
h may depend on a. To prove (A.17), let us de�new(x) := H0(geS(Y;R)(x))



A.1. PROOF OF LEMMA 4.1 87and noti
e that, from (A.10) and (A.11),zN+1 = x(1)N+1 = geS(Y;R)(x(1))and so, sin
e X0 is a point where the graph of u and eS(Y;R) tou
hes,H0(zN+1)�H0(u(x0)) == H0�geS(Y;R)(x(1))��H0�geS(Y;R)(x0)� == w(x(1))� w(x0) �� rw(x0) � (x(1) � x0)� 
onst jD2w(�)jjx(1) � x0j2 ;for some � lying on the segment joining x(1) and x0. Noti
e now that, by thede�nition of w and the fa
t that X0 is a point of tou
hing between the graph of uand eS(Y;R), rw(x0) � (x(1) � x0) == H 00�geS(Y;R)(x0)�rgeS(Y;R)(x0) � (x(1) � x0) == H 00�geS(Y;R)(x0)� ���rgeS(Y;R)(x0)��� rgeS(Y;R)(x0)���rgeS(Y;R)(x0)��� � (x(1) � x0) == H 00�geS(Y;R)(x0)� ���rgeS(Y;R)(x0)��� ru(x0)jru(x0)j � (x(1) � x0) ;hen
e, from (2.53) and the fa
t that X(1) 2 B3a(X0),rw(x0) � (x(1) � x0) � ru(x0)jru(x0)j � (x(1) � x0)� 
onstR a :Also, a dire
t 
omputation and (2.54) imply that�ijw = H 000 �geS(Y;R)��igeS(Y;R)�jgeS(Y;R) ++H 00�geS(Y;R)��ijgeS(Y;R) �� 
onstR :Colle
ting the estimates above and re
alling that X(1) 2 B3a(X0), the 
laim in(A.17) now easily follows.Now, by means of (A.15) and (A.17),�x(2) � x0� � ru(x0)jru(x0)j �� �x(1) � x0� � ru(x0)jru(x0)j + ���x(1) � x(2)��� �� H0(zN+1)�H0(u(x0)) + C 0000R == H0(u(x(2)))�H0(u(x0)) + C 0000R ;for a suitable C 0000 > 1, whi
h may depend on a. This, together with (A.12) and(A.16), 
ompletes the proof of Lemma 4.1.



88 A. PROOF OF THE MEASURE THEORETIC RESULTSA.2. Proof of Lemma 4.2The proof of Lemma 4.2 relies on an auxiliary result, namely Lemma A.1 herebelow, whi
h may be seen as a rotation of the desired 
laim (see below (A.20)) plusa Lips
hitz property on level sets2. For stating Lemma A.1, we need to introdu
ethe following notation. Given R > 0 and Y = (y; yN+1) 2 RN � [�1=4; 1=4℄, wede�ne �(Y;R) as the zero level set of S(Y;R), that is:�(Y;R) := S(Y;R)\ fxN+1 = 0g = fgS(Y;R) = 0g :By the de�nitions on page 14 and (2.39), we have that �(Y;R) is an (N � 1)-dimensional sphere, namely�(Y;R) = fx 2 RN j jx� yj = rgwith3(A.18) r = r(Y;R) := R�H0(yN+1)� C02Ry2N+1 :The study of the geometry of su
h spheres is indeed linked with the study of thelevel sets of S(Y;R), via the following observation. If s = gS(Y;R)(x) = geS(Y;R)(x) 2(�1=2; 1=2), then, by (2.31) and De�nition 2.15,H0(yN+1) + jx� yj �R = H0(s)� C02R (s� yN+1)2 ;hen
e, if jsj < 1=2, the signed distan
e between the s-level set of gS(Y;R) and �(Y;R)is given by(A.19) H0(s) + C0 s2R (2yN+1 � s) :Given x 2 RN , we now de�neTY;Rx = TY;R(x)as the interse
tion point between �(Y;R) and the half-line from y going throughx. With this, we 
an now deal with the above mentioned auxiliary result:2The very rough idea underneath the proof of Lemma 4.2 goes as follows. First, Lemma A.1provides a result whi
h looks like a rotation of Lemma 4.2, and whi
h possesses a uniform Lips
hitzgraph property for level sets. The proof of Lemma 4.2 will then ended by rotating ba
k to the
on�guration in Lemma A.1: the Lips
hitz property will take into a

ount the error done in su
hrotation.The idea for proving Lemma A.1 is that we would like to repla
e the estimates on thetou
hing point set � with estimates on a suitable �rst o

urren
e tou
hing point set ��, i.e., witha set obtained by translating in the eN dire
tion an appropriate barrier until it tou
hes the graphof u. This strategy will present two advantages. First, the �rst o

urren
e tou
hing property willeasily imply the Lips
hitz property for level sets of �� (whi
h, as mentioned above, is needed fordedu
ing Lemma 4.2 from Lemma A.1). Se
ond, measure estimates for �� 
an be dire
tly dedu
edfrom Proposition 3.14. For performing this, however, a te
hni
al diÆ
ulty arises: indeed, in orderto be able to repla
e � with ��, a \tiny" improvement of the assumptions of Lemma A.1 will beneeded, namely (A.29) here below. Unfortunately, the proof of this detail is non trivial, and itwill take several pages.3Obviously, r � R if R is large.



A.2. PROOF OF LEMMA 4.2 89Lemma A.1. Let �C > 1 be a suitably large 
onstant. Let u be a C1-subsolutionof (1:5) in fjx0j < lg � fjxN j < lg. Assume that S(Y;R) is above the graph of uin fjx0j � lg � fjxN j � l=2g and that S(Y;R) tou
hes the graph of u at the point(x0; u(x0)). Suppose that� ju(x0)j < 1=2, jx0N j < l=4, jx00j < l=4;� \� ru(x0)jru(x0)j ; eN� � �8 .Assume also that TY;Rx0 2 fjx0j = qg \ fxN = 0g andy = �eNpr2 � q2 withr = r(Y;R) = R�H0(yN+1)� C02Ry2N+1 :(A.20)Then, there exist universal 
onstants C1; C2 > 1 > 
 > 0 su
h that, if(A.21) C1 � q � lC1 and 4 3pR � l � 
R ;the following holds. Let � be the set of points (x; u(x)) 2 RN � R satisfying thefollowing properties:� jx0j < q=15, ju(x)j < 1=2, jx� x0j < �Cq;� there exists Ŷ 2 RN+1 su
h that S(Ŷ ; R=C2) is above u and it tou
hes uat (x; u(x));� \� ru(x)jru(x)j ; ru(x0)jru(x0)j� � C1 qR ;� (x� x0) � ru(x0)jru(x0)j � C1 q2R +H0(u(x))�H0(u(x0)).Then,(A.22) LN��N (�)� � 
qN�1 :More pre
isely, for any s 2 (�1=2; 1=2), there exists a set �s � � \ fxN+1 = sg,whi
h is 
ontained in a Lips
hitz graph in the eN-dire
tion, with Lips
hitz 
onstantless than 1, and so that, if �� := [s2(�1=2; 1=2)�s ;we have4(A.23) LN��N (��)� � 
qN�1 :
4Of 
ourse, (A.23) and the fa
t that �� � � imply (A.22).
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The geometry of (A.20)Proof. For further referen
e, let us point out some geometri
 features linkingx0 with its proje
tion TY;Rx0. First of all, by (A.19),(A.24) ���TY;Rx0 � x0��� � 
onst :Also, by 
onstru
tion,(A.25) sin�\�x0 � y; eN)� = qr :Thus, (A.24) and (A.25) yield thatjx00j � ����TY;Rx0 � x0�0���+ ����TY;Rx0�0��� �� ���TY;Rx0 � x0��� sin�\�x0; eN)�+ q �� 
onst qR + q :(A.26)Let us also observe that, if jx0j � l=8 and xN 2 [�l=2; �l=4℄, thenjx� yj � r � l8 + 
onst � R� 
onst 3pR



A.2. PROOF OF LEMMA 4.2 91and thus, exploiting (2.15),u(x) � gS(Y;R)(x) �� gyN+1;R� 
onst (1� 3pR)� == sR :(A.27)More pre
isely, we have that(A.28) u(x) < sRfor any x so that jx0j � l=8 and xN 2 [�l=2; �l=4℄: indeed, if not, by (A.27) therewould be a point for whi
h the graph of u tou
hes the sR-level from below and thena 
ontradi
tion follows by applying Theorem B.6 to the fun
tion sR � u (see, e.g.,the argument on page 18).We now �x C� > 1, to be 
hosen 
onveniently large. The �rst step of theproof of Lemma A.1 
onsists in proving the existen
e of a suitable Y� 2 RN+1 andR� > R= 
onst, so that �eNY� = �eNY and S(Y�; R�) tou
hes the graph of u fromabove, in the region fjx0j � �Cqg, at the point (x�; u(x�)), with jx0�j � �Cq and(A.29) TY�;R�x� 2 nxN � 
onst q2R o� njx0j < qC�o :We will prove (A.29) by iteration. Namely, we will set Y0 := Y , R0 := R and,for any k 2 N, we will indu
tively �nd Yk+1 2 RN+1 and Rk+1 > Rk=4, so that�eNYk+1 = �eNYk and S(Yk+1; Rk+1) tou
hes the graph of u from above at thepoint (xk+1; u(xk+1)), with jx0k+1j � �Cq and(A.30) TYk+1;Rk+1xk+1 2 nxN � 
onst q2Rk o� njx0j < �qo ;for some � 2 (0; 1). Sin
e (A.29) follows by iterating (A.30) a �nite number oftimes, we fo
us now on the proof of (A.30). More pre
isely, we will proof the �rststep in (A.30), i.e., the step with k = 0, sin
e the others are analogous. The proofof (A.30) is a
tually quite non trivial, and it will take several pages (it will be endedon page 111).For proving (A.30), let us begin by noti
ing that, if jsj < 1=2, from De�nition2.5 and (2.1) we get thatjh0s0;R(s)� h00(s)j = j'0s0;R(s)� h00(s)j �� jh00(s)j 0B� jRp � (?)pj(?)p + C0 js� s0j (p=(p� 1))1=p�h0(s)�(p�1)=p (?)p+1 1CA ;where used the short hand notation? := R� C0(s� s0) � pp� 1h0(s)�1=p :Therefore,(A.31) jh0s0;R(s)� h00(s)j � 
onstR , for any jsj < 1=2.



92 A. PROOF OF THE MEASURE THEORETIC RESULTSMoreover, from De�nition 2.5,(A.32) h0s0;R(s) = h00(s)� bC0R , for any s 2 (sR; �1=2) [ (1=2; 1).and, by 
onstru
tion, bC0 may be taken large if so is C0. We now �x a smallparameter � 2 (0; 1=2℄ and a large parameter 
 > 1 and we de�ne(A.33) ! := 2�1=(
+2) and � := 1� �(1� !).By 
onstru
tion, ! 2 (0; 1) and � 2 (1=2; 1). Also, � > ! and, for 
 large, ! and �are 
lose to 1. For any t > 0, set also~ (t) := 1
 � 1t
 � 1�and, for any z0 2 RN�1 n f0g,  (z0) := ~ (jz0j) :We now 
onsider the graphG := (X 2 RN j xN = q2pr2 � q2 (x0=q)) :Sin
e ~ is stri
tly 
on
ave, while �(�; �) is stri
tly 
onvex, one sees that G tou
hes�(Y;R) from above when jx0j = q. Analogously, ify! := �" q2
pr2 � q2 �1� 1!
� + !
+2pr2 � q2# eN andr! := !
+2pr2 + q2(!�2
�2 � 1) ;one sees that G tou
hes the (N�1)-dimensional sphere �Br!(y!) from above whenjx0j = !q. Noti
e that, by 
onstru
tion,(A.34) r! � !
+2r = r=2 ;and, more pre
isely, r! 2 [r=2; !r℄ and y!N � yN . Also, from the fa
t that(A.35) ���p1 + � � 1� �2 ��� � �2 ;provided that � 2 R with j� j suÆ
iently small, one sees that yN + r < y!N + r!, ifr=q and 
 are suitably large. Noti
e also that, by 
onstru
tion,jy! � yj = 12pr2 � q2 + q2
pr2 � q2 � 1!
 � 1� 22 h12pr2 � q2 ; 12pr2 � q2 + 2q2
r i ;(A.36)if 
 and r=q are large enough. Thus, we now 
onsider the surfa
e� := �1 [ �2 [ �3de�ned in this way: we take�1 := �(Y;R) \ fxN < 0g�2 := G \ fjx0j 2 [!q; q℄g and�3 := �Br!(y!) \ fjx0j < !qg \ fxN > 0g :
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The Barbapapa-like surfa
e �In the sequel, we will often speak about points \inside (or outside) �", with theobvious meaning of points \inside (or outside) the bounded region whose boundaryis �".Also, by the above mentioned tou
hing properties between G, �(Y;R) and�Br!(y!), we have that � is a C1;1 
losed hypersurfa
e in RN . We denote by d�the signed distan
e to �, with the 
onvention that d� is positive in the exterior of� and negative in the interior.The rough idea for proving (A.30) 
onsists now in trying to �nd 
onta
t pointswhose proje
tion on the zero level set of the 
orresponding barrier lies 
lose5 to �3,and then use the geometry �3, whi
h is quite transparent.We now de�ne the following hypersurfa
e in RN+1 :	 := nX 2 RN+1 j xN+1 = gyN+1;R�d�(x) +HyN+1;R(0)�o :For the sake of simpli
ity, we will setg	(x) := gyN+1;R�d�(x) +HyN+1;R(0)� ;5This is the reason also for introdu
ing �(Y!; R1) later on (see page 98).



94 A. PROOF OF THE MEASURE THEORETIC RESULTSso6 that 	 = fxN+1 = g	(x)g. Note thatd�(x) � jx� yj � r ;thus, from (2.39) and (2.31),(A.37) g	 � gS(Y;R) :Let us now show some further properties of 	. First of all, 	 
oin
ides withS(Y;R) at any points for whi
h d� is realized on �1; more pre
isely,(A.38) if d�(x) = d�1(x), then g	(x) = gS(Y;R)(x).Indeed, if d�(x) = d�1(x), by some geometri
 
onsiderations and (2.39), we havethat g	(x) = gyN+1;R�d�1(x) +HyN+1;R(0)� == gyN+1;R�d�1(x) � C02R y2N+1� == gyN+1;R�jx� yj � r � C02R y2N+1� :This, (A.18) and (2.20) end the proof of (A.38).In the light of (A.38), (A.37) and Proposition 2.13, we dedu
e that�pg	(x) < h00(g	(x)) in the vis
osity senseat any x 2 RN for whi
hd�(x) is attained on �1 andg	(x) 2 [sR; �1=2℄ \ [1=2; 1).(A.39)Furthermore, in an appropriate system of 
oordinates (see x14.6 of [19℄ fordetails on the distan
e fun
tion),rg	(x) = g0yN+1;R(?) eNand D2g	(x) is the N �N diagonal matrix with the following entries on the diag-onal: �1�1d�(x) � 1 g0yN+1;R(?); : : : ; �N�1�N�1d�(x) � 1 g0yN+1;R(?); g00yN+1;R(?) :Here above, we denoted ? := d�(x) +HyN+1;R(0) ;6To have some further geometri
 insight, one may observe that the domain where g	 is de�nedand non-
onstant is in a O(logR)-neighborhood of � (re
all (2.39), (2.31) and Lemma 2.10). Theprin
ipal 
urvatures of � are of order R. This implies that if x is in the domain where g	 is de�nedand non-
onstant, then the distan
e from x to � is realized at exa
tly one point. Furthermore,sin
e R is mu
h bigger than l (re
all (A.21)), then it may be 
onvenient to look at �\ [�l; l℄N (thatis, � in the domain we are interested in) as a graph in the eN -dire
tion. By dire
t inspe
tion, theslope of su
h graph at any point x is of order jx0j=R. In parti
ular, the angle between eN and thenormal of � at x is of order jx0j=R. The above slope bound and (A.21) also imply that � is quite
at in [�l; l℄N , namely, its slope is bounded by an order 
.



A.2. PROOF OF LEMMA 4.2 95while, as standard, �1; : : : ; �N�1 represent the prin
ipal 
urvatures of � at the pointwhere d�(x) is realized. Hen
e, from De�nitions 2.8 and 2.11 and Lemma B.3, weget that(A.40) rg	(x) = � pp� 1hyN+1;R(℄)�1=p eN ;where we denoted ℄ := gyN+1;R(?), and that D2g (x) may be represented as theN �N diagonal matrix with the following entries on the diagonal:�1�1d�(x) � 1 � pp� 1hyN+1;R(℄)�1=p... �N�1�N�1d�(x) � 1 � pp� 1hyN+1;R(℄)�1=p(phyN+1;R(℄))(2�p)=p(p� 1)2=p h0yN+1;R(℄) :(A.41)
From (A.40) and (A.41),�pg	 = h0yN+1;R ++ � pp� 1hyN+1;R� p�1p N�1Xi=1 �i�id� � 1 ;(A.42)outside fjg	j = 1=2g[frg	 = 0g, where we dropped the ℄-dependen
e for the sakeof simpli
ity. Let us now 
ompute the prin
ipal 
urvatures ��2i of the hypersurfa
e�2: exploiting Lemma B.14, we have that� ��21 = � � � = ���2N�2 = q
+2jx0jp(r2 � q2)jx0j2
+2 + q2
+4 � 0��2N�1 = (
 + 1) q
+2 (r2 � q2) jx0j2
+1�(r2 � q2) jx0j2
+2 + q2
+4�3=2 � 0 :(A.43)In parti
ular, sin
e jx0j � !q on �2, we infer from the above relations that(A.44) ���2i � 1r! ;for i = 1; : : : ; N � 2. Thus, we dedu
e from (A.34), (A.44) and (A.18) that(A.45) ���2i � 3R ;for i = 1; : : : ; N � 2, if R is large enough. Furthermore, sin
e q � jx0j � !q on �2,(A.43) gives ��2N�1 � (
 + 1) (r2 � q2)!2
+1r3 �� 910 (
 + 1)!2
+1r �� 940 (
 + 1)r ;



96 A. PROOF OF THE MEASURE THEORETIC RESULTSthat is(A.46) ��2N�1 � 
onst (
 + 1)R :Analogously, one sees that(A.47) ��2N�1 � 
onst (
 + 1)R :We now 
laim that �pg	(x) � h00(g	(x))� 
onst 
Rat any x 2 RN for whi
h jg	(x)j 6= 1=2,rg	(x) 6= 0,jd�(x)j � 2pR and d� is attained on �2.(A.48)To prove this, take x as requested here above: then, thanks to (A.45), (A.47) andthe fa
t that jd�(x)j � 2pR, that�����2N�1d�(x)���+ N�2Xi=1 �����2i d�(x)��� � 
onstpRand so, if R is large enough,N�1Xi=1 ���2i1� ��2i d�(x) � �2N�2Xi=1 ��2i � ��2N�12 :(A.49)Hen
e, using the regularity of the fun
tions involved in our domain, (A.42), (A.49),(A.31) and (A.32),�pg	 = h0yN+1;R +� pp� 1hyN+1;R� p�1p N�1Xi=1 ��2i��2i d� � 1 �� h0yN+1;R +� pp� 1hyN+1;R� p�1p  �2N�2Xi=1 ��2i � ��2N�12 ! �� h00 + 
onstR ++� pp� 1hyN+1;R� p�1p  �2N�2Xi=1 ��2i � ��2N�12 ! :We thus dedu
e, by (A.45) and (A.46), that�pg	 � h00 + 
onstR ++� pp� 1hyN+1;R� p�1p �6(N � 2)R � 
onst (
 + 1)2R � :Thus, if 
 is large enough,�pg	 � h00 + 
onstR � 
onst � pp� 1hyN+1;R� p�1p (
 + 1)4R :



A.2. PROOF OF LEMMA 4.2 97Therefore, sin
e we are evaluating hyN+1;R at g	(x) 2 [�1=2; 1=2℄,�pg	 � h00 + 
onstR � 
onst (
 + 1)R ;whi
h proves (A.48), if 
 is 
hosen to be 
onveniently large.We now show that�pg	(x) < h00(g	(x)) in the vis
osity senseat any x 2 RN for whi
hd� is attained on �2.(A.50)For proving this, we �rst point out that we may assume(A.51) g	(x) > sRIndeed, if g	(x) = sR, arguing as in Proposition 2.13�pg	(x) = 0 < h00(sR) = h00(g	(x)) ;in the vis
osity sense, giving the desired 
laim.For proving (A.50), we may also assume rg	(x) 6= 0, otherwise, we would haveg	(x) = sR and we go ba
k to (A.51). We may also assume that jd�(x)j � pR:indeed, if jd�(x)j � pR, we have thatjd�(x) +HyN+1;R(0)j � pR=2 > C1 logRand so, by Lemma 2.10, eitherd�(x) +HyN+1;R(0) > HyN+1;R(1) ;in whi
h 
ase, due to De�nition 2.11, g	(x) is not even de�ned, ord�(x) +HyN+1;R(0) < HyN+1;R(sR) ;in whi
h 
ase g	 is 
onstantly equal to sR in a neighborhood of x, whi
h has justbeen ruled out. Also, in the proof of (A.50), we 
an restri
t ourselves to the 
asein whi
h jg	j 6= 1=2, sin
e, by Proposition 2.13, no smooth fun
tion 
an tou
h g	from below at level �1=2. With these further (non restri
tive) assumptions, it iseasy to dedu
e (A.50) from (A.48).We now prove that�pg	(x) < h00(g	(x)) in the vis
osity senseat any x 2 RN for whi
h jg	(x)j � 1=2 andd�(x) is attained on �3.(A.52)To prove the above 
laim, noti
e that, as remarked here above, we may restri
tourselves to the 
ase in whi
h jg	j 6= 1=2 and jd�(x)j � pR. Also, sin
e �3 is aportion of sphere, ��31 = � � � = ��3N�1 = � 1r! < 0 ;so, sin
e jd�(x)j � pR, we get that, for i = 1; : : : ; N � 1,�����3i d���� � 
onstpR



98 A. PROOF OF THE MEASURE THEORETIC RESULTSwhi
h is small; therefore, from (A.32),�pg	 == h0yN+1;R +� pp� 1hyN+1;R� p�1p N�1Xi=1 ��3i��3i d� � 1 �� h0yN+1;R + 
onst N�1Xi=1 j��3i j �� h0yN+1;R + 
onstR �� h00 � bC0R + 
onstR << h00 ;provided that bC0 is 
hosen suitably large, thus proving (A.52).In the light of (A.39), (A.50) and (A.52), we dedu
e thatg	 is a stri
t supersolution of (1.5) everywherepossibly ex
ept the set fjg	j < 1=2g \ n d� realized on �1 [ �3o.(A.53)We now point out that(A.54) if jx0j � �Cq, then g	(x) = gS(Y;R)(x).Indeed, let x 2 � realize d�(x). Then, if � is the outer normal of � at x, we havethat \(�; eN ) � 
onst jx0j=R (see the footnote on page 94). Therefore,jx0 � x0j = jx� xj sin�\(�; eN)� � 
onst jx0j jx� xjR � 
onst jx0j lR � 
onst jx0j :Sin
e jx0 � x0j � �Cq � jx0j ;we then
e dedu
e that �Cq � 
onst jx0j ;thus jx0j � 2q. In parti
ular, x 2 �1, therefore (A.54) follows from (A.38).We now de�ne Y! := (y!; yN+1) ;R1 := r! +H0(yN+1) + 5C0R ;r1 := R1 �H0(yN+1)� C02R1 y2N+1 ;�(Y! ; R1) := S(Y!; R1) \ fxN+1 = 0g :By de�nition, R1 � !r + 
onst ��!R+ 
onst < R(A.55)



A.2. PROOF OF LEMMA 4.2 99and(A.56) r1 � r! 2 �3C0R ; 5C0R � :Furthermore, arguing as done on page 88, we have that(A.57) �(Y! ; R1) = �Br1(y!) ;thus, by (A.56), we infer that�(Y! ; R1) stays at distan
e greaterthan 3C0=R outside �Br!(y!) � �3.(A.58)Re
alling the de�nition of � given in (A.33), we now show that(A.59) �Br!(y!) \ fjx0j � �qg is at distan
e at least 
onst q2R inside �.For the proof of this, it is 
onvenient, to think � and �Br!(y!) (in [�l; l℄N) as graphsin the eN -dire
tion (see the footnote on page 94): we then expli
itly 
ompute the\verti
al distan
e" from �Br!(y!) to � (with the sign 
onvention that su
h verti
aldistan
e is positive at points where �Br!(y!) is below � in the eN -dire
tion) and
ompare it to the \true" distan
e by using the 
atness of these graphs (in [�l; l℄N).To formalize su
h idea, we pro
eed as follows. We write � and �Br!(y!) (in [�l; l℄N)as graphs in the dire
tion eN , that is, we 
onsider G1, G2 2 C1;1([0; l℄) so that� \ [�l; l℄N = nxN = G1(jx0j)oand �Br! (y!) \ [�l; l℄N = nxN = G2(jx0j)o :Then, we de�ne the verti
al distan
e between � and �Br!(y!) asG1(jx0j)�G2(jx0j) :To evaluate it, note that, by 
onstru
tion, G1(t) = G2(t) if t 2 [0; !q℄ and G01(!q) =G02(!q). What is more, sin
e G2(t) = y!;N +pr2! � t2, one has thatG002(t) � �1� 
onst 
r! � �43 � 1� 
onst 
r :Analogously, sin
e G1(t) = yN +pr � t2 for any t � q, one has thatG001(t) � �1 + 
onst 
r ;for any t � q. Also, by 
onstru
tion,G001 (t) � 0for t 2 [!q; q℄. Let us de�ne G := G1 �G2. By means of the above 
omputations,we have that G(!q) = G0(!q) = 0, that G00(t) � 
onst =r for t 2 [!q; �q℄ and



100 A. PROOF OF THE MEASURE THEORETIC RESULTSG00(t) � 0 for t � �q. Therefore, if t � �q, thenG(t) = Z t!q Z s!q G00(�) d� ds == Z t!q(t� �)G00(�) d� �� 
onst Z �q!q (�q � �)r � 
onst q2R :This says that, if x 2 �Br!(y!) with jx0j � �q, then x is inside �, with verti
aldistan
e greater than 
onst q2=R. Then
e, if x 2 �Br! (y!) with jx0j � �q and zrealizes d�(x), denoting by w the point in � so that w0 = x0, we have that(A.60) �d�(x) = jz � xjand that(A.61) jx� wj � 
onst q2R :Elementary trigonometry and the 
atness of � and Br! (y!) in [�l; l℄N (re
all thefootnote on page 94) also implies that(A.62) jx� wj � 2 jx� zj :Then, (A.59) follows from (A.60), (A.61) and (A.62).A �rst 
onsequen
e of (A.59) is that, for any a 2 �Br!(y!) and any b 2 �1,(A.63) ja� bj � 
onst q2R :We also infer from (A.57), (A.59) and (A.56) that(A.64) �(Y! ; R1) \ fjx0j � �qg is at distan
e at least 3C0R inside �.Noti
e also that, by 
onstru
tion and re
alling (A.35), one hasy!N + r1 � �12pr2 � q2 + 
onst q2r + r! + 
onstC0R == 12 �pr2 + (4!2 � 1) q2 �pr2 � q2�++ 
onst q2r + 
onstC0R �� 
onst q2r + 
onstC0R �� 
onst q2R ;then
e,(A.65) �(Y! ; R1) � �xN � 
onst q2R � :



A.2. PROOF OF LEMMA 4.2 101We now investigate the mutual position of 	 and S(Y!; R1). For this, we startby 
laiming thatThe region nX 2 	 where jxN+1j < 1=2 andd�(x) is realized on �3o is above S(Y!; R1)(where above means with respe
t to the eN+1-dire
tion).(A.66)To prove (A.66), note that, if d�(x) is realized on �3, then x� y! is orthogonal to�3 � �Br! (y!), therefore, re
alling (A.56) and (2.39),d�(x) = d�3(x) = d�(Y! ;R1)(x) + r1 � r! �� d�(Y! ;R1)(x) + 3C0R == jx� y!j � r1 + 3C0R == jx� y!j �R1 +H0(yN+1) + C02R1 y2N+1 + 3C0R == jx� y!j �R1 +H0(yN+1) + C02R1 y2N+1 + 3C0R ��HyN+1;R(0)� C02Ry2N+1 :This, re
alling (2.39) and (2.38), gives thatHyN+1;R1�g	(x)�� C02 �g	(x)� yN+1�2 � 1R � 1R1� == eHyN+1;R1�g	(x)�� C02 �g	(x)� yN+1�2 � 1R � 1R1� == eHyN+1;R�g	(x)� == HyN+1;R�g	(x)� == HyN+1;R �gyN+1;R�d�(x) +HyN+1;R(0)�� == d�(x) +HyN+1;R(0) �� jx� y!j �R1 +H0(yN+1) + C02R1 y2N+1 + 3C0R � C02Ry2N+1 :Therefore, HyN+1;R1�g	(x)� � jx� y!j �R1 +H0(yN+1)++ 3C0R � C02Ry2N+1 � C02R1 �g	(x) � yN+1�2 :(A.67)



102 A. PROOF OF THE MEASURE THEORETIC RESULTSNote however that R1 � R=2 for large R, and so, in parti
ular, we may assumethat R1 � R=3. Then
e,3C0R � C02Ry2N+1 � C02R1 �g	(x)� yN+1�2 �� 3C0R � C02R �14�2 � 3C02R �34�2 >> 0 :This and (A.67) yield thatHyN+1;R1�g	(x)� > jx� y!j �R1 +H0(yN+1) ;and so g	(x) > gyN+1;R1�jx� y!j �R1 +H0(yN+1)� = gS(Y!;R1)(x) ;whi
h proves (A.66).We now show thatThe region nX 2 S(Y!; R1) whered�(Y!;R1)(x) is realized at a point z with jz0j � �qois stri
tly above 	 (in the eN+1-dire
tion).(A.68)In order to prove (A.68), take X 2 S(Y!; R1) and assume that� := dist�x;�(Y! ; R1)�is attained at z 2 �(Y!; R1) and jz0j � �q. Then, by 
onstru
tion,xN+1 = gS(Y!;R1)(x) ;thus from (2.20) and De�nition 2.11,jx� y!j = H0(xN+1)� C02R1 (xN+1 � yN+1)2 +R1 �H0(yN+1) :Therefore, dist�x;�(Y!; R1)� = jx� y!j � r1 == H0(xN+1)� C02R1 (xN+1 � yN+1)2 +R1 �H0(yN+1)� r1 ;whi
h implies that � � HyN+1;R(xN+1) + C02 � 1R + 1R1� :Hen
e,(A.69) gS(Y!;R1)(x) = xN+1 � gyN+1;R�� � C02 � 1R + 1R1�� :



A.2. PROOF OF LEMMA 4.2 103We 
onsider �y 2 � on the half-line from y! towards z. Note that, by 
onstru
tion,y!, z, x and �y lie on the same half-line. Let also ~y 2 � be the point realizing d�(x).By means of (A.64), we have that(A.70) jz � �yj ; jz � ~yj � 3C0R :We 
laim that this implies that(A.71) � � d�(x) + 3C0R :To prove this, we distingush three 
ases, a

ording to the mutual position of x, zand �y. Namely, if x is outside � and outside �(Y!; R1), we have that� � d�(x) = jx� zj � jd�(x)j �� jx� zj � jx� �yj == j�y � zj ;and so (A.71) follows from (A.70) in this 
ase; if, on the other hand, x is inside �but outside �(Y! ; R1), � � d�(x) = jx� zj+ jd�(x)j == jx� zj+ jx� ~yj �� j~y � zj ;whi
h gives (A.71) via (A.70) in this 
ase. The 
ase in whi
h x is outside � andinside �(Y! ; R1) does not hold: indeed, if x is inside �(Y! ; R1), sin
e, due to (A.64),z is inside �, then x lies, in this 
ase, on the segment between y! and a point inside� (that is, z itself): thus, sin
e � is star-shaped with respe
t to y!, x is inside �.Let us �nally 
onsider the 
ase in whi
h x is inside �(Y!; R1) and inside �. In this
ase, note that ~y 
annot lie on �(Y! ; R!) (that is, ~y 62 �3), otherwise ~y would beon the radius from y! to z and so~y = y! + r!r1 (z � y!)whi
h gives that j~y0j = r!r1 jz0j � r!r1 �q > !q ;if R is large, thanks to (A.56), in 
ontrast with the fa
t that ~y 2 �3.Also, if x is inside �(Y!; R1) and inside � and ~y lies on �1, then note that it mustbe outside �(Y!; R1), thanks to (A.63) and (A.56). Thus, we take ~z 2 �(Y! ; R1)on the segment joining x and ~y and we de�ne~w := y! + r!r1 (~z � y!) :Note that ~w 2 �(Y! ; R!) and therefore, by (A.63),j ~w � ~yj � 
onst (1� !) q2r :



104 A. PROOF OF THE MEASURE THEORETIC RESULTSFurthermore, by (A.56),j ~w � ~zj = ���r!r1 (~z � y!)� (~z � y!)��� == ���r!r1 � 1��� r1 == jr! � r1j � 5C0R :Therefore, � � d�(x) = �jx� zj+ jd�(x)j �� �jx� ~zj � jx� ~yj == j~y � ~zj �� j~y � ~wj � 5C0R �� 
onst (1� !) q2R � 5C0R ;whi
h proves (A.71) also in this 
ase, by taking q 
onveniently large (possibly independen
e of 1=(1� !) and C0).Then, to end the proof of (A.71), we only need to 
onsider the 
ase in whi
h xis inside �(Y!; R1) and inside � and ~y lies on �2. For this, let us de�ne~x = x� 6C0R x� y!jx� y!jand observe that r1 sin�\(z � y!; eN)� = jz0j � �q ;thus, re
alling (A.56),\(~x� y!; eN) = \(x� y!; eN ) == \(z � y!; eN) �� �qr1 � 
onst q2r2 �� �qr! � 
onst q2r2 :Also, by the minimality property of ~y, x � ~y is orthogonal to � at ~y and so, byLemma B.10, we have that y!, x, ~x, z and ~y lie on the same plane. Let us denotethis plane by �0. Let also �0 be the point on the 
ommon boundary of �2 and �3on the side where ~y lies and let ` be the straight line lying in �0 and tangent to �at �0. By 
onstru
tion, j�00j = !q, thusr! sin�\(�0 � y!; eN )� = !qand then
e\(~x� y!; �0 � y!) � (� � !)qr! � 
onst q2r2 = (1� �) (1� !) qr! � 
onst q2r2 ;from whi
h \(~x� y!; �0 � y!) � 
onst (1� !) qr :



A.2. PROOF OF LEMMA 4.2 105We now estimate min�2` j� � ~xj :For this, note that the point �� 2 ` attaining su
h minimum must be so that ~x� ��is orthogonal to ` at �� and so the points �0, ��, ~x and y! form a right trapezoidlying on the plane �0. Elementary trigonometry on this right trapezoid gives thatmin�2` j� � ~xj = j�� � ~xj == j�0 � y!j � j~x� y!j 
os�\(x� y!; eN )� == r! � j~x� y!j 
os�\(x� y!; eN )� �� r! � j~x� y!j �1� 
onst (1� !)2 q2r2 � �� r! � jx� y!j �1� 
onst (1� !)2 q2r2 �� 7C0R :With this estimate, we now 
omplete the proof of (A.71) in the 
ase in whi
h xis inside �(Y!; R1) and inside � and ~y lies on �2 by arguing as follows. Sin
e~x 2 �(Y!; R!) thanks to (A.56), we 
an take � 2 ` on the segment joining ~y to ~x.Then, � � d�(x) = �jx� zj+ jx� ~yj == jx� y!j � r1 + jx� ~yj �� jx� y!j � r1 + j~x� ~yj � 6C0R �� jx� y!j � r1 + j~x� �j � 6C0R �� jx� y!j � r! + j~x� �j � 11C0R �� jx� y!j 
onst (1� !)2q2r2 � 18C0R :Sin
e x 2 [�l; l℄N , jx� y!j � 
onst r, therefore the above estimate yields the proofof (A.71) in the 
ase in whi
h x is inside �(Y!; R1) and inside � and ~y lies on �2.This ends the proof of (A.71).



106 A. PROOF OF THE MEASURE THEORETIC RESULTSThen, (A.71), the fa
t that R1 � R=4, (2.39) and (A.69) imply thatgS(Y!;R1)(x) �� gyN+1;R�d�(x) + 3C0R � C02 � 1R + 1R1�� == gyN+1;R�d�(x) +HyN+1;R(0) + C02Ry2N+1 ++3C0R � C02 � 1R + 1R1�� �� gyN+1;R�d�(x) +HyN+1;R(0) + C02Ry2N+1 + 3C0R � 5C02R � >> gyN+1;R �d�(x) +HyN+1;R(0)� == g	(x) :This ends the proof of (A.68).We now observe thatS(Y!; R1) \ fjx0j � �Cqgis stri
tly above 	 (in the eN+1-dire
tion).(A.72)To prove this, take x with jx0j � �Cq and let z 2 �(Y! ; R1) be realizing d�(Y!;R1)(x).Then, by a triangle similarity argument, one sees thatjz0j = r1 jx0jjx� y!j �� 
onst r1 �C ql +R �� 
onst �Cq � �q ;if �C is 
hosen appropriately large. Then, (A.72) follows from (A.68).We now 
onsider the domainfjx0j � �Cqg � fjxN j � l=2gand we slide 	 from �1 in the eN dire
tion, until we tou
h u for the �rst time insu
h domain (this must happen sin
e ju(x0)j < 1=2): say, for �xing the notations,that for some � 2 R, 	��eN tou
hes for the �rst time the graph of u by above ata point Z. Noti
e that, by the hypotheses of Lemma A.1 and (A.38), we have that(A.73) u(x0) = gS(Y;R)(x0) = g	(x0) ;therefore we have that � � 0. More pre
isely, it holds that(A.74) � > 0 :Indeed, if, by 
ontradi
tion, � = 0, (A.73) says that 	 tou
hes the graph of ufrom above at x0 (whi
h is, by 
onstru
tion, an interior point): then
e, by (A.53),d�(x0) must be realized on �1 [ �3. But, by 
onstru
tion, d�(x0) is realized atTY;R(x0) 2 �2: this 
ontradi
tion proves (A.74).Note now that, if x is in the domain of 	, then, by (2.16), we have thatd�(x) � HyN+1;R(1)�HyN+1;R(0) � 
onst (1 + logR) � 
onst (1 + log l) :



A.2. PROOF OF LEMMA 4.2 107So, if xN � 1, the fa
t that � is below fxN = 1g implies thatd�(x) � xN � 1and so xN � 
onst (1 + log l) :This says that the domain of 	 is below the hyperplanenxN = 
onst (1 + log l)owith respe
t to the eN -dire
tion. Sin
e � � 0, also the domain of 	��eN is belowthe hyperplane(A.75) nxN = 
onst (1 + log l)o :What is more, sin
e jzN j � l, by (A.21), we gather that(A.76) zN � �l � �
R � yN ;provided that 
 in (A.21) is small enough. Then
e, from (A.74) and (A.76),jz + �eN � yj2 = jz � yj2 + �2 + 2� (zN � yN) >> jz � yj2 ;that is(A.77) jz � yj < jz + �eN � yj :We now prove that(A.78) jz0j < �Cq :Indeed, if (A.78) were false, then (A.54) and (A.77) would yield thatu(z) = g	(z + �eN ) == gS(Y;R)(z + �eN ) == gyN+1;R�jz + �eN � yj �R+HyN+1;R(0)� >> gyN+1;R�jz � yj �R+HyN+1;R(0)� == gS(Y;R)(z) �� u(z) :This 
ontradi
tion proves (A.78).By means of (A.78), (A.75) and (A.28), we have that z lies in the interior offjx0j � �Cqg � fjxN j � l=2g.We now 
laim that(A.79) jzN+1j < 1=2 and d�(z + �eN ) is realized on �3.Indeed, sin
e 	 tou
hes by above u+ �eN at z := z + �eN , (A.53) implies that1=2 > jzN+1j = jzN+1j



108 A. PROOF OF THE MEASURE THEORETIC RESULTSand that d�(z) is realized on �1 [ �3. To prove (A.79), we thus have to show thatd�(z) is not realized on �1. If, by 
ontradi
tion, d�(z) were realized on �1, from(A.38) and (A.77), we would have thatu(z) = g	(z + �eN ) == gS(Y;R)(z + �eN ) == gyN+1;R�jz + �eN � yj �R+HyN+1;R(0)� >> gyN+1;R�jz � yj �R+HyN+1;R(0)� == gS(Y;R)(z) �� u(z) :This 
ontradi
tion 
ompletes the proof of (A.79).We now 
laim that(A.80) jY � Y!j � � � 0 :In order to get this, �rst observe that if � � 5l, then (A.80) follows by noti
ingthat jY � Y!j � 
onst r and by taking l=R suitably small. Therefore, we restri
tourselves to the proof of (A.80) under the additional assumption that(A.81) � � 5l :For this s
ope, note that (A.81) implies that(z + �eN)N � � � l � 4l ;hen
e, re
alling (A.79),(A.82) d�3(z + �eN ) = d�(z + �eN ) > 0 :Let us observe now that, by (A.79),gyN+1;R�H0(yN+1) + jz � yj �R� == gS(Y;R)(z) �� u(z) == g	(z + �eN ) == gyN+1;R�H0(yN+1) + d�(z + �eN )� == gyN+1;R�H0(yN+1) + d�3(z + �eN )� ;then
e(A.83) jz � yj �R � d�3(z + �eN ) :If we now take any x 2 �3, we have that xN � l and thus(z + �eN � x)N � � � 2l :This and (A.82) imply that d�3(z + �eN ) � � � 2l :



A.2. PROOF OF LEMMA 4.2 109For this reason, re
alling (A.83), we dedu
e that� � 2l + d�3(z + �eN ) �� 2l + jz � yj �R == 2l + dist(z; �Br(y)) + r �R �� 2l + jz � Ty;Rx0j+ r �R �� 5l :This ends the proof of (A.80), by taking l=R suitably small.Let us now 
onsider, for t � 0, the surfa
e S(Y + teN ; R1). For t = 0, thissurfa
e is above S(Y;R) sin
e, thanks to (A.55) and (2.14),gS(Y;R)(x) = gyN+1;R�H0(yN+1) + jx� yj �R� �� gyN+1;R�H0(yN+1) + jx� yj �R1� �� gyN+1;R1�H0(yN+1) + jx� yj �R1� == gS(Y;R1)(x) :Sin
e S(Y;R) is above the graph of u by our hypotheses in fjx0j � �Cqg � fjxN j �l=2g, we thus dedu
e that S(Y + teN ; R1) is, for t = 0, above the graph of u infjx0j � �Cqg � fjxN j � l=2g. Hen
e, we may in
rease t till we tou
h the graph ofu in fjx0j � �Cqg � fjxN j � l=2g. In order to �x the notation, say this happen fort = t1 � 0 and let X1 be the above mentioned tou
hing point. Set alsoY1 := Y + t1eN :Let also(A.84) ~r1 := R1 +HyN+1;R1(�1=2)�H0(yN+1) ;so that ngS(Y1;R1) = �12o = �B~r1(y1) :Then, sin
e u(x0) > �1=2 by assumption, the �rst tou
hing property of X1 impliesthat x0 is above �B~r1(y1). In parti
ular, re
alling (A.26), sin
ey1 + (x00; 0) +q~r21 � jx00j2eN 2 �B~r1(y1) ;we have, using (A.24), thaty1;N +q~r21 � 4q2 � y1;N +q~r21 � jx00j2 �� x0;N �� 
onst :(A.85)By 
onstru
tion, the domain of S(Y1; R1) lies below the hyperplanenxN = y1;N +R1 �H0(yN+1) +HyN+1;R1(1)o ;thus, (A.84), (A.85) and (2.16) imply that the domain of S(Y1; R1) lies below thehyperplane nxN = 
onst (1 + logR1)o and therefore below the hyperplane(A.86) nxN = 
onst (1 + log l)o :



110 A. PROOF OF THE MEASURE THEORETIC RESULTSNoti
e also that, when Y + teN = Y! � �eN , (A.66) and (A.79) imply thatgS(Y+teN ;R1)(z) = gS(Y!��eN ;R1)(z) == gS(Y!;R1)(z + �eN ) �� g	(z + �eN ) == u(z) :This and (A.80) say that(A.87) 0 � t1 � jY � Y!j � � :We also have that(A.88) X1 2 fjx0j < �Cqg :Indeed, if (A.88) were false, then jx0℄j � �Cq, where(A.89) x℄ := x1 + jY! � Y1j eN :Thus, in the light of (A.72), we would get thatgS(Y!;R1)(x℄) > g	(x℄) :Therefore, u(x1) = gS(Y1;R1)(x1) == gS(Y!�jY!�Y1jeN ;R1)(x1) == gS(Y!��̂eN ;R1)(x1) == gS(Y!;R1)(x1 + �̂eN) =(A.90) = gS(Y!;R1)(x℄) >> g	(x℄) == g	(x1 + �̂eN ) �� u(x1) :This 
ontradi
tion proves (A.88).Noti
e also that x1;N > �l=4, otherwise, from (A.88), (A.27), (A.55) andLemma 2.4, we would getsR1 > sR = u(x1) = gS(Y1;R1)(x1) � sR1 ;whi
h is, of 
ourse, a 
ontradi
tion.Therefore, re
alling also (A.88) and (A.86), we have that x1 is in the interiorof the domain fjx0j � �Cqg � fjxN j � l=2g, then
e, by means of Proposition 2.13,ju(x1)j < 1=2.We now 
laim that(A.91) TY1;R1(x1) 2 fjx0j < �qg \ fxN < 
onst q2=Rg ;where T�;� was introdu
ed on page 88 and � in (A.33). To prove (A.91), �rst observethat, by (A.87), y1 is below y!��eN in the eN -dire
tion, and so �(Y1; R1) is below�(Y!��eN ; R1) (and, a fortiori, below �(Y! ; R1)) in the eN -dire
tion. Then
e, by(A.65),(A.92) TY1;R1(x1) 2 �(Y1; R1) � fxN < 
onst q2=Rg :



A.2. PROOF OF LEMMA 4.2 111This gives a �rst step towards the proof of (A.91); we now show that(A.93) TY1;R1(x1) 2 fjx0j < �qg :Assume, by 
ontradi
tion, that (A.93) is false. Then, by translating in the eN -dire
tion, we have that(A.94) TY!;R1(x℄) 2 fjx0j � �qg ;where x℄ is the one de�ned in (A.89). Let now�̂ := jY � Y!j � t1 == jY! � Y1j :Then, x℄ = x1 + �̂eN and, in the light of (A.87), �̂ � �. The latter inequality andthe �rst tou
hing property of � imply that 	� �̂eN is above the graph of u, thatis(A.95) g	(x+ �̂eN ) � u(x) ;for any x in the domains of de�nition of the above fun
tions. With this information,we now derive the desired 
ontradi
tion. Indeed, from (A.94) and (A.68), we getthat gS(Y!;R1)(x℄) > g	(x℄) :Then
e, using also the tou
hing property of X1 and (A.95), repeating the argumentin (A.90) verbatim, one obtains the 
ontradi
tion whi
h ends the proof of (A.93).Thus, (A.93) and (A.92) end the proof of (A.91).The fa
t that R1 � R0=4, (A.88) and (A.91) end the proof of (A.30) (in 
asek = 0, the other steps being analogous) and, therefore, the proof of (A.29).With (A.29) in hand, we now 
omplete the proof of Lemma A.1 (and this willstill take some e�ort, the proof ending on page 123). For this, let us make someestimates on the point x� found in (A.29).Sin
e x� is a tou
hing point between the barrier and u, we have that ju(x�)j �1=2 thanks to Corollary 2.14 and, therefore,jru(x�)j = jrgS(Y�;R�)(x�)j 6= 0 :We now show that(A.96) ���TY�;R�x� � x� + ru(x�)jru(x�)j H0(u(x�))��� � 
onstR :Note that (A.96) is obviously ful�lled if TY�;R�x� = x�, sin
e, in this 
aseH0(u(x�)) = H0(geS(Y�;R�)(x�)) = H0(geS(Y�;R�)(TY�;R�x�)) = H0(0) = 0 :Hen
e, we fo
us on the proof of (A.96) under the assumption TY�;R�x� 6= x�. Forthis s
ope, �rst noti
e that x� � y� is, by 
onstru
tion, parallel to x� � TY�;R�x�,that is(A.97) x� � y�jx� � y�j = � x� � TY�;R�x�jx� � TY�;R�x�j ;where the sign +=� takes into a

ount the 
ase in whi
h x� is outside/inside�(Y�; R�). Also, from (A.19),(A.98) ���x� � TY�;R�x���� � 
onst :



112 A. PROOF OF THE MEASURE THEORETIC RESULTSIn the light of (2.57) and (A.97),(A.99) rgeS(Y�;R�)(x�)jrgeS(Y�;R�)(x�)j = x� � y�jx� � y�j = � x� � TY�;R�x�jx� � TY�;R�x�j :Let us now de�ne W (x) := H0(geS(Y�;R�)(x)). By the tou
hing property of x�, thefa
t that TY�;R�x� 2 �(Y�; R�) and (A.99), we have that���TY�;R�x� � x� + ru(x�)jru(x�)j H0(u(x�))��� == ���TY�;R�x� � x� + rgeS(Y�;R�)(x�)jrgeS(Y�;R�)(x�)j W (x�)��� == ��� rgeS(Y�;R�)(x�)jrgeS(Y�;R�)(x�)j h� jTY�;R�x� � x�j+W (x�)i��� == ���� jTY�;R�x� � x�j+W (x�)��� == ���� jTY�;R�x� � x�j+W (x�)�W (TY�;R�x�)��� :Therefore, a se
ond order Taylor expansion of W , (2.54), (A.98), (A.99) and (2.53)give ���TY�;R�x� � x� + ru(x�)jru(x�)j H0(u(x�))��� �� ���� jTY�;R�x� � x�j ��rW (x�)(TY�;R�x� � x�)���++
onst jD2W j jTY�;R�x� � x�j2 �� ���� jTY�;R�x� � x�j ��H 00(geS(Y�;R�)(x�))rgeS(Y�;R�)(x�) � (TY�;R�x� � x�)���++
onstR �� ��� TY�;R�x� � x�jTY�;R�x� � x�j hTY�;R�x� � x� ��H 00(geS(Y�;R�)(x�)) jrgeS(Y�;R�)(x�)j � (TY�;R�x� � x�)i���++
onstR == ���TY�;R�x� � x� ��H 00(geS(Y�;R�)(x�)) jrgeS(Y�;R�)(x�)j � (TY�;R�x� � x�)���++
onstR �� ���TY�;R�x� � x� � (TY�;R�x� � x�)���+ 
onstR ;that is (A.96).



A.2. PROOF OF LEMMA 4.2 113We now show that(A.100) \� ru(x�)jru(x�)j ; eN� � 
onst qR :For proving this, let us note thatjTY�;R�x� � y�j = r(Y�; R�) == R� �H0(yN+1)� C02R y2N+1 �� 
onstR� ;(A.101)hen
e, sin [\(TY�;R�x� � y�; eN )℄ == j(TY�;R�x� � y�)0jjTY�;R�x� � y�j == j(TY�;R�x�)0jjTY�;R�x� � y�j �� 
onst qR :(A.102)Also, in analogy with (A.99), we have thatru(x�)jru(x�)j = geS(Y�;R�)(x�)jgeS(Y�;R�)(x�)j = TY�;R�x� � y�jTY�;R�x� � y�j ;whi
h, together with (A.102), proves (A.100).We now observe that, thanks to (A.96) and (A.100), we havex� � eN �� (TY�;R�x�) � eN + ru(x�)jru(x�)j � eN H0(u(x�)) + 
onstR �� (TY�;R�x�) � eN +H0(u(x�)) + 
onst q2R2 + 
onstR :(A.103)Let us now 
onsider the set�� := n�Y = (�y0; 0; �yN+1) 2 RN+1 s:t:(A.104) j(�y � TY�;R�x�)0j � 
 q ; j�yN+1j � 1=4oand let(A.105) �R := 
Rwith 
 > 0 suitably small. Re
alling the de�nition of r(�; �) given in (A.18), we alsodenote �r := r( �Y ; �R).For any �Y 2 ��, let us slide S( �Y ; �R) from �1 in the eN dire
tion, until ittou
hes the graph of u by above for the �rst time, and let �Y denote the 
enterof the 
orresponding barrier: more expli
itly, �Y = �Y � teN , for some t 2 R andS( �Y ; �R) tou
hes the graph of u from above for the �rst time 
oming from �1 inthe eN dire
tion. Say, also, to �x notations, that su
h tou
hing o

urs at some



114 A. PROOF OF THE MEASURE THEORETIC RESULTSpoint �X . We will denote by �� the set 
olle
ting all the points �X whi
h lie in theinterior of the domain of u, when �Y varies in ��.We know from (A.29) that(A.106) �TY�;R�x��N � C℄ q2Rfor some suitably large 
onstant C℄. We now 
laim that, if �Y 2 ��, then(A.107) ��TY�;R�x��0; 2C℄ q2R� is outside �( �Y ; �R).The proof of (A.107) (whi
h is pretty long and will be 
ompleted only on page 117)is by 
ontradi
tion. If (A.107) were false, Lemma B.7 would imply that�( �Y ; �R) \ fj(x� TY�;R�x�)0j � 
qg \ fxN � �yNgis above the hyperplane fxN = 3C℄q2=(2R)g,(A.108)provided that 
 is small enough7. We now show thatd�( �Y ; �R)(x�) �� H0(u(x�)) + 
onst qR � C℄ q22R :(A.109)To prove this (and some e�ort will be needed), we distinguish two 
ases: either x�is in the exterior or it is in the interior of �( �Y ; �R).Let us �rst assume that x� is not in the interior of �( �Y ; �R). We �rst point outthat(A.110) x� � eN � 3C℄q22R :For this, note that, by (A.98),����x� � TY�;R�x��0��� � 
qif q is large enough. This, (A.108) and the assumption that x� is not in the interiorof �( �Y ; �R) would imply that either (A.110) holds or x� is below �( �Y ; �R). Thus, to
omplete the proof of (A.110), we show now that the latter possibility 
annot hold.Indeed, note that the �rst tou
hing property of S( �Y ; �R) and Lemma 2.25 implythat �y � eN � �x � eNwhile (A.19) says that j�x� �yj � 
onst �R :Furthermore, in analogy with (A.100), we have that(A.111) \��x� �y; eN� � 
onst qR7The reader will indeed noti
e that, due to (A.104),�y + reN 2 �(�Y ; �R) \ fj(x� TY�;R�x�)0j � 
qg \ fxN � yNg 6= ; :



A.2. PROOF OF LEMMA 4.2 115Then, the above estimates yield that(x� � �y) � eN � (�x � �y) � eN � 
onst l == ��(�x� �y) � eN ��� 
onst l �� 12 ���x� �y��� 
onst l �� 
onst �R� 
onst l ;(A.112)thus showing that (x� � �y) � eN > 0 and thus that x� is not below �( �Y ; �R). Thisends the proof of (A.110).With this, we now go ba
k to the proof of (A.109) when x� is not in the interiorof �( �Y ; �R). By means of (A.108), we have that the point �(TY�;R�x�)0; 3C℄q2=(2R)�lies inside �( �Y ; �R), thusd�(�Y ; �R)(x�) � ����x� � ��TY�;R�x��0; 3C℄q22R ����� ;and therefore, re
alling (A.110),d�(�Y ; �R)(x�) � j(x� � TY�;R�x�)0j+ x� � eN � 3C℄ q22R :We re
all that, by (A.100),\ ((x� � TY�;R�); eN) = \� ru(x�)jru(x�)j ; eN� � 
onst qR ;and so, by means of (A.98), we have that(A.113) ����(TY�;R�x�)� x��0��� � 
onst qR :Therefore, re
alling (A.98) and taking into a

ount (A.103),d�(�Y ; �R)(x�) � 
onst q2R + TY�;R�x� � eN +H0(u(x�))� 3C℄ q22R :Then
e, if x� is not in the interior of �( �Y ; �R), (A.109) follows by (A.106) and bytaking C℄ suitably large.If otherwise x� is in the interior of �( �Y ; �R), that is, if(A.114) d�(�Y ; �R)(x�) < 0 ;in order to prove (A.109), we argue as follows. We �rst note that, in this 
ase,u(x�) � geS( �Y ; �R)(x�) < 0and 
onsequently geS(Y�;R�)(x�) = u(x�) < 0 ;so that x� is also in the interior of �(Y�; R�). Therefore, re
alling (A.100), it followsthat(A.115) x� � eN < (TY�;R�x�) � eN :We now dedu
e that, when x� is in the interior of �( �Y ; �R), one has that(A.116) �d�(�Y ; �R)(x�) � min� 
q4 ; 3C℄ q22R � x� � eN � :



116 A. PROOF OF THE MEASURE THEORETIC RESULTSTo prove (A.116), take x 2 �(�Y ; �R). Obviously, we may and do assume that(A.117) jxj � 
onst l ;otherwise jx� � xj � 
onst land so (A.116) trivially follows from (A.114). There are now two possibilities:either x is above the hyperplane fxN = 3C℄q2=(2R)g or the 
onverse. If x is abovethe hyperplane fxN = 3C℄q2=(2R)g, thenjx� x�j � xN � x� � eN � 3C℄q22R � x� � eN ;whi
h, together with (A.114), proves (A.116) in 
ase x is above the hyperplanefxN = 3C℄q2=(2R)g. If, on the other hand, x is not above the hyperplane fxN =3C℄q2=(2R)g, by (A.108), we have that either j(x � TY�;R�x�)0j � 
q or xN ��yN . However, the latter 
annot hold, sin
e, by Lemma 2.16, (A.117), (A.111)and (A.112), we have thatxN � �yN = j�xN � �yN j+ xN � �xN �� 12 j�x� �yj+ xN � �xN �� 
onstR� 
onst l > 0 :Therefore, from these 
onsiderations, we have that if x is not above the hyperplanefxN = 3C℄q2=(2R)g, then j(x�TY�;R�x�)0j � 
q. For this reason, re
alling (A.113),��(x� x�)0�� � ����x� (TY�;R�x�)�0���� ����(TY�;R�x�)� x��0��� �� 
q � 
onst qR � 
q2 ;whi
h, together with (A.115) and (A.106), yields the proof of (A.116) also when xis not above the hyperplane fxN = 3C℄q2=(2R)g. This ends the proof of (A.116).We now exploit (A.103), (A.106) and (A.116) to get that�d�(�Y ; �R)(x�) � �H0(u(x�))� 
onst qR + C℄ q22R :This ends the proof of (A.109) also in the 
ase in whi
h x� is in the interior of�( �Y ; �R).Having 
ompleted the proof of (A.109), we now dedu
e the 
ontradi
tion thatwill �nish the proof of (A.107). To this end, note that, by (A.19), letting s� :=u(x�), we have that the signed distan
e between the s�-level set of gS(�Y; �R) and�( �Y ; �R) is bigger than H0(u(x�))� 
onstR :Thus, from (A.109), by taking q and C℄ suitably large, we have thatd�( �Y ; �R)(x) > d�( �Y ; �R)(x�) ;for any x so that gS(�Y; �R)(x) = s�. Therefore, x� is stri
tly in the interior of thes�-level set of gS(�Y ; �R), that isgS(�Y; �R)(x�) < s� = u(x�) :



A.2. PROOF OF LEMMA 4.2 117This 
ontradi
ts the fa
t that gS(�Y; �R) tou
hes u by above and, thus, yields the proofof (A.107).In the light of (A.107), some elementary trigonometry implies that y + �reN isbelow the hyperplane fxN = 4C℄q2=Rg and therefore(A.118) �( �Y ; �R) is below fxN = 4C℄q2=Rg.Let us now �x a small 
onstant 
� > 0. If q=R is assumed to be small enough(possibly in dependen
e of 
�=C℄), then (A.107) and Corollary B.9 imply that(A.119) �( �Y ; �R) \ fjx0j � 
�qg is below fxN = 0g.We now show that the above geometri
 
onsiderations imply thatoutside fjx0j � 
�qg � fxN > 0g,�( �Y ; �R) is at distan
e greater than q2=(4R)in the interior of �(Y;R).(A.120)For the proof of (A.120), �rst noti
e that(A.121) �yN � �r � �
onst �r � yNif 
 in (A.105) is 
hosen suitably small. Let us now 
onsider the surfa
e�t( �Y ; �R) := �( �Y ; �R) + teNwith t � 0. By (A.121), it follows that, given x 2 �(�Y ; �R), then xN � yN and soj(x+ teN )� yj � jx� yj :Hen
e,(A.122) d�(Y;R)(x) � d�(Y;R)(x+ teN) :Re
alling (A.119), we now sele
t the �rst t � 0 for whi
h(A.123) S := �t( �Y ; �R) \ fjx0j = 
�qg \ fxN = 0g 6= ; :We also denote by S� the portion of �t( �Y ; �R) whi
h is below fxN = 0g (withrespe
t to the eN -dire
tion), that is the portion of �t( �Y ; �R) whi
h is below S. The
hoi
e in (A.123) implies that(A.124) �yN + t+ �r � 0and, by (A.104) and (A.29), thatj(�y + teN )0j = j�y0j �� ��(�y � TY�;R�x�)0��+ ��(TY�;R�x�)0�� �� 
q + qC� =(A.125) = ~
�q ;where(A.126) ~
� := 
+ 1C�is a positive 
onstant, whi
h is small if 
 and 1=C� are small.



118 A. PROOF OF THE MEASURE THEORETIC RESULTSWe now show that, with this 
onstru
tion and taking ~
� small enough, we havethat �y + teN is above the 
one C� de�ned asC� := (x 2 RN s:t: jx0j = 
�qpr2 � q2 jxN +pr2 � q2j) :
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The proof of (A.120)Indeed, by (A.124) and (A.125),
�qpr2 � q2 ��yN + t+pr2 � q2� �� 
�qpr2 � q2 �pr2 � q2 � �r� == 
�q �1� �rpr2 � q2� �� 
�q2> ~
�q � ��(�y + teN)0��if q=R, �r=r, 
 and 1=C� (and thus ~
�) are small enough (re
all (A.105) and (A.126)).This fa
t, (A.123) and some elementary geometri
 
onsiderations yield that ifx 2 S�, and x℄ 2 S, then(A.127) ��d�(Y;R)(x)�� � ��d�(Y;R)(x℄)�� :



A.2. PROOF OF LEMMA 4.2 119By 
onstru
tion, sin
e 
� < 1, if x℄ 2 S, then x℄ lies inside �(Y;R) (see the �gureon page 89); thus,(A.128) d�(Y;R)(x℄) < 0 :Also, from (A.123) and the fa
t that �r < r, if x 2 S�, then x is also inside �(Y;R)and therefore(A.129) d�(Y;R)(x) < 0 :Thus, from (A.127), (A.128) and (A.129),(A.130) d�(Y;R)(x) � d�(Y;R)(x℄) ;for x 2 S� and x℄ 2 S.Also, sin
e y0 = 0 by its de�nition, we gather that, if x℄ 2 S, thenjx℄ � yj2 = jyN j2 + jx0℄j2 = r2 � q2 + 
2�q2and therefore(A.131) d�(Y;R)(x℄) = jx℄ � yj � r =pr2 � q2 + 
2�q2 � r :Thus, taking x 2 S� and x℄ 2 S, making use of (A.130) and (A.131), and re
allingalso (A.35), we have that�d�(Y;R)(x) �� d�(Y;R)(x℄) ==r � rr1� q2r2 + 
2�q2r2 ��r � r �1� q22r2 + 
2�q22r2 + �� q2r2 + 
2�q2r2 �2� ��q22r�1� 
2� � 
onst q2R2� >> q24R ;(A.132)
provided that 
� and q=R are suÆ
iently small.To 
omplete the proof of (A.120), take now x 2 �(�Y ; �R) outside fjx0j � 
�qg�fxN > 0g and let x := x + teN . Then, x 2 S� by the 
hoi
e in (A.123), thus,from (A.122) and (A.132), we gather that�d�(Y;R)(x) � �d�(Y;R)(x) > q24R :This ends the proof of (A.120).Let us now prove thatthe s-level surfa
e of gS(Y;R) is at distan
egreater than HyN+1; �R(s) from �(Y;R).(A.133)In order to prove this, take any x̂ in the s-level surfa
e of gS(Y;R), that is assumethat gyN+1;R(H0(yN+1) + jx̂� yj �R) = s :Let also �x 2 �(Y;R), that isgyN+1;R(H0(yN+1) + j�x� yj �R) = 0 ;



120 A. PROOF OF THE MEASURE THEORETIC RESULTSand assume that �x lies on the half-line from y towards x̂. Then,d�(Y;R)(x̂) = jx̂� yj � j�x� yj == (H0(yN+1) + jx̂� yj �R) � (H0(yN+1) + j�x� yj �R) == HyN+1;R(s)�HyN+1;R(0) :Hen
e, by the fa
t that �R � R, (2.14) and (2.39), we get thatd�(Y;R)(x̂) � HyN+1; �R(s)�HyN+1;R(0) == HyN+1; �R(s) + C02R y2N+1 �� HyN+1; �R(s) ;and this ends the proof of (A.133).We now show thatif jsj � 1=2, the s-level surfa
e of gS(�Y ; �R) is at distan
eless than HyN+1; �R(s) + 
onstC0=(2R) from �( �Y ; �R).(A.134)Indeed, we argue as in the proof of (A.133), by taking now x̂ in the s-level surfa
eof gS(�Y ; �R) and �x 2 �(�Y ; �R), with �x lying on the half-line from y towards x̂, and byarguing as above, we have thatd�( �Y ; �R)(x̂) = jx̂� �yj � j�x� �yj == (H0(yN+1) + jx̂� �yj � �R) � (H0(yN+1) + j�x� �yj � �R) == H�yN+1; �R(s)�H�yN+1; �R(0) == H�yN+1; �R(s) + C02 �R �y2N+1 �� H�yN+1; �R(s) + 
onst C02R :By the assumption that jsj � 1=2 and (2.39), we may now estimate the quantityH�yN+1; �R(s) here below with HyN+1; �R(s)+C0=R, and this ends the proof of (A.134).We now dedu
e from the above estimates thatat any x for whi
hjgS(�Y ; �R)(x)j � 1=2 andd�( �Y ; �R)(x) � d�(Y;R)(x) � 
onstC0=R ;we have thatgS(�Y; �R)(x) > gS(Y;R)(x) :(A.135)To prove this, take x as in (A.135) here above and let�s := gS(�Y; �R)(x) 2 [�1=2; 1=2℄s := gS(Y;R)(x) :(A.136)Then, by (A.133) and (A.134),d�(�Y ; �R)(x) < HyN+1;R(�s) + 
onstC0=R andd�(Y;R)(x) > HyN+1;R(s)� 
onstC0=R ;(A.137)



A.2. PROOF OF LEMMA 4.2 121hen
e, for the assumption in (A.135),HyN+1;R(s) < HyN+1;R(�s) ;whi
h proves (A.135) via the monotoni
ity of HyN+1;R and (A.136).Next, noti
e that, thanks to (A.120) and (A.135), we have thatS( �Y ; �R) \ fjx0j > 
�qgis stri
tly above S(Y;R),(A.138)provided that q is large enough. Hen
e, sin
e u � gS(Y;R), (A.138) implies thatS( �Y ; �R) \ fjx0j > 
�qgis stri
tly above the graph of u.(A.139)This also implies that �x is an interior 
onta
t point.We now apply the previous 
onsiderations to dedu
e some properties of the
onta
t points �X and of the 
onta
t point set �� (re
all the notation on page 114).First of all,(A.140) ju(�x)j < 1=2 ;thanks to Corollary 2.14. This and (A.139) imply that(A.141) j�xj � 
�q ;while (A.118) yields(A.142) T �Y ; �R�x 2 �(�Y ; �R) � fxN < 4C℄q2=Rg :Also, from (A.19) and (A.140), we get that���j�x� �yj � r��� � 
onst ;and, 
onsequently, j�x� �yj � r=2, if r is large. From this 
ir
umstan
e, re
alling thetou
hing properties of �x, (2.57), and (A.141), we gather thatsin�\� ru(�x)jru(�x)j ; eN�� = sin \� rgS(�Y ; �R)(�x)jrgS(�Y ; �R)(�x)j ; eN�! == sin�\� �x� �yj�x� �yj ; eN�� == j�x0 � �y0jj�x� �yj �� 
onst qr :Then
e,(A.143) \� ru(�x)jru(�x)j ; eN� � 
onst qR :Analogously, if x0 is the point in the statement of Lemma A.1, one sees that(A.144) \� ru(x0)jru(x0)j ; eN� � 
onst qR :



122 A. PROOF OF THE MEASURE THEORETIC RESULTSIn parti
ular, from (A.143) and (A.144) it follows that(A.145) \� ru(�x)jru(�x)j ; ru(x0)jru(x0)j� � 
onst qR :In addition, from Proposition 3.14,LN��N (��)� � 
onstLN (��) � 
onst(
q)N�1 :(A.146)What is more, arguing as in the proof of (A.96), one 
an see that���T �Y ; �R�x� �x+ ru(�x)jru(�x)j H0(u(�x))��� � 
onstR and���TY;Rx0 � x0 + ru(x0)jru(x0)j H0(u(x0))��� � 
onstR :(A.147)Hen
e, from (A.147), (A.142) and the fa
t that TY;Rx0 � eN = 0 (re
all theassumptions in Lemma A.1), we have that(�x� x0) � eN � �T �Y ; �R�x� TY;Rx0++ ru(�x)jru(�x)j H0(u(�x))� ru(x0)jru(x0)j H0(u(x0))� � eN++ 
onstR �� � ru(�x)jru(�x)j H0(u(�x))� ru(x0)jru(x0)j H0(u(x0))� � eN++ 4C℄ q2R + 
onstR ;and so, thanks to (A.140), (A.143) and (A.144),(�x� x0) � eN �� H0(u(�x))�H0(u(x0)) + 
onst q2R2 + 4C℄ q2R + 
onstR �� H0(u(�x))�H0(u(x0)) + 5C℄ q2R ;(A.148)by assuming C℄, q and R=q suitably large.Moreover, in the light of (A.26), (A.141) and (A.148), and re
alling that ju(�x)j <1=2 and ju(x0)j < 1=2, we have(A.149) j�x� x0j � j(�x � x0)0j+ j(�x� x0)N j � (1 + 2
�)q + j(�x� x0)N j � �Cq ;where �C is a 
onveniently large 
onstant as in the statement of the Lemma. Bymeans of (A.148) and (A.144), we 
on
lude that(A.150) (�x� x0) � ru(x0)jru(x0)j � H0(u(�x))�H0(u(x0)) + 6C℄ q2R :Let us now 
onsider the set � de�ned in the statement of Lemma A.1 and take 
�
onveniently small: then, thanks to (A.141), (A.140), (A.149), (A.145) and (A.150),we have that � � �� ;the proof of (A.22){(A.23) is thus ended by means of (A.146).



A.2. PROOF OF LEMMA 4.2 123To �nish the proof of Lemma A.1, we need now to 
he
k the Lips
hitz graphproperty of �s := �� \ fxN+1 = sg, for any jsj < 1=2. The graph property is astraightforward 
onsequen
e of the �rst o

urren
e tou
hing point property, hen
ewe fo
us on the Lips
hitz estimate. For this, take �X; �X 2 �s; then,s = u(�x) = gS(�Y; �R)(�x) = gS(�Y; �R)(�x) = u(�x) ;for suitable �Y ; �Y 2 RN+1 , so that �N �Y ; �N �Y 2 ��. We will prove that(A.151) j�xN � �xN j � 
onst qR j(�x� �x)0j ;whi
h implies the desired Lips
hitz estimate (with 
onstant 
onst q=R < 1). Withno loss of generality, we may and do assume that(A.152) �xN > �xN :Let us de�ne �r := �R +H�yN+1; �R(s)�H0(�yN+1) ;so that fgS(�Y ; �R) = sg = �B�r(�y) :By (2.57) and (A.143), we have that(A.153) j�x0 � �y0j � 
onst q ;and therefore, from (A.153), we get thatj�x0 � �y0j � j�x0 � x00j+ jx00 � �x0j+ j�x0 � �y0j �� 
onst q ;(A.154)whi
h is less then �r, if q=R is small enough. Thus, by the �rst o

urren
e tou
hingproperty of gS(�Y; �R), �x must be above fgS(�Y; �R) = sg (with respe
t to the eN dire
-tion). This, (A.154) and (A.152) imply that �x is trapped inside a 
one with vertexin �x and slope bounded by 
onst q=�r, whi
h gives (A.151). This ends the proof ofLemma A.1. �
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constqThe 
one trapping �xBy a rotation/translation argument, we dedu
e from Lemma A.1 the followingLemma A.2. Fix o 2 RN , � 2 RN , with j�j = 1. Let u be a C1-subsolution of(1:5) in fx 2 RN s.t. j(x� o) � �j < l and j(x � o)� ((x� o) � �)�j < lg :Assume that S(Y;R) is above u and that S(Y;R) tou
hes the graph of u at the point(x0; u(x0)).Suppose that ju(x0)j < 1=2, j(x0� o) � �j < l=4, j(x0� o)� ((x0� o) � �)�j < l=4.Assume also thatTY;Rx0 2 fj(x� o)� ((x � o) � �)�j = qg \ f(x� o) � � = 0g andy = o�pr2 � q2 � withr = r(Y;R) = R�H0(yN+1)� C02Ry2N+1 :Then, there exist universal 
onstants C1; C2 > 1 > 
 > 0 su
h that, ifC1 � q � lC1 and 4 3pR � l � 
R ;the following holds. Let � be the set of points (x; u(x)) 2 RN � R satisfying thefollowing properties:� j(x� o) � �j < q=15, ju(x)j < 1=2, jx� x0j < �Cq;� there exists Ŷ 2 RN+1 su
h that S(Ŷ ; R=C2) is above u and it tou
hes uat (x; u(x));



A.2. PROOF OF LEMMA 4.2 125� \� ru(x)jru(x)j ; ru(x0)jru(x0)j� � C1 qR ;� (x� x0) � ru(x0)jru(x0)j � C1 q2R +H0(u(x))�H0(u(x0)).Then, LN���(�)� � 
qN�1 :More pre
isely, for any s 2 (�1=2; 1=2), there exists a set �s � � \ fxN+1 = sg,whi
h is 
ontained in a Lips
hitz graph in the �-dire
tion, with Lips
hitz 
onstantless than 1, and so that, if �� := [s2(�1=2; 1=2)�s ;we have that LN���(��)� � 
qN�1 :With Lemma A.2 in hand, we 
an now 
omplete the proof of Lemma 4.2, byarguing as follows.Let us now 
onsider a ve
tor � 2 RN so that j�j = 1 and# := \(�; TY0;Rx0 � y0) = ar
sin qr ;being x0, Y0 and R the ones in the statement of Lemma 4.2. We also denoter = r(Y0; R), a

ording to the de�nition of r(�; �) given in (A.18).Observe that, by the assumptions of Lemma 4.2 and (2.57),\(�; eN) � \(�; TY0;Rx0 � y0) + \(TY0;Rx0 � y0; eN ) == #+ \� ru(x0)jru(x0)j ; eN� �� 
onst qR + �8 � �6 :(A.155)De�ne o := y0 +pr2 � q2 � :We will think o as the origin. Then,(A.156) jTY0;Rx0 � oj = jy0 � TY0;Rx0j sin# = r � qr = qand so jTY0;Rx0 � y0j2 = r2 == jo� y0j2 + q2 == jo� y0j2 + jTY0;Rx0 � oj2 :(A.157)Then, (A.157) says that the triangle with verti
es in y0, o and TY0;Rx0 is a righttriangle in o, that is(A.158) (TY0;Rx0 � o) � � = 0 :Also, if �q := j(TY0;Rx0 � o)� ((TY0;Rx0 � o) � �)�j ;



126 A. PROOF OF THE MEASURE THEORETIC RESULTSthen (A.155) and (A.19) give that q � �q. Then, the hypotheses of Lemma A.2being ful�lled (with �q repla
ing q, possibly s
aling l to 
onst l) thanks to (A.155),(A.156) and (A.158). Then
e, we dedu
e that,(A.159) LN (��(�)) � 
onst qN�1 :Also, in the light of the Lips
hitz graph property in Lemma A.2, we have that� � ��, for an appropriate set ��, with�� \ fxN+1 = sg = �s = Fs(�℄s) ;for any jsj < 1=2, for some�℄s � fx � � = 0g \ fxN+1 = sgand jFsjLip � 1. Note that the �℄s's are all disjoint (N � 1)-dimensional sets, lyingon fxN+1 = sg.Given a; b 2 �℄s, let now a0 := Fs(a) and b0 := Fs(b). Then, the fa
t that Fsgives a Lips
hitz graph in the �-dire
tion with jFsjLip � 1 implies that\�a0 � b0; �� � �4 :Therefore, by means of (A.155),\�a0 � b0; eN� � �4 � �6 = �12 :This says that �N ����s is invertible and that its inverse is a Lips
hitz fun
tion, withLips
hitz 
onstant bounded by 1= tan(�=12). Therefore, ifGs := �� Æ ��N ����s��1 ;we have that Gs is a Lips
hitz fun
tion whose range is �℄s, withjGsjLip � 1tan(�=12) � 
onst :
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e, using the 
hange of variables formula (see, e.g., page 99 in [18℄), we dedu
ethat 
onst qN�1 � LN���(��)� == LN� [s2(�1=2;1=2)�℄s� == Z 1=2�1=2 LN�1(�℄s) ds == Z 1=2�1=2 Z�℄s dy ds �� Z 1=2�1=2 ZG�1s (�℄s) j detG0s(x)j dx ds �� 
onst Z 1=2�1=2 ZG�1s (�℄s) dx ds == 
onst Z 1=2�1=2 LN�1�G�1s (�℄s)� ds == 
onstLN� [s2(�1=2;1=2)G�1s (�℄s)� == 
onstLN� [s2(�1=2;1=2)�N�Fs(�℄s)�� == 
onstLN� [s2(�1=2;1=2)�N (�s)� �� 
onstLN��N (�)� ;
ompleting the proof of Lemma 4.2.A.3. Proof of Lemma 4.3Let Fk � Ek be the 
losed set de�ned asFk := fZ 2 L j dist (Z;Dk \Ql+a) � ag :If Ql n Fk = ;, LN (Ql nEk) � LN (Ql n Fk) = 0 ;proving the 
laim, hen
e we may and do assume that Ql n Fk 6= ;. Let nowZ 2 Ql n Fk and take Z� 2 Fk be so that(A.160) dist (Z; Fk) = jZ � Z�j =: r :We use the notation Z = (z0; 0; zN+1) 2 L and we 
laim that(A.161) r � l + jz0j � a2 :To prove this, we may assume that r � a, otherwise the 
laim is proved, andwe pro
eed as follows. First of all, noti
e that, from (P1) in the statement of



128 A. PROOF OF THE MEASURE THEORETIC RESULTSLemma 4.3, we have that there exists �Z 2 Dk \ Ql. Let Z℄ lie on the segmentjoining Z and �Z, at distan
e a from �Z. Then,jZ � Z℄j = jZ � �Zj � aand, therefore, sin
e �Z 2 Ql,jZ � Z℄j � p(z0 � �z0)2 + 1� a �� p(jz0j+ j�z0j)2 + 1� a �� p(jz0j+ l)2 + 1� a :(A.162)Also, by 
onstru
tion, Z℄ 2 Fk and thus(A.163) r � jZ � Z℄j :The proof of (A.161) now follows from (A.162) and (A.163) by taking a > 2.Noti
e now that, sin
e Z 2 Ql, (A.161) implies that(A.164) r � 2l � a2 :We now 
laim that(A.165) LN�Fk+1 \Ql \ Br(Z)� � �
LN�Ql \ Br(Z)� ;for a suitable �
 2 (0; 1), whi
h may depend on the quantity 
 introdu
ed in (P2)during the statement of Lemma 4.3.We now begin with the proof of (A.165), whi
h will be 
ompleted on page 131.Sin
e Z� 2 Fk, there exists Z0 2 Dk \Ql+a be so that jZ��Z0j � a. We pointout that, in fa
t,(A.166) jZ� � Z0j = a :Indeed, if, by 
ontradi
tion, jZ� � Z0j < a, we have that Bd(Z�) \ L � Fk forsome d > 0, from whi
h it would exists Ẑ 2 Fk so that jẐ � Zj < jZ� � Zj, that
ontradi
ts the de�nition of Z� and proves (A.166).Also, from (A.160) and (A.166),(A.167) jZ � Z0j � jZ � Z�j+ jZ� � Z0j = r + a :We noti
e that, in fa
t,(A.168) jZ � Z0j = r + a :Indeed, if it holded that jZ�Z0j < r+a, take ~Z 2 �Ba(Z0) on the segment joiningZ and Z0: then ~Z 2 Fk , sin
e Z0 2 Dk \Ql+a, andjZ � ~Zj = jZ � Z0j � a < r ;whi
h 
ontradi
ts the de�nition of r and proves (A.168).Noti
e that, thanks to (A.167) and (A.168), we have that Z� belongs to thesegment joining Z and Z0.
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The proof of Lemma 4.3To 
ontinue with the proof of (A.165), we need now to distinguish two 
ases:either a � 2r or a > 2r. Let us �rst deal with the 
ase a � 2r. We 
laim that thereexists Z1 2 Ql so that(A.169) jZ � Z1j = r2 and Br=2(Z1) \ L � Ql :To prove (A.169), we need to distinguish two sub-
ases. If z0 = 0, take Z1 :=Z + re1=2. Then, jz1;N+1j = jzN+1j � 12and, re
alling (A.164), jz01j = r2 < l ;showing that Z1 2 Ql in this 
ase. Also, exploiting (A.161), if W = (w0; 0; wN+1) 2Br=2(Z1), jw0j � r � l ;proving (A.169) in this sub-
ase. If, on the other hand, z0 6= 0, takeZ1 := Z � r z02 jz0j ;thus, jz1;N+1j = jzN+1j � 12



130 A. PROOF OF THE MEASURE THEORETIC RESULTSand, sin
e Z 2 Ql, re
alling also (A.161), we have thatjz01j = ���� z0jz0j�jz0j � r2����� == ���jz0j � r2 ��� == maxnjz0j � r2 ; r2 � jz0jo �� max�l � r2 ; l2� << l ;whi
h shows that Z1 2 Ql in this 
ase.Let also W = (w0; 0; wN+1) 2 Br=2(Z1) \ L; then, we have thatjw0j � jz01j+ r2 == ��� z0jz0j �jz0j � r2����+ r2 == ���jz0j � r2 ���+ r2 == maxnjz0j � r2 ; r2 � jz0jo + r2 == max fjz0j ; r � jz0jg :Hen
e, using that Z 2 Ql and (A.161), we dedu
e from the above thatjw0j � l ;proving (A.169) in this sub-
ase.This 
ompletes the proof of (A.169).As a 
onsequen
e of (A.169), we immediately infer from the fa
t that Br=2(Z1)\L � Ql that Ŵ := Z1 + z01jz01j r2 2 Qland therefore l � jŵ0j = ���jz01j+ r2 ��� = jz01j+ r2 ;that is(A.170) jz01j � l � r2 :We show that this yields that(A.171) jz01 � z00j � 2l� 2a :Indeed, if r > 2(l � 3a)=3, (A.170) and the fa
t that Z0 2 Ql+a imply thatjz01 � z00j � jz01j+ jz00j � 2l� r2 + a � 5l3 + 2a ;whi
h proves (A.171) in this 
ase; if, on the other hand, r � 2(l � 3a)=3, we have,by (A.168) and (A.169), thatjz01 � z00j � jz01 � z0j+ jz0 � z00j � jZ1 � Zj+ jZ � Z0j = r2 + r + a � l � 2ain this 
ase. This ends the proof of (A.171).
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omplete the proof of (A.165) in the 
ase a � 2r, by arguing as follows.We noti
e that, by 
onstru
tion, and re
alling (A.168) and (A.169),a+ r2 = jZ � Z0j � jZ1 � Zj �� jZ1 � Z0j �� jZ1 � Zj+ jZ � Z0j == r2 + r + a �� 5r :(A.172)Furthermore,8 using (A.171), we have thatjZ1 � Z0j �qjz01 � z00j2 + 1 ��p(2l � 2a)2 + 1 �� 2l :(A.173)Now noti
e that, from (A.172),(A.174) LN�Dk+1 \ Br=2(Z1)� � LN�Dk+1 \BjZ1�Z0j=10(Z1)� :Furthermore, by (A.169), Br=2(Z1) \ L 
ontains a 
ir
ular se
tor of height 1 of aball of radius r=2, while, on the other hand, Br(Z) \ Ql is 
ontained in a 
ir
ularse
tor of height 1 of a ball of radius r. Therefore,LN�Br=2(Z1) \ L� � 
onst rN�1 �� LN�Br(Z) \Ql� :(A.175)Also, by 
onstru
tion, Br=2(Z1) � Br(Z), Dk+1 � Fk+1\Ql+a and L\Br=2(Z1) �Ql, therefore,(A.176) LN�Fk+1 \Ql \ Br(Z)� � LN�Dk+1 \Br=2(Z1)� :Finally, from (P2) of Lemma 4.3 (whi
h may be used thanks to (A.173) and (A.172)),we have thatLN�Dk+1 \ BjZ1�Z0j=10(Z1)� � 
LN�L \ BjZ1�Z0j(Z1)� �� 
LN�L \ Br=2(Z1)� ;(A.177)where, in the latter estimate, we used again (A.172). Then, (A.165) easily followsin this 
ase from (A.176), (A.174), (A.177) and (A.175).Let us now deal with the 
ase in whi
h a > 2r. In this 
ase,(A.178) r + a10 < a :Sin
e Z 2 L and a � 
onst > 0,LN�Br+a(Z) \ L� � 
onst > 0 :8The reader will noti
e that (A.173) is needed in order to use property (P2) of Lemma 4.3here in the sequel.
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ular, by (P2) of Lemma 4.3, (A.168) and (A.178), we infer from this thatLN�B(r+a)=10(Z) \Dk+1� = LN�BjZ�Z0j=10(Z) \Dk+1� �� 
onstLN�BjZ�Z0j(Z) \ L� == 
onstLN�Br+a(Z) \ L� �� 
onst > 0then
e, there exists Z℄ 2 Dk+1 \ B(r+a)=10(Z) :Also, the fa
t that Z 2 Ql and (A.178) give thatDk+1 \ B(r+a)=10(Z) � Ql+a ;then
e Z℄ 2 Ql+a. Hen
e, the fa
t that Z℄ 2 B(r+a)=10(Z) implies that(A.179) Ql \ Br(Z) � Ql \ Ba(Z℄) ;while the fa
t that Z℄ 2 Dk+1 implies that(A.180) Ql \ Ba(Z℄) � Fk+1 :Then, from (A.179) and (A.180),Ql \ Br(Z) � Fk+1and, therefore, Fk+1 \Ql \ Br(Z) = Ql \ Br(Z) :This proves (A.165) in this 
ase (with �
 = 1).Having 
ompleted the proof of (A.165) we now take a �nite overlapping 
overC of Ql n Fk with balls of radius r, in order to end the proof of Lemma 4.3. Thus,using su
h 
over,LN�Fk+1 \ (Ql n Fk)� = LN�Fk+1 \Ql \ (Ql n Fk)� �� 
onst XBr(Z)2CLN�Fk+1 \Ql \ Br(Z)� :Then, using (A.165), we dedu
e from the above that
onst �
�1 LN�Fk+1 \ (Ql n Fk)� � XBr(Z)2CLN�Ql \ Br(Z)� �� LN�Ql \ � [Br(Z)2CBr(Z)�� �� LN�Ql \ (Ql n Fk)� == LN (Ql n Fk) :(A.181)Furthermore, sin
e Dk � Dk+1, we have that Fk � Fk+1 and so(A.182) Ql n Fk+1 � �Ql n Fk� n �Fk+1 \ (Ql n Fk)� :
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e, by using (A.182) and (A.181),LN (Ql n Fk+1) � LN (Ql n Fk)� LN�Fk+1 \ (Ql n Fk)� �� (1� 
̂)LN (Ql n Fk) ;for a suitable 
̂. Therefore, iterating the above estimate,LN (Ql n Fk) � (1� 
̂)k LN (Ql) :This 
ompletes the proof of Lemma 4.3 sin
e Ek � Fk by 
onstru
tion.





APPENDIX BSummary of elementary lemmataWe 
olle
t here some lemmata that are in use during the proofs of the mainresults. We will skip the proofs of most of these lemmata, sin
e they are quiteelementary (a detailed proof of them, however, may be found in [30℄).Lemma B.1. For any 0 � s � t � �?,h0(�1 + t)� h0(�1 + s) � 
(tp � sp) ;for a suitable universal 
onstant 
 > 0.Lemma B.2. Let U be an open subset of R. Let g 2 C2(U) and assume that ghas no 
riti
al points. De�ne(B.1) 	y;l(x) := g(jx� yj � l)Then, for t = jx� yj � l 2 U and x 6= y, we have(B.2) �p(	y;l(x)) = (p� 1)g00(t)g0(p�2)(t) + g0(p�1)(t) N � 1jx � yjLemma B.3. Let I 3 0 be an interval of R and let h 2 C1(I) satisfy h(s) > 0for any s 2 I. Let H(s) := Z s0 (p� 1)1=p d�(p h(�))1=p ; 8s 2 I :De�ne also g as the inverse of H, that is g(t) := H�1(t) for any t 2 H(I). Then,g 2 C2 (H(I)) and g0(t) = � pp� 1 h(g(t))�1=pg00(t) = �p h(g(t))�(2�p)=p(p� 1)2=p h0(g(t)) ;for any t 2 H(I).We re
all now the maximum and 
omparison prin
iples needed for our purposes.First of all, in [9℄ (see in parti
ular Theorem 1.4 there) the following result wasobtained:Theorem B.4 (Strong Comparison Prin
iple I). Let 
 be an open (not ne
-essarily bounded nor 
onne
ted) subset of RN , � 2 R and u; v 2 C1(
) satisfy(B.3) ��pu+�u � ��p(v) + �v; u � v in 
:De�ne Zu;v = fx 2 
 : jDu(x)j + jDv(x)j = 0g if p 6= 2, Zu;v = ; if p = 2. Ifx0 2 
nZu;v and u(x0) = v(x0), then u = v in the 
onne
ted 
omponent of 
nZu;v
ontaining x0. 135



136 B. SUMMARY OF ELEMENTARY LEMMATAAn easy 
onsequen
e of the above result is the following one (see x3 in [30℄ forfurther details):Corollary B.5 (Strong Comparison Prin
iple II). Let 
 be an open (notne
essarily bounded nor 
onne
ted) subset of RN , and u; v 2 C1(
) satisfy(B.4) ��pu+ f(u) � ��p(v) + f(v); u � v in 
 ;with f lo
ally Lips
hitz 
ontinuous. De�ne Zu;v = fx 2 
 : jDu(x)j+ jDv(x)j = 0gif p 6= 2, Zu;v = ; if p = 2. If x0 2 
 n Zu;v and u(x0) = v(x0), then u = v in the
onne
ted 
omponent of 
 n Zu;v 
ontaining x0.As well known, the \dangerous" points in dealing with p-Lapla
e operators arethe ones in whi
h the gradient vanishes, due to la
k of ellipti
ity. Next result, provedin [37℄ (see also [30℄ for details), will help us in dealing with this 
ir
umstan
e.Theorem B.6 (Strong Maximum Prin
iple and Hopf's Lemma). Let 
 be anopen 
onne
ted (not ne
essarily) bounded set in RN and suppose that u 2 C1(
),u � 0 in 
, weakly solves ��pu+ 
uq = g � 0 in 
with q � p� 1, 
 � 0 and g 2 L1lo
(
). If u is not identi
ally zero, then u > 0 in 
.Moreover, for any point x0 2 �
 where the interior sphere 
ondition is satis�ed,and su
h that u is C1 in a neighborhood of 
 [ fx0g and u(x0) = 0, we have that�u�s > 0 for any inward dire
tional derivative.Following are some easy result on the geometry of Eu
lidean spheres. Thoughelementary, we give full details of their proofs, in order to take 
are of the 
onstantsinvolved.Lemma B.7. Let r > q � 0. Fix � > 0 and let 
1 and 
2 be non-negative andso that(B.5) maxf
1; 
2g � minfp�=3; 1=2g :Suppose1 that z 2 Br(y) � RN , with jz0 � y0j � 
1q. Then,�Br(y) \ njx0 � z0j � 
2qo \ nxN � yNo ��nxN � zN � � q2r o :(B.6)Proof. Take w 2 �Br(y) \ njx0 � z0j � 
2qo \ nxN � yNo. For any x 2 RN ,let x̂ := x� yr :Then, by 
onstru
tion, ẑ 2 B1(0) ;jẑ0j � 
1 qr andŵ 2 �B1(0) \ njx̂0 � ẑ0j � 
2qr o \ nx̂N � 0o :Let also t � 0 so that b̂ := ẑ + teN 2 �B1(0) :1 Notation remark: in Lemma B.7, for de�niteness, the balls are assumed to be 
losed.



B. SUMMARY OF ELEMENTARY LEMMATA 137We 
laim that(B.7) ŵN � b̂N � � q2r2 :To prove this, �rst note that, if ŵN � b̂N , (B.7) is obvious; hen
e, we may assumethat(B.8) ŵN < b̂N :Also, if b̂N � 0, (B.7) would follow from the fa
t that ŵN � 0, thus we may alsosuppose that(B.9) b̂N > 0 :Also, 1 = jb̂0j2 + jb̂N j2 == jẑ0j2 + jb̂N j2 �� 
21q2r2 + jb̂N j2 �� 
21 + jb̂N j2 ;whi
h, together with (B.9), implies that(B.10) b̂N � 12 ;thanks to (B.5). Furthermore,jẑ0j2 + jb̂N j2 = jb̂0j2 + jb̂N j2 == jb̂j2 == 1 == jŵj2 == jŵ0j2 + jŵN j2 �� �jẑ0j+ jŵ0 � ẑ0j�2 + jwN j2 ;and so, by (B.5) jb̂N j2 � jŵN j2 � jŵ0 � ẑ0j2 + 2 jẑ0j jŵ0 � ẑ0j �� (
22 + 2
1
2) q2r2 �� � q22r2 :From this, the fa
t that ŵN � 0, (B.8) and (B.10), we 
on
lude that� q22r2 � (b̂N + ŵN ) (b̂N � ŵN ) � 12 (b̂N � ŵN ) ;whi
h proves (B.7).



138 B. SUMMARY OF ELEMENTARY LEMMATABy using (B.7), we gather thatwN � zN = r (ŵN � ẑN ) == r (ŵN � b̂N + t) �� r (ŵN � b̂N ) � �� q2r ;whi
h gives (B.6). �Corollary B.8. Let r > q � 0 and �x(B.11) � 2 �0 ; r10q� :Let us suppose that v = (v0; �q2=r) 2 RN is above Br(y) with respe
t to the eNdire
tion. Let us assume also that jv0 � y0j � 
q, with(B.12) 
 � minnp�3 ; 12o :Then, �Br(y) \ njx0 � y0j � 4�qo � fxN < 0g :Proof. Take w 2 �Br(y) \ njx0 � y0j � 4�qo. Let also t � 0 be so that(B.13) p := v � teN 2 �Br(y) with pN � yN .Note that(B.14) jp0 � y0j = jv0 � y0j � 
q :Also, by our assumptions,wN � yN + jwN � yN j == yN +pr2 � jw0 � y0j2 �� yN +pr2 � 16�2q2 :(B.15)Let z := y+reN . We now apply Lemma B.7 with � := � and 
1 := 
2 := 
, re
alling(B.12). Indeed, by (B.13), (B.14) and Lemma B.7,p 2�Br(y) \ njx0 � z0j � 
2qo \ nxN � yNo �� nxN � zN � � q2r o == nxN � yN + r � � q2r o :(B.16)Exploiting (B.15) and (B.16), we getwN � pN � r + �q2r +pr2 � 16�2q2 �� vN � r + �q2r +pr2 � 16�2q2 == 2�q2r � r +pr2 � 16�2q2 �� 2�q2r � r + r � 8�2q2r < 0 ;



B. SUMMARY OF ELEMENTARY LEMMATA 139whi
h is the desired result. �Corollary B.9. Let a > 0, r > q � 0 so that(B.17) qr � Ka2and(B.18) qr � a8K :Let us suppose that v = (v0;Kq2=r) 2 RN is above Br(y) with respe
t to the eNdire
tion. Let us assume also that jv0 � y0j � 
̂q, with(B.19) 
̂ � minnpK3 ; 2Ka o :Then,(B.20) �Br(y) \ njx0 � y0j � aqo � fxN < 0g :Proof. Let �q := 4Kq=a, � := a2=(16K), 
 := a
̂=(4K). Note that �q < r dueto (B.18). What is more, v = (v0; ��q2=r) and jv0�y0j � 
�q. Also, (B.11) and (B.12)are ful�lled thanks to (B.17) and (B.19). Thus, by Corollary B.8 (applied with �qinstead of q), �Br(y) \ njx0 � y0j � 4��qo � fxN < 0g ;whi
h is (B.20). �We now point out some observations on rotation hypersurfa
es in RN+1 . First,the normal of a rotation surfa
e is in the spa
e2 generated by the radial dire
tionand eN+1, as showed by the next result:Lemma B.10. Fix y 2 RN . Let f 2 C1(R;R) and de�ne�(x) := f(jx� yj) :Let �(x) be a normal ve
tor to the surfa
e fxN+1 = �(x)g at the point (x;�(x)).Then, if x 6= y, �(x) belongs to the spa
e spanned by x� y and eN+1. If x = y andf 0(0) = 0, the same result holds.Proof. Assume x 6= y. By 
onstru
tion,�(x) = ��r�(x); �1� ;for some � 2 R. Therefore,�(x) = �f 0(jx� yj)jx� yj (x� y)� �eN+1 ;thus proving the 
laim if x 6= y.If, on the other hand, x = y and f 0(0) = 0, then �(x) = � eN+1, for some� 2 R, hen
e 
ompleting the proof of the 
laim. �The next result will relate the \
enter" of a rotation hypersurfa
e with thenormal at any point:2And, in fa
t, this property 
hara
terizes the rotation surfa
es, as pointed out to us by RajkoQuarta Mar
on, an undergraduate in Tor Vergata.



140 B. SUMMARY OF ELEMENTARY LEMMATALemma B.11. Fix y 2 RN . Let f 2 C1(R;R) and de�ne�(x) := f(jx� yj) :Let us de�ne the following hypersurfa
e in RN+1 :� := n�x;�(x)� ��� x 2 RNo :Let us 
onsider the normal �(x) at a point �x;�(x)� 2 �, given by�(x) = ��1(x); : : : ; �N+1(x)� := ��r�(x); 1�p1 + jr�(x)j2 :Then, for any x 2 RN n fyg, the ve
torsx� y and ��1(x); : : : ; �N (x)�are parallel.Proof. If (�1(x); : : : ; �N (x)) = 0, there is nothing to prove, so we may assume(�1(x); : : : ; �N (x)) 6= 0. For this reason,r�(x) = f 0�jx� yj� x� yjx� yj ;thus f 0�jx� yj� 6= 0 :Let a(x) := jx� yjp1 + jr�(x)j2f 0�jx� yj� 2 R :Then, a(x)��1(x); : : : ; �N (x)� = x� y ;proving the 
laim. �Next result is an expli
it 
omputation on the di�erential of the unit normalof a hypersurfa
e (up to a sign, su
h quantity is sometimes referred to as Se
ondFundamental Form or Shape Operator):Lemma B.12. Let 	 2 C1(RN ;R). Let � be the hypersurfa
e de�ned by� := n�x;	(x)� ��� x 2 RNo :Let X = X(x) := (x;	(x)) and 
onsider the unit normal to � at the point X, givenby �̂(x) := ��r	(x); 1�p1 + jr	(x)j2 2 SN :For X = (x;	(x)), let also �(X) = �(x;	(x)) := �̂(x) :



B. SUMMARY OF ELEMENTARY LEMMATA 141Let3 DX� : TX� �! RN+1 be the di�erential map. Then, for anyW = (w;wN+1) 2TX�, DX�(X)[W ℄ =(B.21)
= 0BBBBBBBBBBB�

�(1 + jr	(x)j2)�1j	(X)wj + �1	(X) �k	(X) �kj	(X)wj(1 + jr	(x)j2)3=2...�(1 + jr	(x)j2)�Nj	(X)wj + �N	(X) �k	(X) �kj	(X)wj(1 + jr	(x)j2)3=2��k	(X) �kj	(X)wj(1 + jr	(x)j2)3=2
1CCCCCCCCCCCA :

Proof. Let W 2 TX�. Then, for some v 2 RN ,W = ddt�x+ tv; 	(x+ tv)�����t=0 = �v; r	(x) � v� ;that is wN+1 = r	(x) � w, or, equivalently(B.22) TX� = f(w;r	(x) � w) j w 2 RN g :Be
ause of this,DX�(X)[W ℄ = ddt��x+ tw; 	(x+ tw)�����t=0 == ddt �̂(x+ tw)����t=0 ;from whi
h a straightforward 
al
ulation gives the 
laim. �Remark B.13. In relation with Lemma B.12 above, we noti
e that, sin
e�(�) � SN and T�(X)SN = TX�, we may think DX� as a linear map from TX� toitself. Using (B.21) and (B.22), one dedu
es that DX� : TX� �! TX� may thusbe represented in matrix form as(B.23) �DX��ij = �(1 + jr	j2)�ij	+ �i	�k	�kj	(1 + jr	j2)3=2for 1 � i; j � N (where, of 
ourse, the summation over the index k is understoodhere above).With this, we now point out an expli
it 
omputation of the 
urvatures of therotation surfa
es:Lemma B.14. Let � 2 C2((0;+1); R) and� := n�x; �(jxj)� j x 2 RNo :3As standard, given a manifoldM and a point X 2M , we denote by TXM the tangent spa
eat X. Also, as usual, SN := fX 2 RN+1 j jXj = 1g.



142 B. SUMMARY OF ELEMENTARY LEMMATAThen, the prin
ipal 
urvatures4 of � are given by�1 = : : : = �N�1 = �0jxjp1 + (�0)2�N = �00(1 + j�0j2)3=2 :Proof. We set 	(x) := �(jxj) and, after some easy 
omputation, we inferfrom (B.23) that �DX��ij = (1 + (�0)2)�3=2h� (1 + (�0)2)�0 Æijjxj ++(1 + (�0)2)�0 � jxj�00jxj3 xixji :(B.24)Noti
e now that, up to rotation, we may assume that the point X = (x;�(jxj)), inwhi
h we 
ompute the prin
ipal 
urvatures, is of the form x = jxj eN ; hen
e, from(B.24) �DX��ij = (1 + (�0)2)�3=2h� (1 + (�0)2)�0 Æijjxj ++(1 + (�0)2)�0 � jxj�00jxj ÆiNÆjNi ;and so the desired 
laim easily follows. �

4As standard, the prin
ipal 
urvature of a surfa
e � at the point �X are here de�ned as theeigenvalues of �DX�( �X) : T �X� �! T �X�.
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