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PREFACE.

HIS book has been designed primarily for the use of first
year students at the Universities whose abilities reach or
approach something like what is usually described as ‘scholarship
standard’. I hope that it may be useful to other classes of
readers, but it is this class whose wants I have considered first.
It is in any case a book for mathematicians: I have nowhere
made any attempt to meet the needs of students of engineering
or indeed any class of students whose interests are not primarily
mathematical.

A considerable space is occupied with the discussion and
application of the fundamental ideas of the Infinitesimal Calculus,
Differential and Integral. But the general range of the book is a
good deal wider than is usual in English treatises on the Calculus.
There is at present hardly room for a new Calculus of an orthodox
pattern. It is indeed not many years since there was urgent
need of such a book, but the want has been met by the excellent
treatises of Professors Gibson, Lamb, and Osgood, to all of which, I
need hardly say, I am greatly indebted. And so I have included
in this volume a good deal of matter that would find a place
in any Traité d'Analyse, though in English books it is usually
separated from the Calculus and classed as ¢ Higher Algebra’ or
‘ Trigonometry .

In the first chapter I have discussed in some detail the various
classes of numbers included in the arithmetical continuum. I have
not attempted to include any account of any purely arithmetical
theory of irrational number, since I believe all such theories to be
entirely unsuitable for elementary teaching. My aim in this
chapter is a more modest one: I take the ‘linear continuum’ for
granted and assume the existence of a definite number corre-
sponding to each of its points; and all that I attempt to do is to
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analyse and distinguish the various classes of numbers whose
existence these assumptions involve.

Chapters II and III probably do not present many points of
novelty. The account given in Chapter 11 of the most important
classes of functions of # is more systematic and illustrated with
much greater detail than is usual in English books. I have
included, mainly for the sake of completeness, a certain amount
of the elements of coordinate geometry of two and three dimen-
sions: but I have, here and throughout the book, kept geometry
in a strictly subordinate position and used it merely for purposes
of illustration. I have also avoided any wealth of detail in
connexion with the purely formal consequences of De Moivre’s
Theorem, and have devoted the space thus saved to the inclusion
of a good deal of matter concerning vector analysis, bilinear trans--
formation, and so on, which seemed to me likely to be more
interesting and more useful as a preparation for Chapter X.

I have endeavoured to make Chapter IV one of the principal
features of the book. The notion of a limit is one that has
always presented grave difficulties to mathematical students even
of great ability. It has been my good fortune during the last
eight or nine years to have a share in the teaching of a good
many of the ablest candidates for the Mathematical Tripos; and
1t 1s very rarely indeed that I have encountered a pupil who could
face the simplest problem involving the ideas of infinity, limit, or
continuity, with a vestige of the confidence with which he would
deal with questions of a different character and of far greater
intrinsic difficulty. I have indeed in an examination asked a
dozen candidates, including several future Senior Wranglers, to sum
the series 142+ 4?+ ..., and not received a single answer that
was not practically worthless—and this from men quite capable
of solving difficult problems connected with the curvature and
torsion of twisted curves.

I cannot believe that this is due solely to the nature of the
subject. There are difficulties in these ideas, no doubt: but they
are not so great as many other difficulties inherent in mathematics
that every young mathematician completely overcomes. The fault
is not that of the subject or of the student, but of the text-book
and the teacher. It is not enough for the latter, if he wishes to
drive sound ideas on these points well into the mind of his pupils,
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to be careful and exact himself. He must be prepared not merely
to tell the truth, but to tell it elaborately and ostentatiously. He
must drill his pupils in ‘infinity’ and ¢continuity’, with an
abundance of written exercises and examples, as he drills them at
present in poles and polars or symmetric functions or the conse-
quences of De Moivre’s theorem. Then and only then he may
hope that accurate thought in connexion with these matters will
become an integral part of their ordinary mathematical habit of
mind. It is this conviction that has led me to devote so much
space to the most elementary ideas of all connected with limits, to
be purposely diffuse about fundamental points, to illustrate them by
so elaborate a system of examples, and to write a chapter of fifty
pages without advancing beyond the ordinary geometrical series.

It is not necessary for me to say much about the general plan
of the next four chapters. The two chapters on the Calculus are
no doubt more difficult than the rest of the book. I have perhaps
been inconsistent in the standards that I have adopted: but I
have been influenced by the feeling that I shall have few readers
who will not already have acquired some familiarity with the
technique of the Calculus from other sources. I felt this par-
ticularly when I was writing the sections on integration. I also
felt that the student is apt to carry away from the books in general
use the quite mistaken impression that all methods of integration
are essentially of a tentative and haphazard character. 1 have
therefore deliberately given an account of the theory more
systematic and general than would be suitable for a normal first
course in the Calculus.

Chapters IX and X are devoted to the theory of the logarithm
- and exponential, starting from the definition of the logarithm as
an integral. It was the desire to write an elementary account of
this theory that originally led me to begin the book, and I have
generally decided my choice of what was to be included in the
earlier chapters by a consideration of what theorems would be
wanted in the last two.

I regard the book as being really elementary. There are
plenty of hard examples (mainly at the ends of the chapters): to
these I have added, wherever space permitted, an outline of the
solution. But I have done my best to avoid the inclusion of any-
thing that involves really difficult ideas. For instance, I make no
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use of the ‘ principle of convergence’: uniform convergence, double
series, infinite products, are never alluded to: and I prove no general
theorems whatever concerning the inversion of limit-operations—
dzf a*f
dody ™ Gyde
I have occasion once or twice to integrate a power-series, but I
have confined myself to the very simplest cases and given a special
discussion in each instance. Anyone who has read this book will
be in a position to read with profit Mr Bromwich’s Infinite Series,
where a full and adequate discussion of all these points will be
found.

It will be found that certain classes of theorems and examples
that are prominent in many English books are here conspicuous
by their absence. I may refer particularly to the standard theorems
concerning the expression of the trigonometrical functions as infinite
products or series of partial fractions, and to that familiar type of
example the gist of which lies in the ‘picking out of coefficients’
from some combination of infinite series. The proofs of these
results depend upon general theorems that seemed to me in-
trinsically too difficult to be included in a book professing to be
at the same time rigorous and elementary: and I am on the whole
of opinion that, if any proposition is too difficult to be proved
properly, its statement and application had better be postponed.
I am well aware that there is much to be said on the opposite
side. A very plausible case can be made out for the habitual
exercise of the student in the application of results whose proof is
too difficult for his full comprehension. But I have found that I
cannot myself write a book on those lines: nor am I fully convinced
that such exercise is either necessary or desirable. After all there
are plenty of theorems which are not too difficult to prove: and, if
anyone believes that a sufficient variety of analytical training cannot
be based upon them, I hope that my collections of Miscellaneous
Examples may do something to convince him. I may say that
it is only in these collections that examples of the character of
‘problems’ will be found. The sets of examples inside each
chapter consist either of perfectly straightforward applications of
the preceding ‘ book-work’, or of summaries of parts of the theory
for which there was no room in the text. They include many
important theorems, some indeed to which reference is frequently

I never even define and In the last two chapters
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made later in the book. No one can be more convinced than
I am of the value of ‘examples’ designed merely to train the
student’s memory and powers of manipulation: but I see no reason
why all examples should necessarily be trivial. I trust, however,
that readers will not find it irritating to be referred back from
the middle of a section in large type to an example in an earlier
chapter. My decision as to whether a result should appear in the
text or in the examples has always been based upon the relation
that it bears to the general theorems in connexion with which it
is first proved rather than upon the amount of use that is made
of 1t later on.

I have throughout laid particular stress upon points that do
not seem to me to be emphasized sufficiently in the text-books in
general use, and passed rapidly over others that are of equal
importance but stand in no such danger of neglect. Here again
I have been influenced by the consideration that this book is
likely to be used in conjunction with others rather than as a first
text-book in any particular subject.

There are two respects in which I have diverged from the
usually accepted notation and that seem of sufficient importance
to be noticed here. I have entirely rejected the index notation
for inverse functions (cos™ @, cosh™ ) in favour of the usual
Continental notation (arc cos #, arg cosh # or arg ch #). And I
have followed Mr Leathem and Mr Bromwich in always writing

lim, lim, lim
7 > 0 €T x>0

and not lim, lim, lim. This last change seems to me one of
n=w X$=00 xrx=a

considerable importance, especially when ‘co’ is the ‘limiting
value’. I believe that to write ‘n=o, 2=0o’ (as if anything
ever were ‘ equal to infinity ), however convenient it may be at a
later stage, is in the early stages of mathematical training to go
out- of one’s way to encourage incoherence and confusion of
thought concerning the fundamental ideas of analysis.

The word ‘ quantity ’ occurs occasionally in the earlier chapters.
It should be in each case altered to ‘number’. Unfortunately
I arrived at the decision never to use the term °quantity’ only
after the earlier sheets had been passed for press.

The books to which I am most indebted (besides the treatises
on the Calculus already mentioned) are Mr Bromwich’s Infinite
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Series and M. J. Tannery’s Lecons d’ Algébre et d’ Analyse. 1 must
also acknowledge my obligations to a number of friends who have
been kind enough to assist me in the preparation of the book.
Mr Bromwich has read the whole of it (except Chapter III) either
in manuscript or in proof, and a good deal of it twice; and I am
indebted to him for corrections and suggestions on almost every
page. Mr Berry read Chapters I, 11, I1I, IX and X in manuscript,
Professor J. E. Wright Chapters I, II, and III, and Dr Whitehead
Chapters I and IV, and all gave me much valuable advice. In
particular the earlier part of Chapter IV has been practically
rewritten in consequence of Dr Whitehead’s suggestions. I have
also changed a good deal of Chapter VI in consequence of sugges-
tions received from Dr Askwith. My thanks are also due to
Messrs H. W. Turnbull and E. H. Neville, of Trinity College, who
have between them read all the proofs and verified the examples :-
to the latter I am additionally indebted for the figures that
appear in the Miscellaneous Examples to Chapter X. Finally
I must express my gratitude to the readers and officials of the
University Press for their close attention and unfailing courtesy.

G. H. HARDY.

TriNiTY CoLLEGE, CAMBRIDGE,
September 1908,
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CHAPTER L
REAL VARIABLES.

1. The aggregate of rational numbers and their repre-
sentation on a straight line. On a straight line L, produced
indefinitely in both directions, we take a segment 4,4, of any
length. We call 4, the origin, or the point 0, and A, the point 1.

We now mark off a series of points

o Ay, Ay o, Ay, Ao, Ay, el Ay,
along L, so that

ce=A i dp=...=4_4,=4,4,=...,
each segment being measured from left to right along L.

L ' : ; i ! ] ! : ;
( ) A A, A, A, A A, A, A,
Fe. 1.
Then jgj? ST eeeeeieneenee e (1),

if n is any positive integer.
We will now agree that length is to be regarded as a magni-
tude capable of sign, positive if the length is measured in one
direction along I (e.g. from B to (') and negative if measured in
the other (from C to B), so that CB=— BC. We take the
positive direction for the measurement of length to be from left
to right.
Ad_, A4,
A4, A4,

H. A. 1

Then

= —N.
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Hence the equation (1) is true for all integral values of n, posi-
tive or negative.
For the sake of uniformity we adopt the convention that (1) is
also true when n = 0, in which case 1t reads
AOAO
A,4,
That is to say, we agree to regard BB, which is not, properly
speaking, a segment at all, as a segment of no length.

=0.

Now let us take any positive proper fraction in its lowest
terms, for example p/q, where p and ¢ are positive integers
without any common factor, and p<g¢. We divide 4,4, into
g equal parts by points of division which it is natural to
denote by

A,y Avgy Asgs oovs Apigy ooy Agyyigy A

It 1s evident that

Agdpg P
U 2).
A4, =g (2)

We thus obtain points on the line L corresponding to all such
proper fractions p/q.

Any improper fraction may be expressed in the form » -+ (p/q),
where n 1s a positive integer and p/q a proper fraction. If we
take a point A, g such that A, A4, gy =A.Ay,, it 1s evident
Ao Ant i1

A4,
corresponding to all possible positive values of n, p, and ¢, we
shall have a point A, corresponding to all possible positive
integral or fractional values of f, and such that

4,4
Hfﬁf = e (3).
Finally, if — f is a negative fraction, proper or improper, we
take A_;so that 4_sA4,=A4,4y, or
AA_y A4y
A4, 4,4,
Thus we are able to determine a point 4, corresponding to any
antegral or fractional value of r, positive or negative, and such that

that =n+-§ : and if we thus find points A,y
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If we take, as is natural, the length 4,4, as our unit of length,
so that 4,4, =1, the equation (4) becomes

ADA?- T ' teessercssarscnssssarasncas (5)‘

DEFINITIONS. Any fraction r=plq, where p and q are posi-
tive or megative integers, 1s called o rational number.

The points A, of the line L, which correspond to the rational
aumbers r in the manner explained above, are called the rational
points of the line.

We can suppose (i) that p and ¢ have no common factor, as
if they have a common factor we can divide each of them by it,
and (i1) that ¢ is positive, since

P9 =Cnlg =D =ple
The notion of a rational number obviously includes as a par-
ticular case that of an integer, since any integer may be expressed
as a fraction whose denominator is unity.

Examples I. 1. If » and s are rational numbers, »+s, 7—s, s, and 7/s
are rational numbers, unless in the last case s=0 (when r/s is of course
meaningless).

2. If P and @ are rational points, and P is divided into any number
of equal parts, each of the points of division is a rational point.

3. If A, m, and % are positive rational numbers, A (m?~ n?), 2\mn, and
A (m2 +n2) are positive rational numbers. Hence show how to determine any
number of right-angled triangles the lengths of all of whose sides are rational.

4. Any terminated decimal represents a rational number whose denomi-
nator contains no factors other than 2 or 5. Conversely, any such rational
number can be expressed, and in one way only, as a terminated decimal.

[The general theory of decimals will be considered in Chap. IV.]

5. The positive rational numbers may be arranged in the form of a
simple series as follows :

%’ _.12,, %’: %9 %’ 5‘.!’;’ %’ "219 %3 %3

Show that p/g is the [1 (p+¢—1) (p+g—2)+¢]th term of the series.

[In this series every rational number is repeated indefinitely. Thus 1
occurs as 1, 2, 3, .... We can of course avoid this by omitting every
number which has already occurred in a simpler form, but then the problem
of determining the precise position of p/¢ becomes more complicated. ]

1-2
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2. Irrational numbers. If the reader will mark off on the
line all the points corresponding to the rational numbers whose
denominators are 1, 2, 8, ... in succession, he will readily convince
himself that he can cover the line with rational points as closely
as he likes. We can state this more precisely as follows: if we
take any segment BC on L, we can find as many rational points as
we please.on BC.

Suppose, for example, that BC falls within the segment 4, 4,.
It is evident that if we choose a positive integer & so that

E.BO>AgAy ceieiiiisiaiieeennnannn. (1)

and divide 4,4, into k& equal parts, at least one of the points of
division (say P) must fall inside BC, without coinciding with
either B or . For if this were not so BC would be entirely
included in one of the k& parts into which 4,4, has been divided,
which contradicts the supposition (1). Thus at least one rational
point P lies between B and C. But then we can find another
-such point @ between B and P, another between B and @), and
so on indefinitely ; 1e., as we asserted above, we can find as many
as we please. We may express this by saying that BC includes
infinitely many rational points.

From these considerations the reader might be tempted to
infer that these rational points account for all the points of the
line, i.e. that every point on the line is a rational point. And it
1s certainly the case that if we imagine the line as being made
up solely of the rational points, all other points (if any such there
be) being imagined to be eliminated, the figure which remained
would possess most of the properties which common sense attri-
butes to the straight line, and would, to put the matter roughly,
look and behave very much like a line.

There is, however, good reason for supposing that there are on.
the line points which are not ratvonal povnts.

Let us look at the matter for a moment with the eye of
common sense, and consider some of the properties which we may
reasonably expect a straight line to possess if it is to satisfy the
idea which we have formed of it in elementary geometry.

The straight line must be composed of points, and any segment:
of it by all the points which lie between its end points. With
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any such segment must be associated a certain entity called its
length, which must be a quantity capable of numerical measure-
ment in terms of any standard or unit length, and these lengths
must be capable of combination with one another according to
the ordinary rules of algebra by means of addition or multipli-
cation. Again, it must be possible to construct a line whose
length is the sum or product of any two given lengths. If the
length PQ, along a given line, is @, and the length QR, along
the same straight line, is b, the length PR must be a +0b.
Moreover, if the lengths OP, OQ), along one straight line, are
1 and @, and the length OR along another straight line is b,
and 1f we determine the length OS by Euclid’s construction (Euc.
VL. 12) for a fourth proportional to the lines OP, 0@, OR, this
length must be ab, the algebraical fourth proportional to 1, a, b.
And it is hardly necessary to remark that the sums and products
thus defined must obey the ordinary laws of algebra, such as

a+b=b+a, a+®+c)=(a+b)+c, ab=ba,

and so on. The lengths of our lines must also obey a number of
obvious laws concerning tnequalities as well as equalities. Thus if
A, B, C are three points lying along L from left to right, we must
have AB < AC, and so on. Finally it must be possible, on our
fundamental line I, to find a point P such that 4,P is equal to
any segment whatever taken along L or along any other straight
line.

Now it is very easy, by means of various elementary geo-
metrical constructions, to construct a length 2 such that #?=2,
For example, we may construct an isosceles right-angled triangle

P

O

ot
&8

A 1 B L 2 M 1 N
Fie. 2.

ABC such that AB=AC=1. Then if BC=2a, 22=2. Or we

may determine the length « by means of Euclid’s construction
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(Euc. vI. 13) for a mean proportional to 1 and 2, as indicated
in the figure.
It follows that there must be a point P on L such that
AP =z, a*=2,
But it is easy to see that there is no rational number such that
its square is 2. In fact we may go further and say that there
is no rational number whose square is m/n, where m/n is any

positive fraction in its lowest terms, unless m and % are both
perfect squares.

For suppose, if possible, that

prom

¢ n

>

p having no factor in common with g, and m no factor in common
with n.  Then
np* = mq>.

Every factor of ¢*> must divide np? and as p and ¢ have no
common factor, every factor of ¢ must divide n. Hence n=2A\g?%
where A is an integer. But this involves m =\p?: and as m and
n have no common factor, A must be unity. Thus m = p? n= ¢,
as was to be proved.

We are thus led to believe in the existence of a point P, not
one of the rational points already constructed, and such that
AP =2, 2*=2; and (as the reader will remember from ele-
mentary algebra) we write 2 =4/2. And if @ is the point such
that QA4,= A,P, we write 4,Q = — /2.

The following alternative proof that 4/2 cannot be rational is interesting.

Suppose, if possible, that p/g is a positive fraction, in its lowest terms,
such that (p/q)?=2 or p?=2¢% It is easy to see that then we must have
(29— p)=2(p—¢)% and so (29— p)/(p—g) is another fraction having the
same property. But clearly ¢<p<2¢, and so p—¢<g. Hence we obtain
another fraction equal to pf/g and having a smaller denominator, which
contradicts the assumption that pfg is in its lowest terms.

DerINITION. Any point P on the line L which s not a
rational pownt is called an irrational point. The length A, P
28 called anm irrational number.

Examples II. 1. Show from first principles, without assuming the
general theorem proved above, that /2 is not a rational number.
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2. Give a similar proof for ¥/2.

3. Prove generally that, if p/q is a rational fraction in its lowest terms,
A(plg) cannot be rational unless p and ¢ are both perfect cubes.

4. 'The square root of an integer must be either integral or irrational
(i.e. it cannot be a rational fraction).

[For suppose, if possible, \/n=p/q, where p, ¢ are positive integers without
a common factor. Then ng?=p2 Hence p? divides n, as p and g have no
common factor; i.e. n=Ap% where A is an integer, and so \g%?=1, which
shows that A=1, ¢g=1, n=p% and so \/n=p.]

5. A more general proposition, due to Gauss, is the following: if
a4y 2" poa "2+ ...+, =0
is any algebraical equation with tntegral coefficients, it cannot have a rational
but not integral root.

[For suppose that the equation has a root a/b, where @ and b are integers
without a common factor, and b is positive. Writing a/b for #, and multiply-
ing by b*~1, we obtain

n

_.%=p1an—1+P2an—2b+“.+pnbn—-1,

a fraction in its lowest terms equal to an integer, which is absurd. Thus
b=1, and the root is a. Tt is evident that a must be a divisor of p,.]

6. Show that if ;{aon=1 and p;+pa+...+puF -1, the equation cannot
have a rational root.

7. Find the rational roots (if any) of
xt—45° — 822 +132+10=0.

[The roots can only be integral, and so +1, +2, +5, +10 are the only
possibilities: whether these are roots can be determined by trial. It is clear
that we can in this way determine the rational roots of any such equation. ]

3. Quadratic surds. If o is any rational number, the two
numbers + i/a are either rational or irrational, and (as appears
from what precedes) generally the latter. Numbers of this kind,
when irrational, are called pure quadratic surds. A number a + /b,
the sum of a rational number and a pure quadratic surd, is
sometimes called a mized quadratic surd.

The only kind of irrationals for whose existence the geo-
metrical arguments of the preceding section have given us any
warrant are these quadratic surds, pure and mixed, and the
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more complicated irrationals which may be expressed in a form
involving the repeated extraction of square roots, such as

N2+2+ /2 +N2+ /2442

It is easy to construct geometrically a line whose length is
equal to any number of this form, as the reader will easily see for
himself. That only irrationals of these kinds can be construicted
by Euclidean methods (i.e. by geometrical constructions with ruler
and compasses) is a point the proof of which must be deferred
for the present®. This particular property of quadratic surds
naturally makes them peculiarly interesting.

Examples III, 1. Give geometrical constructions for
N2, Vain2, NosNataa.

9. The quadratic equation az?+2bxz+c=0 has two real rootst if
b2—ac>0. Suppose @, b, ¢ rational. Nothing is lost by taking all three
to be integers, for we can multiply the equation by the n.c.m. of their de-
nominators.

The reader will remember that the roots are {—b+af(b?—ac)}/a. It is
easy to construct these lengths geometrically, first constructing /(62— ac).
A much more elegant, though less straightforward, construction is the
following.

Draw a circle of unit radius, a diameter PQ), and the tangents at the ends of
the diameters.

P
PJ
M
N
Q' Y Q X
Fia. 3.

* See Chap. II, Misc. Exs. 41.

1 Le. there are two values of # for which az?+2bz+¢=0. If b?-ac<O0 there
are no such values of . The reader will remember that in books on elementary
algebra the equation is said to have two ¢imaginary’ roots. The meaning to be
attached to this statement will be explained in Chap. III.

When b%=ac the equation has only one root. For the sake of uniformity
it is generally said in this case to have ‘two equal’ roots, but this is a mere
convention.
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Take PP'= —2alb and Q@' = —¢/2b, having regard to sign*. Join P'Q’,
cutting the circle tn M and N. Draw PM and PN, cutting @Q' in X and Y.
Then QX and QY are the roots of the equation with their proper signst.

The proof is simple and we leave it as an exercise to the reader.
Another, perhaps even simpler, construction is the following. Zake a line
AB of unit length. Draw BC= —2bla perpendiculor to AB, and CD=cla
perpendicular to BC and in the same direction as BA. On AD as diameter
describe a circle cutting BC in X and Y. Then BX and BY are the roots.

3. If ac is positive PP’ and Q%' will be drawn in the same direction.
Verify that if b2<ae P'Q’ will not meet the circle, while if b2=ac¢ it will be
a tangent. Verify also that if b?=ac the circle in the second construction
will touch BC,

4, Some theorems concerning quadratic surds. We
shall assume that the reader is familiar with the ordinary rules
for the manipulation of quadratic surds; such, e.g., as are ex-
pressed by the equations

N(PQ) =P . NG N(P*Q)=p g

He will find it a useful exercise at this stage to supply proofs of
these equations.

Stmalar and dissstmalar surds. Two pure quadratic surds are
sald to be sumilar if they can be expressed as rational multiples
of the same surd, and otherwise dissimelar. Thus

V8=242, Vi =3§V2,

and so /8, 4/2f are similar surds. On the other hand, if M and N
are integers which have no common factor, and neither of which
is a perfect square, /M and /N are dissimilar surds. For
suppose, if possible,

=g 5 v

where all the letters denote integers.

Then &/MN is evidently rational, and therefore (Ex. II. 4)

* The figure is drawn to suit the case in which b and ¢ have the same and a
the opposite sign. The reader should draw figures for other cases.

+ I have taken this construection from Klein’s Lecons sur certaines questions de
Géométrie Elémentaire (French translation by J. Griess, Paris, 1896).
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integral. Thus MN = P* where P is an integer. Let a, b, ¢, ...
be the prime factors of P, so that
MN =a?b*c*....

Then MN is divisible by ¢? and therefore either (1) M is
divisible by a?, or (2) N is divisible by @? or (3) M and N are
both- divisible by «@. The last case may be ruled out, since M
and N have no common factor. This argument may be applied
to each of the factors a? 0% ¢?, .... Ultimately we see that M
must be divisible by some of these factors and N by the rest.
Thus

M=x\P# N =2APp
where P;? denotes the product of some of the factors a? 82 ¢, ...
and P2 the product of the rest. Since M and N have no
common factor we must have A=1, M= P2 N =P2; 1.e. M and
NN are both perfect squares, which 1s contrary to our hypotheses.

TueoreM. If A, B, C, D are rational and
A4+ nB=C+4D,
then etther () A=C, B=D or (i1) B and D are both squares of
rational numbers.
If 4 is not equal to C, let 4 =C+a. Then, yB=a+ 4D,
or B=a?+ D4 2x4/D;
L.e. VD = (B — D — 2?)[2x,

which is rational, and therefore D is the square of a rational
number. In this case /B =0C— 4 + /D is also rational. On the
other hand, if A =C 1t is obvious that B = D.

Corollaries. (1) It A+y/B=C4+4D, then A —\/B=C—4/D
(unless 4/ B and 4/D are both rational).

. (i1) The equation /B =C + /D is impossible unless C'=0,
B =D, or both /B and /D are rational.

Examples IV. 1. Prove ab initio that /2 and ,/3 are not similar surds.

2. Prove that \/# and /(1/x) are similar surds (unless both are rational).

3. If o and b are positive and rational /a+./b cannot be rational unless
v a and /b are rational. The same is true of \/a— /b, unless a=>.
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4, If NA+JB=,/C+./D,
then either (@) 4=C and B=D, or (b) A=2D and B=0, or (¢) /4, N B, JC,
A/ D are all rational or all similar surds.

[Square the given equation and apply the theorem above.]

5. A quadratic surd cannot be the sum of two dissimilar quadratic surds.
6. Neither (¢4 a/0)% nor (@ —A/b)3 can be rational unless ,/b is rational.

7. Prove that if x=p+,/g, where p and ¢ are rational, ™, where m is
any- integer, can be expressed in the form P+ @./g, where P and ¢ are
rational. For example,

(PN =P +q+20Nq (P+NEP=p*+3pg+(3p*+9) Vg
Deduce that any polynomial in # with rational coefficients (i.e. any expression
of the form
ot oy 2?4 L+ ay,
where a, ... @, are rational numbers), can be expressed in the form P+ ¢ ./q.

8. Express 1/(p+4/¢) in the same form.

in 1 P g ]
‘We obtain = - .
[ p+ig pPP-q pPP-¢
9. Deduce from Exs. 7 and 8 that any expression of the form & ()/H (),
where G'(«) and H () are polynomials in & with rational coefficients, can be

expressed in the form £+ ¢ /g, where P and @ are rational.

10. If @+ /b, where b is not a perfect square, is the root of an algebraical
equation with rational coefficients, then a— /b is another root of the same
equation.

11. If p, ¢, and p?—q are positive we can express

Np+g
in the form \/z+ /7, where
. =3 {p+N(P* = y=32{p-N(P* -0}

12. Determine the conditions that it may be possible to express ¥Vp+.1/g,
where p and g are rational, in the form A/z+ /¥, where # and y are rational.

13. If a®—b is positive, the necessary and sufficient conditions that

, N(@+B)+ (a2 - )

should be rational are that o2 —b and % (o +~a?—b) should both be squares of
rational numbers,

5. Irrational numbers in general. The arguments which
led us to believe in the existence of quadratic surds, and corre-
sponding points on the line L, were based on considerations of
elementary geometry. There is, however, another way of looking
at the matter which is even more instructive and important, as it
leads us to consider classes of irrational numbers far more general
than quadratic surds.
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Consider the equation 22=2. We have already seen that
there is no rational number # which satisfies this equation. The
square of any rational number is either less than or greater
than 2. We can therefore divide the rational numbers into two
classes, those whose squares are less than 2, and those whose
squares are greater than 2. We call these two classes the class T,
or the lower class, and the class U, or the upper class. It is obvious
that every member of U is greater than all the members of 7.
Moreover, we can find a member of the class 7' whose square,
though less than 2, differs from 2 by as little as we please. In
fact, if we carry out the ordinary arithmetical process for the
extraction of the square root of 2 we obtain a series of rational

numbers, viz.
: 1, 14, 141, 1414, 1-4142, ...
whose squares

1, 1-96, 1-9881, 1999396, 1:99996164, ...

are all less than 2, but approach nearer and nearer to it; and by
taking a sufficient number of the figures given by the process, we
can obtain as close an approximation as we want. Similarly we
can find a member of the class U whose square, though greater
than 2, differs from 2 by as little as we please. It is sufficient to
increase the last figure, in the series of approximations given
above, by unity: we obtain

9, 15, 142, 1415, 14143, ....

Or again, we can find a member of 7 and a member of U which
differ from one another by as little as we please.

This follows at once from the fact that every rational number belongs
to one class or the other. A formal proof may be supplied as follows. Take
any member x of 7" and any member y of U. Let # be any positive integer,
and consider the numbers

1 2 n—1
, .fv-i-%(f/"ﬂ?); g;+?_3(y——x), ...... , x+—n—(y—w), Y.

Each of these is rational and belongs either to 7' or to U. Let 2+4(r/n) (y — )
be the first which belongs to 7% Then #+{(r+1)/2}(y —x) belongs to U.
Thus we have found a member of 7" and a member of U which differ by
(v —x)/n. And by taking a large enough value of n we can make this
difference as small as we like.

We add a formal proof that an # can be found in 7' and a y in U such
that 22<2 and 2>2, but both squares differ from 2 by as little as we please.
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Suppose we want each difference to be less than e (where ¢ may be, say, 01 or
0001 or *00001). We can, in virtue of what precedes, choose # and ¥ so that
y—w<ie.
We may obviously suppose both # and y less than 2, since #?<2 and z is
nearly equal to #. Then
g -2P=(y-2) (y+o)<4@y—-2)<s

and since #? < 2 and y? >2 it follows @ fortiori that 2— 2% and 32— 2 are each
less than e.

We have thus divided all the positive rational points on L
into two classes 7' and U such that (1) the class U lies entirely to
the right of the class 7', (i1) we can find a pair of points, one in T
and one in U, whose distance from one another is as small as
we please. And our common-sense notion of the attributes of a
straight line demands the ewistence of a number x and a corre-
sponding point P such that P divides the class T from the class U.

T TITTTUY U v

Fie. 4,

But (1) this number # cannot be rational. For if it were,
P would belong either to the class 7' or the class U, let us say
the former. Then 22< 2, or #*=2 — §, say, where & is some posi-
tive number. But we can find a member of the class 7' whose
square is as near to 2 as we like; and therefore we can find such
a member of T whose square is greater than 2 — 8, i.e. greater
than % That is to say, we can find a member of 7' which lies
to the right of P: which is absurd. Hence P cannot belong
to 7. Similarly it cannot belong to U.

Again (2) 2 cannot be either less than or greater than 2.
If it were less than 2 we could, as above, find members of 1" to
the right of P. This hypothesis is therefore untenable, and «* is
not less than 2. Similarly it is not greater than 2.
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Hence there is o point P and a number x such that
AP =z, 22=2.

This number x we denote by /2.

Examples V. 1. Find the difference between 2 and the squares of the
decimals given in § 5 as approximations to ,/2.
2. Find the differences between 2 and the squares of
13 % 17T 41 99
10 2» 5 127 29> 70°

3. Show that if m/n is a good approximation to 5/2, then (m+2n)/(m+n)
is a better one, and that the errors in the two cases are in opposite directions.
Apply this result to continue the series of approximations in the last
example.

4. If # and y are approximations to »/2, by defect and by excess respect-
ively, and 2—-22<e¢, y2—2<e¢, then y —w <e.

5. The equation #2=4 is satisfied by 2=2. Examine how far the argu-
ment of the preceding sections applies to this equation (writing 4 for 2
throughout).

[We define the classes 7, U as above. But in this case they do not include
oll rationals. The rational number 2 is an exception, since 22 is neither less
than or greater than 4. And as before we are led to suppose the existence of
a dividing point. But we cannot, of course, prove that this is not a rational
point. It is, in fact, the point #=2.]

6. But the preceding argument may be applied to equations
other than a?= 2, almost word for word ; for example to a?= 1N,
where IV is any integer which is not a perfect square, or to

B?=38, #¥="1T, at=23,
or, as we shall see later on, to #*=3x+8. We are thus led
to believe in the existence of points P on L such that #=A4,P

satisfies equations such as these, even when these lengths cannot
be constructed by means of elementary geometrical methods.

The reader will no doubt remember that in treatises on
elementary algebra the root of such an equation as #?=n is
denoted by /7 or n'4, and that a meaning is attached to such

symbols as
nP4, n—ple

by means of the equations
NPl = N/nP, nPll n=Pe=1,
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And he will remember how, in virtue of these definitions, the
‘laws of indices’ such as

n X nd = n'r-l-s’ (,nr)s = n’s
are extended to cover the case in which r and s are any rational
numbers whatever,

7. The continuum. The aggregate of points contained in
a straight line L is called a linear continuum. It contains (1)
the rational points, (2) the irrational points for whose existence
we have the evidence summarized in the preceding sections, and
the corresponding negative irrational points on the left of 4,,
(8) all other points of the line, if any such there be. To each of
these points corresponds a length measured from 4,, and capable
of numerical measurement in terms of our unit-length 4,4,.
The measures of these lengths are the real numbers, positive or
negative, integral, rational or irrational. The aggregate of all
these numbers is called an arithmetical continuum. All the
numbers contained in this arithmetical continuum may be operated
with according to the ordinary rules of elementary algebra.

The substance of the preceding sections is not intended as
a complete or rigorous analysis of the nature of either the
linear or the arithmetical continuum. Such an analysis would
be altogether beyond the scope of this book. What has been
said is intended simply to remind the reader of some of the
ideas on the subject which he no doubt already possesses, and
to attempt to make them, and some of the obvious conse-
quences which are involved in them, more explicitly present to
his mind.

In order to show the incompleteness of the analysis of the
numbers of the arithmetic continuum which has been given, we
need only consider a few examples.

(i) Let us consider a more complicated surd expression, such as
o= YAt/ 15)+ (4 - J15)
Our argument for supposing that the expression for z has a meaning, and
that a point P exists on the line such that 4, P=2z, might be as follows. We
first show, as above, that there is a point /; such that if y=A4,P;, #2=15,

and we can then determine points corresponding to the numbers 4+4,/15,
4—,/15. Now consider the equation in z

s3=4+/15.
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The right-hand side of this equation is not rational: but exactly the same
reasoning which leads us to suppose that the line contains a point # for which
x3=2 (or any other rational number) also leads us to the conclusion that it
contains a point z for which z°=4+,/15. Thus we find a point P’ such that

z=AgP'=}(4— \/15).
Similarly we find a point 2 such that
zg= Ao P" = (4~ Af15),
and taking 4, P=A,P’'+ 4, P" we have finally
AgP=z=3(4+15)+ J(4—A/15).
Now it is easy to verify that

23=3z48.

And we might have given a direct proof of the existence of a unique number
z such that 28=3z48. It is easy to see that there cannot be two such
numbers. For if z2=3z+8 and z°=3z+8, we find on subtracting and
dividing by z; — 2, that 2,242 2+ 2,2=3. But if 2 and 2z are positive z°> 8,
23 >8 and therefore 2z >2, 2> 2, #2+z2+22>12, and so the equation
just found is impossible. And it is easy to see that neither z nor z can
be negative. For if z is negative and equal to —¢, ¢ is positive and
$3—3(+8=0, or 3—¢?=8¢(. Hence 3—{2>0, and so (<2 But then
8/¢ >4 and cannot be equal to 3—¢% which is less than 3.

Hence there is at most one z such that #3=3z+8. And it cannot be
rational. For any rational root of this equation must be integral and a
factor of 8 (Ex. II. 5), and it is easy to verify that no one of +1, +2, +4,
+8, is a root.

Thus #*=3z+8 has at most one root and that root is not rational. We
can now define the positive rational numbers # into two classes 7, U accord-
ing as #°<3x+8, or 4 > 3x+8. It is easy to see that if #3>3x+8 and » is
any number greater than z, then also ¥®>3y+8. For suppose if possible
#*=3y+8. Then since #3>3x+ 8 we obtain on subtracting y® - #3<3(y - ),
or y2+xy+4?<3, which is impossible, since y is positive and #>2 (since
#3>8). Similarly we can show that if #<3x+8 and y<« then also
y¥<3y+8.

Thus we have separated the rational numbers into two classes similar to
the classes 7', U of §5. And we conclude, as there, that there is a number 2
which is greater than any number of 7, and less than any number of U, and
which satisfies the equation 28=3z+48.

The reader who knows how to solve cubic equations by Cardan’s method
will be able to obtain directly from the equation the expression

o= (4+/15)+ Y(4— W/16).
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(i) The direct argument applied above to the equation
2* =3z« + 8 could be applied (though the application would be
a little more difficult) to the equation

a*=x + 16,

and would lead us to the conclusion that a unique positive
number exists which satisfies this equation. In this case, how-
ever, it is not possible to obtain a simple explicit expression
for # composed of any combination of surds. It can in fact
be proved (though the proof is difficult) that it is generally
impossible to find such an expression for the root of an equa-
tion of higher degree than 4.

Thus, besides irrational numbers which can be expressed as
pure or mixed quadratic or other surds, or combinations of such
surds, there are others which cannot be so expressed. It is only
wn very speciul cases that such expressions can be found.

(iii) But even when we have added to our list of irrational
numbers roots of equations (such as #* =« + 16) which cannot be
explicitly expressed as surds, we have not exhausted the different
kinds of irrational numbers contained in the continuum. Let us
draw a circle whose diameter is equal to 4,4,, i.e. to unity. It is
natural to suppose that the circumference of such a circle has a
length capable of numerical measurement as much as the diagonal
of a square described on A4,4,. This length is usually denoted
by 7. And it has been shown (though the proof is unfortunately
long and difficult) that this number 7 is not the root of any
algebraical equation with integral coefficients, so that we cannot
have, for example, any such equation as

mi=n, m=n, w=a+n,

where n is an integer. If we take a point P such that
A,P =, we have found a point which is not rational nor yet
belongs to any of the classes of irrationals which we have so far
considered. And this number = is no isolated or exceptional
case. Any number of other examples can be constructed. In
fact it is only special classes of irrational numbers which are
roots of equations of this kind, just as it is only a still smaller
class which can be expressed by means of surds.

H, A, 2
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Examples VI. 1. Show that 2=3(54+2./6)+¥(5—2./6) satisfies the

equation
23=32+10,

and apply to this equation arguments similar to those used in §7 (i). And,
more generally, £=¥{n+ (72— 1)} + ¥ {n—a/(n?—1)} satisfies

#3=3x+2n.
Consider this equation similarly, » being any positive integer.

2. Consider the equation
a2 —4x+3=0.

It is easy to see that =1 and =3 are roots of this equation. If we
divide the rational numbers into two classes 7' and U according as
22— 42+320,

we see that 7' contains all rational numbers between 1 and 3 and U all less
than 1 or greater than 3. In this case we are not led to any irrational num-
ber, the numbers which divide the classes being 1 and 3. But if we consider

instead the equation
22— 4w+ 1=0,

(of which the roots are 2+,/3), we again have two points of division, in this
case each irrational: and we might argue directly from the equation to the
existence of two such numbers by dividing up the rational numbers into
classes 7', U as above.

8. The continuous real variable. The ‘real numbers’
may be regarded from two points of view. We may think of
them as an aggregate, the ‘arithmetical continuum’ defined in
the preceding section, or endiwidually. And when we think of
them individually, we may think either of a particular specified
number (such as 1, — 4, 4/2, or 7) or we may think of any number,
an unspecified number, the number x. This last is our point of
view when we make such assertions as ‘x 1s a number, ‘% 1s the
measure of a length,” ‘z may be rational or irrational’ The #
which occurs in propositions such as these 1s called the confinuous
real variable : and the individual numbers are called the values of
the variable.

A ‘variable, however, need not necessarily be continuous.
Instead of considering the aggregate of all real numbers, we
might consider some partial aggregate contained in the former
aggregate, such as the aggregate of rational numbers, or the
aggregate of positive integers. Let us take the last case. Then
in statements about any positive integer, or an unspecified positive
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integer, such as ‘n is either odd or even,” n is called the variable,

a positive wntegral variable, and the individual positive integers
are its values.

In fact, this # and n are only examples of variables, the
variable whose ‘field of variation’ 1s formed by all the real
numbers, and that whose field is formed by the positive integers.
These are the most important examples, but we have often to
consider other cases. In the theory of decimals, for instance, we
may denote by « any figure in the expression of any number as a
decimal. Then z is a variable, but a variable which has only ten
different values, viz. 0,1, 2, 3,4, 5,6, 7,8, 9. The reader should
think of other examples of variables with different fields of varia-
tion. He will find interesting examples in ordinary life. For
instance—policeman #, the driver of cab a, star # in Herschel’s
catalogue, the year z, the ath day of the week.

MISCELLANEOUS EXAMPLES ON CHAPTER 1.

1. Ifebec..kand 4, B, C,... K are two sets of numbers, and all of
the first set are positive, then
aAd+bB+...+EK
a+b+...+k
lies between the algebraically least and greatest of 4, B, ..., K.

2. What are the conditions that ex+by+cz=0, (1) for all values of
x, y,z; (2) for all values of #, y, z subject to axr+By+yz=0; (3) for all
values of #, ¥, z subject to both azx+By +y2=0 and Ax+ By + Cz=01?

3. Any positive rational number can be expressed in one and only one
way in the form

ay,
1. 2 o 3t tT e

where @, dg, ..., 03 are integers, and _

O_S_Cl’l, Oéa2<2, 0____<_.a3<3’ see Oéak<k.
47_11280_7'1611+3__§_+6'268+3
21 70 7! 7! 6!

5934+3 3 3 3  413+1
BT 6! 5!+ 4!

Qg
aty gt

[For example

by continuing the same process. It is ewdent that £ is a¢ most equal to the
largest prime factor of the denominator of the number given.]

2—2
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4. Any positive rational number can be expressed in one and one way
only as a simple continued fraction
1 1 1
g+ Og+ ...+’
where a,, dg, ... are positive integers, of which the first only may be zero.

CZ1+

[Accounts of the theory of such continued fractions will be found in text-
books of algebra.]

5. Find the rational roots (if any) of 923 — 622+ 152 —10=0.

[Put 8z=z and apply the method of Ex. II. 7 to the resulting equation
iny]

6. A line AB is divided at C in aurea sectione (Euc. 1. 11)—i.e. so that
AB. AC=BC% Show that the ratio AC/ARB is irrational.

[A direct geometrical proof will be found in Bromwich’s Infinite Series,
§ 143, p. 363.]

d

7. A is irrational. In what circumstances can %, where @, b, ¢, d

are rational, be rational ?

8. Express A/p, /¢ in the form ax+(b/x), where @, b are rational, and
x=/p+/g.

9. If Jp, Jg are dissimilar surds, and a+bJp+c/g+dN/(pg)=0,
where a, b, ¢, d are rational, then =0, b=0, ¢=0, d=0.

[Express 1/p in the form M+ N4/q, where M and N are rational, and appl
the theorem of § 4.] i

10. Show that if @y/2+b./3+c/5=0, where a, b, ¢ are rational numbers,
then a=0, =0, ¢=0.

11. Any polynomial in A/p and /¢, with rational coefficients, (i.e. any
sum of a finite number of terms of the form 4 (J/p)™(J¢)*?, where m and n
are integers, and A4 rational) can be expressed in the form

a+byp+eng+dJpyg,

where @, b, ¢, d are rational.

12. Express 3—%, where ¢, b, etc. are rational, in the form

A+BNp+CONg+DNpg

where A, B, C, D are rational.

[Evidently
a+bJp+eng_(a+bptenq) ([dtedp—fag) _a+Bapt+ye+dapg
d+ep+fig (d+ep)-fig e+ {Wp ’

where a, 3, etc. are rational numbers which can easily be found. The required
reduction may now be easily completed by multiplication of numerator and
denominator by e~ ¢\/p.]
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For example, prove that

1 1 1 1
TrJatgs 2 Tavi—gve
13. If a, b, 2, ¥ are rational numbers such that
(o — b +4 (=) (b—3) =0,
prove that either (i) x=ea, =5, or (ii) 1 — ab and 1 — &y are squares of rational
numbers. (Math. Tripos, 1903.)

[If we write a —x=§, b—y=n, we obtain
P2+ b2+ (4 —2ab) £n=0.

Solving this equation for the ratio £/y we find that £/» (which we know to be
rational) involves the quantity

V{2~ ab)2— a?b% =2 /(1 — ab).

Hence 1 —ab must be the square of a rational quantity. The only alter-
native ig £=9=0.

But the equation given may also be written in the form
w'n?+y* 8+ (4 - 2ay) &y=0.
Hence we deduce the same conclusion for /(1 - zy).]

14. If all the values of # and ¥ given by
axt+2hxy +by*=1, o'x?+20zxy+byi=1,
(where a, &, b, o/, I, b’ are rational) are rational, then
(h=EPR—(a-a')(b=0), (ab'—a'b)?+4 (ak'—a'h) (bR —U'R),
are both squares of rational quantities. (Math. Tripos, 1899.)
15. Show that /2 and /3 are cubic functions of \/2+44/3, with rational

coefficients, and that ,/2-./6+3 is the ratio of two linear functions of
A244/3. (Math. Tripos, 1905.)

16. The expression

Va+2mva—m? + Na—2mNa—m?
is equal to 2m if 2m2>a>m? and to 2.\/(a— m?) if a>2m?

17. Show that any polynomial in &2, with rational coefficients, can be
expressed in the form
a+b Y2+c¢ ¥4,
where a, b, ¢ are rational.
More generally, any polynomial in 2/p, with rational coefficients, can be
expressed in the form

a0+ alx-l— a2x2+ see +aqn_.1 xm-l,

where a,, a1, ... are rational and #=3/p. For any such polynomial is of the

form
b0+ blx+ng2+ ‘es +bkw",
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where the &’s are rational. If 2 <m—1 this is already of the form required.
If £>m—1,let 2* be any power of & higher than the (m — 1)th. Then r=Am +s,

. . A A
where A is an integer and 0 <s=<m—1: and & =& m+s=p #°. Hence we

can get rid of all powers of # higher than the (m— 1)th.
18. Express (J/2—1)°in the form ¢ +b {/2+-c /4, where a, b, c are rational.

19. Express (J2—1)/(&/2+1) in the same form.
[Multiply numerator and denominator by &4 —J/2+1.]

20. If a+by24c¢ Y4=0,
where a, b, ¢ are rational, then ¢ =0, b=0, ¢=0.
[Let y=4/2. Then *=2 and

ey’ +by+a=0.
Hence 2¢y?+2by +ay®=0 or
ay? 4 2¢cy +26=0.
Multiplying these two quadratic equations by ¢ and ¢ and subtracting we

obtain (ab—2c?) y+ a2~ 2bc=0, or y = — (a?— 2bc)/(ab— 2c?), a rational number,
which is impossible, The only alternative is that ab—2¢2=0, a?—2bc=0.

Hence ab=2¢? a*=4b%2 1If ab+0 we can divide the second equation by
the first, which gives a3=2b%: and this is impossible, since /2 cannot be
equal to the rational quantity a/b. Hence ab=0, ¢=0, and it follows from
the original equation that a, b, and ¢ are all zero.

As a corollary, if a+b J2+cfd=d+eJ2+f 4, then a=d, b=e, c=f.

It may be proved, more generally, that if

a0+a1p”m+ et am_lp(mhl)/mz 0,

p not being a perfect mth power, then ¢g=0,=...=d,—1=0; but the proof is
by no means so simple.]

21. Prove the theorem of § 4 by the method employed in Ex. 20.

22, If A+ YB=C4 3D, then either A=C, B=D, or B and D are both
cubes of rational quantities.

[Assume 4 =+, cube, and apply the result of Ex. 20.]

23. If YA+ Y B+YC=0, then either one of 4, B, (' is zero, and the other

two equal and opposite, or /4, &/ B, &/C are rational multiples of the same
surd X,

24. Find rational numbers q, 8 such that

N(T+5/2)=a+B V2.
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25 If (@ ~b%) b >0,
3 93 +a a—b3 3 93+ a—b3.
\/"’+ 35 (36)“\/“‘“"3? (31;-)

[Each of the quantities under a cube root can be expressed in the form

foee /(5]

where a and 3 are rational.]

is rational.

26. If a=3/A4, any polynomial in a is the root of an equation of degree =,
with rational coefficients.

[We can express the polynomial (# say) in the form
z=l+ma+... +7’la(w’ - 1)/%,
where I, m,, ... are rational.

Similarly 2=l meat...4+rma® "D

ar=l,+mpat ... +7a® DM,
Hence Lixw+ Loa® + ...+ Lya™=A,

where A is the determinant

---------------

and L, L, ... the minors of {4, {5 ....]
27. Apply this process to x=p+4/¢q. [The result is 22— 2pa + (p%—¢)=0.]
28. Deduce from the result of the last example that if p+a/g=r+./s,
either p=r, g=s or ¢, s are squares of rational quantities.
[It is easy to see that if p+4/¢ is not rational we must have
22 —2pz+(p?—q)=a?— 2rx+ (2 —s).]

29. Show that y=a+ bpl'r 3 -+ cp2l 8

23 — Bay?+ 3y (a?— bep) — a® — b3p — p? + 3abep=0.

satisfies the equation

30. Algebraical numbers. We have seen that some irrational numbers
(such as A/2) are roots of equations of the type

A 2 L an,=0,

where ay, @1, ..., dy are integers. Such irrational numbers are called alge-
braical numbers: all other irrational numbers, such as = (§ 7), are called
transcendental numbers. Show that if # is an algebraical number so are £z,

. . e .
where % is any rational number, and x 4 , where m and » are any integers.



24 MISCELLANEOUS EXAMPLES ON CHAPTER I

31. If # and y are algebraical numbers, so are #+y, x—y, oy and 2/y.
[We have equations  aoa™~+a 2™ 14... 4 a,, =0,
bgyn'l" blyn-_-l + ...+ by =0,

where the o’s and b’s are integers. Write x+y=2, y=z— in the second,
and eliminate 2. We thus get an equation of similar form

CoP+ 2P 14 +e,=0,
satisfied by z. Similarly for the other cases.]
32, If apt™+aya® 1+, +a,=0

where ay, aj, ..., a, are any algebraical numbers, then » is an algebraical
number.

[We have n+1 equations of the type
aor "ty @, L Qi =0,
(r=0, 1, ..., »), in which the coefficients ¢y, ,., @y,,, ... are integers. Eliminate
ay, ai, ..., a, between these and the original equation for x.]
33. Apply this process to the equation % - 22 /2 4+./3=0.
[The result is o8 — 16484 582* — 48242+ 9=0.]

34. Find equations, with rational coefficients, satisfied by
3+J2
N N NCE DR RN
I3+ 2
VBBV, J2EB, 12y, Yt
35, If #*=2+1, then a¥*=a,x+b,+c,/z, where
Ay +1= 0+ bn’ bn+ 1=an+bn+cna Cp +17= O+ Cp.e
36. If ab+4a5—20— 234 224+1=0 and y=a*—a?+x—1, then y satisfies
a quadratic equation with rational coefficients. (Math. Tripos, 1903.)
[It will be found that y2+y+1=0.]



CHAPTER IIL
FUNCTIONS OF REAL VARIABLES.

9. The idea of a function. Suppose that # and y are two
continuous real variables, which we may suppose to be repre-
sented geometrically by distances A4,P =, B,Q =y measured
from fixed points A4,, B, along two straight lines L, M. And

kd m "r
A, P

}
L

B, Y Q
Fia. 5.

=
=3

-
<
-

let us suppose that the positions of the points P and @ are not
independent, but connected by a relation which we can imagine
to be expressed as a relation between z and y: so that, when
P and z are known,  and y are also known. We might,
for example, suppose that y=a, or y= 22, or %, or 2+ 1. In
all of these cases the value of # determines that of y. Or
again, we might suppose that the relation between z and y is
given, not by means of an explicit formula for v in terms of z,
but by means of a geometrical construction which enables us to
determine ¢ when P is known.

In these circumstances % is said to be a function of z. This
notion of functional dependence of one variable upon another is
perhaps the most important in the whole range of higher mathe-
matics. In order to enable the reader to be certain that he
understands it clearly we shall, in this chapter, illustrate it by
means of a large number of examples.
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But before we proceed to do this, we must point out that
the simple examples of functions mentioned above possess three
characteristics which are by no means involved in the general
idea of a function, viz.:

(1) y is determined for every value of @;

(2) to each value of « for which % is given corresponds one
and only one value of y;

(8) the relation between 2 and y is expressed by means of
an analytical formula.

It is indeed the case that these particular characteristics are
possessed by many of the most vmportant functions. But the con-
sideration of the following examples will make it clear that they
are by no means essential to a function. All that is essential is
that there should be some relation between # and y such that to
some values of « at any rate correspond values of y.

Examples VII. 1. Let y=2 or 2z or 3z or 22+1. Nothing further
need be said at present about cases such as these.

2. Let y=0 whatever be the value of . Then y is a function of #, for we
can give x any value, and the corresponding value of ¥ (viz. 0) is known. In
this case the functional relation makes the same value of y correspond to all
values of 2. The same would be true were y equal to 1 or —4 or /2 instead
of 0. Such a function of # is called a constant.

3. Let y2=x. Then if # is positive this equation defines fwo values of ¥
corresponding to each value of 2, viz. +./z. If =0, y=0. Hence to the
particular value O of z corresponds one and only one value of . But if x is
negative there is no value of ¥ which satisfies the equation. That is to say,
the function y is not defined for negative values of .

This function therefore possesses the characteristic (3), but not (1) or (2).

4, Consider a volume of gas maintained at a constant temperature and
contained in a cylinder closed by a sliding piston®.

Let A be the area of the cross section of the piston and W its weight.
The gas, held in a state of compression by the piston, exerts a certain pressure
P, per unit of area on the piston, which balances the weight W, so that

W= APO‘
Let ¢, be the volume of the gas when the system is thus in equilibrium.

If additional weight is placed upon the piston the latter is forced downwards,
The volume (v) of the gas diminishes; the pressure (p) which it exerts

* I borrow this instructive example from Prof. H. S, Carslaw’s Introduction to
the Calculus.
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upon unit area of the piston increases. Boyle’s experimental law asserts that
the product of p and » is very nearly constant, a correspondence which, if
exact, would be represented by an equation of the type

PV0 tenvnvnrninreennrenenrnesiseeneinsnnes (1),
where a is a number which can be determined approximately by experiment.

Boyle’s law, however, only gives a reasonable approximation to the facts
provided the gas is not compressed too much. When » is decreased and p
increased beyond a certain point the relation between them is no longer
expressed with tolerable exactness by the equation (i). It is known that a
much better approximation to the true relation can then be found by means
of what is known as ‘van der Waals’ law,’ expressed by the equation

(p+§2) (0= B)=Y wrrrerrerrreerrrerinerasneens (i),

where @, B, ¥ are numbers which can also be determined approximately by
experiment.

Of course the two equations, even taken together, do not give anything
like a complete account of the relation between p and ». This relation is no
doubt in reality much more complicated, and its form changes, as v varies,
from a form nearly equivalent to (i) to a form nearly equivalent to (ii). But,
from a mathematical point of view, there is nothing to prevent us from con-
templating an ideal state of things in which, for all values of v above a
certain limit, V say, (1) would be exactly true, and (ii) exactly true for all
values of v less than V. And then we might regard the two equations as
together defining p as a function of ». It is an example of a function which
for some values of v s defined by one formula and for other values of v is defined
by another. ‘

This function possesses the characteristic (2): to any value of » only one
value of p corresponds: but it does not possess (1). For p is at any rate not
defined as a function of » for negative values of v; a negative volume means
nothing, and so negative values of » do not present themselves for considera-
tion at all.

5. Suppose that a perfectly elastic ball is dropped (without rotation)
from a height 4 ¢72 on to a fixed horizontal plane, and rebounds continually.

The ordinary formulae of elementary dynamics, with which the reader is

probably familiar, show that
h=%gt*

if0=t=nr,

h=%g (2r—1t)?
if + ¢ =3r, and generally

h=3%g (2nr—t)?
if @n—1)r=t= (2n+1), & being the depth of the ball, at time ¢, below its
original position. Obviously /4 is a function of ¢ which is only defined for
positive values of .

The reader should construct other examples of functions which occur in

physical problems.
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6. Suppose that g is defined as being the largest prime factor of x. This
is an instance of a definition which only applies to a particular class of values
of #, viz., integral values. ¢The largest prime factor of X} or of /2 or of =’
means nothing, and so our defining relation fails to define for such values of
as these. Thus this function does not possess the characteristic (1). It does
possess (2), but not (3), as there is no simple formula which expresses y in
terms of .

7. Let y be defined as the denominator of x when x is expressed in s
lowest terms. This is an example of a function which is-defined if and only
if z is rational. Thus y="7if x= —11/7: but » is not defined for £=,/2, ¢ the
denominator of /2’ being a meaningless expression.

8. Let y be defined as the height in inches of policeman C.z, in the
Metropolitan Police, at 5.30 p.m. on 8 Aug. 1907. Then y is defined for a
certain number of integral values of 2, viz, 1, 2,..., ¥, where & is the total
number of policemen in division (' at that particular moment of time.

10. 'The graphical representation of functions. Co-
ordinate geometry of two dimensions. Suppose that the
variable % is a function of the variable 2. It will generally be
open to us also to regard «# as a function of y, in virtue of the
functional relation between z and z. But for the present we
shall look at this relation from the first point of view. We shall
then call « the independent variable and y the dependent variable ;
and, when the particular form of the functional relation is not
specified, we shall express it by the general form of equation

y=Js(2)
(or F(z), b (2), ¥ (2), ... as the case may be).

The nature of particular functions may, in very many cases, be
illustrated and made easily intelligible as follows: draw two lines
0X, OY at right angles to one another and produced indefinitely
in both directions. We can represent values of # and y by
distances measured from O along the lines 0X, OY respectively,
regard being paid, of course, to sign, and the positive directions
of measurement being those indicated by arrows in Fig. 6.

Let @ be any value of & for which y is defined and has (let
us suppose) the single value b. Take 04 =a, OB =10, and com-
plete the rectangle OAPB. Imagine the point P marked on
the diagram. This marking of the point P may be regarded as
showing that the value of ¥ for x =« 1s b.
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If to the value a of 2 corresponded several values of y (say
b, V', b"”) we should have, instead of the single point P, a number
of points P, P, P”.

AY
B P
B’ p
b
O a A >X
B P
Fic. 6.

We shall call P the point (a, b); @ and b the coordinates of P
referred to the awes OX, OY; a the abscissa, b the ordinate of P ;
0X and OY the awis of x and the awis of ¥, or together the
azxes of coordinates, and O the origin of coordinates, or simply
the origin.

Examples VIII. 1. Let P be the point (a, b), @ the point (a, S).
Complete the parallelogram OPR@. Show that £ is the point (a+a, b+p).

2. The middle point of P@ is the point § (¢ +a), 4 (0+8).

3. More generally, the line which divides P in the ratio p : \ is the
point (Aa+pa)/(A+p), Ab+pB)/(A+p). These expressions give, if the ratio
p @ N is properly chosen, the coordinates of any point on the line Pg.

4, The centre of mass of equal particles at the points (ay, by), (ag, bg),
oes (@ by) 18 the point (oq+ag+... +ay)/n, (by+by+...+by)/n.

5. Change of axes. Draw through O lines OX’; OY’ making angles &
with 0X, 0Y (Fig. 7). Draw PA’, PB' perpendicular to 0X’, OY'. It is
clear that P is determined if 04’ and OB’ are given just as much as if 04
and OB are given. Let OAd=xz, OB=y, 0A'=2', OB'=y. Then &' and ¥’
are the coordinates of P referred to the new axes OX', OY'.

Prove that /=2 cos 0+ sin 8, y'= —x sin 64y cos §, and express x and y
in terms of 2’ and g’
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6. In Ex. 5, the origin was left unchanged, but the new axes were in-
clined to the old ones. We might have taken new axes parallel to the old

Y
Y!

x’

A’

Fra. 7.

ones, but passing through a new origin 0. Let the coordinates of O’ referred
to the old axes be a, 3. Express #’ and #' in terms of » and g, and con-
versely.

7. A new origin 0’ is taken, and new axes O’X’, O'Y’ inclined at any
. angle to the old ones. Show, by means of the results of Exs. 5 and 6, that
# and y may be expressed in terms of # and y by formulae of the type
#=ax+by+e, ¥y =dv+ey+f, where a, b, ... are numbers independent of =
and .

11. 'The equation of a straight line. Let us now suppose
that for all values @ of # for which ¥ is defined, the value b
(or values b, b, 0", ...) of y, and the corresponding point P (or
points P, P, P”, ...) have been determined. We call the aggre-
gate of all these points the graph of the function y.

To take a very simple example, suppose that # is defined as
a function of # by the equation
ar+by+c=0 ..oiiiiiiiiiiiiin.. (1),

where a, b, ¢ are any fixed numbers. Then ¥ is a function of #
which possesses all the characteristics (1), (2), (3) of §9. It is
easy to show that the graph of y is a straight line.

First suppose a =0. Then y has the constant value — ¢/b,
and the graph is obviously a straight line parallel to OX.

Next suppose @ different from zero, and suppose that (a2, v,)
(s, ) are any two points on the graph, so that

ar;+ by +c¢=0, am+by,+c=0............ (2).
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The coordinates of any point P on the line joining (a2, ¥;) and
(%, ) may (Ex. VIIL 3) be expressed in the form

E=(\z; + Wz)/(x +w), =05+ Myz)/(h + ).
But if we multiply the two equations (2) by A and u respec-
tively, add the results, and divide by A\ + u, we obtain
af+bn+c=0,

which shows that P lies on the graph. Hence the graph includes
‘all the points of the line. And it cannot include any other
points. For the line is not parallel to OX, since if it were
y would be constant for all points on it, which is nct the
case. Hence there is one point on the line for which y has any
value we like to assign. And so, if the graph contained a point
(«/, 4') which did not lie on the line, there would be #wo values of
x given by the equation az + by + ¢ =0 when y had the value y':
and this is obviously untrue. Thus the graph includes all the
points of the line and no others.

We shall sometimes use another mode of expression. We
shall say that when # and ¥ vary in such a way that equation (1)
is always true, the locus of the point (z, y) is a straight line, and
we shall call (1) the equation of the locus, and say that the equation
represents the locus. This use of the terms ‘locus,’ ‘equation of
the locus’ is quite general, and may be applied whenever the
graph of ¥ 1s, in the ordinary sense of the word, a curve*, and
the relation between # and v is capable of being represented by
an analytical formula.

The preceding work does not apply when 6=0. The equation
then reduces to # =— ¢/a, so that the distance of P from OV is
constant—i.e. P lies on a line parallel to OY. In this case y does
not occur in the equation at all, and so the latter cannot be
regarded as defining 7 as a function of #. But it may be regarded
as defining # as a function of ¥, viz. the constant — ¢/a.

The equation az+ by + ¢ =0 is the general equation of the first
degree, for az + by + ¢ is the most general polynomial in z# and y
which does not involve any terms of degree higher than the first

* «Curve’ of course includes straight line as a particular case. Some examples
in which the ‘graph’ is not, in the ordinary sense of the word, a curve, will be
found in Exs, XVI.
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in z and y. Hence the general equation of the first degree repre-
sents a straight line. It is equally easy to prove the converse
proposition, the equation of any straight line is of the first degree.
After the discussion which precedes we may leave this as an
exercise for the reader.

Examples IX. 1. The angles which the line ax+by+c¢=0 makes with
0X are arc tan (—afb) and 7 —arc tan (—a/b), where arc tan X denotes the
numerically least angle whose tangent is A.

2. If P is a point on the line, and #/, ' are defined as in Ex. VIIL (5),
show that
Az'+ By + (=0,
where A=acos 6+bsind, B=0bcos §—asiné.

We call this equation the equation of the line referred to the new axes 0X’,
OY'—it is the relation which connects the new coordinates #/, 3. It will be
observed that this equation also is of the first degree, as it obviously should
be, since the proof that the equation of a straight line is of the first degree in
no way depends upon what particular axes are chosen.

3. The coordinates of the point of intersection of ax+by+c¢=0 and
a'z+by+c=0 are
_ be' —b'c _ad—dc
Cab —a'b’ ab —a'b’
unless a/b=a’/b’, in which case the lines are parallel.

4. The tangents of the angles between the lines in Ex. 3 are
+(ab' — a'b)[(ad’ +bb'),
and the lines are perpendicular if aa’ + bb' =0.
5. The length of the perpendicular from (£, n) on to az+by+c=0 is
aé+by+c
NSO
the perpendicular being regarded as positive or negative according to the side

of the line on which the point lies. [Positive when it is on the same side as
0, if ¢>0 : negative in the same circumstances if ¢<0.]

6. The equation (az+ by +c¢)+A (ax+ By +v) =0 represents a line through
the intersection of axz+by+c¢=0 and azr+pBy+y=0, and, by proper choice
of A, may be made to represent any such line. Discuss the particular case

in which aja=pg/b.
7. Hence show how to find the equation of a line through the intersection
of two given lines and parallel or perpendicular to a third.
8. The equation of the circle whose centre is (@, b) and radius 7 is
(@ —af+(y—bp=r2

Conversely, any equation of this form represents a circle.
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9. The most general equation of the second degree in # and g, in which
there is no term in xy, and 22 and %2 have equal coefficients, viz.

a (22 + %) + 292+ 2fy +¢=0
represents a circle if f2-+g%?>ac. Discuss the cases in which f2+ ¢?=ac.

10. Verify that the characteristic form of the equation of a circle (Ex. 9)
is not altered by change of axes.

11. The general equation of a circle which passes through the points of
intersection of two intersecting circles
(w—a)+(y—b)P=r% (2—a)’+(y—B)=p
is (2= @+ (g~ =14 (=g — B =%} =0,
12. If A= —1 this last equation is of the first degree only, and represents
the common chord of the two circles.

13. The two circles
B2+ 4+ 2dn+2ey +42=0, 22+y2+ 202+ 2ey + 2=0,
will represent a pair of intersecting circles if
d?+e2—12>0, ?+e—k2>0
and 4 (d?+e?—k?) (824 €% — k%) > (2d0 + 2ee — k2 — k2)2.
14. Show that the two circles in Ex. 13 will cut at right angles if
28 + 2ee = k24 k2.

15. The area of the triangle formed by the points (#1, #1), (3, ¥2),

(wsy ¥3) 18

tla o 1,
Xo  Ye 1
w3 ys 1

taken positively. Hence deduce the result of § 11.

Examples X. 1. A point moves (@) so that its distance from a given
line is constant, (b) so that its distances from two given lines are equal.
Show that in each case the locus of the point is two straight lines (a) by
geometrical reasoning, (8) by means of the results of § 11 and Ex. IX. 5.

2. The distances of a variable point P from a number of lines are
P 25 Py ..., and P moves so that
ap+bp' +cp”+...=0
where @, b, ¢, ... are constants. Show that the locus of P consists of a
number of straight lines.

3. A, B are fixed points, and P a variable point which moves so that
(@) \. AP?4p. BP?=const., (b) AP/BP=const. Show that the locus of I

is in either case a circle.

H. A.
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4. A line of fixed length moves with its ends upon OX and OF. Find
the equation of the locus of the point which divides the line in the ratio p : A

[Let the line be AB, meeting OX, OY in 4, B, and let O4=a, OB=b.
The coordinates of the point P in question (Ex. VIIL 3) are Aa/(A+x) and
pb/(A4p). Also a?4-b2=const.=c? say. Thus if #=a/(\ 4 p), y=pb/(\ +p),
P&

EENCE NN
If A=p, i.e. if P is the middle point of 4B, this is the equation of a circle.]

22
we deduce 3 +

5. A line of constant length moves with its ends on a fixed circle. Prove
that the locus of the point which divides the line in a fixed ratio is a con-
centric circle.

12. Polar coordinates. In what precedes we have deter-
mined the position of P by the lengths of OM ==, MP=y.
If OP=7 and MOP =86, 0 being an
angle between 0 and 27 (measured in
the positive direction), it is evident that

x=1cosb, y=rsin 6,
r=A(22+4y?), cosO:smb:l:uzw:y:r, Y

and that the position of P 1is equally 0
well determined by a knowledge of » O T Y
and 6. We call » and 6 the polar co- Fie. 8.
ordinates of P. 'The former, it should be observed, is essentially
positive.

If P moves on a curve there will be some relation between »
and 8, say r=f(f) or 8 =F(r). This we call the polar equation
of the locus. The polar equation may be deduced from the (z, ¥)
equation (or vice versa) by the formulae above.

It should be observed that (#, ¥) and (v, 8) are only two out of

an infinite variety of ‘systems of coordinates’ which may be used
to fix the position of P.

Examples XI. 1. The polar equation of a straight line is of the form

7 cos (60— a)=p,
where p and a are constants.

2. The equation r=2a cos § represents a circle passing through the origin.-
So do r=2asin d or r=Acos §+psin §. Find the radius of each circle.

3. The general equation of a circle is of the form
724+ ¢2— 2r¢ cos (0 — a)=a?,
where ¢, ¢, and « are constants,
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13. Further examples of functions and their graphical
representation. In all of Exs. IX. and X. we were concerned
with two very simple functions of #, viz. the functions y defined
by the equations az+ By +y=0 or (z—ay+(y—br=22 Only
in Ex. X. 4 did we meet for a moment a slightly more general
type of functional relation. The examples which follow will give
the reader a better notion of the infinite variety of possible types
of functions.

A. Polynomials. The meaning of the term polynomial in
was explained in Ch. I. It denotes a function of the form

Qo™ 4+ Q8™ 1+ o+ gy
where @, @, ... @, are constants. The simplest polynomials are

the svmple powers
Y=, & &* ..., ™, ...

The graph of the function 2™ is of two distinct types, according
as m is even or odd.

First let m=2. Then three points on the graph are
(0,0), (1,1), (—1,1)
Any number of additional points on the graph may be found
by assigning other special values to #: thus the values
z=% 2,3 -3 -2, 3
give y=% 49 L 4 9.

(L,1)

(0,0}
F1c. 9.
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If the reader will plot off a fair number of points on the graph he
will be led to conjecture that the form of the graph is something
like that shown in Fig. 9. If he draws a curve through the
special points which he has proved to lie on the graph and then
tests its accuracy by giving 2 new values, and calculating the
corresponding values of y, he will find that they lie as near to the
curve as it is reasonable to expect, when the inevitable inaccuracies
of drawing are considered.

There is, however, one fundamental question which we cannot
answer adequately at present. The reader has no doubt some
notions as to what is meant by a continuous curve, a curve without
breaks or jumps—such a curve, in fact, as is roughly represented
in Fig. 9. The question is whether the graph of the function
y=g?1s in fact such a curve. This cannot be proved by merely
constructing any number of isolated points on the curve, although
the more such points we construct the more probable it will

appear.

This question cannot be discussed properly until Ch. IV.
In that chapter we shall consider in detail what our common sense
idea of continuity really means, and how we can prove that such
graphs as the one now considered, and others which we shall
consider later on in this chapter, are really continuous curves.
For the present the reader may be content to draw his curves as
common sense dictates.

It is easy to see that the curve y=a2? is everywhere conver to the axis of #.
Let P,, P, (Fig. 9) be the points (%, %), (#;, #,%). Then

NP, 22—

' — 1__ 1 0

tan NP, Py PN~ w—a,

and, if P, is kept fixed, this increases as x; increases—i.e. the slope of
P, Py becomes steeper and steeper.

=&+ Xy,

The curve y =2* is similar to y=4? in general appearance, but
flatter near O, and steeper beyond the points 4, A’ (Fig. 10).
And y=a™, where m is even and greater than 4, is still more so.
And as m gets larger and larger the flatness and steepness grow
more and more pronounced, until the curve is practically mdis-
tinguishable from the thick broken line in the figure.

The reader should next consider the curves given by y=am,
when m is odd. The fundamental difference between the two
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cases 18 that whereas when m is even (—a&)®=a™, so that the
curve 1s symmetrical about OY, when m is odd (— )" =—a™, so
that ¥ is negative when # 1s negative. Fig. 11 shows the curves

y=23

/////ééw

A

iy=at
H

7

F1e. 10. Fra. 11,

y=ua, y=a’ and the form to which y=a"™ approximates for
larger odd values of m.

It is now easy to see how (theoretically at any rate) the graph
of any polynomial may be constructed. In the first place, from
the graph of y=a" we can at once derive that of Cx™, where (' is
a constant, by multiplying the ordinate of every point of the
carve by C. And if we know the graphs of f(z) and F(x) we
can find that of f(z)+ F(«) by taking the ordinate of every point
to be the sum of the ordinates of the corresponding points on the
two original curves.

Fre. 12.
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Fig. 12 shows the graph of y=222 — 23, constructed in this way. The thin
line is y=24?% the dotted line y = -2 In order to prevent the figure
becoming of an awkward size, the scale for measurements along the axis of 7
has been taken to be one-quarter of that for measurements along the axis
of #. This is often convenient: of course any ratio of the scales may be
chosen.

The drawing of graphs of polynomials is however so much facilitated by
the use of more advanced methods, which will be explained later on, that we
shall not pursue the subject further here.

Examples XII. 1. Trace the curves y="Tat, y=3a5, y=a".

[The reader should draw the curves carefully, choosing the scales of
measurement along OX and OY so as to get a convenient figure: but all
three curves should be drawn in one figure. The reader will then realise
how rapidly the higher powers of # increase, as # gets larger and larger, and
will see that, in such a polynomial as

2104325 4724,
(or even #104 30z5 4 7002%) it is the first term which is of really preponderant
importance when z is fairly large. Thus even when x=4, #'9>1,000,000,
while 3025< 35,000 and 70024<180,000; while if #=10 the preponderance
of the first term is still more marked.]

2. Compare the relative magnitudes of x1%, 1,000,00025, 1,000,000,000,000
when z=1, 10, 100, etc.

[The reader should make up a number of examples of this type for himself.
This idea of the relative rate of growth of different functions of x is one with
which we shall often be concerned in the following chapters.]

3. Draw the graph of aa?+2bz+c.

[Here y— {(ac—b?)/a}=a{r+(bla)}. 1f we take new axes parallel to the
old and passing through the point —b/a, (ac—b%)/a, the new equation is
y¥'=ax'?  The reader should consider a few different cases in which a, b, ¢
have numerical values, sometimes positive and sometimes negative.]

4, Trace the curves y=a?-3x+1, y=2(x—1), y=2(x—-1)%

14. B. Rational Functions. The class of functions which
ranks next to that of polynomials in simplicity and importance
is that of rational functions. In Ch. I. we defined a rational
fanction- as the quotient of one polynomial by another: thus if
P (z), §(«) are polynomials we may denote the general rational
function by
P ()

Q ()

R(x)=
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In the particular case when @ (#) reduces to unity or any other
constant (i.e. does not involve ), R («) reduces to a polynomial :
thus the class of rational functions includes that of polynomials
as a sub-class. The following points concerning the definition
should be noticed.

(1) We usually suppose that P (x) and ¢ (#) have no common factor
Z+a or £P4ax? 14+ ba? 24, .. + £, all such factors being removed by division.

(2) It should however be observed that this removal of common factors
does as a rule change the function. Consider for example the function a/,
which is a rational function. On removing the common factor x we obtain
1/1=1. But the original function is not always equal to 1: it is equal to 1
only so long as #4=0. If #=0 it takes the form 0/0, which is meaningless.
Thus the function z/z is equal to 1 if #=k0 and is undefined when z=0.
It therefore differs from the function 1 which is always equal to 1.

(3) Such a function as

(hvat/ ety

may be reduced, by the ordinary rules of algebra, to the form
&% (2 —2)

which is a rational function of the standard form. But here again it must be

noticed that the reduction is not always legitimate. In order to calculate the

value of a function for a given value of # we must substitute the value for »
“in the function ¢n the form in whick it s given. In the case of this function

the values = —1, 1, 0, 2 all lead to a meaningless expression, and so the

function is not defined for these values. The same is true of the reduced

form, so far as the values +1 are concerned. But =0 or 2 gives the value 0.

Thus once more the two functions are not strictly equivalent.

(4) But, as appears from the particular example considered under (3),
even when the function has been reduced to a rational function of the
standard form there will generally be a certain number of values of # for
which it is not defined. These are the values of # (if any) for which the
denominator vanishes. Thus (22—7)/(#%—32+2) is not defined when z=1
or 2.

(5) Generally we agree, in dealing with expressions such as those con-
sidered in (2) and (3), to disregard the exceptional values of a for which such
processes of simplification as were used there are illegitimate, and to reduce
our function to the standard form of rational function. The reader will
easily verify that (on this understanding) the sum, product, or quotient of
two rational functions may themselves be reduced to rational functions of
the standard type. And generally a rational function of a rational function
is itself a rational function: ie. if in z=P (y)/Q(y), where P and ¢ are
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polynomials, we substitute y=P; (£)/@; (#), we obtain on simplification an
equation of the form z= /P, (%)/@s{x).

(6) Tt is in no way presupposed in the definition of a rational function
that the comstants which occur as coefficients should be rational numbers.
The word rational has reference solely to the way in which the variable x
appears in the function. Thus

2+ x+a3
22—
is a rational function.

The use of the word rational arises as follows. The rational function
P(2)[/Q (x) may be generated from z by a definite number of operations upon
#, including only multiplication of # by itself or a constant, addition of terms
thus obtained, and division of one function, obtained by such multiplications
and additions, by another. In so far as the variable x is concerned, this pro-
cedure is very much like that by which all rational numbers can be obtained
from unity, a procedure exemplified in the equation

5 141414141

3 1+1+1
Again, any function which can be deduced from x by the elementary
operations mentioned above, using at each stage of the process functions
which have already been obtained from « in the same way, can be reduced to
the standard type of rational function. The most general kind of function

which can be obtained in this way is sufficiently illustrated by the example

z 20 +7 2

(x2+1 T 11x——3J2) /(17 + E?») ’
T 9p1 /Y

which can obviously be reduced to the standard type of rational function.

156. The drawing of graphs of rational functions, even more
than that of polynomials, is immensely facilitated by the use of

\.

Fie. 138. Fig. 14.

-1-1)

=
]
B
(=3
I
2=
)
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methods depending upon the differential calculus. We shall
therefore content ourselves at present with a very few examples.

Examples XIII, 1. Draw the graphs of y=1/z, y=1/2% y=1/25 ....

[The figure shows the graphs of the first two curves. It should be
observed that, since 1/0, 1/0% ... are meaningless expressions, these functions
are not defined for #=0.]

2. Trace y=z+(l/z), x—(1/z), a?+(1)x?), 22—(1/2?) and ax+(b/x),
taking various values, positive and negative, for a and b.

3. Trace

s (x+1)2 21 1 1
- )

A - 2. =
Y=y-10 \o=i) #=1> G- CHU-GTpe

4. Trace y=1/(z—a) (#—0b), 1/(x—a)(z—b) (- c), where a<<0<b<c.

5. Sketch the general form assumed by the curves y=1/2" as m
becomes larger and larger, considering separately the cases in which m is
odd or even.

16. C. Explicit Algebraical Functions. The next im-
portant class of functions is that of explicit algebraical functions.
These are functions which can be generated from # by a definite
number of operations such as those used in generating rational
functions, together with a definite number of operations of root
extraction. Thus

V(A +2) — V(1 — )
VAta) T iioe)y Vervetya),
2+ a+ W/ 3)%
( X2 —a )’
are explicit algebraical functions, and so is ™" (Le. ¥/2™) where m
and n are any integers.

Functions such as these differ fundamentally from rational
functions in two respects. In the first place, a rational function
is always defined for all values of # with a certain number of
isolated exceptions. But such a function as 4/ is undefined for
a whole range of values of x (ie. all negative values). Secondly,
the function, when 2 has a value for which it is defined, has
generally several values. Thus, if # >0, 4= has two values, of
opposite signs. |
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Examples XIV. 1. J{(#z—a)(b—=x)}, where a<b, is defined only for
a=x=b If a<w<b it has two values: if z=a or b only one, viz. O.

2. Consider similarly A/(x—a) (z—0b) (c—2) (a<b<ec),
No(@@—d?), J(r-a)P(b-u) (a<b),
NN er ,
N IR ant!
3. Trace y=nz, Jz, It (1+J2)/(1-A2).
4. 'Trace - y=Ala?—a?), y=>bJ{1—(a%/a?)}.

17. D. Implicit Algebraical Functions. It is easy to
verify that if
N +a) V(1 —a)
IEVA )+ V(A —a)

1 ¢ 14+o
then (11-5) =€1iw§z
or if Y=+ (2 + )
then yr— (42 + 4y +1)x=0.
Each of these equations 1s of the form
Y+ Ry L+ Ry =0 (1),

where R,, R,, ..., R,, are rational functions of #: and the reader
will easily verify that, if 4 is any one of the functions considered
in the last set of examples, y satisfies an equation of this form.
It is naturally suggested that the same is true of any explicit
algebraic function. And this is in fact true, and indeed not
difficult to prove, though we shall not delay to write out a formal
proof here,

An example should make clear to the reader the lines on
which such a proof would proceed. Let
_e+ Vot izt Vol + V(1 +2)
y'—w—f\/w+«/[m+f\/m} —V(l+2)’
Then we have the equations
_xHutvtw
I e —urv—w’

W=z, v*=z+u, w=1-+uz,

and we have only to eliminate u, v, w between these equations in
order to obtain an equation of the form desired.
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We are therefore led to give the following definition: a function
y=f(x) will be sard to be an algebraical function of x if it s the
root of an equation such as (1), i.e. the root of an equation of the
m' degree in y, whose coefficients are rational functions of .

This class of functions includes all the explicit algebraical
functions considered in § 16. But it also includes other functions
which cannot be expressed as explicit algebraical functions. For
it is known that such an equation as (1) cannot as a rule be
solved explicitly for  in terms of @, when m is greater than 4,
though such a solution is always possible if m=1, 2, 3, or 4 and
in special cases for higher values of m.

The definition of an algebraical function should be compared
with that of an algebraical number given in the last chapter
(Misc. Exs. 30).

Examples XV. 1. If m=1, yis a rational function.

2. If m=2 the equation is g2+ R,y + f1,=0, so that
y=3{— B, EJ(B?—4R,)}.
This function is defined for all values of z for which £22=4£,. It has two

values if R,2>4R, and one if R,>=4R,.

If m=3 or 4 we can use the methods explained in treatises on Algebra
for the solution of cubic and biquadratic equations. But as a rule the process
is complicated and the results inconvenient in form, and we can generally
study the properties of the function better by means of the original equation.

3. Consider the functions defined by the equations
Y -2y —at=0, y'-2y+a?=0, y'-27+4"=0,
in each case obtaining ¥ as an explicit function of x, and stating for what

values of z it is defined.

4. Find algebraical equations, with coefficients rational in #, satisfied by
each of the functions

Ne+n(Uz), Ju+(Lz), Ne+dAfz), J1+2)+d(01-2)
Niz+aa), Ntz
5. Consider the equation yr=a2

[Here 2= +x. If x is positive y= +4/#: if negative y= +./(—«). Thus
the function has two values for all values of z save #=0, when it has the one
value 0.]
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6. An algebraical function of an algebraical function of x is itself an
algebraical function of .

[For we have
y+ B (2) ym 14+ Ry, (2)=0,

where P8 ()21 48, (2) =0.
Eliminating z we find an equation of the form
yP+ T (@) y?~ 14 ...+ T, (x) =0.
Here all the capital letters denote rational functions.]
7. An example should perhaps be given of an algebraical function which

cannot be expressed in an explicit algebraical form. Such an example is the
function y defined by the equation

YP—y—z=0.
But a proof that we cannot find an explicit algebraical expression for y in
terms of x is difficult, and cannot be attempted here.

18. Transcendental Functions. All functions of # which
are not rational or even algebraical are called transcendental
functions. This class of functions, being defined in so purely
negative a manner, naturally includes an infinite variety of whole
kinds of functions of varying degrees of simplicity and importance.
Among these we can at present distinguish two kinds which are
particularly interesting.

E. The direct and inverse trigonometrical or circular
functions. These are the sine and cosine functions of elementary
trigonometry, and their inverses, and the functions derived from
them. We may assume that the reader is familiar with their
most important properties.

Examples XVI, 1. Draw the graphs of sinx, cos #, and a cos #4b sin z.

[Since @ cos #+b sin = cos (x — a), where 8=,/(a?+b%), and a is an angle
whose cosine and sine are afy/(a2+6%) and b/y/(a®+0?), the graphs of these
three functions are similar in character.]

2. Draw the graphs of cos?«, sin?z, @ cos?x+b sin?a.

3. Suppose the graphs of f(x) and F (#) drawn. Then the graph of
f(x) cost x4+ 1 (x) sin® x
is a wavy curve which oscillates between the curves y=f(z), y=F (x). Draw
the graph when f (%), F'(#) are any pair of the functions
122 1/z, 1, = 2% ax+b a+(1/z).
4. Discuss in the same manner the form of the graph of
‘ f (@) cos x4+ F (x)sin .
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5. Draw the graphs of z+sin, 22+sin 2, (1/2)+sin , #sinx, 2?sin ,
(sin z)/z. '
6. Draw the graph of sin (1/2).

{If y=sin (1/z), y=0 when x=1/mm, where m is any integer. Similarly
y=1 when x=1/(2m+%) 7 and y= -1 when x=1/(2m —3)nm. The curve is
entirely comprised between the lines = +1. It oscillates up and down, the
rapidity of the oscillations becoming greater and greater as x approaches O.
For #=0 the function is undefined. When # is large x is small. The
negative half of the curve is an inversion of the positive half (Fig. 15).}

e
/

Fia. 15.

7. Draw the graph of # sin (1/z).

[This curve is comprised between the lines y= +x just as the last curve
was comprised between the lines = +1 (Fig. 16).]

N

Fre. 16.
8. Draw the graphs of «2sin (1/#), (1/2) sin (1/#), sin? (1/x), {» sin (1/)}3,
a cos? (1/x)+b sin? (1/x), sin #+sin (1/2), sin # sin (1/z).
9. Draw the graphs of cos #% sin 2% a cos 224 b sin 22

10. Draw the graphs of arc cosz and arc sin .



46 FUNCTIONS OF REAL VARIABLES [1x

[If y=arccos #, #=cosy. This enables us to draw the graph of z, con-
sidered as a function of 7, and the same curve shows y as a function of z.
It is clear that 7 is only defined for —1=x=<1, and is infinitely many
valued for these values of #. As the reader no doubt remembers, there is,
when —1<<w<1, a value of  between O and m, say a, and the other values
of  are given by the formula 2nm +a, where n is any integer, positive or
negative.]

11.  Draw the graphs of
tanz, cotx, secs, cosecw, tan?a;, cot?x, sec?w, cosec?a.

12. Draw the graphs of arctan #, arccotz, arcsec #, arccosec 2. Give
formulae expressing all the values of each of these functions in terms of any
particular value.

13. Draw the graphs of tan (1/x), cot (1/x), sec (1/«), cosec (1/x).

14. Show that sin and cos 2 are not rational functions of x.

[It is easy to see that no function which, like the sine or cosine, has a
period, can possibly be a rational function. For suppose that

f(@)=P (2)[Q (),
where P and ¢ are polynomials, and f (#)=f(#+ 2r), each of these equations
holding for all values of . Let f(0)=4£. Then the equation

P(x)—kQ(2)=0
is satisfied by an infinite number of values of @, viz. =0, 2m, 4, etc., and so
it is an edentity. Thus f(x)=F£ for all values of z, i.e. f(#)is a mere constant. ]

15. Show, more generally, that no function with a period can be an
algebraical function of .

[Let the equation which defines the algebraical function be
Y+ Ry By =0 esoncrnne (1),
where £, ... are rational functions of #. This may be put in the form
Pyym+ Py =1+ ...+ Pp=0,
where Py, Py, ... are polynomials in 2. Arguing as above we see that
Lobrg- Pl =14 ...+ P,=0
is an identity. Hence y=F£ satisfies the equation (1) for all values of #, and
one set of values of our algebraical function reduces to a constant.

Now divide (1) by y —% and repeat the argument m times. Our final con-
clusion is that our algebraical function has, for any value of z, the same m
values £, ¥/, ... ; i.e. it is composed of m mere constants.]

16. The inverse sine and inverse cosine are not rational or algebraical
functions.

[This follows from the fact that for any value of » between —1 and +1,
arcsinx and arc cos # have infinitely many values.]
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19. F. Other classes of transcendental functions. Next
in importance to the trigonometrical functions come the expo-
nential and logarithmic functions, which will be discussed in
Chh. IX. and X. But these functions are beyond our range at
present. And most of the other classes of transcendental func-
tions whose properties have been studied, such as the elliptic
functions, Bessel’s and Legendre’s functions, Gamma-functions,
and so forth, lie altogether beyond the range of this book.
There are however some elementary types of functions which,
though of much less.importance theoretically than the rational,
algebraical, or trigonometrical functions, are particularly instruc-
tive as illustrations of the possible varieties of the functional
relation.

Examples XVIL 1. Let y=[z], where [#] denotes the algebraically
greatest integer contained in »#. The graph is shown in Fig. 17 (a).

2. y=z—[x]) (Fig. 17(b).)

3. y=N{z-[z]}. (Fig. 17(c))

4. y=[z]+Nle—[2]. (Fig. 17(d).)

'w
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-FIG. 17 c. Fia. 174d.
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5. y=(z~[#]% [a]+(z—[z])%

6. y=[Vzl, [+, Jo—[Jz], 2*°-[27], [1-2%)
7. Let y be defined as the largest prime factor of z (cf. Exs. VIL 6).
Then y is defined only for integral values of . When
z==%1,23,4,5,6,7, 8,9, 10, 11, 12, 13, ...
y= 1,2,3,25,3 7,23, 5 11, 3,13, ...
The graph consists of a number of isolated points.

8. Let y be the denominator of x (Exs. VIL. 7). In this case y is defined
only for rational values of . We can mark off as many points on the graph
as we please, but the result is not in any ordinary sense of the word a curve,
and there are no points corresponding to any irrational values of .

Draw the straight line joining the points (¥ —1, &), (&, V). Show that
the number of points of the locus which lie on this line is equal to the number
of numbers less than and prime to A.

9. Let y=0 when « is an integer, y=« when z is not an integer. The
graph is derived from the straight line y =2 by taking out the points

o ("'l: '1); (O: 0)9 (]-1 1)) (23 2)1 (A8
and adding the points (—1, 0), (0, 0), (1, 0), ... on the axis of .

The reader may possibly regard this as an unreasonable function. Why,
he may ask, if ¥ is equal to x for all values of # save integral values, should it
not be equal to x for integral values too? The answer is simply, why should
7¢? The function y does in point of fact answer to the definition of a
function : there is a relation between # and y such that when # is known y is
known. We are perfectly at liberty to take this relation to be what we please,
however arbitrary and apparently futile. This function 7 is, of course, a quite
different function from that one which is always equal to 2, whatever value,
integral or otherwise, x may have. Let us take an apparently still more
arbitrary example.

10. Let y=0 when »= -2},

y?=1 when v=-—1,

y=sinx if —l=<w=<il,
and yi=a? U l1<xrz2,
except that y= —1 when #=1%4. And for =3 let y have all values between
—1 and +41. Finally, suppose that y is not defined at all except for the
various values just enumerated. The graph is shown in Fig. 18. It consists
of the curved arc Z, the line P, the lines M and &, from which however the
middle points and the ends nearest the axis of # must be taken out, and the
four isolated points 4, B, €, D. We notice further that y has infinitely
many values for z=3, two for z=—1 and l<x<l} and 1<z =2, one for
x=—-2} —}i=x=%and =1}, and none for any other value of z.

This example is given merely to illustrate possibilities ; it is not suggested
that such functions as these are likely to be of any practical importance.
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The reader should however not be too ready to assume that even from the
practical point of view it is only what is obvious and straightforward which is

M
(-1,1) /
B
(-2.|5,0') e

(-1,-1) \D(lﬁrl)

Fia. 18.

important. If he turns back to Exs. VIL 4, 5, for instance, he will see
examples of functions suggested by physical considerations and defined by
different formulae for different ranges of values of .

11. Let y=1 when 2 is rational, but =0 when x is irrational. The graph
consists of two series of points arranged upon the lines y=1 and #=0. To the
eye it is not distinguishable from two continuous straight lines, but in
reality an infinite number of points are missing from each line.

12. Let y= when x is irrational and y=./{(14+p%/(1+¢%)} when 2 is a
rational fraction p/q.

Fic. 19.
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The irrational values of # contribute to the graph a curve in reality dis-
continuous, but apparently not to be distinguished from the straight line y=a.
Now consider the rational values of . First let & be positive. Then

Ni(L+pD)/(14+¢2)} cannot be equal to p/g unless p=g, i.e. 2=1. Thus all
the points which correspond to rational values of x lie off the line, except
the one point (1, 1). Again, if p<gq, J{(L+p))/(1+)}>plg; if p>g,
N{d+p9)/(1+¢®)t<pl/q. Thus the points lie above the line y=x if 0<2<],
below if #>1. If p and ¢ are large /{(1+p%)/(1 +¢%)} is nearly equal to p/q.
Near any value of # we can find any number of rational fractions with large
numerators and denominators. Hence the graph contains a large number of
points which c¢rowd round the line y=2. Its general appearance (for positive
values of ) is that of a line surrounded by a swarm of isolated points which
gets denser and denser as the points approach the line.

The part of the graph which corresponds to negative values of & consists
of the rest of the discontinuous line together with the reflections of all these
isolated points in the axis of 3. Thus to the left of the axis of  the swarm
of points is not round y == but round ¥ = —z, which is not itself part of the
graph. See Fig. 19.

20. Graphical solution of Equations containing a single
unknown quantity. Many equations can be expressed in the

form
F@=¢ (@) e (1),

where /() and ¢ («) are functions whose graphs are easy to draw.
And it is obvious that if the curves

y=/(@), y=¢()
intersect in a point P whose abscissa is &, then £ is a root of the
equation (1).

Examples XVIII. 1. The quadratic equation ax?+2bx+c¢=0. This
may be solved graphically in a variety of ways. For instance we may draw

the graphs of
y=axr+2b, y=—clz,

whose intersections give the roots, if any. Or we may take
y=a% y=—(2bzx+c)la.
But the simplest method is probably to draw the circle
a (#24+y?)+2bx + ¢ =0,

‘whose centre is (—b/a, 0) and radius {J/(b?—ac)}/a. The abscissae of its
intersections with the axis of # are the roots of the equation.

2. Solve by any of these methods
P2 422-3=0, 22—Tx4+4=0, 3Bz?+22—2=0.
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3. The equation #”+ax+b=0. This may be solved by constructing
the curves y=a™, y=—ax—>.
4. Verify the following table for the number of real roots (if any) of
am+ax+b=0:

b positive, two or none,
b negative, two

(o) m even {

o positive, one,
a negative, three or one.

&) m odd {

Construct numerical examples to illustrate all possible cases.

5. Show that the equation tan x=ax+b has always an infinite number
of real roots.

6. Determine the number of real roots of

sinw=#, sinx=xz3, sinr=z/8, sinxr=x/120.
7. Show that if @ is small and positive (e.g. a="01) the equation
r—a=4%mrsin’xy

has three real roots. Consider also the case in which « is small and negative.
Explain how the number of roots varies as a varies.

21. Functions of two variables and their graphical
representation. In §9 we considered two variables connected
by a relation. We may similarly consider three variables (z, v,
and z) connected by a relation such that when the values of 2 and
y are both given, the value or values of z are known. In this case
we call z a function of the two variables # and y; « and y the
wndependent variables, z the dependent variable; and we express
this dependence of z upon  and y by writing

z=f(=, y).
The remarks of §9 may all be applied, mutatis mutandis, to this
more complicated case.

The method of representing such functions of two variables
graphically is exactly the same in principle as in the case of
functions of a single variable. We must take three axes 0X, 0,
OZ in space of three dimensions, each axis being perpendicular
to the other two. The point (@, b, ¢) is the point whose distances
from the planes Y0Z, ZOX, X0Y, measured parallel to 0X, O,
0Z, are a, b, and ¢. Regard must of course be paid to sign,
lengths measured in the directions OX, 0Y, OZ being regarded
as positive. The definitions of coordinates, awes, origin are the
same as before.

4—2
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Now let z=f(z, y).

As 2z and y vary the point (2, vy, 2z) will move in space. The
aggregate of all these points is called the locus of the point
(z, y, 2) or the graph of the function z=f(», y). When the
relation between «, v, and z which defines z can be expressed in an
analytical formula this formula is called the equation of the locus.

22. Equation of a plane. It may be shown without
difficulty that the coordinates of the point which divides P@ in
a given ratio p : A are

A+ po A+ uB AC + pry
A+p 7\,+/J;—-’ ANp
where (a, b, ¢) are the coordinates of P and (o, 3, ) those of ¢
(cf. Ex. VIII. 3).
From this we can at once deduce the following important

theorem: the general equation of the first degree represents a plane.
For let

az+by+cz+d=0
be the equation; and let (@, ¥, 2), (%, ¥, %) be two points P, @
on the graph of the function 2z (or the locus represented by the

equation). Then
: a.Z'l-I-by]-i-CZl-I-d-:O,

ey + by, + ¢z + d =0,
and so, multiplying by A and g, adding, and dividing by A+ g,
R Ay + pYs A2y + puzy
A +b "t ¢ T +d
Thus the locus is such that if P and @ lie upon it, the point R
which divides P@ in any ratio lies upon it. That is to say every
point of the line P@ lies in the locus. The locus therefore satisfies
Euclid’s definition of a plane. Conversely the equation of any
plane is of the first degree. For let (ay, 11, 21), (22, Y2, 22), (%3, Ys, 23)
be any three points on the plane. We can choose @, b, ¢, d so that
az, + by, + ez, +d =0,
azy + by, + ¢z, + d =0,
azs + bys +cz; + d = 0.
We can therefore determine a locus represented by an equation of
the type

= 0.

ax + by +cz+d=0,
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which passes through the three points. But we have already seen
that this locus is a plane; and it can obviously only be the
original plane. The equation of that plane is therefore of the
first degree.

Examples XIX. 1. Prove that if (aq, by, ¢1), (¢o, bg, o), (as, bg, c3) are
Aay+paz+vag
Aptv
lies on the plane; and that it may, by choosing the ratios A :p:» appro-

priately, be made to coincide with any point in the plane.

2. Hence, by an argument similar to that of § 11, deduce that the
general equation of the first degree represents a plane, and conversely.

three points on a plane, the point whose coordinates are , ete.

3. The equation of the sphere whose centre is (@, b, ¢) and radius 7 is
(z— a2+ (y— b2+ (2—c)2=r2,
Conversely, this equation always represents a sphere.

4. Establish results for planes and spheres corresponding to those of
Exs. IX. 3-9, 11-14.

23. Curves in a plane. We have hitherto used the notation

Y= (&) i, ¢))

to express functional dependence of v upon «. It is evident that
this notation is most appropriate in the case in which y is ex-
pressed explicitly by means of some formula involving « alone, as
when for example

y=a° sina, «cos’®z+bsin?a.

We have however very often to deal with functional relations
which cannot be or are most conveniently not expressed in this
form. If, for example, ’—y—a2=0 or 2"+ —ay=0 it 1is
known to be impossible to express y explicitly as a simple
function of «. If '

2+ 2+ 292+ 2fy+¢c=0
y can indeed be so expressed, viz. by the formula
y=—f V== Tga—c;
but the functional dependence of » upon @ is better and more
simply expressed by the original equation.

It will be observed that in these two cases the functional
relation is fully expressed by equating o function of the two
variables & and ¥ to zero, i.e. by means of an equation

J(@y)=0 i SR (2).
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We shall adopt this equation as the standard method of
expressing the functional relation. It includes the equation (1)
as a special case, since ¥ —f(2) 1s a special form of a function of #
and 4. We can then speak of the locus of the point («, 7) subject
to f(», y)=0, the graph of the function y defined by f(x, y)=0,
the curve or locus f(z, y)=0, and the equation of this curve or
locus.

There is another method of representing curves which 1is often
useful. Suppose that = and y are both functions of a third
variable ¢, which is to be regarded as essentially auxiliary and
devoid of any particular geometrical significance. We may write

z=ft), y=F(@) cccviiiiiin (3).

If ¢ has any arbitrary value assigned to it, the value (or values) of
x and of y are known. Each pair of such values defines a point
(z, y). If we construct all the points which thus correspond to
all the different values of ¢ we obtain the graph of the locus
defined by the equations (3). Suppose for example

z=qcost, y=asint

Let ¢ vary from O to 27r. - Then it is easy to see that the point
(#, y) describes the circle whose centre is the origin and radius is
a. If ¢ varies beyond these limits («, ) describes the circle over
and over again. We can in this case at once obtain a direct
relation between « and y by squaring and adding: we find that
2? +y*=a? t being now eliminated.

Examples XX. 1. The points of intersection of the two curves whose
equations are f(z, ¥)=0, ¢ (2, ¥)=0 are given by solving this pair of simul-
taneous equations.

2. Trace the curves (z+y)=1, zy=1, 2®>—y’=1.

3. The curve f(z, y¥)+\p (#, y)=0 represents a curve passing through
the points of intersection of f=0, ¢$=0.

4. What loci are represented by

(@) w=at+b, y=ci+d, (B) sla=20(1+8), yla=(1-E)1+8),
when ¢ varies through all real values ?

24. Loci in space. In space of three dimensions there are
two fundamentally different kinds of loci, of which the simplest
examples are the plane and the straight line.
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A particle which moves along a straight line has only one
degree of freedom. Its direction of motion is fixed ; if its velocity
is given (velocity being regarded as a quantity capable of sign) its
mode of motion is completely determined. Or again the position
of a point on a line can be completely fixed by one measurement
of position, e.g. by its distance from a fixed point on the line. If
we take the line as our fundamental line L of Ch. I, the position
of any of its points is determined by a single coordinate .
A particle which moves in a plane, on the other hand, has fwo
degrees of freedom. In order to determine its mode of motion
completely we require a knowledge of its component velocities in
two different directions. Or again the position of a point on a
plane requires the determination of fwo coordinates in order to
fix it.

Now let us look at these loci from the point of view of
their equations. The plane is represented by a single equation
ax + By +vyz+8=0. Two of the three coordinates ¥ and z may
be chosen arbitrarily, and the third is then fixed. The straight
line on the other hand is the intersection of two planes. Let
these two planes be

ax+bytez+d=0, ar+PBy+yz+8=0......... (1).

Then if one of the three coordinates is chosen arbitrarily, both of
the others and the position of the point are fixed.

We can of course draw any number of planes through the line. Hence it
might appear that the coordinates of the point on the line are subject to more
than two relations. And so in fact they are, but the relations are not all
independent. Any other plane through the line could be expressed in
the form

ax+by +cz+d+\ (ax+By+yz+8)=0
and any equation of this type is a mere consequence of the equations (1).

The locus represented by a single equation

z=f(@, y)
is called a surface. It may or may not (in the obvious simple
cases it will) satisfy our common-sense notion of what a surface

should be.

The considerations of § 21 may evidently be generalised so
as to give definitions of a function f(z, ¥, 2) of three variables (or
of functions of any number of variables). And as in § 23 we
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agreed to adopt f(#, ¥)=0 as the standard form of the equation
of a plane curve, so now we shall agree to adopt

(@, 9, 2)=0,

as the standard form of equation of a surface.

The locus represented by two equations of the form z=jf(z, v)
or f(z, v, z)=0 1s called a curve. Thus a straight line may be
represented by two equations of the type ax+ By +yz+86=0. A
ctrele in space may be regarded as the intersection of a sphere
and a plane; it may therefore be represented by two equations of
the forms

(2—a)+(y—bE+(z—cP=1° oan+tBy+yz+8=0.

Examples XXI. 1. What is represented by three equations of the type
i (33, KA Z)——-O ?

[Three equations in three variables are capable of solution (practically or
theoretically). The solution consists of a finite or infinite number of isolated
sets of values (2, 7,2). The three equations therefore represent a number of
isolated points.

Or we may vegard the question thus. 7%o of the equations determine a
curve, which meets the suifoce represented by the third equation in a number
of points.]

2. Three linear equations represent a single point.

3. The equations of a curve differ from the equation of a surface in that
their mode of expression is not unique, since either may be transformed by
means of the other. Thus the curve y=1, 22+ 3%2+7%2=2, (a circle) may also
be represented by y=1, 22 +22=1.

4. What are the equations of a plane curve f(z, #)=0 in the plane X07,
when regarded as a curve in space ? [ f(#, )=0, =0.]

5. Cylinders. What is the meaning of a single equation f(w, y)=0,
considered as a locus in space of three dimensions ?

[All points on the surface satisfy f(z, y)=0 whatever be the value of z. The
curve f(z, y¥)=0, z=0 is the curve in which the locus cuts the plane XOY.
Draw the plane z=¢, cutting Z0X, Y0Z in 0X’, 0Y", and take OX’, OY" as
axes of coordinates in this plane (Fig. 20). Obviously #'=z, =y and so
S (@, ¥)=0. The curves in which the two planes 2=0, z=a cut the locus are
therefore repetitions of the same plane curve: if one curve were moved a
distance a parallel to the axis of z it would coincide with the other. The
locus is the surface formed by drawing lines parallel to 0Z through all points
of the plane curve f(w, y)=0, z=0. Such a surface is called a cylinder.]

6. Interpret the equations: (@) y=me+¢ 0) y=mr+e¢ z=a0a,
(¢) 2 4+y%=1, (d) «®+3y?=1, z=a, as loci in three-dimensional space.
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7. Graphical representation of a surface on a plane. Contour Maps.
It might seem to be impossible to adequately represent a surface by a drawing
on a plane; and so indeed it is: but a very fair notion of the nature of the
surface may often be obtained as follows. Let the equation of the surface be

z=f(z y)

Z
O r
Y r
/ |

XA

O Y
L/
X
Fie, 20.

If we give z a particular value @, we have an equation a=f(z, ¥),
which we may regard as determining a plane curve on the paper. We trace
this curve and mark it (a). Actually the curve (a) is the projection on the
plane XOY of the section of the surface by the plane z=a (Fig. 20). We do
this for all values of a (practically, of course, for a selection of values of a).
We obtain some such figure as is shown in Fig. 21. It will at once suggest a
contoured Ordnance Survey map: and in fact this is the principle on which
such maps are constructed. The contour line 1000 is the projection on the
plane of the sea level of the section of the surface of the land by the plane
parallel to the plane of the sea level and 1000 ft. above it *.

3000

2000

S

Fie. 21.

\

* We may assume here that the effects of the earth’s curvature may be
neglected.



58 FUNCTIONS OF REAL VARIABLES [

8. Draw a series of contour lines to illustrate the form of the surface
2z=23xy.
9. Right circular cones. Take the origin of coordinates at the vertex

of the cone and the axis of z along the axis of the cone (Figs. 22, 23). TLet a be
the semi-vertical angle of the cone, P any point on it, ¢'and £’ its projections

2
Cﬁ‘—\
4
P c L
z P
a
O (o]
™ Y
P’ . Y
Y P'\
X
Fic. 22. F1e. 28.

on the axis 0Z and the plane XO0Y. Then if #, g, 2z are the coordinates of
P, we have 22+32=0P"?=CP'=00%tan?a=:?tan’a. The equation of the
cone (which must be regarded as extending both ways from its vertex) is
therefore 2%+y2—2%tan? a=0.

10. Surfaces of revolution in general. We notice that the cone of
Ex. 9 cuts ZOX in the lines #= +ztan a, which may be combined in the
equation #2=z2tan?a. That is to say, the equation of the surface generated
by the revolution of the curve y=0, #?=2%tan?a round the axis of z is
derived from the second of these equations by changing 42 into 42432

Show generally that the equation of the surface generated by the revolu-
tion of the curve y=0, #=/(z), round the axis of z, is »/(22+7%)=F(2), or
w2yt ={f ()}
Verify in the case of (1) the line =0, #=1; (2) the circle y=0, &*+22=1.
11. Cones in general. A surface formed by straight lines passing
through a fixed point is called a come: the point is called the vertex. A

particular case is given by the right circular cone of Ex. 9. Show that the
equation of a cone whose vertex is O is of the form

2 Z
(G 5o
and that any equation of this form represents a cone.

LIf (%, ¥, 2) lies on the cone, so must (A, Ay, Az), for any value of \.]
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12. Ruled surfaces. Cylinders and cones are special cases of surfaces
* composed of straight lines. Such surfaces are called ruled surfaces.

The two equations

x=az+b

y—cz+ d} .................................... (1)
represent the intersection of two planes, i.e. a straight line. Now suppose
that @, b, ¢, d instead of being fixed, are functions of an ausiliary variable t.
For any particular value of ¢ the equations (1) give a line. As ¢ varies
this line moves, and generates a surface, whose equation may be found by
eliminating ¢ between the two equations (1). For instance, in Fig. 23 the
line O is inclined at a fixed angle a to OZ. PP’ is perpendicular to the
plane XOY and XOP'=¢. The equations of the line are

z=ztan acos ¢)
y=ztanasint) "

As t varies the line turns round 0Z and generates the cone 224 y%=22 tan?a.

Another simple example of a ruled surface may be constructed as follows,
Take two sections of a right circular cylinder perpendicular to the axis and
at a distance { apart (Fig. 24 @). We can imagine the surface of the cylinder
to be made up of a number of thin parallel rigid rods of length Z, such as P,
the ends of the rods being fastened to two circular rods of radius e.

Now let us take a third circular rod of the same radius and place it
round the surface of the cylinder at a distance 4 from one of the first two

rods (Fig. 24 ). Unfasten the end @ of the rod P and turn P@ about P
until ¢ can be fastened to the third circular rod in the position @'. The

angle ¢0@’==a in the figure is evidently given by

12— h2=qQ"?=(2asin }a)%
Let all the other rods of which the cylinder was composed be treated in the
same way. We obtain a ruled surface whose form is indicated in Fig. 24 0.
It is entirely built up of straight lines; but the surface is curved everywhere,
and is in general shape not unlike certain forms of table-napkin rings (Fig. 24c).

Fic. 24 a. Fia. 24 5. Fic. 24c,
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MISCELLANEOUS EXAMPLES ON CHAPTER II.

1. If y=f()=(ax+D)/(cx~ a), show that z=f(y).

2. If f(«)=f(—) for all values of &, f(z) is called an even function.
If f(z)= —f(—2) it is called an odd function. Show that any function of ,
defined for all values of z, is the sum of an even and an odd function of z.

[Use the identity f(=)=4 {f(2)+f(-a);+3{/ () —f(=2)}]

x—a2

Z_>" has a rational value.
NEEY

3. Find all the values of # for which y=

4, Draw the graphs of the functions

3sinw+4cosz, sin (TFQ sin a:) . (Math. Trip. 1896.)
v

5. Draw the graphs of the functions

. . sin z . sin #\?
sin & (@ cos? &+ b sin? ), — (e cos?z+bsin? ), T) .

6. Draw graphs of the functions

(i) arccos(2x?—1)-2 arc cos z,

. a+z
(ii) arc tan T

where the symbols arccos a, arctan a denote, for any value of a, the least
positive (or zero) angle, whose cosine or tangent is a.

—arc tan ¢ —arc tan z,

7. Verify the following method of constructing the graph of f{¢ ()} by
means of the line y=x and the graphs of f(#) and ¢ (#): take 04 =x along
0X, draw AB parallel to OY to meet y=¢ (#) in B, BC parallel to 0OX to
meet y=z in O, CD parallel to OY to meet y=f () in D, and DP parallel to
OX to meet A8 in P: then P is a point on the graph required.

8. Show that the roots of 23+ pz+ ¢=0 are the abscissae of the points of

intersection (other than the origin) of the parabola y=2? and the circle
2+y?+(p—1Dy+qu=0.

9. The roots of 224na3+ pa?+gx+r=0 are the abscissae of the points of

intersection of the parabola #2=y — }nz, and the circle
P2ty +(Gni—fprtdntq) w4+ (p—1-1a)y+r=0.
10. Discuss the graphical solution of the equation
amtaritbre=0

by means of the curves y=a™, y= —as?—bxr—c. Draw up a table of the
various possible numbers of real roots.
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11, Show that the equation
2x=(2n+1)x (1 - cos &)
where » is a positive integer, has 2n+3 real roots and no more, roughly
indicating their localities, (Math. Trip. 1896.)
12. Discuss the number and value of the real roots of the equations
(1) cota+z—gx=0, (2) a2+4sin?xr=1, (3) tan x=2z/(1+a?),
(4) sinz—z+%2=0, (56) (1—cosa)tana—z+sinz=0.
13. Determine a polynomial of the 5th degree which has, for #= -1,
-1,0, 4, 1 the values 3, 7, 2, 0, 4.

14. The polynomial of the second degree which assumes, when x=aq, b, ¢,
the values q, 3, v, i8
J=D =0 (@) @=a) (e=a)(@=D)
(@a=b)a—e)" " (b=c)(b—a) ¥ (c=a)(c—b)"
Give a similar formula for the polynomial of the (n—1)-th degree which
assumes, when x=dqy, dg, ... ¢,, the values a;, as, ... a,.

15. If # is a rational function of w, and ¥ is a rational function of z,
show that Axy+ Bx+ Cy+D=0. '

16. If y is a rational function of z, with rational coefficients, then y has
a rational value for all rational values of 2.

17. If y is an algebraical function of #, # is an algebraical function of y.

18. Verify that for values of # between 0 and 1 the equation

22
z4(z—-1) \/ (Z_E_x)

is approximately true. [Take #=0, %, %, £, %, £, 1, and use tables.. For
which of these values is the formula exact ?]

cos rw=1—

19. The equation
n(n—1)
1.2

represents » straight lines through the origin.

Ao+ no a1y +

a2y, ¥y =0

20. Show that the line Az+ By+ (=0 and the two lines represented by
(Aa+ By) —3 (dy - Bry=0
form the sides of an equilateral triangle. (Math. Trip. 1906.)
21. The equation of the circle described on the line joining (, #) and
(#, ') as diameter is (#— ) (x—2")+w—y") (y—¥")=0.

22. The general equation of a circle through (2, /) and («”, y”) may be
expressed in either of the forms
1) (w—a)(g—y") - (@—2") =y
={w—a) (2-a")+@-y) (y—9")} tanq,
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@ (=) (0= 4 52 )+ -9 (19"~ 72y) =0

Here a is the angle contained in one of the segments of the circle. Express
A in terms of a.

23. The general equation of a circle cutting #%+7?+2\z+¢=0 ortho-
gonally, for all values of A, is #?+4%%+42uy—c=0. Sketch the two sets of
circles.

24. The general equation of all circles cutting at right angles the two
circles a?+92—2ay2—2byy+¢,=0, 22+y* ~2asx —2byy +ca=0 is

#24+y? xw oy |[+Ala gy 1 ]=0.
a6 ap b a; b 1
cy g by | ag by 1

' (Math. Trip. 1506.)

25. Show that the intersection of the two circular cylinders a2+ y%=1,
4%+ 22=1, consists of two plane curves. Give a sketch of the cylinders and

their line of intersection.

26. Sections of a right circular cone by a plane. Show that the cone
a?+yt=22tan?a and the plane z=x tan §+4c¢ intersect in a curve whose pro-
jection on the plane XOY is #2+y%=(x tan 6+c)? tan? a.

Taking axes 0§, 'y in the plane of section, 0’ being on 0Z and O
parallel to O, show that the equation of the curve of section is

£ cos? O+ n?=(Esin 8+c)?tan?a ...oooeeeneeiilll. (1).
Show that this curve consists of a single closed branch, a single infinite
branch, or two infinite branches, according as 9%%#—-&, and that in any
case it is symmetrical about O'&. '
27. Show that the equation (1) of the last example may be expressed in

the form
E—yP+yt=e (£~ «)},
where e=sin @ sec a ),_-=__C,_Sh“‘__s§f££
’ sina+cos 8’
csina 1+sinacos 8
and K= — '

sind sinatcosd’
unless §=%m —a, in which case
e=1, y=-—%ccosa, k=-—%cseca(l+sin®a)

28. Deduce that the section is a curve such that the distance of any
point on the curve from a fixed point (y, 0) is e times its distance from a fixed
line £-—~«=0, i.e. that the curve is a conic, having the focus and directrix
property which is usually adopted as the definition of a conic in books on
Conic Sections. The conic is an ellipse, parabola, or hyperbola, according as
¢=1; and, except in the special cases when e=1 or ¢=0, has two foci (y, 0)

and two corresponding directrices.
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29. Let 4, A’ be the vertices of the conic, i.e. the points where the conic
cuts the axis of symametry O'¢, S, 8’ the foci, and K, K’ the points where the
directrices cut O'é. Show that A4, 4’ are given by £= Fc¢sinafcos(aF6),
that 4 lies between S and A and A4’ between S’ and X', and that the length
of the ‘major axis’ AA’ is 2¢s8in a cos a cos 8/(cos? 6 — sin? a).

30. Show further that if we take axes parallel to 0°¢, O’y through C, the
middle point of 4 4’, the equation of the curve becomes of the form
(@®la?)+(y*[6%) =1,
where a=3A4A4" and b=a\/(1—¢?), or
(2%[a®) - (/6% =1,
where a=3%A4A4" and b=a4/(¢?—1), according as eS1. Sketch the forms of
the curves.

31. In the case when e=1, show that the one point A where the curve
cuts O’¢ is given by £= —%csecq, and that by taking axes through this point
we can reduce the equation of the curve to the form #?=4awx, where
a=%csinatan a.

[For an account of the simplest properties of the conic sections, deducible
from the equations (#2/a?)+ (42/b%)=1 or y?=4aw, we must refer to treatises
dealing specially with this subject.]

32. Show that the most general equation of the second degree, viz.
az?+2hzy + by® + 292 4 2fy +¢=0
represents a conic. [It is this property which accounts for the importance of
the conic sections.]
33. Show that the equation represents an ellipse, parabola, or hyperbola,
according as A% = ab.

34. The equation
ax?+2hazy + byt +2 (gz+1y) (letmy) +c (lo+my)i=0
represents the two lines joining the origin to the points in which the line
lz+my=1 cuts the conic az?+2hzy + by’ + 292 +2fy+e=0.

35. Show directly that if the cylinder #2+#?=1 is cut by a plane neither
parallel nor perpendicular to its axis, the intersection is a curve possessing
the focus and directrix property of a conic.

36. The curve
N (2 9) b (@, ) +pF (2 9) @ (2, y)=0
passes through all points of intersection of f=0 and £'=0, of f=0 and &=0,
of $=0and F'=0, and of =0 and &=0.

37. If N,=a,x+by+c,, the equation NIy Ly+ply Ly=0 is the general
equation of a conic circumscribing the quadrangle formed by the four lines
Ly=0, Ly=0, L;=0, L,=0 taken in order.
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38. Determine the equation of the surface generated when the circle
y=0, (r—a)yti=1

rotates round the axis of z. Sketch the form of the surface for different
values of «.

30. What is the form of the graph of the functions
s=[el+lyl, r=aty-[z]-[y]?

40. What is the form of the graph of the functions z=sinx4singy,
z=sin xsin g, z=sinxy, z=sin (22+4?)?

41. Geometrical Constructions for irrational numbers. In Chapter I.
we indicated one or two simple geometrical constructions for a length equal
to /2, starting from a given unit length. We also showed how to construct
the roots of any quadratic equation a2®+42bx+ =0, it being supposed that
we can construct lines whose lengths are equal to any of the ratios of
the quantities «, b, ¢. All these constructions were what may be called
Euclidean constructions; they depended on the ruler and compass only.

Tt is fairly obvious that any irrational expression, however complicated,
can be constructed by means of these methods, provided @t only contains
square roots. Thus

\4/ 17434/11Y (17—3J11 }

17— 38 J11 1743 J11
is a case in point. This contains a fourth root, but this is of course the
square root of a square root. We should begin by constructing 4/11, e.g. as

the mean between 1 and 11: then 1743 ,/11, and so on. Or these two mixed
surds might be constructed directly as the roots of #2—34x+4+190=0.

Conversely, only irrationals of this kind can be constructed by Euclidean
methods. Starting from a unit length we can construct any rational length.
And hence we can construct the line az+by+¢=0, or the circle

(x—af+(y—BPR=r2 (or a*+y%4292+2fy+d=0)
provided the constants which occur in these equations are rational.

Now in any Euclidean construction, each new point introduced into the
figure is determined as the intersection of two lines or circles, or a line and a
circle. But if the coefficients are rational, such a pair of equations as

ar+by+c=0, 22+y*+29x+2fy+d=0

give, on solution, values of # and y of the form m+n 4/p, where m, z, p are
rational : for if we substitute for 2 in terms of y in the second equation we
obtain a quadratic in y with rational coefficients. Hence the coordinates of
all points obtained by means of lines and circles with rational coefficients
are expressible by rational numbers and quadratic surds. And so the same
is true of the distance /{(w;— )2+ (1 —¥2)%} between any two points so
obtained.

With the irrational distances thus constructed we may proceed to construct
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a number of lines and circles whose coefficients may now themselves involve
quadratic surds. It is evident, however, that by the use of such lines and
circles we can still only construct lengths expressible by square roots only,
though our surd expressions may now be of a more complicated form. And
it is clear that this remains true however far we may go. Hence Fuclidean
methods will construct any surd expression involving square roots, and no
others. In particular they will not construct 42, i.e. they will not solve the
problem of the duplication of the cube, which was one of the famous problems
of antiquity.

42. Approximate quadrature of the circle. Let O be the centre of a
circle of radius £. On the tangent at 4 take AP=11R and AQ=13R, in
the same direction. On A0 take AN=0P and draw N M parallel to 0€ and
cutting AP in M. Show that

AM=13J146 . R,

and that to take A4/ as being equal to the circumference of the circle would
lead to a value of = correct to five places of decimals.

If R is the earth’s radius, the error in supposing A M to be its circum-
ference is less than 11 yards.

43. Show that the only lengths which can be constructed with the ruler
only, starting from a given unit length, are rational lengths.

44. Constructions for /2. O is the vertex and S the focus of the
parabola y2=4x, and P is one of its points of intersection with the parabola
#?=%2y. Show that OF meets the latus rectum of the first parabola in a
point @ such that SQ=32.

45, Take a circle of unit diameter, a diameter 04 and the tangent at A.
Draw a chord OBC cutting the circle at B and the tangent at €. On this
line take OM =BC. Taking O as origin and 04 as axis of z, show that the
locus of M is the curve

(+97) 0 ~y2=0
(the Cissoid of Diocles). Sketch the curve. Take along the axis of y a length
OD=2. Let AD cut the curve in P and O cut the tangent at 4 in @.
Show that A4¢Q=.J2.



CHAPTER IIL

COMPLEX NUMBERS.

25. Displacements along a line and in a plane. The
‘real number’ #, with which we have been concerned in the two
preceding chapters, may be regarded from a considerable number
of different points of view. It may be regarded as a pure number,
destitute of geometrical significance, or a geometrical significance
may be attached to it in at least three different ways. It may be
regarded as the measure of o length, viz. the length A4, P along the
line L of Chap. I. It may be regarded as the mark of a pownt,
viz. the point P whose distance from A4, is 2. Or it may be
regarded as the measure of a displacement or change of position
on the line L. It is on this last point of view that we shall now
concentrate our attention.

Let a small particle be placed at P on the line L and then
displaced to . We shall call the displacement or change of
position which is needed to transfer the particle from P to @ the
displacement PQ. To completely specify a displacement three
things are needed, its magnitude, its sense (forwards or backwards
along the line), and what may be called its point of application,
1.e. the original position P of the particle. But, when we are
thinking merely of the change of position produced by the dis-
placement, it is natural to disregard the point of application and
to consider all displacements as equivalent whose lengths and
senses are the same. Then the displacement is completely speci-
fied by the length PQ =2, the sense of the displacement being
fixed by the sign of #. We may therefore, without ambiguity,
speak of the displacement [«], and we may write

Q= (o}
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We use the square bracket to distinguish the displacement [«]
from the length or number #*. If the coordinate of P is a, that
of @ will be a + 2; the displacement [«] therefore transfers a
particle from the point # to the point a + .

We come now to consider dusplacements vn a plane. We may
define the displacement P@Q as before. But now more data are
required in order to specify it completely. We require to know:
(1) the magnitude of the displacement, i.e. the length of the
straight line P@); (i1) the direction of the displacement, which is
determined by the angle which P makes with some fixed line in
the plane; (iii) the sense of the displacement; and (iv) its pownt
of application. Of these requirements we may disregard the
fourth, if we consider two displacements as equivalent if they are
the same in magnitude, direction, and sense. In other words, if
PQ and RS are equal and parallel, and the sense of motion from
P to @ is the same as that of motion from R to S, we regard the

displacements PQ and RS as equivalent, and write
PQ=RS.

Now let us take any pair of coordinate axes in the plane

Y/Q >

P~

o X
-
Fra. 25.
such as 0X, OY in Fig. 25). Draw a line O4 equal and parallel
( g q P

* Strictly speaking we ought, by some similar difference of notation, to dis-
tinguish the actual length z from the number & which measures it. The reader
will perhaps be inclined to consider such distinctions fufile and pedantic. Buf
increasing experience of mathematics will reveal to him the great importance of
distinguishing clearly between things which, however intimately connected, are not
the same. If cricket were a mathematical science it would be very important to
distinguish between the motion of the batsman between the wickets, the run which
he scores, and the mark which is put down in the score-book.

5—2



68 COMPLEX NUMBERS [11x

to PQ, the sense of motion from O to A being the same as that
from P to Q. Then PQ and OA are equivalent displacements.
Let # and y be the coordinates of 4. Then it is evident that 04
is completely specified if # and y arve given. We call OA the
displacement [z, y] and write

04 = PQ = RS ==, y].

26. Equivalence of displacements. Multiplication of
displacements by numbers. If £ and # are the coordinates
of P, & and 7 those of @, it is evident that

w=E—& y=u'—n.
The displacement from (&, ) to (£, 1) is therefore
-
It is evident that two displacements [z, y], [#/, ¥'] are equiva-
lent if, and only if, =4/, y=9". Thus [, y] = [+, y] if
2=, Y=19 i, (1).

The reverse displacement QP would be [£— &, n—7"], and it
is natural to agree that

[E—& 9—n]=—[E—§& o' =],
QP =-PqQ,
these equations being really definitions of the meaning of the
symbols —[£'— & o — ], — PGQ.
Having thus agreed that
=l yl=1-2 -yl
it is natural to agree further that

alz, yl=[az, ay] .coovviiiiieiiinn. (2)

where « is any real number, positive or negative. Thus (Fig. 25)
if OB=-40A4,
OB =304 ==4[e,y1= [~ §=, ~ 1y

The equations (1) and (2) define the first two important ideas
connected with displacements, viz. equivalence of displacements,
and multiplication of displacements by nwmbers.
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27. Addition of displacements. We have not yet given
any definition which enables us to attach any meaning to the
expressions o

PR+ P, [= yl+[e, ¥

Common sense at once suggests that we should define the

sum of two displacements as the displacement which is the result

s
\
\
—’C
.
-
-

.

B
F1a. 26.
of the successive application of the two given displacements. In
other words, it suggests that if @@, be drawn equal and parallel
to P'Q), so that the result of successive displacements P@Q, P’Q’ on
a particle at P is to transfer it first to @ and then to @,, we
should define the sum of PQ and P’} as being PQ,. Or, if we
draw OB equal and parallel to P'¢), and complete the parallelo-
gram OACB,
PQ+P'Q =04+ 0B=0C=PQ,.

Let us consider the consequences of adopting this definition.
If the coordinates of B are o/, ¢/, those of. the middle point of 4B
are % (z + '),  (y+ v'), and those of €' are # + ', y +7'. Hence

[z, y] + [, ¥ ]=[z+2, y+ 9] .orvernrnn (3),
which may be regarded as the symbolic definition of addition
of displacements. We observe that

[, 91 +[2, yl=[2"+2, y' +y]
=lz+a, y+yl=[ay]+ [ ¥]
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In other words, addition of displacements obeys the commutative
law expressed in ordinary algebra by the equation ¢ + b =10+ a.

Looked at geometrically, this expresses the obvious fact that
if we move from P first through a distance P@), equal and parallel
to P’Q)’, and then through a distance equal and parallel to P, we
shall arrive at the same point @, as before. Again, since

L2, y] + [@, y] = [22, 2y] = 2[2, y]
our definition of addition agrees with that previously adopted for
multiplication by a number.

In particular
[z, y]=[=, 0] +]0, y] ....... T, (4).
Here [#, 0] denotes a displacement through a distance z in
a direction parallel to OX. It is in fact what we previously
denoted by [#], when we were considering only displacements
along a line.” We call [, 0] and [0, y] the components of [z, y],
and [, y] their resultant.”

When we have once defined addition of two displacements
there is no further difficulty in the way of defining addition of
any number. Thus (by definition)

[=, y1+ [, y'1+[2" 4" = (= y] + [, D + 2", &)
— [.’L""‘ﬂ')’, y+ yr] ‘+’[5U”, yﬂ] — [33' +wl+mﬂ, y+yf+y!r]'
We define subtraction of displacements by the equation

[z, Y1 — [, ¥]=[z, y] + (= [, ¥ ]) e erveenennn. (5),
which is the same thing as [z, y] + [~ 2/, —y'] or as [ — o', y — /).

In particular
[, y] — [=, y] =0, O]
The displacement [0, 0] leaves the particle where «t was; it is
the zero displacement, and we agree to write [0, 0] =0.

Examples XXII. 1. Addition of displacements, and multiplication of
displacements by numbers, obey all the ordinary laws of algebra, expressed
by the equations,

@) a [Bx, By] = [ax, ag/] m[aﬁm‘, aﬁ(t]],

i) (= yl+e, gD+ " 1=L2 y1+ (), g1+, 57D
(ii1) [.56, y]+[‘%"5 ?/f] =[, ."/l] +[z, :y]:

1)  (a+B) [ g/]:a[x, y]"'B [“75 3’]1

(v) a{l, y]+[2, ¥ I}=alz y]+als, ]
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[We have already proved (iii). The remaining equations follow with equal
ease from the definitions. The reader should in each case consider the
geometrical significance of the equation, as we did above in the case of (iii).]

9. If M is the middle point of PQ, OM =% (0P+ 0Q). More generally if
M divides P in the ratio p : A
— h R FL B
OM= —— OP+""— 0Q.
_ h+p0 +k+#0Q

3. If ¢ is the centre of mass of equal particles at Py, Py, ..., P,
OG= (0P, + 0P, +...+OP,)n.

4. 1If P, @, R are collinear points in the plane, it is possible to find real
numbers q, 3, y, not all zero, and such that
a.0P+8. 5@-%'}/.@:0;

and conversely. [This is really only another way of stating Ex, 2.]

5. If AB and AD are two displacements not in the same straight line,
and - L e L
a. AB+B. AD=vy.AB+8. AD,
then a=y and S=34.
[Take ABy=a. AB, AD;=p.AD. Comnmplete the parallelogram A B, Py.D;.
Then AP;=a.AdB+B.AD. It is evident that AP, can only be expressed
in this form in one way, whence the theorem follows.]

6. ABCD is a parallelogram. Through @, a point inside the paral-
lelogram, RS and 7QU are drawn

parallel to the sides. Show that D Y c
RU, TS intersect on AC. / / %
[Let theratios A7 : AB, AR : AD R Q S
be denoted by a, 8. Then
AT=a.AB, AR=p.AD,

AU=a. AB+AD, AS=AB+p.AD.

Let RU meet AC in P. Then, A T
since R, U, P are collinear Fra. 27.

5. N . B i
AP=y o AR+l AT,

where /A is the ratio in which P divides ZU. That is to say

(o4

TP % THLPME 15
ap= TB I A,

But since P lies on AC, 4P is a numerical multiple of 4C; say
AP=k.AC=k . AB+k. AD.
Hence (Ex. 5) ap=B\+p=A+p) &, from which we deduce
k=aB/(a+p-1).
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The symmetry of this result shows that a similar argument would also give
P =—"%_ 70

at-p-1
if P’ is the point where 7'S meets AC. Hence P and P’ are the same point. ]

7. ABCD is a parallelogram, and 3/ the middle point of AB. Show
that DM trisects and is trisected by 4C*.

28. Multiplication of displacements. So far we have
made no attempt to attach any meaning whatever to the notion
of the product of two displacements. The only kind of multipli-
cation which we have considered is that in which a displacement
is multiplied by o mere number. The expression

[#, y] x [« ¥]
so far means nothing, and we are at liberty to define it to mean
anything we like. It is, however, fairly clear that if any defini-

tion of such a product is to be of .any use, the product of two
displacements must itself be a displacement.
We might, for example, define 1t as being equal to
[+, y+y1;

in other words, we might agree that the product of two displace-
ments was to be always equal to their sum. But there would be
two serious cbjections to such a definition. In the first place our
definition would be futile. We should only be introducing a new
method of expressing something which we can perfectly well
express without it. In the second place our definition would be
inconvenient and misleading for the following reasons. If « 1s
a real number, we have already defined a [z, ] as [az, ay]. Now,
as we saw in § 25, the real number a may itself from one point of
view be regarded as a displacement, viz. the displacement [«]
along the axis OX, or, in our later notation, the displacement
[a, 0]. It is therefore, if not absolutely necessary, at any rate
most desirable, that our definition should be such that

[, 0] [#, y] =[ax, ay],
and the suggested definition does not give this result.
A more reasonable definition might appear to be
[#, 11, y' 1= [2', yy').

* The two preceding examples are taken from Willard Gibbs’ Vector dnalysis.
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But this would give
[a’ 0] [w) 3/] = {m, O]J
and so this also would be open to the second objection.

In fact, it is by no means obvious what is the best meaning
to attach to the product [#, y][«, y']. All that is clear is
(1) that, if our definition is to be of any use, this product must
itself be a displacement whose coordinates depend on # and ¥, or
in other words that we must have

[z, y] [« y]= [X, Y],
where X and Y are functions of @, y, 2/, and y'; (2) that the
definition must be such as to agree with the equation

[z, O] [« Y 1= [wa, 2y'],
and (3) that the definition must obey the ordinary commutative,
distributive, and associative laws of multiplication, so that

[z, y] [, y1=1=", y'] |2, yl,
(Iz g1+ [, yD ", y'1 = [ 112", '] + [, ¥ 1 [, &),
[#, y1(L«, y'1+ [, y"]D) = [= y] [, g1+ = y] [", y'),
and [z, y] ([« y1[2", ¥"]) = ([ y] [, yD [+, ¥']-
29. The right definition to take is suggested as follows. We

know that, if OAB, OCD are two similar triangles, the angles
corresponding in the order in which they are written, then

0B/0A = 0D/OC,

D
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or OB.0C=04.0D. This suggests that we should try to define
multiplication and division of displacements in such a way that

0B/0A = 0D]0C, OB.0C=04.0D.

Now let
OB =[u,y], 0C=[«,y], OD=[X, Y]
and suppose that A4 1s the point (1, O), so that 04 =[1,0]. Then
04.0D=[1,0][X,Y]=[X, Y],
and so [z, y] [, v ]=[X, Y]

The product OB . OC is therefore to be defined as 0D, D being
obtained by constructing on OC a triangle similar to O4B. In
order to free this definition from ambiguity, it should be observed
that on OC we can describe fwo such triangles, OCD and OCD.
We choose that for which the angle COD is equal to AOB in sign

as well as in magnitude. We say that the two triangles are then
simalar in the same sense.

If the polar coordinates of B and C are (p, 6) and (o, ¢), so
that
z=pcos O, y=psinb, &' =occos¢, y' =osin ¢,

the polar coordinates of D are evidently pe and 6 + ¢. Hence
X = parcos (0 + ¢) = au’ — gy,
Y =posin (0 +¢)=ay' +ya'
The required definition is therefore
Lz, y] [, '] = [2a’ — gy, oy’ + ya'] oooiniiin, (6).

We observe (1) that if y=0, X =z, Y =2/, as we desired ;
(2) that the right-hand side is not altered if we interchange
z and 2/, and y and ¥/, so that

[z, y1[«, ¥ 1=12", ¥ 11z ¥];
and (3) that

[z, y] + 1, y I [« '] =[x+ 2", y+ y][a", 9]
=[(@+a)a" —(y+Y) Y, (@+2)y +(y+y)"]
— [ﬂ;’w” . yyll, wyfl+ ya}ﬂ] + [w’wﬂ — ylyll, xfy” + yla}ﬂ]
= [, yll", y" 1 +[«, y']1 [+, ¥"].
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Similarly we can verify that all the equations at the end of §28
are satisfied. Thus the definition (6) fulfils all the requirements
which we made of it in § 28,

Frzample. Show directly from the geometrical definition given above
that multiplication of displacements obeys the commutative and distributive

laws. [Take the commutative law for example. The product OB . 0C is 0D

_(Fig. 28), COD being similar to A0B. To construct the product OC. OB we
should have to construct on OB a triangle BOD similar to AOC; and so what
we want to prove is that D and D) coincide, or that BOD is similar to 40C.
This is an easy piece of elementary geometry.]

30. Complex numbers. Just as to a displacement [«] along
OX correspond a point (2) and a real number 2, so to a displace-
ment [z, y] in the plane correspond a point (z, ¥) and a pawr
of real numbers x, y.

We shall find it convenient to denote this pair of real numbers
z, y by the symbol

@+ Y.

The reason for the choice of this notation will appear later.
For the present the reader must regard « + yi as sumply another
way of writing [«, y]. The expression « + y¢ is called a complex
number.

We proceed next to define equivalence, addition, and multiplica-
tion of complex numbers. To every complex number corresponds
a displacement. Two complex numbers are equivalent if the
corresponding displacements are equivalent. The sum or product
of two complex numbers is the complex number which corresponds

to the sum or product of the two corresponding displacements.
Thus

z+yi=a +yi of w=d, y=y ... (1),
(z+y)+@+yD)=@+2)+@+y)i ......... (2),
(@ + 1) (& + y ) =ad —yy + (wy'+ ya)o......... (3).

In particular, if « is any real number, « (z + yi) = ax + ays.
The complex numbers of the particular form x4+ 0¢ may be
regarded as equivalent to the corresponding real numbers #; thus
z+ 0=z,

and in particular 04 07 = 0.
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Positive integral powers and polynomials of complex numbers
are then defined as in ordinary algebra. Thus, by putting « = 2/,
y =1y in (3), we obtain

(z+ iy = (z+ yi) (x + y2) = 2* — y* + 2y,
@+ )P+ 2@+y)+3=2>— 12+ 22 + 3 + (22y + 2y) <.
The reader will easily verify for himself that addition and

multiplication of complex numbers obey the ordinary laws of
algebra, expressed by the equations

2+ yi + (&' + y7) = (2" + y7) + (z + y2),
(& +yD) + (@ +yD)} + (@ +y)= (2 +yi) + {(&" + ¥ + @ + ¥},
(z +y2) (@' + y9) = («"+ y'0) (« + ),

(z+y0) {(#' + 99) + (@ + ¥} = (& + yi) (@ + y'0) + (2 + yi) (2" + y"0),
(@ 93)+ (@ + D} (o + ') =@ + i) (& + '6) + (& + YD) + 1),
(@+98) (o + ) (@ + ")) = (0 + i) (& + 5D} (& +1/),
the proofs of these equations being practically the same as those

of the corresponding equations for the corresponding displace-
ments.

Subtraction and division of complex numbers are defined as
in ordinary algebra. Thus we may define (z+ y0)— (' + %) as
(@+y) +{— (@ +yDl=a+yi+ (=2’ —yi)=(@-2)+({H-y)7;

or again, as the number £ +#¢ such that
(@ +y i) +(E+m)=a+yi,
which leads to the same result.
And (z + 99)/(¢/ + y'7) 1s defined as being the complex number

£ +1m such that
@ +y)E+m)=2+yr,

or dE—yn+@n+yEi=a+yi
or ZE—yn=w on+yE=y ... (4).
Solving these equations for § and 7, we obtain
Siww'+yy' =ym’—xy"
ks + yfz ’ a2 + yfﬂ

This solution fails if 2/ and ¢’ are both zero, ie. if o'+ 9% =0.
Thus subtraction is always possible; division is always possible.
unless the divisor is zero.
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Examples. (1) From a geometrical point of view the problem of the division
of the displacement OB by OC is that
of finding D so that the triangles B
COB, AOD are similar, and this is
evidently possible (and the solution
unique) unless C coincides with O, or
0C=0.

(2) The numbers x+yi, x —y¢ are
said to be conjugate. Verify that o
(@ +y1) (2 —yo) =224y
so that the product of two conjugate

numbers is real, and that
w+yi _ (w4ye) (@ —y'7) Fro. 9
-%"-1-2/'%' (-ﬁ?’—l—y”b') (x/_yfi) 16. 29.
_ B gy i (@Y —ay)
= Ty g .

31. One most important property of real numbers is that
known as the factor theorem, which asserts that the product of two
numbers cannot be zero unless one of the two is utself zero. To
prove that this is also true of complex numbers we put =0,
y=0 in the equations (4) of the preceding section. Then

2E—yn=0, an+yE=0.
These equations give £ =0, =0, Le.
E+m=0,

unless 2’ =0 and ' =0, or '+ 91=0. Thus + y¢ cannot vanish
unless either &+ ¢ or £+ ¢ vanishes.

32. The equation 2=-—1. We agreed to use, instead of
x4 01, the simpler notation . Similarly, instead of 0+ vz,
we shall use y7. The particular complex number 1¢ we shall
denote simply by ¢ It is the number which corresponds to
a untt displacement along OY. Also

P=u=(0+17)(0+1)=(0.0-1.1)4+(0.14+1.0)s=—1.

Similarly (—¢)*=—1. Thus the complex numbers + ¢ satisfy
the equation #®=—1.

Now the reader will easily satisfy himself that the upshot of
the rules for addition and multiplication of complex numbers is
this, that we operate with complex numbers in exactly the same
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way as with real numbers, treating the symbol ¢ as itself a number,
but replacing the product v =14 by — 1 whenever it occurs. Thus,
for example,

| (z + y0) (& + o) = 22’ + 2y'v + ya'v + yy'i?
= (2’ — yy') + (ay’ + ya') .

33. The geometrical interpretation of multiplication
by < Since
(z+w)i=—y+iz,

it follows that if @ + 4y corresponds to OP, and 0@ is drawn equal
to OP; and so that PO is a positive right angle, then (z+14y) <
corresponds to 0Q. In other words, multiplication of a complex
number by © turns the corresponding displacement through a right
angle.

We might, had we so chosen, have started from this point of
view. We might have regarded « as a length measured along
0X, and 27 as the same length measured along OY, and regarded
v as a symbol of operation equivalent to turning the length z
through a right angle round 0. “We should then naturally have
been led to regard 21 = #1¢ as denoting the result of fwice turning
o through a right angle. The result of this is to bring it into
a position again lying along OX but pointing in the opposite
direction, so that we should have been led to the equation

212 = — 2.

Then, denoting 17 (a unit length along OY) simply by <, we
should have found ¢2=—1, and the rule for multiplication of
complex numbers would have followed immediately.

34. The equations 2?+1 =0, aa®+ 20 + ¢ =0. There is no
real number # such that 2+ 1=0; this is expressed by saying
that the equation has no real roots. But, as we have just seen,
the two complex numbers + ¢ satisfy this equation. We express
this by saying that the equation has the two complex roots + 4.
Since ¢ satisfies 2*=—1, it 1s sometimes written in the form

V(=1).
Complex numbers are sometimes called wmaginary, to dis-

tinguish them from 7ex! numbers. The expression is by no
means a happily chosen one, but it is firmly established and
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has to be accepted. It cannot, however, be too strongly im-
pressed upon the reader that in reality an ‘imaginary number’
is neither ‘imaginary’ nor ‘a number’ at all. The ‘real’ numbers
would be better described as ‘common’ or ¢ordinary’ numbers;
they are the numbers of arithmetic. A ‘complex’ or ‘imaginary
number’ is really not a number at all, but, as should be clear
from the following discussion, a pair of numbers (x, y), united
symbolically, for purposes purely of convenience, in the form
« +yi. And such a pair of numbers is no less ‘real’ than any
ordinary number such’ as 4, or than the paper on which this is
printed, or than the Solar System.

In reality
1=0+14

stands for the pair of numbers (0, 1), and may be represented
geometrically by a point or by the displacement [0, 1]. And
when we say that ¢ is a root of the equation #*+ 1 =0, what we
mean is simply that we have defined a method of corbining such
pairs of numbers (or displacements) which we call ‘multiplica-
tion,” and which, when we so combine (0, 1) with itself, gives the
result (—1, 0).

Now let us consider the more general equation

azx®+ 2bz + ¢ =0,

where a, b, ¢ are real numbers,

If * > ac, the ordinary method of solution gives two real roots

{= b £ V(0 — ac)}/a.

If 1% < ac, the equation has no real roots. It may be written
in the form
{# + (bfa)}? = — (ac — b?)/a?,
an equation which is evidently satisfied if we substitute for
z + (bja) the complex number + 44/(ac—b*)/a. We express this
by saying that the equation has the two complex roots

{=b + 24/ (ac—0%}/a

If we agree as a matter of convention to say that when b?=ac
(in which case the equation is satisfied by one value of z only,
viz. —bja), the equation has two equal roots, we can say that
a quadratic equation with real coefficients has two roots in all
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cases, two distinct real roots, two equal real roots, or two distinct
complex roots.

The question is naturally suggested whether a quadratic
equation may not, when complex roots are once admitted, have
more than two roots. It is easy to see that this is not possible.
In fact, its impossibility may be proved by precisely the same
chain of reasoning as is used in elementary algebra to prove that
an equation of the nth degree cannot have more than n real
roots. Let z=a+ ¥i, and let f(z) denote any polynomial in 2%,
with real or complex coefficients. Then we prove in succession :

(1) that the remainder, when f (2)is divided by z —a (a being
any real or complex number), is f(a);

(2) if @ is a root of the equation f(z) =0, then f(2) is divisible
by z—a;

(3) if f(2)is of the nth degree, and f(2)=0 has the n roots
(ty, Uy, ..., Oy, then

f(@)=A4A(z—a) (2 —ay) ... (2 —ay),

where A is a constant (real or complex), in fact the coefficient
of z¢ in f(2). From the last result it follows at once that f(2)
cannot have more than n roots.

We conclude that a quadratic equation with real coefficients has
exactly two roots. We shall see later on that a similar theorem is
true for an equation of any degree and with either real or complex
coefficients: an equation of the wnth degree has exactly m roots.
The only point in the proof which presents any difficulty is the
first, viz. the proof that any equation must have af least one
root. This we must postpone for the present. We may, how-
ever, at once call attention to one very interesting result of this
theorem. In the theory of number we start from the positive
integers, and from the ideas of addition and multiplication, and
the converse operations of subtraction and division. We find
that these operations are not always possible unless we admit
new kinds of numbers. We can only attach a meaning to 3 —7
if we admit negative numbers, or to £ if we admit rational frac-
tions. When we extend our list of arithmetical operations so as
to include root extraction and the solution of equations, we find

# A polynomial in z=2x+yi is of course defined in exactly the same way as a
polynomial in z, i.e. as an expression of the form apz®+a;2" 1+ ... +a,.
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that some of them, such as the extraction of the square root of
a number which (like 2) is not a perfect square, are not possible
unless we widen our conception of a number, and admit the
irrational numbers of Chap. I

Others, such as the extraction of the square root of —1, are
not possible unless we go still further, and admit the complex
numbers of this chapter. And it would not be unnatural to
suppose that, when we come to consider equations of higher
degree, some might prove to be insoluble even by the aid of
complex numbers, and that thus we might be led to the con-
siderations of higher and higher types of, so to say, hyper-complex
numbers. The fact that any algebraical equation whatever can
be solved by means of ordinary complex numbers shows that this
is not the case. The application of any of the ordinary algebraical
operations to complex numbers will yield only complex numbers.
In technical language the field of the complex numbers is closed
for algebraical operations.’

Before we pass on to other matters, let us add that all
theorems of elementary algebra which are proved merely by
the application of the rules of addition and multiplication are
true whether the numbers which occur in them are real or com-
plex, since the rules referred to apply to complex as well as
real numbers. For example, we know that if « and 3 are the

roots of
ax®+ 2bx + ¢ =0,

then a+ fB=—(2bfa), o =(c[a).
Similarly, if «, 8, y are the roots of

ax® + 3ba? 4+ 3cx +d =0,
then

a+ B+og=—(3b/a), By+qya+af=(3c/a), aBy=—/(d/a).
All such thedrems as these are true whether a, b, ... a, 8, ... are
real or complex.

35. The Argand diagram. Let P be the point (#, ¥) in
Fig. 30, r, € its polar coordinates, so that

w=rcosf, y=rsinf, r=r(a2+9y%), cos@:sin@:1:w:y:m
We shall denote the complex number =+ by z, and we

H. A, 6
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shall call z the complex variable. We shall call P the point
2, or the point corresponding
to z; and 2z the argument of
P. We shall call 2 the real
part, y the wmaginary part, r P
the modulus, and 6 the ampli-
tude of z, and we shall write

z=R(), y=1(2), Y
r=|z|, 0=am z. .
It should be observed that » o T X
i1s essentially positive (except Fie. 30.
when 2=0).

When =0 we shall say that z ¢s real, when =0 that z ¢s
purely tmaginary. Two numbers & + g, & — 2 which differ only
in the signs of their imaginary parts, we shall call conjugate. It
will be observed that the sum (22) of two conjugate numbers and

their product (2*+ y?) are both real, that their moduli (Va2 + 7?)
are equal, and that their product is equal to the square of the
modulus of either. The roots of a quadratic with real coefficients,
for example, are conjugate, when not real.

It must be observed that @ or am z is a many-valued function
of z, having an infinity of values differing by multiples of 27. Any
one of its values is an angle by turning through which about O
a line originally lying along OX will come to lie along OP. We
shall denote that one of these values which lies between — =
and + 7 as the principal value of the amplitude of z. This
definition is unambiguous except when one of the values is ar,
in which case — 7 is also a value. In this case we must make
some special provision as to which value is to be regarded as
the principal value. In general, when we speak of the amplitude
of z we shall, unless the contrary is stated, mean the principal
value of the amplitude.

Complex numbers were first studied from a geometrical point
of view by Wessel, Gauss and Argand, and the figure is usually
known as the Argand diagram.

36. De Moivre’s Theorem. The following statements
follow immediately from the definitions of addition and multi-
plication.
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(1) The real (or imaginary) part of the sum of two complex
numbers is the sum of their real (or imaginary) parts.

(2) The modulus of the product of two complex numbers is
the product of their moduli.

(3) One value of the amplitude of the product of two com-
plex numbers is the sum of their amplitudes.

It should be observed that it is not true that the principal value of
am (z¢') is the sum of the principal values of amz and am 2. For example, if
z=# = —1+1, the principal values of the amplitudes of z and #’ are each .
But zz’= — 27, and the principal value of am (z2') is — 4= and not 2.

The two last theorems may be expressed in the equation
r(cos 8 + 2 sin 8) x p (cos ¢ + 7 sin ¢)
=7p {cos (0 + ¢) + ¢ sin (0 + ¢)},
which may be proved at once by multiplying out and using the
ordinary trigonometrical formulae for cos (6 + ¢) and sin (6 + ¢).
More generally
7, (cos 6, + 1 sin 8,) X 7, (cos 8,+ 4 8in 0,) X ... X 15, (cos O, + 1 s1n 6,,)
=17g... Ty {08 (6,4 Oy + ... + 0,) + i sin (6, + 0, + ... +6,)}.
A particularly interesting case is that in which

7”1=’l‘2=...=9”n=1, 91=62=“‘=9ﬂ=9‘

We then obtain the equation
(cos 8 +1 sin 8)* = cos nf + ¢ sin nb,
where n is any positive integer: a result known as De Moivre’s
Theorem*.
Again, if z=r(cos 6 +1 sin ),
1/z = (cos 6 — 7 sin 0)/r.
Thus the modulus of the reciprocal of z is the reciprocal of the
modulus of z and the amplitude of the reciprocal is the amplitude
of z with its sign changed. Hence we deduce from (2) and (3):
(4) The modulus of the quotient of two complex numbers is
the quotient of their moduli.
(5) One value of the amplitude of the quotient of two com-
plex numbers is the difference of their amplitudes.

* Tt will sometimes be convenient, for the sake of brevity, to denote cos 8+ sin ¢
by Cis 6 : in this notation, suggested by Profs. Harkness and Morley, De Moivre's
theorem is expressed by the equation (Cis 8)*=Cis nd.

6—-2
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Again (cos @ + 7 sin B)™ = (cos 6 — 4 sin O)*
= {cos (— 0) + i sin (— )}"
= co0s (— n0) + ¢ sin (— nf).
Hence De Mowwre's Theorem holds for all integral values of n,

positive or negative. A large number of important applications of
this theorem will be given later on in this chapter (§§ 38 et seq.).

To the theorems (1)—(5) we may add the following theorem,
which is also of very great importance.

(6) The modulus of the sum of any number of complex
quantities is not greater than the sum of their moduli.

P(IV)

Pf'ﬁf PH
Fia. 31.

Let OP, OF, ... be the displacements corresponding to the
various complex quantities. Draw P@ equal and parallel to
OP', QR equal and paralle]l to OP’, and so on. Finally we
reach a point U, such that

OU=0P+0FP + 0P +....

The length OU is the modulus of the sum of the complex
quantities, whereas the sum of their moduli is the total length
of the broken line OPQR...U. The truth of the theorem is now
obvious (see also Ex. XXIII. 1).

37. We add some theorem: cencerning rational functions of
complex numbers. A rational function of the complex variable z
is defined exactly as i1s a rational function of a real variable =,
viz. as the quotient of two polynomials in z.
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THEOREM 1. If R (z + yi) ¢s a rational function of « + i, it
can be reduced to the form X +Yi, where X and Y are ratvonal
Sunctions of x and y with real coefficients.

In the first place it is evident that any polynomial P (z + y7)
can be reduced, in virtue of the definitions of addition and multi-
plication, to the form A + Bi, where 4 and B are polynomials
in «# and y with real coefficients. Similarly @ (z + y?) can be
reduced to the form €'+ Di. Hence

R (z+ yv)= P(a+ y7)/Q (x + y7)
can be expressed in the form
(A + B)/(C + Diy= (A + Bi) (C — Du)/(C +Di) (C —Dv)

_AC+BD BC-AD.
| =0y Ty "
which proves the theorem.

THEOREM 2. If R(z+ yi)=X+Y7, R denoting a rational
Sunction as before, but with real coefficients, then R(z —yi1)=X —Y.

In the first place this is easily verified for a power (z+ yo)?
by actual expansion.

It follows by addition that the theorem is true for any poly-
nomial with real coefficients. Hence, in the notation used above,
A—Bi AC+BD BC-AD.

C—Di~ ¢*+D ~ ¢+ D"
the reduction being the same as before except that the sign of ¢
is changed throughout. It is evident that results similar to those

of Theorems 1 and 2 hold for functions of any number of complex
variables.

R(x—y)=

THEOREM 3. The roots of an equation
Q2™+ 4, 2" 4 ...+ a, =0,

whose coefficients are real, may, wn so far as they are not themselves
real, be arranged in conjugate pairs.

For it follows from Theorem 2 that if @ + i is a root, so is
@ —yi. A particular case of this theorem is the result (§ 34)
that the roots of a quadratic equation with real coefficients are
either real or conjugate.

This theorem is sometimes stated as follows—in an equation
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with real coefficients complex roots occur in conjugate pawrs. - It
should be compared with the result of Exs. IV. 10, which may be
stated as follows—in an equation with rational coefficents irrational
roots occur in conjugate parirs®.

Examples XXIII. 1. Prove theorem (€) of § 36 directly from the
definitions and without the aid of geometrical considerations.

[First, to prove that | 242 |<|2|+| 7| is to prove that
fak )P (@ Yy P NV (@) N (@ )

The theorem is then easily extended to the genera;l case. |

2. The one and only case in which

lz|+|2|+...=]| 2+ +... ],

is that in which the numbers z, #,... have all the same amplitude. Prove
~ this both geometrically and analytically.

3. The modulus of the sum of any number of complex numbers is not
less than the sum of their real (or imaginary) parts.

4, If the sum and product of two complex numbers are both real the
two numbers must either be real or conjugate.

5. If a+ba2+(c+dJ2)i=A+BN24+(C+DN2)1E,
where a, b, ¢, d, 4, B, C, D are real rational numbers, then
a=4, b=DB, ¢=0C, d=.D.
6. Express the following numbers in the form A4+ B¢, where 4 and B
are real numbers: (1+474)2, (1 —7)2, (3—27)/(2+ 32), A+ pt)/(A — pz),

L) (1= (L (L e O
1-¢)° 147/’ Q) 147/ ° A—pz }\—I—y.%.)’

A and p denoting any real numbers.

7. Express the following functions of z=x+4#¢ in the form X+ ¥%, where
X and ¥ are real functions of # and y: 22, 28, 2%, 1/z, z+(1/z), (1-+2)/(1—2),
(a+B2)/(y+82), a, B, 7, 8 denoting real numbers.
8. Find the moduli of the numbers and functions in the two preceding
examples.
9. The two lines joining the points z=a, z=0 and z=¢, z2=d will be
perpendicular if
am a;b) =+1ilr;
c—d) T2’
i.e.if (a—b)/(c—d) is purely imaginary. What is the condition that the lines
should be parallel?
10. The three angular points of a triangle are given by z=aqa, 2=4, z=1,
where a, j3, y are complex quantities. Establish the following propositions:
(1) The centre of grawity is given by z=% (a-+B+y).
(i) The circum-centre is glven by | z—a|=|2—-B|=|z—-1y|.
* The numbers a+A/b, @ — /b, Where a, b are rational, are sometimes said to be
¢ conjugate.’
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(iil) The three perpendiculars from the angular points on the opposite
sides meet in a point given by

R Z:‘;):R (;—:—§>=R (Z:_%): 0.

[If 4, B, C are the vertices, and P any point z, the condition that 4P
should be perpendicular to BC' (Ex. 9) is that (2—a)/(8—7) should be purely
imaginary, or that R (z—a) R(B—7y)+1(z—a) I (B—y)=0.

This equation and the two similar equations, obtained by permuting a, 3, y
cyclically, are satisfied by the same value of z, as appears from the fact that
the sum of the three left-hand sides is zero (so that the third equation is a
consequence of the first two). This proves the theorem.]

(iv) There is a point P inside the triangle such that
CBP=ACP=BAP=w.
Also cot w=cot 4 4+cot B+cot C.
[From the equations*
o=0BP=am (z— ) —am (y— f8),
cotam (z— B)=1{R (:— B)/1 (z— B}, ete.,
we deduce
cotw {I(z—B) B(y—B)—£(:—B) I(y—PB);
== B(y=B)+L(=B) Lly=B)reeeree 2
This equation, and the two similar equations obtained by permuting
a, 3, y cyclically, suffice to determine cot @ and the real and imaginary parts
of z. If we add the three equations z disappears and we are left with
cot o Z{I(B) £ (y)— £ (B) L (y)} .
=3 {R(B) B (y—BY+L(B) L(y—B}rerrvenene (@)
the sign of summation referring to the three terms produced by cyclical inter-
change of q, 3, y.
Now cot A =cot {am (y—a) —am (8—a)}
_BRy—a)B(B-a)+I(y—a)I(8—a)
" L(y-a)R(B-a)-R(y—a)I(B-aq)’
and a little reduction shows that the denominator of this fraction is equal to
the coefficient of cot » in equation (2), with its sign changed. Hence we can
deduce that cot @ =cot 4 +cot B+cot C.]
11. The two triangles whose vertices are the points a, b, ¢ and =, y, 2z -
respectively will be similar if

1 1 1 |=0.
a b ¢
x y z|

[The condition required is that AB|AC = XY/ XZ (large letters denoting
the points whose arguments are the corresponding small letters), or
(b—a)/(c—a)=(y —#)/(z— ), which is the same as-the given condition.]

* We suppose that as we go round the triangle in the direction 4BC we leave
it on our left.
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12. Deduce from the last example that if the points #, 3, z are collinear
we can find 7eal numbers @, B8, y such that a+B+y=0 and az+ By +yz=0,
and conversely (cf. Exs. XXII. 4). [Use the fact that in this case the

triangle formed by 2, ¥, z is similar to a certain line-triangle on the axis 0.,
and apply the result of the last example. |

13. The general equation of the first degree with complex coefficients.
The equation az-+b=0 has the one solution z= —(b/a), unless =0. If we put
a=a+iad, b=B+ip, z=z+tiy,
and equate real and imaginary parts, we obtain two equations to determine
the two real quantities # and y. The equation will have a real root if y=0,
which gives az+f=0, d'z+f'=0, and the condition that these equations

should be consistent is a3’ — a’B=0.

14. The general quadratic equation with complex coefficients. This

equation is
(a474) 2242 (b+1B) z+(c+7C)=0.

Unless @ and 4 are both zero we can divide through by a+74. Hence

we may consider
24+2(0+iB)z+(c+iC0)=0 .vivrriiiiiniiinnnnnn. (1),

as the standard form of our equation. Putting z=#+4y and equating real
and imaginary parts we obtain a pair of simultaneous equations for « and y,

viz.
22—y 42 (be— By)+¢=0, 22y+2(by+Bz)+C=0.

If we put
z+b=§ y+B=y, —-B-c=h, 20B-0=k,
these equations become E—ni=h, 2tn=k.
Squaring and adding we obtain
B2+l E=iNEWELTR, = tNE IR T

We must choose the signs so that &, has the sign of £: i.e. if £ is positive
we must take like signs, if £ is negative unlike signs.

Conditions for equal roots. The two roots can only be equal if both the
square roots above vanish, i.e. if A=0, £=0, or if ¢=0"—B% C=2b8. These
conditions are equivalent to the single condition c¢+:C=(b+4B)? which
obviously expresses the fact that the left-hand side of (1) is a perfect square.

Condition for a real root. If 2242 (b+7B)x+(c++(C)=0, where « is real,
then %2+ 2bzx+c¢=0, 2Bx+ C=0. Eliminating # we find that the required
condition is C2—-4b BC+4c32=0,

Condition for a purely imaginary root. 'This is easily found to be

C?—4b B0~ 4b%c=0.

Conditions for a pair of conjugate complex roots. Since the sum and the

product of two conjugate complex quantities are both real, b+¢8 and ¢+<(C

must both be real, i.e. B=0, €=0. Thus the equation (1) can have a pair of
conjugate complex roots only if its coefficients are real. The reader should
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verify this conclusion by means of the explicit expressions of the roots.
Moreover, even in this case, if 2Z=c¢ the roots will be real. Hence for a
pair of conjugate roots we must have B=0, (=0, b <ec.

15. The Cubic equation. Consider the cubic equation
- A43Hz+G=0,
where G' and H are complex quantities, it being given that the equation has
(@) a real root, (b) a purely imaginary root, (¢) a pair of conjugate roots.

If H=X+7%u, G=p+io, we arrive at the following conclusions.

(@) A real root. If u =0 the real root is — o/3p, and o®+27A\u?e — 27u3p =0.
On the other hand, if =0, we must also have ¢=0, and the coefficients of
the equation are real. In this case there may be three real roots.

(b) A purely imaginary root. If u=0 the purely imaginary root is
(p/3p) ¢, and p?—27Ap?p — 27pPe=0. If p=0, then also p=0, and the root
is 7y, where y is given by the equation #3—3\y—o=0, which has real
coefficients. In this case there may be three purely imaginary roots.

(¢) A pair of conjugate roots. Let these be #+%i. Then since the sum
of the three roots is zero the third root must be —2z. From the relations
between the coefficients and the roots of an equation we deduce

yi—322=3H, 2zx(a®+y?)=6.
Hence & and / must both be real.

In each case we can either find a root (in which case the equation can be
reduced to a quadratic by dividing by a known factor) or we can reduce the
solution of the equation to the solution of a cubic equation with real coeffi-
cients.

16. The cubic equation 23+ ;22 + a2z +a3=0, where a; =4, +74,, ... has
a pair of conjugate imaginary roots. Prove that provided 43 +0 the remain-
ing root is' — 4,'a3/ A4, and two identical relations hold between 4,, 4/, 44, ....
Examine the case in which 45 =0.

17. Prove that if 224 3Hz+ (G =0 has two imaginary roots, the equation
8a3+6aH — G=0
has one real root which is the real part a of the imaginary roots of the
original equation ; and show that a has the same sign as G.

18. An equation of any order with complex coefficients will e general
have no real roots, nor pairs of conjugate complex roots. How many con-
ditions must be satisfied by the coefficients in order that the equation should
have (a) a real root, (b) a pair of conjugate roots ?

19. Coaxal circles. In Fig. 32, let a, b, z be the arguments of 4, B, P.
z—0b

g—a

the principal value of the amplitude being taken, and 4P5 being a positive
angle less than =. If the two circles shown in the figure are equal, and

Then am = APB,
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7, z1, %' are the arguments of P', P, Py, and APB=6, it is easy to
see that

Z’—b Zl—b
&mm—ﬂ_e, amZI—a——e,
A P
and am 2 "7 — 4,
g —a

The locus defined by the equation
z—b

am—— =6,
—a

where 8 is constant, is the arc APB. By
writing = -6, — 6, —7+6 for 6 we obtain
the other three arcs shown.

The system of equations obtained by
supposing that € is a parameter, varying \
from —m to 4+, represents the system of \
circles which can be drawn through the B ‘
points A, B. 1t should however be observed Vo
that each circle has to be divided into two
parts to which correspond different values P
of 6. T1c. 32.

20. Now let us consider the equation

[(=B)(2= @) | =X eevereeereieeeeeareennnn, (1),

where X is a constant.

Take the point K on BA produced so that KPA=KBP. Then the
triangles KX PA, KX BP are similar, and so

AP|BP=KP/KB=KA/KP=\.

Hence K A/KB=X2 and therefore K is a fixed point for all positions of P
which satisfy the equation (1). Also KP?=KA.KB=const. Hence the
locus of P is & circle whose centre is K. TFor different values of X the equation
(1) therefore represents a system of circles.

Every circle of this system cuts at right angles every circle of the system
of Ex. 19. For the equation K P?=KA . KB shows that K P is a tangent to
the circle 4 PB.

The system of Ex. 19 is @ system of coazal circles of the common point
kind. The system of Ex. 20 is called a system of coawal circles of the limiting
point kind ; if X is very small the circle is a very small circle containing B in
its interior, if A is very large a very small circle containing 4 in its interior:
it is from this fact that the name is derived.

21. Bilinear Transformations. Consider the equation

where z=x+1iy and Z=X4<Y are two complex variables which we may
suppose to be represented in two planes woy, XOY. To every value of z
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corresponds one of Z, and conversely. If a=a+¢3, then
z=X+a, y=Y+8,

and to the point (#, y) corresponds the point (X, ¥). If (#, ) describes a
curve of any kind in its plane, (X, ¥) describes a curve in its plane. Thus
to any figure in one plane corresponds a figure in the other. A passage of
this kind from a figure in the plane xoy to a figure in the plane XOY by
means of a relation such as (1) between z and Z is called a transformation.
In this particular case the relation between corresponding figures is very
easily defined. The (X, ) figure is the same in size, shape, and orientation
as the (#, y) figure, but is shifted a distance a to the left, and a distance 3
downwards. Such a transformation is called a translation.

Now consider the equation

where p is real. This gives #=pJX, y=p¥. The two figures are similar and
similarly situated about their respective origins, but the scale of the (X, ¥)
figure is (1/p) times that of the (2, ) figure. Such a transformation is called
a magnification.

Finally consider the equation

z=(co8p+ising) Z.....cooiiiiiiiiiiii. (3).

It is clear that |z|=|Z|, am z=am Z+¢, and that the.two figures differ
only in that the (X, ¥) figure is the (#, y) figure turned about the origin
through an angle ¢ in the negative direction. Such a transformation is
called a rotation.

The general linear transformation
Z=0Z+b i (4)
is a combination of the three transformations (1), (2), (3). Forif |a|=p and
am a=¢ we can replace (4) by the three equations
z=24+0b, #Z=pZ', Z'=(cos¢p+ising)
 Thus the general linear transformation 18 equivalend to the combination of
a translation, @ magnification, and o rotation.

Next let us consider the transformation

If | Z]=R and am Z=6, then |z|=1/R and amz= -6, and to pass from
the (#, y) figure to the (X, ¥) figure we ¢nwvert the former with respect to o,
with unit radius of inversion, and then construct the émage of the new figure
in the axis ox (i.e. the symmetrical figure on the other side of ox). We thus
obtain a figure in the (x, ¥) plane, similar in every respect to the (X, ¥')
figure.

Finally consider the transformation

z=(aZ+b)(Z4d) evviiiiiiiiiiiiiiii (6).
This is equivalent to the combination of the transformations
z=(afc)+(be—ad) (Z[c), #=1]Z", Z'=cZ+d,
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i.e. to a certain combination of transformations of the types already con-
sidered.

The transformation z=(aZ+b)/(cZ+d)
is called the general bilinear transformation. Solving for Z we obtain
Z=(dz—b)/(cz—a).
This is the most general type of transformation for which one and only
one value of z corresponds to each value of Z, and conversely.

22. The general bilinear transformation tramsforms circles into circles.
This may be proved in a variety of ways. We may assume the well known
theorem in pure geometry, that <nwversion transforms circles into circles
(which may of course in particular cases be straight lines). Or we may take
the equation
_(a+dd) (X +¢7) +(B+iB)

() (X +e D)+ (8 +40)’

assume that 2 and y satisfy the equation of a circle, calculate 2 and ¥ in terms
of X and ¥, and so find the relation between X and Y by straightforward
algebra. Or finally we may use the results of Exs. 19 and 20. This is the
best and simplest method. If, e.g., the (z, ) circle is

|(z—0)/(z—p) | =],

and we substitute for z in terms of Z, we obtain
|(Z—o")[(Z-p)|=X,
where o= -b—od, p'=-—§_pd,
a—ac a— pe

23. Consider the transformations z=1/7, s=(1+2)/(1-Z), and draw
the (X, ¥) curves which correspond to (1) circles whose centre is the origin,
(2) straight lines through the origin, in the (», ¥) plane.

24. The condition that the transformation z=(aZ+b)/(cZ+d) should
make the circle 22 +%%=1 correspond to a straight line in the (X, ¥) plane,
i8|a|=|cl.

z 4y

a - pc
a—ac

A=

25. Cross ratios. The cross ratio (z;2s, z32,) is defined to be

(21— 23) (22— 2‘4)_
(21 - 2a) (22— 23)

If the four points z, zs, 25, # are on the same line, this agrees with the
definition adopted in elementary geometry. There are 24 cross ratios which
can be formed from z, z, 23, 24 by permuting the suffixes. These consist of
six groups of four equal cross ratios. If one ratio is A the six distinct cross
ratios are A, 1 =\, 1/A, 1/(1 =), 1—=(1/A), AJ(A—1). The four points are said
to be harmonic or harmonically related if any one of these is equal to —1. In
this case the six ratios are ~1, - 1,4, %, 2, 2.

If any cross ratio is real all are real and the four points lie on a circle. For
in this case
— Z —
am (Zl 23)( 2 Z4)=O (OI’ 71'),
(2‘1 —-24) (22*2'3)
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so that am {(z — 23)/(s — 24)} and am {(zg— 23)/(23—z4)} are either equal or differ
by 7 (cf. Ex. 19).
If (2122, 2321)= — 1, we have the two equations
— 1 Z2— %3 i .
| 29— 24

21—53=7T+am32‘"33’

1%y %9 &y
The four points A, Ay, Az, A4

(Fig. 33) lie on a circle, 4; and A, Ay Ay

being separated by 4; and 4. Also

A1A3/A1A4==A2A3/442A4. Let O be

the middle point of AzA4,. The

equation

(21— 25) (29 —24) _
(21— 24) (22— 23)
may be put in the form
(214 22) (z3+24) =2 (2129 + 23%),
or, what is the same thing,
{—% (zs+20)} {oa— 5 (23 +20)}
= (a—=)}" e 33

But this is equivalent to 04,.0A4,=04:2=04,2 Hence 04, and 04,
make equal angles with A54,, and 04;.04,=0452=0A4,% 1t will be ob-
served that the relation between the pairs 4,, 4, and 43, 4, is symmetrical.
Hence if 0’ is the middle point of 4;4,, 0’43 and 0’4, are equally inclined
to A1A2, and OIA-g . 0’4‘14: 0’A12= 0’A22.

26. If the points Ay, A, are given by az2+42bz+4c¢=0, and the points
Az, Ay by a224+2024+¢=0, and O is the middle point of A;4,, and
ac' +a't—2bb'=0, then 04;, 04, are equally inclined to A434, and
04,.04;=042=042. (Math. Trip. 1901.)

[The pairs 4,, 45 and 43, 44 are harmonically related. ]

25— &
Z =y

aln

-1

27. The condition that four points should lie on a circle. A sufficient
condition is that one (and therefore all) of the cross ratios should be real
(Ex. 25); this condition is also necessary. Another form of the condition is
that it should be possible to choose real quantities a, 8, y such that

1 1 1 =0.

a B v
| 21zt 22 Butan wataz

To prove this we observe that the transformation Z=1/(z— z,) is equivalent
to an inversion with respect to the point z;, coupled with a certain reflexion
(Ex. 21). If z, 2z, 2z lie on a circle through z, the corresponding points
Z1=1)(a1—29), Zo=1[(20—2), Z3=1/(z3—2,) lie on a straight line. Hence
(Ex. 12) we can find real quantities o', 3, 3 such that «’+f+7'=0 and
d [(z—29) +B'[(2a— 24) +7/[(z3—2s) =0, and it is easy to prove that this is
equivalent to the given condition.
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28. Prove the following analogue of De Moivre’s Theorem for real quanti-
ties :—if ¢y, Pg, s, ... is a series of positive acute angles such that

tan ¢, , 1=tan ¢,, sec ¢, +sec ¢, tan ¢,

then tan ¢y, 1. =tan ¢, sec ¢, +sec ¢, tan ¢,
sec ¢'m Y gbm sec gb'n +tan q)m tan ¢>u ’
and tan ¢, +-sec ¢, =(tan ¢, + sec ¢;)™.

[Use the method of mathematical induction. ]

29. The transformation z=Z2". In this case r=R", and 8 and me
differ by a multiple of 2w. If Z describes a circle round the origin, z
describes a circle round the origin m ¢imes.

The whole (#, y) plane corresponds to any one of m sectors in the (X, ¥)
plane, each of angle 2w/m. To each point in the (#, %) plane correspond
m points in the (X, ¥) plane.

30. Complex functions of a real variable. If f(7), ¢ (¢) are two real
functions of a real variable ¢ defined for a certain range of values of ¢, we call

b= F (D) FTP (E) eorereeeeeeeeeeeeeeeneans 1)

a complex function of 7. We can represent it graphically by drawing the

curve
x=f (1), y=¢(1);

the equation of the curve may be obtained by eliminating ¢ between these
equations. If zis a polynomial in ¢, or rational function of ¢, with complex
coefficients, we can express it in the form (1) and so determine the curve

represented by the function.
(i) Let z=a+(b—a)t,
where « and & are complex numbers. If a=a+id, b=B+77, then
r=a+(B—-a)l, y=d+(B—d)t
The curve is the straight line joining the points z=a and z=5. The segment

between the points corresponds to the range of values of ¢ from 0 to 1.
Find the values of ¢ which correspond to the two produced segments of the

line.

(i) If e=ctp {(1+a0)/(1~1)},
the curve is the circle of centre ¢ and radius p. As ¢ varies through all real
values z describes the circle once.

(iii) In general the equation z=(a+bt)/(c+di) represents a circle.
This can be proved by calculating # and y and eliminating: but this process
is rather cumbrous. A simpler method is obtained by using the result of
Ex. 22. Let z=(a+bZ)/(c+dZ), Z=t. As t varies Z describes a straight
line, viz. the axis of X. Hence z describes a circle.

(iv) The equation z=a+2bt + ct?
represents a parabola generally, a straight line if b/c is real.
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(v) The equation z=(a+2bt+ct?)/(a+2Bt+yt?), where a, (3, y are real,
represents a conic section.

[Eliminate ¢ from
w=(A+2Bt+4 Ct%)[(a+2Bt + 1), z=(A"+2B"t+ C"t*)[(a+2B¢+y1%)
(where a=A +id’, b=B+iL', c=C+2C").]

38. Formulae for sin#f and cos nf. De Moivre’s Theorem
enables us to express sinnf and cosnf, where n is a positive
integer, in terms of sin § and cos . For from the formula

cos n6 + ¢ sin w6 = (cos 8 + ¢ sin )
(where n 1s a positive integer) we deduce

cos nf = R [(cos @ + ¢ sin 6)"]

n

7L — an2 n ant f —
= (cos 0) {1 (2) tan2 @ 4 (4) tant @ ...} s
sin n@ = I [(cos 8 + ¢ sin 6)"]

= (cos O)» {GL) tan 6 — (g) tan® 0 + } ,

where (:) is the general binomial coefficient

nn—1)(n—-2)...(n—r+1)

1.2.3...r
(sometimes written "C,).
Then
cos nf - n\ . . (n
(cos 0)““'1""(2)'5 +(4!)t4—... ............ (1),
sin 10 n n
(COS 9)% - (1) t— (3) A (2),

where ¢ =tané.

By division

tan n = {G”) £ — (g) £+ }/{1 - (";’) t2+'...} o (3).

From (1) and (2) we can deduce further formulae expressing

sin né

sin 0

cos nd,

in terms of cos 6 only. For

cos™ @ tan® 0 = sin® 6 cos™ ¥ @ = cos”* @ (1 — cos? 0)";
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and on substituting in (1), after multiplying up by cos? 8, we
see that

cos n6 = a,, cos™ 0 + a,_, cos™ 28 + ...
where a,, @, _,, ... are constants, and the last term is a constant
or a multiple of cos 68, according as n 1s even or odd.

Similarly, from (2), we deduce

sin né

g = O cos™t @ 4+ b, _scos" 30 +....

To determine the actual values of the coefficients generally
and directly, and by means of really elementary methods, is a
matter of some little difﬁculty. The formulae are

n('n 3)

2 cos nf = (2 cos )" — (2 cos 0y + ———— (2 cos O)**

—- +(_)rn(n—9"-- )’r' (n—2T+1)(2 cos Oy + .. ... (4),
ssiir;neﬁ = (2 cos Oy — T e 322(1% ), (2 cos 8)"—®
R (220 (9 cos Oyt 4 L. .. (5).

r s
That these formulae are correct is easily verified by induc-
tion. For
2 cos(n+1)6=cos8(2cosnb)—2 (1~ co 29)
sin(n+1)0 sin nf
sin 0 _—0058( ind
and if we assume that the formulae hold for n =1, 2,... k (and

they are easily verified for n =1, 2, 8), we can at once show that
they hold for n=%k+1. We leave this as an exercise for the

reader.

sm nd

9 2

) + cos nd,

39. When tannf is given we can regard the equation (3),
which we may write for brevity in the form tan n6 = f (f), as an
equation of the nth degree in ¢, one of whose roots is ¢ = tan ¢.

Similarly, one of the roots of

tgn {n (0 + %_r)} = f(?)

is t = tan {0 + (km/n)} (k being any integer). But since
tan (n6 + kw) = tan »6,
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the two equations are the same. Hence tan {6 + (k7/n)} is a root
of (3) for all values of k.

As we give k all integral values, this expression assumes 7
and only n distinet values, viz.

tan 6, tan (6+ E), ta,n(ﬂ-}- gz),..., ... tan {9+(~n—~ﬂj\.
\ n n "

These are therefore the roots of (3), considered as an equation
in ¢. It follows that any symmetric function of these quantities
can be expressed in terms of the coefficients of (3), 1.e. in terms
of tan nf. The equations (1), (2), (4), (5) can of course be
considered from the same point of view. Some illustrations will
be found in the examples which follow.

Examples XXIV. 1.  The equation (3) may be written in the form

n [\ e n ) tan LAY LA _
z—(2)z 2+(4)tn 4—...—cotn3{(1)t 1—(3)::% 3+...}_0,

where tan 28 or cot 26 is to be chosen according as » is odd or even.
2. Show that

sec? 4+ sec? (6 + %) +...+sec? {9 + (%_%QW}

is equal to n?sec?nd or n?cosec? né according as 7 is odd or even.
(Math. Trip. 1900.)
[The expression given is 7+ 3,2 where ¢, is a root of the equation in Ex. 1.}

3. Prove that sec?™ + sect 2m + sect 3m + sect %: 1120.

9 9 9
4. Ifnisodd

\
o (g) tn—2+(i) i =t (tz— tan? :-;) (tZ— tan? 2%) (fﬁﬂ-—tan2 %) ’

where r=%(n—1). State and prove the corresponding formula when # is
even.

5. The roots of the equation 2 cos nf=a"— -{—Zix”‘2+?i(7;—ri) an—%— .. are

2cosf, 2cos (3+2—w),... 2008{9-[-2(_%_—1)_"}.
n n

6. The roots of 64x3—11222+562—T=0 are sinzg, sin?g,;-r , sinﬁié,zf .
4r
7

7. Show that 4 cos? (#/7) is a root of 23 —522+6x—1=0, and find the
other roots. (Math. Trip. 1898.)

H. A. 7

Deduce that sin — +sin = —sin %:% AT,
: {
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8. TFactor-formulae for cos n8 and (sin n8)/(sin 8)*. Show that 2 cosné
is equal to

27 ( cos? 6 — cos? -71) cos? 0 — cos? — 37N cos? 6 — cos? (n=2)m w} cos 0,
2n 20 ' 0
1
orto 2°(cos?f—cos? ) (cos?d —cos? 5N cos? @ — cos? Ot } )
2n 2n om

according as z is odd or even.
3 . P O L(n-1)
9. Show that sin_—sin_—...s8ln—=2 ,
2 2n " 2n
where 7 is equal to %2 —2 or to # —1 according as » is odd or even.

[Put =0 in Ex. 8: consider the sign carefully, when taking the square
root of each side.)

10. Show that (sin n8)/(sin ) is equal to

according as % is even or odd.
11. Show from Ex. 10, and equation (2) of § 38, that if = is odd
gn-1 ( cos? 0 — cos? ".ﬂ) (0082 6 — cos? 2—”) {0032 8 — cos? w}
7 n 2n

\ n(n—1)(n~2)

—_ n—140_
7 COS' 6 31

and deduce, by putting §=0, that
S o 27 . (m=1D)mw
sin — 8in — ... 8in ~————
7 2n

Obtain the corresponding formula for the case in which = is even.

cos” 30 sin? 6 +...,

—g—n=1) NS

40. Roots of complex numbers. We have not, up to the
present, attributed any meaning to symbols such as /a, a™®,
when @ is a complex number, and m and n integers. It is,
however, natural to adopt the definitions which are given in
elementary algebra for real values of . Thus we define Va or
a'", where = 1s a positive integer, as any number a¢ which satisfies
the equation z”=a; and a™", where m is an integer, as (a¥™)™.
These definitions do not prejudge the question as to whether
there are or are not more than one (or any) roots of the equation.

41. Solution of the equation z"=a. Let
a = p(cos ¢ + 7 sin ¢),
where p is positive and ¢ is an angle such that —m < ¢ =7

* The results of Exs. 8—11 are of considerable importance in Higher Trigo-
nometry.
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Then if 2 =~ (cos @ + ¢ sin ), the equation takes the form
r"(cos nl\? + 7 sin nf) = p (cos ¢ + 7 sin ¢p),

so that 1 =p, cosnf=cosd, sinnd=sind......... (1).

The only possible value of » is {/p, the ordinary arithmetical
nth-root of p; and in order that the last two equations should be
satisfied it is necessary and sufficient that n6 = ¢ + 2k, where k
1s an 1nteger, or

0 = (¢p + 2km)/n.
If &= pn+q, where p and ¢ are integers, and 0 = g <=, the
value of 8 is 2pmr + (¢ + 2¢gar)/n, and in this the value of p is a
matter of indifference. Hence the equation
Z'=a = p(cos ¢ +1sn P)
has n roots and n only, given by 2 =r (cos € + ¢ sin 8), where
r=3p, O0=(d+2¢m)n (¢=0,1,2,...0n—1).
That these n roots are in reality all
distinct is easily seen by plotting
them on the Argand Diagram. The
figure (Fig. 34) shows the four
fourth roots of
(1'6) (cos 55° + 4 sin 55°).

The particular root
/p [cos (¢/n) + sin (¢/n))

is called the prancipal value of J/a.

The case in which a =1, p=1, ¢ =0 is of particular interest.
The n roots of the equation z?=1 are

cos (2¢gmr/n) + ¢ sin (2g7/n), (g=0,1,...n—1).

These quantities are called the nth roots of unity; the principal
value is unity itself. If we write w, for cos (27/n) + ¢sin (2m/n)
we see that the n roots of unity are

2 1—1
1, w,, w7 ... 0,

Fr1a. 34.

Examples XXV, 1. The two square roots of 1 are 1, —1; the three
cube roots are 1, 3 (—1+74/3), $(—1—74/3); the four fourth roots are 1,
7, —1, —7; and the five fifth roots are

L, 3{/b—14¢M104+2/5), }{-N5—-1+iA10-2/5},
H{—/5-1-i0/10-2.J5}, }{V/6—1—-24/10+42/5}.
7—2
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2. Prove that 14+ o, + @2+ ...+, 1=0.
3. Prove that (z+yws+z052) (2 +yes?+sw0g) =22+ y2+2* —yz — 2 — 2y.

4. The nth roots of a are Ya, w,ia, @.2¥a, ..., 1%a, where {/a
denotes the principal nth root.

5. It follows from Exs. XXIII. 14 that the roots of
2=a+13
are +[3 W2+ B +a ] V[E (W(a®+B%) —a}],

like or unlike signs being chosen according as 8 is positive or negative. Show
that this result agrees with the result of § 41.

6. Show that (22" —a?™)/(2? — ¢?) is equal to
(xzv 2axcos%+a,2) (x2 - 2a2 cOS %-}-az) (:c“— 20 co8 (m_;@l_)_n- +a2) .
[The factors of ##™—a®™ are
(#—a), (7—00y), (#—awlyy), ...(x —acin ).
The factor # —dwe,,™ is #+a. The factors (v — aws,®), ( — am‘;‘::"s) taken

together give a factor &% —2a cos % +a?]

7. Resolve g2+l _g2m+1l gimpg2n and g#m+l4g2m+1 into factors in a
similar way.

8. Show that 22— 22"a™ cos 6+ «** is equal to

(w2 — 2za cos 7—2+a2) (x“’ — 220 COS 6+%27r + a2)

. (x2—2xacosgm+2(1_ 1) ﬂ+a2> ;

[Use the formula
22— 2" a™ cos 0 + a?r={z™ — a” (cos 0 + 2 sin )} {#™ — a™ (cos § — i sin 0)},
and split up each of the last two expressions into 7 factors.]

9. The problem of finding the accurate value of », in a numerical form
involving only square roots, as in the formula wz=%(—~1+%4/3), is the
algebraical equivalent of the geometrical problem of inscribing in a circle
a regular polygon of » sides by Euclidean methods, i.e. by ruler and
compasses. We saw in fact in Chapters L. and II. that irrationals involving

square roots could always be so constructed, and are the only irrationals
which can be so constructed.

Euclid gives constructions for n=3, 4, 5, 6, 8, 10, 12, and 15. It is
evident that the construction is possible for any value of » which can be
found from these by multiplication by any power of 2. There are other
special values of » for which such constructions are possible, the most inter-
esting being n=17.

Approxzimate constructions for regular polygons of any number of sides
‘will be found in books of practical geometry.
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42. The general form of De Moivre’s Theorem. It
follows from the results of the last section that, if ¢ is a positive
integer, one of the values of (cos 8 + ¢ sin 6)"7 is

cos (6/q) + 4 sin (6/q).
Raising each of these expressions to the power p (where p is any
integer positive or negative), we obtain the theorem that one of
the values of (cos € + ¢ sin 8)71 is cos (pB/q) + ¢ sin (pb/q), or if a
s any rational quantity, one of the values of (cos 6 +1 sin 0)* s
cos af + 1 sin af.

This is a generalised form of De Moivre’s theorem stated in § 36.

MISCELLANEOUS EXAMPLES ON CHAPTER III

1. The condition that a triangle (xyz) should be equilateral is that

22+ yt42% — yz — 2w —xy =0.

[Let XYZ be the triangle. The displacement ZX is YZ turned through
an angle 37 in the positive or negative direction: or, as Cisfm=ay,
Cis (- gn)=1/og=0ws?, we have z—z=(2—3) w3 or r—2z=(z-y)ws> Hence
2+ Yoz +2052=0 or £ +yws?+203=0. The result follows from Ex. XXV. 3.]

2. If XYZ X'Y'Z are two triangles, and

YZ. Y7 =ZX.Z7X=XY.X'Y,
then both triangles are equilateral.

[From the equations
(=) (¥ —2)=(z—2) ( —a")=(z—y) (& - y) =«

say, we deduce =1/(y —#)=0, or 32'2—3y'7/=0. Now apply the last
example.]

3. On the sides of a triangle A BC similar triangles BCX, CAY, ABZ are
described. Show that the centres of gravity of A BC, XYZ are coincident.

[We have (z—c)/(b—c)=(y—a)/(c-a)=(z—b)/(a—b)=N\, say. Express
${x+y+z) in terms of a, b, c.]

4. If X, Y, Z are points on the sides of the triangle 4 BC, such that

BX/|XC=CY|YA=AZ|ZB=r,

and if ABC, XYZ are similar, then either =1 or both triangles are
equilateral.

5. Deduce Ptolemy’s Theorem concerning cyclic quadrilaterals from the
fact that the cross ratios of four concyclic points are real.

[Start from the identity

(20— 3) (201 — @4) + (23— 1) (0 — ) + (@1 — &g) (¥3— ) =0.]
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6. If 24-72=1, the points z ¢ are ends of conjugate diameters of an
ellipse whose foci are the points 1, —1. [If CP, CD are conjugate semi-
diameters of an ellipse and §, # its foci, then CD is parallel to the exterior
bisector of the angle SPH, and SP. HP= (D] )

7. Prove that |a+0|2+|a—0]2=2{a|2+|0|?. [This is the analytical
equivalent of the geometrical theorem that, if A/ is the middle point of Pg),
OP?+ 0Q2=20M2+2MP2]

8. Deduce from Ex. 7 that ,

| a+a/(a?—02) |+ | a— (a2 —b%) |=|a+bl+|a—Db]|
[If a+/(a?—b%) =2z, a —/(a?— b2)=2,, We have
Vo |24 |22 |*=% | s+ 2 [P+ d |21 — 22| P=2 | @ |24 2| 0? - 2],
and so (2 |+| s )?=2{ a2+ a2~ 021+ b [ =|atb|24+|a - b|24+2 a2~ b2

Another way of stating the result is: if z and 2z are the roots of

az?+2Bz+y=0, then
la |+ 2zl =(L|a ) {(| = B+Way )+ (—B—Nay )}]

9. If 2*+4ay 23+ 6aga®+4agx+ay=0 is an equation with real coefficients
and has two real and two complex roots, concyclic in the Argand diagram, then

a32+ a12a4+ (L23-- g lly— 20 aglig =0.

10. The four roots of agat+ 4a, 43 + 6ay2? + 4a3x + a4=0 will be harmonic-
ally related if
gzt oy’ oyt ag® — dgagay — 20, 4 05=0.
[Express Zys 1s Zs1, 00 212,30, Where Zogg 14=/(21—23) (23— 22) +(21 — 23) (22— 24)
and 2z, zg, 23, 74 are the roots of the equation, in terms of the coefficients.]

11. Imaginary points and straight lines. Let ax+by+c¢=0 be an
equation with complex coefficients (which of course may be real in special
cases). '

If we give # any particular real or complex value, we can find the corre-
sponding value of 7. The aggregate of pairs of real or complex values of &
and % which satisfy the equation is called an ¢maginary straight line; the
pairs of values are called tmaginary points, and are said fo lic on the line.
The values of # and y are called the coordinates of the point (z, ). When
x and y are real, the point is called a real point: when a, b, ¢ are all real (or
can be made all real by division by a factor), the line is called a real line.
The points z=a+iB, y=y+0 and r=a—if, y=vy -8 are said to be con-
Jugate; and so are the lines

(A+24) o4 (B+iB)y+C+i0'=0, (A—iAd)z+(B—iB")y+0C —i0'=0.

Verify the following assertions :—every real line contains infinitely many
pairs of conjugate imaginary points; every imaginary line contains one and
only one real point; an imaginary line cannot contain a pair of conjugate
imaginary points:—and find the conditions (@) that the line joining two
given imaginary points should be real, and (b) that the point of intersection
of two imaginary lines should be real.
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12. Sum the series
cos a+cos (a+b)+cos(a+2b)+..., sine+sin (a+0b)+sin (@+26)+...
to n terms.
* [Sum the geometrical series
(cosa+esina) {1+ (cosb+7sinb)+ (cosb+2sinb)?+...}
to n terms, and equate real and imaginary parts.]

13. Also sum

1+(1)cosa+(2)0052a+..., 1+(l)sma+(2)sm2a+...

to n+1 terms.

14. Sum the series cos a+x cos(a+B)+...+2%"1cos {a+(n—1) [}
(Math. Trip. 1905.)

15. Find the modulus and the amplitude of
1+4+cosf+2sinf, 1+cosf—isind, 1—cosf+7s8inf, 1-cosf—zsind.
16. Find the square roots of the numbers in the preceding example.
17. Prove that
(1 + sin 8+7cos @

|+ min 07 008 B)n = cos (fnm —nb)+isin (Fnr —nd).
18. Prove the identities |
(47 +2) (4 059 + 0528) (0-F 052+ 032) =29+ g+ 5 — Bay,
(2+ y+2) (24 w05y +w5%2) (2 + 052y + 05%2) (2 + 052y + 05%) (0 + 051y + w52)
=P+ 5 +2° — badyz + bay’eP
19. Solve the equations
23 —3ax+(*+1)=0 and 2%~ baz®+5a’r+(a®+1)=0.

20. If f(#)=ap+a1x+...+apa¥, then
{F @)+ f(@02)+ ...+ [ (0" 1a)}n=ay+ @ 2® + tg, 52 + ... + aan2AT,
o being any root of #”=1 (except #=1), and An the greatest multiple of »
contained in A, Find a similar formula for ay + uin2™ + Qupamd® + ...

21. If (14 z)r=po+ pr2+ pea?+...
(n being a positive integer), prove that
Po— Pot Pa—...=28cos Jnm, p;— ps+ ps—...=2"sin fnm.
22. Sum the series

& 22 23 a3
21n—21 T 51n_pi T8It Taz1r

2 being a multiple of 3. (Math. Trip. 1899.)
23. Show how to deduce the formulae given in § 38 from the addition

theorems for cosz and sin#, using no complex quantities. [See Hobson’s
Trigonometry, Ch. VIL.]
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24. Prove that, when m is odd, 32 cosec? (rm[m)=1m? -1, the summation
extending to =1, 2, ..., m—1.

The corresponding sum, extended only to values of 7 less than m and
prime to it, is denoted by S. Show that, if m is the product of unequal odd
primes a, b, ¢, ... £, then 38=(a?2-1) (b2—1) (¢2—1)...(£2—1).

(Math. Trip. 1902.)

25. Prove that, if m is odd,

1
"S tant {20 +41) w/m}=%4m (m—1) (m24m— 3).
r=0
(Math. Trip. 1903.)
26. If a,=a+0bcos {0+ (2rw/n)}, for r=1, 2, ..., n, show that
3n (n —2) 2ay Sayay =312 Sayapaz+(n— 1) (n— 2) (Ea1)?,
if >3, and find the corresponding equation when n=3. (Math. Trip.1906.)

27. The roots of

M_n(fn—-1)x2+%(73—1)(72.—2)$3+‘"+(_1)&n(n+1)x%=0

1- 2! 3!
T Bar (4n—-3)mw
are tan )’ tan PR RINF tanT .

[The equation is (1 — &)+ (1 +27)*=0.]
28. If a=m/4n, show (cf. Ex. 27) that
cot @, —cot 3a, cot ba, ..., (=)*"lcot(2rn—1)a

are the roots of

Z0 — pam—1_ ?,?'_(%:l-_l_) xn—2+n (n - ;)1(7?’— 2) am—3 vee =0,
Deduce that
cot a cosec? a — cot 3a cosec? 3a+-... to » terms
is equal to 2n? (Math. Trip. 1901.)

29. There are in general two points unaltered by the transformation
z=(aZ+b)[(cZ+d). If these points are @, B, the transformation can be put
in the form (z— a)/(z —B)=k (Z —)|{(Z - B).

In particular, reduce the transformation z=(1+2)/(1—-2Z) to this form.
Divide the Z-plane into 8 regions by means of the axes and the unit circle.
Find the region in the z-plane which corresponds to each of these regions.

30. If z=22—1, then as z describes the circle |z|=«, the two corre-
sponding positions of Z each describe the Cassinian oval p;ps==«, where
p1, po are the distances from the points +1. Trace the ovals for different
values of «.

- 31. Ift¢is a complex number such that |#|=1, then as ¢ varies, the point
x={(at +b)/(t - c) describes a circle, unless |¢|=1, when it describes a straight
line.
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32. If ¢ varies as in the last example, the point x=4 {at+(dft)} in
general describes an ellipse whose foci are given by #?=ab, and whose axes
are [a|+|0| and |a|-|b|. But if |a|=|b]|, # describes the finite straight
line joining the points +./(ab).

33. If 2=27+472 the circle | Z|=1 corresponds to a cardioid in the
plane of z.

34. Discuss the transformation z=%{Z+(1/Z)}, showing in particular
that to the circles X24 F2=qa? correspond the confocal ellipses

Eer BEDF

35. If (2+1)2=4/Z, the unit circle in the z-plane corresponds to the
parabola R cos?3©=1 in the Z-plane, and the inside of the circle to the
outside of the parabola.

=1,

36. Show that, by means of the transformation z={(Z—zc)/(Z +ic)}?,
the upper half of the z-plane may be made to correspond to the interior of
a certain semicircle in the Z-plane.

37. Consider the relation az?+2hzZ +bZ242g2+2fZ +c=0.

Show that there are two values of Z for which the corresponding values
of z are equal, and wvice versa. We call these the branch points in the Z and
z-planes respectively. Show that, if z describes an ellipse whose foci are the
branch points, so does Z.

- [We can, without loss of generality, take the given relation in the form
24227 cos w+ Z?=1

—the reader should satisfy himself that this is the case. The branch points
in either plane are +cosec . An ellipse of the form specified is given by

| 24 cosec o |+| z— cosec o | =const.
This is equivalent (Ex. 8) to
| 2+ /(22— cosec? w) | +| z— A/(#* — cosec? w) | =const.
Express this in terms of Z.]

38. If z=aZ™+bZ" where m, n are positive integers and a, b real, show
that as Z describes the unit circle, z describes a hypo- or epi-cycloid.
39. Prove that

sin(2n4-1)6  » /. sin? 6
(2n+1)sind = sin? {rm[(2n+ 1)}

). (Math. Trip. 1907.)

40. By putting =4 in the last example, prove that

T ot 2 cot nw 1
41 241" 7 241 J(@n+1)

cot
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41. Prove that
sin 70 =2""1gin @ sin (6-{-%) ... sin {OJ‘_(” —nl) ﬁ‘} )

[Put #=a=1 in Ex. XXV. 8, and change 6 into 26.]

2 T 1
42. Prove that cos E COB 7 +ee COS 75 = 7og-
43. Prove that tan._ tan 2m .. tan (n=1)m =1,
2n 2’ 27

44, Prove that
(14 —(1 —-’L')?_tzﬂ (.r2+tan2 %) (x2+tan2 2_72"_) s (xz_*,tanz ’%r) ,

2z
where 4=1, r=%(n—1) if % is odd, and 4d=#x, r=%n—-1 if # is even.

45, If 1 / i (x+tan2 ) is expressed in the form
r=1

v+1

g T
TElA,. (x-{-tan 2%+1),

7 being a positive integer, show that

_(-—-1)"_12 .o T om—g T
= onri o1 Ty
(Math. Trip. 1905.)

[Apply the ordinary rule for partial fractions: it will be found that

-3 T _ o K _
% +1°° BT L v £

and Ex. 40 can be used to obtain the given result.]

4,

A,=(—=1)y~12sin?

46. Show that

-1 .
‘7"2 S‘in gg?—-l-l)_ﬂ- cosec {(_2%7{. —

o a}=ncos (n—1) asec na.
r=0

, (Math. Trip. 1907.)
[The right-hand side is
xn—l_l_x-(n—l) aﬂ”"1+x
R A TS
where #=cos a+% sin a=Cisa. The roots of #2*4+1=0 are

2n

Split up the right-hand side into partial fractions of the form

A, .-’! {x— Cis M} .
/ 2n

(27‘-]-1)71'0 (2r+1)
on o0

(r=0, 1, ..., 22 —1).

It will be found that 4,= —<sin To get the result

in the form given we must associate the terms in pairs (, n+#) where
r=0, 1, ..., n—1.]
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47. Show that, if m and 7 are positive integers, and m =, then
am=1)(1 427)=(1/n) 2 0™ */(x — w), where o is a root of #"+1=0: and hence
show that, if % is even,

tn—1 .
! 2 nE {1-wcos—(27+1)7—r}/{1 2% ¢ (27-+1)1r+ },
T+a a 0 " )
and find the corresponding formula when 7 is odd.
48. Express #m~1/(1 — z?), where m and n are positive integers, and m = %,

in partial fractions, and obtain the formulae for 1/(1—a") corresponding to
those of Ex. 47.

49. Show that

T
2" — a™ cos nd 1 =nd v acos(6+ 7 )
. p>
22 — Q@ cos nb +a2” pat1

=0 2 Qa“acos(é—}- 4l

50. If pi, pa, ... p, are the distances of a point P, in the plane of a
regular polygon, from the vertices, prove that
n 1 n 7-2’:‘1__0:27&

= — = -
1ot r2—a? ri— 2 ar cos nd +

where O is the centre and « the radius of the circumcircle of the polygon,
r the length OP, and 4 the angle between OP and the radius from O to any
vertex of the polygon.

51. If A;A,...4,, ByB,... B, are concentric regular polygons, m and =
being prime to one another, prove that

noom 1 mmn pemn _ g2mn
2 2 :
=1 s=1 (A BS)., b2 — 2 pomn _ 9pmn gmn cogm f + a2mn ?

where ¢ and b are the radii of the circumcircles of the polygons, and 6 the
angle between any two radii drawn one to a vertex of each polygon.
(Math. Trip. 1903.)

52. If p and ¢ are integers, and ¢ prime to p, and % is an odd positive
integer less than 2p, and § =¢/p, show that
»=1cos k (a+n6) ?Zlsink (a+n6)
o2y S (atnl) LY 2 i (atnd)

pr~t 1wzt g™
w—1 =1 1 z—tV
where t=cos 20+%sin 26, 1=A=p.

In this equation write 3 (£+41) for A and cos 2a— ¢ sin 2a for #.]

[We have



CHAPTER IV.
LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE.

43. Functions of a positive integral wvariable. In
Chapter II. we discussed the notion of a function of a real
variable #, and illustrated the discussion by a large number of
examples of such functions. And the reader will remember that
there was one important particular with regard to which the
functions which we took as illustrations differed very widely.
Some were defined for all values of z, some for rational values
only, some for ¢nfegral values only, and so on.

Consider, for example, the following functions: (i) y=u=, (ii) y=\/7,
(iii) y=the denominator of x, (iv) y=the square root of the product of the
numerator and the denominator of z, (v) y=the largest prime factor of =,
(vi) y=the product of 4/z and the largest prime factor of , (vii) y=the
xth prime number, (viii) y=the height measured in inches of convict #
in Dartmoor prison.

Then the aggregates of values of # for which these functions are defined
or, as we may say, the fields of definition of the functions, consist of (i) all
values of #, (ii) all positive values of #, (iii) all rational values of z, (iv) all
positive rational values of x, (v) all integral values of z, (vi), (vii) all positive
integral values of z, (viii) a certain number of positive integral values of z,
viz.,, 1, 2, ..., &V, where &V is the total number of convicts at Dartmoor at the
present moment of time*,

Now let us consider a function, such as (vii) above, which is
defined for all positive integral values of # and no others. This
function may be regarded from two slightly different points of

* In the last case N depends on the time, and convict x, where = has a definite
value, is a different individual at different moments of time. Thus if we take
different moments of time into consideration we have a simple example of a
function y =F (=, t} of two variables, defined for a certain range of values of ¢, viz.
from the time of the establishment of Dartmoor prison to the time of its abandon-
ment, and for a certain number of positive integral values of x, this number
varying with t.
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view. We may consider it, as has so far been our custom, as a
function of the real variable # defined for some only of the values
of &, viz. positive integral values, and say that for all other values
of # the definition fails. Or we may, as in Chap. L § 8, leave
values of z other than positive integral values entirely out of
account, and regard our function as a function of the positive
untegral variable n, whose values are the positive integers

1,2 3 4, ...
In this case we may write
y=¢ ()

and regard y now as a function of n defined for all values of n.

It is obvious that any function of # defined for all values of z
gives rise to a function of n defined for all values of n. Thus from
the function y =2? we deduce the function y=n? by merely
omitting from consideration all values of # other than positive
integers, and the corresponding values of y. On the other hand
from any function of n we can deduce any number of functions
of # by merely assigning values to y, corresponding to values of
2 other than positive integral values, in any way we please.

44, Interpolation. The problem of determining a function of » which
shall assume, for all positive integral values of #, values agreeing with those
of a given function of #, is of extreme importance in higher mathematics.
It is called the problem of functional interpolation.

Were the problem however merely that of finding some function of # to
fulfil the condition stated it would of course present no difficulty whatever.
We could, as explained above, simply fill in the missing values as we pleased :
we might indeed simply regard the given values of the function of # as all
the values of the function of # and say that the definition of the latter func-
tion failed for all other values of x. But such purely theoretical solutions
are obviously not what is usually wanted. What is usually wanted is some
Jformula involving « (of as simple a kind as possible) which assumes the given
values for z=1, 2, ....

In some cases, especially when the function of # is itself defined by a
formula, there is an obvious solution. If for example y=¢ (), where ¢ ()
is a function of 7z which would have a meaning even were n not a positive
integer (e.g. n, 72, (n—1)/(n+1)), we naturally take our function of x to be
y=c¢ (#). But even in this very simple case it is easy to write down other
almost equally obvious solutions of the problem. For example

y=¢ («)+sinam,
assumes the value ¢ (#) for r=n, since sin nr =0.
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In other cases ¢ (n) may be defined by a formula, such as (—1)* which
ceases to define for some values of # at any rate (as here in the case of
fractional values of # with even denominators, or irrational values). But it
may be possible to transform the formula in such a way that it does define
for all values of #. In this case, for example,

(—1)»=cos nr,
if % is an integer, and the problem of interpolation is solved by the function
COS 7.

In other cases ¢ (#) may be defined for some values of # other than
positive integers, but not for all. Thus from y=n» we are led to y=a*
This expression has a meaning for some only of the remaining values of .
If for simplicity we confine ourselves to positive values of x, #* has a
meaning for all rational values of a, since

(pl)Pri=¥(plq)?,

according to the definition of fractional indices adopted in elementary
algebra. But when # is ¢rrational x* has (so far as we are in a position to
say at the present moment) no meaning at all. Thus in this case the
problem of interpolation at once leads us to consider the question of
-extending our definitions in such a way that #* shall have a meaning even
when « is irrational. We shall see later on how the desired extension may
be effected.
Again consider the case in which
y=1.2...n=n!

In this case there is no obvious formula in & which reduces to ! for x=n,
as #! means nothing for values of # other than the positive integers. This
ig a case in which attempts to solve the problem of interpolation have led to
important advances in mathematics. For mathematicians have succeeded in
-discovering a function (the Gamma-function) which possesses the desired
property and many other interesting and important properties besides.

45. Finite and infinite classes. Before we proceed further
it is necessary to make a few remarks about certain ideas of an
abstract and logical nature which are of constant occurrence in
Pure Mathematics.

In the first place, the reader is probably familiar with the
notion of a class. It is unnecessary to discuss here any logical
difficulties which may be involved in the notion of a ‘class’:
roughly speaking we may say that a class is the aggregate or
collection of all the entities or objects which possess a certain
property, simple or complex. Thus we have the class of British
subjects, or red-headed Germans, or.positive integers, or real
numbers,
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Moreover, the reader has probably an idea of what is meant
by a finite or infinite class. Thus the class of British subjects is
a finite class: the aggregate of all British subjects, past, present,
and future, has a certain definite number =, though of course we
cannot tell at present the actual value of n. The class of present
British subjects, on the other hand, has a number » which could
be ascertained by counting, were the methods of the census
effective enough.

On the other hand the class of positive integers is not finite
but infinite. This may be expressed more precisely as follows,
If » is any positive integer (e.g. 1000, 1,000,000 or any number
we like to think of), there are more than n positive integers.
Thus if the number we think of is 1,000,000, there are obviously
at least 1,000,001 positive integers. Similarly the class of real
numbers, or of points on a line, is infinite. It is convenient to
express this by saying that there are an infinite number of
positive integers, or real numbers, or points on a line. But the
reader must be careful always to remember that by saying this
we mean simply that the class in question is not a class with a
definite number of members, such as 1000 or 1,000,000.

46. Properties possessed by a function of n for large
values of 7. We may now return to the ‘functions of #’ which we
were discussing in §§43, 44. They have many points of difference
from the functions of # which we discussed in Chap. II. But there
1s one fundamental characteristic which the two classes of func-
tions have in common—the values of the variable for which they
are defined form an infinite class. 1t is this fact which forms the
basis of all the considerations which follow and which, as we shall
see in the next chapter, apply, mutatis mutandus, to functions of x
as well.

Suppose that ¢ (n) is any function of », and that P is any
property which ¢ (n) may or may not have, such as that of being
& positive integer or of being greater than 1. Consider, for each
of the values n=1, 2, 3, ..., whether ¢ (») has the property P or
not. Then there are three possibilities—

(¢) ¢ (n) may have the property P for all values of n, or for
all values of n except a definite number NV of such values:
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() ¢ (n) may have the property for no values of n, or only for
a definite number &V of such values:

(¢) neither (@) nor (b) may be true.

If (b) is true the values of n for which ¢ (n) has the property
form a finite class. If (@) is true the values of » for which ¢ (n)
has not the property form a finite class. In the third case neither
class is finite. Let us consider some particular cases.

(1) Let ¢ (n)=n, and let P be the property of being a positive integer.
Then ¢ (r) has the property P for all values of n.

If on the other hand P denotes the property of being a positive integer
greater than or equal to 1000, ¢ (») has the property for all values of » except
a definite number of values of =, viz. 1, 2, 3, ..., 999. In either of these
cases (@) is true.

(2) If ¢ (n)=n, and P is the property of being less than 1000, (b) is true.

(3) If ¢p(n)=n, and P is the property of being odd, (c) is true. For b (n)
is odd if # is odd and even if # is even, and either the odd or the even values
of » form an infinite class.

Example. Consider, in each of the following cases, whether (a), (b), or (c)
is true:(—

(i) ¢ (n)=n, P being the property of being a perfect square,

(ii) ¢ (n)=the nth prime number, P being the property of being odd,
(iii) ¢ (»)=the nth prime number, P being the property of being even,
(iv) ¢ (n)=the nth prime number, P being the property ¢ (n)>n,

(v) ¢ (m)=1-=(-1)"(1/a), P being the property ¢ (n)<1,

(vi) ¢ (n)=1—(—=1)"(1/n), P being the property ¢ (n)<2,

(vii) ¢ (n)=1000{1+(—1)"}/n, P being the property ¢ (n)<1,
(viil) ¢ (n)=1/n, P being the property ¢ (n)<<-001,

(ix) ¢ (#)=(—1)"/n, P being the property | ¢ (») | <001,

(x) ¢ (n)=10000/n, or (—1)"10000/n, P being either of the properties

¢ (n)<001 or | ¢ (n) | <001,
(xi) ¢ (r)=(n—1)/(n+1), P being the property 1—¢ (n)<"0001.

47. Let us now suppose that ¢ (n) and P are such that the
assertion (a) is true, Le. that ¢ (n) has the property P, if not for
all values of n, at any rate for all values of n except a definite
number N of such values. We may denote these exceptional
values by

My, Mgy oevy Ty
There is of course no reason why these .N values should be the
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first N values 1, 2, ..., N, though, as the preceding examples
show, this is frequently the case in practice.

But whether this is so or not we know that ¢ (n) has the
property P if n >ny. Thus the nth prime is odd if n>2 (n=2
being the only exception to the statement), and 1/n <001 if
n > 1000 (the first 1000 values of n being the exceptions), and

1000 {1+ (- 1)}/n <1,

if n > 2000, the exceptional values being 2, 4, 6, ..., 2000. That
is to say, in each of these cases the property is possessed for all
values of n from a definite value onwards.

We shall frequently express this by saying that ¢ (») has the
property for large, or very large, or all sufficiently large values of n.
Thus when we say that ¢ (n) has the property P (which will as a
rule be a property expressed by some relation of inequality) for
large values of m, what we mean is that we can determine some
definite number, n, say, such that ¢ (n) has the property for all
values of n greater than or equal to n,, This number n,, in the
examples considered above, may be taken to be any number
greater than ny, the greatest of the exceptional numbers: it is
most natural to take it to be ny+ 1.

Thus we may say that ‘all large primes are odd,” or that ‘1/n is
less than ‘001 for large values of n” And the reader must make
himself familiar with theé use of the word large in statements of
this kind. ZLarge is in fact a word which, standing by itself, has
no more absolute meaning in mathematics than in the language
of common sense. It is a truism that in common life a number
which is large in one connection is small in another; 6 goals is a
large score in a football match, but 6 runs is not a large score in a,
cricket match; and 300 runs is a large score, but £300 is not
a large income—and so of course in mathematics large generally
means large enough, and what is large enough for one purpose
may not be large enough for another.

We know now what' is meant by the assertion ‘¢ (n) has the
property P for large values of n’ It is with assertions of this
kind that we shall be concerned throughout this chapter. Given
a function ¢ (n), are there any properties of which such an
assertion 1s true?

H. A. 8
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48. 'The phrase ‘n tends to infinity.” There is a some-
what different way of looking at the matter which it is natural to
adopt. Suppose that n assumes successively the values 1, 2, 3, ....
The word ‘successively ’ naturally suggests succession ¢n time, and
we may suppose n, if we like, to assume these values at successive
moments of time (e.g. at the beginnings of successive seconds).
Then as the seconds pass n gets larger and larger and there is
no limit to the extent of its increase. However large a number
we may think of (e.g. 969372855) a time will come when n has
become larger than this number.

It is convenient to have a short phrase to express this unending
growth of n, and we shall say that » tends to infinity, or n -,
this last symbol being usually employed as an abbreviation for
‘infinity.” The phrase ‘tends to’ like the word ‘successively’
naturally suggests the idea of change ¥n time, and it is convenient
to think of the'variation of n as accomplished in time in the
manner described above. This however is a mere matter of con-
venience. The variable n is a purely logical entity which has in
itself nothing to do with time.

The reader cannot too strongly impress upon himself that
when we say that n ‘tends to o’ we mean simply that n is
supposed to assume a series of values which increase continually
and without limit. 'There is no number ¢infinity’: such an

equation as
n= 0

is as it stands absolutely meaningless: n cannot be equal to oo,
because ‘ equal to oo’ means nothing. So far in fact the symbol
oo means nothing at all except in the one phrase tends to o,
the meaning of which we have explained above. Later on we
shall learn how to attach a meaning to other phrases involving
the symbol o, but the reader will always have to bear in mind

(1) that oo by dtself means nothing, although phrases con-
tatning it sometimes mean something,

(2) that in every case in which a phrase containing the
symbol oo means something it will do so simply because we
have previously attached a meaning to it by means of a special
definition.
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Now it is clear that if ¢ (n) has the property P for large values
of n, and if » ‘tends to o, in the sense which we have just
explained, n will ultimately assume values large enough to ensure
that ¢ (n) has the property P. And so another way of putting
the question ‘what properties has ¢ (n) for sufficiently large
values of n?’ is ‘how does ¢ (n) behave as n tends to oo ?’

49. The behaviour of a function of n as n tends to
infinity. We shall now proceed, in the light of the remarks
made in the preceding sections, to consider the meaning of some
kinds of statements which are perpetually occurring in higher
mathematics. Let us consider for example, the two following
statements—(a) 1/n is small for large values of n, (b) 1 —(1/n) s
nearly equal to 1 for large values of n,—neither of which, we
imagine, anyone will be inclined to dispute. Yet, obvious as
they may seem, there is a good deal in them which will repay
the reader’s attention. Let us take («) first, as being slightly the
simpler.

We have already considered the statement ‘1/n is less than -01
Jor large values of n. This, we saw, means that the inequality
1/n< 01 is true for all values of n greater than some definite
value, in fact greater than 100. Similarly it is true that ‘1/n s
less than 0001 for large wvalues of m’: in fact 1/n<-0001 if
n >10000. And instead of ‘01 or ‘0001 we might take ‘000001 or
00000001, or indeed any positive number we like.

It is obviously convenient to have some way of expressing the
fact that any such statement as ‘1/n <s less than 01 jfor large
values of n’ is true, when we substitute for ‘01 some smaller
number, such as ‘0001 or ‘000001 or any other number we care
to choose. And clearly we can do this by saying that ‘however
small & may be (provided of course it is positive) 1/n<é jfor
sufficiently large values of n. That this is true is obvious. For
1/n< 8 if n>1/8; so that our ‘sufficiently large’ values of n need
only all be greater than 1/8. The assertion is however a complex
one, in that it really stands for the whole class of assertions which
we obtain by giving to 8 special values such as *01. And of course
the smaller is 8 and the larger 1/8 the larger must the least of the
‘sufficiently large’ values of n be, values which are sufficiently
large when & has one value being inadequate when it has another.

8—2
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The last statement italicised is what is really meant by the
statement (a), that 1/n is small when » is large. Similarly for
(b), which really means “if ¢d(n)=1—(1/n), then the statement
‘1—¢(n)< 8 for sufficiently large values of n’ is true whatever
positive value (such as "01 or ‘0001) we attribute to 8.” That the
statement (b) is true is obvious from the fact that 1 — ¢ (n)=1/n.

There 1s another way in which it is common to state the facts
expressed by the assertions («) and (b). This is suggested at once
by § 48. Instead of saying ‘1/a is small for large values of n’ we
say ‘1/n tends to 0 as n tends to oo Similarly we say that
‘1—(1/n) tends to 1 as n tends to «o’: and these statements are
to be regarded as precisely equivalent to () and (b). Thus the
statements.

“1/n is small when » is large,
“1/n tends to 0 as n tends to w0,

are equivalent to one another and to the more formal statement

‘if & is any positive number, however small, 1/n< & for
sufficiently large values of

or to the still more formal statement

“if & is any positive number, however small, we can find
a number n, such that 1/n < & for all values of n greater than
or equal to n,.’

The reader should imagine himself confronted by an opponent who
questions the truth of the statement. He would name a series of numbers
growing smaller and smaller. He might begin with ‘001. The reader would
reply that 1/2<"001 as soon as #>>1000. The opponent would be bound to
admit this, but would try again with some smaller number, such as ‘0000001,
The reader would reply that 1/z < ©0000001 as soon as %> 10000000: and so
on. In this simple case it is evident that the reader would always have the
better of the argument.

We shall now introduce yet another way of expressing this
property of the function 1/n. We shall say that ‘fhe limit of 1/n
as n tends to o 4s 0’ a statement which we may express
symbolically in the form

lim (1/n) =0,

N ~2= a0

or simply lim (1/n) =0. We shall also sometimes use the notation
1/n—0,

(7 ~>)
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or simply 1/n =0, which may be read ‘1/n tends to 0 as n tends
to . In the same way we shall write
lim{1-@1/a)} =1, lim{1-(1/n)}=1, 1-1/n)—1,

(n~>a) (1t == )

or 1 —(1/n)—=1.

- 50. Now let us consider a different example: let ¢ (n)=n2
Then ‘n? is large when n vs large’ This statement is equivalent
to the more formal statements

“if G is any positive number, however large, n?> G for
sufficiently large values of n,

‘we can find a number n, such that n2> @ for all values
of n greater than or equal to n,.

And it is natural in this case to say that ‘n® tends to o as n
tends to o0, or ‘n? tends to oo with n’ and to write

n?—> w0,
(=)
or simply n?— .

Finally consider the function ¢ (n)=—n% In this case ¢ (n)
is large, but negative, when # is large, and we naturally say that
‘—n? tends to — o0 as n tends to o " and write

—n? > — 0.
And the use of the symbol — 0 in this sense suggests that it
will sometimes be convenient to write n? =+ oo for n? = and
generally to use 4+ o instead of w, in order to secure greater
uniformity of notation.

But we must once more repeat that in all these statements
the symbols %, + w0, — 0 mean nothing whatever in themselves,
and only acquire a meaning when they occur in certain special
connections in virtue of the explanations which we bave just
given.

51. Definition of a limit. After the discussion which
precedes the reader should be in a position to appreciate the
general notion of a limit. Roughly we may say that ¢ (n) tends
to a limit | as n tends to o of ¢ (n) is nearly equal to I when n is
large. But although the meaning of this statement should be
clear enough after the preceding explanations, it is not, as it
stands, precise enough to serve as a strict mathematical definition.
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It is, in fact, equivalent to a whole class of statements of the
type ¢ for sufficiently large values of n, ¢ (n) differs from [ by less
than 8. This statement has to be true for 6 =01 or ‘0001 or any
positive number ; and for any such value of & it has to be true for
any value of n after a certain definite value n,, though, the smaller
3, the larger (as a rule) will be this value n,.

We accordingly frame the following formal definition :

DEFiNtTION 1. The function ¢ (n) is said to tend to the lumit
! as n tends to oo, if, however small be the positive number 8,
¢ (n) differs from [ by less than & for sufficiently large values of n;
or if, however small be the positive number 8, we can determine a
value n, corresponding to 8 and such that ¢ (n) differs from 1 by
less than & for all values of n greater than or equal to n,.

Tt is usual to denote the difference ¢ (n)~ 1, taken positively,
by | ¢ (n)—1|. It is equal to ¢(n)—1I or to {— ¢ (n), whichever
is positive, and agrees with the definition of the modulus of
¢(n) =1, as given in Ch. III, though at present we are only
considering real values, positive or negative.

With this notation the definition may be stated more shortly
as follows: “if, giwven any positive number, 8, however small, we
can find n, so that |d(n)—1|< 8 for n Z n,, then we say that ¢ (n)
tends to the limit [ as n tends to w , and wrile

lim ¢ (n) =1

9= 0

Sometimes we may omit the ‘n— o’ ; and sometimes it is convenient, for
brevity, to write ¢ (n) 1.

It should be observed that n, is a function of 8. Thus if ¢ (2)=1/n, =0,
and the condition reduces to 1/n <8 (7 Zng), which is satisfied if 7o=1+[1/8]
(the integer larger by one than the greatest integer contained in 1/8). There
is one and only one case in which the same ny will do for all values of 8.
If, from a certain value & of » onwards ¢ () is constant, say equal to C, it is
evident that ¢ (n) - =0 for n = N, so that the inequality |¢ (n)—C|< & is
satisfied for n Z NV and all positive values of 8. And if |¢p(n)—I|< 8 for
n Z IV and all positive values of § it is evident that ¢ (»)=I for n = N, so
that ¢ (n) is constant for all such values of #.

52. The definition of a limit may be illustrated geometrically
as follows. The graph of ¢(n) consists of a number of points
corresponding to the values n=1, 2, 3, ....
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Draw the line y=1, and the parallel lines y=1—-86, y=1+8
at distance & from it. Then

lim ¢ (n) =1,
I
Y
] [ ]
—_ . —— L e - --y=l+6
____________________________________________ :-_--_---- y:l -a
o 1 ¢ & TN X
Fia. 35.

if, when once these lines have been drawn, no matter how close
they may be together, we can always draw a line # = IV (as in the
figure) in such a way that the point of the graph on this line, and
all points to the right of it, lie between them. We shall find
this geometrical way of looking at our definition particularly
useful when we come to deal with functions defined for all values
of a real variable and not merely for positive integral values.

53. So much for functions of n which tend to a limit as n
tends to oo. We must now frame corresponding definitions for
functions which, like the functions n? or — »? tend to positive or
negative infinity. The reader should by now find no difficulty in
appreciating the point of

DeriNtTiON I1. The function ¢ (n) is sard to tend to + oo
(positive infinity) with n, if, when any number G, however large,
is assigned, we can determine n, so that ¢ (n) > G for n Zn,; or if,
however large G may be, ¢ (n) > G for sufficiently large values of n.

Another, less precise, form of statement is ‘¢f we can make
¢ (n) as large as we please by sufficiently increasing n.” This is
open to the objection that it obscures a fundamental point, viz.
that ¢ (n) must be greater than G for all values of n Z ny, and not
merely for some such values. But there is no harm in using this
~ form of expression if we are clear what it means.
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When ¢ (n) tends to 4 o0 we write
b (n)—=>+ .

(7 —= )
We may leave it to the reader to frame the corresponding
definition for functions which tend to negative infinity.

b4. Some points 6oncerning the definitions. The reader
should carefully observe the following points.

(1) We may obviously alter the values of ¢(n) for any
finite number of values of », in any way we please, without in
the least affecting the behaviour of ¢ (n) as n tends to . For
example 1/n tends to 0 as n tends to 0. We may deduce any
number of new functions from 1/n by altering a finite number of
its values. For instance we may consider the function ¢ (n) which
is equal to 8 for n=1,2,7, 9, 106, 107, 108, 237 and equal to
1/n for all other values of ». For this function, just as for the
original function 1/n, lim ¢ (») =0. Similarly, for the function
¢ (n) which is equal to 3 if n=1, 2,7, 9, 106, 107, 108, 237, and
to m? otherwise, it is true that ¢ (n) =+ 0.

(2) On the other hand we cannot as a rule alter an nfinite
number of the values of ¢ (n) without fundamentally affecting its
behaviour as n tends to . If for example we altered the function
1/n by changing its value to 1 whenever n is a multiple of 100
it would no longer be true that lim ¢ (») =0. So long as a finite
number of values only were affected we could always choose the
number n, of the definition so as to be greater than the greatest
of the values of n for which ¢ (n) was altered.. In the examples
above, for instance, we could always take =, > 237, and indeed we
should be compelled to do so as soon as our imaginary opponent
of §49 had assigned a value of & as small as 3 (in the first
example) or a value of G as great as 3 (in the second). But
now however large n, may be there will be greater values of n for
which ¢ (n) has been altered.

(3) In applying the test of Definition I. it is of course
absolutely essential that we should have | ¢ (n) — | < & not merely
for n=mn, but for n Z n, i.e. for n, and for all larger values of n.
In the last example, given & we can obviously choose n, so that
¢(n) <8 for n=mn,: we have only to choose a sufficiently large
value of n which 1s not a multiple of 100. But when =, is thus
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chosen it is not true that ¢(n) <& for n = n,: all the multiples
of 100 which are greater than =, are exceptions to this statement.

(4) If ¢(n) is always greater than I we can replace
|p(n)— 1] by ¢(n)—1. Thus the test whether 1/n tends to the
limit 0 as n tends to o is simply whether 1/n < & for n Z n,.
If however ¢ (n)=(—1)*/n, I is again O, but ¢(n)—1 is some-
times positive and sometimes negative. In such a case we must
state the condition in the form |¢ (n) — (| < 8, in this particular
case in the form | ¢ (n)| < &. |

(5) The limit I may itself be one of the actual values of
¢ (n). Thus if ¢(n)=0 for all values of » it is obvious that
lim ¢ () =0. Again if we had (in (2) and (3) above) altered
the value of the function (when =» is a multiple of 100) to 0
instead of to 1 we should have obtained a function ¢(n)=0
(n a multiple of 100), ¢ (n) =1/n (otherwise). The limit of this
function as n tends to oo is still obviously 0. This limit is itself
the value of the function for an infinite number of values of #,
viz. all multiples of 100. | )

On the other hand the limit itself need not (and in general will
not) be the value of the function for any value of n. This is
sufficiently obvious in the case of ¢ (n)=1/n. The limit is 0; but
the function is never zero for any value of n.

The reader cannot impress these facts too strongly on his
mind. A limit is not a value of the function: it is something
quite distinct from these values, though defined by its relations to
them. The limits may possibly be equal to some of the values of
the function—whether this be so or not has absolutely nothing to
do with the notion of the limit: it is, so to say, a mere accident.

For the functions ¢ (n)=0, 1,
the limit is equal to all the values of ¢ (n): for
dm)=1/n, (—1)p/n, 1+(1/n), 1+{(—1)/n)
it is not equal to any value of ¢ (n): for
¢ (n) =(sin §nw)/n, 1+ {(sin 4nw)/n}
(whose limits as n tends to oo are easily seen to be 0 and 1, since

sin 4nr is never numerically greater than 1) the limit is equal to
the value which ¢ (n) assumes for all even values of n, but the
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values assumed for odd values of n are all different from the limit
and from one another.

(6) A function may be always numerically very large when
n is very large without tending either to 4+ w or to —w. A
sufficient illustration of this is given by ¢(n) =(—1)*n or (—1)*n2%
A function can only tend to + % or to — oo if, after a certain
value of n, it maintains a constant sign.

Examples XXVI. Consider the behaviour of the following functions of
x as n tends to w:

1. ¢ (n)=n%, where £ is a positive or negative integer or rational fraction.
If % is positive #* tends to 4w with n. If £ is negative lim #¥=0. If k=0,
nF=1 for all values of » (by the definition of #9). Hence lim n*=1.

The reader will find it instructive, even in an almost obvious case like this,
to write down a formal proof that the conditions of our definitions are satisfied.
Take for instance the case of £>0. Let G be any assigned number, however
large. We wish to choose 7 so that »* > G for n Zn,. We have in fact only
to take for 7, any number greater than ¥/G. If e.g. k=4, n*>10000 for
n Z 11, nt>100000000 for % =101, and so on.

From a geometrical point of view the matter may be stated as follows. If
£ >0 the graph of y=a«* is of the general form of 4 in Fig. 36; if £< 0 of the
form of B; if k=0 it is a line C parallel to the axis of 2. At present we are
only concerned with the series of points marked on these curves.

A

0

6 1 3 3
Fic. 36.

2. ¢ (n)=the nth prime number. If there were only a finite number of
primes ¢ (%) would be defined only for a finite number of values of . There
are however, as was first shown by Euclid, infinitely many primes. Euclid’s
proof is as follows. If there are only a finite number of primes let them be
1, 2, 3,5, 7, 11, ... . Consider the number 1+(1.2.3.5.7.11... V).
This number is evidently not divisible by any of 2, 3, 5, ... &V, since the
remainder when it is divided by any of these numbers is 1. It is therefore
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not divisible by any prime save 1, and is therefore itself prime, which is
contrary to our hypothesis.

Again it is obvious that for all values of = (save n=1, 2, 3) ¢ (n)>n.
Hence ¢ (n)>+w.

3. ¢ (n)=the number of primes less than n. Here again ¢ (n)>+0.

4. ¢ (n)=[an], where a is any positive number. Here

¢ (n)=0 (0=n<l/a), ¢(n)=1 (a=n<2/a),
and so on; and ¢ (n)=+o.

5. If ¢ (r)=1000000/n, lim ¢ (n)=0: if y(7)=n/1000000, ¥ (n)->=+co0.
These conclusions are in no way affected by the fact that at first ¢ (n) is
much larger than ¥ (z) (being, in fact, larger until % =1000).

6. ¢pr)=1/{fn— (=1}, n—(=1)% n{l—(=1)"}. The first function tends
to 0, the second to 4w, the third does not tend either to a limit or to +w.

7. ¢ (n)=(sinnf)[n, where 6 is any real number. Since |sin#nf|=1,
| (n) |< 1/, and lim ¢ (»)=0.

8. ¢ (n)=(sinnb)/n/n, (sinnb)[n? (a cos? nf+bsin?nd)/n, where a and b
are any real numbers.

9. ¢ (n)=sinndr. If §isintegral ¢ (n)=0 for all values of %, and there-
fore lim ¢ (n) =0.

Next let 6 be rational, e.g. =p/g, where p and ¢ are positive integers.
Let n=ag+b where o is the quotient and b the remainder when = is
divided by ¢. Then sin (npr/¢)=(—1)® sin (bpw/g). Suppose, for example,
p even; then as » increases from O to ¢g—1, ¢ (n) takes the values

0, sin(pn/q), sin(Zpm/g), ... sin{(g—1)pm/g}.

When 7 increases from ¢ to 2¢ —1 these values are repeated ; and so also
as n goes from 2¢ to 3¢ — 1, 3¢ to 4¢—~1, and so on. Thus the values of ¢ (n)
form a perpetual cyclic repetition of « finite series of different values. Tt is
evident that when this is the case ¢ () cannot tend to a limit or to 4w or
to — o as n tends to infinity.

The case in which 4 is irrational is a little more difficult. It is discussed
in the next set of examples.

55. Oscillating Functions. DErFINITION. When ¢ (n) does
not tend to a limit, nor to + o ,nor to —w, as n tends to oo, we
say that ¢ (n) oscillates as n tends to .

A function ¢(n) certainly oscillates if its values form, as
in the case considered in the last example above, a continual
repetition of a cycle of values. But of course it may oscillate
without possessing this peculiarity. Oscillation is, according to
its definition, a purely negative quality—a function oscillates
when it does not do certain other things.
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The simplest example of an oscillatory function is given by
¢ (n)=(=1)",

which is equal to +1 when # is even and to —1 when n is odd.
In this case the values recur cyclically. But consider

¢ (n)=(=1)"+(1/n),
the values of which are
—1+1, 1+(1/2), —1+(1/3), 14+(1/4), —1+(1/5), ...

When n is large every value is nearly equal to +1 or —1, and
obviously ¢ (n) does not tend to a limit or to + w or to — o, and
therefore it oscillates: but the values do not recur. It is to be
observed that in this case every value of ¢ (n) is numerically less
than or equal to 3/2. Similarly

b (n) = (— 1y» 100 + (1000/n)

oscillates. When = is large enough every value is nearly equal to
100 or —100. The numerically greatest value is 900 (for n=1).
But now consider ¢ (n) =(— 1)"n, the values of which are —1, 2,
— 3,4, —5,.... This function oscillates, for it does not tend to a
limit, nor to + o, nor to —oo. But in this case we cannot assign
any limit beyond which the numerical value of the terms does
not rise. The distinction between these two examples suggests a
further definition.

DerFiNiTION.  If & (n) oscillates as n tends to o ot will be said
to oscillate finitely or infinitely according as it is or s not possible

to assign a number K such that oll the values of ¢ (n) are numeri-
cally less than K, i.e. | ¢ (n)| < K for all values of n.

These definitions, as well as those of § 54, are further illustrated
in the following examples.

Examples XXVII. Consider the behaviour as » tends to « of the
following functions:
L (=1)% 543(—1)%, (1000000/2)+(~ 1)%, 1000000 (= 1)24(1/n).
2. (—=1)*n, 10000004 (—1)" 2. 3. 1000000 -2, (= 1)* (1000000 — ).
4. n{l+(—1)"}. In this case the values of ¢ (n) are
0,4,0,8 0,12 0, 16, ....

The odd terms are all zero and the even terms tend to +w: ¢(n)
oscillates infinitely.
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5. n24+(-1)»n. The second term oscillates infinitely, but the first is
-very much larger than the second when # is large. In fact ¢ (n) Z n?—n and
n2—n=(n—3%)2—3} is greater than any assigned value & if n>§+V{G'+1}-
Thus ¢ () >+.

6. n3+(—=1)n2 {1+ (1Y}, (-1’ +a.

7. 1143(=1) (A1n)+3(-1), 1la+3(-1), 114+{8(-1)"/a},
11430 (=1)m,  {14+3(-D%n, {11+3(=1)%n, (11/n)+3(-1)"2,
1ln+{3 (- 1)"/n}.

8. sinnfw. We have already seen (Exs. XXVL 9) that when @ is rational
¢ () oscillates finitely—unless @ is an integer, when ¢ (n)=0, ¢ (»)—=0.

The case in which 4 is irrational is a little more difficult. But it is not
difficult to see that ¢ () still oscillates finitely. We can without loss of
generality suppose 0<8<<1. In the first place |¢(n)|<1. Hence ¢ (a)
must oscillate finitely or tend to a limit. We shall consider whether the
second alternative is really possible. Let us suppose then that

lim sin 7267 =I1.

Then however small € is we can choose 7, so that sinnfx lies between
l—¢ and I+e for all values of n greater than or equal to n,. Hence
sin (n+1) 8z —sin #fx is numerically less than 2e for all such values of =,
and so |singfm cos (n+3) On | <e

Hence cos (n+3¥) O =cos nm cos §bnx —sin nfx sin § 6
must be numerically less than ¢/ |sin 46z |. Similarly

cos (n - 3) O =cos ném cos §0m +sin nfm sin 56

must be numerically less than ¢/ |sin4é= |; and so each of cos néx cos 36,
sin 70 sin § O must be numerically less than e/ |sin §8x |. That is to say, if
is large cos ndw cos $8m is very small, and this can only be the case if cos nfn
is very small. Similarly sin #n6r must be very small (so that / must be zero).
But it is impossible that cos #0m and sinnfr can both be very small, as the
sum of their squares is unity. Thus the hypothesis that sin n8x tends to a
limit £ is impossible, and therefore sin nér oscillates as n tends to .

The reader should consider with particular care the argument
¢ cos nfw cos 0= is very small, and this can only be the case if cosnfr
is very small’ Why, he may ask, should it not be the other factor cos 0=
which is ¢very small’? The answer is to be found, of course, in the meaning
of the phrase ¢ very small’ as used in this connection. When we say ‘¢ (n)
is very small’ for large values of », we mean that we can choose 7y so that
¢ (n) is numerically smaller than any assigned number, if n is sufficiently
large. Such an assertion is palpably absurd when made of a fized number
such as cos 46w, which is not zero.

9. sinnlr+(1/n), sin nfm + (1000000/n), sin #fr +1, sin #lr +n,
(—1)*sin nfmr, sinnfr+(—1)", sinudmr+{(~1)*/n}, sin nfr +(~1)"n.

10. acos n8r+bsin nfr, sin?nbr, cos? nfr, a cos? nbw+b sin? nbmr.

1. a+bn+(—1)*(c+dn)+e cos nfr +f sin nbm.
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12. nsinzbm.  If 2 is integral, ¢ (n)=0, ¢ (n)=0. If z is rational but
not integral, or irrational, ¢ (n) oscillates infinitely.

13. 2 (acos?nfm +bsin2ndr). In this case ¢ (n)=+w if ¢ and b are
both positive, - if both are negative. Consider the special cases in
which ¢=0, b>0, or ¢ >0, b=0, or =0, b=0. If ¢ and b have opposite
signs ¢ (=) generally oscillates infinitely. Consider any exceptional cases.

14. sin (n?07). If @ is integral, ¢ (n)—=0. Otherwise ¢ (n) oscillates
finitely, as may be shown by arguments similar to though more complex
than those used in Exs. XXVI. 9 and XXVII. 8%,

15. sin(n!6m). If 8 has any rational value p/g, !4 is certainly integral
for all values of » greater than or equal to ¢. Hence ¢ (n)>0. The case in
which @ is irrational cannot be settled without the aid of considerations of a

much more difficult character.
16. cos(n!8r), acos? (n!frx)+bsin?(n! 6r), where @ is rational.
17. an—[br], (—1)"(an—[bn]). 18. [Wa], (=1)*[Jz], Jn —[7].
19. The smallest prime factor of n. When # is a prime, ¢ (n)=n. When
n is even, ¢ (n)==2. Thus ¢ (n) oscillates infinitely.
20. The largest prime factor of .
21.  The number of days in the year n A.p.

Examples XXVIIL. 1. If ¢p(a) =+ and { (n) Z ¢ (n) for all values
of n, then yr(n)>+.

2. If ¢ (n) =0, and [ (n)| = [ ¢ (n)] for all values of #, then yr (n) = 0.

3. Iflim | ¢(n)|=0, then lim ¢ (#)=0.

4. If ¢p(n) tends to a limit or oscillates finitely, and |y-(n)|=|¢p(n)]| for
nZng, then Yr(n) tends to a limit or oscillates finitely.

5. If ¢p(n)>+w, or —o, or oscillates infinitely, and [y(n)|Z|P(n)]
for n=n,, then Y(n)—> 4o or —ow or oscillates infinitely.

6. ¢If ¢ (n) oscillates and, however great be ny, we can find values of
greater than ny and for which 4y (n) is either greater than or less than ¢ (n),
then 4 (») oscillates.” Is this true? If not give an example to the contrary
[¢ (m)=(=1), ¥ (n)=0].

7. If ¢p(n)=1 as n—>w, then also ¢p(n+p)-=I, p being any fixed
integer. [This follows at once from the definition. Similarly we see that if
¢ () tends to + o or —w or oscillates so also does ¢ (n+p).]

8. The same conclusions hold (except in the case of oscillation) if p
varies with n but is always numerically less than a fixed positive integer V;
or if p varies with » in any way, so long as it is always positive.

9. Determine the least value of n, for which it is true that

() #24+n>1000 (nZng), (b) »*4n>1000000 (nZn).

* See Bromwich's Infinite Series, p. 485.
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10. Determine the least value of n, for which it is true that

(@) n+(=1">1000 (nZn), (6) n4(—1)">1000000 (nZn,).
11. Determine the least value of n, for which it is true that
(@) ni+n>G  (nzay), () a+(~1r>6  (nzng),

G being any positive number.

[(@) no=[3+(G+D)]: (b) ny=14[G] or 2+[F], according as [G] is odd
or even: ie. ng=1+[G]+% {14 (- D]

12. Determine the least value of », such that

(@) n/(n2+1)<°0001. (b) (1/n)+{(—1)"n? < 000001, for nZmny.
[Let us take the latter case. In the first place
(1) + (= 1S (n D,

and it is easy to see that the least value of n, such that (n+ 1)/#%2< 000001,

for nzny, is 1000002. But the inequality given is satisfied by %=1000001,
and this is the value of n, required.]

56. Some general theorems with regard to limits.
A. The behaviour of the sum of two functions whose
behaviour is known.

THEOREM L. If ¢(n) and Y (n) tend to limits a, b, then
b (n)+r (n) tends to the limit a+b.

This is almost obvious. The argument which the reader will
at once form in his mind is roughly this: ¢ when = is large ¢ (n) is
nearly equal to ¢ and 4 (n) to b and therefore their sum is nearly

equal to @ + 0. 1t 1s well to state the argument quite formally,
however.

Let 8 be any assigned positive number (e.g. ‘001, :0000001,...).
We require to show that a number #, can be found such that

lp @)+ (n)—a—0b|<.cverinennnn (1),
for n Zn,. Now by a proposition proved in Chapter 1II. (more
generally indeed than we need here) the modulus of the sum of

two numbers is less than or equal to the sum of their moduli.
Thus

¢+ () —a—b|=[d@)—al+[¥(n)-b|.
It follows that the desired condition will ‘certainly be satisfied if
n, can be so chosen that

ldm)—al+[v @) —b]<& o, (2),

for n Zn,. But this is certainly the case. For since lim ¢ (n)=a
we can, by the definition of a limit, find n, so that |¢ (n) —a|< &,
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for n Z n,, and this however small may be &. Nothing prevents
our taking & =43, so that | ¢ (n)—a|< 3, for n Z n,, Similarly
we can find n, so that |y (n) —b|< 40 for n Zn,. Now take n,
to be the greater of the two numbers n,, n,. Then if nZn,
| (n)—a|<%d and |y (n)—b|< 6, and therefore (2) is satisfied
and the theorem is proved.

The argument may be concisely stated thus: since lim ¢ ()=« and
lim  (n)=b we can choose #;, 13 so that

|pr)—a|<id (nZzm), |d()-b|<38 (nZny),
and then, if » is greater than either n; or s,
¢ @)+ () —a—b|=|¢p(m)—al+]d(n)—b|<?,
and therefore lim {¢ (n) ++r (n)} =a+b.

Even when stated thus the argument may possibly appear to the reader to
be merely a piece of useless pedantry, or an attempt to manufacture diffi-
culties out of what is really obvious. We do not assert that such an opinion
is, in this case, entirely groundless. The result really ¢s very obvious: nor
would any mathematician think it worth while as a rule to state arguments
for what is so obvious at such length.

But the reader must remember that the theorem, obvious though it may
be, is one of the most fundamental and important theorems in all mathe-
matics. It is one which every mathematician uses, consciously or unconsci-
ously, twenty times a day. The proof of such a theorem must be made
absolutely clear, explicit, and rigorous: no room must be left for any possible
misapprehension or confusion. And this is not all. The great majority of
theorems concerning limits are, as the reader will discover before long, far
from being so simple and so obvious as this one. In this case the result
obviously indicated by common sense was true. In more difficult cases
common sense as often indicates an untrue result as a true one: sometimes it
fails to give any indication at all. In such cases vague general arguments
are worse than useless: they lead to mistakes not only gross in themselves
but entirely confusing in their consequences. And unless the reader is pre-
pared to take the trouble to try and understand the way in which rigorous
methods apply to simple and obvious cases, where their application is easy, he
will find that when he comes to difficult questions, which cannot be settled
without them, he has not the capacity to use them.

57. Results subsidiary to Theorem I. The reader should
have no difficulty in verifying the following subsidiary results.

1. If ¢ (n) tends to a lvmit, but r (n) tends to + oo or to — o
or oscillates finitely or infinitely, then ¢ (n) -+ (n) behaves like

¥ ().
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2. If ¢(n)—>+ o, and Y (n) =+ o or oscllates fintely,
then ¢ (n)+Y(n)>+o.

In this statement we may obviously change + o into — o0
throughout.

3. Butif ¢p(n) >0 and Y (n)>— o, then ¢ (n)+ Y (n) may
either tend to a limit or to + 0 or to — o or may oscillate either
finstely or infinitely.

These five possibilities are illustrated in order by (i) ¢ (n)=n, ¥ (n)= —n,
(il) ¢ (n)=n% ¥ (n)=—mn, (il) d(n)=n, ¥ (n)=—-2% (iv) ¢ (@)=n+(-1)"
V(w)=—n, (v) ¢p(m)=n?+(-1)"n, (n)=—n% The reader should con-
struct additional examples of each case.

4. If ¢(n)—~+ oo and Y (n) oscillates infinitely, ¢ (n)+ Y (n)
may tend to + oo or oscillate infinitely, but cannot tend to a limait,
or to — w0, or oscillate finately.

For y (n)={¢p (n) +{r (n)} — ¢ (n) ; and, if ¢(n)+y (n) behaved in any of the
three last ways, it would follow, from the previous results, that (%)= —,
which is not the case. As examples of the two cases which are possible,

consider (i) ¢ (n)=n2, (n)=(—-1)"n, (ii) ¢ (n)=2, ¥ (n)=(~1)"n% Here
again the signs of 4+ and — c may be permuted throughout.

5. If ¢(n) and y(n) both oscillate finitely, ¢ (n)+r (n) must
tend to a limit or oscillate finitely.

As examples take

(i) )=y (m)=(=1), (i) ¢ (n)=cosjnm,  (n)=sin ynm.
6. If ¢(n) oscillates finitely, and +(n) infinutely, then
¢ (n) + Y (n) oscillates infinitely.

For ¢ (n) is in absolute value always less than a certain constant, say G.
On the other hand 4 (), since it oscillates infinifely must assume values
numerically greater than any assignable number (e.g. 10G, 100G, ...). Hence
¢ ()4 (n) must assume values numerically greater than any assignable
number (e.g. 9G, 99G, ...). Hence ¢ (n)+y (n) must either tend to +w or
— o or oscillate infinitely. But if it tended to + w0, for instance,

Vv (2)={¢p @)+ (n)} — ¢ (n)
would also tend to + o, by the preceding results. Thus ¢ (n) 4y () cannot
tend to + oo, nor, for similar reasons, to —o : hence it oscillates infinitely.

7. If both ¢(n) and +r(n) oscillate infinitely, ¢ (n) + Y (n)
may tend to a limit, or to + o , or to — o, or-oscillate either finitely
or infinitely.

: Suppose, for instance, that ¢ (n)=(—1)*=, while ¢ (») is in turn each of
the functions (—1)2+lm, {14(=1)"*8a, —{1+(-1y}n, (=1)"*1(n+1),
(—1)"n. We thus obtain examples of all five possibilities.
H. A, 9
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This exhausts all the possibilities which are really distinct.
The results may be conveniently summarised in the following
tabular form, in which 1 stands for ¢ tends to a limit,” 2 for ‘tends
to + o0, 3 for ‘tends to — 00, 4 for oscillates finitely, and 5 for
‘ oscillates infinitely.

o) | V(=) ¢ @)+ (7)
1 1 1
1 2 2
1 3 3
1 4 4
1 5 5
2 2 2
2 3 1,2,3, 4 0orb
2 4 2
2 5 2 orb
4 4 lor4
4 5 5
5 5 1,2,3,4 0rb

Before passing on to consider the product of two functions we
may point out that the result of Theorem I. may be immediately
extended to the sum of three or more functions which tend to
limits as n - .

b8. B. The behaviour of the product of two functions
whose behaviour is known. We can now prove a similar
set of theorems concerning the product of two functions. The
principal result is the following.

THEOREM 1I. Iflim ¢ (n)=a and lim +r (n) = b, then
lim ¢ (n) Y (n) = ab.
Let  $m=a+d(m)y V) =b+ ()
so that lim ¢, (n) =0 and lim {», (n)=0. Then
¢ (n) ¥ () = ab + apy (n) + bepy (1) + b (1) Y ()

Hence the numerical value of the difference ¢ (n)yr(n)—ab is
certainly not greater than the sum of the numerical values of

ayry (n), by (n), 1 (n) Yy (n).  From this it is obvious that
lim {¢ (n) 4 (n) — ab} = 0,

which proves the theorem.
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The following is a strictly formal proof. We have
[ p(r) Y (m) - ab| = | aya ()| + [bpy(n) |+ by (m) [ ¥ (m) .

Choose g so that for n = n,
| i () [<38/16],  [Yn(n)i<Fd/]al.
Then | ¢ (n) Y(n) —ab|<}o+38+{38%/(|a]|0])},
which is certainly less than 8, if 8 <}|a||b]. That is to say we can choose
7y 80 that |p(n)Y(n)—ab|<d(nZny), and so the theorem follows. The

reader should study the details of this proof attentively; it is an elementary
specimen of a type of proof perpetually occurring in higher analysis.

We need hardly point out that this theorem, like Theorem L,
may be immediately extended to the product of any number of
functions of n.

59. Results subsidiary to Theorem II. There 1s of course
a series of theorems concerning products analogous to those stated
in § 57 for sums. It will be convenient to present the results in
tabular form. We must distinguish now siz different ways in
which ¢ (n) may behave as n tends to . It may (1) tend to a
limit other than zero, (2) tend to zero, (3) tend to + o, (3") tend
to — o, (4) oscillate finitely, (5) oscillate infinitely. We need
not, as a rule, take account separately of (3) and (3"), as the
results for one may be deduced from those for the other by a
change of sign.

Case ¢ (») V() ¢ (n) ¥ (1)
1 1 1 1
2 1 2 2
3 1 3 3 or 3
4 1 4 4
b} 1 5 5
6 2 2 2
7 2 3 any way
8 2 4 2
9 2 5 any way
10 3 3 3
11 3 4 3, 3, or b
12 3 5 3,3, or b
13 4 4 1, 2, or 4
14 4 5 any way
15 5 5 any way

We leave the verification of this table as an exercise to the reader. Thae
9—2
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more difficult cases 7, 9, 11, 13, 14, 15 may be illustrated by the following
examples.

7 9
¢ (n) Y@ p@)Y(n) b(n) Y(n)  pr)¥()
1/n 7 1 (= 1)/n (=1)n 1
1/n? n 2 (= 1)/n? (—1)"n 2
1/n n? 3 (=1)*/n (—1)mn? 3
-1/n n? 3 (=1»n  (—1p*+in? 3
(—1)*n 7 4 1/n (—1)n 4
(—=1)*n n? 5 1/n (=1)*n? 5
11 13
b(n) V(@) p(r)y(n) ¢(n) V) p) )
n 24 (1) 3 (—1)" (=1 1
n —2—(-1p ¥ 14(=1p  1—(-1p 2
n (=1 5 cos Anmw sin dnm 4
14
b (2) () G ()¢ (n)
-3 =-[0+(-1e]  A=(=1%-a{l+(-1)} 1
14 (1) {l=(-1}n 2
(=1)" (=1)rn 3
(_ l)n (_ 1)n+ln 3
1+(-=-1) 1+{1-(—-1)"n 4
cos Anmw nsin dnmr 5
15
b (n) V(n) b () Y (n)
2l = (=1 =[{l+(=1)Yn] [{1~(=1pYn]-n{l+(-1y} 1
{1+(=1)"n A=(=1yin 2
(=1)y'n (=1)*n 3
(_1)11.% (_ 1)n+ln 3
{1+ (-1y3n+[{1=(=1)"}/n] {1-(=1"n 4
7 cos ynm nsin Ynmw 5

As an illustration of how to verify these examples we may take the first
example under Case 14. Bince 1—(—1)»=0 or 2 according as » is even or
odd, while 1+(—-1)"=0 or 2 according as » is odd or even, the values of

¢ (n) are
2, =—2/2, 2, -2/, 2, -2/6,

and so ¢ (n) oscillates finitely ; while the values of {» (n) are
2, —2x2, 2, —2x4, 2 —2x6, ...,
and v (n) oscillates infinitely. But ¢ (%) (2)=4 for all values of n.

tuey
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60. A particular case of Theorem II which is important is
that in which 4+ (n) is constant. The theorem then asserts simply
that lim k¢ (n) = ke if im ¢ (n) = a.

To this we may join the subsidiary theorem that if ¢(n) =+ o,
then a¢ (n) -+ 0 or — w0, according as « is positive or negative,
unless ¢ =0, when of course a¢(n)=0 for all values of n and
lima¢g (n)=0. And if ¢(n) oscillates finitely or infinitely so does
a¢(n), unless a=0.

61. C. The behaviour of the difference or quotient of
two functions whose behaviour is known. There is, of
course, a similar set of theorems for the difference of two given
functions: but they are such obvious corollaries from what pre-
cedes that it would be waste of time to state them at length.
In order to deal with the quotient

¥ (0)/$ (1),

we begin with the following theorem.

TreOREM III. Iflim ¢ (n)=a, and a s not zero, then
lim {1/¢ (n)} =1/a.
Let b (n)=a+ ¢, (n),
so that lim ¢, (n) =0. Then
[{1/$ ()} = Afa) =] ()| /{| [l o+ ¢ ()]},

and it is plain, since lim ¢, (n) = 0, that we can choose 7, so that
for n Z n, this is smaller than any assigned number 8.

The theorems subsidiary to this may again be stated concisely by means
of a table.

Case ¢ (n) 1/¢ (n)
1 1 1
2 2 3, 8, or b
3 3 2
4 4 4 or b
5 5 2, 4, or

The three more complicated cases may be illustrated by the following
examples: the number indicates the behaviour of 1/¢ (n).
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Case 2. ¢ (n)=1/n 3
b )=—1/n 3
() =(~ 1)/
Case 4. ¢ (n)=(-1)
¢ (m)=10+(=-1y3+[{1- (- 1)}/n]
Case b, ¢ (nr)y=(—-1)yn
¢@)={1+(-1+ {1 -(-1)"}=n
¢ (m)={1+(-1)} a+[{1 - (- 1)"/n]

&> o O s

[y

It will not be necessary now to attempt to state an exhaustive
series of theorems for the quotient r(n)/¢ (), such as may be
deduced from the results above and those of § 59. The principal
theorem is

THEOREM IV. If lim¢(n)=a and limyr(n)=">, and a0,
then lim {4 (n)/¢ (n)} = b/a.

This requires no proof, being an immediate consequence of
Theorems II and IIL

The reader will however find it very instructive to draw up,
at any rate partially, a table for the quotient similar to those
we have given for the product and reciprocal, and to illustrate
some of the possible cases with examples.

62. THEOREM V. If R{d(n), ¥(n), x(n),...} is any rational
Junction of ¢ (n), Y (n), x (n), etc., i.e. any function of the form
P (¢ (n), ¥ (0), x (n), .} /@ [ (), ¥ (), x (), ..},
where P and @ denote polynomials in ¢ (n), 4 (n), x (n), ...: and if
lim¢p(n)=0a, lima(r)=0, limy(@®)=c,...,
and Q(a, b,c,...)F0;
then lim R {¢ (n), ¥ (n), x (0), ...} = R(a, b, c,...).

For P is a sum of a finite number of terms of the type

A{p ) (¥ W)le...,
where 4 is a constant and p, ¢ positive integers. This term, by
Theorem II (or rather by its obvious extension to the product of
any number of functions) tends to the limit Aa?b?..., and so P
tends to the limit P (e, d,¢c,...), by the similar extension of

Theorem I. Similarly for @: and the result then follows from
Theorem IV.
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63. The preceding general theorem may be applied to the
following very important particular problem: what us the behaviour
of the most general rational function of n, viz.
an? +an? 7 4+ ... 4 a,
byn? 4+ bnt™ + ... + b, ’

S(n) =
as n tends to o .

In order to apply the theorem we transform S(zn) by writing
it in the form

b b
no—q (ao+%+ +%‘;)/(b{,+f—:+ +n-—qq)

The term in brackets is of the form R {¢ (n)}, where ¢ (n) = 1/n,
and so, by Theorem V, it tends, as n tends to o, to the limit
R(0)=ay/b,. Now,if p<q,limn?2=0; if p=¢, n?2=1 and
limn?2=1; if p>¢, n?? >+ . Hence, by Theorem II,

limS®)=0 (p<gq), limS®)=a/b, (p=q),
S(n)—=+w (p>q,a/b, positive), S(n)—=—ow (p>q,a/b, negative).

Examples XXIX, 1. Determine the behaviour, as n—o, of each of
the following functions of 7, and of their sums, differences, products and
quotients, taken in pairs: 1+ {(—1)¥/a}, (—1)*+(1/n), 1+(~1)"n, (—1)*+n,
n{(=1)"ag, (=D a+1/n), (=11 +2), (= 1)*{1+1/a)}, (- 1)*{n+(1/n)}.

2. Do the same for the functions

cos? dnm +(sin?dnw)/n, cos?inmw+nsin?nr, ncos?dnmr +(sin?fnr)/n.

3. Which (if any) of the functions

1/(cos? tnm +nsin? dnw), 1/{n(cos?inm +nsin?{nnr)},
(ncos? Inm +-sin? dna)/{n (cos? snm +n sin? dnr)}
tend to a limit as %> ?

4. Denoting by S(n) the general rational function of =z, considered in
§ 63, show that.in all cases

lim {S(»+1)/S(@)}=1, Hm[S{rn+(1/n)}/S(n)]=1.

64. Functions of » which increase steadily with n. A
special but particularly important class of functions of n is formed
of those whose variation as » tends to o is always in the same
direction, that is to say those which always increase (or always
decrease) as n increases. Since — ¢ (n) always increases if ¢ (n)
always decreases, it is not necessary to counsider the two kinds of
functions separately; for theorems proved for one kind can ab
once be extended to the other.
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DErINITION.  The function ¢ (n) will be said to increase steaduily
with 05 ¢ (n +1) Z ¢ (n) for all values of n.

It is to be observed that we do not exclude the case in which
¢ (n) has the same value for several values of n; all we exclude is
possible decrease. Thus the function

whose values for n=0, 1, 2, 3, 4, ... are
1,1,5,5,99,...

1s said to increase steadily with ». Our definition would indeed
include even functions which, from some value of n, remain con-
stant ; thus ¢ (n)=1 steadily increases according to our definition.
However, as.these functions are extremely special ones, and as
there can be no doubt as to their behaviour as n tends to o, this
apparent incongruity in the definition is not a serious defect.

There is one exceedingly important theorem concerning
functions of this class.

THEOREM. If ¢(n) steadily increases with n, then either
(1) ¢ (n) tends to o limit as n tends to o, or (ii) ¢ (n) =+ .
That is to say, while there are in general five alternatives as to

the behaviour of a function, there are two only for this special
kind of function.

The proof is very simple. Tmagine the various values of ¢ (1)
represented by points along the line L of Chap. I. Each point
lies to the 7ight of the preceding poiut (or coincides with it).

Let P, be the point corresponding to ¢ (n). Let @ be any
other point whatever on the line. Then either

(1) there are values of m such that P, lies to the right of @
(or coincides with it), or

(2) there are no such values.

In the first case we say that () is a point which is reached for
some value of #, in the second case that it is a point which is not
reached. Every point is a reached point or a not reached point.
If any point ) is reached, so obviously are all points to the left of .

There are two alternatives: (1) every point may be reached.
Then it is clear that if G is any number, however large, it will
correspond to a point @), and, for sufficiently large values of =, P,
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will lie to the right of @, and so will P,y,,.... In other words
b (n)> G for oll values of n from a certavn value. That is
b(n)—=+wo.

Or (2) not every point may be reached. Then we can divide
L into two segments, L,, L,, of which the first includes all reached
points, the second all not reached points. The only doubt is as to
whether the point R which divides the two segments is reached
or not.

If R is reached, then, since no point P, can lie to the right of
R (as in that case other points in L, would be reached), all the
points P,, must coincide with R from some value of n, the first for
which R is reached. Thus if OR =1, we have ¢ (n)=1 from a
certain value of n onwards; so that, of course, lim ¢ (n)=1.

On the other hand, if R 1s not reached all points to the left of
R, however close to R, are reached. Thus we can choose n, so
that ¢ (n) is as nearly equal to ! as we please when n=n,.
Since, as n increases beyond n,, ¢ (n) approaches even more nearly
to the value [, it is clear that

him ¢ (n)=1.

The theorem is thus proved.

For example, if ¢ (n)=3—(1/n), I =3: the point R (OR= 3)
is not reached. From a common-sense point of view the theorem
may be stated thus.

Let the point PP move along the line L in a series of jumps,
its motion always being from left to right. Then either P will
pass over the whole line, or its position will gradually approximate
to a definite position R on the line L. The theorem is almost
intuitive: the proof which precedes is merely a careful analysis of
the process of argument implied in but suppressed by our intuition
of its truth.

Cor. 1. If ¢(n) wncreases steadily with n vt will tend to a
lemat or to + o0 according as it s or vs not possible to find o fized,
number G such that ¢ (n) < G-

We shall find this corollary exceedingly useful later on.
Cor. 2. If ¢(n) increases steadily with n and ¢ (n)< @ for

all values of n, ¢ (n) tends to a limit and this limit ©s less than or
equal to G.
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It should be noticed that the limit may be equal to G': if e.g.
¢ (n) < 3—(1/n), every value of ¢ (n) is less than 3, but the limit
is equal to 3.

The reader should write out for himself the corresponding
theorems and corollaries for the case in which ¢ (n) decreases as n
increases.

65. The great importance of these theorems lies in the fact
that they give us (what we have so far been without) a means of
deciding (in a great many cases) whether a given function of n
does or does not tend to a limit as n — w0, without requiring wus to
be able to guess or otherwise infer beforehand what the limit vs. If
we know what the limit must be (if there is one) we can use the
test

lp(n)—1l|<e (n Z np):
as for example in the case of ¢ (n)=1/n, where it is obvious that
the limit can only be zero.

But suppose we have to determine whether

sr=(1+ 1)

tends to a limit. In this case it is not obvious what the limit, if
there i1s one, will be: and it is evident that the test above, which
involves [, cannot, at any rate directly, be used to decide whether
[ exists or not. ,

Of course the test can sometimes be used indirectly, to prove that
cannot exist by means of a reductio ad absurduwm. If e.g. ¢ (n)=(-1)", it
is clear that { would have to be equal to 1 and also equal to — 1, which is
obviously impossible.

66. The limit of z* as n tends to «. Let us apply some
of the preceding results to the particularly important case in
which ¢ (n)=a™

First, suppose « positive. Then since ¢ (n+ 1) = 2 (n), ¢ (n)
increases with n if x> 1, decreases as = increases if z< 1.
If =1, ¢ (n)=1, lim¢p(n)=1, so that this special case need not
detain us.

Thus, if #>1, 2® must tend either to a limit (which must
obviously be greater than 1), or to + 9. Suppose it tends to a
limit /. Then (Ex. XXVIIL 7) lim¢ (n+1)=lim¢p(n)=1; but

lim ¢ (n + 1) =lim a¢ (n) = 2 lim ¢ (n) = I,
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and therefore I =zl: and as # and ! are both greater than 1, this
is impossible. Hence
& =+ © (z>1).

Fz. The reader may give an alternative proof, showing by the binomial
theorem that, if =146 (§>0), 2°>1+4n8, and so that 2"+ .

On the other hand, if #<1, 2" is a decreasing function and
must therefore tend to a limit or to —w. Since #” is positive
the second alternative may be ignored. Thus lim 2™ =1, say, and
as above [ =al, so that ! must be zero. Hence

lim a* =0 (O<az<1).

In the special cases of #=0, 1, we clearly have lim ™ =0,
liman=1 respectively.

Ez. Prove as in the preceding example that, if 0 <a <1, (1/2)* tends
to +, and deduce that 2™ tends to 0.

We have finally to consider the case in which « is negative.
If ~-1<2<0 and #=—1y, we have limy"=0 by what precedes
and therefore lima”=0. '

If z=—1 it is obvious that a” oscillates, taking the values
—1, 1 alternatively.

Finally if < — 1,9 > 1, y” tends to + o and therefore 2™ takes
values, both positive and negative, numerically greater than any
assigned number. Hence #" oscillates infinitely.

To sum up:
p(n)=a"—>+0, (z>1),
lim ¢ (n)=1, (z=1),
lim ¢ (n) =0, (—l<a<l),

¢ (n) oscillates finitely, (z=-1),
¢ (n) oscillates infinitely, (z<—1).
Examples XXX, 1. If ¢(n) is positi{ze and ¢ (n+1)>K¢p(n), where
K>1, for all values of #, then ¢ (n)—>+ .
[For d()>Kp(n—1)>K2p(n—2)... >K""14(1),
from which the conclusion follows at once. ]
2. The same result is true if the conditions above stated are satisfied
only for »n = ny.

3. If ¢(n) is positive and ¢ (n+ 1)< K¢ (n), where 0 < K <1, then
lim ¢p(n)=0. This result also is true if the conditions are satisfied only for
nZng.
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4. If |p(n+1)|<K|¢(n)| for nZny, where 0< K <1, then lim ¢ (n)=0.

5. If ¢p(n) is positive and lim {¢p(n+1)}/{¢p(n)}={>1, then ¢ (n)>+.

[For we can determine 7, so that {¢p(n+1)}/{p(n)}>K>1, for nZng: we
may, e.g., take K half-way between 1 and {. Now apply Ex. 1.]

6. If lim {¢p(n+1)}/{p(n)} =1, where { is numerically less than unity, then
lim ¢p(n)=0. [This follows from Ex. 4 as Ex. 5 follows from Ex. 1.]

7. Determine the behaviour, as n—=>w, of ¢(n)=n"2", where r is any
positive integer.

[Here P+ Difip@)={n+)/n}fa >
as n>w. If zis positive and greater than 1, ¢p(n)>+cw. If 2 is positive
and 0<z<1, ¢ (n)=>0. If x is negative and equal to —y, ¢(n)=(—1)"n"y",
and it is easy to see that ¢(n) >0 (—1<x<0) and ¢(n) oscillates infinitely
(#z=-1). Finally if =1, ¢p(n)=2", and ¢(n)=+x ; and if #=0, ¢(n)=0
for all values of 7.]

8. Discuss 272" in the same way. [The results are the same, except
that when =1 or —1, ¢(n)-=0.]

9. Draw up a table to show how #*2* behaves as n->cw, for all real
values of #, and all (positive and negative) integral values of £.

[The reader will observe that the walue of k is émmaterial except in the
special cases when #=1 or — 1. In other words, ¢¢ 4s the foctor am which is the
most important factor: the second factor only asserts itself in the special
cases when, owing to the fact that = +1, the first factor loses all or most of
its importance. The fact is that since lim {(#+1)/a}¥=1 for all values of £,
positive or negative, the limit of the ratio ¢p(n+1)/¢(n) depends only upon 2.]

10. Prove that if x is positive ifx =1, as n-=> . [Suppose, e.g., z>1.
Then #, A/, &2, ... is a decreasing sequence, and x>1 for all values of n.
Thus Yzx-=1, where [=1. But if [>1 we could find values of 7, as large as
we please, for which-/#>7 or #>{*: and as {*—>4w as n->ow this is
impossible.]

1. ¥n-=1. [For "tY(n+1)<Wn if (n+1)*<n?*! or {1+(1/n)}*<n,
which is certainly satisfied if » Z 3 (see § 67 for a proof). Thus {/» decreases
as 7 increases from 3 onwards, and as it is always greater than unity it tends
to a limit which is greater than or equal to unity. But if Y/a-=I{({>1),
n>0" which is certainly untrue for sufficiently large values of #, since
fn—-=+w with » (Exs. 7, 8).]

12. ¥Y(n!)->=+w. [However large G' may be, n!>G* if n is large
enough. For if u,=G"n!, 4, |u,=G[n+1, which tends to zero as n—>o,
so that «, does the same (Ex. 6).]

\n

67. The limit of (1 —I—%) . A more difficult case which
can be settled by the help of § 64 is given by ¢ (n) = {1 + (1/n)}™
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We shall prove first that

17 1 n—1
(1+) > (1+—=5) s 1),
1.e. that
n + 1\?/(n=1) 1
( " ) —-1> ’n_:-—l .................. (2).
1/in—1)
Let (n_—l-l) - o,
n
so that > 1. Then the inequality (2) may be written in the
form
S P ("’“ —1),
n—1\ n
or (a*=1)n>(@ 1 =1)/(n=1) ceverirennnnnn (3),

or, dividing by the positive factor a ~1,
(@ 1+ a2+ ..+ 1)/n> (@ 2+ a2+ ...+ 1)/(n—1)...(4).
Multiplying up and subtracting we obtain
(n—T1avl—a"2—ag® 5~ . —1>0 ......... (5),
and this inequality is evidently true, since a>1. Thus the

inequality (1) is established. Hence, by the theorem of § 65,
{14 (1/n)}™ tends to a limit, or to + o, as n—o0.

But
n ~1 ~1) . (a—n+1) 1
(1+1) =].+n.%+9i(73—)1+ gz (nont ) 1

n 1.2 » 7 1.2...a w’
by the binomial theorem ; and so
1" 1 1 1
() <141+ g st oty

1 1 1
<1+1+§+§+...+“2T_1<3.

Thus {1+ (1/n)}" cannot tend to + o, and so

.‘ 1 n
lim (1 + —-) =e,
B0 "
where e is a number such that 2 <e=3. We shall have a great
deal to do with this number e later on.

68. The limit of = (Y3—1). We proved above that if a>1
(a— 1)fn> (a=1=1)/(n—~1).
Let an(®-)=8. Then B>1, and the inequality may be written in the form
(n—-1)("Y/B—-1)>n(}/B-1).
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Thus, if ¢ (n)=n(YB-1), ¢(n) decreases steadily as »n increases. Also
¢ (n) is obviously always positive. Hence ¢p (=) tends to a limit / as n-» o,
and ( =0.

Moreover ¢ (n)>1—(1/B) for all values of n. For the inequality
n(¥B-1)>1-(1/8) becomes, if we put 4 for B, ny*(y—1)>9"-1, or

nyr >yl T2 p 4,
which is obviously true, since y>1. Hence
lim #(¥B—1)=/(8),
where f(B) is a function of 3, and f(8) Z 1 - (1/B) for oll values of B>1.
Next suppose 8<1, and let B:]/-y; then »n (YB—1)= —n (¥y—1)/¥y.
As n>w, n(}/y—1)=f(y), by what precedes. Also (Ex. XXX. 10)
Ny—=1.
n¥B—1)=~Ff(y)
Finally, if B=1, 2 (B —1)=0 for all values of «.
Thus we arrive at the result: the limat
lim » (}¥/B—1)
defines a function of B for all positive values of B.  This function f(B) possesses

the properties
JSB)=~f(B), f(1)=0,

and is positive or negative according as 87 1.

Hence if B=(1/y)<1,

Later on we shall be able to identify this function as the Napierion
Jogarithm of (3.

Erample. Prove that f(aB)=f{a)+f(B). [Use the equations
S (aB)=lim 2 (XfaB - 1)=lim {n(Xfa—1) ¥B+n (¥/B-1)}]

69. Infinite Series. Suppose that u(rn) is any function of
n defined for all values of n. If we add up the values of w(v)
for =1, 2, ... n we obtain another function of n, viz.
s()y=u(1l)+u(2)+ ... +u(n),
also defined for all values of n. It is generally most convenient
to alter our notation slightly and write this equation in the form

Sp="U; + U+ ... + Uy,
w
or, more shortly, Sp =2 U, .
v=1

Now suppose that s, tends to a limit s when n tends to oo,
d.e. that

. n
lim 2 u, =s.

n-=>»ow y=1
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This equation is usually written in one of the forms

[v0]
S, =8 Ut Ut Uyt ... =5,
r=1

the dots denoting the indefinite continuance of the series of u’s.

The meaning of the above equations, expressed roughly, is
that by adding more and more of the u’s together we get nearer
and nearer to the limit s. More precisely, if any small positive
number € is chosen, we can choose 7, so that the sum of the first
n, or any greater number of terms lies between s—e and s+e;

or in symbols
S'-€<¢5'n<s+€,
if n Z n,.

In these circumstances we shall call the series

Uy + U+ o,
a convergent infinite series, and we shall call s the sum of
the series, or the sum of all the terms of the series.

Thus to say that the series w, + u, + ... converges and has the
sum 8, or converges to the sum s or simply converges to s, 1s merely
another way of stating that the sum s, =1, +u + ... + u, of the
first » terms tends to the limit s as n - o0, and the consideration
of such infinite series introduces no new ideas beyond those with
which the early part of this chapter should already have made
the reader familiar. In fact the sum s, is merely a function ¢ (n),
such as we have been considering, expressed in a particular form.
And any function ¢ () may be expressed in this form, by writing

b ()= (0)+[d (1) = ¢ (0)]+... +[d(n) — ¢ (n—1)]
It is sometimes convenient to say that ¢ (n) converges to the
limat 1, say, as n - . The use of the phrase ¢ converges’ instead

of ‘tends to’ is of course suggested by the phraseology usually
employed in speaking of infinite series,

If s, >+ o or to — o we shall say that the series u,+u, + ...
is divergent or, diverges to + w, or — o0, as the case may be.
These phrases too may be applied to any function ¢ (n)—e.g. if
¢ (n) =+ we may say that ¢ (n) diverges to + . If s, does
not tend to a limit or to + o or to — oo it oscillates finitely or
infinitely : in this case we say that the series u,+u, + ... oscillates
finitely or infinitely.
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70. General theorems concerning infinite series. When
we are dealing with infinite series we shall constantly have
occasion to use the following general theorems.

1) If w,+u,+ ... is convergent, and has the sum s, then
a+u +u,+ ... is convergent and has the sum a+s Similarly
a+b+c+...+k+wu+u,+... is convergent and has the sum
a+b+c+...+k+s.

(2) If wy+u,+... is convergent and has the sum s, then
Umis + Umie + ... 18 convergent and has the sum

S — Uy = Uy — vue — Up.

(8) If any series considered in (1) or (2) diverges or oscil-
lates so do the others.

(4) If w +u,+ ... 1s convergent and has the sum s, then
au, + au, + ... is convergent and has the sum as.

(5) If the first series considered in (4) diverges or oscillates
so does the second, unless a= 0.

6) If w,+u,+... and v,4+ v+ ... are both convergent the
series (u; + %) + (¢ +¥) + ... is convergent and its sum is the sum
of the first two series.

All these theorems are almost obvious and may be proved at
once from the definitions or by applying the results of §§ 56-60 to
the sum s, =u; + U + ... + Uy

(7) If w + uy+ ... 18 convergent, then im v, =0.

For w, =S, —8,., and s, and s,_; have the same limit s.
Hence lim u,, =s—s=0.

The reader may be tempted to think that the converse of the theorem is

true and that if lim «, =0 the series Su, must be convergent. That this is
not the case is easily seen from an example. Let the series be

T+5+5+1+...
so that #,=1/n. The sum of the first four terms is
1+3+3+4>1+5+H2=14+1 4+
The sum of the next four terms is 3+§+4+3>¢=%; the sum of the next
eight terms >& =1, and so on. The sum of the first
4+4+8+4+16+... F2n=2n+1

terms is greater than
2+3+ 3+ 4. +i=1(0+3),

and this increases beyond all limit with »: hence the series diverges to + .
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(8) If w,+ us+ us+ ... is convergent, so is any series formed
by grouping the terms in brackets in any way to form new single
terms, as e.g. in (u; + Uy + ) + uy+ (U5 + %) + ..., and the sums
of the two series are the same.

Here again the converse is not true. Thus, e.g.1—-1+1-1+... oscillates,
while (1-1)4+(1—=1)4... or 04+0+40+... converges to O.

(9) If every term u, is positive (or zero) the series Su, must
either converge or diverge to + . If it converges its sum must
be positive (unless all the terms are zero, when of course its sum
1S zero).

For s, is an increasing function of », according to the definition
of § 64, and we can apply the results of that section to s,.

(10) If every term u, ts positive (or zero) the necessary and
sufficient condition that the series 2w, should be convergent is that
it should be possible to find a number G such that the sum of any
number of terms is less than G, and if G can be so found the
sum of the series s not greater than G.

This also follows at once from §64. It is perhaps hardly
necessary to point out that the theorem is not true if the condition
that every w,, is positive is not fulfilled. For example

1-14+1-1+4...
obviously oscillates, s,, being alternately equal to +1 and to 0.

(A1) If wy+us+ ..., 0+ v+ ... are two series of positive (or
zero) terms, and, the second series is convergent, and if uy, = v, for
all values of w, then the first series is also convergent, and its sum
is less than or equal to that of the second.

For,if v+ v, 4+ ... =t vy + v+ ... + v, = ¢, for all values of =,
and so o, + 4y + ... + 4, = £; which proves the theorem.

Conversely, if Su, 1s divergent, and v, Z uy, then Sv, 18
divergent.

71. The infinite geometrical series. We shall now con-
sider the ¢ geometrical ’ series, whose general term is u,=7r""1 In
this case

Sa=147r+r2+... +1ri=(l—-r)/(1=7r),
except in the special case in which =1, when
Sp=14+1+...4+1=n.
In the last case s, =+ . In the general case s, will tend to a
H. A. 10
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limit if and only if #* does so. Referring to the results of § 66
we see that the series 1+ 7+ 12+ ... s convergent and has the sum
1/(1 —7) of and only of —1<r<1.

If rz1,s, Zn,and so s, =4 o ; 1Le. the series diverges to 4.

If r=—1,s,=1 or 0 as n is odd or even: i.e. s, oscillates
finitely. If r<—1,s, oscillates infinitely. Thus, to sum up, the
sertes 1+r+1°+ ... dwerges to + o ¢f rZ1, converges to
1/(1 =) of —1<r<1, oscillates finitely if r=—1, and oscillates
wfinitely if r<—1.

Examples XXXI. 1. Recurring decimals. The commonest example
of an infinite geometric series is given by an ordinary recurring decimal.
Consider for example the decimal ‘21713. This stands, according to the
ordinary rules of arithmetic, for

PR SR U I W . ..
10 102 T ios Y igr e T 1o T 1o T T 1000 T 108 10%) = 12375
The reader should consider where and how any of the general theorems of
§ '70 have been used in this reduction.

2. Show that in general

. . . Qe Q@ Qy— A1g... Oy
A1 O9eaelly, ] Qg .u. 1= 99...900...0 N

the denominator containing » 9’s and m 0’s.

3. Show that a pure recurring decimal is always equal to a proper
fraction whose denominator does not contain 2 or 5 as a. factor.

4. A decimal with m non-recurring and n recurring decimal figures is
equal to a proper fraction whose denominator is divisible by 27 or 5™ but by
no higher power of either. [For the decimal is converted into the sum of an
integer and a pure recurring decimal by multiplication by 10", but not by
multiplication by any lower power of 10.]

5. The converses of Exs. 3, 4 are also true, but their proof depends on
Fermat’s Theorem in the Theory of Numbers. If r=p/g, and ¢ is prime to
10, it is known that we can find = so that 100 —1 is divisible by ¢. Hence »
may be expressed in the form 2/(10%~1) or in the form

P P

ek

10n 102’,l+".

ie. as a pure recurring decimal with n figures. But if g=2"5°¢Q, where @ is
prime to 10, and m is the greater of a and B3, 107 has a denominator prime
-to 10, and is therefore expressible as the sum of an integer and a pure
recurring decimal. But this is not true of 10+, for any value of u less
than m ; hence the decimal for » has exactly  non-recurring figures,
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6. To the results of Exs, 2—5 we must add that of Ex. I. 4. Finally, if
we observe that
9 9 9
1010+ 108
we see that every terminating decimal can also be expressed as a mixed
recurring decimal whose recurring part is composed entirely of 9’s. For
example, ‘217="2169. Thus every proper fraction can be expressed as a re-
curring decimal, and conversely.

.g= +lll=1’

7. Decimals in general. The expression of irrational numbers as
non-recurring decimals. Any decimal, whether recurring or not, corresponds
to a definite number between O and 1. For the decimal ‘a;datscty4... stands
for the series

ay . Gy . O3

10t 102 + 108 +....
Since all the digits «, are positive the sum s, of the first = terms of this
series increases with 2: also it is certainly less than ‘9 or 1. Hence s, tends
to a limit between 0 and 1.

+

Moreover no two decimals can correspond to the same number (except in
the special case noticed in Ex. 6). For suppose that ‘a;agas..., "bibsbs... are
two decimals which agree as far as the figures @, _y, b,_{, while a.>b,.
Then @, zb,+1>b,.0, .10, 5... (unless b, .1, by, ... are all 9s), and so

g e Clp Ol 4 7000 >"01Dgu 0y Dy 1

It follows that the expression of a rational fraction as a recurring decimal
(Exs. 2—6) is unique. It also follows that every decimal which does not
recur represents some #rrational number between 0 and 1. Conversely, any
such number can be expressed as such a decimal. For it must lie in one of
the intervals

0, 1/10; 1/10, 2/10; ...; 9/10; 1.
If it lies in #/10, (#+1)/10 the first figure is #: by subdividing this interval
into 10 parts we can determine the second figure; and so on.

Thus we see that the decimal 1-414..., obtained by the ordinary process
for the extraction of /2, cannot recur.

8. The decimals <1010010001000010... and -2020020002000020..., in
which the number of zeros between two I’s or 2's increases by one at each
stage, represent irrational numbers.

9. The decimal -11101010001010..., in which the nth figure is 1 if # is
prime, and zero otherwise, represents an irrational number. [Since the
number of primes is infinite the decimal does not terminate. Nor can it
recur: for if it did we could determine s and p so that m, m+p, m+2p,
m+3p, ... are all prime numbers; and this is absurd, since the series includes
m+mp. ¥

* All the results of Exs. XXXI. may be extended, with suitable modifications, to
decimals in any scale of notation. For a fuller discussion see Bromwich, Infinite
Series, Appendix I.

10—2
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Examples XXXII. 1. If —1<r<1, the series rm+4sm+14 .., is con-
vergent and its sum is 1/(1—-7)—1—r—...—m"1 (§ 70, (2)).

2. The series 7477 +14... is convergent and its sum is /(1 —7) (§ 70,
(4)). Verify that the results of Exs. 1 and 2 are in agreement.

3. Prove that the series 142r+2/2+... is convergent, and that its sum
is (14+7)/(1—7), (a) by writing it in the form —1+42(147+s2+...), (B) by
writing it in the form 1+42(r+72+...), (y) by adding the two series
147+72+..., 7+724.... In each case mention which of the theorems of
§ 70 are used in your proof.

4. Prove that the arithmetic series

a+(a+0)+(a+20)+...
is always divergent, unless both ¢ and b are zero. Show that if 40 it
diverges to +o or to — o according to the sign of b, while if =0 it diverges
to 4o or —w according to the sign of «.

5. What is the sum of the series
A=)+ -1+t —1r3)+...
when the series is convergent? [The series converges only if —1<r=1. Its

sum is 1, except when =1, when its sum is 0.]
2

7 + r2 +
1472 " (14422 °
gent, Tts sum is 1472 except when =0, when its sum is 0.]

6. Sum the series 72}

... [The series is always conver-

7. If we assume that 1+#++2+4... is convergent we can prove that its
sum is 1/(1 —~#) by means of § 70, (1) and (4). For if 1+4+r+s2+...=s,
s=14r(1+72+...)=1+7s.

. 7 7
8. Sum the series r+m +- W+

when it is convergent. [The series is convergent if —1<1/(1+7)<1, ie. if
r< —2 or if >0, and its sum is 14+#. It is also convergent for »=0, when
its sum is 0.]

9. Answer the same question for the series

Thr T {@tep 2 TR T Oy E

7 7 2 r 7 2
1—1+4v'+(1+r>i ’ 1i1—r+(1—r> +

10, Consider the convergence of
(147 + @2+ +..., Q474D+ (3 +rt4r5)+..,
1=2r 424+ =495+ ..., (1—=2r+7r%)+ (%~ 2rt475)+..,,
and find their sums when they are convergent.
11. If a, is positive and not greater than 1, the series ag+ay7+agr?+...

is convergent for 0 =7 <1, and the sum of the series is not greater than
1/(1=7).
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12. If in addition the series ag+a;+ag+... is convergent, the series
dg+ a7 +agr?4 ... is convergent for 0=<r=1, and its sum is not greater than
the lesser of ag+a;+ag+... and 1/(1—7).

. 1 1
13.  The series ].+'1—.—§+"1‘.—§T—:§+..-
is convergent. [For 1/(1.2...2)<1/27~1]
14. The series
1 1 1 1
i3 t1ssat tiegstizsast

are convergent.

15. The general harmonic series
1 1 1
&+E—-|—-B+a__+ﬂb+'"’
where ¢ and b are positive, diverges to +w.
[For u,=1/(a+2b)>1/{n (¢+b)}. Now compare with 1+4(1/2)+(1/3)+....]
16. Show that the series
(v = u1) + (21 — ug) + (g — Us) +-.-.
is convergent if and only if u, tends to a limit as n > .
17. If wy+us+uz+... is divergent, so is any series formed by grouping
the terms in brackets in any way to form new single terms.

18. Any series, formed by taking a selection of the terms of a convergent
series of positive terms, is itself convergent.

72. 'The representation of functions of a continuous
real variable by means of limits. In the preceding sections
we have frequently been concerned with limits such as

lim ¢, (),

T —3= 0

and series such as
w (2) + U (2) + ... = lim {u, (@) + us (&) + ... + un (2)},

4 == 00
in which the function of n whose limit we are seeking involves,
besides n, another variable 2. In such cases the limit is of course
a function of 2. Thus in § 69 we came across the function
f(x)=lmn(ye—1):
M —» o0

and the sum of the geometrical series 1 + # + 2* + ... is a function
of z, viz. the function which is equal to 1/(1 —2z) if —1<2 <1 and
is undefined for all other values of .

Many of the apparently ‘arbitrary’ or ‘unmnatural’ functions
considered in Ch. IT are capable of a simple representation of
this kind, as will appear from the following examples.
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Examples XXXIII. 1. ¢,(z)=2. Here = does not appear at all in the
expression of ¢, (), and ¢ (#)=lim ¢, (x) == for all values of 2.

2. ¢, (v)=z/n. Here ¢(x)=lim ¢, (x)=0 for all values of .

3. ¢, (@)=nx. If 2>0, ¢,(®)=+w; if 2<0, ¢, (x)>—c: only for
#=0 has ¢, (#) a limit (viz. 0) as n=co. Thus ¢ (#)=0 when x#=0 and is
not defined for any other value of «.

4, ¢, (2)=1/nz, nzx/(nz+1).

5, ¢u(z)=2" Here ¢(2)=0, (-1<z<l); ¢(z)=1, (x=1); and ¢ ()
is not defined for any other value of 2.

6. ¢, (z)=a"(1~x). Here ¢ (x) differs from the ¢ (x) of Ex. 5 in that
it is defined and has the value O for z=1.

7. ¢n(z)=2"n. Here ¢ (x) differs from the ¢ (») of Ex. 6 in that it is
defined and has the value O for = —1 as well as +1.

8. du(z)=2"(2"+1). [¢(#)=0, (-1<z<1); p(2)=%, (#=1); Pp(2)=1,
(x< —1 or £>1); and ¢ (#) is not defined for x=—1.]

9. ba(@)=am(@—1), Lfa+1), 1/am—1), 1f(@+2—m), 1f(m—z-").

10. ¢, (2)=(a"—1)/(z"+1), (nz*—1)/(nz"+1), (z*—n)/(#*+=). [In the
first case ¢ (#)=11if |#|>1, p ()= -1if |x|<1, ¢ (#)=01if =1 and ¢ ()
is not defined for x= —1. The second and third functions differ from the

first in that they are defined both for #=1 and #= —1: the second has the
value 1 and the third the value —1 for both these values of x.]

11. Construct an example in which ¢ (x)=1, (lz|>1); ¢(»)=-1,
(l2|<1); and ¢ (#)=0, (#==%1).

12. ¢, (@)=x{(a®—1)/(2*+1)}%, af(z"+2~ "+ n).
13. ¢ (®)={2"f(2)+g@)}/(a"+1). [Here ¢ (z)=f(2), (|2|>1); ¢ (x)=

g@), (21<1); ¢@=3{f(+g(@), @=1); and ¢(a) is undefined for
x=—1.]

14. ¢, (#)=(2/m)arc tan (nz). [P (x)=1, (#>0); ¢(2)=0, (x=0);
¢ (@)= -1, (#<0). This function is important in the Theory of Numbers,
and is usually denoted by sgn z.]

15. ¢, (#)=(1/n)sinnzr. [¢ («)=0 for all values of z.]

16. ¢, (#)=sinnew. [¢(#)=0 when x is an integer, and is otherwise
undefined. ]

17. ¢ (#)=(1/n) cos nem, cos nam, o cos? namw + b sin? namr.

18. If ¢, (2)=sin(n!zr), ¢ (x)=0 for all rational values of # (Exs. XXVL 9,
XXVII. 8). The consideration of irrational values presents greater difficulties.

19. ¢, (2)=(cos?zm)t [¢p(#)=0 except when =z is integfa.l, when
¢ (0)=1]

20, ¢y ()= (sin?zm )", (coszm)?, (sinzw)™
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21. ¢, (2)=(acos?zm +bsin2zn)*. [Here ¢(2)=0Iif |acos®vm+bsin? x|
<1, ¢ (#)=1 if ecosar+bsin?ar=1, and ¢ (x) is otherwise undefined.
For what values of 2 these respective conditions are satisfied depends on
the values of @ and b. Thus if « and b are both numerically less than unity,
¢ (2)=0 for all values of z. Consider, e.g., the cases a=b=1; a=b=1;
a=0=2; a=1, b=2; a=2, b=1; a=2, b=4.]

22. If NV =Z1752, the number of days in the year V A.D. is

lim {365 + (cos? } N )* — (cos? ;3o Nm ) + (cos? phg N )"

73. Limits of Complex functions and series of Complex
terms. In this chapter we have, up to the present, concerned
ourselves only with real functions of n and series all of whose
terms are real. There is however no difficulty in extending our
ideas and definitions to the case in which the functions or the
terms of the series are complex.

Suppose that ¢ (n) is complex and equal to
- R(@n)+1iS(n),

where R (n), S (n) are real functions of n. Then if, as n =0, R (n)
and S (n) converge respectively to limits r and s, we shall say that
¢ (n) converges to the lvmit r + s, and write

lim ¢ (n) =1+ is.
Similarly if u, is complex and equal to v, + ¢w, we shall say that
the series

U+ U+ U F ..
18 convergent and has the sum r+1s, if the series

N+ v+, WA w w4 ...

are convergent and have the sums r, s respectwely.

To say that w, + uy+us+ ... 1s convergent and has the sum
7 +1s is of course the same as to say that the sum

Sp=tF Ut oot U=+ U+ V) F (W Fwa L wy)
converges to the limit 7 -+4s as n — o0,

In the case of real functions and series we also gave definitions
of dwvergence and oscillation (finite or infinite). But in the case
of complex functions and series there are so many possibilities—
eg. R(n) may tend to +o and S(n) oscillate—that this is
hardly worth while. When it is necessary to make further dis-
tinctions of this kind, we shall make them by stating the way in
which the real or imaginary parts behave when taken separately.
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74. The reader will find no difficulty in proving such
theorems as the following, which are obvious extensions of
theorems already proved for real functions and series.

(1) If lim¢(n)=r+1s, then lim¢p(n+p)=r+is, for any
fixed value of p.

(2) If w,+u,+... is convergent and has the sum 7 +1s, then
a+b+c+...+k+w +u+... 1s convergent and has the sum
a+b+c+...+k+r+is, and upy + upe + ... is convergent and
has the sum 745 —u; —wy — ... —u,.

(8) Iflim¢p(n)=a and limyr(n)=>,then lim {}(n)+y(n)}=a+b.

(4) Iflim ¢ (n)=a, lim k¢ (n) = ka.

(5) If lim ¢ (n) = ¢ and lim 4 (n) = b, then lim ¢ (n) yr (n) = ab.

(6) If w;+u,+ ... converges to the sum @, and », + %+ ... to
the sum b, then (u; + v,) + (usy + v5) + ... converges to the sum a +0.

(7Y If vy +u,+... converges to the sum a, ku,+ku,+...
converges to the sum ka.
(8) If wy+ uy+ us ... is convergent, then lim u, = 0.

(9) If w +u+ 4+ ... is convergent, so is any series formed
by grouping the terms in brackets, and the sums of the two series
are the same,

As an example, let us prove theorem (5). Let
¢ (n)=R@)+iS(n), Y(n)=R'(0)+i8'(n), a=r+is, b=r+1

Then R (n)=>r, S(m)->s K (n)=r, S'(n)=s.
But ¢ (n) Y (n)=RR'—SS'+i(RS"+ R'S)
and RR' —8S'—=r"—ss', RS+ R'S—>rs'+1's,
so that ¢ (n) Y (n)>7r" — 55+ (15" +17'5),
i.e. ¢ (1) Y (1) == (+48) (o +1i8") = ab.

The following theorems are of a somewhat different character.

(10) In order that ¢ (n)= R (n)+uS(n) should converge to
zero as n — oo it is necessary and sufﬁcient that

(¢ (m)|=V[R@§+{Sm)*
should converge to zero.

If R (n) and S («) both converge to zero it is plain that 4/(£22+.5%) does so.
The converse follows from the fact that the nuwerical value of R or § cannot
be greater than /(£22+452).
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(11) More generally, in order that ¢ (n) should converge to a
Limit 7 it 1s necessary and sufficient that

[¢(n)—1]

For ¢ (n)— converges to zero, and we can apply (10).

should converge to zero.

75. The limit of 2" as n— o, z being any complex
number. Let us consider the important case in which ¢(n)=2a".
This problem has already been discussed for real values of # in § 66.

If -1, a1, by (1) above. But since a""'=uz.a",
2" — gl by (4) above ; and therefore ! = #l, which is only possible
if (@) I=0 or (b) #=1. If #=1, lima®=1. Apart from this
special case the limit, if it exists, can only be zero.

Now if 2=1(cos 8 +1sinb),
where 7 is positive, we know that

a™ = " (cos nf + ¢ sin nh),
so that |a” =" Thus |2"| tends to zero if and only if < 1;
and it follows from (10) of the last paragraph that
lim a” = 0,
if and only if r<1. In no other case does #® converge to a limit,
except when #=1 and 2 - 1.

76. ‘The geometric series 1+ +4+2°+..., when = is

complex. Since
su=1+a+a2*+ ...+ =(1—a"))(1 —a),

unless n =1, when the value of s, is n, it follows that the series
1+a+a*+... is convergent if and only if r=|z|<1. And its
sum when convergent is 1/(1 — z).

Thus if z=7(cos @ +isin 0) =+ Cis 8, and r <1,

1+a+4+a*+...=1/(1 —»Cis 6),
or 14+7Cisf+mCis20+...=1/(1 —rCis §)
= (1 —7cos 0+ 7rsin 0)/(1 — 2r cos 6 + 12),

or, separating the real and imaginary parts,

1+7cosf+7%cos 20 + ... = (1 —o cos B)/(1 — 27 cos 8 + 7?),

7 sin @ 4+ 7*sin 20 + ... = sin 6/(1 — 2r cos 0 + r?),

provided r<1. If we change 8 into 6+ we see that these

results hold also for negative values of + numerically less than 1.
Thus they hold for—1<r<1.
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Examples XXXIV. 1. Prove directly that ¢ (n)=r"cosnd converges
to 0 if #<1 and to 1 if r=1, 8=0. Prove further that if r=1, =0 it
oscillates finitely, if #>1, §=0 it diverges to + o and if »>1, 640 it oscil-
lates infinitely.

2. Establish a similar series of results for ¢ (n)=12"sin né.

3. Prove (as for the case of a real # in Ex. XXXII. 7) that if
14x+224... converges ity sum can only be 1/(1- ).

4, Prove that Mgt =g™[(1 ~ z),

mm_a;m+1+ Ve =a;.-m/(1 ‘l"ﬂz‘),
‘@312+2x11z+1+2xm+2+ J— (1 -[-.‘26‘)/(1 -—:L'),
am— a1y Qamri | =g (1 - g)/(14&),
if and only if |#|<1. Which of the theorems of § 74 do you use ?

5. Let (in the notation of Chap. III, §§ 25 ef seq.) PoP1=1, Py Py=2,

PoPs=a?... where #=#Cisgd. Plot the points £y, Py, Ps, ..., and show

how the figure obtained indicates the result of § 76. Prove that, if »<1, the
point 7., where = is large, is very near to the point

(1 —rcos8)/(1—-2rcos8+#2), 7sinb/(1—27cosb +1r2).
6. Prove that, if —1<r<1,

1+ 27 cos 8+ 22 cos 20+ ... =(1 —72)/(1 —2# cos 6 +#2).
7. The series 14+ {&/(1+2)}+ {2/ +2)2+...

converges to the sum 1 / (1 - ~——az—~>= 14+ if |#/(14&)|<1. Show that this

1+
is equivalent to the assertion that # has a real part greater than — 4.

8. Determine similarly the regions of values of » for which the series,
obtained by writing # for » in Ex. XXXII. 9, are convergent, and find their
sums when they are convergent.

MISCELLANEOUS EXAMPLES ON CHAPTER IV.

1. The function ¢ (z) takes for n=0, 1, 2, ... the values 1, 0, 0, 0, 1, 0, 0,
0,1, .... Express ¢(n) in terms of » by a formula which does not involve
trigonometrical functions. [¢p ()=3{14+(-1)*+"+(—¢)"}.]

2. If ¢ (n) steadily increases, and {r(n) steadily decreases, as n tends to
w, and if ¢ (n)>¢ (») for all values of », then both ¢ (%) and { (») tend to
limits, and lim ¢ (n)=<lim+(#). [This is an intermediate corollary from
§ 64.]

3. Prove that if

p=(1+,), vo=(1-1)",

then ¢ (n+1)>¢ (n) and r (rn+1)<<yr ().
[The first inequality has already been proved in § 67 ; the second may be
proved similarly. ]



MISCELLANEOUS EXAMPLES ON CHAPTER IV 155

4. Prove also that y(»)>¢ (n) for all values of #: and deduce (by means
of the preceding examples) that both ¢ (2) and 4 (=) tend to limits as 7
tends to o ¥,

5 If (Zj’) =2 (m—ll )'é'(ﬁ:; n+1), m not being a positive integer, and

: m
~1<z<1, then un=(n>a:“_>-0 as N—=w.

[For a, , fu,={(m—=n)/(n+1)} x> -2 Now apply Ex. XXX. 6.]

6. The arithmetic mean of the products of all distinct pairs of positive
integers, whose sum is #n, is denoted by S,. Show that lim (S,/22)=1/6.
(Math. Trip. 1903.)

7. If wy=3{z+ (A7)}, z=3%{m+(d/z)}, and so on, x and 4 being
positive, prove that lim x,=\/4.

N .an—JA_ .ﬁ?“-\/A A

[Plove first that Py i ($+~/A) :l

8. If ¢ (w) is a positive integer for all values of #, and tends to o with #,
then #*™ >0 or +o according as 0<a<1 or #>1. Discuss the behaviour
of 2™ as n—c0, for other values of .

9t. If @, increases (decreases) steadily as » increases, the same is true of
(o +ag+...+a,)/n.

10. If #,. 1= (£+2,), and £ and z; are positive, the sequence #y, #3, #3,
... I8 an increasing or decreasing sequence according as #; is less than or
greater than a, the positive root of the equation #2=x+%; and in either case
Zpy>a A8 >0,

11. If z, . 1=%k/(1+a,), and £ and &, are positive, the sequence z;, x5, 23,
... is an increasing or decreasing sequence, according as z; is less than or
greater than a, the positive root of the equation #?+x=£%; and in either case
Tp>a a8 N>,

12. Suppose that f(«) is a positive and increasing function of x such that
the equation w=f(2) has just one positive root a. Show, graphically.or
otherwise, that if ;>0 and z, ,,=f(«,) then the sequence zy, s, ... has the
limit a as n—=c0.

Discuss the case in which vne equation #=f(«) has several positive roots.

13. If 2, 2y are positive and #,,,="% (2, +2,_,), the sequences 2y, #3,
Zyy ... and xg, Ty, %, ... are one a decreasing and one an increasing sequence,
and their common limit is % (a; + 2ay).

14. Draw a graph of the function y defined by the equation

. asin dre 4 22
IS ]

(Math. Trip. 1901.)

* A proof that lim {y (n) — ¢ (n)} =0, and that therefore each function tends to
the limit e, will be found in Chrystal’s dlgebra, vol. ii, p. 78. We shall however
prove this in Ch. IX by a different method.

+ Exs. 9—138 are taken from Bromwich’s Infinite Series.
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15. The function y=lim T
o L+ 8IN2 72

is equal to 0 except when # is an integer, and then equal to 1. The function

—lim Y (@) +ng (z)sin® rz
Y PR, 1+nsin gz

is equal to ¢ (#) unless # is an integer, and then equal to - (z).
16. Show that the graph of the function

y=lim 7 (2) +.%‘:“ V’(@)
=00 il A
is composed of parts of the graphs of ¢(#) and yr(#), together with (as a rule)
one isolated point. Is y defined for (a) #=1, (b) x= -1, (¢) =01

17. Prove that the function g, which is equal to 0 when # is rational and

to 1 when & is irrational, may be represented in the form
y= lim sgn {sin? (m ! n2)}
=00
where, as in Ex. XXXI111. 14, sgn z= lim (2/=) arc tan (nz).
N~—>=0

[If # is rational, sin?(m!mz), and therefore sgz {sin? (m!wx)} is equal to
zero from a certain value of m onwards: if » is irrational, sin?(m!wz) is
always positive, and so sgn {sin? (m ! w#)} is always equal to 1.]

Prove that ¥ may also be represented in the form

1- lim [lim {cos (m ! mz)}2*].
M-I P-I=W

18. Sum the series
@ 1 ® 1

?u(v-l—l)’ ?t;(v-i-l)...(u-l—k)'

[Since
1 _ _1{ 1 _ 1 }
v+ Do (v+b) Elr(p+D).(v+E-1) (+1)E+2)...(v+E)°
n 1 1( 1 1
we find ?y(u+1)...(y+lc)=7c{z.2...lc“(n+1)(n+2)...(n+k)}
@ 1 1
and so 2 D). B T E)
L L x  a?
19. Tf || <]|al, .?_2=‘E(1+E+§2+"‘)’
- I L/ a a
Whlle if l$|>la’|, .?15'——(1: E(1+E+E—2+." .

20. Expansion of (dz+B)/(us®+2bz+c¢) in powers of #. Let q, 3 be
the roots of aa®+2bx+c=0, so that ar?+2bzr+c=a(z—a)(z—f). It is easy
to verify that (unless a=3)

de+B 1 (Aa+BﬁA,3+B)
ax?4+2bx+c a(a—pB) \ r—-a z—3 )"
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We shall suppose 4, B, @, b, ¢ all real. Then there are two cases,
according as 022 ac.

(1) If d®>ac, the roots a, B are real and distinct. If |#| is less than
either |a| or | 3| we can expand 1/(z — a) and 1/(x—8) in ascending powers of x
(Ex. 19). If || is greater than either |a| or | 8| we must expand in descending
powers of x; while if |#| lies between |a| and || one fraction must be ex-
panded in ascending and one in descending powers of #. The reader should
write down the actual results. If || is equal to |a] or || no such expansion
is possible,

(2) If b2<<ac the roots are conjugate complex numbers (Chap. ITI, § 34)
and we can write

a=pCis¢, P=pCis(—¢),
where p2=aB=c/a, pcos¢p=%(a+B)=—0bla, so that cos = —/(b*ac),
sin ¢p=/{1 — (b?/ac)}.
If |z|<p each fraction may be expanded in ascending powers of #. The
coefficient of 2* will be found to be

{dpsinng+Bsin (n+1)¢p}/ap™+sin ¢.

If |#|>p we obtain a similar expansion in descending powers, while if |2|=p
no such expansion is possible.

21. Show that, if |#]| <1,
14224322+ ...+ (n+1)a?+...=1/(1 - z)2

. 1—am naxt
|:The sum to % terms is (1—_@—2 e ]

22. Expand L/(x — a)? in powers of z, ascending or descending according
as |z|<|al or |z|>]al.

23. Show that if ®=ac and |ar|<|b|
(Adz+ B)/(az?+ 26w+0)=§pnx“,

where p,={(—-a)*/b?*%{(n+1)aB—nbAd}, and find the corresponding ex-
pansion, in descending powers of #, which holds when |axz|>]5]|.

24. Verify the result of Ex. 20 in the case of the fraction 1/(1+a?). [We
have 1/(142%)=3Sasin {§ (n+1) r}=1—-a2+2t—....]

25. Prove that, if |z|<1, 1/(1 +2+2?%)=(2/J3) § a"sin {¥(n+1) 7}

0

26. Expand (1+42)/(1422%), (1+22)/(1+2%) and (14+x+2?)/(1+2Y in

ascending powers of . For what values of # do your results hold ¢

27. Ifaf(a+br+cr?)=1+px+pa®+... then
_atow a?
T a—cw aP— (b% - 2ac) x4 c2a?
(Math. Trip. 1900.)

1+p1227+2022:11‘2+...
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28, Iflim s,={¢, then
F—==00
lim (s148y+ ... +8,)[n=L.

N2

[Let s,=l+¢,. Then we have to prove that (& +Z%+ ... +4,)/n tends to
zero if ¢, does so.

We divide the numbers ¢, ¢,, ... ¢, into two sets 4, ts, ..., tp, and £, 4,
lpt2y +ooy ty. Here we suppose that p is a function of # which tends to
with %, but more slowly than n, so that p—o but p/a—0: e.g. we might
suppose p to be the integral part of (/x.

Let ¢ be any positive number. However small ¢ may be, we can choose
7 80 that ¢, 1, &1 9 ..., £, are all numerically less than §e when » Z 7, and so

[(tpe1ttpsat oo Hh)[n|<de(n—p)n<ie
But, if 4 is the greatest of the moduli of all the numbers ¢, ¢, ..., we

have also '
[(t+te+ ... +t,)/n|<pAln,

and, if n, is large enough, this will also be less than 4e when n=n,, since
p/n—=0 as n—>w. Thus, if n; is large enough,

[ttt oo Ft) R =G A lg+ oo + )] 4| (Ep g+ oo FE) 0] <6
when n=n; : which proves the theorem.

The reader, if he desires to become expert in dealing with questions about
limits, should study the argument here given with great care. It is very often
necessary, in proving the limit of some given expression to be zero, to split it
into two parts which have to be proved to have the limit zero in slightly
different ways. When this is the case the proof is never very easy.

The point of the proof is this: we have to prove that (¢, +#,+ ... +#,)/n is
small when =z is large, the #'s being small when their suffixes are large. We
split up the terms in the bracket into two groups. The terms in the first
group are not all small, but their #umber is small compared with #. The
number in the second group is n#ot small compared with «, but the terms are
all small, and their number at any rate less than #, so that their sum is small
compared with %#. Hence each of the parts into which (#,+#&+...4+%,)/n
has been divided is small when # is large.]

29. If p(n)—~¢p(n—1)= as n->o then also ¢ (n)/n->I.

[If we put ¢p(r)=s;+8,+ ... +52, we have ¢p(n)—P(r—1)=s,, and the
theorem reduces to that proved in the last example.]

30. Ifs,=1{1-(-1)%, so that s, is equal to 1 or 0 according as = is odd
or even, then (s;+8,+ ... +8,)/7->% as n-=>c0.

[This example proves that the converse of 28 is not true: for s, oscillates
as - .]

31. Let ¢,, s, denote the sums of the first # terms of the series

$+cosf+cos20+4..., sinf+sin26+....

Prove that

lim (e;4co+ ... +e)n=0, lim (s;+8,+ ... +5,)/n=3%cot 8.



CHAPTER V.

LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE.
CONTINUOUS AND DISCONTINUOUS FUNCTIONS.

77. Limits as = tends to . We shall now return to
functions of a continuous real variable. We shall denote the
typical such function by ¢ (z). We suppose # to assume suc-
cessively all values corresponding to points on our fundamental
straight line L, starting from some definite point on the line and
progressing always to the right. This variation of =, like the
corresponding variation of n (Chap. IV, § 48), is often conveniently
thought of as taking place in time. In these circumstances we
say that « tends fo oo, and write #—o. The only difference
between the ‘tending of n to oo’ discussed in the last chapter, and
this ‘ tending of  to w0, is that « varies through all values as it
tends to o, ie. that the point P which corresponds to # coincides
in turn with every point of L to the right of its initial position,
whereas n tends to o by a series of jumps. We can express this
distinction by saying that « tends continuously to .

As we explained at the beginning of the last chapter, there is
a very close correspondence between functions of # and functions
of n. Every function of n may be regarded as a selection from
the values of a function of . In the last chapter we discussed
the peculiarities which may characterise the behaviour of a
function ¢ (n) as n tends to «oc. Now we are concerned with the
same problem for a function ¢ (x): and the definitions and
theorems to which we are led are practically repetitions of those
of the last chapter. Thus corresponding to Def. 1 of § 51 we
have:

DeriNiTiON 1. The function ¢,(x) s sawd to tend to the limit |
as  tends to o if, when any positive number e, however small, vs
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assigned, a value X can be chosen such that, for all values of w
equal to or greater than X, ¢ (x) differs from 1 by less than e, i.e. if

|p(z)—1|<e (zz X).
When this is the case we may write

lim ¢ (2) =1, (@)L

Lr>=w {(x—=>w

or, when there is no risk of ambiguity, simply lim ¢ (z)=1, or
¢ (v)—~I. Similarly we have:

DEFINITION 2. The function ¢ («) is said to tend to + o with
z if when any number G, however large, 1s assigned, we can choose
X so that
b(x)>G (zz X).
We then write b (z)—=+ 0.

Similarly we define ¢ (#)>—w. Finally we have:

DEFINITION 3.  If the conditions of none of the two preceding
definitions are satisfied ¢ (z) is said to oscillate as x tends to «.
If, for all values of =, | p(x)| us less than some constant K, ¢ (z) is
said to oscillate finitely ; otherwise infinitely.

The reader will remember that in the last chapter we con-
sidered very carefully various less formal ways of expressing the
facts represented by the equations ¢(n) I, ¢(n) >+ . Similar
modes of expression may of course be used in the present case.
Thus we may say that ¢ («) is small or nearly equal to [ or large
when n is large, using the words ‘small, ‘nearly, ‘large’ in
a sense precisely similar to that in which they were used in

Ch. 1IV.

Examples XXXV. 1. Consider the behaviour of the following functions
as w=>w: (1/a), 1+(1/z), o? o, [2], »—[z], [#]+{e—[2]-

The first four functions correspond exactly to functions of » fully dis-
cussed in Ch. IV, The graphs of the last three were constructed in Ch. II.
(Exs. XVIL), and the reader will see at once that [x]= 4+« , £ —[#] oscillates
finitely, and [#]+a/{z—[z]}—>+ .

One simple remark may be inserted here. The function ¢ (z)=z—[z]
oscillates (between O and 1) as is obvious from the form of its graph. Itis
equal to zero whenever # is an integer, so that the function ¢ (n) derived
from it is always zero and so tends to the limit zero. The same is true of

¢ (w)=sinzr, ¢ @)=sinngr=0,
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In such cases as these, it is evident that ¢ (z)—={ or ¢ (x)>+w© or —w
involves the corresponding property for ¢ (z), but that the converse is hy no
means true.

2. Consider in the same way the functions:
coszm, tanam, (cosam)/z, (tanzm)/z, (1fz)+coszm, xcoszm, «?cossm,

zcostam, (wcosam)?, acos?xm+bsinfar, (acos?am+bsin?an)/z,
illustrating your remarks by means of the graphs of the functions*.

3. Give a geometrical explanation of Def. 1, analogous to the geometrical
explanation of Ch. IV, § 52.

4, If ¢p(x)=l, ¢ (x)coszr and ¢ (x)sinzm oscillate finitely, If
¢ (€)= +p (or — o) they oscillate infinitely. The graph of either function
is a wavy curve oscillating between the curves y=d¢ (z), y= —¢ (2).

5. Discuss the behaviour, as 2=, of the function
y=f(#) cos? xmw + F () sin? &,

The graph of » is a curve oscillating between the curves y=f(»), y=4"(x).
Consider in particular the cases

@ f@)=1+(/z), Fx)=1-(1/2); (ii) f(@)=a+(e/), F(#)=b+(B/z),
where ab; (iii) f(x)=1, F(x)==z; (iv) f(2)=~az, F(z)=2;

(v) flx)=sinzmr, F(x)=cosxnm; (vi) f(z) =cost xw 4+ 3 sint xm,
F(z)=3cos* omw +sint wmr.

78. Limits as 2 tends to — . The reader will have no
difficulty in finding for himself definitions of the meaning of the
assertions ‘z tends to — w0’ (#—=—c0) and

lim ()=, ¢ (.’I:))—:—oo (or — ).

== (x>0
In fact if e=—y and ¢(x)=¢(—y)=v(y), then z tends
to —o0 as y tends to o, and the question of the behaviour of
¢ (x) as « tends to — oo is the same as that of the behaviour of
¥ (y) as y tends to .

79. 'Theorems corresponding to those of Ch. IV,
§§ 56—63. The theorems concerning the sums, products, and
quotients of functions, proved in Ch. IV, are all true (with the
obvious verbal alterations which the reader will have no difficulty
in supplying) for functions of the continuous variable z. Not only
the enunciations but the proofs remain substantially the same.

Ex. Draw up a table, with examples of each case, similar to the table on
p. 130 in Ch. IV, ie. to illustrate the different possibilities with regard to
the behaviour of ¢ (#) ++ (x) when the behaviour of ¢ (x) and () is*known.

The other tables of Ch. IV suggest similar examples.

* The reader has probably already drawn graphs of some of the funetions con-
sidered in Exs. 2, 4, 5, while engaged on Ch. II and in particular Exs. xvI.

H. A, 11
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80. Steadily increasing or decreasing functions. The
definition which corresponds to that of § 64 is as follows: the
Sfunction ¢(x) will be said to increase steaduily with « if d() Z p(,)
whenever @, > x,. In many cases, of course, this condition is only
satisfied from a definite value =X onwards, i.e. when #;, >z, Z X.

The theorem which follows requires no alteration but that of
n into #: and the proof is also practically the same.

The reader should consider whether or no the following functions
increase steadily with 2 (or at any rate increase steadily from a “certain
value of # onwards): 22—z, x+sine, #+2sina, 22+ 2sinx, [»], [#]+sin,
[#]+N{z~[#]}. All these functions tend to +e with 2.

Ex. Show that if ¢ (#) steadily increases (or decreases) as x-co, then
the behaviour of ¢ () as # > is the same as that of ¢ (n) as n—-c0.

81. Limits as 2 tends to 0. Let ¢ («) be such a function
of z that lim ¢ (x)=1, and let y=1/2. Then

X0
¢ (@)= (1/y)=v(y)
say. As @ tends to w0, y tends to the limit 0, and - (y) tends to
the limit /.

Let us now dismiss # and consider ¥-(y) simply as a function
of y. We are for the moment concerned only with those values
of y which correspond to large positive values of , that is to say
with small positive values of 3. And 4 (y) has the property that
by making v sufficiently small we can make +(y) differ by as
little as we please from I. To put the matter more precisely,
the statement expressed by lim ¢ (#)=1{ meant that, when any
positive number e, however small, was assigned, we could choose
X so that | ¢ (#)—1|< e for all values of # greater than or equal
to X. But this is the same thing as saying that we can choose
n=1/X so that |y (y) — | < e for all positive values of y less than
or equal to 7.

We are thus led to the following definitions.

A.  If when any positive number ¢, however small, is assigned
we can choose n so that
(@) —ll<e

Jor 0 <y=n, we say that ¢ (y) tends to the limit | when y tends to 0
by positwve values, and we write

lim ¢ (y)=1.

y->=+0
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B. If when any number G, however large, vs assigned we can
choose n so that
¢ (y)>C

for 0<y=n, we say that ¢ (y) tends to + o as y tends to 0 by
positive values, and we write

$(y) =+ .

(y—=-+0)

We define in a similar way the meaning of ¢ () tends to the
limit ! as ¥ tends to O by negative values, or lim ¢ (y)=1" We

y=>-0
have in fact only to alter O0<y=%n to —9=y<0 in A. The
reader will find it a useful exercise to write out formal definitions

of the statements expressed by

‘p(y)=+o, ‘Pp(y)>=—w) ¢>(:t/)+ .
(y=>-0) =10

el
If lim ¢(y)=10 and lim ¢ (y)=1I, we write simply
(y—=>+0) (y—=-0)
lim ¢ (y) =L
(y=0)
This case is so important that it is worth while to give a
formal definition.

If when any positive number e, however small, is assigned we
can choose m so that, for all values of y different from zero but
numerically less than or equal to n, ¢(y) duffers from 1 by less
than e, we say that ¢ (y) tends to the limit [ as y tends to 0, and

write
lim ¢ (y)=1.
y—=>0
So also if ¢ (y) =+ « and qb(y)—>—+oo we write ¢(y)—+ 0.
(y—=>-+0) (y=-0) y—>0
Similarly we define the statement g(y))—+ . Finally, if ¢(y)
>0

does not tend to a limit, or to 4+ o, or to —w, as ¥y -0, we say
that ¢ (y) oscillates as y—0, finitely or infinitely as the case may be.

The preceding definitions have been stated in terms of a
variable denoted by #: what letter is used is of course immaterial,
and we may suppose z written instead of v throughout them.

82. Limits as = tends to «. Suppose that lim ¢ (y) =/
y-=>0

and write
y=z—a, ¢(y)=¢(w—a)=1y ()
11—2
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As y—0, z—a and ¥ (¢)—!, and we are naturally led to write

lim (@) =1, ¥ (2)—=1

or simply lim 4 (2) = or Y (x)-=I, and to say that yr(x) tends to
the limit | as = tends to a. The meaning of this equation may
be directly and formally defined as follows: if, given €, we can
always determine 1 so that

|@)—l]|<e
for all values of « such that 0 <|z—a | =1, then

lim & (z)=1.

X -
In other words, given any positive number e we cau find another
7 such that if # is different from @, but its difference from @ is less
than 9, ¢ («) will differ from 7 by less than e.

By restricting ourselves to values of # greater than a, i.e. by
replacing 0<|z—a|=9n by a<z=a+7, we define ‘¢ () tends
to [ when @ approaches a from the right’; which we may write as

lim ¢(x)=I.
(x=>a-0)
Similarly we define
lim ¢(z)=1
z=>=a-0

Thus lim ¢ (z)=1 is equivalent to the two assertions

x>
lim ¢(z)=10= lim ¢ (=)
z>a+0 z->a-0

And we can give similar definitions referring to the cases in
which ¢(2) =+ (or — o) as #—>a through values greater (or less)
than «; but it is probably unnecessary to dwell further on these
definitions, since they are exactly similar to those stated above in
the special case when =0, and since we can always discuss the
behaviour of ¢ (#) as z—a by putting =y +a and supposing
that y—->-0

Examples XXXVI, 1. If
b (@) >b, Y (x)=>c,

T->»a xr>a
then ¢ (#) £y ()=>bxe, ¢ (x) Y (#)=be, and ¢ (2)/{ (x)=>b]c, unless in the
last case ¢=0.

[We saw in §79 that the theorems of Ch. IV, §§ 56 et seq. held also for
functions of # when 2#—w (or —w). By putting #=1/y we may extend
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them to functions of 7, when -0, and by putting y=x+a to functions of z,
when z—a.

The reader should however try to prove them directly from the formal
definition given above. Thus, in order to obtain a strict direct proof of the
first result he need only take the proof of Theorem I. in Ch. IV. and write
throughout « for », @ for © and 0<|2—a|=<7y instead of #Zn,.]

2. If m is a positive integer 4" ->0 as x->0.

3. If m is a negative integer #™-=+ow as x-=+0, while #™>—wx or
+ o as #->—0, according as m is odd or even. If m=0, 2m=1 and a™-=>1.
4. lim(a+bz+ca?+ ... +ka™) =a.

2->()
5. lim {(a+bx+ oo FE™) [(a B+ ... +xm")}=a/a unless a=0. Ifa=0
a->0
the function tends to +® or —w, as x>0, according as a, 3 have like or
unlike signs; the case is reversed if #—=—0.

6. lim am=am, if m is any positive or negative integer.
T

[If m>0, put 2=y +e and apply Ex. 4. When m<0 the result follows
from the theorem concerning 1/¢ (#).- There is one exceptional case, viz.
when ¢=0 and m is negative.

It follows at once that if P (x) is any polynomial, lim P (2)=P(a).]

7. lim R(x)=R(a), if R denotes any rational function and « is not one
X-=>a

of the roots of its denominator.

8. Prove that if # and « are positive and unequal, and m is any rational
number greater than 1,
mam (g = a)>am—am>mam 1 (z —a);
while if 0<m<1 signs of the inequalities must be reversed.

[Suppose first that a=1 and let m=p/g. It follows from the inequality
(3) of § 67 that, if £ is any number greater than unity,

-1z (plg)(§-1)

according as p Z ¢, and it is easy to see, by similar reasoning, that the result
remains true if 0<&<1, though both sides of the inequality are then
negative. Writing #'/2 for £ and m for p/g we obtain

TP =1ZM(Z—=1) ciireieiiiiiiicineniniaeaeanes (1),

according as mZ 1. If now we replace # by 1/#, and multiply by —a™, we
obtain
mam Y z—-1)Zam—1 veiiiinnes esnansransonnss (2).

From (1) and (2) the result follows in the case of ¢=1. The proof may now
be completed by writing «/a for 2.]

9. Show that the inequality stated in Ex. 8 holds also if m is negative.
Obtain corresponding inequalities when # and « are both negative. [See
Chrystal’'s Algebra, vol. ii, pp. 43-45.]



