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Abstract

We prove a Harnack inequality for level sets of p-Laplace phase transition
minimizers. In particular, if a level set is included in a flat cylinder, then, in the
interior, it is included in a flatter one. The extension of a result conjectured by
De Giorgi and recently proven by the third author for p = 2 follows.
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CHAPTER 1

Introduction

Given a domain Q C RV, we define the following functional on W1 (():

Fa(u) = /Q W + ho(u(x)) dz .

Here above and in the sequel, we suppose that 1 < p < oo and that hg €
C°([—1,1]) N C*1((—1,1)) can be extended to a function which is C*! in a neigh-
borhood of [—1,1]. We will also assume that, for some 0 < ¢ < 1 < C and some
6* € (0,1), we have

for any 6 € [0,1], ¢6? < ho(—1+6) < CHP and
(1.1) ch? < ho(1—0) < Co7,

for any 6 € [0,6*), h{(—1+6) > c#P~" and
(1.2) hy(1—6) < —chP'.

We also assume that hj is monotone increasing in (—1,—1 4 6*) U (1 — 6*,1).
Quantities depending only on the constants above will be referred to as “universal
constants”. As a model example for a potential hg satisfying the conditions stated
here above, one may consider

ho(Q) = (1 ¢2)".

In the literature, hq is often referred to as a “double-well” potential, and its deriv-
ative as a “bi-stable nonlinearity”.

In the light of (1.1) and (1.2), we have that, with no loss of generality, possibly
reducing the size of 6*, we may and do assume that

for any ¢ € [-1+6*,1—6*],
(1.3) ho(¢) > max|_1,-146+)u[1—-6+,1] ho,

1



2 1. INTRODUCTION

Notice that, if u € WP(Q), |u| < 1, is’ critical for Fq, then u satisfies in the weak
sense the following singular/degenrate elliptic equation of p-Laplacian type:

(L5) Ayu(x) = hh(u(a)),
for any z € €. Here and in what follows, we make use of the standard notation
Apu = div (\Vu\H vu) .

In particular, we will consider local minimizers for the functional above. We say
that « is a local minimizer for F in the domain € if

Fa(u) < Fa(u+9),

for any ¢ € C§°(Q). In the literature, it is also customary to say that u is a Class
A minimizer for F if

Fre(u) < Frc(u+6),
for any compact set K C RN and any ¢ € C§°(K). That is, u is a Class A minimizer
if it is a local minimizer in any domain.

The functional F here above has been widely studied both for pure mathemat-
ical reasons and for physical applications. For instance, this functional is a model
for interfaces appearing in physical problems when two phases (the phase “close
to +1” and the one “close to —1”) coexist. On one side, the “potential” hq tends
to drive the minima of the functional towards the “pure states” +1; on the other
hand, the “kinetic term” |Vu|P prevents the system from sudden phase changes.
The balance between these tendencies (or, in the physical language, the effect of
the surface tension) leads interfaces of minimal solution to minimize area. The
physical relevance of the interfaces and the mathematical interest arising from geo-
metric measure theory thus motivated an extensive study of the transition layers,
i.e., of the level sets of solutions of (1.5). We refer to [3], [7], [14], [23], [25], [26],

[33], [27], [28], [29], [27], [28], [30] and [36] for more detailed discussions on the
physical relevance of the above functional and for its relation with the theory of
minimal surfaces.

The main result that will be proved in this paper is the following Harnack
inequality for level sets of minimizers. Roughly speaking, such results says that,
once one knows that the zero level set of a minimizer is trapped in a rectangle
whose height is small enough, then, in a smaller neighborhood, it can be trapped in

a rectangle with even smaller height. More precisely, we have the following result:
THEOREM 1.1. Letl >0, 8 > 0. Let u be a local minimizer for F in

{(m',mN) RN xR | |2'| <1, |lzn| < l}.
Assume that u(0) = 0 and that
{u=0} C {|lzn| < 0}.

1 Many results of this paper are obtained without assuming |u| < 1, but assuming only
|u] < 1. For future use, however, we recall that the condition |u| < 1 is fulfilled by any solution
u such that |u| < 1 with |u| not identically equal to +1, under suitable assumptions on hg. This
holds, for instance, if we suppose that

(1.4) hiy(—146) < /P~ 1 and  hh(1—8)> —coP7t,

for any € [0,6*). For the proof of this observation, see, e.g., footnote 7 in [30]. The case p = 2
was also dealt with in Theorem 1.1 of [17].
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Then, there exists a universal constant ¢ € (0,1) so that, for any 8y > 0 there exists
eo(fo) > 0 such that, if

< eo(fo) and 8> 0o,

then
{u=0}n{]z'| <cl} C {lzn| < (1—c)b}.

26

The Harnack-type result of Theorem 1.1

Theorem 1.1 is an extension of a similar result obtained in [31] for p = 2. Also,
some results from [7], [28] and [30] will be needed in the course of the proof.

The proof of Theorem 1.1 is quite long, both because we will need some fine
analysis on the measure estimates of the touching points between u and some
appropriate barriers, and because some delicate details and technical points will
appear in the course of the proof. Very roughly, we can say that the final target of
the proof consists in deducing a measure estimates on the above mentioned contact
points, which, in case the statement of Theorem 1.1 were false, would contradict
the minimality of u. Such estimates will be obtained by sliding suitable barriers,
constructed via the one-dimensional heteroclinic solution.

The ideas of such proof become more transparent in the easier case of a uni-
formly elliptic equation involving principal curvatures (of the type Z:\Ll aik; = 0):
see [32].

Following the ideas of [31], several results may be deduced from Theorem 1.1.
First, we deduce the following “flatness improvement” result, stating that, once a
level set is trapped inside a flat cylinder, then, possibly changing coordinates, it is
trapped in an even flatter cylinder in the interior. More precisely, we have:
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THEOREM 1.2. Letl >0, 8 > 0. Let u be a local minimizer for F in
{(m',mN) RN xR | |2'| <1, |zn| < l}.
Assume that u(0) = 0 and that
{u=0} C {len| <6}

Then, there exist universal constants n1,m2 > 0, with 0 < m1 < n2 < 1, such that,
for any 6g > 0, there exists €1(0) > 0 such that, if

?Sal(ﬂg) and 6> 6,
then
fu=0}n ({me o] < ml} x {|(@- O] <ml}) €
C ({Imeal <mt} < {l(z- ) < mo})

for some unit vector &.

26

The flatness improvement of Theorem 1.2

Several ideas related with Theorem 1.2 have been extensively used by De Giorgi
and his school in the minimal surface setting (e.g., for proving smoothness and
analytic regularity): see, for instance, chapters 6 8 in [20].

The extension of a result conjectured by De Giorgi in [14] for p = 2 also follows,
namely we have the following two flatness results:

THEOREM 1.3. Let N < 7. Then, level sets of Class A minimizers of F are
hyperplanes.
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THEOREM 1.4. Let u € W,-P(RN) be a solution of (1.5). Let hq fulfill the

ocC

assumptions on page 1 and* (1.4). Assume that |u| < 1, Onu > 0 and

i (-, xn) = £1.
leLHim7l(7TN) 1

Assume also that either N < 8 or that {u = 0} has at most linear growth at infinity.
Then, level sets of u are hyperplanes.

Results of these type have been proved in [21] for p = N = 2 and [2] for p = 2
and N = 3 (and actually for any nonlinearity, see [1]). Extensions of the results in
[21] and [2] to p-Laplace equations have been considered in [11]. See also [5, 13,
12, 16, 4, 6, 22] for related results. Results analogous to Theorems 1.3 and 1.4
for p = 2 have been recently given by the third author in [31]. In §9 here below,
we will see that Theorem 1.4 is a consequence of the fact that monotone solutions
of (1.5) are minimizers (see, e.g., [24] or [31]) under a +1-limit assumption.

This paper is organized in the following way. In §2 we construct the barriers
to be used in the course of the proofs of the main results. Roughly speaking, such
barriers are obtained by modifying the heteroclinic one-dimensional solutions given
by the potential hy and by taking flat or rotational extensions. The study of the
touching points between these barriers and our solution occupies §3. Particular
emphasis is given to the measure of the projection of the set of “first time” touches.
In §4, some covering lemmas are presented, whose proof has been deferred to the
Appendix. The results of §3 and §4 are then used in §5 to obtain an estimate on the
projection of the touching points between an appropriate barrier and our solution.
The proofs of the main results occupy §6—§9. The Appendix contains the proof of
the covering lemmas and some elementary ancillary results.

2In particular, the result of Theorem 1.4 holds for ho(¢) := (1 — ¢2)P.






CHAPTER 2

Modifications of the potential and of
one-dimensional solutions

We now construct some barriers, which will be of use in the proof of the main
results. Such barriers will be obtained by appropriate modifications on the potential
ho, which induce corresponding modifications on one-dimensional solutions.

Here and below, we fix Cy > 0, to be conveniently chosen in the following
(actually, during the proof of Proposition 2.13 here below). We will also fix R,
to be assumed suitably large (with respect to Cy and some universal constants).
The first function needed in our construction is the following modification of the
potential hg in the interval [-3/4,3/4]:

DEFINITION 2.1. Fix [so| < 1/4. For any |s| < 3/4, we define'

hO(S)Rp

(2.1) Pso,R(8) = () = — 7P
[~ Tols — 50) (L7 ho(5)7
Note that, by construction,
1 1 C
(2.2) = — (s~ s0).

1 1
» » R
(7250) " (3Erho(9))
Roughly speaking, for large R, ¢ is close to hg: this is the reason for which we
consider ¢ as a modified potential in [-3/4, 3/4]. We now consider some properties
enjoyed by . First of all, we estimate ¢ in terms of hg in [-3/4, —1/2]U[1/2,3/4]:
LEMMA 2.2. The following inequalities hold:

(2.3) () < ho(s) — % i se [% ﬂ
and
(2.4) o(s) > ho(s) + % it e E 2} ,

provided that R and 60/6'0 are suitably large. Also, CA'O may be taken large if so is
Ch.

PROOF. To prove (2.3), note that for s € [-2, —1] we have Cy(s — s0) €
[—Ch, —%]. Also, from (1.1), there exists k > 0 such that

. p
2. k< f h
(2:5) 0<ks< (76[73/4,7111}2]U[1/2,3/4] (p -1 0(0))

1

T

— 1
INotice that R — Co(s — s0)(=E=ho(s))? > 0 for any |s| < 3/4 and |so| < 1/4, if R is large
p—1

enough, thus the definition of ¢ is well posed.
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Therefore,

(S) _ hO(S)Rp S

BTl — s0)(GErho ()

R OL

~(R+ Sek)r

ho(s)R? — ho(s)(R + S2k)
(R+ Sak)r

const (R + const Cg)? — RP
< hO(S) - R ’ Rp,10 :

p

p
= ho(s) + <

Using the fact that
(x + a)? — P

IETOO p—1 = pa,
and taking R suitably large, we get
const C| 20
¢(s) < ho(s) — TO < ho(s) — ?107

for Coy > const Cy, proving (2.3). Let us now prove (2.4). Recalling (2.5) and
arguing as above, for s € [1/2,3/4], we get that Co(s — s9) € [S2, Cp] and so

(p(g) _ - h,[)(S)RP —
R —Co(s — 50) (27 ho(8))7
ho(s)RP
> 7 >

>

T (R—Sepyp
const RP — (R — const Cy)P
Z hO(S) + R ’ Rr—1 '

Using the fact that
zP — (z — a)P

IETOO pp—1 = pa,
we thus gather that, for R large,
const C 26’0
>h —— >h —_

ols) > ho(s) + T > ho(s) + 2

for Co > const Cy, proving (2.4). O
Now, for R large enough, we define sg € (—1,60*) as the point such that
1
(2'6) ho(sR) = E
From (1.1), we have that
1

For further estimates, in the next two lemmas, we now point out some elementary
bounds for sg:
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LEMMA 2.3. Let C a positive universal constant. Then, for R large (with respect
to C), we have that

28) (- +s)P—HE—sn) >0 sp<€<0
and
0
(2.9) / de 7 < Clog R,
w ((+ g — (L +srp — GE—5r))

for a suitable constant C > 0.

PROOF. For & € [sg, 0], let

3

©
=
o~
N
Il
—
i
_|_
’ax
N
A~
I
—_
i
+
"~
N

Then, by (2.7)

_ C
> p(1+sp)P! - >
const C 0
2 R0 RV

if R is large enough, thence g(&) > g(sgr), proving (2.8).

In order to estimate the integral in (2.9), we introduce the notation b = 1+ sg.
Since, for R large, sg is near —1, we may assume % > 2. We use the substitution

T_—1+€
b

obtaining a bound for the above integral given by

1/b dr 1/b dr
/1 (v o ””S/ o)
™ — 1 — Wb('f'* 1)) 1 (T (T ))

2 dr 1/b dr
< / ' 1/P+/ ' 1/p”
Ji (P =1 —=C"b(1 — 1)) J2o (P = 1-C"b(T — 1))

where we used the fact that b? &~ & (see (2.7)).
Noticing that
20 —1
op

p

™—-1> T

if 7> 2, and that
P—-1>7r-1

if 7 > 1, we bound the quantity here above by

/2 dr /1/” dr
const + n
Ji (A=C)(r 1) ], (Tp(l _ C”b('rfl))) v

TP
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Now, if R is large, then b is small, and therefore we may assume that (1—C’b)% > %
Thus,
br — 1)\ 7 B\ ¥
<1_Cb(7 1)) S (1_ Cb) S
> - Tp—1 -
1y + 1
> (1-0C')7r > .
2
This yields
0
d 1
/ § 7 < const, <1 + log %> ,
(g = (14 sp)p - G(E—sn)
which proves (2.9). O
Let us now estimate how sg varies as a function of R:
LEMMA 2.4. There exists a suitable universal constant C > 0 so that
C
—W S aRSR <0.
PRrOOF. Differentiating (2.6),
1 o 5
i ho(sr) Orsr
thus Orsg < 0 thanks to (1.2), and so, by (2.7),
1
= = lo(sr)Orsk| >
> const (1 +sg)? " |Orsgr| >
> const 9
2 Ro-0/s |ORrsR| .
O

We now define a modification of the potential ho in the whole interval [—1,1]
in the following way:

DEFINITION 2.5. We define hs, g : [sg, 1] = R by

ho(s) — ho(sr) — % (s — sr)
if sp<s< -1
S
hso.rR(5) = if _np(]_ )< 5< 1
2 2
ho(s) + ho(sgr) + 5 (1 — s)
\ if §<s<1.

Notice that hs, r may be discontinuous at s = £1/2. Let us now point out
some easy properties enjoyed by the above potential:
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LEMMA 2.6. The following inequalities hold. If s € [-3/4, —1/2], then

s m(5) > hols) — 222 > p(s).
If s € [1/2, 3/4], then
hsy,r(s) < ho(s) + % < (s).

Proor. Let s € [-3/4, —1/2]. If Cy is taken suitably large, then, recalling
Lemma 2.2, we have that

1 C
hso.r(s) = ho(s) — B 70(5 — SR) >
2C
> ho(s) — ?" > o(s)

where we have used the fact that s — sp < 1.

In the same way, if s € [1/2, 3/4], taking Co suitably large, and using Lemma 2.2,
we gather that
1 Co
hs, R < h —+—=<
o.R U(S) + R + R
2C,
< hofs) + 220 < ().

LEMMA 2.7. Let Ry < Ry be suitably large. Then,>

(210) h‘so,Rl (9) < h‘so,Rz (9) if sp, <5 < s
and
(2.11) hsy,r, (8) > hsy Ry () if sp<s<1.

PrROOF. Let us prove (2.10). For this purpose, let s < sg. Two cases are
possible: either s > —1/2 or s < —1/2. Let us first deal with the first case.
Notice that, by (2.1), ¢s,.g is increasing in R, since —1/2 < s < s9 < 1/4 < 1/2,
thus, from Definition 2.5 we gather that

hsq .k, (s) = Pso,R1 (s) <
< Pso,Ro (S) = hSO,R2 (S)

which proves (2.10) if s > —1/2.
Let us now deal with the case s < —1/2. Fixed Ry large and s € [sg, —1/2],
let us define

1 C
+ 22 (s sg).

g(R) = R R

?Notice that, for Ry < Ry suitably large, using (1.2), (2.6) and (2.7), one has

1 1
hO(SRl) = R_l > R—2 = hO(SRQ)’

so that sg, > sg,.
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By means of Lemma 2.4,

1 const 6’0
!
Q(R)S*ﬁ+w<oa
thence
1 0
- — (s — ¢ — <
RQ + RQ (q QRQ) g(R2) —
1 C
< g(R = — 4+ —(s— .
_g( 1) R1+R1 (S SRI)
Therefore, if s < —1/2, from Definition 2.5,
1 C
hSle (S) = hg(S) - R_l - R_l (S - SR1) S
1 G
< h - — —(s—
o) = g = T (5= sm)
= hSo,Rz(q):

thus proving (2.10).

Having completed the proof of (2.10), we now deal with the proof of (2.11).

Two cases are possible: either s < 1/2 or s > 1/2. Let us first deal with the first
case. Notice that, by (2.1) and the fact that so < s < 1/2, @, r is decreasing in
R. Hence, from Definition 2.5,

h’So,Rl (q) = ¥s0.R1 (q) >
> Pso,Ro (S) = hSO,R2 (S)

which proves (2.11) if s < 1/2.
Let us now deal with the case s > 1/2. In this case, by Definition 2.5,

1 1 ~ 1 1
hsg, ki (8) = hsg,ro(8) = = — =+ Co(1 —s) <_ - _> >0,

R1 R2 Rl R2
proving (2.11) for s > 1/2 and thus completing the proof of Lemma 2.7. O
Let now
s _1 T
(2.12) Ho(s) := / (1’7)”14, for any s € (—1,1).
o (pho(¢))¥

Notice that the inverse of Hy is a “one-dimensional” solution of (1.5). Indeed, if
go = H(;l, by Lemma B.3, we obtain that

Apgo = (9'1"%9) =
(p=Dlg'["g" =
= hy(go) -
We would like now to compare go with all other solutions.

To this aim, using Definition 2.5 we now introduce suitable modifications of Hy
(and thus of gg), which will be used in the course of the proof:
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DEFINITION 2.8. We define, for s € [sg, 1],

H, m(s) = H0(30)+/s( (p—1)7» dc.

L L

phso,R(C)) P
We notice that, by Lemmas B.1 and 2.3, we get

(2.13) hso.r > 0,

thence Hy, g is well defined.
REMARK 2.9. By Definition 2.8, exploiting Lemma 2.7, it follows that, if Ry <
R,,

(2.14) Hgs, ry(s) < Hs, g, (5) if sp, <s<l1.

Let us now analyze some properties of the above defined quantity:

LEMMA 2.10. Assuming R suitably large, there exists a positive constant Cy so
that the following inequalities hold:

(2.15) Hy r(sp) > —Cilog R,
(2.16) H,, r(1) < CilogR,
(2.17) d_(i’ (Hs, m(s)) >0, Vs € (sg,1).
PROOF. Note that, if R is suitably big, Definition 2.1 implies that
(2.18) ‘s‘i;llfﬂgo(s) >0.

Hence, recalling Lemma B.1 and (2.7), we have that

const d( -
1+ sy~ G sm)
_/SO L
-3 (pv(Q))
0
—const — / const dg ) >
T (40 = (14 sp) = (¢~ sm))

—CilogR,

for a suitable C, where we used Lemma 2.3 to estimate the integral above. This

proves (2.15).
We now prove (2.16). By Definition 2.5, (1.1), (2.18) and (2.6), we have that

b o) 1
H0(30)+/ (p—1) dc + const d¢

Hyon(sr) > Ho(so) / - (

8=

=

Y

Y

HSQ,R(l) S 1 —
s (Pe(C)? Fla-or+d)”
! const d(
< const + ———— <
Jipp (1 =0) + w77
1/p 49
< const <1+10g u) <
< CilogR,



14 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS

proving (2.16). Finally, (2.17) follows from Definition 2.8 and (2.13). O

Using (2.17), we may now give the following definition:
DEFINITION 2.11. We define g5, r(t) : (—oo, Hsy,r(1)] = R by

{ SR if t<H r(sr),

gso.R (1) H ' pt) it H, plsr) << Hy p(l).

We now state some notation. Given X € RV*+! we definez € RN andzy41 € R
in such a way

X = (z,zn41) € RY xR,
Also, we will often denote

z=(z',zy) € RV ! x R.

We now define a hypersurface in RV which will provide a useful barrier:

DEFINITION 2.12. Given Y € RV*t! with lynvsi1] < % and R large as above, let

(2.19)  S(Y,R) := {SU € RN ‘wN+1 = 9yn+1,R (Ho(yN+1) +lz -yl - R)} :

In the above definition, we will sometimes refer to Y as the “center” and to R
as the “radius” of S. For short, we also denote

(2.20) 9s(v.r)(%) = Gyn 1. R(Ho(yn+1) + 12—yl — R),
so that (2.19) becomes

S(Y,R) = {’I‘ € RN+

TN1 = gS(Y,R)(-T)} :
Let us now prove that gs(y, ) is a strict supersolution in the viscosity sense (for the
definition of viscosity super/sub/solutions, see, e.g., [30]):

PROPOSITION 2.13. Let Y € RN*Y with |[yni1| < }Z' Then, gs(v,r) 1s a strict
supersolution of (1.5) in the viscosity sense at any x € RN for which gs(v,r)(T) €
[sr, —1/2]01[1/2, 1),

Moreover, there are mot smooth functions touching gs(y,gr) by below at x if
|9s(v.m)(2)| = 5

PROOF. We use the notation

s = gyN+1,R(t) and t= HO(yN+1) + |T - U| -R

In this setting, we have to prove the desired supersolution property for sp < s <
—1/2 and for 1/2 < s < 1.

Let us first consider the case s = spg, that is t < Hy,,, r(sg). In this case,
9yn.1,R(t) is constantly equal to sg, thus any paraboloid touching from above must

have vanishing gradient at the contact point and negative definite Hessian matrix.
Thus,

Ap(gyn1.r(t)) =0 < ho(sg)

in the viscosity sense.
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Let us now consider the case Hy,,, r(sg) <t < Hyy,, r(—3) (that is, sp <
s < —%): in this case, gy, ,,r is smooth so that we can compute all the derivatives
in the classic sense. As a matter of fact, by Lemma B.3,

p 1/p
Gonerr®) = (S5 s tGun . 0(9)
(2-p)/p
ph.UN+17R(gyN+17R(t))
" '
gyN_H,R(t) = (p - l)g/p ‘yN+1,R(gyN+17R(t)) .

Hence, exploiting Lemma B.2, we get

N—l( ) et

Ap(gyn41.(1) = h;/N_H,R(S) + m m hyN+1,R(S))

Notice that, from Lemma 2.10,

—C1 log R

IN

H?JN+1,R(SR) <t=
= Ho(yn+1) +|z -yl - R <
< const + |z —y|— R,

and therefore, if R is big enough,

(2.21) oyl > o
Thus, we get
Co 20N-1)/ p —
Bp(guenn(®) < Bo(s) G+ T (ST ho(s) T <
< hy(s)

provided that C (and so 50) is chosen conveniently large. This proves the desired
result for Hy, ., r(sr) <t < Hyw+1,R(_%)-

If, on the other hand, Hy, , r(3) < t < Hy,,, r(1) (that is, 3 < s < 1),
arguing in the same way, we get

Co 2(N-—

By n®) < 1) = S0+ ZEZ (P () T < B,

p—1

provided that é(] is conveniently large. This completes the proof in the case
1
HyN+1,R(§) <t < HyN+1,R(1)'

Up to now, we have therefore proved the desired result for

te (* 00, HyN+1,R(*é)) u (HyN+1,R(%): HyN+1,R(1)) )

e [om3) 0 (31)
S SR, 2 27 ’

To complete the proof of the claim, we have therefore to take now into account the
case |s| =1/2.

that is, for
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Let us now deal with the case |s| = 1/2. Recalling Lemma 2.6, by (2.2), we
have

lim HyN+1B( s) < hm HyN+1B( s),
s— 72

_)7_
l—l)m HyN'H B( ) < hm H?JN+1 B( )
’ 2 2
so that
lim ! t) > lim ! £,
(2 22) t—)HyN+1,R(7%)7gyN+1,R( ) t—>HyN+1,R(*%)+gyN+1’R( )

lim Gy m(t) > lim e m(t).
tHHyN+1xR(%)7 YN t"HyN+1xR(%)+ YN

Let now w be a smooth function whose graph touches S(Y, R) by below at (z¢,1/2)
(the case of touching at the —1/2-level is analogous). Let us consider the radial
direction vy = ‘22:5‘ and let us define, for 6 € R,

g(0) = gs(v,r)(wo + Oro) — w(xo + 1) .
Then, by construction, g(0) = 0 < g(f), therefore

0 < fim 20 —0(0) _
- f§—0*t 0
_ . g.UN+17R(tO + 9) - gZINJth(tO) _ _
B algg+ [ Do t(T0) =
— lim . g;NJth(t) — Opow(xp),

t—Hyy o m(1/2)

where
to 1= H(](]/N_H) + |:I:0 - 1/‘ - R= HyN+17R(]'/2) .

By arguing in the same way, we also get that

0 > lim 2@ -8 _
~  9—0- 9
= li ' 5 — 8 wlag).
t—)HyN:TR(l/Q), Gy 41,7 (1) sw(wg)

Thence,

lim ! t) < 0,,w(zg) < lim ! t),
tﬁHyNﬂvR(]/Q)*gyNH’R( ) < Buwleo) < t=Hyyyq,r(1/2)7F gyN-H’R( )
which is a contradiction with (2.22). Therefore, no smooth function may touch
gs(v,r) by below at +1/2-level sets, showing, in particular, the claimed supersolu-
tion property. This completes the proof of Proposition 2.13. O

As a consequence of the above result, we show now that touching points between
S(Y, R) and a subsolution of (1.5) may only occur when |[zx4+1]| < 1/2 (and this
fact will be of great help in future computations, thanks to the explicit form of the
barrier in |xn41] < 1/2):

COROLLARY 2.14. Let U € C*() be a weak Sobolev subsolution of (1. 5) with
|U| < 1. Assume that U < gg(yg) and that U(z*) = gs(v,r)(x*) for some z* in the
closure of Q1. Then, either z* € 95 or |gs(y,r)(z*)] < 1/2.



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 17

PROOF. Let us assume that z* ¢ 992 We first prove that gs(y,g)(z*) # 1. We
argue by contradiction, assuming gs(y,r)(#*) = 1. Notice that, due to Definition
2.5,

dH
lim i\ 1L s) = lim 1 =

(s)
s—1 ds s—1 (%hw“ﬂ(s))l/p
- ((p - 1)R)1/p=
p
thus g, () >0if ¢ = Hyy,, r(1). Then, if

*
x . T Y

T et -y

is the radial direction, this yields

8gS(Y,R)

ov*
However, since U € C*(RV), U(z*) =1 and U < 1,

3

(2.24) VU (z*) =0.

(2.23) (z*) > 0.

Similarly, since U < gs(y,r) and U(z*) = gs(v,r)(7*),

99s(v,R) ou

PO () < 52 (0).

Thus, a contradiction easily follows from (2.23), (2.24) and (2.25), showing that
gs(v,r)(z*) # 1.

(2.25)

Also we claim that gs(y,r)(*) € [sr, —1/2]U[1/2, 1).

Let us first show that gs(y,p)(z*) # sr. We argue by contradiction and assume
that gs(y,r)(z*) = sr. We recall that, by Definitions 2.11 and 2.12, gs(y,p) is
constantly equal to sg in B,(y), with

r=r(R) := R+ Hyy,, r(sr) — Ho(yn+1)
and® that r > 0 by (2.15). Then, there would be p > 0 so that
Q== B, (y) N B,(z*) C {gS(Y,R) = SR} :
Possibly taking p smaller, we may assume also that
(2.26) Q, C {U<—1+9*}
and, since z* ¢ 9 by our assumption, that

(2.27) (1, is contained in the interior of ).

3 Proceeding as done here and exploiting (2.16), one may also prove that 9s(v,Rr) reaches the

value 1 well inside the ball of radius R + R%/Q around y.
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Note that U cannot coincide with gs(y,g) in 4, otherwise

0 = —/\VU\HVU-W

- [t

> 0,

for any non-negative smooth test-function ¢ supported in (2. Then, there exists
z € Q, and p' > 0 so that U < gg(y,p) in the interior of B, (z) C (1, but there
exists & € B, for which U(x) = gs(y,r)(Z). Setting

U*=sp—U
it, follows
U* =gsv,p—U >0
in B, (Z) and U*(2) = 0. Moreover,
(2.28) AU =AU > hy(U).

Hence, hy(U) > 0 in the light of (1.2) and (2.26). Thence, from (2.28), —A,U* > 0.
Therefore, by Theorem B.6 (applied with ¢ = g = 0)

3

(2.29) o,U(x) = -0,U* (&) >0,
where
I—T
V=
-3

is the outer normal of B, (Z) at Z.

On the contrary, note that # is in the interior of the domain of U thanks to
(2.27), and so, since U touches gs(y,g) at Z and Vgs(y,) vanishes on {gs(v,r) = sr},
we have that

O, U(%) = Ougs(v,r)(T) =0,

against (2.29). This contradiction shows that 2* does not lie in {gs(v,r) = sr}-

Let us now prove that

(2.30) QS(Y,R)(ﬂf*) ¢ (837 —%) .

First, we recall that gs(y,g) is smooth with non-vanishing gradient in

Qo := {.‘JS(KR)('T) € (SR: %)} ;
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thence it is a classical strict supersolution of (1.5) in €g. This implies that U cannot
coincide with gs(y,r) in {gs(v,r)(z*) € (sr, —%)}, otherwise,

/hB(QS(Y,R))#? > _/|VQS(Y,R)‘p72v9S(Y,R)'VQDZ

—/|VU|HVU-W >

[ @)e
- /h{)(QS(Y,R)) v,

for any non-negative smooth test-function ¢ supported in g, which is an obvious
contradiction. Therefore, since U and gg(y,g) do not agree in g and Vgs(y,g)
never vanishes there, we can exploit Corollary B.5 and get that U < gs(y,g) in (1.
Thence, no touching point may occur in {gs(y,g)(z) € (sr, —3)}, proving (2.30).

v

Also, gs(v,m)(z*) # —% by Proposition 2.13. The fact that gsy g)(z*) &
[1/2, 1) follows with similar arguments. O

We will now define another hypersurface in RV*+', which will be denoted by
S(Y, R) and we investigate its relation with S(Y, R). While S(Y, R) is continuous
but not smooth, g(Y, R) will be smooth, and thus it will be easier to deal with
during the calculations. Also, the two surfaces will coincide in {|zn41| < 3} and
S(Y, R) will always stay below S(Y, R). Therefore, S(Y, R) will provide, in some
sense, a sharp barrier for S(Y, R) which will be more explicit to treat. Let us now
approach the definition of the hypersurface S(Y, R).

Setting
- Cs ,
(2.31) Hy, r(s) == Ho(s) — ﬁ(s — 50)
then, by (2.12), we have
d [~ 1 Co
2.32 (g, S . 0
(2.82) 7 (Fro.n() (s RO

p—1
for |s| < %, provided that R is big enough. Therefore, for |s| < % we have that
H,, g is strictly increasing and we can give the following

DEFINITION 2.15. We define
~ 3. =~ 3 3 3
po®): | Ho- 3 ] = |33
by

(2.33) Po.re(8) i= Hy (1),

Moreover, given Y € RV*! with |yn41| <  and R large as above, we define

(2:34)  S(YV\R) := {z € R [on11 = pyyar r(Holyns1) + |~y — R)}
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As done on page 14, it is convenient to introduce the notation
(2.35) gg(va) (z) == pyN+1,R(H0(yN+1) + |z —yl - R),
so that (2.34) becomes

S(Y,R) = {’I‘ € RN+

TN+ = G5y p) (T)} .

Notice also that, by construction, for any = for which 9s, is defined*, we have

(Y\R)
that
(2.37) sy () <5
IS(Y,R) =3
Moreover, a straightforward computation gives that
(2.33) oy, ()~ Hagra() = 2 (5= 50 (7~ )
for any |s| < 3/4. Also, if x is in the domain of I(v.Ry then = and y must be

suitably far from each other, as next result points out:
LEMMA 2.16. Let z € RN be so that g5 is well defined (that is, let x be
such that (2.36) holds). Then,

(Y.R)

-yl >R-C,
for a suitable universal constant C' > 0.
PROOF. From (2.37), we get that
5= %(Y,R)(m) € [-3/4, 3/4].
So, by means of (2.31) and (2.33)

C
z—yl = R— Holyn+1) + Hols) — —=(s — yn+1)? >

2R
> R — const.
O

Let us now show that the surface S(Y,R) coincides with S(Y, R) in the set

‘zn+1| < 3 and that S(Y, R) stays below S(Y, R) at all other points where S(Y, R)
is defined:

LEMMA 2.17. If |s| < 1/2, then

(239) Hso,R(S) = ﬁso,R(S) .

If L < |s| < 2, then

(2.40) Hayy m(s) > Hyg n(s) .

Also, let z € RN be so that 95(v.) is well defined (that is, let © be such that (2.36)
holds). Then,

(2.41) Tty (®) = s (v.r) (@) -

4 I.e., for any z so that

3
(2.36) Ho(yn+1) + |z —yl - R€ Hso,R(*Z)a HS[),R(Z)
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Furthermore, if |g§(YR) (z)] <

Proor. We use the notation s := g= Let |s| < 1/2. By Definitions 2.5

S(Y,R)"
and 2.8, recalling also (2.2), we have that

Hoy n(s) = Holso) + / — L / (s~ 50 =

Jso (FE5ho(s)) R
(2.43) o \
= Ho(s) ~ S2(s— 50 =
= H,, r(s).

This and (2.31) prove (2.39) and (2.42). We now prove (2.40) and (2.41). Let us
consider only the case s € [—3/4, —1/2], the case s € [1/2, 3/4] being analogous.

In this case, s < sg, and thus, exploiting Lemma 2.6, we get

S0 1
HSO,R(S) = H()(S()) —/ —1/]) >

* (2rhaon)
£} 1

> H()(S()) —/ 75 —
© ()
s 1 C

= HO(SO) — / l/p %(S - 80)2 =
* ()

P
= Ho(s) — 5 (s 0)7,
proving (2.40) and (2.41). O

Since, by construction, the function 95(v.R)

to (2.32, its gradient never vanishes), we can compute its derivatives (and its p-

Laplacian) in the classic sense. In particular, we can sharply estimate how far
is from being a solution of (1.5), thanks to the following result:

defined above is smooth (and, due

95(v,r)
PROPOSITION 2.18. Let Y € RN*! with |yny1| < %. Then, there exists a
positive universal constant C > 0 such that

C C
B (95031 @) = 7 < Doty @) < i (9505 @) + 5
) is defined (i.e., for any x so that (2.86) holds).

for any x for which ISy R

Proor. We will use the notation
(2.44) t = Ho(lyn+1)+|z—y/ - R and
s = pyyiR() = gg(y’R)(m).
Let us note that, from (2.31) and (2.2),

d
45 Lo = —(
di Hi(s) — Co(s —yyia) P 1
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Hence, differentiating again, a straightforward calculation leads to

2-p

d’ (peo(s)) ™
(2.46) o Pun () = W ¢'(s).
Therefore, by Lemma B.2,

N—-1/ p =
24D Alppe®) =0+ YT ()T
(247 o nlt)) = ¢'(6) + = (E ol
Furthermore, note that, by differentiating (2.2), one obtains

p_ P —
(2.48) Ry =i (SZ_I _ 1 Fhfo(-"')p_l ~ %
P\ (GEre(s) P\ (GEho(s)
so that

219 o= (20 hs<s>+’%(%)% (v09) ™ .

whence, from (2.1),

¢'(s) = ho(s)+

(2.50) + % {hg(s)R

with

we obtain, if R is suitably large, that
pH1

(7)o 5 (o)

so that, from (2.47) and the fact that ¢ > 0,

(2.51) ho(s)R < const,

const
h:](@) - R < Ap(pyN+1,R(t)) ’
which proves one side of the claimed inequality.
The other side of the inequality is obtained by arguing in the same way, making
use also of Lemma 2.16. g

For further reference, we point out some easy calculations on the above barrier:

LEMMA 2.19. At any x for which Iv.m) is defined, we have that

Co
<H3 (”WR) (”’)) "R (%(Y,R) () — yN+1)> Vo5 (@) =
_ Ty
|z —yl

(2.52)
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Also, there exists a universal constant C > 0 so that

c
(2.53) 5 (5.0 ) [T500.m@) | 1] < 3
and
‘H(I)I (gg(y’R) (ZE)) 8ig§(y,R) (w)a]'gg(y’R) (;U) +

(950, @) Q08501 @)] <
c

< o

- R

provided that R is large enough.

(2.54)

PRrOOF. Using the notation in (2.44) and the first equality in (2.45), the claim
in (2.52) easily follows. From (2.52) and (2.37), one easily gets (2.53).
Let us now prove (2.54). From (2.31) and (2.33), we have that

G
2R

for any 7 for which py,,, r is defined; then, differentiating twice and recalling
(2.37),

2
T = Hy (pyN+1,R(T)) (pyN+1,R(T) - yN+1) ,

(2.55) ‘L%%pyN+LR(T» (p2~+h3(r))2+

const
+ H Py (7)) P (1) < 2

Furthermore, differentiating twice the relation
Ty @) = Punsrr(Holyn1) + |z =yl = B)
a direct computation gives
995y gy (z) =

by Ry
= RiijN+1,R(t)+< ! :

z -yl |z—y

) p;’N+1,R(t) )

where we define, for short,

(zi —yi) (x5 — y))
|z — y|? '

Rij =

In other words,

(2.56) 5,;jg§(Y7R) (z) = RiijNJth(t) + Sij

for a suitable S;; satisfying |S;;| < const /|z — y|. Therefore, using (2.56) and the
fact that

i —Yi
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we get that
HY (0503 () i3y, (0)055 (m(m) +
+H)] ( T)) 6,quYB =
= Hy(pyns1.R(1) (Pynsa,r( ) Ri; +
FH Py ern0)) (il lt) + i) =
= By [H (pynss 5 ) (puirn() +

+H (pynsrn®) Ay D] + T
with |T;;| < const /|z — y|. Thus, from (2.55),

‘H”( Tiv.m ))ai%(y,m(”’)aj%(y,m(m) +
+H’( (YR)( ))8i.7'g:§(y7R)($)‘ <

=)
< const
z -y

Therefore, (2.54) is proved thanks to Lemma 2.16. O

We now recall a result, proved in [30], concerning another barrier which will
be used in the course of the proof of the main results:

LEMMA 2.20. There exist universal constants I>1land0<é< 1/2, so that,
if 1 > 1, we can find T; € [cl,1/2] and a nondecreasing function
g1 € C%(—oc, T)) N C" ' (—oc,0) N C*((—el, Ty) \ {0})
which is constant in (—oo, —1/2], with g; > 0 in [—él,T)], satisfying ¢;(0) = 0,
91(T1) = 1 and such that, if we define
(2.58) w(z) = gills —yl — 1),

then WY'l(z) is a strict supersolution of (1.5) in the viscosity sense, in Br,4i(y) \
0B (y).

More precisely, g is constructed as follows. There exists a suitable constants
0< e <Cq,Cs so that, if we define

s = eiE‘l,
ho(s) — ho(si — 1) = S (1 + 5)? — s7)
if (s1—1)<s<0
hi(s) = ]
ho(s) + ho(1 — ;) + S2 ((1 — 8P 4 s >(1,S))
if 0<s<1,
*(p—1)r
Hi(s) := ——d(,
SR GH.
* (p— 1)
Hy(s) = ——dc, for any s € (—1,1),
0= ) o yrethh

then the following holds:
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(i) hi(s) > 0in (51— 1) < s < 1; in particular, Hy is well defined and strictly
increasing for (s; — 1) < s < 1 and thus we may define g,(t) := H, '(t)
forte H(s—1,1);

(ii) g;(¢t) is defined to be constantly equal to s; — 1 for t < H,(s; — 1);

(iii) the following estimates on H; hold:

(259) m) < 5
(2.60) Hi(sy —1) > *é ;

0, o
(2.61) Ho(s) < Hj(s) — —1log(1—]s|) Vls|]<1l—e 7= ;

l
(2.62) H(1-eF) > &l

c

(2.63) Hi(e ™ —1) < -—él.

A detailed proof of Lemma 2.20 is contained in [30] (see, in particular, Lemma
5.1 there).

We now point out some properties of the touching points between the barrier
¥¥! and a (sub)solution of (1.5). To this end, we notice that, by construction, the
radially increasing function ¥¥! built in Lemma 2.20 is so that:

e U¥!is defined in Br,4i(y), and it is greater than s; — 1;
e there exists p; € [él,1/2] so that the only critical points of ¥¥! are in
Bi_,,(y), where %! is flat;
e V¥l =0on dB(y).
The geometry of such spheres is related with possible touching points, as next result
shows:

LEMMA 2.21. Fizy € RN and let | > 0 be suitably large. Let u be a weak
Sobolev subsolution of (1.5) in some domain Q. Suppose that u € C'(Q) and that
lu| < 1. Then the following results hold:

o If U¥! touches the graph of u from above at some point x* in the closure
of QN Br,4(y), then, either z* € OQ or u(z*) = ¥¥!(z*) = 0.
o If
By (y) C{r € Qfu(z) < -1+607},
then,
u(z) < W¥(z),
for any z € By, (y).
For the proof of Lemma 2.21, we refer to [30] (see, in particular, Lemma 6.2

and Corollary 6.4 there). We now notice that a statement analogous to Lemma 2.20
holds for a subsolution (instead of supersolution) property:

LEMMA 2.22. There exist universal constants I>1and0 < é<1/2, so that,
if 1 > 1, we can find T; € [cl,1/2] and a nondecreasing function

g1 € C°(—Ty, +00) N CH1(0, +0c) N C*((—Th, el) \ {0})

which is constant in [1/2,+00), with g; > 0 in [T}, ¢l], satisfying g;(0) = O,
91(=T;) = —1 and such that, if we define

Ul(z) = gl — |z —yl),
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then WY (z) is a strict subsolution of (1.5) in the viscosity sense, in Bri(y) \
0Bi(y).

Also, if we define ho(s) := ho(—s) and
-~ "p—1)'/PdC
Hy(t) :=
o(t) /0

(pho(Q))' /P
then, there exists a strictly increasing function f[l and a positive function h;, such
that ;
~ —1/p
(s = 2D
(pTu(s))1/7

so that the following holds:
(i) hy(s) is defined and strictly positive in —1 < s < 1 —s;; H, is defined and
strictly increasing for —1 < s < 1—s;; gi(t) = I?fl(t) fort € H(1, 1—s));
(ii) Gi(t) is constantly equal to 1 — s, for t > Hy(1 — s);
(ili) the following estimates on H; hold:

- l
Hi(-1) > 3
- l
Hl(l_sl) S 57
Hos) > Hils)+ZHlog(l—Js) Vsl <1-e %,
ﬁl(—1+ej51) < —él,
H(l-e %) > el

Proor. Notice that Eo satisfies the same assumption as hg, thus, we can use
Lemma 2.20 with hg replacing hg: let us denote by h;i7 Hlu and glu the functions
thus obtained via Lemma 2.20 with hq replacing hq. Then, define

hu(s) == hi(—s).

~ a S(pfl)l/p_i b
H(s) := /0 (pﬁl)]/p = Hl( s)

Thus,

and therefore
ait) = —g(-t).
With this, let us show that W¥' is a strict viscosity subsolution of (1.5) outside

0B (y). Indeed, if ¢ is a smooth function touching ¥ from above at z* ¢ 0B (y),
then ¢(z) := —¢(z) touches from below at the point z* the strict viscosity super-
solution

—9¥!(z) = g (lz — y| - 1).
Thus, by Lemma 2.20,

App = =Dy > —(hf) () = hi(—p) = hi(¢)
at the point z*, which shows the desired subsolution property of gyl

It is easy to see that g, and f[l also enjoy the properties listed above. O
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We are now in the position of showing that minimizers are trapped in between
the functions constructed in Lemmata 2.20-2.22 (an exponential decay was also
pointed out in §9 of [30]):

LEMMA 2.23. Letl >0, 8 > 0. Let u be a local minimizer for F in
{(m',mN) ERNTI xR | |2'| <1, lzn| < l}.

Assume that |u| < 1, that 0/l is suitably small, that w(0) = 0, that u(z) > 0

if v > 6 and that u(x) < 0 if zny < —6. Then, there exist suitable constants

K, K, k € (0,1] so that
ey —0) <wu(r) < gu(zy +6),

N

at any point x € [—&l, K1Y, provided that the functions above are defined at x.

Trapping a minimizer between two barriers, as in Lemma 2.23

PROOF. We proof the latter inequality, the first one being analogous. From
Theorem 1.1 of [28] and the fact that {u = 0} C {|zn]| < 6}, it easily follows that

(2.64) u(r) < =1+ 6* for any x € RN with zn < k* and |2'| < 1/2,

for some constant x* (which may depend on 6* and other universal constants).
Then, from (2.64) and the second item in Lemma 2.21,

u(z) < WY (x)

3
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where y := (0,...,0,—1/2). Let now e € SV~!, with ey > 0 and let us slide ¥¥:*
in the e-direction until it touches u. Notice indeed that there exists a suitable
constant ¢ € (0,1) so that if

(2.65) en > ¢,

then W¥*te#l does touch u for some ¢ = t(e) > 0 at some point z* = 2*(e) € [, 1]V,
that is

(2.66) u(r) < WO (r) = gl — (y + te)| — K1),
for any ¢ € Br_, 4. (y + te), being the latter the domain where W¥+*¢:5! is defined,
and
’1/,(.’12*) — \I!y+te,nl(m*) )
In the light of the first item in Lemma 2.21, we have that
U(QZ*) _ \Ily+te,l<,l($*) -0
and so, since, by our hypotheses {r | u(r) = 0} C {|zn]| < 6}, we have that
lzn] < 6.
Let us now consider, for d > 0, the point

r=1(e) = a* +dey.

Then,
e (y+te)] < [r—a*[+]2"— (y+te)| =
= d+«kl=
= Ny — TN+ Kl
< n+0+kl.

Therefore, since g; is increasing, (2.66) implies that

(2.67) u(r) < gri(en +96),

provided ¢ € By, 4.1 (y + te).

With this inequality, we are now in the position of choosing e here above in order
to infer the desired result. We proceed in the following way: take z = (z',zn) €
[l &I)N—1 x [~&l, &l] and consider two cases.

If

(2.68) {re &L &N |tn <an}n{u=0}#0,

take z* so that (z*)' = 2, u(2*) = 0 and x%, as low as possible (in particular, from
(2.68), zx < zn). Let also, as above, y := (0,...,0,—1/2). Then, choosing

—~
[\

¥ —y

T e —yl”

we have that z and z* here agree with g(e) and z*(e) constructed here above and
that (2.65) is fulfilled provided & is small enough. Thus, the desired result follows,
in this case, from (2.67).

If, on the other hand,

(2.69) {re &L AN |tn <zn}N{u=0} =0,
notice that zxy + 60 + &l > 6 + (k — &)l > 0, provided that & < x and define
y =z — (zn + 0 + kl)eny
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and
Y -y
€= .
ly* =yl
Notice also that yx + kl = —6, hence

Bu(y*) C [kl &N x (—oc, —6] C {u < 0}.

Therefore, by the first item in Lemma 2.21, we have that ¥¥*t¢~! does not touch
u for ¢t € [0, |[y* — y|]. In particular, for ¢ = |y* — y|,

u(z) < WYHerl(g) =
= ¥ rl(g) =
= gulzn +06).

This proves the desired result also in case (2.69) holds and it completes the proof
of Lemma 2.23. g

COROLLARY 2.24. Letl > 0,0 > 0. Let u be a local minimizer for F in
0= {(m’,mN) RN xR ||| <1, |zn| < l}.

Assume that |u| < 1, that /1 is suitably small, that u(0) = 0, that u(z) > 0 if
xy > 0 and that u(z) < 0 if xxy < —6. Then, there exists a suitable constant
c € (0,1] so that

(=14 50, 1 —s0) Cu().

ProOF. By Lemma 2.23 and the fact that ¢,;(t) = -1+ s; if t < —1/2 (recall
Lemma 2.20), we have that, if zy < —3kl/4,

u(z) < gulzn +6) = —1+s4,

provided that 6/l small enough. Analogously, by Lemma 2.23 and the fact that
gi(t) =1—s;if t > 1/2 (recall Lemma 2.22), we get that, if znx > 351/4,
u(z) > gy (rn —0) =1— s~

Kkl ®

The inequalities above and the continuity of u (see [15] or [34]) imply the desired
result. O

In the following, we will often slide the barriers in a given direction. More pre-
cisely, we will start from a configuration in which the barrier is above a subsolution
u and then we slide the barrier until it touches the graph of u. With some poetry,
we may think that the barrier is like a ship which moves forward until it touches
the land u: of course, the ship will touch the land with the fore, not with the aft.
Next result gives a formal justification of this fact:

LEMMA 2.25. Let u € C(Q). Let £ = (&,...,&n) € RY with |¢] = 1 and
let € := (€,0) € RN*'. Assume that 9s(y_t£.r) > U in their common domain of
definition for any t € (0,1]. Assume also that gs(y,g) touches u from above at some
point X = (x,xN41), that is, assume that gsiy,ry > u and gsy,p)(z) = u(z) =
Tn41. Then,

(x—y)-&£ > 0.
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PRrROOF. By construction,

gunsr (|7 = vl + Holyn41) = B) =
= gs(v.p)(z) =
= u(z) <
9s(v—té,R) () =
= gyN+1,R(|m —y+ 1|+ Hoyn+1) — R)

for any t € [0,1], from which

[z —y| < |z —y+ 1
for any ¢ € [0, 1]. This says that the function

Ft) =z —y+ 1€

attains its minimum in the domain [0,1] at ¢ = 0. Thus, f'(0) > 0, which gives the
desired estimate. O



CHAPTER 3

Geometry of the touching points

This section, which is very technical, follows many of the ideas in Chapter 4 of
[31] (we provide full details for the reader’s facility). The main result of this section
will be Proposition 3.14, in which we investigate the measure theoretic properties
of (an N-dimensional projection of) the set of possible touching points between
a subsolution of (1.5) and the barrier S(Y, R) introduced here above. Roughly
speaking, we will prove in Proposition 3.14 that the measure of the projection of
the “first occurrence” touching points controls the measure of the projection of the
centers of the corresponding surfaces.

For this scope, given
(3.1) €:=(&,...,En,0) € RVFL
with |¢| = 1, we define B¢ as the hyperplane in RV*! orthogonal to &, i.e.,
Pe = {X € RV [ ¢. X =0}
We also denote by m¢ the projection onto P, i.e.,
me(X) =X — (£-X)¢, VX eRNVHL,

With a slight abuse of notation, we will sometimes identify £ with its N-dimensional
projection, implicitly dropping the zero in the last coordinate, that is, we will write

¢:=(&,...,&n) ERY,
instead of (3.1).

Let now u € C'([-C*l, C*]N) be a weak Sobolev subsolution of (1.5), with
lu| < 1. Here we will fix C* suitably large (also, [ and R are fixed and suitably
large, and I/R is assumed conveniently small). Let us now define the set of first
contact points as follows. Given a compact set! A C PBe C RN | we define

A=Ay = {Y R sit.
WeA ty €R st Y=V 41,8,
9s(v4e,r) = U for any t < ty,
gs(v,R) = U
and 3z e RVTD  qt. gs(v.r)(z) = u(x)}.

IThe closure of 2 will be used to deduce closure and measurability properties of sets of
interest: see, e.g., Lemma 3.2 and Proposition 3.14 here below.

31
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We refer to 2 as the set of the “centers”. Moreover, we define
B =By = {X = (z,xn41) € RVTT st TV € A st
gs(v,R) = U and
QS(Y,R)(x) =u(z) =N}
and we refer to B as the set of “first contact points”. Roughly speaking, we are
sliding our barriers until it touches the graph of u for the first time: the set B

collects all such first occurrence contact points, while 2 collects the corresponding
centers. In this section, we will assume that

(3.2) A C [-C*/2, C*1J2)N x [—1/4,1/4]
and that

{X = (z,xn41) € RV 5t IV e RV st meY €, gs(y,ry > u and
gs(v.m(@) = u(@) | N A-CH, CHIN = 0.

We also define

B = 71'5(%) .
We also denote the graph of u by &, that is we set
(3.4) & :={xny1 =u(z)}.

We now show some properties of the above defined sets. First of all, from (3.3)
and Corollary 2.14, we have that:
LEMMA 3.1.
B C{X e RV | |zni] < 1/2}.
We now show that the compactness property of 2 is inherited by the other sets
defined above:

LemMA 3.2. Ifl/R is small enough, then ﬁl, B and B are compact sets.

PROOF. Note that B € [~C*l, C¥]N x [~1, 1], hence B is bounded. Therefore,
%8 and 2 are also bounded. Thence, we only need to show that the above sets are
closed. Let us first show that 2 is closed. For this, let Y}, € 2 converge to some
Ys. We need to show that Y, € 2A.

For this scope, note that, since 2 is closed and 7Y}, € Wg(ﬁ) C 2, we have that
Yoo € A. Also, since Y}, € 2A, we have that there exists X;, € [~C*, CH|N x[~1,1]
so that

9S(Yi,R) (zr) = u(wk)
(3.5) 9s(Yi,R) = U and
9s(Yi—t&,R) > U,
for any ¢t > 0. Of course, up to subsequence, we may assume that X} converges to
some point X,. Thus, passing to the limit (3.5), we obtain that

95 (Yoo, R) (Too) = 1(Too)
95(Yeo,B) = U and
9S(Yoo—te,R) = U
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for any t > 0. Hence, to show that Y, € 5[, we need to prove the strict inequality
in the last relation here above, i.e., we need to show that

(3.6) 9S(Voo—te,R) > U

for any ¢ > 0. We argue by contradiction: assume that there exists x4 so that
|z4] < constl and ¢; > 0, such that

95 (Yoo ty6.R) (T4) = u(my) .
Note that, by (3.3) and Corollary 2.14, |gs(v...r) (Tc0)| < 1/2, thus
(3.7 |Zoo — Yoo| > const R.
Also, by (3.2), we get that

Te(Too — Yoo)| < [oo| + [Meyoo| =
= [Too| 4 |Tey (MeYoo)| <
< constl.
Thus, from (3.7), we have that
(3.8) L(Too — Yoo, &) < constl/R.

Furthermore, from Lemma 2.25,

(Too —¥Yoo) - § 2 0.
This, (3.8) and (3.7) say that

(Too = UYoo) & = [(Too —Yoo) & =
= [Zoo — Yoo| COS L(Too — Yoo, &) >
>  const R,

provided that [/R is small enough. For this reason,

(wﬁ_yoo)'gz(woo_yoo)'f_|w00|_‘xﬂ‘ 2
(3.9) > const R — const [ >
>0,

if I/ R is small enough. Thus, from (3.9), we deduce that
5 = Yoo + 1EP = |3y — Yool 1] + 206 - (25 — Yoo) >
> |2 — Yool
As a result, we infer that
U(l"u) = 9S(Yeo—t4&,R) (ﬂfu) =

= gyoc,N+17R(|:I:u — Yoo + tﬁf‘ + Hﬂ(yoo,N+1) - R) >

> gym,N+17R(|wﬁ - y00| + HU(yOO,N+1) - R) =

= gs(vo,m () >
> u(zy).

This contradiction proves (3.6). Hence, Ya € A and therefore 2 is closed.
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Note now that once we know that B is closed, it easily follows that 8 is also
closed. Thus, to end the proof of this result, we need to prove that 8 is closed. For
this, let us consider a sequence X € B so that

lim X=Xy

k—+o0

Our aim is to show that X € B. For this, observe that, since X}, € %, there exists
Yy € A such that gs(y, g) > v and gs(y, r) () = u(2x) = T, N11. Since we proved
that §l is compact, possibly taking subsequences, we may assume that Yj tends to
Yo € A Thus, passing to the limit here above we deduce that gg(y,_ R) > u and
95(Yoo ) (Too) = U(Too) = Too,N+1, With Yo € 2. This proves that X., € B, thence
B is closed. O

LEMMA 3.3. For any X € RN+ with X € g(Y, R) and v € SV, lef?

Vg(Y’R) (X) = (_ vgg(yﬁ) ) 1) e RN+
\/1 + V9555 (@)
R UN+1 ]
X,v) = — (— N _p R
i) = g (e - i) €®,
Co
U(X7V) = —ﬁw (X V) -|-H0(:EN+]) — H0($N+] +w(X, U)) + R € R,
F(X,v) = (ﬂH- |E: """ ZZ; (X,v), TNt +w(X7V)> € RV*L.
Then,
(3.10) Y = F(X, SR (X)),

for any X € S(Y,R).
PRrROOF. For short, we will set here S = g(Y, R). Recalling Lemma B.11, we
see that there exists o € R so that
s ;
X), ...,
ﬂffy:(f(y,lv( )7 /VN

(V3 (X),...,v
Using that zy41 = 95(v.x) (z), (2.31), (2.33) and

2w
s

Azm
>

2.35), we also gather that

Co ‘
Ho(yns1) + |z —y| — R= Ho(xn11) — _R(TN+1 yn+1)” .

Hence, if w:= yn41 — N1, we gather

Co
o=|z—y|=Ho(zny1) — Ho(zny1 +w) + R — %w

This determines o, as desired, we now need to determine w. Using (2.2) (with
S0 = Yyn4+1 and s := xn41) and Definition 2.5 (with the fact that |s| < 1/2 as

20f course, ,ﬁ(Y "R)(X) is normal to g(Y, R) at the point X.
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pointed out above), we get

w = —(TN41 — YN41) =
Co (#@(ﬂwﬂ))]/p (p%]ho(mNH))l/p
_z 1 1
Co

(I%h/so,R(ﬂ?N+1))]/p ) (I%h,o(mNH))]/p

Thus, from Definition 2.12 and (2.42), we have that

R
w = = (HémR(ﬂ?NH) - H6($N+1)) =
R 1
= 2 (e~ Hilana),
CO (|veg§(y73)(w)| 0 i )
and, therefore,
S
X
v= UE( 5 e 1:7 - Hionin)
0 M(wp(X),. .., vR (X))
which determines w. O

COROLLARY 3.4. Let the notation of Lemma 3.3 holds. For X = (z,xN41) €
RN, with xx41 = u(x), let?

(3.11) VX)) = L ¢ RN,

Let X,Y € RV be so that

(3.12) gs(v,r)(@) = u(r) = wN41 .
Then, Y = F(X,v"(X)).
PRrOOF. By (3.12), we have that the graph of u and the surface S(Y, R) are
tangent at the point X, therefore
VH(X) = SO,

hence the claim follows from Lemma 3.3. O

LEMMA 3.5. In the notation of Corollary 3.4, if X € %, then there exists a
positive constant ¢ so that

c<vyp(X)<l—c.

3Note that v*(X) is a unit vector, normal to the graph of u at the point X = (z, u(z)).
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PROOF. Since, by Lemma 3.1, |[zn41] < 1/2,

1/p
(ﬁhSO,R($N+] ))

for a suitable constant C, which implies the desired claim. O

Vu(z)| = |Vgsv,r)(z)| = el1/C, C],

LEMMA 3.6. Let the notation of Lemma 3.3 and Corollary 3.4 hold. Let
Y(X) = F(X,v*(X))

and let Dx) be the differential map. Then, there exists a positive constant C such
that

|IDxY(X)| <C,
for any X € B.
ProOF. By direct inspection,
(3.13) DxY(X) = DxF(X,v"(X))+ D, F(X,v*(X)) Dxv*(X).
On the other hand, by differentiating (3.10),

(3.14) 0=DxF(X, "V (X))+ D,F(X, VB (X)) Dx SV H(X).
Moreover, if X € %, then

(3.15) Vgg(Y’R) (z) = Vu(z),

and so

v (X) = R (X))
Thus, from (3.13) and (3.14), we gather that

DxYV(X) = D, F(X, VB (X)) (DXy”(X) ~ Dy SR (X)) ,

for any X € B. By the definitions given in Lemma 3.3, one sees that

D, F(X,SY ) (X)) < const R,

and so we get from the above relation that
IDxY(X)| < const R ‘Dxl/u(X) - DXI/S(Y’R)(X)‘ .
Therefore, in the light of (3.15), Lemma B.12, Remark B.13 and Lemma 3.5,

IDxY(X)| < const R ‘DQu(az) - ngg(va)(:U)‘ .

Also, since gz touches u from above at X, we have that

S(Y,R)

(3.16) D?g~

S(v.R) () — D?u(z) is a non-negative definite matrix

and therefore

const | D?u(z) — D2g§

< A(gg(yﬁ) - u) (z).

Thence, we have obtained the following estimate:

(3.17) IDxY(X)| < constRA(gg(Y’R) - u) (x).

v.m) ()



3. GEOMETRY OF THE TOUCHING POINTS 37

No‘rlce now that u is C? near X by standard elliptic results, since Vu(x) # 0 thanks
0 (3.15). Thence, making use of (3.15), we get

AoFsy gy (@) = Agule) =

V953 @2 (A oy () — Aula)) +
(3.18) + (0= 2 V5 @I Y5y (@)

(P55 ) D*u(w)) - Vas(y, gy ()] -

We need now to distinguish two cases. If p > 2, we use Lemma 3.5 and (3.16) in
order to deduce from (3.18) that

Aty (@) — Ayu(z) >

Vo5 @) (A () — Au(a) >

const (A%(Y,R) (z) — Au(m)) .

On the other hand, if 1 < p < 2, (3.18), Lemma 3.5 and (3.16) give that
Aty (@) = Agule) >

Y

v

(3.19)

> Y05y @12 (Agsy (@) = Aul@)) -
= (2= 1) IV @12 D205, (@) — D2ula)] >
> [Vgsy @ P2 1= (2-p)] (Agg(yﬂ) (2) - Au(x)) >

(3.20) > const (p— 1) (Agg(m) (z) — Au(m)) .

In any case, for any p € (1,+00), (3.19) and (3.20) give that
Aty (@) — Agulz) >

(3.21) > const (A%(Y,R) (z) — Au(az)) .

Furthermore, exploiting Proposition 2.18 and the fact that w is a subsolution of
(1.5), we have that

(322) Apgg(yJ{) ( ) Ap“( ) S

The desired result now follows from (3.17), (3.21) an

D—?dIQ

(3.22). m

Recalling (3.4), we define
6 :=)(®).
The construction of A and B easily implies the following observation:

LeEMMA 3.7. A and B belong to Lipschitz surfaces. More precisely, B lies in
& while A lies in &.

The next observation will say that 2A and B are graphs with respect to the
&-direction:

LEMMA 3.8. m¢ is injective on A and on B.
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PROOF. m¢ in injective on A by construction. Let us show that is also injective
on B. Assume, by contradiction, that X1 € B and X® = X 4 7¢ € B, with
7> 0. Let also YV and Y® be the corresponding centers in 2, i.e., for i = 1,2,
let V() € 9 be so that 9s(v(, gy touches u for the first time at X ().

Since £N+1 = 0,

(1) (2)

TNt1 = TNy

therefore,

gS(Y(l),R)(ﬂf(l)) = 335\]/)+1 = U(m(l)) =

(2)

(3.23) ) - .
= TNy = Is(y@,R) () = u(z').

If now we consider
y =Y® — T
it follows that
(3:24)  gsr.m(@M)) = gsver e my (8P = TE) = ggynr gy (zP) = u(=).
On the other hand, since Y € 2, 9gs(v,r) > U, in contradiction with (3.24). O

Given X € RV, we now define
(3.25) Yx:={Z| X eS(Z R)}.
In other words, given a point X, X is the surface containing all the centers of the
surfaces S(-, R) to which X belongs. Let us now investigate the properties of ¥ x:
LEMMA 3.9. Let Y be as in Lemma 3.6. Then, Y(X) € Sx for any X € B.

PROOF. Since X € B, there exists Y so that (3.12) holds. Then, by Corol-
lary 3.4,
Sx 3Y = F(X,v"(X)) = Y(X).
g

We denote by v*X(Z) the unit normal vector to the surface ¥ x at a point
7Z € Yx (in a fixed orientation). Such definition is well posed, since Y x is a
Lipschitz surface, as we show here below. Also, we can express v>X in terms of the
normal to S(Y, R), according to the following result:

LEMMA 3.10. Let Y be as in Lemma 3.6 and let X € B. Then Yx is a
Lipschitz rotation surface with axis parallel to enyy1 and passing through X . Also,

v>x (Y(X)) belongs to the space spanned by en,1 and vS(X)H) (X)),
PRrROOF. Let us first show that X x is a Lipschitz rotation surface. By (2.35),
we have that Z € Y x if and only if
TN+ = 954 R) (2) = penyr.r(Ho(2ni1) + ]2 — 2| — R),
that is, by (2.33) and (2.31), if and only if
Co

Hy(rnya) — ﬁ(wN+1 —zn41)? = Ho(zn41) + |z — 2| - R.

We now define

57szv+1,1:f’.(<:) = HU(C) + %(-’I:N+l - C)Q .
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Then, $) is strictly increasing in [~1/2,1/2]; thus Z € Y x if and only if

ener = 9,0, g (Holonsn) + Rz - a])

This proves the rotational symmetry and the Lipschtiz properties of ¥ x.

Consequently, by Lemma B.10, we gather that v*x()(X)) is in the space
spanned by (m.y,,V(X) — z) and enx41. But PSVX).R) (X) is also in the space
spanned by (7ey,,Y(X) — ) and en41, as follows by the radial symmetry of
S(Y(X), R) and Lemma B.10 again; moreover, PSVX).R) (X) is not parallel to ey 41
(because |zn41] < 1/2 due to Lemma 3.1 and so Vgs(y(x),r)(x) # 0). Therefore,
v¥x(Y(X)) belongs to the space spanned by LS(X).R) (X) and eny1.

LEMMA 3.11. There exists a positive constant C' such that
> (V(X)) - €| < OP*(X) - ¢,
for any X € B.
PROOF. From Lemma 3.10, for any X € %, we have that
(3.26) VX (VX)) = ab + Ben i,
for some @ = a(X) and 8 = B(X) € R, where we denoted
b= (V’IS“(y(xm) (X),..., V0B (X),o) _
Obviously, since X € %,
b= (y}‘(X)7...7y}<,(X),0).
Thence, by exploiting Lemma 3.5, we see that
72 = 1 AR > 1 - (1) > c.

1

Thus, (3.26) implies that

cla] < Jav- 9| =
= (o) - senia) 9| =
= o) <
< 1
that is
|a] < const.

Hence, being En41 = 0, (3.26) gives that

V=X (V(X)) - €| = |ap - €] < const |i - &| = const [v" - €].

LEMMA 3.12. Let X € &, with |xny1| < 1/2. Assume that
Y is above Xx (with respect to the eny1-direction).
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PROOF. Assume that (y,yn,,) € ¥Xx. We need to show that yy_; < yni1.
For this purpose, note that, by construction, X € S((y,yx,,), R), which says that
2
(3.27) 'qg((y,y;‘\prl
Fix now R, z and y. For |{| < 1/2, we define

).R) (#) = wnt1 =u(z) < 95y R) (z).

Recalling (2.35) and (2.31), we have that

C
Ho(£(0)) = 57(C— F(Q)* = Ho(Q) + o — 3| — R
Differentiating with respect to (, we get that
const

Hy(£(©) £/(©) 2 Hy(Q) - <

In particular, since by definition |f({)| < 1/2, we get that f'({) > 0 if R is large
enough, thence f is increasing. Since, by (3.27), we have that

Fn) < flynve),
we deduce that y§; < yn1, as desired. O

LEMMA 3.13. Let X € B. Then 2 touches Lx from above at Y(X).

ProoOF. First, note that
V(X) e Y(B)Cal.
On the other hand, Y(X) € ¥x by Lemma 3.9. Thus, to end the proof of this
result we need to show that 2 is above ¥ x (with respect to the enq-direction).

For this purpose, take Y € 2A. Then, by construction, g5 > u (and equality

(Y,R)
holds at some point). Thus, by Lemma 3.12, Y is above Xx. g

The following is the main result of this section, in which a measure estimate
for contact points is given:
PROPOSITION 3.14. Let 1/¢ <1 < ¢R, for a suitably small positive constant c.
Assume (3.2) and (3.3). Assume also that 2 is the closure of an open set and that
for any Y € A there exist t € R and x € RV, such that

(3.28)
gs(v+ee,r) (T) < u(z).

Then, denoting the N -dimensional Lebesgue measure by £V, we have that
N (A) < C eN(B),
for a suitable positive universal constant C.

Proor. Note that 2 is closed by hypothesis and so is B thanks to Lemma 3.2;

in particular, 2 and 9B are measurable sets. Also, by (3.28), A = m¢(A). What is

more, since 2 is the closure of an open set, Lemma 3.7 and Lemma 3.8 say that 2A
is a Lipschitz surface which is also a continuous* graph over 2 in the ¢-direction.

4 The continuity of (mg|_)~" follows from the following elementary property: if f: K —»
A

F(K) is continuous and injective and K is compact, then f~! is continuous.
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In particular, the normal v® is well defined. Thanks to Lemma 3.13, we also have
that

VS V(X)) = v (V)
for any X € B, provided that me(V(X)) lies in the interior of A (up to an orientation
choice). Therefore, by Lemma 3.11,

(3.29) WA (VX)) - €] < const[v"(X) - €],

where v%(X) is the normal to & at X, for any X € B, provided that e (Y(X)) lies
in the interior of A. We denote by B’ this set, that is

B = { X € B, with me(Y(X)) in the interior of A } .

Also, applying the divergence theorem to (the interior of) Ql we have that

(3.30) / wi g,
where the above is a surface integral.
For £ > 0, let us now define
B. = |J B.(V)ns,
Xe®B'
where &, as in (3.4), denotes the graph of u. Then, B, is a Lipschitz surface
contained in & . By the divergence theorem,

SN(WE(%E)) = /~ VB g,

where v®¢ is the external normal of the surface B.. Obviously, up to the sign, v
agrees with v*. Sending ¢ to zero, we thus get

B

(3.31) eV (B) = sN(wf(%)) > sN(wE(%')) - /~ vEe g

Also, by Lemma 3.8, the exterior normal v®+ in B has the signed assigned by the
property that v2< - ¢ > 0. Therefore,

€| =P g = v €

in %B. Thus, by (3.31), we get that
(3.32) ) > [t

Also, by construction, ) sends B into ﬁl hence, by (3.30), the change of variables
formula (see, e.g., page 99 in [18]) and Lemma 3.6, we get that

< [WAr)-gav <

(3.33) [ PR - €l det DY(0)dX <

IN

AN
Q
o
=
17}
=+

/~ PA(X)) - €] dX .
5
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Thence, from (3.32), (3.29) and (3.33), we have that

N () const /~, |uﬁ(y(X)) “EldX

IN

IN

const/~ [v*(X) - £l dX
< gN(®B).



CHAPTER 4

Measure theoretic results

This section collects some measure theory lemmata, which are extensions of
analogous results in [31]. These lemmata will be used in the sequel for estimating
the measure of the projection of the set in which a suitable barrier touches a minimal
solution of (1.5). For the reader’s convenience, the proofs of the lemmata of this
section are deferred to the Appendix.

Given two vectors v and w, we define Z(v,w) to be the angle' between these
vectors, i.e.,

v-w
Z(v,w) := arccos ——— .
o] [w]
By elementary geometric consideration, if |v| = |w| = 1,
(4.1) lv —w| < Z(v,w).
We also define, for [ > 0,

L = {(a:’70,:nN+1)€]RN’]x]RxRH:UNH\Sl/Q},

Q = {@ 0o er |z <1},
Of course,
£N(Q;) = const IV,
For X = (21,...,2n41) € RN and 1 < i < N + 1, we define

X = (r1,.. ., 21,0, Tit1, TN41) -

Also, given X € RV*!, we will often write X = (2',zn,2n41) € RVT! x R x R,
i.e., the notation z' will often denote the first (N — 1) entries of X.

Then, with the above notation, we have the following results:

LEMMA 4.1. Let u be a solution of (1.5). Suppose that S(Y, R) touches the
graph of u by above at Xo = (wo, u(wo)) = (0, gs(v,r)(T0)). Assume that

Vu(zg) ™

4.2 |l ——=.,¢ < —.
(42 (S o) <5
Then, there exists a universal ag > 1 so that, for any a > ag, there exist a universal
k > 1 and a suitable C > 1, which depends only on a and on universal constants,
such that the following holds. For any point Z € L N By(nnXo) there exists x
satisfying the following properties:

o |z — x| < Ka,

e 7 =nn(x, u(z)),

"Valw) o C
Ta(ay) < o)) — Holulzo)) + 7.

o (& 0)

IAs usual, the angle of the arccos ranges between 0 and .

43
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provided that R is large enough (possibly in dependence of a).

LEMMA 4.2. Let u be a C'-subsolution of (1.5) in {|z'| < I} x {|zn| < I}.
Assume that S(Yo, R) is above the graph of u and that S(Yo, R) touches the graph
of u at the point (zo, u(xg)). Suppose that

o |u(zg)| < 1/2, |xon| < 1/4, q := |xgy| < 1/4;
y Vu(zo) o T
|Vu(zo)| -8

Then, there exist universal constants Cy, Cy > 1> ¢ > 0 such that, if

,EN

q > C4 and 4\3/§SISCR,

the following holds. Let = be the set of points (x, u(x)) € RV x R satisfying the
following properties:

o '] <q/15, [u@)| <1/2, [r —@0| <2q;
e there exists Y € RN x [—1/4, 1/4] such that S(Y, R/Cs) is above u and it
touches u at (r, u(r));
Lo

Vu(r) Vu(
‘<|Vu<>| V(o)

Vu(ry)

(o)

e (x—x0)-
Then,
e (mn(E)) > gt

LEMMA 4.3. Let C > 2, ¢ > 0. Let us consider, for k € N, a family of sets
Dy C L, so that Dy, C Dy41 for any k € N. Assume that the following properties
hold, for somel > Ca > 2a > ¢ > 0:

(P1) DoN Qi # 0;
(P2) for any Zo € D, N Qo and any Zy € L, with a < |Zy — Zy| < 21, one has
that
2 (Diss N Bz z0(70)) 2 eV (L0 Bz, 7(71)) -
Define, for any k € N
(4.3) By = {Z € L| dist (Z,Dy) < a}.

Then, there exists ag > 1 > cg > 0 universal constants and ¢* > 0, which depends
only on a, ¢ and universal constants, such that

M@\ E) < (- V@,

provided that a > ag and ¢, C~' € (0, cp).
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N+1

1/2

The covering sets of Lemma 4.3

Full details of the proofs of the above lemmata will be provided in the Appendix.






CHAPTER 5

Estimates on the measure of the projection of the
contact set

We now show how to use Proposition 3.14 and the measure theoretic lemmata
stated in §4 in order to deduce a measure estimate on the projection of the contact
sets between barriers and minimal solutions of (1.5). To this aim, we first need an
estimate on the contact sets obtained by touching u by above “for the first time”,
as dealt with by the following result.

LemMA 5.1. Let C, C'" > 1 be suitably large constants. Let K, := {|z'| <
Cl}y x {|lzn| < Cl}. Let u € WYP(K)) be a local minimizer for F in K;. Assume
that w(0) = 0 and that u(z) < 0 if vy < —6, for some 6 > 0. Define Rq :=1?/(C#).
Let E be the set of points (x, u(x)) € K| satisfying:
<1 u(@)] <1/2;
there exists Y € RN x [—1/4, 1/4] such that S(Y, Ry) is above the graph of
win {|z'| < C'l} x{|zn| < C'l} and it touches the graph of u at (r, u(x));

Vu(r) 8l

;EN o 7

[Vu(x)] ~ R

ex < 0+ Hofu(e))

Then, there ezists a universal constant ¢ > 0 such that, for any 8y > 0 there exists
eo(fo) > 0 for which, if
?SEO(HO): 0 >0,
one has that
eN (WN(E)) > eIV
ProOF. Exploiting Lemma 2.23, we have that, if C' is large enough,
(5.1) u(z) < gi(zn +96)
for any x so that |2'| < C'l and |zy| < C'l, with C' large if so is C. Let us define
(5.2) Ry == 1?/(CH)
and, for C" > 0 conveniently large, let us consider the set
O = {Y = (y,yn41) € R¥* such that
' <1C", Jynsa] <1/4
and so that, if (0,...,0,zn,0) € S(Y, Ry) then zn <0 } .

47
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We claim that

gs(v,ry) () > gi(zn +0) for any V' € }5,

5.3
(5:3) provided that = € K; and |2'| € (I, C'l).

To prove this, let Y € O and define
Y = {gs(v,r) = 0} = S(Y, Ro) N {wn41 =0},
Then, the last condition in the definition of O reads
(5.4) if (0,...,0,2y5) € 3, then zy < 0.
Recalling the definitions on page 14 and (2.39), one sees that ¥ is an (N — 1)-

dimensional sphere, namely
== {le -yl =)
with

Co -
(5.5) r = Ro— Ho(yn+1) — —OyJZ\H-l :
2Rg

Let us now estimate r by noticing that, if I (and therefore Ry) is suitably large, we
have that

21? 2
@ = gR(] S R() — const S
(5.6) <r<
3 312
< Ry + const < §R0 =300

Notice also that z in (5.3) must lie in the intersection between K; and the domain
of gs(v,R,), otherwise there is nothing to prove; therefore,

|z — y| < const (C'l + Ry) < const Ry,
and so, by (5.6),

(5.7) |z —y| < constr.

We now point out that ¥ is below the hyperplane zy = /8, that is

(5.8) xn < 0/8, for any z € X.
In order to prove (5.8), let
y:=y—yer— - —ynen-1 = (0,...,0,yn),
so that, by the definition of 55,
_ I
(5.9) ly =9l = ly'| < el

which is less than r due to (5.6), provided that /I is small enough. Thus, let > 0
be so that

Y = g—l—feN € X.
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The geometry related with ¢

Then § = (0,...,0,yn +t), thus, from (5.4),

(5.10) yn < —1.

Also, from (5.9),
a I 1\’
tz_rz_|y—11227"2—<ﬁ> 5

therefore, in the light of (5.10) and (5.6),
yv+r < r—i <

]2
11 < - =1 <
(5.11) < reyfr (0)
0
< =,
< 30

provided that C" is large enough, completing the proof of (5.8).

Let us now go back to the proof of (5.3). For this, we introduce the following

notation: define

di(z) = |o—yl-r,
dy(z) = zny+9.
Let now z be as requested in (5.3). From (5.7),
(5.12) 0 < r+di(z) < constr.
Also,

I 2
= > -y > - = > ZI
|z M,WI\M,Q > =



50 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SET

if ' > 10, thus,

2
(r—l—d1(az)) = ‘$_y‘2:
= |z’ —y)”+|zny —yn]* >
4
(5.1 > g5+ lew —unl?;

25
thus, from (5.13) and (5.11), we infer that

2 4
N < yN+\/(r+d1(m)) 72—5l2§

< gr+\/(r+d1(m))2%l2.

This, (5.12) and (5.6) imply that
N < —20 + dy ()

and, therefore,

di(z) > oy +20 =da(x) + 6,
proving that
(5.14) dy >dy+ 6
in K;n{lz'l € (I,C'])}.

We now observe that

2C
(515) HyN+1,Ro (9) - HyN+1,Ro (O) < HU(S) + R—O ’
for any s € [sg,, 1]. To prove this, recall Definition 2.8 to get
1
T (p=1)r
HyN+1,Ro (S) - HyN+1,Ro (0) = / RN d<7
0 (phse,r(C))?

and use Definition 2.5 and (2.2) to deduce (5.15).
Therefore, from (5.15) and (5.2), if I is large enough, we get that

0
(516) HZIN+17R0 (S) - HZIN+17R0 (0) < HO(S) + 5 .

Notice now that, by (2.7), (5.2) and the definition of s; given in Lemma 2.20,
we have that

const const §1/P

SROZ*].-Fw—* +T

> -1+ 5.

In particular, the function

h’yN+1,Ro (9) - h,(q)
is defined for any s so that

sp, = max{sgp,, —1+ s} <s <1.
Also, if ¢, > 0 is suitably small (possibly in dependence also of 6y) and
SRy <8< —1 +c*/l]/p,
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we infer from (2.6), the definition of h; given in Lemma 2.20 and the one of hg, g
given on page 10 that

hZIN+17Ro (S) - hl(s) =

~

C
= —ho(sg) — R—z(s—sRO) +

c
+ho(st = 1) + =7 (1 +5)° = sf) <

< _Rio 4 e constl 4 6;65 <
that is
(5.17) By sr 10 (8) < hu(s) for any s € [sg,, —1 4 c./1'/7],
provided that ¢, is small enough. Analogously, one can show that
(5.18) Bys oo (5) > hu(s) for any s € [1— c. /177, 1],
From (5.17), (5.18) and the definitions of Hy,,, r, and H; (see pages 13 and 24),

we deduce that the maximum of the function
[SR07 1] 58 = H.UN+17R0 (S) - Hl(s)

occurs for |s| < 1 — ¢, /I'/P. For these values of s, estimate (2.61) in Lemma 2.20
implies that

const
Hols) < H(s)— < log(1 — Js]) <
1/p
< His) + 2% 10t <
Cy
[
< Hs)+ 5,

provided that [ is suitably large. Thus, summarizing the above observations and
using (5.16), we have that

max (HyN+1,Ro — Hl) =

[srq,1]
= H — H) <
[71+c*/llr§lp;?}](,c*/l1/p] ( yn+1.Ro 1
0
< Ho — H) ‘i H 0) <
[71+C*/llrn/pa7‘)](,c*/l1/p] ( 0 1)+ D) + .UN+1;RO( ) >
Oy 0
< E + 5 + HZIN+17R0(O) .
Hence,
(5.19) Hypor 2o (8) = Hyn 1 10 (0) < H(s) + 6,

for any s € (sg,, 1]. From (5.19), by inverting H, we have

N+1,Ro

5 < Gyni1,Ro (HyNJtho (0) + Hl(s) + 0) s
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for any s € (sg,, 1] and so, for s := g;(dy (z) — ), we get

91(d (@) = 0) < Gy o (1 (@) + Hynyr,,(0))

Therefore, recalling also (5.14),
Jyn+1,Ro (|T - U| —r+ HyN+1,Ro (0)) =

Gunerotta (1 (2) + Hyn 10 (0)) >
gi(di(z) — 0) >
gi(dz(z)) =
= gqzy +90).
This completes the proof of (5.3).

By (5.3) and (5.1), we have that
(5.20) N
gs(v,ry) () > u(zx) for any YV € O, provided that |z'| € (I,C'l) and |zx| < C'I.

v Vv

Let now Z be the set of (r,u(r))’s described in the statement of Lemma 5.1.
Let us also define = := 7., =2 and O := 7., O. Of course,

o= {y = (y',0,yn+1) € RN such that |y'| < 1/C", |yni1] < 1/4},

therefore
(5.21) eV (D) > const IV,

Forany Y € O, from (5.1) and the fact that S(Y, Ry) takes value 1 on the boundary
of its domain of definition, we know that S(Y — ten, Rg) is above the graph of
u in the intersection between {|z'| < C'l} x {Jzn| < C'l} and the domain of
definition of S(Y — ten, Rp), provided that ¢ is large enough. Also, by looking at
the construction of § on page 48, it follows easily, by decreasing ¢, that there will
be a suitable t* for which S(Y — t*en, Rg) touches for the first time the graph of u,
say at the point X. We denote by ® the set of such touching points X’s and define
also & := 7reN0~5.
We claim that

(5.22) GC=.

For proving this, take any XebBbea touching point between S(Y — t*en, Rq) and
the graph of u, as described above. Let us observe that, since u(0) = 0, the first
touching property of X implies that if X = (0,...,2n,0) € S(Y —t*en, Ro), then
Zn <0, hence

5 3Y —tfen ::?.
From this and (5.20), we gather that

(5.23) |7’ < 1.
We now show that
(5.24) Z is in the interior of {|z'| < C'l} x {|zn| < C'l} .

Note that, thanks to (5.23), this will be proved if we show that |Zx| < C'I.
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Let us first show that 5 > —C'l. If, by contradiction, Zny = —C'l, we gather
from (2.7) and (5.1) that

conste(l)/p 1 const <
e = Tt RS
< SRy <
S qS(;7R0)(%) =
= u(@ <
< @y +0) <
C'l
< a- 2 )=

—1+e const |

)

which is a contradiction for large [. This shows that Ty > —C'l and thus we now
show that Zny < C'l, in order to complete the proof of (5.24). That Zny < C'l
will be actually obtained from the fact that the domain of S(Y, Ry) is below the
hyperplane {zx < 1/2}. To prove this, first note that, by (5.11), we have that

~ 6
(5.25) n<-r+l,
Also, if 1 is in the domain of S(V, Ry), we have that
v < YN+ HZNH,RO(U — Ho(yn+1) + Ro -

Thus, (5.25), (5.5) and (2.16) yield that

3

l
v < const (1 + log Rg) < 3

hence the domain of S(Y, Ry) is below {zn < 1/2} and therefore Zn < C'l.
This ends the proof of (5.24).
Proposition 2.13 and (5.24) yield that

(5.26) (@] < 1/2.

We now notice that, from (5.26) and (2.20),

gS(}N’,Rg) (i) -

= g;N+17R0 (HO(:UN+1) + ‘:1\: - ;[j| - RO) 5

and so, by Definition 2.11,
Ho(yn+41) + 12—yl — Ro > H~ (=1/2),

- yn+1,Ro

from which we deduce that

(5.27) |Z —y| > Ro — const > Ry/2,
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provided that | (and so Ry) is large enough. On the other hand, exploiting (5.23)
and the definition of 9 given on page 47, we have that

IR l
2" =y <[F|+[§| <+ ;<2

C’I/
Hence, from (5.27),
I -
[z —yP? [z —yP?
1612
= 1- D2
Ry

and, therefore,

A EE )] > el ()]

TN — Un|?

z -y

v
—

that is
T—y 81
(5.25) (2L o) < 1
Moreover, from the touching property of X and (2.20), we have that
Vu(z) V55 8y (®)
z — 1 EN = [/ eEN =
Vu(@) 0520y )]

(=)

ISh)
v

Therefore, from (5.28),

Vu(T) 81
5.29 | ——=, e < —.
(529 <Vu¢w|'€N> = TR
Furthermore, recalling (2.39),
Tnanre @) = Hyo g (0) =
- H’?;N+11R0 (gS(XN’,Rg)(i)) - H§N+1 Ro (0) =

- H;N+1,Ro (gS(SZRO)(w)) + Q—R(]yN+1 )
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thus, from (2.33) and (2.35)

3

(U(?)) B §N+17R0 (0) =

= Hy . g (P;N+17RO(H0@N+1) + |7 -yl - Ro)) +

Co
+2—RO.UN+1 =

yn+1,Ro

= Ho(yn+1) + |2 -yl — Ro + TR UN+1
Hence, by (5.5)

H;N+17R0 (“(/Tv)) - H;N+11RO (O) =

(5.30) = |lz—y|l—r.
We now claim that

- _ 0
(5.31) Ty < Ho(u(x)) + i

For proving this, we denote by Z the intersection point between the sphere {gs(; Ro) =
0} and the half-line from gy towards Z. Then, by (5.8)

Fn < 0/8.

We now distinguish two cases: either 7 is inside or it is outside the sphere {gg(g Ro) =
0}. If it is inside, then

lz-yl-r = |z—-2|>
> N —7Nn| >
> IN —ZIN>
> Gy —6/8.

Thus, from the latter estimate, (5.30) and (5.15), we have that

_ o 0
iy < |Jz—-ygl-r+-=
8
= T 0 6<
= Hy (@) - Hy, 0+ ¢ <
< Hg(u,(%))-l—%+g.

Therefore, if I (and so Ry) is large enough, (5.31) follows in this case. Let us now
deal with the case in which Z is outside the sphere {gg(;, Ro) = 0}. By (5.29), we

infer in this case that Ty > Zn and that
In—2Zy = |Znv—Zn|=

- m—zm%(aa—ﬁem)z

\

=)
|

=
7N\
—
\

o

S
o% a

Y
N—
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Therefore, (5.30) and (5.15) yield that
20,

Hy(u(z)) + T > |ly—z/-r=
0
- 7o >
IN — TN
> 1— const 1?2 —
Rp
L BN (6/8)
— 1 const |
Ry

which easily implies (5.31) in this case. This completes the proof of (5.31).

[1IR

Thus, in the light of (5.23), (5.26), (5.29) and (5.31), we have that X €

therefore, that 7., X € E, ending the proof of (5.22).

and,

Now we exploit Proposition 3.14, applied to & and ©: from that, (5.22) and
(5.21),

eNE) > V) >
> const £V (O) >
> const{V !,
This completes the proof of Lemma 5.1. O

The next one is the main result of this section:

PROPOSITION 5.2. Let C be a suitably large constant. Let K; := {|z'| < C'l} x
{len] < Cl}. Let uw € WHP(K;) be a local minimizer for F in K;. Assume that
u(0) = 0 and that u(z) < 0 if xx < —6, for some § > 0. Fix C >0 and k € N. Let
= be the set of points (xr, u(x)) satisfying the following properties:

e ‘I’| S ll ‘IN+]‘ S 1/2:
o 1n < CFO+ Ho(u(r)).
Then, there exist positive universal constants ¢ and ¢ for which the following holds.
For any 6y > 0, there exists e0(0q) > 0, so that, if
0 c*ké
Sa’fo(eo), 9290 and TS67

then
e¥(nn(E) > (1= (- ") V(@)

Ry C~%, where C is a positive universal constant, to be chosen suitably large in the
sequel. We define ®; C RV*! as the set of points (r, u(x)) satisfying the following
properties:
o [V < U2, Jule)] < 1/2
e there exists Y € RV x [—1/4, 1/4] so that S(Y, Ry) is above the graph
of uin {|2'| < Cl/2} x {|zn| < C1/2} and it touches the graph of u at

(x, u(x));

Vu(r) ) ckli
/ en | < —;
<|VU(x)I‘PN = Ry

PROOF. Let Ry := 12/(CH), with C suitably large. For any k € N, let Ry :=
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cko
o o < S+ Holul).
We also set Dy := wn (D). We would like to apply Lemma 4.3 to Dy, and we
therefore now prove that Dy, fulfills the assumption of Lemma 4.3. For this, first of
all, notice that, by Lemma 5.1,

(5.32) Don@#0.

Let us now fix Z; € Dy N Q9. By construction, there exists (zg, u(zy)) € Dy so
that Zy = wn(zg, u(zy)). Take also Z € L, with a < |Z — Z;| =: ¢ < 2l, and
suppose a suitably large. We claim that

(5.33) oN (D,m N Bq/m(Z)) > oN (L N Bq(Z)) .

In order to prove the above inequality, we denote by C>0a constant, to be suitably
chosen in the sequel, and we define Z as the set of points (r,u(z)) satisfying the
following properties:
o [t —2'[ <q/15, [r —mk| <AL [uy)] < 1/2;
e there exists Y € RV x [—1/4, 1/4] so that S(Y, Ryy1) is above the graph
of win {|z' — 2’| < C1/2} x {|]zn| < C1/2} and it touches the graph of u
at (x, u(r));

. Vu(r) Vu(zy) cc*i _
(e |Vu<xk)>A<k o
¢ ) S € S Ho(u@) — Holu(n)

Notice that, by means' of Lemma 4.2 (applied in {|z' — 2’| < 81} x {|zn]| < 81}),
(5.34) £V (xn(E) N Byj1o(2)) > constg¥ ' > const £V (L N BQ(Z)) .

Let us now deduce some easy properties of 2. First of all, by the definitions of 2
and Dy, we have that, for any (z, u(z)) € Z,

‘ (gg N) =/ <|§E8| ’ |§E§> e <% N) :

cck1  Cki
< + =<
Ry Ry
Ck+]l
5.35 < ,
(5.35) < T

Twe apply here Lemma 4.2 with Rj, replacing what there was denoted by R. Note also that

VIZ - 72 —4 < |z}, — 2] < \|Z— 22 + 4,

thus
11

d-ale (s59 159)
ko ok 10" 10°)"
if a is large enough. Finally, observe that, by construction,

TN () C Bq/lO(Z)'
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provided that C is big enough with respect to C. Furthermore, by (4.1) and the
definition of Dy,

Vu(zy) Vu(zy)
Y OARR) < L =L <
‘|Vu(mk)| NS <|V7l‘(mk)|‘eN B
C*1
(5.36) o
and so
Vu(zy) 4C* 12
] _ o —7 <
(5.37) ‘(; Ty) (v“(mk) €N> S TR

provided that |r — 2| < 4l (and observe that this condition is fulfilled by any
(r, u(x)) € ). By using the latter inequality and the definition of Z, it also follows

e Vu(zy) Vu(zy)
b= ) ¥ \(*‘”“”' (S~ )] <

0t | achp
< +

- 4R, Ry
for any (r, u(x)) € Z; from (5.38), the definition of Ry and the assumptions of

Proposition 5.2, we thus deduce thét

Crk+1 0
<
- 4
for any (r, u(xr)) € Z, if C is large enough. Therefore, thanks to (5.35) and (5.39),
we have that = C @ y;1. From this and (5.34), we gather (5.33), as desired. This
says that the hypotheses of Lemma 4.3 are fulfilled by Dy, thus we will freely use
such result in what follows.

IN

(x—ak) - en

(5.38)

+ Ho(u(r)) — Ho(u(zx))

(5.39) IN + Ho(u(x))

Let now Ej, be as in (4.3). From Lemma 4.1, and taking C suitably large,
we deduce that, for each Z € Ej, there exists z = z(Z) and zy, = z¢(Z) so that
(zg, u(zg)) € Dy, |z — x| < C, Z = 7y (2, u(x)) and

Vu(zy) const C
(5.40) (. — ) - V(e < Ho(u(z)) — Ho(u(zr)) + R
Thus, from (5.37) and (5.40),
Vu(zy) Vu(zy)
maen < (omn) oy + e (e o) <
const O ok 2
< Hy(u(w) - Holu(a)) + 2510+ 2

which implies, thanks to the definition of Ry and the assumptions of Proposition 5.2,
that
zy < CHT1 O+ Hy(u(z)).
Hence, if = is as defined here above in the statement of Proposition 5.2,
(5.41) E, C =.
Also, by Lemma 4.3,

(5.42) N (Bn@) > (- (1-09" V@),
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for some ¢ € (0,1). Thus, the claim in Proposition 5.2 follows from (5.41) and
(5.42). O






CHAPTER 6

Proof of Theorem 1.1

First of all, note that u must attain both positive and negative values thanks
to the density estimates in [28]. Thus, possibly replacing | by C'I, we may assume
that u is a local minimizer for F in {|z'| < C'l} x {Jzn| < C'1}, that u(0) = 0 and
that

(6.1) u(z) >0if xnxy > 6 >0and u(z) < 0if zny < —6.

The strategy for proving Theorem 1.1 consists in assuming, by contradiction, that
there exists a point in {u = 0} N {|z'| < 1/4} close to xny = —f. The contradiction
will be, then, that the energy of u is larger than it should.

The first step in proving Theorem 1.1 is thus the following: we assume, by
contradicting Theorem 1.1, that

{fu=0}n{]z'| < C ™I/} n{zn < (=1 +C F/4)8} £0,

with kg € N large and % small (possibly in dependence of kq). We also set
Sy = {(’I‘,’U(’I‘)) €RY xR s.t.
oy < Hou() ~0/2, |a' — (") <1/2, |u(x)] <1/2}.

Then, we claim that
(6.2) N (nx(Z0)) > (1 (1—)™) £V ( Q).
for a suitable constant ¢y > 0. To prove this, let

e {u=0Yn{|z'| < C™I/4}n{zn < (—14 C */4)6}

Define 6* := §/(4C*0) and v(z) := u(x + z*). Notice that v(0) = 0 and v(z) < 0
if zny < —6*. Also v is a local minimizer for F. Then, if we define

[1]

o= {(z,v(z)) eRY xR st. |2 <1/2
on < Ho(v(2)) + CRg*, Ju(z)] < 1/2},
we deduce by Proposition 5.2 that
2N (v (E) > (- (1= c)™) £V (Qupa).
By elementary computations, one also sees that
=+ (2%,0) C 5y,

thus proving (6.2).
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Let now
= = {(:U,u(:v)) e RY xR s.t.
N > Holu(w) ~ 0/4, |¢'| <12, |u(@)| <1/2}.
Then, we claim that
(6.3) 2N (v (E1) > ¥ (@)

for a suitable constant ¢; > 0, provided that 6/ is suitably small. To prove (6.3)
let

u(zr) = ﬂ(a:'ia:;v) = —u(zr',-zn),
ho(S) : = ho(—S) .

Then, Eo satisfies the same assumptions as hg and u is a local minimizer for the
functional

~ P
F(v) := / Vol + ho(v) .
. p
Hence, we may apply Lemma 5.1 with hy replaced by 77,0, and deduce that, if
g = {(w,ﬂ(m)) e RY xR s.t.
on < Ho(@(e) +0/4, |2/ <1/2, Ju(x)] < 1/2},

then

enN (7TN(51)) > const N,
From this, (6.3) easily follows.

We now make some remarks on the measure properties of the above sets. First
note that, by construction,

therefore

A

SN(T"N(EO)\QZ/Z) < SN(Q%Jr ! \Qz/2)§

acko
const [N -1
S omom S
const,

N
N Dk L£5(Quy2) -

This and (6.2), by assuming ko large enough, yield that

IN

const

eN ('”N(EO) n Qz/2) 2(1 —(1—co)* — m) eN(Q1)2) >
C1 N
> (1 - 5) £5(Quy2) 5
where ¢; is the constant introduced here above. Thus,

N (Ql/2 \ (7 (E0) N Qz/2)) < % LN (Quy2) -
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From this, (6.3) and the fact that 7y (Z1) C @2, we gather that
1 €V (Qyy2) < &N (WN(El) <
5

N (E1) N (7 (E0) N Ql/?))+

2
that is
- — c

(6.4) vl (WN(:O) N 7TN(51)) > ?] N (Qu)2) -
On the other hand,

- 0 0
(6.5) EoNE € —ZﬁﬂfN—Ho(U(m))S—i =0.
Let now

0 = {Z €EQp | 3T #£2, st. Z = 7TN(57,11,(57)) =N (f“,u(f"))}

By (6.5), we have that
Y D WN(EO) n Tl'N(El) s
thus, due to (6.4),

(6.6) eN(B) > constIM .

With these inequalities in hand, we now start to estimate the functional, in
order to show that the energy of u is too large, and hence obtaining a contradiction.

First of all, for any ' € RN with |2'| <, let us define

Ty (ry) = ulx' zn),

By standard regularity results (see [15] and [34]), we have that T, is C'. Hence,
by Sard’s Lemma,

(6.7) ;:N(Tw,(e,,)) — 0.

Thus, using that T, is locally invertible on the complement of &,/, we may write
the latter set as

U Jaﬂc’ )

a
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in such a way T,
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is a diffeomorphism. Therefore, by Young’s inequality (writ-

a:c’

ing q for the dual exponent of p) and by changing variable zn11 := Ty (zn),

therefore,

IN

(6.8) <

2
>

|Vu(z',zn)|P

|Ovu(z',zN)[P
L, =
_ | DTy (xn)[”
a /; 2

1

+ ho(u(z',zN)) dzn >

+ ho(u(z', zn)) dey =

a,x

+ ho(Ty (xN)) dey >

“Ya,x

/J , (th(Tw’(ﬂfN)))l/q \DT, (zn)| den =

a,x

v

1/q
/ (q ho(-??NH)) drN+1,
. T I(J /)

£l a,m

1/q ,
/ / (q h0($N+1)) drnydx’ <
@<t Ty (T, )

! p
/ / W + ho(u(z’,2N)) doy da’ =
S |<US T,

! P
/ / Nula', zn)P? + ho(u(z', zN)) doy dz' <
i<t J1—crcine,

p

Fa, (“‘) ;

where A; := {|2'| <1} x {|Jzn]| < Cl}. Now, we notice that

0 C {(,0,2541) ‘ @' <1 wng1 € Tor( o) 0 Tor(Jae) for some a # ),

and that

B C Q C {lznya| £1/2},

hence, recalling also (6.6),

/m’<l ANHEUG# Ty (T 0 )Ty (T4 50 )

/»13 (q ho(ﬂfNH))l/q d(@',zn41) >

1/q ,
(qh0($N+1)) drnyq dz’ >

>

> inf ho)'/7 N (33) >
> [7]}3’1/2]@ o) LT 2
> &IV inf ho)'/7 >
> G [7];2171/2]@ 0) /1>
> & INTU inf (qho)l/q,

[(—1/2,1/2]
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for a suitably small positive constant ¢;. Therefore, we gather from the above
inequality that

1/4q ,
/ / qhg ’I‘N+1)) dryyidz’ >
‘7’"<’ / a 7,/
1/q ,
/ / qho(mN+1)) dzyyq do' +
Sa <t Tor (g 00)

1/q ,
+/ / (qh0($N+1)) dryyidx >
Sl |<L. TIN+1€UG¢& Ty (Jg 0 )Ty (T4 1)

1/q ,
/ / (q h0($N+1)) dryniq dz' +
lz'|<l Jang1€u(z’,[-CLCU\C,/)

~ IN—1 inf 1/q ]
+é 1 [71?21’1/2]((1 ho)

Thus, due to (6.7),

Y

v

1/4q ,
/ / qhg ’I‘N+1)) dryyidz’ >
|27 |<l
1/4q ,
/ / (qh10($N+1)) dryyq dx’ +
Sl |[<U Sz N €u(a’,[-11])
~ IN—-1 : 1/q
(6.9) +cé1l [7]1/1217f]/2](q ho)*1.

On the other hand, from Corollary 2.24, we get that

1/q ,
/ / (q h/0(~73N+1)) dryyidx >
lz'|<l Jan 1 €u(z’ [—1,1])

1=5 1/q
> / / qhg ’I‘N+1)) dryyidz’ =
Jz' <l 1+
T=si 1/q
(6.10) = wN,]lNil/ (qh0($N+1)) d:EN+],
—14s

where wy_1, as usual, denotes the volume of the (N — 1)-dimensional unit ball.
From (6.9) and (6.10), we thus obtain that

1/q ,
/ / qho $N+1)) dryi1dr’ >
Jz' <l
e 1/q
> wy g N / (q ho(ﬂ?N+1)) drniq +
—14s;
~ IN—1 inf 1/q )
+al [711/271/2]((] ho) %
and, therefore, thanks to (6.8),
‘7:141(“) >
1=s1 1/q
> wyo IV / (qh0($N+1)) drny1 +
—14s
(6.11) +é V7Y inf (gho)YO.

[(—1/2,1/2]
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We now notice that, if ¢, and 3 are positive constants, suitably small with respect
to é1, one has

1/q
wy_ IV / (qh0($N+1)) dryi1 <
[—1,—1+c2]U[1—c2,1]

20wy 1 IV 71 [sup](qhg(:nNH))l/q <
11

IN

€1 N-1 . 1/q
. < —=l )
©12) < SN it (gho)

and

6.13 N <5—1le1 inf ho)'/ .
( ) C3 S5 [7]1/1;1’]/2]((1 0)

We now assume [ big enough so that s; < ¢o: then, by means of (6.11), (6.12) and
(6.13),

1

N-1 1/a
Fa(u) > wn_l (qho(ﬂ?NH)) dryi1 +

J—1
(6.14) ez VL

This estimate will say that the energy of u is too large (thanks to the term

“c3IN=1" here above), and it will provide the desired contradiction. For this, let
us define the rescaled functional
p—1 )P 1
Fo(v) = / e [Vul@)l” + —ho(v(x))dz.
JQ p €
Then, if € := 1/l and u.(z) := u(x/e), by scaling (6.14), we deduce that
Fa(ue) = V1 Fa () >
! 1/a
(6.15) > WN_1 / (q h0($N+])) diEN+1 + c3.
-1

On the other hand, by §3 of [7], up to subsequences, we have that u. converges
almost everywhere and in L] . to the step function yp — Xr~\ g, for a suitable set

E C RV, and that

1 1
(6.16) lim F3 (u.) = Per(E, A) / (qho) /q=
e—0+t -1

where, given A C B, we denote the perimeter of A in B as Per (A, B) (see, for in-
stance, [20] for full details on such definition). As a matter of fact, in our situation,
the set E may be better specified, in the following way. From (6.1), there exists
k > 0 so that u(z) > k if |2'| <1 and zny > 20 and u(z) < —k if |2'| < | and
IN S —26.
Therefore, u.(z) > &k if |2'| < 1 and 2y > 260 and u(z) < —x if [2'] < 1 and
zn < —2¢f. In particular, for almost any = € Ay,

lim u.(z) > k if zy > 0 and

e—0+t

lim wu.(z) < —kif zy > 0.
e—0+
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This implies that E = A; N {zy > 0}. And so Per(E,A;) = wn_1. Therefore,

from (6.16)
! 1/q
lim Fj (u:) = wn_ / (qhg) )

e—0*t 1

This contradicts (6.15) and finishes the proof of Theorem 1.1.






CHAPTER 7

Proof of Theorem 1.2

The proof of Theorem 1.2 will be performed by compactness, by using Theorem
1.1 and a result of [30].

We fix 6y > 0 and we assume by contradiction that there exist uy , 8y, I}, for
which
(C1) wuy is a local minimizer for F in {|z'| < I} x {Jzn| < i}, with ug(0) = 0.
(C2) {ur =0} C {|z'| <t} x {|zn| < 61}, with 6, > 6y and %—)0 when
k— oo,
but the thesis of Theorem 1.2 does not hold. Let us consider the following rescaling;:

x TN
71 ! = — M = —
( ) Y lk 3 YN ok

say (v',yn) =T(z',zn). Define
A = {yn) st TNy yn) € {up = 0}} = T({Ulc = 0}) .

STEP 1: There exists a Holder continuous function w : R¥N~1 — R such that:
if we define

A= {00l W1 < 5

then, for any e > 0, A, N {|]y'| < 1/2} lies in a e-neighborhood of A, for k
sufficiently large.

Proof of step 1.
Let us suppose that

Yo = (Yo, yon) € A with ol <1/2.

Then, ug(lryh,0kyon) = 0, and so, by means of (C2), |fryon| < Oi; therefore,
using again (C2), we infer that

{Uk = 0} - {‘:UN — kagN\ < 20k}.
Thence, we can exploit Theorem 1.1 in the cylinder
l
{le" — liwy| < 5} x {len — Byon| < 264} C

C Al <le} x A{lzn| <Ii},

(7.2)

and get that there exists a universal constant 79 > 0 such that

l
{ur =0} 0 {l2’ — Lyl <mo} € {low — Buyon] < 2(1 — 0B},

69
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provided

460
—h < €0(26))
Iy

where g¢(+) is the one given by Theorem 1.1. Rescaling back, we get
o
AN {ly" ol < 53 S lyv —yon| <2(1 —m0)} -

By iterating, we get

(7.3) Ak {ly’ =yl < B3 € {lyn — yonl <201 —m0)"},
provided

46
(7.4) — < eo (21— 10)" o ) -

k

We now fix mg € N and consider m < my (later on, during a limiting procedure
performed on page 71, we let mg — +00). Note that, in this setting, (7.4) (and
therefore (7.3)) is fulfilled for k suitably large, say k& > k*(mgo). We claim that
A n{ly'| < 1/2} is above the graph of

(7.5) Uy k(y) =yon —2(1—10)™ —aly’ — yp|?

where a and 8 > 0 depend only on 7.
To prove this, let (y',yn) € A N {|y'| < 1/2}. Since |yj| < 1 we have that

mQ
ly' — yb| < 1. Now, we consider three different cases: the case |y’ — y§| < 24—, the

2
mq
case ”02 <y —yyl < %, and the case % <y —wil <1.
mQ
In case [y’ — yo| < 22—, (7.5) follows immediately from (7.3), with m = my. If, on
mq
the other hand, ”02 <y =yl < %, then we argue as follows. We first note that,
in this case, there exists m with 0 < m < myg, such that
m+1 m
7 n
(76 W<y <

Consequently, from (7.3), we have that
(7.7) 21 =m0)™ > [yn — Yo n|
By (7.6) and the fact that 0 < 7y < 1, we also get
_ = In(2ly’ — )
- In(L)
7o

In particular, it follows that

<m+1.

(1 =)™ < (1 )(ﬂnl(f—(‘lﬁ%”*l)
— "o S —To o =

1 sy QY —wl?
(1—10) (1—1o)

where § = —

Therefore, recalling (7.7), it follows

928+1
lyn —yon| < mwl - ypl?
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which is the desired result, with o := 261 /(1 — 7).
Finally, eventually adding® a constant to «, the result also follows for the case
ly' — y4l € [1/2,1]. This ends the proof of (7.5).

Note now that, as y, varies, ¥, ; are Holder continuous functions with Holder
modulus of continuity bounded via the function at® (recall that my is fixed for the
moment, and that a and 8 depend only on 7). Therefore, if we set

Yr(y') == sup Wy, (y")

lvyl<%
YoEAL

then, 1y is a Hélder continuous function (with Hélder modulus of continuity bounded
via the function at?), and A; N {|y’| < 1/2} is above the graph of 1.
Arguing in the same way, possibly taking a and 3 larger (depending only on
7o), we also get that, if we define
@0k (y') == yon +2(1—10)™ +aly’ —yl”,

then A N {|y'| < 1/2} is below the graph of ®,, . Arguing as above, we define
¢k(yl) = in<f1 ¢yo;k(yl)7

7
lygl<3
YypEAL

so that ¢ is a Holder continuous function (with Holder modulus of continuity
bounded via the function at?), and Ay N {|y'| < 1/2} is below the graph of ¢y,.

In particular, A, N {]y'| < 1/2} lies between the graphs of 1 (y') and ¢k (y")
for any k > k*(myg) and, by construction,
(7.8) 0 < or(y') — ¥rly') <4(1—mo)™.
Also, for mg fixed, by Ascoli-Arzela Theorem, letting & — oo, it follows that ¢ (y')
uniformly converges to a Holder continuous function which depends on mg, say
li ! ~ (y').
G Am k() = wn ()

Analogously, we find a Holder continuous function w}, , such that

lim  ¢(y') — w,flo (v

k—+00
uniformly. Also, by construction, we have that w,, < wjno and that
A n{ly’| < 1/2} lies between
(7.9) the graphs of w;, —e/2 and w}, +¢/2,

for k large.
Let now mgy — oo. In this case, by Ascoli-Arzeld Theorem?, we get that there
exists a Holder continuous function w such that w,, uniformly converges to w. By

(7.8), also w;,  uniformly converges to w. The claim thus follows from (7.9).

STEP 2: The function w constructed in the first step is harmonic.

"Notice indeed that, by (C2), we have that
lyn —yon| <lynl+lyon| < 2.

2 We remark that, by the construction of @ and 8 above, the Holder constants of wrino depend
on 79, but are independent of mg.
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Proof of step 2.
We prove that w is harmonic in the viscosity sense. Then it follows that it is
harmonic in the classic sense (see, e.g., Theorem 6.6 in [8]).
For this, let P be the quadratic polynomial
1
!

Ply) = 5y
Assume, by contradiction, that AP > 0, that P touches the graph of w, say at 0
for simplicity and that P stays below it in |y'| < 2r, for some r € (0,1). Let now
do > 0 be the universal constant of Lemma 9.3 in [30] and let us define

) A 1 5 1
0= ml“{(%)Q’ 290iM||’ 2901|5\’ (ﬁ)z’ } '

Thus, § is such that

’TMy'+§-y'.

AP > 28%0, M| < =— €] < 5

~ 2060 269

(7.10) 620y <

Note that, eventually replacing § with 2§ and P(y') with P(y') — d|y'|?, we
may assume, with no lose of generality, that P touches the graph of w at 0 and
stays strictly below it in |y'| < 2§ < 2. therefore, since Ax N {|y’| < 1/2} uniformly
converges to the graph of w, it follows that, for k large, we find points yx = (y},, Yx N)
close to 0, such that P(y') — K touches Ay at (y;,yrn) and stays below it in
ly' —y;.| <9, for an appropriate K} € R. In particular, we have

1
(7.11) ykN+ka§y "My, + € -y -

Let us now consider the following translation

2=y —y an =y~ — (Yx N + Kp)
Exploiting (7.11) we find a surface

{ZN = %ZITMZ/ + & -z'},

with
& == My, +¢
that touches A by below at the origin and stays below it in |2’| < §. Notice also
that, by construction,
1

(7.12) &kl < 50,

Rescaling back, we get that the surface
{:UN ?5 z'" Mz’ + —fk T }
touches {uy = 0} at the origin and stays below it, if |z'| < dlj.
We write now the above surface in the form
{N_629k1,TM 520, 1

RCAERN ML o'}
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and we exploit® Lemma 9.3 in [30], thus gathering that
AP < 5%,

against the assumption. This contradiction shows that AP < (0. By arguing in the
same way, one may prove that AP > 0 if P touches w by above, so that the claim
of Step 2 on page 71 is proved.

CONCLUSION: Since w is harmonic, by standard elliptic estimates (see,
e.g., Theorem 2.10 in [19]), we find a positive universal constant C, such that

ID*w]| < C
Therefore, since by construction w(0) = 0, by Taylor’s formula, it follows that
lw(y') = Vw(0) -y'| < C'my  for [y'| < 2.

In particular, for 1. sufficiently small, setting

¢ = Vw(0),
we get that there exist positive constants 0 < 77 < 12 < 1, for which
(7.13) lw(y") — & -y’ < %1 for |y'| < 2n9.
Now, let us consider
(7-¢',-1)

(7.14) & =

02 .
VR +1

Considering the rescaling given by (7.1), elementary geometric considerations show
that

(7.15)  Almgez| <mele} x {|z - &| <mele} C {[2'] < 2hn2} C {|2'] < 1x/2}.
Since Ap N {|y’| < 1/2} uniformly converges to the graph of w, for k sufficiently
large (thanks to Step 1 on page 69), we may suppose that A N {|y’'| < 1/2} is in

a Z--neighborhood of the graph of w. Consequently, by (7.13), taking into account
the rescaling, it follows that

0 3
{ug = 0}y N {|2'| < 1k/2} C {|zn — fg' x| < 19"’71}'
From (7.14), we thence get that

o = 0} {[#'] < 1u/2) © (o & < S0mi}

which, together with (7.15), is a contradiction with the fact that ug does not satisfies
the statement of Theorem 1.2. This ends the proof of Theorem 1.2.

3Notation remark: Lemma 9.3 in [30] is used here with M; := M , § := 626, 6 := 626, (note

that § < @ since fp < 0g), I := 6ly, and £ := %fl« (therefore [¢] < 52190, thanks to (7.12)). In
particular, with this setting, since f—l’: — 0, then % — 0. Also, since o (d) > 0 (where o (d) is as

in Lemma 9.3 in [30]), then the condition & < o (9) (i.e. & < o (d)) is fulfilled for k sufficiently

large.






CHAPTER 8

Proof of Theorem 1.3

The following Lemma 8.1 is an intermediate step towards the proof of Theo-
rem 1.3 and it is also useful for the proof of Theorem 1.4. The proof of Lemma 8.1
is based on an iteration of Theorem 1.2.

LEMMA 8.1. Let u be a Class A minimizer for F in RN with u(0) = 0. Suppose
that there exist sequences of positive numbers 0y, , I, and unit vectors &, with

(8.1) Iy = and ?—k -0,
k
such that
(82)  {u=01n ({Ime, o) < W} x {lo- &l <U}) € {lo- &l < O},

Then, the 0 level set {u = 0} is a hyperplane in RV .

PRrROOF. Let fix 6y > 0 and € < &1(6p), with &1(6y) given by Theorem 1.2. We
consider £ so large in that

(83) l_ S 9 S 61(90) .

k
Two cases are now possible: either, for infinitely many k’s 65, < 6, or for infinitely
many k’s 6 > 6.

In the first case, we take the subsequence of k’s for which 6, < 6y and we
assume, by possibly extracting a further subsequence, that & converges to a suitable
unit vector £&. We consider a y-frame of coordinates in which yx is parallel to .
Consequently, by (8.1) and (8.2), we deduce that, in this system of coordinates,

{u=0} C {lyn| <6o}.
Thence, since 6 is arbitrary,
{u=0} C {yn =0},
which proves the desired result.

If, on the other hand, 8, > 6y for infinitely many k’s, then we fix k large
enough to fulfill (8.3) and we apply Theorem 1.2 repeatedly as much as we can.

More precisely, for h > 0, let l,(ch’) = nll; and Hl(ch) := ntf. Then, if 9,(€h) > 6y, we
can keep applying Theorem 1.2; we stop this procedure when h is so large that
8" < 6.

More precisely, we stop the iterative application of Theorem 1.2 when h > 1 is so
that

8" > gy > oM

75
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For such h, we get, by construction, that

Also, by construction,

6" _ ()" .
l,(ch) m/ Iy
In particular,
6
(8.4) 1> %

What is more, the repeated use of Theorem 1.2, has driven us to proving that, in
some system of coordinates,

h h h
{u= 0} ({ly'| < 1"} <yl <671) < {lunl <67},
that is,
. ' 7160 7100
w=0bn ({1 < 22} x {luwl < 223 ¢ ol < on).
thanks to to (8.4). Therefore, letting e — 0, it follows that
fu="0} C{lyn| < o}

Since fy was arbitrary, the lemma is proved. O

By means of Lemma 8.1, we are now in the position of completing the proof of
Theorem 1.3, by arguing as follows.

Let us consider the rescaled functional

Fo(v) = /Q W + éhg(v(m)) dzx .

Then, for any @ C RV, u.(z) := u(z/e) is a local minimizer for F§.

Therefore, by §3 of [7], up to subsequences, we have that u. converges almost
everywhere and in L], to the step function yg — XrN\E, for a suitable set £ C RN
with minimal perimeter.

We claim now that

{ue, =0} uniformly converges to OF on compact sets.

Assume that this is not true and note that in this case there exist § > 0, and a
point zp € RV and points x, such that

zg € {us,, =0} N B(z9,d) with B(29,20) NOE =0

Assume e.g. B(20,20) C E and note that in this case, exploiting the density
estimate in [28], we get a contradiction with the fact that u. converges almost
everywhere and in L] . to the step function xg — Xr™\ g (in the same way we get
a contradiction if B(zp,2d) C RN \ E).

Since OF is a minimal surface in RV | and we assumed that N < 7, then 9E is
a hyperplane (see, for instance, Theorem 17.3 in [20]). Also, since u,, (0) = 0 and
{ue, = 0} uniformly converges to JF, it follows that 0 € OF.
This implies that, in some system of coordinates

(8.5) {ue, =0} N By C {|on| < 0k}
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with §; — 0. Rescaling back we get that
)
(8.6) {u=0}nB C {lan| < '}
e f

Two cases are now possible: either d; /) is bounded away from zero, or, up to
subsequences, 0y /e, —> 0. In the latter case, we pass to the limit (8.5) by sending
k — 400, getting that {u = 0} is a hyperplane. If, on the other hand, d;/e) > 6o,
for some Ay > 0, we define

1 Ok
ly == —, 0 = —
k 26kl k Ek
and we observe that
Ok _ O —0;
lp 2 ’

then, it follows that the assumptions of Lemma 8.1 are fulfilled. Thus, the appli-
cation of Lemma 8.1 proves that {u = 0} is a hyperplane, which is the desired
result.






CHAPTER 9

Proof of Theorem 1.4

First, we prove the minimality of u:

LEMMA 9.1. Let hg satisfy (1.1), (1.2), (1.3) and (1.4). Let u be a weak Sobolev
solution of (1.5) in the whole RN | satisfying |u| < 1, Onu > 0 and lim, oo u =
+1. Then, u is a class A minimizer.

PROOF. Since u is strictly increasing, |u| < 1. Let B C R" be a closed ball
and let v be a minimizer for Fg with v = u on 0B. Our aim is to show that u = v
in B. Let us argue by contradiction and assume, say, that

(9.1) v(z*) > u(z”),

for some z* € B. Possibly cutting v on the *1-levels (which decreases Fg), we
may and do assume that |v| < 1. More precisely, as mentioned in the footnote on
page 2, by (1.4) it follows that |v| < 1.

Then, since |Vu| < const thanks to [15] or [34], and lim, , 400 u = £1, we deduce
that

(9.2) u(z + ten) > v(x)

for any z € B, provided that ¢ is large enough. Indeed, to prove (9.2), let us argue
by contradiction and assume that u(z; + ten) < v(z;) for some z; € B and a
diverging sequence of t; let also @ > 0 so that v <1 — «. Then, up to subsequence,
we may assume that z; converges to zo, € B; but then

1 = lim u(ze +ten) <
t—-+oo
< 11m u(zy +ten) + const |z — Too| =
= llm u(zy +ten) <
< 1
< lmota) <
< 1—«.

This contradiction proves (9.2).

Thanks to (9.2), we thus slide u(- + tex) towards the en-direction until we
touch v from above. Say this happen at T € B for ¢ = £. In the light of (9.1), we
have that

u(z* +teny) > wv(z*) >
> u(z¥),
thence, since u is strictly increasing in the ey-direction,
t>0.

79
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Since now Oyu > 0 we have that Vu(- 4+ tey) # 0. Therefore, it follows that the
assumptions of the Strong Comparison Principle for p-Laplace equations in [9] (see
Corollary B.5 here) applies to u(- + tey) and v and so this touching point must
occur on 9B, that is £ € 0B. Since u = v on dB, it follows that v(z) = u(z).
Consequently, since u is strictly increasing in the en-direction,

u(z) = v(x) = u(z + ten) > u(z).

This contradiction shows that (9.1) cannot hold, hence v < u. Analogously, one
sees that v > u, thence v = u. O

By means of Lemma 9.1, we can complete the proof of Theorem 1.4, by arguing
as follows. With no loss of generality, we assume that u(0) = 0. Then, for € > 0,
setting u.(z) := u(xz/e), we know from Lemma 9.1 and the results of [7] that u.

L} -converges (and thus a.e.-converges), up to subsequence, to yg — Xr~\ g, for a

suitable E with minimal perimeter.

Since Oyu > 0 and lim, ;400 u = £1, we have that the zero level set of u is a
graph in the ey-direction; more precisely, there exists v : R¥Y~! — R so that

{u<0} = {an <y(@@")}.
By scaling, we thus deduce that

(9.3) {ue <0} = {oy <7:(2")},
with

Ye(z') = ey(z'/e).
We now claim that

(9.4) X{on<v.(a')} CONverges in Li . to xp~ f.

Indeed: we know that u. converges to xp — xp~\ g in RN\ Z, for a suitable set Z
with £V (Z) = 0; thus, if v € E\ Z,
lim u(z) = xe(z) - xenp@) =1,
e——0t
therefore
im  X{u.<0(2) =0 = xpm\p(7),

e——0t
while if z € (R \ E) \ Z then
lim u.(z) = xp(z) — xeme(z) = -1,
e——0t
therefore
lim  xqu.<0y(z) =1 =xev\e(2).

e——0t
This shows that x{,, <o} converges almost everywhere to xg~\ g. Thus, (9.4) follows
from the Dominated Convergence Theorem and (9.3).

In the light of (9.4) and Lemma 16.3 of [20], we have that R \ E is a subgraph
of a measurable function which is the a.e.-limit of 7. up to subsequences, and which
may attain the values oc; that is, there exists v, : RV 1 — [—00, +00] in such a
way that
(9.5) o) = lim 7 (a)

e—0+
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for almost any x, up to subsequence, and

BV \ B = {oy < n(a)}.
Since F is a minimal perimeter, we have that -, is a quasi-solution of the minimal
surface equation, according to Definition 16.1 of [20].

We now prove that OF is a hyperplane. We distinguish two cases, according
to our hypotheses. If N < 8, we have that -y, is an entire quasi-solution of the
minimal surface equation in a space with dimension less or equal than 7; therefore,
by Theorem 17.8 and Remark 17.9 of [20], we have that OF = {znx = 7.(z')} is a
hyperplane. If, on the other hand, {u = 0} has at most linear growth, then

fu=0} C {lon] < K ('] + 1)},

for a suitable K > 0. This says that

{zn =7:(2")} = {u=0}C
{lon] < K (J2'| + )} €
{lzn] < K (|2'] + 1},
ie., |v-(2")| < K (Jz'| + 1). Thus, by means of (9.5)
(9.6) [7x(2")] < K (J2'] + 1),
thus 7, is locally bounded. Hence, 7, is a solution of the minimal surface equation

(see [20], page 183). Therefore, OF is a hyperplane thanks to (9.6) and Theorem
17.6 of [20].

In any case, we have proved that OF is a hyperplane, thence
OE = {5 x= 0} ,
for a suitable ¢ € RN with |¢| = 1. Thanks to [28], we know that {u. = 0} L{®

loc™
converges OF, hence, for any k£ € N, there exists €, > 0 as small as we wish, so

that

N N

we gather that

Bon{u., =0} C {\g-m\ < l/k:}.
By scaling back the variables, we thence obtain that
{u=0}n ({lo- ¢l <1/er} x {Imeal <1/2}) € {I€-al <1/(h=1)}.

We now invoke Lemma 8.1, used here with &, := &, I := 1/ey, 0k := 1/(key), and
we infer that {u = 0} is a hyperplane. This completes the proof of Theorem 1.4.






APPENDIX A

Proof of the measure theoretic results

A.1. Proof of Lemma 4.1

By the hypotheses of the lemma and (2.41), S(Y, R) touches the graph of u
by above at Xy. Notice also that, in the notation of Lemma 3.3, since YV =

F(Xo, SR (X)),

(Uf(Y,R) (Xo), ..., u%Y’R) (Xo)) -
S

Yy =20+ ——= = o (Xo, "M (Xy)),
(A (o). ()|
and thus
(A.1) (o —y) en| =
S(Y,R)
v (XO)‘ _
- S(v.R - S(V,R ‘”(XOaVS(Y’R)(XO)) =
(AP (x0), AP (X))
Owu(ao)|
ONUTO)l T 4
|Vu(zo)| [
+Ho(xo - ent1) — Ho (fﬂo “ent1 +
S(Y,R) _ @ 2 S(Y,R)
+(U(X0,U (Xo)) 2Rw (X07I/ (Xo)) .

Also, from Lemma 3.3,

1 1 ~
[—17 ﬂ D YN+1 = TN+1 +W(X0,US(Y’R) (XO))

and so

(A.2) o (0, 500 (X)) | < <1.

DN | =

+

|

Therefore, from (A.1), (A.2) and (4.2),
[(zo —y) - en| > const R,
provided that Cj is large enough; more precisely, since, from (4.2),

To—Y Vu(zo)
—ey=—=——F——-en >0,
o=yl " [Vulmo)] Y

we have that
(zo —y) -en > const R.

Therefore,
(A3) TN —ynN > const R,

83



84 A. PROOF OF THE MEASURE THEORETIC RESULTS

for any X € Bs,(Xy), if R is large enough.
We now point out that, if X € B3, (Xo) NS(Y, R)

(A4) 8Ng§(Y7R)(m) > const > 0.

In order to prove the above inequality, first notice that, by a direct computation,
using (2.35), (2.33) and (2.37), one gets that
IN — YN
. > .
(A.5) 8Ng§(y’R) (z) > const ]

Also, if z is in the domain of ¢ then

Is(v.Rr)’
|z —y| < const R.
The latter inequality, together with (A.5) and (A.3), ends the proof of (A.4).
Let now
R(x1, ..., TN_1,TNp1) =
= [(H0($N+1) - 20_13(-7:N+1 —yn+1)’ + R~ Ho(l/N+1))2 -

N—1

- Z |T1 - yi|2:|]/2'

j=1
Let also my : RVt — {25 = 0} be the natural projection, i.e.,

an(zi, .., oNg1) = (21,28 -1,0, 28 41) -
We now show that

(A.6) TN ‘N is a diffeomorphism.
S(Y,R)ﬁBga (X())

For proving this, take any
X = (a: %y (m)) € (Y, R) N Bsa(Xo)
and consider
WN(X) = (wlz' H :$N71:079§(Y’R)(w)) .
Then, by (2.31) and (2.33),

nl:f] (3317---,$N7170,J§(Y’R)(ﬂf)) = X:

with znx so that

len —yn| =R(x1, .., TN-1,TN+1),
where R has been defined here above. From (A.3), we get that R > const R > 0,
thus R is smooth for X € Bs,(Xp). Also, using again (A.3), we see that xn > yn
for any X € S(Y, R) N B, (Xo): that is

ﬂNl (wlw' -:$N7170:g§(y’R)(w)) =
= (371:---:-75N71; YN + R(x1,..., 2N 1, TN41), 37N+1) )

thence (A.6) is proved.
Let now w41 : RNt — {zny1 = 0} be the natural projection, i.e.,

AN+1(T1, - 2N41) = (71,0, 2N, 0).
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Notice that, if X = (m,gg(YR) (z)) € S(Y, R), then w41 (X) = (x,0) and so

T (@,0) = (2,95, (@)
showing that

(A7) TN41 |~ is a diffeomorphism.

S(Y,R)NBsa(Xo)

Thus, we define

T .= 7TN+1‘~ 071']:,1 -
S(Y,R)nta(X(]) S(Y,R)ﬁBga(Xo)

Let also introduce the following domains:

0, = T({mN =0} N {|zni1] < 3/4} 0 Ba+2(7rN(X0)))

0, = T({a:N =0} N {|zn41] < 5/8) N BH](WN(XO))) .
Of course, o € O2 C O7 and, more precisely, by (A.6) and (A.7),
(A.8) dist (O4,001) > const.

Let us now notice that, in the light of Proposition 2.18,

const

I (P () B

A((gSv(Y’R) + %) - u) )

IN

Hence, if X € Oy,
1 1
—Apu+Au < —A, (gg(y’R) + E) +A (%(Y,R) + E) ,
where A 1= sup|_s /4 54 |hy|. Hence, from the Harnack-type comparison inequality
for' p-Laplacian (see, for instance [9], [35] or [10]), we get that
!

(A9) ng(gg(yﬂ) —u) < o,
for a suitable C' > 1, which may also depend on a.

Fix now Z € LN B,(nnXo). Then, from (A.6), there exists

XM = (@M, 2§) ) € S(Y, R) N Bsa(Xo)

so that
TN |~ (X(l)) =7,
S(Y,R)NB3a(Xo)
that is
(A.10) XM =74 tWey
for some t(!) € R, and

(A.11) X" e S(V,R).

! We recall that the gradient of u does not vanish in the region we are considering, so that
the assumptions needed in [9, 35, 10] are fulfilled.
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Also, by (A.6)

3

XM _ x| < 7 anXy) <
| 0\, WNva( ( TN 0) =

Y,R)nta(X(])
< const|Z — iy Xo| <

< consta.

(A.12)

Moreover, from (A.4), we have that, for any ¢ > 0,

95(v.r) (V) +tey) > constt+ Bvr) (M) =

= constt+ 75\11)4-1 =

= constt+ zny1-

Therefore, from (A.9)

3

(A.13) u(@® +ten) > zn41

provided that ¢ > C"/R, for a suitable C"” > 1, which may also depend on a.
Analogously,

(A.14) u(@V) —ten) < zny1,

provided that ¢ > C"/R. From (A.13) and (A.14), we deduce the existence of
t) € [-C"/R, C"/R] so that

u(az(]) + t(2)eN) = ZN41-

Let us define X(?) := X1 4 tZeyn. The point z(?) = z(*)(Z) will be the one
satisfying the thesis of Lemma 4.1, as we are now going to show. Notice that, by
construction,

(A.15) ‘X(l) - X@)‘ < and

(2) —

CI/
R
TN41 = AN+1 = U($(2)

~—

In particular,
TN (m(2)7 u(az(2))) =7

and |z?) — zq] <

1"

(A.16) <l g + = <

"

<consta+ — <
S RO

<consta,
thanks to (A.12).
We now show that
Vu(zo) c"
A7 m _ -—= < H, — H —_—
(A17) (+9 = 0) ) S Holansn) = Holu(o) +

for some C"" > 0 which may depend on a. To prove (A.17), let us define
w() = Holgsy, p (&)
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and notice that, from (A.10) and (A.11),
ZN+1 = Ts\]f)+] = gg(y’R) (T(l))

and so, since X is a point where the graph of u and g(Y, R) touches,
Ho(2n+1) — Ho(u(zo)) =

= Ho (-‘7§<Y,R> ("’(1))) —Ho (-"&xm("’“)) -
= w(@) —w(w) >
> Vw(zg) - (V) = z0) — const | D*w(&)||zV) — zo)?,
for some ¢ lying on the segment joining () and z,. Notice now that, by the

definition of w and the fact that X, is a point of touching between the graph of u
and S(Y, R),

Vw(xg) - ( —330)
= H( )v%(YB)(TU) (x (1)fm0):
@)
= H (9535 ) V53, W—Rj().(mmmo):
i ) [P 0 e

hence, from (2.53) and the fact that X" € B, (Xy),

AR o ;t
Vi(eo) - (50 — g) > L) (1) g OB,

~ [Vu(zo)| R
Also, a direct computation and (2.54) imply that
_ "
dijw = Hy (%(Y,R))aigg(y,majgg(y,m +

!
+Hy (%(Y,R))aiigg(y,m <
const
< .
- R
Collecting the estimates above and recalling that X(1) ¢ B3,(Xp), the claim in
(A.17) now easily follows.

Now, by means of (A.15) and (A.17),

Vu(zo)
() ) =Y <
(+ ) Vu(zo)| ~
Vu(zg)
< ./(])7./ —_— .,(])7.,(2) <
< (o0 ) Nu(zo)] TIT TS
C””
< Ho(zn41) — Ho(u(zo)) + -
C’I/I/

= H0(71,(.7:(2))) — Ho(u(wo)) +

for a suitable C"" > 1, which may depend on a. This, together with (A.12) and
(A.16), completes the proof of Lemma 4.1.
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A.2. Proof of Lemma 4.2

The proof of Lemma 4.2 relies on an auxiliary result, namely Lemma A.1 here
below, which may be seen as a rotation of the desired claim (see below (A.20)) plus
a Lipschitz property on level sets?. For stating Lemma A.1, we need to introduce
the following notation. Given R > 0 and Y = (y,yny1) € RY x [-1/4, 1/4], we
define (Y, R) as the zero level set of S(Y, R), that is:

S(V,R) = SOV, R)N {an41 =0} = {gsvm = 0}
By the definitions on page 14 and (2.39), we have that (Y, R) is an (N — 1)-
dimensional sphere, namely
Y(YV,R)={z e RN ||z —y| =71}
with?

C
(A.18) r=r(Y,R) := R~ Holyn1) = 50+ -

The study of the geometry of such spheres is indeed linked with the study of the
level sets of S(Y, R), via the following observation. If s = gs(y,g)(7) = (x) €

(—=1/2, 1/2), then, by (2.31) and Definition 2.15,

I5(v,R)

C .
Ho(yn+1) + 1z =yl — R = Ho(s) - %(8 —yn+1)?,

hence, if |s| < 1/2, the signed distance between the s-level set of gs(y,r) and X(Y, R)
is given by

U(] S
2R

(A].g) H(](S) + (21/N+1 — S) .

Given z € RV, we now define
TY7R:E = Ty’R(ZE)

as the intersection point between (Y, R) and the half-line from y going through
x. With this, we can now deal with the above mentioned auxiliary result:

2The very rough idea underneath the proof of Lemma 4.2 goes as follows. First, Lemma A.1
provides a result which looks like a rotation of Lemma 4.2, and which possesses a uniform Lipschitz
graph property for level sets. The proof of Lemma 4.2 will then ended by rotating back to the
configuration in Lemma A.1: the Lipschitz property will take into account the error done in such
rotation.

The idea for proving Lemma A.1 is that we would like to replace the estimates on the
touching point set = with estimates on a suitable first occurrence touching point set é, i.e., with
a set obtained by translating in the ey direction an appropriate barrier until it touches the graph
of u. This strategy will present two advantages. First, the first occurrence touching property will
easily imply the Lipschitz property for level sets of = (which, as mentioned above, is needed for
deducing Lemma 4.2 from Lemma A.1). Second, measure estimates for = can be directly deduced
from Proposition 3.14. For performing this, however, a technical difficulty arises: indeed, in order
to be able to replace = with é, a “tiny” improvement of the assumptions of Lemma A.1 will be
needed, namely (A.29) here below. Unfortunately, the proof of this detail is non trivial, and it
will take several pages.

3Obviously, r ~ R if R is large.
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LEMMA A.1. Let C > 1 bea suitably large constant. Let u be a C'-subsolution
of (1.5) in {|z'| < 1} x {Jzn| < 1}. Assume that S(Y, R) is above the graph of u
in {|z'| <1} x {Jzn| < 1/2} and that S(Y, R) touches the graph of u at the point
(zo, u(zp)). Suppose that
o |u(zg)| < 1/2, |zon| < 1/4, |xy| < 1/4;

Vu(zo)
| —= < —.
<|Vu<mo>’eN =3

Assume also that
Ty,rxo € {|2'| = ¢} N {zn =0} and

(A.20) y=-—enVr2 ¢ with

Co .
=r(Y,R) = R— Ho(yn+1) — %y/zw] :

Then, there exist universal constants C1, Cy > 1> ¢ > 0 such that, if

l
(A.21) Ci<qg< o and 4VR <1< R,
1
the following holds. Let = be the set of points (x, u(x)) € RNV x R satisfying the
following properties:
o [¥'| < /15, [u(®)| < 1/2, [t = z0| < Cy;
o there exists Y € RNTY such that S(Y, R/Cs) is above u and it touches u

) ) o

(
|Vu( )|v |(V11)(T0)\ g 2R ’
Uu\Zo 14
e (r—0)- Vu(zo) < g+ Ho(u(®)) — Ho(u(zo)).
Then,
(A.22) SN(WN(E)) > gVl

More precisely, for any s € (—1/2, 1/2), there exists a set =, C EN{xn41 = s},
which is contained in a Lipschitz graph in the en-direction, with Lipschitz constant
less than 1, and so that, if

[1]c
|

. =
= —s

se(—1/2,1/2)
we have*

(A.23) sN(wN(é)) > eqNL.

40f course, (A.23) and the fact that = C = imply (A.22).
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2 (Y,R)

The geometry of (A.20)

Proor. For further reference, let us point out some geometric features linking
xo with its projection Ty rzg. First of all, by (A.19),

(A.24) ‘Tnyxg — 29| < const.

Also, by construction,
(A.25) sin (Z(mo -y, eN)) = g .
Thus, (A.24) and (A.25) yield that

|lzg] < ‘(TKRCUO - 330)" + ‘(TKRZ'O)" <

(A.26) < ‘TY7R5UO — o
const g
- R
Let us also observe that, if |¢'| <1/8 and rny € [-1/2, —1/4], then

sin (Z(:Ug, eN)) +q<

l
|pfy|§rf§+c0nst < R — const VR
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and thus, exploiting (2.15),
u(r) < gsv,p)(x) <
(A.27) < gyN+17R(c0nst (1- \Vﬁ)) =
= SR.
More precisely, we have that
(A.28) u(®) < sn

for any ¢ so that |'| < /8 and rn € [-1/2, —1/4]: indeed, if not, by (A.27) there
would be a point for which the graph of u touches the sg-level from below and then
a contradiction follows by applying Theorem B.6 to the function sg — u (see, e.g.,
the argument on page 18).

We now fix C, > 1, to be chosen conveniently large. The first step of the
proof of Lemma A.1 consists in proving the existence of a suitable Y, € RV*! and
R. > R/ const, so that 7., Y. = m., Y and S(Y,, R.) touches the graph of u from
above, in the region {|z'| < Cu'q}7 at the point (z,, u(z.)), with |z | < Cq and

const ¢>
(A29) Ty*7R*:U*€{:UNS Rq } X{|ﬂ?l|<ci*}.

We will prove (A.29) by iteration. Namely, we will set Yy := Y, Ry := R and,
for any k € N, we will inductively find Y41 € RN+! and Ry+1 > Ry /4, so that
Ten Yir1 = Ten Yy and S(Yii1, Rky1) touches the graph of u from above at the
point (zgy1, u(ry1)), with |z | < Cq and

2
(A.30) TYk+1,Rk+1mk+1 € {mN < COI;;:Q } X {|T’| < TI‘J}:

for some € (0,1). Since (A.29) follows by iterating (A.30) a finite number of
times, we focus now on the proof of (A.30). More precisely, we will proof the first
step in (A.30), i.e., the step with k = 0, since the others are analogous. The proof
of (A.30) is actually quite non trivial, and it will take several pages (it will be ended
on page 111).

For proving (A.30), let us begin by noticing that, if |s| < 1/2, from Definition
2.5 and (2.1) we get that

By m(s) = ()| = 1y m(s) = i (s)] <
P — (x)?|  Cols — so —1)/p

< o)) | B Cole =0 pflp = 1)

(I0)

where used the short hand notation

x:= R — Co(s — s0) <pf 1h0(s)>1/p .

Therefore,

const

(A31) B, R(s) — p(s)] <

, for any |s| < 1/2.
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Moreover, from Definition 2.5,

(A.32) R r(s) = hy(s) — % , for any s € (sg, —1/2) U (1/2, 1).

'S0,

and, by construction, 60 may be taken large if so is Cp. We now fix a small
parameter € € (0,1/2] and a large parameter v > 1 and we define

(A.33) w:=2"Y0t) and =1 (1 — w).

By construction, w € (0,1) and 5 € (1/2,1). Also, n > w and, for v large, w and 7
are close to 1. For any ¢ > 0, set also

o=t

and, for any 2z’ € RV=1\ {0},
W) = P(2']) -

We now consider the graph
B = {XGRN | on =

Since ¢ is strictly concave, while 3 (-, ) is strictly convex, one sees that & touches
Y(Y, R) from above when |z'| = ¢. Analogously, if

' 1 V2 2 2
Yo = —|—/—(1-— ] +w r?2 —q?| en and
~y T2*q2 w”Y

ry = W22 42w 22 1)

one sees that & touches the (N — 1)-dimensional sphere 0B, (y,,) from above when
|z'| = wq. Notice that, by construction,

(A.34) Ty > Wi =1/2,

3

and, more precisely, r, € [r/2, wr] and y,n > yn. Also, from the fact that
(A.35) ‘\/1+r—1f%‘gr2,

provided that 7 € R with |7| sufficiently small, one sees that yny +r < yun + 1y, if
r/q and 7 are suitably large. Notice also that, by construction,

1 q> 1
vl = e (L e
(A.36) 2 LA
1 1 2¢>
e Vi, sV L,
2 2 yr
if v and r/q are large enough. Thus, we now consider the surface

FZ:F1UF2UF3

defined in this way: we take
I = S(Y,R)n{xny <0}
Iy = &n{2|€wg q]} and
s = 0B, (yo)N{lz'| <wg}n{zn >0}.
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IX'|= o
IX'I=q

The Barbapapa-like surface I'

In the sequel, we will often speak about points “inside (or outside) I'”, with the
obvious meaning of points “inside (or outside) the bounded region whose boundary
is .

Also, by the above mentioned touching properties between &, X(Y, R) and
0B, (y.), we have that I is a C!'! closed hypersurface in RY. We denote by dr
the signed distance to I', with the convention that dr is positive in the exterior of
I' and negative in the interior.

The rough idea for proving (A.30) consists now in trying to find contact points
whose projection on the zero level set of the corresponding barrier lies close® to I's,
and then use the geometry I's, which is quite transparent.

We now define the following hypersurface in RV*1:

U = {X e RVt! | 2N+ = Jyn+1.R (dl“(m) + HyN+1vR(O))} :

For the sake of simplicity, we will set

9(2) = gy (A0 (2) + Hyn oy 5(0))

5This is the reason also for introducing %(Y,,, R1) later on (see page 98).
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sof that ¥ = {zx,1 = gg(z)}. Note that
dr(z) <|z —vy|—r,
thus, from (2.39) and (2.31),

(A.37) 9% < gs(v,R) -

Let us now show some further properties of W. First of all, ¥ coincides with
S(Y, R) at any points for which dr is realized on I'y; more precisely,

(A.38) if dr () = dr, (z), then ge(z) = gs(v,r)(7).-

Indeed, if dr(z) = dr, (z), by some geometric considerations and (2.39), we have
that

Q‘I’(T) = Yy~n41.R (dF1 (T) + HyN+17R(0)) =
Co .
Jyn41,R (dr1 (:E) - ﬁ y12V+1) =

g B(\T*v\ﬂ“*ﬁu? )
JYn 1, B\ | E QR-NJH '

This, (A.18) and (2.20) end the proof of (A.38).
In the light of (A.38), (A.37) and Proposition 2.13, we deduce that

A,gu(z) < hy(ge(z)) in the viscosity sense

at any € RV for which
(A.39) . .
dr(x) is attained on T’y and

gu(z) € [sg, —1/2]N[1/2, 1).

Furthermore, in an appropriate system of coordinates (see §14.6 of [19] for
details on the distance function)

Vgu () = gyn,, r(x) en

and D?gy(z) is the N x N diagonal matrix with the following entries on the diag-
onal:
K1 ’ KN—-1 ! "
_ )y ey * *) .
Hldl“(.’]’f) 1 gyN+1,R( ); ) K:Nfld[‘(m) 1 gyN+1,R( )7 gyN+1,R( )

Here above, we denoted

*x = dr(z) + Hy,,,,r(0),

6To have some further geometric insight, one may observe that the domain where gy is defined
and non-constant is in a O(log R)-neighborhood of I (recall (2.39), (2.31) and Lemma 2.10). The
principal curvatures of ' are of order R. This implies that if z is in the domain where gy is defined
and non-constant, then the distance from z to I' is realized at exactly one point. Furthermore,
since R is much bigger than [ (recall (A.21)), then it may be convenient to look at T'N[—I,1]V (that
is, ' in the domain we are interested in) as a graph in the ey-direction. By direct inspection, the
slope of such graph at any point ¥ is of order |[t'|/R. In particular, the angle between ey and the
normal of T at ¥ is of order |t'|/R. The above slope bound and (A.21) also imply that T is quite
flat in [—1,1]", namely, its slope is bounded by an order c.
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while, as standard, k1, ..., kny_1 represent the principal curvatures of I' at the point

where dr(z) is realized. Hence, from Definitions 2.8 and 2.11 and Lemma B.3, we
get that

1/p
(4.40) Vo) = (5L hen®)  ex

where we denoted § := gy, r(*), and that D?g,(z) may be represented as the
N x N diagonal matrix with the following entries on the diagonal:

Ky P, 1/p
kidr(z) — 1 <p— 1 'yN“’R(ﬂ))

(A41)

KN—-1 'Y h (ﬁ) 'r
() 1 \p 1

(ph‘yN+1,R(ﬂ))(27p)/p

(p—1)2/p w1, R(B) -
From (A.40) and (A.41),
Apgy = h,;MhR_,_
p EENL
(A.42) + (mh‘ywﬂ,R) ;m7

outside {|gw| = 1/2} U{V gy = 0}, where we dropped the f-dependence for the sake
of simplicity. Let us now compute the principal curvatures K2

;> of the hypersurface
I'y: exploiting Lemma B.14, we have that

g2
— KFQ — e . = — F2 e
1 VO AP g T
1 v+2 2 2 ”I 2y+1
(A.43) W= O+ (0" —¢7) o] >0.

3/2
((TQ — @) |z' 272 + q27+4) /

In particular, since |z'| > wq on T's, we infer from the above relations that

1

(A44) _ng S !
Tw

fori=1,...,N — 2. Thus, we deduce from (A.34), (A.44) and (A.18) that
3

A45 —K;? < =

(4.45) RS

fori =1,...,N — 2, if R is large enough. Furthermore, since q > |2'| > wq on Ty,
(A.43) gives

(r+ 1) (2 =)t

s
2 3 i

Kn—1

r

2v+1
S 9 (r+ 1w S
- 10 r -
s 90+ 7
— 40 T
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that is
1
(A.46) Iiy\ﬁl > const %
Analogously, one sees that
1
(A.47) Ky, < const (7; ) .
We now claim that
const
Augw(@) < Bh(gw(@) - =2
(A.48) at any z € RV for which |gy ()| # 1/2,

\dr(z)| < 2v/R and dy is attained on T'y.

To prove this, take = as requested here above: then, thanks to (A.45), (A.47) and
the fact that |dr(z)| < 2V/R, that

N—2

R dr @)+

Ii{zdr(:l?)‘ <

and so, if R is large enough,

— K K
A.49 — <2 e N1
( ) ; 1-— I‘.}rzdr o Z i 2

Hence, using the regularity of the functions involved in our domain, (A.42), (A.49),
(A.31) and (A.32),

=l N

s
p P K;
Aygy = h! + (—h R) —r <
’ B VR G RS e
p-1 N-2 r
! b P Ty K‘NQfl
< hyyyrt D— 1h’yN+1vR —2 Z Fim ™ 7 <
i=1
const
< hy+——+
= 0 R

» P% N-2 Kl2
r "N—1
+ <EhyN+l’R> (2 z; K’i2 _ T) .
1=

We thus deduce, by (A.45) and (A.46), that

const

R

(P 7 (6(N—-2) const(y+1)
p— 1 vvink R 2R '

Thus, if v is large enough,

Apge < h6+

p—1

const p T +1
Apg\ll S hlé) + R — const <mhlyN+1’R> (7 ) ]

4R
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Therefore, since we are evaluating hy, ., r at gw(z) € [-1/2,1/2]

3

const  const (y+ 1)
R R ’

which proves (A.48), if 7y is chosen to be conveniently large.

Apgw < hq +

We now show that
Apgu(z) < hy(gw(z)) in the viscosity sense
(A.50) at any z € RY for which

dr is attained on I's.
For proving this, we first point out that we may assume
(A51) gu(@) > sn

Indeed, if gy (z) = sg, arguing as in Proposition 2.13

Apgu(x) = 0 < hiy(sg) = h(gu (),

in the viscosity sense, giving the desired claim.

For proving (A.50), we may also assume Vgy (z) # 0, otherwise, we would have
gw(z) = sp and we go back to (A.51). We may also assume that |dr(z)| < VR:
indeed, if |dp(x)| > v/R, we have that

|dr (z) + Hyy . .r(0)] > VR/2 > C) log R
and so, by Lemma 2.10, either

dF(T) + HyN+1,R O) > HyN+1,R(]-)7

(
in which case, due to Definition 2.11, gy(z) is not even defined, or

dr (T) + HyN+1,R(O) < HyN+1,R(SR) )

in which case gy is constantly equal to sg in a neighborhood of =, which has just
been ruled out. Also, in the proof of (A.50), we can restrict ourselves to the case

in which |gy| # 1/2, since, by Proposition 2.13, no smooth function can touch gy
from below at level £1/2. With these further (non restrictive) assumptions, it is
easy to deduce (A.50) from (A.48).
We now prove that
Apgw(z) < hy(gw(x)) in the viscosity sense
(A.52) at any = € RY for which |gg(x)| > 1/2 and
dr(z) is attained on I's.
To prove the above claim, notice that, as remarked here above, we may restrict

ourselves to the case in which |gy| # 1/2 and |dr(x)| < VR. Also, since T3 is a
portion of sphere,

3 _ _ Is  _
K= =Ky, =——<0,
T'w

s0, since |dr(z)| < VR, we get that, fori =1,...,N —1,

const

VR

Kfz-r3dr‘ <
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3

which is small; therefore, from (A.32)

Apgq; =
r-1 N_1 s
p P Ky
= h + <—h R) —_—t <
yN+1,R pi 1 YN+1, P [{f%dr - 1 =
N-—1
< hyy,,.r+ const Z |khe| <
i=1
< , const <
= yn+1.R R -
60 const
< hy——+

< hyg,
provided that 60 is chosen suitably large, thus proving (A.52).
In the light of (A.39), (A.50) and (A.52), we deduce that

gw is a strict supersolution of (1.5) everywhere

(A.53) , .
possibly except the set {|gg| < 1/2} N { dr realized on I'y U Fg}.

We now point out that
(A.54) if |a/] > Cq, then gu(z) = gs(y.n)()-

Indeed, let ¢ € T realize dp(z). Then, if v is the outer normal of T at r, we have
that Z(v, en) < const |¢'|/R (see the footnote on page 94). Therefore,

const |t'| |[r — x| < const |¢'| 1

< const [¢'].
i <—px < |v']

' — 2’| = |r — 2| sin (z(y, eN)) <
Since
' = > Cq—I¥'],
we thence deduce that
Cq < const [¢'],
thus /| > 2¢. In particular, ¢ € T'y, therefore (A.54) follows from (A.38).

We now define

Yo = Wu.Yn+1),
5C,
R, = rw+H0(yN+1)+—RO7
Co
r = Ry —Hy(yn+1) — Q—RIyIQVH '
(Y, Ri) = S(Yu, Ri)N{zni1 =0},

By definition,
Ry < wr + const <

(A.55) <wR + const < R
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and
3Cos 5C
(A.56) T — T, € [70, ?0} .
Furthermore, arguing as done on page 88, we have that
(A.57) (Y, R1) = 0By, (yo) ;
thus, by (A.56), we infer that
Y(Y,, Ry) stays at distance greater

(A.58) — .
than 3Cy/R outside 0B, (y,) D I's.

Recalling the definition of 7 given in (A.33), we now show that

nst ¢>

(A.59) 0By, (yo) N{|z'| > nq} is at distance at least mT inside I.

For the proof of this, it is convenient, to think T and 9B, (y.,) (in [—1,1]"V) as graphs
in the ey-direction (see the footnote on page 94): we then explicitly compute the
“vertical distance” from 9B, _(y,) to T' (with the sign convention that such vertical
distance is positive at points where 0B, (y,) is below I' in the ey-direction) and
compare it to the “true” distance by using the flatness of these graphs (in [, 1]V).
To formalize such idea, we proceed as follows. We write I' and 8B, (y.,) (in [-1,1]"V)
as graphs in the direction ey, that is, we consider Gy, G5 € C"'([0,1]) so that

T[N = {mN = Gl(\m'\)}
and
OB, (yo) N[ -1, 1N = {mN = G2(Im’|)}.
Then, we define the vertical distance between I' and 9B, (y.) as
Gi(l2']) = Ga(l2"]) -

To evaluate it, note that, by construction, G1(t) = Ga(t) if t € [0, wq] and G} (wq) =
G4 (wq). What is more, since G2 (t) =y, v + /72 — t2, one has that

1 — constec 4 1-— constc
G{Z’(t)gf#gf_.#_
Tw 3 r

Analogously, since G4 (t) = yn + V1 — t2 for any t > ¢, one has that

1+ constc
G'{(t) > + cons (’.
r
for any t > ¢q. Also, by construction,
Gi(t) >0

for ¢ € [wq, ¢]. Let us define G := G; — G3. By means of the above computations,
we have that G(wq) = G'(wq) = 0, that G"(t) > const /r for ¢ € [wq,ng] and
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G"(t) > 0 for t > nq. Therefore, if t > nq, then

Gt = / TG d¢ ds =

wq Jwq

_ //(th)G”(C) d¢ >

wq

n4 — const g2
> COnst/ (ng — () > ¢
Juwg r R

This says that, if x € 8B, _(y,) with |z'| > nq, then z is inside T', with vertical
distance greater than const ¢?/R. Thence, if # € B, (y,) with |z'| > ng and z
realizes dr (), denoting by w the point in T' so that w' = 2', we have that

(A.60) —dr(z) = |z — 2|
and that

const g2
A.61 — > —.
(A.61) o] >

Elementary trigonometry and the flatness of I' and B,_ (y.,) in [-1,I]V (recall the
footnote on page 94) also implies that

(A.62) . —w| < 2|z —z|.
Then, (A.59) follows from (A.60), (A.61) and (A.62).
A first consequence of (A.59) is that, for any a € 9B, _(y,) and any b € 'y,
2

q
A.63 —b| > const — .
( ) la — b| > cons =

We also infer from (A.57), (A.59) and (A.56) that

3

3C,
(A.64) (Y., Ry) n{|z'| > ng} is at distance at least ?O inside T

Notice also that, by construction and recalling (A.35), one has

s— , const q> const Cg
YNt S oV Ayt =

= %(\/r2+(4w271)q27\/r27q2) +

const¢g>  const Cy

r R -
const ¢>  const Cy
< . S
const g>
S TR
thence,
(A.65) S(Y.,Ry) C {xN < %ﬁtf} .
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We now investigate the mutual position of ¥ and S(Y,,, R;). For this, we start
by claiming that

The region {X € ¥ where |zn41] < 1/2 and

(A.66) dr(z) is realized on Fg} is above S(Y,,, R1)

(where above means with respect to the en1-direction).

To prove (A.66), note that, if dr(z) is realized on I's, then = — y,, is orthogonal to
I's € 9B, (y.), therefore, recalling (A.56) and (2.39),

dr(z) = dr,(z) =ds, r)(®) +1r1 -1y >
= |-yl - r1+%:
= oyl Ry Holywsr) + 2(;; Vo + 200

Co , 30,
oR, N TR

T —yu| — Ri + Ho(yn+1) +

Co
7HyN+17R(0) - ﬁy%FF] .

This, recalling (2.39) and (2.38), gives that

yN+1 Ry (q\IJ )
= HUN+1;R1 (g‘I’ T )
= HUN+1; (g‘l’ ) =
= HyN+1 B(Q‘I’ ) =

yN+17R(O))) =

= Hyy,.r (qu+1 r(dr(

= dF( ) + HyN+1 B(O) >
Co ., 30, T,

> \m*ym|*R1+H0(yN+1)+ml/N+1+?*2—RZIN+1-

Therefore,

Hynrit (99(®)) > |2 =yl = B + Holyws1)+

360 60 9 60 2
TR T opYN+1 T 2R, (g\v(ﬂf) - yN+1) -

(A.67)
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Note however that Ry ~ R/2 for large R, and so, in particular, we may assume
that Ry > R/3. Thence,

360 60 9 60 2
R apYN+1 T R, (g\v(ﬂf) - ZJN+1) >
o 30y Co (1)" 3Ty (3)°
- R 2R \ 4 2R 4
> 0.

This and (A.67) yield that

Hyy 1.1, (g\v(ﬂ?)) > |z = yu| = B+ Ho(yn+1)
and so
9w () > gy (17— 9l = Ri+ Holyns1)) = g5, (2)
which proves (A.66).
We now show that

The region {X € S(Y,, R1) where
(A.68) ds (v, .r,) () is realized at a point z with |2'| > nq}

is strictly above ¥ (in the ex1-direction).

In order to prove (A.68), take X € S(Y,, R1) and assume that
o = dist (x,Z(Yw,Rl))
is attained at z € ¥(Y,,, Ry) and |z’| > ng. Then, by construction,
TN41 = gs(v..R:)(T),
thus from (2.20) and Definition 2.11,
Co

T —yu| = Ho(rny1) — R, (zN41 —yn+1) + R1 — Ho(yn+1) -

Therefore,
dist (w7E(Yw,R1)) =|lz—y,|—r =

C .
= Ho(zn) — Q—ROl (N1 —yn+1)> + By — Holyn41) — 71,

which implies that

Coy (1 1
o0 < Hyy, r(@N1) + > <§ + R_1> .
Hence,

Coyl 1
(A.69) 95(ve,B0) () = TN41 2 Gyn i R <" 2 (E - R_4)> '
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We consider § € I' on the half-line from gy, towards z. Note that, by construction,
Yuw, 2, ¢ and ¢ lie on the same half-line. Let also § € T" be the point realizing dr (z).
By means of (A.64), we have that

3Cy
A.70 -4, lz—g|>—.
(A.70) [z =gl e -9l 2
We claim that this implies that
3C

To prove this, we distingush three cases, according to the mutual position of =, z
and g. Namely, if = is outside I" and outside X(Y,,, R1), we have that

o — dr(z) |z — 2| = |dr(2)] >
[z =2z -y =

v

and so (A.71) follows from (A.70) in this case; if, on the other hand, = is inside T
but outside X(Y,,, R1)

3

o—dr(r) = |o—2|+ldr(@) =
= |lz—z|+|z—7| >

which gives (A.71) via (A.70) in this case. The case in which = is outside I" and
inside ¥(Y,,, R1) does not hold: indeed, if z is inside X(Y,,, R1), since, due to (A.64),
z is inside T, then z lies, in this case, on the segment between y,, and a point inside
I (that is, z itself): thus, since I is star-shaped with respect to y,, x is inside T.
Let us finally consider the case in which z is inside ¥(Y,,, Ry) and inside T". In this
case, note that § cannot lie on X(Y,,, R,) (that is, § & T's), otherwise § would be
on the radius from g, to z and so

~ T
= yot+t—(2—yo)
1

which gives that
. T T
9’ = =12 > —ng > wq,
r1 r1
if R is large, thanks to (A.56), in contrast with the fact that § € T's.
Also, if z is inside X(Y,,, R;) and inside I and § lies on 'y, then note that it must

be outside X(Y,,, R1), thanks to (A.63) and (A.56). Thus, we take z € (Y, R1)
on the segment joining z and § and we define

- T -
W=y, + — (2 —y).
1

Note that w € X(Y,, R,,) and therefore, by (A.63),

*
| — g| > const (1 —w) —.
T
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Furthermore, by (A.56),

- ~ Tw , - ~
w—2 = |=(EF-y) - (E-yu)| =
1
= r—w—l 7"-1:
1
5C
= \m—mSTO-
Therefore,
o—dr(z) = —|z—z|+|dr(z)| >
> o3~ |z -l =
= [g—z[>
> ol 2S0s
— | - ——
Z Y R =
) —
q 5C
> t(l—w) = — —2
> const ( w)R 7

which proves (A.71) also in this case, by taking g conveniently large (possibly in
dependence of 1/(1 — w) and Cj).

Then, to end the proof of (A.71), we only need to consider the case in which =
is inside ¥(Y,,, R1) and inside I" and § lies on I'y. For this, let us define

- 6Co = —yo
R T
and observe that

71 sin (4(2 ~ Y, eN)) = |2'| > nq,

thus, recalling (A.56),

é(jiywyeN) = Z(miyu):e]\f):
= Z(z = Yo, en) >
2
> n_ cons‘r,q—_2 >
T1 T
2
> n_ constq—Q.
Ty r

Also, by the minimality property of §,  — ¢ is orthogonal to ' at § and so, by
Lemma B.10, we have that y,, , Z, z and g lie on the same plane. Let us denote
this plane by IIy. Let also & be the point on the common boundary of I's and I's
on the side where § lies and let £ be the straight line lying in Il and tangent to I’
at &y. By construction, |£)| = wgq, thus

T, Sin (Z(Eo — Yw, 6‘N)) =wq
and thence

— 2 1— 1— 2
LGy Gy —y) > BT @ 1O mw)a @
Tw r Ty r

from which

1—
2(T — Yus S0 — Yu) > COnStw.
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We now estimate

inl¢ — 7.
I?Eg\f |

For this, note that the point £* € ¢ attaining such minimum must be so that z —¢*
is orthogonal to £ at £* and so the points &, £*, £ and y,, form a right trapezoid
lying on the plane II;. Elementary trigonometry on this right trapezoid gives that

min | — x| = ozl =
winle 7 = ¢

= €0 =yl = 13—yl cos (L@ = s en)) =

= 71, —|% — y,|cos (Z(:U — Yo, eN)) >

onst (1 — w)? ¢?
> = |7 — gl <lcon€(2w) q>>
T
onst (1 — w)? ¢? 7C,
S <lconq(2w)q>_g
T

With this estimate, we now complete the proof of (A.71) in the case in which z
is inside ¥(Y,, R1) and inside T' and § lies on I's by arguing as follows. Since
z € ¥(Y,, R,) thanks to (A.56), we can take £ € ¢ on the segment joining ¢ to Z.
Then,

o—dr(z) = —lz—z[+]z—g|=
= \:U—yw|—r1+|a:—37|2
6Co

> oyl - n kg - R
> ooyl bl - S0
> ‘m,yw|,m+‘j,ﬂ,11§oz
2,2 Yal
>z gl const(i2 w)*q 718}?’0'

Since x € [1,1]N, |x — y,| > const r, therefore the above estimate yields the proof
of (A.71) in the case in which = is inside (Y, R1) and inside I and ¢ lies on T's.
This ends the proof of (A.71).
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Then, (A.71), the fact that Ry > R/4, (2.39) and (A.69) imply that

gs(v.,r) (T) >

3Co Co (1l 14y\ _
> Yynii.R <dr(-77) + = 2 (E + R_1)> =
Co »
= Yyn41.R (dF (T) + HyN+1,R(O) + ﬁyN+1 +
3C, Cy /1 1
220 PO ) >
+ R 2 (R + Rl)) -
Co 3C, 50,
> Jyn41,R <dr(ﬂf) + HZIN+17R(0) + ﬁy?\’+1 + ? - ﬁ)

> 9yn+1,R (dF(T) + HyN+1,R(0)) =
= gu(z).
This ends the proof of (A.68).

We now observe that
S(Ya, Ba) N {Ja’'| > Cq}

(A.72) o . "
is strictly above ¥ (in the ep1-direction).

To prove this, take z with |2'| > Cq and let z € X(Y,,, R;) be realizing ds (v, r) (7).
Then, by a triangle similarity argument, one sees that
1 |2']

|z — yul ~

r1Cyq
I+ R —
> constC'g > 1q,

&' =

v

const

if C' is chosen appropriately large. Then, (A.72) follows from (A.68).
We now consider the domain
{la'] < Ca} x {lon| < 1/2}

and we slide ¥ from —oo in the ey direction, until we touch u for the first time in
such domain (this must happen since |u(zo)| < 1/2): say, for fixing the notations,
that for some g € R, ¥ — ey touches for the first time the graph of u by above at
a point Z. Notice that, by the hypotheses of Lemma A.1 and (A.38), we have that

(A.73) u(ro) = gs(v,r)(zo0) = gw(zo),
therefore we have that 8 > 0. More precisely, it holds that
(A.74) 8 > 0.

Indeed, if, by contradiction, 8 = 0, (A.73) says that ¥ touches the graph of u
from above at xg (which is, by construction, an interior point): thence, by (A.53),
dr (z9) must be realized on I'y UT'3. But, by construction, dr(zq) is realized at
Ty r(xg) € I'y: this contradiction proves (A.74).

Note now that, if ¢ is in the domain of ¥, then, by (2.16), we have that
dr(x) < Hyy,,,r(1) — Hyy,,,r(0) < const (1 +logR) < const (1 +logl).
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So, if zx > 1, the fact that T is below {xx = 1} implies that

dr(r) > v —1
and so
v < const (1 + logl).
This says that the domain of ¥ is below the hyperplane
{xN = const (1 + logl)}

with respect to the ey-direction. Since 5 > 0, also the domain of ¥ — ey is below
the hyperplane

(A.75) {xN = const (1 + logl)} .

What is more, since |zn| <1, by (A.21), we gather that
(A.76) zy > =l > —cR >yn,
provided that ¢ in (A.21) is small enough. Thence, from (A.74) and (A.76)

|z 4+ Ben —yI> = |z—yl>+B8>+2B(zn —yn) >
> ‘Z—y|27
that is
(A.T7) |z —y| < |z+ Ben —yl.

We now prove that
(A.78) '] < Cq.
Indeed, if (A.78) were false, then (A.54) and (A.77) would yield that
u(z) = gulz+fen) =
= gs(v.p)(z + Pen) =
= gunrun (124 Ben =yl = R+ Hyyp0(0)) >

> gyN+1,R(‘Z - U| - R+ HyN+1,R(O)) =

= gsv.r)(2) >
> u(z).

This contradiction proves (A.78).

By means of (A.78), (A.75) and (A.28), we have that z lies in the interior of
{1a'] < Ca} x {Jon| < 1/2}.

We now claim that
(A.79) |zn41] < 1/2 and dr(z + Ben) is realized on T's.
Indeed, since ¥ touches by above u + fen at Z:= z + fen, (A.53) implies that

1/2 > [Zn4a] = [an 1]
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and that dr(Z) is realized on I'y UT'5. To prove (A.79), we thus have to show that
dr(Z) is not realized on T'y. If, by contradiction, dr(z) were realized on I'y, from
(A.38) and (A.77), we would have that

u(z) = gu(z+pPen) =
= gs(v.p)(z +fen) =
= gyN+1,R(‘Z+/8€N 7y| 7R+HyN+1,R(0)) >
> gyN+17R(‘z_y| _R+H.UN+1;R(0)) =

= gsv.r)(2) >
> u(z).

This contradiction completes the proof of (A.79).
We now claim that
(A.80) Y -Y,|—-8>0.

In order to get this, first observe that if 8 < 5I, then (A.80) follows by noticing
that |Y — Y| > constr and by taking /R suitably small. Therefore, we restrict
ourselves to the proof of (A.80) under the additional assumption that

(A.81) g > 5l.
For this scope, note that (A.81) implies that

(z+ Ben)n > B—1 > 4,
hence, recalling (A.79),
(A.82) dr,(z + Ben) = dr(z + fBen) > 0.
Let us observe now that, by (A.79),

Yyn41.R (HO(yN+1) + |Z - 'U‘ - R) =
= gs(v,r)(2) >

> u(z) =
= gu(z+Pen) =
= Gyni1.R (Ho(yN+1) +dr(z+ BEN)) =
= Gyns1.R (Ho(yN+1) +dr, (2 + Bew)) ;
thence
(A.83) z—y|l— R > dr,(z + fBen).

If we now take any = € I', we have that zx <[ and thus
(z+Beny —x)ny > B —21.
This and (A.82) imply that
dr,(z + fen) > B —21.



A.2. PROOF OF LEMMA 4.2 109

For this reason, recalling (A.83), we deduce that

B < 2l4+dr,(z+ fen) <
< 2l+]z—y|-R=
= 2] +dist(z,0B,(y)) +7 — R <
< 20+|z—Tyrzol +7— R <
< 5l

This ends the proof of (A.80), by taking {/R suitably small.

Let us now consider, for ¢ > 0, the surface S(Y + teny, R1). For t = 0, this
surface is above S(Y, R) since, thanks to (A.55) and (2.14),

g5 (@) = Gywsrn(Holuns) +1a =yl = ) <

IN

9yn+1,R (HU(yN+1) + ‘T - 1/‘ - Rl) S

< Gyn41,R1 (HO(yN+1) + ‘T - 'U‘ - Rl) =
= gS(Y,R1)(37) .

Since S(V, R) is above the graph of u by our hypotheses in {|2'| < Cq} x {|zn| <
1/2}, we thus deduce that S(Y + ten, Ry) is, for ¢t = 0, above the graph of u in
{|z'| < Cq} x {|zn| < 1/2}. Hence, we may increase ¢ till we touch the graph of
uin {|z'| < Cq} x {|lzn| <1/2}. In order to fix the notation, say this happen for
t =t > 0 and let X; be the above mentioned touching point. Set also

Y| ;=Y +tien.

Let also
(A'84) ro= Ry + HyN+17R1(71/2) - HO(yN+1) ;
so that
1
{gs(le) = *5} = 0B;, (y1) -

Then, since u(zop) > —1/2 by assumption, the first touching property of X; implies
that zq is above 9By, (y1). In particular, recalling (A.26), since

v+ (5560) + V f]2 - |£I§6|2€N € 8B7~"1 (yl)z

we have, using (A.24), that

N /7T —4¢> < yin R = gl <

(4.85) < @ <
< const .
By construction, the domain of S(Y3, R1) lies below the hyperplane
{mN =Yy1,N + Ry — H()(]/N_H) + HyN+1,Rl (1)} )

thus, (A.84), (A.85) and (2.16) imply that the domain of S(¥1, R;) lies below the
hyperplane {mN = const (1 + log Rl)} and therefore below the hyperplane

(A.86) {:UN = const (1 + logl)} .
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Notice also that, when Y + tey =Y, — Ben, (A.66) and (A.79) imply that

gs(Y+ten.B)(2) = gs(Y.-Ben,R1)(2) =

= gs(v.,r.) (2 +Ben) <
< gu(z+Pen) =
= u(z).

This and (A.80) say that

(A.87) 0<t <|Y-Y,—-58.

We also have that

(A.88) X, e {|z']| < Cq}.

Indeed, if (A.88) were false, then |z}| > C'q, where

(A.89) xy =z +|Y, —Yi|en.

Thus, in the light of (A.72), we would get that
95 (Y.R) (£4) > gu(zy) -
Therefore,

w(x) = gsviry) (1) =

gS(wa\Yw7Y1\eN7R1)(~7:1) =

95(vo—Ben ) (@1) =
(A.90)

gs(v.,ry) (71 + BeN) =
9s(Y..Ry) (T4) >
gu(zg) =

gu(z1 + Ben) >

u(xy).

hn v

v

This contradiction proves (A.88).

Notice also that z1 ny > —I/4, otherwise, from (A.88)
Lemma 2.4, we would get

(A.27), (A.55) and

SR, > sp = u(21) = gs(vi,r,)(T1) > SR, ,

which is, of course, a contradiction.
Therefore, recalling also (A.88) and (A.86), we have that z; is in the interior

of the domain {|z'| < Cq} x {|zn]| < 1/2}, thence, by means of Proposition 2.13,
lu(z1)] < 1/2.

We now claim that
(A.91) Ty, r, (21) € {|2'| <ng} N {zn < const ¢°/R},

where T . was introduced on page 88 and 7 in (A.33). To prove (A.91), first observe
that, by (A.87), y1 is below y,, — Ben in the en-direction, and so X(Y7, Ry) is below
Y(Y, — Ben, R1) (and, a fortiori, below X(Y,,, R1)) in the ey-direction. Thence, by
(A.65),

(A.92) Ty g, (#1) € X(Y1,R1) C {zn < constq’/R}.
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This gives a first step towards the proof of (A.91); we now show that
(A.93) Ty, r (z1) € {|2'| <nq}.

Assume, by contradiction, that (A.93) is false. Then, by translating in the en-
direction, we have that

(A.94) Ty, .m () € {|2'] = ng},
where zy is the one defined in (A.89). Let now
B o= |Y-Y,| -t =
= |Y,-Vi]|.

Then, zy = 21 + BeN and, in the light of (A.87), B > (. The latter inequality and
the first touching property of 4 imply that ¥ — fey is above the graph of w, that
is

(A.95) gu(z + fen) > u(z),

for any = in the domains of definition of the above functions. With this information,
we now derive the desired contradiction. Indeed, from (A.94) and (A.68), we get
that

95 (Yo, R1) () > guw(zy).
Thence, using also the touching property of X and (A.95), repeating the argument
in (A.90) verbatim, one obtains the contradiction which ends the proof of (A.93).
Thus, (A.93) and (A.92) end the proof of (A.91).

The fact that Ry > Ro/4, (A.88) and (A.91) end the proof of (A.30) (in case
k = 0, the other steps being analogous) and, therefore, the proof of (A.29).

With (A.29) in hand, we now complete the proof of Lemma A.1 (and this will
still take some effort, the proof ending on page 123). For this, let us make some
estimates on the point z, found in (A.29).

Since z, is a touching point between the barrier and u, we have that |u(z.)| <
1/2 thanks to Corollary 2.14 and, therefore,

Vu(z.)| = |Vgsv.,r) (7)) #0.
We now show that

Vu(z,) const
—=— H )< .
Ve, Dou@)] < —¢

Note that (A.96) is obviously fulfilled if Ty, g, 2. = ., since, in this case
Ho(u(@.)) = Holgsy, g (@) = Holgsy, o, (Tv. 5.22) = Ho(0) = 0.

Hence, we focus on the proof of (A.96) under the assumption Ty, g, . # z.. For
this scope, first notice that z, — y. is, by construction, parallel to . — Ty, g, Z«,
that is

(A96) TY*7R*ZE* — T« +

* Yk Ty — T Ty
(A.97) sk L LEHITLL Y
| — s |2 — Ty, .|

where the sign +/— takes into account the case in which z, is outside/inside
Y(Y., R.). Also, from (A.19)

(A.98) z. — Ty, p.x.«| < const.
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In the light of (2.57) and (A.97),

(A.99) Vo) @y | @ Tyne,
V%, moy @l e =gl o = Ty, poms

Let us now define W(z) := Hy (gg(y R )(:U)) By the touching property of z,, the
fact that Ty, g, z. € (Y, R.) and (A.99), we have that

Vu(z,) _
‘Ty*’R*Q?* — Tk + W HO(U(;U*))‘ =

V. r (@)

T+ o
‘Vgg(y*7R*) (T*)‘

Vo= (4)
VS(Y*7—R*) [¢ Ty, R.%x — | + W(m*)} ‘ -
‘ 9§(y*7R*)($*)‘

W(z.)

- ‘TY*,R*:E* -

= ‘ F Ty, r.Tw — x| + W(z4)

= | F [Ty.n.o. — o] + W(a.) - W(Ty. p..)

Therefore, a second order Taylor expansion of W, (2.54), (A.98), (A.99) and (2.53)
give
Vu(z)

2t o] Hg(u(a:*))‘ <

‘TY*7R*5U* -

< Moo o -
VW (2. )(Ty. p.2x — 7.)| +
+ const |D*W | [Ty, g, 7« — .]” <
< | FMyopwe -l -
7H(I)(q§(y*’3*)(T*))VQSI(Y*’B*)(7:*) ! (TY*vR*:I:* - :I:*) +
const
<
T * *
o [ Drm e m e

Ty, R.Ts — T

~H(G5 0, ) @) IV, gy (@) (T pe = 22)] | +
const
ot _

= ‘TY*7R*5U* — Ty —

*Hé(gg(v*,R*)(ﬂﬁ*)) Vsv, gy (@) Ty powe —x) | +
const
<
const
< ‘TY*7R*$* — s = (Ty, R — @) | + R

that is (A.96).
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We now show that

Vu(z) const q
. —_, < .
(A.100) / <|W(m*)|, eN> < =%

For proving this, let us note that
Ty, r.Ts — yu| =7(Ys, Ri) =

Co .
(A.101) =R. — Ho(yn+1) — ﬁ YN+ 2

> const R, ,
hence,
sin [£Z(Ty. R.%« — Yx, eN)] =
(Ty, Rr.xx —ys)'|

Ty, k. Ts = Yul
(A.102) Ty, pow)'|
Ty, mote — |
const q
- R
Also, in analogy with (A.99), we have that

Vu(z,) gs”(y*,R*)(m*) Ty, R, T« — Yx

Vule)]  Wyny @) Dvonre .
which, together with (A.102), proves (A.100).
We now observe that, thanks to (A.96) and (A.100), we have

‘ )

Ty " EN S
Vu(z,) const
< (T w) - T H, " <
(A.103) < (Tvop.m)en + ey en Holu(m)) + =5 <
constg®>  const
< (T %) - H " _— —.
< (Ty. ) - en + ofu(e.)) + 20T €01

Let us now consider the set

(A.104) =, = {Y:(g’,o,ng+1)e]RN+1 s.t.

G- Ty.na.)| < cq, linal < 1/4)
and let
(A.105) R:=cR

with ¢ > 0 suitably small. Recalling the definition of r(-,-) given in (A.18), we also
denote 7 := r(Y, R).

For any Y € Z,, let us slide S(Y, lu%) from —oco in the ey direction, until it
touches the graph of u by above for the first time, and let Y denote the center
of the corresponding barrier: more explicitly, Y =Y —tey, for some t € R and
S(Y, R) touches the graph of u from above for the first time coming from —oc in
the en direction. Say, also, to fix notations, that such touching occurs at some
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point X. We will denote by E the set collecting all the points X which lie in the
interior of the domain of u, when Y varies in Z,.

We know from (A.29) that

(A.106) (Ty*,R*m*)N <c, %

for some suitably large constant Cy. We now claim that, if Y € =,, then
<
R
The proof of (A.107) (which is pretty long and will be completed only on page 117)
is by contradiction. If (A.107) were false, Lemma B.7 would imply that

! o ]
(A.107) ((Ty*7R*ﬂf*) ,2C} ) is outside (Y, R).

SV, R) 0 {l(x — Ty, .p.2.)'| < eq} N {zn > v}

(A.108)
is above the hyperplane {zny = 3Cy¢*/(2R)},

provided that ¢ is small enough”. We now show that

ds,y iy (Ts) <
(A.109) o
< Ho(u(z.)) + const% - Qﬁ_; _

To prove this (and some effort will be needed), we distinguish two cases: either z.
is in the exterior or it is in the interior of (Y, R).

Let us first assume that , is not in the interior of £(Y, R). We first point out
that
3Cuq2

. Ty €N > .
(A.110) T €N 2 —p

For this, note that, by (A.98),

< «q

‘(.’17* - TY*,R*-T*)I

if ¢ is large enough. This, (A.108) and the assumption that z, is not in the interior
of ¥(Y, R) would imply that either (A.110) holds or z. is below (Y, R). Thus, to
complete the proof of (A.110), we show now that the latter possibility cannot hold.
Indeed, note that the first touching property of S(Y, R) and Lemma 2.25 imply
that

Yyr-en <Z-en
while (A.19) says that
| > const R .

| — 3
Furthermore, in analogy with (A.100), we have that

3

R

o ) < const g

(A.111) Z(& 9, en 7

"The reader will indeed notice that, due to (A.104),

J+reny € XY, R)n{|(x— Ty, r,z.)| <cqg}N{zy >yn} # 0.
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Then, the above estimates yield that

(xs —9)-en > (& —¢) -eny — constl =

(&
€

&~ ) en|— constl >

(A.112)

:U—y| — constl >

v
I\

> const R — const ! ,

thus showing that (z, — ¢) - ex > 0 and thus that z, is not below (Y, R). This
ends the proof of (A.110).
With this, we now go back to the proof of (A.109) when z, is not in the interior

of £(Y, R). By means of (A.108), we have that the point ((TY*VR*.’E*)/, 3C’uq2/(2R))
lies inside ¥(V, R), thus
1 3Cyq?
Lw — <(Ty*,R*$*) ) Qg] > )

3Cu q2
2R

dyyy iy (T4) <

and therefore, recalling (A.110)

3

Ay iy () < |(2e = Ty, mowa)'| + 27 en —
(

R
We recall that, by (A.100),

Z (w4 _TY*7R*)7 en) = 2 <M > < const q

Vu(z)] N R
and so, by means of (A.98), we have that

(A.113) ‘((Ty*,R*m*) fm*)l‘ < const%.

Therefore, recalling (A.98) and taking into account (A.103)

) 3C; ¢
dy,(y 1) () < const % + Ty, m.2x - en + Ho(u(z.)) — 23%(1 '

Thence, if z, is not in the interior of X(Y, R), (A.109) follows by (A.106) and by
taking Cy suitably large.

If otherwise x, is in the interior of E()u/, lu%) that is, if
(A.114) dz(f/,é) (z+) <0,
in order to prove (A.109), we argue as follows. We first note that, in this case,
u(zy) < I5v 1) (z.) <0
and consequently
gg(y*’R*)(m*) =u(zr.) <0,

so that z. is also in the interior of X (Y, R«). Therefore, recalling (A.100), it follows
that

(A115) Ty N < (TY*,R*-'I:*) - eN -

We now deduce that, when =z, is in the interior of Z(}u’, lu%) one has that

. [ecq 3Cyq?
7#)(7‘*) >m1n{Zq7 2‘ﬁRq .’IT*‘E‘N}.

(A.116) —dy

[



116 A. PROOF OF THE MEASURE THEORETIC RESULTS

To prove (A.116), take = € E()u/, lu%) Obviously, we may and do assume that
(A.117) |z| < constl,

otherwise

|z« — x| > constl
and so (A.116) trivially follows from (A.114). There are now two possibilities:
either x is above the hyperplane {zn = 3C;q?/(2R)} or the converse. If z is above
the hyperplane {zn = 3C;¢?/(2R)}, then

3Cuq2

2R
which, together with (A.114), proves (A.116) in case z is above the hyperplane
{zn = 3Cyq?/(2R)}. If, on the other hand, z is not above the hyperplane {zn =
3Cyq*/(2R)}, by (A.108), we have that either |(z — Ty, p.7.)'| > cq or 2y <
yn. However, the latter cannot hold, since, by Lemma 2.16, (A.117), (A.111)
and (A.112), we have that

‘.’1’57.’1,‘*‘2.'171\]*.’1'5*'61\72 — Ty "EN,

TN —YN = |EN —YN|+ TN — TN >
1. . o

> LfE il by iy >

> const R — constl > 0.

Therefore, from these considerations, we have that if z is not above the hyperplane
{zn = 3C4q*/(2R)}, then |(z — Ty, g, x.)'| > cq. For this reason, recalling (A.113)

|(’I‘ - m*)'| > |(z— (TYMR*m*))I‘ — ‘((TY*,R*.T*) - m*)l‘ >
const q cq
Z cq — R sl ?7

which, together with (A.115) and (A.106), yields the proof of (A.116) also when =
is not above the hyperplane {zn = 3Cyq?/(2R)}. This ends the proof of (A.116).

We now exploit (A.103), (A.106) and (A.116) to get that

qa , Gy
—dyy gy (@) > —Ho(u(zs)) — const i + o

This ends the proof of (A.109) also in the case in which z, is in the interior of
(Y, R).

Having completed the proof of (A.109), we now deduce the contradiction that
will finish the proof of (A.107). To this end, note that, by (A.19), letting s, :=

u(z4), we have that the signed distance between the s,-level set of 9s(v. ) and
Y(Y, R) is bigger than
Ho(u(z.)) — co}r;st
Thus, from (A.109), by taking g and Cy suitably large, we have that
dy iy 1y () > dsyy gy (@)

for any x so that 9s(v.1) (r) = s«. Therefore, z, is strictly in the interior of the

s«-level set of 9s(v. k) that is

Is(v.1) (@) < 8 = u(my).
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This contradicts the fact that 9s(v.i) touches u by above and, thus, yields the proof
of (A.107).

In the light of (A.107), some elementary trigonometry implies that y + fen is

below the hyperplane {zn = 4Cy¢®/R} and therefore
(A.118) S(V, R) is below {zn = 4Cyq>/R}.

Let us now fix a small constant ¢, > 0. If ¢/R is assumed to be small enough
(possibly in dependence of ¢, /C}), then (A.107) and Corollary B.9 imply that

(A.119) (Y, R) N {|z'| > cuq} is below {zx = 0}.
We now show that the above geometric considerations imply that
outside {|z'| < c.q} x {zn > 0},
(A.120) S(V, R) is at distance greater than ¢2/(4R)
in the interior of (Y, R).

For the proof of (A.120), first notice that

(A.121) ynv — T > —const¥ > yn

if ¢ in (A.105) is chosen suitably small. Let us now consider the surface
(Y, R) := (Y, R) +tey

with ¢ > 0. By (A.121), it follows that, given ¢ € Z(?J?), then rny > yn and so

(x+ten) —y| > [x —yl.

Hence,

(A.122) ds:(v.r)(¥) < dsyv,r)(r +ten).
Recalling (A.119), we now select the first £ > 0 for which
(A.123) S = SV, R)n{lz'| = cag} N {xn =0} # 0.

We also denote by &~ the portion of (Y, R) which is below {zy = 0} (with
respect to the ey-direction), that is the portion of X; (Y, R) which is below &. The
choice in (A.123) implies that

(A.124) v +t+7>0
and, by (A.104) and (A.29), that

| +ten)'| = [§'] <
< @ =Ty, roz)'| + |[(Ty, mozs)'| <
q
A.125 < ¢ — =
( ) < gt
= g,
where
1
(A.126) Gy = Cc+ —

C.

is a positive constant, which is small if ¢ and 1/C, are small.
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We now show that, with this construction and taking ¢, small enough, we have
that ¢ + ten is above the cone €, defined as

Q:* = {Z'G]RN s.t. ‘.’I,'" :%‘Jf}v“r \/TQ_QQ} .
r2—q

A

The proof of (A.120)

Indeed, by (A.124) and (A.125)

\/%(371\14-)‘,—%\/7“2*(]2) >

> g T -

r?—q
Cuq
2

> g > |(§ + ten)'|

v

if /R, 7*/r, cand 1/C, (and thus é,) are small enough (recall (A.105) and (A.126)).

This fact, (A.123) and some elementary geometric considerations yield that if
2z €6, and x4 € 6, then

(A127) ‘dE(Y7R)(~7;)‘ 2 |d2(y73) (’1’311)| .
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By construction, since ¢, < 1, if 2y € &, then =y lies inside (Y, R) (see the figure
on page 89); thus,

(A128) dZ(Y,R) (ﬂfﬁ) < 0.

Also, from (A.123) and the fact that ¥ < r, if x € &, then z is also inside X(Y, R)
and therefore

(A129) dZ(Y,R)(x) < 0.
Thus, from (A.127), (A.128) and (A.129),
(A.130) ds(v,r) (%) < dsy,r)(Ty) ,

forz € & and z; € 6.
Also, since y' = 0 by its definition, we gather that, if 23y € &, then
2 —yl* = [yn|* + |23 =1° — ¢® + clg®
and therefore
(A.131) dsvp)(7g) = |2y —yl —r =1 —@® +cig® — 1.

Thus, taking z € 6 and z; € &, making use of (A.130) and (A.131), and recalling
also (A.35), we have that

—dy(v,r)(z) > — dy(v,r)(z4) =

2 2 2
— 4q Cq
=r—r lfr—2+ 2 >
2 2 2 2 2.2 9
q Cq q Cq
(A.132) ZT—’“{l——Qrz+2rz+(—r—2+ ,a”z
2 2
Q( 2 Q)
>L (1-¢2 = const — ) >
25 €, — const -
2
>,
4R’

provided that ¢, and ¢/R are sufficiently small.

To complete the proof of (A.120), take now r € (Y, R) outside {|z'| < c.q} X
{zny > 0} and let = := ¢ + tey. Then, z € & by the choice in (A.123), thus,
from (A.122) and (A.132), we gather that

2
q
7dZ(Y7R)(1C) 2 7d2(y)3)(,’1’:) > —

4R~
This ends the proof of (A.120).

Let us now prove that
the s-level surface of gs(y,g) is at distance
greater than H = (s) from (Y, R).

yn+1,R

(A.133)

In order to prove this, take any # in the s-level surface of gs(y g), that is assume
that

Gunsr.R(Ho(yn 1) + 12—yl - R) = 5.
Let also z € ¥(Y, R), that is

gyN+1,R(H0(yN+1) + |’il - U| - R) =0,
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and assume that Z lies on the half-line from y towards z. Then,
dyv,p)(®) = |3 -yl |z —yl=
(Ho(yn+1) + 12—yl = R) — (Ho(yn+1) + 12—yl - R) =
= HZIN+1,R(S) - HyN+17R(0) .
Hence, by the fact that R < R, (2.14) and (2.39), we get that

dZ(Y7R) (’;') > HyNJrhf{(S) - HyN+17R(0) =
Co
= HyNJrhé(s) 2R yN+1 >
2

H,oi1(8)
and this ends the proof of (A.133).

We now show that
if [s| <1/2, the s-level surface of gy 5 is at distance

(A.134)
less than H, #(8) + const Cy/(2R) from Y(Y,R).

Indeed, we argue as in the proof of (A.133), by taking now & in the s-level surface
of 9s(v.i) and £ € X(Y, R), with z lying on the half-line from y towards &, and by
arguing as above, we have that

dyiy (@) = |&—§l— |~ =
= (Holyns:) + & —§l — B) — (Holyns1) + |2 — §| - ) =

HgNH,]?(S) - yN+1,R(0)

H,

Co
< nat, p(s) + conq‘r2—R

By the assumption that |s| < 1/2 and (2.39), we may now estimate the quantity
H,. .. r(s) here below with H, _ »(s) +Co/R, and this ends the proof of (A.134).
We now deduce from the above estimates that

at any z for which

a5 ()] < 1/2 and
(A.135) dz(sv,ﬁ) (z) —dsy,p () > const Cg /R,

we have that

9s(v.i0) (£) > gs(v,m)(x) -

To prove this, take x as in (A.135) here above and let
(A.136) = ggv,my(2) € [-1/2, 1/2]
S = gS(KR)('T) .
Then, by (A.133) and (A.134),
dyy, 1“?)( z) < Hyy,, r(5)+ const Co/R and

(A.137) _
ds(y,r)(r) > H r(s) — const Cy /R,

yn+1,R
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3

HyN+1,R(S) < HyN+17R(§) )

which proves (A.135) via the monotonicity of Hy,,, r and (A.136).

hence, for the assumption in (A.135)

Next, notice that, thanks to (A.120) and (A.135), we have that

S(Y,R) N {|z'| > c.q}

(A.138) . .
is strictly above S(Y, R)

3

provided that ¢ is large enough. Hence, since u < gs(y,r), (A.138) implies that

S(Y,R)n{|z'| > c.q}

(A.139) . .
is strictly above the graph of u.

This also implies that % is an interior contact point.

We now apply the previous considerations to deduce some properties of the
contact points X and of the contact point set = (recall the notation on page 114).
First of all,

(A.140) lu(®)] < 1/2,
thanks to Corollary 2.14. This and (A.139) imply that
(A.141) ¥ < cuq,

while (A.118) yields
(A.142) Ty w# € (Y, R) C {n < 4Cyq*/R}.
Also, from (A.19) and (A.140), we get that

v v

T —gl —r

< const,

and, consequently, | —y| > r/2, if r is large. From this circumstance, recalling the
touching properties of Z, (2.57), and (A.141), we gather that

. Vu(E) . Vs v, (®) _
(‘(w@f) ’ eN)) - (‘<ng§£§<@ ’ eN)) -

= sin
T
S i A
|7 = 9|
< const 4 .
T
Thence,
Vu(z)
A.143 Z , € < const —
(A.143) (e =)
Analogously, if xq is the point in the statement of Lemma A.1, one sees that

Vu(zo) q
. —_V, € < const —.
(A.144) z <|Vu(:n0) , €N> < const 7
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In particular, from (A.143) and (A.144) it follows that
Vu(x) Vu(zo) ) q
A.145 / — < const — .
( ) <|Vu,(.,) [Vu(zo)|) — R
In addition, from Proposition 3.14,
(A.146) eN (WN(é)) > const £V(Z,) > const(cq)¥ !
What is more, arguing as in the proof of (A.96), one can see that
(i >onst
‘Tp PR RLIC) Hg(u(a”:))‘ < Lons and
o |[Vu(z)] R
(A.147) (o) .
u(zg cons
T — ——H ‘ < —.
[Ty.no — a0 + (e 0@ < —F

Hence, from (A.147), (A.142) and the fact that Ty gzo - ey = 0 (recall the

assumptions in Lemma A.1), we have that

g“gw) Ho(u(#)) éjjfjg; Ho(u(z0))) - en+
+ co}r;st <
< (% Ho(u(¥)) — % Hg(u(mg))) Cen+
N 4C}’;q2 co}r:‘r

and so, thanks to (A.140), (A.143) and (A.144),
(T —20) -en <
. constq> 4Cyq®> const
(A.148) < Ho(u(#)) = Ho(u(wo)) + —5 Ig +— <
5 (7u q2
R )

< Ho(u(#)) — Ho(u(w0)) +
by assuming Cy, ¢ and R/q suitably large.
Moreover, in the light of (A.26), (A.141) and (A.148), and recalling that |u(Z)| <
1/2 and |u(zo)| < 1/2, we have
(A.149)  |& — zo| < |(E — m0)'| + |(F — zo)n| < (14 2¢)q + |(& — m0)n| < C4q,
where C is a conveniently large constant as in the statement of the Lemma. By
means of (A.148) and (A.144), we conclude that
Vu(zo) 6 C; ¢*
|Vu(zo)| R

Let us now consider the set = defined in the statement of Lemma A.1 and take c,
conveniently small: then, thanks to (A.141), (A.140), (A.149), (A.145) and (A.150),

(A150) (’7‘ — .’17(]) S H[)(’Il(’i‘)) — H()(’IL(.’IJ())) +

we have that

[1]c

E2E;
the proof of (A.22) (A.23) is thus ended by means of (A.146).
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To finish the proof of Lemma A.1, we need now to check the Lipschitz graph
property of Z, := 2N {zn41 = s}, for any |s| < 1/2. The graph property is a
straightforward consequence of the first occurrence touching point property, hence
we focus on the Lipschitz estimate. For this, take X, X € =,; then,

s =u(T) = 9s(v,R) (z) = 9s(V.R) (@) = u(z),
for suitable Y, Y € RN*! so that 7nY, aY € .. We will prove that

const g

(A.151) v — ] < S

@)l

which implies the desired Lipschitz estimate (with constant const ¢/R < 1). With
no loss of generality, we may and do assume that

(A.152) IN >IN
Let us define

ro= R+ Hy . 5(s) = Ho(In+1),
so that

{9sv.m)y =5t = 0B:(y).

By (2.57) and (A.143), we have that
(A.153) \z' —y'| < constg,
and therefore, from (A.153), we get that

. B <l e @+l <
' < constgq,

which is less then 7, if ¢/R is small enough. Thus, by the first occurrence touching
property of 9s(v, i) Z must be above {gS(Ycé) = s} (with respect to the ey direc-
tion). This, (A.154) and (A.152) imply that % is trapped inside a cone with vertex
in z and slope bounded by const ¢/7, which gives (A.151). This ends the proof of
Lemma A.1. O
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constq

<

The cone trapping &

By a rotation/translation argument, we deduce from Lemma A.1 the following

LEMMA A.2. Fizo € RV, £ € RV, with || = 1. Let u be a C'-subsolution of
(1.5) in

{z € RN st |(x—0) & <1 and |(z —0) — ((x —0) - &)E| < 1}.

Assume that S(Y, R) is above u and that S(Y, R) touches the graph of u at the point
(zo, u(zo)).

Suppose that |u(xzo)| < 1/2, |(xg —0)-&] < 1/4, |(zo —0) — ((xo — 0) - §)¢| < 1/4.

Assume also that

Ty.rwo € {|(x —0) = ((z —0) - ¢l =g} N{(z —0) - £ =0} and

y=0—+r>—q*¢& with

C
r=r(Y,R) = R— Ho(yn+1) — ﬁy%\H»] -
Then, there exist universal constants Cy, Cy > 1> ¢ > 0 such that, if
l
Clgqgc— and 4\3/ESIS{ZR,
1
the following holds. Let = be the set of points (x, u(x)) € RV x R satisfying the
following properties:
o [(x—0)-& <q/15, |u(¥)] <1/2, |t — x| < Cg;
o there exists Y € RN such that S(Y, R/Cy) is above u and it touches u
at (r, u(x));
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( .
|Vu(x)|v |(V11)(T0)\ g 2R ’
u(zo 14
® (xiTO) |VU($0)‘ < R +H0(“‘(1)) 7H0(“‘('7’l0))'

oN (WE(E)) > gV L.

More precisely, for any s € (—1/2, 1/2), there exists a set =, C ZEN{xnt1 = s},
which is contained in a Lipschitz graph in the -direction, with Lipschitz constant

less than 1, and so that, if

se(—1/2,1/2)

[1]c
[1]

we have that
eN (Wg(é)) > eV L.

With Lemma A.2 in hand, we can now complete the proof of Lemma 4.2, by
arguing as follows.

Let us now consider a vector £ € RV so that [¢| = 1 and
. q
¥ = Z(&, Ty, . rTo — Yo) = arcsin —,
,

being xg, Yy and R the ones in the statement of Lemma 4.2. We also denote

r = r(Yy, R), according to the definition of r(-,-) given in (A.18).
Observe that, by the assumptions of Lemma 4.2 and (2.57)

Z(& en) < Z(&, Tyy,rxo — yo) + £(Tyvy, %0 — Yo, en) =

B Vu(zg)
(A.155) =v+ 4(7|VU(3:0)\’ eN) <
< const d + T < T
onst — + — —.
- R 8 6

Define
0 :=1yg+\r2—q¢*>¢.

We will think o as the origin. Then,

(A.156) Ty, rto — 0| = |yo — Ty,,r%o| sind =r - g =q
and so

|TYO,R-T0 - y0\2 =r’=
(A.157) =lJo— yO‘Q +¢? =

= [0 —yol* + Ty rz0 — 0.

Then, (A.157) says that the triangle with vertices in yg, 0 and Ty, rzg is a right
triangle in o, that is

(A158) (TYO’R.T(] — O) f = O

Also, if
q = |(TY0,R'7:0 — O) — ((TYO,R-TO - O) ' f)f‘ )
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then (A.155) and (A.19) give that ¢ ~ ¢. Then, the hypotheses of Lemma A.2
being fulfilled (with ¢ replacing ¢, possibly scaling I to constl) thanks to (A.155)
(A.156) and (A.158). Thence, we deduce that,

3

(A.159) eN(m¢(2)) > constg™ ',

Also, in the light of the Lipschitz graph property in Lemma A.2, we have that
= D =, for an appropriate set =, with

for any |s| < 1/2, for some

2L C{z- =0} {ong1 = s}

and |F|rip, < 1. Note that the Z#’s are all disjoint (N — 1)-dimensional sets, lying
on {xny1 = s}

Given a, b € Zf, let now a’ := Fs(a) and b' := Fy(b). Then, the fact that Fj
gives a Lipschitz graph in the ¢-direction with |Fi|rLip, < 1 implies that

Zla =V, &) >

)

Therefore, by means of (A.155)

3

A(a’ -V, eN) >

This says that wn| is invertible and that its inverse is a Lipschitz function, with

Lipschitz constant bounded by 1/tan(n/12). Therefore, if

)

s

Gs = mgo (ﬂ'N

we have that G is a Lipschitz function whose range is =, with

1

Giliin < ————— < t.
Gslip < Torpgy S coms
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Hence, using the change of variables formula (see, e.g., page 99 in [18]), we deduce
that

constgV ! < gV (ﬂg(é)) =

1/2
:/ eN-1(E8) ds =

—1/2

1/2
= / dyds <
—1/2 /=t

1/2
/ | det G'(z)| dx ds <
J-1/2 /a7 @ED

1/2
const / / drds =
J-1/2 /G (ED

1/2
= const / eN=H G (EY)) ds =

S S
—1/2

= const SN( U G;l(Eﬂs)) =

IN

IN

= constEN( U nN(Fs(EﬁS))) =

= constEN( U nN(Es)) <

IN

const £V (WN(E)) ,

completing the proof of Lemma 4.2.

A.3. Proof of Lemma 4.3
Let Fy, C E} be the closed set defined as
F, .= {Z e L|dist(Z,DrNQ+a) <a}.
It Q\ Fy = 0,
EY(Qi\ Br) < 2N (Qi\ Fr) =0,

proving the claim, hence we may and do assume that Q; \ Fy # (. Let now
Z € Qi \ Fy and take Z, € Fy be so that

(A.160) dist (Z,Fy) = |Z — Z,| = r.
We use the notation Z = (2',0,zny4+1) € L and we claim that
(A.161) r<i+l|2] - g

To prove this, we may assume that r > a, otherwise the claim is proved, and
we proceed as follows. First of all, notice that, from (P1) in the statement of
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Lemma 4.3, we have that there exists Z € Dpn Q. Let Z lie on the segment
joining Z and Z, at distance a from Z. Then,

Z-2) =12~ Z]-a
and, therefore, since Z € Q,
|Z — Zy| (z' =22 +1-a<
(I +12)* +1—a <
('1+1)2+1-a.

IN AN N

(A.162)
Also, by construction, Z; € F}, and thus

(A.163) r<|Z—-Z.

The proof of (A.161) now follows from (A.162) and (A.163) by taking a > 2.

Notice now that, since Z € @, (A.161) implies that

(A.164) r<2l— %

We now claim that
(A.165) eN (F,m nQ N BT(Z)) > ¢gN (Ql N BT(Z)) ,

for a suitable ¢ € (0,1), which may depend on the quantity ¢ introduced in (P2)
during the statement of Lemma 4.3.
We now begin with the proof of (A.165), which will be completed on page 131.
Since Z, € Fy, there exists Zy € Dy N Q4+, be so that | Z, — Zy| < a. We point
out that, in fact,

(A.166) Z, — Zo| = a.

Indeed, if, by contradiction, |Z, — Zy| < a, we have that By(Z.) N L C F}, for
some d > 0, from which it would exists Z € F}, so that |Z — Z| < |Z. — Z|, that
contradicts the definition of Z, and proves (A.166).

Also, from (A.160) and (A.166),

(A.167) |Z —Zo| < |Z - Z\|+|Zs — Zo| =7 +a.
We notice that, in fact,
(A.168) |Z —Zo|=1+a.

Indeed, if it holded that |Z — Z| < r+a, take Z € dB,(Z) on the segment joining
Z and Zgy: then Z € Fy, since Zg € Dy N Qj+4, and
Z—Z|=|Z—Zy|—a<r,

which contradicts the definition of r and proves (A.168).
Notice that, thanks to (A.167) and (A.168), we have that Z,. belongs to the
segment joining Z and Zg.
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The proof of Lemma 4.3

To continue with the proof of (A.165), we need now to distinguish two cases:

either a < 2r or a > 2r. Let us first deal with the case a < 2r. We claim that there
exists Z; € Q; so that

(A.169) Z — 7| :g and  B,»(Z)NLCQ.

To prove (A.169), we need to distinguish two sub-cases. If z/ = 0, take Z; :=
Z + ey /2. Then,

N | =

z1N+1| = [enga] <
and, recalling (A.164),
A
=-<I,
|21 D)

showing that Z; € @, in this case. Also, exploiting (A.161), if W = (w',0,wny1) €
BT/Q(Zl)a

lw'| <r <1,

proving (A.169) in this sub-case. If, on the other hand, z’' # 0, take

!
Zh =7 — Iz ;
22|
thus,
1
zi,N+1| = |zn41] < 3
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and, since Z € @), recalling also (A.161), we have that

!

! 2 ! r _
iz = m(\z —5)
= |l2l-5|=
2
= max{|2/| -5, 5 - |2l <
r o1
< I—5, ¢ <
< max{ 3’ 3
< 1,

which shows that Z; € (); in this case.
Let also W = (w',0,wn 1) € B,2(Z1) N L; then, we have that

W < lAl+ 5=
|2/] 2/17" 2
2 2
, r r , r
= max{l =5 G-I} + 5=

= max{[]Z|, r—|2'[}.
Hence, using that Z € @, and (A.161), we deduce from the above that
lw'| <1,
proving (A.169) in this sub-case.
This completes the proof of (A.169).

As a consequence of (A.169), we immediately infer from the fact that B, /5(Z:)N
L C @ that

!

Wzt Al
|21] 2
and therefore
Al ! r ! r
U> 1| = 124+ 5| = 124+ 5
that is
(A.170) 2] <1— g

We show that this yields that
(A.171) |27 — 24| < 20— 2a.
Indeed, if r > 2(I — 3a)/3, (A.170) and the fact that Zy € Qi+, imply that
51
24— 2| < e+ 1p <2 - S +a< > +2a,

which proves (A.171) in this case; if, on the other hand, r < 2(I — 3a)/3, we have,
by (A.168) and (A.169), that

\z{—z{)\S\z{—z’\—l—\z'—z{)\S\Zl—Z|+|Z—Z0|:g+r+a§l—2a

in this case. This ends the proof of (A.171).
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We now complete the proof of (A.165) in the case a < 2r, by arguing as follows.
We notice that, by construction, and recalling (A.168) and (A.169)

3

a—l—g = |Z— 7|~ |2 - 7| <
< |Zy - Zo| <
< Nz - ZI+|Z — Zo| =
= %-{—r-{—aﬁ
(A.172) < 5r.

Furthermore,® using (A.171), we have that

1Zy — Zo| <[] — 2>+ 1<

(A.173) <@ —2a)2+1<
<al.
Now notice that, from (A.172),

(A.174) eV (Dk+1 n Br/?(Z1)) > gV (Dk+1 n B\zrzo\/m(zl)) :

Furthermore, by (A.169), B, /2(Z1) N L contains a circular sector of height 1 of a
ball of radius r/2, while, on the other hand, B, (Z) N @, is contained in a circular
sector of height 1 of a ball of radius r. Therefore,

eN (B,,/2(Z1) N L) > constr¥ !l >
eN (B,,(Z) N Q,) .

Also, by construction, B, /5(Z1) C By(Z), Dgt1 C Fry1 NQiyq and LN B, /5(Z1) C
Qy, therefore,

(A.175)

Y

(A.176) EN(FkH nQ N BT(Z)) > sN(Dk+1 N BT/Q(Zl)) .

Finally, from (P2) of Lemma 4.3 (which may be used thanks to (A.173) and (A.172)),
we have that

¥ (Disi N Bz, gy0(Z0)) > eV (LOBs, 1(20) >

(A.177) CSN(LQBT/2(Z1)),

v

where, in the latter estimate, we used again (A.172). Then, (A.165) easily follows
in this case from (A.176), (A.174), (A.177) and (A.175).

Let us now deal with the case in which a > 2r. In this case,
r+a
10

(A.178) <a.
Since Z € L and a > const > 0,

SN(BH“(Z) mL) > const > 0.

8The reader will notice that (A.173) is needed in order to use property (P2) of Lemma 4.3
here in the sequel.
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In particular, by (P2) of Lemma 4.3, (A.168) and (A.178), we infer from this that
2N (Birsay10(2) N Di) = £ (Bl z,10(2) N D) >
> const £V (B‘Z,ZO‘(Z) N L) =
= const &V (B,,+a(Z) N L) >

> const > 0

thence, there exists

Zy € Dig1 N Brgay/10(Z) -
Also, the fact that Z € @; and (A.178) give that

Dyy1 N Birgay10(Z) € Qiya,
thence Z; € Qi14. Hence, the fact that Zy € B(,14)/10(Z) implies that
(A.179) QN B.(Z) C QN By(Zy),
while the fact that Z; € Dy implies that
(A.180) QN Ba(Z;) C Figr -
Then, from (A.179) and (A.180),
QN B (Z) C Fyya

and, therefore,
Faan@QnNB.(Z)=Q,NB.(7).
This proves (A.165) in this case (with ¢ = 1).

Having completed the proof of (A.165) we now take a finite overlapping cover
€ of Q; \ F}, with balls of radius r, in order to end the proof of Lemma 4.3. Thus,
using such cover,

N (Fk+1 N (Q \Fk)) = gV (Fk+1 NQiN(Q: \Fk)) >

const Z eV (Fkﬂ NEN BT(Z)) .
B, (Z)eC

v

Then, using (A.165), we deduce from the above that

const et gN (Fk+1 N (Q \Fk)) > Z eN (Ql N BT(Z)) >
B.(Z)ee
> e¥an( U B®)) 2
B.(Z)ee
> gV Qzﬁ(Qz\Fk)) =
(A.181) = Y(Qi\ Fy).

Furthermore, since Dy C Dy1, we have that Fj, C Fj1q and so

(A.182) Qi\ Fier € (Q\F) \ (Fien N (@i \ Fi)).-
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Hence, by using (A.182) and (A.181),
@\ ) < eNQ\F) - € (Fun QI F)) <
< (1= M@\ Fy),
for a suitable é. Therefore, iterating the above estimate,
LY@\ Fr) < (18" Y (Qi).

This completes the proof of Lemma 4.3 since Ej O F} by construction.






APPENDIX B

Summary of elementary lemmata

We collect here some lemmata that are in use during the proofs of the main
results. We will skip the proofs of most of these lemmata, since they are quite
elementary (a detailed proof of them, however, may be found in [30]).

LeEMMA B.1. For any 0 < s <t <#*,
ho(—1+1¢) — ho(—1 4 s) > ¢(t? — sP),
for a suitable universal constant ¢ > 0.

LEMMA B.2. Let U be an open subset of R. Let g € C*(U) and assume that g
has no critical points. Define

(B.1) Wl(a) = gl -y~ 1)
Then, fort = |z —y|—1 € U and = # y, we have

_ - N -1
(B2) A, (@) = (0= 19" (09" 0 + g O

LEMMA B.3. Let I 3 0 be an interval of R and let h € C'(I) satisfy h(s) > 0

for any s € I. Let
*(p-)Vrd¢
H(s) := /0 W, Vsel.

Define also g as the inverse of H, that is g(t) := H *(t) for any t € H(I). Then,
g € C*(H(I)) and

70 = (L)
) (0 .
g'(t) = 1) h(g(t))

for any t € H(I).
We recall now the maximum and comparison principles needed for our purposes.

First of all, in [9] (see in particular Theorem 1.4 there) the following result was
obtained:

THEOREM B.4 (Strong Comparison Principle I). Let Q be an open (not nec-
essarily bounded nor connected) subset of RN, A € R and u,v € C'(Q) satisfy

(B.3) —Apu+ Au < —A,(v) + Av, u < v in .

Define Zyy = {z € Q : |Du(z)| + |Dv(z)] =0} if p # 2, Zuw =0 if p=2. If
xo € Q\ Zy,p and u(xg) = v(xo), then u = v in the connected component of Q\ Z,,
containing xg.
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An easy consequence of the above result is the following one (see §3 in [30] for
further details):

CoROLLARY B.5 (Strong Comparison Principle II). Let Q be an open (not
necessarily bounded nor connected) subset of RN, and u,v € C'(Q) satisfy

(B.4) —Apu + f(u) < =Ay(v) + f(v), u<win ),

with f locally Lipschitz continuous. Define Z,, , = {x € Q : |Du(z)| +|Dv(x)| = 0}
p#2, Zuy=0ifp=2. If 50 € O\ Zyuy and u(zg) = v(zg), then u = v in the
connected component of O\ Z,, , containing xg.

As well known, the “dangerous” points in dealing with p-Laplace operators are
the ones in which the gradient vanishes, due to lack of ellipticity. Next result, proved
in [37] (see also [30] for details), will help us in dealing with this circumstance.

THEOREM B.6 (Strong Maximum Principle and Hopf’s Lemma). Let Q be an
open connected (not necessarily) bounded set in RN and suppose that u € C(1),
u > 0 in Q, weakly solves

—Ayju+cu?=¢g>0 in Q
withq>p—1,¢>0 and g € L (). If u is not identically zero, then u > 0 in Q.

loc
Moreover, for any point o € 0 where the interior sphere condition is satisfied,

and such that u is C' in a neighborhood of QU {xo} and u(zy) = 0, we have that
% > 0 for any inward directional derivative.

Following are some easy result on the geometry of Euclidean spheres. Though
elementary, we give full details of their proofs, in order to take care of the constants
involved.

LemMA B.7. Letr > q > 0. Fiz e > 0 and let ¢c; and c2 be non-negative and
so that
(B.5) max{ci, ¢} < min{y/e/3, 1/2}.
Suppose® that z € B,(y) C RN, with |2' —y'| < c1q. Then,
9B, (y) N {Iﬂf' -2 < C2Q} n {w/v > yN} C
(B.6) 9

€q
fon >on - L1
r

Proor. Take w € 0B,.(y) N {\T’ -2 < (:Qq} N {mN > yN}. For any =z € RV,
let

Then, by construction,

2 € B, (0),
’\gﬂ and

|2
r

W € 8B, (0) N {\n?’fz”| < %}m{m > 0}.

Let also t > 0 so that

b:=2+tey € OB (0).

I Notation remark: in Lemma B.7, for definiteness, the balls are assumed to be closed.
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We claim that

2
. . €
(B.7) Wy > by — TLQ .

To prove this, first note that, if Wy > by, (B.7) is obvious; hence, we may assume
that

(B8) wy < i)N.

Also, if by < 0, (B.7) would follow from the fact that wy > 0, thus we may also
suppose that

(B.9) by > 0.
Also,
TSNS
= [#P + by <

2.2
c1q
r2

IN

+ [bn|? <
< g+ \BN\Q ;

which, together with (B.9), implies that

(B.10) by >

N | =

thanks to (B.5). Furthermore,

2P+ bvl® = )7+ o] =

2
< (m ¥’ — z’|) +wn?,
and so, by (B.5)

b |? — i ?

IN

|’ — 2> +212'| o' — 2| <
2
< (c§+2(:1(:2)2—2§
€q*
S 53

From this, the fact that @wy > 0, (B.8) and (B.10), we conclude that

which proves (B.7).
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By using (B.7), we gather that

WN — ZN

which gives (B.6).

Y

COROLLARY B.8. Letr > q >0 and fix

(B.11)

K,E(O,

r

r (Tf)N — i)N

1_0q}'

T‘(’UA)N—,QN):
T'(’uA)N—IA)N-f-t)Z

)271/

r

2

Let us suppose that v = (v',kq*/r) € RY is above B,(y) with respect to the ey

direction. Let us assume also that |v" — y'| < ¢q, with

0B,(y) N {la' — y'| > 4rq} € fan <0}

(B.12)
Then,

c < min{

vE -
372

1

ProOOF. Take w € 9B,(y) N {|a:’ -y > 4/<aq}. Let also ¢t > 0 be so that

(B.13)
Note that
(B.14)

Also, by our assumptions

(B.15)

Let z := y+ren. We now apply Lemma B.7 with € := k and ¢; := ¢,

3

' =yl = -y

IN

wy < yn + |wn — Y|

cq .

=yn+Vr2—|w —y')? <

< yn + /12 — 16K2¢2.

(B.12). Indeed, by (B.13), (B.14) and Lemma B.7,

p€dB,(y) N {la’ — | < esaf N {ow > un} C

(B.16) c{

|

K

SUNZZUN+7'—T

2

r
Kkq

Exploiting (B.15) and (B.16), we get

wN

<

IN

IN

Py T+ S L /12— 1682 <
r

UN — T+ — + /T
r

2kq>

r
2kq>

r

2

kq>

7T+7"7

2

)

2

8k4q
r

2

— 714+ +/1r? — 16K%¢2 <

<0,

p:=v —tey € OB,(y) with py > yn.

2 — 16K2¢%2 =

:= ¢, recalling
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which is the desired result. O

COROLLARY B.9. Leta >0, r > q > 0 so that

q K
B.17 < =
(B.17) 1<
and
q a
B.18 - < —.
( ) r — 8K

Let us suppose that v = (v', Kq?/r) € RN is above B, (y) with respect to the en
direction. Let us assume also that |v' —y'| < éq, with

R . (VK 2K
(Blg) C S l'nll'l{T7 T} .
Then,
(B.20) 0B, (y) N {|2' = y/| > ag} C {zn < 0}.

PRrROOF. Let ¢ := 4Kq/a, k := a®/(16K), ¢ := a¢/(4K). Note that ¢ < r due
to (B.18). What is more, v = (v', kg*/r) and |[v' —y'| < ¢q. Also, (B.11) and (B.12)
are fulfilled thanks to (B.17) and (B.19). Thus, by Corollary B.8 (applied with ¢
instead of ¢),

0B,(y) N {la’ —y/| > 4rq} € {aw < 0},
which is (B.20). O

We now point out some observations on rotation hypersurfaces in R¥N*!. First,
the normal of a rotation surface is in the space? generated by the radial direction
and en41, as showed by the next result:

LEMMA B.10. Fizy € RV, Let f € CY(R,R) and define
B(x) = (i — ).
Let v(x) be a normal vector to the surface {xny1 = ®(x)} at the point (x, P(x)).

Then, if © # y, v(x) belongs to the space spanned by x —y and eny1. If x =y and
f'(0) =0, the same result holds.

PROOF. Assume x # y. By construction,
v(z) = a(V@(m), —1) ,

for some a € R. Therefore,

af'(|lz—
vy = T ) ey
ER
thus proving the claim if x # y.
If, on the other hand, x = y and f'(0) = 0, then v(z) = aeny1, for some

a € R, hence completing the proof of the claim. O

The next result will relate the “center” of a rotation hypersurface with the
normal at any point:

2And7 in fact, this property characterizes the rotation surfaces, as pointed out to us by Rajko
Quarta Marcon, an undergraduate in Tor Vergata.
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LEMMA B.11. Fizy € RV, Let f € CY(R,R) and define
B(x) = (i — ).

Let us define the following hypersurface in RNt :
Y = {(x,cb(x)) ‘xe ]RN}.

Let us consider the normal v(zx) at a point (a:7 <I>(a:)) € X, given by

(— Vo (2), 1)
CVI+ V@)
Then, for any = € RN \ {y}, the vectors

rT—y and (V1(:U),...,UN(:U))

are parallel.

PrOOF. If (v1(z),...,vn(x)) = 0, there is nothing to prove, so we may assume

(v1(x),...,vn(x)) # 0. For this reason,

va@) =1 (lr—l) o0

thus
7' (lo = ul) #0.
Let
R RV R Ol
f! (Iw - yl)
Then,

a(z) (Vl(m),...,l/N(m)) =z—y,

proving the claim.

O

Next result is an explicit computation on the differential of the unit normal
of a hypersurface (up to a sign, such quantity is sometimes referred to as Second

Fundamental Form or Shape Operator):

LEMMA B.12. Let ¥ € C'(RN,R). Let X be the hypersurface defined by

2::{(:5,\1/(3:)) ‘xe]RN}.

Let X = X (z) := (z,%(x)) and consider the unit normal to ¥ at the point X, given

by
- V¥(z), 1
v(r) = & e SNV,
1+ |VU(2)?
For X = (z,9(x)), let also

v(X)=v(z,¥(z)) :=0(z).
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Let? Dxv : TxY — RNTL be the differential map. Then, for any W = (w,wny1) €
TxY,

(B.21) Dxv(X)[W] =
—(1+ |V ()]?)01;¥(X)w; + 01 ¥ (X) 0, (X)) Or; ¥ (X) w;
(1 + [VE(x)[?)?/

| V@) )0, U (X )w; + OnT(X) BT (X) By (X)) w,
(1+|V®(x)[?)3/2

=0k U(X) 9 U (X) w;
(14 |Ve(x)[?)3/2

PRrOOF. Let W € Tx¥. Then, for some v € RV,

W = 4 (’I‘ +tv, ¥(z + tv))

o = (7), V¥(z) -1)) ;

t=0
that is wyy1 = VU (z) - w, or, equivalently
(B.22) TxY = {(w,V¥(z) -w) | we RV},
Because of this,
d
Dxv(X)[W] = —I/(m+tw, \Il(m+tw)) =
dt 0
d
= —d(z+t
dtu(m + tw) .
from which a straightforward calculation gives the claim. O

REMARK B.13. In relation with Lemma B.12 above, we notice that, since
v(¥) € SN and T,,(X)SN = Tx X, we may think Dxv as a linear map from T'x ¥ to
itself. Using (B.21) and (B.22), one deduces that Dxv : Tx¥ — Tx¥ may thus

be represented in matrix form as

_ 2)H. . ) .
(Dxu) =14 |VY?)0;;V + 0; 00, V0,; ¥

B.23
(B.23) ij (1+[VE?)3/2

for 1 <i,j < N (where, of course, the summation over the index k is understood
here above).

With this, we now point out an explicit computation of the curvatures of the
rotation surfaces:

LEMMA B.14. Let ® € C*((0,+00), R) and

Y= {(T cp(m)) |z € ]RiN}.

3As standard, given a manifold M and a point X € M, we denote by T'x M the tangent space
at X. Also, as usual, SV := {X ¢ RN*+! || X| =1}.
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Then, the principal curvatures* of ¥ are given by

@/
Kl = ... =KN. ] = ————
2l /T + (@2
(}H
KN = —————.
i+ @
ProoF. We set ¥(z) := ®(|z|) and, after some easy computation, we infer

from (B.23) that

1+ (9)2)9' 4y,

(pxv) = (1+(<1>')2)*3/2[7( +

2]
1+ o' 2 o' — foxd
L@

aff

||

(B.24)

Notice now that, up to rotation, we may assume that the point X = (z, ®(]z])), in
which we compute the principal curvatures, is of the form = = |z| en; hence, from
(B.24)

(14 (2')°)®' 5y

(Pxv) =+ (@) 2] - +
14 (2")2)d' — |z|®"
L@ jele
||
and so the desired claim easily follows. O

4As standard, the principal curvature of a surface > at the point X are here defined as the

eigenvalues of —Dxv(X): TxX — TxX.
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