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PREFACE

HIS book is intended as an introduction to some recent
developments of Maxwell’s electromagnetic theory which
are directly connected with the solution of the partial differential
equation of wave-motion. The higher developments of the
theory which are based on the dynamical equations of motion are
not considered at all. Even with this limitation the subject is a
vast one, and to bring the work of perusing the literature within
my power I have omitted an account of the modern theory of
relativity which has been expounded very clearly in several recent
publications.

For a thorough understanding of the present subject a very
extensive knowledge of mathematics is necessary, but there are
parts of the subject in which a reader with only a limited
mathematical equipment may soon feel at home and perhaps do
useful original work. With the idea of enabling such a reader to
obtain a quick grasp of the nature of the subject and the results
obtained, I have thought it advisable to state without proof a
number of relations of which adequate demonstrations can only
be obtained by means of complicated and difficult analysis.
I have also endeavoured to keep the analysis as elementary as
possible, but in some places where the work is perfectly straight-
forward a few details are omitted.

The book is far from being a complete treatise on the subject,
for I have not given any existence theorems to show that the
solutions of certain problems exist and are unique, and no
attempt has been made to enter into the details of numerical
computations. There are many parts of the subject indeed to
which a pure mathematician might make useful additions; in
particular, I might direct attention to p. 21, line 2, and p. 101,
where there are one or two matters which require further

discussion. ‘

QALY



vi PREFACE

Chapter viil and paragraph 5 contain some of my own con-
tributions to the subject. At present there seem to be several
different directions in which future developments may be made,
and so it seems unwise to give a hasty judgment concerning the
physical significance of the results. Ideas which naturally
present themselves are that the aether can be regarded as built
up from singular curves of the type considered in § 43, and that
§§ 41 and 44 may throw some light on the question of the difference
between positive and negative elementary electric charges. I
hope to discuss an hypothesis relating to the first idea in a future
note, but am unable to give any support at present to the
second idea.

I gratefully acknowledge my indebtedness to Sir Joseph
Larmor who read the manuscript before it was revised and made
some helpful suggestions, to Prof. Ames who read the greater
portion of the manuscript, to Prof Morley and Mr Hassé who
helped me with their advice and vigilance in reading the proof-
sheets, and to the officers and staff of the University Press for
their careful work and constant consideration shown in matters
connected with the printing. For the correctness of the new
formulae and examples I alone am responsible; if any errors are
discovered I shall be grateful if my readers will inform me.

HARRY BATEMAN.

October, 1914.
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CHAPTER 1
FUNDAMENTAL IDEAS

§ 1. The fundamental equations for free aether.

In Maxwell’s electromagnetic theory the state of the aether
in the vicinity of a point (z, y, 2) at time ¢ is specified by means
of two vectors F and H which satisfy the circuital relations*

el
5f'1“~'lot',}'i=%:§)§ rotE=—%a—I~I ............... (1),

and the solenoidal or sourceless conditions
div £ =0, div H=0.
If right-handed rectangular axes are used the symbol} rot H

denotes the vector whose components are of type

oH, _oH,

oy oz’
the three components of H being H,, H,, H, respectively.
The symbol div H denotes the divergence of H, ie. the
quantity

o0H, BH, 2 BH
oz T oy o8

The vector K is called the electric displacement or electric
Jorce and H the magnetic force. The quantity ¢ represents the

* The equations are written in the symmetrical form in which they were
presented by O. Heaviside, Electrical Papers, Vol. 1, § 80, and H. Hertz,
Electric Waves, p. 138. Sir Joseph Larmor points out that a set of equations
equivalent to these was first used by MacCullagh in 1838 as a scheme
consistently covering the whole ground of Physical Optics, Collected Works of
James MacCullagh (1880), p. 145.

+ We use here the units and notation employed in Lorentz's The Theory of
Electrons, Ch. 1, except that large letters are used to denote vectors and E is

written in place of D. Many writers use the symbol curlinstead of rot.

B. 1



2 « ¢« o.c o +n. FUNDAMENTAL IDEAS [cH.

velocity of propagation of homogeneous plane waves and is
commonly called the velocity of light; we shall assume it to be
a constant, although in the most recent speculations it is treated
as variable ¥,

Some of the modern writers on the theory of relativity
maintain that the introduction of the idea of an aether is
unnecessary and misleading, Their criticisms are directed
chiefly against the popular conception of the aether as a kind
of fluid or elastic solid which can be regarded as practically
stationary while material and electrified particles move through
it. This idea has been very helpful as it presents us with
a vivid picture of the processes which may be supposed to take
place, 1t also has the advantage that with its aid we can attach
a meaning to the term absolute motion, but herein lies its
weakness. Larmor, Lorentz and Einstein have shown, in_fact,
that the differential equations of the electron theory admit of
a group of transformations which can be interpreted to mean
that there is no such thing as absolute motion.

If this be admitted, the popular idea of the aether must be
regarded as incorrect, and so if we wish to retain the idea of a
continuous medium to explain action at a distance we must
frankly acknowledge that the simplest description we can give
of the properties of our medium is that embodied in the
differential equations (1).

If we abandon the idea of a continuous medium in the
usual sense only two ways of explaining action at a distance
readily suggest themselves. We may either think of the
aether as a collection of tubes or filaments attached to the
particles of matter as in the form of Faraday’s theory which has
been developed by Sir Joseph Thomson and N. R. Campbell ;
or we may suppose that some particle or entity which belonged
to an active body at time ¢ belongs to the body acted upon at a
later time ¢+ 7. From one point of view these two theories are
the same, for if particles are continually emitted from an active

* A. Einstein, Ann. d. Phys. Vol. 385 (1911), p. 898; Vol. 38 (1912), pp. 355
and 443. M. Abraham, Phys. Zeitschr. (1912), pp. 1—b, 810—314, 793—797;
Ann. d. Phys. (1912), pp. 444 and 1056 ; Fifth International Congress of Mathe-
maticians, Proceedings, Vol. 2, p. 256.
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body they will form a kind of thread attached to it. The first
form of the theory is, however, more general than the second.

At present we are unable to form a satisfactory picture of
the processes that give rise to, or are represented by, the vectors
E and H. We believe, however, that some points may be made
clear by studying the properties of solutions of our differential
equations.

It will be seen from the investigations of Chapter viiI
that the mathematical analysis connected with these equations
is suitable for the discussion of three distinct theories of the
universe, which may be described briefly as follows :—

Aether Matter
Continuous medium. Aggregates of discrete par-
ticles.
Discontinuous medium con- An aggregate of discrete

sisting of a collection of tubes particles attached to the tubes.
or filaments.

Continuous medium. An aggregate of discrete
particles to which tubes are
attached.

The last theory may be supposed to include that form of
the emission theory of light in which small entities are projected
from the particles of matter under certain circumstances and
produce waves in the surrounding medium. This theory might
be justly ascribed to Newton*.

For other theories of the aether the reader is referred to
Prof. E. T. Whittaker’s recent workt A Hustory of the Theories
of the Aether.

In the first part of this book the analysis is adapted almost
entirely to the first theory, the high development of which we owe
to the pioneer work of Maxwell, FitzGerald, Hertz, Rayleigh,
Heaviside, J. J. Thomson, Lorentz and Larmor. The other
theories have not yet received much attention but it is hoped

* A form of the theory in which the entities are electric doublets has been
developed by W. H. Bragg and applied to the X and v rays. British dssociation

Reports (1911), p. 340,
t Dublin Univ. Press ; Longmans, Green and Co. (1910).

1—2



4 FUNDAMENTAL IDEAS [cH.

that the analysis of Chapter viir will lead to further develop-
ments so that a comparison can be made between the different
theories. It is quite likely that one theory will be enriched by
the developments of another.

§ 2. Electromagnetic fields.

For many purposes it is convenient to work with a complex
vector* M = H + iE, where :=%—1 and the ambiguous sign
+ is independent of the ambiguity which occurs in the determi-
nation of ¥V —1. The differential equations (1) may then be
replaced by the simpler equations

th=¢§aaif, divM=0.ceeeeren.... (2).

When a solution of these equations has been found a pair
of vectors £ and H satisfying equations (1) may be obtained by
equating coefficients of the ambiguous sign. In working with
an ambiguous sign it must be remembered that when two
ambiguous signs are multiplied together the ambiguity is
removed. The chief advantage in using the two independent
ambiguities + and v/ =1 is that we can assume that the vectors
E and H are the real parts of expressions of the form Ae*? and
we are at liberty to equate the coefficients of either ¢ or + in
any of our equations.

Definition. A solution of the differential equations (2) or (1),
which provides us with single-valued vector functions £ and H
for each space-time point (z, y, z, £) belonging to a certain
domain D, is said to define an electromagnetic field in the
domain D.

Since the differential equations are linear the sum of any
number of solutions is also a solution. The physical meaning
of this is that when two electromagnetic fields are superposed,
they are together equivalent to an electromagnetic field.

Two superposed electromagnetic fields can of course be
related to one another in some way. When electromagnetic

* The use of & complex vector H — iE is recommended by L. Silberstein, 4nn.
d. Phys. Vols. 22 and 24 (1907) ; Phil. Mag. (6), Vol. 23 (1912), p. 790. He does
not, however, use the ambiguous sign.



1] THE FLOW OF ENERGY 5

waves fall upon an obstacle, a secondary disturbance is produced
which depends in character upon the nature of both the primary
waves and the obstacle.

We shall find that in some cases it is possible to find two
fields in which the vectors (¥, H), (E’, H’) are connected by the
two relations embodied in the equation

(MM'y= M, M, + M,\M,/ + MM, =0 ......... (3)

for all values of (2, y, 2, t) belonging to some domain.
When this is the case the fields are said to be conjugate
within this domain.
If we use the notation
. (M*) = M2+ M2+ M2,
we may write

(M) =(HY) —(E*) + 2{(EH) =1, + % L,

where I, and I, are two quantities which we shall call the
invariants®*. It is easy to see that when two conjugate fields
are superposed the invariant I, for the total field is the sum of
the invariants 7, for the two component fields. Similarly for
the invariant I,.

When the invariants are zero over a given domain the field
may be called self-conjugate for this regiont.

§ 3. The flow of energy.

An entity whose volume density} p is a function of (2, ¥, 2, t)
will vary in a manner which can be described as a simple flow
- with component velocities (u, v, w) if the equation of continuity

%&t’,,a%(pu)Jr%(m,,J,a%(pw)mo ............ (4)

is satisfied. This equation implies in fact that there is no

* They are invariants for the group of linear transformations which leave
the electromagnetic equations unaltered in form. Cf. H. Minkowski, Gétt.
Nachr. (1908); E. Cunningham, Proc. London Math. Soc. (2), Vol. 8 (1910),
p. 89; H. Poincaré, Rend. Palermo (1906) ; M. Planck, 4Ann. d. Phys. Vol. 26
(1908). Other invariants are given by these authors.

+ Silberstein calls it a pure electromagnetic wave.

% The limitations to which the idea of density is subject and the question of
the continuity of the function p are discussed by J. G. Leathem, *‘ Volume
integrals and their use in physics,” Cambridge Mathematical Tracts (1905).
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creation or annihilation of the entity in the neighbourhood of
(z, 9,2, 1)

Now it is easy to see that the equation of continuity is
satisfied in virtue of equations (1) if we put

p=3%(E)+3(H), pu=c(E,H,—E.H,),
and two similar equations. We shall regard p in this case as
the volume density of the energy contained in the electro-
magnetic field. The vector 2 whose components are of the
type ¢ (£,H,— E.H,) can then be supposed to indicate the rate
at which energy flows through the field. Since

pPr(—ut—v?—w?)=} (B — H?) + ¢ (EH),

it appears that energy travels through the field with a velocity
which is less than the velocity of light. The velocity ¢ is
attained only in the case of a self-conjugate field.

The vector % was introduced by Prof. Poynting* and is
usually called Poynting’s vector. The idea of describing the
transfer of energy in this way also occurred to Prof. Lamb
before the publication of Poynting’s work.

Ezample. Prove that the equation of continuity may be satisfied by
putting

_19 % 106 ,, 06, 06
i ayH 5 w=on - ltg s

1200, 20, 6, %,
pw= at H+"‘3’ pe= _BE‘E:_B_yEy“a:E”

where 8 is an arbitrary function. Obtain a similar solution by replacing
E by Hand H by - E.

§ 4. First solution of the fundamental equations.
Let us use the symbol Qu to denote the Dalembertian-

of u, viz.
a -
Qu_Au_la%c o%u Bu_l__a_g_lojﬁ’
o ox By’ 0* ¢ ot

* Phil. Trans. A, Vol. 175 (1884), p. 343. See also H. A. Lorentz, The
Theory of Electrons, p. 22.

+ This is the name suggested by Lorentz, loc. cit. p. 17. Many writers use
Cauchy’s symbol O to denote the Dalembertian, but I think © is preferable
because its form suggests a wave. Murphy’s symbol A is also used here in place
of the usual symbol V2. E. B. Wilson and G. N. Lewis use the symbol  2u
to denote the Dalembertian of u. Cf. Proc. Amer. Acad. of Arts and Sciences,
Vol. 48 (1912), p. 389,
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and the symbol grad U to denote the vector whose components

oU oU oU

% 3y %

respectively. Let us also use QA, where A is a vector with
components A,, A,, A;, to denote the vector whose components
are QA,, QA,, QA,. The equation Qu=0 will be called the
wave-equation and a solution of this equation a wave-function.
A vector function A will be said to satisfy the wave-equation
when each of its components is a wave-function, i.e. if QA =0.
We may now satisfy equations (1) and (2) by writing

10L

M=inmL=—E+QMA ............... (5),

where the scalar potential A=W F i@ and the 'vecto'r potential
L = B F ©4 satisfy the equations
1 0A

QA=0, QL=0, divL+_%=0.....cc. (6).

The last three equations may be solved in a general way by
writing

are

b G ;
Qafr . [eseskseaceas =
A=—divG-3%

where the vector G =T F <II and the sealar K satisfy the wave-
equation

The solution of equations (1) which is embodied in (5),
(6) and (7) 1s a simple extension of Hertz’s solution® and is
suggested >y Whittaker's solutiont in terms of two scalar
potentials. It is clear that the function K drops out when we
differentiate to find M and so the electric and magnetic forces
depend ony on the vector G. The form of this vector indicates
that the electromagnetic field can be regarded as the sum of
two partisl fields; one of these is derived from the vector II and

* Ann. 4. Phys, Vol. 36 (1888), p. 1. The general solution is given by
Righi, Boligna Mem. (5), t. 9 (1901), p. 1; Il Nuove Cimento (5), t. 2 (1901), p. 2.
He finds siitable expressions for the vectors IT and I' in a number of cases.

t Proc. London Math. Soc. Ser. 2, Vol. 1 (1903).
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will be called a field of electric type, the other is derived from
the function I'" and will be called a field of magnetic type.

This resolution of an electromagnetic field into two partial
fields is analogous to the one used by H. M. Macdonald* in the
study of the effect of an obstacle on a train of electric waves.
The component fields are then of such a type that in one case
the magnetic force normal to the obstacle vanishes over the
surface of the latter, in the other case it is the electric force
normal to the obstacle that vanishes. The same idea has been
used recently by Miet and Debye] in the treatment of the case
of a spherical obstacle.

In Hertz’s solution we have I'=0, K=0 and II has
components (0, 0, S).

The components of &' and H are consequently given by the
formulae

_ o8 183
Horowos’ higes ¢ oyot
S 1 S
Ey"—:ay—az, Hy=—5m}' feasesnns (9)
S 108
Emgp— e H=0

Hertz uses Euler’s wave-function§
S=—:—.sinrc(r—ct), M=oty + 2

and obtains in this way a theory of his oscillator|. The electric
and magnetic forces become infinite at the origin which 1s there-
fore a singularity of the electromagnetic field. A singularity of
this type is called a wbrating electric doublet and is '{egarded as
the simplest model of a source of light or electromagretic waves,

* Electric Waves, Ch. vi. ‘ '

t Ann. d. Phys. Vol. 25 (1908), p. 382. + Ibid. Vol. 30 (1409), p. 57.

§ Periodic solutions representing a disturbance sent out from n-fold poles
had been used previously by H. A. Rowland and applied to the eucidation of
optical phenomena. Amer. Journal of Mathematics, Vol. 6, p. 359 ; Phil. Mag.
Vol. 17 (1884), p. 423. Cf. also Stokes, Cambr. Phil. Trans. (1849).|

I To deal with the case in which the vibrations are damped we assume

8= % e~ sin k(r—ct). Of. K. Pearson and A. Lee, Phil. Trans. ), Vol. 193
(1900), p. 159.

-
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The solutions of equations (1) which are obtained by superposing
elementary solutions of this type are of great importance in
physical optics.

When 7 is very great the most important terms in the
expressions (9) are

K*x28 K*ys
E,=~—- ) =3 >
73 r—
2 2
KYzZSs K°ZS
E,=— 4 Hy'_“,j;'s

Ez='f2(-’1"2:‘ y“)s,
where s=sinx (r —ct). All the other terms are of order 1/2* or
1/7%.  These expressions give

(EH)=0, (E)-(H*)=0.

Hence at a very great distance from the origin the field 1s
practically a self-conjugate field and so the energy travels with
a velocity very nearly equal to the velocity of light. The
expressions indicate that Poynting’s vector is ultimately along
the radius from the origin; now the electric and magnetic
forces are at right angles to Poynting’s vector and so the
vibrations of the light-vector, whether we take it to be the
electric or magnetic force, are at right angles to the radius.
The waves sent out from the source have, then, the character
of monochromatic light at a great distance from the origin*,
The amplitudes of the vibrations at points on the same radius
are proportional to the quantities 1/» when 7 is large, and so if
the intensity of the light be measured by the square of the
amplitude the inverse square law is fulfilled.

Since the electric force is ultimately at right angles to the
radius there is no total charge associated with the singularity,
for the charge is equal to the surface-integral of the normal
electric force over a large sphere concentric with the origin
and this integral is evidently zero. We are consequently
Justified in regarding the singularity as a doublet and in fact

* For a fuller discussion see Larmor, Phil. Mag. (5), Vol. 44 (1897), p. 503 ;
Aether and Matter, Chap. x1v, where it is shown that energy is radiated from a
moving charge only when the velocity of the charge alters in either magnitude
or direction.

Hz":os
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as a simple electric doublet of varying moment as is indicated
by the way in which the electric and magnetic forces become
infinite®. The axis of the doublet is along the axis of 2.

The electric lines of force due to a vibrating electric doublet
have been drawn by Hertzt for various stages of the motion.
The general character of the lines of force is indicated in Fig. 1.

N - L T

Fig. 1%.

It will be noticed that the, lines are all at right angles to a
plane perpendicular to the axis of the doublet. M. Abraham§
has used a Hertzian doublet to obtain a model of the electro-
magnetic field produced by the oscillations in a vertical antenna,
the plane just mentioned being supposed to represent the earth
which is regarded as a perfect conductor. Zenneck|| has,
however, pointed out that when the imperfect conductivity of
the earth is taken into account the circumstances of the

* See § 42.

+ Ann. d. Phys. Vol. 36 (1888), p. 1. The case of damped vibrations is
considered by K. Pearson and A. Lee, loc. cit.

+ I am indebted to the Macmillan Company and A. Gray, Esq., for permis-
gion to reproduce this diagram.

§ Phys. Zeitschr. Vol. 2 (1901), p. 329 ; Theorie der Elektrizitit, Vol. 2,
§ 34; Encyklop. d. Math. Wiss. Band 5, § 18.

| Ann. d. Phys. Vol. 23 (1907), p. 846 ; Phys. Zeitschr. Vol. 9 (1908), p. 50 ;
Ibid. p. 553.
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propagation are somewhat different. The spreading of electro-
magnetic waves over the earth’s surface has been investigated
thoroughly by A. Sommerfeld* and his pupil H. v. Hoerschle-
mann+, and their results seem to indicate that the imperfect
conductivity of the earth is an important factor in directing
electric waves and in enabling their effects to be detected at
great distances. The ionisation of the air by sunlight is also
an important factor, as has been pointed out by J. J. Thomson,
W. H. Eccles} and J. A. Fleming§. Marconi’s experiments have
indicated that the circumstances of propagation are not yet
thoroughly understood. No good reason has been given to
explain why communications by means of electric waves can be
made more easily when the receiving station is in a north or
south direction than when the direction is east or west. The
curious contrasts in the results obtained with waves of different
frequencies in day and night communications are also un-
explained||.

The use of the vector II instead of the scalar S was
recommended by Abraham9¥. Von Hoerschlemann has obtained
in this way a model of Marconi’s bent antenna which gives
a directed effect to the radiation. A number of arrangements
of Hertzian doublets that can be used to imitate the action
of antennae have been described by Fleming**, Larmortt,
Sommerfeld and Macdonald}.

In the theory of FitzGerald’s magnetic oscillator§§ we have

=0, I'=(0,0,N),

N being Euler's wave-function. Whittaker’s solution is
obtained by adding the solutions of Hertz and FitzGerald.

* Ann. d. Phys. Vol. 28 (1909), p. 665.
t Jahkrb. d. draht. Teleg. Vol. 5 (1912).
¥ Proc. Roy. Soc. A, Vol. 87, p. 79.
§ British Association Reports, Dundee (1912). See also O. J. Lodge,
Phil. Mag. Vol. 25 (1913), p. 775.
|| See Marconi’s address to the Royal Institution, June, 1913.
91 Theorie der Elektrizitit, Vol. 2, Ch. 1. See also Righi, loc. cit.
** Proc. Roy. Soc. A, Vol. 78, p. 1.
1+t Ibid. in a footnote to Fleming’s paper.
++ Proc. Roy. Soc. A, Vol. 81, p. 394.
8§ Trans. Roy. Dublin Soc. Vol. 8 (1883); Scientific Writings, p. 122.
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§ 5. Second solution of the fundamental equations.
It is easy to see that equations (2) will be satisfied if we
can find two functions (a, 8) such that

PERICY- IR EICY Y

o(y, 2) ¢ 0(zt)

0% 8)_, 10(%8)
M, = T =4 - TR } ............... (10).
ﬂ[ a(‘:t 48) =4 Ea(a B)

0 (z, y) ~ ¢ d(e, t)

An electromagnetic field that is specified in this way is
necessarily a self-conjugate field, for if we multiply together
the two expressions for M, and do the same for M, y» M, we find
that M?=0. A particular pair of functions a, 8 is obtained by
putting

a=xcosf+ ysinfFiz, B=asinf—ycosf—ct...... (11),

where 6 is an arbitrary constant. To generalise this field we
multiply the expressions for M,, M,, M, by an arbitrary
function*® of a, B, 6 and integrate with regard to €: we thus
obtain a very general electromagnetic field in which

o
M¢=$1L f(a, B, 6)cos6db

M= f :" f(a,B, 0)ein8dh § ............ (12).

2
M=—Lf@&®% ;

The components of the electric and magnetic forces are
obtained by equating the ambiguous and unambiguous parts in
these equations; it is easy to verify that they are all wave-
functions.

It should be remarked that these definite integrals may
give a representation of the electromagnetic field, required for
the solution of a problem, only in a certain limited domain of

* When we speak of an arbitrary function it must be understood that the
function may be subject to certain limitations which render the integration and
differentiation under the integral sign intelligible operations.
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the variables z, y, 2, t; the integrals may in fact represent
discontinuous functions. ‘

The limits of integration could have been taken to be any
other constants instead of 0 and 27 ; they can also be taken to
be functions of z, y, z, t of the type w, where w is defined by an
equation of the form

zsnw —ycosw—ct=F(w),
F being an arbitrary function.
A suitable pair of functions a, B is also obtained by putting
_rFy
z+7

3 B2t =0 sessinesssaniogens (13),

and in this case Poynting’s vector is along the radius from the
origin. A more general type of electromagnetic field in which
this is true is obtained by multiplying the above expressions
for the components of M by an arbitrary function of a and S.

Other pairs of functions a, 8 of a very general nature are
obtained in Chap. viil. It should be remarked that in all cases
the functions (a, B) are of such a nature that if F (a, 8) is an
arbitrary function of a and B, F satisfies the partial differential

equation
IV (%7) Y (A Y (< — (14),

which 1s of fundamental importance in geometrical optics® and
may be called Hanulton’s equation. It is found that this
equation is also satisfied in many cases by the functions of
@, ¥, z, t which are the limits of a definite integral representing
a wave-function, when the function under the integral sign is
a wave-function for all values of the parameter with regard to
which we are integrating. Thus the function  just defined and

the function t—-}—: (r +7,) which will be used later are solutions
of this equation. .
* For another connection between this equation and the electromagnetio

equations see A. Sommerfeld and J. Runge, ‘ Grundlagen der geometrischen
Optik,” Ann. d. Phys. Vol. 85 (1911), p. 277.
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§ 6. The fundamental equations for a material medium.

For a material medium which is stationary relative to the
axes of coordinates, the equations (1) must be replaced by the
more general equations *

P
th._E(JJr-g), divD=p |

e ...(15),
rotE:—l—, divH=Of
c ot

where D 1s the electric displacement, £ the electric force or
field strength, H the magnetic force and B the magnetic induc-

tion. The quantity J + %) represents the total current which

is made up of a conduction-current C, a displacement-current

aait) d a convection-current pv, p being the volume density of
electricity.

Various notations have been used for the different vectors
of an electromagnetic field. Most English writers use (a, b, ¢)
for the components of the magnetic induction, (a, 3, y) for those
of the magnetic force, ( f, g, k) for the components of the electric
displacement and (P, @, R) or (X, Y, Z) for those of the
electromotive intensity or electric forcet. This is not to be
confused with the mechanical force F of electromagnetic origin,
whose components are sometimes denoted by (X, Y, Z).

* Lorentz (1892—1895) and Larmor (1895) have derived these equations and
a corresponding set of equations for moving bodies by & process of averaging,
starting from the fundamental equations of the theory of electrons in which we
have B=H, D=E, J=pv. Cf. H. A. Lorentz, 4kad. van Wetenschappen te
Amsterdam (1902), p. 305; Encykl. d. Math. Wiss. Bd. 5, § 14, pp. 200—210. This
method of averaging has been developed so as to give results in accordance with
the Theory of Relativity by M. Born, Math. Ann. Bd. 68 (1910) and E. Cunning-
ham, Proc. London Math. Soc. Ser. 2, Vol. 10 (1911), p. 116. The Born-
Minkowski equations differ slightly from those of Lorentz and indicate the
existence of an electrostatic field due to the motion of a magnetised body.

It has been realiged by the foregoing writers and others that the principle of
relativity alone is not sufficient to determine a complete set of equations for
moving bodies, a theory of the constitution of matter is needed. Cf. H. R. Hassé,
Phil. Mag. Jan. (1914).

+ Clerk Maxwell, Electricity and Magnetism, 3rd edition (1892), Vol. 2,
p- 257.
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In any material medium there are certain constitutive
relations connecting the vectors D, E, B, H, J. In moving
media, crystalline media and ferromagnetic bodies the relations
are rather complicated, but for an isotropic medium in which
p =0 the relations can be represented to a good degree of
approximation by the simple equations

. D=eE, J=cE, B=yuH ............... (16),
where ¢, o, p are scalar quantities which are generally regarded
as constants; they will be regarded in fact as the optical
constants of the medium. The quantity o is called the con-
ductinty, p the permeability, and e the dielectric-inductive
capacity.

The units that are used here are the so-called modified
units*, in which Heaviside’s suggestion of eliminating a factor
47 has been adopted. We can pass to electrostatic units or
electromagnetic units by replacing our quantities E, H, etc. by

ak, BH, etc., where a, 8 are certain factors which are given in
the following table :

e, D, J E B g m
: — 1 c 1
Electrostatic system Jar T = c'J4_ W

: - 1
Electromagnetic system | ¢./4w bl | i | TE N

We use e here to denote a quantity of electricity, and m a
quantity of magnetism.

§ 7. The energy equation for a material medium.
If we use X as before to denote the vector whose components
are of type ¢ (B, H,— E,H,), we find that

9%, 93, 0 TR ey
el +az§(m+H’ 5t THv g+ ey

* Cf. H. A. Lorentz, Encyklopidie der Math. Wiss. Bd. 5, § 13, pp. 83—87.

\

+ 4o (E)=0.
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If u is a constant and 3ek?+ §uH*? be regarded as the
energy per unit volume, the change in the distribution of the
energy can be described by means of a flow ¢ and a loss per
unit volume of magnitude ok? due to the transformation of
electric energy into heat (Joule’s heat)*. If B does not depend
on the instantaneous value of H so that u is not a constant
there is a loss of energy due to hysteresis. B may depend
upon H alone but not be a single-valued function of H, con-
sequently 1n a cycle of changes [(H.dB) is not zero and may be
taken as the heat per unit volume developed during the
description of the cycle. Notice that

{(H.dB)=— [(B.dH) round a cycle,
and is always positive since the value of B for a given value of
H is greater when H is increasing. The experimental analysis
and the accompanying theory are due to E. Warburgt and
independently in much greater development to J. A. Ewing} by
whom the name hysteresis was applied to such phenomena.

§ 8. Solution of the fundamental equations for a
material medium.

Let us assume that o, u, € are constants and that £, H are
the real parts of expressions of the form Ae~*! where 4 is
a complex quantity independent of {£. Then if we write

pLAE e e B E )
¢ peo
and regard E, H now as the complex vectors of which they were
formerly the real parts, the differential equations to be satisfied

by M are

rot M=+kEM, divM=0......cccconens (18).
These may be solved by putting
M=rot I + % grad div I £ %11 ....c.05000 (19),

where II is a solution of the equation Au + k?u = 0, and may be
of the form U + V.

* For a fuller discussion see R. Gans, Einfithrung in die Theorie der
Magnetismus; H. A. Lorentz, Encykl. d. Math. Wiss. Bd. 5, § 14, p. 240, Heft 1
(1903) ; Heaviside, Electrical Papers, Vol. 1, pp. 437—450.

t+ Ann. Phys. Chem. (3), Vol. 13 (1881), p. 141.

* Phil. Trans. A, Vol. 176 (1885), pp. 528—640; Proc. Roy. Soc. Vol. 34
(1883), p. 39; Phil. Mag. Vol. 16 (1883), p. 381; Magnetic Induction in Iron
and other-Mctals, London (1892).
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Problems which deal with the effect of small obstacles upon
light or electric waves require the taking into account of the
properties of the material of which the obstacle is composed : it
1s only for long waves and conducting media that the obstacle
can be treated as a perfect reflector. This is illustrated by the
work of Maxwell Garnett* and Miet on the optical properties
of colloidal suspensions of metals and in the work of Sommerfeld
to which we have already referred.

Unfortunately, however, the analytical difficulties are very
great when imperfect conductivity is taken into account}. The
simple-looking problem of the reflection of the disturbance
produced by a moving charge, when the obstacle is an infinite
plane sheet of metal or other conducting substance, has not yet
been solved accurately§ and there are many similar problems
that have completely bafiled mathematicians.

Much more progress has been made with problems dealing
with perfect reflectors. These problems are to some extent
ideal but some of the characteristics of actual physical problems
are often preserved|. Apart from this, such problems are of
considerable mathematical interest, and have been studied by
some writers simply on this account.

§9. Boundary-Conditions.

The conditions to be satisfied at a surface separating two
different media are obtained by integrating equations (15) across
a thin layer of transitiony. Taking the axis of z along the

* Phil. Trans. A, Vol. 203 (1904), p. 385 ; Vol. 205 (1905), p. 237.

t Ann. d. Phys. Vol. 25 (1908), p. 377.

+ An important solution of the equations has been given by M. Brillouin,
‘“ Propagation dans les milieux conducteurs,”” Comptes Rendus, t. 136 (1903),
pp. 667, 746. (See Ex. 20, Ch. 1x.) For other references see Ex. 5, p. 23.

§ An approximate solution was suggested by Maxwell and has been developed
by Larmor, Proc. London Math. Soc., Ser. 2, Vol. 8, p. 1. An accurate solution
for the case in which the sheet is treated as infinitely thin and the charge moves
with uniform velocity parallel to the plane has been given by G. Picciati, Rom.
dce. Linc. Rend. (5), 11 (1902), p. 221.

I A metal behaves practically as a perfect conductor to electric waves when
the oscillations are rapid but slow compared with waves of light. Cf. J. Larmor,
‘“ Electric vibrations in condensing systems,” Proc. London Math. Soc. Ser. 1,
Vol. 26, p. 119.

T Rayleigh, Scientific Papers, Vol. 1; Phil. Mag. Vol. 12 (1881), p. 81;
H. Hertz, Electric Waves, pp. 207, 238; Larmor, Phil. Trans. (1895),

B, 2
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normal to the surface we shall assume that £, H, D, B and
their derivatives with regard to @, y, ¢ are finite within the
layer and that the conductivity o is also finite. The equations

oE, oE, 10B, oH, oH, 1 , 0D,
9z 09y cot’ Oy oz _E(GE"JFW)’
then show that oF, , oH, and J, +i-3-—Dz are finite and so their
0z ’ 0z ot

integrals with regard to z across a thin layer of thickness 8 are
less than a@ where a is a finite positive quantity independent of 6.
This means that the tangential components of the electric force,
magnetic force and electric current are continuous in crossing
the surface.

Again, the equation

0B, +BB,, +BBZ= 0
ox 0y Oz
shows that a5 is finite and so the normal component of the

0z
magnetic induction is continuous. This result may, however,
be regarded as a consequence of the previous one.
The normal component of the electric displacement may be
discontinuous, for the equation div D =p gives

63D 0
dz=f a—zdz=f pdz + terms of order 6,
0 0% 0

where d, is the discontinuity in the electric displacement. Hence
if 7 is the surface-charge of electricity per unit area we have d,=g.
When the media are both conducting we have @ =0 and the
normal component of the electric displacement is continuous.

~ It i1s known that in the case of a good conducting body
rapidly alternating currents are confined within a very thin
layer close to the surface®. In the ideal case of a perfect
conductor or perfect reflector the field-vectors are zero within

p- 733; H. M. Macdonald, Electric Waves, p. 14; H. A. Lorentz, Zeitschrift
f. Math. u. Phys. Bd. 22 (1877).

* Cf. H. Lamb, Phil. Trans. A (1883) ; O. Heaviside, Electrical Papers, Vol. 2,
p- 168; J. J. Thomson, Recent Researches, p. 281. For some recent work on
the subject see a paper by E. F. Northrup and J. R. Carson, Journ. of the
Franklin Institute, Feb. (1914), p. 125. The results of many other researches
on the skin-effect and alternating current resistance are given in J. A. Fleming’s
The principles of Electric Wave Telegraphy.
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the body of the conductor. This case is characterised by o= o
and the tangential components of the magnetic force are no
longer continuous as a point moves across the surface, we have
in fact if A is the discontinuity in the magnetic force

o e
hy, = f BH,, =—= I' o E.dz + terms of order 6.
. To

Hence if K is the surface-current and & the discontinuity
of the magnetic force, we have

1 1
hy=—EKz, h¢=EKy.

At the surface of a perfect conductor the tangential com-
ponents of the electric force must vanish and as a consequence
of this we can say that the normal component of the magnetic
induction must also vanish. If the medium outside the con-
ductor is free aether the surface-conditions are simplified on
account of the relations D= FE, B= H.

In the case of a very thin conducting sheet it is convenient
to treat the thickness of the sheet as negligible and regard the
tangential components of the magnetic force as discontinuous
when a point moves along the normal from one side of the
sheet to the other.

The boundary-condition is then*

T o
e h c E::, hz = E -Eys
0
where o= f adz 18 the conductivity of the sheet.
0

If we wish to extend the idea of Green’s equivalent layer to
electrodynamics we must consider electromagnetic fields in free
aether with surfaces at which the tangential components of the
electric and magnetic forces are discontinuous; this requires an
electric current sheet and a magnetic current sheet on the

* Cf. T. Levi-Civitd, Rend. Lincei (5), 11, (1902), p. 75. These conditions
are used by Picciati in his solution of the problem of an electric charge moving
parallel to a conducting sheet. In some previous papers, Rend. Lincei (5), 11,
(1902), pp. 163, 191, 228, Levi-Civitd had used the electromagnetic potentials to
determine the effect of a conducting sheet on an alternating current flowing
along a straight wire parallel to the sheet; the boundary-conditions are then
determined by the discontinuities of the potentials due to the induced current.

22
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surface*. For a complete generalisation we ought to consider
the cases when the normal components are also discontinuous
and when the surface is in motion. The last circumstance
alters matters to some extent and must now be discussed.

In the case of electric waves in free aether, the vectors
E and H may be discontinuous at a wave-boundary. If this
can be regarded as the limit of a thin layer of transition within
which equations (1) are satisfied and the vectors K, H are
finitet, the values of these vectors on the two sides of the
boundary must satisfy certain conditions which may be found
as follows.

Let the equation of the moving boundary be expressed in

the form
b (0,8 8) scsssvsisiavinernecind (20).
If now we apply Green’s theorem to the integral

_U.[(M“"'WM”S +wc M, g )dez

+(My+wMz o +wcM, at)dzdx

a *3
- -
+ (M3 icdt, § @ tioM, o) d:z:dy] ...... @),

which is supposed to be taken over a closed surface, we find
that it vanishes on account of the equations (2) provided ¢ is
supposed to be expressed in terms of z, ¥, z according to some
definite law which we shall take to be that expressed by (20).
We now apply this theorem to a disc-shaped surface whose
two faces very nearly coincide. We shall suppose that on one
side of the disc the vector M represents the field of the advancing
waves and that on the other side it represents the field obtain-
ing just before the arrival of the waves. We shall also suppose

* Cf. J. Larmor, Proc. London Math. Soc. (2), Vol. 1 (1903), p. 11
H. M. Macdonsald, Electric Waves, p. 16 ; Proc. London Math. Soc. (2), Vol. 10
(1911), p. 91.

+ The idea is practically due to Stokes, Math. and Phys. Papers, Vol. 2,
p- 275, but was not worked out in detail. The different possible types of dis-
continuity are discussed with some care by Love. The case in which E and H
are continuous but some of their derivatives are discontinuous at the moving
boundary may be discussed more simply by analysis analogous to that given in
Hadamard’s Lecons sur la Propagation des Ondes, Paris (1903), Ch. 2. See also
Ex. 2, p. 23, and the references to Duhem and Silberstein on the next page.
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that the derivatives of M are finite or behave in such a way
that an application of Green’s theorem is justifiable. Now
let M be the discontinuity of M, i.e. the difference in the values
of M at two neighbouring points on opposite sides of the wave-
boundary. Then when the two faces of the disc coincide we
find that a certain surface-integral over one face of the disc is
zero. The surface-integral is of the same type as (21) except
that M is written in place of M. Since the face of the disc can
be chosen arbitrarily the integrand must vanish and so we
obtain three equations of the type* -

M, +szya + ¢ M ............ (22).

These equations give

#-0 wd () + () +(§—i)’=§—=-

Hence the wave-front advances with the velocity of light
and the difference between the two electromagnetic fields at
the wave-boundary behaves as a self-conjugate field in which
Poynting’s vector is along the normal to the moving
boundary.

If the equation of the wave-boundary be expressed in the
form

F(z 9,2,t)=0,
we find on calculating the values of

o o o
awl ay} az)

that (%a;) ( ( ) c,( ...... ().

This is the differential equation of the characteristics, it
expresses that the moving boundary moves normally to itself
with the velocity of light. According to the theory of Stokest

* Equations equivalent to these are obtained in & different manner by
O. Heaviside, Electrical Papers, Vol. 2, p. 405; A. E. H. Love, Proc. London
Math. Soc. Ser. 2, Vol. 1 (1903), p. 37; L. Silberstein, Ann. d. Physik, Vol. 26
(1908), p. 751 ; P. Duhem, Comptes Rendus, t. 131 (1900), p. 1171.

t+ Proc. Camb. Phil. Soc. (1896); Manchester Memoirs (1897); Math. and
Phys. Papers, Vol. 4.
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and Wiechert*, Rontgen rays consist of pulses travelling through
the aether, the energy in a pulse being confined within a thin
shell. The above theory indicates that the front and rear
surfaces of the shell move forward with the velocity of light.
A slight modification of the preceding method can be used
to find the conditions to be satisfied at a moving surface which
1s the boundary between two different media. If we write
L =B+ 11D, N = E ¥ «H and assume that the surface-charge and
surface-current can be neglected, the six boundary-conditions
can be expressed by saying that the three quantities of type

Ls-c%Nz+cgNy

must be continuous as the boundary is crossed. The equation
of the moving boundary is expressed as before in the form (20).
When the moving boundary is the surface of a perfect conductor
or perfect reflector, the boundary-conditions are simply that the
three quantities of type

Bos B B

0z
should vanisht. &
In the last two cases the boundary-conditions do not imply
that the boundary moves normally to itself with the velocity of
light ; in fact, the motion of the boundary can be quite arbitrary.

EXAMPLES.

1. The surface of discontinuity is the sphere r=ct and the electro-
magnetic field within this surface is expressed by the equations

oo o' (723 § Q) b
(&2, E,, E,)=c (‘az.—az: @‘a: "‘3;2_@ )
o*r - ,
(H:u Hvs Hl)‘—_(a'?;'a}v —m’ 0):
where HO=Arle~ 94" gin p (¢t —7r+¢).

* Abh. d. Phys.-6kon. Ges. zu Kinigsberg, 1 Pr. (1896), p. 1; Ann. Phys.
Chem. Bd. 59 (1896), p. 283. See also J. J. Thomson, Phil. Mag. (5), Vol. 45
(1898), p. 172.

t These conditions are equivalent to the condition that the mechanical force,
which would act on & charge moving with the normal velocity of the surface,
must be along the normal to the surface. Cf. Heaviside, Electrical Papers,
Vol. 2, p. 514; Electromagnetic Theory, Vol.1, p. 273 ; Hertz, Electric Waves,
Pp- 257.
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The constants p and ¢ being known determine the constants 4 and e
in order that the field outside the surface 7=ct may be the electrostatic

field for which the potential @ is -% G) :
(Cambr. Math. Tripos, Part 11, 1904.)

2. If the vectors E and H are known for all points (z, 7, 2, t) of a
moving surface
F(z,y,2 =0
the values of all the derivatives of £ and H, and consequently values of £
and H at points not on the moving surface can generally be found pro-
vided ¥ does not satisfy the difterential equation

oFf\2 (oF\? [OF\? 1 [0F\?
a%) +(@) +(§,; ~a(a)
(Havelock, Proc. London Math. Soc. Ser. 2, Vol. 2, p. 297.)

3. An electromagnetic field is conjugate to an electrostatic field.
Prove that the flow of energy in the electromagnetic field takes place along
the lines of electric force in the electrostatic field.

4. Let the line OC of length ¢ be drawn in the direction of Poynting’s
vector at each space-time point O of a self-conjugate electromagnetic
field and let OV represent a velocity » associated with the point O.
Prove that if this electromagnetic field is conjugate to another field
(£, H) in which cH is the vector product of v and E, the direction of £ is

parallel to VC.

5. Prove that when o, ¢, p are constants, the vectors £, H of § 6
satisfy the differential equations
epd’El opdE 1
sE-Gm—mw e
sl auol .
AH- S e =0. (Maxwell.)
Solutions of these equations for the case in which p=0 have been given by
O. Heaviside, Phil. Mag., Jan. (1889), p. 30 ; Electrical Papers, Vol. 2,
p- 478.
H. Poincaré, Comptes Rendus (1893), p. 1030 ; Théorie analytique de
la propagation de la chaleur, Ch. 8.
J. Boussinesq, Comptes Rendus (1894), pp. 162—223; Théorie
analytique de la chaleur, t. 2 (1903), p. 538.
Kr. Birkeland, dArckives des sciences physiques, Geneva (1895), p. 5.
O. Tedone, Rend. Lincer, Mar. 31st (1913), Jan. 18th (1914).
M. 1. Pupin, Trans. Amer. Math.-Soc., Vol. 1 (1900), p. 259.

6. Prove that the function
1 -;—[z*-Jt'-z']
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satisfies the equation

Pu_Pu,
R T

7. If u satisfies the partial differential equation
ou\2 [ou\? [ou\? 1 [ou\?
) +(az) +(3 =;a(§;) ’
and we make the transformation
ou 0
xo=$+fa—-x, Zo=z+fa—§’,

ou ou
3/0=.7/+f@1 to=t_§*a_t'a

where £ is an arbitrary function, then « also satisfies the partial differential

equation
ou\e  /ow\® [Ou\? 1 [ou\?
(a—xo) +(8370 *(ﬁz'o) =a (‘a'zo) '

8. Plane electromagnetic waves fall on the convex surface of an infinite
paraboloid of revolution #=a —7, whose surface is a perfect reflector. If
the incident waves are given by expressions of the type

cpy 0(a,B) _ ¢ 0 (a, B)
HZ+2E-"-'_f(a! ﬁ) a(y’ 2) oy Gf(a, B) a(w’ t) ’
where a=y+142, B=z+ct, the boundary-conditions at the surface of the
paraboloid may be satisfied by subtracting from the primary field a
secondary field represented by expressions of a similar type but with

a___ay—zz, B=a—r+ct.

If waves represented by the above expressions with a=y —1z, B=2—¢t,
fall on the concave surface of the paraboloid the boundary-conditions at
the surface of the paraboloid may be satisfied by supposing that the
secondary disturbance is of the form — M'— M"+ M", where the fields
M’y M", M"" are represented by expressions of the above type, where a, 8
have the values

ad=y+1z, B'=2a—z—ct,
n +?:z r

3 e y_iz "
a =da =a+r—ct
.‘L‘-|-?", ﬁ’ ’

respectively. With these suppositions the forces are finite at the focus,
when f is independent of a.



CHAPTER II

GENERAL SURVEY OF THE DIFFERENT METHODS OF
SOLVING THE WAVE-EQUATION

§ 10. The object to be attained.

It has been shown in Chapter 1 that the solution of
Maxwell’s equations can be made to depend upon the solution -
of a single partial differential equation which is either the
wave-equation Qu=0 or the equation Au+Au=0 which
is satisfied by wave-functions of the form u=e*¥t f(z, y, 2).
The properties of functions satisfying these equations must
accordingly be studied at some length. It 1is desirable,
also, that all types of such functions should be studied
and not merely those which admit readily of application to
physical problems. If certain solutions of the fundamental
equations must be rejected in the treatment of the boundary
problems of mathematical physics, a knowledge of their
behaviour is at any rate useful as it gives a clear indication of
the reason why such solutions must be rejected. There is,
however, another reason why the scope of the inquiry should
not be restricted. The theory of wave-functions forms a
natural extension of the theory of functions of a complex
variable* and may consequently lead to results of great value
for the general theory of functions.

* This point of view is adopted, for instance, by Volterra, Rend. Lincei (4),
g, pp. 225-330, 274287 (1887); 1v,, pp. 107-115, 196-202 (1889); v,, pp- 158-165,
291-299, 599-611, 630-640 (1889); Rend. Palermo, Vol. 3, pp. 260-272. See
also Appell, Acta Math. t. 4, p. 313 (1884); Painlevé, Toulouse Ann., t. 2B
(1888) ; Bocher, Bull. Amer. Math. Soc. Vol. 9, p. 455 (1908). The theory of
functions of two complex variables is closely connected with the theory of wave-
functions. Cf. H. Poincaré, Acta Math. Vol. 2 (1883) ; Vol. 22 (1898) ; H. F.

Baker, Camb. Phil. Trans. Vol. 18 (1899), p. 4381; Proc. London Math. Soc.
Ser. 2, Vol. 1 (1908), p. 14.
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We shall now describe briefly some of the principal methods
of solving the wave-equation.

§ 11. Reduction to ordinary differential equations.
The aim of this method is to determine elementary solutions

of the form
we=h @B L) (0) ssiswssesinss (23)

where f,, 2, f3, fs are particular functions of their arguments and
a, B, v, 8 are particular functions of #,y,2,¢{. This method was
used by D. Bernoulli in 1732 in the treatment of the vibrations
of a ha.ngmg chain, the partial dlfferentlal equation being how-
ever in this case different.

The general theory of elementary solutions is due to Lamé*
who transformed Laplace’s equation into curvilinear coordinates.
For a historical account of the development of the theory we
may refer to Prof. Bocher’s book Die Reihenentwickelungen
- der Potentialtheorie, Leipzig (1894) and to Byerly’s Fourier
Series and Spherical Harmonics.

A simple elementary solution of the wave-equation 1s
obtained by putting a=z, 8=y, y=2 8=t; we can then
take

u = ele+my +nz+pt
where the constants [, m, n, p satisfy the relation
P=c B+ M+ ) e (25)

and can be either real or complex quantities.

When p is a purely imaginary quantity and [,m,n unre-
stricted, the solution is periodic and more general periodic
solutions may be derived from this one by summation, I, m, n
being regarded as variable parameters subject to the relation
(25). When I, m,n are purely imaginary the solution (24) is
appropriate for the representation of plane waves of mono-
chromatic light, the intensity and phase of which are the same
at all points of any plane perpendicular to the direction of

propagation.

* Liouville’s Journal, t. 2, pp. 147-183; Lecons sur les coordonnées
curvilignes, Paris (1859). See also E. Mathieu, Cours de physique mathématique
(1873).

-
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Takingm=n=0,1l= —%) =y so that the axis of z is in the
direction of propagation, we may write
E,=E,=H,=H,=0, E,=acosv(z—ct),
H,=acosv(z—ct).ccceceerernenanns (26)

where @ i1s a constant. These waves will be said to be linearly
polarised in a direction parallel to the axis of ¥ and will be
called homogeneous because £ and H do not depend on y and z.
It will be noticed that the constant ¢ represents the velocity of
propagation of a phase of the disturbance.

A wave-function of the type

) = sin vz cos vt

1s appropriate for the representation of standing waves. Ex-
pressions for £ and H may be written down by analogy with
the above. To obtain a representation of plane waves in a
conducting medium, we must use a solution of

d*u
@ + k“u = 0,

where * has the complex value given in §8. Putting V =0,
U= (0,0, ¢ikz -ivt) we find that

Ez=Eg=Hz=Hz=0, Ey=%gﬁz—f@t,

Hy=thdkt~iat ... ccooeensonsenns (27)
where the real parts of the quantities are retained. If
k=E+um

where 7 1s positive, the oscillations of the vector £ are damped
owing to the exponential factor -7z

The elementary electromagnetic fields that have just been
found are fundamental in the theory of the reflection and
refraction of light at a plane surface. This theory is given in
the text-books on Physical Optics* and need not be reproduced
here. Various attempts have been madet to prove that any

* See for instance, Wood’s Physical Optics (1911), Ch. 13 ; Jeans, Elec-
tricity and Magnetism (1911), Ch. 18.

t See for instance a series of papers by G. Johnstone Stoney, Phil. Mag.

(5), Vol. 43 (1897), pp. 139, 273, 368 ; Vol. 44, pp. 98, 206; Brit. Assn. Reports
(1902), p. 539 ; Phil. Mag. Feb. 1903. The idea is probably due to Stokes.
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electromagnetic disturbance in the aether can be represented as
the sum of a finite or infinite number of elementary disturbances
of the character of plane-waves travelling in various directions.
Such a representation is generally only suitable within a
restricted domain of the variables #, 3, z, £ ; nevertheless, it may
sometimes be employed with advantage.

When waves of all directions and frequencies are considered,
the method of summation leads to Whittaker’s formula*

w [ 2w
Q.=f[ flzsinacos B8+ y sin asin B + z cos a — ct, a, 8]
0o
K 8N @. dadL ... cisvieiiasaisee (28)

for a wave-function. The case when

flEa,Bl=e¥ E<O<m
=0 E>0
has been used by Debye+ in a discussion of the behaviour of
waves of light in the vicinity of a focus. In order that an
integral of the type (28) may represent a wave-function it is
not necessary for the limits of integration to be those chosen.
The limits for @ may, for instance, be 0 and 6 where 0 is a
root of an equation of type

2 sin @ cos B + y sin @ sin B + z cos 6 — ¢t = F (6).

In order to obtain other types of elementary solutions it is
necessary to transform our differential equations to a system of
orthogonal coordinates (u, v, w) for which the linear element is

given by
du? dv® du?
_(Tﬂ + 'ﬁ + Wg' ------------------

If H,, H,, H,, are the three components of a vector H in
directions normal to the surfaces u = const., v = const., w = const.
through a point (z, ¥, z), the corresponding components of rot A
are of the type}

L [ 2 (%o) X0 (EV)] ............... (30),

* Math. Ann. (1903). See also G. N. Watson, Mess. of Math. Vol. 36
(1906), p. 98.

+ Ann. d. Phys. Vol. 30 (1909), p. 735.

1 See for instance, H. M. Macdonald, Electric Waves, Ch. 6 ; M. Abraham,
Math. Ann. Bd. 52, p. 81. Some very general transformation-formulae are

> -

-
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the new expression for div H is

ovw [ () *a () * e (i) - o0

and the wave-equation becomes™®

ovw | & (7 )+ m(wo 52) * 50 (07 w)]
_%2 aaig ......... (32).

It is also sometimes advantageous to transform the wave-
equation to a system of coordinates for which

da? + dy? + dz* — c2dt* = A*dE + B*dn* + (C*d{* — Ded=2,
the wave-equation then becomes

R 2B 408

=2 (4F2R). ... o0

§ 12. The generalisation of wave-functions,

When a solution of the wave-equation has been' obtained
other solutions may be derived from it in various ways. For
instance, the function obtained by differentiating the given
wave-function any number of times with regard to the coordinates
@, ¥, 2, t, 1s also a wave-function. By adding together arbitrary
constant multiples of all the wave-functions obtained in this
way we may obtain a very general type of wave-function.

Another method of generalisation is to make an arbitrary
change of rectangular axes. The wave-equation is a covariant
for such a transformation and so is a wave-function of the new
coordinates. A number of arbitrary constants can be introduced
into the solution in this way. We can also make a linear
transformation of coordinates for which the expression

-da? + dy? + d2* — c*dt?

contained in the papers of V. Volterra, Rend. Lincei, Ser. 4, Vol. 5, pp. 599,
630 (1889), and J. Larmor, Cambr. Phil. Trans. Vol. 14 (1885), p. 121.
* Lamé, Journ. de I'Ecole Polytechnique, Cah. 28 (1888), p. 215; Legons

sur les coordonnées curvilignes, t. 2. A simplified proof was published by Lord
Kelvin, Cambr. Math. Journ. Vol. 4 (1843).
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remains unaltered in form and the preceding remarks still hold
good.
To illustrate this let us first of all add together two particular

cases of Euler’s wave-function } J(r+ ct), viz.

ST ey
r(r—ct) r(r+ct)’

we then see that (7® —c*?)™ is a wave-function. Generalising
this by writing « — @, ¥ — %, 2 — 2, t — , In place of z, ¥, 2, ¢,
we obtain the wave-function

1
(@ — 2+ (¥ — Yo + (2 — 2’ — (L —to)?

When we have obtained a wave-function involving one or
more arbitrary parameters we may obtain others from it by
differentiating with regard to the parameters, or by integrating
with regard to them after having multiplied the expression by
an arbitrary function of the parameters. For instance, from
the above wave-function we may derive the more general wave-
function |

f(r)dr
f($_$°)3+(y_yﬂ)2+(z_zo)a—C’(t-'r)z ...... (35),

where the integration is between constant limits. It is not,
however, really necessary for the limits to be constant, we may

for instance take them to be —o0 and ¢— %(r+ro), where

7’ =& + 9* + 2> The resulting integral is then a wave-function

provided f(7) behaves in a suitable manner. If we take f(7)=1,
we obtain a wave-function

o e

"E%BRyr+n

where R=(x—x)+(y—v)P+(z - Zo)".

This function is independent of ¢ and so must be a solution of
Laplace’s equation Au=0. It is closely connected with the
function used on p. 3 of Basset’s Hydrodynamaics, Vol. 2.

-
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§ 13. Transformations.

In addition to the linear transformations that have already
been mentioned there are certain other transformations which
enable us to pass from one wave-function to another*,

The first transformation, which is analogous to inversion, is
defined by the equations

taeh il o, Ll
ey Y= 4 2’ 4 R RCTEEEE (37)
where s=r*~ci:
It is easy to verify that if f(a, y, 2, ¢) is a wave-function,
then
1 s y 2 ¢
ELf(E, gz ;) IS (38)

1s also a wave-functiont.
The second transformation is}

g e ¥ a Pedled o ¥=githl
-’ VT’ T 2(z—ct) °  2¢(z—ct)
......... (39).

It is easy to verify that if f(z, ¥, 2, t) is a wave-function,
then

1 . y g—1 s+ 1
z— ctf[éict’ z—ct’ 2(z—ct)’ 2c(z— ct)]"'(40)
18 also a wave-function. Since ¢~ ¢+ is a wave-function we

may deduce in this way that
1 o

e z-ct

z —
is a wave-function.
It should be noticed that if we put 47=2—ct, o =2+ ct,

a function of the type

* For a general account of these transformations see a paper by the author,
Proc. London Math. Soc. Ser. 2, Vol. 7 (1908).

+ This of course is a simple generalisation of Kelvin’s theorem for Laplace’s
equation. The generalisation to the corresponding equation in n variables is
mentioned by Bdcher, Bull. of the Amer. Math. Soc. Vol. 9 (1908), p. 459.

¥ Proc. London Math. Soc. Ser. 2, Vol. 7 (1909). This transformation is
equivalent to a conformal transformation of a space of four dimensions which
was discovered by Cremona. Cf. Darboux, Legons sur les systémes orthogonauz

et les coordonnées curvilignes, Paris (1910).
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1s a wave-function if F satisfies the differential equation
o°F oF oF

8_w9 + @, = g ..................... (42 i ]
The wave-function we have just obtained indicates that
1 xi+y0
; 8 @ e I oiniemenevapessa (4!3)

1s a solution of the above equation. This solution is fundamental
in the theory of the conduction of heat. It is evident that any
solution of the equation of the conduction of heat in two
dimensions can be used to construct a wave-function.

Our second transformation theorem for the wave-equation
also tells us that if F'(z, 9, 7) is a solution of the equation (42)
the function

1 _”;F’F(x Y 1)

¢ h T
1s also a solution. This result is due to J. Brill* and Appellt.
The corresponding theorems for the two-dimensional wave-

equation
ey . oV LYoV

T:)EE-'- -8? = E '—a-zi ..................
are first that if f(z, ¥, t) is a wave-function and

S=at+ 1 —
the function

;f(g’ g, .-:-,) ..................... (46)

is also a wave-function. This is equivalent to Lord Kelvin’s
theorem for Laplace’s equation if we simply replace ict by z.
The second theorem is that if f(z, g, t) is a wave-function,

then
1 z #-1 s+ 1
Vy—ctf[y_ct’ 2(y—ct)’ 20(3{—0#)] ...... (47)

is also a wave-function. Writing 4vr=y—¢t, o=y +ct as
before we find that u = e 7 F (2, 7) is a wave-function if
#F _oF
af = a.r ........................

* Messenger of Mathematics (1891).
+ Liouville’s Journal, Ser. 4, t. 8 (1894).
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The second theorem can now be used to show that

is a solution of this equation and that if ¥ («, 7) is one solution
the function
22
-3 ,-zp(® _1
+He i F(T, T) ...... — (50)
is also a solution. This theorem is likewise due to Brill and
Appel], it can evidently be generalised to the equation in
n variables.

EXAMPLES.

1. Prove that it is possible for a train of plane electric waves
to travel along an infinite isolated slab of dielectric material without
being dissipated by spreading out into the adjacent empty space. Show
that if 2a is the thickness and K the inductivity of the slab, the velocity
of propagation of such waves of length A along the slab, when polarised so
that their magnetic vector is parallel to it, is

¢ 3
JE (1+6%°,

where 6 is the lowest real or the pure imaginary root of the equation

2ra, (K*-K . \k
t,a.nT 9——( 82 i ) .

(Larmor, Cambr. Math. Tripos, Part II, 1906.)

2. Prove that with the notation of § 13, the function
1 848
(=202 +(y — Y0)*+ (2 —20)*— & (¢ — %) /380 + 200+ Y0+ 220 — citt,
is a wave-function, #y, %o, %o, fo being arbitrary constants.

3. If F(z, y, 2 t) is a solution of the wave-equation, the function
&' o _oct

Sl v ple ¥ ¢ tydy
i Fr’r’r' -r)r”
is, under suitable conditions, a solution of the equation
13V ooV
T
The quantity s? has the meaning assigned to it in § 13 and is supposed in
the present case to be negative.
B. 3

AV=
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4. The function

A v (z=vt+iy)+/v(z—vt—iy)]
_2 f e~ d\
TJ o
satisfies the equation
BV @V _av
T

of the conduction of heat in two dimensions: it is zero over a semi-infinite
line which covers part of the axis of # and moves in the positive direction
with uniform velocity ». The isothermal lines at any given instant are
confocal parabolas.

5. Prove that, under suitable limitations, the function

‘ . . .-
szo # = [f(mtzy)+F(ETw)]%’ pP=2"+y",

is a solution of

v oV
oz * Oyt
Obtain in this way the particular solution

=RV

:_) e (z4iy)7Y .

6. Prove that if 224 y2>¢% the integral

j’w e %da

o PP A=t

; 2V 2V o2Vv. oV
gatisfies W'{‘?——a?"‘tfw:

and if 2?>¢, the integral
f“’ e %da
=V
0 A2 44a®—4dat

. BY_BV_ v
patisfies %= = e +o 2"

7. Prove that if p2=22+32, po® =%+ %o% the integral
©  sink(t+a)dt

V=
otpo N 8 — (2 —20) ~ (¥~ 30)*
satisfies the equation

V. eV



CHAPTER III
POLAR COORDINATES

§ 14. The elementary solutions.
If we make Laplace’s transformation
x=rsinfcosd, y=rsinfsing, z=rcosf ...(51),
the equation Au + k*v =0 becomes
o’u 2 0u 1 9/. ,ou 1 0
e ) 7 sin? 0 3¢
This is satisfied by a function of the form

w=R(r)® (6)  ($)

+ k' =0...(52).

if a;::+m‘¢==0 ..................... (53),
1 d/. ,dO® m3
m d—g (Slﬂ 7 a"—é) - o [n(n+1)— sin’ﬂ] 9=0...(54),
2 k3
%}1?2"' %cc-ll—f*—i- [F-n(n+ 1)]R=0 ...... (55).

The first equation is satisfied by ®=cos(m¢ +a), the
second by P,™(cosf) and @,™(cosf), where these are the
associated Legendre functions. The third equation may be
written in Bessel’s form

%+%(§—Q:+[§—(n+m})’] W= veesid (56),
where w = 3R, and is satisfied by Jnty (fr) and J_ 4 4y (k).
In these solutions m and n can have any constant values.
It should be noticed that when n +4 is an integer the Bessel
functions that have just been written down are not independent
and the second solution Y, .1 (k) of Bessel’s equation must be
used.

3—2
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¥ In dealing with a problem such as the effect of an obstacle
on a train of electric waves, the secondary waves sent out from
the obstacle must have the character of diverging waves at a
great distance from the obstacle. In the case n= 0 the differen-
tial equation for R is satisfied by

R=%e*i?ﬂ‘ ..................... (67),

and if the real part of k¥ has the same sign as o when the
electric and magnetic forces are the real parts of expressions
of the form Ae~*“?, we can obtain a solution appropriate for the
representation of a diverging wave by taking the positive sign,
for then we have a function of the form
% gilkr—wt)
Neither of the given solutions of Bessel’s equation has the
required form in fact

Ty (br) = ;30731“ b, J—%(kr)=\/—w%rcos o,
We may, however, obtain solutions of the form (57) by taking a
suitable combination of the preceding solutions.
In the case of electromagnetic fields in the free aether the
physical interpretation of the elementary wave-functions when
n is zero is as follows* :

1 cosk (r—ct) Progressive divergent waves.

r

1 cosk (r+ct) Progressive convergent waves.

7

L cos kr.cos ket Standing forced waves, source at origin.
a

A sin kr.cos ket  Standing free waves.
r

To obtain the solution of (56) appropriate for divergent
waves when n has any value we writet}

* A fuller discussion is given by A. Sommerfeld, Jahresbericht der deutsch.
math. Verein, Bd. 21 (1913).

+ The theory is due to Stokes, Phil. Trans. Vol. 158 (1868), p. 447;
Collected Papers, Vol. 4, p. 321. See also Rayleigh’s Sound, Vol. 2, p. 304.
1t should be mentioned that different notations are used by different writers.
This is the notation used by Debye, Ann. d. Phys. Vol. 30 (1909), p. 57.
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Va (2)= \/ ¢ n+§(w)

30 @ = (T @ == Ty (o )ﬁ

N (@) =Yn (x)"?'Xﬂ (z)

En (2) = Y (2) +ixa (2)

These new functions 7,, §, are connected with Hankel’s
cylindrical functions* by the relations

"?ﬂ(&’)=\/ THEM@), L@ =T B @,

When the real part of « is large and positive we have the
asymptotic expansion
' v n(n+1)

7‘?“(m)==(_q:)'lra-i-lefi:a: [l-l-% =

1 (n— 1)n(n+1)(n+2)
e & ] .-.(59).
The series terminates when n is an integer and then gives
a true representation of the function. To get &,(«) we change
the sign of 7. Various other notations have been used for the
solution of Bessel’s equation that is suitable for the representa-
tion of diverging waves. Lamb uses D,(z), (v=n+ 1) to denote
the solution of equation (56) which has the asymptotic value

_"f_

..(58).

/

D,(z) = (f—-zc)éi"e—‘ (=+3),

while many other English writers use K,(iz) to denote the
solution with the asymptotic form

L
(2%) e a*“’).
The following formulae will be found useful :

L _piEr)ih
Vb= 1.3...(2n+1)

(kry: ey
& [l T 2(2n+3) T 2.4.@n+3)@n+5) :l """ (60),

* See Nielsen’s Handbuch der Cylinderfunktionen, p. 16.
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_ intrgikr |1 _ % n(n+1)
Eu(kr) =1"He I:l 2kr 1

1 @=1Dn@m+1)(n+2) . (2n)!

(2’0?‘)2. 21 . (— 3) . W] . ..(61).
We have written down the last term in the series on the

supposition that n is an integer. In this case

Y (kr) =% [("He® + (- i)'t e®], |r|large ...(62),
(2n+1) d\}:;,w(a:) =@+ 1) Yuy (8)— nYn (@) ...(63),

@ T ) = [Pt (O E s O] —ooneens (64),
% (a)= fo e—zobacosh ya. da ... (65),

1@ = ST TeTD o @ dsinteds R@)>—

f Jn+%(kr)'fp+i(k")df=0 (n# p)
i n>20,p>0 (67).
1
on+1"=P)

In the last formula » and p are supposed to be integers.
For further properties of Bessel functions the reader should
consult Gray and Mathews’' Treatise on Bessel Functions,
Nielsen’s Handbuch der Cylinderfunktionen, and Whittaker’s
Analysis. Tables are given in the first work and in Jahnke
and Emde’s Punktionentafeln, Leipzig (Teubner). A few ad-
ditions to the tables have been made recently by J. W. Nicholson,
Proc. London Math. Soc. Ser. 2, Vol. 11, p. 104 ; Dinnik, Archwv
der Mathematik und Physik (3), Bd. 20, Heft 83,1912 ; J. R. Airey,
Phil. Mag. Vol. 22 (1911), p. 85, Brit.. Ass. Reports (1911);
A.Lodge, Brit. Ass. Reports (1909); J. G. Isherwood, Manchester
Memoirs (1904).

The best definitions of the generalised Legendre functions
for unrestricted values of m and = are those given by Hobson*.

* Phil. Trans. A, Vol. 187 (1896), pp. 443—531. E. W.Barnes has recently
given new definitions of the functions as integrals involving Gamma Functions
which make it possible for the principal formulae to be proved very quickly.
His definition of Q,™ () differs from that of Hobson by a numerical factor which
becomes rather troublesome when n is an integer and m is not.

—
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We are interested here in the case when the variable is cos 8
and 6 is a real angle, such that 0 <@ <. We may then put,
with the usual notation of the Gamma and hypergeometric
functions,

1

Pﬂm(COS 9) = m

6 . 0
cotméF(-—-n,n-!-l; 1-m; sm=§)

T 1

Q. (cos 9)=23in(n+m)7f I'(1—m)

X {cos(n-i—m)qrcot‘mgF(— n,n+1l; 1—m; sinﬁg)

— tan’“gF(~ i, B, T, cos“g)} eeeeennn(69),

P, (cos 6) = cosec™ @ [ 9 cos(n+3)¢ -
2nT ()T (m+ %) /o (2 cos ¢ — 2 cos )2 —™
RER(m+3)>0 ...... (70).
When m is a positive integer, we have
P(s)=(1—a)? oo Po(a)
s — (71),
Q™ () =(1— ""7’)E da™ Qn (2)
and when 7 is a positive integer ‘
1.3 ..(2n—1) n(n—1)
Falg)=—yg— [“’"'2(271-1)”’”
D=8 3) . :
s T@n—T) (@n— 3) - ] ...... (72),
P, (cos 0) =cos™f — —(—) cos™ 20 . sin*0
Eiye Qv g 3 g:' 4,2) (3=9) CoR 40, 0 iv.  nsens (73),
e Pa(eos 0) = T j;( - R (74),

1 (=1 d /1 r+2
o Qﬂ (COS 6) = -—-—7:-!—- 3.2_“ (g lOg '—_——) ...... (75).
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The last two formulae illustrate the method of deriving
more complicated wave-functions from simple ones by differen-
tiation. The functions

are in fact solutions of (52) when k= 0.
The formula

f ZIPn'" (@) P, (2)do=0 (n#v)

2 (n4+m)!

s ey
in which m, n, v are positive integers or zero, enables the
coefficients in an expansion of a function in series of functions
P,™(z) to be determined by a simple integration.

For further properties of the Legendre functions we must
refer to Heine’s Kugelfunktionen, Byerly’s Fourier Series and
Spherical Harmonics, Whittaker’s Analysis, Nielsen’s Handbuch
der Cylinderfunktionen and Théorie des fonctions métasphériques,
and to memoirs by E. W. Hobson* and E. W. Barnest.

Tables of the Legendre functions have been published by
J. W. L. Glaisher}, J. Perry§ and A. Lodgel|; some tables of
the functions P,™ (1) have been given by H. Tallquist .

For the history of the functions of Legendre and Bessel
the reader should consult the article by A. Wangerin in the
Encyklopddie der Mathematischen Wissenschaften, Bd. 1L 1,
Heft 5 (1904), p. 695.

§15. Relations between various solutions.

We have already remarked that when a wave-function or
a solution of equation (52) involving arbitrary constants has
been found, other solutions may be derived from it by the
method of summation or integration. By choosing our sum or
integral so that it represents certain simple solutions of the

* Proc. London Math. Soc. Ser. 1, Vol. 22 (1891), p. 431, and op. cit.

1 Quarterly Journal, Vol. 39 (1908), p. 97.

I Brit. Ass. Report (1879).

§ Phil. Mag., Dec. (1891). See also Byerly, loc. cit.
| Phil. Trans. A, Vol. 203 (1904).

1 Acta Societatis Fennicae, Vols. 32, 33.

-
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fundamental equation, a number of important identities may
be obtained. A few formulae will be written down to illustrate
this*.

If Re=12 4 r?— 2rr,cos 6,

in (kR s
sm% ) = ,,20(2?1 + 1) Jy 4y (k) Sy 4y (k) Py (cos 6)
(Heine and Hobson)...... (77),
podi= 3 @+ 1) Youllr) G () P (c086) - (1,>7)

(Heine and Macdonald)...... (78),

sin(kR) J

P, 4 (or) P (cos 0) = f_m 2N A

(kry) ™ 5 dr,

We may illustrate the peculiar behaviour of certain definite
integral solutions of our fundamental equation by the following
example, in which % is supposed to be real and positive.

Let )= ] 1mccu;-; xt  (t) dt,
0
where y (t) 1s a function such that f m| x ()| dt is convergent,
0

then it may be proved by means of Fourier’s double integral
theorem thatt

= J’ _msm k (7' -1) S () dry=fu () (k>m)
a2 =fi(r) (kgm).
: 3111 &5 f m (71) dr,

Hence u=—
Td =
18 a solution of (52) which reduces to either f,, (r) or fi(7)
when §=0. Solutions of (52) which are derived from the
elementary solutions by integrating with regard to » have

been employed by H. W. March]. He makes use of an inversion-
formula§

* Some very general formulae are given by L. Gegenbauer, Monatsh. f. Math.
Bd. 10 (1899), p. 189.

t This equation is obtained in a different manner by G. H. Hardy, Proc.
London Math. Soc. (2), Vol. 7 (1909), p. 445.

1 4nn. d. Physik, Bd. 87 (1912). See also H. Poincaré, Comptes Rendus,
6. 154 (1912), p. 795; W. v. Rybcynski, Adnn. d. Phys. Bd. 41 (1913).

§ This is in some respects analogous to the inversion-formula givem by
F. G. Mehler, Math. Ann. Bd. 18 (1881), p. 161.
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F@=[ Po_y (s )y (@) e )

...... (80),
Y(a)= f Sg_ 4 (cos ) f(v)sinydy J
where ’
g _coser  2(7 sin aB.d3 ‘
-3 eosm) ar cos% * "'J'r {2 (cos y — cos B)}} (81)

It is sometimes instructive to find how a wave-function,
depending on an arbitrary function, can be expressed in terms
of elementary wave-functions. Now in the second example
of § 5 the electric and magnetic forces are all of the form

%f['r—ct, a:-_l-iy] ............... (82),

or are the sums of terms of this form. Consequently, a function
of this type may be expected to be a wave-function and it is
easy to verify that this is the case®*. We may now deduce that

lfmF@iW (83)

r z +f‘ .....................
1s a solution of (52) and consequently it follows that t.anmg

and cot™ 4 are solutions of equation (54) whenn=0. We

2
have in fact
i | 6
Pom (COS 6) = m) cot™ -2' o

Q. (cos 8) = 4T (m) (cos;n_vr . cot™ -g — tan™ g ) .
In the last formula m must not be zero or a negative integer.

§16. The convergence of series of elementary solutions.

When k=0 our fundamental equation (52) reduces to
Laplace’s equation Au= 0 and we have the familiar elementary
solutions

* The theorem also follows immediately from a result given by A. R.
Forsyth, Messenger of Mathematics (1898), p. 114, and E. W. Hobson, loc. cit.

-
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fr"P ™ (cos 6) cos m (P — o), r“Q ™ (cos @) cos m (¢ — ¢b,)
n—“ P, ™ (cos 6) cos m (¢ — ¢b,), r" —— Q™ (cos 6) cosm (¢ — ¢0)}

A pair of series of the type
2E) A6 2(2) Fae $)

which converge when r=a are suitable for representing harmonic
functions inside and outside the sphere r = a because the first
converges absolutely when 7 < @ and the second when » > a.

The case in which k£ #0 1s very similar. When = is large
the function yr, (k) may be replaced by

(]ﬂ-)nﬂ
3...2n+1)

and so a series of the form

2 Y (k) £ (6, 9)

converges like a power series. Again, when kr is real, we have

. 1

+1—'%(n—1)'n('n+ 1)(n+2).(k—1?+

(2n -1)
@) (2n )(kr)’“ .........

n being a positive integer. It is clear from this equation that
| & (kr) | decreases as r increases, hence if a series of the form

RAACYACRY

converges absolutely for any value of it converges absolutely
for all greater values of 7.

For a discussion of the convergence of series of spherical
harmonics we may refer to C. Neumann’s book Ueber die nach
Kreis-, Kugel-und Cylinder- Funktionen fortschreitenden Entwicke-
lungen, Leipzig (1881); to Heine’s Kugelfunktionen, Bd. 1, p. 435,
Bd. 2, p. 861, and to papers by U. Dini, Ann. di Mat. (2), t. 6
(1874); H. Poincaré, Comptes Rendus, t. 118 (1894), p. 497;
S. Chapman, Quarterly Journal, Vol. 48 (1912), p. 1; T. H.

+
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Gronwall, Math. Ann. Vol. 74 (1918), Vol. 75 (1914), Comptes
Rendus (1914), Amer. Trans. Jan. (1914), Vol. 15; C. Jordan,
Cours d’ Analyse, 2nd ed., Vol. 2, p. 252 ; and B. H. Camp, Bull.
of the Amer. Math. Soc. Vol. 18 (1912), p. 236. The con-
vergence of series of Legendre polynomials has been discussed
very thoroughly by G. Darboux, Liouville'’s Journal (2), t. 19
(1874), p. 1; (8), t. 4, p. 393; O. Blumenthal, Dissertation,
Gottingen (1898); E. W. Hobson, Proc. London Muth. Soc. (2),
Vol. 7 (1909); L. Féjer, Math. Ann. Bd. 67, p. 76; D. Jackson,
Amer. Trans. Vol. 13 (1912).

§17. The scattering of plane homogeneous electro-
magnetic waves by a spherical obstacle.

The effect of small particles in scattering incident radiation
has been discussed very thoroughly by Lord Rayleigh* who has
used it as the basis of a mathematical theory of the blue colour
of the sky. The action of a single spherical particle is of
fundamental importance and so the electromagnetic theory
of the scattering of light by a dielectric sphere has been worked
out by Lord Rayleight, Prof. Love! and other writers. This
theory can also be developed so as to cover the mathematical
theory of the rainbow.

The more general theory of the scattering of incident radia-
tion by a spherical obstacle§ with arbitrary optical properties||
admits of some very interesting applications in the study of the
colours exhibited by metal glasses, metallic films and colloidal
solutions or suspensions of metals. The electromagnetic theory
of these colours has been developed by J. Maxwell Garnett€,
G. Mie**, R. Ganstt and Happeltt, who have considered

* Phil. Mag. Vol. 41 (1871), pp. 107, 274, 447; Vol. 12 (1881), p. 81;
Collected Papers, Vol. 1, pp. 87, 104, 518.

+ Phil. Mag. Vol. 44 (1897), pp. 28—52; Collected Papers, Vol. 4, p. 321;
Proc. Roy. Soc. Vol. 84 (1910), p. 25 ; Vol. 90 (1914), p. 219.

¥ Proc. London Math. Soc. Vol. 30 (1899), p. 308.

§ The work of Stokes, Camb. Trans. Vol. 9 (1849), p. 1, with later appli-
cations, Collected Papers, Vol. 4, and of L. Lorenz, Wied. Ann. Vol. 2 (1880),
p. 70, opened up the subject.

| The case of small conductivity was discussed by G. W. Walker, Quart.
Journ. Vol. 30 (1899), p. 204; Vol. 31 (1900), p. 36.

9 Phil. Trans. A, Vol. 203 (1904), p. 385; Vol. 205 (1905), p. 237.

** Ann. d. Phys. Vol. 25 (1908), p. 377.

+ Itid. Vol. 29 (1909), p. 280 ; Vol. 37 (1912), p. 881.
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the cases of spheres and ellipsoids endowed with the optical
constants €, u, o.

The particular case of a perfectly conducting sphere was
worked out by J. J. Thomson* and has been discussed in
greater detail by J. W. Nicholsont.

The problem is also of importance in connection with the
theory of comets’ tails which has been developed by Euler,
FitzGerald} and Arrhenius§ The pressure of light on a
perfectly conducting spherical obstacle has accordingly been
calculated by K. Schwarzschild|| and J. W. NicholsonY. The
more general case of a sphere with the optical constants e, y, o
has been treated very fully by P. Debye**.

Let us assume that the electric and magnetic forces E’, H’
at any point of space are the real parts of vectors E, H of the
form Ae™!, where A is a complex quantity independent of t.
We then write

€W — 1o

H 1+ wE = Me™*, where 12 = R (86)

and we find that the differential equations satisfied by M in a
medium whose optical constants are €, u, o can be written in
the form

1 0 . 0
ikMr= m [5*9(?' Slne.ﬂ’[¢)—a$ (ng)]\
: e 1 BM,- a . L
ikMa-NinH[aqb—5<r31ne.M¢)] L (8T),
1|0 oM,
kM, =1 [a_r(m,) g ] |
where k =M% o k2=ep.a)2—ipo'w‘
c c

* Recent Researches, p. 437.

t Proc. London Math. Soc. (2), Vol. 9 (1910), p. 67; Vol. 11 (1912), p. 277.

+ Scientific Writings, pp. 108, 531.

§ Phys. Zeitschr. Vol. 2 (1901), pp. 81—97 ; Das Werden der Welten, Leipzig
(1907), p. 85.

| Sitzungsber. d. Kgl. Bayer. Akad. d. Wiss. Vol. 31 (1901), p. 293.

9 British Association Reports (1910), p. 544; Monthly Notices of the Royal
Astronomical Society, Vol. 70, p. 544. See also J. Proudman, Ibid. Vol. 73 (1913),
p- 535.

** Ann. d. Physik, Vol. 30 (1909), p. 57.
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These equations may be satisfied by putting

|

o
M,= 55 (rQ) + k*rQ)

1), k 2(Q)
Mo__; e 2 SR (88),

1 2(rQ) _kd(rQ)
¢=rsm0 arop '+ 08

where the function = U + 7V is a solution of (52).

The electric and magnetic forces may be derived at once
from these expressions by equating the ambiguous and un-
ambiguous parts as explained in § 2.

We shall now assume that the incident wave of plane
homogeneous monochromatic polarised light is represented by

(M,, M,, M) = gltroosd%ib (sin 6, cos §, +75) ......(89),

the electric vector being parallel to the axis of .
The corresponding function (), is obtained by solving the
equation

2
g;—& (7€) + k31, =sin 6, ghrecso*id

We easily find that
rQy =k e*% [cosec 6. e*7°%0 + £, (0, ) ¢*" + 1, (6, ¢) e~%"]

Choosing the unknown functions so that 'rﬂ., is finite for 4 =0
and @ = 7 we obtain finally -

TQO = %k—l e*“ [2 cosec 6 - e‘!:kf‘wﬂ —cot g e‘,'kr —tan g e__w]

We may now assume an expansion for (), of the form
Qo =k2*® S apy, (k) Py (cos ).
n=1

To determine the coefficients a, we multiply by sin # and
differentiate both sides of the equation. Then since

a%[“‘inﬁ'-f’»‘(cos 6)] = — n(n + 1)sin 6. P, (cos f)......(92),

-
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the coefficients may be determined at once with the aid of

Lord Rayleigh’s expansion *

ikrsin 6. ¢*re® = S, §741 (2 + 1) Yoy (k7) P (cos B) sin 6
n=0

We thus obtain

2n +1
n(n+1)

rQ,=k2e* 2
1

n=

Vn (kr) Py (cos B)......(94).

Now let 2,, {1, be the functions from which the electric
and magnetic forces in the scattered light and transmitted
light may be derived respectively. The appropriate forms are
given by equations of the type

rUy= 3 At (kr) Pot (cos 8) cos ¢)
n=1

rV,= % B,.&, (kr) P! (cos 6) sin ¢J
n=1

rU,= %C,, VY (hr) Pyt (cos 6) cos <;b1

rVi= 3 Dyyra () Pa? (cosf)sing )
n=1

where h, 7 are the values of k, v respectively within the sphere.

It is easy to deduce from (88) that the tangential components
of the electric and magnetic forces are continuous in crossing
the sphere r» = q, if when r=a

@[Uo"" Ul =éUQ

v 7
_8_ U+ U, L U,
3,.["'( ot :)]'—3—,.(7' 2)

“ k('Vo+Vl)=hV’
10 10
3 a—r['f (Vo+ Vx)]=;)a;(7‘Vz)J

| * Theory of Sound, Vol.2, p. 272. The expansion was also obtained
independently by Heine, Kugelfunktionen (1878), Bd. 1, p. 82.
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These conditions give
k h 1o 2041 i
; Angn (ka') s ,,; ﬂ‘pﬂ (h&) o k'_l:,?' m) ‘4/‘,; (ka')

BALG (ko) = WO (ha) = %% 0 ! (ko)

> +..(98).
kB, &n (ka) — kD, (ha) = IE P % o 5 (98)
I;c Bt (ka)— g Dy’ (ha)= %' gt ns?;-:-ll) A (ka')J
Solving these we get

where
Hy = (ka) Y’ (ha) — v’ (ka) Yrn (ha))
By = vy (ka) ¥v' (ha) — mira’ (ka) Yo (ha)
Fn =8 (ka) ¥ (ka) — Lu (ka) Y’ (ka) ¢ ...(99).
Gn = m{ra’ (ha) §u (ka) — v8y' (ka) yra (ha)
L, = vy (ha) §u (ka) — n&, (ka)yry (ha)

We can prove that our series all converge absolutely and
uniformly at about the same rate as a power series of the form

a®
1.3...2n+ 1)’

3

where # i8 either kr or I—C?. The proof depends on the fact
that when 7 is large we have approximately

e . (n41)2™
V@)~ g @1y ¥ @=13. @n+1y

tn(@)~1.3 ...(2n_1)§;3-.=¢,

& (2)=—1.3...(2n — 1) nix"e— 2,
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§18. Free damped vibrations for the space outside the
sphere.

It should be noticed that some of the terms of our series
become infinite when either G,=0 or L,=0: fortunately,
however, the roots of these equations turn out to be complex
and so when £ is real no values of % need be excluded from the
discussion. The damped vibrations determined by the roots of
the equations L,=0 may be distinguished as the electric
wnbrations, those determined by equations of type G, =0 as the
magnetic vibrations. Some of the roots of the equations have
been calculated for the case of a totally reflecting sphere by
Sir J. J. Thomson*, who finds that the roots are all complex.
The vibrations for the space inside a totally reflecting sphere
have been discussed by Prof. J. W. Nicholsont, those for the
space between two concentric spheres by Sir J. J. Thomson},
Sir Joseph Larmor§, Prof. H. M. Macdonald|| and A. Lampa¥.

P. Debye, who has calculated some of the roots for a case of
a dielectric sphere, finds that the roots are complex and of two
types. When the index of refraction is large, the imaginary
part of a root of the first type varies very little with the index
of refraction N and approaches a limit different from zero when
N — . If on the other hand p is a root of the second type,
Np tends to a finite real limit, viz. a root of Y, (Np) =0, when
N — o and so the imaginary part of a root of this type must
be very small when N is large.

The vibrations belonging to the space outside a sphere
must be in all cases damped on account of the loss of energy by
radiation; when the refractive indices of the outside medium
and sphere are very nearly equal, they are clearly very strongly
damped ; thus it is only when the refractive index is large that
some of them are durable. It is doubtful whether a substance
exists which has a large refractive index and does not absorb
light to a marked extent.

* Proc. London Math. Soc. Ser. 1, Vol. 15 (1884), p. 197 ; Recent Researches,
% e Mag. 1906, p. 703.

1 Recent Researches, p. 373.

§ Proc. London Math. Soc. Ser. 1, Vol. 26 (1894), p. 119.

| Electric Waves, Chapters 6-7. 9 Wien. Ber. 112 (1903), p. 37.
B. 4
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It will be seen later that the characteristic vibrations play
an important part in determining the size of the sphere on
which the pressure of a given type of incident radiation has
a maximum value.

Prof. Love* has used the solutions corresponding to the
characteristic vibrations to discuss the mode of decay of an
arbitrary initial disturbance. He makes use, in fact, of the
functions &, (kr), where k is one of the roots of one of the
equations &, =0, L, =0; only the sphere is treated as a perfect
conductor.

This method can easily be extended so as to provide us
with a method of discussing the problem of the scattering of an
arbitrary primary disturbance by a spherical obstacle. In this
method we assume that the total disturbance outside the sphere
can be represented by

rU=3 3 3Anmptn(lipr) Pum (cos 6)cosm(¢ o)

n= Om—o

g 2 3 By, un,p ¥n (ky'r) P (cos 0) sin m (¢ — ¢b,)

O0m=0p

where the k,’s are roots of one of the equations of the type

¥’ (ha) Yrn (ka) — v w (ka) Vi (ha) = O} (100)

v’ (ha) rn (ka) — mpra (k@) Y (ha) =0) 7
The coefficients must then be chosen so that this total disturb-
ance has the same character as the primary disturbance at its
singularities outside the sphere and at an infinite distance,
taking into account of course the presence of diverging waves
from the spherical obstacle the effect of which is, however,
negligible at infinity.

The field inside the sphere is represented by equations
similar to (@), one with &, written in place of k,. The boundary
conditions are satisfied in virtue of (100).

If a series of type (@) should fail to represent the disturbance
outside the sphere, it may be necessary to add terms cor-
responding to the free characteristic vibrations. These are of
the form (w) with the function &, written in place of 4, and
numbers k, determined by equations of type L, =0, G =

* Proc. London Math. Soc. Ser. 2, Vol. 2 (1804), p. 88.
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§ 19. The case of a very small obstacle.

When a, the radius of the sphere, is very small compared
with the wave-length A of the incident radiation, we may treat
ka and ha as small quantities. We may then obtain some idea
of the relative magnitudes of the different coefficients in our
series by using the expansions (60) and (61).

It is easy to see that the values of A,, B, decrease very
rapidly in absolute magnitude as n increases. The disturbance
radiated from the sphere can consequently be represented
approximately by superposing a small number of partial waves,
the effect of the others being negligible.

Remembering that vh = 9k, we find that when H is finite

vkﬂh?l+l (kﬂ ks hs) am+s X h no i

H"~(2'n+3).1“.3’...(2n+1)_2’ G e (7(:) g

n + 1) k*h» 2 (k2 — h?) g ;

(4 L — ’zéw 1)2) , Bammed  Rol0D,

(n+ 1)k + nh’
2n +1

E,~

L, ~ ivhnk—n—s

and it is easy to see that all our series converge.

It appears from these expressions that the nth magnetlc
wave, L.e. the disturbance due to the nth term in the expansion
for U,, 1s of the same order of magnitude as the (n+ 1)th
electric wave, i.e. the disturbance due to the (n + 1)th term in
the expansion of V,. This is in sharp contrast with the result
obtained by Sir J. J. Thomson for the case of the totally
reflecting sphere wherein the nth electric wave and the nth
magnetic wave are of the same order of magnitude.

The first electric wave is clearly of chief importance and

Mie has proposed to call this Rayleigh's radiation. We easily
find that

ke — b ~1 B
3
B +"’"2kﬂ 2% B~ mmarop @

_A_ ~— 30 (k’ hﬂ) a’

...(102).

The following diagrams, wh1ch are taken from Mie’s paper,
indicate the character of the electric lines of force for the first
four partial vibrations of each type. For the magnetic waves

42
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E,=0 and so the electric lines of force are spherical curves.
In the case of the electric waves the lines of force lie on
certain cones and the diagrams represent the intersections of
a sphere with these cones, the vertices of the cones being at
the centre of the sphere*.

§ 20. Polarisation of the scattered light.

Let us now look for cases when the light scattered by the
sphere is linearly polarised. It is easy to see that £y and My
both vanish when %@3 =0 and %—g'
both satisfied by ¢ =0, i.e. when the observer looks in a direction
at right angles to the electric vibration in the incident wave
(Fig. 3). _

It appears from the figure that the component of the electric
vector of the scattered light, which
1s at right angles to the direction
in which the observer is looking,
1s parallel to the electric vector
in the incident wave. In asimilar
way 1t 18 found that E4 and M,

both vanish when ¢ = ol , Le.

= (0. These conditions are

when the observer looks in a
direction at right angles to the H
magnetic vibration in the incident Fig. 3.

wave. The magnetic vibrations in the incident and scattered
waves are now found to be parallel.

The experiments of Steubingt with different kinds of col-
loidal gold solutions have shown that when the solution is
illuminated with polarised light and viewed in the manner
described, there is always a small quantity of unpolarised light
sent out from the particles, but the greater portion of the
scattered light is polarised in the way the theory requires.
The slight disagreement between the theory and observations
1s attributed to the fact that the metallic particles are probably

* The author is indebted to the publisher of the Annalender Physik,Herr Johann

Ambrosius Barth, for permission to reproduce the figures on pp. 52, 59 and 64.
+ Dissertation, Greifswald (1908) ; 4nn. d. Phys. Vol. 26 (1908), p. 329.
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not all spheres®, that some may have developed into crystals
perhaps of octahedral form. The mathematical theory of the
scattering of waves has not yet been fully developed. The
problem is, however, one of great importance in meteorological
optics. The case of a regular distribution of atoms or molecules
has recently been brought into prominencet by experimental
work on the scattering of Rontgen rays by a crystal}. Approxi-
mate mathematical theories have been given by several writers §

§21. Intensity of the scattered light.
When Rayleigh’s radiation alone is considered, we have

H,=0, B [% V) + k’*rV]\
ik AV 1207)
® rsinf 0¢ ’ = vr 0rof oot 108),
__ik3a (V) 1 @V)
He= r 06 ’ e vrsin@ orop
where

k2 — h?
rV =— k2k-’ hgae“'""(l-—%)smésmqb .(104).

At a great distance from the origin the radial electric force

18 of order }a while the transverse electric and magnetic forces

are of order -:-‘ Hence the intensity of the scattered light

diminishes ultimately according to the inverse square law when
points on the same radius are considered. It also varies as the
square of the volume of the particle.

* This remark is made by both Maxwell Garnett and Mie.

+ It had previously been considered by Lord Rayleigh, ¢ On the influence of
obstacles arranged in rectangular order on the properties of a medium,” Phil.
Mag. (5), Vol. 34 (1892), p. 481; Scientific Papers, Vol. 3, p. 19; and by
T. H. Havelock, Proc. Roy. Soc. A, Vol. 77 (1906), p. 170.

%+ Lave, Friedrich, und Knipping, Sitzungsber. der Kinigl. Bayerischen
Akad. d. Wiss. June 1912.

§ See, for instance, W. L. Bragg, Proc. Camb. Phil. Soc. Vol. 17 (1913),
p. 43; Proc. Roy. Soc. A, Vol. 88 (1913), p. 428 ; M. Laue, M#nchener Ber
(1912), p. 868; Ann. d. Phys. Bd. 41 (1913), p. 989, Bd. 42 (1913), p. 397;
P. P. Ewald, Phys. Zeitschr. (1913), p. 465; L. 8. Ornstein, dmsterdam Proc.
(1913) ; M. Born u. T. v. Karman, Phys. Zeitschr. (1912), p. 297.
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An approximate formula for the intensity is

I = ktat ( :; h’) (cos? @ sin? ¢ + cos? p) ...(105),

the intensity of the incident radiation being 3.

If =0 for the medium outside the sphere, the quantity
k is inversely proportional to the wave-length A of the incident
radiation. Hence when % is large compared with &, we have
Lord Rayleigh’s result that the intensity of the scattered light
varies inversely as the fourth power of the wave-length. The
short waves are on this account scattered far more profusely
than the long ones and so we have an explanation of the blue
colour of the sky.

The above formula for the intensity of Rayleigh’s radiation
indicates that there 1s no light of this type in a direction for

which 8 =¢ = 3 ,1.e. when the observer is looking in a direction

parallel to the dlrection of the electric vibration in the incident
wave. To obtain an expression for the intensity of the light
sent out in this direction we must take into account the second
electric wave and the first magnetic wave. Referring back to
the expressions for B, and 4,, we find that when o 1s neglected
both inside and outside the sphere, the intensity of the scattered
radiation varies inversely as the eighth power of the wave-
length*. This corresponds to Tyndall’s “ residual blue ” which
18 purer than the blue seen under other conditions.

§ 22. 'The absorption of light by a spherical obstacle.

The total energy absorbed from the incident radiation by
a single particle consists of two parts; first of all the energy
scattered and secondly the energy which flows into the particle
and is transformed into heat or chemical energy. Both these
quantities may be calculated by the following method which is
a simplification of the one given originally by Mie.

The flow of energy across unit area of a very large sphere
concentric with the spherical particle takes place at a rate
measured by the radial component of Poynting’s vector, ie.
E/Hy — By Hy.

* Lord Rayleigh, Phil. Mag. Vol. 12 (1881), p. 81.
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Now if E, £ and H, H are conjugate complex quantities,
this component is equal to
$[(Boet + Ege=t) (Hye't + Hye ")
— (Epeit + Eye—iot) (Hye™t + Hoe )],
Integrating with regard to ¢ so as to obtain the mean value

of this quantity over a period, we obtain an expression which
may be written in the form+

8= oo Moy — My My — M Hy* + F,° M),

where M, M* are the values of M corresponding to the signs
+, — respectively in (86) and M, M* are derived from them by
changing the sign of .

The function () for the outer space is the sum of £, and ,,
hence we may write

rQ = 3 P (08 6) [une® +vne® +woe ]
n=1
rQ =3 P (cos 0) [line® + e+ Wne]
“:‘ ...(106),
rQ* = 3, P, (cos 0)[u,e™ + vae™ + w, 6]
n=1
r()* = ? P 1(cos 6) [Une* + vpe™™ + 'wnew]
where
; 2n +1 a 1
u’n=Fzﬂ_ln(n+1)1pﬂ(kr) 'vﬂ_‘é(dﬂ'}'Bﬂ) cﬂ(kr)r

Un=5 (A,; — By) & (k).
When the expression S is integrated over the spherical
surface, the result can be expressed in the form
v ot I e I 01y
where I, depends only on the incident radiation, I, depends

only on the scattered radiation and represents the amount of

energy absorbed by scattering, I, depends on both types of
radiation and represents the total absorption of energy from

t We assume now that ¢=0 outside the sphere.
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the incident wave. The sum of the three terms with its sign
changed represents the amount of energy that flows into the
sphere and is truly absorbed by it.

Performing the integration with regard to ¢ and collecting
the different terms together, we find that the surface integral
can be written in the form

33 [ j (Pﬂ‘Pm‘+sin29dP n dF m‘) df
0

2w,, 1 m=1 dé df /siné
m , AU d m
x{k(u,,+vﬂ) (d; +d€;’ )+k -———fc( lin + ﬂ)( =it (g’r)
_ dwy, dPsl 5 , . AP
~ kam, dr} *f(dep +%35 Pat)do
du, dv,\ (duy dv,\  dw, din,
x{(d?'+dr)(dr+dr)_ dr dr

+ kk (up + V) (tgn + V) — kkw,,fz—u,,.}] ;

This expression can be simplified with the aid of the relations

1 1
f(dP.nP +dep)d9 | S (107),
Kl iy o SAPSEEMN B9
fo(Pan+Sm9 a0 ab Sm9_0 ﬂl*ﬂ
i ...(108).
N 7S

The first of these is evident since the integrand is the
differential coefficient of a function which vanishes at both
limits. To prove the second we make use of the formulae

3

sin @ a‘% P,!(cos 8)=—cos . P, (cos 6)
—n(rn+1)siné. P,(cos6)
P, (cos 6) = P (cos 0)

1 + cos? 6
sin #

...(109).
PP 4+n (n + 1) cos g PoP

+m (m + 1) cos 0. P, Py
= — % [cos 6. PP
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The integral is thus equivalent to
n(n+ 1) m(m+ l)f:Pn(oos 0) P,, (cos 6) sin 6d6,

and so has the value we have assigned to it*.
Our surface integral now reduces to

T 2 du, dv, dw,

.2 b o (Goa G) Hhun

e =[Ot dvy\ 7. dw,) nF(n+ 1)
k(“"‘”’*)'(EF +§)"kw‘” d'r} n+1

Since ¢ =0 outside the sphere, we have k=%. Also when

r is very large we may use the approximations

2n+1 )
n(n+1)

Uy ™~ COS {kr —n+1 %r} k2

Vo~ & (4, + B,) trie#r
W~ } (A — B,) i1~

ﬁnwcos{kr--n+1 g} k2 (— 2)m

U~} (4, + B,) ¥ (—1)yrh
Wy~ 3 (4, "~ B,) ¢ (—gyr )
We thus find that 7,= 0 and

L= %ln (n +1) [i* (Ap + B,) — (= 5)* (Ap+ Bp)] ...(111),

>...(110).
2n+1 ( )

n(n+1)

@ 2 — -—
I, ?—’? 3 2(::1112 (Bt BB wooessessomisssssinn: (112).
When » =1 these expressions are just half those given by
Mie on p. 436 of his memoir. The reason why they must be
doubled is that our expressions for the incident light give an
intensity 4.
In the case of a solution containing N spherical particles
per unit volume the total absorption coefficient is thus

Ao % 2 n(n 4 D[ @a+ B) = (i) (4 + By)]-(L13).
n=
It is interesting to study the variation of this quantity with

the wave-length for particles of different sizes. Mie has drawn

* Cf. L. Lorenz, Oeuvres scientifiques, p. 526.
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the absorption curves for particles of gold varying in size from
20 pp to 180 pp.
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Fig. 4.

It will be seen that for ruby red gold solutions containing
very fine particles there is an absorption maximum in the
green corresponding to a wave-length of about 525 pu.

Mie has also drawn curves showing the pure absorption in
colloidal gold solutions.

The colours of silver particles in colloidal silver solutions
have been discussed with the aid of the mathematical theory
by E. Miiller*®*. The particles of a silver solution show beautiful
colour phenomena, all colours of the spectrum from the extreme

* Ann. d. Phys. Bd. 35 (1911).
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blue to the extreme red being present*. For other applications
of the theory we must refer to the papers of Lord Rayleigh,
Garnett and Mie and to Prof. Wood’s Physical Optics.

The mathematical theory for a large number of particles
has been developed further on certain simplifying assumptions
by F. Hasenohrl+, A. Schuster}, W. H. Jackson§, L. V. Kingl|,
A. Einsteinf and M. v. Smoluchowski**. It has been used
recently by W. J. Humphreystt in a study of the effect on
climate of large quantities of volcanic dust in the upper
atmosphere.

§ 23. The pressure of radiation on a spherical obstacle.

We shall now calculate the pressure of radiation on a spherical
obstacle, following the work of Debye except in some of the
details. The pressure is calculated on the assumption that the
force exerted by an electromagnetic field on a unit charge
moving with velocity » has components of typef}

FomEpt 2H,~ 2 Hyovoneenees (114),

and that the equations of the field can be derived by a process
of averaging from the electron equations

1 38 Lo
th:E(E--I-Pv)’ rOtE=—Ea—t} ...... (115)-
dj.VE=Ps leH=0

Now if

Xy= EzEy o H5Hy= Yz
X, =EE+HH =2 { (116),
Na=¢ (Esz —_ EzHy)

* A coloured reproduction of an ultramicroscopic picture of a silver solution
is given by H. Siedentopf, Ber. d. Deutsch. Phys. Ges. (1910), p. 6.
't Wien. Berichte (1902). 1 Astrophysical Journal, Vol. 21 (1908).
§ Bull. of the Amer. Math. Soc. Vol. 16 (1910), p. 473.
| Phil. Trans. A, Vol. 212 (1913), p. 375.
9 Ann. d. Phys. Bd. 38 (1910), p. 1275.
*%* Boltzmann Festschrift (1904), p. 626 ; Ann. d. Phys. Bd. 25 (1908), p. 205 ;
Phil. Mag. Vol. 23 (1912).
1+ Bull. of the Mount Weather Observatory (1913); Journal of the Franklin
Institute, Aug. (1913).
1+ We assume now that ¢=0, e=u=1 for the external medium, so that »=1.

X, =} (B2 —Ep— E) + 3 (HS - H;—H:)l

-
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etc., we have identically on account of (115)

BX 0X, oX, 108§,
pF + ay Y+ —9? —E; _a_t ......... (117).
Hence by Green’s theorem, if (I, m, n) are the direction
cosines of the outward drawn normal to a surface o enclosing

all the charges in the field,

[Jx 4 mXy 40Xy do =[] (oF +;a§) dodydz..(118).

The @-component, of the force exerted by the electromagnetic
field on the obstacle is thus the same as if there were tractions
X, Y, Z at each point of the surface and a volume force

_%%._tS’ similarly for the other components.
Now when we integrate with regard to ¢ so as to obtain the

mean value of the pressure over a period, the term aaﬁt
contributes nothing on account of the periodicity of S. The
pressure may consequently be calculated from Maxwell’s tractions
X, Y,Z. Inthe present case the mean value of the pressure

in the direction of the axis of z is derived from the quantity *
(UZy+mliy+nZ,)=— L cos 0 [Ey*+ Ey* + Hy? + Hy'"
—E,*—~ H,?|-sin 0 [E,’E,/+ H/H,].
The surface integral of the mean value of this quantity over
a period is accordingly
T (27 - - L L - e
L f f [cos 0 (B, o+ Ey Ey+ HHy+ HyHy— E, B, —H, 1)
0Jo
+sin0(E,Ey+ E,Ey+ H,Hy+ H,H,)] sin 6.d6 d¢.

When the incident radiation only is taken into account, this
integral becomes simply

r2 (7 [2m .
- §f0 L cos Osin 6 dfd¢p

and vanishes completely. Again, it is easy to see that when 7
is large the components E,, H, for the scattered field are small
* We assume now that the surface ¢ is a sphere whose centre is at the origin.

Our expresgion is easily obtained by writing down the expressions for £/, E,/, E,/
in terms of E,, E¢’, E¢'.
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compared with the transverse components, a product such as
H,H, being of order —* may be neglected when 7 is large, and
so we have only to consider the integral

Pi= _] f (EByEy+EsEy+ HoH,+ Hy Hy) sin8 cos 0 d0de,

where E=E,+ E,, H=H,+ H,. The terms which depend
only on the incident field may, moreover, be disregarded.
To evaluate P, we need the values of the integrals

1= (PP +s w g 40e dﬁ;) cot 8.6,
I,= f( "P +d§;'P)c058.d9.

By using the relations (109) we may transform the first of
these into

nln % 1)m(m+l)f:P,,(cosﬂ)Pm(cos6)sin9c030d6
—f'g—é[cosﬂ.Pﬂ‘.Pm‘]cosﬂ.dB.
0

Now
(2n+ 1) cos 6. P, (cos @) =(n + 1) P, (cos 0) + nP,_, (cos 6)
......... (119),
and
(2n+ 1) cos 0. P, (cos 0) = nP, (cos 0) +(n + 1) P,_, (cos 6)
......... (120);

hence when the second integral is integrated by parts we
obtain two integrals of the type (76) and so we have finally

I,=0 m#ntl
_ a=pnm+ly
2 ea—-1)Bns]) ToR-IL (121).
?(n41)(n+2)

@n+l)@n+8) Tontl
When the second integral 7, is integrated by parts it becomes
7, [ PP, sin 0d6 =0 m#n
0

_2?a(n+1)
T Entl
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Writing P, in the form
A f f (M, 1T, + M,* M

+ My My + MJMJ) sin 6 cos dOd¢
and making use of equations (121), (122) and (106), we obtain

B ® nt(n+ 1) (n+ 2) {iﬁn_-ﬂ d'vn-i-l du,  dv,
Pz“_wu§1(2n+1)(2n+3)[( dr * dr)(dr+ )
dwn+l d"_’uﬂ

dun = dvy\ (Qbnya , dipy\ | dw, di,,,
+(dr+ dr) o i )* A

+ k* (un + V) (Unta + Unta) + knwﬂwﬂﬂ]

b 3 50 ol 5

du,, dv,, dw,, dw,,
— o+ ) (g + o) + T “dr]
We now use the asymptotic expressions for u,, ¥,, w, when
r is large and omit the terms that depend only on the u’s.
We also write
R | o 241
T A+ )™ 1)
and obtain after some sunphﬁcations

Pz=—g % (2n + 1)[an+au+Bn+Eu]

n=1
® 2n+1
&y
-+ “.'l'k"z “:1 ( n+ 1) ( Bﬂ + aﬂﬁﬂ)
2
+ wk* 21 = (n++ )[aﬂaﬂ-ﬂ + Ay + Bnﬁm-: + Banﬂ]

This expression turns out to be negative, l.e. the pressure
acts in the direction in which the incident light is moving. If
the constants in the incident light are chosen so that its
intensity is unity, the above expression must be doubled. The
numerical value of the pressure has been calculated from the
above formula by Debye in a number of cases. When the
radius of the spherical obstacle is small compared with the
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wave-length of the incident light, the functions yr, (ka), &, (ka),
Yu (ha), &, (ha) occurring in the expressions for a,, B, can be
expanded in ascending powers of a. This method, however,
fails when ka approaches unity and numerical values of the
functions must be used.

In the case of a totally reflecting sphere

3 ﬂ! (ka.) e n -(—ka) 2
a i 7 (ka)” @.. Jg—ﬂ (k——a) ......... (124),
and Debye finds that if
2mra
P — a,k = _h_ ’

where A is the wave-length of the incident light, L denotes the
light-pressure and W = {ma? is the energy of the incident train
of waves per unit length of a cylinder circumsecribing the
spherical obstacle and having its axis parallel to the direction
of motion of the waves ; then

F= 30 1+ g = AR ] e (125).

The first term of the series was given by Schwarzschild.
The convergence of the series is slow as p approaches unity and
several terms of the series (123) must be taken into account.
By using numerical values of the functions v, (p), & (p) and
their derivatives for E =1, 2...5, Debye has succeeded 1n
drawing a curve for W

MY
w

3

2 /’f\
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It will be seen that the pressure has a maximum value for
a certain value of p, approximately equal to 1. When p is

large the ratio I_f’ approaches asymptotically the value 1.

Debye compares the light pressure so obtained with the
gravitational attraction for a spherical particle of specific gravity
s under the influence of the sun’s radiation. He finds that if G
is the gravitational attraction,

L 4800 L
G= e W
and to get a numerical estimate he takes A =600 pu, s = 1.

It appears that the ratio vanishes both for small and large
values of p : it has a maximum value of about 20 for p= 1.

In the case of a dielectric sphere with refractive index =,
the expansion corresponding to (125) is

L _§(n=—1)= . [1 _ P n*—20nf + 3d4n* + 120 ]

W 3\n+1 15° (n2+2)(2#* + 3)

and 1s suitable for calculations only when np is small.

Debye has drawn curves forTf,in the cases n=0, n=2,

n=15 and n=133. When n=2 the curve appears to have
three maxima and two minima between the values p=1 and
p=3.

The greatest value of I—I% i8 now about 2'6; the following

table indicates when the light pressure exceeds the gravitational
attraction, the numbers p, and p, give the extreme values of p
belonging to the range in which this is the case.

L

n (f_?)un. Po I
® 20 3 8
2 13 ‘6 5
15 3 8 e

The maximum light pressure is just balanced by the
gravitational action when n is about equal to 1:38, the value
for water: for smaller values of n gravitation prevails.

B. 5
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In the case of an absorbing spherical particle, the equation
which takes the place of (126) is

o
T T, (127).
(x +2)ﬂ+gz

When a is small the light pressure and gravitational action
are both of order a® and their ratio tends to a finite limit, hence
for certain types of absorbing material there is no lower limit
in the size of a particle below which gravitation exceeds the

light pressure. Debye has drawn a curve for #, for the case of

a gold particle and finds that there is a maximum value for
p=1'5 nearly.

The existence of a maximum value for —L— in the cases that

/4
have been discussed appears to be due to the fact that the

value of p for which the maximum occurs is very nearly equal
to the real part of the complex value of p corresponding to one
of the free damped vibrations*. The first electric vibration
seems to be of chief importance in determining the position of
the maximum.

The determination of the limiting value of TIFI’ for very small

wave-lengths, ie. for large values of p, is a matter of some
difficulty, it depends on some expressions giving the behaviour
of the Bessel functions for large values of n and p. These have
been found by J. W. Nicholsont and P. Debye}.

If p is real and n +% < p, we have when p >

-i(pfo-3 i
e -
(sin 7)
g\ [ e (128),
e o1~
i i (Sil‘l 'To)é J

* Cf. Debye, loc. cit.,, and the similar remarks for the case of optical
resonance by F. Pockels, Physik. Zeitschr. Bd. 5 (1904), p. 152.

+ British Association Reports, Dublin, 1908, p. 595; Phil. Mag. Vol. 13 (1906),
p- 195; Vol. 14 (1907), p. 697; Vol. 16 (1908), p. 271 ; Vol. 18 (1909), p. 6.

t Math. Ann. Bd. 67 (1909), p. 535.
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where 7, is an angle lying between 0 and 7—; for which

2
S <

and Jo=s5In 7, — 7 COS 7.
When n+ 4 > p and p - o0, we have
—ipfo \

o) =i ——
© Sl:f"")) ——— (129),
e 0
Y (P)_ (7 sin '7'0)# i

where 7, 1s now the root of the equation
n+1%

COS Ty = ——=
whose imaginary part has a negative sign.

When = and z are very nearly equal the values of &, (p) and
Ya (p) can be made to depend on Airy’s integral and are much
more complicated ; for these we must refer the reader to the
original memoirs.

24. Other problems which may be treated with the
aid of polar coordinates.

The diffraction of electric waves travelling round the earth
1s a problem of some importance which has been discussed by
H. M. Macdonald*, Lord Rayleight, H. Poincaré}, J. W.
Nicholson§ and other writers.

The calculations are very long and depend on the use of the
formulae to which we have just referred. Rybeynski|| has
recently treated the problem by a method due to March and
has taken into account the finite conductivity of the earth. As
we have already mentioned this was done by Zenneck and
Sommerfeld for the case in which the earth’s surface is treated

* Proc. Roy. Soc. Vol. 71 (1903), p. 251 ; Vol. 72 (1904), p. 59 ; Vol. 90 (1914),
p. 50; Phil. Trans. A, Vol. 210 (1909), p. 113.

t Proc. Roy. Soc. Vol. 72/(1904), p. 40.

t Rend. Palermo (1910) ; Proc. Roy. Soc. Vol. 72 (1904), p. 42.

§ Phil. Mag. Vol. 19 (1910), pp. 276, 485, 516, 757; Vol. 20 (1911), p. 157;

Vol. 21 (1911), pp. 62, 281 ; Jahrb. d. draht. Telegr. Bd. 4 (1910), p. 20.
| Ann. d. Phys. Bd. 41 (1913).

5—2
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as a plane. The results of Nicholson and Poincaré indicate
that diffraction round a perfectly conducting surface is not
sufficient to explain the apparent bending of the electric waves
round the earth’s surface. A generally accepted opinion is that
the ionisation of the atmosphere by the sun’s rays is a very
important factor in producing the observed effects®.

The diffraction of a solitary wave or pulse by a spherical
obstacle might be discussed with advantage. The evaluation
of certain definite integrals involving Bessel functions, however,
presents some formidable difficulties which probably account
for the fact that the problem does not appear to have been
solved.

The scattering of electric waves by a perfectly conducting
conical obstacle has been treated very briefly by H. S. Carslaw.

EXAMPLES.

1. Prove that

g o+l N

14 21 oD Py, (cos ) Py (cos a)=log (sec 5 cosec 2) , 0Sa<gl< .
(C. Neumann.)

2. Prove that

ieone i s Jn+ i (k)
65 Sllnio)e \/é 2 (2n+1)8 == Py (008 0) Fy (con ).

(E. W. Hobson.)

* Cf. the discussion at the British Association meeting, Dundee (1912), and
an article by W. H. Eccles in the Year Book of Wireless Telegraphy (1913).
Some quantitative experiments on long distance telegraphy have been made
recently by L. W. Austin, who obtains an empirical relation between the
magnitude of the current received and the distance between the two stations,
Bulletin of the Bureau of Standards, Vol. 7 (1911).

+ Phil. Mag. Vol. 20 (1910), p. 690.



CHAPTER IV
CYLINDRICAL COORDINATES

§ 25. The wave-equation in Cylindrical Coordinates.
If we put o= p cos ¢, y = p sin ¢, the wave-equation becomes

ouw louw 10 o 10
o " pdp T pog 0 G ae
Two particular solutions of this equation are suggested at
once by the general solution of § 5: they are*®

- (130).

o

u=] F[z+€pcc>s&, t—g-sina]da ...... (131),
0
+é

and u--f F[z+ipcosa, t—gsina] BB i (132),
-¢

respectively. The first of these represents a wave-function
which is symmetrical round the axis of z and which reduces to
27 F (2, t) when p=0. It gives us at once the formulae

1 [ :
Py (4)= o [0 (& + ip cos )" da (,; =) ..a39)

N (k=2) 189,

1p cos a)* ! ¥
where n is an integert, and many other interesting formulae

may be written down by simply choosing different wave-
functions that are symmetrical round the axis.

* The first of these is an obvious generalisation of a formula given by
D. Edwardes, Educational Times, Oct. (1904).

+ The formula is also true under certain limitations when 7 is not an integer.
See Hobson, Phil. Trans. A, Vol. 187 (1896).
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For instance,
1 "10g(z+ipcos€)d0 1 2r°

) Wy =;logfr+z ............ (135),
log (z + %p cos 6) — logzode r+zo+R
o z—2,+1pcos @ "R r+2z—R

(R*=p*+ (2 — 2% z>2)...(136),

1 sin k (2 + 12p cos a) Ghosina sin kr
Qv_rf z+1ipcosa ki r Bl »

There is another general formula for a wave-function sym-
metrical about an axis, viz.

_] [t —P cosh a, z—p sinh-a] da ...(138),

where the function F is of such a nature that

1 oF oF
soinha = 4cosha—

vanishes when a=+ . As a particular instance of this we

have the function*

1
=51 F(t——cosh a)da ......... (139)

aw

which may be regarded as the cylindrical wave-potential for a
line source of strength F (¢) along the axis of z.

A peculiarity T of the two-dimensional propagation of waves
1s the existence of a “ tail ” to the disturbance when F () is zero

for t< 0 and t>-r,forift>r+’—;we have

Q.__l_ mF(t—gcosha)da ......... (140),

2
where pcoshs=c(t—7). It is clear that this expression for
) does not generally vanish. The wave-function (139) is thus
essentially different from KEuler’s wave-potential for a point
source, Viz.
o=1r (t = 3) ,
r c

* Cf. H. Lamb, Hydrodynamics, pp. 281, 500; V. Volterra, Acta Math.
t. 18 ; Levi-Civitd, Nuovo Cimento (4), t. 6 (1897). The formula is a particular
case of a more general one given by Dr Hobson in 1891.

+ This was discussed by O. Heaviside, Phil. Mag. (5), t. 26 (1888); Elec-
trical Papers, Vol. 2. See algo Lamb, Hydrodynamics, p. 282.

-
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e . r y ;
for in this case Q is zero for ¢ Semkis, provided the source is

only active when 0 <t < 7.
V. Volterra* has obtained a number of elementary wave-
functions of the form

u=tF (‘f) Y 10 N (141).

He finds that F' must satisfy the differential equation

d*F

8% == 7e

If we try to solve (130) by means of a function of the form
w= Wp™cos m (¢ — bo)

where W is mdependent of ¢, we find that W must satisfy the
equation

§*(1— +s(2n—s’)%+n(n-—l)ﬁ'=0 ...(142).

3’W+ 2m + 1 8W+3°W 10°W
op* p Op 022 ¢ o =

. Solutions of this which are independent of z may be derived
from the following formulaet, in which m > — 4,

W=fwf =2 cosa)sin"“a.da ......... (144),

....f (t + = cosh 'q) sinh*® 5 .dy ...... (145).

There are, of course, certain limitations concerning the
behaviour of F (t) at infinity. The first formula enables us to
determine the value of W when its value is known for p=0.

§ 26. Elementary solutions of Au + k*u = 0.
The differential equation
TORLR.
possesses elementary solutions of the types
I (P VI + B2) e ™" cos m (b — pg) ..o (147),
K (pVN =) e ™ cosm (¢ — o) ..o (148),
* Acta Math. Vol. 18.

t E. W. Hobson, Proc. London Math. Soc. Vol. 22 (1891), p. 431. The
first solution is due to Poisson.

=+ FPu=0........ (146)
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where A, & and m are real or complex arbitrary constants. The
first solution may of course be generalised into

u=| " T (NETTR) €% F(h) hdh oonn..... (149),

and a similar remark applies to the second. If we wish to
express a given wave-function in the first of these forms, the
following inversion formula due to Hankel is particularly
useful*.

If Pl = f: I (at) f (8) ¢t
then f@®= f: I (2t) F (z) xdz

Let us use this formula to express %e"" in the form (149)

when m=0. Since the representation should be valid for 2=0,
we find on putting k* + h*=2A?, a =k, that

e‘ikp w
- f Ty (Ap) £ (B) NN ;
0

.} i 1
. F(h)= fo Ti(wp) e dp = =0, k>0,

Hence we obtain Sommerfeld’s formula

?_]_;,eﬂ:r=fm e*z\/m’];)(kp) AdA
0

——

the upper or lower sign being taken according as z250. A
more complete proof is obtained by applying Hankel s inversion
formula to the equatlon

2] =T -
.’ Jo(hp)empdp=e i AZ> k2
¢ 4 At — k2 152
igi 2| AR ++(152),
b LY R
V2 — A2 .

which is established in Prof. Lamb’s paper.

* Bee Gray and Mathews, Treatise on Bessel Functions (1895), p. 80;
N. Nielsen, Handbuch der Theorie der Cylinderfunktionen (1904), p. 366.

t Ann. d. Physik, Bd. 28 (1909), p. 683. Some analogous formulae are
given by H. Lamb, Proc. London Math. Soc. Ser. 2, Vol. 7 (1909), p. 140;
O. Heaviside, Electrical Papers, Vol. 2, p. 478; N. Sonin, Math. Ann. Bd. 16.

-
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A few more formulae will now be written down to illustrate
the method of generalisation by integration with regard to
a variable parameter

K, (pVN* = k) cos A (2—b) = 1}]@ —-cosA(a—b)da
(A2> k% R*=p*+ (z — a)).

If m is zero or a positive integer and n is a positive integer,

1 _m _ 1 . R
TWIP”(OOS 0)_.I‘(n-—m+1)f:e I (Ap)AdA, 2>0,

i S = e r n
Qn (cos 0) = TG —mED Ya(Ap)ArdN, z>0.
(Hobson.)

?.n+1

§ 27. The propagation of electric waves on a semi-
infinite solid bounded by a plane surface*.

In this problem the surface of the earth is regarded as an
infinite plane and the waves are supposed to be generated by an
antenna, of which one portion is vertical and the other horizontal.

Let us assume that the electric and magnetic forces are the
real parts of vectors of the form FEe—**!, He ** respectively,

then if M = H + wE, where 1= Ew#';w, we may satisfy Max- .
well’s equations by putting
M-rotl'[+ gmdd1v1'[+kH ......... (153),

where AIl + kI =0, ck® = epw’ + tpwo ...... (154).

To imitate the action of the antenna we shall place two
vibrating doublets at a point at distance @ from the plane. If
one of these vibrates vertically and the other horizontally, we
may put for the primary radiation II,= (P, 0, P,), where

ik B
P,,=—B P,=A% ., R=p+(z—a)..(155),

& R :
and the axis of z is vertical. We write B with a negative sign
to signify that the horizontal branch of the antenna is drawn
in the negative z-direction.

* A. Sommerfeld, Ann.d. Phys. Bd. 28 (1909), p. 665 ; H. v. Hoerschlemann,
Jahrb. d. draht. Teleg. Bd. 5 (1912), pp. 14, 188; Dissertation, Munich (1911).
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A convenient expression for II; is obtained by using Sommer-
feld’s equation

1e*R=rJ.,(x)e"z—a>7”?7‘, 0<2<d.....(156),

where I=#\*—k%. Appropriate functions II,, TI, for the re-
flected and transmitted disturbances are obtamed by putting
-2 cos n¢ J (Mp) e~Uzta) F, (x)dx

ﬂ=0

, z2< @...(157),
o= 3 cos ng T (hp) ene=0 G (0 d |
n=0
where m = VA2 — k2 h” and h is the value of k in the second
medium. The functions ¥, (A), G, (\) are vectors with com-
ponents [£o(A), 0, ¥a (W], [ga(V), O, Xa (V)] respectively.
We can satisfy the condition that the tangential components
of the electric and magnetic forces should be continuous at the
surface of separation of the two media by putting for z=0

Ho+ Hl == Hg
rot (Uo + H;) =rot Hz (158)

| |
i div (I, + H1)=ﬁ div IT,

where p has been taken to be unity for both media.

Substituting the integral expressions for I, II,, II, in these
equations and equating to zero the coefficients of functions
of type Jn.(Ap) in the resulting integral equation, we obtain
the system of equations

f; e—la Gy ? e—la =0 e—ma’ fn e——laz On e—ma’
1}!08—’“ + % e—la = %o e—ma, ‘P‘ﬂ e—£a= xﬂe—vma,
—Ilfye® — Be s =mg,e ™, —lf, e =mg,e ™,

(Ae e~y e‘“‘)%‘,‘1 =%?; Ao€ ™,

(-B% e — e — hfoe““) (mx,e“"‘“ Ag.e~™),
l

"P‘n e—k& h2 Xﬂ 2

2
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where the last equation has been simplified with the aid of the
relations f, =¢,=0(n>0) which are a consequence of the
previous equations.

Solving these equations we eventually find that if

n1=(Qm 0, Qz)! H2=(Rz! 0, RZ)

—t(a+a) (MDA
QFBFJ"O“’)" S T o™

AdA

i mz—la
Rs 2BFJ0(KF))G Tem

ol — kom Adn
= ~1(z+a)
R R

B (h* — E)N*d\

I (z+a)

+2Bcosd f: i) e e e T o)’
AdA

R,=24R? j:Jo(lP)e Rl + k*m

mz— (h!_kz)lﬁdh
+2BCOS¢-’:J10LP)8 m(t+m)(h’l+ka'm).

The “directed effect ” depends on the presence of the terms
involving cos ¢ in the expressions for (), and R,. Now when
o= oo for the second medium, A= o0, and these terms vanish
altogether; hence the possibility of directing the energy of the
radiation sent out from the bent antenna is due to the im-
perfect conductivity of the earth. Von Hoerschlemann has
given a numerical discussion of the above formulae but the
investigation is too long to be inserted here,

§ 28. Propagation of electromagnetic waves along a
straight wire of circular cross-section*.

Let us consider the symmetrical case when the electric
force at any point is in a plane through the axis of the wire

* H. Hertz, Electric Waves; J. J. Thomson, Proc. London Math. Soc.
Vol. 17 (1886), p. 310 ; Recent Researches, § 259 ; A. Sommerfeld, Ann. d.
Physik, Bd. 67 (1899), p. 233; Gray and Mathews, Bessel Functions, Ch. 13;
M. Abraham, Encykl. d. Math. Wiss. Band V. 2, Heft 8 (1910), p. 526;
J. Larmor, Proc. of the 5th Int. Congress of Mathematicians, Vol. 1 (1912), p. 206.
The problem considered in this last paper is chiefly that of alternating currents,
viz. the forced alternations of flow produced by & uniform periodic electric force.
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and the magnetic force is in circles at right angles to this
plane. The field equations are then of the types

€ 0F, B c0E, o ,,  0Hy)
e T pap(” e ig i st 5 |(159)
woH, 0, 0, [

“c ot 0z 9p J

These may be satisfied by putting
10 s oIl 11
e LA P

¢=_;atap "~ ¢ op
where II satisfies the equation
ep@ll opoll o1 19 ( oll
R +pap( ap
Putting IT = ¢%? 4, we find that Au + k* =0, where

_ €pw? —uwo
k2 = s

We now assume that for points outside the wire*

u=A e K,(p VN — k),
and that for points inside the wire
u= Be=™ J,(ip VN2 = I?),
where A is the value of k inside the wire. These assumptions
are made for the purpose of determining the periods and rates
of decay of electric waves that can travel along the wire and
maintain their own field. The first solution is chosen so as
to make the flow of energy negligible at an infinite distance
from the wire so that the system is self-contained; and to
.ensure this it is necessary to suppose that the real part of
VA2 —k* is positive. The second solution is chosen so as to
make the electric and magnetic forces finite on the axis of
the wire (p=0).
Let p=a be the equation of the surface of the wire, then
* We follow here the work of Sommerfeld in which it is supposed that there
are no conductors outside the wire. Sir J. J. Thomson allows for the presence
of external conductors by supposing the dielectric surrounding the wire to be
bounded by a cylindrical conductor having the same axis as the wire.

~

) A ......(161).
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the continuity of the tangential components of the electric and
magnetic forces requires that when p=a

a8 [pKo(pVN’- )} B [PJ (ipVA*—h? h’)]]
- (162)
va—P Ko(p\f)\.’—k”)=Bl’1a—ﬁ'> Jo GpVN = B) j

v and »;, being the values of the quantity o+ 1we at points
outside and inside the wire. The elimination of A and B gives
rise to a transcendental equation for the determination of A.
The total current flowing along the wire is .

J = erfaa'Ezpdp
0

= = Brrre PR % Jo(ipV =) for p=a.

On the other hand the electric force E, at the surface

of the wire is
E'z=—1-aa; [ Be"‘*‘ g Jo (ipVA* = B2 h’)] for p=a
=— B(\M—R) e""“ J (ta VA2 — R2).
Hence, if we put

E‘,=J{R +?§L},

where R and L are the resistance and self-induction of the wire,

we get
o o M=k [ Jy(2)
R+ 3 L= 2mo l:-‘DJ o’(-'”)] 2=iaN—ht

The roots of the transcendental equation have been discussed by
Sommerfeld who used a method of successive approximations.
The values of A are complex as the waves which travel along
the wire are damped owing to the imperfect conductance of the
wire. It appears that when the disturbance does not penetrate
far into the wire, the damping is small and so the velocity of
propagation is very nearly equal to the velocity of light.
When, however, the field does soak into the wire to some
extent, the damping is of course considerable and so the wave
travels with a velocity a little less than that of light. In the
first case the real part of ¥A? — k2 is large, in the second case it
1s small.
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In Lecher’s arrangement® there are two conjugate parallel
wires between which the waves travel, consequently the field is
not symmetrical round the axis of one of the wires. This case
has been discussed by . Miet with the aid of bi-polar
coordinates, and the lines of force have been studied by W. B.
Mortont. The latter also considers the case of n parallel wires
passing through the corners of a regular polygonS§.

The mathematical analysis for the case of a curved or twisted
wire has not yet been fully developed. The important case of
a spiral wire has, however, been discussed by H. C. Pock-
lington| and J. W. Nicholson. The latter gives numerous
references to the literature of the subject. D. Hondros** has
recently discussed the propagation of some types of unsym-
metrical waves along a single wire. The electromagnetic
theory of an electric cable has been given by Sir Joseph
Thomsontt and F. Harms}. The latter considers the case
when the outer conductor of a cable is replaced by air.

§29. Other problems which may be treated with
cylindrical coordinates.

The diffraction of electromagnetic waves by a cylindrical
obstacle has been discussed by Lord Rayleigh§§, W. Seitz|||,
W. IgnatowskyTY, P. Debye*t, C. Schaefer*t, and J. W. Nichol-
son*§.  Schaefer has made an extensive study of the case of a

* Ann. d. Phys. Bd. 41 (1890), p. 850. See also D. Mazzotto, Il Nuovo
Cimento (4), t. 6 (1897), p. 172.

+ Ann. d. Phys. Bd. 2 (1900), p. 201. The case in which the capacity
is small is discussed at length by J. W. Nicholson, Phil. Mag. Feb.—Sept. (1909).
The current is supposed to flow along one wire and return along the other.

T Phil. Mag. Vol. 50 (1900), p. 605; Vol. 4 (1902), p. 302.

§ Phil. Mag. Vol. 1 (1901), p. 563.

I Proc. Camb. Phil. Soc. Vol. 9 (1897), p. 324.

9 Phil. Mag. Vol. 19 (1910), p. 77.

** Anm. d. Phys. Bd. 30 (1909), p. 905; Dissertation, Munich (1909).

++ Proc. Roy. Soc. Vol. 46 (1889), p. 1; Recent Researches, p. 262.

1t Ann. d. Phys. Bd. 23 (1907), p. 44.

§§ Phil. Mag. Vol. 12 (1881), p. 81.

Il Ann. d. Phys. Bd. 16 (1905), p. 746.

99 Ann. d. Phys. Bd. 18 (1906), p. 495.

*t Phys. Zeitschr. (1908), p. 775.

*t Ann. d. Phys. Bd. 31 (1910), p. 462.

*§ Proc. London Math, Soc. Ser. 2, Vol. 11, p. 104.
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dielectric cylinder and his results have been tested experimentally
by Grossmann. This is one of the few cases in which the
influence of the material properties of the obstacle has been
taken into account in the mathematical treatment of a diffrac-
tion problem; the necessity of doing this has been clearly
indicated by some of the experimental results.

P. Debye has studied the diffraction problem with reference
to the theory of the rainbow. This had been done for the case
of the sphere by L. Lorenz long ago*.

Electrical vibrations in regions bounded by cylinders of
various shapes have been studied by Sir J. J. Thomsont, Lord
Rayleighf, Sir J. Larmor§, R. H. Weber|, A. Kalihne¥, and
J. W. Nicholson**. The latter has also calculated the pressure
exerted by a train of plane electromagnetic waves on a perfectly
conducting cylindertt.

EXAMPLES.

1. An infinitely long metal cylinder of specific conductivity o
and permeability p, bounded by the surface r=£, is surrounded by a
dielectric of specific inductive capacity e. A train of waves, in which the
electric force is perpendicular to the cylinder and to magnetic force and

if undisturbed would be represented by the real part of Me® (@ +krcosé),
is passing in the dielectric. Prove that the magnetic force H, inside
the cylinder and the part #; of the magnetic force outside representing
the scattered wave, are given by the real parts of

Hy=¢"* s a,K,, (kr)cos m¢p, Hy=e"*3 b,.J,, (hr) cos me,
m m

where A= —4mpoiw, and
bpd (A R)—a, K., (kR) =2M7™],, (kR),

bk 2 M7
2mh gt (kBT ot ) =2 g ),

* Oeuvres scientifiques, pp. 405—502. See also Gans and Happel, loc. cit.
(p. 44). The most recent paper on the rainbow is by W. Mébius, Ann. d. Phys.
Bd. 33 (1910).

+ Recent Researches, p. 344.

T Phil. Mag. (5), Vol. 43, p. 125.

§ Proc. London Math. Soc. (1), Vol. 26, p. 119.

|| Habilitationsschrift, Heidelberg (1902) ; Ann. d. Phys. (4), Bd. 8 (1902),
p. 721.

9 Ann. d. Phys. (4), Bd. 19 (1906), pp. 80, 879 ; Bd. 18 (1905), p. 92.

** Phil. Mag. Aug. (1905), May (1906).

tt Proc. London Math. Soc. Ser. 2, Vol. 11, p. 104.
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for positive integral values of m. The constants here have reference to the
electromagnetic system of units.

(Cambr. Math. Tripos, Part I1, 1905.)

2. Plane electromagnetic waves represented by
E,=E,=H:=E,==O, H'=eik(z+ct)’ E’=el'k(z+b‘¢)’
fall upon the perfectly conducting cylinder p=a. Prove that in the

scattered field : _
. iket [© ika cos B © K, (‘k_g)
e oo T ika)m"'b'cos vB.dv.

(P. Debye.)
3. The wave-potential for a circular ring of point sources is given by
Q= }' : e“m""‘“‘Jo Ap)Jo(Aa) Adr,  z>0.
. (A. G. Webster.)

L ]
-a0

4. The wave-function
o=c%t[" K e~y (p W EEFA?) cos aX dA

is zero at points on the plane z=0 which lie inside the circle p?<a?; for
2=0, p*>a? its value is ¢ ket (p?=—a?)~ cos(k.Jp —a?), (Sonin.)
5. If R*=p?+(z+asinhu)?, £=¢Y the integral

[ W (N e e ey

kR
represents the function %—. e~@%8h% gutside a paraboloid of revolution
whose focus is at the singularity z= —asinh%, p=0, and which passes

through the circle p=a, z=0. It is zero inside the paraboloid.

6. The circuital relations in cylindrical coordinates are
p 0, BH,, aE¢ pO0Ey ©0H, OH,

cat a¢ P oz Eas—"azpa,,

0 OEx _ oH, L
c at (PH¢)‘_3¢! a (PHP)+6¢.+ ==

and similar equations in which £ is replaced by — & and H by E.

7. If X=2zcosot—ysinof, Y=2xsin ol+ycos ot, Z=z-—vt, where v
and o are constants, the function @=F (X, ¥, Z) is a wave-function if ¥
satisfies the pa.rtial diﬂ'erentia.l equa.tion

aF 2
(-5 r)op (1 ) TPt R XY s+ (X ax+ ¥oy)

o02F
% (1 8z
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Obtain particular solutions of the form

2,2
where p?=)\2 (1 -—g)+7f£— and A, m, 4, B are arbitrary constants.

8. An oscillatory current is induced on a circular wire of radius «
excited by a uniform electric force R %t acting on its surface from the
surrounding medium. Obtain expressions for the inductance and resistance
of the wire per unit length when the wire is regarded as straight and no
disturbing conductor is near.



CHAPTER V
THE PROBLEM OF DIFFRACTION

§ 30. Multiform solutions of the wave-equation®.

The wave-functions required to solve many of the boundary
problems of Mathematical Physics are not single-valued func-
tions of , y, z, t in an ordinary space. We may, however,
regard them as single-valued functions in a Riemann’s space.
This is a simple generalisation of the Riemann’s surface of the
‘theory of functions of a complex variable+; every plane
section of the Riemann’s space is in fact a Riemann’s surface.
Instead of branch lines and branch points we have branch
membranes and branch curves. Thus in the physical problem
of the diffraction of light through a circular hole in a screen,
the boundary of the shadow of the screen is the branch mem-
brane and the edge of the hole the branch curve.

We shall commence by finding a multiform solution of

the equation

s R (163).

oz* ~ 0y*
The fundamental solution w = e (#cosa+ysina) = gikecos (¢ —a) jg
of period 27 and can be expanded in the form

giko cos($-0) = [ (kip) + 2 3 inJ (kp) cos 7 (b — a)...(164).
1

* This theory is due to A. Sommerfeld, Math. Ann. Bd. 45 (1894), Bd. 47
(1896) ; Zeitschr. fiir Math. u. Phys. Bd. 46 (1901) ; Proc. London Math. Soc.
(1), Vol. 28 (1897), p. 417. It has been developed by H. 8. Carslaw, Proc.
London Math. Soc. (1), Vol. 30, p. 121: (2), Vol. 8, p. 865; Phil. Mag. Vol. 5
(1903), p. 374: Vol. 20 (1910), p. 690 ; Fourier’s Series and Integrals, Ch. 18;
W. Voigt, Gitt. Nachr. (1899); E. W. Hobson, Camb. Phil. Trans. Vol. 18
(1900), p- 277. Different methods have been used by H. M. Macdonald, Electric
Waves, Appendix D ; K. Schwarzschild, Math. Ann. Bd. 55 (1902), p. 177;
Proc. London Math. Soc. Vol. 26 (1895), p. 156; C. W. Oseen, Arkiv for mat.
Bd. 1 (1904), Bd. 2 (1905).

+ See Harkness and Morley’s Theory of Functions (1893), Ch. 6-

-~



CH. V] MULTIFORM SOLUTIONS OF THE WAVE-EQUATION 83

A solution of period 2mm may evidently be constructed by
. writing down a series of the form

% and (hp)oos 7 (6~ a),

n=—a

where the a,’s are suitable constants. The solution that seems
the most natural extension of (164) is
@ n

Fou(p o) = Jo (kp) + 2. ™ J, (kp) cos g(tp — &) ...(165).

To sum this series when m =2, we transform the terms for
which 7 18 odd by means of the equation

2
Ju(kp) = (kp) gikpcosa gin® g, da.

2 2 T3)T ?H—l)

Summing the two series separately we find that

Fu(p, 90 =€ =8 4 £(§ — ) +f (0= $),

where

ikp\d 5+ %0, o _ %2 cogtatikp cona
f(9)=(§£) - j:e ? sin a.da
= (1)i e'*P"““fTe'wd?L
™ S o
k ——- —
with — T=vhpcosg, S=(F Loy ( )
Now fs Mg\ = 2[ e~ dA
-8

and fi z“” d\ = (%)§ ;

hence we may write

Fi(p, b o) = (%.)ie""l“m‘ (6= 40 [' e~ dx ...(166),

a0

where T =~N2kp cos § (¢ — bv)-

With the aid of the function F, we can solve some problems

on the diffraction of plane electromagnetic waves by a semi-

infinite plane bounded by a straight edge. Let us consider
6—2
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the case of a totally reflecting screen®. If the electric force
in the incident wave is parallel to the edge of the screen, the
electric force u = F, for the total disturbance must vanish over
both faces of the screen and must satisfy the differential equa-
tion (163). These conditions are fulfilled by taking

E,=F,(p, $, b)) — Folp, b, — bo) wvree... (167).

This value of E, also satisfies the right conditions at infinity.
To prove this we must find an asymptotic expression for F,
when p is large.

Now when 7> 0, we have the asymptotic expansion +

' 2 w‘ J | l 1.3 I
“’ Ayt — ————— — + — =

while when 7<0, [ has a similar asymptotic expansion with the

sign changed. This means that when cos4 (¢ — ¢) >e> 0 we

have
3

~ gtkp CO8 (§ — ' ko
Ful ) e 60 om0 e

while when cos 4 (¢ — ¢,) < € <0 there is a similar asymptotic
expansion in which the first term is missing. It thus appears
that the electric force in the geometric shadow vanishes at
infinity to the order p—3.

If the magnetic force in the incident wave is parallel to the
edge of the screen, the magnetic force u = H, must satisfy the

differential equation (163) and be such that o 0 over both

0
faces of the screen. The conditions are fulfilled by putting
H,=F,(p,},b0) + Fo(p, P, — Po)ecvvunenn (168).

Prof. H. M. Macdonald has shown that the solution of
a problem concerning a perfectly absorbing body can be made
to depend on the solution of two allied problems}. “A per-

* The incident waves are supposed to come in a direction for which
¢=wn+¢, An approximate solution of this problem was given by H. Poincaré,
Acta Mathematica, Bd. 16, p. 297; Bd. 20, p. 313.

1 Bromwich’s Infinite Series, p. 328.

1 Phil. Trans. A, Vol. 212 (1912), p. 337; Proc. London Math. Soc. (2),
Vol. 12 (1913).

-
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fectly absorbing body may be regarded as a body which is
incapable of supporting either electric or magnetic force;
hence if (' is the electric current distribution on the surface
of the body when it is supposed to be perfectly conducting,
and C’is the magnetic current distribution on the surface of
the body when it i1s supposed to be incapable of supporting
magnetic force, the superposition of these two distributions
gives the electric and magnetic current distributions on the
surface of the body when it is perfectly absorbing and the
amplitude of the incident waves is doubled.”

Now if we suppose our screen to be incapable of supporting
magnetic force, the boundary condition is that the tangential
component of the magnetic force should vanish. When the

electric force is parallel to the axis of z, aa% must vanish over

the screen. Hence
E.=F;(p,$, bo) + Fa(p, b, — o) ceveene. (169).

The solution for a totally absorbing screen is thus simply *

¥ A0, O Bo) sissiimiimnanminis (170).
Similarly, it can be shown that when the magnetic force

18 parallel to the axis of z the solution for a perfectly
absorbing screen is

H, = Folp, P, o) <veresnsocrsaness (171).
Prof. Lamb has discussed the case of perpendicular incidence
with the aid of the parabolic substitution

E"""‘Pé cos § ¢, ”?=f-"‘k sin{¢ } (172)
$=E‘_7)” y=2£ﬂ’ p=52+7}2 o - )

The curves £=const., 7= const. are confocal parabolas, =0
is the screen. A solution of Maxwell’s equations is obtained
by writing
szo; Hy=0, Hz=u
0B,  ou oE, ou oE, 0 } oss{178),
TR e W

*u  u__ 1%

7 + 5? EEREE | sevessaias
* W. Voigt, Gitt. Nachr. (1899), p. 1, discusses the case of an absorbing

gcreen.
t Proc. London Math. Soc. (2), Vol. 4 (1907), p. 190 ; Vol. 8 (1910), p. 422,

where



86 THE PROBLEM OF DIFFRACTION [cH.

Starting with Poisson’s wave-function* y = p=* cos ¢ . f(ct — p),
let us put

ou
oz X
Transforming to the coordinates £, 7, we obtain
ou Ou .
E%—-n%=2{’f(ct—fz—nz) ......... (175).

Solving this partial differential equation by Lagrange’s method
and adjusting the complementary function so that the boundary

condition 5 0 for n» = 0 1s satisfied, we obtain

E+y -7
u= [t +y-eyag+ [ fet-y-trie

+3 F (ct+y)+ 3 F (ct — y)...(176),
where F'is an arbitrary function. If the boundary condition is
u=0 for =0 the sign of the second term must be changed.

It is easy to verify that each of the integrals represents a wave-
function.

Let us now put  f(z)= 7—?_ f F' (2 —v*) dv,
0

and make the substitution {=ocosa, v=csina, then after

a little reduction we find that¥
X

u=F(ct+y)—%J:;F[ct+y—(p+y)sec’a]da
+%_L%F[ct—y-—(p—y) sec? a] da z<0, yz0

u=F(ct+y)+F(0t—y)—-}rffﬁ'[ct—}»y-—(p+y)sec*a]da |
—%ffﬁ'[ct—y—(p-—y)secga]da ;:g

u= %fﬁ Flct+y—(p+y)secta] da
0

1 (% 2
+;rf0 Flct—y—(p—y)sec’a] da >0

* Journal de VEcole Polytechnique, Cah. 19, t. 12 (1823). See also V.
Volterra, Acta Math. t. 18 ; Hantzschel, Reduction der Potentialgleichung, Ch. 1.
+ These formulae are not given in Prof. Lamb’s paper.

.
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Each of the integrals represents a wave-function provided
F(+00)=0 and
tana F'[ct + y— (p £+ y) sec’a] >0 as a —>%

In these circumstances we have the solution of the diffraction
problem for the case when the initial disturbance is represented
by w=F(ct+ %), the magnetic force being parallel to the
axis of z. By suitably choosing F we can deal with the case
of a solitary wave.

A new method of solving the problem of diffraction by
a straight edge has been given recently by Oseen*.

Problems connected with a wedge have been treated success-
fully by Sommerfeld and other writers by using a certain type
of contour integral. The fundamental solution of (163) is now

1 dv da

= — ihpcos(dp=a) —__ e y
“=%ri) da’ v (128)

ta o
where v=¢™ —¢™ and the path of integration is a simple con-
tour which starts from w7+ and goes to co¢+4 7" without
crossing the real axis. The quantities v, 7' are subject to the
mequalities
2w >y >, 0>y >—m.

This function % 1s multiform and of period 2nsr, but on an
n-sheeted Riemann’s surface with the origin as branch-point
and the line ¢=— (7w —¢,) as branch-section, it 1s uniform.

With the aid of this function a number of diffraction
problems may be solved.

Thus 1n the case of a perfectly conducting prism of angle
27 —a if the electric force in the incident waves is parallel to
the edge of the screen and is represented by the real part

of the expression
gtk Let+p cos (¢ — o))

1t can be shown by an extension of the method of images, that

for the total disturbance the electric force 1s the real part of
the expression

! e : d w
o= o ot fe“ﬁm‘a’d—glogadg e 179),

* Arkiv for matematik, astronomi och fysik (1912).
t+ Macdonald, Electric Waves, p. 192 (1902).
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w=cos¥——cosz—:(¢“’¢o)» w1=008-7;§—008%(¢+¢o),

and the path of integration is the same as before.

In the associated problem when the magnetic force in
the incident wave is parallel to the axis of 2z, the magnetic
force for the total disturbance is the real part of the expression

1 ; d
H,= 5 gtket f giacon§ dt log (ww,) d§....... (180).

These solutions and the solutions of analogous problems have
been discussed by W. H. Jackson *, H. M. Macdonald f, F.
Reiche}, A. Wiegrefe§, and other writers.

§ 31. Elliptic coordinates||.
If we put
2 = cosh  cos y, y=sinh wsin y ......(181),

the differential equation (163) becomes
*u | o°u

SRy P a B 2 =
8w’+8x2+k (cosh? w —cos? y)u=0 ...... (182).

The elementary solutions are now of the form
u=FE (o) F (%),
where £ and F satisfy the equations of the elliptic cylinder

d*F 3
= + (k? cosh*w + p) E=0 I;,

&F

Appropriate solutions of these differential equations have been
obtained recently by Prof. Whittaker **.

* Proc. London Math. Soc. Ser. 2, Vol. 1 (1904), p. 393.

1 Ibid. Vol. 12 (1913), p. 430.

1 Ann. d. Phys. Bd. 37 (1912), p. 131.

§ Ibid. Vol. 39 (1912), p. 449. )

I H. Weber, Math. Ann. Vol. 1 (1869) ; Mathieu, Louville’s Journal, Ser. 2,
Vol. 13 (1868) ; Hartenstein, Hoppe’s Archiv (2), t. 14, p. 170 ; R. C. Maclaurin,
Cambr. Phil. Trans. Vol. 17 (1898), p. 41.

9 For this equation see Heine, Handbuch der Kugelfunktionen ; Lindemann,
Math. Ann. Bd. 22; Hantzschel, Zeitschr. f. Math. u. Phys. Vol. 31, p. 25
(1883) ; Mathieu, Liouville’s Journal, Ser. 2, Vol. 13 (1868).

** Math, Congress, Cambridge (1912).

-
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Elliptic coordinates are appropriate for the solution of
problems connected with the scattering of electromagnetic
waves by an elliptic cylinder*.

W. Wien has suggested + that the problem of the diffraction
of light through a straight slit in a screen} may be treated
with the aid of elliptic coordinates by regarding the screen as a
limiting case of a hyperbolic cylinder.

H. Weber § has shown that when % #0 the elliptic and
parabolic substitutions are the only transformations which lead
to elementary solutions of the equation (163). For further
properties of this differential equation we may refer to Pockels,
Uber die partielle Differentialgleichung Au + k*u =0, Teubner,
Leipzig (1891), and to Lord Rayleigh’s Theory of Sound.

§32. Other diffraction problems.

The diffraction of light and electric waves by a grating of
wires is a problem of importance, but the mathematical treat-
ment is very difficult and the theories that have been given so
far are of an approximate character. Sir J. J. Thomson|| has
discussed the theory of Hertz's grating ¥ which consists of
a number of parallel equidistant metal wires. When electric
waves whose wave-length is large compared with the distance
between the wires fall normally on the grating, they pass
through if the electric force is at right angles to the wires but
are reflected if the electric force is parallel to the wires. Prof.
Lamb ** has considered the case of a grating which consists of
parallel strips of metal ; his theory has been supported by the

* See, for instance, K. Aichi, Proc. Tokyo Math. Phys. Soc. (2), 4, p. 266
(1908) ; B. Sieger, Ann. d. Physik (4), Bd. 27 (1908), p. 626.

t Jahresbericht d. deutsch. Math. Verein, Bd. 15 (1906), p. 42.

+ For this problem see K. Schwarzschild, loc. cit.; Lord Rayleigh, Phil.
“Mag. Vol. 43 (1897), p. 259 ; Scientific Papers, Vol. 4, p. 283; Proc. Roy. Soc.
A, Vol. 89 (1913), p. 194. An interesting experimental result has been obtained
recently by P. Zeeman, Amsterdam Proc., Nov. 28 (1912), p. 599.

§ Math. Ann. Bd. 1. See also Hantzschel, Reduction der Potentialgleichung,
p- 137.

|| Recent Researches (1893), p. 425.

91 Collected Works, Vol.2, p. 190. For some recent experimental work see
H. du Bois and H. Rubens, 4nn. d. Phys. Bd. 35 (1911), p. 243 ; A. D. Cole,
Phys. Review, Jan. (1913).

** Proc. London Math. Soc. Ser. 1, Vol. 29 (1898), p. 523.



90 THE PROBLEM OF DIFFRACTION [cH.

experimental work of Cl. Schaefer *, J. Langwitz*, and G. H.
Thomson .

Lord Rayleigh} has given an approximate electromagnetic
theory of the action of a grating on waves of light and this
theory has been extended by W. Voigt§ so as to take into
account the properties of the material of which the grating
is made. Voigt’s theory has been tested experimentally by
B. Pogany|| who gives an account of previous experimental
work on the subject.

The diffraction of light through a circular hole in a screen
is a problem of interest to mathematicians which has yet to be
solvedT. A promising method of attack is to regard the screen
as the limiting case of a hyperboloid of revolution of one sheet.

Ezamples. 1. Prove that

iket _ (N} [ e
e ﬁé(p,tb:‘ﬁo)—(;) f_m\fc(t—r)+P003(¢"¢6)'

2. If z+dy=a cosh(w+1ix), £=3kac”, n=23kae™ ",
E E )
J, (k) e =2 T, (6, _, ()€™
2 2

where the summation extends over all even integral values of 7 if v iseven
and over all odd integral values of = if » is odd.
(J. H. Hartenstein, Grunert's Archiv (2), t. 14, p. 170.)

§32a. The introduction and elimination of discontinuities.

Wave-functions with singular lines or with singularities
travelling along straight lines with the velocity of light may
sometimes be employed with advantage in the solution of
diffraction problems. To illustrate the method to be adopted
we shall consider the diffraction of waves of sound by an

* Ann. d. Phys. Bd. 21 (1906), p. 587. The theory is developed from a new
point of view by C. Schaefer and F. Reiche, Ibid. Bd. 32 (1910), p. 677; Bd. 35
(1911), p. 817.

+ Ibid. Vol. 22 (1907), p. 365.

% Proc. Roy. Soc. A, Vol. 79 (1907), p. 532.

§ Gitt. Nachr. (1911). | Ann. d. Phys. Bd. 37 (1912), p. 257.

9 Approximate solutions have been given by G. G. Stokes, Camb. Phil.
Trans. (1849); H. Lorenz, Vidensk. Selsk. Skr., Copenhagen (1890); H. A.
Rowland, Amer. Journ. Vol. 6; A. Grimpen, Diss. Kiel (1890); A. E. H. Love,
Phil. Trans. A, Vol. 197 (1901).

-~
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infinitely thin semi-infinite plane bounded by a straight edge*.
We shall suppose that the waves are sent out from a stationary
source and that the screen acts as a perfect reflectort.

Let the axis of z be taken along the edge of the screen and
the axis of z in the plane of the screen at right angles to the
edge. Let P be the source of sound and ) an arbitrary point
on the edge of the screen. If the disturbance issuing from P
were reflected according to the laws of geometrical optics, the
total disturbance would be discontinuous in crossing two semi-
infinite planes, each of which is bounded by the edge of the
screen. The first of these planes is a boundary of the geometrical
shadow, when continued across the edge of the screen it passes
through P. The second plane is the boundary of the geometrical
shadow for the optical image of P, viz. P,.

To obtain the correct solution of the diffraction problem we
must add to the disturbance just described a second one having
discontinuities which will annul the above-mentioned dis-
continuities, the new disturbance must also be chosen so that
the boundary condition is satisfied at the two faces of the
screen. We shall now show that the required disturbance can
be built up by superposition from elementary disturbances
with singularities along lines such as P and P, produced.

Let R be the distance of an arbitrary point (z, y, 2, )
from @), then if (0, 0, £) are the coordinates of @ and ¢ is the
velocity of sound, we know that a function of type

1 ' R z +1y

2 (-3 ZZtim)
satisfies the wave-equation. Let us choose the arbitrary function
Jin such a way that the expression becomes infinite along the
line P@) produced and returns to its initial value when the
point z, y, z is rotated twice round the edge of the screen.
This last condition is added so as to enable us to satisfy the
boundary condition.

* This problem has been solved by H. S. Carslaw, Proc. London Math. Soc.
Vol. 30 (1898), p. 121. A transformation of his solution suggested the method
described here.

+ This assumption is usually justifiable. In Prof. A. G. Webster’s experi-
ments on the reflection of sound from the ground (Phys. Review, Vol. 28 (1909),
p- 65) it was found that the reflection is more than 90 9/,.
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Now if we write
z+w
z—¢+ R
where » and ¢ are real quantities, and use R, u,, ¢, to denote

the values of R, u, ¢ for the point P, it is easy to see that the
function

= e—u+14>’

b (- mbtp e

satisfies the requirements, for it is periodic in ¢ with period
47 and is infinite along PQ produced, where

U=—u, P=¢,+m

We now imagine sources corresponding to wave-functions of
this type to be associated with each element d¢ of the edge,
and suppose the strength and phase of the source at @ to
depend on its position relative to P in such a way that

R R+ R,
s e |

where f(t) is the strength of the source at P at time f.

In this way we obtain an integral

Vimae | g /(6= ) seod L9 — o+ iak )
which will be shown to be discontinuous in the way required
as the point (2, y, 2) crosses the boundary of the shadow for P.

In a similar way we can construct an integral
V,=—41;r _mggnf(t R+R) sec 4 [+ o — 2 (u + uy)],
which can be shown to be discontinuous in the way required as

the point (2, y, z) crosses the boundary of the geometrical
shadow for P,.

Now let r, 7, be the distances of the point z, v, z respectively
from P and P,, then the velocity potential ¥V of the total
disturbance is given by the following expressions in the different
regions of space

V__f(.:__)+ ~F(t=-2)-7-V ins,

V=;f(t—-a)-— Vi=V, mS,,
V==V,—V, S,
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The space S, is bounded by the screen and the limiting
plane of the geometrical shadow for P,, S, is bounded by the
limiting planes of the shadows for P and P,, S; is bounded -
by the screen and the limiting plane of the shadow for P.

The boundary condition is that 5% should be zero over the

two faces of the screen and it is easy to verify that this
condition is satisfied. To show that V is continuous for the
whole of the space outside the screen and vanishes at infinity
when the function f is finite, we shall transform the integrals
V,, V. to the forms given by Prof. Carslaw. To do this we put

u +u,=b, then if p is the distance of a point from the axis
of z, we have

pe*=z—¢+ R, poe* = z,— { + R,,
R*=p*+ (z-¥), R = ps + (2, — £,
pe¥=R—z+¢ poe™ = Ry—2z,+ ¢,

ppo cosh (u +u,) = (2= £) (20— ) + RR,,
p* + pi + (2 — 20)* + 2pp, cosh (u + u,) = (R + R,),

db=du+du°=-dz;(%z+%o).
Hence 1t follows that

V.= 4—7,.]_@ Ri-fRof(t B+ R") sec 3 (¢ — ¢, + 2b).

On substituting the expression for R + R, in terms of b we

obtain an integral which is equivalent to the one given by

Prof. Carslaw. To see that it is discontinuous® we use ¥V, and V_

to denote the values of the integral for ¢ = 7 + ¢, + € and

¢ = 7 + ¢, — € respectively, where € is a small quantity. The

difference between these quantities may be regarded as a

contour integral and can be evaluated by Cauchy’s theorem

We may write
Vi Jiims -R‘f!f i 51&) I

Taking the residue for £=0, i.e. ¢ =7 +¢,, b =0, we get

: 1 R + R, 1 r\ .

Vs PSR S5 = (60

* A more careful proof is given in Prof. Carslaw’s paper.
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for the conditions ¢p=m +¢,, b=0 imply that the radii
‘R and R, are in one straight line and so give » when added
together.

It 1s now clear that the integral V; possesses the right type
of discontinuity and a similar remark holds for the integral V.
The method can no doubt be modified so as to give solutions of
other types of diffraction problems, the chief difficulty arises
in the choice of a function which will satisfy the boundary
conditions. At any rate the method suggests an interesting
type of boundary problem in which the desired wave-functions
have specified discontinuities instead of being continuous
everywhere. This type of problem ought to be studied more
completely.

In the general problem of the diffraction round a moving
object of the waves issuing from a moving source, the wave-
functions that are derived by the methods of geometrical optics
have discontinuities at a certain boundary which is the locus of
points travelling along straight lines with the velocity of light.

The points in question start from certain points of the
moving object and move along tangents to the surface of the
object, their paths being in fact continuations of the paths of
particles that may be considered to have been emitted from the
source. Indeed, if we imagine the source to emit particles in
all directions as it moves about, the particles which just graze
the moving object will, when they continue their rectilinear
motion with the velocity of light, form the boundary at which
the discontinuities arise.

In Chapter viir we shall obtain a class of wave-functions
with singularities moving along straight lines with the velocity
of light. These functions seem to be just the ones that are
required for the building up of wave-functions with dis-
continuities of the type just described. The problem of forming
in this way the functions which will enable us to complete the
solution of the diffraction problem is one which awaits solution.



CHAPTER VI

TRANSFORMATIONS OF COORDINATES APPROPRIATE FOR
THE TREATMENT OF PROBLEMS CONNECTED WITH A
SURFACE OF REVOLUTION

§ 33. Spheroidal coordinates.
Problems in which there is symmetry round the axis of 2
can often be treated with the aid of a substitution of the form *

ptiz=f(a+18) .ccoveniiainnnnn.. (184).
Taking a, B, ¢ as orthogonal coordinates, we have

da + dy? + det = (do® + dBY) aa(‘:;’g)) + p*dgs...(185),

and equations (18) of § 8 become
T 1.2 (odty)— M) = + kM,
8.8 ( ¢ a¢ ( B — = a

:’ [a% (1 M,) - 53.“ (,,M,,,)j = + kM, 1......(186),

F [ai(JM“) %C‘IM) ety

o (51) + 5 (506) + ?p( $Ms) =0,

0 (o, B)
o (p; 2)

* This substitution has been used in other branches of mathematical
physics by C. Neumann, Theorie der Elektricitits- und Wirme-Vertheilung in
einem Ringe (1864); E. Mathieu, Cours de physique mathématique (1873);
A. Wangerin, Berliner Monatsberichte (1878); Hintzschel, Reduction der
Potentialgleichung ; Michell, Mess. of Math. (1890); Basset, Hydrodynamics,
Vol. 2, p. 8; F. H. Safford, Admer. Journ. Vol. 21; Archiv der Math. Bd. 13
(1908), p. 22. The important developments on which the following analysis is
founded are contained in papers to which we shall refer presently.

where J?=



96 TRANSFORMATIONS OF COORDINATES [cH.

These equations may be satisfied by putting

J Q) J 0 k

et M "'_—--_——-—-, M =i‘_Q - 187’
p B RN it -8

where Q= U ++¢V is a solution of the partial differential
equation

M, =

P0 PQ 1/0p00  2poQ\ K
% T g (a_aaa+aﬁaﬁ) i th =0l 105}

The problem of finding the periods of free electrical oscilla-
tions on a conducting spheroid is of considerable interest
because a straight rod of circular cross-section can be regarded
as approximately equivalent to a prolate spheroid whose major
axis 18 relatively much longer than the minor axis. This
problem has been treated very fully by M. Abraham?¥,
R. C. Maclaurint, M. Brillouin}, F. Ehrenhaft§ and J. W.
Nicholson|. The effect of a spheroidal obstacle on a train of
waves has been studied by K. F. Herzfeld¥.

For prolate spheroids the appropriate substitution is**

z+tp=acosh(a+28)cccicereeunnnn. (189),
or p=asinhasinB, 2z=acoshacosg,
AL S e S (190).
d(a, B)
The partial differential equation 18 now
*Q 2?0 1Y) . A
'5&3"*'53—1 thaa t-ﬁ B ak’(cosh’a—cos B)Q

and there are elementary solutions of the form Q = 4 (a) B(B)
where A and B satisfy the differential equations

\

Egé,—cothtzt%él—(Ic’aﬂccmh’ct+7!L)A=C' |
2B > ...(192).

7 thB+()L+k“‘agcos’B)B=O)|

¥ Dissertation, Berlin (1897) ; Ann. d. Phys. Bd. 66 (1898), p. 435;: Math.
Ann. Bd. 52 (1899), p. 81.

t Cambr. Phil. Trans. Vol. 17 (1898-9), pp. 41—108.

T Propagation de Uélectricité (1904), Ch. vi.

§ Wiener Berichte (1904), p. 273.

| Phil. Mag. (1906). 91 Wiener Berichte (1911), p. 1587.

** Cf. Heine, Crelle, Bd. 26 (1843), p. 185; Kugelfunktionen, Bd. 2, § 38;
Lamb’s Hydrodynamics, p. 182.

-~
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These equations are discussed in some detail in the papers
to which we have just referred, they may be reduced to a special
form of an equation obtained by Prof. C. Niven® in a study of
the conduction of heat in ellipsoids of revolution.

For oblate spheroids the appropriate substitution is
ptiz=acosh(a+18)....cceenueune. (193),

giving p=wacoshacosB, z=asinhasinp,
0le, ) _ stcontie=ocod
3@ B) a® (cosh? a — cos? B).
The surfaces 8 =const. are now hyperboloids of one sheet,
the surface 8=0 can be regarded as the surface of a screen
which is pierced by a circular hole of radius a.

The partial differential equation for {) i1s now

el — tanh a a4 —+ tan ﬁ 3B + k*a? (sinh®*a + sin* 8) Q =0,

% o oa
and there are elementary solutions of the form ) = 4 (a) B(8)

where
CSA tanh a dA =k (A +a*k*sinh*a) A =0
’.2
e B ...(194).
FTeg + tan 3. c—lB+(aszsm’B-7\.) B=0
When  is independent of ¢, k=0 and the elementary

solutions are of the form

QO =[P, (&) dEfP, (n)dn, £ =cosha, n=cosp ...(195)
for prolate spheroids, and of the form

QO =[P, (&) dE[P,(n)dn, = ¢sinh a, 7 = sin B...(196)

for oblate spheroids. In either of these solutions a function P,
can be replaced by Q.. The corresponding solutions of Laplace’s
equation are of the type

V=[APx(8) + B (5)][CPa(n) + DQn (m)]---(197),
where 4, B, C, D are arbitrary constants,

* Phil. Trans. (1880), p. 138.
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Ezamples. 1. Prove that
[(cosh a cos B —cos y)? + sinh?asin? 3]~ 3
=3 ; (2n+1) @, (cosh a) P, (cos B) P,, (cosy).
0

(C. Neumann.)

2. Provethat a function B (8) which satisfies the differential equation
(192) and is zero for B=0, 8= is a solution of the homogeneous integral
equation

B(9)=,usin39f ¢~ kacosbesB pgysinBdB R (ik) >0,
0

where’u is determined by the condition that the integral equation should

possess a continuous solution which is not identically zero.
(M. Abraham.)

3. If A (a) be defined by the equation

A (a)=sinh?a f« ¢~ kacoshacosh p gy oin B dB,
0

it} satisfies the differential equation (192). A second solution of this
equation is given by

4 (a)=sinh?a f: ¢ tkacoshacosht 4 oy ihedE R (iH)>0,

and is suitable for the representation of divergent waves.
(M. Abraham.)

§ 34. Paraboloidal coordinates.

If we write

Z+?:P=(%+ Bo), ai=-—a, By =8
so that the transformation is

z2=—a—B, p=2V—-af ............ (198),
the differential equation (143) becomes*
W ow 89 W 1*W

“5@*+(m+l)3a——‘- e —(m +1)BB —(a B)c‘atf’:’

and is satisfied by+
W = A (a) B(B) e*«,

* Cf. H. J. Sharpe, Quarterly Journal, Vol. 15 (1878) ; Proc. Camb. Phil.
Soc. Vol. 10 (1899), p. 101; Vol. 13 (1905), p. 133; Vol. 15 (1909), p. 190;
H. Lamb, Proc. London Math. Soc. Ser. 2, Vol. 4 (1907), p. 190.

+ The existence of elementary solutions for the paraboloid and certain
other surfaces is established in Bbocher’s Die Reihenentwickelungen der Potential-
theorie. See the table on pp. 256-7.
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if ‘f;‘f+( +1) —(h—kta) A=0

where h is arbitrary.

Putting 2tkn =1k (m +1)—h we find that the differential
equations are satisfied by putting

A =¢ % F,"(2tka), B=e*F,"(2:kB),
where F,,*(s) satisfies the differential equation®
§f+(m+1—s){+nﬁ' Dusavvnsis (200).

When n is a positive integer, one solution of this equation
is furnished by Sonin’s polynomialt 7, (s), which may be
defined with the aid of the expansion

st

(1 +ty™1eltt = 2.I‘(m+n+l)t“ ™ (8)-..(201).

A few properties of this function are given here for the sake
of reference.

N B Sﬂ s‘n‘-—I
T (3)_I‘(m+n+ 1) [n__I‘(m+n)|n-1 [l
sﬂ—ﬂ
+I‘(m+n—l)ln—2}2— (R,
[ et T () T s) ds =0 v#n
° 1 (203),
T+ C(m+n+l) "~ "
o IO e O S— (204),
Kl P RO B O R (205),

* This is a slight modification of Weiler’s canonical form for an equation of
Laplace’s type, Crelle’s Journal, Bd. 51 (1856), p. 105. The equation is discussed
for real values of m and n by O.Schlomilch, Hoheren Analysis, Bd. 2 (1874), p. 517.

t+ Math. Ann. Bd. 16. Further properties of the function are given by
L. Gegenbauer, Wien. Ber. (1887), p. 274, who proves that the roots of the equation
T,,"(s)=0, considered as an equation of the mth degree in s, are all real,
positive and unequal. This is a generalisation of the result obtained by
Laguerre for the case m=0. A geometrical proof has been given by Bécher,
Proc. of the Amer. Acad. of Arts and Sciences, Vol. 40 (1904).

7—2
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n F= (_ l)nes dﬂ ~8 oM+n
o b (S)HI’(m+n+1)I‘(n+l)ds“[e s™1]...(206),
7,5 (s) ='I"_(EL-?T}5 [ :T_;‘ (s cos? ¥ sin®™ v . dyp...(207).

Equations (201), (202) and (203) were given by Abel* and
Murphyt for the case m = 0: the polynomial is then equivalent
to the polynomial of Tchebycheff} and Laguerre§ which occurs
in the theory of interpolation and also in the theory of continued
fractions. When m = + §, the polynomial can be expressed in
terms of the polynomial U, () discussed by Tchebycheff|| and
HermiteY, or in terms of the function of the parabolic cylinder,
discussed by Weber**, Whittaker{{ and others?i.

The above analysis indicates the existence of a wave-function
of the form

Q = ik (exet) ximb T, m (2ka) T,» (2ik3) p™ ...(208).
This function can be expressed as an integral of the form
used in § 5, we have in fact the equation
(kp)™ T (20ka) T (20K3)

_ (=1 2”;; Y M : —im
=~ T n LT oeP’ To" [— 2k (p cos ry + 12)] e ™ dy

from which the required representation can be immediately
derived. In this formula m is either zero or a positive integer.
The convergence of a series of terms of type (208) in which

* Mémoires de mathématique par N. H. Abel, Paris (1826); Oecuvres, Sylow
and Lie, t. 2.

t+ Cambr. Phil. Trans. (1833).

+ Mém.de V’Acad. de St Pétersbourg (1860).

§ Bull. de la Soc. math. de France, t. 7 (1879); Oeuvres de Laguerre, t. 1,

. 428.
. II Loc. cit. See also Sturm, Liouville's Journal, Vol. 1,

91 Comptes Rendus, t. 58 (1864), p. 93. The Hermite functions have been
generalised by Curzon, Proc. London Math. Soc. Vol. 13 (1914), p. 417. The
generalised functions are intimately connected with the functions considered here.

** Math. Ann. Bd. 1 (1869), p. 1.

++ Proc. London Math. Soc. Ser. 1, Vol. 35 (1903), p. 417.

1+ Baer, Diss. Cilstrin (1883) ; Héntzschel, Zeitschr. fiir Math. Bd. 33 (1888) ;
Adamoff, Annales de St Pétersbourg, t. 5 (1906) ; G. N. Watson, Proc. London
Math. Soc. Ser. 2, Vol. 8 (1910), p. 393.

-
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n takes different integral values can be partially discussed with
the aid of the equation

Tyt (3z) Ty (— 1)

=[ 1 ]2[1+ n(m+n+1)
F(n+1)T'(m+1) 1 (m+1)*(m+ 2)
n(n—=1)(m+n+1)(m+n+2)

1.2(m+1)”(m+2)‘-"(m+3)(m+4)$‘+'"] """ (Z10),
which shows that the modulus of 7, (iz) increases with .
Hence if a series of terms of type (208) converges absolutely
for any given value of a, it converges absolutely for all smaller
values of a.

For a fuller discussion of the convergence it would be useful
to have an asymptotic expression for 77" (s) when n is large.
Suitable asymptotic expressions have already been found for
the case m=+ 4 by Adamoff and Watson.

The differential equation (200) has been studied for general
values of m and » by Pochhammer*, Jacobstahlt, Whittaker?
and Barnes§ It usually possesses two distinet solutions which
can be expanded in power series converging for all finite values
of s. If, however, m and n are positive integers, there is only
one solution which can be represented by a convergent power
series in 8, the other may be defined by the equation

Ut (8)= F(%-i-l) 8‘[0 e ’ac" (s — o) ™" deo...(211):

it contains a logarithmic term. For negative integral values of
n we may adopt the definition

d—""1
U'mn (3) = ds—1
It should be noticed that when |a| is large, U,"(2tka) has
an asymptotic expansion of which the first term 1is
(2uka) —n-1gtila,
The solutions of type
gtk ety ximp [ » (24ka) Tou" (2:k)
* Math, Ann. Vol. 36, p. 84 ; Vol. 46, p. 584, + Ibid. Vol. 56, p. 129.

T Bull. Amer. Math. Soc. (1904).
§ Cambr, Phil. Trans. Vol. 20 (1906), p. 2563,

PR (212).
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are consequently suitable when a is large for the representation
of waves diverging to infinity in the positive direction of the
axis of z.

It may be worth while to mention here that the functions
T (s), U, (s) both satisfy Gegenbauer’s difference equations

Fr (s) = (m+n) Foph (s)+ Fpi (s) W
n(m+n) Fp(s)—{s—(m+2n—1)} F,,” (s)+ F, " (5)=0
(n=1) Fa () = (s — (m+ n— 1)} F7(s)— FIi7 (s)
(n=1) Fi () = (s — (m+ 1)} Fpy(s)— s Fiia(s)

—

The function Uy," (s) also satisfies an equation analogous to
(204).

§ 85. Relations between different solutions.

Many useful formulae may be obtained by expanding known
wave-functions in series of elementary wave-functions of type
(208) and by identifying our elementary wave-functions with
certain definite integrals which are known to represent wave-
functions. For instance, we have the expansion |tan f w| <1

ghzcose J (kpsin w)

=(kpta.n2

X ta.n*"% T (2ke) Ty (20kB) wevevvecennnenne. (214)

2)m.e"“’ssec" e 5 (=Dn!(m+n)!
2 n-0

which enables us to represent a plane wave with the aid of
a double series of solutions of the form (208).

Further identities may be obtained by deriving wave-
functions from Cunningham’s solutions* of the equations

ou agu ou ou o*u

or=a . o amtap (215).
The first equa.tlon possesses the polynomial solutions
x2 n-1 o 28
n : a8
ST (-5) or T L) .....(216)

* Proc. Roy. Soc. Ser. A, Vol. 81 (1908), p. 310. See also Wera Lebedeft,
Diss. Gottingen (1906) ; Math. Ann. (1907). The first result is given by Appell,
Liouville’s Journal, Ser, 4, t. 8 (1892), p. 187.
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and also the solutions

SEL B . A
e e wT %(er_r)’ ot 3 e #T (T)...(217).

The second equation possesses the polynomial solutions of
type 5
7 g T (— B sinm (=) oo (218)

and also the solutions of type

r—m— g (Z;:) sinm (¢ — o) -..(219).

Wave-functions may be derived from these solutions by the
method of § 13.

We add here a few relations which are obtained by ex-
pressing the solutions thus formed in terms of old solutions.

gVEne T [E4+7—2VEpcosw]

= 3 (CLPT(mtn+ 1) E f T (§) T () 67...(220),

n oo
(1- )\.) M= S gnrmin T S 8) wgevaveny (221):
d n! m=—n
2 .
T pme 4 Ty (g})
) L S :
" Tmtnt Dty Im GOV A (222)

gmii \mtm | (Ap)
’
=T'(r+1)I'(n+m+1)p™ f"’ 4’T ( )T_m'““‘d'r

The proofs of these are left to the reader.

Prof. G. D. Birkhoff has remarked to me that the differential
equation (200) can be regarded as a limiting case of the hyper-
geometric equation when two of the singularities coincide at
infinity *, consequently many properties of the solutions can
be derived from known properties of hypergeometric functionst.
It should be noticed that when W is independent of ¢ there

* Cf. Bocher, Die Reihenentwickelungen der Potentialtheorie, p. 1317.

+ This method was used in a particular case by Kummer, Crelle’s Journal,
Bd. 15 (1836), p. 138.
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are elementary solutions of equation (143) of the form W= AB
where

_ T (2 Vha) p_Im (2 )
"~ 2iVha)™ T (2VRB™

We thus obtain elementary solutions of Laplace’s equation
of the form

In ANV &) Jn AVB) cos m (b — p)evenenen (224),

where m, A, ¢, are arbitrary parameters.

§ 36. Toroidal coordinates.

If we put
x=pcosd, y=psing, z={coshw, ct=Csinhw...(225),
o —u)
2 2
a sinh o a sin Y
&= cosh o —cosyr ™ {220

¢ =cosha-—cosqr’
the wave-equation becomes

a{ sinh ¢ sin Y au} 0 { sinh ¢ sin Y Bu}

90 |(cosh @ — cos y) 9o} oy |(cosh o — cos ) oy
i sin 4 u sinh o ou _ 0
sinh ¢ (cosh o —cos y)*9¢* sin ¢ (cosh o — cos yr)? 0o’
...... (227).

This is satisfied by
u=F(c) G () (cosh o — cos y) €*** cos m (qb — ¢b)...(228)

if cosecho-c%(sinha-fif) {(n+1)+ 1 }F=0
cosecxp-%(sin1}rg—\#)+{n(n+l) k:tr} F=9

Hence we obtain wave-functions of the form

(cosh o — cos y) P, (cosh o) P,* (cos yr) e** cos m (¢ — ¢y)

Other solutions of the wave-equation may be obtained by

replacing the functions P,™, P,* by Q,™, Q%
Many useful formulae may be obtained by expanding
particular wave-functions in series of wave-functions of type
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(230). The expansion of unity, for instance, gives rise to
Neumann’s expansion

L = S (2n+1) Qn (cosh &) Py (cos ) ...(231).
0

cosho —cosyr ,-
It should be noticed that when we make the substitution
(225) the wave-equation becomes
u 10u 10 o0 10u 1 *u
ot popt prop Top e paw (28D
it thus possesses elementary solutions of the forms
K, (A) Jin(Ap) e*P cosm (p — o)  ...... (233),
Jp (NE) I (Ap) €°P° cos m (P — ¢by)--.-nn... (234).
The expression of solutions of type (230) in terms of the
solutions just found leads to some interesting identities. Thus
we have the equation

[ Ko 00) T 00) Ju (ra) rtm=nts
0
F'(p+m+1DT(p+1)T'(m+1)
'(n+1)
x(cosh ¢ —cosy) P, ¥ (cosy) P,;,. _, (cosha)
p>—1, m>=1, p+m>-1 ......... (235).
Many important formulae connected with Bessel functions

are simply particular cases of this one*. It should be remem-
bered that

= Qpt+m—n—1 gn—p—m—2

Ké(w)=,\/2—;z—ve““=K_§(x) ......... (236).

The corresponding integral in which K, (A{) is replaced by
J_p (AE) can also be evaluated in terms of Legendre functions,
but the formulae are more complicated. The case p=—m 18
discussed by Macdonald +.

It should be noticed that if we write
cosh (a—w)=17cotyr, cos(B—¢)=cotho } (237)
sinh (a2 — w) =7 cosec ¥, sin(B—¢)= ticosecho [ * b
three relations of type

0 (a, B) 7 0(a,B)
ey t - Sad) e (238)

* See, for instance, the formulae given by H. M. Macdonald, Proc. London
Math. Soc. Ser. 2, Vol. 7, p. 147, and by the author, ibid. Vol. 12, 4dbstracts.
t+ Loc. cit. p. 142,



106 TOROIDAL COORDINATES [cH.

are satisfied and so the functions @, 8 can be used to obtain
an electromagnetic field by the method of § 5. It is easy
to verify that the function

u=(cosh e —cosY) f(,B) couvvrnunnns (239)
satisfies the wave-equation, £ being an arbitrary function.
We add here a few formulae for P,™ (cosh ), @,™ (cosh o) ;
these and other formulae will be found in the memoirs of
Dr Hobson and Dr Barnes to which we have already referred.

1 o
m | o=
" (cosha)—r(l_m) coth 5
xF{—n,n+1; 1—m; —sinh’g}
. (1 — g~20)—m g—(+1e
'l —m)
XF{—ml+n—m;1—2m; 1—e*}
a>0,
I'(m+n+1)

Q.™ (cosh @) = (— 1)™ y/mr Tt

XF{m+gn+m+1; n+3e> o>0.

Various asymptotic expansions for these functions are given
by the authors just named and by Dr Nicholson*.

It should be mentioned that the solutions of the wave-
equation that have just been obtained are not directly useful
for the treatment of the boundary problems of mathematical
physics. They may, however, be used to construct useful
solutions of the equation Au+ k=0 by means of various
artifices. If, for instance, we multiply one of our wave-func-
tions by e and integrate with regard to ¢ between z and oo,
the resulting function will often be a solution of Av + k% = 0.
This may be illustrated by taking the wave-function

w=J, (NE) Tom (hp) cos . ($ = bo)
and using the formula

(1 - e——nu-)m g— o

,,:eiWk*-A’

2 _ ket Jf = ——— 2> N2
L.L, WP —7) ¢ di = oo
C 2>0
e—zJ&’_—i’
s A2 > k2
eV A= k2
...... (240).
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The integration can be taken between other limits in
certain cases; for instance, the integral

v J{p H oy + 22— ot {0 — 2 — (p—a)]
e (241)
represents the solution of Av+k*»=0 corresponding to a
circular ring of sources. In this case our wave-function u
is a constant multiple of cosh o —cos .

The theory of electrical oscillations on a conducting anchor
ring has been treated by H. C. Pocklington*, W. McF. Orr+
and Lord Rayleigh}, without the use of toroidal coordinates ;
the results are of course only approximate.

f\fz'*‘+ (p+a)? etkte dt
v

§ 87. Solutions of Laplace’s equation.
If we put

a sinh o _ asiny
“cosho—cosy’ ~ cosho—cosy

..(242),

P

the angle ¢ may be interpreted as the angle which two fixed
points 4, B whose coordinates are z=0, p= + a, subtend at
a point P (p,z); the quantity o may be interpreted as log }EJ% :
The surfaces v =const. are spheres having a real circle (p = q,
z=0) in common, the surfaces ¢ = const. are anchor rings.
If we use the toroidal coordinates o, vy, ¢, Laplace’s equation
becomes§
2 sinh o B_zf} % 2 sinh o B_u}
0o (cosh o — cosrdo) 0y (cosh o —cosr Oy
& 1 o' _
sinh o (cosh o — cosyr) 0¢p*

Au

0

* Proc. Camb. Phil. Soc. Vol. 9 (1897), p. 324.

+ Phil. Mag. Vol. 6 (1903), p. 667.

I Proc. Roy. Soc. Ser. A, Vol. 87 (1912), p. 93. See also C. W. Oseen,
Phys. Zeitschr., Dec. 1st (1913) ; Arkiv for Mat. Ast. och Fysik, Bd. 9 (1913).

§ B. Riemann, Partielle Differentialgleichungen, Hattendorf’s edition (1861);
C. Neumann, Theorie der Elekiricitiits- und Wiirme-Vertheilung in einem Ringe,
Halle (1864) ; W. M. Hicks, Phil. Trans. (1881), p. 609; A. B. Basset, Amer.
Journ. Vol. 15, Hydrodynamics, Vol. 2. For an alternative method see F. H.
Safford, Annals of Mathematics, Vol. 12 (1898), p. 27.
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and possesses solutions of the form
Pm
} n=%
u = (cosh o — cos Yr)* cos n (Y — Yr,) cos m (P — ¢b,)
Qr_ 3 (cosh o)

(cosh o)

which are suitable for the treatment of problems connected
with the anchor ring, circular disc and spherical bowl *,

For problems connected with two spheres bipolar coordinates
may be used ; the appropriate substitution ist

@ sin a sinh o
cosh o —cos{r’ #= cosh o—cosY

The surfaces o = const. are now coaxal spheres with imaginary
common circle. The radius of the sphere o = o, is a |cosech o |
and the distance of its centre from the origin is a|coth o, .

The ratio of the distances of a point from the limiting points
of the system of coaxal spheres is ¢” and the angle between the
radil from these points is .

The appropriate solutions of Laplace’s equation are now of

the type}
u = (cosh a'—cos#r)%[A cosh (n +4) o+ Bsinh (n +}) o]

X co8 m (¢ — ) [ [ Pu™ (cos Y) + g Q™ (cos yr)]...(245).
It should be noticed that when we are using toroidal
coordinates the function

u = (cosh o-—cos'q}r)‘}f[qb + ¢ log tanh %] cos & (Y — V)
...... (246)
satisfies Laplace’s equation and that when we use bipolar
coordinates the corresponding solution is

(cosh o — cos Y)E f [¢ + 2 log tan g] cosh § (o — oy)...(247).

p= ...(244).

* See for instance E. W. Hobson, Cambr. Phil. Trans. Vol. 18 (1899); C.
W. Oseen, Arkiv for Matematik, Bd. 2, No. 5; H. C. Pocklington, Phil. Trans.
A, Vol. 186 (1895), p. 603.

+ W. Thomson (Lord Kelvin), Liouville’s Journal (1847).

T G. B. Jeffery, Proc. Roy. Soc. Ser. A, Vol. 87 (1912) ; G. R. Dean, Phys.
Review (1912); G. Darboux, Bull. des Sciences math. t. 31 (1907), p. 17.
Another method of dealing with problems connected with two spheres is
described by A. Guillet and M. Aubert, Journal de Physique, t. 3 (1913).
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It should be mentioned here that other simple fsolutions
may be obtained by using the formulae

—no

1 =.\/ T
Qn—i(cmha) ‘A/ 2sinhe ®

Pi_ 1 (cos Yr) = \/ 2 cos nr,

ar 81N Y

2
Pi_.,}(COSh U)=“\/m003hﬂﬁ.

EXAMPLES.

1. If with the notation of § 36 we write
¢{+ip=acosh (a+i8)
the wave-equation becomes

P | du

S ou 3 o~
S + 553+2 coth 2a aa+2 cot 28 53+ (cosech?a+cosec?f3)

0¢p?
0
+ (sech?a —sec?g) ég=0'
Hence show that there are wave-functions of the form

u=A4(a) B(B)e™ cosm(p—y),
where @, £, m and ¢, are arbitrary constants.

2. Prove that if p+2z=f(a+78) the wave-equation becomes
0% 0w 1fpou cpou\  1/10% 1
st ogt,\data ™ 2808 +.T=(p‘2a?‘€faf)= :
and obtain elementary solutions of type A (a) B(B) MEERCt hen
z+ip=a cosh (a+¢8). Notice that the solutions of equation (188) are not

wave-functions, they are analogous to the stream-line functions of hydro-
dynamics.



CHAPTER VII
HOMOGENEOUS SOLUTIONS OF THE WAVE-EQUATION

§ 38. The method of Stieltjes*.
Wave-functions which are homogeneous functions of z,y, 2,
may be studied with the aid of the substitution
z=scos 0 cos ¢, z=ssin fcosy
y=scosfsin¢, wct=ssinfsiny
The wave-equation in these coordinates has the form

*u  30u  10% 1 0%
o5’ V505 T 2062 T sicos? 07
o 1 a“u+cot9-taan 6 ou
s?sin? § 0y * Y 00
Putting cos 26 = u, we find that there are elementary solutions
of degree 2n of the form

=0.

w= 5@ () M HBX oo, (249),
1f
d o 06 m? P _
b B e T B,
......... (250)

This equation 1s satisfied by

m 3 e
Q+pr Q- (n+1+257R2EP g p 1, 20K

with the usual notation of the hypergeometnc function t.

* Comptes Rendus, t. 95 (1882), p. 901 ; Liouville’s Journal, Ser. 4, t. 5
(1889), p. 55. See also Tisserand, Traité de mécanique céleste, Paris (1889) ;
H. Bateman, Proc. London Math. Soc. Ser. 2, Vol. 3 (1905), p. 111.

t This gives a polynomial if either n+1+ gt A —-;—E — m i8 zero or a

2
negative integer.
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It should be noticed that if we write
cos @ =seca, sin @ =< tana, siny=coshw, cosy=—1sinhw,
p=sec?a+ tan’a,
we obtain real wave-functions of the form
u=8"e?? 0 (u)cosm(p—qo) -eorennn. (252),

the variable in the hypergeometric function is now — tan®a.
When m = p the equation for ® is the equation satisfied by the
associated Legendre functions. We thus obtain wave-functions
of the form

u=g" P,m(cos 20) em®+x ........ (253).

Comparing this with the elementary solution of Laplace’s equa-
tion in polar coordinates (7, 8, ¢), we see that if f(r,6,¢) is a
solution of Laplace’s equation f (s% 26, ¢ + ) is a wave-function.
We may thus derive wave-functions from harmonic functions;

. ; . .
in particular, the fundamental harmonic function - gives us the

| 1

fundamental wave-function Py ey We have
already remarked in § 13 that Lord Kelvin’s method of inver-
sion may be extended to wave-functions, it is easy to see that
the result is an immediate consequence of the fact that the
differential equation (250) is unaltered when —(n+1) is
written in place of n.

It is easy to see that there are (n + 1)? linearly independent

polynomial solutions of degree m, for a general polynomial of
degree n contains %— (n+1)(n+ 2) (n+ 3) coefficients and when
this is operated on with Q the vanishing of the resulting

polynomial of degree n—2 gives % (n—1)n(n +1) conditions,

The difference between these two numbers is (n + 1)%
A polynomial solution of degree = is given by the integral

u ='F (z cos a + ysin a + 92)? (2 sin a — y cos a — ct)"? ™ da
0

A set of (n+ 1) linearly independent polynomials is obtained
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by allowing m and p to take the values (0,1...7n). A better
set of solutions is obtained by using the integrals of type

u=j”[(x—iy)e"“ i (e c)]?
0

X [(z+ 1Y) e + i (2 + ct)]" P ™ da.
Polynomial solutions may also be obtained by differentiating

| . : g
the fundamental wave-function & and using generalised inver-

sion®, The polynomial solutions were first discussed by
Cayleyt. Waelschi has recently studied them from a new
point of view.

Ezample. Prove that when = is a positive integer

1.3-..2”4—1 l o T .
e Patoon )= 1, [ [ (conBcon b+ dsin 6 con ) g .

§39. The method of Green§.

Homogeneous solutions may also be investigated with the
aid of Green’s substitution

z=gsinasinBcos¢p, y=ssinasinBsing (254)
z=ssinacos 3, 1t = s cos a '

The wave-equation now becomes

cu 30u 2 ou 1 d*u
a8 et e
1 0 /(. o0u 1 *u
+ s asin BB (511118 @) o s*sin® asin? 3 0¢?
and possesses elementary solutions of the form

u=s"4 (a) B(B)cosm (¢ — ¢b,),

* Cf. F. Didon, Annales de UEcole Normale (1), t. 5 (1868), p. 229; t. 6
(1863), p. 7; t. 7 (1870), pp. 89, 247 ; P. Appell, Rend. Palermo, t. 36 (1913) ;
K. de Fériet, Comptes Rendus, Nov. 17th (1913).

+ Liouville’s Journal, t. 13 (1848) ; Phil. Trans. Vol. (165) . (1875), p. 675.
See also Hermite, Oeuvres, t. 2.

1 Deutsche Math. Verein, Bd. 19, p. 90.

§ Cambr. Phil. Trans. Vol. 5 (1835), p. 395; Collected Papers, p. 187;
Cayley, loc. cit. See also Heine, Handbuch der Kugelfunktionen, Bd. 1, p. 449 ;
Crelle, Bd. 60, 61, 62 (1862—1863) ; E. W. Hobson, Proc. London Math. Soc.
Ser. 1, Vol. 24, p. 67, Vol. 25; F. G. Mehler, Progr. Danzig (1864) ; Crelle,
Bd. 66 (1866), p. 161; C. Neumann, Zeitschr. Math. Phys. Bd. 12 (1867),
p. 116; V. Giulotto, Gior. d. Mat. 39 (1901), p. 162.

=0...(255),
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where
1 d m?
sin B dB ( d/:?) [ )= sin’B:I =y
Cfi E + 2 cot 2 %——% I:n(n+ 2) — vagil;:-al)‘l A=0.
We ma.y thus take
=0, Py (cos B) —c; Qf;: (cos B)
A s [blP  (cosa)+b, Q”H(c o )]}...(256),
where ¢,, ¢,, b;, b, are arbitrary constants.
§ 40. Wave-functions of degree zero.
If Q is a wave-function of degree — 2, the formulae
.0 9Q z 0Q) o0 |
Hemg s =53 T~y m v
02 90 BQ o)
Hy—Z*é'E—ﬁ—a;-, Ey “at ct @' r.(257)
0 08) z 00} oQ
H,:x-@—yé—x—, Ez_“ﬁt_ Gta J

give a solution of Maxwell’s equations.

A homogeneous wave-function of degree — 2 can, of course,
be derived from a homogeneous wave-function of degree zero.
If F'is an arbitrary function of two variables subject to suitable
restrictions, the integral

Oan [Q"F[""Si“ Ssfouesis ] da......(258)

Jo zcosa+ysina+ 1z’

represents a wave-function of degree zero, and when this is

multiplied by % a wave-function of degree — 2 is obtained. We

add here a few particular wave-functions of degree zero:
) 2
7 (i—:%;), tﬁ.n“%, ta.nh—‘%t-, log z;— oyt’ ...... (259).
Electromagnetic fields which are derived from this type of wave-
function of degree — 2 may be generalised by writing « — £ (7),
y—mn (1), z—&(7), t—7 instead of z, y, z, ¢ respectively and
integrating round a closed contour in the complex T plane.
The integrals thus obtained can generally be evaluated by
B. 8
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means of Cauchy’s theorem. Many of the results given in the
next chapter are suggested at once by this method and may
be thoroughly established by a method of direct verification.

It is worthy of note that if we write » in place of ¢t in a
wave-function of degree zero the resulting function is a solution
of Laplace’s equation Au=0. A general solution of Laplace’s
equation of degree zero can be derived at once in this way from
the first of the solutions (259). We thus obtain Donkin’s

formula*®
_ oty $-iy)
u—f(z+r)+g(z+‘r ............ (260).

A similar result is that if
Q=F(2y,2w,t)
1s a homogeneous function of degree — } satisfying the equation
*Q  *Q)  *Q *Q 100
@t o Y or Yow oo

and s be written in place of w, the resulting function is a
wave-function. Now if f(#,9,2) is a solution of Laplace’s
equation, the function

_(),=\/1 f(wm Y z )

w— ct —ct’ w—ct’ w—ct

=0,

satisfies the requirements, consequently we may conclude that
the function

1.4 z Y z
n_ﬁ__df(s_ct, 2, s_ct) ......... (261)

18 a wave-functiont. Other wave-functions may be derived
from this by generalised inversion or by interchanging the
variables z, ¥, 2, ict.

* Phil. Trans. (1857). This solution may be obtained at once from Jacobi’s
theorem that if p, ¢, r are three functions of u which satisfy the equation
P*+¢*+ r2=0 and u is defined by the equation au = zp(u) + yg (u) + 27 (u),
then an arbitrary function of u is & solution of Laplace’s equation, Werke,
Bd. 2, p. 208. See also Forsyth, Mess. of Math. (1898).

+ This result is obtained in another way by Pockels, Uber die partielle
Differentialgleichung Au + k*u = 0. Teubner, Leipzig (1891).



CHAPTER VIII

ELECTROMAGNETIC FIELDS WITH MOVING
SINGULARITIES

§41. An electromagnetic field with a simple singularity
or electron, first model of a corpuscle®.

We shall now derive a family of wave-functions from the
fundamental wave-function 1/s% where

S=[le—E@P+[y—n(®)P+[z— ()P —c[t —T]...(262)
and 7 is a variable parameter, which is at first independent of
@, y, 2, t. Using a method invented by Prof. A. W. Conway t
we consider the integral
_ 1 [f(r)dr
o= 27 & ’

taken round a closed contour in the plane of the complex vari-
able 7. If this contour contains only one root 7 of the equation
§?=0, the value of the integral 1s

_f ()
= E

where

v=E @) @=E)+ 7 (D= n)+E ()= )= (t=7)

and T 1s the root in question.

* I have ventured to use Johnstone Stoney’s term ‘* electron ’’ to denote the
gimple point singularity and Sir Joseph Thomson’s term * eorpuscle ”’ to denote
the elementary charged particle which has been discovered by experimental
work. .

+ Proc. London Math. Soc. Ser. 2, Vol. 1 (1903). Integrals over complex
paths had been employed previously in electromagnetic theory by Sommerfeld
and other writers.

8—2
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This function v vanishes when z=§,y =19, 2={ t=7 and
so the wave-function Q has a singularity which moves along the
curve I' represented by

z=E(7), y=9(7), 2=8(T) ceveeree. (264).
If, moreover, the velocity of this singularity £ is always less
than the velocity of light, it is easy to see that v does not vanish
for any real values of (z, v, z,t) other than those just mentioned.
When the velocity of the singularity Z is always less than c,
there is only one value of 7 less than ¢ for which the equation
s*=0 1s satisfied : z, y, 2, ¢ being supposed to be given.

-To prove this we surround each point £ on I' by a sphere of
radius ¢ ({—7) having E as centre; then it is clear that each
sphere lies entirely within the neighbouring one corresponding
to a smaller value of 7, provided 7<¢ and d€? + d9* + d{%< d™

This shows that one and only one of these spheres passes
through a given point of space and so there is only one value of
7 < t_for which the equation

[¢—=E@OF+[y—n (OF + [z - E(@F =c* (¢ — 7)...(265)
is satisfied *.

Now let a point @ (z, ¥, z, t) move with a velocity less than ¢
along a curve G and let us consider the variation of 7 with ¢.
Ast increases from ¢ to ¢ + dt the radius of the sphere associated
with each point E will increase by cdt and since @ moves a
distance less than c¢dt in the interval df, its new position will
lie within the new sphere associated with the time 7. Conse-
quently the new position of ) lies on a sphere associated with a
greater time 7.

Hence if @ moves in any manner with a velocity less than the
velocity of light, T increases with t.

Things are quite different when the velocity of £ is greater
than ¢. The spheres then have a real envelope and there may
be more than one sphere through a given point in space, also T
may sometimes decrease when ¢ increases.

In this case, however, v vanishes for values of z, ¥, 2, ¢ other
than z=§, y=1,2=¢, t =7,and so { has o’ singular lines

* Cf. A. W. Conway, loc. cit.; H. Bateman, Manchester Memoirs (1910);
G. A. Schott, Electromagnetic Radiation (1912). The theorem is due to Liénard.
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through each point E. These singular lines form a right
circular cone whose axis 18 along £'s direction of motion: each
singular line is described by a singular point that travels with
the velocity of light.

When the velocity of the singularity is less than ¢.we can
obtain a solution of Maxwell’s equations having the moving
singularity by using the potentials*

() 4 _e@ @) g e

:C_

4arv ’ Y7 4y 7 darv 4y
...... (266)
It 1s easy to verify that they satisfy the relation
div 4 + - aa;:) | SRR (267).

When the electric and magnetic forces are calculated from
these potentials with the aid of the formulae

H=rot A, E=————grad¢)... ..... ...(268)

How 0(t, 0) B __° o(r,0)

~ir i) BT 269),
L s S
ov=E"(@=E)+7" (=) + (=)~ (E*+ 1+ L)+
...... (270).

It is clear from these equations that the magnetic force is

* A. Liénard, L’éclairage électrique, Vol. 16 (1898), pp. 5, 53, 106. See also

E. Wiechert, 4rch. néerlandaises (2), Vol. 5 (1900), p. 54 ; K. Schwarzschild,
Gott. Nachr. (1903). The potentials are usually written in the form
e[v]

@:-—-—-—i’—— y A —
) B A )
c ¢
that the quantity enclosed is to be calculated at time r=t—£. Cf. H. A.

Lorentz, The Theory of Electrons, p. 50. To obtain a model of a corpuscle we
must write de instead of e and integrate over a small region.

t These expressions for the components of E and H were communicated to
me by Mr R. Hargreaves in 1909 ; they should be of some historical interest
in connection with the general theory of §5. This was, however, the outcome
of some independent work. Cf. Proc. London Math. Soc. (2), Vol. 10 (1911),
p. 96.

, where the square bracket indicates
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perpendicular to the electric force and also to the radius
from the effective position of E; for we have the relations

v—=a—§ v—=y—1

o < (271).
,,§1=3_.§ vgj=—cz(t-—-r)

0z ’ ot

It also follows from these relations that = satisfies the char-
acteristic equation

%)" i @;;)' e (g_:)g =%& (é) ......... (272).

This is to be expected because, as Jacobi has rerharked * for the
case of Laplace’s equation, the argument = of an arbitrary func-
tion occurring in the solution of a partial differential equation
must satisfy the partial differential equation of the character-
isticst.

To prove that there is a constant charge e associated with
the singularity of our electromagnetic field we shall calculate
the integral of the radial component of E over a sphere having
the singularity as centre. We have to evaluate the integral

0c0r Oocodr oOcor 1 door
f awaa: ayayJ”aE&"&E"a?Ei)dS’

which is easily transformed into
_cﬁ cﬂ_f’!_ﬂ'!_g’l
= [[F== as.

Transforming the axes so that the axis of z is in the direction
of motion of the singularity, we may put

v=r(wcosfd—c), dS=1r'sin0d0dd, E*+7"*+{1=22
and our integral becomes

f f"” (c2—+*)sin 0 dOd¢
(vcos 6 — c)

=

* Werke, Bd. 2, p. 208; Crelle’s Journal, Bd. 36 (1848).

t For the general theory of characteristics see Hadamard, Propagation des
Ondes (1903), Chapters vm. and vim.; J. Coulon, Comptes Rendus, t. 128
(1899), p. 1386 ; A.V.Bicklund, Math. Ann. Bd. 13 (1878), p. 411 ; J. Beudon,
Comptes Rendus, t. 124 (1897), p. 124.
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Prof. E. T. Whittaker* has calculated potentials T', II from
which 4 and ® can be derived by using (7). He finds that
I1=(0,0,S), I'=(0,0,N),

where

47S = e sinh™! — i - N = —etantd =1
Va— 7+ (y—y Py

dmK =—elog¥(z —EF + (y—n)

It may be verified without difficulty that the functions are
wave-functions. This result is a particular case of the
following general theorem.

If f (=, y, 2) is @ homogeneous function of deqgree zero satisfy-
wng Laplace’s equation Au = 0, the function
Q=flz—E@), y—n(7), 2—=&(7)] ...... (274)

18 @ wave-function.

§ 42. The electromagnetic field due to a moving doublet.

Let us now derive an electromagnetic field by superposing
two electromagnetic fields of the type just described wherein
the singularities move along the two neighbouring curves

z=E(7), y=mn(7), z=8(7),
z=E(m)tea(r), y=n(n)+eB(n), z=¢(m)+ey(n)
e being a quantity whose square may be neglected.
If 7, is defined in terms of , v, z, ¢ by the equation

[2= E(r) —ea ()] +[y —n (r)) — R (x)]
+z—E¢(m)—ey(r)]P=c({t—7)
and 7, = 7 + €f, we easily find that
B+a(@—E)+By—n+y—=0.
Also if v, is the quantity corresponding to », we have
n=v+elbvo+a @—E)+B (y—m+7 (=
- aE'—B'n'—fy;"] =v+e€ [9va‘+p], say.

Now it~ A =f@inibe’ (@) 5 6

47y, 4,

* Proc. London Math, Soc. Ser. 2, Vol. 1.
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we find that
Qo= 1[4~ A= L5 v’ ()= pE' (x) +v0F" ()60 ()]

éec
4qrv?

o= [0y -
But
va' — pE' + vOE" —vlcE =n' (y —n)—m'(z2—&)—cta’ (t — 7)
+ca—nn—¢m—olat—1)—n(y—9n)+m(z—1{),
where =B —wy', m=nf—al’, n=an’—pBE.
Hence we may write

ROk 15]
#= e [2e () 2y () C)]

The electromagnetic field derived from these potentials is due
to a moving electric doublet. It should be noticed that we
have the relations

[p + vOo]

...(275).

la+mB+ny = 0}

N (276).
We can write down by analogy the potentials for an electro-

magnetic field due to a moving magnetic doublet. They are

4= 4 [% (?3) _a% (%) N 58? (%ﬂ A 2TT),

pe [ o (1, 0 [my, 0 /7,
P [55 (;) e (7) : a‘;(';)]
where Lo+ Mo By + Moo =0 }
LE + men’+n8" =0
and a,, Bo, Yo, b, Mo, N, are functions of . When a, B, v, [, m,
n are functions of r which are not connected by the relations
(276) the potentials (275) can be used to construct an electro-
magnetic field which must be regarded as that due to an
electric doublet and magnetic doublet which move together.

§ 43. Electromagnetic fields in which singularities are
projected from a moving point or curve and travel with the
velocity of light.

We shall now develop some mathematical analysis of con-
- siderable interest whose physical significance is not yet fully
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understood. At first sight it seems appropriate for a discussion
of an emission theory of light in which waves in the aether are
either produced or guided by small particles which move in
straight lines with the velocity ¢. After further study I have
thought it may be useful for a discussion of the question “ Has
the aether a structure ?2”

This question has already been raised by Sir Joseph
Larmor* and Sir Joseph Thomsont. The latter has, indeed,
developed a theory in which the aether has a kind of atomic
structure of which the elements are Faraday tubes}. In the
most recent form of the theory it is assumed that the electric
and magnetic forces are zero outside the tubes and that a
certain amount of work i1s performed when one corpuscle
crosses a tube of force attached to another. In an application
of the present analysis to Sir Joseph Thomson’s theory the
aim would be to build up his discontinuous electromagnetic
fields from electromagnetic fields with certain types of sin-
gularities, making use of discontinuous definite integrals. To
illustrate the possibility of doing this it will be sufficient to
mention the definite integral

2
V=f o +@ =§1r z>0,
z

o +iwwcosa+ysina 7 r

=0 z< 0.

The electrostatic field derived from the function V is zero on
one side of the plane z=0 and has the character of the field
due to a point charge on the other side. It should be noticed
that the integrand is a potential function which becomes infinite
along the line 2=0, zcosa+ysina =0, and as a varies this
line sweeps out the plane of discontinuity of our electrostatic
field.

To generalise this result we must endeavour to solve the

* dether and Matter (1900), p. 188. The question as to whether the aether
is continuous or discontinuous is discussed by H. Witte, 4nn. d. Phys. (4),
Bd. 26 (1908).

t Presidential Address, British dssociation Reports, Winnipeg (1909).

¥ Recent Researches on Electricity and Magnetism ; Electricity and Matter;
Phil. Mag. Vol. 19 (1910), p. 301, Oct.—Dec. (1912). See also N. R. Campbell,
The New Quarterly (1909); Phil. Mag. Vol. 19 (1910), p. 181.
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general problem of finding electromagnetic fields whose
singularities lie on moving curves*.

A partial solution of this problem may be obtained by con-
sidering first of all the field represented by equations (10)
.of § 5. We may obtain a suitable pair of functions &, B by
solving the equations

da\? |
(3

e+ G -+

(af)*‘(ag)*(ag) (Bt)z} """ (a2

oaaﬁ_l_aaaﬁ da 0 16&68
oz 0x ' 0y 0y 0z 0z c*Bﬁtﬁj

for clearly
(a8 _2udpy
dy 0z 0z 0y

-6+ GG -G % 22
(G- G 6@ CE%-2 )

. _1(m28_oudey
c*\ox ot ot oz
Two other equations can be obtained in a similar way and so it
follows that if we make a suitable choice of an ambiguous sign
which is involved in the definitions of the functions a and
B, the equations (10) will be a consequence of equations (279).
A more general electromagnetic field is obtained by
multiplying the components of M in equations (10) by an
arbitrary function f(a,/B). Since the components of M are
necessarily solutions of the wave-equation it follows that, if
g =1/f, an expression of the type
062 40

1s a solution of the wave-equation (8).

* The aim must be not only to obtain a complete generalisation of Green’s
equivalent layer which will be applicable to the case of a moving surface, but to
obtain, if possible, an analysis of the electric and magnetic current sheets which
are required. Cf. p. 29.

[ ]
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The electromagnetic field which has just been obtained
generally has singularities at space-time points for which
f(a,B) is zero. Let uswrite f=u(,y, 2,t) +w (z,y, 2, t) where
» and v are real when z, v, 2, ¢ are real ; then the points for
which f=0 lie on the moving curve, defined by the equations
u=0,v=0. Now it follows from (279) that f is a solution of

the equation
G+ G+ (&) -5 ()

and consequently
55 - &) @)+ s (&)

ou\? \ 2 ou\?
(B_w) * (3_y) (Bz)
udv  Budv Gudv_10udn
oz oz  oyody 0z0z c*otot”
Now let F (u,v) = 0 be the equation of a moving surface which
always contains the moving curve, then if

oF oy _ oF ou _OFo oFou
“wow owow 1T oudy ovoy’
_oF% oF ou oF ov oF ou )

S Mmooz’ T wot’

|Ge) + o) + o) -5 o)
| Ge) + ) + Ge) +5]

= ( a_'E'__f aﬁ)’_l.. :ra_{'_ aﬁ)’ ?_I_?__ ?E)g.
7% oy o Poz (P oy 1%z)
consequently
oF oF oF\* 1 (0F\?
() + (&) +G2) +5(5)-
This means that the component velocity of the surface F=0 in
the direction of the normal at (=, ¥, 2, ¢) is less than the velocity
of light, it is equal to the velocity of light only in an excep-

tional case. Since this is true for any surface that always
contains the moving curve it follows that the curve can be

we have
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regarded as moving with a velocity less than that of light. It
should be understood that the curve generally changes in shape
as it moves but this is not necessarily the case.

It often happens that the moving curve f=0 can be
regarded as made up of the instantaneous positions of a series
of points which move in straight lines with the velocity of
_ light. To see this let us suppose that a function ¢ (a,B3) can
be found such that ¢ is areal function of #,y,z,t. It is evident
from (279) that

o0p , o2, o120
Oz o0x oyoy 020z c*0otot’
and this means that if a point starts from (z,,z,t) and moves
with the velocity of light along a straight line whose direction
cosines l,m,n are proportional to %;—t, %—i, %q—:, the function
J will remain constant along its path, and consequently if the
point once lies on the moving curve f=0it will always lie on
this curve. It should be noticed that the function ¢ and its
first derivatives with regard to @, v, z, ¢ all remain constant along
the path of the moving point.

The case in which no such function ¢ exists may be of
importance in future developments of the subject; this case
has not yet been discussed in any detail.

Two methods of solving equations (279) are known, but
they are not really distinct. In the first method the functions
a, B are defined by equations

[2=E@BAF+ [y —n (. B+ - (@BF=c[t—7(aB)F

Lo B) [« —E(, B)] +m(a, B)[y — 7 (2 B)]
+n(eB8) [e— t(@ B)]=cp(@ B[t — (@ 8)]

where £ 9,8 7,1, m,n, p are arbitrary functions satisfying the
relation
B+ md+n= ¢ ph.
The functions @, 8 may evidently be replaced by two other
functions a’, B’ defined by equations such as

a'=F(2,B), B'=G(p);

consequently we may without loss of generality introduce a
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further relation connecting the functions £, 9, §,7,l,m,n,p. The
relation we shall choose is

1% . T

BB +maﬁ+n 38 c”paﬁ ............ (281).
When a and B are defined in this way we can obtain the simple
specifications of two types of electromagnetic fields; one type

is obtained by writing
0(a,B)_ , 19(aRB)
f(a,B) M, = YO =+ o D) (282),
and two similar equations. A second type of electromagnetic
field may be derived from the potentials*

A,=i§9(°"ﬁ) PO T B)

e o=E 283
4,="89B g @B | V=
PS—QR’ PS—QR

where

=% E)J+a—?(y—n)+a—§(z—;)—oa§{(t—v)

Q- §(w—f)+ AU+ 55G= D= T@=)

d
R=1 E+mav gg c*p g; l(-?? &)

- (3/—97)— —(z—-§)+ c=‘f’£(t—-r),

3P

Itis easy to see that these potentials satisfy the rela.tion (267).
To prove that they are wave-functions we remark that

A= F 0k | S (= B= 1y - "2)}

+ Blne-p-16-0)-¢P (pe-5- z(c—-r)}]

[a'm 0(2,8) , on 0(x8) 3? a(a, B)]
0B 0(x,y) 0B 9(x,2) 0B d(atb)

Now it has already been proved that an arbitrary function
of a and B multiplied by one of the Jacobians represents a

* We can also call these potentials L., L,, L,, A and derive an electro-
magnetic field from them by the method of § 4.
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wave-function, hence 4, is a wave-function. In a similar way
it can be shown that the other potentials are wave-functions.

It should be noticed that the electromagnetic field specified
by the potentials (283) is conjugate to the field given by (282).
To prove this we observe that

0
A,= (R e i)—ua—a+vi8 sa
= —QR Yoz Yoz %W

and there are similar expressions for A,, A,, ®. Hence for the
electromagnetic field specified by the potentials (283), we have
0 (u, ot)+8(v B) 20 (u, ) " 10 (v, B)
o (v, 2) B(y,z) co(z,t) " cd(z,t)’

The relation (3) i1s now seen to be satisfied in virtue of two
equations of type

2(e,8)2 (1,0) , 2(%8)2(w,0)_ 3(%8)d (1 a)

0(y,2) 0(x,t) 0(z2,2) 0(y,t) O(z,y) 0(z10)

- 0(a,B) 0 (y, a) +a (a, B) 0 (u, @) . 0(a,B)0(u,a) _
0(z,t)0(y,2) 0(y,t) 0(z,2) 0(2t) 0(x,y)

Ml’

It should be remarked that the vectors £, H in both fields
generally become infinite when PS— QR=0. This equation
is certainly satisfied when (z, y, 2, t) lies on the moving curve
defined by the equations

cz=E(e,B), y=n(a,B), z2z=¢(a,B), t=7(a,B)...(285).

In some cases this curve may reduce to a moving point,
as for instance when &, 7, {, = are independent of .

It is evident that the quantity PS — QR is usually zero for
space-time points which do not lie on the moving curve (285).
If, however, we regard I, m, n, p as complex functions of the
type ¢ (a, B) + 1 (o, B), the equation PS= QR will generally
give rise to two distinct equations connecting z, y, z, {, when
we equate real and imaginary terms on both sides. Hence
all the real singularities that are defined by PS=@QR will
generally lie on one or a number of moving curves.

So far we have said nothing about the choice of a suitable
pair of roots of equations (280). In general we cannot expect
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them both to be real and it is difficult to lay down rules which
will enable us to pick out just one a and just one B in all cases.
To proceed further we must consider some particular examples;
before we do this, however, it will be worth while to point out
that if we assign given complex values to a and 8 the equations
(280) will generally determine two real points z, y, 2, ¢, but
in special cases they may give oo! space-time points which can
_be regarded- as-the -consecutive positions of a moving- point.
Thus we have an interesting specification of the real points
in space by means of two complex quantities. If we assign
a complex value to B the corresponding space-time points
@, y, 2, t generally lie on a moving curve which travels with
a velocity not greater than that of light. Hence in the para-
metric representation of z, y, 2z, ¢ in terms of the complex
quantities a, B the loci a=const., B=const. are generally
moving curves which may alter in shape as they move but
never travel with a velocity greater than that of light.

Matters are somewhat different if a or some function of
a and B is always real when z, ¥, 2, t are real. This case will
now be illustrated by a particular example.

Examples. 1. Prove that the ratios of the Jacobians

0(a,8) 9(a,B) 2(ap)
d(y,2)’ d(52) 0(xy)
are functions of a and B.
2. Prove that the ratio @/S depends only on a and S.

3. Obtain the general solution of equations (279) by taking «, ¥, a, 8
as new independent variables.

§ 44. Projection of singularities from a moving point,
second model of a corpuscle.

Let us now suppose that &, 9, 'r are independent of 8 and
that r=a. We may then define a uniquely by restricting
it to be real and introducing the inequalities

| (%S’ i (gjz) e (g_g )’ < agt ... (286).

To obtain a single value of 8 we may assume I, m, n, p

to be linear functions of 8. Consequently we may put
B=§o(m" )+ mo(y—n) + 1, (2= &) — po (t — @)
h(z—E)+m(y—n)+m(@z—0)—cp(t—a)

..(287),

St
fo

i £
vV
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where [, [,, etc. are functions of a which satisfy the equations
loz 4 ,mon n & nol = capos }
L2+ m?® + g = op?
Ll + mem, + g, = 02P0P1
It is easy to verify that the wave-equation is satisfied by
a function of type

Q———g(a,ﬁ),

thus we have a generalisation of the theorem of § 41.

We shall assume that [,, m,, 7, p, are real and that some
or all of the quantities 4, m;, n,, p, are complex. It is easy
to see that if we assign a real value to a and a complex value
to B the corresponding space-time points (z, y, z, t) can be
regarded as the successive positions of a point which starts
from the point

z=§E(@), y=7n(a), z=¢(a), t=a...... (289)
and moves with the velocity of light along a straight line
through this point. There is clearly just one line through
this point for each complex value of B and vice versa. If we
consider all the points in space at a particular time ¢ we can
specify each point uniquely by a real parameter a and a real
or complex parameter S.

Let us now consider the electromagnetic field which is
specified by the potentials

i mf nf cpf
A= =5 4, = 7 A= P P = P
where = Bl — l,, m = Bm, —m,, n=8ny — e, p=LBp,— Po and
f is an arbitrary function of a and B. These potentials are
derived from (283) by putting @ = 0.

After a long calculation we find that the component of the

electric force along the radius from (§, 7, §, @) to (z, g, 2, t) is

L [op-1Z-nZ-n%].

TP oa e "o

To obtain an electromagnetic field in which there is a
constant electric charge associated with the singularity
(€ 7, & ), we assume that p,=p,=f=1 and that
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l,g—g+ m,g—ﬂ+n,g—£= c?

et o+ mose = (o) *+ o) + (50

The expression for the radlal electric force then becomes

j.}; [C’ il Baiffib e C”] :

Comparing this with the expression for the radial electric
force in the case of an electromagnetic field with a simple
singularity (&, », §, 7), we see that there is a constant electric
charge 47r/c associated with the singularity (£, 7, &, a).

It should be mentioned that the second of equations (291)
is a consequence of the other equations satisfied by l,, m,, n,.
To prove this we take the axis of # in a direction parallel to
the velocity of the singularity (€, 5, £) at time a. We then

...(291).

have for this msta.nt 817 gg 0. If, moreover, we choose the

axis of ¥ in such a way that n, = 0, we may satisfy the first
of equations (291) by writing

0§

a~&=ccost9, lL=csecl, m=1ctanf, [,=ccosb,
me=0, n,=+csiné,

and then it is clear that the second of equations (291) is

satisfied. )

) Let us now write [l,=ccosf, my=0, #,=Fcsiné,

ly=csecl, my=—1ctanf, =0, z—§(=X, y—9n=7%,

z2—¢=1Z, t—7=T; then it is easy to see that if

S=cT-LX-mY¥Y-mZ S=cT-L,X-mY-n2

U=cT-1,X-m Y —n,Z, U=cT-1,X-w,Y—7,2,

we have cos?’@SS=UT, U+U=-2P.

Now since 8S=U it follows that the potentials (290) become
infinite when U =0, 1.e. when

lo fmo & 1"
When a is given these equations are satisfied by a point which
starts at (£, », {, @) and moves with the velocity of light along

B. : ' 9
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a straight line whose direction cosines are proportional to
lo, My, . This line makes an angle @ with the direction of
motion of the point (&, #, ¢, a).

The electric and magnetic forces in the electromagnetic
field derived from the potentials (290) are generally infinite
for U = 0 and so our field possesses a number of singular points
which are projected from the moving point (&, 7, {, a) and travel
along straight lines with the velocity of light. It should be
remarked, however, that if we retain only the real parts of the
potentials (290), the projected singularities disappear as soon
as the singularity &, 7, {, 2 moves in a straight line with uniform
velocity and [, m, n are independent of a. The field then
becomes identical with that derived from Liénard’s potentials,
To prove this we shall show that, on the above assumptions,

the field derived from the potentials

A-ap:Rl—EJ A90=Rm 7 H

P
42=R" ;f , warZol . (292),

is everywhere null, R being used to denote the real part of a
quantity following it. In the first place we remark that

we Nnow ha.ve
R=1IE"+my' +nl'—c'p=§"+9""+ '~

(logP) f: a“ L (@ —E2—n" =0,

Hence 2A,,,°=2R[P (RB +S B ’)],

Sy B U J

S L LS YN_2 2L aogP).
Pax(S)+Pax (s) R
U, S8 a

U d U
——palg - «a—w(logP).

Now since U + U + 2P =0, it follows that U/P is a function of
U/U and s0 4,%, 4,0, A, — % @0 are the derivatives of a single
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function, consequently the electromagnetic field derived from
these potentials is everywhere null.

Summing up our results we can say that when the
conditions (291) are satisfied, the electromagnetic field derived
from the potentials (290) contains a point charge which moves
with a velocity less than that of light; attached to this point
charge there is a certain curve which becomes the locus of
a series of moving point singularities whenever its form differs
in any portion from a straight line or its direction changes.
The form of the curve at any instant is subject to the condition
that the points of the curve can be regarded as having been
projected from the moving charge at different instants, the
direction of projection being partially determined by the law
cos 6 = v/c where v is the velocity of the point charge, and 6 1s
the angle between the direction of projection and the direc-
tion of motion of the point charge. R

We may now obtain a new model of a corpuscle by con-
sidering an aggregate of elementary fields of the type just
described, the point charges and exceptional curves being
nearly coincident. If we write de for the charge associated
with one of the elementary fields we may obtain a field in which
the electric and magnetic forces are finite by a suitable process
of integration. According to this idea a corpuscle has a kind
of tube or thread attached to it. When the motion of the
corpuscle changes a wave or kink runs along the thread; the
energy radiated from the corpuscle spreads out in all directions
but 1s concentrated round the thread so that the thread acts as
a guiding wire. This theory of radiation is in some respects
similar to that given by Sir Joseph Thomson in his theory
of the Rontgen rays*. It is in accordance with his idea that
the energy may be concentrated round certain points of the
wave-front.

The following figure indicates roughly the changes in
the form of a tube which always lies in one plane and is
attached to a corpuscle performing a simple harmonic motion ;
it is seen that a type of progressive wave travels along the tube.

* Electricity and Matter, London (1904) ; Phil. Mag. Vol. 19 (1910).
9—2
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In Sir Joseph Thomson’s theory of the Réntgen rays the
kink in the tube of force becomes longer and longer as it
recedes from the charge. A similar remark applies to the

oscillations of the thread attached to our point charge. This
phenomenon may be due entirely to the fact that the tube of
force and thread extend to infimity. If we suppose that the
tube or thread does not extend to infinity but ends at some
other point charge, the circumstances of the motion will be
different. If in this case we treat the thread as a singular
line of an electromagnetic field and suppose that it is given by
an equation of the form

f(@B)=0

where a and B are functions which satisfy (279), we must
conclude that there is no function of type F(a, 8) which is
a real function of z,y, z,¢ ; for if this were the case the moving
thread would be the locus of points travelling in straight lines
with the velocity of light and would consequently extend to
infinity.

Electromagnetic fields with moving point charges joined by
singular curves which do not extend to infinity have not yet
been obtained, but-I-think-there is some hope of deriving them
by the general-methods-of § 43, -when the quantities a, 8 -are-

both-complex:-

Ezamples. 1. Discuss the properties of the electromagnetic fields
that can be derived from the potentials

A—f'—‘+ll, 4,="14T, 4,140, o P B
!___ll zl l'__ml ,Zi'l l__nl 0 7_21 !_cpl __cf—)l .
Ajmp=t h=a =% g YT a T

respectively and determine the lines of electric and magnetic force.
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2. Prove that if a and B are defined as in § 44, the electromagnetic
field specified by the equations (282) is conjugate to the field specified by
the potentials (290), or to the field specified by Liénard’s potentials.

§45. Electromagnetic fields with singularities moving
with velocities greater than that of light.

Some of the preceding analysis holds and provides us with
solutions of Maxwell’s equations when the velocity of the
primary singularity (£, », §, 7) is greater than that of light, but
in the case of a field specified by potentials of type (266)
a transition from a velocity less than that of light to a velocity
greater than that of light does not seem to be physically pos-
sible on account of the occurrence of infinite values of the
electric and magnetic forces in the critical case. Moreover, it
is difficult in the general case to give a rule which will enable
us to pick out just one root of the equation (265). An interest-
ing type of field may, however, be obtained by a process of
summation over some of the roots of the equation *.

The case of infinite velocity is of some interest, for then
we obtain electromagnetic fields with singularities along a
fixed curve at a given instant of time. The following example
indicates that the case in which the primary singularities are
imaginary may be associated with another case in which they
are real.

Consider the two equations

(z—acosa)+ (y — asin a)® + 2= c*t*,
2* + y*+ (2 — ar cosh B)* = (¢t —a sinh B)?,
and write in analogy with (263)
v =acosa(y—asina)— asina(z—acos a)=a (y cos a —zsin a),
v, =1a sinh B (z — va cosh B8) —sacosh B (ct —1a sinh B)

= 1a (z sinh B — ct cosh B).
We evidently have

W' =4a* (@ +3) — (2 + y* + 2* — *F + @*),
4o = 40* (2 — ') + (2 + Y + 2 — 0 — @)},
hence V2+V] =0. .

* A more complete discussion is given in G. A. Schott’s Electromagnetic
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It is easy to verify that the function

u="f(®8)

i8 a wave-function and that the functions a, 8 are suitable for
obtaining electromagnetic fields by the method of § 5; they are,
in fact, the functions considered in § 36.

§ 46. Second solution of the fundamental equations.
The fundamental equations (279) are also satisfied when
the functions (a, B) are defined by the relations
@B+ m (6. My +n(ef)s—dpB)ttoH=0)
L(wB)a+M(%B)y+N (@ B)z— P« B) t+G(3,8) =0

where [, L, etc. are arbitrary functions satisfying the relations
B+m?+nt=cp’, L+ M+ N:=
IL4+mM+nN =cpP............... (294).

If now
Bl Bm an op , 09
A= + Y 5= — %t 3 + 2’
Bl Bm an Bp o9
t==
‘Yot ot op

oL, oM N _ 0P 0G

s T 3 T 2 50 06°
GOL 8M+zF£V itap oG
*BTVB T8 Bt op’

we can derive an electromagnetic field from the potentials

Lof Yo Mof A Nof & _cPaf

Me—ur’ TV Am—w’ T =

o=

Aw — v’ AT — v

where £ is an arbitrary function of a and (3, and

(3L, M ON . oP
318 T T S
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To verify that these potentials satisfy the wave-equation and
the relation (267), it is sufficient to remark that

PRI LICY BCICT M STV R
T 9BO(z,y) 0BO(x,z) 0B (x1)

_toMo(a,B) 10No(a,B) . 0P0d(a B)|

=t B o) tcBay, )L B a(y, 2)
When similar expressions are obtained for 4,, 4,, ® it is clear
that the relation (267) is satisfied. Other types of electro-
magnetic fields are obtained by writing a instead of 8 in
equation (296) or by writing I, m, », p in place of L, M, N, P
in (295) and (296). If 4,, 4,, 4,, ®" are the potentials

obtained in either of these ways we have clearly

A A+ A, A+ 4,4, — PP’ =0......... (298).

I have noticed that this relation is often satisfied by the
potentials of two conjugate fields.

Another type of electromagnetic field may be obtained
by the method of § 5.

Some particular cases of the preceding theorems may be
deduced by contour integration. To illustrate the method let
us suppose that I, m, ... L, M,... are functions of a parameter a
which satisfy the relations (294). If we regard these quantities
as independent of z, y, z, ¢, the contour integral
_ 1 (F(Lz+ My+ Nz—cPt+ G, a) da

2w lz +my+nz—cpt+ g
will represent a wave-function. Now let us suppose that the
contour encloses only one root of the equation

zl (&) + ym (a) + zn (@) — c*p (a) + g (a) =0 ...(299),
and that the numerator is finite and single-valued within the

contour and on its boundary, then by Cauchy’s theorem the
value of the integral is generally

..(297).

|4

where B = oL (2) + yM (a) + zN (a) — %P (a) + G (2)...(301)

and A is defined in the same way as before.
We have then the result that the function (300) satisfies
the wave-equation. This is a particular case of the general
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theorem of §43 and is a generalisation of a theorem due to
Forsyth*. In Forsyth’s work the functions L, M, N, P are
assumed to be the derivatives of I, m, n, p with regard to a.
The functions a, B are evidently particular cases of the func-
tions that have already been defined and so may be used to
construct an electromagnetic field by the method of §5. An
interesting electromagnetic field may also be derived from the
potentials
A )(:"), Ay=ﬁ;{‘), Az=’-’%?, =P (309);
it is easy to verify that the relation (267) is satisfied. The
case in which I, m, n, p, g are all real functions of a is un-
interesting because then our potentials become infinite for
o * space-time points which lie in co! planes. When, however,
l, m, n, p, g are complex functions of the type ¢ (a)+ ) (@),
the singularities of the electromagnetic field generally lie on
a moving curve.

It should be remarked that when a and B are defined by
the equations (299) and (301) a function of the type

Q=F(aB)

satisfies the wave-equation, and at the same time satisfies the
differential equation

() + o) + G) -5 (50)

This is a generalisation of a theorem due to Forsytht and
Jacobif{. A solution of Maxwell’s equations may be derived
from the potentials

AL =1 (a), 4 =me(a), A'=mn,(a), " =cp,(a)...(303)

if 1oy 2 T o
oa 0z
ol om on , Op __
loa—a+m05+noa—a—cp.,a—& 0.

* Messenger of Mathematics, Vol. 27 (1898), p. 138. The theorem is
obtained in another manner by Forsyth.

+ Loc. cit.

I Werke, Bd. 2, p. 208.
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One way of satisfying these equations is to put
L=l my=m, m=n p,=p.
*  An interesting type of wave-function may be obtained by
a generalisation of a method due to Schottky *.
Let
a, (@) =[l(a)da, b,(a)=[m(a)da, c,(a)=/n(a)da,
do (@) = [p () da, e(a)=[g(a)da,
then Q = za, (a) + yb, (@) + zc, (a) — c?td, (a) + €, (2)
18 a wave-function whose derivatives with regard to z, v, z, ¢
are all functions of the single variable a. The function a is
supposed to be defined by equation (299).
Ezample. If l=1-8a, m=8+a, n=1i(8—a), cp=1+3a, g=a? where s

is a constant, the function A vanishes when (z, ¥, z, ¢) lies on the moving
curve
_1—g® 32—t 28 s(s2—2%)—28
=iFat e SS1e%t T age
A point for which » is constant moves in a straight line with the
velocity of light.

z=2u.

§ 47. A wave-function with a fixed curve of singu-
larities.
Let 7 be defined in terms of z, y, z by the equation
ar=ap (1) + yq (7) + 27 (7)
where p*+¢*+7*=0 and a is a constant.

Let v=a—ap (t)—yq (t)—2r (1),
6=Cti i +yq,+2’f‘%’
( P’s e q'a 4 r’s)

then =-}’- f(0,7) is a wave-functiont.

A solution of Maxwell’s equations may be derived from the
potentials

i
4,=P70,, 4,=1f0.7, 4,=1f@7) @=o0.
* Berlin. Sitzungsberichte (1909), p. 1152.
+ This result was derived from a theorem given by Prof. Forsyth, loc. cit.
If we put =8, r=a the functions a, 8 can be used to obtain an electromagnetic
field by the method of § 5. These functions are, of course, particular cases of
the functions defined at the beginning of § 46.
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To obtain a real electromagnetic field we must retain only
the real parts of these expressions.
It can be shown by putting

P =P (u,v) +iP; (v, v), g =G (u,v) +1Q, (u,v),
r= R, (4, v)+ 1R, (u, v), a=A4,(u,v)+24,(u,v),

that the electromagnetic field has generally a fixed curve of
singularities. In the special case when

p=1—7% q=2r, r=t(1+7), A,=h, A=k
the fixed curve is the circle 2+ 22=14k* y=1%h

§ 48. Cylindrical wave-functions with moving singu-
larities.

If we define 7 in terms of z, y by the equation

[c—E@P+[y—n(@)P=c(t-1)
and define ! (7), m (), p (1), so that
LE (1) + mn’ () = ¢p,
B +m? = ph,
the function v=Il(z—&)+m(y—9)—cp(E—7)

1
is such that i ()

is a wave-function.
In particular, if £=9=0, =1, m=1 p=0 we obtain
Poisson’s wave-function

1
— Y -
'Vwiiyf(t c)'
Another interesting result is that if ¥ («, y, t) is a homo-
geneous function of degree 4 which satisfies the wave-equation,

the function
Q=F(.’8—E, Yy—n, t—'?')

also satisfies the wave-equation.
If c=§(M)(@-E+7 (M) (Y- —c@E-7),

the function

1
0
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satisfies the wave-equation only when &2+ 92=¢% When
vz is written in place of ¢t these wave-functions can all be
regarded as solutions of Laplace’s equation.

EXAMPLES.

1. Let
imaf ()= [[1 @E@d, =)= [ F @@ ds

=y [ on@ds, =)~ [ 7

where 7 is defined in terms of z, ¥, z, ¢ by means of equation (265) and the
inequality r<¢. Prove that if an electromagnetic field (E, H) is such
that

10r (10r,, _ .0r .Or or (Or or or
m(z a?”x“@”-i‘a”v)%:(% oyt )

with similar equations, where = H +1E, then an electromagnetic field in
the variables 7, y, Z 7 can be found such that we have identically

M.d (y, 2)+ M,d (z, )+ M,d (=, y) Fic M.d (, t)

B B _ FieMyd(y, )FieM,d (s, 0)
=M dG 0+ H,d G D+ H,dE7) B
Fic M,d(z, 0 FicH,d (3, ) FicH,d G 1)

where d(y, z) denotes dydz—dz8y and dz, 8z, etc. are two independent
sets of increments of the variables.

2. Prove that if f’(r) is always positive the variable Z increases with &
Show also that if (g’ R E) 7) correspond to (§, 5, ¢, 7), the pOint (E! 7 E)
moves along a curve T with a velocity less than that of light and that the
velocities at two corresponding points of I" and T are the same in magnitude
and direction.

3. Prove that the conditions imposed upon the electromagnetic field
in Example 1 are all satisfied in the case of the field specified by the
potentials (266). Hence show that the transformation transforms the
field of an electron moving along the curve I' into the field of an electron
moving along the curve T.

4. Prove that the conditions of Example 1 are also satisfied for any
electromagnetic field of type (282) where a and B are defined as in § 44.
Hence show that a field of this type is transformed into another field
of the same type associated with the curve T.
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5. Prove that the conditions of Example 1 are equivalent to only two
conditions which imply that the field (£, H) is conjugate to any electro-
magnetic field of type (282).

6. Prove that electromagnetic fields of types (302) and (303) can be
transformed into fields of the same general types with the aid of the
transformation

.‘Z.—'=.‘8+ffl(8)f(8) ds, 2=z+ffn(s)f(s) ds,
g=y+ [ mr@ds  i=t+ [P0 o

7. If r be defined in terms of , g, z, ¢ by the equations
[.‘Z;'- £ (a, B, 1')]2+[3f-'? (a, B, 1.)]2_'_[3_, {(a, B, 7)P=c2 [t"' 8 (a, B, T)]gi
e (=D =)+ X (e )=t~

=0+ G-+ L - 0= 2 -,

it satisfies the partial differential equation

&) +G) +E)-36)-
8 If x=pcos¢, y=psing, ri=al4yi+l

72— qa?
2ap ’

the function [22+2+ (2% a)?]™ L) flp+4)]
satisfies Laplace’s equation.

and sinh =

9. Prove that if in the last example we write

f [¢+f¢]=‘mf:}"ga

and integrate with regard to « between 0 and 2= we can obtain a potential
function which is zero outside the tube | ¢ + 2y |=£.

10. Particles are projected in certain directions from the different
positions of a moving electron and travel along straight lines with the
velocity of light. Prove that if the law, according to which the direction
of projection varies with the velocity of the electron, be suitably chosen
the particles will at each instant form a line of electric force in the
electromagnetic field due to the moving electron.



CHAPTER IX
MISCELLANEOUS THEORIES

§49. Kirchhoff’s formula and its extensions.

An important solution of the wave-equation is embodied in
Kirchhoff’s formula* which is usually interpreted as the mathe-
matical expression of the principle of Huygens. This formula
has been extended by Lovet and Macdonald} so as to give
a representation of an electromagnetic field outside a surface
in terms of the electric and magnetic forces tangential to
the surface. In Macdonald’s formula 1t is the time derivatives
of E and H that are so expressed. Tonolo§ has given a
formula in which £ and H are expressed in terms of their
surface values. The formulae are given in examples 3—5 at
the end of this chapter.

When the surface is a sphere Kirchhoff’s formula reduces to
the formula of Poisson|| (Ex. 5) which enables us to find a wave-
function which satisfies the conditions

ou

u=f(z,y,2) ot =9(x, Y, 2).

Poisson’s formula may be used to derive the theoremq that the
mean value of a wave-function u over a sphere of radius ¢t at
time ¢ is equal to the mean value of u at the centre of the

* Berlin. Ber. (1882), p. 641; Wied. Ann. Bd. 18 (1883) ; Ges. Abh. t. 2,
p- 22. Simple proofs of the formula have been given by Beltrami, Rend. dece.
Line. Rom, (5), t. 4 (1895) ; Larmor, Proc. London Math. Soc. Ser. 2, Vol. 1, p.1;
Love, Ibid. p. 37 (1903); Lamb, Hydrodynamics, 2nd edition (1906), p. 477;
H. A. Lorentz, The Theory of Electrons, p. 233 ; E. Laura, Il Nuovo Cimento
(1913).

t+ Phil. Trans. A, Vol. 197 (1901).

I Electric Waves, p. 16; Proc. London Math. Soc. Ser. 2, Vol. 10 (1911),
p. 91; Phil. Trans. A, Vol. 212 (1912), p. 295. This theorem gives an
analytical specification of a generalised Green’s equivalent layer. See p. 29.

§ Annali di Matematica, Ser. 3, t. 17 (1910).

| The details of the calculation are given by Love, loc. ¢it. A simple proof
of Poisson’s formula is given by Lamb, loc. cit. p. 471.

9 Cf. Rayleigh’s Sound, appendix, and H. Bateman, Amer. Journ. (1912),
where some other theorems of a similar kind are given,
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sphere during the interval ¢ —7 to ¢ + 7. The function % is
subject to the conditions in Kirchhoff’s theorem.

When the function u 1s independent of 2z Poisson’s
formula reduces to Parseval’s formula for a cylindrical wave-
function. Volterra* has extended Parseval’s formula so as
to obtain a two-dimensional analogue of Kirchhoff’s formula.
His formula indicates that the propagation of cylindrical
waves 1s essentially different in character from that of
spherical waves. In the three-dimensional case the value of
a wave-function u (, y, 2, t) at a point (z, y, 2) at time ¢
ou
ot
concentric sphere of radius c¢r at time ¢{—. In the two-
dimensional case, on the other hand, the value of u (=, ¥, ) at
a point (#, ) at time ¢ is not determined by the values of » and

1s completely determined by the values of » and over a

a7 Over a concentric circle at time ¢t —7. To find u (2, y, t) we

must know the values of » and g_z: over a series of such circles

in which the radius c¢r varies from 0 to some other value cr,,
The essential difference between the two cases may be attri-
buted to the fact that in the three-dimensional case the wave-

function for a source is of type ?1—: i (t—~g), while in the two-

dimensional case it is of type f i (t— g cosh u) and a wave
0

does not leave the region undisturbed after it has passed, but
has a tail or residuet.

When u is a periodic function of ¢, Kirchhoff’s formula may
be replaced by the simple formula of Helmholtz}. In this case
there is an analogous formula for cylindrical wave-functions, the
function K, (ipk) taking the place of e®/r.

§ 50. Green’s Functions.

The solution of a problem in which a periodic wave-function
is to be determined from a knowledge of its behaviour at

* Acta Math. t. 18 ; Lectures at Clark University (1912), p. 88.

t+ See Lamb’s Hydrodynamics, p. 474.

+ See also J. Hadamard, Bull. de la Société math. de France, t. 28 (1900),
p. 69 ; J. Larmor, Proc. London Math. Soc. (2), Vol. 1 (1908), p. 13.
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certain boundaries can be made to depend on that of an
auxiliary problem, viz. the determination of the Green’s
function*.

Let G (»,y,2; @, 4, 2,) be a solution of Awu + k*u = 0 with
the following properties: It is to be finite and continuous,
as also its first and second derivatives, in a region bounded
by a surface S, except in the neighbourhood of the point
(@1, %1, 2,), where it is to be infinite like cos kr/4mr, when
r—0. At the surface S 7 satisfies some boundary condition

such as (1) =0 or (2)3;1 =

Adopting the notation of Plemelj+ and Kneser{ we shall
denote the values of a function ¢ (&, 7,{) at the points (z, ¥, 2),
(21,1, 2,) respectively by ¢ (0)and ¢ (1). The Green’s function
is then denoted by the symbol G'(0,1). The importance of the
Green’s function depends chiefly on the following theorem.

Let ¢ be a solution of

Ap+ K+ f(z,y,2)=0,
which is finite and continuous, together with its first and second
derivatives, through the interior of the region and satisfies the
same boundary condition as G' (0, 1), then

s =[[[7©6©,1) dedyds.

This theorem is proved by applying Green’s theorem to the
region between a small sphere X, whose centre is at (2, %,2),
and the surface S. For since

[[[@a6-6ag)dsayas=[[ (4 % _¢%®)as

(65 )a

we obtain the required relation by making = — 0 and using the
boundary conditions.

* This function was first used by Green in the solution of a problem of
electrostatics, Essay on the application of mathematical analysis to the theories
of electricity and magnetism, Nottingham (1828) ; Bath. Papers, p. 31.

+ Monatshefte fiir Math. u. Phys. (1904) and (1907).

1 Die Integralgleichungen und ihre Anwendung in der mathematischen Physik,
§ 31, Brunswick (1911).
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If g(2,0) is the Green’s function for the same boundary
condition as G(2,0) but for k= o, we must also surround the
point (2) by a small sphere when we apply Green’s theorem
with ¢(0)=g(2,0). We then obtain the equation

g(2,1)=G(2,1)— (k- a’)ffjg(ZO)G(O, 1) dedyds.

This important relation indicates that g(2,1) is the solving
function of an integral equation of which @ (0, 1) is kernel and
vice versd. The theory of integral equations tells us that when
G (0,1) is given there may be certain singular values of o?
for which g(2,1) is not finite. These are the values of o? for
which the homogeneous integral equation

¢(1)=(a-2-—k2)fff¢(0)0(0, 1) dedyds

possesses a continuous solution ¢ (0) which is different from
zero. Formula (2) indicates that for such values of o? the
differential equation A¢ + k?¢p = 0 possesses a solution satisfy-
ing the boundary condition and the other conditions imposed
on ¢. The solutions of this type are of great importance in the
theory of sound and have been discussed by many writers*.

If we put f(0)=(c?—%k?)g(0,2) and proceed as before,
Green’s theorem gives

9(1,2)= G (2, 1)~ (k= 0% f f j 9(0,2) G(0,1) dedydz.

Putting o =% and comparing this with the previous equation

we get
A 9(1: 2)=9(2, 1)‘

Hence the Green’s function i1s a symmetric function of the
coordinates of the points 1,2. When the boundary condition is

o 0 this result is equivalent to Helmholtz’s theorem.

on
Since G is a real symmetric function when k=0 it follows

from the general theory of integral equations that there is

* See especially Lord Rayleigh, Theory of Sound, Vol. 2 ; Pockels, Die partielle
Differentialgleichung Au+k*u=0; A. Sommerfeld, Encyklopddie der Math,
Wiss. Band 1, 1, Heft 4, p. 540.

+ Cf. Rayleigh’s Sound, Vol. 2, p. 131.
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at least one real singular value of o?; that all the singular
values are positive may be deduced at once from the

equation

ot f f f ¢* dodyds = — f f f $A$ dedyds |
[ G2 6

The Green’s function is usually obtained in practice by finding
a suitable expansion in terms of elementary solutions of the
equation Au+ k*uw=0. This method is explained in Heine’s
Kugelfunktionen and many examples of Green’s functions are
given for the case £ =0. The general case has been discussed
at length by A. Sommerfeld* who also obtains a number of
definite integrals which represent Green’s functions. These
expressions lead to interesting generalisations of Fourier’s
theorem.

The problem of electrical oscillations in a cavity has been
discussed by Weylt. With the aid of a generalisation of the
_Green’s function, viz. a Green’s tensor, he obtains a number
of inequalities satisfied by the periods of vibration.

The Green’s function for the equation Au+k?u=0 can
theoretically be found when the corresponding Green’s function
for the equation Au =0 is known. Considerable progress has
been made in the theory since the appearance of Heine’s work
and so a few references to recent literature will be useful!. A

* Phys. Zeitschr. Bd. 11 (1910), p. 1087 ; Jahresbericht der deutsch. math.
Verein, Bd. 21 (1913).

+ Math. Ann. Bd. 71, p. 441; Crelle, Bd. 141 (1912).

+ For the determination of special Green’s functions see E. W. Hobson,
Cambr. Phil. Trans. Vol. 18 (1899), p. 277; H. M. Macdonald, Ibid. p. 292,
Proc. London Math, Soc. Vol. 26 (1895), p. 161 ; A. G. Greenhill, Proc. Cambr.
Phil. Soc. Vol. 3 (1880); J. Dougall, Proc. Edinburgh Math. Soc. (1900);
H. 8. Carslaw, Ibid. (1912), Proc. London Math. Soc. (2), Vol. 8, p. 365; C. W.
Oseen, Arkiv for mat. Bd. 2; C. Neumann, Leipziger Berichte, Bd. 58 (1906),
Bd. 62 (1910) ; W. Burnside, Proc. London Math. Soc. Vol. 25 (1894), p. 94.
For the general theory H. Poincaré, Rend. Palermo, t. 8 (1894), p. 57;
S. Zaremba, Ibid. t. 19 (1905); E. R. Neumann, Studien iiber die Methode
von C. Neumann und G. Robin zur Lisung der beiden dwertaufgaben der
Potentialtheorie, Leipzig (1905) ; D. Hilbert, Gétt. Nachr. 1904) ; M. Mason,
Newhaven Math. Colloguium (1910) ; E. Picard, Ann. de I’Ecole Normale (1906),
p. 509.

B. 10
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good account of the developments up to 1900 is given in
Sommerfeld’s article in the Encyklopdidie der Mathematischen
Wissenschaften.

§ 51. The transformation of the electromagnetic
equations.

The transformations which can be used to transform any
solution of the wave-equation into another solution or any
electromagnetic field into another belong to a group which
is characterised by a relation of the form*

da'? + dy'* + d2'? — 2dt'? = N (da® + dy® + d2* — ¢2dP?).
The linear transformations belonging to this group are of great
importance in the modern theory of relativityt; two of the
non-linear transformations have been mentioned in § 13.

In addition to these transformations there are other trans-
formations, involving arbitrary functions in their specification,
which can be applied to certain types of wave-functions, and to
certain types of electromagnetic fields. There are often two
families of wave-functions to which a given transformation can
be applied, when the transformation is of a suitable character ;
each of these families may be defined by a linear relation which
exists between the wave-function and its derivatives, sometimes
between the derivatives alone. Some idea of the theory may be
derived from the examples. It also happens that there is often
a family of electromagnetic fields to which a given transforma-
tion can be applied and this family is defined by means of two
linear relations between £ and H, which can be interpreted to
mean that the field is conjugate to some definite electromagnetic
field or family of electromagnetic fields determined by the
transformation. In some cases these last fields are self-con-
jugate and the transformation is applicable to them also.

* H. Bateman, Proc. London Math. Soc. Ser. 2, Vol. 7 (1909), Vol. 8 (1910) ;
E. Cunningham, Ibid. Vol. 8 (1910).

+ For this see A. Einstein, Ann. d. Phys. Bd. 17 (1905); Laue, Das
Relativititsprinzip, Brunswick (1911); E. Cunningham, British Association
Reports (1911) ; H. Minkowski, Gott. Nachr. (1908); E. B. Wilson and G. N.
Lewis, Proc. Amer. Acad. of Arts and Sciences, Vol. 48 (1912), p. 389 ; J. Ishiwara,
‘¢ Bericht iiber die Relativititstheorie,” Jahrbuch der Radioaktivitit und

Elektronik, Bd. 9 (1912), pp. 560—648 ; L. Silberstein, The Theory of Relativity,
Macmillan and Co. (1914).
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The fact that the condition of conjugacy between two
electromagnetic fields often implies the existence of one or
more transformations depending on arbitrary functions, may
be regarded as of some philosophical interest.

MISCELLANEOUS EXAMPLES.

1. Show that the most general periodic solution £eief (valid for all
space outside a given closed surface) of the wave-equation is

g=fe"7“" {P+Qcos4, (m—;)} ds,

where P and @ are arbitrary functions, r is the distance from the element
of surface dS to the point where £ is estimated, and y is the angle between
r and the outward drawn normal. Show further that the necessary and
sufficient condition that the value of £, given by the same analytical
expression, should vanish for points inside the surface, is that P=%—?;.

(Cambr. Math. Tripos, Part II, 1904.)

2. Let @ be a function which satisfies the wave-equation and is such
that its differential coefficients of the first order are continuous functions
of z, y, z, t within a region bounded by a closed surface S. If either 2 or
%% be given for points on the surface S there is only one function £ which
reduces to a given function f(z, ¥, 2) for t=¢,.

(A. E. H. Love, Proc. London Math. Soc. Ser. 2, Vol 1, p. 42;
J. Hadamard, Bull. de la Soc. Math. de France, t. 28 (1900).)

3. If throughout a specified region of space and a specified interval of
time » and its differential coefficients of the first order are continuous
functions of 2, y, z and of ¢, if also the differential coefficients of the

second order such as %i;, gi; are finite and integrable, then a solution of

the equation
Qu+to (z, y, 7, t)=0
which is valid for this region is given by the formula

% (%o, Yos 209 ‘o)=4“l; H{[“] % G-) s ; B_:::l Fi ; &?; B%L]} i
L[] G

where 72=(z — )2+ (¥ — ¥0)?+ (2~ %)%, n denotes the normal to dS drawn
into the specified region and the integration is taken throughout this

10—2
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region and over its boundary. The function ¢ is supposed to be finite and
integrable and a quantity within square brackets is calculated at time

c=a°—£. (G. Kirchhoft)

4. If an electromagnetic field is such that the specified region does
not contain any charges or convection currents and M =H+¢E, the value
MO of the vector M at (zo, %o, %0y &) i8 given by the formula

dm MO= f j {[,] cos iz —[ My] cos ro— [ U] cos rn} &

cat ff{[Mr]msm [MH]OOST.Z? [,‘}{z COSm

+1¢ [M,] cos ny-z’ [M,] cos m} 7 . (A. Tonolo.)

5. Prove that in the same circumstances

i[5 ()-=C)]
+'f[ [a%() +8x03yo() 33?320(7 c’aro )]d's

where a=p [M,]—v [M,]}, etc. and (A, p, v) are the direction cosines of the

normal drawn into the region bounded by S.
(H. M. Macdonald.)

6. Ifu is a wave-function independent of z and periodic in ¢ like ¢
0
(e 903 [{Ko ) Gu—u . Ko(itr) .
7. A wave-function which satisfies the conditions

ou
u=f(2,y,z2) 5":9' (% ¥, 2)
is given by the formula

g =
u=§'t (tf)'l‘f.?:

where f; g denote the mean values of f, g respectively over the surface of

a sphere of radius ¢t having the point 2, 7, z as centre.
(S. D. Poisson.)

8. Ifu satmﬁesax, g:: 22: and has finite second derivatives within

a suitable domain

u (21, Y1, '»‘1)——2“_ Bt,f W u(z 9, )
1 do 0
Yor ot ipat v @Y
where pi=(x =22+ - )%
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and o denotes the area within the circle cut out on the plane 7'=¢ by the

cylinder
(X =212 +(Y—3)*=(T-tr)%.

(Parseval and Volterra.)

9. Prove that if a transformation of variables from (z, ¥, 2 ¢) to
(z, ¥, 7, t) is such that

dz? + dif + d2— 2 dt =22 (da® 4 dy? + d2® — 2 di?) + (ldw + mdy+ndz— cpdt)

(lod +mody +nodz— cpydt),

where 224+m?4nt=p% l2+m*+nl=p,*; it can be used to transform an

electromagnetic field (#, H) into another electromagnetic field (£, H)

with an identical relation of the same type as that used in Ex. 1, Ch. viri,
if the two conditions embodied in the relation
M, (mnO“%n)+Mv (nly — nol) + M, (Img — lgm) FiM, (&po— ng)
Fi M, (mpo—mep) F 1 M, (npy—nyp) =0
are satisfied.
Prove that the conditions can also be thrown into the form

(U +mmo+nng+ppo) Mz F ¢ (npo+nop) My £ (mpo+mop) M,
=lo (IMy+mM,+nM,)+1 (lo M+ mo My +ny M)
and similar equations.

10. In the last example if I,=1, my=m, ng=n, po= —p, the conditions
are satisfied if Poynting’s vector is in the direction ({, m, »). Show, in
particular, that the transformation

w2i=F(ZY), i=frre+gr-ct) d=f(r+a)—g(r—c)

can be applied to an electromagnetic field in which Poynting’s vector is
along the radius from the origin and that in the resulting electromagnetic
field Poynting’s vector is parallel to the axis of 2. Apply the transformation
to the electromagnetic field derived from the functions a, 8 given by
equations (13), § 5.

11. If a transformation of coordinates is such that
Az +dy? + d2 — c2di2 =22 (d2®+ dy? + d2t — c2di?),
where A is a function of 2, g, 2, ¢; there is also a relation of type

(Z =Tl + (Y= Yo + (2 — %)% — c? (£ —1,)?
=Mo[(z—2o)2+(y - 3/0)2+(2 — 20" =2 (t =1}
(J. Liouville and S. Lie.)

12. Prove that the differential equation

6+ @) +@) -5 @)

is covariant for a transformation of the type considered in Ex. 11.
(S. Lie.)
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13. Prove that if £, 5, {, v are functions of z, ¥, z, ¢ such that
(CMU —nM,*icr M) dz+(EM,— fyxiicrﬂv) dy
+ (n M — £, + ior ) dz Fic (¢ Mo+, + (M) dt
is an exact differential and e is a quantity whose square may be neglected,

the value of M at the point 2/=x+ef, ¥'=y+en, ¥ =z2+4¢{, ¥ =t+er may
be calculated by assuming that the integral form

M, (dy 8z —dz8y)+ M, (d28z—dz8z)+ M, (dx by — dy 8z)
FicM, (dx 8t —dt8z) F icM, (dy 8t — dt 8y) F icM, (dz8t — dit 8z)
is an invariant for the infinitesimal transformation, it being supposed
that the function M satisfies equations (10) of § 5.

14. Let a transformation from the coordinates («/, ¥/, Z, ') to (2,7, 2, )
be such that

d2?+dy?+dz% — Edt? =/ A (d2?+ dy? + dz2 — 2 de?)

+—% (ldx +mdy+ndz—cEpdt)?

J_(Zda:+mdy+ndz Spdt) (Ude+m'dy+n'dz— Epde)

+— (Udr+m'dy + n'dz — c2p'dt)?,
«/A( +m'dy p'dt)

where O=B4+m?+nf—cph, O =14m2 42—
=g+ U +mm' +n0' - 2pp/, A=P'-660;
and o, I, m, n, p, ', m', %', p’ are functions of 2z, y, z, ¢; then if & satisfies
the equations 5 o =8
la—;+ma*§+naz pat+k6 =0,

2o % rarno]+ L [o5-+em 'k)a]+§;[o-a—"-(y+2n'k>o]

=2 a:l: - e 9]
20 %0 0% 19%
awrtoptin~ aa
In the preceding equation we have

it also satisfies

oR 0Q oL oP oR oM
a=y EkTH' PR @mTR’
2@ 9P oN oL ay oN

" yta Tutyta
P=mw -m'n, @Q=unl-nl, Re=lm/ —U'm,
L=Ulp' -Up, M=mp' —m'p, N=np —n'p.
Show that in certain cases a function of type A@ is a solution of the
wave-equation in consequence of the two equations imposed on 6. Discuss
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the case of the transformation of Ex. 1, p. 139: also the case of a trans-
formation which leaves the functions X, ¥, Z of Ex. 7, p. 80 unaltered in

form.

15. Prove that if a function V satisfies the equation
eV @V 1éV
@t~ e
vanishes at infinity and has continuous derivatives except at points of the
curve ¢ where its normal derivative is discontinuous in such a way that
%—;_7'*— g_:::= —'f(Qa £),

the symbol @ being used to denote the coordinates of a point @, then
v =g [ o [C1(0-2)
‘W” p?’

where p2=2%+ yg
(Levi-Civita, Nuovo Camento, 1897.)

16. Prove that
1

V(z—*+ @y —n)l+(z— ()

1 [® (= [= er(@—E+in(y-n)+iv(z-¢)
=s.>Tr2f . f " f oz e Ao,

and deduce that the integral V= ] [ f ; p (& n, {) dédnd¢ satisfies Poisson’s

equation AV +4mp (2, y, z)=0.
(J. Weingarten.)

17. Prove that the equation A¢=82¢+2 %‘P is satisfied by

p=et[ {fG-t=n4fe-ntn) L+ [T IOKOF

[l fOLOF

where  @2=(t—t,—rf—7%, P=(z—2)t+y-g0)+E—)
and 7,(6) is the Bessel’s function J,, (i6). z,, ¥,, 2 and ¢, are arbitrary
constants,

(M. Brillouin, Comptes Rendus, 1903.
18. Prove that a solution of the differential equation

U U
i el
is given by

U= f ; gire [F()\)cos(t\/?@_- 1)+ G (\) S‘;‘%—f—l"_ﬁ d\;
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! : A R ;
hence obtain a solution of the equation 5 +2 5 = 922 by putting

V=U(z,t)et. If U=f (x),%]= g () when ¢=0, the functions F, G'may be
determined by the equations

with the aid of Fourier’s theorem.
(H. Poincaré, Comptes Rendus, 1893-4.)

19. Prove that with the conditions of the last example
xtt oG
U 0=b[fa-0+f@rol+d [ [£O 5 -0©6] _db
where G (2 &; t, T)=JgN(t—7)2—(x— &)L
(Laplace (1779) ; E. Picard, Bull. soc. math. t. 22 (1894), p. 2.)

20. Prove that a solution ®=e*V of the equation A®= %2;+2 aaf

is given by the following extension of Kirchhoff’s formula :

an V(tis o o z,,)=Uf[G L Vi _ dedyds

+[f I: AV (aV oV 1 V s
sphere r=f t=0
oV or V or
SR R HE 2 a:)*ﬁal_w}dz
th—7 ov oV er
[feaf e Grwa) a(a ;;)]d,

where 72=(2—2,)%+(y—y)2+(2—2)% F=(t—1t,)%—1% Gl 1,(0)
and 7, () is the Bessel’s function J (26).

The first integral extends over the volume enclosed by both the sphere
r=1¢ and the surface £; when this sphere cuts the surface the second
integral extends over the part of the spherical surface inside =, the last
two integrals extend over the part of = which lies inside the sphere. The
normal 7 is supposed to be drawn into the region of integration. If S isa
closed surface and (o, %o, 2) lies outside, the region of integration is the
space outside = and inside the sphere.

(M. Brillouin, Comptes Rendus, 1903.)

Eda

21. Let a, B, » be defined in terms of #, g, z by the equations
Y:z=cos acos(B+kw), Yy y=cosasin(B+kw), y?z=sinacosw,
where y?=1—sinasine and £ is a constant. A solution of Laplace’s
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equation Ax=0 is then given by =7y F(a,8) provided F satisfies the
partial differential equation

2F sina+k%cos?a 02K oF

X 3 -
8111206 s+ 4 =y 6324'20032“%—1178“12“_0'

(U. Amaldi, Rend. Palermo (1902), p. 1.)

22. Prove that the following transformations of coordinates lead to
binary potentials, i.g. to solutions of Laplace’s equation of typeu=4#'(§, n):

(1) z=§ y=n, z={;
(2) 2=fcosy, y=£sin(, z=n;
(8) @=£cosy, y=¢§sin g, z=n—m ;
(4) x={sinécosy, y={sin £singy, z={cos¢;

(5) x=.§sinqem§cos§, y=§sinqem§sin{, z=.§coaqe’"§ -
where m is an arbitrary constant. The differential equations satisfied by
F'in cases (3) and (5) are
m2\F 10F
(1 ss)auﬂ”sas :

p.12F 1 oF 1 oF _

and

respectively. In the other cases the differential equations are a.lrea.dy
familiar.

(T. Levi-Civitd, Turin Memoirs, (2) t. 49 (1900).)

2 2
23. If the differential equation Ba;: + ?@Z % t:ru satisfied by an ex-
pression of type V=1 f(8) where fis an arbitrary function, § must satisfy
the differential equation

2 2 g\ 2
() + () =6
Prove that if we write pdf=cos adr4sinady—dt, x=tcos a+u,
y=tsina+v, there is a relation between a, %, ». Discuss the cases in
which a is a function of 6 and a constant respectively, and obtain the
general value of y in each case.

24. If in the last example u=f(a, 8), v=g(a, §) and we write
of

=~ =78in Bg= —
aa T a, aa TCOSG,

=0 sine,

9
a—'g=trcoac, g—%
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the new form of the equation E;‘:... %;': av wheti 6. 6, £ se taloi a8

independent variables is

a..[: — cos (a~ e)aa-l-o'sm(a e)ax] aeL(a o) az:I
. o-sméa-na

e 5% (t-7) % ° —-r)eos(a €) BV:I
Prove that this equation can only possess a solution of type V=yF (6),
with F arbitrary, if g:o, and in this case 4 is defined by an equation of

type
[z—£OP+[y—n(O)F=[t—(O)F,
while the most general value of y is
{UO)[z—El+m(@)[y—n]+n(6)[t- ]}t
EO)[=—El+n O)y—n]-7O)t-7] ’
where 7, m, » satisfy the relation 224 m2=n2

25. Show that wave-functions of type yf(6) may be derived from
solutions of Laplace’s equation of this type by means of the results given
on pp. 111, 114 Hence show that there are wave-functions of type
v.f(6) which are not particular cases of a more general wave-function of
type /(a, B) where , 8 are defined by equations (280).
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Residual blue 55

Rontgen rays 22, 54, 131

Screen, diffraction by a 83
Singular curves 123
Singularities, moving 115
Sonin’s polynomials 99
Sound, diffraction of 90
Surface, Riemann 82

Transformations of coordinates 28

159

Transformations of electromagnetic
equations 2, 139,

146, 149
wave-equation 31, 150

Velocity of light 2
of moving singular curves 123
Vibrations, free damped 49
electric and magnetic 49

Wave-equation 7

function 7

function of degree zero 113
Waves, propagation of, along a wire 75

overearth’ssurface
11, 67, 73
scattering of 44

Wedge, diffraction by a 87
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