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PREFACE 

THIS book is intended as an introduction to some recent 
developments of Maxwell's electromagnetic theory which 

are directly connected with the solution of the partial differential 
equation of wave-motion. The higher developments of the 
theory which are based on the dynamical equations of motion are 
not considered at all. Even with this limitation the subject is a 
vast one, and to bring the work of perusing the literature within 
my power I have omitted an account of the modern theory of 
relativity which has been expounded very clearly in several recent 
publications. 

For a thorough understanding of the present subject a very 
extensive knowledge of mathematics is necessary, but there are 
parts of the subject in which a reader with only a limited 
mathematical equipment may soon feel at home and perhaps do 
useful original work. . With the idea of enabling suoh a reader to 
obtain a quick grasp of the nature of the subject and the results 
obtained, I have thought it advisable to state without proof a 
number of relations of which adequate demonstrations can only 
be obtained by means of complicated and difficult analysis. 
I have also endeavoured to keep the analysis as elementary as 
possible, but in SOme places where the work is perfectly straight­
forward a few details are omitted. 

The book is far from being a complete treatise on the subject, 
for I have not given any existence theorems to sho.w that the 
solutions of certain problems exist and are unique, and no 
attempt has been made to enter into the details of numerical 
computations. There are many parts of the subject indeed to 
which a pure mathematician might make useful additions; in 
particular, I might direct attention to p. 21, line 2, and p. 101, 
where there are one or two matters which require further 
discussion. 
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Chapter VIII and paragraph 5 contain some of my own con­
tributions to the subject. At present there seem to be several 
different directions in which future developments may be made, 
and so it seems unwise to give a hasty judgment concerning the 
physical significance of the results. Ideas which naturally 
present themselves are that the aether can be regarded as built 
up from singular curves of the type considered in § 43, and that 
§§ 41 and 44 may throw some light on the question of the difference 
between positive and negative elementary electric charges. I 
hope to discuss an hypothesis relating to the first idea in a future 
note, but am unable to give any support at present to the 
second idea. 

I gratefully acknowledge my indebtedness to Sir Joseph 
Larmor who read the manuscript before it was revised and made 
some helpful suggestions, to Prof. Ames who read the greater 
portion of the manuscript, to Prof. Morley and Mr Hasse who 
helped me with their advice and vigilance in reading the proof­
sheets, and to the officers and staff of the University Press for 
their careful work and constant consideration shown in matters 
connected with the printing. For the correctness of the new 
formulae and examples I alone am responsible; if any errors are 
discovered I shall be grateful if my readers will inform me. 

HARRY BATEMAN. 

October, 1914 . 
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CHAPTER I 

FUNDAMENTAL IDEAS 

§ 1. The fundamental equations for free aether. 
In Maxwell's electromagnetic theory the state of the aether 

in the vicinity of a point (IX, y, z) at time t is specified by mean. 
of two vectors E and H which satisfy the circuital relations· 

~~~! H=~O:, rotE=-~ 0:; .... . ...... .... (1), 

and the solenoidal or sourceless conditions 

div E= 0, div H =0. 

If right-handed rectangular axes are used the symbolt rot H 
denotes the vector whose components are of type 

oH, oH. 
oy - oz ' 

the three components of H being H., H., H. respectively. 
The symbol div H denotes the divergence of H, i.e. the 
quantity 

oH. oH. oH. 
oIX+oy+oz' 

The vector E is called the electric displacement or electric 
force and H the 1fLI11j'Mtic force. The quantity c represents the 

• The equations are written in the symmetrical form in which they were 
presented by O. Bee.viside, Electrical Pa~T', Vol. 1, § SO. and H. Hertz, 
Ellctric Wavu, p. 188. Sir Joseph Larmor points out that a set of equations 
equivalent to these was first used by MacCullagh in 1888 &8 a !Cheme 
consistently covering the whole ground of Pbysical Optics, CoUecttd War," of 
Jam .. MacCullagb (1880), p. 145. 

t We use here the units and notation employed in Lorentz's The Tluory of 
El~ctTomt Ch. I, except that large letters are used to denote vectors and E i8 
written in place of D. ~nx writers nse the oymbol curl ipoWd of '2h 

B. I 

• 
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vel~ity 'of' prop;.g~tion· 'of h~mogeneous plane waves and is 
commonly called the velocity of light; we shall assume it to be 
a constant, although in the most recent speculations it is treated 
as variable *. 

Some of the modern writers on the theory of relativity 
maintain that the introduction of the idea of an aether is 
unnecessary and misleading. Their criticisms are directed 
chiefly against the popular conception of the aether as a kind 
of fluid or elastic solid which can be regarded as practically 
stationary while material and electrified particles moye through 
it. This idea has been very helpful as it presents us with 
a vivid picture of the processes which may be supposed to take 
place, it also has the advantage that with its aid we can attach 
a meaning to the term absolute motion, but herein lies its 
weakness. Lannor, Lorentz and Einstein have shown, in, fact, 
that the differential equations of the electron theory admit of 
a group of transformations which can be interpreted to mean 
that there is no such thing as absolute motion. 

If this be admitted, the popular idea of the aether must be 
regarded as incorrect; and so if we wish to retain the idea of a 
continuous medium to explain action at a distance we must 
frankly acknowledge that the simplest description we can give 
of the properties of our medium is that embodied in the 
differential equations (1). 

If we abandon the idea of a continuous medium in the 
usual sense only two ways of explaining action at a distance 
readily suggest themselves. We may either think of the 
aether as a collection of tubes or filaments attached to the 
particles of matter as in the fonn of Faraday's theory which has 
been developed by Sir Joseph Thomson and N. R. Campbell; 
or we may suppose that some particle or entity which belonged 
to an active body at time t belongs to the body acted upon at a 
later time t + T. From one point of view these two theories are 
the same, for if particles are continually emitted from an active 

• A. Einstein, A.nn. d. Phy •• Vol. 35 (1911), p. 898; Vol. 38 (1912), pp. 355 
and 443. M. Abraham, Phy •. Zeiuchr. (1912), pp. 1-6, 310-314, 793-797; 
Ann. d. Phy •. (1912), pp. 444 and 1056 i Fifth Internation&l Congress of Ma.the­
maticia.ns, Proceeding., Vol. 2, p. 256. 
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body they will form a kind of thread attached to it. The first 
form of the theory is, however, more general than the second. 

At present we are unable to form a satisfactory picture of 
the processes that give rise to, or are represented by, the vectors 
E and H. We believe, however, that some points may be made 
clear by studying the propetties of solutions of our differential 
equations. 

It will be seen from the investigations of Chapter VIII 

that the mathematical analysis connected with these equations 
is suitable for the discussion of three distinct theories of the 
universe, which may be described briefly as follows:-

A ethe1' 

Continuous medium. 

Discontinuous medium con­
sisting of a collection of tubes 
or filaments. 

Continuous medium. 

Matter 

Aggregates of discrete par­
ticles. 

An aggregate of discrete 
particles attached to the tu bes. 

An aggreg-ate of discrete 
particles to which tubes are 
attached. 

The last theory may be supposed to include that form of 
the emission theory of light in which small entities are projected 
from the particles of matter under certain cil'Cumstances and 
produce waves in the surrounding medium. This theory might 
be justly ascribed to Newton *. 

For other theories of the aether the reader is referred to 
Prof. E. T. Whittaker's recent workt A History of the TMories 
of the Aether. 

In the first part of this book the analysis is adapted almost 
entirely to the first theory, the high development of which we owe 
to the pioneer work of Maxwell, FitzGerald, Hertz, Rayleigh, 
Heaviside, J . J. Thomson, Lorentz and Larmor. The other 
theories have not yet received much attention but it is hoped 

• A form of the theory in which the entities are electrio doublets has been 
developed by W. H. Bragg and applied 10 Ibe X and 'Y rays. Bri.uh .dUO<iati<m 
B.porl< (1911), p. 340. 

t Dublin Univ. Press; Longman., Green and Co. (1910). 

1-2 
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that the analysis of Chapter VIII will lead to further develop­
ments so that a comparison can be made between the different 
theories. It is quite likely that one theory will be enriched by 
the developments of another. 

§ 2. Electromagnetic fields. 
For many purposes it is convenient to work with a complex 

vector· M = H ± iE, where i = '" -1 and the ambiguous sigo 
± is independent of the ambiguity which occurs in the determi­

nation of '" -1. The differential equations (1) may then be 
replaced by the simpler equations 

• 
rot M = + ~ 0:;, div M = 0 .................. (2) . 

When a solution of these equations has been found a pair 
of vectors E and H satisfying equations (1) may be obtained by 
equating coefficients of the ambiguous sigo. In working with 
an ambigoous sign it must be remembered that when two 
ambiguous sigos are multiplied together the ambiguity is 
removed. The chief advantage in using the two independent 

ambiguities ± and .v=J. is that we can assume that the vectors 
E and H are the real parts of expressions of the fonn Ae;wt and 
we are at liberty to equate the coefficients of either i or ± in 
any of our equation •. 

Dejinif:ion. A solution of the differential equations (2) or (1), 
which provides us with single-valued vector functions E and H 
for each space-time point (x, y, z, t) belonging to a certain 
domain D, is said to define an electromagoetic field in the 
domain D. 

Since the differential equations are linear the sum of any 
number of solutions is also a solution. The physical meaning 
of this is that when two electromagoetic fields are superposed, 
they are together equivalent to an electromagoetic field. 

Two superposed electromagoetic fields can of course be 
related to one another in some way. When electromagoetic 

• The use of a complex vector H - iE is recommended by L. Silberstein, A1111. 
d. Phy •• Vola. 22 and 24 (1907); Phil. Mag. (6), Vol. 23 (1912), p. 790. He doe. 
not, however, uee the ambiguous sign. 
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waves fall upon an obstacle, a secondary disturbance is produced 
which depends in character upon the nature of both the primary 
waves and the obstacle. 

We shall find that in some cases it is possible to find two 
fields in which the vectors (E, H), (E', HI are connected by the 
two relations embodied in the equation 

(ftfltn = M.M.' + ftJuM.' + M,M; = 0 ....... .. (3) 

for all values of (x, y, z, t) belonging to some domain. 
When this is the case the fields are said to be cO'fljugate 

within this domain. 
If we use the notation 

we may write 
(ftf') = (H') - (JP) ± 2i (EH) = I. ± 2i I ., 

where I , and I , are two quantities which we shall call the 
invariants-. It is easy to see that when two conjugate fields 
are superposed the invariant I , for the total field is the sum of 
the invariants I, for the two component fields. Similarly for 
the invariant I,. 

When the invariants are zero . over a given domain the field 
may be called self-conjugate for this region t. 

§ 3. The flow of energy. 
An entity whose volume density! p is a function of (x, y, z, t) 

will vary in a manner which can be described as a simple flow 
with component velocities (u, v, w) if the equation of continuity 

op 0 a 0 . 
at + ox (pu) + Oy (pv) + oz (PW) = 0 .... ...... .. (4) 

IS satisfied. This equation implies in fact that there is no 

• They are invariants for the group of linear transformations which leave 
the electromagnetic actuations unaltered in form. cr. H. Minkowski, Gott. 
Ncu:hr. (1908); E. Cunningham, Proc. London Math. Soc. (2), Vol. 8 (1910), 
p. 89; H. Poincare, lI<nd. Pa~ (1906); M. Planck, ~.n. d. Phy •. VoL 26 
(1908). Other inva.riants &re given by these authors. 

t Silberstein calle it a pure electromagnetic wave. 
::: The limitations to which the idea of density is subject and the question of 

the continuity of the function paTe diecuseed by J. O. Leathem, .. Volume 
integrals and their use in physics," Cambridgt Matl&emo.tical Tract. (190S). 
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creation or annihilation of the entity in the neighbourhood of 
(x, y, z, t). 

Now it is easy to see that the equation of continuity IS 

satisfied in virtue of equations (1) if we put 

p = ! (it') +! (H'), pu = c (EyH, - E,Hy), 

and two similar equations. We shall regard p in this case as 
the volume density of the energy contained in the ' electro­
magnetic field. The vector I whose components are of the 
type c (EyH, - E,Hy) can then be supposed to indicate the rate 
at which energy flows through the fiel<i. Since 

p' (0' - u' - v' - w') = to' (it' -II')' + 0' (EH)" 

it appears that energy travels through the field with a velocity 
which is less than the velocity of light. The velocity c is 
attained only in the case of a self-conjugate field. 

The vector I was introduced by Prof. Poynting· and is 
usually called Poynting's vector. The idea of describing the 
transfer of energy in this way also occurred to Prof. Lamb 
before the publication of Poynting's work. 

&:ample. Prove that the equation of continuity may be satisfied by 
putting 

1 ilO ilO ilO 
fiU=c ilt E.- iJ.y H.+ ilz H., 

lao 00 ao 
P'lO= - -s-- E. - ~_H1I+ "- H7.' 

c vt "'" cy 
where 6 is an arbitrary function. Obtain a. similar solution by replacing 
Eby Hand Hby -E. 

§ 4. First solution of the fundamental equations. 
Let us use the symbol flu to denote the Dalembertiant 

of u, viz. 
1 il"u 0'" 0'" o'u 1 li'u 

flu = au - 0' 0/;' = ox' + 011' + ox' - c' ot' ' 
... PhiL Tram. A, Vol. 175 (1884), p. 343. See also H. A. Lorentz, The 

Tluory of Ekctrom, p. 22. 
t This is the Dame suggested by Lorentz, loco cit. p. 17. Many writers use 

Cauchy's symbol 0 to denote the Dalemberti8D, but I think (1 is preferable 
because its torm suggests a wave. Murphy's symbol ~ is also uRed here in place 
of the usual symbol V2. E. B. Wilson and G. N. Lewis nse the symbolO2u 
to denote the Dalembertian of u. Cf. Proc . .Amer . .Acad. of Art. and Sci~nct'. 
Vol. 48 (1912), p. 389, 

-
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and the symbol grad U to denote the vector whose components 

oU au ou 
are oa:' oy , oz 
respectively. Let us also use llA, where A is a vector with 
components A., A y , A" to denote the vector whose components 
are llA., llAy, llA. . The equation llu = 0 will be called the 
wave-equation and a solution of this equation a w~wej!lnction. 
A vector function A will be said to satisfy the wave-equation 
when each of its components is a wave-function, i.e. if llA = O. 
We may now satisfY equations (1) and (2) by writing 

M=+irotL= ~ ~~ +gradA ............... (5), 

where the 'Citlar potential A = 'I' + i<l> and the vector potential 
L = B + iA satisfy the equations 

llA=O, llL=O, divL+~00~=O ......... (6). 

The last three equations may be solved in a general way by 
writing . 

L = ~ ~~ ±irotG+ grMK 

. 10K 
A= -dlvG- - ­

C ot 
............... (7), 

where the vector G = r + ill and the scalar K satisfy the wave­
equation 

ll!l= 0 ........................... (8). 

The solution of equations (1) which is embodied in (5), 
(6) and (7) is a simple extension of Hertz's solution * and is 
suggested )y Whittsker's solution t in terms of two scalar 
potentials. It is clear that the function K drops out when we 
differentiale to find M and so the electric and magnetic forces 
depend on.y on the vector G. The fonn of this vector indicates 
that the electromagnetic field can be regarded as the sum of 
two part;'l fields; one of these is derived from the vector II and 

• Ann. i. Phys. Vol. 36 (1888). p. 1. The general solution is given by 
Righi, Bokgna Mem. (5), t. 9 (1901), p. I; lINu .. o Ci"...k> (5), t. 2 (1901), p.2. 
He finds Blitable expressioDs lor the vecton nand r in a number of cases. 

t hoc. Londcn Math. Soo. Ber. 2, Vol. 1 (l90S). 



8 FUNDAMENTAL IDEAS 

will be called a field of electric type, the other is derived from 
the function r and will be called _ a field of magnetic type_ 

This resolution of an electromagnetic field into two partial 
fields is analogous to the one used by H. M_ Macdonald * in the 
study of the effect of an obstacle on a train of electric waves. 
The component fields are then of such a type that in one case 
the magnetic force normal to the obstacle vanishes over the 
surface of the latter, in the other case it is the electric force 
normal to the obstacle that vanishes. The same idea has been 
used recently by lI1iet and Debyet in the treatment of the case 
of a spherical obstacle. 

In Hertz's solution we have r = 0, K = 0 and n has 
components (0,0, S). 

The components of E and H are consequently given by the 
formulae 

H.= ~~~ 1 
1 a's 

Hy = - C a",at I : ........ (9). 

Hz=O } 

Hertz uses Euler's wave-function§ I 
S = ~ sin" (r - ct), r' = .'V' + y' + zj 

and obtains in this way a theory of his oscillator 11_ IThe electric 
and magnetic forces become infinite at the origin wljich is there­
fore a singnlarity of the electromagnetic field. A singularity of 

I 
this type is called a vibrating electric douhlet and is \egarded as 
the simplest model of a source of light or electromagr.etic waves . 

• Electric Wavu, Cb. VI. , 

t ,Ann_ <l. Phy •. Vol. 25 (1908), p. 382. ! Ibid. Vol. 80 (1 09), p. 57. 
§ Periodic solutions representing a disturbance Bent out fro ll·fold poles 

had been used previously by H. A. Rowland and applied to the ocidation of 
optical phenomena. Amer. Journal of Mathematic., Vol. 6, p. S59' Phil. Mag. 
Vo!. 17 (1884). p. 423. Cf. also Siokes. Cambro Phil. Tram. (1849). 

II To deal with the case in which the vibrations are damped we assume 

S=!,,+"('"-d) sin" (r - ct). 
r 

(1900), p. 159. 

Cf. K. Pearson and A. Lee. PhiL TranI. \ Vol. 193 

. \ 
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The solutions of equations (1) which are obtained by superposing 
elementary solutions of this type are of great importance in 
physical optics. 

When r is very great the most important terms in the 
expressIOns (9) are 

E __ "'yzs 
y- '1.8 J 

" i teS 
H-- -y - 1.:1 J 

E - ,,'(x' + y')s H 0 
z - 1.3 ' z = , 

where s = sin" (r - ct). All the other terms are of order 11" or 
1/1"'. These expressions give 

(EH) = 0, (E') - (H' ) = o. 
Hence at a very great distance from the origin the field is 

practically a self-conjugate field and so the energy travels with 
a velocity very nearly equal to the velocity of light. The 
expressions indicate that Poynting's vector is ultimately along 
the radius from the origin; now the electric and magnetic 
forces are at right angles to Poynting's vector and so the 
vibrations of the light-vector, whether we take it to be the 
electric or magnetic force, are at right angles to the radius. 
The waves sent out from the source have, then, the character 
of monochromatic light at a great distance from the origin·. 
The amplitudes of the vibrations at points on the same radius 
are proportional to the quantities l /r when r is large, and so if 
the intensity of the light be measured by the square of the 
amplitude the inverse square law is fulfilled. 

Since the electric force is ultimately at right angles to the 
radius there is no total charge associated with the singularity, 
for the charge is equal to the surface-integral of the normal 
electric force over a large sphere concentric with the origin 
and this integral is evidently zero. We are consequently 
justified in regarding the singularity as a doublet and in fact 

• For a Culler discussion see Larmor, Phil. Mag. (5). Vol. 44 (1897). p. 503; 
Aetmr and Matter, Chap. XIV, where it is shown that energy is radiated Crom a 
moving charge only when the velocity of the oharge alters in eitber magnitude 
or direction. 
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as a simple electric doublet of varying moment as is indicated 
by the way in which the electric and magnetic forces become 
infinite-. The axis of the doublet is along the axis of z. 

The electric lines of force due to a vibrating electric doublet 
have been drawn by Hertzt for various stages of the motion. 
The general character of the lines of force is indicated in Fig. 1. 

o 10 

Fig. 1 t. 

It will be noticed that the. lines are all at right angles to a 
plane perpendicular to the axis of the doublet. M. Abraham § 
has used a Hertzian doublet to obtain a model of the electro­
magnetic field produced by the oscillations in a vertical antenna, 
the plane just mentioned being supposed to represent the earth 
which is regarded as a perfect conductor. Zenneckll has, 
however, pointed out that when the imperfect conductivity of 
the earth is taken into account the circumstances of the 

· See§42. 
t Ann. d. Phya, Vol. 36 (1888), p. 1. The case of damped vibmtioDs is 

considered by K. Pe&l'8OD a.nd A. Lee, loco cit. 
::: 1 am indebted to the Macmilla.n Compa.ny and A. Gray, Esq., for permis­

sion to reproduce this diagram. 
§ Phy •. Zeiuchr. Vol. 2 (1901), p. 329; Theont <leT Eltktrizitiit, Vol. 2, 

§ 34; Encyklop. d. Math. Wis •. Band 6, § 18. 
iI Ann. d. Phy •. Vol. 23 (1907), p. 846; Phy •. Ztiuchr. Vol. 9 (1908), p. 50 ; 

Ibid. p. _55S. - , 
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propagation are somewhat different. The spreading of electro­
magnetic waves over the earth's surface has been investigated 
thoroughly by A. Sommerfeld * and his pupil H. v. Hoerschle­
mann t. and their results seem to indicate that the imperfect 
conductivity of the earth is an important factor in clirecting 
electric waves and in enabling their effects to be detected at 
great distances. The ionisation of the air by sunlight is also 
an important factor, as has been pointed out by J. J. Thomson, 
W. H. Eccles! and J. A. Fleming~ Marconi's experiments have 
indicated that the circumstances of propagation are not yet 
thoroughly understood. No good reason has been given to 
explain why communications by means of electric waves can be 
made more easily when the receiving station is in a north or 
south direction than when the direction is east or w<"st. The 
curious contrasts in the results obtained with waves of different 
frequencies in day and night communications are also un­
explained If 

The use of the vector 11 instead of the scalar S was 
recommended by Abraham 'If. Von Hoerschlemann has obtained 
in this way a model of Marconi's bent antenna which gives 
a directed effect to the radiation. A number of arrangements 
of Hertzian doublets that can be used to imitate the action 
of antennae have been described by Fleming**, Larmortt, 
Sommerfeld and Macdonald!!. 

In the theory of FitzGerald's magnetic oscillator§§ we have 

II = 0, r = (0, 0, N), 

N being Euler's wave-function. Whittaker's solution is 
obtained by adcling the solutions of Hertz and FitzGerald . 

• Ann. d. Phy •. Vol. 28 (1909), p. 665. 
t Jahrb. d. drahl. TelLg. Vol. 5 (1912). 
: Proc. Roy. Soc. A, Vol. 87, p. 79. 
§ Briti.h .A"oeiation &POTU, Dundee (1912). See also O. J. Lodge, 

Phil. Mag. Vol. 25 (1913), p. 775. 
n See Marconi's address to the Royal Institution, June, 1913. 
~ Tluori~ der Elektrizitiit, Vol. 2,·Ch. I. See also Rigbi, loco cit. 

U Proc. Roy. Soc. A, VoL 78, p. l. 
tt lbid. in a footnote to Fleming's paper. 
:: Proc. Roy. Soc. A, Vol. 81, p. 894. 
§§ Tram. Roy. Dublin Soc . Vol. S (18SS); SCientific Writing', p. 122. 
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§ 5. Second solution of the fundamental equations. 
It is easy to see that equations (2) will be satisfied if we 

can find two functions (a, fJ) such that 

M = iJ(a:, fJ) = + i iJ (a, fJ) 
• iJ (y, z) - c iJ (x, t) 

M =iJ(a:,fJ) __ +i iJ(a,fJ) (10) 
• iJ (z, x) - c iJ (y, t) ............... . 

M,=o(a, fJ)= + i o(a, fJ) 
a (x, y) - c il(z, t) 

An electromagnetic field that is specified in this way is 
necessarily a self-conjugate field, for if we multiply together 
the two expressions for M. and do the sam~ for My, N" we find 
that M' = O. A particular pair of functions a, fJ is obtained by 
putting 

a = ",cos 0 + ysin 0 + iz, fJ ='" sin 0- ycosO-ct ...... (ll), 

where 0 is an arbitrary constant. To generalise this field we 
multiply the expressions for bl., M., M, by an arbitrary 
function * of a, fJ, 0 and integrate with regard to 0; we thus 
obtain a very geneml electromagnetic field in which 

M.=+i I:"/(a, fJ, O)cosOdO 

M. = + i 1:" /(a,,8, 0) sin 0 dO 

M, = - 1:" /(a, fJ, 0) dO 

............ (12). 

The components of the electric and magnetic forces are 
obtained by equating the ambiguous and unambiguous parts in 
these equations; it is easy to verify that they are all wave­
functions. 

It should be remarked that these definite integrals may 
give a representation of the electromagnetic field, required for 
the solution of a problem, only in a certain limited domain of 

• When we speak of an arbitra.ry funotion it must be understood that the 
function may be subjeot to certain limitations which render the integration a.nd 
difIerenuation under the integral sign intelligible operations. 
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the variables x, y, z, t; the integrals may in fact represent 
discontinuous functions. 

The limits of integration could have been taken to be any 
other constants instead of 0 and 271"; they can also be taken to 
be functions of x, y, z, t of the type w, where w is defined by an 
equation of the form 

x sin w - ycos w - ct = F(w), 

F being an arbitrary function. 

A suitable pair of functions a, fJ is also obtained by putting 

x"+ iy a = , fJ = r - ct .................. (13), 
z+r 

and in this case Poynting's vector is along the radius from the 
ongm. A more general type of electromagnetic field in which 
this is true is obtained by multiplying the above expre8sions 
for the components of],f by an arbitrary function of a and fJ. 

Other pairs of functions a, fJ of a very general nature are 
obtained in Chap. VIII. It should be remarked that in all cases 
the functions (a, fJ) are of such a nature that if F (a, fJ) is an 
arbitrary function of a and fJ, F satisfies the partial differential 
equation 

(OF)' + (01\' + (OF)' = !. (01\' ox ~y) OZ If ot) ......... (14), 

which is of fundamental importance in geometrical optics· and 
may be called Hamilton's equation. It is found that this 
equation is also satisfied in many cases by the functions of 
x, y. z, t which are the limits of a definite integral representing 
a wave-function, when the function under the integral sign is 
a wave-function for all values of the parameter with regard to 
which we are integrating. Thus the function w just defined and 

the function t _1 (r + r.) which will be used later are solutions 
c 

of this equation. 

* For another connection between this equation and the electromagnetia 
equations see .A.. Sommerfeld BDd J. RUDge, "Grundlagen der geometrischen 
Opiik," ~nn . d. Phy., Vol. 85 (1911), p. 277. 
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§ 6. The fundamental equations for a material medium. 
For a material medium which is stationary relative to the 

axes of coordinates, the equations (1) must be replaced by the 
more general equations· 

rotH=HJ+O~), divD=p I 
loB rot E=--­
c at ' div H =0 r 

... .. .... (15), 

where D is the electric displacement, E the electric force or 
field strength, H the magnetic force and B the magnetic induc-

tion. The quantity J + °o~ represents the total current which 

is made up of a conduction-current C, a displacement-current 

~~ and a convection-current pv, p -being the volume density of 

electricity. 
Various notations have been used for the different vectors 

of an electromagnetic field. Most English writers use (a, b, c) 
for the components of the magnetic induction, (a, (3, 'Y) for those 
of the magnetic force, (J, g, h) for the components of the electric 
displacement and (P, Q, R) or (X, Y, Z) for those of the 
electromotive intensity or electric forcet. This is not to be 
confused with the mechanical force F of electromagnetic origin, 
whose components are sometimes denoted by (X, Y, Z) . 

• Lorentz (1892-1895) and L&rmor (1895) have derived these equations and 
a corresponding set of equations for moving bodies by a process of averaging, 
starting from the fundamental eqoations of the theory of electrons in which we 
have B=H, D=E. J=pv. Cf. H. A. Lorentz, .A.kad. van Wetenschappen te 
.d .... UTdam(1902), p. SOO; EncykZ. d. Math. Wiu. Bd. 5, § 14, pp. 200-210. This 
method of averaging bas been developed 80 8S to give results in aocordance with 
the Theory of Relativity by M. Born, Math • ..Inn. Bd. 68 (1910) and E. Cunning­
ham, Proc. Lmdon Math. Soc. Ber. 2, Vol. 10 (1911), p. 116. The Born· 
Minkowski equations differ slightly from those of Lorentz and indicate the 
existence of an electrostatic field due to the motion of a magnetised body. 

Ii has been realised by the foregoing writers and others that the principle of 
relativity alone is not sufficient to determine a complete set of equations for 
moving bodies, a theory of the constitution of matter is needed. Cf. B. R. BasOO, 
Phil. Mag. Jan. (1914). 

t Clerk Maxwell, E~ctricity and Ma{Jfletilm, Srd edition (1892), Vol. 2, 
p.257. 
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In any material meclium there are certain constitutive 
relations connecting the vectors D, E, B, H, J. In moving 
meclia, crystalline media and ferromagnetic bodies the relations 
are rather complicated, but for an isotropic medi um in which 
p = 0 the relations can be represented to a good degree of 
approximation by the simple equations 

• 
D= <E, J = "E, B = J.'H ...... .. ....... (16), 

where <, u , I'- are scalar quantities which are generally regarded 
as constants; they will be regarded in fact as the optical 
constants of the medium. The quantity u is called the con­
ductivity, I'- the perrlLeahility, and < the dielectric-inductive 
c(!pacity. 

The units that are used here are the so-called modified 
units-, in which Heaviside's suggestion of eliminating a factor 
47T has been adopted. We can pass to electrostatic units or 
electromagnetic units by replacing our quantities E, H, etc. by 
aE, flH, etc., where a, fJ are certain factors which are given in 
the following table: 

e, D, J E B H on 
. 

Electrostatic system J4" 
1 c 1 

c~ J4" J4" cJ4" . 

c J4" 
1 1 1 

J4" Electromagnetic system 
c~ J4" ~ 

We use e here to denote a quantity of electricity, and m a 
quantity of magnetism. 

§ 7. The energy eque.tion for II. me.terie.l medium. 
If we use l: as before to denote the vector whose components 

are of type c (E.H. - E.H.), we-find that 

vI, v~ ol:. v < ( ""'\ H. vB, H. vB. H. oB. "" 
0'" + oy + vz +ot2 .L>',+ 'Tt+ .Tt+ 'ae-+u(,e,-)=O . 

• Cf. H. A. Lononlz, EncykWplidi< d<T Math. W .... Bd. 5, § 13, pp. 83-87. , 
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If '" is a constant and tEE' + t",H' be regarded as the 
energy per unit volume, the change in the distribution of the 
energy can be described by means of a flow u and a loss per 
unit volume of magnitude uE' due to the transformation of 
electric energy into heat (Joule's heat)*. If B does not depend 
on the instantaneous value of H so that", is not a constant 
there is a loss of energy due to hysteresis. B may depend 
upon H alone but not be a single-valued function of H, con­
sequently in a cycle of changes f(H.dB) is not zero and may be 
taken as the heat per unit volume developed during the 
description of the cycle. Notice that 

f(H.dB) = - J(B . dH) round a cycle, 
and is always positive since the value of B for a given value of 
H is greater when H is increasiug. The experimental analysis 
and the accompanying theory are due to E. Warburgt and 
independently in much greater development to J. A. Ewingt by 
whom the name hysteresis was applied to such phenomena. 

§ 8. Solution of the fundamental equations for a 
material medium. 

Let us assume that u , "', E are constants and that E, H are 
the real parts of expressions of the form Ae-iw', where A is 
a complex quantity independent of t. Then if we write 

k'= £",01' + i",01u, v=- kc, M = H + ivE ...... (17), 
c' !"OJ 

and regard E, H now as the complex vectors of which they were 
formerly the real parts, the differential equations to be satisfied 
by Mare 

rot M = ± kM, div M = 0 . .. .. .. . ..... ,.(18). 

These may be solved by putting 

M = rot IT ± i grad div IT ± kIT .... ........ (19), 

where IT is a solution of the equation ~u + k'u = 0, and may be 
of the form U ± iV. 

* For a fuller discussion see H. Gans, Einfil,hrung in die T1u!orie der 
MagnetitnnllB i H. A. Lorentz. EncykL d. Math. Win. Bd. 5, § 14, p. 240, Beft 1 
(1908); Heaviside. Euctrical Paper., Vol. 1, pp. 437-450. 

t .dnn. Phy •. eM ... (3), Vol. 13 (1881), p, 141. 
: Phil. Trm ... A, Vol. 176 (1885), pp. 523-640; Proc. Roy. Soc. Vol. 34 

(1883), p. 39; Phil. Mag. Vol. 16 (1888), p. 381; Magnetic Indtl~tion in ITOfI 
and .'IIn.JIf,ta", London (1892). 
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Problems which deal with the effect of small obstacles upon 
light or electric waves require the taking into account of the 
properties of the material of which the obstacle is composed.: it 
is only for long waves and conducting media that the obstacle 
can be treated as a perfect reflector. This is illustrated. by the 
work of Maxwell Garnett * and Miet on the optical properties 
of colloidal suspensions of metals and in the work of Sommerfeld 
to which we have already referred. 

Unfortunately, however, the analytical difficulties are very 
great when imperfect conductivity is taken into account!. The 
simple-looking problem of the reflection of the disturbance 
produced. by a moving charge, when the obstacle is an infinite 
plane sheet of metal or other conducting substance, has not yet 
been solved. accurately§ and there are many similar problems 
that have completely baffied mathematicians. 

Much more progress has been made with problems dealing 
with perfect reflectors. These problems are to some extent 
ideal but some of the characteristics of actual physical problems 
are often preserved. II. Apart from this, such problems are of 
considerable mathematical interest, and have been studied by 
some writers simply on this account. 

§ 9. Boundary-Conditions. 
The conditions to be satisfied at a surface separating two 

different media are obtained by integrating equations (15) across 
a thin layer of transition,r. Taking the axis of z along the 

• Phil. Tram. A, Vol. 203 (1904), p. 385; Vol. 205 (1905) , p. 237. 
t .dnn. d. Phy •. Vol. 25 (1908), p. 377. 
t An important solution of the equations ha.a been given by M. Brillouin, 

.. Propagation dans lea milieux oonducteurs," Compte. Rendut, t. 136 (1903), 
pp. 667, 746. (See Ex. 20, Ch. n.) For o'her references see Ex. 5, p. 23. 

§ An a.pprorima.te solution was suggested by Ma.xwell and has been developed 
by Larmor, Proc. London Math. Soc .• Ser. 2, Vol. 8, p. 1. An aocurate solution 
for the C&Se in which the sheet is treated l\8 infinitely thin and the charge moves 
with uniform velocity pa.raJ.lel to the pIa.n8 ha.s been given by G. Piccia.ti. Rom . 
.dec. Line. Rend. (5), 11, (1902), p. 22l. 

U A meta.l behaves practically &8 a perfect conductor to electric wa.ve8 when 
the oocil.lations arera.pid but alowoompe.red with wa.ves of light. Cf. J. La.rmor, 
II Electric vibra.tions in condensing systems, II Proc. London Math. Soc. Ser. I, 
Vol. 26, p. 119. 

'If Rayleigh, ScientiJi< Paper., Vol. 1; Phil. Mag. Vol. 12 (1661), p. 81; 
H. Hertz, Euctric Waves, pp. 207, 258; La.rmor, Phil. Tram. (1895), 

B. 2 



18 FUNDAMENTAL IDEAS [CR. 

normal to the surface we shall assume that E, H, D, B and 
their derivatives with regard to x, y, t are finite within the 
layer and that the conductivity er is also finite. The equations 

oE. _ oE. =! aBz aH. _ oH. =! (erE + oDz) 
oz oy C ot' oy oz C z at' 

then show that o~., 0:;. and Jz + o~z are finite and so their 

integrals with regard to z across a thin layer of thickness B are 
less than aU where a is a finite positive quantity independent ofB. 
This means that the tangential components of the electric force, 
magnetic force and electric current are continuous in crossing 
the surface. 

Again, the equation 

oBz + oB. + oB. = 0 
ox oy OZ 

shows that o~. is finite and so the normal component of the 

magnetic induction is continuous. This result may, however, 
be regarded as a consequence of the previous one. 

The normal component of the electric displacement may be 
discontinuous, for the equation div D = p gives 

d. = J:o~, dz = J: pdz + terms of order B, 

where d. is the discontinuity in the electric displacement. Hence 
if a is the surface-charge of electricity per unit area we have d.=er. 
When the media are both conducting we have (j = 0 and the 
normal component of the electric displacement is continuous. 
. It is known that in the case of a good conducting body 

rapidly alternating currents are confined within a very thin 
layer close to the surface -. In the ideal case of a perfect 
conductor or perfect reflector the field-vectors are zero within 

p. 733; H. M. Macdonald, Electric Wave., p. 14; H. A. Lorentz, Zeitschrijt 
/. Math. u. Phy • . Bd. 22 (1877) . 

• Cf. H. Lamb, Phil. Trani. A (1883); O. Heaviside. Electrical Paper., Vol. 2, 
p. 168; J. J. Thomson. Recent Ruearchu, p. 281. For some recent work on 
the subject see a paper by E. F. Northrup a.nd J. R. Carson, Journ. of the 
Jilranklin Imtitute, Feb. (1914), p. 125. The results of m.any other researches 
on the sltin.eiJeot a.nd altem&ting ourrent resistance a.re given in J. A. Fleming's 
The principlu 0/ Electric Wave Teugraphy. 
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the body of the conductor. This case is characterised by u = 00 

and the tangential components of the magnetic force are no 
longer continuous as a point moves across the surface, we have 
in fact if " is the discontinuity in the magnetic force 

h.= r8o
!!"dz =_! {·uE.dz+terms of order e. 

Jouz . c.u 

Hence if K is the surface-current and It the discontinuity 
of the magnetic force, we have 

1 1 
h,,=- - K., h.=-K •. c c 

At the surface of a perfect conductor the tangential com­
ponents of the electric force must vanish and as a consequence 
of this we can say that the normal component of the magnetic 
induction must also vanish. If the medium outside the con­
ductor is free aether the surface-conditions are simplified on 
account of the relations D = E, B = H. 

In the case of a very thin conducting sheet it is convenient 
to treat the thickness of the sheet as negligible and regard the 
tangential components of the magnetic force as discontinuous 
when a point moves along the normal from one side of the 
sheet to the other. 

The boundary-condition is then· 

- All = ~ EZI hz = ~ Ell' 
C c 

where u = J: udz is the conductivity of the sheet. 

If we wish to extend the idea of Green's equivalent layer to 
electrodynamics we must consider electromagnetic fields in free 
aether with surfaces at which the tangential components of the 
electric and magnetic forces are discontinuous; this requires an 
electric current sheet and a magnetic current sheet on the 

• Cf. T . Levi-CivilA, Rend. Lincei (5), 11. (1902), p. 75. These conditions 
are used by Picciati in his solution of the p~blem of a.n electric charge moving 
parallel to a. conducting sbeet. In some previous papers, .Rend. Li1tcei (5). HI 
(1902), pp. 163, 191, 228, Levi-CivilA l1ad used the electrom"€,,etio potential. to 
determine the eflect of 80 conducting sheet on Bon altema.ting current flowing 
along & straight wire pa.mllel to the sheet; the bounda.ry-conditions are then 
determined by the discontinuities of the potentia.ls due to the induced current. 

2--2 
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surf.we*. For a complete generalisation we ought to consider 
the cases when the normal components are also discontinuous 
and when the surf.we is in motion. The last circumstance 
alters matters to some extent and must now be discussed. 

In the case of electric waves in free aether, the vectors 
E and H may be discontinuous at a wave-boundary. If this 
can be regarded as the limit of a thin layer of transition within 
which equations (1) are satisfied and the vectors E, H are 
finitet, the values of these vectors on the two sides of the 
boundary must satisfy certain conditions which may be found 
as follows. 

Let the equation of the moving boundary be expressed in 
the form 

t = f(x, y, z) . ... . ................... (20). 
If now we apply Green's theorem to the integral 

ff[ (M. + icMy~! ± icM.~;) dydz 

+ (My + icM. ~! ± icM. ~!) dzdx 

+ (Md iCM.~; + icMy ~!) dxdy]. ..... (21), 

which is supposed to be taken over a closed surface, we find 
that it vanishes on account of the equations (2) provided t is 
supposed to be expressed in terms of x, y, z according to some 
definite law which we shall take to be that expressed by (20). 

We now apply this theorem to a disc-shaped surface whose 
two faces very nearly coincide. We shall suppose that on one 
side of the disc the vector M represents the field of the advancing 
waves and that on the other side it represents the field obtain­
ing just before the arrival of the waves. We shall also suppose 

• C/. J. Lo.rmor, Proc. I.ond<m Math. Soc. (2), Vol. 1 (1903), p. 11; 
B. M. Ma.cdonaJd, Electric Wave" p. 16; Proc. London Math. Soc. (2), Vol. 10 
(1911), p. 91. 

t The idea. is practically due to Stokes. Math. and Phy', Paper., Vol. 2, 
p. 275, but was not worked out in deta.il. The different possible types of dis­
continuity are discussed with some care by Love. The ca.se in which E e.nd H 
are continuous but some of their deriva.tives are discontinuous a.t the moving 
boundary lIl8.y be discussed more simply by analysis analogous to tha.t given in 
Be.da.mard's Le~om 8ur laPropagation du Ondu, Pa.ris (1908), Ch. 2. See also 
Ex. 2, p. 23, a.nd the references to Duhem a.nd Silberstein on the next page. 

--



( 

I] BOUNDARY -CONDITIONS 21 

that the derivatives of M are finite or behave in such a way 
that an application of Green's theorem is justifiable_ Now 
let M be the discontinuity of M, i.e_ the difference in the values 
of M at two neighbouring points on opposite sides of the wave­
boundary_ Then when the two faces of the disc coincide we 
find that a certain surface-integral over one face of the disc is 
zero. The surface-integr-.tl is of the same type as (21) except 
that M is written in place of M. Since the face of the disc can 
be chosen arbitrarily the integrand must vanish and so we 
obtain three equations of the type· • 

-_.-ot .-ot 
M. + 'c My" + 'c M • ., = 0 •••. ........ (22). 

uZ - uy 

These equations give 

M' = 0 and (ot')' + (ot)' + (ot)' =.!.. 
Ox oy OZ C' 

Hence the wave-front advances with the velocity of light 
and the difference between the two electromagnetic fields at 
the wave-boundary behaves as a self-conjugate field in which 
Poynting's vector is along the normal to the moving 
boundary. 

If the equation of the wave-boundary be expressed in the 
form 

F (x, y, z, t) = 0, 

we find on calculating the values of 

that 

ot ot ot 
ox' oy' oz' 

This is the differential equation of the characteristics, it 
expresses that the moving boundary moves normally to itself 
with the velocity of light. According to the theory of Stokes t 

• Equations equivalent to these a.re obtained in 8. different manner by 
O. Hea.viaide, Electrical Papen, Vol. 2-, p. 405; A. E. H. Love, 17oc. Lt:nukm 
Math. &c. Ser. 2, Vol. 1 (1903), p. 37; L. Silberstein, Ann. d. Phy.ik, Vol. 26 
(1908), p. 751 ; P. Dubem, Comptel Rend",. t. 131 (1900), p. U7l. 

t Proc. Cam». Phil. Soc. (1896); Manchuler MemciTl (1897); Math. and 
Phy •• Pap<'f', Vol. 4. 
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and Wiechert·, Rontgen rays consist of pulses travelling through 
the aether, the energy in a pulse being confined within a thin 
shell. The above theory indicates that the front and rear 
surfaces of the shell move forward with the velocity of light. 

A slight modification of the preceding method can be used 
to find the conditions to be satisfied at a moving surface which 
is the "boundary between two different media. If we write 
L = B ± iD, N = E + iH and assume that the surface-charge and 
surface-current can be neglected, the six boundary-conditions 
can be expressed by saying that the three quantities of type 

iJt iJt 
L. - ciJyNz + C iJzNy 

must be continuous as the boundary is crossed. The equation 
of the moving boundary is expressed as before in the form (20). 
When the moving boundary is the surface of a perfect conductor 
or perfect reflector, the boundary-conditions are simply that the 
three quantities of type 

iJt iJt 
B. - C iJyEz + C iJz Ey 

should vanish t. 
In the last two cases the boundary-conditions do not imply 

that the boundary moves normally to itself with the velocity of 
light; in fact, the motion of the boundary can be quite arbitrary. 

EXAMPLES. 

1. The surface of discontinuity is the sphere r=ct a.nd the electro­
magnetic field within this surface is expressed by the equations 

( 
Q2II a'II Q2II a'II\ 

(E .. E" E.)=c dXa.' Oya.' - ox' - 0;;'/' 

(H., H., e.) = (~~, - :,:~., 0), . 
where n=A.r-1e-\l(d-r)sin p (ct-r+f). 

.. ..J.bh. d. Phy •. -ijkqn. Gu. zu KiiniU.berU, 1 Pr. (1896), p. 1; Ann. Phy •. 
Chnn. Bd. 69 (1896), p. 283. See aJ80 J. J. Thomson, Phil. Mag. (6), Vol. 45 
(1898), p. 172. 

t These conditions are equivalent to the condition that the mech&.nicaJ force, 
which would act on a charge moving with the normaJ velocity of the surface, 
must be along the normal to the surface. Cf. Bea.viside, Elutrical Paper., 
Vol. 2, p. 614; Electronw.gnetic Theory, Vol.!, p. 279; Hertz, Elutm Wavu, 
p. 257. 
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The constanta 'P and q being known determine the constants A a.nd E 

in order that the field outside the surface r=ct may be the electrostatic 

field for which the potential <I> i. - :z 0) . 
(Camhr. Math. Tripos, Part II, 1904.) 

2. If the vectors E and H are known for all points (x, y, z, t) of .. 
moving surface 

F (x,y,z, t) ~ O 

the values of a.ll the derivatives of E a.nd H, and consequently values of E 
and H at points not on the moving surface cn.D generally be found pro· 
vided F does not satisfy the difierential equation 

(af"\' (OF)' (aF\' _! (aF)' 
ax) +\By + az} - c' at . 

(Havelock, p,·oc. L<mdrm Math. Soc. Ser. 2, Vol. 2, p. 297.) 

3. An electromagnetic field is conjugate to an electrostatic field. 
Prove that the Bow of energy in the electromagnetic field takes place along 
the lines of electric force in the electrostatic field. 

4. Let the line OC of length c be dra.wn in the direction of Poynting's 
vector at each space-time point 0 of a self-conjugate electromagnetic 
field and let 0 V represent a velocity v associated with the point O. 
Prove that if this electromagnetic field is conjugate to another field 
(E, H) in which cH is the vector product of v and E, the direction of E is 
parallel to VC. 

5. Prove that when u, E, p. a.re conatints, the vectors E, B of § 6 
satisfy the differential equations 

t;.E- 'p. a'E _ up. aE =! grad p 
c'at' c'ct. ' 

t;.H _ 'p. OlH _ up. aH =0 (Maswell.) 
c' at' c' at . 

Solutions of these equations for the case in which 1'=0 have been given by 
o. He&viside, Phil. Mag., Jan. (1889), p. 30; Electrical Paper', Vol. 2, 

p. 478. 
H. Poincare, Campt .. &ndm (1893), p. 1030; Thkrie analytique de 

la propagatirm de la chakur, Ch. 8. 
J. BoUBBinesq, Camptu &ndu. (1894), pp. 162-223; Thkrie 

analytipte de la chaleur, t. 2 (1903), p. 538. 
Kr. Birkeland, AroM ... del AAence8 phynque.o, Geneva (18P5), p. 5. 
O. Tedone, Rend. Lincei, Mar. 31st (1913), Jan. 18th (1914). 
M. 1. Pupin, Tram. Amer. Math. ·Soc., Vol. 1 (1900), p. 259. 

6. Prove that the function 
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satisfies the equation 

7. If u satisfies the partial differential equation 

(~)' + (~)' + (";;)' =~ (~)', 
and we make the transforma.tion 

au 
xo=x+/ ilx' 

au 
1/0=1/+/ (,y' 

au 
"0='+/ ilz ' 

/ ilu 
10=1- c2 iii' 

[CR. I 

where f is an arbitrary function, then u also satisfies the pa.rtia.l differentia.! 
equation 

( ilu)' + (au)' + (ilu)' ~ !. (au)'. 
oXo (,yo 0"0 c2 oto 

8. Plane electromagnetic wa.ves faU on the convex surface of an infinite 
paraboloid of revolution x=Q-r, whose surface is a. perfect reflector. If 
the incident wa.ves are given by expressions of the type 

. iJ(a,{3) i il(o,{3) 
HzHEz /(a, (3) o(y, 0) = ./(0, (3) o (x, Ij , 

where a=1/+iz, {3=z+cl, the boundary-conditions at the surface of the 
paraboloid may he satisfied by subtracting from the primary field a 
secondary field represented by expressions of a similar type but with 

y-iz 
a=a-- , 

z+r 
{3=a-r+ct. 

If waves represented by the above expressions with a=1/-iz, {3=z-ct, 
fall on the concave surface of the paraboloid the boundary·conditions at 
the surface of the paraboloid may he satisfied by supposing that the 
secondary disturbance is of the form - N' - N" +N"', where the fields 
M', Mil, M'" are represented by expressions of the above type, where a, 8 
ha.ve the values 

• 

a'=y+iz, 

" !I +iz a =a - - , 
z+r 

", 9- tZ a =Q-­
x+r' 

{I=2a-x-ct, 

{f'=a-r-ct, 

f;f"=a+r-ct, 

respectively. With these suppoeitions the forces are finite at the focus, 
when / is independent of a • 

. -
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CHAPTER II 

GENERAL SURVEY OF THE DIFFERENT METHODS OF 
SOLVING THE WAVE-EQUATION 

§ 10_ The object to be attained_ 

It hM been shown in Chapter 1 that the solution of 
Maxwell's equations can be made to depend upon the solution 
of a single partial differential equation which is either the 
wave-equation flu = 0 or the equation au + /c'u = 0 which 
is satisfied by wave-functions of the form 11 = e~ikct f(x, y, z)_ 
The properties of functions satisfying these equations must 
accordingly be studied at some length. It is desirable, 
also, that all types of such functions should be studied 
and not merely those which admit readily of application to 
physical problems. If certain solutions of the fundamental 
equations must be rejected in the treatment of the boundary 
problems of mathematical physics, a knowledge of their 
behaviour is at any rate useful M it gives a clear indication of 
the reason why such solutions must be rejected. There is, 
however, another reMon why the scope of the inquiry should 
not be restricted. The theory of wave-functions forms a 
natural extension of the theory of functions of a complex 
variable* and may consequently lead to results of great value 
for the general theory of functions. 

* This point of view is adopted, for insta.noo, by Voltet'r"&, Rend. Lincei (4). 
ID2, pp. 225-830,274-287 (1887); IV" pp. 107-115, 196-202 (1889); v" pp.156-165, 
281- 299, 599-611, 63(}...640 (1889); Rend. Pal<rnw, Vol. 3, pp. 26()"'272. See 
al80 Appell, Acta Math. t. 4, p. 313 (1884); Painleve, Tuul<>we Ann., t. 28 
(1888); B6cher, 1M/. Amer. Math. Soc. Vol. 9, p. 4S5 (1903). The theory of 
functions of two complex va.ria.bles is closely connected with the theory of W80ve­

functions. Of. H. Poincare, Acta Math. Vol. 2 (1888); Vol. 22 (1898); H. F. 
Baker. Camb. Phil. Tram. Vol. 18 (1899), p. 431; Proc. Lond<m Math. Soc. 
Ser. 2, Vol. 1 (1903). p. 14. 
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We shall nowdescrihe hriefly some of the principal methods 
of solving the wave-equation. 

§ 11. Reduction to ordinary differential equations. 
The aim of this method is to determine elementary solutions 

of the form 
u = /, (a)j, (f3)/. ('Y)j. (0) ............... (23) 

where j"j,,/,,/, are particular functions of their arguments and 
a, f3, 'Y, 0 are particular functions of x, y, Z, t. This method was 
used hy D. Bernoulli in 1732 in the treatment of the vihrations 
of a hanging chain, the partial differential equation being how­
ever in this case different. 

The general theory of elementary solutions is due to Lame· 
who transformed Laplace's equation into curvilinear coordinates. 
For a historical account of the development of the theory we 
may refer to Prof. Booher's book Die Reiherumtwickelungen 

. der Potentialtheorie, Leipzig (1894) and to Byerly's Fourier 
Series and Spherical Harmonics. 

A simple elementary solution of the wave-equation is 
obtained by putting a = x, f3 = y, 'Y = Z, 0 = t; we can then 
take 

u = eu:+my+m±pt •..........•...... (24) 

where the constants I, '111, n, p satisfy the relation 

1" = c' (I' + '111' + n') .................. (25) 

and can be either real or complex quantities. 
When p is a purely imaginary quantity and I, '111, n unre­

stricted, the solution is periodic and more general periodic 
solutions may be derived from this one by summation, I, '111, n 
being regarded as variable parameters suhject to the relation 
(25)_ When I, m, n are purely imaginary the solution (24) is 
appropriate for the representation of plane waves of mono­
chromatic light, the intensity and phase of which are the same 
at all points of any plane perpendicular to the direction of 
propagation . 

• Liouvilk" Journal, t. 2, pp. 14:7-183; Let;0nJ I1tT lu coorMnlIfu 
curvilignu, Paris (1859). See also E. Ma.thieu, COUT. tk phyrique mathimatiqne 
(1873). 
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Taking m = n = 0, l = _l!. = v so that the axis of a; is in the 
e 

direction of propagation, we may write 

Ex=Ez=Hx=Hy=O, Ey=acosv(a;-ct), 
Hz = a cos v (a; - et) ...... .. ...... .... (26) 

where a is a constant. These waves will be said to be linearly 
polarised in a direction parallel to the axis of y and will be 
called homogeneous because E and H do not depend on y and z. 
It will be noticed that the constant e represents the velocity of 
propagation of a phase of the disturbance. 

A wave-function of the type 
n = sin va; cos vet 

• 
is appropriate for the representation of standing waves. Ex-
pressions for E and H may be written down by analogy with 
the above. 'fo obtain a representation of plane waves III a 
conducting medium, we must use a solution of 

d'u 
do;' + k'u = 0, 

where !If has the complex value given in § 8. Putting V = 0, 
U = (0,0, eib: - iw') we find that . 

Ex = Ey = Hz = Hz= 0, E y= '': eib:-iw', 

Hz=ikeib:-iw' .... ... ............. . (27) 

where the real parts of the quantities are retained. If 

k=E+i'l 
where 'I is positive, the oscillations of the vector E are damped 
owing to the expOnential factor e-"z. 

The elementary electromagnetic fields that have just been 
found are fundamental in the theory of the ' reflection and 
refraction of light at a plane surface. This theory is given in 
the text-books on Physical Optics· and need not be reproduced 
here. Various l'tttempts have been madet to prove that any 

• See for instance, Wood's Phy.ical Optic. (1911). Ch. 13; Jeans, EZu­
tricity and ~[ag ... ti ... (1911), Ch. 18. 

t See for iosta.nce a series of papers by G. Johnstone Stoney, Phil. Mag. 
(5), Vol. 43 (1897), pp. 139, 273, 368; Vol. 44, pp. 98,206; Brit. ,du". l/eporll 
(1902), p. 539; Phil. Mag. Feb. 1903. The idea is probably due 10 Stokes. 
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electromagnetic disturbance in the aether can be represented as 
the sum of a finite or infinite number of elementary disturbances 
of the character of plane-waves travelling in various directions. 
Such a representation is generally only suitable within a 
restricted domain of the variables x, y, z, t; nevertheless, it may 
sometimes be employed with advantage. 

When waves of all directions and frequencies are considered, 
the method of summation leads to Whittaker's formula * 

n = J:I:- f[ x sin a cos 13 + Y sin a sin 13 + z cos a - ct, a, 13] 
x sin a. dad{3 ........................ (28) 

for a wave-function. The case when 

f[~,a, 131 = ei.~ ~ < 8 < 7r 

=0 ~>8 

has been used by Debyet in a discussion of the behaviour of 
waves of light in the vicinity of a focus. In order that an 
integral of the type (28) may represent a wave-function it is 
not necessary for the limits of integration to be those chosen. 
The limits for a may, for instance, be 0 and 8 where 8 IS a 
root of an equation of type 

x sin 8 cos 13 + Y sin 8 sin 13 + z cos 8 - ct = F (8). 

In order to obtain other types of elementary solutions it is 
necessary to transform our differential equations to a system of 
orthogonal coordinates (u, v, w) for which the linear element is 
given by 

du' diP dw' 
ds= u'+ v'+ W' .................. (29). 

If H u , H., H", are the three components of a vector H in 
directions normal to the surfaces u = const., v = const., w = const. 
through a point (x,y,z), the corresponding components of rotH 
are of the type! 

VW [;v (~) -a: (~)J ............... (30), 

• Math. Ann. (1903). See also G. N. Watson, Me ... of Math. Vol. 36 
(1906), p. 98. 

t Ann. d. Phy •• Vol. 30 (1909), p. 735. 
l Bee for insta.nce, H. M. Macdonald, Electric Waves, Ch. 6; M. Abrahs.m, 

Math . .A.nn. Bd. 52, p. 81. Some very geneml tr8.nsformation-formulae are 



r 
n] TRANSFORMATIONS OF COORDINATES 29 

the new expression for div H is 

UVW [;u (:w) +! (iiir) +! (ffv)]..· (31), 

and the wave-equation becomes· 

UVW [;u (iw ~;.)+ !(;U ~~) +! (:v~)J 
1 o'</> 

= Co iJt' ... ... .. . (32). 

It is also sometimes advantageous to transform the wave­
equation to a system of coordinates for which 

dar + dy' + dz' - c'dt' = A'df + B'd7)' + C'd!;' - D'dT', 

the wave-equation then becomes 

E (BCD o</» i ;GDA a</» i (DAB o</» 
iJ~ A o~ + (7) \ B 07) + o~ C o~ 

= 0: (A~C~~). ........ (33). 

§ 12. The generalisation of wave-functions. 
When a solution of the wave-equation has been' ohtained 

other solutions may he derived from it in various ways. For 
instance, the function ohtained by differentiating the given 
wave-function any number of times with regard to the coordinates 
It, y, z, t, is also a wave-function. By adding together arbitrary 
constant multiples of all the wave-functions obtained in this 
way we may obtain a very general type of wave-function. 

Another method of generalisation is to make an arbitrary 
change of rectangular axes. The wave-equation is a covariant 
for such a transformation and 80 is a wave-function of the new 
coordinates. A number of arbitrary constants can be introduced 
into the solution in this way. We can also make a linear 
transformation of coordinates for which the expression 

. dar + dy' + dz' - c'dt' 

cont&ined in the papers of V. Volterra, Rend. Lincei, Bel. 4, Vol. 5, pp. 599, 
630 (1SS9), and J. Lormor, Camln-. Phil. Tra .... Vol. 14 (1886), p. 121. 

• Lamll, Journ. dt l'Ecole Polytechmqtu, Cah. 23 (1833), p. 215; ~ 
wr let coordonnlu curvilignu, t. 2. A simplified proof W8.8 published by Lord 
Kelvin, Camln-. Math. Journ. Vol. 4 (1845). 
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remains unaltered in form and the preceding remarks still hold 
good. 

To illustrate this let us first of all add together two particular 

cases of Euler's wave-function?' fer ± ct), viz. 

1 1 
and ( , r r + ct) "(r- ct) 

we then see that (r" - o't')-1 is a wave-function. Generalising 
this by writing'" - "'0, y - Yo. z - zo, t - to in place of "', y, z, t, 
we obtain the wave-function 

1 
() ) ( )' ( )'

" .. , .(34). 
'" - "'0 2 + (y - Yo '+ Z - Zo - 0' t - to 

When we have obtained a wave-function involving one or 
more arbitrary parameters we may obtain others from it by 
differentiating with regard to the parameters, or by integrating 
with regard to them after having multiplied the expression by 
an arbitrary function of the parameters. For instance, from 
the above wave-function we may derive the more general wave-. ' function 

J 
f(T)dT 

, ...... (35), 
("'- "'0)' + (y - Yo)' + (z - zo) - 0' (t - T'f 

where the integration is between constant limits. It is not, 
however, really necessary for the limits to be constant, we may 

for instance take them to be - 00 and t - ! (r + ro), where 
c 

ro' = "'0' + yo' + zo'. The resulting integral is then a wave-function 
providedf(T) behaves in a suitable manner. If we takef(T) = I, 
we obtain a wave-function 

1 R -r -ro '. 
u = R log R ................ .. (36), 

+r+ro 
• where 11:'= ('" _ "'0)' + (y - Yo)' + (z - zo)'. 

This function is independent of t and so must be a solution of 
Laplace's equation C.U = O. It is closely connected with the 
function used on p. 3 of Basset's Hydrodynamics, Vol. 2. 
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§ 13. Transformations. 
In addition to the linear transfonnations that have already 

been mentioned there are certain other transfonnations which 
enable us to pass from one wave-function to another-. 

The first transfonnation, which is analogous to inversion, is 
defined by the equations 

a;'=~ Y'=Ys" 
s' ' 

z 
z'= ­

s" 
where s' = r' - c't'. 

t 
t' = r .......... (37) 

It is easy to verify that if f(x, y, z, t) is a wave-function, 
then 

~f(;' ~, ;, ~) .................. (38) 

is also a wave-functiont. 
The second transfonnation ist 

, x , Y z'=r'-c't'-l 
x =z_ct ' Y=z-ct' 2(z - ct) 

t'= r'-c't'+1 
°2,--c'(z----,ct") 

......... (39). 
It is easy to verify that if f(x, y, z, t) is a wave-function, 

then 

1 f[~ y s'-1 s'+1 ] (40) 
z - at z - ct' z - ct' 2 (z - ct) , 2c (z - ct) ... 

is also a wave-function. Since r'H") is a wave-function we 
may deduce ill this way that 

is a wave-function. 

_-=1-; _~ e /&-cI, 
z-ct 

It should be noticed that if we put 4 .. = z - ct, IT = z + ct, 
a function of the type 

u =F(x, y, .. )e-....... ....... ....... (41) 

• For a. general account of these tra.nsformations see 8 paper by the author. 
Pro<. L<mdon Math. So<. Ber. 2, Vol 7 (1908). 

t This of course is Do eimpJe generalisation of Kelvin's theorem for l£pJa.ce's 
equation. The generalisation to the corresponding equation in n variables is 
mentioned by moher, BuU. of the Amer. Math. Soc. Vol. 9 (1903) , p. 4.59. 

::: Proc. London IJfath. Soc. Ser. 2, Vol. 7 (1909) . This transformation is 
equivalent to a. oonforma.l tmnsformation of a. 8p&ee of four dimensions which 
was discovered by Cremon&. Cf. Darbou][, Lerom ,UT lu .ystbnu orthogonauz 

. et let coordoml€u cttrvilignes, Paris (1910) . 
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is a wave-function if F satisfies the differential equation 

O'F O'F of ax' + oy' = aT ................... .. (42). 

The wave-function we have just obtained indicates that 
1 _ zI + lit 
-e '" = F ..................... (43) T . 

is a solution of the above equation. This solution is fundamental 
in the theory of the conduction of heat. It is evident that any 
solution of the equation of the conduction of heat in two 
dimensions can be used to construct a wave-function. 

Our second transformation theorem for the wave-equation 
also tells us that if F (x, y, T) is a solution of the equation (42) 
the function 

1 _"'+r' (X Y 1) - e '" F - , - , - - ............... (44) 
T 7' T T 

is also a solution. This result is due to J. Brill* and Appell t. 
The corresponding theorems for the two-dimensional wave­

equation 
O'V O'V 1 O'V ax' + iJy' = c' 'iJt' •.•••...•••.•..••• (45) 

are first that if f(x, y, t) is a wave-function and 

the function 
8' = x' + y' - &t', 

~f(:" ~, ~) ..................... (46) 

is also a wave-function. This is equivalent to Lord Kelvin's 
theorem for Laplace's equation if we simply replace ict by z. 

The second theorem is that if f(x, y, t) is a wave-function, 
then 

1 f_x 8'-1 8'+1 ] 
-v'y-c/lJ/-ct' 2(y-ct)' 2c(y-ct) ...... (47) 

is also a wave-function. Writing 4T = Y - ct, CT = Y + ct as 
before we find that u = e-" F (x, T) is a wave-function if 

iJ'F of ax' = aT ........................ (48). 

* Messenger of Mathematics (1891). 
t Liouville', Journal, Ser. 4, t. 8 (1894). 
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The second theorem can now be used to show that 
z, 

_ - 1 -0; F--r e ........ .. .............. (49) 

is a solution of this equation and that if F(a;, -r) is one solution 
the function 

-r-1e-~F(~, -~) .................. (50) 

is also a solution. This theorem is likewise due to Brill and 
Appell, it can evidently be generalised to the equation in 
n variables. 

EXAMPLES. 

1. Prove that it is possible for a tmin of plane electric waves 
to travel along an infinite isolated slab of dielectric material without 
being dissipated by spreading out into the adjacent empty space. Show 
tha.t if 2a is the thickness and K the inductivity of the sla.b, the velocity 
of propagation of such wa.ves of length A along the slab, when polarised 80 

that their magnetic vector is paral181 to it, is 

c l 
JK (1+6') , 

where e is the lowest real or the pure imaginary root of the equation 

ten2~ae=(K2;K_K t 
(Lannor, Cambro Math. Tripos, Part II, 1906.) 

2. Prove that with the notation of § 13, the function 

1 .+~ 

("' -"'0)'+(31-110)'+«-"0)' 0' (t to)' J~+x"'o+lIl1o+"" o'tlo 
is a. wa.ve-function, Xo, '!Io, 10, to being arbitrary constants. 

3. If F(x, 11, <, t) is a solution of the wave-equation, the function 

". " uet 
v=J~ .'" -.-. F('" 1L ~ ,!.) d. 

/ 0 1",..'.,..,.,-2 

is, under Buitable conditions, a solution of the equation 

l il'V uav 
.l.V= & at" +;; at' 

The quantity .. has the meaning .... igned to it in § 13 and is suppoeed in 
the present caae to be negative. 

B. 3 
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4. The function 
2 jHV"tz -t1t+ill)+Vtl(Z-tlt 

V~ 
J" -~ 

eatisfies the equation 

i1l)1 'f 
e- A dA 

of the conduction of heat in two dimensions: it is zero over a semi-infinite 
line which covers part of the axis of :c and moves in the positive direction 
with uniform velocity v. The isothermal lines at any given instant are 
confocal parabolas. 

6. Prove that, under suitable limitations, the function _ 

V= j~ e-~-A" [fe~iY)+F(X /iI)] ~t, 
is a solution of 

iJ'V iJ'V_ , 
ox' + Oy' -). V. 

Obtain in this way the particular solution 

!. e -Ap (x+iy) -l . 
p 

6. Prove that if x'+y'>t", the integral 

eatisfies 

and if x'>t', the integral 

j
~ e-avda V 

o Jx'+4a' 4at 
iJ'V iJ'V av 

satisfies ax> = ilt' + U at . 

7. Prove that if p'-x'+y', po'=xo'+Yo', the integral 

V J~ sink(H.)d~ 
= p+ .. Je-(x-x,,)'- (Y-Yo)' 

eatisfies the equation 
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CHAPTER III 

POLAR COORDINATES 

§ 14. The elementary solutions. 

If we make Laplace's transformation 

IV =r sin 8 cos 4>. y =r sin 8 sin 4>. z = rcos 8 ... (51). 

the equation C!.U + k'u = 0 becomes 

(l'u 2 ou 1 0 (. OU) 1 0'11 or" +ror + r''sin8 08 sm 8 08 + r'sin'804>'+ k'u =0 ... (52). 

This is satisfied by a function of the form 

u = R (r) ® (8) <b (4)) 

if o'<b 04>' + m' <b = 0 ..................... (53). 

s~ 8 :8 (sin 8 ~~) + [n (n+ 1) - S::8] ® = O ... (54). 

d'R 2 dR [k' ] dr' + rdr + r' -n(n+1 ) R=O ..... . (55). 

The first equation is satisfied by <b = cos (m4> + ,,). the 
second by F "m(cos 8) and Q,,'" (cos 8). where these are the 
associated Legendre functions. The third equation may be 
written in Bessel's form 

d'w 1 dw [Ie' ] dr' +r dr + r'-(n+t)' w=O ...... (56). 

where w = rl R,and is satisfied by J,,+! (kr) and J _ ("+i) (kr). 
In these solutions m and n can have any constant values. 

It should be noticed that when n + t is an integer the Bessel 
functions that have just been written down are not independent 
and the Be<lond solution Y"H (kr) of Bessel's equation must be 
used 

3-! 
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r, In dealing with a problem such as the effect of an obstacle 
on a train of electric waves. the secondary waves sent out from 
the obstacle must have the character of diverging waves at a 
great distance from the obstacle. In the case n = 0 the differen­
tial equation for R is satisfied by 

R =! G~ikr ..................... (57). 
7 

and if the real part of k has the same sign as '" when the 
electric and magnetic forces are the real parts of expressions 
of the form Ae- iw'. we can obtain a solution appropriate for the 
representation of a diverging wave by taking the positive sign. 
for then we have a function of the form 

1 ei(kr - w,) • 
7 

Neither of the given solutions of Bessel's equation has the 
required form in fact 

J! (kr)=J '7I'i"'l'sinkr. J -t (lcr) = J '7I'i"'l' cos kr. 

We may. however. obtain solutions of the form (57) by taking a 
suitable combination of the preceding solutions. 

In the case of electromagnetic fields in the free aether the 
physical interpretation of the elementary wave-functions when 
n is zero is as follows· : 

1 - cos k (7 - ct) Progressive divergent waves. 
r 
1 - cos k (7 + ct) Progressive convergent waves. 
7 

1 - cos kr . COS kct Standing forced waves. source at origin. 
7 

! sin kr.cos kct Standing free waves. 
7 

To obtain the solution of (56) appropriate for divergent 
waves when n has any value we writet 

* A fuller discussion is given by A. Sommerfeld, Jahrubericht der deutsch. 
math. Verein. Bd. 21 (1913). 

t The theory is due to Stokes. Phil. Tram. Vol. 158 (1868). p. 447; 
Collected Papers, Vol. 4, p. 321. See also Ra.yleigh's Sound, Vol. 2, p. 304. 
It should be mentioned that different notatioDs are used by different writers. 
This is the nota.tion ueed by Debye. Ann. d. PhYI. Vol. 30 (1909). p. 57. 

-
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Xn (x) = (_)nj,,;x J_n~!(x)=- Yn+!(x)~ 
'1Jn (x) = Y'n (x) - iXn (x) 

... (58). 

tn (x) = Y'n (x) + iXn (x) 

These new functions '1Jn. t.. are connected with Hankel's 
cylindrical functions * by the relations 

( ) / 7TX Hn+!() ,. ( ) /wx u1I+l( ) '1Jn x = V 2 1 X. 'n X = V 2 Ll, X . 

When the real part of x is large and positive we have the 
asymptotic expansion 

. ()_(_ .)n+l iz[1 i... n (n+l) 
'1JnX-' e +2x I! 

__ I_(n-l)nCn+l)(n+2) ] (59) 
(2x)' 2! + ... ... . 

The series terminates when n is an integer and then gives 
a true representation of the function. To get tn (x) we change 
the sign of i. Various other notations have been used for the 
solution of Bessel's equation that is suitable for the representa­
tion of diverging waves. Lamb uses D.(x). (v= n + l) to denote 
the solution of equation (56) which has the asymptotic value 

D.(x) = (!)! i'e-' (z+i). 

while many other English writers use K.(ia:) to denote the 
solution with the asymptotic form 

(;S e' (i -.). 

The following formulae will be found useful: 

Y'n(fer) = (fer)n+l 
1.3 ... (2n+l) 

[
1 (fer)" - (fer)' 

x - 2(2n+3)+2.4.(2n+3)(2n+5) .. } ..... (60). 

• See Nielsen'S Hand1Juch der Cylinderjunktioneu, p. 16. 
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~n(kr) =in+le-Vr [1- 21r n(nt 1) 

_ 1 (n-l)n(n+l)(n+2) (_ ')n (2n)!] (61) 
(2kr)" . 2! +.... . (2kr)n.n! ... . 

We have written down the last term in the series on the 
~ supposition that n is an integer. In this case 

'irn (kr) = Hin+1e-i.b- + (- i)n+l ei.b-], [r [ large .. . (62), 

d'irn (x) 
(2n + 1) da; = (n + 1) 'irn-l (x) - n'irn+l (x) ... (63), 

(2n + 1) 'irn (x) = x ['irn-l (x) + 'irn+l (x)] ....... .. (64), 

K. (x) = Jo ~-""'b·OO8h va. da ............ (65), 

J. (x) = 2.r{!) ~ (v + !) !o'oo8 (a; cos a) sin"a. da, R (v) > - t 
. . ......... . (66), 

• 

1 
= 2n+ 1 (n = p) 

n;;'O,p>O (67). 

In the last formula n and p are supposed to he integers. 
For further properties of Bessel functions the reader should 
consult Gray and Mathews' Treatise on Bes.el FunctiO'l11l, 
Nielsen's Handbuch der Cylinderfu:nktionen, and Whittaker's 
Analysis. Tables are given in the first work and in Jahnke 
and Emde's Funktir:mentafeln, Leipzig (Teubner). A few ad­
ditions to the tables have heen made recently by J. W. Nicholson, 
Proc. London Math. Soc. Ser. 2, Vol. 11, p. 104 ; Dinnik, Archiv 
der Mathematik 1tnd Physik (3), Ed. 20, Heft 3,1912; J. R. Airey, 
Phil. Mag. Vol. 22 (1911), p. 85, Brit., Ass. Reports (1911); 
A. Lodge, Brit. Ass. Reports (1909); J. G. Isherwood, Manchester 
Memoirs (1904). 

The hest definitions of the generalised Legendre functions 
for unrestricted values of m and n are those given by Hobson· . 

• Phil. Tram. A, Vol. 187 (1896), pp. 443-631. E. W. Barnes has recently 
given new definitions of the functions 88 integrals involving Gamma Functions 
which make it possible for the prinoipal formulae to be proved very quickly. 
His definition of Q .. m (x) dift'ers from that of Hobson by So numerical fa.ctor which 
beeomes rather troublesome when n is an integer and m is not. 

'-
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We are interested here in the case when the variable is cos (J 
and (J is a real angle. such that 0 < (J < 7r. We may then put, 
with the usual notation of the Gamma and hypergeometric 
flfictions. 

Pnm(cos(J)=r(l1_m)cotm~F(-n.n+1; 1-m; sin':) 

...... (68). 
7r 1 

Q '" (cos (J) - ,.....,,--,-----c- .,c;c;--, 
n -2sin(n+m)7r r(1-m) 

X {cos(n+m)7rCotm:F(-n. n+1; 1-m; sin':) 

- tanm:F( -no n + 1.1- m. cos':)} ......... (69). 

P,,-m(cos (J) = cosecm(J f' cos(n +n.p 
2mrmr(m+ t) 0 (2 cos 4>-2 cos(J)i m 

R (m + l» 0 ...... (70). 
When m is a positive integer. we have 

.... .. (71). 

and when n is a positive integer 

P ( )
_1.3 ... (2n-1) [ n(n-1) 

n X- ~- ~ 1.2 .. . n 2(2n-1) 

n(n-1)(n-2)(n-3) ] 
+ 2.4 (2n -1)(2n _ 3) x,...· - ......... (72). 

n(n-1) 
P" (cos (J) = cos" (J - 2' cos"'" (J . sin' (J 

n(n-1)(n-2)(n-3) ...... (J . '(J 
+ , 2'.4' cos .Sill ... ...... (73). 

1 (- 1)" dn (1) "ii+i P" (cos (J) = -;-- ,- d n - .................. (74). 
r n. z r 

1 (_1)" d" (1 r+z) ~+) Q,,(cos(J) = 'd " -2 log - ...... (75) • .,-- n. z r r-z 

'. 
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The last two formulae illustrate the method of deriving 
more complicated wave-functions from simple ones by differen­
tiation. The functions 

1 1 r+z 
rand 2r log r _ z 

are in fact solutions of (52) when k = O. 
The formula 

J~l'Pnm(:v} p.m (:v) ax = 0 (n tv) 

2 (n+m)! 
- 2 1 . ( _ ) I ...... (76), n+ n m. . 

in which m, n, " are positive integers or zero, enables the 
coefficients in an expansion of a function in series of functions 
P,,"'(:v} to be determined by a simple integration. 

For further properties of the Legendre functions we must 
refer to Heine's K ugelfunktionen, Byerly's Fourier Series and 
Spherical Harmonics, Whittaker's Analysis, Nielsen's Handbuch 
der Gylinderjunktionen and TMorie des jonetions metaspMriques, 
and to memoirs by E. W. Hobson- and E. W. Barnest. 

Tables of the Legendre functions have been published by 
J. W. L. G1aishert, J. Perry§ and A. Lodgell; some tables of 
the functions p"m (p.) have been given by H. Tallquist,. 

For the history of the functions of Legendre and Bessel 
the reader should consult the article by A. Wangerin in the 
Encyklopiidie der Matherootischen Wissenschajten, Bd. II. 1, 
Heft 5 (1904), p. 695. 

§ 15. Relations between various solutions. 
We have already remarked that when a wave-function or 

a solution of equation (52) involving arbitrary constants has 
been found, other solutions may be derived from it by the 
method of summation or integration. By choosing our sum or 
integral so that it represents certain simple solutions of the 

• Proc. London Math. Soc. Ber. 1, Vol. 22 (1891), p. 431, and up. cit. 
t Quarterly Journal, Vol. 39 (1908), p. 97. 
: Brit • .A ... Report (1879). 
§ Phil. Mag., Deo. (1891). See also Byerly, loco cit. 
U Phil. Tra .... A, Vol. 203 (1904) • 
.". Acta Societati. Fennicae, Vols. 32, 33. 



III] RELATIONS BETWEEN VARIOUS SOLUTIONS 41 

fundamental equation, a number of important identities may 
be obtained. A few formulae will be written down to illustrate 
this-. 

If RJ = r' + T,' - 2rr, cos 0, 

sin (kR) = 7r i (2n + l)Jn+i(kr)Jn+!(kr,)P,,(cos O) 
R -./(rr,) n-O 

(Heine and Hobson) ...... (77), 
1 1 ~ 
R e-ikll = rr, n:o (2n + 1) Y n(l"r) t" (kr,) P" (cos 0) (r, > r) 

(Heine and Macdonald) ...... (78), 

-! 1f~ sin(kR)J kr -! 
r In+!(kr)P,,(cosO)=7r _ ~ R n+!( ,)r, dr, 

......... (79). 
We may illustrate the peculiar behaviour of certain definite 

integral solutions of our fundamental equation by the following 
example, in which k is supposed to be real and positive. 

Let /m (x) = J:COSfCtX (t)dt, 

where 'X (t) is a function such that J: I 'X (t) I dt is convergent, 

then it may be proved by means of Fourier's double integral 
theorem that t 

!f~ sink(r-r')/m(r,)dr,=/m(r) (k>m) 
'7r _QO r- r 1 

=/1(r) (k.;;m). 

1 f~ sinkR 
U= - R /m (r,) dr, 

7r _~ 
Hence 

is a solution of (52) which reduces to either 1m (r) or /1 (r) 
when 0 = O. Solutions of (52) which are derived from the 
elementary solutions by integrating with regard to n have 
been employed by H. W. March!. He makes use of an inversion­
formula§ 

• Some very general formulae are given by L. Gegenbauer, Mcmahh. /. Math. 
Bd. 10 (1899), p. 189. 

t Tbis equa.tion is obta.tned in a. different manner by G. H. Be.rdy, Proc. 
Ltmdon Malh. Soc. (2), Vol. 7 (1909),.p. 445. 

~ Ann. d. Phyrik, Bd. 87 (1912). See also H. Poincare, ComplU 1/endu., 
t. 154 (1912), p. 795; W. v. RybcynBki, Ann. d. Phy •. Bd. 41 (1918). 

§ This is in some respects &nalogous to the inversion.formula. given by 
F. G. Mehler, Malh. Ann. Bd. 18 (1881), p. 161. 
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f(8) = r P a - i (cos 8)y-(a) ada 1 
: ( . ... .. (80), 

y-(a) = 10 Sa_! (cos 'Y)f('Y) sin 'Yd'Y ) 

where 

Sa_i(cos'Y)= cosa ... + 2f sinafj.dfj r ..... (81). 
a ... cos'l' ... , {2(cos'Y-cos,8») 

2 

It is sometimes instructive to find how a wave-function, 
depending on an arbitrary function, can be expressed in terms 
of elementary wave-functions. Now in the second example 
of § 5 the electric and magnetic forces are all of the form 

1 f [r - ct, IX ± iy] ............... (82), 
r z+r 

or are the sums of terms of this form. Consequently, a function 
of this type may be expected to be a wave-function and it is 
easy to verify that this is the case·. We may now deduce that 

! e"';k, F (IX ± iy) ............... ...... (83) 
r z+r 

is a solution of (52) and consequently it follows that tan"': 
8 

and cot'" "2 are solutions of equation (54) when n = O. We 

have in fact 

Po"'(cos8)= r(/-m) cot'":, 

( - 8 8) Q,"'(cos 8)= ir(m) COS?1l'7r. cot'" "2 - tan"'"2 . 

In the last formula m must not be zero or a negative integer. 

§ 16. The convergence of series of elementary solutions. 

When k = 0 our fundamental equation (52) reduces to 
Laplace's equation .o.u = 0 and we have the familiar elementary 
solutions 

• The &heorem &lao follows immediately from a result given by A. R. 
Forsyth, Muaenger of Machemaciu (1898), p. 114, and E. W. Hobson, Joe. eiC. 
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rn Pn" (cos 0) cos m (cp - cp,), rnQnm (cos 0) cos m (cp - cp,) } 
1 1 

r n +l Pnm (cos 0) cos m (cp - CP.), r"+l Qn'" (cos 0) cos m (cp - cp,) 
... ...... (84). 

A pair of series of the type 

I mn In (0, cp), I (~r' Fn (0, cp) 

which converge when r=a are suitable for representing harmonic 
functions inside and outside the sphere r = a because the first 
converges absolutely when r < a and the second when r > a. 

The case in which k + 0 is very similar. When n is large 
the function "t. (kr) may be replaced by 

(kr)n+l 
1.3 ... (2n+l) 

and so a series of the form 
~ 

I "tn(kr)/.(O, cp) 
ff,=o 

converges like a power series. Again, when kr is real, we have 

1 1 
l!;n(kr) !2= 1 +2 n (n+1) (kr)' 

+ ~:: (n -1) n (n + 1)(n + 2). (~)' + ... 

+ ~:."4 .. ~~~2:)1) (2n!) (';)2n ......... (1l5), 

n being a positive integer. It is clear from this equation that 
! !;". (kr)! decreases as r increases, hence if a series of the form 

~ 

I !;"n (kr)/n (0, cp) 
tl=O 

converges absolutely for any value of r it converges absolutely 
for all greater values of r. 

For a discussion of the convergence of series of spherical 
harmonics we may refer to C. Neumann's book Ueber die nach 
K reis-,K ugel-undCylinder-Funkticmen lortschreitenden Entwicke­
lungen, Leipzig (1881); to Heine's Kugelfunktionen, Bd. 1, p. 435, 
Bd. 2, P. 361, and to papers by U. Dini, Ann. di Mat. (2), t. 6 
(1874); H. Poincare, Comptes Rendus, t. 118 (1894), p. 497; 
S. Chapman, Quarterly Journal, Vol. 43 (1912), p. 1; T. H. 
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Gronwall, Math. Ann. Vol. 74 (1913), Vol. 75 (1914), Comptes 
Rendus (1914), Amer. Trans. Jan. (1914), Vol. 15; C. Jordan, 
Cours d' Analyse, 2nd ed., Vol. 2, p. 252; and B. H. Camp, Bull. 
of the A mer. Math. Soc. Vol. 18 (1912), p. 236. The con­
vergence of series of Legendre polynomials has been discussed 
very thoroughly by G. Darboux, Liouville's Journal (2), t. 19 
(1874), p. 1; (3), t . 4, p. 393; O. Blumenthal, Dissertation, 
Gottingen (1898); E. W. Hobson, Proc. London 111 uth. Soc. (2), 
Vol. 7 (1909); L. Fejer, Math. Ann. Bd. 67, p. 76; D. Jackson, 
.A mer. Trans. Vol. 13 (1912). 

§ 17. The scattering of plane homogeneous electro­
magnetic waves by a spherical obstacle. 

The effect of small particles in scattering incident radiation 
has been discussed very thoroughly by Lord Rayleigh * who has 
used it as the basis of a mathematical theory of the blue colour 
of the sky. The action of a single spherical particle is of 
fundamental importance and so the electromagnetic theory 
of the scattering of light by a dielectric sphere has been worked 
out by Lord Rayleight, Prof. Love! and other writers. This 
theory can also be developed so as to cover the mathematical 
theory of the rainbow. 

The more general theory of the scattering of incident radia­
tion by a spherical obstacle§ with arbitrary optical properties II 
admits of some very interesting applications in the study of the 
colours exhibited by metal glasses, metallic films and colloidal 
solutions or suspensions of metals. The electromagnetic theory 
of these colours has been developed by J. Maxwell Garnett'lT, 
G. Mie **, R. Ganstt and Happel tt. who have considered 

• Phil. MQ1}. Vol. 41 (IB7I), pp. 107, 274, H7; ' Vol. 12 (1881), p. Bl; 
CollietedPaperB, Vol. I, pp. 87, 1M, 518. 

t Phil. Mag. Vol. H (IB97), pp. 2S-52; CoUected Paper., Vol. 4, p. 321; 
Proc. IWy. Soc. Vol. B4 (1910), p. 25; Vol. 90 (1914), p. 219. 

::: Proc. London Math. Soc. Vol. 30 (1899), p. SOB. 
§ The work of Stokes, Camb. TTam. Vol. 9 (18'9), p. I, with later appli­

cations, Colkcted Paper., Vol. 4, and of L. Lorenz, Wied. Ann. Vol. 2 (1880), 
p. 70, opened up the subject. 

II The case of small conductivity was discussed by G. W. Ws.lker, Quart. 
JOUffl. Vol. SO (IB99), p. 204; Vol. 31 (1900), p. 36. 

~ Phil. Tram. A, Vol. 203 (1904) , p. 385; Vol. 205 (1905), p. 237 • 
•• Ann. d. Phy •• Vol. 25 (190B), p. 377. 
tt llill. Vol. 29 (1909), p. 290; Vol. 37 (1912), p. BB1. 

• 
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the cases of spheres and ellipsoids endowed with the optical 
constants EJ J.', 0', 

The particular case of a perfectly conducting sphere was 
worked out hy J. J. Thomson· and has heen discussed in 
greater detail by J . W. Nicholsont. 

The problem is also of importance in connection with the 
theory of comets' tails which has heen developed by Euler, 
FitzGerald! and Arrhenius§. The pressure of light on a 
perfectly conducting spherical obstacle has accordingly heen 
calculated by K. Schwarzschild II and J . W. Nicholson~. The 
more general case of a sphere with the optical constants €, f£, U 

has heen treated very fully by P. Debye··. 
Let us assume that the electric and magnetic forces E', H' 

at any point of space are the real parts of vectors E , H of the 
form Ae;"', where A is a complex quantity independent of t. 
We then write . 

H ± i.E = Me .... , where ". = €W - tu ......... (86) 
f£W 

and we find that the differential equations satisfied by M in a 
medium whose optical constants are €, f£, u can he written in 
t he form 

±kM.= r's~1I [:II(rsinll.lI[.) - ~~ (rM.)Jl 
kM" 1 [oM. 0 . II M. ] ± • = r sin /I o</> - iir (r sm ..) .... . . (87), 

±kM.=H;r(rM.)- o~'J J 
h k f£.W 1., €I-""" - ip.uw were = - or 1(.- = . 

c & 
• Reunt Raearcha, p. 437. 
t Proc. London Ma.h. &c. (2), Vol. 9 (1910), p. 67; Vol. 11 (1912), p.277. 
! ScUntijic Wri ting', pp. 108. 531. 
§ Phy •• Zeitsehr. Vol. 2 (1901),pp. 81-97; Da. Werden tkT Welten, Leipzig 

(1907), p. 85. 
II Siuung.be7-. d. Kgl. Bayer. Ahad. d. Wi". Vol. 31 (1901), p. 293. 
'IT BTi.uh A .. ocia.ion &pm .. (1910), p. 544; Monthly No.ie .. of .he Royal 

A,'rlm011lieal &ci<ly, Vol. 70, p. 544. See also J. Proudma.n, Ibid. Vol. 73 (1913), 
p.635 . 

.. .Ann. d. Physik, Vol. 30 (1909) . p. 57. 
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These equations may be satisfied by putting 

O· 
Mr = or' (ril) + k'ril 

[CH. 

10' (ril) k 0 (ril) 
M. = - 0 08 ± . 8 0 ............ (88), r r ). Sill q, 
M. 1 o'(ril) _ko(ril) 

~ = r sin 8 Oroq, + r 08 

where the function il = U ± iV is a solution of (52). 
The electric and magnetic forces may be derived at once 

from these expressions by equating the ambiguous and un­
ambiguous parts as explained in § 2. 

We shall now assume that the incident wave of plane 
homogeneous monochromatic polarised light is represented by 

(Mr, M., M~) = eikTOO8."''4> (sin 8, cos 8, ± i) ...... (89), 

the electric vector being parallel to the axis of y. 
The corresponding function il, is obtained by solving the 

equation 

~ (ril,) + k'rn, = sin 8. eitr""".'" '4> • 

We easily find that 

ril, =k-'e"''4> [cosec 8. e""""'· + j; (8, q,) eikT +/.(8, q,)e-ikT] 
...... (90). 

Choosing the unknown functions so that ril, is finite for 8 = 0 
and 8 = 7r we obtain finally .t~ - ~ 

rn, = lTc-' e"'l+ [2 cosec 8. e''''''''''· - cot ~ e'''' - tan ~ e-ikT ] 

...... (91). 

We may now assume an expansion for ril, of the form .. 
ril, = Tc-'e"''4> ~ a""',, (kr)P,,' (cos 8). 

n=l 

To determine the coefficients a" we multiply by sin 8 and 
differentiate both sides of the equation. Then since 

t8 [sin 8. P .. ' (c088)] = - n(n + 1) sin 8. P .. (cos 8) ...... (92), 

'-
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the coefficients may be determined at once with the aid of 
Lord Rayleigh's expansion 0 

~ 

ilcr sin 8 . eikr""" = ~ in+! (2" + 1) "tn (Icr) P" (cos 8) sin 8 
n=O 

......... (93). 

We thus obtsin 

rn.=/c'e1~ ~ in-1 2~+~) "t,,(Icr) Pn1 (cos 8) . ..... (94). 
»=1 11 n + 

Now let n .. n, be the functions from which the electric 
and magnetic forces in the scattered light and transmitted 
light may be derived respectively. The appropriate forms are 
given by equations of the type 

~ 

rU1 = ~ An~" (Icr) P"l (cos 8) cos 4> 
n=1 

~ 
...... (95), 

rVl= ~ Bn~n(Icr) Pnl(cos8)sin4> 
,,=1 

~ 

rU.= ~ Ontn (hr) Pn1 (cos 8) cos 4> 
1&=1 

~ 
...... (96), 

rV,= ~ D"t" (hr)Pnl (cos8) sin 4> 
0-1 

where h, 'TJ are the values of k, II respectively within the sphere. 

It is easy to deduce from (88) that the tangential components 
of the electric and magnetic forces are continuous in crossing 
the sphere r = a, if when r = a 

k h 
- [ U. + U1] = - U. 
II 'J 

a 0 
Or [r (U.+ U1)] = or (rU.) 

......... (97). 
" k(V.+ V1)=hV, 

1 a 10 
~Or[r(V.+ Vl)] = ~Or(rV,) 

• Theory of SoundH Vol. 2, p. 272. The expansion was also obWned 
independenlly by Heine, Kugel/unklionen (lB7B),Bd. 1, p. 82. 
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These conditions give 

~ Ao.~o.(ka) - ~Oo.-to.(ha) =k
1 

i .... 1 ~n+ 11) -tn (ka) 
v '" v n n+ 

kA ,., (ka) _ hG .,. '(ha) = ! i .... 1 2n + 1 .'.' (ka) o.,o. n'Yn k n(n + 1) 'Y o. 

kBn~o.(ka)- hDo.-to.(ha) = 1 i .... 1 n~:: ~) -tn(ka) 

... (98). 

~ Bn~o.'(ka)-~Dn-to.'(ha)=kl i .... 1 ~n+ll) -to.' (ka) 
v '" v n n+ 

Solving these we get 

A -in+1k-' 2n+l Hn 
n- n(n+l) Go.' 

G =~i""l 2n+ 1 F" 
o. hk n(n +l)Go. ' 

B = in+, k-2 2n + 1 Eo. 
o. n(n + I)L .. ' 

D '1 ·n+l 2n+ 1 Fo. 
"=hk' n(n+l)Lo.' 

where 
Ho.= ",-to. (ka)-tn' (ha) - v-t,.' (ka) -to. (ha) 

Eo. = v-to.(kaHo.' (ha) - "'-to.' (ka) -to. (ha) 

Fo. = ~,.'(ka)-to.(ka)-~o.(ka)-to.'(ka) ... (99). 

Gn = "'-to.' (ha)~o. (ka) - v~o.' (kaHn (ha) 

Lo. = v-t,.' (ha) ~ .. (ka) - "'~o.' (ka)-tn (ha) 

We can prove that our series all converge absolutely and 
uniformly at about the same rate as a power series of the form 

:£ a!' , 
1.3 ... (2n+l) 

ka' where flJ is either kr or - . The proof depends on the fact 
r 

that when n is large we have approximately 

flJ .... , 
-to.(flJ)-1.3 ... (2n+ 1)' 

, (n+l)a!' 
-to. (flJ) = 1.3 ... (2n+ I)' 

~o.(flJ)_1.3 ... (2n-l);;" r"', 

~,.' (flJ) = - 1 . 3 ... (2n - 1) ni",-n-'e-;z. 
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§ 18. F ree damped vibrations for the space outside the 
sphere. 

It should be noticed that some of the tenns of our series 
become infiuite when either G" = 0 or L" = 0: fortunately, 
however, the roots of these equations turn out to be complex 
and so when k is real no values of k need be excluded from the 
discussion. The damped vibrations detennined by the roots of 
the equations L" = 0 may be distinguished as the electric 
vibrations, those detennined by equations of type G" = 0 as the 
magnetic vibrations. Some of the roots of the equations have 
been calculated for the case of a totally reflecting sphere by 
Sir J. J. Thomson·, who finds that the roots are all complex. 
The vibrations for the space inside a tot:t!ly reflecting sphere 
have been discussed by Prof. J. W. Nicholsont, those for the 
space between two concentric spheres by Sir J . J. Thomson!, 
Sir Joseph Lannor§, Prof. H. M. Macdonald ll and A. Lampa~. 

P. Debye, who has calculated some of the roots for a case of 
a dielectric sphere, finds that the roots are complex and of two 
types. When the index of refraction is large, the imaginary 
part of a root of the first type varies very little with the index 
of refraction N and approaches a limit different from zero when 
N --+ ao . If on the other hand p is a root of the second type, 
Np tends to a finite real limit, viz. a root of ..y,,(Np)=O, when 
N --+ ao and so the imaginary part of a root of this type must 
be very small when N is large. 

The vibrations belonging to the space outside a sphere 
must be in all cases damped on account of the loss of energy by 
radiation; when the refractive indices of the outside medium 
and sphere are very nearly equal, they are clearly very strongly 
damped; thus it is only when the refractive index is large that 
some of them are durable. It is doubtful whether a substance 
exists which has a large refractive index and does not absorb 
light to a marked extent . 

• Proc. London Ma.h. Soc. Ber. 1, Vol. 15 (1884), p.197; Ruent _rchef, 
p. 361. 

t Phil. Mag. 1906, p. 703. 
~ Ruent Ruearchef, p. 373. 
§ Proc. London Ma.h. Soc. 8er. I , Vol. 26 (1894), p. U9. 
iI Eleclric Wavu , Cb&p_ 6-7. 'If Wien. Ber. U2 (1903), p. 37. 

B. 4 
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It will be seen later that the characteristic vibratibns play 
an important part in determining the size of the sphere on 
which the pressure of a given type of incident radiation has 
a maximum value. 

Prot Love - has used the solutions corresponding to the 
characteristic vibrations to discuss the mode of decay of an 
arbitrary initial disturbance. He makes use, in fact, of the 
functions ~n (kr), where k is one of the roots of one of the 
equations Gn = 0, L,.= 0; only the sphere is treated as a perfect 
conductor. 

This method can easily be extended so as to provide us 
with a method of discussing the problem of the scattering of an 
arbitrary primary disturbance by a spherical obstacle. In this 
method we assume that the total disturbance outside the sphere 
can be represented by 

~ ~ 

rU ='=0 ",:0 ;An,m,l'Yn (kl'r) P n'" (cos 0) cos m( </> - .p.)} 
~ ~ 

r V =! !! B.."n,,, 'h (kp'r) Pn"'(cos 0) sin." (</> -.p.) 
t&=Om=O p 

......... «(i)J 
where the k,,'s are roots of one of the equations of the type 

7JY .. ' (loa) yn (lea) - "",,.' (ka) yn (loa) = O} (100) 
v,y,.' (loa) yn (ka) - W,.' (ka),yn (ha) = 0 ... . 

The coefficients must then be chosen so that this total disturb­
ance has the same character as the primary disturbance at its 
singularities outside the sphere and at an infinite distance, 
taking into account of course the presence of diverging waves 
from the spherical obstacle the effect of which is, however, 
negligible at infinity. 

The field inside the sphere is represented by equations 
similar to (Cd), one with h;, written in place of kp • The boundary 
conditions are satisfied in virtue of (100). 

If a series of type (Cd) should fail to represent the disturbance 
outside the sphere, it may ' be necessary 1;0 add terms cor­
responding to the free characteristic vibrations. These are of 
the form (Cd) with the function ~ .. written in place of V'n and 
numbers kn determined by equations of type Ln = 0, Gn = O . 

. -
• hoc. Lond<m Ma,h. Soc. Ser. 2, Vol. 2 (1904), p. 88 • 
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§ 19. The case of a. very sma.ll obstacle. 

When a. the radius of the sphere. is very small compared 
with the wave-length '- of the incident radiation. we may treat 
ka and ha as small quantities. We may then obtain some idea 
of the relative magnitudes of the different coefficients in our 
series by using the expansions (60) and (61). 

It is easy to see that the values of An. Bn decrease very 
mpidly in absolute magnitude as n increases. The disturbance 
radiated from the sphere can consequently be represented 
approximately by superposing a small number of partial waves. 
the effect of the others being negligible. 

Remembering that vh = TJk. we find that when H is finite 

vknhU+' (Ie' - h') a"'+' . (h)n-ita 
H n -(2n+3).I •. 3 . ... (2n+I)'. Gn-'TJ Ie e 

(n + 1) knhn-'TJ (Ie' - h') am+, 
En- 1'.3' .. . (2n+ 1)' • Fn--i ... (101). 

L . >nk--n-o(n+ 1) Ie' +nh' -ita 
n ,.." 'tva, 2n + 1 e 

and it is easy to see that all our series converge. 
It appears from these expressions that the nth magnetic 

wave. i.e. the disturbance due to tlie nth term in the expansion 
for . U" is of the same order of magnitude as the (n + 1 )th 
electric wave. i.e. the disturbance due to the (n + I)th term in 
the expansion of V,. This is in sharp contrast with the result 
obtained by Sir J. J . Thomson for the case of the totally 
reflecting sphere wherein the nth electric wave and the nth 
magnetic wave are of the same order of magnitude. 

The first electric wave is clearly of chief importance and 
Mie has proposed to call this Rayleigh's radiation. We easily 
find that . 

• Ie' - h' - 1 Ie' (Ie' - h') 
B, -+ ,k 21e' + h' a'. B, - 2.32 31e'+ 2h' a' 

ik ... (102). 

A, - 30 (k' - h') a' 
• 

The following diagrams. which are taken from Mie's paper. 
indicate the character of the electric lines of force for the first 
four partial vibrations of each type. For the magnetic waves 

4--2 
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Er = 0 and so the electric lines of force are spherical curves. 
In the case of the electric waves the lines of force lie on 
certain cones and the diagrams represent the intersections of 
a sphere with these cones, the vertices of the cones being at 
the centre of the sphere *. 

§ 20. Polarisation of the scattered light. 
Let us now look for cases when the light scattered by the 

sphere is linearly polarised. It is easy to see that E, and M. 

both vanish when °o~' = 0 and °o~' = O. These conditions are 

both satisfied by </> = 0, i.e. when the observer looks in a direction 
at right angles to the electric vibration in the incident wave 
(Fig.3). 

It appears from the figure that the component of the electric 
vector of the scattered light, which 
is at right angles to the direction 
in which the observer is looking, 
is parallel to the electric vector 
in the incident wave. In a similar 
way it is found that E. and M, 

both vanish when </> = ± ;, i.e. 

when the observer looks in a 
direction at right angles to the H 

magnetic vibration in the incident Fig. 3. 

E 

wave. The magnetic vibrations in the incident and scattered 
waves are now found to be parallel. 

The experiments of Steubingt with different kinds of col­
loidal gold solutions have shown that when the solution is 
illuminated with polarised light and viewed in the manner 
described, there is always a small quantity of unpolarised light 
sent out from the particles, but the greater portion of the 
scattered light is polarised in the way the theory requires. 
The slight disagreement between the theory and observations 
is attributed to the fact that the metallic particles are probably 

.. The author is indebted to the publisher of the A.nnaZender Phyrik,HerrJohann 
AmbrosiuB Ba.rth, for permission to reproduce the figures on pp. 52, 59 a.nd 64. 

t Di""rtatim>, Greifswald (1908); Ann. d. Phy •. Vol. 26 (1908), p. 329. 
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not all spheres·, that some may have developed into crystals 
perhaps of octahedral form. The mathematical th~9ry of the 
scattering of waves has not yet been fully developed. The 
problem is, however, one of great importance in meteorological 
optics. The case of a regular distribution of atoms or molecules 
has recently been brought into prominencet by experimental 
work on the scattering of Rontgen rays by a crystal!. Approxi­
~ate Ih~thematical theories have been given by several writers §. ., , 

§ 21. Intensity of the scattered light. 
I .r, • 

When Rayleigh's radiation alone is considered, we have 

H- ik a (rV) 
e- rsinO a</> ' 

H.=- ika(rV) 
r 08 ' 

where 

Er=t [:~(rV)+le'rV] 
E _.!. 0' (r V) 

e- vr OroO 
J 

E _ 1 o'(rV) 
• - vr sin 0 Ora</> 

... (103), 

Ie' h' (.) r V = - ik 21e':' h' a'e--i.b 1 - /cr sin 0 sin </> •• • (104). 

At a great distance from the origin the radial e\llctric force 

is of order ~ w.hile the transverse .electric and maguetic forces 

are of order!. Hence the intensity of the scattered light 
r ' 

diminishes ultimately according to the inverse square law when 
points on the same radius are considered. It also varies as the 
square of the volume of the particle. 

* This rem.a.rk is made by both Maxwell Garnett and Mie. 
t It had previously been ooIlllidered by Lord Rayleigh, .. On the iDfluence 01 

obstacles a.rmnged in rectangular order on the properties of a medium," Phil. 
Mag. (6), Vol. 34 (1892), p. 481; Scientific Paper., Vol. 3, p. 19; IUld by 
T. H. H&velock, Proc. Ruy. Soc. A, Vol. 77 (1906), p. 170. . 

! Laue, Friedrich, und Knipping, Sitzung,ber. der Ktmigl. BaYerUcMn 
.4.kad. d. Wiu. Jnne 1912. 

§ Bee, lor inetance, W. L . Bragg, Proc. Caw. Phil. Soc. Vol. 17 (1918), 
p. 43; Proc. Ruy. Soc. A, Vol. 88 (1913), p. 428; M. Laue, M1lnchener Ber 
(1912), p. 363; .4.nn. d. Phy • . Bd. 41 (1913), p. 989, Bd. 42 (1918), p. 397; 
P. P. Ewald, Phy •. Zeiluhr. (1918), p. 466; L. B. OrneteiD, .4.mderdam Proc. 
(1913) i M. Born u. T. v. Karman, Phy •. Zeiuchr. (1912), p. 297. ' 

. ' . \ . 
", 
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An approximate formula for the intensity is 

( 
k' h' )' 1= k'a' 2k' ~ h' (cos' 6 sin' 4> + cos' 4» ... (105), 

the intensity of the incident radiation being !. 
If u = 0 for the medium outside the sphere, the quantity 

k is inversely proportional to the wave-length A of the incident 
radiation. Hence when h is large compared with k, we have 
Lord Rayleigh's result that the intensity of the scattered light 
varies inversely as the fourth power of the wave-length. The 
short waves are on this account scattered far more profusely 
than the long ones and so we have an explanation of the blue 
colour of the sky. 

The above formula for the intensity of Rayleigh's radiation 
indicates that there is no light of this type in a direction for 

which 6 = 4> = ; , i.e. when the observer is looking in a direction 

parallel to the direction of the electric vibration in the incident 
wave. To obtsin an expression for the intensity of the light 
sent out in this direction we must take into account the second 
electric wave and the first magnetic wave. Referring back to 
the expressions for B, and AI, we find that when u is neglected 
both inside and outside the sphere, the intensity of the scattered 
radiation varies inversely as the eighth power of the wave­
length *. This corresponds to Tyndall's" residual blue" which 
is purer than the blue seen under other conditions. 

§ 22. The absorption of light by a spherical obstacle. 
The total energy absorbed from the incident radiation by 

a single particle consists of two parts; first of all the energy 
scattered and secondly the energy which flows into the particle 
and is transformed into heat or chemical energy. Both these 
quantities may be calculated by the following method which is 
a simplification of the one given originally by Mie. 

The flow of energy across unit area of a very large sphere 
concentric with the spherical particle takes place at a rate 
measured by the radial component of Poynting's vector, I.e. 
E;H.-E.H: . 

• Lold Rayleigh, Phil. MQ1}. VoL 12 (1881), p. 81. 
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Now if E, E and H, H are conjugate complex quantities, 
this component is equal to 

i [(E.e .... + E.e-i..') (H~e"" + H~""") 
- (E~e"" + E~e-i.>t) (H.e .... + H.e....;"")]. 

Integrating with regard to t so as to obtain the mean value 
of this quantity over a period, we obtain an expression which 
may be written in the formt 

1 - - --
8= -8. [M.M~-M.1I1~- M.* M~* +M.* M~·], 

>v 
• 

where M, M* are the values of M corresponding to the signs 
+, - respectively in (86) and M, M* are derived from them by 
changing the sign of i. 

The function n for the outer space is the sum of n, and n" 
hence we may write 

~ 

rn = ! P"I(cosll)[u"ei~+v"ei4>+w"e--<+] 
#=1 

~ 

rU = l: P,,1 (cos lI)[u"~+v"e-i4>+w,,ei4>] 
n=1 

~ 

... (106), 

rU. = ! P "I (cos 11)[ u,.e-i4> + v,,~ + w"ei4>] 
,,=1 
~ 

rU* = ~ P,,1 (cos II) [u"ei4> + v"e--<+ + w"ei4>] 
,.=1 

where 
_ 1 ·"-1 2n + 1 .1. (k ) - ! (A B ),. (kr) u,.-Ic" n(n+l)"Y" r, v"-2 ,,+ ,,'" , 

1 W,,= 'l(A" - B,,) ~,,(kr). 

When the expression S is integrated over the spherical 
surface, the result can be expressed in the form 

I, +Il-I,,, 
where I, depends only on the incident radiation, II depends 
only on the scattered radiation and represents the amount of 
energy absorbed by scattering, lOl depends on both types of 
radiation and represents the total absorption of energy from 

t We assume now that 00=0 outside the sphere. 
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the incident wave. The sum of the three terms with its sign 
changed represents the amount of energy that flows into the 
sphere and is truly absorhed by it. 

Performing the integration with regard to '" and collecting 
the different terms together, we find that the surface integral 
can be written in the form 

7r ~ ~ [f"(p,p, . 'OdPn'dPm') dO 
2~ ~ ~ n m +sm dO - dO ~O 

'!.V" = lm= l 0 81n 

{k ( ) (
dum diim) lew dWm k ( - - ) (dUm dVm) 

X u,. + Vn dr + dr + n dr - Un + v,. dr + dr 

-k- dWm}_ ·f"(dP,.,p, dPm'p ')dO 
w,. dr '0 dO m + dO n 

{(
dUn dVn) (dUm diim) dWn dWm 

X d,. + dr d,· + dr - dr dr 

+ kk (Un +v,.)(um + iim)-kkwnWm}]. 

This expression can be simplified wit,h the aid of the relations 

J: (d%:' Pm' + d:;' P.') dO = 0 ... ... ... (107), 

f"(p 'P' . 'OdP,,' dPm') ~-O 
o n m+

SIn dO dO sino-

• 
2n'(n + I)' 

= 2n+l 

rnin 
... (108). 

m=n 

The first of these is evident since the integrand is the 
differential coefficient of a function which vanishes at both 
limits. To prove the second we make use of the formulae 

sin 0 toP"'(cos 0)= - cos O. P,,' (cos 0) 

- n(n + l)sin O. P n (cos 0) 

d 
P,.'(cosO)=- dOP,,(coS 0) 

l+cos'O, 
. 0 Pn Pm' + n (n + I)cos O.P,.Pm' sm -

+ m(m + I) cosO .PmPn' 
d 

=- dO[cosO.Pn'Pml] 

. . . (109). 
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The integral is thus equivalent to 

n (n + 1) m (m+ 1) 1: Pn(cos e) Pm (cos e) sin ede, 

and so has the value we have assigned to it·. 
Our surface integral now reduces to 

71" ~ {k ( ) (diln duo) lew dw" .,- ~ un+vn -d +-d + n-d 
'tv,,=l r r r 

[CR. 

_ r. ( - _ ) (dU" dVn) _ 1.= dWn} n2 (n + 1 ). 
/c un+vn . dr + dr "'Wn dr 2n+ 1 . 

Since (T = 0 outside the sphere, we have Tc = k. Also when 
r is very .large we may use the approximations 

Un - cos kr - n + 1 -} k-2~"-' -;::..c~ { 
- 71") . 2n+I 

2) n(n+ 1) 

Vn -l (An + Bn) i"+l~ 

W" -l (A" - B,,) in+'e-vr 

- {kr - 1 71"} '_( .) 2n + 1 Un ..... COB - 11 + - n; - - t n-l -
2 n(n+I) 

Un -l (A" + B ,,)e .... (_i)n+' 

w" -l (A" '- Bn) e .... (- t)>>+' 

We thus find that 1. = 0 and 

... (110). 

7r 00 _ _ 

1'=2--- ! n(n+I)[in(An+Bn)-(-t)n(A,,+B,,)] ... (llI), 
'tv n=1 

71"k' ~ n' (n + 1)' - -
l, = -! 2 1 (.1".1" + Bn B,,) ................ ..... (112). 

II .",,1 n. + . 
When ,,= 1 these expressions are just half those given by 

Mie on p. 436 of his memoir. The reason why they must be 
doubled is that our expressions for the incident light give an 
intensity i . 

In the case of a solution containing N spherical particles 
per unit volume the total absorption coefficient is thus 

7T'N 00 _ _ 

A=-o-! n(n+I)[i"(An+Bn)-(-t)n(An +B,,)]. .. (113). 
'tv n=1 

It is interesting to study the variation of this quantity with 
the wave-length for particles of different sizes. Mie has drawn 

• Cf. L. Lorenz, OtuVTU .cienti.fi.fuu, p. 626 . 

. ~ 
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the absorption curves for particles of gold varying in size from 

20 "'''' to 180 "'I". 
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It will be seen that for ruby red gold solutions containing 
very fine particles there is an absorption maximllm in the 
green corresponding to a wave-length of about 525 "'I-'-

Mie has also drawn curves showing the p ure absorption in 
colloidal gold solutions. 

The colours of silver particles in colloidal silver solut ions 
have been discUBBed with the aid of the mathematical theory 
by E. Muller*. The particles of a silver solution show beautiful 
colour phenomena, all colours of the spectrum from the extreme 

• An ... d. Phy •• Bd. 55 (1911), 
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blue to the extreme red being present *. For other applications 
of the theory we must refer to the papers of Lord Rayleigh, 
Garnett and Mie and to Prof. Wood's Phylfical Optics. 

The mathematical theory for a large number of particles 
has been developed further on certain simplifYing assumptions 
by F. Hasenohrlt, A. Schuster!, W. H. Jackson§, L. V. Kingli, 
A. Einstein, and M. V. Smoluchowski **. It has been used 
recently by W. J. Humphreystt in a study of the effect on 
climate of large quantities of volcanic dust in the upper 
atmosphere. 

§ 23. The pressure of radiation on a spherical obstacle. 
We shall now calculate the pressure of radiation on a spherical 

obstacle, following the work of Debye except in some of the 
details. The pressure is calculated on the assumption that the 
force exerted by an electromagnetic field on a unit charge 
moving with velocity v has components of type!! 

Fz = Ez + v. Hz _ VZ H ......... ...... . (114), 
c c 

and that the equations of the field can be derived by a process 
of averaging from the electron equations 

1 (OE) 10H} rotH=c -at +pv , rotE=-cat ...... (115). 

div E=p, div H = 0 
Now if 

Xz=! (Ez' -E.' - El) + ;(H.'-H.'-H")1 
X.= EzE.+ HzH.= Yz 
X -E E H H -Z r-··(116), z- z z+ z z- z 

Sz = c (EyH, - E,H.) 
• A coloured reproduction of a.n ultramicroscopic picture of a. silver solution 

is given by H. Siedentopf, Ber. d. Deutsch. Phys. Gel. (1910), p. 6. 
t Wien. BeTich'e (1902). t A.trophy.ical Journal, Vol. 21 (1908). 
§ Bull. oj the Amer.1I1a'h. Soc. Vol. 16 (1910). p. 473. 
II Phil. Tram. A. Vol. 212 (1913). p. 375. 
~ Ann. d. Phy •. Bd. 3S (1910). p. 1275 . 

•• Bcltzmann Fut.chrij' (1904). p. 626; Ann. d. Phy •• Bd. 25 (1908), p. 205; 
Phil. Mag. Vol. 23 (1912). 

tt Bull. oj ,he Mou7U Wea,her Ob,ervatoTy (1913); Journal oj ,he Franklin 
I",ti'u' •• Aug. (1913). 

:::t: We 8.88ume now tha.t (1=0, ~=JJ.=1 for the external medium, 80 tha.t 11= 1. 
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etc., we have identically on account of (115) 

pFz= 'iJ!z + ~~. + 'iJ~. _ C~ ?~z ......... (117). 

Hence by Grcen's theorem, if (I, m, n) are the direction 
cosines of the outward drawn normal to a surface u enclosing 
all the charges in the field, 

fJ<.tXz+mXy+ nX.) du = fff(pFz+ ! 'iJ~.) dxdydz ... (11 8). 

The x-component of the force exerted by the electromagnetic 
field on the obstacle is thus the same as if there were tractions 
X, Y, Z at each point of the surface and a volume force 

1 'iJS "1 I r h h - c' 'iJt: Simi ar y lor t e ot er components. 

Now when we integrate with regard to t so as to obtain the 

mean value of the pressure over a period, the term 'iJ~. 
contributes nothing on account of the periodicity of S. The 
pressure may consequently be calculated from Maxwell's tractions 
X, Y, Z. In the present case the mean value of the pressure 
in the direction of the axis of z is derived from the quantity· 

(IZ. + mZ. + nZ.) = - k cos () [Ee" + E~" + He" + H~" 
-E;' - H;']- sin () [E:E,' + H:H,']. 

The surface integral of the mean value of this quantity over 
a period is accordingly 

-~J:J:' [cos ()(E,E,+E~E~+H,H,+H~H~-EyEy-HyHy) 
+ sin () (EyE, + EyE, + HyH, + HyH,)] sin (). d() d</>. 

When the incident radiation only is taken into account, this 
integral becomes simply 

/ -~ J: r cos () sin () d() d</> 

and vanishes completely. Again, it is easy to see that when r 
is large the components Ey> Hy for the scattered field are small 

• We a.B8ume DOW that the surface (f' is 8. sphere whose centre is at the origin. 
OurexpressioD is easily obtained by writing down the expressions for E~', E,,', E.' 
in terms of E'!. E8'. E.'. 
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compared with the transverse components, a product such as 
H,H, being of order r-' may be neglected when r is large, and 
80 we have only to consider the integral 

p. = - ~J: J:'(E,E, +E. E; +:H,H,+H.H.) sinIJcos IJdIJdq" 

where E = Eo + E" H = H. + HI' The terms which depend 
only on the incident field m"y, moreover, be disregarded. 

To evaluate P~ we need the values of the integrals 

I J'(plp 1 • 'IJ dP"l dP",I) IJ dIJ 1=. "m+ sm dIJ dIJ cot. , 

I J." (dPnl P 1 dPml pI) IJ dIJ '=. dIJ m + dIJ n cos . . 

By using the relations (109) we may transform the first of 
these into 

n (n + 1) m (m + 1) J: P" (cos IJ) Pm (cos IJ) sin IJ cos IJ dIJ 

J.
" d 

- 0 dIJ [cos IJ . P,,'. Pm1] COS IJ. dlJ. 

Now 

(2n + 1) COS IJ. P" (coslJ) = (n + 1) Pn+l (cos IJ) + nPn_1 (COS IJ) 
......... (119), 

and 

(2n + 1) cos IJ . P ,.' (cos IJ) = nPl"+1 (cos IJ) + (n + 1) Pln_1 (cos IJ) 
......... (120) ; 

hence when the second integral is integrated by parts we 
obtain two integrals of the type (76) and 80 we have finally 

1,=0 m40,,±1 

=2(n-l)'n(n+l)' 
(2 ( m=n-l n -1) 2n + 1) ...... (121). 

=2 n'(n=t-l)(n+2)1 
(2n + 1)(2n + 3) m=n+l 

When the second integral I, is integrated by parts it becomes 

1.= f:Pn'Pm' sin IJdIJ = 0 m40n 

( 1) ...... (122). 
--2" n+ m=n 2n+ 1 
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W ri ting P z in the form 

p.= -~ r1:" (M.M. +M.*ltf.* 

+ M~M~ + M~· M~ *) sin 8 cos 8d8d4> 
and making use of equations (121), (122) and (106), we obtain 

P --7r ~ n'(n+ 1)(n+2)' [(du,...,+ dvn+l ) (du" + dVn) 
z - n=1 (2n + 1) (2n + 3) dr dr dr dr 

dWn+l awn Ie' ( ) (- -) ,~.. -+ dr dr + u n+1 + VnH Un + Vn + ft,-Wt1+1 'Wn 

(
dUn dVn) (dun+1 dVn+l) dWn awn+l 

+ dr + dr \.1JJr + lIT + dr dr 

+ k'(un +Vn) (Un+1 + iin+l ) + ~:"UnWn+IJ 
_,,: ~ n (n + 1) [< ) (dUn diin) 

.;.7r .. 2 +1 Un+Vn d + d 
",..1 n r r 

(- - ) (dUn dVn) - dWn dWnJ 
- Un+Vn dr + dr +Wn dr -Wn dr . 

We now use the asymptotic expressions for Un, Vn , Wn when 
r is large and omit the terms that depend only on the u's. 

We also write 

A - 'n-l 2n+ 1 B _ 'n-I 2n+1 Q 

n--> n(n+l)a", n--> n(n+1)"'n, 

and obtain after some simplifications 
7r ~ -

p.=- 2 ~ (2n .+1)[a,,+a,,+~n+~n] 
n~1 

~ 2n+ 1 -
+ 7r1e' - (+ 1) (a,.~n + iin~n) 

,,=1 n n 
-n0+2) - -

+ 7rk' ~ + 1 [a"iin+1 + una,,+1 + ~n~n+1 + ~n~n+l] 
,.:=1 n 

......... (123). 

This expression turns out to be negative, i.e. the pressure 
acts in the direction in which the incident light is moving. If 
the constants in the incident light are chosen so that its 
intensity is unity, the above expression must be doubled. The 
numerical value of the pressure has been calculated from the 
above formula by Debye in a number of cases. When the 
radius of the spherical obstacle is small compared with the 

• 
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wave-length of the incident light. the functions ..yn (kal. ~n (lea) • 
..yn (ha). ~n (ha) occurring in the expressions for "n. f3n can be 
expanded in ascending powers of a. This method. however. 
fails when ka approaches unity and numerical values of the 
functions must be used. 

In the case of a totally reflecting sphere 

a= t:(~ar f3= t~aj ......... (124). 
n a . n a 

and Debye finds that if 
27Ta 

p=ak= x' 

where X is the wave-length of the incident light. L denotes the 
light-pressure and W = !7Ta' is the energy of the incident train 
of waves per unit length of a cylinder circumscribing the 
spherical obstacle and having its axis parallel to the direction 
of motion of the waves; then 

~=.y.p'[l +np'-W p' ... ] ......... (125). 

The first term of the series was given by Schwa.rzschild. 
The convergence of the series is slow as p approaches unity and 
several terms of the series (123) must be taken into account. 
By using numerical values of the functions ..yn (P). ~n (p) and 
their derivatives for n = 1. 2 ... 5. Debye has succeeded in 

drawing a curve for ~. 
M:.'1 
W f 

J 

z 

f 

o 
) 

f 

if"" 
~ 

, . 

~. -... -.. - -........... .. 

J 
Fig. 5. 
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It will be seen that the pressure has a maximum value for 
a certain value of p, approximately equal to 1. When p is 

large the ratio ~ approaches asymptotically the value l. 

Debye compares the light preasure so obtained with the 
gravitational attraction for a spherical particle of specific gravity 
8 under the influence of the sun's radiation, He finds that if G 
is the gravitational attraction, 

L 4800 L 
G = Asp , W ' 

and to get a numerical estimate he takes A = 600 p,p" 8 = I, 
It appears that the ratio vanishes both for small and large 

values of p: it has a maximum value of about 20 for p = l. 
In the case of a dielectric sphere with refractive index 11, 

the expansion corresponding to (125) is 

L = ~ (n' - 1)' '[1 _ p' n' - 29n' + 3411' + 120 - ] 
W 3 n'+1 p 15' (n'+ 2)(2n' + 3) .. , 

...... (126), 
and is suitable for calculations only when 1Ip is small, 

De bye has drawn curves for ~ in the cases 11 = 00, n = 2, 

n=I'5 and n=I'33, When n=2 the curve appears to have 
three maxima and two minima between the values p = 1 and 
p=3, 

The greatest value of {v is now about 2'6; the following 

table indicates when the light pressure exceeds the gravitational 
attraction, the numbers po and PI give the extreme values of p 
belonging to the range in which this is the case, 

n (~)MaL Po Pi 

00 , 20 '3 8 
2 13 '6 5 
1'5 3 '8 

The maximum light preasure is just balanced by the 
gravitational action when n is about equal to 1'33, the value 
for water: for smaller values of n gravitation prevails. 

B. 
• 
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In the ca.se of an absorbing spherical particle, the equation 
which takes the place of (126) is 

IT 

L OJ 
W=12 ",p .... ...•....... (127). 

(r< +2),+ - . 
OJ 

When a is small the light pressure and gravitational action 
are both of order a' and their ratio tends to a finite limit, hence 
for certain types of absorbing material there is no lower limit 
in the size of a particle below which gravitation exceeds the 

L 
light pressure. Debye ha.s drawn a curve for W for the case of 

a gold particle and finds that there is a maximum value for 
p = 1·5 nearly. 

The existence of a maximum value for :v in the cases that 

have been discussed appears to be due to the fact that the 
value of p for whir.h the maximum occurs is very nearly equal 
to the real part of the complex value of p corresponding to one 
of the free damped vibrations *. The first electric vibration 
seems to be of chief importance in determining the position of 
the maximum. 

The determination of the limiting value of :v for very small 

wave-lengths, i.e. for large values of p, is a matter of some 
difficulty, it depends on some expressions giving the behaviour 
of the Bessel functions for large values of nand p. These have 
been found by J. W. Nicholsont and P. Debye!. 

If p is real and n +! <p, we have when p - 00 

e -.(pjo-i) 
~n (P) = . ! 

(sm To) 
............... ( 128), 

* Cf. Debye, loco cit ., and the similar remarks for the case of optica.l 
resonBoDce by F . Pockels, Physik. Zeiuchr. Ed. 5 (1904), p. 152. 

t BririlhA"ociation Reporu, Dublin, 1908, p. 595; Phil. Mag. Vol.la (1906), 
p. 195; Vol. 14 (1907), p. 697; Vol. 16 (1908), p. 271 ; Vol. 18 (1909), p. 6. 

: Math. Ann. Ed. 67 (1909), p. 535. 
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where To is an angle lying between 0 and ; for which 

n+! cos To = 
p 

and fo = sin To - To COS 'TO' 

When n + ! > p and p - 00 , we have 

-ipfo 

~n(p)=i Ceo )' 
'l. SIn To 

ip/o e 
Yn(P) = ~ 

(i sin To)2 

where To is now the root of the equation 

n+t 
COS To=--

p 
whose imaginary part has a negative sign. 

............... (129), 

When nand z are very nearly equal the values of ~n (p) and 
Yn (p) can be made to depend on Airy's integral and are much 
more complicated; for these we must refer the reader to the 
original memoirs. 

24. Other problems which may be treated with the 
aid of polar coordinates. 

The diffraction of electric waves travelling round the earth 
is a problem of some importance which has been discussed by 
H. M. Macdonald-, Lord Rayleight, H. Poincare!, J. W. 
Nicholson§ and other writers. 

The calculations are very long and depend on the use of the 
formulae to which we have just referred. RybcyIiski li has 
recently treated the problem by a method due to March and 
has taken into account the finite conductivity of the earth. As 
we have already mentioned this was done by Zenneck and 
Sommerfeld for the case in which the earth's surface is treated 

• Proc. Ruy. Soc. Vol. 71 (1903), p. 251 ; Vol. 72 (1904), p. 59; Vol. 90 (1914), 
p. 50; Phil. Tram. A, Vol. 210 (1909), p. 113. 

t Proc. Buy. Soc. Vol. 72 (1904), p. 40. 
: Rend. PalerwuJ (1910) ; hoc. Ruy. Soc. Vol. 72 (1904), p. 42. 
§ Phil. Mag. Vol. 19 (1910), pp. 276, 435, 516, 757; Vol. 20 (1911), p. 157; 

Vol. 21 (1911), pp. 62, 281; Jahrh. d. drahl. T'''gr. Ed. 4 (1910), p. 20. 
U Ann. d. Phy •• Ed. 41 (1913). 

5-2 
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as a plane. The results of Nicholson and Poincare indicate 
that diffraction round a perfectly conducting surface is not 
sufficient to explain the apparent bending of the electric waves 
round the earth's surface. A generally accepted opinion is that 
the ionisation of the atmosphere by the sun's rays is a very 
important factor in producing the observed effecta*. 

The diffraction of a solitary wave or pulse by a spherical 
obstacle might be discussed with advantage. The evaluation 
of certain definite integrals involving Bessel functions, however, 
presents some formidable difficulties which probably account 
for the fact that the problem does not appear to have been 
solved. 

The scattering of electric waves by a perfectly conducting 
conical obstacle has been treated very briefly by H. S. Carslawt. 

EXAMPLES. 

(C. Neumann.) 

2. Prove that 

J
-~ J. l:r 

..... '''·J.(kpsina)= i~(2n+l)i' .~~ ) P.(oos6)P.(oosa). 

(E. W. Hobson.) 

* Cf. the discussion a.t the British Association meeting, Dundee (1912), and 
an article by W. H. Eccles in lb. Year Book oj Wirele.!. Telegraphy (1913). 
Some quo.ntitative experiments on long distance telegraphy have been made 
recently by L. W. Austin, who obt&ins a.n empirical relation between the 
magnitude of the current received o.nd the distance between the two stations, 
Bulletin oj ,he Bureau oj Standards, Vol. 7 (1911). 

t Phil. Mag. Vol. 20 (1910), p. 690. 

• 
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CHAPTER IV 

CYLINDRICAL COORDINATES 

§ 25. The wave-equation in Cylindrical Coordinates. 
If we put IV = P cos ¢, y = p sin ¢, the wave-equation becomes 

a'u 1 au 1 a'u a'u 1 O'u 
ap' + p ap + p' a¢' + az' - c' at' = 0 ...... (130). 

Two particular solutions of this .. .quation are suggested at 
once by the general solution of§ 5: they are-

u = f' F [Z + ip cos a, t - ~ sin a ] da. ...... (131), 

and u = r: F [Z + ip cos a, t - ~ sin a] da. ...••. (132), 

respectively. The first of these represents a wave-function 
which is symmetrical round the axis of Z and which reduces to 
2'7T F (z, t) when p = O. It gives us at once the formulae 

(~=;) ... (133), 

(~=~) _ .. (134), 

where n is an integerf, and many other interesting formulae 
may be written down by simply choosing different wave­
functions that are symmetrical round the axis. 

* The first of these is an obvious generalisation of a. formula given by 
D. Edwa.rdes, Educational Time., Oct. (1904). 

t The formula is also true under certain limita.tioDS when n is not an integer. 
See Hobson. Phi!. Tran •. A. Vol. 187 (1896). 
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For instance, 

!. J.w log (z -+: ip cos 0) dO = !. 10 2,.. 
7r 0 z +<pcosO r gr+z 

............ (135), 

!. [log (z + ip co~ 0) - log Zo dO = ~ 10 r + Zo + R 
'1r 0 z-zo+<pcosO R gr+zo-R 

(R' = p' + (z - zo)', z > zo) ... (136), 

~ f2W sin Tc (z:- ip cos a) ik •• in. da = sin Tcr •.. (137). 
2'1r 0 z+<pcosa r 

There is another general formula for a wave-function sym­
metrical about an axis, viz . 

. 'U=J~~ F[t-~cosha, z-psinh·a]da .. . (138), 

where the function F is of such a nature that 
1. of of 
-smha - + cosh a -
C ot oz 

vanishes when a = ± 00. As a particular instance of this we 
have the function-

-lf~(p ) n -2" F t- - cosh a da ......... (139), 
'ITo c . 

which may be regarded as the cylindrical wave-potential for a 
line source of strength F (t) along the axis of z. 

A peculiarityt of the two-dimensional propagation of waves 
is the existence of a .. tail " to the disturbance when F (t) is zero 

for t < 0 and t > or, for if t > T + e we have 
C 

n=..!..f~ F(t- e cosha)da ...... ... (140), 
27'r • C 

where p cosh 8 = C (t - or). It is clear that this expression for 
n does not generally vanish. The wave-function (139) is thus 
essentially different from Euler's wave-potential for a point 
source, VlZ. 

n= ~ F(t- :), 

* Cf. H. Lamb, Hydrodynamicl, pp. 281, 500; V. Volterra, Acta Math. 
t. 18; Levi-CivitA, Nucvo Cimento (4), t. 6 (1897). The formula is a. particular 
case of 8.11\ore generaJ one given by Dr Hobson in 1891. 

t This was discussed by o. Heaviside, Phil. Mag. (5), t. 26 (1888); Elec­
t,rica~ PapeTl, Vol. 2. See also Lamb, HydrodynamiCl. p. 282. 
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for in this case n is zero for t > T + r, provided the source is 
c 

only active when 0 < t < T. 

V. Volterra* has obtained a number of elementary wave­
functions ' of the form 

u=t"F(~) =t"F(s) .............. . (141). 

He finds that F must satisfy the differential equation 

d'F dF 
8'(1-8') dB' + s(2n - 8') ds + n(n-l)F=O ... (142). 

If we try to solve (130) by means of a function of the form 

u= Wpmcosm(cp-</>,), 

where W is independent of </>, we find that W must satisfy the 
equation 

il'W 2m + 1 oW il'W 1 il'W 
op' + p op + oz. - CO at' = 0 ...... (143). 

Solutions of this which are independent of z may be derived 
from the following formulaef, in which m > - v' 

W = J: I(t-~ cos a) sin""a. da ......... (144), 

W = fo~ F (t ± ~ cosh 1]) sinhom 1] . d,I ...... (145). 

There are, of course, certain limitations concerning the 
behaviour of F (t) at infinity. The first formula enables us to 
determine the value of W when its value is known for p = o. 

§ 26. Elementary solutions of au + k'u = O. 
The differential equation 

iJ'U 1 ou 1 il'u ()'u 
op' + P op + p' o</>' + oz' + k'u = 0 ......... (146) 

possesses elementary solutions of the types 

Jm (p vI.;' + It') e "'h. cos m (cp - cp,) ...... (147), 

Km (p VA' - k') e *w cos m (</> - </>,) ...... (148), 

• Acta Math. Vol. 18. 
t E. W. Hobson, Pro<. Landon Math. S()C. Vol. 22 (1891), p. 431. The 

firs1; solution is due to Poisson. 
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where x, hand m are real or complex arbitrary constants. The 
first solution may of course be generalised into 

u=f~ J,"(pVIc'~h')e"'h'f(h)hdh ......... (149), 
4 ' 

and a similar remark applies to the second. If we wish to 
express a given wave-function in the first of these forms, the 
following inversion formula due to Hankel is particularly 
useful-. 

If F (x) = Jo~ J," (xt) f (t) tdt f ' 
f(t) =J.~ Jm(IlJt)F(x)xdllJ ... . ... ... .. (150). 

o . 
then 

Let us use this formula to express .!eikr in the form (149) 
r 

when m = O. Since the representation should be valid for z = 0, 
we find on putting Ic' + h' = A', a = k, that 

e
ikp J.~ - - Jo(Ap)f(h) AdA; 
P 0 

.'. f(h)=(JO(AP)e
ikp

dp = VA'~k" k>O. 

Hence we obtain Sommerfeld's formula t 
1 .... -J.~ ",.J''-k' T (') AdA -e - e "0 "p 
r 0 VA' - Ic' 

...... (151), 

the upper or lower sign being taken according as z;; O. A 
more complete proof is obtained by applying Hankel's inversion 
formula to the equation . 

(" . pdp e-I'IJ,'- " . 
J J. (Ap) eW - = A' > Ic' 

o 0 r VA' _ k' 
• iei I z r "kI-)..i 

vic' - A' 

which is established in Prof. Lamb's paper . 

A' < Ic' 
... (152), 

• See Gmy and Mathews, Treati3e on BeNeZ .Function, (1895), p. 80; 
N. Nielsen, Ha-ndbuch der Th<ori< der Cylinderjunktionen (1904), p. 366. 

t .Ann. d. Phy.ik, Bd. 28 (1909), p. 683. Some ana.logouB formulae are 
given by H. Lamb, Proc. London Jlath: Soc. Ser. 2, Vol. 7 (1909), p. 140; 
O. Bea.viside, Electrical Papers, Vol. 2, p. 478; N. Sonin, !tfath. Ann. Bd. 16 . 

. ~ 
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A few more formulae will now be written down to illustrate 
the method of generalisation by integration with regard to 
a variable parameter 

[ 

elkR 
K,(pVII.'-k')coslI.(z-b)=t _~R cosII.(a-b)da 

(II.' > k', R' = p' + (z - a)'). 

If '" is zero or a positive integer and n is a positive integer, 

z>O, 

z>O. 

(Hobson.) 

§ 27. The propagation of electric waves on a semi· 
infinite solid bounded by a plane surface *. 

In this problem the surface of the earth is regarded as an 
infinite plane and the waves are supposed to be generated by an 
antenna, of which one portion is vertical and the other horizontal. 

Let us assume that the electric and magnetic forces are the 
real parts of vectors of the form Ee-'·', He-;'" respectively, 

then if M = H ± ivE, where'" = ,w + iu, we may satisfy Max. 
I'-W 

w~ll's equations by putting 

M = rot II ± i grad div II ± kII ......... (153), 

where all + k'II = 0, c'k' = 'I'-w' + il'-wu ..... . (154). 
To imitate the action of the antenna we shall place two 

vibrating doublets at a point at distance a from the plane. If 
one of these vibrates vertically and the other horizontally, we 
may put for the primary radiation II, = (P., 0, p.), where . 

R' = p' + (z - a)' ... (155), 

and the axis of z is vertical. We write B with a negative sign 
to signify that the horizontal branch of the antenna is drawn 
in the negative ",-direction. 

* A. Sommerfeld, Ann.d. Phy •. Bd. 28 (1909). p. 665; H. v. Hoerscblema.nn, 
Jahrb. a. arah •• Tel<g. Rd. 5 (1912), pp. 14,188; Di .. ertatWn, Munich (1911). 
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A convenient expression for II. is obtained by using Sommer­
feld's equation 

1 _iJoR _ iJ. ( ) _l(z_a) xdx 0 ( 5 11," - Jo • X .,. l' <z<a ...... 1 6). 

where l = YX' - k'. Appropriate functions II" II, for the re­
flected and transmitted disturbances are obtained by putting 

III = ft~ cosncp [In (Xp) e-l(z+a) Fn(X)dX 

z< a ... (157). 

II, = ~ cos ncp i I n (Xp) em(z-a) Gn (X) dx 
11",,0 J 0 

where m = YX' - h' and h is the value of k in the second 
medium. The functions Fn (X). Gn (X) are vectors with com­
ponents [fn(X). O. V"n(X)]. [gn(X). O. Xn(X)] respectively. 

We can satisfy the condition that the tangential components 
of the electric and magnetic forces should be continuous at the 
surface of separation of the two media by putting for z = 0 

II. + III = II, 

rot (n. + Ill) = rot II, ......... (158). 

~ div(II.+III)= !. div II, 

where p. has been taken to be unity for both media. 
Substituting the integral expressions for II •. II" II, in these 

equations and equating to zero the coefficients of functions 
of type I n (Xp) in the resulting integral equation. we obtain 
the system of equations 

B 
I' ria - - e- = g e-->na JO l 0, 

A 
.1. ria + - e-Ia = X e-->na yo l 0 J 
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where the last equation has been simplified with the aid of the 
relations In = gn = 0 (n>O) which are a consequence of the 
previous equations. 

Solving these equations we eventually find that if 
TI, = (Q., 0, Q,), TI.=(R., 0, R,), 

Q =B[J. (Ap)e-/(z+a) (m-l)A d"A 
• 0' (,,,+1)1 ' 

B[J. ) mz Ia AdA 
R.=-2 ,(Ape - I ' 

o +m 

Q _ A [J. ( ) -I (z+a) h'l - k'm AdA 
• - 0' Ap e h'l + k'm I 

2B "'[J (' ) -/(.+.) (h' - k')A'dA + cos 'I" 0 ,"P e (I + m)(h'l + k'm)' 

R. = 2Ah' [ J, (Ap) e",,-Ia h,t:~m 

[ 
(h' - k') A'dA 

+ 2B cos cf> 0 J, (Ap) e
mz

-
Ia 

(I + m)(h'l + k'm)' 

The" directed effect" depends on the presence of the terms 
involving cos cf> in the expressions for Q. and R,. Now when 
<T = 00 for the second medium, h = 00 ,and these terms vanish 
altogether; hence the possibility of directing the energy of the 
radiation sent out from the bent antenna is due to the im­
perfect conductivity of the earth. Von Hoerschlemann has 
given a numerical discussion of the above formulae but the 
investigation is too long to be inserted here. 

§ 28. Propagation of electromagnetic waves along a 
straight wire of circular cross-section *. 

Let us consider the symmetrical case when the electric 
force at any point is in a plane through the axis of the wire 

" 
• B . Bertz, Elect1'u; Wave.; J. J. Thomson, P'roc. London Math. Soc. 

Vol. 17 (1886), p. 310; Recent Raea-rcM, § 259; A. Sommerfeld, Ann. d. 
Physik, Bd. 67 (1899), p. 233; Gray and Mathews, Beuel Functions, Ch. 13; 
M. Abraham, En<ykl. d. Math. IVi". Band V. 2, Helt 8 (1910), p. 526; 
J. Larmor, Proc. oj the 5th Int. Congreu ojMathematiciam, Vol. I (1912), p. 206. 
The problem considered in this last paper is cbiefty tha.t of a.lterna.ting currents, 
viz. the forced aJternatioD8 of flow prCKluced by a uniform periodic electric force. 
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and the magnetic force is in circles at right angles to this 
plane. The field equations are then of the types 

~ iJE,+ cr E,= !..E..(pH~), ~ iJE. + cr E.= _ iJH~\ 
c iJt c p iJp c Cit c iJz ~ (159) 

,.. 'i!H~ oE. oE, I' - c Tt = iJz - op ) 

These may be satisfied by putting 

E,=- ~o: (p °o~)' E.=;i~) 
H~= _ ~ iJ'II, _ cr iJII J ......... (160), 

c iJtiJp c iJp 
where II satisfies the equation 

,,.. iJ'II + cr,..iJII = iJ'II + ~ ~ ( iJII) = All (161) 
c' iJt' c' iJt iJz' p iJp p iJp ... ...... . 

Putting II = e;'" U, we find that Au + I<'u = 0, where 

1 •• = ,,..,,,' - i,..",cr 
"'- c' . 

We now assume that for points outside the wire­

u = A e-i>z K, (p "h .. • - 1<'), 
and that for points inside the wire 

U = Be-iAr. J,(ip "h..'- h'), • 
where h is the value of k inside the wire. These assumptions 
are made for the purpose of determining the periods and rates 
of decay of electric waves that can travel along the wire and 
maintain their own field. The first solution is chosen so as 
to make the flow of energy negligible at an infinite distance 
from the wire so that the system is self·contained; and to 

. ensure this it is necessary to suppose that the real part of 
,h ... • - I<' is positive. The second solution is chosen so as to 
make the electric and magnetic forces finite on the axis of 
the wire (p = 0). 

Let P = a be the equation of the surface of the wire, then 

• We follow here the work of Sommerfeld in which it is supposed tha.t there 
a.re no conductors outside the wire. Sir J. J. Thomson a.llow8 for the presence 
of extemaJ conductors by supposing the dielectric surrounding the wire to be 
bounded by 8 cylindrioeJ conductor ha.ving the same axis 8.8 the wire. 
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the continuity of the tangential components of the electric and 
magnetic forces requires that when p = a 

A ;p [pKo( pVX' - k')] = B (J~ [p Jo (ipVX2 - h')] 1 
(J (J J (162), 

Av (Jp K o (pVX'- k') = BVI(Jp Jo (ipvX' - h') 

v and VI being the values of the quantity u + iw. at points 
outside and inside the wire. The elimination of A and B gives 
rise to a transcendental equation for the determination of X. 
The total current flowing along the wire is • 

J = 2", J: uE,pdp 

=-2",ue-"'zpB;pJo(i pVX' -h') for p=a. 

On the other hand the electric force E, at the surface 
of the wire is 

Ez=- ~ ; p [pB"W.(J~ J.(ipv)",- h')] 

= - B (X' - h') e-W. J o (ia VX' - h'). 
Hence, if we put 

- t w { . } 
Ez=J R +'c' L . 

for p= a 

where Rand L are the resistance and self-induction of the wire, 
we get 

R+ iw L=X' -h' [J.(;) J 
d' 2",u a:Jo (a:) Z=W.VA' - h' · 

The roots of the transcendental equation have been discussed by 
Sommerfeld who used a method of successive approximations. 
The values of X are complex as the waves which travel along 
the wire are damped owing to the imperfect conductance of the 
wire. It appears that when the disturbance does not penetrate 
far into the wire, the damping is small and so the velocity of 
propagation is very nearly equal to the velocity of light. 
When, however, the field does soak into the wire to some 
extent, the damping is of course considerable and so the wave 
travels with a velocity a little less than that of light. In the 
first case the real part of VX' - h' is large, in the second case it 
is small. 
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In Lecher's arrangement* there are two conjugate parallel 
wires between which the waves travel, consequently the field is 
not symmetrical round the axis of one of the wires. This case 
has been discussed by G. Miet with the aid of bi·polar 
coordinates, and the lines of force have been studied by W. B. 
Mortont. The latter also considers the case of 11 parallel wires 
passing through the comers of a regular polygon§. 

The mathematical analysis for the case of a curved or twisted 
wire has not yet been fully developed. The important case of 
a spiral wire has, however, been discussed by H. C. Pock­
lingtonll and J. W. Nicholson'\[. The latter gives numerous 
references to the literature of the subject. D. Hondros" has 
recently discussed the propagation of some types of unsym­
metrical waves along a single wire. The electromagnetic 
theory of an electric cable has been given by Sir Joseph 
Thomson tt and F. Harmstj:. The latter considers the case 
when the outer conductor of a cable is replaced by air. 

§ 29. Other problems which may be treated with 
cylindrical coordinates. 

The diffraction of electromagnetic waves by a cylindrical 
obstacle has been discussed by Lord Rayleigh§§, W. Seitzlill, 
W.Ignatowsky1f'\[, P. Debye*t, C. Schaefer*t, and J . W. Nichol­
son*§. Schaefer has made an extensive study of the case of a 

, Ann. d. Phy •. Bd. 41 (1890), p. 850. See also D. Mazzolto, n Nuovo 
eimett'" (4). I. 6 (1897), p. 172. 

t Ann. d. Phy •• Bd. 2 (1900), p. 201. The CMe in which Ihe capa<lily 
i8 8Ill&1l is discu8sed .1 length byJ. W. Nicholson, Phil. ],fag. Feb.-Sepl. (1909). 
The current is supposed to flow a.long one wire and return a.long the other. 

t Phil. ],fag. Vol. 50 (1900). p. 605; Vol. 4 (1902), p. 302. 
§ Phil. ],fag. Vol. 1 (1901). p. 563. 
n Proo. eamb. Phil. Soo. Vol. 9 (1897), p. 324. 
'I) Phil. ],fag. Vol. 19 (1910), p. 77. 
" Ann. d. Phy •• Bd. 30 (1909). p. 905; m.leTtation. Munich (1909). 
tt Proc. Roy. Soo. Vol. 46 (1889), p. 1; Recent ReBearcha. p. 262. 
r. Ann. d. Phy •• Bd. 23 (1907). p. 44. 
§§ Phil. ],fag. Vol. 12 (1881), p. 81. 
n II Ann. d. Phy •. Bd. 16 (1905). p. 746. 
'11'11 Ann. d. Phy •. Bd. 18 (1906). p. 495. 
't Phy •• ZeiUchr. (1908). p. 775. 
't Ann. d. Phy •. Bd. 31 (1910). p. 462. 
*§ P"oc. London ].[ath. Soc. Ser. 2, Vol. 11, p. 104. 

-
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dielectric cylinder and his results have been tested experimentally 
by Grossmann. This is one of the few cases in which the 
influence of the material properties of the obstacle has been 
taken into account in the mathematical treatment of a diffrac­
tion problem; the necessity of doing this has been clearly 
indicated by some of the experimental results. 

P. Debye has studied the diffraction problem with reference 
to the theory of the rainbow. This had been done for the case 
of the sphere by L. Lorenz long ago*. 

Electrical vibrations in regions bounded by cylinders of 
various shapes have been studied by Sir J. J. Thomsont, Lord 
Rayleigh!, Sir J. Larmor§' R. H. Weber Ik A. Kalii.hne~, and 
J. W. Nicholson**. The latter has also calculated the pressure 
exerted by a train of plane electromagnetic waves on a perfectly 
conducting cylindertt. 

EXAMPLES. 

1. Au infinitely long metal cylinder of specific conductivity a 
and permeability po, bounded by the surface r=R, is surrounded by a 
dielectric of specific inductive capacity f. A train of waves, in which the 
electric force is perpendicular to the cylinder and to m~gnetic force and 
if undi.turbed would be represented by the real part of .Mei{~t+"'ooo.), 
is passing in the dielectric. Prove tha.t the magnetic force H, inside 
the cylinder and the pert H, of the maguetic force outside representing 
the scattered wave, are given by the real perts of 

~ . t 
H, =e 1: a,.K,. (1:r) cos m</>. H.=e~ 1: bmJm (hr) cos m</>, 

m m 

where h'J= - 41J'p.a1OJ, and 

bmJ.(hR)-a,.Km(kR) = 2.Mi"'J,.(kK), 

b,.h J,.' (hR)- ~kc' K,.' (.i:R)= 2~t""kc' J,.' (kR). 
4rru 'OJE 'WE 

• Oeuvru ,cientifiqUU, pp. 405--502. See also GaDS and Bo.ppel, loco cit. 
(p. 44). The most recent paper on the rainbow is by W. Mobius, Ann. d. Phy • . 
Bd. 33 (1910) . 

t Recent Ruea:uha, p. 344. 
: Phil. Mag. (5), Vol. 43, p. 125. 
§ Proc. London Math. Soc. (1), Vol. 25, p. 119. 
II Habilitati<muchrijt, Heidelberg (1902); Ann. d. Phy •• (4). Bd. 8 (1902), 

p.721. 
'If An". d. Phy •. (4), Bd. 19 (1906), pp. 80, 879; Bd. 18 (1905). p. 92 . 
•• Phi/. Mag. Aug. (1905), May (1906). 
tt hoc. LOfUum Math. Soc. Ser. 2, Vol. H, p. 104. 
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for positive integral values of m. The constants here have reference to the 
electromagnetic system of units. 

(Cambr. Math. Tripos, Part II, 1905.) 

2. Plane electromagnetic waves represented by 

E -E -H. -H. =0 H. _ e'k(z+c') E _ .ik(.+c') 2:- ,.- :011:- a , ,. - }.- , 

faU upon the perfectly conducting cylinder p~a. Prove that 10 the 
scattered field 

E - -! ikc'f~ i1,aeos~ f~ K. (il:p) 
.- ,,' • d{3 K (iJ: )cosvcp.cosv/3.dv. 

-00 -00 " a 
(P. Debye.) 

3. The wave-potential for a circular ring of point sources is given by 

n=f: .-.J'·-k'-ikclJo("!.p)Jo(Aa)AdA, .>0 . 

• (A. G. Webeter.) 
4. The wave-function 

n="ke'f~'-"Jo (p ../J:2+A') cos aA dA 

is zero at points on the plane %=0 which lie inside the circle p'l<a'l; for 

.=0, p'>a' its value is .ike' (p' -a')-I cos(l:J p'- a'). (Sonin.) 

5. If R'=p'+(.+asinhu)', ~_", the integral 

f: Jo(Ap)AdA f: J.[A.J t2-z2+a2+a{ E(t-.)+~ (t+z)} Yk'dt 

ikR 
represents the function e R . e-aOO8hu outside a parabolQid of revolution 

whose focus is at the singularity Z= -a sinh u, p=O, a.nd which passes 
through the circle p=a, .=0. It is zero inside the paraboloid. 

6. The circuital relations in cylindrical coordinates are 

p aE. aHz aH. pilE. ilH. ilH. c at = acp -p T:' c ae-=P iJz -p ap , 

!!. aE'=~(pH.)_ilHp ~(pH.l+ilH.+p aBz=o 
c ilt ap aq,' ilp P aq, a. 

and similar equations in which E is replaced by - Hand H by E. 

7. If X=XC086)t-!lBin~, Y=xsiOtilt+YCOSfllt, Z=z-vt, where v 
and Q) are constants, the function !l=F(X, Y, Z) is a wave~function if F 
satisfies the partial differential equation 

(1-;: 1") ~:'+(1-~X') ~:' +2:: XY ai:y+ ~(X ~~+ y~~ 
+ (1-~) ~~=o . 

. , 
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Obtain particular solutions of the form 

ll=l<z-e,)+,,.<+-.,) [.AJm (Pp)+BYm(Pp)] 

where p'l=A2 (1-~ + m;2 and A, m, A, B are arbitrary constants. 

81 

8. An oscillatory current is induced on a circular wire of radius a 
excite<\ by a uniform electric force Roe'Pe acting on its surface from the 
surrounding medium. Obtain expressions for the inductance and resistance 
of the wire per unit length when the wire is regarded as straight and no 
disturbing cCloductor is near . 

• 

B. 



CHAPTER V 

THE PROBLEM OF DIFFRACTION 

§ 30. Multiform solutions of the wave-equation-. 
The wave-functions required to solve many of the boundary 

problems of Mathematical Physics are not single-valued func­
tions of IX, y, z, t in an ordinary space. We may, however, 
regard them as single-valued functions in a Riemann's space. 
This is a simple generalisation of the Riemann's surface of the 
-theory of functions of a complex variable t; every plane 
section of the Riemann's space is in fact a Riemann's surface. 
Instead of branch lines and branch points we have branch 
membranes and branch curves. Thus in the physical problem 
of the diffraction of light through a circular hole in a screen, , 
the boundary of the shadow of the screen is the branch mem­
brane and the edge of the hole the branch curve. 

We shan commence by finding a multiform solution of 
the equation 

O'u o'u ow + oy' + k'u = 0 .................. (163). 

The fundamental solution u = elk (tl cos a.+'IIsina ) = eikp cos (~ - 4) IS 

of period 27r and can be expanded in the form 
~ 

."'p OO!M-·) = J.(kp) + 2 ~ i"J,,(kp) cos n (¢ - a) ... (164). 
I 

• This theory is due to A. Sommerfeld, Math. Ann. Bd. 45 (1894), Bd. 47 
(1896); Zeit8chT. fur Math. u. Phy •. Bd. 46 (1901); Proc. Lond<m Math. Soc. 
(1), Vol. 28 (1897), p. 417. It haa been developed by H. S. Carslaw, Proc. 
Lond<m Math. Soc. (1), Vol. 90, p. 121: (2), Vol. 8, p. 865; Phil. Mag. Vol. 5 
(1903), p. 374: Vol. 20 (1910), p. 690; FouTier'. Seri .. and In"gral., Ch. 18; 
W. Voigt, GOtt. Nachr. (1899); E. W. Bobson, Camb. Phil. Tram. Vol. 18 
(1900). p. 277. Different methods have been used by H. M. MaOOonaJd, Electric 
Waves, Appendix D j K. Schwa.rzschild, 1Jfath . Ann. Bd. 55 (1902). p. 177 ; 
Proc. L<md<m Math. &C. Vol. 26 (1895), p. 156; C. W. Oseen, ATkiv far mat. 
Bd. 1 (1904), Bd. 2 (1905). 

t See H&rkn ... and Morley's Thwry of Function. (1893), Ch. 6· 
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A solution of period 2m". may evidently be constructed by 
writ.ing down a series of the form 

~ n 
I a,.J n (kp) cos - (<p - a), 

n=-oo;;; m. 

where the an's are suitable constants. The solution that seems 
the most natural extension of (164) is 

n 
GO - n. 

F,n (p, <p, <Po) = Jo (kp) + 2 I.~ In (kp) cos - ( <p - <po) ... (165). 
1 - m 

m 

To sum this series when m = 2, we transform the terms for 
which n is odd by meaus of the equation 

n 

(k ) 2 r" 
J!'.(kp)= n p 1, eik."". sinncz.da. 

2 22rmrr~l) 0 
• 

Summing the two series separately we find that 

F, (p, <p, <P,) = e;kp 000 (+-M + 1 (<p - <P,) +1 (<P, - <P), 
where 

(
ikp)i is + ikP. is ('" _ ikp e is cos' CL + ikp 0010. 

1(8)= 2". e' 2 10 e • sina.dcz 

. i JT 
= (:) eik."",' s e- I>.'dA, .. .. 

S=(k;)iV'" _e'). - 8 
T= ¥2kp cos 2' with 

Now 

and 

hence we may write 

F.(~, <p, <p,)= (;)* eik• ooe (+-+.l [~e-iA' dA •.. (166), 

where .,. = ¥2kp cos H<p- <P,). 
With the aid of the function F. we can solve some problems 
on the diffraction of plane electromagnetic waves by a semi­
infinite plane bounded by a straight edge. Let us consider 

6-2 
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the case of a totally reflecting screen *. If the electric force 
in the incident wave is parallel to the edge of the screen, the 
electric force u = E. for the total disturbance must vanish over 
both faces of the screen and must satisfY the differential equa­
tion (163). These conditions are fulfilled by taking 

E. = F, (p, </>' </>') - F, (p, </>' - </>,) ..••••... (167). 

This value of E. also satisfies the right conditions at infinity. 
To prove this we must find an asymptotic expression for F2 
when p is large. 

Now w.hen T> 0, we have the asymptotic expansion t 

[e- iA
'd1>. --W-;" [1- 2:'" + (2~;)' - ... J; 

while when T< 0, f~~as a similar asymptotic expansion with the 

sign changed. This means that when cos! (</> - </>,) > < > 0 we 
have 

,t 
F, (p, </>, </>,) _ eu" <OIl <t - t. + t e-u.. _ ... , 

. V27rkp cos H </> - </>,) 

while when cos H</>-</>o)< «0 there is a similar asymptotic 
expansion in which the first term is missing. It thus appears 
that the electric force in the geometric shadow vanishes at 
infinity to the order p4. 

If the magnetic force in the incident wave is parallel to the 
edge of the screen, the magnetic force u = H. must satisfY the 

differential equation (163) and be such that ~ = 0 over both 

faces of the screen. The conditions are fulfilled by putting 

H. = F. (p, </>,</>,) + F.(p, </>, - </>,) •..••••.•. (168). 
Prof. H. M. Macdonald has shown that the solution of 

a problem concerning a perfectly absorbing body can be made 
to depend on the solution of two allied problems!. "A per-

* The iDcident waves are supposed to come in & direction for which 
~ =.". + "'0' An approxima.te solution of this problem was given by H. Poincare, 
Acta MathematK4, Bd. 16, p. 297 i Rd. 20, p. 313. 

t Bromwich's Infinite Seria, p. 328. 
: Phil. Tra .... A, Vol. 212 (1912), p. 337; Proc. London Math. Soc. (2), 

Vol. 12 (1913). 
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fectly absorbing body may be regarded as a body which is 
incapable of supporting either electric or magnetic force; 
hence if C is the electric current distribution on the surface 
of the body when it is supposed to be perfectly conducting. 
ann C' is the magnetic current distribution on the surface of 
the body when it is supposed to be incapable of supporting 
magnetic force. the superposition of these two distributions 
gives the electric and magnetic current distributions on tbe 
surface of the body when it is perfectly absorbing and the 
amplitude of the incident waves is doubled." 

Now if we suppose our screen to be incapable of supporting 
magnetic force. the boundary condition is that tbe tangential 
component of the magnetic force should vanish. When the 

electric force is parallel to the axis of z. °o"i must vanish over 

the screen. Hence 
Ez = F, (P. 1>. 1>,) + F. (P. 1>. - 1>,) ......... (169). 

The solution for a totally absorbing screen is thus simply-

E z = F, (P. 1>. 1>.) .................. (170). 
Similarly. it can be shown that when the magnetic force 
is parallel to the axis of z. the solution for a perfectly 
absorbing screen is 

Hz = F, (P. 1>. 1>.) .............. . . . . (171 ). 
Prof. Lamb t has discussed the case of perpendicular incidence 
with the aid of the parabolic substitution 

~ = p! cos!r/>. 'IJ = pi sin!1> } ... (172). 
x = r - 'IJ'. 11 = 2~'IJ. P = ~'+ 'IJ' . 

The curves ~ = const.. 'IJ = const. are confocal parabolas. 'IJ = 0 
is the screen. A solution of Maxwell's equations is obtained 
by writing 

H.=O. 
oE~ au 
Tt=Cay' 

where 

H • . O. 
OE. AU - =-c -ot ox . 

o'u O'u 1 ()2u 

ox' + 011' = c' ot' 

Hz=U} oEz = 0 ••• (173), 
at 

....... ........ (174). 

• W. Voigt. GOtt. Nachr. (1899), p. I, discusses the case of an absorbing 
screen. 

t Pro<. London Math. Soc. (2), Vol. 4 (I907), p. 190 ; Vol. 8 (1910), p. 422. 
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Starting with Poisson's wave-function- X = p-t cos!</> .f(ct - p), 
let us put 

au 
ax = x· 

Transforming to the coordinates ~, .", we obtain 

~~~-.,,~ =2U(ct-~'-"") .. ....... (17.'; ). 

Solving this partial differential equation by Lagrange's method 
and adjusting the complementary function so that the boundary 

condition ~ = 0 for." = 0 is satisfied, we obtain 

u= ri(ct+Y-r)d~+ r.-i(ct-Y-r)d~ 
+iF(ct+y)+ iF(ct - y) ... (176 ), 

where F is an arbitrary function. If the boundary condition is 
u = 0 for ." = 0 the sign of the second term must be changed. 
It is easy to verify that each of the integrals represents a wave­
function. 

Let us now put f(x) = ~r.F' (x- v')dv, 
7r 0 

and make the substitution ~ = U cos 11, V = u sin a, then after 
a little reduction we find thatt 

u=F(ct: y)-!t: F[ct+y-(p+y)sec'a]da 'II 

1f-+ - • F[ct -y -(p-y) sec' 11] da x<O, y~ 0 I 
7r 0 

• I 

u=F~+0+F~-0-- 'F~+y-~+0~&~~ I f- I 

-!tF[ct-y-~-y:e:a]da ;~~ I~ 
u=- • F[ct+y-(p+y)sec·,,]da 11.-

7r 0 
• 

+- • F[ct-y-(p-y)sec'I1]da 1f-
.". 0 

x>O 
y>O 

......... (177) . 
• Journal tU I' Ecole Polytechtliqm, ee.h. 19. t. 12 (1823). See also V. 

Volterra., Acta MaJh. t. 18; Hantzschel, Reduction der Potentialgleichung, Ch. 1-
t These formulae are not given in Prof. Lamb's paper. 
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Each of' the integrals represents a wave-function provided 
F(± 00 )=0 and 

7r 
tancxF'[ct±y-(p±y)sec'cx] --+O as <2--+"2. 

In these circumstances we have the solution of the diffraction 
problem for the case when the initial disturbance is represented 
by u = F (ct + y), the magnetic force being parallel to the 
axis of z. By suitably choosing F we can deal with the case 
of a solitary wave. 

A new method of solving the problem of diffraction by 
a straight edge has been given recently by Oseen-. 

Problems connected with a wedge have been treated success­
fully by Sommerfeld and other writers by using a certain type 
of contour integral. The fundamental solution of (163) is now 

_ 1 J Upc .. (~-.) dv da (178) u - 27Ti e da . v ............ , 
ia i1>a 

where v= en - en and the path of integration is a simple con­
tour which starts from 00 i +"/ and goes to 00 i +"/' without 
crossing the real axis. The quantities "/, "/' are subject to the 
inequalities 

27r >"/>7r, 0 >"/' > -7r. 
This function u is multiform and of period 2n7r, but on an 
n-sheeted Riemann's surface with the origin as branch-point 
and the line <P = - (71: - <Po) as branch-section, it is uniform. 

With the aid of this function a number of diffraction 
problems may be solved. 

Thus in the case of a perfectly conducting prism of angle 
2r. - a if the electric force in the incident waves is parallel to 
the edge of the screen and is represented by the real part 
of the expression 

eik[ct+p cos (~-"')] , 
it can be shown by an extension of the method of images, that 
for the total disturbance the electric force is the real part of 
the expression t 

E - 1 ;.<,' J Up ""'" d I W d'" (179) • - -2 • e e d'" og - > •••••• , 
7T1. ,~WI 

• Arkiv for matematik, astronomi oth jysik (1912). 
t Macdonald, Electric: Wave., p. 192 (1902). 
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where 
.".~ .". 

W = cos - -cos - (</> - </>.). 
a a 

.".~ .". 
W , = cos - - cos - (¢+ </>.). a a 

and the path of integration is the same a.s before. 
In the associated problem when the magnetic force in 

the incident wave is parallel to the axis of z. the magnetic 
force for the total disturbance is the real part of the expression 

H. = /m eikc' f eUP cos ~ :~ log (ww,) ds. .... .. (180). 

These solutions and the solutions of analogous problems have 
been discussed by W. H. Jackson·. H. M. Macdonald t. F. 
Reiche t. A. Wiegrefe §. and other writers. 

§ 31. Elliptic coordinates II. 
If we put 

a; = cosh", cos X. Y = sinh", sin X ..•... (181). 

the differential equation (163) becomes 

o'u o'u ow' + aX' + k' (cosh' w - cos' X) u = 0 .. ... . (182). 

The elementary solutions are now of the form 

u = E ("') F (X). 
where E and F satisfy the equations of the elliptic cylinder1f 

tPE 1 
([2 + (k' cosh'''' + p)E = 0 I 

'" ~ . . .......... (183). 
rI'F I 
dX' - (k' cos'X + p) F=O J 

Appropriate solutions of these differential equations have been 
obtained recently by Prof. Whittaker·· . 

• Proc. Ltmdon Math. &C. Ser. 2. Vol. 1 (1904). p. 393. 
t Ibid. Vol. 12 (1913). p. 430. 
: Ann. do. Phy,. Bd. 37 (1912). p. 13l. 
§ Ibid. Vol. 39 (1912). p. 449. 
II H. Weber, Math. Ann. Vol. 1 (1869); Ma.thieu, Louville's Journal, Ser. 2, 

Vol. 13 (1868); Hartenstein. Hoppe" Archiv (2). t. 14. p. 170; R. C. Maclaurin. 
Cambro Phil. Tram . Vol. 17 (1898). p. 4l. 

~ For this equa.tion see Heine, Handbuch der Kugelfunktionen; Lindemann, 
Math. Ann. Bd. 22; Hintzschel, Zeieschr . f. Math. u. PhYB. Vol. 31, p. 25 
(1883); Mathieu. LWuville', Journal. Ser. 2. Vol. 13 (1868) . 

•• !Iath. Congre ... Cambridge (1912) . 
. ~ 
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Elliptic coordinates are appropriate for the solution of 
problems connected with the scattering of electromagnetic 
waves by an elliptic cylinder*. 

W. Wien h"" suggested t that the problem of the diffraction 
of light through a straight slit in a screen! may be treated 
with the aid of elliptic coordinates by regarding the screen as a 
limiting case of a hyperbolic cylinder. 

H. Weber § has shown that when k '" 0 the elliptic and 
parabolic substitutions <\I'e the only transformations which lead 
to elementary solutions of the equation (163). For further 
properties of this differential equation we may refer to Pockels, 
Uber die partielle Differentialgleichung c'u + k'u = 0, Teubner, 
Leipzig (1891), and to Lord Rayleigh's Them-y of Sound. 

§ 32. Other diffraction problems. 
The diffraction of light and electric waves by a grating of 

wires is a problem of importance, but the mathematical treat­
ment is very difficult and the theories that have been given so 
far are of an approximate character. Sir J. J. Thomson II has 
discussed the theory of Hertz's grating 'If which consists of 
a number of parallel equidistant .!IIetal wires. When electric 
waves whose wave-length is large compared with the distance 
between the wires fall normally on the grating, they pass 
through if the electric force is at right angles to the wires but 
are reflected if the electric force is parallel to the wires. Prof. 
Lamb·· has considered the case of a grating which consists of 
parallel strips of metal; his theory has been supported by the 

• See, for instance, K. Aichi, Proc. ToJcyo Math. Phy •. Soc. (2), 4, p. 266 
(1908); B. Sieger, Am •. d. Phyrik (4), Bd. 27 (1908), p. 626. 

t JahTubericht d. tUuUch. Malh. Verrin, Bd. 15 (1906), p. 42. 
! For this problem see K. ScbW8dZ8Child, loco cit . ; Lord Rayleigh, Ph'l . 

. ~fag. Vol. 43 (1897), p. 259; Scientifo: Pap.,.. , Vol. 4, p. 283; Proc. Roy. Soc. 
A, Vol. 89 (1913), p. 194. An interesting experimentaJ result has been obtained 
recently by P. Zeeman, A ... terdam Proc., Nov. 28 (1912), p. 599. 

§ J[ath. Ann. Bd. 1. See also HaDtzschel, Reducticn deT Potentialglekhung, 
p. 137. 

II Beant Ruearchu (1898), p. 425. 
'1T CoUected Workl, Vol. 2, p. 190. For BOme recent experimental work see 

H. du Boi. and H. Rubens, Ann. d. Phy •. Bd. 35 (1911), p. 243; A. D. Cole, 
Phy •• Revi<w, Jan. (1913) . 

•• Proc. Lond<m Math. Soc. Ber. 1, Vol. 29 (1898), p. 523. 
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experimental work of OJ. Schaefer·, J. Langwitz·, and G. H. 
Thomsont· 

Lord Rayleigh! has given an approximate electromagnetic 
theory of the action of a grating on waves of light and this 
theory has heen extended by W. Voigt § so as to take into 
account the properties of the material of which the grating 
is made. Voigt's theory has been tested experimentally by 
B. Poganyll who gives an account of previous experimental 
work on the subject. 

The diffraction of light through a circular hole in a screen 
is a problem of interest to mathematicians which has yet to be 
sol ved 'If. A promising method of attack is to regard the screen 
as the limiting case of a hyperboloid of revolution of one sheet. 

Exanopiu. 1. Prove that 

.kel p ( ....... )_~ c • r . (·k )! j'_P 'ma 
e ..('2 P,'t"'f'\I - . 

" -~ vc(t-r)+pcos(q,-</>o) 

2. If a-+iy=a cosb(6)+iX), ~=ikae", '1=ikae-w, 

J.(kp)."'~ : J.+" (~)J._" (q) ."'''" 

• • 
where the summa.tion extends over all even integral values of n if II is even 
and over all odd integral values of n if II is odd. 

(J. H. Hartenstein, Grunert', Archiv (2), t. 14, p. 170.) 

§32a. The introduction and elimination of discontinnities. 

Wave-functions with singular lines or with singularities 
travelling along straight lines with the velocity of light may 
sometimes he employed with advantage in the solution of 
diffraction problems. To illustrate the method to be adopted 
we shall consider the diffraction of waves of sound by an 

• -"nn. d. Phv •. Bd. 21 (1906), p. 587. The theery is developed from a new 
point of view by C. Schaefer and F. Beiche, Ibid. Bd. 32 (1910), p. 577; Bd. 35 
(1911), p. 817. 

t Ibid. Vol. 22 (1907), p. 365. 
t P,ec. Roy. Sec. A, Vol. 79 (1907), p. 532. 
§ Gott. Nachr. (1911). II Ann. d. Phy •. Bd. 37 (1912), p. 257. 
11" Approximate solutions have been given by G. G. Stokes, Camb. Phil. 

Tf"a1U. (1849); H. Lorenz, Videnth. Se"k. SkT. , Copenhagen (IBOO); H. A. 
Rowland, Amer. Journ. Vol. 6 i A. Grimpen, Dill. Riel (1890); A. E. B. Love, 
Phil. Tra .... A, Vol. 197 (1901). 

-
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infinitely thin semi-infinite plane bounded by a straight edge *. 
We shall suppose that the waves are sent out from a stationary 
source and that the screen acts as a perfect reflectort. 

Let the axis of z be taken along the edge of the screen and 
the axis of x in the plane of the screen at right angles to the 
edge. Let P be the source of sound and Q an arbitrary point 
on the edge of the screen. If the disturbance issuing from P 
were reflected according to the laws of geometrical optics, the 
total disturbance would be discontinuous in crossing two semi­
infinite planes, each of which is bounded by the edge of the 
screen. The first of these planes is a boundary of the geometrical 
shadow, when continued across the edge of the screen it passes 
through P. The second plane is the boundary of the geometrical 
shadow for the optical image of P, viz. P,. 

To obtain the correct solution of the diffraction problem we 
must add to the disturbance just described a second one having 
discontinuities which will annul the above-mentioned dis­
continuities, the new disturbance must also be chosen eo that 
the boundary condition is satisfied at the two faces of the 
screen. We shall now show that the required disturbance can 
be built up by superposition from elementary disturbances 
with singularities along lines such as PQ and P, Q produced. 

Let R be the distance of an arbitrary point (x, y, z, t) 
from Q, then if (0, 0, 1;) are the coordinates of Q and c is the 
velocity of sound, we know that a function of type 

~f(i-R x+iy ) 
R c ' z-1;+R 

satisfies the wave-equation. Let us choose the arbitrary function 
f in such a way that the expression becomes infinite along the 
line PQ produced and returns to its initial value when the 
point x, y, z is rotated twice round the edge of the screen. 
This last condition is added so as to enable us to satisfy the 
boundary condition . 

• This problem ha.s been solved by H . S. Cars]o,w. Proc. Lcmdon Math. Soc. 
Vol. 30 (1898). p. 121 . A transforma.tion of his solution suggested the method 
described here . 

t This assumption is usually justifiable. In Prof. A. G. Webster's experi­
ments on the reflection of sound from the ground (Phy,. Review, Vol. 28 (1909), 
p. 6!i) it was found tha.t the reflection is more than 90 °10_ 
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Now if we write 
x + iy = e-u+i4> 

z-'+R ' 
where u and <P are real quantities, and use R" u" <Po to denote 
the values of R, u, <p for the point P, it is easy to see that the 
function 

~ F (t - ~) sec H<p- <Po+i (u + II,)] 
satisfies the requirements, for it is periodic in <p with period 
471" and is infinite along PQ produced, where 

U= -uo, <p= <Po + 71". 
'Ve now imagine sources corresponding to wave-functions of 

this type to be associated with each element d, of the edge, 
and suppose the strength and phase of the source at Q to 
depend on its position relative to P in such a way that 

F(t- ~) = ~f(t- R:Ro), 

wheref(t) is the strength of the source at P at time t. 
In this way we obtain an integral 

V I =4
1 r RdR' f(t_R+Ro)secH<p-<po+i(u+uo)], 
7r ~- t:IJ 0 C 

which will be shown to be discontinuous in the way required 
as the point (x, y, z) crosses the boundary of the shadow for P. 

In a similar way we can construct an integral 

V, = 4~ r~ ;1/(t- R: Ro) sec H<p+4>o - i(u + u,)], 

which can be shown to be discontinuous in the way required as 
the point (x, y, z) crosses the boundary of the geometrical 
shadow for Pl. 

Now let r, r l be the distances of the point x, y, z respectively 
from P and P" then the velocity potential V of the total 
disturbance is given by the following expressions in the different 
regions of space 

V =!. f (t - !:) + !.. f (t - rl) - VI - V. in S" 
r c r 1 C 

V = ~ f (t - ~) - VI - V, in S" 

V = - VI - V. in S, . 
. -
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The space S, is bounded by the screen and the limiting 
plane of the geometrical shadow for P" S, is bounded by the 
limiting planes of the shadows for P and P" S, is bounded 
by the screen and the limiting plane of the shadow for P. 

The boundary condition is that ~; should be zero over the 

two faces of the screen and it is easy to verify that this 
condition is satisfied. To show that V is continuous for the 
whole of the space outside the screen and vanishes at infinity 
when the function f is finite, we shall transform the integrals 
V" V, to the forms given hy Prof. Carslaw. To do this we put 
u + 110 = b, then if p is the distance of a point from the axis 
of Z, we have 

peu= Z - 1:+ B, poe'" = Zo- 1: + B o, 

B' = p' + (z - ~)', B o' = Po' + (zo - 1:)', 
pe-u =B - z + 1:, poe-u, = Bo-zo+ 1:, 

ppo cosh (u + 110) = (z - 1:)(zo -!:) + BR., 

p' + Po' + (z - zo)' + 2ppo cosh (u + uo) = (B + R.)', 

db = du+ duo = - d1: (~ + ~). 
Hence it follows that 

,r 1 J~ db f( B + Bo) 1. ( 'b ',= 4.". -~B+R. t- c sec~ </>-</>o + t). 

On substituting the expression for B + Bo in terms of b we 
obtain an integral which is equivalent to the one given by 
Prof. Carslaw. To see that it is discontinuous· we use V+ and V_ 
to denote the values of the integral for ¢ = .". + </>0 + E and 
¢ = .". + </>0 - E respectively, where E is a small quantity. The 
difference between these quantities may be regarded as a 
contour integral and can be evaluated by Cauchy'S theorem 
We may write 

Vr V_=-~f- d~ f(t- B +R.) coseci~. 
4".. B + Bo C 

Taking the residue for ~ = 0, i.e. </> = .". + </>0' b = 0, we get 

V+-V_=- 1 f(t - B+R.)=-!f(t-!:); 
B + Bo c ,. c 

• A moreca.reful proof is given in Prof. Ca.rslaw's paper. 
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for the conditions 4> = 71" + 4>0' b = 0 imply that the radii 
"R and Ro are in one,straight line and so give r when added 
together. . 

It is now clear that the integral V, possesses the right type 
of discontinuity and a similar remark holds for the integral V,. 
The method can no doubt be modified so as to give solutions of 
other types of diffraction problems, the chief difficulty arises 
in the choice of a function which will satisfy the boundary 
conditions. At any rate the method suggests an interesting 
type of boundary problem in which the desired wave-functions 
have specified discontinuities instead of being continuous 
everywhere. This type of problem ought to be studied more 
completely. 

In the general problem of the diffraction round a moving 
object of the waves issuing from a moving source, the wave­
functions that are derived by the methods of geometrical optics 
have discontinuities at a certain boundary which is the locus of 
points travelling along straight lines with the velocity of light. 

The points in question start from certain points of the 
moving object and move along tangents to the surface of the 
object, their paths being in fact continuations of the paths of 
particles that may be considered to have been emitted from the 
source. Indeed, if we imagine the source to emit particles in 
all directions as it moves about, the particles which just graze 
the moving object will, when they continue their rectilinear 
motion with the velocity of light, form the boundary at which 
the discontinuities arise. 

In Chapter VIII we shall obtain a class of wave-functions 
with singularities moving along straight lines with the velocity 
of light. These functions seem to be just the ones that are 
required for the building up of wave-functions with dis­
continuities of the type just described. The problem of forming 
in this way the functions which will enable us to complete the 
solution of the diffraction problem is one which awaits solution. 



CHAPTER VI 

TRA~SFORMATIONS OF COORDINATES APPROPRIATE FOR 

THE TREATMENT OF PROBLEMS CONNECTED WITH A 
SURFACE OF REVOLUTIO~ 

§ 33. Spheroidal coordinates. 
Problems in which there is symmetry round the axis of z 

can often be treated with the aid of a substitution of the form * 
p + iz = f(a.+ i f3) ............... . .. (184). 

Taking a. f3. cp as orthogonal coordinates. we have 

dW+ dy' + dz'= (da' + d.B') ;i:.· ~ + p· dcp' . . . (185). 

and equations (18) of § 8 become 

where 

~ [o~(pM.)-o~(~M~)] = ± kM. 
~ [o~ (~M.) - :a (pM.)] = ± bll~ . .. . . . (186). 

J. [0: (~M~) - o~ (~M.)] = ± kM. 
:a (jAr.) + o~ (5M~) + o~ (;.M.) = O. 

J.=o(a.f3). ° (P. z) 
* This substitution has been used in other branches of mathema.tical 

physics by C. Neumann, Theorie. det- Elektricitiitl- UM Wiinne·Vertheilung in 
einem Binge. (1864); E. Mathieu. Cour. de phyriqm mathimatique (1873); 
A. Wa.ngerin, Berliner Monatsberichu (1878) i Hii.ntzscbel. Redmtion der 
Potentialgleichung; Wticbell, MUB. of Math. (1890); Basset, Hydrodynamic., 
Vol. 2, p. 8; F. H. Safford. Amer. Journ. Vol. 21 i .A.rchiv tkT Math. Bd. 13 
(1908), p. 22. The importa.nt developments on which the following analysis is 
founded are contained in papers to which we sha.ll refer presently. 
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These equations may be satisfied by putting 

Jan Jan k 
M'= - ~Q' M~=--." M~=± - n ... (187), 

p u,., p ua p 

where n = U ± iV is a solution of the partial differential 
equation 

a'n il'n I ('ap an ap an) k' 
an' + af3' - P aa aa + af3 af3 + J' n = 0 . .. (188). 

The problem of finding the periods of free electrical oscilla­
tions on a conducting spheroid is of considerable interest 
because a straight rod of circular cross-section can be regarded 
as approximately equivalent to a prolate spheroid whose major 
axis is relatively much longer than the minor axis. This 
problem has been treated very fully by M. Abraham·, 
R. C. Maclaurint, M. Brillouin:t, F. Ehrenhaft§ and J. W. 
Nicholson II. The effect of a spheroidal obstacle on a train of 
waves has been studied by K. F. Herzfeld'. 

For prolate spheroids the appropriate substitution is·· 
,,+ ip = a cosh (a + if3) . . ..........•..... (189), 

or p = asinh a sinf3, Z= a cosh a cosf3, 

a (p, z) = _ a' (cosh' a _ cos' Q) (190) a(a,f3) ,., .......•. . 

The partial differential equation is now 
il'n a'n an an 
()a' +'iJf3' -cotha 'iJa -cotf3 'iJf3 -a'k'(cosh'a-cos'f3)n 

...... (191), 
and there are elementary solutions of the form n = A (a) B (f3) 
where A and B satisfy the differential equations 

d'A dA , 
da' - coth a da - (k'a' cosh' 2 + >..) A = 0 I 

d'B dB ~ ... (192). 
df3' - cot f3 df3 + (A + k'a' cos' f3) B = 0 J 

• Di .. ertation, Berlin (1897); .inn. d. Phy •• Bd. 66 (1898), p. 435; ~lath. 
Ann. Bd. 52 (1889), p. 81. 

t Cambro Phil. Tram . Vol. 17 (1898-9), pp. 41-108. 
::: P·ropagation de l'tlutricitt (1904), Ch. VI. 

§ Wiener Benchte (1904), p. 273. 
II Phil. Mag. (1906). 'IT Wiener Berichte (1911), p. 1587 . 
.. Cf. Heine, Crelle, Bd. 26 (1848). p. 185; K1lgelj1mktionen, Bd. 2, § S8 i 

Lamb's Hydrodynamic" p. 132. 
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These equations are discussed in some detail in the papers 
to which we have just referred, they may be reduced to a special 
form of an equation obtained by Prof. C. Niven· in a study of 
the conduction of heat in ellipsoids of revolution. 

For oblate spheroids the appropriate substitution is 

p + iz = a cosh (a + i.8) .. ............. (193), 

g"lVmg p = a cosh a cos.8, z = a sinh a sin.8, 

i! (p, z) = a' (cosh' a - cos' .8). 
i! (a, .8) 

The ijurfaces .8 = const. are now hyperboloids of one sheet, 
the surface .8 = 0 can be regarded as the surface of a RCreen 
which is pierced by a circular hole of radius a. 

The partial differential equation for !l is now 

i!'!l i!'!l i!n i!!l . . 
i!,,' + i!{3' - tanh a i!a + tan f3 i!.8 + k'a' (smh' a + sm'.8) n = 0, 

and there are elementary solutions of the form !l = A (a) B (.8) 
where 

d'A dA . } d2' - tanh a. da + (X+ a'/c'smh' alA = 0 
... (194). 

d'B dB . 
d{3' + tan.8 . d{:3 + (a'/c' sm'.8 - X) B = 0 

When n is independent of t, k = 0 and the elementary 
solutions are of the form 

!l =JPn W dEfPn (1J)d1J, ~ = cosh a, 1J = cos.8 ... (195) 

for prolate spheroids, and of the form 

!l= JPn m dHPn ('1) d~, ~= isinh a, 'I = sin ,8 ... (196) 

for oblate spheroids. In either of these solutions a function P n 
can be replaced by Qn. The corresponding solutions of Laplace's 
equation are of the type 

v = [AP. (~) + BQn W] [OPn ('I) + DQn ('1)] ... (197), 

where A, B, 0, D are arbitrary constants. 

• Phil. Tram. (1880), p. 138. 

B. 7 
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Example.. 1. Prove that 

[(cosh 0 COB {3-cos y)'+sinh'a sin' {3]- i 
~ 

~i ~ (2n+ 1) Q. (cosh 0) p. (cos{3) p. (cosy) . 
• (C. Neumann.) 

2. Preve that a function B (fJ) which satisfies the differential equation 
(192) and is zero for {3~0. fJ~". is a solution of the homogeneous integral 
equation 

B(e)~"Sin'ef: .-ika"""."""P B({3)sin{3d{3 R(ik)~O. 
where:" is determined by the condition that the integral equation should 
possess a. continuous solution which is not identically zero. 

(M. Abraham.) 
3. If A (a) be defined by the equation 

A(o)~8inh'a r. .-ikacoah.co,P B ({3) sin {3 <lfJ. 

it) satisfies tbe diffurential equation (192). A second solution of this 
equation is given by 

A (a)~sinh' 0 f.~ . -ikacoob.C08ht A (~) sinh ~d~ R (ik) >0. 

and is suitable for the representation of divergent waves. 
(M. Abraham.) 

§ 34. Paraboloidal coordinates. 
If we write • 

z + ip = (a" + ifJ.)', a,,' = - a, fJ,' = fJ 
so that the transformation is 

z = - a - fJ. p = 2 ,,; - atl ............ (198). 

the differential equation (143) becomes-

iJ'W oW ()2W oW IiJ'W 
a oa' + (m+ I) oa .... fJ 'of!' -(m + 1) ofJ -(a-fJ) & ot' =0, 

and is satisfied byt 
W = A. (a) B(fJ) e"' .... ', 

• Cf. H. J. Sharpe, Quarterly Journal, Vol. 15 (1878); Proc. Oamb. Phil. 
Soc. Vol. 10 (1899), p. 101; Vol. 13 (1905), p. 133; VoL 15 (1909), p. 190; 
H. Lamb, Proc. London Math. Soc. Ser. 2, Vol. 4 (1907), p. 190. 

t The existence of elementary solutions for the para.boloid and certain 
other surfaces is established in B6cher's Die ReihenentwickeZungen der Potential­
theorie. See Ibe t&ble on pp. 256-7 . 

. ~ 
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d'A dA 
a -

d 
+(m+I) -d -(h-k'a)A=O 

a' a 
...... (199) • 

. d'B dB 
f:J d,8' + (m + 1) dfJ - (h - k'fJ) B = 0 

if 

where h is arbitrary. 
Putting 2ikn = ik (m + 1) - h we find that the differential 

equations are satisfied by putting 
A = e-<k· Fm"(2ika). B = e-i#3 Fm" (2ikfJ). 

where Fm"(8) satisfies the differential equation* 
d'F dF 

8 ds' +(m+ 1-8) d8 +nF=0 ......... (200). 

When n is ~ positive integer. one solution of this equation 
is furnished by Sonin's polynomialt Tmn(8). which may be 
defined with the aid of the expansion 

.t ~ 

(1 + t)-m-1 e1+t = ~ r(m+n +1) t"Tm" (s) ... (20I). 
n=O 

A few properties of this function are given here for the sake 
of reference. 

sn Sn-I 
T "( s) - "-;-,...--:-'::"'-;,,,,", 

m -r(m+n+ 1) In -r(m+n)\n-I [! 
sn-2 

+r(m+n-I) ln- 2 12 -'" . .. (202). 

Jo~e-'smTrnn(s)Tm·(S)ds=O v/n 

1 
... (203). 

- v=n 
r(n+l) r(m+n+I) 

:Tm"(s)=T::;;(s) ... ... ... ..... .... (204). 

dp 
dsP [s'"Tmn (s)] = s......."T;_.(s) ............ (205). 

* This is a slight modification of Weiler's canonica.l form for a.n equation of 
L&pla.ce's type, Crelk'a Jou'7nal, Bd. 51 (1856), p. 105. Theequo.tion is discussed 
for real values of m aDd n by O. SchIOmiich,HoJ&eTeJ' .AnalyriB, Bd. 2 (1874), p. 517. 

t ~Iath. Ann. Bd. 16. Further properties of the function are given by 
L. Gegenbauer. Wien . . Ber. (1887). p. 274, who proves that the roots of the equation 
Tmfi (.) = O, considered as 8.D. equa.tion of the nth degree in ", a.re all real. 
positive and unequal. This is a. generaJ.isation of the result obtained by 
Laguerre for the case m::;:;O. A geometrical proof ha.s been given by B&cber. 
Proc. of the Amer. Acad. of Ar .. aad Scie1lCIl8, Vol. 40 (1904). 

7-2 
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fAT, n()_ (-I)ne< d
n [-0 m+n] (206) 

8 fA 8 -r(m+n+l)r(n+l)dsn e 8 ... , 

T",n(s) = r (~+ !).r: T-i (8 COS' y) sin'" y . dY .. ·(207). 

Equations (201), (202) and (203) were given by Abel- and 
Murphyt for the case m = 0: the polynomial is then equivalent 
to the polynomial of Tchebycheff! and Laguerre§ which occurs 
in the theory of interpolation and also in the theory of continued 
fractions. When m = ± !, the polynomial can be expressed in 
terms of the polynomial Un (:c) discussed by Tchebycheff ll and 
H ermite', or in terms of the function of the parabolic cylinder, 
discussed by Weber--, Whittakertt and otherst!. 

The above analysis indicates the existence of a wave-function 
of the form 

11 = ei' ( •• ctj ""· ... Tmn(2ika) T,.n (2ikf3) pm ... (208). 

This function can be expressed as an integral of the form 
used in § 5, we have in fact the equation 

(kp)'" Tmn (2ika) T",n (2ikf3) 

(_I)n I.'" 
= 2 r( 1) e'"'' Ton[- 2k(pcos,¥+iz)] .r'm,d-y 

7r m +n+ 0 

. . ... . (209), 

from which the required representation can be immediately 
derived. In this formula m is either zero or a positive integer. 

The convergence of a series of terms of type (208) in which 

* Mtmalre3 de mathlmatiqtu par N. H. Abel, Pa.ris (1826); OeuWeI , Sylow 
a.nd Lie, t. 2. 

t Cambr. Phil. TTa .... (1833) . 
: Mt m. d, l'Acad. de St Pet .... bouTg (1860) . 
§ BuU. de 14 Soc. math. de Prance, t. 7 (1879); 0""",... de Lag","" t. 1, 

p.428. 
II Loc. cit. See also Sturm, Liouvilu' , JOltrnal, Vol. 1. 
'II Comptu Rend"., t. 58 (1884), p. 93. The Hermite functions have been 

generalised by Curzon, PTOC. London Math. Soc. Vol. 13 (1914), p. 417. The 
genemlised functions are intimately connected with the functions considered here . 

•• Math. Ann. Bd. 1 (1889), p. 1-
'It h oc. London Math. Soc . Ser. 1, Vol. 35 (1903) , p . 417. 
:: Baar, Diu. CUstTin (1883); Hii.ntzschel, Z eitBchT. lilT Math. Bd. 33 (1888); 

Adamo!!, Anna/.e8 de St Ptw,bouTg, t. 5 (1906); G. N. Watson, Proc. London 
lIlath. Soc. Ser. 2, Vol. 8 (1910), p. 393. 

-
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n takes different integral values can be partially discussed with 
the aid of the equation 

Tmn(ix) Tmn(- ix) 

_ [ 1 J'[1 n(m+n+l) x' 
- r(n+l)r(m+l) +1(m+l)'(m+2) 

n(n-l)(m+n+l)(m+n+2) J 
+ L 2 (m+ I)'(m + 2)' (m + :l)(m + 4) x' +... .. .... (210), 

which shows that the modulus of Tmn(ix) increases with x. 
Hence if a series of terms of type (208) converges absolutely 
for any given value of a, it converges absolutely for all smaller 
values of a. 

For a fuller discussion of the convergence it would be useful 
to have. an asymptotic expression for Trnn (8) when n is large. 
Suitable asymptotic expressions have already been found for 
the ease m= ±! by Adamoff and Watson. 

The differential equation (200) has been studied for general 
values of m and n by Pochhammer*, Jacobstahlt, Whittaker! 
and Barnes§. It usually possesses two distinct solutions which 
can be expanded in power series converging for all finite values 
of 8. If, however, m and n are positive integers, there is only 
one solution which can be represented by a convergent power 
series in 8, the other may be defined by the equation 

1 r~ 
Urnn (8) = r(n + I) e' ) 0 e-vun (8- u)-m-'Hdu .. . (211): 

it contains a logarithmic term. For negative integral values of 
n we may adopt the definition 

d-n-l 
Urnn (8)= d8-n , (e's-m-n-') ............ (212). 

It should be noticed that when I a I is large, Urnn (2ika) has 
an asymptotic expansion of which the first term is 

/ (2ika)-m-n-,e>'h'. 
The solntions of type 

em (z+ct) %'m4> U m" (2ika) Trnn (2ikf3) 

• Jfath. Ann. Vol. 36, p. 84; Vol. 46. p. 584-
~ Bull. Amer. Malh. Soc. (1904). 
§ Can,br. Phil. Tram. VoL 20 (1906), p. 253" 

t Ibid. Vol. 56, p. 129. 
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are consequently suitable when a is large for the representation 
of waves diverging to infinity in the positive direction of the 
axis of z. 

It may be worth while to mention here that the functions 
T "," (8), U",n (8) both satisfy Gegenbauer's difference equations 

F::,-
I 
(8) = (rn + n) F::':;': (8) + F::'~: (s) 

n(rn+n)F'::(8)- {8-(rn+2n-1») F;;:I (8)+F::'-' (s)=O 

(n-1)F,';;-1(8)= {8-(rn+n-1») F::'~:(s)-F::'~: (8) 

(n - 1) F,';;-I (s) = {s - (rn + I)} F';:~: (s) - 8 F';:~: (8) 

...... (213), 
The function Urn" (8) also satisfies an equation analogous to 

(204). . 

§ 35. Relations between different solutions. 
Many useful formulae may be obtained by expanding known 

wave-functions in series of elementary wave-functions of type 
(208) and by identifying our elementary wave-functions with 
certain definite integrals which are known to represent wave­
functions. For instance, we have the expansion I tan ! '" I ",1 

eil,"'" • J .. (kp sin '" ) 

=(kp tan ;)"'eikzsec'~ "~O (-1)" n! (m+n)! 

x tan"'; Trn"(2ika) Trn"(2ikf3) .................. (214) 

which enables us to represent a plane wave with the aid of 
a double series of solutions of the form (208). 

Further identities may be obtained by deriving wave­
functions from Cunningham's solutions - of the equations 

OU o'u au O'u o'u 
OT = (J.x" • OT = ox' + oy' ......... (215). 

The first equation poesesses the polynomial solutions 

'! "( "") ";1 "( x') or" T ~ - 4T ' X'T T! - 4T ...... (216) 

• Proc. Roy. Soc. Ber. A, Vel. 81 (1908), p. 310. 8ee also We ... Lebedeff, 
Di". Galling ... (1906); Math. Ann. (1907). The fi .. t reeult i. given by Appell, 
Licuvilk'. JO'UNtai, Ber. 4, t. 8 (1892), p. 187. 
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and also the solutions 

_ n+1 _", (Ii' ) .,. -'-e +r Tn - , 
- ~ 4.,. 

_ n+' _ '" n (x') x.,. 'e '" T ~ 4.,. ... (217) . 

The second equation possesses the polynomial solutions of 
type 

and also the solutions of type 

.,.-,-,.-1 p,. e -~ Tm' (~:) sin m (</> - </>,) ••• (219). 

Wave-functions may be derived from t hese solutions by the 
method of § 13. 

We add here a few relations which are obtained by ex­
pressing the solutions thus formed in terms of old solutions. 

eVE; .... T,"[e+'7-2.,te'7cosw] 

m"'-n 

(l-~)"eM= i sm-,..m+nTm"(s) ......... (221), 
!If n. m=-,. 

- - p p' ( ' ) T-r-m.-l pm e ..,. T m 'A 4T 

= r/- 1
)" 2~' , [e- .... Jm (-,..p) -,..,"+m+l dA. •.•... (222), 

m+n+ n. 0 

2m+l -,.. ",+m I( m (-"'p) 

= r (n+ 1) r(n + m+ l)pm [e - .... -~ Tm"(f:) .,.--m-n-1 d.,. 
...... (223). 

The proofs of these are left to the reader. 
Prof. G. D. Birkhoff has remarked to me that the differential 

equation (200) can be regarded as a limiting case of the hyper­
geometric equation when two of the singularities coincide at 
infinity·, consequently many properties of the solutions can 
be derived from known properties of hypergeometric functionst. 
It should be noticed that when W is independent of t there 

• Cf. BOOher, Die Rei1unenewicktlungen der Potentialthecnie, p. 187. 
t This method W&8 used in & particular esse by Kummer, Crelle'. Journal, 

Bd. 15 (1836), p. 138. 
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are elementary solutions of equation (143) of the form W = AB 
where • 

A = J m (2i &) 
(2i v ha.)'" ' 

B = J., (2i .fhi3) . 
(2i vhf3)m 

We thus obtain elementary solutions of Laplace's equation 
of the form 

Jm CA va) Jm (A V f3) cos m (<p - </>,) . ..... ••. (224), 

where m, x, <p, are arbitrary parameters. 

§ 36. Toroidal coordinates. 
If we put 

IX = pcos </>, y= p sin </>' z= ~cosh." ct= ~sinh ", ... (225), 
u - • ..y 

p+ i~= acoth 2 ' 

a sinh u 
p= cosh u-cos..y , 

a sin ..y 
~ = h .1 •.. • (226), cos cr - cos T 

the wave-equation becomes 

if 

il { sinh u sin..y au I a { sinh u sin..y au} 
0'" (cosh IT - cos ..y)' au + CJ..y (cosh a - COS ..y)' o..y 

+ sin ..y il'u _ sinh u o'u _ 0 
sinh ".(cosh". - cos ..y)' iJ</>' sin..y (cosh u - cos ..y)' iJ.,·­

..... . (227). 
This is satisfied by 

u = F(u) G(..y) (cosh u - cos..y) e"kw cos m (</> - </>,) ..• (228) 

cosechu t". (sinhu~~) - {n(n+ 1)+ si::"'} F=O 

d ( . dG) { k' } cosec..y d..y sm..y d..y + n (n+ 1) - sin'..y F=O 

...... (229). 
Hence we obtain wave-functions of the form 

(cosh". - cos..y) Pnm (cosh u) P n1 (cos..y) e"kw cos m (</> - </>,) 
...... (230). 

Other solutions of the wave-equation may be obtained by 
replacing the functions Pnm, Pn1 by Qnm, Qn·. 

Many useful formulae may be obtained by expanding 
particular wave-functions in series of wave-functions of type 
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(230). The expansion of unity. for instance. gives rise to 
Neumann's expansion 

1 ~ 

h ..y = I (2n + 1) Qn (cosh u) P n (cos..y) ... (231). 
cos u-cos ", = 0 

It should be noticed that when we make the substitution 
(225) the wave-equation becomes 

O'u 1 ou 1 o'u o'u 1 ou 1 O'u 
op' + P op + P' o</>' + or + ~ o~ - ~ ow' = 0 ... (232): 

it thus possesses elementary solutions of the forms 
Kp (An Jm('Ap) e*"" cos m (</> - </>0) ...... (233). 
Jp (i'A~) J", (Ap) e*p· cos m (</> - </>0) ......... (2:34). 

The expression of solutions of type (230) in terms of the 
solutions just found leads to some interesting identities. Thus 
we have the equation 

[ Kp(An Jm(Ap) I n (Aa) AP+m-nH d>.. 

= 2P+m-n-l an-p-m-, P(p + m + 1) P (p+ 1) P(m + 1) 
P(n+1) 

x(cosh u- cos..y)P;;m_ft (cos..y) P;.:"m- ft (cosh u) 

p>-1. m>-1, p+m>-1 ......... (235). 
Many important formulae connected with Bessel functions 

are simply particular cases of this one·. It should be remem­
bered that 

K! (1£) = J ~ e-O! = K - i (1£) ........ . (236). 

The corresponding integral in which Kp (A~) is replaced by 
J _p (AE) can also be evaluated in terms of Legendre functions, 
but the formulae are more complicated. The case p = - m is 
discussed by Macdonald t. 

It should be noticed that if we write 

c?sh (IX - w) = i cot..y. cos (,8 - </» = coth u } (237) 
smh (IX - w) _ i cosec 0/, sin(B - ¢) = ± icosech u'" , 

three relations of type 
o (IX. ,8) i 0 (IX.,8) 
0(1£, y) = ± c 0 (e. t) ............... (238) 

• See, for instance, the formulae given by H. M. Macdona.ld, hoc. London 
Math. Soc. Ber. 2, Vol. 7, p. 147, Qnd by the a.uthor, ibid. Vol. 12, Ab.tract.. 

t Loc. cit. p. 142. 
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are satisfied and so the functions a, f:J can be used to obtain 
an electromagnetic field by the method of § 5. It is easy 
to verify that the function 

u=(coshu-cosy)!(a,f:J) ............ (239) 
satisfies the wave-equation,/being an arbitrary function. 

We add here a few formulae for P,,'" (cosh u), Q"m (cosh u); 
these and other formulae will be found in the memoirs of 
Dr Hobson and Dr Barnes to which we have already referred. 

P,,'" (cosh u) = t (1 ~ m) coth"'; 

x F {- n n + l' 1 - m' - sinh' ~} , , , 2 

2"" - .,.Ti-- -, (1 - e-"")--m r("+l)V 
r(1- m) 

xF{i-m,l+n-m; I-2m; I-r'v) 
u >0, 

Q"m (cosh u) = (-I)"''';7T r(m+ n + 1) (1 _ r'''r e-(n+l )v 

r(n+!) . 
xF{m+i,n+m+l; n+i.r"'} u>O. 

Various asymptotic expansions for these functions are given 
by the authors just named and by Dr Nicholson-. 

It should be mentioned that the solutions of the wave­
equation that have just been obtained are not directly useful 
for the treatment of the boundary problems of mathematical 
physics. They may, however, be used to construct useful 
solutions of the equation l!.u + lC'u = 0 by means of val~ous 
artifices. If, for instance, we multiply one of our wave-func­
tions bye"" and integrate with regard to t between z and 00 , 

the resulting function will often be a solution of l!.v + k'v = O. 
This may be illustrated by taking the wave-function 

u = J, (i>..1;) J m CAp) cos m (cp - cp,) 
and using the formula 

J
~ Wkv~-~ 

J, (11.'1/ c't' - z') eikct dt = c"; k' _ >.. ' Ie' > >..' 
~c z>O 

e-zJi.C'i' 
-

c";>"'-Ie' 
.... . . (240) . 

• Briti,h ...... ociation &portio Winnipeg (1909). p. 391. 
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The integration can be taken between other limits in 
certain cases; for instance, the integral 

/

"tl+/P+4)t eiktc dt 

V= Vo'+{p aJ' J!(p+a)"+z'-c't') !<·t'-z'-(p-a)') 
. ... .. (241) 

represents the solution of tlv + /c'v = 0 corresponding to a 
circular ring of sources. In this case our wave-function u 
is a constant multiple of cosh u - cos"t. 

The theory of electrical oscillations on a conducting anchor 
ring has been treated by H. C. Pocklington *, W. McF. Orrt 
and Lord Rayleigh:, without the use of toroidal coordinates; 
the results are of course only approximate. 

§ 37. Solutions of Laplace's equation. 
If we put 

a sinh u a sin"t 
Z = h .1 •••• (242), cos CT - cos 't' p = cosh u- cos"t' 

the angle "t may be interpreted as the angle which two fixed 
points A, B whose coordinates are Z = 0, p = ± a, subtend at 

. t P ( ) h . . b . d I PA a pom p,z; t e quantity u may e mterprete as og PB' 

The surfaces "t = const. are spheres having a real circle (p = a, 
z = 0) in common, the surfaces u = const. are anchor rings. 

If we use the toroidal coordinates u,"t, q" Laplace's equation 
becomes§ 

tlu = ~ { sinh u OU} + ~ J sinh u OU} 
- ou cosh u - cos "t ou o"t l cosh u - cos "t o"t 

1 0'''=0 
+ sinh u(cosh u - cos "t) oq,' 

• Pro<. Comb. Phil. Soc. Vol. 9 (1897). p. 324. 
t Phil. Mag. Vol. 6 (1903), p. 667. 
: Proc. lIoy. Soc. Ser. A. Vol. 87 (1912). p. 93. See also C. W. Oseen. 

Phys. Zeitschr .• Dec. 1st (1913) ; .Arkiv far Mat. A.t. och Fyrik. Bd. 9 (1913). 
§ B. Riemann, PartieUe Di(ferentialgleichungen, Hattendorf's edition (1861) ; 

C. Neumann, Th«nie tier Elektricitltts. una Wiirme-Vertheilung in einem Ringt, 
Halle (1864); W. M. Hicks. Phil. Tra .... (1661). p. 609; A. B. B .... t. Amer. 
Journ. Vol. 15. Hydrodynamics, Vol. 2. For an alternative method see F. H. 
Sollord • .Anna/J oj Mathematics. Vol. 12 (1898). p. 27. 
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and possesses solutions of the form 

pm ! (cosh u) 
U= (cosh u - cos vi cos n (+ - +0) cos m (q, - q,o) n-

Q:-l (cosh u) 

. . .... (243). 
which are suitable for the treatment of problems connected 
with the anchor ring. circular disc and spherical bowl-. 

For problems connected with two spheres bipolar coordinates 
may be used; the appropriate substitution ist 

asin+ a sinh u 
p = cosh u - cos +. z = cosh u _ cos + ... (244). 

The surfaces u = const. are now coaxal spheres with imaginary 
common circle. The radius of the sphere u = U o is a i cosech (To 1 

and the distance of its centre from the origin is a I coth (To I. 
The ratio of the distances of a point from the limiting points 

of the system of coaxal spheres is e" and the angle between the 
radii from these points is +. 

The appropriate solutions of Laplace's equation are now of 
the type! 

U = (cosh u - cos +)1 [A cosh (n +t) u+ Bsinh (n + t) u] 
x cos m(q, - q,o) UP,,"' (cos +) + gQ"m (cos +)]. .. (245). 

It should be noticed that when we are using toroidal 
coordinates the function 

u = (cosh u- cos+)if[q, ± i log tanh ;] cos 1(+ - +0) 

... . .. (246) 
satisfies Laplace's equation and that when we use bipolar 
coordinates the corresponding solution is 

(cosh u - cos +)1 f [q,± i log tan t] cosh t(u - uo)' .. (247). 

* See for instance E . W. Hobson, Cambro Phil. Tram. Vol. 18 (1899); C. 
W. Oseen, .Arkiv fOr Matema.tik, Bd. 2, No. :5 i H. C. Pocklington, Phil . Tram. 
A. Vol. 186 (1895). p. 603. 

t W. Thomson (Lord Kelvin). Liouvilu', Journa! (1847). 
t G. B. Jeffery. Pro<. Roy. Soc. Ser. A. Vol. 87 (1912); G. R. Dean. Phy •• 

Review (1912); G. Darboux. BuU. du Sciences math. t. 31 (1907). p. 17. 
Another method of desJ.ing with problema connected with two spheres is 
deacribed by A. Guillet and M. Aubert. Journal de Physiq .... t. 3 (1913). 
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It should be mentioned here that other simple ~solutions 
may be obtained by using the formulae 

Q! ( h) 'J 7T' - nv 1 cos U =t 2' he, 
n-"2" SIn q 

pi 1 (cos t) = / ~ cos nt, 
n-. V 7T'sm,y 

1 j 2 P 1 (cosh u) = - . h cosh nu. 
n -"2" '7T'"Sln (j 

EXAMPLES. 

1. If with the notation of § 36 we write 

,+ip=acosh (a +i{3) 

the wave-equation becomes 

a'u a'u . h au au (h' • Q) a'u 
aa' + Of3' + 2 cot 2a aa + 2 cot 2{3 a;:l + cosec a + cosec ,.. a.p' 

a'u 
+ (aech·a-sec'{3)a.,'=O. 

Hence show tha.t there are wave-functions of the form 

u=A (a) B Ift) .... kw COS m (.p-.po), 

where a, Ie, m and cf>o are arbitrary constants. 

2. Prove that if p+iz f(a+i{3 ) the wave-equation becomes 

a'u O'u I ( ap au "p aU) I (I a'u I a'u) 
aa' + all' +;; aa aa + a{3 at! + J' p' a.p' - c' at' = 0, 

and obtain elementary solutions of type A (a) B 1ft) e'~ '" ike' when 
.+ip= a cosh (a + i{3). Notice that the solutions of equation (188) are not 
wave-functions, they are analogous to the stream-line functions of hydro­
dynamics. 



CHAPTER VII 

HOMOGENEOUS SOLUTIONS OF THE WAVE-EQUATION 

§ 38. The method of Stieltjes *. 
Wave-functions which are homogeneous functions of fJJ,Y,z, t 

may be studied with the aid of the substitution 

fJJ = S cos IJ cos q" 
Y = s cos IJ sin q" 

Z = ssin IJcos X} 
. t . IJ' ...... (248). 
.c =ssm smX 

The wave-equation in these coordinates has the form 

o'u 30u 1 o'u 1 o'u -+-- +-- + -os' sos .-vlJ' s'cos'lJoq,' 

+ 1 iJ'u + cot IJ - tan lJou = 0 
s'sin' IJ oX· s' 01J . 

Pu tting cos 21J = ,.., we find that there are elementary solutions 
of degree 2'11 of the form 

u=s"'e(,..)ei~+ipx ............... (249), 
if 

d { de} { 'lit' P'} d,.. (1-1'.') d,.. +e '11(,,+1)-2(1+,..)-2(1_,..) =0 

......... (250). 
This equation is satisfied by 

'" E. ( m+p m+p 1-,..) (1+,..)' (1_,..)' '11+1+ 2 '2- - n ,p+l, 2 

......... (251), 

with the usual notation of the hypergeometric function t. 

* Comptes Rendus, t. 95 (1882), p. 901; Liouville's Journal, Ser. 4, t. 5 
(1889), p. 55. See a.lso Tisserand, Tf'aitl ck mecanique cluste. Paris (1889); 
H. Bateman, Proc. Lollden Math. Soc. Ser. 2, Vol. 3 (1905), p. 111. 

t Th" I '-"/' h 1 n, + p m + p . IS gives 9. po ynomhlol 1 elt er 11 + + - 2- or - 2 - - n 18 zero or a 

negative integer. 
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It should be noticed that if we write 

cos 8 = sec~, sin 8 = i tan ", sin X = cosh w, cos X= - i sinh w, 

p. = sec! a. + tan 2 Cl, 

we obtain real wave-functions of the form 

" = s'" e-1'W EJ (,... ) cos m (</> - </>.) ......... (252), 

the variable in the hypergeometric function is now - tan' a. 
When m = p the equation for EJ is the equation satisfied by the 
associated Legendre functions. We thus obtain wave-functions 
of the form 

u = s'" Pnm (cos 28) e'm (~ + x) ......... (253). 

Comparing this with the elementary solution of Laplace's equa­
tion in polar coordinates (r, 8, </», we see that if f(r, 8, cJ» is a 
solution of Laplace's equationf (S', 28, ¢ + X) is a wave-function. 
We may thus derive wave-functions from harmonic functions; 

in particular, the fundamental harmonic function.!. gives us the 
r 

fundamental wave-function ~ = a;' ,1, cOt' We have 
" +y+z-

already remarked in § 13 that Lord Kelvin's method of inver­
sion may be extended to wave-functions, it is easy to see that 
the result is an immediate consequence of the fact that the 
differential equation (250) is unaltered when - (n + 1) is 
written in place of 11. 

It is easy to see that there are (n + 1)' linearly independent 
polynomial solutions of degree 11, (or a general polynomial of 

degree n contains ! (n+ l)(n+ 2)(n+ 3) coefficients and when 

this is operated on with .n the vanishing of the resulting 

polynomial of degree n-2 gives! (n-l)n(l1 + 1) conditions. 

The difference between these two numbers is (n + 1)'. 
A polynomial solution of degree 71 is given by the integral 

" = r.·(x cos,, '+ y sin" + iz)p (x sin" - Y cos a - ct)n-p e'm« da. 

A set of (n + 1)' linearly independent polynomials is obtained 
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by allowing m and p to take the values (0, I ... n). A better 
set of solutions is obtained by using the integrals of type 

u = J: [(x - iy) e~ + i (z - ct)]p 

x [(x + iy) e-i4 + i (z + ct)]"-P e'''''' da. 

Polynomial solutions may also be obtained by differentiating 

the fundamental wave-function ~ and using generalised inver­

sion·, The polynomial solutions were first discussed by 
Cayleyt. Waelsch! has recently studied them from a new 
point of view. 

Example. Prove tha.t when n is a positive integer 

12 3~ .. 2;-1 Pn(cos28) = ~J" J" (COS 8 cos q, + iBin 8 CCB)()'"d<J>d)( • .... n 1f"OO 

§ 39. The method of Green§. 
Homogeneous solutions may also be investigated with the 

aid of Green's substitution 

x = 8 si.n a sin {3 cos t/>, .y = s sin a sin {3 sin t/>} ... (254). 
z= ssm acos{3, wt= s cos a 

The wave-equation now becomes 

O'u 3 00 2 ou I o'u 
Os' + S os + s' cot a Oa + s' oa' 

I 0 ( . (0) I iJ'l, + . . {3 ~{3 sm (3 ~(3 + s' .• " (3 ~"" = 0 ... (255), SJ Slnt a SIll u u BIll a sm U"Y 

and possesses elementary solutions of the (orm 

u =sn A (a) B «(3) cos m (t/> - t/>.), 

• C/. F. Didon, Annale. de l'Eool< Normal< (I), t. 5 (1858), p. 229; t. 6 
(18G~), p. 7; t. 7 (1870), pp. 89, 247; P. Appell, Rend. Pal<rmo, t. 36 (1913); 
K. de Fenet, CompteJJ Rendu., Nov. 17th (1913). 

t Liouvill<'. Journal, I. 13 (1848); Phil. Tra .... Vol. (165) n. (1875), p. 675. 
See a.lso Hermite, OeuVTu, t. 2. 

t Deuucm Math. Verein. Bd. 19, p. 90. 
§ Cambro Phil. Tra .... Vol. 5 (1835), p. 395; CoUected Paper', p. 187; 

Cayley, loco cit. See also Heine. Handbuch der Kugelflt1lktionen, Ed. I, p. 449; 
Crell<, Bd. 50, 61,62 (1852-1853); E. W. Hobson, Proc. London Math. Soc. 
Ser. I, Vol. 24, p. 67, Vol. 25; F. G. Mehler, Progr. Danzig (1854); CreUe, 
Bd. 85 (1885), p. 161; C. Neumann, Zeit.chr. Math. Phy •• Bd. 12 (1857), 
p. 116; V. Giulotto, GioT. d. Mat. 39 (1901), p. 162. 
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where 
1 d (. dB) [ m' ] sinf3df3 sm f3

df3 + v(v+l)-sin'f3 B=O, 

d'A dA [ V(V+l)] -d' +2cot2 -d + n(n+2) - . , A=O. 
a- ~ Bill a 

We may thus take 

B = c, P;' (cos f3) - 0., Q:;' (cos f3) } 

A = vcoseca [b, P::: (cosa)+b, Q::~(cosa)] ... (256), . 

where c" 0." b" Ii, are arbitrary constants. 

§ 40. Wave-functions of degree zero. 

If n is a wave-function of degree - 2, the formulae 

H. = yOn _ z i!.n , E.= $ on + ct on ) i 
oz oy c ot 0$ 
00 on y on on 

H. = z 0$ - $ oz ' E. = c at + ct Oy f· .. (257) 

on on zon on 
Hz = $ oy - Y 0$ , Ez = C ilt + ct ilz ) 

give a solution of Maxwell's equations. 
A homogeneous wave-function of degree - 2 can, of course, 

be derived from a homogeneous wave-function of degree zero. 
If F is an arbitrary function of two variables subject to suitable 
restrictions, the integral 

n = r F [$ sin a - y c.os a - ct , a] da ...... (258) 
J O $cosa+ysma+tz 

represents a wave-function of degree zero, and when this is 

multiplied by ! a wave-function of degree - 2 is obtained. We 

add here a few particular wave-functions of degree zero: 

(

$ + iy ) y ct z' - c't' f - t' tan-' - , tanh-' -, log • 2· ••• • .(259). 
z±c ~ x z :c-+y 

Electromagnetic fields which are derived from this type of wave­
function of degree - 2 may be generalised by writing $ - E (T), 
Y -"I(T), Z-~(T), t-T instead of $, y, z, t respectively and 
integrating round a closed contour in the complex T plane. 
'fhe integrals thus obtained can generally be evaluated by 

B. 8 



114 HOMOGENEOUS SOLUTIONS OF THE WAVE-EQUATION [CH. VII 

means of Cauchy's theorem. Many of the results given in the 
next chapter are suggested at once by this method and may 
be thoroughly established by a method of direct verification. 

I t is worthy of note that if we write r in place of ct in a 
wave-function of degree zero the resulting function is a solution 
of Laplace's equation Llu = O. A general solution of Laplace's 
equation of degree zero can be derived at once in this way from 
the first of the solutions (259). We thus obtain Donkin's 
formula-

u= / (IX + iy) + g (IX- iY) ............ (260). 
z+r z+r 

A similar result is that if 

o = F (IX, y, z, w, t) 

is a homogeneous function of degree - i satisfYing the equation 

(f0 (f0 (f0 (f0 1 0'0 
aa:' + 'Oy' + 'Oz' + iJw' - c' at' = 0, 

and s be written in place of w, the resulting function is a 
wave-function. Now if /(IX, y, z) IS a solution of Laplace's 
equation, the function 

0= 1 / ( IX , 
";w-ct w-ct 

y 
w-ct' 

satisfies the requirements, consequently we may conclude that 
the function 

0= ,,; 1 / (~t' ....1L.-, Z) ......... (261) 
s-ct s-c s-ct s-ct 

is a wave-function t. Other wave-functions may be derived 
from this by generalised inversion or by interchanging the 
variables IX, y, z, ict. 

* Phil. Tram. (1857). This solution may be obtained a.t once from Jacobi's 
theorem that if P, q. r are three functioDs of u which satisfy the equation 
p' + q2 + r2 = 0 and u is defined by the equation au = XI' (u) + yq (u) + zr (u). 
then an arbitrary function of u is a solution of Laplace's equation, Werke, 
Bd. 2, p. 208. See oJoo Forsyth, Me ... of Math. (1898). 

t This result is obtained in another wa.y by Pockels, Uller die partiellt 
DitferentialgleKhung Au + k'u:::; O. Teubner, Leipzig (1891). 

• 
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CHAPTER VIII 

ELECTRQ)IAGNETIC FIELDS WITH MOVING 
SINGULARITIES 

§ 41. An electromagnetic field with a simple singularity 
or electron, first model of a corpuscle *. 

We 8hall now derive a family of wave-functions from the 
fundamental wave-function 1/1i', where 

s'= [x - E(T)]' + [y -7] (T»)' + [z - ~ (T)]' - c' [t - T]· .. . (262) 

and T is a variable parameter, which is at tirst independent of 
x, y, z, t. Using a method invented by Prof. A. W. Conway t 
we consider the integral 

0 =- _1 f/(T)dT 
2.".i Ii" 

taken round a closed contour in the plane of the complex vari­
able T. If this contour contains only one root T of the equation 
Ii' = 0, the value of the integral is 

o=/ (T) 
2v ' 

where • 
v = r<T) (X - E) + 7]' (T)(Y - 7]) +~' (T)(Z - n - c' (t- T) 

.. .... (263) 
and T is the root in question . 

... I have ventured &0 use Johnstone Stoney's term U electron" to denote the 
simple point singula.rity and Sir Joseph Thomson's tenD I, eorpuscle II to denote 
the elementary charged particle which has been discovered by experimental 
work. 

t Proc. Lond<oI< Math. Soc. aer. 2, Vol. 1 (1903). In\egr&ls over oomple. 
paths had been employed previously in electromagne$ic theory by Sommerfeld 
and other writers. 

8-2 
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This function v vanishes when x = ~,y = '1, z = ~, t = rand 
so the wave-function n has a singularity which moveS along the 
curve r represented by 

x=~(r), y='1(r), z=nr) ......... (264). 

If, moreover, the velocity of this singularity E is always less 
than the velocity of light, it is easy to see that v does not vanish 
for any real values of (x, y, z, t) other than those just mentioned. 

When the velocity of the singularity E is always less than e, 
there is only one value of r less than t for which the equation 
s' = 0 is satisfied: x, y, z, t being supposed to be given . 

. To prove this we surround each point E on r by a sphere 'of 
radius c (t - r) haviug E as centre; then it is clear that each 
sphere lies entirely within the neighbouring one corresponding 
to a smaller value of r, provided r<t and d~' + d'1' + d~<&dr'. 

This shows that one and only one of these spheres passes 
through a given point of space and so there is only one value of 
r < t for which the equation 

[oX - g (r»)' + [y - '1 (T)]' + [z - nT)]' = c· (t - T)' ... (265) 

is satisfied-. 
Now let a point Q (oX, y, z, t) move with a velocity less than c 

along a curve G and let us consider the variation of r with t. 
A1l t increases from t to t + dt the radius of the sphere associated 
with each point E will increase by cdt and since Q moves a 
distance less than cdt in the interval dt, its new position will 
lie within the new sphere associated with the time r. Conse­
quently the new position of Q lies on a sphere associated with a 
greater time r. 

Hence if Q 'moves in any manner with a velocity less than the 
velocity of light, r increases with t. 

Things are quite different when the velocity of E is greater 
than c. The spheres then have a real envelope and there may 
be more than one sphere through a given point in space, also r 
may sometimes decrease when t increases. 

In this case, however, v vanishes for values of oX, y, z, t other 
than oX =~, y = '1, z =~, t = r, and so n has 00 1 singular lines 

• cr. A. W. Conway, loco cit.; H. Bateman . . l1-[ancheBte1' Memoir. (1910); 
G. A. Schott. Electromagnetic Radiation (1912). The theorem is due to Li~nard. 
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through each point E. These singular lines form a right 
circular cone whose axis is along Ks direction of motion: each 
singular line is described by a singular point that travels with 
the velocity of light. 

When the velocity of the singularity is less than c,we can 
obtain a solution of Maxwell's equations having the movmg 
singularity by uBing the potentials· 

A. = en'T) A = e'1' ('T) A, = ~n'T), 
47TV y 4?Tv' 47rV 

...... (266). 
It is easy to verify that they satisfy the relation 

div A + ~ 00; = 0 .................. (267). 

When the electric and magnetic forces are calculated from 
these potentials with the aid of the formulae 

H = rot A, 

it is found thatt 

loA 
E = - c at - grad ct> •••••.•• • (268) 

where 

H.= .!:.. o('T, CT) 
47r 0 (y, z)' 

.... ......... . " .. 
E _ _ e_ 0 ('T, CT) 

% - 4r.c 0 (IV, t) ...... (269), 

CTV = f' (IV -~) + '1" (y - '1) + t' (z - ~) - (P + '1" + t') + c' 
...... (270). 

It is clear from these equations that the magnetic force is 

• A. Liena.rd, L'lclairage llectri<]1U, Vol. 16 (1898), pp. 5, 53,106. See also 
E. Wiechert, Arch. nee-rlandauetf (2), Vol. 5 (1900), p. 54; K. 8chwarzscbild, 
Gott. Nachr. (1903). The potentieJs Me usually written in the form 

<1>= [( V)]' A = [ etl V) ,wherethe square bracket indicate. 
411' r 1_ ..1 4we r l -~ ] 

c c 

that the quantity enclosed is to be e&lculated at time T = t - .!.. Cf. H. A. 
c 

Lorentz, T~ Theory oj ElectrOfU, p. 50. To, obtain a model of a. corpuscle we 
must write de instead of e and integrate over 0. smaJI region. 

t These expressions for $he components of E a.nd H were communicated to 
me by Mr R. Hargreaves in 1909; they should be of some historical interest 
in connection with the general theory of § 6. This was, however, the outcome 
01 BOrne independent work. CI. Proc. London Math. Soc. (2), Vol. 10 (1911), 
p.96. 
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perpendicular to the electric force and also 
from the effective position of E; for we have 

OT or 
II 01/; = I/; - e, II oy = Y - TJ 

Or OT 
"OZ=Z-~, "ot=-c'(t-r) 

to the radius 
the relations 

...... (271). 

It also follows from these relations that r satisfies the char-
acteristic equation 

(~:)' + ~;Y + (~:)' = !, (~~)' ......... (272). 

This is to be expected because, as Jacobi has remarked· for the 
case of Laplace's equation, the argument r of an arbitrary func­
tion occurring in the solution of a partial differential equation 
must satisfy the partial differential equation of the character­
isticst· 

To prove that there is a constant charge e associated with 
the singularity of our electromagnetic field we shall calculate 
the integral of the radial component of E over a sphere having 
the singularity as centre. We have to evaluate the integral 

~ff(ouor +ouiJr +ouor _~o<Tor)dS 
4,... \.0"' a"' oy oy iJz dZ & ot ot ' 

which is easily transformed into 

:Jr-r'~,TJ"-r' dS. 

Transforming the axes so that the axis of Z is in the direction 
of motion of the singularity, we may put 

v=r(vcosB-c), dS=r'sinBdBd</>, r'+TJ"+r'=v', 

and our integral becomes 

ce f.'f." (c' - '11') sin B dB d</> = e. 
4,... 0 0 (vcosB-c), 

• Werke, Bd. 2, p. 208; CreUe', Journal, Bd. 36 (1848). 
t For the general theory of characteristics see Hada.mard, Propagation du 

Qndu (1903), Chapters vn. and VIII.; J. Coulon, C",mptu Rend .... t. 128 
(1899). p.1386; A. V. Backlund. Math. Ann. Bd. 13 (1878). p. 411; J. Beudon. 
Ctnnptu Rend .... t. 124 (1897). p. 124. 
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Prof. E. T. Whittaker* has calculated potentials r, II from 
which A and <l> can be derived by using (7). He finds that 

II = (0,0, S), r = (0, 0, N), 
where 

. z- t y-. 
4."..5' = e smh-' V ' 47r N = - e tan-' --" 

(x-~)'+(Y-.)' x -s 

47rK = - e log V(x _ ~)2 + (y -.)' 
...... (273). 

It may be verified without difficulty that the functions are 
wave-functions. This result is a particular case of the 
following general theorem. 

If f(x, y, z) is a homogeneous juncti(JT! of de[p-ee zero satisfy­
ing Laplace's equation f:J.u = 0, the function 

n = f [x - E(T), y -. (T), Z - t (T)] ..... . (274) 

is n 'llJave-junctio·n. 

§ 42. The electromagnetic field due to a moving doublet. 
Let us now derive an electromagnetic field by superposing 

two electromagnetic fields of the type just described wherein 
the singularities move along the two neighbouring curves 

X=E(T), y=.(T), Z=t(T), 
X= HT,) + ea(T,), y= • (T,) + e{3 (T,), Z= th)+ ry(T,), 

e being a quantity whose square may be neglected. 
If T, is defined in terms of x, y, z, t by the equation 

[x - HT,) -ea (T,)]' + [y -. (T,) - e{3(T,)]' 
. + [z - t(T,)- e'Y(T,)]' = C·(t -T,)· 

and T, = T + ee, we easily find that 

~+a~-D+{30-.)+'Y~-n=Q 

Also if v, is the quantity corresponding to v, we have 

v, = v + e[/1vu + a' (x- E) + {3' (y -.) + 'Y' (z - t) 

Now if 

- af - {3.' - 'Yt'J = v + e[evu + p], say. 

A,,' = e IE' (T,) + ea' (T,)] 
47rVl 

• Proc. London Math. Soc. Ser. 2, Vol. 1. 
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we find that 

a. =! [A.' - A.] = 4 e , [va' (T) -PE' (-r) + v8~" (T)-v8unT )], 
€ ... v 

4>=! [CP'-CP]=-~[p+v8u]. 
E 47T1I2 

But 
va' - PE' + v8E" - v8uf = n' (y - '1)-m' (z - 1;)- c'a' (t - T) 

+ c'a - '7'n- rm - u (a(t - T)- n(y -'7) +m(z - 1;)), 

where 1= flr - 'Y'I', m = 'YE' - at', n = a'7' - flE'· 
Hence we may write 

a. = 4: [;y (;) - ;z (:) + ~t m 1 
4>= -~ [~ (~) + ~ (f3\ + ~ ('1)J 4... ox v oy -;;) oz v 

. . . (275). 

The electromagnetic field derived from these potentials is due 
to a moving electric doublet. It should be noticed that we 
have the relations 

la+ mfl+n-r = O} 
I t' , ,.' 0 ..... ... ....... (276). , + m'7 +n, = 

We can write down by analogy the potentials for an electro­
magnetic field due to a moving magnetic doublet. They are 

a = ~ [~ ('Yo) - ~ (flo) - ~ (~)J 1 
• 4... oy \ v oz v at v r ... (277 ), 

4> = - p.C [~ (~) + ~ (mo) + ~(no)J) 47roXV Oyv ozv 
where loao + 1TI.oflo + no'Yo = O} ( 7 

I t' ,,., 0 ............ 2 8), ,,; + mo'7 +no" = 
and a." flo , 'Yo, I., mo, no are functions of T. When a, fl, 'Y, I, m, 
n are functions of T which are not connected by the relations 
(276) the potentials (275) can be used to construct an electro­
magnetic field which must be regarded as that dne to an 
electric doublet and magnetic doublet which move together. 

§ 43. Electromagnetic fields in which singularities are 
projected from a moving point or curve and travel with the 
velocity of light. 

We shall now develop some mathematical analysis of con­
siderable interest whose physical significance is not yet fully 
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understood. At first sight it seems appropriate for a discussion 
of an emission theory of light in which waves in the aether are 
either produced or guided by small particles which move in 
straight lines with the velocity c. After further study I have 
thought it may be useful for a discussion of the question" Has 
the aether a structure? " 

This question has already been raised by Sir Joseph 
Larmor* and Sir Joseph Thomsonf. The latter has, indeed, 
developed a theory in which the aether has a kind of atomic 
,trllcture of which the elements are Faraday tubest. In the 
most recent form of the theory it is assumed that the electric 
and magnetic forces are zero outside the tubes and that a 
certsin amount of work is performed when one corpuscle 
crosses a tube of force attached to another. In an application 
of the present analysis to Sir J oseph Thomson's theory the 
aim would be to build up his discontinuous electromagnetic 
fields from electromagnetic fields with certain types of sin­
gularities, making use of discontinuous definite integrals. To 
illustrate the possibility of doing this it will be sufficient to 
mention the definite integral 

(
2< [ da da] 471" 

V = . 0 z + i.x COS" + iy sin a + r = r z > 0, 

=0 z< o. 
The electrostatic field derived from the function V is zero on 
one side of the plane z = 0 and has the character of the fi eld 
due to a point charge on the other side. It should be noticed 
that the integrand is a potential function which becomes infinite 
along the line z = 0, IX cos a + y sin a = 0, and as " varies this 
line sweeps out the plane of discontinuity of our electrostatic 
field. 

To generalise this result we must endeavour to solve the 

• Aether anwMatter (1900), p. 188. The question a.s to whether the sether 
is continuous or discontinuous is discussed by H. Witte, Ann. d. Phy •. (4), 
Bd. 26 (1908). 

t Presidential Address, B-ritilh A.BJociation Reports, Winnipeg (1909). 
:: Recent ReseaTches on Electricity and Magnetism; Electricity a'id Matter; 

Phil. Mag. Vol. 19 (1910), p. 301, Oct.-Dec. (1912). See olsoN. R. Campbell, 
The New Quarterly (1909); Phil. Mag. Vol. 19 (1910), p. 181. 
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general problem of finding electromagnetic fields whose 
singularities lie on moving curves-. 

A partial solution of this problem may be obtained by con­
sidering first of all the field represented by equations (10) 

. of § 5. We may obtain a suitable pair of functions Il, fJ by 
solving the equations 

(00:)' + (oa)' + (00:)' = ~ (oa)' 
01& oy OZ c' ot 

(Of)' + (Of)' + (0,f)' = ~ (0,f)' ...... (279); 
ua; uy uZ c' vt 

00: ofJ + oa afJ + ~~ ofJ =~ oa ofJ 
01& 01& oy oy oz ot c' ot ot 

for clearly 

(
oa ofJ _ oa ofJ)' 
oy oz oz oy 

= [(~;)' + (~:)'] [(~)' + (~)'] - (~; ~ + ~~ ~~)' 
= [~(cla)' _ (oa)'J [YOfJ)' _ (OfJ)'J _ (! oa 0fJ. _ all ofJ)' 

c' \ at 01& c' \ at 01& c' ot ot 01& 01& 

:... 1 (Oil ofl oa Ofl)' 
- - C' 01& at - ot 0," • 

Two other equations can be obtained in a similar way and so it 
follows that if we make a suitable choice of an ambiguous sign 
which is involved in the definitions of the functions a and 
fl, the equations (10) will be a consequence of equations (279). 

A more general electromagnetic field is obtained by 
multiplying the components of M in equations (10) by an 
arbitrary function f (a, fJ). Since the components of Mare 
necessarily solutions of the wave-equation it follows that, if 
9 = IIf, an expression of the type 

a fa, fJ) ( fJ) ° (y, z) 9 a, 

is a solution of the wave-equation (8). 

* The a.im must be not only to obtain & complete generalisation of Green's 
equivalent myer which will be applicable to the c&se of a moving surface, but to 
obtain, if possible, an analysis of the electric and magnetic current sheets which 
are required. Cf. p. 29 . 

• 
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The electromagnetic field which has just been obtained 
generally has singularities at space-time points for which 
f( rx, (3) is zero. Let us write f = u (x, y, Z, t) + iv (x, y, z, t) where 
u and " are real when x, y, z, t are real; then the points for 
whichf= 0 lie on the moving curve, defined by the equations 
tl = 0, V = O. Now it follows from (279) that f is a solution of 
the equation 

(of)' + ( ~f)' + (of)' = !. (Of)' ox dy OZ c' at 
and consequently 

(aU)' (Ou" (Ou)' _!. (OU\' = (00)' (00)' (00)' _ ! (OV)' ox + ay) + oz c' at) ax + ay + oz c' at ' 
au 00 au av au av 1 au ov 
ox ox + oy oy + oz oz = c' at at . 

:Now letF(u,v) = 0 be the equation of a moving surface which 
always contains the moving curve, then if 

we have 

oFov oFou 
p = Ou ox - Ov ax' 

oFoo oFau r- -- - - --auoz oooz' 

aFav aFou q= - - - -­ouayoray' 
aFoo oFOu 

s=Ouot-ooot' 

[(~~)' + (a~)' + (~~)' - ! e:)'] 
X [(~)' + (~~)' + (~~)' + ::] 

= (q of -r aF)' + (r of _ poF)' + (p of _q of)'. 
OZ oy ox oz oy ox' 

consequently 

(OF)' + (OF ,' + (OF)' !. (OF)'. ox oyJ oz 1: c' at 
This means that the component velocity of the surface F = 0 in 
the direction of the normal at (x, y, z, t) is less than the velocity 
of light, it is equal to the velocity of light only in an excep­
tional case; Since this is true for any surface that always 
contains the moving curve it follows that the curve can be 
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regarded as moving with a velocity less than that of light. It 
should be understood that the curve generally changes in shape 
as it moves but this is not necessarily the case. 

It often happens that the moving curve f = 0 can be 
regarded as made up of the instantaneous positions of a series 
of points which move in straight lines with the velocity of 
light. To see this let us suppose that a function </>(a,f3) can 
be found such that </> is a real function of x, y, z, t. It is evident 
from (279) that 

~fO</> + v/v</> + ofo</> = !. ofo</> 
ox ox Oy oy oz oZ C' ot ot ' 

and this means that if a point starts from (x, y, z, t) and moves 
with the velocity of light along a straight line whose direction 

. l . o</> o</> o</> Ii' 
cosmes ,m, n are proportIOnal to ox' oy' oz' the unctIOn 

f will remain constant along its path, and consequently if the 
point once lies on the moving curve f = 0 it will always lie on 
this curve. It should be noticed that the function </> and its 
first derivatives with regard to x, y, z, t all remain constant along 
the path of the moving point. 

The case in which no such function </> exists may be of 
importance in future developments of the subject; this case 
has not yet been discussed in any detail. 

Two methods of solving equations (279) are known, but 
they are not really distinct. In th'e first method the functions 
a, f3 are defined by equations 

[x - Ha, ,8)]' + [y - '7 (a, ,8)]' + [z -{{a, f3)]' = C· [t - 'T (a, f3)]'} 
l (a, f3) [x -~ (a, S)] +nl (a.,8) [y - '7 (a. f3)] 
. + n (a, f3)[ z - ({a. ,8)] = c' P (a. ,8)[t - 'T (a. f3)] 

...... (280). 

where ~,'7. ~ 'T.l. m. n.p are arbitrary functions satisfYing the 
relation 

l' + m' +n'= e'p'. 

The functions a, f3 may evidently be replaced by two other 
functions a', f3' defined by equations such as 

a' =F(a,f3). ,8'= G(a, f3); 
consequently we may without loss of generality introduce a 
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filrther relation connecting the functions ~,." 1;, T, t, m, n,p. The 
relation we shall choose is 

a~ 07] 01; OT 
t a{3 + m a{3 +n a{3 = c'p afJ ............ (281). 

When" and {3 are defined in this way we can obtain the simple 
specifications of two types of electromagnetic fields; one type 
is obtained by writing 

a (a,fJ) i 0 (a, fJ) 
f(a, fJ) M. = a (y, z) = ± c 0 (x, t) . .. .. .. . . (2M2), 

and two similar equations. A second type of electromagnetic 
field may be derived from the potentials* 

A _ ISg (a, fJ) A _ mS,q(a,fJ) 
.- PS-QR' . - PS-QR 

. ..... (283), 
A _ 'fISg (~, fJ) <t> = cpSg (a, fJ) 

, - PS-QR' PS-QR 
where 

a~ 0., 01; OT 
P=h~-~+h0-~+h~-0-c'~~-~ 

~ ~ ~ OT Q = ap (x- n+ ofJ (y-.,)+ afJ (z - 1;) - c' afJ (t - -r), 

R = I a~ + m a" + n 01; _ c'p aT _ at (x _ ~) 
oa oa oa aa oa 

Om an iJp - act (y -.,) - oa (z - n + "" oa (t - -r), 

ap at ilm On 
S = c' ofJ (t - T) - ofJ (x -~) - afJ (y -.,) - afJ (z - 1;). 

It is easy to see that these potentials satisfy the relation (267). 
To prove that they are wave-functions we remark that 

9 (a, fJ) ram 
A.= PS_QRLofJ{m(x -~)-t(Y-")1 

+ On {n(x-~) -l(z- ?;)l - c' op {p(x-~) -let - -r)IJ 
ofJ ofJ 

[
iJm a (a, S) On 0 (a, fJ) iJp a (", fJ)] 

= 9 ofJ' 0 (x, y) + ofJ' 0 (x, z) + ofJ' 0 (x, t) . 
Now it has already been proved that an arbitrary function 

of " and f3 multiplied by one of the Jacobians represents a 

* We can a.180 call these potentiaJs Lx, L II • L., A and derive an electro­
magnetic field from them by the method of § 4. 
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wave-function, hence Az is a wave-function. In a similar way 
it can be shown that the other potentials are wave-functions. 

It should be noticed that the electromagnetic field specified 
by the potentials (283) is conjugate to the field given by (282). 
To prove this we observe that 

( 
oa 013\ 

gS R OIX + S 0;) oex 0(3 
A z = PI::) _ Qll = .. OIX + V OIX say, 

and there are similar expressions for A y , A" <1>. Hence for the 
electromagnetic field specified by the potentials (283), we have 

Nz'= o ( .. ,ex) + o (v, (3) + io ('"a) + i o (v,(3). 
o (y, z) 0 (y, z) - C 0 (IX, t) - C 0 (IX, t) 

The relation (3) is now seen to be satisfied in virtue of two 
equations of type 

o (ex, (3) 0 ('" ex) + 0 (ex, (3) 0 (", ex) + 0 (ex, (3) 0 ('" a) 
o (y, z) 0 (IX, t) 0 (z, IX) 0 (y, t) 0 (IX, y) 0 (z, t) 

+ 0 (ex, (3) 0 (", a) + 0 (a, (3) 0 (u, a) + 0 (a, (3) 0 (it, a) _ 0 
O(IX,t) o(y,z) o (y, t) o (Z,IX) o(z,t) o (IX,y) -

... . .. (284). 

It should be remarked that the vectors E, H in both fields 
generally become infinite when PS - QR = O. This equation 
is certainly satisfied when (IX, y, Z, t) lies on the moving curve 
defined by the equations 

IX=~(a,(3), y="I(a,(3), z=t(ex,f3), t=T(a,(3) ... (285). 

In some cases this curve may reduce to a moving point, 
as for instance when ~, "I, t, T are independent of (3. 

It is evident that the quantity PS - QR is usually zero for 
space-time points which do not lie on the moving curve (285). 
If, however, we regard l, m, n, p as complex functions of the 
type cp (a, (3) + i,y (a, (3), the equation PS = QR will generally 
give rise to two distinct equations connecting IX, y, z, t, when 
we equate real and imaginary terms on both sides. Hence 
all the real singularities that are defined by PS = QR will 
generally lie on one or a number of moving curves. 

So far we have.said nothing about the choice of " suitable 
pair of roots of equations (280). In general we cannot expect 
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them both to he real and it is difficult to lay down rules which 
will enable us to pick out j ust one ex and just one f3 in all cases. 
To proceed further we must consider some particular examples; 
before we do this, however, it will be worth while to point out 
that if we assign given complex values to ex and /3 the equations 
(280) will generally determine two real points x, y, z, t, but 
in special cases they may give 00' space-time points which can 

-.be regarded as the consecutive positions of a moving point. 
Tbus we have an interesting specification of the real points 
in space by means of two complex quantities. If we assign 
a complex value to /3 the corresponding space-time points 
x, y, z, t generally lie on a moving curve which travels with 
a velocity not greater than that of light. Hence in the para­
metric representation of x, y, z, t in terms of the complex 
quantities ex, /3 the loci ex = const., /3 = const. are generally 
moving curves which may alter in shape as they move but 
never travel with a velocity greater than that of light. 

l\fatters are somewhat different if ex or some function of 
ex and /3 is always real when x, y. z, t are real. This case will 
now he illustrated by a particular example. 

Erantp/&. I. Prove that the ratiOf! of the Jacohian. 
0(0,#) 0(0,#) 0(0,/:1) 
o (y, z) ' a (z, x)' 0 (x,y) 

a.re functions of a and fj. 

2. Prove that the ratio QIS depend. ooly 00 0 and #. 
3. Obtaio the general solution of equation. (279) by takiog x, y, a, # 

as new independent variables. 

§ 44. Projection of singularities from a moving point, 
second model of a corpuscle. 

Let us now suppose that E, '1}, ~, T are independent of /3 and 
that T = ex. We may then define ex uniquely by restricting 
it to he real and introducing the inequalities 

(~\' (&r!)' (d~' / -aa; + dex + oex) < &, ex,. t ... ...... (286). 

To obtain a single value of f3 we may assume I, m, n, p 
to he linear functions of /3. Consequently we may put 

/3= I, (x - E) + 1110 (y - '1}) + n,(z -~) - c'p,(t- ex) (287) 
l, (x E) + m,(y - '1}) + n, (z -~) - c'p, (t - ex)' , 
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where 10 • I" etc. are functions of" which satisfy the equations 

lo' + mot + no' = c2po' } 
It' + rIIt' + n.' = c'pt' ............ (288). 

lJt + m"rllt + non. = c'poPt 

It is easy to verify that the wave-equation is satisfied by 
a function of type 

1 n= pg(u.,{3); 

thus we have a generalisation of the theorem of § 41. 
We shall assume that 10 • mo. no. po are real and that some 

or all of the quantities ~ • . m.. n.. Pt are complex. It is easy 
to see that if we assign a real value to " and a complex value 
to {3 the corresponding space-time points (x. y. z. t) can be 
regarded as the successive positions of a point which starts 
from the point 

x=H"). y=1)("). z=1;'("). t=a .. .... (289) 

and moves with the velocity of light along a straight line 
through this point. There is clearly just one line through 
this point for each complex value of {3 and vice versa. If we 
consider all the points in space at a particular time t we can 
specify each point uniquely by a real parameter " and a real 
or complex parameter {3. 

Let us now consider the electromagnetic field which is 
specified by the potentials 

if ml 'TIl cpl 
Az = p' A. = p ' Az = p' <l> = P ...... (290). 

where 1= {31, - 10 • m = fJrllt - rIIo. n = fJn. - nO. p = fJp. - po and 
I is an arbitrary function of " and {3. These potentials are 
derived from (283) by putting Q = o. 

Afier a long calculation we find that the component of the 
electric force along the radius from (1,=. 1). 1:. ,,) to (x. y. z. t) is 

_ I r c'p _loE _ m 01) _ n 01;']. 
P' L 0" oa 0" 

To obtain an electromagnetic field in which there is a 
constant electric charge associated with the singnlarity 
(E. 1). 1;'. ,,). we assume that Po = p. =1= 1 and that 
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... (291). 
o~ 0'1] o~ (o~' (0'1])' (ot\ I 

l, a", + "" 0'" + on. Ocx = oa) + 0'" + oa) 
The expression for the radial electric force then becomes 

]" [c. - r' - '1]" - r·] . 
Comparing this with the expression for the radial electric 

force in the case of an electromagnetic field with a simple 
singularity (~, '1], ~, T), we see that there is a constant electric 
charge 47l'/c associated with the singularity (~, '1], ~, ex). 

It should be mentioned that the second of equations (291) 
is a consequence of the other equations satisfied by 4, m", n •. 
To prove this we take the axis of /£ in a direction pamllel to 
the velocity of the singularity (~, '1], ~) at time ex. We then 

have for this instant 0'1] = ~~ = O. If, moreover, we choose the 
ra ua 

axis of y in such a way that n, = 0, we may satisfy the first 
of equations (291) by writing 

~! = c cos e, l, = c sec e, m, = ic tan e, l. = c cos a, 
71to = 0, 110= ± caine, 

and then it is clear that the second of equations (291) is 
satisfied. 

Let us now write t, = c cos a, m" = 0, 7i" = + c sin a, 
l, = c sec e, "'. = - ic tan a, n. = 0, /£ - ~= X, Y -'I] = Y, 
z-~=Z, t-T=T; then it is easy to see that if 

S = c' T -l, X -m, Y -n,Z, S=c' T -l, X -"'. Y -n. Z, 
u = c' T-l.X -"'. Y - n.Z, 

we have cos' a ss = uU, 
u = c' T-l.X - m. Y -7i"Z, 

U+ U= - 2P. 
Now since f3S= U it follows that the potentials (290) become 
infinite when U = 0, i.e. when 

X Y Z T 
l. = 71'. = 7i" =1' 

When", is given these equations are satisfied by a point which 
starts at (~, '1], ~,ex) and moves with the velocity of light along 

a 9 
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a straight line whose direction cosines are proportional to 
t." in" n.. This line makes an angle B with the direction of 
motion of the point a:, n, r, a). 

'l.'he electric and magnetic forces in the electromagnetic 
field derived from the potentials (290) are generally infimte 
for U = 0 and so our field possesses a number of singular points 
which are projected from the moving point (t n, r, a) and travel 
along straight lines with the velocity of light. It should be 
remarked, however, that if we retain only the real parts of the 
potentials (290), the projected singularities disappear as soon 
as the singularity ~, n, r,2 moves in a straight line with unifor'm 
velocity and I, m, n are independent of a. 'l.'he field then 
becomes identical with that derived from Lilmard's potentials. 
To prove this we shall show that, on the above assumptions, 

, . the field derived from the potentials 

1- E' 
A.'=R P , 

, 
A'=R m

- n 
• P' 

l '_R n - r' 
,J, z - p' 

cp-l 
<1>' = R P ......... (292), 

is everywhere null, R being used to denote the real part of a 
quantity following it. In the first place we remark that 
we now have 

R = l~' + mn' + n!;' - e'p = f' + n" + 1;" - e', 

~ (log P) = ~' + ~ oa (e' - f' - n" - 1;"). 
ox P P ox 

Hence 2A '= 2R [~ (R oa + S (Jf3 _ ~,)] 
• P ox ox" 

= s ~ (U)+ S ~ ('!.) _ 2 ~(logP) 
Pox S Pox S ox ' 

Uo SS 0 
= - p ox log U' - 2 ox (log P), 

Uo U 0 
=- P ox log U - 2 ox (log Pl· 

Now since U + U + 2P = 0, it follows that U/P is a function of 

Uj U and so A.', A .. , A.', - ! <I>' are the derivatives of a single 
e 

• 



VIII] SECOND }!ODEL OF A CORPUSCLE 131 

function. consequently the electromagnetic field derived from 
these potentials is everywhere null. 

Summing up our results we can say that when the 
conditions (291) are satisfied. the electromagnetic field derived 
from the potentials (290) contains a point charge which moves 
with a velocity less than that of light; attached to this point 
charge there is a certain curve which becomes the locus of 
a series of moving point singularities whenever its form differs 
in any portion from a straight line or its direction changes. 
The form of the curve at any instant is subject to the condition 
that the points of the curve can be regarded as having been 
projected from the moving charge at different instants. the 
direction of projection being partially determined by the law 
cos 8 = vjc where v is the velocity of the point charge. and 8 is 
the angle between the direction of projection and the direc­
tion of motion of the point charge. ,. 

We may now obtain a new model of a corpuscle by con­
sidering an aggregate of elementary fields of the type just 
described. the point charges and exceptional curves being 
nearly coincident. If we write de for the charge associated 
with one of the elementary fields we may obtain a field in which 
the electric and magnetic forces are finite by a suitable process 
of integration. According to this idea a corpuscle has a kind 
of tube or thread attached to it. When the motion of the 
corpuscle changes a wave or kink runs along the thread; the 
energy radiated from the corpuscle spreads out in all directions 
but is concentrated round the thread so that the thread acts as 
a guiding wire. This theory of radiation is in some respects 
similar to that given by Sir Joseph Thomson in his theory 
of the Rontgen rays*. It is in accordance with his idea that 
the energy may be concentrated round certain points of the 
wave-front. 

The following figure indicates roughly the changes in 
the form of a tube which always lies in one plane and is 
attached to a corpuscle performing a simple harmonic motion; 
it is seen that a type of progressive wave travels along the tube . 

• Eleclricityaml Matter. London (1904); Phil. Mag. Vol. 19 (1910). 

9-2 
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In Sir Joseph Thomson's theory of the Rontgen rays the 
kink in the tube .of force becomes longer and longer as it 
recedes from the charge. A similar remark applies to the 

oscillations of the thread attached to our point charge. This 
phenomenon may be due entirely to the fact that the tube of 
force and thread extend to infinity. If we suppose that the 
tube or thread does not extend to infinity but ends at some 
other point charge, the circumstances of the motion will be 
different. If in this case we treat the thread as a singular 
line of an electromagnetic field and suppose that it is given by 
an equation of the form 

f(a,f3) = 0 

where a and (3 are functions which satisfy (279), we must 
conclude that there is no function of type F (a, (3) which is 
a real function of "', y, Z, t; for if this were the case the moving 
thread would be the locus of points travelling in straight lines 
with the velocity of light and would consequently extend to 
infinity. 

Electromagnetic fields with moving point charges joined by 
singnlar curves which do not extend to infinity have not yet 
been obtained, b~lrthere-is some hop&-of deriving th@1. 
by the gene ... 1 methods of § 43, when the quantities rr,13- are­
both 0"111,,18-

Examplu. 1. Discuss the propertiee of the electromagnetic fields 
that can he derived from the potentials 

.AJ:=~+¥' ~w=~l+~lt .A.=;+~I, ~=~+C~l; 
1. ,_nl_ nl 

... '-iI ii' 
I tpJ. cfJI 01>- - - - . - u ii' 

reepectively and determine the lines of electric and magnetic force. 
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2. Pro"e that if a and f3 are defined as in § 44, the electromagnetic 
field specified by the equations (282) is conjugate to the field specified by 
the potential. (290), or to the field specified by Lienard'. potentials. 

§ 45. Electromagnetic fields with singularities moving 
with velocities greater than that of light. 

Some of the preceding analysis holds and provides us with 
solutions of Maxwell's equations when the velocity of the 
primary singularity a:,7], s, or) is greater than that of light, but 
in the case of a field specified by potentials of type (266) 
a transition from a velocity less than that of light to a velocity 
greater than that of light does not seem to he physically pos­
sible on account of the occurrence of infinite values of the 
electric and magnetic forces in the critical case. Moreover, it 
is difficult in the general case to give a rule which will enable 
us to pick out just one root of the equation (265). An interest­
ing type of field may, however, he obtained by a process of 
summation over some of the roots of the equation-. 

The case of infinite velocity is of some interest, for then 
we obtain electromagnetic fields with singularities along a 
fixed curve at a given instant of time. The following example 
indicates that the case in which the primary singularities are 
imaginary may be associated with another case in which they 
are real. 

Consider the two equations 

(x- a cos a)' + 0J - a sin a)' + z' = c't', 

x' + y'+(z - ai cosh {3)' = (ct-iusinh {3)', 

and write in analogy with (263) 

v = a cos a(y - a sin a)- a sin a(x - a cos a)= a(ycos a - xsin a), 

v, = ia sinh {3 (z - ia cosb {3) - ia cosh {3 (ct - ia sinh {3) 
= ia (z sinh {3 - ct cosh fJ)· 

We evidently have 

hence 

4v' = 4a' (x' + yo) - (x' + y' + z' - c't' + a')', 
4v,' = 4a'('" - c't') + (x' + y' + z' - c't' - a')', 

v' + v,' = O • 

• A more complete discussion is given in G. A. Schott's Electromagnetic 
Radiation. 
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It is easy to verify that the function 

1 
u= - /(a,(3) 

v 

[CR. 

is a wave-function and that the functions a, (3 are suitable for 
obtaining electromagnetic fields by the method of § 5; they are, 
in fact, the functions considered in § 36. 

§ 46. Second solution of the fundamental equations. 

The fundamental equations (279) are also satisfied when 
the functions (a, (3) are defined by the relations 

I (fl, (3)1£+ m (a, (3) y + n(a, (3) z -c' p(fl, (3) t + g(a, (3) = O} 
L (a, (3)1£+ M (a, (3) y +N(a, (3)z - c' P(a, (3) t + O(a,(3) = 0 

......... (293) 

where I, L, etc. are arbitrary functions satisfying the relations 

I' + m' + n' = C'p', L' + M'+ N' = c' P', 

lL +mM + nN = C'pP .............. . (294). 

If now 

01 Om on ,op og 
},.=x oa + y oa + z oa -c t oa +oa' 

01 om on op og 
fL = x 0(3 + y 0(3 +z 0(3 - c't o(3 + 0(3' 

oL oM oN • op 00 
v =1£ oa + y oa +Z oa - cot oa + oa' 

_ oL ej},f aN ,0P oG . 
'" - x 0(3 + y '0(3 + Z '0(3 - c t '0(3 + '0(3' 

we can derive an electromagnetic field from the potentials 

A.= Lui A = Muf , A
z
= Nul, <l>= cPu/ 

},. "'" - fLV ' • },. '" - fLV },. "'" - fLV },. "'" - fLV 

.... : .... (295) 

where / is an arbitmry function of a and (3, and 

'OL 'OM oN ,'OP 
u= I 0(3 + m '0(3 + n 0(3 - c p 'Ojj ......... (296). 
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To verify that these potentials satisfy the wave-equation and 
the relation (267), it is sufficient to remark that 

1-' A. = _ 'OM '0 (a, {J) _ 'ON '0 (a, {J) _ OP '0 (a. {J) ) 
'O{J '0 (x, y) 'O{J '0 (x, z) 'O{J 0 (x, t) (297) 

= + ~ 'OM '0 (a, fJ) + ~ aN '0 (a, {J) ± ic 'OP 0 (a, {J)J'" . 
c~'O~0-c~o~0 ~o~~ 

When similar expressions are obtained for A., A z, <1> it is clear 
that the relation (267) is satisfied. Other types of electro­
magnetic fields are obtained by writing a instead of fJ in 
equation (296) or by writing I, m, n, p in place of L. M, N, P 
in (295) and (296). If A;, Ag'. A z', <1>' are the potentials 
obtained in either of these ways we have clearly 

A.A; + A. Ag' + Az A; - <1><1>' = 0 . . .. ..... (298). 

I have noticed that this relation is often satisfied by the 
potentials of two conjugate fields. 

Another type of electromagnetic field may be obtained 
by the method of § 5. 

Some particular cases of the preceding theorems may be 
deduced by contour integration. To illustrate the method let 
us suppose that I, m, .. . L, M, ... are functions of a parameter a 
which satisfy the relations (294). If we regard t hese quantities 
as independent of x, y, z. t, the contour integral 

v= ~JF(Lx+MY+Nz-c'Pt+ G, a) da 
2m Ix +my+nz- c'pt+ 9 

will represent a wave-function. Now let us suppose that the 
contour encloses only one root of the equation 

xl (a) + ym(a) + zn (a) - c'tp (a) + 9 (a) = 0 .. . (299), 

and that the numerator is finite and single-valued within the 
contour and on its boundary, then by Cauchy's theorem the 
value of the integral is generally 

1 
): F({J. a) ........................ (300) 

where fJ = xL (a) + yM (a) + zN (a) - c'tP(a) + G (a) ... (301) 

and),. is defined in the same way as before. 
We have then the result that the function (300) satisfies 

the wave-equation. This is a particular case of the general 
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theorem of § 43 and is a generalisation of a theorem due to 
Forsyth·. In Forsyth's work the functions L, M, N, P are 
assumed to be the derivatives of I, m, n, p with regard to a. 
The functions a, f3 are evidently particular cases of the func­
tions that have already been defined and so may be used to 
construct an electromagnetic field by the method of § 5. An 
interesting electromagnetic field may also be derived from the 
potentials 

A =I'(a) . ~' 
A.=m'(a), 

},. 
A = n' (a~ n. = cp' (tt) (302)' 

Z A''*' A. ... , 

it is easy to verify that the relation (267) is satisfied. The 
case in which I, m, n, p, 9 are all real functions of a is un­
interesting because then our potentials become infinite for 
00' space-time points which lie in 00 1 planes. 'Vhen, however, 
I, m, n, p, 9 are complex functions of the type 4> (a) + i-.fr(a), 
the singularities of the electromagnetic field generally lie on 

. 
a movmg curve. 

It should be remarked that when a and f3 are defined by 
the equations (299) and (301) a function of the type 

D=F(a,f3) 

satisfies the wave-equation, and at the same time satisfies the 
differential equation 

(aD)' + (On)' + (On)' = !. (On)' . 
0$ oy \ 02 c' at 

This is a generalisation of a theorem due to Forsyth t and 
Jacobi!. A solution of Maxwell's equations may be derived 
from the potentials 

A.o = 4 (tt), A: = mo(a), A! =n" (a), q,u = cpo (a) ... (303) 

if 

• Me .. enger of Mathematics, Vol. 27 (lS9S), p. 13S. The theorem is 
obtained in another manner by Forsyth. 

+ Loc. cit. 
~ Werke, Bd. 2, p. 2OS. 

• 
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One way of satisfYing these equations is to put 

lo= l, m" = m, 'Jill =n, po = p. 
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• An interesting type of wave-function may be obtained by 
a generalisation of a method due to Schottky -. 

Let 

a,(a)=JI(a)da, b,(a)=Jm(a)da, c,(a)=Jn(a)da, 
d,(a)=Jp(a)da, .,(a) =Jg (a) da, 

then n = xa,(a) + yb,(a) + zc, (a) - c'td,(a) + .,(a) 

is a wave-function whose derivatives with regard to a:, y, z, t 
are all functions of the single variable a. The function a is 
supposed to be defined by equation (299). 

Example. If l=l-aa, m=s +a, n=i (.- a), cp=l+sa, g=a'J., where & 

is 8. constant, the function X vanishes when (x, '!I, z, t ) lies on the moving 
curve 

1-.' 38' - '" 28 .(.'-",)-2. 
x=I +.,ct+ 1+",' Y=I+.,ct+ 1+0' , z=20. 

A point for which 11 is constant moves in a. straight line with the 
velocity of light. 

§ 47. A wave-function with a fixed curve of singu­
larities. 

Let T be defined in terms of a:, y, z by the equation 

aT = "'1' (T) + yq(-T) + zr (T) 
where p' + q' + r' = 0 and a is a constant. 

Let I1=a-"'1"(T)-yq'(T)-zr'(T), 

8 t
ap' + yrf + zr' 

=c ± , 
(p" + q" + r")! 

then n =! /(8, T) is a wave-functiont. 
II 

A solution of Maxwell's equations may be derived from the 
potentials 

A. =I' /(8, T), A. =9. /(8, T), 
II / II 

r 
A.=-/(8,T), 

II 
<l> = O. 

• Berlin. SitzungBberichte (1909), p. 1152. 
t This result was derived from a. theorem given by Prof. Forsyth. loco cit. 

If we put 8=fJ. r=a the functions a, fJ ca.n be used to obtaina.n electromagnetic 
field by the method of § 5. These functions are, of course, particular cases of 
the functions defined at the beginning of § 46. 
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To obtain a real electromagnetic field we must retain only 
the real parts of these expressions. 

It can be shown by putting 

p = P, (u, v) + iP, (u, v), q = Q, (u, v) + iQ,(u, v), 
r = R, (u, v) + iR, (u, v), a = A, (u, v) + iA,(u, v), 

that the electromagnetic field has generally a fixed curve of 
singularities. In the special case when 

p=l-r, q=2T, r=i(l+r), A,=h, A,=k, 

the fixed curve is the circle af' + Z2 = t k', Y = t h. 

§ 48. Cylindrical wave-functions with moving singu­
larities. 

If we define T in terms of a:, y by the equation 

[a: - ~ (T»)' + [y -., (T)]' = c'(t- T)', 

and define I (T), m(T), p(T), so that 

InT) + m.,' (T) = c'p, 

I' + m' = &P', 
the function v = I (a: -~) + m (y -.,) - c'p(t - T) 

1 
is such that ..r,; 1 (T) 

is a wave-function. 
In particular, if ~ =., = 0, I = I, m = i, p = 0 we obtain 

Poisson's wave-function 

';a: ~iY I(t-~). 
Another interesting result is that if F (a:, y, t) is a homo­

geneous function of degree t which satisfies the wave-equation, 
the function 

n = F(a:-~, y -." t - T) 

also satisfies the wave-equation. 

If <T = nT)(a:-~) +.,' (T)(Y -1}) - c'(t - T), 

the function 
1 

n = "r;,./(T) 
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satisfies the wave-equation only when E" + .,," = c'. 
iz is written in place of ct these wave-functions can 
regarded as solutions of Laplace's equation. 

EXAMPLES. 

1. Let 

i:-x/(.)-1:1' (')H') a., 

Y=y/(·) - 1:/' (.)? (.) a., 

z=zj(. ) - 1>' (.) «.)a., 

I=I/(' ) - 1:1'(')'a.; 
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When 
all be 

where T is defined in terms of:&, '!I, z, t by means of equation (265) and the 
inequality .~t. Prove that if an electromagnetic field (E, H ) i. snch 
that 

with similar equations, where M=H+iE, then an electromagnetic field in 
the variables $ , y, i, t can be found such that we have identically 

M.d 0/, z} +M.d (z, x}+M.d (x, y}+icM.d (x, t) 
+ ic M.d 0/, t}+ icM.d (z, t) 

=Il.d (y, z}+Il. d (z, i:} + M.d(i:, Ii) 
+icM.d(i:, I) +icM.d (y, I) +icAf.d (z, I), 

where d0/, z) denotee dyBz-dzBy and dx, ax, etc. are two independent 
sets of increments of the variables. 

2. Prove that if/'(.) i. alway. positive the variable t increases with t. 
Show also that if (e, ij, (, ,,) correspond to (~, ?, C, . ), the point (E, ij, () 
rnovee along a curve r with a velocity 1 ... than that of light and that the 
velocities at two corresponding points ofr and f are the same in magnitude 
and direction. 

3. Prove that the conditions imposed upon the electromagnetic field 
in Example I are all satisfied in the case of the field specified by the 
potentials (266). Hence show that the transformation transforms the 
field of an electron moving along the curve r into the field of an electron 
moving along the curve r. 

4. Prove that the conditions of Example I are also satisfied for any 
electromagnetic field of type (282) where a and f3 are defined as in § 44. 
Hence show that a field of this type is tmn.formed into another field 
of the same type associated with the curve r. 
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6. Prove that the couditions of Example 1 are equivalent to only two 
conditions which imply that the field (E, H) is conjugate to auy electro­
magnetic field of type (282). 

6. Prove that electromagnetic fields of types (302) and (303) can he 
transformed into fields of the same general types with the aid of the 
transformation 

X= ... + r l (.)/(.) d&, 

1i=y+ r ,,,(.)/(.)d&, 

i =Z+ r n (.)/(.) d., 

t=t+ r p (.)/(.) d&. 

7. If T be defined in terms of $, ,!!, z, t by the equations 

[ ... - E (a, {j, T))'+[y-? (a, {3, T)l'+[Z- (d, {3, T)l'-c' [/ - S (d, {3, T)l', 

ilE iloj il( ilS 
.~-S+.~-~+.~-a=c'.~-~ 

~ iloj ~ ~ 
il{3(x-E)+ il{3~-?)+ofJ (z-()=c' o{3 (/-T), 

it satisfies the partial differential equation 

8. If 

and 

the function 

:.=p COB ¢, y=psin q" ,..= ... '+y'+ z', 
,.t-a' 

sinh.r= 2ap , 

[ ... ·+y'+(z±a)'l-t /[q, + i.rl 
satisfies Laplace's equation. 

9. Prove that if in the last example we write 
• e;1I 

/[q,+''''l-q,+i.r ke" 

and integrate with regard to u between 0 and 2 .. we can obtain a potential 
function which is zero outside the tube I q, + i.r I -k. 

10. Particles are projected in certain directions from the different 
positions of a moving electron and travel along straight lines with the 
velocity of light. Prove that if the law, according to which the direction 
of projection varies with the velocity of the electron, be suitably chosen 
the particles will at each instant form a line of electric force in the 
electromagnetic field due to the moving electron . 

• 



CHAPTER IX 

mSCELLANEOUS THEORIES 

§ 49. Kirchhoff's formula and its extensions. 
An important solution of the wave-equation is em bodied in 

Kirchhoff's fonnula * which is usually interpreted as the mathe­
matical expression of the principle of Huygens. This fonnula 
has been extended by Lovet and Macdonald! so as to give 
a representation of an electromagnetic field outside a surface 
in tenns of the electric and magnetic forces tangential to 
the surface. In Macdonald's fonnula it is the time derivatives 
of E and H that are so expressed. Tonolo§ has given a 
formula in which E and H are expressed in terms of their 
surface vnlues. The formulae are given in examples 3-5 at 
the end of this chapter. 

When the surface is a sphere Kirchhoffs formula reduces to 
the fonnulaof Poisson II (Ex. 5) which enables us to find a wave­
function which satisfies the conditions 

ilu 
u=/(x,y,z), ilt =g(x,y,z). 

Poisson's formula may be used to derive the theorem 11 that the 
mean value of a wave-function u over a sphere of radius CT at 
time t is equal to the mean value of " at the centre of the 

• Berlin. B.,.. (1882), p. 641; Wled. Ann. Bd. 18 (1883); au. Abh. t. 2, 
p. 22. Simple proofs of the formula. have been given by Beltrami, Rend. Ace. 
Line. Rorr,. (5), t.4 (1895); Larmor, Pro<. London Ma.h. So<. Ser. 2, Vol. 1, p.l ; 
Love, Ibid. p. 37 (1003); Lamb, Hydrodynamlu, 2nd edition (1906), p. 477; 
H. A. Lorentz, TM Theory of EkctrOf&l, p. 233; E. Laura, Il NU(1)() Cimento 
(1913). 

t PI,il. Traru. A, Vol. 197 (1001). 
: E"Ltctric Wavu, p. 16 i Proc. London Math. Soc. Ser. 2, Vol. 10 (1911), 

p. 91; Phil. Tram. A, Vol. 212 (1912), p. 295. This theorem gives an 
8oalytica.lspecifica.t.ionof a.genera.lised Green's equivalent la.yer. See p. 29. 

§ Annali di MIlUTM..ica, Ser. 3, t. 17 (1910) . 
II The deta.ils of the caJculatioD are given by Love. loco cit. A simple proof 

of Poisson's formula. is given by Lamb, loco cit. p. 471. 
~ Cf. Rayleigh's Soomd, appendix, a.nd H. Batema.n, .A.mfT. Joum. (1912), 

where some other theorems of a aim.il&r kind e.re given. 
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sphere during the interval t - T to t + T. The function U IS 

subject to the conditions in Kirchhoff's theorem. 
When the function u is independent of z, Poisson's 

formula reduces to ParsevaI's formula for a cylindrical wave­
function. Volterra· has extended Parseval's formula so as 
to obtain a two-dimensional analogue of Kirchhoff's formula. 
His formula indicates that the propagation of cylindrical 
waves is essentially different in character from that of 
spherical waves. In the three-dimensional case the value of 
a wave-function U (x, y, z, t) at a point (IX, y, z) at time t 

ou 
is completely determined by the values of u and ot over a 

concentric sphere of mdius CT at time t - T. In the two­
dimensional case, on the other hand, the value of u (IX, y, t) at 
a point (IX, y) at time t is not determined by the values of u and 

0;: over a concentric circle at time t - T. To find u (IX, y, t) we 

must know the values of u and ~~ over a series of such circles 

in which the radius CT varies from 0 to some other value CT,. 
The essential difference between the two cases may be attri­
buted to the fact that in the three-dimensional case the wave-

function for a source is of type ~f(t - ~), while in the two-

dimensional case it is of type [. f (t - ~ cosh u) and a wave 

does not leave the region undisturbed after it has passed, but 
has a tailor residuet. 

When u is a periodic function of t, Kirchhoff's formula may 
be replaced by the simple formula of Helmholtz!. In this case 
there is an analogous formula for cylindrical wave-functions, the 
function K.(ipk) taking the place of eikr/r. 

§ 50. Green's Functions. 
The solution of a problem in which a periodic wave-function 

IS to be determined from a knowledge of its behaviour at 

• Acta Math. t. 18; Lecturu at Clark Univerrity (1912), p. 3B. 
t Bee Lamb's Hydrodyna:miu, p. 474. 
::: See also J. Hada.ma.rd, BuU. tk la Socittt math. de FTanct, t. 28 (1900), 

p. 69; J. Larmor, Pro<. London Math. So<. (2), Vol. 1 (1908), p. 13. 
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certain boundaries can be made to depend on that of an 
auxiliary problem, ViZ. the detennination of the Green's 
function·. 

Let G (:c, y, z; :c" y" z,) be a solution of ll.u + ""u = 0 with 
the following properties: It is to be finite and continuous, 
as also its first and second derivatives, in a region bounded 
by a surface S, except in the neighbourhood of the point 
(:c" y" z,), where it is to be infinite like cos kr/47rr, when 
r _ O. At the surface S, G satisfies some boundary condition 

ou 
such as (1) ,,= 0 or (2) on = O. 

Adopting the notation of Plemelj t and ICneser! we shall 
denote the values of a function 4> (E, 11, I;) at the points (:c, y, z), 
(:c" y" z,) respectively by 4> (0) and 4> (1). The Green's function 
is then denoted by the symbol G (0,1). The importance of the 
Green's function depends chiefly on the following theorem. 

Let 4> be a solution of 

ll.4> + k'4> + f(:c, y, z) = 0, 
• 

which is finite and continuous, together with its first and second 
deri vati ves, through the interior of the region and satisfies the 
same boundary condition as G(O,l), then 

4> (1) = fff f (0) G (0,1) d:cd!Jdz . . 

This theorem is proved by applying Green's theorem to the 
region between a small sphere l:, whose centre is at (:c" y" z,), 
and the surface S. For since 

fff (4)ll.G- Gll.4» d:cdydz = ff (4) °o~ -G ~:) dS 

-ff (4) ~ - G~!) dl:, 
we obtain the required relation by making ~ - 0 and using the 
boundary conditions. 

* This function WM first used by Green in the solution of a problem of 
electrostatics, E.Bay on the application of mat1&e11uttical analym to the thecrie. 
oj electricity and magnetinn, Nottingaa.m (1828); Math. Paper., p. 3l. 

t Manat.llef" fiiT Math . ... Phy •. (1904) and (1907). 
::: Die l nugralgLeichungen una ih're Anwendung in der mathematilchen Phyrik, 

§ 31, Brunswick (1911). 
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If 9 (2, 0) is the Green's function for the same boundary 
condition as G (2, 0) but for k = cr, we must also surround the 
point (2) by a small sphere when we apply Green's theorem 
with ",(0)=g(2,0). We then obtain the equation 

9 (2,1) = G (2,1) - (Ie' - cr') If I 9 (2, 0) G (0,1) da:clyclz. 

This important relation indicates that 9 (2,1) is the solving 
function of an integral equation of which G (0,1) is kernel and 
vice vers&'. The theory of integral equations tells us that when 
G (0,1) is given there may be certain singular values of u' 
for which g(2, 1) is not finite. These are the values of cr' for 
which the homogeneous integral equation 

</> (1) = (cr' - Ie') J II</> (0) G (0, 1) da:dyclz 

possesses a continuous solution </> (0) which is different from 
zero. Formula (2) indicates that for such values of cr' the 
differential equation fl.", + k'</> = 0 possesses a solution satisfy­
ing the boundary condition and the other conditions imposed 
on </>. The solutions of this type are of great importance in the 
theory of sound and have been discussed by many writers-. 

If we put j(O) = (cr'-k')g(O, 2) and proceed as before, 
Green's theorem gives 

g(l, 2) = G (2,1) - (Ie' - cr') III 9 (0,2) G(O, 1) dxdydz. 

Putting cr = k and comparing this with the previous equation 
we get 

g(I,2)=g(2,1) . 

Hence the Green's function is a symmetric function of the 
coordinates of the points 1,2. When the boundary condition is 

~ = 0 this result is equivalent to Helmholtz's theorem t. 
Since G is a real symmetric function when k = 0 it follows 

from the general theory of integral equations that there is 

• See especially Lord Rayleigh , Theoryoj Sound, Vol. 2 i Pockels,DUpartieUe 
Di6tf'entialgleichumg .o.u+k'u:::O j A. Sommerfeld, EmykLopiidie der Math. 
Wi". Ba.nd D. I, Heft 4, p. 540. 

t Cf. Rayleigh'. SOflnd, Vol. 2, p. 131. 

• 
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at least one real singular value of u'; that all the singular 
values are positive may be deduced at. once from the 
equation 

u' fff </>'dxdydz= - fff </>toq,dxdydz 

= fff[ e!)' + (~t)' + (~~)'] dxdydz. 

The Green's function is usually obtained in practice by finding 
a suitable expansion in terms of elementary solutions of the 
equation 6,. + k'u = O. This method is explained in Heine's 
Kugelfunktionen and many examples of Green's functions are 
given for the case k = O. The general cru;e has been discussed 
at length by A. Sommerfeld * who also obtains a number of 
definite integrals which represent Green's functions. These 
expressions lead to interesting generalisations of Fourier's 
theorem. 

The problem of electrical oscillations in a cavity has been 
discussed by Weylt. With the aid of a generalisation of the 
Green's function, viz. a Green's tensor, he obtains a number 
of inequalities satisfied by the periods of vibration. 

The Green's function for the equation tou + k'u = 0 can 
theoretically be found when the corresponding Green's function 
for the equation tou = 0 is known. Considerable progress has 
been made in the theory since the appearance of Heine's work 
and so a few references to recent literature will be useful!. A 

• Phys. Zeitschr. Bd. 11 (1910). p. 1087; Jahrubericht de,- deutsch. math. 
Verein, Bd. 21 (1913). 

t Math. Ann. Bd. 71, p. 441; Crell<, Bd. 141 (1912). 
t For the determination of special Green's functions see E . W. Hobson, 

Cambro Phil. Tram. Vol. 18 (1899), p. 277; H. M. Macdonald, Ibid. p. 292, 
Proc. London Math. Soc. Vol. 26 (1895), p. 161; A. G. Greenhill, hoc. Cambro 
Phil. Soc. Vol. S (1880); J. Dougall, Proc. Edininn'gh Math. Soc. (1900); 
H. S. Carslaw, Ibid. (1912), Proc. L<mdon Math. Soc. (2), Vol. 8, p. 365; C. W. 
Oseen, A:rkiv fOr mat. Bd. 2; C. Neumann, Leipziger Berichte, Bd. 58 (1906), 
Bd. 62 (1910); W. Burnside, Proc. London Math. Soc. Vol. 25 (1894), p. 94. 
For the general theory H. Poincare, Rend. Palernw, t. 8 (1894), p. 57; 
S. Zarembo., Ibid. t. 19 (1905); E. R. Neumann, Studien tiber die Methock 
von C. Neumattn und G. Robin ZUT LlJaung tIer heiden dwertaufgahen der 
Potentialtheorie. lteipzig (1905); D. Hilbert, Gott. Nachr. 19(4); M. Mason, 
NewhafJen Math. Colloquium (1910); E. Picard, Ann. tU l'Ecole NOT11UJle (1906), 
p.509. 

B. 10 
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good account of the development.s up to 1900 is given in 
Sommerfeld's article in the Encyklopa.die der Mathematischen 
W issffiSChajten. 

§ 51. The transformation of the electromagnetic 
equations. 

The transformations which can be used to transform any 
solution of the wave-equation into another solution or any 
electromagnetic field into another belong to a group which 
is characterised by a relation of the form * 

dx" + dy" + d$" - c'dt" = X' (dx' + dy' + dz' - c'dt'). 
The linear transfonnations belonging to this group are of great 
importance in the modern theory of relativityt; two of the 
non-linear transformations have been mentioned in § 13. 

In addition to these transformations there are other trans­
formations, involving arbitrary functions in their specification, 
which can be applied to certain types of wave-functions, a.nd to 
certain types of electromagnetic fields. There are often two 
families of wave-functions to which a given transformation can 
be applied, when the transformation is of a suitable character; 
each of these families may be defined by a linear relation which 
exists between the wave-function and its derivatives, sometimes 
between the derivatives alone. Some idea of the theory may be 
derived from the examples. It also happens that there is often 
a family of electromagnetic fields to which a given transforma­
tion can be applied and this family is defined by means of two 
linear relations between E and H, which can be interpreted to 
mean that the field is conjugate to some definite electromagnetic 
field or family of electromagnetic fields determined by the 
transfonnation. In some cases these last fields are self-con­
jugate and the transfonnation is applicable to them also . 

• H. Bateman, Proc. Lcmd<m Math. Soc. Ser. 2, Vol. 7 (1909), Vol. 8 (1910); 
E. Cunningham, Ibid. Vol. 8 (1910). 

t For this see A. Einstein, Ann. d. Phy •• Bd. 17 (1905); Laue, Da.o 
Btlati1JiUitlprinzip. Brunswick (1911); E. Cunningh&m, British Association 
IIeporu (1911); H. Minkowski, GUt. NMhr. (1908); E. B. Wilson and G. N. 
Lewis, Proc. Am.er. Acad. of Arts arid &iet/..U3, Vol. 48 (1912), p. 389 ; J.Ishiwar8., 
., Berichti liber die Rela.tivititstheorie," Jakrbuch ckr RadioaktiviUit und 
Ekktronik, Bd. 9 (1912), pp. 560-648; L. Silberstein, T/U Tllearyoj Relativity, 
Macmillan and Co. (1914). 
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The fact that the condition of conj ugacy between two 
electromagnetic fields often implies the existence of one or 
more transformations depending on arbitrary functions, may 
be regarded as of some philosophical interest. 

MISCELLANEOUS EXAMPLES. 

1. Show that the most general periodic solution ~ (valid for aU 
space outside a given closed surface) of the wave-equa.tion is 

where P and Q are arbitrary functions, r is the distance from the element 
of surface as to the point where ~ is estimated, and t i. the angle between 
r and the outward drawn nonnal. Show further that the necessary and 
sufficient condition that the value of ~t given by the same analytical 

expression, should vanish for points inside the surface, is that P = ~~ . 
(Cambr. Math. Tripos, Part II, 1904.) 

2. Let Q be a function which satisfies the wave-equation and is such 
that its differential coefficients of the first order are continuous functions 
of x,!I, z, t within a region oounded by a closed surface S. If either 0 or 

: be given for points on the surface S there is only one function n which 

reduces to a given functionj(x, 'II, z) for t=l". 
(A. E. H. Love, Proc. L<md<m Hath. &C. Sor. 2, VoL I, P. 42; 

J. Hadamard, Bull. de la Soc. Hath. de France, t. 28 (1900).) 

3. If throug~out a specified region of space and a specified interval of 
time u and its differential coefficients of the first order are continuous 
functions of .'t', !I, z and of t, if also the differential coefficients of the 

second order such as ~, ~; are finite and integrable, then" solution of 

the equation 
Ilu+ .. (x, 'II, Z, t)=O 

which is valid for this region is given by the formula 

u (x., 'II., Zo, t.)= L f f {[ul 0: (~) -~ !]i] - ~;; ~] dS 

+ 4~ f ff [~l dxdydz, 

where r'=(x-r.)'+V!-'II.)'+(z-Zo'f, n denotes the normal to dS d .... wn 
into the specified region and the integration is taken throughout this 

10-. 2 
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region and over its bounda.ry. The function (T is supposed to be finite and 
integrable and a quantity within square brackets is calculated at time 

, 
I=t,,- - . 

c (G. Kirchhofl~) 

4. If an electromagnetic field is such that the specified region does 
not contain any charges or convection currents and M=H +iB, the value 
JIO of the vector M at (x., Yo, z", t,,) i. given by the formula 

4"M.'- f f{[Mr ] cos.tx-[M.l 008':;'- [M.] cos;"} ~ 

+ ~a~o f f{[Mr ] co • .tx-[M.]cos ;"'- [M.lcos;" 

A A dS 
+i [M.loosny-i[M.]cosnz} - . , 

5. Prove that in the same circumstances 

,,, aM.o =! ~ ff [.i (2:) -~ (tJ.)] dS 
at" c at" ay 0' az", 

(A. Tonolo.) 

+ifJ[:..(~)+a:ayo m+~ m- ~a~. (~)}S, 
where a=/,[M.]-v [M.], etc. and (A, /" v) are the direction cosines of the 
normal drawn into the region bounded by S. 

(H. M. Macdonald) 

6. If 'U is a wave-function independent of z and periodic in t like eitt 

U ("'O'YO)=2~ f {Ko (iJ:r) ~ -u ~ Ko(ikr)} dB. 

7. A wave-function which satisfies the conditions 

au 
"f(x,y,z) al =g(x, y,z) 

i. given by the formula 
a -u=ai (tf)Hg, 

where 1. ?i denote the mean values of f, 9 respectively over the •• mace of 
a sphere of radius ct having the point x, !I, Z as centre. 

(S. D. PoiSBOn.) 

8. If " ... tisfies~ + ~~ = ~ and has finite second derivatives within 

a suitable domain 

1 a f du 
«("'hYh 1')=2" aI, .";(/, I)' p' u("',y, I) 

where 

+If drr 
2" .";(1,-1)' 

p'=('" -",,)' +(y - y,)', 

a 
p' iii ,,(x, y, I), 
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and rr denotes the area. within the circle cut out 00 the plane T=t by the 
cylinder 

(Parseval and Volterra.) 

9. Prove that if a transformation of variables from (x, '1;' z, t) to 
(i, y, Z, t) is such that 

d<'+dj'+dz-'- c'r!i'=X' (d.x'+dy'+ dz' -c'dl') +(Id.x+mdy+ndz - cpdl) 
(10 d.x + "'" dy + "odz - cpo dl), 

where l2+m2+n2=,r, l02+mo2+n02=Po2j it can be used to transform an 
electromagnetic field (E, H) into another electromagnetic field (E, H) 
with an identical relation of the same type as that used in Ex. 1, Ch. vIn, 
if the two conditions embOOied in the relation 

J/. (mno - "",n)+ M, (nZ. - nJ) +M. (I"", -tom) + iM. (lp, - Z.p) 
+iM, (mp,-"",p) + iM. (np,-nop)=O 

are satisfied. 
Prove that the conditioDs can also be thrown into the form 

<!z.+m"",+nllo+PPo) M.+i(npo+"op) M.+i (mp, + "",p) M. 

and similar equations. 
=10 (IM. + mM.+nM.)+1 (Z.M.+ "",M. + noM.) 

10. In the last example if lo=1, mo=m, no .... n,po= -P, the conditions 
are satisfied if Poynting's vector is in the direction (l, m, n). Show, in 
particular, that the transformation 

i:±ifI=F(X±iy ), • !(r+cl)+o(r-cl), ct !(r+cl)-o(r-ct) 
z+r 

can be applied to an electromagnetic field in which Poynting's vector is 
along the radius from the origin and that in the resulting electromagnetic 
field Poynting's vector is parallel to the axis of z. Apply the transformation 
to the electromagnetic field derived from the functions a, fJ given by 
equations (13), § fi. 

11. If a transformation of coordinates is such that 

d$l+ d'!l+ dZ' - c'r!i'=X' (dx'+dy'+ dz' - c'dl,,), 
where A is a function of oX, '!I, z, t; there is also 8 relation of type 

(x-xo)'+(9- ,%)'+('-%)'-c' O-to)2 • 
=XXo [(x-xo)'+(Y -Yo)'+(z-'o)' -c' (/ - 10)2). 

(J. Liouville and S. Lie.) 

12. Prove that the differential equation 

(;;)' + (~)' + a;)' =1 (i)' 
is covariant for 8 transformation of the type considered in EL 11. 

(S. Lie.) 
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13. Prove that if ~, '1, C, T are functions of x, y, .e, t such that 

«(N. - ?N, ±icrNz) dx+(~N,- (Nz+icrN.) dll 

ECHo 

+ (?N z - ~N.±iCTN,) dz:;:ia (~Mz+?M.+(N,) dt 
is an exact differential and E is 8. quantity whose square may be neglected, 
the value of Nat the point z'~ .. +<~, 1/ ; II+<?, i-z+«, (=t+.,. may 
be calculated by 88Suming that the integral form 

N. (dy& -dzay) +N. (dzax -dxaz)+N, (dxall- d.llax) 
:;: iaN. (dxat - at ax) + iaN. (d.llat - dtall) + iaN, (dzat - dtaz) 

is an invariant for the infinitesimal transformation, it being supposed 
that the function N satisfies equations (10) of § 5. 

14. Let a transformation from the coordinates (z', 1/, z', f) to (X,II, z, t) 
be such that 

dz" + dil" + dz" - c'df' ="fi.. (dx' + d.ll· + dz' - c'dt') 
e' 

+ .,fi,.(ldx+mdll+ndz-c'pdt'f 

24> 
- .j"A(ldx+ mall+ndz- c'pdt) (fdx+m'd.ll+n'dz- c'pdt) 

e 
+ .j"iY'dx+mdll+n'dz-c'p'dt)', 

where 

and a, l, '"' 11, p, l', m', "", p' are functioDs of X, '!I, z, t; then if 8 satisfies 
the equations 

it aIso satisfies 

In the preceding equation we have 

aR aQ aL fJ~ ap _ aR + aN 
a~ il;y - az + at ' az ax at' 

aQ ap aN aL aN aN 
r=ax-il;y+ae' <=ax+ay+a., 

P=mw -min, Q=nl' -n'l, R_lm' -l'm, 
L=lp'-fp, M=mp'-m'p, N~1I.p-n'p. 

Show that in certain cases a function of type >.8 is a oolution of the 
w&ve-equation in consequence of the two equations imposed on 6. Discuss 
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the case of the transfonnation of Ex. 1, p. 139: also the case of a trans~ 
formation which leaves the functions X, Y, Z of EL 7, p. 80 unaltered in 
form. 

15. Prove that if a function V satisfies the equation 
il'V il'V 10'V 
Ox' + oy' ~ (ft 01' , 

vanishes at infinity and has continuous derivatives except at points of the. 
curve u where its normal derivative is discontinuous in such a way that 

OV oV 
On + On'~ - f(Q, I), 

the symbol Q being used to denote the coordinates of a point Q, then 

V(P, 1)~21 f duf" f(Q, I_ ~) d. , 
7T r1' P C ,Js2 p2 

where p2=w+'!l. 
(Levi.Civita, NUO'IJO Cimenlo, 1897.) 

16. Prove that 

1 

1 foo foo f oo eU(z- E)+i.(.-,)+i,(z-,) 

= 2".2 _ 00 _ "" _ .. A~+P.'/.+v2 dAdpdll, 

and deduce that the integral V ~ f f f ~ p (~, ?, "d~d?d' satisfies Poisson'. 

equation ~ V +4n-p (-", y, z}~O. 
(J. Weingarten.) 

17. Prove that the equation ~q,-~t +2 0: is satisfied hy 

1/>=.-' [U(t- I,-r}+ f(t- I, +r)) ~ + r-~'-' f(r) I. (8) "; 

+foo f(r} 1. (8) '!8~]' 
t-tl+r 

where 8"= (t- t, - r'i' -r', r'=(x- "0)'+ lY - Yo)'+ (z - "0)', 

and 10 (8) i. the Bessel's function Jo (i8). -"0' y .. "0 and t, are arbitrary 
com~tants. 

(M. Brillouin, Compt.. Rendus, 1903. 

18. Prove that a solution of the differential equation 

~ il'U il'U 
ot' - o .. ~ = [T 

is given by 

U~foo e''''' [F(A) cos (/VA'-I)+ G (A) sill (t v);q)] dA ; 
_00 VA'-1 
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b . I' f h . ()2V 20V ()2V b tt' hence 0 tam a 80 utum 0 t e equatIOn at2 + at - ax2 y pu 109 

V= U(x,/)e-'. If U f (x), °O~ =g (x) when 1=0, the functions F, 0 may be 

determined by the equations 

f(x) = roo ow, F(X ) tA, g (x) = l~oo"w, 0 (X) tA, 

with the aid of Fourier's theorem. 
(H. Poincare, Comples Rendu., 1893-4.) 

19. Prove that with the conditions of the last example 

f·+t [ 00 ] U(x,/)=Hf(x-t)+f(x+/)]+i .-t f(~) Or -g(~)O ,=od~, 

where O(x,~; I, T)=JoV(/-T)'-(X-~)'. 

(Laplace (1779); E. Picard, Bull .• oc. malh. t. 22 (1894), p. 2.) 

20. Prove that a solution <I>=e-tV of the equation t.<I>=~~+2 ~ 
is given by the following extension of Kirchhoff's formula : 

4Jr V(/" x" 1/0, Zo)= 111[0 o,,~ - v ~~lo dxdydz 

where 

+11 [iV+~(OV + o,,\ +! v] dS 
sphere r=tt r at or} r2 t=o 

- 11.[VO~] t-o +[H~~~ +~) +;'~l-tJd~ 
-1 1.d~ 1:'-,[0(": + °o~ ~)+ v~(Oo~ - ~Ja/; 

1 d 
"=(x-xo)'+(.v-1/0)'+(Z-'o)2, (P=(/- I,)'-r", O=(j dB Io (0) 

and Io (0) i. the Bessel'. function Jo (iO). 

The first integral extend. over the volume enclosed by both the sphere 
r=tl and the surface:!; when this sphere cuts the surface the second 
integral extends over the part of the spherical surface inside 1:, the last , 
two integrals extend over the part of ~ which lies inside the sphere. The 
normal n is supposed to be drawn into the region of integration. If 1: is a 
closed surface and (xo , !to, to) lies outside, the region of integration is the 
space outside :E and inside the sphere. 

(M. Brillouin, Compte. Re:n.dus. 1903.) 

21. Let a, (3, 6) be defined in terms of x, '!/, z by the equations 

1'x=cosacos(!3+k .. ), 1'.1'= cos a sin(tj+k .. ), 1'z=sinac08", 

where r= I-sin a sin c.> and Ie is a constant. A solution of Laplace's 
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equation <l.u= O is then given by u=y F(a,{3) provided F satisfies the 
partial differential equation 

. O'F sin'a+k'cos'a O'F of 3 . 
sm2a 002+4 sin2a ofj2 +2cos2a 00 -4Fsm2a=O. 

(U. Amaldi, Rend. Palermo (1902), p. 1.) 

22. Prove that the following transformations of coordinates lead to 
binary potentials, i.e. to solutions of Laplace's equation of typeu=FU,?): , 

(1) X= ~, Y=T}, z=( ; 
(2) x=~cos (, !I=~sin (, z=7J j 
(3) x =ecos(, !I=~sin(, z=?-m{ ; 
(4) x={sin Eoosf'}, !I ={ sin ~ sin 111 z=(cos~; 

(5) x=EsinTJem,cos(, y= ESillTJe'n'sinC, z=ECOS'1em{ ; 

where m is an arbitl'ary constant. The differential equations satisfied by 
F in cases (3) and (5) are 

O'F ( m')O'F l oF 
o~'+ 1+ E' ~, +~ oE =0 

and 
a'F I iJ2F I of I of 

(l+m'cosec' ?) oE' + f' ~, + ~(2+m'cosec'?) oE + ecot ? ~ =0 

respectively. In the other cases the differential equations are already 
familiar. 

(T. Levi-CivitA, Turin Memoirs, (2) t. 49 (1900).) 

I h d 'fIi . I . iJ2V a'v O'V . t' fied b 23. f tel erentIa equatIon ox! + 0;y2 = ot2 IS sa 18 y an ex-

pression of type V =y f (8) where f is an arbitrary function, 8 must satisfy 
the differential equation 

Prove that it we write fld8o:::::cos adr+ sinad,y-dt, x=tcOSa+u, 
y=tsina+v, there is a rela.tion between a, 'U, v. DisCUB8 the cases in 
which a is a function of 6 and a constant respectively, and obtain the 
general value of )' in each case. 

24. If in the last example u f(a, 8), v=g(a,8) and we write 

of . Og 
Oa =TSIDa, 00= -TCOBa, 

~=.crcos., Og - . UO' M- u 81ll ~, 
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. C2V asv asv 
the new form of the equatIOn iJx" + By' = ill' when a, 8, t are taken as 

independent va.ria.bles is 

il [ u ilV . ilV] il I ilV] ila I-T 000 (a-.) ila +u81n(a-.) ax + il8~ (t-T) at 
il F,~ f .. ~<tr')}.: .... -- ill'l 

+ ~~-T) as-u l/-T)C08(a-.) at J= O. 

Prove that this equation can oolypoosess a solution of type V=1'F (8), 

with F arbitrary, if ~ =0, and in this ca.se 8 is defined by an equation of 

type 
[x - f(8)J' +[y -q(8)J'=[t - T(8)J', 

while the most generaJ value of l' is 

{/( 8)[ x -~] +m(8)[y - q] +n( 8) [t - T ]}l 
1'(8)[ ... -e]+~'(8)[y-q]- ,.'(8)[t-T] , 

where l, m, n satisfy the relation l'+m'=n'. 

25. Show that wave-functions of type 1'/(8) may be derived from 
solutions of Laplace's equation of this type by means of the resoJtB given 
on pp. 111, 114. Hence show that there are wave-functions of type 
1'/(8) which are not particoJar ca.ses of a more genera.! wave·function of 
type 1'/(a, (j) where a, {j are defined by equations (280). 

, 
• 

, 
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