

Error-correcting Codes

Error-correcting Codes

A mathematical introduction

John Baylis

Deparment of Mathematics

Nottingham-Trent University

UK

I un I Springer-Science+Business Media, B.V.

First edition 1998

© 1998 Springer Science+Business Media Dordrecht

Originally published by Chapman & Hall Ltd in 1998.

Thomson Science is a division of International Thomson Publishing [ITP logo]

Typeset in Great Britain by Focal Image Ltd, 20 Conduit Place, London
W2IHZ

ISBN 978-0-412-78690-7 ISBN 978-1-4899-3276-1 (eBook)
DOI 10.1007/978-1-4899-3276-1

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior written
permission of the publishers. Applications for permission should be addressed to
the rights manager at the London address of the publisher.
The publisher makes no representation, express or implied, with regard to the
accuracy of the information contained in this book and cannot accept any legal
responsibility or liability for any errors or omissions that may be made.

A catalogue record for this book is available from the British Library
Library of Congress Catalog Card Number: 97-75115

Ta Catharine

Contents

Preface xi

1 Setting the scene 1
1.1 The problem 1
1.2 The channel - cause of the problem 2
1.3 Cunning coding - solution of the problem 3
1.4 Exercises for Chapter 1 8

2 Reducing the price 11
2.1 Hamming's solution 11
2.2 Can anything be done if two errors occur? 13
2.3 An alternative use of Hamming codes - erasures 15
2.4 What really makes a code work? - Hamming distance 16
2.5 Further reading 22
2.6 Exercises for Chapter 2 22

3 Number theory - arithmetic for codes 25
3.1 Why number theory? 25
3.2 Congruence and related ideas 26
3.3 Solving linear congruences 31
3.4 A bit of arithmetic folklore 34
3.5 The special r6le of primes 35
3.6 A recreational interlude 38
3.7 Zp and reciprocals 42
3.8 Further reading 44
3.9 Exercises for Chapter 3 44

4 Block codes - so me constraints and so me geometry 49
4.1 The main problem 49

viii Contents

4.2 Limitations on M 50
4.3 Equivalent codes 57
4.4 Distance isomorphie codes 60
4.5 Geometry and Hamming space 62
4.6 Perfect codes 65
4.7 The Plotkin bound 68
4.8 Exercises for Chapter 4 70

5 The power of linearity 73
5.1 The problem 73
5.2 Linear codes - their fundamental properties 74
5.3 Linear algebra rem inders 76
5.4 The generator matrix 78
5.5 Co sets and the Slepian array 79
5.6 The dual code and parity check matrix 82
5.7 Syndrome decoding 84
5.8 Equivalence of linear codes 89
5.9 Erasure correction and syndromes 92
5.10 Exercises for Chapter 5 97

6 The Hamming family and friends 103
6.1 Introduction 103
6.2 Hamming codes 103
6.3 Decoding Ham(r,q) 105
6.4 Simplex codes 105
6.5 Optimal linear codes 107
6.6 More on the structure of Hamming codes 114
6.7 The cyclic property of Hamming codes 117
6.8 Weight distributions 119
6.9 Exercises for Chapter 6 127

7 Polynomials for codes 131
7.1 The first definitions 131
7.2 Operations in F[X] 132
7.3 Factorization in Zp[X] 134
7.4 Congruence of polynomials 136
7.5 Rings and ideals 136
7.6 Exercises for Chapter 7 138

8 Cyclic codes 141
8.1 Introduction 141
8.2 The choiee of modulus 141
8.3 Generator matrices and generator polynomials 143
8.4 Encoding by polynomials 147

Contents

8.5 Syndromes and polynomials
8.6 Parity checks and polynomials
8.7 Cyclic codes and double-adjacent errors
8.8 Cyclic golay codes
8.9 Exercises for Chapter 8

9 The Reed-Muller family of codes
9.1 New codes from old

ix

148
150
152
153
158

161
161

9.2 Plotkin's construction 161
9.3 The Reed-Muller family 163
9.4 An alternative description of Reed-Muller codes 166
9.5 Hamming codes, first order Reed-Muller codes - some

connections 172
9.6 Exercises for Chapter 9 175

Appendix. A Solutions, answers, hints 177

References 217

Index 218

Preface

It has been said many times, and that in no way diminishes its truth, that
coding theory is a striking example of the applicable power of many diverse
branches of mathematics. For students who have been trained in traditional
pure mathematics a course in coding theory can provide an icing on the
cake. This book is not written for them. It is more for that much larger
population of students who find themselves in an education system driven
by an 'application' philosophy, wh ich regards pure mathematical founda
tion as an expensive luxury, in spite of all the accumulated experience that
such a system is short-sighted and self- defeating.

My experience of teaching a final year course on co ding at The N ot
tingham Trent University has helped to crystalize the aims of this book.
They are: to motivate the need for error-correcting codes; to show so me
of the ways in wh ich this need is met with codes in actual use; to explain
some of the mathematical tools on which codes depend; to show so me of
the connections which make co ding theory such an attractive subject; to
get students to the point where they can realistically tackle more advanced
work on coding; and finally, Iwanted to make the book as self-contained
as possible.

The main mathematical underpinning is number theory, linear algebra
and polynomial algebra. The first and last of these are all too often in
the 'expensive luxury' category, so I have assumed no background in these
topics. Students generally meet linear algebra early in their course, then
have plenty of time to forget what a vector space is before their final year.
For this reason only minimal background is assumed. Although the main
reason for all this mathematics is its application to coding, I did not want
the material on mathematical topic x to be merely 'x for coding'. Chapter 3,
for example, discusses Fermat's theorem not because of any use in this book,
but because it, or its analogue in a finite field, is vital in more advanced
work on coding, in cryptography (which students may weIl be learning
simultaneously), and in a wide range of computer science topics. A couple

xii Preface

of more recreational aspects of number theory are also included under the
'wider education' umbrella.

The principle mathematical topics excluded from this book are finite
fields and group theory. One can't do everything! Thesetopics could fit
nicely into a second volume containing, for example, BCH codes, Reed
Solomon codes, automorphism groups and connections between codes and
finite geometries. The fact that Zp is a finite field is, of course, mentioned
- we need multiplicative inverses to do the linear algebra, and a couple
of group-theoretic ideas (cosets, closure) crop up implicitly in syndrome
decoding, but the detailed machinery of these topics is not needed in this
volume.

The exercises form an integral part of the text. The reader gets indica
tions throughout the text that he has reached the point where he should
do exercise n. The exercises consolidate the immediately preceding text,
prepare the ground for the following text, or sometimes just provide extra
background. Readers are strongly advised to do, or at least to read the
solutions of the exercises as they come to them.

I have tried to speIl things out in rather more detail than is customary
in a text at this level, and for this I offer the following explanation, but
not apology! Learning from a book is a non-trivial skill which takes time
and effort to acquire. In recent years the disincentives to acquiring it have
mounted: pressure on student finances and time; the production of cheaper
'home-grown' course-specific notes; the tendency of authors to write books
for ideal students. Students, even the good conscientious ones, are usually
not ideal, and therefore need all the help they can get. I hope then that
readers will find the book 'student-friendly' and will be able to concentrate
their efforts on the exercises, not hampered by too many obscurities in the
text!

A book of this nature does not, of course, appear out of thin air. Debts to
other books will be obvious, but I would like to thank specifically Ray Hill,
whose book has been top of the Nottingham Trent University student's
reading list for several years, and Oliver Pretzel, whose understanding atti
tude to our introductory examples being almost identical was a great relief.
Chapter 3 owes much to my experience as an Open University tutor. The
whole book owes much to The Nottingham Trent University students acting
as experimental subjects for much of the material. Its final form is a conse
quence of the transformation of my handwriting into elegant Ib-TEXby Anne
N aylor and Salma Mohamedali. The friendly gentle negging of Stephanie
Harding and Mark Pollard at Chapman & Hall eased the transition from
typescript to book. To all concerned I offer sincere thanks.

1

Setting the scene

1.1 The problem

Next Saint Valentine's day you may be lueky enough to reeeive the message

I LMVE YOU

from someone whose sentiments are pretty clear, in spite of not quite having
mastered the word-proeessor.

This is a trivial example but also a very instruetive one. It will lead us
to quite a good understanding of what eoding theory is all about. Before
reading on, think for a few minutes about : how you know the message
eontains an error; why you are eonfident about the loeation and number
of errors; why you are eonfident that you ean eorrect the error(s); whether
other similar eases may not be so easy to eorreet.

Let us now eonsider those quest ions in order. Words in English, and
in any other natural language, are strings of letters taken from a finite
alphabet, but not all sueh strings eorrespond to meaningful words: '1' does;
'Y 0 U' does; 'L M V E' doesn't; so we have deteeted an error in the
seeond word. As for the loeation being letter 2 of word 2, this seems the
most plausible thing whieh eould have gone wrong, as the simple remedy
of ehanging that M to an 0 restores a meaningful word and makes the
eomplete message plausible. No other replaeement for the M does this,
so we have done something about quest ion 3 too. But before we get too
eonfident, eouldn't the eorrect message have been 'I L1KE YOU' with errors
made in the middle two letters of the seeond word? WeIl, yes, but you eould
argue that two errors are less likely than one beeause the sender is known
to be not too bad at word proeessing. FinaIly, it is possible to reeeive a
message whieh eontains one error but the recipient ean be unaware of its
existenee. A simple example of this is the reeeived message:

I LOVE LOU

I have no way of knowing whether this is really the sender's intention,
or whether the real message is

2 Setting the scene

I LOVE YOU

transmitted with one error. To make progress here I would need to use
information other than the message itself, for example, my name is not
Lou, and I don't know anyone of that name. In other words, I would be
using the context of the message.

It is useful at this stage to make three general points arising from our
examples:

1. Natural languages have built-in redundancy, and it is this which gives
hope of being able to detect and correct errors.

2. Our confidence that our error correction is valid is greater if we have
some assurance that a small number of errors is more likely than a
larger number.

3. It may happen that we can detect that an error has been made, but
cannot correct it with confidence.

The form in which we have already met redundancy is that not all strings
of letters are meaningful words. Another is illustrated by observing the ef
fect of simply cutting out large chunks of the original message. For example,
every vowel and every space between words has been deleted from an En
glish sentence and the result is

THPRNCPLXMPLFFNCTNWWSHTMPHSSNDLLSTRTTTHSPNTSTHTFCMPTTNBYCMPTRPRGRM .

You will probably be able to reassemble the original message without too
much difficulty, perhaps with a little help from an intelligent guess about
the context.

An example of the third point is a one-word message received as L M
V E. You can be sure an error has been made, but, without additional
information, will be unable to decide between L 0 V E and L I V E.

[Ex 1]

1.2 The channel - cause of the problem

We have seen how some features of a language, principally its redundancy,
and facts about the sender, like being prone to make rare single errors but
less likely to make more, can help the receiver to recover a slightly garbled
message. If our messages are important enough to be guaranteed error
free could we not simply put the onus on the sender to use a sufficiently
thorough system of checks that no message containing errors was ever sent?
The only thing which prevents this from being an excellent idea is that in
most significant applications the errors do not arise from mistakes on the
part of the sender, but rather, as a result of what happens to the message
after leaving the sender and before arriving at the receiver. In other words,
the communication channel has a vital role to play. For instance, in our
first example the 0 received as an M may be the result of smudging.

Cunning coding - solution of the problem 3

A more clear-cut example is a conversation between two people at a
rather noisy party. The speaker's words could be uttered perfectly clearly
but his listener could fail to receive some of them, or receive a distorted
version, due to cross-talk from other conversations, or loud music, etc. Here
the idea (or fact, or comment, or etc) which the speaker wishes to transmit
has to be encoded into a form suitable for the channel. Here the channel is
the air between speaker and listener; the words of the message are encoded
as press ure waves in the air; these impinge on the listener's ear; finally a
complex decoding mechanism reinterprets these waves as words.

In coding theory and elsewhere the everyday term noise is used to de
note any inherent feature of a communication channel wh ich tends to dis
tort messages, and which are generally outside the control of both sender
and receiver. Noise is a fact of life in both the elementary examples we
have mentioned so far and in much more sophisticated technological ex
amples. To mention three fairly obvious ones: telephone lines are subject
to unavoidable crackle; the signals wh ich carry pictures of remote bits of
the solar system back to Earth can be distorted by cosmic rays and solar
flares; information stored in computer memories can be corrupted by the
impact of stray alpha particles, ... and so on.

1.3 Cunning coding - solution of the problem

First consider a very simple situation in which the sender only needs to
send one of two possible messages, say 'yes' or 'no', 'stay' or 'go', 'attack'
or 'retreat', etc. These days messages are often sent as digital pulses rather
than as written or spoken words, so let us suppose our two possible messages
are coded as 0 and 1. This has the virtue of simplicity, but the price to
be paid is that a single error can mean disaster . If the general receives
intelligence that his troops are vastly outnumbered, so sends '0' meaning
'retreat'and a stray bit of electromagnetic noise corrupts this to '1' for
'attack', then the consequences could be most unpleasant, so unpleasant
that one could not be expected to tolerate such occasional errors even if
very rare. The sour ce of the problem is that there is no redundancy at all in
this system, so no chance of detecting that the received message is an error.
It has been said, and I paraphrase slightly, that modern coding theory is
all about replacing the redundancy we lose in going from natural (English)
to artificial (digital) language in a sufficiently cunning way to enhance the
error-correcting capability of the language.

It is very easy to give examples of simple ways of achieving this. If we stick
with OUf primitive two-message system but this time agree to transmit 00
whenever we intend 0 or 'retreat' and 11 whenever we intend 1 or 'attack',
then there are just two messages, 0 and 1, and these are encoded by the
codewords 00 and 11 respectively. Now suppose the channel is subject to
noise which can corrupt codewords by changing a 0 to a 1 or a 1 to a 0, and

4 Setting the scene

the codeword 00 is sent. One of four things can happen. It may be received

as 00 with no corruption
or 01 with the second digit corrupted
or 10 with the first digit corrupted
or 11 if both digits are corrupted,

and a similar set of possibilities occurs if 11 is sent.
Now put yourself in the position of the receiver who only has available

his pair of digits and no knowledge of what was sent. (To make things more
friendly we'll make Sian the sender and Rhidian the receiver.)

If Rhidian receives 00 he knows that either 00 was sent with no interfer
ence from noise, or that 11 was sent but both digits were corrupted. He is
in a similar position if he receives 11. On the other hand if 01 is received
it is certain that one of the two digits has been corrupted because 01 is
not a codeword, but he has no idea whether 00 was sent and the second
digit corrupted or 11 was sent and the first digit corrupted. Likewise if 10
is received.

It seems then that so much uncertainty still remains that nothing worth
while has been achieved. But notice how the situation changes if we know
that under no circumstances can both digits be corrupted. Now if 00 or 11
is received Rhidian knows that this was Sian's message. If he gets 01 or
10 he knows there is an error (but still doesn't know where). In practice
we can never of course guarantee that it is impossible for both digits to be
changed - after all we have no control over the channel. But also in practice
we can do something almost as good: to be any use the channel only rarely
induces errors so that the probability p that a randomly chosen digit of a
randomly chosen message is corrupted is smalI; the probability that both
digits are corrupted is then p2 - very much smaller. Suppose p is 10-2 so
that p2 is 10-4 , and Sian and Rhidian have to decide whether to use this
channel, with the two-fold repetition code we have described above to send
their messages. In the majority of cases messages will survive the noise in
the channel and arrive intact, so if Rhidian gets 00 he will be safe in as
suming, most of the time, that this was Sian's intension, and similarly for
11. In a small number of cases he will detect that one error has been made,
and in very rare cases he will receive 00 (or 11), assume this is correct, and
be wrong! To quantify this we shall have to make a couple of assumptions
which are realistic for many channels and which are widely used in those
branches of coding theory with which this book is principally concerned.
These are that:

1. Errors occur at random and independently, so the fact that one digit is
corrupted has no bearing on whether or not the next one is;

and

Cunning coding - solution of the problem 5

2. A 0 -t 1 corruption is just as likely as 1 -t 0, so the channel is said to
be symmetrie.

Now suppose Sian sends 00.

P(Rhidian receives 00) = 0.99 x 0.99 = 9801 x 10-4

P(He receives 01 or 10) = (0.99 x 0.01) + (0.01 x 0.99) = 198 x 10-4

P(He receives 11) = 0.01 x 0.01 = 1 x 10-4

Because of the symmetry of the channel an identieal analysis applies when
she sends 11.

The decision which our two protagonists now have to make can be based
on the following questions:

1. In about 2% of cases Rhidian will detect an error so what are the con
sequences of just ignoring these messages? Or is it feasible for hirn to
communicate back to Sian a message along the lines 'I've detected an
error in your last message. Would you please re-transmit, and let's hope
I receive it intact this time'?

2. In just one out of every ten thousand cases Rhidian will misconstrue
Sian's intention (and probably act on this false information). Can they
live with this, or are the consequences so serious that they need to con
sider using a better channel, or if they are stuck with the channel devise
a better message encoding scheme?

Coding theory is a powerful mathematieal tool for dealing with the very
last of these points, but of course the final decision has to depend on the
nature of the messages and the circumstances in whieh they are sent.

The scheme described above is called a binary code, since its alphabet
(set of available symbols) consists of only two symbols, 0 and 1.

Its codewords are those strings of symbols whieh may be sent, 00 and 11
in our case.

It is a block code of length 2, meaning that its codewords are all of the
same length, the length being just the number of alphabet symbols per
codeword.

We shall generally call a sequence of alphabet symbols of the right length
(two in this case) just words or strings or, later, vectors. Thus the complete
set of words is {OO, 01, 10, 11}.

This code is called a one-error-detecting code. What is meant by this
is that in alt cases in whieh one error per word is made, the receiver can
detect this fact. Notiee that this does not mean the receiver knows where
in the word the error occurs.

Let us return to English for a moment in order to make some important
distinctions. Our word-processing friend sends us DAT, and we know she
makes at most one error per word. (We can think of the code as the set of
all standard English words, or just three letter words if we want a block
code.) DAT is not a codeword so we have detected an error.

6 Setting the scene

Table 1.1 The performance of the binary 3-fold repetition code when the receiver
assumes at most one error.

Code Interpretation Correct
word Word made by codeword
sent received receiver recorded

000 000 000 yes
001 000 yes
010 000 yes
100 000 yes
110 111 no
101 111 no
011 111 no
111 111 no

We are incapable of locating it for the correct codeword could have been
SAT, DOT, or DAB, and even if we had extra information to the effect
that the error was definitely in the first letter, this would not enable us to
correct the error as the codeword could have been BAT, CAT, EAT, FAT,

Note that binary codes have the nice property that error location is
equivalent to error correction because if you know there is an error in the
i th pi ace you simply change the symbol in that place to the other one!

Now return to our binary code and imagine the foHowing scenario. Mes
sages from SHin are important and should not be ignored! Moreover, the
communication line from Sian to Rhidian is only one way, so what is Rhid
ian to do when he detects an error? WeH, Sian can modify her co ding
scheme and use instead a three-fold repetition code. That is, she uses 000
and 111 as her two codewords, and they still consider that two or more
errors per word happen sufficiently infrequently not to matter too much.
So now Rhidian is going to interpret aH received words as if at most one
error has been made. How weH he performs is shown in Table 1.1 below, in
which we have taken 000 to be the codeword Sian sends.

In this case it is fairly clear how Rhidian makes his interpretations. For
example, looking at line 5, 110 is received. This is not a codeword so there
must be at least one error. On the assumption of at most one error the
interpretation has to be 111, an error having been made in the third digit,
for the alternative interpretation as 000 would involve two errors (in digits
one and two). By assuming at most one error Rhidian has of course made
the wrong interpretation. However, a glance at the table shows that the
correct interpretation is made in aH cases of one or no error, so we describe
this code as one-error-correcting.

Cunning coding - solution 01 the problem 7

Another piece of salient advice to theoretical coding theorists is that a
code is, in practice, only as good as its decoding algorithm. If you have by
means of some clever mathematics invented a code capable of correcting
lots of errors the whole project could be rendered useless if the calculations
required to do the decoding are beyond the reach of current computing
technology, or would take so long that the messages would only be decoded
long after they had ceased to be relevent! It has to be admitted that much
research in coding theory pays no attention to such practicalities. The rea
son is that the researchers themselves are pure mathematicians, for whom
the beauty of the mathematics involved in inventing and investigating the
properties of codes is sufficient unto itself. Now is an appropriate time
for an admission from me. The motivation for writing this book is mainly
that coding theory is such a brilliant display cabinet for so many gems of
mathematics, so the content of the book was chosen mainly on aesthetic
rather than practical grounds. The practicalities which are discussed are
also chosen for their ni ce mathematical features. I hope that statement will
dis courage readers from writing to me with threats of invoking a Trades De
scription Act for mathematical books, but please do write about anything
else!

Fortunately the code under discussion has a very simple decoding algo
rithm which can be described precisely as in Frame 1.1.

Frame 1.1 The decoding algorithm for the binary 3-fold repetition code
used in error-correcting mode.

1. Count the number of occurrences of each symbol in the received
word.

2. Decode it as xxx where x is the symbol which occurs with the
greater frequency.

Even if Sian and Rhidian have a two-way communication channel there
are still g·ood reasons why they may prefer to seek an error-correcting code
rather than one which is only error-detecting. If messages need to be acted
upon quickly there may be no time to send a message back requesting re
transmission. Or if Sian is a remote camera on an artificial satellite orbiting
Jupiter, by the time Rhidian (the Space Control Centre) has received a
blurred image and requested aretransmission, Sian has disappeared round
the other side of the planet so can't oblige!

We have seen that the three-fold repetition code will function as a one
error-correcting code, but if error detection is considered good enough it
can be used as a two-error-detecting code as folIows. Look at Table 1.1
again, and follow the instructions given in Frame 1.2. Note that the only
circumstances in wh ich this scheme can fai! is when three errors are made
so that 000 is sent but 111 is received and accepted as the correct word, or
vice-versa. All instances of two or fewer errors are detected.

8 Setting the scene

Frame 1.2 The decoding algorithm for the binary 3-fold repetition code
used in error-detecting mode.

1. If 000 or 111 is received, accept this as the transmitted code
word.

2. If anything else is received declare an error in this word and
request retransmission.

Another interesting and important feature of this code is that you cannot
hedge your bets. You have to decide in advance whether to use the code
in error-correcting or in error-detecting mode, for in the former receiving
010 would trigger the response of deducing that the intended codeword was
000, but in the latter the response would be to ask for retransmission.

Before leaving this code let us quantify its rather impressive performance
when used in the error-correction mode. Again we denote by p the sym
bol error prob ability, and compare performances with and without coding.
Using the code,

P(received word wrongly interpreted)
P(channel induces two or more errors)
P(2 errors) + P(3 errors)
3p2(1 - p) + p3 = p2(3 - 2p)

and when p = 10-2 this is 3 x 10-4 approximately. In other words, only
about three messages out of every ten thousand would be decoded wrongly.

Without any co ding (just plain 0 or 1 is sent) one in every hundred
messages are wrong.

Like many things in real life there is a price to be paid for this improve
ment. One of them is that we have to send three symbols for every one we
want to get across, and this three-fold message expansion means that the
time taken (and probably the cost too) to send our messages is three times
what it would have been had we dispensed with the advantage of coding.

This brings us sharply up against one of the main problems of co ding
theory: how can the redundancy necessary to achieve good error correction
and/or detection be arranged so as to minimize the message expansion?
One of the earliest good answers to this problem is described in the next
chapter. [Ex 2, 3]

1.4 Exercises für Chapter 1

1. Try to recover the message with vowels and spaces omitted at the end
of section 1.1.

2. The binary 3-fold repetition code is to be used for one of two possible
channels. The first is a non-symmetric channel wh ich induces 1 --+ 0

Exercises Jor Chapter 1 9

errors with probability a and 0 -+ 1 errors with probability ß. The
seeond is asymmetrie ehannel with an overall symbol error probability
equivalent to that of the first ehannel, !(a + ß). The ehannel is to be
used in 1-error-eorrecting mode. If P(sym) and P(non - sym) denote
the probabilities that a word is wrongly deeoded using the respeetive
ehannels, show that, provided 000 and 111 are equally likely to be sent,

3
P(sym) - P(non - sym) = 4"(a - ß)2(a + ß - 1).

Henee decide what other information is needed in order to decide whieh
ehannel to use.

3. The symbol error prob ability of asymmetrie ehannel is p. The messages
are all binary of length 3 and these are eneoded by adding a fourth bit
to eaeh message so that the total number of ones in eaeh eodeword is
even. What proportion of reeeived words will eontain undetected errors?

2

Reducing the price

2.1 Hamming's solution

In the last chapter the problem of finding a method of co ding which would
correctly retrieve the transmitted codeword whenever it was received with
a single error was solved. But the solution, the three-fold repetition code,
was rather unsatisfactory because of the associated three-fold message ex
pansion. So the quest ion now is whether we can find a code with smaller
message expansion but with equally good error correcting capability.

In 1948 Richard Hamming, working at the Bell Telephone Laboratories,
discovered a technique for doing just this, and Hamming codes are widely
used to protect computer memo ries against failure. We shall see exactly how
this is done later, but for the moment we concentrate on describing one of
the simplest of the Hamming family of codes. It is another binary code so
again we have an alphabet {0,1} of size two, and the set of messages which
can be sent is the set of all binary strings of length four. How these are
encoded ready for transmission is best described by referring to Figure 2.1.
It shows three circular regions A, Band C inside a rectangle R, arranged
to divide the rectangle into eight areas which are labelled 1-8.

Figure 2.1(b) shows how a particular message, 0100, is encoded. First,
the four 'bits' (binary digits) of the message are placed, in order, in regions
1 to 4. The redundancy is added as extra bits 5, 6 and 7 according to a
simple rule: the total number of 1s in each of the circles A, Band C must be
even. Since the first four bits fill three of the four regions into which A, B
and C are split, the bits to go in regions 5, 6 and 7 are uniquely determined
by this rule. In this case our message 0100 gets encoded as 0100011. Notice
that the message expansion factor is now only 1. 75 instead of 3, so this
is a vast improvement provided we can still correct all instances of single
errors. This is indeed the case, and you are invited to prove this in one of
the exercises for this chapter. First we work through a couple of examples
of the decoding process. [Ex 1]

12 Reducing the price

Suppose Rhidian gets 0101010. He first puts the received bits, in the right
order, back into the regions 1 to 7 of the diagram. (see Figure 2.2). Then
he does the parity checks on each of A, Band C. That is, he just records
whether each of these areas contains an even number of ones (y') or an
odd number (x). In this case all three fail so he knows that at least one
error has occurred, because the transmitted word was deliberately devised
to have all three even.

R

(a) (b)

C R C

The numbering of the regions 0100 is encoded as 01000 11.

Figure 2.1 The Hamming (7,4) code.

C

AX} Bx
Cx

Error in region 1,
so corrected word
is 1101010.

Figure 2.2 Decoding the received ward 0101010.

He can actually do better than this by the following reasoning: if there
is only one error it has clearly affected all of the regions A, B, C, and there
is only one bit which is in all three of A, B, C - the first one. Hence the
error is in bit one, and the correct word must therefore be 1101010.

To take one more example, suppose 1100101 is the received word. You
should check that this time the parity check works for A and B but fails
for C. Hence the error only affects C, and the only bit which does this is
bit 7. So this is the corrupted bit and the corrected word is 1100100.

Gan anything be done if two errors occur? 13

The importance of this example is in showing that it is just as easy to
correct an error inone of the redundancy hits (5, 6, 7), as in one of the
message hits (1, 2, 3, 4). This is just as weIl, hecause if the channel noise is
a stray cosmic ray it has no interest in whether it hits one of the first four
or one of the last three hits!

The code we have just descrihed is sometimes called, for ohvious reasons,
the hinary Hamming (7,4) code. Frame 2.1 makes its decoding algorithm
explicit. [Ex 2, 3]

Frame 2.1 Decoding algorithm for the hinary Hamming (7,4) code, as
suming at most one error.

1. Put the hits of the received word, in order, in regions 1 to 7.

2. Do the parity checks on A, Band C.

If all are correct accept the received word.

If the check on just one of A, B, C fails, the error is in hit 5, 6
and 7 respectively.

If B,C or A,C, or A,B fail (hut the check on A,B,C respectively
is correct), the error is in hit 2, 3 or 4 respectively.

If all three fail, the error is in hit 1.

2.2 Can anything be done if two errors occur?

Suppose that Sian decides to send 1100. She encodes this (correctly) as
1100100, hut during transmission hits 2 and 6 are corrupted so that Rhidian
receives 1000110. Ifyou put this hack into the decoding diagram and decode
on the assumption that there is at most one error, you can check that the
outcome is to declare an error in bit 7. Notice that this is not one of
the pi aces where there is actually an error, so the process which works
heautifully when there is only one error can confuse the situation still
furt her if there are two. So our advice to Sian would have to be: 'If you
are sure the channel cannot induce two or more errors per word, or if
the prohahility of this happening is so small that you can live with the
corresponding small proportion of your messages heing misinterpreted, then
use the Hamming (7,4) code. If not, look for a different code'.

One of the different codes Sian may consider involves only a small adap
tation of the (7,4) code. You may have wondered why the exterior region of
Figure 2.1(a) received the lahel '8'. We are about to use it. We encode the
4-hit messages as 8-hit code words this time to obtain the hinary Hamming
(8,4) code. Bits 5, 6 and 7 are determined in the same way as hefore and
hit 8 is an overall parity check bit. That is, it is chosen to make the total
numher of ones in the whole 8-hit code word even. If Sian uses this system,
instead of sending 1100100 she will send 11001001. Sticking to our example

14 Reducing the price

of errors in bits 2 and 6, Rhidian receives 10001101, which he dutifully puts
into the decoding diagram - refer to Figure 2.3. Initially Rhidian has an
open mind about the errors and begins to narrow down his options in the
light of the checks: A and B work, C fails and the overall check works. The
fact that any of the checks fail teIls hirn there must be at least one error.
How many? Notice that if you start with any binary string, each time one
error is made the overall parity must change from odd to even or even to
odd. The transmitted word has even overall parity because of the way the
(8,4) code is defined, so the fact that the received word is still even must
mean that an even number of errors have been made.

C

Checks
Av
B V
Cx

overall V

)

There is at least
one error, and the
total number of
errors is even.

Figure 2.3 Using Hamming (8,4) to interpret 10001101.

If the practical situation is such that the possibility of three or more
errors can be ignored safely, then Rhidian has detected that there are two
errors in this word. Where could they be located? The first clue to use is
the fact that the check on C failed so exactly one of the errors is in C, that
is, in region 1, 2, 3 or 7. If it is in 1 and we make the correction in region 1
this will correct the parity of C, but make A and B odd, so the remaining
error must lie in the region which affects A and B but not C, that is region
4.

If the C error is in 2, changing this bit will make C even, leave A even,
but make B odd, so the remaining error must lie in the region which affects
only B, that is region 6.

By continuing this line of reasoning for the other two cases you should
see that the four possibilities for the location of the errors are (1,4), (2,6),
(3,5) or (7,8). The outcome then is that although Rhidian has not been able
to correct the two errors with certainty he has been able to do better than
pure detection in that he has narrowed down to four the possible locations.
In the exercises we ask you to check by similar arguments that whatever
the transmitted word, and wherever two errors are made, the Hamming
(8,4) code enables you to detect this fact and to reduce to four the set
of possible error locations. In anticipation of this, Frame 2.2.2 presents a
decoding procedure for this system. [Ex 4, 5, 6, 7]

An alternative use of Hamming codes - erasures 15

Frame 2.2 Decoding algorithm for the binary Hamming (8,4) code, as
suming at most two errors.

1. Put the bits of the received word, in order, in regions 1 to 8.

2. Do parity checks on A,B,C and the overall check.

If all are correct accept the received word.

If the overall check fails and at least one of the other checks fails,
deduce that there is only one error, that it is in bits 1 to 7, and
correct it as for the Hamming (7,4) code.

If the overall check is the only one which fails, deduce that there
is one error, that it is in bit 8, so make the correction.

If the overall check works but at least one of the others fails,
declare that there are two errors and request retransmission.

Both the (8,4) code and the three-fold repetition code considered in
Chapter 1 can be used to correct single errors and detect up to two er
rors per word. But the Hamming code wins when they are compared for
message expansion (3 for the repetition code but only 2 for the (8,4) code).
The Hamming code has another advantage: you do not have to decide in
advance whether to use it in error detection or error correction mode. The
reason is that in the repetition code the reception of a non-codeword can
indicate either an error in one of the bits or errors in the other two bits,
and there is no way of telling which has occurred. But in the (8,4) code if
one or more of the checks on A, Band C fails, the overall check will always
distinguish between one error and two errors.

2.3 An alternative use of Hamming codes - erasures

In certain channels it is possible for bits to be wiped out or rendered un
recognizable rather than corrupted from one alphabet symbol to another.
Such a fault is called an erasure, and the codes we have discussed up to this
point can deal with these too. Apart from abrief investigation in chapter
5, erasures will play no significant part in this book so we confine ourselves
to one example here, and refer you to Exercises 8 to 12 to pursue this fur
ther and get so me more experience with our diagrammatic representation
of Hamming codes.

Consider a channel in which erasures can occur but not 0 1 corrup
tions, and suppose words are transmitted using the (7,4) code, and one
word is received with the second and fourth bits unrecognizable. Follow
the procedure shown in Figure 2.4, of starting to decode in the usual way.
Represent the 'smudged' bits as x and y, then the parity checks tell you
that the transmitted codeword is one in which x and y have to satisfy the
conditions that y + 2, x + Y + 1 and x + 3 must all be even. Since x and y

16 Reducing the price

can only be 0 or 1 it is easy to see that there is only one possible solution:
x = 1, Y = 0, and the code word is 111000l.

Notice that at least in this example the (7,4) code has managed to survive
two erasures, whereas we know that it cannot cope with two errors. This
is to be expected as in the case of an erasure the location of the trouble is
known. The exercises investigate how representative this example is of the
general situation. [Ex 8 - 11]

Received: 1 ? 1 ? 1 00 1
~ IxlyOOI

Checks A. Y + 2 }
B. x+y+1
C. x+3

C

corrected word is 1110001

deduce:
x= l,y=O

Figure 2.4 Interpreting two erasures with the (7,4) code.

2.4 What really makes a code work? - Hamming distance

Why is the Hamming (7,4) code so good at correcting single errors? The
answer depends on the following claim - that any two 7-bit codewards differ
in at least three places. I ask you to take this on trust for the moment
while we look at its important consequence. Suppose for example that the
transmitted word Wt is X1X2X3X4X5X6X7 and that noise changes the sixth
bit, so the received word W r is X1X2X3X4X5X~X7' where X6 :f. x~. Now let
W be any codeword other than Wt. It differs, according to my claim above,
from Wt in at least three places. If one of these places is the sixth, then W

differs from W r in at least two places, and if not, in at least four places. To
summarize, if only one error is made, so that the received word differs from
the transmitted word in only one place, it differs from every other codeword
in at least two places. Our diagrammatic decoding method operates by
interpreting the received word as that codeword which can be obtained
from it by changing at most one bit, and we have shown (subject to the
claim) that there is only one codeword with this property. [Ex 12]

So now it remains to substantiate the claim! A direct but very tedious
method would be to list all the codewords and for each pair count the
number of places at which they differ, but this would involve doing (6) =

What really makes a code work? - Hamming distance 17

120 counts. We can reduce the work (and enhance insight!) if we make use
of the symmetry inherent in the code's construction.

If the diagram for the code is not yet fixed in your memory you will
need to refer to Figure 2.1(a) again. We first classify the bits of a word as
folIows:

{X5,X6,X7}

{X2,X3,X4}

{xd

type I
type 2
type 3

where the type nu mb er is the number of parity checks affected if a bit of
that type is changed. For example, chan ging X4 will affect the checks on A
and B.

So if we start with a codeword (so that all three parity checks work) and
change one bit, then at least one check will fail. Similarly, if two bits are
changed you can check that the results are as tabulated below.

Changed bit types Result of changes
2 and 3 one check fails
1 and 3 two checks fail

1 and 2 { one fails (e.g. changex7 and X3)

or all three fail (e.g. change X7 and X4).

Hence two codewards (that is, words for which no parity check fails) must
differ in at least three places.

The concept we have been using is so important throughout coding the
ory that it is given a title:

Definition 2.1 If wand w' are words of the same length, over the same
alphabet, the Hamming distance between them is the number of places at
which they differ, and this number is denoted by d(w, w').

The word 'code' is usually taken to mean the set of all codewords, so the
repetition codes of Chapter 1 are {OO, 11} and {OOO, 111} respectively, and
the Hamming (7,4) code is a 16 word code.

You have seen how the error-correcting capability of the Hamming (7,4)
code is related to the fact that d(v, w) ~ 3 for any two distinct codewords
v and w. Shortly we shall prove a couple of theorems which make this
connection precise for codes in general, and in anticipation of this we make
another definition.

Definition 2.2 If C is a code which contains a pair of codewords whose
Hamming distance is 0 and there is no pair of distinct codewords whose
distance is less than 0, then 0 is called the minimum distance of C and is
denoted by d(C).

It would be perverse to use the term 'distance' in the context of codes
unless the Hamming distance bears some similarity to what we understand
by distance in ordinary (geometrie) language, where distance is clearly a
numerical measure of the separation between two points. It is positive un-

18 Reducing the price

less the two points happen to be the same, and clearly Hamming distance
has the same property (with points replaced by words). More fundamen
tally, there is another feature of distance in Euclidean geometry wh ich is
often expressed as 'the shortest path between two points is a straight line'.
Or to put it another way, the direct journey from A to B is no longer than
the journey via any other point Pj d(A, B) :::; d(A, P) + d(P, B). (Refer to
Figure 2.5 which makes it plain why this fact is called the triangle inequal
ity.) In the exercises you are asked to show that this holds for Hamming
distance too. [Ex 13-15]

p

B

A d(A, B) ~ d(A, P) + d(P, B)

Figure 2.5 The triangle inequality.

Hamming distance is but one example of many significant functions shar
ing these fundamental properties. We digress to mention a couple of exam
pIes but if you prefer to concentrate on the coding skip to Theorem 2.1.

First, the geometry can be extended to n dimensions in which points
(or vectors) have n co-ordinates, Xl, X2, ... , X n and distance is defined by
a natural generalization of Pythagoras' theorem, namely

This distance function or metric is useful to numerical analysts in investi
gations of the accuracy of methods of solving sets of linear equations in n
variables.

Second, a subject called functional analysis uses various measures of
separation between pairs of continuous functions defined between two fixed
values a and b. Figure 2.6 illustrates two such measures: d1 is useful if what
is important is the worst deviation between the two functions, whereas d2

is more of an average deviation between them over the whole of the range.
What these and the many other examples have in common is that whether

A, B, C are points or words or functions or ... , d satisfies:

(a) d(A, B) ~ 0 for all A, Bj

(b) d(A, B) = 0 if and only if A = Bj

(c) d(A, B) = d(B, A) for all A, Bj

(d) d(A,B):::; d(A,C) + d(C,B) for all A,B,C.

What really makes a code work? - Hamming distance

f(x)--

g(x)- - -

y = g(x)

--r---~----------------------~~x

a x b

y =f(x)

--r---------------------------~~x

a b

19

d1(f, g) = maximum value
of If(x) - g(x)1 over
the range a ~x ~ b

dz<J, g) = f: If(x) - g(x)1 dx

Figure 2.6 Two 'distances' defined on the set ollunctions continuous on the
interval [a, bj.

Indeed, there is a general theory of metric spaces, which are just sets of
objects endowed with a function d which satisfies these four rules.

So you now know that the set of words of fixed length n, over any fixed
alphabet, is a metric space in which d is the Hamming distance.

We now come to the results which explain the significance of the min
imum distance of a code. C denotes any block code over any alphabet.
Recall that error-detection means observing that the received word is not
the transmitted word, and we assume that error-correction is done by de
coding the received word to the codeword at smallest Hamming distance
from it. If there is more than one such codeword this fails, and it also fails
of course if the codeword 'nearest' to the received word happens not to be
the transmitted word.

Theorem 2.1 d(C) ~ 8 if and only if C is 8 - 1 error-detecting.

Proof. Let d(C) be at least 8. If any codeword has at least one but fewer
than 8 - 1 of its digits changed, the result cannot be another codeword.

Conversely, suppose d(C) = "(< O. Then C contains coclewords x and y
for which d(x, y) = "(. So if x is sent ancl the channel incluces errors which
result in y being received, then the receiver will assume y was sent. Only"(
errors have occurred (and "(:::; 0 -1) so the code is not 8 -1 error-detecting.

o

Theorem 2.2 d(C) ~ 2c: + 1 if and only if C is c: error-correcting.

20 Reducing the price

Proof. First suppose d(C) ?: 2€+ 1. If codeword x is sent and u is received,
at most € errors having been made, we wish to show that u is doser to x
than to any other codeword y. To do this, we have

2€ + 1 < d(x,y)
< d(x,u)+d(u,y)
< € + d(u,y)

by the definition of d(C)
by the triangle inequality
since d(x, u) is at most €

Hence 2€ + 1 ~ € + d(u, y), so d(u, y) ?: € + 1 as required.
Conversely, suppose d(C) < 2€ + 1 and show that a word can suffer € or

fewer errors but still fail to be correctly decoded: let x and y be codewords
such that

d(x,y) = d(C) = 0: < 2€ + 1

If 0: is even define the word u as follows: take x and choose 1 of the
places where it differs from y; change the symbols in these places to the
corresponding symbols of y. If 0: is odd do the same with at1 places.

Now let x be the transmitted codeword and u the received word. The
number of errors made in this transmission is 1 < € + ~ or at1 < € + 1,
sobecause the number of errors is an integer, it is necessarily at most €. If
0: is even d(x, u) = d(y, u) = 1 so the transmitted word x is certainly not
the unique codeword dosest to u, and the decoder is therefore 'confused'.

If 0: is odd then d(x, u) = ~ but d(y, u) = a 21, so d(y, u) < d(x, u) and
the decoder would certainly not decode u to the correct codeword x. 0

[Ex 16, 17]

All that we have done up to this point has depended on the belief that
interpreting the received word as the codeword which is dosest to it (in the
sense of Hamming distance) is a sensible strategy. This strategy is called
nearest neighbour decoding, and we now compare this with an alternative
strategy which we would naturally use if we had never heard of Hamming
distance. This is maximum likelihood decoding and is specified as follows: on
getting the received word w calculate, for each codeword c, the prob ability
that c was sent given that w is received. Then decode w to the codeword
which maximizes this probability. This was the strategy which guided us,
somewhat informally, in our discussion of the Valentine's Day message of
Chapter 1.

To compare the two strategies, suppose the code is of length n, w is the
received word and d is its Hamming distance from the code word c. Then

Prob (c was sent, given w is received) = pd(l - p)n-d = (~p/.(l _ p)n,
where p is the symbol error prob ability.

Now if p < ~, then (~) < 1, and (1 - p)n does not depend on d, so

(-f~p) d (1 - p) n is a decreasing function of d. So choosing c to minimize d
corresponds to maximizing [Prob(c sent Iw received)]. In other words near-

What really makes a code work? - Hamming distance 21

est neighbour and maximum likelihood decoding are equivalent provided
p < !. This condition on p is not at all restrictive since no-one would con
sider using a channel in which symbols were more likely to be corrupted
than not! [Ex 18, 19]

To end the chapter on a light note we describe a party trick based on
the Hamming (7,4) code. It was first shown to me by Ray Hill [1].

It is a 'number guessing' game for two players, Gwen the great guesser
and Llew the limited liar. Gwen asks Llew to choose a number between
zero and fifteen inclusive but to keep it to hirnself. She then asks hirn
seven questions for which he has a furt her choice: either answer them all
truthfully or answer six correctly but lie in reply to the other. He does not
have to reveal whether he is lying at any point. From the answers Gwen is
able to say what the number is, whether he has lied, and if so, in reply to
which question.

The questions are

Ql. Is the nu mb er 8, 9, 10, 11, 12, 13, 14 or 15 ?
Q2. Is the number 4, 5, 6, 7, 12, 13, 14 or 15 ?
Q3. Is the number 2, 3, 6, 7, 10, 11, 14 or 15 ?
Q4. Is the number 1, 3, 5, 7, 9, 11, 13 or 15 ?
Q5. Is the number 1, 2, 5, 6, 8, 11, 12 or 15 ?
Q6. Is the number 1, 3, 4, 6, 8, 10, 13 or 15 ?
Q7. Is the number 2, 3, 4, 5, 8, 9, 14 or 15 ?

To explain how the answers to these reveal all to Gwen, recall the diagram
for the Hamming (7,4) code. Express the 'messages' - the numbers 0 to 15
- as four bit strings as below

o
0000

8
1000

1
0001

9
1001

2
0010

10
1010

3
0011

11
1011

4
0100

12
1100

5
0101

13
1101

6
0110

14
1110

7
0111

15
1111

Imagine the four bits placed in order in the regions 1 to 4 of the Hamming
diagram. Finally add the bits in places 5, 6, 7 in the usual way, so that
Gwen's attempt to guess Llew's number is equivalent to guessing its 7-bit
encoding as shown below

o 1 2 3 4 5 6 7
0000000 0001110 0010101 0011011 0100011 0101101 0110110 0111000

8 9 10 11 12 13 14 15
1000111 1001001 1010010 1011100 1100100 1101010 1110001 1111111

Then you may check that each of the seven quest ions is equivalent to asking
whether there is a 1 in a certain region of the diagram. In fact, the scheme

22 Reducing the price

is arranged so that quest ion Qn is equivalent to 'Is there a 1 in region n of
the diagram7'

Now the connection between the game and Hamming decoding can emerge:
Gwen gets in reply to her quest ions a sequence of seven Y s (yes) and N s
(no), for example NYNNYYN, wh ich she then translates as the 'codeword'
0100110. To 'decode' she has to do the parity checks on regions A, Band
C. In practice, if she is aiming to be impressive and do her mind reading
without assistance from computing power she has to add bits 1, 3, 4, 5 for
A, 1,2,4,6 for Band 1, 2, 3, 7 for C. In this case A and C fail but B works,
wh ich corresponds to an 'error' in region 3, so the 'transmitted word' was
0110110, and the first four 'message bits' 0110 correspond to 6, so she is
able to tell Llew that 6 was the number he thought of, but he attempted
to deceive her at question 3! [Ex 20]

If lying is not allowed, then it is easy to ask just four quest ions wh ich
will do the trick. First ask whether the number is in the first half (0 -
7). If yes, is it in the first half of that (0 - 3)7 or if not, is it in (8 -
11)7 ... and so on. At each stage the range in which the number may
lie is halved, so four quest ions must yield the answer. But of course this
strategy still involves feedback from Llew. Gwen's next quest ion depends
on Llew's previous reply, but in the Hamming lying game the quest ions can
be declared in advance. [Ex 21]

2.5 Further reading

Two articles published in the Scientijic American are useful background
reading at this stage. Peterson [2] contains some early (pre-computer) error
detection devices, abrief account of how hardware known as a shift register
can be used to implement some co ding schemes, and some of the unsolved
problems of co ding theory.

McEliece [3] gives a clear explanation of how a real computer memory
chip works and how Hamming codes can be used to protect the memory
storage against corruption by radiation. In this application the channel
is a temporal one rather than spatial. Information is stored on the chip in
order to be read at a later date, and this temporal gap between encoding the
message and reading it plays an exactly analogous röle to the spatial gap
between sender and receiver in other applications. The coding principles
are of course identical in the two cases.

2.6 Exercises for Chapter 2

1. Encode the messages 1011, 1111 and 0111 using the Hamming (7,4) code.

2. A child's arithmetic homework is sent encoded as a binary string ac
cording to the Hamming (7,4) system. The 'messages' are defined be-

Exercises for Chapter 2 23

low. Encode the questions: 13 + 49, 259 -7 7, and decode and answer if
possible the three questions:

00011100000010001110010001111100001000111001

00011110010010110101110001100100111010101111111

Do you suspect any uncorrectable errors?

'Message' 0 1 2 3 4 5 6 7
4-bit string 0000 0001 0010 0011 0100 0101 0110 0111
'Message' 8 9 + x space
4-bit string 1000 1001 1010 1011 1100 1101 1110

3. Can you prove (preferably not by listing an possible single errors in
an sixteen codewords!) that the Hamming (7,4) code will correct an
instances of a single error?

4. Using the (8,4) code, encode 1000, 1110, 0011.

5. Decode if possible 11101111, 11010100, 10011100, assuming each word
has at most two errors.

6. In the word of the previous exercise found to have two errors, find an
the possible error locations.

7. Prove that on the assumption of at most two errors, whenever Hamming
(8,4) decoding detects two errors there are always four possible pairs of
locations of the errors.

8. The Hamming (7,4) code is used for a channel prone to erasures but not
errors. If ?0?0111 is received what was the transmitted word?

Show that if ??11001 is received, the 'no errors' assumption cannot be
valid. Can the correct word be recovered if the assumption is amended
to 'at most one error in the recognizable bits'?

9. Show that every word received via the (7,4) channel with two erasures
and no errors is uniquely recoverable.

10.(a) Are there any received words with three erasures which the (7,4) code
can cope with?

(b) Are there any for which it fails?

11. Does your answer to Exercise 10 change if the (8,4) code is used?

12. How many binary strings of length 7 are there?
How many of these are codewords of the Hamming (7,4) code?

13. In the geometrie tri angle inequality, why do we have :S and not <?

14. Prove the triangle inequality for words. That is, if u, v, ware any three
words of a code, then

d(u, w) :S d(u, v) + d(v, w).

24 Reducing the price

15. How many strings of length n are there if the alphabet has q symbols?

16. What is d(C) if Cis: (a) 3 error-deteeting; (b) 3 error-correeting?

17. C can be used as an a error-deteeting code or as a ß error-correeting
code. What are a and ß if: (a) d(C) = 4; (b) d(C) = 5; (c) d(C) = 6?

18. A ternary code (one whose alphabet size is three) C is

{cbaaa,bcabc,bacbc,aabbc,acccb,cbbab}.

Verify that d(C) = 2, so that by Theorem 2.2 C is not 1 error-correcting.

However, this only means that nearest neighbour decoding will not cor
reet alt instances of words received with one error. Find examples of
words received with one error which: (a) are correctly decoded; (b) are
incorreetly decoded.

19. C = {011000, 110110,000011,101101}. Use nearest neighbour decod
ing to decode, if possible, the following received words: (a) 010110; (b)
101101; (c) 110011.

20. Practise the lying game sufficiently to become a professional magician
next Christmas!

21. If lying is not allowed is it possible to guess the number with four ques
tions wh ich are independent of the replies received?

3

Number theory - arithmetic
for codes

3.1 Why number theory?

The main outcome of the previous chapter was the explicit connection
between the minimum distance of a code and its error-correcting and error
detecting capability (Theorems 2.1 and 2.2). So a code which is good at
correcting errors should have a large minimum distance. Since codes with
several thousand codewords are often required the job of designing such
a code is daunting, and trial-and-error is really a non-starter. As always,
mathematics comes to the rescue, for if we impose so me mathematical
structure on codes their properties are rather easier to sort out, and there
is more hope of devising a feasible decoding procedure - that is, one wh ich
is not too expensive and which doesn't take too long.

Most of the codes we shall discuss are linear codes, and to understand
their significance you need to learn (or revise?) a little number theory and
linear algebra, which are the topics of this and later chapters.

The Hamming (7,4) code is one which has this nice linear structure, and
to appreciate what this means consider the following experiment. Take any
two codewords and write them down, one lined up vertically below the
other. I chose

0011011
and 1000111,

but I suggest you try your own pair. Now write down another word whose
digits are chosen as folIows: in each place where the digits of the two original
words agree put a 0, and where they differ put aLSo I would get the result
1011100, and observe that this is not just any old 7-bit string but is another
codeword. You should observe the same phenomenon with your choice, and
Exercise 1 invites you to check that this property holds for all choices of
the first two codewords.

There are a couple of alternative ways of thinking out what we have just
done. One is that we have carried out an addition sum in the binary system
but have ignored the 'carry' digits. Another is that in each column of the

26 Number theory - arithmetic for codes

addition we have recorded just the remainder on dividing the real sum by
two. Thus in this strange addition,

and
and

0+1 1 + 0
0+0
1 + 1

1 because 1 -;- 2 is 0 with remainder 1
o because 0 -;- 2 is 0 with remainder 0
o because 2 -;- 2 is 1 with remainder 0

This process is called addition modulo 2, often shortened to addition
mod 2, and it turns out to be most useful. [Ex 1]

Many practical codes are binary, but some have alphabets with more
than two symbols. If, for example, the alphabet has five symbols, then in
order to obtain a useful structure for such a code it is usual to take the
alphabet to be {O, 1,2,3, 4} and the arithmetic relevant to the code would
be modulo 5.

It is time to be less vague. We can add, subtract or multiply any two
integers and do these processes modulo any positive integer. To define what
we have previously called the 'remainder' note that if a is any integer and
b is any non-zero integer there are many ways of expressing the result of
dividing a by b. For example,

10 -;- 3 is 3 with a remainder of 1 (10 = 3x3 +1)
or 4 with a remainder of -2 (10 = 4x3 -2)
or 1 with a remainder of 7 (10 = 1 x 3 +7)
or -3 with a remainder of 19 (10 =-3 x 3 +19)

But if, as is usual, we specify that the remainder must be the smallest
possible non-negative value, this fixes the remainder uniquely. [Ex 2]

3.2 Congruence and related ideas

Definition 3.1 If a and bare integers and m is any positive integer, a is
said to be congruent to b modulo m if a and b differ by a multiple of m.

The notation for this is a == b mod m, and by multiples of m we mean
the product of m with any integer, so 5, 25, 40, 0, -10, ... are all multiples
of 5.

An equivalent way of expressing a == b mod m is to say a and b leave
the same remainder on division by m. The fact that any integer must
be congruent to 0, 1, 2, ... , or m - 1 mod m is often called the division
algorithm and its use often shortens arguments considerably, as for example
in Exercises 6, 7, 9 and 10 below.

It is important to note that fractions have no place in the new type of
arithmetic we are about to investigate, so a, b, m or any other letter will,
until the end of section 3.6, always stand for integers.

The sign for congrence, ==, is dose to the sign =, for equality, and this
is no accident for the two relations share many properties. Just how dose

Congruence and related ideas 27

they are is illustrated by the next theorem which gives a list of properties
of ==.
Theorem 3.1 If m is any positive integer and a, b, c, d are any integers,
then:

(i) a == a mod m;

(ii) if a == b mod m then b == a mod m;

(iii) If a == b mod m and b == c mod m then a == c mod m;

(iv) If a == b mod m and c == d mod m then a + c == b + d mod m and
ac == bd mod m.

Proof. exercise. o
[Ex 3-7]

One method of solving a pair of simultaneous linear equations such as

3x + 2y
4x 2y ~ }

is to 'add the equations' so that the y-terms vanish and we are left with
7x = 13. The first part of the property (iv) above teIls us that we can do
the same with congruences.

If we take the special case of (iv) in which c = d we obtain

a == b mod m ==> a + c b+c mod m
and a == b mod m ==> ac bc modm

The first of these implications is that it is legitimate to 'add the same thing
to both sides of a congruence', and it works in reverse too: that is

a + c == b + c mod m ==> a == b mod m,

since this is just 'adding -c to both sides'.
Unfortunately 'multiplying both sides by the same thing' doesn't always

work in reverse. For example

3 x 5
give 5 ==

3 x 13 mod 12 is true, but 'cancelling the 3' would
13 mod 12 which is false.

This is a pity because cancelling a common factor (other than 0) is a
perfectly legitimate thing to do when manipulating equations. We shaIl
have reason to solve the occasional congruence in connection with codes,
so we now start working towards a theorem which teIls us that we can do
canceIlation provided we make a suitable adjustment to the modulus. First
we need adefinition and some important notation.

The symbol alb which number theorists usuaIly express as 'a divides b'
means a is a factor (or divisor) of b, or equivalently, b is a multiple of a.
Provided rand s are not both zero the symbol gcd(r, s) denotes the greatest
common divisor (also caIled the highest common factor) of rand s. Just

28 Number theory - arithmetic for codes

as =f. negates the equality relation, we can do the same with 1 and =:. Some
examples are given below and you should satisfy yourself that they are all
true.

121360;
gcd(7, 21) = 7;
gcd(-14, -22) = 2;
10 t= 23 mod 11;

36 112;
gcd(7, 22) = 1;
50 =: 194 mod 12;

3 t= 10 mod2; 010;
gcd(18, -42) = 6;
10 =: -23 mod 11;

and for all x: 3 13x + 2; xix; xlO; 11x; xix;
gcd(O, x) = x (provided x =f. 0).

0)'2;

[Ex 8-12]

Theorem 3.2 If a = bq + rand b =f. 0, then gcd(a, b) = gcd(b, r).

Proof. Let Dx,y denote the set of all common divisors of x and y. We show
that Da,b = Db,r.

First,

d E Da,b =} (a = kd and b = ld) =} r = a - bq = d(k - lq)

=} dir

=} d E Db,r

(1)

Secondly,

e E Db,r =} (b = ue and r = ve) =} a = bq + r = e(uq + v)

=} ela
=} c E Da,b

so Db,r ~ Da,b. (2)

So combining (1) and (2) we have Da,b = Db,r' Now if two finite sets of
integers are equal their greatest members must be the same!

That is
gcd(a,b) = gcd(b,r).

o

This theorem has the following important and famous corollory.

Euclid's algorithm

This is best explained by a typical example. We begin with any two pos
itive integers, say 3840 and 1404, and divide the larger by the smaller to
obtain the quotient 2 and remainder 1032. Then divide 1404 by 1032 to
get its quotient, 1 and remainder 372. Then divide 1032 by 372, and so on.
The successive steps are shown below, where the remainders are chosen in

Congruence and related ideas 29

aeeordanee with the specifieation at the end of section 3.1, and to the right
of eaeh division we have written the result of applying Theorem 3.2.

3840 -;- 1404.
1404 -;- 1032.
1032 -;- 372.

372 -;- 288.
288 -;- 84.

84 -;- 36.
36 -;- 12.

3840 = 2 x 1404 +
1404 = 1 x 1032 +
1032 = 2 x 372 +
372 = 1 x 288 +
288 = 3 x 84 +

84 = 2 x 36 +
36 = 3 x 12 +

1032 ... (1), gcd(3840, 1404) = gcd(1404, 1032)
372 ... (2), = gcd(1032, 372)
288 ... (3), = gcd(372, 288)

84 ... (4), = gcd(288, 84)
36 ... (5), = gcd(84, 36)

[TI] ... (6), = gcd(36, 12)
0 ... (7), = gcd(12, 0)

=[ill
The proeess is terminated onee a zero remainder is reaehed, in this ease

after seven divisions. Clearly there is not hing special ab out the numbers
3840 and 1404, so we eould start with any pair of integers and the result
would be that their ged is the last non-zero remainder. If you are a good
seeptie, and all mathematicians should be, you will be asking 'but what if
we never reaeh a zero remainder?' WeIl, suppose the sequenee of remainders
is rl, r2, r3, To obtain r2 we do a division by rl so r2 < rl' To obtain
r3 we do a division by r2 so r3 < r2, ... and so on. In other words the
sequenee of remainders is strietly deereasing, and any strietly deereasing
sequenee of integers bigger than or equal to zero must clearly reaeh zero
eventually.

What is striking about the algorithm is that 'eventually' is very soon.
For example, we needed only seven steps starting from 3840. A rough ex
planation is that when dividing by x we would expect 'on average' that the
remainder lies midway between 0 and x, so the average behaviour of the
algorithm would be to halve the remainder at eaeh step. So starting from
3840 the expeeted nu mb er of steps is about eleven or twelve. [Ex 13, 14]

Much more of a surprise is that the algorithm finds the highest eommon
factor of a pair of integers without factorizing either of them!

It can also be used to give a definitive answer to the question raised in
Exercise 14. The next theorem is the major step towards this.

Theorem 3.3 If d = ged(a, b) then d ean be expressed as an integer linear
eombination of a and b. That is, d = ax + by for some integers x and y.

Proof. Again an example will suffiee. We start with another instanee of
Euclid's algorithm:

693 1 x 392 + 301 · .. (1)
392 1 x 301 + 91 · .. (2)
301 3 x 91 + 28 · .. (3)

91 3 x 28 + [2] · .. (4)
28 4 x 7 + 0

So ged(693, 392) = 7.

30 Number theory - arithmetic for codes

Now starting from equation (4) and working backwards we have

gcd(693, 392) = 7 = 91 - (3 X 28)
91 - 3(301 - (3 X 91))
(10 X 91) - (3 X 301)
10(392 - (1 X 301)) - (3 X 301)
(10 X 392) - (13 X 301)
(10 X 392) - 13(693 - (1 X 392))
(23 X 392) - (13 X 693)

from (3)
tidying the line above
from (2)
tidying
from (1)
tidying

So by running Euclid's algorithm backwards we have expressed the gcd as
an integer linear combination of the original two numbers. 0

[Ex 15]

Now look again at the example in Exercise 14.

T 24 ,42 = {24x + 42y : x E Z, Y E Z}

We have now from Theorem 3.3 that 6, the gcd of 24 and 42, must be a
member ofT24,42. And from the solution to Exercise 14 T 24,42 must contain
all the multiples of 6. Furthermore, it is easy to show that it contains
not hing else because any member, 24x + 42y, can be written as 6(4x + 7y)
which is clearly a multiple of 6. So we have proved our next result:

Theorem 3.4 For any integers a, b, not both zero, the set of all integer
linear combinations of a and b is the set of all multiples of their greatest
common divisor.

Definition 3.2 A pair of integers is called a relatively prime pair or a
eoprime pair if they have no positive common divisor except 1. (So (a, b)
is coprime means gcd(a, b) = 1).

[Ex 16]

Theorem 3.5 (Euclid's lemma) If albe and (a, b) is a coprime pair, then
ale.

Proof. albe :::}

(a, b) coprime :::}

:::}

:::}

:::}

:::}

be= am
ax+by=l
aex+bey=e
aex + amy = e
a(ex+my)=e
ale

for some mEZ ... (1)
for some x, y E Z

from (1)

o
[Ex 17-19]

Now we can obtain the result promised some pages back.

Theorem 3.6 Ifax == ay modm, then x == y mod 7 where d = gcd(a, m).

Solving linear congruences 31

Proof. The result clearly holds when a 0, so now deal with the case
a # O.

ax == ay mod m =>
gcd(a, m) = d =>

a(x-y)=km
a = ud,m = vd,
and gcd(u, v) = 1

Hence, from (1) and (2) ud(x - y) = kvd.
d#Oso u(x-y)=kv.

for some k E z ... (1)
... (2)
... (3)

Le. x-y=kuv ... (4)
Now the left hand side of (4) is clearly an integer, so ulkv, and by applying

Euclid's lemma with (3) we deduce ulk.
Hence ~ is an integer so (4) says that x - y is a multiple of v.
That is x == y mod !1J as required. o

In particular, this theorem says that if the modulus and the common
factor we wish to cancel are coprime, then the modulus is still m after
cancelling.

3.3 Solving linear congruences

Consider first the familiar quadratic equation ax2 + bx + c = 0 where a, b
and c are given and x is an 'unknown'. For this equation and most others
the following quest ions are naturaiones to ask.

1. Are there any solutions?

2. If so, how many?

3. Is there a method of finding one?

4. What about finding them all?

You will be familiar with the fact that the answers depend on whether
a, b, c and x take real or complex values, or range over so me other set. We
can ask the same questions concerning congruences, in particular linear
congruences in a single variable. That is, those of the form

ax == c modm (*)

It is now assumed, of course, that a and c are given integers, m is a given
positive integer and x is to be sought in Z.

To make astart, notice that (*) is equivalent to an equation, since its
meaning is that ax - c is a multiple of m. That is,

ax - my = c holds for some integers x, y (**)

The original one variable problem seems to have been magically trans
formed into one involving two variables, but this is illusory since each solu
tion x of (*) corresponds to just one solution (x, y) of (**), but we happen
to be only interested in the x values.

32 Number theory - arithmetic for codes

If x, y, a, m, c are real numbers then all quest ions concerning (**) are
answered at a stroke: there are infinitely many solutions and they consist
of aB the points (x, y) on the straight line graph ofax - my = cl

By restricting the numbers to be integers the problem is much more in
teresting as we are now asking whether this straight line passes through any
points whose co-ordinates are both integers. It mayor may not, depending
on the values of a, c and m. The problem in this form was studied by the
Greeks long before Gauss invented the notion of congruence. Indeed (**)
is an example of a Diophantine equation, named in honour of Diophantus
of Alexandria who worked on number theory in the third century AD.

This device of transforming (*) to (**) will answer questions 1 and 3:
ax - my, and hence c, is a member of the set Ta,m introduced in Exercise
14, so by Theorem 3.4 c has to be a multiple of gcd(a, m). This in turn
me ans that question 1 has the foBowing answer.

Theorem 3.7 The linear congruence ax == c mod m has a solution if and
only if gcd(a, m)lc.

As for quest ion 3 we just use Euclid's algorithm to find a solution (xo, Yo)
ofax - my = d where d = gcd(a, m), as in the solution of Exercise 15.

so axo - myo = d

Now die so c = kd for some k E Z, so from (1) we get

a(kxo) - m(kyo) = kd = c

so (kxo, kyo) is a solution of (**).

(3.1)

Now for quest ion 2. In one sense the answer is trivial: there must be
infinitely many because if x satisfies ax == c mod m then x + lm also
satisfies it for aB integers l, as you showed in Exercise 18. To make the
quest ion more interesting (and more in tune with the spirit of number
theory) we reformulate it as 'how many solutions are there if we do not
regard solutions differing by a multiple of m as different?' In other words,
how many solutions are there which are distinct mod m? Clearly at most
m, but how many exactly?

Theorem 3.8 n the congruence ax == c mod m has a solution, it has
precisely d solutions which are distinct mod m, where d = gcd(a, m).

Proof. Let Xo be any particular solution, so that axo == c mod m.
Then Xo + k;: is also a solution since

(km) kam
a Xo + d = axo + d

kam
c+-

d

cmod m

because axo == c mod m

. a . .
smce d IS an mteger

Solving linear congruences 33

Now consider the d consecutive solutions, making up the set

{ m 2m (d-l)m}
S= xo,xo+d,xo+d,···,xo+ d

The smallest and largest differ by only (d-l lm which is clearly less than m,
so each pair of distinct members of S will differ by less then m, so cannot
be congruent mod m.

We get nothing new (mod m) by extending S onwards from Xo + (d-l lm

nor backwards from Xo because the subsequent and previous blocks of d
consecutive solutions just repeat (mod m) the numbers in S. The situation
is illustrated in figure 3.l.

We have now shown that there are just d distinct solutions (mod m) of
the particular form Xo + k:;. It remains to show that there are no others,
but this is easy because if x' is any solution we have

so
Hence
so

axo == c mod m and ax' == c mod m
a(x' - xo) == 0 mod m.

x' - Xo == 0 mod IJ- by Theorem 3.5,
x' = Xo + k:;

abc abc

o

--)*(-----..----~.~----•• ------•• ------•• ------*)(------* - -

Xo Xo + ~ Xo + 2; Xo + 3; Xo + 4; Xo + 5; Xo + 6;

The pairs marked (a, a), (b, b), (e, e) are congruent mod m.

Figure 3.1 The 5 distinct solutions ofax == e mod m. (for gcd(a, m) = 5, 51e)

[Ex 20]

Finally, we deal with quest ion 4. If you refer to the solution of the fi
nal bit of Exercise 15 and combine it with our last theorem, you will have
the answer. Suppose our congurence is 25x == 15 mod 35. This has a so
lution since gcd(25, 35) = 5 and 5115. The congurence is equivalent to the
Diophantine equation 25x + 35y = 15, for which you found the particular
solution Xo = 9 in Exercise 15. It now follows from the proof of Theorem
3.8 that a complete set of solutions is {9,16,23,30,37}.

When the numbers involved are fairly small, as in this example, going
through the whole business of Euclid's algorithm and then reversing it is
rather like using a sledge-hammer to crack a nut. Instead, a judicious use of
the various properties of congruences now at our disposal is often effective.

34 Number theory - arithmetic for codes

The following examples illustrate this. In all cases the congruence on each
line is equivalent to the one on the line above in the sense of having the
same infinite set of integers as solutions.

1. 48x
8x
3x
x

18 mod 30 (gcd(48, 30) = 6 and 6118, so 6 solutions)
3 mod 5 (Theorem 3.5)
3 mod 5 (8 == 3 mod 5 so 8x == 3x mod 5)
1 mod 5 (Theorem 3.5)

Note that this final congruence has only one solution modulo 5, but
the original congruence to be solved was one with six distinct solutions
modulo 30. These can be obtained simply by adding multiples of 5 to 1,
so we obtain {I, 6, 11, 16, 21, 26} as a complete set of solutions mod 30.

2. (same congruence, different strategy)

48x 18 mod 30

48x 48 mod 30 (since 18 == 48 mod 30)

x 1 mod 5 (Theorem 3.5)

3. Use negative integers if this helps to reduce the number of steps.

14x 12 mod 16 (gcd(14, 16) = 2 and 2112, so 2 solutions)

-2x -4 mod 16 (-2 == 14, -4 == 12 mod 16)

x 2 mod 8 (Theorem 3.5).

So a complete set of solutions is {2, 10}.

4. A different sequence of steps can lead to an apparently different solution:

14x 12 mod 16

7x 6 mod 8

-x 6 mod 8

x -6 mod 8

So a complete set of solutions is { -6, 2}.

But this is of course equivalent to the previous set as -6 == 10 mod 16.
[Ex 21J

3.4 A bit of arithmetic folklore

Here is a well-known trick which is easily explained using congruences. Any
integer can be tested for divisibility by 9 by adding its digits. The integer
is divisible by 9 if and only if its digit sum iso In fact we can say more: the
remainder when the number is divided by 9 is the same as the remainder
when the digit sum is divided by 9.

The special rale of primes 35

To see that this is valid it is only necessary to notice that 10 == 1 mod 9,
and that our ordinary notation for numbers just amounts to writing them
as sums of multiples of powers of ten. How these facts are used is shown in
the example below:

4730289 = (4x 106)+(7x lOS)+(3x 104)+(0 X 103)+(2X 102)+(8X 101)+(9x 100)
== (4X16) + (7xlS) + (3x14) + (Ox1 3) + (2x12) + (8xl1) + (9xlO) rnod 9

4 + 7 + 3 + 0 + 2 + 8 + 9
= digit surn of original nurnber

33
== 6 rnod 9

So 4730289 leaves a remainder of 6 on division by 9.
If you are really lazy and want to reduce the numbers involved as much

as possible you could process the digit sum still furt her and continue as
follows:

4 + 7 + 3 + 0 + 2 + 8 + 9
v

4 2 + 5 1 + 0 (mod 9)
v

-2 1 (mod 9)

-3 (mod 9)
6 (mod 9)

[Ex 22-26]

3.5 The special röle of prim es

One almost obvious fact which makes prime numbers special is that every
integer bigger than 1 can be expressed as a product of primes, for ex am pie
10164 = 22 x 31 X 71 X n 2 (see Theorem 3.9 below). So primes are the bricks
from which all positive integers (except 1) are built. We shall see later that
codes in wh ich the alphabet size is prime have particularly useful properties.

Definition 3.3 A prime number is a positive integer which has exactly
two positive divisors.

Thus, 2 and 17 are primes because their only positive divisors are 1, 2
and 1, 17 respectively; 1 is not since 1 is its only positive divisor; 15 is not
since it has too many, 1,3,5 and 15.

The positive integers are conveniently split into three categories:

1 - which is special and goes in a dass of its own;
the primes - which we have just defined;
the composite numbers - which are aB the rest.

Notice that composite numbers can be characterized as those positive
numbers wh ich can be expressed as the product of two positive factors
neither of which is 1.

36 Number theory - arithmetic for codes

Theorem 3.9 Every composite number is a product of primes.

Proof. (by contradiction)
If the theorem is false then there is at least one composite number not

expressible as a product of primes. Let n be the smallest of these.
Then n = ab with a =I 1, b =I 1.
Hence a < n and b < n, so a and bare products of primes.
Hence ab is a product of primes - a clear contradiction. 0

The next theorem guarantees an unlimited supply of primes, and of the
many proofs, the easiest is similar to Euclid's original one, made even easier
by the language of congruence.

Theorem 3.10 There are infinitely many primes.

Proof. Let F = {Pl,P2," .Pn} be any finite non-empty set of primes.
Consider the number N = PIP2 ... Pn + 1.
N is clearly bigger than each Pi so N rf- F.
So if N is prime we have found a prime outside F. If not, it must be

composite, so by Theorem 3.9 it has a prime factor p. Now N == 1 mod Pi
for each Pi in F, but N == 0 mod P, so pis a prime outside F.

So in either case we have found a prime outside F. But F was any finite
set of primes, so we have proved that no finite set of primes can contain all
of them.

Hence the set of primes must be infinite. o

For comments on why this result is not as obvious as it seems see [4].
The same reference contains a discussion of how the subtlety of the next
result is so weIl hidden that it took the genius of Gauss to realize even that
a proof was necessary. So much depends upon it that it is often dignified
by the title of Fundamental Theorem 01 Arithmetic.

Theorem 3.11 For each integer n > 1 there is only one collection of
primes whose product is n.

Preliminary comments:

1. If n is prime then of course the collection consists of just n itself.

2. For our example at the start of this section the theorem declares that to
make 10164 as a product of primes we must have a pair of 2s, a pair of
l1s, a 3 and a 7. We cannot vary the primes involved nor the number of
times each one occurs. Writing them down in a different order does not
count as a different factorization, so 22 X 3 x 7 X 112, 112 X 3 X 22 X 7
and 2 x 3 x 7 x 11 x 2 x 11 are all regarded as the same factorization.

3. Euclid's lemma (Theorem 3.5), in particular Exercise 17(c), is what
makes the proof relatively easy.

4. The main idea of the proof is to take any two collections of primes whose
product is n and show they must be the same.

The special role of prim es 37

Proof. Suppose n = PIP2·· ·Pk = qIq2··· ql (1)
where the ps and qs are primes written in non-decreasing order.

That is PI :::; P2 :::; ... :::; Pk and ql :::; q2 :::; ... < ql·

Now pIln so by Exercise 17(c) PI = qi for some i (2)
Similarly, qIln so ql = Pj for some j (3)

But qi :::: ql and Pj :::: PI, so combining these with (2) and (3) we get
PI :::: ql and ql 2 p,

So PI = ql·
So cancelling PI and ql from (1) we get

P2P3··· Pk = q2q3··· ql·

Applying the same argument again we deduce that P2 q2, so
cancelling,
P3 ... Pk = q3 ... ql, ... and so on.

We continue to cancel Pi with qi until we run out of p's or q's or both,
and end up with:

1

PI+IPI+2 ... Pk
1

= qk+1qk+2··· ql
=1
=1

if l > k
if k > l,
if k = l.

or

Clearly the first two cases are impossible, which leaves the final case in
which all the ps and qs have cancelled in pairs. That is, the two collections
of primes were in fact the same. 0

[Ex 27-29]

One of the many results which Fermat announced in his letters to math
ematical correspondents in Europe has become known as Fermat's Little
Theorem. It appeared in 1640 although the first published proofs seem to
be those of Leibniz and Euler. Today the language of congruence makes its
statement succinct and its proof easy. We also make use of Exercise 20.

Theorem 3.12 If P is prime and a is not a multiple of P then aP- 1 == 1
modp.

Proof. The set {O, 1,2, ... ,p - I} is clearly a complete residue set mod
p. From the conditions of the theorem gcd(a,p) = 1, so by Exercise 20,
{O, a, 2a, ... (p - l)a} is also a complete residue set mod p.

Hence only the first member is congruent to ° mod p, so the rest are
congruent to 1,2, ... ,p - 1 (though not necessarily in that order).

So a x 2a x 3a x ... x (p - l)a == 1 x 2 x 3 x ... x (p - 1)mod p.
That is aP-I(p -I)! == (p - I)! mod P (1)
Now pis prime, so 1,2,3, ... ,p - 1 are all coprime with p, so gcd(p, (p-

I)!) = 1, and cancellation of the (p - I)! from (1) is valid.
Hence aP- 1 == 1 mod P as required. 0

38 Number theory - arithmetic for codes

3.6 A recreational interlude

The previous proof is a purely number-theoretic one. It is also possible to
give a more 'visual' combinatorial proof as follows.

Suppose you have an unlimited supply of beads of a different colours
and you are making decorations consisting of vertically hanging chains of
p beads each. There are aP distinct chains which can be made (just the
number of words of length p with an alphabet of size a again), and a
of these will contain beads all of the same colour. So aP - a is the total
number of possible decorations containing at least two colours each. Clearly
the intention is to count two decorations as 'the same' if and only if they
contain the same collection of colours in the same order.

Now consider any one of these and transform it by taking the top bead
and replacing it on the bottom, so that, for example,

A B
B C
C becomes D
D E
E A

We shall refer to each application of this process as a 'beheading'. If behead
ing is repeated we are clearly back to the original pattern after doing it p
times. But in so me cases we could achieve this in fewer than p applications.
For example,

A
B
C only requires three beheadings in order
A to restore the original pattern.
B
C

But because we have excluded chains of a single colour we can never get
back to the original with only one beheading. Now let k be the smallest
positive number of successive beheadings needed to get back to the original.
So we know 1 < k ~ p.

Divide p by k to get

p = qk +r (0 ~ r < k) (1)

Notice that k 'reverse beheadings' will also transform the original pattern

A recreational interlude 39

into itself, where areverse beheading is defined in the obvious way, as

A F
B A
C reverse beheading B
D ----+ C
E D
F E

Now consider equation (1) in the form r = p-qk and contemplate doing
p - qk successive beheadings, which it is helpful to think of as p beheadings
followed by q lots of k reverse beheadings. The result is clearly to restore
the original pattern, and the sequence of moves is, from (1), equivalent to
just doing r beheadings!

But k was the smallest positive number of beheadings which would do
this, and since 0 ::; r < k this can only mean r = 0, so (1) becomes
p= qk.

Now look at the case of p being prime: k was greater than 1 so we must
have k = p and q = 1. Take any one of the chains and its first p - 1
beheadings, and call this collection Cl. So Cl contains

bl b2 b3

b2 b3 b4

b3 b4 b5

and these are all different because if not, one of them could be trans
formed into another by fewer than p beheadings.

If there is any other decoration not in Cl, select one of them and let C2

be the collection consisting of this one and its successive p - 1 beheadings.
These are also clearly all different and no member of C2 can occur in Cl.

Continuing in this way until all the ap - a chains have been accounted
for, suppose we get a total of n collections. Each collection contains p
decorations so aP - a = np.

This means aP == a mod p.
Finally, if gcd(a, p) = 1 we can cancel the a from this congruence to

obtain Fermat's theorem.
Notice that until this very last step no assumption had been made con

cerning the nu mb er a, the nu mb er of colours available, so the result aP == a
mod p is true for any prime p and any a.

The collections Cl, C2 , ... with a = 4,p = 3 are shown in Figure 3.2.

40 Number theory - arithmetic for codes

00.6 0.60 000 00.6 .6.6+ ++0
0.60 .600 000 0.60 .6+.6 +0+
.600 00.6 000 .600 +6.6 0++

00+ 0+0 00.6 00+ .6.60 ++0
0+0 +00 0.60 0+0 .60.6 +0+
+00 00+ .600 +00 0.6.6 0++

0.6+ 0+.6 00+ 000 .6.60 ++.6
.6+0 +.60 0+0 000 .60.6 +.6+
+0.6 .60+ +00 000 0.6.6 .6++

0.6+ 0+.6 12 collections using 2 colours
.6+0 +.60
+0.6 .60+

8 collections
using 3 colours

Figure 3.2 The 20 collections 0/ decorations 0/ length 3 with 4 colours available
(indicated by 4 different shapes) aP - a = 43 - 4 = 60.

Fermat's theorem can sometimes help to evaluate large powers modulo
some prime, as the following example illustrates.

Working modulo 37,

5499 ((54)36)2.5427
(_20)27

(-20)(-7)13
(-8) (12)6

8 x 64
31

1 X 5427
(-20)((_20)2)13

(140) (_7)12
(-8)(144)3

8(-10)

by Fermat's theorem
(-20)(400)13

(-8)(49)6
(-8)(-4)3
-80 ==-6

[Ex 30-34]

A recreational application of Fermat's theorem is to the theory of card
shufHing. The Faro shufHe is one in which a normal pack of 52 cards is split
into two equal piles and the cards from the two piles are then interleaved.
The process is shown in Figure 3.3 below.

You can think of the cards in their original order being labelIed 1 - 52.
After the split cards 1 - 26 go in the first pile and cards 27 - 52 in the
second pile. The interleaved pack starts with the first card of pile 2 as its
top card.

In the column headed * we have written down the 52 positions again,
and then in the column headed + we have increased by 53 each of the

A recreational interlude 41

Original pack Pile 1 Pile 2 New Pack * +
1 1 27 27 1 54
2 2 28 1 2 2
3 3 29 28 3 56
4 4 30 2 4 4

5 29 5 58

6 split pack Interleaf 3 6 6

~ ~

24 50

25 51

26 52 51 49 102
50 25 50 50
51 52 51 104
52 26 52 52

Figure 3.3 The Faro Shuffle.

odd numbers in * and left the even ones alone. So if i and j are two
corresponding numbers in columns *, + respectively, i == j mod 53.

The numbers in the 'new pack' and * columns can be interpreted as 'the
card originally in position 27 gets moved to position 1, the card originally in
position 1 gets moved to position 2, ... and so on'. Finally, taking columns
'new pack' and + we see that, modulo 53, the effect of the Faro shuffie is
to double the position of each card. So the card in position x before the
shufHe will be in position 2x modulo 53 after the shufHe. If the shufHe is
done repeatedly, say n times, card x will end up in position 2n x mod 53.

Now for the problem: how many times does the Faro shufHe need to be
repeated in order for all the cards to return to their original positions? So
we require the smallest positive n for which

x == 2n x mod 53 for all x in the range 1 ~ x ~ 52

This clearly holds if and only if

1 == 2n mod 53

Now 53 is prime and gcd(2,53) = 1 so Fermat's theorem supplies the
perhaps not too surprising conclusion that 52 shufHes will do it. But we
still do not know whether we can do it with fewer shufHes. Here the division
algorithm will help to drastically reduce the number of possibilities to try.

42 Number theory - arithmetic for codes

Suppose k(1 ~ k ~ 52) is the smallest number of shufHes to restore the
original pack. Divide 52 by k to get 52 = qk + r, 0 ~ r < k.

Then 252 = 2qk+T == 1 mod 53.
That is: (2k)q .2T == 1 mod 53, and since by hypothesis 2k == 1 mod 53,

we have

2T == 1 mod 53

and since 0 ~ r < k and k is the least positive solution this can only mean
r = O.

Hence 52 = qk so the only candidates for kare 1, 2, 4, 13, 26 and 52.
Clearly k =1, 2 or 4 fails to satisfy 2k == 1 mod 53. We leave you to check
that 226 1= 1 mod 53, and hence 213 1= 1 mod 53 because 226 = (213)2.

So 52 shufHes restores the pack order, and no sm aller number will do it.
The solution of Exercise 31 may help with the next exercise, and for

Exercise 36 it is easier to number the original pack as 0, 1, 2, 3, ... rather
than 1, 2, 3, 4, [Ex 35, 36]

3.7 Zp and reciprocals

To condude this taste of number theory we change our point of view
slightly, to highlight a fact which will be essential to our subsequent discus
sion of linear codes. Suppose a, b, c are integers which satisfy a + b == c mod
m and a', b', c' are integers which are congruent mod m to a, b, c respec
tively, then a' + b' == c' mod m. Similarly, if ab == c mod m, then a'b' == c'
mod m. [Ex 37]

These results enable us to do consistent arithmetic modulo m, not with
individual integers, but with classes of integers. If we let [x] stand for the
class of all integers congruent to x mod m, then Z is partitioned into the
m non-overlapping classes [0], [1], [2], ... , [m-l]. Using the result above we
can deduce, fram for example the congruence 5 + 9 == 4 mod 10, that

any integer in [5]+ any integer in [9] == every integer in [4] mod 10. (1)

Similarly for multiplication;

from 7 x 9 == 3 mod 10, we get:
any integer in [7] x any integer in [9] == every integer in [3] mod 10. (2)

The set {[O], [1], [2], ... , [m - I]} is denoted by Zm, and we have just
invented 'arithmetic' in Zm. (1) and (2) above are usually written as

[5] + [9]
and [7] x [9]

[4] in ZlO
[3] in ZlO,

and we often go furt her and write Zm as just {O, 1, 2, ... , m - I}, and the

Zp and reciprocals 43

foregoing relations as

5+9 = 4} .
and 7 x 9 = 3 m ZlO

and it is the result of Exercise 37 which makes this abuse of notation
legitimate.

Below is a list of those rules of arithmetic with ordinary numbers which
also hold in Zm arithmetic. Most of them are obvious, and any that you are
doubtful about can be checked by re-interpreting them in terms of congru
ences. We should preface the list with the observation that Z and Zm are
closed under the +, -, x operations. This means that if you add, subtraet
or multiply two integers the result is always another integer, and if you add,
subtract or multiply two members of Zm the result is another member of
Zm. (Without this the items in the list below would be meaningless!)

For all a, b, ein Zm (for any fixed integer m ;::: 1)

1 a+b b+a
2 (a+b)+c a + (b + c)
3 O+a a
4 a-a 0

5 ab ba

6 (ab)c a(bc)
7 1a a

8 Oa 0

9 a(b + c) ab+ac

One of the properties of the integers which is lost in Zm is the faet that
if ab = 0, then at ·least one of a and b must be zero. To see that this fails
in Zm consider the example of Z6 in which 2 x 3 = 0 but 2 =I- 0 and 3 =I- O.
However, if m is restricted to being prime this property is restored.

Theorem 3.13 If p is prime and a, b E Zp and ab = 0, then a or b (or
both) are zero.

Proof. The proof works by showing that if a or bis non-zero and ab = 0,
then the other must be zero.

So suppose ab = 0 and a =I- O.
Interpreting this as a congruence, it means that ab == 0 mod p, and a is

not a multiple of p.
Hence gcd(a,p) = 1, so we can use Theorem 3.5 to cancel a from the

congruence and obtain

b = 0 mod p

That is b 0 in Zp

o

44 Number theory - arithmetic for codes

Related to this is a property of Zp (again with p prime) which the integers
do not possess. The only integers which have integer reciprocals are 1 and
-1. In Zp alt the non-zero members have reciprocals.

Theorem 3.14 If pis prime and x is a non-zero member of Zp, then Zp
has a unique member y such that xy = 1.

Proof. Reinterpreting as a congruence, we are aiming to show that xy == 1
mod p has a solution for y if x :t 0 mod p. Now gcd(x,p) = 1 and 111, so
Theorems 3.7 and 3.8 guarantee that there is a solution and that it is
~~. 0

[Ex 38]

The reciprocal of a in Zp is often written as a-l, and in Zp we can do
something analogous to division by interpreting b -;- a as ba -1.

Primes are going to be vitally important in nearly all our subsequent
work on codes.

3.8 Further reading

There are many books on number theory and this chapter will have given
you the background to study most of those which cover a typical undergrad
uate course in the subject. [5] is a good general pure number theory text
of this type, which also contains sketches of how its history has been influ
enced by many colourful characters. There is ample scope for anyone with
an interest in computing to do some significant investigations in number
theory and [6] is written with this sort of reader in mind. [7] also contains
all the basic theory but has material on the more recent applications to
computer science and to coding's sister subject, cryptography. On specific
topics of this chapter, [4] considers the quest ion of why the Fundamental
Theorem of Arithmetic, Euclid's algorithm, the infinitude of the primes,
etc, are surprising andjor significant. For readers interested in pursuing
recreational number theory [8], [9] and [10] are interesting articles. There
is even a Journal of Recreational Mathematics, many of whose topics are
based on elementary number-theoretic ideas.

3.9 Exercises for Chapter 3

1. In section 3.1 we claimed that the 'sum' of any two codewords of the
Hamming (7,4) code is another codeword of the same code. Can you
think of a way of verifying this without summing all possible pairs of
the sixteen codewords?

2. Suppose a = qb + r is a result of dividing a by b. Show that the require
ment that the remainder is ::::: 0 and < b makes the values of q and r
unique.

Exercises for Chapter 3 45

3. Prove properties i-iv listed in Theorem 3.l.

4. Show from Theorem 3.1 that a :=: b mod m ==> an :=: bn mod m(n 2: 0).
How ean this be used to show quiekly that 411220 - 17

Find the remainders when 250 and 4165 are eaeh divided by 7.

What is the remainder when L:7~~ i 5 is divided by 4?

5. Show that

(a) a:=: b mod m -=f';> ca :=: eb mod m
and

(b) a2 :=:b2 modm-=f';>a:=:bmodm.

6. Use the division algorithm to show that the fourth power of an integer
ean only be eongruent to 0 or 1 mod 5.

7. For all integers n, show that i(n + 1)(2n + l)n is an integer.

8. Prove the following properties of I :

(a) alb and eid ==> aelbd;
(b) alb and bla {o} a = ±b;

(e) alb and b -=1= 0 ==> lai S; Ibl;
(d) alb and ale ==> albx + ey for all x, y.

9. For any integer a show that 31a or 31a + 2 or 31a + 4.

10. If 2 Ja and 3 Ja prove that 241a2 - l.

U. Prove that if e is a divisor of both a and b, then it must be a divisor of
ged(a, b).

12. Using part (d) of Exercise 8 show that for any integer n,

(dl2n + 1 and dln 2 + 3n + 1) =? dl5n + 2,

and then that (dl2n + 1 and dl5n + 2) ==> dll.

Deduee that ged(n2 + 3n + 1, 2n + 1) = l.

13. Euclid's algorithm will take a large number of steps to deliver the final
ged if the sequenee of remainders only deereases by a small number at
eaeh step. Explain in general terms why this eannot happen.

14. Let Tr,s be the set {rx + sy : x E Z, Y E Z}. Experiment with T24 ,42 to
get some idea of wh ich integers this set eontains.

15. Use Euclid's algorithm to find a solution of 1729 x+ 703 y = 19.

Can you generate any more solutions7

What about the equation 25x + 35y = 157

16. If ged(a, b) = d, show that ged(~,~) = l.
17. State the special ease of Theorem 3.5 which you obtain by taking a to

be prime.

46 Number theory - arithmetic for codes

18. Prove that if l is any integer and x satisfies ax == c mod m, then so does
x+lm.

19. Prove the following:

(a) if a == b mod n and mln then a == b mod m;

(b) if a == b mod m then ca == cb mod m;

(c) if a == b mod m then gcd(a,m) = gcd(b,m).

20. A set of m integers which are distinct mod m is sometimes called a
complete residue set mod m. Show that, mod 11, {O, 1,2,22, ... ,29 } is a
complete residue set, but {02, 12,22, ... , 102} is not.

If {al, a2,"" am} is a complete residue set mod m, and gcd(k, m) = 1,
then so is {kaI, ka2, ... , kam}. Prove this.

21. Find, by any method, a complete set of solutions for these congruences:

(a) 4x 5 mod 7; (b) 8x 12 mod 19;
(c) 12x 3 mod 4; (d) 45x 75 mod 100;
(e) 111x 112 mod 113; (f) 140x 133 mod 301.

22. Which properties of congruence are used in the proof üf the divisibility
test of section 3.4?

23.(a) Using the fact that 10 == -1 mod 11, devise a method of finding the
remainder when any integer is divided by 11.

(b) What is 103 mod 13? Use YOUf answer to devise a divisibility test for
13.

24. n is a positive integer with an even number of digits. m is formed by
moving the last digit of n to the front, so, for example, if n is 589274
then m is 458927, and if n is 7310 then m is 731.

Prove that 11ln + m and 991n2 - m2.

25. Show that in the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, ... in which
the first two terms are 1 and any subsequent term is the sum of its two
predecessors, a term is divisible by 7 if and only if it is divisible by 21.

26. Without doing an exhaustive search, show that x 2 + y2 = 999 has no
integer solutions.

27. If ais composite and a 2: 6 prove that al(a - I)!

28. Are the following true or false? Prove the true statements and provide
a counter example for the false ones (a and b are positive integers and p
is prime):

(a) ifgcd(a,b) =pthen gcd(a2,bp) =p2;
(b) if gcd(a,p2) = p and gcd(b,p2) = p2 then gcd(ab,p4) = p3 ;

(c) if gcd(a, b) = p then gcd(a2 , ab) = p2 ;

(d) if a2 + b2 = p2 then gcd(a, b) = 1.

Exercises for Chapter 3 47

29.
1464463 72 X 112 X 13 X 19

14108963 11 2 X 17 X 193

so gcd(1464463, 14108963) = 112 X 19 = 2299.

How does the validity of this method of finding gcds depend on the
Fundamental Theorem of Arithmetic?

30. In the 'visual' proof of Fermat's theorem why is it not possible for Cl
and C2 to have any member in common?

31. The 'visual' proof of Fermat 's theorem contained the corollary that aP =
a mod p for all a and all primes p. Use this to show that a25 = a mod
195 for all a. (Note that 195 is not prime.)

32. Use Fermat's theorem to help evaluate 99101 mod 31.

33. By evaluating 2340 mod 341 show that the converse of Fermat's theorem
is false.

34. Show that IOn = 4 mod 6 for all n ~ 1, and hence that if m = n mod 6
then 10m = IOn mod 7.

From this determine the remainder when

1010 + 10(102
) + 10(103

) + ... + 10(1010
) is divided by 7.

35. Analyse the result of repeated Faro shufHes on a pack containing two
jokers (so 54 cards in all).

36. Analyse the slight variation of the Faro shufHe in which the 'new pack'
starts 1, 27, 2, 28, ... - that is, we take a card from pile 1 first.

37. Prove the two claims made at the start of section 3.7.

38. Find, in Z7, the reciprocals of 1, 2, 3, 4, 5 and 6. Use your results to
solve 32x = 40 mod 7.

4

Block codes - some
constraints and some
geometry

4.1 The main problem

We saw in Chapter 1 how the 3-fold repetition code would drastically re
duce the prob ability of messages being wrongly decoded, and discussed the
price which this entailed. Then in Chapter 2 we saw how the Hamming code
solved the same problem of guaranteeing to correct every instance of a single
error per codeword at much less cost. The way in which it achieved its im
pressive performance was by ensuring that amongst the 16 7-bit codewords,
no pair of them was separated by a Hamming distance less than 3. We also
developed general results, Theorems 2.1 and 2.2, to connect the minimum
distance of the code with its error detecting and correcting potential.

We begin this chapter by asking whether it is possible to do better than
Hamming's solution. In this context a block code is characterized by its
word length n, the number of codewords M, and its minimum distance d,
and a standard terminology is to speak of an (n, M, d) code. If the code
is not binary, we extend this to a q - ary (n, M, d) code where q is the
alphabet size. So the first Hamming code we discussed is an example of a
(7,16,3) code.

Now n represents a 'cost' of sending each codeword, for longer codewords
take longer to send than short ones; M can be regarded as a measure of the
'richness' of the language we are using; dis a measure of how accurately the
code detects and corrects errors. The Hamming 16 word code is adequate for
the purpose proposed in Exercise 2 of Chapter 2, but clearly not for sending
messages in English (at least, not if we require a different codeword to repre
sent each distinct letter of the alphabet). On these criteria we would be jus
tified in calling any of the following codes 'better' than the Hamming code:
1. n < 7, M 2: 16, d 2: 3;
2. n ~ 7, M> 16, d 2: 3;

3. n ~ 7, M 2: 16, d> 3.
We shall see that there is no such code, so in this sense the Hamming

(7,16,3) code is a best possible solution.

50 Block codes - some constraints and some geometry

Prom this discussion it is apparent that in designing a good code we
should aim for low n, high M and high d. Like most similar situations in
life these requirements are mutually incompatible so the code we eventually
settle on will have to be some sort of compromise. For example, suppose
we fix n and d, then try to get as many codewords as possible. Choose a
first codeword then throw in more and more, each time ensuring that the
new codeword differs in at least d places from all the others. Clearly, as
more new words are added it becomes harder to find the next one, and
eventually there is no room for any more. (Think of packing spheres into
a box.) This natural limitation on the size of M will be made quantitative
in the next section.

If a code with good n, M and d values is to be used, it is essential to have
an efficient decoding algorithm so that received messages can be quickly
understood and acted upon. Without this the effort of producing a math
ematically 'good' code would be wasted in practice. Nevertheless, it is still
interesting to pursue a mathematical investigation of good codes, and in
many cases the nice mathematics actually leads to convenient decoding
procedures. The Hamming code is an example of this since the diagram
matic method of decoding, used for illustrative purposes in Chapter 2, can
easily be mechanized to become an extremely rapid decoding process. This
is a consequence of the code having much more mathematical structure
than we have yet revealed. Enlightenment will come in Chapter 5.

4.2 Limitations on M

Let us aim to maximize M for fixed n, d and q. One method of doing
this was explained by R. C. Singleton in 1964 though the result had been
known for some years before this. The argument is simple and neat: imagine
a q - ary (n, M, d) code, C with its codewords written out as a list. Then
make a new list of words, L, each of length n - d + 1 simply by omitting
the first d - 1 symbols from each word of C. Let Sij be the lh symbol in
the ith word of C, so we have the picture shown below.

Sld-l Sld

S2d-l S2d

'-----.v,-----'
L

v
C

Limitations on M 51

Now no two words in L can be identical as this would mean that the
corresponding codewords of C could differ at most in the remaining d - 1
places, contradicting the fact that d(C) = d. Hence L cannot have repeated
words so M is at most the number of distinct q - ary words of length
n - (d - 1). This is qn-d+1 since there are q choices of symbol for each of
the n - d + 1 positions. So we have proved the result below.

Result 4.1 The Singleton bound.

IM :::; qn-d+l

Notice that this gives no information about the existence or otherwise of
codes with exact1y qn-d+l codewords. It only says there are certainly no
codes with more. In fact, for certain values of q, n and deodes for which
M = qn-d+l do exist (the so-called maximum distance separable (MDS)
codes), and their study is an interesting research topic. See Chapter 15 of
[lJ or Chapter 11 of [l1J, for example. [Ex 1J

A rather trivial upper limit to M is of course qn since this is the total
number of q - ary words of length n. This upper bound is so crude as to be
useless, but it does illustrate the point that different arguments can lead to
valid (but different) upper bounds on M. We now use one of these different
but slightly more sophisticated arguments to derive an alternative to the
Singleton bound. Suppose we want a q - ary code C of length n which is
t-error correcting (so d must be at least 2t + 1). Geometrie language will
help visualization of the argument: just as a sphere of radius r in ordinary
geometry is the set of all points at distance ::; r from so me centre point,
we define S(u, r) as the analogue of this in the space of q - ary words of
length n as the set of all such words at Hamming distance ::; r from the
chosen 'centre' word u:

S(u,r) = {v: d(u,v)::; r}

Now the condition that C is t-error correcting is equivalent to the con
dition that no two spheres of radius t centred on codewords can intersect.

[Ex 2J

Using this result, consider the set of all spheres of radius t centred on
codewords. The total number of words is qn, and no word belongs to more
than one of the spheres, but there may, of course, be some words wh ich
don't belong to any of the spheres. So if we count the number of words in
the union of all the spheres the result will be at most qn. The number of
words v at distance i from codeword u is (i) (q - 1) i because there are (i)
choices for which i of the n places in v differ from the corresponding places
in u, and the symbol in each of these i places of v can be chosen in (q - 1)
ways since the symbol can be any of the q symbols available except the one

52 Block codes - some constraints and some geometry

in u. Hence the number of words in the sphere S(u, t) is

t

2)f)(q - l)i.
i=O

There are M of these spheres so in the union of all of them there are
ML:~=o(f)(q _l)i words, and this cannot exceed qn.

This leads to the following famous result.

Result 4.2 The Hamming, or 'sphere-packing' bound.

For binary codes these bounds simplify to

and M <: 2" [t,m]-'
As an example of their use, let us investigate whether there can be a

binary 3-error correcting code of length 12 having at least 100 codewords.
To get 3-error correction we must have d ~ 7, so the Singleton bound gives
M ~ 212- 7+1 = 64, so the required code cannot exist.

Suppose then that we still insist on M ~ 100 and 3-error correction, hut
are prepared to compromise on n, say let n be 13. This time the Singleton
bound says that with n = 13 and d = 7, M has to be ~ 128. But note that
this does not settle the question of whether such a code exists. All we can
say is that the Singleton bound has not ruled it out. But we still have the
Hamming bound, so does this give us stronger information? With n = 13
and t = 3 it gives

13 [(13) (13)J-1 M ~ 2 1 + 13 + 2 + 3 = 21.6 ... ,

and M is of course an integer so M < 21. This does settle it - the
required code cannot exist. [Ex 3]

It can, and often does happen, that both of our upper bounds are too
weak to give conclusive answers to questions like those we have just con
sidered. It is in the nature of upper bounds on M that for given values of
n, d and q they can tell us that same values of M are impossible, and they
can never tell us that a value of M is possible. An on-going research area is
to find more powerful upper bounds for M, and we shall say a little more
about it later.

You may have noticed from trying the Singleton bound to answer Ex-

Limitations on M 53

ercise 3, and from its preceding paragraph, that the Hamming bound is
more powerful. If this were always the case then, apart from the fact that
the arithmetic involved in applying the Singleton bound is simpler, there
would be no point in bothering with this bound. Let us investigate this for
binary codes. Under what circumstances, if any, does the Singleton bound
rule out more values of M than are ruled out by the Hamming bound?
That is, we wish to solve

2"-d+' < 2" [t,mf
Rearranging this we get

t

2d - 1 > L (~),
i=O

and we shall treat the cases of odd and even d separately. For odd d, t =
d-l so

2

~(d-l)

2d - 1 > L (~)
i=O

(4.1)

Now 2d = (1 + l)d = L~=o (t) , and because of the symmetry property
of the binomial coefficients, (t) = (Li) , the first half of the terms in this
sum of d + 1 terms, those from i = 0 to i = ~(d - 1), are identical to the
remaining terms from i = ~ (d + 1) to i = d.

So
~(d-l)

2d = 2 x L (t),
i=O

so inequality (4.1) becomes

~(d-l) ~(d-l)

L (t) > L (~)
i=O i=O

which can only be true if d > n, which is clearly impossible!
Moving on to the case of even d, t = d;2 so (4.1) is replaced by

~(d-2)

2d - 1 > L (~)
i=O

(4.2)

You should check that when d = 2 (4.2) holds for all n :::: 2; when d = 4,
only for n = 4,5 and 6; for d = 6, only for n = 6 and 7; for d = 8, only for
n = 8.

54 Block codes - some constraints and some geometry

For general even d, using the same trick as for odd d, 2d = :E~=o (1) ,
which we now split up as

~(d-2) d

L (1) + (~) + L (1)
i=O i=~(d+2)

~(d-2)

=2 L (f)+(~)
i=O

So

Equation (4.2) then becomes the requirement that

~(d-2) ~(d-2)

L (f) + ~ (~) > L (7)
i=O i=O

(4.3)

Notice that the left hand side of this is independent of n whereas the right
hand side is an increasing function of n. This gives us the useful result that:

If, for a given value of d, (4.3) fails for some value of n,

then it must also fail for all larger values of n. (4.4)

Also, n 2: d for any code, and it is easy to see that (4.3) is satisfied for
n = d. Before getting too excited by this result notice that binary codes
with n = d are somewhat trivial; they only contain two codewords. (Just
apply the Singleton bound or use common sense!)

For n = d + 1 (4.3) becomes

~(d-2) ~(d-2)

L (1) + ~ (~) > L (f+1) ,
i=O i=O

which it is convenient to rearrange as

(4.5)

If d = 2 this reduces to the obviously true 0 < ! m . For d 2: 4, if we
note that the i = 0 term is zero, the left hand sum is

~ (d-2)

L [(t+1) - (f)] ,
i=l

Limitations on M

which, by the Pascal tri angle recurrence relation is

t(d-2)

I: (1-1),
i=l

then (4.5) reduces to

t(d-2)

I: (LI) < ~ (~).
i=l

55

(4.6)

The arithmetic you did following inequality (4.2) has already confirmed
that (4.6) holds for d = 4 and 6, but not 8. Before going on make one more
preliminary calculation that (4.6) fails for d = 10 too. [Ex 4J

To make further progress we take just the last term, (~-2) , of the sum

of positive terms on the left hand side of (4.6) and compare it with the
right hand side. Specifically, we form the ratio of these two numbers,

2d d - 2
This simplifies to -d-- x -d-- which is clearly as increasing function

+4 +2
of d, and is greater than 1 when d = 12. So for all d ;::: 12 just one term
of the left hand side of (4.6) is already greater than the right hand side.
Hence (4.6) fails for all d ;::: 12.

Collecting all these results together, including (4.6), we obtain

Theorem 4.1 The only binary codes for which the Singleton bound is
more powerful than the Hamming bound are:

1. d = 2, all n;

2. d = 4,n = 4,5,6;

3. d = 6, n = 6,7;

4. d even ;::: 8, n = d. o

Looking back at the proofs of the two bounds we see that to establish the
Hamming bound we made direct use of the error correcting capability of
the code whereas the Singleton derivation only used the minimum distance.
This enables us to account for part 1 of Theorem 4.1, since these codes have
a non-trivial minimum distance, but no error-correcting capability. Hence
it is not surprising that the Singleton bound provides more information. As
for the other cases, we shall see shortly that they are all rather uninteresting
codes - none of them have more than four codewords. So for binary codes
of any practical interest, forget the Singleton bound!

To find non-binary codes for which the Singleton bound wins we would

56 Block codes - some constraints and some geometry

have to solve

which amount to
t

qd-l > I)f)(q - l)i (4.7)
i=O

and it is not difficult to find non-trivial codes which satisfy this. [Ex 5J

You may be interested in pursuing this investigation systematicany for
non-binary codes. The mathematics becomes rather messy and it is prob
ably best to regard it as a computing project.

To end this section we present an argument which gives a lower bound
for the best possible M: consider an q - ary words of length n and choose
one arbitrarily; then pick another, subject only to the restriction that its
distance from the first is at least d; then another with distance ;:::: d from
the first two; ... and so on. At each stage of the process the next word can
be freely chosen from an those words not in any of the spheres of radius
d - 1 centred on words already selected. Hence the process stops when
there are no such words left. When this happens suppose M words have
been selected and these constitute the set C. Then C is clearly a q - ary
(n, M, d) code. To estimate M note that the spheres S(c, d -1) centred on
codewords of C must together contain an qn words. [Ex 6J

Let U be the union of an these spheres, so we have

(4.8)

But of course, in general, a word will belong to more than one of the
spheres, so if each sphere contains a words, then

Ma;:::: IVI (4.9)

By a similar calculation to that done in deriving the Hamming bound

d-l
a = 2)f)(q - l)i (4.10)

i=O

Putting (4.8), (4.9) and (4.10) together we obtain:

Result 4.3 The Gilbert-Varshamov bound.

For an n and q, and aB d ~ n, there exists a code with

M > qn [l:f==-J(i)(q _ l)i]-l

[Ex 7J

Equivalent codes 57

4.3 Equivalent codes

This chapter has been concerned with finding out as much as we could
concerning the number Aq(n, d) which is defined as the largest M for which
a q - ary (n, M, d) code exists. In Exercise 7, for example, you found by
applying the Hamming and Gilbert-Varshamov bounds that

and then by explicitly constructing a ternary (5,6,3) code, this was im
proved to

If you wished to improve this further by the same method the next task
would be to construct a ternary (5,7,3) code. Just to get a feel for the size
of the problem notice that there are 35 = 243 words of length 5. We need a
7 word subset of these, having a minimum distance of 3 or more. There are
ei3) subsets, a number of the order of 9 billion, so even with a computer
slave, doing a search of all the subsets is not a viable method.

An idea which gives more hope of progress in problems of this type is that
there is no significant difference between many of the subsets. The sense in
wh ich this is true is illustrated by the three small codes listed below:

C {abccba, bbcbbc, ccbaca}

C' {abccba, cbcbbb, acbacc}

C" {bbcaba, abccbc, ccbbca}

C' has been obtained from C by re-ordering the symbols. In fact, C' is
just the result of switching the first and last symbol in each codeword of
C. C" has been obtained from C by making some symbol changes in some
of the positions. In fact a has been replaced by band b by a in position 1,
and in position 4 a has been replaced by b, b by c and c by a.

Now look at the first and last words of C. They differ in position 1
but not in position 6. The corresponding words in C' differ in position 6
but not in position 1, as should be obvious in view of the transformation
actually used to get C' from C. This example can be generalized to give the
following result: suppose C' is obtained from C by re-ordering the symbols
of the C words in so me way (the same re-ordering for all the words), so
that the symbols in position i of the C words end up in position 71"(i) in
the C' words. Then the distance between any pair of C words must be
the same as the distance between the corresponding C' words, because
words of C differ in position i if and only if the corresponding words of C'
differ in position 71"(i). All that has happened is that the agreements and
disagreements between pairs of words have moved to different positions;
the number of each remains unchanged. An obvious consequence of this is

58 Block codes - some constraints and some geometry

Theorem 4.2 Performing a positional permutation on the words of a code
does not change its minimum distance. 0

It is of course understood that the same permutation is applied to each
codeword - otherwise the theorem is obviously false!

Next consider the transition, C -t C". There we did not change any
positions, but instead changed the symbols living in so me of those positions.
The vital feature of the changes made is that in any given position distinct
symbols are replaced by distinct symbols. So, for example, in position 4
a, b, c were replaced by b, c, a respectively. We would disallow replacing
a by band replacing both band c by a. The reason for making such a
restriction is that we want the original code and the new code to have the
following property: if in a given position two words of C differ, then the
corresponding words of C" also differ, and if in a given position two words
of C agree, they will also agree in that position in C". Clearly, without
the restriction this property could fail. So the sort of symbol changes we do
allow are permutations of the alphabet. It follows that the distance between
a pair of words in C is not changed by doing symbol permutations in some
or all of the positions. In particular we have

Theorem 4.3 If code C" is produced from code C by performing symbol
permutations at some or all ofthe positions of C, then d(C") = d(C). 0

And of course it is not necessary to do the same permutation at each of
the positions.

These two theorems motivate the following terminology:

Definition 4.1 Two codes are said to be equivalent if one can be obtained
from the other by a sequence of positional and/or symbol permutations.

[Ex 8,9]

For the next part of the investigation it is convenient to refer to the
weight of a word. We assume from now on that when the alphabet size is
q the symbols are 0,1,2, ... ,q - l.

Definition 4.2 The weight of the word x is the number of positions not
occupied by O. We denote this by w(x).

We illustrate the use of code equivalence by working out the exact value
of A2 (9, 6). Notice first that the bounds we have available tell us only that

1 :S A2 (9, 6) :S 11

and the lower bound is particularly uninformative! So let us try to find a
best code C. For a binary code there are only two possible symbol permu
tations, (8 D and (~ 6)· That is, we either make no change or we switch Os
and Is. Suppose C is a best code and select any of its words, say al a2 ... ag.
In each position in wh ich ai = 1 do the 0 1 switch. This produces an
equivalent code C' in which one word is 000000000, and all the other words

Equivalent codes 59

must have been transformed into words of weight 6 or more because their
distances from 000000000 are at least 6. Now you can check that if x, y are
any two words with w(x) 2: 6 and w(y) 2: 7, they must agree in at least 4
of the 9 places, so d(x, y) would be ::; 5. So if C' contains y with w(y) 2: 7,
then C' can only contain 0 and y. So the only hope of doing better than a
two word code is to have C' with an its non-zero words of weight 6.

So C' consists of c~ = 0, C2 with W(C2) = 6 and possibly other words of
weight 6. We can now do a positional permutation to bring an the ls of
C2 to the left hand end. This does not of course affect c~, because an its
symbols are 0 anyway, nor does it affect the weight of any word. So the
new code C" looks like

C~ 000000000

c~ 111111000

c~ ?

Since d(c~, C3) 2: 6 and W(C3) = 6, C3 must have three of its six ls in
the last three places, and of course this same argument holds for any other
words which C" may have. We can do a furt her position al permutation,
not involving the last three places, which will bring the remaining three ls
of C3 to the left hand end, without affecting c7 or c~. The new code C'" is

C",
1 000000000

c'" 2 111111000

c"' 3 111000111

c"' 4 ? 111

You should now find it easy to convince yourselfthat to maintain d(C2, Ci) 2:
6 and d(C3, Ci) 2: 6 for i 2: 4, the remaining three ls of Ci have to go in po
sitions 4, 5 and 6. This forces the conclusion that c~' has to be 000111111,
and that there can be no other words.

Hence A2 (9, 6) = 4, and if you look back over this argument you will see
that it proves more: all binary (9,4,6) codes are equivalent to the one just
constructed. [Ex 10, 11]

Putting the results of the last two theorems together it is clear that
equivalent codes have the same minimum distance. The converse is false,
however: it is not difficult to find pairs of (n, M, d) codes which are demon
strably not equivalent. [Ex 12]

So we now know that if two codes are equivalent one is t-error correcting

60 Block codes - some constraints and some geometry

if and only if the other iso But this does not tell the whole story. Suppose
C, C' are both 1-error correcting. This only tells us that both correct all
instances of words received with a single error. It says not hing about how
they perform with two or more errors. In order to define an overall error
processing performance we consider a complete decoding scheme. That is,
every received word is actually interpreted as some code word, so the option
of declaring a received word to be uncorrectable, because it is equally (and
minimally) distant from several codewords, is not available.

A sensible nearest neighbour decoding scheme under these circumstances
is as follows:

Let c be sent and r received.

1. Find the codeword (or codewords) whose distance from r is minimal.

2.(a) If there is just one such codeword decode rasthis codeword.

(b) If there are k codewords at this minimal distance from r, chose one
'at random' and decode r to this.

So in case (a), if the unique codeword is c the prob ability of correct
decoding is 1, and if not, the prob ability is O. In case (b), if cis one of the
k codewords then decoding will be correct with probability k, and if not,
O.

Now imagine performing the transformation T (symbol permutations +
a positional permutation) which takes C to the equivalent code C', but do
T not just on the codewords but on all words. This sets up a one-to-one
correspondence on the set of all words, and it follows from our discussion
prior to Theorems 4.2 and 4.3 that T preserves distances. That is, for all
words, x, y, d(x, y) = d(T(X), T(Y». From this and the complete decoding
algorithm we have:

Theorem 4.4 If C, C' are equivalent codes then a received word r is cor
rectly decoded in C with probability p if and only if T(r) is correctly de
coded in C' with probability p. 0

It is in this sense that equivalent codes are identical as far as error cor
recting is concerned.

4.4 Distance isomorphie codes

Consider the codes C, C' with the following codewords.

C {Cl,C2,C3,C4,C5}

{0111010101,1011101110,1011011101,
0000111100, 1101101101}

C' {c~,c~,c~,c~,c~}
{0110000000,1111100110,1000000000,
1111010001,0111111000}

Distanee isomorphie eodes 61

The tables below show the distances between pairs of words in each code
(omitting the entries for d(Ci,Ci) = 0).

C Cl C2 C3 C4 Cs C' C~ c' 2 c' 3 C~ c' S

Cl 7 3 6 5 c~ 5 3 4 4

C2 4 5 4 c~ 6 5 5
C3 5 4 c~ 5 7

C4 5 c~ 4

The numbers in the two tables are identical apart from the order in
which they appear. Indeed, in this case we can change the order in which
the words of C' are displayed so that the tables are absolutely identical, as
shown below.

C' c~ c~ c~ c~ c~

c~ 7 3 6 5

c~ 4 5 4
c' I 5 4
C' 2 5

[Ex 13]

This leads naturally to:

Definition 4.3 Two q - ary codes C, C' of the same length and size are
called distanee isomorphie if their words can be ordered so that for all
Ci,Cj E C and all c~,cj E C', d(Ci,Cj) = d(c~,cj).

You have seen that equivalent codes are necessarily distance isomorphie,
and Exercise 13 has shown the converse to be false. A natural quest ion
is whether distance isomorphie codes are necessarily equally good error
correctors. To answer this take the simpler pair of codes,

C {0000,0011,0101,0110}

C' {0111,1011,1101,1110}

It is easy to check that they are distance isomorphie but not equivalent.
To see that they are also not identical error correctors consider the word
r = 1000 which has distance 1 from the first codeword of C and 3 from the
rest. Then check that of all the words at distance 1 from any codeword of
C', none of them have distance 3 from all the rest. Furthermore, if complete
probabilistic decoding is used, then by considering the outcome for each of
the sixteen (transmitted codeword, received word) pairs where the received
words contain a single error, you can check that the probability of such a
word being correctly decoded in C is ~, but in C' only /6. [Ex 14]

62 Block codes - some constraints and some geometry

4.5 Geometry and Hamming space

Up until now we have stressed the similarity of Hamming distance be
tween words and ordinary Euclidean distance between points. This simi
larity sterns from the fact that both satisfy the three defining properties
of ametrie (see Chapter 2). It enabled us to use geometric language and
analogy to assist in understanding various consequences of the triangle in
equality, sphere-packing, etc. What is not often emphasized is that there are
also important differences between Euclidean space and Hamming space,
and the discussion in the previous section can highlight one of these.

Think first of ordinary 2-dimensional (plane) geometry. An isometry of
the plane is a mapping f of the set of points of the plane to itself, with the
property of being distance preserving. That is, if P, Q are any two points
and d is ordinary Euclidean distance, then

d(P, Q) = d(f(P), f(Q)).

Now if S = {PI, P2 , ... , Pd is any set of points in the plane and S'
{P{, P2, ... , PD is another with the property that, for all i,j, d(Pi , Pj) =
d(PI, Pj), then there is an isometry of the whole plane whieh maps PI to
P{, P2 to P2, ... etc. In the language of classieal geometry we can say that
if we know the distances between every pair of points in some geometrie
configuration S then we know everything about its shape and size - only
its position is unknown. So any two configurations S, S' with the same set
of distances are congruent. Furthermore, if P is any point and its distances
from the points of S are d 1 , d2 , ... , dk , then there will be some point P'
with the same sequence of distances from the corresponding points of S'.
This is true of Euclidean geometry of all dimensions, but it is a property
which fails for Hamming space. You have already seen a counter-example
in the codes of Exercise 14.

We define an isometry of Hamming space Z; in the same way as for
Euclidean space - just replace geometrie distance by Hamming distance.

So when we compare the not ion of equivalence and the weaker notion
of distance isomorphism we see that the latter is just not strong enough
to guarantee identical error correcting performances of the codes. Is this
why equivalence is defined the way it is? Could there be some relation
ship between codes, stronger than distance isomorphism but weaker than
equivalence, whieh still ensures that the codes are identieal error correc
tors? In order to pursue this furt her it is convenient to make another defi
nition. We have been thinking of codes as sets of words, but in our discus
sion of distance isomorphism the codes were presented in a specific order,
Cl, C2, ... , CM. Now suppose C and C' are codes such that positional and
symbol permutations on C' will transform it into C" whieh is identieal (as
a set) to C. However, if C is large it may not be easy to recognise that
C and C" are the same set because the order of the words of C" may be

Geometry and Hamming space 63

jumbled in a fairly complicated way relative to C. Partly for this reason we
define the not ion of strict equivalence between ordered codes.

Definition 4.4 Two ordered codes (Cl, C2, ... , CM) and (C~, C~, ... , C~)
are strictly equivalent if one can be obtained from the other using symbol
and positional permutations and no re-ordering of the words.

The following two theorems settle our questions by showing that codes
with identical error correcting performance must be equivalent.

Theorem 4.5 Let f : Z~ ----t Z~ be an isometry. Choose an ordering
(Xl, ... ,X2") of Z~. Then the list L = (f(XI), ... ,f(X2")) is strictly equiv
alent to a list L' = (f(xd, ... , f(X2")') in which, for all i, Xi and f(Xi)'
agree in their first symbols.

Preliminary note: it is convenient to take Xl, ... , X 2,,-1 to be the words start
ing with 0, and let these words be listed in order of increasing weight, and list
the words beginning with 1 in order of increasing weight too.

Proof. Let Z~ be listed as above. Then do the following equivalence trans
formations on L.

1. Do a symbol permutation on each of the positions in which f(XI) has
a1. Call this transformation 1r. Then 7r(f(xI)) = 0, and by considering
distances of the other words from ° we see that W(Xi) = W(7r(f(XI)))
for all i. (1)

2. Then do a positional permutation (J so that the words of weight 0 and
1 in Land in the new list coincide. That is, for all Xi of weight 0 or 1,
Xi = (J7r f(Xi). (2)

Claim. ((J7rf(Xi) : i = 1,2, ... , 2n) is the required list, L'. To show this,
all we have to do is demonstrate that no word in the first 2n - 1 words of
((J7rf(Xi)) can start with a 1. Suppose this is false. That is, there is some
word Xj,j :::: 2n - l , for which (J7rf(xj) starts with 1. Notice that since
positional permutations do not change weights W(7rf(Xi)) = w((J7rf(Xi))
for all i, and hence by (1) above, W(Xi) = w((J7rf(Xi)) for all i.

So by (2), Xj must have weight ;:: 2. Let W = w((J7rf(xj)) and consider
the distances of X j and of (J7r f (x j) from each of the words u of weight 1
(the 'unit' words). d(xj, u) = W - 1 for exactly W of the unit words, but
d((J7r f (x j), u) = W - 1 for exactly W - 1 of the unit words so the map
X f-+ (J7r f (x) is not an isometry. This contradiction establishes the claim.

Theorem 4.6 Let f : Z~ f-+ Z~ be an isometry, with L being a listing of
Z~ as in the previous theorem. Then (f(Xi) : i = 1,2, ... , 2n) is strictly
equivalent to L.

Proof. We use induction on n. The result is trivially true for n = 1, so
suppose it is true for iso met ries of Z~ for all n < k.

Then let f be an isometry of Z~.

64 Block codes - some constraints and some geometry

First do the required transformations to convert (J(Xi)) to L' as in the
previous theorem. Then the function gwhich takes each member of L to
the corresponding member of L' is also an isometry of Z~, in wh ich all
words in the top halves of Land L' start with 0 and the words in the
bottom halves of both lists start with 1.

Now delete the first bit from all words so that Land L' become new lists
Land L' of words of length k - l.

Let 9 match up members of L to members of L' in the same way as g

matched L to L', and let 9t and 9b be the restrictions of 9 to Lt and Lb,
the top and bottom halves of L. Then clearly 9t and 9b are both isometries
of Z~-l.

By our inductive hypothesis Lt and L~ are strictly equivalent, and be
cause both lists start with 0 no symbol permutations are necessary to
convert L~ to Lt . So let the positional permutation required to convert L~
to Lt be done, but do it to the whole of L' and let the result be L".

Then Lt = L~' and Lb -+ L~ is an isometry. We can think of this po
sitional permutation as being done to the unshortened (length k) words -
the permutation just happens not to move the first bits - so we also have
Lt = L? and Lb -+ L~ is an isometry.

To complete the proof we show that in fact we have forced Lb = L~.
To this end, let Xi = 1a2a3 ... ak and Yi = 1b2b3 ... bk be corresponding

words in Lb, L~ respectively. Consider the word Xj = Oa2a3 ... ak in Lt

(which is matched with the same word in L~'.
So we have the following situation:

L L"

Yi

Because this matching is an isometry on Z~ we have

d(Xj'Yi)

1 + d(a2a3 ... ak, b2b3 ... bk)

which can only be true if Xi = Yi. o

Perfect codes 65

4.6 Perfect codes

Earlier in this Chapter we found that the binary Hamming (7, 16, 3) code
was a best possible code in the sense that 16 is the upper limit on M
imposed by the sphere packing bound for all binary codes with n = 7, d = 3,
and that the Hamming code actually achieves this limit. Such codes are
called perfect codes and much research effort has gone into looking for all
of these (rather rare) codes. Here is the formal definition:

Definition 4.5 A q-ary (n, M, d)t-error correcting code is called perfect if

M ~ q" [t,(7)(Q -1)']-'
If you look back at the proof of the sphere-packing bound in section 4.2

you will see that perfect codes can be neatly characterized geometrically
as follows:

Theorem 4.7 The t-error correcting code C is perfect if and only if the
set of spheres, {S(c,t) : cE C} is pairwise disjoint and their union is the
set of all words. 0

[Ex 15]

Perfect codes also have a neat, clear-cut error-correcting property which
you are asked to prove as the next exercise.

Theorem 4.8 A t-error correcting perfect code will not correctly decode
any received word with more than terrors. 0

[Ex 16]

For a general (non-perfect) t-error correcting code the spheres of radius
t centred on codewords do not cover all words. Just how much would these
spheres have to be enlarged so that they do? Specifically, if Cis a code, what
is the smallest value of r, say p such that the family of spheres {s(c, r) : c E

C} covers all words? pis called the covering radius of C. It is the smallest r
such that every word is within distance r of some codeword. Clearly p "2: t
and a code is perfect if and only if p = t.

Determining p for specific codes and finding bounds on p are impor
tant (hard) combinatorial problems, and we shall content ourselves with
scratching the surface.

Suppose we have an (n, M, d) code which is optimal in the sense that no
further codewords may be added to it without decreasing d. Then by the
argument which led to the Gilbert-Varshamov bound we know that the
union of codeword centred spheres of radius d - 1 covers all words.

But p was defined as the smallest radius for which this is true, so we have
proved

66 Block codes - some constraints and some geometry

Theorem 4.9 For t-error correcting codes with covering radius p and min
imum distance d, t ~ p, and if the code is optimal p ~ d - 1. 0

We now determine the covering radius of the Hamming 8-bit code, and
this will also introduce some important ideas for later use. Previous exer
cises have suggested that this code has a minimum distance of 4, but no
proof of this has been given. To rectify this omission we first establish a
useful property of Hamming distance and weight for binary codes:

Theorem 4.10 For any two binary words x, y, d(x, y) = w(x + y) =
w(x) + w(y) - 2w(x 8 y), where the 'sum' and 'product' words x + y and
x 8 y are formed bit-wise from x and y, with the arithmetic done modulo
2.

[For example, if x = 01110101 and y = 01011110, then x+y = 00101011
and x 8 y = 01010100].

Proof. The first equality is clear because the bits which contribute 1 to
d(x, y) are just those where x and y differ, and these are precisely the bits
of x + y which are 1.

The second equality can also be established by considering the con
tribution from individual bits. For example, if the i th bits of x and y
are both 1 the contribution to w(x + y) is 0, and the contribution to
w(x) + w(y) - 2w(x 8 y) is 1 + 1 - 2(1.1) = O. You can check the other
cases easily, but remember to interpret the arithmetic correct1y, as shown
below.

bitwise mod2 addition
r

w(x + y) = w(x) + w(y)
r i

bitwise mod 2 multiplication
i

2w(x 8 y)

"" ordinary addition, subtraction, multiplication

Theorem 4.11 The Hamming 8-bit code has covering radius 2.

o
[Ex 17]

Proof. Let C, C' be the Hamming 8- and 7-bit codes respectively. We know
d(C') = 3, and since the codewords of C are just those of C' with one extra
bit added, d(C) can only be 3 or 4.

If x, Y E C, then w(x), w(y) are both even, and 2w(x 8 y) is necessarily
even, so by Theorem 4.10 d(x, y) is even. So d(C) must be 4.

Furthermore, C is optimal since if not there would be a word x with
d(x, c) ~ 4 for all ein C, and this would mean that x', the word consisting
of the first seven bits of x, would be at distance at least 3 from all codewords
of C'. This is impossible since we know C' is optimal. Also C is not perfect,
so applying Theorem 4.9 we have 1 < P ~ 3. To settle it far 2, let XIX2 ... Xs

be any 8-bit word. We know that XIX2 ... X7 is at distance 0 or 1 from so me

Perfect codes 67

(unique) codeword c' (= Cl C2 ... C7) of C' since C' is one-error correcting
and perfect. Let C1C2 ... C8 be the corresponding codeword of C. Then

d() { d(X1X2 ... X7,C1C2",C7) ifx8=C8
X1X2··· X8,C1C2··· C8 d() 1 'f .../.. X1X2 ... X7, C1C2 ... C7 + 1 X8 -r- C8

o or 1 or 2

That is, every word in Z~ is within distance 2 of a codeword of C, so
p(c) = 2. 0

[Ex 18J

Another use ofTheorem 4.10 is to save some work in finding the numbers
A2 (n, d). Essentially, the result we now prove shows that for each A2 (n, d)
you calculate with an odd d, you can immediately write down another value
of A2(n, d) with even d.

Theorem 4.12 For each odd d, A2(n, d) = A2(n + 1, d + 1).

Proof. Let C be a binary (n, M, d) code with d odd. Construct the code
D of length n + 1 simply by adding an overall parity check bit to each
codeword of C. This can only leave d unchanged or increase it by 1. To
see that the latter always occurs consider all pairs of words of C for which
d(x, y) = d. By Theorem 4.10 w(x) and w(y) must have opposite parity,
so the words of D constructed from x and y also differ in their last place,
so D has minimum distance d + 1.

Now let C' be a code with arbitrary minimum distance d'. Select any two
of its codewords which differ in d' places and select one of these positions.
Construct a new code D' by deleting the bits in this position from all
codewords of C'. The result is clearly a code with d(D') = d(C') - 1. We
have now proved that for each binary (n, M, d) code with d odd there is a
binary (n + 1, M, d + 1) code, and for each binary (n, M, d') code there is
a binary (n - 1, M, d' - 1) code.

Now let d be odd and suppose A2 (n, d) = A. Using what has just been
proved we have

and

A2(n, d) = A =} 3(n, A, d) code =} 3(n + 1, A, d + 1) code =}

A2 (n + 1, d + 1) = A + k, k ::::: 0,

A2 (n + 1, d + 1) = A + k =} 3(n + 1, A + k, d + 1) code =}

3(n, A + k, d) code =} A2 (n, d) ::::: A + k

Hence A2 (n, d) = A =} A2 (n, d) = A + k with k ::::: 0, so k can only be O.
o

The Hamming 7-bit code is an example of a binary (n, M, 3) code with
parameters ofthe form n = 2m -l,M = 2n - m . In 1962 J L Vasil'ev found
a method of generating a family of binary perfect 1-error correcting codes

68 Block codes - some constraints and some geometry

from such an (n, M, 3) 'seed' code, and what follows is an adaptation of his
method.

From the original (n, M, 3) code C construct another code D of length
2n + 1 whose first n bits are any word u of Z2' the next n bits are u + v
where v is any word of C, and the final bit was chosen in a special way by
Vasil'ev for his purposes, but for us it suffices to let it be an overall parity
check bit for u.

A useful notation for D is

D = {ulu + vIJ(u): u E Z2'V E C}

h J() - { 0 ifw(u) is even
w ere u - l'f ()' dd lWUlSO,

and alb just means the word formed by writing the bits of b immediately
after the bits of a, so you can read 'I' as 'followed by'.

Theorem 4.13 If the seed code has parameters of the form n = 2m -

1,M = 2n - m ,d = 3, then the Vasil'ev construction gives a perfect code
with parameters of the same form, m being replaced by m + l.
Proof. This is carried out in the following exercises. D

[Ex 19, 20, 21, 22]

You will meet more perfect codes in later chapters.

4.7 The Plotkin bound

To end this chapter we return to our theme of upper bounds for A2 (n, d). A
rather 100se connection exists between this and the previous section in that
the ulu + v construction and the bound we are ab out to discuss are both
attributed to M. Plotkin. The Plotkin construction will be used significantly
again in Chapter 9.

One way of improving the bounds obtained so far is to be slightly less
ambitious; instead of aiming to prove that all (n, M, d) codes have M ~
J(n, d) for some function J, show that such a result holds for arestricted
range of n and d values. The Plot kin bound is one such result, which holds
for codes with d > I' so could be useful in investigating codes for very
noisy channels where we require a large minimum distance compared with
the word length.

The derivation of the bound is another combinatorial argument which
uses the powerful technique of estimating the same quantity in two different
ways and comparing the results. We also need a fact concerning the 'great
est integer function' which is the subject of the next exercise. [Ex 23]

Theorem 4.14 If C is a binary (n, M, d) code with d > I' then M ~
2d

2d-n'

The Plotkin bound 69

Proof. Let S = ~ d(u, v) where the sum is taken over all M 2 ordered
pairs (u, v) in C xC. The M zero terms of this sum are just those in which
u = v. The remaining M 2 - M terms each contribute at least d to S.

Hence S ;::: (M2 - M)d, which gives a lower bound for S. But we can
also get an upper bound for S as follows. Write out the codewords of C as

a binary array:

Cl CH Cl2 ... Cln

C2 C21 C22 ... C2n

CM CMICM2 ... CMn

and consider the contribution to S from the kth column, which has Zk zeros
and M - Zk ones. (Cik, Cjk) contributes 1 to S if Cik =I- Cjk and contributes
not hing otherwise. There are zk(M - Zk) (0,1) pairs and (M - Zk)Zk (1,0)
pairs, so the total contribution of the column to S is 2Zk (M - Zk). Summing
over all the columns,

n

S = L 2Zk(M - Zk). (1)
k=l

Now treating M as a constant and Zk as a real variable, zk(M - Zk) is
a quadratic function of Zk whose graph is a parabola symmetrie about the
axis Zk = A.f and peaking at this value of Zk.

So S < 2n- M - - =--M (M) nM2
- 2 2 2

Combining these two inequalities for S gives

(M2 _ M)d :s: n~2

(2)

from which 2(M - l)d :s: nM. Rearranging, M(2d - n) :s: 2d, so, provided
2d - n > 0,

M<~
- 2d-n

o

[Ex 24, 25J

By using the fact that Zk and Mare actually integers we can achieve a
slight improvement : the Plotkin bound above becomes

M < [2d2~ n]

< 2 [2d ~ n] + 1 by Exercise 23.

70 Block codes - some constraints and some geometry

But this last expression is odd, so when M is even we must have

M 5: 2 [2d ~ 1] . (3)

When M is odd zk(M - Zk) is maximized by Zk = M: 1, in whieh case

(3) is replaced by

S 5: 2n (M ; 1) (M : 1) = N(M - i(M + 1) (4)

Combining this with S ~ (M2 - M)d we have

(M 2 _ M)d 5: n(M - 11(M + 1)

whieh rearranges to

M < n 2d ...
-d-- = -d-- - 1, and sm ce M lS an mteger
2 -n 2-n

M < [2d2~ n] - 1

< 2 [2d ~ n] by Exercise 23 again.

Putting the two cases together we see that M :::; 2 [2d ~ n] holds irre

spective of whether M is odd or even.
The upper and lower bounds for S, from which the Plotkin bound was

derived, are both relatively crude, so it is surprising how good the Plotkin
bound actually iso For n = 9, d = 6 for example, it estimates:

A2 (9,6) 5: 121: 9 = 4 and we found earlier in this chapter that the exact

value of A2 (9, 6) is 4.
To see that our slight refinement can sometimes give areal improvement,

consider the case d = 10, n = 16. The Plotkin bound gives M 5: 5, but the
refinement improves this to M 5: 4.

4.8 Exercises for Chapter 4

1. Determine whether either of the two Hamming codes introduced in
Chapter 2 are MDS codes.

2. Prove the geometrie characterization of a t-error-correcting q - ary code.

3. Can there be a ternary double-error-correcting code of length 10 con
taining at least 300 words?

Exercises for Chapter .4 71

4. Carry out the necessary checks of the various claims made by the fol
lowing results: (4.2), (4.4) and (4.6).

5. Show that for any single-error-correcting code with a length not exceed
ing the alphabet size, the Singleton bound provides a tighter constraint
than the Hamming bound for the size of the code.

6. Why do these spheres cover all words?

7. Using only the Hamming, Singleton and Gilbert-Varshamov bounds,
what is the most which can be said about the best possible value of M
for codes:

(a) defined over ZlO with n = 10, d = 5;

(b) defined over Z3 with n = 5, d = 3;

(c) defined over Z3 with n = 5,d = 47

Explain why the Hamming bound gives the same result for (b) and (c).

In (b) improve the lower bound for the best M by actually constructing
a suitable code.

8. C is the code {aadcca, adcacd, cdabaa, dcbdbc}. By using symbol andj or
positional permutations find an equivalent code C' with the following
features:

(a) Each word of C' starts with a different letter;

(b) The first and last letters of each word of C' are the same;

(c) b occurs twice in one position of the code.

[The code C' is not unique!]

9. Let (S; s; s: si) denote the symbol permutation which, for
SI S2 S3 Sq

each i, replaces symbol Si by symbol s~, and let (~, ~,~, ~,)

be the positional permutation which moves the symbol in position j to
the new position j'.

C is the code {bddac, abcda, abbbc, cdcdc, caddb, bccca}.

Construct the equivalent code Cl by applying the position permutation o i ~ ~ ~), then to the result of this apply the symbol permutation
(a b c d)' 't' 4 a d beIn POS1 IOn .

Then construct the equivalent code C2 by applying the same two trans
formations to C, but in the reverse order.

10. Try to find A2 (5, 3) and (rather harder) A2(9,5) by using code equiva
lence.

72 Block codes - some constraints and some geometry

11. If there is a binary (n, M, d) code, show that there is a binary (n -
1, M', d') code with M' ~ ~ and d' ~ d.

[Hint: At least half the words of the (n, M, d) code must start with the
same symbol. What is the result of deleting this symbol from just these
words?]

Deduce that A2 (n, d) ::; 2A2 (n - 1, d).

12. Find such an example.

13. Why are the codes C, C' not equivalent?

14. Do the suggested checks.

15. Show that no perfect code can have an even minimum distance.

16. Prove Theorem 4.8.

17. Find a similar formula for that in Theorem 4.10 for ternary codes, of
the form

w(x + y) = w(x) + w(y) - f(x 0 y)

where 0 and the first + are modulo 3 multiplication and addition re
spectively, and f is a function to be found. [Hint: consider the number
of Os, Is and 2s in x 0 y.]

18. Find an alternative proof that the 8-bit Hamming code has covering
radius 2, based on the decoding algorithm given in Chapter 2.

19. Show that for any binary words a, b, x, y, d(a+b, x+y) = d(a+x, b+y).

20. Show that D has 22n - m codewords.

21. Show that d(D) = 3.

22. Show that D is perfect.

23. For any real number x, [x] is called the greatest integer function of x,
defined as the largest integer not larger than x. Prove that 2[x] ::; [2x] ::;
2[x] + 1.

24. What information is obtained by applying the Plotkin bound argument
when d < ~?

25. The exact values of A2 (n, 7) for n = 13,12,11,10 are 8, 4, 4, 2 re
spectively. In each of these cases find the upper bounds given by the
Singleton, Hamming and Plotkin bounds.

5

Thepower of linearity

5.1 The problem

In the previous chapter we (deliberately) forgot that error-correcting codes
were developed as a solution to a practical problem, and now we return
to the practicalities. Honesty demands that I admit to doing this only to
motivate the next bit of nice mathematics, but for readers interested in the
hardware design of encoders and decoders there are many good books with
more emphasis on these matters. Two such texts are [11] and [12].

Suppose you have a code C which is sufficiently 'good', perhaps in the
sense of the previous chapter, that you are tempted to use it to send and
correct real messages. These messages could be English words, lines of a
bank balance, directions for a robot, etc. Your first problem is encoding :
how do you associate each of your possible messages with a codeword of
C? To see that this is indeed a real problem just consider the fact that
there could be millions of messages. You could just set up a 'look-up table'
giving a list of all messages ml, m2, ... with their corresponding codewords
Cl, C2, ... just like an English-French dictionary: simple in principle but
useless in practice because your encoder has to search the list every time
you want to send a message, which is a hopelessly time-consuming task.
Real dictionaries cut down the search time dramatically by a cunningly
structured method of listing, the familiar alphabetic order. The Hamming
code of Chapter 2 does much better by not requiring a look-up table at
all: there was a simple, easily implementable algorithm for very rapidly
translating each 4-bit message into its 7-bit codeword. The special math
ematical structure by which the Hamming code solves both the space and
time problems associated with look-up tables is the topic of this chapter.

For many nice codes the encoding problem is still unsolved. For example,
several practical communications problems could be solved by using codes
in which every codeword has the same weight, if only an efficient encoding
algorithm could be invented.

There are similar problems at the other end of the channel. Assuming

74 The power of linearity

as usual that we use nearest neighbour decoding to correct transmission
errors, for an arbitrary code we have to search the code to find the code
word(s) dosest to the received word. Again the Hamming decoding process
described in Chapter 2 reduces this search to a triviality. So what is so
special about the Hamming code?

5.2 Linear codes - their fundamental properties

Most practical error-correcting codes in use today, including the Hamming
codes, are examples of what are called linear codes. The main aim of this
chapter is to explain what this means, and what consequences of linearity
make such codes 'good'. This is the only part of the book which makes
use of any assumed background knowledge - linear algebra, in particular
the meaning and manipulation of vectors and matrices, and the elementary
properties of a vector space. Reminders of the basic facts are given in section
5.3, but generally no proofs. If your memory of this has faded you should
refer back to a text like [13J or to your favourite of the many linear algebra
texts available.

One requirement of a linear code is that its alphabet symbols are the
elements of a field. We shall use the fields Zp, where p is prime, and call
upon the material of Chapter 3. Before actually saying what a linear code
is, he re are just so me of their advantages over arbitrary codes.

1. Evaluation of d(C) is much easier.

2. Encoding is fast and requires little storage.

3. It is much easier to determine which errors are correctable/detectable.

4. The prob ability of correct decoding is much easier to calculate.

5. Very slick decoding techniques exist for linear codes.

Since words are n-strings of members of Zp it is possible to define the
'sum' of two words and the product of a member of Zp with a word. This
is done as folIows:

Definition 5.1

(i) ala2'" an + bl b2 ··· bn = al + bl , a2 + b2 ··· an + bn

(ii) If 0: E Zp, 0:(ala2 ... an) = o:al, o:a2 ... o:an

Notice that if we think of the word ala2'" an as a vector with compo
nents al, a2,"', an, and 0: as a scalar, then these definitions are exactly
the same as those for the vector sum and the scalar product. The only
difference between this and the vector ideas with which you are probably
more familiar is that both the scalars and the components of the vectors
are members of Zp rather than real or complex numbers, and of course all
the arithmetic is modulo p. [Ex 1 J

Linear codes - their fundamental properties 75

Now let C be a code of length n over Zp.

D~finition 5.2 C is a linear code over Zp if for all c, c' E C and all a E Zp

(i) C + c' E C
and

(ii) ac E C. [Ex 2-5]

Notice that Z; is a vector space over Zp so the definition of C as a linear
code just amounts to saying C is a vector subspace of Z;.

We now prove three easy consequences of linearity which are aesthetically
pleasing and practically useful.

Theorem 5.1 All linear codes must contain the zero word.

Proof. Simply put a = 0 in condition (ii). o
The main use of this is negative : if presented with a code for which

o fj. C you know C cannot be linear!

Theorem 5.2 If C is linear d(C) is the smallest weight of all the non-zero
codewords.

Proof. Let d(C) = d and let w be the smallest non-zero weight. Choose a
pair of codewords Cl, C2 with d(Cl, C2) = d. (Note that Cl =I C2 so Cl - C2 =I
0) Then

d = d(Cl, C2) = W(Cl - C2) ~ W

Now choose a codeword C of weight W (Note W =I 0) Then

W = w(c) = w(c - 0) = d(c, 0) ~ d

From (a) and (b) d = w

(a)

(b)

o

For an arbitrary code, finding the minimum distance involves examining
every pair of codewords, but if the code is known to be linear, by the theo
rem above you only need to look at the weights of the individual codewords.

Definition 5.3 If C is any code over Zp, cis a transmitted codeword, and
r is the received word, then e = r - C is called the errar pattern of this
transmission.

Rewriting the equation in the above definition as r = c+e, we can think
of e as the 'noise' which acts on C to convert it to r.

Theorem 5.3 For a linear code using nearest neighbour decoding, whether
or not a received word r is uniquely correctly decodable depends only on
e, not r.

Proof. In this proof we insert a couple of diagrams which treat words
(vectors in Hamming space) as if they were geometrie displacement or
position vectors. Of course they are not, and this device is merely a visual
aid for the proof, not a mathematically necessary part of it.

76 The power of linearity

The proof is by contradiction : we suppose that there are codewords c, C'

of a linear code, and an error pattern e such that r = C + e is correctly
decoded but r' = c' + e is not. The fact that r' is incorrectly decoded
means that there is some codeword C" at least as close to r ' as c' iso Let e'
be the error pattern associated with transmitting C" and receiving r'. We
have

e' = r ' - c"andd(c",r')::; d(c',r'),

so the second of these relations can be written w(e /) ::; w(e). Finally,
define u as the word r - e' . All this is illustrated on the diagram.

Now

u r - e' = c + e - e' = c + (r' - c') - (r' - C")

c - c' + C"

which is in G because c, c' and C" and all in Gare G is linear. But d(u, r) =
w(e/)::; w(e) = d(c, r). So r is not uniquely decoded to c and we have
our contradiction. 0

To conclude this section we have a nice symmetry property of linear
codes, but first an exercise to set the scene. [Ex 6]

The result of Exercise 6 can be generalized to all linear codes:

Theorem 5.4 Let G be a linear code over Zp- In each position Geither
has 0 in every codeword, or each of the p symbols occur equally often.

Proof. We fix attention on the first position since the argument is identical
for aB positions, and suppose 0 is not the first symbol of every codeword.
Let G be {Cl, C2, ... ,CM} and let Cl have a (-=I- 0) as its first symbol.

By the methods of Chapter 3 we see that Oa, la, 2a, ... , (p - l)a are just
the numbers 0, 1, 2, ... ,p - 1 in so rne order (with arithmetic being modulo
p), and by linearity, OCI, lCI, 2CI,"', (p -l)CI are all codewords and their
first symbols are Oa, la, 2a, ... , (p - l)a respectively. Hence G contains at
least one word beginning with each of the p symbols.

Now let b be any one of the non-zero symbols, and let c be a codeword
beginning with b. Then {C+CI, C+C2, ... ,C+CM} is a set of distinct words,
all in G by linearity, so this set is in fact G. Also C - Ci begins with b if and
only if Ci begins with O. Hence the number of codewords starting with b is
the same as the number starting with O. b was arbitrary so the theorem is
proved. 0

5.3 Linear algebra rem inders

The following is a list of definitions and results from linear algebra, but
phrased, where necessary, in the language of codes as explained in section
5.2. We regard Z; as a vector space over Zp and a linear code with Zp as
its alphabet as a vector subspace of Z;.

Linear algebra rem inders 77

1. A linear combination of all words Xl, X2, ... ,Xt is a word of the form
L~=l Ai Xi where each Ai E Zp.

The Ai will be called the coefficients of the linear combination.

2. The span of the words Xl, X2,"', Xt, written (Xl, X2,"', Xt) is the set
of all linear combinations of these words.

If Sand T are sets of words for which (S) :2 TS is said to span T.
[Ex 7J

3. If X = X1X2 ... X n and y = Yl Y2 ... Yn are words of Z; the dot product
or inner product of X and y, written X . y, is the number

xlYl + x2Y2 + ... + xnYn mod p.

4. X and y are called orthogonal words if X . Y = O. [Ex 8, 9J

5. For any S ~ Z; Sl. (pronounced S perp) is the set of all words which
are orthogonal to every word of S [Ex 10, 11J

6. If C is a linear code then Cl. is called the dual code oi C, and by Exercise
10, Cl. is also linear.

7. A set of words S is called a linearly independent set if 0 can only be
expressed as a linear combination of them by taking every coefficient to
be O. Otherwise S is adependent set. [Ex 12, 13J

8. If C is a linear code, then any subset of C which is linearly independent
and which spans C is called a basis oiC. Equivalent definitions of a basis
of C are:

(a) any B ~ C where Bis independent and has the property that putting
any other member of C into B makes it adependent set;

(b) any B ~ C which has the property that B spans C but no proper
subset of B spans C.

(a) and (b) are sometimes expressed as 'B is a maximal independent
subset of C' and 'B is a minimal spanning set of C' respectively.

9. Bases have the following properties:

(a) Given any spanning set S for C there is a subset of S which is a basis
ofC;

(b) Given any linearly independent subset I of C, there is a set J such
that Iu J is a basis for C;

(c) All bases of C have the same number of words. This nu mb er is called
the dimension of C. [Ex 14J

78 The power of linearity

10. For all primes p, Z; has dimension n because the unit words WI, W2,"',

W n (where Wi has 1 as its ith component and 0 for all others) clearly
span Z; and are linearly independent.

It follows from (9) and (10) that any set of more than n words in Z;
must be adependent set, and no set of fewer than n words of Z; can
span Z;.

11. Let Cl, C2 be linear codes of length n over Zp, with dimensions kI, k2

respectively.

(a) If Cl ~ C2 then kl ~ k2 and

(b) if Cl ~ C2 and kl = k2 , then Cl = C2 . [Ex 15-17]

NOTATION: The dimension of C, a linear code over Zp, is often written
as dim(C). If dirn (C) = k, then M, the number of codewords of C,
depends (from Exercise 16) only on k and p. It is customary when dealing
with linear codes to describe a code as a p - ary[n, k, d] code rather than
a p - ary(n, M, d) code - or just an [n, k] code if p is clear from the
context and d is either not known or not specified.

12. The rank-nullity theorem.
If Ais any k x n matrix (with entries in Zp), the image space of A, Im(A)
is the span of the rows of A, and the null space of A, Null (A) is the set
of all words W for which wAT = 0, (AT denotes the transpose of A).
The rank of A is dirn (Im(A)) and the nullity of A is dirn (Null(A)).
The rank-nullity theorem states that

dim(Null(A)) + dim(Im(A)) = n.

13. If X, Y are the sets of rows and columns, respectively, of any matrix,
then dirn (X) = dirn (Y).

5.4 The generator matrix

Remember that the whole point of encoding messages is to introduce re
dundancy with a view to doing error detection or correction. How then are
messages encoded when using a linear code? We normally take the set of
all messages (the message space) to be all words of a given length n - k,
and encode them into codewords of length n. This is done using a linear
code of length n and dimension k. (So k ~ n by (10) and (11) of section
5.3). Then we take a matrix G whose rows are the codewords of any basis
of C, say Cl, C2, . .. Ck, and define for each message m the corresponding
codeword C by C = m G.

For example Cl = 12043, C2 = 23104, C3 = 40211, is a basis for a 3
dimensional code over Z5 (we leave you to check that these words are

Cosets and the Slepian array 79

independent), so the message m = 123 is encoded as

(1 2 0 4 3)
mG = (1 2 3) 2 3 1 0 4 = 23324.

40211

So C is just the span of the rows of G, Im(G). [Ex 18J

Particularly convenient linear codes are those which have a k x n genera
tor matrix in which the first k columns just make up the k x k unit matrix
I k, because in this case the message coincides with the first k symbols of its
codeword. This is a time-saving feature because the vast majority of words
are received with no errors so for these words all the receiver needs to do
with the received codeword is read off its first k symbols. Recall that the
7-bit and 8-bit Hamming codes of Chapter 2 had just this property, and we
shall see later that these codes are in fact linear, and the encoding which
we did then with Venn diagrams can be done with a generator matrix.

To return to our previous example, C is a [5, 3J code so d(C) ~ 5. This
can be strengthened by using Theorem 5.2 and the fact that the rows of
Gare codewords and these have weight 4, so d(C) ~ 4. Short of listing all
125 codewords it is not easy to see what is the minimum non-zero weight
of the codewords, so an important quest ion is : how can a linear code be
deliberately designed to have a specified minimum distance? See later this
chapter and the next for an answer. [Ex 19J

5.5 Cosets and the Slepian array

The point of this section is to show a way of implementing nearest neigh
bour decoding for linear codes. The following example illustrates all the
significant features of the method.

Take C to be the [3, 2J code over Z3 generated by

G=[~ o 1]
1 2 .

So C is the set ofnine words, {.\(2 0 1)+J.L(1 1 2) : 0 ~.\ ~ 2, 0 ~ J.L ~ 2},
wh ich we write as a row of codewords in arbitrary order,

201 112, 000, 102, 221, 010, 122, 211, 020.

Then pick any word not in C (I chose 222) and write down as a second
row the words formed by adding 222 to each of the words in the first row.
This set of words is called the caset C + 222. The first two rows still do not
include all words of z~ so pick one of the missing ones (I chose 200) and

80 The power of linearity

add this to aB the codewords to make the third row C + 200. The result is:

C 201 112 000 102 221 010 122 211 020
C + 222 = 120 001 222 021 110 202 011 100 212
C + 200 101 012 200 002 121 210 022 111 220

We stop here because our array contains every word of z~. Notice that
the rows are pairwise disjoint and no row contains any repeated words.

[Ex 20, 21]

Exercise 21 establishes the principal properties of the cosets of a linear
code. It can be summed up by saying that the distinct cosets partition Z;
into pn-k cosets each of size pk.

To implement the advertized decoding method we first make two furt her
restrictions on the array of C and its cosets. One is that the first row (of
codewords of C) must start with the zero codeword. The other is that the
first word of each other row must be chosen from the words of smaBest
weight not already included in any previous row. An array satisfying these
conditions for the same code C is shown below:

C
C + 100
C + 200

000 201 112 102 221 010 122 211 020
100 001 212 202 021 110 222 011 120
200 101 012 002 121 210 022 111 220

This is caBed a Slepian (or standard) array. The words chosen to go in the
first column are caBed the coset leaders. [Ex 22]

The decoding process has just two steps.

Slepian array decoding: 1. Locate the received word in the array.

2. Decode it as the codeword at the top of its
column.

Why this is sensible is explained by the next theorem.

Theorem 5.5 Slepian array decoding is nearest neighbour decoding.

Proof. Let r be the received word, l its coset leader, and c the codeword
at the top of r's column.

c' . c

·r e .

We have to show that der, c) ::::: der, c') for aB codewords c'. With the
aim of deducing a contradiction suppose there is a codeword c' with

d(r,c) > d(r,c/) (1)

Cosets and the Slepian army

We have
r = c+l

by the rule for constructing Slepian arrays. Let

r=c'+e

From (2) and (3) we derive

e -l = (r - c') - (r - c) = c - c'

So e - l E C by linearity.

81

(2)

(3)

Hence, by Exercise 20(iii) e and l are in the same coset (same row of the
array).

But using (2) and (3) and Exercise 4 in (1) we get w(r - c') < w(r - c).
That is, w(e) < w(l) which contradicts the rules for the array since l is a
coset leader and therefore has weight no bigger than that of any word in
its row. 0

We have seen previously that if a code has minimum distance d then
nearest neighbour decoding, using the complete decoding scheme described

d-1
in section 4.3 will correct all instances of :S [-2-] errors but mayaiso

correct some received words with a greater number of errors. Since Slepian
array decoding is aversion of nearest neighbour decoding we can ask which
error patterns precisely will the method correctly decode?

Theorem 5.6 The error patterns correctly decoded by a Slepian array are
the coset leaders.

Proof. Let c be sent, corrupted by a channel error e, so that r = c + e
is received. r is correctly decoded (to c) if and only if rand c are in the
same column. That is, r = c + l for some coset leader, l. i.e. c + e = c + l,
we=l 0

[Ex 23]

Now we have a problem: the choice of coset leaders is not necessarily
unique because the set of words not covered by the first i rows could contain
several words of the same (minimal) weight. So, from the previous theorem,
which error patterns are corrected depends on the choice of coset leaders.
The point of the next theorem is to show that this is not a serious problem.

Theorem 5.7 Let S, S' be different Slepian arrays for the linear code C.
Let Si be the set of cosets in S whose leaders have weight i, and let S~ be
the corresponding set of S'. Then for all i, Si = S~.
Proof. Let C + x be any coset in Si. Then by the properties of cosets
developed in Exercise 21, C + x is also a coset of S'. Furthermore C + x
contains words of weight i but none of weight less then i, so C + x must
also be a coset of S'. Hence Si ~ S~ and by a similar argument S~ ~ Si, So
~=~. 0

82 The power oilinearity

This theorem ensures that, given any linear code, the numbers of error
patterns ofweights 0, 1,2,··· which it can correct by Slepian array decoding
does not depend on which Slepian array is used. [Ex 24-27]

5.6 The dual code and parity check matrix

We now return to the Hamming code of Chapter 2 to introduce an alter
native method of specifying a linear code. Recall that the messages were
all 16 4-bit binary words which were then encoded as 7-bit codewords. The
three additional bits were fixed by requiring that the total number of ones
in each of the three sets was even. Using modulo 2 addition and denoting
a codeword by Xl X2 ... X7 these conditions become:

Xl + X3

Xl + X2

Xl + X2 + X3

o
o
o

So this Hamming code C can be specified as the set of all 7-bit strings
which satisfy these equations. The equations can be written compactly in
matrix form as

cHT =0

where c is the codeword (XIX2·· ·X7), regarded as a row vector, His the
matrix

[; 0 1 1 1
o 0 1 1 0 1 0 1 0 ,

1 1 0 0 o 1

o is the zero column vector

0)
and H T is the transpose of H. Notice that the left hand sides of the three
equations are just the dot products of c with the rows of H, so another de
scription of Cis that it is just Sl. where S is {1011100, 1101010, 1110001},
so we know from Exercise 11 that C is linear. [Ex 28]

Definition 5.4 H is called a parity check matrix for a linear code C if

(i) its rows are independent,

(ii) C is the set of all words satisfying cHT = o. (That is, C is the null
space of H.)

We now show that every linear code C has a parity check matrix, but
first we need another property of Cl., whose proof you will find easier if
you have met the idea of a singular matrix. If not, ignore the proof but
make sure you understand the results.

The dual code and parity check matrix 83

Theorem 5.8 If C is an [n, k] code over Zp, then C.L is an [n, n - k] code.

Proof. We already know that C.L is linear so only the fact that its dimen
sion is n - k remains to be proved.

Choose a basis {VI'···'Vn } for Z; in which {vI,···,vd is a basis for
C. (See 9(i) of section 5.3) Let B be the n x n matrix whose rows are the Vi.
Then the matrix G consisting of the first k rows of B is a generator matrix
for C. B is non-singular so it has an inverse B- I . Let WI, W2,· .. , W n be the
rows of (B-If. (B-If is non-singular so {WI'···'Wn } is another basis
of Z;. C.l is actually the span of the last n - k of these rows, as we now
demonstrate, so that these words make a basis of C.L .

We first prove that Wk+I,···, W n are all in C.l by showing that each
of them is orthogonal to every word of C. Let V E C so that it can be

k

expressed as L Q:iVi· Then for k + 1 :::; j :::; n,
i=1

V.Wj (t, Q:iVi) . Wj = t, Q:i(Vi . Wj)

k

L Q:i ((row i of B) . (row j of (B-If))
i=1

k

LQ:i ((row i of B)· (column j of (B- I)))

i=1

k

L Q:i (i,j entry of BB- I)

i=1

o
since BB- I = I, whose i, j entry is 0 because j > k :2': i. By a similar
argument we now establish that all words of C.L can be written as a linear
combination of W k+ I, ... , W n .

Let W E C.l, so write it as
n

W = LßiWi
i=1

(1)

We aim to show ßI = ß2 = = ßk = O. Now VI,··· Vk are all in C, so
W . Vj = Oforj = 1,2,···, k. That is, for

n n

i=1 i=1
n

L ßi(row i of (B- I)T). (row j of B)
i=1

84 The power of linearity

n

Lßi (j,i entry of BB- I)

i=l

ßj

since the j, i entry of B B- 1 is 1 when i = j and 0 otherwise. So (1) becomes

n

W = L ßiWi'
i=k+l

We have shown that the last n - k rows of (B-l)T are independent
members of Cl., and each member of Cl. is a linear combination of them,
sodim(Cl.)=n-k. 0

Now with the aid of the important rank-nullity theorem (item 12 of sec
tion 5.3) we find a neat connection between the parity check and generator
matrices.

Theorem 5.9 H is a parity check (p.c.) matrix for the [n, k] code C if
and only if it is a generator matrix for Cl..

Proof.

(i) H is a parity check matrix for C
=} C = null(H)
=} k = n-dim (Im(H)) by the rank-nullity theorem
=} dirn (Im(H)) = n - k
=} dirn (Im(H)) = dim(Cl.) by the previous theorem.

But Im(H) ~ Cl., so Im(H) = Cl. by (11) of section 5.3. That
is, H is a generator matrix for Cl..

(ii) H is a generator matrix for Cl.
=} rows of H are independent and Cl. = Im(H)
=} c.(any linear combination of rows of H) = 0 for all c E C.
=} C ~ Null (H)
=} C = Null (H) by (11) of section 5.3 since

dim(C) = k = n - (n - k) = n - dimCl.

= n - dim(ImH) = dirn (null (H))

That is, H is a parity check matrix for C. o

From this result it follows that every linear code C has a parity check
matrix - simply use any generator matrix of Cl.. [Ex 29-32]

5.7 Syndrome decoding

The method of decoding by Slepian array is neat conceptually but suffers
from two major drawbacks when used with large codes. The first is the

Syndrome decoding 85

space problem: if C has lots of codewords it takes up lots of memory space
to store it in a computer, and the array is pn-k times bigger than C! The
second is the time problem: even if the whole array could be stored the
first step of the decoding process is to search the array to find the received
word, and this could be very time consuming. The method of syndrome
decoding solves both of these problems whilst retaining the spirit of array
decoding.

Definition 5.5 Let H be a parity check matrix for a linear code, and let
v be any word. The syndrome of v, syn (v) = V H T .

By our previous results syn (v) = 0 if and only if v is a codeword.
Furthermore,

Theorem 5.10 u,v belong to the same coset if and only if syn (u) =

syn(v).

Proof. u, v E same coset {o} u - v E C by Exercise 21

{o} (u - v) H T = 0 by definition of p.c. matrix

{o} uHT - vHT

{o} syn(u) = syn(v). D

This means that each row of a Slepian array (each coset) consists of all
those words which have the same syndrome (that of the coset leader).

The next theorem connects the columns of a p.c. matrix with the syn
drome of any received word.

Theorem 5.11 Let C be an [n, k] code and H be any of its p.c. matrices.
If e = el ... en is the error pattern associated with the received word r,

then 'yn (r) ~ (t, e;h;) T whe<e h; i, the ith column of H.

h l1 hn - kl

Proof. syn(r) = syn(e) = eHT = (eI'" en)

hn- kn

= (e Ih l1 + ... + enhIn , eI h2I + ... + enh2n ,"', eIhn- kl + ... + enhn-kn)

= el (h l1 ,' .. hn-kd + ... + en (hIn,"', hn- kn)

= eIh[+ ... + enh; = (2:: eihi) T D

A special case of this result is that for binary codes syn(r) is the trans
pose of the sum of those columns of H corresponding to the positions where
the errors occur.

The space problem associated with Slepian array decoding was that the
whole array is needed throughout the use of the code, so that a large chunk

86 The power 01 linearity

of computer memory is permanently occupied. In syndrome decoding the
array is calculated prior to using the code, and then all except the first
column (the coset leaders) can be thrown away. All that needs to be stored
permanently are the list of coset leaders, their associated syndromes and
the p.c. matrix.

The syndrome decoding steps are then very simple:

1. Calculate the syndrome r H T of the received word r.

2. Scan the stored list to find the coset leader e with the same syndrome.

3. Decode to the codeword c = r - e.

This is dearly equivalent to array decoding because e is the leader of
the row in which r would have appeared had the whole array been stored,
and r - e would be the codeword at the top of the column containing r.

[Ex 33]

The results of Exercise 33 are both consequences of the next general
result which characterizes d(C) in terms of the columns of H.

Theorem 5.12 The minimum distance d of a linear code C is the size of
the smallest dependent set of columns of H.

Proof. Let c = Cl··· Cn be a codeword of weight d (which exists by
Theorem 5.2.) Now cHT = 0, which can be expanded as the equation
clhl + ... + cnhn = 0, h i being the ith column of H, and the equation has
only d non-zero terms. The corresponding set of columns {h i : Ci =1= O} is
therefore dependent.

To show that there is no sm aller dependent set, consider any set of t
dependent columns {ha, ,···, hat}. There are constants ka" ... ,kat' not
all zero, such that ka1 h a1 + ... + kat hat = 0, so that the word X with
kai as the ai th component and the rest zero is a codeword of weight ::; t.
Hence t ~ d by Theorem 5.2 again, and the result is proved. 0

In the next chapter we shall use this result to design an important dass
of codes with minimum distance 3.

Sometimes it is possible to construct the coset leader list without having
to construct the whole Slepian array. The following example will illustrate
the arguments used.

Let C be a ternary [7,3] code with

[

12

H = 1 1
o 0
2 2

o 1
1 0
1 0
2 0

Syndrome decoding 87

It is easy to check that no pair of columns is dependent, but the three
columns 1, 2 and 4 are dependent since

So by the previous theorem d(C) 3 so C is 1-error-correcting, so 0
and all words of weight 1 are co set leaders. This accounts for 15 cosets.
dim(C) = 3 so there are 33 = 27 codewords, and ZI has 37 words, so

37
there must be 33 = 81 cosets. To find the remaining 66 coset leaders we

could systematically work through the words of weight 2. Each time we
find one which has a syndrome not included in the list so far, add this as
a new coset leader. Notice that there are G) x 22 = 84 words of weight 2,
so not all of them are coset leaders. (Another reason for this is that C is
not 2-error correcting.) Furthermore, it may be that some cosets contain
lots of words of weight ::::: 2 so that all words of weight ::; 2 yield fewer than
81 distinct syndromes. In this case the search has to be widened to words
of weight 3, and so on. We leave you to get a full list of coset leaders and
possibly find a bett er method of doing the search. [Ex 34]

It is time we did an example of syndrome decoding. Taking the code
C' of Exercise 22 and its solution we see that all non-zero codewords have
weight 3 so d(C') = 3. Hence C' is one-error correcting, which implies that
each of the 8 words of weight 1 is a coset leader. There are 9 leaders in all,
o has to be one, so this accounts for all the coset leaders.

Now we need the syndromes of the coset leaders, and to do this we need
a p.c. matrix. C' is a [4,2] code, so by Theorem 5.8 C'l. is also [4,2]. So
the two rows of a p.c. matrix for C can be any two independent rows which
are orthogonal to each row of G. Hence words X1X2X3X4 of C,l. have to
satisfy

and
- O} : 0 modulo 3.

Two independent solutions are 1102 and 2110 so we may take H to be

[~ 1 0
1 1

and the list of coset leaders and syndromes are:

coset leader: 0000 1000 2000 0100 0200 0010 0020 0001 0002
syndrome: 00 12 21 11 22 01 02 20 10

88 The power of linearity

Suppose 2221 is received. Its syndrome is 02 and the corresponding coset
leader is 0020, so 2221 is decoded as 2221 - 0020 = 2201, and if there is
indeed only one error in the received word, this decoding will be correct.

There is an important point to make about the example above. The
example was unrealistically easy because the nu mb er of cosets matched
exactly the number of weight 0 and 1 words, and because d = 3 we knew
that all such words would be coset leaders and that there were no more.
Secondly much of the work was in finding H from G - not too bad for
this example but very hard work for big codes. We develop on algorithm
to alleviate this.

Definition 5.6 A generator matrix is in standard form if it has the form
[IIA] where I is an identity matrix.

Theorem 5.13 If the [n, k] code C has standard generator matrix G =
[IIA], then a p.c. matrix for Cis [-ATlI]. For example, if

G~[~~~~~!n
for a [7,3] code over Z5, then

r -2
-3 -1 1 0

o 0 1 r 32 4
1

o 0 01 -1 -0 -2 0 1 o 0 403 0 100
H= -1 -3 0 0 1 0 1 4 2 0 010 -4

-0 -2 -2 0 0 o 1 033 0 001

is a p.c. matrix. You should check this by verifying that each row of H is
orthogonal to each row of G (and hence that each word in the span of the
rows of H is orthogonal to each word in the span of the rows of G). If you
do this using the form for H with the negative entries, you will see why it
works in general. 0

For reasons wh ich will be apparent in the next section it is often useful
to be able to get from G to H by a quick method such as that explained
in the previous theorem in those cases where G is not exactly in standard
form. The method is daunting to write out in full generality so we shall be
content with a representative example.

Let G have the same columns as in the previous example, but in a dif
ferent order:

[
2 1 0 4 0 Oll

G= 3 0 2 1 0 1 0
1 0 2 3 102

Notice the 'unit columns' are columns 2, 5 and 6. The first step in con
structing H is to fill in its columns 2, 5 and 6. Look at column 2 of G. This
has its 1 in position 1 so fill column 2 of H with the remaining entries (i.e.

Equivalence 01 linear codes 89

not entries 2, 5, 6) of row 1 of C, with reversed sign. The result is

-2
-0
-4
-1

]
Similarly, look at columns 5 and 6 of C. These have their ls in positions 3

and 2 respectively, so columns 5 and 6 of H are occupied by the remaining
entries of rows 3 and 2 of C with reversed signs. Finally, the columns of the
4 x 4 unit matrix are inserted as columns 1, 3, 4 and 8 of H. This gives

[~
-2 0 0 -1 -3

~] H
-0 1 0 -2 -2
-4 0 1 -3 -1
-1 0 0 -2 -0

[~
3 0 0 4 2

~] 0 1 0 3 3
1 0 1 2 4
4 0 0 3 0

[Ex 35-38J

Now we have a method of getting from G to H quickly, but only if C has
a rather special form. The fact wh ich makes the method practically useful
is that every linear code has a generator matrix of the special form, and
that there is an easy way to find it. To establish this we need so me ideas
involved in continuing the equivalent code theme of Chapter 4 to linear
codes in particular.

5.8 Equivalence of linear codes

Using the definition of equivalence established in Chapter 4 it is easy to
see that one of a pair of equivalent codes may be linear and the other not.
For example C = {OOOO, 1001,0110, 1111} is linear, and is equivalent to
C' = {lOOO, 0001, 1110,0111} by a symbol change in the first position. But
C' is not linear since 0 (j. C'.

So we ask the question: is it possible to define a not ion of equivalence
entirely within the dass of linear codes? Guided by Chapter 4, our aim is,
given any linear code C, to define a set of 'equivalence operations', any
sequence of which, applied to C, will produce an equivalent code C' which
is also linear.

Of the two transformations used to define ordinary equivalence, we have
seen in our initial example that symbol permutations are a problem. But
the other, positional permutation, causes no difficulty as it is dear that a
linear code remains linear if its positions are permuted. Furthermore, any

90 The power of linearity

permutation of the positions of C corresponds to the same permutation
performed on the columns of its generator matrix G. This observation is
important for the rest of this discussion.

Our aim now is to restrict the set of allowed symbol permutations so
that linearity is preserved. Again our example provides guidance : for C'
to be linear it is necessary that it contains O. Now if d(C) :::: 2, so that the
weight of any non-zero codeword is at least 2, then the result of doing any
symbol permutation which does not fix the zero symbol, in any position, is
a code which does not contain O. The next two Exercises give a plausible
solution to this problem, and reasons why it won't work! [Ex 39, 40]

So we are forced to restrict the allowed permutations and our choice of
restriction is given by Exercise 20 of Chapter 3, which we can recast as fol
lows: if p is prime and 0 < a < p, then the sequence Oa, 1a, 2a, ... , (p - 1)a
is apermutation of 0, 1,2, ... ,p - 1. Clearly Oa = 0 so it is also a per
mutation which fixes O. It also preserves linearity. To see this, suppose C'
is the result of multiplying the ith components of all codewords of C by
ai (i = 1,2,"', n) and let (C)dC')i denote the ith components of code
words C E C and the corresponding c' E C'. Then for any c~, c~ E C' we
have

(c~ + C~)i = (C~)i + (C~)i = ai (CI)i + ai (C2)i = ai (Cl + C2)i

and Cl + C2 E C so C~ + C~ E C'. Closure under scalar multiplication is
checked just as easily.

Unlike arbitrary symbol permutations, this restricted dass, if done only
to the columns of a generator matrix, is then 'inherited' by the whole code.
To be precise about this, let C be a linear code with generator G. Let C"
be the code obtained by multiplying the ith components of all codewords of
C by a (i= 0), and let C' be the code generated by G', the matrix obtained
by multiplying the ith co lu mn of G by a. It is easy to check that C' = C".

Now we can try to formulate our definition of equivalence within linear
codes entirely in terms of operations on their generator matrices. We also
need a name for the new concept of equivalence. For the moment we shall
call it linear equivalence, but this name is not standard, and in common
with most of the literature, when the context is clearly linear codes we
shall drop the 'linear', and it will be understood that the restricted idea of
equivalence is intended.

Let C be defined by a generator matrix G and let G' be the result
of applying to G any sequence of: permutations of the columns and/or
multiplication of any columns by non-zero constants. We have seen that
the code C' generated by G' is linearly equivalent to C. [Ex 41]

But this is not the whole story. It is easy to find pairs of matrices G, G'
which generate linearly equivalent codes but G' is not obtainable from G

Equivalence of linear codes 91

by applying the operations above. A simple example is

G = [I 0] G' = [I 0] o I ' I I

These both generate Z?, but clearly the operations mentioned so far can
never convert G to G'. So the problem is to find a set S of operations
on generator matrices, with the following property : given any linear code
C and one of its generator matrices G, the set of matrices produced by
applying all possible sequences of operations in S to G is precisely the set
of all generator matrices of all codes linearly equivalent to (or the same as)
C.

You may wonder why we should be interested in having matrices which
generate the same code as the original, as weIl as codes merely equivalent
to it. Part of the answer has already been given at the end of section 5.4
where we noted the convenience of standard form generators for decoding,
and in section 5.7 where standard or 'nearly standard' form for G made
the process of getting H much simpler.

Here are the operations on Gwhich make up the set S.

RI Permutation of the rows
R2 Replacement of a row by one of its non-zero multiples
R3 Replacement of a row by the sum of itself and any multiple of another

row
Cl Permutation of the columns
C2 Replacement of a column by one of its non-zero multiples.

We have already discussed Cl and C2. These are the only two of the five
which can change the code. The three row operations only change the form
of G but leave the code unchanged. You are asked to prove this last claim
~. ~~

I ask you to take on trust the fact that if matrices G, G' generate linearly
equivalent codes then there is a sequence of operations of some or all of the
five types which converts G to G'. This should co me as no surprise to those
readers who have used various reduction techniques on matrices in order
to solve systems of linear equations. We make no formal use of the result,
but only mention it here to shed further light on why these five operations
are the vitaiones.

At the end of section 5.7 we used the special form of matrix which we
now define formally.

Definition 5.7 A k x n generator matrix is in nearly standard form if k
of its columns are the k columns of h, the k x k unit (or identity) matrix.

Now we give an algorithm to demonstrate (rather than prove formally)
the theorem alluded to at the end of section 5.7.

Theorem 5.14 Given a linear code C with generator matrix G, row op-

92 The power of linearity

erations R1, R2 and R3 suffice to construct a generator matrix G' for C,
in nearly standard form.

The algorithm to achieve this is simply described as follows:

(a) select any non-zero member of row 1, say aij'

(b) multiply row 1 by a1j so that row 1 now has 1 in its jth place.

(c) for all i i 1 replace row i by row i - aij x row 1. The matrix now has
column j equal to the first column of h. Repeat this for all rows.

Here is an example ofthe algorithm in action (over the field Zs). The non
zero entry selected in each row is underlined and the type of operation used
at each step is shown, followed by the details of the particular operations.
After this we give an indication of why it always works.

0 2 0 3 3 4 STEP 1 0 1 0 4 4 2

G= 1 2 3 4 0 1 --4 1 2 3 4 0 1
2 2 3 3 4 4 R2 2 2 3 3 4 4

STEP 2 0 1 0 4 4 2 STEP 3 0 1 0 4 4 2
--4 1 0 3 1 2 2 --4 1 0 3 1 2 2
R3 2 0 3 0 1 0 R3 0 0 2 3 2 1

STEP 4 0 1 1 3 0 0
--4 1 0 4 0 3 0 =G'
R3 0 0 2 3 2 1

step 1 row 1 replaced by 3 x row 1
step 2 row 2 ---., row 2 - 2 x row 1, row 3 ---., row 3 - 2 x row 1
step 3 row 3 ---., row 3 - 2 x row 2

step 4 row 1 ---., row 1 - 2 x row 3, row 2 ---., row 2 - 2 x row 3.
and columns 2, 1 and 6 are the required unit columns.

Since the initial G is a generator matrix, its rows are independent. Hence
its first row must have a non-zero entry, so the algorithm can certainly
produce the column with 1 in its first place and zero elsewhere. By Exercise
42 the matrix produced at each stage also generates C so its rows remain
independent. Hence row 2 of the new matrix also has a non-zero entry, so
the algorithm can be applied again, ... and so on for all the rows. Finally
note that each time part (c) of the algorithm is applied, this has no effect on
columns already transformed to the required form because in these columns
only multiples of zero are added to their entries! 0

[Ex 43]

5.9 Erasure correction and syndromes

In seetion 2.3 we briefly mentioned the decoding of words with erasures.
Now we look more closely at this problem, first directing our attention to
channels which induce erasures but not errors.

Erasure correction and syndromes 93

Definition 5.8 A code of length n is called e-erasure decodable if for each
word r received with f (f::; e) erasures (but no other errors), there is a
unique codeword which agrees with r at the other n - f positions.

There is a simple connection between d(C) and the erasure decodability
of C, very similar to that between d(C) and the error detecting capability
of C given by Theorem 2.1.

Theorem 5.15 Cis e-erasure decodable if and only if d(C) :::: e + 1.

Proof.
(i) Suppose C is not e-erasure decodable. Then there exists a codeword

C and a set of f(f ::; e) of its positions with the following property
: c is transmitted, and is received with f of its symbols erased, and
there is a codeword c' distinct from c, which agrees with c at the
other n - f positions. Hence d(c, c') ::; f ::; e, so d(C) ::; e.

(ii) Conversely, suppose d(C) ::; e and let c, c' be distinct codewords
with d(c, c') = f ::; e. Then the word r which has these f symbols
erased but agrees with c at the other n - f positions clearly agrees
with c' at these positions, so C is not e-erasure decodable. 0

The decoding strategy for an erasure channel and a code with
d(C) > e and a received word r with f erasures is simply to decode to
a codeword c which agrees with r at the non-erased positions. If f ::; e
then by Theorem 5.15 cis unique. In cases where f > e there mayor may
not be a unique c (see examples 2 and 3 below). For a large arbitrary code
the scanning process could be very time-consuming, so let us see how using
a linear code can help.

First so me examples.

1. Let C be linear over Z5 with

H=[~ ~ : ~ ~]
and suppose the word r = x2304(x unknown) is received via an erasure
channe!. syn(r) = (3x + 3,0), and recall that r is a codeword if and only
if syn(r) = 0, so we have to solve (3x + 3, 0) = (0,0), or 3x + 3 == ° mod
5. From Chapter 3 we know this has a unique solution, which is easy to
spot in this case: x = 4. Hence we decode as 42304.

Note that d(C) = 2 because H has column 1 = 3 x column 4, so by
Theorem 5.15 we know C is 1-erasure decodable. It is not 2-erasure
decodable so there will be some instances of two erasures which are not
decodable uniquely.

2. Same C and H, r = x23y4, syn(r) = (3x + y + 3,0) = 0 if and only if
(x,y) = (0,2),(1,4),(2,1),(3,3) or (4,0).

3. Same C and H, r = xy112, syn(r) = (3x + 3y, 2y + 1) = 0 if and only
if (x, y) = (3,2).

94 The power of linearity

So in example 3 r could be decoded uniquely but in example 2 the best we
could do was to narrow the choice down to one of five possible transmitted
codewords. [Ex 44]

If you suspected that the different outcomes of examples 2 and 3 are
related to the fact that in example 2 the erasures were in a pair of positions
corresponding to adependent pair of columns of H, then your suspicion is
well-founded.

Theorem 5.16 A word received with e erasures (and no errors) is uniquely
decodable if and only if the corresponding columns of H are independent.

To prove this we need the following lemma from linear algebra.

Lemma 5.1 If x is an unknown vector, A is a known matrix and b is a
known vector, then the set of all solutions of xA = b is Xo + S where Xo
is any particular solution of this equation and S is the set of all solutions
of the equation xA = O. (The notation Xo + S is to be interpreted as for
cosets.)

Proof. Let y E Xo + S so y = Xo + s for some SES.
Then yA = xoA+sA = b+O = b, so all members of xo+S are solutions

of xA = b.
Conversely, let z be any solution of xA = b, so zA = b. Now z =

Xo + (z - xo) so (xo + (z - xo))A = b. But the left hand side of this is

xoA + (z - xo)A = b + (z - xo)A

so
z - xo)A = 0

and
z -Xo ES.

Hence
z E Xo + S. D

Proof of Theorem 5.16. Without loss of generality, and to make the
notation easier to handle, let the erasures be in the first e positions.

Let c = Cl C2 ... CeCe+! ... Cn be the transmitted codeword, which is re
ceived as ??.? Ce+l ... Cn . We take the received word to be r = 00···0
Ce+! ... Cn with errors in some or all of the first e positions and none in the
rest. This means that the error pattern x = Xl· .. XeO· . ·0, and finding x
is equivalent to finding c because

x = r - c = -Cl - C2 ... - CeO· .. O.

For each word w of length n we shall write w' for the word of length
e consisting of the first e components of w. By Theorem 5.10 syn(x)
syn(r).

Erasure correction and syndromes 95

That is, X' H'T = r HT where H' is the matrix consisting of the first e
columns of H. Since rand H are known, the right hand side is a known
word which we shall now call b. So identifying the erasures is now equivalent
to solving the system

xIH,T = b

This certainly has a solution x' = -c', so from the lemma, the set of all
solutions is -c' + S where S is the set of a11 solutions of x' H'T = 0, and
note that the left hand side of this is just a linear combination of the first
e columns of H. If the columns of H ' are independent this has only the
trivial solution 0' , in which case c' is the only possible vector of erasures. If
they are dependent, then there are more solutions, simply by the definition
of dependence, and the received word is not decodable uniquely. 0

[Ex 45,46]

Now suppose the channel induces both errors and erasures. First we
examine another example.

4. Same H as previous examples, r = 123x2. This time the syndrome is
(1 + x, 3) which can never be 0 so there must be at least one error. We
make the usual reasonable working assumption of only one error and try
to decode on this basis, aided by the fact that an error pattern eOOOO
will have a syndrome which is ex column 1 of H, and similarly for other
error patterns of weight 1. We try all possibilities for x.

x = 0 =? syn(r) = (13) which is not a multiple of a column of H
x = 1 =? syn(r) = (23) which is 4x column 2
x = 2 =? syn(r) = (33) which is 2x column 3
x = 3 =? syn(r) = (43) which is not a multiple of a column of H
x = 4 =? syn(r) = (03) which is 3x column 5

Hence there are just three possibilities consistent with a single error

c
or c
or c

12312
12322
12342

04000
00200
00003

13312
12122
12344

[Ex 47]

Notice that when we regard the codes of example 4 and Exercise 47 purely
as error correcting codes the former is O-error correcting (d is only 2) but
the latter has d = 3 so is 1-error correcting . It is curious then, that for
these particular instances of a single error combined with a single erasure,
the better pure error correcting code behaves worse than the poorer one in
terms of their ability to narrow down the range of possibilities. [Ex 48, 49]

Fina11y we return to the case of an arbitrary block code and find a neces
sary and sufficient condition for received words r with erasures and errors
to be correctly decoded. The job of the decoder is to fi11 in the erased po-

96 The power of linearity

sitions of r so that the resulting word r ' agrees with so me codeword C' at
the erased positions and from all the candidate pairs (r' , c') pick one say
(r*, c*) which minimizes d(r' , c'), and decode r to C*.

We define a code to be t/e-error/erasure decoding if for any received
word with at most terrors and at most e erasures, the result of the process
described above is the transmitted codeword and no other codeword.

Theorem 5.17 Cis t/e-error /erasure decoding if and only if d(C) ~ 2t +
e + 1.

Proof. Let C be a code which is not t/e-error/erasure decoding. Then
there is a codeword c = ala2 ... amam+1 '" an which is received as T, where
T =?? . . ?a~+l ... a~, and T is not uniquely decoded to c. T has m(::; e)
erasures and at most terrors in the non-erased positions. Assuming that
the m erasures are in the first m positions is a convenience which does not
affect the generality of the argument.

Then the fact that T is not uniquely decoded to c means that there must
be a pair of choices of words Tl and T2 agreeing with T at the non-erased
places, and another codeword C' = a~ ... a~, also differing from T in at most
t of the non-erased places, such that

Then d(c, c')

Hence d(C)

number of dis agreements in the first m places

+ number of disogreements in the rest

< m + d(am+1'" an, a~+1 ... a~)

< e + d(am+l ... an, a~+1 ... a~)

+ d(" '" I) am+l ... an' am+l ... an

(by the triangle inequality)

< e + t + t.
< e + 2t.

Conversely, suppose d(C) < 2t + e + 1. We show C is not t / e-error / erasure
decoding.

Let d(C) = d < 2t + e + 1, and let c, c' be codewords with d(c, c') = d.
For simplicity we take c and c' to differ in their first d places. Now suppose
c is sent and is received as r, a word having e' (::; e) erasures and t' (::; t)
errors in the non-erased positions. There are three cases:

(1) t ' > d;

(2) t ' ::; d < t ' + e' ;

(3) t ' + e' ::; d.

Exercises for Chapter 5 97

For these cases respectively, take the forms for r shown below with c and c'.

· an

· an

c = al

c' = bl

r = bl

r = bl

r = bl

ad ad+1

. bd ad+1

. bd Xd+l
. bt , ? . . ?? ?
. bt , ? . ? at'+e'+l . ad ad+1

. Xt', ? ? at'+e'+1 . an for case 1
? at'+e'+1 . an for case 2

· an for case 3

and in case 3 also choose t' and e' such that

t' - { ~
d+1

2

if dis even

if dis odd.

Let the re placements for the erasures be chosen to coincide with the c'
symbols, then in case (1) d(r, c') = t' - d but d(r, c) = t'; in case (2)
d(r, c') = 0; in case (3) d(r, c') = d - t' - e' and d(r, c) = t' + e'. In this
last case d(r, c) - d(r, c') = 2t' + 2e' - d. For d even this is d + 2e' - d :::: 0,
and for d odd it is d + 1 + 2e' - d > o. So in all cases there is an r which
nearest neighbour decoding would not uniquely decode to c.

5.10 Exercises for Chapter 5

1. For the field Z2 and u = 1011001, v = 1101010, a = 0, ß = 1 work
. out u + v, u - v, -u, av, ßv. For the field Z5 and u = 2033004, v =

1402041, a = 3, ß = 4 work out u - v and au + ßv.

2. Show that conditions (i), (ii) in Definition 5.2 are equivalent to the single
condition : for all c, c' in C and all a, ß in Zp, ac + ßc' E C.

3. Show that for a binary linear code condition (ii) in Definition 5.2. may
be omitted.

4. For any (not necessarily linear) code over Zp, show that d(Cl, C2) =

W(CI-C2)·

5. Which of the following binary codes are linear? Find their minimum dis
tances. {101, 111, Oll}, {OOO, 001, 010, Oll}, {OOOO, 0001, 1110}, {OOOOO,
11100,00111, 11011}, {OOOOO, 11110,01111, 10001}, {000000,101010,
010001, 111111}.

6. Show that in a linear binary code either the first bit of every codeword
is 0 or exactly half the codewords begin with o.

7. Let 8 be a non-empty set of words in Z;. Show that (8) is linear.

8. Find a non-zero word in Z~ orthogonal to 123142.

9. Show that every word of even weight in a binary code is orthogonal to
itself, and any two words of the same weight have even distance.

98 The power of linearity

10. Find SJ. and TJ. for S = {1202, 1111, 2000} s;:; zj and T = {10001,
00111,11000, 011IO} s;:; z~.

11. Show that SJ. is a linear code irrespective of whether S is linear or not.

12. Let {Cl, ... , Cm } be an independent set of words in Z; and let D:i, ßi (i =
1,2,···, m) be members of Zp. If 2:::: 1 D:iCi = 2::::1 ßiCi show that, for
all i, D:i = ßi.

13. Find the spans of the following sets of binary words

(i) {I010, 0101, 1111},

(ii) {0101,1010,1100},

(iii) {IOI0l, 00111, 01011, 11001}, and
(iv) the ternary words {lOlI, 0112}.

14. Find bases for the spans of the following sets:

(i) {1100, 1010, 0000, 1001, 0101} over Z2 and
(ii) {0140, 4322,1000,1234, 3410} over Zs.

Extend the second basis to a basis of zt.
15. Convince yourself that the claims made in (10) are correct.

16. If a linear code over Zp has dimension k, how many codewords does it
have? [Rint : Exercise 12 will help]

17. Prove result (11) of section 5.3. [Rint : use (9)]

18. Check that the method of encoding described here ensures that no pair
of distinct messages are encoded to the same codeword.

19. Spot a codeword of weight 3 in the example of section 5.4.

20. Check that if you choose any words x, y from the second and third rows
respectively, then C + 222 = C + x and C + 200 = C + Y (the only thing
which changes is the order in which the words of a row appear).

21. Prove that for any [n, k] code Cover Zp:

(i) all cosets have the same size;

(ii) C + x = C + Y if Y E C + x, and (C + x) n (C + y) = c/J if Y (j. C + x;
(iii) Every word of Z; is a member of so me coset;

(iv) x, y are in the same coset if and only if their difference is in C;
(v) there are pn-k distinct cosets.

22. The binary linear code C and the ternary linear code C' have generator
matrices

[
1 0 0
010
001

1 1 1 1 1
o 1

and [0121]
1 2 2 0

respectively. Construct a Slepian array for C and use it to decode 01100.
For C' list the codewords and state the number of cosets.

Exercises for Chapter 5 99

23. For C of Exercise 22 find a pair of words (c, r) such that d(c, r) = 1 and
if c is sent and r received, r is not correctly decoded. For C' explain
why every word of weight 1 must be a coset leader, and why there are
no coset leaders with weight greater than 1.

24. Let C be the set of all even weight words in Zz. Show that C is a linear
code. What is C.L? Find standard form generator matrices for C and for
C.L .

25. Show that in a binary linear code C all words have even weight or half
of them have even weight. If C has a generator matrix in wh ich all the
rows are of even weight show that the first of these holds.

26. Cb C2 are [nI, k, dd, [n2' k, d2] codes generated by GI, G2 respectively.
Gis the matrix [GI IG2] formed by writing G2 to the right of GI. If C
is the code generated by G what can you deduce ab out d(C)?

27. Let C + a be any coset of a binary linear code C. Show that C U (C + a)
is a linear code.

28. Describe the Hamming 8-bit code of Chapter 2 as S.L for a suitable set
of words S.

29. If C is a linear code prove that (C.L).L = C.

30. Show that any repetition code over Zp is linear and answer the question
of Exercise 28 for such a code.

31. Find a parity check matrix for the linear code Cover Z3 with a generator
matrix,

G=[; 1 1 ~] . 0 1

32. Find d(C) if C has the generator matrix

1 1 0 0
1 0 1 0
0 1 1 0

17 1 1 1 1
1 1 0 1
0 1 0 1
1 0 0 1

where 17 is the 7 x 7 identity matrix.

33. Show that if Cis a l-error-correcting linear binary code, then no co lu mn
of its p.c. matrix is 0 and no two columns are the same.

34. In the example under discussion show that no word of weight ~ 2 has
syndrome 1111. What does this tell you about the correctable errors?

35. Attempt to construct a parity check matrix for a [6,3,4] binary code,
and hence show that no such code can exist.

100 The power oj linearity

36. Find the minimum distances of the codes given by these parity check
matrices.

37.

38.

(a)

[~
(b)

(c)

(d)

001 000 1 101 1 0

1

01~ 1 010 1 011 100 1 1
o 1 001 000 1 1 1 0
10100 1 101 0 1

[~
[~

000 1 0 1 1 1
1 000 1 1 1

~ ~ ~ ~ i ~ ~ overZ2,

1 0 6 1 0
1 3 0 4 3
o 4 6 0 3

1 0 0 0 1
1 1 1 0 0
1 0 1 0 1

overZ31'

G~[J, l~~l
Given that G is a generator matrix for a perfect [7, 4, 3] binary code,
construct a syndrome table and use it to decode:

0000011,1111111,1100110

[1110]
2 0 1 1

is a generator matrix for a ternary code C. Find a parity check matrix
for C and use syndrome decoding to decode 2121, 1201 and 2222.

39. Suppose that instead of restricting the dass of permutations we restrict
instead what they act upon. Specifically, take an arbitrary symbol per
mutation 7r. From a code C generated by G define a new matrix G'
which is just G with the entries of the jth column, gij(i = 1,2,"', k)
replaced by 7r(gij), and define C' as the linear code generated by G'.

Exercises for Chapter 5 101

For

G = [i 0 ~] 1

over Z3 do

7r=(~ 1 ~) 1

at position 3 and show that C' is not equivalent to C. Note also that C'
is not the result of applying 7r to the 3rd position of C.

40. With the same notation as in Exercise 39, do 7r on position 2 of G and
show that things go even more drastically wrong.

41. Show by examples that in general both types of column operation pro
duce codes which differ from C.

42. Show that if G generates C and G' is the result of applying anyoperation
of type Rl, R2 or R3 to G, then G' also generates C.

43. Apply the algorithm to convert the following to nearly standard form

GI = 1 0 1 0 1 0 1 0 1 overZ2. [
111110011]

1 1 000 1 111

G, ~ [~ : ~ ~ : ~ ~ n OV"Z3

44. A ternary code has

[
212110] H= 1 1 2 1 0 1
o 1 0 2 0 0

Decode the received words lxyz12 and xyz21O.

45. Why can a linear code of length 10 and dimension 6 never uniquely
decode words with 5 erasures?

46. Two linear codes over Z5 have parity check matrices

[13124] [32
2 4 1 1 2 and 4 2

1 0
1 3 ~]

Which code is better with respect to 2-erasure decodability?

47. Do a similar analysis for

H=[~ ~ : ~ ~]
and r = x4423.

102 The power oj linearity

48. Show that the binary code with

H=[~ ~ ~ ~ ~ ~l
o 1 1 0 0 1

will determine the transmitted word uniquely, on the assumption of at
most one error, if r = 10110x. Demonstrate this result directly by using
the list of codewords.

49. Decode the received ternary words lx20yl, 21xyll for a code with

H=[~ ~ ~ ~ ~ ~l.
o 1 0 2 0 0

6

The Hamming family and
friends

6.1 Introduction

This chapter, like the previous one, mainly explores further consequences
of linearity. The Hamming codes we met in Chapter 2 are but two members
of a family of codes, all with pleasant useful properties, and as we shall see,
other important codes can be constructed from the Hamming family. These
other codes also appear at the ends of totally different lines of argument,
but that is one of the delights of coding theory - the variety of interesting
routes from A to B.

6.2 Hamming codes

These are most conveniently defined by their parity check matrices, and
designed, using Theorem 5.12, to be one-error correcting. The Hamming
codes form a 2-parameter family which we now define.

Definition 6.1 Ham(r,q) is the set of all linear [n,k] codes over Zq whose
p.c. matrices H have r rows and n columns, where n is the greatest possible
number of columns consistent with the condition that no pair of columns
are dependent.

This definition implies k = n - r, but what is n? The next theorem
answers this and also provides a method of constructing a suitable H.

Theorem 6.1 All codes in Ham(r,q) have length

qr _ 1
n=---

q-1

Proof. The condition on the columns in the definition above is equivalent
to saying that no column is a multiple of any other. For each non-zero r
tuple u, let m(u) be the set of all its non-zero multiples, so m(u) has q-1
members. There are qr -1 non-zero r-tuples in all. Now suppose m(u) and

104 The Hamming family and friends

m(v) have a member in common, say x, and let a be any member of m(u).
Then a = au and x = ßu = ,v for some non-zero a, ß", and

a = aß-lx = aß-I,v E m(v)

So m(u) ~ m(v), and by an identical argument m(v) ~ m(u), so m(u) =
m(v). This means that if m(u) and m(v) are not identical they are totally
disjoint, so that the distinct m(u)s partition the set of qr - 1 non-zero
r-tuples into subsets, each of size q - 1. Hencc there are q;~/ subsets, with
the property that if we select one member from each subset, and make the
selected members the columns of H, then H will have no pair of dependent
columns. This is the best we can do because any H with more than this
number of columns must have a pair of columns from the same subset, and
these will be dependent. 0

[Ex 1J

For large codes, doing the partition described above is not feasible, but
there are ways of selecting the columns of H without doing this. One way
is to select all those non-zero r-tuples whose first non-zero symbol is 1.
Exercise 2 asks you to show that this works. [Ex 2J

Theorem 6.2 For given r,q, all codes of Ham(r,q) are linearly equivalent.

Proof. Let H be any p.c. matrix of any code in Ham(r,q). We know from
the proof of the previous theorem that the columns of H must be a selection
of one from each of the sets m(u), and any pair from a fixed m(u) are
multiples of each other. So whichever selection is made it can be converted
to any other by multiplying each column by the appropriate constant. 0

[Ex 3]

By the way Ham(r,q) was constructed we know that all its codes have a
minimum distance of at least of 3. In fact it is exactly 3.

Theorem 6.3 All Hamming codes have a minimum distance of 3.

Proof. Let H be a p.c. matrix for C E Ham(r,q). The three columns of H
whose existence was established in Exercise 3 are dependent since

a-Icx + b-Icy + (-l)z = 0

Then Theorem 5.12 gives the stated result and establishes that all Ham
ming codes are 1-error-correcting. 0

Theorem 6.4 All Hamming codes are perfect.

Proof. We know now that for C E Ham(r,q), C is an [n,k,d] code where
d = 3,

qr -1
n=--

q-1

qr -1
and k= -- -r.

q-1

Decoding Ham(r,q) 105

Checking the Hamming bound:

1+n(q-1)

o

6.3 Decoding Ham(r,q)

Syndrome decoding is easy, and it can be made easier by taking the columns
of H to be those suggested immediately after the proof of Theorem 6.1
and then, regarding each column (ala2 ... ar)T as representing the base q
number alqr-l + a2qr-2 + ... +ar, ordering the columns in increasing order
of these numbers. We illustrate for Ham(3,5).

The H specified above is

[
0 0 0 0 0 0 1
0111110000011111222223333344444
1012340123401234012340123401234

Now each non-zero syndrome will be a multiple of one column of H. For
example, if the received word r has syndrome 341, this is 3 x 132 and 132
is the 24th column of H, so we simply subtract 3 from the 24th symbol of r
to obtain the decoded word. The numerical ordering of the columns makes
it easier to locate the column (132)T in H, just as alphabetical ordering
makes it easier to find a word in a dictionary!

For binary Hamming codes the process is still easier because any distinct
pair of non-zero columns are independent so a p.C. matrix for Ham(r,2)
must consist of all the non-zero binary strings of length r, and if ordered
as described above the decoding process is: calculate syn(r); calculate the
number i represented by syn(r) in binary; if i = 0 assurne there is no error,
and if not change the i th bit of r to obtain the decoded word. [Ex 4-6]

6.4 Simplex codes

Temporarily forgetting about codes, consider ordinary Euclidean space and
the problem of finding sets of points with the property that every pair of
points in the set are separated by the same distance. Solutions are not
very numerous: in two dimensions the only possibilities are a single pair of
points or three points sitting at the vertices of an equilateral triangle; going
to three dimensions only gives the extra solution of the fOUf vertices of a
regular tetrahedron. Hamming space is more interesting: one way of gen
erating an equidistant set of words is strongly related to Hamming codes.
First look again at the suggested solution to Exercise 6. You should find
that whichever row operation you used you ended up with an H matrix all
of whose rows have weight 4. Furthermore, all linear combinations of rows

106 The Hamming family and friends

of H, except 0, have weight 4. From this it follows that the dual of this
Hamming code is an equidistant code. These facts are proved and set in a
more general context in the following two theorems.

Theorem 6.5 In any linear code the distribution of codeword weights is
identical to the distance distribution.

Proof. Let linear code C have M codewords and let Aw be the number
of codewords of weight w. There are M 2 ordered pairs of codewords. Let C

be any codeword of weight wand let C = {Cl, C2, ... , CM}. Then (Cl, Cl -

c), (C2, C2 - C), ... , (CM, CM - c) are M distinct ordered pairs of codewords
each with d(Ci' Ci - c) = w. Hence C has Aw codewords of weight w if and
only if C has MAw ordered pairs of codewords separated by distance w.

o

Definition 6.2 The dual of any Hamming code is called a simplex code.

Theorem 6.6 All simplex codes are equidistant codes.

Proof. Let C E Ham(r,q) and let H be any one ofits p.c. matrices. Then H
generates CJ. and CJ. has M = qr codewords. Of the M 2 ordered pairs of
codewords, M of them clearly have distance zero, and we have to show that
the remaining M 2 - M pairs have the same non-zero separation. Because
of Theorem 6.5 this is equivalent to showing that the M - 1 non-zero words
of CJ. have the same weight, which we prove is qr-l. By Theorem 6.2 it
suffices to consider any one of the equivalent codes in Ham(r,q).

Now suppose CJ. has a codeword of weight > qr-l, and choose a genera
tor matrix G for CJ. in wh ich this word is the first row. For those columns
of Gwhich start with a non-zero symbol, multiply these columns by the
inverse of their first members so that the resulting matrix G' generates
a code equivalent to CJ., in which more than qr-l columns start with l.
There are only qr-l distinct ways of filling in the remaining entries of these
columns, so they must include a repeated pair. Such a pair is of course
dependent, which contradicts, via Theorems 5.9 and 5.12 the fact that C
is one-error correcting.

If CJ. were to have a non-zero codeword of weight < qr-l a similar
contradiction would be obtained by taking a generator for CJ. in which
this word was the first row and then considering these columns (more than
qr-l of them) which start with zero. 0

[Ex 7,8]

We have seen ex am pies of codes which are perfect and codes which are
maximum distance separable (those which respectively meet the Hamming
and Singleton bounds precisely). What about codes which meet the Plotkin
bound? These codes exist but do not have a special name. But they do have
a nice symmetry property:

Optimal linear codes 107

Theorem 6.7 A binary code C satisfies the Plotkin bound if and only if
it satisfies:

(i) C is equidistant, and
(ii) in each position exactly half the codewords have a o.

Proof. Let C satisfy (i) and (ii). Then by (i) the inequality 8 2: (M2 - M)d
in the proof of Theorem 4.14 becomes equality:

8 = (M 2 - M)d.

In the same proof, Zk becomes the constant Af by virtue of (ii) so

nM2

8=-2-·

From these two equations it follows that

M=~.
2d-n

Conversely, if C is a code satisfying

M=~
2d-n

it follows that

so the inequalities
nM2

(M 2 - M)d < 8 < -- - 2
from the proof of Theorem 4.14 become equalities, and from the argument
used to obtain the inequalities, this can only be the case if (i) and (ii)
~d. 0

[Ex 9]

6.5 Optimal linear codes

Note that by Theorem 5.4 or Exercise 6 of Chapter 5, the second condition
of the previous theorem is almost redundant if we restrict ourselves to linear
codes. We then have the following result.

Theorem 6.8 A linear binary code satisfies the Plotkin bound if and
only if it is equidistant and there is no all-zero column in its generator
matrix. 0

The only lower bound we consider is Gilbert-Varshamov, but there is a
problem if we try to apply the version proved in Chapter 4 to linear codes.
Recall that this bound tells us that for given q, n, d there is a code with
size at least that given by the G-V bound. But is there a linear code of at
least that size? The next result answers that question.

108 The Hamming family and /riends

Theorem 6.9 The linear Gilbert-Varshamov bound.

For any n, d and prime q there is a linear code with these parameters
and size

qn
M ~ d-l n .

Ei=O C)(q - 1)'

Proof. We sequentially select words of Z; to be codewords of the required
code as follows. First, select c, with W(CI) ~ d. If spheres of radius d - 1
centred on the words in < Cl > do not cover Z; select C2 as one of the words
not covered. If spheres of radius d - 1 cent red on the words in < Cl, C2 >

do not cover Z; select C3 as one of the words not covered ... and so on ...
until Z; is covered. If Ck is the last word to be selected we claim that the
linear code< Cl! C2,···, Ck > has minimum distance ~ d and a size which
satisfies the inequality given by the theorem.

The size claim is proved by exactly the same argument as in the previous
version of the G-V bound. To show that the distance is at least d we use
induction.

Our induction hypothesis is that für some i ~ 1, d(< Cl, ... ,Ci » ~ d.
This is clearly true of i = 1 because C has at least d non-zero symbols, so
the same is true of all the non-zero multiples of Cl.

For the inductive step, let C, C' be < Cl!···, Ci >, < Cl!···, CHI>

respectively. Let c' be any word of C' so that c' = C + aCi+1 for some
CE C and some a E Zp. If a = 0 then w(c/) = w(c) ~ d by the induction
hypothesis and the fact that C is linear. If a -=I- 0 then we have w(c/) =
w(c + aCHt} = w(-a-Ic - CHI) (since multiplying a word by the non
zero constant _a- l does not change its weight) = d(-a-Ic, Ci+1) ~ d by
construction. This completes the induction so < Cl. ... ,Ck > has distance
~ d as claimed. 0

[Ex 10,11]

One of the most important properties of Ham(r, q) is the perfection of
all its codes. So what other perfect linear codes exist? Our first answer
reinforces the view that Hamming codes are rather special.

Theorem 6.10 The only non-trivial linear perfect one-error correcting
codes are the Hamming codes.

Proof. Let C be perfect, linear, one-error correcting, with alphabet Zq for
some prime q, having M codewords. Then

I

M = qn/~(~)(q-1)i=qn/1 -n+ qn (1)

=? qn = M(l - n + qn) (2)
=? Mlqn
=? M = q1withO ::; l ::; n

Optimal linear codes 109

In fact l = 0 can be ruled out because this would reduce C to a code
which is trivial in the sense of only having one codeword, and the other
extreme, l = n would make C = Z~ which has d(C) = 1 so C would not
be 1-error correcting. Hence

M = ql for 0 < l < n

Returning to equation (2), this says after rearrangement that

n = (qn-l - l)/(q - 1)

(3)

(4)

o

From (3) dim(C) = l so dim(C.l) = n - l. So any p.c. matrix for C
will have n - l rows and n columns with n given by (4). But from the
proof of Theorem 6.1 this n is precisely the maximal number of columns of
length n - I with no pair of columns dependent. Hence, by definition C is
a Hamming code.

Moving on to 2-error correcting linear codes, the condition for perfection
of binary codes of dimension k is

M=2 k =2n /(1+n+(~)) =2n +l/(2+n+n2).

so 2 + n + n2 must be apower of 2. It was shown in 1930 that n =
1, 2, 5 and 90 are the only positive integers for which this is true. Note
that for 2-error correction we require d ~ 5 (and therefore n ~ 5), so
the first two solutions can be ruled out. For n = 5, M = 2, so the code
must be equivalent to a repetition code. (Exercise 12 below). We regard
repetition codes as trivial, not in the sense of 'beneath contempt' - they
have their uses - but because there is nothing of much interest to say about
them! More sophisticated combinatorial arguments (using ideas from design
theory) rule out n = 90. A more recent result due to Tietäväinen settles
that there is no future in widening the search to q > 3. But for q = 3 there
is a positive result. The perfection condition becomes M = 3n / (1 + 2n2),

so 1 + 2n2 must be apower of 3. n = 11 is a solution, and this leads to
M = 729. So q = 3, d = 5, n = 11, M = 729 is a set of parameters which
would give a perfect code if a code with these parameters exists. M. Golay
constructed such a code, now named after hirn, and it is now known that
any other code with these parameters is equivalent to Golay's code. Golay's
code is also linear.

Work by Tietäväinen, Pless, Deisarte and Goethals up to 1975 shows
just how rare perfect codes are. A summary is:

The only perfect codes with alphabet size wh ich is prime or apower of
a prime are equivalent to

(i) binary repetition codes of odd length,

(ii) Z~,

HO The Hamming family and friends

(iii) all codes of the families Ham(r, q),
(iv) the Golay ternary [11,6, 5J code discussed above,

(v) the Golay binary [23,12, 7J code. [Ex 12,13J

We have previously justified calling (i) a dass of trivial codes, and it
is even more justifiable to dismiss (ii) in the same way since these code
are 'no-error detecting' and 'no-error correcting'! (v) is stillleft to discuss.
Before doing this the reference to prime power alphabets needs some ex
planation. In this book our discussions of linear codes have always assumed
that the set of alphabet symbols is Zq where q is prime. What is essential
is that the alphabet should be a field and it can be shown that fields of
(finite) size q exist if and only if q = pn where p is any prime and n 2: 1.
We have effectively limited ourselves to n = 1. This reduces the range of
useful codes we can talk about, and limits the scope of the theory acces
sible to us, but does not seriously prevent you from appreciating many of
the fundamental ideas of the subject, which is this book's aim. The ram
ifications of finite field theory in co ding would fill at least another book.
The next sensible step if you intend using this book as. a stepping stone
to furt her coding theory would be to learn something about finite fields.
The other major mathematical underpinning which does not appear in this
book is design theory and finite geometry, especially if you are interested
in the combinatorial aspects of coding. See the bibliography for suggestions
[14], [15J.

SO back to item (v) in our list of perfect codes. Binary perfect codes wh ich
are 3-error correcting have d = 7 (and hence n ~ 7), and the perfection
condition when simplified re duces to

M = 3 x 2n +1/(n + 1)(n2 - n + 6).

Hence (n+ 1)(n2 -n+6)13.2n +l. 3 and 2 are prime, so by the fundamental
theorem of arithmetic one of these three cases must hold:

1. n + 1 = 2a , n2 - n + 6 = 2b ;

2. n + 1 = 2a .3, n2 - n + 6 = 2b ;

3. n + 1 = 2a , n2 - n + 6 = 3.2b;

and in all three cases a + b ::; n + 1 and n 2: 7. Case 1 gives (2 a - 1)2 -
(2 a - 1) + 6 = 2b so

22a _ 2a+l _ 2a + 8 = 2b (1)

Also, for n 2: 7, n + 1 < n2 - n + 6 so a < band a 2: 3. From (1)
22a - 3 - 2a - 2 - 2a - 3 + 1 = 2b- 3 . This is impossible because for a > 3 the
left hand side is odd and the right is even, and for a = 3 the left is 6 which
is not apower of 2. Case 2 leads by a similar argument to

9.2a - 3.2a +1 - 3.2a + 8 = 2b (2)

with a 2: 2, b 2: 6, a < b.

Optimal linear codes 111

8
Dividing (2) by 2a , 9(2a - 1) + 2a = 2b- a , and since 2b- a is an integer,

this equation cannot be satisfied unless a = 2 or 3.
For a = 2 it becomes 29 = 2b- 2 wh ich is clearly false, and for a = 3 it

is 64 = 2b- 3 so b must be 9. In this case you can check that n = 23, d = 7
and M = 1212 . Golay found a code with these parameters. It is also linear,
and since Golay's construction of a generator matrix for it many methods
have been discovered for arriving at this important code. We shall see one
later in this chapter.

Case 3 leads to

(3)

with a ~ 3, b ~ 4, a < b.
So the only hope of satisfying (3) is with a = 3, then we get b = 4. This

gives n = 7, M = 2, d = 7, so we just have a repetition code.
Nothing much is known about the existence of perfect codes whose al

phabet size is not a prime power.
We turn now to an upper bound specifically for linear codes. To set

the scene consider (n, M, d) binary codes which by the Singleton bound
must satisfy M :s: 2n - d+l . For linear codes this becomes 2k :s: 2n - d+1, or
equivalently k :s: n - d + 1. We can rearrange this upper bound on k to give
the equivalent lower bound on n, n ~ k + d - 1. Our next bound provides
(usually) an improvement on this, and it involves the idea of the residual
code of a linear code.

Definition 6.3 Let C be an [n, k] binary code with k ~ 2 and let c be any
non-zero codeword of weight w < n. Choose a generator matrix G whose
first row is c with 1', 2' , ... (n - w)' being the positions of its zero bits, and
the rows T2, T3, ... , Tk are rilri2 ... rin for i = 2,3, ... k respectively. Then
the residual code Res(C, c) is the linear code of length n - w spanned by
the words ril'ri2' ... ri(n-w), for i = 2,3, ... k.

Clearly we may do a positional permutation of G to move positions
1',2',··· (n - w)' to positions 1,2,··· (n - w) respectively, and this has no
effect on Res (C, c). For convenience we shall always do this. [Ex 14-17]

Now we specialize a little, by choosing row 1 of G to have weight d =
d(C), so

[
~n-d~

G = 00···0
GI

~d~l
11·· ·1

G2

Theorem 6.11 If Cis an [n, k, d] binary code with generator matrix G of
the form above, then Res C has length n - d, dimension k -1 and minimum

d
distance d' ~ r 2"1. (For any real number x r xl, sometimes called the ceiling

function, is the smallest integer not less than x.)

112 The Hamming family and friends

Proof. The length claim is evident from the definition. Proving that
dim(ResC) = k - 1 amounts to showing that the k - 1 rows of Cl are
independent. Suppose not. Then there is a non-trivial linear combination
of them equal to o. The corresponding combination of rows of C is a code
word of C, so cannot be the zero word of C. Hence it has some ls in its last
d places, but since d is the minimal non-zero weight of C it must have ls in
all these positions, which makes it identical to row 1 of G. Hence we have
row 1 of C equal to a linear combination of the other rows of C, which is
impossible since the rows of G are independent (being a basis of C).

Now for d(Res C): let u be any non-zero word of Res C. It makes
up the first n - d bits of a codeword ulv of C. [If u = UI U2 ... Ur and
V = VIV2'" V s we use ulv as shorthand for the word UIU2'" UrVIV2'" vs .]

Clearly w(ulv) = w(u) + w(v) and since ulv is a non-zero word of C its
weight is at least d, and since it is distinct from row 1 its distance from
this row is at least d.

The first of these facts implies w(u)+w(v) ::::: d, and the second thatw(u)+
(d - w(v)) ::::: d.

Adding these we obtain 2w(u) ::::: d, and since w(u) is an integer we have

w(u) ::::: r~l as required. D

[Ex 18]

Theorem 6.12 The Griesmer bound for binary linear codes.
Let n * (k, d) denote the length of the shortest binary linear code with

dimension k and minimum distance d. Then

k-l

n*(k, d) ::::: 2:)~ 1
i=O

Proof. Using n(C) to denote the length of the code C, the result of The
orem 6.5.4 for an [n*(k, d), k, d] code C is that

n*(k, d) d + n(Res C) (1)
dim(Res C) k-1 (2)

d(Res C) > r~l (3)
2

From (1) and (2) it follows that
n*(k, d) > d + n*(k -l,d(Res C)) (4)

and clearly n* is a non-decreasing function of d for fixed k, so from (3)
d

relation (4) above implies n*(k, d) ::::: d + n*(k - 1, r 21), which we can

Optimal linear codes

apply repeatedly (with the aid of Exercise 17) to obtain

n * (k, d) > d + 1 ~ 1 + n * (k - 2, 1 ~ 1)

> d + 1~1 + 1~1 + n* (k - 3, '~l)

~ d + d d d *(d) 121 + 1"41 + ... + 12k- 21 + n 1, r 2k - 1 1

113

Now it is clear that n*(l,d) = d for any d, because for a binary linear
code of dimension 1 the only non-zero word must have weight d, so the
shortest code possible has length d. So the last term in the sum above is

r 2k~1 1, which gives us the required result. 0

For some parameters the Griesmer bound is stronger than the Hamming
bound, and for cases in which the Plotkin bound is applicable it can be
stronger than the Plotkin bound too. For example, for binary codes of
length 20 and distance 9 the Hamming bound gives M :::; 169. If we are
seeking a linear code with these parameters M must be apower of 2, so
M :::; 128 = 27 , so k :::; 7. But is k = 7 achievable? Applying the Griesmer
bound we have

n*(7,9)
9 9 9 9 9 9

> 9 + r 21 + 1"41 + r 8"1 + r 16 1 + r 32 1 + r 641
9+5+3+2+1+1+1
22

Hence there is no binary [20,7,9] code. 1s there a [20,6,9] binary code?
We have seen that the Hamming bound does not rule this out, so we try
the Griesmer bound. From the calculation above it is clear that this yields
n*(6,9) :::::: 21 and n*(5, 9) :::::: 20.

So, to summarize, the Hamming bound gives k :::; 7 but the Griesmer
bound strengthens this to k :::; 5. [Ex 19]

The binary simplex codes provide examples of codes which are optimal
by virtue of having the maximum possible length:

Theorem 6.13 All binary simplex codes meet the Griesmer bound.

Proof. Let C be the simplex code dual to Ham(r, 2). Then 2r - 1, 2r - 1

and rare its length, minimum distance and dimension respectively, so

r-l r d 1 r-l

~ 12i = ~ 2r - 1- i = 2r - 1

o

114 The Hamming family and friends

6.6 More on the structure of Hamming codes

There is clearly a codeword of every linear code C which is also a member
of Cl- , namely O. If every codeword of C has this property, so that C ~ Cl- ,
then C is called a self-orthogonal code. There are non-trivial self-orthogonal
codes and the next theorems and exercises help to identify and construct
some.

Theorem 6.14 The binary linear code C is self-orthogonal if and only if
each generator matrix of C has all its rows of even weight and every pair
of rows orthogonal.

Proof. Let G be a k x n generator matrix with the stated properties and
let c be any codeword, so that

k

C = L)..iri
i=1

where ri is the ith row of G. Then

k

c.rj = L)..i(ri.rj) =)..j(rj.rj) = 0
i=1

since w(r) is even (see Exercise 9 of Chapter 5). So c is orthogonal to each
row of G, and hence to every codeword of C. That is cE Cl- so C ~ Cl-.

Conversely, suppose C ~ Cl-. Then rj.rj = 0, wh ich implies that rj
must have even weight. Secondly, if ri, rj are any two rows of G then
ri E C,rj E C and hence rj E CJ.., so ri.rj = O. D

[Ex 20]

The previous theorem has the following natural variation for codes over
Z3'

Theorem 6.15 The ternary code C is self-orthogonal if and only if each
generator matrix of C has all its row-weights equal to a multiple of 3 and
every pair of rows orthogonal.

Proof. Let G be a generator matrix with the stated properties and let r
be any row of G. Now r.r is a sum of w(r) non-zero terms each of which
is 1 since 12 == 22 == 1 mod 3. So r.r = 0 if and only if w(r) == 0 mod 3.
The rest of the proof is identical to the binary case. D

[Ex 21]

In spite of Exercise 21 it is possible to generalize these theorems to cover
all p by the somewhat weaker result:

Theorem 6.16 The linear code Cover Zp is self-orthogonal if and only if
each generator matrix has all its rows satisfying ri.ri = 0 and ri.rj = O.

MOTe on the structure of Hamming codes 115

Proof. Obvious from the proof of Theorem 6.14. o

The result of Exercise 20 can also be generalized to p = 3:

Theorem 6.17 All ternary simplex codes of dimension k ~ 2 are self
orthogonal.

Proof. Let Tk be the matrix whose columns are all the ternary strings of
length k and let Bk be a parity check matrix of the code Ck E Ham(k,3)
defined by the construction of section 6.2. Then Bk is a generator matrix
for a ternary simplex code bf dimension k. Bk has the form:

[
11 ... 100 ... 0]

Tk-l Bk- 1

(1)

1
in which row 1 consists of 3k - 1 ones followed by 2 (3 k - 1 - 1) zeros. By

the proof ofTheorem 6.6 all rows of Bk have weight 3k- 1 which is a multiple
of 3 since k ;::: 2.

Now we show that the rows of Bk satisfy the other condition of Theorem
6.15 and we do this by induction on k.

B2 is [~ ~ ~ ~], from which it is easy to check that (row 1. row 2)

= 0. Now assurne that it holds for all dimensions from 2 to k - l(k ;::: 3),
and consider Bk. Note that by symmetry each row of T k- 1 consists of 3k - 2

occurrences of each of 0, 1 and 2, (2)
and that each pair of distinct rows of Tk-l contains 3k- 3 occurrences of
each of the nine symbol pairs

From (1)

000 1 1 1 222
0, 1, 2, 0, 1, 2, 0, 1, 2.

(row 1. row i) (i =f. 1)
:= sum of symbols in row i of Tk-l

= 3k - 2 (1 + 2)
:= ° mod 3

(3)

by (2)

and from (1) (row i. row j) (1 < i < j)

= (row i. row j) of Tk-l + (row i. row j) of Bk-l

= 3k - 3 (1.1 + 1.2 + 2.1 + 2.2) + °
by (3) and the induction hypothesis

= 3k - 1

:= ° mod 3.

This completes the inductive proof that ternary simplex codes with gen-

116 The Hamming family and friends

erator matrices of the form (1) are self-orthogonal, but there are of course
other ternary simplex codes - those with generator matrices whose columns
do not all have 1 as their first non-zero entries. This hole is easy to plug
since, by the construction given in the proof of Theorem 6.1, any of these
more general generator matrices will be the result of taking one of the
simpler matrices and multiplying some of its columns by 2. This will not
change the weight of any row, nor will it change the dot product of any
two rows since each pair of symbols in Z3, when doubled, becomes a pair
with the same product modulo 3. 0

The idea at the end of the previous proof gives a hint that there is another
respect in which Z2 and Z3 are rather special alphabets:

Theorem 6.18 Self-orthogonality for codes over Z2 and Z3 is an equivalence
invariant property. That is, if C is a self-orthogonal binary or ternary linear
code and C is equivalent to C', then C' is self-orthogonal.

Proof. Let G be any generator matrix for C. Then G has the properties
given by Theorem 6.16, and doing row operations R1, R2, R3 and column
operation Clon G clearly will not change this. Column operation C2 does
not hing in the binary case, and for ternary codes will only double some
of the columns. In this case the remark above makes it clear that the
orthogonality of the rows is preserved. 0

[Ex 22]

If we have a self-orthogonal [n, k] code C whose dimension is half its
n

length then we have C ~ C..L and dirn C = dimC..L = "2' from which it

follows (item l1(b) of section 5.3) that C = C..L. Such codes are called
self-dual codes. Clearly no binary Hamming code can be self-dual because
their lengths are odd. [Ex 23]

If however we extend the 7-bit binary Hamming code by adding an overall
parity check bit as in Chapter 2, then the extended code C has p.c. matrix

[1

o 1
1 0
1 1
1 1

1 1 000]
10100
o 0 0 1 0 .
11111

This is a generator matrix for C..L so C..L has length 8 and dimension
4, and it is easy to check that this matrix satisfies the conditions to gen
erate a self-orthogonal code. Hence C..L is self-dual so C..L = (C..L)..L = C.

[Ex 24,25]

Unfortunately this result does not extend to the larger binary Hamming
codes. But their duals are important codes: they provide one way of defin
ing the first order Reed-Muller codes, and in Chapter 9 we discuss two
further methods of constructing them.

The cyclic property of Hamming codes 117

6.7 The cyclic property of Hamming codes

We shall have much more to say about cyclic codes in Chapter 8, but
for the moment we just draw your attention to a nice cyclic symmetry
of some Hamming codes. This cyclic property is then used to construct
the binary [23, 12,7] Golay code. The apparently arbitrary first step will
appear in a more natural light in Chapter 8. For the method I am indebted
to Pretzel [16].

Consider the code C in Ham(3, 2) given by the p.c. matrix

[
1011100]

H= 0 1 0 1 1 1 0
o 0 1 0 1 1 1

From this we obtain a complete list of the sixteen codewords displayed
below. Alongside each word of C we have written the word obtained by
writing its bits in reverse order, and the code D is this set of reversals.

P

Q

R

s

C
0000000

1 1 0 1 000
o 1 101 0 0
0011010
000 1 1 0 1
1 000 1 1 0
o 1 000 1 1
1 0 1 000 1

o 0 1 0 1 1 1
1001011
1 100 1 0 1
1 1 100 1 0
011 100 1
101 1 100
0101110

1111111

D
o 0 0 0 0 0 0

000 1 0 1 1
o 0 1 0 1 1 0
o 1 0 1 100
101 1 000
o 1 100 0 1
1 1 000 1 0
100 0 1 0 1

1 1 101 0 0
1 1 0 100 1
1 0 1 001 1
o 1 001 1 1
1001110
001 1 101
o 1 110 1 0

1 1 111 1 1

The sixteen codewords of C and D have been written in blocks P, Q, R,
S containing respectively the words of weights 0, 3, 4 and 7. The order
of the words in blocks Q and R of C have the property that each word
is the result of moving the right hand bit of the previous word to the left
hand end, so D also has this cyclic property but in the opposite direction.
Another symmetry of both codes is that each word of R is the complement

118 The Hamming family and friends

of the corresponding word in Q. Finally, codes C and D only have the
words of weights 0 and 7 in common. [Ex 26]

This implies that C (and hence D) are cyclic codes. That is, for each
codeword ala2··· an, anala2··· an-l is also a codeword. Also C and D
have the property that the complement of each codeword is a codeword.

If we now extend both C and D to C', D', by adding an overall parity
check bit to each word, thus making every word of even weight, we shall
have two linear codes whose weights are all 0,4 or 8, having only the words
of weight 0 and 8 in common.

Using C' and D' we construct words of length 24 as folIows: the first 8
bits are a + x where a E C', x E D'; the next 8 are b + x where b E C';
and the last 8 are a + b + x. Let the code E' be the set of all such words,
so in the notation introduced at the end of section 4.6,

E' = {a + xlb + xla + b + x : a E C', bE C',x E D'}

[Ex 27]

So E' is a linear code of dimension 12. The next exercises set up what
we need to prove E' has a minimum distance of 8. [Ex 28, 29]

From the form given for E' we can write any of its codewords as the sum
e = alOla + 0lblb + xix Ix, so by the result of Exercise 28,

w(e) = w(aIOla) + w(Olblb) + w(xlxlx) - 2w((aIOla) 8 (Olblb))

-2w((aIOla) 8 (xixix)) - 2w((Olblb) 8 (xixix))

+4w(((aIOla) 0 (xixix)) 0 ((Olblb) 0 (xix Ix)))
2w(a) + 2w(b) + 3w(x) - 2w(a 0 b) - 4w(a 8 x) - 4w(b 0 x)

+4w((a 0 xlOla 8 x) 8 (Olb 0 xlb 8 x))

Nowa, b, x all have weights divisible by 4, and by Exercise 29 w(a0b)
is even, so all terms in the sum above are multiples of 4. There is a word
of weight 8 in E' - for example take a = x = 11111111 and b = 11010001,
so it just remains to show there is no word of weight 4. Aiming for a
contradiction, suppose e = a + xlb + xla + b + x is such a word. Now
a, b, x all have even weight so it follows from the 'w(x + y)' formula that
a + x, b + x and a + b + x are all even weight. Since their total weight
is supposedly 4, at least one of them has zero weight, so x = a or b or
a + b. That is x E C', so by linearity all of a + x, b + x, a + b + x are in
C', so they all have weight zero or at least 4. Hence exactly two of them
have weight 0 and the other has weight 4. This implies that exactly two of
a, b, a + bare equal to x and the third is 0. We have shown x E C' n D'
so x is ° or 11111111, and e = 0IOlx or OlxlO or xIOIO, all of which have
weight 0 or 8, so the proof is complete.

Since E' is an even weight code (with d = 8) it can be regarded as an
extension of a code E of length 23. E has minimum weight 7 since we have

Weight distributions 119

al ready seen an example of a codeword of E' with 1 as its last bit. So E
has the parameters of the binary Golay code, and by the remark in section
6.5, E is equivalent to this code.

There is a neat connection between cyclicity and duality:

Theorem 6.19 if C is cyclic then so is C~.

Proof. Let C be a cyclic [n, kJ code. Let c be any codeword and ct its
tth cyclic shift; that is, if c = Cl C2'" Cn then c t = Cn-t+1Cn-t+2'" Cn C1C2

... Cn-t. Note that is is immediate from the definition of a cyclic code that if
cE C, then c t E C for all t. We show that h l E C~ whenever h E C~ thus
proving the cyclicity of C~ .

Hence

hnCl + h l C2 + ... + hn-lcn

h l c2 + ... + hn-lcn + hnCl

h· cn - l = 0 because h E C~ and cn - l E C
h l E C~ as required.

o

Unfortunately cyclicity is not equivalence invariant. (Note that we had
to exercise so me care in choosing a member of Ham(3,2) which is cyclic.)
So the quest ion arises: for which rand q does Ham(r, q) have a cyclic rep
resentation? The quest ion is important because cyclic codes have hardware
and software implementation advantages over non-cyclic codes. [Ex 30J

The answer is that Ham(r,2) has a cyclic representative for all r, as do
the non-binary ones with gcd(r, q - 1) = 1, but the proof of this requires
algebraic machinery beyond the scope of this book. Combining the result
with Theorem 6.19 we obtain the corollary that all binary simplex codes
have cyclic representatives.

6.8 Weight distributions

We have mentioned several times that minimum distance is not a particu
larly precise measure of a code's overall performance in processing errors.
To illustrate, consider the case of a linear code C being used for error de
tection, and ask what is the prob ability that we fail to detect an error. Let
the alphabet be Zq and the length n. The required probability is that of
the received word being a codeword yet containing at least one error. It
is easy to see, using the linearity of C, that this is equivalent to the error
vector e being a non-zero codeword. Now there is probability

120 The Hamming family and friends

that the error vector has weight i where p is the probability that an arbi
trary bit is corrupted. There are

words of weight i, and if Ai is the number of codewords of weight i, then
the probability that e is a codeword of weight i is

Hence

Prob [w(e) = i]

so
n

Prob [e is a non-zero codeword] = L Aipi(l - pt-i(q - l)-i.
i=l

A good error-detecting code will be one for which this prob ability is
small. For small p (the usual situation in practice) pi(l - p)n-i rapidly
decreases as i increases, so we would like Ai to be small when i iso That
is, C should ideally have few codewords of low weight and most of them
with large weight. The weight distribution cannot of course be chosen to
order - the linear structure imposes severe constraints on it. But as we
have seen, the calculation of the code's performance depends on knowledge
of the Ais, and it turns out that many theoretical investigations of linear
codes are dependent on their weight distributions.

One of the most famous aids to progress is the MacWilliams identity,
which is a remarkable connection between the weight distributions of C and
Cl. . Its significance is that the weight distribution of Cl. is often simpler to
calculate than that of C, and the identity enables each distribution to be
obtained from the other. Since its discovery in 1963 it has been expressed
in many different forms and has been generalized in various ways. We end
this chapter with a proof of one of its forms and a couple of simple examples
of its use. The proof we give makes minimal use of complex numbers.

Let C be a linear [n, k] code over Zq for some prime q. Let X be the
function which maps each a in Zq to the complex number exp(27ria/q), so
in the complex plane the x-images of Zq are q points equally spaced round
the unit circle with

x(o) = 1 (1)

and, by the properties of multiplication of complex numbers, for all a, ß in

Weight distributions 121

Zq we have

x(a + ß) = x(a)x(ß) (2)

We require two preliminary lemmas:

Lemma 6.1 L x(a) = 0
Q E Zq

Proof. Let ß be any non-zero member of Zq so that X(ß) =I- 1. If al and
a2 are distinct members of Zq, then so are al + ß and a2 + ß, so if we
choose a fixed ß =I- 0 and let a take each value in Zq in turn then a + ß
takes each value in Zq once and once only. Hence

L x(a) L x(a+ß)
Q E Zq Q E Zq

L x(a)x(ß) from (2)
Q E Zq

x(ß) L x(a) since ß is fixed.
Q E Zq

So

[L x(a)] [1 - X(ß)] = 0, and since the complex numbers
Q E Zq

form a field, one of these two factors must be zero, but 1 - X(ß) =I- 0 since
ß =I- 0, so X(ß) =I- 1.

Hence L x(a) = 0 0

Q E Zq

Next we need another symmetry property of linear codes.

Lemma 6.2 Let w be any fixed member of Z:; not in C.L. For each a E Zq
define the subset SQ of C by SQ = {c E C : C . w = a}

Then all these subsets have the same size, which is non-zero.

Proof. So is non-empty because it is easy to check from the definition of
So that 0 E So. Also, So is a linear code because, again from the definition
of So,

CE So =? Cl . W = 0 =? (AC) . w = 0 for all A E Zq

and Cl, C2 E So =? Cl . W = C2 . W = 0 =? (Cl + C2) . w = o.
So now we consider cosets of the linear code So, and we show that pro-

122 The Hamming family and friends

vided So. is not empty and C' is any of its members, then So. is in fact the
coset c' + So:

c' E So. =? c' E c' + So because c' = c' + 0 and 0 E So, and conversely,
c" E c' + So =? c" = c' + c for some c E So

=? c" . w = c' . w + c . w = Ct + 0 = Ct, so c" E So..

This completes the proof that each non-empty So. is a coset of So, so
they are all the same size. It just remains to show that there is no Ct for
which So. is empty.

Let Ct be any non-zero member of Zq. w ~ Cl. so there exists c E C such
that c· W = A i= O. Consider the set of codewords {Bc : B E Zq}, and their
dot products with w:

(Bc) . w = B(c· w) = BA,

But {BA: B E Zq} = Zq (see proof of Fermat's theorem in Chapter 3).
So there is some B for which BA = Ct, so for this B, (Bc) . w = Ct. Hence

Bc E So. so So. i= cjJ. 0

We are now ready to prove aversion of the Mac Williams identity. It will
be convenient to specify the weight distribution of C by a formal polyno
mial.

A(x) = Ao + A 1x + A 2 x 2 + ... + Anxn, called the weight enumerator of
C, and the Ai are as previously defined.

Theorem 6.20 (The MacWilliams identity) Let C be an [n, k] linear
code over Zq and A(x), B(x) the weight enumerators of C, Cl. respectively.

B(x) 101- 1 (1 + (q - l)xt A (1(- x))
l+q-lx

n

101- 1 L Ai(1 - x)i(1 + (q - l)x)n-i
i=O

Proof. The easy bit (equality (2) above) is covered by the next exercise.
[Ex 31J

Now we prove (1). With X as in Lemma 6.1 let

J = L [L X(c· U)XW(Ul]
cEC uEZ;:

(3)

If we think of this as the sum

Weight distributions 123

the coefficient J.lu is

LX(C.U),
cEC

so (3) can be written as

J = L [XW(U) L X(c· U)]
UEZ~' cEC

(4)

In this sum consider those terms arising from the words U in C.L and from
those not in C.L separately.

When U E C.L

L X(c· u) = L X(O) = LI = ICI (5)
cEC cEC cEC

and for each fixed U not in C.L Lemma 6.2 teIls us that c· u takes each
value in Zq exactly qk-l times as C ranges over C. Hence, for these u,

L X(c· u) = qk-l L x(a) = 0, by Lemma 6.1. (6)
cEC

From (5) and (6) we see that only those u in C.L contribute anything to
the sum (4), so it can now be rewritten as

Now C.L has Bi words of weight i, so grouping aIl words of the same weight
together we finaIly get

n

J = ICI L Bixi = IClB(x) (7)
i=l

Now we manipulate the expression on the right of (3) in a different way,
by expanding its inner sumo Let u be the word UIU2··· Un0 We shall abuse
notation slightly and write w(Ui) = 0 or 1 when Ui is zero or non-zero

n

respectively, so that w(u) = L W(Ui). Then
i=l

which, by property (1) is

L X(CIUl)··· X(Cnun)xw(u d ... XW(u n)

uiEZq

The qn terms of this sum are precisely what we would get by taking, for

124 The Hamming family and friends

each i, the sum

X(Ci X O)XW(O) + X(Ci X 1)XW(l) + X(Ci X 2)XW(2) + ... + X(Ci X (q -1))Xw(q-l)

and multiplying them all together. So (*) can be written as
n

2: x(c· u)xw(u) = rr 2: X(CiUi)Xw(Ui). (8)
uEZ;;

Now look at the summation in (8). That is, fix i and let Ui range over
Zq.

If Ci = 0 then

2: X(CiUi)XW(Ui)

uiEZq

2: X(O)XW(Ui)

uiEZq

2: XW(Ui) from (1)

1+(q-1)x (9)

since w(O) = 0 and W(Ui) = 1 for the other q - 1 members of Zq. If Ci =I 0,
then by splitting off the Ui = 0 term from the rest we get

2: X(CiUi)Xw(Ui) = X(O)xo + 2: X(CiUi)Xw(Ui)

= 1 + 2: X(CiUi)X = 1 + 2: X(Ui)X,
Ui#O Ui#O

(as in the proof of Fermat's theorem again)

= 1 + (-x) from Lemma 6.l. (10)

Use (9) and (10) in (8) we get
n

(11)
since the first factor is the contribution of those is (n - W (c) of them) for
wh ich Ci = 0 and the second factor comes from the remaining w(c)is.

So from (3)

J = 2: (1 + (q - l)xr- w(c) (1 - x)w(c)

cEC
n

2: Ai (l + (q - l)x)n-i(l - x)i (12)
i=O

and by equating the expressions for J in (12) and (7) the equality (1)
follows. 0

Weight distributions 125

To see an easy application of the Mac Williams identity consider the
simplest of all linear codes, the repetition codes. The repetition code C of
length n over Zq has generator G = [11 ... 1] and its weight enumerator
is A(x) = 1 + (q - l)xn. Hence its dual code has weight enumerator

1
B(x) = - [(1 + (q - l)xt + (q - 1)(1 - xt]

q

[Ex 32,33]

Now let us investigate the weight distributions of Hamming codes. Let
C E Ham(r, q). We know that all members of Ham(r, q) are equivalent so
their distance distributions are the same. Since the codes are linear this
implies their weight distributions are the same (see Theorem 6.5).

We also know (Theorem 6.6) that the simplex code C1- has one word of
weight 0 and all the remaining qr - 1 codewords have weight qr-l. Hence
Bo = 1, Bqr-l = qr -1 and all the other Bi are zero. From the MacWilliams
relation, interchanging B(x) and A(x) (wh ich is valid because (C1-)1- = C),
we have

A(x) = ~ [Bo(l - x)o(l + (q - l)x)n qr

+Bqr-l(l- x)qr-l (1 + (q _1)xt-qr- 1
]

d · qr - 1 h' . l'fi t an usmg n = -- t IS slmp 1 es 0
q-1

A(x) = q1r [(1 + (q -l)x)n + (qr - 1)(1 - x)qr-l (1 + (q _ l)x) q;~ll]

[Ex 34]

As an alternative to working out the coefficients of powers of x in the
expression above we can make use of the fact that Hamming codes are
perfeet one-error correcting codes. This implies that, given any word in Z;,
that word will either be a codeword, or it will be at distance 1 from a
unique codeword. Hence we can count the total number of words of weight
w, (:) (q -1)w, by adding X + Y + Z where X is the number of codewords
of weight w, Y is the number of words of weight w at distance 1 from a
codeword of weight w + 1 and Z is the number of words of weight w at
distance 1 from a codeword of weight w - 1.

X Aw

Y AW +1(w + 1)
Z Aw-1(n - w + l)(q - 1)

[Ex 35]

126 The Hamming family and friends

Hence

(:) (q-1)w =Aw+Aw+1(W+1)+Aw-1(n-w+1)(q-1).

Then if any two consecutive Ai are known, all subsequent ones can be
calculated. [Ex 36J

We have used the weight distribution numbers to calculate how weIl a
linear code performs with regard to error detection. They also yield an
estimate of the error correction performance, as we now demonstrate. We
concentrate on linear binary codes. Linearity makes life simpler because the
prob ability of the received word being furt her from the transmitted word
than from some other codeword is independent of the transmitted word
(this follows from Theorem 5.3). So let c E C, a linear binary code of length
n, with c =I=- 0, and suppose 0 is the transmitted word. As usual we take the
decoding scheme to be nearest neighbour, and we assurne that if there is
more than one candidate for the decoded word we request retransmission.
Hence there is a decoding error or aretransmission request if d(r,O) ;:::
d(r, c). So we first calculate the probability Pe that this relation holds for
a fixed c =I=- O. If c has weight w let there be x positions in which c and
r both have aland y positions in which c has a 0 and r has 1. Then
d(r, c) = w - x + y and d(r, 0) = x + y.

Hence
w

P[x + Y 2: w - x + y] = P[x 2: "2]
w

P[x;::: f "21J since x is an integer

~ . (~) pi(l - p)W-i where pis the prob ability

i=f"21

that the channel corrupts any given bit. To ease the notation we write a'
a .

for f 2" 1· If Pe lS now summed over all non-zero codewords c, the result

is an upper bound for the probability P(error) that r is as dose as or is
doser to at least one non-zero codeword than it is to 0 - in other words,
that a decoding error or aretransmission request is made. Carrying out
this summation we obtain

P(error)

Exercises for Chapter 6 127

*

* *

n

< L Aj vpi(l - p)j2j

j=1
since t ({) = 2j

>=0
n .

L Aj(2VP(1-p)Y
j=1

n .

LAj (2VP(1- p)Y - Ao
j=O

where line * above follows from the fact that (1 - p)j-ipi is a decreasing
function of i if p < ! (as it is for any reasonable channel). Then * * follows

too because I~ 1 ~ ~. [Ex 37-39J

6.9 Exercises for Chapter 6

1. Use the method of proving Theorem 6.1 to find a member of Ham(2, 5).

2. Show that the suggested column selection method does give a p.c. matrix
of a member of Ham(r, q).

3. Show that any member of Ham(r, q) must have a p.c. matrix containing
columns x, y, z whose first two members are aO, Ob, cc respectively, and
the rest zero, for some non-zero a, b, c.

4. For C E Ham(5, 2) with the suggested column ordering decode the
received word r with 1 in the first four positions and zeros elsewhere.

5. Find the 'convenient decoding' form for a p.c. matrix of an [8, 6, 3J
Hamming code C, and use it to decode 12312300.

6. Show that

[1
1 1 1 1 1

; 1
G=

0 0 0 1 0
1 0 0 0 1
1 1 0 0 0

generates a binary Hamming code.

128 The Hamming family and friends

7. Calculate the error-correcting capability of the dual of any code C in
Harn (r,q).

8. Show that no linear equidistant ternary code C which is 2-error correct
ing and has dimension 4, length 10 can exist.
[Hint: Imagine the code to be written out as an 81 x 10 array and, using
Theorem 5.4 count the total number of non-zeros in the whole code in
two ways.]

9. Show that all binary simplex codes are optimal.

10. Find upper and lower bounds for the size of the best binary linear 2-error
correcting code of length 12.

11. In the construction used in our proof of Theorem 6.9, show that k is the
dimension of the code constructed.

12. Show that any binary code with d = n is equivalent to a repetition code.

13. Show that perfect binary repetition codes must have odd length and
that there are no perfect non-binary repetition codes with n > l.

14. Our definition of Res(C, c) seems to depend on G as weIl as on c. Show
that this is not the case.

15. Let w(c) = w(c/) for distinct codewords c, c' of C. Show that in general
Res(C, c) :I Res(C, c'), and indeed these two residual codes need not
be equivalent, nor even have the same dimension.

16. Why must ac with the properties specified in Definition 6.3 exist?

17. For each real number x prove that

18. With generator matrices chosen as in the preamble to Theorem 6.11
show that

d(ResiC) ~ r ~ 1
where Res2 C means Res(ResC)··· etc.

19. Do a similar analysis comparing the performances of the Griesmer, Ham
ming and Plot kin bounds in upper bounding the size of [20, k, 11] binary
codes.

20. Show that all binary simplex codes with dimension ~ 3 satisfy the con
ditions of Theorem 6.14 and are therefore self-orthogonal.

21. Explain why the previous two theorems do not generalize to the fields
Zp with p > 3.

22. Give an example to show that Theorem 6.18 does not extend to Zp with
p> 3.

23. Find a self-dual Hamming code.

Exercises for Chapter 6 129

24. Find a binary [10, 5] self-dual code.

25. Show that if a binary self-orthogonal code C has a generator matrix G
in which every row has a weight which is a multiple of 4 then every
codeword weight is a multiple of 4. [Rint : use the formula, w(x + y) =
....]

26. Check that H does indeed produce the codewords listed, and that the
listings of C and D have the properties claimed.

27. Show that E f has 212 codewords.

28. Derive a formula for w(x + y + z) from the formula for w(x + y).

29. Show that for each a, b in Cf, a <::> b has even weight.

30. Show that the Hamming code with

H~[~
0 0 1 1 1 n 1 0 1 1 0
0 1 1 0 1

is not cyclic.

31. Prove the se co nd equality in our statement of the MacWilliams identity.

32. Show that there is no-error correcting code which is the dual of a repe
tition code.

33. Use the MacWilliams identity to prove that the dual of the binary rep
etition code of length n consists of all the even weight words of Z'2.
Establish the result by an alternative method.

34. Verify from this expression that Al = A2 = 0, so that Harn (r, q) is
1-error correcting.

35. Explain how these expressions are obtained.

36. Use this recurrence relation to evaluate A 3 ,A4 and A 5 for Ham(4, 2).

37. Show that for Ram(3, 2) with p = 0.01 the actual probability of a
decoding error is much sm aller than the upper bound just derived.

38. Let C be any binary code and Cf its extension by adding on overall
parity check. How are their weight distributions Ai and A~ related?

39. A linear code Cover Z5 has generator matrix

G = [~~] = [~ ~ : ~ ~ ~].
By considering the weights of the codewords T2 and Tl + AT2, A =
0,1,2,3,4, find the weight distribution of C.
[Rint : consider multiples of the codewords above, and the fact that C
has 25 codewords.] Apply the MacWilliams identity to obtain the weight
distribution of Cl. .

7

Polynomials for codes

Chapter 3 introduced some basic number theory so that we had some useful
mathematical machinery to deal with linear codes, principally through the
properties of the fields Zp. This chapter has a similar motivation, and will
be put to use in the next chapter on cyclic codes.

7.1 The first definitions

A polynomial in a single variable is an expression of the form ao + a1x +
a2x2 + ... + anxn where n is a positive or zero integer and the coefficients
ao, a1,···, an will be restricted to being elements of a field.

F[X] denotes the set of all polynomials in a single variable with coeffi
cients in the field F.

For each J E F[X] the largest n for which xn has a non-zero coefficient
is called the degree of J, denoted by deg(J).

If deg(J) = n and an = 1 then J is called a mo nie polynomial.
If deg(J) = n and J(x) = anxn + ... , then anxn is called the leading

term of J.
The zero polynomial is the one in which all coefficients are zero. In this

case the definition of degree given above does not work so deg(J) is then
defined to be 'minus infinity'. This is a purely conventional (but useful)
definition. We shall use 0 to denote both the zero of Fand the zero poly
nomial, and rely on context or emphasis to avoid confusion.

Polynomials with degrees 0 and 1 are called eonstant and linear polyno
mials respectively.

We sometimes use J and sometimes J(x) for a member of F[X]. Often it
is only the sequence of coefficients of J which is of any significance, so the
J notation is appropriate here. On other occasions we shall 'evaluate the
polynomial' by substituting a member of F for x in ao + a1X + ... + anxn ,
and for this J(x) is appropriate. We res ist the temptation to make the

132 Polynomials fOT codes

distinction between the two notations rigorous, and let convenience decide
between them.

The polynomials ao + aIX + ... + anxn and bo + bIx + ... + bnxn are
called equal if they have the same degree and ai = bi for all i. The usual
= sign will denote both equality of polynomials J, g, and equality of field
elements J(a) and J(ß)·

7.2 Operations in F[X]

We assume you are familiar with adding, subtracting and multiplying mem
bers of F[X], and note that F[X] is closed under these operations. Division
is a different matter: if J and g are in F[X] then in general J --;- g is not in
F[X]. But this is not an unfamiliar problem: 8 --;- 3 is not an integer, but
by using the idea of a remainder it is possible to discuss division of integers
entirely in terms of integers. The result of dividing 8 by 3 is 8 = 2 x 3
+ 2. Our main purpose now is to demonstrate an analogue of the division
algorithm of Chapter 3 for polynomials. In the integer version there was a
uniqueness clause : in dividing n by m(m =I- 0) and expressing the result as
n = qm + r, restricting r to the range 0 ::; r < m makes q and r unique.
There is no such natural not ion of 'size' of polynomials to help us, but deg
(J) is an integer and we can use this to restrict the remainder polynomial.

[Ex 1]

Theorem 7.1 Let J, g be members of F[X] with g =I- O. Then there are
polynomials q,r in J[X] such that J = qg + r, and q,r are unique if r is
restricted by the condition deg(r) <deg(g).

Proof. Our proof is not the most elegant but it has the virtue of being
constructive - that is, one which contains a method of finding q and r.

Let deg(J) = n, deg(g) = m, J(x) = anxn + ... + ao,g(x) = bmxm +
... + bo·

We first dispose of the case deg(J) < deg(g). We require J = qg + r,
and suppose q =I- O. Then deg(q g) ;::: deg(g) and deg(r) < deg(g), so
deg(qg + r) ;::: deg(g), but this contradicts deg(J) < deg(g). Hence q = 0 in
this case and J = r. [Note how this argument has used Exercise 1.]

For the case deg(J) ;::: deg (g) q cannot be the zero polynomial, and its
degree is n-m. So let q(x) = qn_mxn-m + .. '+qo and r(x) = rm_IXm- 1 +
... + ro (where some of the ri, including rn-m-I, could be zero). Writing
out J = qg + r we have

anxn + ... + ao = (qn_mxn-m + ... + qo)(bmxm + ... + bo)

+(rm_IXm- 1 + ... + ro)

Equating the coefficients of x n , x n- I , ... ,xm gives the following set of

Operations in F[X]

equations in F:

an bmqn-m
an-l bmqn-m-l + bm-lqn-m
an-2 bmqn-m-2 + bm-lqn-m-l + bm- 2qn-m

133

Notice that not an these terms mentioned above need exist. For example,
in the last equation, if n > 2m, then the last term and possibly some earlier
ones will not appear. If we interpret any of these non-existent terms as zeros
we can retain the equations in the form given. What is important is that
bm =I- 0, so the first equation gives the unique solution qn-m = b;;,1an. This
can be substituted into the second to get qn-m-l = b;;,1(an-l -bm-lqn-m),
then the third gives qn-m-2, and so on. Hence an the qs are uniquely
determined from these equations.

Each of the remaining equations, obtained by equating the coefficients of
xm - l , x m - 2, ... , x O contain only r m-l, r m-2, ... , ro respectively, with some
of the qs (which have been found previously). Hence these equations will
determine an the rs uniquely. 0

[Ex 2]

There is a method of writing down the calculation in Exercise 2 in a form
which is reminiscent of 'long division' of integers. We illustrate this with
the first example from Exercise 2.

So

So

3x6 + 2x5 + Ox4 + 4x3 + Ox2 + 2x + 2

2x2(4x4 + x 3 + x 2 + 3x + 1) + rl(x)

= 3x6 + 2x5 + 2x4 + x 3 + 2x2 + rl (x)

rl(x) 3x6 + 2x5 + Ox4 + 4x3 + Ox2 + 2x + 2

-(3x6 + 2x5 + 2x4 + x 3 + 2x2)

- 2x4 + 3x3 - 2x2 + 2x + 2

- -A

rl(x) ~(4x4 + x 3 + x 2 + 3x + 1) + r2(x)

-2x4 + 2x3 + 2x2 + X + 2 + r2(x)

134

So

Polynomials for codes

r2(x) -2x4 + 3x3 - 2x2 - 2x + 2

-(-2x4 + 2x3 + 2x2 + X + 2)

x 3 +x2 +x

- -B

3x6 + 2x5 + Ox4 + 4x3 + Ox2 + 2x + 2

= (2x 2 + 2)(4x4 + x 3 + x 2 + 3x + 1) + (x 3 + x 2 + x).

Don't forget that all the numerical calculation is carried out modulo 5.
The same calculation in a shorter 'long division' format is shown below.

:A :B

2x2 : + 2 :

4x4 + x 3 + x 2 + 3x + 1) 3x6 + 2x5 + Ox4 + 4x3 + Ox2 + 2x + 2
3x6 + 2x5 + 2x4 + x 3 + 2x2

- 2x4 + 3x3 - 2x2 + 2x + 2

quotient

-------------------A
- 2x4 + 2x3 + 2x2 + X + 2

remainder.

[Ex 3]

For polynomial division in Zp[X] with p greater than about 5 a useful
preliminary step is to draw up a table of inverses in Zp. For example, in
doing the first step in Zl1 [X] of the calculation

(5x l1 + ...) = (ax4 + .. ·)(8x7 + ...) + r(x)

we have to find a to satisfy 8a == 5 mod 11, so a = 5 x 8- 1 = 5 x 7 = 2.

7.3 Factorization in Zp[X]

If J, g, h are polynomials in F[X] and J = gh then 9 and h are called
divisors or factors of J. Equivalently, J is a multiple of 9 (and of h). These
statements are equivalent to the remainder polynomial on dividing J by 9
being zero. We continue to use the notation glJ from Chapter 3.

F[X], just like Z, has a unique prime factorization theorem, but before
stating it we need to define the analogues of primes in F[X].

Definition 7.1 J E F[X] is called irreducible if deg (f) > 0 and J is not
the product of two polynomials both having positive degree.

The essence of this definition is that J is irreducible if it has no non-

Factorization in Zp[X] 135

trivial factorization. Factorization in F[X] is in general a hard problem
with applications to coding theory and many other areas. Linear poly
nomials are clearly irreducible, and there is an easy test for reducibility of
quadratic and cubic polynomials over finite fields. The test is a consequence
of the following result.

Theorem 7.2 Let f(x) and the linear polynomial x - a be members of
F[X]. Then x - alf(x) if and only if f(a) = O.

Proof.

(i) x - alf(x) :::} f(x) = q(x) . (x - a) for some q E F[X]
:::} f(a) = 0

(ii) Divide f(x) by x - a to get f(x) = q(x) . (x - a) + r(x) where, by
Theorem 7.1, r(x) is either zero or has degree O.
Then f(a) = 0 :::} q(a)· 0 + r(a)

:::} r=O
o

:::} x - alf(x)
o

[Ex 4]

Now by Exercise 1 again, if a quadratic or cubic polynomial has a non
trivial factorization it can only be into a pair of linear factors, or a linear
and a quadratic (or three linears) respectively. Furthermore, by Exercise
5 below, we need only check whether any of the manie linear polynomials
are factors. [Ex 5,6]

At the price of working a little harder quartic and quintic polynomials
over smallish fields can also be investigated, since if such a polynomial
has no linear factors then its only possible factorisations are into a pair of
quadratics or a quadratic and cubic respectively. [Ex 7]

Theorem 7.3 Eaeh non-eonstant member of F[X] is either irredueible
or is the product of a constant with a unique family of irredueible monie
polynomials. 0

We shall not prove this, but simply point out that its proof and mueh
of the aeeompanying theory is identical to the corresponding theory for
integers in Chapter 3. Other similarities between Z and F[X] are outlined
in the remainder of this section.

For f, 9 not both zero in F[X] we can define a greatest common divisor
of fand 9 as a polynomial of maximal degree which is a divisor of both.
The ged is unique up to constant multiples (see Exereise 5). ged(f, g)
is any polynomial of minimal degee (but 2 0) in the set {s f + t 9 : s E
F[X], t E F[X]}, and ged(f,g) may be found by a process analogous to
Euclid's algorithm. Any pair of polynomials whose ged is a constant is
called a relatively prime pair.

A useful analogue of Euclid's lemma also holds : if i is irreducible and
ilfg, then ilf or ilg·

136 Polynomials for codes

An example of the F[X] version of Euclid's algorithm and further prac-
tice in polynomial division is given in the exercise below. [Ex 8]

7.4 Congruence of polynomials

If J, g, h are all polynomials in F[X] then we say that J is congruent to 9
modulo h (written J == 9 mod h) if J - 9 is a multiple of h. So the idea and
notation is exactly the same as for integers. For our work on cyclic codes
the significant result of a polynomial division will be the remainder rather
than the quotient, so congruence will clearly be important. All the familiar
properties of integer congruence hold also for polynomial congruence, which
justifies the technique illustrated by the following example.

Suppose in Z7[X] we require the polynomial of smallest degree which
is congruent to 3x4 + 5x3 + 2x2 + 4 mod 2x2 + 3x + 1. In other words,
what is the remainder when the first of these is divided by the latter?
From Theorem 7.1 we know the answer has degree at most 1, and we
can find it without carrying out the division as follows. Working modulo
2x2 + 3x + 1 throughout we have

2x2 == -3x-1

so
x 2 == T 1 (-3x - 1) = 4(4x + 6) = 2x + 3

Hence

x 3 = x(x2) == x(2x + 3) = 2x2 + 3x == 2(2x + 3) + 3x = 7x + 6 == 6

and

so
3x4 + 5x3 + 2x2 + 4 == 3(6x) + 5(6) + 2(2x + 3) + 4 == x + 5

[Ex 9]

7.5 Rings and ideals

The theory of cyclic codes depends on properties of certain subsets of F[X],
but first we discuss the main ideas in a more familiar context - the integers.
Algebraically the most important thing about Z is how it behaves with
respect to the operations of addition and multiplication. The structure
(Z, +, x) is an example of what is called a ring. Any set R, on which two
binary operations (called for convenience + and x) are defined, is a ring
if it satisfies the following conditions for arbitrary choices of r, S, t in R:

1. r + S E R r x S E R,

2. r + S = S + r

Rings and ideals 137

3. (r+s)+t=r+(s+t), (r X s) X t=r X (s X t);

4. r X (s + t) = (r X s) + (r X t), (s + t) X r = (s X r) + (t X r) ;

5. R has a member, usually called 0, such that r + 0 = r;

6. R has a member, usually called -r, such that r + (-r) = O.
If you have met so me abstract algebra you will recognise that this amounts

to saying that R is a commutative (or Abelian) group under +, X is as
sociative, and X is left and right distributive over +.

If X is also commutative (r X s = s X r for all r, s in R), and R has a
member (usually called 1 or unity) such that 1 X r = r for each r in R,
then (R, +, x) is called a commutative ring with unity. (Z, +, x) is clearly
a ring of this type, as is (F[X], +, x) where in this case the operations
are polynomial addition and multiplication. [Ex lOJ

Now let us return to Z, our first example of a ring, and think about the
subset of all even integers which we denote by 2Z. This is also a commu
tative ring (check the defining properties), but this time without a unity.
Any subset of a ring R, wh ich is also a ring in its own right, is called a
sub ring of R. But our example has the additional property that if e, x
are any members of 2Z, Z respectively then ex is also in 2Z. This leads
to the following definition:

Definition 7.2 Let (R, +, x) be a ring with subring (S, +, x). S is called
a (two-sided) ideal of R if for all r in Rand all s in S, S contains
r x sand s x r.

If R is not commutative then it could happen that r x sES but
s x r rf. S. In this case we would have to distinguish between left, right and
two-sided ideals. However, from now on all our rings will be commutative
so we may drop the '(two-sided)' and 'and s x r' from Definition 7.2.

Clearly in our example the ideal 2Z is simply the set of all integer mul
tiples of a particular member 2 (or of -2), and Z is special in this respect
: all its ideals are of this type.

Theorem 7.4 If I is an ideal of Z then there is some particular integer
m such that I = {mx: X E Z}.

Proof. One possibility is that 1= {O} (check that this really is an ideal),
and in this case m = 0 satisfies the claim of the theorem. So now suppose
I has at least one non-zero member i. I is a subring of Z so i2 E I, and
of course i 2 > O. Let m be the smallest positive member of I. By the
ring properties I must contain every multiple of m, so we just have to show
that it contains not hing else. To do this, let j be any member of I, and
divide j by m to get j = mq + r with 0 < r < m. Using the properties
of ideals we have

(j E land m E 1) => mq EI=> -mq EI=> j-mq EI=> r E I.

Hence r must be 0 so j = mq o

138 Polynomials fOT codes

For the remainder of this book all our rings will be commutative with
unity. With this understanding we make the following definition.

Definition 7.3 Any ideal I of a ring R whieh consists of all the multiples
of a specific member of R by every member of R is called a principal ideal
of R.

We have just shown that all ideals of Z are principal. The specific
member referred to above is called a generator of I, so 2Z has just 2 and
- 2 as its generators. Note that Z itself is also an ideal of Z, and in general
any ring is an ideal of itself.

The ideas and proof of Theorem 7.4 apply when Z is replaced by F[X].
You should carry out the proof in this case : the only change you will have
to make is that m becomes any non-zero polynomial of smallest degree in
I, and then r will be the remainder polynomial, with degree sm aller than
that of m. [Ex 11]

Finally, (and not to be used later), you may have wondered whether
some rings have non-principal ideals, and whether examples are easy to
construct.

If so, try. [Ex 12]

7.6 Exercises für Chapter 7

1. I,g E F[X]. What is the relation between deg(J) , deg(g) , deg(J + g),
deg(f - g) and deg(fg)?

2. Find q and r when 3x6 + 2x5 + 4x3 + 2x + 2 in Z5 [Xl is divided by

(a) 4x4 +x3 +x2 +3x+1,

(b) 2x6 + x 4 + 3x2 ,

(c) 3x+4.

3. Use long division to find q and r if

(a) x 6 + x 3 + x 2 + X = q(x)(x4 + x 2 + X + 1) + r(x) in Z2[X],
(b) x 6 + 2x5 + 2x + 1 = q(x)(2x3 + x 2 + X + 1) + r(x) in Z3[X].

4. Show that 1 +xlg(x) in Z2[X] if and only if g(x) has an even number of
non-zero terms.

5. Show that, for 1 E Zp[X], for each ß E Zp\{O}, x - o:ll(x) if and only
if ß(x - o:)ll(x).

6. Use the result of Exercise 5 to factorize each of the following into a
constant and monie irreducibles.

(a) 3x2 + 4x + 3 in Z5[X],

(b) 2x3 + 2x2 + X + 2 in Z3[X],

Exercises for Chapter 7

(c) X 3 + 4x2 + X + 1 in Z7[X],
(d) x 3 + 2x2 + 2 in Z3[X],
(e) 2x2 + 3x + 4 in Z7[X],

139

7. Determine whether the quintie polynomial f(x) = (x + l)(x + 2)2(x +
3)2 + 4 in Zs[X] is irreducible, and if not faetorize it eompletely.

8. Apply a polynomial version of Euclid's algorithm to find gcd(J, g) where
f(x) = x 12 + x4 + x3 + x 2 + X + 1, g(x) = x 8 + 2x6 + xS + x2 + 2x + 2,
both in Z3[X],

9. Find the quadratic polynomial congruent to x 7 + 2x6 + 2x4 + x3 + x 2 + 2
mod x 3 + 2x

(a) in Z3[X],
(b) in Zs[X].

10. For each of the following cases determine whether (A, +, x) is

(a) a ring,

(b) a ring with unity,

(e) a commutative ring.

In (i), (ii) and (iii) + and x are ordinary matrix addition and multipli
cation.

(i) A = the set of all 3 x 3 matriees with entries in Z.
(ii) A = the set of all 2 x 2 matrices with entries in Z, of the form

(iii) As for (ii), but of the form

(iv) A = the set of all finite subsets of N, + is EIJ, the symmetrie differ
enee or 'exclusive or' operator, and x is n.

11. Let m(x) be a generator of the principal ideal I of F[X]. Show that for
each a E F\ {O}, am(x) is also a generator of I. Show further that if
m(x) is a
generator of minimal degree, then there are no generators of this degree
except the constant non-zero multiples of m(x).

12. Show that F[X, Y], the set of polynomials in two variables with coeffi
cients in a field F, is a ring, and that the subset I = {xs(x, y) +yt(x, y) :
s E F[X, Y], t E F[X, Y]} is an ideal, but not a principal ideal.

8

Cyclic codes

8.1 Introduction

The aim of this chapter is to show the connection between cyclic codes in
troduced in section 6.7 and the polynomial algebra of the previous chapter.
Then we exploit the latter to throw light on the former. The connection
is that each word in Fn, say aOal ... an-I, is thought of as a polynomial
aO+alx+·· ·+an_IXn- 1 in F[X]. Notice that in order to retain the sensible
notation of ai being the coefficient of xi we have to represent the words as
aOal ... an-l rather than ala2 ... an. Of course F[X] has infinitely many
members, whereas F n (e.g. Z;) has only pn members, so the match is not
perfect. To overcome this we just replace the set F[X] by its subset of
polynomials with degree less than n. Then it is easy to see that if Cl and
C2 are any codewords and Cl (x), C2 (x) are their corresponding polynomi
als and Al, A2 are any members of F, then the codeword AlCl + A2C2 has
AICI (x) + A2C2(x) as its polynomial representative. For cyclic codes it turns
out that multiplication of polynomials is a very useful operation, hut here
we hit asnag: if C has length n so that its polynomials have degree less
than n, the product of two such polynomials can have degree at least n,
so does not represent a codeword. To get round this we pick a polynomial
f of degree n and define our multiplication operation to be polynomial
multiplication modulo f(x), so that any two polynomials which differ by a
multiple of f(x) are regarded as equal. So our set of polynomials of degree
less than n which will represents codewords can be thought of as the set of
all remainder polynomials on division by f(x). Our notation for this set is
F[X]/ f(x), and we shall make use of congruence notation by using == for
equality in f[X]/ f(x) and = for equality in F[X]. [Ex 1, 2]

8.2 The choice of modulus

All our remarks about representing codes as sets of polynomials have been
very general. So what of cyclic codes? Let C be a cyclic [n, k] code over F

142 Cyclic codes

and c = aOal ... an-l one of its codewords. Cl, the first cyclic shift of c, is
also a codeword, so let us compare the polynomials which represent these
words:

and
'() 2 + n-2 n-l C X = an-l + aox + alX ... + an-3X + an-2X .

Observe that c'(x) can be obtained (nearly) by multiplying c(x) by x.
In fact the only difference is that c'(x) has the term an-l whereas xc(x)
has the term an_IXn. So c'(x) == xc(x) provided we choose f so that xn ==
1 mod f(x). In other words, let f(x) be xn - 1, and then we have the
very neat result that cyclic shift in C corresponds to multiplying by x in
f[X]lxn - 1. For this reason we make this choice of f far the polynomial
representation of any cyclic code of length n over F.

There is also something very special about the precise set of polynomials
which represent the codewords:

Theorem 8.1 A set I of polynomials in the ring R = f[X]lxn - 1 repre
sents a cyclic code C if and only if I is an ideal of R.

Proof. Let I be an ideal and let Cl, c2 be members of I, and A any constant
member of R. Then Cl + C2 E I by subring property 1 of I, and ACI E I
by the ideal property. In terms of the code C, we have proved C is closed
under addition and scalar multiplication. In other words C is linear. To
show that it is cyclic, xE R so Xc(x) E I by the ideal property again. As
we have seen this means that C is closed under the cyclic shift operation.
Hence C is a cyclic code.

Conversely, let C be cyclic. We have to show that I has all the properties
1-6 of section 7.5 and has the ideal property. Properties 2, 3, 4 hold far all
members of R so in particular they apply to I (we say that I inherits these
properties from R). Cis linear so 0 E C and cE C ==> (-l)c E C, which
translates into properties 5 and 6 for I. The addition part of property 1
also follows from the linearity of C. Now for the ideal property : let c be
any codeword, represented by c(x) in I, and let p(x) = Po + PI X + ... +
Pn_IXn-1 be any polynomial in R. Then p(x)c(x) = Poc(x) + PIXC(X) +
... + Pn_IXn-Ic(x), and this represents the word PoC + PICI + P2C2 + ... +
Pn-l cn - l , which is a linear combination of cyclic shifts of c, so must be in
C. Hence p(x)c(x) E I so I has the ideal property.

The only remaining item is the multiplicative part of property 1. But we
have already done the work for this: p(x)c(x) E I for all pER, cE I, so in
particular p(x)c(x) E I for all P EI, CE I. 0

From Exercise 2 the previous theorem teIls us that C is a cyclic code
if and only if its set of representative polynomials in R is the set of all
multiples of so me single polynomial, and conversely, every such set of poly-

Genemtor matrices and genemtor polynomials 143

nomials represents a cyclic code. We use the notation I = (p) for the ideal
consisting of all multiples of p, and pis called a generator of I. Notice that
we say 'a' generator because we can have (p) = (q), for distinct p, q, so the
ideals of R need not be as numerous as you may have thought. Indeed it
is clear that (p) = (Ap) for any non-zero constant A, and the next exercise
shows that p and q can differ by more than just a constant factor, yet still
generate the same ideal. [Ex 3]

Note also that Exercise 3 emphasizes something you may have observed
already - that the property deg(fg) =deg(f)+ deg(9) which holds in F[X]
fails in F[X]/ f(x).

8.3 Generator matrices and generator polynomials

We have seen that linear codes have generator matrices and the subclass
of cyclic codes have generator polynomials. The aim of this section is to
connect these two ideas of 'generator'. But first a theorem:

Theorem 8.2 Every cyclic [n, k] code C, other than {O}, has a generator
matrix G of the form

90 91 92
o 90 91

o 0 ... 0

gt 0 0
9t-1 9t 0

90 gl

o
o

9r

in wh ich the last k - 1 places of row 1 are zeros, each row is the first cyclic
shift of the previous row, and neither 90 nor 9t is zero.

Proof. First observe that this matrix has the right number of rows, which
is k, the dimension of C. If the first row is a codeword of C, then so are
all the rest by the cyclic property. It remains to show, then, that the rows
are independent and that C has a codeword of the form given by row 1.
(Establishing the first of these assertions will be your contribution to the
proof.) [Ex 4]

Let {Cl, C2, ... , Ck} be any basis for C. We claim that there is so me choice
of constants Al, A2,"', Ak (other than all zero) for which A1C1 + A2C2 +
... + AkCk is a word ending in k - 1 zeros. Let c~ be the word consisting
of just the last k - 1 digits of Ci. Then C~, C~,···, C~ are k words in Fk-l,

aspace of dimension k - 1. Hence these words are dependent so there are
Al, A2,'" Ak, not all zero, such that

A1C~ + A2C~ + ... + AkC~ = 0',

So

144 Cyclic codes

is a word of the form claimed.
Finally, if 90 = 0, then the first column of Gis all zero, so every codeword

of C has zero as its first place. But this is impossible because, by hypothesis,
C has non-zero words so so me cyclie shift of such a word will have a non
zero digit as its first symbol. Similarly, by considering the last digit of the
codewords, 9r cannot be zero. 0

The 9i in the theorem above will turn out to be the coefficients of a gen
erator polynomial for C (or strictly, the ideal of F[Xl/xn -1 corresponding
to C, though we shall wilfully ignore the distinction). But which generator?
You have seen in Exercise 3 that they are not unique, so we first prove a
uniqueness result.

Theorem 8.3

(a) Of all non-zero members of an ideal I those of smallest degree are
simply constant multiples of each other.

(b) Each of the minimal degree members of I is a generator of I.

Proof.

(a) Suppose not. That is, let a(x) = alxl + ... and b(x) = blXI + ...
be two such members with b not a constant multiple of a. Then
a(x) - alb11b(x) is non-zero, with degree < l. But -alb11 E R, so
by the ideal properties a(x) - alb11b(x) E I, which contradicts the
minimality hypothesis.

(b) For all r E R, ra E I, so (a) s;;: I. To prove the reverse inclusion, let i
be any member of I. Divide i(x) by a(x) to get i(x) = a(x)q(x) +r(x)
with deg(r) < deg(a). Note that = rather than the weaker == is correct
here because deg(i) < n.

By a similar argument to that used in (a) ab ove , r(x) E I so r(x) = 0.
Hence a(x)li(x) so I s;;: (a) and (b) follows. 0

Corollary. There is only one monie polynomial of minimal degree in I. 0

As a result of the last theorem and its corollary we can make the following
definition.

Definition 8.1 The unique monic polynomial of smallest degree in an
ideal I is called the generator of I.

Now we can relate our two theorems of this section.

Theorem 8.4 A generator matrix for the cyclic [n, n - tJ code C of the
form established in Theorem 8.2 is obtained by taking 90,91,··· ,gt to be
the coefficients in the generator polynomial of C.

Proof. Let the G of Theorem 8.3 generate C. Then g(x) = 90 + glX +
... + grxt E C,SO (g) s;;: C. But every codeword is a linear combination of
9(X), X9(X),··· xn-t-1g(x).

Generator matrices and generator polynomials

That is c(x) = AOg(X) + Alxg(X) + ... + An_t_lxn-t-lg(x) E (g).
Therefore C S;;; (g), so C = (g).

145

To show that 9 can be taken as the generator of C, suppose there is a
polynomial g' of smaller degree, say t - 0:, in I(o: > 0). Then we have the
contradietion that the [n, n-t] code C has n-t+o: independent codewords,
g', xg', x 2g', ... , xn-t+o<-lg'.

So 9 is a generator of minimal degree, and if we take the monic constant
multiple of 9 the claim of the theorem is established. 0

Corollary. The generator polynomial of a cyclie [n, k] code has degree
n- k.

We still have no method of actually finding cyclie codes. Here is a theorem
which helps considerably.

Theorem 8.5 The generator of any ideal of F[X]/xn - 1 is a divisor of
x n -1.

Proof. Let 9 be the generator of ideal I. Divide xn - 1 by g(x) to get
xn - 1 = g(x)q(x) + r(x) with deg(r) < deg(g).

Then r(x) == g(x)q(x) so r E I.
Hence r = 0 and xn - 1 = g(x)q(x). 0

[Ex 5-7]

From the results developed so far it looks as if finding all cyclic codes
of length n over F is equivalent to the problem of finding all cyclic code
generators, whieh in turn is equivalent to finding all monic divisors of x n -1.
But to make this work, suppose g(x)lxn -1. Does it follow that g(x) is the
generator of (g(x)), or could there be a polynomial a(x)g(x) which has
degree smaller than deg(g) when reduced modulo xn - 1 ?

Theorem 8.6 Let I be the ideal (g(x)) in F[X]jxn - 1, where gis monic
and g(x)lxn - l. Let h(x) be the generator of I. Then 9 = h.

Proof. hE I so for so me polynomial a(x), h(x) == a(x)g(x).
That is h(x) = a(x)g(x) + b(x)(xn - 1). Since g(x)lxn - 1, g(x) divides

the right hand side of this equation. Hence glh. But deg(h) < deg(g), and
both g, h are monic so 9 = h 0

From these results we see that each ideal of f[X]/xn - 1 corresponds to
a unique divisor of xn - 1, its generator, so the number of cyclic codes of
length n over F is the number of monie divisors of x n - 1 so we now need
a method of enumerating these divisors.

Theorem 8.7 If the unique factorization of x n - 1 into monic irreducibles
is xn -1 = (!I (x))t 1 ... Um(x))tm , then there are (1 +h) ... (1 +tm) monic
divisors of xn - 1, each being of the form

146 Cyclic codes

Proof. The form of the divisors follows from the unique factorization the
orem for j[X]. The rest is an easy counting argument. 0

Factorizing x n - 1 completely is not easy, and several ingenious methods
and many tables have been produced. The topic will not be pursued in this
book, but we give a reference table below for n ::; 25 over the binary field.

The factorization of xn - 1 into irreducibles over Z2. [Taken from [17]]

n factorization

l+x
2 (1+x)2
3 (1+x)(1+x+x 2)
4 (1+x)4
5 (1 + x)(l + x + x 2 + x 3 + x 4)
6 (1+x)2(1+x+x 2)2
7 (1+x)(1+x+x3)(1+x2 +x3)

8 (1 + x)8
9 (1 + x)(l + x + x 2)(1 + x 3 + x 6)

10 (1+x)2(1+x+x 2 +x3 +x4)2
11 (l+x)(l+x+···+x IO)
12 (1 + x)4(1 + x + x 2)4
13 (1+x)(1+x+···+x I2)
14 (1 + x)2(1 + x + x 3)2(1 + x 2 + x 3)2
15 (1 + x)(l + x + x 2)(1 + x + x 2 + x 3 + x 4)(1 + x + x 4)(1 + x 3 + x 4)
16 (1+x)16

17 (1 + x)(l + x + x 2 + x 4 + x 6 + x 7 + x 8)(1 + x 3 + x 4 + XS + x 8)
18 (1 + x)2(1 + x + x 2)2(1 + x 3 + x 6)2
19 (1 + x)(l + x + x 2 + ... + x 18)
20 (1+x)4(1+x+x 2 +x3 +x4)4
21 (1 + x)(l + x + x 2)(1 + x 2 + x 3)(1 + x + x 3)(1 + x 2 + x 4 + x S + x 6)

x(1+x+x2 +x4 +x6)
22 (1+x)2(1+x+x 2 +· .. +xlO)2
23 (1 + x)(1 + x + x S + x 6 + X 7 + x 9 + xlI) (1 + x 2 + x 4 + XS + x 6 + X 10 + xlI)
24 (1 + x)8(1 + x + x 2)8

25 (1 + x)(l + x + x 2 + x 3 + x 4)(1 + XS + x lO + xIS + x 20).

For example Z2[X]jX9 -1 has 23 = 8 ideals (cyclic codes) consisting ofthose
with generator polynomials of the form (1 + x)a(l + x + x2)b(1 + x3 + x6)C
with a, b, c each equal to 0 or 1. Their degrees are 0, 1,2, 3, 6, 7, 8 or 9, so
the possible dimensions are 9, 8, 7, 6, 3, 2, 1.

We can also use these results to find the smallest cyclic code contain
ing a given word. For example, if the cyclic code Cover Z2 contains the
word 101001001, what are the possibilities? This word is represented by
the polynomiall + x2 + x5 + x8 . Its factorization into irreducibles over Z2
is (1 + x)(l + x + x5 + x6 + x7) (check this). The generator polynomial of
C is of the form given above, so our given word (polynomial) must be a
multiple of this modulo x9 - 1. So

'\(x)(l + x)a(1 + X + x2)b

x (1 + x3 + x6)C + p,(x)(x9 - 1)

Encoding by polynomials 147

If b > 0 then 1 + x + x 2 divides the right hand side of this. But check
that it does not divide the left hand side, so b = O. Similarly C = O. Hence
the generator of C can only be 1 or 1 + x. The latter gives the smallest
code. [Ex 8, 9]

8.4 Encoding by polynomials

The generator matrix we have produced does not have the nice 'nearly
standard form' of Chapter 5. Our first job in this section is to manufacture
such a form for cyclic codes. The result of encoding the message m as the
codeword mG = c when G is 'nearly standard' is that c will have the
message symbols in those places corresponding to the columns of Gwhich
make up the unit matrix.

Let g(x) be the generator polynomial of the [n, k] cyclic code C. Di
vide each of the powers X n - k+i for i = 0,1,2,' ", k - 1 by g(x) to obtain
Xn- k+i = qi(X)g(X) + ri(x), where, as usual, deg(ri) <deg(g) = n - k.

Xn- k+i -ri(x) = qi(X)g(X), which is a codeword since C = (g(x)). Hence
the matrix G whose rows are Xn- k+i - ri(x) is a generator matrix for
C because it has the right number of rows (k = dirn C), each row is a
codeword, and the rows are independent because the last k columns make
h· To see this, ifrow i is CiOCilCi2"'Cin-l, then CiO,Cil,"',Cin-k-l are
just the coefficients of -ri(x), and Cin-k,"', Cin-l are all zero except for
Cin-k+i = 1, corresponding to xn- k+i. [Ex 10]

Theorem 8.8 Let G be the nearly standard generator matrix for the [n, k]
cyclic code C, as described above. Then the codeword c arising from the
message m has polynomial representation c(x) = q(x)g(x) where q(x) is
the quotient on dividing xn-km(x) by g(x).

i.e.xn-km(x) = q(x)g(x) + r(x)with deg(r) < deg(g) = n - k.

Proof. Let m(x) = mo +mlx+, .. +mk_lxk- 1. Multiplying the equations
in the preamble to the theorem by mo, ml,"', mk-l respectively we have

Summing these:

m(x)xn- k

mo qo(x)g(x)
ml ql(X) g(x)

+ mo ro(x)
+ ml rl(x)

g(x) [mo qo(x) + ml ql(X) + ... + mk-lqk-l(X)]
+ [mo ro(x) + ml rl(x) + ... + mk-l rk-l(x)]

148 Cyclic codes

Now the second [... J term has degree < n-k, so by the uniqueness clause
in the division algorithm, this term is r(x) and the other [... J term is q(x).

Also g(x)[moqo(x) + mIql(x) + ... + mk-Iqk-I(X)J is the linear combi
nation of rows of G : mo row 0 + ml row 1 +- .. + mk-I row k - 1, which
is mG = c. 0

[Ex 11J

The point of this reformulation of the encoding process in terms of poly
nomial operations rather than matrix operations is that the polynomial
operations can be done very rapidly by simple bits of hardware called feed
back shift registers, and the algorithms on which they operate only require
storage of the generator polynomial, not the generator matrix. We shall
not pursue this topic further, but a good account appears in [12J.

8.5 Syndromes and polynomials

Having obtained a nearly standard generator for a cyclic code we can use
the technique in section 5.7 to obtain its parity check matrix. From this we
may calculate syndromes, give their polynomial interpretation, and find a
useful decoding algorithm.

The generator matrix constructed in section 8.4 has the form G = [RIIJ
where the rows of Rare -ro(x), -rl(x),···, -rk-I(x) and I is the k x k
unit matrix. Hence a parity check matrix for C is H = [JI - RtJ where J
is the (n - k) x (n - k) unit matrix and RT is the transpose of R. The
advantage of this choice of parity check matrix for C is that the following
neat result holds for it.

Theorem 8.9 Let a(x) be a polynomial of degree at most n-1 correspond
ing to the word a arriving at the decoder, and let s(x) be the polynomial of
its syndrome s. Then when a(x) is divided by g(x) the remainder is s(x).

Proof. s = aHT = ao (column 0 of H) + ... + an-I (column n - 1 of H):
So s(x) = ao1 + aIX + a2x2 + ... + an_k_IXn-k-l

+an-krO(X) + an-k+Irl(X) + ... + an-Irk-I(x), (1)

(replacing the columns of H by their polynomial representatives)

= ao + aIx + ... + an_k_IXn-k-1 + an_k(Xn- k - qo(x)g(x))

+ ... + an_I(Xn- 1 - qk-I(X)g(X))

= a(x) - g(x) [an-kqO(X) + an-k+lql(X) + ... + an-Iqk-I(X)J

which we write as s(x) = a(x) - g(x)Q(x). (2)
But from equation (1) above s(x) has degree :S n - k - 1, so it follows

from (2) that s(x) is the remainder on dividing a(x) by g(x). 0

[Ex 12J

Recalling that in F[XJ/xn - 1 multiplication by x corresponds to cycli-

Syndromes and polynomials 149

cally shifting a word, we can easily derive from the previous theorem a
simple connection between the syndromes of a and a 1.

From that theorem,
So

a(x)
x a(x)

q(x)g(x) + s(x)
= xq(x)g(x) + xs(x)
= xq(x)g(x) + Q(x)g(x) + t(x)

where Q(x), t(x) are the quotient and remainder when x s(x) is divided
by g(x). Now deg (s) ::; n - k -1 and g(x) is monic and has degree n - k.
So if deg(s) < n - k - 1, Q(x) = 0 and t(x) = xs(x). When deg(s) =
n - k - 1 Q(x) is the constant Sn-k-1 and t(x) = x s(x) - Sn-k-1g(X).
These results are covered by the following theorem.

Theorem 8.10 For the cyclic [n, k] code C with generator 9 and parity
check matrix as defined in this section, if syn(a) s then syn(a 1) has
representative polynomial x s(x) - sn-k-1g(X). 0

[Ex 13]

A natural investigation now is to find a polynomial version of syndrome
decoding. Let C be an [n, k] code, not necessarily cyclic, and let d(C) =
2t + 1 so that C is t-error correcting. We also assurne that C has a parity
check matrix of the form H = [JIA] where J is the (n - k) x (n - k) unit
matrix. Let l be an error pattern of weight ::; t whose syndrome s also
has weight::; t. l is therefore a correctable error, so it is a coset leader in
the Slepian array. Define the n symbol word s* with 8081'" 8n -k-1 as
its initial segment and zeros in the remaining positions, so s* = siO. Then
clearly lHT = s = s* H T , so land s* have the same syndrome. They are
therefore in the same row (coset) of the array, and since their weights are
both::; t they are both equal to the coset leader of that row. That is,
l = S*. In those cases where the syndrome of the received word has weight
::=; t, this result me ans that the error pattern can be deduced immediately
no searching of the coset leader/syndrome list is necessary, which for large
codes can mean a significant saving of time. The snag of course is that
in general the syndrome weight will not be::; t. Nevertheless, if we now
specialize to cyclic codes we can derive a useful error-correcting technique
sometimes called error-trapping.

Let C be cyclic [n, k] with d(C) = 2t + 1, and parity check matrix as
above. Suppose a transmitted word is corrupted by error e (with weight
::; t), and that e has a continuous run (counted cyclically) of at least k
zeros. (For example 0010110100 and 1100001010 both have cyclic runs of
4 zeros). Let c and r be the transmitted and received words respectively.
Now for some i, e i has 0 in its last k places, and w(ei)::; t. Hence
ei = 110, using ° here to denote the zero word of length k, so syn(e i) = I,
and w(f) ::; t.

Now let us see how the receiver can exploit the previous two theorems
and the discussion above to obtain a decoding strategy. r is known so

150 Cyclic codes

syn(e) is known as syn(r) = syn(e). syn(e i) can then be calculated for all i
using Theorem 8.10, and the smallest i for which syn(e i) has weight::; t is
recorded. Then e i is known to be syn(e i) followed by k zeros, so by cyeling
this back i places, e, and hence c is recovered. By using Theorem 8.9 too,
all the calculations can be carried out in terms of polynomials. Here is an
example.

Let C be the binary [15, 7] cyelic code generated by g(x) = 1 + x4 + x6 +
X 7 + x8 . This code in fact has d(C) = 5 so it is 2-error correcting. Suppose
111101010010010 is received. We carry out the decoding procedure outlined
above. The received word has polynomial r(x) = 1 +x+x2 +x3 +x5 +x7 +
x iO +x13 . Its syndrome s(x) is the remainder on dividing r(x) by g(x), and
you should check that s(x) = 1 + x2 + x3 + x4 + x5 , and then check that,
using the method of Exercise 13, the first cyelic shift of the error vector
which has a syndrome weight::; 2 is e lO , and syn(e lO) = 10000010, so
e iO = 100000100000000. e = e 15 so e is obtained by cyeling e iO a furt her
5 places : e = 000001000001000. Hence the transmitted word c = r - e =
111100010011010. You can check that this is indeed a codeword by dividing
its polynomial by g(x) and obtaining a remainder of zero.

Notice that the success of the method depends on e having a cyelic run
of at least k zeros. In our example above n = 15 and k = 7 so all errors of
weight::; 2 will satisfy this condition. [Ex 14]

8.6 Parity checks and polynomials

In this section we give a polynomial interpretation of the parity check
matrix of a cyclic code. Let C = (g(x)) be a cyclic [n, k] code. Hence
g(x)lxn - 1 so g(x)h(x) = xn - 1 for some h. Now deg(g) = n - k so
deg(h) = k. Also g(x) and xn - 1 are monic, so his monic.

Definition 8.2 The polynomial h introduced above is called the check
polynomial of C.

In spite of its name h does not in general generate C.l but there is a
elose connection between hand C.l as we shall see shortly.

Theorem 8.11 c(x) corresponds to a codeword of C if and only if c(x)h(x) ==
o mod xn - l.

Proof.

c E C => c(x) == a(x)g(x) mod xn - 1 for some a(x) E F[X]
=> c(x)h(x) == a(x)g(x)h(x) == 0 mod xn - 1

Conversely, suppose c(x)h(x) == O. Divide c(x) by g(x) to get c(x)
g(x)q(x) + r(x) with deg (r) < n - k.

Then c(x)h(x) == 0 => g(x)q(x)h(x) + r(x)h(x) == 0
=> r(x)h(x) == 0
=> r(x)h(x) is a multiple of xn - 1

Parity checks and polynomials 151

But deg(r) < n - k and deg(h) = k, so deg(rh) < n, and hence rh = O.
Therefore r = 0 so c(x) = g(x)q(x); that is, C E C. 0

We have seen (Theorem 6.19) that the duals of cyclic codes are them
selves cyclic. It remains to find the generator polynomial of the dual, which
will then (via Theorem 8.2) give us a generator matrix for Cl., in other
words a parity check matrix far C. In passing we make use of another part
of Theorem 8.2 - that if g(x) is the generator of C, then go "I- O. Now
suppose p(x) is any polynomial of degree m with a non-zero constant
term. It is easy to check that if we regard 'x' as a formal object which we
manipulate as in ordinary algebra, then xmp(x- 1) is also a polynomial of
degree m with non-zero constant term, obtained by reversing the order of
the sequence of coefficients in p. [Ex 15]

Theorem 8.12 If h(x) is the check polynomial of the [n, k] cyclic code
C, then h(x) = hÜ1xkh(x- 1) is the generator polynomial of Cl.

Proof. h(x) is clearly manie of degree k, and by considering the constant
term in the relation g(x)h(x) = xn - 1 we see that ho "I- O.

g(x)h(x) = xn -1 =} g(x- 1)h(x- 1) = (x-1)n -1 = x-n -1, and this can
be written -xnho hÜ1h(x-1)g(x- 1) = xn -1. i.e. -hOg(x-1)xn-kh(x) =
xn -1.

Now xn-kg(x- 1) is a polynomial of degree n - k since go "I- O.
Hence h(x) is a manie divisor of xn - 1, with degree k, so (h) is an

[n, n - k] cyclic code. But dim(Cl.) = n - k so we now show that (h) s-;: Cl.
and deduce, from item 11 (b) of section 5.3, that (h) = Cl..

h(x),g(x) represent the words hkhk- 1··· hoOO··· 0 and gOgl··· gn-kOO
.. ·0 respectively. These are orthogonal because their dot product, gohk +
glhk-l+··· issimplythecoefficientofxk inh(x)g(x)=xn-1(O < k< n).
Similarly the dot products of h with gl, g2, ... ,gk-l are the coefficients
(in xn - 1) of X k - 1 , X k - 2 , ... ,x respectively, all of which are zero. Hence
h E CJ.. because it is orthogonal to every row of the generator matrix for
C given by Theorem 8.2.

But CJ.. is cyclic, so every cyclic shift of h is in CJ... Every polynomial
multiple of h(x) corresponds to a linear combination of cyclic shifts of h,
so by linearity these are all in CJ.. tao. That is (h(x)) s-;: C, as claimed.

o
Corollary. If h(x) = ho + h1x + ... + hkXk is the check polynomial of C,
then the matrix

hk hk-l ho 0 0 0
0 hk h1 ho 0 0

H=

0 0 ... hk ... ho

152 Cyclic codes

is a generator matrix for c~, that is, a parity check matrix for C. 0

[Ex 16, 17]

8.1 Cyclic codes and double-adjacent errors

Throughout this book we have taken the view that errors occur at random
in a word so that it was reasonable to measure the error correcting perfor
mance of a code in terms of the number of correctable error patterns of each
weight. We effectively ignored the distribution of errors within the word.
An important practical application of coding theory is to channels which
induce errors in short bursts rather than scattered through the word, and
the techniques studied in this chapter can be used to devise good 'burst
error correcting' cyclic codes. We refer you to other sources such as [17]
for further details of both the theory and application. In this section we
look at the simple case of 'double adjacent' errors - that is error patterns
of weight 2 in which the two non-zero symbols are adjacent (including the
case of one at each end of the word since we continue to think cyclically).
To be specific, we seek a cyclic code which will correct (at least) all single
errors and all double adjacent errors. The main result for binary codes is

Theorem 8.13 If a binary cyclic [n, k] code C has generator g(x) =

(x + 1)p(x) with p(x) lxi - 1 for i = 1,2,· .. , n - 1, then C will correct
all single and all double adjacent errors.

Proof. From Exercise 6b the fact that x + 1Ig(x) implies that all words of
C have even weight. Hence no word of weight one can be a codeword, so
all such words appear in any Slepian array for C somewhere other than the
first row. Furthermore no two words of weight one can appear in the same
row, since it is easy to derive a contradiction from words with polynomial
representations xa and xb(O ~ a < b < n) in the same row: it
would mean x a and x b had the same syndrome, which in turn means their
remainders on division by g(x) are the same, so their difference is a multiple
of g(x). But g(x)lxb - xa ==? g(x)lxa(xb- a - 1) ==? g(x)lxb- a - 1 since
gcd(g(x),xa) = 1, ==? p(x)lxb- a - 1 which contradicts the hypothesis of
the theorem. Hence the words of weight one appear in distinct rows, with
none in the first, so they can all be chosen as their coset leaders, so all
weight one errors are correctable. Hence d(C) :::: 3, and since C is an even
weight code d(C) :::: 4.

This implies that no weight 1 and weight 2 words can be in the same
eoset beeause their difference would be a codeword of weight at most 3.

Finally we show that no pair of weight 2 'double adjacent' words can
appear in the same coset. Assuming the contrary, suppose x a + xa+1 and
xb + xb+l were in the same row. These four terms must be distinct sinee
otherwise their difference would have weight ~ 2. The difference is the
codeword xa + xa+1 + xb + Xb+l = xa(1 + x)(1 + xb- a), a multiple of g(x).

Cyclic golay codes 153

But gcd(xa, g(x)) = 1 so g(x) 1 (1 + x)(1 - x b- a), and hence p(x) 11 - x b- a,
another contradiction.

The outcome of all this is that 0, all words of weight 1 and all double
adjacent words of weight 2 appear in distinct cosets, so they are all minimal
weight words of their respcctive cosets and can therefore be chosen as coset
leaders. 0

[Ex 18J

8.8 Cyclic golay codes

In Chapter 6 we found that the only perfect non-trivial linear codes were
the Hamming codes, binary codes with parameters [23, 12, 7J and ternary
codes with parameters [11, 6, 5J. We also stated (but did not prove) that the
latter two codes were unique up to equivalence, and gave a rather ad hoc
construction of the binary one. In this section both are presented as cyclic
codes, from which an alternative deduction of their minimum distances
is given. The method is essentially that of Hill [1 J, in which an ingenious
chain of results leads eventually to the minimum distance result. Some of
the steps are left as exercises, and some of these involve the congruence
results of Chapter 3. We start with adefinition.

Definition 8.3 let j be a polynomial of degree n. The reversal of j, which
we denote by r ev , is defined as the polynomial whose coefficient sequence
is the reverse of that of j.

We shall be mainly concerned with a polynomial gwhich is the generator
of a cyclic code, so that it has a non-zero constant term. In this case grev
has the same degree as g. For words a rather than polynomials a(x) we
shall write the word which is a with its digits written in reverse order as
Rev(a).

The particular feature which is the key to this treatment of the perfect
Golay codes is that X 23 - 1 over Z2 and XlI - 1 over Z3 have factorizations
of the form (x - 1)g(x)grev(x) and -(x _1)g(x)grev(x) respectively. Note
that for words with non-zero constant terms grev(x) = go g(x), so in the
binary case grev(x) = g(x). [Ex 19J

First we tackle the binary code

Theorem 8.14 Let p be an odd prime for which xP - 1 factorizes over
Z2 as (x _1)g(x)grev(x). Then all codewords of (g) with weight w satisfy
w 2 - w ~ p - 1 if w is odd, and w == 0 mod 4 if w is even, with w =I- 4
unless p = 7.

Proof. By Exercise 19 9 and grev generate equivalent codes and we saw
in Chapter 4 that equivalent codes have identical distance distributions.
For linear codes this means they have identical weight distributions, so for

154 Cyclic codes

each word c of weight w in (g) there is a corresponding word c' in (grev)
with the same weight. From the solution to the same exercise we see that
r is a row of G if and only if Rev(r) is a row of G'. But 'Rev' is a linear
operator (Rev(,Xa + J.Lb) = ,X Rev(a) + J.L Rev(b)), so it follows that the
words of (g) are just the revers als of the words of (grev).

xp -1
Now g(x)grev(x) = -- = 1 +x+x2 + ... +xp- l , which is a word of

x-I
odd weight p. Let c E (g) with odd weight w, then c' = Rev (c) has the same
weight and is a member of (grev). The polynomials corresponding to c and
c' are multiples of 9 and grev respectively, so their product is a multiple of
l+x+x2+. ·+xp- l . Working modulo xP-l, a multiple of a polynomial J is
just a sum (mod 2) of cyclic shifts of J, so c(x)c'(x) == l+x+x2+ .. ·+xp- l
or 0 mod x P -1, depending on whether the sum has an odd or even number
ofterms. As polynomials in Z2[X]/xP-l c(x), c'(x) both have w(odd) non
zero terms. Hence c(l)c'(I) = w 2 == 1, so c(x)c'(x) cannot be a multiple of
x P - 1. So

c(x)c'(x) == 1 + x + x2 + ... + xp-Imod xP - 1 (1)

Now c(x)c'(x) = (CO+CI x+·· ·Cp_IXp-I)(Cp_1 +Cp-2 x+·· ·+co xp- l),
where exactly w of Co, Cl,···, Cp-l are non-zero.

Multiplying out the left hand side of (1), w ofthe w2 non-zero terms are
of the form ctxp-l, so these must sum to the single term xp- l on the right
hand side. The remaining w 2 - w non-zero terms on the left must account
for the other p - 1 non-zero terms on the right, so w 2 - W ~ P - 1. [Note
that ~ rather than = is correct here because each X U on the right is the
sum of one or more X U terms on the left.] This completes the proof for
codewords of odd weight.

Now take c, c' =Rev (c) to be codewords of even weight w in (g), (grev)
respectively. An identical argument to that already used leads this time to

C(x)C'(x) == 0 mod xP - 1 (2)

c(x) can be written x e1 +xe2 + .. ·+xew where only those terms correspond
ing to the non-zero bits of c have been written down, and 0 :::; ei < p.
Then c'(x) = xp-IC(x- l) = Xp- I- e1 + xp- I- e2 + ... + xp- I- ew , and from
(2) ab ove , when we use these expressions to expand c(x)c'(x) as a poly
nomial every power of x has an even coefficient, that is, 0 mod 2, and of
course xt±np is counted as xt .

In the expansion the term xp - l occurs an even number of times because
it can only arise from products of the form xeixp-I-ei and there are
w of these. Now consider the remaining w 2 - w terms. A typical one is
xp-I-ej+ei with i -I=- j. This comes from x ei xp- I- ej , and if the total number
of occurrences of this term is even it must occur again, say as x ek x p - l - el ,

with i -I=- k, j -I=- land l -I=- k. Hence ei - ej == ek - el mod p, but this
implies ei - ek == ej - el mod p, so we have another pair of cancelling

Cyclic go/ay codes 155

terms xeixp-l-ek and xejxp-l-el. Hence w 2 - w is a multiple of 4. But
w(w - 1) :== 0 mod 4 implies w :== 0 mod 4 since w - 1 is odd so gcd(4,
w - 1) = 1. [Ex 20]

Finally, suppose w = 4, and we then write c(x) as xa + x b + XC + xd.
Hence c(x)c' (x) = (xa +xb +xc +xd)(xp- 1- a +xp- 1- b +xp- 1- c +xp- 1- d).
Expanding c(x)c'(x):== 0 mod x P - 1, we have 4 terms xp- 1 on the left
hand side, and the remaining 12 terms are all those of the form xi+p-l-j
where i, j are distinct members of {a, b, c, d}. The cancelling pairs of terms
are those whose powers are congruent mod p. So ignoring the p - 1 which
is common to all 12 powers, the twelve split into six pairs of the form
(i - j,j - i) which cannot be congruent mod pas this would imply 2(i -
j) :== 0 mod p which is impossible since p is odd and i, j are distinct and
between 0 and p - 1 inclusive. For similar reasons (i - j, i - k) cannot be
a cancelling pair. Another case we can quickly exclude is the pair of terms
Xi+p-l-j, Xk +p- 1- 1 where i,j,k,l aredistinct, forsupposei-j :== k-l.
This forces i - k :== j - l, and of course j - i :== l - k and k - i :== l - j.
Now what can cancel with i - l? Only j - k, k - j, l - i are left, and as
we have already remarked, the last of these is not possible. Hence we are
reduced to

(1) i-j:==k-l (1) i-j:==k-l
(2) i-k:==j-l or (2) i-k:==j-l
(3) i-l:==j-k (3) i-l:==k-j

But the second set of congruences is not aseparate case to consider
because it is just the result of interchanging j and k in the first set. So
working with the first set we derive : 2i - j -l :== j - ladding (1) and (3).

=} 2(i - j) :== 0 which is impossible.
Hence we must have a cancelling pair of the form i - j :== j - k where

i, j, kare distinct, with no cancelling pair of the form just excluded. This
leads to

(1) i-j:==j-k
(2) i - k :== k-l
(3) i - l :== l - j

or
(1) i-j:==j-k
(2) i - k :== l - i
(3) j - l :== l - k

and interchanging i and k in the first set yields the second set, so only
the first needs to be examined. Using (1) and (2) to write i and l in terms
of j and k, i = 2j - k and l = 3k - 2j. Substituting these in (3) we obtain
7(j - k) :== 0 mod p which implies p = 7 since j - k :t 0 mod p. 0

Corollary. The code (g) investigated above is equivalent to the binary
[23, 12, 7] Golay code of Chapter 6. [Ex 21]

In the next theorem we develop a sequence of results culminating in a
proof that a certain cyclic code over Z3 has all the parameters of the perfect
ternary Golay code, and is therefore equivalent to that code.

156 Cyclic codes

Over Z3 you may check that

XlI - 1 = -(x - 1)(x5 + x 4 - x3 + x2 - 1)(_x5 + x3 - x 2 + X + 1)
= -(x - l)g(x)grev(x).

So the cyclic codes (g) and (grev) are equivalent and have dimension 6
and length 11. Let C and D be the cyclic codes (g(x)) and ((x - l)g(x))
respectively, and let c be a codeword of C with weight w. In the statement
of our theorem all numerical congruences are modulo 3.

Theorem 8.15
10

(i) c E D if and only if L Ci == 0;
i=O

(ii) if CE D then w 0;
(iii) if c rJ D then w == 2, and w > 5;

(iv) w i:- 3;

(v) d(C) = 5.

Proof.

(i) Note that if c has polynomial c(x), then c(l) = Co + Cl + ... + ClO.
10

Hence c E D =} x -llc(x) =} c(l) == 0 =} LCi == O.
i=O

10

For the converse, L Ci == 0 =} c(l) == 0 =} x - 1Ic(x).
i=O

But cE C so g(x)lc(x), and x-I 19(x) so gcd(x - 1, g(x)) = 1.

Hence g(x)(x - l)lc(x) and cE D.
(ii) The check polynomial of Dis _grev(x), so the generator polynomial

of DJ., by Theorem 8.12, is

_x5(x- 5 _ x-3 + x- 2 _ x- 1 _ 1) = -1 + x2 - x 3 + x 4 + x 5 = g(x).

Hence DJ. = C, but D ~ C because (x -l)g(x)lc(x) =} g(x)lc(x), so
D ~ DJ..
Thus D is self-orthogonal and any two codewords of D have zero
dot product. In particular, for each c E D, C . C = 0, in other words

10

L c7 == O. But for Ci i:- 0, cr == 1, so this sum is just the weight of C

i=O

and we have w == O. [Ex 22]

(iii) Let u be the 'unit word' 111 ... 1. u(x) = _g(x)grev(x) so u E C.
But x-I lu(x) so u rJ D. Similarly -u rJ D, and u, - u are in
distinct cosets of D because their difference is 2u = -u rJ D.

So applying Exercise 22, C = D U (u + D) U (-u + D), and therefore
any codeword C of C / D is of the form a ± u for some a E D.

Cyclic golay codes 157

Hence the weight of c is

10

L (ai ± 1)2 from the proof of (ii)
i=O

La; ± 2Lai + LI
weight of a ± 0 + 11 from (i)
0 ± 0 + 11 from (ii)

2

c(x) is a multiple of g(x), say c(x) = m(x)g(x). Then crev(x)
mrev(x)grev(x), so is a multiple of g(x)grev(x). But g(x)grev(x) =
-u(x) so c(x)crev(x) = 0, u(x) or -u(x). crev (l) = c(l) -I 0 since
cE C\D so x-I lc(x). So c(x)crev(x) = ±u(x), and therefore has
weight 11. But c(x) has weight w, so c(x)crev(x) has at most w 2 non
zero coefficients, so 11 :::; w 2 . Hence w::=: 4, and since w == 2, w ::=: 5.

(iv) Now let c be any non-zero word of C, with weight w. From (ii) and
(iii) w ::=: 3 and if w = 3 then c E D. We now show that w = 3 is
contradictory: suppose D had such a word c with c(x) = ±xa ± xb ±
XC(O:::; a < b < c:::; 10). Then c'(x) = xll-ac(x) == ±1 ±xi ±xj E C,
where we have written i,j for b-a, c-a respectively (0< i < j :::; 10).
From (i) the sum of the three coefficients is == 0 so they must all be + 1
or all-I, so choose c(x) = l+xi +xj . Now c(x),crev(x) are multiples
of (x -1)g(x) and grev(x) respectively, so c(x)crev(x) == x ll -1 == O.

i.e. (1 + Xi + x j)(xlO + X 10 - i + x 10 - j) == 0

Expanding this and noting that 3xlO == 0, it re duces to

x 10 - i + x lO - j + x lO+i + x 10+j + x 10-i+j + x 10+i - j == O.

These six terms must therefore consist of two cancelling tripIes. 10 - i
cannot be congruent to 10- j mod 11 since 0< j -i < 11, nor to 10+i
as this implies 2i == 0 mod 11, nor to 10-i+j as this impliesj == 0 mod
11. Hence the only remaining candidate is 10 - i == 10 + j == 10+i - j.

These imply 10 - i = 10 + j -11 and 10 + j = 11 + 10 + i - j, from
which i + j = 11 and 2j - i = 11, so 3j = 22, which is impossible.

(v) From (ii) and (iv), if cE D w ::=: 6. From (iii) , if c tj. D w ::=: 5. Hence
for all non-zero c E C w ::=: 5. But g(x) has 5 non-zero terms, so
represents a word of C with weight 5. Hence d(C) = 5

o

So (g) is a ternary cyclic [11, 6, 5] code, and if you now check the Ham
ming bound you will see that it is perfect, and therefore equivalent to the
ternary 2-error correcting Golay code.

158 Cyclic codes

8.9 Exercises for Chapter 8

1. Work out (2x3 + X + 1)(x4 + x 2 + 2x + 2) in Z3[X]/X3 + 2x2 + 1.

2. Prove that Zp[X]/ f(x) is a ring and that all its ideals are principal
ideals.

3. Let R = Z2[X]/X3 - 1. Show that (1 + x) = (1 + x2).

4. Show that the rows of the matrix G whose form is specified in Theorem
8.2 are independent

5. Which of the following codes are (a) cyclic, (b) linearly equivalent to a
cyclic code?

(i) {OOOO, 1100, 0110, 0011, 1001} over Z2

(ii) {OOOO, 1122, 2211} over Z3

(iii) the q-a:ry repetition code over Zp, length n

(iv) the set of all binary words of length n with even weight

(v) the ternary code of length n whose codeword weights are all == 0 mod
3

(vi) as for (v) but with all codewords COCIC2'" Cn-l satisfying L Ci == 0
mod 3.

6.(a) x n - 1 = (x - l)q(x) in Z2[X], What is q(x)?

(b) Let 9 be the generator of the cyclic binary code C of length n. Show
that if x - 1Ig(x) then all codewords have even weight.

(c) Show that q(x) (in (a)) is not a multiple of x-I if n is odd.

(d) Let n (in (b)) be odd, and suppose C has a word of odd weight. Show
that 111 ... 1 E C and that the set of all even weight words of C is
a cyclic code having (x - l)g(x) as its generator.

7. Is x 3 + 2x2 + 2 the generator of a cyclic ternary code of length 8 over
Z3?

8. Find all the binary cyclic codes of length 21 having dimension 9

9. What is the generator polynomial and dimension of the smallest ternary
code containing 112110? What is its minimum distance?

10. Use the method of this section to find a nearly standard G for the cyclic
binary [7, 4] code generated by 1 + x 2 + x 3 .

11. Given that x 6 + x 5 + x 4 + x 3 + 11x15 - lover Z2, find the codeword
mG by the result of Theorem 8.8 where m = 010010001.

12. With the code of Exercise 11 find the syndrome of the received word
010011000111010.

13. Following on from Exercises 11 and 12, find the syndromes of all the
cyclic shifts of the word 010011000111010.

Exercises for Chapter 8 159

14. Verify that over Z3 g(x) = x5 + x4 + 2x3 + x 2 + 2 is a divisor of xl! - 1.
Let C be the cyclic ternary [11, 6] code (g(x)).

Given that d(C) = 5, use error trapping to decode the received word
20121020112. What proportion of errors of weight 2 are not correctable
by this method?

15. Write X 6p(x- 1) as a polynomial where

p(x) = 2x6 + 3x5 + x 3 + 4.

16. Find the generator polynomial for the cyclic member of Ham{3, 2) whose
p.c. matrix is given in section 6.7.

17. Show that the cyclic code C is self orthogonal if and only if h(x)lg(x).
Hence find a self orthogonal binary cyclic code with length 15.

18. Find a binary [15, 10] cyclic code which is all single, all double adjacent
error correcting.

19. Let g be a k x n matrix whose first row is gOgl'" gn-kOO .. ·0 where
g(x) = go + glX + ... + gn_kxn-k is a polynomial of degree n - k with
go =J O. The remaining k - 1 rows are the first k - 1 cyclic shifts of this
row. Let G' be the matrix constructed in the same way from grev. Show
that G and G' generate equivalent codes.

20. There is a difficulty with this argument : there is nothing to prevent
j = k, but in this case our cancelling pairs ij,kl;kl,jl are not distinct,
so the conclusion that w 2 - w has to be a multiple of 4 is invalidated.
Find a way out of this.

21. Using the (unproved) uniqueness remarks in Chapter 6 concerning the
Golay codes, prove the corollary to Theorem 8.14.

22. Show that if C, D are linear codes over Z3 with D ~ C and dim(C) = 1
+ dim(D), then C is the union of three cosets of D.

9

The Reed-Muller family of
codes

9.1 New codes from old

Many technical innovations are the result of combining desirable features
of two or more gadgets to produce a composite object with even more
desirable features. A natural quest ion in co ding theory is whether two good
codes can be combined in some way to produce a better one. One such
combination was invented by Plotkin and published in 1960. It can be used
to describe the Reed-Muller codes, one of which was used in the NASA
space explorations from 1969 to 1976, in particular to transmit the Mariner
9 pictures of Mars in January 1972.

9.2 Plotkin's construction

The method to be described takes two binary codes Cl and C2 of the same
length n, and produces from them another binary code Cl *C2 of length
2n.

A typical word of Cl *C2 is defined as folIows: for the first n places take
a word U of Cl, and for the last n take the word u + v where v is any
word of C2 . The complete code Cl *C2 is the set of all words which can be
formed in this way. If we use alb to represent the word formed by writing
the bits of b after the bits of a, then Cl *C2 is given by:

Definition 9.1 CI*C2 = {ulu + v : U E CI,v E Cd

For example, if 101011 E Cl and 100010 E C2 , then the corresponding
word of Cl *C2 is

1,0,1,0,1,1,1 + 1,0 + 0, 1 + 0,0 + 0, 1 + 1,1 + 0

101011001001.

Notice that in general CI*C2 =I=- C2*CI·
The following theorem relates so me properties of Cl and C2 to those of

Cl *C2 •

162 The Reed-Muller family of codes

Theorem 9.1 If Cl is binary linear [n, kl , dl] and C2 is binary linear
[n, k2 , d2] then

(i) Cl *C2 is linear,

(ii) dim(C I *C2) = k l + k2 ,

(iii) d(C I *C2) = min{2dl , d2 }

Proof.

(i) This is left as an exercise [Ex 1]

(ii) Each ordered pair (u, v) of Cl x C2 determines a word of Cl *C2

namely ulu + v. Now ICII = 2k1 and IC2 1 = 2k2 SO IC I X C2 1 =
2k1 X 2k2 = 2k1 +k2 . If these 2k1 +k2 ordered pairs determine distinct
words 0/ Cl *C2 , this means Cl *C2 has 2k1 +k2 codewords. Since Cl *C2

is linear from (i), its dimension is therefore k l + k2 .

So all that remains to complete the proof of (ii) is establish the un
derlined claim above. This is also left as an exercise. [Ex 2]

(iii) U se Ui, U~, Vi, V~ to represent the i th bits of U, u ' , v, v' respectively.

Let a = ulu + v and b = u'lu' + v' be any two different words of
Cl *C2 .

There are two cases to consider: first, if v = v' (so that u i- u ' from
the proof of (ii)), then a = UI, U2,"" U n , UI +VI, U2 +V2,"" U n +Vn

and b = U~, U~, ... , U~, U~ + VI , U~ + V2, ... , U~ + Vn .

Now u + v differs from u' + v in exactly the same places as u differs
from u', so d(a, b) = 2d(u, u').
But d(u, u') 2:: d(Ct} = dl so

d(a, b) 2:: 2d l (1)

secondly, if v i- v' we have

d(a, b) d(u, u') + d(u + v, u' + v')
w(u + u') + w((u + v), (u' + v'))
d(o,u+u') +w((u+u'),(v' +v'))
d(0, u + u') + d(u + u', v + v')

> d(0, v + v') by the triangle inequality
> d(C2)

= d2 (2)

From results (1) and (2) above we have:

d(a, b) 2:: either 2dl or d2

so d(a, b) 2:: min {2dl , d2 }

Hence d(C I * C2) 2: min {2dl , d2 } (3)

So all that remains to complete the proof of (iii) is to show that the

The Reed-Muller family 163

2: in result (3) above is in fact always =. We do this by finding two
words of Cl *C2 , which differ in precisely min {2d l , d2 } places, and
again it is convenient to consider two separate cases.

First, suppose 2dl 2: d2 so that min{2d l , d2 } = d2 .

Let a = ulu + v and b = ulu + v' where v, v' are chosen from C2 to
be at C2 's minimum separation d2 .

Then clearly d(a, b) = d2 = min {2d l , d2 }.

Alternatively, if 2dl < d2 then min{2d1, dd = 2d1.

In this case choose two words u, u' of Cl, at Cl' s minimum separation
dl , and let a = ulu + v and b = u'lu' + u where v is any word of
C2 . Then clearly u + v and u' + v differ in exactly the same places
as those where u and u' differ, so

d(a, b) = 2d1

Hence, d(C I *C2) = 2d l = min {2d l , dd

9.3 The Reed-Muller family

o
[Ex 3,4]

This two-parameter family of linear binary codes is conveniently described
using the * construction. For each pair of parameters (r, m), the code
RM(r, m) has length 2m and dimension r, and these parameters are con
strained by 0:::; r :::; m. Because ofthis constraint, ifwe represent RM(r, m)
bya point (r, m) in the plane, those points which represent Reed-Muller
codes are as shown in Figure 9.l.

Our first form of definition ofthe Reed-Muller family describes RM(o, m)
and RM(m, m) explicitly, then gives any other RM(r, m) (i.e. ° < r < m)
in terms of RM(r, m - 1) and RM(r - 1, m - 1).

To relate this to Figure 9.1: the circled codes are given explicitly, and to
obtain, for example, RM(3, 6), we need to know RM(3, 5) and RM(2,5).
Or in general, provided we know all the codes in one row, then all the
codes in the row above can be determined. But the codes in the first two
rows are known (RM(O, 0), RM(O, 1) and RM(I, 1)). Hence the codes in
the next row up can be found, then the next, ... and so on. This method
of successively constructing each code from earlier codes in a list is very
reminiscent of the way proof by induction works, and such constructions
are called inductive (or recursive) definitions.

Here then is the definition:

Definition 9.2

1. RM(O,m) = {O, I} where 0 is the all-zeros word and 1 is the all-ones
word, of length 2m .

2m
2. RM(m, m) = Z2 .

164 The Reed-Muller Jamily oJ codes

m
m=r

7 • • •

6 • • • •

5

4

3 •

2

2 3 4 5 6 7

Figure 9.1 The Reed-Muller codes.

3. For ° < r < m,RM(r,m) = RM(r,m -1) * RM(r -l,m -1).

So RM(O,m) is simply the rather boring repetition code of length 2m ,

with only two codewords. RM(m, m) is the very big but useless code con
sisting of all binary strings of length 2m , so this has 22m words. Somewhere
between these extremes we shall find so me codes with good error correcting
potential.

Let us first use this definition to see what the first few Reed-Muller codes
look like.

From 2. (or 1.) RM(O, O) = zi = {O, 1}
From 1. RM(O, 1) = {OO, 11}
From 2. RM(l, 1) = {OO, 01,1O,11}
From 1. RM(O, 2) = {OOOO, 1111}
From 3. RM(l, 2) = RM(l, 1) * RM(O, 1)

= {00, 01,1O,11} * {OO, 11}
= {00100 + 00,00100 + 11,01101 + 00,01101 + 11,

10110 + 00, 10110 + 11,11111 + 00, 11111 + 11}
{0000, 0011, 0101, 0110, 1010, 1001, 1111, 1100 }

Clearly this is an extremely messy process to continue much further , so you
should now look at Exercises 5-7 which ask you to do one more step in the
above construction, establish that for all r, m, RM(r, m) is linear and has
length 2m , and find a generator matrix for RM (r, m). [Ex 5-7]

The size of the Reed-Muller codes is an interesting number:

The Reed-Muller family 165

Theorem 9.2 RM(r, m) has 2!(r,m) codewords (that is, its dimension is
f(r, m)), where f(r, m) = L~=oGn).

Proof. Since the RM family is defined inductively it should be no surprise
that the proof is inductive. We use induction on m and take as our inductive
hypothesis that RM(r, m) has dimension f(r, m) when m = k for all r ::; k.

Basis step : IH certainly holds when k = 0, because the only Reed-Muller
code with m = 0 is RM(O, 0) and its dimension is clearly 1, which agrees with

o

J(O, 0) = 2)7) = (8) = 1
i=O

Induction step : assuming I H, we try to prove that RM(r, k+ 1) has dimension
J(r, k + 1) for all r :S k + 1. There are three cases to consider, corresponding
to the three clauses in the definition of RM(r, m).

k+l
Case 1 : r = k + 1. From clause 2, RM(k + 1, k + 1) is the whole of Z~ ,
which has dimension 2k+ 1 . So we check that this agrees with J(k+ 1, k+ 1).

k+1 k+1

J(k + 1,k + 1) = L (7+1) = L (7+1) lk+1-i 1i and
i=O i=O

this last expression is just the binomial expansion of (1 + l)k+1, that is
2k+1 as required.

Case 2: r = O. From clause 1, RM(O, k + 1) is just the repetition code of
length 2k+ 1 , with dimension 1. This agrees with J(O, k + 1) = L~=o (7+ 1)

= (~+1) = 1.

Case 3: 0 < r < k+ 1. In this case clause 3 applies, and we have RM(r, k+
1) = RM(r, k) * RM(r - 1, k).
By IH we have

dim(RM(r, k))

and dim(RM(r - 1, k))

J(r,k)

J(r -l,k)

So by Theorem 9.1 part(ii) we have

dim(RM(r, k + 1)) = J(r, k) + J(r - 1, k).

So it remains to show that this is equal to J(r, k + 1), and this is just a
matter of manipulating binomial coefficients:

f(r, k) + f(r - 1, k) = (~) + (n + (~) + ... + (~-1) + (~)
+ (~) + (n + ... + (~-2) + (~-d

= (~) + (~+1) + (~+1) + ... + (~:D + (~+1) (*)
= (~+1) + (~+1) + (~+1) + ... + (;:D + (~+1) (**)
= L~=o (7+1) = f(r, k + 1) as required

166 The Reed-Muller family of codes

Note: line (*) comes from adding the pairs ofterms vertically aligned in the
previous two lines and using the Pascal triangle relation. Line(**) simply
uses the fact that (ö) is independent ofn to replace (~) by (~+1) and hence
prepare for the final line.

Theorem 9.3 The minimum distance of RM(r,m) is 2m - r .

The proof is left as an exercise.

o

o
[Ex 8,9]

From the generator matrices established in Exercise 7 we can deduce a
nice connection between the codes in a given row of Figure 9.1. It is simply
that any RM(r, m) code is a subcode of any code to the right of it in the
same row. Specifically, we prove

Theorem 9.4 For all m, and all positive r :::; m, RM(r-1, m) c RM(r, m).

Proof. Again the proof is by induction on m. We take as the I H the
assertion that the theorem is true for m :::; k. For m = 1 we just have to
show that RM(O, 1) C RM(1, 1), and this is clearly true by referring to our
listing of the first few Reed-Muller codes. That completes the basis of the
induction, so now we have to take any word in RM(r - 1, k + 1) and show
that it is in RM(r, k + 1).

Now
W E RM(r -1, k + 1) =} W = ulu + v

where
u E RM(r - 1, k), v E RM(r - 2, k).

But by I H u E RM(r, k) and v E RM(r-1, k). Hence W E RM(r, k+ 1)
by using the definition of the Reed-Muller codes again. 0

[Ex 10]

9.4 An alternative description of Reed-Muller codes

This makes use of some elementary Boolean algebra. We shall see in this
section how the code words of a Reed-Muller code may be identified with a
set of Boolean polynomials. What we need is a modification of the disjunc
tive normal form which uses the 'exclusive or', EB, rather than the 'inclusive
or', +. The relations between these, and the properties of EB which we re
quire are listed below:

1 a EB (b EB c)
2
3
4
5
6
7

a+b
aEBb
1EBa
OEBa
aEBa

a(b EB c)

(aEBb)EBc
a EB b EB ab
bEBa
Ci

a
o
ab EB ac

An alternative description 01 Reed-Muller codes 167

X Y z f(x,y,z)
0 0 0 1
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 1
0 1 1 0
1 1 1 0

Figure 9.2 Obtaining a EE1 normal form.

If we have a function f, of m Boolean variables, its truth table will have
2m rows. The last column, giving the values of f(XI, ... ,Xm), is then a
binary string of length 2 m , and there are 2(2"') such strings, corresponding
to the fact that there are 2(2"') Boolean functions of m variables.

The following example shows a way of starting from a Boolean function
given by its truth table and constructing an expression for it as a EB sum
of products of the variables. Let f be the Boolean function given by the
truth table of Figure 9.2.

The disjunctive normal form of f(x, y, z) is therefore xyz + xyz. Writing
this in terms of EB using the seven properties listed above we get:

(1 EB x)(l EB y)(l EB z) + x(l EB y)z
(1 EB x)(l EB y)(l EB z) EB x(l EB y)z
1 EB x EB Y EB z EB xy EB xz EB yz EB xyz EB xz EB xyz
1 EB x EB Y EB z EB xy EB yz

[Ex 11,12]

There are a couple of things which make this EE1 form particularly con
venient. One is that EB is an easy Boolean operation to implement with
electronic hardware (though this book does not consider such problems).
The other is that it is unique, by which we mean that any EB sum equiva
lent to xyz + xyz must contain as its individual terms 1, x, y, z, xy, yz and
no others. The only freedom we have is in the order in which the terms
are written down. (This is reminiscent of the unique prime factorization
theorem of Chapter 3.) Note that we are using term to mean any Boolean
product of any subset of the variables, conventionally letting the constant
term 1 correspond to choosing the empty subset. We do not count the other
constant 0 as a term since this would invalidate the uniqueness claim we
made above, since x EB xy EB z = x EB xy EB z EB o.

We define the degree of a term to be the number of variables in it, so
1, Xl, X4, X5X3 have degrees 0, 1, 1,2 respectively, and it should be clear from
the example following Figure 9.2 or from Exercise 12 that any Boolean
function of m variables can be expressed as a EB sum of terms each of

168 The Reed-Muller family of codes

degree at most m. It remains to establish the uniqueness claim, and this is
surprisingly easy, just a counting argument.

Theorem 9.5 Each Boolean function of m variables has a unique expres
sion as a EB sum of terms of degree :S m.

Proof. Each subset of the m variables corresponds to a term. Hence there
are 2 m possible terms. There are 2(2"') Boolean functions of m variables
and there are 2(2"') subsets of the 2m terms. For each of these subsets
consider the function obtained from the EB sum of its members (with the
constant zero function corresponding to choosing the empty set). So the
number of EB sums is exactly the same as the number of Boolean functions,
so no function can be represented by more than one EB sum, and this is
precisely our uniqueness claim. 0

Notice that there is no such neat uniqueness result with EB replaced by
+, since, for example,

xy + xz + y = y + XZ.

To relate this discussion to binary codes, note that EB is just addition mod
ulo 2 since OEBO = 1 EB 1 = 0 and OEB 1 = 1 EBO = 1. Furthermore, as a binary
vector, a term corresponds to the binary column of its truth table, so in
the case of functions of 3 variables the constant term 1 is (11111111f, xz
is (00000101f, etc.

We can therefore think of the individual terms (from a set of m variables)
as an independent set which spans the whole of Zr', so they make a basis
für this space.

Our purpose now is to show that RM(r, m) is, in this interpretation,
just the set of all EB sums of Boolean terms of degree at most r, over the
variables XI,X2,'" ,Xm . We first check that we do have the right numbers
of functions and terms. Clearly there are (r) terms of degree i, so the
number of terms of degree :S r is E;=o(r). This, from Theorem 9.2, is
precisely the dimension of RM(r, m), so it looks as if we are on the right
lines.

To make the proof run smoothly we stick to the ordering of the rows
and columns of truth tables used thus far. That is, the column for Xl is
[010101. .. 01 V, X2 has [001100110 ... , 0011]T, until xm which just has a
single block of 2m - 1 zeros followed by 2m - 1 Is. If we did not have this
ordering the proof would be harder to follow, and we might end up with
a code equivalent but not identical to what we have previously defined as
RM(r,m).

The proofworks essentially by showing that the set BF(r, m) of Boolean
functions of m variables whose EB sum forms contain only terms of degree
at most r satisfy exactly the same recurrence relations as do the set of
codewords of RM(r, m).

We first need a preliminary result about Boolean functions.

An alternative description 01 Reed-Muller codes 169

Theorem 9.6 If f is a Boolean function of m variables Xl, X2, ... , Xm,
then there exist Boolean functions g, h of m - 1 variables such that

f(Xl, X2,···, Xm) = Xm.g(Xl, X2,···, Xm-l) EB h(Xl, X2,···, xm-d

Proof.

f(Xl, ... ,Xm) = Xmf(Xl, ... ,Xm-l, 1)
= Xmf(Xl, ... ,Xm-l, 1)
= Xmf(Xl, ... ,Xm-b 1)
= Xmf(Xl, ... ,Xm-l,l)

+
EB
EB
EB
EB

= Xm[f(Xl, ... , Xm-b 1) EB

= Xm·g(Xl, ... ,Xm-l)

where 9 and h are defined by

EB
EB

Xm·f(Xl, ... , Xm-l, 0)
Xm·f(Xl, ... , Xm-l, 0)
(1 EB xm)·f(Xl, ... , Xm-l, 0)
Xm·f(Xl, ... , Xm-l, 0)
f(Xl, .. ·, Xm-ll 0)
f(Xl, ... ,Xm-l,O)]
f(Xl, ... ,Xm-l,O)
h(Xl, ... , xm-d

g(Xl, ... , xm-d = f(Xl, ... , Xm-b 1) EB f(Xll.·., Xm-l, 0)
and h(Xl,· .. ,xm-d = f(Xl, ... ,Xm-l,O)

o
Now suppose that f(Xl, ... , Xm) has degree ::; r. It could happen that

f (Xl, ... , Xm) has terms of degree r in its EB expansion and that one or
more of these terms does not involve Xm. So all that we can guarantee
about the degree of h(Xl, ... ,Xm-l) = f(Xl, ... ,Xm-l,O) is that it too is
::; r. So, as a binary vector h(Xl' ... ,xm-d E BF(r,m - 1). We shall call
this the vector h (of length 2m - i).

Now consider

xmg(Xl, ... , Xm-l) = Xm[f(Xl, ... , Xm-l, 0) EB f(Xl, ... , Xm-l, 1)].

This is part ofthe EB expansion of f(Xl, ... , Xm) from Theorem 9.6, so it has
degree ::::: r, and therefore g(Xl, ... , Xm-l) can only have degree ::::: r -1. The
corresponding binary vector gis therefore a member of BF(r - 1, m - 1).

All this is illustrated in thetruth tableofFigure 9.3. Wetake f(Xl, ... ,Xm)
to correspond to the vector f = al a2 ... a2m-1 ai a~ ... a;m_l' and the en
tries in the three columns to the right of this are then deduced from the
defining formulae at the top of these columns.

From the result of Theorem 9.6 and Figure 9.3 we see that f = olg EB
hlh = hlh EB g.

Now f was an arbitrary member of BF(r, m), and h, gare members of
BF(r,m -1), BF(r -1,m -1) respectively. So any word in BF(r,m) is
a member of BF(r, m - 1) * BF(r - 1, m - 1), as defined in section 9.2.
Conversely, it is clear that if we take arbitrary h, 9 in BF(r, m-l), BF(r-
1, m-l) respectively, and form the word hlhEBg, the result is in BF(r, m).
Hence BF(r, m) = BF(r, m - 1) * BF(r - 1, m -1).

When r = ° BF(r - 1, m - 1) does not exist so this formula cannot
be used. However BF(o, m) consists of just the constant functions of m

170 The Reed-Muller family of codes

f(XI, ... ,Xm) =
Xm(J(XI, ... , Xm-I, 1) EB f(XI, ... ,Xm-I, 0)) EB f(XI, ... , Xm-l, 0)

Xl X2 Xm-l Xm I II III IV

0 0 0 0 al 0 al a~ EB al
1 0 0 0 a2 0 a2 a2 EB a2

0 1 0 0

1 1

0

1

0 0 1

1 0

0 1
1 1 1 0 a2=-1 0 a2"'-1 a;"'_l EB a2=-1

0 0 0 1 a' I a~ EB al al a~ EB al
1 0 0 1 a2 a2 EB a2 a2 a2 EB a2

0 1 1

1 1

0

1

0 0 1

1 0

0 1
1 1 1 1 a;"'_l a;=_l EB a2=-1 a2m - 1 a;"'_l EB a2m-1

! ! ! !
f olg hlh gig

Column I = values of j(XI,X2,'" ,Xm)
Column II = values of Xmf(XI, X2, ... , Xm-I, 1)

EBxmf(XI, X2,"" Xm-I, 0)
Column III = values of f(XI, X2,"" Xm-l, 0)
Column IV = values of f(XI, X2,···, Xm-l, 1) EB f(XI, X2, ... , Xm-l, 0)

Figure 9.3

An alternative description of Reed-Muller codes 171

variables, and as binary vectors these correspond to just the all zero and all
one words of length 2m . Note that this agrees with our previous definition
of RM(o, m). [Ex 13-15]

When defining the codes RM(r, m) we imposed the restriction that r :::;
m and defined RM (m, m) explicitly as the set of aB words of Zr. This was
necessary because attempting to use the recurrence relation to determine
RM (m, m) would necessitate using RM (m, m -1) which is not defined due
to the restriction r :::; m. With BF(r, m) no such restriction is necessary,
and the formula with r = m, namely BF(m, m) = BF(m, m-1)*BF(m-
1, m - 1), still holds, as you can check using the results of Exercises 13-15.

In any case we have now succeeded in showing that RM(r, m) and
BF(r, m) coincide when r = 0 and when r = m, and for values of r between
these extremes they satisfy the same recurrence relation. Hence they are
identical for all r with 0 :::; r :::; m, and we therefore have two equivalent
descriptions of the Reed-MuBer codes. [Ex 16]

A furt her advantage of our new description is that it is easy to find a gen
erator matrix for any given RM(r, m) without working through the smaBer
Reed-Muller codes and using the recursive formula developed in Exercise
7. The key to this is our previous remark that BF(r, m) has as a basis the
set of all terms of degree :::; r, with m variables available. To illustrate for
RM(2,4), suppose a truth table for four variables is written in the stan
dard way. Then a basis for RM(2, 4) is the set of columns corresponding to
1, Xl, X2, ... , X4, XIX2, XIX3,"" X3X4, XIX2X3, ... , XIX2X3X4. Writing these
columns as rows of the generator matrix we obtain a generator matrix for
RM(2,4) as:

1
Xl

X2

X3

X4

XIX2

XIX3

XIX4

X2 X3

X2 X 4

X3 X 4

XIX2 X 3

XIX2 X 4

XIX3 X 4

X2 X 3X4

XIX2 X 3X4

1111111111
o 1 0 1 0 1 0 101
001 100 1 100
o 0 001 1 1 100
o 0 000 000 1 1
000 1 000 1 0 0
0000010 100
000000000 1
000 000 1 100
o 0 0 0 0 0 0 000
o 0 0 0 0 0 0 000
o 0 0 0 000 100
o 0 0 0 0 0 0 000
o 0 0 0 0 0 0 000
o 0 0 0 0 0 0 0 0 0
o 0 0 0 0 000 0 0

1 1 1
010
110
001
1 1 1
010
o 0 0
010
o 0 0
110
o 0 1
000
010
000
o 0 0
o 0 0

1 1
1 0
o 1
1 1
1 1
o 0
1 0
1 0
o 1
o 1
1 1
o 0
o 0
1 0
o 1
o 0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

172 The Reed-Muller family of codes

9.5 Hamming codes, first order Reed-Muller codes - some
connections

If we restrict attention to first order Reed-Muller codes there is yet another
way of obtaining them - as duals of extended Hamming codes.

To understand this relationship start with a parity check matrix H m for
a binary Hamming code of length 2m -1. Recall that this is a (2m -1) X m
matrix whose columns are the binary representations of the numbers from 1
to 2m -1 in anyorder. Now consider this code extended by adding a single
parity check bit at the end of each code word and recall from Chapter
6 that a p.c. matrix for the extended code can be obtained by adding a
column of zeros to the right hand end of Hm , then adding a row of ones at
the top of the result. If we call the matrices constructed in these two steps
Bm and Jm the results for m = 3 are shown below.

[0 0 0 1 1 1 :], B3~ U 0 0 1 1 1 1 n, H3 = 0 1 1 0 0 1 1 1 0 0 1 1
1 0 1 0 1 0 0 1 0 1 0 1

[~
1 1 1 1 1 1 n, h=
0 0 1 1 1 1
1 1 0 0 1 1
0 1 0 1 0 1

or in general,

Jm = [H~O] [;m]
where 0 and 1 are the all zero column and all one row of lengths m,2m

respectively.
Jm is a generator matrix for the dual of an extended Hamming code, and

we have the tools to prove:

Theorem 9.7 RM(l, m) is the dual of an extended binary Hamming code
of length 2m .

Proof. Clearly from the preceding discussion we just need to show that
Jm is a generator for a code equivalent to RM(l, m). To do this we first
need to remove the ambiguity in the definition of Jm , so just agree a fixed
order for the columns of H m . For definiteness, choose column i to be the
binary representation of the integer i (1 ~ i ~ 2m - 1), though any
agreed order would do.

Let C(1, m) be the generator matrix constructed by Exercise 7. We show
that the matrices Jm and C(l, m) differ only by apermutation of their
columns, so that the codes they generate are cetainly equivalent. The no
tation A rv B will be used for matrices which differ at most in this way.

Hamming codes, first order Reed-Muller codes - some connections 173

Now J1 is [~ ~] and in our solution to Exercise 7 we took G(I, 1) to

be [~ ~], so certainly JI '" G(I, 1).

For m > 1 we had

G(l,m)~ [G(l,;-l) G(I'7- 1) 1
from which we see that the top row of G(I, m) is 1 for all m.

Now

and exactly half the columns of Bm end in 0 so by doing a column permuta
tion on Jm , put these columns in the first 2m - I places. This of course makes
no difference to the top row so the resulting matrix can be partitioned as:

[
111 ... 1

Jm ", MI
000 ... 0

111 ... 1 1
M 2

111 ... 1

where MI '" M 2 . A further column permutation confined to the last
2m - I columns will convert M 2 into a copy of MI so

[
111 ... 1

Jm ", MI
000 ... 0

111 ... 1 1
MI

111 ... 1

and finally, column permutations to bring the all zero column of each
copy of MI to its right hand end will achieve

'" [111 ... 1 111 ... 1]_ [Jm - I
Jm H m - I 0 H m - I 0 - 0

o 1

If we now take as the induction hypothesis the assertion that Jm - I

G(l, m - 1) we have

Jm - I

1

and the proof is complete. o

Here is another way of obtaining the same result, using the parameters of
the Reed-Muller codes derived in this chapter and the uniqueness results
for Hamming codes from Chapter 6. We first show that the dual of any
Reed-Muller code is another Reed-Muller code. Specifically, we have:

Theorem 9.8 RM(r, m)~ = RM(m - r - 1, m).

174 The Reed-Muller family of codes

Proof. The first step is to show that every word in RM(r, m) is orthogonal
to each word of RM (m - r - 1, m). In Chapter 5 you saw that this is
equivalent to showing that every row of any generator matrix for RM (r, m)
is orthogonal to each row of a generator for RM (m - r - 1, m). The proof
of this is by induction on m.

Suppose the result holds for m = k - 1 and all relevant r. m = 1 is the
smallest value of m for which both matrices are meaningful, and we leave
you to check the basis step. [Ex 17]

Now using our recursively defined generator matrices we have:

G(r,k)~ [G(r'~-I) G(r, k - 1) 1 = [A A 1
G(r-l,k-l) 0 B

and

G(k-r-l,k) [G(k - r ~ I, k - I)

[~ g 1

G(k-r-l,k-l) 1
G(k-r-2,k-l)

Let us denote typical words from the AA, OB, ce, 0 D sections of the
partitions by ala, olb, eie, old respectively.

We need to show that (ala).(ele), (ala).(old), (olb).(ele), (olb).(old) are
all zero.

Now

(ala).(clc), = a.c + a.c = 0

(ala).(old) = a.d = 0

(olb).(clc) = b.c = 0

(olb).(old) = b.d = 0

(remember the arithmetic is mod 2).

by the induction hypothesis since a E
RM(r, k - 1) and d E RM(k - r - 2, k - 1)

again by the induction hypothesis because
b E RM (r - 1, k - 1) and c E RM (k - r -
1, k - 1)

because b E RM(r -1, k -1) C RM(r, k -1)
and d E RM(k - r - 2, k -1) so the IR yields
what we want again.

So we have now established that RM(m-r-l, m) t;;;; RM(r, m)l.. Finally,
to change t;;;; to = we prove that these two codes have the same dimension,
so by section 5:3, item 11. they must be equal. This is left as an exercise,
with the hint that it is just another manipulation of binomial coefficients.

[Ex 18]

o

Exercises for Chapter 9 175

Specializing to first order codes we have RM(I, m)~ = RM(m - 2, m),
and we now compare RM(m - 2, m) with the extended binary Hamming
code of length 2m . This code, recall from Chapter 6, has dimension 2m -

1 - m and minimum distance 4.
Now RM(m - 2, m) also has length 2m ; its dimension is:

2:::~2(f) 2:::o(f) (~) (~-l)
2m 1 m; and

d(RM(m - 2, m)) 2m -(m-2) = 4, by Theorem 9.3.

So RM(I, m)~ is a code with the same parameters as the extended Ham
ming code of length 2m , so by the uniqueness result of Chapter 6 the two
codes are equivalent and we have our alternative proof of Theorem 9.7. 0

9.6 Exercises for Chapter 9

1. Prove part (i) of Theorem 9.1.

2. Complete the proof of (ii) by showing that if u, u' E Cl and v, v' E C2

then the words ulu+v and u'lu' +v' of Cl * C2 cannot be equal, unless
of course u = u' and v = v'.

3. Let Cl and C2 be binary linear codes of length n with generator matrices
GI, G2 , respectively. Show that a generator matrix for Cl * C2 is

where 0 represents the all-zero matrix of appropriate size.

4. Let C be a code of the family Ham (3,2), and D = C * C.

(a) Find the dimension and minimum distance of D.

(b) Is D a perfect code?

(c) Give two reasons why, whichever Slepian array is chosen for D, not
all words of weight 2 can be coset leaders.

(d) Find a parity check matrix for D, and hence find two error patterns
each of weight 2, only one of which can be correctly decoded.

5. List the code words of RM(2, 3) using our initial definition of RM(r, m).

6. Show that for all r, m, RM(r, m) is linear and has length 2m .

7. If G(r, m) is a generator matrix for RM(r, m) show that G(m, m) may
be taken to be

[G(m -1,m)]
0000 ... 01

• and G(O, m) = [111 ... 1] (of length 2m), and find a recursive definition
of G(r, m) for 0 < r < m.

176 The Reed-Muller family of codes

8. By copying the technique for proving Theorem 9.2 and making use of
Theorem 9.1 (part (iii)), prove Theorem 9.3.

9. Using Exercise 7 construct generator matrices for RM(2, 3) and RM(2, 4).

10. Show that there are Reed-Muller codes which are at least 7-error cor
recting and contain over 1000 codewords. Find one of shortest length.

11. Check that you can follow the derivation of the EB form of xy z + xy z by
saying which of the rules 1-7 is being used at each step.

12. Derive the EB form of the Boolean function, xyz + xyz + xyz + xyz.
13. If C is any binary linear code, find a simple description of the code C *

C.

14. Show from its definition that BF(r, m) is linear.

15. What is BF(r, m) when r ~ m?

16. Show that Theorems 9.2 and 9.4 have particularly easy proofs if the
Boolean function description of RM(r, m) is used.

17. Carry out the basis step in the proof of Theorem 9.8.

18. Show that dim[RM(m - r -1, m)] = dim[RM(r, m).l], thus completing
the proof of Theorem 9.8.

Appendix. A

Solutions, answers, hints

Chapter 1

1. The principle example of a function we wish to emphasize and illustrate
at this point is that of a computation by a computer program.

2. P(sym) = (a~ß) 2 (3 - 2 (a~ß)), as shown at the end of Chapter 1.

P(non - sym) = P[111 sent and 2 or 3 errors of type 1 0 are made]

+ P[OOO sent and 2 or 3 errors of type 0 1 are made]

= 0.5 (a3 + 3a2(1 - a)) + 0.5(ß3 + 3ß2(1 - ß))

Do some algebra to get P(sym) -P(non-sym) = ~(a- ß)2(a+ß-1).

The sign of this is clearly controlled by the sign of a + ß - 1, so we need
to know whether a+ß > 1 (an extremely noisy channel!), or, most likely
for a realistie channel, a + ß < l.
In this latter case P(sym) - P(non - sym) is negative, so the symmetrie
channel is to be preferred.

3. If one or three errors are made this will cause the received word to have
an odd number of ls, so these errors are detectable. So received words
are erroneously accepted if and only if the channel induces two or four
errors. The probability of this is

Chapter 2

1. 1011100, 1111111, 0111000.

2. 13 + 49 is encoded as 00011100011011101001001000111001001.
259 -;- 7 is encoded as 00101010101101100100111010100111000 .

178

The string can be decoded as

10 - 8

i i i
14 x + ,

*

Solutions, answers, hints

9-;-?

*
The arrows indicate symbols which can be interpreted as 0, -, 'space',
respectively, by correcting what is assumed to be a single error in the
corresponding 7-bit string. ,*, indicates a place where we are reduced to
guessing, as 1111111 is a correct encoding of 1111 but this is not one of
the 'messages'. Similarly, by assuming one error in the ninth 7-bit string
this decodes to + but then the corresponding sum is 14 x + which
makes no sense. In the case of the final 1111111 some progress can be
made by the exercise of common sense: assuming we are only involved
in whole number arithmetic this last symbol could only be 1, 3 or 9. 3
would mean 1111111 contains three errors, but 1 or 9 would both mean
four errors - so let's go for 3! Interpreting that doubtful + is more of a
problem, and we'd probably be reduced to asking for retransmission.

3. Suppose the transmitted word is PIQ2Q3q4rsr6r7, and consider in turn
the effect on the parity checks of changing PI, one of the Qs, one of the
rs. You will see that in all three cases exactly the right parity checks fail
in order for the changed bit to be located.

4. 10001110, 11100010, 00110110.

5. 11111111, 11010100, the last word has at least two errors and is not
uniquely decodable.

6. With exactly two errors, the errors could be in bits (1,8), (2,5), (3,6) or
(4,7).

7. If there are two errors the overall parity check must work, and at least
one of the other checks must fail.

If only A fails the error locations can only be (1,2), (5,8), (3,7), (4,6),
and by symmetry there will also be 4 possible pairs if only B or only C
fails.

If A and B but not C fails, the error locations are (5,6), (2,3), (1,7) and
(4,8), and similarly when A,C or B,C are the failing pair.

Finally, if A,B and C fail, the error locations are (1,8), (2,5), (3,6) or
(4,7).

Notice that there are seven possible subsets of {A,B,C} which may fail:
{A}, {B}, {C}, {B,C}, {A,C}, {A,B}, {A,B,C}, and we have shown that
each is associated with four possibilities for the errors, giving a total
of 28 pairsof errors. This provides a check on the reasoning because
there are just (~) = 28 ways of choosing which two of the eight bits are
corrupted.

8. ?0?0111 can only have co me from 1000111. xy11001 leads to the parity

Solutions, answers, hints 179

checks: (A) x + 1 + 1 is even; (B) x + y + 1 is even; (C) x + y + 1 is odd,
and clearly these are incompatible.

If we assurne a single error amongst the recognizable bits, taking the
four possibilities for x and y in turn we get:

x = y = 0, B fails , implying bit 6 is the error;
x = y = 1, A and B fail, implying bit 4 is the error;
x = 0, y = 1, C fails , implying bit 7 is the error;
x = 1, Y = 0, A and C fail, implying bit 3 is the error.

So as in the case of the (8,4) code with two errors, the best we can do
is narrow the choice down to four possible words.

9. If the received word is denoted by PIq2q3q4T5T6T7 there are essentially
only the following possibilities for where the erasures are:

PI and a q (say PI and q2); PI and an T (say PI and T5);
both qs (say q2 and q3); both TS (say T5 and T6);
a q and an T (say q2 and T5 or q2 and T6).

For each case the parity checks on A, Band C must be consistent since
we know there are no errors. A glance at the diagram for each of the six
cases should convince you that in each case the identity of the erasures
is uniquely determined.

10. (a) Yes, (b) Yes. Draw the diagrams for erasures in bits 5,6,7 and in
bits 4,5,6. The solution in the first case is unique but there are two
possibilities in the second.

11. If the (8,4) code is used any word received with three erasures is uniquely
recoverable. The basic reason for this is that in those cases in Exercise
10 which led to two possible transmitted codewords, only one of the
solutions satisfies the overall parity check.

12. 27 = 128. Each word can be considered to be the result of making seven
successive choices: choose first bit, choose se co nd bit, ... ; the choices
are independent; each one has two outcomes, ° or l.

24 = 16. In a codeword the last three bits are determined by the first
four.

13. The point P could coincide with A or B or be situated on the straight
line segment joining them, in wh ich case the correct relationship would
be

d(A, B) = d(A, P) + d(P, B).

14. If the words are of length n, d(u, w) is the sum of the contributions
from the n digits. The contribution from the i th digit is ° if Ui = Wi

and 1 if Ui i- Wi. If Ui = Wi then Ui and Wi both agree with Vi or both
differ from Vi. So the contribution to d(u, W) is 0 and the contribution to
d(u, V) + d(V, W) is 0 or 2, and in both cases the contribution to d(u, v) is
::; that to d(u, v) + d(v, w). On the other hand, if Ui i- Wi then Vi must

180 Solutions, answers, hints

differ from at least one of them, so the contribution to d(u, v) is 1, but
that to d(u,v) +d(v,w) is at least one.

So in all cases the i th digit contributes at least as much to d(u, v) +d(v, w)
as it does to d(u, w). Hence, by adding all the contributions we get

d(u, w) :::; d(u, v) + d(v, w).

15. qn - by the same reasoning as in the first part of Exercise 12.

16. (a) at least 4; (b) at least 7.

17. (a) 0: = 3, ß = 1; (b) 0: = 4, ß = 2; (c) 0: = 5, ß = 2

18. The following table gives the distances between all pairs of codewords.
From it we see that d(C) = 2.

cbaaa bcabc bacbc aabbc acccb cbbab

cbaaa 4 5 5 5 2
bcabc 2 3 4 5
bacbc 2 4 5
aabbc 4 4
acccb 4

(a) If cbaaa is sent and cbaab is received (one error), the received word is
still closer to cbaaa than to any other codeword, so will be correctly
decoded.

(b) If bcabc is sent and baabc received (one error), the received word is
at distance one from the codewords bcabc and bacbc and at a greater
distance from all other codewords. Hence, it cannot be decoded.

19. (a) 110110; (b) 101101; (c) not decodable. 110011 has two equally
nearest codeword neighbours.

21. Yes. Without lying the parity check bits 5,6 and 7 are irrelevant, so just
ask quest ions 1 to 4 as specified in the lying game.

Chapter 3

1. Let x = Xl X2 ... X7 and x' = X~ X~ ... X~ be any two codewords and let
Y = YIY2··· Y7 = X + x'. In order to show that y is a codeword just
show that it satisfies all the checks on sets A, B, C.

For example, for A we have to show that Y5 = YI + Y3 + Y4 This holds
because

Y5 = x5 + x' 5

(Xl + X3 + X4) + (x~ + x~ + x~) since x and x'
are codewords

(Xl + x~) + (X3 + x~) + (X4 + x~)
YI + Y3 + Y4

Solutions, answers, hints 181

2. Let a = qb + r, a = q'b + r ' be any two results wh ich satisfy the require
ments.

Then b(q - q') = r ' - r, so r ' - r is a multiple of b, and since Ir' - rl is at
most b - 1 (since 0 :S r < b,O :S r ' < b), this can only mean Ir' - rl = O.
Hence r = r ' and the equation above shows that q = q' too.

3. (i) and (ii) are trivial.

For (iii) (a == b modm, b == c modm) =? (a - b = mk, b - c = ml)
=? a - c = m(k + l) =? a == e modm

(iv) Let a == b modm, c == d modm. So a = b + mk, c = d + ml.

Adding: a+e = b+d+m(k+l) =? a+e == b+d modm, and multiplying:
ac = bd + m(kd + mkl + bl) =? ae = bd modm.

4. Put c, d equal to a, b respectively in (iv) to get a2 == b2 modm. Using
this with a == b modm and applying (iv) again, get a3 == b3 modm ...
and so on.

Working mod 41,220 = (25)4 == (-9)4 = 812 == (_1)2 = 1.
That is, 411220 - 1.

We need 250 and 4165 worked out mod 7:
250 = (23) 16 22 == 116 22 = 4, and
4165 == (_1)65 = -1 == 6.

Working mod 4,

~;~~i5 = (1 5 + 25 + 35 + 45) + (55 + 65 + 75 + 85) + ... + 1005

== (1 5 + 25 + 35 + 45) + (1 5 + 25 + 35 + 45) + ... + 45
= 25 X (15 + 25 + 35 + 45)
==25x (15+25 +(-1)5+0)
== 25 x (1 + 0 - 1 + 0) = O.

5. (a) a counter-example is a = 1, b = 5, m = 4, e = 2.

(b) a counter-example is a = 2, b = 4, m = 4.

6. n == 0,1,2,3 or 4 mod 5. The corresponding values of n4 mod 5 are
0,1,16,81,256 == 0,1,1,1,1 respectively.

7. n 0, 1, 2, 3, 4 or 5 mod 6, so
n + 1 1, 2, 3, 4, 5, or 0 respectivelyand

2n + 1 1, 3, 5, 1, 3 or 5 respectively,

and it is now easy to check that n(n + 1)(2n + 1) == 0 mod 6 in all cases.

8. (a) (alb,cld) =? (b=ak,d=cl) =? bd=ae.kl
(b) (alb,bla) =? (b=ak,a=bl) =? ab=ab.nl

=? ab = 0 or kl = 1

Now ab = 0 =? a = 0 or b = 0 =? a, bare both zero, otherwise alb or bla
would be false.

Hence a = b = 0 or kl = 1.

182 Solutions, answers, hints

In the former case, obviously a = b.

In the latter k = l = ±1, so a = bora = -b.

(c) (alb,b#O) ~ (b=ka,b#O)

~ (Ibl = Ikllal,k # 0)
(d) (alb,alc) ~ (b=ka,c=ln)

~ (Ibl = Ikllal, b # 0)

~ (lai = I~II :=:; Ibl)
~ bx+cy=a(kx+ly)

9. a == 0, 1 or 2 mod 3. a == 0 ~ 31a, a == 1 ~ 31a + 2, a == 2 ~ 31a + 4.

10. a2 -1 = (a -1)(a + 1). 2 Ja so a -1, a + 1 are consecutive even integers.
This implies both are divisible by 2 and one them is divisible by 4.

Hence 81(a - 1)(a + 1) (1)

3 Ja, and since one of three consective integers a - 1, a, a + 1 must be
divisible by 3 we have 31(a - l)(a + 1) (2)

From (1) and (2) it follows that 241a2 - 1.

11. gcd(a, b) = ax + by, a = kc, b = lc, so gcd(a, b) = c(kx + LV).

12. Let d be any common divisor of 2n + 1 and n 2 + 3n + 1.

Then dl - n(2n + 1) + 2(n2 + 3n + 1) by Exercise 8 (iv).

That is dl5n + 2.

So dl2n + 1 and dl5n + 2, so by applying 8 (iv) again we get

d15(2n + 1) - 2(5n + 2).

That is, dl1.

13. Suppose 3 consecutive steps in Euclid's algorithm are:

(a) Ti = qTi+l + Ti+2

(b) Ti+! = q'Ti+2 + Ti+3

(c) Ti+2 = q"Ti+3 + Ti+4

If the difference between Ti+2 and Ti+3 is small (only a fr action of Ti+2)

then step 3 will have q" = 1, so Ti+2 = Ti+3 + Ti+4, so Ti+4 will be small,
and the jump from Ti+3 to Ti+4 is big.

14. Hint: show that ifT24,42 contains the number x it must also contain every
multiple of x. If you can't get any furt her be patient until theorem 3.4.

15. By applying Euclid and reversing the steps, you should obtain

gcd(1729,703) = 19 = 32 x 703 - 13 x 1729,

so a solution of 1729x + 703y = 19 is x = 32, y = -13. Further solutions
can be obtained by adding any multiple of 703 to x and subtracting the
same multiple of 1729 from y.

Using the same method for 25x + 35y = 15 we obtain

gcd(25,35) = 5 = 3 x 25 - 2 x 35,

Solutions, answers, hints 183

and to get 15 on the right hand side we need to multiply by 3. So
x = 9, Y = -6 is a solution and furt her solutions are x = 9 + 35k, y =
-6 - 25k. But this time we don't get alt solutions in this way. Why?

16. gcd(a, b) = d:::} d = ax + by :::} 1 = (2)x + (~)y
:::} gcd(~, t) I ~ by Theorem 3.4
:::} gcd(d' d) - 1

17. If pis prime and plbe and p Jb, then pie.

18. a(x+lm)-e =(ax-e)+alm
= km + alm,(because ax == e mod m)

== ° mod m.

so a(x + lm) == e mod m.

19.(a) (a == b mod n, mln) :::} (a - b = kn, n = lm) :::} a - b = klm.

(b) a == b mod m :::} a - b = km :::} ca - eb = kem.

(c) a == b mod m means a = mq + b so the required result is just Theorem
3.2.

20. 0,1,2,22 ,23 , ... 29 == 0,1,2,4,8,5,10,9,7,3,6 respectively.

12 == 102

The list kaI, ka2, ... , kam has m members so we only need to show that
they are all different mod m. Suppose kai == kaj mod m with ai ~ aj.
Then ai == aj mod m by the gcd condition, which implies ai = aj by the
given property of the aso

21.(a) 4x 5 mod 7

(b)

(c)

(d)

(e)

{=} 4x 12 mod 7
x

8x
2x
2x
x

3 mod 7

12 mod 19
3 mod 19
22 mod 19
11 mod 19

12x == 3 mod 4 has no solutions because gcd(12, 4) = 4
4l3.

45x 75 mod 100
{=} 3x 5 mod 20
{=} 3x 45 mod 20
{=} x 15 mod 20

111x 112 mod 113
{=} -2x -1 mod 113
{=} -2x 112 mod 113
{=} x -56

57 mod 113

and

184 Solutions, answers, hints

(f) 140x 133 mod 301
<=} 20x 19 mod 43
<=} 20x 105 mod 43
<=} 4x 21 mod 43
<=} 4x 64 mod 43
<=} x 16 mod 43

22. Properties (iii) and (iv) of theorem 3.1 and Exercise 4.

23. (a) 478034 = 4 + 3.10 + 0.102 + 8.103 + 7.104
== 4 + 3(-1) + 0(-1)2 + 8(-1)3 + 7(-1)4

+ 4.105

+ 4(_1)5
=4 - 3 + 0 8 + 7 4

(b) 10 == -3 mod 13 so 103 == -27 == -1 mod 13.

Hence 2398047812 = 812 + 47.103 + 398.(103? +
= 812 - 47 + 398

24. Suppose the individual digits of n are a2k-la2k-2 ... a2alaO, so that
n = ao + lOal + 102a2 + ... + 102k - l a2k_l.

Then m = al + 10a2 + 102a3 + ... + 102k- l ao. so

n + m = ao(l + 102k- l) + al(1 + 10) + a2(10 + 102)
(102k- 2 102k-l) + ... + a2k-l + .

Now 10 == -1 mod 11 so each bracket in the above expression is == 0
mod 11. Hence n + m == 0 mod 11. n2 - m 2 = (n - m)(n + m) so it
remains to prove aln - m.

n - m = ao(l _102k - 1) + al(10 -1) + a2(102 - 10)

+ (102k-l 102k-2) ... +a2k-l - ,

and because 10 == 1 mod 9, each of these brackets is == 0 mod 9.

25. If we write down the Fibonacci sequence replacing each term ai by its
least residue bi mod 21, then the sequence (bi) will satisfy b1 = b2 =
1, bi+2 == bi+l + bi mod 21 for all i ~ 1.

Hence (bi) is 1, 1, 2, 3, 5, 8, 13, 0, 13, 13,5,18,2,20, 1,0, 1, 1, ... , so
the complete sequence is just an endless repetition of the first 16 terms.
In this block bs and b16 are zero and there are no terms equal to 7 or 14,
Hence, in (ai) every 8th term is divisible by 21 and there are no other
terms divisible by 7.

26. The trick is to work modulo 4. 999 == 3 mod 4, but x 2 and y2 can only
be 0 or 1 mod 4, so x 2 + y2 can only be congruent to 0, 1 or 2.

27. a composite =} a = xy with x> 1,y > 1,x < a,y < a. If x and y are
different, then clearly both occur in the list 1,2,3, ... , a-1, so xyl(a-1)!

If a = x 2 and a ~ 6, then x > 2, so 2x < x.x = a. Therefore x and 2x
both occur in the list 1,2,3, ... , a - 1. So x.2xl(a - I)!, so x 21(a - I)!.

Solutions, answers, hints 185

28.(a) gcd(a, b) = p =} a = pk, b = pl, gcd(k, l) = 1
=} gcd(a2 , bp) = gcd(p2 k2 , p2 l) = p2 gcd(k2 , l) (1)

gcd(k, l) = 1 =} kx + ly = 1 =} (kx + ly)2 = 1
=} k2(x2) + l(ly2 + 2kxy) = 1 =} gcd(k2, l) = 1.

so from (1), gcd(a2, bp) = p2.

(b) This is false: (gcd(a,p2) = p,gcd(b,p2) = p2)
=} (a = pk,p tk, b = lp2)
=} gcd(ab,p4) = gcd(p3 lk,p4),

which could be p4 as there is no reason why l shouldn't be a multiple
of p. A simple counter-example is a = 2,p = 2, b = 4.

(c) Also false by similar reasoning.

(d) Let d = gcd(a,b), so a = kd,b = ld for so me k,l2 1. Then

a2 + b2 = k2d2 + l2d2 = d2(k2 + l2) = p2.

Since p is prime the Fundamental Theorem of Arithmetic implies that
d2 = 1, k2 + l2 = P or d2 = p, k2 + l2 = p, or d2 = p2, k2 + l2 = 1. The
second of these is impossible since a prime cannot be a square, and
so is the third since k2, l2 2 1, so k2 + l2 can't be 1.

29. The method clearly yields a common divisor, but if the two numbers
had prime factorizations different from those given there would be no
guarantee that the same method applied to the new factorizations would
yield the same common divisor.

30. If ith member of Cl = lh member of C2 , then (if i 2 j), the first mem
ber of C2 would be the same as the i - (j - 1)th member of Cl, which
contradicts the rule by wh ich C2 was constructed. A similar contradic
tion is obtained if i < j because then the first member of C2 would be
the (p - j + i + l)th member of Cl.

31. 195 = 5 x 13 x 3. Use the coroBary to Fermat's theorem to establish the
congruences a 195 == a to each of the moduli 5, 13, 3. You will then have
shown that a195 - a is a multiple of 5, 13 and 3, so it is a multiple of
5 x 13 x 3.

32. Modulo 31: 99101 == 6101 = (630)3,611

55 .6 = 30.54

(-1)(-6)2 == -36

611 = 365 .6
(-1).252

-5 == 26.

33. 341 = 11 x 31, so is not prime. But 2340 = (25)68 == (_1)68 mod 11 = 1
and 2340 = (2 5)68 == 168 mod 31 = 1. Hence 2340 == 1 mod 341.

34. Clearly 101 == 4 mod 6, and if lOn == 4 mod 6, then lOn +1 = 10(10n) ==
40 == 4 mod 6, so by induction the required result holds for aB n 2 1.

Let m be the larger of m and n. Then m = 6k + n for so me k 2 0,
and working modulo 7 we have 10m = lOn (106)k == lOn by Fermat's
theorem.

186 Solutions, answers, hints

By eombinin~ these results we have 10,102 ,103 , ... , 1010 all == 4 mod 6,
so 1010 ,10(10),10(103), ••• ,10(1010

) are all == 1010 mod 7.

Now 1010 == 310 = (32)5 == 25 = 32 == 4 mod 7.

So the given expression == 10 x 4 == 5 mod 7.
35. Applying the same method as for the normal pack you should find that

n shuffies suffice where n has to be a positive solution of 2n == 1 mod
55. The difIerence is that 55 is not prime so regard this eongruence as
equivalent to the pair, 2n == 1 mod 5 and 2n == 1 mod 11. By Fermat's
theorem n = 4 satisfies the first, and n = 10 satisfies the seeond. So their
lcm, 20, will satisfy both, and as in the analysis for the normal pack, any
smaller n which satisfies both will be a factor of 20. It is easy to check
that 1, 2, 4, 5, 10 don't work, so 20 shuffies are necessary.

36. Using the hint, number the positions in the pack from 0 to 51 rather
than 1 to 52. Then you should find that the result of a shuffie is to send
the eard originally in position x to position 2x mod 51. So the equation
to be solved this time is 2n == 1 mod 51, and n = 8 is the smallest
positive solution.

37. a'+b'=(a+km)+(b+lm) =a+b+(k+l)m

38.

== a + b == c == c' mod m
and

a'b' = (a + km)(b + lm) = ab + m(kb + la + mkl)
== ab == c == c' mod m

x 1 2 3 4 5 6
x-I: 1 4 5 2 3 6

32x == 40 mod 7 has only one solution mod 7 since ged(32, 7) = 1.

32 == 4 mod 7 and 4-1 = 2.

So multiplying by 2 we get

64x == 80 mod 7,

that is x == 80 == 3 mod 7.

Chapter 4

1. For the 7-bit code M = 16, q = 2, n = 7, d = 3, so qn-d+l = 25 i 16
so this code is not MDS. For the 8-bit code M = 16, q = 2, n = 8, so
to be MDS d would have to satisfy 16 = 29 - d . That is, d = 5. But
this is impossible because the 7-bit code contains words c, c' for which
d(c, c') = 3, so the corresponding pairs of words in the 8-bit code difIer
in at most 4 places.

2. Consider a channel which induces at most terrors. If the code satisfies
the geometrie condition and the transmitted codeword u is received
as v, then v E S(u, t). But v is not in any of the other codeword-

Solutions, answers, hints 187

centred spheres, so will be correctly decoded as u. If the condition is
not satisfied, let v E S(u, t) n S(u', t) with d(u', v) :::; d(u, v) :::; t.
Suppose u is sent and v received. If d(u', v) = d(u, v) then the decoder
cannot unequivocally decode v as u, and if d(u', v) < d(u, v) then it
will definitely not decode v as u.

3. With q = 3, d 2: 5, n = 10 the Hamming bound gives M :::; 294, so the
answer is no.

5. For these codes t = 1, d = 3, so the result (4.7) is q2 > 1 + n(q -1) wh ich
implies n < q + l.

6. If not, the process would not be complete because one of the uncovered
words, which would have distance 2: d from all the sphere centres, could
be added to C.

7.(a) 6808:::; M :::; 106 with Singleton being the better ofthe upper bounds.

(b) 5:::; M :::; 22 with Hamming being the better upper bound.

8.

(c) 2 :::; M :::; 9 with Singleton being the better upper bound.

The Hamming bound depends on q, n and the error correcting capability.
(b) and (c) have the same q and n, and the error correcting capability
is 1 for both d = 3 and d = 4.

To improve the lower bound of 5 in (b) we need only construct a (5,6,3)
code over Z3. A bit of intelligent trial and error should suffice. One
example is {OOOOO, 11100, 22200,
01210,00121,22111}.

aadcca
C = adcacd

cdabaa
dcbdbc

switch
~

positions
4,6

daaacc
cdadca
adcaab
bcdcbd

switch
~

positions
1,3

daacca
cdaacd
adcbaa
bcddbc

replace a by c
~

b by a,c by d,
d by b in last

place

daaacd
cdadcc
adcaaa
bcdcbb

(this achieves (i))

(this achieves (ii))

switch a and b
~

dabacd
cdbdcc
adcaaa
bcdcbb

= C'.
in positon 3

9. Cl = {ddbba, bcaad, bbabb, dccbd, adcdd, ccbac}

C2 = {ddbca, bcaac, bbacd, dcccc, adcbc, ccbab}

10. A2(5,3) = 4, A2(9,5) = 6.

188 Solutions, answers, hints

11. Let C be a binary (n, M, d) code. Following the hint, let S be a set of
M' words of C, beginning with the same symbol, with M' 2': ~.
Let S' be the set of words of length n - 1 formed by deleting this first
symbol from the words of S.

Regarding S as a sub code of C, it is clear that d(S) = d' 2': d. Hence
d(S') = d' 2': d, and S' is the required code.

12. The codes C = {OOO, 111,01O} and C' = {Oll, 010, 00l} both have min
imum distance 1. C' has one position in which all the symbols are the
same, and all the equivalence operations preserve this property. C does
not have the property, so no sequence of equivalence operations applied
to C' can produce C. Hence C and C' are not equivalent.

13. C has the same symbol in position 8 of all words. C' has no such position.
See solution of Exercise 12.

15. Suppose C is perfect with d(C) = 2x for so me positive integer x. Let
Cl, C2 be codewords with d(Cl, C2) = 2x, and let T be the set of positions
at which Cl and C2 differ, so ITI = 2x. Take Cl and x of these positions.
Change the symbols in these positions to the corresponding symbol of
C2, and let r be the resulting word.

Then d(Cl, r) = d(C2, r) = x and since C is a perfect (x - 1)-error
correcting code r must be in some sphere S(c, x-I) with C i= Cl, C i=
C2, CE C. Then using the triangle inequality we have

d(CI,C)::::; d(cI,r) +d(r,c)::::; x+ (x -1) = 2x -1,

which is impossible since d(C) = 2x.

16. Let C be sent and r received. r E S(c' , t) for so me unique c' E C by
Theorem 4.7, and d(c,r) > t. Hence nearest neighbour decoding must
decode r to c', not c.

17. Let Xi,Yi be the ith place symbol in x and Y respectively, and let Wi(X)
denote the contribution (0 or 1) to w(x) from this place. The table below
lists the relevant quantities for each of the Xi, Yi pairs.

Xi Yi Wi(X + y) Wi(X) + Wi(Y) (x 8 Y)i

° ° ° ° ° ° 1 1 1 ° ° 2 1 1 ° 1 1 1 2 1
1 2 ° 2 2
2 2 1 2 1

The entries in the final column are precisely the values of Wi(X) +Wi(Y)-

Solutions, answers, hints 189

Wi(X + y), so f(x 8 y) must contribute 2 for every place in which x 8 y
has 2, 1 for each place in which it has 1, and 0 for the rest.

f(a) = number of ls + 2 x number of 2s in a will achieve this.

18. If each word x in Z~ is interpreted as a 'received word', then the decoding
algorithm of Chapter 2 shows how to find a codeword c (not necessarily
unique) such that d(x, c) ~ 2.

19. Using the first equality of Theorem 4.7,

d(a+b, x+y) = w((a+b)+(x+y)) = w((a+x)+(b+y)) = d(a+x, b+y)

20. To each ordered pair of codewords (u, v) of Z"2 xC there corresponds a
unique codeword ulu + vlf(u) of D, and this correspondence is one to
one since if u i- u' then ulu + vlf(u) i- u'lu' + v'lf(u'), and if u = u'
and v i- v', then u+v i- u'+v', so again ulu+vlf(u) i- u'lu'+v'lf(u').

Hence IDI = IZ"2 x CI = IZ"21 x ICI = 2n .2n - m = 22n - m .

21. Let c, c' be distinct codewords of D. In order to show that d(c, c') ~ 3
we split into 3 cases.

Case 1: c = ulu + vlf(u), c' = ulu + v'lf(u), v i- v'.
In this case d(c, c') = d(u + v, u + v') = d(u + u, v + v')
= d(o, v + v') = w(v + v') = d(v, v') ~ 3, since d(C) = 3.

Case 2: c = ulu + vlf(u), c' = u'lu' + vlf(u'), u i- u'.
Using the same trick as for case 1, d(u + v, u' + v) = d(u, u').
So if d(u, u') ~ 2, then d(c, c') ~ 2 + 2 + d(J(u), f(u')) ~ 4.
If d(u, u') is only 1, then d(u + v, u' + v) is also 1.
and d(c, c') = 1 + 1 + d(J(u), f(u')).
But by using the second part of Theorem 4.7,
1 = d(u, u') = w(u) + w(u') - 2w(u 0 u'),
so u and u' must have opposite parity, and d(J(u), f(u')) = 1.
Hence d(c,c') = 1 + 1 + 1 = 3.

Case 3: c = ulu + vlf(u), c' = u'lu' + v'lf(u'), u i- u', v i- v'.
The only potential problem values here are d(u, u') = 2,
d(u + v, u' + v') = 0
and d(u, u') = 1, d(u + v, u' + v') ~ 1.
In the first of these u + v = u' + v', so u + u' = v + v'
(remember -u = u in binary!)
But since d(u, u') = 2, w(u + u') = 2, but w(v + v') = 2,
ie d(v, v') = 2, which contradicts d(C) = 3.

The second also cannot occur because d(u+v, u' +v') = d(u+u', v+v')
and u + u' has weight 1, whereas w(v + v') = d(v, v') ~ 3, so u + u'
and v + v' must differ in at least two places.

22. Proving perfection is now easy!

190 Solutions, answers, hints

D is a (2n + 1, 22n - m , 3) code, so checking for equality in the sphere
packing bound,

22n+1 [t, (2~+l) r' ~ 22M1 [1 + 2n + W1

= 22n+1[2(2m _ 1) + 2r 1 = 22n+lTm-l = 22n - m = IDI.

23. x can be written as a + b with a E Z and 0 ::; b < 1.

If 0 ::; b < 0.5
If 0.5 ::; b < 1

so for an x,

2[x] = [2x] < 2[x] + l.
2[x] < [2x] = 2[x] + l.

2[x] ::; [2x] ::; 2[x] + 1 .

24. The argument still works up to the point (case 1), (M2 - M)d ::; nt..: 2
•

This implies 2(M - l)d ::; nM, so M(2d - n) ::; 2d.

25.

But 2d - n is now negative, so from the last inequality we get M :::: 21~n.

So M is bigger than something negative! - another of those results in
the 'true - but not a great deal of use' category. Case 2 is similarly
uninformative.

Singleton Hamming Plotkin Exact
n estimate estimate estimate value

13 128 21 14 8
12 64 13 7 4
11 32 8 4 4
10 16 5 3 2

Chapter 5

[If you know more linear algebra than what is in section 5.3 you may weil
find slicker methods to solve some of these exercises.]

1. u + v = 0110011 = u - v, - u = u, av = 0, ßv = v.
U - v = 1131013, au + ßv = 014201l.

2. (i) =? ac, ßc E C, then (ii) =? ac + ßc' E C. Conversely,
ac + ßc' E C for an a and ß =? ac E C for an a (put ß = 0) and
c + c' E C (put a = ß = 1).

3. Let c E C. Then if a = 1 clearly ac E C, and if a = O,ac = 0 and
o E C because c + c E C by (i) and c + c = o.

4. w(Cl - C2) = number of pI aces in which Cl - C2 has a non-zero symbol.
= number of places in which Cl, C2 differ
= d(cl, C2).

Solutions, answers, hints 191

5. No, 1; Yes, 1; No, 1; Yes, 3; Yes, 2; No, 2.

6. Let C be a linear binary code in whieh not every codeword begins with
o. Let Co be the set of codewords whieh do start with 0 (note 0 E C
so Co f. cjJ), and Cl the set of codewords w hieh start with 1, so

Co n Cl = cjJ.

Let Yl E Cl be chosen.

Show that Yl + y(y E Cd are distinct words of Co so ICll :::; ICol,
and x + Yl(X E Co) are distinct words of Cl so ICol :::; ICll.

7. LetSbe{xl,x2,···,xd.Ifu, v E (S) ando:,ß E Zpwehaveo:u+ßv =
i k k

0: L O:iXi + ß L ßiXi = L(O:O:i + ßßi)Xi E (S).
i=l i=l i=l

8. (000013).(123142) = 0 + 0 + 0 + 0 + 4 + 6 == 0 mod 5,
so 000013 is orthogonal to 123142.

9. If u is binary, of even weight, then u. u = 1 + 1 + ... + 1, where the number
of ls is just the number of ls in u, which is even, in other words, zero
modulo 2.

10.

If u , v have the same weight w, let p, q, r, s be the number of
positions in whieh u, v have bits 0,0; 0,1; 1,0; 1,1 respectively. Then
w(u) = r+s = wand w(v) = q+s = w. From these, d(u, v) = q+r =
2(w-s).

Xl + 2X2 + 2X4 0 } Xl + X2 + X3 + X4 0
2Xl 0

Xl = 0,

o }
X2 + X4 = 0
X2 + X3 + X4 =

<=} Xl = 0, X2 + X4 = 0, X3 = O.

So 81. is the set of words {OOOO, 0102, 0201}. Similarly Tl. is
{OOOOO, 00110, 11011, 11101}

11. u, v E Sl. => o:u + ßv E S, because for any SES
(o:u + ßv)· S = o:(u· s) + ß(v . s) = 0:0 + ßO = O.

m m m

12. L O:iCi = L ßiCi => L (O:i - ßi) Ci = 0
i=l i=l i=l

=> O:i - ßi = 0 for all i, by the definition of independence.

13. (i) 1111 = 1010 + 0101 so (1010,0101,1111) = (1010,0101)
= {0:(1010) + ß(0101) : 0:, ß, E Z2} = {OOOO, 1010,0101, 1111}

192 Solutions, answers, hints

(ii) 0101, 1010, 1100 are independent so (0101, 1010, 1100)
= {0:(0101) + ß(lOlO) + ,(1100) : 0:, ß", E Z2}
= {OOOO, 0101, 1010, 1100, 1111, 1001, 0110, 0011}.

(iii) 10101 is the sum of the other three so the span is
(00111,01011,11001) = {OOOOO, 00111, 01011,11001,01100,10010,
11110, 101O1}

(iv) {OOOO, 1011, 2022, 0112, 0221, 1120, 1202, 2101, 221O}

14. This can be done by throwing out members of these sets which are linear
combinations of the other members. A better method will be given later.

(i) {101O, 1001, 0101}

(ii) 1000 = 2(3410) + 2(0140),

so throw out 1000. Then 3410 = 1234 + 3(0140) + 3(4322), so throw
out 3410. The remaining set {0140, 4322, 1234} is independent, so is a
basis of the span of the original set. To extend this to a basis of zt we
need to add one more word so that the resulting set is independent. The
general member of (0140, 4322, 1234) is 0:(0140) + ß(4322) + ,(1234) =
4ß +,,0: + 3ß + 2" 40: + 2ß + 3" 2ß + 4,.

Now any word of this form has 0 for the sum of its 2nd and 3rd symbols.
A simple word not having this property is 0010, so

(0140, 4322, 1234, 0010) = zt
and we have our basis.

16. Let {Cl, C2, ... Ck} be a basis for the code. The codewords are all the
k

words of the form L O:i Ci, and since each O:i may be freely chosen from
i=l

the p symbols of Zp, there are pk different choices for the sequence
of coefficients 0:1,"', O:k. By Exercise 12 these correspond to distinct
codewords, so the size of the code is pk.

17. (i) Let BI be any basis of Cl. Then BI is a linearly independent set of
words of C2 . Hence it can be extended to a basis of C2 , so BI must
have at most k2 words.

(ii) If k l = k2 then BI above is already a basis for C2 , so Cl = C2 since
they are both equal to (BI)'

18. Suppose ml, m2 are distinct messages so that ml - m2 -:f O. Then
if these messages correspond to the same codeword, ml G = m2G =>
(mI - m2)G = 0
=> the k rows of G are independent which is false (see definition of a
generator matrix and of a basis).

19. 02204 (Add rows 1 and 3).

Solutions, answers, hints 193

21. (i) C + x is formed by adding x to each c E C, so we get a list of ICI
words. To show that the coset size is ICI we just need to show that
no two words in the list are the same. This is clear because if c, c' are
distinct words of C then c + x :I c' + x.

(ii) y E C + x =? Y = c + x for some c E C. Let z E C + y, so
z = c'+y forsome c' E C, so z = c'+c + x E C+x. Therefore
C + Y S;;; C + x and a similar argument proves C + x S;;; C + y. To
prove the se co nd part, suppose jz such that z E (C + x) n (C + y).
Then z = c + x = c' + y for some c, c' in C. This implies
y = c - c' + x E C + x, a contradiction.

(iii) Let x be any word of Z;. Then x = x+O and 0 E C so x E x+C.
(iv) x, y E C + z =? x = c + z, y = c' + z for some c, c' E C

=? x-y=c-c' E C
and x - y E C =? x - Y = c for some c E C =? x = c + Y

=? x E C + y and y E C + y (see proof of (iii))
(v) From (ii) any two cosets C + x, C + Y are either disjoint or identical.

From (i) each coset has size ICI, and from (iii) their union is Z;, which
has size pn. So the number of distinct cosets is pn fiCi = pn fpk =
pn-k.

22. C : 00000 10011 01011 00101 01110 10110 11000 11101
10000 00011 11011 10101 11110 00110 01000 01101
00100 10111 01111 00001 01010 10010 11100 11001
00010 10001 01001 00111 01100 10100 11010 11111

In this case there is some freedom of choice for the Slepian array. 00000
and 00010 must be coset leaders, but for the other two one can have
either 10000 or 01000 as leader and the other can have 00100 or 00001.
But r = 01100 occurs in a coset for which there is no choice of leader,
so must be decoded as 01110.

C' = {OOOO, 0121, 1220 0212, 2110, 1011, 2201, 1102, 2022}

IC'I = 9 and Izil = 81

so there are 8i = 9 cosets.

23. In the array for C 00001 is not a coset leader, so this is an error pattern of
. weight 1 wh ich is not correctly decoded. For example, if c = 00000 and

r = 00001, then r is decoded as 00101. C' has minimum non-zero weight
3, so this is its minimum distance. Hence it is 1-error correcting, so every
word of weight 1 must be a coset leader in any Slepian array. There are
8 words of weight 1 and 9 cosets, the first of which is C' itself - having
o as its leader. So 0 and 1 are the only coset leader weights.

24. By Theorem 4.10 the sum of any two even weight words is another even
weight word. Also, if x has even weight, so do Ix and Ox, so C is linear.
Let w be any word with odd weight. By Theorem 4.10 again, the coset

194 Solutions, answers, hints

C + w consists entirely of odd weight words. Furthermore this coset
contains aB the words of odd weight because any odd weight word v can
be written as (v + w) + w E C + w since v + w has even weight.
Hence C consists of half the words of 2'2' so dim(C) = n - 1. So if G
generates C, G is an (n - 1) x n matrix, and to be in standard form
its first n - 1 columns make up In-I. Every row of G is a codeword, so
has even weight, so this forces the last column to be aB Is.

C.1 has dimension 1 so its generator matrix is a single row. If c' =
XIX2 ... Xn is any word of C.1, it must be orthogonal to every word in
C, in particular to every row of G. This leads to the equations Xi + Xn =
O(i = 1,2,···, n - 1), the only solutions of which are Xi = 0 for all i or
Xi = 1 for all i. So the only generator for C.1 is [11 ... 1] (and this is in
standard form).

25. Let X, Y be the sets of even and odd weight words respectively of C.
Suppose Y -1= cp so :3 y E Y. Show that the members of y + X are
all different and belong to Y and that the members of y + Y are aB
different and belong to X (using an obvious 'coset notation' even though
Y is not a linear code). Hence IYI 2: lXI and lXI 2: IYI so lXI = IYI.
If C has a generator matrix in which all rows have even weight, then
every codeword has even weight by applying Theorem 4.10.

26. First note that since the rows of GI are independent, so are the rows of G
(why?), so G is a genuine generator matrix. Let Ti, Si(i = 1,2,··· k) be
the rows of GI, G2 respectively. In the notation following Theorem 4.12
any word of C can be written

Provided not all the Ai are zero, this is of the form cllc2 where Cl, C2 are
non-zero words of Cl, C2 respectively. Now w(cllc2) = W(Cl)+W(C2) and
W(CI) 2: dl and W(C2) 2: d2·

Hence all non-zero words of C have weight 2: d l +d2 so d(C) 2: d l +d2 .

27. Let c, c' E CU(C+a). Show c+c' E CU(C+a) bycheckingthe
three cases : c, c' both in C, both in C + a, or one in each.

28. Write the Venn diagram conditions as equations modulo 2 as in section
5.6 to get the 8-bit code described as S.1 where

S = {10111000, 11010100, 11100010, 11111111}.

29. Let x E C. The x· y = 0 for all y E C.1, so x E (c.1).1. Hence
C ~ (c.1).1. But dimC = dim((C.1).1) by Theorem 5.6.4, so by
applying (11) (ii) ofsection 5.3 C = (C.1).1.

Solutions, answers, hints 195

30. The repetition code C of length n over Zp is a code in which there
are p codewords; i = i i i ... i, i = 0,1,2,'" ,p - 1. Such a code is
clearly linear. Let x = XIX2'" Xn be any word. Then x . i = 0 if and
only if i(XI + X2 + ... + x n) = o. So x is orthogonal to every word of
C if and only if Xl + X2 + ... + Xn = O. That is C~ = S where
S={X:XfZ;,XI+'" +xn=O}, so(C~)~=C=S~.

31. Gis a 2x4 matrix, so dim C = 2 and hence dim (C~) = 4 - 2 = 2.
So the parity check matrix will also be 2 x 4. To find one we have to
find two independent rows each of which is orthogonal to every word
of C. To ensure this it is enough to have the two rows orthogonal to
each row of G (why?), so the equations to be satisfied (modulo 3) are
Xl +X2+X3 = 0, 2XI +X3+X4 = 0, for which one (ofmany) independent
pair of solutions is 1110 and 0012, so

H = [1 1 o 0

is a suitable parity check matrix.

1
1 ~]

32. The matrix has all its rows of weight at least 3 so d(C) ~ 3. The
sub-words to the right of 17 are distinct, so the sum of any two rows has
weight 2': 3 (2 from the h entries and at least 1 from positions 8-11).
Finally, just from the 17 entries it is clear that the sum of any three or
more rows has weight at least 3. Hence d(C) = 3.

33. Let the ith column of H be 0, and let c be a non-zero codeword received
as r with an error in bit i and with no other error. Then by Theorem 5.11
syn(r) = 0 so T will be decoded (incorrectly) to r, which contradicts
the fact that C is 1-error correcting.

34.

Now suppose columns i and j are the same and let c, c' be any two
distinct codewords. Let T, T' be the words obtained by changing bits
i, j respectively of c. Then T and T' have the same syndrome, so are
decoded to the same codeword. Hence at least one decoding is incorrect,
again contradicting C being 1-error correcting.

The syndrome equations are

a + 2b + d 1
a + b + c + e 1

c + f 1
2a + 2b + 2c + 9 1

From the third equation there are just three possible values of (c, f): (0,
1); (1,0); (2,2). Taking the first ofthese, the syndrome equations reduce
to a+2b+d = 1; a+b+e = 1; 2a+2b+g = 1 and we require a solution
in which at most one of a, b, d, e and 9 is non-zero. Taking all except a
to be zero the equations become a = 1, a = 1 and 2a = 1, wh ich are
clearly incompatible. Similar arguments rule out all other possibilities.

196 Solutions, answers, hints

This means that all words whose syndrome is 1111 must have a weight
of at least 3. So the code will correct all received words with one error,
not all words with two errors, and will correct some with more than two
errors.

35. The matrix will be 3 x 6 with no set of three dependent columns. There
are only 7 non-zero columns so H must have an but one of these. Hence
it must have aB the columns of weight 2, or an the columns of weight
1 together with at least two of weight 2. In both cases it is clear that
three columns will be dependent.

36.(a) 3 (columns 1, 6,11)
(b) 4 (columns 3, 4, 7, 8). Since aB columns are distinct and have odd

weight, no three of them can have zero sumo

(c) 2 (columns 3,7)
(d) 1 (column 5).

37. Since the code is perfect with d = 3 the coset leaders are an the words
of length 7 with weights 0 or 1 (8 leaders in an).
G is already in standard form so

[
1110100]

H= 1 1 0 1 0 1 0
101 100 1

and the coset leader with 1 in the ith place is just the ith column of H.

syn(OOOOOl1) = 011, so error is in the 4th place
syn(1111111) = 000, so there is no error.
syn(1100110) = 111, so error is in the 1st place.

Hence the decoded words are 0001011,1111111 and 0100110.

38. The generator matrix has (~) and (~) as two of its columns, so the
algorithm gives the parity check matrix,

H = [1 -1 0 -2] = [1 2 0 1] o -1 1 -1 0 2 1 2

This code has distance 3, so an words of weights 0 and 1 are coset leaders.
There are only 9 coset leaders in an so this accounts for all of them.

syn(2121) = 20 = 2 x col1 '* e = 2000 so decoded word is 0121
syn(1201) = 00 '* e = 0000 so decoded word is 1201
syn(2222) = 21 = 2 x col 4 '* e = 0002 so decoded word is 2220

39. G f = [;

C
Cf

~ ~] so the two codes are

000 201

000 201

102 112 221 010 122 211 020

102 110 220 011 121 212 022

Solutions, answers, hints 197

These are clearly not equivalent as d(C) = 1, d(C') = 2. Also in position
3, 1 is sometimes fixed (as in the second word) and sometimes not.

40. G' = [i 2 1]
1 2

41.

and this is not a generator matrix since its rows are dependent.

Let

G= [2 1 1] 1 0 2

generate Cover Z3, and let

G' = [~ 2 ~] , 1

G" = [~ 1 ~] 0

generate C', C" respectively. [For G' interchange columns 1 and 2 of G;
for G" multiply column 1 of G by 2.] Then 211 is a codeword of C but
not of C' or C".

42. Clearly Rl only changes the order in which the basis words of C
are written down. For a representative example of R2 let G have rows
Ti(i = 1,2,"" k) and let G' have rows T~ where Ti = aTI(a i=- 0), and
for all i;::: 2,T~ = Ti.

Then c E C <=? c E (Tl, T2, "', rk)
k k

=} c L AiTi =} C = Ala-l(aTl) + L AiTi
i=l i=2

k
=} C Ala-l(ri) + L Air~

i=2
=} c E (' I I) C' rl' r2"", r k = .

The reverse implication is shown in a similar way, and of course the
argument is identical if some row other than the first is changed.

Finally, for R3, let ri = Tl + ar2 and the other rows are unchanged.

k

Then CE C =} C = L Airi =} C
i=l

k

Al(ri - ar2)+ LAiri
i=2

k

Alri + (A2 - aAl)T~ + L Air~
i=3

E (ri , r~, ... ,rU = C'.

198 Solutions, answers, hints

k

and C' E C' =} C' = L/-LiT; =} C'

i=l

k

/-LI (Tl + aT2) + L/-LiTi
i=2

k

/-L1 T1 + (a/-L1 + /-L2)T2 + L /-LiTi
i=3

E (T1,T2,···,Tk)=C.

43. No solution given because the final form depends on which non-zero
entries you select for each application of stage (a).

44. syn(lxyzI2) = (x + 2y + z, x + 2y + z, x + 2z) = (0, 0, 0)
ifand only if (x, y, z) = (0,0,0), (1,2,1) or (2, 1, 2).

syn(xyz21O) = (2x + y + 2z, x + Y + 2z + 2, y + 1) = (0, 0, 0)
if and only if (x, y, z) = (2,2,0)

So only the second word is uniquely decodable.

45. Such a code has a 4 x 10 parity check matrix, so its columns are length
4. Any 5 vectors of length 4 must be dependent.

46. For both codes d = 2 so both are 1-erasure decodable, but not 2-erasure
decodable. However the first has three pairs of dependent columns
(24, 25 and 45) but the second has only two (15 and 23). Hence the
second code will decode uniquely more instances of double erasures than
will the first code.

47. There are four possible codewords consistent with a single error, and
there must be at least one error since the received word has syndrome
(3x, x + 2). They are c = 04421, 14223, 22423 and 34433.

48. syn(T) = (1,0,1 + x) which is never o. Hence there is an error. syn(T) =
101,100 if x = 0,1 respectively. Only 100 is a column of H, so c =
101101 - 000100 = 101001.
From the given H, G can be found:

G~[~
0 0 1 1 n, 1 0 0 1
0 1 1 1

th~n

C = {OOOOOO,IOOIIO,OIOOII,OOIIII, 110101, 101001,011100, 1110 10}.

For x = 0, T = 101100, and for x = 1 T = 101101. Neither are codewords,
the first is at distance at least 2 from all codewords, the second has
distance 1 from codeword 101001 and a greater distance from all others.

49. T = lx20y1. In this case the received word is a codeword (has syndrome
0) if and only if x = y = 0, so we decode to 102001.

T = 21xyl1. In this case the syndrome is (2x+y, 2x+y+ 1, 2y+ 1) which
is never 0, so there is at least one error. Checking the nine possibilities

Solutions, answers, hints 199

for (X, y), only the following three cases give a syndrome wh ich is a
multiple of a column of H.

These are:
xy syndrome
01 120 2 x column 1
11 010 1 x column 6
21 200 2 x column 5,

so the three most likely transmitted codewords (those involving only one
error) are 010111,211110,212121.

Chapter 6

1. The partition of the non-zero columns is

{~~~~} {~~~:} {
{:;~~} {6~~~} {

'bl H' [0 1 2 3 4 1] so a POSS1 e lS 1 2 3 4 0 1 .

2 4 1 3}
3 1 4 2

1 234
1 234 }

2. Let h, h'(h =f. h') be columns selected as suggested, and let their first
non-zero symbols be the ith and jth respectively. Suppose h = ah' for
some non-zero a. Then if i = j, a can only be 1, which contradicts
h =f. h'. And if i =f. j (say i < j), then h = ah' is impossible because
h' has 0 in its ith place but h has a =f. 0 in its ith place.

We also get the right (maximal) number of columns in this way : there
are qr-i columns whose first non-zero symbol is the ith (the first i-I
are 0, the ith is 1, and there is a free choice of any of the q symbols in
each of the remaining r - i places). So the total number of columns is

r r _ 1
'"' qr-i = _q __ , as required by Theorem 6.1
~ q-1
i=l

3. Clearly no pair of these three columns are dependent so they belong
to three distinct subsets m(u), m(v), m(w). The columns of H must
include a representative from each of these. That is, it contains columns
of the given forms.

4. syn(r) = sum of first 4 columns of H = (OOlOOf, which represents 4
in binary. Hence the decoded word is 11110·· ·0.

q2 -1
5. n=8, k=6,so dim(Cl.)=8-6=2=r.Hence n=--=q+1,

q-1
so q = 7.

[01111111]
So H = 1 0 1 2 3 4 5 6 .

200 Solutions, answers, hints

syn(12312300) = (4,3) = 4(1, 6) = 4 x co lu mn 8

so decoded word = 12312300 - 00000004 = 12312303.

6. Reduce G to nearly standard form by row operations, and hence obtain
H, which contains all the non-zero columns.

7. The proof of Theorem 6.6 showed that all non-zero codewords of Cl.
have weight qr-l, so d(Cl.) = qr-l. Hence Cl. is t-error correcting,
where

8. Let d(C) = w, so each of the 80 non-zero rows of the array contains
w non-zero symbols. Let x be the nu mb er of all zero columns in the

2
array. By Theorem 5.4 the remaining 10 - x columns have 3" x 81 = 54

non-zeros each. Hence 80w = 54(10 - x), which implies 40w == 0 mod
27, and since gcd(40, 27) = 1, w == 0 mod 27 is the only solution. But
since C is 2-error correcting and has length 10, 5 ~ w ~ 10, so there
is no solution in this range.

9. A binary simplex code is Cl. for some C E Ham(r, 2). Cl. has
2r codewords of length 2r - 1, and d(Cl.) = 2r - 1 from the proof of
Theorem 6.6. From these it follows that Cl. meets the Plotkin bound
and is therefore optimal.

10. Without taking linearity into account we have 6 ~ M ~ 51 from the
G-V and Hamming bounds. (The Hamming bound is stronger than the
Singleton, and the Plotkin bound does not apply for these parameters.)
Since M must be apower of 2 for a linear code this estimate can be
improved to M = 8, 16 or 32.

11. Use induction to show that for all i ~ k, the set {Cl, ... , Ci} is
independent.

12. Let C be a binary (n, M, n) code. As usual we can change this to an
equivalent code C' in which one word is O. Since d = n, every symbol
in all other words is non-zero, so there is only one other word, which has
to be 111···1.

13. A binary repetition code of even lenth n has d = n, and by Exercise 15
of Chapter 4, all perfect codes have odd minimum distance. Arepetition
non-binary code with alphabet size q 2: 3 has M = q and d = n.
It is therefore (n21)-error correcting. We know n is odd if the code is
to be perfect. For C = {OOO, 111, 222} check that C does not meet
the Hamming bound. For n 2: 5 consider sending 0 and receiving r
which has n21 zero symbols, and nt1 non-zeros made up of 2 o:s and
n 23 ßs (0: =f=. ß)· The 0 is the nearest codeword to r so r is correctly
decoded even though it contains more than d 21 errors. This contradicts
Exercise 16 of Chapter 4.

Solutions, answers, hints 201

14. Let

[0 0 0 1 1
1 1 G=

Gl G2

G' ~ [0
0 0 1 1

1 1
G' G' 1 2

be generator matrices for C with equal first rows. We have to show
that the span of the rows of G l is the same as the span of the rows of
G~.

Let Ul E (rows of G l) and let Ul!U2 be the corresponding combination
of rows of [G l !G2]. Then Ul!U2 E C so is in (rows of G'). Hence Ul

is in the span of the left hand block of G', and since the first word of
this block is 0, Ul E (rows of G~). Hence (rows of G l) <;:; (rows
of G~) and the proof of the reverse indusion is identical.

15. Let C have generator matrices

and

1 1
o 1 G = [~ ~

001
~ ~ ~ 1

1 000

G' = [~ i ~ i i ~ ~ 1
001 1 000

where rows 1 and 2 (both of weight 5) have been switched to obtain
G' from G. Then

and

G~ = [~ i],
so the two residual codes have different dimensions.

16. The codes have dimension at least 2, so have at least 4 codewords, so
must include wards other than 0 and the all Is ward.

17. x can be written as 2a+r where a is an integer and 0 ::; r < 2. Check
the claimed result by checking each of the cases: r = 0; 0 < r < 1; r =
1; 1 < r < 2.

18. Use induction. The case i = 1 is just Theorem 6.11. Assuming the

202 Solutions, answers, hints

result for i, the inductive step is:

d(Resi+1C) d(Res(ResiC))

rd(Re2s
i C)1 > by the theorem

rr:2i 11 > by the induction hypothesis

r 2i: 1 1 by Exercise 17.

19. The Hamming, Plotkin and Griesmer bounds give k ::; 4,3,2 respec
tively.

20. Let Bk be the binary matrix whose columns are an the binary strings
of length k. If the an zero column is deleted this leaves the parity check
matrix for Ham(k, 2) - that is, the generator matrxi Gk of the binary
simplex code of dimension k. By symmetry each row of Bk will contain
2k - 1 zeros and 2k - 1 ones, and therefore has weight 2k - 1 which is even
provided k 2: 2. Similarly in any two distinct pairs of rows of Bk the
bit pairs

o o 1 1
0, 1, 0, 1

each occur 2k - 2 times so the dot product of these rows is 0 provided
k 2: 3. These conclusions hold for the rows of Gk too since deleting the
an zero column makes no difference to the even weight property nor to
the orthogonality of the pairs of rows. Hence G k satisfies the conditions
of Theorem 6.14.

21. The problem is that w(r) being a multiple of p does not guarantee that
r· r = O. For example, over Z5, w(11112) = 5 but r· r = 3.

[11111] [11112] 22. 1 2 3 4 0 and 1 2 3 4 0 are generator

matrices which clearly generate equivalent codes over Z5, but only the
first code is self-orthogonal.

23. For C E Ham(r, q) the necessary condition that the dimension is half
the length becomes

1 qr - 1
r=-·--.

2 q-1
r = 2, q = 3 is the only solution, and the code in Ham(2,
generator matrix

[1 1
o 1

1 0]
2 1

is self-dual.

3) with

Solutions, answers, hints 203

24.
1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0

G= 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

is an easy to check though not very 'good' example.

25. Every word of C is 0 or a sum of rows of G. Clearly w(O) is a multiple
of 4. Let the codeword c(# 0) be the sum of m rows of G, and use
induction on m. We are given that the claimed result is true for m = 1,
so assume it holds for all codewords with m = l. Let c' be a sum of
l + 1 rows of G, so that c' can be written as x + y where x is a sum of l
rows and y is a single row. Then w(c') = w(x) + w(y) - 2w(x 8 y), and
the first two terms on the right hand side are multiples of 4. To deal
with the remaining term, w(x 8 y) is even if x, y are orthogonal, and
odd otherwise, but x, y are orthogonal since they are codewords of a
self-orthogonal code. Hence 2w(x 8 y) is a multiple of 4.

27. Codes C' and D' both have 16 = 24 codewords. Hence there are
(24)3 = 212 choices ofthe tripie (a, b, x). We show that they correspond
to 212 distinct codewords of E', or equivalently, if (a', b', x') is also
a tripie from C' x C' X D', the E-words a + xlb + xla + b + x and
a' + x'lb' + x'la' + b' + x' can only be the same if
a = a', b = b' and x = x'. Equality of the words implies

a + x = a' + x' , b + x = b' + x' , a + b + x = a' + b' + x'.

Adding the first two we obtain a + b = a' + b' , and combining with the
third gives x = x', then the first and second imply a = a' and b = b'.

28. w(x+y+z)=w((x+y)+z)

= w(x + y) + w(z) - 2w((x + y) 8 z)

= w(x) + w(y) + w(z) - 2w(x 8 y) - 2w((x 8 z) + (y 8 z))

= w(x) + w(y) + w(z) - 2w(x 8y) - 2w(x 8 z) - 2w(y 8 z) + 4w((x 8
z)8(Y8z)).

29. Let w(a) = W1 and w(b) = W2, which we know are multiples of 4. Let
p be the number of places in which a, bare both 1, so w(a 8 b) = p.
Hence there are W1 - P places where a is 1 and b is 0, and W2 - P places
where a is 0 and b is 1. So

Now for a linear code the distance and weight distributions are identical
(Theorem 6.5), so 4Id(a, b), so 412p and p is therefore even.

30. From Theorem 6.19 it suffices to show that the dual code C.l, that is
the one generated by H, is non-cyclic. This can be done by finding an

204 Solutions, answers, hints

3l.

example of a codeword of Cl. whose first cyclic shift is not in Cl.. One
example is the first row of H, whose first cyclic shift is not expressible
as a linear combination of the rows of H. Check this.

(I-x) n (I-x)i
(1+(q-l)x)nA 1+(q-l)x =(I+(q-l)xt~Ai 1+(q-l)x

n

i=O

32. From the expression for B(x), the x 2 coefficient is

[(~) (q - 1)2 + (q _ 1) (~)] q-l = (~) (q - 1).

Hence the number of codewords of weight 2 is positive, so the code
cannot have d ~ 3.

33. For q = 2 the expression for B(x) simplifies to

1 n

B(x) = - [(1 + x)n + (1 - x)n] = L Bixi.
2 i=O

Expanding binomials (1 + x)n and (1 - x)n this gives Bi = 0 for all
odd i, and for the even

which is the number of words of weight i in Z'2.
Alternatively, the repetition code has only two words, 0 and 1 =
111 ... 1. All words are orthogonal to 0 and a word is orthogonal to
1 if and only if it has even weight.

35. X = Aw is just the definition of Aw. For each of the A w+I codewords
c of weight w + 1, there are w + 1 ways of changing this to a word u of
weight w with d(c, u) = 1 since just one of the w + 1 non-zero symbols
of c must be selected and changed to zero. Finally, for each of the AW - I

codewords of weight w - 1, say c', there are (n - w + 1) (q - 1) ways of
changing it to a word u' of weight w with d(c', u') = 1 because one
of its n - w + 1 zero symbols must be selected and this symbol changed
to one of the q - 1 non-zero symbols.

36. Ham(4,2) has n = 15, and for q = 2 the relation becomes

(~) = A w + Aw+l(w + 1) + Aw- I (16 - w)

Al = A 2 = 0, so A 3 = 35, A 4 = 105, A 5 = 168

Solutions, answers, hints 205

37. For p = 0.01, 2Jp(1 - p) = 2VO.0099. For Harn (3, 2), Ao = 1, Al =
A 2 = 0 (for one-error correcting perfect codes), and by the method of
Exercise 36 or direct use of the Mac Williams identity on the correspond
ing dual simplex code,
A3 = 7, A4 = 7, A5 = A6 = 0, A7 = 1.
So p(error) ~ 0.066.
But for this code the received word is correctly decoded if and only if
there are no errors or 1 error.

Hence P(error) = 1 - (1 - p)7 - 7p(1 - p)6 = 0.002.

38. Every odd weight codeword of C has its weight increased by 1 in C',
and the even weight codewords have unchanged weight. Hence A~ =
Ai- l + Ai for even i and A~ = 0 for odd i.

39. The suggested codewords have weights 4, 5, 6, 5, 5, 5 respectively, and no
pair of them are dependent, so the non-zero multiples of these codewords
account for 24 codewords. But C has dimension 2 over Z5 so has 25
codewords in aB, so only 0 needs to be added. Multiplying a word by a
non-zero constant does not change its weight, so for C Ao = 1, Al =
A2 = A3 = 0, A 4 = 4, A 5 = 16, A6 = 4.

Applying the Mac Williams identity the dual code has

A~ = 1, A~ = 0, A~ = 4, A3 = 64, A4 = 144, A~ = 248, A;' = 164.

Chapter 7

1. deg (f + g) ~ max {deg(f), deg (g)}; deg (f - g) ~ max {deg
(f), deg (g)}; deg (fg) = deg(f)+ deg (g).

2. (a) Let q(x) = q2x2 + qlX + qo , r(x) = r3x3 + r2x2 + rlX + ro.

Then equating coefficients of x 6 , x 5 ,"', X o we obtain the equations
(in Z5):

3 4q2, 2 = 4ql + 1q2, 0 = 4qo + 1ql + 1q2,

4 1qo + 1ql + 3q2 + r3, 0 = 1qo + 3ql + 1q2 + r2,

2 3qo + 1ql + rl, 2 = 1qo + ro·

Solving these: q2 = 2,ql = O,qo = 2,r3 = 1,r2 = 1,rl = 1,ro = 0, so
q(x) = 2x2 + 2 and r(x) = x3 + x2 + x.

Using a similar method

for (b): q(x) = 4, r(x) = 2x5 + x 4 + 4x3 + 3x2 + 2x + 2, and

for (c): q(x) = x5 + x4 + 2x3 + 2x2 + 2x + 3, r(x) = O.

206

3.(a)

Solutions, answers, hints

+x3 +X2 +x
+X4 +X3 +X2

(x4 + X2 + X + 1)(x2 + 1) + (X 2 + 1)

(b)
+2x+l

2x3 + X2 + X + 1) X6 + 2x5 +2x+l
X6 + 2x5 + 2x4 + 2x3

x4 +X3 + 2x + 1
x4 + 2x3 + 2x2 + 2x

2x3 + x2 + 1
2x3 + x2 +x + 1

2x

So x 6 + 2x5 + 2x + 1 = (2x3 + x2 + X + 1)(2x3 + 2x + 1) + 2x

4. g(-1) = g(l) = the total number of non-zero terms, modulo 2.

5. Let deg(f) = k. Then

(x - a)lf(x) {:? fex) = (x - a)g(x) = (x - a)(bk_Ixk-1 + ... + bo)
{:? fex) = ß(x - a)(bk_Iß-Ixk- 1 + ... + bOß-I)
{:? ß(x - a)lf(x).

6.(a) 3(x+4)2,

(b) 2(x3 + x 2 + 2x + 1),

(e) (x + 6)(x + 3)(x + 2),

(d) (x + 1)(x2 + X + 2),

(e) 2(x2 + 5x + 2).

7. f(O) = 0, but f(2), f(3), f(4) are clearly non-zero, while f(l) =
2.3.4 + 4 :f O. Henee xlf(x), and on expanding the given expression for
fex) we obtain
fex) = x(x4 + x 3 + 2x2 + 2x + 1), and we know that the quartic

Solutions, answers, hints 207

factor has no linear factors. Hence the only possible candidate for furt her
factorization is

x 4 + x 3 + 2x2 + 2x + 1 = (x2 + ax + b)(x2 + a'x + b').

Equating coefficients, this gives

a + a' = 1, b + aa' + b' = 2, ab' + a'b = 2, bb' = l.
From the last of these equations (b, b') = (1,1), (2,3), (3,2) or
(4,4), and it is easy to check that each of these possibilities makes the
remaining three equations inconsistent. Hence x 4 + x 3 + 2x2 + 2x + 1 is
irreducible.

8. f(x) = g(x)(x4 + x 2 + 2x + 1) + (x7 + x 6 + x 4 + X + 2)

g(x) = (x 7 + x 6 + x 4 + X + 2)(x + 2) + (x4 + X + 1)

x 4 + X + 1 = (x3 + 2x2 + X + 2)(x + 1) + (x + 2)

x 3 + 2x2 + X + 2 = (x + 2)(x2 + 1) + 0

So gcd (J(x),g(x)) = x + 2.

9.(a) Wqrking mod x 3 + 2x , x 3 + 2x == O.

Hence x 3 - 2x x
=} x 4 x(x3) xx x 2

=} x 5 x(x4) x 3 X
=} x 6 x(x5) x 2

=} x 7 x(x6) x 3 X .

So x 7 +2x6 +2x4 +x3 +x2 +2 == x+2x2 +2x2 +x+x2 +2 == 2x2 +2x+2

(b) x 3 == - 2x == 3x =} x 4 == 3x2 =} x 5 == 4x =} x 5 == 4x2

=} x 6 == 2x =} X 7 == 2x2

So x 7 +2x6 +2x4 +X3 +x2 +2 == 2x2 +4x+x2 +3x+x2 +2 == 4x2+2x+2.

10. They are all rings. (i), (ii) (iii) have unity

u~n, [~n [~n
respectively.

(iv) has no unity.

Only (iv) is a commutative ring.

208 Solutions, answers, hints

11. Let J be the set of all multiples of am(x) by polynomials in F[X],
so we have to prove 1= J.

fE I =? fex) = m(x)g(x) (for so me gE F[X]) = m(x) [anxn + ... j
= am(x) [a-IanXn + ...] where n = deg (g).

=? fex) E J.

Similarly it can be shown that f E J =? f E I.

Now let m(x), m'(x) be any two generators of minimal degree d for
I. By dividing each by their leading coefficients we obtain two mo nie
generators M(x), M'(x).

Now M(x) - M'(x) E land deg(M - M') < d.

Hence M(x) = M'(x) so m'(x) is a constant multiple of m(x).

12. The subset is clearly a subring of F[X, Yj and the ideal properties are
easily checked. Suppose it is a principal ideal, and let g E F[X, YJ be
a generator. Clearly x E I (take sex, y) = 1, tex, y) = 0), and
similarly y E I. Hence x is a multiple of g(x, y) so g(x, y) cannot
contain any terms involving y. Similarly it cannot have any x-terms.
Hence g(x, y) is a constant polynomial k. But gEI, so k =
xs(x, y) + yt(x, y) for some s, tin F[X, YJ. This is not possible unless
k = O. But then 1= {O} which contradiets the fact that x E I.

Hence I has no single generator, so is not principal.

Chapter 8

1. 2x.

3. In R 1 + x2 = (1 + X)2 and 1 + x = x2(1 + x2), so (1 + x2) t:;;; (1 + x)
and (1 + x) t:;;; (1 + x2) or, if you don't spot this simply multiply 1 + x
by each of the 8 members of Rand reduce mod x3 - 1. Do the same for
1 + x 2 observe that you get the same set of members of R.

4. Consider the equation Airl + ... + Akrk = 0 where rl is the ith row of
G. Since go #- 0, this equation gives successively Al = 0, A2 = 0,

5. (i) Not linear, w cannot be cyclic.

(ii) Linear but not cyclic. Switch positions 2 and 3 to obtain the cyclic
code {OOOO, 1212, 2121}, so the original code is linearly equivalent to
a cyclic code.

(iii) Cyclic.

(iv) Cyclic.

(v) Not linear, e.g. 0111 and 1110 E C but 0111 + 1110 = 1221 (j. C.

(vi) Cyclic.

6.(a) xn- I + xn- 2 + ... + x2 + X + 1.

Solutions, answers, hints 209

(b) Every multiple of g(x) is a multiple of (x - 1). If h(x) has k non-zero
terms, and (x -1)h(x) is multiplied out it gives a polynomial with 2k
non-zero terms, some of which may cancel, but only in pairs. Hence
the corresponding codeword has even weight.

(c) q(x) has n (odd) non-zero terms. Hence (x-I) jq(x) by the argument
used in (b).

(d) Let E be the even sub code of C. Every word in ((x - l)g(x)) is
in C and has even weight. Hence ((x - l)g(x)) ~ E. Conversely,
let e(x) E E. Then e(x) = g(x)p(x) for some polynomial p.
(x-1)le(x) and (x-I) jg(x), so (x-1)lp(x), and e(x) E ((x-l)g(x)),
so E ~ ((x - l)g(x)), and we have E = ((x - l)g(x)). E c C so
dim(E) < dimC. Corollary to Theorem 8.4 then implies that the
generator polynomial of E has higher degree than that of C. Hence
no multiple of (x - l)g(x) has sm aller degree, so this polynomial is
the generator of E.
Finally g(x)l(x -1)q(x) and gcd(g(x),x -1) = 1 so g(x)lq(x). Hence
q(x) E (g(x)) = C, and q(x) is the word 111 ... 1.

7. No. x3+2x2+2 = (x+1)(x2+x+2) over Z3 so x3+2x2+2 is reducible.
8. We require divisions of X 21 - 1 over Z2 with degree 21 - 9 = 12.

From the factor table, writing the given factorization as X 21 - 1 =
hlh2h3h~h6h~ where the subscript denotes the degree, those of degree 12
are h6h~, h6h3h~, h~h3h~, h6h3h2h1, h6h~h2hl, h~h3h2hl and h~h~h2hl.
The codes are those having these polynomials as their generators.

9. 112110 corresponds to 1 + x + 2x2 + x3 + x4 which factorizes into
inreducibles over Z3 as (1 + x)(2 + 2x + x3). x6 - 1 factorizes into
(1 +x)3(2 +x)3, so the generator (1 +x)a(2 +x)b (a ~ 3,b ~ 3) ofthe
code must satisfy (1 + x)(2 + 2x + x3) == ..\(x)(1 +x)a(2 + x)b mod x6 -1.
An argument similar to that already illustrated gives 1 and 1 + x as the
only possible generators, (1 + x) giving the smaller code. 1 + x corre
sponds to a ward ofweight 2 so d(c) ~ 2. If d(c) = 1, then there must be
some codeward xk, but this would imply xk == JL(x) (1 + x) mod x6 - 1.
This is impossible, so d(c) = 2.

10. x3 = g(x)+1+x2, x4 = (1+x)g(x)+1+x+x2, x5 = (1+x+x2)g(x)+1+x,
x6 = (x + x2 + x3)g(x) + X + x2 .
So

[
1011000]
1 1 101 0 0

G= 1 1 0 0 0 1 0 .
o 1 1 000 1

11. n = 15, k = 15 - 6 = 9.

xn-km(x) x6(x + x4 + x8) = x7 + x lO + x 14

xn-km(x) = g(x)(x8 + x7 + x2 + x) + x4 + x2 + 1 = g(x)q(x) + r(x).

210 Solutions, answers, hints

So encoding of m is

q(x)g(x) xn-km(x) - rex)

x 14 + x 10 + x7 + x4 + x2 + 1

101010010010001.

12. 110001.

13. s(a), s(a l), ... , s(a15)

14.

110001,111111,111000,011100,001110,000111,100100,010010,

001001,100011,110110,011011,101010,010101,101101,110001.

syn(e) syn(r) = remainder on dividing rex) by g(x)
2x4 + 2x3 + 2x2 + 2x,

which corresponds to the word 02222.

By Theorem 8.10, syn(r') = 20010 which has weight 2, so

e' = 20010000000 and e = 00100000002.

Hence transmitted word = r - e = 20021020110. (It is worth checking
that this is a codeword by evaluating its syndrome.)

The weight 2 errors which are not 'trapped' are those without a cyclic
run of 6 zeros. There are 11 x 22 = 44 such errors, and 22 x CD weight
2 words. Hence the proportion is %.

15. x6(2x- 6 + 3x-5 + x-3 + 4) = 4x6 + x3 + 3x + 2
The sequences of coefficients in p(x) and x6p(x- 1) are (2,3,0,1,0,0,4)
and (4,0,0,1,0,3,2).

16. The codes of Ham(3, 2) are all [7,4] codes. If C is a cyclic member of
this family with generator g(x), then g(x) must be a divisor of x 7 - 1
over Z2 with degree 3. Since x7 - 1 = (x + 1)(x3 + x 2 + 1)(x3 + X + 1),
g(x) must be one of the cubic divisors. The second one gives hex) =
(x + 1)(x3 + x2 + 1) = x4 + x2 + X + 1, hex) = x4 + x3 + x2 + 1, so H is
the matrix of section 6.7. [The other cubic divisor gives a different, but
equivalent, cyclic code.]

17. h(x)lg(x) {::} every multiple of g(x) is a multiple of hex)
{::} C~(h(x))=C.L.

From the table of factorizations of x n - 1 over Z2 we see that 1 + x +
x41x15 - 1 and 1 + x3 + x41x15 - 1. But 1 + x + x4 = x4 + x3 + 1, so if
g(x) = (l+x)(I+x+x2)(I+x+x2+x3+x4)(I+x3+x4), hex) = l+x+x4,
then h(x)lg(x), so (g(x)) is self-orthogonal.

18. From the table of factorizations g(x) = (1 + x)(1 + x + x4) satisfies the
conditions of Theorem 8.13 so (g) is a suitable code.

19. If the columns of Gare written in reverse order, and the rows of the
result are then written in reverse order, the net result is G'.

Solutions, answers, hints 211

20. If j = k consider instead the cancelling pairs ij, kl; ki, lj. That is
ij, jl; ji, lj and these are distinct unless i = l. But if i = l we have
ei - ej == ej - ei mod p, so 2ei == 2ej mod p, which implies ei = ej (i = j)
because ei and ej are both between 0 and p - 1.

21. Over Z2, X 23 -1 = (x-1)(1 +x2 +x4 +x5 +x6 +xlO +xll)(1 +x++x5 +
x6 + x7 + x9 + Xll) which is of the form (x _l)g(x)grev(x). Hence (g)
is a cyclic binary code with length 23 and dimension 23 - 11 = 12, and
from Theorem 8.14 its minimum weight w is :::; 7 since 9 has 7 terms. w
cannot be even since it would have to be a multiple of 4 other than 4
itself (p = 23 i- 7). Hence w satisfies w 2 - w ;::: p - 1 = 22. Considering
the quadratic graph w 2 - w - 22 = 0 for w > 0 shows that w ;::: 7, so
w = 7. Finally (g) is perfect by checking the sphere-packing bound for
these parameters. There is only one (up to equivalence) binary perfect
[23, 12, 7] code, so (g) is equivalent to the Golay code.

22. D i- C so there is a word a E C\D. Then all words of the coset a + D
are in C because for each d E D, a + d E C by linearity of C. Hence C
consists of complete cosets of D and since ICI = 31DI, Cis the union of
three cosets of D.

Chapter 9

1. Since the codes are binary only closure under + needs to be checked.
Let x, y E Cl *C2 . Then x = ulu+v, y = u'lu' +v' for some u, u' E Cl
and some v, v' E C2 .

Then x + y = u + u'lu + u' + v + v' which clearly is in Cl * C2 since
u + u' E Cl and v + v' E C2 .

2. Suppose ulu + v = u'lu' + v', then by comparing the first n places
u = u', and from the remaining n places u + v = u' + v' so v = v'.

3. Let c = ulu + v E Cl * C2 . Then c = ulu + olv and any word of the
form ulu is a linear combination of rows of [GI GI], and those of form
olv are linear combinations of rows of [0 G2]. Hence the rows of the
given matrix generate Cl * C2 and it just remains to prove the rows are
independent.

Now the matrix has dirn Cl +dim C2 rows, so they must span a subspace
of dimension:::; dirn Cl + dirn C2 , with equality if and only if the rows
are independent. But dirn Cl + dirn C2 is the dimension of Cl * C2 by
part (ii) of the theorem, so the rows must be independent.

4.(a) Harn (3,2) is a [7, 4, 3] code. Hence D has parameters n = 14, k =
dirn C + dirn C = 8, d = min(2 x 3,3) = 3.

212 Solutions, answers, hints

(b) The Hamming upper bound for D is

M :; 214 [t,etl]-I
but we know M = 28 so D is not perfect.

(c) The simplest reason is that if all words of weight 2 were coset leaders
then D would be 2-error correcting, and we know it isn't because d
is only 3.

(d)

Another reason is that there are a4) = 91 words of weight 2, 14 of
weight 1 and 1 of weight 0, giving a total of 106 words of weight at
most 2. But the number of cosets is

IZ~41 214 6 lDf = 28 = 2 = 64 - not enough!

A p.c. matrix for C is

[~ 0 0 0 1 1 :j, 1 0 1 0 1
0 1 1 1 0

so a corresponding generator is

G=[I
1 1 1 0 0

n 0 1 0 1 0
1 0 0 0 1
1 1 0 0 0

Using Exercise 3,

[~ g]
is a generator of D,

and this is row equivalent to

[~ ~]
(by doing the row operations
~ ---t R i + Ri+4 for i = 1,2,3,4). This matrix now has the 8 unit
words as 8 of its 14 columns, so by using the algorithm given in
Chapter 5, a p.c. matrix for D is

1 0 0 0 1 1 1 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 0

H=
0 0 1 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 1 1 0 1

Solutions, answers, hints 213

Since D is 1-error correcting the syndromes of an error patterns of
weight 1 are distinct. They are just the columns of H.
For the errors of weight 2, syn(11000000000000) = 110000, which is
the syndrome of the weight 1 error pattern 00000100000000, so cannot
be correctly decoded. But syn (10000000010000) = 100001 which is
not the syndrome of any weight 1 error pattern, so this error pattern
can be made a coset leader, and will therefore be correctly decoded.

5. I am too lazy to write them an out, but there are 27 words, an of length
8.

6. Clearly from Definition 9.2 (RM(o, m) and RM(m, m) are linear and of
length 2m for an m. For general r, m, clause 3 of the definition, Theorem
9.1(i) and induction on m will show that an the Reed-Muller codes are
linear, and that their lengths are 2m .

7. First prove that for all m ~ 1, RM (m -1, m) is E(2m), the set of all even
weight words of length 2m . For m = 1 this is clearly true, so suppose it
is true for all m < k.

Let

CE RM(k - 1, k) RM (k - 1, k - 1) * RM (k - 2, k - 1)
2k - 1 2k - 1

Z2 * E(2)

by the induction hypothesis.

So C = ulu + v for some u E zt- 1
, v E E(2k - 1).

Now using w(u+v) = w(u) +w(v) - 2w(u8v) we see that u and u+v
have the same parity, so C must be in E(2k).

Conversely, if cis any word of E(2 k), write c as xlY where x,y have
length 2k - 1 and must have the same parity. But y = x + (x + y) so
x + y must have even weight.

So CE RM(k -1,k).

Now any word of Zr" is either of even weight, or if not, can be obtained
by adding 000 ... 01 to an even weight word. Hence Zr' is generated
by the even weight words and 000 ... 01, and G(m, m) = zr has a
generator matrix

[G(m - 1, m)]
000 ... 01

... (1).

At the other extreme G(o, m) is just the repetition code of length 2m so
its generator matrix is [111 ... IJ ... (2).
For all other relevant values of rand m, that is 0 < r < m, Exercise 3
gives the result:

G(r m) = [G(r, m - 1), G(r, m - 1)] (3)
, 0, G(r-l,m-l) ... ,

and (1), (2), (3) provide a fun definition of G(r, m) for 0 :s r :s m.

214 Solutions, answers, hints

8. The theorem is clearly true for r = m and for r = O.

9.

Now suppose d(RM(r, k)) = 2k - r for some k and all r < k. RM(r, k +
1) = RM(r, k) * RM(r - 1, k), so by Theorem 9.1(iii),

d(RM(r, k + 1)) min{2 x d(RM(r, k)), d(RM(r - 1, k))}
= min{2 x 2k - r ,2k-(r-l)}

= 2(k+l)-r

so by induction the result follows.

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

G(2,3) = 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
D 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

G(2,3) G(2,3)
0 ... 0 1 1 1 1 1 1 1 1

G(2,4) = 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1
0 ... 0 0 0 0 0 1 1 1 1

10. For a 7-error correcting code we require d ~ 15. But for Reed-Muller
codes d = 2m- r so we require m - r ~ 4 ... (1). M = 2!(r,m) so for
M ~ 1000 we require f(r, m) ~ 10.

11.

r

i.e. I:(~) ~ 10 ... (2)
i=O

Finally, to get a minimal length code we take the smallest value of m
consistent with (1) and (2). Trying m = 4, r = 0; m = 5, r = 1; m =
6, r = 2 we find that RM(2,6) is the shortest code satisfying the re
quirements.

xyz + xyz (1 EB x)(1 EB y)(1 EB z) + x(1 EB y)z

(1 EB x)(1 EB y)(1 EB z) EB x(1 EB y)z

fram 4

from 2 and the fact that x(1 EB x) = 0,

and o.a = 0 for all a, and 5

1 EB x EB Y EB z EB xy EB xz EB yz EB xyz EB xz EB xyz

by repeated use of 7 and 1

1 EB x EB y EB z EB xy EB yz fram 6 and 5.

Solutions, answers, hints 215

12.

xyz + xyz

xy(z + z)

xy

xy

xy

xy

+ xyz +xyz

+ y(XZ + XZ)
+ (IEBy)(xEBz)

EB (1 EB y)(x EB z) EB xy(1 EB y)(x EB z)

EB (1 EB y)(x EB z)(1 EB xy)

EB (x EB z EB yx EB yz)(1 EB xy)

xy EB x EB z EB yx EB yz EB xy EB xyz EB xy EB xyz

x EBz EB yz

13. The words of C * C have the form ulu + v where u, v are any words of
C. (1)

Butif eis any word of C it can be written as u + (u + e), and by the
linearity of C, u + e is also in C, so the word u leis of the form (1) above.

Hence C = {ule: u E C,e E C}.

14. Let f(Xl, ... ,Xm),g(Xl,""Xm) E BF(r,m). Then thinking of j and
9 as being given by their binary columns of length 2m , clearly O.f and
1.j E BF(r, m).

Also, j EBg is another function of m variables and its degree is necessarily
:=:; r since it is :=:; max{degj,degg}.

15. BF(m, m) is the set of all Boolean functions of m variables, and for
r > m BF(r,m) = BF(m,m) since no term in the EB expansion of
a function of m variables can have degree > m because all repeated
occurrences of a variable can be suppressed since an = a.

16. Theorem 9.2: Each term of the EB expansion of a Boolean function corre
sponds to the sub set of the m variables which appear in it. So the subset
corresponding to a term in BF(r, m) has at most r members. Hence the
total number of terms which a member of BF(r, m) can contain is

r

2:)7') = f(r, m).
i=O

The particular function in BF(r, m) is determined by which subsets of
these f(r, m) terms actually appear in the EB expansion of the function,
and a set with f(r, m) members has precisely 2!(r,m) subsets.

Theorem 9.4: BF(r - 1, m) is clearly a subset of BF(r, m)!.

17. The basis step requires proof that each word of RM(r, 1) is orthogonal
to each word of RM(-r, 1). This only makes sense for T = 0, in which
case the matrix is [11 1 and clearly 11 is self-orthogonal.

216

18. From Theorem 9.2,

dim(RM(m - r - 1, m))

Solutions, answers, hints

f(m - r -1,m)
m-r-l m

L (~) = L (~)
i=O i=r+l

by the symmetry property of binomial coefficients
m r

L(~) - L(~)
i=O i=O

2m - dim(RM(r,m)) = dim[RM(r,m)].L.

References

[1] HilI, R. (1986) A First Course in Coding Theory, Oxford University Press.
[2] Wesley Peterson, W. (1962) Error-correcting codes. Scientific American,

206(2), pp 96-108.
[3] McEliece, R.J. (1985) The reliability of computer memories. Scientific Ameri-

can, 252(1), pp 88-95.
[4] Baylis, J. and Haggarty, R. (1988) Alice in Numberland, Macmillan.
[5] Burton, D. (1997) Elementary Number Theory, 3rd edn, McGraw Hill.
[6] Allenby, R.B.J.T. and Redfern, E.J. (1989) Introduction to Number Theory

with Computing, Edward Arnold.
[7] Rosen, K.H. (1992) Elementary Number Theory and its Applications, 3rd edn,

Addison-Wesley.
[8] Mills, J.T.S. (1996) Another family tree of Pythagorean tripies. The Mathe

matical Gazette, 80, 489, pp 545-548.
[9] Pompili, F. (1996) Evolution of finite sequences of integers. The Mathematical

Gazette, 80, 488, pp 322-332.
[10] Körver, W.H.F.J. (1996) Matches and coins, an old game with new rules. The

Mathematical Gazette, 80, 487, pp 243-244.
[11] MacWilliams, F.J. and Sloane, N.J.A. (1993) The Theory of Error-correcting

Codes, North-Holland.
[12] Wesley Peterson, W. and Weidon, E.J. Jr (1991) Error-correcting Codes, MIT

Press.
[13] Allenby, R.B.J.T. (1995) Linear Algebra, Edward Arnold.
[14] Cameron, P.J. and van Lint, J.H. (1991) Designs, graphs, codes and their

links, Cambridge University Press.
[15] Bryant, V. (1993) Aspects 0/ Combinatorics, Cambridge University Press.
[16] Pretzel, O. (1992) Error-correcting Codes and Finite Fields, Oxford Univer

sity Press.
[17] Vanstone, S.A. and van Oorschot, P.C. (1992) An Introduction to Error

correcting Codes with Applications, Kluwer.

Index

alphabet 1-2, 58

beads 38-42
Boolean functions 166-8
bounds

Gilbert-Varshamov 56, 107
Griesmer 112-13
Hamming 52-5
linear Gilbert-Varshamov 108
Plotkin 68-70, 106-7
Singleton 50-6
sphere packing 52, 65

channel2-3
codes

binary 5, 11, 59, 67-8
block 5, 49-72
cyclic 117-19, 141-59
cyclie Golay 153-7
distance isomorphie 60-2
dual 82-4, 106
equivalent 57-60, 89-92
error-correcting 7-8, 65
error-detecting 7-8
Golay 109-11
Hamming see Hamming codes
linear 25, 74-6, 89-92
optimal 107-13
perfect 65-8, 108-10
q-ary 65
Reed-Muller see Reed-Muller codes
repetition 109
self-orthogonal 114-16

simplex 105-7, 113, 115-16
ternary 57, 114-16

codewords 3-6, 25
distance 58
number of 49-50

congruence 26-34
linear 31-4
polynomials 136

cosets 79-82
covering radius 65-7

decoding 3,7-8,74,80-1,93-7
Hamming code 13
maximum likelihood 20-1
nearest neighbour 20-1, 60
syndrome 84-9

digit sum 34-5
dimension 78
Diophantine equation 32
distance

Hamming 62
minimum 86

division algorithm 26

encoding 3, 73
by polynomials 147-8

equivalence, linear 89-92, 104
erasure 15-16

correction 93-7
error pattern 75
errors

assumptions 4-5
basic problem 1-2

Index

detecting 5
double-adjacent 152-3
multiple 13-15

error-trapping 149
Euclidean space 62-4
Euc1id's algorithm 28-33
Euc1id's lemma 30-1, 135

factorization 28-30
Faro shuffie 40-2
Fermat's theorem 37-41
Fundamental Theorem of Arithmetic

36-7

generator matrix 78-9, 84, 143-7
Reed-Muller codes 171
standard form 88-9

geometry 62-4

Hamming codes 11-22,49,65, 73,
103-29
binary 105
decoding 105
defined 103
dual 106
length 103-4
maximum distance separable 51
minimum distance 104
Reed-Muller codes and 172-5
structure 114-16
weight distributions 125-7

Hamming distance 16-22, 51
Hamming, Richard 11
Hamming space 62-4

ideals 136-8

linear algebra 76-8
linearity 73-102

MacWilliams identity 120-5
message space 78
metric space 19
modulus 141-3

nullity 78
number guessing game 21-2

number theory 25-47
parity check 12, 68

matrix 82-4
polynomials and 150-2

permutations 57-60
Plotkin's construction 161-3
polynomials 131-9

Boolean 166
congruence 136
division 132-4
factorization 134-6, 146
generator 143-7
irreducible 134-5
monic 131, 135
multiplication 141
parity check and 150-2
syndromes and 148-50
zero 131

prime numbers 35-7

rank 78
rank-nullity theorem 78
reciprocals 42-4
redundancy 2, 8
Reed-Muller codes 116, 161-76

alternative description 166-71
defined 163-4
Hamming codes and 172-5
minimum distance 166
size 164-5

rings 136-8

Slepian array 79-82
strings 5
syndrome 84-9, 93-7

polynomials and 148-50

triangle inequality 18

vector space 75
vectors 5, 74

weight 58
distributions 119-27

words 5
zero 75

Z 42-4

219

