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Preface

This book is an introduction to the theory of lattice-ordered rings. It
is suitable for graduate and advanced undergraduate students who have
finished an abstract algebra class. It can also be used as a self-study book
for one who is interested in the area of lattice-ordered rings.

The book mainly presents some foundations and topics in lattice-ordered
rings. Since we concentrate on lattice orders, most results are stated and
proved for such structures, although some of results are true for partially
ordered structures. This book considers general lattice-ordered rings. How-
ever I have tried to compare results in general lattice-ordered rings with
results in f-rings. Actually a lot of research work in general lattice-ordered
rings is to generalize the results of f-rings. I have also tried to make the
book self-contained and to give more details in the proofs of the results.
Because of elementary nature of the book, some results are given without
proofs. Certainly references are given for those results.

Chapter 1 consists of background information on lattice-ordered groups,
vector lattices, and lattice-ordered rings and algebras. Those results are
basic and fundamental. An important structure theory on lattice-ordered
groups and vector lattices presented in Chapter 1 is the structure the-
ory of lattice-ordered groups and vector lattices with a basis. Chapter
2 presents algebraic structure of lattice-ordered algebras with a distribu-
tive basis, which is a basis in which each element is a distributive element.
Chapter 3 concentrates on positive derivations of lattice-ordered rings. This
topic hasn’t been systematically presented before and I have tried to present
most of the important results in this area. In Chapter 4, some topics of
general lattice-ordered rings are considered. Section 4.1 consists of some
characterizations of lattice-ordered matrix rings with the entrywise order
over lattice-ordered rings with positive identity element. Section 4.2 gives

vii



viii Algebraic Structure of Lattice-Ordered Rings

the algebraic structure of lattice-ordered rings with positive cycles. In gen-
eral lattice-ordered rings, f-elements often play important roles on their
structures. In Section 4.3 we present some result along this line. Section
4.4 is about extending lattice orders in an Ore domain to its quotient ring.
In Section 4.5 we consider how to generalize results on lattice-ordered ma-
trix algebras over totally ordered fields to lattice-ordered matrix algebras
over totally ordered integral domains. Section 4.6 consists of some results
on lattice-ordered rings in which the identity element may not be positive.
In Section 4.7, all lattice orders on 2 x 2 upper triangular matrix algebras
over a totally ordered field are constructed, and some results are given for
higher dimension triangular matrix algebras. Finally in Chapter 5, proper-
ties and structure of ¢-ideals of lattice-ordered rings with a positive identity
elements are presented.

I would like to thank Dr. K.K. Phua, the Chairman and Editor-in-Chief
of World Scientific Publishing, for inviting me to write this lecture notes vol-
ume. I also want to express my thanks to my colleague Ms. Judy Bergman,
University of Houston-Clear Lake, who has kindly checked English usage
and grammar of the book. I will certainly have full responsibility for mis-
takes in the book, and hopefully they wouldn’t give the reader too much
trouble to understand its mathematical contents.

Jingjing Ma

Houston, Texas, USA
December 2013
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Chapter 1

Introduction to ordered algebraic
systems

In this chapter, we introduce various ordered algebraic systems and present
some basic and important properties of these systems.

1.1 Lattices

For a nonempty set A, a binary relation < on A is called a partial order on
A if the following properties are satisfied.

(1) (reflexivity) a < a for all a € A,
(2) (antisymmetry) a < b, b < a implies a = b for all a,b € A,
(3) (transitivity) a < b, b < ¢ implies a < ¢, for all a,b,c € A.

The set A under a partial order < is called a partially ordered set. One
may write b > a to denote a < b, and a < b (or b > a) to mean that a < b
and a # b. If either a < b or b < a, then a and b are called comparable,
otherwise a and b are called incomparable. A partial order < on a set A is
called a total order if any two elements in A are comparable. In the case
that < is a total order, A is called a totally ordered set or a chain. Suppose
that two partial orders, < and <’, are defined on the same set A. Then we
say that <’ is an extension of < if, for all a,b € A, a < b implies a <’ b.

A partial order < on A induces a partial order on any nonempty subset
B of A, that is, for any a,b € B, define a < b in B if a < b with respect to
the original partial order of A. The induced partial order on B is denoted
by the same symbol <.

For a subset B of a partially ordered set A an upper bound (lower bound)
of Bin A is an element z € A (y € A) such that b < z (b > y) for each
b € B. We may simply denote that x € A (y € A) is an upper (lower) bound
of Bby B <z (B>y). Bis called bounded in A if B has both an upper
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bound and a lower bound in A. The set of all upper (lower) bounds of B
in A is denoted by Ua(B) (La(B)). If B = (), where () denotes empty set,
then Uyg(B) = La(B) = A. An element v € B (v € B) is called the least
element (greatest element) of B if u < b (v > b) for each b € B. A subset
B of a partially ordered set may not have a least (greatest) element, but
if there exists one, then it is unique since partial orders are antisymmetric.
An element w € B (z € B) is called a minimal element (mazimal element)
in B if for any b € B, b < w (b > z) implies b = w (b = 2), that is, no
element in B is strictly less (greater) than w (z). A subset of a partially
ordered set may contain more than one minimal or maximal element.
Suppose that L is a partially ordered set with a partial order <. The <
is called a lattice order and L is called a lattice under < if for any a,b € L,
the set Up({a,b}) has the least element and the set Lp({a,b}) has the
greatest element, namely, for any a,b € L, the subset {a,b} has the least
upper bound and greatest lower bound that are denoted respectively by

aVb and aAb

a Vb is also called the sup of a and b, and a A b is also called the inf of a
and b. A nonempty subset B of a lattice L is called a sublattice of L if for
any a,b € B, aVbaANbe B. A lattice L is called distributive if for all
a,b,ce L,

aV(bAce)=(aVb)A(aVe) and aA(bVe)=(aAb)V (aAc),

and L is called complete if each subset of L has both an inf and a sup in
L. In a lattice L, for any a, b, c € L, by the definition of least upper bound
and greatest lower bound, we have

aV({dVe)=(aVvb)Ve and aA(bAc)=(aAb)Ac.

This is true for any finitely many elements in L, and hence we just use
a1 V---Va, and a3 A --- A a, to denote the sup and inf of a1, - ,ay,,
respectively.

The following is an example that illustrates some concepts defined
above. More examples may be found in the exercises of this chapter.

Example 1.1. For a given set A, let P4 = {B | B is a subset of A} be the
power set of A. For two subsets B, C of A, define B < C'if B C C, where
“B C C” means that B is a subset of C'. Then < is actually a lattice order
and for any B,C € Py, BVC =BUC and BAC = BNC. Clearly 0 is
the least element of P4 and A is the greatest element of P4. Moreover, Py
is a distributive and complete lattice (Exercise 3).
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If A contains more than one element, then P4 is not a totally ordered
set since for two different elements a,b € A, the sets {a} and {b} are not
comparable. Also the subset B = {{a}, {b}} of P4 has no least and greatest
element, and each element in B is a minimal element and a maximal element
since {a} and {b} are not comparable.

This is a suitable place to state Zorn’s lemma, which is equivalent to
Axiom of Choice. For the proof and other equivalent forms of the lemma,
see [Steinberg (2010)].

Theorem 1.1 (Zorn’s Lemma). Let A be a nonempty partially ordered
set. If each subset of A which is a chain has an upper bound in A, then A
contains a mazimal element.

1.2 Lattice-ordered groups and vector lattices

In this section we introduce partially ordered groups, lattice-ordered groups,
vector lattices, and consider some basic properties of those ordered algebraic
systems. We will always use addition to denote group operation although
it may not be commutative. Certainly for a vector lattice, the addition on
it is commutative.

1.2.1 Definitions, examples, and basic properties

Definition 1.1. A partially ordered group G is a group and a partially
ordered set under a partial order < such that G satisfies the following
monotony law: for any a,b € G,

a<b = ct+a<c+banda+c<b+cforallced.

A partially ordered group G is a lattice-ordered group (€-group) if the partial
order is a lattice order, and G is a totally ordered group (o-group) if the
partial order is a total order.

In a partially ordered group G, an element g is called positive if g > 0,
where 0 is the identity element of G, and g is called strictly positive if g > 0.
The set Gt = {g € G | g > 0} is called the positive cone of G, and define
—Gt={geG|—ge G} ={ge G|g <0}, which is called negative cone
of G. GT is a normal subsemigroup of G containing 0, but no other element
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along with its inverse, as shown in the following result. From the following
two theorems, positive cones characterize partially ordered groups.

Theorem 1.2. For a partially ordered group G, the positive cone GT sat-
isfies the following three conditions:

(1) GF+ Gt CGT,
(2) g+Gt +(—g) CGT, forall g € G,
(8) Gt n-G* ={0}.

Proof. (1) Let g,f € GT. Then 0 < f < g+ f, 500 < g+ f. Thus
g+ feGt.
(2) Let f € GT. Then 0 = g+(—g) < g+ f+(—g),s0 g+ f+(—g) € GT.
(3) Clearly 0 € Gt N —G™. Suppose that g € Gt N —G*. Then g > 0
and —g >0, s0 g > 0 and g < 0, and hence g = 0. 0

Theorem 1.3. Let G be a group and P be a subset of G which satisfies the
following three conditions:

(1) P+PCP,
(2) g+ P+ (—g) CP forallge G,
(3) PNn—P ={0}, where —P={9g€ G| —ge€ P}.

For any a,b € G, definea <bifb—a € P. Then < is a partial order on
G and G becomes a partially ordered group with the positive cone P.

Proof. For any a € G, a—a =0 € P implies a < a, so < is reflexive.
Suppose that for a,b € G, a < band b < a, thenb—a,a—b € P,sob—a € P
and b—a = —(a—b) € —P. Thus b —a =0 by (3), and hence a = b, so <
is antisymmetric. Now assume that a < b and b < ¢ for a,b,c € G. Then
b—a,c—beP,soby (1) c—a=(c—b)+((b—a)e P. Thusa < ¢, so
< is transitive. Suppose that a < b for a,b € G and g € G. Then from
b—a € P and (2),

(9+b)—(g+a)=g+(b—a)+(-g) €P,
sog+a<g+b Also
(b+g)—(a+g)=bt+g—g—a=b-a€P,

so a4+ g < b+ g. Therefore G is a partially ordered group with respect to
the partial order <. Clearly Gt ={g€ G | g>0} = P. O

Theorem 1.4. Suppose that G is a partially ordered group with the positive
cone P.
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(1) G is an £-group if and only if G = {a—"b | a,b € P} and P is a lattice
under the induced partial order from G.
(2) G is a totally ordered group if and only if G =P U —P.

Proof. (1) Suppose that G is an ¢-group. For g € G, let f = g A 0. Then
—fePandg—feP. Sinceg=(g—f)—(—f),G={a—-b|a,be P}.
It is clear that for any a,b € P, aVb,a ANb € P. Conversely, suppose
that G = {a —b | a,b € P} and P is a lattice with respect to the induced
partial order from G. For any g € G, let g =z —y, x,y € P. Suppose that
z=xVy € P. Weclaim that gvV0 =2z—yin G. It is clear that z—y > 0, g.
Suppose that v € G and u > ¢,0. Then u+y > z,y and u+y € P, so
u+ 1y > z. Then it follows that © > z — y, and hence g V0 = z —y in G.
Similarly to show that g A 0 exists in G. Generally for any g, f € G, it is
straightforward to check that

gV f=g=f)VOl+fandgAf=I[g—f)r0+f
(Exercise 5). Therefore G is a lattice, so G is an ¢-group.
(2) If G = PU—P, then for any g, f € G, either g— f € P or —P, and
hence g > f or ¢ < f. Thus G is a total order. The converse is clear. O

A partially ordered group is called directed if each element is a differ-
ence of two positive elements. An ¢-group is directed by Theorem 1.4(1).
However a partially ordered group which is directed may not be an ¢-group
as shown in Example 1.2(3). A partially ordered group G is said to be
Archimedean if for any a,b € GT, na < b for all n € Z* implies a = 0,
where ZT is the set of all positive integers.

In this book we often use notation (G, P) to denote a partially ordered
group or an f-group with the positive cone P.

We illustrate partially ordered groups and ¢-groups by a few examples.
P will always denote the positive cone of a partially ordered group.

Example 1.2.

(1) Let G be the additive group of Z or Q, or R with the usual order between
real numbers. Then G is an Archimedean totally ordered group.

(2) Consider the group direct product R x R. Let (z,y) belong to P if
either y >0 or y =0 and z > 0. Then R xR is a totally ordered group
which is not Archimedean since for any n € Z*, n(1,0) < (0,1).

(3) Consider R x R again. Define (z,y) € P if ¢ > 0 and y > 0, or
(z,y) = (0,0). Then R x R is an Archimedean partially ordered group
but not an £-group. For instance, (1,0) and (0,0) have no least upper
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bound. We leave the verification of this fact as an exercise to the reader
(Exercise 6). We note that for any (z,y) € RxR, (z,y) = (z,0)+(0,y),
and (z,0), (0,y) are either positive or negative, so (x,y) can be written
as a difference of two positive elements. Thus this partially ordered
group is directed.

Since in this book, we concentrate on lattice orders, in the following we
only prove some basic properties of /-groups.

Theorem 1.5. Let G be an {-group.

(1) For all a,b,c,d € G, c+ (aVb)+d = (c+a+d)V(c+b+d),
c+(anb)+d=(c+a+d)A(c+b+d).

(2) For alla,be G, —(aVb)=(—a)A(=b), —(aAb) = (—a) V (=b).

(3) As a lattice, G is distributive.

(4) For all a,b € G, a—(aAb)+b=aVb. IfG is commutative, then
a+b=(aNb)+ (aVDb), for all a,b e G.

(5) If na >0 for some positive integer n, then a > 0.

(6) If x,y1,- - ,yn are positive elements such that x < y; + - + yp, then
T =x1+-+x, for some positive elements 1, , T, with x; < y;,1 =
1,---,n.

(7) If x,y1,- - ,yn are positive elements, then x A (y1 + -+ + yn) < (z A
Y1)+ A (T Ayn).
Proof. (1) From aVb > a,b, we have c+(aVb)+d > (c+a+d), (c+b+d),
S0
c+(avb)+d>(c+a+d)V(c+b+d).

On the other hand, (c+a+4d), (c+b+d) < (c+a+d)V (c+b+d) implies

a,b< —c+(c+a+d)V(c+b+d) + (—d),
and hence

aVb< —c+(c+a+d)V(c+b+d)+(—d).

Therefore ¢+ (aVb) +d < (c+a+d)V (c+ b+ d). We conclude that
c+(aVvb)+d=(c+a+d)V(c+b+d). Similarly we have c+ (a Ab)+d =
(c+a+d)A(c+b+d).

(2) We have

a,b<aVb=—(aVb) < —a,—-b=—(aVb) < —aA—b,
and

—aN=b< —a,-b=a,b< —(—aA-b)=aVb< —(—aA-b),
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so —aA—b < —(aVb). Therefore —(aVb) = —aA—b. Similarly —(a Ab) =
—aV —b.

(3) For a,b,c € G, we show that a A (bV ) = (a Ab)V (aAc). Let
d=0bVe Then a Ab<aAdimplies 0 < (aAd)— (aAb). Since

—d+(and)=(—d+a)AN0O<(=b+a)A0=—-b+ (aAb),
we have 0 < (aAd)— (aAb) < d—b. Similarly, 0 < (aAd)— (aAc) < d—c.
Thus
0<[(and)—(aAb)]A[(aAnd)—(aAc)]

<(d=b)A(d—0)

=d+ (-bA—c)
=d—d

so [(and) —(anb)]A[(aAd)—(aAc)] = 0. Hence (aAd)—[(anb)V (aAc)] =0,
that is, a A (bV ¢) = (a Ab)V (a Ac).

The distributive property a V (b A c¢) = (a V) A (aV ¢) can be proved
by replacing each element in a A (bV ¢) = (a Ab) V (a A c) with its additive
inverse.

(4) From (1) and (2),

a—(anNb)+b=a+(—aV-b)+b=bVa=aVb,

and if G is commutative, it is clear that a +b= (a V b) + (a A D).

(5) By (1) and mathematical induction,
n(aN0)=naA(n—1aA---ANaAO.

Since na > 0, we have na A 0 = 0, so
n(an0)=Mm-1)aA---ANaAN0=(n—1)(aA0).

Adding the inverse of (n — 1)(a A 0) to both sides, we get a A0 = 0 and

hence a > 0.

(6) Suppose that < y; +y2. Let 21 = x Ay; and z9 = —z1 + 2. Then

r=z1+ 22,0 <2 <y, and

0<zo=-z14+z=(—2V-y1))+z=0V(—y +2) <ys.
Generally, z < y; + -+ + y,, implies z = z1 + 2} with 0 < z; < y; and
0 <2y <ys+ -+ yn by previous argument. Continuing this process or
using mathematical induction, we will arrive at * = 1 + -+ + z,, with
0<z; <yjfori=1,--- n.

(7) By (6) x A (y1 + -+ Yn) = 21 + -+ + 2n, where 0 < z; < y; for
i=1,---,n. Then each z; < 21 +--- 4+ 2, < x, so z; < x Ay;, and hence
A+t yn) K@ Ay) + o+ (T Ayn). O
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Two strictly positive elements a, b of an ¢-group G are called disjoint if
aANb=0. A subset {a1,---,a,} of G is called disjoint if each element in it
is strictly positive and a; A a; = 0 for any ¢ # j.

Theorem 1.6. Let G be an ¢-group and a,b,c,a1,--- ,a, € G.

(1) If a and b are disjoint, and ¢ > 0, then a A (b+c¢) =a Ac.

(2) Ifanb=aANc=0, thena A (b+c)=0.

(3) If {a1,--- ,an} is a disjoint set, then a1 V---Va, =a1+ -+ a,. In
particular, if a Ab =0, thena+b=aVb=>bVa=>b+a, that is,
disjoint elements commute.

Proof. (1) Since a+ ¢ > a,

ahc=aA((anb)+c)=an]la+c)AN(b+c)]=an(b+c).
(2) follows from (1).
(3) By (2)3 (al +-+ an—l) N p = 07 S0
(a1+-Fap1)Van=a1+ - +an_1+an
by Theorem 1.5(4). Continuing this process or using mathematical induc-

tion, we arrive at a1 V---Vap_1Va,=a1+ -+ an_1+ ap. [l

Let G be an {-group. For g € G, the positive part g*, the negative part
g~ and the absolute value |g| are defined as follows.

g =9gV0, g =(-9)VO0, lgl =9V (-g).
Since g+ 9~ =g+ (-gV0)=0Vg=g",g=g"—g".
Theorem 1.7. Let G be an {-group and f,g € G.
(1) lgl=9"+9g".
(2) gt Ng” =0.
(3) If fAg=0, then f=(f—g)" and g=(f —9g)~.
(4) ng™ = (ng)*, ng= = (ng)~, and n|g| = |ng| for any positive integer n.
(5) 1f+9l <|fl+ gl +1f|- If G is commutative, then |f + g < |f] + |g|-
Proof. (1) |g| > g,—g implies 2|g| > 0. By Theorem 1.5(5), |g| > 0.
Then by Theorem 1.5(1), we have
gt +97=(gV0)+(-gV0)

=[(gVv0)+(-g)]V(gV0)

=0V (—g)VgVO

=0Vg|

= |gl.
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(2) Since G is a distributive lattice,
g NG =(gVO)A(=gV0)=(gA—g)VO=—|g|VO=0,
by Theorem 1.5(2) and (3).
(3)If fAg=0, then —fV —g =0, and
f=f+0=f+(-fV-g)=0V(f-g)=(-9)"

andg=(g9—f)"=(f—9)".
(4) By (2) and Theorem 1.6(2), ng™ Ang~ = 0 (Exercise 7). Since
disjoint elements commute, —g~ + ¢~ =gT — g, so

(ng)* = (n(g™ =97 )" = (ng™ —ng™)" =ng*

by (3). Then ng~ = n(—g)* = (—ng)" = (ng)~, and
nlgl =n(g" +97) =ng" +ng” = (ng)* + (ng)~ = |ngl.
(5) Since |f],|g| = 0, f +g < [f[ +[g] < [f]+ |g] + || and
—(f+9) = (=9 + (f) <lgl + I <1+ gl + |1,

SO

[f+9l=+9)V=(f+9) <IfI+Igl+]f]
From the above argument, if G is commutative, then |f + g| < |f| + |g|. O

A subset C of an ¢-group G is called convez if for all g € G and ¢,d € C,
¢ < g < dimplies g € C. A convex f£-subgroup of G is a subgroup of G
which is convex and a sublattice of G. Clearly G and {0} are convex {-
subgroups of GG, and the intersection of a family of convex ¢-subgroups of
G is a convex f-subgroup of G. For a subset X of G, the intersection
of all convex f-subgroups containing X is the smallest convex ¢-subgroup
that contains X, which is called the convex ¢-subgroup generated by X and
denoted by Cg(X) or just C(X).

One method of constructing convex ¢-subgroups is by using a polar that
is defined as follows. For a subset X of an ¢-group G, the polar of X is

Xt ={aecG||a|Al|z|=0,Vr € X}

and the double polar of X is X+t = (X*+)t. Clearly X € X+ and
X+ = X+ (Exercise 8). If X = {z}, then X' and X+ are denoted by
rt and ztt.

Theorem 1.8. Let G be an {-group.
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(1) A subgroup H of G is a convex £-subgroup of G if and only if for any
a€ H,x G, |z| <|a| implies z € H.

(2) For each subset X of G, X~ is a convex (-subgroup of G.

(3) C(X)={9g€ G| |g| <|z1| + -+ |zn| for some x1,--- ,2, € X}.

(4) The subgroup of G generated by a family of convexr (-subgroups is a
convez £-subgroup of G.

Proof. (1) Suppose that H is a convex {-subgroup of G and |z| < |a]
for some a € H and = € G. Since H is a sublattice of G, a € H implies
at,a” € H, and hence |a| = a* +a~ € H. Then that H is convex
implies |z| € H, so 27,2~ € H by the convexity of H again. Hence
rx=a" -2~ € H.

Conversely, let H be a subgroup with the given property. Let a,b € H
and x € G such that a < z < b. Then 0 < x—a < b—a € H, so
x—a € H,and x = (x —a)+a € H. Thus H is convex. Let a,b € H.
Then (b—a)™ < |b—a| implies (b—a)* € HysoaVb=(b—a)t +a € H.
Similarly a A b € H. Therefore H is a sublattice of G, and hence H is a
convex {-subgroup of G.

(2) Let a,b € X*. By Theorem 1.7(5) and Theorem 1.6(2), for any
reX,

la —b[ Afz| < (la] +| = b + [a]) A 2| = (la] + [b] + |al) A || =0,
so la—b|Alz| = 0. Thus a—b € X, that is, X+ is a subgroup of G. Then
it is clear that X is a convex f-subgroup by (1).
(3) Let
H={9eG|lg| <|z1]|+ -+ |zn| for some z1, - ,x, € X}

and a,b € H. By Theorem 1.7(5) again, |a—b| < |a|+ |b|+]a|, soa—b € H,
that is, H is a subgroup of G. Then by (1), H is a convex ¢-subgroup of
G. Clearly X C H and any convex {-subgroup of G containing X contains
H. Hence C'(X) = H.

(4) Let {C; | i € I} be a family of convex ¢-subgroups of G and C
be the subgroup of G generated by {C; | i € I}. Suppose that |g| < ||
for some g € G and ¢ € C. Let ¢ = Z;;l c; with ¢; € U{C; | i € I}.
Then by Theorem 1.7(5), |g| is less than or equal to a sum of elements from
U{C;" | i € I}, so since g*,g~ < |g|, by Theorems 1.5(6), g+, g~ can be
written as a sum of elements from U{C;" | i € I}, s0o g = g — g~ € C.
Thus by (1), C is a convex ¢-subgroup of G. O

For an ¢-group G, we use C(G) to denote the set of all convex ¢-subgroups
of G and partially order C(G) by set inclusion. It is well known and not
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hard to show that the set of all subgroups of a group is a lattice under set
inclusion. For any two subgroups A and B, AANB =ANDB and AV B is
the subgroup generated by AU B.

Theorem 1.9. Let G be an L-group. C(G) is a complete distributive sub-
lattice of the lattice of subgroups of G. Moreover, if A, {A; | i € I} are
convez L-subgroups of G, then AN (VierA;) = Vier(AN A;).

Proof. The intersection of a family of convex /-subgroups is a convex
¢-subgroup, and by Theorem 1.8(4), the subgroup generated by a family
of convex ¢-subgroups is also a convex ¢-subgroup, so C(G) is a complete
sublattice of the lattice consisting of all subgroups of G.

Suppose that A, Ay, Ay € C(G). We show that

AV (A NA) = (AV A) N (AV A).

Let C, C1, and Cs be the subgroup generated by AU (A4; N Az), AU Ay,
and A U As respectively. Since

AU(A1NA)=(AUA) N (AU Ay),
C CCiNCy. Let g € C;NCy. By Theorem 1.8(3), we have
gl < a4+ |zn] and [g] <fga|+ -+ [ym]
for some x; € AU A; and y; € AU Ay. Then
gl < (1| Alyal 4 -+ |z Alyml) + -+ (ol Alyal 4+ + |zn] Alym])

by Theorem 1.5(7). If z; € A or y; € A, then |z;| A |y;| € A. Otherwise
zr; € Ay and y; € Ay implies |z;| A y;| € Ar N Ay, Thus each term
|| Aly;| € AU(A1NA3), so g € C by Theorem 1.8(3). Hence C1NCy C C.
Therefore C = C; N Cy, that is, AV (A1 NA) =(AV A)N(AV Ag).
Finally it is clear that V;er(ANA;) € AN(Vier4;). If g € AN(Vier4;),
then [g| < |ei| + -+ + |cn| with ¢ € UjerA;. By Theorem 1.5(6), |g] =
g1+ +9gn with 0 < g < |ex| for k = 1,--- ,n. Then each g; < |g|, so
gx < |g| A lck] € AN A;, for some A;, implies g, € AN A;, . Tt follows that
g € Vier(AN A4;), and hence we also have AN (VierA;) C Vier(AN Ay).
Therefore AN (\/ieIAi) = viEI(A n Az) ([l

Let G be an f-group and {C; | i € I'} be a family of convex ¢-subgroups
of G. G is call a direct sum of {C; | i € I'}, denoted by G = ®;¢;C;, if G is
generated by {C; | i € I} and C; N C; = {0} for any 4,5 € I with i # j.

Theorem 1.10. Let G be an {-group. Suppose that G is a direct sum of a
family of convex £-subgroups {C; | i € I}.
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(1) If c1 + -+ + ¢n, =0, where ¢; € Cx; and ky,--- ,ky, are distinct, then

each ¢; = 0.
(2) Each element 0 # a € G can be uniquely written as a = c¢1 + -+ + ¢y
with 0 # ¢; € Cy, and ky,--- , k, are distinct. Moreover a > 0 if and

only if each c¢; > 0.

Proof. (1)Ifeci+---+ ¢, =0, then ¢ = —¢, — -+ — ¢o implies that
c| € Ckl N (Ck2 Voo \/Ckn)
By Theorem 1.9,
¢1 € (Coy NCly) V-V (Cxy, NC, ) ={0}.
Thus ¢; = 0. Similarly ¢co =---=¢, =0.

(2) For 0 < a € C; and 0 < b € C; with i # j, since C; N C; = {0},
aANb=0,s0a+b=b+a by Theorem 1.6(3). Thus elements in C; and C;
commute (Exercise 9). It follows then that each @ € G with a # 0 can be
written as a = ¢; + -+ + ¢, with 0 # ¢; € C, and ky,--- , k,, are distinct.
The uniqueness follows from (1).

Clearly if each ¢; > 0, then a > 0. Suppose that a =c¢; +---+ ¢, > 0.
Then —c; < ca+ - +¢p, € Ok, V- -VCy, implies (—c1)T < (ca+--+cp)t €
Ci, V-V Cy,, s0o (—c1)" € Ck, V-V Ck,. Then by Theorem 1.9, we
have

n?

(=)™ € (Cr, NCyy) V---V (Cy, NCy,) = {0},
5o (—c1)™ =0, and hence ¢; > 0. Similarly ¢c3 >0, , ¢, > 0. a

Let G be an /-group and N be a normal convex ¢-subgroup of G. Define
the relation on the quotient group G/N by
r+ N <y+ N if z <y+ z for some z € N.
The relation is well-defined since if x1+N = x+ N and y; + N = y+ N, then
x = x1+cand y = y;+d for some ¢,d € N, sox = x1+¢ < y+2z = y1+(d+2)
implies 1 <y; + (d+ 2z —¢) withd+ 2z —c€ N. Thus ;1 + N <y; + N.
It is clear that the relation defined above is reflexive and transitive.
Suppose that  + N <y+ N and y+ N < x4+ N for some z,y € G. Then
r<y+zand y < z+ w for some z,w € N, so —y+z < z € N and
—x +y < w implies that
|—y+z=(-y+z)V(-—z+y) <zVweN.
It follows that —y +x € N, and hence x + N = y + N, that is, the relation
is also antisymmetric. Therefore it is a partial order on G/N.

Theorem 1.11. G/N is an (-group with respect to the partial order defined
above.
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Proof. Suppose that t + N <y+ N and z+ N € G/N. Thenz < y+a
for some a € N. Since z +z < (2 + y) + a,

(z+N)+(x+N) < (z+N)+ (y+ N),
and since

r+z<y+ta+z=(y+z2)+(—z+a+2)
with —z+a+ 2z € N,

(z+N)+(z+N) < (y+N)+(z+N).

Hence G/N is a partially ordered group.
We show next that

(x+N)V(y+N)=(zVy)+ Nand (t+ N)A(y+N)=(zAy)+ N

for any x,y € G. Clearly z+N,y+N < (zVy)+N. Let 2+ N,y+ N < 24+ N
for some z € G. Then x < z+4+a and y < z + b for some a,b € N, so
—z+z<aand —z4+y<band (—z+2z)V(—2+y) <aVbe N. Then it
follows that x Vy < z+ (a Vb), and hence (xVy)+ N < z+ N. Therefore
(x+N)V(y+N)=(zVy)+ N. Similarly (z+N)A(y+N) = (zAy)+ N.
Hence G/N is an f-group. O

The ¢-group G/N with the lattice order defined above is called the
quotient £-group of G by N.

Let G and H be f-groups. A group homomorphism f : G — H is
called an £-homomorphism if f also preserves sup and inf, namely, for any
a,beq,

flavb) = f(a) v f(b) and f(aAb) = f(a) A f(D).

For example, for an ¢-group G and a normal convex ¢-subgroup N, it is
easy to check that the group homomorphism ¢ : G — G/N defined by
¢(a) = a+ N is an £-homomorphism called the projection (Exercise 11).
An (-isomorphism is a group isomorphism that preserves sup and inf. If
there exists an f-isomorphism between two f-groups G and H, then they
are called ¢-isomorphic and denoted by G = H.

Theorem 1.12. Let G and H be {-groups and f : G — H be a group
homomorphism. Then f is an £-homomorphism if and only if t ANy = 0

(zVy=0)= f@)Afly) =0 (f(z)V f(y) =0) for all z,y € G.
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Proof. Suppose that x Ay = 0 implies f(z) A f(y) =0 for all z,y € G.
Let a,b € G and a Ab=c. Then (a —¢) A (b — ¢) = 0 implies
fla=c) A f(b—c) = (fa) = f(c)) A (f(b) = f(c)) =0,
so f(a) A f(b) = f(c). We also have that
flavb) = f(=(=an-b))

= —(f(=an-D))
= —(=f(a) N=£(b))
= f(a) v f(b).

O

A totally ordered field is a field whose additive group is a totally ordered
group and product of two positive elements is still positive. For instance,
the field Q of all rational numbers and the field R of all real numbers are
both totally ordered fields with respect to usual order between real numbers.
Let F' be a totally ordered field and a € F. Then either a > 0 or a < 0, so
a? > 0 in either case. Thus the identity element 1 is positive since 1 = 12.
A consequence of this simple fact is that the field C of all complex numbers
cannot be made into a totally ordered field since i = —1, where i = /—1
is the imaginary unit.

Let F' be a totally ordered field and V' be a left (right) vector space
over F. V is called a wector lattice over F' if V is an f-group and for all
a€Ftandve VT ave VT (va € V). We note that the addition on
V is commutative. In case that F' = R, a vector lattice is usually called a
Rieze space. A convex vector sublattice W of V is a subspace of V and a
convex f-subgroup of V. An element o € F'* is called an f-element on V
ifvAu=0= avAu =0 for all v,u € V. More generally, for a unital
totally ordered ring T and a left (right) module M over T, M is called an
¢-module if its additive group is an ¢-group and for any o € TT, 2 € MT,
ar € M (za € MT). An ¢-module is called an f-module if each element
in T is an f-element on M.

Theorem 1.13. Let V' be a vector lattice over a totally ordered field F.

(1) Each positive element of F is an f-element on V, that is, V is an
f-module over F. Thus any polar is a convex vector sublattice.

(2) Suppose thatvy,--- ,vx € V are disjoint. Then for any ay,--- ,ax € F,
vy + -+ + agvg > 0 if and only if each a; > 0.

(8) Any disjoint subset of V' is linear independent over F'.
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Proof. (1) For any 8 € F with 8 > 0, since F is totally ordered and
1>0, 571 >0. Suppose that 0 < v € F. If v Au =0, for v,u € V, then
0<(a+1)HavAru) < (a+1)H(a+DvA(a+1)u) <vAu=0,
and hence (o + 1)7!(av Au) = 0 and av A u = 0. Therefore each positive
element of F' is an f-element on V. For X C V, we already know that
X1+ is a convex f-subgroup. X' is also a subspace of V over F since

Va € F,v € V, |av| = |a||v| (Exercise 17) and V is an f-module over F.

(2) If each «; > 0, then ajvy + --- + agvy > 0. Conversely suppose
that aqvy + -+ + agvr > 0 and suppose that oy < 0,...,a, < 0, and
n+1 > 0,...,ap > 0, where 1 < n < k. Then —aqv1 — ... — apv, <
Qpt1Vn+1 + - - - + agug, and hence by Theorem 1.5(7), we have

—a1v; = (—aqv) A (—aqvg — ... — Q)
a101) A (Qpt1Vng1 + - -« + Qpog)

< (-
< (=1 A Qpg1Vng1) + ..o+ (—aqvr A agog)
0

by (1) since v1 Avpy1 = ... = v1 Avg = 0. Thus —ayv; =0, so a3 = 0,
which is a contradiction. Thus each o; > 0.
(3) This is a direct consequence of (2). O

1.2.2 Structure theorems of £-groups and vector lattices

In this section, we prove some algebraic structure theorems for ¢-groups
and vector lattices that contain basic elements. This theory was initially
developed by P. Conrad and it plays important roles in study of ¢-groups.

Let G be an f-group. An element 0 < a € G is called a basic element if
for any c¢,d € G, ¢,d < a implies ¢ and d are comparable, that is, either
¢ > dor c<d A nonzero polar is called a minimal polar if it does not
contain any nonzero polar.

Theorem 1.14. Let G be an (-group.

(1) For 0 < a € G, a is basic if and only if a*+ is totally ordered.

(2) Let a,b be basic elements. Then either a ANb =0 or a*+ = b+t and
att = bt if and only if a and b are comparable.

(8) For 0 < a € G, a is a basic element if and only if for any 0 < b < a,
bJ_J_ _ aJ_J_‘

(4) For 0 < a € G, a is a basic element if and only if a** is a minimal
polar.
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Proof. We first note that for any = € G, =+ is a convex f-subgroup by
Theorem 1.8(2).

(1) Suppose that a is basic. Let z,y € a** and 2 Ay = 0. Then
(anz)A(aAy) =0 implies that aAz =0or aAy = 0 since a Az and a Ay
are comparable. Thus z € at ory €at,s0oz=2Ax=00ry=yAy = 0.
4L is totally ordered (Exercise 12). Conversely, suppose that a*+
is totally ordered and let 0 < =,y < a. Then z,y € a*t implies that  and
y are comparable, so a is basic.

(2) Suppose that a Ab # 0. Let 0 < z € a*+. Take 0 < y € b .
Then y A b = 0 implies that (z Ay) A (@ Ab) = 0. Since z Ay and a Ab
are both in a** that is totally ordered by (1), we must have z Ay = 0 or
aAb=0. SinceaAb#0,zAy=0,s0xc b+ and at*+ C b++. Similarly
bt C att. Therefore, att+ = b+,

If a*+ = b+, then a,b € a** implies that @ and b are comparable by
(1). Conversely, if a and b are comparable, then a A b # 0, so a*+ = b+,

(3) If a is basic and 0 < b < a, then b is also basic, so b+t = a*t.
Conversely, suppose that the condition is true and 0 < z,y < a. Let
z=xz—xAyandw=y—2Ay. Then zAw =0 and z,w € a*t. Suppose
that z # 0. Then 0 < z < @ implies that z++ = a'+, so w € z++. On the
other hand, z Aw = 0 implies that w € 2z, and hence w Aw = 0, so w = 0.
Thus y < . Similarly, if w # 0, then « < y. Therefore a is basic.

(4) Suppose that at is a minimal polar and 0 < b < a. Then 0 #
btt Catt) so b+t = att. Therefore a is basic by (3). Now suppose that
a is basic and {0} # X+ C a** for some X C G. Take 0 < z € X .
Then z € a+* implies that z is also basic. Thus 2+ = a** by (2). Hence
att = gt+ C x4+t = XL7 so X1+ = at+. Therefore at= is a minimal

polar. O

Hence a

Corollary 1.1. Let G be an f-group and a € G. If a is a basic element,
then at is a mazimal convez totally ordered subgroup in the sense that for
any convex totally ordered subgroup M of G if a™+ C M, then M = a*+=+.

Proof. Suppose that M is a convex totally ordered subgroup containing
att and 0 < g € M. Since M is convex and totally ordered, g is basic
and hence a,g € M implies that a*+ = g** by Theorem 1.14(2). Thus
geEatt,Vge M+, so M = at+t. O

Let G be an f-group. A subset S of G is called a basis if

(i) each element in S is basic, and
(ii) S is a maximal disjoint set of G.
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Equivalently a subset S of G is a basis if S is a disjoint set of basic
elements with S+ = {0} (Exercise 13). In this book, terminology basis
means the basis defined above. For the basis of a vector space we always
call it a vector space basis.

Theorem 1.15. Let G be an £-group.
(1) G has a basis if and only if G satisfies

(*) each 0 < g € G is greater than or equal to at least one basic
element.

(2) If G satisfies the following condition (C'), then G has a basis.

(C) Each 0 < g € G is greater than at most a finite number of
disjoint elements.

Proof. (1) If G = {0}, then the result is trivially true. Let G # {0}.
Suppose that S is a basis for G. Then S # (). For 0 < g € G\ S, there is
an a € S such that a A g > 0 since S+ = {0}. Then a A g is basic since a is
basic, and a A g < g. Conversely suppose that G satisfies (). Let

M ={A| Ais a disjoint set of basic elements of G}.

Clearly M # @ since if a is a basic element of G, then {a} € M. M is
a partially ordered set with respect to set inclusion. Let {4; | i € I} be
a chain in M, then it is easy to check that U;c;4; € M. So by Zorn’s
Lemma, M has a maximal element, say S. We show that S is a basis. To
this end, we just need to show that S+ = {0}. Suppose that 0 < g € S+
and g > b for some basic element b. Then b € S+, so S C S U {b} and
SU{b} is disjoint, which contradicts with the fact that S is maximal in M.
Hence S+ = {0} and S is a basis of G.

(2) We show that () in (1) is satisfied, so G has a basis. For 0 < g € G,
consider T = {x € G| 0 < x < g}. If T contains no disjoint elements, then
T is totally ordered (Exercise 14), so ¢ is basic. Suppose that T' contains
n disjoint elements z1,--- ,x, and any n+ 1 elements in T are not disjoint
for some positive integer n. We claim that each x; is a basic element for
i=1,---,n. Suppose that 0 <y, z < x; and y, z are not comparable. Let
yAz =w. Then (y—w)A(z—w) = 0 with (y—w) > 0 and (z—w) > 0, and
hence the set {(y — w), (z —w), 1, ,Ti—1,Tit1, - , 2} C T is disjoint
since (y — w), (z — w) < z;, which is a contradiction. Thus y, z must be
comparable, so z; is basic. Therefore each 0 < g € G is greater than or
equal to a basic element. O
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For finite-dimensional vector lattices, condition (C') in Theorem 1.15 is
satisfied.

Corollary 1.2. Let V be a vector lattice over a totally ordered field F. If
V s finite-dimensional over F' as a vector space, then V satisfies (C) in
Theorem 1.15, and hence V' has a basts.

Proof. By Theorem 1.13(3), any disjoint subset of V is linearly inde-
pendent over F', then that V is finite-dimensional over F' implies that V'
contains at most a finite number of disjoint elements, so condition (C) in
Theorem 1.15 is satisfied. O

A vector lattice V' over a totally ordered field F is called Archimedean
over F if for a,b € VT, aa < b for all @ € F'T implies that a = 0. Certainly
if V' is Archimedean, then V' is Archimedean over F' (Exercise 15). However
if F' is not a totally ordered Archimedean field, then the fact that V is
Archimedean over F' may not imply that V' is Archimedean. For instance,
any totally ordered field that is not Archimedean is an Archimedean vector
lattice over itself.

Theorem 1.16. Let G be an (-group.

(1) If A and B are convex totally ordered subgroups of G, then A C B or
AD B or AnB = {0}.

(2) If A and B are mazimal convex totally ordered subgroups of G, then
either A= B or AN B = {0}.

Proof. (1) Suppose A ¢ B and A 2 B. Then there exist 0 <a € A\ B
and 0 < b € B\ A. Since A and B are convex, a Ab € AN B. Let
0<ce AN B. Since ¢,a € A, ¢ and a are comparable, so it follows from
a ¢ B that ¢ < a. Similarly, ¢ <b. Thus c < a Abforany 0 <ce ANB.
Take ¢ = 2(a Ab) € AN B. Then 2(a A b) < (a A b) implies that a A b =0,
so for any 0 < ce€ AN B, ¢ =0. Therefore AN B = {0}.

(2) If A and B are maximal convex totally ordered subgroups, then
A C Bor A D B implies that A = B. Thus by (1), we have either A = B
or An B = {0}. O

We note that Theorem 1.16 is true for convex totally ordered subspaces
of a vector lattice over a totally ordered field.

The following Theorem 1.17 is the structure theorem of vector lattices
we need when we consider the structure of a class of ¢-algebras in chapter
2, and the result is actually true for /-groups.
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For a vector lattice V' over a totally ordered field F, let {V; | i € I'} be
a family of convex vector sublattices of V' over F'. Define

ZV‘ 2{1}1+"'+’Uk | vj erj}.

il
We leave it as an exercise to verify that ., V; is the convex vector sublat-
tice of V' over F generated by {V; | i € I'} (Exercise 18). The sum ), ; V;
is called a direct sum, denoted by @®;crV;, if V; N V; = {0},Vi # j.

We have used the same symbol @;c; to denote the direct sum of convex
{-subgroups of an ¢-group before. Later we will also use it to denote the
direct sum of ¢-ideals of an ¢-ring. The reader should be able to tell the
meaning of the symbol from context without confusion.

Theorem 1.17. Let V be a vector lattice over a totally ordered field F'. If
V' satisfies condition (C) in Theorem 1.15 and no mazimal convex totally
ordered subspace of V is bounded above, then V is a direct sum of maximal
convex totally ordered subspaces over F'.

Proof. By Theorem 1.15(2), V has a basis S. For each s € S, st is
a maximal convex totally ordered subspace of V' by Theorem 1.14(1) and
Corollary 1.1. We show that V is a direct sum of s**, s € S. Since for
s,t € S, if s # t, then st Nttt = {0} by Theorems 1.14(2) and 1.16(2),
we just need to show that V is a sum of s*+, s € S.

Let 0 < a € V. By condition (C), we may assume that there are k
disjoint basic elements vy, - -+, vg less than or equal to a for some positive
integer k, and «a is not greater than or equal to k+1 disjoint basic elements.
Since St = {0}, for each i = 1,--- ,k, there exists an s; € S such that
vi A s; # 0. We show that a € s+ + -+ s+, Fori = 1,--- |k, each
sl
exists 0 < z € sit such that * £ a since s; is not bounded above.
Let a Az = a;. Then (a —a;) A(xr —a;) =0and 0 < x —ay € s11, so
((a—ay)As1)A(x—ay) = 0 implies (a—a1)As; = 0 since (a—ai)Asy € s1+
that is totally ordered. Let a —a; = a}. Then a = a; + a} with a; € s{*
and aj As; = 0. Again there exists 0 < y € s3+ such that y £ a). Suppose
that aj Ay = aa. Then (a} —a2) A (y—az) = 0 with y —ag > 0, so similarly
(a} —az) Asy = 0. Let @} — ay = a. We have a) = ag + a}, with ap € s3-+
and a4 Asy = 0. Hence a = aj +as+a), with abAs; = 0 and abAse = 0 since
ay < af. Continuing this progress, we have a = a1 +az + - - - + ai + aj, with
ap ANsy =---=aj Asp=0.If aj, > 0, then there exists an element ¢ € S
such that aj, At # 0, so aj, At < a is a basic element. Thus (aj, At) Av; # 0

is a maximal convex totally ordered subspace of V', and hence there
1L
1
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for some 1 < j < k. By Thoerem 1.14, (aj, At)1+ = vjLL = Sjll, and hence
ap At and s; are comparable, which is a contradiction since aj, A s; = 0.
Hence aj, =0 and a = a; +ag+---+ay € st~ +- -+ s+, This completes
the proof. O

1.3 Lattice-ordered rings and algebras

In this section, we introduce lattice-ordered rings, provide examples, and
prove basic properties of them. All rings are associative, and a ring may
not have the identity element with respect to its multiplication.

1.3.1 Definitions, examples, and basic properties

A partially ordered ring is a ring R whose additive group is a partially
ordered group and for any a,b € R, if a > 0 and b > 0 then ab > 0. The
positive cone of a partially ordered ring R is the positive cone of its additive
partially ordered group: RT = {r € R | r > 0}. The following result is the
ring analogue of Theorems 1.2 and 1.3. We leave the proof as an exercise
(Exercise 19).

Theorem 1.18. Let R be a partially ordered ring with positive cone P =
R*. Then

(1) P+PCP,
(2) PPC P,
(3) PN —P = {0}.

Conversely, if R is a ring and P is a subset that satisfies the above three
conditions, then the relation defined by for all x,y € R, v <y ify—x € P
makes R into a partially ordered ring with positive cone P.

A partially ordered ring R is called a lattice-ordered ring (¢-ring), or a
totally ordered ring (o-ring) if the partial order on R is a lattice order, or
a total order. Certainly an o-ring is an f-ring. A ring is called unital if
it has the multiplicative identity element, denoted by 1, and an f-ring is
called f-unital if it is unital and 1 > 0. We will see later that a unital ¢-ring
may not be f-unital. A lattice-ordered field (¢-field) or a totally ordered field
(o-field) is a field, and an f-ring or an o-ring. Similarly a lattice-ordered
division ring or a totally ordered division ring is a division ring, and an
{-ring or o-ring. Let F' be a totally ordered field. A lattice-ordered algebra
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(£-algebra) A over F is an algebra and an ¢-ring such that for all a € F,
a€ A, a>0anda > 0implies aa > 0. So with respect to the addition and
scalar multiplication, A is a vector lattice over F. An (-ideal of an f-ring
is an ideal and a convex ¢-subgroup. By Theorem 1.8(1), an ideal I of an
f-ring R is an (-ideal of R if and only if |r| < |z|, for any x € T and r € R,
implies r € I. Similarly define left ¢-ideal and right ¢-ideal for an f-ring. It
is clear that an ¢-ring itself and {0} are (left, right) ¢-ideals. An ¢-ring R is
called (-simple if it contains no other ¢-ideals except R, {0}, and R? # {0}.
An (left, right) ¢-ideal of an l-algebra A is an (left, right) ¢-ideal of the
l-ring A and also a subspace of A over F'. Clearly the intersection of any
family of (left, right) ¢-ideals is an (left, right) ¢-ideal. Let X be a subset of
an f-ring R, (X) denotes the intersection of all ¢-ideals of R containing X
and (X) is called the ¢-ideal generated by X. If X = {z}, then (x) is used
for (X).

For f-rings R and S, an {¢-homomorphism from R to S is a ring
homomorphism and a lattice homomorphism from R to S. For an /-
homomorphism ¢ : R — S of two f-rings, define the kernel of ¢ as
Ker(p) = {r € R | ¢(r) = 0}. Then Ker(p) is an ¢-ideal of R. An ¢-
isomorphism between two ¢-rings is a one-to-one and onto /~-homomorphism,
and two f-rings R and S are called £-isomorphic, denoted by R = S, if there
exists an ¢-isomorphism between them. Let I be an ¢-ideal of an ¢-ring R.
Then R/I becomes an {-ring and the elements in R/I are denoted by a+1,
a € R (Exercise 20). The projection 7 : R — R/I is an ¢{-homomorphism
between two f-rings. An (-ring R is called Archimedean if its additive ¢-
group is Archimedean, and an f-algebra A over a totally ordered field F' is
called Archimedean over F' if A is Archimedean over F' as a vector lattice
over F.

For a family of ¢-rings {R; | ¢ € I}, the cartesian product IL;c;R; =
{{a;} | a; € R;}, where {a;} denotes a function from I to UR; that maps
each i to a;, becomes an f-ring with respect to the addition:

{ai} + {bi} = {ai + b},
the multiplication:
{ai}{bi} = {abi},
and the order:
{a;} > 0if each a; > 0 in R;.
Then II;c 1 R;, together with those operations, is called the direct product of
the family {R; | ¢ € I}. The direct sumof {R; | i € I} is ®;erR; = {{a:} €
;e R; | only finitely many a; # 0}.
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The following result gives us simple methods to construct lattice orders
on rings to make them into ¢-rings and to construct new lattice orders from
existing lattice orders. For a unital ring R, an element wu is called a unit if
u has an inverse with respect to the multiplication of R.

Theorem 1.19.

(1) Let A be an algebra over a totally ordered field F' and let B be a vector
space basis of A over F. If for all a,b € B, ab is a linear combination
of elements in B with positive scalars in F', then A can be made into
an £-algebra by defining an element of A is positive if each scalar in its
unique linear combination of distinct elements in B is positive.

(2) Suppose that R is a unital ¢-ring (¢-algebra) with positive cone P and
u > 0 is a unit. Then uP is the positive cone of a lattice order on R
to make it into an l-ring (£-algebra).

Proof. (1) A linear combination of vectors over F' is called a positive
linear combination if each scalar in the combination belongs to F . Let
P consist of all positive linear combinations of vectors in B. Then three
conditions in Theorem 1.18 are satisfied, and F'™P C P. For a € A, a can
be uniquely written as a = ayv1 +- - -+ ag vy for distinct v; € B, and scalars
a; € F. Then it is straightforward to verify that

aAN0= (a1 A0y + -+ (ag AO)uy
and
aV0= (a1 V0O + -+ (ar VO0)vg

(Exercise 21). Thus the order is a lattice order and A is an f-algebra over
F.

(2) Obviously wP is closed under the addition of R, and since u € P, uP
is also closed under the multiplication of R. Finally that «P C P implies
(uP) N —(uP) = {0}. Thus R is a partially ordered ring with the positive
cone uP. To see that uP is the positive cone of a lattice order, we consider
the mapping f : R — R defined by for all a € R, f(a) = ua. Since u is a
unit, f is a group isomorphism of the additive group of R. For any a,b € R,

aNwpy b= f(f" (@) Ap f71 (D) =u(u""a Apu'b),
where a A, p) b is the greatest lower bound of a and b with respect to uP,

and v~ 'aApu~'b is the greatest lower bound of u~'a and u~1b with respect
to P (Exercise 22). Similarly,

aVupy b= f(f"(a)vp f7' (1) =u(uraVvpu'b).
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Finally it is clear that if P is the positive cone of an ¢-algebra, then uP is
also closed under positive scalar multiplication. O

A vector space basis B of an algebra is called a multiplicative basis if for
any a,b € B, ab € B or ab = 0. By Theorem 1.19(1), if an algebra A has
a multiplicative basis, then A can be made into an f-algebra in which B is
a basis, that is, B is a disjoint set of basic elements with B+ = {0}. For
instance, standard matrix units e;;, 1 < 4,7 < n is a multiplicative basis
for matrix algebra M, (F') over a totally ordered field F.

More generally, for an algebra A over a totally ordered field F', a vector
space basis B is called a multiplicative basis over F* if for any a,b € B,
ab = ac for some a € FT™ and ¢ € B. Similarly by Theorem 1.19(1) again,
if A has a multiplicative basis over F'*, A can be made into an f-algebra
over F with B as a basis. For instance, in the field A = Q[v/2], B = {1,/2}
is a multiplicative basis over Q.

An important application of Theorem 1.19(2) is constructing lattice
orders on an f-unital ¢-ring such that 1 is not positive. For an f-unital
f-ring R, take a positive unit u such that v~ is not positive. Then R is an
(-ring with the positive cone uR" and since v ¢ Rt, 1 € uR™, so R is
not f-unital with respect to this lattice order.

Now we present some examples of /-rings.

Example 1.3.

(1) Suppose that R is an ¢-ring and M, (R) is the n x n matrix ring over
R with n > 2. Define a matrix (a;;) > 0 if each a;; > 0 in R. Clearly
three conditions in Theorem 1.18 are satisfied and the product of a
positive scalar and a positive matrix is still positive. It is easily verified
that for any two matrices (a;;) and (b;;),

(aij) A (biy) = (ai; Abiy) and (ai;) V (biy) = (ai; V byj).

Hence M, (R) is an /(-ring with positive cone M, (R"). This lattice

order on M, (R) is called the entrywise order. Clearly if R is f-unital,

then identity matrix is positive with respect to the entrywise order. For

a totally ordered field F', M, (F') is an ¢-algebra over F' with respect to

the entrywise order.

Let e;; be the standard matrix units in matrix rings, namely, the (i, j )th
entry in e;; is 1 and other entries in e;; are zero. As we mentioned
before, {e;; | i,j =1,---,n} is multiplicative and hence it is a basis of
M, (F) over F with respect to the entrywise order.
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Let f be the matrix f = €11 + €12 +€e21 +e33 + -+ €enn- Then
f c Mn(F+) and fil = e12 + €31 —€xg+ €33+ -+ €enn ¢ Mn(FJr)
Thus by Theorem 1.19(2), fM,,(F'1) is the positive cone of an f-algebra
M, (F) over F in which 1 % 0.

Suppose that G is a group (semigroup) and F' is a totally ordered field.
Let F[G] = {>_ aigi | a; € F, g; € G} be the group (semigroup) algebra
over F. In this case the operation on G is written as multiplication.
Define >~ a;g; > 0 if each o; > 0, that is, the positive cone is FT[G].
Then F[G] is an f-algebra over F, and the lattice order is called the
coordinatewise order. Clearly 1G = {1g | g € G}, where 1 is the identity
element of F, is a basis and also a vector space basis of F[G] over F.

A difference between examples (1) and (2) is that the identity matrix
in M, (F) is not a basic element but the identity element in F[G] is
basic.

Let F be a totally ordered field and R = F[x] be the polynomial ring
over F. Except the lattice order on R defined in (2), we consider some
other lattice orders on R. Let p(x) = apz™+- - 4apz® € Rwitha; € F,
0 <k <mn,and ag,a, # 0. If we define p(z) > 0 by a,, > 0, then R is a
totally ordered algebra and the ordering is called lexicographic ordering.
If we define p(z) > 0 by a;, > 0, then R is also a totally ordered algebra
and the ordering is called antilexicographic ordering. Both total orders
are not Archimedean over F' (Exercise 23).

Let’s construct more lattice orders on R = F[z]. Fix a positive integer
n, define the positive cone P, on R as follows. For a polynomial p(x) =
apz® 4+ --- 4+ ag of degree k. If k < n, define p(x) > 0 if ar, > 0
and a9 > 0, and if k& > n, then define p(x) > 0 if ap > 0. Then
three conditions in Theorem 1.18 are satisfied and F*P, C P,, so
R is a partially ordered algebra over F. Moreover, for a polynomial
p(r) = apa® + ap_125¥ 1 + -+ + ayz + ap of degree k,

p(z), ifk>n,a, >0,

0, if k >mn,ar <0,

p(z), ifk <n,ar >0,a0 >0,

0, if k<mn,ar <0,a9 <0,

p(x) —ag, ifk<mn,ax >0,a0 <0,

ag, ifk<n,ar <0,a9 > 0.

We leave the verification of these facts to the reader (Exercise 24).
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Then R becomes an {-algebra over F' that has squares positive in the
sense that for each r € R, r2 > 0.

1.3.2 Some special £-rings
Let R be an f-ring. An element a € RT is called a d-element if
forall z,y € R,x Ay=0 = az Aay = za Aya =0,
and a is called an f-element if
forallz,y e R,x ANy=0 = ax Ay=za Ay =0.

Each f-element is clearly a d-element. An ¢-ring R is called a d-ring (f-ring)
if each element in R is a d-element (f-element). Define

d(R) ={a € RT | ais a d-element}
and
f(R)={a € R | |a| is an f-element}.

We may also define left and right d-element. An element a € RV is
called a left d-element (right d-element) if

foralz,ye RixaAy=0 = axAay =0 (za Aya =0).

Example 5.1 shows that generally a left d-element may not be a right d-
element. Left and right f-element may be defined similarly.

Theorem 1.20. Let R be an £-ring.

(1) An element a € R is a d-element if and only if for all z,y € R,
a(z ANy) =azx Aay and (z Ay)a = za A ya.

(2) Suppose that a € R is invertible, then a is a d-element if and only if
a~t e Rt.

(8) For all z,y € R, |xy| < |z||ly|, and the equality holds if and only if R
s a d-ring.

(4) The d(R) is a convex subset of R that is closed under the multiplication
of R, but generally d(R) is not closed under the addition of R.

(5) f(R) is a convex L-subring of R and an f-ring.

(6) R is an f-ring if and only if for each a € R, a* is an (-ideal of R.

(7) If R is a d-ring (f-ring) and I is an {-ideal of R, then R/I is a d-ring
(f-ring).
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Proof. (1) Suppose that a is a d-element. Let z,y € R. Then (z — (x A
Y) A (y — (x Ay)) =0 implies

a(x—(zAy)) Naly — (@ Ay)) = (- (Ay))aA(y—(zAy))a=0,

so ax A ay = a(x Ay) and za Aya = (z A y)a by Theorem 1.5(1). The
converse is trivial.

(2) Let 1 be the identity element of R. Suppose that a is a d-element.
We have a((—1) V0) = (—a) V0 = 0 implies that (=1) V0 =0, so 1 =
17" =17 =1% > 0. Then a(a=* A0) = 1 A0 = 0 implies that a=! A0 = 0,
that is, a=' > 0. Conversely, suppose a and a~' are both positive. If
z Ay =0 for z,y € R, then

0<a YaxAay) < (atax Aa tay) =z Ay =0,
so ax A ay = 0. Similarly za A ya = 0. Thus a is a d-element.
(3)

zyl = (" —27)(y" —y7)l

=Tyt —aTyt —aTyT Ty 7|
<ztyt 4oyt +aty +ay”
= [z[lyl-

Suppose that R is a d-ring. For x,y € R, since

0<(zTyT+27y )A(z yT +aty")
< (@FytAaTy )+ (@TyT ATyT) H(@TyT ArTyT) F(aTy AatyT)

= (@A )yt ety Ay ) FaT (YT Ay (@T AaT)y”
0

3

we have
2yl =&y +27y") = (@7y" +ay7)
=@ty Ty )+ (@Ty" +aTyT)
= |zllyl,
by Theorem 1.7(1) and (3).

Conversely suppose that |zy| = |z||y| for all z,y € R. If z Aw = 0 for
some z,w € R, then |z —w| = z+w by Theorem 1.7(1) and (3), so for any
a € RT, |a(z — w)| = |a||z — w| = a(z + w) = az + aw implies az A aw =0
(Exercise 25). Similarly z Aw = 0 implies za Awa = 0. Thus R is a d-ring.

(4) Suppose that a,b € d(R) and c€ Rwitha <c¢<b. Ifx Ay=0 for
z,y € R, then 0 <ax ANay < cx Acy < ax Aay = 0 implies cx A cy = 0.
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Similarly x¢ A yc = 0. Thus ¢ € d(R). It is clear that d(R) is closed under
the multiplication in R by the definition of d-element. In the Example
1.3(1), each standard matrix unit e;; is a d-element, but the sum of two d-
elements may not be a d-element. For example, e15 + €17 is not a d-element
since e12 N\ ego = 0, but

(e12 +e11)e12 A (e12 + e11)ezr = era Aeja # 0.

(5) Let a,b € f(R) and x Ay = 0 for z,y € R. Then by Theorems 1.7(5)
and 1.5(7),

0<la—blzny < (ol + b))z Ay < (laz Ay) + ([ble Ay) =0,

so |a —blz Ay = 0. Similarly, z|a —b| Ay = 0. Thus |a —b| is an f-element
and hence ¢ — b € f(R). We also have

0 < lablz Ay < (lal[b])z Ay =0,

so |ablz Ay = 0. Similarly, z|ab| Ay = 0. Thus |ab| is an f-element and
hence ab € f(R). Finally if |z| < |a| for some a € f(R), x € R, then clearly
|z| is an f-element, so x € f(R). Hence f(R) is a convex ¢-subring of R
and an f-ring.

(6) Suppose that R is an f-ring and a € R. We already know that
at is a convex f-subgroup of the additive ¢-group of R. Let b € a* and
r € R, then |b| A |a|] = 0 implies |r||b] A |a| = |b||r| A |a] = 0, and hence
|rb| A |a| = |rb| A |a| = 0 by (3). Thus rb,br € a* and a* is an f-ideal
of R. Conversely suppose that for each a € R, a’ is an f-ideal of R. Let
Ay =0forx,y € Rand r € Rt. Then = € y* implies rz,zr € y*, so
re Ay =zr Ay =0, namely r is an f-element of R for each r € RT.

(7) Let R be a d-ring and I be an ¢-ideal of R. Suppose that (z + I) A
(y+1I)=0and z+I > 0. We may assume that z > 0. Then zAy=w € I
implies that (r — w) A (y —w) = 0, and hence

zZx—w)ANz(y—w)=0and (v —w)z A (y —w)z =0.
Thus
+DE+DAE+DY+1)=0,(+DE+D)AYy+I)(z+1)=0

in R/I, that is, R/I is a d-ring. Similarly to show that if R is an f-ring,
then R/I is an f-ring. a
Some fundamental properties of f-rings are summarized in the following

results. An ¢-ring R is said to be a subdirect product of the family of ¢-rings
{R; | © € I} if R is an ¢-subring of the direct product IT;c;R; such that
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7mx(R) = Ry for every k € I, where 7 : Il;e;R; — Ry is the canonical
{-epimorphism, that is, for {a;} € ;e R;, mx({a;}) = ag. An l-ring R is
called subdirectly irreducible if R contains a smallest nonzero f-ideal, that
is, the intersection of all nonzero f-ideals is a nonzero ¢-ideal. For instance,
{-simple {-rings are subdirectly irreducible.

Lemma 1.1. Let R be an ¢-ring and a € R.
(1) {a) ={z € R | |z| < nla| +r|a|] + |a|s + t|a|u,n € ZT,r,s,t,u € RT}.
(2) If R is commutative, then (a) = {x € R | |z| < nla| +r|al,n € ZT,r €
R}
(3) If R is {-unital, then (a) = {x € R | |z| < t|aju,t,u € RT}.
(4) Suppose that R is an f-ring. If x Ay = 0 for any x,y € R, then
() N (y) = {0}.
Proof. (1) Let
I ={x € R||z| <nla| +r|a| + |a|s + tlaju,n € ZT,r,s,t,u € RT}.
Suppose that =,y € I. Then
|z| < nla| +rlal + |als + tlaju and |y| < nila| + r1]a| + |a|s1 + t1]|a|u,
where n,n, € Z*, r,71, 5,51, t,t1,u,u; € RT. Thus
2=yl < Il 1yl < (0-+n)lal + (r+ro)lal +lal(s-+ s0)+ (¢ + 62 al(uw0),
sox —y € I. Hence I is a subgroup of R. It is clear that for any « € I and
r € R, rx,zr € I. Tt follows that T is an ideal. If |r| < |z| for some r € R
and z € I, then clearly r € I by the definition of I. Hence I is an ¢-ideal.
Since a € I and every {-ideal containing a contains I, we have (a) = I.
(2) and (3) are direct consequences of (1).
(4) Let 0 < a € (z) N (y). Then
a<nr+rr+zs+urv and a < njy+ry + ys1 + uiyvr
for some 7,71, s, s1,u,u1,v,v; € RT and positive integers n,n;. Since R is
an f-ring, z A y = 0 implies
(re + xs + uzxv 4+ nx) A (ry + ys1 + uiyvr + nyy) =0,
by Theorem 1.5(7), so a = 0. Thus (z) N (y) = {0}. O
Theorem 1.21.
(1) An l-ring R is £-isomorphic to a subdirect product of a family of ¢-rings
{R; | i € I} if and only if there is a family of l-ideals {J; | i € I} such

that R = Ry, /Jy, for each k € I and the intersection of {J; | i € I} is
zero.
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(2) A subdirectly irreducible f-ring is totally ordered.
(8) An L-ring is an f-ring if and only if it is a subdirect product of totally
ordered Tings.

Proof. (1) We may assume that R is a subdirect product of a family of
¢-rings {R; | i € I'}. Define J; = Ker(m;)NR. Then J; is an ¢-ideal of R and
R/J; = R; for each i € I. Suppose that {a;} € NierJ;. Then mp({a;}) =
a =0 for all k € I, so {a;} = 0, that is, N;erJ; = {0}. Conversely suppose
there is a family of ¢-ideals {J; | i € I} of R such that N;crJ; = {0} and
R/J; = R;. Then the ¢-ring {{a+ J;}icr | @ € R} is a subdirect product of
the family of ¢-rings {R/J; | i € I} and R = {{a+ J;}ics | a € R} (Exercise
27).

(2) Let R be a subdirectly irreducible f-ring. Suppose that z Ay = 0,
for x,y € R. By Lemma 1.1 (z) N (y) = {0}, and hence either (x) = {0} or
(y) = {0}, so either x = 0 or y = 0. Hence for any = € R, either x~ =0 or
zT =0 since 7 A 2~ = 0, that is, R is totally ordered.

(3) Let R be an f-ring. For each element a € R, a # 0, define

M, ={I]|1is an ¢-ideal and a & T}.

Then M, # @ since {0} is in M,. M, is a partially ordered set by set
inclusion. For a subset {I;} of M, that is totally ordered, the union Uy I}, is
an f-ideal of R with a € UgIx. Thus by Zorn’s Lemma, M, has a maximal
element, denoted by I,. The quotient ¢-ring R/I, is subdirectly irreducible
with the smallest nonzero ¢-ideal (a + I,), so by Theorem 1.20(7) and (2),
R/I, is totally ordered. Consider

reJ= ﬂ 1,.
0#a€R
If © # 0, then J C I, implies x € I, which is a contradiction. Thus
J = {0}, and hence by (1), R is a subdirect product of totally ordered
rings {R/I, | a € R,a # 0}. The converse is trivial (Exercise 29). O

An important method of proving properties of f-rings is first to consider
totally ordered rings and then use the fact that an f-ring is a subdirect
product of totally ordered rings.

Theorem 1.22. Let R be an f-ring.

(1) Ifanb=0 for a,b € R, then ab= 0. Thus R has squares positive.
(2) If R is Archimedean, then R is commutative.
(8) If R is unital, then each idempotent element of R is in the center of R.



30 Algebraic Structure of Lattice-Ordered Rings

(4) If R is unital and a™ = 1 for some a € R* and some positive integer
n, then a = 1.

Proof. (1)IfaAnb=0, then abAb=0, and abA ab =0, so ab = 0. For
any r € R,

2% = (xt — x*)Q = (x+)2 —zteT —z T2t 4 (:L’*)2 = (I’+)2 + (x*)2 >0,

since 7 Az~ = 0 implies z 2~ =272 = 0.

(2) We show that given a,b > 0, for any positive integer n, n|ab — ba| <
a? 4+ b?. We first assume that R is totally ordered with a > b. Since R is
Archimedean, there exists an integer k such that ka < nb < (k + 1)a. Let
nb = ka + r with 0 < r < a. We have

nlab — ba| = |a(ka + ) — (ka + 7)a| = |ar —ra| < a® < a® + b°.

If R is an f-ring, then R is ¢-isomorphic to a subdirect product of totally
ordered rings, so by Theorem 1.21(1), there exist ¢-ideals I}, such that each
R/I} is a totally ordered ring and intersection of Iy is equal to zero. Given
0 < a,b € R and a positive integer n, by previous argument we have

nl(a+I)(b+ Ix) = (b+ L) (a + )| < (a+ Ir)* + (b+ I)?
in R/I, for each k. Then
nlab — ba| + Iy = (n|ab — ba| + I) A (a® + b + 1)
in R/I for each k, so
nlab — ba| — (n|ab — ba| A (a® 4+ b?)) € I,

for each k. Thus n|ab — ba|] — (n|ab — ba| A (a* + b?)) = 0, and hence
nlab—ba| < a?+b? in R for any positive integer n. It follows that ab—ba = 0
since R is Archimedean, so ab = ba for a,b > 0. Since each element in an
{-ring is a difference of two positive elements, R is commutative.

(3) We notice that a unital f-ring must be ¢-unital by (1). First suppose
that R is totally ordered and e € R is an idempotent element. Since e is
idempotent, 1 — e is also idempotent. By (1) each idempotent element is
positive, so e,1 —e > 0. Ife<1—e, thene=¢e?< (1 —e)e=0,s0 e = 0.
If1—e<e, then1—e=0,soe=1. Therefore we have proved that in a
unital totally ordered ring, there exist only two idempotent elements, that
is, 1 and 0.

Suppose now that R is an f-ring. Then there are ¢-ideals {I;} of R
such that NI = {0} and each R/Ij is a totally ordered ring. Let e be
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an idempotent of R, by the above argument, since R/} is a unital totally
ordered ring, e + I, = 0+ I or 1+ I, in R/I}, so for any a € R,

(e + Ik)(a + Ik) = (CL + Ik)(e + Ik)

in R/I, that is, (ea — ae) € I}, for each k. Hence ea — ae = 0, and ea = ae
for each a € R. Therefore e is in the center of R.

(4) As we have done before, we first assume that R is totally ordered. If
1<a,thenl<a< a2 <. <a= 1, which is a contradiction. Similarly,
a £ 1. Thus a = 1. So the result is true in a unital totally ordered ring. For
an f-ring R, there are f-ideals {J} of R such that NiJ; = {0} and each
R/Jy is a totally ordered ring. Let a € RT with @™ = 1. Then for each k,
(a+Jg)" =1+ J, in R/J, and a+ J, € (R/Jx)T,s0 a+ Jp, =1+ J in
R/ Jy, for each k. Thus a — 1 € Jj, for each k, 80 a — 1 =10, a = 1. O

An /-ring R is called an almost f-ring if for all a,b € R, aANb =0 =
ab = 0, or equivalently 72~ = 0 for all z € R. By Theorem 1.22(1), each
f-ring is an almost f-ring and each almost f-ring has squares positive.

The following are two immediate consequences of Theorem 1.22. (1)
Any n X n matrix ring over any unital ring cannot be made into an f-ring
if n > 2 since it contains idempotent elements that are not in the center.
(2) Any nontrivial finite group algebra F[G] over a totally ordered field F'
cannot be made into an f-ring such that (G \ {e}) N F[G]" # 0 since for
any element ¢ in G there exists a positive integer n such that g = e, where
e is the identity element of group G. In particular F[G] cannot be made
into a totally ordered ring with the exception when G is a trivial group.
However, a finite group algebra F[G] may be made into an f-ring with
(G\ {e}) N F[G]T = 0 as shown in the following example.

Example 1.4. Consider R = Q[G] with G = {e,a} and a®> = e. Define
u=%(e+a)and v=1(e—a). Then u® = u, v? = v, uv =0, and {u,v} is
linearly independent over Q. Thus P = Q*u + Q% v is the positive cone of
a lattice order. Clearly u and v are both f-elements, so R is an f-ring. We

note that 1l =u+wvanda=u—v ¥ 0.

A group ring of an infinite group may be made into a totally ordered
ring. The simplest example will be the group ring F[G] of an infinite cyclic
group G = {¢g" | n € Z}. Define an element > . a;g' > 0 if o, > 0.
Then F[G] is a totally ordered ring with

<gl<gl<l<g<gi<.
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By Theorem 1.22, an Archimedean f-ring is commutative. But an f-
algebra over a totally ordered field F' that is Archimedean over F' may not
be commutative. For instance, any totally ordered division algebra that
is Archimedean over its center is such an example. However if a totally
ordered division ring is algebraic over its center, then it is commutative by
Albert’s Theorem. We refer the reader to [Steinberg (2010)] for the proof
of Albert’s Theorem.

Theorem 1.23 (Albert’s Theorem). Let D be a totally ordered division
ring. If a € D is algebraic over the center of D, then a is in the center.

In the following we consider some properties of f-ideals of an f-ring.
Suppose that R is an f-ring and Iy, - - , I, be f-ideals of R. Define

L+ +I,={a€R|a=a1+ - +apn,a; € L;}.
Theorem 1.24. Let R be an {-ring and I1,--- , I, I be £-ideals of R.

(1) I + --- + I, is an l-ideal of R which is the (-ideal generated by
{L,-,I,}.

2) (Li+-+L)NnI=ONnD)+---+{I,NI).

(8) Each L-ideal of R/I is of the form J/I, where J is an {-ideal of R
containing I, and the mapping J — J/I is a one-to-one correspondence
between the set of all l-ideals of R which contain I and the set of all
l-ideals of R/I.

Proof. (1) It is clear that I; 4+ --- + I, is an ideal of R. Suppose that
|z| <lai+---+ay| for some € R and a; € I;. Then |z| < |ai|+ -+ |an]
implies that |z| = x1 4+ -+ 4+ 2, with 0 < z; <|a,|, and hence |z| € I since
each z; € I;. Then similarly 0 < z%, 2z~ < |z| implies that 27,2z~ € I.
Thus z =27 — 2~ € I and [ is an (-ideal.

(2) This follows from Theorem 1.9. It can be proved directly as follows.
Clearly

(Li+-+I,)NID>(ILNI)+--+ (I,NI).

Take0<a € (I1+---+1I,)NI. Then a = aj +-- -+ a,, where each a; € I,.
Then a = |a|] < |ai| + -+ + |a,| implies that a = z1 + - -+ + z,, where
0 <z; <lay|. Since x; < a € I, each x; € I. Hence each x; € ;NI and a €
(IinI)4---+(I,NI). Since each element in (I +---+1,)NI is a difference
of two positive elements, we have (I1+---+1,)NI C (ILNI)+---+(I,NI).
Therefore (Iy +---+In)NI=(LND+ -+ (L, NI).

(3) The proof of these facts is the same to the similar results in general
ring theory, so we omit the proof. O
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There are some other properties on ¢-ideals that are similar to the prop-
erties on ideals in general ring theory. For example, if I, J are f-ideals of
an (-ring R, then

I/(INJ)= I +.J))J and (R/I)/(J/I)=R/JifIC.J.

We leave the verification to the reader.

1.3.3 £-radical and €-prime £-ideals

Suppose that R is an ¢-ring and I, J are ¢-ideals of R. The ring theoretical
product IJ is not an ¢-ideal of R in general. We use (I.J) to denote the
¢-ideal generated by IJ. An f-ideal I is called nilpotentif I"™ = {0} for some
positive integer n, and if I" = {0} and I* # {0} for any positive integer
k < n, then n is called nilpotent of index. If I, J are both nilpotent ¢-ideals,
then I + J is also a nilpotent ¢-ideal by (I + J)/I = J/INJ (Exercise 30).

Definition 1.2. The /-radical of an ¢-ring R is the set
¢-N(R) = {a € R | zola|z1|al] - - - xp—1]alz, = 0 for some n = n(a) and

for all xg, -+ ,x, € R}.

Theorem 1.25. Suppose that R is an {-ring.

(1) ¢-N(R) is an (-ideal, which is the union of all of the nilpotent £-ideals
of R. Each element in {-N(R) is nilpotent.

(2) If R is commutative, then ¢-N(R) = {a € R | |a| is nilpotent}.

(8) If R is an £-ring which satisfies the ascending or descending chain con-
dition on £-ideals, then £-N(R) is nilpotent.

Proof. (1) If I is an nilpotent ¢-ideal, then evidently each element in I is
contained in ¢-N(R). Conversely suppose a € R and there exists a positive
integer n such that xgla|xi|al- - 2n—1|alz, = 0 for all zg, -+ ,z, € R.
Then

(la|R)™' = (Rla])"*" = (R|a|R)" = (|a| + |a|R + Rla| + R|a|R)***' =0

implies the ¢-ideal generated by a is nilpotent. Thus ¢-N(R) is the union of
all of the nilpotent ¢-ideals. ¢-N(R) is closed under the addition of R since
the sum of two nilpotent ¢-ideals is still nilpotent. Clearly a®™(®+1 = 0, for
each element @ in ¢-N(R).

(2) Let € R and || is nilpotent. Then by Lemma 1.1,

() = {u € R | |u| < n|z| + r|x|, for some n > 1 and r € RT}.
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Since R is commutative and |z| is nilpotent, (z) is nilpotent, so z € ¢-N(R)
(Exercise 31).

(3) If R satisfies the ascending chain condition on ¢-ideals, then it con-
tains a maximal nilpotent ¢-ideal M. For any nilpotent ¢-ideal I, M + I
is nilpotent and M C M + I implies M = M + I, so I C M. Thus
¢-N(R) = M is nilpotent.

Suppose that R satisfies the descending chain condition on /-ideals. We
denote (-N(R) just by N. For an f-ideal H of R, define H® = (H?),
H®) = (HH®), and H™ = (HH™Y) for any n > 2. Then N are (-
ideals and N D N®@>...oN®m D ... , so by descending chain condition
on (-ideals, we have N) = NG+ — N(*+2) — ... for some positive
integer k. Let M = N®)_ Then M = M® = M®) = ... Assume that
M # {0}. Then the set

N ={I € R|Iisan f-ideal of R,1 C M, MIM # {0}}

is not empty since M () = M, so there exists a minimal element K in A.
Take 0 < a € K with MaM # {0} and define

J={ceR]| |e| <uav,u,v € M}

Then J is an ¢-ideal of R with {0} # J C K and MJM # {0} (Exercise
32). So J € N, and hence J = K. Thus a < uav for some u,v € M.
Therefore a < uav < u?av? < --- < y"av™ = 0 for some positive integer
n since M C ¢-N(R) and each element in ¢-N(R) is nilpotent, so a = 0,
which is a contradiction. Hence we must have M = {0}, so N*) = {0}
implies that (¢-N(R))* = {0}. O

Let R be an f-ring. An f-ideal I is called proper if I # R. An (-ideal
P is called an £-prime ¢-ideal of R if P is proper and for any two f-ideals
I,J of R, IJ C P implies I C P or J C P. For /f-ideals I, J, it is clear
that I.J C P if and only if (I.J) C P, so the definition of ¢-prime ¢-ideal is
independent of the choice of I.J C P or (IJ) C P.

An f-ring R is called £-prime if {0} is an ¢-prime ¢-ideal. Tt is clear that
a proper f-ideal I of R is ¢-prime if and only if R/I is an ¢-prime ¢-ring.
A ring R is called a domain if a,b € R, a # 0 and b # 0 implies ab # 0,
and an /-ring R is called an ¢-domain if for any a,b € R, a > 0 and b > 0
implies ab > 0. Certainly if an f-ring is a domain then it is an /-domain,
but an /-domain may not be a domain as shown by the following example.
However, an f-ring is a domain if and only if it is an ¢-domain by Theorem
1.20(3).
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Example 1.5. Let S = {a,b} be the semigroup with the multiplication
ab = ba = a® = b? = a, and R[S] be the semigroup f-algebra with real
coefficients defined in example 1.3(2). Then R[G] is an ¢-domain (Exercise
33). Since (a — b)? = 0, R[G] is not a domain. We notice that R[G] is an
Archimedean and commutative ¢-ring in which the square of each element
is positive since (aa + 8b)% = (a + )%a > 0.

A nonempty subset M of an f-ring R is called an m-system if M C R
and for any a,b € M there is an x € R™ such that azb € M. A nonempty
subset S of R is called multiplicative closed if for any a,b € S, ab € S. It
is clear that if S C RT is a multiplicative closed subset of R, then S is an
m-system.

Theorem 1.26. Let R be an (-ring.

(1) Suppose that P is an £-prime £-ideal and I is an ¢-ideal of R. If I™ C P
for some positive integer n, then I C P.

(2) A proper {-ideal P of R is £-prime if and only if a,b € RT and aR*Tb C
P=a€Porbe P. In particular, if R is commutative, then a proper
(-ideal is L-prime if and only if a,b € RT,abe P = a € P orb e P.

(3) A proper (-ideal of R is {-prime if and only if RT \ P is an m-system.

(4) Suppose that M is an m-system of R and I is an {-ideal of R with
INM = 0. Then I is contained in an {-prime (-ideal P with PNM = ().

Proof. (1) Since I" C P, I{I"!) C P (Exercise 34), and hence I C P
or I"~1 C P. If I"! C P, by continuing the above procedure, we will
eventually have I C P.

(2) Suppose that P is f-prime and aRTH C P, for some a,b € RT.
Then (R*aR*)(R*bR*) C P, so (R*aR*) C P or (R*bR*) C P. If
(RTaR*) C P, then (a)®> C P, and hence (a) C P by (1). Hence a € P.
Similarly if (RTbRT) C P, then b € P. Conversely suppose that the given
condition is true, and suppose that I, J are f-ideals of R with IJ C P and
I & P. Then thereis0<a€ I\ P. Forany0<be J, aRTbOCIJCP
implies b € P. Thus J C P, so P is {-prime.

Suppose that R is commutative. Let P be an ¢-prime ¢-ideal of R and
ab € P for some a,b € RT. Then aR"b = R (ab) C P implies that a € P
or b € P. Conversely let P be a proper f-ideal of R and for any a,b € R,
ab € P implies that a € P or b € P. Let I, J be f-ideals of R with IJ C P.
If I ¢ P, then there exists 0 < a € I\ P,soforany 0 <be€ J, abe P
implies that b € P. Thus J C P and P is {-prime.

(3) follows immediately from (2).
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(4) Let
N ={J | Jisan f-ideal, I C J, and JN M = 0}.

Then I € N. If {J;} is a chain in NV, then UJ; is an ¢-ideal and (UJ;)NM =
(. By Zorn’s Lemma, N has a maximal element P. We show that P is
(-prime. Let a,b € RT, aRT0 C P, and a,b & P. Then (P,a)NM # . Let
z1 € (P,a) N M. Then

z1 <ma+ria+asy + upavy +pi, ng > 0,71, 81,u,v € R, pp € PT.
Similarly there exists z2 € (P,b) N M. Then

2o < nab + rob + bsy + usbvy + pa, ny > 0,72, 82, u2,v2 € RT,py € P,
Since M is an m-system, there is x € R™ such that z;229 € M. On the
other hand,

z1229 < (n1a + ria + asy + uravy + p1)x(ned + rob + bsa + usbva + pa)

implies z1xz, € P since aRTb C P, which contradicts with P N M = (.
Thus aR*b C P implies a € P or b € P, so P is {-prime by (2). O

Theorem 1.27. Let R be an f-ring.

(1) For each k > 1, N, = {a € R | a* = 0} is a nilpotent (-ideal of R.
Thus £-N(R) = {a € R | a is nilpotent}.

(2) If R is £-prime, then R is a totally ordered domain.

(3) A proper L-ideal P of R is {-prime if and only if for any a,b € R,
ab € P implies that a € P or b e P.

(4) A proper L-ideal P of R is L-prime if and only if for any a,b € R,
aANb € P implies that a € P or b € P and for anyc € R, > € P
implies that c € P.

Proof. (1) We first assume that R is totally ordered. Let a,b € Nj.
Then |a — b| < |a| + |b] < 2|a| or 2|b|, and hence |a — b]* = 0, (a — b)k =0,
that is, (a —b) € Ni. If |z| < |a| for some a € Ni and = € R, then
|z*| = |2|* < |a|* = |a*| =0, so 2¥ =0 and z € Nj. Take 0 < a € N and
0 <z € R. Without loss of generality, suppose ax < xa. Then

0 < (az)* < (za)* = z(ax)la < z(za)fla < - <a2Fab =0,
and similarly

0 < (za)* = z(ax)'a < z(za)*1a = 2%(az)*2a* < --- < 2FaF =0,

so (az)* = (za)® = 0. Thus Ny is an f-ideal, and it is clear that (Ng)* = 0.
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Since an f-ring is a subdirect product of totally ordered rings, Nj is
also an nilpotent f-ideal of it. We leave the verification of this fact as an
exercise (Exercise 35).

(2) Suppose that T is an f-prime f-ring and z € T. Since 27z~ = 0
and T contains no nonzero nilpotent element, (z~RTxz*)? = {0} implies
x”RYxt = {0}. Then T is ¢-prime implies that x= = 0 or 2+ = 0, that
is, R is totally ordered. Let ab = 0 for some a,b € R. Then |a||b| = 0, so
la]? = 0 or [b|? = 0 since |a| < |b] or |b] < |a|. Therefore a =0 or b =0 and
R is a domain.

(3) Suppose that P is an ¢-prime ¢-ideal of R. Then R/P is an ¢-prime
f-ring, and hence by (2) ab € P implies that a € P or b € P. The converse
is clearly true.

(4) If P is {-prime, then R/P is totally ordered by (2). Since a Ab =10
in R implies that (a+ P)A(b+ P)=0in R/P,a+P=0o0r b+ P =0,
soa € Porbe P. Conversely suppose that a A b € P implies that a € P
or b € P and ¢® € P implies that ¢ € P, for a,b,c € R. Assume that
xy € P for some z,y € R. Then since (|z| A |y)? < |z|ly| = |zy| € P,
(|z| Aly|)? € P, so |z| A ly| € P and hence |x| € P or |y| € P. Hence z € P
or y € P, that is, P is {-prime. O

For an ¢-ring R, its p-radical, denoted by ¢-P(R), is the intersection of
all of the f-prime f-ideals of R. A ring is called reduced if it contains no
nonzero nilpotent element, and an /-ring is called ¢-reduced if it contains
no nonzero positive nilpotent element.

Theorem 1.28. Let R be an {-ring.

(1) ¢-N(R) C ¢-P(R) and each element of £-P(R) is nilpotent. If R is
commutative or an f-ring, then {-N(R) = (-N(P).

(2) The p-radical of R/¢-P(R) is zero.

(8) ¢-N(R) = {0} if and only if £-P(R) = {0}.

(4) Suppose that ¢-N(R) = {0}. If R is a d-ring or an almost f-ring, then
R is a reduced f-ring.

Proof. (1) Since every nilpotent ¢-ideal is contained in each ¢-prime /(-
ideal by Theorem 1.26, ¢-N(R) C ¢-P(R). Suppose that ¢ € R is not
nilpotent. Then |a| is not nilpotent and {|a|” | n > 1} is an m-system not
containing zero, so Theorem 1.26(4) implies that there exists an ¢-prime
¢-ideal I such that {|a|® | n > 1} NI =0, and hence a € I, so a € ¢-P(R).
Thus each element in ¢-P(R) is nilpotent.
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If R is commutative or an f-ring, then /-N(R) = {x € R | |z| is
nilpotent}, so -P(R) C ¢-N(R).

(2) Each f-ideal of R/I can be expressed as J/I, where J is an ¢-ideal
of R containing I. Also J/I is ¢-prime in R/I if and only if J is ¢-prime in
R (Exercise 36). Hence ¢-P(R/¢-P(R)) = {0}.

(3) Suppose that .-N(R) = {0}. If ¢-P(R) # {0}, take 0 < ag € ¢-P(R).
Then (ag)™ # {0} for any positive integer n, so (RTagRT)? # {0} since
{ap)® C (RTagR*), and hence there is by € RT such that a; = apbpag #
0. Similarly, there is by € R™ such that as = aibia; # 0. Continuing
inductively, we obtain a,, = a,,—1b,_1a,—1 # 0 for all n > 1. It follows that
{a; | i > 0} is an m-system not containing 0 (Exercise 37), so by Theorem
1.26(4) there is an ¢-prime ¢-ideal P such that PN {a; | ¢ > 0} = (). Thus
ap ¢ P, which is a contradiction, and hence ¢-P(R) = {0}.

(4) Suppose first that R is a d-ring. Since -N(R) = {0}, by (3) R is
a subdirect product of ¢-prime ¢-rings which are d-rings (Exercise 38). We
show that an f-prime d-ring D is a totally ordered domain. Let a € DT
with aD* = {0} or D"a = {0}. Then aD"a = {0}, so D is {-prime implies
a=0.Let s Ay=0for z,5y € D and ¢,d € DT. Then

0<d(cxANy)= (dex Ndy) < (de+d)x A (de+d)y =0

implies d(cx Ay) for all d € DF, and hence cx Ay = 0. Similarly, zcAy = 0.
Hence D is an f-ring. Thus by Theorem 1.27(4), D is totally ordered and
a domain. Therefore, R is a reduced f-ring.

Now suppose that R is an /-prime almost f-ring. We first show that if
a € RY and a2 = 0, then ¢ = 0. Let z € RT. We claim that aza = 0.
Suppose that z = az — za. If 7 = 0, then az < za implies aza < za? = 0,
so aza = 0. Similarly = = 0 implies aza = 0. In the following we
assume that 27 # 0 and 2= # 0. Then 272~ = 2~z = 0 implies for
any y,w € R, (z7yaz")? = (ztwz~)? = 0. By Theorem 1.22(1), for each
element u € R, u? > 0, so (x~yx™ — a)? > 0 implies that

0<ar yr" +z yrTa < (z7yz")? +a® = 0.

Thus axz~yz* = 0 for all y € R*. It follows that az™ = 0 since z+ # 0 and
R is (-prime. Similarly, (zTwz~)? = 0 and a® = 0 for all w € RT implies
axt =0. Thus ax = az™ —az™ =0, so a(az — za) = 0, and hence aza = 0.

Therefore in any case we have aza = 0 for any z € RT, that is, aR"Ta =
{0}. It follows that a = 0 since R is ¢-prime. Hence R contains no nonzero
positive nilpotent element, that is, R is f-reduced. Now let a,b € RT with
ab= 0. Then for any z € RT, (bza)? = 0, so bza = 0, that is, bRTa = {0}.
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Thus a = 0 or b = 0, and R is an /-domain. Therefore z+ =0or 2= =0
for any z € R since 72~ = 0. Hence R is totally ordered and a domain.
If R is an almost f-ring with ¢-N(R) = {0}, then R is a subdirect
product of /-prime almost f-rings, and hence it is a subdirect product of
totally ordered domains. Therefore R is a reduced f-ring. (]

By Theorem 1.28(4), a reduced almost f-ring is an f-ring. Interestingly
a reduced partially ordered ring satisfying a similar relation to almost f-
rings is also an f-ring.

Theorem 1.29. For a reduced partially ordered ring R, if for any a € R,
there exist a1, as € RT such that a = a1 — as and ajas = asa; = 0, then R
is an f-ring.

Proof. We fist show that zero is the greatest lower bound of a;, as. Sup-
pose that ¢ < aj,as and ¢ = ¢; — ¢ with ¢1,c0 € RT and cic3 = cpcy = 0.
Then 0 < c? =ci(e1 +¢2) = c1e < ¢pag and 0 < C% < agcy implies that
0< c‘ll < ci1aiase; = 0, and hence c‘l1 = 0 and ¢; = 0 since R is reduced.
Thus ¢ = —cy < 0.

Next we show that a; = a vV 0. Clearly a; > a,0. Suppose that b > a,0
for some b € R. Then

ar—b<aj,a3 =a; —b<0,

so a; < b. Thus a3 = a VvV 0. It is straightforward to check that for any
a,b € R, aVb=[(a—0b)VO0]+b, and hence the partial order is a lattice
order.

Now it is easy to check that R is an almost f-ring, so it is an f-ring. O

An ¢-prime l-ideal P of an ¢-ring R is called minimal if any ¢-ideal of
R properly contained in P is not an ¢-prime ¢-ideal of R. For instance, in
an ¢-domain, {0} is the unique minimal ¢-prime ¢-ideal.

Theorem 1.30. Let R be an {-ring.

(1) Each L-prime L-ideal of R contains a minimal {-prime (-ideal.

(2) An L-prime (-ideal P is minimal if and only if any m-system properly
containing Rt \ P contains 0.

(3) If R is l-reduced, then an C-prime (-ideal P is minimal if and only if
for each x € P with x > 0, there exists y ¢ P with y > 0 such that
zy = 0.

(4) If R is l-reduced, then for each minimal £-prime (-ideal P, R/P is an
L-domain. Thus an £-ring is £-reduced if and only if it is a subdirect
product of £-domains.
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Proof. (1) Let P be an ¢-prime ¢-ideal. Consider
M={N | N CPand N is an ¢-prime (-ideal}.

Then P € M. Partially order M by set inclusion. For a chain {P; | i €
I} € M, By Theorem 1.26(3), J = N;erP; is an f-prime ¢-ideal since
Rt \J =U;er(RT\ P,) is an m-system. By Zorn’s Lemma (or Exercise 4),
M has a minimal element, which is a minimal ¢-prime ¢-ideal contained in
P.

(2) Suppose that P is a minimal ¢-prime (-ideal and (R* \ P) C M for
some m-system M. If 0 € M, then by Theorem 1.26(4) there exists an ¢-
prime /-ideal I such that MNI = (. It follows that I C P, and hence I = P.
Then M C R* \ P, which is a contradiction. Thus 0 € M. Conversely,
suppose that I is an {-prime ¢-ideal and I C P. Then (R*\ P) C (RT\ 1),
and if this inclusion is proper, then 0 € R \ I, which is a contradiction.
Hence we must have RT \ P = RT \ I, and hence I = P. Therefore P is a
minimal /-prime ¢-ideal.

(3) “<” Let P be an f-prime ¢-ideal. By (1), there is a minimal ¢-prime
l-ideal @ such that Q@ C P. If Q # P, then take 0 < z € P\ Q. By
the assumption, we can find y ¢ P and y > 0 such that zy = 0. Then
(yR*x)? =0 and R is f-reduced implies yR*x = 0, and hence y € Q C P,
which is a contradiction. Therefore we must have Q = P, so P is minimal.

“=" Let P be a minimal /-prime ¢-ideal of R and 0 < a € P. Define

S ={ajaasa---anaa,i1 | n>1, a; € RT\ PYU(RT\ P).

Then (RT\ P) C S since, for instance, ajaaz € PNS, and S is an m-system,
so by (2), 0 € S. Thus ajaasa- - ayaa,+1 = 0 for some n > 1.

We observe that if uv = 0 for u,v € R*, then (vu)? = 0 implies
vu = 0 since R is f-reduced, and hence (uzv)? = 0 for any z € R™.
Thus uzv = 0. This observation tells us that if uv = 0, then we may
insert any x > 0 between them to get uxv = 0. We use this basic
fact to show that if xy---z;x;41- -2 = 0, for some &k > 2 and each
T € RY, then x1 -+ x;412;---2x = 0. In fact, by inserting the terms
Tit1, (Tiqo - xp)(z1 - -1), T Into @1 -+ - ;2441 - - 2k = 0, we get

1 i1 (T 1) T (Tigo - ) (@1 - T 1) Tip1 (T4)Tig - - - g = 0,

so R is f-reduced and [(xq---;_1(zis1)2i(Tiva---2x)]> = 0 imply
1 Ti—1Ti41%; - - -k = 0. This analysis shows that in a zero product
of positive elements, we may interchange the order of two elements and
the product is still zero. Using this idea, from ajaasa---ayaa,+1 = 0, we
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have a1 -+-an11a™ = 0. Since aj,as € RT™\ P, ayriaz € RT\ P for some
x1 € RT, and hence ajz1asw0a3 € R\ P for some x5 € RT. Continuing
this process, we have

A1T1A2T2a3T3 - ApTplny € RT\ P
for some x1,--- ,x, € RT. Now ajaasza---anaa,; = 0 implies
a10s -+ Apapr16” =0 = 121042020323+ + ApTpapr1a” = 0.

Let y = a12102%2 « + - p&pans1. Then 0 <y & P and ya™ = 0, so (ay)"™ = 0.
Therefore ay = 0.

(4) Suppose that P is a minimal ¢-prime ¢-ideal of R and suppose that
a+ P € R/P with a € R\ P. We assume that a> € P. Then there
exists 0 < y ¢ P such that a?y = 0, and hence (aya)? = (aya)(aya) = 0,
so aya = 0. It follows that (ay)? = 0, so ay = 0. Then (yR*a)? = 0, and
hence yR*a = 0. Now P is {-prime implies a € P or y € P, which is a
contradiction. Therefore a® ¢ P and hence R/P is f-reduced. Since R/P
is ¢-prime and ¢-reduced, R/P is an ¢-domain (Exercise 39).

If R is f-reduced, then the intersection of all minimal ¢-prime ¢-ideals
of R is zero by Theorem 1.28(3), and hence R is isomorphic to a subdirect
product of /-domains by previous argument. It is clear that the subdirect
product of /-domains is ¢-reduced. O

In the following we consider the ¢-radical of an f-algebra over a totally
ordered field F'. The main result is to show that if the ¢-radical is zero,
then a finite-dimensional f-algebra is Archimedean over F'. Clearly, for an
t-algebra A over a totally ordered field F', -N(A) is closed under the scalar
multiplication, that is, /-N(A) is an f-ideal of f-algebra A. Let V be a
vector lattice over a totally ordered field F'. An element a € V7T is called
a strong unit of V. over F if for every z € V, there is an «a, € F such that
T < Qga.

Theorem 1.31.

(1) Every finite-dimensional vector lattice V' has a strong unit.
(2) Let A be an L-algebra over a totally ordered field F with strong unit.
The set

i(A) ={a € A | ala| < u for every strong unit u and every o € F*}

is an (-ideal of A, called i-ideal, and i(A) contains no strong unit of A
over F. A is Archimedean over F if and only if i(A) = {0}.
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(3) If A is finite-dimensional, then ¢-ideal i(A) is nilpotent. Thus if £-
N(A) = {0}, then A is Archimedean over F'.

Proof. (1) Let vy,--- ,v, be a vector space basis of V over F' for some
positive integer n. Then u = |v1| + -+ + |v,| is a strong unit. In fact, for
any v € V, v =0aqv1 + -+ + anp, o; € F, implies
v < vl < laafva] + -+ 4 femllon] < (Joa| + -+ + |an])u.
(2) Let @,y € i(A). For @ € F™ and a strong unit u,
2a|x — y| < 2alz| + 2aly| < u+u=2u

implies a|x — y| < u, so x —y € i(A). Clearly for any a € i(A) and a € F,
aa € i(A), and |y| < |x| with y € A and x € i(A) implies that y € i(A).
Thus i(A) is a convex vector sublattice of A. Suppose x € i(A) and a € A.
For a strong unit u, |a|u < fu for some 0 < 3 € F. Hence for any a € F'*,
aflaz| < aflal||lz] < |alu < Bu, so ajax| < u. Thus ax € i(A). Similarly
xza € i(A). Thus i(A) is an ¢-ideal of A. Finally for a strong unit u of A,
2u £ u implies u & i(A).

If A is Archimedean over F', then clearly i(A) = {0}. Suppose i(A) =
{0} and az < y for some z,y € AT and all « € FT. For any strong unit
u, there is 8 € FT such that y < Bu, so ax < u for all a € FT. Thus
x € i(A), and hence x = 0. Therefore A is Archimedean over F.

(3) Let I = i(A). As we have done before, define I?) = (1?), 1) =
(I1®)y, ... 1 = (11=D) for any n > 2. Clearly I"™ C I™ for any
n > 2. We show that if I*) = 0, then I*+1) is properly contained in I(*)
for k > 2. Since I*) is finite-dimensional as a vector lattice over F, by (1)
I®) will have a strong unit u,. Let u be a strong unit of A. If a € I+,
then |a| < 3 |zyi|, where 2; € T and y; € I™®). Then for some 8,7y € F*
we have |z;| < Buy and |y;| < yug, so |xy] < |zil|yi] < Byuiug. Since 1)
is an /-ideal of A, uuy, € I®), so uuy, < duy, for some § € F+. Hence for all
ac Ft,

Brdalziy| < Bydalzlly] < af’yourur < Byuuy < Byduy,
so alzyy;| < uy for all @« € FT. Let v, be an arbitrary strong unit of
I®) . Then ur < Avj for some 0 < X\ € Ft. Thus for all « € FT,
Aalz;yi| < up < Avg, and hence alz;y;| < vg. Thus |z;y;| € i(I(k)), SO
S |ziys| € i (IW). Therefore a € i (I and I*+D C 4 (I0) C 1) by
(2).

Now since A is finite-dimensional over F', there must be a positive integer
k such that I*) = {0}, so I* = 0. Tt follows that I = i(A) C ¢-N(A), and
hence if ¢-N(A) = {0}, then i(A) = {0}, so by (2) A is Archimedean over
F. (]



Introduction to ordered algebraic systems 43

The following result is a direct consequence of Theorems 1.31 and 1.17.

Corollary 1.3. Suppose that A is a finite-dimensional (-algebra over a
totally ordered field F'. If A is Archimedean over F, then as a vector lattice
over F', A is a finite direct sum of mazimal convex totally ordered subspaces
of A over F. In particular, if {-N(A) = {0}, then A is a finite direct sum
of maximal convex totally ordered subspaces of A over F.

Proof. 1If Ais Archimedean over F', then A has no maximal convex totally
ordered subspace that is bounded above. Since that A is finite-dimensional
implies that condition (C) in Theorem 1.15 is satisfied, Theorem 1.17 ap-
plies. O

The following result gives the further relation between f-elements and
d-elements in an f-unital {-domain.

Theorem 1.32. Let R be an {-unital £-domain.

(1) If a is a d-element, then either a is an f-element or a A1 = 0.

(2) If a is a d-element, then either the set {a™ | n > 0}, where a® = 1, is
disjoint or a® is an f-element for some k > 1.

(3) If for 0 < a € R, a” is an f-element, then a is a d-element and a basic

element.

Proof. We first notice that since R is an ¢-domain, f(R) is a totally
ordered domain.

(1) Suppose that a A1 =0 > 0. Then b is an f-element since b < 1.
Let x,y € R such that z Ay = 0. Then 0 < ax A by < ax A ay = 0 since
b < a and a is a d-element. Then ax A by = 0 implies bax A by = 0, so
b(axz Ay) = 0. Hence ax Ay = 0 since R is an {-domain and b > 0. Similarly,
za Ay = 0. Therefore a is an f-element.

(2) Suppose that for any n > 1, a™ is not an f-element. Then by (1),
a™ A1 =0 for any n > 1. Thus for any positive integer 7,7 with 1 < < j,
a’ Nat = a'(a?* A1) =0, so the set {a” | n > 0} is disjoint.

(3) If Ay = 0, then a*~!(ax A ay) < a*x Aa¥y =0, so az Aay = 0.
Similarly xa A ya = 0. Thus a is a d-element. Let 0 < b,¢ < a. Then
0 < aF1b,a*"'c < a* € f(R) which is totally ordered, so a*~1b and a*~'c
are comparable. Thus b, ¢ are comparable, that is, a is a basic element. [

As an application of Theorem 1.32, we determine all the lattice orders
on polynomial ring F[x], where F is a totally ordered field, such that x is
a d-element.



44 Algebraic Structure of Lattice-Ordered Rings

Corollary 1.4. Let R = F[z] be an (-algebra over F in which z is a d-
element. Then either RT = F*[z] or f[R] = F[z*] for some k > 1, and
R=f(R)+ f(R)yx+ -+ f(R)z* 1 with Rt = f(R)* + f(R)tx +--- +
F(R)Tzh—1,

Proof. Since z is a d-element, (—=1V0)x = —z V0 = 0 implies 1~ = 0, so
1 > 0. By Theorem 1.32(2), either {«™ | n > 0} is disjoint or there exists
positive integer k such that z* € f(R). In the first case, it is clear that
R* = FT[z]. In the second case, suppose that k is the smallest positive
integer such that 2% € f(R). Then by Theorem 1.32(1), {1,,--- "1}
is a disjoint set. Let F = F[z*]. Then R = F + Ex + --- + Ex*~1 and
Rt = ET + Etx +--- + ET2*! since E* consists of f-elements. Then
E = f(R). O

Exercises

(1) Let (A, <) be a partially ordered set with the partial order <. Using
Zorn’s Lemma to show that < can be extended to a total order on A,
that is, there exists a total order on A which is an extension of <.

(2) Let A be a nonempty set. Define < on A by Va,b€ A, a <bifa="b.
Show that < is a partial order on A and if A has more than one element,
then it is not a lattice order.

(3) Prove that the power set P4 of a set A is a complete distributive lattice
under the partial order of set inclusion defined in Example 1.1.

(4) Let (A,<) be a nonempty partially ordered set. Prove, by Zorn’s
Lemma, that if each subset of A that is a chain has a lower bound
in A, then A contains a minimal element.

(5) Let G be a partially ordered group. Suppose that g Vv 0 exists for any
g € G. Prove that G is an ¢-group and for any f,g € G,

fVvg=1(f-9)V0+g and fAg=g—[(—=f+g) VO]

(6) Verity Example 1.2(2) and (3).

(7) Let G be an ¢-group and aAb = 0 for a,b € G. Prove that na Amb =0
for any positive integers n and m.

(8) Let G be an f-group and X C G. Prove that X C X+ and X+++ =
X+

(9) Let G be an ¢-group and G4, G2 be distinct convex ¢-subgroups of G.
Prove that if for any @ € Gf,b € G§, a +b = b+ a, then for any
reGyelGy,z+y=y+uz.



(10)

(15)
(16)
(17)

(18)
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For an /-group G and a normal convex ¢-subgroup N of G, prove that
ifr+N=21+Nandy+ N =y; + N, then

(zVy)+ N=(x1Vy)+Nand (xAy)+ N = (z1 Ay1) + N.

Prove that the projection 7 : G — G/N, where G is an ¢-group and N
is a normal convex f-subgroup of G, preserves sup and inf.

Let G be an f-group. Prove that if Vz,y € G, 2 Ay=0= 2z =0 or
y = 0, then G is totally ordered.

Let G be an f-group and S be a subset of G. Then S is a basis of G if
and only if S is a disjoint set of basic elements and S+ = {0}.

Let G be an ¢-group and 0 < g € G. Define T ={x € G| 0 <z < g}.
Suppose that for any z,y € T, Ay # 0. Prove that any two elements
in T are comparable.

Let V be a vector lattice over a totally ordered field F'. Prove that if
V is Archimedean, then V is Archimedean over F'.

Let V be a vector lattice over a totally ordered Archimedean field F'.
Prove that if V' is Archimedean over F', then V is Archimedean.

Let V' be a vector lattice over a totally ordered field F. Prove that
Va e Fiv eV, |av| = |a|lv|.

Let V be a vector lattice over a totally ordered field F' and {V; | i € I}
be a collection of convex vector sublattices of V. Prove

ZW:{UEV | v=v1 4+ vk, 05 € Vi, }

i€l
is a convex vector sublattice of V and ), ;V; is the convex vector
sublattice generated by the family {V; | i € I}.
Prove Theorem 1.18.
Let R be an f-ring and I be an ¢-ideal. Prove that R/I is an {-ring
with respect to the partial order a +1 < b+ I if a < b+ ¢ for some
cel.
Verify a A0 and a Vv 0 in Theorem 1.19(1).
Suppose that R is an ¢-ring with the positive cone P and v € P is a
unit. Prove that uP is the positive cone of an f-ring R.
Prove both total orders defined in Example 1.3(3) are not Archimedean
over F.
For the polynomial algebra R = F[z] over a totally ordered field F, fix
a positive integer n > 2. Define p(z) = apx® + --- + ayx + ag > 0 if
k>mnanda, >0, orif kK <nand ax >0, ag > 0. Prove that R is an
{-ring with squares positive.
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(25) Let R be an f-ring and z,y € RT. Prove that |z — y| = z + y if and
only if x Ay = 0.

(26) Let ¢ : R — S be an ¢-homomorphism of the two ¢-rings R and S.
Show that Ker(¢) is an ¢-ideal of R.

(27) Let R be an ¢-ring and {J; | ¢ € I} be a family of ¢-ideals of R with
NicrJ; = {0}. Prove that {{a + J;}icr | @ € R} is an {-subring of the
direct product I;e;R/J;, and R = {{a + Ji }ic1 | a € R}.

(28) Let m : R — R/I be the projection. Prove that if N is an ¢-ideal of
R/I, then there exists an ¢-ideal J D I such that 7(J) = N. Thus each
l-ideal of R/I can be written as J/I for some ¢-ideal J D I in R.

(29) Prove that if an ¢-ring R is a subdirect product of totally ordered rings,
then R is an f-ring.

(30) Let R be an ¢-ring and I, J nilpotent ¢-ideals of R. Show that I + J is
also nilpotent.

(31) For a commutative ¢-ring R and a nilpotent element z, prove (z) is a
nilpotent f-ideal of R.

(32) Prove that the J defined in Theorem 1.25(3) is an (-ideal.

(33) Verify that the semigroup ¢-ring in Example 1.5 is an ¢-domain.

(34) Let I and P be f-ideals of an f-ring R. Prove if I C P for some
positive integer n, then I(I"~1) C P.

(35) For an f-ring R, prove that N}, = {a € R | a* = 0} is an f-ideal of R.

(36) For an {-ring R and a proper ¢-ideal I, if J is an ¢-ideal containing I,
then J/I is ¢-prime in R/T if and only if J is ¢-prime in R.

(37) Verify that {a; | ¢« > 0} in Theorem 1.28(3) is an m-system.

(38) Let R be a d-ring or an almost f-ring. Prove that for any ¢-ideal I of
R, R/I is also a d-ring or an almost f-ring.

(39) Prove that an f-prime and f-reduced f-ring is an f-domain, and an
{-reduced o-ring is a domain.

(40) Consider the polynomial ring R = R[z]. Prove that if R is an f-ring
with squares positive, x € R, and 1 A 2" = 0, for a fixed positive
integer n, then the lattice order on R is P, defined in Example 1.3(3).

(41) Consider the field Q[v2] = {a + B3v2 | a,8 € Q}. Prove that the
positive cone of an (-field Q[v/2] in which 1 # 0 is equal to uP, where
P is the positive cone of an ¢-field Q[v/2] with 1 > 0 and u € P is
invertible with u=! & P.

(42) Describe all the lattice orders on group algebra R[G], where G is a
group of order 2.

(43) Consider ring R = R x R. Define the positive cone on R by P =
{(a,b) | b>0}U{(0,0)}. Prove that (R, P) is a partially ordered ring,



(45)
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but not an ¢-ring.
Consider n x n matrix algebra M, (R) (n > 2). Define the positive cone

P ={(aij) | an; =0,j=1,--- ,n—1and an, >0} U{(0,0)}.

Prove that (M, (R), P) is a partially ordered ring, however it is not an
{-ring.
Consider polynomial ring R[z]. Define the positive cone

P ={f(z) | each coefficient of f(x) is strictly positive} U {0}.

Prove that (R[z], P) is a partially ordered ring, but not an ¢-ring.
Prove that a unital d-ring must be an f-ring.

Let R = zR[z] be the ring of polynomials with zero constant over R. Or-
der R lexicographically by defining a,z™+---+a12z > 0if a,, > 0. Then
R is a totally ordered ring. Define A = {(z,a,y,2) | a € R,z,y,z € R}
with the coordinatewise addition and following multiplication

(1‘7 a” y’ Z)(x/7 a/,7 y/7 Z/) =
(2zx’ + ax’ + d'w,ad ;x(y' +2') + 2 (y+ 2) + d'y + ay/,
x(y +2)+2'(y+2)+adz+a2).

Then A becomes a ring with identity (0,1,0,0). Define the positive
cone as (z,a,y,z) > 0 if

x>0, orxr=0anda >0, orx=a=0, and y >0 and z > 0.

Prove that A is a commutative ¢-ring in which the identity element is a
weak unit in the sense that 1 A a = 0 implies that a = 0 for any a € A,
however A is not an f-ring.

Prove that an /-ring R is an almost f-ring if and only if for any a € R,
la]? = a®.

Prove that an f-ring is an f-ring if and only if for any a,b € RT,
(a Ab) = {(a) N (b).

Let R be an /-ring and I be an ¢-ideal of R. [ is called ¢-semiprime if
for any f-ideal H of R, H* C I for some positive integer implies that
H C I. Prove that an f-ideal I is ¢-semiprime if and only if for any
a € RT, aRTa C I implies that a € I.
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Chapter 2

Lattice-ordered algebras with a
d-basis

In this chapter we present the structure theory of unital finite-dimensional
Archimedean f(-algebras over a totally ordered field with a d-basis. The
structure theory on this class of /-algebras is similar to Wedderburn’s struc-
ture theory of finite-dimensional algebras in general ring theory.

2.1 Examples and basic properties

G. Birkhoff and R. S. Pierce started a systematic study of f-rings in their
paper “Lattice-ordered Rings” published in 1956. Based on their study of
various examples of /-rings, they observed that since “in general, lattice-
ordered algebras can be quite pathological”, general structure theorems are
very difficult to find. Therefore, they suggested studying special classes
of f-rings. One class in particular has been studied intensively is that of
f-rings, whose general structure is much better understood today.

However, M. Henriksen pointed out that the class of f-rings excludes
many important examples of /-rings and ¢-algebras [Henriksen (1995)]. For
instance, neither matrix and triangular matrix ¢-algebras with the entrywise
order nor group f-algebras and polynomial ¢-rings with the coordinatewise
order are f-rings. Henriksen’s observations prompted researchers to look
beyond f-rings, for new classes of /-rings and f-algebras that contain these
important examples and, at the same time, maintain good structure theory.
In particular, Henriksen suggested the following problem as a place to start
(Problem 4, [Henriksen (1995)]):

Develop a structure theory for a class of lattice-ordered rings
that include semigroup algebras over R. If S is a multiplicative
semigroup, 1,82, ...,8, € S and aj,as,...,a, € R, let > a;s; > 0

49
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if a; > 0 for 1 < i < n. Do this at least for a class of semigroups
large enough to include {1, z,...,z", ...} and the semigroup of unit
matrices {E;;} (where E;; has a 1 in row ¢ and column j, and zeros
elsewhere for 1 <i<mnand 1 <j<n).

For general ¢-rings there is no good structure theory because the defining
condition (a,b > 0= ab > 0) that relates the order and the multiplication
is pretty loose. The challenge is then to find appropriate stronger condi-
tions. One way of keeping some of the advantages of f-rings and d-rings
while at the same time broadening the class of ¢-rings and ¢-algebras un-
der consideration is the following thoughts. We know that a d-ring is an
{-ring whose positive cone consists entirely of d-elements. We may broaden
the condition by requiring only that the positive cone be generated by d-
elements. This modification motivates the following definition.

Definition 2.1. Let R be an f-ring. A subset S of R is called a d-basis if
S is a basis of the additive ¢-group of R, defined in Chapter 1, and each
element in S is a d-element of R.

In this chapter we will study algebraic structure of unital finite-
dimensional Archimedean f-algebra over a totally ordered field with a d-
basis. This class of /-rings contains rich examples. Before we provide some
examples, we prove that the identity element in such f-algebras must be
positive. Throughout this chapter F' always denotes a totally ordered field
and all ¢-rings and f-algebras are nontrivial. Recall the condition (C) for
an ¢-group G from Theorem 1.15.

(C) Each 0 < g € GG is greater than at most a finite number of disjoint
elements.

Theorem 2.1. Let A be a unital Archimedean (-algebra over F with a
d-basis and satisfy condition (C).

(1) Each basic element of A is a d-element.
(2) The identity element 1 > 0.

Proof. Let S be a d-basis of A. By Theorem 1.17, A is the direct sum of
s+, s € S, considered as a vector lattice over F.
(1) Let = be a basic element. Then x € sj-J- for some s; € S. Since A

is Archimedean over F, there exists o € F™ such that as; f z, 80 x < as;
11
J

of A is a d-element.

since s7— is totally ordered. Thus x is a d-element, so each basic element
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(2) Suppose that 1 =21 + ...+ xp, where 21 € sﬁl, .o, T € sil

Siy, ", 84, are distinct basic elements. If z; > 0, since x; is basic, z; is a
d-element, then (17)z; = (-1V 0)z; = —z; V0 =0, and if z; < 0, then
(17)(—=;) = 0 by the above argument. Thus in both cases, (17 )x; = 0, for
j=1,...,k, so

1ImT=0"N=0Q")z1+...+z)=1)z1 + ...+ (17 )z = 0.
Thus 1=1t -1 =1% > 0. O

and

For a unital finite-dimensional Archimedean f-algebra A over F' with
a d-basis, since a disjoint subset of A must be linearly independent by
Theorem 1.13, a d-basis must be finite. We also notice that a d-basis of an
{-algebra may not be a vector space basis since it may not span the whole
space.

Now we provide some examples of f-rings and ¢-algebras that have a
d-basis.

Example 2.1.

(1) Any totally ordered ring has a d-basis with one element, and any f-ring
or d-ring has a d-basis if and only if their additive £-group has a basis.

(2) The matrix ¢-algebra M, (F) with the entrywise order has a d-basis
{e;j | 1 <i,j <n}, where e;; are standard matrix units. Similarly, let
T, (F) be the n x n upper triangular matrix ¢-algebra over F' with the
entrywise order. Then T,,(F') also has a d-basis consisting of standard
matrix units {e;; : 1 <i < j <n}

(3) Let F[G] be the group f-algebra of a group G with the coordinatewise
order. Then 1G = {lg | g € G}, where 1 is the identity element of
F, is a d-basis. Moreover, let S be a semigroup satisfying cancellation
law, namely, for any r,s,t € S, rs = rt or sr = tr implies s = t. Then,
using the coordinatewise order, the semigroup algebra F'[S] becomes an
l-algebra over F' with 15 as a d-basis. Especially, polynomial rings over
F' in one or more variables are ¢-algebras with a d-basis with respect
to the coordinatewise order.

It is easily seen that the d-bases in the previous examples are also
vector space bases over F. This is not always the case, as example (4)
illustrates.

(4) Let F[[z]] = {350z’ | a; € F} be the ring of formal power series
over F. Then it is an f-algebra over F with respect to the coordi-
natewise order. The set {z" | n > 0} is a d-basis, but not a vector
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space basis over F since the set does not span F/[[z]] as a vector space
over F'. Similarly consider the field F'((x)) of all formal Laurent series
flz) = Y «a;z', where among the coefficients a; € F with i < 0,
only finitely many can be nonzero. Again, with respect to the coordi-
natewise order, F'((x)) becomes an ¢-field with the d-basis {z™ : n € Z}
which is not a vector space basis over F'.

(5) Let K = Q(b) be the finite extension field of Q, where 0 < b € R
satisfies an irreducible polynomial ™ — « over Q with 0 < a € Q.
Then K = {ap + a1b + ... + @, 10" | a; € Q} with respect to the
coordinatewise order, is an /-field since " = « > 0. Since b is a d-
element by Theorem 1.32(3), {1,b,--- ,b" 1} is a d-basis of K as well
as a vector space basis over Q.

Next we list all 2-dimensional and 3-dimensional unital /-algebras with
a d-basis which is also a vector space basis. For simplicity, F' is assumed to
be a totally ordered subfield of R.

Example 2.2. Let A be a unital £-algebra over F' with a d-basis D con-
taining two elements that is also a vector space basis of A over F.

(1) If 1 is not basic, then A is a 2-dimensional falgebra. Therefore A =
FoF.

(2) If 1 is basic, then we may assume that 1 € D. Let 1 and 0 < a € A
form a d-basis for A. Then a?> = al + fa for some o, € FT. Since
1Aa=0,aAa?=0. We must have f = 0. Thus a? = al with a > 0.

(a) If @« = 0, then A = 1F @ aF as a vector lattice over F with a? = 0.

Now suppose a > 0.

(b) If Ja € F,let b= (y/a) la. Thenb? = 1 and A = 1F®bF = F(G),
where G is a cyclic group of order 2.

(c) fyadg F,let Ja=beR. Then A=1F &aF = F(b), where F(b)
is the quadratic extension field of F' with the coordinatewise order
defined in Example 2.1(5).

Example 2.3. Let A be a unital ¢-algebra over F' with a d-basis D contain-
ing three elements that is also a vector space basis. Then A is isomorphic
to one of the following f-algebras over F'. The verification of this fact is left
to the reader (Exercise 1).

(1) F® F @ F, a direct sum of three copies of F, so it is an f-algebra.
(2) To(F), where To(F') is the 2 x 2 upper triangular matrix ¢-algebra.
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(3) Fe® Ff ® Fa, as a vector lattice with 1 = e+ f, fa = af = a and
a?=0.
(4) F @ F[G], where G is a cyclic group of order 2.
(5) F @& F(b), where 0 < b € R\ F, b> € F, and F(b) is the ¢-field in
Example 2.1(5).
) F1® Fa @ Fb, as a vector lattice where a? = b? = ab = ba = 0.
7) F1@ Fa® Fa?, as a vector lattice with a® = 0.
) F|[G], where G is a cyclic group of order 3.
) F(b), where 0 < b€ R\ F and b3 € F, F(b) is the ¢-field in Example
2.1(5).

In all of above examples, each d-basis, joint with 0, forms a semigroup
with 0, that is, the product of two basic elements is either zero or again a
basic element. However this observation is not true in general, as shown in
the following example.

Example 2.4. Let A be the 4-dimensional vector space over F' with the
vector space basis {1, a, b, c}. With the coordinatewise order, A is a vector
lattice over F'. The multiplication table of the basis is defined as follows.

‘1 a b ¢
1]1 a b ¢
ala b+c 0 0
b|b 0 0 0
c|c 0 0 O

Then A is an f-algebra over F' with {1,a,b,c} as a d-basis, and a®> = b+ ¢
is not basic (Exercise 2). We note that M = Fa + Fb+ Fc is the unique
maximal /-ideal of A, so A is not ¢-simple. If A is /-simple, then, by Lemma
2.3, the product of two basic elements is either zero or a basic element.

We next present some properties of a unital Archimedean f-algebra A
over F' with a d-basis that satisfies condition (C'). By Theorem 1.17 as a
vector lattice, A is a direct sum of maximal convex totally ordered subspaces
of Aover F. Sincel > 0,1 = ¢y +- - -+¢,, where {c1,- -+ , ¢, } is a disjoint set
of basic elements for some positive integer n. Since ¢; < 1fori=1,--- ,n,
each ¢; is an f-element, so ¢; A ¢; = 0 implies c;c; = cic; A cie; = 0 for
i # j. Then for each i =1,--- ,n, ¢; = 1l¢; = (¢c1 + - + ¢n)e; = ¢?. That
is, each ¢; is idempotent.

Theorem 2.2. Let A be a unital Archimedean €-algebra over F with a d-
basis and let A satisfy condition (C). Suppose 1 =c1+---+¢, wheren > 1
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and {c1,-+- ,cn} is a disjoint set of basic elements.

(1) For each basic element a € A, there exists ¢; such that c;a = a and
cka = 0 for k # i. Similarly, there exists c; such that ac; = a and
acp, =0 fork #j.

(2) For each basic element a € A,

(i) a is nilpotent; or
(ii) there exists a positive integer n, such that 0 # a™ € ciLL for
some c;; or
(iii) the set {a™ | m > 1} is disjoint and a™ A1 =0 for each m > 1.

(3) For eachi=1,---,n, c;t is a convez totally ordered subalgebra and a
domain with identity element c;, and f(A) = ctt+---+ctt. Ifr e A
s a basic element and an idempotent f-element, then x = ¢; for some
i=1,---,n.

(4) Let I be a right (left) l-ideal of A. Then ¢;I (I¢;) is a right (left)
L-ideal of A and ¢;I (I¢;) C 1.

Proof. (1) Since a = la = c1a+ --- + cpa and a is a basic element,
c;a and cga are comparable. On the other hand, since a is a d-element by
Theorem 2.1(1), ¢; Acg = 0 implies ¢;a A cga = 0 for ¢ # k. Thus if ¢;a # 0,
then cpa = 0 for any k # ¢, and hence a = ¢;a. The other conclusion can
be proved similarly.

(2) We do some analysis first. Suppose that a™ # 0 for some positive

integer m. Then a™ = Y";_| a¢, where {a1,--- ,a,} is a disjoint set of basic
elements. Suppose that c;a = a for some i =1,--- ,n. Then ¢;a™ = a™, so
ciay = a; for each t = 1,--- ,r since a; < a". Take ¢; # ¢;. If ay A cj # 0,

then a; and ¢; are comparable by Theorem 1.14(2) since they are both basic
elements. If a; < ¢; then a; = c;a; < ¢;cj = 0, which is a contradiction. If
¢j < ag, then ¢; = c? < c¢ja; = cjc;a = 0, which is again a contradiction.
Thus a; Acj =0 forany t =1,--- ,7 and j # 4.

If for each t = 1,--- ,r, we also have a; A ¢; = 0, then a; A1 = 0 for
each t, and hence a”™ A1 = 0. On the other hand, suppose that for some
s=1,---,r, a5 ANc; # 0, then as € cf-J- by Theorem 1.14. We claim that
a™ = as. We first notice that a, € ciLL implies asc; = as by an argument
similar to that in the previous paragraph. For any t # s, a; Aas = 0 implies

0 < aias Nasa; < aa™ Naga™ =0

since a is a d-element implies a™ is a d-element, so a;as A asa; = 0. Then
as € cﬁ-l and A is Archimedean over F' imply ¢; < aag for some 0 < a € F,
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and hence asc; A c;a; = 0. It follows from c;a; = a; that a;c; A ay = 0, so
aic; N age; = 0 since ¢; is an f-element. Thus as¢; = 0 for ¢t # s, and hence

am

=am¢; = (a1 + -+ a,)¢; = as¢; = as.
So far we have proved that for a positive integer m, if ™ # 0, then
either a™ A1 =0 or a™ € ¢;-* for some ¢;.

Hence if (i) and (ii) are not true, that is, if a is not nilpotent and
a™ ¢ ¢+ for any m > 1 and any ¢;, then by above argument, a™ A 1 = 0
for any positive integer, so a is a d-element implies for r < s, a®* A a" =
a”(a®~") A1 =0, and hence the set {a™ | m > 1} is disjoint and a”™ A1 =0
for all m > 1. That is, (iii) is true. We leave it as an exercise for the reader
to show that any two statements of (), (i), (#¢i) cannot be both true.

(3) We know that ¢+ is a convex totally ordered subspace for each
t=1,---,n. Let 0 <x,y € cf-l-. Since A is Archimedean over F' and cf-l-
is totally ordered, there exists 0 < a € F such that z < ac;. It follows
that z is an f-element and hence xy € c;-+. Therefore each c;-* is a convex
totally ordered subalgebra. Suppose a? = 0 for some 0 < a € ¢;-+. Again A
is Archimedean implies ¢; < Ba for some 0 < 3 € F, s0 ¢; = ¢? < 3%a® =0,
11
(3
hence it is a domain (Exercise 39, Chapter 1).

Let 0 <z € ¢+, i =1,...,n. Since ¢;-* is totally ordered and A is
Archimedean, there exists 0 < a € F such that 0 < x < ac;, so x is an
f-element. Thus each ¢+ C f(A), and hence i+ + ... + ¢+ C f(A).
Let 0 < x € f(A). Then x = 21 = z¢; + ... + xc,. Since z is an f-
element, zc; € ¢;+, i =1,...,n. Thus z € ¢i+ + ... + ¢+*, and hence
f(A) Ceit + ...+ ¢t Therefore f(A) = it + ... +ctt.

Let x € A be a basic element and an idempotent f-element. Then
11

)

which is impossible. Thus ¢;-— contains no nonzero nilpotent element and

x € c;* for some i. It follows from 22 = x that x = ¢; since c;+ is a
domain.

(4) Clearly ¢;I is a right ideal of A and a sublattice of A since ¢; is an
f-element. Let a € A and b € I with a < ¢;b. We show that a € ¢;1.
First we assume that b is a basic element. From (1), we have ¢;b = 0 or
cib = b, and hence a € I in either case. For any j # i, cja < ¢jcib =0
implies ¢ja = 0, so a = la = (c1 + -+ + ¢cp)a = ¢;a € ¢;I. In general

case, let b = by + --- + bg, where by,--- ,bi € I are basic elements, and
a < ¢by 4+ -+ c¢be. Thus a = a1 + --- + ap with 0 < a; < ¢;by for
some ay, -+ ,ar € AT by Theorem 1.5. From the previous argument, each

as € ¢;1, so a € ¢;I. Therefore ¢;I is a right f-ideal of A. Finally ¢;I C I
because of ¢;x = 0 or x for each basic element z in I by (1). (]



56 Algebraic Structure of Lattice-Ordered Rings

Theorem 2.3. Let A be a unital Archimedean (-algebra over F' with a d-
basis and let A satisfy condition (C). For a convex £-subalgebra H and an
l-ideal I, H and R/I are Archimedean (-algebras with a d-basis satisfying
condition (C).

Proof. Suppose that S is a d-basis of A. Then H N S is a d-basis and H
is Archimedean over F' and satisfies condition (C) (Exercise 3).

Let I be an (-ideal of A. For each a € A, writea=a+1 € A/I. Let S
be a d-basis for A. We show that V = {5| s € S\ I} is a d-basis for A/I.
Let 0 < a,b < 5 € V. Since a,b are positive, we may assume that a > 0,
and b > 0. Then we have a = aAS =a A's,s0a—(aAs) = ay € I. Similarly,
b—(bAs)=by €l Hencea—a; =(aAs)<sandb—b; = (bAs)<s,so
s is basic implies that a — a; and b — b; are comparable. If a —a; < b— by,
then @ =a —a; <b—0b; =b. Similarly b — b; < a — a; implies that b < a.
Thus 5 is basic in A/I. Now let @ Ab=0. Then a Ab=c € I, and hence
(a—c) A (b—c)=0. It follows that

s(la—c)As(b—c)=0 = saAsb=scel.
Thus 5a A5b = 0 in R/I. Similarly, a5 A b5 = 0, that is, 5 is a d-element in
A/I. Since A is a direct sum of s*+, s € S, A/I is a direct sum of 5+,
where 5; € V, which implies that V is a d-basis of A/I and A/I satisfies
condition (C).

Finally we show that A/I is Archimedean over F. To this end we just
need to show that each 5;1* is Archimedean over F for 5; € V (Exercise
4). Let 0 < a,b € 5 with 0 < a,b € A. Then a = ay + -+ + ap,
where a1, -+ ,a,, are disjoint basic elements, and b = by + - - - + by, where
b1, -+, by are disjoint basic elements. Since a,b ¢ I, we may assume that
a1,by € I. For any az, 1 <t <m, a; A a; = 0 implies that a; Aa; = 0. It
follows that @a; = 0 since @ is basic and @ = ay + - -- + @,,. Thus @ = a7
and ai,s; are comparable. Similarly b = b; and by, s; are comparable.
Now 0 < ay,b; € s+ and s is totally ordered and Archimedean over F
implies that there exist 0 < «a, 8 € F such that a; < ab; and by < Ba;.
Hence @ = a1 < ab; = ab and b = b, < far = fa. Therefore 5;-+ is
Archimedean over F. O

A nonzero left (right) ¢-ideal I is called minimal if for any nonzero left
(right) ¢-ideal J, J C I implies that J = I.

Theorem 2.4. Let A be a unital finite-dimensional Archimedean £-algebra
over F with a d-basis and 1 = ¢y + -+ + ¢, where n > 1 and {1, -+ ,cn}
18 a disjoint set of basic elements.
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(1) Fori=1,---,n, c;t is a totally ordered field.

(2) If a,b are basic elements such that ab # 0 and one of them is not
nilpotent, then ab is basic.

(3) Let I be a minimal right (left) ¢-ideal of A. Then either I? = {0} or
I =cA (A¢) for somei=1,--- n.

Proof. (1) From Theorem 2.2(3) we know that c;* is a convex totally
ordered subalgebra and a domain. If A is finite-dimensional over F', then
i+t is also finite-dimensional over F', which implies ¢;-* is a totally ordered
division algebra over F. Now by Theorem 1.23, c;+ is commutative and
hence it is a totally ordered field.

(2) We first notice that since A is finite-dimensional and a disjoint set of
A must be linearly independent over F' by Theorem 1.13(3), the case (i4i) in
Theorem 2.2(2) cannot happen. Without loss of generality, we may assume
that a is not nilpotent. Then, by Theorem 2.2(2), there exists a positive
integer n, such that 0 # a™ € cf-J- for some ¢;, so c;a = ac; = a. Because
of ab # 0, ¢;b = b. Otherwise c¢;b = b for some c; # ¢; and ab = ac;cjb = 0.
Assume that ab = a1 + - - - +a,., where {ay,--- ,a,} is a disjoint set of basic
elements and r > 1. We claim that » = 1. Suppose r > 1. We have

a"b=a""tay +---+a" a,,

and a™ € citt

is an f-element. Thus a™b € b+* and a"eb is a basic
element, so a1 Las are comparable. On the other hand,
a1 Aaz =0 and a is a d-element implies a™ ~1a; A @™ 'ay = 0. Therefore
we must have a™1a; = 0 or a™lay = 0. It follows that a; =0 or ay =0
(Exercise 5), which is a contradiction. Hence r = 1 and ab = a; is basic.
(3) We first notice that since A is finite-dimensional over F', each nonzero
right /-ideal contains a minimal right f-ideal. Suppose that I? # 0. Then

there exists a basic element = € I such that xI # 0. Define

a; and a"e—

J={a€ A|la| <xrfor some 0 < r € I}

Then J is a right f-ideal (Exercise 6) and J C I. Tt follows from «I # 0
that J # 0. Thus by minimality of I, J =1, so x < zr for some 0 < r € I.
Let r =ri+... 47y, where m > 1 and rq, ..., r,, are disjoint basic elements.
Since r € I, each r; € I, and since z is a d-element, xr; A xr; = 0 for
i # j. Then x < xry + ... + 27y, and x is basic imply that = < zr; for
some j = 1,...,m (Exercise 7). It follows from the fact that A is finite-
dimensional over F' that either r; is nilpotent or 0 # T?j =w € ¢t for
some ¢;, n; > 1. If r¥ = 0 for some positive integer u, then

;vgxrjgxrf-g...gxryzo
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implies that x = 0, which is a contradiction. Thus r; is not nilpotent.
Consequently r;” =w e landc €I byc¢ <aw for some 0 < a € F.
Hence ¢;A C I, then I = ¢; A from the minimality of I and that ¢;A is a
right /-ideal implies I = ¢; A. O

Corollary 2.1. Let A be a unital finite-dimensional £-algebra over F with
a d-basis and (-N(A) = {0}. Suppose 1 =¢1 + -+ + ¢,, wheren > 1 and
{c1,-++ ,cn} is a disjoint set of basic elements. Then each ¢;A (Ac;) is a
minimal right (left) £-ideal of A.

Proof. By Theorem 1.31(3), A is Archimedean over F. Let I C ¢;A be
a minimal right /-ideal of A. Since ¢-N(A) = {0}, I? # {0} (Exercise 8),
and hence I = ¢; A for some ¢; by Theorem 2.4(3). Then ¢; A C ¢; A implies
i = j, that is, ¢; A is a minimal right /-ideal of A. O

2.2 Structure theorems

In this section, we consider the structure of a unital finite-dimensional
Archimedean f¢-algebra over F' with a d-basis.

2.2.1 Twisted group £-algebras

Definition 2.2. Let G be a group. A function ¢ : G x G — F'\ {0} is called
a positive twisting function if ¢ satisfies the following conditions,

(1) t(g,h) >0, for all g,h € G,

(2) t(gh, £)t(g,h) = (g, h)t(h, f), for all f,g,h € G,

(3) t(g,e) =t(e,g) = 1, where e is the identity element of G, for all g € G.
In the case that G is an abelian group, t is also commutative, that is,

(4) t(g,h) =t(h,g), for all g,h € G.

Define

F'G) = {Z@igz' | a; € F,g; € G}.

=1
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With respect to the following operations, F'[G] becomes a vector lattice
over F' (Exercise 9). For Y7 | «igi, > iy Bigi € F![G], « € F,

Z a;g; + Z Bigi = Z(ai + Bi)gi; (2.1)
i=1 i=1

i=1
ad aigi=) (am)g, (2:2)
i=1 i=1
Zaigi >0 if each a; € FT. (2.3)
i=1

Define multiplication in F*[G] by
n m n m

O ig) O Bihy) =D > (iB)t(gi, hyj)(gihy),

i=1 j=1 i=1 j=1
where (g;h;) is the product of g;, h; in the group G. The multiplication
defined above is associative by Definition 2.2(2) and multiplication is dis-
tributive over the addition in F*[G] is clear by the definition. Thus F*[G]
is an algebra over F'. The condition (1) in Definition 2.2 implies the prod-
uct of two positive elements is also positive, so F't[G] is an f-algebra over
F, called twisted group (-algebra of G over F. In this book, F![G] always
denotes the f-algebra with the coordinatewise order defined above. If G is
abelian, then F*[G] is commutative by Definition 2.2(4). It is clear that
1G = {1g | g € G} is a d-basis of the f-algebra F*[G] over F. The identity
element of F'[G] is le, where 1 is the identity element of F. Sometimes we
just identify 1G with G, so e is the identity element of F*[G] under this
assumption.

Certainly if t(g,h) = 1 for all g,h € G, then F'|G] = F[G] is the group
(-algebra. As an example, the (-field Q[v/2] with the coordinatewise order
may be considered as a twisted group f-algebra with G = {e, g} being a
cyclic group of order 2, and the twisting function ¢ defined by

t(e,e) =t(e,g) =t(g,e) =1 and t(g,g9) = 2.

We leave the verification of it as an exercise (Exercise 10).
Theorem 2.5. F'[G] is an (-simple (-algebra over F.

Proof. Let I be a nonzero (-ideal of F*[G] and 0 < a = >\, g, € I
with a; # 0. Then each a; > 0,50 0 < a191 < a implies a391 € I. Suppose
that g € G such that g1g = e in G. Then e = (a191)(a] 't(g1,9) 'g) € I.
Therefore I = F*[G]. O
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Some other properties of F*[G] include that the identity element is basic
and it is an ¢-domain (Exercise 11).

In the following section, we prove that a unital finite-dimensional ¢-
simple f-algebra over F' with a d-basis is /-isomorphic to a matrix £-algebra
with the entrywise order over a twisted group f-algebra of a finite group.

For more information on general twisted group rings, the reader is ref-
ereed to [Passman (2011)].

2.2.2 fl-simple case

Theorem 2.6. Let A be a unital finite-dimensional (-algebra over a totally
ordered field F' with a d-basis. If A is £-simple, then A is £-isomorphic to
the matriz (-algebra M, (K'[G]) with the entrywise order, where n > 1, K
is a totally ordered field and a finite-dimensional £-algebra over F', G is a
finite group, t is a positive twisting function on G, and K*[G] is the twisted
group L-algebra of G over K.

We prove the result by a series of steps. Since A is {-simple, -N(A) =
{0}, so A is Archimedean over F by Theorem 1.31(3) and A is a finite
direct sum of maximal convex totally ordered subspaces of A over F' by
Corollary 1.3. Let S be a d-basis of A over F. Then S is finite. Suppose
that l=c1+...4+ ¢, withn > 1 and ¢4, ..., ¢, are disjoint basic elements.
For each i = 1,...,n, define K; = ciLL and H; = ¢;Ac;. Then each K; is
a totally ordered field and finite-dimensional ¢-algebra over F' by Theorem
2.4(1), and each H; is a convex f-subalgebra of A over F' (Exercise 12) with
KigHi,izl,'-- ,n.

Lemma 2.1. Fori=1,--- ,n, H; = ¢;Ac; is £-reduced.

Proof. Suppose that there exists 0 < 2 € H; = ¢;Ac; with % = 0 for
some positive integer k. Consider
I={a€ Al |a| <azr for somer e AT}.
Then I is the right ¢-ideal generated by z. Since x € ¢;Ac; C ¢; A, I C ¢; A,
and since z € I, I # 0. Thus I = ¢; A because ¢; A is a minimal right /-ideal
by Corollary 2.1. So there exists r € A" such that ¢; < zr. It follows
from x € ¢;Ac; that zc; = x, so ¢; < zr implies that £ = z¢; < 2?r. Then
multiplying x from the left and r from the right of the inequality, we have
r < z°r < 32 <..< bkl = 0,

which is a contradiction. Thus H; = ¢;Ac; is ¢-reduced. O
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Lemma 2.2. For eachi=1,...,n, K; is contained in the center of H;.

Proof. Let 0 < z € K;. To show that z is in the center of H;, we just
need to verify that az = za for each basic element a € H;. By Lemma
2.1, a is not nilpotent, so by Theorem 2.2, there exists a positive integer
ng > 1 such that a™ = w € K; with w # 0. If az = 0 or za = 0, then
wz = 0 or zw = 0, which contradicts with the fact that K is a field. Thus
az # 0 and za # 0. By Theorem 2.4(2), az and za are both basic elements.
If az A za = 0, then z is an f-element implies that zaz A zaz = 0, and
hence zaz = 0, which is a contradiction. Thus az and za are comparable.
If az < za, then a < zaz~', where 27! is the inverse of z in K;. Hence

w=a" <a™ (zaz™') < (zaz7t)" N (zaz7!) = za" 27! = w.
From w = a" !(zaz~!), we have wa = aw = w(zaz™!), and hence
w(az) = w(za), so az = za, which contradicts with the fact that az < za.
Similarly, za < az is not possible. Thus az = za for each basic element
a € H;. Since each positive element in H; is a sum of disjoint basic ele-
ments in H; and each element in H; is a difference of two positive elements
in H;, z commutes with each element of H;, that is, z is in the center of
H;. Therefore K; is contained in the center of H;. O

For two basic elements a,b € H;, define a ~ b if a = zb for some z € K.
Then ~ is an equivalence relation on H; (Exercise 13). For a basic element
a € H;, a’ denotes its equivalence class and define

G; = {d' | a € H; is a basic element}

with the operation a’b’ = (ab)’. Since H; is f-reduced, if a,b € H; are basic
elements, then ab is still a basic element by Theorem 2.4. It is clear that
the operation is well-defined and associative with ¢} as the identity element
(Exercise 14). For o' € G;, by Theorem 2.2(2), there exists a positive
integer n, such that o € K;. Thus (a')" = ¢;. It follows that G; is a
group fori =1,--- ,n.

Let S; be a d-basis for H;. For a basic element a € H;, a is comparable
with some s € S;. We claim that o’ = s’. Since A is Archimedean over F,
there exists 0 < o € F such that ¢ < as. By Theorem 2.2, there exists a
positive integer n, such that 0 < s™ = u € K;, and hence as™ ! < as™ =
au implies that as™ ! = v € K;. Thus au = vs. By Lemma 2.2, u is in
the center of H;, so we have

a=u"Y(ua) =u"(au) = u " (vs) = (uv)s
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and u'v € K;. Therefore a ~ s, that is, ¢’ = s’. This shows that
G;={s'| s € S;}. Hence G; is a finite group with the order |S;].

Let G = Gy = {s},...,s},}, where {s1,---,s,} is a d-basis of Hy, and
let K = K;. For s and 8;», let s;s; = 5. Then s;s; = z;s, for some
0 < zij € K. Define t : G x G — K \ {0} by (s}, s) = 2. It is routine
to verify that ¢ is a positive twisting function (Exercise 15). Now we first
form the twisted group f-algebra K'[G], and then form matrix f-algebra
M, (K*[G]) with the entrywise order. Then M, (K'[G]) is an f-algebra over
F and we show that A and M, (K'[G]) are {-isomorphic as (-algebras over
F.

Lemma 2.3. For a basic element a € c;Acj, 1 < 4,j < n, there exists a
basic element b € c;Ac; such that ab = ¢; and ba = c;. As a consequence,
the product of two basic elements is either zero or a basic element.

Proof. Since A is {-simple, A = (a), and hence there exist r, s € A" such
that ¢; < ras. Suppose that r =7y + - -+ 4+ rg, where r1,--- , 7 are disjoint
basic elements, and s = s; + --- + sy, where sy, , sy are disjoint basic
elements. Then

¢ < Z TuASy = C; = Z buw

1<u<k,1<v<t 1<u<k,1<v<t
with 0 < by, < ryas,. Since ¢; is basic, any two of by,,1 < u < k,1 <
v < £, are comparable. We may assume b,,,,, is the largest one among by,
1<u<k 1<v<{soc < (k+0byw < (k+Lryas,,. Thus we
have that ¢; < waz for some basic elements w and z. Then c;w = w and
zc; = z by Theorem 2.2. Suppose that = is a basic element with = < waz

and z A ¢; = 0. Then ¢;z = zc; = x, and waz is a d-element implies that
x =xc; A ez < x(waz) A ¢;(waz) =0,

which is a contradiction. Thus, since each positive element in A is a sum of
disjoint basic elements, waz must be basic, and hence ¢; < (waz) implies
that waz = y € K; = ¢;-* by Theorem 1.14(2). From waz # 0 and c;a = a,
we have we; = w, so w € H;. By Lemma 2.1, w is not nilpotent, and hence
there exists a positive integer n,, such that w"» = ¢ € K;. Then

waz =y = qlaz) = w"™ (az) = w"™ "ty = yw"

since K; is contained in the center of H;, so q(azw) = yw™ = yq = qy.
Thus azw = ¥y, and a(zwy ') = ¢;, where y~! is the inverse of y in K;. Let
b= 2wy~ !. Then ab = ¢; and b is a basic element by Theorem 2.4 since w
is not nilpotent.
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It is clear that b € c¢;Ac;. Then by a similar argument, there exists a
basic element ¢ such that bc = ¢;. Thus ¢ € ¢; Ac;, and

a = acj; = a(be) = (ab)c = cic=c.

Therefore ab = ¢; and ba = ;.

Let « and y both be basic elements, and xy # 0. Suppose that 0 <
u,v < xy. Let x € ¢;Ac;. Then there exists a basic element z1 € c;Ac;
such that za1 = ¢; and 212 = ¢j, so 0 < zyu, z1v < z1(2y) = y. Thus
z1u and xjv are comparable, and hence u = z(z1u) and v = z(z1v) are
comparable. Therefore, zy is basic. (I

Since A is f-simple, A = (¢;) for each ¢ = 1,...,n. Using the same
argument as in the proof of Lemma 2.3, ¢; < a;c; f; for some basic element
a; and f;. Since each a; € ¢y Ac; is basic, by Lemma 2.3, there exist basic
elements b; € ¢; Acq such that

arby = c1, biay =1
agby = C1, baas = c2

anbn = C1, bnan = Cp

Recall that S = S is a d-basis for the convex ¢-subalgebra H; = ¢ Acy,
and K = K| = ¢ .

Lemma 2.4. For each basic element x© of A, x = b;(zs)a; for some 1 <
,7 <mn, z € K and s € S. Moreover if x = b,(wt)a,, where w € K and
teS, thenu=i,v=j,w==zandt=s.

Proof. We may assume that « € ¢;Ac; for some ¢ and j. Then a;zb; €
c1Ac is basic and a;zb; ~ s for some s € §, that is, a;xb; = zs for some
0 < z € K. Hence z = b;(2s)a,.

If ¢ = by(wt)a, for some w € K and ¢t € S. Then clearly v = i and
v =7, s0 zs = wt. If s #t, then s A\t =0, and hence zs A wt = 0 since
z,w both are f-elements. This is a contradiction. Thus s = ¢, and we have
(z—w)s=0,s0z=w. O

Now we show that a unital finite-dimensional ¢-simple /-algebra with a
d-basis is (-isomorphic to M, (K'[G]). For z € K and s’ € G, e;j(zs") =
(zs")ei; denotes the matrix with ijt" entry equal to zs’ and other entries
equal to zero, 1 <i,j < n.

Define the mapping ¢ : A — M,,(K*[G]) as follows. Define ¢(0) = 0.
For a basic element x of A, by Lemma 2.4, we may uniquely express = as
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x = b;(zs)a;, where z € K and s € S, 1 <1i,j <n. Define p(x) = e;;(zs).
For 0 < a € A, a can be uniquely expressed as a sum of disjoint basic
elements, that is, a = a1 + ... 4+ a,,, where aq,...,a,, are disjoint basic
elements. Then define ¢(a) = p(a1) + ... + ¢(a,). Finally for each 0 #
a€ A, p(a) = p(a*) —pla”).

If z and y in A are comparable basic elements. Then we must have
x = b;i(z15)a; and y = b;(228)a; and z1, 2z are comparable. Then x £y =
bi((z1 £ 22)s)a; implies that

p(rty) = eij((21 £ 22)8) = eij(215") £ eij(228") = () £ p(y).

Thus it follows that ¢ preserves addition on A (Exercise 16).

Now consider the multiplication. Let « = b;(zs1)a; and y = b, (ws2)a,
be two basic elements in A. If v # 7, then a;b, = 0 implies that zy = 0, so
¢(zy) = 0. On the other hand, p(x)p(y) = €;;(251)eus(ws2) = 0. If u = j,
then xy = b;((2w)s182)a,, where s189 = t(81, 82)(s182) with #(s1,s2) € K
and (s152) € S, and hence

o(zy) = e (zwt(sy,52)(s152)")
= eiv((251)(ws3))
= eij(25))ewn (wSh)
= p(z)e(y)

where the product (zs})(ws}) is in the twisted group f-algebra K*[G]. Thus
it follows that ¢ preserves multiplication on A (Exercise 17). It is clear that
© is one-to-one and onto, and for any a € A, o € F, p(aa) = ap(a), and
hence ¢ is an isomorphism between algebras A and M, (K*[G]) over F.
Finally, for any a € A, p(a) > 0if and only if a > 0 (Exercise 18), therefore
¢ is an f-isomorphism between f-algebras A and M,,(K'[G]) over F. This
completes the proof of Theorem 2.6.

In Corollaries 2.2 and 2.3 we consider some special cases of Theorem
2.6.

Corollary 2.2. Let A be a unital finite-dimensional £-simple £-algebra over
F. Then A is {-isomorphic to the matriz (-algebra M, (F'[G]) with the
entrywise order, where n > 1, G is a finite group, t is a positive twisting
function on G, and F*[G] is the twisted group {-algebra of G over F, if and
only if A contains a d-basis that is also a vector space basis of A over F.

Proof. “=7 It is clear that {e;;(s) | 1 <i,j <n,s € G} is a d-basis and
a vector space basis of A over F' (Exercise 19).
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“<” By Theorem 2.6, A is f-isomorphic to the f-algebra M, (K'[G]),
where K is a totally ordered field and a finite-dimensional ¢-algebra over
F. Let S be a d-basis of A that is also a basis of A as a vector space over
F,and let 0 < z,y € K. Since z,y are basic, there exist s,t € S such that
x = as and y = Bt for some 0 < «,f € F. Then the fact that z and y
are comparable implies that s = ¢t. Therefore K = F's, for some s € S, is
one-dimensional over F', and hence M, (K'[G]) = M, (F![G]). O

Corollary 2.3. Let A be a unital finite-dimensional £-simple (-algebra over
F with a d-basis.

(1) If 1 is basic or A is £-reduced, then A is £-isomorphic to the twisted
group {-algebra K[G], where K is a totally ordered field and a finite-
dimensional £-algebra over F', G is a finite group, and t is a positive
twisting function.

(2) If A is an f-algebra, then A is {-isomorphic to a finite-dimensional
totally ordered extension field of F'.

(3) If A is commutative, then A is {-isomorphic to K'[G] as in (1) with G
being a finite commutative group.

Proof. From Theorem 2.6, A is {-isomorphic to the ¢-algebra M, (K*[G]).
(1) If 1 is basic or A is ¢-reduced, then n = 1.
(2) If Ais an f-algebra, then n =1 and G = {e}.
(3) If A is commutative, then n =1 and G is commutative. O
We next consider Theorem 2.6 when F' = R. First we state a well-

known result that each unital finite-dimensional algebra can be considered
as a subalgebra of a full matrix algebra.

Lemma 2.5. Let B be a unital n-dimensional algebra over a field L. Then
B can be considered as a subalgebra of M, (L) with the identity matriz as
the identity element of B.

Proof. Let {vy,---,v,} be a basis of B over L. For each b € B, bv; is

a unique linear combination of {vy,--- ,v,}, so there exists a unique n X n
matrix f, € M, (L) such that
bvy o
= /o
bu,, Vp,

Define ¢ : B — M, (L) by ¢(b) = fI', where fI is the transpose of the
matrix fp. It is straightforward to check that ¢ is one-to-one and an algebra
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homomorphism (Exercise 20). Clearly ¢ maps the identity element of B to
the identity matrix. O

Corollary 2.4. Let A be a unital finite-dimensional £-simple (-algebra over
R with a d-basis, then A is {-isomorphic to the l-algebra M, (R[H]) where
n>1, H is a finite group, and R[H] is the group £-algebra of H over R.

Proof. By Theorem 2.6, A is {-isomorphic to the f-algebra M, (K*'[G])
over R, where K is a totally ordered field and finite-dimensional ¢-algebra
over R. If dimgK > 1, then K is isomorphic to the field C of complex
numbers, which is impossible since C cannot be a totally ordered field.
Thus dimg K = 1 and A is f-isomorphic to the f-algebra M, (R*[G]).

We show that f-algebra RY[G] is actually a group f-algebra R[H]. Sup-
pose that G contains k elements. Since G is a vector space basis of R[G]
over R, we may consider R*[G] as a subalgebra of My (R) containing the
identity matrix by Lemma 2.5. For a € G, since a is not nilpotent, by The-
orem 2.2 there exists a positive integer n, such that a™* = «a,e for some
0 < a, € R, where e is the identity element of G. Then «, = (8,)" for
some 0 < 3, € R. Tt follows that (8;'a)" =e. Let a = 3, 'a and define
H = {a | a € G}. We check that H is a group. For g;,9; € H, gig; = agx
for some 0 < a € R and gy € H, so det(g;)det(g;) = a*det(gy), where
det(g) denotes the determinant of a matrix g. For g € H, since g™ = e for
some m > 1, (det(g))™ = 1. It follows from det(g) € R that det(g) = +1.
Hence det(g;)det(g;) = a”det(gx) implies that af = 1, so @ = 1 since
a > 0. Therefore g;9; = g € H, so H is a finite group. Clearly H is
also a d-basis for R*[G], and hence R*[G] = R[H]. Therefore the (-algebra
M (RY[G]) is equal to the (-algebra M (R[H]). O

A totally ordered field F' is called real closed if any proper algebraic ex-
tension field of F' cannot be made into a totally ordered field. For instance,
R is a real closed field. Corollary 2.4 is actually true for any real closed
field.

Now we consider the uniqueness of the ¢-isomorphism in Theorem 2.6.

Theorem 2.7. Suppose that £-algebras M, (KI'[G1]) and M,,,(K5[G3))
are L-isomorphic (-algebras over F, where ni,ny are positive integers,
K, Ko are totally ordered fields and finite-dimensional £-algebras over F,
G1,Gsy are finite groups, and t1 : Gy X G1 — K; \ {0}, t2 : Go x Gy —
Ky \ {0} are positive twisting functions. Then ny = ny and (-algebras
K!'[G4] and K$2[Go] are (-isomorphic. Moreover, Ky, Ko are £-isomorphic
L-algebras over F, and G1, Ga are isomorphic groups.
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Proof. TFor simplicity of notation, let B = M, (K'[G;]) and C =
M,,(K5[G2]). In B,

1 =eqi(er) + -+ enin, (1),

where 1p is the identity matrix in B, e;;(e1) is the ny x ny matrices with
the i7*" entry equal to the identity element e; of G and other entries equal
to zero, i = 1,...,ny. By Theorem 2.2(3), B has at most n; basic elements
that are also idempotent f-elements. Similarly, C' has at most ny basic
elements that are also idempotent f-elements. Therefore, that B and C
are (-isomorphic implies that ny = ns.

Let n = ny = ny and ¢ : B — C be an f-isomorphism between /-
algebras B and C. Since 15 = e11(e1) + -+ + enn(e1), we have

le = ¢(1p)
= p(err(er)) + -+ w(ean(er))
=epi(e2) + -+ ennle2),

where 1¢ is the identity matrix of C' and es is the identity element of Gs.
Then, since {ej1(e2),...,enn(ea)} and {p(eii(er)), ..., v(enn(e1))} both
are disjoint sets of basic elements that are also idempotent f-elements of
C, we must have

plerr(er)) = eiyiy(€2),- - plenn(er)) = ei,i, (e2),

where {41, ..., i,} is a permutation of {1,...,n}. Let
Ey = ep(er)Beri(er), B2 = e, (e2)Ceyi, (€2).

It is clear that ¢|g, : 1 — Fs is an f-isomorphism of the two f-algebras
(Exercise 21). Define f : Ki'[G1] — E; by f(z) = eni(x) for all z €
K!'[G4]. Then it is straightforward to verify that f is an f-isomorphism
of two f-algebras (Exercise 22). Similarly K12[G5] is f-isomorphic to E.
Therefore Ki'[G;] and K3?[Gy] are (-isomorphic f-algebras.

We also use ¢ to denote the f-isomorphism from K1'[G1] to K2[Ga).
By a direct calculation, we have Ko = e3+ = p(ei™) = ¢(K;) (Exercise
23), so K7 = K. Moreover GG; and G2 have the same number of elements.
Suppose that G1 = {g1,--- ,gx} and G2 = {h1,--- ,hi}. Since p(g;) is a
basic element, ©(g;) = u;h;; for unique 0 < u; € Ko and h;; € G2. Define
0 : Gy — Gz by 0(g;) = hi,. For g.,gs € G1, suppose that g.g; = g; and
<»O(QT) = a'r‘hir7 (P(gs) = ashis' Then ‘p(grgs) = @(Qr)w(gs) implies that
aihi, = (arh;.)(ash;,), and hence h; h;, = h;, in G3. Hence 0(g,gs) =
0(g-)0(gs), so 0 is an isomorphism from G; to Gs. O
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2.2.3 General case

In this section we consider unital finite-dimensional Archimedean f-algebras
A with a d-basis over F' that may not be ¢-simple. We first consider the
case that -N(A) = {0}. We notice that the results in Theorem 1.28 are
true for ¢-algebras.

Theorem 2.8. Let A be a unital finite-dimensional £-algebra over F with
a d-basis. If -N(A) = {0}, then A is L-isomorphic to a finite direct sum
of unital finite-dimensional £-simple £-algebras over F with a d-basis. Thus
A is £-isomorphic to a direct sum of matriz (-algebras with the entrywise
order over twisted group {-algebras of finite groups over F.

Proof. 1f ¢-N(A) = {0}, then A is Archimedean over F, and hence A
is a direct sum of maximal convex totally ordered subspaces of A over F.
Also by Theorem 1.28, the intersection of ¢-prime f-ideals is zero. Since
A is finite-dimensional, we may choose a finite number of ¢-prime ¢-ideals
Py,---, Py such that P, N---N P, = {0} (Exercise 24). We may also
assume that the family {Py,--- , P} is minimal in the sense that no proper
sub-family of it has intersection {0}.

We show that each ¢-prime ¢-ideal P is a maximal /-ideal. Suppose that
P C I and P # I for some f-ideal I of A. Define J ={a € A | al C P}.
Clearly J is an ideal of A. Suppose that |b| < |a| for some a € J and b € A.
Let x € I be a basic element. Since x is a d-element, |bz| = |blz < |a|z =
|az| € P implies bx € P. Then since each strictly positive element in [ is a
sum of disjoint basic elements in I, we have bl C P, that is, b € J. Hence
J is an f-ideal of A. By the definition of J, JI C P, so J C P since P is
¢-prime and I € P.

Suppose that 1 = ¢y +---+¢,, wheren > 1 and {c1,- - , ¢, } is a disjoint
set of basic elements. If ¢;,I = {0}, then ¢; € J C P C I implies that
¢; = ¢2 = 0, which is a contradiction. Thus for any ¢;, {0} # ¢;I C ¢;A.
From Theorem 2.2 and Corollary 2.1, ¢;I is a right f-ideal and ¢;A is a
minimal right ¢-ideal, and hence ¢;I = ¢;A C I foreach i =1, -+ ,n. Then
A=c A+ -+ c,Aimplies A C I. Hence I = A and P is a maximal
l-ideal of A.

Since each P; is a maximal ¢-ideal of A, P; + (N, P;) = A. Construct
the direct sum A/P; @ ---® A/ Py, each A/P; is an {-simple ¢-algebra, and
define the mapping ¢ : a = (a + P1,--- ,a+ Py). Clearly ¢ is one-to-one
and an /-homomorphism between two f-algebras. For a; € A, a; = x; + y;,
where x; € Py, y; € Njx P, 1 <1 < k. Let a =y + -+ yr. Then
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p(a) = (a1 + P1, -+ ,ar + Px), that is, ¢ is also onto. Therefore ¢ is an
{-isomorphism between the two f-algebras. O

We would like to present another proof of the result in Theorem 2.8
and further characterize those f-simple components in the direct sum of
Theorem 2.8.

Let R be an f-ring and M be an {-group that is also a right (left)
R-module. Then M is called a right (left) ¢-module over R if zr € M™
(re € MT) whenever z € M*,r € R*. For f-modules M and N, an /(-
isomorphism ¢ is a module isomorphism from M to N such that for any
z,y €M, p(zVy)=p()Ve(y) and oz Ay) = ¢(x) A p(y).

Let A be a unital finite-dimensional ¢-algebra with a d-basis. Suppose
that .-N(A) = 0and 1 = ¢; + ... + ¢, where n > 1, and ¢y,...,¢, are
disjoint basic elements. By Corollary 2.1, {c1 4, ..., ¢, A} consists of all
the minimal right ¢-ideals of A. For i = 1, ...,n, define A; as the sum of all
minimal right ¢-ideals of A which are /-isomorphic to ¢; A as right /~-modules
over A.

Theorem 2.9. Let A be a unital finite-dimensional £-algebra with a d-basis.
Suppose that (-N(A) =0 and 1 = ¢y + ... + ¢, wheren > 1, and ¢q, ..., ¢y
are disjoint basic elements.

(1) For a minimal right (-ideal I of A and a basic element x, if I # 0,
then xI is also a minimal right {-ideal of A.

(2) For eachi=1,...,n, A; is an £-ideal of A.

(3) Forl<i,j<n,ifc,A andc;A are not L-isomorphic as right £-modules
over A, then A;A; = 0.

(4) Fach A; is l-simple and A = A1 @ --- ® Ay for some positive integer
k<n.

Proof. (1) Since A =c1A+---+c, A and «1 is a right ¢-ideal by Theorem
2.2,

zl=ANnzl=(Anzl)+ -+ (c,ANxl)

by Theorem 1.9. Then since each ¢; A is a minimal right ¢-ideal, we have
either ;ANal = {0} or ;ANxl = ¢;A. Tt follows that =l is a direct
sum of some right ¢-ideals in {c14,--- ,c,A}. Since there exists a unique
c; such that c;x = x, we must have that z1 = ¢; A, so z/ is a minimal right
l-ideal of A.

(2) Since A; is a right ¢-ideal of A, it is sufficient to show that if I is
a minimal right ¢-ideal of A with I = ¢; A as right /-modules of A, then
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xI C A; for each basic element x of A. Suppose that «I # 0. Then by (1)
xI is a minimal right ¢-ideal of A. Define ¢ : I — zI by ¢(a) = xa, Va € I.
Then ¢ is a homomorphism between right A-modules I and z/. Since z is
a d-element, for any a,b € I,

ola Ab) =x(a Ab) = (xza) A (xb) = p(a) A @(b).

Similarly ¢(a V b) = ¢(a) V ¢(b). Thus ¢ is an {-homomorphism between
f-modules I and zI over A. Let H be the kernel of ¢, that is, H = {a €
I | za = 0}. Clearly H is a right ideal of A. Now let b € A and a € H with
|b| < la|. Then b € I and

|b| = 2|b] < zla| = |za| = 0,

so b = 0 and hence b € H. Therefore H is a right ¢-ideal of A. It follows
from the fact that I is a minimal right ¢-ideal that either H = I or H = 0.
If H =1, then I = 0, which is a contradiction. Hence H = 0, so ¢ is
one-to-one. It is clear that ¢ is onto. Therefore I = I = ¢; A as right
f-modules over A, so xI C A;. Hence A; is also a left ideal of A. This
completes the proof of (2).

(3) Suppose that I = ¢;A and J = ¢;A are not ¢-isomorphic. To show
that A;A; = 0, it is enough to show that IJ = 0 (Exercise 25). If I.J # 0,
then there exists a basic element « € I such that xJ # 0. By (1), zJ is a
minimal right ¢-ideal and by the proof of (2), J = xJ as right f-modules
over A. On the other hand, xJ C I since x € I and [ is a right ¢-ideal.
Then zJ = I, so J 2 xJ = I, which is a contradiction. Hence IJ = 0.

(4) We may assume that c¢1 A, -+ ,cpA are pairwise nonisomorphic ¢-
modules over A for some 1 < k < n, and for each j = 1,--- ,n, ¢;A
is f-isomorphic to one of ¢1 A, -+ ,cpA as ¢-modules over A. Then A =
AL @ -+ @ Ay as the direct sum of f-ideals Ay, .-+, Ay (Exercise 26).

Finally we show that each A;, i = 1,...,k, is an ¢-simple f-algebra. In
fact, let H # 0 be an ¢-ideal of A;. Then H is an {-ideal of A, so H contains
a minimal right /-ideal I of A, and hence I C A;. Thus I = ¢;A. Let J be a
minimal right ¢-ideal of A and J = ¢; A. Then J 2 I. Suppose that I = ¢, A
for some v =1,...,n and ¢ : I — J be an f¢-isomorphism of /-modules over
A. Then ¢,I =1, so

J = QO(I) = QD(CUI) = QD(CU)I - QD(CU)H CH,

since H is an f-ideal of A. Hence A; C H by the definition of A;, so
H = A;. Therefore A; has no other ¢-ideal except {0} and A;, that is, each
A; is f-simple. O
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Finally consider a unital finite-dimensional Archimedean f-algebra A
over F' with a d-basis. We show that A = (-N(A)+ H, where H is a convex
l-subalgebra of A over F' and ¢-N(A) N H = {0}. The proof of this result
is based on the following characterization for basic elements that are not in
-N(A).

Lemma 2.6. Let A be a unital finite-dimensional Archimedean £-algebra
over F with a d-basis, and 1 = c1 + -+ ¢,, wheren > 1 and {c1, -+ ,¢cn}
is a disjoint set of basic elements. Suppose that x & (-N(A) is a basic
element. Then there exists a basic element y such that xy = cs and yr = ¢;
for some cs, cs.

Proof. We first assume that ¢-N(A) = {0}. By Theorem 2.8, A is ¢-
isomorphic to the f-algebra B = M, (K{'[G1]) @ - -+ & M, (K;*[Gy]) for
some positive integer k, where each Kf’ [G;] is a twisted group f-algebra
with the coordinatewise order and M, (Kf“ [G;]) is the matrix (-algebra
with entrywise order. For a basic element z in B, z is in some direct
summand M, (K}*[G;]) with the form ey (ag), where 0 < a € K;, g € Gy,
and e, (ag) is the matrix with st*" entry equal to ag and other entries equal
to zero. Take y = eys(a™1t;(g7 1, g)"1g™!). Then we have vy = eys(e;) and
yr = eyu(e;) are both basic elements and idempotent f-elements in B,
where e; is the identity element of G;. By Theorem 2.2(3), ess(e;) = ¢ and
ert(e;) = ¢ for some 1 < s5,t < n.

For the general case, let A = A/¢-N(A). We have ¢-N(A) = {0}. For
any element a € A, denote @ = a + (-N(A) € A. Then 1 =¢; + ... + ¢,.
For a basic element z ¢ (-N(A), 0 < 7 is basic in A (Exercise 27), and
hence by the previous paragraph there exists a basic element 3 € A such
that Ty = ¢; and yxT = ¢;. We may assume that y is basic in A.

From zy —cs € ¢-N(A), we have that zy — ¢, is nilpotent. Suppose that
(xy —cs)® = 0 and £ is an odd positive integer. Then c,(zy) = (zy)cs = 7y
implies that 0 = (xy — ¢,)* = xd — ¢, for some d € A, and hence ¢, = |cs| =
|xd| = z|d| since z is a d-element. Let |d| = dy + - - + d;, where dy, -+ ,d;
are disjoint basic elements. It follows from ¢, is basic that ¢; = zd,, for
some basic element d,,,. Take z = d,,, then zz = ¢4, and z € -N(A). Since
xey = x, xz # 0 implies ¢;z = z. By the same argument used above, there
is a basic element w such that zw = ¢;. Then we have

x =z = z(2w) = (22)w = csw =w

since csw # 0. Hence xz = ¢4 and zzx = ¢;. O
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Theorem 2.10. Let A be a unital finite-dimensional Archimedean £-algebra
over F with a d-basis. Then A = (-N(A) + H, where H is a conver (-
subalgebra of A and ¢-N(A)N H = {0}.

Proof. As before assume that 1 = ¢; + -+ + ¢,, where n > 1 and

{c1, -+ ,cn} is a disjoint set of basic elements. Define
k
H= {ae A | |a/| < Zai7 Ay, , 0 gE'N(A)}a
i=1
and {a1,---,ar} is a disjoint set of basic elements. If two basic elements

x and y are comparable, then 2 = y+ implies that « + y is also basic.
Based on this fact, it is straightforward to check that H is a convex vector
sublattice of A (Exercise 28). We show that (-N(A) N H = {0}. Suppose
not, then ¢-N(A) N H contains a basic element x. Since x € H, z < y
for some basic element y ¢ ¢-N(A). By Lemma 2.6, there exists a basic
element z such that yz = ¢; and zy = ¢; for some c¢;,c;, and hence z < y
implies 7z < ¢;. Let xz = c¢. We have 0 # ¢ € ¢;* which is a field by
Theorem 2.4, and * = xc; = zzy = cy. Hence clz=cley =cy =y,
which implies that y € (-N(A) since x € ¢-N(A). This is a contradiction.
Therefore ¢-N(A) N H = {0}.

Finally we show that H is closed under the multiplication of A. To this
end, we show that for basic elements x,y & ¢-N(A) with xy # 0, xy is also
a basic element not in -N(A). By Lemma 2.6, there exists a basic element
w such that rw = ¢; and wzr = ¢; for some ¢y, ¢;, and hence c,x = = and
xcey = x. Since xy # 0, ¢,y = y. Suppose that zy = by + - -+ + b, where
k> 1and by,--- , by are disjoint basic elements. We have

y =y = (wa)y = why + - -+ + why, and wb; A wb; = 0,1 # 7,
since w is a d-element. It follows that y = wb,, and wb, = 0 for any v # wu,
so ¢sb, = (zw)b, = 0. Since
Cs(fﬂy) :csb1+"'+csbk :xy:b1++bk7

¢sby = by, (Exercise 29), and hence b, = 0 for any v # u. Hence xy = b, is
a basic element. If xy € (-N(A), then w(zy) = ¢,y =y € (-N(A), which is
a contradiction. Hence zy & ¢-N(A). Therefore H is a convex ¢-subalgebra
of A. O

The following special cases are immediate consequence of Theorem 2.10.
The verification is left to the reader (Exercise 35).

Theorem 2.11. Let A be a unital finite-dimensional £-algebra over F with
a d-basis.
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(1) If A is Archimedean over F and commutative, then A = (-N(A) + H,

where H is {-isomorphic to a direct sum of twisted group (-algebras of
finite abelian groups.

(2) If A is l-reduced, then A is L-isomorphic to a direct sum of twisted

group £-algebras of finite groups.

Exercises

Verify Example 2.3.

Verify that the ¢-algebra A in Example 2.4 has a d-basis {1, a, b, c}.
Let A be a unital Archimedean ¢-algebra over F' with a d-basis S and
satisfies condition (C). Prove that if H is a convex {-subalgebra of A,
then H N S is a d-basis for H.

Let V be a vector lattice over F' which is a direct sum of maximal
convex totally ordered subspaces over F. Prove that V is Archimedean
over F' if and only if each direct summand is Archimedean over F.
Prove that in Theorem 2.4(2), a™~ta; = 0 or a™*~1ay = 0 implies that
a1 =0oras =0.

Let A be an f-algebra over F' and I be a right f-ideal of A. Take
0<zel Prove J={a€ A| la] < ar for some 0 < r € I} is a right
L-ideal of A.

Let G be an ¢-group and x be a basic element. If x < x1 + -+ + x4y,

where {x1,-+-,2,} is a disjoint subset of G, then x < x; for some
i=1,--- ,m.
Let R be an ¢-ring and I be a nilpotent right (left) ¢-ideal of R. Then
I C E-N(R).

Verify F'*[G] as defined after Definition 2.2 is a vector lattice over F.
Prove that /-field Q[v/2] with the entrywise order may be considered
as a twisted group f-algebra over Q.

Prove F'*[G] is an ¢-domain and its identity element is basic.

Let A be an f-unital {-algebra over F' and 1 = a + b, where a A b = 0.
Prove that aAa is a convex f-subalgebra of A.

Prove that the relation ~ defined in the proof of Theorem 2.6 is an
equivalence relation.

Prove that the operation (ab)’ = a'b’ defined on G; in Theorem 2.6 is
well-defined, associative, and ¢; is the identity element.

Check that t as defined in Theorem 2.6 is a positive twisting function.
Prove that the map ¢ defined in Theorem 2.6 preserves the addition
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on A, that is, for any a,b € A, ¢(a+b) = p(a) + ¢(b).

(17) Prove that the map ¢ defined in Theorem 2.6 preserves the multiplica-
tion on A, that is, for any a,b € A, p(ab) = p(a)e(b).

(18) Prove that the ¢ defined in Theorem 2.6 preserves order, that is, for
any a € A, p(a) > 0 if and only if a > 0.

(19) Verity that {e;;(s) | 1 <i,j <n,s € H} is a d-basis for the {-algebra
M, (F'[H]).

(20) Prove that the mapping ¢ : B — M, (L) in Lemma 2.5 is one-to-one
and preserves addition and multiplication on B.

(21) Prove that ¢|g, : By — E3 defined in Theorem 2.7 is an ¢-isomorphism
between f-algebras F, and Es.

(22) Verify that f : K{'[G1] — E; is an f-isomorphism between the two
{-algebras in Theorem 2.7.

(23) Prove that Ko = e5 - = p(eit) = (K1) in Theorem 2.7.

(24) Suppose that A is a finite-dimensional ¢-algebra over F'. Prove that if
the intersection of all the ¢-prime ¢-ideals is zero, then there exists a
finite number of /-prime /-ideals such that the intersection of them is
also zero.

(25) Prove that in Theorem 2.9(3) if (¢;A)(c;A) = {0}, then A;A; = {0}.

(26) Let A be an (-algebra over a totally ordered field F' and Ay,---, Ay
be f-ideals of A. A is the direct sum of A;,---, Ak, denoted by A =
A®- DA, ifA=A1+---+Ayand 4,NA; ={0},1<i,j<n
and i # j. Prove Theorem 2.9(4).

(27) Let R be an ¢-ring and 0 < x ¢ ¢-N(R). Prove that if  is basic in R,
then Z = x + (-N(R) is basic in R/¢-N(R).

(28) Prove that the H as define in Theorem 2.10 is a convex vector sublat-

tice.
(29) Suppose that R is an f-ring and a > 0 is an f-element of R. Prove that
if 1, -+, xy are disjoint elements and
ary +---+axgy =21+ - + 2k,
then ax; = x; fori=1,--- k.

(30) Prove Theorem 2.11.

(31) An f-ring is called a quasi d-ring if each nonzero positive element can
be written as a sum of disjoint basic elements that are also d-element.
Prove that a unital quasi d-ring is f-unital.

(32) Let R be an f-unital ¢-ring and M, N be {-modules over R. Prove that
a module isomorphism from M to N is an f-isomorphism if and only if

for any z,y € M, p(x Vy) = p(z) V ¢(y) or p(z Ay) = p(z) A p(y).
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(33) Let G be a group and ¢t : G x G — F \ {0} be a positive twisting
function. Prove that for any g € G, t(g,g7 1) = t(g~ 1, 9).

(34) Prove that any two statements of (7), (¢%), (¢4¢) in Theorem 2.2(2) cannot
be true at the same time.

(35) Prove Theorem 2.11.



This page intentionally left blank



Chapter 3

Positive derivations on £-rings

In this chapter, we study positive derivations for various ¢-rings. In section
1 some examples and basic properties are presented. Section 2 is devoted
to f-ring and its generalizations. We study positive derivations on matrix
{-rings in section 3, and section 4 consists of some results on the kernel of
positive derivations of ¢-rings.

For a ring B, a function D : B — B is called a derivation on B if for
any a,be B

D(a+b) =D(a)+ D(b) and D(ab) = aD(b) + D(a)bd.

If L is an algebra over a field 7', then a derivation on L is called a 7-
derivation if T is also a linear transformation, that is, D(aa) = aD(a) for
alla € T and all a € L.

Now let R be a partially ordered ring. A derivation on R is called
positive if for all z € R*, D(x) > 0, and similarly an F-derivation on a
partially ordered algebra A over a totally ordered field F' is called positive
if for all z € AT, D(x) > 0.

3.1 Examples and basic properties

The following are some examples of positive derivations. Clearly the map
that sends each element to zero is a positive derivation which is called trivial
deriwation. Throughout this chapter F' denotes a totally ordered field.

Example 3.1.

(1) Let R = Flz] be the polynomial ¢-algebra over F with the coordi-
natewise order. For f(z) = ana™ + -+ + a1z + ao with a,, # 0, the
usual derivative of f(x) is defined as f/(x) = na,z" '+ +a;. Fix
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a polynomial 0 < g(x) € R. Define D : R — R by for any f(z) € R,
D(f(z)) = f'(x)g(x). Tt is clear that D is a positive F-derivation on
R. On the other hand, if D is a positive F-derivation on R, then it
is easily checked that D(z") = na" " !D(z). Hence for any f(z) € R,
D(f(z)) = f'(z)D(x) and D(z) is a positive polynomial (Exercise 1).

From Example 1.3(3), R = F[z] can be made into a totally ordered
algebra over F' in two ways. One total order on R is to define a
polynomial positive if the coefficient of the highest power is positive.
With respect to this total order, the derivation introduced above is
still a positive derivation. Another total order on R is to define a
polynomial positive if the coefficient of the lowest power is positive.
In this case, for any positive polynomial f(z), f(z) < al, for some 0 <
a € F, implies that for any positive F-derivation D, 0 < D(f(z)) <
aD(1) = 0, so D(f(x)) = 0. Therefore D(R) = {0}. Namely the
trivial derivation is the only positive F-derivation in this case. In
Lemma 3.6, it is shown that for an /-unital ¢-algebra A over F, each
positive derivation on A is an F-derivation. Thus with respect to this
total order on R, the trivial derivation is the only positive derivation
on R.

For aring B and b € B, define mapping Dy : B — B by for any z € B,
Dy(x) = xb — bz. Then Dy is a derivation on B (Exercise 2) and Dy
is called the inner derivation determined by b.

Consider 2x 2 upper triangular matrix ¢-algebra T5(F') over F with the
entrywise order. Take a = (a;;) € To(F) with a1 < ag2 and a2 = 0.
Then it is easy to see that for each 0 < x € To(F), Dy(x) = za—ax >0
(Exercise 3). For instance, if a = egq, then D, is a positive derivation.
Let R be an /-ring and a € R with aR = 0. Then inner derivation
D,(z) = za — ax = za is a positive derivation. Similarly if Ra = 0,
then © — ax is a positive derivation on R.

We first show that a positive derivation will map positive nilpotent
elements and positive idempotent elements to nilpotent elements.

Lemma 3.1. Suppose that R is a partially ordered ring and D is a positive
derivation on R.

(1) Fora € R*, if a™ = 0 for some positive integer m, then (D(a))™ = 0.
(2) For a € R, if a? = ka for some positive integer k, then (D(a))® = 0.
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Proof. (1) From a™ = 0, we have
0= D(0) = D(a™) = D(a)a™ ' +aD(a™ "),
and hence D(a)a™™ ' = 0 since D(a)a™ ! > 0 and aD(a™ ') > 0. It
follows that
0 = D(0) = D(D(a)a™ ') = D(D(a))a™ ' 4+ D(a)D(a™ 1),
50
0= D(a)D(a™ ") = D(a)(D(a)a™ %+ aD(a™?%)).
Therefore we have (D(a))2a™~2 = 0. Continuing this process we obtain
(D(a))™ = 0.
(2) From a? = ka, we have
aD(a) + D(a)a — kD(a) = D(a*) — kD(a) = D(a® — ka) = 0.
By multiplying the equation on the left by a, we obtain a®D(a) +aD(a)a —
kaD(a) = 0. It follows that aD(a)a = 0 since a® = ka. Then
0 = D(aD(a)a) = aD(D(a)a) + D(a)D(a)a
implies (D(a))?a = 0, and hence
0= D((D(a))*a) = D(a)* + D((D(a))*)a,
so D(a)? = 0. U
The following result, which will be used later, characterizes minimal
{-prime (-ideals for commutative ¢-rings.

Lemma 3.2. Let R be a commutative £-ring and P be an (-prime (-ideal of
R. Then P is a minimal £-prime €-ideal if and only if for each 0 < x € P
there exists 0 < y & P such that xy is a nilpotent element.

Proof. Suppose that P # {0} is a minimal ¢-prime ¢-ideal. Let 0 < € P
and consider the set

S={z"a|n>1 a€ RT\P}U(RT\P).

Then S is an m-system properly containing R* \ P (Exercise 4). By The-
orem 1.30(2), 0 € S, and hence 2"y = 0 for some y € RT \ P and positive
integer n. Hence (zy)™ = 0. Conversely suppose that P is an ¢-prime /-
ideal which satisfies the given condition and @ is a minimal ¢-prime ¢-ideal
contained in P. If Q # P, then there exists 0 < z € P\ @, and hence zy
is nilpotent for some 0 <y € P. Then zy € @ implies that x € Q or y € Q
by Theorem 1.26, which is a contradiction. Thus P = @) and hence P is a
minimal ¢-prime ¢-ideal. O
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Lemma 3.3. Let R be an Archimedean £-ring in which the square of each
element is positive.

(1) If x € RT and 2® = 0, then xR = Rx = {0}.

(2) (-N(R) = {z € R | |z| is nilpotent} and R?>(¢-N(R)) = (¢-N(R))R? =
R((-N(R))R = {0}.

(8) If R is an f-ring, then R(¢-N(R)) = ({-N(R))R = 0.

Proof. (1) For any y € R and positive integer n, (nx —y)? > 0 implies
n(zy) < nlzy) +nlyz) < (nx)* +y* = y?,

and hence zy = 0 since R is Archimedean. Similarly yz = 0. Thus R =
Rz = {0}.

(2) We first show that if z € RT is nilpotent, then 2 = 0. Suppose
that 2 = 0 with n > 4. Then 2n — 4 > n, so (a:"_2)2 = 0, and hence by
(1) 2"~ ! = 22" =2 = 0. Continuing this process we eventually get z3 = 0.

Now suppose |z| is a nilpotent element and y € RT. For any positive
integer n, 0 < (n|z| — y)? implies that n|z|y < n?|z|?> + y?, and hence

nzlzly < n?z|z|? + zy? and n|zlyz < n?|z)?z + ¥z,

for any z € RT. But (|z]?)? = 0 implies z|z|? = |z|?2 = 0 by (1), so that
R is Archimedean implies z|x|y = |z]yz = 0 for all y,z € RT. By the
definition of -N(R) and RT|z|RT = {0}, we have x € -N(R), and hence
(-N(R) = {z € R | |z| is nilpotent}. And then |z|yz = 0 and z|z]y = 0
for any x € (-N(R) and y,2 € R imply that (.-N(R))R? = {0} and
R(¢-N(R))R = {0}. Similarly, R%(¢-N(R)) = {0}.

(3) Suppose that R is an f-ring and 0 < z € (-N(R). By (2), 23 = 0.
For a positive integer n, consider nz? and z. If R is totally ordered, then
nz? < x (Exercise 5). Then nz? < z is true in an f-ring since it is a
subdirect product of totally ordered rings, and hence x? = 0. Therefore by
(1), zR = Rz = {0}, that is, R({-N(R)) = (¢-N(R))R = {0}. ]

Corollary 3.1. Let R be an Archimedean (-ring in which the square of
each element is positive.

(1) For a positive derivation D on R, D({-N(R)) C ¢-N(R).
(2) R/C-N(R) is also Archimedean.

Proof. (1) Let x € ¢~-N(R). Then |z| is nilpotent by Lemma 3.3, so
D(|z|) is also nilpotent by Lemma 3.1. It follows that D(|z|) € ¢-N(R) by
Lemma 3.3 again, and since |D(z)| < D(|z|) (Exercise 6), D(x) € (-N(R).
Therefore D(¢-N(R)) C ¢-N(R).
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(2) Take 0 < a+{¢-N(R),0 < b+{¢-N(R) € R/¢-N(R) and suppose that
n(a + ¢-N(R)) < (b+ ¢-N(R)) for all positive integer n. We may assume
a,b € RT. Then

na+ ¢-N(R) = (na+ ¢-N(R)) A (b+ ¢-N(R))

implies that na —na Ab = a, € -N(R), and hence na < b+ a,. It follows
that na® < a?b since a?a,, € R*(¢-N(R)) = {0} by Lemma 3.3. Then R
is Archimedean implies that a® = 0, and hence a € ¢-N(R) by Lemma 3.3
again, that is, a + ¢-N(R) = 0. Hence R/¢-N(R) is Archimedean. O

3.2 f-ring and its generalizations

Positive derivations on ¢-rings were first studied for f-rings. We will present
the results for f-rings first below.

Lemma 3.4. Let T be a totally ordered domain and D be a positive deriva-
tion on T. Given a € TT, for any positive integer n,

nD(a?) < a*D(a) + D(a)a® + D(a).

Proof. 1f D(a) = 0, then the inequality is clearly true since D(a?) =
D(a)a + aD(a) = 0. Suppose that D(a) > 0 and n is a positive integer. If
na < a?, then

nD(a?) = naD(a) +nD(a)a < a®*D(a) + D(a)a®.

2 < na. First we show that

2mq? < na for any positive integer m by mathematical induction. If
aD(a) < D(a)a, then

2aD(a) < D(a)a + aD(a) = D(a?®) < nD(a),

and hence 2a2D(a) < (na)D(a). Thus 2a® < na since T is a totally ordered
domain. Similarly if D(a)a < aD(a), then

2D(a)a < D(a)a + aD(a) = D(a?) < nD(a)

In the following, we consider the case a

implies 2a? < na. Thus 2™a? < na is true when m = 1. Now suppose that
2%a? < na and we show that a**'a? < na, k > 1. If aD(a) < D(a)a, then

2k+1aD(a) < 2¥(D(a)a + aD(a)) = 2" D(a?) < nD(a)

implies 2871a2D(a) < (na)D(a), so 2¥*1a? < na. Similarly if D(a)a <
aD(a), then

281 D(a)a < 2¥(D(a)a 4+ aD(a)) = 28 D(a?) < nD(a)
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implies 2¥*'D(a)a® < nD(a)a, so 2¥T1a? < na. In any case, 2**1a? < na,
and hence by the induction, 2™a? < na for all positive integer m. Choose
m such that n? < 2™, we get na? < a, and hence nD(a?) < D(a).
Therefore for any case we have proved that nD(a?) < a?D(a)+D(a)a?+
D(a) for a € T™. O

We note that Lemma 3.4 is also true for a reduced f-ring since it is a
subdirect product of totally ordered domains. We leave the verification of
this fact to the reader (Exercise 7).

Theorem 3.1. Let R be an Archimedean f-ring and D be a positive deriva-
tion on R. Then D(R) C ¢-N(R) and D(R?) = {0}. Thus if {-N(R) = {0},
then the only positive derivation on R is the trivial derivation.

Proof. We note that R is commutative by Theorem 1.22. Let P be a
minimal /-prime f-ideal of R and 0 < z € P. From Lemma 3.2, there
exists 0 < y € P such that (zy)* = 0 for some positive integer k. Then by
Lemma 3.1, (D(zy))* = 0, and hence D(xy) = xD(y) + D(z)y implies that
(D(x)y)k = 0. Thus D(z)y € P and y ¢ P imply D(x) € P by Theorem
1.27. We have proved that D(P) C P for each minimal ¢-prime ¢-ideal P.

Then D induces a positive derivation Dp on R/P = {a =a+P | a € R}
by defining Dp(a) = D(a) (Exercise 8). Since R/P is a totally ordered
domain by Theorem 1.27, using Lemma 3.4, for a € R* and any positive

integer n,
nDp(@®) < a’Dp(a) + Dp(@)a® + Dp(a),
that is, for each minimal ¢-prime /¢-ideal P,
nD(a*) + P < (a®*D(a) + D(a)a® + D(a)) + P
in R/P. Hence
nD(a*) + (-N(R) < (a*D(a) + D(a)a* + D(a)) + ¢-N(R)

in R/¢-N(R) since ¢-N (R) is the intersection of all minimal ¢-prime ¢-ideals
by Theorem 1.28.
By Corollary 3.1, R/¢-N(R) is Archimedean. Then

n(D(a?) + (-N(R)) < (a®*D(a) + D(a)a® + D(a)) + £-N(R)

implies D(a?) + ¢-N(R) = {0}, that is, D(a?) € ¢-N(R). By Corollary 3.1,
D(D(a?)) € ¢-N(R). Hence

(D(a))* < (D(a))* +aD(D(a)) = D(aD(a)) < D(D(a?))
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further implies (D(a))? € ¢-N(R). Thus D(a) € (-N(R) for each a € Rt
by Lemma 3.3. It follows that D(R) C {-N(R).

Finally for all z,y € R, D(zy) = 2D(y) + D(x)y € R({-N(R)) + (¢-

N(R))R = {0} by Lemma 3.3. Hence D(R?) = {0}. O

Theorem 3.1 was originally proved by P. Colville, G. Davis and K.
Keimel [Colville, Davis and Keimel (1977)]. The proof presented here was
due to M. Henriksen and F. A. Smith [Henriksen and Smith (1982)] be-
cause of elementary and general nature in their proof. We would like to
present the proof in [Colville, Davis and Keimel (1977)] based on Theorem
3.2 for Archimedean f-rings whose proof will be omitted, and the reader is
referred to [Bigard and Keimel (1969)] for more details. Let R be an f-ring.
A positive orthomorphism o of R is an endomorphism of the additive group
of R such that for any z,y € R, xt Ay =0 = x A ¢(y) = 0. Define

Orth(R) = {¢ — ¢ | ¢, are positive orthomorphisms of R}.
Then Orth(R) is a partially ordered ring with respect to the positive cone
Orth(R)* = {¢ | ¢ is a positive orthomorphism of R}
(Exercise 9).

Theorem 3.2. Let R be an Archimedean and reduced f-ring. Then
Orth(R) is a unital Archimedean f-ring.

Another proof of Theorem 3.1 First suppose that ¢-N(R) = {0},
that is, R contains no nonzero nilpotent element. Let D be a positive
derivation on A and x Ay = 0 for some z,y € R. Then zy = 0 implies
that «D(y) + D(x)y = 0, and hence zD(y) = 0 = D(x)y. Therefore
(x A D(y))? =0, so z A D(y) = 0. Hence D is a positive orthomorphism of
R.

For any a € RT, define p, : R — R by ¢, (x) = az. Since R is an f-ring,
2 Ay =0= 2z A@.(y) =2 Aay =0. Thus ¢, is a positive orthomorphism.
Then D and ¢, commute since Orth(R) is an Archimedean f-ring implies
that it is commutative. For a,b € R™T,

D(ab) = D(pa(b)) = (Da)(b) = (¢aD)(b) = a(D(b)) = aD(b)
and D(ab) = aD(b) + D(a)b imply that D(a)b = 0, especially (D(a))? = 0
when set b = D(a). Thus D(a) = 0 for all a € R since R is reduced.
Therefore D(R) = 0.
For the general case, we consider R = R/{-N(R). Then R is an
Archimedean f-ring with /-N(R) = {0}. By Corollary 3.1, D({-N(R)) C ¢-
N(R), so we can define a positive derivation D of R by D(x + (-N(R)) =
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D(z) + £-N(R). From the above argument, we have D = 0. Therefore,
D(R) C ¢-N(R). Since R(¢-N(R)) = (¢-N(R))R = {0} by Lemma 3.3, for
any a,b € R, D(ab) = aD(b) + D(a)b =0, so D(R?) = {0}. This completes
the proof.

A ring B is called von Neumann regular if for each a € B there is an
x € B for which axa = a and B is called strongly regular if for each a € B
there is an = € B for which a’z = a.

Theorem 3.3.

(1) A ring B is strongly reqular if and only if B is reqular and reduced.
(2) Every regular f-ring is strongly regular.
(3) If D is a positive derivation on a regular f-ring, then D = 0.

Proof. (1) Suppose that B is strongly regular. For a € B, if a? = 0,
then there is an & € B for which a2z = a, so a = 0. Thus B is reduced.
For a € B, there is an z € B such that a?z = a. Then (axa — a)? = 0,
so axa = a. Conversely if B is regular and reduced, then for each a € B,
there is an 2 € B for which aza = a. Thus (a?z — a)? = 0, so a’x = a.

(2) By (1), it is sufficient to show that R is reduced. Let a € R with
a? = 0. Then there is an x € R for which ara = a, and hence (az)? = ax.
Since a € ¢-N(R) by Theorem 1.27, ax € (-N(R), so ax is nilpotent. Hence
ax =0, s0 a =azxa = 0.

(3) We first notice that if L is a totally ordered division ring and D is a
positive derivation on L, then for 0 < a € L, a™' > 0 and 1 = aa™! imply
that 0 = D(1) = aD(a™ ') + D(a)a™t. Thus D(a)a™! = 0 and D(a) = 0,
so D =0.

Suppose that R is a regular f-ring and D is a positive derivation of
R. By (2) R is strongly regular and reduced. Let P be a minimal ¢-prime
l-ideal and 0 < z € P. By Theorem 1.30(3), there is a 0 < y € P such that
2y = 0. Then D(y)+ D(x)y = 0, so D(x)y = 0. It follows that D(z) € P.
Thus D(P) C P for each minimal ¢-prime ¢-ideal P, so D induces a positive
derivation Dp on R/P defined by Dp(xz+ P) = D(z) + P. Since R/P is a
totally ordered domain by Theorem 1.27(2) and strongly regular, R/P is a
totally ordered division ring (Exercise 10). It follows that Dp = 0 for each
minimal ¢-prime ¢-ideal of R, and hence for any = € R, D(z) is contained
in each minimal ¢-prime ¢-ideal. Therefore D(z) = 0 for any = € R since
R is reduced, so D(R) = 0. O
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In the following, we consider generalization of Theorem 3.1 to various
classes of /-rings. First consider almost f-rings.

Theorem 3.4. Let R be an Archimedean almost f-ring and D be a positive
derivation of R. Then D(R) C £-N(R) and D(R3?) = {0}.

Proof. Since R is an Archimedean almost f-ring, R/¢-N(R) is also
Archimedean by Corollary 3.1 and R/¢-N(R) is an almost f-ring (Exer-
cise 11). From Theorem 1.28, R/¢-N(R) is an Archimedean f-ring and
reduced, so ¢-N(R) consists of all the nilpotent elements of R. By Corol-
lary 3.1, D(/-N(R)) C ¢-N(R). Thus D induces a positive derivation D
on R/(-N(R) defined by D(x + ¢-N(R)) = D(x) + ¢-N(R). It follows from
Theorem 3.1 that D = 0, so D(R) C ¢-N(R). Let z,y,2 € R, since the
square of each element in R is positive, using Lemma 3.3, we have

D(ayz) = 2D(yz) = z(yD(2) + D(y)z) = zyD(z) + 2D(y)z = 0.
Hence D(R?) = {0}. O

The following example shows that in Theorem 3.4, D(R3) = {0} cannot
be replaced by D(R?) = {0} for an Archimedean almost f-ring.

Example 3.2. Let R = 7Z x Z with the coordinatewise addition and or-
dering. Define the multiplication by (a,b)(¢c,d) = (0,ac). Then R is
an (-ring (Exercise 12). Since (a,b) A (¢,d) = 0 implies that ac = 0,
(a,b)(¢,d) = 0, and hence R is an almost f-ring. Define D : R — R
by D(a,b) = (a,2b). Then D is a positive derivation on R (Exercise 12)
and D((1,0)(1,0)) = D(0,1) = (0,2) # 0, so D(R?) # {0}.

Next we consider positive derivations on Archimedean d-rings.

Lemma 3.5. Let R be an Archimedean d-ring. Then ¢-N(R) = {a €
R | a® =0}.

Proof. We show that for any nilpotent element a € R, a® = 0. Since
|zy| = |z||ly| for any x,y € R, we may assume that a« > 0. Suppose that
a® = 0 for some positive integer k > 4, we derive that a*~! = 0. Let n be
a positive integer and let (na)®*=2 A (na)*=3 = z,. Since ((na)*=2 — z,) A
((na)*=3 — 2,,) =0, a + a? is a d-element implies that

(a4 a®)((na)* =2 = 2,) A (a + a®)((na) =2 — 2,) = 0.
Thus

a((na)k_2 - (non)k_2 A (na)k_?’) A a2((na)k_3 - (non)k_2 A (na)k_?’) =0,
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that is,
(nF=2gh =1 _ ph=2gk=1 g ph=3gh=2y o (ph=3gh=1 _pk=2gk \ ph=3,k=1y _
Hence a* = 0 implies that
(nh~2ak=1 — pk=2gh—1 A ph=3gk=2) A pk=3gk—1 _
It follows that
(nh=2gF=1 — ph—2gk=1 A pk=3k=2) A ph=2gk=1 _ o

so nF=2gk =1 —pk=2gk=1 Ank=3¢k=2 = 0, and nF~2a*~1 < n*=3a*=2. Con-
sequently na®*~! < a*=2, and hence a*~! = 0 since R is Archimedean.

By Theorem 1.25, each element in ¢-N(R) is nilpotent. By Theorems
1.27 and 1.28, ¢-P(R) = {a € R | ais a nilpotent} (Exercise 13). Let
0 < a,b,c € -P(R). From the above argument, abc < (a+b+¢)® = 0 since
a+b+c € l-P(R), that is, ((-P(R))?> = 0. Thus ¢-P(R) C ¢-N(R). It then
follows that ¢-N(R) = (-P(R) = {a € R | a® = 0}. O

Theorem 3.5. Let R be an Archimedean d-ring. Then R/(-N(R) is a
reduced Archimedean f-ring.

Proof. We only need to show that R/¢-N(R) is Archimedean. Suppose
that 0 < a+¢-N(R),b+¢-N(R) € R/¢-N(R) with n(a+¢-N(R)) < (b+ ¢-
N(R)) for all positive integer n. We may assume that a,b € R*. Then
n(a+¢-N(R)) =n(a+(-N(R)) A (b+ (-N(R))
implies that na —na Ab € ¢-N(R). By Lemma 3.5, (na —na A b)® = 0, and
by a direct calculation we have
0 = n?a® — n*(na A b)a® — n®a(na Ab)a + n(na A b)%a — na*(na Ab) +
n(na A b)a(na A b) 4+ na(na A b)* — (na A b)>.
Thus
n3a® < n?(na A b)a® + n’a(na A b)a +na*(na A b) + (na A b)?
< n?ba® + n2aba + n2a’b + v°
< n?*(ba* + aba + a®b + b*),
and hence na® < (ba® + aba + a?b+b?) for all positive integer n. Therefore

a® = 0 since R is Archimedean, so a € £~-N(R) and a + ¢-N(R) = 0. O

Theorem 3.6. Let R be an Archimedean d-ring and D be a positive deriva-
tion on R. Then D(R) C {-N(R).
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Proof. By Lemma 3.1, for any positive nilpotent element a, D(a) is also
nilpotent. Thus D(¢-N(R)) C ¢-N(R), so D induces a positive derivation
D on R/{-N(R) defined by D(z+¢-N(R)) = D(z)+{-N(R) for any x € R.
By Theorem 3.5 R/¢-N(R) is an Archimedean f-ring and reduced, which
implies that D = 0, so D(R) C (-N(R). O

The following is an example of an Archimedean d-ring with a positive
derivation D such that D(R™) # {0} for any positive integer n.

Example 3.3. Let A = R* be the column vector lattice over R with the
coordinatewise addition and ordering, and the multiplication is defined as

follows.
o1 B1 a1
lo%) Po| _ | a1fe
lo%: B3 asf
oy Ba a3 fo

Then A is an Archimedean d-algebra over R (Exercise 14) with

0
(6%)
-N(A) = | g, a3, a4 €R
a3
Qy
Define D : A — A by
a7 O
a9 [6%)
D =
(0%} 0
oy 0

It is straightforward to check that D is a positive derivation on A. For
0
» D(a) =

1
R 1
““lo 0
0 0
Since a is an idempotent element, D(a™) = D(a) # 0 for any n > 1. Thus
D(A™) # {0} for any positive integer n.

The above example also shows that there are nilpotent elements x in an
Archimedean d-ring such that z? # 0. Certainly 2> = 0 by Lemma 3.5.
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Now we consider Archimedean f-rings with squares positive. For an
f-ring R and a € R,

r(a) ={xz € R | |a|lz| = 0} and ¢(a) = {x € R | |z||a| = 0}

are right and left £-annihilator of a, respectively. Clearly r(a) is a right
l-ideal and £(a) is a left (-ideal of R.

Theorem 3.7. Let R be an Archimedean £-ring with squares positive and
D be a positive derivation on R. If R contains an idempotent element e with
r(e) CL-N(R) or £(e) C £-N(R), then D(R) C {-N(R) and D(R?) = {0}.

Proof. First assume that ¢-N(R) = {0}. Without loss of generality, we
may also assume that r(e) = {0}. By Lemma 3.3, R is ¢-reduced. Since
e? = e, (D(e))® = 0 by Lemma 3.1, so D(e) = 0 since R is f-reduced. For
a € RT and a positive integer n, 0 < (ne—a)? implies that nea < n2?e?+a?,
and hence

nD(ea) < n*D(e?) + D(a?) = n*(eD(e) + D(e)e) + D(a?) = D(a?).

Then R is Archimedean implies D(ea) = 0. Thus eD(a) + D(e)a = 0, so
eD(a) = 0. Tt follows from r(e) = {0} that D(a) = 0 for each a € RT.
Therefore D = 0.

For the general case, by Corollary 3.1, D(/-N(R)) C ¢-N(R). Thus D
induces a positive derivation D on R = R/{-N(R) defined by D(x + ¢-
N(R)) = D(x) + {-N(R). R is also Archimedean by Corollary 3.1. From
r(e) C ¢-N(R) or £(e) C ¢-N(R), we have r(e + (-N(R)) = 0 or {(e + ¢-
N(R)) =0 in R (Exercise 15). By the above argument, D = 0 and hence
D(R) C ¢-N(R). Using Lemma 3.3 again, we have D(R?) = {0}. O

We notice that the f-ring in Example 1.5 satisfies the conditions in
Theorem 3.7. Next we show that Theorem 3.3(3) can be generalized to
partially ordered rings with squares positive.

Theorem 3.8. Suppose that R is a partially ordered strongly reqular ring
in which for each x € R, x> > 0. Then trivial derivation is the only positive
derivation on R.

Proof. Suppose that D is a positive derivation on R. We first show that
for each z € RY, D(z) = 0. Since R is strongly regular, there exists a y € R
such that 72y = z, and hence ryx = x by Theorem 3.3(1). Thus zy is an
idempotent and hence D(zy) = 0 by Lemma 3.1 and that R is reduced.
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Similarly D(yz) = 0, so D(y)z +yD(x) = 0 and xD(y)x = —(zy)D(x) <0
since zy = (zy)? > 0. From zy? > 0, we have

D(zy?) = (zy)D(y) + D(xy)y = (xy)D(y) > 0.

Multiplying on both sides of the above inequality by =z, we obtain
2?yD(y)z > 0, so xD(y)z > 0. Hence zD(y)xz = 0 and (xy)D(z) = 0.
Then z = zyx implies that D(z) = (zy)D(x) + D(zy)z = 0.

Now for any z € R, 22 > 0 implies that D(22) = 0. Suppose z2w = z for
some w € R. Thus, D(z) = 22D(w)+D(2?)w = 22 D(w). Asin the previous
paragraph, wz is idempotent implies that 0 = D(wz) = wD(z) + D(w)z.
Consequently,

2

D(2)z = 2°D(w)z = —2*wD(z) = —2D(2).
Hence
0 < (2D(2))? = 2(D(2)2)D(z) = —2°D(2)* <0,

so (2D(z2))? = 0 and zD(z) = 0 since R is reduced. Since zw is also
idempotent, 0 = D(zw) = zD(w)+D(z)w, so zD(w) = —D(z)w. Therefore

D(z) = 2°D(w) = 2(2D(w)) = —2D(2)w = 0.
Therefore D(z) =0 for all z € R. O

For the ¢-field F((z)) of Laurent series with the coordinatewise order in
Example 2.1, the usual derivative defined by D(>"5°  a;x%) = > 02 ia;x*~!
is a nontrivial positive derivation. Therefore the condition that R is a
partially ordered ring with squares positive cannot be omitted in Theorem

3.8.

In the following we show that for a wunital finite-dimensional
Archimedean f-algebra A over a totally ordered field F' with a d-basis, if D
is a positive derivation on A, then D(A) C ¢-N(A). First we show that for
any (-unital {-algebra over F', positive derivation and positive F-derivation
coincide.

Lemma 3.6. Suppose that A is an {-unital ¢-algebra over F. If D is a
positive derivation on A, then D is an F-derivation.

Proof. Suppose that 1 is the identity element of A. Let 0 < r € F. Then
0<r~! e F, and hence 1 > 0 and 1 > 0. Then

0= D(1) = D(rir~*1) = D(r1)(r~'1) 4+ (r1)D(r~*1)
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implies D(r1)r=11 = 0 and D(r1l) = 0. If r < 0, then —r > 0 and since

D is a group-homomorphism, D(rl) = —D(—r1) = 0 by above argument.

Therefore for any r € F', D(rl) = 0, and hence for any a € A, r € F,
D(ra) = D((rl)a) = (r1)D(a) + D(rl)a = rD(a),

that is, D is an F-derivation. O

Theorem 3.9. Let A be a unital finite-dimensional Archimedean £-algebra
over F with a d-basis and D be a positive derivation on A. Then D(A) C ¢-
N(A).

Proof. From Theorem 2.10, A = ¢-N(A) + H, where H is a convex (-
subalgebra of A, and ¢-N(A) N H = {0}. Suppose that 1 = ¢ + -+ + ¢y,
where {c1,---,¢,} are disjoint basic elements, n > 1. Then 0 = D(1) =
D(ey) + -+ - + D(ep,) implies that D(¢;) = 0 for each ¢ = 1,--- ,n. For a
basic element x € H, by Lemma 2.6, there exists a basic element y such
that zy = ¢; and yz = ¢; for some 4,j. Then 0 = D(¢;) = D(zy) =
xD(y) + D(z)y implies that D(z)y = 0, so D(z)(yxz) = D(z)c; = 0. From
yz = ¢j, we have v = xc;. Thus
D(z) = D(zc;) = 2D(¢;) + D(z)c; = 0.

Since each strictly positive element in H is a sum of disjoint basic elements
in H, we have D(H) = {0}.

Take a basic element a in ¢-N(A) and suppose that D(a) > 0. Then
D(a) = 1+ - -+xk, where k > 1 and 1, - - - , z, are disjoint basic elements.
If some z; & (-N(A), then by Lemma 2.6 again, there exists a basic element
z such that x;z = ¢; for some ¢t. Thus ¢; < D(a)z < D(az). Then az € ¢-
N(A) implies that az is nilpotent, so D(az) is nilpotent by Lemma 3.1.
Therefore ¢; is nilpotent, which is a contradiction. Then each z; in D(a) =
x1 + -+ + 2% belongs to -N(A), and hence D(a) € ¢-N(A). Thus D(¢-
N(A)) C¢-N(A). Therefore D(A) C ¢-N(A). O

3.3 Matrix £-rings

In this section, we consider positive derivations on matrix ¢-rings and upper
triangular matrix £-rings with the entrywise order. For an f-algebra A over
a totally ordered field F, an element u € A" is called a strong unit if for
any x € A, there exists a € F such that < au.

Theorem 3.10. Let A be a unital £-algebra over a totally ordered field F
and D be a positive F-derivation.
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(1) If A contains a strong order u such that u < w <auwithl<ac< 2,
then D must be the trivial derivation.

(2) If A contains a strong order u such that u < u? < 2u, then (D(z))? =0
for each xz € A.

Proof. (1) We show that D(z) = 0 for all z € AT. Since u < u? < au
we have 0 < D(u) < uD(u) + D(u)u < aD(u), so u?D(u)u + uD(u)u?
a(uD(u)u). It follows from u < u? that

2uD(u)u < u?D(u)u + uD(u)u® < a(uD(u)u),

and hence (o — 2)(uD(u)u) > 0. Thus uD(u)u < 0 since o — 2 < 0. Hence
uD(u)u = 0.
Suppose that 1 < Bu for some 3 € F+. Then
D(u) < B(uD(u)) < *(uD(u)u) =0

implies that D(u) = 0. Hence for each z € AT, x < au for some o € F™
implies D(z) < aD(u) = 0. Thus D(z) =0 for x € A" and D(A) = {0}.

(2) We first show that (D(u))? = 0. By a similar calculation as in (1),
we have

w)u = uD(u)(u —u?) <0

implies that (u? — u)D(u)u =0. Since (u? —u)D(u) > 0 and Bu > 1 for
some 3> 0in F, (u? —u)D(u) = 0. It follows that

0= D((u? —u)D(u)) = (u* —u)D(D(u)) + D(u* — u)D(u),

(
and hence (u?—u)D(D(u)) = D(u?—u)D(u) = 0. So (D(u?)—D(u))D(u) =
0 implies that

(uD(u) + D(w)u)D(u) = u(D(u))? + D(wyuD(u) = (D(u)).
Multiplying the above equation by u from the left, we obtain
u?(D(u)? + (uD(u))? = u(D(u))* < u*(D(u))*.

Consequently, (uD(u))? = 0 and hence (D(u))? = 0 since u > 1.
For an arbitrary z € A, |z| < au for some 0 < o € F', so

(D(@))?] < [D()* < (D(a]))* < a*(D(u))* = 0
implies that (D(z))? = 0. O
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Let’s consider some applications of Theorem 3.10. For the n x n matrix
algebra M, (F) over a totally ordered field F', M,,(F*) is the positive cone
of the entrywise order on M, (F'). By Theorem 1.19, for an invertible matrix
f € M, (FT), fM,(F") is the positive cone of a lattice order on M, (F) to
make it into an f-algebra over F'.

Theorem 3.11. For any invertible matriz f € M, (F™), the only positive
F-derivation on the £-algebra (M, (F), f M, (F1)) is the trivial derivation.

Proof. Suppose that f = (fi;). Define a = >31", 37" fij, 9 = (9i5) €
M, (F) with each g;; = o™, and u = fg. For x € M,(F),let 0 < a, € F
be greater than each entry in the matrix f~'x. Then since (aa,)g—f 12 €
Mn(F+)7

(ap)u—x = f((aag)g — frx) >0

with respect to the lattice order fM, (F*). Thus x < (aa,)u for each
x € M,(F1), so u is a strong unit. As well, a direct calculation shows
that gfg = g (Exercise 16) and hence u? = u. By Theorem 3.10(1), the
(-algebra (M, (F), fM,(F7T)) has no nontrivial positive F-derivation. [

For a totally ordered subfield F of R, each ¢-algebra M, (F') over F is (-
isomorphic to the f-algebra (M, (F), f M, (F*)) for some invertible matrix
f € M, (F") [Steinberg (2010)]. As a direct consequence of this fact and
Theorem 3.11, any ¢-algebra M, (F) over F has no nontrivial positive F-
derivation.

The following example is related to Theorem 3.10(2).

Example 3.4. Consider the following set of upper triangular matrices

A_{<82) | a,b e R},

We leave it to the reader to check that A is an f-algebra over R with the
entrywise order and u = e + e12 + g2 is a strong order with u < u? < 2u.

Clearly D defined by
ab 0b
»(5.)=(00)

is a positive derivation on A. Since D # 0, the condition that u < u? < au
for some 1 < a < 2 in Theorem 3.10(1) is not satisfied by A. Clearly
(D(z))? = 0 for any x € A.
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For an f-unital f-ring R and the matrix ¢-ring M, (R) over R with
the entrywise order, we show that positive derivations on R and positive
derivations on M, (R) are in one-to-one correspondence.

For a ring B and the matrix ring M, (B), if D is a derivation on B, then
we may use D to define a derivation D,, on M,(B) by D,(a) = (D(ai;)),
for any a = (a;;) € M, (B).

For a = (ai;),b = (bij) € Mp(R), clearly Dy (a +b) = Dy(a) + Dy(b).
Let ab = (c;5), where ¢;; = Y, < <, @irbij. Then

Dy, (ab) = (D(cij))
= (Y (axD(bk;) + D(air)biy))
1<k<n
= (aij)(D(bxj)) + (D(aix))(br;)
= aDy,(b) + Dy(a)b.

Thus D, is indeed a derivation on M, (B) and D, is called the induced
derivation on M, (B) by D.

Theorem 3.12. Suppose that R is an (-unital £-ring and M, (R) is the
matriz £-ring over R with the entrywise order.

(1) D is a positive derivation on R if and only if D, is a positive derivation
on M, (R).

(2) If D' is a positive derivation on M, (R), then there exists a positive
derivation D on R such that D' = D,,.

Thus positive derivations on M, (R) and positive derivations on R are in
one-to-one correspondence.

Proof. (1) is clear.

(2) Let 1 denote the identity matrix and e;; be the standard matrix units
of M, (R). Since 0 = D'(1) = D’(e11) + -+ D’(enn) and each D’(e;;) > 0,
we have each D'(e;;) = 0. For any a € R,

D’(aeu) = D'(aeueu) = D'(aeu)eu + (aell)D’(en) = D’(aeu)eu,

and similarly D’(aej1) = e11D’'(aeq1). Consequently D'(aej1) = bey; for
some b € R. Define D : R — R for any a € R, D(a) = b, where D'(ae11) =
beii. Then D is a positive derivation on R (Exercise 17).

We show that D, = D’. First we notice that for any 1 < i < n,

eii = e;1€e1; implies that

0= D'(e;;) = e D' (ex;) + D' (es1)eri,
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SO eilD’(eli) = 0 and D’(eil)eli = 0. Hence 611D/(61i) = 0 and
D’(es1)er1 = 0. Now for a = (a;;) € M, (R), suppose that D(a;;) = b;;.
Then by the definition for D, D'(a;je11) = bije11, and D, (a) = (D(ay;)) =
(bi;). On the other hand,

/
=D'( E a;jei;) E D (aijeis)

1<i,5<n 1<i,5<n
and

D'(aijeij) = D'(eq(aijein)er;)
D'(eq)((aijern)er;) + e D' ((aijerr)er;)
= 67,1D ((azjen)elj) (since D’(eﬂ)en = O)

=enD'(ajje11)erj + eir(aijerr) D’ (e1;)
=en D' (ajje11)er;
= e (bijerr)er; (since e;1D'(eq;) =0)
= bjje45.
Therefore D’(a) = (bi;) = Dy(a) for all a € M, (R), and hence D' = D,,.
Thus the mapping D — D,, from positive derivations of R to positive

derivations of M, (R) is subjective. It is also injective (Exercise 18). This
completes the proof. O

Next we consider upper triangular matrix ¢-ring 7,,(R) with the entry-
wise order over an £-unital commutative ¢-ring R. In this case each positive
derivation on T}, (R) is a sum of an induced positive derivation by a positive
derivation on R and a positive inner derivation.

Theorem 3.13. Let R be an £-unital commutative {-ring and T,,(R) be the
upper triangular matriz £-ring with the entrywise order. Suppose that D’ is
a positive derivation on T, (R).

(1) D' = D, + D,, where D,, is the induced derivation by a positive
derwation D on R and D, is the positive inner derivation deter-
mined by z € T,(R), where z € T,(R) is a diagonal matriz with
211 S 222 < - < Zpp

(2) If D' = E, + D, where E,, is the induced derivation by a positive
derivation E on R and D,, is the positive inner derivation determined
by w € T,,(R), then D = E and D, = D,,.

Proof. (1) As in Theorem 3.12, D’(1) = 0 implies that D’(e;;) = 0 for
i=1,---,n. For1 <i<j<n,

D'(eij) = D'(eiieij) = D'(ei)eij + eiD'(eij) = eiD'(ei5),
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and similarly D’(e;;) = D’(e;j)e;j. Thus for 1 < i < j < n, D'(e;;) =
a;je;j, where a;; € RY since D' is positive.

Suppose that 1 < r < s < n, we claim that a1, < a;s. In fact, e;s =
e1rers implies that

D/(els) = Dl(elrers) = eer/(ers) + D/(elr)ersa
and hence

A15€1s = elr(arsers) + (alrel'r)ers-

Hence a1 = a5 + a1, > aip.

Define z = (z;;) € M,(R) with z; = 01if ¢ # j and z; = ay; for
i =1,---,n. It is straightforward to check that the inner derivation D,,
defined by D, (z) = zz — zz for any x € T,,(R), is positive.

Now define H = D'—D,. Then H is also a derivation of T}, (R) (Exercise
19). For 1 <r <n,

H(ey,) = D'(e1,) — (e1rz — ze1y) = arpe1r — a1re1y + arney, =0,
since a;; = D'(e11) =0. For 1 <i < j < mn,

H(eij) = eiiH (eij)ej;
= eiuD'(eij)ej; — eii(eijz)ejj + eii(zeij)e;;
= Qj€i5 — A15€45 + (14€45

:O’

since a1; = a;; + aq;, for any 1 < ¢ < j < n. Consequently H(e;;) = 0 for
1<i<j<n.

Letr € R. Fori=1,--- ,n, H(re;) = H(rl)e; = e;; H(rl) implies that
H(rl) is a diagonal matrix, and for 1 < ¢ < j <n, H(re;;) = H(rl)e;; =
e H(rl) implies that H(rl) is a scalar matrix (Exercise 20). Hence for any
r € R, H(rl) =71 for some 7 € R. Since H = D' — D,,

H(rl) = D'(r1) — ((r1)z — 2(r1)) = D'(r1) > 0, whenever r > 0.
Therefore if r € RT, then ¥ € R™T.

If we define D : R — R by for any r € R, D(r) = 7, whenever H(rl) =
71, then D is a positive derivation on R (Exercise 21). And for any =z =
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(zi5) € Mp(R),

Therefore we have D' — D, = D,,, that is, D' = D,, + D,.
(2) From D, + D, = E, + D,, and D, (e;;) = Ep(e;5) =0for 1 <i <
j < n, we have D,(e;;) = Dy(es;) for any 1 <i < j <n, that is,
eijz — ze;; = e;;w — we;; and hence e;;(z —w) = (2 — w)ey;.
Thus z — w is a scalar matrix, so D, = D,, (Exercise 22). Consequently

D, =FE,and D=F. O

Since an Archimedean f-ring is commutative, we have the following
consequence of Theorems 3.13 and 3.1.

Corollary 3.2. Let R be a unital reduced Archimedean f-ring and T,,(R)
be the (-ring with the entrywise order. Then each positive derivation on
T,.(R) is an inner derivation.

3.4 Kernel of a positive derivation

Let R be an /-ring and D, E positive derivations on R. The composition of
D and E is defined as DE(z) = D(E(x)) for any « € R. Generally DE is
not a derivation (Exercise 23) although DFE is still a positive endomorphism
of the additive /-group of R. When D = E, we use D? to denote DD, and
D™ = D" 1D for any n > 2.

Theorem 3.14. Let R be an {-reduced (-ring and D be a positive deriva-
tion.

(1) If D™ =0 for some positive integer n, then D = 0.
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(2) For xz € RT, if D(z™) =0 for some positive integer n, then D(z) = 0.

Proof. (1) Forz € RT,

Thus D(x) = 0 for each x € R since R is f-reduced. Therefore D = 0.
(2) The proof of this fact is similar to (1) and Lemma 3.1(1). We leave
it as an exercise (Exercise 24). O

For an ¢-group G, a convex ¢-subgroup H of G is called a band whenever
for any subset X of H if X has the least upper bound in G, then the least
upper bound of X belongs to H. Clearly G itself and trivial subgroup
{0} are band. If S is a subset of G, the intersection of all the bands in
G containing S is also a band (Exercise 25), which is the smallest band
containing S. To construct more bands we prove a general property for
{-groups. For a unital f-ring R, u(R) denotes the smallest band containing
the units of R.

Theorem 3.15. Let G be an {-group. For any subset {z;} of G, if Va;
exists, then for each y € G, V(y A x;) exists and

y A (Va;) = V(y A x;).
Proof. Let x = Va;. Then V(z; —x) = 0. For any y € G and any i,

yAz; <yAx, soyAzisan upper bound of {y A z;}. Let z € G with
z >y A, for any 4. Since y A xz; > (x; — ) + y A z, we have

z2>yANa; > (x;—x)+y Az,

and hence z— (yAx) > x;—x for each i. Therefore z—(yAz) > V(z;—2) =0
and z > y Ax. Hence y Az = V(y A x;). O

An immediate corollary of Theorem 3.15 is that 2 is a band for each
x in an f-group.
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Lemma 3.7. Suppose R is a reduced f-ring and D is a positive derivation
on R.

(1) IfaNb =0, for a,b € R, then D(a) A D(b) = 0.
(2) For any a € R, D(|a|) = |D(a)|.

Proof. (1) We first notice that in a reduced f-ring, for any a,b € RT,
aAb =0 if and only if ab = 0 (Exercise 26). If a Ab = 0, then ab = 0
implies that aD(b) + D(a)b = 0, so aD(b) = 0. It follows that D(a)D(b) +
aD(D(b)) = 0, and hence D(a)D(b) = 0. Therefore D(a) A D(b) = 0.

(2) Let @ € R and a = a™ —a~. Then D(a) = D(a™) — D(a™) and
D(a™) AD(a”) =0 by (1). Therefore

|D(a)] = D(a™) + D(a”) = D(a* +a~) = D(|al). .

For a derivation D on R, the kernel of D is defined as KerD = {a €

R | D(a) =0}.

Theorem 3.16. Suppose R is a totally ordered domain and D is a positive
derivation on R. Then KerD is a band and u(R) C KerD if R contains
the identity element.

Proof. Suppose that X is a nonempty subset of KerD and x = supX
in R. For any a € X, x > a and D is a positive derivation imply that
D(z) > D(a) = 0. Take an element 0 # z € X. Then x — |z| < x implies
that « — |z| is not an upper bound for X, and hence there exists an element
w € X such that @ — |z| < w since R is totally ordered. It follows that
D(x) — D(|z]) < D(w) and D(x) < 0. Therefore we must have D(z) = 0,
that is, x € KerD.

Suppose a € R is a unit. Then aa™! = 1 implies that |a|la™!| = 1,
and D(|a||la™t]) = D(1) = 0 implies that D(|a|)[a}| + |a|D(Ja=!|) = 0. So
D(Jal)]a=t| = 0, and hence D(|a|) = 0. Therefore D(a) = 0, that is, a €
KerD. Since each unit of R is in KerD and KerD is a band, we conclude
that u(R) C KerD. O

An element b € R is called almost bounded if |b] = V(|b| A nl), where n
runs through all positive integers and 1 is the identity element of R. Let
ab(R) denotes the set of almost bounded elements of R.

Theorem 3.17. Let R be a reduced unital f-ring and D be a positive
derivation on R. Then ab(R) C KerD.
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Proof. For a reduced unital f-ring, there exist minimal ¢-prime /¢-ideals
P; such that NP; = {0} by Theorem 1.28. Suppose that |b] = V(]|b] A nl),
where n runs through all positive integers. Consider the following collection
of minimal /-prime /f-ideals.

M ={P; | ||+ P; < kl+ P; in R/P; for some k > 1}.

We show that I = NP; = {0} for P; € M. Suppose I # {0} and take
O<zel ThenO<y=xzAl<1landyel. Forany Pe€ M,

(Ibl —y)+ P =[b| + P > (|b| Anl) + P in R/P.

For any minimal ¢-prime ¢-ideal Q ¢ M, (|b| —y)+Q > nl+Q in R/Q for
all positive integer n. Otherwise R/Q is a totally ordered domain implies
that (|b] —y) + @ < k1 + @ for some positive integer k, and hence

b +Q<(y+Q)+ (k1+Q) < (k+1)1+Q,

which is a contradiction. Thus (|b| —y) + J > (|b] Anl) + J for all positive
integer n, and all minimal ¢-prime ¢-ideals J. Hence |b|—y > |b|Anl in R for
all positive integers n, which contradicts with the fact that |b| = V(|b|Anl).
Therefore we must have I = {0}.

For each minimal ¢-prime f(-ideal P, if 0 < z € P, then there exists
0 <y & P such that xy = 0, and hence D(x)y = 0, so D(z) € P. Thus, as
we did before, D induces a positive derivation Dp on R/P by Dp(a+ P) =
D(a) + P for any « € R. If P € M, then |b| + P < k1 + P in R/P
for some positive integer k. It follows that Dp(]b| + P) = 0 in R/P, and
hence D(]b]) + P = 0, that is, D(|b]) € P for each P € M. Consequently
D(]b]) = 0 since I = {0}, and hence |[b] € KerD. Therefore b € KerD and
ab(R) C KerD. O

In a unital f-ring R, an element a € R is called bounded if |a| < nl for
some positive integer n. It is clear that each bounded element is almost
bounded. A unital f-ring is said to have bounded inversion property if each
element z > 1 is a unit.

Theorem 3.18. Let R be a unital f-ring with bounded inversion property.
Then the trivial derivation is the only positive derivation on R.

Proof. Suppose that D is a positive derivation on R. Take x € R with
x > 1. Then z has the inverse z7!. From zz~! = 1, we have z|z7!| = 1,
so z7t = 27! > 0. Thus > 1 implies 1 > 2!, and hence D(z~1) = 0.
Therefore

0=D(1) = D(zz™) =Dz )+ D(z)z~! = D(x)z~!
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implies that D(z)x~! = 0 and D(z) = 0 for any z > 1. Now for y € R™,
0<y<(1+4+y),s00<D(y) <D(1+y)=0. Hence D(y) = 0 for all
ye RT, 50 D=0. O

Theorem 3.19. Let R be an {-ring and D be a positive derivation. Suppose
that for z € R, zD(a) = D(a)z for any a € R.

(1) If R is a domain and D # 0, then z is contained in the center of R.
(2) If R is a reduced f-ring, then (az — za) € KerD for every a € R.

Proof. (1) Suppose that z is not in the center of R. We derive a con-
tradiction. For any w,v € R, [u,v] = uv — vu is the commutator of
u,v. For all z,y € R, we have [z, D(zy)] = 0 by the hypothesis. Since
D(zy) = D(z)y + zD(y), we have

[z,2] D(y) + D(z)[z,y] = 0.

Since z is not in the center, [z,29] # 0 for some zy € R, and hence for
any a € R, [z,D(a)] = 0 implies that [z, 29]D(D(a)) = 0 from the above
equation with = g, y = D(a). Thus D(D(a)) = 0 for all a € R since R
is a domain. Therefore D? = 0, which is a contradiction by Theorem 3.14.
Hence z must be in the center of R.

(2) Since R is reduced, the intersection of minimal ¢-prime f-ideals is
zero. Let P be a minimal {-prime f-ideal. As we did before, D induces a
positive derivation Dp on R/P by Dp(x + P) = D(z) + P for any = € R.

Since zD(a) = D(a)z for any a € R,

(24 P)Dp(a+ P) = Dp(a+ P)(z + P)
for all a + P. If Dp # 0, then R/P is a totally ordered domain implies
that z + P is in the center of R/P by (1), so za — az € P for all a € R.
Then D(za — az) € P. If Dp = 0, then D(w) € P for all w € R. Then
D(za — az) € P. Therefore for any a, D(za — az) is in every minimal
£-prime ¢-ideal, so we must have D(za — az) = 0 for all a € R, and hence
za —az € KerD for all a € R. O

For an ¢-ring R, let
Io(R)={r e R|n|r|<xforsomez € R" andn=1,2,---}.

Then Iy(R) is an ¢-ideal of R and R is Archimedean if and only if Iy(R) =
{0} (Exercise 27).

Theorem 3.20. Let R be a reduced f-ring and D be a positive derivation
on R.
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(1) D(R?) C Io(R).
(2) If R is unital, then D(R) C Iy.
(3) If R is unital with Io(R) C KerD, then D = 0.

Proof. (1) For any =,y € R, |rvy| = |z||ly| < (|z| V |y|)? implies that for
any positive integer n,

n|D(zy)| < nD(|zyl)
< nD((|z| Vv [y))?)
< (lz| v [y)*D (|| v [y]) + D(J2] v [y)) (|] V [y])* + D(lz] v [y]),

by Lemma 3.4 and Exercise 7, and hence D(zy) € Io(R). Therefore
D(R?) C Iy(R).

(2) We first claim that for any « € R, xD(z) > 0. This fact is clearly
true when R is totally ordered, and we leave general case as an exercise
(Exercise 28). Then for any positive integer n, (y — nl)D(y —nl) > 0
implies that nD(y) < yD(y) for any y € R*. Thus D(y) € Iy(R) for any
y € RT. Therefore D(R) C Io(R).

(3) By (2), D*(R) = D(D(R)) € D(Ip(R)) = {0} implies that D* = 0.
Hence D = 0 by Theorem 3.14. |

Exercises

(1) Let R = F[x] be the polynomial ¢-ring with the coordinatewise order.
(a) Prove that usual derivative f’(z) is a positive F-derivation on R
over the totally ordered field F.

(b) Prove that if D is a positive F-derivation on R, then for any f(z) €
R, D(f(x)) = f'(x)D(x) and D(z) is a positive polynomial in R.

(2) For a ring B and an element b € B, prove the mapping D, : B — B
defined by Dy(x) = xb — bx is a derivation on B.

(3) Prove that D, defined in Example 3.1(2) is a positive derivation.

(4) Let R be a commutative ¢-ring and P be an ¢-prime ¢-ideal of R. Define
S ={z"a|n>0, ae R" \ P} with 0 < 2 € P. Prove that S is an
m-system properly containing Rt \ P.

(5) Let R be a totally ordered ring and # € R with 2% = 0. Then for any
positive integer n, na? < x.

(6) Let R be an f-ring and D be a positive derivation on R. Show |D(z)| <
D(|z|) for any = € R.

(7) Let R be a reduced f-ring and D be a positive derivation on R. Prove
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that for a € RT and n > 1,
nD(a?) < a*D(a) + D(a)a® + D(a).

(8) Let R be an ¢-ring and D be a positive derivation on R. Suppose that
I is an f-ideal of R such that D(I) C I. Define Dy : R/I — R/I by
D;(@a) = D(a), where @ = a + I € R/I. Prove that D; is a positive
derivation on R/I.

(9) For an f(-ring R, prove Orth(R) is a partially ordered ring with the
positive cone Orth(R)" = {¢ | ¢ is a positive orthomorphism of R}.

(10) Prove that a strongly regular totally ordered domain is a totally ordered
division ring.

(11) Let R be an Archimedean almost f-algebra. Prove that R/¢-N(R) is
an Archimedean f-algebra and reduced.

(12) Verify that R as defined in Example 3.2 is an {-ring and D is a positive
derivation.

(13) Prove that in a d-ring R, ¢-P(R) = {a € R | a is nilpotent}.

(14) Verify the {-ring A in Example 3.3 is an Archimedean d-ring.

(15) Let R be an Archimedean /-ring with squares positive and e € R be
an idempotent element. Prove that if r(e) C ¢-N(R), then r(e + ¢-
N(R)) ={0} in R/¢-N(R).

(16) Verify gfg = g in Theorem 3.11.

(17) Prove that D : R — R defined in Theorem 3.12(2) is a positive deriva-
tion.

(18) Prove that the mapping D — D, from positive derivations of R to
positive derivations of M, (R) in Theorem 3.12 is injective.

(19) For two positive derivations on an ¢-ring, prove that the sum of them
is also a positive derivation.

(20) Prove that for H defined in Theorem 3.13(1), H(rl) is a scalar matrix,
for any r € R.

(21) Prove that the function D : R — R defined in Theorem 3.13(1) by
D(r) =71, for any r € R, is a positive derivation on R.

(22) Prove that D, = D,, in Theorem 3.13(2).

(23) Provide an example in which the composition of two positive derivations
is not a derivation.

(24) For an f-reduced f-ring R and a positive derivation D on R, prove that
if D(2™) = 0 for some z € R and positive integer n, then D(z) = 0.

(25) Let G be an ¢-group. Prove the intersection of a family of bands is also
a band.

(26) Let R be a reduced f-ring. Prove that for any a,b € R, a Ab =0 if
and only if ab = 0.



(27)

(28)
(29)

(30)
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Let R be an ¢-ring. Prove that R is Archimedean if and only if Ip(R) =
{0}.

Let R be a reduced f-ring. Prove that for any € R, zD(x) > 0.

Let R be an f-unital ¢-ring (R may not be commutative) and T»(R)
be the 2 x 2 upper triangular matrix ¢-ring with the entrywise order
over R. Prove that each positive derivation on T5(R) is the sum of a
derivation induced by a positive derivation on R and an inner derivation
on Tx(R).

Let R be an f-unital ¢-ring (R may not be commutative). Prove that
if the trivial derivation is the only positive derivation on R, then each
positive derivation on the ¢-ring T,,(R) with the entrywise order is an
inner derivation.
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Chapter 4

Some topics on lattice-ordered rings

In this chapter we present some topics of lattice-ordered rings. In section
1, some characterizations of matrix ¢-rings over f-unital ¢-rings with the
entrywise order are given. In section 2 we study matrix ¢-rings containing
positive cycles. Nonzero f-elements in /-rings could play an important role
for the structure of the ¢-rings. Some topics along this line are presented in
section 3. Section 4 is about extending lattice orders on a lattice-ordered
Ore domain to its quotient ring. Section 5 contains results on matrix /-
algebras over totally ordered integral domains. They generalize results for
matrix f-algebras over totally ordered fields. For a unital ¢-ring in which
1 % 0, 1 still satisfies the definition of f-element given in chapter 1. In
section 6, we study d-elements that are not positive. Finally in section 7,
we consider lattice-ordered triangular matrices. All lattice orders on 2 x 2
triangular matrix algebras over totally ordered fields are determined.

4.1 Recognition of matrix £-rings with the entrywise order

In this section, we present some recognition theorems for matrix ¢-rings
with the entrywise order. For an ¢-unital ¢-ring R, two right ¢-ideals I and
J are called £-isomorphic if I and J are ¢-isomorphic right /-modules over
R. Ris a direct sum of right ¢-ideals I, - - - , I, denoted by R = I1 ®- - -® I,
ifR=I+---+1Iyand I; NI; ={0} for 1 <4,5 <n, i+#j.

For a unital ring B, the elements in {a;; | 1 <i,j < n} C B are called
matriz units if

Qijake = Ojkaie, and aip + -+ app =1,

105
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where d;, is called Kronecker delta which is defined as

1, if j =k,
Ojk = L
0, if j # k.

Lemma 4.1. Let R be an (-unital {-ring and {a;; | 1 <i,j <n} C RT be
a set of matriz units. Then each a;; is a d-elements of R.

Proof. Fromajy+---+ap,=1land 0<ay <1,i=1,---,n, we have
that each a;; is an f-element of R. To see that a;; is a d-element, we just
need to show a;;x V0 = a;j(x vV 0) and za,;; VO = (z V0)a;;, for any = € R.
Clearly a;jz V0 < a;;(z VvV 0). We show that a;;(x V 0) is the sup of a;;x,0.
Let z > a;j,0. Then

a;iz > ajiaijx,O = QjiZ > ajjx,O
= a2z > a;;z V0
= aj;iz > ajj(z vV 0) (since aj; is an f-element)
= QG52 > aijajj(x V 0)

= Q2 > aij(m vV 0),

80 z > a2z > a;;(x Vv 0) since 1 > a;;. Thus a;;2 V0 = a;;(« Vv 0). Similarly
za;; V0 = (x V0)a;;. Thus each a;; is a d-element of R. O

The following result is fundamental.

Theorem 4.1. Let R be an L-unital £-ring and n > 2 be a fized integer.
The following statements are equivalent.

18 L-1somorphic to a matrix £-ring M, wit e entrywise order,
1) R is £-i hi triz £-ring M, (T) with th 2 d
where T is an £-unital £-ring.
contains a subset of matriz units {a;; <1,7 <nj} wn which eac
2) R tai bset tri. ) i 11<14,5< in which h
ai; 1s a d-element of R.
rR=11®...D1,, where I1,...,1, are mutually £-1somorphic 119
3) R I 1, here 1 I tually £-i hic right
{-ideals of R.

Proof. (1) = (3) Let {e;; | 1 <4,j < n} be the standard matriz units in
M, (T), that is, ij*" entry in ei;j is 1 and other entries in e;; are zero. Define
I = e;My(T),i=1,...,n. Then I,...,I, are right ¢-ideals of M, (T,
M, (T)=15L1®...® I, as the direct sum of right ¢-ideals, and I1,...,I,
are mutually f-isomorphic right ¢-modules over M, (T') (Exercise 1). Since
¢-rings R and M, (T) are ¢-isomorphic, (3) is true.
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(3) = (2) Let 1 = ay + ...+ ap, where 0 < a; € I;. Then a; < 1
and a; A a; = 0 with ¢ # j implies that each a; is an idempotent f-
element, and a;a; = 0 with ¢ # j. Thus each a;R C I; is a right (-
ideal and Rp = a1R® ... @ apR, so a;R = I; for i = 1,...,n (Exercise
2). Forany 1 < i < m, let §; : ayR — a;R be an f-isomorphism of
the right f-modules over R. Then 0 < b;; = 6;(a1) € a;Ray. Similarly,
0<by; = Hfl(ai) € a1 Ra;. Hence

a; = 91-_191'(&1) = 9;1(177:1) = afl(aibﬂ) = ei_l(ai)bﬂ = by;bi1,

and similarly b;1b1; = a; for i = 1,--- ,n. Define a;; = bj1b1;, 1 <4,5 < n.
Clearly a;jare = djrai¢ (Exercise 3), and a;; = a; implies that a1 + ... +
Apn = 1.

Thus 0 < a;5,1 <4, < n, are matrix units, and hence by Lemma 4.1,
each a;; is a d-element.

(2) = (1) Define

T={xz€R|ajzr=ra; 1<ij<n},

which is called the centralizer of {a;; | 1 < 4,7 < n}. Since each a;;

is a d-element, x € T implies that aij|x| = \aij;p| = \Iaz‘j| = |$|aij, )
|z| € T. Thus T is an ¢-unital ¢-subring of R. For an element = € R, define
Qij = Yon_q QuiTajy, for i,j =1,--- n. For any a.,

ArsQijj = QrslsiTAjs = AriThjs and Qi jQrs = QpilQjrQrs = AriTdjs,
so each a;; € T, 1 < 4,5 < n. Also

n n n
E Qi = E (g ATy Qi

i,j=1 =1 u=1

Z Qi LA 55
i,j=1
= (a11 4+ + ann)x(a11 + - + ann)

:1’7

that is, = = 320", ajja;; with a;; € T. Suppose that = = 321", Bijaij,
where 3;; € T. Then it is straightforward to check that 8;; = oy, 4,5 =
1,--+,n (Exercise 4).

Define ¢ : R — M, (T) by p(x) = 327 ;) aijeij, forx = 330 aijai; €
R. We leave it as an exercise for the reader to verify that ¢ is one-to-
one, onto, and preserves addition (Exercise 5). In the following, we check
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that ¢ preserves the multiplication and order. For z,y € R, suppose that
Qij = Don_ | (yiTaj, and o = > QuiYajy. Then

p(z)p(y) = (Z aijeij)( Z a;jeij)

1,7=1 i,5=1
n n
/
= E (E Qi Oy ;) €ijy
ij=1 v=1

where

n n

!/
d " aival; = (a1 yaj + -+ Ao ya;n)
v=1 v=1

= ay;(zy)ai + - + ani(TY)ajn
n
= Z i (TY) Q-
u=1

Thus ¢(z)p(y) = ¢(zy). For x = Ezjzl a;ja;; € R, where a;; =
o QuiTajy, if p(z) > 0, then each a;; > 0, so > 0. Conversely if
r = ) a;ja;; > 0, then each a;; > 0, and hence ¢(z) = Y ayje;; > 0.
Therefore ¢ is an ¢-isomorphism between two ¢-rings. d

Corollary 4.1. Let A, B be (-unital {-rings and f : A — B be an {-
homomorphism with f(14) = 1p. If A is £-isomorphic to an n xn (n > 2)
matriz £-ring with the entrywise order over an {-unital €-ring, then B is
also L-isomorphic to an n X n matriz {-ring with the entrywise order over
an L-unital £-ring.

In particular, if an £-unital £-ring A contains an £-unital £-subring with
the same identity which is €-isomorphic to M, (S) with the entrywise order,
where S is an C-unital £-ring, then A =2 M, (T) with the entrywise order,
where T is an €-unital £-ring and T D S.

Proof. Let {a;; | 1 <i,j <n} beaset of n xn matrix units in A. Then
{f(aij) | 1 <4,j <n}isaset of n x n matrix units in B contained in B+,
By Lemma 4.1, each f(a;;) is a d-element. Now Theorem 4.1(2) applies.(]

We characterize a bit more the centralizer of those matrix units in The-
orem 4.1. Suppose that R is an f-unital ¢-ring and @ € RT is an f-element
and an idempotent. Then aR is an f-subring of R since for any r € R,
|ar| = a|r|. Define

Endg(aR,aR) = {¢ | ¢ is an endomorphism of right R-module aR}.
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Then Endg(aR,aR) is a ring with respect to the usual addition and com-
position of two functions (Exercise 6). For § € Endg(aR, aR), define § > 0
if 6(x) > 0 for each 0 < z € aR. Tt is straightforward to check that
Endg(aR,aR) is a partially ordered ring with respect to this order (Exer-
cise 7).

Theorem 4.2. Let R be an {-unital ¢-ring and 0 < a € R be an f-element
and idempotent.

(1) Endg(aR,aR) is an £-ring with respect to the partial order defined
above, and Endgr(aR,aR) = aRa as {-rings.

(2) Let 0 < a;;, 1 <i,j <n, be nxn matriz units and T be the centralizer
of {a;j | 1 <1i,5 <n}. Then T and a;;Ra;; are £-isomorphic £-rings.

Proof. (1) We first note that, for § € Endgr(aR,aR), 6 > 0 if and only
if (a) > 0. In fact, suppose that (a) > 0. Then for any 0 < z € aR,
0(z) = 0(ax) = 6(a)x >0, s0 6 > 0.

For 0 € Endg(aR,aR), define 0'(z) = (0(a) V 0)z, for z € aR. Clearly
¢’ € Endgr(aR,aR) and 0’ > 0. Since

(0" —0)(a) = ((a) V0)a — 0(a)
= (0(a)a Vv 0)—6(a)
= (0(a®) v 0) — 6(a)
= (6(a) V0) — 0(a)
>0

0" > 0. Let 7 € Endgr(aR,aR) with 7 > 6,0. Then 7(a) > 6(a),0, and
hence 7(a) > 0(a) V0. Thus for 0 <z € aRT,

(1= 0)(x) = (r(a) = 0'(a))x = (7(a) — (6(a) V 0))z = O,

so 7 > 0. Therefore 9/ = 6 vV 0 for each § € Endr(aR,aR). Hence
Endg(aR,aR) is an (-ring.

Now map ¢ : aRa — Endgr(aR,aR) by ¢(z) = {,, where £, : aR — aR
is the left multiplication by x, that is, for any z € R, ¢,(z) = xz. Then ¢
is a ring isomorphism. For = € aRa,

>0 & ly(a) >0 &0, >0,

and hence @ is an f-isomorphism between two ¢-rings.
(2) Define ¢ : a;; Ra;; — T by for any @ € a;;Rai;, o(x) =Y 0_| GuiZaiy.
Then similar to the argument in the proof of Theorem 4.1, ¢ is an ¢-

isomorphism between two ¢-rings (Exercise 8). O
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Remark 4.1. In the proof of Theorem 4.2(1), it seems we only need to
assume that a is a d-element. However the following result shows that each
idempotent d-element in an ¢-unital /-ring must be an f-element.

Lemma 4.2. Let R be an {-unital (-ring and a € RT be a d-element with

a2 =a. Then a <1 and hence a is an f-element.

Proof. Consider 1 Aa = b. We show that a = b. Since a? = a is a
d-element,
a=ana®>=a(lANa)=ab=(1Aa)a=ba.

From 0 < b < 1, bis an f-element, so 1 A @ = b implies that b A ba = b?,
and b < a = ba implies that b = b2. Then a direct calculation shows that
(a—b)?=—(a—b),s0a—b=0and a=b. O

Theorem 4.3. Let R be an (-unital £-ring and n > 2 be a fixed integer.
Then the following statements are equivalent:

(1) R is L-isomorphic to a matriz £-ring M, (T) with the entrywise order,
where T is an (-unital £-ring.
(2) There exist positive elements b, f,g € R such that f* = ¢g" = 0 and
bg" ! + fbg" 2 + f2bg" 3 4+ ...+ 7 lb is a unit and a d-element.
(3) There exist positive elements a, f € R such that f* = 0 and af™~ ' +
fafm 2+ flafr 3 +.. .+ frla=1.
(4) There exist positive elements a, f € R such that f* =0 and af™ ! +
fafm 2+ fPaf* 3+ ...+ f* la is a unit and a d-element.
(5) For any unit and d-element u, there exist positive elements b, f,g € R
such that f* = g™ = 0 and v = bg" 1 + fbg" =2+ f2bg" 3 +.. .+ f*1b.
Proof. (1)=(2)Let f=g=eo1+...+¢epn-1 and b= ey, bein M, (T).
Then a direct calculation shows that f* = ¢ = 0 and
bg" '+ fbg" R+ fPhg P A T = 1
(2) = (3) Let uw = bg" ! + fbg" 2 + f2bg" 3 + ...+ f*~1b and let
v =wu""'. Then
fu= fog"t + f2bg" 2 4+ [ bg = ug
implies that vf = gv. It follows that vf* = ¢gFv, k = 1,--- ,n — 1, and
hence u = bg" ™' + fbg" 2 + f2bg" 3 + ... + f* b implies that

1=wv
=bg" Lo+ fog" v+ fAbg" Bv+ ...+ "
= (b0) [+ f(00) [ 4 fA00) [ A [ (b).
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Since b > 0, b = |b| = |(bv)u| = |bv|u since u is a d-element, so bv = |bv| > 0.
Let a = bv. Then a is positive and 1 = af" " + faf" 2+ flaf" 3 +... +
fla.

(3) = (1) We show that Theorem 4.1(3) is true. For each t = 1,...,n,
let g¢ = fi"laf™ 1. We first claim that R = g¢R+ g2 R+ ... + g, R is a
direct sum of right ideals of R and g1 R = ¢; R as right R-modules. Since

fn—l — fn—l(afn—l 4 fafn—Q + f2afn—3 4+ fn—la) _ fn—lafn—l,
af"" ! is idempotent. Thus the map g; R — g, R given by left multiplication
by f~! has an inverse map ¢;R — g1 R given by left multiplication by
af™t. Therefore g1 R = g; R as right R-modules.

Suppose that [ = 1R+ -+ + g, R. If g121 + -+ + gnx,, = 0 for some
x; € R, then by multiplying the equality from the left by fi=1af"~% in turn,
t=1,---,n—1, we have each g;z; = 0 for j = 1,--- ,n. Thus the sum
G R+ g2R+ ...+ g, R is a direct sum. We verify that I = R. To this end,
we show that 1 € I by showing f* € I for each positive integer k. Note
fm~! =g, € I. Suppose that f* € I for all positive integers s > r. We
show f" € I. In fact, since fTaf" ' =g,41 € I and frH, ... fr-lel,

fr — frafnfl _|_fr+1afn72 + ._._|_fn71afr cl.
Hence f,---, f*~! € I by the induction, so

L=af" '+ faf" 2+ fPaf" 3 +.. .+ lacl,
since af"~! = g; € I. Therefore R = giR+ --- + g, R.

We next show that for any z € R, if v+ = 21 + x5 + ... + ©,, where
¢ € ¢ R, then x > 0 if and only if each z; > 0,t = 1,...,n. It is clear that
if each z; > 0, then z > 0. To show if x > 0, then z; > 0, we first consider
the identity element 1.

Let S(a, f) be the semigroup generated by a and f with respect to the
multiplication of R and let d;, = f*~‘af™t, t=1,...,n. We show that for
t=1,...,n,d; = g1a41 + g2a42 + - . . + GnQin, Where each of a1, a9, ..., am
is a sum of elements from S(a, f). Since f*~! = fr~laf"=t d, = f""la =
gna. Suppose that it is true for all dg with n > s >t > 1. We claim that
it is also true for d;. From 1 = af" ' + faf" 2+ f2af" 3 +...+ f la,
we have

ftfl _ ftflafnfl + ftafn72 L+ f’nflaftfl7
SO
dy = ftilafnft
=(flaf T flaft T e e
= ge(af" ")+ dea (faf" ) + o da(f e ).
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Thus d; = g1a41 +goasa+. . .+ gnasn, where each of a1, aso, . . ., ag, is a sum
of elements from S(a, f). Since 1 =dy +da+ ... +dp, 1 = g1y + gocva +
..+ gnay,, where each of ay,as,...,q, is a sum of elements in S(a, f),
and hence each of oy, s, ..., a, is positive in R. Now for 0 < z € R,

T =gronx + goax + ... + gpapx with xp = groyxr > 0,6t =1,... n.

We finally show that each g; = f'~laf™ ! is a d-element, t = 1,...,n.
Let x € R, and let g;x,0 < z for some z € R. Then
af" g, 0 <aft'z=af" 'x,0 <af" 'z (af"! is idempotent)

= af" Mz Vv0)<af* 'z (af"'is an f-element)

= [l @ v 0) < e

= gi(zVv0) < filaftz

= gz Vv0) <z (fflafmt <1).
Therefore (g:x) V0 = g¢(x vV 0). Similarly we also have (xg; V0) = (xV 0)g:
and we leave the verification as an exercise (Exercise 9). Hence each g; is
a d-element, t =1,...,n.

Let z € R and |z| < |y| for some y € g:R. Then y = g;r for some r € R,
so |z| < g¢|r|. Let |z| = z1+ ...+ x, with z; € g;R. Then each z; > 0 and
0<(—z1)+ ...+ (g|r| = z¢) + ... + (—2,) implies that z; = 0 for i # t.
Hence |z| = 24 € g;R. Since 0 < 2t, 2~ < ||, similar argument gives that
xT,27 € ¢¢R, and hence x = 27 — 2~ € g;R. Therefore g;R is a right /-
idealof R,t =1,...,n. Since f*=! > 0 and af™"* > 0, the R-isomorphisms
defined before for g1 R and ¢;R are actually now /-isomorphisms over R.
Thus Theorem 4.1(3) is true, so (1) is true.

(3) = (4) is clear.

(4) = (5) Given u, let

afn—l -‘rf(lfn_Q +f2af7L—3 +-~-+f"_1a = .
Define b = av~—'w and g = (v"'u) ! f(v='u). Then g > 0 by Theorem 1.20,
g" =0and u=">bg" '+ fog" 2+ f2bg" 3 + ...+ f*1b. Thus (5) is true.
(5) = (2) is clear.
This completes the proof. (I

By using three elements with an additional condition, the equation in
Theorem 4.3(3) can be shortened.

Lemma 4.3. Let R be an {-unital £-ring and n > 2. Then R is (-
isomorphic to M, (T) with the entrywise order, where T' is an {-unital £-

ring, if and only if R contains positive elements a,b and a d-element f such
that f* =0 and af™ ' + fb=1.
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Proof. “=7 Let {e;; | 1 <1i,j <n} be the standard n x n matrix units
of R. Take a = ey,

b:612—|—623+"-+6n,1’n and f=621 +ezg+ - F+enn-1-
We leave it as an exercise to verify f* = 0 and af"~! + fb = 1 (Exercise
10). Since (e1, + f)™ = 1, e1n, + f is a d-element by Theorem 1.20, and
hence f is a d-element.

“<” For r = 1,...,n, define g, = f"~laf"!. Then right ideals
g1R, -+, g, R are mutually isomorphic, and their sum is a direct sum and
equals R. The verification of these facts is similar to the proof of (3) = (1)
in Theorem 4.2, so we leave it as an exercise (Exercise 11).

Similar to the proof of Theorem 4.2, we show that Theorem 4.1(3) is
true under the given conditions. Let z = x; + ... + x,, where z, € g, R,
r=1,...,n. We claim that £ > 0 if and only if each z,, > 0. As before,
we just need to show that 1 is a sum of positive elements. Since 1 =
af" ' + fb = g1 + fb, we only need to show that f is a sum of positive
elements. First, f*~! = g,,. Now suppose that for any n > s > r > 1, f*

is a sum of positive elements from g1 R, ..., g,R. Then f" = g, 1 + fHb
implies that f© = y; + ...+ yn, where 0 < y,. € g.R. Thus it is true that
f is a sum of positive elements in g1 R, - , g, R, and hence 1 is a sum of

positive elements of g1 R, ..., g, R.

Since f is a d-element and af™ ! is an f-element, each g, = f"taf™ !
is a d-element, r = 1,...,n. Thus each g,R is a right ¢-ideal and R =
giR+ -+ g, R is a direct sum of right (-ideals of R with g;R = g; R, for
any 7 and j. O

Theorem 4.4. For an {-unital {-ring R and positive integers m and n, the
following conditions are equivalent:

(1) R is L-isomorphic to a matriz £-ring My, +n(T) with the entrywise or-
der, where T is an £-unital £-ring.

(2) R contains positive elements a,b, and a d-element f such that f™T" =
0, and af™ + f"b=1.

Proof. (1) = (2). Consider the following elements
a4 = €1 m+1 + €2 m+2 +...+ €n,m+n
b= €ln+tl T €2nt2+ .-+ mmin

f=en+esn+. ...+ eminmin-1

in My, 1, (T) with the entrywise order. Then a, b, f are all positive, f™T" =
0, and af™ + f"b =1 (Exercise 12). Let e = f + €1 m+n. Then that e >0
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and €™ = 1, where 1 is the identity matrix, implies that e is a d-element
by Theorem 1.20, so f is also a d-element since 0 < f < e.

(2) = (1). Suppose that there exist positive elements a,b, f such that
frrr =0,1=af™+ f*b, and f is a d-element. Then

L=af™ (L= fr"b)f + "o+ f*7'0f — (L—af™) " 'of
= (af™a) f 4 SO+ bf — (f0)f"THOS))
_ a/ferl 4 fnflb/
where a’ = af™ ta > 0and b’ = fb+bf — (fb)f*1(bf). Now we use the
condition that f is a d-element. Since
1= ‘1| — Ia/fm—l-l T fn—lb/| S a/fm—i-l T |fn_1b/‘ —_ a/fm+1 4 fn_1|bl|,
we have 1 = x +y, where 0 < x < a/f™™ and 0 < y < f*!¥|. Then
zf?" ! =0and f™tly = 0, and hence 1 = o’ f™*+! + f»~1¥/ implies that
r = xd f" and y = " 'y. Let ay = xa’ and by = |b'y|. Then
y =yl = "Myl = [, s0 1 = x +y = ar f + f77 by with
a1 > 0, by > 0. Continuing the above procedure, we have
L=arf™(1— " "o0)f + " o1+ [P0 f — (L—ar f" ) 7 2by f

= (arf™ar) [ 4 P72 (for + bof — (f01) "2 (b0 f)

— a//fm+2 T fn—2b//
where a” = a; f™a; > 0and b’ = fby+by f—(fb1)f"~2(bif). Similar to the
argument before, 1 = as f™12 4+ f~2by with a; > 0 and by > 0. Repeating
this process, we will eventually arrive at 1 = a,_1 ™" ! + fb,_; with

an—1 > 0 and b,_7; > 0. Now by Lemma 4.3, R is {-isomorphic to the
l-ring My, (T) with the entrywise order, where T is an f-unital ¢-ring. O

Another characterization of matrix ¢-rings with entrywise order is given
below.

Theorem 4.5. For an {-unital £-ring R and n > 2, the following are equiv-
alent:

(1) R = M,(T) with the entrywise order, where T is an {-unital {-ring.

(2) There exist positive elements x,y € R such that x"~1 #0, 2" = y? =0,
x+y has the positive inverse and ((z" )N Ry = {0}, where {(z"~ ') =
{a € R | |a|Jz""1 = 0}.

Proof. (1) = (2) Let & = e124...+en_1,, and y = €,1. Then 2"~ #£ 0,
" =y? = 0. Since (z+y)" =1, (x+y)~" = (x+y)""" > 0. Since
2" = ey, it is clear that £(2"~1) N Ry = {0}.
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(2) = (1) Let r be the inverse of z +y. We note that since z +y and r
are both positive, they are d-elements by Theorem 1.20, and hence z, y are
also d-elements. Since z is a d-element, ((z""1) = {a € R | az"~! = 0}.

Define a;; = r"(ry)z" 7, i,5 = 1,--- ,n. We show that {a;; | 1 <
1,7 <n}is aset of n X n matrix units of R by two steps.

(i) yr¥y =0 and yr*2zd =0 for 2 <k <n,k <j <n.

First we show that it is true for £ = 2. From that r is an inverse of x4y,
we have 1 = rz + ry, so y = yra + yry and (1 — yr)y = yre € Rx N Ry.
Since 2" = 0, Rz C £(z""1). Thus Rx N Ry C ¢(z"~') N Ry = {0} implies
that yrz = 0. By 1 = rz + ry and 2" = 0, we have 2"~ ! = ryz”~!, and
hence

1 n—l)

yriyz" ' = (yr)(ryzx =yra" 1 =0,

since n > 2. Therefore yr?y € £(z"~*) N Ry = {0} implies that yr?y = 0.
Then yr = yr’x + yr?y = yr?x implies that yr?z? = yrz = 0, and hence
for any j > 2, yr?2/ = 0. Hence (i) is true when k = 2.

Now suppose that yriy = 0,yriz? = 0 for 2 < i < k,i < j. We prove
that yr¥y = 0, yrkz? = 0 for k < j. From 2"~ = ra™ + ryz” ' = rya”!
and the inductive assumption, we have
n—l) k—lxn—l _ O,

yrfya™ ™t = yrF T (rya" ) = yr

so yr¥y € £(z"1)N Ry = {0} implies that yr¥y = 0. Finally from yr*~! =

yr*ax 4 yrky = yrfz and yr*'z7 = 0, we have yr¥a/+1 = 0. Thus yrFa’/ =
yrFaed T 4 yrkyxd = 0 for any k < j. Therefore (i) is true.

(ii) ryxiriry = §;ry for all 0 <i,j < n — 1, where §;; is the Kroneker
delta.

From yry = y and yr*y = 0 for k > 2 by (i), the equation is true when
i =0. Now

l=ar+yr= il = gyt miflyri, 1<i<n—-1

= xi*lriy — xi i+1y+mi71yri+1y — xiriJrly,

since yr‘tly = 0 by (i). Thus 2= 1ri=Y(ry) = 2iri(ry), for any i =
1,--- ,n—1. Then

)
nfl,rnfl(

T n727,n72(

ry) = ry) = =ar(ry) =ry (),
and hence (ry)z'ri(ry) = (ry)? = ry for 1 <i <n—1. So the equation (ii)
is true when 1 <¢t=j5<n—1.

For i > 7,

oiriry = 2" gdrd (ry) = 27 (ry) by (%),
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so 7 Iry = 0 since zry = (1 — xr)z € Re N Ry = {0}. Hence the equation
(ii) is true for this case.
For1<i<jand 0<t<i,1=xr+yrimplies

i—t,.i—t

T r T]—zTy — wz—t-‘rlT'L—t—i-lr]

—iry + xi—tyrj—t-i-ly

_ x17t+1r7,7t+1r]717,y

since 2 < j —t+ 1 < n implies yr/~t*1y = 0 by (i). Let t = 1,--- ,i in the
above equation, we have

il Ty = T T L Ty = = T Ty,

and hence ryziriry = ryri~iry = 0 since 2 < j —i 4+ 1 < n. Thus the
equation (ii) is true also for this case.

By (ii), ajjars = r" i (ry)a™Ir" " (ry)a""* = §;ra:s. Since 1 = ra+ry,
,rnfixnfi — Tnfijtlxnfijtl + Tnfi(ry)xnfi 1mphes

n n—1
E Qi = E Qi + 1Y
i1 i=1

n—1
= Z " ry)a" T - ry
i=1

n—1

— Z(rn—ixn—i _ rn,—i+1xn—i+1) + ry
i=1

=—r"z"+re+ry

=1

Hence a;5,1 <i,5 < n, are n X n matrix units.

Finally since x, ¥ and r are all d-elements, each a;; = rn =t (ry)a™ I s
a d-element, so Theorem 4.1 applies.

We also note that since Ry = R(ry) and an, = ry, Ry is a left ¢-ideal

The following result is an immediate consequence of Theorem 4.5.

Corollary 4.2. Let R be an {-unital £-ring. If there exist positive elements
z,y € R such that 2?> = y*> = 0 and x + y has the positive inverse, then
R = Ms(T) with the entrywise order, where T is an L-unital £-ring.

Proof. We just need to show that ¢(z) N Ry = {0}. If a € ¢(z) N Ry,
then a = by for some b € R, so |a| = |bly since y is a d-element. It follows
from y? = 0 that |a|(z + y) = 0. Thus |a| = 0, so ¢(z) N Ry = {0}. O
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Let F be a totally ordered field and M, (F') (n > 2) be an n X n matrix
{-ring. Using previous results, various conditions may be obtained such
that M, (F') is ¢-isomorphic to M, (F') with the entrywise order. We state
one such result below.

Theorem 4.6. Let F' be a totally ordered field and let M, (F) (n > 2) be
an £L-algebra. If there are positive elements a, f such that

ff=0and1=af" '+ faf" 2+ + f"la,

then M, (F) is {-isomorphic to the (-algebra M, (F) with the entrywise
order.

Proof. By Theorem 4.3(3), M, (F') contains a set of n x n matrix units
{ai; | 1 <4,j <n} and each a;; is a d-element. Let S be the centralizer of
ai;. Then F1 C S. Since a5, 1 < 4,7 < n, are linearly independent, they
form a basis for M, (F') as a vector space over F, so each standard matrix
unit e, is a linear combination of a;; over F'. Thus each matrix in S is
in the centralizer of e,s, 1 < r,s < n, and hence each matrix in S must
be scalar matrix. Therefore S = F1 and M,,(F) is ¢-isomorphic to M, (F)
with the entrywise order by the proof of Theorem 4.3. O

4.2 Positive cycles

In this section, we consider the structure of ¢-unital ¢-rings with positive
elements of finite order. For a unital ring R, an element e is said to have
finite order if e™ = 1 for some positive integer m. For an element e with
finite order, the order of e is the smallest positive integer n such that e = 1.

Lemma 4.4. Let R be a unital {-ring with a positive element e of order
n > 2 and M be a maximal convex totally ordered subgroup of its additive
l-group. Then e'Me’ is a mazimal conver totally ordered subgroup for
1<i,j<n.

Proof. Clearly e¢’Me? is a totally ordered subgroup. Suppose that
0 < b < eael for some 0 < a € M. Then 0 < " "he™ 7 < q implies
that e *be™ 7 € M, so b € e'Me?. Therefore e!Me’ is convex. As-
sume that e?’Mel C N for some convex totally ordered subgroup N. Then
from M C e" " Ne™J and e"*Ne™ 7 is convex totally ordered, we have
M =" *Ne" 7, and hence e’ Mel = N. [l
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Theorem 4.7. Let R be a unital £-ring with a positive element e of order
n > 2. Suppose that R satisfies the following conditions.

(1) R contains a basic element a <1 such that a A (1 —a) = 0.
(2) 1€}, e'Mel, where M = a'.

Let k > 2 be the smallest positive integer with e*a = ae®. Then B =
{elae™ 7 | 1 <i,j <k} is a disjoint set of basic d-elements and also a set
of matriz units. Therefore R is {-isomorphic to the matriz (-ring My (T)
with the entrywise order, where T is the centralizer of B in R.

Proof. We first note that ¢’ = 1 implies that e is a d-element by Theorem
1.20 and aA(1—a) = 0 implies that a(1—a) = 0, since a, 1 —a are f-element,
so a = a’.

Since a is basic, M is a maximal convex totally ordered subgroup by

Corollary 1.1. We claim that the sum
(eMe+ - +eMe™) + -+ (" Me+ - - + " Me™)

is a direct sum. Since each e!Me’ is a maximal convex totally ordered
subgroup by Lemma 4.4, by Theorem 1.16, any two terms in the sum are
either disjoint or equal. Consider the following array and we claim that any
two different terms cannot be equal.

eMe eMe? .- eMem
eZMe e2Me? .- e2Me™

ek Me eFMe? ... eFMen
Suppose that for some positive integer m with 1 <m < n, ™M = M.
Then for any 0 < x € M, e™x and = are comparable. If z < e™z, then
r < eMr < ey < ... < "z = x, which is a contradiction. Similarly

e™x £ x. Thus we must have ez = x, and hence for each z € M, e™z = 2.
From 1€ 331", e'Mel, 1 =37, - e'xyje’, where x5 € M, and hence

em:emg ezxijejzg eeml E egc”e—l
] ,J

which is a contradiction. Hence n is the smallest positive integer such
that e"M = M, and similarly n is the smallest positive integer such that
Me™ = M. Therefore any two terms in the same row or column of the above
array are different. Suppose that for 1 < s < k,1 <t < n, eMe! = M,
then eM = Me™~t. Similar to the above proof, e’a = ae™~*. We show
that Me® = Me™ ™t If Me® # Me™ ™!, then MeSNMe™ ¢ = {0}, and hence
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ae® A ae™t = 0. Thus a is an f-element implies that ae®a A ae™ ™

since e is a d-element, we have

=0, so

(> Na)e" Tt =a?e" P Aae" ! = aefa Aae" ! = 0.

It follows that a®> A @ = 0, and hence a = 0 since a? = a, which is a

contradiction. Thus Me® = Me"™ !, then Me*™* = M implies n | (s + t),
and hence s+t = n since s+t < 2n. Hence e’ M = Me®, which contradicts
the fact that 1 < s < k and k is the smallest positive integer satisfying
e*M = MeF. This proves that e*Met # M for 1 < s < k,1 <t < n.
Therefore the sum

Z e'Me’

1<i<k,1<j<n
is a direct sum (Exercise 13).

We next show that 1 = a + eae™ ' + ...+ e Lae”**1. Since 1 is a
sum of disjoint basic elements and 1 = a+ (1 —a) implies that 1 = e’e" % =
efae" "+ el(1 —a)e" ', 1 <i < k, we have a,eae” 1, ... eF " Lae"F+! are
all in the sum for 1 (Exercise 14). By condition (2), each basic element
in the sum for 1 is equal to ¢ = eze? < 1 for some 0 < € M and
1<s<k1<t<n. Then e’zele’re’ = eze! implies that ze’Tiz = z.
Suppose ze¥z = x with 0 < v < n. Since M N Me” = {0}, x Aze’ = 0. If
x < a, then z is an f-element, so x A xze’z = 0 implies that £ = 0, which is
impossible. Hence a < z. Since z = " *ce” ! is a d-element, z A ze’ = 0
implies that 22 A ze’z =0, s0 22 Az =0. Thena =a’> Aa < 22 Az =0,
which is a contradiction. Therefore there is no positive integer v < n such
that ze’xz = x. It follows from ze**ttz = z that we must have s +t = n,
and hence ¢ = e®ze™™°, 1 < s < k and z is idempotent. From

l=c+(1—-c)=e’ze"°+ (1 —e’ze"™?)
and
cN(l—c)=e’ze" °  AN(1—e’ze" %) =0,

we have 1 = o + (1 — ) and © A (1 —z) = 0. Since we also have 1 =
a+ (1 —a) with a A (1 —a) = 0, we must have x = a since a,z € M.
Therefore ¢ = e%ae™ ®, 1 < s < k, and hence 1 = a + eae” ! + ... +
eF~laen~F+1. Then {a,eae™!,...,eF Lae"#*1} is a disjoint set implies
that e'ae” ‘elae™ 7 =0 for i # j.

For 1 < i < k,1 < j <k, define ¢;; = etae™ I, Tt is clear that
each c¢;; is d-element since a is an f-element and e is a d-element, and
{cij | 1 <i,j <k} is a set of k x k matrix units, that is, ¢;jcrs = 0j,Cis,
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where 0, is the Kronecker delta, and ¢11 + ...+ cxr = 1 (Exercise 15). Let
T ={x € R|zc;; = cijz,1 < 1,5 <k} be the centralizer of {¢;; | 1 <1i,j <
k} in R. By Theorem 4.1, R is f-isomorphic to the matrix ¢-ring My (T)
with the entrywise order. This completes the proof. (I

For a ring R and = € R, we define i(z) = {a € R | az = za = a}.
Clearly i(x) is a subring of R and if R is an algebra over F' then i(z) is a
subalgebra of R over F.

Theorem 4.8. Let A be a unital finite-dimensional Archimedean £-algebra
over a totally ordered field F'. Suppose that A contains a positive element e
with order n > 2 and dimpi(e) = 1. Then A is {-isomorphic to My (F[G])
as the £-algebra over F with the entrywise order, where k | n, G is a finite
cyclic group of order n/k, and F[G] is the group {-algebra of G over F with
the coordinatewise order.

Proof. We first show conditions in Theorem 4.7 are satisfied and then
we determine the f-unital f-ring 7" in Theorem 4.7. Since A is finite-
dimensional and Archimedean over F', by Corollary 1.3, A is a finite direct
sum of maximal convex totally ordered subspaces over F'. Then 1 is a sum
of disjoint basic elements, and hence there exists a basic element a such
that @ < 1 and a A (1 — a) = 0, that is, condition (1) in Theorem 4.7 is
satisfied.

Let M = a*t and z = EZ]’:I e‘ae’. Then ex = we = z implies that z €
i(e),s0xz = a(l+e+---+e" 1) for some 0 < a € F since dimpi(e) = 1 and
I+e+--+e" 1 €i(e). It follows that 1 < a~tx € dij=1 e?Me’, and hence
Ledlio e'Me?, that is, condition (2) in Theorem 4.7 is also satisfied.
We note that above arguments have actually proved A = Z? =1 e'Mel.
Otherwise there is a maximal convex totally ordered subspace N that is not
contained in H = 377, e'Me7, then HN.J = {0}, where J = > 1", ¢'N¢eJ
(Exercise 16). On the other hand, by a similar argument we have 1 € J,
which is a contradiction. Therefore A =377, e'Me/.

Suppose that k is the smallest positive integer with e*a = ae® and
k > 2. By Theorem 4.7, {¢;; = e‘ae™ 7 | 1 <4,j < k} is a disjoint set of
basic d-elements and a set of k x k matrix units, and A 2= M (T') with the
entrywise order, where

T={xecA|xc=cyr,1<i,j <k}

is an f-unital f-ring. Also from the proof of Theorem 4.7, A =
D i<ichi<j<n € Mel is a direct sum as a vector lattice.
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We prove that dimpM = 1. Let u,v € M be linearly independent
over F. Define z = 37 ;p 1<jcpcue’ and y = 37 e, el If
ax + Py = 0 for some a, § € F, then

Z e'(au + Bv)e? =0,
1<i<k,1<j<n
and hence au 4+ fv =0, so a = § = 0. It follows that x and y are linearly
independent. On the other hand, x,y € i(e) implies that they are linearly
dependent since dimpi(e) = 1. This contradiction shows that dimpM =1,
and hence M = Fa.

Since eFa = ae, ¥, €%, ... et € T, where n = k. We prove that
T= {Ozo+alek+~-+ag,1e(€’1)k |, €F, 0<i</{—1}.
Suppose that x € T. Since A is a direct sum of e!(Fa)e’, 1 <i < k,1 <
j < n, a direct calculation shows that = = 37, , ;; vijci;, where v;; €
F+ Fek + ...+ Fel® Yk then {c;;} is a set of k x k matrix units implies

that v;; =0if ¢ # j and vi1 = -+ = vgg. Hence

r=wvii(c1n + -+ opr) =vnl =vn
(Exercise 17), so T = F + Fe* + ... + Fel®=Vk For an element z =
a0+ aref + -+ ap eV in T it is clear that « > 0 if and only if each
a; > 0, and hence T is a group f-algebra of a finite cyclic group of order
¢ =n/k over F with the coordinatewise order.

If £ =1, that is, ea = ae, then A is ¢-isomorphic to the group f-algebra
F[G] of a cyclic group of order n over F. The verification of this fact is left
to the reader (Exercise 78). This completes the proof of Theorem 4.8. [

An n-cycle (iyig---i,) on the set {1,--- ,n} is a permutation which
sends i1 — 42, - ,ip_1 — ipn, and i, — ;. The permutation matrix
€iyig + -+ e, i + e i, where (i1ig---iy) is an n-cycle, is called an
n-cycle in matrix ring M, (R) over a unital ring R.

Lemma 4.5. Let T be a unital ring and e be an n-cycle in M, (T). For
x € M,(T), if ex = we, then * = ool + e + -+ + a,_1e" 1 for some
a; € T, where 1 is the identity matriz.

Proof. First we assume that e = e +ea3+---+e€,1. Let @ = (2;5). For
1 < k < n, a direct calculation shows that

k
e’ =e1gr1terkiot -+ eln gt ot enk
and

L1k = X2 k+1 = = Tn—kn—-1— Tn—k+ln = ' = Tn,k—1
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(Exercise 18), and hence x = x111 + z19e + x13€% + -+ + 21" L
Now suppose that ¢’ = €4, + €ipis + - + €i,4,. Define d = ey;; +
€2i, + -+ eni,. Then d=! = e;,1 + €2 + -+ + €, and de'd™! = e. If
ve' = 'z, then (ded~1)(de’d™') = (de’d~')(dwd~1), and hence, by previous
argument, there exist ag,- - ,a,—1 € T such that
ded ' = apl+age+ -+ ap_1e™ !

=agl +ai(ded™ )+ 4+ ap_1(de’d )"t

=d(aol +are + -+ a,_1(e)*Hd T,
since each entry in d is either 0 or 1 implies ad = da for o € T'. Therefore
r=ag+are +-+a,_ ()L O

Theorem 4.9. Let T be a unital totally ordered ring, and R = M, (T) (n >
2) be an L-ring and f-bimodule over T with respect to left and right scalar
multiplication. Assume that R is a direct sum of convex totally ordered
subgroups and contains a positive n-cycle. Then R is £-isomorphic to the
l-ring M, (T) with the entrywise order.

Proof. Let e be a positive n-cycle. Since each entry in e is either 1 or
0, for any a € T, ae = ea. From 1 = €™ > 0, 1 is a sum of disjoint basic
elements, so there is a basic element a such that ¢ <1 and a A (1 —a) = 0.
Hence the condition (1) in Theorem 4.7 is satisfied.

Let M = a*t and H = Yoi o € Mel. We claim that R = H. If R # H,
then there exists a maximal convex totally ordered subgroup N that is
not in the sum of H, and hence H NJ = {0}, where J = 37", e'Ne/.
Take 0 < x € N and consider z = Y /', e’ze/. Then ez = ze = 2, s0
z=a(l+e+...+e" 1) for some 0 < a € T by Lemma 4.5. On the other
hand, if w = szzl e‘aed, then ew = we = w, sow = f(1+e+...+e* 1)
for some 0 < f € T. Thus 1 € H and al € J, which implies that
0 < min{ps,a}l € H N J, which is a contradiction. Therefore we must
have R = H = Y1, e'Me/, so 1 € Y3, e'Me/, and condition (2) in
Theorem 4.7 is satisfied.

Suppose that e'a = ae’ for some 1 <i <n—1, then R = > =1 e'Mel
implies that €’ is in the center of R, which is a contradiction (Exercise 19).
Hence n is the smallest positive integer with e™a = ae™, then by Theorem
4.7, R is ¢-isomorphic to the ¢-ring M,,(S) with the entrywise order, where
S is the centralizer of {¢;; = e’ae™ 7 | 1 <4i,j <n} in R. We show that S
consists of all scalar matrices over T

Let 0 < a € T. To show that al € S, it is sufficient to show that
(al)a = a(al) since al commutes with e. From 1 = a+eae” '+...+e" lae
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and al = la, we have
n—1 n—1 _ n—1 n—1
aa + aeae +...+ae ae = ax + eae a+...+e aeq.

Since M,,(T) is an f-bimodule over T', aAe‘ae™ " = 0 foranyi=1,...,n—1
implies that aa A e?ae™ fa = 0, so

aa = aa A (aa + ceae™ .+ ae" tae)
=aa A (aa+eae" ra+ ... +e"aea)
< (aa A aa) + (aa Aeae” ra) + ...+ (aa A e taeq)
= aa N ax

< aa.

Similarly, aa < aa, so aa = aa. Thus T1 C S.
Now let 0 < x € S. Then x commutes with e since

2 n-1
e=el=ea+e‘ae" " +...+ae=cipn+catct...+Chn-1,

and hence 2 = ol +je+...+a,_1e" L forsomea; € T,i=0,...,n—1
by Lemma 4.5. Since a = ¢y, Ta = ax, and hence

1

apa + area+ ...+ an_1€" ta = aga + ajae+ ... + ay_jae” !

implies that a;e’a = 0 for any 4 = 1,--- ,n — 1. Hence a;a = 0 for 1 =
1,--- ,n since e” = 1. We claim that each a; = 0,7 = 1,--- ,n. Suppose
that ay, # 0 for some k. We may assume that «ay > 0. Since aA(1—a) =0
and M, (T) is an f-bimodule over T, we have a A ag(1 —a) = a A axl =0,
and hence a A1 = 0, which is a contradiction. Thus a; =0fori=1,--- ,n.

Therefore x = agl € T1. This proves that S = T'1, that is, S consists
of all the scalar matrices over T'. Since for any o € T, « > 0 in T if and
only if a1 > 01in S, S and T are f-isomorphic ¢-rings. Therefore M, (T) is
£-isomorphic to the ¢-ring M, (T') with the entrywise order. This completes
the proof. a

A unital domain R is called a left (right) Ore domain if R can be
embedded in a division ring @ such that

Q={a'z|a,z€Ra#0}(Q={ra"!|a,z€R a#0}).

The Q is called the classical left (right) quotient ring of R. Theorem 4.9
is true when R is a unital ¢-simple totally ordered left (right) Ore domain.
We will first prove the following result.

Lemma 4.6. Suppose that R is a unital totally ordered ring.



124 Algebraic Structure of Lattice-Ordered Rings

(1) R contains a unique mazimal (left,right) £-ideal.

(2) If R is a domain, then the unique mazimal left (right) {-ideal of R is
a mazimal {-ideal.

(8) If R is {-simple, then R is a domain and R and {0} are the only left
(right) £-ideals of R.

Proof. (1) Since R is unital, by Zorn’s Lemma R contains a maximal
{-ideal. Suppose that M, N are maximal ideals and M # N. Then R =
M + N implies that 1 = x + y for some z € M and y € N . It follows
from 1 > 0 that 1 = |1| = |z +y| < |z| + |y|, and hence 1 = a + b for some
0<a<|z|and 0 <b < |y|. Hence we have a € M and b € N. Now that
R is totally ordered implies that a < b or b < a, so 1 < 2b or 2a implies
that 1 € N or 1 € M, which is a contradiction. Similarly there is a unique
maximal left /-ideal and a unique maximal right ¢-ideal.

(2) Let I be the unique maximal left ¢-ideal. Consider the ¢-ideal (I)
generated by I. Then

(I) ={x€R||z|<ar,acI",re R}

If (I) = R, then 1 < ar for some a € I™ and r € RT, and hence ra < (ra)?.
Then that R is a totally ordered domain implies 1 < ra € I, so 1 € I, which
is a contradiction. Therefore (I) # R, so (I) is contained in a maximal left
¢-ideal by a standard argument using Zorn’s Lemma, and hence (I) C T.
Thus I = (I) is an ¢-ideal.

(3) If R is ¢-simple, then ¢-N(R) = {0}, and R is reduced by Theorem
1.28. It follows that R is a domain since R is totally ordered. Let I # {0}
be a left ¢-ideal of R. Then (I) = R. By a similar argument in (2), we
must have 1 € I, so I = R. O

Corollary 4.3. Let R be a unital £-simple totally ordered left (right) Ore
domain and M, (R) (n > 2) be an {-ring and f-bimodule over R with respect
to left and right scalar multiplication. If €-ring M, (R) contains a positive
n-cycle, then it is -isomorphic to the (-ring M, (R) with the entrywise
order.

Proof. Let @ be the classical left quotient ring of R. Then M, (R) C
M, (Q). Consider M, (R) (M,(Q)) as aleft module over R (Q) by left scalar
multiplication. Since M, (Q) is an n2-dimensional vector space over the
division ring @ and matrices in M,,(R) that are linearly independent over
R are also linearly independent over ) (Exercise 20), M,,(R) has at most n?
linearly independent matrices over R. Suppose that {f; | i € I} C M, (R)
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is a disjoint set. Then it is linearly independent over R by a similar proof
of Theorem 1.13 since R is a domain and M, (R) is a left f-module over
R (Exercise 21). Therefore R does not contain any infinite set of disjoint
elements, so condition (C) in Theorem 1.15 is satisfied.

We next show that M, (R) contains no maximal convex totally ordered
subgroup that is bounded above. Suppose that M is a maximal convex
totally ordered subgroup of M, (R) and 0 < a € M,,(R) such that 2 < a for
allz € M. For0 <y € M, y*+ = M. Since M, (R) is a left f-module over
R, for any 0 < a € R, ay € y** implies that ay < a for all 0 < a € R.
Thus for all 0 < @ € R,

e’ Z elyel =af(l+e+...+emH < Z elae =y(1+e+...+e" 1),
i,j=1 ij=1
for some 0 < B,7v € R. Therefore af < v for all « € R. Let I be
the left ¢-ideal generated by § in R. By Lemma 4.6, I = R, so v <
§8 for some § € RT, which contradicts with a3 < v for all @ € RT.
Hence M, (R) has no maximal convex totally ordered subgroup bounded
above. By Theorem 1.17, M,,(R) is a direct sum of convex totally ordered
subgroups, so Theorem 4.9 applies. This completes the proof. O

Let’s consider two important cases that Corollary 4.3 applies. For a
totally ordered subring R of R, each 0 < o € R is less than k1 for some
positive integer k. Thus an f-algebra M, (R) over R is an f-bimodule over
R, so if M,,(R) contains a positive n-cycle, then it is ¢-isomorphic to the
l-algebra M, (R) with the entrywise order. If R is a totally ordered division
ring, then each ¢-module over R is an f-module, so if M, (R) is an f-ring
and ¢-bimodule over R and contains a positive n-cycle, then M, (R) is ¢-
isomorphic to the ¢-ring M, (R) with the entrywise order.

4.3 Nonzero f-elements in ¢-rings

For an f-ring R with nonzero f-elements, for instance, an ¢-unital ¢-ring,
properties of R are affected by f(R). In this section we present some results
in this direction. Recall that f(R) = {a € R | |a| is an f-element of R}.
For an (-ring R, let Us = U¢(R) be the upper bound of f(R), that is,
U ={z € R| |z| > a, for each a € f(R)}.

Lemma 4.7. Let R be an £-ring and f(R) # 0 be totally ordered. Then
R=U;U(f(R) ® f(R)}), where the direct sum is regarded as the direct
sum of convex L-subgroups, and Uy N (f(R) @ f(R)*) = 0.
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Proof. Suppose that a € R and a ¢ Uy. Then there exists an f-element
b > 0 such that |a| 2 b, and hence |a|Ab < b. Consider a1 = |a| —|a| Ab and
by = b—la|Ab. We have a1 Aby = 0, so (agAe)Aby =0, where 0 < e € f(R).
Since 0 < b1,a; Ae € f(R) and f(R) is totally ordered, we must have
a; Ae =0, that is, a; € f(R)L. Thus |a| = (Ja| Ab) + a1 € f(R) + f(R)*.
It follows from 0 < at,a™ < |a| that a*,a™ € f(R) + f(R)*, and hence
a=a"—a" € f(R)+ f(R)L. Tt is clear that f(R)N f(R)* = {0}.
Suppose that z € Ur N (f(R) ® f(R)*). Then z = z1 + y1,21 €
f(R),y1 € f(R)t. Thus 2|x1] < |z| < |z1] + |y1], and hence z; = 0.
Therefore x € f(R): which implies f(R) = {0}, which is a contradiction.
Therefore we have Uy N (f(R) @ f(R)*) = 0. O

We provide an application of the decomposition in Lemma 4.7. For an
{-ring R, an element e is called f-superunit if e is an f-element and for any
z € RT, ex > 2 and ze > 7.

For a ring B and an element a € B, if ab = ba = nb for some integer
n and all b € B, then a is called an n-fier and n is said to have an n-fier
a in B. Define K = {n € Z | n has an n-fier in B}. Then K is an ideal
of Z (Exercise 22). The ideal K is called the modal ideal of B and its
nonnegative generator is called the mode of B.

Lemma 4.8.

(1) If R is an f-ring with mode k > 0, then R has a unique k-fier x > 0.

(2) Let R be an (-ring with an f-superunit and f(R) is totally ordered.
Then mode of R and the mode of f(R) are the same, and if k is the
mode of R, then the k-fier of R is equal to the k-fier of f(R).

Proof. (1) If x,y both are k-fier, then kx = xy = ky implies that z = y.
Thus there is only one k-fier . From xzb = bx = kb for any b € R and
R is an f-ring, we have |z|a = a|z| = ka for each a € R*, and hence
|x|b = b|x| = kb for each b € R. Therefore the uniqueness of = implies that
x=|z| > 0.

(2) Let e be an f-superunit of R, n be the mode of R, and m be the
mode of f(R). If x is an m-fier of f(R), then za = ax = ma for each
a € f(R), especially ze = ex = me. Thus for each b € R, (bx)e = (mb)e,
so bx = mb since e is an f-superunit. Similarly b = mb. Therefore n | m.
Now let y be an n-fier in R. We show that y € f(R). By Lemma 4.7,
R=U;U(f(R)® f(R)}). If y € Uy, then we have ne = |ey| = ely| >
ly| > (n+1)e, which is a contradiction. Thus y = z +w with z € f(R) and
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w € f(R)* implies that ne = ey = ez + ew, and hence ew = 0. Therefore
w=0and y € f(R). Hence m | n, so n = m.

Suppose that k is the mode of R, by the above argument, a k-fier of R
is also a k-fier of f(R), so by (1) R has a unique k-fier = > 0. O

Let R = {(n,r) | n € Z,r € R}. Then R becomes a ring having
identity element (1,0) with respect to the coordinatewise addition and the
multiplication

(n,7)(m, s) = (nm,ns + mr +rs).

It is well known that a — (0,a) is a one-to-one ring homomorphism from
R to R. So R may be considered as a subring of R.

Suppose that £ > 0 is the mode of R and z is the unique k-fier of R.
Let I(k,z) = {n(k,—z) | n € Z}. Then I(k,r) is an ideal of R (Exercise
24). Define Ry = R/I(k,z) as the quotient ring with identity (1,0) and
a — (0,a) from R to Ry which is a one-to-one ring homomorphism from R
to R1. Hence R can be considered as a subring of R;.

We need the following result in the proof of Theorem 4.10.

Lemma 4.9. Let R be an {-ring with a € R and 0 < e € f(R). Then
|ae + ea| = |ale + e|a].
Proof. Since a™ Aa™ =0,
eat Nea” =ea™ Na"e=aTeNa e=aTenea” = 0,
so (ate+eat)A(a"e+ea”)=0. Thus
lae +eal = |[aTe —a e+ eat —ea”|

=|(aTe+eat) - (a"e+ea”)|

= (ate+ea®)+ (a"e+ea”)

= |ale + e]al. O

Theorem 4.10. Let R be an {-ring with an f-superunit and f(R) be totally
ordered. Suppose that Ry is defined as above. Then R can be embedded in
an C-unital £-rings Ry such that f(R) C f(R1) and f(Ry1) is totally ordered.
Moreover if R is £-simple or R is squares positive, so is Ry.

Proof. Before we proceed with the proof, we comment that the following
proof works for R and we leave the verification of it to the reader.

By Lemma 4.7, R = U; U (f(R) @ f(R)*). Let e be an f-superunit and
A ={ne+ae|n€Z,ac R} be the subring generated by e and Re. We
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first show that A is an ¢-subring of R. Let ne 4+ ae € A, where n € Z and

a € R. We consider two cases.
(1) a € f(R)® f(R)*. Suppose that a = b+c with b € f(R),c € f(R)™ .
Then

(ne +ae)t = (ne+be+ce)™ = (ne+be)™ + (ce)™ = (ne+be)™ +cte

and (ne + be)t = ne + be or 0 since f(R) is totally ordered. Therefore
(ne + ae)™ = ne +be + cte or cte, so (ne +ae)™ € A.

(2) a € Uy. Since a = at —a~ and at Aa~ = 0, we must have one of
at,a” € Uy, but not both of them (Exercise 23). Suppose that a™ € Uy.
Then at A a~ = 0 implies that a~ € f(R)*. Since e is an f-superunit,
ne 4+ ate > ne+at >0, and hence

0< (net+ate)ra"e< (Inle+aTe)Aa"e < (|nlena e)+(aTenae) =0,
since a~e € f(R)* and |n|e € f(R). Hence (ne +a*e) Aa~e =0 and
(ne+ae)t = (ne+ate—ae)m =ne+atec A
If a= € Uy, then a* € f(R)*. Since —ne +a~e > —ne+a~ >0,
0 < (—ne+ta~e)Aate < (Inle+a"e)Aate < (InlenaTe)+(a"enaTe) =0,
so (—me+a~"e) Aate =0 and
(ne+ae)t = (ne+ate—a"e)m =(ate—(—ne+ae))" =atec A

Thus in any case, (ne + ae)™ € A, and hence A is an ¢-subring of R.

Define ¢ : Ry — A by ¢((n,a)) = ne + ae. It is left to the reader to
check that ¢ is a well-defined isomorphism between two additive groups of
R; and A (Exercise 25). Now we define an element (n,a) > 0 if ¢((n,a)) =
ne+ae > 0in A. Since A is an f-ring, Ry becomes an {-group with respect
to its addition, and ¢ becomes an ¢-isomorphism of two additive ¢-groups.

We show that the product of two positive elements of Ry is also positive.
Suppose that (n,a), (m,b) > 0. Then ne + ae, me +be > 0 in A, and hence
e is an f-superunit implies that ne + ea, me + eb > 0. Thus

(ne + ea)(me + be) = e(nme + mae + nbe + abe) > 0,

implies that

o((n,a)(m,b)) = o((nm, ma + nb + ab)) = nme + (ma + nb+ ab)e > 0.

Hence the product of (n,a) and (m, b) is positive in R;. Therefore R; is an
{-unital ¢-ring.
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We may directly check that an element (n,a) € Ry isin f(R;) if and only

if ne 4+ ae € f(R). Suppose that (n,a) € Ry is an f-element, and =,y € R
with Ay = 0. Then xe Aye = 0 implies that (0,2) A(0,y) =0 € Ry. Then

(0,z)(n,a) A (0,y) =0= (0,nz +za) A (0,y) =0
= (nz+za)e Aye =0
= z(ne+ ae) Ay =0 (e is an f-superunit).

Now we show that (ne+ae)x Ay = 0. From 2 Ay = 0 and e is an f-element,
we have ex Ay =0, so (0,ex) A (0,y) = 0 implies

(n,a)(0,ex) A (0,y) =0 = (0,nex + aex) A (0,y) =0
= (nex + aex)e Nye =0
= (nex + aex) Ay =0 (e is an f-superunit).
= (ne+ae)xr Ay =0.
Thus ne + ae € f(R). Similarly to show that if ne + ae € f(R), then
(n,a) € f(Ry). We leave the verification of it to the reader (Exercise 26).

Now a — (0,a) is a one-to-one ring homomorphism with a > 0 in R if
and only if (0,a) > 0 in Ry. Thus we may consider R as an ¢-subring of R;
and write Ry = Z+ R. Then f(R) C f(Ry) and f(Ry) ={n+a|a € f(R)}
is totally ordered.

Suppose that R is ¢-simple. For an f-ideal I of R;. That I N R is an
l-ideal of R implies that TN R = Ror IN R = {0}. If IN R = R, then
e € I and 1 < e implies that 1 € I, and hence I = R;. If IN R = {0}, then
IR = {0}, and hence I = {0} since e € R is an f-superunit of R. Therefore
Ry is ¢-simple.

Finally we suppose that R has squares positive. For n+a € Ry = Z+ R,
first assume that a € Uy. For any 0 <m € Z, 0 < (me + a)? and Lemma
4.9 yield

mela| + m|ale = |mea + mae| < m?e* + a® < mlale + a2,
since me < |al. Hence mla| < mela| < a®. Therefore, for any n € Z,
(n +a)? = n? 4+ 2na +a® > 0 in R;. Now suppose that a = z + y with
€ f(R) and y € f(R)*. Then
(n+a)2 =n?+2na+ a® = n?® 4 2nz + 2ny + 22 + zy + yr + y°.
Since n+x € f(Ry1), n? +2nz+ 2% = (n+2)2 > 0. For any 0 < d € f(R),

lyld < |yld + dly| = |yd + dy| < y* + d*
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implies that

lyld = lyld A (y* + d°)
< (lyld A y?) + (lyld A d?)
= (lyld Ay®) + (lyl A d)d
=lyldAy® (lylAd=0)
<y

Similarly d|y| < y?. Hence we have
—6ny < (6ny)e < y*, —3zy < ¢*, and — 3yz <y,

so —(6ny + 3zy + 3yx) < 3y?. Therefore —(2ny + xy + yr) < y?. It then
follows that

(n+a)? = (n* + 2na + 2%) + 2ny + zy + yx + y*) > 0.
This completes the proof that Ry is squares positive. (|
Lemma 4.10.

(1) For an (-ring R with (-N(R) = {0}, if a € f(R) and a®> = 0, then
a=0.

(2) Let R be an L-unital £-reduced £-ring. For an -prime {-ideal P, f(R/P)
is a totally ordered domain.

(8) For a totally ordered ring, any two (right,left) £-ideals are comparable.
For an f-ring and an -prime ¢-ideal P, if I,J are ¢-ideals containing
P, thenI CJ orJCl.

(4) For an {-ring R with an f-superunit, if f(R) is totally ordered, then R
has a unique mazimal (right,left) £-ideal.

Proof. (1) Since f(R) is an f-ring, we have |a]? = |a?| = 0, so we may
assume that a > 0. For € RT, (ax — za)™ A (az — za)” = 0 implies that

ara = ara A axa = (ax — za)Ta A alar —za)” =0

since a is an f-element of R. Thus aR"a = {0}, and hence a = 0 since
¢-N(R) = {0}.

(2) Let R = R/P, and for each € R write T = x + P € R/P. Suppose
that @ A b = 0 for some @,b € f(R). Then a Ab = ¢ € P, and hence
(a—c)A(b—c)=0. It follows that

((a—c)AND)A((b—c)A1)=0.
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However (a—c)Al, (b—c)Al € f(R) implies that ((b—c)Al)((a—c)Al) =0,
S0

[((a —c) AD)ax((b—c) A1)]? =0 for each x € RT.

Then that R is ¢-reduced implies ((a —¢) A 1)z ((b —¢) A1) = 0 for each
r € R*. Therefore in R, we have (@ A T)Z(bA 1) = 0 for each 7 € (R)™,
and hence a AT =0 or bAT = 0 since R is /-prime. Consequently @ = 0
or b = 0 since @,b € f(R). Thus f(R) is totally ordered (Exercise 1.12).
By (1) f(R) contains no nonzero nilpotent element, then f(R) is totally
ordered implies that it is a domain.

(3) Suppose that R is totally ordered and I,J are ¢-ideals. If I Z J,
then there exists 0 <a € I'\ J, so for any 0 < b€ J, b <a. Thus b € I for
each b € J*, and hence J C I.

For an f-ring R, by Theorem 1.27, R/P is totally ordered, and hence
I/PCJ/Por J/PCI/P. ThusI CJorJCI.

(4) Let e be an f-superunit of R. By Zorn’s Lemma, R has a maximal
l-ideal. Suppose that M, N are maximal {-ideals. If M + N = R = U; U
(f(R)® f(R)*), then e = x +y for some 0 <z € M and 0 < y € N, and
hence z,y € f(R) ® f(R)* since M NU; = NNU; = (). Suppose that
r=a+by=c+dwith a,c € f(R), b,d € f(R)*. Then e = a + c and
b+d=0. Since M N f(R) and N N f(R) are ¢-deals of f(R), by (3) they
are comparable. Thus e € M N f(R) or N N f(R), and hence M = R or
N = R, which is a contradiction. Consequently M + N # R, and hence
M=M+N-=N.

Similar argument shows that there exists a unique maximal left /-ideal
and a unique maximal right /-ideal. O

For a general f-ring, Lemma 4.10(3) is not true. For instance, let
R = R[z,y] be the polynomial ¢-ring in two variables over R with the
coordinatewise order. Then R is a domain and xR, yR are ¢-ideals that are
not comparable.

For an f-ring R, f(R) is called dense if for any nonzero ¢-ideal I, I N

f(R) #{0}.

Theorem 4.11. Let R be an {-reduced Archimedean £-ring such that f(R)
is dense. Then R is £-isomorphic to a subdirect product of £-simple £-rings
with f-superunits.

Proof. By Theorem 1.30, R is a subdirect product of /-domains, and
hence R contains ¢-ideals I, such that NI, = {0} and each R, = R/I, is
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an f-domain. Take 0 < a € f(R). Since R is Archimedean, there exists
positive integer n such that na? £ a, and hence either na? > a or na? and
a are not comparable. Now 0 < a € f(R) implies that a, = a+ 1, € f(Ra)
for each a (Exercise 27). Since f(R,) is totally ordered, there is at least
one « such that nai > ao. Then that R, is an /~-domain implies that na,
is an f-superunit of R,. Define I' = {a | R, has an f-superunit}. The
above argument shows I' # (. Let I = NI,, o € I'. We show that I = {0}
by showing IN f(R) = {0}. Let 0 < e € INf(R) and b = (ke? —e)*, where
k is a positive integer. For each o € I', e € I implies that e, = 0, so b, = 0.
If bg # 0 for some B ¢ I, then bg = (ke% —eg)t > 0and ke% —eg € f(Rg),
which is totally ordered, implies that ke% —eg > 0. It follows that keg is
an f-superunit of Rg, which contradicts with 8 ¢ I'. Therefore b, = 0 for
all o, and hence b = (ke? — e)™ = 0. Consequently ke? < e for all positive
integer k and e? = 0 since R is Archimedean, so e =0 and I N f(R) = {0}.
Hence I = {0}.

By Lemma 4.10(4), for each o € I', R, contains a unique maximal ¢-
ideal denoted by M, /I, where M, is a maximal ¢-ideal of R. Now R/M,,
is an {-simple /-ring with f-superunits. Suppose that M = NM,,a € T.
We claim that M = {0}. Let 0 < a € M N f(R). Suppose that e,
is an f-superunit of R, for each a € I'. We have neya, < e, for any
positive integer n since neja, € M, and neya,, €, are comparable. Hence
neqa? < ealq, and hence na? < a, for each a € I'. Therefore na? < a
for all positive integer n. Then R is Archimedean implies that a = 0, and
hence M N f(R) = {0}. Thus M = {0} and R is a subdirect product of
R/M,, a€T. 0

The condition that f(R) is dense in Theorem 4.11 cannot be omitted.
For instance, in the polynomial /-ring R = R[z] with the coordinatewise
order, f(R) is not dense and xR is the unique maximal ¢-ideal of R. The
following is a direct consequence of Theorem 4.11.

Corollary 4.4. Let R be an {-reduced Archimedean £-ring such that f(R)
is dense. If R satisfies descending chain condition on (-ideals, then R is
£-isomorphic to a finite direct sum of £-simple £-rings with f-superunits.

Proof. By Theorem 4.11, there are maximal f-ideals M, such that
Na M, = {0}. Since R satisfies descending chain condition on (-ideals, sim-
ilar to Exercise 2.24, there are finitely many maximal ¢-ideals My, -+ , M}
such that My N---N My = {0}. By the same argument used in the proof
of Theorem 2.8, R is {-isomorphic to R/M; @ --- ® R/Mj,. O
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For an f-reduced f-ring, Corollary 4.4 is true without assuming it is
Archimedean, the reader is referred to [Birkhoff and Pierce (1956)] for more
details.

Let R be an f-ring. An f-ideal I of R is called an ¢-annihilator £-ideal
if I =4¢(X) and I =r(Y) for some X,Y C R, where

UX)={reR||r|lz| =0,vz € X},
and
r(Y)={reR|yllr|=0,VyeY}

Lemma 4.11. Suppose that R is an £-ring with (-N(R) = {0}. If R sat-
isfies ascending chain condition on -annihilator £-ideals, then there are a
finite number of £-prime (-ideals with zero intersection.

Proof. We first note that for an f-ideal I, ¢(I) and r(I) are f-ideals,
and since ¢-N(R) = {0}, ¢(I) = r(I) (Exercise 28). We show that each
{-annihilator ¢-ideal contains the product of a finite number of ¢-prime ¢-
ideals. Suppose not, then, by ascending chain condition on ¢-annihilator
{-ideals, there exists a maximal ¢-annihilator ¢-ideal I such that I does not
contain any product of a finite number of ¢-prime ¢-ideals. In particular, I
is not /-prime, and hence there are ¢-ideals J and K such that JK C I with
JZTand KZI. Let A=I+Jand B=1I+ K and let B' = r(¢{(I)A)
and A" = £(B'r(I)). Then A’ and B’ are f-annihilator ¢-ideal (Exercise
29) properly containing I, and hence A’ and B’ contain the product of ¢-
prime (-ideals. Since A'B'r(I) = {0}, A’B’ C (r(I)) = I, so I contains
the product of /-prime f-ideals, which is a contradiction. Then each ¢-
annihilator ¢-ideal contains a product of a finite number of ¢-prime /-ideals.
Since ¢(R) = {0} is an (-annihilator ¢-ideal, there exist ¢-prime ¢-ideals
Py--- P, ={0}. Then PyN---N P, = {0} since ¢-N(R) = {0}. O

Corollary 4.5. Let R be an ¢-unital £-reduced Archimedean ¢-ring such that
f(R) is dense. If R satisfies ascending chain condition on £-annihilator £-
ideals, then R is {-isomorphic to a finite direct sum of £-unital £-simple
£-rings.

Proof. By Theorem 4.11, there are maximal /¢-ideals M, such that
NaM, = {0}. By Lemma 4.11, there are f-prime f{-ideals Pp,---, Py
such that P; --- P, = {0}. Each P; is contained in a maximal ¢-ideal M;,
i=1,---,k Let M be a maximal ¢-ideal of R. Then P; C M for some
j. By Lemma 4.10(2) f(R/FP;) is totally ordered, and hence by Lemma
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4.10(4), R/P; contains a unique maximal (-ideal, so M/P; = M;/P;.
Thus we have M = Mj;, that is, R contains only a finite number of max-

imal f-ideals. Thus there exist maximal f-ideals My, -- , M, such that
Myn---nM, = {0}, so R is ¢-isomorphic to a direct sum of ¢-unital
¢-simple (-rings R/My,--- ,R/M,,. O

Similarly to Corollary 4.4, for an f-ring, Archimedean condition is not
necessary in Corollary 4.5 [Anderson (1962)].

An open question on /-rings with squares positive posted by J. Diem
asks whether or not an /-prime ¢-ring with squares positive is an /-domain.
The question seems simple, however it is still unsolved. In the following
we present some conditions that ensure the assertion true. It is easy to
verify that if R # {0} is an f-ring, then R is an ¢-domain if and only if R
is £-prime and ¢-reduced (Exercise 30).

Theorem 4.12. Suppose that R is an £-prime £-ring with squares positive.

(1) If R is Archimedean, then R is an ¢-domain.

(2) If disjoint elements of R commute, then R is an ¢-domain.

(3) If f(R) # {0}, then R is a domain.

(4) If R contains a nonzero idempotent element that is in the center of R,
then R is an ¢-domain.

Proof. (1) Suppose that x € RT with 22 = 0. By Lemma 3.3, zR = {0},
so z = 0 by Lemma 1.26(2). Therefore R is an ¢-domain.

(2) Suppose that a € RT with a? = 0. We show that for any z € RT,
aza =0, so aRTa = {0}. Then R is {-prime implies that a = 0.

If (az — za)T = 0, then az < za, and hence aza < za? = 0 implies

that aza = 0. If (az — za)~ = 0, then az > za implies that a?z > aza, so
aza = 0. In the following we assume that (az—za)* # 0 and (az—za)~ # 0.
Since (az — za)t A (az — za)™ =0,
(az — za)T(az — za)~ = (az — za)~ (az — za)* < (za)(az) =0,

so (az — za)*(az — za)~ = 0. Thus for any y € RT,
[(az — za) " y(az — za)T]* = 0.

Then R has squares positive and a? = 0 imply that a(az—za) " y(az—za)* =
0. Since R is {-prime and (az — za)™ # 0, a(az — za)~ = 0. We also have
a(az — za)* < a?z = 0. Therefore

aza = —a(az — za) = alaz — za)” — alaz — za)™ = 0.
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Therefore, aza = 0 for any z € RT.

(3) By Lemma 4.10(1), for any 0 < z € f(R), 22 #0. Let 0 < e € f(R)
and z € Rt with 22 = 0. We show that 2 = 0. Suppose that = # 0. We
derive a contradiction. From (e —x)2 > 0, we have ex +ze < e2. Tt follows
that rex < ze? < €2, and hence zex € f(R). Thus zex = 0 by Lemma 4.10
since (zex)? = 0, so (ze)? = 0 and ze € f(R) further imply that ze = 0.
Similarly ex = 0.

For any y,z € R, (eyx)? = (2ze)? = 0 and R has squares positive,
and hence zze?yx = 0. Fix z first, since R is /-prime and z # 0, 2ze? = 0.
Now since z € Rt is arbitrary and o # 0, we must have e = 0, which is a
contradiction. Therefore for any x € RT, 22 = 0 implies = = 0, and hence
R is f-reduced. Thus R is an /-domain.

Take w € R with w? =0 and 0 < e € f(R). Then (e & w)? > 0 implies
that |we + ew| < . By Lemma 4.9,

lwle < (|wle + e|lw]) = |we + ew| < €2,

and hence |wle = |wle A e? = (Jw| A e)e, so (Jw| — |w| A e)e = 0. Tt follows
from that R is an ¢-domain that |w| = |w| Ae < e. Hence w € f(R).
Consequently |w|? = |w?| = 0 since f(R) is an f-ring. Therefore |w| = 0
and w = 0, that is, R is reduced. Finally suppose that a,b € R with ab = 0.
Then a?b? = 0 implies that a®> = 0 or b> = 0, and hence ¢ = 0 or b = 0.
Therefore R is a domain.

(4) Let e = €? # 0 be in the center of R. We first show that Re is an
{-subring of R. Suppose z € Rt and ze = 0. Since zRe = (ze)R = {0}
and R is ¢-prime, x = 0. For a,b € R,

(ae Vv be)e > (ae V be) and [(ae V be)e — (ae V be)le = 0.

By the above argument, (ae V be)e — (ae V be) = 0, and hence ae V be € Re.
Similarly ae A be € Re. Thus Re is an {-ring with squares positive. We
leave it to the reader to check that Re is also an ¢-prime f-ring (Exercise
31). Since e is the identity element in Re, by (3) Re is a domain. Let
r € RT with 22 = 0. Then (xe)? = 0 implies that xe = 0, and hence x = 0
by previous argument. Therefore R is ¢-reduced, so R is an /~-domain. [

The /-ring in Example 1.5 is a commutative ¢-ring with squares positive.
It contains a nonzero idempotent and contains no nonzero f-element.

Consider polynomial p(z) = 2. An f(-ring R with squares positive is

an (-ring that satisfies p(a) > 0 for all « € R. We may just call that R is
an {-ring with polynomial constraint p(z) > 0 or p(x)~ = 0. We may also
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use polynomials with two variables. For instance, an /-ring with squares
positive is an f-ring with the polynomial constraint

f(z,y) = —(zy + yz) + 2° +y* > 0.

That means for any a,b € R, f(a,b) > 0.

£-rings and f-algebras with polynomial constraints were first systemati-
cally studied by S. Steinberg. Because of introductory nature of the book,
we are not going to present general topic on ¢-rings with polynomial con-
straints, and the reader is refereed to [Steinberg (2010)] for more detail.
The interested reader may begin by reading [Steinberg (1983)] first.

In the following, we present a few examples to show some ideas of gener-
alizing results on /-rings with squares positive to /-rings with more general
polynomial constraints.

The key ingredient in the proof of Theorem 4.12(3) is stated in the
following result.

Lemma 4.12. Let R be an {-prime £-ring with f(R) # {0}. If there exists
0 < e € f(R) such that for any a € RT with a®> =0, ae,ea € f(R), then R
s an £-domain.

Proof. We just need to show that R is f-reduced. Suppose that a € RT
with a? = 0. Then (a A ae)? = 0 and a A ae € f(R) imply that a A ae = 0
by Lemma 4.10(1). Since e € f(R), ae Aae = 0, so ae = 0. Similarly
ea = 0. Take x € RT, then (ezxa)? = (ewa)(ewra) = 0, and hence by
previous argument, we have e?za = 0. Therefore e2R*a = {0}. Since R is
¢-prime and e? # 0 by Theorem 4.10(1), we must have a = 0. Hence R is
f-reduced, so R is an /-domain. O

Let’s look at some examples.

Example 4.1.

(1) Let R be an ¢-prime ¢-ring with f(R) # {0}. If R satisfies the polyno-
mial constraint

fla,y) = —(zy +yz) + (@ +y°") >0, n> 1,

then R is an /-domain.

In fact, take 0 < e € f(R), and let a € R* and a® = 0. Then f(a,e) >0
implies that ae + ea < e?". Thus ae,ea € f(R), so R is an f-domain
by Lemma 4.12. There are ¢-rings that satisfy the above polynomial
constraint (Exercise 81).
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(2) Let R be an f-prime f-ring with 0 < e € f(R) in the center of R.
If R satisfies 2" > 0 for some fixed positive integer n, then R is an
f-domain.

Let a € R*, a®? = 0. Since ea = ae, we have

(e —a)* =e*" — (2n)e*" " ta >0,

so (2n)e?"~la < e € f(R). Thus (2n)e?"~ta € f(R), so by Lemma
4.12, R is an {-domain.

(3) Let R be an {-prime (-ring with f(R) # {0}. If R satisfies 23 > 0 or
23 <0, that is, for any a € R, a® > 0 or a® < 0, then R is an ¢-domain.
Take 0 < e € f(R). Let a € RT with a®* = 0. First we claim that
(e —a)® <0 is not possible. If (e — a)® <0, then

(e —a)® =€ —ae* —eae — e*a+aea <0

implies that €3 + aea < ae? + eae + e%a. Since (a A e)? = 0 and
aNe€ f(R),aNe=0 by Lemma 4.10, so

ae’ Ned =0, eae Ne® =0, e2ane® =0,

we must have e3 = 0, which is a contradiction.
Thus we must have (e —a)® > 0. Then

2

(e —a)® =e* —ae® — eae — e*a +aea >0

implies that ae? + eae + e2a < €3 + aea. Similarly
ae? Aed =0, eae A e3 =0, ea A e =0,

so ae? + eae + e?a < €3 + aea implies ae? + eae + e2a < aea. Thus
eaea < aea? = 0 and aeae < a’ea = 0. Hence ae2+eae+e2a < e +aea
implies that ae3,e3a < e*. Therefore e3a and ae® are f-elements, so R
must be an /-domain by Lemma 4.12.

Let R be a unital ¢-ring with squares positive. An important property of
R is that the inverse a~! of a positive invertible element a is also positive
since a=! = a(a™!)2. Thus each positive invertible element of R is a d-
element by Theorem 1.20(2). As a direct consequence of this fact, in a
lattice-ordered division ring R with squares positive, each positive element
is a d-element, that is, R is a d-ring, and hence R is a totally ordered
division ring.

For reader’s convenience, we present a direct proof for the fact that a
lattice-ordered division ring with squares positive must be totally ordered.
Letzr € Randa=a2t+1,b=2"4+1. Sincea™? >0and b~ ! > 0,

0< a_l(a:v+b A aac_b)b_1 <a ltaztob ' Aalaz"bb =T AT = 0,
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so a Y aztbAar~b)b~! =0 and aztb A ax~b=0. It follows that
2te =2tz  Axte” <axTbAax"b= 0,

and hence 272~ = 0. Therefore 27 = 0 or = = 0, that is, R is totally
ordered.

In 1956, G. Birkhoff and R. Pierce proved that an ¢-field with squares
positive must be totally ordered [Birkhoff and Pierce (1956)]. Their elemen-
tary proof didn’t use the commutative condition for multiplication. There-
fore, as pointed out by S. Steinberg in 1970, G. Birkhoff and R. Pierce have
proved that a lattice-ordered division ring with squares positive is totally
ordered [Steinberg (1970)], although they didn’t precisely state the result.
S. Steinberg also generalized this result to ¢-rings satisfying minimal condi-
tion on right (left) ideals as stated in Theorem 4.13. The reader is referred
to [Steinberg (1970)] for more details.

Theorem 4.13. Let R be an £-ring with squares positive and an identity
element. If R has the minimal condition on right ideals, then R is an

f-ring.

As a direct consequence of Theorem 4.13, for an ¢-prime f-ring R with
squares positive and an identity element, if R has the minimal condition
on right ideals, then R is totally ordered since R is a domain by Theorem
4.12.

The following result gives the conditions for ¢-rings with zero ¢-radical
to become an f-ring.

Theorem 4.14. Let R be a nonzero (-ring with (-N(R) = {0}. Then R is
an f-ring if and only if f(R) # {0} and f(R)* = {0}.

Proof. We just need to show if f(R) # {0} and f(R): = {0}, then R
is an f-ring. We first show that R is f-reduced. Suppose that 2 = 0 for
some x € RT. Take 0 < e € f(R). Then (x A e)? = 0 implies z A e = 0 by
Lemma 4.10. Thus z € f(R)*, so z = 0.

Next we claim that R is an almost f-ring. Suppose first that a Ab =0
with b € f(R). Since b is an f-element, ab A b = 0. Thus for any 0 < e €
f(R), (abAe)Ab=0 implies that b(ab A e) = 0, and hence

0 < (abAe)* <ablabAe)=0.

Thus (ab A e)? = 0. It follows from Lemma 4.10 that ab A e = 0, so
ab € f(R)*. Therefore ab = 0.
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Now consider Ay = 0 for some z,y € R. Take 0 < e € f(R). Let
x1 =x—xANeand e; = e—xzAe. Then yA(xAe) = 0 and previous argument
implies that y(x A e) = 0, so ye = ye;. Similarly we have ye(z A e) = 0,
z1e1 = 0 and eyxz; = 0 (Exercise 32). Thus

yer = yexry = yeix; = 0,

and hence (zye)? = 0 implies that zye = 0 since R is f-reduced. It follows
that (zy Ae)? =0, so 2y A e = 0, that is, 2y € f(R)*. Therefore xy = 0
and R is an almost f-ring. By Theorem 1.28, R is an f-ring because of
(-N(R) = {0}. |

For an f-ring R. An element a € R* is called a weak unit if for any
be R, anb= 0= b=0. If anonzero {-ring R with -N(R) = {0} contains

a weak unit which is an f-element, then R is an f-ring by Theorem 4.14.
However, if ¢-N(R) # {0}, this is not true as shown in Exercise 1.47.

Corollary 4.6. Suppose that R is an Archimedean (-ring. If R contains a
weak unit e € f(R) with £(e) = {0} or r(e) = {0}, then R is an f-ring.

Proof. Let z € RT with 22 = 0. Then (z Ae),e € f(R) implies that
(e —n(z Ae))? > 0 for any positive integer n. Since (z Ae)? =0,

n(z Ae)e < (n(x Ae))? +e? = e,

and hence (z A e)e = 0 since R is Archimedean. It follows from ¢(e) = {0}
that x Ae = 0, so x = 0 since e is a weak unit. Therefore R is ¢-reduced
and by Theorem 4.14, R is an f-ring. The proof is similar if 7(e) = {0}. O

We study the relation between weak units and equation ¥z~ = 0 in
{-rings.

Lemma 4.13. Let R be an ¢-ring.

(1) Suppose there exists a weak unit e € f(R) with £(e) = {0} or r(e) =
{0}. Ifa€ R" and (aNe)®> =0, thena <e.

(2) Suppose there exists an element e € f(R) with {(e) = {0} (or r(e) =
{0}), and for any a € RT, (a Ae)? = 0 implies a € f(R). Then for
any x € Ry € f(R), z ANy =0 implies xy = 0 (or yx = 0).

Proof. (1) Since a Ae < aA2e < 2(aAe), we have (a A 2¢)? = 0, and
since a A 2e,e € f(R) that is an f-ring, we have

(an2e)e < (ah2e)?+e? =e
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Thus ((aA2e)Ve—e)e =0. It follows from ¢(e) = {0} that (aA2e)Ve =e,
and hence

((a—e)Ae)vO=0and ((a—e)VO)Ae=0.

Then e is a weak unit implies that (a — e) V 0 = 0. Therefore a < e.

(2) From z Ay =0, we have (z Ae) Ay=0,s0 (xAe)y=ylxzAe)=0
since they both belong to f(R). Let 21 =2 — (z Ae) and e; = e — (x Ae).
Then

r1Neg=0=ex1ANeg =0
= (e1z1 ANe)Aep =0
= (eqz1 Ne)ep =0
= (eyx1 Ae)? =0.

By the assumption, e;zq; € f(R), and hence ejx; Ay = 0 implies that
yerxry = 0 and yex; = 0 (Exercise 33). Consequently xz1ye € f(R) since
(r1ye)? = 0. From that 21 Ae; = 0 and e,y € f(R), we have z1ye Ae; = 0,
so z1yee; = 0 and xye? = 0. Therefore zy = 0 since ¢(e) = {0}. Similarly
it r(e) = {0}, then yz = 0. O

Theorem 4.15. Suppose that R is an {-ring and e > 0 is an f-element with
l(e) = {0} orr(e) = {0}. Then the following statements are equivalent.

(1) For any xz € R, zTex™ = 0.
(2) e is a weak unit.
(3) For anya € RT, if (aAe)?> =0, then a € f(R).

Proof. (1) = (2) Assume that ¢(e) = {0}. Suppose that a A e = 0 for
some @ € R. Let x = a —e. Then 27 = a and 2~ = e. Thus we have
ae? =0, so a = 0 since £(e) = {0}. Therefore e is a weak unit. A similar
argument works for r(e) = {0}.

(2) = (3) By Lemma 4.13(1).

(3) = (1) Suppose z Ay = 0 for some x,y € R and r(e) = {0}. Let
z1 =x—(xAe)and e; =e—(zAe). Then 1 Aey = 0. By Lemma 4.13(2)
erz1 = 0, and hence (z1e1)? = 0 and z1e; € f(R) by the assumption. Since
21 Ay =0, z1e1 Ay = 0 and z1e1y = 0 by Lemma 4.13(2) again. Thus
rey = x1ey = x1e1y = 0. We leave it to the reader to verify that it is also
true when £¢(e) = {0}. O

Corollary 4.7. Let R be an {-ring and 0 < e € f(R) with {(e) = r(e) =
{0}. The following statements are equivalent.
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(1) ztxz~ =0 for all x € R.
(2) e is a weak unit.

(3) For any a € RY, if (aNe)?> =0, then a € f(R).

Proof. (1) = (2) If z Ae =0, then ze = 0 and z = 0 by £(e) = {0}.
Hence e is a weak unit.

(2) = (3) By Theorem 4.15.

(3) = (1) Suppose that x Ay = 0. Then zey = 0 by Theorem 4.15, so
(eyx)? = 0 implies that eyx € f(R) by the assumption. Since f(R) has
squares positive, e?(eyz) < et + (eyz)? = e*, and hence e3yz = e3yr Aet =
e3(yx Ae). Tt follows from r(e) = {0} that yz = yz Ae < e. Similarly
yex = 0 implies that xy < e. Suppose

r1=r—xNe, eg=e—xNe, y1 =y—yNe, ea=e—yANe.
Then z1Ae; = y1Aes = 0. By Lemma 4.13, 17 = ejz1 = y1e2 = ea2y; = 0.
Since (z Ae)y = 0, eyzy = e1z1y = 0 and exy = (z A e)zy < 2%y. From
2y < e and zey = 0, we have 2232 = 0, and hence exy? < 2%y? = 0 and
zy? = 0 by r(e) = 0. Since z A (y A €) = 0 implies that z(y Ae) = 0, we
have

ry1 = xy, TyYes = xy1eo = 0, and zye = zy(y Ae) < zy® = 0.
Hence zye = 0 and 2y = 0 by £(e) = 0. This completes the proof. O

4.4 Quotient rings of lattice-ordered Ore domains

Let R be a lattice-ordered integral domain and @ be its quotient field. It is
still an open question whether or not the lattice order on R can be extended
to . As an example, consider polynomial ¢-ring R[z] with the coordinate-
wise order. We still don’t know if this lattice order can be extended to the
field of rational functions over R. In this section, we provide some condi-
tions to extend lattice orders on R to ), and more generally we work on
lattice-ordered Ore domains.

An arbitrary domain R is called a left (right) Ore domain if for given
nonzero elements z,a € R, Rx N Ra # {0} (zRNaR # {0}). A classical
left (right) quotient ring of a domain R is a ring @ which contains R as a
subring such that every nonzero element of R is invertible in @ and

Q={a'z|z,a€ R,a#0} (Q={za"'|xac R a#0}).

Theorem 4.16. For a domain R, R has a classical left (right) quotient
ring if and only if R is a left (right) Ore domain.
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Proof. “=7 Let x,a € Rand a # 0, x # 0. Then za~! € Q implies that
there exist y,b € R with b # 0 such that b~'y = za~'. Then y # 0. It
follows that bz = ya # 0, that is, Rx N Ra # {0}, so R is a left Ore domain.

“<” Suppose S = {a € R | a # 0} and consider R x S. Define the
relation on the set R x S by

(r,s) ~ (r',s") if syr = so1’, 818 = 898’ for some s1, 82 € S.

We show that ~ is an equivalence relation on R x S. Clearly ~ is reflexive
and symmetric. Suppose (r,s) ~ (r/,s") and (1/,s") ~ (", s"). Then there
exist s1,59,83,54 € S such that s17 = sor’, 515 = 598’ and s3r’ = sur”,
s38' = s458”. Since R is a left Ore domain, there exist 21, 2o € S such that
2182 = 2283, and hence

21817 = 21591 = 29531 = 29547" and 21515 = 21595’ = 22535 = 29545",

and z181 # 0, 2284 # 0. Hence (r,s) ~ (r",s"). Therefore ~ is an equiv-
alence relation on R x S. Let r/s be the equivalence class of (r,s) and
Q={r/s|reR,seS}

Define the addition and multiplication in @ as follows.

r/s+71'/s" = (sir + sor’)/sas’, where s1s = sas’ and s1,89 € S.

(r/s)(r'/s") = (r1r’)/(s18), where s;r =18 and r; € R,s1 € S.

We first notice that the definition of the addition is independent of choice of
s1,82 € S. Suppose we also have t1s = tos’ for some t1,t3 € S. By left Ore
condition and s1s, t15 € S, we have w,w’ € S such that w(s1s) = w'(¢15),
and hence w(sas’) = w'(t2s’). Thus we have ws; = w't; and wsy = w'ty,
so w(s1r + sar’) = w'(t1r + tar’). It follows that

(s17 + 821, 828") ~ (t17 + tor’ tas'),
that is,
(s17 + s21") /828" = (t11 + tor') /tas’.

Similarly the definition of the multiplication is independent of the choice
of r1 € R and sy € S. In fact, if ;7 = u; s’ for some u; € R, t; € S, then,
by left Ore condition, zs; = 2’t; for some z,2’ € S, and hence z'uys’ =
2'tyr = zsyr = zry 8. Tt follows that z'uy = zry and (117”7, 818) ~ (u1r’, t15).
Therefore (r177)/(s18) = (uir’)/(t15).

To see that the addition is well defined, suppose that r/s = a/b and
r'/s" = ¢/d. Then there exist t1,t2, t3,t4 € S such that t;r = toa,t15 = tab,
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and t31’" = ty4c,t38’ = t4d. By left Ore condition, there exist z,z’ € S such
that z(t1s) = 2’(t3s’), and hence zt2b = 2’t4d. Hence we have

r/s+1'/s = (ztir + 2't3r’) )2 t38" = (2tea + 2'tsc) /2 tad = a/b+ c/d.

We leave it to the reader to verify that the multiplication is also well
defined and @ becomes a ring with respect to the operations (Exercise 35).
Clearly 0/s is the zero element in @ for any s € S, and s/s is the identity
element in @ for any s € S. For any 0 # r/s € Q, r # 0, so s/r is the
inverse of r/s, and hence @ is a division ring.

Define ¢ : R — @ for any r € R, p(r) = (sr)/s for any s € S.
Clearly ¢ is a homomorphism between two rings (Exercise 36). Suppose
that ¢(r) = 0/s. Then (sr)/s = 0/s, so r = 0, namely, ¢ is one-to-one.
Hence we may identify R with ¢(R) and consider R as a subring of Q). For
any /s € Q, v/s = (s/ss)(sr/s) = o(s)"Lp(r) = s71r, that is, Q is the
classical left quotient ring of R. ]

Let R be a left Ore domain and an ¢-ring. We say that its classical left
quotient ring @) is an ¢-ring extension of R if () can be made into an /-ring
such that R is an ¢-subring of Q.

Theorem 4.17. Let R be a left Ore domain and an £-ring with f(R) # {0}.
If for each nonzero element a of R, Ra N f(R) # {0}, then its classical
left quotient ring Q@ can be made into an {-ring extension of R, and Q is
certainly a lattice-ordered division ring. Moreover, if R is Archimedean,
then @ is also Archimedean.

Proof. Since R is a domain, f(R) = {a € R | |a| is an f-element} is
totally ordered. We also notice that for any z,y € R, z # 0, there exist
z,w with 0 < w € f(R) such that zz = wy. In fact, by left Ore condition,
there exist 21,22, 2o # 0, such that z;x = 29y. Then 25 # 0 implies that
Rzy N f(R) # {0}, and hence there exists z3 such that z3zo = w > 0 and
w € f(R). Let z = z321. Then we have zz = wy.

Suppose that Q = {a~'b | a,b € R,a # 0} is the classical left quotient
ring of R. For a # 0, Ran f(R) # {0} implies that there exists a; such that
ara =c; >0and ¢; € f(R). Then a~'b can be written as a='b = ¢; *(a1b).
Thus each element g of @ can be expressed as ¢ = ¢~ !b with 0 < ¢ € f(R),
b € R. Then we define ¢ > 0 in Q if b > 0 in R, that is, define the positive
cone of () as follows:

P={qcQ|q=c"'b, where0 <ce f(R),bc R"}.
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We first show that this definition is independent of the representations of
elements in Q. Suppose that ¢ 'b = ¢, by with b€ RT, 0 < ¢,¢; € f(R).
We will derive that b; € RT. By the fact proved in the previous paragraph,
wey = ze for some 0 < w € f(R) and 0 # z € R, and hence wey = |weq| =
|z¢| = |z|c since ¢ is an f-element. Tt follows that wb; = |z|cc; *by = |2|b €
R, so w(by AO) = wb; A0 = 0 since w is an f-element. Thus by A0 = 0,
that is, by > 0 in R.

It is routine to check that P+ P C P, PP C P, and PN —P = {0}.
We leave the verification of these facts as an exercise (Exercise 37). For
re RY, r=c(er) for 0 < c€ f(R), sor € P. Hence R C P. Now let
q=s"1re PNR with 0 < s € f(R). Then r € R", and hence sq € R™T.
Since s is an f-element, we must have ¢ € R*. Therefore R* = PN R.

We show that P is a lattice order on Q. Let ¢ = ¢ 'b € @Q with
0 < c € f(R). We claim that ¢* = ¢~ b+ = ¢71(bV 0) is the least upper
bound of ¢ and 0 in Q). First we show that ¢* is well-defined.

Suppose we also have ¢ = d~'e with 0 < d € f(R) and e € R. Then
we = zd for some 0 < w € f(R) and z # 0, and hence z > 0 since
zd = |zd| = |z|d implies that z = |z|. In @, let 27! = d(wc)™! = 271y
for some 0 < z € f(R) and y € R. Then similarly we have y > 0 in R
since zd = y(wc) and 0 < xd,0 < we are in f(R), and hence 271 > 0 in
Q. Suppose that f = eV 0 in R. We show that f is also the least upper
bound of e and 0 in . Let ¢ € Q with ¢ > e,0. Suppose that ¢ = r~1s
with 0 < r € f(R) and s € RT. We have

s=rqg>re,0 = s>revV0=r(ev0)=rf,

since r € f(R), and hence ¢ = r~1s > f in Q since r—* > 0 in Q. Therefore
f=eVv0in Q. We claim that zf = ze V0 in R. Clearly zf > ze,0. Let
u € R and u > ze,0. We have 2~ 'u > e,0 since 27! > 0in Q, so z~tu > f
since f = eV 0 in Q. It follows that u > zf, and hence zf = ze V 0.
From ¢ = ¢ 1b = d~te, we have ¢ = (wc) "L (wb) = (2d)~*(ze), so wb = ze
implies that w(bV 0) = (wb) V0O = (ze) V0 = z(e vV 0). Hence
bV 0) = (we) Hw(dV0)) = (2d) " (2(e V0)) =d (e V0),

so q* is well defined.

Now let p = g7t € Q, where 0 < g € f(R),t € R, with p > ¢,0 in
Q. Then t € RT, and p — ¢ = g~ 't — ¢~ 'b € P. Thus there exist z € R,

0 < w € f(R) such that zg = we = e, so |z|g = |zg| = we = e since ¢, g,w
are all f-elements. Then e € f(R) and

p—q=g t—clb=et(|2|t —wb) € P
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implies |z|t — wb € RT. Since |z|t > wb and |zt > 0in R, |z|t > wbV 0 =
w(bV 0) = wb' since again w is an f-element of R. Therefore p — ¢* =
g M —c7 T = e (2|t — wbt) € P, that is, p > ¢* in Q. Hence in Q,
q¢* = qV 0, and hence P defines a lattice order on @ and (@, P) becomes
an f(-ring. For an element z € R, x = a~*(ax), where 0 < a € f(R). Then
r* = a l(ar)t = a (azt) = 2. Therefore Q is an f-ring extension of R.

It is clear that if R is Archimedean, then @ is also Archimedean. We
omit the proof and leave the verification to the reader. O

Let B be a unital ring and M be a left B-module. Then g M is said to
be finite-dimensional over B provided M does not contain the direct sum of
an infinite number of nonzero B-submodules of M. Certainly for a vector
space over a division ring, this definition coincides with the usual meaning
of finite-dimensional vector space.

Theorem 4.18. Let R be an (-unital -ring and a domain. If yp)R is
finite-dimensional, then R is a left Ore domain and its classical left quotient
ring can be made into an £-ring extension of R.

Proof. Since )R is finite-dimensional, rR is also finite-dimensional,
that is, R does not contain the direct sum of an infinite number of nonzero
left ideals of R. We show that R is a left Ore domain by verifying RaNRb #
{0} for any a,b € R\ {0}.

Suppose that M is the family of nonzero left ideals I which contains
two nonzero left ideals J and H such that JNH = {0}. We claim that not
every nonzero left ideal belongs to M. Suppose not. R is a direct sum of
two nonzero left ideals Iy, I, then I] € M implies that I is a direct sum of
two nonzero left ideals Iy, I}, so R is a direct sum of Iy, I, I}. Continuing
this process, we get a family of nonzero left ideals {Ij}7° ; such that R is
a direct sum of them, which is a contradiction. Thus there exists at least
a nonzero left ideal J ¢ M. Take 0 # z € J. Then Raz, Rbz are nonzero
left ideals contained in J, and hence Raz N Rbz # {0} since J ¢ M. Hence
there exist ¢,d € R such that caz = dbz # 0, so ca = db # 0. Therefore

Ran Rb # {0}.
Let 0 # a € R. Since Y =, f(R)a’ is not a direct sum over f(R), there
exist positive integers i1, - ,i, and fi,, -, fi, € f(R) such that
0# fia + -+ fi,a’™ € f(R).
Thus Ra N f(R) # {0}. Now Theorem 4.17 applies. O

The following result gives a sufficient condition such that the quotient
field @ of a lattice-ordered integral domain R can be made into an f-ring
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extension of R. For an f-unital lattice-ordered integral domain R, R is
called algebraic over f(R) if for any a € R, there exists a nonzero polynomial
g(x) € f(R)[x] such that g(a) = 0.

Theorem 4.19. Let R be an {-unital lattice-ordered integral domain. If R
is algebraic over f(R), then the quotient field of R can be made into an
{-ring extension of R.

Proof. For 0 # a € R, there exists a nonzero polynomial g(z) € f(R)[z]
such that g(a) = 0. Suppose that g(z) = apz™ + -+ + aqz + o with
a; € f(R). Then g(a) = apa™+- - -+aja+ag = 0. We may assume o # 0.
Then apa™+- - -+a1a = —ap € RaNf(R) implies that RaNf(R) # {0}. By
Theorem 4.17, the quotient field of R can be made into an ¢-ring extension
of R. ]

Lattice-ordered division rings were first constructed around 1989 by
J. Dauns [Dauns (1989)] and R. Redfield [Redfield (1989)] independently.
Theorem 4.17 provides us a method to construct lattice-ordered division
rings. Let’s consider an example. For general construction of Ore domains,
the reader is referred to [Lam (1999)].

Example 4.2. Let F be a totally ordered field, and let ¢ be an order-
preserving injective ring endomorphism of F, that is, o is an injective
endomorphism of F with o(F*) C F*. Certainly o is not the identity
mapping. Let R = F[z; o] be the skew polynomial ring over F in one vari-
able z. The elements of R are left polynomials of the form Y. a;z’, where
a; € F, with the usual addition, and the multiplication defined by
(X ') (3 bja?) = 3 aio’ (bj)a"™.

Then R is a noncommutative domain.

We claim that R is a left Ore domain. We begin by noting that Eu-
clidean Division Algorithm is valid in R for one-sided division, that is, if
f(z),g(z) are left polynomials in R with f(x) # 0, then there are unique
q(z) and r(z) in R such that

g(z) = q(z) f(x) + r(z), with r(z) =0 or degr(z) < degf(x).
The verification of this fact is left as an exercise (Exercise 38). Then any
left ideal of R is a principle left ideal generated by any polynomial in it
with the least degree. Now take f,g € R\ {0}. If Rf N Rg = {0}, we get a
contradiction. Since Rf + Rg is a left ideal, Rf + Rg = Rh for some h € R,
and hence h = tf + sg and g = rh for some r,s,t € R. It follows that
g=rh=rtf+rsg= (rt)f = (1 —rs)g € Rf N Ry,
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sortf = 0. Thus tf = 0 and h = sg € Rg, and hence Rf C Rh C Rg.
Therefore Rf = {0}, which is contradiction. Hence for any f,g € R\ {0},
Rf N Rg # {0}, that is, R is a left Ore domain.

Consider the subring F[z?;0] = {1, a;z* | a; € F} of R. Totally
order F|[z?;0] by saying a left polynomial positive if the coefficient of the
lowest term is positive in F. Then F[z?;0] is a totally ordered domain.
Since each element in R can be uniquely expressed as f + gz, where f and
g € F[2?%; 0], we may order R by f+gx > 0if f > 0and g > 0 in F[2?;0].
Then it is easily checked that R becomes an /(-ring with f(R) = F[z?; 0]
(Exercise 39). Given an element Y a;z’ € R, we denote Y .-, o(a;)z’ by
o3 g a;x?). Let 0 # a € R. We show that RaN F[z?; 0] # {0}. Suppose
a = f+ gz, where f and g € F[z?;0]. If g =0, then a = f € F[z?;0]. If
f =0, then za = z(gx) = 0(g)2? € F[z?;0]. Now suppose that f # 0 and
g # 0. Then o(f) # 0. Since F[z?;0] is also a left Ore domain, there exist
h # 0 and k # 0 in F[2?;0] such that ho(f) = kg. Let b = —k + hx €
F[z;0]. Then

0 # ba
= (=k + ha)(f + gz)
= —kf+ hxf — kgr + hxgx
= (—kf + ha(g)2*) + (ho(f) — kg)z
— (—kf + holg)a®) € Fla?0).

Thus, Ra N f(R) # {0}, for any 0 # a € R, so by Theorem 4.17, the
classical left quotient ring of R can be made into an ¢-ring extension of R.

For the polynomial ¢-ring R = R[z] with the entrywise order, f(R) =
R and R is not algebraic over R, so Theorem 4.19 cannot apply to this
situation. In the following we present some thoughts that may be useful
in further study of this problem. We notice that ¢-ring R = R[z] with the
entrywise order is an Archimedean /-ring in which z is a d-element and
satisfies condition (C) in Theorem 1.15.

Theorem 4.20. The entrywise order on R = R[x] cannot be extended to an
Archimedean lattice order on its quotient field QQ such that x is a d-element
of Q and @Q satisfies condition (C) in Theorem 1.15.

Proof. Suppose that the lattice order on R can be extended to a lattice
order on () that satisfies all three conditions. We derive a contradiction.
We first show that S = {2 | i € Z} is a basis. Since x is a d-element in
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Q, 2! > 0 by Theorem 1.20(2), and hence 7! is also a d-element. It
follows that for any i,j € Z, i < j, 2 A2/ = 2*(1 A277%) = 0. Hence
S is disjoint. Let 0 < a,b < 2’ for some i € Z. By multiplying z—*
to each side, we get 0 < ax~%,bz~" < 1, so az~%,bx~" € f(Q) which is
totally ordered. Therefore ax % bx~" are comparable and hence a,b are
comparable. This proves that x? is a basic element for any i € Z. Now
we show that S+ = {0}. Suppose that 0 < z € S+. Since z € Q, there
exists 0 # w € R such that zjw| > 0. Let |w| = apz™ + -+ a1z +ap € R
with a,, # 0, and z|w| = Bp2™ + -+ + S1x + Bo € R with 3, # 0. Then

a;>0,1=1,---,n,and §; >0, 7 =1,--- ,m. It follows from z € S+
that z Az™% =0 for k = 0,--- ,n, and then that each element in S is
a d-element implies zz¥ A 2™ =0, k = 0,--- ,n. Thus z(apz®) A 2™ = 0

since R is an f-module over R. From Theorem 1.5(7),
0 < zlw| Az™
= [z(anx™) + -+ z(oqnx) + z(apl)] Az
< zlapz™) ANa™ + -+ z(agx) Axz™ 4 z(apl) Az™
=0.

Hence z|w| > Bpa™ and z|w| A ™ = 0 imply that §,,z™ = 0, which is a
contradiction. Therefore S+ = {0}, and hence S is a basis, actually S is a
d-basis defined in chapter 2.

We prove that f(Q) = R. Certainly R C f(Q). Suppose that 0 < ¢q €
f(Q). We show that ¢ € R. Let ¢ = f(x)/g(z) with g(z) # 0. Then
f(z) = qg(x) and | f(x)| = ¢|g(x)]| since ¢ is an f-element. Suppose that

If(2)] = apa® + -+ ogz® ky, > >k >0and o >0,i=1,--- ,n,
and

|g(x)‘:6mwjm+"'+6lleajm>"’>jlzoandﬂi>0ai:17"'am'

If some z*

i is not in the sum for |g(z)|, then x*: A |g(x)| = 0 implies that
z% A qlg(z)] = 0, so ¥ A |f(z)| and 2% = 0, which is a contradiction. On
the other hand, if some 27¢ is not in the sum for | f(x)|, then 27t A|f(x)| = 0
implies that 27t Ag|g(z)| = 0, and hence 27t A qB;x7¢ = 0. Hence qB;x’t = 0,
which is a contradiction. Therefore we have k, = jm, -+, k1 = j1, so

lg(x)| = 5m$k" 4+ 5133’“ and we have

|f(2)] = anz®™ + -+ a13* = qlg(z)| = ¢Bpma™™ + - + ¢Biz™

By Exercise 2.7, we must have o, 2" = ¢B,,2"" and it follows that o, =

qBm, and hence ¢ = (B,, ;) € R. Therefore f(Q) = R.
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Since Q is Archimedean, for 0 < q € (x%)+~ there exists positive integer
n such that 0 < ¢ < nz’, and hence 0 < gz~% < n. It follows that
gz~ € f(Q) =R, so q € Rz'. Hence (z%)*+ = Rz’ for each i € Z.
If Q satisfies condition (C), then Q is a direct sum of (z*)*+ = Ra? by
Theorem 1.17, ¢ € Z. Then
H% = ak1$k1 + Oék2.’17k2 + -+ Oékn.%'k“’, k1 < ko < ... < ky,
SO

L= (1+z)(apa™ +- + ap,2")
k

k kn k141 ntl
= ap, @+ o, o g T g T

Multiplying both sides of the above equation by ==, we get

x_kl = O, + akzxkz_kl + 4+ aknxk"_kl

fap, T+ aga R oy et e R = R2].
Hence —k1 > 0, so k1 < 0. From

1 :aklxkl 4. +aknzkn +Otklllfkl+1 + kn+1

st oy, T
we must have k; = 0. Then the term z*»*! has the exponent k,, +1 > 0,
which is a contradiction. This completes the proof. O

If instead of considering extension of a lattice order, we want to extend
a partial order or a total order from an integral domain to its quotient field,
the situation becomes relatively easy. For a partially ordered ring R with
the positive cone Rt and any ring S containing R, we say that the partial
order on R can be extended to S if S is a partially ordered ring with the
positive cone P such that R = RN P. We may also say that (R, RT) can
be embedded into (S, P) for this situation. It is clear that for any ring S
containing R, S becomes a partially ordered ring with the same positive
cone P = RT, and R™ = RN P, that is, a partial order on a partially
ordered ring R can be extended to any ring containing R. However clearly
this extension is not interesting.

The partial order > of a partially ordered ring R is called division-closed
if ab > 0 and one of a, b > 0, then so is the other, for any a,b € R. Clearly a
total order is division-closed. For a partially ordered ring R with a division
closed partial order, we will just call R as division-closed.

Lemma 4.14. Let R be a partially ordered ring.

(1) Suppose that R is division-closed. If R is unital and RT # {0}, then
identity element 1 > 0 and inverse of each positive invertible element
18 positive.
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(2) If R is a partially ordered division ring with R* # {0}, then R is
division-closed if and only if the inverse of each monzero positive ele-
ment s positive.

(3) If R is a lattice-ordered division ring, then R is division-closed if and
only if R is a totally ordered division ring.

Proof. (1) Take 0 < a € R. Then a = la > 0 and a > 0 implies that
1 > 0. Suppose that 0 < u € R and u is invertible. Then uu=! =1 > 0
and v > 0 implies that ="' > 0.

(2) Suppose that the inverse of each nonzero positive element is positive.
If ab > 0 and a > 0, for a,b € R, then b = a~!(ab) > 0 since a=! > 0.
Similarly, ba > 0 and a > 0 implies that b > 0.

(3) If R is a lattice-ordered division ring and division-closed, then each
u > 0 is a d-element by (2) and Theorem 1.20(2), that is, R is a d-ring.

Then by Theorem 1.28(4), R is totally ordered. O
Let’s look at some examples of partially ordered rings that are division-

closed.

Example 4.3.

(1) (Exercise 1.43) Let R = R x R be the direct sum of two copies of R.
Define the positive cone P = {(a,b) | b > 0} U {(0,0)}. Then R is a
commutative partially ordered ring. If (a,b)(z,y) = (ax,by) > 0 and
(a,b) > 0, then by > 0 and b > 0. Thus y > 0, so (z,y) > 0. Hence R
is division-closed.

(2) Let R = R[] be the polynomial ring over R. For f(z) = apz™ +--- +
a1z + ag € R with leading coefficient a,, # 0 and n > 0. Define the
positive cone

P={f(z) | n=4k,a, >00rn=4k+2,a, <0} U{0}.
Then R is a partially ordered integral domain that is division-closed
(Exercise 79). We note that for a nonzero polynomial f(z), if f(z) has
an even degree, then (f(z))? > 0 and if f(z) has an odd degree, then
(f(@))? < 0.

Let R be a partially ordered integral domain and @ be its quotient field.
Define the subset P of @ as follows. If RT = {0}, P = {0}. If R* # {0},
then

P={qe Q| thereexist a,b € R,a > 0,b > 0 such that ¢ = ab™'}.

Theorem 4.21. Let R be a partially ordered integral domain and Q be its
quotient field, and P be defined as above.
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(1) (Q, P) is a partially ordered field which is division-closed and RT C
RNP.

(2) (R, RT) can be embedded into (Q, P) if and only if (R, RT) is division-
closed.

Proof. (1) It is clear that P+P C P, PP C P, and PN—P = {0}. Thus
(Q, P) is a partially ordered field. For 0 < a € R, then a = a?a~! implies
that a € P. Thus R C RN P. Let p,q € @ with pg > 0 and p > 0. Then
gp =ab~ ! p= albl_1 with a > 0,6 > 0,a; > 0, and b; > 0 in R. Hence
q = (aby)(a1b)~t with ab; > 0 and a1b > 0. Therefore ¢ > 0 in Q and Q is
division-closed.

(2) If RT = {0}, then P = {0} and R* = RNP. Suppose that R # {0}
and R is division-closed. If @ € RN P. Then a = zy~! for some z,y € R
with >0, y > 0, s0 ay =z > 0 and y > 0 implies that ¢ > 0 in R. Thus
Rt = RN P. Conversely suppose that Rt = RN P. If ab> 0 and a > 0
for some a,b € R. Then b € P, and hence b € Rt = RN P. Therefore R is
division-closed. ]

Theorem 4.22. Let R be a division-closed {-ring.

(1) If R is unital, then 1 is a weak unit, and hence R is an almost f-ring.
(2) If R is {-reduced, then R is an {-domain.

Proof. (1) We notice that the identity element 1 must be positive since
R* # {0}. Suppose that a > 0 and 1 A a = 0. Then

(@®>—a+1)(a+1)=d*-a*+a+a®—a+1=a>+1>0,
and a+1 > 0 implies that a® —a+1 > 0. Thus a < a?+1. Since 1 Aa = 0,
a:(a2+1)/\a§a2/\a+1/\a:a2/\a§a2.
So 2a? > a and a(2a —1) > 0. By division-closed property, we have 2a > 1,
which is a contradiction. Therefore for any a € R*, 1Aa = 0 implies a = 0,
that is, 1 is a weak unit, and hence R is an almost f-ring by Corollary 4.7.
(2) Suppose that R is not an ¢-domain. Then there exist @ > 0,0 > 0

such that ab = 0. Hence a(a —b) = a® > 0 and a > 0 implies that a > b, so
ab > b% = 0, which is a contradiction. Thus R is an ¢-domain. O

As a direct consequence of Theorem 4.22, a unital division-closed lattice-
ordered domain must be a totally ordered domain.

Consider complex field C with the positive cone RT = {r e R | r > 0}.
Clearly (C,R™) is a division-closed partially ordered field. We show that
no division-closed partial order on C properly contains RT.
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Lemma 4.15. Suppose (C, P) is a partially ordered ring with the positive
cone P that is division-closed and contains RT. Then P = RT.

Proof. We show that for any 0 # z =z + iy € P, x > 0 in R. In fact,
(C, P) is division-closed implies that =% = (2% + y?)~!(z —iy) € P, and
hence x — iy € P. So 2z € P. If x < 0 in R, then since RT C P, we will
have —2x € P N —P, which is a contradiction. Thus we must have x > 0
in R. Therefore, for each z = x4+ iy € P, x > 0in R, so P C R (Exercise
86). Hence P = R™. O

Now let’s consider extending total orders. Let R be a totally ordered
integral domain and @ be its quotient field. Define the positive cone P as
follows:

a

P={q¢eQla=

It is easy to check that P is a well-defined total order to make @ into a

totally ordered field and R becomes a totally ordered subring of Q. We
leave the verification of these facts as an exercise (Exercise 40).

with a,0 # b € R and ab € R }.

4.5 Matrix £-algebras over totally ordered integral domains

In this section R denotes a totally ordered integral domain, that is, R is
a unital commutative totally ordered domain, and F' denotes the totally
ordered quotient field of R. Then

F:{%|mbeR,b#O}and%ZOifabEOinR.

We establish connection between f-algebras M, (R) over R and the /(-
algebras M, (F) over F so that we are able to generalize results on ma-
trix f-algebras over totally ordered fields to matrix f-algebras over totally
ordered integral domains.

Suppose that M, (R) is an f-algebra and an f-module over R. We first
extend the lattice order on M, (R) to M, (F'). Define

P ={z € M,(F) | ax € M,(R)" for some 0 < o € R},
where M,(R)" = {z € M, (R) | z > 0}.

Theorem 4.23. The P defined above is the positive cone of a lattice order
on M, (F) to make it into an {-algebra over F' such that My(R)t = My (R)N
P.
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Proof. We first notice that the definition of P is actually not depending
on «. Suppose that z € P. For any 0 < 8 € R, if Sz € M,(R), then
Bz € M,(R)*. In fact, suppose that ax € M, (R)" for some 0 < o € R.
Then a(fz) = B(ax) € M,(R)T implies that a(Bx A0) = a(Bz) A0 =0
since M, (R) is an f-module over R. Thus Sz A0 = 0 since R is a domain,
that is, S € M, (R)*.

It is clear that P+ P C P, PP C P, PN —P = {0}, and F*P C P,
so M, (F) becomes a partially ordered algebra over F' with the positive
cone P (Exercise 41). From Theorem 1.18 the partial order is defined by
x <y for any z,y € M, (F) if y —x € P. We show that the partial order
“<” is a lattice order. Given x € M, (F), there exists 0 < k € R such
that kz € M,,(R). Let kx V0 = y in M,(R). We show V0 = k~1y in
M, (F). Since k(k~'y) =y € M,(R)*, (k7Y)y > 0 in M, (F), and since
k(k7ly —z) = y — kx € M,(R)*, k='y > 2 in M,(F). So k™ 'y is an
upper bound for z and 0 in M, (F). Let z € M, (F) and z > x,0. Then
there exist 0 < k1 € R and 0 < ko € R such that ki1z € Mn(R)“‘ and
ko(z —z) € M, (R)*. So

ko(z — x) € Mp(R)"T = kkikao(2 — x) € M, (R)™

= kkg(lﬁz) — k‘lkg(k’l‘) S M»,L(R)Jr

= kko(k12) > k1kz(kz) in M, (R).
Also kka(k12) € M,,(R)™. Hence kko(k12) is an upper bound of ky ko (kx), 0
in M, (R). From kz V0 = y and that M,(R) is an f-module over R, we
have kiko(kx) V O = kikoy. Thus kka(k1z) > kikoy in M, (R), that is,
kika(kz —y) € Mu(R)*. Thus kz —y € P, so z — k~ly € P. Hence
2z > k7 'y in M, (F). Therefore k~'y is the least upper bound of x and 0
in M,,(F), so M, (F) is an ¢-algebra over F'.

For any f,g € M,(R), f > g in M,(R) if and only if f > g in M, (F),
so M,,(R)" = M,(R)N P. O

In the following, the ¢-algebra M,,(F') defined above is called the order
extension of the given f-algebra M, (R). We collect some basic relations

between M, (R) and its order extension M, (F) in the following result and
leave the proof as an exercise to the reader (Exercise 42).

Lemma 4.16. Let M, (R) be an {-algebra and f-module over R, and let
M, (F) be its order extension.

(1) x € M,(R) is basic in My (R) if and only if x is basic in My (F).

(2) A set S C My(R) is disjoint in M,(R) if and only if S is disjoint in
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(3) © € M,(R) is an f-element (d-element) in M, (R) if and only if = is
an f-element (d-element) in M, (F).

We need a well-known result in general ring theory which states that
every automorphism of the matrix algebra over a field is inner. This re-
sult is generally stated as a consequence of Skolem-Noether theorem (see
[Jacobson (1980)]). We present a nice direct proof due to P. Semrl [Semrl
(2005)].

Theorem 4.24. Let K be a field. If ¢ is an automorphism of matriz
algebra M, (K), then there exists an invertible matriz f € M, (K) such
that p(x) = fof~t for every x € M, (K).

Proof. Let K™ denote the n-dimensional column space over K. For any
vector w € K™, w! denotes the transpose of w. Choose and fix u,v € K"
with u # 0,v # 0. Then 0 # wv' € M,,(K), and hence ¢(uv?) # 0 implies
that p(uv')z # 0 for some z € K™. Define f : K" — K" by f(w) =
e(wvt)z, w € K™. Clearly the linearity of f follows from the linearity of ¢.
Hence we may identify f as a matrix in M, (K) with fw = f(w) for any
w € K". For any x € M, (K) and w € K™ we have

(fr)w = f(zw) = p((zw)v')z = p(z(wv"))z = p(x)p(wr)z = (z) fw,

so fx = ¢(z)f. For w € K™, since fu = p(uvt)z # 0 and ¢ is subjective,
there exists y € M,(K) such that w = ¢(y)(fu) = f(yu), that is, f
is surjective. Therefore f is invertible and ¢(z) = fof~! for every x €
M, (K). O

For a square matrix a, deta denotes the determinant of a.

Theorem 4.25. Given an ¢-algebra M, (R) which is an f-module over R,
let M, (F') be its order extension. Then M, (R) is £-isomorphic to the (-
algebra M, (R) with the entrywise order if and only if the following two
conditions are satisfied.

(1) M,(F) is L-isomorphic to the £-algebra M, (F) with the entrywise or-
der,
(2) M, (R) has a basis that spans M,(R) as a module over R.

Proof. “=7" Suppose that ¢ is an f(-isomorphism from the f-algebra
M, (R) with the entrywise order to M, (R). Then clearly S = {p(e;;) | 1 <
i,7 < n} satisfies condition (2). Since S is a disjoint set of basic elements
in M, (R), S is also a disjoint set of basic elements in M, (F) by Lemma
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4.16, so S is also a basis for M, (F'), and hence S is a vector space basis of
the vector space M,,(F') over F. Define the mapping from M, (F) with the
entrywise order to M, (F') by
Z dijeij = Z aijp(eis), ¢ij € F.
1<i,j<n 1<i,j<n
Then it is clear that M, (F) is ¢-isomorphic to M, (F) with the entrywise
order, so (1) is also true.

“<” Suppose that conditions (1) and (2) are true. We show that M, (R)
is ¢-isomorphic to the f-algebra M, (R) with the entrywise order. Recall
that e;;,1 < i,j < n, denote standard matrix units. Since {e;; | 1 <
1,7 < n}is a basis for the ¢-algebra M, (F') with the entrywise order, and a
vector space basis of M,,(F) over F, by (1) and Theorem 4.24 there exists
an invertible matrix h € M, (F) such that {he;;h™' | 1 < 4,5 < n}is a
basis for M,,(F) over F. By (2) M,(R) has a basis S = {b;; | 1 <4,j < n}
and S spans M, (R) over R. Since S is also a disjoint set of basic elements
in M, (F) by Lemma 4.16(2), each element in S is a scalar product of a
positive scalar in F' and an element in {he;;h™' | 1 < 4,5 < n}. Thus
without loss of generality, we may just assume that

bij = tij(heijh_l), where 0 < tij eF, 1<i,j<n.
Thus bijbrs =0 lf] 75 r, and bijbjs = t,‘jtjsti_slbis. Therefore tijtjsti_sl €R,

1<4,7,8 < nsince S spans M, (R) over R (Exercise 43).
We claim that [][ ¢;; is a positive unit of R. Form an n

1<i,j<n

matrix B in the follo;viilg fashion. For each b;;, form a column vector with
n? elements by arranging the second column in b;; under the first column,
the third column under the second column, and so forth. Then use the
resulting column vector to form the ((i — 1)n + j)** column in B. Since
{b;;} spans M,,(R) over R, each e,s (1 < r,s <n)in M,(R) can be written
as a linear combination of the b;; and hence the identity matrix of M, (R)
can be written as a product BC' for some C' € M,2(R). Thus detB € R is
a unit of R. Now since b;; = tijhel-jhfl, we can also create B by applying
a similar process to tijhel-jhfl. For this construction, let h~! = (ri;) and

2 2

X n

1 2 n

define column vectors v;;,v7, ..., vf;, each with n coordinates, by letting
the k" component in vfj be r;; and the other components in vfj be zero.
For each i =1,...,n, let f; be the n X n matrix
T11 Tnl
Ji=ta| : cetin | ;

T1in Tnn
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let A and F be the n? x n? matrices

fi h
A= and F = ;
In h
and let J be the n? x n? matrix
1
tllvll .. tl’ﬂvnl e tnlvT’l . tnnvzl
1
t11v12 . tl’nan e tnlv?Q . tnnv;‘lz
1
tllvln ' tlnvnn e tnlv?’n e tnnv:fn

We leave it to the reader to check that (Exercise 44)

tihvly <o tighvly ot hoy -t bty

tithvly -+ tinhvly <ot holy <ot holy

tllh’U%n cee tlnhv}m e tnlhv?n s tnnhvﬁn
=FJ.

Also a series of elementary row operations converts J to A. Then det(B) =
det(FJ) = det(F)(£det(A)). However, for each 1 < i < n, det(f;) =
ti1 -+ tindet(h™!) and hence det(A4) = (ITi<ij<n ti;)det(h=1)™. So, since
det(F) = det(h)™,

det(B) =det(h)" | [[ ty]det(h "= T[] ti.

1<i,j<n 1<i,j<n
and hence [[,, ;-, tij =7 € R is a positive unit. Then we have
n n n
t;
I watiste™ = ITTLTT
1<i,5,s<n i=1j=1s=1

n

| I tintin  titin tinlni  tinlnn
t’bl o tln o tll e ti’!l

1=

II{ II tw)=2"

i=1 \1<u,v<n

=

Therefore, since each 0 < tijtjs(tis)_l € R and <" is a unit in R, each
tijtjs(tis) ! must be a positive unit in R.
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For simplicity, let tl-jtjs(tis)*l = Vijs, 1 < 4,5, < n. We show that
there exist positive units o;; in R, 1 <4,j < n, such that aijajs(ais)*l =
Vij5. 1o this end, define

ti(=vis),ifi=7=1,...,n

1, ifi=1landj=2,..,n
Qg = . . .
t V1, if2<i<j<n
Ck;iltii’l)iji, if 1 <j<i<n.

It is clear that each «;; defined above is a positive unit in R. All we need
to do is to check that
() aijajsa;sl = v;j5, for1<i,j,s <.
We first note that if j =7 or j = s, then aijajsa;sl = j; = tjj, so (%) is
true. Let’s, for instance, check the case 1 < s <i<j<n.
If s =1, then
Qijagsag,! = vijag s (ag tivis) T
= (tritijti; Vi (tysteits; Vb (Listsity ) ™"
= tijtjsty,
= Vijs-
If s > 2, then
aijagsagt = vy v (ag tivis) !
= (tatigty) ) (trstsgtyy ) g (Estsit ) (Frstait ')
b (tistsity, )"
= tijt st
= Vijs-
The verification of other possible values of 7, j, and s is similar. We omit

the detail and leave them to the reader.
Now define ¢ : M, (R) — M, (R) by

Z Bijbi; — Z Bij(aijeiz), Bij € R.
1<i,j<n 1<i,j<n
Since ¢(b;jbrs) =01if j # r, and
@(bijbjs) = @(vijsbis) = vijs(auseis) = aijagseis = ©(bij)p(bjs),
¢ is an £-isomorphism from M,, (R) to the f-algebra M, (R) with the entry-
wise order. This completes the proof. O
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Here is a brief history on research of matrix ¢-rings. It seems that matrix
ring over totally ordered field with the entrywise order first appeared in
[Birkhoff and Pierce (1956)]. In 1966, E. Weinberg studied M2(Q). He
claimed that he found all the lattice orders of M>(Q) to make it into an
{-ring and only for the entrywise order (up to f-isomorphism), the identity
matrix is positive [Weinberg (1966)]. E. Weinberg conjectured that for
any f-ring M, (Q) (n > 2), if the identity matrix is positive, then it is
¢-isomorphic to the M, (Q) with the entrywise order. This is so-called
Weinberg’s conjecture. In 2000, S. Steinberg found and corrected a mistake
in E. Weinberg’s proof on lattice orders of M(Q) and showed that the
proof is true for 2 x 2 matrix algebra over any totally ordered field. In
2002, Weinberg’s conjecture was solved by P. Wojciechowski and present
author not only for Q but also for any totally ordered subfield of R [Ma,
Wojciechowski (2002)]. Then in 2007, the result was proved to be true for
l-ring M,,(Z), where Z is the totally ordered ring of integers. These results
and their proofs are presented in [Steinberg (2010)]. In 2013, the result was
further proved to be true for any greatest common divisor domain which
is a totally ordered subring of R [Li, Bai and Qiu (2013)]. Using Theorem
4.25, we are able to show that Weinberg’s conjecture is true for certain
totally ordered integral domains.

For some totally ordered integral domains, the condition (1) in Theorem
4.25 implies the condition (2). An integral domain R is called a greatest
common divisor (GCD) domain if for any a,b € R, a and b have a greatest
common divisor, denoted by ged(a,b). We review a few definitions and
properties on GCD domains. An element d in an arbitrary integral domain
is called a greatest common divisor (ged) of two elements a, b if d|a and d|b,
and for all element e if e|a and e|b, then e|d. A GCD domain is an integral
domain in which any two elements have at least one gcd. We note that if
a =0b =0, then 0 is the gcd. Also two elements a and b may have more than
one gcd. In fact, if d is a ged of a,b, then for any unit u, du is also a ged
of a,b, and if d,d’ both are ged of a, b, then there exists a unit v such that
d = d'v. We use ged(a,b) to denote any greatest common divisor of a and
b. The following result collects some basic properties of GCD domains that
will be used later. The verification of them is left to the reader (Exercise
45).

Lemma 4.17. Let R be a GCD domain and a,b,c € R.

(1) ged(ab,ac) = a(ged(d,c)).
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(2) If ged(a,b) = d, then ged(%,%) =1.
(3) If ged(a,b) =1, ged(a,c) = 1, then ged(a,be) = 1.

(4) If albe and gcd(a,b) =1, then alc.

Theorem 4.26. Let R be an (-simple totally ordered greatest common divi-
sor domain. Suppose that M, (R) is an (-algebra and an f-module over R.
If its order extension M, (F) is £-isomorphic to M, (F) with the entrywise
order, then My, (R) is £-isomorphic to the £-algebra M, (R) over R with the
entrywise order.

Proof. As in the proof of Theorem 4.25, since M,,(F') is ¢-isomorphic to
the f-algebra M, (F) with the entrywise order, there exists an invertible
matrix h € M, (F) such that 7' = {he;;h~' | 1 < i,j < n} is a basis for
M,,(F) and also a vector space basis of M, (F) over F. By the definition
of the order on its order extension M, (F'), there exist 0 < «;; € R such
that b;; = a;j(hei;h™') € M,(R)". Then the set {b;; | 1 <i,j <n}isa
maximal disjoint set of basic elements in M, (R).

We show that M, (R) is Archimedean over R. Suppose that x,y €
M, (R)", and az < yforalla € RT. We claim that z = 0. Take 0 < TeFr.
We may assume that a,b € R*. The /-ideal generated by b is equal to R,
and hence a < ab for some 0 < a € R. Thus 32 < ax < y, so for
any 0 < f € F, fa < y. Tt follows from Theorem 1.31 that M, (F) is
Archimedean over F' since it is well known in general ring theory that
M, (F) is simple, and hence & = 0. Therefore M,,(R) is Archimedean over
R, then by Theorem 1.17 we have the direct sum

M,(R)= Y b~
1<i,j<n

Since R is a greatest common divisor domain, we may assume that
0 < B;; € R is the greatest common divisor of the entries in each matrix
bij- Let Qi = %”blja 1 S ’L,] S n. We show each bf;l = Raij, 1 S Z,] S n.
Clearly Ra;; C bf-jl-. On the other hand, we know that {a;; | 1 <4,j < n}
is a basis in M, (F') that also spans M, (F) as a vector space over F' since
M, (F) is an n?-dimensional over F' and the disjoint set {a;; | 1 <1i,j < n}
is linearly independent over F' by Theorem 1.13. Let 0 # z € bf-jJ-. Then
in M, (F), © = gija;; for some 0 # ¢;; € F. Since z and a;; are both in
M, (R), and the greatest common divisor of the entries in matrix a;; is a
unit in R, we must have ¢;; € R, so bf-jJ- = Ra;; for each ¢, = 1,...,n.
Then Mn(R) =2, <; j<n Raij, so {ai; | 1 <i,j <n}is a basis for M, (R)
that spans M, (R) as a module over R.
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Therefore, condition (2) in Theorem 4.25 is satisfied, and hence M, (R)
is ¢-isomorphic to the f-algebra M, (R) with the entrywise order. O

Corollary 4.8. Let R be a totally ordered GCD domain that is a subring
of R. If M,,(R) is an £-algebra over R such that identity matriz is positive,
then M, (R) is {-isomorphic to the (-algebra M, (R) with the entrywise
order.

Proof. Let F' C R be the totally ordered quotient field of R and M, (F')
be the order extension of M, (R). Then the identity matrix is also positive
in M, (F), so M,(F) is £-isomorphic to the ¢-algebra over F with the en-
trywise order [Ma, Wojciechowski (2002)]. By Theorem 4.26, we just need
to show that R is f-simple and M, (R) is an f-module over R. Since R is
Archimedean, R is ¢-simple. For any 0 < a € R, if z Ay = 0 for some
x,y € My (R), then az Ay < na Ay for some positive integer n implies that
ax Ay = 0. Thus M,(R) is an f-module over R. O

An integral domain is called a local domain if it contains a unique max-
imal ideal. For examples of local domains, we refer the reader to [Lam
(2001)]. We show that the result in Corollary 4.8 is true for matrix ¢-
algebras over local domains. First we review a few definitions and results
from general ring theory whose proofs are omitted.

Let R be a unital ring and M be a left R-module. A subset X of
M is called linearly independent provided that for any distinct elements
r1,- - ,xn € X and rq,--- , 1, € R,

M1+ +rp2, =0 = r=0,71=1,--- ,n.

A nonempty subset X of left R-module M is called a module basis of M
over R if X is linearly independent and each element in M is a linear
combination of elements in X, that is, for any a € M, a = sjuj + - - - + spuy,
where u; € M and s; € R. A left R-module M is called a free R-module if
it contains a nonempty module basis. Generally two module bases of a free
R-module may have different cardinality. However if R is commutative,
then any two module bases of a free R-module have the same cardinality
[Hungerford (1974)]. In this case the cardinal number of any module basis
of a free R-module is called the rank or dimension.

An R-module P over a unital ring is called projective if it is a direct
summand of a free R-module, that is, there is a free R-module F' and an
R-module M such that FF = P®M. For a unital ring R, each free R-module
over R is projective, however a projective R-module may not be a free R-
module [Hungerford (1974)]. I. Kaplansky proved that a projective module
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over a unital local ring R (even R is not commutative) is free [Kaplansky
(1958)].

Theorem 4.27. Let R be an (-simple totally ordered local domain. Suppose
that M, (R) is an £-algebra and an f-module over R. If its order extension
M, (F) is £-isomorphic to M, (F) with the entrywise order, then M, (R) is
L-isomorphic to the £-algebra M, (R) over R with the entrywise order.

Proof. Similar to the proof of Theorem 4.26, we have the direct sum
Mn(R)= Y bt
1<i,j<n

where {b;; | 1 < ¢,j < n} is a basis of M,(R). Since M,(R) is a free
R-module, each R-module biljl is projective, so that R is local implies
that each biLjL is a free R-module. Since M, (R) has rank n? over R, each
of its n? summands must have rank 1, and hence each bﬁjL = Rs;j for
some 0 < s;; € M,(R). Hence {s;; | 1 < i,j < n} is a basis which
spans M,,(R) as an R-module. Therefore condition (2) in Theorem 4.25 is
satisfied, and hence M, (R) is ¢-isomorphic to the ¢-algebra M, (R) over R
with the entrywise order. |

The proof of the following result is similar to that of Corollary 4.9, and
hence is omitted.

Corollary 4.9. Let R be a totally ordered local domain that is a subring of
R. If M,(R) is an {-algebra over R such that identity matriz is positive,
then M, (R) is {-isomorphic to the (-algebra M, (R) with the entrywise
order.

For the remainder of this section, we determine lattice orders on M3(R)
to make it into an f-algebra over R, where R is a GCD domain. We first
consider lattice orders on Ms(F'), where F is a totally ordered field, by
using the idea of invariant cones. We need some preparations on invariant
cones first.

Let F? = F & F be the 2-dimensional vector space over F. Each vector
in F? is written as a column vector. A cone in F? is the positive cone of a
partially ordered vector space F2 over F. Let P be the positive cone of an
(-algebra My (F) over F. A cone O in F? is said to be a P-invariant cone if
for every f € P, fO C O, where fO = {fv | v € O}. If O # {0}, then O is
called a nontrivial P-invariant cone. As an example, for the coordinatewise
order on F2, the cone F* + F1 is My (F*)-invariant, where Mo (F*) is the
positive cone of the entrywise order on My (F).
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For a subset K of F2, define
CODGF(K) = {Z ;U5 | o; € F+,1},‘ S K},
where the sum is certainly a finite sum. It is easily verified that coner (K) is
closed under the addition of F? and positive scalar multiplication (Exercise
46). If a cone O = coner(K) for some finite subset K of F? and K is
a minimal finite set generating the cone, then vectors in K are called the
edges of O. That K is a minimal set generating the cone means that any
proper subset of K cannot generate the cone.

Theorem 4.28. Let F' be a totally ordered field and Mo (F') be an £-algebra
over F' with the positive cone P. Then My(F) is £-isomorphic to an (-
algebra My (F) with the positive cone Py C Ma(F™T).

Proof. Since My(F) is Archimedean and finite-dimensional over F,
My(F) is a direct sum of totally ordered subspaces over F' by Corollary
1.3. M3(F) must be a direct sum of four totally ordered subspaces, that
is, Mo(F) =T, @ To ® T5 & Ty, where each T; is a totally ordered subspace
over F', so each T; is 1-dimensional over F. We may assume that T; = F'f;
for some 0 < f; € T;. Then Ti+ =F*f;,i=1,2,3,4. We omit the proof of
this fact and refer the reader to [Steinberg (2010)].
We divide the proof of Theorem 4.28 into several lemmas.

Lemma 4.18. There is a nontrivial P-invariant cone in F2.

Proof. Let M = {N C F? | N is a null space of some nonzero f € P}.
Take N € M with largest dimension and v ¢ N. Define
O ={gu| g€ P and gN =0}.

Then O # {0} since fu # 0, O+0 C O and FTO C O. Ifv € ON—0, then
v = fu = —gu for some f,g € P and fN = gN = {0}. Thus (f +g)u=0
and (f+g)N = {0} implies that f+g = 0, and hence f = g = 0. Therefore
v=0and ON—0 = {0}. Hence O is a cone of F? and it is clear that O is
a P-invariant cone. ]

Lemma 4.19. Each nontrivial P-invariant cone of F? contains two lin-
early independent vectors over F'.

Proof. Let O be a P-invariant cone of F2. Consider the subspace M
spanned by O. Then fM C M for each f € P. Then since each matrix
in Ms(F) is a difference of two matrices in P, gM C M for each matrix
g € My(F). Hence M = F? (Exercise 47), so O contains two linearly
independent vectors since O spans M. O
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Lemma 4.20. Suppose that O = conep(K) is a cone with a minimal finite
set K, that is, for any proper subset Ky of K, O # conep(Ky). If 0 < w
< k for somew € F?, k € K, then w = ak for some a € F+.

Proof. Suppose that K = {k,k1,--- ,k,}. Then w € O implies that
w = ak + arky + - + ank, and k —w € O implies that k — w = Bk +
Biki + -+ + Bk, with a, 8, a;,8; € F', so

k= (Ol+,6)]€+ (011 +51)k1 + 4 (an+ﬁn)kn

Since K is minimal, « + 5 =1 and a; + 8; = 0,4 = 1,--- ,n, and hence
a;=p;=0,i=1,--- ,n. Hence w = ak with 0 < a € F. (]

Lemma 4.21. Let O be a nontrivial P-invariant cone. For any 0 # v € O,
Pv C O is a nontrivial P-invariant cone. Moreover Pv = conep({k1, k2})
is a lattice order of F?, where ki, ks are disjoint basic elements.

Proof. Since Pv C O, PunN—Pv C ON—0 = {0}, and hence Pv is a
P-invariant cone of F2. Since

My(F)=Ffi®Ffo®Ff3®Ff4,

Pv = FT(f1v) + FY(fou) + F* (fsv) + F(fv).

Let k; = fiv, i = 1,---,4. Then each k; € Pv and Pv = conep(K)
with K = {ki, ko, ks, ka}. Certainly some k; may be zero. Since Pv is a
nontrivial P-invariant cone, Pv contains two linearly independent vectors
by Lemma 4.19, so among nonzero vectors in K, there are at least two
of them that are linearly independent since if any two different nonzero
vectors in K are linearly dependent, then it is not possible for Pv to contain
two linearly independent vectors. We may assume k; and ko are linearly
independent over F. Suppose that ki, ks € K’ C K and K’ is minimal with
the property that Pv = conep(K'). We claim that K’ = {kq, k2}.
Suppose that, for instance, k3 # 0 and k3 € K’. Since ki, ko, k3 are
linearly dependent, k3 = 1k + y2k2 for some 1,72 € F. We claim that
~v1 = 0 or 75 = 0. The key to show this is using Lemma 4.20. Suppose that
v1 > 0 and 5 > 0. By Lemma 4.20, y1k1 = a1ks and ks = agks for
some a,as € FT since y1k; < k3 and Yoko < k3, which is a contradiction.
Certainly 71,2 cannot be both negative. Suppose that v; > 0 and ~; < 0.
Then ks + (—72)ka = v1k1, and similarly since k; is an edge of Pv, k3 =
B1(v1k1) and —vy2ks = Ba(v1k1), which is a contradiction again. Similarly
v1 < 0 and v > 0 are not possible. Thus we must have v; = 0 or v, = 0,
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and hence ks = 72ks or k3 = ~y1k1, which contradicts with the minilarity of
K'. Therefore K’ = {ky,ko} and Pv = conep({k1,ka}).

Now we show that Puv is actually a lattice order in F2. To this end,
we show that for any o, 3 € F, ak; + Bks > 0 if and only if o, 8 € F™.
Certainly if o, 3 € FT, then ak; + Bks > 0. Conversely suppose that
aky + Bk > 0. Then clearly «, 8 cannot be both less than zero. Assume
that @ > 0 and 5 < 0. Then we have ak; > —fky > 0 and by Lemma 4.20,
—Pky = yak; for some 0 < v € F, which contradicts with the fact that
k1, ko are linearly independent over F. Similarly that « < 0 and 5 > 0 is
impossible. Therefore we must have «, 3 € F'™. Therefore Pv is a lattice
order and F? is a vector lattice over F with the positive cone Pu. O

We are ready to complete the proof of Theorem 4.28. Let O be a
nontrivial P-invariant cone and 0 # v € O. Then Pv = coner({k1, k2})
by Lemma 4.21. Define matrix h = (k1, k) € M2(F). h is invertible since
k1, ko are linearly independent, and hence h defines the inner isomorphism
x — h~txh from My(F) to My(F). Let P, = h='Ph and O; = h~=(Pv).
Then P; is a lattice order on My(F') and O; is a Pj-invariant cone. Since
Pv=Ftk + Ftky,

O1=h YPv)=h Y F ki + FTky) = h 'h(FT)? = (F')?,

and hence for any f € Py, fO; C O; implies that P, C My(F*). This
completes the proof of Theorem 4.28. O

The above nice idea of using P-invariant cones to connect f-algebras
M, (F') with vector lattices F was due to P. Wojciechowski when we spent
some pleasant time working on Weinberg’s conjecture around year 2000. It
provides us a useful method in studying ¢-rings. We are going to use this
method again next section.

In the following we give a more concrete description of lattice orders
on Ms(F) to make it into an f-algebra over F. By Theorem 4.28, an
l-algebra Ms(F) is {-isomorphic to the f¢-algebra with the positive cone
that is contained in My(F'T). Thus we just need to consider Ma(F) with
the positive cone P C My(F*). Working on P C My (F*) will simplify
calculation, for instance, if 0 # f € P is nilpotent, since each entry of f is
in F*, then either f = aes or f = bes; for some 0 < a,0 < b€ F.

As we mentioned before, Ms(F') is a direct sum of four totally ordered
subspaces over F', and hence

My(F)=Ffi+ Ffs+ Ffs+ Ffa,
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with the positive cone
P=Ftfi+F o+ Ftfs+ Ffy,

where f; € Ma(F1),i=1,2,3,4.
Since f1, fa, f3, f4 are linearly independent, they contain at most two
nilpotent elements. We consider the number of nilpotent elements among

J1, fos f3, fa

(I) There are two nilpotents in { f1, f2, f3, f4}. In this case (My(F'), P)
is ¢-isomorphic to the f-algebra My (F') with the entrywise order.

Suppose fi = aejs and fo = beo; with 0 < a,b € F. Multiplying f1, f2
by %,% respectively, we may assume that f; = ejs and fo = ez;. Then
fifo = e11 and fof1 = e are both in P, so we may assume that e;; = cf3
and egy = dfy for some 0 < ¢,0 < d € F. Thus we may replace fs, f4 by
€11, €22. Therefore P = F+611 + F+€12 + F+621 + F+622 = MQ(F+)

(IT) There is one nilpotent element in {f1, f2, f3, f4}. We may assume
that fi = e12. Suppose that

- as bsy _ as bs _ ay by
f2 = (Cz d2>7 fa= (CS ds)’ Ja= <C4 d4)'

Since f1, f2, f3, f4 are linearly independent, one of cg, c3, ¢4 is not zero. We
may assume that co > 0. Then

. co do _(0Oaq
f1f2<0 0), f2f1<0(:2>’

imply that one of f3, f4 has zero second row and one of f3, f4 has zero first
column. Since co > 0, we may assume that

la 0b
W= (20, 5= (°1).

Then 1 =—(a+0b)f1 + f3+ f4 with a+b > 0.

By Cayley-Hamilton equation or a direct calculation, for any f €
Msy(F), f? = (trf)f — (detf)1, where 1 is the identity matrix and trf
is the trace of f. Thus

f3 = (trf2) f2 — (det f2)1
= (trf2) fo — (detfo)(—(a + 0) f1 + f5s + fa).

Then f2 > 0 implies that (detf2)(a+b) > 0 and —(detfy) > 0, so detfo = 0,
and hence f3 = (trfy)fo. Since fi is the only nilpotent element, trfy # 0,
so we may assume that fo is idempotent by changing fs to (trf2)~!fo. That
is, we may assume that as + dy = 1.



166 Algebraic Structure of Lattice-Ordered Rings

Since

(fo+ f3)* = (tx(fa + f3))(f2 + f3) — det(f2 + f3)1

(tr
(tr(f2 + f3))(fa + f3) — det(fa + f3)(—(a +b) f1 + f5 + fa)
0,

v

we have det(fz + f3) = 0. Thus

(f2+ f3)* = (tr(fo + f3))(fo + f3) = 2(f2 + f3),
and hence fofs + fafo = fo+ f3 from f2 = f, and f2 = f3. Since

hh—(

Ao a2a

> = fo+afi + Bfa,

Co C2Q

with o, 8 € FT (Exercise 87), we must have af; + 8f4 = 0. Therefore

fafs = f2, f3fe = f3. Similarly fifo = fo and fafs = f4 (Exercise 88).
Since tr(fi1 + f2) = 1 and det(f; + fo) = —co, by Cayley-Hamilton
equation

(it f)?=Ff+fr—ca(a+b)fi+cofs+eafs
= fifo+ fofi+ fo

and hence 1 = co(a + b) and f1fo + fofi = cofs + cafs (Exercies 89).
Multiplying the equation from the left by fs, we get fofi = cofs, and it
follows that f1fo = cafs.

By changing f1 to (a + b)f1, we have 1 = —f; + fo + f3 and following
multiplication table for {f1, f2, f3, f4},

| fi f2 fs fi
il 0 f3 0 fi
folfa fo fo Ja
fs | fs f3 N
fa| 0O fo 0 fi
andP:F+f1—|—F+f2—|—F+f3—|—F+f4.
(IIT) M5 (F) is £-reduced.
Take a,b € F with a > b > 0 and define the following matrices.

la 00 10 00
n=(00) 2= (,11) = (o0) 1= (1)

Then
b a a b

_a—bf1+a—bf2+a—bf3_a—b

1=

Ja
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and we have the following multiplication table.

| A f2 f3 f1
bil bil —a ' fs3 I3 S
fa | —a'Bfs f2 f2 Ja
I3 1 I3 f3 -7 tafy
fa fa f2 —Btafs fa

where o = —b/(a—b) and B = a/(a+b). Then P = F* fi+ F* fo+ FT f3+
F*fy. We omit the proof of this case and refer the reader to [Steinberg
(2010)].

We notice that the identity matrix with respect to the lattice orders in
(IT) and (III) is not positive. The lattice orders in (II) and (IIT) could be
obtained by using the method in Theorem 1.19(2) from the entrywise order
My (FT). In fact, using the following matrices

11 11
f_(10)7g_<ab>7a>b>oa

the lattice order in (IT) is ¢-isomorphic to fMs(F*) and the lattice order
in (III) is f-isomorphic to gMs(F™). For instance, for the positive cone
[M(F7T), the following matrices are disjoint and a vector space basis over

F.
01 10 10 01
= (00) 2= (1) = (an) o= (1)

The multiplication table of {h1, ha, hs, hs} is exactly the same as the table
in (II), and hence the lattice order in (II) is (-isomorphic to fM(FT). We
leave the verification of these facts as an exercise (Exercise 48).

Now for an /-simple totally ordered greatest common divisor domain R,
suppose that My(R) is an f-algebra and an f-module over R. We describe
lattice orders on My (R) using the results on its order extension Ms(F). By
Theorem 4.23, the lattice order on M3(R) is extended to a lattice order on
My (F), where F is the totally ordered quotient field of R. By the above
results, the lattice order on Ms(F) is f-isomorphic to uMz(F ) for some
invertible matrix u € My(F*). Similar to the proof of Theorem 4.26,

MQ(R) = Z Raij,
1<4,j<2
where a;; = qij(hueijh’l) are disjoint with 0 < ¢;; € F and h € My(F™)
invertible. Let u = (u;;). A direct calculation shows that for 1 <4,j < 2,

-1
Ai5Qrs = UjrQijQdrsQ;s Ais,
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and hence each ujrqijqrsqfsl € R. By a calculation similar to that in
Theorem 4.25, we have (II;<; j<2¢i;)(detu)? is a unit in R (Exercise 49).

We know that positive cone uMs(FT) has three nonisomorphic cases
and if u is identity matrix, then it is the entrywise order and by Corollary
4.8, My(R) is ¢-siomorphic to My (R) with the entrywise order. We consider
below the other two cases.

In the second case (II), u = <1 (1)

unit in R, and since a2, = qi1a11, a3y = 12012, and a3; = ga1a21, we have
q11,q12, 21 € R. Suppose that

>. Since detu = —1, (Il1<; j<2¢;5) is a

1= k11011 + k12a12 + kara21 + kagass,
for some ki1, k12, ko1, koo € R, where 1 is the identity matrix. Then
1 = kuqui(uen) + kiaqia(uerz) + kaigar (uear) + kaogoo(uess).

However we know that 1 = —uess + ueis 4+ uesr, and hence ki12¢q12 = 1 and
ko121 = 1. Hence ¢q2, 21 are unit in R. Then since q11¢12¢g21922 € R is a
unit, g11g22 € R is a unit. Define

—1 —1 —1
€11 = @11, Ci2 = (i3 G12, C21 = oy G21, C22 = (q11G22) " G22.

Since d12,421,411G22 are pOSitiVQ unit in R, {611, C12,C21, 622} is also a basis
that spans My(R) as an R-module. It is straightforward to verify the
following multiplication table (Exercise 50).

‘ ‘11 C12 €21 C22

C11 | 91111 q11€12  Ci1 Ci2
C12 C11 C12 0 0
C21 | q11€C21  {G11C22 C21  C22
C22 Ca1 C22 0 0

Define

(a1l +

From detw = —1, w is invertible in Ms(R), and hence wMy(R") is the
positive cone of a lattice order on M3(R) by Theorem 1.19(2). Define

hi1 = weir, hig = weia, hoy = weai, hay = wegs.

The multiplication table for {hiy, hia, ha1, hao} is exactly the same as the
table for {c11, ¢12, 21, ca2}. Therefore the f-algebra My(R) is ¢-isomorphic
to the f-algebra My(R) with the positive cone wMy(R™).
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In the third case (IIT), u = <i 2) with a,b € F and a > b > 0. Since

2 2 2 2
aj; = q11a11, Gip = Gq12G12, Q31 = 21021, Gy = Dg22a22,
q11, 912,21, bga2 € R. Similar to case (II), for some kq1, k12, ko1, koo € R

1 = kuqui(uerr) + kiz2qiz(ueiz) + k21gz1(uear) + kaagaz(ueas)

= ﬁ p(uew) + ﬁ(ueu) + i 7 (uea) — = i 5 (uezz),
and hence
- b = kunq1, — = kiaqi2, 2 = k21q21, ——— = k22@22.
a—>b a—>b a—>b a—b
So if we set m = —, then m € R*, and m — 1 = ﬁeRﬂ

ki2aqia = ka1ga1 = m and kaobgos = k11g11 =1 —m.

We know that ¢11¢12¢21a22(a — b)? is a unit in R, and it follows that

911(GQ12)(121(bQQ2) = m(m - 1)Q11Q12Q21a22(a - b)z-
Then ged(m,m — 1) = 1 implies that (ag12)ga1 = mr and g11(bga2) = (m —
1)s, where r, s € R' are unit, and hence g11q22 = q12¢g21v and v = rlse
R*t is a unit. Define di1 = a11,di2 = a12,da1 = ag1, and day = v Lags.
Then {di1,d12,dz21,d22} is a disjoint set that spans Ms(R) and has the

following multiplication table.

| du di2 da1 daa
di1 | quudin qudiz go1d11 qo1d12
diz | aqizdii  aqiadiz v H(bga2)din v (bgaz)dis
do1 | quida1r  quidae go1da1 go1d22

doa | aqiadar  aqiadzs v (bgaz)dar v 1(bgaz)dao

Define the matrix

q11 q21 +
= € Ms(R™).
Y <G(J12 vl(b(J22)> 2(R7)

Since
dety = v_1Q11(bq22) — go1(agi2) = v_l(m —Ds—mr=-—-r

is a unit in R, y is invertible in M>(R) and yMs(R) defines the positive cone
of a lattice ordered on My(R) by Theorem 1.19(2). Let m;; = ye;j, 1 <
1,7 < 2. It is easily verified that m;; and d;; have the same multiplication
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table, so the f-algebra Ms(R) is ¢-isomorphic to Mz (R) with the positive
cone yMy(RT).

Therefore we have described all the lattice orders on M3(R). An inter-
esting fact is that for a totally ordered subfield F' of R, any ¢-algebra M, (F')
is f-isomorphic to an f-algebra M, (F) with the positive cone fM,(F7),
where f € M,,(F*) is an invertible matrix. The reader is referred to [Stein-
berg (2010)] for more details. However it is still an open question if this
fact is true for matrix f-algebras over non-Archimedean totally ordered
fields and totally ordered Archimedean GCD (UFD, PID) domains.

4.6 d-elements that are not positive

When we define d-elements in chapter 1, we assume that they are positive.
In this section we consider d-elements that are not positive. Those elements
arise when considering unital /-rings in which 1 # 0.

Let R be a unital ¢-ring. An element a € R is called an f-element
(d-element) if for any =,y € R,

zrAy=0=axANy=zaANy=0 (ax Aay =xzaAya=0).

We may call f-element and d-element defined in chapter 1 as positive f-
element and d-element. Define

f(R)={a € R|aisan f-element of R},
and
d(R)={a € R | ais a d-element of R}.

So f(R)* = f(R)N R and d(R) = d(R) N R*. Clearly 1 € f(R) C d(R).
It is also clear that f(R) is closed under the addition and multiplication
of R and d(R) is closed under the multiplication. If a is a d-element of R,
then aRT C Rt and Rta C RT™. For a unital ¢-ring, if 1 > 0, then any
d-element e is positive since e A0 = e(1 A0) = e0 = 0. Thus a unital ¢-
ring has a d-element that is not positive if and only if 1 ¥ 0. The following
example shows that there are unital ¢-rings with 1 # 0 that contain positive
f-element.

Example 4.4. Consider R = M5(Q) and matrix
100

f=1010| € M3(Q").
011
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By Theorem 1.19, P = fM3(Q™") is the positive cone of a lattice order on
M5(Q) to make it into an ¢-ring. Since

1 00
f7h=10 10| &M(Q"),
0-11

identity matrix 1 is not positive with respect to P. Now e;; = fe;; € P
and it is straightforward to check that e;; is an f-element with respect to
P (Exercise 51).

The {-ring in Example 4.4 is not ¢-reduced. For an ¢-reduced unital
{-ring, the situation is different.

Theorem 4.29. Let R be a unital (-ring

(1) If R is l-reduced and 1 is not positive, then each nonzero d-element is
not positive.

(2) Let u € R be an invertible element. Then u is a d-element if and only
ifuR* CRY, R*w C RT, and v 'Rt C Rt,Rtu"! C R™.

(3) Let u be an invertible d-element. If a € R is a basic element, then au
and ua are both basic elements.

Proof. (1) We first assume that R is an ¢-domain. Suppose that a > 0 is
a d-element of R. Then a(17) = (—a) V0 = 0 implies that 1~ =0,s0 1 > 0,
which is a contradiction. Then R has no nonzero positive d-element. Now
suppose that R is f-reduced. By Theorem 1.30 R is a subdirect product of
(-domains, that is, there are ¢-ideals Ij, such that NI = {0} and each R/I}
is an f-domain. Let a be a d-element of R and Z = 2+ 1,5 = y+ 1 € R/I}
with ZA g =0 in R/I;. Then (x — 2z) A (y — 2) = 0 for some z € Ij, and
(ax — az) A (ay —az) =0, s0 aT Aag = 0 in R/I;. Similarly Za A ga = 0.
Thus a = a + I}, is a d-element of R/I}. Since 1 is not positive in R, there
is at least one k such that 1 is not positive in R/Ij, and hence a is not
positive in R/I}; by the above argument. It follows that a is not positive in
R.

(2) Suppose that u is a d-element. Then uRT™ C RT and RTu C RT.
For z € RT, u(u™ 'z A0) = 2 A0 = 0 implies u=tx A0 =0, so vtz >0,
and hence v~ 'Rt C R*. Similarly R*u~! C Rt.

Conversely, suppose that uRt C Rt and v 'R* C RT. If t Ay = 0 for
z,y € R, then

0< u_l(um ANuy) < v luz Au"tuy =z Ay =0,
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and hence ux A uy = 0. Similarly zu A yu = 0. Hence u is a d-element.

(3) Clearly au > 0 and wa > 0. Let 0 < z,y < au. Then
0 < zu~!,yu~! < a implies that zu~! and yu~! are comparable, so z,y
are comparable. Thus au is basic. Similarly ua is also basic. O

In Chapter 1, we give a general method to construct lattice orders with
1 # 0 on an f-unital ¢-ring. R. Redfield discovered another method to
produce lattice orders with 1 ¥ 0 by changing multiplication of /-unital
{-rings.

Let R be an /-unital ¢-ring with the identity element 1 and = in the
center of R. Define a new multiplication * on R for any z,y € R,

TxY = xyu_l.
Then (R,+,*) is a ring with u as an identity element (Exercise 52). Now
suppose that ¥ 0and u=! > 0. If z > 0 and y > 0, then z*y = xyu~! > 0.
Thus (R, +, *) is an {-ring with the identity element u % 0.
The ¢-ring (R, +, *) may be obtained by using Theorem 1.19(2).

Theorem 4.30. Let (-ring (R, +,*) be defined as above. Then there exists
a lattice order on (R,+,x*) with the positive cone P such that w € P and
Rt =1%P with1 € P.

Proof. Define P = uR". Clearly P+ P C P, and PN —P = {0}. For
ua, ub with a,b € RT,

(ua) * (ub) = (ua)(ub)u™" = u(ab) € uR™.

Thus P« P C P. So P is a partial order on (R,+,%). For z € R, with
respect to P, x V0 = u(u~tx vV 0), where w1z Vv 0 is the sup of u=tz,0
with respect to RT. Therefore (R, +, %) is an f-ring with the positive cone
Pandu=ul € P. Forany a € RT, a = 1% (ua), so R = 1% P. We also
have 1 = uu~! € uRT = P. O

Theorem 4.31. Let L be an f-field with 1 % 0 and an (-algebra over a
totally ordered field F'. Suppose that L satisfies the following conditions.

(1) There is a vector space basis B of L over F with B C d(L).
(2) L has a basic element a such that a*t = Fa.

Then there exists a lattice order = on L to make it into an ¢-field with 1 > 0
such that Lt = aP, where P is the positive cone of .
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Proof. Define P ={x € L|xzLT C L*}. Tt is straightforward to check
that P4+ P C P, PP C P, and PN —P = {0} (Exercise 53). For any
x,y € L, define x = y if x —y € P. Then L is a partially ordered field with
respect to ~.

We show that > is actually a lattice order. First of all, for any u € B,
by Theorem 4.29, ua is basic, and (ua)tt = F(ua) (Exercise 54). Next if
u,v € B and u # v, then ua A va = 0. In fact, since ua and va are both
basic elements, if ua A va # 0, then (ua)** = (va):+ by Theorem 1.14,
and hence F'(ua) = F(va). Hence u and v are linearly dependent over F,
which is a contradiction. Therefore ua A va = 0. Suppose that z = 0 and

z=a1bi+- - -+aub,, where by, - - , b, € B are distinct and a1, -+ ,a, € F.
We show that each a; € F*. Suppose that a; < 0,--+ ,a; < 0 in F and
g1 >0, ,an, > 0,1 <k <n. Then

0= —aiby 2 agqibgi1 + -+ anby
implies that
0 < —aybia < app1bpyria+ - + azbpa.
Since ua A va = 0 for any u,v € B and u # v, and F+1 C f(L),
0 < —aibia
= —agba A (agt1berra+ -+ + apbya)
< (—agbia A aggibiia) + -+ (—arbia A abpa)
= 0.

Thus —abia = 0, which is a contradiction. Hence each a; > 0 in F.

Now for z € L, if x = Bic1 + - -+ + Bmem for some By, ---, B, € F and
c1, - ,Cm € B are distinct. The least upper bound of x and 0 with respect
to > is

xvt0:6f01+"'+/6:;16m~

We leave the verification of this fact as an exercise (Exercise 55). Therefore
> is a lattice order on L. Clearly 1 € P and {au | u € B} is disjoint and a
vector space basis of L over F. Therefore LT = aP. O

Let’s look at an example that Theorem 4.31 may apply.
Example 4.5. Consider the field

L=Q[V2,V3={a+BV2+yV3+5V6 | o, ,7,6 € Q}.

With respect to the coordinatewise order, L is an {-field in which identity
element 1 is positive. Suppose now that L is an arbitrary ¢-field with
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the positive cone LT. Since L is finite-dimensional over Q, L has basic
elements. If V2Lt C L, /3Lt C L*, and there is a basic element a such
that a** = Qa, then by Theorem 4.31, Lt = aP, where P is the positive
cone of the coordinatewise order.

There are rings and algebras that cannot be made into an ¢-ring and /-
algebra. In the following, we use idea of P-invariant cones to show complex
field C and division algebra H of real quaternions cannot be an f-algebra
over R. We prove that only finite-dimensional ¢-algebra over R is R itself.
We first review a few definitions and results on n-dimensional Euclidean
space R".

Let S be a subset of R™. A cover of S is a collection {U; | ¢ € I'} of sets
in R™ such that

sclJu.

iel
A cover of S is called an open cover if each U; is an open set and a finite

cover if index set I is fine. A subcover of the cover {U; | i € I'} is a collection
{U; | j € J} with J C I such that
sclyu.
jeJ
A subset S of R™ is called compact if every open cover of S has a finite
subcover. It is well-known that a subset S of R™ is compact if and only if
it is closed and bounded in R™. Let S be a compact set and {K; | i € I} be

a collection of closed subsets of S. As a direct consequence of compactness
of S, if for each finite set of indices i1, ,ip, Kiy N---NK;, # 0, then

il
For a subset B of R", B denotes the closure of B, which is the inter-
section of all closed sets containing B, and hence B is the smallest closed

subset containing B. We first prove a basic result which will be used later
in the proof.

Lemma 4.22. Suppose that N is a subspace of R™ over R which is totally
ordered. If Nt N —N+ = {0}, then N is 1-dimensional over R.

Proof. Since N is a subspace of R”, N must be closed (Exercise 56).
Since N = NtU-NT,

N=N=NtU-NT=N+tU—N+.
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Then N+ N —NT = {0} implies that N* = N+ and —N* = —N+, so
NT,—NT are closed. Therefore N must be 1-dimensional over R (Exercise
57). O

Theorem 4.32. Suppose that A is a finite-dimensional division £-algebra
over R. Then A must be totally ordered.

Proof. 1If A is 1-dimensional over R, then A = RI1 is totally ordered.
Suppose that dimgA = n > 2. We use P to denote the positive cone of
l-algebra A. By Lemma 2.5, we may consider A as a subalgebra of M, (R).
As before, R™ denotes the n-dimensional Euclidean column space over R.

For each 0 # v € R™, Pv is a nontrivial P-invariant cone. It is clear
that Pv 4+ Pv C Pv, R*(Pv) C Pv, and Pv is P-invariant. We show that
Pvn —Pv = {0}. Suppose that w € Pv N —Pv. Then u = fv = —gv for
some f,g € P,so (f+g)v=0. If f+ g # 0, then A is a division algebra
implies that v = 0, which is a contradiction. Thus f + g = 0, and hence
f=9g=0and u=0. Therefore Pv is a P-invariant cone.

Let M be the subspace spanned by Pv. Then fM C M for each f € A
since Pv is P-invariant. Let ¢q,---,¢g, be a vector space basis of A over
R and 0 # w € M. Then gjw,---,g,w € M are linearly independent,
so M is an n-dimensional subspace. It follows that Pv contains n linearly
independent vectors since Pv spans M. Let fiv,---, fov € Pv be linearly
independent over R, where fi,---,f, € P. Then fi1,---, f, are linearly
independent, and coneg(K,) C Pv, where K,, = {fiv, -, fov}. We note
that coneg (K,) is a closed subset of R™ (Exercise 58).

Since A is finite-dimensional, by Corollary 1.3, A is a finite direct sum
of maximal convex totally ordered subspaces of A over R. We show that
each direct summand is 1-dimensional. Let T be a direct summand in the
direct sum of A. For some 0 # v € R™, Tv is a totally ordered subspace
of R™ with the positive cone TTv. Since TTv C Pv and Pv N —Pov = {0}
(Exercise 59), we have Ttv N —T+v = {0}. Thus by Lemma 4.22, T is
1-dimensional. Take 0 # f € T. Then fv € Twv is a basis over R. For
any g € T, gv = a(fv) implies that (¢ — af)v = 0, so ¢ — af = 0 and
g = af. Thus T is 1-dimensional. It follows that A is a direct sum of
n direct summands, and hence A contains n disjoint elements fi,---, fy.
As a direct consequence of this fact, we have for any 0 # v € R", Pv =
conegr(fiv, -« , fov) is closed.

Consider partially ordered set M = {Pv | 0 # v € R"} under set
inclusion. We show that M has a minimal element by Zorn’s Lemma. Let
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{Pv, | @ € T'} be a chain in M and S = {v € R" | |u| = 1} be the unit
sphere, where |v| denotes the length of the vector v. Then the collection
{Pvo NS | @ € T} is a chain of closed sets of S and each Pv, NS # 0.
Since S is closed and bounded in R”, S is compact, and hence

ﬂ (Pv, N S) # 0.

ael
Take v € Nger(Pvy NS). Then v # 0 since 0 € S. Pv is a P-invariant
cone contained in each Pw,, that is, Pv is a lower bound of the chain
{Pvs | @ € T} in M. Therefore by Zorn’s Lemma, M has a minimal
element.

Suppose Pu € M is a minimal element for some 0 # u € R™. Take

0 < f € P. Then 0 # fu € Pu implies that P(fu) C Pu, and hence
P(fu) = Pu. It follows that there is a g € P such that gfu = fu, so
gf = fand g = 1. Hence 1 € P and for any 0 < h € P, P(hu) = Pu
implies that jh = 1 for some j € P. Therefore we have proved that 1 > 0
and for each nonzero positive element in A, its inverse is also positive.
Then by Theorem 1.20(2), A is a d-ring, and hence A is totally ordered by
Theorems 1.27 and 1.28. O

Let H be the 4-dimensional vector space over R with the vector space

basis {1,1, , k} having the following multiplication table.
1 i J k

1 i J k
i -1 k-3
-k -1 i
ko —i -1
Then H is a 4-dimensional algebra over R. For an element x = a + bi +
¢j + dk € H, where a,b,c,d € R, define T = a — bi — ¢j — dk. Then
17 = zx = a® + b% + c® + d*> € R. Thus if 2 # 0, then z has the inverse
(a®> +b% + ¢ + d*)~'z. Therefore H is a division ring, and hence H is
actually a division algebra over R, which is called division algebra of real
quaternions.

Frobenius’s Theorem in general ring theory states that a finite-

T =
<

dimensional division algebra over R is isomorphic to R,C, or H [Lam
(2001)]. Since C and H cannot be a totally ordered algebra over R be-
cause of 2 = —1, they cannot be f-algebra over R by Theorem 4.32, so R
is the only finite-dimensional division ¢-algebra over R.

Complex field C cannot be an f-algebra over R was first proved by G.
Birkhoff and R. S. Pierce [Birkhoff and Pierce (1956)]. Then R. McHaffey
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noticed that H cannot be an ¢-algebra over R [McHaffey (1962)]. Their
proofs are much simpler than the proof presented in Theorem 4.32. However
P-invariant cone method may be used to prove more examples that cannot
be an f-algebra, for instance, matrix algebras M, (C) and M, (H) cannot
be made into an ¢-algebra over R [Steinberg (2010)].
Let F be a totally ordered subfield of R. Define
Cr={a+bi]|abeF}
and
Hp ={a+bi+cj+dk|abcdeF}.
Then CF is called the complex field over F' and Hp is called the division
algebra of quaternions over F'. By using the same argument as in Theorem
4.32 with some modification, it can be shown that Cr, Hr cannot be made
into an f-algebra over F.

Also by using Theorem 4.33 below, for any integral domain R which
is a totally ordered subring of R, complex numbers and quaternions over
R cannot be an /-ring. In particular, for R = Z, it means that complex
integers and quaternion integers cannot be an ¢-ring.

In section 4.4, we have considered extending lattice order on a lattice-
ordered integral domain with positive identity to its quotient field. The
results can be generalized to lattice-ordered integral domains with 1 2 0.

Theorem 4.33. Let R be a lattice-ordered integral domain. If for any
nonzero element a of R, RaN f(R) # {0}, then its quotient field F can be
made into an -ring extension of R.

Proof. TFor q € F, we have ¢ = 7, a,b € R with b # 0. Since b # 0,
RbN f(R) # {0}, so there is ¢ € R such that 0 # cb = d € f(R). Thus each
element g € F' can be written as ¢ = § with 0 # d € f(R).

Define the positive cone P on F' as follows:
P={q€F|q=g, 0<acR,0#de f(R)}.

If & = < with a,c € R,0 < a,0 #d,0# e € f(R), then ae = cd. Since
a>0and e € f(R), ae > 0, and hence cd = |cd| = |c|d. Thus ¢ = |c| > 0
and P is well-defined.

It is clear that P+ P C P, PP C P, and PN —P = {0}. For ¢ = }
with a € R, 0 £ b € f(R), ¢V 0= %2 These proofs are similar to that
given in section 4.4 and we leave it as an exercise. O

We note that Theorem 4.33 is also true for left (or right) Ore domains
and we omit the proof which is similar to the proof of Theorem 4.17.
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4.7 Lattice-ordered triangular matrix algebras

In this section we study lattice-ordered triangular matrix algebras. We use
T,.(F) to denote the n x n (n > 2) upper triangular matrix algebras over
a totally ordered field F. We construct all the lattice orders on T5(F') to
make it into an f-algebra over F. In section 1, we first construct all the
lattice orders in which the identity matrix is positive, and then in section
2 we show each lattice order on T5(F') in which the identity matrix is not
positive can be obtained from a lattice order in which the identity matrix
is positive by using Theorem 1.19(2). In section 3, some conditions are
provided for T,,(F) to be f-isomorphic to the f-algebra T, (F) with the
entrywise order.

4.7.1 Lattice orders on To(F) with 1 > 0

In this section we describe all the lattice orders on T5(F') to make it into
an (-algebra over F' with identity matrix 1 > 0. First we construct three
Archimedean lattice orders over F.

We use Py to denote the positive cone of the entrywise order on T»(F),
that iS7 Po = TQ(F+)

Recall that e, €22, 12 € To(F') denote the standard matrix units. It is
clear that {1, ess,e12} is a vector space basis of vector space Tz(F') over F
and we have the following multiplication table for {1, eas, e12}.

| 1 exn e
1 1 €292 €12

€2 | €22 €22 0
ez | €12 ez 0
By Theorem 1.19(1), T5(F) becomes an Archimedean ¢-unital ¢-algebra
over I with the positive cone
P =F%t1+4 FTeyp + Fles.
Since €2, = 0, (T2(F), P1) is not f-reduced.

Let k = e12 + ea2. It is also clear that {1,eq22,k} is a vector space basis
for vector space T>(F') over F and we have the following multiplication
table.

‘ 1 €922 k
1 1 €22 k

€22 | €22 €22 €22

k k k k
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By Theorem 1.19(1) again, T5(F) becomes an Archimedean (-unital ¢-
algebra over F' with the positive cone

Py =F*1+4 Fteg + FTk.

Clearly, (T2(F), Py) is ¢-reduced. We also notice that P, C P, C Py. We
show that an Archimedean f-unital ¢-algebra T5(F) is f-isomorphic or anti-
{-isomorphic to the f-algebra To(F') with the positive cone Py, Py, or Ps.

We first state a lemma that will be used in proofs. Recall that
f(T2(F)) ={a € To(F) | |a| is an f-element of To(F)}.

Lemma 4.23. Let T5(F') be an £-algebra over F.

(1) If To(F) is L-reduced, then To(F) is an £-domain. Moreover if To(F)
is L-unital, then f(T2(F)) is totally ordered.

(2) Suppose that To(F) is L-unital. If f(To(F)) is totally ordered
and f(To(F))* contains nonzero positive nilpotent elements, then
f(T2(F)) = F1.

Proof. (1) Let 0 < u,v € To(F) with uv = 0. Then (vu)? = 0, and
hence vu = 0 since T5(F) is f-reduced. Thus (vzu)? = (uzv)? = 0, for any
z € To(F)*. Hence vzu = uzv = 0, for any z € To(F)" since To(F) is
f-reduced. Therefore

vTy(F)u = uTz(F)v = {0}.

By a direct calculation, we have that u is nilpotent or v is nilpotent (Exer-
cise 60), and hence v = 0 or v = 0. If T5(F) is f-unital, then by Theorem
1.27, f(T2(F)) is also a totally ordered domain.

(2) Let 0 < a € f(T2(F))* with a® = 0. Then a = aejo for some
0 # o € F. We notice that T5(F') cannot be an fring by Theorem 1.22(3)
since it contains idempotent elements which are not central. We claim
that f(T3(F)) cannot be two-dimensional over F. In fact, if f(Tx(F)) is
two-dimensional, then Ty(K) = f(T2(F)) @ f(T2(F))* as a vector lattice
and f(T»(F))t = Fa. Let e;y = b+ ¢, where b € f(T2(F)) and ¢ €
f(T5(F))t = Fa. Then b = €11 — c is an idempotent element, so b = 1 or
b = 0 by Theorem 1.22, which is a contradiction. Thus f(72(F')) cannot be
two-dimensional over F', and hence f(T>(F)) = F1. O

We also notice that if T5(F') is an ¢-unital ¢-algebra over F' and a > 0 is
a nilpotent element in T5(F'), then Fa is an f-ideal of T(F) (Exercise 61).
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An anti-isomorphism ¢ between two rings R and S is a group isomorphism
between underlying additive groups of R and S, and for any a,b € R,
w(ab) = ¢(b)p(a). For instance, ¢ : To(F) — T2 (F) defined by

(22) ~ (G2)

is an anti-isomorphism. An anti-¢-isomorphism between two /-rings is a
ring anti-isomorphism which preserves the lattice orders.

Theorem 4.34. Let T5(F) be an Archimedean (-unital £-algebra over F.
If T5(F) is not L-reduced, then

(1) To(F) is £-isomorphic to (To(F'), Py) provided 1 is not a basic element;
(2) To(F) is L-isomorphic or anti-L-isomorphic to (To(F), P1) provided 1
s a basic element.

Proof. Let

I:{(S“g):mezf}.

Since T5(F) is not ¢-reduced, there exists a > 0 which is nilpotent, so a € I,
and hence I = Fa and I is an f-ideal of T5(F).

Since f(T2(F)) is an Archimedean f-algebra over F with identity el-
ement, it contains no nilpotent element by Lemma 3.3(1), and hence
f(T2(F)) is a finite direct sum of unital totally ordered algebras over F
by Corollary 4.5. Let 0 < b € f(T»(F')). Then a A b is a positive nilpotent
frelement implies a A b = 0. Thus we have the direct sum f(72(F)) @ Fa
as vector lattices. We consider the following two cases.

(1) Suppose 1 is not basic in To(F'). Since 1 is not basic in Tx(F),
f(T2(F)) is a finite direct sum of at least two totally ordered algebras, and
since T(F) is three-dimensional, f(T2(F)) is a direct sum of exactly two
totally ordered algebras. Thus f(T5(F)) is two-dimensional and T»(K) =
f(Ia(F)) ® Fa as a vector lattice.

Now let 1 = e+ f, where e > 0, f > 0, and e A f = 0. Then we have
e2 =e¢,f?=f,and ef = fe = 0 since 0 < e, f < 1 implies that e and f
are felements. Thus T2(F) = Ff @ Fe @ Fa as a vector lattice. Without
loss of generality, we may assume that

=(0c) = (o)
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with v = —u € F (Exercise 62). Also, suppose that

0r
a—<00>, where 0 £ r € F,

o= (o0)-

Consider the inner automorphism iq : To(F') — T3(F'). Then

and define

ig(en) = q lenng = f, iglean) = ¢ 'eanq = e, iglers) = ¢ 'erq = a.
Thus ¢, defines an ¢-isomorphism from {-algebra (T>(F), Py) to ¢-algebra
T2(F)=Ff® Fe® Fa.

(2) Suppose 1 is basic in T5(F'). Since 1 is basic, f(T2(F)) is totally
ordered since if z,y € f(T2(F)) with c Ay =0, then (1A2)A(1Ay) =0
implies 1 Az =0o0r 1 Ay =0, and hence x = 0 or y = 0. Hence

Ty(F) = f(To(F)) ® f(To(F))*

by Lemma 4.7 since Ty (F') is Archimedean over F. Thus Fa C f(Ty(F))*.
By Lemma 4.23, f(T»(F)) = F1, and hence f(T»(F))* is two-dimensional.
Let 0 < a; € f(To(F))* \ Fa. Since Ty(F) is Archimedean over F, there
exists 0 < ag € Fa such that as € a1. Let ay A az = az. Then (a; — as) A
(ag —agz) =0, and

0 < (a1 —as) € f(To(F))*\ Fa, 0 < (ag — a3) € Fa.
Let e; = a; —az and f; = as —asz. Then 0 < e; € f(To(F))* \ Fa,
0< f1 € Fa,and e; A f1 =0, so
F(Ta(F))* = Fer @ Ffy,
as a vector lattice, and hence
To(F)=F1® Fe, @ F f1,

as a vector lattice. Now we determine e;. Let

e = (x y> , where z,y,z € F.
0z

Since ey f1 = zf1 and fie; = zf1, > 0 and z > 0. Since {1,e1, f1} is

linearly independent, x # z. Otherwise e; is a linear combination of 1 and

f1~ Let

e

o (2 (z+2)y
1 0 2,2

> = o+ Be; +vf1,



182 Algebraic Structure of Lattice-Ordered Rings

for some o, 3,7 € F*. Then we have

2> —fr—a=0and 2> — fz—a =0,

and hence ¢+ z = 8 and xz = —a.
If x and z are both not zero, then one of them must be negative since
rz = —a < 0, which is a contradiction. Thus we have x = 0 or z = 0.

Suppose © = 0. Then z > 0 since e; is not nilpotent, a = 0, and
Let

Then T»(F) = F1® Fi @ F f; as a vector lattice. Now let

0r
f1:<001>, where 0 # ry € F,

1 —z71
=(0 ")
T1

iq(ean) = ¢ eanq =i, ig(era) = ¢ Te12g = fu.
Thus 4,4 is an (-isomorphism from ¢-algebra (T5(F), Py ) to £-algebra To(F') =
F1a&FiaFf.
Suppose z = 0. Then x > 0, a = 0, and

2
2 ¢ xy
el——<0 0)——$€1.

1 —1
j:x1€1:<0x0y)'

Then T5(F) = F1® Fj @ F f1, a direct sum as vector lattices. Define
1 —az1
=)
1

piq(ean) = p(q " e2q) = J, wigler2) = p(q e12q) = fu,
where ¢ : To(F) — To(F) is defined by

(1)~ (2)

Thus @i, is an anti-¢-isomorphism from ¢-algebra (T5>(F), P1) to f-algebra
T2(F)=F1@ Fj @ Ff1 (Exercise 63). O

and define

Then

Let

Then
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Theorem 4.35. Let To(F) be an Archimedean £-unital {-algebra over F.
If To(F) is L-reduced, then To(F) is £-isomorphic or anti-£-isomorphic to
(T2(F), P,).

Proof. Since To(F) is f-reduced, by Lemma 4.23, f(T»(F)) is totally
ordered, and hence 1 is basic. Since f(T%(F)) is totally ordered, T5(F) =
f(Ty(F)) @ f(T5(F))* as a vector lattice by Lemma 4.7.

Let a; = (e12)™ and by = (e12)”. Since T3(F) is f-reduced, a; > 0
and b; > 0. It follows from a; Ab; = 0 that (a; A1) A (by A1) =0, and
hence a3 A1 =0 or by A1 =0 since 1 is basic. In the following we suppose
a1 A1l = 0. A similar argument may be used to prove the case that by A1 =0
and we leave the verification of this fact as an exercise. Let

= X1 T2
e 0 T3 '
Then a? = (z1 + z3)a; + (—z123)1 > 0 implies 21 + 23 > 0 and —z123 > 0

since a3 A1 = 0.
First we claim that b; is not an felement. Suppose b; is an felement.

From
(a1 —b1)* = a? —arby — bra; + b3 =0,
we have
(x1 + x3)ay + (—z123)1 — @by — biag + b3 =0,
and hence

(—z123)1 4+ b2 =0 and (21 + 23)a; — a1by — bia; =0,

since (—x123)1+b% € f(To(F)) and (21 +x3)a; —arby —bray € f(To(F))*.
It follows from (—z1z3)1 + b = 0 that b3 = 0, and hence b; = 0, which is
a contradiction. Thus by is not an felement.

Since T5(F') is Archimedean over F', there exists 0 < o € F' such that
al £ by;. Let by Aal = c¢. Then ¢ < al, and ¢ < by since by is not an
felement. Thus

(b1 —c)AN(al —¢) =0, with by —¢>0and al —c >0,

s0 by — ¢ € f(Ta(F))* since 0 < (al —¢) € f(Ta(F)). Let d = by — c.
Then 0 < ay,d € f(T2(F))* and a; Ad = 0 since d < b;. Thus Ta(F) =
F1® Fa; ® Fd as a vector lattice.

Now we determine a; and d. Recall that e;1o = a1 — b1 = a1 —d —c.



184 Algebraic Structure of Lattice-Ordered Rings

Since a? = (x1 + x3)a; + (—z123)1, we have —z1z3 > 0, and hence
x1 < 0 or x3 < 0. Suppose 1 < 0. From ejs < a;, we have ajejs < a%,
and hence
x1a1 — 21d — x1¢ < (21 + 23)a1 + (—x123)1,
SO
—z1d — z1¢ < x3a1 + (—z123) 1.

Since {1, a;,d} is a disjoint set, we have —z1d = 0 and hence z; = 0. By

a similar argument, if 3 < 0 then x3 = 0 (Exercise 64). Thus we have

21 = 0 or 3 = 0 but not both of them are zero since ay is not nilpotent.
Let

d= (yl y2)> where Y1,Y2,Y3 € F.
0 ys3

Then d?> = (y1 + y3)d + (—y1y3)l > 0 implies that (y; + y3) > 0 and
—1y1y3 > 0,80 y1 <0 or y3 < 0. Suppose y; < 0. From —ejs < by =d+ ¢,
we have —deqy < d? + de, and hence
—yi(ar —d —¢) < (y1 +y3)d + (—y1y3)1 + de,
S0
—y1a1 < y3d + (=y1y3)1 + dec — yic.

Since ¢ is an felement, a; is disjoint with d, 1, dc, and ¢, so we have
—y1a1 = 0, and hence y; = 0. Similarly, if y3 < 0, then y3 = 0. Therefore,
we have y; = 0 or y3 = 0 but not both of them are zero.

If 1 = 0 and y3 = 0, then a;d = 0, which is a contradiction by Lemma
4.23. Similarly, s and y; cannot be both zero. Thus we have the following

two cases.
(i) z1 =0 and y; = 0. Let

_ 0z:'z _ 0yt
u=$31a1:(0 31 2), U=y31d=(0y31y2>.

Then To(F) = F1 @ Fu @ Fv as a vector lattice. Define

‘= <1 —xglxz )
0 y;lyg —x;lxz ’

Then ¢ is invertible, and

igexn) = q teanq =u, ig(k) = q kg =,
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where k = e1a2+e22. Thus i, is an ¢-isomorphism from ¢-algebra (T (F), Ps)

to f-algebra To(F) = F1® Fu ® Fv.
(ii) 3 = 0 and y3 = 0. Now let

_ 1z7lz _ 1yt
u=x11a1=<0 10 2>7 v:y11d=<0y10y2).

Then we have To(K) = K1 ® Ku ® Kv as a vector lattice. Define
_ (1 —xl_lmQ )
N0yt -yt )

pig(e2) = o(q  easq) = u, piq(k) = (¢ kq) = v,

Then

where ¢ is defined in Theorem 4.34. Therefore, @i, is an anti-f-isomorphism
from ¢-algebra (T5(F'), P2) to ¢-algebra To(F) = F1® Fu ® F. O

Finally we determine non-Archimedean lattice orders on T5(F') in which
1 is positive. T»(F') can be made into a vector lattice as follows:

Ty(F) = F1&® (Feg & Fers),

where FegggFelg is the lexicographic order, that is, aess + Beja > 0 if
and only if &« > 0 or @« =0 and 5 > 0. We denote the positive cone of this
lattice order on T5(F') by Ps. Then

P3 = {a1+6622+7612:a20;ﬁ>07 OI'O&ZO,B:O,’}/ZO,VOK,ﬂ,’YGF}-

We leave the routine checking that Ps is closed under the multiplication in
T5(F) as an exercise (Exercise 66). Thus (T5(F'), P3) becomes an ¢-unital
£-algebra which is not Archimedean over F.

Theorem 4.36. Let T5(F) be an (-unital (-algebra which is mnot
Archimedean over F. Then To(F) is £-isomorphic or anti-C-isomorphic
to (T5(F), Ps).

Proof. Since T»(F') is non-Archimedean over F', T5(F') is not ¢-reduced
by Theorem 1.31. Let @ > 0 and a? = 0.

We first claim that a cannot be an felement. Suppose that a is an f-
element. Then a,1 € f(T5(F)) and the square of each element in f(T5(F))
is positive implies for any 0 < a € F, 0 < (1 — aa)?, so aa < 1 for
each a € F'. Hence a and 1 are linearly independent over F'. Then that
T5(F') cannot be an fring implies that f(T5(F')) is two-dimensional and
totally ordered. Thus To(F) = f(T»(F)) @ f(Ta(F))*t as a vector lattice
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and f(T»(F))* is one-dimensional over F. Let 0 < b € f(T2(F))*. Then
f(Ty(F))* = Fb. Since a is an felement, ab,ba € f(Ty(F))*, then we
have ab = ~b and ba = Bb, for some 7,8 € F*. On the other hand,
ab,ba € Fa since Fa is an f-ideal of T5(F). Then we have b? = 0 (Exercise
67), s0 b € Fa C f(T»(F)), which is a contradiction. Therefore a is not an
felement.

Since a A1 € Fa and a is not an felement, aA1 =0, so a € f(To(F)) .
If f(T5(F)) is not totally ordered, then there are 0 < u,v € f(T(F)) with
u A v =0, and hence

T5(F)=Fu® Fv® Fa,

as a direct sum of vector lattices. Thus T5(F) is Archimedean over F,
which is a contradiction. Therefore, (T5(F)) is totally ordered. By Lemma
4.23, f(T»(F)) = F1, and hence by Lemma 4.7

T(F) = (f(Ta(F) @ f(T2(F) ") U Uy,
where
U ={w € TH(F) : |w| > al,Ya € F}.

If 0 < w € Uy, then a1l < w for all @ € F, so aa < wa for all o € F,
which is a contradiction since wa € Fa. Thus Uy = 0, and T»(F) =
f(T2(F)) @ f(To(F))*, so f(To(F))* is two-dimensional over F'.

Next we claim that f(T3(F))* is totally ordered. If f(T%(F))* is not
totally ordered, then there exist 0 < s,¢ € f(T»(F))* such that s At = 0,
&)

f(Ty(F))* = Fs@ Ft, and Ty(F) = F1® Fs @ Ft,

as vector lattices. Thus, again, T»(F) is Archimedean over F', which is
a contradiction. Therefore, f(T5(F))* is totally ordered. Let 0 < ¢ €
f(T»(F))* such that a and ¢ are linearly independent over F. If ¢ < aa
for some « € F, then ¢ € Fa since Fa is an f-ideal, so a and ¢ are linearly
dependent, which is a contradiction. Thus for all a € F', we have aa < c.

Let
c= 122 and a = 0z
N0 2z —\oo/’

Then ac = zza > 0 and ca = z1a > 0 implies that z; > 0 and z3 > 0. Since
= (21 + 2z3)c+ (—2123)1 >0,

we have —z123 > 0, and hence z123 =0, s0 z1 =0 or z3 = 0.
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Suppose z; = 0. Then z3 > 0. Let

1
d=z'c= (823122>.

Then T5(F) = F1 & (Fd & Fa) as a vector lattice. Define
(1 723_122
=\o = )

ig(eaz) = ¢ eanq = d, igle12) = ¢ 'erq = a.

Then

Thus i, is an {-isomorphism from {-algebra (T>(K),Ps) to (-algebra
I2(K) = Kl® (Kdg Ka).
Suppose z3 = 0. Then 2z; > 0. Let

1 71
6:,21_10: <0 Z1OZ2> )

Then T5(F) = F1 & (Fe® Fa) as a vector lattice. Define
< 1 —27 2 )
q= 0 .
x

piq(eas) = p(q Teanq) = e, pig(er2) = ¢(q  e12q) = a,

Then

and hence @i, is an anti-f-isomorphism from f-algebra (T>(K), P3) to ¢-
algebra T5(F) = F1® (Fe & Fa). O

4.7.2 Lattice orders on Ty (F) with 1 % 0

In this section, we suppose that T»(F') is an f-algebra over F' in which
the identity matrix 1 % 0. In this case each lattice order can be obtained
from a lattice order with 1 > 0 using Theorem 1.19. As in the last sec-
tion, we consider two cases in which T5(F) is not f-reduced and ¢-reduced
respectively.

Suppose that T5(F) is not ¢-reduced. Let w = wiej2 be a positive
nilpotent element, where 0 # w; € F. Then I = Fw is an f-ideal of T5(F)
(Exercise 61). Suppose v =17, v =1". Then u >0, v >0, 1 =u — v and

uANv=0. Let
u= Uz and v = U1 2
n 0 us o 0 V3 ’
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where u; —v; =1 and uz — vz = 1.

X1 I
0 T3
wx = xsw. So if x > 0, then 21,23 € FT. This fact will often be used
later.

We first notice that for any z = ( ) € Ty(F), zw = zyw and

Since
v° = (v1 +v3)v — (v1v3)1

= (v1 +v3)v —v1v3(u — V)

= —(v1v3)u + (v1 + v3 + v1v3)V

>0
and u A v = 0, we have —(viv3) > 0. Thus vyvs = 0, so either v; = 0 or
vy = 0. Without loss of generality, we may assume that v; = 0. (If v3 = 0,
we may use the anti-isomorphism ¢ : (a: y) — (Z y) to reduce to the

0z 0z
case that vy = 0.) Then we have

U= Lus and v = 0 us
o 0 us B 0 U3 '
Since vz > 0, we have uz = 1 + v3 > 1 and hence u is invertible. The

element v3 may be zero. In the following, we consider v3 > 0 and v3 = 0,
respectively.

Theorem 4.37. Let T5(F) be an (-algebra over F with 1 % 0. Suppose
that To(F) is not £-reduced and u,v,w are defined as above. If vs > 0, then
L-algebra To(F) is L-isomorphic to £-algebras (To(F),rPy), or (Ta(F),rPs),
where r € Py or Ps is invertible, respectively.

Proof. We first claim that for any 0 < a € F, u A aw = 0. Suppose that
uAaw = p. Then p = Pw for some g € F, 0 < 8 < @, since I = Fw
is an f-ideal. Then fw < w implies S(wv) < (uv). Since wv = vsw and
uv = ugv, we have (fvs)w < uzv, so fw < Z—gv. Since u A v = 0 implies
that u A Z—gv:(), we have p = fw = 0.

We consider the following two cases.

(1) aw < v foreach 0 < a € F.

Since v > 0, clearly {u, v, w} is linearly independent over F, so {u, v, w}
is a vector space basis for To(F) over F. Thus for each f € To(F), f =
au+ Bv + yw, where «, 8,y € F. It is straightforward to check that f >0
ifand onlyif « >0, 8>00r a >0, =0, v >0 (Exercise 68).

Let x = u_l(%;v) and y = u~'w. Then y = w and {1,z,y} is linearly
independent. The multiplication table for {1, z,y} is given below.
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Now we define a positive cone
P={a+pr+yy|a>0,8>0, or «>0,5=0,v >0}

Then (T5(F'), P) is an f-algebra in which 1 > 0. Clearly T»(F)* = uP and
sinceu=1+v=14wvsz, u € P.
Define the mapping ¢ : To(F') — T»(F) by

(o + Bx +yy) = a + Beas + yera.

Then ¢ is an f-isomorphism from /{-algebra (T»(K),P) to (-algebra
(To(F), P3). Let r = ¢(u). We have that r € P; and f-algebra To(K)
is £-isomorphic to f-algebra (To(F),rPs).

(2) pw £ v for some 0 < 8 € F.

Let g = v A Bw. Then g = éw for some § € FT since [ = Fuw is
an f-ideal. Since Sw € v, 8 > §, so fpw —g = (8 — H)w > 0. Now
(v—9) A (S —06w = 0 implies that (v — g) Aw = 0 since T5(F) is an

where
0 V3 > ’
vy = ug — dwn; since vy > 0, we have v’ > 0, and it is clear that the set

{u,v’',w} is disjoint. Then for each f € To(F), f = au + fv’' + yw, where
a, B, € K, we have that f > 0 if and only if « > 0, § > 0, and 7 > 0 by
Theorem 1.13(2).

Let 2’ = u_l(;f—;”v/) and y = u~'w. The multiplication table for {1, 2’,y}
is given below (Exercise 69).

f-module over F and 8—48 > 0. Let v/ = v—g. Then v/ = <0 2

‘ 1 2y
111 2 y
|z 2 0
yly y O

Now we define the positive cone P = {a + B8z’ + vy | o, 8,7 € FT}.
Then (Ty(F), P) is an f-algebra in which 1 > 0 and T(F)* = uP. Since
u=1+v"+0w=1+v3a" + (v3d + )y

and v3,d € FT, we have u € P.
By the same mapping as in (1), ¢-algebra T5(F') is f-isomorphic to (-
algebra (T2(F'),rPy) with r = ¢(u) € P;. O
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Next we consider the case that v3 = 0.

Theorem 4.38. Let To(F) be an {-algebra over F with 1 # 0. Suppose
that To(F') is not £-reduced and u,v,w are defined as above. If vz = 0,
then (-algebra To(F) is (-isomorphic or anti-C-isomorphic to (-algebras
(Ta(F),rPRy), (Ta(F),rPy), or (Tx(F),rPs), where r € Py, Py, or Ps, re-
spectively, is an invertible matrizc.

Proof. Since v3 = 0, v € I = Fw. Consider the quotient ¢-algebra
To(F)/I. Then 1=1+1=ua=u+1 > 0in T2(F)/I. Since To(F)/I
has other idempotent elements except 1 and 0, T5(F)/I cannot be to-
tally ordered, and since T5(F')/I contains no nilpotent element, To(F')/I
is Archimedean over F' by Corollary 1.3. Thus T»(F')/I is a direct sum of
two totally ordered subspaces over F. We need to consider two cases.

(i) 1 =@ is a basic element in To(F)/I.

Let d € To(F)* such that d > 0 and @ Ad = 0. Then uAd € I, so
uAd = ew for some e € F'™. Since uAv =0, ew Av = 0. But ew and v are
both in I = Fw and v # 0, so ew = 0. Thus u A d = 0. Clearly {u,d, w}
dl dg

is linearly independent. Let d =
0 ds

). Then d; > 0 and ds > 0 since
dw = dyw and wd = dzw. Since
d? = (dy + d3)d — (dyds)u + (dyds)v > 0,

uAd=0,and uAv =0, we have —(d;d3) > 0, so either d; = 0 or d3 = 0.
We may assume that d; = 0. If dg = 0, then, by using the anti-isomorphism
¢, we may reduce to the above situation. Then ds > 0 since d > 0. There
are two different lattice orders in this case.

(iq) cw < d for all « € FT.

In this case au + Sd + yw > 0 if and only if « > 0, 8 > 0, or a > O,
B=0,v>0. Let z = u_l(éd) and y = u~tw. The set {1, z,y} is linearly
independent with the following multiplication table.

Now we define the positive cone
P={a+Br+yy|a>0,>00ra>0,8=0-~y>0}

Then (T3(F), P) is an f-algebra in which 1 > 0. Clearly T5(F)Z = uP and
sinceu=1+v=1+0w=1+0y for some § € F*, u € P.
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Define the mapping ¢ : To(F) — To(F) by

(o + B +vy) = a+ Bess + vera.

Then ¢ is an f(-isomorphism from {-algebra (T5(F),P) to (-algebra
(Ta(F), P3). Let r = ¢(u). We have that r € P5 and f-algebra Th(F)
is ¢-isomorphic to f-algebra (T5(F),rPs).

(ip) Pw £ d for some 0 < § € F.

Let d A fpw = dw. Then 0 < 6 < f, and (d — dw) A (B — 6w = 0.
Let d = d— dw. Then d’ > 0, and since 83— > 0, d Aw = 0. Thus
{u,d',w} is disjoint, so au + fd' + yw > 0 if and only if o, 8,y € F*
by Theorem 1.13(2). Let 2’ = u™'(3d'), y = u 'w. The set {1,2,y} is
linearly independent with the following multiplication table.

‘ 1 2y
111 2
O I A (|
yily y O

Now if we define a positive cone P = {al + 2’ + vy | o, 8,y € F*}.
Then 1 € P, To(F)" = uP with u € P, and (T5(F), P) is ¢-isomorphic to
(T2(F), Pr).

(i1) 1 = @ is not basic in To(F)/I.

Then there exist f/,g' € To(F) such that @ = f' + ¢/, f/ >0, ¢ > 0,
and f/Ag =0. Since f/Ag =0, f/ANg € I = Fw. Let f ANg" = p,
andlet f=f' —p,g=¢ —p. Then f >0, g >0, and f A g = 0. Since
a=f4+g =f+7g, u=f+g+ 6w for some § € F. Since f A g =0,
(f ANw) A (g Aw) =0, so either f Aw =0 or g Aw =0 since (f A w) and
(g A w) are both in I = Fw. Without loss of generality, we may assume
that f Aw = 0.

Ifow<gforalla € F*thenl =u—v = f+g+dw—v > 0 since
v € I = Fw, which is a contradiction. Thus there exists 0 < § € F such
that fw £ g. Let gABw =¢q, h =¢g—q. Then h A (Bw—¢q) =0 and h > 0,
Bw—¢q>0. So hAw = 0 since fw — ¢ = cw for some 0 < o € F. Now
{f, h,w} is disjoint and also a vector space basis for T5(F') over F.

Let
([ f1fe [ hihy
f—(o f3> aundh—(O h3>'
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Then

=+ f)f = (fufa)l

(f1
=(fit f3)f = (fifs)(u—v)

=it f3)f = (fifs)(f +h+ow+q—v)

=(fit fs— fifs)f = (fifs)h = (f1f3)(dw+q—v) >0

implies that —(f1f5) > 0. Since f > 0, we also have fi, f3 > 0. Thus
f1fs =0, so either f; =0 or f3 = 0. By a similar argument, we have either
hl =0or h3 =0.

Sinceu=f+h+0w+qg>0and Sw+q € [ =Fw, dw+q >0, so
ow+q=(0w+q)Au=0since uAv =0 and dw + q,v € [ = Fw. Thus
u = f+ h. Then fs + ho = uo, and f1, hy cannot be both zero. Also f3,
hs cannot be both zero. We may assume that f3 = hy = 0 and leave the
verification for f; = hz = 0 to the reader (Exercise 70). Then f; = 1 and
hsy =1. Then f2 = f, h2 = h, hf =0 and fh =v. Now let z = v~ f
and y = u~th. Then {z,y,w} is linearly independent with the following
multiplication table.

‘ T Yy w
z|x 0 w
y|0 vy O
wl|0 w 0

If we define the positive cone P = {ax + By +yw | o, 3,7 € FT}, then
l=xz+y € P, To(F)" = uP, and (Tx(F), P) is {-isomorphic to (Tx(F), P).
Since u = f+h =z + y+ v, u € P. This completes the proof of (i7). O

Now we suppose that T»(F’) is an ¢-algebra over F' in which the identity
matrix 1 # 0 and T (F) is -reduced. Then T5(F) is an ¢~-domain by Lemma
4.23. Lattice orders on T5(F") for this case are characterized in the following
result.

Theorem 4.39. Suppose that To(F) is an L-reduced (-algebra over F in
which 1 % 0. Then To(F) is £-isomorphic or anti-£-isomorphic to £-algebra
(T2(F),rPs), where r € Py is an invertible matriz.

Proof. letu=1",v=1". Thenu>0,v>0,1=u—vand uAv=0.
As before, assume that

u = 2 and v = U1 U2
o 0 us a 0 V3 ’
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where u1,v1,u2,uz,v3 € F, u; —vy =1, and ug — vz = 1.

Since T3(F) is ¢-reduced, T5(F) is Archimedean over F' by Theorem
1.31(3) and hence T5(F) is a direct sum of totally ordered subspaces over
F by Corollary 1.3. We claim that T5(F') cannot be a direct sum of two
totally ordered subspaces over F.

Suppose that To(F) = Wy @ Wa, where W7 and Ws are totally ordered
subspaces over F'. Then T5(F') has a basis with two elements, so if sAt =0
and s > 0,t > 0, then s and ¢ will be basic elements. Since u A v = 0, we
may assume that v € W7 and v € Ws. Let

(01 g e (O
oo Y=\oo

Then = > 0, y > 0 since Ty (F) is f-reduced, (8 (1)) =zx—yandx Ay =0.

Let
T1 T2 T1 Y2
- d v=
! (0 $3> e (0 $3>’

where x1,x2,y2, 23 € F and o —y2 = 1. Since x Ay = 0, x and y are not in
the same totally ordered direct summand of T5(F'). We may assume that
x € Wy and y € W5. Since

2% = (1 + x3)x — (r123)1 = (21 + 23)x — (2123)u + (T123)V > 0,

and u Av=x Av =0, we have 123 > 0. Since
y? = (1 4+ 23)y — (123)1 = (21 + 23)y — (T123)u + (T123)V > 0,
and u Av =u Ay =0, we have —(z123) > 0. Thus z123 = 0. So either

xz1 =0o0r z3 =0.

We first consider the case that 1 = 0.

2

Since 2* = x3x, x3 > 0, and since T(F') contains no nonzero positive

nilpotent element, 3 # 0. So x3 > 0. Since
u? = (uy +uz)u — (uuz)l = (ug + usz — wyuz)u + (uyuz)v > 0,

and u A v = 0, we have ujus > 0. Since zv = vzx > 0, v3 > 0, and hence

ug = 14vg > 1. Thusuy > 0. If u; =0, then vy = —1. Sovy = x3u—y >0

and u Ay = 0 implies that y = 0, which is a contradiction. Thus u; > 0.
Let 0 < a € F. If u < ax, then u? < azu. Since

u? = (u1 + usz — uruz)u + (vyuz)v and zu = usx,
we have

(u1 + ug —uyuz)u + (uuz)v < (qug)z.
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Since u Av =z Av = 0, we have ujuz < 0, which is a contradiction since
ug > 1 and w; > 0. Therefore © £ ax. Since ax and u are both in Wy,
which is totally ordered, ax < u for any o € F'*, which contradicts with
the fact that To(F’) is Archimedean over F'.

By a similar argument, the case z3 = 0 will also cause a contradiction.
Therefore, T5(F') cannot be a direct sum of two totally ordered subspaces
over F.

Then To(F) = Wy @ Wo & W3, where each W; is a totally ordered
subspace over F', and T»(F) has a basis with three elements. Since uAv = 0,
u is a sum of at most two disjoint basic elements. Similarly v is a sum of
at most two disjoint basic elements. We consider the following cases.

(I) u = h + g, where h and g are basic elements and h A g = 0.
Then {h, g,v} is disjoint and a vector space basis over F. Let

_ (1 ho (9192
h—(o h3) andg<0 5 )

where h;,g; € F', i =1,2,3. Then

h? = (hy + h3)h — (h1h3)1
= (hl + hg) (hlhg)(h + g — ’U)
= (hl + hg — h1h3)h — (h1h3)g + (hlhg)v >0

implies that —hihs > 0 and h1hg > 0. Thus hi1hs = 0, so either hy =0 or
hs = 0. By a similar argument, we have either g1 = 0 or g3 = 0.

If hg = g1 = 0, then gh = 0, which contradicts with the fact that T5(F)
is an ¢-domain. Similarly it is not possible that h; = g3 = 0.

If hy = g1 = 0, then since u = h + g, we have u; = 0, so v; = —1. Thus

2 1 —us + usvs 1 —us + usgvsg
v = 9 =
0 v3 0 (uz —1)vs

implies that v = 0, which is a contradiction.

If hg = g3 =0, then uz = 0, so v3 = —1. Thus v?> = —v + v1u > 0, and
hence v = 0, which is a contradiction.

Therefore, u cannot be a sum of two disjoint basic elements.

>_v+vgu20

(IT) v =i + j, where ¢ and j are basic elements and 7 A j = 0.
Then {u,i,j} is disjoint. Let

. 11 12 . J1 72
= dij=
! (O i3> ancJ (0 j3>7
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where ix, jx € F, k = 1,2,3. Then, by an argument similar to that in (I),
we have i1i3 = 0 and j1j3 = 0. Since T3(F) is an ¢-domain, i; = j3 = 0
and i3 = j; = 0 cannot happen.

Suppose that i; = j3 = 0. Then i3 > 0 and j3 > 0. Since v = i + 7,
v; = 0, so u3 = 1. Since iu = wugi, ug > 0. Thus w is invertible. Let
s=u"'(7i) and t = u'(525). Then {1,s,1} is linearly independent with
the following multiplication table:

Now we define the positive cone P = {a+ 35+t | o, 8,7 € F*}. Then
(T»(F), P) is an f-algebra in which 1 > 0, To(F)" = uP, and (T»(F), P) is
f-isomorphic to (T5(F), P2). Since u = 1 + i35 + jst, u € P.

In the case that i3 = j3 = 0, by a similar argument as above, there
is a lattice order with the positive cone P on T»(F') such that 1 € P,
To(F)™ = uP for some invertible matrix v € P, and (Tx(F), P) is anti-/-
isomorphic to (T2(F), Ps).

(III) w and v are both basic elements.
Then there is a basic element z such that {u,v,z} is disjoint and a

1 22) Then

vector space basis of To(F') over F'. Let z = <0
23

22 = (214 23)2 — (z123)1 = (21 + 23)2 — (2123)u + (2123)v > 0

implies that —(z123) > 0 and (z123) > 0. Thus z;23 = 0, so either z; =0
or z3 = 0.

We first consider the case z; = 0.

Since u? = (uy + uz — uruz)u + (u1uz)v > 0, we have ujusz > 0. Since
zv = w3z, v3 > 0, and since T5(F') is an ¢-domain, vs > 0. Souz = vz+1 > 1

2 = —p +wvzu > 0, which is a

and u; > 0. If u; = 0, then v1 = —1, so v
contradiction. Thus u; > 0. Similarly from v? = (v; + v3 + vivz)v —
(v1v3)u > 0, we have —(vyvz) > 0. Thus v; < 0. We claim that v; cannot
be less than 0.

Suppose that v; < 0. Consider uz and vz. Since uz —vz = (u—v)z = z,

we have that

uz=au+ Pv+y1z and vz =au+ fv+ Yz,
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where o, 8,71,72 € Ft and v; — v = 1. Since z; = 0, 22 = 232. Now
multiplying the above equation for uz by z from the right, we get

zz(uz) = a(uz) + f(vz) + (y123)z.
Further substitutions of uz and vz result in:
(z50)u + (z8)0 + (237m)2 = (@2)u+ (aB)v + (am)z + (Ba)u +
(B%)v + (By2)z + (1123)2.

Comparing the coefficients of z, we have 2371 = avy; + By + 71123, SO
avy1 + By = 0. Thus ay; = B2 = 0 since a, 8,71,72 € F'T.

If a # 0 and § # 0, then 73 = 72 = 0, which contradicts with the
fact that 3 — 92 = 1. If « = 0 and 8 # 0, then 75 = 0 and v; = 1, so
uz = Bv + z, that is,

Ouizo +u2z3\ [ PBur Bug + 0 2o
0 U323 o 0 ,B’Ug 02’3 ’

which is a contradiction since fv; # 0. Similarly the situation that o # 0
and 8 = 0 cannot happen.

Finally we consider the case &« = 8 = 0. Then uz = 12z and vz = Y92
implies

U122 + U223 = Y122, U3Z3 = Y123, U1Z2 + U223 = Y222, U323 = Y223.

Thus 1 = us3, 72 = v3, and (ugz — u1)ze = ugz3 = (v3 — v1)22. It is now
straightforward to check that

(—v120)u + (ur29)v + (—uz)z = 0.

Thus v1z9 = 0, ug = 0, so zo = 0 since vy # 0, but then {u,v,z} will be
linearly dependent, which is a contradiction.

Thus we must have v; = 0, and hence u; = 1. Let s = u‘l(%)v and
t = u_l(g—:z). Then {1,s,t} is linearly independent with the following
multiplication table.

Now if we define P = {a + s+t | a, B,y € FT}, then (Tx(F), P) is
an f-algebra in which 1 > 0 and T3(F)" = uP. Since u = 1 + v3s, we have
u € P. By using the similar mapping as before, (T5(F), P) is ¢-isomorphic
to L-algebra (To(F), Py).
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If z3 = 0, then by a similar argument, T5(F)* = uP for a lattice order
on T5(F') with the positive cone P and an invertible matrix v € P such that
1 € P, and (T>(F), P) is anti-f-isomorphic to the ¢-algebra (T2(F'), Py). We
leave the verification of this fact to the reader. This completes the proof of
the theorem. ]

Thus we have proved that if T5(F') is f-algebra in which 1 » 0, then
there exists an f-algebra T5(F) with the positive cone P such that 1 € P
and (T2(F),T2(F)™) is f-isomorphic or anti-f-isomorphic to (T2(F),uP),
where u € P is invertible. However we don’t know if this fact is true or not
for T,,(F) with n > 2.

4.7.3 Some lattice orders on T, (F) with n > 3

Although we have successfully described all the lattice orders on triangular
matrix algebra T(F') over a totally ordered field F. It seems very hard to
do this for T}, (F) when n > 3. By using Mathematica, Mike Bradley found
over one hundred lattice orders on M3(F') to make it into an Archimedean
l-algebra over F' in which 1 > 0. Actually lattice orders Py, P, on T»(F) in
section 4.7.1 were first found by Mike using Mathematica. Since he couldn’t
produce more lattice orders when using different inputs, we were convinced
that there are only three Archimedean lattice orders with 1 > 0 on T5(F),
and figured out a proof as shown in the last two sections.

We would like to present some lattice orders on T,,(F') with n > 3 that
are not the entrywise order on 7T, (F).

Example 4.6. For a positive integer £k = 1,--- ,n — 1, define the positive
cone on T,,(F) as follows.

Pk:{(aij)|aij20, 1f1§z<]§n, and

aii > Apny - 5 Ak > Anny Afe+1,k+1 > 07 o, Qnn > O}

We leave it to the reader to verify that (7,,(F), Py) is an ¢-algebra over F
with the following disjoint set (Exercise 71).

{eij, 1 <i<j<n}U{enr, - ,en—1n-1,€11+ -+ €k + €nn}-

In (T,(F),Py), 1 = epg1k41 + -+ en—in—1 + (11 + -+ erk + €nn)
is a sum of n — k basic elements, k =1,--- ,n — 1.

We give a characterization of f-algebra T5(F) with the entrywise order.
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Theorem 4.40. Let R be an {-algebra over a totally ordered field F'. R is
L-isomorphic to -algebra T3(F) with the entrywise order if and only if the
following conditions are satisfied.

(1) dimpR =6 and R is Archimedean over F,

(2) 1is a sum of 8 disjoint basic elements,

(3) R contains a nilpotent (-ideal I with I* # {0},

(4) if e is a basic element and an idempotent element, then eRe contains
no nilpotent element.

Proof. Since R is finite dimensional and Archimedean over F'; R is a
finite direct sum of totally ordered subspaces of R over F' by Theorem 1.17.
Then each strictly positive element is a sum of disjoint basic elements. From
I? £ {0}, there exist two basic elements x1,z2 € I such that z122 # 0. Let
a12 = x1,a93 = T9, and a;3 = T1To. Suppose that 1 = a + b + ¢, where
{a,b,c} are disjoint basic elements. Then a, b, ¢ are idempotent f-elements
with ab = ba = ac = ca = bc = cb = 0.

From 1 = a + b+ ¢, a1 = aays + bajs + caz. Since aqs is basic,
any two of aais,bais, cajs are comparable. Suppose that aajs # 0. If
aa12 < baie, then aais = a’a12 < abais = 0, which is a contradiction.
Thus bai12 < aaiz, and hence ba;s = 0. Similarly ca;o = 0, so a2 =
aais. Let a1 = a. Similarly ajoa = a1z or ajza = 0. In the first case,
a1z = aiia12a11 € a11Raq; implies that a1z is not nilpotent, which is a
contradiction with the fact that aio is in the nilpotent ¢-ideal I. Thus
aiza11 = 0. Suppose that a12b = a12. Let ags = b. Since ajoas3 # 0, we
must have assass = ags. Then by condition (4) again, assa; = aggage =0
since as3,a13 are nilpotent, so assc = as3. Let ass = ¢. Then for the
elements in set {a;; | 1 <@ < j <3}, ajjars = djra;s, where §;, is Kronecker
delta.

Then it is straightforward to check that {a;; | 1 < i < j < 3} is a
linearly independent set, so it is a vector space basis of R over F' since
dimpR = 6. Moreover for a matrix f € T3(F) with

f= Y ajai, aij €F,
1<i<j<3

f >0 if and only if each a;; > 0. Therefore R is f-isomorphic to ¢-algebra
T5(F) with the entrywise order. O

Theorem 4.40 is actually true for any positive integer n > 3 after some
modifications. We state the result below and omit the proof.
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Theorem 4.41. Let R be an (-algebra over a totally ordered field F. R
is L-isomorphic to l-algebra T, (F) (n > 3) with the entrywise order if and
only if the following conditions are satisfied.

(1) dimpR = % and R is Archimedean over F,

(2) 1 is a sum of n disjoint basic elements,

(3) R contains a nilpotent €-ideal I with 1"~ # {0},

(4) if e is a basic element and an idempotent element, then eRe contains
no nilpotent element.

At the end of this section, we provide a couple of examples to show that
some conditions in Theorem 4.40 are necessary.

Example 4.7. This example shows condition (4) in Theorem 4.40 cannot
be omitted. Let S = {a,b, ¢, d, d?, e} with the following multiplication table.

a b ¢ d d* e
ala 0 0 d d 0
b0 b 0 0 0 e
c| 0 0 ¢ 0O 0 O
d|ld 0 0 d 0 0

?|ld 0 0 0 0 0
e| 0 0 e 0 0 O

It is straightforward to check that S U {0} satisfies the associative law, so
SU{0} becomes a semigroup with zero (Exercise 80). Form the semigroup
l-algebra F[S] with the coordinatewise order. Then DimpF[S] = 6, and
the identity element is 1 = a + b+ ¢. Let

J = {ad+ Bd* +~e | a, B,y € F}.

Then J is an f-ideal of F[S] such that J? = 0 and J? # 0 since d* # 0. But
aF|[Sla = Fa+ Fd+ Fd? contains nilpotent elements, since d? is a nilpotent
element. Thus condition (4) in Theorem 4.40 is not satisfied. Therefore,
F[S] is not ¢-isomorphic to the f-algebra T5(F') with the entrywise order.

Example 4.8. This example presents an f-algebra which does not satisfy
condition (3) in Theorem 4.40. Let S = {a,b,¢,d, e, f} with the following
multiplication table.
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O O O o ool
S 0O Qa0 OO0
S O O O O X
SO O O oo 0|
O O O O Ol

~ 0O a0 o e
- O O O O Qe

Similarly it is straightforward to check that SU{0} satisfies the associative
law. Then S U {0} becomes a semigroup with zero (Exercise 80). In the
semigroup f-algebra F[S] with the coordinatewise order, DimpF[S] = 6
and the identity element is 1 = a + b + ¢. From the multiplication table,
it is clear that for each x € {a,b,c}, zF[S]z = Fx. Thus condition (4) in
Theorem 4.40 is satisfied. Let J = Fd+ Fe+ Ff. Then J is an f-ideal
of F[S] from the table. Clearly J? = 0. Let I be an (-ideal of F[S] with
I™ = 0 for some m > 1. Since a, b, ¢ are idempotent elements, they are not
in I, so I CJ. Thus I? = 0 for any /-ideal I, so condition (3) in Theorem
4.40 is not satisfied. Clearly F'[S] is not {-isomorphic to the f-algebra T5(F)
with the entrywise order.

Exercises

(1) Let T be an f-unital ¢-ring and M,,(T) be the ¢-ring with the entrywise
order. Prove that for each i =1, -+ ,n, e;; M, (T) is a right ¢-ideal and
eii M, (T) = ej; M,,(T) as right {-modules over M, (T').

(2) Prove a;R = I; in the proof of (3) = (2) in Theorem 4.1.

(3) Show that a;jare = 0;rase in the proof of (3) = (2) in Theorem 4.1.

(4) Prove B;; = o, 1 < 4,5 < n, in the proof of (2) = (1) in Theorem 4.1.

(5) Prove that the ¢ defined in the proof of (2) = (1) in Theorem 4.1 is
one-to-one, onto, and for any a,b € R, ¢(a +b) = p(a) + ¢(b).

(6) Let R be a unital ring and e € R be an idempotent. Prove that
Endgr(eR, eR) is a ring and eRe = Endg(eR, eR) as rings.

(7) Prove that for an f-unital (-ring with e € R, the ring Endg(eR,eR)
in problem (6) is a partially ordered ring with respect to the partial
order defined by 6 > 0 if §(eRT) C eR™T.

(8) Prove Theorem 4.2(2).

(9) Prove that for any = € R, (xg;) V0 = (z V 0)g; in the proof of (3) =
(1) of Theorem 4.3.
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(10) Verify that a, b, f defined in the proof of Lemma 4.3 satisfy f™ = 0 and
afmt+ fo=1.

(11) Prove that in Lemma 4.3 R=g;R+-- -+ g, R is a direct sum and any
two summands are isomorphic right R-module.

(12) Prove that f™*" =0 and af™ + f"b =1 in the proof of (1) = (2) of

Theorem 4.4.

(13) Prove that 30, c;cp 1 <<, € Me? in Theorem 4.7 is a direct sum.

(14) Prove that in Theorem 4.7, each a,eae™ !, ---  eF~tae" **! is in the
sum for 1.

(15) Prove that ¢;; = e'ae™ 7, 1 <4, j < k in Theorem 4.7 are k x k matrix
units.

(16) Prove that in Theorem 4.8, H N J = {0}.

(17) Prove that in Theorem 4.8, if = is in the centralizer of matrix units
{cij | 1<4,j <k}, thenz € F+ FeF + ...+ Fel!=Vk where ¢ = n/k.

(18) Suppose that T'is a unital ring and e = eja+ea3+- - -+en_1.n € My (T).
Prove the following.
(@) Fork=1,--- ,n—1,ef =€y pp1+eapiot +entnt  +eni
(b) If x € M,(T) with ex = xe, then

L1k =T2k+1 = " = Tp—kn—-1=" """ = Tnk—1-

(19) Prove that in Theorem 4.9 for i = 1,--- ,n — 1, €’ is not in the center
of R.

(20) Let R be a left Ore domain and @ be its classical left quotient ring.
Prove that matrices in M,,(R) that are linearly independent over R are
also linearly independent over Q).

(21) Suppose that R is a totally ordered domain and M, (R) be a left f-
module over R. Prove that a disjoint subset of M must be linearly
independent over R.

(22) For aring B, prove that K = {n € Z | n has an n-fier in B} is an ideal
of Z.

(23) Prove that in Theorem 4.10(2), for any a € R, if a € Uy, then one of
a®,a” € Uy, but not both of them.

(24) Prove that I(k, ) defined before Lemma 4.9 is an ideal of R.

(25) Prove that ¢ in Theorem 4.10 is an isomorphism between two additive
groups of Ry and A. Thus R; can be made into an ¢-group such that
Ry and A are f-isomorphic ¢-groups.

(26) Prove that in Theorem 4.10 if ne 4 ae € f(R), then (n,a) € f(Ry).

(27) Let R be an ¢-ring and I be an f-ideal of R. Prove that for each
ac f(R),a+1e f(R/I).
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(28) Let R be an ¢-ring and I be an ¢-ideal. Prove that ¢(I) and r(I) are
t-ideal. Moreover if ¢-N(R) = {0}, then ¢(I) = r(I).

(29) Prove that A" and B’ in Lemma 4.11 are ¢-annihilator ¢-ideal.

(30) Let R # {0} be an f-ring. Prove that R is an ¢-domain if and only if
R is ¢-prime and ¢-reduced.

(31) Prove that Re in Theorem 4.12(4) is an ¢-prime {-ring.

(32) Prove that in the proof of Theorem 4.14, ye(xAe) = 0, 161 = e;x; = 0.

(33) Prove that in Lemma 4.13, x1e7 Ay = 0 implies that yxie; = 0 and
yexy = 0.

(34) An element e in a ring R is called regular if for any a € R, ae = 0
or ea = 0 implies that a = 0. Let R be a partially ordered ring. R
is called regular division-closed if ab > 0, and one of a, b is a positive
regular element, then another is positive. Prove that a d-ring is regular
division-closed.

(35) Prove that in Theorem 4.16 the definition of the multiplication on @ is
well-defined and ) becomes a ring.

(36) Show that ¢ : R — @ in Theorem 4.16 is a ring homomorphism.

(37) Show that P defined in Theorem 4.17 is a partial order on Q.

(38) Prove that in the skew polynomial ring F'[z; o], for any left polynomials
f,g with f #£ 0, there exist unique left polynomials ¢, r such that g =
qf +r with r =0 or degr < degf.

(39) Show that R = F[x;0] is an {-ring with respect to the order defined in
Example 4.2 and f(R) = F[z?; ).

(40) Let R be a totally ordered integral domain and @ be its quotient field.

For % € @Q, define % > 0if ab > 0 in R. Prove that F is a totally

ordered field and RT = RN Q.

) Prove that the P defined in Theorem 4.23 is a partial order on M, (F).

) Prove Lemma 4.16.

43) In Theorem 4.25, bijbjs = tijtjsti_slbis- Prove that tijtjsti_sl € R.

) Check B = FJ in Theorem 4.25.

) Prove Lemma 4.17.

) Let F be a totally ordered field and K C F™. Prove that conep(K) =
> v | oy € FT v; € K} is closed under the addition of F™ and
positive scalar multiplication.

(47) Let F be a field and M be a nonzero subspace of F™. Prove that if for
any g € M,,(F), gM C M, then M = F™.

(48) For the following matrices

01 10 10 01
hl_(00>7h’2_(10>7h3_<00>3h4_<01>7
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construct the multiplication table of {hq, ho, hs, ha}.

(49) Prove that (II;<; j<2gi;)(detu)? is a unit in R on p.168.

(50) Verify the multiplication table for {ci1, c12, 21, ca2} on p.168.

(51) Show that f in Example 4.4 is a positive f-element.

(52) For a unital ring R and an element v in its center, define a new mul-

tiplication x for any =,y € R, x *y = xyu~'. Show that (R,+,*) is a

ring and if R is division ring then (R, +, ) is also a division ring.

(53) Prove that P defined in Theorem 4.31 is the positive cone of a partial
order on L.

(54) Verify that in Theorem 4.31, (ua)*t = F(ua).

(55) In Theorem 4.31, prove that if x = fic; + -+ + Bmem for some
B, ,Bm € Fand ¢1,--+ , ¢, € B are distinct. Then

zVe0=67cr+ -+ Bhem.

(56) Suppose that T is a subspace of R™. Prove that T is a closed set.

(57) Suppose that T is a totally ordered subspace of R™ such that 7+ and
—T+ are closed sets. Then 7' must be 1-dimensional.

(58) For n linearly independent vectors wvy,---,v, of R™, prove that
coneg (v, -+ ,vy,) is a closed set.

(59) Prove that in the proof of Theorem 4.32, Pv N —Pv = {0}.

(60) Suppose that To(K) is the 2 x 2 upper triangular matrix algebra over
a field K. Prove that if uT5(K)v = vTa(K)u = {0} for some u,v €
T»(K), then u? =0 or v? = 0.

(61) Suppose that T5(F) is an f-unital ¢-algebra over a totally ordered field
F and 0 < a € Ty(F) is a nilpotent element. Prove that Fa is an
l-ideal.

(62) Suppose that f,e € To(F') are idempotent elements with 1 = f 4 e and
ef = fe=0. Prove that

1lu 0w
7=(05) = (07)

andv=—u € F.

(63) Prove that @i, in Theorem 4.34 is an anti-¢-isomorphism.

(64) Verify that in Theorem 4.35, if x3 < 0, then 3 = 0.

(65) Verify that in Theorem 4.35, if y3 < 0, then y3 = 0.

(66) Check that (T(F'), Ps) in Theorem 4.36 is an non-Archimedean ¢-unital

{-algebra over F.

(67) Prove that in Theorem 4.36, b*> = 0.

(68) Prove that in Theorem 4.37(1), for f = au+ fv + yw, f > 0 if and
onlyifa>0,8>0o0ra>0,6=0,v>0.
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(69) Verity the multiplication table for {1,2’,y} in Theorem 4.37(2).

(70) Prove that Theorem 4.38 is true when f; = hg =0 in (4).

(71) Verity that Py in Example 4.6 is a lattice order on T,,(F).

(72) Prove that the direct sum of two totally ordered domains is regular
division-closed, but not division-closed.

(73) Consider the field L = Q[v/2].

(a) Describe all the lattice orders on L to make it into an ¢-field in
which 1 > 0.

(b) Prove that each lattice order on L in which 1 # 0 can be obtained
from a lattice ordered with 1 > 0 by using Theorem 1.19.

(74) Consider group algebra R = R[G], where G is a cyclic group of order
2.

(a) Describe all the lattice orders on R to make it into an (-algebra
over R in which 1 > 0.

(b) Prove that each lattice order on R in which 1 # 0 can be obtained
from a lattice ordered with 1 > 0 by using Theorem 1.19.

(75) Let R be an ¢-prime ¢-ring with squares positive. Prove that for any
a € R, v(a) N ¥(a) # {0} if and only if |a|?> = 0.

(76) An (-ring is called a left d-ring if for any a € RY, x Ay = 0 implies that
ax N\ ay = 0 for any x,y € R. Prove that if R is an /-prime left d-ring
with squares positive, then R is an /-domain.

(77) Let R be an f-ring and 0 < e € f(R). Prove that if r(e) = {0} and e
is a weak unit, then (zex)™ = 0 for any x € R and aea = 0 for any
a€ RT,a®=0.

(78) Let A be a unital finite-dimensional Archimedean f-algebra over a to-
tally ordered field F'. Suppose that A contains a positive element e with
order n > 2 and dimpi(e) = 1, where i(e) = {a € R | ae = ea = a}.
Prove that if 1 is a basic element of A, then A is ¢-siomorphic to the
group {-algebra F[G] of a cyclic group G.

(79) Prove that the R = R[] defined in Example 4.3(2) is a partially ordered
ring.

(80) Prove that S U {0} in Examples 4.7 and 4.8 is a semigroup with zero,
that is, the multiplication on S U {0} is associative.

(81) Find an f-ring satisfying the polynomial constraint

f(z,y) = —(zy + yz) + (* 4+ 4°") > 0, for a fixed n > 1.

(82) Prove that a lattice-ordered division ring satisfying 22" > 0 for some
positive integer n must be a totally ordered field.
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(83) Prove that an f-semiprime f-ring with squares positive and an f-
superunit can be embedded in a unital /-semiprime ¢-ring with squares
positive.

(84) Let R be a unital f-ring which is division-closed. Prove that R/¢-N(R)
is a totally ordered domain.

(85) Let R be an ¢-unital ¢-ring. If I is an ¢-ideal of R with IN f(R) = {0},
then I is contained in each maximal ¢-ideal of R.

(86) Let C be a partially ordered field with the positive cone P. Prove that
if for any z € P, the real part of z is in R, then P C R.

(87) Prove that fofs = fa + af; + B8f4 with a, 8 € F* on page 166.

(88) Show that fyfo = fo and fofs = f4 on page 166.

(89) Prove that 1 = ca(a+b) and f1 fo + fof1 = cafs + cafs on page 166.

(90) This problem is actually a conjecture. For a totally ordered field F

and the n x n (n > 3) upper triangular matrix algebra T,,(F") over F,

we conjecture that each lattice order on T, (F') in which 1 2 0 can be

obtained by using Theorem 1.19(2) from a lattice order on T, (F) in

which 1 > 0.
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Chapter 5

¢-ideals of ¢-unital lattice-ordered
rings

In this chapter we always assume that R is an f-unital /-ring. We study
properties of ¢-ideals of R.

5.1 Maximal ¢-ideals

For an ¢-unital ¢-ring R, let Max,(R) denote the set of all maximal ¢-ideals
of R. For a subset X of R, define

$(X)={M e Maxy(R) | X € M},
and
hMX)={M € Maxy(R) | X C M}.

If X = {a}, we will write s(z) and h(x) instead of s({z}) and h({z}). It is
clear that s(X) = s({X)) and h(X) = h((X)), where (X) denote the ¢-ideal
generated by X. The sets s(X),X C R, form open sets of a topology as
shown in the following result.

Theorem 5.1. Let R be an {-unital (-ring.
(1) s(0) =0, s(1) =Maz(R).
(2) s(I)Ns(J) =s(INJ), for any £-ideals I and J.
(8) Uas(Ia) = s(Ualy), for any family {I,} of ¢-ideals of R.
Proof. (1) and (3) are clearly true. Let M be a maximal ¢-ideal. Then

M is l-prime. If INJ C M, then IJ C M, and hence I C M or J C M.
Thus (2) is true. O

By Theorem 5.1, the sets in {s(X) | X is a subset of R} constitute the
open sets of a topology on Max,(R) which is called the hull-kernel topology.

207
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We always endow Maxy(R) with this topology. A topological space basis for
a topological space is a collection of open sets such that each open set is a
union of open sets in the collection. Clearly s(a),a € RT form a topological
space basis for the open sets (Exercise 1). A subset of a topological space
is closed if its complement is open. Each h(X) is closed in Max,(R) since
h(X) = Max(R) \ s(X). Recall that the closure of a subset K of Max,(R)
is the smallest closed set containing .

Theorem 5.2. Let R be an {-unital {-ring.

(1) Maxe(R) is compact.
(2) The closure of a subset IC of Maxe(R) is h(N{M | M € K}).

Proof. (1) Let Maxy(R) C Uys(I,) for some f-ideals I, of R. Then
h(>>,Ia) = 0. Thus Y I, = R implies 1 € I, +--- + I,,,, for some
Io,, -+ ,1a,, and hence Max,(R) = U}_,s(Ia,). Therefore Max,(R) is
compact.

(2) Tt is clear that K C h(N{M | M € K}) and h(N{M | M € K}) is
closed. Suppose that £ C J and J is closed. Then J = Maxy(R) \ s(I)
for some ¢-ideal I of R. For any M € K, K C J implies that I C M, and
hence I C N{M | M € K}. Therefore h(N{M | M € K}) C J, that is,
h(N{M | M € K}) is the smallest closed set containing K. O

For an /-unital ¢-reduced f-ring R, we show that Max,(R) and
Max,(f(R)) are homeomorphic.

Lemma 5.1. Let R be an ¢-unital £-reduced {-ring.

(1) If P be an £-prime L-ideal of R, then for any x,y € f(R), xy € P or
x ANy € P impliesx € P ory e P.
(2) If R=1+J for some left (right) {-ideals I, J of R, then

(a) 1=x+y for some0<ze f(R)NI,0<ye f(R)NJ, and
(b)) 1l =a+b+c for some0 <ac f(RYNI, 0 < b e f(R)NJ,
ce f(RYNINJ, and ab = 0.

Proof. (1) By Lemma 4.10, f(R/P) is a totally ordered domain. For
z € f(R), T=x+ P € f(R/P). Thus if z,y € f(R) with zy € P or
x Ay € P, then (Z)() =00or TAF=0in R/P, and hence T=0 or § = 0,
thatis, z € Pory € P.

(2) Let 1 = w + z for some w € I and z € J. Since 1 > 0,

L= 1] = w+ 2| < fw| +|z],



{-ideals of £-unital lattice-ordered rings 209

and hence 1 = z+y for some 0 < z < |w|and 0 <y < |z|. Thusz € f(R)NI
and y € f(R)NJ.

Lett=zAyanda=x—1t,b=y—t. Wehave aAb =0, so ab = 0 since
a,b are f-element. Hence 1 =a+b+cwitha € f(RYNI,be f(R)NJ,
c=2te f(R)NINJ. O

For a left ¢-ideal I of R, define
(I:R)={a€R||a||lz| €I, for all x € R}.

Lemma 5.2. Let R be an C-unital £-ring and I be a left £-ideal of R.

(1) (I: R) is the maximal €-ideal contained in I.
(2) If I is a mazimal left £-ideal, then (I : R) is an £-prime £-ideal.

Proof. (1) It is clear that (I : R) is an f-ideal. If ¢ € (I : R), then
la] =la|]l € I, s0 (I : R) C I. Let J be an f(-ideal of R with J C I. Then
clearly J C (I : R).

(2) Suppose that I is a left maximal ¢-ideal and H, K are (-ideals of R
such that HK C (I : R). Assume that K ¢ (I : R), then K € I by (1),
and hence R=K +I. Thus H=HR=HK+HICI,so HC(I:R)by
(1) again. Therefore (I : R) is an ¢-prime f-ideal of R. O

Lemma 5.3. Let R be a unital f-ring. Then mazimal £-ideals and mazximal
left (right) £-ideals of R coincide.

Proof. First assume that R is ¢-simple. Then R is a totally ordered
domain by Theorem 1.27, so R has no left and right ¢-ideal except R and
{0} by Lemma 4.6.

Now let R be a unital f-ring and M be a maximal ¢-ideal. Then M C L
for some maximal left ¢-ideal L of R. Since R/M is ¢-simple, by the above
argument, L/M = {0} in R/M, so M = L, that is, M is a maximal left
l-ideal of R. Let I be a maximal left ¢-ideal. Then (I : R) is an {-prime
¢-ideal contained in I by Lemma 5.2. By Theorem 1.27, R/(I : R) is a
totally ordered domain, so I/(I : R) is an ¢-ideal of R/(I : R) by Lemma
4.6. Therefore [ is an ¢-ideal of R, so it must be a maximal ¢-ideal. ([

The above result is not true for general ¢-rings. For example, in the
matrix f-algebra M, (R) (n > 2) with the entrywise order, M,,(R) is simple,
but it contains more than one maximal left (right) ¢-ideals.

Two topological spaces are called homeomorphic if there is a one-to-
one and onto function between them that sends open (closed) sets to open
(closed) sets.
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Theorem 5.3. Let R be an (-unital {-reduced ¢-ring. Then Maxzy(R) and
Maxy(f(R)) are homeomorphic topological spaces.

Proof. Let M be a maximal f-ideal of R. If xzy € M N f(R), then
x € MNf(R)ory e MnN f(R) by Lemma 5.1. Thus M N f(R) is an ¢-
prime ¢-ideal of f(R). By Lemma 4.10, the ¢-ideals in an f-ring that contain
an {-prime f(-ideal form a chain, so there exists a unique maximal ¢-ideal of
f(R) that contains M N f(R). We denote this unique maximal ¢-ideal of
f(R) by My and define ¢ : Max,(R) — Maxe(f(R)) by @(M) = Mjy.

Let M, N € Maxy(R) and p(M) = o(N). If M # N, then R= M+ N,
and hence, by Lemma 5.1, there exist 0 < i € M N f(R) and 0 < j €
NN f(R)such that 1 =i+ j,s01 =i+ j € o(M) = ¢(N), which is a
contradiction. Thus (M) = ¢(N) implies M = N, so ¢ is one-to-one.

Now let I be a maximal ¢-ideal of f(R). Then [ is ¢-prime in f(R), so
by Theorem 1.27, f(R)™ \ I is closed under multiplication, and hence it is
an m-system. By Theorem 1.26, there is an /-prime ¢-ideal K of R such
that (f(R)* \I)NK = 0. Then (K N f(R)) C I. Let M be a maximal
¢-ideal of R containing K. Then M N f(R) and I must be comparable since
K N f(R) is ¢-prime in f(R), and hence M N f(R) C I. Thus I = My, so
® is onto.

Let K = {M, | @ € T} be a closed set in Maxy(R). We show that
oK) = {(Ma)f | € T'} is closed in Max(f(R)). Let I be a maximal
(-ideal of f(R) such that

I 2 Naer(Ma) s 2 Naer (Mo N f(R)).

IfI¢& p(K), then MyNf(R) € I for each « € T, and hence (M,Nf(R))+I =
f(R) for each v € I" since I is maximal. Thus by Lemma 5.1 for each o € T,
there exist Zo, Yo € f(R),

0< 20 € (Mo f(R)\I and 0<y, € I\ (Mo f(R))

such that 1 = z4 + yo. Let 2o A Yo = 2. Then 0 < z, € (Mo N f(R)) NI
for each « € I". Since y, € M, and z, € My, Yo — 2o € M., for each
a € T. Then {s(ya — 2a) | @ € I'} is an open cover for K, and hence a finite
subcover s(y; — z;),i = 1,...,n, can be extracted out of this cover because
Max,(R) is compact and K is closed. Then for every M, € K, there exists
yj — 2 & My, for some 1 < j < n. Since (z; — zj) A (y; — 2z;) = 0 implies
that (z; — z;) € M, by Lemma 5.1, A", (z; — 2;) € M, for each o € T".
Thus

Nzt (i — 2i) € Naer(Ma N f(R)) € Naer(Ma)y € 1,
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so xp — zx € I for some 1 < k < n by Theorem 1.27, and hence xj € I,
which is a contradiction. Therefore, I € ¢(K). We have shown that ¢(K)
is equal to its closure h(Naer(My)y), so it is closed.

Now let J = {I, | « € T'} C Max,(f(R)) be closed. We verify that
0 Y(J) is closed in Max,(R). Let M € Max,(R) be in the closure of
o UT). If Naerla € My. Then (Naerls) + My = f(R), so 1 = x + v,
where 0 < z € (Naerla) \ My and 0 <y € My \ (Naerls). Since z € I,
for each o € T', we have y ¢ I, for each « € T'. Let x Ay = 2. Then
(x—2)A(y—2) =0. Let I, = (Ma)y 2 My N f(R), where M, is a
maximal ¢-ideal of R for each a € I'. Then (y — 2) ¢ I, for each o € T
implies (y — z) ¢ M, for each o € I since y — z is an f-element, so
(x — 2z) € M, for each a € I' by Lemma 5.1. However NyerM, C M since
o Y(J)={M, | a €T}, and hence z — 2 € M N f(R) C My. It follows
that © € My, which is a contradiction. Hence Nqerla € My and My € J
since J is closed. Then it follows that M € ¢~1(J). Therefore p=1(7) is
closed in Max,(R). O

Corollary 5.1. Suppose that R is an ¢-unital £-reduced -ring.

(1) Each £-prime £-ideal of R is contained in a unique mazimal ¢-ideal.

(2) Every mazimal (-ideal of R is contained in a unique mazimal left
(right) ¢-ideal of A, and each maximal left (right) £-ideal of A con-
tains a mazimal £-ideal of A.

Proof. (1) Let I be an ¢-prime ¢-ideal of R. Then I is contained in a
maximal /-ideal of R. Suppose that M and N are maximal /-ideals both
containing I. Then I N f(R) is contained in M N f(R) and N N f(R).
Let My and Ny be defined as in Theorem 5.3. Then M; and Ny are
comparable since they both contain I N f(R) which is ¢-prime in f(R), and
hence My = N¢. Therefore, M = N by Theorem 5.3. Thus I is contained
in a unique maximal ¢-ideal.

(2) Let M be a maximal ¢-ideal of R. Then M is contained in a maximal
left ¢-ideal by Zorn’s lemma. Now suppose that M is contained in two
different maximal left ¢-ideals L; and Ls. Then we have M N f(R) C
LiNnf(R) and L2 N f(R). Since L1 N f(R) and Lo N f(R) are left ¢-ideals of
f(R), they are contained in some maximal left ¢-ideals of f(R), and since
every maximal left (right) ¢-ideal in f(R) is a maximal ¢-ideal by Lemma
5.3, there exist maximal ¢-ideals I and I of f(R) such that L1 N f(R) C I
and Lo N f(R) C Is. Since M N f(R) is contained in I; and Iy, I; = Is.
Now R = L1 + Lo implies 1 =i+ 7, where 0 < i€ Ly and 0 < j € Lo
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by Lemma 5.1. Since ¢ and j are f-elements, i € L; N f(R) C I; and
je€ Lanf(R) C Iz, and hence 1 =i+ € I} = I, which is a contradiction.
Thus each maximal f-ideal M of R is contained in a unique maximal left
{-ideal.

Now let L be a maximal left ¢-ideal of R. Then, by the same argument
as above, L N f(R) C My for some maximal ¢-ideal M of R, where M; is
defined as in Theorem 5.3. If M € L, then R = M + L, and hence 1 =i+,
where 0 <i€ M and 0 < j € L,so 1€ My, which is a contradiction. Thus
MCL. O

For a unital f-ring, by Lemma 5.3, maximal ¢-ideals and maximal left
(right) ¢-ideals coincide. By Corollary 5.1, in an f-unital ¢-reduced ¢-ring,
maximal ¢-ideals and maximal left (right) ¢-ideals are in one-to-one corre-
spondence. However maximal ¢-ideals and maximal left (right) ¢-ideals are
generally different in ¢-unital ¢-reduced /¢-rings. We provide an example
using differential polynomial rings.

Example 5.1. Let R be a ring and § be a derivation on R. Define R[z;d]
to be the set consisting of all left polynomials f(z) = 3 a;z*. With coor-
dinatewise addition, R[x;d] becomes a group. Introduce the multiplication
by repeatedly using xa = ax + d(a) for @ € R. Then R|z;d] is a ring (Ex-
ercise 3), called a differential polynomial ring. If R is a domain, then so is
Riz; d].

For an f-ring R and a positive derivation 6 on R. If we order R[z;d]
coordinatewisely, then R|[x; ] becomes an ¢-ring. For instance, let R = R[y]
be the polynomial ring in y with the total order in which a polynomial is
positive if the coefficient of highest power is positive. Then R is a totally
ordered domain. Take § as the usual derivative on R. Then § is a positive
derivation on R. In the following, we assume R = R[y] and § defined above
and show that R|x;d] is {-simple, however it contains nonzero maximal left
l-ideal.

Let I be a nonzero ¢-ideal of R[z;¢]. Take a nonzero positive left poly-
nomial f(x) = apx™ + -+ 4+ a1z + ag € I with the smallest degree n. We
claim that n = 0. Suppose that n > 1. Since R is /-simple, there is b € RT
such that 1 < ba, (Exercise 4). Thus 2™ < bf(x) implies that z™ € I.
Then

Py =" yr+1)=a2"2(yz? +22) = =yz" +na"t el

implies that nz"~! € I, so 2"~! € I, which is a contradiction with the
fact that f(x) has the smallest degree in I. Hence we must have n = 0, so
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0 # ap € I implies that the identity element 1 € I. Therefore I = R, that
is, R is ¢-simple.

It is clear that x is a right d-element of R[x; ] in the sense that if uAv =0
for some u, v € Rlx; ], then ux Ava = 0. Thus it is straightforward to check
that R[x;d]z is a maximal left ¢-ideal of R[x;0] (Exercise 5). We also note
that x is not a d-element since 1 A yz = 0, however

zAz(yz) =z A (yr + D)z =2 A (y2* + z) = 2.

A topological space is called Hausdor(fif for any two distinct points x, ¥,
there exist disjoint open sets containing x and y respectively. Let X be a
compact Hausdorff space and C(X) be the ring of real-valued continuous
functions on X. With respect to the coordinatewise order, C'(X) is an f-
ring (Exercise 2). In 1947, I. Kaplansky proved that if C(X) and C(Y") are
isomorphic as lattices for two compact Hausdorff spaces X and Y, then X
and Y are homeomorphic topological spaces [Kaplansky (1947)]. In 1968, H.
Subramanian extended Kaplansky’s argument to f-rings and proved that
if two unital commutative ¢-semisimple f-rings A and B are isomorphic
as lattices, then Max,(A) and Max,(B) are homeomorphic [Subramanian
(1968)]. Actually H. Subramanian’s proof works for f-rings that are not
commutative. In the following we present H. Subramanian’s proof for f-
rings and then consider how to generalize it to more general /-rings.

We need some preparations to carry out the proof. Let L be a lattice.
A lattice-prime ideal P of L is a nonempty proper subset of L satisfying
the following properties.

(1) for all a,be P,aVbe P,
(2) b<a,ae Pandbe L =>be P,
(3) foralla,be L,aAbe P=ac PorbeP.

Let A be a unital /-semisimple f-ring. Recall that ¢-semisimple means
that the intersection of all maximal f-ideals of A is zero. Then A must be
reduced by Theorem 1.27(1). For a lattice-prime ideal P and a maximal
l-ideal M of A, we say that P is associated with M if for any x € P, y € A,
(y—2x)" €M =yeP.

Theorem 5.4. Let R and S be unital £-semisimple f-rings. If they are
isomorphic as lattices, then Maxe(R) and Maxy(S) are homeomorphic.

Proof. We achieve the proof by a series of steps.
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(I) Each lattice-prime ideal is associated with exactly one mazimal (-
ideal.

Suppose that P is a lattice-prime ideal. If P is not associated with any
maximal ¢-ideal, then for each maximal ¢-ideal M, there exist x,,y, such
that o € P, yo € P and yet (yo — o)~ & My. Define

$a = 5((ya —a)”) ={M € Maxy(R) | (yo —za)” & M}.
Then {s4} is an open cover for Max,(R). Since Max,(R) is compact, there

exists a finite subcover {s;}, ¢ = 1,--- ,n for some positive integer n. Let
=V 2,y = ANy Since
(y—2)" =@—y) V0> (2; —y) VO=(y; — )",

foreachi=1,---,n, (y—z)~ & M, for each maximal ¢-ideal M, and hence
(y —x)" € M, since (y —x)"(y —2)~ = 0. Thus A is ¢-semisimple implies
that (y —2)" =0,s0y <z =V 2, € P. Then y = A" y; € P and P
is prime implies that y; € P for some 1 < j < n, which is a contradiction.
Therefore P must be associated with at least one maximal ¢-ideal.

Suppose that P is associated with two different maximal ¢-ideals, say M
and N. Then R= N+ M. By Lemma 5.1, 1 =a+b+cwitha € N,be M,
ce MNN,and ab=0. Take z € P and y & P. Let

z=alx—1)+bly+1).

In R/M,
z+M=(a+M)((z—1)+M)+b+M)((y+1)+M)=(z—1)+ M,
since a+ M = 14+ M and b+ M = 0. Similarly in R/N, z+N = (y+1)+N.
Thus (z —x)” + M =1+ M implies that (z — z)~ € M, so z € P. Then
(y—2) + N =1+ N implies that (y — 2)~ ¢ N, so y € P, which is a

contradiction. Thus P is associated with at most one maximal ¢-ideal.

(IT) Two lattice-prime ideals Py, Py are associated with the same maxi-
mal {-ideal if and only if P, N Py contains a lattice-prime ideal.

Suppose that P; and P, are associated with the same maximal ¢-ideal
M. Choose x € P; and y € P,. Write a = (z Ay) — 1 and define

P={weR|(w—-a)T €M}
We leave it to the reader to check that P is a lattice-prime ideal associated
with M (Exercise 6). Let € P. Since
(r—a)t=@r—(Ary)+)T=@r—z+1)"V(ir—-—y+1)T,

(r—z+1)*",(r—y+1)" € M. Hence we must have (r —z)~ ¢ M and
(r—y)~ € M (Exercise 7). Therefore r € P, N P, and hence P C P, N P,.
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Conversely suppose that P, Py, P, are lattice-prime ideals associated
with M, My, Ms, respectively, and P C P, N P,. We show that M =
M; = M. If M # M, then similar to the proof in (I), for a € P and
b & Py, there exists ¢ such that

c+M=(a—1)+Mand c+ M, = (b+ 1) + M.

Thus ¢ € P C P; and then b € P;, which is a contradiction. Therefore
M = M;. Similarly M = M,.

(III) Let a be fized element in R, and let K = {M,, | o € T'} be any
nonempty set in Maxe(R). Then a mazimal ¢-ideal M belongs to the closure
of K if and only if there exists a lattice-prime ideal P associated with M
such that P contains A(K), which is the intersection of all lattice-prime
ideals which contain a and are also associated with any member in K.

Suppose that M is in the closure of K. Then

P={reR|(r—a)teM}and P, ={zr € R| (z—a)t € M,}
are lattice-prime ideals associated with M and M,, respectively (Exercise
6). Clearly a € P, for each a € T. Let r € A(K), then r € P, for each
a €T. Thus (r —a)™ € M, for each M, € K, so (r —a)* € M since M is
in the closure of K. Therefore r € P, that is, A(K) C P.
Conversely, suppose that M is not in the closure of L. Then
I=()MsgM,
ael
so R =14 M. Let P be any lattice-prime ideal associated with M. Take
b ¢ P. By Lemma 5.1 and a similar argument as in (I), there exists ¢ € R
such that
c+My=(a—1)+My,VaeT andc+ M = (b+1)+ M.

Thus (¢ —a)~ & M, for any a € T', so ¢ € A(K) by the definition of A(K).
Then (b—¢)~ € M and b ¢ P imply that ¢ ¢ P, so A(K) is not contained
in any lattice-prime ideal associated with M.

We are ready to give the final proof of Theorem 5.4. Suppose that ¢ is a
lattice isomorphism from R to S. Then clearly a subset P of R is a lattice-
prime ideal of R if and only if ¢(P) is a lattice-prime ideal of S (Exercise
8). Two lattice-prime ideals are called equivalent if they are associated with
the same maximal ¢-ideal. Then this is an equivalence relation on the set
of all lattice-prime ideals (Exercise 9). For a lattice-prime ideal P, we use
[P] to denote the equivalence class containing P. Define ¢: Max,(R) —
Maxy(.S) by

M = [P] = [p(P)] = N,
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where M is a maximal ¢-ideal of R, P is a lattice-prime ideal of R associ-
ated with M, and ¢(P) is the lattice-prime ideal of S associated with the
maximal ¢-ideal N of S. By (I) and (II), ¢ is well-defined, one-to-one and
onto (Exercise 10).

Let b € S and b = ¢(a) for some a € R. For a nonempty subset K
in Max¢(R), A(K) is the intersection of all the lattice-prime ideals of R
that contain a and are associated with any member in I, and A((K)) is
the intersection of all the lattice-prime ideals of S that contain b and are
associated with any member in ¥ (K). We claim that

P(AK)) = A(p(K)).

Let y € ¢(A(K)). Then y = (z), where z € A(K). Let I be a lattice-
prime ideal of S which contains b and is associated with some N € ¢ (K).
Let I = ¢(P) and N = ¢(M). Then a € P, P is a lattice-prime ideal of
R and (M) = N imply that P is associated with M. Thus A(K) C P,
sox € Pand y = ¢(x) € I = ¢(P). Therefore y € A((K)), that is,
w(A(K)) € A((K)). Similarly we can show that A(¢(K)) C ¢(A(K))
(Exercise 11).

Now let K be a closed set in Maxy(R). We show that ¢ (k) is closed in
Max,(S). Let N be in the closure of ¢(KC). By (III), there exists a lattice-
prime ideal T of S associated with N such that I contains A(y¥(K)) =
©(A(K)). Let I = ¢(P) and N = ¢(M). Then P is a lattice-prime ideal
of R associated with M and P contains A(K). Thus by (IIT), M is in K
since it is closed, and hence N € ¢(K). So ¢(K) is closed. By a similar
argument, it can be shown that if J is a closed subset of Max,(S) and
J = ¢(K) for some K C Maxy(R), then K is also closed. Therefore 1
is a homeomorphism between Max,(R) and Max,(S). This completes the
proof. O

In the following, we consider how to generalize Theorem 5.4 to f-unital
{-reduced f-semisimple f-rings. Suppose that R is an f-unital ¢-reduced
{-semisimple ¢-ring. A lattice-prime ideal P of R is called dominated, if for
any x,y € R,z € P and (y—x)" A1 =0 imply y € P. Another way to say
it is that if x € P and y < x+ 2z with zA1 = 0, then y € P. A lattice-prime
ideal P of R is called associated with a maximal ¢-ideal M of R if x € P
and (y —x)T A1 ¢ M imply y € P.

We notice that if R is an f-ring, then the identity element 1 is a weak
unit, and hence (y —x)* A1 =0 if and only if (y — )™ = 0, that is, y < z.
Thus dominated lattice-prime ideals are just lattice-prime ideals when R is
an f-ring.
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By similar proofs used in Theorem 5.4, we have the following facts whose
proofs are omitted and the reader is referred to [Ma, Wojciechowski (2002)]
for more details.

() Each dominated lattice-prime ideal is associated with exactly one
maximal {-ideal.

(I") Two dominated lattice-prime ideals Py, Py are associated with the
same mazimal £-ideal if and only if Py N Py contains a dominated lattice-
prime ideal.

(IIT’) Let a be fized element in R, and let K = {M,, | o € T'} be any
nonempty set in Maxe(R). Then a mazimal £-ideal M belongs to the closure
of K if and only if there exists a dominated lattice-prime ideal P associ-
ated with M such that P contains A(K), which is the intersection of all
dominated lattice-prime ideals which contain a and are also associated with
any member in K.

Theorem 5.5. Let R and S be two (-unital {-reduced £-semisimple £-rings.
If there exists an (-isomorphism between two additive (-groups of R and S
which preserves identity element, then Maxe(R) and Maxe(S) are homeo-
morphic.

Proof. Suppose that ¢ : R — S is an {-isomorphism between the additive
L-group of R and the additive ¢-group of S with ¢(1) = 1.

We first show that for a subset P of R, P is a dominated lattice-prime
ideal of R if and only if ¢(P) is a dominated lattice-prime ideal of S.
Suppose that P is a dominated lattice-prime ideal of R. Then ¢(P) is
a lattice-prime ideal of S. Suppose z,y € S such that z € ¢(P) and
(y—2)" A1 =0. Let z = p(a) and y = ¢(b), where a € P and b € R.
Since

plo—a)" A =¢l(b—a)"]Ap(1) = (y —2)" A1=0,
(b—a)tA1=0,s0be P and y=p(b) € ¢(P). Thus ¢(P) is dominated.
Similarly, if o(P) is a dominated lattice-prime ideal of S, then P is also
a dominated lattice-prime ideal of R. Therefore ¢ induces a one-to-one
correspondence P — ¢(P) between the set of all dominated lattice-prime
ideals of R and the set of all dominated lattice-prime ideals of S.

Similarly to the proof of Theorem 5.4, two dominated lattice-prime ide-
als are called equivalent if they are associated with the same maximal /-

ideal. Let [P] denote the equivalence class containing the dominated lattice-
prime ideal P. Define Max,(R) — Max,(S) by

M = [P] = [p(P)] = N,
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where M € Maxy(R), P is a dominated lattice-prime ideal of R associated
with M, and P is associated with N € Max,(S). Then by the same
argument in Theorem 5.4, Max,(R) and Max,(S) are homeomorphic.

The conditions that R, S are ¢-reduced and ¢(1) = 1 in Theorem 5.5
cannot be dropped as shown in the following examples.

Example 5.2.

(1) Let R be the direct sum of two copies of the (-field Q[v/2] with the en-
trywise order. Then R is f-unital ¢-reduced ¢-semisimple ¢-ring. Clearly
Max,(R) has two elements. Let S be the ¢-ring M»(Q) with the entry-
wise order. Then S is an f-unital ¢-ring, however S is not f-reduced.
Since S is a simple ring, Max,(.S) contains one element. Thus Max,(R)
and Max,(S) cannot be homeomorphic.
Define ¢ : R — S by

o(a+bv2,d +cV2) = (Z Z) :
Then ¢ is an f-isomorphism between additive ¢-groups of R, S and
o(1) =1 (Exercise 12).

(2) Let R be the direct sum of two copies of Q and S = Q[v2] be the
(-field with the coordinatewise order. Define f : R — S by f((a,b)) =
a+bv2. Then f is an f-isomorphism of the additive /-groups, however
f((1,1)) = 1 + /2 is not the identity element in S.

A subset in a topological space is called a clopen set if it is closed and also
open. We characterize clopen sets in Maxy(R). Firs we consider f-rings.

Lemma 5.4. Let A be a unital f-ring. K C Max,(A) is clopen if and only
if K =s(x), where x € A is an idempotent element.

Proof. “<” Since K = s(x), K is open. Now as (1 — x) = 0, for each
M € Max(A), z € M or (1 —z) € M, but not both. Thus z ¢ M if and
only if (1 —x) € M, so K = h(1 — z) is also closed.

“=7” Since K is open, K = Ugeps(x) for some B C AT. Since K is also
closed, it is compact, so K = U ;s(z;) = s(x), where z = VI x; > 0.
Similarly Max,(A4) \ K = s(y), for some 0 < y € A. Thus s(z) Us(y) =
Maxy(A) and s(z) Ns(y) = 0. Thus = Ay is contained in every maximal
l-ideal of A. Let u =2 —xAyand v =y —x Ay. Then u Av =0, and
s(z) = s(u) and s(y) = s(v). Let (u+ v) be the ¢-ideal of A generated by
w4+ v. Since u + v is not contained in any maximal ¢-ideal of A,

A= (u+v)={z||z| <r(u+v)s, wherer,sc A"},
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and hence 1 < r(u+ v)s = rus + rvs for some r,s € A*. Hence 1 =a + b,
where 0 < a < rus and 0 < b < rvs. Since u Av = 0, rus A rvs = 0, so
a Ab=0. However because A is an fring, a A b = 0 implies ab = 0. Hence
a? = a, and b = b. Finally we show that s(u) = s(a). It is clear that if M €
Max,(A) and a € M, then v ¢ M, so s(a) C s(u). Similarly, s(b) C s(v).
If M € s(u)\ s(a), then b ¢ M since 1 = a+b, and hence M € s(b) C s(v),
which contradicts with that s(u) N s(v) = 0. Thus s(u) = s(a). Therefore,
K = s(a), where a € A is an idempotent. O

Corollary 5.2. Let R be an L-unital -reduced -ring. A set KK C Maxy(R)
is clopen if and only if IK = s(x), where x € f(R) is an idempotent.

Proof. “<” Since K = s(x), K is open. Since z(1 —z) =0, and =, (1 —
x) € f(R), by Lemma 5.1, for each M € Maxy(R), z € M or (1—z) € M,
but not both. Thus z € M if and only if (1 — z) € M, and hence K =
h(1 — z). Hence K is closed.

“=” By Theorem 5.3, Max,(R) and Max,(f(R)) are homeomorphic
under the mapping ¢ : M — My, where M} is the unique maximal /-ideal
of f(R) that contains M N f(R). Let K be a clopen set in Maxy(R). Then
©(K) is clopen in Max,(f(R)). By Lemma 5.4, there exists an idempotent
element x € f(R) such that

¢(K) ={I € Max,(f(R)) | = ¢ I}.
We show that I = s(z). Let M € K. Then o(M) € ¢(K), so z & o(M).
Since M N f(R) C p(M), x ¢ M, and hence M € s(x). Thus K C s(z).
Now let N € s(x). Then 1 —xz € NN f(R) C ¢(N), and hence x & p(N).
Thus ¢(N) € ¢(K), so N € K. Therefore s(x) C K. This completes the
proof. O

5.2 (¢-ideals in commutative £-unital £-rings

In this section, R denotes a commutative f-unital ¢-reduced ¢-ring. Recall
that an /-prime f-ideal is called a minimal ¢-prime ¢-ideal if it contains no
smaller ¢-prime ¢-ideal. Let Ming(R) denote the set of all minimal ¢-prime
l-ideals of R endowed with the hull-kernel topology, that is, open sets in
Min,(R) are

S(X) = {P e Ming(R) | X ¢ P},
and closed sets in Miny(R) are

H(X)={P € Min(R) | X € P},
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where X C R. To reduce possible confusion to the reader, for a subset X
of R, we use S(X) (H(X)) to denote the open (closed) sets in Ming(R) and
use s$(X) (h(X)) to denote the open (closed) sets in Max,(R).

Recall that for € R, {(z) = {a € R | |a|]lx|] = 0} is called the ¢-
annihilator of x, which is an f-ideal of R. As a direct consequence of
Theorem 1.30, we have the following result. We leave the proof as an
exercise (Exercise 13).

Lemma 5.5. For each element a € R, H({(a)) = S(a) and S({(a)) =
H(a).

Theorem 5.6. Let R be a commutative £-unital £-reduced ¢-ring. Then
Ming(R) is a Hausdorff space with a topological space basis consisting of
clopen sets.

Proof. For P, # P, in Miny(R), take x € P, \ P,. Then P, € H(x)
and P, € H(¢(z)). By Lemma 5.5, H(z) and H({(x)) are both open, and
H(z) N H(¢(x)) = 0. Therefore Min(R) is a Hausdorff space. We know
that {S(a) | a € R} is a base for the open sets and each S(a) is clopen. O

Theorem 5.7. Let R be a commutative £-unital ¢-reduced £-ring. Then
Ming(R) is compact if and only if for each x € R there exists y € RT such
that xy = 0 and £(z) N £(y) = {0}.

Proof. First assume that Ming(R) is compact. For z € R*, if P €
Ming(R) \ S(x), then by Theorem 1.30, |z| € P implies that there is 0 <
z € R such that |z|z =0 and z € P, and hence P € S(z). It follows that

Mln@(R) = S(ﬂ?) U (UOSZEZ(:E)S(Z))'
Then Ming(R) is compact implies that

Ming(R) = S(x) US(y1) U--- U S(yy)
for some 0 < yq1,-+- ,yn € £(z). Let y = y1 + -+ + yn. Then S(y) =
S(y1)U---US(yn) and y € £(x) (Exercise 14), so xzy = 0 and S(y) U S(x
= Min,(R). Hence ¢(x) N £(y) is contained in each minimal ¢-prime ¢-ideal
of R, and hence {(z) N {(y) = {0} since R is ¢-reduced.

Conversely suppose that the given conditions are satisfied, we show that
Ming(R) is compact. Let Ming(R) = U,S(I,) for some ¢-ideals I, of R.
Let I =3 Io. We have S(I) = Ming(R), so for each P € Miny(R), I  P.
We claim that there exists 0 < x € I such that ¢(z) = {0}. Suppose for
each 0 <z €I, {(x) # {0}. We derive a contradiction. Let

M ={a€ R" | {(a) =0}.
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Then M is closed under the multiplication of R and I N M = (. Thus
M is an m-system. By Theorem 1.26, I C P for some {-prime (-ideal P
and P N M = (. We shall prove that P is minimal. Given 0 < z € P,
there exists w € RT such that zw = 0 and £(z) N ¢(w) = {0}. Since
Uz +w) CL(z) Nl(w), £(z + w) = {0}, and hence z +w € M. It follows
that z+w & P, so w ¢ P. By Theorem 1.30, P is a minimal ¢-prime /-ideal
of R. This contradicts with the fact that I is not contained in any minimal
¢-prime ¢-ideal. Therefore there exists 0 < z € I such that ¢(x) = {0}.
Suppose that © € I, +---+1q,. For P € Min,(R), if Io,,--+ , 1o, C P,
then z € P implies that xy = 0 for some 0 < y ¢ P by Theorem 1.30, so
¢(x) # {0}, which is a contradiction. Hence Ming(R) = S(In, )U---US(14, ).
Therefore Min,(R) is compact. O

For an ¢-prime ¢-ideal P, we define Op = {a € R | ¢(a) € P}. Clearly
Op is an f-ideal and Op C P (Exercises 15). By Theorem 1.30, an ¢-prime
{-ideal P is minimal if and only if Op = P.

Theorem 5.8. Let R be a commutative £-unital £-reduced £-ring and M be
a mazimal {-ideal of R.

(1) For x € R, x € Oy if and only if there exists 0 < e € M N f(R) such
that xe = x.

(2) Forxz € R, if x € Oy, then h(zx) is a neighborhood of M in Maxe(R).
If R is {-semisimple, then the converse is also true.

(3) M is the only mazimal £-ideal containing O)y.

(4) Every (-prime l-ideal of R lies between Oy and N for a unique mazimal
{-ideal N of R.

Proof. (1) Suppose that ze = z for an element e € M N f(R). Then z(e—
1) = 0, and hence z(e—1)* = z(e—1)~. So we have [z(e—1)T| = |z(e—1)"|.
Because (e—1)* and (e—1)~ are both felements, |z|(e—1)" = |z|(e—1)".
Since (e —1)™ A (e — 1)~ = 0 implies that

(e=DF(e-1)"=(-1) (e~ =0,
we have
zl[(e = 1)*]? = |z[[(e = 1)7]* =0,

that is, [(e — 1)T]? € 4(x) and [(e — 1)7]* € {(x). Now since e € M,
(e—1)¢ M, so

(e—1)" ¢ Mor(e—1)" &M,
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and hence by Lemma 5.1
[(e=1)"* ¢ Mor [(e—1)7]* ¢ M.

Thus ¢(z) € M, and hence z € Oyy.

Now let © € Opr. Then there exists y € R\ M such that |z|ly| = 0
since £(z) € M. Let (y) be the ¢-ideal of R generated by y. Since y & M,
R =M+ (y), and hence 1 = e+ z, where 0 < e € M and 0 < z < r|y| for
some 7 € RT. Thus |z|z = 0, and hence |z| = |z|e. Since 0 < e <1, e is an
felement, and |z| = |z|e implies that = xe (Exercise 29).

(2) Let @ € Ops. So there exists y ¢ M such that |z|ly| = 0. Then
M € s(y) C h(z). Thus h(z) is a neighborhood of M. Suppose that R is
{-semisimple and M € s(y) C h(z) for some y € R. Since s(y) = s(|y|) and
h(z) = h(|z]), M € s(Jy]) C h(|z]). Let N € Maxy(R). If |y| € N, then
N € s(ly|) € h(|x]), so |z| € N. Thus |z||ly] € N for each N € Max,(R).
Since R is f-semisimple, |z||y] = 0 and 0 < |y| € M. Thus ¢(z) € M, and
sox € Oyy.

(3) Let L be a maximal ¢-ideal of R such that O C L and L # M.
Then R =L+ M. By Lemma 5.1, there exist 0 <a € M\ Land 0<b €
L\ M such that ab= 0. Since a & L, a & Oy, so ¢(a) C M. Hence b € M,
which is a contradiction. Thus L = M.

(4) Let P be an ¢-prime ¢-ideal of R. By Corollary 5.1, P is contained
in a unique maximal ¢-ideal N of R. Let x € On. Then ¢(z) € N, so
{(x) € P, and hence x € P. Thus Oy C P. O

The following example shows that the condition that R is ¢-semisimple
cannot be dropped in Theorem 5.8(2).

Example 5.3. Let A = R[z| be the polynomial ring in one variable over
R with the coordinatewise order. Then A is a commutative f-unital (-
ring with the unique maximal ¢-ideal M = zA. Consider the direct sum
A& A of two copies of A. Then M & A is a maximal /-ideal of A & A and
Opmaea =08 A. Clearly M@ A € s((1,0)) C h((z, 1)), but (x,1) € Opga.

An (-ideal T is called a pure ¢-ideal if R = I + ¢(z) for each z € I. For
an (-ideal I, define m(I) = {a € R| R=1+/4(a)}. Then m(I) is an ¢-ideal
and [ is pure if and only if m(I) = I (Exercise 16).

Theorem 5.9. Let R be a commutative £-unital £-reduced £-ring and I, J
be {-ideals.

(1) For each mazimal £-ideal M of R, Oys is a pure £-ideal.
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(2) m(I) is a pure l-ideal, and

n=Ju-yg
gel
(8) m(I) ={x € R |z = ax for some0 <a e INf(R)}. In particular,
m(I) C 1.
(4) W(I) = h(m(I)).
(5)

I) =()Own, where M € h(I).

(6) m(I)+m(J)=m(I+J).
(7) For an L-prime £-ideal P, m(P) = O for some mazximal £-ideal M
and Op is a pure l-ideal if and only if Op = Oyy.

Proof.

(1) Let « € Op. Then £(x) € M, so R = M + 4(z). By Lemma
51, 1 = a+b+c¢, where 0 < a € f(R)NM, 0 < b € f(R)N{(x),
ce f(R)NMnNL(x), and ab=0. We have b € £(a)\ M, and hence a € O),.
Thus 1 € O + (), so R = Op + £(z).

(2) First we show that

= U L1 —g).

gel
Let
zelJla-yg)
gel

Then |z||1—g| = 0 for some g € I. So 1—g € ¢(x), and hence R = I +{(z).
Thus « € m(I). Conversely, if z € m(I), then R = I + ¢(x), and hence
1=c+d, where 0 < ce€I,0<de{(x). Therefore, |x| = c|z|, and hence
x€l(l—c)withcel. So

xEUé(l—g)

gel

To see that m(I) is an ¢-ideal we just have to show that m(I) is closed
under the addition of R. Let z,y € m(I). Then

R=T+40z)=1+{(y).
Let
l=a+b=ad +V,
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where 0 < a,a’ € I, 0<b € {(x), and 0 <" € {(y). Then
1= (a+0b)(ad +V)=ad +ab +ba’ +0V €I +{(z+y),

so R=I+{(x+y). Thus z +y € m(I).

Finally, to see that m(I) is a pure (-ideal, let a € m(I). Then R =
I + ¢(a), and hence, by Lemma 5.1, 1 = z 4+ y + z, where 0 < a € I,
0<ye€da),0<zelInta), and zy = 0. Since y € ¢(x), we have
1 € I+ {(z), and hence R = I + {(z). Thus z € m(I). This implies
l=z+y+ze€m(I)+{(a), and hence R = m(I) + £(a). Hence m(I) is a
pure f-ideal.

(3) Let « € m(I). Then R = I + ¢(x), and hence 1 = a + b for some
0<ael,0<bel(r). Thus x = ax and 0 < a € I N f(R). Conversely,
let x = ax for some 0 < a € IN f(R). Then x(1 —a) =0. Since 1 —a €
f(R), (1 —a)? > 0is an f-element, and hence z(1 — a)? = 0 implies that
|z|(1 — a)? = 0. Hence

(1—a)*>=1-2a+a® € l(x).

Since a € I, we have R =T + £(z). Thus z € m(I).

(4) Since m(I) C I, h(I) C h(m(I)). Now let M be a maximal (-
ideal of R and m(I) C M. If I M, then R = I + M. By Lemma 5.1,
l=a+b+c,where0<aecl,0<beM,0<celINM,andab=0.
Thus b € ¢(a), so R = I + {(a), and hence a € m(I). So a € M, which
implies 1 =a + b+ ¢ € M, which is a contradiction. Thus I C M.

(5) If z € m(I), then R =1+4(x), so {(x) € M for each M € h(I), and
hence x € Oy for each M € h(I). Conversely, suppose z € Oy for each
M € h(I). If I+4¢(x) # R, then there exists a maximal ¢-ideal N such that
I+4(x) CN. Since I C N and x € Oy, ¢(x) € N, which contradicts with
that £(x) C N. Thus I + ¢(x) = R, so x € m(I).

(6) From (4), we have

h(m(I) +m(J)) = ) () h(m(
7h1ﬂh

= h(I+J).

Then from (5), we have
m(m(I) +m(J)) = (|On, where N € h(m(I) +m(J))

:FKM,MmeNth+£
=m(I+J).
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Thus m(I+J) € m(I)+m(J) by (3). Since clearly m(I)+m(J) C m(I+J),
we have m(I + J) = m(I) + m(J).

(7) Let P C M, where M is the unique maximal ¢-ideal of R containing
P. By (5), m(P) = Oypy. Since Oy is the largest pure £-ideal contained in
M by (5), if Op is a pure ¢-ideal, then Op C Oypy. Clearly Oy COp C M
is always true. Thus Op = Oy,. [l

The following result characterizes those ¢-rings R for which each princi-
pal f-ideal is a pure f-ideal. An f-ideal I of R is called a direct summand if
there exists an f-ideal J such that R is a direct sum of I and J as ¢-ideals,
that is, R=1@ J.

Theorem 5.10. Let R be a commutative £-unital €-reduced €-ring. Then
the following statements are equivalent.

(1) Every {-prime (-ideal of R is mazimal.
(2) Every principal ¢-ideal of R is a pure {-ideal.
(8) Every principal (-ideal of R is a direct summand.

Proof. (1) = (2). First we notice that (1) implies that every ¢-prime
l-ideal of R is minimal (Exercise 17). Let a € R and b € (a). If R #
(a) + £(b), then (a) + £(b) C M for some maximal ¢-ideal M. Since M is a
minimal ¢-prime ¢-ideal and b € M, £(b) € M by Theorem 1.30, which is a
contradiction. Therefore, R = (a) + £(b), so {(a) is a pure {-ideal.

(2) = (3). Let a € R. From (2), we have R = (a) + £(a). Let b €
{(a) N €(a). Then |b| < rla| for some r € RT and |b||a] = 0, so |b]?> = 0, and
hence |b| = 0 since R is ¢-reduced. Thus b = 0, so {(a) N ¢(a) = {0}, and
hence R = (a) @ ¢(a).

(3) = (1). Suppose that P is an ¢-prime ¢-ideal. Let P C I for some
t-ideal I of R. If P # I, then there exists an element a € I\ P. Since
R = {(a) @ J for some f-ideal J of R, J C f(a) C P C I, and hence
R = (a)+ J CI. Thus P is a maximal {-ideal of R. O

An (-ideal I # R is called {-pseudoprime if ab = 0 for a,b € R™ implies
a € Iorbel An f-prime f-ideal is certainly ¢-pseudoprime. However
the converse is not true. For instance, let R = R[z,y| be the polynomial
{-ring in two variables over R with the coordinatewise order. Since R is
a domain, xR N yR is an {-pseudoprime f-ideal, however xR N yR is not
(-prime. An f-ideal I # R is called ¢-semiprime if for any a € R*, a® € I
implies that a € I. We leave it as an exercise to the reader to check that an
{-ideal is £-semiprime if and only if it is the intersection of ¢-prime /-ideals
containing it (Exercise 18).
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Theorem 5.11. Let R be a commutative £-unital £-reduced €-ring. Let I
and J be pure ¢-ideals of R.

(1) Iis £-semiprime.

(2) If I is L-pseudoprime, then I is (-prime.

(3) If I and J are {-prime, then either [ +J =R or I =J.

(4) For an £L-prime f-ideal P, Op is £-prime if and only if Op is (-
pseudoprime.

Proof. (1) Let 2% € I for some z € R*. Then R = I + {(x?), and hence
r=a+b,where 0 < a € land0<bel(z?). Since b < z, and bz? = 0, we
have b® < bx? = 0. Hence b® = 0, and so b = 0 since R is f-reduced. Thus
r=ac€l.

(2) Let ab € I for some a,b € RT and a € I. Since R = I + {(ab),
1 =wu+wv, where 0 < u €I, 0 < v € {ab). Since abv = 0 and I is
{-pseudoprime, we have bv € I. Thus b =bu+ bv € I.

(3) Since I and J are ¢-prime, by Theorem 5.9, there exist maximal
l-ideals M and N such that I = Oy and J = On. If I +J # R, then
I + J is contained in some maximal ¢-ideal, so by Theorem 5.8 M = N,
and hence [ = J.

(4) Suppose that Op is ¢-pseudoprime, and let ab € Op for some a,b €
R*. Suppose that a € Op and b € Op. We get a contradiction as follows.
Since ab € Op, £(ab) € P, and so there exists 0 < ¢ € P such that abc = 0.
Since Op is f-pseudoprime and a ¢ Op, bc € Op. Hence there exists
0 <d ¢ P such that bed =0, so cd € Op C P since b ¢ Op. Now cd € P
implies ¢ € P or d € P, which is a contradiction. [

For a commutative ¢-unital ¢-reduced ¢-ring R if R = ¢(a) + £(b) when-
ever ab = 0 for some a,b € R", then R is called normal. Clearly if R is an
{-domain, then R is normal.

Theorem 5.12. Let R be a commutative {-unital £-reduced ¢-ring. The
following are equivalent.

(1) R is normal.

(2) Op is L-prime for each L-prime (-ideal P.

(8) Ony is L-prime for each mazimal {-ideal M.

(4) Ons is minimal £-prime for each maximal ¢-ideal M.

(5) R= P+ Q for any two distinct minimal £-prime £-ideals P and Q.
(6) Each mazimal £-ideal contains a unique minimal £-prime £-ideal.
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Proof. (1) = (2). Since Op is ¢-prime if and only if Op is ¢-pseudoprime
by Theorem 5.11, we just need to show that Op is ¢-pseudoprime. Let
ab = 0 for some a,b € RT. Then R = {(a) + {(b). If a ¢ Op and b & Op,
then £(a) C P and £(b) C P, and hence R = {(a) + £(b) C P, which is a
contradiction.

(2) implies (3) is clear.

(3) = (4). Let P be an f-prime ¢-ideal and P C Op;. Then P C M
implies Oy € Op C P, so P = Oy;. Thus Oy is a minimal ¢-prime /-ideal.

(4) = (5). Given a minimal ¢-prime f-ideal J of R, let M be the
unique maximal /-ideal containing J. Then Oy C J € M by Theorem
5.8(4). Since Oy is ¢-prime, J = Ops. Thus, minimal ¢-prime ¢-ideals of
R are Oy, where M € Maxy(R). By Theorem 5.11(3), R = Oy + Oy if
Onr # Op, where M, N are maximal /-ideals.

(5) = (6). Obvious.

(6) = (1). Let ab = 0 for some a,b € R*. If R # {(a) + £(b), then
there exists a maximal ¢-ideal M such that £(a) 4+ £(b) C M, so a € Op
and b € Op;. Now let P be the unique minimal ¢-prime ¢-ideal contained
in M. Then Oy C P. Since Oy is f-semiprime by Theorem 5.11, O,
is an intersection of ¢-prime f¢-ideals. Since each ¢-prime ¢-ideal containing
Oy is contained in M by Theorem 5.8, each f-prime ¢-ideal containing
Oy contains P. Thus Oy = P, so Oy, is f-prime, and hence a € Oy, or
b € Oy, which is a contradiction. Thus we have R = £(a) + 4(b). O

For a commutative ¢-unital ¢-reduced ¢-ring R, if R is normal, from
Theorem 5.12, we have

Ming(R) = {OM ‘ M e MaXZ(R)}.
Thus maximal ¢-ideals of R and minimal ¢-ideals of R are in one-to-one

correspondence. This is not true if R is not normal as shown in the following
example.

Example 5.4. Let A = R[z] be the polynomial ring over R with the coor-
dinatewise order. Let R be the f-subring of A x A defined as follows.

R={(f,9) € AxA| f(0)=yg(0)}
Then R is commutative without any nilpotent element (Exercise 19). Since
(x,0)(0,z) = (0,0) and R # ¢((z,0)) + ¢((0,2)), R is not normal. R has
only one maximal ¢-ideal M = {(f,g) | f(0) = g(0) = 0} with Oy = {0}.
Clearly, £((x,0)) and £((0,x)) are minimal {-prime f-ideals with Og((z,0)) =
£((x,0)) and Oyo,z)) = £((0,2)). We leave it to the reader to verify this
fact (Exercise 20).
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Theorem 5.13. Let R be normal. Then Maxy(R) and Ming(R) are home-
omorphic if and only if for each x € RT there exists y € RT such that
xy =0 and £(x) N L(y) = {0} (or equivalently, Ming(R) is compact).

Proof. Since Max,(R) is compact, if Ming(R) and Max,(R) are homeo-
morphic then Ming(R) is compact, so R has the desired property by Theo-
rem 5.7.

Conversely, suppose that Ming(R) is compact. We show that Min,(R)
and Maxy(R) are homeomorphic. Since R is normal, we have

Ming(R) = {OM | M e Man(R)}.

The mapping M +— Oj; is clearly a one-to-one and onto mapping from
Man(R) to Miny (R)

Let {M, | a € '} be a closed set in Max,(R). We show that {Oyr, | @ €
I'} is closed in Ming(R). Let P be a minimal ¢-prime ¢-ideal of R and

ﬂ Onm, CP.

acl’
Let M be the unique maximal /-ideal of R containing P. If Nper M, € M,
then

R=(() Ma)+ M.

By Lemma 5.1, 1 = a+ b+ ¢, where 0 < a € NgerM,, 0 < b € M,
0 < ¢ € (NuerMy) N M, and ab = 0. Since b ¢ M, for each a € T,
a € Oy, for each a € I'. Thus

ac () Om, CPCM,
acTl
so 1 € M, which is a contradiction. Therefore, NyperM, C M, and hence
M e {My|a€T}since {M, | a€T}isclosed. So P=0y € {Opy, | €
I'}. Hence {On, | @ € T'} is closed.
Now, suppose that {Op, | @ € T'} is a closed set in Ming(R). We show

that {M, | a € '} is closed in Maxy(R). Let M € Max,(R) and

ﬂ M, C M.

ael
If M ¢ {M,|aeTl}, then R = M, + M for each o € I'. Hence, by Lemma
5.1, 1 =24 + Yo + 2o, where 0 <z, € My, 0 <y, € M,0< 2, € M, N M,
and z,Y, = 0 for each a € I'. Since z, € M, y, € Oy for each o € ', and
since Yo, & Mo, To € Opr,. But then y, & Oy, for each o € I'. For each o

S(ya) = {P € Man(R) | Ya ¢ P}
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is open and {S(y,) | @ € '} is an open cover for the set {Oy, | @ € T'}, and
hence a finite subcover S(y;), i = 1, ..., n, can be extracted out of this cover
because of the compactness of Ming(R) implies that any closed set of it is
compact. Now for each Oy, there exists y; € Oy, for some 1 < j < n, so
z; € Opn,, . Therefore
Ty Ty € ﬂOMag ﬂMagM.
acl ael’
Thus i € M for some k € I', and so 1 = zp + yr + 2 € M, which is a

contradiction. Therefore M € {M, | a € '}, and hence {M,, | a € T'} is
closed. O

Corollary 5.3. Suppose R is normal and for each x € RT there exists y €
R* such that xy = 0 and £(x) N L(y) = {0}. Then Mazy(R), Maz(f(R)),
Ming(R), and Ming(f(R)) are all homeomorphic.

Proof. 1f R is normal with the property that for each x € R there exists
y € RT such that zy = 0 and ¢(z) N {(y) = {0}, then it is easy to check
that f(R) is normal with the same property. Now the conclusion follows
from Theorems 5.3 and 5.13. (]

We provide a characterization for normal ¢-rings under certain condi-
tions.

Lemma 5.6. Suppose R is normal with the property that for each x € R
there exists y € Rt such that xy =0 and £(z) N L(y) = {0}. If R is not an
¢-domain, then there exists an idempotent element a € f(R), 0 < a < 1,
such that R = Ra ® R(1 — a) as (-ideals.

Proof. Let wz = 0and 0 < w € R, 0 < z € R. Then there exists
u € RT such that wu = 0 and ¢(w) N ¢(u) = {0}. Now u # 0, as otherwise
0 <z € l(w) = L(w)NLu) = {0}, contradicting with z > 0. So u > 0.
Consider the following sets in Min,(R).
K = {P e Miny(R) | {(w) C P},
7 ={Pe Min(R) | (u) C P}.
For each P € Miny(R), w € P or u € P implies that {(w) € P or {(u) P,
and hence XN J = 0. Since {(w) N £(u) = {0}, for each P € Miny(R),
¢(w) C P or ¢(u) C P, and hence Miny(R) = KU J. Since R is ¢-reduced
and f(w) # {0} and £(u) # {0}, K # 0 and J # 0. Clearly K, J are closed
sets. Since P is a minimal ¢-prime ¢-ideal, we have
K = Miny(R)\ {P € Min(R) | we P},
J = Miny(R) \ {P € Min¢(R) | u € P}.
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They are thus both open.

Now since Max,(R) and Min,(R) are homeomorphic by Theorem 5.13,
there exist clopen sets N # (), M # () in Max,(R) such that

Maxy(R) = NUM and NNM =0.

By Corollary 5.2, N' = s(e) and M = s(f), where e, f € f(R) are idempo-
tent elements. Let a=1—e and b=1— f, we have N' = h(a), M = h(b),
and a,b € f(R) are idempotent elements. Since 1 = a + (1 — a), we have
R = Ra+ R(1 —a), and since N and M are not empty, 0 < a < 1. From
(an(l1—-a))?<a(l—-a)=0,aA(1l-a)=0since R is {-reduced. Then
Ra and R(1 — a) are ¢-ideals of R with RaNR(1 —a) = {0}. Therefore, we
have R = Ra @ R(1 — a) as ¢-ideals of R. O

Theorem 5.14. Let R be a commutative £-unital £-reduced £-ring R. Sup-
pose that the identity element 1 is greater than only a finite number of
disjoint elements. Then R is normal and satisfies that

(x) Vz € RT,3y € RY such that xy = 0,{(z) N {(y) = {0}
if and only if R is a finite direct sum of commutative £-unital £-domains.

Proof. 1If R is a direct sum of commutative f-unital /-domains, then R
is normal and has the given condition (Exercise 21).

Now suppose that R is normal and for each x € RT there exists y € RT
such that zy = 0 and ¢(x) N ¢(y) = {0}. By Lemma 5.6, if R is not a
domain, then R = Ra® R(1—a) as ¢-ideals and 0 < a < 1 is an idempotent
element. Then Ra and R(1 — a) are both commutative ¢-unital ¢-reduced
normal (-ring satisfying the given condition (x). Thus if Ra or R(1 — a)
is not an /-domain, we may repeat using Lemma 5.6 to direct summand
Ra or R(1 — a). Since 1 is greater than only a finite number of disjoint
elements, R is a direct sum of commutative ¢-unital /-domains. O

An /-pseudoprime f-ideal in a commutative f-unital ¢-reduced normal
{-ring may be contained in two ¢-prime ¢-ideals which are not comparable.
For example, let R = R[z,y] be the polynomial ring in two variables over
R with the coordinatewise order. Then xR and yR are ¢-prime ¢-ideals of
R. Since R is a domain, {0} is ¢-pseudoprime, but R € yR and yR Z zR.

However if an ¢-ideal I is contained in a unique maximal ¢-ideal, then I
must be ¢-pseudoprime. Thus if any two /-prime ¢-ideals containing I are
comparable, then I is ¢-pseudoprime.

Theorem 5.15. Let R be a commutative (-unital £-reduced normal £-ring.
For an £-ideal I of R, if I is contained in a unique mazximal {-ideal, then I
1s £-pseudoprime.
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Proof. Since [ is contained in a unique maximal ¢-ideal M, by Theorem
5.9(5), m(I) = Op C I. Since Oy is ¢-prime by Theorem 5.12, T is
f-pseudoprime. O

If R is an f-ring, then the situation is different.

Theorem 5.16. Let R be a commutative unital {-reduced normal f-ring
and I be an l-ideal of R. Then I is {-pseudoprime if and only if the £-
prime £-ideals containing I form a chain.

Proof. Suppose that I is an ¢-pseudoprime f¢-ideal and P, Q are ¢-prime
f-ideals containing I. If 0 < a € Op, then there exists b € Rt such that
ab =0 and b € P. Since [ is ¢-pseudoprime, a € I. Thus Op C I. By
Lemma 5.12, Op is f-prime. Since R is an f-ring, by Theorem 4.10, P and
@ are comparable since they both contain ¢-prime f-ideal Op. O

For an f-ideal I of R, define
VI=1{a€R|la" €T for some positive integer n}.

Let R be a commutative f-unital ¢-reduced ¢-ring and I be an f-ideal of
R. Then /T is the smallest /-semiprime /-ideal containing I. We leave the
verification of this fact to the reader (Exercise 22).

Theorem 5.17. Let R be a commutative ¢-unital (-reduced normal £-ring
and I be an (-ideal of R. If \/T is (-prime, then I is (-pseudoprime.

Proof. By Corollary 5.1, there exists a unique maximal ¢-ideal M such
that /I C M. So I C M. Let N be a maximal f-ideal of R and I C N.
Then vI C N, and hence N = M. Thus M is the unique maximal ¢-ideal
containing I. By Theorem 5.9(5), m(I) = Op C I. Since R is normal, Oy
is £-prime, and hence [ is {-pseudoprime. O

In the ¢-ring R = R[z, y] with the entrywise order, if I = xRN yR, then
VI = I. Tt is clear that I is ¢-pseudoprime and /T is not ¢-prime. However
for f-rings, the situation is changed.

Theorem 5.18. Let R be a commutative unital ¢-reduced normal f-ring
and I be a proper l-ideal of R. Then I is (-pseudoprime if and only if VT
is £-prime.

Proof. Suppose that I is ¢-pseudoprime. Let M be a maximal ¢-ideal
and I C M. If a € Oy, then there exists b € R such that |a||b] = 0 and
b ¢ M. Since [ is ¢-pseudoprime, a € I. Thus Oy C I. By Theorem
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5.12, Oy is ¢-prime, and hence R is an f-ring implies that any two /-ideals
containing I are comparable. Thus v/T is ¢-prime (Exercise 23). g

We refer the reader to [Larson (1988)] for an example showing the hy-
pothesis of normality in Theorem 5.18 cannot be dropped.

We notice that in a commutative ring R, an ideal I is called prime
(semiprime) if for any a,b € R, ab € I implies that a € I or b € T (for
any a € R, a® € I implies that a € I), and I is called pseudoprime if for
any a,b € R, ab = 0 implies that a € I or b € I. In general {-rings, an /-
prime ({-semiprime, ¢-pseudoprime) ¢-ideal may not be prime (semiprime,
pseudoprime). However in an f-ring, since for any two elements a and b,
|ab| = |a||b|, an £-prime (¢-semiprime, ¢-pseudoprime) £-ideal must be prime
(semiprime, pseudoprime).

At the end of this section, we consider some properties of commutative
{-unital f-rings in which each maximal ideal is an f-ideal. For an f-ring,
a prime ideal P must be a sublattice. In fact, for any a € P, ata™ =0
implies that a* € P or a~ € P. Therefore for a maximal ideal M of a
commutative unital f-ring to be an f-ideal, it just needs to be a convex set.

A commutative f-unital ¢-ring R is said to have bounded inversion prop-
erty if whenever a > 1 for a € R, then a is a unit.

Theorem 5.19. Let R be a commutative {-unital ¢-ring. Fach maximal
ideal of R is convex if and only if R has bounded inversion property.

Proof. “=" Suppose that a € R and a > 1. If Ra is contained in a
maximal ideal M, then M is convex and 1 < a implies that 1 € M, which
is a contradiction. Thus Ra = R and a is invertible.

“<” Let M be a maximal ideal and 0 < a < b€ M and a € R. If
a & M, then R= Ra+ M and 1 = ra + m for some r € R and m € M.
Then

l=ra+m<|rla+m<|rlb+m

implies that 1 = (|r|b + m)s for some s € R, so 1 € M, which is a contra-
diction. Thus we must have a € M and M is convex. |

As a direct consequence of Theorem 5.19, in a commutative unital f-ring
R each maximal ideal is an f-ideal if and only if R has bounded inversion
property.

By Theorem 5.19, for a general commutative ¢-unital /-ring, if each
maximal ideal is an ¢-ideal, then it has bounded inversion property.
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Theorem 5.20. Let R be an {-unital commutative £-ring. If R has bounded
inversion property, then f(R) also has bounded inversion property.

Proof. Let a € f(R) and a > 1. Then a~! exists in R. Since a is an
invertible f-element, by Theorem 1.20(2), a=! > 0, so by Theorem 1.20(2)
again, a~ ! is a d-element. For z,y € R with x Ay =0,

alznaly=0 = aa e Aaly=0 = zAaly=0.
Thus a=! € f(R). Hence f(R) has bounded inversion property. O

For a ring R, Max(R) denotes the set of all maximal ideals equipped
with the hull-kernel topology. For any subset X C R, define

UX)={M eMax(R) | X £ M},
and
V(X)={M e Max(R) | X C M}.

Then U(X) are open sets in Max(R) and {U(a),a € R} forms a basis for
open sets.

A topological space is called zero-dimensional if it contains a topological
space basis consisting of clopen sets. A ring is called clean if each element
in it is a sum of a unit and an idempotent.

Theorem 5.21. Let A be a commutative £-unital £-reduced £-ring in which
each mazimal ideal is an £-ideal, that is, Max(A) = Maxe(A). Then Maz(A)
is zero-dimensional if and only if each element in A is a sum of a unit and
an idempotent element in f(R).

Proof. “=” Takea € A, if V(a—1) =0, then (a —1)R = R implies that
a—1is aunite and a = (¢ — 1) + 1.

For the following, assume that V(a—1) # (. Then V(a—1) and V (a) are
disjoint closed sets. Since Max(A) is compact and zero-dimensional, there
is clopen set K such that V(a) C K and V(a — 1) N K = 0 (Exercise 30).
Since Max(A) = Maxy(A), by Corollary 5.2, K = U(e) for some idempotent
element e € f(A).

Define g = e(a — 1) and f = (1 — e)a. Then

(9g+f)+e=ea—e+a—ea+e=a.

We show that g + f is not contained in any maximal ideal of A, so g + f
is a unit of A. Suppose that g + f € M for some M € Max(A). If e € M,
then a € M. On the other hand, M ¢ K = U(e), and V(a) C U(e) implies
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M & V(a), that is, a ¢ M, which is a contradiction. If 1 — e € M, then
f € M, and hence g € M. On the other hand, e € M implies that M € K,
soM &V(a—1). Thusa—1¢ M and e ¢ M imply that g = e(a—1) € M,
which is a contradiction. Therefore g + f is not contained in any maximal
ideal of A, so g + f is a unit.

“«<" We show that clopen sets consist of a topological space basis for
open sets of Max(R). Let a € A and M € U(a). Then A/M is an {-field
implies that there is an element b € A such that ab+M =1+ M in A/M.
By assumption, ab = u + e, where u is a unit of A and e € f(A) is an
idempotent. If e ¢ M, then (e+ M)? = e+ M implies that e+ M = 1+ M,
and hence

1+ M=ab+M=u+e)+ M=u+M)+(1+M)

implies that © 4+ M = 0, that is, v € M, which is a contradiction. Thus
we must have e € M, so 1 —e & M, that is, M € U(1 — e). Suppose that
N e U(l —¢€). Then e € N, so ab ¢ N since v ¢ N. Thus N € U(ab).
Therefore U(1 —e) C U(ab) C U(a) and U(1 — e) is clopen by Corollary
5.2. O

For a commutative unital semiprime f-ring A, each maximal ideal of A
is an /-ideal if and only if A has bounded inversion property. Thus we have
the following consequence of Theorem 5.12.

Corollary 5.4. For a commutative unital semiprime f-ring A with bounded
inversion property, Max(A) is zero-dimensional if and only if A is clean.

Exercises

(1) Prove that s(a),a € R, form a basis for the open sets of Max,(R).

(2) Prove that the ring C(X) of real-valued continuous functions on X is
an f-ring.

(3) Check R]z; d] defined in Example 5.1 is a ring, that is, the multiplication
is associative and distributive over the addition.

(4) Let R be a totally ordered integral domain. Prove that if R is ¢-simple,
then for any 0 < a € R, there exists b € R* such that 1 < ba.

(5) Show that R[z;d]z defined in Example 5.1 is a maximal left ¢-ideal of
R[x;0].

In Ezercises 6-11, R is assumed to be a unital £-semisimple f-ring.
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(6) Let M be a maximal ¢-ideal of R and a € R. Define P = {w €
R| (w—a)* € M}. Prove that P is a lattice-prime ideal of R associated
with M.

(7) Let M be a maximal ¢-ideal of R and z,y,r € R. Prove that if (r —
r+ D)t (r—y+ 1)t €M, then (r—z)",(r—y)~ & M.

(8) Let ¢ be a lattice isomorphism between lattices L; and Ls. Prove
that a subset P of Ly is a lattice-prime ideal if and only if ¢(P) is a
lattice-prime ideal of L.

(9) Two lattice-prime ideals are called equivalent if they are associated
with the same maximal /-ideal. Prove the relation is an equivalence
relation.

(10) Prove the % defined in Theorem 5.4 is well-defined, one-to-one and
onto.

(11) Prove that A(¢(K)) € ¢(A(K)) in Theorem 5.4.

(12) Verity that ¢ in Example 5.2(1) is an ¢-isomorphism between additive
{-groups of R and S.

(13) Prove Lemma 5.5.

(14) Prove that in Theorem 5.6, if y = y1 + -+ + yn, then S(y) = S(y1) U
U S(yn)

(15) Let R be a commutative ¢-unital ¢-reduced ¢-ring and P be an ¢-prime
¢-ideal. Prove that Op = {a € R | {(a) € P} is an ¢-ideal and Op C P.

(16) Suppose that R is a commutative ¢-unital ¢-reduced ¢-ring and I is an
¢-ideal of R. Prove that m(I) ={a € R | R=1I+{(a)} is an (-ideal of
R and I is a pure ¢-ideal if and only if m(I) = I.

(17) Suppose that R is a commutative f-unital ¢-reduced f-ring in which
every {-prime f-ideal is maximal. Prove that every /-prime ¢-ideal of R
is a minimal ¢-prime ¢-ideal.

(18) Prove that an ¢-ideal I is ¢-semiprime if and only if T is the intersection
of ¢-prime f-ideals containing 1.

(19) Verity that R defined in Example 5.4 is a commutative ¢-unital reduced
¢-subring of A x A, where A is the polynomial ¢-ring R[z] with the
entrywise order.

(20) Verify that ¢((x,0)) in Example 5.4 is a minimal ¢-prime ¢-ideal with
(((z,0)) = Og((z,0))-

(21) Suppose that an f-ring R is a direct sum of commutative f-unital ¢-
domains. Prove that R is normal and for each # € R™ there exists
y € RT such that xy = 0 and ¢(z) N 4(y) = {0}.

(22) Let R be a commutative ¢-unital {-reduced ¢-ring and I be an ¢-ideal
of R. Prove that v/T is the smallest {-semiprime /-ideal containing I.
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(23)

(24)

(26)

(27)

Algebraic Structure of Lattice-Ordered Rings

Let R be a commutative ¢-unital ¢-reduced normal ¢-ring and I be a
proper {-ideal of R. Prove that if any two ¢-prime f-ideals containing
I are comparable, then /T is f-prime.

Let A = R[] be the totally ordered domain in which a polynomial is
positive if the coefficient of its lowest power is positive. Define

R={(a,b) e AxA|a—becaA}l

With respect to the coordinatewise operations and order, R is a com-
mutative unital ¢-reduced f-ring. Prove that R is not normal.

Let R be a commutative ¢-semisimple f-unital ¢-ring. Prove that if [
is a minimal nonzero f-ideal, then

I'=({M e Max,(R) | I C M}.

Let R be a unital commutative ¢-ring with squares positive. Prove that
if R has bounded inversion property, then R is an almost f-ring.
Suppose that R is an ¢-unital Archimedean ¢-domain in which f(R) is
a totally ordered field and f(R)* is a subring of R. Prove that each
maximal ideal of R is an ¢-ideal if and only if for any 0 # a € f(R) and
be f(R)*, a+bis a unit.

Find a commutative f-unital ¢-ring with bounded inversion property
that contains a maximal ideal which is not an /-ideal.

Let R be an f-ring and 0 < e be an f-element. Prove that for any
x € R, if |z| = |z|e, then x = ze.

Prove that in Theorem 5.21, V(a) C K and V(a — 1) N K = ( for some
clopen set K.
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C,D set inclusion

C, 2 proper set inclusion

a Vb least upper bound of {a, b}

aVs>b least upper bound of {a,b} with respect to >
a Ab greatest lower bound of {a,b}

aA>b greatest lower bound of {a,b} with respect to >
a <bb>a aislessthan or equal to b

a <b,b>a aisstrictly less than b

Ua(B) set of upper bounds of B in A

L4(B) set of lower bounds of B in A

P4 power set of a set A

() empty set

G™T positive cone

—G™T  negative cone

€ belongs to

U set union

N set intersection

Z ring of integers

7T  set of positive integers

Q field of rational numbers

R totally ordered field of real numbers

C field of complex numbers

R x R direct product of two R

gt positive part of g

g~ negative part of g

lg| absolute value of ¢

Ce(X) convex f-subgroup generated by X in G

237
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X+ polar of X

X+ double polar of X

C(G) lattice of all convex ¢-subgroups of G
Bic1C; direct sum of convex ¢-subgroups C;
@icrV; direct sum of convex vector sublattices V;
@icrR; direct sum of ¢-rings R;

G/N quotient ¢-group

G =2 H (-isomorphic ¢-groups

¢:G — G/N projection

i =+/—1 imaginary unit

Ker(y) kernel of ¢

R =S [(-isomorphic ¢-rings R and S

M, (R) n x n matrix ring over an ¢-ring R
T.(R) m x n upper triangular matrix ring over an ¢-ring R
e;; standard matrix units

F[G] group (semigroup) ¢-algebra

F[z] polynomial ring

d(R) set of positive d-elements of R

d(R) set of d-elements of R

f(R) set of all elements whose absolute value is an f-element of R
f(R) set of all f-elements of R

7 canonical epimorphism

(X) f-ideal generated by X

(a) (-ideal generated by a

I +---+4+ 1, sum of ¢-ideals

¢-N(R) (-radical of an ¢-ring R

¢-P(R) p-radical of an ¢-ring R

i(A) i-ideal of an f-algebra A

F[lz]] ring of formal power series

F((x)) formal Laurent series field

G x G Cartesian product

F\ {0} the set of nonzero elements in F'
F!'[G] twisted group f-algebra

|S| cardinality of a set S

Orth(R) orthomorphism of R

u(R) band generated by units in an ¢-ring R
ab(R) set of almost bounded elements in an ¢-ring R
Vzx; sup of x;
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r(a) right ¢-annihilator of a

£(a) left ¢-annihilator of a

f'(z) derivative of f(x)

A\ B different of sets A and B

R/I quotient ¢-ring of R to an f-ideal I

Iy set of element r in an f-ring such that Zr is bounded

D, inner derivation induced by a

(G, P) partially ordered group G with positive cone P

(R, P) partially ordered ring R with positive cone

[u,v] commutator uv — vu

0jr Kronecker delta

Rpr (f-ring R as right £-module over R

Endg(aR,aR) ring of endmorphisms of right R-module aR

£, mapping by left multiplication of x

S(a, f) semigroup generated by a and f

i(z) set {a € R|ax=2za=a}in an f-ring R

dimpV dimension of vector space V over F'

(i1i9 -+ -iy) n-cycle

Us(R) set of upper bounds of f(R) in R

F[z;0] skew polynomial ring

trf trace of a matrix f

det(a) determinant of a

ged(a,b) greatest common divisor of a and b

F™ n-dimensional column space over F

conep(K) the cone generated by a subset K over F'

|v| the length of vector v in R™

G aH lexicographic order of two totally ordered groups

Mazxy(R) space of maximal ¢-ideals of an /-ring R

Ming(R) space of minimal ¢-prime ¢-ideals of an ¢-ring R

Max(R) space of maximal ideals of R

s(X) set of maximal ¢-ideals not containing X C R

S(X) set of minimal ¢-prime ¢-ideals not containing X C R

h(X) set of maximal ¢-ideals containing X C R

H(X) set of minimal ¢-prime ¢-ideals containing X C R

C(X) ring of real-valued continuous functions on X

Vv for all, for any

3 there exists

A(K) intersection of lattice-prime ideals that contain a fixed point and are
associated with some maximal ¢-ideal in K
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VI intersection of all {-prime f-ideals containing ¢-ideal I
alb a divides b

(I:R) largest ¢-ideal contained a left ¢-ideal I of R
U(X) set of maximal ideals not containing X C R

V(X) set of maximal ideals containing X C R

Op set {ae R|{(a)Z P}

m(I) set {a€ R|R=1+/(a)}

= implication
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algebraic over f(R), 146
almost f-ring, 31

almost bounded, 98
anti-isomorphism, 180
antilexicographic order, 24
Archimedean, 5
Archimedean f¢-algebra, 21
Archimedean /f-ring, 21
Archimedean over F', 18
associated, 216

band, 97

basic element, 15

basis, 16, 208

bounded, 99

bounded inversion property, 99, 232
bounded subset, 1

cancellation law, 51

canonical f-epimorphism, 28

Cayley-Hamilton equation, 165

centralizer, 107

chain, 1

classical left quotient ring, classical
right quotient ring, 123, 141

clean, 233

closed, 208

closure, 174

commutator, 100

compact, 174

comparable elements, 1

complete lattice, 2, 11

composition of positive derivations,
96

cone, 161

convex, 9

convex ¢-subgroup generated by a set,
9

convex vector sublattice, 14

cover, 174

d-basis, 50

d-element, 25

d-ring, 25

dense, 131

derivation, 77

determinant, 154

differential polynomial rings, 212
dimension, 160

direct product of ¢-rings, 21
direct sum of ¢-groups, 11
direct sum of f-rings, 21

direct sum of right ¢-ideals, 105
direct sum of vector lattices, 19
direct summand, 225

directed, 5

disjoint elements, 8
distributive lattice, 2, 11
division-closed, 149

domain, 34

dominated, 216

double polar, 9
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edges, 162 f-module over R, 69

entrywise order, 23 f-prime (-ideal, 34

equivalent, 215 {-prime {-ring, 34

extension of a partial order, 1 {-pseudoprime, 225
f-reduced, 37

f-element, 14, 25 {-ring, 20

f-module, 14 {-ring extension, 143

f-ring, 25 {-semiprime, 47, 225

f-superunit, 126 {-semisimple, 213

finite cover, 174 {-simple, 21

finite order, 117 f-unital, 20

formal Laurent series field, 52 lattice, 2

free R-module, 160 lattice order, 2

Frobenius’s Theorem, 176 lattice-ordered algebra, 20
lattice-ordered division ring, 20

greatest common divisor domain, 158 lattice-ordered field, 20
lattice-ordered ring, 20

Hausdorff space, 213 lattice-prime ideal, 213

homeomorphic, 208, 209 lattice-prime ideal associated with a

hull-kernel topology, 207 maximal ¢-ideal, 213
least element, greatest element, 2

i-ideal, 41 left annihilator, 88

induced derivation, 93 left Ore domain, right Ore domain,

inf, 2 123, 141

inner automorphism, 181 left d-element, 25

inner derivation, 78 left d-ring, 204

invariant cones, 161 left ¢-ideal, 21

isomorphic ¢-rings, 21 lexicographic order, 24, 185
linearly independent, 160

kernel, 21 local domain, 160

Kronecker delta, 106
m-system, 35

f-algebra, 21 matrix units, 105

f-annihilator ¢-ideal, 133 minimal ¢-prime ¢-ideal, 39
f-domain, 34 minimal element, maximal element, 2
(-field, 20 minimal left ¢-ideal, 56

{-group, 3 minimal polar, 15
{-homomorphism of ¢-groups, 13 modal ideal, 126
£-homomorphism of ¢-rings, 21 mode, 126

f-ideal, 21 module basis, 160

{-ideal generated by a subset, 21 multiplicative basis, 23
{-isomorphic ¢-groups, 13 multiplicative basis over F'*, 23
f-isomorphic right ¢-ideals, 105 multiplicative closed, 35
{-isomorphism of ¢-groups, 13

{-isomorphism of ¢-rings, 21 n-cycle, 121

f-module, 14 n-fier, 126



negative part, 8

nilpotent ¢-ideal, 33

nilpotent of index, 33
nontrivial P-invariant cone, 161
normal, 226

o-field, 20

o-group, 3

o-ring, 20

open cover, 174
order, 117

order extension, 153

P-invariant cone, 161
p-radical, 37

partial order, 1

partially ordered group, 3
partially ordered ring, 20
partially ordered set, 1
polar, 9

polynomial constraints, 135
positive cone, 3

positive derivation, 77
positive element, 3

positive linear combination, 22
positive orthomorphism, 83
positive part, 8

positive twisting function, 58
prime, 232

principle ¢-ideal, 225
projection, 13

projective, 160

proper f¢-ideal, 34
pseudoprime, 232

pure f-ideal, 222

quasi d-ring, 74
quotient ¢-group, 13

rank, 160

real closed, 66

reduced, 37

regular, 202

regular division-closed, 202
Rieze space, 14

right annihilator, 88

right d-element, 25
right ¢-ideal, 21
ring of formal power series, 51

semiprime, 232

simple, 159

skew polynomial ring, 146
squares positive, 25

standard matrix units, 23, 106
strictly positive element, 3
strong regular ring, 84

strong unit, 41

subcover, 174

subdirect product of ¢-rings, 27
subdirectly irreducible, 28
sublattice, 2

summand, 73

sup, 2

topological space, 208

total order, 1

totally ordered division ring, 20
totally ordered field, 14, 20
totally ordered ring, 20

totally ordered set, 1

trivial derivation, 77

twisted group f-algebra of G over F,

59

unique factorization domain,
principle idea domain, 170

unit, 22, 232

unital, 20

upper bound, lower bound, 1

upper triangular matrix, 51

van Neumann regular ring, 84
vector lattice, 14

weak unit, 139

zero-dimensional, 233
Zorn’s lemma, 3
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