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PREFACE

This book gives a new general outlook on homotopy theory: fundamental
ideas of homotopy theory are developed in the presence of a few axioms so
that they are available in a broad variety of contexts. Many examples and
applications in topology and algebra are discussed; we consider the homotopy
theory of topological spaces, the algebraic homotopy theory of chain algebras,
and rational homotopy theory.

The axiomatic approach saves a lot of work in the various fields of
application and offers a new way of organizing a course of modern homotopy
theory. A fruitful interplay takes place among the various applications.

This book is also a research monograph on homotopy classification
problems. The main new result and our principal objective is the ‘tower of
categories’ which approximates the homotopy category of complexes. Such
towers turn out to be a useful new tool for homotopy classification
problems; they complement the well-known spectral sequences. The
theory on complexes is a continuation of J.H.C. Whitehead’s combinatorial
homotopy. In fact, some of Whitehead’s results can be derived readily from
the properties of the towers.

In a later chapter (Chapter IX) we describe the simplest examples of towers
of categories from which nevertheless fundamental results of homotopy theory
can be immediately deduced.

Most of the material in the book does not appear in any textbook on
algebraic topology and homotopy theory.

As prerequisites the reader should be familiar with elementary topology
and the language of categories. The book can also be used by readers who
have only a little knowledge of topology and homotopy theory, for example
when they want to apply the methods of homotopical algebra in an algebraic
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context. The book covers the elementary homotopy theory in an abstract way.

The nine chapters which comprise the book are subdivided into several
sections, §0,§ 1, § 1a, § 1b, §2, etc. Definitions, propositions, remarks, etc., are
consecutively numberd in each section, each number being preceded by the
section number, for example (1.5) or (1a.5). A reference such as (II. 5.6) points to
(5.6) in Chapter II, while (5.6) points to (5.6) in the chapter at hand. References
to the bibliography are given by the author’s name, e.g. JH.C. Whitehead
(1950).

I lectured on the material presented in this book in Bonn (1982), Lille
(1982), Berlin (1985), Ziirich (1986) and on several conferences. There are
further applications of the results which cannot be described in a book of
this size. In particular, we obtained an algebraic classification of (n— 1)-
connected (n+ 3)-dimensional polyhedra for n=1. The invariants are
computable; for example, there exist exactly 4732 simply connected homotopy
types which have the homology groups (n = 4)

ZADZ/ADZ  i=n

72/18@7Z i=n+1
H(X)= 72®7/4®7 i=n+2

Z i=n+3

0 otherwise.

Further details will appear elsewhere. However, the basic machinery for these
results is developed in this book.

I would like to acknowledge the support of the Sonderforschungsbereich
40 Theoretische Mathematik, of the Max-Planck-Institut fiilr Mathematik in
Bonn, and of the Forschungsinstitut fiir Mathematik ETH Ziirich.

Moreover, I am very grateful to A. Grothendieck for a series of letters
concerning Chapters I and II. I especially thank my colleagues and friends
S. Halperin, J.M. Lemaire, and H. Scheerer for their interest and for valuable
suggestions during the years that I worked on this book; in fact, their work
influenced and inspired the development of the ideas; 1 remember with
pleasure the discussions in Bonn, Toronto, Nice, and Berlin and also in Lille
and Louvain la Neuve where J. Ch. Thomas and Y. Felix organized wonderful
meetings on rational homotopy. 1 am also very grateful to students
in Bonn, Berlin, and Ziirich; in particular, to W. Dreckmann, M. Hartl, E.U.
Papendorf, M. Hennes, M. Majewski, H.M. Unsold, and M. Pfenniger who
read parts of the manuscript and who made valuable comments.

I am equally grateful to the staff of Cambridge University Press and to
the typesetter for their helpful cooperation during the production of this book.

H.J. Baues
Zirich, im Mai 1986



INTRODUCTION

In his lecture at the international congress of mathematicians (1950) J.H.C.
Whitehead outlined the idea of algebraic homotopy as follows:

In homotopy theory, spaces are classified in terms of homotopy classes
of maps, rather than individual maps of one space in another. Thus,
using the word category in the sense of S. Eilenberg and Saunders Mac
Lane, a homotopy category of spaces is one in which the objects are
topological spaces and the ‘mappings’ are not individual maps but
homotopy classes of ordinary maps. The equivalences are the classes
with two-sided inverses, and two spaces are of the same homotopy type
if and only if they are related by such an equivalence. The ultimate
object of algebraic homotopy is to construct a purely algebraic theory,
which is equivalent to homotopy theory in the same sort of way that
‘analytic’ is equivalent to ‘pure’ projective geometry.

This goal of algebraic homotopy in particular includes the following basic
homotopy classification problems:

Classify the homotopy types of polyhedra X, Y..., by algebraic data.
Compute the set of homotopy classes of maps, [ X, Y], in terms of the
classifying data for X and Y. Moreover, compute the group of homotopy
equivalences, Aut(X).

There is no restriction on the algebraic theory which might solve these
problems, except the restriction of ‘effective calculability’. Indeed, algebraic
homotopy is asking for a theory which, a priori, is not known and which is
not uniquely determined by the problem. Moreover, it is not clear whether
there is a suitable purely algebraic theory for the problem better than the
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simplicial approach of Kan. For example, in spite of enormous efforts in the
last four decades, there is still no successful computation of the homotopy
groups of spheres

n,S" = [S",§"],
which turned out to have a very rich structure. This example shows that the

difficulties for a solution of the homotopy classification problems increase
rapidly when, for the spaces involved, the

range = (dimension) — (degree of connectedness)

grows. On the other hand by a classical result of Serre, the rational
homotopy groups of spheres

Q, m=n>0
nm(S")®®={@, m=2n—1, neven
0, otherwise,

are indeed simple objects. These remarks indicate two suitable restrictions
for the homotopy classification problem: consider the problem in a small
range, or consider the problem for rational spaces.

Quillen (1969) showed that a differential Lie algebra is an algebraic
equivalent of the homotopy type of a simply connected rational space.
Sullivan (1977) obtained the ‘dual’ result using commutative cochain algebras
and the de Rham functor.

On the other hand, it is surprising how little is known on homotopy types
of finite polyhedra. J.H.C. Whitehead (1949) showed that the cellular chain
complex of the universal covering is an algebraic equivalent for a
3-dimensional polyhedron. Moreover, he classified simply connected
4-dimensional polyhedra by his ‘certain exact sequence’.

Using towers of categories we obtain in this book new proofs and new
insights for these results of Quillen, Sullivan, and Whitehead respectively.

Algebraic models of homotopy types are often obtained by functors which
carry polyhedra to algebraic objects like chain complexes, chain algebras,
commutative cochain algebras, and chain Lie algebras. The categories defined
by these objects yield homotopy categories in which the ‘mappings’ are not
individual maps but homotopy classes of maps. There are actually many
more algebraic homotopy categories, some of which not related to spaces at
all. In each of them one has homotopy classification problems as above. It
turns out that there is a striking similarity of properties of such homotopy
categories (compare, for example, Chapter IX). This fact and the large
number of homotopy categories make it necessary to develop a theory based
on axioms which are in force in most of the homotopy categories.
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The idea of axiomatizing homotopy is used implicitly by Eckmann—Hilton
in studying the phenomena of duality in homotopy theory. Hilton (1965,
p. 168) actually draws up a program by mentioning:

Finally we remark that one would try to define the notions of cone,
suspension, loop space, etc. for the category C and thus place the duality
on a strict logical basis. It would seem therefore that we should consider
an abstract system formalizing the category of spaces, its homotopy
category and the homotopy functors connecting them.

To carry out this program is a further objective of this book. We develop
homotopy theory abstractly in the presence of only four axioms on
cofibrations and weak equivalences. These axioms are substantially weaker
than those of Quillen. Many applications of the abstract theory and numerous
examples in topology and algebra are described.

There is a wide variety of contexts where the techniques of homotopy
theory are useful. Therefore, the unification due to the abstract development
of the theory possesses major advantages: one proof replaces many;, in addition,
an interplay takes place among the various applications. This is fruitful for
many topological and algebraic contexts. We derive from the axioms a theory
which in topology can be compared with combinatorial homotopy theory
in the sense of J.H.C. Whitehead.

Hence a few axioms on cofibrations and weak equivalences in a category
imply a rich homotopy theory in this category. Moreover, such theories can
be compared by use of functors which carry weak equivalences to weak
equivalences. This leads to a wider understanding of homotopy theory and
offers methods for the solution of the homotopy classification problems.
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I

Axioms for homotopy theory and
examples of cofibration categories

Axiomatic homotopy theory is the development of the basic constructions
of homotopy theory in an abstract setting, so that they may be applied to
other categories. And there is, indeed, a strikingly wide variety of categories
where these techniques are useful (e.g. topological spaces, differential algebras,
differential Lie algebras, chain complexes, modules, sheaves, local algebras. . . .).

The subject is not new and goes back, for example to Kan (1955), Quillen
(1967), Heller (1968), and K.S. Brown (1973) each of whom proposes a different
set of axioms. In fact, it is not evident what is the most appropriate choice.
The best-known approach is that of Quillen who introduces the notion of a
(closed) model category, as the starting point for his development of the quite
sophisticated *homotopical algebra’.

The set of axioms which define a model category is, however, quite
restrictive. For instance, they do not apply to topological spaces with the
usual definitions of fibrations and cofibrations. There are other examples, as
pointed out by K.S. Brown, where they give rise to a ‘somewhat unsatisfactory’
homotopy theory.

We here introduce the notion of a cofibration category. Its defining axioms
have been chosen according to two criteria:

(1) The axioms should be sufficiently strong to permit the basic construc-
tions of homotopy theory.

(2) The axioms should be as weak (and as simple) as possible, so that the
constructions of homotopy theory are available in as many contexts
as possible.

They are substantially weaker than the axioms of Quillen, but add one
essential axiom to those of Brown. In this chapter we compare the various
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systems of axioms in the literature. It turns out that if one applies the criteria
above to these axioms one is almost forced into the definition of a cofibration
category. In the chapters to follow we present some of the homotopy theory
which can be derived from the axioms of a cofibration category.

In this chapter we also describe many examples of cofibration categories
and of fibration categories. In an introductory section §0 we recall the
classical definitions of fibrations and cofibrations in topology. Using the
notion of an I-category (I = cylinder functor) we prove that the cofibrations in
topology satisfy the axioms of a cofibration category. A strictly dual proof
shows that fibrations in topology satisfy the axioms of a fibration category.
Moreover, we give a complete proof that the algebraic categories of chain
complexes, chain algebras, commutative cochain algebras, and chain Lie
algebras respectively satisfy the axioms of a cofibration category.

§0 Cofibrations and fibrations in topology

Cofibrations and fibrations are of fundamental importance in homotopy
theory. Here we recall their mutual dual definitions which imply many
properties which correspond to each other. We will deduce such properties
from the axioms of a cofibration category, see § 1. Hence the theory of topo-
logical cofibrations and fibrations has two aspects:

(1) The study of all properties which can be derived from the axioms (this
is part of homotopical algebra).

(2) The study of properties which are highly connected with the topology,
for example local properties as studied in tom Dieck—Kamps—Puppe
(1970) or James (1984).

In textbooks on algebraic topology and homotopy theory these two aspects
are often mixed. This creates unnecessary complexity. Using the axioms we
will see that many results on fibrations and cofibrations, respectively, deserve
only one proof.

Let Top be the category of topological spaces and of continuous maps and let

1=[0,1]< R

be the unit interval of real numbers. These data are the basis of usual
homotopy theory. The notion of homotopy can be introduced in two
different ways, by use of a cylinder, or by use of a path space:

The cylinder [ is the functor
{I:Top—»Top,

0.1
0D IX =1 x X with product topology,
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for which we have the ‘structure maps’
x 2 x Lx

with iy(x) = (0, x), i;(x) = (1, x), p(t, x) = x (tel, xe X). These maps are natural
with respect to maps X — Y in Top. The path space P is the functor

{P:Top—> Top,

(0.2) PX =X,

where X7 is the set of all maps ¢:1 — X with the compact open topology.
Now we have the ‘structure maps’
i 40,41
X—>X—X
with i(x)(t) = x and gq,(c) = a(0), g,(0) = a(1).

The product topology for IX and the compact open topology for PY = Y!
have the well-known property that a map G:IX — Y is continuous if and
only if the adjoint map G:X - Y! with G(x)(t)= G(t,x) is continuous.
Therefore we have the bijection of sets

(0.3) Top(IX,Y)=Top(X, Y!),
which carries G to G. Here Top (4, B) denotes the set of all maps A — B in

Top. The bijection shows that the following two definitions of homotopy are
equivalent;

(0.4) Definition. Maps f,, f,: X — Y are homotopic (f, ~ f,) if there is a map
G:IX—) leth Gi0=f0,Gi1=f1. “

(0.5) Definition. Maps f,, f1: X — Y are homotopic (f, ~ f) if there is a map
H:X— PY with goH = fo,q. H= f. [

There is a standard proof that the relation of homotopy ~ is an equivalence
relation on Top(X, Y). Moreover, this relation is compatible with the law
of composition in Top, that is, for maps f;:X - Y, ¢g;:Y—Z (i =0,1) with
fox=f1, go~g, we get gofo~¢gif:. Therefore the homotopy category
Top| ~ is defined. The morphisms are the homotopy classes of maps
in Top. The set of morphism in Top/~ from X to Y is the set

(0.6) [X,Y]=Top(X,Y)/ ~

of homotopy classes. For a map f:X —Y let {f}€[X, Y] be the homotopy
class represented by f, we also write | f}: X > Y.

(0.7) Definition. A map f:X — Y in Top is a homotopy equivalence if (a) or
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equivalently (b) is satisfied:

(@) {f} is an isomorphism in Top/~.
(b) There is a map g:Y — X such that gf ~1; and fg~1,. I

Next we introduce cofibrations and fibrations in Top by use of the cylinder

and the path space respectively.

(0.8) Definition. A map i:A— X has the homotopy extension property (HEP)
with respect to Y if for each commutative diagram of unbroken arrows in Top

X
/ \\10‘ f
H
A IX — mmmeemmemem—eeo +Y
\N ﬁ -
IA

there exists H extending the diagram commutatively. The map i is a cofibra-
tion in Top if it has the homotopy extension property with respect to any
space in Top. The cofibration i is closed if i4 is a closed subspace . I

The following definition of a fibration is dual to the definition of a
cofibration in the sense that the cylinder is replaced by the path space and
all arrows are replaced by arrows in the opposite direction.

(0.9) Definition. A map p:X — B has the homotopy lifting property (HLP)
with respect to Y if for each diagram of unbroken arrows in Top

there exists H extending the diagram commutatively. The map p is a fibration
in Top if it has the homotopy lifting property with respect to any space
in Top. [

Using the adjunction (0.3) we can reformulate this definition as follows:
The map p has the HLP with respect to Y iff for each commutative diagram
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of unbroken arrows

Y
(0.10) iol s J
G

1Y —— B

there is H extending the diagram commutatively. The map H is called a lifting
of G.

Let D" = {xeR" | x| <1} be the disk in R" with boundary dD"=§""1,
n=0. For n=0 we have §™' = (J = the empty set.

(0.11) Definition. A map p:X — B is a Serre-fibration if p has the HLP with
respect to D", n=0. I

On the other hand, we obtain by use of the disks the following cofibrations
in Top.

(0.12) Definition. We say that A — X is given by attaching a cell to A if there
exists a push out diagram in Top (n = 0)

Dt — = X
() ()

Sn—l - A
The inclusions $*~! = D" and 4 < X are cofibrations in Top. I

In the next section we define a cofibration category. A basic example of a
cofibration category is the category Top with cofibrations as in (0.8) and with
weak equivalences given by homotopy equivalences in Top, compare (5.1)
below. Moreover, we will see that fibrations and homotopy equivalences in
Top satisfy the axioms of a fibration category which are obtained by dualizing
the axioms of a cofibration category, see (1a.1) and (5.2) below.

§1 Cofibration categories

Here we introduce the notion of a cofibration category. This is a category
together with two classes of morphisms, called cofibrations and weak
equivalences, such that four axioms C1,...,C4 are satisfied.

(1.1) Definition. A cofibration category is a category C with an additional
structure
(C’ COf s we),
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subject to axioms C1,C2, C3 and C4. Here cof and we are classes of morphisms
in C, called cofibrations and weak equivalences respectively. I

Morphisms in C are also called mapsin C. We write i: B = A or B> A for
a cofibration and we call u|B = ui: B— U the restriction of u: 4 —» U. We write
X = Y for a weak equivalence in C. An isomorphism in C is denoted by =.
The identity of the object X is 1 = 1, =id. A map in C is a trivial cofibration
ifit is both a weak equivalence and a cofibration. An object R in a cofibration
category C will be called a fibrant model (or simply fibrant) if each trivial
cofibration i:R > @ in C admits a retraction r:Q - R, ri = 1.

The axioms in question are:
(Cl) Composition axiom: The isomorphisms in C are weak equivalences and

are also cofibrations. For two maps

A4LBSC

if any two of f, g, and g f are weak equivalences, then so is the third. The
composite of cofibrations is a cofibration.
(C2) Push out axiom: For a cofibration i:B >—— A and map f:B— Y there
exists the push out in C
A—L ayr=ayy
B )
LT
B ;» Y

and 7 is a cofibration. Moreover:

(a) if f is a weak equivalence, so is f,
(b) if i is a weak equivalence, so is i.

(C3) Factorization axiom: For a map f:B— Y in C there exists a com-
mutative diagram

B——»Y

N

where i is a cofibration and g is a weak equivalence.

(C4) Axiom on fibrant models. For each object X in C there is a trivial
cofibration X >~ RX where RX is fibrant in C. We call X >>->RX a
fibrant model of X.
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(1.2) Remark. We denote by Ob, a class of fibrant models in C which is
sufficiently large, this means that each object in C has a fibrant model in
Ob . Let C be the full subcategory of C with objects in Ob . By the structure
of C we have cofibrations and weak equivalences in C,. One can check that
C, satisfies the axioms (C1), (C3) and (C4) but not necessarily axiom (C2)
since the push out of objects in Ob, needs not to be an object in Ob;. If,
however, push outs as in (C2) exist in C, then C; is a cofibration category
in which all objects are fibrant.

(1.3) Remark. Let ¢ be an initial object of the cofibration category C. We
call an object X in C cofibrant if ¢ —» X is a cofibration. Let C, be the full
subcategory of C consisting of cofibrant objects. By the structure of C we
have cofibrations and weak equivalences in the category C,.. One easily checks
the axioms (C1),...,(C4). Thus C, is a cofibration category in which all objects
are cofibrant. We point out that the notion ‘cofibrant’ is not dual to the
notion ‘fibrant’ in (C4). Therefore we call a cofibrant object in C as well
a ¢-cofibrant object since its definition depends on the existence of the initial
object ¢.

The development of the homotopy theory in a cofibration category is most
convenient if all objects in C are fibrant and cofibrant.

(1.4) Lemma. Let C be a cofibration category. Then (C2) (a), (C1) and (C3)
imply (C2) (b). If all objects in C are cofibrant then (C2) (b), (C1) and (C3)
imply (C2) (a).

Thus axiom (C2) (b) is redundant. We call (C2)(a) the ‘axiom of properness’
(compare (2.1) below); many results in a cofibration category actually do
not rely on this axiom. If all objects are cofibrant then the axiom of properness
is redundant by (1.4).

Proof. We consider the push out diagrams

il push ill push li_,

B>—,—»X—;—>Y
J

were gj = f by (C3). If i is a weak equivalence, so is i; by (C2) (a). Moreover,
since g is a weak equivalence, also g is one by (C2) (a). Thus by (C1) also i
is a weak equivalence.
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For the proof of the second part of (1.4) we need the mapping cylinders
in (1.8) below. We continue the proof of (1.4) in the appendix §1b of this
section. O

We define cylinders and the notion of homotopy in a cofibration category
as follows: Let B > A be a cofibration. Then we have by (C2) the push out

diagram
<p‘ush\%‘ A
e
A

where ¢ = (14,1,) is called the folding map. By (C3) there is a factorization
(1.5) AUa>z4
B

of the folding map ¢. We call Z = I A together with i and p in (1.5) a relative
cylinder on B>— A. For i={(i,i;) the maps i;:4A>">Z are trivial
cofibrations since pi,=1,; use (Cl).

Let X be a fibrant object.

Two maps a, f: A — X are homotopic relative B (or under B) and we write
o~ B rel B if there is a commutative diagram

A4 >z
B
(1.6) (a,ﬂ\ /H
X

where Z is a relative cylinder on B >—— A. We call H a homotopy from o to f8
rel B. We will prove that homotopy rel B is an equivalence relation, see
Chapter 11

For a ¢-cofibrant object A there exists the sum A + Y (also denoted by
A v Y). The sum is given via (C2) by the push out

1.7 A+Y=AJY=4vY
¢
where Y>—A+Y is a cofibration by (C2). Also A>—A+Y is a

cofibration provided Y is ¢-cofibrant. We define the mapping cylinder Z , of
f:A—Y by a factorization of the map (1, f):Y + A— Yvia (C3):

(1.8) (/)Y +A>—Z, 5.
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If Y is cofibrant this yields the factorization f = gi,,
1 io

where ¢ is a retraction of i,: Y Y+ A Z;and where i A>—Y
+ A>—Z;. Moreover, we can use the cylinder Z =14 in (1.5) for the
construction of the mapping cylinder via a push out diagram:

1y.1) (®)

{f\i1) pllSh (lo i)

A
Z
A+ Ae——Y+ A4

Here i, is a weak equivalence since iy:A>—— Z is a weak equivalence.
Therefore the retraction g of i, is a weak equivalence by (C1).

(1.9) Definition. A commutative square

A ——C

in a cofibration category C is a homotopy push out (or homotopy cocartesian)
if for some factorization B>—— W = A4 of f the induced map

WUD—»C
B

is a weak equivalence. This easily implies that for any factorization B >—V
=5 A of f, the map V| JzD — C is a weak equivalence. Thus in the definition
we could have replaced ‘some’ by ‘any’ or used g in place of f. We leave the
proof of these remarks as an exercise, compare (I1,§1) [

Next we consider functors between cofibration categories.

(1.10) Definition. Let C and K be cofibration categories and let «:C —+K be a
functor.
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(1) The functor « is based if C and K have an initial object (denoted by )
with a(*) = *.

(2) The functor « preserves weak equivalences if o carries a weak equivalence
in C to a weak equivalence in K.

(3) Let

A—L s y=ax

B

B——X

be a push out diagram in C. We say that « is compatible with the push out
Al X if the induced diagram

aA —»a(AUX)

] ] B
oB —— aX

is a homotopy push out in K, see (1.9).

(4) We call « a model functor if o preserves weak equivalences and if « is
compatible with all push outs as in (3). Hence a model functor « carries
homotopy cocartesian diagrams in C to homotopy cocartesian diagrams
in K. I

We will see that a based model functor is compatible with most of the
constructions in a cofibration category described in this book. In general, we
do not assume that a model functor carries a cofibration in C to a cofibration
in K.

§1a Appendix: fibration categories
By dualizing (1.1) we obtain

(1a.1) Definition. A fibration category is a category F with the structure
(F, fib, we),

subject to axioms (F1), (F2), (F3) and (F4). Here fib and we are classes of
morphisms in F, called fibrations and weak equivalences respectively. These
morphisms satisfy the condition that the opposite category C=F°? is a
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cofibration category where the structure of C is given by

f°? is a cofibration in C <> f is a fibration in F,

la.2
(12.2) f°P is a weak equivalence in C<>f is a weak equivalence in F.

By dualizing the axioms (C1),...,(C4) we obtain the axioms (F1),...,(F4)
which characterize the fibration category. 1

We write A —> B for a fibration and 4 = B for a trivial fibration. An
object X is cofibrant (or a cofibrant model) in F if each trivial fibration Y =» X
admits a section. An object X is e-fibrantin F if X — ¢ is a fibration. Herc e is a
final object in F. Hence "e-fibrant’ is the notion dual to "¢-cofibrant’ in (1.3) and
‘cofibrant model in F’ is the notion dual to *fibrant model in C’ in (1.1).

We leave it to the reader to formulate the axioms (F'1), (F2) and (F3). Axiom
(F4) is given as follows.

(F4) Axiom on cofibrant models: For each object X in F there is a trivial
fibration MX =» X where M X is cofibrant in F.

Of course, a cofibration category has properties which are strictly dual to
the properties of a fibration category and vice versa. It turns out that this is a
good axiomatic background for many results which satisfy the Eckmann—
Hilton duality. Any result in a cofibration category which follows from the
axioms (Cl1),...,(C4)corresponds to a dual result in a fibration category which
follows precisely by dual arguments from the dual axioms (F1),...,(F4).
Therefore, we describe our results only for a cofibration category. We leave the
formulation of the dual results to the reader.

We obtain path objects and the notion of homotopy in a fibration category
as follows: By (F2) there exist pull backs

AxgY — 4

’ ’

Y —— B

in F. We denote by
(1a.3) (14,14):A—> A xgA

the diagonal map which is dual to the folding map. A factorization of the
diagonal map by (F3), namely

(1a.4) A—’;’»P—»A x gA
q
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withgj=(1,,1,),is called a path object for 4 —> B. Two maps «, f: X — A4 are
homotopic over B (« ~ f over B) if there is a commutative diagram

P—1 5 Ax,4

(1a.5) H\ /‘ wp
X

We call H ahomotopy from a to § over B. Here we assume that X is a cofibrant
object in F. Compare (0.5).

As an example, the category Top with fibrations, defined in (0.9), and with
homotopy equivalences as weak equivalences is a fibration category. This is
proved in §4 below.

Our definition of a cofibration category (resp. of a fibration category)
corresponds to the following concepts in the literature.

(1a.6) Remark. A category of cofibrant objects in the sense of K.S. Brown
(1973) has the structure (C, cof, we, ¢) which satisfies (C1), (C2) (b), (C3) and
for which

‘all objects are ¢-cofibrant’. (A)

D.W. Anderson (1978) essentially adopts these axioms but he omits (A). His
left homotopy structure (C, cof, we) satisfies the axioms (Cl1), (C2)(b) and (C3)
and the axiom ‘C has finite colimits’. In addition he uses the axiom

‘all objects are fibrant models’, see (1.1), (B)

which he calls the homotopy extension axiom. Moreover A. Heller (1968)
defines the structure of an h—c—category (C, cof, e = ¢, ~ ) where ~ is a natural
equivalence relation, compare also Shitanda. If weak equivalences are the
maps in C which are isomorphisms in C/~, then this structure satisfies the
axioms of K.S. Brown above. Recently Waldhausen (1984) used axioms on
cofibrations, in particular, in his set up he assumes e¢ = ¢ and (A4).

§1b Appendix: proof of (1.4)

We now continue the proof of (1.4). Assume all objects in C are cofibrant and
assume (C2) (b), (C1) and (C3) are satisfied. For the construction of the
mapping cylinder in (1.8) we only made use of these axioms. Now consider the
push out in (C2) and assume that f is a weak equivalence. We hope to
show that also f is a weak equivalence. First we get the commutative
diagram
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f
/—_—_\‘
A > T - M, T > X
I push 1 push I . 1)
SR
s

By (C1) we know that i, is a weak equivalence, thus by (C2) (b) also i, is a
weak equivalence.
Next consider

A X X
I push I push 1 push I . (2)
B Y Z Y

Since gio=1 we see that goi, =1y and therefore g, and i, are weak
equivalences. Next we obtain for Z in (1.8) the following diagram with ¢ =0

oreg=1:
A Z A
I push 1 I 3)
B Z B

(4)

Here Z,, is given by the push out map P — A and by (C3). Now we have the
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following commutative diagram:

y4

—»
el

.

A>-~_021>T. Zg

The top, the bottom, the right-hand side and the left-hand side of this cubical
diagram are push outs. The map = is the one in (1.8). Now

ASZ, M,

is the map i, in (1). Therefore Z, — M, is a weak equivalence. Thus Z,, —» My,
is a weak equivalence. Hence Z,— M, is a weak equivalence and therefore by
(2) the composition f:4 >~»Z, 5 M, 25X is a weak equivalence. This
completes the proof of (1.4). [

§2 The axioms of Quillen

We now compare the notion of a cofibration category with the notion of a
model category as introduced by Quillen (1967). The model category is defined
by axioms on cofibrations and weak equivalences in a category M. This notion
is self-dual, that is, the dual category M°? is once more a model category where
the roles of fibrations and cofibrations are interchanged. Therefore a model
category has two faces which are dual to each other. We show that the notion
of a cofibration category extracts from a model category the essential
properties of one of these faces.

(2.1) Definition. A model category is a category M with the structure

M, cof, fib, we),

which satisfies the axioms (C1), (F 1), (C2) (b), (F2) (b) and the following axioms
(MO), (M1), (M2).

(MO): M is closed under finite limits and colimits.
(M1): Given a commutative diagram of unbroken arrows
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A— X

A
7
. //
ET // i P
7

B— Y
where i is a cofibration, p is a fibration, and where either i or p is a weak
equivalence, then the dotted arrow exists such that the triangles
commute.
(M2): Any map f may be factored f = pi where i is a cofibration and a weak

equivalence, and p is a fibration. Also f = pi where i is a cofibration,
and p is a fibration and weak equivalence.

If in addition (C2) (a) and (F2) (a) are satisfied M is called a proper model
category, see Thomason and Bousfield—Friedlander. I

(2.2) Definition. A map f:V— W is called a retract of g: X — Y if there exists a
commutative diagram

Vv X |4

11

W—70>Y — W

in which the horizontal maps compose to the identity. A model category as in
(2.1) is a closed model category if it satisfies in addition the following axiom
(CM).

(2.3) If f is a retract of g, and g is a weak equivalence, fibration, or
cofibration, then so is f. I

(2.4) Definition. Axiom (MO) implies that a model category M has an initial
object ¢ and a final object e. Hence ¢-cofibrant and e-fibrant objects are
defined in M as in (1.3) and § 1a respectively. Let M, (resp. M) be the full
subcategory of M consisting of ¢-cofibrant (resp. e-fibrant) objects. I

(2.6) Proposition. Let M be a model category. Then M, with cofibrations and
weak equivalences as in M is a cofibration category. Dually M ; with fibrations
and weak equivalences as in M is a fibration category. Moreover, if M is proper
(M, cof, we) is a cofibration category and (M, fib, we) is a fibration category.

Proof: (C3) follows directly from (M2). We now prove (C4). For any object X
we have by (M2) a factorization X >~ R —» e of X — e. We claim that R is
a fibrant model. In fact, for each trivial cofibration R >~ Q we have by (M1)
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the commutative diagram

Q——e
This shows that each e-fibrant object in M is a fibrant model. O

The following lemma shows that our definition of fibrant models in (1.1) is
essentially consistent with Quillen’s definition of fibrant objects.

(2.6) Lemma. Let X be an object in amodel category. Then X is a fibrant model
in the sense of (1.1) if and only if X is a retract of an e-fibrant object in M.
By axiom (CM) in (2.3) we derive:

(2.7) Corollary. In a closed model category the fibrant models are exactly the e-
fibrant objects.

Proof of (2.6). Let X be a fibrant model. By (M2) we have the factorization
X>"X-—>»e

of X —e. Then X is e-fibrant. Since X is a fibrant model the trivial cofibration
X > X admits a retraction. Therefore X is a retract of an e-fibrant object.
Now assume X is a retract of an e-fibrant object U with

xSHUuLx, ri=1y.

For any trivial cofibration X >~ Y we have the push out diagram

Y—i—>P

X LU
where Jis a trivial cofibration by (C2). Since U is e-fibrant we know as in the
proof of (2.5) that U is a fibrant model. Therefore there exists a retraction 7 of J.
Now rfi is a retraction of j since (r7i)j = riji = ri = 1.
Thus X is a fibrant model in M. O

Since there are many examples of model categories we obtain by (2.5) many
examples of cofibration categories and of fibration categories. In the following
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list of model categories we use the notation: Ob =class of all objects,
Ob = class of cofibrant objects and Ob, = class of fibrant objects. We write

(2.8) cof = M(fib, we)

if cof contains precisely all maps i which satisfy (M1) in (2.1) whenever p is a
trivial fibration. Dually we write

2.9) fib = M cof, we)
if fib contains precisely all maps p which satisfy (M1) whenever i is a trivial

cofibration. In a closed model category (see (2.2)) we always have (2.8) and
2.9).

(2.10) Proper model category (Strgm (1972)), Compare (4a.5).
C=Top,
cof = closed cofibrations in Top (see (0.8)),
fib = fibrations in Top (see (0.9)),

we = homotopy equivalences,
Ob,= 0b, = Ob.

(2.11) Proper closed model category (Quillen (1967)).

C =Top,
cof = M(fib, we),
fib = Serre fibrations (see (0.11)),
we = weak homotopy equivalence (= maps inducing isomorphisms
for the functors [K,-] where K is a finite CW-complex), (see (0.6)),
Ob, = Ob, Ob, contains the class of all CW-complexes.

(2.12) Proper closed model category (Quillen (1967)).

C = category of simplical sets,
cof = injective maps,
fib = Kan fibrations,
we = maps which become homotopy equivalences is Top if the
geometric realization functor, X+ | X|, is applied,
Ob; = Kan complexes, Ob, = Ob.

Moreover the singular set is a model functor (see (1.10)) from the cofibration
categories Top in (2.10) or (2.11) to the cofibration category of simplicial sets.
By change of the weak equivalences in (2.12) one obtains the next example.

(2.13) Closed model category (Bousfield (1975)). C = category of simplicial
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sets, cof = injective maps, fib = M (cof, we) and

we =maps f:K— L which induce isomorphisms f:k,(K)x~k(L),
0b = k,-local Kan complexes, Ob. = Ob.

Here k, is a generalized homology theory defined on CW-pairs and satisfying
the limit axiom, see (5.10). The functor k, is transfered to simplicial sets by
setting k, (K, L) = k,(|K],|L]).

(2.14) Remark. Further examples of closed model categories are described
in K.S. Brown (1973), Bousfield—-Kan (1973), Dwyer—Kan (1983), (1984),
Dwyer (1979), Munkholm (1978), Bousfield—Gugenheim (1976), Quillen (1967)
(1969), Edwards—Hastings (1976), Bousfield—Friedlander (1978), Jardine
(1985). The structure of a model category on the category of small categories is
considered by Thomason, Illusie, Fritsch—Latch and Grothendieck (1983),
for the category of groupoids see Anderson. Moreover, Varadarajan (1975)
studies the category of modules the homotopy theory of which first appears
in Eckmann (1956), Hilton (1965). This is one of the first examples in the
literature in which homotopy theory is discussed in a non topological
context, see also Huber (1961).

§3 Categories with a natural cylinder

We here combine the notion of a cofibration category with the concept of
abstract homotopy theory as introduced by Kan (1955). This concept relies
on a natural cylinder object, see also Kamps. Under fairly weak assumptions
on a natural cylinder we can derive the structure of a cofibration category.

(3.1) Definition. An I-category is a category C with the structure (C, cof, I, ¢).
Here cof is a class of morphisms in C, called cofibrations. I is a functor C— C
together with natural transformations iy, i, and p. ¢ is the initial object in C.
The structure satisfies the following axioms (I1),...,(I5). I

(I1) Cylinder axiom: I:C—C is a functor together with natural trans-
formations

ig, iyiide— 1, pl—idg,

such that for all objects X pi,: X — I X — X is theidentity of X for& = 0 and
¢ =1. Compare (0.1).

(I2) Push out axiom: For a cofibration i:B— 4 and a map f there exists the
push out



I3)

(14)

(I5)

We
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A——»AUX

B
il l ,
B—— X
f

where 7 is also a cofibration. Moreover, the functor I carries the push
out diagram into a push out diagram, that is I(4{ )pX)=14Js/X.
Moreover, I1¢ = ¢.

Cofibration axiom: Each isomorphism is a cofibration and for each
object X the map ¢ — X is a cofibration. We thus have by (I12) the sum
X+Y=X{J,Y=X v Y. The composition of cofibrations is a cofibr-
ation. Moreover, a cofibration i:B >—— A4 has the following homotopy
extension property in C. Let {0, 1}. For each commutative diagram in C

]

A——X

f
there is E:]14 — X with E(li)= H and Ei,=f. Compare (0.8).
Relative cylinder axiom: For a cofibration i:B — A the map j defined by
the following push out diagram is a cofibration:

h

B+ B pus AUVIBUA——-»]4.

(im IB

Equivalently (IB,Bv B)y—(IA,A v A) is a cofibration in Pair(C), see
(I1.1.3) below.

The interchange axiom: For all objects X there existsamap T:11X - IIX
with Ti, = I(i,)and TI(i)) = i,fore =0 and ¢ = 1. We call T an interchange
map.

sketch the double cylinder I1X by

|

li

\
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The interchange map T restricted to the boundary 8I% X is the reflection at the
diagonal.

Remark. If a functor I is given such that (I1) is satisfied we can define the class
of cofibrations by the homotopy extension property in (I3). In this case, (12),
(I4) and (I5) are additional properties of the functor I. An example is the
cylinder functor for the category of topological spaces, see §0.

(3.2) Definition. We say f,, f1:A — X are homotopic if there is G: 14 — X with
Giy = foand Gi; = f;. We call G a homotopy and we write G: f, ~ f;. A map
f:A— X is a homotopy equivalence if there is g:X - 4 with fg ~1, and
gf ~1,. Compare (0.7). I

(3.3) Theorem. Let (C,cof,I,¢) be an I-category. Then C is a cofibration
category with the following structure. Cofibrations are those of C, weak
equivalences are the homotopy equivalences and all objects are fibrant and
cofibrant in C.

Remark. Assume the initial object ¢ = * is also a final object. Then we obtain
the suspension functor X:C — C by the push out diagram

IA —— %4

o |

A+ A ——=

in C. This suspension functor is an example of a based model functor which
carries cofibrations to cofibrations, see (1.10). We leave the proof of this
useful fact as an exercise, compare Chapter IL

Before we prove theorem (3.3) we derive some useful facts from axioms
(I1),...,(I5). First we see by (I4) that j=(iy,i;):A+ A— 1A is a cofibration
and by (I3) and (I2) that also iy, i;:4— A + A are cofibrations. Let i:B— A4
be a cofibration. We derive from (I4) the push out diagram:

q
AVIBuA—>4( )4

(3.4)
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where A| JA is the push out of A« B— A and where g =10Upu1. We call
I, A the cylinder under B. We call H:14 — X a homotopy under B if H factors
over IzA.

(3.5) Lemma. Homotopy under B is an equivalence relation.

Proof. Let H: f ~ f,and G:f ~ f; be homotopies under B. Then we have by
(I12) and (I4) the commutative diagram

AUIBUA —— I(AUIBUA)

lo

/'I l (H.,fpp,G)

IA— X
Ip

Since j is a cofibration we obtain the homotopy extension E:11A — X by (I3).
Then — H + G =Ei,: fo~ f; under B. Moreover, f,~ f under B if we set

fi=fand G= fp. a
For a map u:B—- U let
(3.6) [4,U)=[4,U7"

be the set of homotopy classes {v} under B of all maps v:4 - U with v|B=u.
Clearly, a pair map (f, g) for which

Y ——B
g

[

X —— 4

commutes, induces
(37 /=4, U] - [X,U]“

by f*{v} = {vf}. f*is well defined since If gives us the map If:1, X — I, A, see
(3.4). Moreover, a homotopy G:u ~ i determines the function

(3.8) G*:[4, U] ->[4,U]*

as follows: For the diagram
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we obtain the extension E: 14 — U by (I3). Then we set G* {v} = {Ei, }. Here G*
is well defined, since for a homotopy H:v~v under B we have the
commutative diagram (by (I2))

AuIBUA —— [(AUIBUA)

to
1/ l (E.GIp,E)

IA—U
H
We choose a homotopy extension E. Then Ei,:Ei; ~ E'i; under B.

(3.9) Lemma. G* is a bijection.

Proof. Since we assume cofibrations to have the extension property for i, and
i, see (I3), we obtain the inverse of G* if we replace in the construction of G*
the map i, by i,. O

For the cofibration A + A— I 4 and for maps u,v: A — U we have by (3.6) in
particular the set of homotopy classes [14, UT**,(4,v):4 + A— U, of homo-
topies from u to v. For f:X—>A the pair map (If, f+ f) induces
IN)*:[1A, U > [IX, U/,

(3.10) Lemma. If fis a homotopy equivalence then (If)* is a bijection.

Proof. Let g:A— X be a homotopy inverse of f andlet H: fg~1, H:IA - A4,
be a homotopy. Then we have the commutative diagram

[IA, U]""’ M, [IA, U]ufg,vfg

\ J(uH,vH)# ' ()
[14, U]**

Here we have for G:IA— U, G:u ~v, the equation

(uH, vH) (fg)* {G} = (uH,vH)* {Gl(fg)} = {Ei, }, 2)
where we can choose E to be (see (I5)): E = G(IH)T:1IA—IA— U.Infact, Eis
a homotopy extension for

A+ A —" 5[4+ 4)

T l (uH,vH) » (3)

A —U
GIf9)

since we have uH = El(i;),vH = El(i,), GI(fg) = Ei,. Moreover, we have
Ei, = G. This proves that the diagram above commutes.
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Since (fg)* = g*f* we see by (3.9) that f* is injective. In a similar way we
prove that g* in (1) is injective. This proves the proposition. O

For a map f:B—Y we define the mapping cylinder Z, by the push out
diagram (Compare (1.8)):
I

f
Zf

——-»
(3.11) IB—07F &

N,

(3.12) Lemma. j=f_i1:B——>Zf is a cofibration and q:Z;— Y is a homotopy
equivalence with qj = f.
In particular we see that p: B — Bis a homotopy equivalence if we set f = 1.

Proof. j is a cofibration since we have the push outs:

B——B+B——1IB

I

Y —— Y+B——Z;

Now iy is the homotopy inverse of g. Clearly, gi, = 1. Moreover, we obtain a
homotopy H:i,q ~ 1, , by the following diagram where we use (I2):

1|IB—————— [B

Here we obtain o =&T (see (I5)) by the map a:1IB—IB which is the
extension for

B+ B ————I(B + B)

lo
i [ 1(1'017. 1>

[B —— IB
toP

where we use the fact that jis a cofibration. O
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We now are ready for the proof of the theorem:

Proof of (3.3). We have to check the axioms (C1),...,(C4). By (I1) and (3.5) we
see easily that (C1) is satisfied. By (3.12) we see that (C3) is satisfied. We now
prove (C4) and (C2). We consider

f

B——
A

I /
| ¥ lq (1)
with qf =g|B and where ¢ is a homotopy equivalence. Let §:Y— X be a
homotopy inverse of ¢ and let
Hqq~1, HIX-X (2)

be a homotopy. By (3.10) the map (Iq)*:[IY, Y]*' - [1X, Y]**4 s surjective.
We choose Ge(Ig)* ™' {qH}. Then we have a homotopy A: 11X —»Y

A:G(Ig)~qH under X + X. (3)
We define
hy=gdg:A—->X. )
Thus we have a homotopy
H(If):ho|B=4g|B=qqf = f. ©)
Let H:IA— X be the homotopy extension for

B—1IB

lo

[

A— X
0

and let h = Hi,. We see by (5)
h|B=f since H|IB = H(If). (6)

Therefore h makes the upper triangle in (1) commutative. Thus we have
proven:

()

For each diagram of unbroken arrows as in (1) there is a map h
which makes the upper triangle commutative.

We derive (C4) from (7) as follows. We show that all objects are fibrant,
that is:
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For each trivial cofibration i:B >~ A there is a retraction ®)
r:A— B with ri = 1.

We obtain (8) if we apply (7) to the diagram
1

B——B

II- ;I )

e
A——d
Next we prove (C2). We consider the push out diagram

A————»AUY
X

il l i_l . (10)

X——Y
q
Clearly, i is a cofibration by (I2). Now let g be a homotopy equivalence. We
have to prove that ¢t isa homotopy equivalence. We choose H, G and A asin (2)
and (3). Since X — A is a cofibration we have the retraction r which is given by a
homotopy extension for the push out diagram

X————IX

A X Y

PR
-
—=_
-
-

N
1
b

*
o
-
-
=1
~ e

N
C
Py
>
1
b
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For the push outs of the rows we obtain the composition 7 by the
commutative upper triangle in the diagram

[N

X
l(l,ip)ul : (12)
A - Ay
X

t—l (LiH)i)

Here (1,iH):AuIX — A is well defined since for H in (2) we have Hi, = 1.
Moreover, I is well defined since (1, iH)riyi = iHi, = igq. We claim that f is a
homotopy inverse for ¢ in (10). First we see

tt=(1,iH)rig~(1,iH)ri, =1, (13)

since the identity on 14 is a homotopy i, ~i,. We now consider the
composition ff in (12). First we see

((Lippu rul)i,ul)=RuUl, where}

4
R=(1,ip)riy:A > A. (14

Now (1,ip)ri, = 1,.Since ris a retraction for j, in(11) we see that(l,ip)r = Fis
in fact a homotopy F:R ~ 1, relative X. This gives us the homotopy
Fup:Rul~1. (15)

From (14) and (15) we derive that tf ~ 1 since the lower triangle in (12)
homotopy commutes. To see this we construct below a map

AIIX>Y (16)

with the following properties A(liy) = G(Iq), Aiy = qH, A(li,) = qp, Ai, = qp.
We sketch this by

\

qapr

Glq qp

Y

qH

Now A gives us the homotopy K:I((AUIX)UX Y)- Al )yxY, AlIA =
tp, AJIIX =iA, A|IY = iG. One can check that A is well defined by (I2) and
that indeed A is a homotopy A:t[(1,iH),ig] ~(1,ip)u1 so that the lower
triangle in (12) homotopy commutes.

We now construct A in (16). For the cofibration X + X - IX we obtain by
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(I4) the cofibration
jOPPX =IXUIX + X)UIX > I?X. (17)
We consider the commutative diagram of unbroken arrows:

orrlx —r - Ix
//’
TJ r- :J . (18)

e

rx P ,x

where y(liy) = yip = 1, y(li;) = yi; =i, p:I1X - X - IX. Since p is a homotopy
equivalence, there is by (7) a I such that the upper triangle in (18) commutes.
This gives us the commutative diagram

o1’ X >— I(3I2X)
I

J-J T, 19)

¥

IZX —/{)Y

where A= G(Iq)T and where T is defined by (lio) = A (see (3)), Tllip) =
Mligp=G(lg)p, T(i)=4Ai,p=qpp, TUIi)=Ali)p=qgpp. We now
choose a homotopy extension E for (19), E:I3 X — Y. Then we see that Ei, = A
has the properties in (16). O

We check that Ig4 in (3.4) is a cylinder on B< 4 as in (1.5).

(3.13) Lemma. p:IzA— A is a homotopy equivalence.

Proof. We have the push out diagram

AN

[A—— IgA

| mo |

IB —;—» B
Since p is a homotopy equivalence also p is one by (C2). O

§3a Appendix: categories with a natural path object

The dual of an I-category is a P-category (C, fib, P, e), where fib is the class of
fibrations, P is the natural path ebject and e is the final object in C. We write
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PX = X" for an object X in C. P:C—C is a functor together with natural
transformations

(3a.1) X—X I mX

with ¢,i=14(e=0,1), compare (0.2). The P-category satisfies the axioms
(P1),..., (PS) which are dual to the axioms (I1),...,(I5)in (3.1). The dual of the
homotopy extension property of a cofibration in (I3} is the following homotopy
lifting property of a fibration A—»> B in fib: Let ¢€{0,1}. For each
commutative diagram

f

X — 4

(3a.2) H ¢p

B —— B
qE

there is E:X — A’ with (p')E = H and ¢,E = f. Compare (0.9).

We leave it to the reader to formulate precisely the axioms (P1),..., (P5)
which are dual to (I1),...,(I5) in (3.1). Two maps f,, f;:X — A are homotopic
with respect to the natural path object if there is a map G: X — A’ with q,G = f
and q,G=g.

Clearly, the results which are dual to those in §3 are available for a P-

category. The dual of the mapping cylinder in (3.11) is the mapping path object
W; given by the pull back diagram

f

Be—r——Y

‘10] pu“ T
(3a.3)

3
B "___'Wf'
i AN
N
\\

As a corollary of (3.3) we get by strict duality:

(3a.4) Theorem. Let (C.fib,P,e) be a P-category. Then C is a fibration
category with the following structure: Fibrations are those of C, weak

equivalences are the homotopy equivalences and all objects are cofibrant and
fibrant.
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§4 The category of topological spaces

We show that Top has the structure of an I-category and of a P-category. This
result generalizes to the category Top(C — D) of spaces under C and over D.
Thus Top (C — D) has the structure of a cofibration category and of a fibration
category by the results in §3.

Let I and P be the cylinder and the path space on Top, respectively, see (0.1)
and (0.2). By (0.3) we see that (I, P) is an adjoint pair in the following sense.

(4.1) Definition. Let I be a natural cylinder and P be a natural path object on
C. Then (I, P) is an adjoint pair if a natural bijection C(IX, Y) = C(X, PY) is
given with i* =g, for ¢=0, 1 and with p*=i_. 0

Clearly, for an adjoint pair (I, P) the homotopy relations induced by I and
P respectively, coincide.

The empty space (J is the initial object in Top and the point e is the final
object in Top. Moreover, in Top exist push outs and pull backs.

(4.2) Proposition. With the notation in §0 the category Top has the structure of
an I-category and of a P-category.

Proof. Only (I4) is not so obvious. We prove (I4). In a dual way we prove the
P-category structure, see page 133 in Baues (1977). Let I x I~ I x I be a
homeomorphism which is given on the boundary by the sketches:

>——} >

4

1
ER |
>
~y

One easily verifies thati:B— 4 is a cofibration iff for the push out diagram

A—— AUIB—"— 1A

e

B— IB
lo
with j, = (iy, Ii) there is a retraction r with rj, = 1. For the map j in (I4) we
obtain such a retraction 7 for j,:D = (TA)VI(AVIBUA)— IIA, by use of a.
Let B be the restriction of « x 1, such that the diagram
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D — 1IA

Jo
ﬁJ laxl

HAUIB) —— 114
T(ljo)

commutes. Here T:1IA — I1 Ais the mapin (I5) with T(¢,,t,,a) = (t,,t,,a). We
now define ¥ = B~ 1(Ir)T(e x 1). O

(4.3) Definition. Let C be a category and let u:C — D be a fixed map in C. We
define the category C(u) = C(C — D) of objects under C and over D. Objects are
triples (X, X, X) where

C5X 5D, u=32x%
A map f:(X,%%)—>(Y,y,9)is a map f:X — Y such that fX=y, pf=2%. |

C(u) has the initial object C 5 C — D and the final object C » DL D. Pull
backs and push outs in C(u) are given by pull backs and push outs in C. We
define a natural cylinder I and a natural path space P which are functors

4.4) I, P:Top(u) —» Top(u).

We define Z = I(X, X, £) by the push out diagram in Top

2

X x1I > Z D

ixl]\ push ] s

Cxl—C
p

where £ = (£p,u). We define W = P(X, X, %) by the pull back diagram in Top

w

w X!

pull lﬁ' s

D ——D!
1

C

w

where w = (u,iX). The natural transformations iy, i;, ¢, ¢,, p, I are given
similarly as for (0.1) and (0.2). Again (I, P) is an adjoint pair.

(4.5) Some examples are:

Top( —+) =Top (I empty, * = point),
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Top(* — ) = Top*; this is the category of basepoint preserving maps,
Top(C — *) = Top©, spaces under C,

Top(J — D) = Topy, spaces over D,

Top(x — D) = Topj, pointed spaces over D,

Top(D 3> D) = Top(D), spaces under and over D = ex-spaces over D.

Let internal cofibrations in Top(u) be the maps in Top(u) which have the
homotopy extension property with respect to I in (4.4). Let internal fibrations
in Top(u) be the maps which have the homotopy lifting property with respect
to P in (4.4). With these notations we obtain in the same way as in (4.2):

(4.6) Proposition. The category Top(u) with internal cofibrations and internal
fibrations has the structure of an I-category and of a P-category respectively.
The homotopy theory of Top(u) was studied in many papers in the literature,
see for example Mc Clendon (1969), James (1971) and Eggar (1973). In fact,
many of the results in these papers rely only on the fact that the axioms of a
cofibration category or of a fibration category are satisfied in Top(u).

§4a Appendix: the relative homotopy lifting property

We say C is an IP-category if C has the structure (C, cof, fib, I, P, &, e) with

the following properties (IP1), (IP2) and (IP3).

(IP1) (C,cof, I, &) is an I-category and (C, fib, P,e) is a P-category.

(IP2) (I, P) is an adjoint pair, see (4.1).

(IP3) The following relative homotopy lifting property is satisfied: Let
i:tA >— X be a cofibration and let p:Y —> B be a fibration. Then any
solid-arrow diagram

Xuld — Y
x
Gid| g g
IX ——B
can be extended commutatively by amap H. Here X U I A is the push out
I ‘o

(4a.1) Proposition. Let C be an IP-category and assume C satisfies (MO) and
(M2)in (2.1). Then C is a proper model category in which weak equivalences are
the homotopy equivalences.

Proof. We obtain (M1) by the following argument (see 6.1 in Hastings).
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Consider the commutative diagram of solid arrows:

A—X
~

e
R ‘ 1
T’/ P (1)
B——Y
Suppose i is a homotopy equivalence. Then i is a deformation retract by

(IL1.12). Let r:B — A be a retraction, and let H:IB — B be a homotopy relative
A from ir to 15. We obtain the commutative diagram of solid arrows:

Buld -5, 4 2 X

IB~ B > Y
H

By (IP3) the filler F exists. Now Fi; = f is a filler for (1). In a dual way we
obtain the filler f in (1) if p is a homotopy equivalence since we have:

(4a.2) Lemma. The dual C°? of an I P-category C is an I P-category with I = P°P
and P = I°P.
In particular, (IP3) is self-dual! ]

We now consider the category Top with the structure Top =
(Top, Eo—f, fib, P, %, e). Here c—ofis the class of closed cofibrations in Top. As
in (4.4) we see that Top satisfies (IP1) and (IP2). Strgm proved that Top satisfies
(IP3). Therefore we get:

(4a.3) Proposition. m is an [ P-category.
Moreover, Strgm proved that T—op satisfies (M2). Therefore we derive from
(4.8) the following result of Strgm:

(4a.4) Corollary. T—op is a proper model category, compare (2.10).

This example shows that it is convenient to consider the class cof of
cofibrations as part of the structure of an I-category. Compare the remark
following (I5) in (3.1).

(4a.5) Proposition. Let u:C— D be a map in C. Suppose that C is a model
category or that C is an IP-category which satisfies (M2). Then the category
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C(u) is a cofibration category with the following external structure
cof = maps in C(u) which are cofibrations in C,
we = maps in C(u) which are weak equivalences in C,
all objects C— X —> D (for which % is a fibration in C) are fibrant in C(u).
Moreover, C(u) is a fibration category with the dual external structure. We

leave the proof of (4a.5) as an exercise. By (4a.5) for example m(u) has
external structures; these are different from the internal structures in (4.5).

§4b Appendix: the cube theorem

Let C be a category which has the structure (C, cof, fib, we) such that (C, cof,
we) is a cofibration category and such that (C, fib, we) is a fibration category.
A proper model category or a category which satisfies (IP1) in §4a has such a
structure. In particular, the category Top in (4.2) (and Top(u) in (4.6)) is an
example.

(4b.1) Definition. We say that the ‘cube theorem’ holds in C if C has the
following property: Consider a commutative cubical diagram in C

A'—>B'

N,

x
[ C__—’
A— '—>B
\ ¥ \ 8
c—— D
in which

(a) the left and rear faces are homotopy pull backs, and
(b) the bottom face is a homotopy push out. Then
(a) the front and right faces are homotopy pull backs, if and only if
(by the top face is a homotopy push out. I

Clearly, homotopy pull backs (=homotopy cartesian diagrams) in a
fibration category are dual to homotopy push outs in a cofibration category,
see (1.9). There is an obvious dualization of the ‘cube theorem’ in (4b.1) which
we call the ‘dual cube theorem’. We recall the following well known result,
compare V. Puppe.

(4b.2) Proposition. Let (Top, cof, fib, we) be defined by cofibrations, fibrations



34 I Axioms and examples

and homotopy equivalences in Top as in §0. Then the cube theorem holds in Top.
The dual cube theorem, however, does not hold in Top.

This is a crucial example which contradicts a global assumption of duality
in the structure (Top, cof, fib, we). Hence Eckmann—Hilton duality does not
hold in general in Top.

(4b.3) Remark. The cube theorem is not a formal consequence of the axioms
of a proper closed model category. Indeed in such a category the cube theorem
holds iff the dual cube theorem holds. Using (4b.2) the model categories in
(2.10) or (2.11) are counter examples.

(4b.4) Remark. 1f the top and bottom faces of the diagram in (4b.1) are
homotopy push outs and if &, B, and y are weak equivalences, then also & is a
weak equivalence. This follows from the axioms of a cofibration category as we
shall see in (I[.1.2).

In addition to the cube theorem we have in Top a further compatibility of
homotopy colimits and homotopy limits: consider the diagram (n = 0)

A, >— A, >—1lim A4,

a,ll lanﬂ 11 lﬁ-‘_ﬂf‘n.

B, >—B,,; >—lim B,
—

(4b.5) Proposition. Let (Top, cof, fib, we) be defined as in (4b.2). If diagram Lis a
homotopy pull back in Top for all n, then also 11 is a homotopy pull back for
all n.

Compare V. Puppe. The properties in (4b.2) and (4b.5) can be considered as
further basic ‘axioms’ of homotopy theory concerning both fibrations and
cofibrations.

§5 Examples of cofibration categories

We describe some basic topological examples of cofibration categories and of
fibration categories respectively. For algebraic examples see the following
sections §6, §7, §8 and §9.

(5.1) Theorem. The category Top of topological spaces with the structure
cof = cofibrations in Top, see (0.8), and
we = homotopy equivalences in Top, see (0.7),

is a cofibration category in which all objects are fibrant and cofibrant.



5 Examples of cofibration categories 35

Proof. Top is an I-category by (4.2) and hence the result follows from (3.3).
()

(5.2) Theorem. The category Top with the structure

fib = fibrations in Top, see (0.9), and
we = homotopy equivalences in Top, see (0.7),

is a fibration category in which all objects are fibrant and cofibrant.

Proof. Topis a P-category by (4.2) and thus the proposition follows from (3.3)
by strict duality, see (3a.4). This shows that the results (5.1) and (5.2) are strictly
dual. O

Next we consider the category Top* of base point preserving maps with the
following (exterior) structure:

cof = maps in Tep* which are cofibrations in Top,
(5.3) fib =maps in Top* which are fibrations in Top,
we = maps in Top* which are homotopy equivalences in Top.

We say an object X is well pointed if * — X is a cofibration in Top and we say X
is very well pointed if * — X is a closed cofibration in Top, see (4a.3).

(5.4) Theorem. Top* with the exterior structure (cof, we) in (5.3) is a cofibration
category in which all objects are fibrant models. The well pointed spaces are the
cofibrant objects.

Proof. This is an easy consequence of (5.1), compare (11.3.2). O

(5.5) Theorem. Top* with the exterior structure (fib,we) in (5.3) is a fibration
category in which all objects are fibrant. The very well pointed spaces form a
sufficiently large class of cofibrant models, see (1.2).

Proof. This result is not strictly dual to (5.4). We deduce the proposition from
Strgm’s theorem in (4a.4). O

Recall that by (4.6) we have a different internal structure of Top* as a
cofibration category and as a fibration category.

Next we describe some examples for which the weak equivalences are not
homotopy equivalences in Top. We define the CW-structure on Top by

cof = inclusions B <« A for which 4 is given by a well-ordered
succession of attaching cells to B, see (0.12)
we = weak homotopy equivalences = maps f:X — Y which



36 I Axioms and examples

induce isomorphisms f,:7(X, xo) = m, (Y, fxo)
on homotopy groups for k =0, x,eX.

(5.6) Theorem. The category Top with the CW-structure (cof,we) is a cofibr-
ation category in which all objects are fibrant models. CW-complexes are
cofibrant objects and all cofibrant objects are CW-spaces.

In the theorem we use the following definitions of CW-complexes and CW-
spaces. A relative CW-complex under A is obtained by inductively attaching
cells to A4 as follows:

(5.7) Definition. The pair (X, A) is a relative CW-complex if a filtration
AcX’cXlc.-.cX=limX"
—

of cofibrations in Top is given with the following properties: X is the disjoint
union of A with a discrete set Z, and X" is obtained by a push out diagram
(nz1)in Top

O Dn - X’l

Zn

Cn

) ) 5
Osn—l Xn—l
Zn I

where O denotes the disjoint union. The space X" is the relative n-skeleton of
(X, A) and f,, is the attaching map of n-cells, c, is the characteristic map of n-
cells. If A is empty we call X a CW-complex. A CW-space is a topological space
which is homotopy equivalent in Top to a CW-complex. Clearly, for a relative
CW-complex (X, A) the inclusion 4 = X is a cofibration in the CW-structure
(5.6). |

Proof of (5.6). (C1) is clearly satisfied, (C3) and (C4) are typical results of
obstruction theory, moreover, (C2) can be proved by the Blakers—Massey
theorem. We can deduce the result as well from the model category of Quillen
in (2.11) since cofibrations in the CW-structure are also cofibrations in this
model category. 0

(5.8) Remark. Cofibrant objects in the CW-structure of Top yield the follow-
ing CW-models of spaces. By (C3) any space X in Top admits the factorization
&> X =5 X where (¥ is the empty space. The cofibrant object X is called a
CW-model or a resolution of X. There is a functorial construction of a
resolution X by using the singular set SX of X. The realisation |SX| of the
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simplicial set SX admits a natural map |SX|— X which is a weak homotopy
equivalence. Since |SX | is a CW-complex we see that F>—|SX|~ X isa
CW-model. Compare, for example, the appendix of § 16 in Gray.

We will prove in Chapter II that a weak equivalence X — Y between objects,
which are fibrant and cofibrant, is also a homotopy equivalence. This fact,
which holds in any cofibration category, yields by (5.6) the following
Whitehead theorem:

(5.9) Proposition. Letf:X — Y be a weak homotopy equivalence. If X and Y are
CW-spaces then f is a homotopy equivalence in Top.

Indeed, the concept of ‘weak equivalence’ originates from this result.

In the next example we define weak equivalences by use of homology groups
instead of homotopy groups. Let k, be a generalized homology theory defined
on CW-pairs, see for example Gray. A CW-pair (X, A) is a cofibration
A>— X in Top for which 4 and X are CW-spaces. We assume that k, satisfies
the limit axiom, namely, that for all X the canonical map li_m»k*(X ok (X)
is an isomorphism where the X, run over the finite subcomplexes of the CW-
complex X. Let CW-spaces be the full subcategory of Top consisting of
CW-spaces.

(5.10) Theorem. The category CW-spaces = C with the structure

cof = maps in C which are cofibrations in Top,
we = h-equivalences =maps f:X > Y in C
which induce an isomorphism f:k (X) = k,(Y)
is a cofibration category.
In its most general form, as stated, this result is due to Bousfield (1975),
compare (2.13). The non-trivial part of the theorem is the existence of the
fibrant models (C4).

(5.11) Definition. A fibrant model of a CW-spaces X in the cofibration
category (5.10) is called a k,-localization of X. A fibrant object is called a k-
local space. I

There are the following special cases of k,-localizations where H,(X;R)
denotes the singular homology of X with coefficients in R. In this case we
denote the cofibration category (5.10) by CW-spaces (R).

(5.12) Remark. Let R be a subring of the rationals Q. If X is simply connected
(or nilpotent) and k, = H,( ; R)then the k,-localization X  of X is the usual
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R-localization of X with n,(X z) = 7,(X)® R. As remarked in Bousfield (1975)
this case was discovered by Barratt—Moore (1957, unpublished). Sub-
sequently, this case has been discovered and/or studied by various authors, e.g.
Bousfield—Kan (1972), Hilton—Mislin—Roitberg (1975), Mimura—Nishida—
Toda (1971), Quillen (1969), Sullivan (1970).

(5.13) Remark. 1f X is simply connected (or nilpotent) and k, = H,( ;Z/pZ)
with p prime then the k-localization RX of X is the p-completion of Bousfield—
Kan (1972). If in addition X is of finite type then RX is the p-profinite
completion with n,RX given by the p-profinite completion of , X, see Sullivan
(1970) and Quillen (1969).

The next example relies on results of Quillen (1973) and Loday (1976). This
example is significant in algebraic K-theory. Recall that a group = is called a
perfect group if [n, 7] = n. Here [x, 7] denotes the commutator subgroup of 7.

(5.14) Example. C is the following category: objects are pairs (X, Ny) where
X is a well pointed path connected CW-space and where Ny is a perfect and
normal subgroup of 7, (X). Maps f:(X, Nx)— (Y, Ny) are basepoint preserving
maps f:X —Y in Top* with f (Ny) < Ny.

cof=maps in C which are cofibrations in Top,
we=maps f in C which induce isomorphisms,

{f*:nl(X)/Nx ~n,(Y)/Ny, and
fo B (X, f2q*@) = H (Y, q*Q)

for any (n,(Y)/Ny)-module £. I

Here H, denotes homology with local coefficients. The modules g*€ and

¥q*¢ are lifted by the projection g:x,(Y)—n,(Y)/Ny and by f 7 (X)—

7,(Y) respectively. By definition all objects in (5.14) are cofibrant. There is a
sufficiently large class of fibrant objects since we have:

(5.15) Theorem. The structure (5.14) is a cofibration category. A fibrant model
of (X, Ny) is given by Quillen’s (+ )-construction: R(X,Ny)=X".

Proof. (C1)and (C3) are clearly satisfied. We use the van Kampen theorem for
the proof of (C2). For X = A| JzY let Ny be the normal subgroup of the push
outn, X =7, 4| J, 57, Y, generated by N, « n;A and Ny = =, Y. Clearly, the
group Ny is normal and perfect since N , and N, are normal and perfect. It is
easy to see that (X, Ny) is the push out of a diagram (C2) in the category C.
Now let f be a weak equivalence. Since
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n A/N 4 i“’ n, X/Ny

| !

7, BINy —L2— 7, Y /Ny

is a push our diagram of groups we see that the top row f is an isomorphism.
Now let £ be any (n; X/Ny)module. By the five lemma and the long exact
homology sequences we see that f is a weak equivalence since (4, B) and (X, Y)
have the same homology by excision, compare Spanier (1966) for the
properties of H «- This proves (C2).

Next we construct fibrant models by theorem (1.1.1) in Loday (1976) which
shows that for (X, Ny) there exists a cofibration and a weak equivalence.

(X, Ny) >"5(X*,Ny+ = 0).

Each object (Y,Ny=0) in C is fibrant since a trivial cofibration (Y, Ny)
>3 (Z,N,) yields by the Whitehead theorem (5.9) the homotopy equival-
ence f,

[ Y>SZ>"57% =R(Z,Ny),
which by (5.1) admits a retraction. O

§6 The category of chain complexes

We consider the structure of a cofibration category and of an I-category on the
category of chain complexes.

First we have to introduce some standard notation. Let R be a ring of
coefficients with unit 1. A graded module V is a sequence of left (or right) R-
modules V = {V,,neZ}. An element xeV, has degree |x| =n and we write
xe V. A map of degree r between graded modules, f:V — W, is a sequence of R-
linear maps f,:V,—>W,,,, neZ.

A graded module V is free, projective, flat or of finite type if each V,(neZ)
is a free, projective, flat or finitely generated R-module respectively.

A graded module V is positive (or equivalently non negative) if ¥V, =0 for
n < 0. Moreover V is bounded below if ¥, =0 for n « 0. On the other hand,
V is negative if V, =0 for n>0. We also write V"= V_,, especially if V is
negative.

The suspension sV of a graded module V is defined by (sV),=V,_,. Let
s:V — sV be the map of degree + 1 which is given by the identity, |sv| = |v| + 1.

(6.1) Definition. A chain complex V is a graded module V withamapd:V -V
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of degree — 1 satisfying dd =0. A chain map f:V -V’ between chain
complexes is a map of degree 0 with df = fd. Let Chaing be the category of
chain complexes and of chain maps. The homology HV is the graded module

HYV = kernel d/image d.

The homology is a functor from Chaing to the category of graded modules. We
may consider a graded module as being a chain complex with trivial
differential d = 0. I

Remark. A cochain complex V is a graded module V = {V",neZ} with degrees
indicated by upper indices with a map d:V -V of (upper) degree +1
d=d"V"> V") satisfying dd=0. Equivalently, d:V,=V"">V,_, =
V~"*1 neZ, is a chain complex. Clearly, for a cochain complex V we have
the cohomology HV = kernel d/image d with H"V = kernel (d")/image (d"!).

(6.2) Definition. A weak equivalence in Chaing is a chain map f:V — V' which
induces an isomorphism on homology f,:HV =~ HV'. A cofibrationi:V - V’in
Chain, is an injective chain map for which the cokernel V'/iV is a free chain
complex. Equivalently, i is a cofibration if there is a free submodule W of V'
such that V@ W=V’ is an isomorphism of graded modules. Clearly
W = V'/iV in this case. I

(6.3) Remark. All results in this section remain valid if we define cofibration
i:V > V' by the condition that the cokernel V'/iV is a projective module. The
proofs below can be generalized without difficulty. Compare the result of
Quillen (1967) that Chaing is a model category.

Let Chain; be the full subcategory of Chain, consisting of chain complexes
which are bounded below.

(6.4) Proposition. By the structure in (6.2) the category Chainy is a cofibration
category for which all objects are fibrant.

We prove this result in (6.12) below.

The direct sum of graded modules V@ V' is given by

(6.5) Vev),=VaeVv,

The direct sum of chain complexes, V@ V", satisfies in addition d(x + y) =
dx + dy for xeV, yeV".
The tensor product V' ® W is given by
(6.6) Vew),= @ V. ® W,
itj=n

Here we assume that V;is a right R-module and that W, is a left R-module for i,
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jeZ.Incase V and W are chain complexes also ¥ ® W is a chain complex with
the differential
(6.7) dx®y)=dx®y+(—1"x®dy.

(6.8) Definition. Let V be a chain complex. The cylinder IV is the chain
complex with

avy,=v,®@v,esv,_,,

dx' = (dxy,
dx" = (dx)", N
dsx = — x" + x" — sdx.

Here V', V" are two copies of V and x+— x'(x+— x") denotes the isomorphism
V =V'(V =V"). Let ] be the free chain complex generated by {0}, {1} in degree
0 and by {s} in degree 1 with differential d{s} = — {0} + {1}. Then we identify

IV=I®V, (2

by V'={0}®@V, V" ={1}®VandsV = {s} ® V.Now (6.6) shows that (2)is an
isomorphism of chain complexes. The cylinder IV has the structure maps

i0.i1

vev2hiv Ly (3)
with igx = x', i;x = x", p(x') = p(x") = x, p(sx) = 0. I

(6.9) Remark. Let f,, f,:V— V' be chain maps. A homotopy G:f, ~ f; of
chain maps in the sense of (3.2) can be identified with a chain homotopy
o: fo~ f,. This is a map a:V — V' of degree + 1 with

do+ad=— fo + f;. )
Now «a yields a chain map G:IV->V’' by G(x') = fyx, G(x")= f;x and
G(sx) = a(x). One easily checks that (1) is equivalent to
Gd =dgG. 2
In case G is given we get o by a(x) = G(sx). In particular,
S:V-oIV, Sx=sx 3)

is a chain homotopy, S:iy ~i,, with o = GS.

Let (Chaing). be the category of free chain complexes, which are bounded
below, and of chain maps. This is the subcategory of cofibrant objects in (6.2).
Clearly, the trivial chain complex ¥V =0 is the initial (and the final) object of
Chaing.
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(6.10) Proposition. The cylinder functor I in (6.8) and the cofibrations in (6.2)
yield the structure of an I-category on (Chaing),.

(6.11) Corollary. Let f:V—V' be a weak equivalence between free (or
projective, see (6.3)) chain complexes which are bounded below. Then f is a
homotopy equivalence in the I-category (Chaing)..

The corollary follows from (6.4) by the result in (11.2.12) since V and V" are
cofibrant and fibrant objects, see also (5.9).

Proof of (6.10). The cylinder axiom (I1) is satisfied by definition in (6.8). The
push out axiom (I2) is satisfied since for graded modules V, W we have
VeW)RI=VR®I® W®I. Next consider the cofibration axiom (I3). The
sum is the direct sum X + Y =X @Y of chain complexes. Let

B>—A=(B®W,d)

be a cofibration and let W" = {xeW||x| <n}. Then A"=(B@®W"d) is a
subchain complex of 4 with A" > A"*!. We now define inductively the
homotopy extension E(c =0) by the maps

EmIA"| ) A X.
An
Let E"*! be given by
E"1(sw) =0,
E"*1(w")= f(w) + E"S(dw),
for weW,, ,. We check that E"*! is a well-defined chain map:
From dS + Sd =i, — i, we derive
E"*ldw” = EMidw
= E"(dSdw + iydw)
=dE"Sdw + d fw
— d(En+ 1 W”).
On the other hand, we get
E"*ldsw=E"*1(w" —w — Sdw)
=(fw+ E"Sdw) — E"(w' + Sdw)
=0.
Since we assume that A4 is bounded below we can start the induction and

therefore the homotopy extension E exists. The relative cylinder axiom (14) is
an easy consequence of the definitions. Moreover, the interchange axiom (I5)is
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satisfied since we have the chain map

TRLIRIRX~IRIRX,
with T@®b)=(—- 1'"b®a. I
(6.12) Proof of (6.4). The composition axiom (C1) is clearly satisfied. We now

prove the push out axiom (C2). Consider the short exact sequences of chain
complexes in the rows of the diagram

B >—>A4 — A/B

~Jf push Jf Ul . (1)
Y >>»X —X/Y
The long exact homology sequence of the rows and the five lemma shows that f

is a weak equivalence. Compare IV.2. in Hilton-Stammbach. Next we prove
the factorization axiom (C3). We construct the factorization

f:B>——>A=(BG—)W,d)—:>Y 2

inductively, where we use the notation in the proof of (6.10). Assume we
constructed g,:A"— Y such that g, is n-connected, that is (g,), :H;A" - H;Yis
an isomorphism for i < n and is surjective for i =n. Then we choose a free
module V' =V’ , and we choose d such that

v -5(ZA", —>> H, A" 3)

maps surjectively onto kernel (g,),.. Here Z denotes the cycles. Therefore we
can choose g’ such that

A — Y,
gn

B

Vi—— Y,y

g
commutes, (V' is free). We define the chain map

g:A=(A4@V,d->Y 5
by (4). By definition of d in (3) the map ¢’ induces an isomorphism in homology

for all degrees < n. The map g/, however, needs not yet to be (n + 1)-connected.
Therefore we choose a free module V and we choose g” such that

VEAZY sy —> Hyoy Y (6)
is surjective. Let dV=0 and let W,,, =V'@®V. Then ¢’ and g¢" yield the



44 I Axioms and examples

chain map ¢, ,, which is (n + 1)-connected. Since Y is bounded below we can
start the induction. Therefore the factorization in (2) exists. Finally we show
that all objects are fibrant. Let

B>~ A=(B®W,d) )

be a cofibration and weak equivalence. We choose inductively a retraction
fuA" =B, fii=lp, @)

and a homotopy a,:if, ~ g, where g,: A" = A4 is the inclusion. Assume f, and «,
are defined. By

o,d +do, = g, — if, )
we have
ifd=g,d—do,d
=d(g, — a,d). (10)
Since i is a weak equivalence there is by (10) a map x:W,,,; — B,,, with
dx = f,d. Moreover (¢, — ,d — ix) carries W, to the cycles of A by (9).

Again since i is a weak equivalence we can choose maps z:W,,, =B, .,
y:W,1— A, such that

iz+dy=¢g,41 — o, d—ix. (11)
We now define the extension f,,, ; of f, by f,+, =x+zon W, and we define
the extension «, ., of a, by «,,, =y on W, . This shows
dfn+l=dx=fnd=fn+ld9
In+1 _ifn+l =Gn+1 —ix—iz
=dy+a,d by (11)

=doty 1 + Uysd. (12)
We can start the induction since A is bounded below. By (12) the choice of
maps f, yields a retraction of i in (7). 0
Let
(6.13) SC,:Top— (Chain,),

be the functor which carries a space X to the singular chain complex SC, X of
X. The following result is an easy exercise, compare the notation in (1.10).

(6.14) Proposition. The singular chain functor SC, is a model functor which
carries the cofibration category of topological spaces in (5.1) to the cofibration
category of chain complexes in (6.3).
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§7 The category of chain algebras

We show that the category of chain algebras is a cofibration category and that
the category of free chain algebras is an I-category. Moreover, we consider the
chain algebra of a loop space.

In this section let R be a commutative ring of coefficients with unit 1. Thus a
left R-module M is equivalently a right R-module by r-x = x'r, réR, xe M.
The tensor product M @RN =M®N of R-modules is an R-module by
rx®y=rx)®y.

(7.1) Definition. A (graded) algebra A is a positive (or negative) module A
together with a map u:A® A — A of degree 0 and an element 1€ A, such that
the multiplication x-y = u(x ® y) is associative and 1 is the neutral element,
(I'x=x'1=x). A (non-graded) algebra is a graded algebra A which is
concentrated in degree 0, that is A, = A. A map f:4 — B between algebras
is a map of degree 0 with f(1)=1 and f(x-y)=f(x)-f (). I

The ring of coefficients R is a graded algebra which is concentrated in degree
0. This is the initial object = in the category of graded algebras since we always
have i:x > A, i(1)=1.

(7.2) Definition. An augmentation of an algebra A is a map &:4 — * between
graded algebras. Let 4 = kernel(e) be the augmentation ideal. The quotient
module QA = A/A4- 4 is the module of indecomposables. Here A4 denotes
WA® A). An augmentation preserving map f between algebras induces

Qf:QA-0B. I

(7.3) Definition. For a positive graded module V we have the tensor algebra

V) =PV,

nz0
where V®" = V® ---®@ V is the n-fold product, V®° = R. We have inclusions
and projections of graded modules

yen — T(V)— Ve,
n Pn

The tensor algebra is an algebra with multiplication given by V®"® V®" =
V®"*tm™ The algebra is augmented by ¢ = p,. We clearly have QT (V)= V.
For a map a:V — W of degree O let

T(): T(V)—> T(W)
be given by T()(x; ® -+ ® x,) = ax; ® --- @ ax,. Then QT(a) = . I
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(7.4) Definition. An algebra A is free if there is a submodule V < A with the
properties: V is a free module and the homomorphism T(V)— A of algebras
given by ¥V < A is an isomorphism. I

In this case V generates the free algebra A. If E is a basis of V' the free monoid
Mon(E), generated by E, is a basis of the free R-module 4. Moreover, the
composition V = A —» QA is an isomorphism of free modules.

For algebras A and B we have the free product A | | B which is the push out of
A<+ *— B in the category of algebras. Such free products exist. In particular,
the free product B [T(V) of B with the free algebra T(V) is given by
(7.5) BLIT(V)= @ B®(V®B®™"

nz0

Here the multiplication is defined by

@®1,® - ®1,8a)bo®W;® - @W,®b,)
=a,®0,® - ®v,8(a, b)) OW; ® - @w, &b,
with a;, b;e B and v;, w;e V. The product a,b, is taken in the algebra B. We
have TIV)[[T(W)=T(Ve W).
If B is augmented by ¢5:B — x we obtain the augmentation &:B[ [ T(V) — =
by &(b) = ¢4(b) for beB and &(v) =0 for veV.

(7.6) Definition. A differential algebra A is a positive (or negative) graded
algebra A together with a differential d:4 — 4 of degree — 1 such that (A4,d)isa
chain complex and such that

WARA—-A

is a chain map, see (6.7), that is
d(x'y) = (dx)'y + (— 1)"x-dy.

A map f: A — B between differential algebras is an algebra map and a chain
map: f(1)=1, f(x-y)= fxfy and df = fd.

If A is positive we call A =(A,,d) a chain algebra. If 4 is negative we call
A =(A*,d) a cochain algebra, in this case (4*,d) is a cochain complex as in
(6.1) and the differential has upper degree + 1, d:A"—» 4"*1,

The algebra = = R (concentrated in degree 0) is also a differential algebra
which is the initial object in the category of differential algebras. An
augmentation ¢ of A is a map ¢:4 - = between differential algebras. I

In this section and in Chapter IX we study the category of chain algebras
which we denote by DA. Let DA, be the category of objects over = in DA;
this is exactly the category of augmented chain algebras and of augmentation
preserving maps. Therefore  is the initial and the final object in DA . We
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also use the category DA (flat) which is the full subcategory of DA consisting
of chain algebras A for which 4 is flat as an R-module. When we replace
‘flat’ by ‘free’ we get the full subcategory DA (free). Recall that all free
R-modules are flat.

The homology HA = H(A,d) of the underlying chain complex of a
differential algebra is an algebra with the multiplication

(1.7) HAQHA -5 HA® 4) > HA

with j({x} ® {y}) = {x ® y} where x and y are cycles in A. If A is augmented
also HA is augmented by ¢ =¢,: HA —» H, = ». We point out that for a chain
algebra A we have the canonical map

A:A—HyA 1)

with Ax =0 for | x| > 0 and Ax = {x} for | x| = 0 since for a chain algebra each
element x in degree zero is a cycle. An augmentation ¢ of A yields an
augmentation ¢, of the algebra H,A such that

e=g,A:A—»>HyA—>»*=R. )

This shows that a chain algebra is augmented iff the algebra HyA is
augmented.
In the category DA of chain algebras we introduce the following structure:

(7.8) Definition

(1) Amap f:B— Ain DA is a weak equivalence if f induces an isomorphism
S« HB— HA in homology.

(2) A map B— Ain DA is a cofibration if there is a submodule V of 4 with
the properties: V is a free module and the homomorphism B[ [T(V)— A
of algebras, given by B— 4 and V < A, is an isomorphism of algebras.
We call V a module of generators for B> A. The cofibration
B >— A is elementary if d(V) < B.

(3) Amap f:B— AinDA_ isa weak equivalence (resp. a cofibration)if fisa
weak equivalence (resp. a cofibration) in DA. For a cofibration fin DA,
we can choose the module of generators V such that ¢(V)=0. I

A chain algebra A is free if * — A is a cofibration. Thus the full subcategory
of free chain algebras is the category DA, of cofibrant objects in DA. Clearly
DA, = DA (flat) since a free chain algebra is also free as an R-module.

(7.9) Push outs in DA. For the cofibration B >— A = (BLIT(W), d) and for
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f:B—Y the induced cofibration Y > Al J5Y, given by

—>AU Y=(Y[IT(W),d)
push l s
—, Y

is generated by W and f=f ][]l is the identity on W. The differential d on
Al JpY is the unique differential for which f and T are chain maps. In case

i 1s an elementary cofibration we obtain d on 4| JzY by d: w-5BLy.

>

(7.10) Theorem. Let R be a principal ideal domain. Then the categories DA
(flat) and DA, (flat) with the structure (7.8) are cofibration categories for which
all objects are fibrant.

We prove this result in (7.21) below.

Next we describe an explicit cylinder for a cofibration in DA.

(7.11) Definition. Let B> A be a cofibration in DA. We define a cylinder
A U A>—1IgA - A

{igs i)

as follows: We choose a generating module W of the cofibration B< A4 so
that 4 = B[ [T(W). The underlying algebra of Iz4 is

1,4 =BLIT(W ® W’ @sW). (1)

Here W’ and W” are two copies of the graded module W and sW is the
graded module with (sW),= W,_,. We define i, and i; by the identity on
B and by

igx=x"i;x=x" for xeW. 2)

Here x'eW’ and x"eW" are the elements which correspond to xeW=
W’ = W”. Moreover, we define p by the identity on B and by

px'=px"=x forxX'eW x"eW’, 3)
p(sx)=0 for sxesW. (
The differential d on IgA is given by

dx' = iydx,dx" = ildx}

dsx = x" — x' — Sdx

(4)

where xe W. Here S: A — Iz A is the unique map of degree + 1 between graded
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modules which satisfies

Sb=0 for beB,
Sx =sx for xe W, (5)
S(xy) = (Sx)(i1y) + (— D™(iox)(Sy) for x, ye A. i

Lemma

) The map S is well defined by (5).

) The differential is well defined by (4) and (5) and satisfies dd = 0.
(¢) The inclusions iy, i, satisfy i; —io=Sd + dS.

) io,i; and p are chain maps with pi, = pi, = identity.

) (o, 1) is a cofibration.

Proof. For (a) it is enough to check, by (7.5), that S is compatible with the
associativity law of the multiplication, that is
S(xy)2) = Slyz)) = (Sx)y"z" + (= DX (Sy)z" + (= 1™ *Px'y(Sz).
Moreover, (b) follows from (c). Now (¢) is clear on B and on we W we obtain
(c) by Sdw + dSw = Sdw + dsw = (w" — w'), see (4) in (7.11). Assume that (c)
holds on x, yeA. Then (c) holds on the product x-y since
Sd(xy) + dS(xy) = (Sdx + dSx)'y" + x'(Sdy + dSy)
—_ (x// . xl)y// + xl(y(/ _— yl) - x//yl/ _ x/y/‘

Moreover, (d) is clear since pS = 0 by (5) in (7.11). By definition in (1) of (7.11)
we directly see that (i,, i) is a cofibration. O

(7.12) Definition. Let B< A be a cofibration and let f,g:4—X be maps
between chain algebras. We say f and g are DA-homotopic relative B if
f1B=g|B and if there is a map H:IzA — X of chain algebras with f= Hi,,,
g = Hi,. We call Ha DA-homotopy from f to g rel B. Equivalently, we call
the map a = HS:4—- X of degree + 1 a DA-homotopy from f to g (rel B),
see (7.11) (5). A map a:4A— X of degree +1 is given by a homotopy H
iff the following holds:

(1) o(b)=0 for beB,

2 ad+da=g—f,

(3)  alxy) = (@x)(gy) + (— W (fx)(@y) for x, yeA. i
By (2) we see that a DA-homotopy is a chain homotopy. Theorem (7.18)

below implies that ‘DA-homotopic rel B’ is actually an equivalence relation.

Lemma. Assume the cofibration B>—— A = B[ [T(W) is generated by W.
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Then amap a: A — X of degree + 1is a DA-homotopy from f to g if (1) and (3) in
(7.12) hold and if (2) in (7.12) is satisfied on generators weW.

Proof. We proveinductively that (2)in (7.12) is satisfied. Assume (2) is satisfied
on x and yeA, that is, adx + dax =gx —fx, ady + day =gy —fy. Then (2)
is also satisfied on x-y since we have

ad(xy) + da(xy) = a((dx)y + x(dy)) + d((ax)gy + (f X))
= (adx + dax)(gy) + fx(ady + day)
=(gx—fx)gy + fx(gy —fy)
=gxgy — fxfy=g(xy) = f(xy).

Here we set x = (— 1)™x. O

(7.13) Definition of T(V,dV). Let V={V,} be a positive graded module
with V, = 0. We define the graded module dV by

(dV), =V, ., equivalently V = s(dV). 1)

Let d: V- dV be the maps of degree — 1 given by (1). This yields the object

T(V,dV)=(T(V@adV),d) @)

in DA, by defining the differential d on generators via d:V—dV, d(dV) =0,
and by defining &(V) = ¢(dV) = 0. Note that

x> T(dV) >— T(V,dV) 3)

are cofibrations in DA,, (where T(dV) has trivial differential) and that T(V,dV)
has the following universal property. Let A be an object DA and let ¢: V- A
be a map of degree 0 between graded modules. Then there is a unique
map

@:T(V,dV)> A in DA 4)

which extends ¢, that is ¢|V = ¢. Moreover, in case A is augmented and if
ep =0 then also ¢ is augmented. [

By the next lemma we see that T(V,dV)= CT(dV) is a cone for the chain
algebra T(dV).

(7.14) Lemma. T(V,dV) is acyclic, that is, R>— T(V,dV) is a weak equi-
valence. In fact, R >— T(V,dV) is a homotopy equivalence in the I-category
DA, see (7.18).

Proof. In the I-category DA, we have the push out diagram
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1,T@dV) —— CT@V) = T(V,dV)

T

Since i, is a homotopy equivalence by (3.13) also i, is one by (C2)(b) and
(3.3). 0
The cylinder in the category DA is natural since a pairmap f:(4, B) > (X, Y)
with B>— A4, Y>— X induces the map
If IgA—-1,X
as follows: Let A = B[ [T(V). Then we define
Ufiga=iofa foraeA,
(If)i,a=i,fa foraeA, (*)
UIf)sv=Syfv forovel.
Here Sy =S:X - I, X is the map of degree + 1 in (7.11)(5).

(7.15) Lemma. There is a unique map If in DA which satisfies (*) above and we
have

(If)S 4= Sxf. ()

Proof. Clearly, there is a unique map between algebras which satisfies (*). We
now check (**). On be Bequation (**)is true since S ;b = 0 and sincefor fbe Y
also Sy f'b =0. Moreover, by definition, (#*) is true on ve V. Assume now (*x)
is true on x, yeA. Then we have

(I)S(xy) = I )((Sx)y" + (= 1)*¥'SY)
= (I)(SX))(fy)" + (— D) (I)Sy)) = S f(xy),
compare (7.11)(5). This shows that () is also true on xy and thus (**) is
proven. From (**) we derive that If is a chain map:

(If)d(sv) = If)(v" — v' = Sdv) = (fv)" — (fv) — Sfdv
= dS(fv) = d(If)(sv),
compare (7.11)(4). Now lemma (7.15) is proved. O

(7.16) Corollary. For a composition of pair maps fg:(D,E)—(A4,B)—(X,Y) in
DA we have I(fg)=(If)(9g).

Proof. Let D= E][T(W). Then we have for we W, (If)(Ig)(sw) = (If)(Sgw) =
S(fgw)=(I(f9))(sw) by (*x) and by (x). O
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(7.17) Corollary. The cylinder 13A of a cofibration B> A in DA is well
defined up to canonical isomorphism.

Let B be an object in DA. Then we have the category DAZ. The objects
are the cofibrations B >—— A in DA, the maps are the maps under Bin DA. We
obtain by (7.16) the functor

I:DA® > DA?,

with I(4, B) = (IzA, B). Wesay amap f:(4, B)— (A, B)in DA?is a cofibration
if f:4— A'is a cofibration in DA. The initial object of DAZ is the pair (B, B)
given by the identity of B. For this structure of DA? we have the

(7.18) Proposition. The category DAZ is an I-category.

Here we need no assumption on the commutative ring of coefficients R.
Similarly as in (7.18) we see that also (DA,)? is an I-category. The cylinder
in (7.11) is augmented by ep.

We derive from (7.18) and (3.12) that the projection p:lzd—A is a
homotopy equivalence in DA? and thus p is a weak equivalence in DA.
Therefore IzA is actually a cylinder for the structure (7.8) as defined in (1.6).
The following corollary is an analogue of the corresponding result (6.11) for
chain complexes.

(7.19) Corollary. Let R be a principal ideal domain and let f:A — A’ be a map
in DAE (flat). If f is a weak equivalence in DA then f is a homotopy equivalence
in the I-category DAS.

A similar result is true for augmented chain algebras. The corollary is a
direct consequence of (7.18), (7.10) and (I1.2.12).

Consider the functor

0:(DA,)! > (Chaing),,

which carries (4, B) to Q(A/B) where A/B is the push out of ¥ « B> A4 in
DA. Since 4 is augmented also 4/B is augmented and therefore the chain
complex Q(A/B) is defined by the quotient in (7.2). Clearly, if V generates
B>— A then Q(4/B)=V.

(7.20) Proposition. The functor Q above preserves all the structures of the
I-categories, that is: QI =1Q, Q carries cofibrations to cofibrations, and Q
carries push outs to push outs,

04 Xx)=04J0X;
B QB

also Q(*) = for the initial objects.
This is an easy consequence of the definition of cylinders in (7.11) and (6.8)
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respectively. The proposition shows that Q is a based model functor in the
sense of (1.10).

Proof of (7.18). The proof is actually very similar to the proof of (6.10). For
convenience we prove the result only for B = *. We leave the case B # * as
an exercise. Clearly the cylinder exiom (I1) is satisfied by (7.16) and (7.11).
Next we prove the push out axiom (I2). For the cofibration

B> A=(BLIT(W),d), (1)

and for f:B—Y the push out A|)pY=(Y[[T(W),d) is the unique chain
algebra for which the canonical map

f=rL1:BLUT(W)- YLIT(W) 03]
is a chain map, see (7.9). Now the functor I carries f to If with
(If)sw=Sfw=Sw=sw for weW. (3)

Therefore we get If = If and thus I carries push outs to push outs.
Next consider the cofibration axiom (I3). The composition of cofibrations
is a cofibration since we have

(BUT(V) LITW) = BLIT(V)LIT(W))=BLIT(V@ W).
For the cofibration (1) let W" = {xeW||x| <n} and let
A"=(BLIT(W"),d) “)
be the subchain algebra of 4 with 4" > A"*1. We now define inductively
the homotopy extension E (¢ = 0) by the maps
E1A"JA-X. )
A"
As in the proof of (6.10) we define E"*! on generators we W, , by
En+ 1(SW) — 0’
E"* Y (w") =f(w) + E"Sdw.
Here S is the homotopy is (7.11)(5). In the same way as in the proof of (6.10)
we see that E"*! is a well-defined map in DA which extends E". Inductively
we get the homotopy extension E. This proves (I3).
The relative cylinder axiom (I3) is clear by the definition of the cylinder
in (7.11). Finally, we obtain an interchange map for X = (T(V), d) as follows.
We observe that for the graded module I in (6.8) we can write

IX=(TA®V),d), )]

where we use the identification in (6.8)(2). Now we define the interchange
mapon IIX =(T(I®I® V),d) to be the algebra map T(t ® 1), see (7.4), where

(6)
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tR1IRQIQV-I®IRVisgivenby t(x @ y) = (— 1)*""y® x for x, yel. One
can check that T(t® 1) is a well-defined chain map. Now also (I5) is proved
and therefore the proof of (7.18) is complete. O

Proof of (7.10). The composition axiom is clearly satisfied and push outs as
in (C2) exist by (7.9). Moreover, we prove (C2), (C3) and (C4) in (7.26), (7.21)
and (7.22) respectively. We prove the results only for DA, slight modifications
yield the proof for DA as well. O

(7.21) Lemma. Each map f:B—Y in DA, admits a factorization B >—
A=DY.

Proof. We construct A = (B] [T(W), d) inductively where we use the notation
(4) in the proof of (7.18). Assume we constructed an extension ¢,: A" — X of
f such that g,,.:H;A"— H, X is an isomorphism for i < » and is surjective for
i =n. This is true for n = — 1. Then we choose V' =V, , and d such that
(Z denotes the cycles)

Vi — (ZA"), —> H,A", A =kernel ¢,
p

maps surjectively onto kernel (g,),. Therefore we can choose g’ such that

A — X,

L

Vv —g’_) )zn+l
commutes. Now ¢’ yields the map ¢g': 4" = A" [T(V')— X of chain algebras
which extends g,

Clearly, H;A’=H; A" for i <n. For i=n we have H,A' =(ZA"),/d A, .,
where d:A,,,=A,, ®ATQV' ® Ay —>(ZA"),, as follows by (7.5. By
construction of V’ the map pd’ maps surjectively onto kernel g,,. Therefore,
g’ induces the isomorphism H,A’~ H,X. Now we choose V=1V, ,, and g’
such that the composition

VEZX)y o > Hyol X

issurjective. Weset dV = 0. Then the extension g, , ;:A"* ! = A'T[T(V)—> X of
g’ given by g” induces an isomorphism H,g,,, for i<n and a surjection
Hn +19n+1- I:l

(7.22) Lemma. All objects in DA are fibrant.
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We point out that in (7.21) and (7.22) the ring of coefficients is allowed to be
any commutative ring.

Proof of (71.22). Let i:B>=>A be a cofibration and a weak equivalence,
A= (BLIT(V), d). We construct the commutative diagram in DA,

»l}
~U

J
I BvT(W,d |\~ (1
A

™~

—»A

where W ={A4,:n21} is given by the underlying module of A and where
T(W, dW) is the acyclic object in (7.14). We define j by the inclusion, see (1.7),
and we define A by W < 4, see (7.13)(4). Since j is a weak equivalence also 4 is
one by i = Aj. However, one readily checks that 4 is a surjective map of modules
since i,:HoB= H,A. We have the retraction r=(1,¢) of j where ¢ is the
augmentation of T(W, dW). Therefore rR is a retraction of i once we have the
commutative diagram (1). This shows that B is fibrant.

We construct R inductively. For this we fix a basis J,, of the free module V.
Assume R(p) is defined for eJy, | B| < n,and let aeJ, with |a| = n. Then R(dw)
is defined and

ARda = da
is a boundary. Choose yeB v T(W,dW) so that Ay = «; by the surjectivity of
A this is possible. Then
MRda — dy)=da — Ady = 0.

Furthermore, d(Rdx — dy) = Rdda =0. Now H(ker 1) =0 since A is a weak
equivalence (here we use the long exact homology sequence of the short exact
sequence ker A >—— B v T(W,dW)——>> A). Therefore we can find weker(A)
with

Rdo — dy = dw.
Now we define R on « by Rz =y + w. Then dRx = Rdx and ARa = Ay = «.
This completes the inductive construction of R in (1). O

For the proof of the push out axiom (C2) in (7.10) we use the following
spectral sequence of a cofibration: Let B> A = B] [ T(¥) be a cofibration
generated by V. We introduce the double degree | x| = (p, q) of a typical element

x=bgv.b,...v,b,eA,
by p=2%1_|vil and ¢ =37, |b,[, compare (7.5).
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Let 4, , be the module of elements in 4 of bidegree (p,q) and let

(7.23) F,A=@A,;
)56
The modules F,4 form a filtration of subchain complexes in 4 which is
bounded above since 4, < F,A. This yields the spectral sequence {E} ,A,d"}
which converges to HA. We obtain the E!-term as follows: We have
Equ =(F,A/F, 1A),s,=4,,
Using the interchange isomorphism we get
n ®in
ba = DI E,QBY),

nz0

A

compare (7.5). Moreover, the differential d° is given by the commutative
diagram

Ep = DV®),®(B°""),

g —
n20
0
d P 10dg
nz0
0 ~ ® ®(n+1)
qu 1= (V ")p®(B " )q—l
nz0

Here dy is the differential on B®"*" determined by the differential on B. Since
V 1s a free R-module we derive

(7.24) = H(E,,d°)
~ @(V®")p® Hq(B®'"+l)).

nz0
We now consider the push out diagram

BLUTW, o 21 (v 1 170),4)

I H

A .,
l push 1
B _— Y

in the category DA, see (7.20) (2). The map f induces a map between spectral
sequences such that for the E'-term the following diagram commutes:
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Ella.qA = @(V®")p®Hq(B®("H))

nz0
(7.25) T @ 1oH,2 ).
nz0
Ell,,qX — @(V®n)p ® Hq( Y@(n+ 1))
nzo0

(7.26) Lemma. Let R be a principal ideal domain and assume f:B—Y is a
weak equivalence in DA(flat). Then also f is a weak equivalence.

Proof. Since Bis flat as an R-module and since R is a principal ideal domain
we can apply the Kiinneth formula for H (B®"*") in (7.25). This shows that f,,
in (7.25) is an isomorphism since f is a weak equivalence. Now the
comparison theorem for spectral sequences shows that also f,:HA=HX
is an isomorphism. Compare Hilton—Stammbach. O

(7.27) Example. A topological monoid is a space M with a basepoint * and
with an associative multiplication p:M x M — M, u(x, y) = x-y, in Top such
that *-x=x'* =x. For example a topological group is a topological
monoid. The singular chain complex SC, M in (6.13) is a chain algebra in
DA, (flat) by the multiplication
11:SC (M) ® SC (M) =5 SC (M x M) 2 SC(M).

Here x is the associative cross-product of singular chains. In case we choose
the singular cubical chain complex the cross product is easely given by the
product f x g of singular cubes f,g. The augmentation of the chain algebra
SC, (M) is induced by the map M — . The homology algebra H, (M)=
H,(SC, M) in (7.7) is called the Pontryagin ring of M.

(7.28) Definition. For a topological space X with basepoint * we define the
Moore loop space QX. An element (f,r)€QX is given by reR and by a map
£:[0,r] - X with f(0) = f(r) = *. The topology of QX is taken from X® x R
where the function space X® has the compact open topology. The addition
+:QX x QX -QX
of loops is defined by (f,r)+(g,)=(f+g,r+s) with (f+ g)(1) =f(¢) for
O0t=srand (f+9)r+1)=g(t) for 0Lt =<s. This shows that QX is a
topological monoid. A basepoint preserving map F:X — Y induces the map
QF:QX - QY, (QF)(f, r) = (Ff, r). This shows that Qs a functor which carries
Top* to the category of topological monoids. I

By (7.27) and (7.28) we have the functor
SC,Q:TOP* - DA, (flat),
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which carries the pointed space X to the chain algebra of the Moore loop
space of X. Let Top* be the cofibration category of pointed spaces with the
structure (5.4) and assume that SC,Q has coefficients in a principal ideal
domain so that DA (flat) is a cofibration category by (7.10). Clearly SC,Q
carries a homotopy equivalence in Top* to a weak equivalence. This shows
that the functor SC,Q preserves weak equivalences. Furthermore, we have
with the notation in (3.10):

(7.29) Theorem. The functor SC,Q is compatible with all push outs A\ JzY
Jor which A, B and Y are path connected and for which B >—— A induces an
isomorphism on fundamental groups.

This shows that SC,Q is a model functor on an appropriate subcategory
of Top*, see (1.10), for example on the full subcategory of Top* consisting
of simply connected spaces. We do not prove the theorem in this book, for
simply connected spaces A4, B, Y the proposition can be derived from resuits
in Adams—Hilton.

(7.30) Remark. The functor SC,Q is not compatible with all push outs in
Top*. For example consider the push out of ! «—< * >—S§' or of [ —<
oI — x where I is the unit interval and where S* = I/dI is the 1-sphere.

(7.31) Definition. Let A and B be graded algebras (positive or negative), see
(7.1). Then the tensor product A ® B is a graded algebra. As a graded module
A® B is defined as in (6.6). The multiplication is given by the formula
@®b) (@ ®b)=(— 1)"(a-a)Q(b-b).

If A and B are augmented then so is A ® B by &a ® b) = ¢(a)-¢(b). Moreover,
if A and B are differential algebras as in (7.6) then A® B is a differential
algebra by the differential in (6.7). There is a natural isomorphism T:4A ® B >~
B® A of differential algebras by T(a®b)=(— 1)""*b®a. I

(7.32) Proposition. For the functor t1=SC,Q above we have a natural
isomorphism of chain algebras in Ho(DA , (flat)), see (I1.3.5),

H(X)®1(Y) ~1(X x Y).

This is easily seen by use of the cross-product of singular chains and by use
of the natural homotopy equivalence Q(X x Y)~QX x QY.

§8 The category of commutative cochain algebras

We show that the category of connected commutative cochain algebras is a
cofibration category and we consider the Sullivan—De Rham functor from
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spaces to such algebras. In Chapter VIII we shall show that this functor
induces an equivalence of rational homotopy theories. This section is based
on the excellent notes of Halperin. For further studies we refer the reader
to these notes, to Bousfield-Gugenheim, Tanré and clearly to the original
work of Sullivan.

Let R be a commutative ring of coefficients with unit 1 and with 3€eR;
for most results of this section we actually assume that R is a field of
characteristic zero.

(8.1) Definition. A (negative) graded algebra A = {A4",n = 0} is commutative if
xy =(— D"™y-x, compare (7.1). I

(8.2) Definition. For a graded free module V= {V",n =0} we have the free
commutative algebra over V, denoted by A(V), with

A(V) = Exterior algebra (V%) ® Symmetric algebra (V")

Here the symmetric algebra generated by V" is also the polynomial algebra
on generators in Ji'®" where Ji'" is a basis of V***". For a basis J,, of V
we also write A(J,) = A(V). The R-module A(V) is a free R-module since V
is free and since we assume 3€R. Let A(V)" be the submodule of elements
of degree n in A(V) which is generated by the products x; A --- A x, with
[x{|+ -+ |x]=n, x.eV. Here we denote the multiplication in A(V) by
X Ay, x,yeA(V). The algebra A(V) is augmented by ¢:A(V)— R, &x)=0,
xeV. Thus the composition V< A(V) = kernel (e)—> QA(V) is a canonical
isomorphism, see (7.2). I

For commutative graded algebras 4, B we have the tensor product A ® B
in (7.31) which is the push out of A « *— B in the category of commutative
graded algebras. We have

(8.3) AVYRAV)=AV@® V)

(8.4) Definition. A commutative cochain algebra is a negative differential
algebra which is commutative as a graded algebra, see (8.1) and (7.6). Let
CDA be the category of commutative cochain algebras; maps in CDA are
maps between differential algebras as in (7.6). Moreover let CDA, be the
category of augmented commutative cochain algebras, this is the category of
objects over * = R in CDA. An object A in CDA is connected if * — 4 induces
an isomorphism R=H°A4. Let CDAJ be the full subcategory of CDA,
consisting of connected augmented commutative cochain algebras. I

Clearly, the cohomology HA = {H"A} of an object in CDA is a commuta-
tive graded algebra which is augmented if 4 is augmented.
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The tensor product A ® B of objects in CDA is an object in CDA with the
multiplication and the differential in (7.31). If 4 and B are augmented also
A® B is augmented. Moreover, if R is a field, we have the isomorphism of
algebras HA® B)=HA® HB.

Remark. Bousfield—-Gugenheim introduce the structure of a model category
on CDA and CDA,,. Cofibrations in this structure, however, are defined only
abstractly and we have no explicit cylinder construction for such cofibrations.
We therefore consider the following structure of CDA,, which is also studied
by Halperin and Halperin—Watkiss.

(8.5) Definition

(1) A map f:B—A4 in CDA, is a weak equivalence if f induces an
isomorphism f,:HB— HA in cohomology.

(2) Amapi:B— Ain CDA, is a cofibration (or equivalently a KS-extension)
if there is a submodule V of 4 and a well-ordered subset J,, of V with the
following properties (a), (b) and (c).

(a) Vis a free module with basis J,, and & V) =0.

(b) The homomorphism B® A(V)— A of commutative algebras, given by
B— A4 and V < 4, is an isomorphism of algebras.

(c) ForaeJ, write V_, for the submodule of V generated by all feJ, with
B < . Then the differential in A satisfies

dWeBRA(V.,),
where we use the isomorphism in (b).

The cofibration i is called minimal if in addition |f|<|a]=B<a for
B,aedy. [

(8.6) Remark. A cofibration as in (8.5) is an elementary cofibration if dV < B.
For example, if J, consists of a single element the cofibration B> A is
elementary by (8.5)(2)(c). Also, (8.5)(2)(c) shows that each cofibration is the
limit of a well-ordered sequence of elementary cofibrations

(BOAVL,), d)>—(BOA(V_,).d),
with xeJ,. The composition of cofibrations is a cofibration since we have
BAAV)®AW)=BRAVOW).

The basis J, and the basis Jy yield the basis J,, uJy of V@ W which is well
ordered by setting a < g for aeJ,, feJy.
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(8.7) Definition of A(V,dV). Let V={V",n=0} be a graded free module,
=0 for n < 0. We define the graded module dV by

(dVYy = V"1, equivalently V = sdV. 1))

Letd:V—dV be the map of degree + 1 given by (1). This map yields the object

AV, dV)=(AV@ dV),d) 2

in CDA, by defining the differential d on generators via d:V —dV. Clearly
ddV =0 and ¢(V) = e(dV) = 0. If the basis J,, of V consists of a single element
t we also write A(t, dt) for (2). We have the isomorphism in CDA,,
AV, dV) = QAL dt). 3)
tely
Here an ‘infinite tensor product’ has to be interpreted as the direct limit of
finite tensor products. Note that

x> A(dV) >— A(V, dV) )

are cofibrations and that A(V, dV) has the following universal property: let
A be an object in CDA,, and let ¢:V —>ker(e)= A be a map of degree 0
between graded modules. Then there is a unique map

@:A(V,dV)—> A in CDA,, (5)
which extends ¢, that is, @|V =¢. By the next lemma we see that

A(V,dV)=C(A(dV)) is a cone on the algebra A(dV), which has trivial
differential. I

(8.8) Poincaré lemma. Let R be a field of characteristic zero. Then AV, dV)
is acyclic, that is, n:R >—— A(V, dV) is a weak equivalence.
Compare 1.3 in Bousfield—-Gugenheim.

Proof. By (8.7)(3) and by a limit argument it is enough to prove the
proposition for A(t,dt). If the degree |t] is odd we have A(t,dt) = A(d) @
t-A(dt) and HA(t, dt) = Adt)/(dt)-A(dt) = R. If |t] is even we have A(t,dr) =
A() @ (dt)-A(t). We define a map h of degree — 1 on A(t, dt) by h(v) =0 for
veA(t) and

h(W — i b_l i+1
for

w=dt i b;t'e(dt)A(t).
i=0

It is in the ‘formal integral’ h(w) that char(R)=0 is needed. For the
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augmentation ¢ and for # in (8.8) one can check dh + hd =1 —ne. Thus is a
homotopy equivalence of cochain complexes. O

(8.9) Remark. We recall the following result, (compare Halperin 2.2). Let R
be a field of characteristic zero and let i: B >—— A be a cofibration in CDA?.
Then there exists factorization of i,

B> A AQAV,dV)Z 4,

where B > A is a minimal cofibration and where A ® A(V, dV)is the tensor
product in the category CDA,, of A and of an appropriate acyclic object as
in (8.7). The canonical inclusion j carries x to x®@1=x and « is an
isomorphism in CDA,. Clearly, j is a weak equivalence by (8.8).

(8.10) Lemma. Let R be afield of characteristic zero. Theneachmap f:B— Y in
CDAS} admits a factorization

f:B>—A453Y,
1
where i is a minimal cofibration and where p is a weak equivalence.

Remark. A factorization as in (8.10) is called a minimal model of f, or
a minimal model of Y in case B = « is the initial object. A minimal model
B >—— A of f is well defined up to an isomorphism under B, that is: for two
minimal models A, A’ there is an isomorphism a:4 — A" under B such that
pa ~ prel B. Compare the notes of Halperin and (I1.1.13).

For the convenience of the reader we now recall the proof of lemma (8.10),
see 6.4 in Halperin.

Proof of (8.10). We shall construct
A=(B®AX,d,),
where each X" is decomposed in the form
X"=@PXr, n=0.

rz0

The differential d, extends the differential d; of B and satisfies
dX7) c BOAX "®X%,), mz0,420. (1)
We shall simultaneously construct p:4 =5 Y so that
pd =dyp, p|B=/, (2)

and
pXgcker(e) ¢=0. 3)
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We now construct the modules X?. Set
X9 =ker {(H'(B) L5 HI(Y)).

Define d, on X so that d,(x) is a cocycle in B representing xeX?).
Extend p to X{ so that (2) and (3) holds. Suppose XJ has been defined
for g <rand p and d, have been extended to B® AX %, so that (1), (2) and (3)
hold. Let

X° =ker (H(B®AXY,) 2> H(Y))

and further extend p and d, just as we did when r = 0. Then we get
HB®AX®) =R @)
p*:H'(B®AX°)— H'(Y) is injective. %)
For the proof of (4) we need only to show that H*B®AX2,) =R for all
r. Assume this holds for ¢ <r; then HY(B® AX%,) = R. We write
{D=B®AX%,
B®AX%, =D®AX.

If $e(D@AX?)° is a cocycle write ¢ =y + @, + - + P, with ¢,eD°®
A X?, ¢, #0. Since d,¢ =0 we see that

dp®1)d, =0. (6)

In fact, d, carries D°@AX? to D'QA'X?®D'Q@AX? by the
derivation formula where the second coordinate is d, ® 1. Thus for j < m the
elements d,¢; do not meet D' ® A™X? and thus d, ¢ =0 implies (6). It
follows from our induction hypothesis and from (6) that ¢,,e A™X?.

Now by construction, d, injects X? onto a space of cocycles in D! which
does not meet dp(D°). On the other hand, d,¢ =0 and (6) show with
arguments as in (6) that

dspm+dp®@1)¢,_, =0.
Since ¢,,eAX? this implies
dA ¢m = O
Consider the acyclic object A(X?,dX?) in (8.8). Since d X°—D is
injective, it follows that d¢, =0 in A(X?,dX?). Since AXP?,dX?) is
acyclic by (8.8), the only cocycles in AX? of A(X?,dX?) are scalars. Hence
m=0 and ¢ = ¢,eR. This completes the proof of (4).

For the proof of (5) assume ¢e(BRAX®)!, d ¢ =0, po is a coboundary.
Then ¢e(BOAXYZ,)', some r, and so (by definition of X7, ) for some
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xeX%,, ¢— dAxedA(B@)AX‘;,). In particular, ¢ is a coboundary in
B® AXP°. This proves (5).

Next we construct the modules X7, n>0. Suppose that for some n>0
the spaces X7 are defined for m < nand g 2 0, and that d, and p are extended
to B®QAX =" so that (1) and (2) hold. Assume as well that

p* HB®AX “")—> H(Y) is (n— 1) regular. W)
Here we say that a map A (of degree 0) between graded modules is
n-regular if it is an isomorphism in degrees <n and injective in degree
n+1. Now define spaces W§=coker(p*)" and V§=ker(p*)"*! where
(p*) =p*:H(BOAX ") - H'(Y), i=n,n+ 1. Let
0o=Woy@V5,

dw)=0 for weW?, (8)

d 4(v) =a cocycle in BQ AX =" representing v, ve V3.
Extend p in the obvious way to X{ so that 2 holds. Then p* is surjective
in degree n on B AX “"®@ AX5.

Next, if X7 is defined for 0 < g <r and if the map p and the differential
d, are extended to B® AX “"® AX"., so that (1) and (2) hold, set (for r = 1)
X! =ker{p*: H"* (BOAX “"®@AX",)»H""'Y}.

Extend d, to X7 so that
d x)eBR®AX"®AX", is a cocycle representing x, xe X", ]
Extend p to X7 so that (2) holds. Then we get
p*: HB® AX *")— H(Y) is n-regular. (10)
In fact, since (B AX=""=(B® AX “")", m < n, it follows from (7) that p*
in (10) is an isomorphism in degrees less than n. We show next that it is
injective in degree n.

Suppose ¢ is a cocycle in (B® AX =")" and p¢ is a coboundary. Note that
PeBOAX""Q@AXY, some r. Let D=B®AX“"®AX", and let dj, be
the restriction of d,. Write

B®AX<"®AX"§,=D®AX:',
¢p=¥+Q, YyeD°®X}], QeD"
Since d4¢ =0 we conclude (d, ® 1)} = 0. But since H°(Y)=R, (7) shows
that H%D) = R. Hence yeX". It follows that d yed,(D"). In view of our
construction of X7, this implies i = 0.
Hence ¢eD. Continuing in this way we eventually obtain- e B®AX <™

Now (7) shows that ¢ is a coboundary. Thus p* in (10) is injective in degree n.
Finally, p* in (10) is surjective in degree n by the definition of W% < X 5. Itis
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injective in degree n + 1 by the same argument as used in the proof of (5). This
completes the proof of (10).

By induction we obtain A and the factorization in (8.10). Clearly, (10)
shows that p: 4 — Y is a weak equivalence and (1) shows that B> A isa
minimal cofibration. Moreover, (3) shows that p is augmentation preserving.
By definition pi =f. Therefore the proof of (8.10) is complete. O

(8.11) Lemma. Let the ring of coefficients be a field of characteristic zero. Then
all objects in CDA,, are fibrant with respect to the structure in (8.5).

Proof. The arguments are similar as in the proof of (7.22). Leti:B>=> A bea
cofibration and a weak equivalence. We construct the following commutative
diagram in CDA,, where B A(W,dW)=B v C(A(dW))is a sum of B and a
cone.

_———
B 1 B

‘/~
il BAW.dW) [~ (1)

R’/’ N‘
A=

1

Here W is the underlying module of 4, A = W, and A(W,dW) is the acyclic
object in (8.8). We define j by j(b) =b® 1 and we define 4 by i(b) = i(b) for
beBand A(v) = vforve W = A. Since A(W, dW)is acyclic we see that jisa weak
equivalence, therefore also 4 is a weak equivalence since i = 4j is one. We
have a restriction 7 of jby r = 1;® ¢ where ¢ is the augmentation of A(W, dW).
Therefore 7R is a retraction of i once we have the commutative diagram (1).
This shows that B is fibrant.

Now we construct R inductively. For this we fix a bases J, as in (8.5) (c).
Assume R(f) is defined for feJ,, B <« Then also Rd,« is defined and

/leAOt = dAOC

is a coboundary. Choose y€ B® A(W,dW)so that Ay = «. This is possible since
4 1s a surjective map of modules. Then

A(Rd 40 — dy)=d j0 — Ady = 0.
Here d is the differential of B&® A(W,dW). Furthermore,
d(Rd 4o — dy)= Rd d ;0 = 0.

Since H(ker 1) =0 we can write (for some weker(4))

Rd jo — dy = dw.
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Extend R to BQA(V,,) by setting

Ra=y+w.
By definition dRx = Rd 4e, while
ARax =2y =o.
This completes the inductive construction of R in (1). O

(8-12) Push outsin CDA,. In the category CDA, there exist push outs

(BOA(V).d,) L8N (Y@ AV). d)

| |

A —_— A®Y
B
zl push l,
B — Y
f

Here ARy Y = (Y® A(V),d) is the unique cochain algebra in CDA for which
f®1 and i are chain maps. In case B> A4 is an elementary cofibration we
obtain the differential on Y ® A(V) by the composition d = fd,:V—->B-Y.

(8.13) Lemma. The structure (8.5) of CDA,, satisfies the push out axiom (C2).
Here char(R) = 0 is not needed.

Proof. Since the homology is compatible with limits it is enough to check
axiom (C2)(a) for elementary cofibrations, see (8.6). In this case we have the
filtration of cochain complexes

B=F,cF,=B®A(®) (Ja]odd),
B=F,c:---cF,=B®A,c---cBRA()

(x| even), where A, is the submodule of A(x) generated by 1,a,...,a" The
quotient F,/F,_,=B®a" is a cochain complex which up to a change of
degree, is isomorphic to B. Thus the exact cohomology sequence of the pair
(F,,F,_,) and the five lemma show inductively that f is a weak equivalence
provided f is one. O

(8.14) Push outs in CDAS. Let R be a field of characteristic zero. In the
category CDAY of connected cochain algebras, see (8.4), there exist push out
diagrams of the form
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A——A|)Y

B
l push l ) (D
B ——77—* Y

where the connected push out A )Y is a quotient of A(X)z Y in (8.12). In case
HYAXpY)=R we actually have 4| JyY=4 X Y. In general, however,
A ®B Y may not be connected even though A, B and Y are; consider for
example

R A(dt)y>— A(t,dt) with [¢|=0.

For the construction of the push out 4| JpYin the category CDAY we use
the method of Halperin—Watkiss: By use of (8.9) we factor the inclusion
i:B>— A as a sequence of cofibrations in CDAY

iiB>—B=(BRA(V),d)>— A >4, @)

where V is concentrated in degree 0 and where A= B®A(W) with W° =0.
Choose a basis J, of the minimal cofibration B> B as in (8.5). We shall
define a surjective homomorphism in CDA,

mBRY=(YQA(V),d)—>»(YQAV),d)=Y (3)
B

where H%(Y) = R and we set

AJY=4RY, 4)

B B

where we use B—B(X)Y— Y. The map = is given inductively and extends
the identity of Y. For each aeJ, we shall define a surjective map in CDA,
T Y®AV,, > Y®AV,, such that HA(Y®A(V,,) =R, and such that if
B <« the inclusion YQAV_,—» YR AV, factors to yield a (unique) inclusion
Y®AV ;> Y®AV,,. Assume m; constructed for f < «. Consider

T =limng YQAV ,» YAV, =limYQAV_,

B<a B<a
In the case n . (d0)ed(YQAV.,) define Y®AV_,=Y®AV_,. Since
HYY®AV.,) = lim H(Y®AV,,) =R,
1m <

there is a unique w in the augmentation ideal of Y ® AV _, with dw = 1 _ (dw).
Extend 7, to @, by setting m (o) = w.
Otherwise set Y @AV, =Y® AV, Q@ A(@), dx = ,(dx) and extend 7.,
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to 7, by setting 7, (o) = «. In this case we need to verify that H(Y ® A I—/Sa) =R.
We show this similarly as (4) in the proof of (8.10). Suppose z = ¢, + ¢1—a + -
+ ¢,a" is a d cocycle of degree 0, ¢,cY®AV_, =D, with ¢, #0. Then
d¢,=0 and n¢,d(®) + d(¢,_ ) =0. The first equation shows that ¢, is a
scalar 4 # 0, since by the hypothesis da¢d(Y ® AV _,), the second equation
shows that n=0. Hence z=AeR. Finally, set n =lim, 7, with YQ AV =
lim,Y®AV,, in CDAY. This completes the definition of m. If E is in
CDAY and if $:AXpY—E is a map in CDA, it is evident from the
construction that ¢ factors to give a map 4 (X); Y- E. Thus (4) is the desired
push out in CDAJ. a

(8.15) Remark. The construction of Al JzY in (8.14) has a geometric
analogue in the definition of pull backs in the category Top} of path
connected spaces with basepoint. The usual pull back Xx,Z in Top* needs
not to be path connected even though X, Y and Z are objects in Topg.
Therefore we can use the path component (XxyZ), of the basepoint (*,*) in
XxyZ to be the correct pull back in the category Topd.

(8.16) Lemma. Let R be a field of characteristic zero. The structure (8.5) of
CDA¢ satisfies the push out axiom (C2).

Proof. By (8.14) push outs exist. Moreover (8.13) shows that AX)Y is in
CDAJ provided f is a weak equivalence. Hence Ay Y = A| J5Y and thus
(8.13) also shows that (C2)(a) is satisfied. O

From (8.16), (8.11), (8.10) and (8.6) we derive the following result:

(8.17) Theorem. Let R be a field of characteristic zero. Then the category
CDAY with the structure in (8.5) is a cofibration category in which all objects
are fibrant. Push outs in CDAY are the connected push outs described in (8.14).

(8.18) Remark. Cofibrations and weak equivalences in CDAY are also
cofibrations and weak equivalences in the model category CDA, defined
by Bousfield-Gugenheim. Therefore CDAS can be considered as an
explicit substructure of this model category. Cofibrations in the model
category CDA, are more complicated than our cofibrations in (8.5); in
particular, they need not to be injective maps between algebras, for example,
if V is concentrated in degree O then ¢ ® 1:A(V)® A— A (where A4 is any
object in CDA,) is a cofibration in the sense of Bousfield-Gugenheim. ||

Next we define for each cofibration i:B>— A4 =(BQA(V),d,) in CDAY
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an explicit cylinder object
(8.19) AYAa>25 1,454
B

in the cofibration category CDAJ of (8.17), compare (1.5). Here 4 JpA is
the connected push out constructed in (8.14), let V* =V/V° and let sV *
be the graded module defined by
sV~ '=(*), compare§6. 1)
We have the map of upper degree — 1
S=sp: V"= (V) ' —-(sV Ty !
(with 5V°=0) where p is the quotient map and where s is given by the
identity (1). For sV * we have the acyclic object A(sV *,dsV *) as in (8.8).
We now define the object IzA4 in (8.19) by the tensor product in the category
CDA,.
IzA=AQA(V*,dsV™)
=Av AsVt,dsV?),
which is a sum of 4 and a cone. The weak equivalence p in (8.19) is defined
by p =1 ®¢ where ¢ is the augmentation. Furthermore, we define i, in (8.19)
by the canonical inclusion
igl@=a®1 foracA. 3)
The definition of i;, however, is more complicated, compare §5 in
Halperin. We note that as an algebra
IpA=BRAV)RASV )R A(dsVY). 4
Thus a degree — 1 derivation, S, is defined by
S(B)=S(sV*)=8(dsV*)=0,
S(v)=35w)esV™*, forveV,see(l), 3)
S(xy) = (%) y +(— x-Sy, (x, yelpA).

)

We define a degree zero derivation, 6, on IzA4 in (4) by

0=dS + Sd, (6)
where d is the differential on I3A. Note that
d6=0d, pS=0, pf=0. )

Therefore S and 0 preserve kernel(e).

Lemma. For each ¢eclyA there is some N (depending on ¢) with 6%(¢) =0,
(6N = 6---6 = N-fold iteration of 6). ®)
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Proof of (8). For aeJ,, see (8.5), we have Bux —dSa = SdaclgA ., where
A.,=B®A(V.,). Hence

?aclpA .,

since OdSo = dSdSa + SddSa =0 by (5); in fact, Sa = sxesV " for aeJ, and
thus SdS« = 0 since dsacdsV *, see (2). Inductively we get (8) since 6(B) =0
and since 85v = 6dsv = 0 for SvesV ™*. O

By (8) we can define an automorphism e’ of Iz4 in CDA,, namely

o) N
exp(f) = e’ = NZO NT with inverse e~?. )

Finally, we obtain i, in (8.19) by
i, = e%, = (exp(dS + Sd))i,. (10)

This completes the definition of the cylinder object (8.19) provided we can
prove:

Lemma. The map (iy,i,) in (8.19) defined by (3) and (10) is a cofibration; in
fact (iy, i,) is a minimal cofibration if B>—— A is minimal. (11)

Proof. First assume that B>—— A4 =(B® A(V),d,)is minimal. Then we have
the factorization
B>—B,=(BRAV,d)>— A (12)
and one can check that (12) induces the canonical isomorphism in CDAY
AUA;A®A=<B®A<V’(—BV”>,d> (13)
B Bo Vo
Here V' = V" = V are isomorphic copies of V and V,, is the submodule of V'
and V" respectively with (V)° =V and (V,)"=0 for n #0. Let V'@, V"
be the push out of V' > V, = V" in the category of graded modules; (clearly
V’(—BVO V"= V@®V™*). Wenow obtain an isomorphism ¢ of algebras for which

the following diagram commutes and for which g|sV* is the canonical
inclusion sV * < IzA given by (4).

BRA(V' V' ®sV*) %» 14
Vo

lj Iu‘o,il)- (14)

BRAV' PV = A4
B

Vo

Here j is the canonical inclusion. One obtains the inverse g ~! of g inductively
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similarly as in the proof of (9.18) (9) below. Note that (i, ,) is a well-defined
map in CDAY since iy| B=1i,|B, actually io|B, =i,|B, since B> 4 is
minimal. Let J, be a well-ordered bases of V as in (8.5). Then we obtain the
well ordered basis Jg+ of sV* by the elements §(a) (axeJy,|a|>0)
with 5(x) < 5(B) if « < . Now one can check that

g—ld(s-a)eB®A< V’@V”(—B(sV")da). (15)

This proves that (i,,i,) in (14) is a minimal cofibration. Compare 5.28 in
Halperin.

Next assume that B> A4 is not minimal. In this case we can use the
factorization (8.9) and one can check that the induced map g in the following
commutative diagram is a cofibration:

A
A4 ——sp 1
B
I~ push ~
101 13 O
B
(8.20) Remark on cofibers. Let B>— A =(B® A(V),d,) be a cofibration in
CDAY. Then we have the push out diagram in CDA
A—— AB=AR*=(A(V).d)

e

where ¢ is the augmentation. The sequence B>—> 4 — A/B is exactly a KS
extension in the sense of Halperin. It is easy to check that x > A/B is a
minimal cofibration in case B >— A4 is minimal. On the other hand, we have
the push out diagram in CDAY:

A —2— (4/B)y= A+

e

where (4/B),, is the ‘connected component’ of A/B, compare (8.15). There is a
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quotient map A/B —>(A4/B), by the construction in (8.14), this is an
isomorphism in case H°(4/B) = R. In general, A/B may not be connected even
though A4 and B are.

Now suppose that B>— A is a minimal cofibration in CDAY. Then
Halperin 3.10 shows that the generators V of A = (B® A(V), d,) can be chosen
such that for 4/B=(A(V),d) and V=V°@V*, V* ={V"n21}, we have

diV%) =0, dAV*)cAI™). 3)
In this case we get
A/B=A(V°)®(A/B), inCDA,, @)
where (4/B), = (A(V "), d) is a connected minimal cochain algebra. Therefore
we have
dA(V )< A-A, (5)

where A =A(V*) is the augmentation ideal, see (8.2) and (7.2). By (5) the
differential of Q(A4/B), =V ™ is trivial.

(8.21) Definition. For a cofibration B>—A4 in CDA? we define the
y-homotopy groups by

ny(4, B) = H'(Q(A/B)). (1)

Here Q(A/B) is the cochain complex with the differential induced by the
differential of A/B. In case B >— A is a minimal cofibration with the property
(8.20) (3) we get
ng(A,B)=V° (2
and
m,(4,B)=V"=H"Q(A/B),) fornz1. (3) l

(8.22) Example. Let M be a €*-manifold with basepoint *. Then the de Rham
algebra A%x(M) of €°-forms on M is a commutative cochain algebra (with
coefficient ring R = R). The augmentation ¢ is given by the inclusion * - M
of the basepoint which induces ¢:A¥z(M) > Afp(*)=R.

For a field R of characteristic zero there is the Sullivan—de Rham functor

(8.23) Ag:TOP* > CDA,,

which is contravariant and which carries a topological space X with base-
point to the commutative cochain algebra Az(X) of simplicial differential
forms on the singular set of X; for a definition of the functor A, compare
Halperin or Bousfield-Gugenheim, since Ag(X) = Ag(X)(X)g R it is enough to
define the functor A,. We now describe some properties of the functor Ag.
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For the coefficients R = R (given by real numbers), and for a €°-manifold
M as in (8.22) one has a natural isomorphism

Apr(M) ~ Ay(M) 1)

in Ho(CDA,), see (IL3.5. The Sullivan-de Rham theorem shows that
‘integration of forms’ yields a natural isomorphism

H*(X, R)~ H*(4zX) )
for X in TOP*. This implies that 4z X is connected (H°(4xX) = R) in case X

is path connected. Let Top be the full subcategory of Top* consisting of
path connected spaces. Then Ay in (8.23) gives us

Ag:(Top¥)°’? - CDAS (3)

Here CDAY is a cofibration category. Moreover, Top} is a fibration
category with the structure in (5.5); pull backs in Top? are given as in (8.15).
Since Ax(*) = R = = we see that Ay is a based functor. Moreover, (2) shows

that A preserves weak equivalences. For pull backs in Top¥ we have the
next result which is proved in 20.6 of Halperin. Let

Y- B 4

be maps in Top¥ and assume that also the fiber F of A —> Bis path connected.
Then the pull back 4 x Y is path connected too and we get:

(8.24) Theorem. The functor Ay in(8.23)is compatible with the pullback A x g Y
provided n,B acts nilpotently on the homology H (F, R) and provided either
H,(F, R) or both H,(Y, R) and H (B, R) have finite type.

Compare the notation in (8.26) below.

By definition in (1.10)(3) compatibility with 4 x ;Y means that the induced
map ¢ in the commutative diagram

Ag(A)——Ag(A x5Y)
~ A

(8.25) | M-oMX)ARY
//‘ AgB \
push
AR(B)T Ag(Y)
is a weak equivalence.
The result (8.24) shows that a = Az in (8.22)(3) is a model functor on

appropriate subcategories of Top§, see (1.10).

(8.26) Notation. For a group G the lower central series I',G < G is inductively
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defined by letting I',, ; G be the subgroup of G generated by the commutators
—x—y+x+y, xeG, yeI',G. A group G is nilpotent if I',G =0 for some
gz 1. For agroup G and a G-module (i.e. Z[G]-module) N the lower central
series I' ;N < N is inductively defined by letting I' . | N be the sub-G-module
of N generated by —n+n? geG, neI'’/N. A G-module N is nilpotent if
I',N =0 for some g = 1. A path connected topological space X is nilpotent
if 71X is a nilpotent group and #,X is a nilpotent n; X-module, n=2. In
particular simply connected spaces are nilpotent.

(8.27) Remark. Let fNQ be the class of all nilpotent CW-spaces X for which
the homology H (X, Z) is a rational vector space of finite type (thus X is a
Q-local space in the sense of (5.12)) and for which the inclusion * — X of
the base point is a closed cofibration in Top. Let Top¥(fNQ) be the full
subcategory of Top} consisting of objects in f NQ. Then we get the following
commutative diagram of functors

Ho(Top$) -5 Ho(CDAY) 5 (CDAY)/ ~,

) )

Topt(fNQ)/ ~ % CDAY(fMQ)/ ~.

Here we use the induced functor 4, on homotopy categories in (IL.3.6)
and we define the functor M as in (I1.3.9) by choosing minimal models
* > MA =5 A. Let f MQ be the class of all objects 4 in CDAY for which
x> A =(A(V),d) is a minimal cofibration and for which V" is a finite
dimensional rational vector space, n = 1, V° = 0. The category CDAY(f M Q)
is the full subcategory of CDAY consisting of objects in fMQ. It is a
fundamental result of Sullivan that the functor M A, in the bottom row of the
diagram is actually on equivalence of categories,compare also 9.4 in Bousfield—
Gugenheim. We prove a variant of this result, see Chapter VIII, by using
towers of categories. Our proof relies only on (8.24) and (8.23)(2) and does not
use the realization functor of Sullivan.

§9 The category of chain Lie algebras

The homotopy theory of chain Lie algebras is similar to the homotopy
theory of chain algebras. The universal enveloping functor gives the possibility
to compare both homotopy theories. We show that the category of chain
Lie algebras is a cofibration category (we do not assume that the Lie algebras
are 1-reduced as in Quillen (1969)) and we consider the Quillen functor from



9 The category of chain Lie algebras 75

simply connected spaces to chain Lie algebras. In Chapter IX we will show
that this functor induces an equivalence of rational homotopy theories.

Let R be a commutative ring of coefficients, for most results in this section
we assume that R contains Q or that R is a field of characteristic zero.

(9.1) Definition. A (graded) Lie algebra L is a positive graded module together
with a map

[, IL®L-L, x®@yr—[x,y],
of degree 0 such that (1) and (2) holds:
Anticommutativity:[x, y] = — (1)""'[y, x]. (1)
Jacobi identity:[x, [y,2]] = [[x, y1,z] + (— )"y, [x,z]]. )

A map f:L— L between Lie algebras is a map of degree 0 with f[x,y] =
[fx, fy] The Lie algebra L is 1-reduced if L, =0. Let [L, L] be the image
of [ , ] above, then the quotient QL= L/[L, L] of graded modules is the
module of indecomposables of L. Clearly, f induces Q f:QL— QL. I

(9.2) Example. Let X be a simply connected space. Then the homotopy groups
7,(QX) form a 1-reduced Lie algebra with the Whitehead product as Lie
bracket, see (I1.15.19).

(9.3) Example. Let A be a positive algebra as in (7.1). Then A4 is a Lie algebra
by the Lie bracket associated to the multiplication in A given by

[x, y]=xy— (= )"ly-x. (1)
The corresponding functor, A+ (4,[ , 1), from algebras to Lic algebras has
a ‘left adjoint’ U which carries a Lie algebra L to its universal enveloping

algebra U(L). Here U(L) is an algebra together with a map i: L— U(L) between
Lie algebras such that the following universal property holds:

For any algebra 4 an_d any Lie algebra map f:L—(4,[ , ])thereisa (2)
unique algebra map f:U(L)— A with f =fi.
We obtain the augmented algebra U(L) by the quotient
uw)=T1/J, 3)

where J is the two-sided ideal of the tensor algebra T(L) generated by the
elements

x®y—(—=1"y®x) - [x, ] )
with x, yeL. The canonical map i:L— U(L) is given by L = T(L) and the
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augmentation of T(L) yields the augmentation of U(L). One gets by (7.2):
QUL =Q(L) )
By use of the Poincaré-Birkhoff-Witt theorem the map of modules
i:L— U(L) is injective and has a natural retraction r:U(L)—>L, (6)

provided R contains Q, see the remark 3.8 of appendix B in Quillen (1969).
For further properties of U we refer the reader to Quillen (1969) and
Milnor—-Moore.

We say that L(V) is a free Lie algebra if V is a free R-module. By the
universal properties one readily gets

©4) UL(V))=T(V).

If the coefficient ring R contains @ then the injection (9.3)(6) shows that L(V)
is the sub Lie algebra of the tensor algebra T(V) generated by V.

The initial and final object in the category of Lie algebras is the trivial
module * which is 0 in each degree. Let L] [L’ be the free product of Lie
algebras L and L, this is the push out of L« - L in the category of Lie
algebras. The universal properties imply the formulas:

9.5) LIV)LIL(V)=L(ve V)
and
(9.6) U(LLIL(V))=(UL)LIT(V).

Therefore (7.5) yields a good formula for L] [L(V) by the inclusion LI TL(V) =
(UL)LIT(V) provided we assume that R contains Q, see (9.3)(6); in fact, in
this case L] [L(V) is the sub Lie algebra of (UL)L] T(V) generated by L and
V.

(9.7) Definition. A chain Lie algebra L is a graded Lie algebra together with
a differential d:L— L of degree — 1 such that (L, d) is a chain complex and
such that

[,1L®L-L
is a chain map, see (6.7), that is
d[x’ Y] = [dx’ y] + (— l)m[x’ dY]

A map between chain Lie algebras is a map between Lie algebras which is
also a chain map. Let DL be the category of chain Lie algebras. I

The homology of a chain Lie algebra L is a Lie algebra with the bracket
©.8) [, ]:HL®HLf>H(L®L)[—]>HL,
J »dx
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compare (7.7). Here j is an isomorphism by the Kiinneth theorem provided
R is a field. From (9.3)(3) we derive

(9.9) Lemma. For a chain Lie algebra L there is a unique differential d on
U(L) such that (U(L), d) is an augmented chain algebra and such that L— U(L)
is a chain map.

For a chain Lie algebra L the natural retraction r:U(L)— L in (9.3)(6) is
a chain map between chain complexes, (here we assume that R contains Q),
compare 3.6 in appendix B of Quillen (1969).

Using the Poincaré—Birkhoff-Witt theorem and the Kiinneth formula
Quillen (1969), appendix B, shows:

(9.10) Theorem. Let R be a field of characteristic zero then the natural map
U(H(L))— H(U(L)) is an isomorphism.
Similarly as in (7.8) we define the following structure for DL.

(9.11) Definition.

(1) Amap f:B— AinDLis a weak equivalence if f induces an isomorphism
f+HB= HA in homology.
(2) AmapB— 4inDLis a cofibration if there is a submodule V of A with the
following properties:
(@) Vis a free module, and
(b) themapB]]L(V)— AofLiealgebras,givenby B— Aand V < A,is
an isomorphism.

We call V a module of generators for B>— A. The cofibration B> A4 is
elementary if d(VV) = B. The cofibrant objects in DL are the ‘free’ chain Lie
algebras. I

(9.12) Push outs in DL. For the cofibration B> A = (B] [ L(W), d) and for
f:B—Y the induced cofibration Y >— A )Y, given by

A —L 4 Y=(YLILOW),d)

B
il pUSh ll- ’

B—Y

f

is generated by W and f =f[]1 is the identitity on W. The differential d on
Al 5 Y is the unique differential for which f and iare chain maps. In caseiisan

elementary cofibration we obtain d on A JzY by d: wSBhy.
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(9.13) Theorem. Suppose the ring R of coefficients is a field of characteristic

zero. Then the category DL with the structure (9.11) is a cofibration category

for which all objects are fibrant. Moreover, the universal enveloping functor

U:DL — DA, is a based model functor which carries cofibrations to cofibrations.
We prove this result in (9.16) below. As in (7.13) we define

(9.14) Definition of L(V,dV). Let V be a positive graded module with
Vo =0 and let dV with sdV =V and d:V — dV be given as in (7.13). Then we
obtain the object

LV, dV)=(L(V @dV),d) (1)

in DL by defining the differential d on generators via d:V—dV, ddV =0.
Note that

UL(V,dV)=T(V,dV), (2
compare (7.13), and that
* >— L(dV)>— L(V,dV) 3)

are cofibrations in DL (where L(dV) has trivial differential). Moreover,
L(V,dV) has the following universal property. Let A be an object in DL and
let ¢:V — A be a map of degree 0 between graded modules. Then there is a
unique map

@:L(V,dV)>A in DL (4)

which extends ¢, that is @|V = ¢. I

By the next lemma we see that L(V,dV)= CL(dV) is a cone for the chain
Lie algebra L(dV) provided the ring R of coefficients is nice:

(9.15) Lemma. Let R be a field of characteristic zero then L(V, dV) is acyclic,
that is, x —> L(V,dV) is a weak equivalence in DL.
Proof. We use (7.14) and (9.10), so that
UH(L(V,dV))=HU(L(V,dV))
=HT(V,dV)=R,
and hence H(L(V,dV))=0. O
(9.16) Proof of (9.13). The composition axiom is clearly satisfied, see (9.5),

and push outs as in (C2) exist by (9.12). We now prove (C2)(a) by use of
(9.10) and by use of (C2)(a) in DA,. Here we use the fact that

UB>—UA = (UBLIT(W),d) (1)

is a cofibration in DA,, so that a weak equivalence f:B — Y in DL yields a
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weak equivalence
u(f:u4) = U(A U Y> in DA,. 2
B

Now (9.10) shows that 4 — A4 JpY is a weak equivalence since we can use
(9.3)(6). For the proof of (C3) we use the same inductive construction as in
the proof of (7.21). Moreover, we show that all objects in DL are fibrant by
the same arguments as in (7.22) where we replace T(W, dW) by L(W, dW)
and where we use (9.15). This completes the proof of (9.13). O

(9.17) Remark. Let DL, be the full subcategory of DL consisting of chain
Lie algebras which are 1-reduced. Then Quillen (1969) shows with similar
arguments as above that DL is a closed model category for whichcofibrations
and weak equivalences are defined as in (9.11) and for which fibrations are
given by maps which are surjective in degree = 2.

Next we define for each cofibration

i:B>— A=(B][L(V),d,) in DL

an explicit cylinder object
9.18) AYAa>5 1,454
B

in the cofibration category DL in (9.13), we assume that R is a field of
characteristic zero. The construction is similar to the one in (8.19). For sV,
see §6, let L(sV, dsV) be the acyclic cone in (9.14) with dsV =V and let

1A = (A]1L(sV,dsV), d)
=Av L(sV,dsV) (1)

be the sum in DL. The weak equivalence p in (9.18) is defined by p =(1,0)
where 0:L(sV,dsV)— . We define i, as in (9.18) by the canonical inclusion
A c Av L(sV,dsV). Clearly, pi, = 1. The definition of i, is more complicated.
We note that as a Lie algebra

IzA=BlIL(V ®sV &dsV). )
Therefore we can define a degree + 1 derivation S of this Lie algebra by
S(B) =S(sV)=S(dsV) =0,
S(v)=sv for veV, } 3)
S([x, y1) = [Sx, y]1 + (— 1)"[x, Sy].

Now a degree zero derivation 6 on IgA is given by
0 =dS + Sd, 4



80 I Axioms and examples

where d is the differential in (1). Note that
dd=6d, pS=0, pf=0. )

Lemma. For each ¢pelgA there is some N (depending on ¢) with ON(P) =

0---0(¢)=0. (6)

One can prove this lemma along the same lines as in (8.19)(8). By (6), (5) we
can define an automorphism e’ = exp(6) in DL of 1,4, namely

© 0N

e’ = N;o m; (7

the inverse is e %, To this end we can define i, in (9.18) by the composition

i, = %y = (exp (dS + Sd))i, (8)

This completes the definition of the cylinder object (9.18) provided we can
show

Lemma. The map (iy, i) is a cofibration in DL. 9)
Proof. We have
AUA =B[[LV' ®V"),d), (10)
B

where V' = V" =V are isomorphic copies of ¥. We obtain an isomorphism
g of Lie algebras for which the following diagram commutes and for which
glsV is the canonical inclusion sV « IzA4 given by (1).

BLIL(YV' @ V' ®sV) —— IpA

lj Iuo,m (11)

BLIL(V'®V") = A4
B

Here j is the canonical inclusion. Note that (i,, i,) is a well-defined map since
ig]B=1i,|B. We now show inductively that g is an isomorphism. Assume
this is true for IzA4 ., where A ., =(B]JL(V.,),d) is a sub Lie algebra of A
given has V_, = {V,,i<n}. Then for veV, we know i, (v) —v —dsv =welgA _,.
Hence we can define the inverse g~ by g " 'v ="', g~ 'sv = sv and

g~ Wdsv)=0v" — v — g~ Hw). (12)

We can use g to define a differential d on B[[L(V' @ V" @ sV) so that g is
an isomorphism of chain Lie algebras. O
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For the field R = @ of rational numbers there is the Quillen functor
9.19) A:Top¥->DL,.

Here Topf is the full subcategory of Top* of simply connected spaces and
DL, is the full subcategory of DL consisting of 1-reduced chain Lie algebras.
Let HogTopY be the localization of Top} with respect to H,(—,Q)-
equivalences, see (5.10) and (IL.3.5). Then Quillen (1969) proves that A induces
an equivalence of localized categories

(9.20) Ho(4):Hog(Top*) — Ho(DL,).

This corresponds to the result of Sullivan in (8.27) above, compare
Neisendorfer. In Chapter IX we give a new proof for the equivalence Ho(1)
(restricted to spaces with finite dimensional rational homology). Our proof
relies only on the properties of the functor 4 described in the following
theorem which is due to Quillen.

(9.21) Theorem. The Quillen functor A in(9.19) is a based model functor between
cofibration categories and induces a bijection

A:[8h, X o] — [ASh, AXg] ~ H,_,iX,

of homotopy sets.

Here Sg is the rational n-sphere, n 2 2, and X, is a rational space. We show
in (IX.§3) that any functor 4 which has thé properties in (9.21) induces an
isomorphism of towers of categories which approximate Hoy(Top}¥) and
Ho(DL,) respectively. We can derive (9.21) and the next resuit from Quillen
(1969), see (I1.4.1).

(9.22) Theorem. There is a natural weak equivalence of functors UL~
SC,Q)®Q in DA, where U is the universal enveloping functor and where
SC,Q(*)® Q is the rational chains on the loop space functor (7.29).

By (9.21) and (9.22) we obtain the commutative diagram of degree 0 maps

1,000 £ H,iX,)

L)

(9.23) H.QX,0) £ HUIX).

U QX)® Q) = UH(1X,)
U4}
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Here his the Hurewicz map and iis the inclusion (9.3)(6). The isomorphism A of
Lie algebras is induced by the bijection in (9.21) and the isomorphism 1 of
algebras is induced by the natural weak equivalence in (9.22). Now (9.10) gives
us the isomorphism in the columns which corresponds to the Milnor—-Moore

theorem.



II

Homotopy theory in a cofibration
category

Much of the standard and classical homotopy theory for topological spaces
can be deduced from the axiom of a cofibration category. We derive in this
chapter basic facts of homotopy theory from the axioms. We introduce
homotopy groups, the action of the fundamental group, homotopy groups
of function spaces, and homotopy groups of pairs. Moreover, we describe
the fundamental exact sequences for these groups and we prove the naturality
of these exact sequences with respect to functors between cofibration
categories. This leads further than the results previously obtained in the
literature. We deduce from the axioms of a cofibration category various
results which are new in topology.

§1 Some properties of a cofibration category

Let C be a fixed cofibration category. In the commutative diagram of
unbroken arrows in C

/f' Xo \
X push}‘ P B Y
O~ S

1

the subdiagram ‘push’ is called cocartesian or a push out if for every Y and
every pair a, f there exists exactly one map (o, f) in C extending the diagram
commutatively. We also write P = X, | Jx X, if the choice of f and g in (1.1)
1s clear from the context. Consider the commutative diagrams
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f

W—w

BI 0, Iﬁ, w—Lw
V— Vv ﬁa[ D, Iﬁ’a’-
4 D, Ia, U—TU’
U——§—> U

(1.1)(a) Let D, be a push out. Then D, is a push out if and only if D; is a
push out.
(1.1)(b) Let D, be a homotopy push out. Then D, is a homotopy push out
if and only if D, is a homotopy push out.
We leave the proof of (1.1)(a) and (1.1)(b) as an exercise. In fact, (1.1)(b)
is an easy consequence of (b) in the next lemma (1.2). Consider the
commutative diagram

! g

Y, ——v 2 v,

|

XO <T X ‘T> X1
where in each row one of the maps is a cofibration. Then the push outs of
the rows exi_st in C by (C2). We get the map aU B: Y, )y Y, - X, x X, with
au f =(ga,fB) which satisfies the following gluing lemma.

(1.2) Lemma

(a) Assume a, B,y and the induced map (g, f):X | )yY, — X, are cofibrations,
then also av B is a cofibration.

(b) If the columns «, B,y are weak equivalences then also auf is a weak
equivalence.

Remark. For the cofibration categpry Top the result (1.2) (b) is proved by
Brown—Heath (1970). This is just an example for the numerous results in the
literature which are covered by the abstract approach.

Proof. Consider the following diagram in which all squares are push outs
and in which P’'— P is the map au .
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yavindr

|/
\P,__

N

Yoor—F

f/

X,

Y,

For (a) the diagram is well defined, for (b) the diagram is well defined if f’
and ¢’ are cofibrations. A diagram chase shows that in this case (a) and (b) hold.

Next we assume for the proof of (b) that Y — Y, is not a cofibration. Then
we have the factorization Y >— Y, = Y, by (C3). This leads to the
commutative diagram

Y & Y *Y.
&]Sh \71/: '

~ ) X, ~|? push l~ ~
‘,//{\, \ /X— 1 \\;
Xo‘ X >X 1

and thus to the commutative diagram

LUy —— vy,
Y Y

1

XOUXI —I_’XOUX1
X X

Therefore we have to show that r,s and ¢ are weak equivalences. This is
proved above. 1

(1.3) Definition. Let Pair (C) be the following category. Objects are morph-
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isms iy: Y —» X in C. We denote iy also by iy = (X, Y), in particular, if iy is a
cofibration in C. Morphisms (f,f’) =f:i,— iy are commutative diagrams

f

A— X

It

B
in C. The morphism (f, /") is a weak equivalence if fand f’ are weak equivalences
in C. Moreover, (f,f') is a cofibration if /" and (f,iy):A{JzY > X are
cofibrations in C. We call (f, f) a push out if the diagram is a push out
diagram with i,:B>—— 4 a cofibration. I

We also consider the following subcategory of Pair (C).

(1.4) Definition. Let Y be an object in C. A map f under Y is a commutative

diagram
Y

X— A4
I
in C. Let CY be the category of maps under Y. Objects are the maps Y — X.
Cofibrations and weak equivalences in CY are the same as in C. The identity
of Y is the initial object in CY. Thus an object (Y — X) in C7 is cofibrant iff
Y — X is a cofibration in C. An object (Y — X) is fibrant iff X is fibrant in
C. With these notations one easily verifies that C¥ has the structure of a
cofibration category with an initial object. I

Next we prove for Pair (C) the relativization lemma:

(1.5) Lemma. The category Pair (C) with cofibrations and weak equivalences
as in (1.3) is a cofibration category. An object i,:B— A is fibrant in Pair (C)
iff B and A are fibrant in C.

If C has the initial object ¢, then also Pair (C) has an initial object given
by the identity of ¢. The object iy:Y — X is cofibrant in Pair (C) iff ¢ >—
Y >— X are cofibrations in C.

For the proof of (1.5) we use the following extension property of fibrant
models:

(1.6) Lemma. Let i and f be given as in the diagram
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X — Y
/)'
~ i////f )
R
Then, if Y is fibrant, there isfwith fi = f. Moreover, two extensions f, fl of
f are homotopic rel X.

Proof. We consider the commutative diagram of unbroken arrows

X — 5 v

JEAVANN
~ — \
~ // ~ i l' r X
< ’
. /

R —L S RrYY’
X

Since Y is fibrant there is a retraction r for 7, let f =1f.
Now let f,f, be extensions of f. We have for a cylinder Z on X >— R the
diagram

X>— R

~\I push I~
R>— RUR L, v,
X A

//
. //
N
//
Z

Here j is a weak equivalence since iy: R — Z is one, see (1.1.5). We now obtain
the extension H in the same way as above. O

(1.7) Proof of (1.5). We have to check the axioms (Cl),...,(C4). First we
observe that a cofibration (i, ') in Pair (C) corresponds to the commutative
diagram in C

i A
B m’
push I (1)
B >—’—> A

in which i, i’ are cofibrations. It is clear that the composition axiom (C1) is
satisfied in Pair (C), see (1.2).
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For the proof of the push out axiom (C2) in Pair (C) consider maps
(XO’ YO) —=< (X’ Y) - (Xl’ Yl) in Pair (C)’ (2)
as in (1,2). The diagram in the proof of (1,2) shows that (P’, P) is the push
out of (2) in Pair (C) with P = X,| JxX; and P' =(Y,| )y Y;). Moreover. the
cofibration Q >— P in this diagram shows that (X, Y,)—(P,P’) is a
cofibration in Pair (C). It is easy to check that (X, Yy)— (P, P') is a weak
equivalence if (X, Y)—> (X, Y,) is one. Hence (C2) is proved.
Next we prove (C3) in Pair (C). For (f,f’) we consider the diagram

e

B —> T -+ Y
[ \AV [iy 3)
Y

where A’ and A are given by factorization in C, (C3). This shows that (A4, A')is a
factorization for (f,f").
Also the axiom on fibrant objects (C4) is satisfied in Pair (C): In the diagram

B>~ P >=>» R

[ push 1 , 4

BI: ~ RI

we choose fibrant models R’ and R in C. Then the pair (R, R) is a fibrant
model of (B, B'). We have to check that (R, R’) is fibrant in Pair (C). To this
end we prove the proposition on fibrant objects in (1.5): Let A and B be
fibrant in C and let

©)

tcu—» :hl

A
I push P
Br————»

be a trivial cofibration i = (i, ') in Pair (C). We have to show that there is a
retraction r = (r, r’):(Z, B)—(A, B) of i.

First we choose a retraction #' of i’ in C. This is possible since B is fibrant
in C, see the definition in (I.1.1). Then we obtain the following commutative
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diagram

A p
I push {
B B

where g =(1,,i ') and where r = " is an extension of g by (1.6). Thus (r,r')
is a retraction for i = (i, {').

Next assume (A4, B) is fibrant in Pair (C) and let a:A >~ 4 and f:B >~ B
be trivial cofibrations in C. We obtain retractions for « and f in C since we
have retractions for the trivial cofibrations

(Eﬂ):(A,B)>L»<AUB‘,E>,
B
(2,1):(A, B)>=>(4, B),

in Pair (C). This shows that 4 and B are fibrant in C. Now the proof of
(1.5) is complete. O

In addition to the factorization axiom (C3) we get
(1.8) Lemma. Let Y be fibrant. Then for amap f:B— Y there is a factorization
fi:B>— A5Y of f where A is fibrant.

In particular, for a cofibration ¥ = X we can choose a cylinder IyX which
is fibrant if X is fibrant.

Proof. By (C3) we have a factorization A of f. By (C4) we have a
fibrant model j,:4 > A and by (1.6) we obtain the commutative diagram

A
~l\
A—> Y

f:B

where p is a weak equivalence by (C1). O

(1.9) Lemma. Let u,v:X - U be maps and let u~v rel Y. If u is a weak
equivalence so is v.

Proof. We apply (C1) twice to the commutative diagram
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where we use (1.1.5). O

(1.10) Weak lifting lemma. Any commutative diagram

B— X

et

A——Y
can be embedded in a commutative diagram
— J
LN
A— Y
We call the pair L = (h,) in (**) a weak lifting for diagram (*). The map 7 is
a cofibration provided B— X is a cofibration.
Proof. Apply (C3)to the map A( )X — Y which is defined by (*) and use (C1).
OJ

(1.11) Lifting lemma. Consider the commutative diagram of unbroken arrows:

B f

7)'
n
A

— . x
h {
- p ’
-9 .y
(a) If X is fibrant there is a map h for which the upper triangle commutes.
(b) If X and Y are fibrant there is a map h for which the upper triangle
commutes and for which ph is homotopic to g rel B. We call a map h with
these properties a lifting for the diagram.
(¢) If X and Y are fibrant a lifting of the diagram is unique up to homotopy rel
B.

Proof. Since X is fibrant there is a retraction r: X =5 X for j: X > X in (**)
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of (1.10). Let & = rh. This proves (a). Now assume also that X and Y are fibrant.
With the notation in (1.10) we have to prove

ph=pr71=qu71:qﬁ=grelB. (1)
We consider the commutative diagram of unbroken arrows:
-4

A (irh.h) / X Y

q
/r ~ | @
o .

77 o rh X

Here Z denotes a cylinder on B = A. As in (1.10) we obtain the weak lifting
H and by (1.6) we have the map 4. Thus H = §H is a homotopy as in (1).
This proves (b). We prove (c) in (2.6). O

The following result is an easy consequence of (1.11):
(1.12) Corollary. Let i:Y>~— X be a cofibration and a weak equivalence

between fibrant objects. Then Y is a deformation retract of X. That is, there isa
retraction r: X —» Y with r|Y = 1y and with ir ~ 1y rel Y.

Proof. Consider the diagram
N BN
/7'

Y
~ i ]

e
yd
X 1

~

D

and apply (1.11). O

(1.13) Corollary. Let Y be fibrant and let

be factorizations of a given f:B— Y such that A, and A, are fibrant, see (1.8).
Then there is up to homotopy rel B a unique weak equivalence a: A, — A, with
=j and qa ~p rel B.
By (2.12) below we know that « in (1.13) is also a homotopy equivalence
under B.

(1.14) Corollary. A retract of a fibrant object is fibrant.
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Proof. Consider a push out as in the proof of (1.2.6) and use the same
argument as in (1.2.6) or use (1.6). O

§2 Sets of homotopy classes
For a cofibration Y« X and a map u:Y > U let
(2.1) Hom (X, Uy
be the set of all maps f:X — U in C for which f|{Y =u. We say fis an

extension of u. On this set of extensions of u we have asin I, § 1 the homotopy
relation relative Y which we denote by ‘~rel Y.

(2.2) Proposition. Let U be fibrant. Then all cylinders on Y c X define the
same homotopy relation relative Y on the set (2.1). Moreover, the homotopy
relation relative Y is an equivalence relation.

Thus, if U is fibrant, we have the set

(2.3)(a) [X, U] =[X,U]*=Hom(X,U)*/~rel Y

of homotopy classes. We write { f} for the homotopy class of f and we
write [ X, U]Y if the choice of u is clear from the context.
For an initial object ¢ of C let

(b) [X,U]=[X,U]* =Hom(X,U)/~reld
be the set of all homotopy classes of maps from X to U. Here we assume

that X is cofibrant and that U is fibrant. For the objects iy: Y > X and
u:Y—> U in CY we have by (1.4)

(C) [Xa U]Y = [iX, u]'

Proof of (2.2). Let Z, and Z, be cylinders and assume that there is a
homotopy H,:ii ~ v rel Y which is defined on Z,. Then we obtain a homotopy
H,:i~vrel Y defined on Z,, as follows: We apply (1.10) and (1.6) to the
diagram

and we set H2=P~Ilh.
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We now show that (~rel Y) is an equivalence relation. Clearly, i ~direl Y
since tp:Z - X - U is a homotopy @ ~irel Y. Moreover, we apply (1.10)
and (1.6) to the diagram

xUxSx\x ,’
Y

Y !
N

P ~

(24)

~

4———<

Z’

Here T is the interchange map of the two factors X. For a homotopy
H:ii~7relY the composition Hn is a homotopy #~irelY. We call
— H = Hn a negative of the homotopy H.

We now consider the push out

z 2, zyz b2

X

b

_;) yA

To
Since i, is a weak equivalence also i, is one by (C2). Thus by (C1) the map
(p,p) is a weak equivalence since p = (p, p)i,. For homotopies H:ii ~ and

G:0~w we obtain the next diagram in which we apply again (1.10) and
(1.6):

(2.5) XUX _.—._’ZUZ

H+ G=(H,G) mis a homotopy # ~wrel Y. This proves the proposition.
O

(2.6) Proof of (1.11) (c). Let h and h be liftings and let H and G be
homotopies relative B from ph to g and from g to ph respectively. We apply
(1.11)(a) to the diagram
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AUA (h.h) X

B S
T’IQUil//F J“’ .

Z\|Z——Y
kA) (H.G)

Here i,ui, is a cofibration by (1.2). Now F is a homotopy from k to h
relative B since we have:

(2.7) Remark. The sequence

A YA>—2Z| )z >4
B igiaiy A p.p)
is a cylinder for B >—— A in the sense of (I.1.5). In fact (p, p)(i, wi,) = (1, 1) is
the folding map. (Using this cylinder we see that (2.5) follows from (*) in the
proof of (2.2).) O

Next we study induced functions on homotopy sets. Let U and V be
fibrant. A map ¢g:U—-V and a pair map (f, f):(4, B)—(X,Y) induce
functions
g, [X. U —[X, V],

(2.8) F*IX. U] —[A4, U,

where u:Y - U. We set g, {x} = {gx} and f*{x} = {xf}. Clearly, if f ~f, rel B
then f* =f%.

(2.9) Lemma. g, and f* in (2.8) are well defined.

Proof. Let H:x ~ yrel Y be a homotopy. Then gH:gx ~gyrel Y and thus g,,
is well defined. Moreover, f* is well defined since

H (If):xf ~ yf rel B.
Here H and If are given by the following diagram where we apply
(1.6) and (1.10):The pair map f yields the commutative diagram of unbroken
arrows

o T v
aUa—"L oy fx e Z//';
(2.10) B [ A— Y
T, ~ X
’ S~
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IgA denotes a cylinder on B< A. Z and I, X are cylinders on Y < X, compare
(I.1.5). U

(2.11) Proposition.
(@) If g is a weak equivalence, then g, is a bijection.
(b) If fand [’ are weak equivalences or if (f,f') is a push out then f* is a
bijection.
Proof. g, is surjective since for {v}e[X, V]** we can apply (1.11)(b) to the
diagram

", U

Y 1
I P ~\g, (1)
X Vv

_—
»

and we obtain ¢ with g, {0} = {v}. Next g, is injective since we can apply
(1.11)(c).

Now assume that (f,f’) is a push out. For {a}e[4, U]*" we have

f*aw}={(auf}=a}. )
Therefore f* is surjective. Now let
H:xf ~ yfrel B 3
be a homotopy. We consider the push out diagram
H ~ Y

A —— 77
push
—_
A LB) A fof X Lyj X
One can check that Z is a cylinder on Y < X. Hence we obtain the homotopy
H:x ~yrel Y. This proves that f* is injective.

Next assume that f and f’ are weak equivalences. Then (f,f’) is the
composition of pair maps

A {' > P i > X
J; push l lix )
B i Y - Y

1



96 II Homotopy theory in a cofibration category

where g = (f,iy) is a weak equivalence by (C1) and (C2). Since we have seen
that the push out (f”,f’) induces a bijection it remains to show that g* is a
bijection. To this end we prove the following special case: Let j: X >~ RX be
a fibrant model of X by (C4). Then

J4IRX,U) =[X,UT (6)

is a bijection. Clearly, j* is surjective by (1.6). Moreover, j* is injective since
the push out

zZ > Z,

l push l (7)

XUX>—>RXURX

Y Vi

yields a cylinder Z, on Y >— RX. Thus, we can use the same argument as in
(4). Now g in (5) extends to a commutative diagram (see (1.6)).

RP----------+RX
~j ~ (8)
Pe——=X
-

By (2.11)(a) we know that § is a homotopy equivalence under Y, see (2.12)
below. Thus g*:[RX, U]¥ - [RP,U]" is a bijection. We deduce from (6) and
(8) that g* is a bijection. a

We derive from (2.11) (a) the following general form of a theorem of Dold
(compare Dold (1963), (1966) and 2.18, 6.21 in tom Dieck—Kamps—Puppe).
Clearly, the dual of the following result is also true in a fibration category.

(2.12) Corollary. Consider the commutative diagram

U———»V

\ /-

where U and V are fibrant. If g is a weak equivalence, then g is a homotopy



2 Sets of homotopy classes 97

equivalence under B. That is, there is f:V > U under B with gf ~1, rel B
and fg~1yrel B.

Proof. By (2.11)(a)thereis { f}e[V, UJ®withg,{f} = {1,}. On the other hand
for {fg}e[U,U]® we have g, {fg}=1{9f9} ={9} =g,{1y}. Since g, is
injective we get {fg} = {1,}. This proves (2.12). O

Next let RU and R'U be two fibrant models of the object U as in (C4).
Then we obtain by (1.6) the commutative diagram

RU 2 RU
(2.13)

U

The map « is well defined up to homotopy rel U and by (2.12) « is a homo-
topy equivalence under U. This shows that fibrant models are essentially
unique.

Next we describe the relative cylinders and the homotopy extension
property.

For a cofibration (Y, B) >— (X, A4) in Pair (C) we have the folding map
(X{JyX,AJpA4)—(X, A), a factorization of which is a cylinder I,y 5 (X, A) in
Pair (C). We obtain this cylinder by (1.7) (3) together with the commutative
diagram

XX > XulduX >— L X5 X
Y

(2.14) l push ] l

~

AUA >—  Iz4 > 4
B

where the horizontal maps compose to the folding (1,1). Thus Iz4 and I, X
are in fact also cylinders in C; Iy 5(X, A) = (I,X,1A).

(2.15) Definition. A triple (4, A, B) in C is a sequence of cofibrations B >
A>—A. Amap(f.f.f):(4, A, B)— (X, X, Y) between triples corresponds to
a pair of pair maps (f,f) and (f,f"). [

A triple (4, A, B) gives us the cofibration (B, B) >— (4, A) in Pair (C), see
(1.3). Thus we have by (2.14) the cylinder on i which is a pair (154, 15A) with
(2.16) IgA>— AUILAVA > 1,A.

This, we say, is the relative cylinder of the triple (4, A, B). Compare axiom (I4)
in (I.§3).
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For the push out diagram

TR

AUA S— 1 push  Auljaudi>Li— [,

N

the maps jjo and jj, are weak equivalences and cofibrations. This yields by
(1.6) the following homotopy extension property of cofibrations (compare (13)
in (I.§3)). Consider for t =0 or T =1 the diagram

Aulat Ly

/'
rd
~ i -~
T 7~
G
I//

where f:A— U and H:I1;A— U are given with f|A = Hi,.

(2.17) Proposition. If U is fibrant there exists a homotopy G which extends
(f, H). G is unique up to homotopy rel AU IzA.

Now assume U is fibrant and let u: A — U be given. The pair maps i:(4, B)
>—(A, B) and j:(A4, B) - (4, A) induce

[4,Ul*—[4,U]" —[4,U]"
» B

From (2.17) we easily derive the exactness of this sequence, that is

(2.18) Corollary.
Imj* = i* " {u}.

The prolongation of this sequence will be discussed in (5.17) and in §10
below.

Cylinders in an arbitrary cofibration category have a similar property as
we described in the push out axiom for cylinders in (12), see (1§ 3). To see this
we consider the map (f, f, /):(4, 4,B)—(X, X, Y) between triples. Then
((F, ) (f7, f)) is a map between pairs in Pair (C), compare (2.15). From (1.5)
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and (2.10) we deduce the pair map
(2.19) U, I34) 225 (1, X, 1,X)
between relative cylinders.

(2.20) Lemma. If(f, f):(A, A)—(X, X) is a push out (see (1.3)) we can assume
that also (If,If) and (f,fulf Uf) are push outs.
We leave the proof as an exercise.

§3 The homotopy category of fibrant and cofibrant objects

Let C be a cofibration category with an initial object ¢. Then we have the
full subcategories

3.1) C,cC.cC,
where C., consists of objects which are both fibrant and cofibrant, see

(I.1.2). The category C, of cofibrant objects is a cofibration category, see
(I.1.3), but C,, in general is not, see (I.1.2). From (2.2) and (2.9) we derive:

(3.2) Lemma. Homotopy relative ¢ is a natural equivalence relation on the
morphism sets of C.,.
We thus have the homotopy category

3.3) C. />~ =Cf(=r1el p)

The morphism sets in this category are the sets [X, Y] in (2.3)(b) which
are well defined since X, Y are cofibrant and fibrant. We consider the quotient
functor

3.4) q:C.;, —C. />,

which carries the morphism f to its homotopy class rel ¢. This functor has
the following universal property:

(3.5) Definition. Let C be an arbitrary category and let S be a subclass of the
class of morphisms in C. By the localization of C with respect to S we mean the
category S™'C together with a functor ¢:C— S~ 'C having the following
universal property: For every seS, g(s) is an isomorphism; given any functor
F:C-B with F(s) an isomorpshim for all s€S, there is a unique functor
0:S~'C— B such that 0g = F. Except for set-theoretic difficulties the category
S~ LC exists, see Gabriel-Zisman (1967). Let Ho(C) be the localization of C
with respect to the given class of weak equivalences in C.
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We show that the functor ¢ in (3.4) has the universal property in (3.5).
Therefore the localization HoC,; = C,;/~ exists. Moreover, the inclusions
of categories in (3.1) induce equivalences of categories

(3.6) Proposition.
HoC,; = HoC, = HoC.
i j

Proof of (3.6). We first show that ¢ in (3.4) has the universal property in (3.5).
Let f:4A— X be a weak equivalence in C,, then the theorem of Dold (2.12)
shows that fis a homotopy equivalence. Hence ¢(f) is an isomorphism in
C.l=~.

Next let F:C,,—B be a functor which carries weak equivalences to
isomorphisms. We have to show that F factors uniquely over ¢. Let H:f ~¢g
be a homotopy rel ¢. Then we get (with the notation in (1.1.5)):

F(f) = F(Hio) = F(H)F(i;) and Fl(g) = F(Hi;) = F(H)F(i,).

Now F(iy) = F(i;) since F(ig)F(p)=1=F(i,)F(p) where F(p) is an iso-
morphism, hence F(f) = F(g).

It remains to show that HoC, and HoC exist and that i and j in (3.6) are
equivalences of categories.

For each object X in C, we choose a fibrant model RX in C,;. We set
RX =X if X is an object in C,,. Let HoC, be the category having the same
objects as C, and with the homotopy set [RU, RV] as set of morphisms
U-V.Let q:C,— HoC, be the functor which is the identity on objects and
which carries g to the extension Rg,

RU -2, Ry

Lo

R 4
which we get by (1.6). One checks that g is a well defined functor which carries
weak equivalences to isomorphisms and that g is universal with respect to this
property. This proves that HoC, exists and by construction the inclusion i
in(3.6) is an equivalence of categories. Indeed, i is full and faithful and satisfies
the realizability condition; hence i is an equivalence of categories. By (3.7)
we actually obtain a functor

(3.8) R:C,»C, /=,

which induces the inverse of the equivalence i. The functor R depends on the
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choice of models but different choices yield canonically isomorphic functors.

Similarly, we prove the result for HoC, compare the proof of theorem 1
in Quillen (1967). We define HoC as follows: objects are the same as in C.
We choose by (C3) a factorization

(3.9) ¢ >—MX X,

for each object X in C. Thus MX is cofibrant. Let the homotopy set
[RMX,RMY] be the set of morphisms X — Y in HoC. We define a functor
q:C— HoC which carries weak equivalences to isomorphisms and which is
universal with respect to this property: Consider the diagram:

Here R(m) and R(f) are given as in (3.7). By (1.11) there is a lifting RM(f).
Let g(f) be the homotopy class of RM(f)rel ¢. One checks that g(f) is well
defined, see (2.11), and that g is a functor with the universal property. This
proves that HoC exists and that j is an equivalence of categories. By (3.10)
we obtain a functor

(3.11) RM:C —C, /=,
which depends on the choice of models. Different choices yield canonically

isomorphic functors. The functor RM induces the inverse of the equivalence
ji in (3.6). Now the proof of (3.6) is complete. O

(3.12) Lemma. Let (i:Y — X) and (u: Y — U) be objects in C*. Moreover, let
Y >— MX =5 X be a factorization of i and let U >~ RU be a fibrant model
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of U in C. Then the set [MX, RU]Y can be identified with the set of morphisms
from i to u in Ho(CY).
Compare (2.3)(c).

Proofof (3.12). Let Y>— MU = U be a factorization of uand let RM U and
RMX be fibrant models. Then we have a weak equivalence RMU = RU
induced by m:MU = U, see (3.7). Therefore

[RMX, RMU]YE»[RMX,RU]Yi[MX,RU]Y. O
By (3.12) we may define

(3.13) [X,U]Y =[MX,RUY,

provided maps i:Y—X and u:Y-U are given. An arbitrary element
{f}elX,U]" is this represented by a commutative diagram

b's <RU

~ L
'I/]'WX’ I~
Y—— U

in C. The set [MX,RU]" is an ‘honest’ homotopy set as defined in (2.3).

§4 Functors between cofibration categories

Each functor a:C —K which preserves weak equivalences induces by the
universal property in (3.5) a functor Hoo: HoC — HoK, compare the notation
in (I.1.10).

(4.1) Definition. Assume o, f:C—K are functors which preserve weak
equivalences. A natural weak equivalence 7:o. = 8 is a natural transformation
such that t:a(X) = B(X) is a weak equivalence for all X. Moreover, we say
o and B are natural weak equivalent if there is a finite chain o ~ o, --- ~ f of
natural weak equivalences. I

Clearly, if « and f are natural weak equivalent we get a natural equivalence
4.2) Ho(x) ~ Ho(p)

of the induced functors on homotopy categories.

(4.3) Proposition. Let «, f:C—K be functors between cofibration categories
which are natural weak equivalent. If o preserves weak equivalences then also
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B preserves weak equivalences. If o is compatible with a homotopy push out then
so is . Thus if a is a model functor then so is B, see (1.1.10).

Since the identical functor of a cofibration category C is a model functor
we get:

(4.4) Corollory. Let C be a cofibration category and let o:C — C be a functor
naturally weak equivalent to the identical functor of C. Then o is a model
Junctor.

Proof of (4.3). We have the commutative diagram

X —— BX

: fl Jﬁf,

otY+> pY

which shows that ffis a weak equivalence if f'is one. We now check that §
is compatible with push outs, see (I.1.10). We obtain a factorization MfA of
B(i) by the commutative diagram

aA—=—» A

MaA ~ A
o) push \ Bli)
«B———=—= BB

This induces the commutative diagram, see (1.1.10)(3):

Y —> BY

o

MoY ——— MBY,

L]

where the induced map MaY— MBY is a weak equivalence by (1.2)(b). This
shows that ¢: MBY — BY is a weak equivalence. O
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(1) Example. Let Top be the cofibration category of topological spaces with
the CW-structure in (1.5.6). Then the realization of the singular set yields a
functor
|S|: Top— Top,

which carries a space X to the CW-complex |SX|, see (1.5.8.). The functor
|S| is natural weak equivalent to the identical functor via the natural map
[SX| <> X. Therefore (4.4) above shows that |S| is a model functor which
carries objects to cofibrant objects.

(2) Example. Consider the cofibration category C in (1.5.10). From 3.3 in
Bousfield (1975) we derive a ‘localization functor’ C — C which carries objects
to fibrant objects and which is natural weak equivalent to the identical
functor of C. Thus by (4.4) this localization functor is a model functor.

(4.5) Proposition. Let f:B— X be a map in the cofibration category C. Then the
cobase change functor

f:(CP).—(CY),
(which carries B> A to X >— Al J3X) is a based model functor which
carries cofibrations to cofibrations, see (1.4).
We leave the proof as an exercise. The cobase change functor induces the
functor
(4.6) Ho(f,): Ho(C®). > Ho(C¥),

which is an equivalence of categories provided f is a weak equivalence. For
this we show that each object i: X >—— A is realizable by Hof,: Consider the
diagram

Ag— = 4
™~ /[

I push A,

B —— X

i

where A, is a factorization of if. Now f,4,= A, is isomorphic to 4 in
Ho(C¥), by A, = A.

§5 The groupoid of homotopies
For a cofibration Y = X we choose a cylinder I, X. Let x, y: X = U be extensions
of u:Y » U where U is fibrant. A homotopy x ~yrel Y isamap G:I,X - U,
which extends (x,):X | Jy X — U. We consider the set of homotopy classes
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relative (x, y) of such homotopies:
(5.1) Hy(x,y) = [IyX, U],

The elements of this set are called tracks from x to y relative Y. The set (5.1)
depends only up to canonical bijection on the choice of the cylinder I, X,
compare diagram (*) in the proof of (2.2). If U is not fibrant we define the
set (5.1) by (3.13).

A mapg:U -V and a pair mapf:(4, B)— (X, Y) induce functions as in (2.8)

{f* = (If)*:Hy(x,y) — Hp(xf, yf)

5.2) .
( e :Hy(xy)—Hylgx,gy)

For the definition of f* we use If in (2.10). The function f* does not depend
on the choice of If.

We show that we have the structure (+, —,0) of a groupoid for the sets
in (5.1). Let p:I,X — X be the projection of the cylinder. We call

(5.3) 0= {xp}eHy(x,x)

the trivial track. Let

(5.4) — =n*:Hy(x,y) — Hy(y, %)

be defined by n in (2.4). We call — G the negative of the track G. Moreover,
we define the addition

(5.5) + :Hy(x,y) x Hy(y,z) — Hy(x, 2).

Here we set {H} + {G} = {(H, G) m}, see (2.5). The addition is also called
track addition.
One can check that the functions in (5.4) and (5.5) are well defined.

(5.6) Proposition. For HeHy(w,x), GeHy(x,y) and FeH,(y,z) we have the
following equations (1),...,(9).

(1) H+(G+F)=(H+G)+F,
2 H+0=0+H=H,

@ H+(—H)=0,(—H)+H=0,
(@) f*(H+ G)=f*H + f*G,

(5) f*(— H)= —f*H,

6) g,(H+G)=g,H +4,G,

(7) g4(—H)= —g,H.

Now consider the following commutative diagram
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JUNELUSRY R UGS I
| S =
B——B——Y

and let HeH ((x,y), GeHg(f,g) and G'eHg(f',g) be tracks

8 HxG=f*H+y,G=x,G+g*H
9) (HxG)*G'= H+(G*G)

The equations (1)---(9) correspond to the equations which define a
2-category. Therefore the proposition implies:

Corollary. Let C be a cofibration category and let Y be an object in C. Then
the category (CY)c of cofibrant objects in C¥ is a 2-category in which the
2-morphisms are tracks.

Compare Kamps, Marcum (1976) and Kelley—Street.

Proof of (5.6). We leave (1)---(7) as an exercise to the reader. For (8) and (9)
representatives of the tracks yield maps

Iglz4) -5 1,x 5 U,

G HG)

Igp(IgA")) — IgIgA) — U.
Now we can use an argument as in the proof of (5.15) below. O
Let Y = X = X be cofibrations and for x,y:X - U let GeH,(x,y) be a
track. Then G induces a bijection of homotopy sets
(5.7) G:[X, U —[X, U
with the following properties:
O* =identity,
(5.8) PR
(Gy + G,) =G5°Gl.

We define G* by the homotopy extension property (2.17). That is, we choose
for {a}€[X,UT* and for G={H} a homotopy H on I, X with H|I,X = H,
Hiy =0, and we set: G* {a} = {Hi, }.

(5.9) Lemma. G* is well defined and satisfies the equation in (5.8).

Proof. We choose the relative cylinder for the triple X UYX cXul,Xu
X = I,X, as in (2.16). Here we assume the cylinder I, X(X ul, XU X)to be
the push out of cylinders. By the homotopy extension property of this relative
cylinder we see that G* {a} does not depend on the choice of H and «. Clearly,
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0% = identity. Moreover, we derive formula (5.8) from the commutative
diagram: (Z =1,X,Z = I,X)

ZmDZ~ZgZ

I push

" _,DZ 4

Nj——=<

zZ

(<

which we deduce from (1.5). O

Let g:U — V and that let (f, f, fo):(4, 4, B)— (X, X, Y) be a map between
triples. Then we have the commutative diagrams, compare (5.2),

(XU} —S, [X,07 [XU] —S [X,UT

(5.10) f‘*J f*J , g*l R
vy L g oy & 2 % v
Proof. For f* this follows from (2.19). In fact
J*G* o} =f*{Hi\} = {Hi, f} = {HUf)i,}.
Here H(If) extends H(If)ef*G by (2.19). O
We define the torus £, X on Y = X by the push out diagram:

(5.11)

A pair map f:(4,B)—(X,Y) induces Z-f:X;4 -2, X with Z-f =If Uf, see
(2.10).

Let u: X — U be a map where U is fibrant. By (2.11) the push out 7 induces
the bijection of sets

(512) [E¢X, UT > X, U1 = Hy(u, u).

Here H(u,u) is a group by (5.6) which via t* induces a group structure on
the set [X,X, UJ“. We denote this group by

(5.13) (U uw) = ([ZyX,UT%, +, —, 0), see §10.
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(5.14) Remarks. 1et Y >— X be a cofibration in the category of topological

spaces Top and let u: X — U be a map in Top. Then we can define the subspace

UXY = {feUX; f|Y = u|Y} of the function space U* = { f; f: X — U} with the

compact open topology. The map u is the basepoint of U*"Y. The fundamental

group 7,(U¥%, u)=[Z,X,UT* coincides with the group in (5.13) up to the

canonical isomorphism which depends on the choice of the cylinder in (5.11).
For a track Ge[I; X, U]*" = Hy(u,v) we obtain the diagram

[,X,UF —— Hywu)  H

e T ]

[Z,X,UF —> Hy(v,0) ~G+H+G
where we use the triple (£,X, X, Y), see (5.7).

Lemma. Diagram (5.15) commutes.
This shows by (5.6) that G* in (5.15) is an isomorphism of groups which is an
inner automorphism if u = v.

Proof. By (5.10) we see t*G*(z*)"'H =((1, )*G)*H.

We know that Z=1,X(JyI,X is a cylinder on X| J,X. Thus we have
(L)*G=(G,G):Z-U.

By (2.16) we have a relative cylinder (Z, Z) on X (JrX < I,X such that in the
diagram

nxuz %9y

A
//
.. //
o) -~ T
Z -~

Jio 1s a cofibration and a weak equivalence. Therefore the extension I' gives us
(G,G)* H={TI'i,}, see (5.7). We now consider the following commutative
diagram of unbroken arrows

K,i _
LXULx =2 Z

F} e
/
op|l~
P //—
(iosiy) yd A IyX .
/
/
// pl~
e

I(IyX) - X
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Here we use an appropriate cylinder for é = X | Jy X < I;X. The map K
represents — (Iiy) + i + (Ii,), where (Iig,1i,):Z = Z is the inclusion. Since
by (5.6) we know —0+ 0+ 0=0, there is a homotopy A which makes the
diagram above commute. By (1.10) we choose the lifting A which gives the
homotopy T'A:Ti, ~ — G+ H + Grel 6. This proves the commutativity of
(5.15). O

Let (A, 4, B) be a triple and let v:4 — U be given. We derive from (5.7),
(5.8) the action of the fundamental group

(5.16) [4, U] x [Z54, U4 5[4, U,

which carries (u, H) to u + H = H* (u). This action leads to the exact sequence
of sets (see §10).

(5.17) [ZpA, U “5 [ 4, U <o [A, UTE -5 [ 4, UTP,

where j and i* are defined as in (2.18) and where u*(H)=u+ H. One can
check that image(u*)=j"'j(u). In (2.18) we have seen that image
() = (i*)~'({v})- The exact sequence (5.17) is of great help for the comparison
of the categories Ho(C®?) and Ho(C*) if B> A. For example, we have the
following useful results in topology:

(5.18) Example. Consider the cofibration category Top in (5.1) and the triple
(A4, *, @) where ¢ is the empty set and where * is a basepoint of 4 such that =
>—— A is a cofibration in Top. For this triple the exact sequence (5.17) yields
the exact sequence

[Z,%, Ul* 5[4, UT* >[4, U] — [+ UL
) I
n,(U) o(U)

This shows that for a path connected space U we have the equations
[4,U)*/n,(U)=[A4, U,
where the fundamental group =, acts by
X—o*X, aem,, Xe[A, UJ*
(5.19) Example. Let p:U —> D be a fibration in Top with fiber F = p~ ()
and with basepoint *eF < U. Moreover, let A— D be a basepoint preser-

ving map. If *+>—— A4 is a closed cofibration in Top there is the exact
sequence.
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[Z,%Uls 5[4, Uly —[4, U} — [ UL

I )
m(F) o(F)

This as well is an example of the exact sequence (5.17). In fact, let Top,, be the
cofibration category of spaces over D obtained by Strgm’s model category

(1.4a.4) via (1.4a.5). Then (A, *, ¢) is a triple in Top, and U is a fibrant object in
Topy, so that we can apply (5.17). In particular we get

[4,UTy/n, F =[A4, U5,
provided the fiber F is path connected.

(5.20) Example. Let F = Top be the fibration category of topological spaces in
(5.2). For a triple X —> X —> Y in F we have the exact sequence

[U.QX1y—[U, X1y~ [U, X1y~ [U. X1y

which is dual to (5.17). We consider the special case with Y=* and U =
p~(*)=F—>#eX, p:X —> X. Thus we get for 1 =1,

[F.Q X1y —“[F X]y—[F.X1-[F. X]
I I
[F x SY/F x %, X]* [F, F]
U U
[SY, X]* = n,(X) —— Aut(F), ar— ¥

Here Aut(F) is the group of homotopy equivalences of F in Top/~. The
operator a+— o satisfies (a + B)f = % °a*. This operator induces the action
of 7, X from the right on the homology of the fiber by x*= (a*),(x) for
xeH F.If F is simply connected (or simple) we obtain by n; X — Aut(F) the
action of 7, X on the homotopy groups w, F =[S", F], n=2.

§5a Appendix: homotopies and functors

Let C and K be cofibration categories and let a:C — K be a functor which
preserves weak equivalences. We here show that o carries tracks in C to
tracks in K.

First we consider the induced functions on homotopy sets. Let Y be an
object in C. Then « induces the functor

(5a.1) a:CY —K¥,
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which carries the object i:Y—> X in CY to the object a(i):aY »aX in K*Y.
Clearly, this functor as well preserves weak equivalences and thus we get the
induced functor on homotopy categories

(5a.2) Hoa: HoCY — HoK*.

Now assume thati: Y >— X isa cofibration in C and that u: Y — U is given
where U is fibrant in C. For the homotopy set [ X, U]¥ we obtain by Hoa in
(5a.2) the function (compare (3.13))

(5a.3) a=How:[X, U] —[aX,aU]* = [MaX, RaU]*.
Usually o alone is sufficient notation for this function since it will be clear

from the context whether we apply « to a map in C or to a homotopy class
in HoCY. In (5a.3) we choose for a(i):aY - «X the factorization

aY > MaX SaX, (1)
q

and we choose for the object aU the fibrant model
aU >=> RaU. (2
J

Then the function « = Hou carries the homotopy class of f: X — Urel Y to the
homotopy class, rel «Y, of the composition

f:MaXlaX7aU>;>RaU. (3)
q x J

Thus the construction f — f depends on the choices in (1) and (2).

Now consider the set of tracks [I,X, U]* where x,y:X — U are maps
which coincide on Y. Then the functor o induces the following function o,
which carries tracks from x to yrel Y to tracks from x to y rel « Y; (here x and y
are given by (3) above).

[y X, U&= 25 [aly X, aU*=»
|
|
d
[1yMaX,ReUT* & [ Mal, X, RaUT=x»

(58.4) o,

In this diagram the function « is defined by (5a.3) and L* = h*(j*)™! is
induced by a weak lifting L= (h,j) in the following commutative diagram
with L' = ((aio)gq, («i})g).
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MoX | )yMaX >— [yMoX —~—s MaX

Y

L Z ~1q.

~

oc(XUYX) >— Maly X l)dIYXT‘—»aX
P

It is clear that L* in (5a.4) is well defined, compare (1.10) and (1.11). Moreover,
L* is bijection provided o is compatible with the push out X { ) X, see (1.1.10)
and (2.11).

(5a.5) Theorem. Let He[I, X, UT"* and Ge[l,X, U be tracks as in (5.6).
Then o, in (5a.4) satisfies the formulas:

o (H + G) = ay(H) + 2,(G),

a(— H)= —o,(H),
2,(0) =0,
(Rag) 2 (G) = 2;(9,G) where g:U - U’,
(Mofy*a (G) = o (f*G) where f:(X"Y')—>(X,Y).

Here Rag is an extension RaU — RoU’ of ag:oU — aU’. Moreover Mof =
(f1.1) 1s a weak lifting of the diagram

~

aY > MoX' —=— aX'

I
(5a.6) (") K 1),
|
aY > MoX —_— aX
which induces (Maf )* = f*(i*)~!. We point out that in (5a.5) we only assume

that the functor « preserves weak equivalences.

Proof of (5a.5). Consider the diagrams in (2.4), (2.5) and (2.10). These
diagrams are commutative diagrams in C of the type

F I‘ ‘\\F
I NN \
' NA
I /Z\Nlj (1)
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Here U 1is a fibrant object and F denotes an extension of F, (L, 1) is a ‘weak
lifting’ as in (1.10). The functor « carries the unbroken arrows of diagram
(1) to the subdiagram in the middle of the following commutative diagram
of unbroken arrows.

N -7

2)

Here (L, 1) is a weak lifting as in (1) where we replace the objects A, B...
by A,B...respectively. In this situation we can choose extensions of aF
described by the broken arrows. The equations in (5a.5) follow from the fact

that
~_ e~ -
(«Fx)L ~ (aFaL)brel A. (3)
We prove this as follows: Diagram (2) can be considered as being a diagram
in Ho(K"). In this category we get the equation
() taLB b =¢" AL 4
We see this since we can apply the isomorphism af to both sides. Hence
commutativity of (2) yields (4). Now the right-hand side of (3) represents
jaF(ad)”'aLp ™ 'b, the left-hand side represents jaF&~'xA~'L. Therefore
if we apply jaF to both sides of (4) we get (3); here we use (3.12) in the
category Ho(K").
As an example we derive from (3) the equation a;(— H)= — H. In this
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case (1) is given by (2.4) and b=x =g and = ¢ =r are given by diagram
(5a.4)(1). Moreover, F represents the track H. Now the left-hand side of (3)
represents — o; H and the right-hand side of (3) represents o;( — H). O

Next we consider the operator G* in (5.7) and we show that G* is compatible
with the functor «. Let Y > X >— X be a triple in C. We choose the

commutative diagram

aY —oX — oX

I~ I
(5a.7) \MocX > MoX.

(5a.8) Proposition. Let Ge[IyX, U™ be a track and let «; G be given by (5a.4).
Then we have the commutative diagram
[X,Ur ¢ _, [X,UY
la la
[ — - (aLG)# — = -
[MaX, RaUT —= [MaX, ReUT
Here o carries &:X — U to the composition &:MaX S aX LU >= RaU.

Proof. Since a preserves weak equivalences also the induced functor

o:Pair C — PairK (1)
preserves weak equivalences. The triple (X, X, Y) is the same as a cofibration
i2(Y,Y)>—(X,X) in PairC. 2)

Then a factorization
ali): (oY, aY) >— (M, M) =5 (0X, 2 X) (3)

is the same as a choice in (5a.7), M = MaX, M = MaX. Now we can apply
(5a.4) for the functor « in (1). This yields the function

He[ly .y, (X, X),(U, U

l aL > (4)
o He[ Ly v (M, M), RU, U)]*?

For G = H{I,X we have {n} = G*{¢} and similarly for ;G = (a,H)| I yM we
have {7} =(2,G*{Z}. This proves (5a.8) since aG*{¢}=a{y}={f}=
(@.G*{E} = (2,G)*«{&} by definition of « in (5a.8). 0

(5a.9) Remark. Proposition (5a.8) shows that the functor « carries the exact
sequence (5.17) is C to the corresponding exact sequence in K.



6 Homotopy groups 115

§ 6 Homotopy groups

Let C be a cofibration category with an initial object which we denote by *

(6.1) Definition. A based objectin Cis a pair X = (X, Oy) where X is a cofibrant
object (that is, x — X isa cofibration) and where O = O4: X — xis amap from X
to the initial object. We call O = Oy the trivial map on X. A map f: X >Y
between based objects is based if Of = O and fis based up to homotopy if Of = O
in HoC.,. I

(6.2) Remark. If the initial object * 1s also final object of C then each cofibrant
object in C 1s based by the unique map O:X — . In general there might be
many maps X — x, For example, let B be a cofibration category and let Y be an
object in B. Then C=BY is a cofibration category with the initial object
*x=(1y:Y > Y). A based objectin C is given by cofibration Y >— X and by a
retraction O,:X — Y. There might be several different retractions from X
to Y.

(6.3) Example. Let B be a cofibration category and let B> A4 be a
cofibration in B. Then we have the cofibrationi,: A >— A4 U g4 (inclusion of
the second summand) so that 4{ JzA is a cofibrant object in B4 The object
A( JpA in B4 is based by the folding map O =(1,1): A{ )4 — A. We denote
this based object in B4 by £44 = (4 >T> Al JpA - A). We use this example
in §10.

(6.4) Definition. Two based objects X, X, are equivalent if there is a
commutative diagram

A ||

Let X be any object in C and assume a map Oy:X — * is given. Then any
factorization MX of * > X is a based object by

*>oMX S5 X —x 1)

Two such factorizations are equivalent as based objects.
On the other hand a fibrant model X >~ RX ofa based object X admits a
commutative diagram
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Ox
x> X — %

i

RX — R+«
ROy
where ROy is an extension as in (1.6). In case * = R« is fibrant we can use ROy
as a trivial map of RX; two such choices again are equivalent as based objects.
Actually we always may assume that R+ == In case Rx# * we have
i:* >~ R* and hence the functor i,:C = C*— C** (see (4.5)) induces an

equivalence of homotopy theories.
For an object Y and a based object X we always have the trivial map
0:X - > Y. If Y is fibrant this map represents the trivial homotopy class

(6.5) O€e[X, Y]=rX(Y).

Here [ X, Y] denotes the set of homotopy classes relative *, see (2.3)(b).

For cofibrant objects A and B in C we get the sum A v B which is the
push out of A< *>—B. If A and B are based then 4 v B is based by
(0,0):4 v B— *. The inclusions

(6.6) ijttA>—>AvVB, i;;B>—>AVvB
induce the bijection
(6.7) [AvB Y]=[A4,Y]x[B, Y]

This follows from the fact that I, A4 v I, Bis a cylinder on* >— A4 v B. Here
I,A is a cylinder on *>— A.

(6.8) Definition. For a based object A the suspension A4 is the based object
which is defined by the push out diagram

n
e

* >3 M m—— -

<

\
.
3

S

2

A

%
(zozl)l push lpush
A

Av A RT o

RN

Here Z,A is the torus on * >— A, see (5.11). Clearly, £4 depends on the
choice of the trivial map O:4 — *. The composition 7y: 1,4 > X, 4 — XA is the
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canonical homotopy 7,:0 ~ 0 on T A. Since ZA is a based object we can define
inductively

(6.9) T"A=X(Z"4), n=1, T°A=A.
The push out ¢ in the diagram above yields the bijection of sets (see (5.13))
(6.10) [ZA, U]Z[Z,A4,UT° with 0:4 - U.

By (5.13) this set has a group structure, via 6* also [ZA, U] is a group for which
0 is the neutral element. More generally we obtain for n > 1 the homotopy
groups

6.11) nd(U) = [Z"A4, U].

These groups are only defined with respect to a based object A. A priori, they
depend on the choice of cylinders in (6.8), but different choices of cylinders
yield canonically isomorphic groups. For n = 2 the groups n(U) are abelian,
see (9.10).

(6.12) Example. Let C =Top*, see (1.54). f A=S° is the zero sphere,
§°={0,1}, then

X =13°(X)=[Z"8°, X]=[$", X]
is the nth homotopy group of the pointed space X. n,X is the fundamental
group of X. The fundamental group 7, X acts on the groups 7, X. This action is
available for the groups in (6.11) as follows:

By use of ng:l, A—-X,A—ZA we identify a map a:ZA—-U with a
homotopy amy:0~0,any:1,4— U. This leads by (5.7) to the (natural) group
action
(6.13) T (U) x n{(U) —m(U) (nz 1),

(& 0)— &%
with &%= (amy)*(¢). Here we use (6.10) for n=1 and (10.4)(3) for n> 1.

Moreover, £—¢&* is an automorphism of z(U) for each «, in fact, the inner
automorphism ¢é—-¢*= —a + £ + o for n =1, see (5.15).

(6.14) Proposition. If A is a suspension, A =X A', then the operation in (6.13)
is trivial (&*= & for all ).

This is clear for n=1 since n{ =4 is abelian, for n > 1 we prove this
in (11.14).

For a based map f: A — B we obtain the based map
(6.15) 3f:3A—3IB

by using Ifin (2.10) and by the push out diagram (6.8). More generally we get
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T :3"4 > 3"B. These maps induce homomorphisms f* = (Z°f)*:z3(U) -
n2(U). One can check that (g f)* =f*g* for a based map g:B—C.

(6.16) Remark. For X =%XA4Av XA the group structure on [ZA,X], see
(3.13), yields maps m =i, + i;€[24,X4A v ZA]land n= — 1€[Z4,ZA] in the
category HoC, compare (3.6). One easily verifies that (XA, m, n, O) is a cogroup
in HoC, that is: In HoC we have the equations (m v D)m = (1 v m)m, (1, n)m =
(n,1)m=0, and (1,0)m = (0, 1)m = 1. The maps m and n determine the group
structure on the functor n{( ) by + =m* and — =n*.

§ 6a Homotopy groups and functors

Let a:C—K be a functor between cofibration categories which preserves
weak equivalences and which is based, that is o carries the initial object * in C
to the initial object * = a(*)in K, compare (1.1.10); (if  is not based we consider
the based functor a:C — K**®),

A based object *x >— X S x%in C yields by the choice of a factorization
MoaX a based object

(6a.1) *=oc(*)>——>Moch>oino)>a*=*

in K. Hence the suspension MaX is defined. The functor a induces the
binatural homomorphism of groups

(6a.2) o [ZX, U] —[EZMaX,RaU].

This homomorphism is a special case of (5a.4) since we use (6.10) and (5.12).
From (5a.5) we deduce the properties of o;.

There is a map qo: XMaX - MaX X in HoC such that the following diagram
commutes

[=X,U] —2 S [aZX,aU]

. |

[EMoX,RaU] «—— [MoZX, RaU]
qo

Clearly, q, can be obtained by o,({i}) where i:XX >— RZX is a fibrant
model of £X. The function « is given by Hoa is §4, see also (5a.3). We now
define inductively the binatural homomorphism
(6a.3) o =o:[2"X,U] — [E"MaX,RaU] by aj =a; and

af = (Z" 7 'go)*ap '

Here the suspension X"~ !q, is defined as in §9 below since ¢, is based up to
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homotopy, n = 2. In (8.27)(3) we describe a different way to obtain the map g,.
This shows that g§ and ("~ q,)* are bijections provided « is a model functor.

(6a.4) Example. Let « = C,, be the functor of (reduced) singular chains from
pointed topological spaces to chain complexes, see 1.§ 6. Then «; in (6a.3) yields
the classical Hurewicz homomorphism

m(U)=[£"S°, U] — [="C,S°, C,U] = H,U.

§ 7 Relative homotopy groups and the exact homotopy
sequence of a pair

Let C be a cofibration category with an initial object *. Then the category Pair
(C) of pairs in C has the initial object * = (x, ¥). A based pair (4, B), that is, a
based object in Pair (C), is given by maps * >—— B >—— 4 — * in C. Hence A
and B are based objectsin C. For a based pair we have the homotopy groupsin
the cofibration category Pair (C), see (6.11),

(7.1) [Z"(4,B),(U, V)] (n20),

where (U, V) is a fibrant pair. This is a pointed set for n =0, a group forn =1
and an abelian group for n = 2. The pair £"(4, B) is a pair of suspensions in C

(7.2) Z"4,B)=(Z"4,X"B).
This follows from (2.16). Moreover, the comultiplication m on £"(4, B)is a map
(7.3) m:(Z"4,X"B) — (£"A v £"4,Z"B v Z'B)

in HoPair(C) which restricts to the comultiplication on "4 and Z"B
respectively, see (6.16). This shows that the boundary function

7.4 0:[Z"(4, B),(U, V)] — [X"B, V]

with {(f.f")} = {f’} is a homomorphism, n > 1.
For a based object 4 in C we define the cone CA by the push out:

A %

AT

I,A—CA

(75) I(io, i1) pUSh Iio 0

A map f:4 - U is nullhemotopic (f~0) if and only if there is an extension
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f:CA-U of f. If we replace in (7.5) the map (1,0) by (0,1) we obtain
ij:A>—C'A. Since A>—1,A4 is a weak equivalence also *—>CA is
weak equivalence and thus CA — * is a weak equivalence.

More generally we say that for a based object 4 any factorization

A>—C 5= (1)

of the trivial map O: 4 — * is a cone on A; C = CA. For two cones C,, C, there
is always a commutative diagram

A > C ~—* 2)

where C is a cone on A.
We have the push out map

(7.6) 1:(CA,A) —(ZA, *),
compare (6.8) and (1.3). Since the pair (CA4, A) in (7.5) is based we obtain

ICA, A)=(Z"CA,X"A), as in (7.2). By (1.10) we can choose a weak lifting T
for the diagram

2’4 >——3"CA

-~
io el ~
7T )
I's

Cx"A —_— *

which gives a bijection T* for the following sets:
(7.7 Ty (U, V) =[(CZ"4,2"4), (U, V)] = [Z(CA, 4), (U, V)].
T*

We call the set nl, | (U, V) with the group structure induced by T* the relative
homotopy groups of the fibrant pair (U, V). This is an abelian group for n > 2.
The relative homotopy groups are the linking terms in the following long
exact homotopy sequence of the pair (U, V):

For n = 0 we consider the sequence

—i—>n,,A+ () 7—>n;,‘+ LU ) —;»n;,‘(V) —;»n;,“(U).

Here i is induced by V' — U, 0 is given by restriction as in (7.4) and j = n* is
induced by the pair map n:(CX"4,X"4) - (X"*' 4, *) in (7.6).

(7.8) Proposition. For n =0 the sequence is exact, for n = 1 the functions i, j, 0
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are homomorphisms of groups. Moreover, the sequence is natural with respect to
pair maps (U, V)—(U’, V") in Ho Pair (C) and with respect to based maps A —» B
in C.

Remark. (7.8) is as well the cofibration sequence in Pair(C) for (A4, x)
—(A, 4)—(CA, A), see (8.25) below

Proof. Since we can replace A by "4 itis enough to check exactness for n = 0.
Let A =V >— U be nullhomotopic. Then we have an extension @:C4 - U
which is a pair map &: (CA4, A)— (U, V) with 0{&} = {«}. This proves exactness
at (V). Now suppose, we have (&, 0):(C A4, 4) - (U, V) with H:o. >~ 0. Then the
homotopy extension property of 4 = CA gives us the pair map

(G, H):(1,CA,1,4)— (U, V).

For (Gi,,01:(CA4,A)—>(U,V) there is p:ZA-U with j{f}={Gi}=
{Giy} = {a} since Gi;|A = 0. This proves exactness at n(U, V). Next, suppose
B:ZA - U is given with j{f} = 0. Then we have a nullhomotopy

(G, H):C(CA, A) = (CCA, CA)— (U, V)

with Gi = G|(CA, A)= pr. Since fin| A =0 we obtain by H a map y:ZA—-V
with yn = H. For the two cofibrations iy, Ci,:CA >— CCA (given by the cone
on CA and by the pair C(CA, A) respectively) there is a homotopy
Gig~ G(Cig)rel A since ig| A =(Cig)l A and since CCA is contractible. This
proves that i{y} = {B}. Thus we have also exactness at n(U).

It remains to show that for n = 1 the functions i, j, & are homomorphisms of
groups. This is clear for i and 0. For j we use the following argument:

The based map n:(C A4, A)— (£ 4, *) and its suspension Z"x in Pair (C)induce
certainly for n=> 1 a homomorphism of groups (X£"7)*. Moreover, for the
isomorphism (— 1)" the diagram (7.9) commutes. This proves that j is a
homomorphism since n = 1.

(=1

mha(U) < [ETAU]
(7.9) j J ="
1t (U, V) —S— [Z(CA, A), (U, V)] O

Next we consider the action of the fundamental group n{(V) on the
homotopy sequence (7.8). First, we define the action

(7.10) nrf+1(U7 V)an(V)'_’n;?+1(U, V)

on the relative homotopy groups as follows: We consider the pair (n = 1).
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0=(Cx"4 v ZA,2"4 v ZA). Its long exact homotopy sequence gives us the
split short exact sequence

0— 7, ((Q) —>7AZE"A v Z4) - (24) — 0.

o1,
For the elements i:X"4 > X"A v £A4,i:XA—>2X"4 v X4 we have
(7.11) p=p,=ig:Z"A->32"4v A in HoC,

which induces the action in (6.13), that is &* = u*(&, ). We call pu the universal
example of the action.

We now apply the short exact sequence above. Since (0,1),p = u*(0,1) =
0! =0, we know that uelmage 0. Since 9 is injective there is a unique map

(7.12) (CZ"4,2"4) “5(CZ"A v ZA,5"A v £A4)

in Ho Pair (C) with &ji = p. This pair map i is the universal example for

the action (7.10). That is, we set for éen?, (U, V) and xenf (V)
&=+

One easily checks that thisis in fact a group action acting via automorphisms.

By naturality we have 4(%) = (3%, this means, d is an equivariant homomor-

phism. The group nf(V) acts on n(U) by (6.13) and by the homomorphism
i (V) = mfd(U).

(7.13) Proposition. All homomorphisms i, j, 0 of the exact homotopy sequence
(7.8) (n = 1) are equivariant with respect to the action of wi(V).
Proof. We have to check

JO=j0y, vem (V).

The universal example for this equation is the following commutative diagram
in Ho Pair (C)

(€z4,24) —L (CZ"A v £A4,2"A v TA)

ln ((n v 1),(0, 1))
(1,0

(Z"*14,%) ——» (Z"*!AVvIAZTA)

(" 14 v Z4,%) ((7.i2),)

Wﬁ (U, V)
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In (11.15) below we show that this diagram commutes. O

(7.14) Definition. A homomorphism between groups, d:p, —p,, is a crossed

module if p, acts from the right on p, via automorphisms (p, — p,, x+— x%
a€p,) such that for x, yep,

0(x)=—a+dx+ o 3y

—y4+x+y=xV )

A map (F, ¢) between crossed modules is a commutative diagram

F I
Pr—>pP2

I o

P1 —40—) 01
in the category of groups such that F is ¢ equivariant, that is F(x*) = (Fx)**
I

(7.15) Remark. For a crossed module d:p, — p, the kernel of 8 lies in the
center of p,, in fact for yekernel(d) we have —y 4+ x + y = x¥ = x° = x for all
x.

(7.16) Proposition. The homomorphism 0:nd(U,V)—>n(V) is a crossed
module for all A, U,and V as in (7.8).

Proof. (1)in (7.14) is clearly satisfied by (7.13) and (5.15). It remains to check
(2) in (7.14). For this we consider the commutative diagram

fien(C(ZA v TA), A v TA)

;\‘3
i

* Tl (ZA v ZA),
pend(CZAvZIAZAv ZA)//E"

where i is the inclusion. For j in (7.12) we know d'fi=pu= —i, +i, +i,.
On the other hand, for i= —j, +j, +j, we get i = —i, +i, + i, as well.
(Clearly i,,i,, j;,j, denote the obvious inclusions). Since C(XA v ZA) is
contractible we see that ¢ is an isomorphism. Therefore we get i, ji = ji. This,
in fact, is the universal example for equation (2) in (7.14). O

(7.17) Corollary. The image of n(U)—nd(U,V) lies in the center of the
group n5(U, V).
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This is an immediate consequence of (7.15) and of the exactness in (7.8).
Finally we consider the end of the exact sequence in (7.8)

() L iU, v) S mg(v) S md(v)

The last three terms are pointed sets. Moreover the sequence comes with a
natural action

(7.18) iU, V) x n(U) 5 nd(U, V)

such that j is given by j(x) =0+ x and such that elements of n{(U, V) are
in the same orbit if and only if they have the same image in na(V) via 0.
We define + in (7.18) by the map u:CA—CAv A4 in Ho(C%) which is
given by track addition, compare (8.7) below. Now it is easy to check that
the action (7.18) has the properties as described.

The homotopy sequence of a pair in (7.8) is compatible with certain functors.
Let a:C—K be a functor between cofibration categories which preserves
weak equivalences and which is based, (that is, o(*) = *). By (7.5) we get

(7.19) Ma(CA, A) = (CMaA, MaA).

The left-hand side is a factorization of * —a(CA, A) in Pair (K). By (6a.3),
applied to the functor «:Pair (C) — Pair (K), we obtain the homomorphism

[Z"(CA, A), (U, V)] = m}!, (U, V)
(7.20) la
[Z(CMaA, MaA), Ru(U, V)] = n}#{(RaU, RaV)
between relative homotopy groups. Here Ra(U,V)=(RalU,RaV) is a
fibrant model of o(U, V) = (aU, aV) is Pair (K).

(7.21) Theorem. With the notation above the functor o induces a commutative
diagram

A U) - AUV S miy) - i)

A

MRy U) — TMA(RaU, RaV) 2> nM*4(RaV) —» nMe4(Ra)

T+

the rows of which are the exact sequences in (1.8). Moreover, o is compatible
with the action in (7.10), that is, o(Ef) = (a&)P.
This is essentially clear by the naturality of « in (6a.3).

(7.22) Remark. The commutative diagram in (7.21)is a well-known fact for the
Hurewicz homomorphism in (6a.4).
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§8 Principal cofibrations and the cofiber sequence

Let f:A— B be a map and let A be a based object. We define the cofiber
(mapping cone) C, by the push out diagram in C

CA —— ¢,

r
(8.1) lio push li,

A ——B

f

Here CA is a cone on A as defined in (7.5). If B is also a based object and if
fis a based map then C, is based by O = (0,4, Op):C,— *, where O, is the
map in (7.5). In this case i, is a based map.

(8.2) Warning. 1If B=+ and if f = O , then C, = £A4. However, there might be
maps f:A — = with f # O ,. In this case we have C, # ZA4. Moreover, C, is not
based in this case.

(8.3) Definition. We call a cofibration i: B> C a principal cofibration with
attaching map f€[ A4, B] if there is a map f,:4 - RB, which represents f,
together with a weak equivalence C,, =»RC in C". I

For example, i, in (8.1) is a principal cofibration.
A principal cofibration i has the following characteristic property. Consider
the diagram of unbroken arrows in C

C

(8.4) i l \

A——f——> B——U

L}

where U is fibrant and where f €[ A4, B] is the attaching map. The map u can
be extended over C (that is, a map w with w| B = u exists) exactly if the element

(8.5) f*{ule[A,U]

is the trivial element, f*{u} =0. For this reason we call f*{u} the
primary obstruction for extending u.

The obstruction property of f*{u} is a consequence of the fact that the
push out (8.1) induces the bijection

(8.6) [[,A,U*°=[CA U =[C,, U}

of homotopy sets by (2.11). By (8.6) we identify a map w:C,—U with
a null-homotopy uf ~0.
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The suspension A cooperates from the right on C, by means of the map
(8.7) wCr—CrvZA
in HoC2. By using the identification in (8.6) we define the cooperation u by
track addition u=i,m, +i;m,, where n5:1,A—>XA and n;:1,A->CA->C,
are the canonical homotopies and where i, and i, are the inclusions of C,
and XA respectively in C, v £A4. Compare (5.5). Let Y >—B>—C, be
cofibrations in C and let v: Y — U be given. The cooperation (8.7) induces the
function y* = +:
(8.8) [C,, U] x [£4,U] —[C,, U™
By (5.6) this is a group action of the group [ZA4, U] on the set [C,, U]". If
B >— Cis a principal cofibration as in (8.3) we have this action as well on the
set [C, U]" by the bijection [C,U]" =[C,,, UT".

If Y = B the action (8.8) is transitive and effective so that for an extension
w:C,—> U of u:B—U we have the bijection

(8.9) w*:[Z4,U] S[C, UT,
defined by w*(a) = {w} + .

If Y = * we obtain by (8.8) the usual action
(8.10) [C,, Ul x[Z4,U] 5[C, Ul

The relative cylinder for the triple (C,, B, Y) gives us the cofibration (see (2.16))
(8.11) C,ulyBuC,>—1,C,.
By track addition we have the map in HoC
{Wfle — C,ul,BUC,
we=—ion,+If +im, ’

where If:1,A— 1B is induced by f, compare (2.10).

(8.12) Lemma. The cofibration (8.11) is a principal cofibration with attaching
map wy.

Proof. By (2.20) we know that (I,CA,CAul,AuCA)-(,C,, C,u
IyBuUCj) is a push out. Since we have the weak equivalence (CZA4,Z4) =~
(1,CA,CAUI AU CA) of pairs we obtain (8.12) O

Let uo,u;:C,—»U be maps and let H:us|B~u|B (H:IyB—>U) be a
homotopy of their restrictions. Then we define the difference

(8.13) Aug, Hyuy) = whue, H,ug)e[ZA, U]
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We set d(ug, u;) = d(u,0,u,) if ug]|B=u,|B, here 0 is the trivial homotopy.
By (8.12) d{(uy, H, u,) = 0 iff the homotopy H is extandable to a homotopy
G:ug ~ u,. Clearly, the homotopy — u,n, + H(I f) + u n,:ZA— U represents
d(uy, H,u,). By (5.6) we see

(8.14) d(ug, H,uy) + d(uy, G,u,) =d(ug, H + G, u,).

Moreover, for the action + in (8.8) we have the equation
(8.15) {uo} + d(ug, Hyu,) = {u,}e[C, UT",

where uo| Y =u,|Y and where H:uy|B =~ u,|B is a homotopy rel Y.
We now describe the exact classification sequence for a principal cofibration.
Suppose we have a commutative diagram in C

c=¢,

o
A—»p .U
I

w

Then we have the following sequence of homotopy sets:

(8.16) [Z,B, U]u:(_r). [24,U] - [Cp U —[B,UYT - [4, U]
w, w lf

Here we define w* by w*(a)={w} + « and we set Z(w, f)(H) = d(w, H,w),
where we identify the element He[XZ,B,U]* with a track H:u~u. By
(8.14) it is easy to see that X(w,f) is a homomorphism of groups. Moreover,

(8.17) Proposition. The sequence (8.16) is exact in the following sense:
Image (iF) = (f*)~1(0),
Tmage (w*) = (i)~ {u},
Image Z(w,f) = (w*) "' ({w}).

Thus the group ‘Image Z(w,f) is the isotropy group of the action + in (8.8)
in {w}. If the group [X A, U] is abelian the isotropy group depends only on the
orbit of {w} which is characterized by the restriction {u} of {w}. Moreover, if
[XA, U] is abelian the homomorphism Z(w, f) = Z(u,f) depends only on u. In
§ 10 we discuss the prolongation of (8.16).

Proofof (8.17). The first equation is a consequence of the obstruction property
in (8.5). The second equation follows from (8.15). The third equation is
obtained as follows: Let {w} + {«} = {w} and let H:(w,a)u ~wrelY be a
homotopy. Since (w,a)u|B =u the restriction of H to B is a self homo-
topy H:u~urelY for which by (8.13) O0=dw+ a, H',w)=d(w + o, w) +
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dw,H',w)= —d(w,w + a) + Z(w,/)(H) = — o + Z(w,f)(H'). Therefore
acImX(w,f). On the other hand if xeImX(w, ) then H' exists such that 0 = — «
+ X(w,f)H'. The equations above then imply 0 = d(w + o, H', w). Therefore H’
can be extended to a homotopy w+a~wrel Y. This proves the third
equation. O

Assume now in (8.16) that Y =«, that B is a based object and that f is a based
map. Then also C is based and we obtain for w =0:C;—* — U the following
special case of the exact sequence (8.16):

=)* ot i r*
(8.18) [ZB,U]=[ZA, U] —[C,U]L[B,U]—[4,U]
This is the classical cofibration sequence (Puppe sequence). We now describe
a different approach which yields this sequence as well.

Let 4 be a based object and let A > B be a cofibration. Then we define
the cofiber B/A by the push out diagram.

B —1 B/

(8.19) Ii push i .

A——»o *

We call A > B -3 B/A a cofiber sequence. By (2.18) we see that the induced
sequence of homotopy sets

(8.20) [B/A,U]5[B, U] 5[4, U]

is exact, that is (i*)~ !0 = Image g*.
If (B, A) is a based pair then B/A is based and also B— B/A4 is a based
map. For example we have the following cofibers which are based:
621) CA=1,4)i,A, C'A=1,A[i,A,
' TA=CA/A=C'A/A=1,4/(A v A)

Iff: A > Bisacofibration then also 7 ,:CA >— Cis a cofibration. In this
case we have canonical weak equivalences of cofibers

(8.22) C,;5C,/CA = B/A,

which are based maps if f is based. We see this by the push out diagrams

B>— C, —— C,/CA

fl push l push l

A>—>CA—— =«
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Next we define the cofiber of a map f: 4 — B where A is a based object. We
choose a factorization A, by (C3) and we get the diagram

f

A——B

(8.23) \ ~ / P

A, —— B, =A,/4
fi=4q

We call B, = A,/4 the cofiber of f. For example we can choose for 4, the
mapping cylinder Z,; of f, see (I.1.8). In this case the cofiber of fis the mapping
cone C; of f, see (8.1).

Assume now that f is a based map. Then also A, is based by O = Ogp
and (A,, A4) is a based pair. Thus f, is a based map and we can apply an
inductive procedure by replacing fin (8.23) by f, etc. This yields the following
commutative diagram of based objects and based maps:

B B, B,
(8.24) f/ \~ / \~ / \~ ,
A 4, A4, Ay > e

where B;,, is the cofiber of A;>— A;,, for i=1 and where 4;,, is a
factorization of q: 4; > B,.
On the other hand the cofiber of B>—C, is C;/B= CA/A=XA. This
yields the top row of the diagram
f zi

4a—L . B c, =, x4 ) N

(SN O K R

A>—> A >—> A,>—> A3 >—> A, >—---

i

Heref,iand q are based maps, the suspensions of which form the prolongation
ZHLEM,ZM( 1)) (n= 1) of the top row. As in the classical case we see

(8.25) Proposition. There exists a commutative diagram (x) in HoC in which all
vertical arrows are isomorphisms in HoC.

If we apply the functor [ ,U] we derive from (8.25) and (8.20) the exact
sequence in (8.18) together with the long exact continuation:

zi*

o [224, U1 (20, U1 2 (2B, U1EX ...

(8.26) Proposition. (Zg)*[X24, U] lies in the center of the group [EC,, U].
We prove (8.26) in the proof of (9.10) below.



130 I Homotopy theory in a cofibration category

Finally, we consider principal cofibrations in connection with functors.
Let o:C — K be a based functor which preserves weak equivalences, see (1.1.10).
For the principal cofibration (8.1) we obtain the following commutative
diagram in K for which the front square is a push out:

2CA— oC;

~ 0
CMaA—I—» CI'\:Iaf ]

(8.27)
QAJ_I_;’O(B
*>—» MoA >~——> MaoB
Moaf

Here * >— Maf:> af is a factorization of = — o f in Pair (K) and CMaA is
obtained by a factorization of MuxA >4 —aCA. Diagram (8.27) yields
the canonical map g, which is a weak equivalence provided the functor
« is compatible with the push out C,=CAl|J,B, see (11.10) and
(1.4b.4).

Clearly, MaA is a based object by

* > MoAd > ad “Dax =+, 1)

Moreover, Mo f is a based map if f is based. In case f = 0: 4 — = is the trivial
map we get by g, the map

qo:EMoA = Cy,i/MaB — aZ A 2

The map g, is compatible with the cooperation in the sense that the following
diagram commutes in Ho(KM*B),

Crtay —— Cpray v EMoA

qu l((aiﬂqf,(aiz)qo) . (3)

aCf—a“—Mx(CvaA)

Here i;:C; > C;v XA and i,:£A - C,; v A are the canonical maps. Since
u is defined by addition of tracks we derive from (5a.5) that diagram (3)
commutes.

Now assume that fis a based map between based objects. Then also Mof
is a based map between based objects and hence we have cofiber sequences
(8.25) for f and Mo f respectively. These yield the following commutative
diagram in Ho(K)
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af aZf

aA > aB aCy ——— aZA oaXB---
MaA > MaB — Cpay » XMad —— ZMoB---
Moaf IMaf

where ¢, qo---are isomorphisms in Ho(K) provided « is a model functor.

§9 Induced maps on cofibers
Let f:(4, B)—(X,Y) be a pair map. We consider the diagram

, B >—4 —— 4B
T
\f ! ]

where B and Y are based objects. If f” is a based map, that is Of' =0, then
the induced map f” on cofibers is well defined by f” = fuU 1, see (1.2). In this
case diagram (9.1) commutes. If (4, B) and (X, Y) are based pairs and if (f,f") is
based map then also f” is a based map.

Next we assume that f” in (9.1) is only based up to homotopy, see (6.1). Then
we obtain a map f” in the homotopy category HoC, by lemma (9.4) below.

For a based object B the group [ B, +] needs not to be trivial. This group
acts on the homotopy set [4/B, U] =[4, U]® of homotopy classes relative
0:B— x— U as follows. By the canonical homotopy 7, in (6.8) we associate
with Be[ZB,x] the homotopy B:0~O0 with B:I,B—>EB-5Rx—U.
By (5.7) we thus obtain the action

9.2) [4/B,U] x [EBx] —[4/B,U],
(x, f)— B*(x) = x*

which we call the x-action on the cofiber.

O.1 *

Y >~>>Xx —4 5 xyy

(9.3) Examples for the *-action.

(a) Consider cofiber sequence 4 >—%, 4 —>>A. From (5.15) we deduce
that the action of [ZA4, ] on [ZA4, U] is given by inner automorphisms,
that is: &*= —a + & + &, where 4:Z4 2 R+ - U.

(b) Along the same lines as in (5.15) one checks that the *-action for the
cofiber sequence A >—CA—XA1s given by {*= —q + &,

In particular, we see that the action of [£4,x] on [XA4, U] depends on how
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XA is obtained as a quotient. Note that even if 4 =X A’ is a suspension, the
action in (b) in non-trivial if there are non-trivial homotopy classes ZA4 — x,
while the action in (a) is trivial in this case since, as we will see, the group
[ZX 4, U] is abelian.

(9.4) Lemma. Let ¢: (4,B)—(X.Y) be a map in Ho Pair (C.), where (A, B)
and (X, Y) are given as in (9.1) (B and Y are based objects). If the restriction
@ :B—Y of ¢ in HoC, is based up to homotopy, that is O, = O, then there
exists a commutative diagram

(4,B) —2— (X.Y)

P
(4/B, ) —2— (X/Y, %)

in Ho Pair (C). ¢" is well defined up to the =-action on the cofiber by this
property.
We call any ¢” as in (9.4) a quotient map for (¢, ¢').

Proof of (9.4). We consider the following diagram in which (f,f’) represents ¢.

B> 4 —1 4/B

oo o |

R SRY>RX ——— R(X/Y)
q

Here RX is a fibrant model with R+ >— RX. @ commutes, but @ homotopy
commutes (¢’ is based up to homotopy). Let H:(RO)f" ~ Orel*, H:1 B — R«
be a homotopy. Then

(9.5) f"=H*{(Rq)f}e[4,R(X/Y)}" = [4/B,R(X/Y)]
where H:1,B A, R*>1 L RX —R—q—>R(X/ Y). Now f” represents ¢”. Any ¢” for
which the diagram in (9.4) commutes can be constructed this way. This implies

that the set of quotient maps for (¢,¢’) is given by the orbit (¢")%
ae[ZB, *]. O

(9.6) Lemma. Let ¢,¢’,¢" be given as in 9.4). If ¢’ and ¢: A—=X are
isomorphisms in HoC, then also ¢" is an isomorphism in HoC.,.

Next we want to derive from (9.4) the suspension operator for homotopy
classes. To this end we consider the functor

9.7) X.:HoC,— HoPair(C)),
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which carries X to the pair (£,X,X) and ¢:4—X to (Z.9,9):(Z,A4,4)—
(Z,X,X). Here X.¢ is defined as follows: If ¢ is represented by f:4 — RX
then X.¢ is represented by X.f:X,4 X RX, compare (5.11). We leave it
to the reader to check that X. is a well defined functor.

Now let 4 and X be based objects and let ¢:4A— X be a map in HoC,
which is based up to homotopy. Then a suspension of ¢, Z¢, is given by a
quotient map of (X.¢, @) as in (9.4). That is, ¢ is any map for which the
diagram

(£,4, A) 222 (5, X, X)

.

(EA,%) —2 5 (TX,+)

commutes in Ho Pair (C,). Since Z¢ is only well defined up the x-action we
cannot say that X is a functor. However, if the grop [XA4,XX7] is abelian then
the *-action is trivial by example (9.3) (a), and in this case the function

9.8) S:[4, X]o~[Z4, =X T,

is well defined. Here [A4, X, denotes the subset of all elements pe[A4, X]
with O, = 0. The suspension of a based map in C is defined in (6.15). By
(9.8) we have the suspension of a map which is based up to homotopy. Using
cones we can characterize the suspension Xf as follows.

(9.9) Lemma. Let f:A — B be based up to homotopy and assume [XA,XB] is
abelian. Then Xf :X A — XB is the unique map in HoC which is a quotient map
of (Cf.f):(CA, A)—(CB, B) and which is based up to homotopy.

In the lemma Cf:CA — CB denotes any extension of f; Cf exists since [ is
based up to homotopy. The map (Cf,f) however is not well defind in Ho Pair
(C)). The map(Cf,f)is a quotient map (asin (9.4)) of (I ,f v f):({, A, A v 4A)—>
(I,B, B v B). This yields the proposition in (9.9).

(9.10) Proposition.

(@) Let pe[A, X, and let U be a fibrant object in C. Then any suspension ¢
of ¢ induces a homomorphism of groups

(Z)*:[ZX, U]~ [Z4, U]

(b) For n 22 the group [£"A,U] is abelian.
(¢) The diagram
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TEA " L T(ZA v ZA)

4(2:‘1,25)
v24 - L 3240324

commutes in HoC,. Here m and my are the comultiplications on ZA and
24 respectively, see (6.16).

(d) Thefunction X in (9.8) is a well defined homomorphism of groups if A = LA
is a suspension.

Proof. We first proof (a). Let e[ 4, X], be represented by f: 4 — RX. Choose
amap u:R+— U. Then we have the following natural isomorphism of groups:

[ZX, U1~ [Z,X,UI°~[Z,RX,U}*R? RO:RX - Rx,
[Z4,U]~[Z,4,U]°
By (9.5) and (9.7) we see that the function
(Zo)*:[Z,RX,UI"RY S [Z,4,U]°

is given by the formula (Z@)*(&) = (uH)*(Z.f)*(&). Since (uH)* and (Z.f)* are
homomorphisms of groups, (Z¢)* is also a homomorphism of groups.

We now prove (b). It is enough to consider n = 2. For n = 2 the proposition
in (b) is a special case of (8.26). In fact, let f in (8.26) be the trivial map
0:4— x; then C,=XA and g = 1. We therefore prove more generally (8.26).
Letf:A — B be a based map between based objects and let :C, — C,/B=XA4
be the quotient map and let u:C,—C, v A4 be the coaction in (8.7). Now
q is a based map and u is based up to homotopy. (For C,=ZXA the map
1t coincides with m.)

Let p, =(1,0:C,vZA->C, and p,=(0,1):C, vZA—>ZA be the pro-
jections. We have pu =1 and p,u = g. Since p is based up to homotopy we
can choose a suspension Xy of u. Now Zu is only well defined up to the
x-action, so we cannot expect that Zp,Xu=1 and Zp,Xu = Xq. But there
are o,0€[ZC, «] such that Zp,Zu = 1% and Zp,Zu =(Zq)’. Since p is well
defined in Ho(CP) we may assume that 8 = (Z¢)*(B) for some fe[Z24, «]. The
map (Zi;,Zi,):ZC, v Z*4A->Z(C, v ZA) is an isomorphism in Ho(C,).
Therefore the homomorphism.

A= ((Zi)*, (Tiy)*):[E(C, v TA), Ul - [EC,, U] x [£24, U]
is bijective. Using (a) we see that the map
f=Ew*A 1 [ZC,, U] x [2*°4,U] - [2C,, U]

is a homomorphism of groups; we define £ @y = i(& ™% n~P). Since the maps
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& £7% n>n~* are also homomorphisms, there is the following distributivity
law:

E+)Bm+n)=(EDn+(E D7) (*)
We now show that the equations
(D0=¢ and 0@n=(Zq)*y (x)

hold. Note that i,,i,,p;,p,, 1 are based maps, so their suspensions are well
defined, and we have
1 ifj=k
Z i, =
Py {0 ifj # k
It follows that A(Zp,)*(& %) =(£7%0), hence ¢@0=f(¢E7%0)=(Zuw)*Zp,)*
ET = (19*¢™ %) =¢. Similarly 0@ n = (Zg)*n. By (*) and (**) we get:
(+EP'n=LD0)+ (0D =(C+0DO0+n=CDn,
and
Egn+i=00nN+(lD0)=0+)Dn+0)=,Dn.
This proves the proposition in (8.26) and (9.10)(b).

Finally, we prove (c) and (d) in (9.10). For f =0 we see by (9.3)(a) and
(9.10)(b) that the *-action is trivial and hence ¢ ~*= &, # =#. This shows
E+n=E(®n=(¢ n). Now (c) is just the universal example for this equation
(put U =X(ZA v £A) and & =Zi,, n = Zi,). Finally (9.10)(d) is an immediate
consequence of (9.10)(a), (b), (¢). d

§10 Homotopy groups of function spaces
Let C be a cofibration category and let (4, B) be a pair in C; hence (A4, B)
denotes a map i,:B— A4 in C. A factorization i , = gi: B>— M A = A of this
map yields the push out diagram

M4 —— Malja ELD, 4
B

(10.1) ,-I push ,l/

B — A
T4
This shows that £3A4 =(4 > MA( jpA—> A) is a based object in the
cofibration category B = C“ of objects under A4. In case i, is a cofibration
29 A is the example in (6.3). The n-fold suspension " =X in the category
B gives us the based object in B

(10.2) THE94) = (E > Z3A4 — A).
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Here Z14 =Z,A is the torus in (5.11) provided i, is a cofibration in C. We
see this by the following remark on suspensions in C.

(10.3) Remark. Let X = (A >— X -5 A) be a based object in C* = B. Then
the torus £,X (in (5.11) yields the suspension Z;(X) in B by the following
push out diagram in C:

ZX— 3 (X) (1

[~ ]

X——F— A4

We have by (2.20) the equation

2A<MA UA) —(Z,MA)| ) A. )
B B

This shows that I (EZA4)=ZXZyMA| )y, A where MA=A if i, is a
cofibration. More generally we get

THERA) =M A | 4, (3)
MA

where £} M A is defined by (10.2) and where (r,1,) =0 is the trivial map of
the suspension (3). For a cofibration B> A the object (10.2) can be
obtained inductively by the push out diagram (n = 1) in C

2';9—1/1__’_, A

/ o
r Ve
Sr

T A—2» 574 (@)

=]

A —— 4

This follows from (1) and (2).

Now let u:A— U be a map in C; hence u is an object in B =C* which is
fibrant in B if U is fibrant in C. We define the nth homotopy group of the
function space by

(10.4) (U u)=[Z1A,U]" = [Z(284),u]
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Here the right-hand side is a homotopy group in B as defined in (6.11). For
n =1 the group (10.4) coincides with the group in (5.13). For n = 2 the groups
(10.4) are abelian by (9.10).

Using the push out (g, r) in (10.3) (4) one has the isomorphism of groups

o*: [ZRA, U= [Z,257 4, U™, (1)

where the right-hand side is the group defined by (5.13); compare (2.11) (b)
and (6.10).
For n =0 we obtain the bijection of sets; compare (3.13):

mo(U™,u) = [4, UT"" = [Z§4,u]. 2

The map u|B denotes the composition ui:B— U.
Finally we get for a based object 4= (¥ >— A4 —#) in C the equation
X"4 =1} A/A and hence

[Z"4,U] ==, (U",0)=[Z"4,U]° (3)

(10.5) Remark. In the cofibration category Top the homotopy group
(10.4) coincides with the nth homotopy group of the function space U**
with basepoint u, see (5.14). Here we assume that i,: B >— A is a cofibration
in Top.

(10.6) Remark. Different choices of factorizations M A4 of i, yield equivalent
based objects £ 4 in C4, see (6.4). Hence also the corresponding suspensions
(X3 A) are equivalent. This shows that the homotopy groups of the function
space in (10.4) are well defined up to a canonical isomorphism by the pair (4, B)
and by u:A- U.

A map (f, f):(X,Y)— (A4, B) in Pair (C) induces a homomorphism

(10.7) (UM, u) -, (UM, uf),

as follows. We choose a weak lifting (Mf, f'):(MX,Y)—(MA, B) for (f, f").
This gives us the map

MfUL:Z0=MX|)A->Z34=MA|)A, (1)
Y B

which is a based map between based objects in B = C# The push out Z¢
in C (given by i, f": Y — A) is based by the map O =(gM f, 1 ) where q is the
weak equivalence in (10.1). The suspension Zj(Mf u1l) is defined in the
cofibration category B and hence we have with the notationin’(10.2), (10.3) the
commutative diagram
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ZHMful
BjX —— ZyE) L B Eg4) = Ty

N

X —— A —1—> A
One can check that the left-hand side of this diagram is a push out. This
diagram induces f* in (10.7), compare (10.4) and (2.11) (b). More generally
than (5.15), we obtain by (5.7) the isomorphism G* of groups for which
the following diagram commutes, see (5.10):

xy#
n U uf) L U0 )

S* If* . 3)
#
(U u) — 7, (U, 0)
As in (5.16) we define the action of the fundamental group 7,(U** u) on
m,(U*, u) by x + H = H*(x).
A triple (4, A, B) in C (B >— A > A) gives us the pair maps

(10.8) (4, B) >— (4, B) 1(1, 4)

in Pair (C) which induce the exact sequence in (2.18) and (5.17). We now
describe the prolongation of this sequence. Let u:4A— U be a map and let
v=ulA.

(10.9) Proposition. We have the long exact sequence (n 2 0):
= Ty l(UP0) > (U ) — (U)o m, (U7, 0)
1 1

For n2 1 this is an exact sequence of homomorphisms of groups (of abelian
groups for n = 2). For n =0 the sequence coincides with the sequence in (5.17).
For n=1 the image of @ lies in the center of m,(U™ u).

The sequence in (10.9) is natural, that is, a map f:(4, 4, B)—(X,X,Y)
between triples, a map g:U — V, and a homotopy H:u ~ w rel B respectively
induce functions f*,g,,H* as in (10.7) (3). These yield commutative
diagrams, the rows of which are exact sequences as in (10.9).

(10.10) Remark. The result in (10.9) is well known in the category Top
of topological spaces. Cofibrations B> 4 >— 4 induce the following
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sequence in Top of function spaces

A BN U8 '_*> U4B.
Here i* is a fibration with fiber j*. Thus the exact sequence of homotopy
groups for a fibration provides us with an exact sequence as in (10.9). In fact,
{up to canonical isomorphism) this exact sequence coincides with the one
above for C = Top. Compare (10.5).

Proof of (10.9). Let B = C* be the cofibration category of objects under A.
The triple (4, A, B) yields the following sequence of based objects and based
maps in B

(10.11) AUZ»_—»E,‘;ZTE%.
B H

The cofibration i is given by A > 4 and q is defined by the identity on A,
compare (10.1). One easily verifies that (10.11) is in fact a cofiber sequence
(in the sense of 8.19)) in the category B. The long exact sequence (8.26) or
(8.18) yields for the cofiber sequence (10.11) the exact sequence in (10.9). Here
we apply the functor [.,u] where u is the object u:4 - U in B. O

Next we consider the special case of (10.9) in which A is a mapping cone.
Let f:A— B be a map where A4 is a based object in C and let Y >— B be a
cofibration. Then we have the triple (C, = C, B, Y) to which we apply (10.9).
Then we get the following prolongation of the exact classification sequence
in (8.16):

(10.12) Corollary. We have the commutative diagram of groups and group
homomorphisms (w:C ,— U,u = w|B):

o 5 . .
o T (UM ) — = [27 14, U] = (U W) ——— (U™ )
\ ;JJW J*
(U2, w)

Here the row is exact since we have the isomorphism o, which gives us
d=(0,)"'@ and w* =j*g,. For n=1 we have image i* = kernel Z(w, f),
where Z(w, f) is defined in (8.16).

Proof. Let B=C€ where C = C,. For the pair (C, B) we have the canonical
equivalence (in HoB):

(10.13) z3¢,=c,Uc, Bzavc,.
B
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We obtain u since f:4—B>— C, is null homotopic. More explicitly let
(i +1i,:C;>ZA v Cre[C[,ZA v C,]° be given by the cooperation pin (8.7).
Then we set u=(i,+i;.i,). Here i:ZA-XAv CC, and i,:C,—
ZA v C; are the inclusions. The object Z3C, is a based object in B, also
ZA v C,is a based object in B with 0 =(0,1):Z4 v C;—>C,. Infact, ZA v C;
is a suspension in B with

(10.14) Z(C,>—AvC,5HC)=ZAvC,.

One easily checks that j in (10.13) is an equivalence in HoB. Moreover, j
is based up to homotopy.

(10.15) Remark. In the topological case we never can assume that j is
a based map in B. This, in fact, is the reason why we study in §9 maps
which are only based up to homotopy.

Since A v C, is a suspension in B we know by (9.11) that the n-fold
suspension X" =X} of ji in the category B is well defined:
I THESC) - ZHEA Y Cp)=Z" A v C).
This is an equivalence in HoB which induces the isomorphism
T (U, w) = [Zp(Z5C),w]
(10.16) [o=a. I(zgm*
[Z'A, Ul=[ZHZA v C))w]
of groups (n = 1) in (10.12), compare (10.4) and the following section § 11.
U

We have the following special case of (10.13) for which B= % and C, = ZA.
Then
fi=(iy+i.i,):TAVvIA>ZAvEIA

is an equivalence in Ho(C**) and is based up to homotopy in C*4. The
left-hand side is based by the foldmg map (A >2>3ZA4 v I4 — @0 ZA). The
right-hand side is based by (ZA4 > ,3v4vza %, X A). Now p induces the
equivalence in HoC®4

(10.17) I, (ZA) >4 v T4

This is the suspension of s in C*4. Moreover this equivalence induces the
isomorphism

(10.18) a:[Z24,U] = [Z,Z4.U]"

where w:X4 - U is any map in C.
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§10a Appendix: homotopy groups of function
spaces and functors

Let o:C—K be a functor between cofibration categories which preserves weak
equivalences and let A be an object in C. This yields the functor «*:B= C* —
H = K** which preserves weak equivalences and which is based. Let (A, B)
be a pair in C given by a map i,:B— A and let u:A— U be a map in C. The
functor o induces the binatural homomorphism «; which is defined by the
commutative diagram (X = Z3A):

(U, u) = [Z5 X, u]
aA

[xZ} X, cu]
(10a.1) 2 1q3
[Z5(MaX), Roau]
o =L
T UE, ) = [Z2(Z00A), Ra]
In this diagram the function o is given by the functor Ho(a): Ho(B) — Ho(H).

The composition afl = g¥a? is a special case of (6a.3). Moreover, the based
map L, in H is given by the commutative diagram

aA > MaX —= » a(X
\ /Ll' uMAl A
oy LY L
push '\
«B — MuA —» a(A)

where L} is a lifting of a(i), see (10.1). The map L, is a weak equivalence
provided o is compatible with the push out MA| JzA, see (I, 10.1) (3). This
proves the first part of the following remark:

(10a.2) Remark. The function (Z{L,)* in (10a.1) is a bijection if « is compatible
with MA{ JzA. By (6a.4) the function g¥ in (10a.1) is a bijection if « is
compatible with the push out £Z,X = C;X/X in B.

By naturality of «; we get:

(10a.3) Proposition. The operator o, induces a map from the exact sequence for
(A, A,B) in (10.9) to the exact sequence for (MaA, MaA,aB), see (5a.7); in
particular o, 0 = oy .
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(10a.4) Proposition. «; is compatible with G* in (10.7) (3), that is, ay(G* &) =

(O‘LG)# (e &)
For n=1 this is a direct consequence of (5a.5).

§11 The partial and functional suspensions

Let C be a cofibration category with an initial object . Let B be an object and
let 4 be a based object in C. Then 4 v B is the push out of 4 ——< *— B and
B> A v B is a cofibration. We define the retraction

(11.1) r=(0,1):A v B> B.

Thus (B> A v B-5B) is a based object in the category B = C%. Let
X, be the suspension in B. Then we have

(11.2) I AvB=ZAvB

For a fibrant object u:B— U in B we deduce from (11.1) the isomorphism
of groups

(11.3) [Z44 v B u]=[ZA v B,U]*=[Z4,U].

We derive (11.2) and (11.3) from the fact that I,A4 v B is a cylinder on

B>—AvBinB.
Let X be a further based object in C. We say e[ X, A v B] is trivial on
B if r, & =0 where r is the retraction in (11.1). We write

(11.4) nX(A v B),=[Z"X, 4 v B], =kernelr,

for the set of elements which are trivial on B. This set can be interpreted as
follows: Let B[X v B, A v B], be the set of maps

(XvB—>Av B)eHoB
which are based up to homotopy in B = C®. Then we get
(11.5) [X,Av B],=B[XvB,Av B],
For the mapping cone C; of g:4— B we have the following push out
diagram, (m,, 1) = (n,, i,),
cave-", ¢,
l lig ,
AvB -V, B

compare (8.1). This is a pair map which induces the commutative diagram
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X { X
n{(CAv B,Av B)=n;(A v B),

(116) j(ng’l)* J(g,l)* .
2 (B) —— 7(C)) —— 7}(C,p B) ——>n(B)

Each row is a portion of the exact homotopy sequence of a pair as in (7.8). We
assume that X is a suspension so that by exactness 0 in the top row is an
isomorphism of groups. By exactness of the lower row we obtain the functional
operation
1Ly {Eg:kernel (g, 1)y =} (C,)/in¥(B),
' E,=j \mp1),07 "

which is a homomorphism of groups. We call E, the functional suspension.
We also call an element fe[ZX, C,] with feE (&), (€[ X, A v B],,a functional
suspension of € or equivalently a twisted map associated to &, Ifg=0:4 > %> B
is the trivial map we have C,=ZA v B and thus (11.6) yields the diagram

2¥(CAv B,Av B)21X(Av B),

l(nv 1,

n¥(ZA v B), = nf(ZA4 v B, B)
i
We call the homomorphism

{E:ng(A v B),»n¥(ZA v B),

11.8
(11.8) E=jYnv1),0!

the partial suspension. For the suspension £ we have the commutative diagram
X4 v B), = nX(ZA v B),
(11.9) ] i L ,
5o —wHEA),

where i is the inclusion, see (9.8).
Moreover, by use of (11.5) we have the commutative diagram

[X,AvB], —— [ZX,Z4v B],
(11.10) || H
T
B[X v B Av B], —>B[EX v B,ZA v B],

Here Z, is the suspension in B which is defined by (9.8) as well. Therefore,
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the partial suspension is a particular case of the suspension in the category
B=C2
From the definition in (11.8) we obtain the following commutative diagram
in Ho Pair (C):
€x,x) %% cav B, avB)
(11.11) E [xvi

(XX,*x) — (X4 v B, B)
(ES.0)

where 0F = &, In fact, there is a unique E&, which is trivial on B, for which
this diagram commutes, see (9.9). On the other hand we can characterize the
partial suspension as follows. The map &: X — 4 v B gives us the pair map
E:(X,*)—>(A v B, B). If we apply (5.11) we obtain

2, X =% SHAvB)=3%,AvB

(11.12) l J’

E.‘:
X - _YAVB

If X is a suspension there is a unique E¢, trivial on B, which makes the
diagram commute in HoC.

(11.13) Proposition. The action map u,:X"A—%"A v £4 in (7.11) is trivial on
Y A4 and we have Ep, = u, , ;-

(11.14) Corollary. If A is a suspension then yu, =i, is the inclusion and thus
E"u, = w,+1 =1iq is the inclusion. This implies (6.14).

(11.15) Corollary. By (11.11) the diagram in the proof of (7.13) commutes.

Proof of (11.13). The action map u corresponds by the equivalence
A J4CA->2i4/A=32"4 to the cooperation EjA|),CA--25A( ),
(C4 v £4) in (8.7). We now deduce (11.13) from (11.12). O

Let k:Y->BbeamapinC,let :Z— X v Y be trivial on Y, Z=2Z', and
let &:X > A v Bbe trivial on B, X = 2X’. Then (¢,i,km:Z—>XvY—>AVB
is trivial on B and we get with (&, k) = (,1,k)

(11.16) Proposition.
E((¢, k)n) = (E&, k)(En).
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This follows easily from the definition (11.8) together with (11.11) or from
(11.10). Also we deduce from (11.10) the

(11.17) Lemma. For éen¥(A v B),, ue[B, U] the function
(ES*(u):[ZA, Ul - [ZX, U], ar— (EE)* (o, u)

is a homomorphism of groups.

§12 The difference operator
Let g:A— B be a map (where 4 is a based object) and let i,: B>— C, be its
mapping cone. For i;:ZA—>XA v C,, i,:C,>—XA v C,, we have
(12.1) i +1i;:(C,B)>(ZAv C, B),

by the action in (8.8). This is just the cooperation u in (8.7) except for the
order in which the objects appear in the wedge. For f:ZX — C, the difference
element

Vf=—f*i)+f*i, +i):ZX>ZA v C,
is trivial on C,. This gives us the difference operator
(12.2) Vil (C,)—-af(ZA v Cp),.

The difference operator has the following property with respect to the
functional suspension E, in (11.7).

(12.3) Proposition. Let X be a suspension. If feE &) for Een§(A v B), then

V=01 vi)(E).
We have the following generalization of this result. We introduce the
relative difference operator V by the commutative diagram

7} (C,) — n¥(C,, B) Tm X(zAvC,B)
2 1%

SN .

EAvC,), —f—> XA v C, C,)

where X is a suspension. Here 4 is induced by the identity on A4 v C,. Since
J is an isomorphism we can define the composition

(12.4) V=j_15(i2 + il)*‘

One easily checks that for V in (12.2) the diagram commutes. From (11.6)
we derive by diagram chase
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(12.5) Proposition. For tend(A v B), the element & =(m,1),07'¢ satisfies
VE=(1v i) (EC).

Clearly, (12.3) is a special case of this result. The difference operator V in
(12.4) has the following important property:

(12.6) Propesition. Let f:X — Y and let F:(C, Y)—(C,, B) be a pair map. For
the element {n ;}enf(C,, Y), see (8.1), we have
Ve=VF {n,} = d(i,F, (i, + i,)F)en}{(ZA v C,),.
Here the difference is well defined since (izF)l,,= (i, + i)F),y, see (8.13).
Proof. The difference is trivial on C,. Thus we have to show
Oiy + 1))y Foin,} =jd(i,F, (i, + i))F).
This is clear by definition of d. O

From (8.15) we deduce the following corollary. Let F:(C,, 7Y, Yy)—
(C,, B,B,) be a map of triples and let u:C,—» U be given with v=u|B,,
v =0(F|Y,).

(12.7) Corollary. For ac[XA,U] we have the equation F*({u}+a)=
(F*{u})+ (Vp)*(a, {u}) in [C,, UT", {u}e[C,, UT".

Here we use the action in (8.8). Equivalently to (12.7), we can state that
the following diagram homotopy commutes rel Y

F

C, — C,
(12.8) lil+i1 Ji2+i1 .
IXvC, ———=ZAVC(,
( piaF)

This is the left distributivity law for maps between mapping cones. For
u:C,— U we consider the diagram (g 2 0)

7y (UCH2, 4) ~—— 7 (U, uF)

(12.9) Gu]; OuF =

[Zq+1A, U](W [Zq+1X U]

with ¢ in (10.16). By (12.8) this diagram commutes. Compare the definition
of i1 in (10.13) and use (11.10), see also (11.17).
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§ 13 Double mapping cones

We consider a double mapping cone as in the following diagram (A4 and Q
are based objects, U is fibrant)

C=C;

] w

f
A—— % B=,

(13.1) t ,
Q h //

compare the diagram in (8.16). We assume that 4 = XA’ is a suspension. For
homotopy groups of function spaces we obtain the following diagram (g = 1):

n (U, u)
Py
n (U u) --=-=-- At (U, w)
(13.2) . Tau A 1%
(210, U] —— o rsag,v]

Here y = j* is induced by (B, Y) = (B, T) and f =0 is the boundary in (10.9)
for the triple (C, B, Y). We set d, = fy. The isomorphisms ¢ are defined in
(10.16). E?V f is the g-fold partial suspension of V f which gives us for g = 1
the homomorphism a+—(EV f)*(a, u), see (11.17).

(13.3) Proposition. Diagram (13.2) commutes.
The homomorphism d, is also the primary differential in a spectral
sequence, see (111.4.12).

Proof of (13.3). We have the diagram of based objects in B = C¢
ave-L2gcstsc|c
Y Y
Jo
v BlC
T

ﬁl~

2ovC
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Here the row is a principal cofibration i in B with attaching map f 1. The

map i induces the exact sequence for f in (13.2), compare (10.11). The map

g induces y in (13.2). By (10.13) we have the equivalence i which induces ¢

(to the left in diagram (13.2)). Let V= fig(f u1) be the composition. Then

we have V|4 =(1 v i )(i; +1i,)f, where i;:B>— C. Since i, f =0 we get

VIA=(A vi(—=f*i) +*; + i) =1 v i )(VS)

This proves (13.3), compare (11.10) and (10.7)(2). O

Next we consider the cylinder I, C on the double mapping cone in (13.1).

This leads to the following diagram of principal cofibrations and attaching
maps (compare (8.11)):

l,-
S

lj
0=AvIQv AT—»BUIYTUB=Z
where w, is defined in (8.11) and where
(13.5) W =(iofs Wi f):0—Z.
As we have seen in (8.12) the cofibration i is a principal cofibration with
attaching map w,. Similarly, we see that j is a principal cofibration with
attaching map W since B < C = C, is a principal cofibration, see (13.1).

For the map W in (13.5) we have the functional suspension (see (11.7)):

Ey=j Ymy, 1,0 ". Here we use the homomorphisms of the following
diagram

"€V Z.QvZ) —=—nd@v 2),
(nw,l)*[ l(W, I, .
w et (lyC) —L s nd13C 2) ——  md(2)
We assume that 4 =X A’ is a suspension. We define
(13.6) Eend(Q v Z), with (W, 1)(&)=0

as follows: B _
Letid, i, i4 beinclusions of factorsinto Q and let ig, i¥: B > Z be given by
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the cylinder I,B. By the cooperation on C, = B we have
B+w,—i¢C,-0VZ
This gives us the element
E=—i§ + (5 +w,—i0)f— i f +if.
Since i8 + w, = i% (see (8.15)) we see that cend(Q v Z), and
(W D),(&) = —Bf + (B +wy—w)f —Bf+Bf =0,

This proves that the functional suspension Ey, is defined on £. The following
result is a crucial fact for the cylinder in (13.4).

(13.7) Theorem
weeEy(S)
In (12.2) we defined the difference V f for f: A — C,. We now define similarly
V= *iy+ i) — ) =f*) + (V) —f*(,) end(ZQ v Cp,.
If the group is abelian we have Vf=V/f Moreover, we have in
nd(ZQ v C,), the element V=(1v i) Vf=0Uv if)*Vf. From i5+
w, = i3, see (8.15), and from the definition of & we deduce

(13.8) E= — i+ (VN*(—i% B+ i

This leads to the following important formula for the difference in (8.13):

(13.9) Corollary. Letug,u;:C—U withuy|Y=u,|YandletH:C,, ~I,B—>U
be a homotopy H:uy|B =~ u,|B. Then we have the formula

d(ug + oo, H 4 B, uy + o) = d(ug, Houy) — g + oy — (EV/)*(B, uy).

Here ag,a,:ZA—U, p:22Q0 - U.

For H + §in this formula we use the equivalence C,,, >~ IyB. The corollary
follows from (13.7) by use of (12.3).

The proof of (13.7) is quite technical, it is somewhat easier to follow the
argument if it is assumed that all objects in C are fibrant. In this case each
map in HoC which is defined on a cofibrant object can be represented by a
map in C.

Proof of (13.7). Since the projection p:I,B— I B is a weak equivalence it is
enough to prove the theorem for Y= T. In this case we have

C\JC,=Z=1;C,>— B with B=C,. (1)
T

We have the following commutative diagram
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caA e c, ot aYsrc —Lsczove,

VAR

A ——.AVA—> Z — > ZQVC, .

\_ _‘%’ii’)

ovZ
Here we define =i —if (A=XA' is a suspension!) where i and i{
are the inclusions of 4 into A v A. We define 1 by
2= -2, if 3)
with i:C, cZQ v C, and i2:2Q < 2Q v C,. The difference i¥ —i? is given
by the cooperation on C,. By definition of 4 and = we see that the composition
x in (2) represents the element
X} = (V=28 )
compare (13.8). There is a canonical null homotopy of 4 A4 v Ac,A

which gives us the map 7, see (9) below. Moreover, by use of (6), there is a
canonical null homotopy of

ZQT’ChUChT’ZQ vC,cCZQ v,
h T

This null homotopy gives us by (8.12) the map 1. The map A is a weak
equivalence. Also 1 is a weak equivalence. We consider the commutative
diagram of groups and group homomorphism:

TNCZO v Z,50 v Z)——= nA(z0 v 7),

~

(nw,.’ 1)*1 (W, 1)*1

nf(I,A4, A v A) — ;CpZ) ——» nd(2).

(1)
gl 1* Ell*

11 (CZQ Vv C,,ZQ Vv C)) = 4(ZQ v C)y)

)

™

Next we observe that the diagram

$0vC, —L 30V,

jwﬂ{ P (6)

QvZ —— Z
(wy, 1)
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homotopy commutes. This follows since
ll’lf = lB
w, =d(i® —i2,i%) =2+ d(i%, %) =i

By (5) and (6) we see that for &, =(1 v %), &, with & =2,0(If),({Tn.}) we
have

I, ({7n}) = (r,, V¥, (7
Here, {Tn }en{(I, A, A v A) is given by the pair map in (2) or equivalently

by equation (9) below.
By naturality of w, in (8.12) we have the commutative diagram (w = w;)

CAVI,AVCA=1,CAe+——=<AV A
w
A ll'f fol ’
C,ulBUCp=1;C, -—< Z
where we set I'f=n,ulfUun, This gives us the commutative diagram

. J . =
nf(ITCf) — nf(lrcp Z)

CT

n4(I,CA) —— n4(I,CA, A v A)
Since we have by definition of w in (8.12)
jiwh == {54} + (o} + (if7 )
we can deduce the theorem from (7), (8) and (4), see (13.8). O

We now apply the result above to the classification sequence in (8.16) and
(10.12).

(13.10) Proposition. Let f and h be given as in (13.1) where we set Y= T. Then
we have the long exact sequence (n = 1):

)

T (U w) 5o (2720, U] T A 13714, UT X5 7 (U, )

L (U ) D[220, UT M (24, UT Y5 [C,, UT

S BUrLraul,
the final part of which is isomorphic to (8.16). Here we set V.= V! and

V" u, ) (B) = (E" 1V f)*(B, u),
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as in (13.2), n 2 0. The operator w" is the same as in (10.12) and 7 is given by

o~ li*,

Proof. For Y=T the map 7y in (13.2) is the identity and therefore f in
(13.2) is the same as 0 in (10.12). Now (10.12), (13.3) and (13.9) yield the
result. 0

We leave it to the reader to consider in more detail the special case of
(13.10) in which Y=T=% and h=0. Then f:A=XA4'"->B=XQ is a map
between suspensions. Compare the examples in § 16 below.

Remark. In topology Barcus—Barratt (1958) and Rutter (1967) investigated
the isotropy groups of the [Z4, U]-action on [C,, U]* (where T = %) which
we identify with the image of V(u, f) in (13.10). In essence they use the
homomorphism V(u, f), which in Rutter’s notation is I'(u, f). Above we have
shown that this homomorphism can be expressed by the partial suspension
of the difference Vf and that this construction is actually available in any
cofibration category. Therefore we immediately obtain the result dual to
(13.10) in a fibration category. If we take the fibration category of topological
spaces then (13.10) yields theorem 2.2 of James—Thomas (1966). This as well
is studied by Nomura (1969). Compare also the discussion in Baues (1977).

§ 14 Homotopy theory in a fibration category

As we pointed out in the appendix of §1 in Chapter I all results and
constructions for a cofibration category are in a dual way available for a
fibration category F. We fix the notation as follows:

Let F be a fibration category with a final object * (F needs not to have
an initial object). A based object in F is a fibrant object X (thatis X —»>*isa
fibration) together with a map o:* - X.

The path object P is dual to the cylinder and was defined in the appendix
of L.§1a. The loop object Q is dual to the suspension X. The dual of an
attaching map is the classifying map f:4 — B which maps to a based object
B and which yields the principal fibration P, — 4. Here P, is dual to the
mapping cone and is obtained by the pull back diagram

P, WB —— PB=B'

(14.1) ql pull l pull l

A B — BxB
A (1,0)

B x Bis the pull back of B —» * «— B and W B denotes the contractible path

Ry
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object which is dual to the cone. For a fibration p:E — B over a based object
B we have the pull back diagram

F—E

(14.2) i lp

0
* —— B

F is called the fiber of p and F - E —> B is a fiber sequence. The fiber of
WB —s> B is the loop object QB.

We leave it to the reader to translate all results and constructions of this
chapter into the dual language of a fibration category.

As an example we describe the dual of the exact homotopy sequence of a
pair in (7.8). We write

(14.3) (X) = [X, Q"B]

for the homotopy groups dual to (6.11). Here X is cofibrant and B is a based
object in F. A pair (4]|B) in F is a map A — B, see (1.3). The category Pair
(F) is defined dually to (1.3) and is a fibration category by (1.5). Dually to
(7.7) we obtain the relative homotopy groups in F by

(14.4) P LU V) = [(U|V), Q(WB|B)].

Here (W B|B) is the pair in (14.1) which is a based object in Pair (F). Now (7.8)
states that we have the exact sequence

(14.5) —>ﬂ'fa+1(V)p—**ﬂ%“(U)Lﬂ'ﬁ“(UlV)&ﬂ'fa(V)*-

Here p* is induced by the fibration p:U —> V. Which is given by the pair
(U|V). Moreover j is induced by Q"*'B— WQ"B =~ Q"WB. Again, 0 is the
restriction.

Next we consider the partial and the functional loop operations which are
dual to the partial and the functional suspensions respectively in §11.

We have the pull back B x Aof B—s»>*« Aand B x A —» Ais a fibration
which has the section s =(0,1):4— B x A compare (11.1). Now let X be a
further based object in F. We say that €[ B x 4, Q"X ] is trivial on 4 if s*¢& = 0.
We write

(14.6) n%(B x A), =[B x 4, Q"X], =kernel s*
for the subset of elements which are trivial on B. This is the notation dual

to (11.4). For the principal fibration P, —> 4 in (14.1) we have the following
pull back diagram
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P, %9, wpx 4

(14.7) qi pull qul ,

which is a map (n;,1):(P;|A)—(WB x A|B x A) in the category Pair (F).
Therefore we obtain by (14.5) the following commutative diagram which is
dual to (11.6).

AMWBx AIBxA) £ 19BxA),

(14.8) J(nf,l)* l(f,l)* .
73 (A) —L o mh(P) —L o my(P 1) —  af(4)
Here we assume that X is a loop object, so that by exactness J in the top
row is an isomorphisms of groups. Now
(14.9) Ly:kernel (f, )* > ny(P,)/img*, L,=j Y, 1)*07 %,

is the functional loop operation dual to E, in (11.7). If f=0:4 —> * 2B
we have P, =QB x A4 and j in (14.8) yield the isomorphism

TLQB x A), 2 1LQB x A]A).

Thus we have the partial loop operation

(14.10) L:n%(B x A), >nL(QB x A),, L=j Ymo, 1)*6™ 1.

Now it is easy to translate the important results in § 12 and § 13 into the dual
language of a fibration category.

For the category F of pointed topological spaces, see (I.5.5), the partial
and the functional loop operators are studied in Chapter 6 of Baues (1977).

§15 Whitehead products

Let C be a cofibration category with an initial object *. We first obtain
the following ‘splitting’ result which is well known in topology.

(15.1) Proposition. Leti:A >— B be a based cofibration between based objects
in C. If i admits a retraction re[B, A] in Ho(C), ri =14, which is based up to
homotopy, then there is an isomorphism in Ho(C)

YB~X(B/A) v ZA.
Proof. Let U be a fibrant object and let g: B— B/A = F be the projection for
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the cofiber. By exactness of the cofiber sequence (8.24) we obtain the short
exact sequence of groups

oa[zmtq‘“‘[thqJ?L[ZA U]-0. (1)
In fact, the homomorphism (Zi)* is surjective since a suspension Zr, see (9.8),
yields the isomorphism (Zi)*(Zr)* which differs only by a *-action from the
identity. The same argument shows that (£2i)* is surjective and whence (Zq)*
in (1) is injective by exactness. Now (1) shows that

E=Zg)+(ErN:EB=X->X(B/A)vIA=Y )
induces a bijection of sets &*:[Y, U] ~ [X, U] for all fibrant U and thus for all
U in C. By specializing U the proposition follows. O

(15.2) Definition. A fat sum A ¥ B in C is a commutative diagram

A—»A Bd———B

* 4———3’

in C such that pgi, =0, and P4ip =0, in Ho(C). Where 0,:4 - - B’ and
0,:B— x> A’ are given by oj, and ojg respectively. I

In many examples the weak equivalences j, and jg are actually the identities
of A and B respectively. If = is the final object of C it is enough to assume
that the diagram in (15.2) is commutative in Ho(C) since then suspensions
of homotopy classes are well defined.

We say that a fat sum A ¥ B is based if all objects in (15.2) are cofibrant
and if

(15.3) i=(igig)AVvB>—AVYB
is a cofibration. In this case all objects of (15.2) are based objects in C and

all maps are based maps. Moreover, i in (15.3) is a based map which yields
a cofiber sequence as in (8.24). We call the cofiber

(15.4) AAB=(AY B)/(AV B),

the smash product associated to the based fat sum 4 ¥ B. Clearly, the smash
product A A B again is a based object in C.

The dual of a fat sum in a fibration category is called a fat product and
the dual of a smash product is a cosmash product associated to a fat product.

(15.5) Remark. For a fat sum A Y B, as in (15.2), we obtain a based fat
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sum MAY MB as follows. As in (6.4)(1) we first choose factorizations
* > MA =54 and * >— MB =5 B and then we choose a factorization

MAvMB>->MAYMB-5AY B

of the obvious map MAv MB— A Y B given by i, and iz. Next we choose
a weak lifting (M AY as in the diagram

MA 1 »MA
a”" l
Ty (MAy_ 4
Pma_o ~ ‘~

Similarly we choose a weak lifting (MB)'. Clearly (MA)Y and (MB) are
cofibrant. One readily checks that MA ¥ MB is a well defined based fat sum.
Hence we have the smash product MA A MB associated to MA Y MB by
(15.4).

(15.6) Remark. Let 7:C— K be a based functor between cofibration categories
which preserves weak equivalences. Then 7 carries a fat sum A Y Bin C to
afatsumt4A Y tB=1(4AY B)in K. If AY B is based then 74 ¥ tB needs not
to be a based fat sum. In this case we can apply the remark in (15.5) and
we get MtA Y MtB and MtA A M1B.

(15.7) Example. 1et C be a cofibration category and let F be a fibration
category and assume C and F have an object * which is initial and final.
Then a product in C is a fat sum in C and dually a sum in F is a fat product
in F. In particular, the product A x B in Top* is a fat sum and the sum
A v B of spaces in Top* is a fat product, see (1.5.4) and (1.5.5).

(15.8) Example. Consider the cofibration category C = DA, (flat) in (1.7.10).
Then the tensor product A® B in (1.7.31) is a fat sum in C with projections
Pa=1,®¢ pyp=¢® 1y where ¢ is the augmentation.

(15.9) Proposition. Let A Y B be a based fat sum. Then there is an isomorphism
in Ho(C)

rX(AY B)~XAv XIBv XA A B).
For products in Top* as in (15.7) the proposition yields a well-known

result due to D. Puppe. We prove (15.9) by use of the cofiber sequence for
the cofibration i = (i ,, ig) in (15.3). This cofiber sequence yields the short exact
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sequence of groups

Zx]

0—[Z(4 A B, U5 (24 v B), UT 25 [Z(A v B, UT—0

~ |

(15.10) s =/
[ZA,U] x [EZB,U]

Here ¢ is the quotient map for the cofiber (15.4) and the isomorphism j of
groups carries («, ff) to the map Z(4 v B)~XA v ZB— U given by («, 8). We
define the function s by the sum of elements

s(a, B) = q(0) + g5 () (1)
in the group [Z(A ¥ B), U]. Here g, = (Zj,) " (Zp,) and g = (Zjp)~ 1(Epp) are
well-defined maps in Ho(C) which induce homomorphisms of groups ¢%
and g} respectively. Now the definition in (15.2) shows by (9.3)(a)

(Zi)*s =j. 2
Therefore (£i)* is actually surjective. Similarly we see that (£%)* is surjective
and therefore (Zg)* in (15.10) is injective by exactness.

Proof of (15.9). We use a similar argument as in the proof of (15.1)
relying on the exact sequence (15.10). The isomorphism r is the sum (3)
r=1i,q9,+i,qg +i3(Zq) where i,,i,.i; are the inclusions. O

By use of the exact sequence (15.10) we define the Whitehead product
(15.11) [, N[ZA, Ul x[EB,U]-[Z(4 A B), U]
which is associated to the fat sum A Y B. For ac[ZA, U], fe[ZB, U] the
product [«, ] is given by a commutator in the group [Z(A4 ¥ B), U], namely
[0, 8] = E@* ™ (= ¢%(@) — g5(B) + g%(2) + g5(B)). (1

This element is well defined since the homomorphism (Zi)* in (15.10) carries
the commutator to the trivial element and whence this commutator is in the
image of the injective map (Zq)* by exactness. For the inclusions i;:X4 —
ZAv ZIBand i,:XB—>XA v B we get the Whitehead product map

w=[iyi,]:(4 A B)>ZA v IB, )
which is well defined in Ho(C) and for which
(o, B] = w*(a, B). 3)

Clearly, the Whitehead product is natural with respect to maps v:U - U’,
v, Lo, 1= [v,o, v, f]. We also use the exact sequence (15.10) for the definition
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of the group actions

[Z(A A B, U] x[Z4,U]=[Z(A A B}, U], (&, o) &7,

(15.12) {
[S(A A B), U] x [£B, U]~ [E(4 A B), UL,(Z B — &,

which are defined by

£ = (Zq)* 1~ q4(@) + (Z9*¢ + i),
&p=(Zqy* " (— qB(B) + E* + q5(B)).

(15.13) Remark. Let C =Top* be the cofibration category of topological
spaces and let the fat sum AY B=A x B be given by the product of
topological spaces A and B. (This is a based fat sum if 4 and B are very
well pointed). The Whitehead product associated to 4 x B is the classical
Whitehead product, originally defined by J.H.C. Whitehead for spheres 4
and B. One can show that the second action & (15.12) associated to A x B
coincides with the action (6.13) provided A =S""1! is a sphere (in (6.13) we
replace A by B). If A is a suspension then the first action is trivial, &* = ¢&,
similarly £; = ¢ if B is a suspension. Compare Baues (1977).
From (15.11) and (15.12) we derive the

(15.14) Lemma. [, 0] =[O0, ]1=0, [o + o, B] = [, B1* + [, B] and
(e, B+ B = [, 1+ [, B 1.

These formulas are deduced from the corresponding equations for
commutators which are valid in any group.

Addendum. Assume U is a based object and assume o or [ are based up to
homotopy. Then [o, B] is based up to homotopy and Z[o, f] =0, see (9.8).
This follows readily from the fact that the group [£%(4 ¥ B), U] is abelian
and that X in (9.8) is a homomorphism, see (9.10)(d).
We also use the exact sequence (15.10) for the

(15.15) Definition of the Hopf-construction. Let p:AY B—X be a based
map between based objects with « = ui, and § = pig. Then the element

{H(ﬂ)G[Z(A A B), ZX],
H(p)=(Zq* ™ '(—s(Zo, ZB) + Zp),

is the Hopf-construction of u. Here the function s is defined as in (15.10)(1).

I

(15.16) Example. Let C =Top* and let u:S* x S* - §! be the multiplication
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on the unit sphere. Then the Hopf-map 1 = H(u)e[Z(S* A $1),ZS'] = n4(5?)
is a generator of the homotopy group n4(S%) =[S3,S*]=Z.

(15.17) Theorem. Let 7:C—K be a based model functor between cofibration
categories. Then Whitehead products and Hopf constructions are compatible
with t. This means

T [o, f1= [t 7 fle[E(MTA A M1B), tU],
1, H(u) = H(tp ) e[Z(MtA A MtB), ZM1X].
Here we use the based fat sum Mt4 ¥ M1B in K given as in (15.6) and we use

the homomorphism 7, defined in (6a.2). The map 7,,u = M7y in K is a model
of Tu as in (8.27) with

Av¥ B —* X

NI L.

M14A Y MiB >— M1X

Tl

Proof of (15.17). As in (8.27)(4) we have the commutative diagram in Ho(K)

TAvB —E SAayB . (4B

S

i z
X(MzA v M1B) _EH T(MtA YM1B) e NN X(M1A A M1B)

where the vertical arrows are isomorphisms in Ho(K) since 7 is compatible
with homotopy push outs. O

(15.18) Remark. For the functor t=SC,Q in (1.7.29) the first equation of
(15.17) yields a classical result of Samelson on Whitehead products. We will
show this in (17.24) below.

The Whitehead products associated to a product S” x S” of spheres in Top*
are the most important examples. They have the following nice properties:

(15.19) Example. Let C =Top* and let A A B=(A4 x B)/(A v B) where A and
B are very well pointed spaces in Top*. We identify the n-sphere S” with the
n-fold smash product

S"=S'A - ASt=S'ASTTI=Z5"" L 1)
This shows §"*™*! =X§" A S™. For the homotopy groups
1 (U) =[2S", U] =[5", QU] = 7,(QU) 2
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we have the Whitehead product associated to §" x S™

[ s ]nn(QU) X 7z:m(S)l])_> 7z:n+m(S)l])- (3)
Now assume that 7,(U) = no(QU) = 0. Then (n (QU),[ , 1) is a graded Lie
algebra, see (1.9.1). The bilinearity of (3) is a consequence of (15.14).

Further properties of Whitehead products in Top* are discussed in Baues
(1981).

§15a Appendix: Whitehead products, co-Whitehead products
and cup products in topology

Let C=Top* be the cofibration category in (I.5.4) and let F =Top* be
the fibration category in (L.5.5). Suppose that A and B are very well pointed
CW-spaces, hence A and B are fibrant and cofibrant in C and in F. We have
the cofibration, resp. fibration sequence

[AvB>L->A><B—q—>AABinC,and

(15a.1) 1 _
(AABLAVvB-54AxBinF,

Here A A B=(A4 x B)/(A v B)is the smash product associated to the product
A x Bin C, and A A B is the cosmash product in F associated to the sum
A v B (this is the homotopy theoretic fiber of the inclusion i, see (14.1)),
compare also (15.7). The product 4 x B is a based fat sum in C; the sum
A v B, however, is a fat product in F which is not based since i is not a
fibration (here we use (15.5)).

By (15.11) we have the Whitehead product [ , ] associated to A x Bin C
and we have dually the co-Whitehead product [ , ]°7 associated to 4 v B
in F:

(152.2) {[ . 1:[24,U] x [EB,U] > [S(4 A BLUT in C,

[, 1°7:[U,QA] x [U,QB]->[U,QA A B)] in F.
By the addendum of (15.14) we know that X[, ] = Oand that Q[«, §]°7 = 0.

We now assume that U is a very well pointed CW-space. The next three
propositions are due to Arkowitz.

(15a.3) Proposition. The inclusion i:XAvEB>—3XAXxXB~C, is a
principal cofibration with the attaching map w = [i,,i,]:Z(A A B)»ZA v B
given by the Whitehead product map.

Proof. Let CAx CB=CA x BuA x CB be the indicated subspace of the
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product CA x CB of cones and let n,:(CA, A)— (£ A, *) be the quotient map.
Consider the following commutative diagram where Q is the push out

i _ T IAXZB

—

CAx CB————=Q

I 1 ,. ,

CAXCB—— »54vEB

where w = n, x 7, and where w is the restriction of w. The induced map « is a
homotopy equivalence and i, is a cone since CA x CB is contractible. Now
(15a.3) follows since there is a homotopy equivalence h for which the
composition

W:E(A A B)—>CA % CB->2A v IB

is the Whitehead product map. O
Now let A,
(15a.4) A=gqA:U->UxU->UAU,

be the reduced diagonal of U, A(x) = (x, x) for xeU.

(15a.5) Proposition. The co-Whitehead product [a, B1°° above satisfies the
equation

[, f177 = @)j(x A PA,
where t:Z(QA A QB)~ A A B is a natural homotopy equivalence and where
J:QA A QBL-QE(QA A QB) is the adjoint to the identity of Z(QA A QB).
The proof uses arguments invented by Ganea.

Proof of (15a.5). For the proof it is convenient to use the following result of
Strém (1968):

Lemma. Let p:E —> B be a fibration and let A >—— B be a cofibration in Top
then p~Y(4) >— E is a cofibration in Top. (n
It is easy to see that for W in (14.1) the diagram
ARB=WAxQBUQA x WB >— W(A x B)

\ Yors pull | 2

AvB >— AxB
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is a pull back diagram. Here Q4 >— WA is a cone by (1) since WA is
contractible, see (7.5)(1). There is a commutative diagram

~

(WA,Q4) —— (CQA, QA)

C

(4,%) ——— (2QA4,%)

A
in Pair (Top*). Here R, is the evaluation map on XQA4 which is adjoint to the
identity on QA.
Now (3) yields the homotopy commutative diagram

AAB —' 4w 4vB

ZI TMMB @)

| CQAXCQB —2— $04 v OB,

Uh /
w

2QA A QB

where w is the Whitehead product map; compare the proof of lemma (15a.3)
above. Next consider the commutator in
[ZU,4v B]=[U,Q4 v B], 5
which is given by
Qp),[o, 1P = —ija— i+ ija+i,p

= ([i,&,i,B1Z4) (6)
Here we use (15a.4). The element &e[XU, A] is the adjoint of « and satisfies
=R (Za). v
Thus we get
[i,& i,8] = [i,R ((Za), i,RZH)]
=[i; Ry, ,Rp](Z( A ), ®)
and hence the result follows by (4) and (6). O

We now assume that 4 and B are Eilenberg—Mac Lane spaces as defined
in (IIL.6.1) below. Let A4 and B be abelian groups and let

A=K(A,n+1), B=K(B,m+1).
Then QA = K(4, n) and
(15a.6) H"(U,A4)=[U,K(4,n)] =[U,QA4]
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is the reduced cohomology of U. Moreover, we have the well-known cup
product
(15a.7) v:H"U, A)® H™(U,B)» H"*™(U, A® B),

which carries a® f to auf. This cup product can be described by the
co-Whitehead product.

(15a.8) Proposition. au § = (Qk), [, f1°°.

Here k:A A B> K(A®B,n+m+ 1) is the first k-invariant of the space
A AB~Z(QK(A,n+1) A QK(B, m + 1)), see (II1.7.4) below. The proposition
shows us the precise meaning of the statement that ‘cup products and
Whitehead products are dual to each other’, compare Eckmann (1962).
From (15.14) we derive the well-known fact Q(au f) =0.

For the proof of (15a.8) recall that the cup product (15a.7) is induced by the
cup product map

\J:K(A4, n) x K(B,m) > K(4,n) n K(B,m) Mo k(A® B+ m),

n,m

where g is the quotient map and where O,,.,,, is the first k-invariant. We have
(152.9) auf={J@xpa=J@rpA,

whence (15a.8) follows from (15a.5).

Finally, we describe an important property of the Whitehead product map
and of the cup-product map respectively. We know that the Whitehead
product map

w=w, g 2AAB->ZAVIB
is trivial on XB. Therefore the partial suspension
Ew, 5):Z°AAB->X’4AVvIB

is defined by (11.10). On the other hand, the cup product map above is trivial
on K(B,m) and thus the partial loop operation L in (14.10) yields the map

L(|)):QK(A4,n) x K(B,m) > QK(A® B, n+ m).

n,m

Here we identify QK(A4,n) = K(4,n — 1).

(15a.10) Proposition.

E(wy p) =Ws 4.5

(y)=.\,

and
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Compare 3.1.11 and 6.1.12 in Baues (1977). The proposition will be used in
the next section.

§16 Examples on the classification of maps in topology

In this section we illustrate the use of the exact classification sequence in
(13.10) where we set T=Y==x. We work in the category Top*
of topological spaces with basepoint which is a cofibration category C and
a fibration category F by (1.5.4) and (I.5.5) respectively.

We consider maps in Top*

{]‘:ZA1 Vo VEA—SZA, v v EA,,

16.1
(6.1 g:K; x---xK,—»K,,{ X xK,,

where for simplicity we assume that all A; are suspensions (for examples
spheres of dimension = 1) and that all K; are Eilenberg—Mac Lane spaces
of abelian groups. For example the Whitehead-product map w, g and the
cup product map Um.,, in (15a.10) are such maps f and g respectively.

Let U be a very well pointed CW-space. We can apply the classification
sequence in (13.10) for the computation of the sets of homotopy classes

(16.2) [C,U] and [UP,].

respectively. Here C, is the mapping cone of f and P, is the homotopy
theoretic fiber of g. We will describe various examples for which we obtain
explicit descriptions of the sets in (16.2).

(16.3) Remark. The general method of computation for the sets (16.2)
proceeds as follows. Using the Hilton—Milnor theorem and the Kiinneth
theorem respectively it is always possible to decompose the maps f and ¢
in (16.1) into a sum of maps f; and g; respectively. For these summands it
1s easy to compute the differences Vf; and Vg;. In most cases (15a.10) as
well allows the computation of the partial suspension E"Vf; and of the partial
loop operation L'Vg;. Then we can apply the classification sequence (13.10)
which yields a description of the sets [C,, U] or [U,P,] in terms of exact
sequences. Such applications were obtained with different methods by Rutter
(1967), Nomura (1969) and originally by Barcus—Barratt (1958), compare
also Baues (1977).

We now consider the example where f = w , p = w is the Whitehead product
map and where g= | J,, is the cup product map. By (15a.3) we have the
principal cofibration

(16.4) TAABLEAvIB>—ZAxEB=C,.
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Dually (in the Eckmann—Hilton sense) we have the principal fibration
(16.5) P, = K(A4,n)UK(B,m)—»> K(4,n) x K(B,m)>K(A® B,n + m).

In both cases we can apply the classification sequence (13.10) and we can
use (15a.10). This yields the following two results.

(16.6) Theorem. Let A and B be suspensions. Then there is a bijection of sets

[ZA x ZB,Ul~ | ) [£24 A B,U/I, 4,
(a,8)
where the disjoint union is taken over all pairs (a, f)e[XA4, U] x [XB, U] with
[«, 81 =0 and where I, 5 in the subgroup of all elements
[x, ]+ t*[o, y1e[Z*4 A B, U]

with xe[£24,U] and ye[Z2B, U].
The map t is the obvious interchange map X4 A ZB~X%4 A B. Here
[, B1, [x,P] and [«, y] denote the Whitehead products in (15a.2).

Addendum: Let u:T=XA x EB— U be a basepoint preserving map and let
UT™ be the function space of all such maps. Let (x, B) = ui be the restriction of u
to XA v ZB. Then for n = 1 there is a short exact sequence of groups.

0 - coker V**! - (U™ u) —ker V" — 0.

{V"Ian(U) x Ty 1 (U) = 1,2 {(U),
Vix, y) =[x,8] + t*[a, y].

(16.7) Theorem. There is a bijection of sets

[U,K(A,nUK(B,mlx ) H"" (U, AQ B/,
(. 8)

where the disjoint union is taken over all pairs (o, f)eH™(U, A) x A™(U, B)
with oL B =0 and where 1, is the subgroup of all elements
xUB+auyeH" ™ YU, A® B)
with xe H"~Y(U, A) and ye H™ YU, B).
Here au B, xUp and auy denote the cup products in the cohomology
of U, see (15a.7).

Addendum. Let u:U— P = K(A,n)uK(B,m) be a basepoint preserving map
and let PU"™ be the function space of all such maps. Let (o, f) = pu be the
projection of u to K(A,n) x K(B,m). Then for k 2 1 there is the short exact
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sequence of groups
0— cokerV, , ; = m(P"*,u) > ker V, >0,
{V,‘:ﬁ""‘(U,Z) x Am"XU,B)—» A"*" " 4U,A® B),
Vilx,=xuf+oauy.
Proof of (16.6) and (16.7). We apply (13.10) with T=Y=+« for the
computation of (16.2). For f =w , g = w the difference Vw is the map
Vw=—-io+(i,+i))w:ZAAB->XZ(A, v B)) v Z(4, v B,),
where 4, = A, = A, B, = B, = B. For the obvious inclusions a,, b; (i = 1, 2) of
A; and B, respectively we get
Vw= —w*(a,,b,) + w*(a, +a;,b, + b))
= —[a,,b,] +[a, +ay,b, + b,]
=[ay,b ]+ [a,b,]1 - (ET)*[by,a,],
where we use the bilinearity of the Whitehead product. Since the partial

suspension E is a homomorphism and since Z[a,, b,] = 0 we derive from (11.9)
and (15a.10)
E"Vw =[d;,b,] — (X" T)*[b,a,].
Here a, and b, are the inclusions of Z"*! 4, and £"* !B, respectively.
Since V*(u, w) = (E"Vw)* (-, u) we get the result in (16.6) by (13.10). We leave
the proof of (16.7) as an exercise. The arguments are of the same type as above,

they use the bilinearity of the cup product and (15a.10) and clearly the
sequence dual to (13.10) in the fibration category F = Top*. O

We next describe further examples where we use the method in (16.3). We
say that a homomorphism a:7,(M)— n,(U) between homotopy groups is
realizable if there is a map u:M - U with a = u,,.

(16.8) Theorem. Let M be a closed 4-dimensional manifold which is simply
connected. Then there is a bijection

(M, U]~ )H*M,=,U)/I,,
where the disjoint union is taken over all realizable acHom(n,M,n,U) =
H%(M,n,U). The subgroup I, is the image of the homomorphism

{Va:HZ(M,nSU)—»H“(M,mU),
Vax) = (1),5¢*(x) + [ , ] (xuo).
Here n*:n3(U)® Z/2 > 7=,(U) is induced by the suspension of the Hopf
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map (15.16) and Sq? is the Steenrod square. Moreover xua is the cup
product and [ , ]: nsU®n, U - =, U is the Whitehead product.

Addendum. Let u:M — U be a basepoint preserving map and let UM'* be the
function space of all such maps. Assume that u induces o€ H*(M,n, U) as above.
Then for n = 1 there is a short exact sequence of groups

0—coker V2! - (U"* u) > ker V* - 0,
Vi:H*(X,n,,,U)-»H*X,n,,3U),
{VZ(X) =), S2) + [, luxva).
Here V" is defined in the same way as V, = V! above.

Proof. Let B be a basis of the free abelian group H>M = @BZ and choose
an ordering < of B. Then the Eckmann—Hilton homology decomposition
shows that M is homotopy equivalent to the mapping cone C, with
f:8— \4 52,
J=ZpepbUb)(ipn) + Zy<plav b) [i,, i].
Here aube H4(M) = Z denotes the cup product and i, is the inclusion of S2

for beB. We compute Vf by the bilinearity of the Whitehead product and
by the distributivity law for the Hopf map

n*(@+ B) = n*(@) + n*(p) + [, A1,

where a, fen,(U). Since Sg(x) = xUx mod 2 we obtain the result (16.8) in
the same way as in the proof of (16.6). ]

Next we describe classical examples which can be derived as well from
the classification sequence (13.10) in a fibration category similarly as (16.7).

(16.9) Theorem (Pontrjagin, Steenrod). Let X be a CW-complex with dim
(X)=<n+1 and let ueH"(S",Z) be a generator. Then the degree map
deg:[X,S"] > H"(X, Z) with deg(F) = F*(u) is surjective and

H3(X,2)/26 UH\(X, Z), n=2

-1 ~
deg (€)~ {Hn+ 1(X, Z/2)/Sq§H"_1(X, Z)’ nz 3

Here Sq° is the Steenrod square. For n = 1 the theorem is a special case of
the following result, compare Spanier. CP, denotes the complex projective
space with CP, ~ 2.

(16.10) Theorem. Let X be a CW-complex with dim(X)<2n+1 and let
ue H*(CP,,Z) be a generator. Then the degree map deg:[X,CP,]— H*(X,Z)
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with deg(F) = F*(u) is surjective and
deg ' (&)~ H*"' (X, 2)/(n + DE"UH' (X, 2).
Here &” denots the n-fold cup product of &.
Proof of (16.10). The first k-invariant of CP,, is the map k:CP,, = K(Z.2)—>
K(Z,2n + 2) which is represented by the cup product power u"* !, Therefore
we have by dim(X)=2n+1
[X,P.]=[X.CP,).
Compare (I11.7.2). We can compute Vk:K(Z,2) x K(Z.2)—>K(Z,2n + 2) as
follows
Vk= —kp, +k(p, + p,)

= —p3u"" + (b + P W)
~p3u" "+ ((py + Py
— p3u T+ (p3u + pluy !
= Z <n N 1>(p‘§u")U(pTu"+“").

k=0 k

From (15a.10) we derive

L(ptu"™ ' "*up3ul) = (Qptu"* ' TF)u pFut,
where Qp*u"*!'"*=0 for n+1—k>1 since Qaup)=0. Moreover, we
have

Qp*u=p,:QK(Z.2) x K(Z.2)> QK(Z.2).
Thus the map

LVk:QK(Z,2) x K(Z,2)—>QK(Z,2n + 2)

is given by L(Vk)=(n+ 1)(p,upiu"). Now the result (16.10) is a
consequence of (13.10), compare the proof of (16.7). We leave it to the reader

to formulate an addendum of (16.10) which corresponds to the addendum
of (16.7). O

Also an old result of Pontrjagin and Dold—Whitney is an illustration of the
classification sequence (13.10). Let BSO(n) be the classifying space of the
special orthogonal group. The homotopy set [X,BSO(n)] determines the
oriented (n — 1) sphere bundles with structure group SO(n) over X.

(16.11) Theorem (Dold-Whitney). Let X be a connected 4-dimensional poly-
hedron. Then there is a bijection (n = 3)

[X.BSOm)] =) (HYX.2)/I;)® A4").
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where the disjoint union is taken over all ae H¥(X,Z/2). We have A*=
H*(X,Z) and A" = 0 otherwise. Moreover, I"=0forn=5. Forn=3 andn =4
the subgroup I’ is the image of

{Va:Hl(X, Z/2)- H*(X, 2),
Va(x) = (Bx)u(Bx) + fxwa).
Here f is the Bockstein homomorphism for Z — 2 — 7/2.

Proof. We only describe the connection of the result with the classification
sequence (13.10): In low dimensions the space BSO(n), n= 3, has the
homotopy groups n;, =0=n; and n,=27/2 and n,=7Z for n#4 and
ny = Z @ Z for n = 4. Thus the first k-invariant of the Postnikov tower (I1.7.2)
is

k:K(m,,2)—> K(n,,5).
Moreover, the principal fibration P, — K(n,,2) yields for dimX <4 a
bijection

[X9 BSO(")] = [X9 Pk]

Thus we can apply (13.10). In fact, we have [K(Z/2,2), K(Z,5)]=Z/4 and k
is a generator for n = 3. For n = 4 the first coordinate of k is a generator and the
second coordinate is trivial. Moreover, k is twice a generator for n > 4. Thisis a
result of F. Peterson, compare formula 22 in Dold—Whitney. By use of the
explicit description of the generator one obtains Vk and L(Vk) with

L(VE)4(x,2) = V,(x). O

§17 Homotopy groups in the category of chain algebras

We describe explicitly homotopy groups (and homotopy groups of function
spaces) in the category of chain algebras DA; in particular, we compute the
homotopy addition map. Similar results can be obtained in the category of
commutative cochain algebras CDAY and in the category of chain Lie
algebras DL. The author, however, is not aware of an explicit formula for
the homotopy addition map on the cylinders in (1.8.19) and (1.9.18)
respectively. Such a formula would be an interesting analogue of the
Baker—Campbell-Hausdorff formula. Moreover, by the universal enveloping
functor U one can compare the ‘rational’ homotopy addition map in DL
with the ‘integral’ one in DA, which we describe in (17.4) below.

Let R be a commutative ring of coefficients and let DA be the category
of chain algebras over R with the structure in (L.§7). Recall that DAZ
is an I-category. A homotopy equivalence in DAZ is also a weak equivalence.
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The converse is true if R is a principal ideal domain and if B is R-flat.
Moreover, we know that DA(flat) and DA, (flat) are cofibration categories
provided R is a principal ideal domain, see (1.7.10).

Let B>— A =(BIIT(W),d) be a cofibration in DA and let u: B— U be a
map in DA. Then we have the set of homotopy classes

(17.1) [A4,U]" = DA(A, U)"/ ~ rel B,

where DA(A4,U) ={f:4—- U|f|B=u} and where the homotopy relation is
defined in (I.7.13). Clearly, this is an equivalence relation by (2.2). In case B = *
is the initial object we set

(17.2) [A,U]={fiA>U}/~rel*,

Here A = (T(W),d) is a free chain algebra.

We denote by {x} the homotopy class represented by x:4A—>U. If 4 is a
based object in DA (or, equivalently, if 4 is an augmented free chain algebra)
we have the o-map ¢ =0:4 — * which is the augmentation of A; this map
yields the zero element in the homotopy set [4, U].

Recall that we have an explicit cylinder IgA = (B [T(W' @ W' @ sW),d)
for the cofibration B >—— 4, see (I.7.11). This yields the problem of computing
an explicit homotopy addition map

(17.3) m:I1zA —>1gA| ) Ig4=DZ,
which is defined in (2.5). Here we haveA

DZ=BIITW W' @ W"@®sW,®sW,),d)
with W= W" = W"” = W, = W, = W.

(17.4) Computation of m. The map m is a homotopy i’ ~i" of the inclusions
i,i":4—> DZ. Therefore m is given by the homotopy (see (I1.7.12)):

M:A-DZ
with
M®)=0 for beB, (N
m(sw) = M(w) for weW, 2)
Md+dM=i" -1, 3)
M(xy) = (Mx)y" + (= D"'X'(My) for x, yeA. )

On the other hand, we obtain from the canonical inclusions
Jorj1:1gA - DZ,
JoW =W, jow" =w", josw = sw,,
jl wl — wll,jlwll — wlll,jlsw — Swl,
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the homotopies S,=j,S, S; =j,;S:4—>DZ, where § is defined in (L.7.11).
These homotopies satisfy

Sed +dSo=1"—1,
0 0 } (5)

S,d+dS, =i" —i",

Therefore we have the operator

M=M=5,—35,, (6)

which satisfies the following equations:
dM + Md =0, (7
M(b)=0 for beB, (8)

M(xy)=(Mx)y" + (— D% (My) + (Sox)(y” — ¥") — (— DF(x" — xX')(S, ).
©

We now construct M inductively: Let veW be given with |v|=n and
assume we know M(w) for all we W with |w| <n. Then by (9) we have a
formula for Mdv. By (7) this element is a boundary Mdv =d&. We choose
such a £ and we set

Mv=—¢ Mv=Sw+S,v—~¢ (10)
There is a canonical way to define M in (6) as follows. We define a map
of degree + 2
S, A—— DZ
I I (1)
BIIT(W) BIIT(W ®W @ W" @sW,DsW,),
S.(b)=0 for beB,
S, w=0 for weW, and
Sulxy) = (= DMSox S,y + SplX) ¥ + X'*S,(y)
for x,yeA. As in (1.7.11) one can check that S,, is well defined. Moreover,
the map
M=S,d—dS,:A-DZ (12)
satisfies the equations (7), (8) and (9). Therefore (12) yields a canonical choice
in (10), compare Helling.

We describe an example for the homotopy addition map in §2. More
generally then (17.1), we have the homotopy groups of function spaces (n = 1)
in DA,

(17.5) (U, u) = [Z34, U,

compare (§6,§ 10). We know that =, is a group and that =, for n > 2, is an
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abelian group. For n = 1 the group structure on x, is induced by the comulti-
plication m on £zA4 which makes the diagram

A  —T 1414
A

L

TgA —————-»ZBAUZBA
m A

I I
ALI T(sW) AT T(sW,®sW,)

commutative. Here p is the canonical identification map with pw' =pw” = w,
psw = sw for we W.

(17.6) Theorem. Let B> A = B[ | T(W) be a cofibration and assume W is
finite dimensional (that is, W, =0 for n> N). Then n,(U*?,u) is a nilpotent

group.
Proof. This is an easy consequence of (IT1.4.14) since B> A is a complex

of finite length in DAZ, see (VIL§4). A less simple proof can be deduced
from the explicit formula for m in (17.4). O

From the definition of 4 in (10.3)(4) we derive
(17.7) SRA=B][[TW®s"'W)=A]]T(s"W).
The differential d on T}4 (n2= 1) is given as follows. Let $":4 >ZX}A be
the map of degree n with

S"b=0 for beB,
S'w = s"w for we W,
S"(xy) = (S"x):y + (— 1)™'x-(S"y) for x, ye A.
Then d is defined on W by d, and on s"W by ds"w = (— 1)"S"dw.
For a free augmented chain algebra A = (T(W), d) we have the suspension
ZA =X, A/A which is a quotient in DA. From (17.7) we derive
(17.8) ZA=(T(sW),d) with d(sw)= —sdyw for weW.
Here d,, is the differential on QA = W, see (1.7.2). Clearly, the n-fold suspension
is
(17.9) Z'A =X A/A=(T(s"W),d) with ds"w = (— 1)'s"dyw.
The homotopy set [£"4, U] has a group structure which is abelian for
n = 2. Weleave it to the reader to describe a formula for the comultiplication

(17.10) mEA=TEW)>ZAvIEA=TW,®sW,),
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which is obtained by dividing out 4 in the bottom row of diagram (17.5).
In general m induces a non abelian group structure for [ZA, U], compare
the example in (17.22) below. By use of derivations there is an altenative
description of the homotopy groups in (17.5).

(17.11) Definition. Let B = A be a cofibration and let u:4— U be a map in
DA. An (A|B, u)-derivation of degree n (n€Z) is a map F:4 — U of degree n
of the underlying graded modules such that

F(b)=0 for beB, (1)
F(xy) = (Fx)(uy) + (— 1) ux)(Fy) for x,yeA. ()

The set of all such derivations:
Der, = Der, (U, u) (3)

is a module by (F + G)(x) = (Fx) + (Gx). We define a boundary operator
0:Der, - Der, _,
O(F)=Fed —(—1)'d°F

where d denotes the differential in A and U respectively. One easily checks

that 6(F) is an element of Der,_, and that 0 = 0. Thus we have for all neZ
the homology

(4)

H,Der, (U"?, u) =ker (0)/im (0) 5

of the chain complex of derivations. I

(17.12) Proposition. Let B < A= B][T(W) be a cofibration in DA. Then we
have for n=1 a bijection

(U, u) = H, Der, (U"*, u),
which depends on the choice of the generators W. For n = 2 this is an isomorphism

of abelian groups.

Proof. Let A(Z3A4, Uy be the set of all algebra maps F:Z34 — U between
the underlying graded algebras with F| A = u. We have the bijection

A(Z3A, U)*=Der,, F+——FS"=F, (1
with S" in (17.7). Now F is a chain algebra map (dF = Fd) if and only if
O0F = 0. Therefore (1) gives us the bijection (see (17.1))

DA(Z} A4, U)* = kernel (). (2)
It remains to show that for F,, F,eDA(Z}A4, U)* we have
F,~F,rel A<3GeDer,,, with dG=F,—F,. (*)
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Then, clearly, (2) gives us the bijection in (17.12). Now a DA-homotopy G
from F, to F,(rel A) is given by a map G:Z%4 — U of degree + 1 with

Gx=0 for xeA, 3)
Gd+dG=F,—F,, 4)
and
Glxy) = (Gx)(Foy) + (— D(F,x)(Gy) &)
for x, yeX}A. Therefore the map
G=GS" (6)
is of degree n + 1 and satisfies by (17.7)
Gb=0 for beB, 7
Glxy) = G((S™x)y + (= 1)"™x(S"y))
=(Gx)(uy) + (= D" "(ux)(Gy) (8)

for x, ye A. Here we use (3) and (5). By (7) and (8) we know that GeDer, . ;.
Moreover, by (4) and (17.7) we have for ve W
0G(v) = GS"dv — (— 1)"*1dGS™
= (— 1y'Gds"v + (— 1)"dGs"v
=(—1)'(F,— Fy)s"
=(—1)(F, — Fy)(). 9)
Therefore d(— 1)"G = F, — F,. The other direction of (*) can be proved in

a similar way. It follows from (17.17) and (17.18) below that the bijection is
actually an isomorphism of groups for n = 2. a

(17.13) Definition. For chain complexes V, W let
Hom, =Hom,(V, W) (neZ)

be the module of linear maps of degree n from V to W. Let ¢: Hom,— Hom,, _,
be defined by ¢f =fd — (— 1)"df. Then, since ¢¢ = 0, we have the homology
H,Hom,(V, W) of the chain complex (Hom,, J). Let s"V be the chain complex
with ds"v =(— 1)"s"dv. Then H,Hom,(V, W) is just the set of homotopy
classes of chain maps s"V - W. I

From (17.12) we derive the following special case:

(17.14) Corollary. Let A be an augmented free chain algebra and let QA be
the chain complex of indecomposables of A. Then we have for n Z 1 a bijection
[2"4, U] = H,Hom,(QA, U), which depends on the choice of generators W
for A=T(W), W= QA. For n 2 2 this is an isomorphism of abelian groups.
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(17.15) Addendum. If the differential on QA is trivial we have
H,Hom,(QA, U)=Hom,(QA4,H,U).
Proof of (17.14) and (17.15). We have the isomorphism of chain complexes

Der, (U*'*,0) = Hom,(Q4, U). Since QA is a free module we obtain (17.15),
compare also I11.4.3 in Mac Lane (1967). O

(17.16) Definition. A cofibration B> A in DA with A=B[[T(W)=
@)20B® (W ® B/ is of filtration < n (with respect to W) if

dW e DB (W®B). I
j=0

The elementary cofibrations are just those of filtration 0. We now consider
cofibrations of filtration 1 with iW<cB@® B® W® B.

(17.17) Example. Let Y X = YIIT(V) be a cofibration in DA. Then for
n=1

XX =X[[T(V)

is a cofibration of filtration <1 with respect to s"V. In fact, by (17.7) we see
dS'Vc X Q5T R X.

(17.18) Proposition. Let B= A= B[ [T(W) be a cofibration of filtration < 1.
Then the comultiplication m on TgA in (17.5) is given by m(a) = o for aeA,
and m(sw) = swy + sw, for weW.

(17.19) Corollary. If B <= A is of filtration <1 then the bijection in (17.12),
n(U*®,u)= H, Der,(U*”,u), is an isomorphism of abelian groups.

Proof of (17.18). For we W we have
dw=d,w+d,w (1)

with d,weB and d,we B® W ® B. This shows that for M in (6) of (17.4) we
have

M(dv) = M(d,w), )

see (8) in (17.4). Now (8) and (9) in (17.4) show us that for a®@v® B,
(o, e B, ve W), we have

MOa®v® p)=(— 1)a ® (Mv)® ", k= |al. (3)

Assume now we have constructed M with Mv =0 for [v] < n. Then for w,
|w| =n+ 1, the equations (1), (2) and (3) above show M(dw)= 0. Therefore
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we can choose & =0 in (10) of (17.4). Thus for all ve W we have My =0 or
equivalently m(sv) = Mv = Sqv + S0 = svy + 505 O

(17.20) Definition. Let T be the free augmented algebra generated by the
generator ¢t with degree [t| =0, clearly d(t) = 0. Then X"T = T(s") has trivial
differential and the homotopy groups are

i, (4)=[Z"T, A]= H,(4) (1)

for n = 1, see § 6 and (17.14). Moreover, the relative homotopy groups of a pair
(A, B) are
7, (4, B)= H,(A, B) = H,(4/B). 2

Here A/B is the quotient chain complex of the underlying chain complexes
of 4 and B, see (7.7). I

The exact homotopy sequence (7.8) for the functor ! is just the long exact
homology sequence

(17.21) o+ —H,B—H,A—H(4,B—H, B
J i

Remark. T corresponds in topology to the l-sphere S! so that nl(A)
corresponds to the homotopy groups =, ,,(X), n= 1, of a space X. Clearly,
the homotopy groups of spheres n](X™T) can be easily computed in the
category DA of chain algebras.

(17.22) Example. We consider the example which in topology corresponds
to a product $"*! x S™*! of two spheres (n,m=1). Let v,w and v x w be
elements of degree n,m and n+ m + 1 respectively and let A = T(v,w,v X w)
be the free chain algebra generated by these elements with the differential

dv =dw =0 and for [v,w] = vw — (— 1)"wp let}

dlv x w)=(—1)"[v, w]. (0

We construct M on A(X). First we set Mv=Mw = 0. Since dSev=0v"—1'
and dS,w =w"” — w” we obtain from (9) in (17.4) the equation
M(vw) = (Sev)(W” — w") — (— 1Y'(v" — v')(S, W)
= (= 1" 1d((Sov) (S, w)).

SAimilarly we get M(wo)=(— D™+ d((Sew)-(Sv)). Therefore we see that
Md(v x w)=d¢ with — &= (Sov)(S;w)+ (— 1)+ D=+ 1§ w)(S,v). Now we
can define M by

Mv=S,v+ S0, Mw=Sow+ Sw,

M(v x w) = S0 x W)+ S,(v x w) + (Sev) (S, w) + (— D+ D+ DS w)(S, v).

2



17 Homotopy groups in the category of chain algebras 177

We have for x = sv, y = sw, z=s(v x w) the degrees |z|=|x| +|y|.
Moreover, £4 = T(x, y, z) has trivial differential and the comultiplication
m:ZA—ZA[JZA = T(Xo, X1, Yo» Y1» Z0» Z1) 3)
is given by
mx =xy+ X,
my=yo+yi,
mz=zo+2z;+ x5y, +(— DMy,
For the homotopy set (see (17.14) and (17.15))
[£4,U]= H|x|(U) X H|y|(U) X H|x|+|y4(U) 4
we obtain by (3) the multiplication +:
(@0 Bo>70) + (@15 B> 71) = (a0 + %1, Bo + Bis Vo + 71 + %8y + (— DMV Boary).
&)

Here o,f; and fy0, are products in the algebra H,U. The commutator of

the elements & = (2, 0,0), § = (0, §,0)e[X A4, U] is by (5) the element
Thus, if the Lie bracket

[ fl=af—(—1)*"pa (7
of the algebra H, U is not trivial, the group [Z4, U] is not abelian.

Recall that we have the functor t:Topf—DA, given by 1=SC,Q in
(I.7.29). We know that 7 is a model functor, actually 7 is natural weak
equivalent to a based model functor. We therefore can apply (15.17) for the
computation of t[a, ] where [o, f] is a Whitehead product, aen,, (U) and
pen, . (U). By the Bott—Samelson theorem we have a canonical weak
equivalence o,

(17.23) * >— T(v) > 7(S"*")
(where |v| =n, T(w)=Z"T), such that the composition
hinQU) =[S"*1, U] -5 [28** 1, tU] 2 [T(v), tU] = H,(QU)
is the Hurewicz-map, see (17.20). Now one readily checks that there is a
commutative diagram in DA
T(v) v Tw)
((tiy)o.(ti,)o)
i

(T(v,w,v x w),d) ;» TWw)® T(W) ——— 7(S"+! x §™*+1),
N1 2
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Here j,j, is given by the isomorphism in (I.7.32). The map j, j, is compatible
with the projections p,, p, on §"*! x $™*! and on T(v,w,v x w) respectively.
We define p,;:T(v,w,v x w)—>T(v) by p,(v)=v and p,(w)=0=p,(v x w).
Similarly, we define p,. The diagram above shows that (T(v,w,v x w),
i,p;,p,) is a fat wedge MtS"*' Yy MzS™*! for ¢(S"*! x S™*1) as in (15.5).
Hence we can apply (15.17) and we get by (17.22)(7) the Samelson

(17.24) Theorem. For ocn,(QU) and pen,(QU) and for the Whitehead product
[, Blen, ; (QQU) the Hurewicz-homomorphism

h:m (QU) - H (QU)
satisfies the formula

h([a, B]) = [ho, hB].
Here the bracket at the right-hand side is the Lie bracket associated to the
multiplication in the algebra H ,(QU), compare (1.9.3).
Compare also (1.9.23). We need no sign in the formula of (17.24) since we
define the Whitehead product by the commutator in (15.11).
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The homotopy spectral sequences
in a cofibration category

In Chapter II we obtained the fundamental exact sequences of homotopy
theory, namely

(A) the cofiber sequence,
(B) the exact sequence for homotopy groups of function spaces, and
(C) the exact sequence for relative homotopy groups.

In this chapter we derive from these exact sequences the corresponding
homotopy spectral sequences. In case (A) this leads to the general form of
both the Atiyah—Hirzebruch spectral sequence and the Bousfield—Kan
spectral sequence, compare also Eckmann-Hilton (1966). In case (B) we
obtain a far reaching generalization of the Federer spectral sequence for
homotopy groups of function spaces in topology. In case (C) the homotopy
spectral sequence is the general form of the homotopy exact couple in topology
(considered by Massey) from which we deduce the ‘certain exact sequence of
J.H.C. Whitehead’ in a cofibration category. All these results on the homotopy
spectral sequences are available in any cofibration category. Moreover,
a functor between cofibration categories (which carries weak equivalences to
weak equivalences) induces a map between these homotopy spectral sequences
compatible with the differentials. Various properties of the spectral sequences
are proved in this chapter, some of them seem to be new (even for the classical
topological spectral sequences).

In all cases (A), (B) and (C) we study the E,-term of the spectral sequences.
For this we introduce complexes, chain complexes, and twisted chain
complexes in a cofibration category. Complexes are iterated mapping cones
which are obtained by a succession of attaching cones. For example in
topology CW-complexes and dually Postnikov-towers are complexes. We
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define a functor which carries complexes (and filtration preserving maps) to
(twisted) chain complexes and chain maps. The (twisted) cohomology, defined
in terms of this chain functor, yields the E,-term of the spectral sequence in
case (A) (and in case (B)). In topology the chain complex corresponds to
the cellular chain complex of a CW-complex, and the twisted chain complex
corresponds to the cellular chain complex of the universal covering of a
CW-complex. Therefore the twisted cohomology yields the cohomology with
local coefficients of a CW-complex as an example. The spectral sequence for
case (B) can also be used for the enumeration of the set x, of a function space
which is a set of homotopy classes of maps.

A surprising application of the spectral sequence in case (B) is the result
that in any cofibration category the group =, acts nilpotently on x, (n = 1)
provided that we consider a complex X of finite length. In particular, the
homotopy group [XX, U] is nilpotent; in topology this is a classical result
of G.W. Whitehead (1954).

In the first section of the chapter we consider filtered objects X in a
cofibration category and we show that the homotopy group =,(U*,u) is
embedded in a short exact lim!-sequence.

§ 1 Homotopy groups of homotopy limits

Let C be a cofibration category. We first generalize the category Pair(C) in
(I1.1.3) by considering ‘filtered objects’ in C.

(1.1) Definition. 1et Fil(C) be the following category. Objects are diagrams
A=(Ap— A4, — A, > A3—>)
to 31 i2
A morphism f:A—B in Fil(C) is a sequence of maps f,:4,— B, with
infw =Sy 1is» 1= 0. We say that f is a weak equivalence if each f,,n=0,is a
weak equivalence in C. Moreover, f is a cofibration if each map

(fn+1’fn):(An+1’ An)_>(Bn+ 1> Bn)

is a cofibration in Pair(C). We call the object A ={A4,} ={A,,i,} a filtered
object in C. We say that A is constant if A,= U and i, =1y for all »; in this
case we write A = {U}. Moreover, A is a skeleton, A=A _, if i,:A4,, > A4,,,,
is the identity for m = n. I

If C has an initial object * then also Fil(C) has the initial object
* = {*}. An object A= {4,} is cofibrant in Fil(C) if all maps

(1.1)(a) * Ag Ay A,
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are cofibrations in C. Recall that Fil(C), denotes the full subcategory of
cofibrant objects in Fil(C).
For a fibration category F we define Fil(F) dually by diagrams

(1.1)(b) A=(A0<p—0 A1<p—1A2<_...)

in F. This is a fibrant object in Fil(F) if all p; are fibrations and if 45 —»
is a fibration. We call such a fibrant object a tower of fibrations. As in (11.1.5)
we obtain

(1.2) Lemma. The category Fil(C) with cofibrations and weak equivalences in
(1.1) is a cofibration category.

We only check (C3) and (C4) in Fil(C). For amap f:{4,} — { B,} we obtain
a factorization f:{4,} >— {C,} =>{B,} by the following commutative
diagram.

A, P, »C, ———B,
I push { /
(L3) A >— P >—C, —~B;

Here we first choose a factorization C, of Aq— B, in C. Then the push out P,
and the map P, — B, is defined. We choose a factorization C, of this map.
Then the push out P, and the map P, — B, is defined. There is a factorization C,
of this map. Inductively we obtain the filtered object C with A >— C = B.

Next we get a fibrant model {4,} >~ {RA,} of {4,} by choosing
inductively fibrant models in C as in the diagram

- |

A, ~ P, >>>RA,

-

A, >~ Py >">RA,

-]

AO >~—> RAO

(1.4
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Here RA,,, , isthe fibrant modelin C of the push out P,. An object A = {4, } in
Fil(C) is fibrant if and only if all objects A, are fibrant in C, see (I1.1.5).

We now consider cylinders and homotopies in Fil(C). For a cofibrant
filtered object A we have the cylinder 1,4 = {I,A,} which is a sequence of
cylinders in C. We call a map H:I,4—U in Fil(C) a 0-homotopy or a
filtration preserving homotopy. The example of CW-complexes in topology
shows that also homotopies are of interest which are not 0-homotopies. We
say H is a k-homotopy, k=0, between f and g if we have homotopies
H,:i*f, ~i*g,rel * with i*:U,— U, such that the diagram

LiAwey —— Ui

(1.5) l,- ]

I*An __H—) Un+k

k
commutes, n = 0. We write H: f ~ g. We are mainly interested in 0-homotopies
ko, . .
and 1-homotopies. If U is fibrant, then =~ is an equivalence relation on the

set of all filtration preserving maps 4 —U. Clearly, f ég implies f kélg.
In case U is not fibrant we use a fibrant model RU of U in Fil(C) for the
definition of &. In particular, HoFil(C) = Fil(C),,/ 2

In order to obtain homotopy limits in C we assume the following

(1.6) Continuity axiom. For each cofibrant object A={A,} in Fil(C) there
exists the colimit lim A,, in C. Moreover, the functor lim: Fil (C), — C preserves
weak equivalences and cofibrations.

The axiom is also used in Anderson (1978). We denote a colimit (direct
limit) by lim and we denote a limit (inverse limit) by Lim.

(1.7) Examples.

(a) The cofibration category of topological spaces in (I.5.1) satisfies the
continuity axiom. This follows from the appendix in Milnor (1963),
compare also Vogt (1963). This implies that the cofibration category of
simplicial sets given by (I.2.12) and the cofibration category Top with the
CW-structure (I.5.6) both satisfy the continuity axiom.

(b) The fibration category of simplicial sets (and of simplicial sets with base
point respectively) given by (1.2.12) satisfies the dual of the continuity
axiom. Compare Part II in Bousfield-Kan.

(c) The cofibration category of positive chain complexes with the structure
in (1.§6) satisfies the continuity axiom since in Chaing we have
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lim HA, = H(lim A,), compare VI11.5.20 in Dold (1972); this also implies
that the cofibration categories of chain algebras (1.7.10) and of commuta-
tive cochain algebras (1.8.17) satisfy the continuity axiom.

(1.8) Remark. If the cofibration category C satisfies the continuity axiom
then for any cofibrant object X in C also the cofibration category, C*, of
objects under X satisfies the continuity axiom.

(1.9) Definition. Let C be a cofibration category with an initial object * and
assume the continuity axiom is satisfied. For each filtered object A = {A4,}
in C we define the homotopy colimit by

holim {4,} =lim {MA4,}.
Here {MA,} = M A is given by a factorization * >—MA =>4 of *—> A4 in
Fil (C). Hence holim is a functor

holim: Ho (Fil C) = Ho(Fil C), ™ HoC,

compare (IL§3). In case the colimit lim{A4,} exists, the canonical map
holim {A4,} -»lim 4,} needs not to be a weak equivalence. For a cofibrant
filtered object A we have the canonical weak equivalence holim [4} =
lim {A,}, in this case we write A, =lim{4,}. I

An object A is based in Fil(C) if x = A_ | > A, is a cofibration and if all
maps A,>— A,, are based in C. If axiom (1.6) is satisfied the limit A4,
of a based filtered object 4 is clearly based in C. For the based filtered object A
we have the function

(1.10) [X"d,, U] —Lim[£"4,U] (nZ0)

for homotopy groups. Here U is a fibrant object in C and A yields the inverse
system of sets (groups for n = 1), {[£"4;, U]}, and p is the obvious map. The
based filtered object Z"A4 = {Z"A4,} is the n-fold suspension in Fil(C). We
derive from the homotopy extension property in (IL.2.17) that p is a surjective
function for n = 0, here we use the cylinder in Fil(C). Clearly, for n =1 the
function p is a homomorphism of groups. For the study of the kernel p~1(0) of
(1.10) we follow the 1dea of Milnor (1962), compare also K.S. Brown (1973) and
Bousfield—Kan. To this end we introduce

(1.11) Definition of Lim and Lim® for groups. A tower of (possibly non-
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abelian) groups and homomorphisms

oG, 56, > oG =%

gives rise to a right action @ of the product group I1G, on the product set
I1G, given by (xq¢,...,%;..)®(Jor.»gir-- ) =(—go+ X0 +Jg1s..., — 9; +
x;+Jjgi+1....) Here we write the group structure of G, additively. Clearly,
Lim {G,} = {y|0@®g = 0} is the isotropy group of this action in 0. We define
Lim' {G,} as the orbit set of the action; this is the set of equivalence classes
[{x;}] of IIG, under the equivalence relation given by x ~ y<3g with
¥y =x@®g. In general Lim' {G,} is only a pointed set, but if the G, are abelian,
then Lim' {G,} inherits the usual abelian group structure. In fact, in this case
Lim'{G,} is the cokernel of the homomorphism 4:I1G, - IIG,, d(g) = 0Dy,
and Lim {G,} is the kernel of d. [l

(1.12) Remark. Let {G,} be a tower of groups such that j:G,—>G,-, is
surjective for all n. Then Lim' {G,} = 0. Compare IX.§2 in Bousfield—Kan,
where one can find as well further properties of Lim and Lim®.

(1.13) Theorem. Let C be a cofibration category which satisfies the continuity
axiom (1.6). Let U be a fibrant object in C and let A be a based object in Fil(C).
Then one has the natural short exact sequence (n = 0):

0—Lim' [£"*'4,, U] — [Z"4,,, U] — Lim [Z"4;, U] 0.
7

For n=0 this is an exact sequence of sets, (i.e. j injective, p surjective and
p~1(0)=image j). For n = 1 this is a short exact sequence of groups (of abelian
groups for n 2 2). The sequence is natural for based maps A — A’ between based
objects in Fil(C) and the sequence is natural for maps U — U’ in C.

For n=1 the sequence in (1.13) is an extension E of a group G by an
abelian group M. Such an extension

(1.14) 0—>M—i>E7>G—>0
gives M the structure of a G-module by defining a® = g *-i(a) g, for goep™ '(9),
aeM, geG. We also call (a,g)— a? the action of G on M associated to the

extension (1.14). It is well known that the extension (1.14) is classified by an
element {E}e H*(G, M), compare (IV.3.7) and (IV.6.2).

(1.15) Proposition. The action of g={g;}eLim[Z4,,U] on a=
[{a;}]eLim’ [£24;, U] associated to the extension in (1.13) (n = 1) is given by

the formula

@ =[{a?}]
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where a?t is defined by the action of [ZA;, U] on [£2A4, U] in (11.6.13).

We prove (1.13) and (1.15) in (1.23) below. Special cases of (1.13) are well
known, compare Milnor (1962), Bousfield—Kan, Vogt (1973) and Huber—
Meyer (1978). The result in (1.15) seems to be new also in topology.

Example. Using the exact sequence (1.13) in the cofibration category of
topological spaces Gray showed that there is an essential map f:CP® —
S3(CP* = co-dimensional complex projective space) such that the restrictions
S1CP" are null homotopic for all n.

Now let a:C —K be a functor between cofibration categories which both
satisfy the continuity axiom. Assume that « is based («(*)=x*) and that «
preserves weak equivalences. Clearly, « induces a functor
(1.16) a:Fil(C) - Fil(K).

For a cofibrant object 4 = {4,} in Fil(C) we get * >— B=Ma A4 a4 in
Fil(K) as in (1.9). This gives us the canonical map

(1.17) *>— B_=holima4d —»alimA=0A4,.
Moreover, a factorization of this map yields
*>— B LN MaAd, = ad,.

If A is a based object in Fil(C) then B is a based object in Fil(K), hence we
obtain by (I1.6a.2) the maps

o;=0;:[Z"A4,, U] > [Z"B;, RaU]

aoo = (anao)*aL:[ZnAoo’ U] - [ZnBoo’ RCX U]

which are homomorphisms of groups for n = 1.

(1.18) Proposition. The map o, is compatible with the exact sequence in (1.13),
that is.
(Lim {a;})ep = poa,, and
je(Lim! {o;}) = e, 0p.
This result is proved in (1.23) below. Next we derive from (1.13) the following
corollary on homotopy groups of function spaces in C.

(1.19) Corollary. Let C be a cofibration category and assume C satisfies axiom
(1.6). Let X be a filtered object in Fil(C), and let u:X ,— U be a map in C
into a fibrant object U. We denote by u, the composition X, — X ., — U. Then
we have for n 20 the short exact sequence

0— Lim 'z, (U*¥0, 4 ) > n (U*=¥0, ) » Lim 7, (U*"¥0 4,) - 0.
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T he sequence is natural with respect to maps in Fil(C). Moreover, the sequence
has properties as described in (1.13) and (1.15), in particular, for n=1 the
action associated to the extension is given by the formula in (1.15) via the action
in (IL.5.16) and (I1.10.7) (3).

We also point out that the sequence in (1.17) is compatible with functors
as in (1.16), compare (10a.1). The following proof of (1.17) is an example for
the great advantages of an axiomatic approach.

Proof of (1.19). By (1.8) the cofibration category B = C*= satisfies axiom (1.6).
The filtered object X in C yields the following filtered object A in B which
is based. Let

A,,=<Xm >— X, X, L»Xw>
Xo

where p =(j,, 1), j,:X,— X, the canonical map. The map w: X, — U gives
us the fibrant object u in B. We obtain by (1.13) the exact sequence for
[Z"A_,u] in B. This sequence is isomorphic to the one in (1.19) by use of
(I1.10.4). O

For the proof of (1.13) we use the mapping torus Z,, which is given by
the push out in C

X —2—7Z,,

(1.20) i push ]\i

XvX— Y
VA e

Here X is a based object. Clearly, if f and g are based then Z, , is based.
The inclusion i also called the ‘homotopy equalizer’ of f and g since clearly

if ~ig.
(1.21) Lemma. Assume f and g are based maps. Then Z; , is embedded in the
cofiber sequence of based maps

@ Y>—2,,—>IX Y EZ, o

B
Moreover, the diagram
C, —— C,vzY
1
X 2 L 3xvzy
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with if= —i,(Zf)+i, +i,(Xg) commutes in Ho(C). Here u is the coaction in
(11.8.7). Also the following diagram commutes in Ho(C)

X " X vIX
2
() ZqI 11 v Z(if)

X2, ——IX vIZ,,

Here we set ji= — i, +i,(Xq)+ i, and we define 1, by the universal example of
the coaction in (11.7.11).

By (a) in the lemma we have the exact sequence of groups
22X, U]l—>[2Z,,, U]l —>[ZY, U]

(Zg)* (Zi*

Here the image of (£/)* is the group G = kernel (— Z f + £ g)* and the kernel
of (Zi)* is the abelian group M =image (Z¢q)* = cokernel (—Z2f + X2 g)*.
Hence we have the extension

0-M-[ZZ,,U]->G-0.

The associated action of G on M, see (1.14), is computed in (1.21) (c); namely,
for £eG < [T Y, U] and for [a]leM with ae[Z2X U] we have

(1.22) [a]f = [a®*¢] = [a®9*]
where we use the action of [EX, U] on [£? X, U] defined by p,, u¥(a,n) = a".

Proof of (1.21). Clearly, Z, ,/Y = £X by (1.20). On the other hand we obtain
an isomorphism in Ho(C)

FEX-C=Z,,l)CY (1)
Y

by track addition
g=—-Cf+n+Cg (2

where 7 is the track in (1.20). Now (b) follows immediately from (2) since u
in (b) as well is defined by track addition. Clearly (b) implies that — X f + Zg
is part the cofiber sequence in (a). Next we prove (c). For g in (b) we obtain
the principal cofibration Cj and the homotopy push out

txvzy-® sy

I Tzl' 3)

Ch ——XZy,

This is clear by the cofiber sequence (a) since (0,1), 4= — X f + £g. We have
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the homotopy

0_,-1:1*():)(\,zy)_,)ZZXv):Z,,g} 4

0 —i1:i5(Zi)(0, 1) = i, (Zi)(0, 1)

Which is obtained from the trivial homotopy o by adding —i, with
i 22X cX2X vIZ, , see (11.13.9). We observe that the difference

du,0— i, we[Z*X,Z* X vZZ, ], (%)
see (I1.8.13), represents i in (c), that is,
ﬁ = (Z q)*d(u’ 0 — il s u)' (6)

For this we use the canonical homotopy (0, 1)ig ~(— X f + £g)q ~0. Now
the proposition in (c) is a consequence of (I1.13.9) and (I1.11.13). We leave
the details as an exercise. 0O

(1.23) Proof of (1.13), (1.15), and (1.18). Let W = V ,A4,, be the coproduct of
all objects A4,,, m = 0. This coproduct exists by (1.6). Let f be the identity of
W and let g be the map

g

W= V A, V Ay =W

mz —1

with g=V i, iy A > A,+ 1. The double mapping cylinder Z, , is
called the telescope for A. For Z, , we use the cylinder I W=V .., A,
on W. This shows that Z, , is the colimit of Z = {Z,} with

Z,=I, AL, A UL, A, U I, A,
Ao A1 Ay

We sketch the telescope of 4 by:

(1.24) LAy | LA, | LAy [~

0

Clearly, the obvious projection Z, — A4, is a weak equivalence. Therefore, by
(1.6) also h:limZ, = Z, , ~~1lim 4, = A, is a weak equivalence. We now can
use (1.21) for the group [ZA,,U]l=[ZZ,,,U]. This yields the result in
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(1.13). Moreover (1.15) is a consequence of (1.22). Finally we get (1.18) by
(11.8.27)(4). O

§2 The homotopy spectral sequence

We describe an ‘extended’ homotopy spectral sequence for a filtered object
in a cofibration category C which is based on the exact cofiber sequences in
C. This spectral sequence consists in dimension 1 of possibly non-abelian
groups, and in dimension 0 of pointed sets, acted on by the groups in
dimension 1. We discuss two versions of the spectral sequence, one for
homotopy groups and one¢ for homotopy groups of function spaces.

Case (A). Let C be a cofibration category with an initial object * and let
X ={X,} be a based object in Fil(C), * >— X > % Then we set for
nz0

(21) U,=(U™*0) andF,=(U"*-1,0)

sothatn,U,=[2'X,,U]and n, F,=[2"(X,/X,-;),U] are homotopy groups
in C.

Case (B). Let C be a cofibration category (which not necessarily has an initial
object) and let X = {X,} be an object in Fil(C) such thati: X, >— X, . isa
cofibration in C,n = 0. Moreover, let u,: X, » U be amap in C withu, , (i =u,,
hence u = {u,}: X - {U}. Then we set

(2.2) U,=U"% y) and F,=(U"*-14,)

so that n,U, and =, F, arec homotopy groups of function spaces in C.
In case (A) and in case (B) we can form the homotopy sequences

(23) "'_)TEZU"—I_’TEIF"_)TEIU";)TEI Un—l_)nOFn_’nOUn_)nOUn—l'

This is the cofiber sequence for X, >— X, in case (A), see (I11.8.25), and in
case (B) this is the exact sequence for homotopy groups of function spaces
given by the triple (X, X, _ ;, X,), see (I1.10.9). We have shown in Chapter 11
that the sequence (2.3) is exact in the following sense (this is true for case (A)
and case (B)):

(i) The last three objects are sets with base-point 0, all the others are groups,
and the image of n, U,_; lies in the center of n, F,,
(i) everywhere ‘kernel = image’, and
(iii) the sequence comes with a natural action, +, of 7; U, _; on nyF, such
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that n,U,_, - nyF, is given by a0 + a, and such that ‘elements of

noF, are in the same orbit if and only if they have the same image in

Mo Un"
From this it follows that one can form the rth derived homotopy sequence
(r=0)

ot UYL, > F, 5, UYL, -, UL,
S noFy >, UY - U,
Here we set
n,UP = image(n,U,,,—»n,U,) < n,U,,

kernel(n,F,— n,U,/n,UD)

F = .
action of kernel (n; ., U,., > 7m;,  U,_,_ )

i‘t'n

(for i >0 the group m;F'" is the cokernel of the boundary homomorphism
between the indicated kernels, for i = 0 the set no U, /n, U is the quotient of
sets). It is not hard to see that the derived homotopy sequences in (2.4) are also
exact in the above sense. This leads to the

(2.5) Definition of the homotopy spectral sequence {E;*{U,}}. Let Ei'=
- F'" Y fort2520, r=1 and let the differential d,.Ef’—»Ef*”*’“ be

the composite map
M FO Vo U™ Vo FUSY. [
This spectral sequence has the following properties:
(i) E}* is a group if t —s = 1, which is abelian if t — s = 2,
(i) E}' is a pointed set with basepoint 0ift —s=0,
(iii) the differential d,: E>* — ES*~'*"~1 is a homomorphism if t —s > 2, and
its image is a subgroup of the center if t — s = 2; moreover for t —s =1
st = E¥*nkerneld,
’ E¥'nimaged,
(iv) there is an action, +, of E;™™""*! on the set E¥* such that d,:
Es~rs™r=1, E®% is given by d,(x) = 0 + x, and such that

E33 | < EXf/action of Ef 7™ 7"+1,

(2.6) Convergence for finite skeleta. Assume that X = X _, is a finite skeleton,
see (1.1). Then lim X = X = X, clearly exists. We have n;F,=0 for n> N,

i = 0. Therefore we get
E;}t+ 1= E;}l+2 == Ezbl- (1)
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(In case (B) we also have n,F,=0, this implies EY = E}',,.) We picture
the spectral sequence as follows.

'y

t—s=q-

abelian groups

groups

I I I R s

Elements in the column of degree s are represented by elements in 7, F. The
row of degree ¢ contributes towards the homotopy group

2 X_,U] for case (A
%Ua = {Ezq(qUXZ‘XO,:Lw) foil ca(se )(B) @
We now form the filtration quotients
Q,n, =image(n, U, - n,U,). 3)
This gives us the tower of groups (g = 1)
Ony > Qn—17g— - > QoTy 0. )
For X ,=Xyweget(gz1)
n, U, =Qyn,, and
E%3%5 =kernel (anans_lnq)}' )
We define a filtrationof n,U (g 2 1)
K, ,=kernel (n,U_,—=,U), } ©)
e S T A
The associated graded group of this filtration is by (5) the group
G=K,_ /K, ,=EJ" (7)

(2.7) Complete convergence. Let C be a cofibration category which satisfies the
continuity axioms (1.6). Then X, =lim{X,} is defined (provided X, is
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cofibrant in case (B)). Assume that for all s =0

(@) Lim}(ES**9) =0=Lim}!(ES**7+1)
then we have for g > 1
b) n, U = Limy(Q,n,) = Limy(n,U,),
E54%5 = kemnel(Q,m, — Q, - 17,),

where we define

(c) B =Lim,(E}") = [ E}".

rzs
Clearly, (a) is satisfied in the finite case by (v)(1); therefore (2.6)(5) is a special
case of (b). For a proof of (b) compare IX.5.4 in Bousfield—Kan. The Mittag-
Leffler convergence as well is available; for this we refer the reader to IX.5.51in
Bousfield—Kan.

(2.8) Naturality. A map g:U —» U’ in C and a map f:X"— X in Fil(C) (which
in case (A) is based) induce functions
9y EF{U,} > EX'{U,}, and
[RE U, > EX{U)
respectively. Here we have in case (A) resp. in case (B)
Uy =((UY",0) resp. = (U, gu,),
U/ =(U""™0) resp.= (U0 y, f,).
The functions g, f* are compatible with all the structure of the spectral

sequence described in (i)---(iv) above. This follows from the corresponding
naturality of the sequence (2.3), see (I1.8.25) and (I1.10.9).

(2.9) Invariance in case (A). The map g, in (2.8) depends only on the homotopy
class of g in Ho(C) Moreover,if f, f,:X” — X are maps which are k-homotopic
by a homotopy which is a based map (see (1.5)) than f* and f¥ coincide on
E}* for r>k. This follows by a diagram chase in the same way as the
corresponding result in (10.9) below. Further ‘invariance’ in case (A) and in
case (B) can be derived from (3.15) and (4.12) respectively where we compute
the E,-term.

(2.10) Naturality with respect to functors. Let a:C — K be a functor between
cofibration categories which carries weak equivalences to weak equivalences.

Case(A). Assume that o is based, ax=x*. For X ={X,} we choose
* > MaX 5 aX — * in Fil(K) and we define U, by MaX = B as in (1.17).
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The maps «; in (1.17) induce maps
a B ({U, 1) = EX'({UL}),

which are compatible with all the above structure (i)...(iv) of the spectral
sequence. In particular, d,o; = «, d,.

Case (B). For X = {X,} we choose * >— MaX = oX in Fil(C**°) and we
define U, by Ma X and by a(u,) asin (2.2). Then «;, is defined similarly asin case
(A) above.

(2.11) Naturality with respect to homotopies in case (B). Let u,u X ={X,} >
{U} be maps as in (2.2) and let Iy, X be a cylinder of {X,} >— X in Fil(C).
A homotopy H:u~u' rel Xo, H:Iy,X - {U}, induces maps

HY:E}'({U,}) > EX{UL}),

which are compatible with all the above structure (i) .. . (iv). Here Uy, is defined
by ' as in (2.2).

(2.12) Compatibility with suspension (case A). For the based object X in Fil(C)
we have the suspension X X which again is a based object in Fil (C). Therefore
the spectral sequence {E;*{UL}} is defined with

U = (US54 0).
We have for t —s> 1
E (U} = B3 YU, ).

Moreover, in the range where this equality holds the differentials coincide up
to sign.

(2.13) Compatibility with suspension (case B). For the filtered object X in
Fil(C) of case (B) we get the filtered object Zy X in Fil(C) which is the torus of
{X,} >— X. Now the spectral sequence {E3'{UZ%}} is defined with
UE = (UPX %o yp),
where 2y, X — X is the retraction. For t —s =1 one gets
B (U3} = B {U,),

and in the range where this equality holds the differentials coincide up to sign.
(2.14) Remark. Chapter IX of Bousfield-Kan deals with a special case of the

spectral sequence above. They consider the fibration category F of pointed
simplicial sets. A ‘tower of fibrations X in F’ in the sense of Bousfield—Kan is
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exactly a based object in Fil(F),. The dual homotopy spectral sequence (case
(A)) for X, with U = S = 0-sphere, in the speciral sequence of Bousfield—K an
for a tower of fibrations.

§3 Based complexes and cohomology

Let Cbe a cofibration category with aninitial object *. The following notion of
a complex is the generalization of a ‘CW-complex’ available in any cofibration
category.

(3.1) Definition. A complex X ={X,, f,} in Cis a filtered object {X,} in C for
which all maps X,_, >— X,(n = 1) are principal cofibrations (see (I1.8.3))
with attaching maps f,e[A4,.X,_;],n= 1. Here all 4, are based objects and
we assume that 4, is a suspension for n = 2. A; needs not to be a suspension.
We call X, the n-skeleton of X. Let Complex be the full subcategory Fil(C)
consisting of complexes. I

Remark. 1f X is acomplex, and if Y = X or X = Y are weak equivalences in
Fil(C), then Y is a complex the attaching maps of which are induced by those
of X. In particular, the fibrant model RX in Fil(C) is a complex.

(3.2) Warning. Ifwe have a complex X with X, = » then X, needs not to be the
suspension X 4., compare (IL.8.2).

(3.3) Definition. A complex X asin (3.1)is a based complex if X, = xand if X is
a based filtered object such that all attaching maps are based up to homotopy.
Let Complex, be the subcategory of Complex consisting of based complexes
and of maps F: X — Y for which each F,: X, — Y, is based up to homotopy.

I

(3.4) Example. Let X be a CW-complex with X°= . Then X ={X", f,} isa
complex in Top* with attaching maps f,e[4,, X"~ '] where
A,=VS§!
Z.

is a one point union of spheres with Z, = set of n-cells of X. In particular A4, is
not a suspension, the spaces A, (i > 1), however, are suspensions. Compare
(L5.7).

We now introduce the following commutative diagram of functors (which is
well known for CW-complexes):.
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Complex,,/ & X , Chain
(3.5 1,) lp
Complex,/~ —~— Chain/ ~

Here ~ is the equivalence relation on the category Complex, induced by k-
homotopies, see (1.5), and p is the quotient functor.

For the definition of Chain we use a subcategory K of Ho(C) on which the
suspension functor

(3.6 >:K-K
is well defined by (I1.9.8). Objects of K are based objects in C and morphisms in

K are maps f:4 — B which are based up to homotopy and for which 4 is a
suspension if B # *.

(3.7) Definition. A chain complex A = {A,,d;} is a sequence of maps d;: 4, -
Y A;_,(eZ)inK with(Zd;_,)d; = 0. Actually, we require the slightly stronger
condition

d¥(i, +i(Zdi_ 1)) =d¥(i))e[A, 24, v ZZA;'—Z]' 1

A chain map f:4—B is a sequence of maps f;:4;— B; in K such that
(Xf;_1)d;=d,f;. Two chain maps f,g:4— B are homotopic if there exist
elements «,€[XB,_-,,A,]o, #€Z, such that in the abelian group [ZB,_,,
2 A,-,]o we have the equation

(Zgn—l)_(zfn—l)=(Zan‘l)(2dn—l)+dnan’ (2)
2
A" d" VZA,,_I———ZETDZ AH—Z
4
V\ y\ 3
N\ N
N\ N,
f, o f AN £/
n AN n— N n— n—
& 1 Loy 2 3)
9n AN 29,1 AN g, s .
\ AN
\\\ \\
B, — 3B, 38 _,

n n—1

We call a: f ~¢g a chain homotopy. One readily verifies that homotopy is a
natural equivalence relation on the category Chain of chain maps. I

For the definition of the functor K in (3.5) we use a slight
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(3.8) Generalization of the cofiber sequence. Consider a map f:A=%XA4'>B
which is based up to homotopy and suppose B = C, is a based pair. Then
there is a unique equivalence

$4~C,/B (1)

in Ho(C) which is a quotient map of n,:(CA, A)—(C, B) and which is based
up to homotopy. Moreover, for the cofiber sequence of B < C, we obtain
the commutative diagram in Ho(C)

M,

B>—>Cf—q—>Cf/B—>ZB

and thus (£f)g =0. This follows from (I1.9.9). Next let g: X =X X' — Y and
let (C,, Y) be a based pair. A pair map F:(C,, B)—(C,, Y) for which C,—C,
is based up to homotopy yields a unique quotient map

F:£A~C,/B—C,Y ~XX, 3)
which is based up to homotopy.

Proof of (3). Let F be any quotient map of F (see (I1.9.4). Then we know
0,Fq=0,4F = 0,F =0. Therefore by (2) there is fe[£B,*] with O,F =
B(Zf). Now F = F* is a quotient map which is based up to homotopy. []

We now define K in (3.5). A based complex X ={X,, f,} yields by (3.8)
the composite map (neZ)
(39) dn+1:An+1 T_>Xn_)Xn/Xn—1~2An
n+1 q

where we set 4, =+ = X, for i £0. The boundary map d,,, of X satisfies
(£d,)d, , , =0 since (£ f,)q =0 by (3.8). This shows that k(X)={4,,d,} is a
chain complex C. We leave it as an exercise to check condition (1) in (3.7)
for k(X). Now let K in (3.5) be given by

(3.10) K(X)={ZA4,,2d,} = Zk(X).

For F:X —>Y in Complex, the induced map KF:KX —»KY in Chain is
obtained by (3.8) (3):

B,—-Y,_, Y, Y,/Y,_, ~ B,

\IFn—l an (KF).[

X, X,/X,_, ~XA,
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By naturality of the cofiber sequence we see that KF is a map in Chain so
that K is a well-defined functor. In general (KF), is not desuspendable.

(3.11) Lemma. K induces a well-defined functor on homotopy categories (see

(3.5)), that is: F ~G = KF ~ KG.

Proof. For the complex Y we choose a cylinder I, Y = {I, Y, } in Fil(C). This
cylinder yields the complex ZY = {(ZY),, W, } with (ZY),=Y,u1,Y,_ LY,
and with attaching maps
W,:B,v EB,_; v B,~(ZY),_,,
{Wn = ({09 Wgn_l’ilgn)’ }
compare (I1.13.5). ZY is a based complex since Y is based. A 1-homotopy

(1)

H:F ~ G is a map H:ZY - X in Fil(C). Moreover, H,:(ZY),— X, is based
up to homotopy since F, and G, are based up to homotopy. (This fact is one
of the reasons why we work with maps which are based up to homotopy.)
Since H is a map in Complex, we can apply the chain functor K to H.
We obtain the chain map KH:K(ZY)— K(X), as in (3.10). This chain map
gives us the commutative diagram

XB,vX?B, ,vIB, —— XA,

(KH),
liﬂn zd, . 2)
X?B,_,v B, ,vXI?B,_, ——X%4,_,
(KH)n—l

Here d,, is the boundary in K(ZY). We derive from the definition of W, in
(1) and (II.13.5)

(Zd,)|joZB, = jo(Zd,) 3)
(2d,)| j, £B, = j)(Zd,), (4)
(2d,)|Z2B,— = — jo — j(E?d, 1) + jy. ()

We denote by d, the boundary in K(Y). The maps j, and j, are the first and
the second inclusion of ZB or £2B respectively, j is the inclusion of £°B, _,.
Equation (5) follows from the definition of w, in (I1.8.11). On the other hand,
we have (KH),| j,XB,=(KF),, and (KH),|j; £B, =(KG),. We define a by
o, = (KH),|X?B, _,. The commutativity of (2) shows that «:KF ~ KG is a
homotopy in the sense of (3.7). Here we use (3), (4) and (5). This proves the
proposition. O

We use chain complexes for the definition of cohomology as follows: Let
U be a fibrant object in C and letA be a chain complex in C with boundary
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maps d,:A,—> Z A,. Then we get the induced maps (k = 1)

n-—1
6k+l

'5"
(3.12) [Z4*14,_,, U] —5 [24A4,, U] — [Z* 1 4,,,, U]

with 8f() = (Z*~'d,, ;)*(«). Thus &} is a homomorphism between abelian
groups for k=2. Since A satisfies (£d,_{)d,=0 we have &idi;1=0.
Moreover, by conditions (1) in (3.7) the abelian group image (65~ !) acts from
the right on the subset kernel (67) of [£A,, U] by addition in the group

[XA,,U]. This leads to the definition of cohomelogy (k = 1)

kernel(dF)

313 "(A4,U)= .
(3.13) Hi(4,U) action of image(d; ;1)

This is an abelian group for k = 2 and this is a set for k = 1. Moreover, the
cohomology H' (4, U) is an abelian group provided kernel (J7) is an abelian
subgroup of [£A4,,U]. For kK =0 we set

(3.14) H{(ZA,U)= Hi1,(4, V).

Here ¥4 ={ZA,,2d,} denotes the suspension of the chain complex A.
Clearly the cohomology is a functor on the category Chain®? x Ho(C).
Moreover, a chain homotopy f =~ g implies f* = g*; for this consider diagram
(3.7)(3). Hence H}(—, U) is a functor on Chain/~.

The crucial property of the cohomology above is the following result on
the homotopy spectral sequence (case (A)):

(3.15) Proposition. Let X be a based complex in C and let E}*{U,} be the
homotopy spectral sequence with U, =(U*'™,0), see (2.1). Then one has the
natural isomorphism

E3*"*{U,} = Hy(K(X),U)
for all s and q. Here K is the chain functor in (3.10) with K(X)=Zk(X). In

particular, E51** is an abelian group for ¢ =1 and 1-homotopic maps F ~G
on X induce F* = G* on E5%*~.

Proof of (3.15). We consider only the case ¢ = 0. Then we get the commutative
diagram

[ZzAs—l’U] [Xs+19 U]

[ Ne

[2X,-1, U] — —[24, U] —— [X,U] .

R

[ZXs—29 U] [As+1, U]
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The row and the columns of this diagram are exact cofiber sequences. The
definition in (2.5) yields

.o B'(image())
2 " action of a(kernel(i))

_ kernel(d¥, ,
" action of image(Zd,)*

O

(3.16) Example. Let X be a CW-complex with X° = * as in (3.4). Then we
have the cellular chain complex of X in Chain, with

C,X=H,(Xx" X" ")Yx=Pz 3]
Z’l
It is well known that for n = 1 the homotopy class of =d,,

dn=qfn:An_’Xn—1_’ZAn—1: (2)

can be identified with the boundary map 4,:C,X - C,_, X of the cellular
chain complex. Hence d¥:[Z**24,_,,U]—-[Z**'4,,U] is the same
as

0¥:Hom(C,_, X,m,.,,U)»Hom(C,X, =, ., U).

This shows forn+k=2and k=0

HY(KX;U) = H"(X, *;m, ., (U)). €)
The right-hand side is the singular cohomology of the pair (X, x). The spectral
sequence for X corresponds to the (unstable) Atiyah—Hirzebruch spectral
sequences, see Hilton (1971) for the stable version of this spectral sequence.

§4 Complexes and twisted cohomology
Let X be a class of complexes as defined in (3.1) and let Complex(¥) be the full
subcategory of Complex consisting of complexes in X. We assume that for each
X eX the colimit X, =1im {X,} with X, >— X exists and that lim yields a
functor

4.1) lim: Complex(X) —» Ho(C).

For example, if each complex in X is a finite skeleton then this functor exists.
On the other hand lim in (4.1) exists provided the cofibration category C
satisfies the continuity axiom (1.6) and each X in X is cofibrant.

We now introduce the commutative diagram of functors
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Complex (X)/ 2 _K Chain”

4.2) lp 11) ,

Complex (X)/ & —K—> Chain” / ~

where the equivalence relation £ is induced by k-homotopies, see (1.5), and
where p is the quotient functor. This diagram is the ‘twisted’ analogue of
diagram (3.5). We proceed in the same way asin § 3 and, in fact, we will see that
(4.2) can be considered as being a special case of diagram (3.5).

For the definition of the category Chain” we use categories Coef and Wedge:

(4.3) Definition of the coefficient category Coef. Objects are pairs (X, X)),
X, >—X,in C. We denote a pair X =(X, X,) by X if the choice of X, is clear
from the context. A morphism ¢:X = (X, X,)— Y = (Y, Y,) in Coef is a map
¢:X, - Y in Ho(C) for which there is a commutative diagram in Ho(C)

X —— ->Y
l / L
X5

Composition is defined by gy = @y, = @y. Occasionally also the map ¢, will
be denoted by ¢. (

Next we define the twisted analogue Wedge of the category K in (3.6). For
the category Wedge the partial suspension functor
(4.4) E:Wedge » Wedge

is well defined by (I1.11.8) and by (I1.11.16). An object in Wedge denoted by
A v X, is given by a based object A in C and by a pair X in Coef. A map
fO@:Av X—Bv Yin Wedge is a morphism ¢:X — Y in Coef together with
amap fe[A4,B v Y], for which there is a commutative diagram in Ho(C)

f

A—"—BvY

(1)

Here we assume that 4 = £ A4’ is a suspension if B # x. Composition is defined
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by the formula

(fOoNgOY) =(£,iy@)g O(ey). 2

The map iy:Y —» B v Y is the inclusion. We call f © ¢ a ¢-map in Wedge. We
also write f©® ¢ or more precisely f© ¢ for the map (f,iypAv X >Bv Yin
Ho(C). Moreover, the map f, in (1) occasionally is denoted by f. Finally, the
partial suspension functor E is given by

E(AVX_)=2AVX,}

(3)
E(fO9) =(Ef)Oo.
(4.5) Definition. A twisted chain complex K = {X, 4,,d,} is given by a pair
X =(X,X,) in Coef, by a sequence 4,, neZ, of based objects in C and by a
sequence of maps d,01:4,vX—->Z4,_,vX in Wedge such that
((Ed,_,)© 1)d, =0. Actually we require the slightly stronger condition
di((i, +iEd,_)O 1) =d¥i, O e[4,,(ZA4,-, vE*4, ) vX],. (1)
Here i, is the inclusion of £A,_,, and i, is the inclusion of £4,_, v X, into
TA,_,vZ24,_,v X. A twisted chain map or a ¢-chain map (¢, f):K'—
K(K'={Y,B,,d,}) is given by a map ¢:Y— X in Coef and by a sequence
f={f,} such that the following diagram commutes in Wedge
A, v X ———»d"ol A4,V X
f..O(ﬂ‘{ [Eﬁ.-low . (2)
B,vY —d’g—»‘ﬁBn_1 vY
Clearly composition of twisted chain maps is defined by composition in
Wedge. Two twisted chain maps (¢, f), (¥, g) from K’ to K are homotopic if
¢ =¥ and if there are elements a,e[ZB,_, 4, v X,], (neZ) such that in the
abelian group [£B,_,,4,_, v X], we have the equation:

(Egn—l)—(Efn—l)z(Ean—lQ(P)(Edn—l)_'_(dn@l)am (3)
A, v X +»ZA4,_  VX—————» 3?4, ,vX
4,01 Ed,., 01
‘\ ‘ ’\
\\\ \\ E2 e O
7.00 N Eg,-,10Q¢ \\\ EZ; ZOZ (4)
[O0 %4,0¢ NEfi-100 Ez, 09N\ "
\\\ \\
B,vY +3IB,_,vY———3B, _,vY

dﬂol " Edn-lol
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We call « = {a,}:(¢, f) ~ (¥, g) a twisted chain homotopy. It is easy to see that

this homotopy is a natural equivalence relation on the category Chain’ of

twisted chain maps. Hence the quotient category Chain”/~ is well defined.
We have the forgetful functor

¢:Chain" /~ — Coef, (5)

which carries the homotopy class of a ¢-chain map to ¢. We call ¢ the
coefficient functor. [l

We now define K in (4.2). A complex X = {X,fa}, XeX, yields the
composite map

4.6) Ao Ay, X 534 X, > T4,y X,

Here p=(i, +1i,) is the cooperation and f, is the attaching map of the
principal cofibration X,,_; >— X,. Weset 4; =« fori <0andd;=0fori < 1.
The boundary map d, , , satisfies

doi1=jifur1=JjVfus1) n21) (1)
where Vf, ., is the difference construction. We claim that
k(X) = {X o, 4,d,) )

is a well-defined twisted chain complex with trivial pair X =(X_, X )
We define the functor K in (4.2) by

K(X)={X, XA, Ed,} = Ek(X) (3)

For F :Y — X in Complex(¥) with F , = lim F the induced map KF:KY - KX
is the F -chain map given by the elements

(KF),=jy Vi, r,_ €[ZB, 24,V X ], )

where V¢ _r _ ,is defined by the pair map (F,, F,_1):(Y,, Y, ;) > (X, X,,_,) as
in (IL.12.6). The map j is defined as in (4.6).

(4.7) Lemma. The functor K is well defined and a 1-homotopy F iG yields a
twisted chain homotopy KF ~ KG.
This completes the definition of diagram (4.2).

Proof of (4.7). We consider the cofibration category B = C*= of objects in C
under X . The complex X in C gives us the based complex X = (X,, f,)in Bas
follows. Let

in=<Xoo>_.-—’XnUXoo7Xoo> (1)
iz Xo
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with p = (i, 1) and let the attaching map f,:4, v X, > X, {x, X » in Ho(B)
be given by f,=(i,f,.i,) where i;:X,_, >—X,_, (UxoX - Clearly, the
attaching map f, is based up to homotopy. Therefore X is a well defined based
complex in B for which kX is defined in (3.9). As in the proof of (I1.13.3) we see
that kX = kX. Hence kX is well defined, in particular, we have ((Ed,)® 1)d,,, ,
for d,., in (4.6).

Next we show that the functor K can be described in terms of the functor K
in (3.10). Let the map F:Y — X in Complex(X) be given as in (4.6) (4). We define
a complex Yy in B by

(YF)n=(Xoo>__>YnUXoo-p—)Xoo) (2)
Yo

where p = (iF,, 1). The attaching maps are §,:B, v X, — Y,_{ Jy, X, with
gn=(i19n, i). We obtain a map

F:Yp—»X by F,=F,uly_. 3)
This map is a based map between based complexes in B. Therefore we obtain
by (3.10) the map KF:K Yy — KX between chain complexes on B. This map
can be identified with the map KF. Compare (I1.12.9). Moreover, a 1-
homotopy F ~ G yields a 1-homotopy F 2 G in B and therefore by (3.11) we
get a chain homotopy KF ~ KG. This completes the proof of (4.7). O

Now we use twisted chain complexes for the definition of twisted
cohomology as follows: Let U be a fibrant object in Cand letu: X — (U, U) be a
map in Coef. For a twisted chain complex K = {X, 4,,d,} the boundary maps
d, induce coboundary functions

[Ek+1An—l9 U]l— [ZkAm Ul— [Ek_ 1An+15 U]
s+ &
with 8%(«) = (E*~'d, . ,)* (e, u). For k = 2 the coboundary &7 is a homomorph-
ism between abelian groups, see (I1.11.17). Since K satisfies ((Ed,-,;)© 1)d,=0
we get 0167+ 1 = 0. Moreover, by condition (1) in (4.5) the abelian group image
(6%~ 1) acts from the right on the subset kernel (§%) of [£4,, U] by addition in
the group [XA4,, U]. This leads to the definition of twisted cohomology, k = 1,

kernel (67)
4.8 WK, u)=— - .
“8) (KW action of image (577 1)

This is an abelian group for k =2 and this is a set for k = 1. Moreover, the
cohomology H' (K, u) is an abelian group provided kernel (8}) is an abelian
subgroup of [£A4,, U]. (This, for example, is the case if the attaching map f, isa
functional suspension, see (I1.11.7), n = 2.) For k =0 we set

4.9) H{(EK,u)=H} . (K, u).
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Here EK = {X,ZA,, Ed,} denotes the partial suspension of the twisted chain
complex K. A ¢-chain map f:K'— K induces a function (k = 1)

(4.10) SHHUK,u)—> Hy (K, up), f*{a} = {(E*f,)*(,u)}.
Here {a} denotes the cohomology class of xe[Z¥A,, U]. Moreover, a twisted

chain homotopy (¢, f) ~ (¥, g) implies f*=g*. A map g:U—-V in Ho(C)
induces the homomorphism

4.11) g, HyK,u)—> HY(K,gu), g,{o}={g.0}
The crucial property of the twisted cohomology above is the following result

on the homotopy spectral sequence (case (B)) which is the analogue of the
result in (3.15).

(4.12) Theorem. Let X be a complex inC, X€X, and let u:X — {U} be a map in
Fil(C) which yields u,:X, — U. Consider the homotopy spectral sequence
Ep*{U,} withU,=( U* %o y), see (2.2). Then one has the natural isomorphism

Ey**5{U,} = H{(K(X),u,,)

Sor all s and q. Here K is the twisted chain functor in (4.6)(3) with K(X)= EK(X).
In particular, ES%** is an abelian group for ¢ = 1 and 1-homotopic maps F A6
on X induce F* = G* on E5*~,

Proof. The proof of (4.12) is similar to the one in (3.15); the crucial point is the
commutativity of diagram (I1.13.2). One can also use the construction in the
proof of (4.7) so that (4.12) can be considered as being a special case of (3.15).

O

(4.13) Corollary. For maps u,v:X , — U withu ~vrel X, the groups EP(X,u)
and E24(X,v) (r Z 2) are canonically isomorphic. Thus EP9(X, u) is well defined
for ue[X ,, UT*.

Proof. Let H:u~v be a homotopy rel X,. By (2.10) we obtain the
isomorphism H* of spectral sequences. Since the E,-term depends only on the
homotopy class of u = u, see (4.12), the result follows. O

On the other hand a homotopy H:u=~v rel X, induces a map H* on
homotopy groups of function spaces
H*:m (U0, u) > (U ¥ =0, p),
which actually depends on the choice of the track class of H. For example, for

g=1 and for a self homotopy H:u=~u rel X, the map H* is an inner
automorphism of the group, see (I1.5.15). This fact yields the following resuit:
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(4.14) Corollary. Assume the complex X, < --- € Xy = X is of finite length and
let u: X = U be a map where U is fibrant. Then the group ,(U*'*°, u)is nilpotent.
In fact, all iterated commutators of N + 1 elements are trivial.

Proof. Weidentify Hen,(U*"°, ) with a self-homotopy H:u ~ urel X,,. Then
H* is the inner automorphism on n,(U**°,u) by H, see (I1.5.15). Since H*
induces the identity on the associated graded group G™?in (2.6) (7) we obtain
the result by the following remark. Od

(4.15) Remark. Assume the group = acts on the group G via automorphisms.
The action is nilpotent iff there are subgroups (N < oo):

0=Kyc--cK,cK, jc-cKy=G

with the following properties: For all p the group K ,isnormalin K, _; and the
quotient group K,/K,_ is abelian. Moreover, K, is m-invariant and the n-
action induced on K,/K,_, is trivial. The group G is nilpotent if the action
of 1= G on G via inner automorphisms is nilpotent.

More generally than (4.14) we have

(4.16) Corollary. Assume the complex X, < --- = Xy = X is of finite length and
let u:X — U be a map into a fibrant object U. Then the group action (defined by
(IL5.16)) of m,(U*¥ 0, u) on nq(UX'XO, u) is nilpotent (g = 1).

This is proved by (4.13) in the same way as (4.14). By choosing for u the trivial
map u =0 we obtain the following special case of (4.16):

(4.17) Corollary. Assume * c X, c --- <« Xy =X is a based complex of finite
length (N < 00). Then the group nf(U) is nilpotent, in fact all iterated
commutators of N + 1 elements are trivial. Moreover, the action of ni(U) on
nX(U) is nilpotent for q 2 1, see (11.6.13).

Remark. Fora CW-complex X with X, = *and X = X it is a classical result
of G.W. Whitehead that the group [XX, U] is nilpotent. It is surprising that
this fact by (4.17) is available in any cofibration category.

Finally, we point out that the homotopy spectral sequence in (4.12) is an
important tool for the

(4.18) Computation of isotropy groups. Let Xoc X, c---cXy=X be a
complex with attaching maps f,e[A4,, X,-,;]andletu:Xy— U beamapinC.
Then the action in (I1.8.8) gives us the action

[Xy, UL x [EAy, U5 [Xy, UT. (1)
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The isotropy group of this action in {u}e[ Xy, U]** is the subgroup

In({u}) = {ae[ZAy, UL:{u} + a = {u}}. 2
From (2.6) we derive that the sequence (N = 1)
0 Iy({u}) € [ZAy, Ul— ENN 0 3)

is a short exact sequence of groups. Here EN" is given by the spectral sequence
EX{U,} with U,=(U""¥,u,), n<N. For N=1 the exact sequence in (3)
coincides with (11.8.9) since p is a bijection in this case.

§5 Cohomology with local coefficients of CW-complexes

We show that cohomology with local coefficients of a CW-complex is a special
case of twisted cohomology as defined in section §4.

First we fix some notation on group rings. The fundamental group = =
(n,(X), +, —,0) will usually be written additively. The group ring Z[x] is the
free abelian group generated by the set of elements [a], aen. A typical element
is .1, [2]€Z[n] where only a finite number of elements n,eZ, a€n, is non-
trivial. The multiplication of the ring Z[ =] is defined by the group structure +
in 7, namely (Z,n,[a])(Zymu[B]) = Z, gn,my[a + 1. We have the augment-
atione: Z[n] - Z, (X n,[a]) =X n,. 1 =[0]istheunitin Z[n] and ¢is the ring
homomorphism with e[a] =1 for aen. A homomorphism ¢:n — G between
groups induces the ring homomorphism ¢,:Z[n] - Z[G] with ¢, [«] = [a].
We shall use modules, M = (n, M), over the group ring Z[n] which are also
called m-modules. If not otherwise stated these are right n-modules. The action
of aen on xeM is denoted by x-a or by x*

(5.1) Definition. Let Mod; be the following category. Objects are modules
(n, M) over group rings and morphisms are pairs (¢, F):(r, M) - (G, N) where
¢@:n— G is a homomorphism between groups and where F:M - N is a ¢-
equivariant homomorphism, that is, F(x-a) = F(x) ¢(«). The homomorphism
¢ induces on N the structure of a right Z[r]-module by setting x-a = x*(¢a)
for xeN, aen. We denote this Z[n]-module by ¢*N. Then

Hom (M, N)=Homy (M, p*N)

is the abelian group of all p-equivariant maps from M to N. Similarly, we
define the category Chain; of chain complexes over group rings. Objects are
pairs (n, C) where C is a Z[n]-chain complex, see (1.6.1). Morphisms are pairs
(@, F):(n,C) > (G, K) where F:C — K is a @-equivariant chain map. Two such
maps are homotopic, (¢, F) ~ (, G), if ¢ = and if there exists a p-equivariant
map a:C - K of degree + 1 withda +ad= —F + G. I
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We define homology and cohomology for objects in Chain,.

(5.2) Definition. Let T be a left Z[n]-module. Then the tensor product
C &)yl is a chain complex of abelian groups the homology of which is
denoted by

ﬁ*(c,r)=H*<c®r>. (1)
Z[n]
Nextlet I be aright Z[n]-module. Then Hom,,,(C, ') is a cochain complex of
abelian groups with cohomeology groups

H*(C,T) = H*(Hom,4(C,T)). 2
A map (¢, F) in Chain; induces homomorphisms

Fy=(F® 1)y H,(C.0* 1)~ H,(K.T)
F*=Hom (F, 1p), :H*(K,T)—» H*(C,*I) |’

These maps depend only on the homotopy class of the chain map F. I

3)

Let C=Top* be the cofibration category of topological spaces with
basepoint, see (11.5.4). Let (X, D) be a relative CW-complex as defined in (I1.5.7)
with skeleta X" and *eD. We assume that D is path connected and that D = X°
so that X is path connected too. It is easy to see that X is a complex in C in the
sense of (3.1) with skeleta X" and with attaching maps (n = 1)

(5.3) f: VS 1=A4,-X""'in Ho(C).

Zn
Here Z,, is the set of n-cells in X — D. Now let X be a class of such relative CW-
complexes in C. We assume that for each X € X the universal covering X exists.
Let

(5.4) pX-X

be the covering projection. We fix for each XeX a basepoint *xeX with
p(*)=x. For each map F:Y — X in Complex(X) there is a unique basepoint
preserving map F:Y — X with pF = Fp. Here we use the assumption that Y
and X are path connected. By covering transformations the fundamental
group 7,(X) acts from the right on X

(5.5) X x71,(X)— X, (x,0)— X-a,

and F is a p-equivariant map, that is, F(x-o)=F (x)-@(x) where ¢ =
7, (F):m,(Y) > 7, (X). We define the relative n-skeleton X" of X by X"=
p~1(X™). Next we define the functor

(5.6) C,:Complex(¥) — Chain;
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which carries the relative CW-complex (X, D) to the relative cellular chain
complex C, X = C,(X, D) of the universal covering of X. Let (neZ2)
C(X) = C,(X, D)= H (X", X" 1) (1)

be the relative singular homology of the pair of skeleta (X", X"~ 1). By covering
transformations this is a =m-module. The boundary map d,:C,(X)—

~

C,-(X) is given by the composition
dy H (X% XY S H, (R0 Do H, (R4, X0, @

where j and ¢ are operators of the long exact homology sequences for pairs. A
map F:X - Y induces
C,F)=F,:C,x-C,Y. 3)

This is a @-equivariant chain map with ¢ = n,(F) as in (5.5).

(5.7) Remark. By definition in (I1.5.7) we know that X" — X"~ ! is a disjoint
union of open cells ¢" = D" — ¢D", namely
X' —-Xx"1'=)e )
ecZn
The subset p~'(e) of X for ecZ, is again a disjoint union of n-cells,
homeomorphic to e x n, © =n,(X). This shows that (f,,X is the firee Z[n]-
module generated by Z,,

C(X) = g)zw. )

Using (5.2) we get the following (relative) homology and cohomology groups
with local coefficients:

(58) { H,(X,D;T) = H,(C,(X,D)I),

H*(X,D;T)= H*(C,(X, D).

The groups (5.8) are also defined by (5.6)(1)(2) in case D = J is the empty

set; then we get H «X,T) and H*(X,T) respectively by (5.8) provided X is

path connected. There is a generalization of the cohomology (5.8) in the

non-path connected case by use of ‘local coefficient systems’, see Spanier.
The next result generalizes the well-known isomorphism in (3.16) (3).

(5.9) Theorem. For arelative CW-complex X = (X, D) as above (X e X) and for a
map u:X — U in Top* there is a natural isomorphism

Hy(KX,u) = H"(X, D; ¢*n, 4 (U))
with n=1, n+k=2. The left-hand side is the twisted cohomology in §4.
The right-hand side is the cohomology with local coefficients where
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o=mn,u):n,(X)=>n,(U) and where n,, (U) is a n,(U) module by (I1.6.13)
(A=S5°.

(5.10) Corollary. The E,-term of the homotopy spectral sequence for (U, u)
is given by the cohomology groups with local coefficients (t=?2)
ES' = H¥(X, D; ¢*n(U)), see (4.12).

The corollary is originally due to Federer in case the action of the
fundamental group =, U on n,(U) is trivial. Compare also Switzer (1981) and
Legrand.

Proof of (5.9) For a discrete set Z let £"Z* = V ,§" the corresponding one
point union of n-spheres. Let Z, be the set of n-cells of X" — X"~ ! and let Z, be
the set of n-cells of Y" — Y"~ !, Below we construct a canonical isomorphism ¢
for which the following two diagrams commute where F:Y - X is a map in
Complex(X), (k=2,n=1).

6n+1X = T Z* 2 v X),

a

l ltEk‘"dm@U*- 1)
X = m(EZ) v X),

oy

C,Y = n(TZ} v Y),
lﬁ* j(E""‘(KF),,OF)* . )
C.X £ n(Z; v X),

The right-hand side of these diagrams is given by the twisted chain functor KX
in §4. Now the proposition in (5.9) follows readily from (1), (2) and from the
definitions of cohomology in (5.8) and in (4.8). For 4,=X""1Z; we obtain t
by the following commutative diagram where k is the Hurewicz homomorph-
ism (n=2).

T,(ZA, v X" X") <——]§—~ T (Z4, Vv X"), ]i> (24, v X),
o *

;
n(ZA, v X", X" 1)

[1

ﬂn(X",X"_l)*pT*TCn(X", Xn—l) L)Hn(fn,x'\n—l)

I

(X"

3)

e
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Here his an isomorphism for n = 3, but the isomorphism 7 in (3) is well defined
by (3) also for n = 2. The case n =1 will be considered in (VI.1.20) (9) below.

Now let ¢, be the characteristic map of the cell eeZ,, c,en, (X", X"~ 1), and
let f, = dc, be the attaching map of e. Moreover, let 7,en,(XA4, v X), be given
by the inclusion S" = £ A4, associated to e. Then one can check

1) =1, for é=hp,'(c.). @
For eeZ,, , it is readily seen by the definition in (5.6)(2)
hpy Lj(fe) = dysn( &)

On the other hand, we derive from the definition of the difference construction
Vf, that

jl.u*j(fe) =j0(er)' (6)

Using (4), (5) and (6) we get
1, 1(8) = j(VI) =dps1°T. = (d s 1 O 1),7(8). (7
For the second equation compare (4.6) (1). This completes the proof that (1)

commutes for k=n>2. For k #n we use the result below on the partial
suspension E. In a similar way one can check that (2) commutes. O

In the next remark we describe some properties of CW-complexes which
are very special cases of the general suspension theorem (V.§ 7a). We leave it to
the reader to give a more direct proof.

(5.11) Remark. ForX"Z* = V ;8" leti,:S" =« £"Z* be the inclusion associated
to eeZ. Let X, Y be relative CW-complexes as in (5.3) above with attaching
map f=f,A4,=X""'Z > X,_,.

(a) The homomorphism
(my, Dyin(CA, v X" LA, v XT o (X™, X" 1)
is surjective for n =2 and is an isomorphism for n = 2, see (I1.11.6).
(b) The partial suspension
En,(ZZ*VvY),-n,,  (EZ"VvY),
is surjective for n =1 and is an isomorphism for n > 2.
(c) The inclusion Y* < Y of the k-skeleton induces a homomorphism
T(Z"Z* v YH), 5, (Z"Z* v Y),
(n = 1) which is surjective for k=1 and which is an isomorphism for
k=2
(d) For = =n,Y we have the isomorphism of z-modules (n = 2)

h@PZ[r]=n,(ZZ" v Y),
z
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which carries eeZ to the inclusion i, and which clearly satisfies
Ei,=i,.,. By (IL11.13) we see that the partial suspension E is a
homomorphism of z-modules.

§5a Appendix: admissible classes of complexes

The definition of an admissible class of complexes in a cofibration category is
motivated by the properties of CW-compliexes. In fact, the class X of CW-
complexes in (5.4) is an admissiblie class. In Chapter VII, § 3, §4 we wili describe
further exampies of admissibie classes of complexes.

Let (X, D) be a relative CW-complex (X €X) as in § 5 with attaching maps
fuiA,—X,-,=X""1. We derive from the properties of CW-complexes in
(5.11) that the differential d, in k(X) = {X ., 4,,d,} has afactorization as in the
following diagram:

d,
A2k
An——_’ zAn—lV)(n—1C2An—1V)(oo
!
(5a.1) > TA_ VX,
I
TA,-, v X,

Here d, is trivial on X, and the homotopy class of id, is well defined. This
diagram shows that the twisted cohomology H}(KX,u) in (5.9) actually
depends only on the restriction u; = u|X,. We derive from (5.11):

(52.2) Lemma. For a CW-complex X =(X,D) as above the twisted chain
complex k(X,2) = {(X,, X,), A,,d, ) is well defined by the maps id, in (5a.1). For
K(X,2) = Ek(X,2) we get the natural isomorphism
HYK(X, 00),u) = HYK(X,2),uy),

where u,:(X?, X1) = (U, U) is the map in Coef given by u and where K(X, o0) =
K(X) is the twisted chain complex in (5.9).

Clearly the homomorphism ¢ = 7,(x) in (5.9) as weli is determined by
u (X34 XYH->(U,U).

Now let C be a cofibration category with an initial object *. We characterize
classes of complexes in C which have the properties described in (5a.1) and
(5a.2) and we call such classes admissible classes of complexes.
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(5a.3) Definition. Let X be a complex and let A and B be based objects. We say
(A, B) is injective on X, if the inclusion X, = X y(N = 2) induces an injective
map

[4,Bv X,],~[4,Bv Xyl,.

We say that (A4, B) is surjective on X, if X, = Xy(N = 1) induces a surjective
map

[4,Bv X,],-[4,B Vv Xy],. I

(5a.4) Notation. For an element £€[A, B v X,], we frequently denote any
composition (1 v j)é:A—-Bv X,cBv X,,, n <m, as well by &. Here j is the
inclusion X, = X,,. We say that £ =& on X, if (1 vj)é =¢€[4,Bv X,],.

(5a.5) Definition. We say that X is an admissible class of complexes if for all X,
YeX with attaching maps A;,—»X,_, and B;—-Y,_,, respectively,
the following properties (a), (b) are satisfied.

(a) The pairs(B,.,,ZA4,),(£B,, X4,),and (£*B,_,,XA,) are injective on X,
and surjective on X, for n = 2.

(b) The pairs (A,+ 1 Z2Ay- 1), (Aus 1, Z4, v E24,_,), (EB,+,,E%4,), and
(2B,,X%A,) are injective on X, for n 2 2.

We also assume that XeX implies that each skeleton X, is a complex in
Xxnx=1. I

(5a.6) Example. 1t follows readily from (5.11) that the class X of relative CW-
complexes considered in § 5 is an admissible class of complexes in C = Top*.

Now let X be an admissible class of complexes as in (5a.5). Then we obtain
for each X €X a similar diagram as in (5a.1) (where actually X , is not needed
for the construction of d,). The conditions in (5a.5) are chosen essentially in
such a way that the following lemma holds:

(5a.7) Lemma. Let X(X €X) be a complex with attaching maps f,:A,— X, _,.
Then the twisted chain complex k(X,2) = {(X,, X ), A, d,} is well defined by
fid,=V{,, see (5a.1). Moreover, K(X,2) = EK(X,2) defines a functor as in (4.2)

K(—, 2); Complex(X)/ % — Chain"

which induces a functor
K(—,2):Complex(¥)/~ — Chain" /~.

Clearly, for the functor K(—, o0) = K in (4.2) theinclusion X, = X induces
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a natural map K(X,2) - K(X, o) which induces the isomorphism
(5a.8) Hy(K(X, o0),u) = HYK(X,2),u,)

as in (5a.2). We point out that for the definition of K(X,2) the existence of
X, =limX, is not needed.

§6 Eilenberg—Mac Lane spaces and cohomology
with local coefficients

Recall that an Eilenberg-Mac Lane space K(A4,n) is a CW-space with
basepoint together with an isomorphism

A r=n
0 r#n

Here A is a group which is abelian for n = 2 and =, is the rth homotopy group.
Such spaces exist and they are unique up to homotopy equivalence in Top. For
a CW-space X the loop space QX is a CW-space too, see Milnor 1959. Hence
QK(A4,n) is an Eilenberg—Mac Lane space with

(6.2) k:K(A,n— 1)~ QK(A, n).

Actually there is a unique homotopy equivalence k in Top* for which the
composite map A=mn, K(4,n—-1)->mn,_QK(4,n)=n,K(A,n)=A4, in-
duced by k, is the identity of A. Clearly, the loop space in (6.2) is the loop space
of a based object in the fibration category Top (1.5.2). For a CW-space U we
have the well-known natural isomorphism (n > 0, k = 0)

(63)  Thansn(U)=[U,QK(A,n+k]=[U,K(4,n)]=H"U,A).

Here the left-hand side is a homotopy group in the fibration category Top, see
(I1.14.3), and the right-hand side is the n-th singular cohomology group of U
with coefficients in the Z-module A. A similar result as in (6.3) is true for
cohomology with local coefficients as defined in § 5 above.

For this we consider the category Top,, of spaces over D which is a fibration
category by (I.5.2) and (I1.1.4). If D = * is a point we have Top,, = Top since * is
the final object of Top, the spaces with base point are the based objects in this
case. In general, a based object in Top,, is given by a fibration p:A —> D in Top
and by a section 0:D — A4, po = 1. For example, if F has a basepoint *, then

6.4) (D—F x D7D)

6.1 7, K (A4, n) ={

with i(d) = (*,d) is a based object in Top,,.

(6.5) Definition. Let *eD and let n = n,(D) be the fundamental group of the
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CW-space D. For a n-module A the (generalized) Eilenberg—Mac Lane space
L(A,n) in Topy, is a based object in Top,, with fiber K(4, n),

P
K(A,n) 5 L(A, m=2 D,

such that the action of n = (D) = n;L(4,n) on the group 4 ==n,(K(A4,n)) <
n,L(A4, n), given by (11.6.13), coincides with the n-module 4. I
Such objects L(A, n) always exist, compare for example 5.2.6 in Baues (1977),
and they are unique up to homotopy equivalence of based objects in Top,,. In
particular, we have as in (6.2) the homotopy equivalence in Top,,

(6.6) k:L(A,n—1)~QL(A, n),

which is a based map in Top,. Here QL(A4,n) is the loop space of a based
object in the fibration category Top,,. For n =1 we use (6.6) as a definition of
L(A4,0). On fibers the homotopy equivalence k is the homotopy equivalence
k in (6.2). By obstruction theory (see for example 5.2.4 in Baues (1977)) we
get the following result which generalizes (6.3).

(6.7) Proposition. Let o:X — D be an object in Top, where X and D are path
connected CW-spaces and let A be a n-module with n =m,D. Then there is a
natural isomorphism of abelion groups (k 2 0,neZ)

n’i(A,n+k)(X) = I:I"(X, o*A).

The left-hand side denotes a homotopy group in the fibration category Topy, see
(IL.14.3), the right-hand side is the cohomology with local coefficients which is
defined by (5.8). The my(x)-module o* 4 is induced by o, :71(X) - m;(D), see (5.1).

Now let p:U —» V be a fibration in Top between path connected CW-
spaces and let ¥V — D be amap. Then p = (U| V) is a fibration in Top, for which
the exact sequence (I1.14.5) is defined. The following result describes a well-
known example of this exact sequence.

(6.8) Theorem. Let Z, be the mapping cylinder of p in Top. Then we have for
B = L(A,n + k) the isomorphism of exact sequences

(V) —L ) —— UY)  — o) 2

Al Al Al A
d

%) 2 ) =2 Az, U) —— A7) 2

The local coefficients in the cohomology groups of the bottom row are determined
by the n-modul A as in (6.7).
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The theorem describes the well-known long exact cohomology sequence for
the pair (Z,, U), compare 5.2.4 in Baues (1977).

§7 Postnikov towers

We first dualize the notion of a complex in (3.1).

(7.1) Definition. The notion of a cocomplex in a fibration category is obtained
by dualizing the notion of a complex in a cofibration category. Thus a
cocomplex E = {E,} is a tower

Eoaw—E ««—Ejec— -

of principal fibrations in a fibration category with coattaching maps
(= classifying maps) E,_, — 4, where 4, is a based object (a loop object fO|I|'
nz2).

We now show that Postnikov towers yield important examples of
cocomplexes in topology. We recall from 5.3.1 in Baues (1977) the following
result on the Postnikov decomposition of a fibration.

(7.2) Theorem. Let p:E —> B be afibration in Top with fiber F and let E, F, and
B be path connected CW-spaces. Then there exist fibrations q, and maps h,
making the diagram of basepoint preserving maps

E°=B 4e¢——Flae—— ... 4e—— Fr1 “q_E"

commute, such that for n= 1.
(i) g, is a fibration with fiber K(n,F,n),

(i) h, is (n + 1)-connected, that is, h, induces isomorphisms of homotopy
groups n, for r <n and =, ((h,) is surjective.

For B = * we call the tower { E"} the Postnikov-decomposition of the space
E.In general the fibrations g,: E" —> E"~ ! are not principal fibrations in Top.
We can, however, apply the following result, see section 5.2 in Baues (1977).

(7.3) Proposition. Let p:E —>> B be a fibration in Top between path connected
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CW-spaces with fiber F = K(A, n) where A is abelian,n = 1. Let b:B— D be a
map, which induces a surjection b, :n(B) —» n,(D) = =, and for which kernel
(b,) acts trivially on A, see (11.5.20). Then A is a n-module and there exists a map
f:B—>L(A,n+ 1) in Topy, such that p:E —> B is a principal fibration in the
fibration category Top,, with classifying map f.

This result gives us many examples for the ‘warning’ in (I1.8.2). The
element f,
(7.4) fe[B,L(A,n+ 1)]p = H"*!(B,b*A4),
which is uniquely determined by the fibration p:E —> B in (7.3), is called the
(twisted) k-invariant of the fibration p. Recall that a path connected CW-space
F is nilpotent if 7, F acts nilpotently on =, F for n = 1, see (1.8.26). We say that
F is a simple space if =, F acts trivially on n,F, n = 1. Moreover, a fibration p:
E —» B with fiber F is simple if F is simple and if =, (B) acts trivially on =,(F),
n 2 1, via (11.5.20). The fibration p is nilpotent if F is nilpotent and if =, (E) acts
nilpotently on n,(F) = n,, (Z,, E) via (I1.7.10). We derive from (7.2) and (7.3).

(7.5) Lemma. Let p:E —>> B be a fibration with fiber F and let E, F, and B be
path connected CW-spaces.
(@) If p is a simple fibration, then {E"} in (1.2) is a cocomplex in Top.
(b) If F is a simple space, then {E"} in (1.2) is a cocomplex in Topg.
(¢} Ifpis anilpotent fibration, then each q,:E" - E"~ ', n 2 1,in(7.2) is a finite
cocomplex in Top, E"=E} —---—>Ey=E""', with classifying maps
E;— K(A}, n + 1) where A} is a subquotient of n,F with a trivial action
of n,(E).
(d) If F is a nilpotent space, then each q,:E"—>E""*, n2 1, in (1.2) is a finite
cocomplex in Topg, E"=Ey —---—>Ey=E""', with classifying maps
E;— L(A},n+ 1). Here A} is a subquotient of n, F with a trivial action
of ,(F) and hence with an induced action of mn,(B).

§8 Nilpotency of function spaces in topology
We consider the commutative diagram in Top

Y 2 E
2
. 7
1
8.1) I T i
where i is a cofibration and p is a fibration in Top with fiber F. Let
(82 Map (X, E); = {f€E*| fi=w, pf = v}
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be the space of all fillers for diagram (8.1). This is a subspace of the space of all
maps, EX = {f, f:E— X}, which has the compact open topology.

(8.3) Theorem. Each path component of the function space Map(X,E)} is a
nilpotent space provided (a) or (b) holds:

(@) (Y=X,>--- > Xy = X) is a finite complex in Top".

(b) (E=E,; —» ---—>» E, = B) is a finite cocomplex in Topg.

Clearly (a) is satisfied, if (X, Y) is a relative CW-complex for which X and Y
are path connected, €Y, and for which dim (X — Y) < o0, see (5.3). On the
other hand (b) is satisfied if E, F and B are path connected CW-spaces and if F
is a nilpotent space with only finitely many non-trivial homotopy groups, see
(7.4)(d). Moreover, we derive the following result.

(8.4) Corollary. Each path component of Map(X,E)} is a nilpotent space if
(X,Y) is a relative CW-complex with dim(X — Y) < oo and if F is nilpotent.

In this corollary Y is allowed to be the empty space, Y = ¢. We obtain (8.4)
since we can replace E —> B by an appropriate Postnikov section Ey — B,
so that we can apply (8.3). The result (8.4) corresponds to a theorem of Scheerer
(1980); for B = % the result was obtained by Sullivan (1977) and Hilton—
Mislin—Roitberg-Steiner. We give a new proof which is available in many
Quillen model categories and which is a simple application of (4.17).

For the proof of (8.3) we use the following lemma:

(8.5) Lemma. Let C be a model category with an initial object . Consider maps
0>—>X>—>C,—>»D

in C where X >— C; is a principal cofibration in C. Then X >—C, is a
principal cofibration in the cofibration category C$ of objects under Q and over
D. Here C$ has the external structure in (1.4a.5).

Proof. Let f:A— X be the attaching map where A is a based object in C. Let
B =C§. For the mapping cylinder Z, of f in C we obtain the following
commutative diagram in B:

OvA>—s9vecaL9 o

[ e |

Z, > ( ’

9>—> X >~ (¢, —D
since C,/CA =Z;/A = C,in C. Here the top row isa cylinder in B of the based
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object Q v A in B. Hence Z, >— C, is a principal cofibration in B which by
the diagram above is ‘equivalent’ to X >— C . Using the general notion of a
principal cofibration in (I1.8.3) we obtain the proposition in (8.5). O

Now it is easy to prove (8.3). We use the model category Top of Strgm., see
(1.2.10).

(8.6) Proof of (8.3). Choose a map ue Map (X, E)X. First we assume that (a) is

satisfied. In this case i;: X >— X UYX is a based complex in C =Top* of
finite length. Therefore by (8.5)

A=X>—-x{Jx Ly Lp ()
Y

is a based complex in C§ = C(v) of finite length. Moreover,

n,(Map(X, E)},u)=[Z"A, B], )
where B = (X 5 E £ B) is an object in C(v). Clearly the right-hand side of (2)
is defined in the cofibration category C(v). We can apply (8.3) and the

proposition follows immediately. If (b) is satisfied we have the dual argument
which yields the proof. 0

§9 Homotopy groups of function spaces in topology
We consider the homotopy groups
9.1 n, = n,(Map(X, E)g,u), n=1,
of the function space in (8.2) where we assume that all spaces in (8.1) are CW-
spaces and that X and E, F and B are path connected. It is enough to consider
the case where X is a CW-complex with trivial 0-skeleton X° = » and where Y
is a subcomplex of X. Hence we have the filtration of relative skeleta
(9.2) YcX,cX,ccX,c--cX
with X, = Yu X" where Y = X if x€Y, (or equivalently if Y # ¢%). On the
other hand we have the Postnikov tower
(9.3) Es .5E'"—s» ... —» E'— » E°=B,
by (7.2). By naturality of the function space (8.2) we derive from (9.2) and (9.3)
the following towers of Serre fibrations in Top with
94) M,=Map(X,,E)y and M?"=Map(X, E")},

Mo o o5 MPoSMPTLo o MO = «,

F if Y=¢

M_)_)Mp_)Mp—l_)M():{* lf Y#Q
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For the compositions u,: X, = X - E, u”: X < E — E?, we have the groups
9.5 (T4)p = o(Mp,up) and () =7, (MP,uP),

which are inverse systems by the towers in (9.4). Using (1.13) in the fibration
category of Serre fibrations, see (1.2.11) we obtain for n = 0 the exact sequences

0 - Lim'(x,. ,), - 1, ~ Lim(x,), > 0,
9.6)

0— Lim'(r,, )’ =7, > Lim(r,)? —O0.

(9.7) Remark. The exact sequences in (9.6) are isomorphic, that is, kernel
Y = kernely’. We leave the proof as an exercise.

Moreover, we have the following result for the homotopy spectral sequence
of Bousfield-Kan, see (2.13).

(9.8) Theorem.
(i) Let Y be path connected with x€Y. Then the homotopy spectral sequence
E}'=E}*{M,} satisfies
E3' = H(X, Y;u*n(F))
Jor t 2 2. For B = x the spectral sequence coincides with the one in (5.10).
(i) Let F be a simple space. Then the homotopy spectral sequence E™" =
Er™{MP} satisfies for m> 1
ET" = H*™ "X, Y;u*n,(F)).
(iii) If the assumptions in (i) and (ii) are satisfied we have an isomorphism of
spectral sequences
(Ei.ta dr) = (E:'E'l—ss Jr— 1)
forr=z2,t—sz 1.
Recall that we have an action of ,(E) on #,,(F) = n,, ((Z,, E) by (IL.7.10);
this yields an action of 7,(X) via u, :7,(X) — 7, (E) and hence the coefficients in

(i) and (ii) above are well defined. A proof of the theorem can be achieved
similarly as in (5.10), compare Baues (1977).

§10 The relative homotopy spectral sequence

We now describe an ‘extended’ spectral sequence for a filtered object in a
cofibration category C which relies on the exact sequence for relative
homotopy groups in (IL.§7). We therefore call this spectral sequence the
relative homotopy spectral sequence.
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Let U = {U"} be a cofibrant and fibrant object in Fil(C). If V is any filtered
object in C we can replace V by its model RM (V) which is cofibrant and fibrant
in Fil(C), see (IL§ 3). By (IL§ 7) we can form the exact homotopy sequences of
the pairs (U”, U"~!) where A is a based object in C

(10.1) e mA(U) Lrd(Un, U ) Saf(Ur ) S adun)
Laaur, Uy Sagur ) S rdun).

We have shown that the sequence (10.1) is exact in the following sense (see
IL§7):

(i) the last three objects are sets with basepoint 0, all the others are groups,
and the image of n4(U") lies in the center of n4(U", U™ 1),

(i) everywhere ‘kernel = image’, and

(iii) the sequence comes with a natural action, +,of n{(U") on the set
nd(U", U™~ 1) such that j:nd(U™) - nf(U", U™ ) is given by x+—0 + x,
and such that elements of n{{(U", U"~!) are in the same orbit if and only
if they have the same image in nd(U"" 1),

(iv) Moreover, the sequence comes with a natural action of n4(U”™!) on all
terms of the top row of (10.1) such that j, 4, i are equivariant; in addition
the action on =nf(U""!) is given by inner automorphisms, and
oAU, U™ ) ad(U"™ 1) is a crossed module.

The properties (i), (i1), and (iii) above correspond exactly to the properties (i),
(i), and (iii) respectively described in (2.3). We have, however, the fact that i in
(10.1) lowers the filtration degree while i in (2.3) raises the filtration degree. We
therefore define

1} (U™) —— 2} (U*) —— = (U™, U™)
(10.2) I [l I

Uy — U oy — i (F,

Now the bottom row is of the same type as in (2.3). As in (2.3) it follows from
(10.1) that one can form the rth derived homotopy sequences (r =0, —m =
n < 0). They are defined in the same way asin (2.4) by the identification in (10.2)
(10.3) o, U, o FO, o, U s UD,
->noFY, 5, UY, s, U, .

Here we set as in (2.4):

;U =image (z (U™ ") - = (U™)).

e kernel (nf, (U™, U™ - a(U™)/n,UT,)
" 7™ action of kernel (nf, (U™ Y xd, (U™ Y)Y
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One can check that the sequence (10.3) is again exact in the sense of (10.1)
(i),..., (iv). Next we obtain as in (2.5).

(10.4) Definition of the relative homotopy spectral sequence {E;*(4,U)}. Let
Es*=m,_ F'~Yfort=s<0,r21,andlet the differential d,: ES* —» ES*r**7 1
be the composition

7":t—sF.(sr_1)_’7.':t—sU.(sr_1)_>7.':t—s—11'7(sr+_r1)' ”
This spectral sequence has again all properties as in (2.5) (i), (ii), (iii), (iv). The
main difference is the fact that E3* above is defined for s < 0 while in (2.5) the
terms E3* are defined for s = 0.

(10.5) Convergence of the spectral sequence (10.4). Assume U = {U"} has the
property that the pairs (U"*!, U") ‘get higher and higher connected’, that is
(U, UM =0fori< N,where0 SN, < N, < ---withlim {N,} = co. Then
we can find for each ¢ =0 a bound r =r(q) < co such that

E,s_'q"'s = E;f‘_"l_';s = = Esozjq+s' (1)

We picture the spectral sequence as follows:

2

Cy
d,
s.q+s
E gz~ YAt ettty —gq=t—s
1 L
T
: r
: abelian groups
! 2
|
10
! S . B
|
: [ st _
T »
+1 s

The elements in the column of degree s < 0 are represented by elements in
nFo=nf, (U*"1,U™"). The row of degree q contributes towards the
homotopy group nf(U°). We define a filtration of n(U°)(q 2 1, s £ 0)

K, .= kernel (n}(U°%) - n (U ™"),
cK e cK_y K, =n(U°).

3)
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By the assumption above we get ﬂsg}KM =0 and the associated graded
group of this filtration is

G =Ky, 4K g=EJS"", “4)

Hence the spectral sequence converges to the homotopy groups n(U?) of the
initial term U° of the filtered object U.

(10.6) The crossed chain complex C,. The indicated diagonal C, in (10.5) (2),
given by g + s =0, with all differentials d, corresponds to the sequence

é é a,
s AU, U?) = af(U?, UY) — n (U (1)

with 8, = jo =d, for n= 3 and with 8, = 0. Clearly, 8,_,0, =0 for n = 3. We
call this sequence, together with the action of n{{(U"'), the crossed chain
complex C, = C4(U) where we set

(UL UY, nz22,

A —
C"'U)“{nf(ul) e )

The image of 9, is a normal subgroup and the group n = cokernel (¢, ) can be
identified with the image of n{{U") - n{U?) by exactness. Since J, is a crossed
module we see that kernel (d,) is abelian and a n-module. Moreover, the
boundaries d,, n = 4, and d5:745(U?, U?)— kernel (3,) are homomorphisms
between n-modules, see (I1.7.14), the action is induced by the action of n{(U1).
These properties show that C2(U) is a well defined crossed chain complex,
compare the definition in (VL.§ 1) below.

We obtain for n = 2 the homology of the crossed chain complex

HA(U) = H,CAU) = ke 8,/im 4, 3)
which is a 7-module. Clearly, we have the inclusion H4U)< E; 1'O(A, U), and
we have the equation of (U ")-modules

HAU)=E;"* Y%A, U) fornz3. 4)

In fact E¥' is a nf(U"')-module for s = 1 and t — s = ¢ = 2 and all differentials
are (U ')-equivariant; (the action of n{(U") is trivial if 4 is a suspension,
see (I1.6.14)).

(10.7) Whitehead’s certain exact sequence. Assume all terms of the spectral
sequence are trivial below the diagonal C, in (10.5)(2), that is, n{}(U", Ur =
0 for g <n. Then we get for g =1

TA(U) = lim i (U) = iU+ (1)
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and n(U?) —»> n(U) is surjective. In particular, the sequence
a
(U2 U') > af(U') - 7f(U) -0 )

is exact and hence kernel (8,) is a nf(U)-module. Moreover, for n= 2 also
HA(U) is a nd(U)-module; (the action is trivial if A is a suspension).
Next we define for g = 2

rA(U)=image (r) (U™ ") - (UY). 3)
This again is a n{(U)-module. Now one can form the long exact sequence of
nd(U)-modules:

oo L HAU) -5 T4U) 5 7d(U) -5 HAU)
2oTHU) -5 7f(U) S HAU) >0 (4)

Here i is induced by n(U%) -y (U) and j is induced by the commutative
diagram

i U) ———-L — - HAU)
AU —— kerd, (UL U, )
é Cq+1

T (UL U9)

We call j the generalized Hurewicz homomorphism. Moreover, we obtain the
secondary boundary operator b by the diagram

Hi (U) = —— =~~~ — — W)
Ker 9,4, = md, (UT, UT) — " n (U9, (6)

W

AU, U

where kernel ( j) = ['J(U). One can check that the exact sequence (4) essentially
is a special case of the first derived homotopy sequence in (10.3), (r = 1). For
this we use the identification (10.6) (4).

(10.8) Naturality. A based map f:A'— Ain Candamapg:U - U’ in Fil(C),,
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induce functions

SREY(4,U)- EX (A, U)
and

94 EP(A,U)> E(A4,U)
respectively. These maps f* and g, are compatible with all the structure of the
spectral sequences described above. This follows from the corresponding
naturality of the sequences (10.1), see (IL§ 7).

(10.9) Invariance. Letf, f,:A’ — A be based maps in C which are homotopic by a
based homotopy then f* = f¥. Moreover, if the maps g, g:U — U’ in Fil(C) are
k-homotopic (see (1.5)) then the induced maps g, g, coincide on E}* for r > k.

Proof of (10.9) The first part is clear. Now assume g, g’ are k-homotopic. We
consider the following commutative diagram in which all rows are exact
sequences:

+ + - - +
7[,-+1Um 1 —>ni+1(Um I’Um r)_)n,_Um r_>niUm 1

| I |

+ +
n,-+1U'"—l_—> T UmTY —— m (UL UM T’ nU" —— g, U

| | I |

m m+r+1 m+r+1 m m
T Um —— U T’HHJU TLUM —— m U
i

- Let xed™ " image(i,) with dx = i,%. Then a diagram chase shows xeimage
(7). Let x = i(X). The whole diagram is natural for g and for ¢'. Since g and ¢’
are k-homotopic we see

0, X = g,0,X = g, i, X = 0g . x.
Hence there is y with g, x = g,.x + jy. Since g and ¢’ are k-homotopic we know

10,94 = i,1,g,. This shows ji,(y) = 0. We choose z with i'(z) = i,(y). Then we get
guX =gx + j(y —i(z)) where
{ir(y —i@2)=i(y)—i(2)=0.
Hence {g,,x} and {g,x} coincide in E{ (4, U"). O

(10.10) Naturality with respect to functors. Let a:C— K be a functor between
cofibration categories which carries weak equivalences to weak equivalences
and assume that o is based, a(*) = *. For U in Fil(C),, we choose

RM(@U) in Fil(K),, 1)
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as in (I1.3.11). Moreover, for A we choose the based object
* > MoAd - a(A) > o) = *. (2)
Then o induces natural functions
o:EFA, U)— Ef(MaA, RMaU) 3)

which are compatible with all the structure of the spectral sequence described
above. This follows from (I1.7.21).

(10.11) Compatibility with suspension. We have the natural isomorphism

E3'*(4,U) = E}(Z4, U)

fort=zs=<0,r=1,t—s=1, and in this range all differentials of the spectral
sequence coincide up to a sign. The equation above is not compatible with the
action of 7(U'); this group acts on the right-hand side, yet the corresponding
action of 54(U*) on the left-hand side is trivial.

(10.12) Properties of the crossed chain complex. A based map f: A'—> A in C
and amap g:U - U’ in Fil(C),; induce homomorphisms f* and g, on C(U).
Moreover we obtain induced homomorphisms

f*:HAU)-> HY(U) and} M

9,:H(U)—> H{U')

which are compatible with the action of n#(U"'), that is f*(x*)=(f*x)'",
g,(x%) = (g,x)%. If f is homotopic to f, by a based homotopy then f* = 7
on CA(U) and on H{(U). Moreover, if g is 1-homotopic to g’ then we have
d,=¢g, on HXU). We have the following compatibility with
suspension
H{4(U)c H3*(s"'U) and 5
HAU)=HX* (s7'U) forn>3{ )
Here we define the object s~ ' U in Fil(C) by (s “'U)" = U"*! for n = 0. Finally
we remark that a functor o as in (10.10) yields the binatural homomorphisms
a:CAU)— CH*4RMaU) }

o: HA(U) - HM*4(RMaU) 3)

which are compatible with the action of #zf{U!), that is a(x%) = (ax)**, see
(I1.7.21)

(10.13) Properties of Whitehead’s certain exact sequence. Clearly, the sequence
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is natural with respect to a based map f: A’ — A and with respect to a map
g:U—- U’ in Fil(C).,. We get the commutative diagram (n = 2)

Hl\ (U) —— THU) —— n{(U) —— H;{(U)

Jg* lg* Jg* lg* (1

H4, (U) — THU) — 7(U) —— HNU")

If g is 1-homotopic to ¢’ then all homorphisms g, in (1) satisfy g, = g,,. Hence
Whitehead’s exact sequence is an invariant of the ‘1-homotopy type’ of U. We
obtain a similar diagram for f*. Clearly g, and f* are compatible with the
action of 7f(U), that is g,(x%) = (g,x)™* and f*(x*) = (f*x)/™. We have the
following compatibility with suspension where s~ !U is defined as in
(10.12).

o —— HIU)  ——THU)  ——adU) —— HHU)
[ [ I N
roo —— H3Y(s7'U) — T34 7' U) —— n3%(s~'U) — H34s'U)

(2)

Here the bottom row is defined since the assumption in (10.7) implies that
the spectral sequence EX*(£A, s~ 1U)is trivial below the diagonal. Diagram (2)
commutes up to a sign. The isomorphisms in (2) are not compatible with the
action of n4(U), see (10.11). Finally a functor o as in (10.10) yields the
commutative diagram

HYyw) — THw) —— rnlw) —— Hiw
la la la la (3)

HY:(U,) — T A(U,) — " 4(U,) —— H*4(U,)

where U,=RMua(U). Here we assume that the spectral sequence
Ei*(MaA,U),) is trivial below the diagonal so that the bottom row of (3) is
defined by (10.7). All homomorphisms « in (3) are natural in A and U and they
are compatible with the action of n{(U), that is a(x®) = (ax)*.

Remark: J.H.C. Whitehead (1950) introduced the certain exact sequence in
the cofibration category Top* for a CW-complex U with U® = . We study this
in more detail in the next section. It is an interesting fact that this exact sequence
is available in all cofibration categories for pairs (4, U) which satisfy the
assumption in (10.7). For example, in the cofibration category of chain
algebras we have this sequence as well (we will describe this in detail elsewhere,
compare also (IX.§1).
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§11 The relative homotopy spectral sequence for
CW-complexes

Let C = Top* be the cofibration category of topological spaces with basepoint.
In this category = is the final and the initial object. Therefore all maps between
cofibrant objects are based maps. We apply the results of § 10 to a relative CW-
complex U =(U,D) = {U"} with U°=D. Here D is a path connected CW-
space with xeD. We use the based object 4 = S° in Top* given by the O-sphere.
We first consider the crossed chain complex C3’(U, D) in (10.6) given by

(11.1) ooy (U3, U > 1,y(UR, UY) S, (UY).
As usual weset 3" = m,. We will use this crossed chain complex in Chapter VI.
It is a result of JH.C. Whitehead, that d in (11.1) is a free crossed module,

compare (VI.1.11). The projection p: U — U of the universal covering, see (5.4),
induces the isomorphism (n = 3)

(11.2) Cc3°(U, D)=

Compare (5.6)(1). This shows for D
H3}(U,D)=H,(U,
H3(U,D)c H,
Here we have H(U,D)=H,C(U,D
D =« is a point we get

(11.4) H(U,%)=H,U) forn=2, (D=U"=#%).

The cellular approximation theorem shows easely that the assumption in
(10.7) is satisfied, namely

(11.5) n(ULU 1) =0 forgq<n.

For the relative CW-complex U = (U, D) with relative skeleta D < U™ we
define forn =2

(11.6) I,(U,D)=T5{U"} = image (n,U"" ! - n,U").
By (11.5) and (10.7) (4) we get Whitehead’s exact sequence of 7,(U)-modules

(11.3)

«{(U,D;Z[n]), n=mn,U). In case

(11.7) oo Ly H,(0,D) 5 T5(U, D) -5 7,U - HS(U, D)

—T,(U,D)-n,U—-H5(U,D)-0
Here the homomorphism j for n = 4 is the composite map
jm(U) 2 1,(0) < Ho0) > H,(U, D),
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where /s the classical Hurewicz homomorphism. The exact sequence (11.7) is
an invariant of the homotopy type under D of the pair (U, D). This follows
again from the cellular approximation theorem.

In case D =  is a point the sequence (11.7) gives us the classical sequence of
JH.C. Whitehead (1950), I',U =T (U, %),

(11.8) LH,UST,USnU-5H,U-0-5m,UxH,U—0,

Here we have I',U = 0 since 7,(U") = 0 where U! is a one point union of 1-
spheres and hence a K(7, 1). This gives us the classical result of Hurewicz that
for a path connected space we have n,U=H,U and h:n,U— H,U is
surjective. More generally we have the classical Hurewicz

(11.9) Theorem. Assume m,(U) =0 for 1 <k <n so that U is (k — 1)-connected.
Then we have T'(U)=0 for 1 <k<n and therefore j:m,(U) ~H U) is an
isomorphism and j:m,, (U)—> H, , (O) is surjective.

We point out that the isomorphism (11.4) for n = 2 is a consequence of the
isomorphism in (11.8).

Finally, we consider the relative homotopy spectral sequence E:*(S°, U)
where U = (U, D) is a relative CW-complex with U° = D path connected. By
(11.5) this sequence is trivial below the diagonal C* in (10.5) (2). Therefore the
spectral sequence converges to 7, (D), compare (10.5). For r Z 2 the spectral
sequence is an invariant of the homotopy type of U under D. For D = * this is
exactly the ‘homotopy exact couple’ of Massey (1952), compare also Hu (1959),
p. 252.

(11.10) Remark. For a finite relative CW-complex (U, D) with U¥ = U the
spectral sequence E&'(S, U) can be considered as being a special case of the
spectral sequence of Bousfield—Kan (2.14) since we can choose a commutative
diagram in Top*

U ¢ U!' < -« ¢ U¥
Uy —>»> Uy, —> - —» U,
where the bottom row is a tower of fibrations in Top*. Then the exact

sequences in (2.3) correspond exactly to the exact sequences in (10.1) so that we
get

E3(S°,{U"}) = E}"*({U,})

for —N<sg0.
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Extensions, coverings, and
cohomology groups of a category

Here we describe general notions having to do with categories and
functors. These notions will be used frequently in the following chapters.
We introduce a detecting functor by combining the sufficiency and the
realizability conditions used by J.H.C. Whitehead. Examples in Chapter V
motivate the notion of an action of abelian groups on a category. We describe
various basic properties; linear extensions of categories are special cases of
such actions. We classify the equivalence classes of linear extensions by the
second cohomology of a small category. This generalizes the Hochschild—
Mitchell cohomology. Moreover, we show that the first cohomology classifies
linear coverings. The linear extensions and linear coverings lead to the notion
of an exact sequence for functors.

§1 Detecting functors
Let K be a category. For objects 4, B in K we denote by K(A4, B) the set of
morphisms 4 — B of K. Ob(K) denotes the class of objects in K. We write
AeK or AcOb(K) if 4 is an object in K.

Assume for all objects 4, B in K we have an equivalence relation ~ on
K(A,B). Then ~ is said to be a natural equivalence relation on K if for
morphisms

f a
A—3B=—C
g b
in K we have (f ~ g and a ~ b)=>af ~ bg. In this case we obtain the quotient
category K/~ which has the same objects as K and for which the set of
morphisms is

(1L.1) (K/~)(4, B)=K(4, B)/ ~.
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{f} denotes the equivalence class of f. Composition in K/~ is defined by
{a}{f} = {af }. Clearly, the identity of 4 in K/~ is {1,}. Each functor p:A—B
induces the natural equivalence relation ~ on A with

(1.2) a~b<pa=pb fora beA(4,B).

We call the corresponding quotient category pA = A/ ~ the image category of
p. The functor p induces the faithful functor i:pA — B, which is an inclusion
of categories if p is injective on classes of objects. We say p is a quotient
functor if i is an isomorphism of categories. Following J.H.C. Whitehead we
define the following conditions on a functor p:A - B:

(1.3) (a) Sufficiency: For objects 4,4 in A a morphism «:4— A’ is an
equivalence if and only if pa:p4—pA’ is an equivalence in B.
(b) Realizability: pA -B is an equivalence of categories. This is
equivalent to the following two conditions
(b1) Foreach object B in B there is an object A in A such that pA and B
are equivalent in B.
(b2) For objects A, A’ in A and for a morphism f:pA — pA’ in B there is
a morphism «:A — A" with pa = f.

Compare §14, theorem 17 in J.H.C. Whitehead (1950). For example, the
Whitehead theorem (1.5.9) yields the following well known properties of
homotopy groups n;(X) and of homology groups H(X) = H(X; Z) respectively.

1.4 Example

(A) The functor n,:Top, /=~ — Gr, which carries a pointed space X to the
graded group {n;X,i =1} satisfies the sufficiency condition on the full
subcategory of Top/ = consisting of path connected well pointed CW-
spaces.

(B) The functor H,:Top/ ~ — Ab, which carries a space X to the graded
abelian group {H,X,i = 0} satisfies the sufficiency condition on the full
subcategory of Top/ ~ consisting of simply connected CW-spaces.

Clearly the functors in (A) and (B) do not satisfy the realizability
condition.

(1.5) Definition. A functor p:A — Bis a detecting functor if p satisfies both the
sufficiency and the realizability conditions. |

The problem in many of J.H.C. Whitehead’s papers is the construction of
such detecting functors for homotopy categories of CW-complexes since this
yields the classification of homotopy types by the following obvious properties
of a detecting functor.
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A detecting functor p:A — B induces a 1-1 correspondence between equi-
valence classes of objects in A and equivalence classes of objects in B. On
morphism sets a detecting functor p induces a surjection p:A(A, A’) —»>
B(pA, pA’). The number of morphisms in B(pA4, pA’) can be much smaller than
the number of morphisms in A(A4, A’). Moreover, a detecting functor induces
the surjective homomorphism

(1.6) p:E,(A) —> Eg(pA)

of groups. Here E4(A) is the group of equivalences 4 = A in A. We also call
EA(A) = Aut,(A) the group of automorphisms of A. In fact, E,(A) is the
subset p~!Eg(pA) in A(A4, A) by sufficiency. An equivalence of categories is

a detecting functor. The composition of detecting functors A - B — C is again
a detecting functor. On the other hand:

(1.7) Lemma. If the composition qp: A— B —C is a detecting functor where p
is a quotient functor, then q and p are detecting functors.

§2 Group actions on categories

We say that D is a (natural) action of (abelian) groups on the category C if
for all objects A4, B in C we have an abelian group D(A4, B) and a group action

2.1 C(A, B) x D(4,B) = C(4,B), (f, )—f +a,

such that for (g, $)eC(B,C) x D(B, C) there exists 6eD(A,C) with (g + f)
(f + @) =(gf) + 4. This equation is the condition of ‘naturality’ for the action.
An action D on C yields the quotient functor p:C - C/D = C/~ where for
1, €C(A, B) the equivalence relation ~ (induced by D) is
(2.2) f~f<30aeD(A,B) with f'=f+a.
Clearly, this is a natural equivalence relation. The morphism set in C/D is
the set of orbits (C/D)(A4, B)= C(A, B)/~ = C(A, B)/D(A4, B). The isotropy
groups of the action are I, = {xeD(4, B):f + a =/} which depend only on
p(f) in C/D. The quotient group (D/I),, = D(A, B)/I; acts transitively and
effectively on the subset p~1pf of C(A, B). This leads to the following slightly
more general notation.

We say that D is a (natural) action on the functor p:C — B if for all objects
A,B in C and for all morphisms feB(pA, pB) with ¢ # p~!(f) = C(4, B) we
have an abelian group d;= D(f) together with a transitive action

(2.3) p ) x D)= p U (fi)— f +o.

We call C an extension of B by the action D if p satisfies in addition the



232 IV Extensions, coverings and cohomology groups

realizability condition (1.3)(b), (that is pC = B is an equivalence of categories).
Let I(f)=1,={aeD(f)| f + a =} be the isotropy group of the action (2.3).
We write (D/I); = D(f)/I(f). This group acts transitively and effectively on
p~(f). We say that the action D is effective if f + a = fimplies « = 0 for all fin
C, aeD,,. Each action D yields an effective action, D/I, by dividing out the
isotropy groups as above. Clearly, D in (2.1) give us an action on the functor
p:C— C/D by setting D;= D(A4, B).

(2.4) Definition. For an effective action D on p:C — B the formula

G+AS+0)=¢N+P, (b0 mmC (1)

defines the function

o, ,:D
We call (1) and the function @ the distributivity law of the action D. The
function @, ; depends on g and f while the group D, = D, depends only on

the morphism p(g) in B. For convenience we often write D, instead of D ;). The
distributivity law gives us the induced functions

F*:Dy— Dy f *B =, [(B,0)>(g + B)f =gf +*B,
and 3)
9Dy —Dyp, g0 =@, [(0,0)<>g(f +a)=9gf +g,0. [
One easily verifies the following equations
(@) id, =id,id* = id for the identity id,
(b) (hg),=h,g,:D;—>Dy,,,
(©) (gf)*=S*g*:Dy = Dy,
(d) hyf*=f*h,:D,— Dy,

2 X Poisy = Dpig - )

gy

For example (d) follows by hig+ pB)f =higf +f*P)=hgf+h, f*B=
(hg +h, B)f = hgf + f*h,B. The equations (a)---(d) above show that f +— D,
is a functor on the following category F(C).

(2.5) Definition. Let C be a category. Then the category of factorizations in C,
denoted by F(C), is given as follows. Objects in F(C) are morphisms in C.
Morphisms f — g in F(C) are pairs (a, ) for which

A 254

[\f Ig

B «—— B
B

commutes in C. Hence of B = ¢ is a factorization of g. Composition is defined

by (@, F)a f) = (&%, BF). I
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The effective action D on p:C — B in (2.3) gives us the functor
(2.6) D:F(C)— Set,

as well denoted by D, which carries the object f of F(C) to the abelian group
D, and which carries («, f):f = ¢ in F(C) to the induced function

Do, f) =0, f*:D;>D,pp=D,.
Clearly, D(x, 1) = a,, D(1, ) = B*.

(2.7) Definition. We define the mixed term A of an effective action D
on p:C— B by the formula

(a) Ag,f(ﬂ9 O() = (I)g,f(ﬂ9 O() _f*ﬂ - g*ot,
or equivalently by the distributivity law:
(b) g+ Bf+a)=gf +g,a+f*B+ A, (B, ).

Here A, ;isafunction A, ;:D ) X Dypy= Dy py With Ay (0,0) = A, ((8,0) =0.
The action D has a left distributivity law if the function A, , depends only
on(g,pf), thatis,if A, ,=A, , forall f, with pf, =pf. The action D has a
right distributivity law if A, , depends only on (pg, f). I

We mainly consider actions which have nice linear properties:

(2.8) Definition. An effective action D on p:C — B is quadratic if all induced
functions (feC{4, B), geC(B,C)) f*:D,»D,,,g9,:D;—D,, are homomor-
phisms of abelian groups and if D has a left and right distributivity law such
that the mixed term A:D, x D,— D, is bilinear. In this case we write the
mixed term in the form

A(B,0) = O

We say that a quadratic action with a trivial mixed term, A =0, is a linear
action. More generally, we call an action D on p:C — B quadratic (resp. linear)
if the associated effective action D/I is quadratic (resp. linear), see (2.3). ||

For a quadratic action the functor D in (2.6) gives us a functor D:F(C)— Ab
into the category of abelian groups, we call such a functor a natural system
of abelian groups on C. Moreover, we get the following properties of quadratic
actions. Let

A—B—>C—D

S g h
be morphisms in C. Moreover, let €D, feD, and yeD,,.
(2.9) Proposition:

@ g+PAf +a)=gf +g,0+f*B+ O,
) (f +)*B=f*F+BOa,
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(€) g+ Ba=g,x+BOa,

(d) h (O = PO,

(&) f*yOB=yO(f*B)
(f) G*1)Oa=7y0(g,%),

@ yOBOA)=r0OPHO

Thus the mixed term O is an associative bilinear pairing.

Proof of (2.9). (a), (b) and (c) correspond to (2.4). We derive from (2.4)(3)

h(f +0)*B=h(f*f+BOa)
f
(f +a*h B =f*hp + (h,)Ou

Thus (d) follows from linearity of h,. Similarly we obtain (e) by

B+ S*B=hf*B+yOS*B,
[
[ +y)B=*h,B+70OP).
We derive (f) from

GUf +)*y =(f +9)*g*y =f*g*y + (g*y) O«
l
@Gf +g,0)* =@f )7 + 7O gy)-

Moreover, we obtain (g) by:
(h+y)g+B)=hg+hB+g*y+70Op
Therefore

(h+1)i(g + Byx = (hg)y + (B B+g*y + 7O ) O
I

(h + V)*(g*a + ,8@0()= (h + y)*g*a + (h + ')))*,BQO(
=h, g, +704g,x+h (BO)+7O(BO).

Thus from (d) and (f) we derive (g) since © is bilinear. |
Let D be an effective action on p:C—B. For an object 4 in C and its
identity 1, we write

D,=D,,
(2.10) Ay=A,,,,:DyxDy— D, with
A+ +0)=1,+B+a+Aup, a)

This yields the exact sequence of groups, see (1.6),

0 — (D 4,°) = E(A4) = Eg(pA),
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where the group multiplication ° on D, is given by the formula
a°ﬁ=a+ﬁ+AA(a,ﬁ), (2)

and where the injective homomorphism 17 is defined by 1 *(«) =1, + &. The
zero element 0e D, is also the neutral element of the group (D,,°). If D is a
quadratic action we see by (2.9) that D, is equipped with an associative
Z-bilinear multiplication ©:D,x D - D, with A (o, B)=a O B.

(2.11) Proposition. Assume p:C-— B satisfies the realizability condition and
assume D is an action on p for which the induced functions are homomorphisms.
Then p is a detecting functor if and only if the mixed term satisfies the condition
that for all objects A in C and for all peD , there exists aeD , such that

o+ B+A4, f)=0=a+ f+ A B ). (*)

(2.12) Corollary. Assume p:C—B satisfies the realizability condition and
assume D is a quadratic action on p such that © on D, is nilpotent for all
objects A. Then p is a detecting functor.

Here we say © is nilpotent on D, if for all feD , there is an n such that
the n-fold product "= O --- OB =0 is trivial.
Proof of (2.12). p is a detecting functor iff for feD , there is xeD , with

a+pf+a@Opf=0=a+p+B0Ou
We take o= — B+ 07— . +(— 1)"BO" + --. 0

Proof of (2.11). We may assume that p is the identity on objects. If p is a
detecting functor we know that 1 + feC(A4, A) is an equivalence for all feD ,.
Thus there exists aeD , with

QI+l +p=14+a++Axp=1,
1+81+)=1+p+a+A,p0)=1

Therefore () is satisfied. Now assume (x). Then (1) shows that 1 + 8 is an
equivalence and thus (1 + B), is an isomorphism. We have to prove that each
‘realization’ of an equivalence in B is an equivalence in C. Let feB(4, B),
geB(B, A) be equivalences with

(1)

fi=1, gf=1, 2
and let pf = f, pg = g. We know by (2) that there are fe Dy and aeD , such that
fg=1+p gf=1+o. 3

We have to show that there exists 6eD, with
flg+9)=1, (g+d)f =1 4
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This is equivalent to

fid=—=B, f*=-ua (5)
Now (3) shows that f,g, =(1 + p), and g,f, =(1 +a), are isomorphisms.
Therefore f,:D,— Dy is surjective and f,:D,— D, is injective. Now let
de(f,)~(— P). Then ¢ satisfies (5) since we prove f*(8) = — a. In fact, by (3)
we get fgf =f +f*B=f +f, and thus f*f =f,a. Now (5) holds since f,
is injective and since

Lo f* @) =1*f.0)=f*(—PB)=fu(— ).

Here we use the assumption that f*, f, are homomorphisms. O

(2.13) Example. Any ring R yields a quadratic action on the functor R —
where * is the trivial category and where R is the category with a single object *
given by the multiplication R = R(*,*). The action is given by addition in R.

(2.14) Example. Let Gr be the category of groups and group homomorphisms
and let Ab < Gr be the full subcategory of abelian groups. Then the projection
functor

pr:C=Gr x Ab—>Gr
admits a quadratic action D as follows. For objects A4=(A4,,4,) and
B=(By,B,) in C the abelian group D(A4,B)=Hom(A4,,B,) acts on the
morphism set
C(4, B)= Hom (A4, B,) x Hom (4,, B,),
by the formula (f,9)+ g =(f,9+ ¢).

§3 Linear extensions of categories

Let C be a category. Recall that a natural system of abelian groups D
on C is a functor
3.1 D:F(C)—Ab, D(f)=Dy,,
from the category of factorization (2.5) to the category of abelian groups.
For example a bifunctor D:C°® x C—Ab yields a natural system by
D, =D(A4, B) for feC(A, B). Moreover, we write

D;=D(A,¢,B) (*)
provided a functor ¢: C — Coef is given such that D, = D, for all f,geC(4, B)
with ¢f = @ = ¢g. A functor p:C — B yields an obvious functor F(p): F(C) -
F(B). Therefore a natural system D on B gives us the natural system
p*D=DF(p) on C.
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(3.2) Definition. Let D be a natural system on the category B. We call
a category C a linear extension of B by D, and we write

D+ >—C—»B,

if the following properties are satisfied. The categories C and B have the
same classes of objects and p is a full functor which is the identity on objects.
For each morphism f: 4 —» Bin B the group D, acts transitively and effectively
on the subset p~*(f) of C(4, B); the action is denoted by f, + a for foep ™ 1(f)
and aeD,. Moreover, the linear distributivity law

(fo+a)(go + B)=Sogo + f4B +g*a
is satisfied, goep™'(g), BeD,, where the induced functions f, and g* are
given by the natural system D.

We call D+ >—C—25B a (weak) linear extension if pC - B is an
equivalence of categories and if D+ >—— C—pC is a linear extension as
above. I

Clearly, a linear action D on p:C—K as defined in (2.8) yields a linear
extension

(3.3) (D/I) + - C = pC,

where pC is the image category of p defined in (1.2) and where D/I is the
natural system on pC given as in (2.3). By (2.12) a linear extension as in
(3.2) satisfies the sufficiency condition (1.3)(a).

(3.4) Definition. Let D be a natural system of abelian groups on B. Wesay two
linear extensions p, g of B by D are equivalent if there is a commutative diagram

p

D+ — C —

By

D+ — C ——B
q

where ¢ is a D-equivariant isomorphism of categories. That is, ¢ induces for

all feB(A, B) the bijection &:p~*(f)~ ¢~ '(f) with the property
gf+o)=¢f) +a

for pf=f and a€D,. I

A linear extensions p is a split extension if there is a functor s:B— C for
which ps =1 is the identity functor on B.
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(3.5) Proposition. Let B be a category and let D be a natural system of groups
on B. Then there exists a split extension D + — B x D 5B of B by D (which
we call the semi direct product of B and D) and two split extensions of B by D are
equivalent.

Proof. We define K = B x D as follows: Objects of K are the objects of B. The
morphism sets of K are

K(4,B)= |J fxDy,
JeB(4.B)

and composition is defined by (g, B)(f, %) = (gf. g% +*B).

It is easily seen that K is a category and that the projection pr;:K—Bisa
split extension of B by D. We set s(f)=(f,0). If p:C—>B is a further
split extension of B by D with splitting s we obtain the equivariant
isomorphism B x D -5 C by &A4) =s(A) on objects and &(f, ) =s(f) +«
on morphisms. O

Next we show that linear extensions of categories correspond exactly to
extensions of groups:
(3.6) 0 —»D-5E-5SG—0,

where D is a G-module with x?=i"(gg 'i(x)gy) for goep™'(g). We call
h:G - Aut(D) with h(g™')(x)=x? the associated homomorphism of the
extension. Two extensions E,E’ as in (3.6) are equivalent if there is an
isomorphism ¢:E = E’ of groups with pe =p, ei = i.

(3.7) Example. Each extension of groups (3.6) yields a linear extension
of categories

D+ —E-5SG.
Here E is the category with one object * and with morphism set E(x, ) = E.
The functor p is given by p in (3.6). We define the action D + by D(g) = D for
geG(x,*) =G and
go + X =4goi(x)
for goep~(g9) and xeD. Thus we get
(go + X)(fo + ¥) =goilx)fo ily)
=gofo(fo'! i(x) fo)-i(y)
=gofo+ X +y=gofo +1*(X) + g,

The induced maps are f*(x) = x’ and g,(y) = y for x,yeD. I
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On the other hand, a linear extension D + — C 5B of the category B by
D gives us for each object 4 in B the extension of groups (see (2.10))

(3.8) 0—D, L E(4) L Ey(pA) — 1,

where E(A) is the group of self-equivalences of 4 in C. Here 1 *(@) =14+«
DA = DIA.

(3.9) Proposition. (3.8) is an extension of groups where D 4 is a right Ey(pA)-
module by x'= (g~ 1),g*(x) = g*(g ™ 1) ,(x).

Proof. p in (3.8) is surjective since p is a detecting functor. 1* is a
homomorphism since we have

l+@+f)=1+a+f=1+1*a+ 1,8
=(L+a)(1+f)=1* () 1* () *)
1* is injective and Im 1* =ker p since D, acts effectively and transitively
on p~!(1,). Moreover, we have

1*(x%) =g5 '1* ()90, goEP™'(9).
=go (1 +X)go
=14(971),9*x). 0

§4 Linear coverings of categories and exact
sequences for functors

The notion of a linear covering of a category arises naturally by the exact
sequences in towers of categories which play a central role in this book.

(4.1) Definition. Let C be a category and let H be a natural system of
abelian groups on C. We call L and the sequence

LLcSH

a linear covering of C by H if the following properties are satisfied:

L is a category and j is a full and faithful functor. (1

On classes of objects the functor j is surjective, j: Ob(L) —» Ob(C), and  (2)
for X€0b(C) the class j~!(X) of all objects X in L with j(X)=X is a

set. Moreover, the group H(l) (given by the natural system H) acts
transitively and effectively on the set j~!(X), we denote the action by

X + &gj7Y(X) for Xej™N(X), EeH(1y).
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For objects X,Y in L and for a morphism f:j(X)—j(Y) in C an

obstruction element Oy y(f)eH(f) is defind with the derivation property (3)

Ox,29f) =94 Ox (/) +/*Oy.2(9) (*)
for gf:j(X)—j(Y)—j(Z) in C and with
Dx+.§,y+n(f) = Dx,y(f) + (f*é = f*n) (%%)

for SeH(1;x)), neH(1 ;). [
A linear covering gives us the inclusion
(4.2) j~U:L¥ =kernel (D) < L.

The objects of LT are the same as those of L and the morphisms X — Y in L*
are all morphisms f:j(X)—j(Y) with O(f) = 0. We say that the linear covering
is split if there is a functor s:C — L such that the composite

(4.3) CSLcL-LC

is the identical functor on C.
(4.4) Definition. We say that linear coverings
L.LCSH and ' HCSH

of C by H are equivalent if there is a functor ¢:L— L’ with the following
properties

Jeo=j, (n
X + 8 =(pX)+¢, 2
Dx.y(f) = D:/)X,q)y(f)’ 3)

for objects X, Y in L and for a morphism f:j(X)—j(Y)in C. The right-hand
side of (2) and (3) is well defined since j(@X)=j(X) by (1). Clearly, ¢ 1s
actually an isomorphism of categories by (1), (2) and (4.1). I

(4.5) Proposition. Let C be a category and let H be a natural system on C.
Then there exists a split linear covering of C by H and two such split linear
coverings are equivalent.

Proof. We define the split linear covering Cq <5 C—H as follows: objects
of C, are pairs (X, ¢) with EeH(1y), XeOb(C). The action is defined by
(X, 8+ & =(X, &+ &). The morphisms (X, &) = (Y, ) in C, are the morphisms
X - Yin C. Weset j(X, &) = X and j is the identity on morphisms. Moreover,

D(X-é).(Y.n)(f) =f*é —f*n.
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For a split extension as in (4.3) we obtain ¢ by o(X,&) =s(X)+ ¢ and
o(f)=s(f). 0O

We now introduce the concept of an exact sequence for functors. Many
examples of such exact sequences are discussed in the Chapters VI, VII, VIII
and IX below. An exact sequence combines the notions of a linear extension
and of a linear covering.

Let 2:A — B be a functor. The image category JA is defined as a quotient
category of A, see (1.2). The objects of ZA are the same as in A. Moreover, we
define the reduced image category A(/) as follows: objects are the equivalence

classes in Ob(A)/ ~ where we set ~ = £ with

' Jequivalence f:X > Y in A
4.6 xiy
(46) Q{with JX=7Yand \f =1.

We denote by {X}* the equivalence class of X in Ob(A)/ ~. By (4.6) the
object X in B depends only on {X}* Morphisms {X}*—{Y}* in A(J) are
all morphisms F:2X — /Y in B which are realizable in A (that is, for F exists
f:X - Y with F = Jf). Clearly, one has the canonical functor

(4.7) e JA S A,

which is an equivalence of categories.

We also use the full image B, of / which is the full subcategory of B
consisting of objects 24, A€0b(A). Moreover the enlarged full image B(}) of
/. is the following category. Objects are the same as in A(Z), morphisms
{X}*—>{Y}* are all morphisms 2X — Y in B. Now we have the canonical
functor

(4.8) j:B()) —B,,

which is the identity on morphisms and which satisfies j{X}* = X on objects.
Thus j is full and faithful and j is surjective on classes of objects.
By (4.6) and (4.7) we get the following factorization of the functor /

(4.9) 1AL A S A() S B J,.B,-LB.

Here g is the quotient functor and i is the full inclusion. The functor k is the
identity on objects and is the inclusion on morphism sets.

(4.10) Definition. Let /:A—>B be a functor and let D and H be natural
systems (see (3.1)) of abelian groups on ZA and B, respectively. We call the
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sequence
D+ —>ASBLH
an exact sequence for 1 if the following properties are satisfies.

(a) The sequence D/I + —A % 1A is a linear extension of categories as in

(3.3), here I denotes the isotropy groups of the linear action D on A, see
(2.8).

(b) For all objects X, Y in A and morphisms f:4X — 1Y in B an obstruction
element Oy y(f)eH(f)is given such that Oy y(f) = 0if and only if there
isamorphism F:X — Yin A with AF = f. This is the obstruction property
of O.

(c) © has the derivation property

Ox,2(9f) = g4 Ox (/) + [*Oy z(g) for f:AX > 1Y, g:AY > AZ.

(d) For all objects X in A and for all xe H(1 ;) there is an object Y in A with
AY=1X and Oy ,(1)= «; we write X = Y + a in this case. This is the
transivity property of ©. From (c) we derive for 11X - 1Y

Oxtar+sf)=DOxy(f) + (feox — f*P), where ac H(1,x), fe H(1,y).

() Lemma. The properties (a), (b), (c), (d) above imply that
B() LB, > H

is a linear covering with B(A)® = A(A). Conversely, if such a linear covering
is given then (b), (¢) and (d) are satisfied. I

Proof. Assume first that a linear covering is given. Then we define

Ox.y(f) =Dy, a(f) (1)
Clearly, (b) holds by B(4)° = A(4), and (c) holds by (4.1)(3). Next we denote by
X + aanobjectin A with {X + a}* = {X}* + «, see (4.1)(2). Then, clearly, (d) is
satisfied by (4.1)(3).

Next assume that (a), (b), (c), and (d) are satisfied. The derivation property
(¢) and the obstruction property (b) imply that Oy y(f) depends only on
({X}4 {Y}4 f). In fact, for g: X’ — X with Ag =1 we get Oy. (1) =0 by the
obstruction property. Therefore the derivation property yields

Oy (fo1) = 1*Ox y(f) + 1 Ox x(1)
=DOx (/) @
Next we show that the equivalence class
XV +a={X+a}* (3)
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is well defined by {X}* and « and does not depend on the choice of X + a.
Let f:X = Y with Af = 1. Then Dy (1) =0 by (b) and therefore by (d)
DX+cz.Y+cz(1)=O(_O(=0' (4)

Hence there is f: X 4+ a— Y + a by (b) with Af = 1. By (2.12) and (a) we know
that f is an equivalence whence we get {X + a}*={Y + a}*. Moreover, (3)
defines an action of H(1,y) on the set {{Y}*:1Y = X} which is transitive
and effective (this completes the proof of the lemma). We first show that (3)
is an action. We have

Ox+ox(1)=Dxx(1)+0=0. (5)

Therefore there is anequivalence f : X + 0 => X with Af = 1, hence | X}* + 0=
{X}*. Moreover, we have
Ox+a+px+e+p1)=Oxiax(D)+ f~(a+ f)=0. (6)

This yields an equivalence f:(X + o) + f = X + (« + p) with Af =1, hence
({X}*+ o)+ B={X}*+ (« + B). The action is effective since {X}*={X}* +
a=1{X +a}* yields amap f:X > X + « with Af = 1. Hence 0 = Dy 4, ,(1)=
— a by (b)and (d). The action is transitive since for AY = AX we get a = Oy (1)
and

Dx,y+a(1)=Dx,y(1)—a=0 (7)

This yields f:X = Y + a with 1f =1 by (b) and (a), see (2.12). Therefore
(X} ={Y} +o O

(4.11) Proposition. The functor A in an exact sequence (4.10) satisfies the
sufficiency condition, see (1.3)(a). Moreover groups of automorphisms are
embedded in an exact sequence

D(1,4) 5 E,(A) 2 Ey(i4) S H(1 )

Here A is an object in A and A and 1*, 1% (a) = 1, + a, are homomorphisms
between groups (see (3.8)). The group H(1,,) is a right Eg(14)-module as in (3.9)
and O defined by O(f)=(f ~1),DO(f) is a derivation, see (7.1) below.

Proof. We show that © is actually a derivation as in (7.1).

O(f9=(g"'f "D (f9)
=9~ TS Dlg) + g*O(f))
=(g7.0(9) + (g™ )/ “1)g*O(f)
=O(9) + 9%~ ,0(/)
=3(f¥ + O(g)
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We have O(f)=0 if and only if O(f) =0 since (f '), is an isomorphism.
t
For a functor 1:A— B and for an object B in B we define the class of
realizations of B

Real (B) = Real;(B) = {(A4,b)|b:AA = B}/ ~.

Here we consider all pairs (A4, b) where A4 is an object in A and where b:14 — B
an isomorphism in the category B. We define an equivalence relation on
such pairs by

(A,b) ~(4',b)=>3g:A' >~ Ain A with A(g)=b"1b.

Let {4, b} be the equivalence class of (4, b) in Real (B).

(4.12) Proposition. Assume J is a functor in an exact sequence (4.10) and assume
{A,b}eReal;(B). Then the group H(1,,) acts transitively and effectively on
Real,(B). In particular Real, (B) is a set.

Proof. Clearly, A 4 A’ implies (4, b) ~ (4, b). Whence we have the function
M ={{A'}*:1A' = 1A} - Real (B) (1)

which carries {A'}* to {4’,b}. By (4.10)(e) the group H(1,,) acts transitively
and effectively on the set M. It remains to show that the function (1) is a
bijection. Let {4”,b"}eReal (B). Then we have for f =b"'b":14" > 1A the
obstruction element

a= (710, (NeH(l,,) )

where we use the isomorphism f*: H(1,,) = H(f). We define A" = 4 + «. Then
we have 14’ = 1A and

DA”.A’(f) = DA”,A(f) —f*@)=0 (3)

by (4.10)(d). Therefore there is g:4” = A’ in A with Ag = f. By (4.11) we see
that g is an isomorphism in A. Whence {A4’,b} = {A4",b"}. This proves that
the function (1) is surjective. It is clear by the definitions that the function
(1) is injective. Therefore the proof of (4.12) is complete. O

Remark. On each category we have the natural system, 0, which consists only
of trivial groups. The sequence 0 — A B —0 is exact if and only if
A = 1A =5 A(J) = B,. In particular A is full and faithful.

A map between exact sequences as in (4.10) preserves all the structure.
More precisely consider the diagram
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D+ — A 2B 5 H
4.13) Jﬁ Jp iq g
E+ —C *oK 2.6

The rows of this diagram are exact sequence for the functors A and A’
respectively. The diagram is a map between exact sequences if the following
holds:

p and q are functors and A'p = g4 on objects and morphisms. (1)

p:D,— E,(feMorA) is a natural homomorphism between natural (2)
systems on 1A such that p(f + o) = p(f) + p(«) for e D,. We therefore
call p a p-equivariant functor.

q:H;—> G, (feMorB,) is a natural homomorphism between natural (3)
systems on B, such that Oy ,,(qf) =q0x y(f) for 11X - Y.

The following proposition corresponds to the five lemma.

(4.14) Proposition. Consider the map between exact sequences in (14.13) and
assume q:H — G and p:D/I — E/I are natural isomorphism. If q:B—K is full
and faithful then also p: A — C is full and faithful. If :B, —» K. is an equivalence
of categories then also p:A — C is an equivalence of categories.

(4.15) Definition. A tower of categories is a diagram (ieZ, M <i< N)

i H, md Y

where D;—»>H,;—»H,_, — T, is an exact sequence for the functor 1. Examples
are described in Chapter VI. I

§5 The cohomology of a small category

We introduce the cohomology groups of a small category with coefficients
in a natural system, compare also Baues—Wirsching. The cohomology groups
in degree 2 and 1 classify linear extensions and linear coverings respectively.
We show this in the following sections § 6, § 7.
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(5.1) Definition. Let C be a small category. We define the cohomology
H"(C, D) of C with coefficients in the natural system D by the cohomology of the
following cochain complex {F", §}. The nth cochain group F" = F*(C, D) is the
abelian group of all functions

an(C)_’ U Db

AeMor (C)
a
(@) with f(A,,...,A)eD;. ...

cOAnt

Here N,(C) is the set of sequences (4,,...,4,) of n composable morphisms

Age— A — - — A,
i Iy

in C (which are the n-simplices of the nerve of C). For n =01let N,(C) = 0b(C)
be the set of objects in C and let F°(C, D) be the set of all functions

() f:06C)—» () D,

Ae0b(C)
with f(4)eD = D(1 ,). Additionin F"is given by adding pointwise in the
abelian groups D,. The coboundary
(b) S:F"" 'S F"
is defined by the formula (n > 1):

n—1
©  ON i A= Ag S Qanee s )+ 2 (= DI (Ao DAy gae o, Ay)
i=1
+(_ l)n}“:rf(}“l"“’ln—l)'
For n=1 the coboundary ¢ in (b) is given by

ey (Of )(A) = A,.f(A) — A* f(B) for (A:4 > B)e N (C).
One can check that §feF” for feF"~ ' and that 56 = 0. l

We now describe the natural properties of the cohomology. To this end
we introduce the category Nat of all natural systems. Objects are pairs (C, D)
where D is a natural system on the small category C, see (3.1). Morphisms
are pairs
(5.2) (¢°7,7):(C,D)—(C', D),
where ¢:C' - C is a functor and where 7:¢*D — D’ is a natural transfor-
mation of functors. Here ¢*D:FC’— Ab is given by

(5.3) ((I)*D)I=D¢f for feMor(C'),

and a, = @¢(a),, B* = ¢()*. A natural transformation t:D —» D yields as well
the natural transformation

(5.4) *t:p*D —> ¢*D.
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Now morphisms in Nat are composed by the formula

(5.5) WY°r, o) (@°F, 1) = ()", ooy *1).

The cohomology introduced above is a functor,

(5.6) H":Nat— Ab (neZ2),

which carries the morphism (¢°%, 7) of (5.2) to the induced homomorphism
(5.7 1,¢*:HYC,D)—» H*(C', D),

given on cochains feF" by (t,0*/)AL,....4)=1,°f(PA,,...,P4,)
with ' = A} 0.--0 4. We have (¢°F, 1) = (1, 7)(¢°F, 1) and we write ¢* = (¢°7, 1),
and (1,7), =7,

(5.8) Theorem. Suppose ¢:C' - C is an equivalence of small categories. Then
¢ induces an isomorphism

¢*:H"(C, D)~ H"(C', $*D)
for all natural systems D on C, neZ.
For the proof of this result we consider first a natural equivalence

oy, é,¢:C-C,
which induces an isomorphism of natural systems
t:¢p*D = y*D,
with £ =1t,(¢")*:D, =D,

Here we have yif = t(¢f)t ™! since ¢ is a natural equivalence.

(5.9) Lemma. t,¢* = y* on H"(C, D).
Proof of theorem (5.8). Let ¢':C— C' be a functor and let
tp'dp=1, Tdpd =1
be equivalences. Then by (5.9) we have
L (PP =1*=1 and i (pp)*=1%=1.
Here t, and £, are isomorphisms and therefore ¢* is an isomorphism. []

(5.10) Proof of lemma (5.9). We construct a chain homotopy h for the diagram
of cochain maps

o PED)

FX(C,D) L-* (1)
l//*\A F*(C', l//*D),



248 IV Extensions, coverings and cohomology groups
t, 0% — y* = Sh + ho, with )
h:F"*Y(C,D)— F"(C',yi*D).

Here h is given by the following formula

h

(hf)(il’l,m,l;):(t*)"l_ZO(—l)if(l//i'l,~~~,l///1§,t,¢/1§-+1,~~~,¢/1;)- 3)

The terms in the alternating sum correspond to paths in the commutative
diagram
Lz 25 4,

—

. * *

T R A A
2 Wiy YA,

A somewhat tedious but straightforward calculation shows that formula (2)

is satisfied for h. O

There are various special cases of natural systems which we obtain
by the functors:

(5.11) FCLC?PxCHCLHaC D

Here n and p are the obvious forgetful functors and ¢ is the localization
functor for the fundamental groupoid

(5.12) nC=MorC)™!C, see (IL3.5).

Moreover * in (5.11) is the trivial category consisting of one
object and one morphism and o is the trivial functor. Using the functors
in (5.11) we get special natural systems on C by pulling back functors K — Ab
where K is one of the categories in (5.11). Such functors are denoted as follows:

(5.13) Definition
M is a C-bimodule if M:C°” x C— Ab.
F is a C-module if F: C— Ab.
L is a local system on C if L:nC — Ab.
A is a trivial system on C if 4 is an abelian group or equivalently if
A:x— Ab.

Clearly we define the cohomology of C with coefficients in M, F,L
and A respectively by the groups

H"(C,M)= H"(C,*M), (1)

H"(C, F)= H"(C,n*p*F), (2)
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H"(C,L)=H"C, n*p*q*L), 3)
H"(C, A) = H"(C, n*p*q*o* A). 4)

{5.14) Remark. The cohomology (1) can be identified with the Hochschild—
Mitchell cohomology which was found by Mitchell (1972) by imitating the
classical ring theory on the level of categories. The cohomology (2) is used by
Watts (1965), by Quillen (1973) and by Grothendieck, see, for example,
Johnstone (1977) for the definition of topos cohomology. Next the
cohomologies (3) and (4) can be identified with the usual singular coho-
mologies of the classifying space B(C) with local coefficients L, and with
coefficients in the abelian group A, respectively, see Quillen (1973).

Our approach generalizes these concepts by taking natural systems as
coefficients which are more adapted to categories than the coefficients in
(5.13). Indeed, a module (resp. a bimodule) associates on abehan group to
an object (resp. to a pair of objects), while a natural system associates an
abelian group to each morphism.

(5.15) Remark. The cohomology (5.1) as well generalizes the cohomology of a
group G. Let D be a right G-module. Then we have

H"(G,D)= H"(G, D),
where the left-hand side is the usual cohomology of G with coefficients in
the G-module D, see for example Cartan—Eilenberg (1956). The right-hand
side 1s the cohomology (5.1) of the category G with coefficients in the natural
system D defined by (3.7).

(5.16) Remark. For a C-module F there is a natural isomorphism
H"(C,F)=Lim"(F).

where Lim” is the derived of the Lim functor, see Roos (1961). In (IT1.1.11)
above we used the derived functor Lim?! for a very special category C.

(5.17) Remark. 1t is clear that each linear extension of a free category F is a
split extension. Therefore the result in §6 shows that H*(F,D)=0 for all
natural systems D. More generally also HF,D)=0 for n =2 and for any
natural system D on F. Moreover, let S be a subclass of morphisms in F and let
S™IF be the localized category, see (I1.3.5). Then also

H"(S™'F,D)=0 fornz=2.

This is proved in Baues—Wirsching.
Finally, we introduce the cup product for the cohomology groups (5.1).
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(5.18) Definition. Let D, D', D” be natural systems on the small category C. A
pairing, denoted by

u:(D,D’)— D",
associates with each 2-chain (f,g) in C the homomorphism
u: Df ® DE,? - D}g
of abelian groups such that for a 3-chain (f,g,h) and for xeD,,yeD,, y'€D,,
ze D), we have the following formulas where we set x-y = u(x ® y):

(g*x)'z = x'(g*Z),
f*(yZ) = (f*y)Z,
h*(xy") = x-(h*y). I

(5.19) Definition. Let u:(D,D’)— D" be a pairing of natural systems on C. Then
we have the cup product

U:H"(C, D)® Hm(C, Dr)_>Hn+m(C, D”), (1)

which is defined on cochains by the formula
(ng)('{la AR '{n+m) = f('{la IR '{n)'g('{n+ 1o+ 'ln+m)’ (2)
Here the multiplication x-y = u(x ® y) is defined by the pairing u as in (5.18)
above. We define (1) by
{fTolyt={rvg} (3)

where {f} denotes the cohomology class represented by the cocycle f. |

(5.20) Lemma. 3(fvg)=(f)ug+(— 1)*fu(dg).

The lemma is easily checked by (5.18) and by the formula for é in (5.1).
The lemma implies that the cup product above is a well-defined homo-
morphism.

(5.21) Example. 1et R be a commutative ring and let my be the (small)
category of finitely generated R-modules. Then Homg:m¥ x my—Ab is a
bimodule on my and we have the pairing

u:(Hompg, Homgz) — Homyg,

which is given by the composition of homomorphisms, that is u(a® f) = a<f.
Therefore we obtain by (5.19) the cup product

Ui H"(mg, Homg) ® H™(mg, Homg) — H"* ™(mg, Homyp)

which shows that H*(mg, Homy) is a graded ring.
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§6 Classification of linear extensions

The definition of the cohomology groups of a small category with coefficients
in a natural system was motivated by the following result, compare (3.2) and
(3.4).

(6.1) Theorem (classification). Let D be a natural system on a small category
C and let M(C, D) be the set of equivalence classes of linear extensions of C
by D. Then there is a canonical bijection

W¥:M(C,D)= H*C,D),

which maps the split extension to the zero element in the cohomology group
H*(C,D).

(6.2) Example. Let G be a group and let D be a right G-module. For the natural
system D on G in (3.7) the set M(G, D) can be identified easily with the set
E(G, D) of all equivalence classes of extensions in (3.6). Therefore (6.1) and
(5.15) yield the result:

E(G, D)= M(G, D) = H¥G, D) = H%(G, D).
This, in fact, is the well-known classification of group extensions.
Proof of theorem (6.1). Let p:E —C be a linear extension by D. Since p is
surjective on morphisms there exists a function
s:Mor(C)— Mor (E) 1)

with ps = 1. If we have two such functions s and s’ the condition ps =1 = ps’
implies that there is a unique element

deF'(C,D), }
with s'(f)=s(f)+ d(f), feMor(C).

Moreover, each deF!(C, D) gives us by (s + d)(f) =s(f)+ d(f) a function
s+ d:Mor (C) - Mor (E) with p(s + d) = ps = 1. For (y,x)eN,(C) the formula

s(yx) = s(y)s(x) + Ay(y, x) (3)

2

determines the element
A,eF?*(C, D). 4)

This element measures the deviation of s from being a functor. If s is a
splitting then A; =0. We now define the function ¥ in (6.1) by

Y{E} = {4} 5)

Here {E}e M(C, D) is the equivalence class of extension E and {A;}e H*(C, D)
is the cohomology class represented by the cocycle A, in (4) where s is chosen
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as in (1). First we have to check the cocycle condition for A;:We compute
s((zy)x) = s(2)s(y)s(x) + x*A,(z, y) + Aq(zy, x)
$(2(yx)) = s(2)s(¥)s(x) + 2, Ai(y, x) + Az, yx)
Therefore associativity of composition implies
0 =z, Ay, x) — A2y, x) + Az, yx) — x*A(z, y)
=(0A,)(z,y,x), see (5.1)(c). 6)
Moreover the cohomology class {A,} does not depend on the choice of s:We
compute
(s + d)(yx) = s(y)s(x) + x*d(y) + y,d(x) + A 4(y, X).
Therefore we have by (3)
Ay, x) = Ag s gy, X) = p,d(x) — d(yx) + x*d(y) = (6d)(y, x), see (5.1)(c). (7)
In addition, we see that for an equivalence ¢ we have
A=A, (8)
By (6), (7) and (8) the function ¥ in (5) is well-defined. The function W is

surjective by the following construction: Let Ae F%(C, D), A =0. We get an
extension

PA:E, »C } )

with W{E,} = {A}.
The morphisms in E, are the pairs (f,«) with feMor(C), aeD,. The
composition in E, is defined by
(9. B(f,2)=(gf, — Alg.f) + g, +*P). (10)
The action of D on E, is defined by (f,o) + &' =(f,a + &), a’eD,.
Since we have an equivalence

E, 5HE
with 8(f,oc)=s(f)+oc} (n
we see that ¥ is also injective. O

(6.3) Remark. For a linear extension
D+-E-C 1))

the corresponding cohomology class W{E}eH?*(C,D) has the following
universal property with respect to the groups of automorphisms in E:For an
object 4 in E the extension (1) yields the group extension

0- D, — Autg(4)— Aut(4)—0 )
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by restriction. Here a€Aut(4) acts on xeD = D(1,) by x*=(a~ 1), a*(x).
The cohomology class corresponding to the extension (2) is given by the
image of the class ¥{E} under the homomorphism

H(C,D) > H?(Aut(4), D ). 3)

Here i is the inclusion functor Aute(4)— C and t:i*D — D, is the isomor-
phism of natural systems, see (3.7), with

t=(""y:Dy—=D(1) =Dy 4)

We now describe some examples of linear extensions of categories. We

first describe an example for the group H?(C, D) which can be computed
directly by the formula in (5.1).

(6.4) Example. Consider the category Q pictured by the commutative
square:

Then we have for a natural system D on Q the isomorphism
H*(Q,D)=D, f(a*D; + B,D,+ 8,D, + 7y*Dy). (2)
Let D + - E— C be any linear extension and let ¢ be a commutative square in

C; this is a functor ¢:Q — C. Then (5.7) yields the element ¢*{C} in the group
H*(Q, $*D).

(6.5) Example. For any prime p there is a canonical linear extension of
categories

+ q
Hom,, —my,2 —my,. (1)

Here my with R = Z/p?> or R =Z/p denotes the (small) category of finitely
generated free R-modules. Objects are R"=R@®---®R, n=1, and
morphisms R"— R™ are (m x n)-matrices (x;;) over R, composition is multi-
plication of matrices. We have the canonical bifunctor in (1)

Homg:m§ x my — Ab, (2)
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which carries (R",R™) to the abelian group Homg(R", R™)=M™"(R) of
(m x n)-matrices. The functor ¢ in (1) is reduction mod p. The action + in
(1) is given by the formula

() + (Bij) = (o; + pBij) (3)

with («;;)eM™"(Z/p*) and (B;)eM™"(Z/p). Here p:Z/p— Z/p* maps {1} to
{p}. It is an easy excercise to show that (1} is a well-defined linear extension
of categories. This extension is not split. In fact, Hartl computed the
cohomology group

Hz(mz/p, Hom) = Z/p, (4)

and showed that the extension (1) represents a generator of this group via
(6.1). We now restrict the extension in (1) to the group of self equivalences as
in (6.3). This yields the group extension

M""Z/p) >— GL(n,Z/p*) —> GL(n, Z/p). (5)

W. Meyer proved that the extension of groups has a splitting if and only if
(n—1)(p—1)<2. The extension (5) played a role in recent work of
Friedlander-Dwyer on the cohomology of GL(n, Z/p).

In the next example we describe a more general procedure for the
construction of linear extensions of categories.

(6.6) Example (categories defined by central extension of groups). Let C be a
(small) category and let

(1)

A:C— Ab,
G:C - Gr,

be functors from C to the category, Ab, of abelian groups and to the category,
Gr, of groups respectively. We choose for each object X in C a central
extension

AX)>— Ex —> G(X) (2

of groups. We do not assume that E is a functor on C. By use of the data
(1) and (2) we obtain the linear extension of categories

Hom(G —,A—)5E -5 pE (3)

as follows. Objects of E are the same as in C and p is the identity on objects.
Morphisms in E are pairs (f, ¢):X —» Y where f:X — Y is a morphism in C
and where ¢ is a homomorphism of groups for which the diagram
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AX) >— Ey > G(X)

A J i ¢ lG(f) 4)

+

AY) > E, —» G(Y)
commutes. Composition is defined by (f, )(f', ') =(ff", ¢’). The functor
p:E - C in (3) is the forgetful functor which carries ( f, ¢) to f. The bifunctor
Hom (G —, 4 —):C” x C— Ab (5)

carries (X, Y) to the abelian group of homomorphisms Hom (GX, AY). For
aeHom (GX, AY) we define the action + in (3) by

(f9)+o=(f, ¢+ iap) (6)
Since the rows of (4) are central extensions we see that (6) is a well defined
morphism X — Y in E. Now it is easy to check that (3) is a welldefined linear
extension of categories. I

(6.7) Example. Let C be the (small) category of finitely generated abelian
groups and let p be a prime. For each object A in C we have the canonical
homomorphism

A*Z[p={acAlpa=0}c A—>Z/pA=ARZ)p, )
which determines the extension of abelian groups

AR Z/p>—E,—»> AxZ/p (2)
since Hom (A*Z/p, A® Z/p) = Ext(A*Z/p, AQ Z/p). As in (6.6) we thus have

the linear extension of categories determined by (2):
Hom (- +Z/p, — ®Z/p) > E, - C. (3)
In fact, the extension of categories in (6.5) is the restriction of (3) to the
subcategory m;, = C. By a result of Hartl we have the cohomology group
H¥C,Hom(— *Z/p, — ®Z/p)) = Z/p, 4

and the linear extension (3) represents a generator in this group via (6.1).
For p =2 we can identify the extension (3) with the full homotopy category
of Moore spaces in degree = 3. See (V.3a.8) below.

§7 Classification of linear coverings

A derivation from a group G into a right G-module 4 is a function d:G— A4
with the property

d(xy) = (dx)* + dy. (7.1)
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An inner derivation i:G — A4 is one for which there exists an element ac A
with i(x) = a — a*. It is a classical result that
(7.2) HY(G, A) = Der (G, A)/Ider (G, A)
where Der and Ider denote the abelian groups of derivations and of inner
derivations respectively. Compare for example Hilton-Stammbach.

We now consider derivations from a small category Cinto a natural system

D on C and show that the cohomology H!(C, D) can be described similarly
asin (7.2). In the following definition we use the groups F*(C, D) defined in (5.1).

(7.3) Definition. A derivation d:C—D is a function in FY(C,D) with
d(xy) = x,(dy) + y*(dx) An inner derivation i:C— D is one for which there
exists an element aeF°(C, D) such that for x:4— B i(x) = x,a(A)— x*a(B). ||

For example, a linear covering L -5 C SDpofC by D, see (4.1), yields a
derivation O:L —j*D.

(7.4) Example. Let G and D be defined as in (3.7) then a derivation
G- D is exactly given by a derivation G— D. The same holds for inner
derivations.

We denote by Der (C, D) and Ider (C, D) the abelian groups of all derivations
and of all inner derivations C — D respectively. These are actually functors

(7.5) Der, Ider:Nat— Ab

which are defined on morphisms (¢°7, t) exactly as in (5.7).

(7.6) Proposition. There is a natural isomorphism
HY(C, D)= Der(C, D)/1der(C, D)
of functors on Nat which carries the cohomology class {f} to the class {f}.
This is clear by the definition in (5.1) which shows that feF!(C,D) is a
derivation iff 8f =0. Moreover, f is an inner derivation iff f = d(g) with
geF°(C, D).

(7.7) Theorem (classification). Let H be a natural system of abelian groups on
the small category C and let N(C, H) be the set of equivalence classes of linear
coverings of C by H, see §4. Then there is a canonical bijection

N(C,H) = HY(C,H)
which maps the split linear covering to the zero element in the abelian group
HY(C, H), see (4.5).

This result is due to Unsold.
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Proof. Let L=(L—>C—- H) be a linecar covering. We choose a function
5:0b(C)— Ob(L) with j(sX) =X and we define the derivation
O,C—»H }
Ds(f) = DsX,sY(fo:X_' YEC
Formula (4.1)(3) shows that the cohomology class {©,} does not depend on
the choice of s. Moreover {O,} =0 if L is the split linear covering.
If L and L’ are equivalent linear coverings as in (4.4) we have the function
@s with jpsX = X and clearly by (4.4)(3) we get O =0, This shows that
the function ¥ in (7.7) is well defined by

Y{L} = {D}. 2)
Here {L} denotes the equivalence class of L. We now show that y is a
bijection. Let d:C — H be any derivation. Then we define the linear covering

(1)

L,-5CH (3)
as follows. Objects in L, are pairs (X, &) with £e H(1y). Clearly, & e H(1y) acts
by (X, &)+ & =(X, ¢+ &). Morphisms (X, ¢)—(Y,#) in L, are the same as
morphisms X — Y in C and we define j(X, £) = X. We define the derivation
D in (3) by
O:L,—j*H } @

O, a.a. ) =df) + ([ & —f*n).
Clearly, for s with s(X) = (X,0) we get
D,=d. )
Thus it is enough to show that ¥ ! with y ~'{d} = {L,} is a well-defined
function. Let Ae F°(C, H), see (7.3). The function A associates with each object
X in C an element A X eH(1y) and yields the inner derivation
i(f)=fAX —f*AY
for f:X —» YeC. We show that there is an equivalence
o:Ly»Ly; (6)
Clearly, ¢ is defined on objects by ¢(X, &) = (X, ¢ + AX) and ¢ is the identity
on morphisms. Therefore (1) and (2) in (4.4) are obviously satisfied. Moreover,
for O":L,,;—j*H, given by (4), we get
Ox.a.0nm(f) =W+ D))+ ([l —f*n)
=d(f) + [ &+ AX)—f*(n + 1Y)
=DOu.e+ax.xm+an(f)
so that also (4.4)(3) is satisfied. This completes the proof of (7.7). O
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Maps between mapping cones

We study maps between mapping cones, C,— C,. In particular, we study
the properties of the action of [£4, C,] on the set [C[, C,], f:A— X. This
action leads to natural group actions on a subcategory PAIR of Ho(C). The
general concept of a natural group action in Chapter IV is mainly motivated
by the properties of the category PAIR. We introduce subcategories

PRIN c TWIST c PAIR c Ho(C).

PRIN contains the principal maps and TWIST the twisted maps between
mapping cones. We show that these categories can be described as linear
extensions of model categories Prin/~ and Twist/~ respectively.

In many applications, for example in topology, it is possible to compute
the model categories, but it is much harder to compute the categories PRIN
and TWIST; since there is an extension problem. A result in §5 allows
under suitable conditions the computation of the natural equivalence relation
~ on the model categories Prin and Twist.

In the sections §7...§10 we describe some results in topology for which the
concepts of this chapter are relevant. For example, we show that problems of
JH.C. Whitehead can be solved by use of twisted maps as discussed in §2.
Moreover, we prove the general suspension theorem under D and the general
loop theorem over D which imply applications of the abstract theory in
topology.

§1 Group actions on the category PAIR

Let C be a cofibration category with an initial object *. We have the canonical
functor (see (I1.1.3))

(1.1) Ho(Pair (C)) » Ho(C)
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which carries the pair (iy: Y > X)= (X, Y) in Pair(C) to the object X in C.

(1.2) Definition of the category PAIR. Objects (C,, Y) are principal cofibra-
tions Y >— C, in C with attaching map fe[X, Y] where X =XX' is a
suspension in C, compare (I1.8.3). We denote the object (C, Y) also by C, or
simply by f. A morphism C,— C,in PAIR is a homotopy class in Ho(C) in the
image of the functor (1.1). Let PAIR (£, g) be the set of all such morphisms; this
set is the image of the function

[(C. Y)(CpB)1-[Cf, C)l

given by (1.1). In general, PAIR (f, g) is a proper subset of [C, C,]. In this
chapter we may assume for all (C,,Y) in PAIR that the objects X, Y, and
C, are fibrant and cofibrant in C and that f:X - Y is a map in C. I

The assumption on X in (1.2), X = ZX’, implies that [ X, U] is an abelian
group for all U. The action (I1.8.10) restricts to the subset PAIR (f,g) of
[C,,C,] and yields the action

(1.3) PAIR (f, g) x [£X, C,] ->PAIR (f, g)

of the abelian group [EX, C,] = D(f, g). We denote this action by D. With the
notation in (IV.2.1) and (IV.2.7) we get

(1.4) Proposition. The action D is a group action on the category PAIR and
D has a left distributivity law.
Proof of (1.4). Let F,:C;—C, and F,:C,— C, be maps in Pair(C). Then we
have the class (see (IL.8.1)),
(1.5) ¢={Fn,}enf(C, B).
We derive from (I1.12.8) that the action (1.3) has the following distributivity
law:
(F2+ B)Fy+0)=F,F, + (VOB Fy) + (F2 +
=F,F +(VO*(B, F2) + Fra+ (VO)*(B, F),
where V¢ and Va are defined in (IL§ 12). The induced functions and the mixed
term of the action are
(L7 FY(B) = (VO*B, Fy),
FZ*(a) = an,

Af, £, (B, 0) = (VoO)*(B, F»).
Thus Ag, ;, does not depend on F,. Therefore formula (1.6) is a left
distributivity law. O

(1.6)
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Remark. The proof makes use of the element £ in (1.5) which we only have
for a pair map F. This is the reason for the definition of PAIR (f, g) via the
image of the functor (1.1).

§2 Principal and twisted maps between mapping cones

The following construction of a map C,—C, between mapping cones is
classical. We assume that C, is fibrant. Suppose we have a diagram of maps

in C
m
N |
X X » A » CA
(2.1 lf H lg push lﬂ“
Y 7 > B l_ > C,

g

and homotopies H:yf ~gx and G:ix ~Orel*. Then we obtain

(2.2) F=C(x,y,H,G):C,»C,
by

Fi;=1,y, and

Frn;=i,H+rn,G.
Here n,;:CX - C, is the map in (IL.8.1) and Fr, is defined by addition of
homotopies. The map G:CX — CA, given by the homotopy G, is an extension
of x. This shows that the map F in (2.2) is well defined up to homotopy rel

Y by the track classes of H and G, see (I1.8.6). If x is a based map we have
a canonical choice for G (up to homotopy rel X) by a lifting in the diagram

X X .4 cA
//‘l
[
//// 0 ~o
CX - 0 N

see (I1.1.11). We call the map F in (2.2) or its homotopy class rel Y a principal
map between mapping cones. The map F corresponds to f” in (11.9.1).

We now introduce a further method of defining a map between mapping
cones. This method generalizes the construction in (2.1). Suppose the diagram
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of maps and homotopies

0
(2.3
e
X ———>»AvB>—""%CAVB
roH (9.1 (1)
Y —— B >—F——C
Y iy [
is given. Then we define the map
(24) F=C(x,y,H,G):C,—C,

by

Fi; =iy, and

Frn,=iH + (n,; 1)G.
We call F in (2.4) or its homotopy class rel Y a twisted map between mapping
cones. Again F is well defined up to homotopy rel Y by the track classes of
H and G. Clearly, a principal map is also a twisted map.

We have the following characterization of twisted maps and principal

maps respectively. Consider the commutative diagram

¥ (CA, A) —— n¥(CAv B,Av B)
2.5
(2.5) ni\ ﬁg,l)*
n}(C,, B)

(2.6) Proposition. Let F:(C,, Y)—(C,, B) be a pair map. By F we have the
element {Frn }enf(C, B). Then F is twisted iff {Fn,}elmage(n,1), and F
is principal iff {Fn ) eimage (m,),.

Proof of (2.6). Clearly, for G in (2.3) we have
(n,, 1), {G} = {Fn,}. 1)

Now assume a pair map F:(Cp, Y)—>(C,, B) and G is given such that (1)
holds. Then we have a homotopy K for which the following diagram
commutes.
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v v
X e -+ AvB
We claim that
F,=C(x,y,H,G)~F rel Y. 2

Indeed this is true since the difference
dF,F\)= —Fn;,+ Fn;:ZX->C, 3)
is nullhomotopic as follows from the existence of K, compare (11.8.13). [
In particular, if m, or (z,, 1), in (2.5) is surjective all pair maps F:(C, Y)—
(C,, B) are principal or twisted respectively.

We deduce from (2.6) the following facts: A pair map F is twisted iff there
is a commutative diagram in Ho Pair (C)

(CX,X) S (CAv B,Av B)

2.7 jw P%m
F

CpY) — (€ B)
Moreover, F is principal iff there is a commutative diagram

(CX,X) —55(CA, 4)

(2.8) J” j%

(€, Yy £ (C,, B)
in Ho Pair (C).
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(2.9) Proposition. The composition of twisted maps is twisted, the composition
of principal maps is principal.

Proof. For principal maps this is clear by (2.8). Moreover, for twisted maps
we have by (2.7) the commutative diagram in Ho Pair (C)

(CXVvY.XvY)—2(CAVvB,Av B)
(2.10) (ry. 1) (g 1)
c,y) L5 (B

where G|CX = G and G|Y = ig(F|Y). Here iz: B> A v B is the inclusion.
O

(2.11) Remark. Diagram (2.10) shows that twisted maps are compatible with
the functional suspension in (I1.11.7). This follows by naturality of diagram
(IL.11.6). Also we see by diagram (2.10) that the twisted map F corresponds
to a principal map in the category B = C® In fact, the map F v 1:C, v B~
C, v B is a map between mapping cones in B and is a principal map in B
by (2.10). Compare (IL.11.5).

§3 A linear group action
Let PAIR be the category in §1. We now define the subcategories

(.1) PRIN < TWIST < PAIR  Ho(C).

Let A:C;=(C.,Y)-»C,=(C,B) be a morphism in PAIR. We say 4 is
principal or twisted if 1 can be represented by a principal or twisted map
C,—C, respectively. By (2.9) we see that the principal morphisms in PAIR
form a subcategory which we denote by PRIN. Also the twisted morphisms
in PAIR form a subcategory which we denote by TWIST. The objects in
PRIN and TWIST are the same as in PAIR, see (1.2). Let

(3-2) PRIN(f, 9) = TWIST(f,g) c PAIR(f,9) = [C,, C,]

be the subsets of principal and twisted maps respectively, compare (1.3).
These sets are sets of morphisms in the categories (3.1). We define natural
group actions on TWIST and on PRIN by restriction of the action in (1.4)
as follows. Let

(33) I(f, g) = Image {i,,:[ZX, B] > [ZX, C,]}.
By the action (1.4) we obtain
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TWIST (f, g) x T(f, 9) — TWIST(, 9)
U U

PRIN (f, 9) x T(f,9) == PRIN(f, g)

We denote this action by I'. We point out that I'( f,g)in (3.3)is not a bifunctor
on TWIST. With the notation in (IV.2.8) we get the

(3.4) Proposition. I" is a linear group action on the categories PRIN and
TWIST respectively.

Proposition (3.4) is a consequence of (4.5) below. The natural group action
I" gives us the quotient categories, (IV.2.2),

(3.5) PRIN/T < TWIST/T.

It is possible to describe these quotient categories in a different way. To this
end we introduce categories

(3.6) Prin < Twist

which we call the model categories for PRIN and TWIST respectively. The
objects in these categories are the same as in PAIR, see (1.2). A morphism
(&,n):f =g in Prin is a pair (£, pe[X, A, x [Y, B] for which the diagram

A

3.7
(3.7 p 19
Yy 2> B

with xeé, yen is homotopy commutative relx, compare (I1.9.8). A morphism
(&, n):f—¢gin Twist is a pair (&, n)e[ X, A v B], x [, B], for which the diagram

B
0/' '\(OJ)
X —25AvB

(3.8)
It‘ l(gJ)

y
Yy —

with xe, yen is homotopy commutative rel . Here x is trivial on B, compare
(IL11.4). The functor (3.6) is defined by (&, n)— (i &, 1) where i:A—> A v B is
the inclusion. With the inclusion ig:B— A4 v B we define the composition in
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Twist by

(39) (& n) = (& igm&'s ).

We now describe a commutative diagram of functors
Prin c Twist

(3.10) 4| pl

PRINT < TWIST/T

where in fact the functors ¢ and p are quotient functors. For (&, ) in (3.7)
there exist homotopies H and G as in (2.2). We set q(&,n) = {C(x,y, H,G)}
compare (2.2). Here { } denotes the equivalence class in PRIN/I". Moreover,
for (&,n) in (3.8) there exist a homotopy G and a homotopy H as in (2.3). We
define p(¢,n) = {C(x,y, H,G)}. Clearly, by definition of principal and twisted
maps in §2 the functors g and p are surjective on morphism sets. Let ~ be the
natural equivalence relation induced by g and p respectively. Then (3.10) gives us
the isomorphism of categories

(3.11) Proposition. Prin/~ = PRIN/T’, and Twist/~ = TWIST/T.

Proof. We have to check that g and p in (3.10) are well defined functors. We
do this for p. Let F, = C(x,y,H,G), F, = C(x,y,H’,G') be maps associated
to (£, n) by (3.8). We have to show that p(&,n) = {F,} = {F,} is well defined.
Equivalently, we have to show d(F, F,)eImage (i,,:[ZX, B] > [ZX, C,]),
compare (3.3) and (I1.8.15). By addition of tracks we see

dF,F;)= —(n, )G —i,H+i,H + (n,, 1)G'
= - (T[g’ 1)G + ig(a) + (T[ga 1)G + (T[g’ 1)(y)a (*)
wherea= —H+ H:Z ,X—>Bandy= -G+ G:ZX >CA v B. Since X is a
suspension (compare the definition of PAIR) we have the equivalence

Z,X —ZX v X in Ho(C¥), see (IL10.17). Therefore there is f:ZX
— B with

0T X SEX v x e p (%%)

We deduce from (*) and (**) d(F{,F,) =1i,,(B + p,7), where p,;CA v B—B
is the projection. O
We derive from (3.11) and (3.4).

(3.12) Theorem. We have a commutative diagram of linear extensions of
categories
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I/l + —TWIST—2— Twist/~

H J j 1)

I/l + ——PRIN —— Prin/~

We say that (,#) is associated to the twisted map F if p{F} = {&n}. In
case F:(C,, Y)—(C,, B) is a pair map we obtain a pair (¢, ) associated to F
by the restriction 7 = F|Y:Y — B and by an element (€[ X, 4 v B], with

F {n;} =(n,1),07 (&) Q)
Therefore (I1.12.5) and (11.12.6) show
Ve=VF.{n}=(01vi)E¢L 3)

Theorem (3.12) describes precisely the connection between the category
TWIST and the model category Twist. In many applications it is possible
to compute the category Twist but it is much harder to compute the category
TWIST. For this we have to solve three difficult problems:

(3.13) Problems

(1) The homotopy problem: compute the equivalence relation ~ on Twist!
(2) The isotropy problem: compute the isotropy groups of the action I'!
(3) The extension problem: if (1) and (2) are solved, determine the extension
class {TWIST}e H3(TWIST/~,T/I) in (IV.6.1)!
We will exhibit examples for which we can solve these problems (at least

for certain small subcategories of TWIST). Clearly, we have similar problems
for the computation of PRIN.

(3.14) Notation. Let X be a class of objects in PAIR. We write PAIR (X) for
the full subcategory of PAIR consisting of objects in X. In the same way we
define TWIST (%), Twist (¥), PRIN (¥) and Prin(X) respectively.

Now recall the definition of a model functor in (1.1.10).

(3.15) Proposition. A model functor o:C — K with o = * induces a commutative

diagram of functors
Ho(e)

Ho(C) ———— Ho(K)
[ [
PAIR, -~ -+ PAIR,
[ [
TWIST, ———-——TWIST
[ [

PRIN, ————- - PRIN,
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Proof. Since o is compatible with push outs we know that aY >
MoaC ;=5 aC is a principal cofibrationin K with attachingmap a fe[aX, aY]
where aX ~ Mo X' is equivalent to a suspension in K. The functor a carries
(C;, Y) to (MaC,,aY). Since diagram (2.5) is compatible with o we see that
a carries twisted maps to twisted maps, and carries principal maps to principal
maps. We also denote the functor a by a. O

(3.16) Proposition. A model functor o.:C — K with o.x = x induces a commutative
diagram of linear extensions of categories:

o4

I -2 T/

TWIST, —— TWIST,

| |

Twist/ ~ —0 Twist/ ~

The left-hand side is the extension (3.12) in the cofibration category C.
The functor o:Twist. — Twist, is given by a(&,n) = (&, an). The proposition
is a consequence of (I1.8.27). A similar result holds for PRIN.

§3a Appendix: the homotopy category of Moore
spaces in degree n

A Moore-space M(A4,n) in degree n=2 is a simply connected CW-space
together with an isomorphism

A i=n,

(3a.1) H,M(A, n)={0 i,

Here H; is the (reduced) singular homology. The homotopy type of M(A, n)
is well defined by the abelian group A and by the degree n (the construction
of M(A, n), however, is not natural in A since the linear extension of categories
in (3a.2) below is not split).

We choose for each pair (4, n) a pointed Moore space M(A,n). Let M" be
the full subcategory of Top*/ ~ consisting of the Moore spaces M(A, n) where
A is an abelian group. Then we get the isomorphic linear extensions of
categories
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E' + —— M' —"— Ab

wy | 8 A

[/I + —— PRIN(X¥) —— Prin(¥)/ ~

Here H, is the homology functor which carries M(4,n) to A, recall that Ab
denotes the category of abelian groups. The natural system E" on Ab is the
bimodule

Ext(4,'B), n=2,

Ext(4,B®Z/2), nz=3.

Here I is the quadratic functor of J.H.C. Whitehead with ['(4) =, M(4,2).

The class X of maps in Top* in (3a.2) is given as follows. For each A4 we
choose a short exact sequence (P, Z >4~ F),Z —> A and we choose a map

(3a.4) fiVS"> Vs,
M N

(3a.3) E"(A, B) = {

which represents d. Then we have the mapping cone M(4,n) = C,. It is easy
to check that maps between such mapping cones are homotopic to principal
maps. This yields the isomorphism of categories M” = PRIN(X) in
(3a.2). The bottom row in (3a.2) is given by the linear extension in (3.12). One
can check that Prin(X)/~ can be identified with the full subcategory of
Chain,/ ~ consisting of the cellular chain complexes C,(M(A,n)). The
homology yields the isomorphism H in (3a.2).

We obtain the top row of (3a.2) by the following universal coefficient
theorem (compare Hilton (1965)) which we easily derive from the cofiber
sequence for C, = M(A4, n).

(3a.5) Proposition. Let U be a pointed space. Then we have the short exact
sequence

Ext(A, 7, ., U) >— [M(A4,n), U]-5> Hom (4, n,U)

For nz 3 this is an exact sequence of abelian groups, for n =2 the left-hand
group acts freely on the set [M(A,2),U] such that each subset p~'p(x) is the
orbit of x.

For U = M(B,n) we have n,M(B,n)= B and n,, ,M(B,n)=(I'B for n=2
and B® Z/2 for n z 3). Thus (3a.5) gives us the short exact sequence

(3a.6) E"(A, B) >~ [M(A,n), M(B,n)] —%> Hom(A, B).

Here p can be identified with the homology functor H,. It is easy to see
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that the action + of E"(A4, B) satisfies the linear distributivity law. Hence
(3a.6) as well yields the linear extension in (3a.2).

For n = 3 there is an algebraic description of the extension (3a.2) as follows.
For the homotopy group =,.,(M(A,n)), n=3, we have the short exact
sequence

(3a.7) ARZ)2 > 1, (M(A, 1) > AXZ)2

which, in fact, represents the extension of groups E, in (IV.6.7) where we
set p =2. We obtain (3a.7) by considering the fiber sequence of f in (3a.4).
For the linear extension of categories E, in (IV.6.7) we now get the
isomorphism of extensions (n = 3)

Hom(—*7/2, - ®7Z/2) —— E, —Ab

s ‘] e |

Ext(—,-®Z/2) —— M ——Ab

where we use the natural isomorphism
(3a.9) Ext(A,B&® Z/2) =Hom(A*Z/2,BR 7/2)
Now (IV.6.7) and (IV.6.5) shows that the extension (3a.2) is not split. The
isomorphism (3a.8) is our best algebraic description of the category M”", n = 3.
Barratt (1954) computed the category M" in terms of generators and relations.
For n=2 we do not have a nice algebraic description of M? as in (3a.8).

Let Abf be the small category of finitely generated abelian groups, then
the element
(32.10) {M"}eH*(Abf, E") > 7/2Z, n=2,

is a generator of 7Z/27, see Hartl.

§4 A quadratic group action

We define quadratic group actions on the categories PRIN and TWIST as
follows. Let C, and C, be objects in PAIR with f:X —» Y, g:A - B. We define
the subgroup

4.1) E(f,9)=1ImageE, < [ZX,C,]

by the image of the functional suspension in (I.11.7). Moreover, we define
the subgroup

(42) E_(f’ g) = Eg(iA kernelg*) < [ZX’ Cg]’
where g,:[X, A] - [X, B] and where i,:4— A v B is the inclusion. Clearly,
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we have by definitions of E, and T the inclusions

(4.3) T(f,9) < E(f,9) < E(f,9).
We claim that the action (1.4) gives us actions

TWIST(f,g) x E(f, g) — TWIST(f,g)
4.4 v v ,
PRIN(f,g) x E(f,9)— PRIN(f,g)

which we denote by E + and E + respectively.

(4.5) Proposition. E + and E + are quadratic group actions on TWIST and
PRIN respectively.

Compare the definition of a quadratic action in (IV.2.8). The functor =,
on the homotopy category of 2-dimensional CW-complexes admits a
quadratic action which is an example for (4.5). Compare (V1.8.3) where we set
n=2.

Proof. From (2.6) we derive that the actions in (4.4) are well defined by (1.4)
since (F + @), {n,} = F,{n,} + ja for a pair map F:(C,, Y)—(C,, B) and for
xe[ZX,C,], (X is a suspension). Now let acE(f,g), feE(g,h) and let
C, - C, - C, be morphisms in TWIST with
1 2
p(éz?’?z):{Fz}’ (l=1,2), (1)
see (3.10). From (I1.12.3) and (I1.12.5) we deduce that V& (£ = F,, {n,}) and Va
in (1.6) and (1.7) are given by
Vi=(1viy),E¢, 2)
Vo=(1viy),Ed foracE,d). 3)
Thus we derive from (1.6) the following distributivity law of the action E +
on TWIST.
(Fy+ BIFy + o) = FoF y +(ES)X B, iygi12) + Fayo + (EQV*(B,i4712)  (4)

For the proof that E + is natural we have to show that the summands in
(4) are elements of E(f,h). Since F, is twisted we see by naturality of the
functional suspension (compare (2.11)) that

Fo0€E((S2,i51,)8) = E(f, h). 5
By similar naturality arguments we see for f eEh(ﬁ)
(EE)*(Bing1 )€ EWET(B,12m2)), (6)

(EQ)* (B, ins12)EEL@*(B,i315)). (7
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For (6) and (7) we use the commutative diagram in Ho Pair(C):

(CAvB,AvB) —— (CV VW,V VW)

(B,izﬂz)
l (7[09 1) l(nh9 1)

(ZA v BaB) — (Cha W)
(B.iwn2)

By (5), (6) and (7) we see that E + is in fact a natural group action, see (IV.2.1).
Moreover, the induced functions and the mixed term respectively are given as
follows:

FZ*(a) = an,
(4.6) F1(B)=(E&,)*(B,inn2), )

BOa=(EQ)*(B,iyn,) for acE (&)
It follows from (I1.11.17) that E + has a quadratic distributivity law. If F,
and F, are in PRIN and «eE(f,g), BcE(g,h) we obtain a distributivity
law with

Fz*(a) = an,
4.7 F¥(B) =(Z&)*B, q(&1.ni)={F.},

ﬁ@ o= (2&)*ﬁ9 aEEg(il &) D

From (4.3) and (3.12) we derive the commutative diagram of quadratic actions

(E/T) + —— Twist/ >~ — TWIST/E

w T

(E/T)+ —— Prin/~ —3— PRIN/E

§5 The equivalence problem

We use the quadratic action

(5.1) (E/T) + — Twist/ ~ > TWIST/E
in (4.8). Let
(5-2) (&n), ($1,n1)eTwist(f, g),

where f: X - Y, g: A > B. By definition of p we have the following lemma:

(5.3) Lemma. We have p(&,n)=p(&1,n1) if and only if the following two
conditions (a) and (b) hold.:

(a) ig*"’ =ig*'71'
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(b) There are twisted maps F, F,:C,— C, associated to (&, n) and (¢,,n,) and
there is a homotopy H:Fi, ~ Fi, such that

d(F’ H, Fl)eEg(é)
for some den¥(A v B),.

Compare (I1.8.15).

(5.4) Definition. 1f p(¢,n) = p(¢,,n,) let d(&,n, &1,1,) < n§(A v B), be the set of
all ¢ as in (b) of (5.3). I

Then we have the following characterization of the equivalence relation =~
on Twist:
p(&n) =p(£1,1,), and

(5.5) (f,n)z(il,m)é{()eg(éné .
s =171/

This follows since E,(0) =T'(f,g), see (I1.11.7).
We now assume that C, is a double mapping cone as in the following
diagram, compare (11.§ 13).

Cf F,Fl Cg
U U
(5.6) xLc=Y-—5B
'1"11
U

Here X is a suspension, but Q is a based object which needs not to be a
suspension.

Remark. If T =% the map r needs not to be the trivial map, compare
(I1.8.2). If T=+x and if r is the trivial map, r=0, then C,=Y=2X0Q
is a suspension. This leads to an interesting special case of the result in (5.7)
below.

The following theorem, in which we use the notation of (11.13.8), is our
main tool for the computation of the equivalence relation ~ on Twist, see
(3.13) (1) and (5.5).

(5.7) Theorem. Suppose that * = T and that
(14, 1), :n%(CA v B,A v B)—>n$(C,, B)
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is surjective. Then we have

P = P(C1: M) lgact = gy,
and d(&,n, E,,n,) is the set of all elements
=8, —E+(VA*(—ouizn) + B,
where aen$(A v B), and Bend(A v B), satisfy
n+(g, 1), 2 =ny by the action (1.4), and
0~ ' pekernel (n,,1),
with (n,,1),:n¥(CA v B,A v B)-»n¥(C,,B).

(5.8) Remark. We can replace the assumption *=T in (5.7)
by the following assumption: Suppose for all maps y,y,:C,— B each track
class {H} of a homotopy H:i,y ~i,y, rel * contains a pair map

(,C,,1,T)—(C,,B), see (118.12).
Proof of (5.7). We prove that with the assumption in (5.7) condition {(a) in
(5.3) implies condition (b) in (5.3). Let
ig*n:ig*r]l’ (1)

and let F, F, be maps associated to (£,%) and (&, ,) respectively. By (1) there
is a homotopy

H:1,C —-C, H:Fi~F,i,rel«. 2
By (5.8) we can assume that H is a pair map:
H:(I,C.,I.C)—(C, B). 3)

Here 1,C, = C,, is a mapping cone by (I1.8.12). Since by assumption (n,, 1),
is surjective onto n%(C,, B) we know by (2.6) that H is a twisted map.
Therefore also

is a twisted map with respect to I, C,=Cy, W:X vZQ v X >I,C,. Here
we define G by G|, = H and Gl;c,=F, Gl;,c,= F,. By (IL13.7) we know
w,eEw(&) with & defined in (I.13.8). By naturality of the functional
suspension with respect to twisted maps we obtain for

dg=G,W,=d(F,H,F)) (5)

the result
dgeE(— &+ (V)= oigny) +&y), (6)
where aed(n,, 1), ' H*{ny, }. This shows dgeE,0) for some 6 and thus (b)
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in (5.3) is satisfied. For « we have

(9, Dy =w¥(H|I' ,C)=d(F|Y,H, F,|Y). (7)
Here H:1, T— B is the restriction of H in (3). By (IL8.15) and (7) we get
n+(g, Dya=n;. t)

Thus we conclude from (6) and (5.4) that d(&, 7, £, 1, ) consists only of elements
o as described in (5.7).
On the other hand, if xen$(4 v B), satisfies (8), we know that there exists a
homotopy
H:F|T ~F,|Trel*

with d(FIY,ﬁ,FllY)=(g,a)*cx. This is equivalent to the homotopy
commutativity of

20 —— AvVB

W,l lw, 1)

I'YOC,—> B
a

where a = (F|Y, H, F,| Y). This shows that
(o, a)e Twist (w,,g).

Therefore there is H:C,, — C, associated to («,a). This shows that each

element J as described in (5.7) is an element of the set d(&,n,&,,1,). O
Theorem (5.7) gives us the following result on isotropy groups: Let
F:C,»C,
be a twisted map as in (5.6} which is associated to (&,n)eTwist(f,g). Let
I(F)c [2X,C,] be the isotropy group in F of the action
[C,.C,]x[ZX,C,]>[C,,C,]

in (1.4). Clearly, I(F)=I,(n) depends only on i, n=ifFe[Y,C,]. By the
homomorphism in (II.11.6) we obtain the subgroup

(5.9) Ig(n) = 8(ny, 1) ' jlo(m)en§(A v B),.

This is the inverse image of I,(n) under the functional suspension E,. Since
by (5.3)

(5.10) Igmy=d(¢,n,¢,m)
we derive from (5.7):
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(5.11) Corollary. Suppose the assumptions in (5.7) are satisfied. Then Ig(n) is
the subgroup of all elements

=(VA)*(—aizn) + B,
where aen®(A v B),, ﬁeno A v B), satisfy

n+(g,1),a=n, that is (g,1),x€lo(n).
07! pekernel (ny,1),.

§6 Maps between fiber spaces in a fibration category
Let F be a fibration category with a final object *. We obtain the subcategory
(6.1) PAIR < Ho(F)

which is dual to the category (1.2). Objects are pairs (P|X), or maps f: X — Y,
where Y=QY' is a loop object. (We may assume that X, Y, P, are fibrant
and cofibrant in F.) For objects f and g: A — B in PAIR the subset

PAIR(f,g) =[P, P,]
of morphisms in PAIR consists of all homotopy classes {F} which can be
represented by a map F:(P,|X)— (P,| A) in Pair(F), see (1.2). By the action
dual to (I1.8.10) we obtain the action D +:
(6.2) PAIR(f,g) x [P;,QB] = PAIR(, g)

Here [P;,QB] is an abelian group since we assume B=QB. We derive
from (1.5):

(6.3) Proposition. The action D + in (6.2) is a group action on the category
PAIR and D + has a right distributivity law.

Compare (IV.§2). Principal maps and twisted maps in PAIR(f,g) are
constructed dually to(2.2) and (2.4) respectively. By (2.6) we have the following
result where we use the commutative diagram (compare (I1.14.8)):

%

AL WY|Y) = ah(WY x X|Y x X)

nx %rf,l)*

(P | X)
(6.4) Proposition. Let F:(P;|X)—(P,|A) be a pair map. By F we have the
element {n,F}enp(P | X) which satisfies:

F is twisted<>{n F}eimage(n ., 1)*,
F is principal<>{n F } eimage(n)*.
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Now principal and twisted maps yield subcategories
PRIN = TWIST <= PAIR <= Ho(F),

as in (3.1). We define dually to (3.3) the groups

(6.5) ['(f,g9)=Image{q*:[X,QB] - [P, QB]}

where g: P, —» X is the pair (P,]| X). By (6.2) this group acts linearly on the
subcategories PRIN and TWIST respectively, see (3.4). Moreover, by (3.12)
we obtain the following result:

(6.6) Theorem. We have a commutative diagram of linear extensions of
categories

I/l + — TWIST —2 Twist/ ~

)

I'/I + —— PRIN — Prin/ ~

Here the model categories Prin and Twist are given as follows: objects are
the same as in PAIR. Maps (&,%):f —¢ in Prin are given by commutative

diagrams
A
| I

y =5 B
RNt
£

in Ho(F). Next morphisms (¢,n): f— ¢ in Twist are commutative diagrams

6.7)

X — -4
l(f,l) lg
(6.8) YxX B

n
AN
X

in Ho(F), equivalently we have
{(é;n)e[Xﬂ‘l] X [Y X X, B]Z’
(f;1y*n=g,&
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There is an obvious law of composition in Twist which is dual to (3.9), namely

(6.9) (@ P& n) = (@&, B(n,£p,))s

where p,:Y x X — X is the projection.

Now the results dual to the results in §5 are available. They can be
used for the solution of the equivalence problem and of the isotropy
problem in certain cases, see (3.13). Examples are described in §9 below.

§7 The homotopy type of a mapping cone in topology

We consider maps between mapping cones in the cofibration category of
topological spaces. As an application of the general ideas in this chapter we
obtain results on the following two fundamental problems.

(7.1) Describe conditions on the maps f and g which imply that the mapping
cones C, and C, are homotopy equivalent!

(7.2) Compute the set of homotopy classes of maps, [C,,C,], between
mapping cones! In particular, compute the subset TWIST(f,g) of
twisted maps and determine the law of composition for elements in such
sets! Compute the groups of homotopy equivalences of C !

In general these problems are extremely difficult but under certain
restrictions on f and g we can apply the abstract theory. In fact, we apply
the theory in the category TopP® of spaces under D, D # ¢. It will be convenient
for the reader to assume first that D = « is a point. The results below are, in
particular, of importance for this special case.

By (1.5.1)and by (I1.1.4) we know that Top® is a cofibration category. If D = %
is a point, this is just the category of basepoint preserving maps; in this case * is
also the final object and therefore each well pointed space is based. In general,
a based object in Top? is given by a cofibration i:D >— 4 in Top and by a
retraction : A —» D, ri = 1,,. For example, if D has a base point and if A’ is well
pointed, then A = (D> D v A’ - D) is a based object in Top®. Now let

(7.3) f:X-Y, ¢g:A-B

be maps in Top® and assume X and A are based objects which are suspensions
in Top® and assume Y and B are cofibrant in Top®. As in any cofibration
category we have the inclusions

(7.4) PRIN(f,g) = TWIST(f,g9) =« PAIR(f,g9) = [C[,C,]°
Here C; and C, are mapping cones in Top” and [C,,C,]" is the set of

homotopy classes of maps under D in (Top®)./ ~. Below we describe criteria
under which the inclusions of (7.4) are actually bijections. To this end we
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need a result which is a far reaching generalization of the Freudenthal
suspension theorem.

(7.5) Definition. Let D > A be a cofibration in Top. We say that (A4, D) is
a-connected if the homotopy groups n;(4,D;d,) vanish for all i<a and
doeD. We write

dim(4 — D)=dim(A,D)<n

if there is a homotopy equivalence A ~ A" under D where 4’ is obtained from
D by a well-ordered succession of attaching cells of dimension <n, see
(1.0.12). I

(7.6) Theorem (general suspension theorem under D). Let X and A be
based objects in Top® and let g: A— B be a map in Top®. Let X and D be path
connected spaces in Top. Assume that (A, D) is (a — 1)-connected. Then the map

(m,, 1)*:1rf(CA VB AV B)—+7rf(Cy,B)

is a bijection if dim(X, D) <2a — 1 and is a surjection if dim(X,D) <2a— 1.
Here the map (n,, 1), is defined in the cofibration category Top® by (2.5).

Addendum. Let X and A be based objects in Top® and let D = B' = B. Suppose
X and D are path connected spaces in Top, that (A,D) is (a — 1)-connected,
and that (B, B') is (b — 1)-connected. Then the inclusion i: B' = B induces the map

(1 vi),:nf(CAvB,Av B)>nf(CAv B,Av B),

which is a bijection if dim(X,D)<a+ b —2 and is surjective if dim(X,D) =<
a+b—2. The map (1 vi), is defined in the cofibration category Top® (in
particular, Av B = Al JpB).

For B’ = D the addendum is a result on the map

(i1)4:nF(CA,A)>nf(CAv B,A v B)
in (2.5) with C = TopP”. The results in (7.6) are also of interest for D = «.

Remark. If D =x, B=x and if X is a sphere than (7.6) is equivalent to the
classical Freudenthal suspension theorem. When g = 0 theorem (7.6) is a result
on the partial suspension. In Baues (1975) (n,, 1), (with D = %) is actually
embedded in an EHP sequence which can be used for the computation of the
image and of the kernel of (z,, 1), in a metastable range. This is useful if we
want to apply (5.7).

Now consider again the inclusions in (7.4). If the inclusion B < C, induces
a surjection [Y,B]” —>[Y,C,]” of homotopy sets in (Top®),/ ~ we know

(7.7) PAIR(f,9) = [C,,C,]".
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By the cellular approximation theorem equation (7.7) is satisfied if (4, D) is
(a — 1)-connected and if dim(Y,D) < a. (For D == we use this in (8.8), but
equation (7.7) also holds in (8.7) below by a different argument.)

Next we derive from (2.6)

(7.8) TWIST(f,g) = PAIR(f,g)
if (n,, 1), in (7.6) is surjective; this, for example, is satisfied provided that (4, D)

is (@ — 1)-connected and dim(X,D) <2a— 1.
Moreover, we derive from (2.6) that

(7.9) PRIN(f,g) = TWIST(/, g)

in case (i), in (7.6) is surjective; this, for example, holds if (4,D) is
(a — 1)-connected, (B, D) is (b — 1)-connected and if dim(X,D)<a+b—2.
There are numerous applications of the facts (7.7), (7.8) and (7.9) with
respect to the problems in (7.1) and (7.2). We now discuss a simple application
on the realizability of abstract homology homomorphisms.
Recall that a map (&,7): f — g in Twist is given by a homotopy commutative

diagram in (Top®),:
\) 1)

X ——A4vB= AUB

(7.10) ,
S J(g, 1)

Y —
n

B

where 0:X %D > B is the trivial map. The pair (¢,n) yields associated
twisted maps F:C,—C, in Top” which induce the following commutative
diagram with exact rows:

H(X.D) —* . H(Y,D)——H(C,.D)—— H,_,(X,D) —2—

e e
H{A v B,B) Ne ¢=F H; (4 v B,B)
AUl AUl

H{4.D) —— H{BD)—— H(C,D)— H; ,(4D) ——
(7.11)

Here i is the excision isomorphism of integral singular homology.
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Now assume

{dim(Y,D) <n, dim(B,D)<n and, *)

(X, D) and (A4, D) are (n — 1)-connected.

Then ¢ in (7.11) is actually determined by ¢, and #,. In this case we write

@ =1,y

(7.12) Theorem. Assume (*) above is satisfied and assume dim(X,D) < 2n— 1.
Then (a) and (b) holds:

(a) An abstract homomorphism ¢:H (C;,D)— H(C,,D) is realizable by a
map C,— C, in Top® if and only if there exists

(& n):f—>geTwist as in (7.10)

(b) Assumein additionthat C, and C,are simply connected CW-spaces in Top.
Then there is a homotopy equivalence
C;~C, underD
if and only if there exists (&, n): f — geTwist such that ({,1),:H(C;, D)
H,(C,,D) is an isomorphism.

Proposition (b) essentially is a consequence of (a).
For the convenience of the reader we deduce from (7.11) the following
special case (D = x).

(7.13) Corollary. We write X = X* if X is a CW-complex with cells only in
dimension d with n £ d £ k. Consider maps in Top*:

[ X=X"15Y=Y% and

g:A=A»" 'S B=B.

Then there is a homotopy equivalence C,~ C, in Top* if and only if there is
a homotopy commutative diagram in Top*

/M

X——»AvB

Jf [ (9.1)
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(where 0:X — =€ B is the trivial map) such that ¢ = ({,n),, is an isomorphism on
homology (see (7.11) where we set D = ).

For example, when all spaces in (7.13) are one-point-unions of spheres the
proposition is an efficient criterion for the solution of problem (7.1).

The general suspension theorem (7.6) shows that the assumptions in (5.7)
are frequently satisfied. Therefore, under certain restrictions on f and g, we
can compute the equivalence relation ~ on Twist (£, g) by (5.5). This solves the
equivalence problem in (3.13) for Twist (f,g). Also the isotropy problem in (3.13)
can be solved similarly by (5.11). This implies results on the group of homotopy
equivalences of a mapping cone C, which are available in a better range than
correspondingly results in the literature, see, for example, Oka—Sawashita—
Sugawara. As an example we consider maps f which are elements of the
following class X.

(7.14) Definition. Let a=2 and let X be a class of maps in Top* with

the following properties: each map feX is a map between suspensions,
[:ZA-ZB,

where 4 and B are CW-complexes and where XA is (a — l)-connected,

dim(XA4)<2a—1, and dim(XB)<2a—1. i

By (7.8) the class X in (7.14) satisfies
(7.15) TWIST(X) = PAIR(X) = Top*/ ~.
Here PAIR(X) is the subcategory of all homotopy classes C;— C, (f,g€¥)
which can be represented by pair maps, see (1.2). When X satisfies (7.14) we
can solve the isotropy problem and the homotopy problem (3.13) for the
linear extension of categories
(7.16) I'/I - TWIST(X) - Twist(X)/ ~.
In fact, we derive easily from (7.6) (where we set D = %) and from (5.7) and
(I1.13.10) the following result:

(7.17) Theorem. Let X be a class as in (7.14) and let f:XA—XB, g:XX - XY be
elements in X. The set

Twist(f,g) = [Z4,EX v ZY], x [ZB,ZY] (1)
consists of all elements (£,1) with (f,1),& = f*n and we have (&,n) ~(E,ny) if
and only if there exist o, with the following properties:

aenb(EX vIY), Peri(ZXVvIY),

n+(g D= M1 @)
0 61 ¢+( Vf (—oin) + 5,
Ty, 1,0 ﬁ) in nf(Cg,E Y).
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The last condition implies =0 if dim(XA4) <2a— 1. Moreover, the natural
system I'/I on Twist(X)/ ~ is given by

(T/D(&m = [Z*A,ZYY/I(f,n,9), 3)
where I1(f,n,g) is the subgroup of all elements B with
iy(B)eimage V(i n, f). 4)

Here i,:XY < C, is the inclusion and

V(ign, f):[X*B,C,] - [2?A4, Cg],}
Viign, £)) = (. igmE(V ).
Recall that for feX we have the differences

V= —f*i) + f*(, +1,:EA~>ZBv ZB,
V/=f*i,+i,) — f*(,):ZTA>EB v B,
EVf:324-3?Bv EB.

(7.18) Remark.

(A) The images of the two homomorphisms
(9, 1),:13(EX v IY), > 13(2Y),
V(n, f):[£*B,ZY] - [2%4,2Y]
with V(n,f) (B)=(B,n) (EVS) are always contained in I(f,n,g). If
dim(ZA4) <2a—1 and if
igy:[Z*B,2Y]1—-[2?B,C,]
is surjective then I(f,n,g) is actually the subgroup generated by the
images of (g,1), and V(n, f) above.
(B) For dim(ZA4)=2a — 1 the condition on f in (7.17) (2) is equivalent to
Beimage [iy,i; —i,9],: 7 (X A X)»nf(ZX v IY),,
provided that B is simply connected. Compare Baues (1975).

By (7.7) we derive from (7.16) the following result on the group of homotopy
equivalences Aut(C,)* in Top*/~.

(7.19) Corollary. Let f:X A — XB be an element in X withdimZB < g, see (7.14).
Then we have the exact sequence of groups

[Z2A,ZBY/I(f,1,f) > Aut(C,)* —> T(f)
Here T(f) is the subgroup of units in the monoid Twist(f, )/ ~.
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(7.20) Remark. The group T(f) in (7.17) consists of all {(£,#)} for which
(&,n), in (7.11)(D =) is an isomorphism provided that C, is simply
connected.

We compute examples for (7.19) in the next section.

§7a Appendix: proof of the general suspension
theorem under D

For the proof of (7.6) we use the following excision theorem of Blakers—
Massey (1952), compare also tom Dieck—Kamps-Puppe and Gray.

(7a.1) Theorem. Let X = X, uX,, Y=X,nX, and assume Yc X,, Yc X,
are cofibrations in Top. Suppose (X,,Y) is (n — 1) connected and (X5, Y) is
(m — 1) connected, see (7.5). Then the inclusion (X, Y) <= (X, X,) induces for
Yo€Y the map
7'E,.(X1, Y,J’o)—’nr(X,XpJ’o)
between homotopy groups. This map is a bijection for r<m+n—-2 and a
surjection for r <m+n —2.
We first show

(7a.2) Lemma. Let doeD be a basepoint of D. Then (7.6) is true if
X =(D>—D v § - D) where §" is a sphere. Clearly, dim(X,D)=r in this
case.

Proof of (7a.2). For a pair (U, V) in Top® and for X in (7a.2) we have
XU, VYy=m,, (U, V,dy). (1)

The basepoint d, in V< U is given by D — V. By (1) the result in (7.6) is a
statement on relative homotopy groups in Top. Here we can use the
Blakers—Massey theorem as follows: for the mapping cone

X=C,=Cpg=B|JCpA inTop®, @)
g9

considered as a space in Top, we define subspaces

)

X ={xeC,xeB orx=(t,b)eCpA,t=1/2},
X,={xeC,lxeB orx=(t,b)eCpA, t<1/2}.

Here CpA is the cone CA in Top® which is given by the following push out in
Top:
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1x4 —0——> D

l

IxD>—IxA push

Jpr push l

D >— IpA —— CpA(=CAinTop®)
(If D= then CpA is the reduced cone on A). Now homeomorphisms
[0,1/2]1 =1 and [1/2,1] = I induce the homeomorphisms in Top

X, =CpA|JB(=CA v Bin Top”)
D
(5)
X,=1,A|/B=2,
g

where Z, is the mapping cylinder in Top”. We can sketch the situation as

Xl / %-
/
/
/
/
.
1/ 0
B
We clearly have X, u X, =X and
X,nX,=A)B(=A4v BinTop"). (6)
D

Moreover, X;nX, < X, and X, "X, < X, are cofibrations. Therefore we
can apply the Blakers—Massey theorem to the commutative diagram

g D
7[r+1(C‘A v B9A v B)(n_>7[r+ I(Cg9B)

~ ~ (7

T (X, X1NnX,) —om, (X, X,)
We now show that (X,X;nX,) and (X,,X;nX,) are a-connected (the

proposition (7a.2) is therewith a consequence of (7a.1)). Consider the exact
sequences

0.1,
0-n,(CA vB,AvB)iwr,,_l(AvB)(‘—_—)Mr,,_l(B)—»O. (8)

M
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0> n(ZpAv B)Sm,_(Av B) 2 n,_ (B)—0. )
1%

These are portions of the long exact sequences of the indicated pairs in Top
(where, however, Z and Av B= A U pB are constructed in Top?, see (5) and
(6)). Here we use the homotopy equivalences Z,—B and CAv B—B.
Therefore the inclusion i, yields a splitting in (8) and (9). Since (4,D) is
(a — 1)-connected we see that i,, in (8) and (9) is surjective forn —1<a— 1.
Therefore @ in (8) and (9) is trivial for n < a and this shows that (X, X;nX)
and (X,,X;nX,) are a-connected. Also the addendum of (7.6) is an easy
consequence of the Blakers—Massey theorem by (1): consider X; =CA v B/,
X,=AvB. O

Theorem (7.6) is a consequence of (7a.2) and of the following lemma:
(7a.3) Lemma. Let X be a based object in Top® and let p:(U,V)— (U, V') be

a map in Pair(Top®). We suppose that X and D path connected spaces in Top.
Consider the induced map

PN (U, V)= (U, V),
which is defined in the cofibration category Top®. Then the proposition

{p* is surjective for dim(X,D)< n (%)
*

and p,, is bijective for dim(X,D) <n

is satisfied provided that () is truefor all X = (D >—D v §"> D) when S" isa
Sphere.

Proof. Let xeD be a basepoint. Since X and D are path connected we may
assume that (X, D) is a relative CW-complex in which all attaching maps

[iSTT 1o X1 f(x)=x,

are basepoint preserving (r = 1) and for which X° = D. Here (X",D) is the
relative r-skeleton. For simplicity let

Xr=Xr—1UCsr—l (1)
s

be the mapping cone in Top* of f. (The argument is similar if there are many
r-cells in X" — X" ~1) We observe that X" is a based object by

D>—XcX-5D. )

The projection I, X"— Cp X" in (4) of (7a.2) yields the push out diagram
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of pairs
(I,CS Lox CS )— (CpX". X")

Y U &)

(C*S™™Lox8 ) ——(CpX ™LX

Here we set [, X=1x X/l x*and C*S" " '=1,8"'UlxCS""'. We ob-
serve that the left hand inclusion i is equivalent to a cone in Pair(Top¥), see
(I1.7.5) (1), and that we have an equivalence
h:CS" '~ C*S"~!under " 1.

Therefore (Cp X", X") is the mapping cone in Pair(Top?) with the attaching

map
(CS"™"'v DS 'vD)»(CprX" L X1

defined by gh. Now the exactness of the cofibration sequence in Pair(Top®)
and the five lemma inductively yield the result. O

§8 Example: homotopy theory of the 2-stem
and of the 3-stem

Let A% be the full subcategory of Top*/~ consisting of (n — 1)-connected
(n + k)-dimensional CW-complexes. The suspension X gives us the sequence of
functors

(8.1) AL Ak S B AR D AR

which we call the k-stem of homotopy categories. The Freudenthal suspension
theorem shows that for k + 1 < n the functor £:A*— A% | is an equivalence
of categories. Moreover, for k+ 1=n this functor is full and a 1—1
correspondence of homotopy types, and each object in A%, , is homotopy
equivalent to a suspension. We say that the homotopy types of A% are stable
if k+1=n and we say that the morphisms of A* are stable if k + 1 <n.

' The spheres S" and S**" are objects in A¥. Therefore we can restrict the
functors (8.1) to the morphism sets

(8.2) T alS") =[S, 5]
which are the homotopy groups of spheres. They form the k-stem

(8.3) 7Tk+2(52) i’7'5k+3(53) = Ty n(S") i’7'5k+n+1(5"+1)

The limit of this sequence of abelian groups is the stable homotopy group
7y which is isomorphic to 7, ,(S") for k+ 1 <n.
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The computation of the k-stem is a classical and principal problem of
homotopy theory. The k-stem of homotopy groups of spheres now is known
for fairly large k, for example one can find a complete list for k < 19 in Toda’s
book. The k-stem of homotopy types, however, is still mysterious even for
very small k. We derive from (IX.2.23) below the

(8.4) Lemma. A CW-complex in A% is homotopy equivalent to a CW-complex
X with cells only in dimension n, n+ 1,...,n+ k.

Hence, for k=0 an object in A? is just a one point union of n-spheres
or equivalently a Moore-space M(F,n) of a free abelian group. This shows
that the homotopy theory of the 0-stem is equivalent to the linear algebra
of free abelian groups.

For k=1 a homotopy type in A} is given by a one point union of Moore
spaces M(A,n) v M(F,n+ 1) where F is a free abelian groups and where A
is an arbitrary abelian group. In particular the category M" of Moore spaces
in degree n is a full subcategory of A}. Similarly, as in § 3a one can describe
the category Al by a linear extension.

For k =2 the classification of homotopy types in the 2-stem was achieved
by J.H.C. Whitehead in 1949; in particular, he classified 1-connected
4-dimensional CW-complexes in A2. We describe new proofs of this result
in this book. Steenrod, in his review of Whitehead’s paper, pointed out the
problem to compute also the maps in A2 in terms of the classifying invariants.
We now show that this problem can be solved by use of theorem (7.17) above.

Let XAZ?, n =2, be the class of all maps

f:VS"*tly VSV Sty v s
A B C D
in Top*/ ~ (where A, B,C, D are index sets) such that f induces an injective
map on the nth homology group H,,.

(8.5) Theorem. The inclusions

TWIST (X¥A43) =5 A2, and

PRIN (¥42) A2, n3>3,

are equivalences of categories.

The class X¥A? satisfies the conditions in (7.14) and for n= 3 we have
TWIST (XA42) = PRIN (XA2). Therefore we obtain by theorem (7.17) a
complete solution of the isotropy problem and of the homotopy problem,
see (3.13). This yields by (8.5) an algebraic description of the categories A?
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in terms of linear extensions of categories. The extension problem (3.13),
however, is not solved. We leave it as an exercise to describe the categories
Twist (XA2) and Prin(XA2) in algebraic terms and to compute the homotopy
relation on these categories.

Proof of (8.5:: We only prove the result for A3. For X in A% we find a
map feXA% and a homotopy equivalence C,~ X as follows. By (8.4) we
assume that X' =* Let C, X =(C,,d) be the cellular chain complex of X.
Let C%=Xkernel(d;). Since d;C; is free abelian we find a splitting of
d;:C3—»d;C;. Let C% be the image of this splitting so that C;=
"3 @ C4. The restriction d4:C5 — C, of dy is injective. The 3-skeleton of X is
the mapping cone of
g=idy:M(Ch, 2)— Y= M(C,3) v M(C,,2). (1)
Below we show that the inclusion i,:Y © C,~ X induces a surjective map
i MY —>m;3C,. (2

Therefore the attaching map of 4-cells in X is homotopic to a map
M(C,3) 5 YeC,~ X 3)
Hence the map
f=(hg):M(Cys3)v M(Cy,2)~Y @

is a map in the class X43 with C, ~ X. For the surjectivity of i, consider
the commutative diagram
i

1Y —2 s ,C, — n3(C,, Y)—‘a—)’ﬂz(Y)=Cz

g
S S P B
mAM v )y =ni(M)=C4,

where M = M(C5, 2) and where the isomorphism is given by (7.6). Since d}
isinjective also dis injective, hence by exactness i,, is sutjective. By surjectivity
of i,, we see that each map F:C,—C, (k, feXA3) is homotopic to a pair
map. Whence the theorem follows from (7.8). O

(8.6) Remark. Theorem (8.5) has many consequences for the homotopy theory
of the 2-stem. For example, one can enumerate all homotopy classes of maps
between objects in A2, or one can compute the group of homotopy
equivalences of an object in A2. Such explicit applications are described in
Baues (1984). We point out that a result as in (8.5) as well holds in the
category DA, (flat) of chain algebras and that one can study the functor
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SC,Q (17.29) on A3 by the result in (3.16). We leave this as an exercise. We
also can use (3.16) for the computation of the suspension functor X in the
2-stem (8.1). In addition to (8.5) we can use the tower of categories in (V1.6.2)
below for the computation of AZ.

As an example, for (7.19) we show the

(8.7) Theorem. Ler M be a simply connected closed 4-dimensional manifold.
Then the group of homotopy equivalences Aut(M) in Top/ ~ in embedded in
the short exact sequence of groups

(/20 > Aut (M) —>> Aut (H*(M), U)*?

Here the right-hand group is the automorphism group of the cohomology ring
of M and H is the cohomology functor. The left-hand group is the Z/2-vector
space of dimension n + & where n is the rank of the free abelian group H,M.
Moreover, = — 1 if the intersection form of M is odd, and & = O if this form is
even.

This result was independently obtained by Quinn.

Proof of (8.7). Since M is simply connected we have Aut(M)= Aut(M)*.
Recall from the proof of (I1.16.8) that M = C is a mapping cone, feXA3.
It is easy to see by (7.17) that

Twist (f, )= Twist(f, f)/ ~,

and that the group of units in Twist(f, f) is Aut (H*(M), U )°?. We can use
(7.18) (with a = 3) for the computation of the kernel

Ta( \; SHILL, f)=(Z/2r™.

For the computation of V f see the proof of (II.16.8). In (2) we also use the
Hilton-Milnor theorem for the description of 7,4( VzS?) where B is a basis
of H,. O

Remark. Kahn considers the group Aut(M) of an (n— 1)-corrected 2n-
manifold. His result can be easily derived from (7.19) as well, since M ~C,
where f:S*" 15 VS,

Next we consider the homotopy theory of the 3-stem. Various authors
worked on the classification of homotopy types in the stable 3-stem, so
Shiraiwa, Chang, and Chow, compare also Baues (1984). Using again (7.17)
we actually obtain a description of the homotopy categories in the 3-stem
as follows. Let XA2 be the class of all maps

[ MAn+2)vMB,n+1)->M(C,n+1)v M(D,n)
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in Top* where 4 and C are free abelian groups and where B and D are
arbitrary abelian groups.

(8.8) Theorem. The inclusions

TWIST (X¥43) => A3, and

PRIN (X42) = A2, n>3,

are equivalences of categories.
Proof. The result follows from (VIL.3.1) below. M

The class X4 satisfies the conditions in (7.14) and for n =3 we have
TWIST (X¥A42) = PRIN (X A2). Therefore theorem (7.17) yields a solution of
the isotropy problem and of the homotopy problem in (3.13) for the categories
in (8.8). Hence we get a description of these categories as linear extensions.
The extension problem is not solved. We can compute Twist(¥43) and
Prin(XA})), n = 3,in purely algebraic terms. The computation is fairly intricate
and elaborate and will appear elsewhere. This as well yields the classification
of homotopy types in the 3-stem, compare also Baues (1984). We point out
that (8.8) also gives us the classification of maps in A3, n = 2. One can use
(7.18) for the computation of the isotropy groups of the action T. In
particular, one can compute the groups Aut(X) of homotopy equivalences
by (7.19) for each CW-complex in the 3-stem.

§9 Example: the group of homotopy equivalences of the
connected sum (S* x S?)# (S? x S?).

The connected sum M = (S* x S%)# (S? x S2) has the homotopy type of the
mapping cone C, where
9.1) {f:S3—>Sle3vSZ\/SZ=B,
© f =g ix] + [izoja].
Here iy, i5,1i,,j, are the inclusions and [ , ] denotes the Whitehead product.
With a =3 we see that f satisfies the condition in (7.14) and that we can
apply (7.19). This yields the result below on the group of homotopy
equivalences of M. The following remark shows that the determination of
groups of homotopy equivalences is of importance for the classification of
manifolds.

Remark. The manifold M = (S! x $3)# (5% x §?) plays a role in proposition
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3.2 of Cappel-Shaneson who consider the group S(M) of smoothings of M
and who found a subgroup Z/2 = S(M). The group of homotopy equivalences,
Aut (M), acts on S(M) such that the orbits are the s-cobordism classes of all
manifolds homotopy equivalent to M. M. Kreck suggested to me to compute
Aut(M) since this might be helpful for deciding whether the non trivial
element in Z/2 < S(M) yields a non trivial s-cobordism class or not.

(9.2) Theorem. Let xe M be a base point. Then there is a short exact sequence of
groups

(Z/2)* > Aut(M)* 5> T(M).

Here Aut(M)* is the group of homotopy equivalences of M in Top*/~ and
T(M) is the group defined algebraicly below in (9.7).

Remark. The generators of the kernel of A above are the elements
(I+ii3Zn), (1+iinZn), (14 ijnZy),

where 1 is the identity of C; = M, where i:B < C, is the inclusion, and where

i;:S* < B, i,, j,:8? = B are the inclusions, see (9.1). Moreover #:S*— S? is

the Hopf map.

In the definition of the group T(M) we use the following notation: Let
n=r7n,M = Z be the fundamental group and let R = Z[n] be the groupring
of n=7. Thus R is the free abelian group generated by the elements [n],
neZ. The element [0] =1 is the unit of R. Let &:R — Z be the augmentation
with &([n]) =1 for neZ. Now let A be an R-module, we write the action of
£eR on aeA by a®. By Whitehead’s quadratic functor T (with T(4)=
n3M(A,2) = H,K(4,2)) we obtain the R-module T'(4) with the action of =
determined by the functor T

Let Aut_(A) be the set of t-equivariant automorphisms of A where t:R — R
is a ring isomorphism. This means xeAut,(A), a: A — A, satisfies a(x*) = (ax)*.
We will use the special ring isomorphisms

identity of R ify, =1,
(9.3) T=Tn =93, 1y . ; — _
(—1),:R—>R ifyg, =—1,
where (—1),[n] =[—n], neZ.
Moreover, we use the structure elements
v=—[0]1+[1]1=—1+[1]eR,
w=[e,,e,]eT(RBR),
where {e, =(1,0), ¢, =(0,1)} is the canonical basis in R@& R and where
w=[e,,e,] is the Whitehead product.

94
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(9.5) Definition. We define algebraicly the set t(M) to be set of all pairs
(&,n) with the following properties (1)---(4):

£eR, (1)
n=(n1,M3,13nr) With, 2

nie{l, —1},
n,€Aut (R@®R) where t=r1,,,see (9.3),
n3€R, e(n3)e{l, — 1},

nrel'(R@ R).
vé=1(v)'ns inR. 3
ws=T(n,)w) + (1™ in(ROR). 4

In (3) and (4) we use the structure elements in (9.4). I

(9.6) Definition. We define a homotopy relation ~ on the set t(M) as
follows: let (&,n) ~ (&, %) if and only if there exists aeR with

E=¢+tv)a, =1,

n=m
n2="n,
Ny =13+ va
nr=1nr+ o"

This corresponds to an action of the abelian group R on t(M). I

(9.7) Definition. The quotient set
T(M) = t(M)/ ~ (1)

is a group with the following multiplication; we denote by {({,n)} the
homotopy class of (£,#)et(M) in T(M):

{(&m}-{(&.m}={&E nm}. 2
Here #” = n-n’ has the coordinates
ni=ny'ny (in the group {1, —1}),
ny=n,#, (composition of automorphisms),
n3=n3n3 (in the ring R),
nr=T(n2)(nr) + (nr)".

)

Proof of (9.2). We apply (7.19) and (7.18), a = 3. First consider the universal
covering M of M where e* is the 4-cell of M,

M=R{J(Z x (8> v §? v §2)U(Z x e*). (1)
z
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Since R is contractible we get

M =~M/R=C; where 2)

f:vSisVSivsivSsi=8B, 3)
z z

fr=—t+i + 15,3, nel @)

Here [ is derived from the formula for f in (9.1). We have Lis i ]= —i3+iy;
this corresponds to the term —i% +i4*! in (4). The cellular chain complex
of M/R is

é2 — 63 — é4

| [ (5)

R®ORL R L R
where d[n] = — [n] + [n + 1] as follows from (4). Therefore we get
R R®R n=2,
HM)= Z n= 3,} (6)
0 n=4

In fact H,M =0 since M is an open manifold; one can also check that d
in (5) is injective.
Moreover, the sequence
RLR57Z-0 ()

is exact. Let

B=S'vS3vS§?vSi (8)
Then the injectivity of d implies that

Co=n4(Cs,B)>n3B—my(B,B*) = C,

is injective and therefore
nyB—»n,Cy, 9)

is surjective. This shows by (7.18) that
I(f,1,f)=image(f, 1), +image V(1, f). (10)
Here we use Vf =V fen,(B' v B),, B = B" = B. We have by (9.1)
Vi=1*"+1)—f*i")
=[5+ 5, B+ 1+ [+ 1,5 73] = D571 = [i5.J3
=[5, 07 + 1] — [, 151 + 05,51 — s, 131 + [, 72 (11)
Thus we get
EVf=EVf=[%i,i{] - [T, 555 + (26, 51 - [/ 3] (12)
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Compare (I1.15a.10). We now can compute (10). The image of V(1,f) in
T4(B) 1r4(1§) is generated by all elements (13)---(16):

—a, +olll a4e1r41§, (13)
—[0,i}],  oem,B, (14)
+[es /3], azemsB, (15)
— (85191,  BsemsB. (16)

This follows from (12). We use inclusions as in (4). Consider the following
congruences, =, module image (V(1, f)) deduced from (13)---(16) (neZ)
a=all=alPl=... = ol
0= [op,i3] = [,13]" = [, 5% 1],
0 = [y, /91 = [03,721" = [o52, /5],
0=[B5,i3]1 =[B5,i31" = [, 15].

Since a+— al" is an isomorphism we see that for all neZ we have

—a,+a'=0  a,en,B,
[0,,i2]1=0  a,em,B.
[23,j31=0 a3€M3 B, (17)

[83i51=0  Byem;B.
This implies that all Whitehead products in m,B are congruent to 0; these
generate the kernel of the suspension homomorphism

T, BonZB=(R®ROR)®Z)2. (18)
By (17) we thus get
n,B/image V(1, f) = (Z/2)*. (19)

Moreover image (f, 1), <image V(1,f) as follows from (4). Therefore we
have by (10):

na(BYI(f, 1, 1) =(Z/2)> (20)
This yields by (7.19) the kernel of A in the exact sequence (9.2) and it proves

the remark following (9.2).
Next we show that

T(M)= T(f)= group of units in Twist(f, f)/ ~. (21)
We show that
t(M) = Twist(f, f) (22)

is the subset of all (£,n) which induce an isomorphism on the fundamental
group and on the homology group (6). Thus the homotopy classes {(¢,7)}
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with (£, n)et(M) are exactly the units in Twist(f, f)/~. By definition,
Twist(f, f) is the subset of all (£, #)

(&, melS* S* v B], x [B, B] (23)
with (f, 1),& = f*n. Here we have
[S3,8° v B], =R, (24)
[B,B]=mB x n3B x m,B x n,B, (25)
where n,B= 7, n,B= R® R and where
n,B=ROT(ROR). (26)
From n=(11,n° 1% 71%) we get n* = (13, nr) and we get
N :ROR->ROR, nife))=n*, nale)=7" @7

Thus # yields the element # described in (9.5). Here #, is the induced
homomorphism on H,M and &(y;) is the induced homomorphism on
H3]\7I= Z as follows from (7). Now (f,1),.&=f*n is equivalent to (9.5)(3),
(4), in fact

(L D€ =& wd),

f*n = (2(v) 13, Tir2)(w) + ni™),
in ROT(R@R). Similarly, we see that the homotopy relation in (7.17)
corresponds exactly to the homotopy relation in (9.6), here we use (11).
g-e.d. O

§10 The homotopy type of a fiber space in topology

We now describe the results on fiber spaces which are dual to the
corresponding results on mapping cones in §7. We consider maps
between fiber spaces in topology. Using duality we apply the results on the
category Twist in the same way as in §7. This yields some new results
on the following problems which are dual to the problems in (7.1) and (7.2)
respectively.

(10.1) Describe conditions on the maps f and g which imply that the
fiber spaces P, and P, are homotopy equivalent!

(10.2) Compute the set of homotopy classes of maps [P, P,], and
compute the group of homotopy equivalences of P!

Again we use the results in §6; that is, we transform these results
into the dual language of a fibration category and we apply them in the
category Top,, of spaces over D. By (1.5.2) and (11.1.4) we know that Top,, is
a fibration category. If D = * is a point we have Top,, = Top since = is the final
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object of Top. The spaces with basepoint are the based objects in Top,, = Top.
In general a based object in Top,, is given by a fibration p: 4 —s> D in Top
and by a section 0:D — 4, PO = 1,. For example, if F has a basepoint, then

(D YU FxD—» D) is a based object in Top,, where 0:D — xcF. Now let

(10.3) f:X-Y, g:A-B

be maps in Top, and assume Y and B are based objects, which are loop
objects in Top,. We suppose that all spaces are CW-spaces in Top. As in any
fibration category we have the inclusions

(10.4) PRIN(f,g) = TWIST(f,9) = PAIR(f,g) = [P}, P, 1,.

Here P, and P, are fiber spaces in Topp, and [P, P ]}, is the set of homotopy
classes of maps in (Topp),/ ~, see (I1§8, §14).

We want to describe criteria under which the inclusions of (10.4) are actually
bijections. To this end we need a result which in a sense is the Eckmann—
Hilton dual of the general suspension theorem under D in (7.6), (this result,
however, is not obtained just by the use of the opposite category).

(10.5) Definition. Let p:B—>» D be a fibration in Top. We say p =(B|D) is
b-connected if for all d,eD the fiber p~1(d,) is a (b — 1)-connected space in
Top. This is the case iff (Z,, B) is b-connected in the sense of (7.5); here Z,
denotes the mapping cylinder of p. We define the homotopy dimension by
hodim (B|D) £ N if p~1(d,) is path connected and if n,(p~ !(d,)) = 0 for n > N.
We write hodim (B|*) = hodim (B). For example, hodim (K(z, n)) = n. I

Thus hodim (B|D) is the top dimension of a non trivial homotopy group
of the (pathconnected) fiber of B—=> D. Moreover hodim (B) is the top
dimension of a non trivial homotopy group of the (path connected) space B.

(10.6) Theorem (general loop theorem over D). All spaces in this theorem are
CW-spaces. Let Y and B be based objects in Topy, and let f:X —» Y be a map
in Topy. Assume that D and B are path connected and that B—>> D induces an
isomorphism on fundamental groups. If (Y|D) is y-connected, then the map

(7, )* WY x X|Y x X)— nh(P,|X)

is a bijection for hodim (B|D) <2y — 1 and is an injection for hodim (B|D)
2y — 1. The map (n;,1)* is defined in the fibration category Topy, as in (6.4).

Addendum. Let Y and B be based objects in Topp, and let X —> X' —> D
be fibrations in Top. Assume that X, X', Y and D are CW-spaces and assume
that D and B are path connected and that B —>> D induces an isomorphism on
Sfundamental groups. Moreover, suppose that (Y|D) is y-connected and that
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(X|X') is x-connected. Then the map
(I xp)*:mp(WY x X'|Y x X)) np(WY x X|Y x X)
is bijective for hodim (B|D) < x + y and injective for hodim (B|D) < x + y. The
map (1 x p)* is defined in the category Topy by the fibration p: X —» X'.
For X' =D this is a result on the map
PR WY|Y)>al WY x X|Y x X)

in the diagram near (6.4).

(10.6) Notation. We say that (B|D) is good if B and D are path connected
CW-spaces and if B—> D induces an isomorphism on fundamental groups.

Remark. If D =« and X = * we have P, = QY and nj(P,|*) = [QY,QB]. In
this case the map (n,1)* is given by the loop functor

Q:[Y,B]1&zL(WY|Y)>[QY,QB],

which carries £:Y— B to Q&:QY - QB.
Next we describe applications of the general loop theorem; we proceed in
the same way as in § 7. Consider again the inclusions in (10.4). We have

(10.7) PAIR(f,g)= [Py, Py1p,

provided that the projection p: P, —» X induces a surjection p*:[ X, A], —»
[P, A]p of homotopy setsin (Topy),/ = . The surjectivity of p* corresponds to
the existence of liftings F in the commutative diagram

P,—— 4
P

[

Z,—X—>»D

p

Thus obstruction theory shows that (10.7) is satisfied if (P,|X) is (y — 1)-
connected and if hodim (A4|D) < y — 1. Here (P,|X) is (y — 1)-connected if
(Y|D) is y-connected.

Next we derive from (6.4) that
(10.8) TWIST(f, g) = PAIR(f, g)
if (n;,1)* in (10.6) is surjective. This for example is satisfied if (Y|D) in
y-connected and if hodim (B|D) < 2y — 1 where (B|D) is good.

Moreover, we derive from (6.4) that
(10.9) PRIN(f,9)=TWIST(f,g),

provided that p¥ in (10.6) is surjective. This, for example, holds if (Y|D) is
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y-connected, (X|D) is x-connected and if hodim (B|D) < x + y where (B|D)
is good.

An immediate consequence of (10.7) and (10.8) is a result which is dual to
(7.11). This result yields partial solutions of the problems in (10.1) and (10.2).
Recall that a map (&,%):f - g in Twist is given by a diagram

G
J(f.l) lg

YXX—V[—)B
DNV
X

which is homotopy commutative in Topy,. Here 0: X —> D °> B is trivial map.
For a pair (X|D) =(p:X —> D} in Top we define the homotopy groups

(10.10)

(1011) T[”(XlD):T[”(ZP,X)=7T”-1(F),

where F is the fiber of the fibration p. Here we assume that basepoints in D
and F are chosen. If (X| D) is good as in (10.6) then the groups do not depend
on the choice of basepoints since in this case the fiber F is simply
connected.

The pair of maps (£, #) in (10.10) yields associated twisted maps F:P,— P,
(see §2) which induce the commutative diagram below of homotopy
groups. We assume that (4|D), (B|D), (X|D) and (Y| D) are good.

e (VD=2 (P, 1 D)L (X 1D n YD)
U SIi-
(1012) 71','+1(YXX|X) F*=(P ,f* n,(YXX|X)
Nx

g, T+ ((B|D)—— ni(Pg|D)__p*_’7Ti(A ID) T*’TC,'(BI D)
The rows of the diagram are exact sequences induced by the fibrations P, —» X
and P,— A respectively. The isomorphisms i are canonically given since the
corresponding fibers coincide. If (Y| D) and (B| D) are n-connected and if hodim
(X|D), hodim (4| D) < n — 1 we see that ¢ is actually determined by &, and #,
in (10.12). In this case we write ¢ = (£, 5),,, in fact we have

_{6;1*1'8" izn,
pilé.p, i<n
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(10.13) Theorem. Consider the mapsf,g in(10.3) and assume that (A|D), (B|D),
(X|D) and (Y|D) are good in the sense of (10.6). Moreover, assume that (Y|D)
and (B|D) are n-connected, that hodim (X |D), hodim (A|D) < n — 1 and hodim
(B|D) < 2n— 1. Then we get:

(a) Anabstract homomorphism ¢:7 (P ;|D)— n,(P,|D)is realisable by a map
P,— P, in Topy if and only if there exists
(&, n): f— geTwist

with @ = (£, 1),
(b) Thereis a homotopy equivalence P, ~ P, inTopy, if and only if there exists
(&, n):f > geTwist such that ¢ = (&, 1), is an isomorphism.

Using the Whitehead theorem proposition (b) is a consequence of (a). As
in (7.13) we have the following special case of (10.13) which is a good criterion
for a solution of problem (10.1).

(10.14) Corollary. We write X = X (k,n) if X is a CW-space with non-trivial
homotopy groups mn, only in dimension d, k £d < n. Consider maps in Top*
(n24)

[ X=X2n-2)->Y=Y(n2n-2),
g:A=A(2,n—2)-» B=B(n2n-2)

Then there is a homotopy equivalence P, ~ P, if and only if there is a homotopy
commutative diagram in Top

X —— 4

J(f. 1 19

Y X X T) B
(QN / 0
X
for which & and 1| Y:Y - B are homotopy equivalences in Top.

(10.15) Example. Consider maps
g, f:K(Z,2)=CP_,—K(Z,4) x K(Z, 6). ()
The homotopy class of f is given by

f=(f4“2’f6“3) (far f6€2) 2)
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where ue H3(K(Z, 2), Z) is the fundamental class. We get by (10.14) with n = 4:

Je,te{+ 1, — 1}, N€eZ such that
Pfﬁpgé{g4=3f4, (3)
ge=1f6+ Nf4

Proof. Since [K(Z,4),K(Z,6)] =0 we see that the map # in (10.14) is given
by maps

’14'1:K(Z9 4)_)K(Z: 4)9 ’14629

ne*1:K(Z,6)— K(Z,6), ne€L,

N-k:K(Z,4) A K(Z,2)> K(Z,6), NeZ.

Since 1| Y is a homotopy equivalence we have n, = + 1, 4 = + 1. Moreover,
E=¢&,1 with &, = 4 1. Now the equation #(f, 1) = g¢ yields the result in (3),
compare (II.15a.7). O

Next we dualize the result in (7.17).

(10.16) Definition. Let y =2 and let X be a class of maps in Top with the
following properties: each map fe X is a map between simply connected loop
spaces

[:QX ->QY,
where X and Y are CW-spaces and where QY is (y — 1)-connected and where
hodim (QX) <2y — 1, hodim (QY) <2y — 1. I
By (10.8) the class X satisfies
(10.17) TWIST (X) = PAIR (X) = Top/ ~.

Here PAIR (X) is the subcategory of all homotopy classes F:P,— P, (f, ge¥)
in Top/~ for which there exists a homotopy commutative diagram

with g:QA4A - QB, [:QX > QY.
When ¥ satisfies (10.16) we can solve the isotropy problem and the
homotopy problem for the linear extension of categories (see (6.6)):

(10.18) I'/I - TWIST (X) - Twist (¥X)/ ~.

(10.19) Theorem. The set
Twist(f, g) = [QX, Q4] x [QY x QX,QB], 1)
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consists of all elements (&, 1) with gé =n(f, 1). We have (&,n) ~(&,,n,) if and
only if there exists o with the following properties:
oae[QY x QX,QA4],,
C+alf,1)=¢,, } 2
0=7n,—n+(Vg)*(— o po).
Moreover, the natural system T'/I on Twist(X)/ ~ is given by
T/ m)=[QX,Q*Bl/I(f, & 9)- ()
Here I({, &, 9) is the subgroup of all elements § with
p}"(ﬁ)EImage V(fp-ﬁ g)9 (4)
where p:P; —»> QX is the projection and where
V(éps.9):[P;,Q2A]— [Py, QZB],}
ViEp;,9) () = L(Vg) (v, {py)-
Recall that we have the difference

Vg= —gp, +49(p; +p,): Q4 x QA—-QB,

where p, + p;: QA4 x QA4 - QA maps (0, 7) to T + 6. Moreover the partial loop
operation L yields

(5)

L(Vg):Q*4 x QA - Q?B.

The theorem above is an easy consequence of (10.6), (5.7) and (I1.13.10).
We point out that Vf =V for feX since Y is an H-space by the assumption
on QY in (10.16).

(10.20) Corollary. Let f:QX — QY be a map between simply connected loop
spaces, where X and Y are CW-spaces. Moreover, suppose QY is (y—1)
connected, hodim (QX) < y—1 and hodim (QY) <2y —1. Then we have the
short exact sequence of groups

0-[QX,Q*Y]/I(f, 1, f)— Aut(P;)- T(f)—0.

Here T(f) is the subgroup of units in Twist(f, f). We have (¢, n)e T(f) if and
only if & and n|QY:QY—QY are homotopy equivalences.

Proof. We can apply (10.7) since hodim (QX) < y — 1. Moreover this implies
that o in (10.19)(2) is trivial. O

Remark. The exact sequence in the corollary was obtained by Nomura (1966)
provided that QX is (x — 1)-connected and hodim (QY)<y+ x. In this
case #|QY determines # and Twist(f, f) =Prin(/, f). Compare also Rutter
(1970).
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(10.21) Example. Let f,, f¢eZ and let
f=(fa1?, feu®):K(Z,2)— K(Z,4) x K(Z,6) (1)
be a map as in (10.15). Then we have by (10.20)
Aut(P;)=T(f), @
where T(f) as a set consists of all tuple (¢,, %4, 6, N) with

62’ Nas 'Iae{l, - 1},

NeZ,

Ja=naSs

J6&2=FeMe + N f4.
Multiplication in the group T(f) is given by

($2,Mas Mo NIEo Mg, Mo, N') = (£285, Nala, N6ts, NN’ + NES). )]

()

§10a Appendix: proof of the general loop theorem over D

We will use the following theorem which plays a role dual to the Blakers—
Massey theorem.

(10a.1) Lemma. Let A < X be a cofibration and let p:E —> X be a fibration in
Top with fiber F. Let E , —>> A be the restricted fibration and let G be a local
system of coefficients on X. If (X, A) is n-connected and if F is r-connected, then

p*:HYX, 4, G)— HE, E , p*G)
is an isomorphism for k <n+r+ 2 and is a monomorphism for k <n+r+2.

Proof. Without loss of generality all spaces are CW-complexes. We may
assume that X — 4 has only cells in dimension =n+ 1 and that F — % has
only cells in dimension = r + 1. Therefore E — E , has cells of the form e x #
(where e is a cell in X — A4) and cells of dimension = n+ r + 2. This yields
the result. Compare also (6.4.8) in Baues (1977). O

For the proof of (10.6) we first show that the following special case is
satisfied. Let m = ;D and let 4 be n-module. Then we obtain a based object
in Top,, by the pull back

L(A,n) — L(4,n)

1 t
(10a.2) ¢ o pull i s

D ——Kml)
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Here d is a map which induces the identity on =, and L(4, n) is the space
considered in (I11.§6).

(10a.3) Lemma. Theorem (10.6) is true if B is a based object of the form L(A, n)
in (10a.2). Clearly hodim (B|D) = n in this case.

Proof of (10a.3). Consider the pull back diagram (in Top,):

P, —> WYxX=4
[
14 pull P Z
AL (1)
X 1) _ ‘/_
\ » YxX
Eg

Here we turn (f, 1) into a fibration in Top and we turn p into a cofibration
in Top. Let E —» Z be given by r*E, and apply (10a.1) to

pei(E, E)—(Z, A). 2

The fiber F of E— Z is the fiber of (f, 1). Since (f, 1) is a section of the
fibration Yx ,X - X we see that F is (y — 2)-connected since (Y|D) is
y-connected. For the same reason the pair (Z, A) is (y — 1)-connected; here
the fiber of A = Z is the fiber of (0,1):X — Y x X. Now (10a.1) shows that
(2) induces a homomorphism

p¥:H"Z,A,G)~ HE, E ,, p£G), 3)
which is an isomorphism for
n<(y—1D+@y-—-2)+2=2y—1, 4)

and which is a monomorphism for n < 2y — 1. Next we observe that there
is a homotopy equivalence

(Z,, P;) ~(E, E,) in Pair (Top). &)
Moreover for B = L(A, n) we have by (I11.§6)

H'(Z,, Py) = ny(P/|X), ©
H"Z,A)=nl(WY x X|Y x X),

and by (5) the map (pg)* in (3) is equivalent to (-, 1)* in (10.6). This proves the
proposition in (10a.3). O

The following proof is essentially dual to the argument in the proof of (7a.3).
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Proof of (10.6). Consider the based object
D->B-"D (1)

in (10.6). By the assumptions the fiber F of p is simply connected. We now
use the Postnikov decomposition of p, see (I11.§ 7). Thus we may assume that p
has the factorization

pB=By—»---B,—»B,_ —>»---B; =D, )
where each B, —> B, _, is a principal fibration in Top,, with classifying map
fuBoi—L,=L(m,n+1), n=2 3)

Here n, = n,F is a m;D-module by (1) and L, is the based object in Top,, in
(10a.2) above. By the composition

0:D-B—»B, @
each B, is a based object in Top,. Now consider the diagram
7’1
B,
i q pull
fll

o Bn—l

Here f, is based up to homotopy in Top,, since
£.0=pf,0~p0=0 over D. 6)

In fact, we have a homotopy f,0~0 since WL,—» D is a homotopy
equivalence over D. Diagram (5) yields based objects

L,=02L,—»D)

WL, = (D 2% WL, — D)

for which we have the pull back diagram in Pair (Top):

(WB,1B) — (WWL,WL,)

ip y )

(WB,-1B,-1) —— (WL,IL,) = (WL,|L,)
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Using the homotopy in (6) we see that WL, is homotopy equivalent over L,
to WL,. Moreover § is dual to a cone, see in (I1.7.5)(1). This shows that p
in (7) is actually a principal fibration in Pair (Topy) with classifying map
Wf,. Now the exactness of the fibration sequence in Pair (Top,) and the five
lemma inductively yield the proposition in (10.6) by use of (10a.3). In a
similary way we prove the addendum of (10.6). O



V1

Homotopy theory of CW-complexes

In the chapter we continue the work of J.H.C. Whitehead on the combinatorial
homotopy theory of CW-complexes. We show that there is a ‘CW-tower of
categories’ which approximates the homotopy category (under D) of relative
CW-complexes (X, D). The tower is a new useful tool for the homotopy
classification problems; it is a special case of the tower TWIST,/~ in the
next chapter.

Most of the results in the classical paper ‘Combinatorial homotopy II’ of
Whitehead are immediate and special consequences of the CW-tower; we
also deduce the final theorem in Whitehead’s paper ‘Simple homotopy types’.
We not only give conceptually new and easy proofs of these results but also
obtain generalizations to the relative case.

For example, we show that (for n,(D)=0) the homotopy types under D
of 3-dimensional relative CW-complexes (X, D) are classified by the purely
algebraic 3-dimensional crossed chain complexes under the group =, (D). This
result is due to Whitehead for D = «.

Moreover, we describe finiteness obstructions for relative CW-complexes
(X, D) which for D = x coincide with those of Wall (1966).

We also derive new results from the CW-tower concerning the homotopy
classification problems. In particular, applications on the classification of
homotopy types, on the group of homotopy equivalences, and on the
realizability of chain maps are described.

§1 Crossed chain complexes

Crossed chain complexes (under the trivial group) are the ‘homotopy systems’
introduced and studied by Whitehead is his paper ‘Combinatorial homotopy
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IT. Moreover, they are special crossed complexes as defined by Brown-
Higgins. We introduce the category of crossed chain complexes (under a
group) since this is the algebraic bottom category for a tower of categories
which approximates the homotopy category of CW-complexes.

Let D be a well-pointed path connected CW-space and let Top® be the
cofibration category of topological spaces under D. We consider the sub-
category

(L1 CW?2 < Top?.
The objects of CW? are relative CW-complexes X = (X, D) with skeletal
filtration

D=X°cX'c..climX"=X. (1
Here X" is obtained from X"~ ! (n = 1) by attaching n-cells. We derive from

D =X° that X is a path connected. Moreover, we have attaching maps
in Top*
fpZ izt =vsloxmt 2
Zn

and homotopy equivalences C, ~X" under X"~ '. Here Z, denotes the
discrete set of n-cells of X — D. Since D = X° is path connected we can assume
that f; =0 is the trivial map so that

X'~(ZZ!)v D underD. 3)

This shows that X is a complex in the cofibration category Top*, compare
(T11.3.1) and (IT1.5.3).

Remark. We can consider (X, D) as a complex in Top? with attaching maps
(f, :Z""YZ} v D—>X""! where i:D< X"~ ! is the inclusions and where
(Dcx"1ZF v D25 D) is a based object in Top®. 4)

The morphisms f:X —»U in CW5 are cellular maps or, equivalently,
filtration preserving maps,

fXneu, &)

under D. The k-homotopies, defined in (III.1.5) yield a natural equivalence
relation, £, on CW3. For k=1 we know by the cellular approximation
theorem that

CW2/~ = CW2/ ~ = Top®/ ~ 6)

is a full subcategory of the homotopy category Top?/ ~ of maps under D.
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In this section we study the diagram of functors (where G = =, (D))
ng [~ p=C%
1.2 & )
-2 .| H(G)/ =

Chain}/~ < C

and a natural isomorphism C, = Cp. Here C, carries the relative CW-
complex (X, D) to the (relative) cellular chain complex

CX,D)=CyX,D) (1)

of the universal covering X of X; this functor is defined in (I11.5.6). The functor
p carries (X, D) to the (fundamental) crossed chain complex p(X, D) = C3’{ X"}
given by

...i»n3(X3,X2)iﬂtz(Xz,Xl)—di”H(Xl) (2)

with p, = (X", X"~ 1), see (II1.10.6). Here we have
7 =7,(X) = cokernel(d,). 3)

To this end we define the algebraic category of crossed chain complexes as
follows.

(1.3) Definition. A crossed chain complex p = {p,.d,} is a sequence of homo-
morphisms between groups
ds ds d2

ad Thand Zandfee 1)
such that d,_,d,=0 for n =3 and such that the following properties are
satisfied. The homomorphism d, is a crossed module the cokernel of which is
n=p,/d,p,, see (11.7.14). Hence kernel (d,) is a right z-module. Moreover,
d,mnz4) and d;:p;—kernel(d,) are homomorphisms between right =-
modules. A crossed chain map f:p — p’ between crossed chain complexes is a
family of homomorphisms between groups (n = 1)

fn:pn_)p;l Withfn—ldn=dnfm (2)

such that f, is f,-equivariant and such that f, is f,-equivariant, where
fi:m— is induced by f,, n=3. Hence (f5,f,) is a map between crossed
modules, see (I1.7.14). For two chain maps f, g:p — p’ a homotopy o: f ~g is
given by a sequence of functions

Unifn=Pusr (n21) 3)



1 Crossed chain complexes 309

with the property (n = 2)
—f1+g1=d2a1 and —fn+gn=da+ad, (4)
where a, is homomorphism between groups which is f;-equivariant for n =2

and which is f,-equivariant for n>2. Moreover, @, is an f;-crossed
homomorphism, that is,

ay(x + ) = (0 x)" + oy y(x, yep,). (5)
(

More generally, we use the following notation on crossed homomorphisms.
Let = be a group and let M be a group on which 7 acts from the right via
automorphisms. We denote the action of yen on xeM by x*. Moreover, let
#:N > be a homomorphism between groups. An #-crossed homomorphism
A:N - M is a function which satisfies
(1.4 A(x + y) = (Ax)"™ + (Ay).

As usual we write the group structure additively, x, ye N. We call 4 a crossed
homomorphism if 7 is the identity; this is a derivation if M is abelian, see (IV.7.1).
The fundamental crossed chain complex p(X,D) in (1.2) has various

‘freeness properties’ which we describe as follows in (1.5), (1.7) and (1.12)
respectively. For n = 1 we have the function

(LS)  hpytip,=mX" X" 1) = my(R7 XY — H (X XY,

where the Hurewicz map h is surjective for n=2 and bijective for
n>2. For n 22 the function hp,' is a homomorphism of groups which is
(A:m, X! > m, X)-equivariant for n=2 and which is n,(X)-equivariant for
n = 3. This shows by (IIL.5.7) that p,, is a free n;(X)-module for n = 3. A basis
Z, is given by the inclusion

Z,cpa=mX" X"TY), e, (1)
which carries the cell e to the characteristic map c,; here we use the homotopy
equivalence C,; ~ X" in (1.1)(2). The inclusion (1) is given for n=1. This
yields via hp; ' in (1.5) the inclusion

Z,=C,(X,D), e—e=hp (c.), 2
which gives us a basis Z, of the free 7, (X)-module C,(X,D) for n> 1.

Next we consider p, = n;(X?). Let { Z, ) be the free group generated by the
set Z,; and let A * B be the free product of the groups 4 and B (this is the sum in
the category of groups). By the Van Kampen theorem we know that for well
pointed spaces 4, B

(1.6) (A v B)=n,(A)*n,(B).
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This gives us by (1.1)3) the isomorphism of groups (G = =, (D))

1.7 pr=mX'an,(ZZ} vD)=<{Z,)*G.

Wecall{Z, ) *G a free group under G with basis Z . The attaching map f, of 2-
cells (1.1)(2) gives us the induced map on fundamental groups

(1.8) f=n,(f2):{Z,)>mn X' =(Z >+G.

The homotopy class of f, in Top* can be identified with this homomorphism
f. Moreover, we have the commutative diagram in the category of groups

d
(X% XYY —— m X!

N

(Zy) T%ZO*G

where i is given by the inclusion Z, < m,(X?, X*)in(1.5). This is clear since d,f,
is the attaching map of e. The normal subgroup N fZ, generated by fZ, in
{Z,>*G is the image of d, so that

(1.10) 7, X = cokernel(d,) =({Z)*G)/NfZ,.
Therefore we call f a presentation under G of the group =, (X). If D=+
(G = 0) this is the usual presentation of the fundamental group given by the

attaching map of 2-cells. For the freeness property of (1.9) we need the
following definition (see (I1.7.14)).

(1.11) Definition. A free crossed module (d,i) associated to f:{(Z)>—p, is
defined by the following universal property. For each crossed module d’' and
for each commutative diagram of unbroken arrows

d
P2 >
| \ /
]
Fz} {Z> / Fy
P2 y > P

in the category of groups there is a unique map (F,,F,):d—d’ between
crossed modules such that F,i = F. We call i:Z < p, a basis of the free crossed
module d. I

By a result of JJH.C. Whitehead (1949) we know:
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(1.12) Theorem. (d,,i) in (1.9) is the free crossed module associated to the
presentation f of the fundamental group. Moreover, the kernel of hp,* for
n=2, see (1.5), is the commutator subgroup of m,(X? X*).

We study further properties of free crossed modules below. With the freeness
properties in (1.5), (1.7), and (1.12) we define the category H(G) in (1.2) as
follows.

(1.13) Definition of the category H(G). Let G be a group. Objects of H(G) are
free crossed chain complexes under G given by a crossed chain complex
p = (p,,d,) with the freeness properties (a), (b), (c),

(@) p, is a free group under G with a basis Z, = p,, p; =<{Z, >*G,

(b) d,:p,— p,isafreecrossed module associated to f:{ Z,> — p, with basis
Z,<p,, and

(c) for n = 3 the n-module p, with &= = p,/d,p, is a free n-module with basis
Z,< Py

A morphism f:p— o' in H(G) is a crossed chain map for which f is the identity
on G, see (1.3)(2). Moreover, a homotopy «: f ~ g is a homotopy as in (1.3)(3) for
which o, is trivial on G, «;|G = 0. An object p in H(G) has dimension < n if
p,=0 for k>n. Objects of dimension 2 are free crossed modules
under G. 1

By use of the properties (1.5), (1.7) and (1.12) we see that p(X,D) is an
object in H(G). Hence the functor p:CW{ —H(G) is well defined by (1.2)(2).
We now define the functor C in (1.2).

(1.14) Definition of the chain functor C on H(G). Let p =(p,.d,) be on object in
H(G) with basis Z, < p,. We define C(p)=(rn,C,) in Chain; by the group
n=p,/d,p, and by the free z-module

C,= Z@Z[n], (1

generated by Z,. Let 1:p; —» = be the quotient map. We get maps
h:p,—C, (n21), 2

as follows. For n = 2 the map h, is the unique A-equivariant homomorphism
of groups with h,(e) = e for eeZ,. For n =1 the map h, is the unique A-crossed
homomorphism with h;(g) =0 for geG and h,(e) =e for ecZ,.

We define the boundaries 0,:C, — C,_; of the chain complex C,, by those n-
equivariant maps which make the following diagram commute
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d d d
> P4 > p, = p; —2—p,
~ Jm ~ JhJ jhz Jhl 3)
— C, P OF} 2, C, 2, ¢,

There is, in fact, a unique @, with h,d, = d,h,. For a map f:p—p’ in H(G),
which induces f;:n— ', let

C(f):Clp)—Clp) (4)
be the unique fi-equivariant homomorphism for which k,f, = C,(f)h,,
n = 1. This completes the definition of the functor C:H(G)— Chain;. I

(1.15) Proposition. The chain functor C on H(G) is well defined and there
is a canonical natural isomorphism Cp(X, D)= C*(X, D) of chain complexes
in Chainy. Moreover, the functors p and C induce functors on homotopy
categories as in (1.2).

Proof. The natural isomorphism of =y (X)-modules C,=Cp(X,D)=
C.(X,D)is given by er— ¢, e Z,, n = 1. Equivalently, the following diagrams
are commutative (n = 2)

anl —_— 71'1(X1,D) Pn = nn(Xn’Xn—l)

b e B e

¢, = Cx,py ¢,= C(X,D)

In (1.16) below we show that the differential 0, of Cp(X) coincides with the
differential ¢, of C*(X , D). Similarly, one shows that the induced maps on C,
coincide with the induced maps on C,(X,D). This shows that Cp = C,isa
natural isomorphism. One can check that p and C are compatible with
homotopies. For this consider the cylinder I,X in CWJ, which is a relative
CW-complex under D. We obtain a cylinder I in H(G) by computing
I(p(X)) = p(IpX). This cylinder I induces the homotopy relation ~ on H(G)
defined in (1.3)(3) and (1.13). We leave the details to the reader, compare also
§3. O

(1.16) Lemma. Let f be the attaching map of 2-cells in (1.9) and let 0, be the
differential of C*(X, D). Then we have 0,¢ = h, f(e) for ecZ,.
Proof. For f(e)e{Z,>*G we have the description

flo=y=a+y +oy+y2+-+ ot +y,t+a, (H
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where ¢,€G, y,€Z, or — y,eZ,. Let A:p, = (Z,>*G - 1,(X) be the quotient
map. We consider (1) as a path in X, let  be the covering path of y which ends
in *€X. This path can be computed by the rule

(x+y) =2-A) + 9. )

InC 1(X, D) all elements &;- () vanish since these paths lie in D. Formula (2)
corresponds to the formula for a crossed homomorphism. For xeZ, we have
the path % which corresponds to the generator £eC, (X, D). Thus (2) shows

02(&)=hyf(e), ()
where h,:{Z, >*G - C,(X, D) is the A-crossed homomorphism with h,(x) = %

for xeZ, and h,(2) =0 for aeG. This is exactly the map h, which we used
n (1.14)(2). More explicitly, we derive from (1) and (3) the formula

Z A(p)eC,x
(117) Wlth ﬁk=yk+0tk+yk+1+Otk+1+---+y,,+ot,,,
and §=0 ifyeZ, and j=y if —yeZ,. O

This formula is the well known Reidemeister—Fox derivative of f(e),
compare also Brown—Huebschmann. We now describe the connection of this
formula with the difference construction Vf and with the partial suspension
which are concepts available in any cofibration category, see (I1.§12). In
particular, these concepts do not depend on the existence of a universal
covering.

We first introduce some notation on groups. For groups A and B let A*8 be
the normal subgroup in 4 = B generated by A, this is the kernel of the projection
p, =0x1:4%B— B. Recall that we write the group structure additively. The
group multiplicationis +, theinverse is —, the neutral element is 0. The trivial
group is 0 and 0:4A —->0— G is the trivial homomorphism. For a, beG the
commutator is (a,b)= —a—b+a+b=—a+a®° witha®=—b+a+b.

(1.18) Lemma. For xe A*® there exist a;c A and b;e B such that x = a* + ---
+ abr.

Proof. For xeA*B there exist a,eA, p,eB with x=f,+a, + 8, +--- +
a, + B,. Since x is trivial on B we know By + B, +--- + B, = 0. Now we set
b,=8,+---+B,(i=1,...,n), then the proposition is satisfied. O

Wederive from (1.6) and (1.18) the isomorphisms of groups (B a well pointed
space and Z a set)

(1.19) 1(EZ* v B),=(Z)™®=(Z x 1,B).



314 VI Homotopy theory of CW-complexes

Here m,(4 v B), =kernel(0,1), is given by the projection p,=(0,1):
A v B - B which induces p, =0*1 on 7, A*n,B. The isomorphism y carries
the generator (x,a)eZ x =, B of the free group (Z x =, B) to the element x*
Now let f, = f:XZJ — X! be the attaching map of 2-cells in (1.1}2). We
consider X! =%Z; v D as the mapping cone of the trivial map f, see (1.1) (3).
Then the difference
(1.20) Vfi=—i,f+,+i)fe[ZZ],2Z] v X'],
is defined as in (I1.12.2). The map V fis trivial on X* and hence V finduces on
fundamental groups the homomorphism
Vf:<22>—><zl>‘p‘=n1(zzl+ VXl)z- (1
We denote this homomorphism as well by Vf since it is an algebraic
equivalent of the homotopy class in (1.20). The isomorphism in (1) with
p. =m,(X") is given by (1.19). We now show that Vf in (1), restricted to
generators, is the composite map
V12, K2 5%G=py 5 <Z,)™", 2

where V is the unique crossed homomorphism which satisfies V(x) = x for
xeZ, and V(a) =0 for aeG.

Proof of (2). Let Z, =Z', =Z". Then i, and (i, +i;) in (1.20) correspond to
homomorphisms between groups (G = n,D)

i iy +1,:(Z, )G >(Z ) *{Z])*G, (3)
which extend the identity on G and which satisfy i,(y) = y” and (i, + i,)(y) =
y'+y for yeZ,. Here y', y” are the elements in {Z', > and {Z] >, respectively,
given by yeZ,. For — yeZ, we get

(2 +i)y) = =G +1)(—Y)

=—((=y"+(=y)=y+y" (4)
Now let y be a word in (Z,>*G as in (1.16) (1). We write y” and y’ for the
corresponding words in (Z7 > *G and (Z >*G, respectively, and we set

X= =y +x +y'e{ZH)x{Z3)*C
for x, ye{Z, > * G.Suppose we have f(e) = y,eeZ,, then the definition of V f in
(1.20) yields
(VAe)=—(ao+yi+ay+ -+ y;+ )

oo+, i)y o+, + i)y, + . (5)

Using the elements f§, defined in (1.17) we see by (4) and (5)
(VA =y + 32>+ - +yim. (6)
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On the other hand, the definition of V in (2) shows V(— x) = — x for — xeZ,,
hence 0= V(— x + x) = (V(— x))* + V(x), and therefore V(x) = — (—x)* = x*
for — xeZ,. Now one can check by (6) that (V f)(e) = V(f(e)) and the proof of

(2) is complete. O
We derive from (2) that the following diagram is commutative (see (1.9))
n,(X%4 XY & » n,X'=p!
v s
h iz -—Vf’ (Z ¥ . hy
AN
C,(X,D) Py » C,(X,D)

Here E ;is the homomorphism of groups with E /(x*) = %-A() for xeZ, a€p,,
Aipy —> m,(x), see (1.5)(2). By definition of h, and V, respectively, we
immediately get E V =h,. The operator E s can be described by using the
partial suspension E since the diagram

n(ZZT v XY, =(Z,y*

(1viLE l IEI ®)
n,(Z*Z, v X?), = C,(X, D)

T

commutes. Here 1 is the isomorphism of x,(x)-modules as in the proof of
(I11.5.9). Moreover, E is the partial suspension in (I1.11.8) and i: X' < X? is
the inclusion. One readily checks, by using (11.11.13), that (8) commutes.

Remark. From (7) and (8) we deduce that (1 v i), (EVf) represents d,, this
proves the commutativity of diagram (I11.5.9)(1) for n = 1. In similar way one
can show that (I11.5.9)(2) commutes. )

§2 The functional suspension and the Peiffer group for 2-
dimensional CW-complexes

We show that the classical Peiffer group of a presentation is connected with the
functional suspension defined in (I1.11.6). Let (X, D) be a CW-complex in CWg
as in (1.1). The attaching map

2.1) f=fyZZ}5X'=3Z} v D

of 2-cells with X? = C, gives us the following commutative diagram which is a
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special case of diagram (I1.11.6) for the definition of the functional suspension.

n(CXZ; v X', XZ} le)—?——»nl(ZZQ v XY,

§ @, [,

71:2X1 —i—>71:2X2 T»TCZ(XZ,XI)——MII(XI)_ (22)

dy=2
¢hp;‘

Hy(X%, XY= C,(X, D)

We now describe various properties of this diagram. We know, that (7, 1),
is surjective by the ‘general suspension theorem’ (V.7.6). Moreover, we know
that hp, ! is surjective and that
(2.3) kernel(hp, ') = [p2,02] < p, = T,(X?, X 1)
is the commutator subgroup of p, denoted by [p,, p,], see (1.12) above.

We derive from (1.19) the isomorphisms

(2.5) M(EZ7 v X1),={Z,)" 5{Z;xpy),

where p, =, X'. This shows that (f, 1), in (2.2) satisfies
(2.6) image(f, 1), = Nf(Z,) = m, X",

where Nf(Z,) is the normal subgroup generated by the subset f(Z,), see (1.8).
We derive from Whitehead’s result (1.12) the

(2.7) Proposition. The kernel of (n;,1),0" " inn(ZZ3 v X'), =(Z, )" isthe
normal subgroup generated by the Peiffer elements
<xa,yﬁ>f = — x%_— yﬁ +x* 4+ yﬂ—a+f(x)+a,

where x,yeZ,, o, fep,.
Proof. Let P, be the Peiffer group; this is the normal subgroup of {Z,)***
generated by the Peiffer elements. Then the homomorphism

P£=<Zz>*pl/Pf—’P1, (%)
induced by (f, 1), =f*1 is the free crossed module associated to f:{Z,) — p;.
This follows, since the Peiffer elements correspond exactly to the defining
equations of a crossed module and thus (x) has the universal property in (1.11).
On the other hand, n,(X2, X')—>n, X" is the free crossed module by (1.12),
hence we obtain the result in (2.7). Compare also Brown—Huebschmann.

O

Next we consider the composition E r=hpy'(n,,1),07" in (2.2) which is
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part of the diagram
T(EZS v XY), = (Z,)*

(2.8) (Lv i)*EJ 1E,
m(£2Z3 v X1), = Cy(X, D)

Here 7is the isomorphism of , (X)-modules in the proof of (IT1.5.9). Moreover,
E is the partial suspension and i:X' = X2 is the inclusion, compare (1.20)(8).
One readily checks that diagram (2.8) commutes (by using (I11.11.13)) and that
the homomorphism E 1 of groups satisfies E (x*) = ﬁ-l(a) where xeZ,, aep,,
Aipy —> m,(x). Here % is an element in the basis of C,(X, D), see (1.5)(2),
and %-A(2) is given by the action of =, (x).

(2.9) Definition. For the relative CW-complex (X, D) in CW5 we define the
group

I',(X,D) = j~'(ker(d,) nker (hpy 1))

= j~!(ker(d2) N [02,p2])
= E (ker(f, 1), nker(l v i), E),

which is a subgroup of n,(X?2). Here we use the operators in (2.2) and (2.8).
Moreover, E, = j~(n,,1),0° 1is the functional suspension, compare (I1.11.7).
The second equation is a consequence of (2.3) and the third equation follows
from (2.8) by the surjectivity of (n, 1),. I

We point out that the third equation is well defined in any cofibration
category.
(2.10) Proposition. For D = % the group T,(X, *) =0 is trivial. Moreover, for
D = x the Peiffer group P, in (2.7) satisfies P, =ker(f,1), nker(1 v i), E.

Proof. This follows since for X' =XZ{ we have n,X' =0 and since hp,’
induces an isomorphism n,X2 =~ H,X? where n,X? =ker(d,). O

In general, the group I',(X,D) is not trivial. We have the short exact
sequence of n,(X)-modules

(2.11) 0-T,(X,D)-',(X,D) L jT,(X,D)-0,

where T',(X, D) = image(n, X! - n,X?), see (II.11.6) and where jl~“2(X, D) =
ker(d;)n[p;, p,] by definition in (2.9). The sequence (2.11) is natural for maps
in the homotopy category CW§/~.
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(2.12) Proposition.

(A) Let Nf(Z,)=d,(p,;) = X" be the normal subgroup generated by the
subset f(Z,), see (2.6). The second homology of this group with integral
coefficients is

JT5(X,D)= H,(NfZ,, 7).
(B) Let i:G = n,;(D)—> n=mn,(X) be induced by the inclusion D = X. Then

I',(X,D) = Ho(D;i*Z[n])
=7,(D) @ *7[x].

Z[G]

(2.13) Addendum. If 7,(D) =0 then I',(X, D) =0. Moreover for D = * we have
(X, = jT,(X, %) = Fy(x%) =0.
Proofof (2.12). Formula (A)is based on the result of Ratcliffe (1980) that d,,in (2)
below is trivial. Consider the short exact sequence
0>R—p,—>N-0 (1)
of groups where N = d,p, = NfZ,. This sequence induces the exact sequence

H,p, <% H,N - R— Ab(p,) > Ab(N), )

where Ab = abelianization. A different proofis due to Ellis. For the addendum
we point out that for D = « the group N is free and hence H,N = 0, compare
also (2.10).

We now proof (B). For this let p, =7, X" and let j:n,D — p, be induced by
D c X'. Then we have the following commutative diagram, compare (IIL§5).

mo(XY) —— mX?)

Hy)(X',Z[p,]) —— H,(X32[n])

3)
Tj* li*
H,(D,j*Z[p,]) e A,(D,i*Z[x])
Here A:p, —> = is the quotient map. We have
A,(D,7[G]) ® Z[n] = H,(D,*Z[x]), )

Z[G]
by a Kinneth-formula. Here H.(D,Z[G])=n,D by the Hurewicz-
isomorphism which is also used in (3). Moreover, (4) shows that (4, ), in (3) is
surjective. By the exact sequences of pairs we see that j, in (3) is surjective and
that i, in (3) is injective. O
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§3 The homotopy category of 2-dimensional CW-complexes
under D

We consider the full subcategory (CW3)? of CW3 consisting of 2-dimensional
relative CW-complexes (X, D) with D = X° = X! = X2 = X, see (1.1). We have
the functor

(3.1) p:(CWE)?/~ - H(G)/~,

where H(G)? is the full subcategory of H(G) consisting of free crossed modules,
G = n,(D). We show that p in (3.1) is a detecting functor, see (IV.1.5), and
that p is actually a nice example for the linear extension of categories
TWIST(X) described in (V.3.12). Each object (X2,D) in (CWJ)? is the
mapping cone in the cofibration category Top? of an attaching map

(3.2) (f,i,):ZZf vD->ZZ{ v D

in Top?/~, see (1.1)(4). Let X be the class of all such attaching maps (f, i,)
where Z and Z, are discrete sets. By (V.3.12) we have the linear extension of
categories for TWIST(X) in the top row of the diagram

) —*, TWIST(¥) —~— Twist(¥)/~
(3.3) = li ~ J; ~ |5
HT I — (WY~ —— HGY=~
Here j is the inclusion functor which is an equivalence of categories since

(r; 1), in (2.2)is surjective, in fact, this shows that each map in CW{ is actually
a twisted map by (V.7.8).

(3.4) Theorem. There is a commutative diagram as in (3.3) where p is an
equivalence of categories and where j is an isomorphism of natural systems. The
natural system H?T, is given by

HT,(f) = H*(X, D,¢*T,(Y, D)).
Here f:X — Y is a map in (CWg)?/~ which induces ¢ = f,:n; X >n,Y. The
isotropy group I in fis the kernel of the map
H*(X, D;9*T,(Y, D)) > H*(X, D; 9*n,Y),

induced by the inclusion T',(Y,D) = n,Y, see (2.11).

In (6.2) below we describe the generalization of this theorem for the category
CWQ/~.
(3.5) Corollary. Let n,(D)=0. Then

pACWE)?/~ SH(G)? =~

is an equivalence of categories.
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This is a consequence of (3.4) since n,(D)=0 implies I',(Y,D)+ 0 and
therefore I'/I =0 in (3.3). For D = * the corollary is due to J.H.C. Whitehead
(1949) who used different methods. The corollary shows that for n,(D) = 0 the
homotopy theory of 2-dimensional CW-complexes under D, including the
homotopy classification of mappings, is equivalent to the purely algebraic
homotopy theory of free crossed modules under the group G = xn,D.

For the proof of (3.4) we first give an algebraic characterization of the
category Twist(X). By definition in (V.3.8) a morphism (&,#):(f,i,) = (g,i,) in
Twist(X) can be identified with the following commutative diagram in
Top*/~.

VivD
/ Nl)
g
(3.6) TZ3 —e 73 v (ZV{ v D).
f (9.1
2ZfvD , + XVivD
(n.13)

Here Z, and V, (n = 1,2) are the discrete sets of cells. This diagram can be
identified with the corresponding diagram in the category of groups obtained
by applying the functor =:

2z i R AR
—
f 0% gxl
w
Ny
(3.7) CZ>*G +» (V;>*G
P \ G / 4
n,C; . » 7,C, =cokernel (g*1)

Here d?:p% — (V, >* G is the free crossed module associated to g, see (2.7)(*).
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(3.8) Remark. Clearly each pair (&, n) with (g* 1) = (y+i,)f induces a homo-
morphism ¢ on fundamental groups such that diagram (3.7) commutes. If
F:C,— C,is a map under D associated to (&,1) then ¢ = 7, (F). On the other
hand, diagram (3.7) shows that for each homomorphism ¢ under G thereis y and
¢ such that diagram (3.7) commutes. This is clear by exactness of the right
column in (3.7); first choose # as a lift of @op, then choose & as a lift of
(n*i,)f. Therefore each homomorphism ¢ under G is realisable by a map
F:C;— C, under D.

We have the functor
39 p:Twist(X) > H(G)%,
which carries the object g to the free crossed module d?:p% — p; in diagram
(3.7) and which carries the morphism (&,7) in (3.6) to the map (F,, F,) where
F, =n+i, and where F, is given by F =7%¢ in (3.7) as in (1.11). It is easy to
check that g is a well-defined functor.

(3.10) Proposition. We have a natural equivalence relation ~ on Twist(X) by
setting (&, ) ~ (&, p )< (n?¢ = ¢’ and n = y'). Moreover p above induces the
isomorphism of categories

p:Twist(X)/ ~ = H(G)>.

(3.11) Proof of (3.4). Itisclearthat for pin(3.9) we have anatural isomorphism
pA=pjin (3.3). We now show that p in (3.3) is an equivalence of homotopy
categories. For this we use the general result in (V.5.7) which implies that
(&n) = (&, %) in Twist(X) if and only if there is

ai(Zy )=V )0,
such that (1) and (2) are satisfied
n+g,)a=rn, (1)
0=n(" = &+ (VI*(— 0 iy7)). @)
Let (F5, Fy) = p(¢, n) and (F3, F1) = p(¢', ') and let
A Z G- ph (3)

be the F,-crossed homomorphism with A(z) = nf«(z) for zeZ, and A(G) =0.
Then (1) is equivalent to

—F,+ F,=dA. 4)
Moreover (2) is equivalent to

—F,+ F,=Ad'. )
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We see this as follows. First we observe that (5) is equivalent to
—Fy+ F,=Bd’, (6)

where B:{Z, > *G — p4 is the F-crossed homomorphism with B(z) = — A(z)
for zeZ,, and with B(G) = 0. On the other hand, by definition of V f in (I1.13.7)
we see that (2) is equivalent to

—LF [+ =)+ LFf = (VM=o iyn) ™

module P, = kerneln?. Here the left-hand side corresponds to

(Fy— Fy)F? = (F, — Fy)™*
= —F,+(F,— F)+Fy=—F, + F,, see (IL7.14).

The right-hand side of (7) corresponds to Bd’. Therefore (7) is equivalent
to (6). O

The proof shows that the technical result (V.5.7) is consistent with the
definition of homotopies in (1.3). We leave it to the reader to give a more direct
proof of (3.4). The proposition on the isotropy group in (3.4) follows from
(I1.13.10) and (1.20)(9), see also (5.16) below.

§4 The tower of categories for the homotopy category of
crossed chain complexes

In this section we study the chain functor
4.1) C:H(G)/ ~ - Chainy/ ~,

defined in (1.14). We show that C can be nicely described by a tower of
categories. All resuits in this section are purely algebraic.

The definition of C shows that a morphism f:p — p’in H(G)is determined in
degree = 3 by the induced chain map Cf:Cp — Cp’ in Chainy. If £ = C f is fixed
we have only a restricted choice of defining f,:p, — p} and f;:p,— p5 such
that Cf = £ We now study the possible choices of f, and f, respectively. This
leads to the definition of the following categories H,(G) and H,(G). We call the
objects of H,(G) and H,(G) homotopy systems of order 2 and homotopy
systems of order 1 respectively.

(4.2) Definition. Objects in H,(G) are pairs (C, p) where p=(d,:p,—p;)isa
free crossed module under G in H(G)? and where C is a chain complex in
Chain; of free p,-modules, p, = n(p) = p,/d,p,, which coincides with C(p) in
degree < 2. Moreover, the object (C, p) satisfies the following cocycle condition.
For (C, p) there exists a homomorphism d;:C; — kernel(d,) of p,-modules
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such that the diagram

commutes.
A morphism
& n:(C,p)~(C,p)
is a pair with
n:p1=<{By*G-p\=(B )G,
&C-C.
Here 5 is homomorphism of groups under G which induces ¢:g, = p; and € is

a g-equivariant chain map such that the following conditions (1) and (2) are
satisfied:

The diagram
Py T P
h,l J hy (0
¢, — G
S1
cominutes.

There is an n-equivariant homomorphism &, such that the diagram

P — Py

J o s

P2 —— = — P @

)
h, ¢ ¢ h,

C;, —/— (G
&2
comimutes.
We have a homotopy relation ~ on H,(G) as follows: maps (¢,n),
(&,1):(C, p)—(C', p') in H,(G) are homotopic if there exist maps

&:py=<{B>*G-ph,
an:cn_)c;l+1’ ngza
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such that (3,4, 5, 6) are satisfied:

@x)=0 forxeG, and } o)
d(x + y) = (a@x)” + (ay) for x, yep,
—n+n =dy )

Condition (4) implies that # and #' induce the same homomorphism
@1 P1.
o, is a @-equivariant homomorphism (5)
—&¢+ & =do, +o,_,d forn=2 (6)
In (6) the p-equivariant map «, is determined by & via
h20_( = alhl. (7)

Wecall (a, @):(&, 1) ~ (&, ') a homotopy in H,(G). In (VIL1.7) below we will see
that H,(G) corresponds to the category TWISTS(X) which is defined in any
cofibration category. I

(4.3) Notation. Let M be a set on which 7 acts from the right. Then the n-modul
Z[M]is the free abelian group generated by element [m], me M. The action of
7 is given by [m]-a = [ma] for aen. This generalizes the notation on group
rings in (IIL§ 5). A @-equivariant map f:M — M’ with ¢:z — 7’ induces the ¢-
equivariant homomorphism f,:Z[M]—Z[M’'] with f,[m] = [ fm].

(4.4) Definition. Let H,(G) be the following category. Objects are tuple
X=(7T,C,a,i)=(nx,cx,ax,ix) (1)
with the following properties (a), (b) and (c).

(@) = is a group and i:G > 7 is a homomorphism.
(b) (m, C) is a chain complex in Chain; of free n-modules with C, =0 for
n<0.

©) 0:H,C > Z[iG\n] = Ho(G, *Z[x])

is a homomorphism of right 7-modules; here iG\n denotes the set of left
cosets (iG) + x, xen.
A morphismf:X — Y in H;(G) is a p-equivariant chain map in Chain;
which preserves the structure, that is:
(d) ¢:my—>ny is a homomorphism under G; ¢iy=i,. We write
peHom(ny, ny)¢
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(e) The following diagram commutes.

HICX —f*_’HICy

o

Z[iG\7y] T Z[iG\7y]

Here ¢, is defined as in (4.3). By (d) we see that ¢ induces a map of left cosets.
We say that maps in H, (G) are homotopic if they are homotopic in Chainy, see
(IT1.§ 5). l

There are canonical functors as in the commutative diagram

C:H(G) —— H,(G) —*» H,(G) >— Chain}

(4.5) J J { b

H(G)/ ~ — H,(G)/~ —2— H,(G)/~ > Chain}/ ~

Here i is the inclusion functor and the vertical arrows are the quotient
functors. The functor 4 on H(G) carries the homotopy system p in H(G) to
the object

Mp)=(Cp,p?) in H,(G), (1)

where p? is the 2-skeleton of p obtained by forgetting p", n = 3. We point out
that A(p) does not determine p completely since there might be a
freedom of choice for d5:p; — p,. For the trivial group G =0, however, A(p)
determines p.

Next we define the functor A on H,(G) which carries the object (C, p) in
H,(G) to the object

MC, p)=(n(p),C,0,i) in H,(G). 03]
Here n(p) = p, /d,p, is determined by the free crossed module p under G with
p={dy:p;—>p,=<Z,>+G}.
The map i is the composition
i:G-(Z,>xG=p, #)n(p) =7

where ¢ is the quotient map.
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The boundary @ is defined by

0:Cy = C(p), = (D Z[n] - Z[iG\n] }

0(z)=1-[iG +q(z)] )

where (iG + q(z))€iG\r is the coset of ¢q(z) for zeZ,. Clearly, 1 = [iG + 0].
In (IV. §4) we defined exact sequences for a functor A which form towers of
categories, see (IV.4.15).

(4.6) Theorem. There is a tower of categories

HyT, +—— H(G)/~

Chain;/ ~

Coef = Gr

The functor ¢ in (4.6) is the forgetful functor which carries (r, C) to =; Gr
denotes the category of groups.

We now define the natural systems of groups used in (4.6), compare the
notation in (IV.3.1). For a homomorphism i:G — n between groups we have
the right Z[n]-module

I'1() = H,(G,i*Z[n]). )

This is the homology of the group G with coefficients in the left G-module
i*Z[n] determined by i. Clearly, I'; is covariant functor on homomorphisms
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n— 7' under G. We define the natural system H"I', on H,(G)/~ by

H'T (X, 0, Y)=H"(X, o*T (V)

N - 2
= ACy 9*T, i) @

Here X and Y are objects in H,(G) and ¢:7my— ny is a homomorphism of
groups. There are obvious induced maps for (2).
Next we define the natural system H"jI', on H,(G)/ ~. First we have the

functor
jT,:H,(G)/ ~ — Mod; (see (I11.5.1))
JTAC,8) = Hy(dy&2)
=kernel (h,) ~kernel (d,) 3)
= [p,p,] ~kernel (d),

where p is a free crossed module under G with d,:p, — p,. This group
corresponds to ji',(X, D) in (2.11). We obtain the induced map for f:p — p’
obviously by the restriction f:d,p, —d,p,. One can check there jl‘:2 is a
well-defined functor on the homotopy category in (3). We now define the
natural system H"jfz by

= A"(C, *iT 5(Y)). (4)

Here X =(C, p) and Y are objects in H,(G). By (3) there are obvious induced
maps for the natural system (4).

In addition to (4.6) we prove:
(4.7) Addendum. There are exact sequences

z4T, 5 H(G) -5 H,(G) S HT,
H,(G)—H,(G) — H3T,

where the obstructions are the same as in (4.6) and where Z%T, denotes
the cocycles for (4) above.

One readily sees that the inclusion functor i in (4.6) satisfies the sufficiency
condition, compare (IV.1.3)(a). Therefore we deduce from (4.6) and (IV.4.11)

(4.8) Corollary. The functor C:H(G)/~ — Chain;/= satisfies the sufficiency
condition.

Moreover, we derive from (4.6) the following special result for the trivial
group G =0.
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(4.9) Corollary. The functor A:H(0)/ ~ = H,(0)/ ~ is an isomorphism of cate-
gories. Moreover, 2A:H(0)/ ~ —H,(0)/ ~ is full and faithful and AA:H(0) —»H,(0)
is full.

Proof. This is clear since for the trivial group G =0 we have I'; =0 and
I', =0, see (2.13), and therefore the natural system in (4.6) are trivial. [

Remark. Corollary (4.9) is proved by J.H.C. Whitehead (1949). Theorem (4.6)
is the generalization of Whitehead’s result for non trivial G. A different
generalization recently was obtained by Brown—Higgins (1984).

In the rest of this section we prove (4.6).

(4.10) Proof of (4.6). We first define the action H'T", + and we prove exactness
of the sequence

(A) H'T, + > H,(6)/~ > H,(G)/ ~.
Let (&,1): X =(C,p)—» Y =(C, p’) be a map in H,(G) and let
M) =(p,Q)=C->C (1)

be the corresponding map in H,(G). For the bases Z', in p’ and for the
basis Z'| in p} we get as in (1.9) the function

9:Z5 < py > p1=<Z1)*G. 2
Let D = K(G, 1) be the Eilenberg—Mac Lane space of G and let
g:ZNZ)* >Z(ZY" vD=Y" G
be a map corresponding to (2). Then we have a complex in CW{ by
Y=C,DcY' cY’=Y. )
For the universal covering Y of Y and for D = p DY we get
H,(D)=T\(iy) see (4.6)(1). (5)

This follows from D= D x 671(Y) where D is the universal covering of D;
consider the cell structure of D.
We derive from (5)

(4.11) Lemma. For i:G—on=mn(Y) we have fl(i) = 7[iG\n] ® Ab(ker(i)).
Here Ab is the abelianization. In particular we have T",(i)= 0 if i is injective.
Indeed, the path components of D correspond to the cosets iG\n and all
path components are homotopy equivalent. By computing 7, D = ker (i) we
get (4.11).
For C' = C(p’) there is the commutative diagram
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1Y — m,(Y,Y!) —— 1, V!

I

d
H,Y —»» kerd, < Py — 4
i
I _
: 2 h, hy
v
o~ : 2
H,(Y,D) = kerd c ¢, —» 5y
17 ¥
H,(D) = Ty

Hl(?) =0

Here the left-hand column and the top row are exact sequences. We know
that h, is surjective, the map izz, however, in general is not surjective since
the cokernel of h, is H,(D) =1,(iy).
Now assume that an element
{ByeH'(C.0*T (o)), with}
p:C~T\(p)
is given. We choose B, B such that the following diagram commutes (here

B satisfies (4.2)(3) and therefore it is enough to choose § on generators):

, d;
)

(6)

-
/’/’/
7 - h, hy
//
d, -7 é
p2r —» p; kerg < y———— (-
= d
ﬂ//’
hy P (7
7
//
c; . - L), p0=0
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We now define the action (H11~"1) + by

{&m} + (B} = {(& + Bo,n +d.B)}. ®)
Here {(&, 1)} denotes the homotopy class of (£, #) in (1) in Hy(G)/~.
We define the chain map & + B0 in (8) by

= & n#£2
a = =
&+ 5o} {¢2+ﬁa for n=2.
It is clear by (7) that & + B is a chain map since 98 =0. Next we check
that the action (8) is well defined. The pair (¢ + B0, n + d,B) is a morphism
in H,(G) since we have

©)

hy(n+d,B)=hyn + hyd,B
=hn+ 0h,B =hy. (10)
Moreover, let &, be a choice for (&) as in (4.2)(2). Then &, + Bd, is a choice
for (¢ + Bé, n + d,p) since we have
hy(&; + Bdy) = hoE, + hypd,
=¢&,h, + Boh,
= (& + By, (11)
and since we have
d,(&, + Bdy) = d,&, + dyfd, =nd, + dyBd, = (n + d,P)d,. (12)
Next we see that a homotopy (a,d): (&,1) ~(&,#') in H,(G) yields the
homotopy

(o, &o):(& + Bonp + doB) ~ (& + B’ + d,P). (13)

Here we set 4, = — f +d + B, clearly &, induces «, since h,& = h,d,.
Finally, let [70, FO be a different choice in (7). Then we get the homotopy
(o, @):(& + By + dy) = (& + Bo, 1 + d, ), (14)

where we set o, =0 for n=2 and we set &= — fB,. Then & yields «, by
h,d=oah,.

The results in (10)---(14) show that the action (8) is welldefined. Moreover,
the action in (8) has linear distributivity law since GE =0.

We now prove that the sequence in (4) is actually exact. Assume we have
a homotopy in Chain;

a: A, m) =~ A7),
0,:C,>Chi1s (15)
—f;+5n=dan+an—1d

This also implies that # and »’ induce the same homomorphism ¢:7— 7'



4 The tower of categories for crossed chain complexes 331
Therefore we can choose b

b:p,— ph, with} (16)

—Nn+n =db
Here b satisfies (4.2)(3) and therefore it is enough to choose b on a basis of
p,. For b there is a unique b,

b,:C, - (), with
hyb=bihy, — &, + & = 6b1.} (17)
On the other hand, by (15) we have — &, + &| = da; and thus we get
)
For J we choose f as in (7) with
h,B = Bh,. (19)
Now we obtain a homotopy in H,(G)
(a,8):(¢ + Bo,n + d o) =&, ). (20)
Here we set &= — f+ b and
. {a,, forn#1,
" o, —b,+o;, forn=1.

We have to check that (20) is actually a homotopy, see (4.2). We obtain
(4.2)(4) by
—(+d:p)+n=—d,f—n+1n
= —d,B +d,b, see (16)
=d,(—B+b)
=d,a. (21)
Here & induces «; since
h,& = h,(— B +b)
= —Bh, +b,hy, see(19), (17).
= ( - B + b1)h1
=a,h,, see (18). (22)
Moreover, we have
- 61 + 6/1 = da1
=d(a, — b, +a,), see (18)
=da,. (23)
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Next we have in degree 2
— (& + B+ &= —Po+(—&+ &)
=_(b1"‘a1)6+da2+a1d (a=d)
= (al - b1 + a1)d + daz

- ald + daz. (24)
This completes the proof that (a,d) in (20) is a well defined homotopy in
H,(G); therefore (A) is proved. ]

Next we define the obstruction and we prove exactness of
(B) H,(G) 5 H,(G) = HT,.

Let X =(C, p) be an object in H,(G). Then there exists a lifting d, in the
following diagram since X is in the full image of A:

d,
)',02 P — T
dy lhz jh, lho. (25
,Cy —— , » 7[i
Gy 2 103 2 o 2 [iG\n]

Here & denotes the boundary of the chain complex C and q is the quotient
map. We define h, by

ho(x)=1—[(G)+ x]. (26)
This shows that hog = 0h, see (4.5)(3). In fact, (hoq)(z) = (8h,)(z) for zeZ, and

(ho@)(x + y) =1 —[iG + gx + qy]
=(1-T[iG + gx])[qy] + (1 — [iG + qy])
= (ho@)(x)-[qy] + (hoq)(y).
Thus hq satisfies the same formula as dh;, see (1.14)(2). We point out that
we have the commutative diagram

c, ——a—» c, —a——b Z[iG\n]
g /
C,/0C, ’ (27)
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where the bottom row is exact. Here X is a 2-realization of p. Since X is
simply connected we see H,(X)=0 and therefore 4 is injective.
Now let Y =(C', p') be a further object in H,(G) and let

(p,£):2X =AY (28)

be a map in H, (G). Then there is a homomorphism f such that the following
diagram of unbroken arrows commutes:

Z[iG\1] —2—» Z[iG\n']

// 4\6
T —————» 7 |

@

! / “t 1
4
q \ 1 ;

P1 > 1 ______f___’
4 d C;——=% G
/ »
dz /h2 t
P2 o= —- 02

’
C;—» (}
63

(29)

We find f as follows. We first choose fo:p1—>_p’1 with q_fo=cpq. Then f,
induces a unique map f,:C, — C; with h fo =foh; and 8f, = ¢,0. Since by
assumption on ¢ also 9¢; = ¢,0 we see
A—fo+¢)=0. (30)
Since 4 in (27) is injective there exists a:C; — C, with da= —f, + £,. Since
h, is surjective there exists
a:pl—)p,b a|G=Os (31)

with h,a = ah,. Here we only choose « on generators Z; of p, ={(Z,>*G.
Now we set

f=fo+dy (32)
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Then we have qf = qf, = ¢q and
hyf=hi(fo+d,0)
= hlfo + hldza
=f_0h1 + 5]120(
= (f—o + da)h, = &, h,.
This shows that for fin (32) diagram (29) commutes.

Next we can choose g:p, — p, such that (g,f): p — p’ is a morphism between
free crossed modules. The map g induces g:C, — C; with

h,g = ghy, 0g3=¢,0=20¢,. (33)

Therefore 0( — &, + §) = 0. We now define the obstruction for the map (¢, &)
in (28) by the composition

Do, &):C, ker 8 —— T ,(iy)
—éﬁ\‘m (34)
C,

Here y is the projection in diagram (5) above. Now O, &) is a cocycle. In
fact, we have
0¢,0=¢,00=0, and
pE20 = 90&5 = yh,yd3 &,
=yh,d;&; =0, see (5). (35)
On the other hand, we have
0g0 = Ogh,dy = 0h,gd,
= hydygdy =h, fdd; =0,
740 = ygh,ds = yhygd;

—yhygd; =0, see (5). (36)
By (35) and (36) we see that O(p, )0 = — y£,0 + ygd =0.
Now let
O(e,&) = {O(g,&)}eH(C, T (iy) (37)

be the cohomology class represented by the cocycle (34). We check that this
class does not depend on the choice of (f,g) used for the definition in (34).
In fact, let f’ be a different choice such that (29) commutes and let g’ be a
lift of /. Then we have a:p, —»p, with —f+f" =d,0 and h,d,x=0.
Moreover,

dy—od,—g+g)=—dyod, - fd, +f'dy=(—dy—f +f)d,=0. (38)
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Thus we get
B=—oad; —g+g:p,—kerd, < pj.
Moreover, we have . _
—(=&+ P+ (=& +9)=—3g+4
=—g+(g+od, + f)=ad, + B,
where yB = 0. Therefore the cohomology class (37) is well defined by (¢, &).
Moreover, we check that (37) depends only on the homotopy class of (¢, &)
in Chain;/~. Let a,:& ~ ¢ be a homotopy, a,:C,— C, ;.
=&+ & =7day,
— &+ & =0a;,+a,0.
For a =a, we choose a:p; = p5 as in (31). Then we obtain
f=f+da, g=g+ad,
as a choice for (¢,&). Clearly, —(— & +§)+(= & +¢)= —(— & + &)+
a,0, = 0a, = h,d;a,, where yh, =0, see (5). Therefore O(p, &) = O(p, &).
It remains to prove exactness of the sequence in (B). Let (¢, &) be given as
(28) and suppose O(¢, £) =0. We construct a map
(& n):X—-Y inH,(G), (39)

where n:p, — p, see (4.2). We choose (f, g) as in (34). Then O(g, &) = 0 implies
that there is a map § such that

kerd, —y—» T (y)

commutes. For § we choose /=3 and B as in (7) and we set
n=/ +d;p. (40)
We check (4.2)(1) by
hip=hf+ hldzl?_
={1hy + 05k,
=¢h + 6/_3111 =¢{hy, see (7).
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Moreover we find &, in (4.2)(2) as follows: By (39) and (7) we have
W=PBo—G+&)=0.

Therefore there is a lift 8:p, —ker(d,) = p, with h,8 =(— B — § + &,)h,.
We set

&, =g+pd,+4.

Then we clearly get d,¢, = d,(g + pd,) =nd, and

h,E, = Ghy + Bhyd, + (— Bd — G + &,)h,

=&,h,.
This completes the proof of the exactness in (B). |
Next we obtain the exact sequence
(C) 73T, S H(G) -5 H,(6) > BT,
as follows: Here szfz denotes the group of all cocycles
a:C, —jI, ad=0.

For f:p—p’ in H(G) we obtain (f + a):p—p’ by

_ffitah,, forn=2,
(f+a>n—{fn frnna (1)
For (&,1):4p — Ap" in Hy(G) let
O(&,n) = —dsé3+ E,dy:C3— p). (42)

Here &, is chosen as in (4.2)(2). We have O(£,1)d, =0 and O(&,7) factors
over jI', = p’,. Therefore the cohomology class

(&, 1) ={D(&n)} eHX(C, *iT ) (43)

is defined. This class does not depend on the choice of &, in (42). Now it is
easy to see that the sequence (C) is exact. Moreover, the exact sequence in (C)
induces the corresponding exact sequence for homotopy categories
in (4.6). O

§5 Homotopy systems of order n, n =3

In this section we describe the category HS of homotopy systems of order
n and we show that H; and H;, , are connected by an exact sequence. This
gives us the tower of categories which approximates the homotopy category
of CW-complexes. In the next section we discuss in detail the properties of
this tower.
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A complex (X, D) in CWJ has attaching maps, (1.1)(2),

(5.1) fos 11 Z"ZF, > X" with X"*l= C..
The homotopy class of f,. ;, n = 2, is given by the homomorphism
(5.2) f=fe1:Cii(X, D)= @ Z[7] — 1,(X")

Zns1

of Z[n]-modules, n=n,X, where f(é)en,(X") is the attaching map of the
cell eeZ,,,. The homomorphism in (5.2) can also be described by the
following commutative diagram

Coyi(X,D) =  H,p (X"*1X7)
=1 h

(53) fo nn+1(XA"+ I’XAn)
lp*

(X" (XX

(5.4) Remark. The homomorphism f, +1e_=Homzm(C,,+1(X D),n,X") is a
cochain in € «(X, D). In fact, f, , | is a cocycle, that is, f,, { °d, 4+ , = 0 as follows
from 00 = 0, compare (IIL. 5.6). Hence the cocycle condition for £, , | is satisfied
if f,+ is the attaching map of a CW-complex (X, D).

Now let (Y, D) be a further complex in CW{ with attaching maps g, ;.
By naturality of the Hurewicz map h, of p, and of @ in (5.3) we see that a
cellular map F: X — Y induces the commutative diagram

~ Sns ~
C,+1(X,D) s Cos 1(Y,D)
(55) lfnn lgrﬁ-l .
TC,,X" -71—*—? TC,,Y"

Here ¢, =F, and n: X" — Y"is the restriction of F. Foro=n, F:n, X > n, Y
the maps ¢ and n,, are g-equivariant. We say that (£, ,,n) is associated to
the restriction F:(X"*1, X")—(Y"*1, Y™ of F.

We deduce from the attaching map f,,, the boundary d,, , in C*(X ,D)
by the composition

C,..X,D) —> n,X"=n,X"
Py

nt1
|

~

(56) dn+l =a(fn+l) H X,,

M

C.(X,D) = H, (X" X"
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This is true for n > 2. For n=1 we have the more complicated formula in
(1.20)(7). We now introduce the category of homotopy systems of order n + 1.

(5.7) Definition. Let n=2. A homotopy system of order (n+ 1) is a triple
(C.fos1, X™) where X" =(X",D) is an n-dimensional complex in CWJ and
where (n,X",C) is a free chain complex in Chain,; which coincides with
C*(X", D) in degree < n. Moreover, f,,,:C,+, = 7,(X") is a homomorphism
of m,(X")-modules with

dn+1=6(fn+1)' (1)

Here d,, , is the boundary in C and 4(f,, ) is the composition as in (5.6).
A morphism between homotopy systems of order (n+ 1) is a pair (£, n) which
we write

EMACfns 1, X)) —(C G, Y.
Here n:X"—>Y" is a map in CW2/2, see (1.1), and &C—C' is a 7,(n)-
equivariant homomorphism in Chain} which coincides with C «nindegree <n
and for which the following diagram commutes:

‘fn+1 y
Cosr — Chyy

lfnn Jgnn (2)

T, X" —— n,Y"
My
Let H,, , be the category of homotopy systems of order (n + 1) and of such
homomorphisms. Composition is defined by (&, #)(, 7) = (¢€, n77). Moreover,
let H, , be the full subcategory of H,,, consisting of objects (C.f, ., X"
which satisfy the cocycle condition f, . ,d,,,=0. I

We have obvious functors (n = 3)

H(G)

(5.8) p / \k

CW§/2 ——H,,; ——H,——H,=H,(G)
Fr+1

where H(G) is the category of crossed chain complexes under G = =,(D)in §1.

Here we set

-~

rn+1(X)=(C*(X’D),fn+1’ X") (1)

with f, ., as in (5.3). The functor r,,, carries the cellular map F to the
homomorphism (C,F,n) where n: X"— Y" is the restriction of F. By (5.5)
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and (5.6) we see that the functor r,. , is well defined. We define 1 by
}“(C,fn+1, X"):(C’fmx"_l), (2)
where f,, is the attaching map of n-cells in X".

Lemma. The full image of A in(5.8) is the category H{, consisting of objects
which satisfy the cocycle condition. 3)

Proof. Consider the commutative diagram

Covr mmmmeee ML e
lj
n yn-— 1 a n—1
dn+1 TC(X X nn_IX

Since kernel (3) = image (j) a llftmgf,,+1 of d, ., exists iff f,d,., =0. O
Moreover we define p in (5.8) by

p(C.f X" Y =p, )
where p coincides with p(X", D) in degree <n, see § 1, (here X" is a mapping
cone of f,) and where p coincides with C in degree = n. Clearly we have
pr, = p.

Next we consider the action E + which we need for the definition of the
homotopy relation on the category H,. An n-dimensional complex (X", D)
in CW{ is the mapping cone X" = C; where f = f, is the attaching map (5.1).
The cooperation u:C;—C, v Z"Z, in (I1.8.7) gives us the group action
(59) [X",Y1° x E(X",Y) > [X", Y]"

Here [X", Y]P denotes the set of homotopy classes in Top®/~. In (5.9) we
use the group
EX"Y)=[Z"Z},Y]

=Hom (C,(X,D), 7,Y)

= HomZ[n](Cn(X’D)’ (p*TC,,Y), (1)
where ¢:n=n,X"—>n,;Y is a homomorphism. Let [X7, Y]g be the sub-
set of all elements is [X”, Y]? which induce ¢ on fundamental groups.
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If this subset is not empty the coboundaries in E(X",Y) given by

Homy,(C,(X, D), ¢*n,Y) are elements in the isotropy group of the action
(5.9). Therefore we obtain the action

[X", Y12 x (X", D; p*n,Y) - [X", Y12 ¥)

However, only for n =2 this is a transitive and effective action. For n> 2
the isotropy group in u,e[X", Y]2, given by

I(u,) = {€eH X", D, ¢*n,Y):u, + & = u,}, (3)

can be computed by the spectral sequence (I11.4.18). This shows that I(u,)
is the image of all differentials d,,...,d,_; pictured by the following diagram
of the E,-term

v

=
=
|
-
/
[}
V) e - —— =

EY' = H(X", D, ¢*n,Y). )

Here we use (I11.5.9) and (I11.4.12). We use the action (5.9) for the following
definition of the homotopy relation, ~, on the category H,,, ;.

(510) Deﬁnition' Letn ; 2 and let (67 ’7)7 (6,7 ’7,)3(C’fn+ 1s Xn) - (C,7 Iu+1 Yn) be
maps in H,, ;. We set (&,n) ~(&,7) if n;n=n,n" = ¢ and if there exist ¢-
equivariant homomorphisms «;, ;:C;— Cj}, ;(j Z n), such that

@ {1} + gus1%+1 = {n'} in [X", Y"]°, and
b) G —&=ody+dyy 141, kZn+ L

The action + in (a) is defined in (5.9). {#} denotes the homotopy class of # in
[X", Y"]°. We write a:(&,n) = (&, 7). I

One can check that this homotopy relation is a natural equivalence relation
on the category H, ,; so that the homotopy category H,,, ,/~ is defined.
With the notation on exact sequences for functors in (IV.§4) we describe the
following crucial result.
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(5.11) Theorem. For n= 2 there is a commutative diagram of exact sequences

7T, =+ He,, —4— H. -2, gif

N A G o

BT, <o M/~ —— Wy~ 2 BT,

where we set T, =T, for n=3. For n=2 the category H5 = H,(G) with
G =7((D) is the category of homotopy systems of order 2 defined in (4.2). The
Sunctor A is defined in (5.8) and p is the quotient functor.

There is also an exact sequence for A:H,, ; > H,, see (VIL.1.20). We now
define the natural systems of abelian groups used in this theorem. We have
the forgetful functor.

¢:H,/ ~ - Coef = Gr, (1)
which carries the object X = (C, f,, X"~ !) to the fundamental group n =, X
given by the chain complex (n, C) in Chain,.
Using the notation in (IV.3.1) () we define for objects X, Y in H, and
for a homomorphism ¢:7, X - n, Y the natural system H?I', on H,/~ by

H'T (X, ¢,Y) = H(X, D; ¢*T (Y, D))
=H?(C, ¢*T'(Y,D)). 2
Here we use for n =2
Ir(Y,D)=Tg,) = image (n,Y" '>m,¥", (3)

where Y =(C',g,, Y"™!) and Y" = C, . We observe that (3) depends only on
the homotopy class, g,, of the attaching map of n-cells in Y". There are
obvious induced maps for the groups in (2). For n=2 we can replace I';, in
(2) by 1:2 where we set

T,(Y,D)=T,Y2%D), see(2.9) (4)

Here Y? = C, is a 2-realization of the object Y =(C,p) in H,(G) given by
the attaching map f:Z, = p, - p, = (Z, >*7,(D) of 2-cells. Again we have
obvious induced maps for the natural system H?T', on H,/~. Finally, we
obtain the natural system Z*T", and Z"1~"2 by taking the groups of cocycles for
the groups H*T, and H"T", respectively.

Proof of (5.11). Theorem (5.11) is a special case of a result which is
available in each cofibration category. This general result is proved in
the next Chapter VII, see (VI1.2.16). The categories H, in theorem (5.11)
are special cases of the categories TWIST;(¥) defined in the next chapter.  (5)
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It is an easy and illustrating exercise to specialize all arguments in the
proof of (VII.2.8) for the case of complexes in CW35. This, indeed, yields a
direct proof of (5.11). O

With respect to the categories in §4 there is the following additional result:
result:

(5.12) Theorem. We have a commutative diagram with exact rows

HT, —+— H/~ —— H(G)/~ 2> H°T,

O

H*T, —*5 Hy/~ —%-H,(G)/~ — HT,.

NN

H3T, — H(G) ~ — H,(G)/~ —— H¥T,

Here the bottom row is the exact sequence in (4.6) and the row in the
middle is obtained by (5.11) with n = 2. The operators i, and j, are induced
by the exact sequence (2.11).

(5.13) Corollary. Let D be given such that m,(D)=0. Then we have for
G = n,(D) the equivalence of categories p:H5/ ~ = H(G)/ ~

Proof. Since ,(D) = 0 we know I',(Y, D) =0, see (2.13), and hence H?I", =0.
Therefore p is full and faithful, see (IV.4.12). Moreover, each object p in H(G)
yields an object (C, f5, X?) in H; by choosing a 2-realization X2 of p as in
(5.11)(4). Then f is determined by d since we have the commutative diagram

FZ(X’D) nZXZ nZ(Xzaxl) — M
I
0 f3 d; 0
C; = Ps3
where the top row is exact. O

The next definition is a modification of the classical primary obstruction
for the extension of mappings, see for example 4.2.9 in Baues (1977).

(5.14) Definition of the obstruction. Let X = (C,f,,, X")and Y =(C’, ¢,,,, Y")

o

be objects in HS, ,, n =2, and let
(éa U)'IX—’/IY» (7'[17] = (p)a
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be a map in H:. Then there is a map F:X"— Y" associated to (£,,n) as in
(5.5). This map induces F, in the diagram

!
Cn+1 ? Cn+1

'fn+l

fn+1Jv lgnn-

ﬂ"X" T*) n, Y"

This diagram needs not to be commutative. We define
O(F)= = gus18ps1+ FQfur1€Hom,(Coi g, 7, Y"). (1)
The homomorphism O(F) actually factors over
I',(AY) =T'\(g,) = m,(Y"),

and is a cocycle in Hom,(C,,,I,(AY)). Therefore O(F) represents the
cohomology class

O(&,n) = {O(F)}eH"* 'T (& n) = H**1(C, ¢*T (AY)). )

This is the obstruction operator in (5.11) for n= 3. Next we consider the
case n=2. Let X and Y be given as above and let

(é, ”)j'X = (C, PXZ)—> AY = (C,,PYZ)

be a map in H,(G) where n:n, X' - n,; Y'. We can choose a map F: X2 — Y?
which is a 2-realization of (¢,#) and we obtain O(F) as in (1) where we set
n=2. Now however O(F) factors over

[,(1Y)=T5(Y2, D) e ny(Y2),
and is a cocycle in Hom,,(Cs, fz(iY)). Therefore O(F) represents
(& n) = {D(F)}eHT (&, n) = A*(C, o*T,(2Y)). 3)
Finally, let for n=2
f:p(X)— p(Y)
be a map in H(G). Again we choose a 2-realization F:X%— Y2 of f and we

define O(F) as in (1). Then O(F) factors over I',(AY) = #n,Y? and is a cocycle
in Hom,,(C;, T',(4Y)). This yields the cohomology class

O(f) = {D(F)}eH’To(f) = B (C, *T,(AY)). )
We check that (3) and (4) are well defined by the following diagram
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/\f‘
fs - 2 > 2 y1
C3 L an i, - 7[2(X ,X )—’ C2
!
&, F, :fz &
v

C, —— 1,Y? ——— 0,(Y2, YI)——=

gs \_/'

J

Here we have
I,(AY) = kernel (i) 5
I',(1Y) = kernel (j) (6)

If F is a 2-realization of (&,#) as in (3) then we know that jF,=¢,j and
therefore jO(F) = 0 since ¢ is a chain map. Thus (6) shows that O(F) factors
over I~“2(AY). On the other hand, if F is a 2-realization of f with Cf= ¢ as in
(4) then we know iF , = f,i’ and therefore iO(F) = 0 since f is a map in H(G).
Thus (5) shows that (4) is well defined. In the same way we see that (2) is
well defined.

We point out that the obstruction classes (2), (3), and (4) are defined by
cocycles O(F) as in (1). This implies the following relativization property of
the obstruction. Let A =(C4, f4,,, A" =X be a “subcomplex” of X and

assume
(&4, 74):A - Yin Hj. 4

is given with A{&4,/4)=(&n)|AA. Then F in (1) can be chosen such that
F|A"=7* so that O(F)|C{,,=0. Whence O(F) represents the relative
obstruction

(™ O, 1 77%) = {O(F)} e H"* (X, 4; *T,(AY)).

We have O(&,n;7#) = 0 if and only if there exists (£, 7): X — Y in H,, with
EMA=(E47Y) and UED) = (&)

This follows as in the proof of (VIL1.17) below. I

(5.15) Definition of the action. Let
(éarl):Xz(C*fn+1a X")—)Y:(C”g'H_l, Yn) (1)
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be a morphism in H;, ,, n =2, with n,n = ¢. Here n:X"—> Y" is a cellular
map. For a cohomology class

{a}e(H"T )M n) = H'(C, 9*T(AY))
the cocycle « yields the composition
i:C,»T,(AY)cm,(Y").
We now define

{&m)+ {o) ={(&n+in}, )

where we use the action in (5.9); clearly, {(£,#)} denotes the homotopy class
of (¢,n) in HS, ,/~. For n=2 we can replace I', by I', above. Then we get
the action H2T, + by (2) as well. I

(5.16) Computation of the isotropy groups. For (¢,n) in Hy, | as in (5.15) we
have the isotropy group

I(¢,n) = H"(C, 9*T(AY)), (1)

which consists of all {o} with {(& )} + {o} = {(£n)}. For n=2 we obtain
equally the isotropy group

I, n)  BX(C, 9*T,(AY)). 2)

These groups are related to the isotropy group I(n) which is defined for
nef X", Y"] by (5.9)(3) and which can be computed by the spectral sequence
(5.9)(4). The inclusion

iiT,=T,(AY) < n(Y")

induces the homomorphism

H"(C,¢*T,) c H"(X",D;*T,)

I [ o)

H"(X", D; ¢*m,Y")
For n=2 we obtain a homomorphism J in the same way by replacing I, by
I,=T,AY).
Proposition. There is a subgroup
A(X,Y),c H'(X,, D, p*m,Y")
which does not depend on the choice of (&,n): X - Y with n,(n) = ¢ such
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that for n =3
IEn) =71 + 44X, Y),).

For n=2 we get
IEm=j~ (4,(X,Y),) and
I n) =] 14X, Y),). 4)

The group A4,(X,Y), is defined in the following proof of (4). We can use
the formula in (4) for the effective computation of the isotropy groups in
certain examples. Recall that I(n) = 0 for n = 2, this yields the isotropy groups
for the action in (5.12).

Proof of (4). We only consider I(Z, n). Let a¢Hom,,(C,, T',) be a cocycle and
let ja:X"Z —Y, be a map represented by ix in (5.15)(2). Then we have
{a}el(&,n) if and only if there is a homotopy

@y 1:(En) = (En + o) }

. 4 H
#j41:C;>Ciyy, j2n

)

in HS, ,, see (5.10). This is equivalent to (6) and (7):
{’1} + gn+ lan+1 = {’1/} in [Xn, Y"]D9 (6)

and
0=ody +dyr 141, k2Zn+1. (M

Now we obtain the subgroup A,(X,Y), which consists of all cohomology
classes {g,+1%,+1} such that there exist a, , j = n, satisfying (7). O

§6 The tower of categories for the homotopy category of
CW-complexes under D

In this section we describe our main result on the combinatorial homotopy
theory of relative CW-complexes (X, D). When D = # is a point we deduce
classical theorems of J.H.C. Whitehead. The result shows that the homotopy
category CW5/ =, see (1.1)(6), can be approximated by a tower of categories.
The properties of this tower yield applications for the following

(6.1) Homotopy classification problems

(1) Classification of finite dimensional homotopy types in CW5/ ~,
(2) homotopy classification of maps in CW{/~, and
(3) computation of the group of homotopy equivalences in CWJ/~.
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The following tower of categories combines the results in §§4 and 5 above.
Recall that a tower of categories consists of exact sequences for functors with
the properties in (IV.4.10), see (IV.4.15).

(6.2) Theorem. The category CW2B/~ is approximated by the following tower
of categories where G = (D), n = 3.

CWB/= T~
~N
N
rl \
\
\
. \
\
+ 2\ é,
HT,—» H,,/~ \‘
|
l
# ]
i
i
D n+1 !
H,/~ ———— H""''T, ]
,/
l /
/
/
: /
/
’
-~ + /
HP, s MY/ /!
N~ 5 /
\\P ///
A H(G)/~ —~-
s ~
P ~
’// i \\\
-~ AN
H'T\——» H,G)/~ ——  HT, NG
\\
\
AN
A \
\
\y
4
Le] ~
H(G))~ ——» HT, Chain;/ ~

|

i Coef = Gr
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This is a commutative diagram of functors and of exact sequences. The
functor i is an inclusion of categories. Moreover, the functors § and 7 with
Ap = 4 are part of the tower of categories

HT, - S HY/~
p=pr

Bt 5 HG) ~—2> HT, . (1)

|72

H,(G)/~ —D—> H3j]:2

We now describe the natural systems in (6.2) and (1) above. For X,Y in
CW? and for a morphism F:rX —rY in the category H5/~ the natural
system HPT', (p=n, n+ 1) is given by the cohomology groups
(HT,)(F)= H?(X, D;¢*T (Y, D)), @

where ¢ = F,:n,(X)— n,(Y). For n = 2,1 we obtain the corresponding natural
systems HPT,, H?I, by replacing T, in (2) by T',, T';, and jT',, respectively,
see (4.6).

Since the tower of categories (6.2) is of major importance we describe
explicitly some properties of this tower. First we have the following result
which is a variant of the Whitehead theorem

(6.3) Proposition. All functors in the diagrams of (6.2) satisfy the sufficiency
condition, see (IV.1.3). In particular, this shows: A map f:X—>Y in CW3 is
a homotopy equivalence under D if and only if (a) and (b) hold:

(@ ¢=f,:m X —>m,Y is isomorphism,

®) (9,C,f):Co(X,D) > C,(Y,D) is a homotopy equivalence in Chainy or
equivalently C* f induces an isomorphism in homology. Recall that
H,C (X, D)= H,(X,D, Z[x]) with n = m,(X).

This follows immediately from (IV.4.11).
Next we consider the homotopy classification problem for maps in CW?5.
Let X and Y be complexes in CWJ and let ¢ be a homomorphism for which

T D=G

S

T X —— Y
4

commutes. We consider the set of all homotopy classes of maps X — Y in
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CWJ/~ which induce ¢. This set is denoted by
[X, Y]2 = Mor(CWg/~). (1)
Similarly we denote by
[X,Y],=Mor(H,/~), nz1, 2
the set of all homotopy classes rX —rY in H;/~ which induce ¢. For n=2
and n=1 we set H; = H,(G).
Moreover, we have the subsets
[pX,pY]g = Mor (H(G)/~) 3)
[C.(X, D), C,(Y,D)], = Mor (Chain}/~) @)
which contain all homotopy classes which induce ¢. The sets above might
be empty; this depends on the realizability of ¢. Now the tower of categories in

(6.2) yields the following tower of sets which consists of maps between sets and
of group actions denoted by +.

[x,Y12

r

- ——
-—
-

~

A"(X,D; p*T,(Y, D)) —— [X, YT

ll

[X, YT, 2o A" (X, D;0*T(Y.D) |

A*(X,D;0*Ty(Y, D) ——> [X, Y]} S
P a7 P
3 Rl 2926 -0
"/: \\\C
A(X, D;0*T (Y, D) — = [X, Y1; —» H3(X, D, o*T',(Y, D)

\
; \

[X, Y],—=*A*(X,D,¢*T (Y, D))

-

v
(6.5) » [C,(X,D),C(Y,D)],
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Moreover, we have

HY(X,D; p*T (Y, D)) —— [X, Y]}

E

- ~ O A
AX, D, T 4(Y,D) ——[pX, pY]E —— HY(X, D, p*T (Y, D))

J T
[X, Y12 —=— A%X, D; T (Y, D))
(6.5)(a)
These diagrams have the foliowing properties:
L is a derivation, that is,
D(fg) =/2g) + g*O(f) 1)

where fg denotes the composition

D has the obstruction property, that is, kernel (O) = image(4) in (6.5) and  (2)
kernel (D)=image (p), kernel (D)=image (1) in (6.5)(a). Moreover the
obstruction © has the relativization property in (5.14)(7).

The group actions denoted by + satisfy the linear distributivity law, that

is

(f +0)g+ B =fg+/f B+ g*a 3
The group actions have the exactness property, that is,
M =lge3IJa with g=f+a
The same holds for g and 4. (4)
If X — D has only cells in dimension < N then the map
rlX, Y12 -[X, Y],
is bijective for n = N + 1 and surjective for n = N. (5)

The isotropy groups of the action + can be computed by (5.16) and 6
by the spectral sequence (5.9)(4). (6)

The obstruction operators in (6.5) and (6.5)(a) yield the following higher
order obstruction. Let X and Y be complexes in CW3 and let ¢:7n, X -7, Y
be a homomorphism. For a morphism Fe[pX, pY]§ in the category H(G)/ ~

we get the subsets
(6.6) O,+1(F) = D(p) " "(F)) = A" (X, D, o*T (Y, D)),
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where p,:[X,Y],—>[pX,pY]$ is the composition of maps in (6.5) and
(6.5)(a), with p, = p, n = 2. Clearly, O,(F) consists of a single element.

Remark. Similarly, we can define higher order obstructions for elements
F,e[X,Y],, n=1,2. Here also F, F,, are purely algebraic data.

The higher order obstruction associates with the algebraic morphism F a
subset of the cohomology (6.6) which we also assume to be known. The
subset O, ; (F), however, is defined geometrically and it is a difficult problem
to compute this obstruction algebraicly only in terms of appropriate
invariants of X and Y.

The obstruction groups in the tower of categories (6.2) have the following
property which we derive immediately from (IV.4.12).

(6.7) Counting realizations. Let X be a object in H;,/ ~ and let Real (X) be the
class of realization of X in Hj, ,/~, compare the definition in (IV.4.12). If
Real,(X) is non empty then the group H"*Y(X,D; T (X, D)) acts transitively
and effectively on the set Real, (X).

Whence the tower of categories (6.2) inductively yields the enumeration
of the set of realizations (in CW§/~) of a crossed chain complex in H(G)
or of a chain complex in H,(G). This is a crucial resuit on the classification of
homotopy types. For this we also need the next result (6.8).

By definition in (6.6) we know that F is realizable by a map fe[X, Y12
with p(f)=F if and only if 06O (F) for n = 3. Here we assume that X — D
is finite dimensional. Therefore we obtain the

(6.8) Proposition. Let X and Y be complexes in CWY and let X — D be finite
dimensional. Then there is a homotopy equivalence X ~Y under D if and
only if there is an isomorphism ¢ and a homotopy equivalence Fe[pX, pY1$
with 0€D,(F) for 3 £n £dim(X — D).

We will use this result for the classification of simply connected
4-dimensional polyhedra, see IX.§4; we also classified the simply connected
5-dimensional polyhedra by use of (6.8), (details will appear elsewhere).

Remark: Assume D has a trivial second homotopy group, 7,D = 0. Then we
know I', = 0. This clearly implies ©,(F) = 0 for all F, and O,(F) is non-empty
and consists of a single element for all F.

This remark implies by (6.8) the following result which seems to be new.

(6.9) Theorem. Ler n,(D)=0. Then the homotopy types of 3-dimensional
complexes in CWQ/ ~ are 1-1 corresponded to the algebraic homotopy types of
3-dimensional crossed chain complexes in H(G)/ ~ where G = (D).
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This generalizes the corresponding result for D =  in section 7 of J.H.C.
Whitehead (1949) who states that an equivalence class of a 3-dimensional
crossed chain complexes in H(0)/ ~ is an algebraic equivalent of the homotopy
type of a 3-dimensional complex in CW§/~. For n,(D)#0 the result in
(6.9) is not true since the obstruction O;(F) might be non-trivial.

Next we derive from the tower of categories in (6.2) a structure theorem
for the group of homotopy equivalences. For a complex X in CW§ let

(6.10) Aut(X)? = [X,X]” =« Mor(CW3/~)

be the group of homotopy equivalences under D. For #n;(D)= G let A,
6.11) A= Aut(n,X)° < Aut (z,(X)),

be the group of all automorphism ¢ of 7, (X) for which (6.4) commutes (where
we set X =)

Now the tower in (6.2) yields the following tower of groups, n = 3, where
the arrows © denote derivations and where all the other arrows are
homomorphisms between groups.

(6.12) Aut(X)?

A~ 1t

A"X,D;T,(X,D)) —— E., (X)

) ~
E(X) —® H""'(X,D;T(X, D))
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Y3

y

E,(X) ——— H%X,D;T (X, D))
N

 J
Aut(C,(X,D))

Aut(n, X)

Moreover, 4 = 1p is part of the tower
A%(X, D;T,(X, D))~ E4(X)
K
A(X, D:jT,(X, D)~ Aut (0X)¢ —=— A3(X, D; T (X, D))

I

Ey(X)— B3(X, D; jT,(X, D))

We denote by
E(X)= X, XT, (1)

oA
the group of equivalences of r(X) in the category H;/~, where H; = H,(G)
for n =2, 1. Moreover, the groups

Aut(pX)®¢ - Aut C,(X, D) )

denote the groups of homotopy equivalences in H(G)/ ~ and Chain,/~
respectively.

The obstruction operator © above is defined as in (IV.4.11) by the
corresponding obstruction operator in (6.5) and (6.5)(a) respectively, where we
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set X =Y. Since O in (6.5) is a derivation we see that kernel (D),

kernel (D) = | [X, XTp,

peAd
is a submonoid. By sufficiency of A and by (6.5)(2) we get
AE, . 1(X) = E,(X)kernel (D). (3)
Let 1 be the identity in the group E,, { X. Then the linear distributivity law
in (6.5)(3) shows that ar—1+0=1%(2) is a homomorphism of groups.
Moreover, exactness in (6.5)(4) shows for A~ }(1)c [X, X]**1,
image(1*)=A"Y1)nE,, (X). (4)
Similar results as in (3) and (4) are true for (6.12)(a). By (3) and (4) we obtain
the short exact sequence of groups
A"X,D; T(X,D)) 1+
kernel (1Y)
For n=1,2 we replace I',, by 1~“,, in (5). The associated homomorphism of
the extension (5) is induced by
h:E(X)- Aut H"(X, D;T (X, D)),
h(u)(e) = u(u™ o) = (u™1),u*(@).
Compare (IV.3.9). This also follows from the linear distributivity law.
Moreover, by (6.5)(5) we know
If dim (X — D) £ N then the homomorphism
r:Aut(X)? > E,(X) (7
is bijective for n= N + | and is surjective for n = N.

E,.,(X) -5 E(X)~kernel (D). (5)

(6)

The group kernel (1*)is the isotropy group of the actionin 1e[ X, X]5*!,  (8)
¢ = 1, which can be computed by (5.16), see (6.5)(6). This is clear by definition
of 1* in (3).

The properties in (1)---(8) show that the tower of groups (6.12) is useful
for the computation of Aut(X)®. The extension problem for the groups in
(5), however, is not solved and, indeed, there is no general technique known
which could be useful for the solution of this extension problem. Recall that
there are even more sophisticated extension problems for categories which are
given by the exact sequences for functors in (6.2) and (6.2)(1), compare (IV.6.1)
and (IV.7.7). We show below that most of these extensions are not split.

We derive from (6.12) immediately the

(6.13) Theorem. Let dim(X — D) < 0. Then the kernel of C,:Aut(X)?—
Aut(é*(X, D)) is a solvable group. Moreover, if N c Aut(X)? is a subgroup
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which acts nilpotently via (6) above, n = 1, and if(:’*(N) is a nilpotent subgroup
of Aut(C(X, D)) then the group N is nilpotent.

Remark. For the special case D=x and X simply connected
the result in (6.13) follows from theorem 3.3 in Dror-Zabrodsky (1979).

(6.14) Example. We describe two examples which show that the extension
(6.12)(5), in general, does not have a splitting.

(A) Let X = M(V,m) be a Moore space, m = 3, for which V = (Z/2)"is a Z/2-
vector space of dimension v. Then (6.12)(5) yields the commutative
diagram with exact columns (D = *):

H™YX,T, ., X) =~Ext(V,V)

T

Aut(X)* = E,,(X) = GL,(Z/4)

I b b
Aut(V)=E,(X) = GL/(Z)2)

Here the homomorphism p between general linear groups is given by
reduction mod 2 and the homomorphism H,, is the homology functor.
For v = 4 the extension A has no splitting since p has no splitting in this

case. Compare (V.§3a).
(B) Let X =S" x §™ be a product of two spheres n,m = 2. Then (6.12)(5)
yields the commutative diagram with exact columns

Hn+m(X9rn+mX)%> Hm,n

J [

E, . .(X) ~ Aut(S"x 8™
| |
E, i .-1(X) =~ Aut(S"v 8™

Here H,,, is a quotient of 7, , ,.(S") @ 7,4 (S"), see (11.16.6). The group
extension of image (4) by H,, , is studied in Sawashita (1974). He shows
that this extension is not split for n =3, m=35.

The properties in (6.5) and (6.12), respectively, show that the enumeration
of the set [ X, Y]” and the computation of the group Aut (X)” can be achieved
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by the inductive computation of the obstruction operators, O, and the actions,
+,. For example, there is the following special case for which the diagrams
in (6.5) or (6.12) collaps.

(6.15) Theorem. Let X and Y be complexes in CWS and let ¢:m, X »m,Y
be given. Suppose that the groups

0 =H"X,D;¢*T (Y, D) (p=n,n+1) (1)
are trivial for 2 <n £ dim (X — D)< . Then the functor p in (1.2) yields the
bijection

p:[X, Y10 =[pX,pY1S, see (6.5) 2
Moreover, suppose X =Y and suppose (1) is satisfied for ¢ =1. Then p
yields the isomorphism of groups

p:Aut(X)? = Aut (pX)®, see (6.12). (3)

This theorem is an immediate consequence of the properties of the diagrams
in (6.5) and (6.12) respectively.

(6.16) Remark. Theorem (6.15) was obtained by J.H.C. Whitehead (1949) for
the special case D=« and I'(Y,*) =0 for n=2,3,.... Moreover, the tower
above immediately yields for D = * all results of Whitehead (1949) on J,,-
complexes Y (which are defined by the condition that I',(Y,*)=0 for
n=2,3,...,m). J,~-complexes which are simply connected were classified by
Adams (1956), see also p. 101 in Hilton (1953).

Theorem (6.15) is just a simple application of the tower of categories in (6.2)
where we use the vanishing of actions and obstructions. It is, in fact, fruitful to
consider explicit examples for which actions and obstructions do not vanish,
we will describe such computations elsewhere.

§7 Small models and obstructions to finiteness for
CW-complexes under D

In (IV.§1) we defined the sufficiency condition for a functor and we have
seen that each functor in the tower of categories for CW-complexes satisfies
the sufficiency condition. In this section we show that various functors in
this tower actually satisfy a ‘strong sufficiency condition’. This is the main
step for the construction of small models of complexes under D and for the
definition of obstructions to finiteness.

(7.1) Definition. Let (A, ~) and (B, ~) be categories together with natural
equivalence relations, ~, which we call homotopy. Let =:A — B be a functor
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which induces the functor 7:A/~ — B/~ between homotopy categories. We
say that 7 satisfies the strong sufficiency condition if (a), (b) and (c) hold:

(a) @ satisfies the sufficiency condition, that is, a map in A is a homotopy
equivalence if and only if the induced map in B is a homotopy
equivalence.

(b) Existence of models: For an object A in A let §: B =>4 be a homotopy
equivalence in B. Then there is an object MzA4 in A together with an
isomorphism i: B = n(MyA) in B and together with a map o: Mg4 — A in
A such that the diagram

A

commutes in B. By (a) we know that « is a homotopy equivalence in A.
We call (MzA, a,i) a B-model of A.

(¢) Foré,:A— A'in A and 5y = né,:nA - A’ we have: if 5y ~ 5, then there
is §o =&, with n, =n¢;. I

(7.2) Remark. We say an object B in B is #-realizable if there is an object 4
in A with 74 = B in B. By condition (b) above we know:

If B is n-realizable then each object B’ in the homotopy type of B is n-
realizable. (*)
We say a map f:nd - nAd’ is n-realizable if there is g:A —» A’ with ng = f. By
condition (c) we know:

If f:mA— A’ is n-realizable then each element in the homotopy class of

f is m-realizable. (%)

The following lemma is immediate:

(7.3) Lemma. If A/~ 5B/~ —5C/~ are both functors which satisfy the
strong sufficiency condition then also the composition Tx satisfies the strong
sufficiency condition.

(7.4) Theorem. Consider the tower of categories for the homotopy category
WD in (6.2) with n,;(D) = G. The functors (n = 4)
AH,/~—-H;/~, and
5:Hy/ = ~ H(G)/ =

satisfy the strong sufficiency condition.
Essentially, by (7.3) we thus get



358 VI Homotopy theory of CW-complexes

(7.5) Theorem. The functor
p:CW2/~ - H(G)/ ~

satisfies the strong sufficiency condition.

(7.6) Remark. For D = * the result in (7.5) corresponds to theorem 17 in the
classical paper on simple homotopy types of J.H.C. Whitehead (1950). On
the other hand, Wall (1965) proved the same result for D = * by using chain
complexes instead of crossed chain complexes. This is possible since for D = *
we have the full and faithful functor A1 in (4.9). The disadvantage of this
approach is the fact that one has to be concerned with the 2-realizability of
chain complexes. This shows that crossed chain complexes are the more
natural objects to use in this context. By (7.5) we have a new generalization
of these results in the category of spaces under D, D # . Moreover, we give
a new proof which relies only on simple properties of the obstruction operator
in the tower of categories (6.2). This proof can easily be transformed to obtain
a proof of the corresponding result for chain algebras (details will appear
elsewhere).

(7.7) Proof of (7.4) and (7.5). The sufficiency condition is already proved in
(6.3). Moreover, we obtain (7.1)(c) by the exact sequences in the top row of
(5.11) which yield a tower of categories for CW2/2 . It remains to check
the existence of models in (7.1)(b).

Let Y=(C,g,+1, Y") be an object in Hf, , and let

G=(m:X=(C, [ X" )2 2Y=(C,g, Y"™) (1)
be a map in H which is an equivalence in H;/~. We have to construct
an object

MyY=(C, fos1, X") in Hyyy, 2
and a map F:MyY—Y in H,,, with A(M4;Y)= X and AF = G. For a basis
V, of C, we choose a map

far VSl X1 3)

Vn

which represents f, in (1). Let X" in (2) be the mapping cone of this map.
We can choose a map

G X"—>Y", (4)

which is associated to (£,, ) in (1). We thus obtain the following commutative
diagram of unbroken arrows:
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p" - Cn+1
d P
-~ i
d -
e e Ef
pd *
e
‘/
Fn-l(X",D) ‘_b— anX" < - n,,X"
- J
= Gl* &, Gl* Gl* én+1 .
v
Fn-l(YmD) ‘T— H"‘pY" < : nnyn
J ‘r
a) In+1
’ d/
Pn - Chs1 &)

The rows of this diagram are part of the exact sequence of J.H.C. Whitehead,
see (IT1.11.7). Since G in (1) is a homotopy equivalence in H,/~ we know
that the induced map

Gy
(X", D) —— [\(Y", D)

| | 0

rx —— TJ4Y

is an isomorphism for k £ n. Diagram (5) and (6) show that there is a map
f with

jf=d (7)

In fact, since C,,, is a free Z[r,]-module we obtain f by showing: bd =0.
This is true since

Gl*bd = bjgn+ 1€n+1 = 0,
where bj = 0. By use of f we have the object
X(0)=(C,f,X") in H,,;(not in Hy, ) (8)
with A(X o)) = X as follows from (7). Therefore, the obstruction (VII.1.20)
Oy, (G)eA™ (X", D; *T,(AY)) )
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is defined where ¢ = n,(G) is the induced map on fundamental groups. The
isomorphism G_* in (6) for the coefficients in (9) gives us the element

{o} = G;' Oy, AG)eH™ (X"*1, D;T,X). (10)

Here o is a cocycle which represents the cohomology class {«}. By « we obtain
the composition

a:Cpyy —T,X=T,X"D)—m,X" (11
We define

fos1=f—a:Cpi > m, X", and} (12)

MXY= (C’fn+1’ Xn) in Hn+ 1
We again have AMyY = 1X 4, = X. Moreover, we show

Our(G)=0 with M = M,Y. (13)
Thus G is realizable by a map F in H, ., with AF =G, see (VIL.1.20). We
have to check (13). We know by (5.14) that the obstruction class (13) is
represented by the cocycle
Gl*fn+1_gn+lén+1:cn+1_'nnYn' (14)
By definition of f,., we thus have by (10)

O, 1(G) = {G1ulf = @) = Gus 1Enes}
= {Gl*f_ In+ lén+1} - Gl*{cx}

=Dy, 1(G) — G, {a} =0. (15)
By definition in (12) we know that
Jfas)ns2=j(f —a)d, ., =0. (16)

Therefore, f,,d,,,:C,+,—T,X. Since G_*:l",,X —TI',Y is an isomorphism
the realization F of G shows that f,,,d,. , =0. Therefore MY satisfies the
cocycle condition and hence MY is an object in H5, ;. This completes the
proof of the strong sufficiency for 4 in (7.4). A similar proof holds for p in
(6.2)(1). Moreover, we get (7.5) by an inductive construction as above and
by a limit argument. O

The following is an immediate consequence of (7.5):

(7.8) Corollary. Let X be a complex in CW9 with G = n,(D) and let
fiAy~p(X)
be a homotopy equivalence in H(G)/ >~ . Suppose A, satisfies any combination of
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the conditions

(i) A, is finitely generated for i< m,,
(i) A, is countably generated for i < m,,
(@) A;=0for i>m,.

Then X is homotopy equivalent in CW§ to a CW-complex Y satisfying the
corresponding conditions

() Y™ —D has finitely many cells,
(i) Y™ — D has countably many cells,
(i) dim(Y— D)< m,.

Also the following result, which for D = % was obtained by Wall (1966), is
an easy consequence of (7.5).

We say that a complex X in CWJ is finite if X — D has only finitely
many cells, (X, D) has relative dimension <n, if dim(X — D)< n.

(7.9) Corollary. Let n>3 and let X =(X,D) be a complex in CWQ with
7 =7,(X). Suppose that:

() the n-skeleton X" — D is finite in CW},
(i) H{X,D)=H(C,X,D))=0 for i>n, and
@) dC,. (X, D) is a direct summand of the n-module C,(X, D).

Let B, be a complement of this summand in C,(X, D) and let
o(X, D)= (— 1){B,}eK(Z[x])

be the element in the reduced projective class group of © (see below) which is
given by the finitely generated projective Z{n]-module B,. Then o(X, D) is an
obstruction, depending only on the homotopy type of X under D in CW3/ ~,
which vanishes if X — D is finite in CW3 and whose vanishing is sufficient
for X to be homotopy equivalent in CW3 to a finite complex of relative
dimension <n.

(7.10) Addendum. If X is homotopy equivalent in CW3/~ to a complex of
relative dimension < n then the conditions (i) and (iii) in (7.9) are satisfied.

Recall that for a ring A the group IZO(A) is the Grothendieck group of
finitely generated projective A-modules, modulo free modules; it is known
as the reduced projective class group. Each finitely generated projective
A-module P represents a class {P}eK(A) and we have {P} = {Q} iff there
exist free modules F and G with P@F 2 Q0 ®G.

For the convenience of the reader we give a proof of (7.9). Using the
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lemmata below the result is an easy consequence of (7.5). These lemmata are
available for any ring A.
Recall the notation in (I1.§6) on chain complexes. In (1.6.11) we proved:

(7.11) Lemma. Let C and C’ be positive projective chain complexes over A.
Then f:C— C' is a homotopy equivalence if and only if f,.HC - HC' is an
isomorphism.

The following lemma proves the addendum (7.10), compare theorem 6 in
Wall (1966).

(7.12) Lemma. A projective positive chain complex A, is homotopy equivalent
to an n-dimensional projective positive chain complex if and only if H(A,)=0
for i>n and the image of d:A, ., — A, is a direct summand.

Proof. If the conditions hold, and B, is a complement to dA4, . ;, then A, is
equivalentto0—B,— A,_, —» A,_,— --- Conversely, if A, is equivalent to an
n-dimensional complex, it is clear that H,(A,)=0 for i > n. Also

H**'(Hom,(A,,dA,+,)) =0,

and d:A4,.,—dA,,, gives an (n+ 1)-cocycle (d>=0), which is thus a
coboundary (so factors through A,) giving a retraction of 4, on d4,,,. O

(7.13) Lemma. Let A,, B, be homotopy equivalent finitely generated projective
positive chain complexes over A. Then there is an isomorphism of A-modules

@A} @By 1 =PBy; @Az
and therefore
o(B,) =Y (~ 1){B;}eK(A)

is an invariant of the homotopy type of B,.
Compare Wall (1966), p. 138, and Dyer (1976) theorem (1.2).

Proof of (1.9). Let A =Z[r]. Since dC,. X is a direct summand of C,X we
have with B, in (7.9) the homotopy equivalence

¢, X~0-B,-C,_,X—-)=B,,

where B, is a subcomplex of C,X. Since X" is finite, B, is a projective
finitely generated positive chain complex. By (7.13) the obstruction a(X) =
(— 1y"{B,} = 6(B,)e K ,(A) depends only on the homotopy type of B, and
thus on the homotopy type of C, X or of X respectively. Moreover, if X is
finite the homotopy equivalence C*X ~ B, yields, by (7.13), 0= a(@*X )=
a(B,) = a(X, D) since C*X is free.
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Now assume o(X) = (— 1)"{B,} = 0. Then there is a free A-module F such
that B, @ F is free. We obtain the homotopy equivalence f in the category
H(G), p = p(X),

B={—)0—)Bn@F—®_>pn—l@ FEY) Pn-2 }
J L1@0
~ B 1®0 1
|- SR
!
pX={ Pu+1 Pn Pn-1 Pn-2

Here f is a homotopy equivalence since C(f) induces an isomorphism in
homology and since C on H(G)/ ~ satisfies the sufficiency condition. Now
we obtain by the strong sufficiency a model Mg(pX) =Y of X in CW} with
pY =B, see (7.5). O

Finally we consider some applications of (7.5) for spaces with trivial
fundamental group.

(7.14) Corollary. Let X be a complex in CW3 and let 7, X =0 = n,D. Suppose
that for the integral relative homology groups H, (X, D) a presentation
0> Z*>7">H,(X,D)-0

(b, generators, ry relations), by, =r, =0, is given. Then there is a homotopy
equivalence K ~ X in CW28/~ where K — D has b, + r,_ k-cells.
For D =« this result is due to Milnor.

Proof. We can assume that X! = D. Therefore n,(X?2, X!) is abelian and we
can identify

pX = C,(X,D)=C,(X,D), (1)

where C,(X, D) is the cellular chain complex of the pair (X, D). There is a
Z-free chain complex C and a homotopy equivalence

C~C,(X,D), 2
where C has b, +r,_, generators in degree k. Since C is a crossed chain

complex in H(0) we obtain the proposition by choosing a model M (X).
a

The Eckmann—Hilton decomposition (or homology decomposition) of a
simply connected space (or of a map between simply connected spaces) is
given by (7.14) as well, see Hilton (1965), Eckmann—Hilton (1959). In particular
we get:

(7.15) Corollary. Let (X, D) be a complex in CW2 and let m;X =0=n,D. If
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the relative homology H (X, D) is a free Z-module we can find a complex (K, D)
and a homotopy equivalence K ~ X in CW5/~ where the cells of K — D are
1 —1 corresponded with the elements of a basis in H,(X,D). Moreover,
C,(K,D)=H (X, D) has trivial differential.

In this case we call K a minimal model of X in CW8/~, compare also
(IV.2.18).

§8 n-dimensional CW-complexes and (n — 1)-types

The Postnikov decomposition of an n-dimensional CW-complex X gives us
the functor X +— P,_,X where P,_,X is the (n — 1)-type of X. There is a
canonical quadratic action E + on the functor P,_; which leads to two linear
extensions of categories; the one is given by the action I + which appears
also in the tower of categoriesin § 7(D = x), the other one yields the action E +
which is related to k-invariants.

Let CW¢ be the category of CW-complexes X with {*} = X°, see (1.1)
where we set D = *. We introduce the n-th Postnikov functor

8.1 P,:CW}¥/~ — n-types

Here n-types denotes the full subcategory of Top*/ ~ consisting of CW-spaces
Y with 7;Y=0 for i>n. For X in CW{§ we obtain P,X by Postnikov
decomposition of X as in (II1.7.2). We can construct P,X by killing homotopy
groups, then P,X is a CW-complex with (n+ 1)-skeleton

X"tl=(P,X)"*. (1)

For a cellular map F:X —»Y in CW¥ we choose a map PF"*':P,X>P,Y
which extends the restriction F**1:X"*! > Y"*! of F. This is possible since
n;P,Y =0 for i > n. The functor P, in (8.1) carries X to P,X and carries the
homotopy class of F to the homotopy class of PF"**. Different choices for
P,X yield canonically isomorphic functors P,. The space

P,(X)=K(n,X,1) 2
is an Eilenberg—-Mac Lane space and P, as a functor is equivalent to the
functor =,. A map

Pn:X > P, X, (3)
which extends the inclusion X"*! < P,X in (1) is called the n-th Postnikov
section of X. Clearly, the fiber of p,: X — K(n, X, 1) is the universal covering

of X, more generally the homotopy fiber of p,:X— P,X is called the
‘n-connected covering’ of X. The Postnikov tower is given by maps (see (111.7.2))

qn:PnX_’Pn—IX WIth qnDn =DPn-1- (4)
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Let (CWE)" be the full subcategory of CW¥ consisting of n-dimensional
CW-complexes. For objects X", Y" in (CW})" the set [ X", Y"] is the set of
homotopy classes in Top*/~. As in (5.9)(2), with D = %, we have the action
(nz2)

(8.2) [X" Y"], x HY(X", ¢*n,Y") —[X", Y"],

where ¢:7, X" -7, Y" is a homomorphism. For n =2 this is a transitive and
effective action. For n > 2 the isotropy groups of this action can be computed
by the spectral sequence in (5.9)(4). The orbit of u,e[ X", Y"], is the subset
Ju *(julu,)) where

Je XY - [X Y] (1
is induced by the inclusion X" ! < X". For morphisms F,G:X"—Y" in
(CW¥)" we define the natural equivalence relation, ~, by

F~G<j,{F} =j,{G}. 2

(8.3) Proposition. The action (8.2) is a quadratic action E on the Postnikov
Sfunctor

P, ((CW¥)'/~ —(n— 1)-types
This functor induces the equivalence of categories
P,_ :(CWEY/~ =5 (n— 1)-types

This result is originally due to J.H.C. Whitehead who called an equivalence
class of objects in (CW%)"/~ an ‘n-type’, which is now called an
(n — 1)-type.

Proof of (8.3). 1t is easy to see that we have
FNG@Pn-I{F}=Pn—1{G}' (1)

This shows that (CW2})"/~ is the image category of P,_,. Hence by (8.2)
(1) we see that (8.2) is an action on the functor P,_,, compare (IV.§2), since

(CW3)"/~ =((CWg)"/ =)/E. (2

We derive from (V.4.5) that the action is quadratic. In fact, let X"=C,,
Y" = C, where f and g are the attaching maps of n-cells. Then we know

[X" Y"] =TWIST(f,9) (3)

by (IIL5.11) (a) and hence the action E in (8.2) is an example for the action
E in (V.4.5). O
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(8.4) Remark. The functor P, on (CW})'/~ is full and faithful, the
functor P,_; on (CW})"/ ~ in (8.3) is full but not faithful.

The quadratic distributivity law of the action (8.2) 1s given as follows. Let

Fe[X",Y"],, Ge[Z",X"],, aeH"(X", o*n,Y"), PeH"Z"y*n,X")
be given. Then composition in (CWg)"/ ~ satisfies the distributivity law
(8.5) (F+a)(G+P=FG+Fa+G*f+axf

in[Z",Y"]. Here F, and G* are the induced homomorphisms on cohomology
groups. The mixed term

(8.6) ax fe H(Z" y*p*n, Y")

is given by composition of cocycles: For o = {a} and = {b} we have with
X=X"

a*ﬁ:{CA"Z"?R"X;R"XTH"XC6"X—>R"Y"}'
DPx a

Here p: X — X is the projection of the universal covering and h is the Hurewicz
homomorphism. We derive (8.6) from (V.4.6).

The quadratic distributivity law (8.6) determines two linear groups actions
on the category (CW§)'/ ~ as follows:

On the one side we can consider elements = {b} with hp,b=0. Then
clearly 2 =0 for all «. On the other hand side we can consider elements
a = {a} with ah =0. Then we have ax f =0 for all §. These two possibilities
lead to linear group actions on (CW%)"/~ which we call I' + and E +
respectively.

We first study I" +. For an n-dimensional complex X = X" we have the
group of Whitehead I',(X",*)=1T,X" with

(8.7) I,X" = kemel(n,X = ,X — H,(X,Z))

Compare (I11.11.7). The inclusion j:I', X" = 7, X" of Z[n, X ]-modules induces
for Y:n,Z->n, X the homomorphism of cohomology groups
j:HYZ y*T, X)— H(Z,y*n, X). Using the action in (8.2) we obtain the action

(8.8) [Z", X"], x A"Z" y*T,X") > [2Z", X"],

with F +y=F +j(y). This is again a natural group action on (CW%)"/~
which we denote by H"T',. From (8.8) we deduce that H"I', is in fact a linear
action which can be identified with the action H"T', + in (5.15) on the
full subcategory

FCWEY /> e H,yy/ .



8 n-dimensional CW-complexes 367

Therefore we have the exact sequence (compare (6.2))
(8.9) H'T, 5 (CW})"/~ SH ~—0

where Hj, is the full subcategory of n-dimensional objects in H,. Clearly,
this sequence is a subsequence of the corresponding sequence in (6.2) where
H"*1T, is trivial on H~ Since the action (8.8) is given by restriction of the
action E + in (8.2) we obtain the following commutative diagram (n = 2)

E —  E/H'T,

P

r

(8.10) HT, — (CW"/~ —— H/~ -0

JPn—l lQn—l

(n — 1)-types IR (n — 1)-types

The row of this diagram for the functor r is given by the exact sequence (8.9),
the map j is defined as in (8.8). By (8.3) the functor P,_, induces the functor
0,_,, moreover the cokernel of j, denoted by E/H"I", defines a quadratic
action on the functor Q,_,. Hence the two columns of (8.10) describe
quadratic extensions of categories. The functor v is a detecting functor, the
functor P,_, and Q,_,, however, are not detecting functors.

On the other hand, we obtain by E + an action E + which fits into the
commutative diagram

&

E+ — E+

e |

(8.11) E+ — (CWH"/ ~ —— tict,

"

= |

(n — 1)-types -] (n — 1)-types

The two columns are quadratic extensions and the row is a linear extension
of categories, in particular, T, is a detecting functor.

(8.12) Definition of the category t,. An object is given by a triple
(Q, m,, k) where Qe(n— 1)-types, where =, is a 7, @-module, and where k is
an element ke H"*(Q,7,). A morphism (F,):(Q, ,, k)~ (Q', 7, k') is a map
F:Q—Q' in (n — 1)-types together with a m,(F)-equivariant homomorphism
a:m, -7, such that F*(k') = o (k)e H"* 1(Q, p*r) with @ = n,(F).
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We have the enriched Postnikov functor
(8.13) T,.CW%/ ~ —t,
which carries a complex X to T,(X)=(P,- (X), m(X), k(X)) where k,X is
the nth k-invariant of X, see (II1.7.4). Let t, be the full subcategory of t,
consisting of objects which are realizable by an n-dimensional complex X.
Naturality of the k-invariants shows that T, in (8.13) is a well defined functor.
We can describe the k-invariant k,(X) as follows: We can choose P,_; X
with X" =(P,_; X)" in such a way that in the following commutative diagram
the map f2,; is surjective.

Coi1(P— 1 X)

1o
/ s (1)

7, X «<— n,X"=n, X" — HX"<CX"
ix Pae

The map f9,, is given by the attaching maps of (n + 1)-cells in P,_, X, sce
(5.3). By (5.4) we know that f2,, is a cocycle. This cocycle represents the
cohomology class
kX ={iy 21} €A (P, X, m,X) 2)

which is the nth k-invariant of the complex X.

We define the action E + on t? as follows. For complexes X, Y in (CW¥)"
and for a map (F,«): T, X - T,Y in t let
(8.14) E,={BeHom,(r,X,n,Y)|0= Bk, X}.
Clearly, l::q, acts transitively and effectively on the set of all morphisms
(F,a): T,X > T,Yin t, by (F, ) + f = (F,« + f). This shows that the projection
functor pr; in (8.11) is a quadratic extension by E +. We define

(8.15) 8:E,=H"(X,p*n,Y)—>E,

by 8{c} =chp;!. Here c:C, X —n,Y is a g-equivalent cocycle and o{c} is
given by composition of ¢ with the Hurewicz map h in (8.13)(1). Since f,, ;
in (8.13)(1) is surjective we see that J is surjective.

Moreover, for

(8.16) E,=HP, X,¢*n,Y)

we have the exact sequence
(8.17) 0—>E¢?E¢7E‘,—>O

Here i* is induced by the inclusion X = P,_; X. Since X is the n-skeleton of
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P,_.X we see that i* is injective. By use of (8.13)(1) we see that
kernel & = image i*. Now (8.3) and (8.6) show

(8.18) Proposition: Diagram (8.11) is a commutative diagram of extensions. T,
is a linear extension by E and the columns are quadratic extensions. Since E
acts effectively we see that the isotropy group Iz, I < E,,, actually is a subgroup
of Ej.

Let Aut(X)* be the group of homotopy equivalences of X in Top*/ ~. The
linear extension T, in (8.18) gives us the short exact sequence of groups
(X =X")

819)  0—HA"P,_ X, m,X)/] - Aut(X)* — Aut(T,X)—0

where Aut(T,X) is the group of equivalences of T,X in the category t,. The
isotropy group I of the action E + in le[X, X] can be computed by the
spectral sequence (5.9)(4). This shows that I =0 if X is (n — 1)-connected;
in this case X is called a (n, X, n)-complex, see Dyer.

(8.20) Definition. A (m,n)-complex is a path connected #n-dimensional
CW-complex X = X" with fundamental group n, X == and with (n— 1)-
connected universal covering X, hence m,X = - =mn,_ ;X =0. Each 2-
dimensional CW-complex is a (7, 2)-complex. The universal covering X of
a (m,n)-complex is homotopy equivalent to a one point union of n-spheres.

I

For a (n,n)-complex X we know that P,_, X = K(n,1). Therefore T,(X) is
given by the algebraic n-type
(8.21) T,(X) = (n m,, ke H" Y(n,,m,)).
We leave it to the reader to restrict diagram (8.11) to the subcategory of

(n,n)-complexes. We obtain this way all results described in Dyer, Section 6.
In particular we obtain by (8.19) for a (n,n)-complex X the exact sequence

(8.22) 0 A(n, X, m,X) 5 Aut(X)* — Aut(T, X) =0

where Aut(T,X) < Aut(n, X) x Aut(rn,X) is the subgroup of all pairs (¢, )
with o*k =a, k. If 7, X is finite then H"(n, X, n,X) =0, see Dyer. Compare
also Schellenberg.

(8.23) Remark on ftrees of homotopy types. Theorem 14 of J.H.C.
Whitehead (1950) shows that the homotopy types of finite n-dimensional
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path connected CW-complexes which have the same (n — 1)-type Q form a
connected tree HT(Q,n). The vertices of this tree are the homotopy types
[X"] of n-complexes X" with P,_; X" ~ Q. The vertex [ X"] is connected by
an edge to vertex [ Y"] if Y" has the homotopy type of X" v §". Connectedness
of the tree shows that for two finite n-complexes X", Y" with P,_, X"~
P,_, Y"there exist finite one point unions of spheres V S, VzS"such that the

one point unions
X'vVS'~Y'vVS
A B

are homotopy equivalent.



VII

Homotopy theory of complexes in a
cofibration category

In Chapter VI we described the tower of categories which approximates the
homotopy category CW2/~. In this chapter we introduce classes of
complexes in a cofibration category which have similar properties as the
class of CW-complexes in topology. In particular, the homotopy category
of complexes in such a class is approximated by a tower of categories. This
is our main result, deduced from the axioms of a cofibration category, which
leads to many new theorems on the homotopy classification problems in
topology and in various algebraic homotopy theories. It will be very helpful
for the reader to compare the abstract theory in this chapter with the
applications on CW-complexes in Chapter VI. In fact, the main result of
Chapter VI on CW-complexes is proved here in the context of an abstract
cofibration category.

§1 Twisted maps between complexes

In this section we obtain an exact sequence for the functor A:H, ., »H, in
(VL.5.8). We prove this result more generally in any cofibration category C
with an initial object *. For this we replace the category H, .,
in (VL.5.7) of homotopy systems by the category TWIST, ., (¥) of twisted
homotopy systems which is defined in any cofibration category. Here X is
a ‘good class of complexes’ in C. If C =Top? is the cofibration category of
topological spaces under D and if X is the class of CW-complexes in CW5
then X is actually a good class in Top” and then we have an equi-
valence of categories H,,,=TWIST,, (¥) for n=1. Indeed, the
category TWIST, , ,(¥) is the precise analogue of the category H,,, in a
cofibration category. We show that there is an exact sequence for the
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functor

A:TWIST, , ,(X)—» TWIST, (X)

This yields a tower of categories which approximates the category Complex
(X)/ 2. The proof is worked out in a cofibration category. This is rewarding
since there are many different good classes of complexes in various cofibration
categories for which we can apply our result. Examples of such good classes
are described in §3 below. In the following chapter we apply the results of
this section in the fibration category of topological spaces.

Recall the definition of a complex in C in (II1.3.1). For a class of complexes,
X, we have the category Complex (X) which is a full subcategory of Fil(C)
in (IT1.1.1). We may assume that all complexes in X are actually objects in
Fil(C),,.

In the following definition we use the notation in (IL§ 11).

(1.1) Definition. Let X be an admissible class of complexes as in (II1.5a.5)
with X, ==* for XeX. We say that X is a good class if for all X, YeX with
attaching maps A; - X;_, and B;— Y;_, respectively the following properties
(1)---(4) are satisfied.
A, is a based object, 4, = A% is a suspension and 4, =X A4, =224 isa
double suspension for n = 3.
Form = 3 eachelementin[A4,,.B,, v Y,],andin[A4,,ZB,_, v Y, ],isa
partial suspension. Moreover, the partial suspension is injective on  (2)
[Am5Bm v Y2:|2 and on [Ama 2Bm—l v Y2]2'
For n>2 and ¢€{1,0} the map

(nG’j)*:nf"JeE(CBn Vv Yl!Bn v Yl)—>7t114"—+s£( an Yn—l) (3)

1)

is surjective. Here g:B,—Y,_; is the attaching map of C,=Y,
and j:Y, < Y,_, is the inclusion.

For n=2 all maps f,,,:4,+;— X, are attaching maps of complexes (4)
in X. I

(1.2) Example. Let (X}) be the class of all CW-complexes in CWJ.
Then this class is a good class of complexes in the cofibration category Top?
of topological spaces under D, compare (VI.1.1)(4). This follows readily from
the properties of CW-complexes described in (II1.5.11). We clearly have the
isomorphism of categories CW5 = Complex (X})°.

It will be convenient for the reader to have this example in mind for all
proofs and definitions of this chapter.
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(1.3) Remark. Let X be a good class as above and let X,YeX. We know
that X,=C; and Y,=C, are mapping cones with attaching maps
f:A,—»X,-,and g:B,— Y, _, respectively. The restriction of amap F: X - Y
in Complex (X) gives us the map

F":(Cf,Xn—1)—’(Cg, Y._1)

in the category PAIR, see (V.1.2). By the assumption (1.1)(3) with ¢ =0 we

actually know that this map is a twisted map between mapping cones in

TWIST for n= 2, compare (V.2.6). We do not assume that F! is a twisted

map. This is motivated by CW-complexes; in fact, a cellular map between

CW-complexes in CW{ is twisted only in degree =2 and not in degree 1.
For an admissible class X we have the twisted chain functor

(14) K:Complex (X)/ L — Chain" (%)

where we set K(X) = K(X,2) = Ek(X,2) by (IIL.5a.7). The category Chain " (X)

denotes the full subcategory of Chain" consisting of twisted chain complexes

EA where

(1.5) A=((X2,X,), 4; d))
is compatible with X. This means that for A4 there exists X, X €X, such that
(X,,X,) in A is the 2-skeleton of X and such that the objects 4; in A are

given by the attaching maps 4;— X;_, of X. (We do not assume that also
d; is given by X.)

(1.6) Definition. Let X be a good class of complexes and let n=1. A
twisted homotopy system of order (n + 1) (or equivalently an (n + 1)-system
for short) is a triple

X("+1)=(A7fn+17 Xn)
where X, is an n-skeleton of a complex in ¥ and where
A=((Xp,X 1) A, d),di: A, > ZA; v X,

is a twisted chain complex compatible with X which coincides with k(X",2) in
degree < n. Moreover, f,, €[A,+1,X,] satisfies

(v j)dys1=Vfors (1)
where j:X, = X, is the inclusion. Here d,, , is the boundary in 4 and V is

the difference construction, compare (II1.5a.1). A map between (n + 1)-systems
is a pair (£,5) which we write

EMA frs 15 X)) = (B, gpsy, Y,) =YD,

Here #:X,— Y, is 2 map in Complex(%)/&, and ¢:EA— EB is a 5,-chain
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map in Chain” where the restriction 5,: X, > Y, c Y, of n yields the
map 7,:(X,, X, )—>(Y2, Y,) in Coef, see (I11.4.3). Moreover, ¢ coincides with
the n,-chain map K( ) in degree <n and for &,., there exists &,, €
[A,+1,B,+, Vv Y], such that EE,, =¢&,,, and such that the following
diagram commutes in Ho(C).

Ayyy ——— B, v Y,

[fn+l J(gnﬂsj) (2)

Xn —r’" Yn

Let TWIST, . ; (¥) be the category of (n + 1)-systems and of maps as above.
Composition is defined by (¢, 1) (&, 71) = (£, nij). Moreover, let TWISTS,, ,(¥)
be the full subcategory of TWIST, . ,(¥) consisting of all objects (4, f, . {, X,)
which satisfy the following cocycle condition. Thereis d,, €[4, 5, A, v X1,
where £A, ., = A,,, with
Ed,,,= dn+2 in[A,,2, 24, v X1, and}
(fn+1’.])* n+2=0in[4,,,, X,].

Here j: X, < X, is the inclusion. Il

3)

Recall that H, denotes the category of homotopy systems of order n in
(V1.4.2) and (V1.5.7) respectively. The cocycle condition in (1.6) (3) corresponds
exactly to the one in (VI.5.4).

(1.7) Proposition. For the class X=(X3)° of CW-complexes in (1.2) with
G = 7, D we have canonical equivalences of categories

N, TWISTS(¥) =5 H,(G) = H,

N, TWIST,(¥) >H,, nx3.

The same result holds for the subcategories of objects which satisfy the
cocycle condition.

Proof of (1.7). We define N, by N,(4, f5, X1) =(C, p(X?)) where X2 is the
mapping cone of f, and where p(X?) is the crossed module of (X2, X1).
Moreover, C is the 7, (X ?)-chain complex given by the twisted chain complex
A via diagram (1) in the proof of (IIL5.9). Similarly, we define the functor
N.by N4, f,, X" 1 =(C, f,, X"~ ). It is easy to check that N, n= 2, is an
equivalence of categories. Indeed, (1.6)(1) corresponds to (VL5.7)(1) and
(1.6)(2) corresponds exactly to (VI1.5.7)(2), n = 2. For n = 2 we know that &, ,
in (1.6)(2) is uniquely determined by ¢, ., since we have (1.1)(2). This is not
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true for &,, in fact, the map &, corresponds exactly to the map &, in
(VL4.2)(2) O

As in (VI.5.8) we have obvious functors (n = 2)

(1.8) Complex (X)/ 2 — TWIST, . (%) - TWIST, (X)

JK

Coef < Chain™ (X)

The functor r,, ; carries a complex XX to
Fas 1 (X) = (KX, 2), fur 1 X (1)

where f,, , is the attaching map of X, < X, ., and where k(X, 2) is the twisted
chain complex in (IIL5a.7). For a map F:X — Y in Complex (X) we obtain
rav1(F)=(&m) by ¢=K(F,2) and by n=F|X, Moreover (& ,,n) is
associated to the twisted map F**! in (1.3), compare (V.3.12). One can see
now that r,, ; is a well-defined functor. We define A in (1.8) similarly by

j~(A’fn+1’Xvn)=(A,mevn—1)’ (2)

where f, is the attaching map of the principal cofibration X,_, < X,,.

Lemma. The full image of 4 in (1.8) is the category TWIST,(X) of all
objects which satisfy the cocycle condition.

Proof. If the cocycle condition is satisfied for X™, then there exists a twisted
map fn41:Ans1 X, =C,, associated to d,.,, see (IL11.7), such that
(A, fn+1, X,) 1s an object in TWIST, .. (%) with (A4, f,+, X,) = X™. On the
other hand, if (X®* V)= X" then we know by (1.1)(3) with ¢ =1 that X®
satisfies the cocycle condition since f,,, is a twisted map associated to an
element d,,, by (1.1)(3). O

Finally, we obtain the functor K in (1.8) by
KA, fuX,-1)=A4, KEm=¢& @)

The functor C is defined in (II1.4.5)(5).
Recall that exact sequences for functors form ‘towers of categories’ as
defined in (IV.4.15). We prove the following ‘tower theorem’.

(1.9) Theorem. Let X be a good class of complexes as in (1.1). Then we
have the following tower of categories which approximates the category
Complex (X)/ 2z 3):
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Complex(X)/ 2

|- 5

I, ——% TWIST,, (¥

TWIST,(X) —=—=» HY

l

I, —————» TWIST,(¥)

TWIST,(X) ———— H;

u ‘.
- # Chain’(¥X)
' /

Coef

The natural systems of abelian groups in (1.9) are obtained by the groups

E, and E, which we define as follows.
Let X" =(4, f,, X,_,) and Y® =(B, g,, Y,_,) be objects in the category

TWIST,(X), n = 2. Moreover, let ¢:(X,,X,)—(Y,, Y;) be a map in Coef.
Then we have the following diagram where C, is the mapping cone of geg,,.

(24, Y- ]—=—[24,,C,1>E, S E,

(1.10) d’:m..ml
[Ap+1, Cg] l’[An+ 20, v Cg]z
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Here i,:Y,_; c C, is the inclusion and V is the difference operator (I1.12.2).
In case A4,,, is a double suspension, see (1.1), we know that V is a
homomorphism of groups. The map d,.,:4,,,— 24, Vv X, is the twisted
boundary of 4 and we set

d:+1(ﬁa ¢)=(ﬁ9jq0)dn+1 (1)

for pe[ZA,, C,]. Here j:Y, c Y,_, < C, is the inclusion. By (1.1)(2) we see
that d,, , is a partial suspension for n > 2, therefore d¥, (-, ) in (1.10) is a
homomorphism of abelian groups in this case.

We now define for any suspension X4 (with 4 = £A4’) the subgroups

E,cE,c[Z4,C,]. @
For A = A, we get the groups in (1.10). Here E, in just the image
E,=image(i,:[ZA4,Y,_ 1 -[ZA,C,]). 3)

For the definition of E, we use the functional suspension (IL.1 1.7). The group
E, is the subgroup of all elements fe[ZA4, C,] for which there exists an
element f,e[ 4, B v Y], such that

Ef,=0in [XA4,2B, v Y,],, and
(g9])*ﬁn = 0 in [A’ Yn— 1]'
Here we use the convention in (IIL.5a.4). Clearly, E, is contained in E,, since

E, = image (i), = E,(0). Moreover, we define by (1.10) the abelian groups
(nz22)

BeE,(B,),
} )

L.(0) =T, (X", 9, Y") = E,nkerneld}, ,(, 0), } )

H(p) = Hy(X™, 0, Y™) = kernel (V)/d}, | (E,, ¢),

where dY¥, (E,, ) = {d¥, (x,p):xeE,}. If we replace in (5) the groups E,
by E, we get the corresponding groups I,(¢) and HY(¢) respectively. We
clearly have the maps

(o) =T o) and} ©

HY(p) —> HY(9),

which are injective and surjective respectively.

Remark. We have E, = E,, if the partial suspension E is injective on

[4,, B,V Y,],. ThusT", =", and HY = Y in this case. Since ¥ is a good

class this holds for n = 3 by the assumption (1.1)(2). We say that the class ()
X satisfies ' =T in degree 2 if I', =", and H} = AY.
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Lemma. HY and T, are well-defined natural systems on the category
TWIST, (¥) (n = 2).

Here we use the notation in (IV.3.1)(*) for the natural systems in (5) above.
Proof of (8). Let (&, n):X™ > Y™, (£,7):X'™ > X", and (¢, "): YW > Y'®

be maps in TWIST,(X) which induce ¢, ¢, and ¢” respectively in Coef.
Then we obtain the induced functions

®)

& n*:Tie) > Tuee),  B—(E*B o) )
&,y (@) - HY(o@), {0} {(E™ & )% 0)}, (10)
T > Toe ), B FL(B), (11)
& ") HBl@) > HY(¢"9), {a}r— {F (@)} (12)

In (10) the map E~'¢&,,, = &, is well defined by (1.1)(2). This shows that
(9) and (10) are well defined. The map F:Y,— Y, in (11),(12) is a twisted
map associated to (£, #"). The map in (11) does not depend on the choice
of F since two such choices F, F satisfy F = F + &, £€[ZA,, Y,_ ], see (V.3.12).
Hence we have (F +¢),f=Ff + (¢, F)(Vp) with V= Ef, =0, see (4). Also
(12) does not depend on the choice of F since (F + &), a= Fa + (£, F)Va with
Vo =0 by assumption on a. We leave it to the reader as an exercise to show
that diagram (1.10) is natural with respect to the induced maps defined as
in (9), (10) and (11), (12) respectively. |

(1.11) Definition of the action T',. Let (%,7):X™*" - Y"*1 be a morphism in
TWIST, .. ; (¥) which induces ¢ in Coef and let ael", (X", ¢, Y*™). Then we set

Em+a=(n+a),
where 1+ a = u*(n, o) is determined by the cooperation u:X,— X, v ZA4,
which is a map in HoFil(C). (Here we consider X,_, = X, as a principal
cofibration in the cofibration category Fil(C), therefore p is defined by
(11.8.7).) I

Remark. We can use the spectral sequence (II1.4.18) in Fil(C) for the
computation of the isotropy groups of the action I', +, compare the method
in (VL5.16).

(1.12) Lemma. T, + is a well-defined action on the functor A TWIST, . (X)—
TWIST,(X) and T, + has a linear distributivity law, n 2 2.

Proof. We first check that (&, 5 + «) is again a morphism in TWIST, . | (%X).
For this consider first diagram (1.6)(2) where we replace n by n +a. We
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deduce from (1.6)(1) the formula

frvim+a)y=from+dy, (0, 0)= T i1 =Gns ))en+1- (1)
Here we know d¥, (&, ¢)=0 since ael (). Moreover, n+a is a map in
Complex/ 2 for which K(n + a) coincides with ¢ in degree < n. In fact, n + «
is a twisted map associated to (&, + f,, 7,—;) Where n,_, =#n|X,_,. This
follows since for acE, we have f, as in (1.10)(4). Now K(n + a) is given in
degree n by

EE, +B)=EE,=¢, @
as follows from (II.12.5) and (II.11.8). This completes the proof that (£, 7 + «)
is a well-defined morphism in TWIST, , , (¥X). Next we show that I', + has
a linear distributivity law. For this we consider the composition

(& n" + o) & n+a)=("En"n +9). 3)
Here (&, #"): Y+ D 5 Y™+ D induces ¢” in Coef and a”el’,(¢”). From (V.1.6)
we deduce the formula

0= Exe", @") + my(@) + (Va)*(o”, ¢”) (4)

Here Va = Ef, =0 since oceE,,. Finally we show that l~",l + is an action on
the functor A, compare (IV.2.3). Clearly, we have by definition of 1 in (1.8)(2)

A& n +a)= A&, ) (5)
Now assume A(&, ) = A(&, n'). Then we have £ = & and #,_, =1, _,. Hence
there is ae[XA,, Y,] with n +a=7n" in HoFil(C). Here we use the cofiber
sequence in Fil(C), see (1.11). We have to show aef,,((p). The assumption
(1.1)(3) (e = 0) shows aeE,(f,). As in (2) we see

E(En + Bn) = 6:: = in = Ei—n on Y2 (6)

and therefore Ef,=0 on Y,, hence aeE,. Moreover, we have for n and '
the formula (see (1.6)(2))

i =Gne o NE 6L
=(usr INE"E40) (7
=fren
Here we use the fact that by (1.1)(2) E"*¢,,, =&, , is well defined for n = 2.
Now (7) and (2) show d*,,(a,¢)=0. This completes the proof that
ael (¢). 0

(1.13) Definition of the obstruction. Let (&, ):AX"+D = X o YW = Jy@+D
be a map in TWIST,(X), n:X,_, > Y,_,. Then there is a twisted map
F:X,— Y, associated to (£,, 5), compare (1.6)(2) where we replace n by (n — 1).
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For F we have the diagram

Apyy =By vY,
n+1

an+l <[(gni—l’j) > (1)

X, —F—>Y,,

where &,,, =E~'¢,., is well defined by &,.,, since n=2, see (1.1)(2).
Diagram (1), however, needs not to be commutative. We define

D(F)='—(gn+19j)€n+1+an+1' (2)

We prove that this is an element in the kernel of V, see (1.10). Therefore it
represents a coset (X = X"+, Y =y"*V)

Oy y(& 1) = {O(F)} e HI(X™, ¢, Y™), 3)

This is the definition of the obstruction operator. I

(1.14) Lemma. The obstruction Oy y(&, 1) is well defined.

Proof. First we check VO(F) = 0. We have by (11.12.8)

V(an+1)= _izan+1 +(i2+i1)an+1
= —i,F frs1+ (Ve F)iy +iy) frse1

= (VF9 iZF)an+ 1
= (E, i,0)d 1, see (V.3.12)(3)
=(£,© @), + 1, see (111.4.4)(1). (1)
On the other hand, we have by (1.6)(1)
V((gn+1’j)gn+1)=(dn+1®l)é—n+1 (2

since &, is a partial suspension by (1.1)(2). Since ¢ is a twisted chain map
we know that the partial suspension of (1) and (2), respectively, coincide on
Y,, hence (1) and (2) coincide since by (1.1)(2) the partial suspension is injective
on [A,;, 2B, Vv Y,],. This shows VO(F) =0 since V is a homomorphism.

Next we consider the indeterminancy of the obstruction depending on
the choice of &, and F. Let G be a twisted map associated to (¢,, 1) with
EC_,, =E¢,= ¢, on Y,. Then there is an element ae[TA4,, Y,] with F + o =G.
As in (1.12)(5)(6) we see oceE,,. Now we get

O(G) = O(F + o) = O(F) + (a, F)V f,, 41 = O(F) + dyy 1 (2 @). &)
This shows that the class {O(F)} in HY(¢) depends only on (&, 7). Whence
the obstruction (1.13)(3) is well defined. O

With the notation in (IV.4.10) we get

(1.15) Lemma. The obstruction O has the derivation property.
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Proof. Assume (& 7):AX"* D 5 1Y®* U and (&,7): AY®**D S 27" ®* D induce
¢ and ¢’ in Coef respectively. Let F and G be maps associated to (£, 1) and
(&, n) respectively. We have

DGF) = —(9n+ 1) (&)1 +GF [
with (05, = (E 1, 26), 1. This shows

D(GF) = ~ (Ghr 1])Es 110N
+ (G, + 1,J.(P_,)én+ 1
- G(gn+ l’j)én+ 1

+Gan+1'

The second and third term cancel. Since &, .., is a partial suspension we deduce

O(GF) = (0(G), j¢') e+ 1 + G, O(F).
With (1.10)(10), (12) this proves the proposition of the lemma. O

In the next lemma we use the assumption (1.1)(4) on X.

(1.16) Lemma. O has the transitivity property.
Compare (IV.4.10)(d).

Proof. Let X =(A4,f,.:,X, be an object in TWIST,,;(¥) and let
{a}eHY(AX,1,AX). Then we get

X+{a} =(A’fn+1 +a’Xn)

with Oy , .y »(1) = {a}. Thisis clear by (1.13). Since Vo = 0 we see that (1.6)(1)is
satisfied for X + {«}. ]

(1.17) Lemma. O has the obstruction property.
Compare (IV.4.10)(b).

Proof. Assume Oy y(& 1) =0. Then there is peE, with

D(F)=_(gn+1’j)6n+1+an+1=_(B’(p)dn+1 (1)
Thus we get

OF +B)=—Gns 1:)Nns1+(F + B fas1
= ~(Gn+ 12N)ens1 T Ffus1 + (B, 0)dy i1 (2
=0.
Therefore (&, F + ) is a map in TWIST, , , (X) with A(& F + f) = (£, ). Here
F + B is a twisted map associated to (&, + B,, ) with §, in (1.10)(4). Therefore
the induced chain map in degree n is E(E, + B,) = EE, =¢,, see (V.3.12)(3).
Hence the map (&, F + B) is well defined. 0
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(1.18) Proof of (1.9). By definition in (IV.4.10) and (IV.4.15) the theorem is a
consequence of (1.10)(7), (1.12), (1.15), (1.16), and (1.17). ]
As in (I11.2.10) we have the following

(1.19) Naturality of the tower TWIST, (X) with respect to functors. Let
2:C—K be a based model functor, see (I.1.10). For a complex X in C we
choose RMaX in Fil(K). Then RMaX is a complex in K. Assume that X
and X, = RMa(X%) are good classes of complexes in C and in K respectively.
Then « induces a structure preserving map between towers of categories
which carries the tower TWIST*(X) in C to the tower TWIST,(%X,) in K.
The maps induced by o on ", and HY, respectively, are defined by a; in
(I1.6a.2). Hence we have for n > 2 the commutative diagram of exact sequences
(see (IV.4.13))

I, —— TWIST,, (X¥) —% > TWIST,(¥) — 2 A7
J ld JO( JO(L
I, —* TWIST,, , (X)) —%*— TWIST,(X,) — 2~ {7

Finally, we consider the special case of theorem (1.9) for the class of
CW-complexes in (1.7).

(1.20) Proposition. Let X =(X{)° be the class of CW-complexes in CW3.
Then we have a tower of categories which approximates CW3/ X by the
Jollowing equivalent exact sequences, n > 2.

zt,—+/— H,,, —*+—- H, —LLHY

NI ~]Nn+l ~[Nn §1NV

f, —=— TWIST,,,(¥) —*— TWIST,(¥) —2 A

R

Here the natural systems Z,,l~",l and H"+11~"Z are given by
z'T,(X, ¢, Y)=Hom, (C,X, [,(Y, D)),
H (X, 0,Y) = H" (X", o*T(Y, D))
where X and Y are objects in H,, and where ¢:7n, X - x| Y is a homomorphism.

Proof of (1.20). We have the commutative diagram

n,,X"’l—i—wt,,(X") —V (VS v X",
Z'l
jl =
T X", X" ) —— C,X
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which shows that
kernel (V) = kernel (hj)= 1~",,(X , D).

Therefore we get the isomorphism NV in (1.20). On the other hand, we get
the isomorphism N for n=2 by the last equation in (VL1.2.9) which shows
that E, =T',(X, D). O

(1.21) Description of the obstruction operator by use of track addition.
We use the notation in (1.13). The map f, . :XA4,.; = A,41— X, is a twisted
map associated to d,.,:A,,,— A, v X,, see (1.6)(3). Hence we can find a
track Hy as in the diagram (n = 2)

UHx N
Ay 1 T’AnVX1 7 Xt (1

Here (f,,/)d,., is a map in C. The track Hy gives us the twisted map
far1=Cd,,,0,Hy, G,) as in (V.2.4). In the same way the map ¢g,,, 1s a
twisted map given by tracks Hy, G;. Now consider the following diagram
associated to the diagram in (1.13) where ¢ = 1 for n =2 and where ¢ =2 for
nz3.

(é_m i21)

0 H= An \YJ XI — n . <:
X (Hy,J)
A,
{Jw) (g J)
‘L F v Yl

Xooi - Y e @
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The maps :X, — Y, and F are restrictions of F:X,—Y,. Since X isa good
class the map Enﬂ with EZ,H =¢§,,, exists. For n>2 the track H exists
since F is a twisted map associated to (&,, F). Since &, , is trivial on Y, we
know that there exists a track H,,.

Lemma. Assume atrack G asin(2)exists,n = 2. Then any choice of H and
a good choice of (G, H,) yields, by track addition, the element

a:ZA;l+1=An+1_'Yn—1CYn _ (3)
a=F*Hy+di, (H,jn) + 9w )G — & (Hy, j) + Ho

which represents the obstruction O(F).

Remark. A track G in (2)exists for n = 3 provided the partial suspension

E:[A,+1,B,v Y;],-[A4,.1,ZB, Vv Y,],

is injective. (This, for example, is the case if X is a very good class, see (2.2)
below.) If, in addition, for n =2 the map

[A;I+I’an Yl]Z_)[A;l+1’BnV Y2]2 (4)
is injective then G also exists for n =2.

Proof of lemma (3). Since A,., (n=2) is a double suspension we have
OF)=Ff 11— (Gys1,/)E,+ 1 The map Ff,,, is represented by the addition
of tracks in the diagram

G 1)
CA,,VX1 —"(—Z__. CB,,V Y1

®

\¢

Ay ———» A, v X,

BvY,® Y,
/(VH,;])
“a

X

* Xo-1 —F " Y.

where (K) denotes a commutative diagram, compare (V.2.3). On the other
hand, (g, + 1,j)&,+ is represented by the addition of tracks in the following
diagram.
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(Ga.i3)
CB,,,vY, ———— & CB,v Y,

y ®
e

’
Apsr— B, vY,

B.vY, ® V..

A, 0.1 2,

—_— _——
* Yl Yn— 1

Here — H, is given by H, Now it is possible to choose G in (2) such
that the following track addition represents the trivial homotopy class
0:24,.,— Y, (this defines a good choice of (G, Hy)).

CByy VY,

N

’
An+1 =B;+1VY1

0

0 7 ® (Gsri)
AN

1

A"VXI —> B"VYE

e ®

CA,v X, Gor)

/

— CB,vY,

This implies the proposition in (3) when we consider the track addition
corresponding to the sum of elements in O(F) above. ]

Lemma (3) above shows that the obstruction O(F) is a kind of a “Toda
bracket’.

§2 Twisted maps and 1-homotopies

In this section we prove the theorem on the CW-tower in (VL§5,§6). We
prove this result more generally in a cofibration category C. For this we
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introduce a homotopy relation, ~, on this category TWIST;, ; (X) defined
in §1 above. Here X is a ‘very good class of complexes’ in C. Examples of
such very good classes are described in § 3, in particular, the class (X§)” of
relative CW-complexes in Top® is such a very good class. We describe an
exact sequence for the functor 1;TWIST;, ,(X)/ ~ - TWIST(X)/ ~ which
is isomorphic to the exact sequence for A:H;,,/~->H;/~ in case
X=(X92.

Let C be a cofibration category with an initial object *. For the definition
of a very good class of complexes in C we need the

(2.1) Definition. 1et A = ZA’ and B = B’ be suspensions. We say that (4, B)is
E-stable (with respect to the class X) if for all YeX the partial suspension

E:[A,B vY],—»[A,Bv Y],
is surjective and if the iterated partial suspension

E:[A,Bv Y], 5[T'4,TBv Y],
is bijective, i = 1. I

We assume that for YeX also all skeleta Y, are complexes in X, hence we
can replace Y in (2.1) by Y, foralln >0

(2.2) Definition. Let X be an admissible class of complexes as in (II[.5a.5)
with X, = * for X eX. We say that X is a very good class if for all X, YeX with
attaching maps 4;,— X;_, and B; — Y,_ respectively the following properties
(1)...(4) are satisfied.

A, is abased object, 4, = LA} isasuspension and 4, = XA, =% 4" isa
double suspension for n = 3.

The pair (£4,,XB,) is E-stable and (£°A4,,_,, B,,) is E-stable for m >3
and ee{— 1,0,1}. Moreover, the pair (4,,,,,ZA,,_ ) is injectiveon X, (2)
for m= 3, see (I11.5a.3).

For n=2 and ¢e{—1,0,1} the map

()

(ng’j)*:nf"jae(CBn v Yl»Bn v Yl)_)nf"jae(yz» Yn-l) (3)
is surjective. Here g:B,— Y,_; is the attaching map of C,=Y, and
j:Y, < Y,_, is the inclusion.

Fornz=2all maps f,,,:4,+1 — X, are attaching maps of complexes in

4
X i @
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(2.3) Remark. A very good class is also a good class in the sense of (1.1).

(2.4) Example. The class (¥3)® of all CW-complexes in CW3 is a very good
class of complexes in the cofibration category Top?, see (1.2). This again
follows from the properties of CW-complexes described in (II1.5.11).

We now introduce the notion of homotopy on the category TWIST, . (%),
for this compare also (IIL.4.5) where we define homotopies in the category
Chain” .

(2.5) Definition. Let X be very good and let (&,7), (&,7): XD Y®+ 1) be
maps in TWIST, , [(X¥)asin(1.6),n = 1. Then (&, ) ~ (&, ') are homotopic if (a)
and (b) hold.

(a) There is &, ,€[XA4,,B,+, v Y,], such that

= 1,
H+(Gns 15 ) ey =0

are 1-homotopic maps X,— Y,, j:Y; = Y,. Here the action + is defined
by the cooperation u: X, — X, v XA, asin (1.11). We set a,,, ; = Ed, , ,.
(b) There are o;e[X2A4;_,,ZB; v Y,],, i=n+2, such that for iz n+ 1

E& — E&; = (Eo;© @)(E*d) + (Ed;. , © oy,
Here ¢ is the map in Coef induced by (&, 5); by (a) we show that ¢ is also

the map in Coef induced by (&,%#). The equation holds in
[Z%4;, 2B, v Y,],.

We say that the pair («, H) with a =(«;,i = n+ 1) is a homotopy from (&,%)
to (&, 1). I

(2.6) Lemma. (2.5) (a) implies that there is a 1-homotopy H,:ijn ~i,n' of maps
Xyp= Y = Cg, ig:Yn = 1

This proves that (£',n') induces ¢ in (2.5)(b).
Proof of (2.6). Let Hy=H|IX,., be the restriction of the homotopy H.
Then the difference

d(']+(gn+1,j)a_n+1,H0’n,)=0 (1)
is trivial since H exists, see (I11.8.13). By (I1.13.9) we get
d('l,HO,n,)=(gn+1’j)o_‘n+1' (2)

This shows that
d(ign’ igHO’ ign,) = ig(gn+ 1,j)a_n+ 1= 0 (3)
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Hence a homotopy H (which extends H,) exists. Clearly, H, is a 1-homotopy
since H is one. We can choose H as a twisted map associated to (C,, = IX,)

vy
T4, —* LB VY,

w J l(gn +1.7) (4)

I'Xx, ——Y,
(1,Ho,n) =

One can readily check that homotopy in (2.5) is a natural equivalence
relation and that the functors in (1.8) induce functors

2.7) Complex (X)/ & — TWIST;,, ; (¥)/ ~ —>TWIST;(¥)/ ~

K

Coef —— Chain"” (¥)/ ~

between homotopy categories. The following ‘tower theorem’ is the precise
analogue of theorem (VI.5.11) and (VI.6.2) in a cofibration category.

(2.8) Theorem. Let X be a very good class of complexes and let n = 2. Then
we have a commutative diagram with exact rows

I, —X STWISTS, ,(¥) — -TWIST(*) —2 H"%If

N R | ]

HiF— S TWISTS, | (¥)/ & ——— TWIST:(X)/ ~ _°, H™'T

Here H\'\T'c AY is a natural subsystem of HY in (1.10)(5) and the top
row is given by the corresponding exact sequence in (1.9).

Clearly, this result yields a tower of categories TWIST (X)/ ~ which
approximates the category Complex(¥)/ 2 . The tower of categories in (V1.6.2)
for (CW3)/~ is exactly the special case with X = (X})P, see (2.4). Clearly
all properties of the tower as described in (V1.6.5) and (V1.6.12) hold in the
same way for the tower TWIST% (¥X)/ ~.

The natural systems of abelian groups HZT in (2.8) are defined on the
homotopy category TWIST¢(X)/ ~. Let X" = (4, f,, X ,-) and Y™ =(B,g,,
Y,_,) be objects in TWIST(X) and let ¢:(X,,X;)—(Y,,Y;) be a map in
Coef. Then we define HXT'(X™, ¢, Y™) by use of the left-hand column in
the following diagram.
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, Frm‘lO(P
Ay v X, * B,.,VvD
-
O] -~
- /// -
d, 01 7 d,. 01
278,00
" /// - w
- 00
A, vX, > B,vY,
@ -
-~
-~
(2.9) 4,01 /,/’ &HO@ 4,01
”
///
\J s '
Cn— @
TA,_,v X, - > 3B,_,vY,
® ~
s
Ed,_, 01 - Ed,_,0O1
d n
”
/// an—l @(P
v /// (.0 v
n—2 ‘P
ZZA,,_ZVXZ - zan_z\/ Yz

In ® we set 4, =% =B, for n=2. This is a diagram in Ho(C) which as
well can be considered as a diagram in the category Wedge in (I111.4.4). The
boundaries d, and d,_, are given by the twisted chain complexes 4 and
B respectively. Moreover, we obtain d,,, for n=3 by stability of
(44,4, 1n (2.2)(2), ¢ = — 1,B,, = 4,,) and by the condition

Edu+l=dn+1 on Xl' (1)

Hence d,. , is well defined by the condition in (1) for n > 3. We get d, .,
for n =2 as well by the cocycle condition for X, see (1.6)(3). (For n=2,
however, the element d, is not unique and needs not to be a partial
suspension.) Moreover, the cocycle condition shows for n =3

(an 1)Jn+1 = V(fmj)&—n+1 =0 on Xn—l'
This implies (d,® 1)d,,, =0 on X, by the assumption that (4,,,%4,_,)
is injective on X,, see (2.2)(2).
Moreover, (2.2)(2) shows that for a ¢-chain map £:X4 - XB we get Z,H
and &, with E2¢,,, =EE,,,=¢,,, and EE, = ¢,, respectively (as in (2.9)),
where &, is unique for n= 3. The stability condition also shows that the
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diagram of unbroken arrows (2.9) commutes for n = 3. In fact, the double
partial suspension of this diagram commutes since & is a ¢-chain map.

Next we consider a chain homotopy a: & ~ & for ¢-chain maps &, ¢': 4 — B.
Hence elements o,e[2%4;_,, B, v Y,], are given such that (2.5)(b) holds
on Y,. Now (2.2)(2) (¢ = 1) yields maps &, and a,., as in (2.9), (n = 2), with
Ed,=«a, and E?d,,,=Ed,,, =a,,,;- Moreover, we get for n=3 the
equations

é;l—l _én—l=(dn®1)&n+(an®(p)Edn—l’ (2)
al_é_n=(gn+1®1)&n+1+(an®(p)dn’ (3)

in[X4,_,,XB,_, v Y,], and [4,,B, v Y,]1,, respectively, since the partial
suspension of (2) and the double partial suspension of (3) are equations as
in (2.5)(b). Here we use the stability of (A4 ,, £B,) for (2) with n = 3, see (2.2)(2).

The desuspension of 4 in the left-hand column of (2.9) and the attaching
map g, in Y yield the following diagram where C, is the mapping cone of
g:B,—Y,_, withgeg,;letp+k=nz2and k= — 1.

E cE,c[2*2%4,.,,C,]

[T J

(2.10) E,cE,c[¥"'4,C,]
S
[EkAp+ 1 Cg]

By the inclusion j:Y, ¢ Y, = C, we obtain the coboundary
SR(B) = (E*d, . )*(B. jop) (1)

asin (II14.8). Fork=—1,p+1=n+22>4,the object Z7'4,,, =4, is
the desuspension of 4,., in (2.2)(1); moreover, E‘lderl =3p+1 is well
defined by (2.9)(1). Since 3p+ . 1s a partial suspension we obtain the
homomorphism §"%!, n =2, by (1).

The groups E, and E,, in (2.10) are defined by (1.10)(3) and (1.10)(4). Since
the composition of twisted maps is twisted we see that diagram (2.10)
commutes. Therefore we can define for p+k=n=>2, k= — 1 the abelian
groups
E,nkernel(6f)

HET () = HED(X™, 0, Y') = =2
R S+ 1(E,)

2

When we replace E, in this formula by E, we get Hgf“(q)). These groups
are subquotients of the abelian group [X**'4,,C,], see (2.2)(1). For the
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twisted cohomology in (I11.4.8) we have the canonical maps
H{T(¢)— HET (¢)— HY(EA, ¢) 3)
which is the identity on cocycles. Moreover, for T',(¢) and f‘,,((p) in (1.10)(5)
we have the quotient maps
Tu(@) —> H3T(9). TW(@)—> HT (). (4)
We point out that by (1.10)(7) we have

H"'T(¢)=H""'T(¢), HiT(p)=H;T(p) fornz3. (5)

We say that the class X satisfies I = I" in degree 2 if (5) holds also for n = 2.
By (2) the natural systems of abelian groups in (2.8) are defined. The induced
maps are given as follows where we use the notation in the proof of (1.10)
(8). The homomorphism

(&, n)*:HET (0)— HET (09) (6)

carries the class {a} to the class {(E*¢,)* (o, jo)}. Here the map E™ ', =&,
(k= —1, p=n+1)is well defined as in (2.9). The homomorphism

(& ") HET (9) > HET (0" 9) 0

carries the class {o} to {F  a} where F is the map in (1.10)(11). One can check:

Lemma. The induced maps (6) and (7) depend only on the homotopy class  (8)
of (£'.n'y and (&",1"), respectively, in TWIST, (X)/ ~ and hence H{T' and
HET are well defined natural systems on this category.

For the proof we use the existence of dand & in (2.9) and we use (2.9)(2), (3) for
(&.1')*. Moreover, we use (2.6) and the naturality of the functional suspension
for twisted maps for (£”,7"),.. In fact, diagram (2.10) is natural with respect to
maps (£”,1"), and (&, 7')* respectively.

Next we prove theorem (2.8) by the following lemmas.

(2.11) Lemma. The top row of (2.8) is an exact ‘subsequence’ of the corres-
ponding exact sequence in (1.9).

Proof. Let X and Y in (1.13) be objects in TWIST.,, ,(X). For {O(F)}eH(¢)
we show {O(F)}eH"''T'(¢) = H)(p). Both groups are subquotients of
[4,+1,C,]. C,=Y,. We have to show (1) and (2)

O(F)eE, (1)
O(F)ekernel "Y'  or equivalently d*, ,(6(F), ¢) =0. )
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We first check (2). Since d,,, , is a partial suspension we get

(OF), 0)dpr2=—((Gn+1:)n+1:Pus 2 + (Ffri1,0)dp 2. (3
Commutativity of @ in (2.9) yields

~((gns 157Ven41:P)us 2= = (Gur 1, DN Ens 1 OO, 12 =

—(gn+ 17j)(d—n+2®1)£n+2 “)
On the other hand,
(Ffos1:0)dpi2 =F(fos1,i)dys. (5)
We know by the cocycle condition
(fn+1’j)d—n+2=0’ (gn+1,j)gn+2=0' (6)

Therefore (4) and (5) and thus (3) are trivial and hence (2) is proved.

Next we check (1). Recall the definition of the functional suspension E,,
geg,, for (C,, Y,_,)=(Y,,Y,_,). We know that &,,, = EE,,, is a partial
s_uspension on Y,. The attaching map f,,, is a twisted map associated to

dy4y, see (2.9)(1), and the map F in (1.13) is a twisted map associated to
(¢,,1). This shows

(gn+1’j)£—n+IEEg((d—n+1@j)£n+1) and (7

an+1EEg((£n®qu)d—n+ L 8)
Here we use the inclusion j: Y, = Y, _,. By diagram @ in (2.9) (with n replaced
by n+ 1) we get
EB,=0onY, for }
Bn=—(dys1ONens1 + (£ Q@)1 s
Moreover (7), (8) and (9) show O(F)e E (B,) and hence by (9) condition (1) is
satisfied.

Now exactness of the sequences in (1.9) shows that the obstruction in the
top row of (2.8) satisfies the obstruction property and the derivation property,
see (IV.4.10). We still have to check the transitivity property of the obstruction.
For X and {a}eH""'T'(X,1,X) we get the object X + {a} as in (1.16). It
is clear that X + {a} satisfies the cocycle condition since « is a cocycle and
since X satisfies the cocycle condition. O

©)

By lemma (2.11) we see that the top row in (2.8) is an exact sequence. Next
we consider the bottom row of (2.8). All maps and operators in the bottom
row are determined by use of the top row and the quotient functors. We
have to show that the bottom row is well defined and that exactness holds.

(2.12) Lemma. 1~",,+ induces an action of H'{)f" on the functor 1 between
homotopy categories in the bottom row of (2.8).
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Proof of (2.12). Let (&,1), (¢,7):X—Y be maps in TWIST;, ,(X), n,7":
X,—Y, and let Bel ,(1X, @, AY) where ¢ is the map in Coef induced by
(&,n). We have to show

p(B)=0in AL () implies (&,n) + B = (&n) (1)
where p is the quotient map in (2.10)(4), and
MG~ M&,n)=3p with ({,n)+ B~ ) 2

We first check (1). The assumption p() =0 is equivalent to the existence of
an element f'eE, = [X%4,_,, Y,] such that § is the composite map

B:TA,—324,_,vX,—Y, 3)
Ed, B.je)

Let H be the trivial homotopy H:n,_, ~#,_,, with n,_, =#|X,_,. Then we
have by (II.13.9) the equation

din,H+ f.n+ p)=dn H,n)+ f—(B,jo)Ed, 4)
Since, clearly, d(n, H, 1) = 0 we see by (3) that the difference in (4) is trivial.
Hence there exists a 1-homotopy

H:n~n+ B which extends H + B. (5)

Now the definition in (2.5) shows that with « =0 we have a homotopy
(o, H):(&, 1) ~ (£, + P). This completes the proof of (1).

Next we proof (2). Assume we have a homotopy (H, &): A&, 1) = (&, 1,~ ) =
ME,n)Y=(&, n,_,) in TWIST;(X), compare (2.5). We have to construct an
element Bel,(¢) with (£,7+ B) =~ (&, ) in TWISTS, , (X). By (H, o) we get
a 1-homotopy

Hytigh, oy gy HIX, Y, (6)

as in (2.6), where we replace n by n— 1. By (2.5)(b) we have for i = n the
equation

E& — E¢; = (Ex;© 9)(E*d;) + (Ed;y , O Dy (7)
in [Z24;, 2%B; v Y,],. By (2.2)(2) we can find &,,, with
Ea—n+1=an+1’ Uy 1 €[ZA, By v Y11, (®)
We define f in (2) by
B=dn, Hy,n') = (Gns 1))+ 9)

This is an element in [XA4,, Y,] defined by &, , in (8) and by H, in (6). We
have to check that there is a homotopy

(@ G):(&n+ B =( ) (10)
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and that
BeT (o) (11)
Then the proof of (2) (and whence the proof of (2.12)) is complete.
We first prove (10). We define («, G) by « in (7) and by a 1-homotopy

G:(n+B) + G+ 15N =1 (12)
This 1-homotopy exists by definition of § in (9), see (I1.8.15); the homotopy
G is an extension of H,. Clearly (7) and (12) show that («, G) is a well-defined
homotopy as in (2.5).
Now we prove (11). Condition (11) is equivalent to
peE,<[ZA,,Y,] (13)
and
(B, )+, =0. (14)
We first consider (14). For A = d(n, H,, #')in (9) we have ahomotopy n + A ~ ¢’
which extends H,. This shows

N farr =0+ A fury=nfari + (A 0)d, 4, (15)
by (1.6)(1). On the other hand, (1.6)(2) yields
Nwe1 =G 5Denv1s M far1=Gnr15)E0s1- (16)
Now (15) and (16) imply
(A @My sy = Gnr 151 — Gur1) (17)

Since d,, , is a partial suspension we derive from (9)
(ﬂ’ (0)d,,+ 1= (A’ (0)d,,+ 1 (gn+ l’j)(a_n+ 1O (0)d,,+ 1

=(Gn+ 11— Crr1 — O 1 O @), 1 o) (18)
= (Gns 1))y 2O V5 (19)
Here (19) follows from (2.9)(3) (where we replace n by n + 1). Now (19) is the

trivial element since (g, ;,j)d,., = 0. Here we use the assumption that ¥
satisfies the cocycle condition. This completes the proof of (14).
We now prove (13). The map w:ZA,—»I'X, with I' X, =X, uIX,_ ,uX,
is twisted by (II.13.7). Also the map
M=(@Hy,n)(I'X,1X,_5)—>(Y, Y,_,) (20)
is a twisted map between mapping cones. This follows since H, is twisted
by construction in (2.6)(4) and since n and ' are twisted. Since A&, n) =

(&, n,- 1) we know that 5 is associated to (¢,, n,_ ), similarly ' is associated

to (&, m,—4)- Now it is clear that the composition
A=dn,H, n)=Mw (21)
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is twisted with Ae E,(0) where 6 is obtained ‘by ¢ in (I1.13.8)’ and by the map
(& G E): Ay v ZA,—y v A, B, v Y, (22)

which is associated to M. Therefore we get
5= =&+ (Vi) —ajo) + ¢, (23)

where ¢ is the map in Coef induced by (¢, #) (and by (¢, 7). We have V f, = d,,
on Y,, compare (I1.13.8) and (1.6)(1). On the other hand, we have by the
cocycle condition for g, ,

Gn+ 15+ 1 EE, (11 ON)+1) (24)
Since E, is a homomorphism we deduce from (23) and (24)
B=A—(gus1s))%+1€EHS —(dys 1 ON)ys 1) (25)
We know by (2.9)(2)
E(6—(dy+Of)&+)=0 onY, (26)
This shows by (25) that feE, and (13) is proved. O

(2.13) Lemma. The obstruction O in the bottom row of (2.8) is well defined.

Proof. We have to show that the element

{DF)} = Oy, (& meH™ T(9) (1)
in the proof of (2.11) depends only on the homotopy class of (£,7):AX - AY in
TWIST; (X)/~, see (1.13). Here X and Y are (n+ 1)-systems which satisfy
the cocycle condition. Now let (H,®):(& ) ~(&,n) be a homotopy in

TWIST, (X) and let F and G be maps associated to (&, 1) and (&, )
respectively. We have to show

{O(F)} ={D(G)} in H,'T(¢). (2)

The n-skeleta X, Y, of X and Y, respectively, are objects in X. Therefore we
obtain by the functor r,,, in (1.8) maps

U, V:rn+1Xn=R_>rn+1Yn=Q (3)
in TWIST, ., (X¥) by U=r,, ((F+ ¢,+,%+,) and V=r,,,(G). Here the map
F+¢,..,%,+, is associated to

En+(gn+1®1)&n+l:An_>an Yl' (4)

This follows from the cocycle condition for ¢,,, and from E&,., = Eq,, |,
see (2.9). Hence the homotopy (H, o) above yields a homotopy

AU) = AV) in Twist;(X). 5
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Now (2.12) shows that there is Bel (AR, o, AQ) with
U+B~V in TWIST, ,(X) (6)

Since R is given by the n-skeleton X, we see I',(AR, ¢, AQ):E,,, compare
(1.10)(5). Next (6) and the definition of U and V show that we have a
1-homotopy

F+g"+1&"+1+ﬂ26. (7)
This shows
an+1 =(F+gn+1a-n+1 +ﬂ)fn+1
=an+1+(gn+1a_n+1+ﬂ5(p)dn+1' (8)
Therefore we get

~O(F)+0(G)= = Ffus1 +Gns 157)Cns1 = Gns15)8n41+ Gfuis
=(Gns1%ns1 + B OMns 1 + (G 19j)(€_n+1 - é_;.+1)
=Gt 1) [0+ 1O Q)11 + é_n+1 — &1+ (B, 0)dys s
=(B, 0y, 1. 9)

The last equation is a consequence of (2.9)(3) since (g, . 1,j)d, ., =0 by the
cocycle condition for Y. Now (7) shows that (2) is satisfied since feE,, see

(2.10)(2). |
(2.14) Proof of (2.8). The theorem is a consequence of (2.11), (2.12) and (2.13)
compare the definition of exact sequences for functors in (IV.4.10). O

As in (1.19) we get the

(2.15) Naturality of the tower TWIST, (X )/ with respect to functors. Let
o:C— K be a based model functor as in (I.1.10). Let X be a very good class
of complexes in C and assume that X, = RMa(X) is a very good class of
complexes in K. Then the functor « induces a structure preserving map which
carries the tower TWISTY, (¥) to the tower TWIST, (X,) and the same holds
when we divide out homotopies. In particular, we have for n>2 the
commutative diagram of exact sequences, see (IV.4.13),

~ A ~
H'T, —F STWIST, ,(¥)/~ — —TWIST,(X)/~ ——H"*'T,

L Lk
H'E, —F S TWISTS, , (,)/~ ——TWIST(X,)/~ —=— H"* 1T,
Here o, is induced by o; in (IL.6a.2).
Finally, we consider the special case of theorem (2.8) for the class of

CW-complexes in (2.4).
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(2.16) Proposition. Let X = (X3)° be the class of CW-complexes in CW§.
Then the diagram of exact sequences in (2.8) is equivalent to the diagram of
exact sequences in (IV.5.11). In particular, we get by (1.20) the equivalent exact
sequences (n = 2)

HT, —— H, /=~ — . Hy~ —= L Hif

N]g ~]Nm ~]N" %[N

HiT — S TWIST:, | (¥)/~ —— TWIST,(¥)/~ —= H"+1T

n

Here the isomorphism N is obtained as in (I1L.5.9), compare also the
proof of (1.20). Clearly, (2.16) yields a proof of (VL5.11) and hence of
(VL6.2).

§3 Examples of complexes in topology

We show that the ‘principal reduction’ of CW-complexes and of Postnikov
towers yield classes of complexes which are very good and good respectively.
This result shows that there are various kinds of towers of categories which
approximate the homotopy category of spaces.

Recall the definition of a complex in (IIL.3.1).

(3.1) Theorem (r-fold principal reduction of CW-complexes). Let D be a path
connected CW-space and let k =r — 1 = 0. A relative CW-complex (X, D) with
k-skeleton X* = D has the structure of a complex { X} in the cofibration category
Top? by setting

Xi=Xir+k’ l;o
D=X,cX,cX,c--climX,=X

The class ()P of all such complexes is very good. For k>r — 1 = 0 this class
satisfies T =T in degree 2, see (2.10)(5).

(3.2) Remark. 1t is enough to consider k<2r—1 in theorem (3.1) since
(X%,_ )P is the subclass of (X/_,)” consisting of all X with X, = D.

Theorem (3.1) also shows that the class (X3)° of complexes in CW3 is
very good, see (2.4).

Proof. We have shown in 2.3.5 of Baues (1977) that for n = 0 the inclusion
X, X, .1, with X, defined in (3.1), is actually a principal cofibration in the
cofibration category Top®. In fact there are attaching maps f, .,
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/n+l

A&‘\—D—/‘»X,,

in Top® where 4, ; = (D >— A, , , — D) is a based object in Top” such that
Xu+1~C, _ under X,. Here the mapping cone C; is a mapping cone in the
cofibration category Top®. The pair (4, ;, D) is a relative CW-complex such
that A4, — D has only cells in dimension N with rn+ k<N <r(n + 1)+ k.
Up to a shift in dimension by + 1 these cells correspond exactly to the cells
of X1 — X,

From the addendum of (V.7.6) we derive that (¥£)? is an admissible class
of complexes in Top®, compare (IIL§ 5a). Here we use the isomorphism

[4,Bv X],=n(CB v X,B Vv X)

in the cofibration category Top® provided A is a suspension in Top®. Assume
that (B, D) is (b — 1)-connected then (2) and (V.7.6) (addendum) show that
(4, B) is surjective on X, if dim(4 — D)< b +r+ k— 1 and (A, B) is injective
on X, if dim(4 — D) < b + 2r + k— 1. This implies readily that (¥})” is an
admissible class of complexes and that (X;)” satisfies the last condition in
(2.2)(2). Moreover, all conditions on a very good class of complexes in (2.2)
can be checked for (X})® by the general suspension theorem under D and
by its addendum, see (V.7.6). For k>r—1 this also shows that T=1 in
degree 2. O

For D = % we derive from (3.1) the

(3.3) Corollary. Let X be a CW-complex with trivial k-skeleton X*=* and
let X, = X"** where k=r—12=0. Then

s=X,cX, cX,c-climX,=X

is a based complex in the cofibration category Top*, see (II1.3.3). The class
(XD)* of all such complexes in Top* is a very good class of complexes.

The corollary shows that for X* = * the inclusion X, < X, is a principal
cofibration in Tep*. In particular, X, is a suspension. In (3.1), however, the
space X, in general is not a suspension in Top®.

Let CWP? be the full subcategory of CW§ consisting of all complexes with
X*=D. For k=r—120 there is the canonical equivalence of categories

(3.4) 0,:CWP/ ~ =~ Complex (X])°/ ~
which carries X to the complex {X;} in (3.1). By (3.1) and (2.8) we have a
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tower of categories
(3.5) TWISTS (X)?/~, n=2,

which approximates the homotopy category CW?/~. This tower satisfies
I =T indegree 2 if k>r—1>0.

By (3.5) we actually obtain k+ 1 different towers of categories
(r=1,...,k + 1) which approximate the homotopy category CW?/~. There
are even more such towers by restricting the towers for CW?_,/~ to the
subcategory CWP/~. It remains to be seen how all these towers are
connected with each other. In (VI1.§6) we described in detail the properties
of the tower TWIST:, (X})°. Similar properties are available for the towers
(3.5). This yields many new results on the homotopy classification problems.

The next result allows the application of the tower of categories in section
§1 in a fibration category. Recall that cocomplexes in a fibration category
are by definition the strict duals of complexes in a cofibration category.

(3.6) Theorem (r-fold principal reduction of Postnikov-towers). Let B be
a path connected CW-space and let k = r = 1. Consider all fibrations p: E —>> B
in Top for which E and the fiber F are CW-spaces and for which F is k-connected.
Then the Postnikov decomposition {E'} of p in (I11.7.2) yields the fibrations in
Top
B=Ey«—E «—E,... «—E,...
{with E;=E"*%i20,

which form a cocomplex in the category Topg. The class (€})y of all such

cocomplexes is a good class of cocomplexes in the fibration category Topg.
This class satisfies T =T in degree 2, see (1.10)(7).

(3.7) Remark. For k=r=1 the theorem shows that the Postnikov—
tower of a fibration p: E — B with simply connected fiber is a cocomplex in
Topg. We proved this in (II1.7.4)(b). The classifying maps are the twisted
k-invariants.

Proof of (3.6). The principal reduction in 2.3 of Baues (1977) shows that
E,—> E,_, is actually a principal fibration in Topg. For r = 1 the classifying
maps are described by the k-invariants (II1.7.4). For r > 1 the classifying map
f.of E,—~E,_, is amap over B as in the diagram

f’l

En—l EE— An

N
B
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Here A, is an appropriate based object in Topg. The fiber F, of A, —> B has
the homotopy groups

mF for(n—Dr+k<j<nr+k
0 otherwise

n_}(QFn) = {

Here F is the fiber of E—»> B and QF, is the fiber of E,—E,_,. The
construction of f, 1s originally due to MC-Clendon (1974). From the
addendum of (V.10.6) we derive that (€)%, for k=r =1, is actually an
admissible class of cocomplexes. Here we use the equation

[YxX, A, =7 (WY x X|Y x X)

which is satisfied for a loop space 4 in Topy. Also the conditions on a good
class can be checked by the general loop theorem (V.10.6). Moreover, I' =T
in degree 2 is a consequence of this result. O

Next we consider the important special case of (3.6) with B = =.

(3.8) Corollary. Let E be a k-connected CW-space with basepoint, k 2r = 1.
Then the Postnikov decomposition of E yields the based cocomplex {E;} with

E. = Eir+k
{*=E0<%El<% E,e«c— -,

The class (€}), of all these cocomplexes is a good class of cocomplexes in the
fibration category Top.

In particular, the fibration E,— E,_ is a principal fibration in Tep and
E, is a loop space in Top. For the cocomplexes {E;} in (3.6), however, the
space E, in general is not a loop space in Topg.

Let CW¥ be the full subcategory of Topy consisting of fibrations E —» B
Jor which E and the fiber F are CW-spaces and for which F is k-connected. For
k=r =1 we have the canonical functor of homotopy categories

(3.9) 97:CW./ ~ - Cocomplex (€}),/ %

which carries E —> B to the cocomplex {E;} in (3.6). The functor 8}, is well
defined by naturality of the Postnikov decomposition, compare for example
5.3 in Baues (1977). The functor (3.9) is full and faithful on the subcategory
consisting of objects E —s»> B for which E is a finite dimensional CW-space or
for which E —> B has a finite Postnikov decomposition. By (3.6) and (1.9) we
obtain for k = r = 1 the tower of categories

(3.10) TWIST, ()5, nz=2,
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which approximates the homotopy category CW¥%/ ~ via 6} in (3.9). This tower
satisfies I' = T in degree 2.

There are k-different towers (3.10) which approximate the category
CWE/~. Moreover, we get such towers by restricting the towers for
CW. 1/~ to the subcategory CW%/~. The connections between these
towers are helpful for explicit computations.

The tower of categories (3.10) yields many new results on the homotopy
classification problems in the category Topg/~. In the next chapter we
discuss in detail the tower TWIST,(€}); which approximates the homotopy
category CW}/ ~.

§4 Complexes in the category of chain algebras

We show that a cofibration in the category DA of chain algebras has in a
canonical way the structure of a complex in DA. Moreover, we describe the
‘principal reduction’ of such complexes. This is an algebraic illustration of
the result for CW-complexes in (3.1). In the category of chain Lie algebras
DL each cofibration as well is a complex in DL and one can study the
principal reduction of such complexes too; we leave it, however, to the reader
to formulate (and to prove) the results of this section for chain Lie algebras.
Complexes in the category of commutative cochain algebras CDAY are
discussed in (VIIL.§4) below. All these complexes yield towers of
categories as described in §1 and §2 above. These towers have
properties similar to those discussed in Chapter VI for CW-complexes.
Unfortunately it is beyond the limits of this book to describe this in detail.

Let R be a commutative ring of coefficients. We show that the objects in
DA? are complexes in the cofibration category DAL, Here we derive the
structure from the I-category DA in (1.3.3). The homotopy category
DA?/ ~ plays an important role since we have by (I11.3.6) the following result:

(4.1) Theorem. Let R be a principal ideal domain and let D be flat as a module.
Then the inclusion

DA’/ ~ = Ho(DA(flat)?)

is an equivalence of categories.

Here the right-hand side is the localization with respect to weak
equivalences and the left-hand side is the homotopy category of cofibrant
objects in DAZ. An object in DA? is a cofibration

4.2) D> X=(DUT¥),d)
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in DA. This is a complex with (relative) skeleta
X"=(DUT(V.)d) <X (1)

where V_, = {xeV:|X| < n}. One readily checks that X" is a chain algebra
with the differential given by the one of X. The 0-skeleton

X°=Dv T(V,) )

is just given by the chain algebra D and by the free R-module V,, concentrated
in degree 0. Clearly, we have the filtration

D X° X! X =limX". 3)

Here X" >— X"*! (n 2 0) is a principal cofibration since we have the push
out diagram

CT( 1V, , ) —Ls X"+
U push U 4
TG 'V,p) —— X"
n+1
The attaching map f, . , is given by the differential d in X, namely
farrsT0)=dv, veV,,,, ®)

Moreover, T(s~'V,,,) is the tensor algebra with trivial differential so that
fu+ is a well defined map in DA since dd = 0. We have the cone in (4) by

CT(S—an+1)=(T(S—1Vn+1@Vn+ 1),d)
ds™'v)=0, dv=s"1'v, veV,_,
By (1.7.19) we know that this is actually the cone given by the cylinder I in
(I.7.11); here T(s™'V,,,) is a based object with the augmentation e,

e(s™'V,,,)=0. By the definition of f, ., it is immediately clear that (4) is a
push out diagram with =, being the identity on V., ,.

(6)

(4.3) Remark. The inclusion D>—X%=D v T(V,) is not a principal

cofibration since we have no attaching map. This inclusion, however, is a

weak principal cofibration in the sense that we have the coaction
WX XOv T(Ve)=D v T(Vo®V)) (1)

(with ¥, = V) which is the identity on D and which carries v to v + v for
veV,. We now define the structure of a (weak) complex {X,} for D >— X

by setting
D forn=0
= ’ 2
Xo {X"‘l, fornZl} 2
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This complex is the analogue of a CW-complex in CWZ with skeletal
filtration, see (VI.1.1)(1). As in (VI.1.1)(4) we see that { X, } is a complex in DA?
with attaching maps

(fos 1 D:T(s™ Vi) v D— X" 3)
where i:D = X" is the inclusion.

Let (X})P be the class of all complexes {X,} as in (4.3)(2). Then we have the
equality of categories

4.4) Complex (X})” = DA?

since each map in DAZ is filtration preserving. Moreover, for degree reasons
we get

4.5) Complex(¥X1)?/~ = DAP/ & = DAP/~

since a homotopy is also a 1-homotopy, see (I11.1.5).
As in (3.1) there is a principal reduction theorem for the complexes above.

(4.6) Theorem. Let D be a chain algebra and let k=r —120. A cofibration
D>—X=D]IT(V),d) in DA with V;=0for 0 i < k —1 has the structure
of a complex {X;} in DAL by defining

XizDL[T(VO5"'3Vir+k—1)5 lgo,

with X o= D. The class (X})? of all such complexes is very good.

We have similar consequences of this theorem as in (3.4) and (3.5), in
particular, we obtain the tower of categories TWIST (X;)” which approxi-
mates DAQ/~ (the ‘weakness’ of a cofibration D >— X, for {X,}e(¥})P
mentioned in (4.3) is not essential in the proofs). For k = 0, r = 1 the class (X})?
yields a tower of categories

(4.7) K, = TWISTS(X1)?, n=2,

with almost the same properties as the tower {H,,n 22} in (VL6.2). We will
discuss the subtower K, = TWIST,(X1)*, n = 2, in Chapter IX.



VIII

Homotopy theory of Postnikov towers
and the Sullivan—de Rham equivalence
of rational homotopy categories

In this chapter we consider topological fibrations and fiber preserving maps
over a fixed base space D. The results are also of interest when D = is a
point. We approximate the homotopy category of fiber preserving maps by
a tower of categories which is deduced from the Postnikov-decomposition
of the fibrations. This tower is a special case of TWIST,, in (VIIL.1.9). Here
our axiomatic approach saves a lot of work since we can use the results in
a fibration category dual to results already proved in a cofibration category.

We apply the towers of categories in Chapter VII in rational homotopy
theory. For this we first describe a de Rham theorem for cohomology
groups with local coefficients. Then we show that in the cofibration category
of commutative cochain algebras one has towers of categories which are
strictly analogous to the towers of categories for Postnikov decompositions.
Moreover, the Sullivan—de Rham functor yields a structure preserving map
between these towers. This fact leads to elementary proofs, and to generaliza-
tions, of some fundamental results in rational homotopy theory.

§1 The tower of categories for Postnikov decompositions
We work in the fibration category Top of topological spaces. The category
Top,, of spaces over D is a fibration category by (I1.1.4). We consider fibrations
in Top

FXcX-%D
where we assume that X, the fiber FX =p~'(*), and D are pathconnected

CW-spaces and that FX is simply connected. Let CW}, be the full subcategory
of Topp consisting of such fibrations, see (VIL.3.9). We thus have the full
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subcategory
(1.1 CW}/~ c Topp/~

where = denotes the homotopy relation over D. In this section we describe
a tower of categories which approximates the category CWp/~.

Let n = n,(D) and let Mod,, be the category of right z-modules. There are
functors (n = 2)

(1.2) n,:CW} - Mod,

which carry the fibration X ——s»> D to the nth homotopy group of the fiber FX,
n,(FX), which is a n-module. Moreover, =, carries a map f:Y— X over D
to the induced map = (Ff):n (FY)-n,(FX) where Ff:FY->FX is the
restriction of f to the fibers. We need no basepoints for FX and FY since
these spaces are simply connected.

We now define the category of coefficients which will be used for the tower
of categories below.

(1.3) Definition. Let Coef = K3 be the full subcategory of CW}/~ consisting
of fibrations X; —» D for which the fiber is an Eilenberg—Mac Lane space
K(n,,2). We discuss properties of this category in §2 below. I

The Postnikov decomposition {X'} of X —» D yields by (I11.7.4) or
(VIL.3.6) the cocomplex

(1.4) with X; = X'*! and with classifying

D=Xyo«— X, «— X, «— -
{maps fn:Xn—l _)An=L(nn+15n+2)'

Here A, is the based object in Topp defined in (I11.6.5). By naturality of the
Postnikov decomposition we have the functor E; as in the commutative
diagram

E
CWi/~ — Coef

(1.5) M\M d/n2
od,

Here E, carries X —» D to X, —> D. In the following theorem we use the
category of graded m-modules Meodz* which consists of sequences of
n-modules (7,7, . 1,--.) and of n-linear maps of degree 0.

(1.6) Theorem. Thereis a tower of categories which approximates the homotopy
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category CWh/~, nz2,
CW)/~

it ——— T,

A
T,
T, i -+ Coef x Mod3z®
Coef

Here i is a faithful functor and the composition of functors i, A, and r is (E,
Mgy Mgseos):

Proof of (1.6). We use the good class of cocomplexes (€}),, in (VIL3.6) and
we use the functor 8 in (VIL.3.9). Then (VIL1.9) gives us the tower of categories

T,=TWIST,E)),, n>2,

where we dualize the definition in (VII.1.6). Below we describe the category
T, more explicitly. This shows that i in the theorem is a faithful functor.

O

Recall that we have (for each z-module A4) the Eilenberg—Mac Lane object
L(A,n) in Topy, see (IIL6.5), which is a based object

(1.7) K(A4,n) < L(A,n) %D

in Top,.
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(1.8) Lemma. For n-modules A, A’ there is the canonical isomorphism
n. [L(A4,n), L(A’,n)], = Hom (4, 4).

Here the left-hand side denotes the set of homotopy classes in Topp,/~ which
are based up to homotopy, see (11.9.8). The right-hand side is the group of
n-linear maps 4 — A'.

We define the isomorphism =, in (1.8) by the functor in (1.2). This shows
that the isomorphism is compatible with the loop operation Q in the fibration
category Top,, dual to (11.9.8), so that the diagram

[L(A’ n)’ L(A/’ n)]O
(1.9) ) Hom, (4, 4)

[L(A,n—1), LA,n—1)],

commutes. Here we identify (see (111.6.6))
(1.10) QL(A,n)=L{4,n—1)

as usual. The Postnikov decomposition in (1.4) is a cocomplex for which the
principal fibration X, — X,_, in Top, has the classifying map
(111) fn:Xn—1_>An=L(7Tn+1’n+2)'
Here n,,,=m,,:FX denotes the homotopy group of the fiber FX of
X —»D.

For the difference V f, we obtain a unique map d,, for which the following
diagram commutes up to homotopy over D, and which istrivialon X |, (n = 2):

vf"
Lin,n) x pX,_;, —— L(n, ,n+2)

-

(1.12) Ixp 7y,
L(nm,. n) x pX,

This follows from the addendum of the general loop theorem (V.10.6). Clearly
p:X,_, —>» X, in the diagram is given by (1.4). Moreover, we use (1.10) for
the definition of V£, see (11.12.2). The product X x ,Y in (1.12) denotes the
product in the category Topp.

(1.13) Remark. We cannot expect that d, factors over L(n,, n) X p X = L(n,,,n)

since in general there exist non trivial cup product maps K(=,, n) x K(n,,2)—

K(my+1,n+2). |
We now are ready for the definition of the bottom category T, in (1.6).
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(1.14) Definition. Objects of T, are twisted 2-systems X'? which are given
by tuples

XD ={X,f3 7 d,n=3} 1)
Here X, is an object in Coef and 7, is a n-module. Moreover,

f2:X, - L(n;,4), and }

d:L(m.n) % pX 1 = L(y 1 o1 +2) (2)

are maps in Topp/~ and d,, is trivial on X . These maps satisfy
d(Ld,-,O1)=0 3)

for n = 3 where we set d, = Vf,. Recall that the trivial map 0 in (3) is given
by the section 0 in (1.7). Next we define the maps in T, by a tuple

(@, &n23): YD 5 X @

where Y ={Y,,g,,7,,d,,n=3}.

The tuple in (4) is given by a map ¢: Y, —» X | in Coef and by n-linear maps
¢om,—m, in Mod,. For these maps the following diagrams (5) and (6)
commute in Top,/ ~ (n = 3)

Y, —— X,

gzl P.z (5)

L(ty, 8) — L(n,, 4)

(.0
L(x,,m) % p ¥y =5 L(maon) x p X 4

d;l ld" (6)
ner

L(myy 1 ,n+2) —— L(m,,,n+2)
Here we use (1.8). I

Remark. The category T, depends on the category Coef and thus the
morphisms are not purely algebraic. For D ==x, however, we have the
equivalence Coef = Ab and in this case the category T, can be considered
as being a purely algebraic category. I

There is an obvious forgetful functor i, see (1.6), which is faithful. Moreover,
we have the functor

(1.15) CWl/~ T,
which carries X —> D to X'® where X2 is defined by (1.11) and (1.12). In a
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similar way as in (1.14) one defines the categories T, (n = 2)in (1.6) with objects

(116) X(")={Xn-19fmni9di9i§n+1}-

The addendum of (V.10.6) implies that

(117) [L(A,9 n)XD Yl H L(A9 n)]Z = [L(A,9 n)9 L(A9 n)]O
=Hom,(A4', 4).

This shows by (1.8) that the definition of T, above is actually consistent with
the definition in the proof of (1.6), compare (VIL.1.6).

For the definition of the natural systems I',_, and HY_, on the category
T,_, (n=3) we use the diagram (1.18) below which is dual to diagram
(VIL.1.10) (where we replace n by n—1). Let

X=X""V={X,_ 5, foo1,mpd;,i Z 1},

Y= Y("_l) = {Yn—29gn—19 T[,b d;J;n}
be objects in T, and let p,: P, =7Y,_, —> Y,_, be the principal fibration
induced by geg,_,. For a map ¢: Y, = X, in Coef, with ¥, and X, given by
Y,_, and X, _, respectively, we have the diagram (of homotopy groups in

Topy/ ~)

(Y, LAy )] 25 [Y,_ g, Ly m)]
(1.18) (Ao )

(Y1 Ly s 1+ 2)] — [L(R 1) X p Yy 1, L(Ty 1+ 2)]

Here V is the difference construction for P,. Moreover, (d,), (¢, ¢) is the
composition

y o) n
-1 _—)L(T[mn) X DXI ———>L(1‘£,,+1,n +2)

where p: Y,_, — Y, is the projection.
Recall that we have the cohomology with local coefficients (I11.6.7) which
for p: X —»> D in CW, satisfies

(1.19) [X,L(4,n)] = H"(X, A).

Here 4 isa n,(X) = n,(D)-module. Thisshows that diagram (1.18) is equivalent
to the following diagram of cohomology groups with =, = m,(FX):

ﬁ"(Yn—29nn) >£*—’ ﬁ"(Yn—19 T[n)
(1.20) (d)y(0)

A 2(Y, - 12T y) —— H" 2L ) X p Y, g, s y)
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As in (VIL1.10)(5) we now define the groups
{I’,,- (Y, 0,X)=E,_;nkernel(d,) (., »),
H,_ (Y, ¢, X) = kernel (V)/(d,),(E,_1,0)

where E, | = p*H"(Y,_,,n,) < H*(Y,_,,). Here py 1s injective since p, is
an n-connected map. In (1.21) the objects Y and X are objects in CW}, or
objectsin T,_;.

In (VIL1.10)(8) we proved that the groups [,_,, HY_, above are natural
systems of abelian groups on the category T,_;, n = 3.

We now describe more explicitly some properties of the tower (1.6). First
we have the following well-known Whitehead theorem which we derive from
(IV.4.11).

(1.21)

(1.22) Proposition. The functor (see (1.2))
(72, 73, ... CWh/~ - Mod2>

satisfies the sufficiency condition, that is: A map f: Y— X over D is a homotopy
equivalence in CW}/ ~ if and only if the induced maps =, (F ). n,{FY) — n {F X)
are isomorphisms for all n=> 2.

Next we consider the homotopy classification problem for maps in CW}/ ~.
Let Y—» D, X —» D be objects in CW)/~ and let ¢: Y; > X, be a map in
Coef. We denote by [ Y, X]§ the set of all homotopy classes of maps ¥ - X
over D which induce ¢ on Y,. Moreover, [ Y, X]¢ is the set of all morphisms
rY - rX in T, which induce ¢. Then (1.6) yields the following diagram of sets
and of group actions with n = 2.

[Y,X]5
[(Y,0,X) — & [V,X]%,,
A
(1.23) [Y,X]? —=——» HY(Y,0,X)

|
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+ N
I,(Y.0,X) ———— [Y,X]8

0
[Y,X]} ———— HY(Y,0,X)
M

XHom,(m,, 7,)
nz3

Here n, = n(FX), n, = n(FY) denote the homotopy groups of the fibers of
X —» Dand Y—» D respectively. The composition of all maps in the column
is given by the functor (n,,7,,...), see (1.2). The abelian groups I', and HY
are defined in (1.21). As in (V1.6.5) we have the following properties of diagram
(1.23):

(a) Dis afunction with image (1) = kernel (O) and O is a derivation, that is,

O(f9) = £:2(9)+ g*O(f).

Here fg denotes the composition in T,,.

(b) For all fe[Y,X]? with O(f)=0 the group at the left-hand side,
I' (Y, ,X), in (1.23) acts transitively on the subset A~ 1(f) of [Y, X]%, ;.
Moreover, the action is linear, this means for foel™!(f), goed™ 1(9):

(fota)go+ B =fogo+ fy B+ g*a
(c) If the homotopy groups n,(FX) vanish for k> N then the function
rlY.X [j-[Y,XI7

is bijective for n= N — 1 and surjective for n =N — 2.
(d) The isotropy groups of the action in (b) can be computed by the spectral
sequence {EY*{MP*}} in (IIL9.8) with
MP=Map(Y,,X,-1)p, p2L
Here ¢ denotes the empty space. We use the result dual to (II1.4.18) in the
fibration category Top,,. For

Bern(XQD,X)Cﬁ"H(Yn,n"HFx):Erll+1,n+1,
and for (¢, n)e[Y, X1%., we have (§,n)+ B=(.n+ B)=(E,n) if and only if
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n+ p=nin[Y,, X,]%. This is the case if and only if B is in the image of one
of the differentials 0,,...,0,-, as pictured in the diagram

t—s=4 Eppta
1 ® ® [ ] o, © ® s 1
| i
— { .
1 2 n+1 p=s

of the E,-term with
Eprta=[Y,, Q"' 4, 1p= AP 4Y,, n,FX).

Here 8, = 0 since we assume n; FX = 0. Moreover, the differential 0, is given
by d, in (1.18)
{al:E_T'H.l = ﬁn_l(Ymnn)_)E_q+1'"+1 = ﬁ"+1(Yn’nn+1)5
0, =(Ld,)*(..op).

Here we set m,==,FX and Ld, denotes the partial loop operation (in
Topp) applied to d, in (1.18). Then (Ld,)* (., @p) is defined as in (1.20).

Diagram (1.23) shows that the enumeration of the set [ ¥, X], can be
achieved by the inductive computation of the obstruction operator in (a),
and of the isotropy groups of the action in (b). Here we assume that the fiber
FX has finite homotopy dimension or that Y is homotopy equivalent to a
CW-complex of finite dimension. Clearly, in general, this program is very
hard; but there are nice examples, in particular if D =* is a point. As in
(V1.6.6) diagram (1.23) yields ‘higher order obstructions’ for the realizability
of a homomorphism & 7 (FY)— n (FX) of n;(D)-modules via amap ¥ - X
over D. This result improves equation 2 in Adams (1956).

Next we derive from the tower in (1.6) the following structure of the group
of homotopy equivalences over D of the fibration X —»> D in CW}/~. We
denote this group by

(1.24) Aut(X)p < [X, X1p.

This is the group of units in the monoid [ X, X],. Let X, —> D be given by X
as in (1.4) and let

(1.25) G =Aut(X,)p.

Thus G is the group of automorphisms in the category Coef. As in (V1.6.12)
the tower of categories for Postnikov decompositions in (1.6) yields the
following tower of groups with n = 2:
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Aut(X),

(1.26) E"X) ——— HY(X,1,X).

Aut, (7 (FX))

Here E"(X) is the group of equivalences of the object r(X) in T,. Thus E"(X)
is a subset:

EX)<c |J[X,X13.
peG
The composition of all homomorphisms of groups in the column of (1.26)
is given by the functors m,,n =2, in (1.2). The obstruction operator O is a
derivation defined as in (IV.4.11) by the corresponding obstruction in (1.23).
This shows that kernel () is a subgroup of E*(X) and by sufficiency of the
functor 1 we have

() AE"*(X) = E"(X) nkernel (D).

The action I',+ in (1.6) and (1.23) respectively yields the homo-
morphism 1% in (1.26) with 1*(a)=1+ « where 1 is the identity in
E"*1(X). From (1.23)(b) we deduce

(b) image (1*)= 1" }(1)nE"*(X).
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By (a) and (b) we have the short exact sequence of groups (n = 2)
I(X,1,X)

kernel 17 >— E""}(X) —» E"(X)nkernel O.

(©)

The associated homomorphism, see (IV.3.9), is induced by
{h: EMX)-AutT(X, 1, X),

@ with h(u)(e) = u,(u™ ')*(@) = (u™ 1) u*(@).

This follows from the linear distributivity law in (1.23)(b). Moreover, by
(1.23)(c) we know
(e) { If FX has trivial homotopy groups in degree = N then the homo-
morphism r: Aut (X), — E"(X) is bijective for n = N — 1 and surjective
for N —2.

(f) ) kernel (1*) is the isotropy group of the action ', +on 1e[X. X%, ,
where ¢ = 1. This group can be computed by the spectral sequence
(1.23)(d).

(1.27) Remark. The group Aut(X), is as well studied by Didierjean (1981)
and Shih (1964). Both authors define a spectral sequence for Aut (X), by use
of the Postnikov-tower of X — D. This spectral sequence, however, consists
partially of non-abelian groups. The method in (1.26) has the advantage that
the groups I', and HY are always abelian and that the isotropy groups of T,
are given by a spectral sequence of abelian groups, see (1.26)(f). In addition
the result on Aut(X), is just a detail of the tower of categories in (1.6). We
leave it as an exercise to deduce from (1.26) results as in (V1.6.13) on solvability
and nilpotency of certain subgroups of Aut(X),, compare Dror-Zabrodsky
(1979).

§ 2. The category of K(A, n)-fibrations over D
Let D be a path connected CW-space with basepoint and let # = m,(D). A
K(A, n)-fibration over D is a fibration
2.1 K(A,n)c X —>D,

for which the fiber is the Eilenberg—Mac Lane space K(A4, ). Such a fibration
yields for n = 2 the structure of a n-module on 4 =x,(FX). By (IIL.7.3) we
know that a K(A, n)-fibration is a principal fibration classified by the twisted
k-invariant

2.2) k(X)eH"* }(D, A).
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(2.3) Definition. Let n = 2. We denote by K the full subcategory of CW}/~
consisting of K(A,n)-fibrations where A ranges over all z-modules. I

For n =2 the category K2 = Coef is the coefficient category used in (1.3).
We can apply the general results in (1.6) to the full subcategory K}, of CWj/ ~.
To this end we introduce the functor

(2.3) n,: Kb - ki =« Mod,,

where k}t! is the following category of k-invariants: objects are pairs (4, k)
where A is a n-module and where ke H** 1(D, A). Morphisms &: (A4, k') — (A, k)
are m-linear maps & A’ — A which satisfy &,(k') = k. This yields the faithful

inclusion into the category Mod,, of z-modules. There is a natural system of
abelian groups on the category kj,*! by the groups

(24) H'(¢) = H'(D, 4),
which is a covariant functor in A4 (and thus a k' !-module, see (IV.5.13)).

The natural system (2.4) is used in the following result which is an application
of (1.6), compare the notation in (IV.3.2).

(2.5) Theorem. There is a linear extension of categories (n = 2):

A"+ >Kj 25kt
This implies that the functor =, is full and that each object in kj*! is

realizable. Moreover, the action of H" has only trivial isotropy groups. The
extension (2.5) is an example for the extension PRIN in (V.3.12).

Proof of (2.5). If we restrict the tower in (1.6) to the full subcategory Kj, (n = 3)
we see that all HY are trivial and that the single action I'; +, which is not
trivial, is the action I',_; + where I',_; + = H" +. Moreover, for n>3 the
full subcategory of T,, which corresponds to K}, is ki"!. For n=2 we
leave the proof to the reader. The isotropy groups of the action I',_, + are
trivial by (1.23)(d). O

Clearly, (2.5) implies the following corolaries:

(2.6) Corollary. Let X —» D and Y —> D be fibrations with fiber K(A,n) and
K(B,n) respectively, n=2. Then the group H,(D,A) acts freely on the set
[Y,.X]p and the set of orbits is {aeHom (B, A): o, k(Y)=k(X)}.

(2.7) Corollary. Let X —» D be a fibration with fiber K(A, n), n = 2. Then there
is a short exact sequence of groups

H"(D, A) >— Aut (X), —> {eeAut,(A): ¢, k(X) = k(X)}.
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This corresponds to a result of Didierjean (1981) and Tsukiyama (1980). The
associated action in the extension of groups (2.7) is given by a+—a, cAut
(H(D, A)), compare (1.26)(d). If k(X)=0, the extension in (2.7) splits since
the fibration X ——> D admits a section in this case. We can use (1.8) for the
definition of the splitting. More generally, this yields the following fact:

(2.8) Proposition. The restriction of the extension in (2.5) to the full subcategory
of objects X with k(X) =0 is a split extension of categories.

By (IV.6.1) the extension of categories in (2.5) yields the cohomology
class.
(2.8) {Kp}eHX (K}, H").
Here H? is the cohomology of the category k},* ! and {K}} is the cohomology
class represented by the extension in (2.5). We consider the cohomology class
(2.8) as a ‘characteristic cohomology class’ of homotopy theory and we expect

that there is actually a nice homological algebra of such universal cohomology
classes which can be exploited for the homotopy classification problems.

§3 The de Rham theorem for cohomology groups
with local coefficients

In this section we study commutative cochain algebras as in (I.§ 8). We describe
various properties which we derive from the general homotopy theory in a
cofibration category. We make use of the analogy between the fibration
category of spaces (over D) and the cofibration category of commutative
cochain algebras (under oD). These two categories have similar properties
which can be compared by using the Sullivan—-de Rham functor.

Let R be a field of characteristic zero and let C = CDAY be the cofibration
category of commutative cochain algebras (connected with augmentation)
which is described in (1.8.17). We have the initial object * = R in C which is
also the final object so that each cofibrant object in C is also a based object
in C.

We first discuss some simple illustrations of the homotopy theory in
Chapter IL

(3.1) Definition. Let V be an R-module (non graded) and let n = 1. We define

the Eilenberg—Mac Lane object A(V;n) in C by the free object A(V) where

V is concentrated in degree n with dV =0, compare (I.8.2). I
One can check that forn =1

(3.2) [A(V:n), X]=Hom (V, H"X),
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where H"X is the cohomology of the underlying cochain complex of X.
The left-hand side in (3.2) is the set of homotopy classes. This set is actually
an abelian group since

(3.3) ZA(V;n+ )= A(V;n),
and thus for k>0
(34) [A(V;n), X] =[Z*A(V;n + k), X] = n2V"t0(X),

For these homotopy groups we have the exact sequence in (I1.7.8) for a pair
(U,V), U>—V. This sequence can be identified with the long exact
cohomology sequence of the pair of cochain complexes (U, V) via the
commutative diagram (A =A(V,n+ k), k= 1)

H(V) —— H"(U) —— HYU,V) —— H"*{(V) ——

35 | | I I
mi(V) —— mi{(U) —— mi(U, V) —— m{_ (V) ——

For the proof of these results consider the cylinder I, A(V; n) defined in (1.8.19)
which is given by

(3.6) {I*A(V;n)=(A(V’@ V'@ sV),d)

dsv=—v +v" forveV="V"

Next we define the analogue of a sphere in the category C.

(3.7) Definition. A sphere S, (n=1) in C is an object S, together with
isomorphisms
R ifk=n k=0
Hk(Sn)={0 i no k

otherwise.

Remark. A sphere S, exists since we can take for S, the unique object 4 in

C for which the underlying graded module is given by A*=Rfor k=n,k =0

and A*= 0 otherwise, d4 =0, A = HA= HS,. Furthermore we can take for

S, the object Ax(S™ given by the Sullivan—de Rham functor in (1.8.23). One

can check that a sphere S, is unique up to a canonical isomorphism in Ho(C).
A minimal model of a sphere is given by

S _{A(t), [t|]=nodd, dt=0,

38
(38) At,x), |t|=neven, |x|=2n—1, dx=t>.

For n = 2 there is a canonical isomorphism of groups (compare (1.8.21))

(3.9) Homg(nj(A), R) = [4, S,],
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where A is a cofibrant object in C. The right-hand side has for n = 2 a group
structure since

(3.10) [4,8,]=[Z4,5,_,].

Proof of (3.9). We can assume that 4 = (A(V),d) is minimal with ° = 0. Let
A(n) = (A(V="), d). Cofiber sequences show for n= 2

[4,S,]=[A(n),S,]
= [A(n)/A(n — 1),S,]
=[A(V";n),S,]
=Hom (V" R).
The assumption n = 2 is needed for

An)/A(n — 1) = A(V"n).

For n=1 the result is still true if A(1)= A(V*;1). Compare also 8.13 in
Bousfield-Gugenheim. O

(3.11) Remark. Let » >— B> A be a cofibrant pair in C. Then the short
exact sequence of cochain complexes

0-0B-QA-Q(4/B)-0
induces a long exact sequence of y-homotopy groups (see (1.8.21)(1)):
my(B) = my(A) - my(A, B)— 7" 1(B).

If we apply the functor Hom (—, R) to this sequence we obtain via (3.9) and
(3.10) an exact sequence which can be identified with the cofiber sequence
(nz2)

[B,S,]<[4,S8,]<[(4/B)o,S,] < [ZB,S,].

Recall that F = Top} is a fibration category with the structure in (1.5.5)
and recall that we have the Sullivan—de Rham functor

(3.12) o = Ag:(Top¥)” = F°? > C-= CDAJ,

in (1.8.23)(3). The objects A(V;n) and S,, respectively, are minimal models
(nz1)

(3.13) * > A(R;n) = aK(R,n) and
(3.14) *>— 8, —as"

where K(R,n) is the Eilenberg-Mac Lane space of R and where S" is the
n-sphere. Let X be a CW-space in F. Then the natural de Rham isomorphism
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in (I1.8.23)(2) can be expressed by the commutative diagram (n = 1)

H"(X,R) —— H"aX
(3.15) | I
[X, K(R,m)] == [«K(R,n),aX] = [A(R;n),aX]

Moreover for homotopy groups we get the natural homorphism of
R-modules (n = 2)
T(X)® R —"— Hompg(n" MaX,R)
(3.16) I I
[$" X]J®R —— [aX,a8"] = [MaX,S,]
This actually is an isomorphism provided X is a nilpotent space for which
H, (X,R) is an R-module of finite type. This follows from the equivalence
of categories in (1.8.27).
Next we consider the cohomology with local coefficients. Let D be a

CW-space in F =Top} and let A be a = (D)-module. Then we have as in
(1.7) the Eilenberg—Mac Lane object which is a based object

(3.17) K(A,n) —— L(4,n) =D

0

in F , (here we choose a base point € D). Similarly we define in the cofibration
category C:
(3.18) Definition. Let B be an object in C and let ¥V be an R-module (non

graded). An Eilenberg-Mac Lane object in C? is a minimal cofibration i,

AVin)y— L(V,n) =B (n=1)
1]

with cofiber A(V;n) and with retraction 0. This is a based object in C2. |

(1.19) Lemma. The generators V of
LV,n) = (BR A(V;n),d)
can be chosen such that the retraction 0 is trivial on V, that is, 0 =1®e.
Proof. Let r be a retraction of i in (3.18). Then we obtain an isomorphism
. L(V,n)=BRAV,n)»BRA(V,n)

of graded algebras by t(b) = b for beB and (v) = r(v) + v for veV. We have
I@egr=r. O
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(3.20) Definition. Let V be a (non-graded) R-module and let B be an object in
C. A coaction (V,3d,) of B on V is a homomorphism

0p:V-oB'®V
with the properties (a) and (b):
(a) The following diagram commutes where d is the differential of B and
where p is the multiplication in B:

a
14 4 sB'@V

- o

1®¢
Bov—"peer2 pgy

(b) There is a well-ordered basis J, of Vsuch that d,(x)e B' ® V., for aeJ, .
Compare the notation in (1.8.5).

Now let (V,0,) and (W, dy) be coaction of B on ¥V and W respectively. A
mapo:(V, d,) = (W, 0y) is given by a commutative diagram

4

v —* L, w
© B Ja.
BeVv_8, pigw

in the category of R-modules. This shows that the set of maps
(V, 0y) = (W, Oy is a submodule of Homg(V, W). Let Cog be the category
of all coactions and of maps between coactions. For a map f:B— B’
in C we get the coaction

(d) [V, 0y)=(V,(f ®1)dy)
of B’ on V. Thus f, is a functor from Cog to Cop. [

The coaction (V,dy) is the analogue of the n,(D)-module A in (3.17), in
fact we have:

(3.21) Lemma. An Eilenberg—Mac Lane object L(V,n), n 2 1, in C® is deter-

mined by a coaction V = (V,0y).

Proof. We choose generators V of I(V;n) as in (3.19). Then the differential

d of L(V,n)=(B® A(V;n), d) is given by a map
d=(0y,0:V-LV,ny*'=B'®@V@B"*!

Since the retraction 1 ® ¢ =0 is a chain map we see that 6 =0. Moreover
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dd =0 shows that ¢, is a coaction. Vice versa each coaction yields via
d =(0y,0) an object L(V,n). O

Addendum. Let f: B> B be a weak equivalence in C and let (V,0y) be a
coaction of B on V. Then there exists a coaction (V,0y) of B' on V, unique up
to isomorphism, such that f (V,0y)= (V,dy) in Cog. We also write (V,3))e
f; 1(V, aV)

Proof. For the Eilenberg-Mac Lane object L(V,n) in C? we construct a
commutative diagram in C

B, > L _________ s B/
! 0
f ~ ~ ~ f
> B —
B ; L(V,n) 5 B

Here # is a minimal model of if and 0’ is a lifting as in (IL.1.11)(b). It is clear
that L is an Eilenberg-Mac Lane object in C#" for which f,.L = L(V,n). Now
let (V, dy) be given by L as in (3.21). Then we get the addendum. O

In Fp, respectively in C2, we have
QL(A,n+1)= L(A,n) and
SLV,n+ 1)= L(V,n)

Compare (I11.6.6); for the second equation consider the suspension in C? which
is defined by the cylinder in (1.8.19). For V =(V, d,) the cylinder

I,L(V,n)=(BRAWV' @V ®sV),d) (1)
has the differential

(3.22)

dis)= —v' + 0" + (1 ®s)0y(v) 2)

where (1®s) (b®v)= —b®sv for beB?, veV. The formula for d is easily
checked by (1.8.19)(14). By (1) we get for V = V"

IL(V;n) = (BA(sV), d) with} (3)

ds(v) = (1 ® s)0y

Therefore the isomorphism in (3.22) is given by sv+— —u.
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Now let X be a CW-space for which * >—— X is a closed cofibration and let
f:X—>D be a map in Top}. Then the reduced cohomology with local
coefficients is given by the homotopy set

(3.23) HY(X, %, f*A) = [X,L(A,n)]% (n=1).

Here the right-hand side is the set of homotopy classes of basepoint preserving
maps over D. This is a set of homotopy classes in Ho(Fj,) which by (3.22) is
an abelian group.

Remark. For n =2 the reduced cohomology coincides with the cohomology
since in this case

[X,L(4,m]1}=[X,LA4,n]}
by (IL.5.19). This is not true for n = 1.

(3.24) Definition. Let V =(V,0,) be a coaction of B on V and let f:B— X
be an object in CZ. Then we define the reduced cohomology of X with local
coefficients in f,V by (n=1)

H"(X; f,V)=[L(V,n), X]%.

Here the right-hand side is a set of homotopy classes in Ho(CP); this set is
actually an abelian group by (3.22). The cohomology is a functor which is
covariant in X and contravariant in V. I

Remark. One can define the non reduced cohomology by the homotopy set
of maps L(V,n)— X under B which are not augmentation preserving. Here
homotopies are given as well by the cylinder in (1.8.19).

There is a de Rham theorem for the cohomology groups above. For this
we use the functor

(3.25) o: Ho(F )’ - Ho(C™P)
which is given by « in (3.12) and by (IL.5a.2).

(3.26) Proposition. Let A be a ny(D)-module and suppose that A(X), R is a finite
dimensional R-module and that the action of 7,(D) on A(X), R is nilpotent. Then
the n,D-module A determines a coactionxA =(V, dy) of o(D)on V =Hom,(A4, R).
Moreover, for n 2 1 one has the natural isomorphism of groups

o, HY(X, *; f*A)(?R =~ H(eX, (af ) (0A4)).

This isomorphism generalizes the de Rham isomorphism for cohomology groups
in (3.15) above.
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We point out that in the proposition we do not assume that A is a nilpotent
n,(D)-module, only A(X),R is nilpotent.

Proof. The based object L(A,n) in F, yields the based object (in C*P)

a(0)
oD > Mal(A,n) =~ al(A,n) — oD (1)

where we can assume that the cofibration is minimal. From (1.8.24) we derive
that the cofiber is actually a minimal model of aK(A,#n), namely A(V;n).
Therefore (1) is an Eilenberg-Mac Lane object L(V,n) = MaL(A,n) in C*°
and thus (1) is determined by a coaction «(4) = (V, J,) as in (3.21). Moreover,
the functor a in (3.25) induces the homomorphism of groups

[X, L(A,m)] - [L(V,n),aX] Q)

which induces the isomorphism in (3.24). This can be seen inductively by
(3.15) since nilpotency of A(X),R implies that L(A(X)R,n) is a finite
cocomplex {L;} in F with classifying maps L;_, —» K(A4,,n) where A, are
R-modules with trivial action of (D), see (I11.7.4). Now cofibration sequences
and (3.15) show that « in (2) is an isomorphisms. 0

(3.27) Addendum. For a map f: D' — D in F we have the isomorphism in Co,p
a( f*A) = ()4 (x(A)).

Moreover, if R=Q, each coaction (W,0y) of aD on W is realizable by a
ny(D)-module A with «(A) = (W, 0y) in Co,yp.

Realizability of (W, dy) is seen by realizing inductively the elementary
cofibrations for oD >— L(W, n).

(3.28) Lemma. For coactions V, W in Cog there is a canonical isomorphism of
abelian groups (n = 1)

" [L(V,n), L(IW,n)]o = Cog(V, W).

Here the left-hand side denotes the set of homotopy classes in Ho(C®) which
are based up to homotopy, see (11.9.8), and the right-hand side is the set of
morphisms in Cog.

Proof. Since B is connected we can assume B® = R (otherwise prove the result
first for a minimal model of B). A map F: L(V,n)— L(W,n) under B is given
by a commutative diagram
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v %9 weB =LW,ny

[

B'®V B'@W®B"*! = L(W,n)" !
1®oul®a)
This shows that a yields a map a: L(V,n)— B which is homotopic to 1 ®¢
since F is based up to homotopy. Clearly =" in (3.28) carries F to a. O
As a special case of (3.26) we get:

(3.29) Lemma. Let A, B be nilpotent m,(D)-modules and assume A® R
and B®R are finite dimensional R-modules. Then we have the canonical
isomorphism

Hom, (A4, B)® R = Co,p(xA4, aB).
For the proof we use (3.28), (1.8), (3.24) and (3.23).

§4 The tower of categories for commutative cochain
algebras under D

As in §3 let R be a field of characteristic zero and let C = CDAY be the
cofibration category of commutative cochain algebras (connected with
augmentation), see (L.§8). In this section we show that for an object D in C the
homotopy category Ho (CP) can be approximated by a tower of categories.
The tower is analogous to the tower of categories for Postnikov decomposi-
tions in §2. The tower of categories here, however, is given in terms of the
purely algebraic category CDAY and thus it is a kind of an algebraic
illustration of the tower of categories for Postnikov decompositions in § 2.

We first consider the analogue of a K(A, n)-fibration in the category C, see
(2.1). A A(V,n)-cofibration under B is a cofibration

4.1 B>— A5 AWV,n) inC
for which the cofiber is A/B = A(V,n). As in (ITL.7.3) we get

(4.2) Proposition. Let n = 2 and let b: D > B be a cofibration in C with simply

connected cofiber, ie. HYB/D)=R, HYB/D)=0. Then each A(V,n)-

cofibration B>—— A determines a coaction V=(V,0y) of D on

V and there exists a map f: L(V,n+ 1)— B under D such that B>— A is a

principal cofibration in the cofibration category CP with classifying map f.
We call the element f,

4.3) fe[L(V,n+1),B]° = H"*(B,b, V),
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which is uniquely determined by i:B>— A the (twisted) k-invari-
ant of the A(V, n)-cofibration i.

Proof of (4.2). It 1s enough to prove the lemma for the case that
D >— Bisaminimal cofibration. By the assumption in (4.2) we have B! = D1,
For the cofibration B> 4 we choose an isomorphism

A=(BRAV;n),d).
Then the differential d on generators V is given by
d= Oy, ) V-A""1=D'RV)dB"*!.

This gives us the coaction (V,dy) and f in (4.3) is represented by f: V —» B"+1,
In fact, the equation dd=0 in 4 shows that d, is a coaction and that
S:L(V,n+ 1)> B with v f(v), veV, is well defined. Moreover, we have the
push out

CLV,n+ )= (D@AV;n+ )@ A(sV;n),d) —!— 4

| |

L(V,n +1) - N:

with d(sv) = + v + (1 ® 5)d(v), see (3.22)(2), and with f(sv)= — . O

Now let D> A4 be a minimal cofibration with 4=(D®A(V),d). Then we
have subalgebras

4.4) D >i—>A(n) =(DRA(V="),d) > A

such that A(n) > A(n + 1) is a A(V";n)-cofibration. Therefore (4.2) shows
that for V%= V!=0 there are coactions V"= (V" dy.) of D on V" and
k-invariants

4.5) k. (A, D)eH"* Y(A(n — 1),i, V")

such that A(n — 1) > A(n) is a principal cofibration in C? with attaching
map k,(A4,D), n=2. This corresponds exactly to the k-invariants of a
Postnikov-tower in (IIL7.2). Moreover, as in (VI1.3.6) we have

(4.6) Theorem (r-fold principal reduction). Let D be an object in C and let
k=r= 1. Consider all minimal cofibrations D >— A for which the cofiber
is k-connected. Then the subalgebras A(n) of A in (4.4) yield the cofibrations
D= Ao A1 A"... A
with A;= A(@ir+k), i=0,
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which form a complex in the category CP. The class ((EE)D of all such complexes
is admissible and good and this class satisfies T =T in degree 2, compare
(VIL.1.10) (7).

Proof. We use a general suspension theorem in CP which is the analogue of
the general loop theorem in Top, in (V.10a). Then the same arguments as
in (VI1.3.6) yield the resulit. O

As in (VIL.3.9) we get the functor
(4.7) 0;: (CDAY)?/ ~ — Complex (€})°/2

where (CDA2)? is the full subcategory of CP consisting of cofibrations
D >— A with k-connected cofiber. The functor & carries D > A to the
complex {A4;} in (4.6). The functor is full and faithful on the subcategory
consisting of objects D >— A with 4 = A(n) for n sufficiently large, see (4.4).
By (VII.1.9) we obtain for k = r = 1 the tower of categories

(4.8) TWIST, (€)°, n=2,

which approximates the homotopy category (CDAS)?/~ via 6 in (4.7). This
tower is an algebraic analogue of the corresponding tower of categories in
(VIL.3.10). In particular, for k =r =1 one obtains a tower T, of categories
with properties exactly corresponding to the properties of the tower of
categories for Postnikov-decompositions in §2, see (6.13) below. We leave it
the reader to formulate explicitly the results on the tower (4.8) as described
in §2, see also §6. For example, (3.28) is exactly the analogue of (1.8); this is
used for the definition of the category T,, see (1.14).

§5 The category of A(V,n)-cofibrations under D

We describe the results on the homotopy category of A(V,n)-cofibrations
under D which correspond exactly to the results on the homotopy category
of K(A, n)-fibrations in §2.

Let KP be the full subcategory of Ho(CP), C=CDAY, consisting of
A(V, n)-cofibrations D >— A4 — A(V, n) where V ranges over all R-modules.
As in (2.3) we have the functor (n = 2):

(5.1) m,:KP —>k?, , = Cop.

Here the category of k-invariants kP, ; is a subcategory of the category of
coactions (3.20). Objects are pairs (V, k) where V = (V,¢,) is a coaction of D
on V and where ke H"* (D, V). Morphisms &:(V, k) — (W, k') are morphisms
& V- Win Cop with EX(K') = k.

The functor 7y, in (5.1) carries the A(V, n)-cofibrations D >—— 4 to the co-
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action (V,dy) described in (4.2) and carries a map F:4— A’ in K? to n(F):
V— V', see (1.8.21). As in (2.4) we obtain a natural system of abelian groups
on the category kP, ; by the groups

(5:2) H'(&) = H"(D, V)

for &:(V, k) — (W, k')eCoyp. This is a contravariant functor in V. Now the linear
extension in (2.5) corresponds exactly to

(5.3) Theorem. There is a linear extension of categories (n > 2)
H + K’ kP, ..

Proof. We use the same arguments as in (2.5). Here we use the tower of
categories for Complex (€1)? in (4.8). O

The theorem implies that the functor 7}, is full and that each object in k7,
is realizable (as follows from (4.2)). Moreover, the action of H” has only trivial
isotropy groups. Again, the extension (5.3) is actually an example for the
extension PRIN in (V.3.12). Clearly, we have corollaries of (5.3) as in (2.6)
and (2.7), see §6. For example (2.7) corresponds to

(5.4) Corollary. Let D > X be a A(V, n)-cofibration with coaction V and k-
invariant k, n = 2. Then there is a short exact sequence of groups

H"(D, V) >— Aut(X)? —»> {yeAut (V):y*k = k}.

Here Aut(X)P is the group of homotopy equivalances of X in Ho(CP),
C =CDAY, and Aut(V) is the group of automorphisms in the category Cop.

We point out that this corollary is a special case of the tower of groups,
corresponding to (1.26), which is available for any cofibration D >— X in
CDAY and which approximates the group Aut(X)?, see §6 below.

§6 Integral homotopy theory of spaces over D and
minimal models

We here compare the ‘integral’ tower of categories for Postnikov decomposi-
tions with the ‘rational’ tower of categories for commutative cochain algebras.
This yields elementary proofs, and also generalizations, of various funda-
mental results of Sullivan.

In this section the ring of coefficients is the ring R = Q of rational numbers.
Let D be a path connected CW-space with base point as in § 1. We consider
the following class of fibrations over D, compare (1.8.26).
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(6.1) Definition. Let (fnZ),, be the class of all fibrations p: X —»> D in Top such
that (a) and (b) hold:

(@) X and the fiber F=p~!(*) are very well pointed CW-spaces and F is
simply connected.

(b) The group =, D acts nilpotently on 7 (F)® @ (or equivalently =D acts
nilpotently on H(F,Q)) and = (F)® Q or H(F, Q) are rational vector
spaces of finite type.

Let Top (fn2),;, be the full subcategory of Top,, consisting of objects in the
class (fn Z);,. Homotopies in this category are homotopies over D. Moreover,
let (ffnZ), be the subclass of all fibrations in (fn Z), for which the fibers
have only finitely many non trivial homotopy groups. Let (fnQ), and
(ffnQ), be the corresponding subclasses consisting of fibrations with rational
fiber, that is, 7, (F) =7 (F)® Q. I

Recall that we have the Sullivan—de Rham functor (1.8.23)
(6.2) a=Agy:F =Top}{ - C=CDA}

which maps the fibration category Top} to the cofibration category CDAY
and which is a model functor on an appropriate subcategory of Top} by the
result of Halperin (1.8.24). This result shows that for a fibration p: X —» D in
(fn Z), the minimal model

(6.3) op): aD >— MoX =~ aX

gives us the minimal model MaX/aD of the fiber «(F). Therefore we have

MaX = (D) ® A(V),d) with
V =Hom/(zn,F,Q).

We now describe the class of all cofibrations in C=CDA$ which can be
obtained by minimal models of fibrations in (fn Z),,.

(6.4) Definition. Let D be an object in C. Then (fm Q) denotes the class of
all minimal cofibrations D >— X = (D ® A(V), d) in C such that

(@) V°=V'=0 and

(b) V is a rational vector space of finite type.
Let CDAJ ( Jfm Q)P be the full subcategory of CP consisting of objects i_n the
class (fm Q)P. Homotopies in this category are homotopies relative D. Let
(ffm Q)P be the subclass of all objects in (fmQ)? for which V is finitely
generated.
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Clearly a fibration in (fn Z), yields via (6.3) a cofibration in (fm Q)*°. Let
@:aD = aD be an isomorphism in Ho(C) which is given by

(6.5) ¢:aD < MaD —Z» aD.

We now define the functor

(6.6) Mo: Top(fnZ)p/~ — CDAR (fmQ)*®/ ~
as follows. For objects X, Y in (fnZ), we know
[X, Y], =[X,Y15, 1)
by (11.5.19). Therefore we have the isomorphism of categories
Top(fnZ)p/ = =Top§ (fnZ)p/ . @
Now « in (6.2) yields the functor
Mo:Top§ (fnZ)p/ ~ — CDAL (fm Q)*P/ ~ 3

which carries the object (X —» D)e(fnZ), to the minimal model (6.3) and
which is defined on morphisms as in (II1.3.11). Moreover, by (6.5) we have
equivalences of categories (C = CDAY)

Ho(C*), <= Ho(C¥*"), — Ho(C™"). (4)

Compare (I11.4.5). By use of (2), (3) and (4) we get the functor M« in (6.6).
This functor fits into the commutative diagram of functors

Ma

Top (fnZ)p/ ~ CDAY(f mQ)*®/ ~
N e g
Top(fnQ)p/~

where F is the functor obtained by fiberwise @-localization as in Bousfield—
Kan. Clearly F, is the identity on Top (fnQ)p and May is the restriction of
Ma. We claim that Moag is an equivalence of categories. We prove this for
the subclass (ffnQ),, see (6.15):

(6.7) Theorem. The functor
Mog: Top(ffnQ)p/~ — CDAY(ffmQ)P/~

is an equivalence of categories.
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If D==x is a point this result yields part of the Sullivan-de Rham
equivalence of categories in (1.8.27). We point out that the theorem does
not use any nilpotency condition on the space D. In case D is nilpotent the
theorem corresponds to a result of Grivel who, however, only considers the
subclass of (fnQ), consisting of fibrations for which 7, D acts trivially on the
homotopy groups of the fiber, compare also Silveira. Also Scheerer (1980,
1983) obtained the equivalence of categories in (6.7) by generalizing the
method of Bousfield—-Gugenheim. We give a new and elementary proof of
(6.7) which relies only on the Sullivan—de Rham isomorphism for cohomology
groups (1.8.23)(2) and on the compatibility of o with pull backs in (1.8.24).

As an easy illustration we first prove theorem (6.7) for the full subcategory
of Eilenberg—Mac Lane fibrations over D. Let

{K"(fnZ)D =K},nTop(fnZ),, and
K, (fmQ)y*? =K ADGA2(fm Q)

be the intersections of the categories defined in (2.3), (6.1) and (5.1), (6.4)
respectively.

(6.8) Proposition. There is a commutative diagram of linear extensions of
categories (n = 2)

A" —E S K"(fnZ), ——— k"*!(fn2), < Mod,

b e !

A — K, (fmQf® —— Kk, ,(fmQ)*® = Co,,

Here the top row is a subextension of (2.5) and the bottom row is a
subextension of (5.3).

Proof of (6.8). The proposition follows from (I1.8.24) and (V.3.16) since Mo
carries principal maps to principal maps. O

For morphism sets diagram (6.8) yields the following commutative diagram
where X and Y are fibrations in (fnZ), with fiber K(A,n) and K(B,n)
respectively.

A"D, A)>> [Y, X1, —» {pcHom,(B, A)|¢,(kY)=kX}

(6‘9) Ol l lMa ja

A"(aD;ad) > [X, 71 —» {ycHom (a4, aB)|y*(k¥) = kX}
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Here X = MaX, Y= MaY are minimal models under «D. The top row is
the exact sequence described in (2.6); the bottom row is the corresponding
exact sequence derived from (5.3). For the groups of homotopy equivalences
we have the commutative diagram of short exact sequences of groups:

HYD, Ay>— Aut(X), —> {pcAut, (4)|@ kX =kX}

(6.10) a*‘t Mot‘t al

H"aD, 0A) >— Aut(X)® —s {ycAut (2A)|y*kX = kX}
Compare (2.7) and (5.4). As a special case of (6.7) we now prove:

(6.11) Proposition. The restriction
Mog:K'(fn@)p = K,(fmQ)**
of Ma in (6.8) is an equivalence of categories, compare (6.6)(5).

Proof. Assume that Y, X in (6.9) are fibrations in (fnQ),. Then (3.29) shows
that « in (6.9) is a bijection. Moreover, the de Rham isomophism (3.26) shows
that «, is an isomorphism. Thus M« in (6.9) is a bijection and therefore the
functor Mag, in (6.11)is full and faithful. Also, each object (V, k) in k,, . ,(fmQ)*?
is realizable since V is realizable by (3.27) and since the k-invariant k is
realizable by the de Rham isomorphism (3.26). O

The proof shows that Mag in (6.11) yields an isomorphism of linear
extensions of categories by restriction of the map Ma in (6.8). Essentially the
same arguments as in the proof of (6.11) yield the result in (6.7). We only
replace linear extensions by ‘towers of categories’.

Let X and X, be the subclasses of (€}), in (VIL3.6) corresponding to (fnZ),,
and (fnQ), respectively. Moreover, let X, = M«(X) be the subclass of (E})*?
in (4.6) given by (fmQ)*, compare (VIL1.19). Here Ma(X) is a class of
complexes by the result of Halperin (1.8.24). Diagram (6.6)(5) above now
corresponds to the following diagram of functors

Cocomplex (X)/ ~ 2 M Complex (X,)/ ~ 2

w

Cocomplex (X,)/ 2

Here Moy is the restriction of Ma as in (6.6)(5). By (VIL1.19) these functors
induce maps between towers of categories. The map Ma between towers of
categories is described by the following diagram.
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Ma
Top(fnZ),/ ~ *  CDA(fmQ)*?/~

| |

— ’_\. ‘

r, +—T,.,,(X) r,+ —T,..(%,)
¥_/
A A
/\a
0 v O o
(6.13) T.(¥) — H} T.(X,) —*H,
\—__,/ /
a*
(Ma)
T, (%) - > Ty,
N N
Coef(X) x MoZ’(X) »  Coef(X,) x Co3'(Ma¥)
Mo X o

The left-hand side is a subtower of (1.6), the right-hand side is the
corresponding subtower of (4.8) with T, (X,) = TWIST,(X,).

Next we describe diagram (6.13) on the level of morphism sets. Let Y —» D
and X —» D be objects in(fnZ), and let ¢: Y, > X, be a map in Coef(X). By
(6.3) we obtain the objects Y=MaY and X = MaX in (fmQ)® and the
induced map ¢ = Ma(¢): X, > Y, in Coef(X,). With these notations diagram
(6.13) yields the commutative diagram of sets

(Y, 0,X) —— [V, X1¢,, —2— [¥,X]® —— HY(Y, 0, X)

(614) la* I(Md),,.‘.] I(Ma),, la* s

lT‘n(‘Y5 ‘ﬁ, s;);’ [X9 i‘I:I?:+1 ;) [X5 ?]3 - H:(‘Y’¢5 )_7)
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the top row of which is the exact sequence in (1.23). Clearly, diagram (6.9)
above is a special case of (6.14). The isotropy groups of the action at the left
hand side of the diagram can be computed by spectral sequences asin (1.23)(d).

(6.15) Proof of (6.7). We show that Mayg in (6.12) induces an isomorphism of
towers of categories

T (¥o)= Ty(X,).

For this we generalize the argument in the proof of (6.9). As in this proof it
is readily seen that each object in (fmQ)*P is realizable by an object in
(fnQ)p. Moreover, (6.11) and (3.29) show that (Ma) x « in the bottom row
of (6.13), restricted to X, is an equivalence of categories. This implies that
Mo, Ty(Xg) - T,(X,) is an equivalence of categories, compare (1.14). The de
Rham theorem (3.26) shows that the maps o, in (6.14) both are isomorphisms
provided X and Y are in (fnQ),. Moreover, «, induces an isomorphism of
the isotropy groups of I',+ and I, + respectively. This follows from the de
Rham theorem (3.26) by use of the spectral sequences (1.23)(d) which are
natural with respect to « by (II1.2.10). (In this spectral sequence we are allowed
to use the reduced cohomology groups, see (3.23).) Inductively, we now derive
from (6.14) that (M), is a bijection for all n. Therefore, Mag, in (6.7) yields
an isomorphism of towers of categories, compare also (IV.4.14). ]

In addition to (6.14) we have for (X —> D)e(fnZ), the following commuta-
tive diagram in which the top row is the exact sequence (1.26), (moreover,
diagram (6.10) is a special case of this diagram).

D

I(X,1,X) —— E* (X)) —2— E"(X) HY(X,1,X)

2, J l (M), J (Ma), l 2,

(X, 1,X) —— E**Y(X) E"(X) » HY(X,1,X)

The bottom row is an exact sequence which depends purely algebraicly on
the minimal model aD >— X =5 aX of a(X —» D).

We consider various applications of the fundamental diagram (6.13). For
the homotopy groups 7y, defined in (1.8.21) we get the

(6.16) Proposition. For afibration(p: X —» D)e(fnZ), withfiber F we have the
natural isomorphism of groups

ny(MoX,aD) = Homy(n,F, Q).

Here MaX is a minimal model of «(p) as in (6.3).
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Proof. We know that MaX/aD is a minimal model of «F. Therefore we can

apply (6.7) with D = * since F is simply connected. Hence o, :n (F)® Q=

[MaX/aD,S,]. Moreover, 7 (F)®Q is of finite type and we can use (3.9).
O

Moreover, we compute rational homotopy groups of function spaces, see
(IT1.8.2) where we set Y = *.

(6.17) Proposition. Let p: E —> D be a fibration in (ffnZ)p and let X be a
path connected CW-space for which the inclusion * — X is a closed cofibration
in Top. Then we have the isomorphism of groups (n 2 1)

n(Map (X, E)},u)®,Q = [X1pMaE, aX 1%,
Here oD >— MoE =5 «E is a minimal model of a(p) and ii: Mo E =>oE - aX
is given by a(u). For n= 1 the left-hand side is the Q-localization of the nilpotent
group 7., see (I11.8.3).

Proof. Theisomorphism is induced by « as in (I1.10a.1). The spectral sequence
(I11.9.8)(ii) and (II1.2.10) show that we obtain an isomorphism since o induces
an isomorphism on the E,-term by the de Rham theorem (3.26). g

We point out that the group in (6.17) can be described in explicit algebraic
terms by employing the cylinder construction in (1.8.19).

Remark. Though we have by (6.17) a good description of the rational
homotopy groups of function spaces we do not know a minimal model of
the function space Map (X, E)§ in terms of MaE and aX. By (6.17) the
generators of this minimal model are given by the homotopy groups (6.17).
A special case of this problem is solved by Haefliger, see also Silveira.

The following result is the analogue of (6.17) for n = 0; it counts the path
components of the space Map (X, E)}. Recall that a CW-space X is of finite
type if X is homotopy equivalent to a CW-complex with finitely many cells
in each dimension >0. If X is simply connected this is equivalent to the
condition that the abelian groups H (X, Z) or n(X) are of finite type.

(6.18) Proposition. Let u: X — D be given and let E—>> D be a fibration in
(ffnZ)p withfiber F. Assume X and F are CW-spaces of finite type. Then the map
o [X,E]lp - [MaE, o X]*

is finite to one. Here we use the same notation as in (6.17).

Proof. We apply (I11.4.18) and the fact that the cohomology groups ﬁ"(X ,
u*n, F) are finitely generated abelian groups. Therefore the result follows as
in (6.17) by (3.26). O
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Finally, we obtain the following result on groups of homotopy equivalences
(over a space D).

(6.19) Proposition. Let E—>>D be a fibration in (ffnZ), with fiber F and
assume F and D are CW-spaces of finite type. Moreover, assume that there exists
an isomorphism

aD = oD

in Ho(CDAY) such that aD is a vector space of finite type. Then the
homomorphism

Mo Aut (E)p — Aut (MaE)*,

given by (6.6), has finite kernel and the image is an arithmetic group. This
shows Aut(E), is a finitely presented group.

This result is more general than the result of Scheerer (1980) since
(E —> D)e(ffnZ)p does not imply that E —> D is a nilpotent fibration, see
(6.1). We can still employ the inductive method in Scheerer (1980) or in Sullivan
since we have the commutative diagram of groups in (6.16) and since we
have the de Rham isomorphism (3.26) for cohomology groups with local
coefficients. Here, in fact, the tower (1.6) is a crucial tool since this tower
does not need the nilpotency of Postnikov decompositions. For D = * the
result corresponds to the original case considered by Sullivan, a different
approach is due to Wilkerson.



IX

Homotopy theory of reduced
complexes

In general, towers of categories are constructed by use of twisted chain
complexes. In this chapter, we consider examples of towers of categories for
which the underlying chain complexes are not twisted. This relies on the
condition of ‘simply connectedness’ for reduced complexes (the non-simply
connected and relative theory is discussed in Chapter VI). Hence in this
chapter we describe the simplest examples of towers of categories from which,
nevertheless, fundamental and classical results of homotopy theory can be
deduced immediately. We also obtain some new results.

§1 Reduced complexes

We consider simultaneously four classes of ‘reduced’ complexes given by
CW-complexes, localized CW-complexes, free chain algebras, and free chain
Lie algebras respectively.

(A) Reduced CW-complexes. Let C =Top* be the cofibration category of
pointed topological spaces in (1.5.4). A reduced complex in C is a CW-complex
X with a trivial 1-skeleton X! = *. Such a complex determines the filtered
object X = {X,} in C where X, = X" is the n-skeleton. The 1-sphere in C is
S = S*. The ring of coefficients for C is the ring R = Z of integers.

(B) Localized reduced CW-complexes. Let R be a subring of Q@ and let
C = CW-spaces*(R) be the cofibration category of pointed CW-spaces given
by (1.5.10) where we assume h, = H,(—,R) to be the singular homology
with coefficients in R. A reduced complex in C is a filtered object X = {X,}
in C with X, =+ such that X,_, < X, is a principal cofibration in C with



1 Reduced complexes 437

an attaching map A,— X,_, where A4, is a one point union of R-local
(n— 1)-spheres S% ', n = 2. This implies that all X, are R-local spaces. The
1-sphere in C is the R-local 1-sphere S = Sk. For R = Z the reduced complexes
here coincide with those in case (A) above.

(C) Reduced chain algebras. Let R be a principal ideal domain and let
C=DA, (flat) be the cofibration category of augmented chain algebras over
Rin (I.7.10). A reduced complex in C is a free chain algebra X = (T(V),d) with
Vo =0. We derive from X the filtered object X = {X,} in C where X, =
(T(V,),d) is given by V_ = {xeV:|x|<n}. The 1-sphere in C is S=T=
(T(t),d =0) where t is a g_enerator of degree 0.

(D) Reduced chain Lie algebras. Let C = DL be the cofibration category of
chain Lie algebras over a field R of characteristic 0, see (1.9.13). A reduced
complex in C is a free chain Lie algebra X = (L(V),d) with V, =0. As in (C)
above we obtain the filtered object X = {X,} where X, = (L(V,,),d). The
1-sphere in C is S = (L(t),d = 0) where ¢ is a generator of degree 0.

In each case = is the initial and final object of C. Now assume that C is one
of the categories as described in (A), (B), (C), and (D) above. For a reduced
complex X in C we obtain the cellular chain complex C, X in Chaing by
C,X=0for n<1 and by

(1.1) C.X=n’_,(X,,X,_,) forn=2

where we use the boundary in (II1.10.6). Hence we get for an R-module M
the cellular (co) homology

12) H,(X;M)=H,(C, X X M)
' H*(X; M)= H*Homg(C, X, M).

(1.3) Remark. With the notation in (I11.10.6)(3) we have H,(X,R) = H,,(E*X) =
H3_ (s~ X) where s~ ! X is the filtered object with (s™*X), = X, . In case
(A) and (B) the cellular (co)-homology (1.2) coincides with the reduced singular
(co)-homology of the space X. In case (C) and (D) we have an isomorphism
of chain complexes

C,X =s(0X,d) (1)

where QX = V is the module of indecomposables and where d is the differential
induced by the differential on X. The suspension s in Chaing is given by
dsv = (— 1)"sdv,veV,. One can check by (1) that in case (C)

H,X,M)=TorX(R,M) (nz1) 2
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is a ‘differential Tor’ and that in case (D)
H,(X,M)=Tor,*(R,M) (nz1), (3)
compare (1.9.3)(5).
As in (II1.10.7)(3) we define the I'-groups of a reduced complex X by
(1.4) IS(s™'X) = image (3(X,) = 75(X, ).

It is easy to check that a reduced complex satisfies n5(X,,X,_,)=0 for
g <n— 1. Whence by (II1.10.7) we have Whitehead’s long exact sequence (of
R-modules)

(1.5) e (X, R) S TS~ X) o 13(X) = H4(X, R)

for each reduced complex X in C. Here 73 (x) = [Z"S, X] is a homotopy group
in C, compare (I11.10.7)(1). Clearly in case (A) the sequence (1.5) is the classical
one for a simply connected space, see (I1L.§ 11). We point out that the sequence
(1.5) is an invariant of the homotopy type of X in C (this, in fact, holds in
all cases (A),(B),(C) and (D)).

(1.6) Remark: In case (A) and (B) the homotopy group
Ta(X) = [Z"Sk, X] =, ,(X) (1)
is a usual homotopy group in Top since X is R-local. In case (C) and (D) the
homotopy group
T(X) = H,(X) 2

is the homology of the underlying chain complex of X, see (I1.17.20) for
case (O).

§2 The tower of categories for reduced complexes

Let C be a category as described in § 1. We first show that reduced complexes
in C are complexes in the sense of (IIL.§4). In fact they form a very good class
of complexes so that we obtain a tower of categories which approximates
the homotopy category of reduced complexes.

Let C be a free R-module with basis B. Then we call the sum
(2.1) M(C,n)= VI 'S, nx2,

B

a "Moore space’ of C in degree n and we call M(R,n)=ZX""'S an n-sphere
in C. Clearly, we have an obvious isomorphism

(2.2) [M(C,n), X]=Homg(C,m5_, X)
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where the left-hand side denotes the set of homotopy classes in C. In addition
we get the isomorphism

(2.3) m-1(M(C,n) =C,

which is compatible with suspension, n>2. Let X ={X,} be a reduced
complex in C. Then the inclusion X ,,_; >— X, is a principal cofibration with
an attaching map

(2.4) fiM(Cpon—1)>X,_,.

Here C, = C, X is given by the cellular chain complex of X. This shows that
a reduced complex in C is actually a based complex in C in the sense of
(II1.3.1). The boundary d,:C,—»C,_, of C*X in (1.1) as well can be obtained
by the composition 3 f,:

(25) M(Cmn_ 1)_>Xn—1_>Xn—1/Xn—2=M(Cn—1’n_1)’

compare (I11.3.9). This shows that the chain complex K(X) in (IIL.3.5) is
actually determined by the cellular chain complex C, X. There is a coaction

(2.6) wX,—X,vM(QC,,n)

given by the principal cofibration X,_, = X,. In case (A) and (B) this is
the usual coaction on a mapping cone in Top. In case (C) and (D) one can
check that y carries a generator veV,_, = C, to the sum v + v’ where v'eC,
is the element corresponding to v.

(2.7) Remark. Let X = X be the class of all reduced complexes in C. Then
X 1s a very good class of complexes. In case (A) and (C) this follows from
(VIL3.1) and (VIL.4.6) since X = (¥])*. We leave it as an exercise to check this
for case (B) and (D). As in (VIL§2) we thus have the tower TWISTS(X)/ ~ of
categories which in case (A) is the subtower for 1-reduced CW-complexes of
the tower in (V1.6.2).

As in (VL.5.7) we obtain the following definition:

(2.8) Definition. Let n= 2. A reduced homotopy system in C of order (n+ 1)
is a triple (C, f,+,X,) where X, i1s an n-dimensional reduced complex in C
and where C =(C,,d) is a free chain complex in Chaing which coincides with
5* (X,) in degree < n. Moreover, f,,:C,,,—n5_,(X,)is a homomorphism
of R-modules such that

dn+1:afn+1 (1)

is given by the composition (2.5) and such that the cocycle condition
Jut1d,+2, =0 is satisfied. A morphism between reduced homotopy systems
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of order (n+ 1) is a pair (£, #) which we write

(é’ n):(C7fn+lan)_}(C’sgn+17 Yn)
Here #:X,— Y, is an element in Fil(C)(X,, Y,,)/& and &:C— (" is a chain
map in Chaing which coincides with ¢ «(n) in degree <n and for which the
following diagram commutes

£
Sn+t "
Cn+1 Cn+1

Jvfn-*l Jg"+1 . (2)

ﬂﬁ_ IXn f’ 7[‘3__1 Yn
My
LetrH; ., =rH; . ,(C) be the category of reduced homotopy systems of order
(n + 1) in C. Clearly, composition is defined by (&, #)(&, %) = (¢, & nij). Next we
define homotopies for morphisms inrHj , ; asin (VL.5.10). We set (&, 1) ~ (&, ')
if there exist homomorphisms «;, ;:C;— C’, ;(j = n) of R-modules such that

(a) {'I} +gn+1an+1 = {’I’} in [an Yn]s and
(b) é;‘—él=akdk+dk+lak+l,k;n+ 1.

The action + in (a) is defined by the coaction (2.6), {5} denotes the homotopy
class of #. I

(2.9) Remark. The category rHS/~ is the full subcategory of Chaing/~
consisting of free chain complexes C with C;=0 for i < 1.

The I'-groups (1.4) and the cohomology groups (1.2) give us a bifunctor
H*T', on the category rH:/~ which carries a pair (X, Y) of objects in rH¢ to
the R-module
(2.10) H'T,(X,Y)=HYX,TS_,(s"'Y)).

compare (VL.5.11)(2).
(2.11) Theorem. Let C be a category as in §1 and let ¥C/~ be the full

subcategory in Ho(C) consisting of reduced complexes. The category vC/ =~ is
approximated by the following tower of categories, n = 3.

rC/~
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te)
rHy/~ ———— H°T,

N

Chaing/~

In case (A) (C =Top) this tower is the subtower of (VI.6.2) given by
CW-complexes with trivial 1-skeleton. The functors r and 4 in (2.11) are
defined in the same way as in (VL.5.8). Moreover, the obstruction © and the
action +in (2.11) are given as in (VI.5.14) and (VL.5.15) respectively. The
composition of all functors in the column of (2.11) carries a reduced complex
X to its cellular chain complex 5* X, see (1.1).

(2.12) Addendum. The isotropy groups of the action H"I', + in (2.11) can be
computed as in (VI.5.16) by use of a spectral sequence similar to the one in
(VL5.9)(4).

Proof of (2.11). We observe that for the class X = X, = (X¥1)* in (2.7) we have
an equivalence of categories

Complex(¥)/~ = rC/ ~. (1)

Hence, since ¥ is very good, we derive the tower in (2.11) from (VIL2.8). In
fact, as in (VIL.2.16) we can identify

rHe/~ = TWIST,(X)/ ~. (2)
It is a good exercise to prove (2.11) directly along the lines of the proof of
(VIL.2.8). O

As in (VL.7.4) we derive from (2.11) the

(2.13) Theorem. The functors A in (2.11) and also C'*:rC/: —rH§/ ~ satisfy
the strong sufficiency condition.
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This result implies various important properties of reduced complexes which
we describe in the rest of this section. By (1.6.11) the sufficiency condition for
C, is equivalent to the

(2.14) Whitehead-theorem for reduced complexes. A map f:X-Y in C
between reduced complexes is a homotopy equivalence in C if and only if f
induces an isomorphism f*:ﬁ*(X, R)x~ H*(Y, R) of homology groups.

In case (A) this is the classical Whitehead-theorem for simply
connected CW-complexes. In case (C) the result (2.14) is equivalent to the
following theorem on chain algebras due to Moore (for this we use (1.3)(2)
and (1.7.10)).

(2.15) Theorem. Let R be a principal ideal domain and let f:A— B be a map
in DA, (flat) with HyA = R = HyB. Then f is a weak equivalence if and only
if the induced map

fx:Tord(R,R) = Tor(R,R)
is an isomorphism.

Moreover, we derive from (2.13) as in (VL.7.14) the following generalization
of a result of Milnor.

(2.16) Theorem. Let X be a reduced complex in C and suppose that a
presentation

0— R™ — R — H,(X,R) -0

is given for eachk = 0,b, =r, = 0. Then there is a homotopy equivalence K ~ X
in C where K is a reduced complex for which C,(K) is a free R-module of
b, + r,_, generators.

Clearly, in case (A) this is a consequence of (VI.7.14) where we set D = .
The theorem shows (for b, =r, =0, k < n):

(2.17) Corollary. Assume X is a reduced complex in C with H,(X,R) =0 for
k< n. Then we have T{(s ' X)=0for k<n.
Whence exactness of the I'-sequence (1.5) yields the

(2.18) Hurewicz-theorem for reduced complexes. Assume X is a reduced
complex in C with H(X,R)=0 for k <n. Then h:n¥(X)— H,, (X, R) is an
isomorphism for r = n and is surjective for r=n+ 1.

In case (A) the proposition in (2.18) yields the classical Hurewicz-theorem
for simply connected spaces, see (I11.11.9). In case (C) we get by (1.3)(2) and
(1.6)(2):



3 Functions on reduced complexes 443

(2.19) Hurewicz-theorem for chain algebras. Let A be a chain algebra in
DA, (flat) with HyA = R (R a principal ideal domain). Assume Tor#(R,R)=0
for k <n. Then

h:H,(A)- Tor, (R, R)

is an isomorphism for r =n and is surjective for r=n+ 1.
Moreover, we derive from (2.16) the next result (compare (VI.7.15)).

(2.20) Minimal models of reduced complexes. Assume X is a reduced complex
in C for which ﬁ*(X, R) is a free R-module. Then there exists a homotopy
equivalence K~ X in C for which C,K has trivial differential. Whence
C,K=H,(X,R). We call K a minimal model of X.

(2.21) Remark. If R is a field we obtain by (2.20) the minimal models of chain
algebras A with HyA = R and of chain Lie algebras L with H,L =0. These
as well are constructed in Baues—Lemaire, see also Neisendorfer.

(2.22) Definition. We say that a reduced complex X is homologically (n — 1)-
connected if H,(X,R)=0 for r<n—1. Moreover, we say that X has
homological dimension <N if H,(X,R)=0 for r> N and if Hy(X,R) is a
free R-module. {

(2.23) Proposition. A reduced complex X is homologically (n — 1)-connected
and has homological dimension £ N ifand only if there is a homotopy equivalence
K~ X in C where K is a reduced complex with K,_ = and K = Kj.

Proof. This is as well an easy consequence of (2.16) since we can take
r.=b,=0for k<n—1, k= N and since we can take ry=0. O

§3 Functors on reduced complexes and the Quillen
equivalence of rational homotopy categories

Assume that C and C’ are categories as described in § 1 (A), (B), (C), and (D)
respectively. Let S” be the 1-sphere of C" and let R’ be the ring of coefficients
of C' and assume a functor

(3.1) a:C'-C

is given. We consider the following properties of such a functor:

(i) ais a model functor on a subcategory of C’ which contains all reduced
complexes of C' and « carries objects in C’ to fibrant objects in C.
(i) There is a weak equivalence LS =5 a(XS’) in C which induces a
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homomorphism of rings
a:R'=[Z8,25] S [eZs,azS]=[=S,Z5]1=R.

(ili) o« induces a bijection (n=1)
2 [2"S, X] 5 [2Z" S, aX]

for all reduced complexes X in C'.

(3.2) Theorem. Suppose « satisfies (i) and (ii). Then we can choose for each
reduced complex X in C' a weak equivalence Mo X = a X in Fil(C) such that
MaX is a reduced complex in C with

«(C,X)®a*R = C,(MaX) in Chaing.

Moreover, o induces a map between towers of categories as in (3.4) below and
a map between spectral sequences as in (2.12).
In particular, we derive from (3.2) the isomorphism

(3.3) A,(X,a*R)= H, (MaX).

Mo

v

rC'/~ rC/~

— : ’—_&s

H™* T, — & (HE, )/~ H+T,——» THS, /=~

jul
(tHy)/~ —— H'T, rH, — H'T,

S

*

Chaing./~ pg —»  Chaing/~
(3.4)
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The R’-module a* R is given by a: R’ — R in (i1). The functor My is determined
on objects by the choice of MaX in (3.2). Moreover, «, is the natural
transformation on bifunctors, see (2.10), determined by the map « between
I"-groups in the following commutative diagram.

— I8 (X)) — (X)) —— H(X,R) ——

3.5 - la la la*

—— I5_(aX) —— n5_(aX) —— H,(X,a*R) ——

The rows of this diagram are the exact I'-sequences for X and MaX
respectively, compare (1.5). The maps o are a-equivariant homomorphisms
between modules.

(3.6) Proof of (3.2) and (3.5). We use the naturality of the tower TWIST,, with
respect to functors, see (VIL.1.19), and we use the naturality of the spectral
sequences in (I11.2.10). In addition we can derive from (2.5) and assumption
(i), (i) the isomorphism of chain complexes in (3.2). For (3.5) we use the
naturality in (IT1.10.13)(3). O

(3.7) Corollary. Suppose o satisfies (i), (i) and (). Then o« induces an
isomorphism of towers of categories. In particular, the functor

MuxC/~—->rC/~,
restricted to reduced complexes of finite homological dimension, is an equival-

ence of categories, see (2.22).

Proof. We apply (IV.4.14) inductively. In fact, by (iii) the maps « in (3.5) are
isomorphisms and the isotropy groups in (3.4) are isomorphic since the
corresponding spectral sequences are isomorphic. ]

We now consider various well known examples of functors «.

(3.8) Example of Quillen. Let
A:Top¥ — DL, N
be the functor of Quillen in (1.9.19). This functor restricted to
CW-spaces*(Q) ~ Top¥ satisfies by (1.9.21) the conditions (i), (ii) and (iii).
Whence we see by (3.7) that the induced functor
Ho(A):Hog(Top¥)— Ho(DL,) (2)
is an equivalence on subcategories consisting of objects of finite homological
dimension. In addition, we know by (3.7) that A induces an isomorphism of
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towers of categories. This has similar consequences as in (VIIL.6.14),...,
(VIIL6.19). Quillen proved that (2) is an equivalence of categories, compare
(1.9.20).

(3.9) Example of Adams—Hilton. Let R’ be a subring of @ and let R be a
principal ideal domain and suppose a ring homomorphism a:R’— R is given.
We consider the functor

a=SC,Q(.)® R:CW-spaces*(R') - DA , (flat), (1)

which carries a space X to the chain algebra «(X)=SC, Q(X )&R with
coefficients in R. By (1.7.29) this functor satisfies the conditions (1) and (i)
above. Whence, by (3.2), we can find for each reduced complex X in
CW-spaces(R’) a model in Fil(DA, (flat))

MaX =(T(V),d) = aX, with
2)

C,(MaX)=C (X)®a*R.

Here V coincides as a module with s™'C, X ® a*R. For R =R =17 the
construction of MaX in (2) is the main result in Adams—Hilton. From (2) we
derive the following natural isomorphism (R’ = Z, see (3.3))

Toric*ﬂ(x)(aR(R, R)=H,X,R), 4

where R is any principal ideal domain and where X is any simply connected
spacein Top*. For the left-hand side of (3) see (1.3)(2). The right-hand side of (3)
is the singular homology of X with coefficients in R. In addition to the models
(2) we derive from (3.2) a map between towers of categories which is very useful
for computations.

(3.10) Example. The universal enveloping functor U:DL—- DA, in (1.9.13)
satisfies the conditions (i) and (ii).

(3.11) Example. Let R' = R = Q be subrings and let
o:CW-spaces(R') » CW-spaces(R)

be the localization functor (I1.4.4)(2) which carries X to its R-localization
o(X) = X . Then « satisfies (1) and (ii).
Clearly, for the examples (3.10), (3.11) we can apply (3.2) as well.

(3.12) Example. Let X:Top* —» Top* be the suspension functor. Then Z
satisfies (i) and (ii).
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§4 Whitehead’s classification of simply connected
4-dimensional CW-complexes and the corresponding
result for reduced complexes
J.H.C. Whitehead (1950) showed that the homotopy type of a simply connected
4-dimensional CW-complex is determined by its I'-sequence. We now give
a new proof of this result which only uses simple properties of the tower
of categories in (2.11). In fact, our proof shows that Whitehead’s result holds
more generally for reduced complexes of homological dimension < 4 where
reduced complexes are defined as in (A), (B), (C), and (D) of § 1 respectively.

Let C be one of the categories Top, CW-spaces(R), DA, (flat), and DL as
described in (A), (B), (C) and (D) of § 1 respectively. Recall that R is the ring of
coefficients for C and that S denotes the 1-sphere in C. Moreover, for a reduced
complex X in C we have the exact I'-sequence (1.5). The first non-trivial I'-
group in this sequence, I'3(s ! X), has the following property.

(4.1) Proposition. For reduced complexes X in C there is a natural isomorphism
of R-modules

T(H,(X, R)=T5(~'X)
where T is the functor below which carries R-modules to R-modules.
We prove this result in (4.5) below.
I'(M) in case (A) and (B),
(4.2) T'o(M)=< M&xM in case(C),
[M,M] in case(D).
Here M is an R-module and M @RM is the tensor product. Moreover,
[M, M] is the image of the homomorphism
[, EIMRM->MXM
R R

which carries x®y to [x,y]=x®y+y®x. Finally, I' is Whitehead’s
quadratic functor defined by the following universal property.

(4.3) Definition. A function f:A— B between abelian groups is quadratic if
f(a)= f(—a) and if
[a.b], = f(a +b)— f(a)— f(])

is bilinear in a and b. There is a quadratic function y:4 —I'(A4) such that for
each quadratic function f:A4 — Bthereis a unique homomorphism f:I'(4) —» B
with fy = f.1fg: A’ = A is ahomomorphism between abelian groups we obtain
I'(g):T(A)—T(A) by I'(g) =7g. This shows that I is a functor which carries
abelian groups to abelian groups. I
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If M is an R-module with R = Q then also I'(M) is an R-module. In fact, if
multiplication by n, n:M — M is an isomorphism then ['(n) = n*:T'(M) - (M)
is an isomorphism and hence multiplication by n is an isomorphism on I'(M).
Now all functors in (4.2) are defined.

(4.4) Properties of I'. We define the ‘Whitehead product’
[, 1:A®A-T(4)
by [a,b] =y(a + b) — y(a) — y(b) and we define the homomorphisms
tT(A) > A® A,
oT(A)»A®Z/2
via the universal property by ty(a)=a®a and oy(a)=a®1. We have
o[a,b]=0and t[a,b] =a®b + b ®a. Hence 1T (4) = [A4, A] where tT'(A) is

the subgroup of A ® A generated by {a® a:ae A}. Therefore the cokernel of
is the exterior product 4 A A. We have the exact sequences

ARALLTU) D A®z2 -0,

MA) >A®A—>AA A0

where tand [ , ] need not to be injective. As an abelian group we obtain I'(4)
by the formulas

[MA®B)=T(A)ST(B)®A®B,
rz)y=12,
I[(Z/m)y=27/2n, n even,
I'(Z/m)y=2Z/n, n odd,
where T'(Z) and T'(Z/n) is a cyclic group generated by y(1). Moreover, the

functor I’ commutes with direct limits of abelian groups. Since y(na) = ny(a)
we get 2y(a) = [a,a] by definition of [ , ] above. Therefore the composition

2 TASA®ALLTA

is multiplication by 2 (here we use the universal property). If multiplication by
2 is an isomorphism on 4 we see that 7 is injective and thus t:T'(M) =~ [M, M]
for an R-module M with 1/2eR <= Q.

(4.5) Proof of (4.1). We only consider case(A) with C = Top. Let X be a CW-
complex with X! = x. Then the Hopf-map #:S®— S? gives us the map

n*:m,(X) - T3(X)=T5(s71X)

with n*(a) = aon. This function is quadratic since we havethe left distributivity
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law

n*(o+ f) =n*() + n*(p) + [, £,
where [a, f] is the Whitehead product. Hence n* determines a homomorphism

1*:D(n,(X)) - T5(X),

where 7,(X) = FIZ(X, Z) by the Hurewicz theorem. Now 77* is an isomorphism.
In fact, this is true if X is a one point union of 2-spheres (as follows from the
Hilton—Milnor theorem). Now let g:M = M(C;,2)—> M(C,,2)=X2=7Y be
the attaching map of 3-cells in X which induces d;:C;—C, in C, = (~7*X.
Then we get (as in the proof (V.8.5)(5)) the commutative diagram

aMvy), e iy) — Trx-0

=T

[(Cy)@®C;®C, —L—T(Cy) —— T(n,X)—=0

with g = (I'(d;), [d5, 1]). Since the rows of this diagram are exact we see that 77*
is an isomorphism. In fact, the bottom row is exact for algebraic reasons (using
properties of ') since 7, X = H,X = C,/d,C;. O

(4.6) Remark. Let M(A,2) and K(A4,2) be a Moore space and an Eilenberg—
Mac Lane space in degree 2 respectively. Then (4.1) and the exact I'-sequence
yield immediately the isomorphisms of abelian groups

m,M(4,2)=T(A) = H,(K(4,2), Z)

since m,M(A,2)=A=mn,K(A4,2).
We now use the isomorphism (4.1) and the I'-sequence (1.5) for the definition
of the following

(4.7) Category of T'-sequences denoted by I'-sequences*. Objects are the
exact sequences I'S,
H,—T(H;)>n;—H;-0,

of R-modules where H, is a free R-module. Morphisms f:I'S — I'S’ are triples
f=f0,f35.f5) fi:H;— H, of homomorphisms for which there exists ¢ such
that the diagram

H, —2 5 TyH,) s Hy—0
e s e s
Hy —— T (H)) xSy H, —0

commutes in the category of R-modules.
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Let rC* be the full subcategory of C consisting of reduced complexes of
homological dimension < 4. By (1.5) we have an obvious functor

(4.8) I'S:rC*/~ — I'-sequences*

which carries a reduced complex X to its I'-sequence (1.5) which we denote by
'S(X).

(4.9) Theorem. The functor T'S is a detecting functor on rC*/~.

Compare (IV.1.5). Whence each I'-sequence as in (4.7) is realizable and a
homology homomorphism f:H,(X,R)—H.(X,R) with X, X'erC*
is realizable by a map X — X' in C if and only if f is compatible with the I'-
sequences. This implies.

(4.10) Corollary. Homotopy types in vC*/~ are canonically 1-1 corresponded
to isomorphism classes of objects in the category I'-sequences®.

(4.11) Remark. In case (A), C =Top, theorem (4.9) describes exactly the
result on simply connected 4-dimensional CW-complexes in J.H.C. White-
head (1950). It is a remarkable fact that this result, which originally was
considered as a highly topological one, is available in each of the cases (A), (B),
(C), and (D) respectively described in §1. Indeed, examples of this kind
show that there is a striking similarity of solutions for the homotopy
classification problems in various different categories C and they indicate that
part of the homotopy classification problem is of an abstract nature which
does not depend on the underlying category C. This part is longing for the
elaboration of ‘algebraic homotopy’.

For the proof of (4.9) we restrict the tower of categories (2.11) to reduced
complexes X in C with X, = X. This yields the tower of categories

HT, —— rC%/ =~

+ lr

H, —— (tHY)*/ ~ ——0

(4.12) ll
(rHS)*/~ —2— HT,
N
Chain/ ~

with iAr = C,. Here iis a full inclusion, the objects in (rH$)* are exactly the free
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chain complexes
C=(C,—»C5-C,) (1)

in Chaing with C; =0fori < 2 and i > 4. Using ‘Moore spaces’ in C one readily
shows that each such chain complex is realizable in rC*. Therefore we have by
(VI.5.12) a transitive and effective action

H(C,Tc(H,C)) — Real, (C) @

on the set of all realizations of C in rC*/~. Moreover, for X eReal,,(C) and
X’eReal,,(C’) and for a chain map ¢:C — C’ in Chaing/ ~ there exists a map
F:X - X' in rC*/~ with C,(F) = ¢ if and only if the obstruction

Ox x(&)eH*(C, T (H,C)) 3

vanishes. We use these facts, which are immediate properties of the tower
(4.12), for the proof of (4.9). In addition, we use the following well-known short
exact sequences (4) and (5) which are available since R is a principal ideal
domain.

Extp(Hs, T) >2 H*(C,T) % Hom(H,,T) 4
P Ext(H,, H., ) >—[C,C] 2> Hom(H,, H,) )
i=2,3

Here I' is an R-module and we set H, = H,(C) and H;= H,(C"), ieZ.

(4.13) Proof of (4.9). Let I =T'(H,C). Using the I'-sequence we have the
function
b,:Real, (C)—»Hom(H,,T') (6)

which carries a realization X to the secondary boundary operator b, X in the
I'-sequence. By definition of b, one checks that the function b, in (6) is u-
equivariant with respect to u in (4) and with respect to the action in (2), that is

ba(X + o) = by(X) + p(). M

Since p is surjective this implies that b, in (6) is surjective. Again using the I'-
sequence we have the function

7:b; 1(b) — Extg(H,, cok (b)) )

where beHom(H ,, I'). This function carries X eReal,,(C) with b, X = b to the
extension element n(X) = {n3(X)} determined by the short exact sequence

cok(b) >— n3(X) —> H, ©)

associated to X, see (1.5). Let ¢:I' —» cok (b) be the quotient map. Then is again
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equivariant with respect to the action of Ext(H,I') via (2), that is,

(X + A(f)) =n(X) + q,p (10)
for BeExtg(H5, T). Since g is surjective this also shows that the function nin (8)
is surjective. We deduce from the surjectivity of (6) and (8) that the functor (4.8)
satisfies the realizability condition with respect to objects. Next we consider
the realizability of a morphism f:T'S(X)—-I'S(X’) where X and X’ are objects
in rC* with cellular chain complexes C = 5*(X )and C' = 5*(X ") respectively.
By (5) we know that there is a chain map £:C— C’' which induces f on
homology. For the obstruction (3) and for u in (4) one readily gets

1Ox x (&) = by fs —T(f2)by =0 (11)
since f is a morphism in I'-sequences*. By (11) and exactness in (4) the clement
A1y (&) is defined. For q':T (H3) —> cok(b,) we get

GeA ™ Oy (€)= f31(X") — Tl f3),m(X) = 0 (12)
where we use 7 in (8). Since for f there exists a ¢ as in (4.7) we see that the

element (12) is trivial. We now use the inclusion i in (5). For an element
oaeExty(H5, H,) we have the formula

Ox x A& + i) = Oy x (&) + A(bL) (). (13)
Now the sequence
CAN A
Ext(Hy, H,) % Ext(H . T Hy) — Ext(Hs, cok b)) (14)
is exact. Hence by (12) we can choose « with
(b)4(@) = A7 1Oy x(&). (15)
Therefore (13) shows
Ox x (¢ —i2)=0 (16)

and thus there exists a realization F:X — X’ with C, ¥ =¢—ix. Here
& —io induces f in homology. Whence F is a realization of f. This completes
the proof of (4.9). O

We point out that in the proof above we proved simultaneously four
different results which we now describe explicitly.

(A) Theorem. Consider simply connected CW-spaces X with integral homology
groups H(X,Z)= H, where H,=0 for i 2 5 and where H , is free abelian. The
homotopy types of such CW-spaces in Top/~ are classified by the isomorphism
classes of exact sequences of abelian groups

H,-»T(H;)>n;—>H;-0.

The boundary invariants in Baues (1985) show that theorem (A) is the start
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of an inductive classification of simply connected n-dimensional polyhedra,
n = 4. In a similar way one has boundary invariants for reduced complexes in
C, we will describe details of this program elsewhere.

Example. There are exactly 5 different homotopy types of simply connected
CW-complexes in Top/~ with the homology groups
H,=27/2, Hy=7)2, H,=12,

and H; =0for i =z 5. In fact, all such homotopy types are given by pairs (b, 7))
with

beHom(Z,I'(Z/2))=2/4,

neExt(Z/2,1(Z/2)/bZ) = U,.
Hence U,=27/2, 0, Z/2, 0 for b=0, 1, 2, 3. The pairs (b, 7) with b=1 and
b =3 correspond to each other by the isomorphism in I'-sequence* given
by —1:H,—>H,.

(B) Theorem. Let R be a subring of Q and consider simply connected CW-spaces
X with integral homology groups H,(X, Z) = H; where H, is an R-module which
is free for i = 4 and which is trivial for i = 5. The homotopy types of such CW-
spaces in Top/ =~ are classified by the isomorphism classes of exact sequences of
R-modules

H4—>F(H2)—>7E3—>H3—>O.
For R = 7 this gives us exactly the result in (A).

(C) Theorem. Let R be a principal ideal domain and consider chain algebras A
over R in DA (flat) with Ho(4)= R and with

Tor{(R,R) = H,
where H, is a free R-module for i = 4 and where H, =0 for i > 5. The homotopy

types of such chain algebras in Ho DA, (flat) are classified by the isomorphism
classes of exact sequences of R-modules

ITI4b—>H2®ﬁ2 —>7r£—>1713—>0.
4 R
Recall that 7Z(4) = H,(A) is the homology of the underlying chain complex

of A. The isomorphism class of the exact sequence in (C) is completely
determined by b, if H, is a free R-module, in particular, if R is a field.

(D) Theorem. Let R be a field of characteristic zero and consider chain Lie
algebras L over R in DL with HyL =0 and with

Tor?“(R,R)=H,,
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where H,=0 for i = 5. The homotopy types of such chain Lie algebras in
Ho(DL) are classified by the isomorphism classes of exact sequences

ﬁ4b_4’[ﬁz’ﬁ2]_’”§_’ﬁ3_’0-
Since R is a field the isomorphism class of the exact sequence in (D) is

completely determined by b,. Recall that n3(L) = H,(L)is the homology of the
underlying chain complex of Land that for R = Q we have I'(H,) = [H,, A,].

(4.14) Remark. Theorem (A) above is the result in JH.C. Whitchead
(1950). Moreover, Theorem (D) is readily obtained by use of minimal models
in DL, in fact, b, determines exactly the differential in the minimal model
(L(V),d)~ Lwith V=s"'H, and

d=by:V;-> LV),=V,@[V,,V,].
The theorems (B) and (C) seem to be new.

Using the functors in § 3 we obtain by (3.5) obvious connections between the
exact sequences in (A), (B), (C), and (D) above. For example for X as in (A) and
A=8C,QX as in (C) we have H{(A)=H(X)=H; and a=SC,Q(.)
induces
@.15) a=1T;X=T(H,) »T:A=H,QH,

where 7 is the homomorphism in (4.4). Hence by (3.5) we have the commutative
diagram of abelian groups (R = Z)

H—— r(Hz) —— 7, H, >0
wo | e ||
H4——)H2®H2 ng ‘H3 ‘0

Since the rows are exact the bottom row is completely determined (up to
isomorphism) by the top row; in fact, the diagram @ is a push out diagram in
the category of abelian groups. By (A) the top row determines the homotopy
type of a space X and by (C) the bottom row determines the homotopy type of
the chain algebra A = C,QX. The map n;— 7] in (4.16) is the Hurewicz
homomorphism

ny=n3X = 1,QX - H,QX =nj(A)=n3.

Similar results as in this section can be obtained for reduced complexes of
homological dimension £ 5 though these are not classified by the I'-sequence
(1.5). We derive these results again from properties of the tower of categories in
(2.8). Indeed, there are many further applications of the various towers of
categories.
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localization of a category 99
local space 37

local system on a category 248
loop object Q 152
loop operation, functional 154

loop operation, partial 154
loop space (see Moore) 57
singular chains of a 57
loop theorem, general 296
lower central series of groups

73

mapping cone, cooperation on the

double 147

126



mapping cylinder Z; (see also I-
category) 8

mapping torus 186
Milnor-Moore theorem 82
minimal model 62,443
mixed term 233
model category 264

closed 15

cofibrant in 15

fibrant in 15

proper 114

(Quillen) 14
model functor 10
monoid, topological 57
Moore loop space 57
Moore space 267

Nat, category of natural systems 246

natural system of abelian groups 233,236

natural equivalence relation 229
nerve of a category 246
nilpotency of function spaces 246
fundamental group 205
nilpotent G-modules 75,205
groups 74,205
spaces 74
non-graded algebra 45
null-homotopic 119

objects under C and over D 30
obstruction element 240

obstruction, primary 125
obstructions, higher order 350
opposite category 10

over, objects over D, maps over D, 31

P-category 27
path object in 27
homotopic in 28
p-category, homotopy lifting property
in 28
path object (see also p-category) 12
contractible 152
P
Pair (C), category of pairs 85
confibration in 86
weak equivalence 86
Peiffer element 316
Peiffer group 316
perfect group 38
(I, n)-complex 369

Index

465

Poincaré-Birkhoff-Witt 77
Poincaré lemma 61
pointed, very well 35
well 35
Pontryagin ring 57
Postnikov decomposition (see also
tower) 215
functor 364
enriched 368
section 364
tower (see also principal reduction) 364
presentation under ¢ 310
principal fibration 152
map 260
reduction of chain algebras 403
of CW complexes 397
of Postnikov towers 399
for commutative cochain
algebras 425
projective (see chain complexes)
projective class group, reduced 361
Puppe sequence 128
push out (see also CDA,, DA, DL,
homotopy) 83,86
axiom (C1) 6
(12) 18
compatible with 10
connected (see CDA,)

quadratic action 233

function 477
Quillen equivalence of rational homotopy

categories 81,445

Quillen functor 81,445
Quillen’s (+)-construction 38
quotient category 229

functor 230

map 132
rel,, set of homotopy classes 116
relative cylinder 8,97

axiom (I4) 19

dimension 361

homotopy lifting property 31
relativization lemma 86

property of the obstruction 344
restriction 6

Samelson theorem 178

satisfies T =1 in degree 2 377,391
secondary boundary operator 223
semi-direct product 238



466 Index

Serre fibration 5
simplicial set 17
singular set 17,36
realization of 104
skeleton, relative n-skeleton 36
spectral sequence (see chain algebras,)
homotopy, relative homotopy 190,221
sphere S"~1 5
smash product 155
stable 286
structure theorem for the group of
homotopy equivalences 352
sufficiency condition 230
strong 357
Sullivan—de Rham, equivalence of rational
homotopy categories 74,429
functor 72,428
theorem 73,416
surjective on X, 212
suspension (based up to homotopy) 133
functional 143
functor (see I-category)
general theorem 278
suspension, partial 143,315
symmetric algebra 59

telescope 188
tensor algebra T(V) 45
tensor product (see graded algebras)
Top, category of topological spaces 2
cofibration in 4
CW-structure on 35
cylinder in 2
fibration in 4
homotopy category of 3
homotopy equivalence in 3
path space in 3
set of homotopy classes in 3
topological spaces 2
torus 107
tower of categories 245
for commutative cochain algebras 424
for Postnikov decomposition 406
for reduced complexes 440
tower of fibrations 215

tower theorem for complexes 375
track 105
addition of 105
groupoid of 104
negative 105
trivial 105
trees of homotopy types 369
triple 97
relative cylinder of a 97
trivial map 115,116
trivial on B 142
twisted chain complex 210
homotopy 202
map 210,261
twisted cohomology for complexes 203
homotopy system 373
map 143
associated toa 266
2-category 106
2-realizability 358
type, n-type of space,
algebraic 364, 365,369

under, objects under C, maps under
Y 30,86

unit interval 2

universal coefficient theorem for homotopy
groups 268

universal covering (see also cellular chain
complex) 207

universal enveloping 75

Van Kampen theorem 309

weak equivalence (see also CDA, chain
complexes, DA, DL, Pair (C))
preserving 10
weak equivalent functors 102
weak homotopy equivalence 35
Whitehead product 157,160
Whitehead theorem 37,230,442
Whitehead’s certain exact
sequence 222,227,438
Whitehead’s quadratic functor
I' 268,291,447
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