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About This Monograph (Foreword 1)

“Therefore, conclusions based on the renormalization group arguments concerning the the-
ory summed to al orders are dangerous and must be viewed with due caution. Soisit with
al conclusions from local relativistic field theories”

J.D. Bjorken, S.O. Drell (1965)

“Because of improved divergence, Yang-Mills theories (without Higgs fields) can not
be consistently interpreted by conventional perturbation theory.”
J.C. Taylor (1976)

“There are methods and formulae in science, which serve as master-key to many appar-
ently different problems. The resource of such thing have to be refilled from time to time.
In my opinion at the present time, we have to develop an art of handling sums over random
surfaces”

A.M. Polyakov (1981)

“QCD = String Theory™” A.M. Migdal (1981)

“Modern Physics = Quantum Geometry”, Luiz C.L. Botelho (2006)

About This Monograph (Foreword I1)

When still a graduate student in 1980, | became acquainted with a set of CERN lec-
tures on functional integrals written by V.N. Popov. Since that time | have been working
steadly on the use of functional integrals methods in order to handle non-pertubative is-
sues in Quantum Field Theory — specialy about the problem of correct quantization of
Yang-Mills Chromodynamics and Einstein Quantum Gravity (in terms of Astekar variables)
through guantum geometric path integrals (Loop and Random Surfaces representations).

The general scheme to apply ideas of Quantum Geometry may be sketchy as follows.

1- By firstly, one should try to represent the formal path integrals of the theory under
guantization, originally defined in terms of wave-field configurations, by means of purely
geometrical objects (quantum loops and surfaces) and writing thus the relevant governing
field motion equations in terms of these quantum geometrical variables.
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2 - As a second step, one should try to solve the quantum geometric wave equations
through string path integrals and finally one must use the whole formalism of continuum
guantum geometric path integrals to make calculations of physical observable (loop space
path integrals and string scattering amplitudes).

This monograph is writen on topics in the subject of Continuum Quantum Geomet-
ric Path Integrals applied to Yang-Mills theory and variants (QCD, Chern-Simons Theory,
Ising Models, etc.) — the called Random Geometry in Quantum Field theory, which are
hoped to be useful to graduate students of quantum physics and applied mathematics, with
afocused weight towards to those interested in applying the concepts of continuum quan-
tum geometry in other branches of modern physics, like superconductivity, nuclear physics,
polymer theory, string theory, etc...

As amonograph, | have choose to present those topics which | subjectively in the path
integral framework consider that are basic to give a sound understanding of quantum ge-
ometric path integrals representations. As a consequence of this choice our exposition is
entirely based in our studies made in the subject in last 26 years (1980-2006).

The methodology used to write our monograph is the same exposed in our previous
work in random classical physics. “Methods of Bosonic Path Integrals Representations —
Random Systems in Classical Physics - Nova Science Publisher, (2006) U.S.A.”: Exposi-
tions and formulas should be chewed, swallowed and digested. This process of analysis
should not be abandoned until it yields a comprehension of the overall pattern of the pro-
posed ideas and math, so after this step, one is ready to make improvements, corrections
or criticisms on the path integrals representations of our book. Important materia is fre-
quently exposed in forum of appendixes to the main exposition with the unique objective
of not divert our readers from the central discussions in his/her first lecture and to serve as
“exercises’ to our readers.

Ancther point | wish stress to our readers is that | have chosen to not give extensive
references on this monograph, because | still consider the attitude to distribute scientific
intellectual credits in an ongoing notorioudly difficult subject like Quantum Geometry, a
subjective, incomplete, sometimes “ political oriented” and not less, a*“dangerous’ attitude:
| am far away to claim to have some competent background to be a Science Historian. This
monograph should be considered as another attempt to discuss theories and protocols which
have never been completely understood and we wrote it with the sincere hope in mind that,
although imperfect, it will stimulate deeper reflections in the subject of continuum gquantum
geometry by others — specially graduate students.

Cumbersome use of English and the certainly types and spelling mistakes existent in our
monograph (reporting mostly our original results) naturally reflects the author’s limitations
and rather short time taken to write this book. The reader’s criticism will be welcome.

Luiz Carlos Lobato Botelho
Full Professor - Universidade Federa Fluminense
Niter6i/Rio de Janeiro/Brazil — 2006
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[3] V.N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics,
Reidel Publishing Company (1983).

[4] A.A. Abrikosov, L.P. Gorkov, |.E. Dzyaloshinski, textitMethods of Quantum Field
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Chapter 1

L oop Space Path Integrals
Representationsfor Euclidean
Quantum Fields Path Integrals and
the Covariant Path Integral

1.1. Introduction

In thisintroductory chapter we present from an operational point of view the basic method-
ology of re-writing Euclidean quantum field path integrals in term of Loop Space path
integrals, the important Feynman'’s idea of describing quantum phenomena by means of
geometrical objects (Feynman trgjectories made up of: paths; surfaces, metrics, etc...).

In section 2, we present the above Bosonic Loop space reformulation in the simplest
example of a O(N)-scalar field theory with a O(N)-invariant quartic interaction.

In the section 3, we present similar Loop Space reformulation for Quantum Chromody-
namics and finally in section 4, we present in detail s the theory of covariant path integration,
the basic mathematical method to study the objects in the theory of Random Surfaces as ex-
posed in the next chapters of this monograph.

Some Mathematical oriented studies on Euclidean Path Integrals are presented in chap-
ter 19 “Domains of Bosonic Functional Integrals and Some Applications to the Mathemat-
ical Physics of Path Integrals and String Theory” and chapter 20 “Non-Linear diffusion in
RY and in Hilbert Space, a Path Integral study”.

1.2. The Bosonic Loop Space Formulation of the O(N)-Scalar
Field Theory

Let us start our expositon in this section by considering the following O(N)-invariant path-
integral in an Euclidean Space-time RY, the called Generating Functional of the Green func-
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(¢k¢ )(X)).

N
23] = Tlo){ / (r_ll DF[q»k(x)]) x [DF B0y
exp(——[/dv (—A-+ P+ igB + J)0¥)( )D

exp<— % [ / deBZ(x)] ) } (1.1)

Note that after the evaluation of the Gaussian (3(x)-path integral, we obtain our quartic
O(N)-invariant interaction term

2= [ OF e ( ~3| [ @] ) exp(— i @x( 3o ) oopix) )
= exp{ - 9—22 / dvx<é(¢k¢k)(x)> 2} (12)

In order to apply the Loop Space reformulation to the path-integral eq.(1.1), we re-
alize the Guaussian functiona integration related to the set of scalar (neutra) fields

{0"(®) 1. n. Namely

/(HDF exp(——[/dv (—A+nP+igB+J)o )D)

= det™ 2 (—A+mP+igB+J) = e NWHI (1.3)

HMZ

tion of the composite O(N )-invariant operator (

which can be re-written as atrgjectory path-integral for the effective action W[J].

W[ = —Igdet( A+mP+igB+J)

— T _-|- —t[ A+nP+igB+J)
zgm{ -

== I|m ﬁe—th [/dvx“ <1_[DF [X“(c )
2:-0+ Jg t XH(0)=XH(t

X exp(— %/Oth(X”(G))2> X exp(—/0 dGJ(X“(G)))
« @(p<+ig /O thB(X“(G))) (L4)

where Tracer = Trg means the complete functional trace applied to operator in question.
Note that al the Feynman Wienner trgectories entering in the Bosonic Loop Space ex-
pression eq.(1.4) are very rough geometrical objectsin RY, since they are non-differentiable
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paths possesing alone mathematical continuity. As a consequence one can not assign with-
out a subtle analysis lenghts, topological properties, etc., to them as it is usually done for
smooth geometrical objects in the field of the non-random geometry.

At this point we may consider the complete object in the Loop Space:

20(0) = [ DF [poje 2 0e e

= /DF[B(X)]G_%NVXBZ(X>(1—NW[J]+W N

2 )
N
=1——1
ZEL%L{

/;O ?eﬁtmz [/dvxa ~/);H(O)—X”(t)—x <£[1DF [X#(G)O
X @<p< — %/Ot dc()'(#(cs))2>
X exp( - /ot dGJ(X“(G))

« @(p( B (_3]_22/0t dG/Ot dGIS(V)(XB(G) —XB(G/))> _|_O(N2) (1.5

We have, thus, reformulated all field dynamics in terms of random bosonic paths with a
pure self-avoiding geometrical interaction with strenght g2 as one can see from the last term
in eq.(1.5) by considering a formal power series expansion on the N factor corresponding
to the group order O(N).

It isworth to see that the two-point Green function associate to the composite operators

N
( 3 (q>kq>k)(x)> is given entierely by arandom loop geometrical intercept point object
h=1

53 (;;J 2P »

- N { A VEE N L CC L CET R
<eop( — [ d0a(x(0) Jep( - & ['do [ a0¥0(0) - x0(o')
x [ /0 ‘do /o {405 (X () — X)) (X% (o) — y“)} +O(N?). (L6)

One can follow ref.[3], to see that the usual Feynman Diagramatic perturbative expan-
sion can be easily obtained from the above written Basonic Loop space path-integrals.

An important point to be called the reader attention for, is that the above Bosonic loop
quantum field reformulation alows us traightforwardly to consider the field configurations
to live in a compact space-time. For instance, the whole effect of considering our O(N)-
invariant scalar fields living on spherical field configurations surface

N

> (04 () =T (1.7)

k=1
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is to introduce a formal further path-integration on eg.(1.6) [ DF [A(x)]e 'R/ 9% x same
integrand of eg.(1.6) added with the factor exp[+ [ fé dch(xﬁ(c))] as aresult of writing
the (formal) classical constraint eq.(1.7) into the path-integral schene

N _ 1 N e
h§:’,1(¢ 0 )(X)—R@ALTO{<\/E> /,w dA(x0) ... dA (%)

s [Mxn (zulwkwk)(x/)—R)] }
- / DF[x(x)]exp{i / de[x<§1<pk<pk—R>}(x)} (L8)

At thispoint of our exposition, werefer our readersto theref.[3], whereit is attempted a
rigorous mathematical anaysis of the above written self-avoiding bosonic loop space theory
€g.(1.6)-eq.(1.8).

Anather important basic point to be called the reader attention for is that in the presence
of charged U (N) scalar fields interacting with Yang-Mills fields, it appears as other object
in the path-integral of the bosonic loop space representation egs.(5)-(6), the famous Wilson

NZ-1 [ .
L oop Phase Factor defined by the Yang-Mills field A,(x) = ¥ (AL(X)M) inthe SJ(N)
i=1

fundamental representation ([1]-[3]).

W[Aﬂ; xB(o)} = %Trw(N){P[expig(/:chH(XB(G)XB(G)ﬂ} (1.9)

In the case of the presence of (formally) quantized Yang-Mills fields, one further con-
siders the average on the Yang-Mills fields, with the (ill-defined) Yang-Mills Path-Integral
(see appendix A)

/ DF[A,(x)]e /¢ X(Tram FAAN X (1.10)
where the Yang-Mills strenght is given by

Fw(A) = dAy — 0vA, +ig[A, A)] (1.11)

Finaly, we end this section to point out that all the Quantum Field analysis presented
still remains in present days, a somewhat formal (high complex!) Mathematical Methods
approach, even in the framework of the subject of Quantum Field Path Integrals. The am
of the further chapters of our monograph is to present studies in the problem of given a
precise operational formulation of this Random Loop Space formalism in the context of
Quantum Field Theory. Some rigorous mathematical analysis is however presented in the
last chapters 19-20, of this monograph.

1.3. A Fermionic Loop Spacefor QCD

One of the most interesting problems in particle physics is that of understanding QCD in
terms of colour single fields[1,2].
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Our am in this section 3 isto propose a generalisation of the usual bosonic loop space
formulation for gauge theory in the case of fermionic interacting matter [3] (quantum chro-
modynamics).

Let usstart our analysis by considering the QCD Euclidean partition functional with the
fermionic quark degrees integrated out:

0 — [ DAexp(~SiADeP(A,) (112

where S/A,,] denotes the Yang-Mills action and 3(A,,) =v,(id, +A,) isthe Euclidean Dirac
operator in the presence of the externa Yang-Millsfield A, (X).

By using the proper-time definition for the above-mentioned functional determinant, we
consider the formal relationship for its modulus [4]

log Det|[B(AV)]|

— llog]Det(5[D(A,D" (A,) + D" (A)D(A.)])]2

=~ [ Srrlew (Ao 113

where we have introduced the (Euclidean)Hamiltonian

H(A.) = [5(D(A)D™(Au) + D*(A,)D(AW))]2. (1.14)

In the loop approach to QCD the next step is to write the propagator Tr[exp(—H(A,)T)]
as a kind of “continuous’ sum of closed trgjectories [2]. At this point we introduce our
suggestion: since the Hamiltonian H(A,,) corresponds to a particle possessing Lorentz and
colour spin (interacting with the external Yang-Mills fields) the closed trajectories enter-
ing into the Feynman path-integral expression for Tr{exp(—H(A,)t)] should reveasin an
explicit way their fermionic particle dynamical degrees of freedom.

A natural framework for analysing this case is pseudoclassical mechanics where the
worldline of a spinning coloured particle is described by the usual vector position X*(&)
added to a set of Grassmann complex variables {6y (&), 6/ (&)} associated with the particle
colour charges [5] and another set of real ,(§) Grassmann variables corresponding to the
Lorentz spin [6].

Inthe simplest Abelian case, the above path integral expression was proposed by Rumpf
[7] and given explicitly by the following expression:

Triexp(—H(A,))]
= [ OX [ oo PN T,
< D(w ©eP-LX)E), Yu@AL)] (119
Yu(0)=yi(t)

where the pseudoclassical Lagrangian L[X,(§),w,(&),A.(&)] isgiven by [6]:

L (X&) W (E) AE)) = (52 S+ A 00K, + 2110 W JFin(X(E). (126
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In the non-Abelian case we propose to consider the analogues of (1.16) and (1.17), the
coloured version of our previous pure coloured path integral

Trlexp(~H(A,))]
— [ax® / - _XDW@]DI;
o1, D) [ DOEIDO"©)61(00; (7
L0, 01000 E). A 00 (1.17)

where our proposed pseudoclassical gauge-invariant Lagrangian for a spinning coloured
particle is given by

L(Xu(€), B(8), 6"(8), wu(E), Au(X))
1. 1. 1 A .
= E(Xu) 4|Wqu 2 (2 (o 0; — )) —9(67 (2i)1kOk) ()

X AL (X(E))XH(E) + Zi Wi W] (€) (6] (A)ikBK) () Fy (X (8)) (1.18)

By exactly integrating out the colour Grassmannian variablesin (18), we can see the nat-
ural appearance of the fermionic Wilson loop factor considered in chapters 7—8 for quantum
chromodynamics and quantum gravity

1
WX (S8)] = Tr Pexp ( | ds [ dea,(xF (s DX (s e)> (119)
where we have used a super-loop notation to write the Yang-Mills interacting term in (1.19)
in a compact form (see chapters 7-8 for the super-loop notation).

1.4. Invariant Path Integration and the Covariant Functional
Measurefor Einstein Gravitation Theory

1.4.1. Introduction

The path integral for gravitational interactions has been discussed severa times in the past
([9112]) and the important problem of the gravitational path-integral measure has been
reexamined.

In this section we intend to propose an approach for the quantization of Einstein’s grav-
itational theory in the framework of path integrals suitable to the analysis of the above-
mentioned problem of the path-covariant local measure.

Thebasicideain our discussion [9], [13] isthe introduction of a Riemann structure into
the functional manifold of the metric field variables compatible with the invariance group
of the theory and consider the associated partition functional as an infinite-dimensional
version of an invariant integral in a Riemann manifold [13]. As aresult we will not need
to introduce the add hoc insertion of the Faddeev-Popov unity resolution into the path-
integral measure in order to extract the gauge orbit volume [14], since we will be able to
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implement this calculation in a purely geometric way. So, in the proposed framework, it
is not necessary to use a posteriori a constraint Halmiltonian path integral [15] to justify
the Faddeev-Popov procedure; besides our approach leads to a natural and adequate local
covariant pah measure.

1.4.2. Invariant Integration

We start our analysis by briefly reviewing the basic results of the theory of invariant integrals
in Riemann manifolds.[13]

Let T be a homomorphism of a compact Lie group G in the isometry group of a given
Riemann manifold M. Let us consider the integral

/. 160laul () (1.20)

where f(x) is invariant under the action of G[f (T (g)x) = f(x), Vg € G| and [dy] is the
measure in M induced by its Riemann metric. The orbit of a point x € M [the submanifold
of M formed by all the points {T (g)x}, g € G] will be denoted by 0(x). The orbit quotient
space M /G can be realized as a submanifold of M which are not related by a group element.
The measure induced by the M-Riemann metricin M /G is denoted by [dz] and that induced
in O(x) by [dv]. Now we can state the basic result of the theory [13]. We have the following
relationship between the integral (1.1) and an integral defined only over the orbit quotient
space M /G:

[ 000800 = [ 1091dr(v0 (121)
/G
with
v(X) = /0 00 (1.22)

We remark that [dv|(X) is a G-invariant measure over the group G, since O(X) can be
realized asa " copy” manifold of G.

Thisresult is fundamental for our analysis.

Ancther result of differential geometry which we will use is the coordinate expression
for the induced metric in a given submanifold of M. Let {gn;(X)} denote the matrix of the
metric tensor in M with 1 < h, j <N (N being the dimension of M). Here, x belongs to an
M coordinate domain. Let H be a submanifold of M described by the parametric equations

Xj = Rj(2) (1.23)

with {z} (1 <z <k; k <N) belonging to a domain D (coordinate domain for H). As-
suming that the matrix [A]jx(z) = dR;/0z(z ) has maximal characteristic k in D the metric
{onj(x)} induces the following metric in H:

Oha (Zd) = (gnAPAIY) (Z4) (1.24)
with the volume element given by
[dV] (z) = [detgha® (zr)]Y2dZ ... dZ*. (1.25)

After having displayed the basic results of invariant integration we pass to the problem
of the path-integral quantization for the Einstein theory.
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1.4.3. A Quantum Path Measurefor Einstein Theory

Let us start our analysis writing the Einstein-Hilbert action for the theory of gravitation
defined in a d-dimensional Minkowinski space-time manifold E with fixed topology and
without boundary (see Ref. [16] for the case of an open space-time):

S8} = 1o L (VR (126)

where the field variables are given by those metric tensors {g,p(x)} that can be defined
in E, i.e., compatible with its topological structure, —g(x) = det{g,v(x)}, R(x) being the
scalar of curvature induced by g, in M and G the Newton graviational constant.

The starting point of the Feynman path-integral quantization for the Einstein theory is
the formal continous sum over {g,y(x)} histories:

z- 3 ep|Santo}l] (127
({9 ()}

The precise meaning for the continous sum eq.(1.27) is achieved by introducting a
path measure in the functional space of all possible field configurations (denoted by M);
[d][gop (X)), such that (1.27) can be written as

2— [ [@ilaplen | Sen]] (29)

The fundamental problem in Eq.(1.28) is to define appropriately the path measure since
the Einstein action possesses of the physical invariance under the action of the group of
the coordinate transformations in M (the Einstein general-rdativity principle) denoted by
Gdiff(E):

X — 1H(x*), (1.29)
G0 — T3 g 140 T
= (Lgmp (X" (130

and which initsinfinitesmal version G3'(E) is given by
Sx = e4(x%), (1.31)

3G (X*) = (Vyuey + Vg, (X*), (1.32)

where v, isthe usual covariant derivative defined by the metric {g,g(X)}.

This invariance property leads us to treat the above path integral as an infinite-
dimensional version G3'(E) -invariant integral in M [see Eq.(1.21)].

So, we intend to use the fundamenta relation Egs.(1.22) and (1.23) in its functionad
version in order to get its expression in the physical path manifold M /G4 (E). As afirst
step to implement the invariant integration theory we have to introduce a metric structure
in M compatible with the group G (E). By folllwing DeWitt’s analysis [9] we introduce
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ametric (functional) tensor vV *#[gs,](x,X') on the functional path space M for which the
actions of GYf(E) are isometries.

The unique (ultralocal) functional metric satisfying the above condition is given by the
following expression [9]-(17) (the well-known “DeWitt functional metric”):

ds® = /Ede\/—g(x)/Ede’\/—g(x’)Sg}N(x)
X Y'LN;OCB [gcp](x>)()agocﬁ()<’)> (133)
where the ultralocal tensor density y#V'*P)[gq,](x,X') is explicitly given by (c # —2/D)

v;a _ iS(D)(X_X,)
Yy [gop](xaxl) \/E \/T(X/)
x (9" +cgVg™)(x) (1.34)

and (8g,c(X) denotes the functional infinitesimal displacements on M.
After introducing a Riemann structure on the path functional manifold M we can use
the basic rlationship, Egs. (1.21) and (1.22), to give aprecise meaning for the path integral :

2~ [ [@ilaelep | Sitaun (9] 139

As afirst step, we have to realize the abstract orbit quotiente space M /G (E) in M.
For this task we consider a set of D functionals f#(gop)(X)) defined in M and in such away
that equations in G4 (E),

f'u(Lg(xB(X)) =0, u=1...,D, (1.36)

have only the identity solution for a given {g.g(x)}; i.e., we have fixed our gauge. In order
to simplify the discussion below we restrict our analysisto the class of the linear functionals
f4(0sp) (X)) setisfying the following condition:
3 T#(gup(X))/89u (X) isafunctional independent
of the field variables

{gcé (X)} (1.37)

For instance, the well-known harmonic guage 0%g,q(X) = f#(dop(X)) belongs to the
above-cited class. Thus, we can realize the orbit quatient space M /G (E) in M as the
path inequivalente manifold solution of EQ.(1.36) in M:

Gup(¥) € M/ & 14(g(x) = O (L38)

With this implicit M /G parametrization the induced path measure is, thus, given by
the well-known DeWitt result [see Ref. 9, Eq.(14.52)]

[dr][Bup (9] = T [dgep ()] det {1 (x.X)} x 8¢ (£¥(gop (X)) (1.39)

(x€E)

where
cD

et (x)) = (-1° |14 G| x (VRO a0
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and the functional delta dr (f#(gop(X))) inthe functional measure (1.39) restricts its support
to the manifold of inequivalent metrics [Eq.(1.38)].

Now we have to evaluate the orbit (functional) volume defined by a given inequivalent
configuration {g(x) € M/GY™(E)}. For this purpose we need an explicit parametrization
pf thealorbit submanifold O(g,g(x)). Such an expression is given explicitly by the path
integral:

XeE

Yo Liegl = | [Hdgpc ]gw X) x ¢ (F4(gpo(X) — FA((L-Dhpo(x))).  (141)

We remark that the {gps(X)} functional integration in Eq.(1.41) is defined over the
whole functional manifold M and the GYf(E) is the parameter domain for the orbit mani-

fold O(Gyp(X))-
Thefunctional integration over M gives straightforwardly the result

YolLiTug (9] = (L0 (x o

-1
H detr [ )} (x)] (1.42)

and since the functional determinants involved in Eq.(1.42) are g,g(X) independent by the
condition eq.(1.37) we find that Y,v[L;T,g(X)] is an explicit parametrization of the orbit
O(Typ(X)); i-€., theimage of G under Y,y [L; Ty (X)] coincides with the orbit associated with
the inequivalente metric {Jyg(X) }-

In order to evaluate the induced metric in O(g,g(x)) by the DeWitt metric Eq.(33) we
use the functional version of Eq.(1.25) with Eq.(1.42) playing the role of Eq.(1.23). So, the
differential line element in O(g,g(X)) isgiven by

ds?y = /dede’ <%vi[gy>gﬂ3]> dep (X)
% —g(x)y(w;“ﬁ)(gaﬁ)(xf) —g(X)

) _
X [mYaB[SyygaB]} des(X), (1.43)
where we have considered the group transformation L. € GYff(E) being infinitesmal and

characterized by the infinitesimal generators {€Y(x)} [see Egs.(1.31) and (1.32)].
Evaluating the functional derivativesin Eq.(1.43),

8 8
sV Gugl = [ | T 003000 | 900 g Br((0) = (L 00
(Bo)
=3 [/ I dggeo(x ]9#\/ >[— O B¢ (P(ge) — (L-0)e)
(o B) i<E 8Gorp (%)
P dfH((L-T)y)
deetF p(x)y ” (1.44)
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and using the functional version of the usual relation

[ aw g = 3 5%

{%}eS

(1.45)

X=Xo

[where S denotes the set of zeros of f(x)] to evaluate the above functional integral; we get
the (formal) result

8 B 2 6f°((L-§) £)
S—%Yﬂv[sv,gaﬁ] P {89(1/3/ [ U TYH}
D o
- %8 o0 Sup [[[ [—Sf ((Sng)ﬁ) ” : (1.46)

where we have used that 6f#(g.g)/80ps(X) is a functiona independent of the metric
{9, (¥)} and 8/8g, f#(L -g) = 0 since {Q,p(X)} isafixed metric.
By substituting Eqg. (1.46) into Eq. (1.43) wethus obtain

Ay = [ aPxdPx v/ ~g) det [%tx)@)] 8¢, ()]

x Tr[7«v:o®) (g)/—g(x)5®) (x — xdet[%} Sy (X)], (1.47)
o
where
Tryt P = Y {[87:87% (09" +cg"g*")55285 ]} (1.48)

(61,62,03,04)

isthe trace of the DeWitt metric defined by the fixed metric g,p(X).
The functional measure induced by Eq.(1.47) in O(g,, (X)) is then given by [see Egs.
(1.22)-(1.25)]

M 0u500] = | TL(v/~006) 0 (T (@) el 1((L D) /355 ). (149

Since we are considering the infinitessimal group transformations in Eq. (1.49) we can
use the Taylor expansion for the functional 5 f#(L -7) /¢, i.e,

Of#(L-Glap) _ SF(L-T)ap)
8¢, TN

(x) +O(le[*(x)) (1.50)

£,=0

and, as consequence of Eqg. (1.50), we get the result where the invariant group volume is
covariantly factorized from the path integral:

W0y 0] = (Te 7 )2 |29 [/Gdifwa@(x)(dep)(x) sy

xeE
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Finaly by grouping together the obtained resuts Eqgs.(1.39) and (1.51) [see Egs.(1.22)
and (1.36)] we obtain our proposed path measure for Einstein gravitation theory:

5f#(L-g)

(e (Gops) = [T [dlgiop et (4(g)) Tr (4P /2] (x) et ( 5o

xeE

g,=0
(1.52)
At this point of our study it is instructive to point out that the above written measure
differs from the original DeWitt measure by the factor Tr (yV:*P)) [see Eq.(1.51)] whichin
our framework takes into account the contribution from the geometric intersection between
the orbit submanifold O(g,p(x)) [see Eq.(1.43) with the quotient space M /G4 (E) in M
[see Egs.(1.44)-(1.49)]. However, we can see that this factor is irrevelant in the physical
space-time D = 4, since the functional measure

H (dgop dety(“V?O‘B) (x))

xeE

becomes “flat” [see Eq. (1.40)]. So, we can now safely use the dimensional regularization
scheme to vanish the “tadpole” contribution Tr(y*:*8))_ This result in turn coincides with
that proposed in Ref. [17] by DeWitt in D = 4.
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Appendix A.
A Grassmanian Loop Space Approach for Fermionic Bell Func-
tional Integral

Analysis of quantum many-body systems by means of the so-called Bell functional integral
[1] has proved to be an useful technique to understand phenomena such as superconductiv-
ity, superfluidity, etc., al features expected to be present in the systems non-perturbative
regime. [2]

Our aim in this appendix is to propose a generaization of the usual bosonic Bell func-
tional integral for the case of existence of explicitly (two-body) spin interaction potential
by using the Grassmanian L oop space formalism as proposed in chapter 1 and Ref. 3.

Let us start our analysis by considering the canonical partition functional associated
with asystem of N spin $ particles in avolume Q and temperature T = %

Z(N,B,Q) = (sgnP) x Tr(exp(—BH)P). (A1)

NI
where P denotes the permutation operator in the Hilbert space of N spin particles and the
N-body Hamiltonian is given explicitly by

N 2 N
= <_:§L_MAj +W(r,-)> +%Z(V(0)(fi —1)+S-SVyri—rj) (A2
j=1 i<]

We denote by (V(g), V(1)) the system’s two-body (spin dependent) interaction. W(r) is
an external scalar field and S; = (S, Sy, S7) represents the spin operator associated with
the spin degrees of freedom of the i-particle. We can thus write Eq.(A1) as a continuous
sum of R® Grassmanian trajectories (Xa(6), ¥, (6)) (1< j <N) (a= 1,2,3), where, the
j-particle trajectory is described by the usual R® vector position X,(c) added to a set of R®
Grassmanian real variables W,(o) corresponding to the spin variables:

2o = g [fo [ o)
N =1 J Xj(0)=ri e

X /{’1(0)—‘}’1([3) DF (¥, (o)) exp <—/0Bch(x,-(c),w,-(o))>] (A3)
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The path integral weight in Eq.(A3) is given by the pseudo-classica Hamiltonian asso-
ciated to the quantum Hamiltonian [3, 4] Eq.(A2)

_ 2
F (X)(0).i(0) = +§2{(d)§fj’)) e (i%)w,«mwxj(o))}

j=1

N B
+ % 2/0 do’ (V(o) (Xi(o) — Xj (0/))

+wi(o) - wj(0")Vy) (Xj(0) = Xj(0')) . (A4)

We can reduce the above lengthy expression by replacing the two-body non-local in-
teractions by an independent local interaction of each particle with Gaussian fluctuating
external fields followed by an average process over these stochastic felds.[5] We thus in-
troduce a set of Gaussian random scalar and vector fields (@ (r), @3 (r)) with two-point
correlation functions as given by

®(r) = (d)al)(r)>a:123
<<I>(°)(r)<l>(°)(r’)> = +Vg)(r—r")
<<pg1><r><pg1><w>> — V) (F —1')Sa - (A5)

We, thus, rewrite the canonical partition functiona in the following suitable form,

Z(N,B,Q) = ﬂ [/d3rj /X:;B:J DF (Xj(o))

§ .
W) <exp (— | doFix; W, <1><°>,<I><1>]<cs>) >] . (A9

where the new path integral weight is now given by

N . 2
#w1W 000, 0 = 3 o (T ) i) (i35 ) wie) WO o)

+i (@0(x(0)) + ¥} (0) - @ (X;(0)) (A7)

Analysis of thermodynamical properties of this guantum many-body system may beim-
plemented by considering the associated grand canonical partition functional by introducing
the system activity variable z,

2(28,9)= Y Z(N.p.Q)2" . (A8)
N=0

In order to write (A8) as a functional integral over fields (the so-called Bell func-
tional integral[6] weintroduce the following Schrodinger-Pauli operator acting on complex
spin—3 fields (y* (r,06), ¥~ (r,0)).

0 1

gw,© a] = 5o~ oA —W(r) (@O (r)+S-mI(r)) +pu.
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The complex spin—3 1 fields defining the domain of the operator S[W o0 ml >] are cho-
sen as eigenfunctions of the z-component spin operator S; and, besides, theae fields should
satisfy a periodicity condition on the fictious time (temperature) o, i.e. ¥Y=(r,c +B) =
Y(r,0).[6]

L et us, thus, consider the functional determinant of the above-defined Schrodinger-Pauli
operator (h=1)

Iogdet(é[w o© a))

2 &M ogdet

m=—oco

[ 2nim 1

5 oA~ W) = imOr)+s-m(r) +,1] . (A9)

By using the proper-time definition for the above-written functional determinant,we can
consider the following loop space representation for it.[3]
2mim

Iogdet[zt/l W(r)—i<q><°>(r)—s.-<1>(r))+< _T>]
[ an(15)
e[ o xon [ oFwlo)
&0 (7 |, (0 +v(Oizv(o) )
exp (- /o " do (W(X(G))+il(°)(X(0))+il(l)(X(cs))w(o))) . (AL0)

By summing the series 7= &2™(T/B-1) — (B§(T — B)) the integral over the proper-
time T in Eq.(A10) is replaced by the Boltzman factor 3. By identifying now the activ-
ity z with the parameter u through the relationship z = (e7##)B, we can see that the de-
terminant of the Schrodinger-Pauli operator in EQ.(A9) averaged over the Gaussian fields
(@@ (r),m(r)) coincides exactly with the grand canonical partition functional Eq.(A8).
Explicitly we have obatined the following representation for the system’s grand canonical
partition functional Eq.(A8),

Z(zB,Q) = <det [% + %Ar ~W(r) —ioOr) — imV(r).s— %Ig(é)] > (A11)

Let us write the functional determinant of the Schrodinger-Pauli - operator in
Eqg.(A1l) as a Gaussian functional integral over spln—— doublet complex field ¥(r,0) =
(¥ (r,0), ¥ (r,0)),

2(28,9) </DF (r.0)|DF [¥"(r.0)

x@(p{ /d3 / do¥ (1, 6) (;-%Ar—W(r)—il(o)(r)

—is-mV(r)+ B|g ) } (A12)
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By evauating straightforwardly the Guassian averages associated with the fields
(@ m) we finally obtain our proposed Bell functional integral representation for the
grand canonical partition functional associated with the Fermi many-body sustem described
by the Hamiltonian Eq.(A2):

Z(zB,Q) = /DF [¥(r,0)]D" [¥* (r,0)] exp(—S[¥, ¥"]) . (AL3)

Here the functional integral weight ¥, ¥*] is given by the following action functional
B 0 1 1 .z
*1 3 * - = _ — —
S[‘I’,‘P]_/Sd r/o do¥ (r,o)<acy SMA, W(r)+BIg(B)>‘I’(r,G)
+ / d3rdr’ / do(|¥(1,0) Vo) (r — 1) [¥(1,6)
Q 0
+T*(r/70)&((r/76))v(1)(r - r/)\lf*(ﬂ G)&((ra G))) (A14)

This expression is the main result of our appendix A. We remark that, for weak two-
body interactions [ d3r\V(071)\2 << 1, it is possible to analyze perturbatively Eq.(A13).
The free one-body Green function may be expressed in the following explicity form,[5, 6]

o)~ 3 W) (o) + (0 (A15)

where @k(r) denotes the eigenfunctions of the one-body interaction Schrodinger-Pauli op-
erator and Ey its associated eigenvalue:

(3~ 08 Wi+ 10(5) ) ) = Bt (a16)

It is worth observing the iB-periodicity of EQ.(A15) in the fictitious time variable o.
Finally wewould like to point out that, by considering the Grassmanian variables associated
with the U (N) color degrees in the Grassmanian path integral representation, Eq.(A1), as
in chapter 1, we can easily write the following Bell functional integral for a gas of spi n—%
U (N)-charged particles interacting with and external 3D Yang-Mills field A(r)

Z(z,B,Q,A(r /DF (r,0)]DF [¥*(r,0)] exp(— ¥, ¥*,A]) . (A17)

where the weight functional is now given by
B
S¥, ¥ A] = / d3r / do¥*(r,0)
S 0

x <% _ %(%—A)Z—W(r) + %Ig(é)) ¥(r,0)

n /O "do /Q B (|W(r, 0)[ Vo) (f — ) ¥(r', ) ]
+ (I*(EG)SI((BG))V(D(V —r')(w*(r,0)S'm((r',0))))

2

+|29’—M do/QdSsiikF.,-(A)(-*(r, 0)¥(r,0)) . (A18)
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The complex field m(r,6) now belongs to the fundamental representation of the color
group U (N).

At this point our analysis it becomes worthwhile to remark that if we consider a further
average in Eq.(A17) by considering the second quantized Yang Millsfieldswe are naturally
led to considering it as a possible definition for the partition functional for a gas of strings
in a volume Q and temperature 3, since the field excitations are now confined as a result
of its interaction with the quantized 3D-Yang Mills fields.[1, 4] Work on thermodynamic
analysis of this string gas will be reported in next appendix.
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Appendix B.
Bell Functional Integral for Gasof Strings

One of the most useful technique to analyze the statistical Physics of point-particle many-
body systems with two-body interaction is to represent the system’s grand canonical parti-
tion functional by means of aquantum field functional integral, the so-called Bell functional
Integral. (see appendix A).

In the previous decades, the study of the statistical mechanics of strings (or random
surfaces), has became a unifying concept Physics of collective phenomena.[1-4] (see sec-
tion 3.7 — chapter 3).

Following our previous work (appendix A),in this appendix we propose a generaiza-
tion of the usua point-particle Bell functional integral for the case of statistical systems of
random surfaces with two-body interaction.[4, 5]

Let us start our analysis by considering the statistical system of N closed strings de-
scribed by functions rj(a)(0 < o < L,rj(0) =rj(L)), contained in avolume Q C RP and
at temperature T = 1/kP. The generalization of the point-particle Feynman path integral
expression for the Canonical partition functional associated with this string ensemble will
need functiona integrals over random surfaces instead of the usual point-particle world
ling[3] Let us, thus, introduce the associated string world sheet at temperature T = 1/k3.
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Itis described by atwo-dimensional field R (o, T) in RP with0< o <L,0< 1< B and sat-
isfying the periodicity condition R, (ct,T+ip) = R,(a, 7). Theinteractions will be given by
the interaction of the random surface R, (c:,t) with external fieldsin R, Vi(r,) and Vi (r,)
represent the analogous one-body and two-body interaction for surfaces respectively.

In order to write the canonical partition functional for the above described ensemble of
strings we follow the simplest generalization of the Boltzman weight of point-particles for
strings.[5] It will be given by the path integrations below written

Z(N,B,Q) NI]‘[/ L [ arf)
> /RLJ)(OL,O) 0@ PR (o vl exp [__2/ dT/ dot

{r? (o)}

<8R£”<oc,r)>2 <8Rf,j)(oc,r)>2]

x | 2 |

oo ot

xexp| — i/BdT/LdocV (R,(,D(oc 7))
p 2 Jo o 0 ;

LN NN L (i () (o)
X exp <_i7j2_1/0 dr/o doc/o dr/o daVi(Ry(a,T) —Ri’(a,7')) | (BI)

where the string “continuous sum” Y, 9 ()" which replaces the usual integration dr; over
M

the particle position in the point-particle canonical partition functiona, is defined by the
following path integration over r, (o), (see chapter 1).

3 =y P Ilen] 3 [ o) ®)

The weight exp{—(1/2) fOL fu(0r)?} isintroduced in the string sum in order to make it
formally convergent.[4]

Now, we can write the two-body non-local surface interaction by an independent local
interaction of each random surface with a Gaussian fluctuating external Field followed by
an average over this stochastic field [1]. We, thus introduce a Gaussian Random scalar field
@ with two-point correlation function given by (m(r,,),m(r,)") = Va(r, —r;) which by its
turn enables us to rewrite Eq.(B1) in the following suitable form,

Z(N,B,Q) / dL/ dr,, / D oo )DF[R,(,”(oc,r)]

2 () 2
X exp {2/ dr/ da<8Ry ocr)> +<aRyla(Ta,r)>]
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o [Pt ()
X exp —2/ d'c/ dovo(RY (a1, 7))
Z1/0 0

< ( ”21/ dr/ dom(RY( m))>>¢ (B3)

Analysis of thermodynamical properties of this many-random-surface system may be
done by considering the associated grand canonical partition functional by introducing the
system activity variable 3

Z(3,B,Q) = ZZNBQ (B4)

Now our aim is to write (B4) as a functiona integral over complex disorder fields.
For this task, we propose to consider a disorder field defined over the functional space of
closed strigss r, (o) and depending on a evolution parameter A in the range 0 < A < .
This proposed field is denoted by wr,(ct)),A] and is supposed to be periodic in A, i.e,

W[(ru(o), Al = wlru(o); A+ip].
Following closely the study of Appendix A, a natural candidate to be the Schrodinger
operator to act on the proposed string disorder field y(r, (o), Al is given by (see chapter 9)

SO [¥) = o Ay + [ Moo + @r,(ofdoctu (89

where A isthe generalization of the point-particle Laplacean for strings (see section 3.7).

A Lo/1® 1,
A(r,,(oc))—/o do <§W—§’ru(0‘)\ ) . (B6)

Proceeding from our point-particle study,[2] we should consider the functional deter-
minant of the Schrodinger operator EQ.(B6) after taking into account a Fourier expansion
in the A-variable for the disorder field y(r,(a),Al.

DET(S([V(o)].m) . omim -
g(DET(é([V(O)ZO,l:O])> m;mez Ig DET( 5 A

L
v [ doc(vo,(ry(oc))+-<ry<a>>>+u). ®7)
0

We use now the proper-time technique to define the functional determinant in Eq.(B7)

lg DET <+2nT|m —A{r(a)} + /OL dot (V(g), (ru(cr)) +m(ry(cr))) +,u>
- _m;m/ —e“Texp< 2nim<%—1>> X {r%)}

(0

{7+ [ datvo o) +ainn]| ) @9
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At this point of our exposition, it is instructive to survey the main result of chapter 11
which will be used in what follows. In this chapter it has been shown that the free string
propagator (r,(o)|exp(—TA)|r,(a))) = G(ru(o), T) satisfies the Schrodinger string equar
tion

i%G(r“(“)’A) = Afr(a)G(ru(e).ry (), A) | (B9)
Aim G(r (o), (@), A)ZOSII[SLS(d)(r#(oc)—rL(a)). (10)

For Euclidean evolution parameter A= iT, we have the functional integral representa
=r,(a

tion for this string propagator
() DF [R.(a,7)] exp{——/ d'c/ do
)
(

x K@)ﬂ(@) o ew

217 (0)| exp(~TA)lry(@)) = /Rﬂgam)
R, (a,T

RIR

By taking into account the above results, we have the following random surface repre-
sentation for the (Euclidean) string propagator in Eq.(B8) in the presence of external fields

(rator|ep{ =T -Bpany+ [ der (Vo 1) + ()| | ()

1 /B L
:<ry(0C) /Rf,( 0,0)= Ru( 0)=r (Q)DF[RIJ((Xﬂr)]eXp{_E 0 dT/(; do
2
[(3&8(2 r)> <8Ry((x r)> +V(o)(R,,(oc,r))+l(Rﬂ(oc,1))]} r#(a)> _
(B12)

By identifying the activity 3 with the parameter u through the relationship 3 = e+ /B,
we obtain that the inverse of determinant Eq.(B7) averaged over the fluctuating field m(r,,)
coincides exactly with the grand canonical partition functional (B4). Explicity, we have the

result R
_ 1 SV(o).
Z(3,3,Q)= <DET <§[V<o> o 0]> > . (B13)

We can rewrite (B13) in the form of a Gaussian functiona integral over the proposed
bosonic complex disorder field y(r o), Al

2(3.B.) = | ¥ (wl(ru(e), AY)D" (v (7 (), A)
p
x<exp{—§ /0 i 3 (v ( 55 -3

{ru(o)}
+ [ (o) @) swvinnal ) b) . e
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By evaluating the m-average we obtain our proposed random surface Bell functional
integral

2(3.B.2) = [ OF (wl(ru(e) A)D" (v (1), A)
x exp{—% [ an z (w0 (55 - B0}
+ [ Vo lr(e) +4) via).A) |
xexp{ /dA/dA’/da/ do/ 3 Y |y A2

(@)} {ru(e}
X Va(r(00) = (o)) [wl(ry (o)), A'] 2} (B15)

This expression is the main result of this Appendix B.

Itisinstructive to point out that in the situation of “collapsing strings” r,, (o) to apoint r;,
the above written Bell functional integral Eq.(B15) may be implemented by using the free
propagator Eq.(B11) for the two-point propagator of the disorder string field yir,(a), Al
(with Vp(r) = 0). Results on thermodynamica properties of this quantum bosonic string
gaswill be left to our readers.
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Appendix C.
Invariant Path Integral Quantization of Yang-Mills Theory

Let us start our study by considering the path-integral associated to aclassical U (N) Yang-
Mills theory defined in afinite valume Q c R

Z= /D exp{——/ d*XTr (F3,(x ))} (C1)
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here the U (N) Gauge field has N2 — 1 components

N2—-1

AX) =Y, Akg (C2)

a=1

with the hermitian traceless generators of SJ (N) satisfying the structure commutation re-
lations below

A3 AP] = i fape® (C3)
(02)(12) = (3775 — 5757 ()
Note the gauge covariant objects below defined
1 N2-1
Fiv(X) = =D, Dy] = gl Fiha = 9.A, — 0vA, +iglA, Al (C5)
D, =19, — igAiAa (C6)

As noted in the bulk of this chapter, the path-integral infrared-divergent free (since
vol(Q) < oo, Q being a compact set of R*), has the gauge invariance under the local gauge
group G : C~(2,3J(N)) C HR4(SU(N))X:

Xe

Q(x) € I(SJ(N))x
A, — A2 =QAQ T4 'észa,,grl )
Fov — Fie = QX)F (0Q () (C8)

By introducing some ultra-violet cut-off in the free kinetic action associated to eq(CL), it
can be showed that al “rough-distributional” aspects of the path-integrated gauge field con-
figurations turns out to become point-functions and as a consequence the formal functional
domain of eq(C1) becomes the space of SJ (N)-valued functions L?(Q,SJ (N) (see chap-
ter 19), besides of producing awell-defined cylindrical measure in the infinite-dimensional
Manifold Space
_ LAQU(N))
- Co(QU(N))

In order to write exactly the path-integral measure in this functional Manifold M, we
follow our geometrical procedure described in section 1.4 by introducing aflat Riemmanian
structure in the Functional Bundle M

d< = /Q d*X /Q [ (3A2) (0 (6%3,0)8(4) (x — ) (BAZ) (¥ (C9)

After this step has been taken we should choose a fixed-gauge (bundle section) base
Manifold N C M, through afunction (infinite-dimensional) hyper surface

M ®C”(Q,U(N))

N2—1
F (A) = 2 fa(Ale)la =0,
a=1
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called the gauge-fixing functional.
Since we are in an infinite-dimensional setting, let us restrict our study to the class of
those functionals which are linear in the gauge field variable,namely

SF(A) NS, 8 .
= F(A)| = field-independent (C10)
A~ 2 | smw
besides of satisfying the linear argument condition
F(Ay+By) =F(A)+F(By) (C11)

Let uswrite an explict parametrization equation of a given orbit associated to an fixed-
gauge field configuration A, = YN'T* A%,

F(A) =0, (C12)

namely

ve@ ) —det{ 0| b ([ Dm0 <87 (- A (19

It is straightfoward to see that the path-integral eq.(C13) produces as a result of this
explicit evaluation the gauge orbit Manifold passing through the gauge fixed configuration

A, namely

SF(A)
Y2(Q(x), [A)]) = oo {( e > 1“} x ((A)?) = (AD)° (C14)

The induced functional Riemanian metric eq(C9) on this orbit Manifold is explicitly
given by the operationa formulae below

s~ [ ahatx { (@A) ) (9 ) Ga)
9 e x)33 { (5 ¥0(@ ) ) 9 | @200 (15

where

e ®) = [ oF oo { - () o)

x (&) F)(F(A) —F(A®)) (C16)

Here (8')(F)(-) denotes the (functional) derivative of the delta functional.
The evaluation of eg(C15) by means of the result eq(C16) can be done by using the well
known distributional formula expected to be correct in the infinite-dimensional setting A1 .

o (g0 = 3 (o)

{0}

(C17)

X=X%n
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where {x,} isthe set of (single) zeroes of f(x).
We have thusin M

[, o (45 (-8 ) 0 (e Fia)

(e [ 2 )

B[ e

By substituting eq(C18), we obtain the explicit form of the functional Riemmanian
metric of the orbit Manifold generated by a given fixed field configuration

as? = / d*xd*X 84 (x—X) <8F§§Q) (x)> (5Q(X)

AQ
( D (sﬂy&ac(sﬂvsab)swfabc))> <8F5(g )(%)> (8Q(X)) (C19)

Y.y e €

which by its turn lead us to volume element of the orbit Manifold, as first deduced by

Faddev-Popov asa“trick”

SF (A2
o0Q

dulA®] = detr { }d“%(g) . (C20)

Here d"3 4(Q) = [Tyeq(Q1dQ)(X) isthe formal gauge invariant measure in the local
gauge group C=(Q,SJ(N)).
As a consequence the path-integral measure takes a gauge fixed form in 2.

z— /DF A exp{——/ d*XTr(F2 (A }6<F>(F(A_))

« ( /G detr {%ﬁ}d“wy(gﬁ (C21)

Thisis animportant result of oursin the subject.

In the so called perturbative case, it is possible to evaluate the volume of the gauge orbit
by using the “infinitesimal” local gauge group G, which is formed by all infinitesimal
gauge transformations in a neighborhood of the group element identit 1.

d _ o
detr {S_QF(A )} ‘Q:Hiswa(x)xa

— detr {% <F(K)+2—5(50(9_1(89)+£—6;(89)2‘Q_1+...>}

— detr {gg (A_\)‘ } +0() (C22)
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which lead us to the famous weak field-perturbative result of the Faddev-Popov

/G  detr {g—;(/@)‘g_l} dHer (@) (C23)
— detr {g—;(ﬂﬂ)‘g_l} x ( / I\i[llDF[ma(x)O , (C24)

where the infinitesimal gauge group volume is absorbed in an over al factor, when evalu-
ating observables the theory by means of path integrals, like the Wilson Loops, etc. (see
Chapter 2).

It still to be an open problem to analyze in full, our result eq.(C21),including the
important case of the existence non-trivial homotopical class of the local gauge group
G =C(Q,3J(N)). We left this “infinite-dimensioanl homotopical” problem to the future
inquiries of our readers with the very important mathematical remark that all gauge field
configurations possessing differentiable structures supporting topol ogical-differential struc-
ture assignments (Chern-Simon Classes, etc...) forms a set of functional zero measure in
the functional domain of the path integral eq.(C21) (see chapter 19). As a consequence,
these smooth C=-field configurations are relevant solely as objects to be used in saddle
point evaluation of eq.(C22) (see A.M. Polyakov — Compact Gauge Fields and the infrared
catastrophe — Phys. Lett. 59B, 82 (1975)).

Appendix D.
Polyakov I nvariant Path I ntegral Quantization of Gravity in Two-
Dimensional Manifolds

In this appendix, we intend to apply the method of invariant path integration to the “cos-
mological” action of atwo-dimensional metric field path integral (Quantum Gravity in the
two-dimensional domain D C R?).

£= / dulgap (0] o VI (D)

We note that the evaluation of eq.(D1) must preserve the invariance of the objectsinside
it under the action of theinfnitessmal dipheomorfism-coordinates change group in D

& = g*(x)en(x) (D2)
8Gab(X) = (Vagb+ Viea) (X°) (D3)

with the covariant objects
(Faen) ) = ( gato= TSt ) () = (at - %109 (04)

Iep(X) = {ng(aagbd + OpQad — adgab)} (x), (D5)

NI
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It appears suitable to define eq.(D1) through the method of Functional Riemann metrics
as exposed in section 1.4 of this chapter.

4t = /d2 (8Ga) ()77 [Goa ()] 3Gty ) (X) (D6)

with(c # 1/2)
Y g ()] = (VA e +eg®™)) (% (O7)

with the conformal gauge gap(X) = €°¥34, as a gauge fixing functional.

Itisworth call attention that due to the fact that there are only 3 independent components
of the path-integrated metric field gap(X)(912(X) = g21(X)), the functional metric takes the
form below

ds? = /d2 {5911,591275922)[ ]11<|<3(5911,5912,5913) }() (D8)

with the coeficients

,?11 — ,Y(11711) [g]’ ,Y22 — ,Y(12712) [9]7 ,?(22722) [g — ,?23
2= Y12 g, 713 = (112 g B = 42 g
= y1212)[g], ¥ — y212)[g) (D9)
We have thus for gan = €°94p
detfil=| 0 L 0 +C (D10)
£ o0 L e
e e

We can see thus, that only for ¢ £ —1/2, eg.(D6) defines an infinite-dimensional Rie-
maniann structure on the space of the (distributional) metrical fieldsin D (see chapter 19).
A generd dispalcement metric field dgap(X), around the fixed-gauge configuration gap =
P, isgiven by
(8Gab) (X) = 80 (X)Gab + (Vagb + Viea) (X)

which by its turn leads to the more invariant form for the associated functional metric
eq.(D6)

dS? = / d?xe?™) (S(pgb + V3p + Vpe?) (8902 + VPea + VaeP) +4c(Vee® + S(p)z} (x)

— / d?xe?™ (V3 + Vipe? — (Vee®) ) (VPea + Vae® — (Vee®)ah)
D
+2(1 +20)(Vee® +8¢)%) )

— 2(1+20) { /D d?xe?™) (Vee® +89)?) }

-2 { /D d2xe?™ {ea€ ®(VcV©)ep +€a€ ?[Va, Vilen } (x)} ) (D11)
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where we have used the integration by parts formula with covariant derivatives, for general
objects (tensors) T and S.

/ d%,/G S(VqT) = / 0%, /G(VaS) T (D12)

As a consequence the functional volume element takes the Faddev-Popov form

(Hd (€5 ) xdetl/z{VCVC+[Vb,Va]} < | TT dea(®) (D13)

xeD xeD
a=12
As aresult of the evaluation of the metric field path integral eq.(D1)) in the conformal
gauge gan(X) = p(X)dan,it takes the form below after an explicitly evaluation of the Faddev-
Popov functional determinant in eq.(D13) (A.M. Polyakov).

z- iim { [oFLplew [—% [ (o) + (1 o) | de(\/ﬁ)z(X)] }

DF [B(X)]

-/ (Hdﬁ ) [ 5(/;0'2% (%)j i [ dZXBZ(X)] ©o14)

Note that we have introduced the correct degree of freedom to describe induced (quan-
tum) two-dimensional gravity in the region D (without boundary). It is worth cal the
reader attention that the appearance of a kind of “Goldstone Massive Boson” B(x) is due
to the dynamical breaking of the conformal group (scaling) of the theory at the quantum
level by means of the induction of a counter-term of the form of a cosmological constant
lims_oexp{(1? — 3) Jp d*%,/G(x)} in the induced c-like model scalar action as given in
eq.(D14).

A complete use of these formulae will appear in chapters 9-16.

At this point we comment that perturbative evaluation of the two-dimensional -model
(scalar) field theory as expressed by eq.(D14) can be implemented through an natural flat
background weak fluctuation metrical variations of small strength &, namely p = 14¢pf
€2B@ ... Perturbative analysis in this context will be left to our readers.

In the important string case of taking into account explictly the existence of non-trivial
topology in D (a bounded / boundaryless open domain with holes inside), we must take
into account the conformal gauge fixing with Teichmiller parameters (see M. Nakahara
— Geometry, Topology and Physics — Graduate student Series in Physics — |OP Publishing
Ltd. 1990 and Chapters 12, 14 and 17) gap(X) = €°™ - hap(t', X), wheret' are the Teichmiiller
parameters in an open domain Lrecn(g) in R89-6 (if D possesses g holes) and R? (if D
possesses a single hole).

The final answer is given by the scalar 6-model in the back-ground field hgy(t'), as
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written bel ow

z= ¥ { / dy[gab]eub&xw@m(x)embd2x<¢§>(x>}

Topologies

_ i o—21(2-29) {/ 6ﬁ6 [/ (H d(MB(X))
g=0 Lracn(g) i=1 xeD
o [ Lo () ()]
X exp (-% /D dzx(\/hab(tc)Bz(x)ﬂ} (D15)

In our opinion it remains an important problem in Quantum Field Theory to understand
the exact meaning of the Liouville field theorie (in the correct form of “ Scalar 6-model” —
eg.(D14) in a Quantum Field two-dimensional Framework, with the very important remark
to keep in mind that quantum geometric bosonic field configurations with C*-differentiable
topological structure made up a set of zero functional measure in all non-trivial quantum
geometric path integrals (A.Yu. Morozov, A.M. Porelomov, String theory and Complex
Geometry, Phys. Reports, 1992).

Appendix E.
Functional Deter minants Evaluations on the Seeley Approach

In this somewhat technical appendix, we intend to highlight the mathematical evaluation of
the functional determinants involved in the theory of random surface path integral (Chap.
9,10, 11, 12).

Let us start by considering a differential elliptic self-adjoint operator of second or-
der acting on the space of infinitdy differentiable functions of compact support in
R?,CZ(R?,CY) with valuesin CY

A=Y ay(x)Dg (E-1)

|o|<2

with oo = (011, 02) multi-indexes and

W (1 9N\%/10\%
o= (3a) (75e) =
and A, (x) € CZ(R?,C9).

By introducing the usual square-integrable inner product in CZ(R?,CY) and making the
hypothesis that A is a positive definite operator, one may consider the (contractive) semi-
group generated by A and defined by the spectral calculus

A 1 eftk
et _%{/cd}‘m} (E-3)
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with C being an (arbitrary) path containing the positive semi-axis A > 0 (the spectrum of
the operator A) with a counter-clock wise orientation.

According to Seeley, one must consider the symbol associated to the resolvent pseudo-
differential operator (A1qxq— A)~* and defined by the relationship below

o(A—Al) =e (A A1) = 221 Aj(%,E,1) (E-4)
liI=0
with
Aj(%E1) = ( Y oy (X)(é‘i‘ﬂ(%%‘ﬂ) 0<j<2 (E-5)
|| =011 +02=]

Az(X»‘:J)Z—ququ( > aj(@(%‘i”)(i?)) j=2 (E-6)

|o|=0t1+o=]j

It is basic for symbols calculations, the important scaling properties as written below

Aj(x,CE,C%A) = (c)) Aj(x,E,A) (E-7)

Itistoo afundamental result of the Seeley’s theory of pseudo-differential operators that
the resolvent operator (A — A1)~ (the associated Green function of the operator A) has an
expansion of the form below in a suitable functional space

6(A—11)) = Y C o j(%EN) E8)
=0

and satisfies the relationship below
o(A-21)-o((A-21)H =1 (E-9)

{ )y 2 [(DE(o(A—41)) (x,E)D5 [C2-(x,&,A)] } =1 (E-10)

|o|<2j=0

Recurrence relationships for the explicitly determination of the Seeley coefficients of
the resolvent operator eq. (E-8) can be obtained through the use of the scaling properties

E=pt; A=pQ)? (E-11)

C_omj(x, P, (P(V)2)?) = p~ P C o (&, W) (E-12)

After using eg. (E-11) in eg. (E-10) and for each integer j, comparing the resultant

power seriesinthevariable1/p (1 1+0< >+O<F_13

C_2(x,8) = (A2(x.E) ) (E-13)

n
> +...>,onegetsasar&wlt

0= EC 2 (x84 = ¥ DLax®)((DICoixEM) p (E14
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For the explicit operator in CZ°(R?,RY) as given below

02 g
A=— <911 0 + 022 8x2> 1gxq
0 0
- (Al)qxq a_X]_ - (AZ)qxq 8_x2 - (AO)qxq (E—15)

with all the coefficients in C*(R?, RY), one obtains the following results after calculations

Ao(%,E, 1) = (011 (X)EZ + GooE3 — 1) Lgxq (E-16)
Ao(x,E, L) = —i Ag(X)&1 — i1 Ax(X)E2
Ao(%,&,A) = —Ao(X)

and

Co2(%&) = (Qu(x)&F +G2(0)&5 — 1)
C_3(x,&) =i(A1()&1 +Ao(x)E2) (C-2(%.£))?

~2ign (0% | (g on ) @02+ (5 82 ) @22 (C2x )
2iga(0E [(i 911> ()2 + (a% gzz) @ﬂ Cox&P  (E1)

By keeping in view evaluations of the heat kernel of our given differential operator, let
us write its expansion in terms of the Seeley coefficients of (E-8):

Tr(e™) = i{)(%)z { /R [ d?xo(e™)(x, ﬁ)}
G

5 s o[ s

_ i{t}( 1 / Zg/ et c zj(x,t%é,—is)}

_ 5:;0 {t@ (2n)3 /dezg /R L [ Cco ,-(x,g,—is)} (E-18)

By applying eq. (E-17) to the differential operator as given by eq. (E-15), we obtain the
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short-time Seeley expansion as an asymptotic expansion in the variable t

Tr(e ™) ~ % (/ d®X /011 922>

& fon (1)

(~ 3 divenA)

+/d2x —% ! Tr[(aixl(\/mAq) + <aixz(\/mA2)>]

/911922
o (11 [(A)?  (A2)? D ]
+/d x( 4Tr{ o g Tl ) o0 (E-19)

For applying the above formulae for the Polyakov’s covariant path integrals, let us by
firstly introduce the R? complex structure

Z=X1+Xo, Z=X1—iX (E-20)
90 90 a_0 0
0z 0X1 OXo 0Z OX1 OX

For each integer j, let us define two Hilbert spaces H; and H; as follows:
a) H; isdefined as the vector space of all complex functions f(z,z) = f1(x,y) +i fa(X,y)
with the following tensorial behavior under the action of a conformal tranformation

(E-21)

z=2z(w) (E-22)

—j .
f(z2) = (%‘Z) f(w,w) (E-23)
Let usintroduce into H; the following inner product
@ 1w, = [ dZp(z D G2 f(22 (E-24)
with p(Z) a positive continuous real-valued function of compact support in R? and associ-

ated to a conformal metric
ds® = p(z,2)dzAdz

b) H; is the same definition as above exposed with the following tensor low

N\ -
f(22) = ((%—VZV» f(w.w) (E-25)
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At thispoint, we can verify that the above written inner products are conformal invariant

= o (5) (3 (%

S ]
[(a%w) f<w,vw] (%—f) <g<w,vw>]

— [ (e ) 42 F ) G

(E-26)

Let us now introduce the following weighted Cauchy-Riemann operators with aU (1)-

real valued connection A = (A;,Az) iInR?=C.
a) Lj = Hj —>H_(j+1)
— (p(2.2) (0z+Ag))
b) Ej :ﬁj — H(J-H)
— (p(2,2))! (02 +A))

together with the adjoint operators (L, f)ﬁ—(j+1) = (9,Lj f>va namely:

Lj =L geni Hogeny —Hj (andLj=—L (1)
f——(p(22) UV (0,4 A))f

For ssimplicity, we consider the case of A, = A, =0.
The second order positive definite operators below

Li=LjLj =L (jrpLj: Hj = H
ZJ' = (Ej)*tj .= I—-(H.]_)Ej X ﬁ—(j+1) N ﬁ_(Hl)
possesses the explicitly expressions (for p(z,z) = e?(2?)
Lj= —e (ItDe(z2 5 glo(z2) 5
Lj=—e I+00@F g el02 g,

They have the following Seeley expansion:

t—0* 2mt j2m

tir(r)lTrC?(Rz)(e*tZJ) :/dzdz( Pz Z) (2.+3j)Mgp(z,25>

2nt j2n

The above written expressions come from the Seeley asymptotic expansion

Jim Tre: o) ( /d2 { ( 1)2X2> (t})

— (m \/§R> Tr(1)2x2
+ % \/@BO} +0O(t)

lim Tre. e (€7) /dzd < p(z2) (1+3J)A£gp(z,2)>

(E-27)

(E-28)

(E-29)

(E-30)

(E-31)

(E-32)

(E-33)
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where A is the elliptic second-order self-adjoint differential operator in the presence of a
Riemann metric ds? = g, dx dx" (in atensorial notation in the space L?(R?, ,/gdx*dx?):

A= (-%(a,,lm +B,) /39" (0vlox2+ Bv)) — (Bo) (E-34)

with B, (x") denoting C3°(R?, R?) functions.
After al these preliminaries discussions, we pass to the problem of evaluating func-
tional determinant (without zero modes)

(gdet £ = I|m {/E gTrcw(Rz)(e‘tLi)} (E-35)

e—0

It is straightforward to verify that the following chain of equations related to the func-
tional variations of the conformal structure hold true [Herewith Tr = Tre- ()]

SL;j

r-/\
S¢gdet£; = lim / dtTr J8(pe t

e—0t

:gml{ i dtTr [(—(j+1)89 L — jLj+100L;j)€ tLJ]}
= Iir(r)l{ ‘ dtTr[ (j+1dpLie ™™ + 80 L_(j 1€ L <J+1>]} (E-36)
E— €
where we have used the functional identity
Tr(—jL_(j11)00L; e‘tLJ)
— -1 — _t7
_Tr[ il (rn (L) (S(P)le——(j+1)etL’(J*l)]
=Tr [—J 139(— J+1>)e*tzf<j+1>} (E-37)
since B
e = (L) e T hy (E-32)

is a consequence of the operatorial relationship

J— — ,l —
L (j+n = (Eg+n) "Ll (E-33)
As a consequence, we obtain the results below:

8(¢g det Lj) = (j+1) lim 1 Tr(3pe 1)

+j I|r51+Tr(8(pe‘ﬁzf<J+1>) (E-34)
£—

o e[
+ ] { /R (d?x80(x) {%lgeq’(x) + (lesj) A(p(x)}]

e—0t

(E-35)

e—0t
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Grouping together, we obtain our final *basic-brick” formulae of the quantum geometric
path integrals for Random surfaces:

dlgdet £j = lim (—Z—i{) [/RZ d?x89(x) e‘P(X)]

w [ /R2 d?x8¢(X) A(p(x)} (E-36)

which produces the “brick” result (A.M. Polyakov)

| ! 25000
fgdet Lj = LI—IFQ* <—%> de X€e

[_w [ zdzx{% (aa(p)z(X)H (E-37)

The result in the presence of gauge fields can be obtained through bosonization tech-
niques and only will lead to the following additional term to be added to eg. (E-37) inits
right-hand side

exp [—i d?xe?™ { A1 (x) A (X) + Az () Az(x)}}

o {—% [zndzia, Az)] (E-38)

References

[1] B. Durhuus, Quantum theory of string. Nordita Lectures, (1982).



Chapter 2

Path Integrals Evaluationsin
Bosonic Random Loop Geometry -
Abelian Wilson L oops

2.1. Introduction

In this somewhat long chapter we present several basic elementary calculations on the use
of Gaussian Euclidean Path Integrals in combination with the previously exposed Bosonic
L oop Space for representing Euclidean Gauge Theoriesin the chapter 1. Themain objective
of these loop space-path integrals evaluations is to show the usefulness and the computa-
tional power of these non-perturbative mathematical techniques to obtain exactly results,
otherwise extremely difficult to obtain by another mathematical methods like Feynman Di-
agrammatics; operatoria perturbative expansions, etc.

The content of this chapter is the following. In the section 2.2, we examine some fea
tures of longe-range interactions between electrically neutral systems represented by rect-
angular Wilson Loops in the presence of a heat reservoir. The temperature independence
of the interaction is obtained. In the section 2.3, we present similar path-integrals analysis
by evaluating explictly the quark-antiquark static potential in Quantum Chromodynamics
Q.C.D(SJ(3)) by using the Dimensional Regularization scheme in the context of the Man-
delstam approximation for the Gluonic interaction. We obtain its charge confining behavior
in oppostion to those non-confining of the section 2.2. In the section 2.4, we present path-
integrals studies - based on the previous sections on the problem of confinement in the
presence of fermiomic and scalar magnetic monopole fields.

2.2. Abeélian Wilson Loop Interaction at Finite Temperature

a) Introduction

The analysis of the interaction of neutral colour states in non-abelian quantum gauge theo-
ries at zero temperature has revealed the existence of long-range forces, like van der Waals
forcesin atomic and molecular physics[1],[2],etc. On the other hand, it is well-known that
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the introduction of a heat reservoir can modify the zero-temperature physical phenomena.

In this section we analyse these long-range interactions in the simple case of a quantized
electromagnetic field in contact with a heat reservoir by computing the interaction of elec-
trically neutral systems represented by rectangular Wilson loops by means of elementary
path integrals evaluations.

Our conclusion concerns the temperature independence of these long-range forces in
these simple path examples in Quantum Field Theory, otherwise difficult result to be ob-
tained in the operatorial framework.

b) Wilson Loop Evaluation at Zero-Temperature

We consider aneutral system simulated as an external current circulating around arectangle
C(R7T) .

The interaction energy between two such neutral sources separated by a a space-like
distance h is computed by evaluating the vacuum energy of the quantized el ectromagnetic
field in the presence of these sources and then subtracting off their self-energies

(op(ief Adx)em(ieds Adx))
exp(ie C<1 AIJdXH)><eXp(Ie o, Aﬂde)>

(2.2)

Tooo

E(h) = lim — o7 —log {<

where the rectangle c( ) is trandated through the distance h from the rectangle C((R)T)
along its spatia di rectl on The factor 2 in eg. (2.1) prevents the double counting of the
interaction energy.

The quantum average ,< > in eg. (2.1) is defined by the Euclidean generating fuc-
tional of the quantized electromagnetic field, an Gaussian exactly soluble path integral

= / d[A,(X)] exp (-% / deFyz‘V) O(A) (22)

where 0(A,,) denotes an observable, and D[A,(x)] isthe appropriately normalized functional
measure (< 1 >= 1) including gauge fixing terms. We call attention to the usefulness of
the representation of neutral objects by Wilson loops, since eq. (2.1) manifestly exhibits
the gauge-invariance of the calcuation, aresult impossible to be achieved in others quantum
field theoretical calculations schemes.

In order to evaluate eg. (2.1) it is convenient to express the Wilson loops by means

of externa currents J,(x; C(( )‘ )) circulating around the contours C((RT parametrized by
Xi' =X (s) withi = 1,2 (6],[7])
J#(X’C((IF37T)) - ie}é&n ®) (%, — XS)(S))(# =0,1...;D-1) (2.3)

The interaction energy in eqg.(2.1) can be exactly evaluated, as the euclidean functional
integralsinvolved are of the Gaussian type, asit has been observed thus giving the following
result:

. 1 1
E(h) = Jim — = log {exp{é [ Px®y(x ClEr AR (- VX CE Y| 24
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K iy 1

AR (x-y) = =

Af,'? (x—y) means the associated (Euclidean) Feynman propagator.
The evaluation of eq.(2.4) can be accomplished by writing it in momentum space

. 1 dPk ] (1) 8 ()
with _ _
fu(kiClly)) =ie ?g . e MexOdx,(9), (0u=0,1,...D-1) (2.6)

(RT)

Astherectangles C((gﬂ are contained in atwo-dimensional sub-space of the space-time

RP, we can decompose the vector k as k = ko& + ki& -+ k, where k is the projection of k
over the sub-space perpendicular to the sub-space {&;&;} containing C(() T)" In addition,
the space coordinate system is chosen so that the x -axis direction coincides with the one

defined by the spatial sides of the rectangles C((Fgm. This coordinate choice implies the
validity of the following relations between the contour-functionals in eq. (2.6)

2 k- 1
fo(k Clar, = € " fo(k ClRy))
and ) _ .
fa(k; C((R?T) — e khfy(k; C((R?T)) (2.7)
A simple evaluation of eg.(2.6) provides the solutions
A1) __48 koT kiR
fo(k,C(RU = Esm( 5 )sm(T)
and koT kiR
. (1) _ e aun

Inserting egs.(2.7) and (2.8) into eq.(2.5), we obtain

82 [ [+ dki i nSPP(F)
S =gt {/w e K’

S st D)L o

The integration in kg -variable is easily performed by using the formulas 3.824-1 and
3.826-1 from Ref. 8. After taking the limit T—*, we get

E(h) = 2@[/: (‘;';El)e—lkl sin (k12R)</(g::)D2R2 (kfi%))] (2.10)
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In order to calculate eq.(2.10) we use the dimensiona regularization scheme [9]. By
making use of the relation (3.8) from Ref. 9 (analytically continued to Euclidean space-
time) we can perform the integration in k-variable

er(2— 9) + dkq YA e B
The Fourier transforms in eg. (2.11) are tabulated [10] in the form

1™ oy . P p-1
— e X|x(Pdx = —2sin= - T(B+ 1)|ce| P 2.12
NI = TR+ Dol (212)
Finaly, we obtain the expression for the interaction energy between Wilson loops at
zero temperature

er(2-2)rio-3)
2oD—1.qD/2

E(h) = sin((D— 4)%){(h+ R) 034 (h—R)P+3_2nD+3)
(2.13)
In order to study eq. (2.13) for the physical limit D = 4 we note that the pole of the

gama-function I'(2— %) cancels the zero of the sine function sin(D — 4)7, namely

. D, . b
.'D'L'LF(Z_ E)sm(D —4)5 =-n (2.19)
which provides the four-dimensional interaction energy as a multiple expansion
3 €/ RN
E(hy= —{(h+R*+h-R1-2.nl}=—— —— 2.15
(= (R (h-R o () o

From eq. 2.(15) we readily observe that the dominant term in the asymptotic limit
h — < comes from the classical dipole-dipole interaction. Furthermore, the interaction is
atractive since the dipolar moments of the neutral systems analysed are paralldl.

For compl eteness we have evaluated the static potential of two sources by using Wilson
loops and the dimensional regularization scheme, which is

V(R) :Tlm—%mg@xp(iefq Audx,)) (2.16)

RT)

The result yields the (D — 1) Dimensional Coulomb law

_ere-3) .n<(D—4)Tc

V(R) = 5352 5 >F(D—3)|R|D+3 (2.17)

where we have used the dimensiona regularization rule which assigns the value zero to the
tad pole R-independent integral

eZF(Z— %) +eo dkq D—4
9D—2,(D-2)D/2 /700 2n) ke[~ =0 (2.18)

The usua Coulomb law in there dimensions is obtained by taking the physical limit
D — 4ineq. 2.(17), resulting V (R) = —€?/4nR.
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c) Wilson Loop Evaluation at Non-zero-Temperature

We now examine the presence of a heat reservoir at temperature T = 1/kgf} (kg is the
Boltzmann's constant) in the quantum gauge system.
Wefirst evaluate the free energy of two static sources [3]

V(RB) = —}Iog(expie?{ Al (x)dx,) (2.19)

p Cirp)

where now the rectangle C(r ) has its temporal sides extending from O to 3. The quantum
average ( ) involved in eq.(2.19) is defined by the Euclidean partition functional of the
guantized electromagnetic field at temperature T ([11])

/DAB Jexp {= /de/dD IR(F2)}-0AB(X)  (2.20)

Here D[AE (x)] means the normalized functional measure over all therma gauge fields
Aﬁ(x) satisfying the periodicity condition

Ab(%,0) = AB(%.B) (2.21)

A convenient interpretation for egs.(2.19) and (2.21) consistsin considering that at finite
temperature the space-time possesses the topology of a cilinder St x RP~1 instead of the
usual topology RP.

The periodicity conditions in eg. (2.21) imply that the Wilson loop contour integration
around C g, isreduced to the contour integration along their temporal sides only, i.e.

oplied  AB(x)dx,) = exp (ie/OBAg(O,r)dr) exp (—ie/OBAg(R,r)dr) 2.22)

Crp)
In order to evauate eq.(2.19) we express the Wilson Strings in eq.(2.22) by means of
external localized currents
Jo(%,7) = ie[8P~V (%) - 8PV (x—R)]
JXt=0 (i=1....D-1) (2.23)

and compute the Gaussian functional integration, yielding the result

1(1 B B r — — o / o /
V<R,B>=—E{z/o dr [ @ x93,k A (- Y T B 0T ()2}24)

where Af,'ﬁ) (X—V,t—1'; B) denotes the thermal Euclidean Feynman propagator in the Feyn-
man gauge [11], namely

(E) 1 +<>° db- lk e|k (X=y)+ion(t—1')
Ayv (X Y, T— T B Bn—_w 27_[ D—1 k2—|—(l)%)
(on=nez) (2.25)

5
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With the orthogonality relations

B § , , 0 n#0
de / A gonle—7) = { 2.26
A & o (2.26)
which suppress the modes with wy, # 0 in eg.(2.25) we simplify eg.(2.24) to the form
dP-1k (1—cosk-R)
V(R:B) ——e2/ o 2.27)

We observe in eq.(2.27) the temperature independence of the free energy. Now it is
convenient to choose the k;-axis along the direction vector R. We thus aobtain the result

- dk oikry [A% 1
VRE = l/ <2n1> e [ e (1)
which is evaluated as before (see egs.(2.11) and (2.12)), giving

V(RB) = %r(z- %)F(D—s)sjn(<¥>n)-erD+3 (2.29)

(2.28)

From eq.(2.29) we notice its coincidence with the el ectrostatic potential at zero temper-
ature. (see eq.(2.17)).

Finaly, we evauate the free energy of the previous Wilson loops simulating neutral
objects in contact with a heat reservoir at temperature T.

Theevaluation of eq.(2.1) isnow performed by means of the quantum average furnished
in eq.(2.20) and its result in coordinate space reads

E(h,B) = _%{_é/(;ﬁdrfoﬁdﬂ/do_lmo_ly

[8“’1><z>—8<D1><z—ﬁ>}A£5><f<—y,r—r',B>[ O-1) (g Ty — 50 1><7—ﬁ—ﬁ>]}
(2.30)

Writing eq.(2.30) in momentum space we obtain the expression
E(h.p) =

1,f [t=dk  d®2% 1 i
_ i@ / 1 / _ ki (RHH) | ki (Rh) _ ogikiR

2 —e (2m) ) (2m)P-2 (k2+kf) (e +€ e )
_ er(2-9)rio-73)

2D-17D/2

sin[(D — 4)2]{(h+ R) P34 (h+R) P 2h—D+3} (2.31)

The above result result clearly shows that the free energy interaction of neutral systems
repesented by rectangular Wilson loops is temperature independent and turns out to be of
the same form as the corresponding quantity in the zero temperature regime (see eq.(2.13)).

We now make some concluding remark on the results in egs.(2.29) and (2.31). We un-
derstand that these results imply that to detect the temperature effects in the interactions
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analysed above, one should consider the matter fields in the quantum system (quantum
electrodynamics) since in this case the radiative corrections induced on the N-point pho-
ton propagator are temperature dependent, which results in an renormalized temperature
dependent electronic charge e(R; ) in the interactions in egs.(2.29) and (2.31)

We left to our readers the introduction of the matter fields in the interactions analysed
in this section 2.2.

2.3. The Static Confining Potential for Q.C.D. in the Mandel-
stam M odel through Path Integrals

a) Introduction

One of the still unsolved problem in the Gauge theory for strong interactions as given by
Quantum Chromodynamics with gauge group U (3) is to produce arguments for the color
charge confinement of the related field excitations ([12]).

A long time ago ([13]), it was argued by S. Mandelstam through a somewhat intrincate
non-perturbative analysis of the Q.C.D. Schwinger-Dyson equations that one should use as
afirst approximation for the small momenta (infrared regime) of the non-abelian quantum
Yang-Mills path measure, including its non-perturbative aspects, an effective (somewhat
phenomenological) purely abelian Gluonic action but with a free effective propagator al-
ready including the sum of acertain class of relevant Feynman diagrams for Gluons color-
charge exchange. It was conjectured that the use of this scheme would be suitable if such
an effective dynamics led directly to the color confinement.

It is the purpose of this section to evaluate the static potential between two statics
charges with opposite signal on the above mentioned Mandelstam effective Gluon theory
and show exactly its envisaged color-charge confining property; a basic physical require-
ment to use directly continuum Q.C.D. with improved Mandel stam-Feynman diagrammat-
ics, at least on the level of Dyson-Schwinger equations as earlier proposed on ref [13] by S.
Mandel stam.

b) TheWilson Loop in the Mandelstam M odel

We start our analysis by considering the (Euclidean) Effective Mandelstam Gluonic action
written in terms of a path-integral in av-dimensional space-time RY

2 [OF ] ep{ -5 [ExaYAMDux-YAM]| (232

where the Mandelstam (free) propagator with logarithmic term is given explicitly by the
Fourier transform on the (Tempered) Schwartz distributional space

. 200
Din(X—Y) = / d'pé p(x—y) M (2.33)

1
(2m)¥ |p|*

with o a positive model resummation constant (including factor index groups, etc...). (see
ref [13])
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The static potential between a quark and an anti-quark in the Feynman picture for par-
ticle propagations in the space-time is given by the vacuum Gluonic energy as given by
eq.(2.32), but in presence of the above spatial-static charges. This vacuum energy of such
charges separated by a space-like distance R is computed by evaluating the temporal (er-
godic) limit ([12,13,14]).

. 1 .
V(R):TITJO—?Eg <exp|ej{ Ade#>A (2.34)
Cr)

where the rectangle Cr 1) is the Feynman trajectory of the neutra pair in the space-time
and the Mandelstam Gluonic normalized average as represented by the operation ( )a is
given explicitly by the Gaussian path integral eq.(2.32).

In order to evaluate the static potential eq.(2.34) it is convenient to re-write the Wilson
loop inside eq.(2.34) by means of an external current J,(x;Cr)) Circulating around the
pair finite-time propagation space-time trgjectory Cr 1y = {X.(s) }, namely ([14])

3(xCrr) =ie f 5) (%, — X,(8)) %, (9) (2.35)
Cr)

The Gaussian path integral eq.(2.34) can be exactly evaluated and yielding the following
result

. 1 17
V(R) :Tlﬁ[l—?ég [@@{4—5/ dVXdVny(X;C(R,T))Dm(X—Y)J”(yaC(R,T))H (2.36)

The evaluation of eq.(2.36) can be accomplished by writing it in momentum space

o 1[ [ d'p o/g(p?)
V(R) = lim —? |:/ (27'!:)V fy(pa, (RT ) X p4 X f“(—p(x,C(RjT)) (2.37)
with the contour form factors

fu(Po, C( )_|e/ e ' P9 dx,(s) (2.38)
Crr)

A simple evaluation of eq.(2.38) provides the solutions

_ _gn( BT\ gn (PR
fo(p,Cr1)) = IOOsm( > >sm< 2) (2.39)

and 4 T R
e . .
f1(p,Cr1)) = +—4sin <p%> sin (&) (2.40)
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After inserting the contour form factors eg.(2.39), eqg.(2.40) into eq.(2.37), we obtain as
aresult

in2 [ ;R
1 e dpy SN (T)

Yoo dV‘Zﬁ e dpg (pcz) + p%) . o (poT 69( p(2) + p%—i_ f)z)
% — > Sin X o 2 A2 :
— (2m) — (21)  pg 2 (Po+ P1+ )

(2.41)

Note that we have considered the pair spatial-static trgjectory Cry) contained in a
two-dimensional sub-space of the (Euclidean) space-time RY in a such way that we can
decompose the vector p € R’ as p = po& + p18€1 + P, where p denotes the projection
of P over the sub-space perpendicular to the sub-space {&),& } containing the square
Crm) ={(X0.X); =% <X < +5; -5 <x < +5}

The ergodic limit of T — e and the pp-integration is easily evaluated through the use
of the Distributional limit ;

sin? (&l
il G

77 (Po) (242)

lim

T —oo

As a consequence we get the result

in2 [ MR
+oo sn‘ (55 v-24 2 | A2
V(R) = 166%0; / dps <22 ) x/ () (2.43)
e (2m) Pi (2m)v=2 (p1+ P?)
Let us analyze the (D — 2) — P dimensional integration. In order to evaluate such inte-
gral, we use the well-known formulae (from |.S. Gradshteyn & |.M. Ryzhik table of inte-
grals — page 558 — eq.(14) — Academic Press — 1980.

/ d""2p fg(pi+ P
(2m)v=2 (P +p?)?

6-v
-7 {%Upﬂ)v-ﬁ}

% (W(2) (3= 3)+26n(|py)) (244

For the evaluation of the final p;-integration we use the well-known Gelfand results of
the Fourier Transform of Tempered (Finite-part) Distributions ([15]).

sin? (%R> = —%(eklh e R _2) (2.45)

and

| éPRipuP dpy = —2sin (%") P(B-+1)lp| Pt (2459
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with
/:wélelpllﬁﬁn(lpll)dpl
—idP3 { [r’([ﬂ 1)+ %”r(m 1)] (IR +ie) P 1—T(B+1)(|R|+ie) P~ L. on(|R + is)}

G { [F’(B+ 1) - igr(m 1)} (IRl —ie) Pt —T(B+ 1) (IR —ie) Pt en(|R - is)}
(2.45-b)

By passing to the Physical limit of v — 4 and noting that the pole of the Gammafunction
cancels out either with the sinus zero for v — 4, namely.

Ilmsm<2(v 6)) (v—4-1)

~ —7(vi5)l“(v—4)-sin (g(v—4)>
=47 (2.46)

We obtain, thus, the finite result for the static quark-antiquark potential in the Mandel-
stam Gluonic effective theory on the physical space-time R*.

V(R) = (€a) -t |R|(1+/n(|R])) (2.47)

Here T denotes a positive constant which depends on the Fourier Transform normaliza
tion factors, etc...

We see, thus, that the Effective Gluonic Mandelstam theory leads in avery natural way
to a quark-antiquark confining potential and not to a dynamics of charge color screening as
it would be expected in afirst analysis ([12]). Thisisthe main result of this section.

At this paint, it is worth remark that if one has added to the logarithmic propagator
€g.(2.33) a pure quartic term of the following form

Bri0) = o [ 0 @40

one obtains the same result as given by eq.(2.47) without the logarithmic term.

Anather important point to be called the reader’s atention is that if one tries to evaluate
the self-energy of the quark propagator with the effective Mandel stam propagator eg.(2.33),
namely

ez/ <Y,u p/p kf)Yﬂ) EQS:Z)

s /0 x1-x { [ o |G 2 WIIC DL

with the power series expansion for the logarithmic term in eq.(2.49) as given below

n+l |:(2X(k(pk))_2i_ szz):| n

(9(k? +x2p? 4+ 2(x- p)x) = £g(k?) +

(2.50)

\Ms
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one should arrives at the standard Mandel stam behavior after tedious calculations.
A+ Blg(p?
(o)~ o[ B9F]
p
with A and B constant p-independent, (including possible divergencesat v — 41).

As a consequence one see that the quark-antiquark propagator should have a behavior
of the form (in the Euclidean world)

(2.51)

Gl () = (O[T (wi 990 0)
2) pePx-y)
/ P p4+ Bﬁg (P2 +A (2:52)

signaling again that at p> — 0 (the L.S.Z"s asymptotic limit) we find branch-cuts instead
of mass-physical poles. This indicates again that it is a completely ill-defined process to
apply L.S.Z"s framework to Quarks and Gluons since the quark field excitations are not
physically-quantum mechanical observable. Thisleads one to consider only composite op-
erators from the very beginning, as Mandelstam did in ref. [13], in order to apply correctly
the L.S.Z’ Quantum Field Methods, even at the higher momenta region.

¢) The Two-Dimensional Mandelstam-Schwinger Model: Its Chiral Path-
I ntegral Bosonization

It iswell-known that two-dimensional models has proved to be a useful theoretical labora-
tory to understand difficult dynamical features expected to be present in four-dimensional
guantum chromodynamics. It is the purpose of this part ¢) to complement the analy-
sis of confining of four-dimensional dynamical fermions in the infrared leading approxi-
mate Mandelstam model of part b) by means of a higher-derivative exactly soluble two-
dimensional model.

Let us start this section by writing the (Euclidean) Hermitian Lagrangean of our pro-
posed higher-derivative two-dimensional model

T A) =) {D;;(Dg oy DA} <$>
+3Fam+ ) (1) 253

where (y, ) denotes the (independent Euclidean fermion fields two-dimensional) quarks,
A, the usua (confining) two-dimensional eletromagnetic field with a quartic propagator on
the Landau Gauge (see below) and D4 is the (Euclidean) Dirac operator in the presence of
this 2D quantum Gauge field. The Diracy matrices algebrawe are using satisfy the relations

{Yu W} =28, Yu¥s = i€y ; Y5 = iYoY1 (2.54)

Note that thisy-matrices algebrais choosen in asuch way that the Dirac operator D'a may
by written in the chiral-phase form when one considers the general Hodge decomposition
of the two-dimensional electromagnetic field.

A=y 0y Q+0,p (2.55)
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Pa = &9 9159 . ()19 ars0 (2.56)

Here u is afree-parameter ranging on the interval [1,-<) (eq.(2.53)).
Let us consider the associated path-integral expression for the 2D-quantum higher
derivative model eg.(2.53) in the fermion sector.

ZIn, 7 = Z(& 5 | PP DFw DA, x exp (— / dzxLy<w,w,Au><x>) (257)

In order to solve exactly the two-dimensional path-integral eq.(2.57) by means of the
Gauge invariant Bosonization technique, we consider the change of variable on the field
dynamics

Au(X) = (&4v Iv)O(X) (2.58)
y(x) = e 900 (—A) #y(X) (2.59)
W(X) =7(x) e 90 (2.60)

It is worth call the reader attention that in the Euclidean world y(X) is an independent
field of y(x), opposite in Minkowisky space where y(x) = (y*(x))Ty°. That is the reason
about the difference between eq.(2.59) and eq.(2.60).

At the quantum level of the path measures we have the non-trivial jacobians (see refs.
[16]) physically related to the dynamical breaking of the models axia (chiral) symmetry,
namely

D™ [A, (X)] = det(—A) - DF [p(X)] (2.61)

DF [y (x)] D" [W(x)] = det[@g&g’ﬂ*)# DAl oF 1 ()0 7]

_ detl(Pa DL (B DY
det(9)

_ { det[(Da P3) 3]
det[§/ ]+ 2

_ Da Pp o AV F Fre
—{(det[ o ]) « (det(~A)) }D X(IDF ] (262

After implementing equations (2.58) - (2.62) on the fermionic generating functional
eq.(2.57), we obtain the Bosonized associated model, where one can evaluate exactly all
the models correlation field functions.

Zin.7 = 757 | Lot 00D )

<ep{ =Lt 3) [ (G070}

[x(9ID" [x(x)]

x det(aa’*)“} DT [x(x)]D" [X(x)]
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<ep{ -5 [ @0 |

ool -3 foex(wn3. 3] (5) o}

x exp{ [ x| (e s (—a) ) () + (e~ 950m) (] } (2:63)

Itisimportant to remark that we have used the basic identity below to arrive at eq.(2.63)
with o, areal positive parameter and used throughout on the formulae

(DA BR)" Da =99 (rg")* 990
_ e.igyw((_A)a a')eigYS(P (2.64)

It is important point out that the part of the Lagrangean with Fermions sources in the
new field parametrization are not symmetric in its form as that of eg.(2.53) in the old field
parametrization as a consegquence of our asymmetric change of variable in the (independent
in the Euclidean world!) two-dimensional quarks fields.

Finaly we have the explicitly expression for our Fermion propagator in terms of the
free-propagators of the Bosonized theory

(v = (-8 { (9

1 T _ o 1._
exp{—igz o (P S 5) 1<x,y>)] } (269
H
" (a0 Tp ) = e 2 = 266)
Xo XB y ~ on Yu)op \x—y\2 .
and - 1
(=097 y) = —5_Lalx Y| (2.67)

2
(—0%+ %(wr %))‘1(x.y) = %Ko (\/ %z(u+ %)\X—yo (2.68)

Note that we have used the general decomposition in eq.(2.65)

(@~ +b(-%) Hxy) = ¢ {—%egrx—yr Ko (@x-w) } (2:69)

The short-distance behavior of the fermion propagator is strong than the usual free case
by au-power derivative (strong asymptotic freedom).

lim (WOIW()) ~ (~A)* (%) ) (270)

Ix—y|—0
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The long-distance behavior by itsturn is exactly given by

lim {w(x)w(y)) ~

x=yl—e

lim {(—Aw [(x(x)%(y))“” x rx—yr“““'} } (271
[x=y|—ee
which shows an anomalous behavior in the infra-red limit and signaling the impossibility
to use L.S.Z interpolating fields for the 2D fermion fields as similar phenomenon in the
Mandelstam model analyzed on part b).

Anyway it is a straightforward procedure the exactly computation of all fermionic cor-
relation function of the higher derivative model eq.(2.63) asin last references of ref. [16].

d) Color Charge Screening in the Mandelstam M odel

Sometimesit isargued that it isimportant to realize that the absence of coulored statesin the
expected nuclear strong force theory of Quantum Chromodynamics may not be equivalent
to the ethernal quark-gluon confinement as showed by us in the Effective Abdian Gluon
Mandelstam model analyzed in part b) by an explicitly Wilson Loop evaluation.

The absence of color charged states can still be aresult of these color quantum numbers
just screened by the quark-antiquark pairs creation on the presence of the Gluon field and
leading, thus, to the physical picture that the test charges (a static pair!) are surrounded by
acloud of quark-antiquark pairs playing the role of plasmons. It is, thus, expected that the
resulting Wilson loop colorless object of part b) no longer leads to arising linear confining
potential as showed on that section, but rather to an exponentialy falling potential charac-
terizing the short range screened strong interactions like similiar screening phenomena in
two-dimensional Q.E.D. (see part b) ) for the case of u = 0).

In this section we intend to show such screening phenomena by an explicitly calculation
in the above mentioned four-dimensional Effective Gluon Mandelstam model by consider-
ing the existence of totally reflecting walls on the point z= 0 and z = a of the space-time
which turns out to be of the cylindrical form R'~1 x [0,a]. We further impose Dirichlet
boundary conditions on the “effective” abelian Gluonic Mandelstam field at thewallsz=0
and z = a. Its propagator, thus, posseses the following analytical expression on momentum
space by taking into account explicitly the above pointed out Boundary condition

oo

oo V-2 P ! : /
G((F,zt); (P, Zt) =Y {/ AP dPo ipr—r) gripoli—t)

m=0 \/ == (27-[)\/—2 ' (ZTI)
(TN (T 2 2 (MM\Z,
xsn(a )sm(az’)x[poer +<a)]} (2.72)
The static-potential of such a screened pair separated by a space-like distance R on the

sub-space perpendicular to the plane z (and with a coordinate z = Z) is given by the temporal
(ergodic) limit result (see Wilson Loop’s discussions on section 1) namely

V(R) = ezmg [(1— cos (2%m2> > Vm(R)} (2.73)
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withp= (p,p) € R"?

Vin(R) = /*‘” ap dp, 7 (%)
T e @t (2

% lim {/+w%w <1_|_p_%> % 1 } (2.74)

e N R RS/ (B2 + P2+ pg+ ()%)2

The evaluation of the ergodic limit on eq.(2.73 ) is similar to those analyzed in part a)
and leading to the result

[T e (mRY [ 1
VR = [ 2n 5" ( 2 ) / (2m)"2 (2 4 p§+(%)2>2]

:c(v)/:w(dz—ftl)gnz (%) <p§+ (%)2>T7 2.75)

with T(v) apositive constant, finite for v — 4 and depending on the Fourier integral defini-
tion normalization factors geometrical sizes of theloop Cr ), €tc... which exact value will
not be of our interest here, since it is convergent for v — 4 as a function of the space-time
dimensionality v. The evaluation of the integral on eq.(2.75 ) can be easily accomplished
through the useful formula

+e  §n?(ax) e 1 < cos(2ax)
» dxm—/o Xm_/o TRy
—2utl 1 1 +3
_ <b 2+ > rere-3 1 <g># COS<TC(,U+%)> P(u+ DK 1) (28b)
(2.76)

I'(u) Vv

and leading to the envisaged result for the harmonic m-potential contributing to the Fourier
expansion eg.(2.73)

[EER) () () o]} e

Now its straightforward to see directly from eq.(2.77 ) the Casimir vacuum-energy con-
tent of the Abelian Gluonic Mandelstam Field as given by the convergent Fourier series
below

E casimir (2) = €°C(v) i Kl—cos<27mnz>>] X [(%)V%%] (2.78)
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The expected exponentia falling at large distance R of the static potentia, signaling
screening of color charges for our Mandelstam Gluonic Abelian field with pure quartic
propagator, is given by the second term on eq.(2.77 )

a
JEE) w6 () e e

~ (-€)(e FFW(R) (2.80)
where the harmonic sum on the integers mis convergent due to the Bessel function argument
(see eq.(2.77)).

Finally, we call the reader attention that similiar result is obtained for a propagator with
alogarithmic term as that one considered in part b).

Detailed cal culations taking into account quantum corrections, finite temperature efects,
etc... will left to our readers as an extensive calculation exercise.

Path-1ntegrals on Quantum M agnetic M onopoles

a) Introduction

The question of the existence of Magnetic Monopoles has been a fruitful research path on
modern theoretical physics since the appearance of the semina work of PM. Dirac ([17]) in
the subject. In the modern framework of Non-Abelian Gauge theories, most of the relevant
dynamical questions about the physical modeling of particles interactions are transferred
to the difficult and more subtle mathematical analysis of special gauge-field configurations
(instantons, merons, strings, magnetic monopoles, etc...) which are expected to constitute
the non-perturbative vacuum structure of the underlying Bosonic Yang-Mills Gauge theory.
Among those specid field configurations, the Magnetic Monopole has been considered
as one of the basic hypothetical non-perturbative excitation expected to be connected to
practicaly all non-trivial charge confining dynamical effects ocurring on non-abelian Gauge
theories. Thisfact is due to the hope that Magnetic Monopoles are the best candidates for
explain naturally the (electrical) charge confinement ([18]). However magnetic monopoles
by themselves should not be observed in the particle spectrum as aphysical excitation. Note
that this last constraint on monopole confinement makes the use of the standard Quantum
Field techniques to handle magnetic monopoles dynamics a very difficult task ([19], [20]).

In this section we address to these dynamical questions on Magnetic Monopole theory
by path integrals analysis, specialy the technique of four-dimensional chiral bosonization
path-integral as earlier proposed by this author ([21]).
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This secton is organized as follows

In part b), we show how to obtain by adirect evaluation, the area behavior for an abelian
Wilson Loop phase Factor in the presence of an effective second quantized electromagnetic
field generated by an (condensate) second quantized monopole fermion field, as much as
envisaged as an dynamical mechanism in the famous Nambu-Mandelstam propose for the
existence of aMeissner effect for magnetic manopoles vacuum condensation in Yang-Mills
theory in order to explain the quark-gluon confinement. As a new result of our study, we
claim, thus, to have produced a well-defined path integral procedure to prove the electric
charge confining in the presence of a quantum dynamics of magnetic monopoles, with a
Fermi-Dirac statistics.

In part c), we exactly analyze by path-integrals techniques the quantum field dynamics
of (massless) fermions field interacting with Kab-Ramond tensor fields, expected to rep-
resent dynamically quark fields interacting with rank-two tensor field, with the later field
representing the disorder field of a vacuum structure formed by condensation of magnetic
monopoles ([19]). We show, thus, that it is ill-defined to associated physical observables
L SZ interpolating fields for the fermion fields in the theory as consequence of the explicitly
Bosonized structure formulae obtained for the matter excitations interacting with rank-two
tensor fields through a spin orbit coupling with the Kalb Ramond field strenght, which by
its turn provides another support for electrical charge confining in the presence of magnetic
monopol es.

b) The Abelian Confinement in Presence of Magnetic M onopoles, a Wilson
L oop Gauge Invariant Path-Integral Evaluation

Let us start this section by considering the Euclidean path integral average associated to a
U (1)-abelian field A,(x) whose dual strength field intensity has a second quantized mag-
netic monopole as a (chiral) electromagnetic source (xF*V(A) = E”VO‘BFOCB(A))

W[CrM)) = / D" [A,]D" [Q]D" [Q]5')[3;F*" (A)) - (g'v°Q)]

X exp (—%/d“x(ﬂ,ﬁ) [(i an)* ! agM] (g))
X Exp <ie fc . A#(x“)dxﬂ> (2.81-3)

Here (Q,Q)(x) are the Euclidean Fermion (second-quartized) point-like fundamental
monopole fields with g denoting the magnetic charge which by its turn is supposed to be
related to the U (1)-electric charge e by the Dirac quantization relation eg = 7 (withn e
Z). M denotes the magnetic monopole mass and W|C] = exp{ie fqm) A, dX,} istheU (1)-
Wilson Loop phase factor defined by the (Euclidean) space-time trgectory of two static
eletric carrier external charges interacting with the fluctuating A, (x) field generated by the
(fluctuating) second quantized magnetic monopole fermionic source (see the constraint on
eq.(2.81-3)). Note that Cr 1) isthe boundary of the square Sg 1) below

T T R R
CrT)=9SRT) SRT) = {(xo,xl) € RZ?—§ SXSt5 5SS +§} CR.

2 2
(2.81-b)
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It is worth call the reader attention that the above written quantum Wilson Loop as-
sociated to static quarks charges can be physicaly replaced by the complete Generating
functional of the second quantized Quark fields interacting with the Monopole Generated
Electromagnetic field, namely

Zin, ) = | D¥[AJD"(QID"[5(3, «F** (A)  (62¢°Q)
ol a0, 5(8)
(2wl o ()

X exp <i / d"(y, ) (2)) (2.81-0)

For static charges eg.(2.81-C) reduces to eq.(2.81-a) asit is showed in first ref. [22].

In order to evaluate the path-integral eg.(2.81-a) from the physical point of view of an
effective field theory ([21]), we should consider firstly the magnetic monopole field as a
L ondon large mass excitation in the fermonic path-integral weight of the Wilson Loop path
integral average eg.(2.81-a). The reason why we should evaluate our Wilson Loop average
in this context can be related to the fact that very heavy monopoles (but with small quantum
fluctuations) are expected to populating the non-perturbative vacuum phase of any non-
abelian Gauge Theory (at least in its confining phase) ([18], [19]). Let us, thus, re-write the
magnetic monopole axial current constraint in eq.(2.81-a) by means of an axial-vectoria
Lagrange multiplier field A, (x), namely:

X exp

W(Cr)) = { | DF (A0 [@ID" @D 1,

cop (i [ A (A) - o))

o[ 3 fexam iyl 75 (5)) <o (] Ae))

(2.82)

At this point we follow well known studies in the literature in order to give a correct
meaning for the effective field theory associated to very heavier magnetic monopoles L on-
don large mass limit in the monopol es Fermionic determinants ([21]). It isa standard result
in the subject that the (mathematical) leading limit of (renormalized) magnetic monopole
large mass should be given by the auxiliary Gauge field mass term, (see refs. [21] for the
calculational details at this London limit for Fermion determinants)

lim | det(i g+ Mren+0v° %)/

ren—)oo

= exp{—%(AQCD . gz)/d‘lx(?\y(x))z} +O(1/Mren) (2.83)

Note that the appearance [through the phenomenological QCD vacuum scale Agcp =
(Mren) 2] of @ mass term for the auxiliary vector field A,,(x) which by its turn, should sig-
nals the expected dynamical breaking of the U (1)-axia gauge invariance (with opposite
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parity ([20], [21]) of this (non-physical) vectoria field by the phenomenon of dimensional
transmutation on the adimensional g-coupling constant. This result indicates strongly the
dynamical breaking of the U (1)-axial symmetry of the fermionic magnetic monopole sec-
ond quantized field {Q(x), 2(x)}.

After inserting eq.(2.83) into eg.(2.82) and by redizing the Gaussian A,-field path inte-
gral, we are led to consider the effective fourth-order Wilson Loop path integral average for
€g.(2.81) asthe leading London limit on the magnetic monopole mass M, namely:

WiCr)) = { [ DFIAI8F @A)
<op (g | A0
X Exp (ie /C . AHdX#> b omY) (2.84)

The static inter-quark linear risen potential can be obtained from eq.(2.84) by using
the dimensional regularization scheme of Bollini-Giambiagi for evaluating the Feynman-
diagrams integrals as it is exposed in details on refs. ([22]). It yields the expected linear
raising confining potential

V(R) = (€ ¢%)(Aqeo)R

_ _/
=An®(Aqcp)-R= A(

2mo/

) R= oe(N%)R (2.85)

Here A is a model-calculational positive adimensional constant, which details will not
be needed for our study, and o' denotes the Regge Slope parameter associated to the non-
perturbative vacuum scale Agcp ~ (ﬁ). It isworth call the reader attention that we have
obtained somewhat the infinite quantized number of paralel Regge trgjectories from the
Dirac topological quantization rule for electric and magnetic charges as it is suggested in
the effective Regge slope parameter g (n?) = n2/2mor.

Thuswe seethat the effective path integral eq.(2.81) for the Wilson Loop in the presence
of an electromagnetic field generated by a heavy quantum monopole leads naturally to a
dynamics of Wilson Loop area behavior for the electrical charges in the theory, a result

obtained by us explicitly through an exactly gauge invariant path-integral evaluation.

c) Monopoles Interacting with Kalb-Ramond Fields through Spin-Orbit
Coupling

In the last years, Kalb-Ramond field theory has been widdly studied as an alternative dy-
namical quantum field scheme to the Higgs mechanism, aswell asin relation to the dynam-
icsof stringsin the problem of string representation for Q.C.D. at large number of colorsasa
dynamical disorder field representing the effects of existence of magnetic monopoles ([18],
[19]). The basic formalism used to analyze such Kab-Ramond non-perturbative quantum
dynamics has been the path-integral formalism, which has shown itself to be a very power-
ful procedure to understand correctly the different phases of the associated Kalb-Ramond
Quantum Field Theory [23].
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One important problem in those Path-integral studies, still missing in the literature,
is that one related to the presence of interacting dynamical fermions (simulating second
quantized matter fields) in the Kalb-Ramond Gauge theory. In this Section 3 we shall
describe the extension of previous path-integral dualization-bosonization studies [24] to
the case of Fermionic matter coupling through a spin-orbit field quantum interaction as
it is expected to be relevant to describe the interacting physics of quarks and magnetic
monopol es.

Let us start by considering the Abelian Kalb-Ramond first order action but now in the
presence of massless dynamical fermionsin the four-dimensional Euclidean world.

B 7] = |, 0] 5 GH0, B 40 74101 P v |
(2.86)
Here the dynamical fields are the independent three-form H, the KR gauge field B and
the Dirac fermion fields (v, ).
We shall apply the bosonization procedure in the path-integral framework through the
following theory’s generating functional (normalized to unity)

2307 = [ OF[HID"[BDF (w]D" 7]
X exp{—S[H,B,\u,W]}
X exp{—i /R4 d*x(My +m +J,NB"V)(X)} . (2.87)

It is worth call the reader attention that the Path-integral eq.(2.87) is invariant under
the KR gauge symmetry, provide the external source corrent J,,, is chosen to be divergence
free and our proposed action term related to the direct interaction of the quantum fermionic
matter with the Kalb-Ramond gauge field through its strenght three-form H — the spin orbit
fermion interaction. (see eq.(2.86)).

The Path-Integral Bosonization analysis proceeds as usually by integrating exactly out
the Kalb-Ramond gauge potential field which produces as aresult the delta functional [24].

Z3.n.7] = [ DF[HIDFwIDF [8) (@, H™ ~ 37)
1 . .
X exp{— /R4 d*x {EHMHMV +y(i g+ IgYaYBY“H(XBH)\U] (x)} . (2.88)
Let us note that the delta functional integrand inside of the path integral eq.(2.88) im-
poses the classical equations of motion on the three-form Kalb-Ramond strenght H which
by its turn can be exactly solved by the Rham-Hodge theorem in terms of the effective

dual scalar axion (zero-form) dynamical degree of freedom in the KR theory defined in a
space-time topologicaly trivial as considered in our path integral eq.(2.88)

Hyw = gEMP0,0 + a“a—lzJWJ. (2.89)

At this point we re-write the effective action eg.(288) in a four-dimensional bosonized
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chiral action [25]

zl3.n.7 = [ DFfo

X @(p{—%/R4 d*x [gzayﬁaﬂw %J“V ( 812> Jﬂv} ( )}

« [ D Wi exp{i | (e aé%ﬂwxx)}

xexp{—%/md“ <Igw [Y PyPal JB"]DW} (%)
x@(p{—i /R4d4x(wﬁ+Wn)(x)}. (2.90)

After considering the chiral-fermion field variable change on the fermionic path-integral
term of eq.(2.90) _
¥ = ye '9vsd (2.91-3)

W = e 190y (2.91-b)
det[€91s? gel9rs?]

det[7]
— DD, (2.91-0)

we obtain the exactly bosonized path-integral representation for the KR first order theory
as given by eq.(2.87), namely:

Z[3,m, 7] = /DF[ﬂ ID[x|D[F]I[]

X exp { 90,0040 — ZJ‘N(az) 134( )}

-
xexp{ /d“ xax()}
<ep{ o [ @t (z (v 0 1) 0]
xexp{—i /R4d4x (%e‘i%ﬂn +ﬁe‘igY5ﬂx) (x)}, (2.92)

here the functional Fermion Jacobian eg.(2.91-c) has been exactly evaluated in refs. [25]
(see Appendix A e B - Chapter 18)

2
J:[8] = exp { % /R4 d4x(ayﬁ)2(x) }
5>
X exp { - % /R4 d4x(azﬂ)(azﬂ)(x)}
4
X exp { %ﬁz /R4 d4X[0(8,8)%(—920)](x) } . (2.93)
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As afirst remark to be made on the above written result we note that its first term has
the effect of formally inducing arenormalisation of the g-charge after the cutt-off removing
€ — 0 on the complete result eq.(2.87), namely

1
gtz)are(g) <l+ m) = grzen' (294)

By secondly, we point out the appearance of the fourth-order kinetic term for the scalar
effective KR field 9(x), avery important result for the model ultra-violet finiteness.

An another important physical result coming from the set eq.(2.92)—€q.(2.94) is the
explicitly fermionic matter asymptotic freedom as can be see directly from the factorized —
decoupled form of the full interacting matter fermionic propagator, namely

1oSZmAd | oo
(i)3 na(Xx)3np(y) ni%go—slﬁ(x y) x F(x.y) (2.95)

with §,g(x —y) denoting the free fermion propagator and the (decoupled) Kalb-Ramond
form factor being given exactly by the (perturbative finite) fourth-order 9-path integral as
remarked above.

F(xy) = / DF [9]e 2% Jra (39)2(0d*
X e’%ﬁf Jra (079)2(x)d*
X e*%f Jea [0(2,0)3(—929)] (X)d*x
x {(©XP —ientsD (X)) (XD —ierentsD ()} (29)

which goes to 1 in the high energy limit of [x—y| — 0 as a result of the path-integral
super renormalizability associated to the effective axion scalar dual Kalb-Ramond theory
€0.(2.86)) [the well-known phenomenon of asymptotic freedom in confining gauge theo-
ries]. A low energy study of the form-factor eq.(2.96) has been carried out in refs. [25]
(Appendix). There, we have suggested that these bosonized fermionic fields do not pos-
sesses LSZ interpolating fields, since the associated two-point Euclidean correlation func-
tion eg.(2.95) defines Wightman functions which are ultra-distributions in Jaffe Distribu-
tional Spaces and not in the usual Schwartz Tempered Distributional Spaces naturally asso-
ciated to the existence of LSZ interpolating fields (a well defined Scattering Matrix) in the
guantum field theory eq.(2.87).

A calculational remark to be made at this point of this section is related to the straight-
forward exactly solubility for the Macroscopic radiative corrections evaluations of the Kalb-
Ramond gauge potential propagator

1 &P
7 530 5] om0 — (B (9B )

= () 00y) + € [ 22 () ) () Az
< 080 (LD PV @) D) (Y@ O 297)
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here ( >(°) denotes the free fermion average path integral
(YO = / D(x|D[xle" fr XX (2.98)

The exactly evauation of the quantum correction eq.(2.97) is standard and can be easily
obtained by just using the well-known Dirac matrixes relationship and will be left as an
exercise to our readers

V¥ = (Sywo + Enino¥5)Y° (2.99)
S)\,UVG = (6}»;18\/0 + S,UVS}\.O' - 6}\\/8;10)- (2.100)

The above exposed results concludes our part ¢) on path-integral exactly studies on the
four-dimensional path-integral Bosonization of our abelian interacting KR field.
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Chapter 3

The Triviality — Quantum
Decoherence of Quantum
Chromodynamics SUJ (<) in the
Presence of an External Strong
White-Noise Eletromagnetic Field

3.1. Introduction

For along time, avery interesting (and conceptually) important problem in Quantum Field
theory has been the correct understanding of the triviality phenomena of interacting fields as
akind of “phase-transition” phenomena depending on external parameters including the fa-
mous space-time dimensionality. The basic formalism used to understand such animportant
phenomena is — until present time — the re-writing of the given interacting quantum field
generating functional in terms of the famous Symanzik Loop Space (even at the Lattice)
[1-3].

The purpose of this chapter isto point out quantum field triviality phenomena in another
context, however in amore complicated Quantum Field theory than those analyzed on liter-
ature which is Quantum Chronodynamics at large number of colors but in the presence of an
external random abelian field. The main ideais to show that exactly such atriviality result
for Q.C.D. (SU(<)) will be the systematic use of the Loop Space representation for Q.C.D.
which, by itsturn, allows us to exactly integrate out the external random abelian field when
one is analyzing the Q.C.D (SU(==)) on the physical sector (observable) of abelian quark
currents (form factors).

In section 11 we present our ideas and a complete Loop Anaysis of Q.C.D. (SU(<))
triviality in the presence of randomness. In section |11, we present a path-integral renormal-
ization analysis of the resulting effective random surface theory. In section IV, we apply the
previous Q.C.D. Loop analysis to the important case of non-relativistic (many-body) field
theories. In section VI, we present a Tensor Model for improved QCD(SU<<)) and finally
in section VII, we propose a string second-quantized field theroy for the random surface
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theory of section VI.

3.2. TheTriviality — Quantum Decoherence Analysis

In order to show such atriviality — quantum decoherence on Bosonic Q.C.D() let us con-
sider the Euclidean generating functional of the abelian (for simplicity) quarks currents
on the presence of an external white-noise electromagnetic field B, (x), simulating a kind
of “dissipative” vaccum structure or quantum external resorvoir acting in the system (see
second reference of refs.[2]).

Z[309,8,09] = ( detl* (DA B 3,) D" (A B ) (3.)
Here the Euclidean Dirac operator is explicitly given by

DA By, ) = ivu (0, + €8y + 3+ gA) (32

with gA,, denoting the Yang-Mills non-abelian quantum field configurations averaged on
eg.(3.1) by means the usual Yang-Mills Path integral, J,(x) is the auxiliary source field as-
sociated to the abelian quarks currents and B, (x) is arandom external electromagnetic field
with a strenght field F,,(B) satisfying a Gaussian statistics with randomness of intensity
A > 0.

Er {Fuy (B)Fop(B)(Y)} = A8 (Xx—Y) - (.08 — 8,p8ya) (33)

Here Er denotes the stochastic average on the ensemble of the external strenght abelian
field F(B).

In the Bosonic loop space framework [3] we can express the quark functional
determinant eq.(3.1) — which was obtained as an effective generating functional for
the color singlet quark current after integrating out the Euclidean quark action —
, & a functiona on the Bosonic loop space composed of al trgectories Cy =

{Xu(0),Xu(0) = Xu(T) =x0< 6 < T}
Z[3u(X), By(x)]
= <e><p— {NcE [@[Cx; Bl P[Coxs Ju] Tre (W[CmAu])]}> (34)
Co A
where ®[C,,B,] is the usual Wilson-Mandelstan loop variable defined by the random
external electromagnetic field B, (x), W[Cx,A,] is the same loop space object, however

with a sum path order and defined by the non-abdlian Yang-Mills quantum Euclidean field
A% (X)Aa. Namely

®[Cy, B,] = &xp (ie 7{% B,,(xﬁ(o)dx,,(c)> (3.5)

WiCw Al =P e (i f, AX(0)%,(0)) | @9
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The sum over the closed loops Cyx with end-point x is given by the proper-time bosonic
path integral below

é: /0 wd?T JEE /x S DF[X(G)]exp{—% /o ! Xz(c)dc} 37)

In refs[3], the factorization of the color gauge invariant averages of the products of
Wilson loops associated to the Yang-Mills fields A, at SJ (e<) was presented on the basis of
adiagrammatic analysis. As a consequence of this result the non trivial dynamical content
of the generating functional of abelian quark currents is entirely given by the fermionic
functional determinant written in the SU (e-) bosonic loop space functional with afactorized
form in relation to the loop fields entering in its (loop space) structural form as given below

—INZ[3,(%), Bu(X)]au ()

= {%cb[cxx,sﬂ]cb[cmgﬂ] (TreW[Co, All)g, M} (3.8)

In order to show the triviaity quantum decoherence of the bosonic loop space gener-
ating functional eq.(3.8) when averaging over the quark currents dependence on the ex-
ternal white-noise abelian field B,(x), we consider the stochastic average of the Wilson-
Mandelstan phase factor defined by the abelian random field with the following result

Er {®[Cou B} =E {expie/ F.u(X)do™ (x }
F{ [ u]} F () uv( ) ( )

B {_ (ez% /Z(Cxx) do* ()8 (x—y)do*” (y)} &9

Let us analyze the behavior of the loop space functional eq.(3.9) in terms of the metric
properties of the surface Y (Cx) bounded by the loop Ci(c). In order to analyze such a
geometrical behavior of eg.(3.9) we consider an explicitly parametrization of the (fixed)
surface Y, (Cy) possesing as boundary the loop Cy:

Y (Cx) = {9u(s,6),0<s<2m0<c<T} (3.10)

In terms of this two-dimensional surface vector parametrization we re-write the loop
functional eq.(3.9) in the coordinate invariant parametrization form, suitable to analyze its
geometrical content

In(E {®[Cu.B,)})
_ _(ez% /dsdc /ds’dc’\/h(s,o) NCCRD)
x T (93(5,0))7 (0p(8,0)) (3 (0p(s.0) ~ 05(S, ")) ) (3.11)

Here the surface area tensor is given by

do* (xp) ‘ = (\/ h(s,0)t" (gp(s,0)) dsdcs) (3.12)

Xg=Pg(s,0)
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with

150) = (/cetagpdne®) 5. e1

o (@y(s,0) = (£20a9"000"/Vh(5.0)) (3.14)

By introducing a regularization form to the singular delta-function appearing on the
surface function eg.(3.11)

50 (¢(50) - 0%(8.0)) = | dPkexp (ikul0u(s0) ~0ul$,5)).  (3.15)
(e K>1/e

one obtains as the leading geometrical functional associated to the trivial surface self-
intersecting case (o,s) = (0’,5), the well-known Nambu-Goto area surface functional [4],
and see section 3.3 of this chapter.

—In{E (®[Co.Bu])} = E(€2) / dsdo (Vhh®0,0/34¢") (5.0) (3.16)

Here Ciis a positive RP-dimensional constant related to the renormalization parameters
€ used on the regularization form eq.(3.15) and somewhat related to the anal ogous expected
phenomena of dimensional transmutation on Q.C.D(SU(e=)). Note that we have used the
normalization condition of the surface area tensor to obtain the area functional eg.(3.16):

™ (pp(s,0))7" (9p(s,0)) =1 (3.17)

At this point, it is straightforward to see that for a large white-noise external abelian
field A — oo [2], the noise averaged Wilson loop on eg.(3.1) is vanishing small for any loop
Cx. Itisworth call the reader attention that for a given fixed noise strenght A £ 0, all loops
Cxx bounding large minimal areas surfaces Y [Cy] are suppressed on the bosonic loop path
integral eq.(3.8) and leading to a dynamics of Gluon condensates [3].

Note that the same loop Cy appearing on eg.(3.9) enters in the definition of all loop
space objects on eq.(3.8). Thisresult in turns show us that at the very large noise strenght
limit A — +oo,we have the strong triviality of SJ (ee)-Quantum Chromodynamics in the
sector of the abelian quark currents, since all closed loops Cy (o) degenerate to the loop
base point x, namely

xIirroloEB{Z(Jy(x),B‘,(x)}

= lim exp{— Y e ARG Q[C,, 3] % <TrC(W[CXX>AH])>}
(Cx

I (0)—%)

=exp(0) =1 (318

This is the first main conclusion of this chapter about the Q.C.D(SUJ (0)) trividity —
guantum decoherence.

A second result we wishe to present is related to the somewhat different situation of our
abelian randon field is now originating from a source described by a manifold of random
currents obeying a pure-white noise statistics in a physical our-dimensiona space-time R*

AB,(X) = ju(X) (3.19)
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with the white-noise (spaghetti-vaccum [12]) current source correl ation function (see chap-
ter 2, page 65)
Ej {100 iv )} =28 (x—y)8y (3.20)

In order to see the area behavior for the abelian phase factor ®[Cy,B,] in €q.(3.4), we
probe the system vacuum energy by considering a static pair of quark-antiquark interacting
with the random electromagnetic field eg.(3.19)—eq.(3.20).

The binding electromagnetic energy between such static probing charges e, separated
by adistance Ris computed by evaluating the energy of the abelian white-noise field B, (x)
in the presence of these static quark sources and given explicitly by the following Wilson
loop average (see chapter 2).

V(R) :Tligl—%lgEj {apiefw) Bﬂ(x,[j])dxy} (3.21)
where the quark-antiquark static space-time tragjectory is given by a rectangle Crt) =
{-% <t<+3;-8 <0 <5} and E; denotes the stochastic average over the vacuum cur-
rent sources eqg.(3.20).

The evaluation of the binding energy V(R) can be more invariantly accomplished by
writing it in momentum space and using the dimensional regularization of Bollini and Gi-
ambiagi [5], after evaluating explicitly the source average on eq.(3.21)

, 1 d°k , . . My
V(R) = T'[]l—ﬁ [/ ny(k’C(R,T)) @2 x fy(=k,CrT)) (322
with the rectangle form factor written as follows
: _iky () AXa(0)
f,(k.Cory)) = uaf e ike(0) 2%al0) 3.23
.U( (R,T)) C<R‘T) dG ( )

Asthe rectangles C(r 1) is contained in atwo-dimensional sub-space of the space-time
RP, we can decompose the vector k as k = ko& + ki& + k, where k is the projection of k
over the sub-space perpendicular to the sub-space {€,€} containing Crr). In addtion,
the space coordinate system is chosen so that the x-axis direction coincides with the one
defined by the spatial sides of the rectangles Cr 1), this coordinate choice leads us to the

solutions
4e . T\ . /(KR
fO(kyc(R,T)) = —ESH’] <%> sSn <17>

 de . [kT)\. (kR
fl(k7C(R7T)) = +k—1$n <7> sn <7> (324)

After substituting eg.(3.24) into eq.(3.22), we face the problem of evaluating the fol-
lowing dimensionally regularized integral limit of T — oo, We get as aresult:

8@ [ dkg Sn?(MF)
V(R) = lim 22 { s o

dv—2k + diy (KZ+k2) Sinz(@)
X [/ (2m)v—2 (/w 2n) K ! (k8+k§-|z-k2)2 (3.25)
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By using the elementary improper integral formulafor the evaluation of the ky-integrand

on eg.(3.25)
L e a?\ sin?(bx)
LRG3

2na?
- (3.26)
We arrive at the (partial) result
(€ dky sin?(4R)
V(R) = +(4n)g_1 {/ 2n) K2
« T (?) \klyv-“} (3.27)

with the final result on the dimensional regularized form (a general space-time with a con-
tinuum dimension v) and where we have introduced a Coulomb term (by hand) to eq.(3.27)
associated to a 1/k? propagator — just for completenness (see chapter 2).

V(R) =Vcou (R) +Veont (R) (3.28)
with
() sn(v—4)%) _/4—v N
VCouI(R)—+(4n)%lX{F(V—3) > 2 r( 5 >}(R) +3 (3.29)
and

(e 6—v\ sn(Z(v—6)) ~
VConf(R)—+WX{F< - > e F(V—S)}(R) 5 (330

At this point one can see that the potential energy term as given by eq.(3.30) at the
physical four-dimensional space-time leads to the expected “confining” area behavior to
the stochastic abelian phase factor

E; {@(piefqm) Bu(X, [j]d)g,} ~ expexp{—CT -R(€#A)} (3.31)

whith ¢ a positive adimensional constant.
It is worth remark that the term eg.(3.29) leads to the usual Coulom Law at D = 4,
namely

A

VCoul (R) = —m

(3.32)
3.3. Random Surface Dynamical Factor in the Analytical Regu-
larization Scheme

Sometimes, it is argumented on the literature [6], that one should consider a dynamical
random surface path-integral sum to the surface functional as given by eg.(3.11) in the case
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of the existence of only trivial self-intersections (c,s) = & = (0/,5) = & on the domain
functional

210)(Ge) = 75 [ O l0(E]eP{ 3 [ 2 (0 (-2)""0") @)}
x @(p{—gbare / A8 (. (€) —%(é’))} (3.33)

Here o isaregularizing theory’s parameter o0 > 1.

Let us address the problem of renormalization on this self-avoiding random surface
functional eq.(3.33). Firstly, we point out that one can safely replace the surface self-
avoidance on the path-integral interaction weight by an interaction with the tangent plane
at the surface point ¢,(£), namely;

8P (9u(8) — 0u(®)) = 8™ (u(&) ~ Tu(®)) (3.34)

where the tangent plane equation is given by
Tu(&) = Tu(®) =2 &+ tVes (3.35)

with {tf,o) ,tf,l)} denoting the surface tangent vectors at (p#(g).
By asimple variable change

Ou(&) — 9u(8) — Tu(§) (3.36)

we obtain as an effective random surface path-integral to be analyzed from a renormaliza
tion point of view, the self-avoiding random surface interacting with the origin [6].

o [ P @len{ 3 [ @ oar0) @)
<ep{ o | 25 (0,(0) | (337

where g, denotes the (positive) bare self-avoiding random surface coupling constant.

It isinstructive to point out that the formal perturbation expansion around the massless
2D fluctuating surface vector position {@, (&)} isill defined in the case of oo = 1 on eq.(3.37)
due to the severe infrared divergences of the associated Laplacean Green function on R,
As a consegquence of the above made remark, we start from the begining with the Riesz-
Hadamard expression of the Seeley o-power of the Laplacean as written on the kinetic term
of eq.(3.37).

Go(€1,82) = (—A) " *(&1,82)

. e*iml“(l— OC) B (a—1)
- 4“(71)1/2F((X) ‘él §2’2 !

_ / d2kek(ErE) -2 (3.39)
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We, thus, renormalize eq.(3.33) from eq.(3.37) by means of the renormalization pre-
scription at the physical case of oo = 1 (pure Laplacean).

Oren
%=1 o7 (3.39)
ZR(9u])(Gren) = lim Z[, ] (go(ct)) (3.40)
o>1

Let us show that eq.(3.40) is awell defined in aformal power expansion in the renor-
malized coupling constant gren as given by eq.(3.39)
In order to show this result, we make the power expansion of the a-regularized path-

integral eq.(3.37)

oo

ZRr[0,) (Gren)

{ / o2 det 3 Ga(g.,g,)]} (3.41)

Thefinites of eg.(3.41) for each N under the renormalization prescription eg.(3.39) isa
straightforward consequence of the following properties:

Firstly, _
%j;r%(%(ﬁl,iz)) = ('é(';rfll { %(Fl(;)a)(o)za_”} =0 (3.42)
Secondly
, Gu(E1,82) Gul(1,82)
e SEE ciEDl-
_ e 2 /P(1—qa))? C,
Thirdly:
0 Go(E1,82) Gal(1,82)
(LILn det GO((&Zv él) 0 GO((&_Q, él) =
a>1 Ga(E3,81) Gal(&s,&2) 0
_etme ra-o)\® o Ca(1)
_43%%< o ) 1+1) = oo (3.44)
Finaly; .
I 9 G (e8] = S (3 (345
with

Cn = det[A j] = ~(N—1)(-D)" (3.46)

where [A ;] isthe matrix whose entries are

L, _J o if i=j
[ALJ]_{l i f I;ﬁj (347)
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As a conseguence of the analysis above exposed, we obtain our renormalization result
for the eq.(3.41) at the limit oo — 1.

9
ZR[Qu](Gren) = Z}O - grle”) Cr-A' < (3.48)
with A= [ d2¢ denoting the internal random surface areaand C, = e '™ /4 pi’/2 x (—1) x
(1-2).
Finally, let us complement our studies on the area behavior of the surface functiona as
given ashy eq.(3.9) inamore physical way. Let usseeitsareabehavior by using distribution
theory on sufaces [6]. Firstly, we introduce a RP vector basis along the coordinate lines %%“

and %L’:. We have, thus, the surface-intrinsic distributional results

D) (9u(5,6) — 0u(8,0")) = 8> 2 (0) x (ﬁgm (s—¢)8W (o — d)) (3.49)
and
do,v (X ‘ = /h(s,0) -dsdo - Ty ($u (S, 0) (3.50)

Xt=0%(s,0)

Here 6£D_2> (0) means aregualrized form of the delta function singular value 5(°~2)(0)
and physically related to the non-trivial structure of the non-perturbative phenomenon of the

coupling constant dimensional transmutation (see appendix of thefirst reference on ref.[4]).
After substituting eg.(3.49)—eq.(3.50) into the random surface term eq.(3.9) — section
3.2, we get our result

= [Nao [Tasy/h@eso) [ ao [a h(cb“(s“ﬁ’)){@f)(o)%}

_e / do / do\/h(0%(s,0)) Area(E) e? (3.51)

C

3.4. TheNon-relativistic Case

In this complementary section, we apply the analysis presented in section 3.2 for Quan-
tum Chromodynamics at t'"Hooft limit in a non-relativistic finite-temperature non-linear
Schorindger theory (see appendix A, chapter 1).

Let us start our analysis by considering the partition functional of the following
Schrodinger Bosonic many-body field theory with a quartic interaction at the temperature
T = (kB)~* (k denotes the Boltzman constant in the physical space R® and the partition
functional iswritten in the form of a Bell-Wiegd path integral [7]

Z[T.B :/ DF fy(r,t / DF [ (r,t
TB= frormvien © YOO oo O VY)

1 (B . K2 eh\2 9
xexp{—é/o dt/gd3r\|f (r,t) [—%<V—%B> +a

xexp{—%/oﬁdt/gd%d%|w(r,t)|ZV(r—r')|w(r',t)|2} (3.52)
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Note the presence of the external random magnetic vector potential supposed to satisfy
the white-noise statistics with randomness strenght A

Es {(roté)i (7)(rotB), (r*)} =B (r—1)3;, (3.53)

and the non-relativistic field excitations interacting through a short-range pair potential
V(r—r’).

At this point, we re-write the partition functional by means of the Siegert’st trick
of reducing the non-local spatial pair interaction by an independent interaction of each
Schorindger field excitation with a fluctuating external scalar field ¢(T,t) with a Gaussian
(non white) statistics:

Eo {0(F,1)0(F,t") } =V(F—T)3(t —t) (3.54)

One finds, thus, the following result for the partition functional written as statistics
averages over ensembles of the physical random magnetic field rot I§(r, t) and the auxiliary
scalar field ¢(T,t). Namely

Es {Z(T,é)}

(0 W (o en\®
d <§+%<IV—%B> +|¢(F’,t)>]} (3.55)

Let us go from the field path integrals on eq.(3.55) to the ensemble of spatia loops
through aloop expansion for the functional determinant resulting from integrating out the
Schrodinger Bosonic matter quantum fields. 1t yields as a result the following functiona
defined on the Bosonic three-dimensional loop space {X(c),0 < 6 < f3,X(0) =X(B) =T}

= (0 (- eii\? .
Igdet <§+fn<v_rr_1c8> +io(r,t)

_ +% {N /Q & [ /X z}ﬁjoF %(c)] exp <—%m /O B(i(o))zda>
ie

exp <h_c/oﬁ I§(X(0))i(0)d0> X exp <— /OB ¢(Y(G),G)d6>:| } (3.56)

where we have introduced explicitly theinteger N, given by the number of different Bosonic
matter species.

After substituting the purely Bosonic loop space eg.(3.56) into the statistics averages as
given by eq.(3.55) and evaluating them by means of a cummulant expansion (in a generic
from) and valid, at least for the limit N — O, [1].

:EB{E¢

E{N} = exp{N<f> - %NZ <<f2> —~ <f>2) +O(N3)} : (3.57)

one abtains explicitly that the dominant behavior of the random magnetic field average on
€q.(3.56) is governed by the three-dimensional analogous of that area-surface functional
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€q.(3.9) of secton 1

E {exp <i|-7i /Z (rotl§)(2)d6> }
:exp{—;;—e; /Z | / r, da(r)5<3>(r—r’)da(r“)} (3.58)

where X is the “minimal” area surface bounded by the bosonic closed contour (loop) X(0)
entering on the loop path integral eq.(3.56).

As a consequence of eq.(3.58), one can see that for a large white-noise magnetic field
strenght A — oo, this averaged phase-factor is only non-zero for a surface X of zero area,
which is equivalent to the suppression of the quantum phenomena and reducing the quan-
tum gas partition functiona eg.(3.52) to aclassical gas partition functional since al closed
guantum trajectories reduce to the loop base point (see theorem 10.1 in second reference of
ref.[7]).

Hence, one can see again that quantum phenomena in fluctuating magnetic field can be
viewed as quantum phenomena in a dissipative media that destroys quantum phase coher-
ence and leading to the theory’s triviality.

3.5. The Static Confining Potential in a Tensor Axion M odel

One of the still unsolved basic problem in the Gauge theory for strong interactions as given
by Quantum Chromodynamics is to produce arguments for the colour charge confinement
of the coloured Q.C.D.’ field excitations, quarks and gluons[9].

Some time ago, through a somewhat intrincate path integral analysis, A.M.Polyakov
[10] has proposed that — at least at the t' Hooft large number of colors limit — one should
expect that the basic loop space dynamical variable as described by the averaged SU(<o)
Wilson Loop (in the Euclidean world).

wic)©™ = <TrLP{@<p [+i / Ade“} }>(w) (3.59)

should be equivalently represented from a calculational point of view by a string-like func-
tional integral Ansatz based on a coupling of an abelian rank-two tensor field B, (x) — the
called by us of Polyakov's axion field — with the dynamics of random surfaces S livingin a
mathematical space [11], however possessing as boundary the previous loop C, understood
as the quark-antiquark space-time physical (on-shell) Feynman tragjectory, with the axion
effective dynamics of B2 << (dB)2.

= (®[C))g)- (3.60)

DF (B - e SBulgli 50 Bup (0 (3(xc)
M[C]>Q.C.D.(w>={f Bin]

J DF [B]e 5B
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The effective loca effective axion action is thus given explicitly by

SB) = 462/dv <82 +dBarcsm<crlnE>— m4—(dB)2> (x)

g (o e ()
" e (B ) 00~ g [0 @

where m? = O(N) isadimensional transmutation parameter on the U (=) gauge coupling
constant €, = limy .. (€5,eN) < o> and ®(C) = exp(i fg  (Bdo)3(x — c)) denotes the on-
shell phase flux on the string C, boundary of the mathematical random surfaces SC|. It
is very important at this point of our exposition to call the reader attention that the phase
flux factor on the left-hand side of eq.(3.60) is taken to be of a form of “string on-shell
vertex” by considering the point x constrained to be on the physical pair trgjectory C. Itis
the purpose of this section 3.6 — to evaluate the static potential between two static charges
(with opposite charge signal) on the above mentioned random surface axion-rank-two tensor
abelian field theory at U (=<) eg.(3.61) by means of the dimensional regularization scheme
[9] and show exactly its so much envisaged color-charge confining property; afirst basic
physical requirement to consider the axion-string propose eg.(3.60)—eq.(3.61) as an useful
calculational scheme — at least as a leading effective quantum geometric field theory for
Q.C.D (SU(=?)).

Finaly in section 3.6, we address the problem of implementing a non-perturbative self-
avoiding representation for a Ag*-closed string field theory by the same procedure used
years ago by Symanzik in his non-perturbative self-avoiding contour representation for
the usual A¢* (point like) (see chapter 3.1) field theory and underlying the Axion-String
Polyakov framework for Q.C.D.(SJ(e0)).

3.6. The Confining Potential on the Axion-String Model in the
Axion Higher-Energy Region

The static potential between two charges of opposite signa separated by a space-like dis-
tance R is computed in the path-integral framework by considering the vacuum energy of
the rank-two tensor theory in the presence of the boundary flux of such colored charges,
namely

= lim - 2{[(@(C) g (622

wheretherectangle Cr 1) denotes the space-time (euclidean) closed trajectory of the neutral
pair and <> g, average is defined explicitly by the Gaussian path integral eq.(7.2) with the
rank-two tensor weight as given by the effective largee N free action eq.(3.61).



The Triviality — Quantum Decoherence of Quantum Chromodynamics U (e)... 71

In order to evaluate the static potential at our proposed rank-two tensor theory at higher
energy as given by eq.(3.62a) it appears convenient to re-write the on-shell abelian ax-
ion flux given by eq.(3.60) by means of an external current J,(x,Cr)) solely circulating
around the pair finite-time propagation (—% <t< +%) space-time quark-antiquark trajec-
tory Crr) = {Xu(S),a < s< b}, namely

! /5[C<R,T)] Bup (X)do”P(X)3(x — ¢) =

- / A4"XBop (X) [i 740 5 (x — x, (S)X*(S)dXP () (3.62b)
(RT)

Note that the point x on the planar surface SCr)] = {0X.(s),0 <o <l,a<s<b}
area tensor on the left-hand side of eg.(3.62b) is constrained to be on the physical planar
loop Cr) = {X.(X),a < s < b} aswritten on the right-hand side of this equation by mean
of the deltafunction §(x—c) =8(c — 1).

The Gaussian path integral eq.(3.61) can be exactly evaluated and yielding the following
effective result where we note the appearance of the fourth-order Mandelstam effective
propagator as the leading effective propagator in the analysis.

. 1 1
V(R) ~ TIEIL_?< {exp{E/dedVny(x;C(Rm)
X Dm(x=y)3'(Y,Cr1)}] - (3.639)

Here the purely fourth-order Mandelstam propagator [9] in momentum space is given
by

Drn(X—Y) = / vpePtey L (3.63b)

1
(2m)Y |pl*
and the purely vectorial contour form factor is defined by the pair physical tragjectory on the
space-time and reads explicitly as (see eg.(3.62b)

3(xCrr) =ie ?{ 80 (%, — %,(8))dx,(9) (3.63¢)

Cr)

The evaluation of eq.(3.63a) can be accomplished by writing it in momentum space

V(R) = lim ] [/ﬂf (Pa;CrT))

Toe T (2m)v
X %fy(—pa,C(R,n)} (3.64)
with the momentum-space contour form factors
f,(Po.Cr)) = i€ / e 1% ix, (9) (3.65)
Cr)

A simple evaluation of eq.(3.65) provides the solutions

_ ey (Pl g ( PR
fo(Pe,CrT)) = pOSIn( 5 )sn< > > (3.66)
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de . PoT \ . piR
fl(pocaC(R,T)):"‘ES' <7>9n<7> (3.67)

After inserting the contour form factors eq.(3.66). eg.(3.67) into eq.(3.62), we obtain as
aresult

T P1

d*=?p ( 1+ dpo (P5+PD) 5 2 PoT 1
(S () )] oo

Note that we have considered the pair spatial-static trajectory Cg 1 contained in atwo-
dimensiona sub-space of the (Euclidean) space-time RY in a such way that we can decom-
pose the vector p € R¥ as p = po& + P11 + P, where p is the projection of p over the
sub-space perpendicular to the sub-space {€&,&; } containing Cr1).

Theintegration in the pg-variable is easily perfomed by using the formulae given below.

1 += dpy sin?(Bt
V(R)=T|[Tl+—{+16e2/_m (T%M

- e Sinz(ax) T —2ac
Fi(a.c) _/_w O = 2 1€ ) (3.69)
and X
teo snf(ax) o~ d -~
/;oo de — Fz(a, C) — —m(Fl(a, C)) (370)
As a consequence we have that
1~ d o1~
lim ~Fa(a,c) = BEICa) {A‘lﬁl Jh@ C)} =0 (3.71)
Note either that we have the additional formulae:
T Y e e 1
im 2 ). XS @) e ey
1 d e, 1
_;Lnjoa{_d(cz) [ _ dxsn (ax)x2(x2+cz)]}
T d i 1 _oac oo
_aILno]oa{ T3] [402 <2a C(l e ))}}— >dd (3.72)

As a consequence we get the following explicitly result for the pp-integration and the
associated ergodic limit, where only the result provenient from the analogous of eq(3.72)
survive a the limit of T — oo,

[ gy () s (%)

1 a1
S e | v 3.73
(p%+p%+ﬁ2)2} n (pf+ P?)? (3.73)
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Inserting the result eg.(3.73) back the compl ete expression eg.(3.68), we have the partial
result for the static potential between the neutral color charges in rank-two effective theory
for Q.C.D. (o)

_ tedpsin(%y) d 2P 4p3
V(R =16¢° [/_m (2n)  p? /(ZTE)V_Z (p? + p?)2

(3.74)

Let us evaluate the (v — 2)-dimensiond integration on eg.(3.74).
Firstly we note that in the dimensional regularization scheme

+oo dV72f) ' 1 B F( ) -
[w (2n)v-2 (P2+p2)2 (2n)F ( )| p| (3.75)

where we have used the formula below to obtain explicity the above written result.

dp 1 T
/ (2m)¥ (p2+a)Y_(4n)%r(y)(a) ' (3.76)

We arrive, thus, at the final effective result for the (v — 2) integration on eq.(3.74), with
arenormalized constnat c(v) finite at the physical limit of v — 4.

dv—2p 1 .
/ (zn)vPZ ’ (p%%— ﬁz)z = c(v)|p1| 6 (3.77)

We face, thus, thefinal (and last!) pi-integration

+oo le v
V(R):lGezxgchv)/ dlexpfx\pl\Tﬁ (3.79)

—~ (2m)  pd

The pr-integration iseasily evaluated as aFourier transform on the sense of Distribution
theory [11] by means of the formula.

/+°°épX|x|de: —2sin (%‘) C(B+1)|p| B (3.79)

and the trivial identity
sin?(x) = (ez'X e 2x_2) (3.80)

Finally, we abtain the expression for the static inter-quark potential in the Axion Effec-
tive Gluon theory in space-time RY

V(R) = _64%2 X EV)
—v+5
x{—%sin(%(v—G))F(v—&‘; } (3.81)

By passing to the Physical limit of v — 4, and by taking into account that

Ilmsm(z(v 6) Mv—4-1)~

v—4

—x (F(v—4) X sin(g(v—4)>> ~4n (382
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We obtain the finite result for the static inter-quark potential in the Axion Gluonic ef-
fective theory in R* B
V(R) = +€AR| (3.83)

Here A is amode-calcul ation postive constant, which detalils will be not nedeed on our
study.

We see, thus, that the Effective Axion's path integral representation quark potential
leads to the confining property and not to adynamics of charge color screening as it would
be expected in afirst analysis [9]. Thisisthe main result of this section.

Finaly let us consider the generating functional of the color neutral quark vectoria
abelian currents on Q.C.D(SU(<<)). Namely

<exp { ie/ d"x(wyw) (X) (%) } >Q'C.D.(w)

= <det [iy“(aﬂ + eA;(zw) T Jﬂ)} >YM(°°)
= Z[J,(X)] o

Here <>vy\ denotes the quantum average defined by the Yang-Mills theory {Af,‘x’)} a
the topological t'Hooft limit of SU(e<) ]9] (or chapter 4).

In the loop space “bosonization” framework of ref.[8]-ref-[10], we can re-write
€0.(3.84) into the guantum geometrical (off-shell) form involving solely a dynamics of
L oops, Random Surfaces with arbitrary topology and the general axion tensor field.

Z[J(X¥) sy () =

Y ®[Ch, dy i B,y do* 3.85
{S(%«)}{<@(p {é | ]exp<le/s<cxx> 0 >>B}} (3%

where ®[Cyy, J,| is the Wilson loop space variable associated to the quarks abelian current
classical source J,(X).

®[Co, 3] = exp <i f% J,,dx#) . (3.86)

The sum over the closed loops Cyx with end-point x is given by the proper-time bosonic
path integral below

< dT v 1 /7.
éz /o T / d*x /X (0>_X_X(T)DF[X(G)]exp{—§ A Xz(c)dc} (3.87)

and the nedded sum over off shell random surfaces S(Cy)-bounding the “fractal” (Haus-
dorff dimension 2) on-shell physical countors Cy-should be defined by the path-integrals
of refs.[11] (chapter 2). It isworth remark that we have here withdraw from the flux-phase
factor (which isakind of string vertex) the on-shell condition used on our static-potential
analysis as expressed by the constraint for the axion flux be restricted to the loop Ci as
imposed by eq.(3.62b).
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Asaconsequence the generating functional of the abelian quark currents leads naturally
to a purely dynamical quantum geometrical objects evaluations. For instance, the two-
point Q.C.D. (U (e=)) abelian quark current — an physical observable — has the quantum
geometrical closed expression in this phenomenological quantum geometric framework.

oo

(@) ) = Fug (- gco

e CA I

{sg;)} { 83u(X)8 % (Y)
(3.88)

After evaluating the functional derivatives, one obtains a quantum loop-surface space
partitional functional for on-shell non-planar closed loops Cyy and off-shell random surfaces
S(Cx) bounding them. We get as a result, the exactly expression below for the vectoria
current quark form factor at the t' Hooft limit of large number of colors

Fap(X=Y))acp.e=) = D, {i(—n%)”
{S(Ce)} \n=0 "%

’ chx} {Cxx}<% 5 G - dcgl”) <7{ ‘S(Cxlxl_y)dCE“l)
<o (8 Cun0 i, ) ( 8 (Cuy -1 )|

= ocB ' B v\ A2\—1ry . \s00 SBR
exp[ ez.,zw‘()(/s,(cxx,) (m)/s(cxjxj)dc (X)) (=0%)"H(x,%))5"* 3 )]} (3.89)

Studies on such dynamics of gas of loops and self-avoiding surfaces [11] will be pre-
sented in next section in a A¢*-String Field theory closely related to the our proposed
Q.C.D.(SJ (e=))-string representation eq.(3.60).

~

3.7. A 1o String Field Theory as a Dynamics of Self Avoiding
Random Surfaces

Let us start our analysis by considering the generating functional of the following math-
ematical Ap* Closed String Field Path Integral on the critical dimension D = 26 (see M.
Kaku book of ref.[4] for the general covariant discussion in a closely related, but different

string Q.F.T mode!).
o) = [ DF@(C))x

exp { — ¥ (®(C)Ac®(C) +J(C))

C]

( Y, 8P(Co—Cy) c1>2<co><b2<cl>>}. (3.90)
[

Co,C1]
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The notation is as follows: i) the string field is given by afunctional ®(C) defined over
the space of all closed string configurations C = {X,(c),—n < 6 < 1, X,(—n) = X, (1) }; ii)
The sum over al closed string configurations is defined by the path integral

% - / d°x </>;y(n)_xy(n)_><‘l D [Xu(0)]

1 .
exp (—5 / n(X;,(c))chs) : (3.91)
iii) The critical D = 26 string free kinetic term is associated to the string D’ Alembertian
(see chapters 9, 11, 12)
S .l (392)
©T28X,(0) 2ma/ T '

iv) The string functional measure in equation eq.(3.90) is given by the usual Feynman prod-
uct measure
DF@(C) = [] d®(X.(0)); (3.93)
{Xu(0)}
and iv) Theinteraction action in equation eg.(3.90) is given by the following vertex with D-
dimensional delta functions supported on the string configurations and involving a positive
A? coupling constant in the extrinsic space

22 Y 8P(Co—Cy). (3.94)
{Co,C1}

The proposed interaction vertex was defined in such way that it allows the replacement
of the four string field interaction in equation eq.(3.90) by an independent interaction of
each string with an extrinsic Gaussian stochastic field W(x) followed by an average over
the fluctuating field W(x). It isinstructive to point out that similar procedure is well known
in many-body path integral quantum field theory [15]. So, we can write equation eq.(3.59)
in the following convenient form

- ([ofle)

exp { — Y, ®(C)(Ac — i2W(C))@(C)
©

+J(C)<1>(C)}> . (3.95)

w

Here, W(C) means that the externa stochastic field W(x) is projected on the string
configuration C

U
_ / doW (X, (c)) (3.96)
—T
and satisfies the white noise stochastic correlation function with x € RP

(W)W (X)) D)(x—X). (3.97)

W:
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Inthefreecase, A = 0, the String Path Integral Field Theory equation eq.(3.95) isexactly
soluble with the following quantum string field generating functional

AU -
ZoC)=q P { [C%J )J(C)} : (3.98)

Here A~1(C,C) denotes the Green's Function for the string Laplacian and is given ex-
plicitly by the Random Surface Path Integral

A1(C,C) = /0 wdA<C\e-A30@, (3.99)

with

exp (_ % /0 AdT _’; do [(9XH)2 + (9:X4)2] (G,t)) . (3.100)

In order to reformulate the closed string field theory equation eq.(3.95) as a dynamics
of self-Avoiding Random Surface, we evaluate formally the Gaussian Field Path Integral in
equation eg.(3.95)

Z[3(C)] = <[det(&c+ i2W(C)]"Y/2x
{ Y JC)(Ac+ir(C)) (C))}> (3.101)
2 ¢

L et us define the string functional determinant in equation eq.(3.101) by the proper-time
technique

%logdet[&c +iIAW(C)] =
:_/“d_A Y 5F)(C-
o ALY
(C|exp(—A(Ac +iAW(C))[C) (3.102)
with

(Clexp(— (Ac+llW( ))IC) =
fuag-o10 0" 0001

exp{—%/ dt dc(aaX”)z(G,r)
0 —T

_iA /0 "o [ ch(x#(o,r))}. (3.103)
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By substituing equations eg.(3.102) and eg.(3.103) into equation eq.(3.101) and making
apower expansion in the coupling constant A, we obtain the String Field Theory equation
€0.(3.90) asaTheory of Random Cylindrical Surfaces (with boundaries being closed string
configurations) interacting with an external Gaussian Stochastic Field W(x). The Gaussian
average < ... >w may be straightforwardly evaluated at each order of the A-power expan-
sion and produces sdlf-avoiding interaction among the cylindrical random surfaces similar
to the usual self-avoiding Symanzik contour gas for the A¢* Field Theory. For instance,
by neglecting the functional determinant on eg.(3.101), which physically means suppress-
ing surfaces creation — annihilation (second-quantization) process, we have the following
expression for free theory’s propagator

<q)(Cin)q)(COUt)>(o> _

78 [y 0cn D IX¥(0.0)] <
XH(5,A)=CH

@(p{—% /O e [ do(@x)2(6.1)
A T
i /O de [ ch(x#(o,r))}. (3.104)

Note that sdlf-intersecting lines are invariant under reparametrizations of the full string
world sheet.

The next string quantum field correction for eq.(3.104) in our proposed framework will
be given by
<(I)(Cin)q)(cout)>(1) _

“ _ e dA _
dA/ 9 5 sFc-C
|aa[ ¥ 8 c-Cjx

{ccy
{(c| a<p[—A_(Ae+ iAW(c))][C) x
(Cinl €Xp[—A(Re + IAW(C))]|Cout ) )y (3.105)
where _ _
8P c-c)= [T 8™ (Cu(c)—Cu(o)). (3.106)

We may write eg.(3.106) in the form of atwo body random surface path integral with
self-avoiding interactions

<(I)(Cin)(1>(COUt)>(1) _
dA

/;M/:K ¥ 5F(c-C)

{cC
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T
do [ do’3®) (Xt (0,7) _xg;)(c',r’))> . (3.107)
—T

Let us point out that the perturbative renormalizability of the interacting string propa-
gator eg.(3.107), may be given by the renormalization group of the self avoiding random
surfaces theories. An aternative regularization study for eq.(3.107) may be implemented
in a pure geometrical framework as proposed in ref.[13] for the loop space formulation
of point particle field theories). In order to implement this study for random surface, we
start by extracting the trivial selfintersect points X,(c,t) = X,(0/,7) withc =0o',1 =17
from the A2 interaction term of eq.(3.107). Thus, let us introduce a D-dimensional regular-
ization parameter A on the self avoiding D-dimensional interaction in order to extract the
(geometrical) infinities associated to the trivial self-intersect surface points

%00 =% [Cor ["a [ do [" 4o
( /k<A dPK exp [iK, (X,(0,7) — x,,(d,ﬂ))}) (3.108)

The above equation may be written in the more suitable form after introducing the
extrinsic A coupling constant as a scaling of the X,(c,t) —field, i.e.:

| X,(0,7)] = %C(D) /0 " /0 g /ﬁn do [ do’
(] d KPP 55 0.0 ~ %0 L)l
951 (13600 - %000 ) (3109
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where C(D) is a constant depending only on the space time dimension and 4, (X) denotes
the usual Bessel Function of order v.

By power expanding the Bessel Function we reduce equation eg.(3.109) to asum of the
form

IX,(0,7)] = 5C(D)
 (-1)K(322/D)F

)

24 K2 (D _k)) 14(Xu(0,7),), (3.110)
~, KI2%D (3

where the partial contribuitons in equation eg.(3.107) are of the form

I(K)[X#(G7T)7A] =

A T T

/d]K\-\K!D”K’l/ do [ do’

Ad ‘Ad’ N 7“/ K 3.111
| e [ deix(om) X, ( 7)< (3111)

To regularize the infinities in equation eq.(3.111), we propose to introduce the aready
used parameter A in eg.(3.109) on the two dimensional string space-time {(o0,1); -t <o <
m;0 <t < A} by using the following unity decomposition into the integrand of equation
eq.(3.111)

1=33 ((0,1) — (c',7))

2
+ [1— 52 ((0.1) (o’,r’))] , (3.112)
where the regularized two dimensional delta function is given explicity by
A 6-+<0<o++
(00— (@ )] t-i<v<od (3.113)
0 otherwise

By Taylor expanding the integrand of eq.(3.111) around the point & = (¢’,7'), where
E.> = (071)1

1%u(8) = Xu(&") P =
oo r1+ro=~¢ k
{2 [ Y, DIXM(E)DZ(E)E~ é’\”“Z] } : (3.114)

(=2 |r1>1r>1

inserting the identity eq.(3.112) and eg.(3.113) into eg.(3.111) and making use of the result

/Zdo/oAdrzsf)((o,r) —(d,7))

(6—0o)"(t—1)"f(d,7)
{ AM™/2f (6" ¥) n,m=even

0 otherwise, (3.119)
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we are able to show that the most general extrinsic counter term arising from the non-trivial
self-intersect limit A — < is an exponentia of afour variable quadratic polinomia with a
renormalized extrinsic AR coupling constant,

T A
/ do / drexp{ P[9sXH, :XH, 32XH, 92XH] ). (3.116)
—T 0

All other contributions on the derivative order greater than the second derivative van-
ishes on the trivial salf intersect limit of A — oo,

The contribution of the non trivial self intersect points associated to the term (1 —
da(0,1) — (0,7))) a A — = leads to a kind of surface self-avoiding topological index
[6] A .

/0 dtdt’ [ dodo’8P)(X,(0,1) — X.(d', 7). (3.117)
—T

The dash in the integration symbols f in eq.(3.117) means that the trivial salf intersect
points 6 = o’,7 = 17’ are excluded from the integrand.

We remark that eq.(3.107), after being renormalized as described above, describes atwo
dimensional super-renormalizable field theory on the string space-time {(o,1),— 1 < 6 <
7,0 < 1 < A} since the counter term, eq.(3.116), generates a term to be added to the “free
kinetic extrinsic string action” with the form ~ C(AR)[(92X#)? + (92X*)?] where C(AR) is
afunction of the extrinsic renormalized self-supressing coupling constant [6].

Finally we comment that our proposed string quantum field theory is, in principle, dif-
ferent from those already proposed by other authors since our interaction vertex, eq.(3.90),
is a combination of D-dimensional delta functions and not as functional delta functions as
in ref [12] and directly inspired on the pure self-avoiding trivial case of eq.(3.89) on the
extrinsic ultra-violet regime, namely [7].

OB v\ A2\—1/(y. v. oy
/S(%/S(%do (%) (— )L, x;)do ™8 (x;)

. 985150 (x — x: 1d®® (x.
/S( . /S( .. 8000305 ) do"* x) (3.118)

Appendix A.
A Convariant Version of the Proposed A¢* String Field Theory

In this appendix we will make comments on the covariance of the theory under the action
of the string diffeomorphism group.

In order to have from the beginning a covariant string field theory we must consider our
theory for sub-critical strings D < 26. The main change in our study isthat we have to take
into account 2D induced pure quantum gravity which is needed by the dynamical status
acquired by the intrinsic metric field gap(o,T). This step may be easily implemented on the
random surface path integrals, egs.(3.100)-(3.104). For instance, the theory’s propagator,
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€q.(3.104), will take the reparametrization invariant form.

xp [—% /0 ® /n o (/GFPIX X, (0. r)]

oo [ ) [
do’+/9(0,7)3'” (X,(0,7) — X,(0',7'))

X g(c’,r’)} . (A2)

Unfortunately, the theory of sub-critical strings was not exactly solved yet. However,
at D = 26 we can show that the gap(0, ) field decouples, from the full string propagator,
€qg.(Al), at least for the weak perturbative coupling phase for the A-constant (the result
for A = 0 was proved by Polyakov). This result afford us to choose and, thus, to fix the
decoupling gauge gap(0,T) = 34 in our proposed theory.

It is worth to point out that in a rigorous mathematical procedure one should consider,
asinusua gauge theories, first Ward-Takahashi identities associated to the diffeomorphism
(non-conformal) group at D < 26. Thus, take the limit D = 26 on the these identities.
Anyway, the physical objects in string theories are not the string propagators but the scat-
tering amplitudes which are physical observables and may be calculated directly from the
eg. (A1) and tested to have the necessary invariances as shown by aperturbative analysisin
A coupling constant.

We remark that difficulties in considering non gauge fixed thoeries is shared by others
string field theories considerd in the literature as the B.R.S.T. and light cone string field
theories.

As afina comment we notice that the important problem of invariances in string field
theory is waiting the solution of the theory of sub-critical string (see chapter 3.1 and sup-
plementary appendixes A and B at the end of this book).

Appendix B.
Our Proposed A¢* String Field Theory as an I nfinite Component
Field Theory of String Excitations

Let us consider a harmonic oscilator expansion for the closed string configuration with

Xu(0) = x,; i.e:

o
X, (0) =%+ Y, Ake™. (B

N=—oo

In this base, the second quantized string field will be decompose in al possible string
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excitations
®[X,(0)] = O(X) _|_A#(x),q€‘1) + - By (X)-qﬁ\lj) e /qﬁ\’]‘) R (B2

The sum over al closed string configurations are weighted by (see eg.(3.60)
~+oo
D _ ﬂl’ 2
/_w d x/(];[)d,qu)e T (B3)
1l

The Feynman product measure, eq.(3.97), is factorized in the product of all Feynman
measures associated to the point-like field string excitations, eq.(B2), and thus

DF[®(C)] = [ ] D" [Buy...uy(¥)]D7 (O(X)], (B4)
N=1
with 12 _ 52

Ac= + (B5)

¢ axf, (%0) 04,04"

N=—oo
Finaly our proposed vertex takes the form
3PN (Co—C1) =
‘ T 0 T 0

/deexpiK“ Y giOdNo_ 3 gu@gNe| (B6)

N=—co N=—o0

After subgtituting the above writen equations in our proposed action, eg.(3.59), we ob-
tain an interacting infinite-component field theory associated to the string excitations.
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Chapter 4

The Confining Behaviour and
Asymptotic Freedom for
QCD(SJ(<)) - A Constant Gauge
Field Path Integral Analysis

4.1. Introduction

Since 1950, the quantum field theory of light and electrons (Q.E.D) has been a very con-
sistent framework for the description of the interaction of light and charged matter. In
1967, this quantum field theory of particles has arrived at another success with the ad-
vent of the Weinberg-Salam quantum field theory which handled successfully the weak-
electromagnetic component of the nuclear scattering processes.

These quantum field methods are based on a principle of minimal action with (local and
global) symmetries and the existence of amathematical Generating Functional (Schwinger)
defined on the space of classical source fields (test functions in the language of Schwart
Disgtribution Theory). This Generating Functional, by its turn, contains all the probabilities
ocurrences associated to al physicaly possible quantum scatterings involving the elemen-
tary particle field excitations.

However, it remains until present time as a difficult challenge in the subject, the direct
application of the above Scattering Quantum Field methods (L.S.Z methods) to describe
the pure strong-nuclear interaction as a Particle Field theory based in the framework of the
non-abelian Gauge theory of Quantum Chromaodynamics - QCD. The basic and conceptual
difficulty in applying the L.S.Z - quantum field method on Quantum Chromodynamics is
rooted on the first QCD model assumption of the charge-color confinement to which must
be subject al QCD particles which by its turn constrains particles only with a color-singlet
compound structure to be subject to Physical L.S.Z. scattering process.

It is important to remark that strong mathematical clues for this charge-color confine-
ment on QCD were obtained by K. Wilson (1974) in a discretized space-time by using
as dynamical variables the well-known gauge-invariant discretized Mandel stam-Feynman
phase factors instead of Gauge-variant discretized fields. Although there is a strong indi-
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cation that it is possible to remove the difficulties of the direct use of a discrete space-time
through a phase transition of second-order leading to zero lattice spacing limit, this step
remains as an somewhat unsolved problem within the Wilson’'s program for QCD until
present days.

The purpose of this chapter isto consider another Quantum Yang-Mills reduced model
with an explicitly confining behavior at the limit of large number of charge-colours (t' Hooft
limit), however defined on a continuum space-time. This quantum dynamica reduced
model is defined by introducing directly on RY, a Functional Manifold of Constant Gauge
Fields configurations ([1]), which by itsturn are expected to generate an effective dynamics
on the Manifold of the full Gauge Field configurations at the t'Hooft limit SU (<) for the
Yang-Mills path integral. We show the Wilson confining area-behavior for QCD(SU (c2))
as described by our proposed SU (-) effective reduced dynamics of constant gauge fields.
We show exactly our SJ (e=)-model solubility when added with full dynamical quark fields
and the related fermionic field asymptotic freedom. These studies are presented an Section
4.3 of this chapter.

Anather interesting and conceptually important problem in Quantum Field Theory is
to understand the triviality of quantum field theories as a “phase-transition” phenomena
depending on external parameters, including the famous space-time dimensionality.

It is argued sometimes that there are no non-renormalizable quantum field theories.
What isreally happening isthe appearance of the Quantum Field Theory Triviality phenom-
ena. However, there is some analysis in literature pointing out that through resummations-
specialy by means of the large N expansions - one could be able to make such non-
renormalizable Field theories (like the Thirring fermion quantum field model) turn out to be
non-trivial renormalizable ones. We aim in section 3 to present an analysis, based on an ap-
proximate chiral path-integral bosonization and the E. Witten reduced constant gauge field
dynamics of section 2, to show that such resummation renormalization phenomenon does
not happen. In section 4 we complement our previous path integral analysis by presenting
atriviality argument by means of aLoop space analysis for any N.

4.2. TheMode and Its Confining Behavior

One of the basic quantum field variables used to probe in the nonperturbative phase of
non-abelian Gauge field theories is the well-known (Euclidean) path integral average asso-
ciated to the non-abelian Faraday flux defined by a space-time loop C-the so called Wilson-
Mandelstam loop variable

WI[C| = Vﬁ{/s;mwsum)) DF [A.(X)] x exp (—%/RV Tr(FW)Z(x)dvx>

(e o (ofae)])

where the domain of the quantum average on equation (4.1) is composed of Schwartz-
tempered SJ (N) valued connections associated to the bundle RV x SU(N).

A long time ago ([1]), it was argued by E. Witten that at the limit of infinite-number of
colors N — oo with the diagrammatic restriction |\Ili_r)r(]o(QZN) = g2 < oo, the full domain of

(4.4.1)
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the Yang-Mills functional integral eq.(4.1) would be expected to be reduced to a manifold
of trandation invariant constant gauge fields. Let us, thus, define our reduced Yang-Mills
model by considering from the beginning only constant gauge fields configurations on the
functional domain of equation (4.1) as our basic assumption.

We now show the usefulness of such effective dynamics by giving aproof of the colour-
charge confining through an explicit evaluation of the Wilson-Mandelstam phase factor at
N — oo, an important result supporting the possibility of the above reduction of degrees of
freedom for Yang-Mills theory at U (<), asfirst conjectured in Refs. [1].

The main idea to make explicitly this path-integral evaluation for constant gauge-fields
is to consider the [non gauge-invariant] Cartan decomposition of each constant gauge field
A, entering in the path integral average equation (4.1).

A, = B2Ha+ GLE, (4.2)

where the Cartan basis {Ha, Ea} of the U (N) Lie algebra have the following distinguished
calculational properties ([2])
aForab=212....N—-1

[Ha, Hp]— =0 (4.3)
b) For b — il,...,iw
c) Fora= 1,2,...,M
2
N—1
[Ea, E_a]_ == 2 rc(a)Ha (45)
=1
N(N—-1)
d) Fora=#£ —b; a,b:il,...,iT
[Ea> Eb]f = NapEaib (4-6)

Since one has to fix the gauge on the path-integral equation (4.1) and at the same time
one should preserve the non-abelian field variable character, which is expected to be dy-
namically significant for explain the charge confinement — we impose the vanishing of the
abelian components as our gauge fixing condition (the Bollini-Giambiagi gauge - see last
reference onref. [1]).

Bi=0. 4.7

Note that the use of the Gauge fixing condition allows us to simplify considerably the
objects to be path-integrated on our proposed SJ («<) constant gauge field model.

For instance, the constant gauge field Yang-Mills path integral weight is obtained by
simple substituting eq.(4.2) in the Yang-Mills action and leading by itsturn to a pure fourth-
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order pure polynomial action

SGLEp = /dV X (Tr(9,A, — OvA, +ig[AL A)?)

_ ¢ 2
= =5 VTG, G (4.8)

2

2

Here we have introduced an appropriate finite-volume domain Q C R’ such that

vol () =V and with the topology product form Q = Sx [0, ¢3] x [0, £4] in order to extract

the areabehavior of equation (4.1) at the limit of large areabehavior S— <o (infinite volume
V). The colour indexes matrix Lapcq are given explicitly by (with Tr(EaEp) = +20ap)

Labed = <2I’ C)3i¢ dc,—dBa, - b)

if=1
+ (NabNea (1 — 84 —b) (1 — 8¢ —d)Sastb,— (ctd)) -

We have the following exact result for the Mandelstam Phase factor as a straightfor-
ward consequence of the non-abelian Stokes theorem applied to the planar loop C, which is
supposed to be entirely contained in the plane (u = 0, v = 1, (containing the Euclidean time
axis) and S denotes the area of the minima surface bounded by C with the disc topology
(for arigorous proof see section 3).

V GGy G Gy[ Labed]

(4.9)

p{ %01 — exp (~g?STrlAo, Adl) (4.10)

The leading limit of N — < in eq.(4.10) (similar to the deduction of the large number
law in Statistics!) yields the closed result below

%TF]P’{ |Sj>001A dx!,}

— exp {+ (922,3)2 (Tr[Ao,Al])Z} 40 (%) (4.11)

_ @(p{+(928)2 GaGbGCGd[Lab ]8 5 }
2N w2y Py cd | Ou0 Ovl

At this point of our path-integral study, let us make atechnical remark not used in what
follows and related to the fact that the path-integral average equation (4.1) for constant
gauge fields is fully U (N) gauge invariant and, as a consequence, one should in princi-
ple evauate the Faddev-Papov Jacobian associated to our proposed gauge fixing equation
(4.7). In order to implement this technical step, one considers the infinitesimal functional
displacements through a gauge transformation with parameters [Sw?, ¢}

8A, = {(3GD)Ep +i(80?)(GY Ep)(—ra(0))

Gb 8b ¢4 (2 I’p )] (4.12)

+i(8eP )[Gﬂ Noy Ep+y(1—8b-1)] },

+i(8eP)
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which after substituting in the functional metric ([3]),

82 = Tr ( / (8A-8A)d"x>
o
= [50,8¢,80]" M[o,£,0][50, 8¢, S0

(4.13)

would lead us to the Faddev-Popov Jacobian as the functional metric determinant averaged
over the Gauge group (with infinitesimal Gauge Group neighborhood implying the use of
the Feynman measure!)

Arp[G,] = /SU(N) DF (8¢, 50) det } {M[5, 8¢, 50]} (4.14)

However, it is expected that in the large N limit equation (4.14) does not affect the
confining area behavior of the averaged Wilson loop equation (4.1). We thus neglect its
contribution to the average equation (4.1).

Arp[G,) =1+0 (%) (4.15)

By collecting equation (4.8) and equation (4.11), one finally obtains our proposed path
integral representation for the Wilson loop for constant gauge fields at the large number of
colours N — oo,

W[Coi = N%{ / (NHNVHdGa>}

a=1 p= (4.16)

ar~b~c~d 2 508 (928)2
X exp +ZG‘UG G G, Lancd X |97V +0,00v1 N .

Now the area behavior at the t'Hooft large number of colors N — <o is exactly ob-
tained after considering a simple rescaling on the G5-variables in both path integral fac-
tors in equation (4.16) (including the normalization factor W(0)!) namely G?O y

2Q\2 i
G?o;) [gzv + %] in the numerator and G§ — Gf}[gZV]*% in the denominator aswell.

2 —<N2+N)V N(N 1)
v (1+57)] S
[g?v]- (VN !

WI[C] = v (4.17)

which in the large N limit gives us exactly the expected exponential area behavior in afour-
dimensional space time of the cylindrical form Q(*) = R? x [0, £3] x [0, £4], with S— oo (the
area bounded by C).
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oo [ ) Ll (209w

Itisvery i 2mportant to point out the appearance of a kind of Dual Models-String slope

g
. _ (lely) o . .
its turn signals the existence of the phenomenon of dimensional transmutation on the adi-
mensional SJ (=) gauge coupling constant in four-dimensional space-time, phenomena ex-
pected to be responsible for the existence of strings structures on QCD(SU (=)) besides of
generating the expected scale of mass for Hadrons in the observed nuclear particle forces
([4]). Note that the string tension on eq.(4.18) depends solely of the “area vacuum cross
section” A = /3/4 as expected ([4]). Inthe three-dimensional case one obtains a pure length
behavior for the Wilson Loop on the basis of eq.(4.18).

Finally, in the two-dimensional case one obtains the area behavior, however without the
phenomenon of dimensional transmutation for the N = <= coupling constant ([4]).

After producing arguments for the confining behavior in our reduced-constant Gauge
Field Model through explicit evaluations, we now introduce full dynamical chiral Fermion
fieldsin our proposed constant gauge field Yang-Mills SU (e<) theory.

The associated quark field generating functional in the presence of the background con-
stant gauge fields can be explicitly evaluated.

Let us show briefly this result since we make a complete analysis in this problem in the
next section 3. Firstly we have the following chiral quark field Euclidean path integral

parameter

as an over-all coefficient in the area behavior equation (4.18), which by

Zn.n] = z(é g7 O W OIDF (018 ™ (rsw —w) x 8 (157 )

<ol 5 [ |y Fue o ) (F)) @

xexp{—ifg(ﬁn +ﬁw)dVX}

where the chiral SU(N) phase U (¢) associated to the constant gauge fields configuration is
given explicitly by the expression

U(0) = {exp[—igys(A - X*)al} = P {0/ | (4:20)

where ¢ = ¢?hq = A2 X*A4 isthe chiral phase.

We can proceed as in the chiral bosonization path integral framework in order to
“Bosonize” (solve exactly) the quark field path integral equation (4.19) by means of the
chiral change of variables ([5])

W(x) = exp{~igys o(x) }x(x)

00 =700 exp{—igys6()} (421
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After the change equation (4.21), the generating functional takes the decoupled form

2ini] = 5577 | D EK00ID )

ez a5 5 (7)) 0z

eXp{—iE/QdVX<XeigY5¢(X)n _|_ﬁe*i9Y5¢(X)X> (X)}
x detfHU () 9U (9)]

At this point, we remark the validity of the free-field result for the Fermionic functional
determinant in the path integrand equation (4.22) (see next section for detailed cal cul ations)

detr[U(¢) gU ()] = detr [d] (4.23)

Here we have used the Alvarez-Romanov-Schwartz teorem ([5]), the condition / dvx-
Q

x* = 0 and the non-existence of zero modes of the Dirac operator in presence of constant
gauge field configurations in order to obtain equation (4.23).

As a consequence of the above displayed results, one gets the famous asymptotic free-
dom property of the quark fields in our SJ (e=) constant gauge field model after writing
explicitly the quark two-point function

_ o &Z]
(WX)w(y)) = SIBN) |y o
= (x(0%(y)"” exp <—ig\(5 /X A, de> o M) 424

Here (x(x)%(y)) denotes the free Fermion propagator coming from the “bosonized” action
and the contour on the gauge field path-phase factor is a straight line connecting the points
x* and y*, which reduces to unity at the higher-energy limit of |x—y| — 0. (see eq.(4.20).

At this point, let us call the reader’s attention to the fact that phenomenon of asymptotic
freedom should be analyzed for Gauge-invariant quark bilinear fields. For instance, we have
the Gauge-invariant result:

((WOIW(X) (W WY))) ~ X)X xy)x(x))©
y {TrsJ(oo)P(—l-ig f%A,deﬂ)} (4.24-b)

Here C,y denotes an arbitrary planar closed contour intercepting the " marked” points x
and y. We can see that for large |[x— y| separation, the above quark-bilinear field correlation
function approximates to the free field fermion correlation functions as the family of planar
loops C,y entering in the gauge-invariant expression eq.(4.24-b) reduces to a point as the
geometrical result of the superposition of the segments of straight-line connecting the points
xandy (see eq.(4.24)), however with opposite orientation. Note that all those loops C,y with
alarge area |x — y|? have a negligible contribution to eq.(4.24-b).
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4.3. The Path-Integral Triviality Argument for the Thirring
Model at SU (<o)

We start our analysis by considering the chiral non-abelian SU (N;) Thirring model La
grangean on the Euclidean space-time of finite volume Q c R* as done in Section 2

S p— e
L(v.¥) =5 [wa(wyaywa) + (w""lvﬂaﬂ)wa}

2
+ (T 0A e ) (429

Here (y?,y?) are the Euclidean four-dimensional chira fermion fields belonging to
a fermionic fundamental representation of the SJ (N;) non-abelian group with Dirichlet
boundary condition imposed at the finite-volume region Q. In the framework of path inte-
grals, the generating functional of the Green's functions of the quantum field theory associ-
ated with the Lagrangean eq.(4.25) isgiven by (¢ =ivy,0,)

-N2-N
ZIne = 576757/ 11 PvaloI¥

0 7

G

2
cop{ S [ ax(Trr (Ao 200 |

1 _
X @<p{—§ /Q d*x(Wa, Wy)

‘ exp{—i / d4x<wana+ﬁawa><x>} (4.26)

In order to proceed with a bosonization analysis of the fermion field theory described
by the above path-integral, it appears to be convenient to write the interaction Lagrangian
inaform closely paralel to the usual fermion-vector coupling in gauge theories by making
use of an auxiliary non-abelian vector field Af}(x), but with a purely imaginary coupling
with the axial vectoria fermion current (at the Euclidean world).

1 N2—N N2-N 3
Zinatll = 7156y | T1 Dvaipwa0] [ TT 1 DIAix)

a=1 u=0

cop{ - a5 io e T e () o)
xexp{—% /Q d4x(Af}Af})(x)}

xexp{—i / d“x(manamawa)(x)} @.27)

In this point of our analysis we present our idea to bosonize (solve) exactly the above
written fermion path integral. The main point is to use the old suggestion that at the strong
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coupling and at a large number of colors (the t"Hooft limit), one should expect a great
reduction of the (continuum) vector dynamical degrees of freedom to amanifold of constant
gauge fields living on the infinite dimensional Lie algebra of U (o) ([1], [6]). Int" Hooft
limit of large number of colors, we can evaluate exactly the fermion path-integral by noting
that the Dirac kinetic operator in the presence of the constant SU (N) gauge fields can be
written in the following suitable form

exp{‘%/sz d*x(val¥a) [u @ e au((p)] (%) (X)} 429

where the chiral hermitean phase-factor is given by
U (@) = exp[—gys(AX)Aq] (4.29)
with the chiral SU(N) valued phase defined by the constant gauge field configuration
O(¢) = 0°ha = (AX')ha (4.30)

Note that due to the attractive coupling of the axial current - axia current interaction of
our Thirring model eq.(4.26), the axial vector coupling is made of an imaginary - complex
coupling constant ig.

Now we can follow exactly as in the well-known chiral path-integral bosonization
scheme ([5],[7]) in order to solve exactly the quark field path integral eg.(4.28) by means
of the chiral change of variables

W(x) = exp{—gys 0(X) } x(X) (4.31)

W(X) = X(X) exp{—gys 9(X) } (4.32)

After implementing the variable change eq.(4.31)-eq.(4.32), the fermion sector of the
Generating functional takesthe form where the independent euclidean fermion fields are de-
coupled from the interacting - intermediating non-abelian constant vector field A2, namely

1 N2—N
Zne i = 55,57/ [ Plra¥IDlza()

+ooN2—N Vv )
a=1

—oo

x deti ™ [(9+igys ) (9 + igys A)'
<ep{ -3 [ a5 o] (2)00)
cop{ i [ i Tt e 0} (439

Let us now evaluate exactly the fermionic functional determinant on eq.(4.33) whichis
given by the functional Jacobian associated to the chiral fermion field reparametrizations

€g.(4.31)-eq.(4.32).
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In order to compute this fermionic determinant, £ndett*[(9'+ig &) (9+ig A)*], we use
the well-known theorem of Schwarz-Romanov ([7]) by introducing ac-parameter (0 <o <
1) dependent family of interpolating Dirac operators (see eq.(4.23) - section 4.2).

D' = (9+ig A = exp{~gor50(X) } (9) exp{—govse(X)} (4.34)
Since we have the relationship for the interpolating Dirac operators
d
35 27 = (—ar50) P+ D) (—gys0) (4.35)

and the usual proper-time definition for the functional determinants under analysis

logdet? (R Pl

— lim %S Tre(e PP, (4.36)

e—0T Je

one obtains straightforwardly the following differential equation for the Fermionic func-
tional determinant

*

2 {iog det (B B}

= 4lim {/ d*XTre [gyg,(p x exp(—e B©) D(G)*)] } (4.37)

e—0

where Trg denotes the complete trace over the color, Dirac and space-time indices. At
this point we note that the diagonal part of exp(—e D(©) B(°)") has a well-known gauge -
invariant asymptotic expansion in four-dimensions ([4]) (where o*¥ = %(yﬂ Y —=v"v))

o o)* 1 l l b
exp(—e P pO)) = = {8—2 + E(Fﬂv(csA)cs"V)»b)
1 1 , 1 Y
+3 <—§F;’V<GA>F,,%<GA>MM — 5Fsp(OAF gy (GAAAY Y vﬁ) +0<e>}
(4.38)

After substituting the Seeley-Hadamard expansion on eg.(4.38), by taking into account
€g.(4.30), together with the fact that Tr pirac (Y5) = 0 and Tr pjrac (Y50Y) = 0, one obtains
finally the only possible non-zero term in our evaluations

{28 ()

x (GAR)(FS5(0A) F S (0A) Trgy ) (hahche) (4.39)

By supposing explicit space-time symmetry of the finite-volume region Q, one has that
the “symmetry integral” vanishes

/ d*-x =0 (4.40)
Q
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As a consequence, we get the somewhat expected result that the Fermion functional
determinant in the presence of constant gauge external fields coincides with the free one,
(see eq.(4.23) namely:

dete | (7+ig (7 +igR)"| /et | (9)(7)] =1 (4.4

Let us return to our “Bosonized” Generating functional (after substituting the above
obtained results on its previous expression eg.(4.33).)

Z[Ma,Na = oo / H D[Xa(X)]D[Xa(X)]
/+wNi‘[ d[A%] exp{+;VTrsu( )(AH)2}

cop{-3 [ a5 5] ()00}
X exp { - /g d*x(3pe oA, + e ARy ) (x) } (4.42)

Let us argument in favor of the theory’s triviality by analyzing the long-distance
behavior associated to the SU(N) gauge-invariant fermionic composite operator B(x) =
va(X) W, (X). It is straightforward to obtain its exact expression from the bosonized path-
integral eq.(4.42)

(BOB(Y))
— (T ) Ta)) X Gl ) @43)

here the reduced model’s Gluonic factor is given exactly inits structural-analytical form by
the path-integral (without bothering us with the ys-Dirac indexes)

0o N2 —
G((x— /+ ]‘[ d[A7] exp{+1vol (Q)Trgu(N)(A,,)z}
X Tray(n, {exp g%Aadxa} (4.44)

with Cyy aplanar closed contour containing the points x and y and possesing an area Sgiven
roughly by the factor S= (x—y)?.

The notation ( >(°) means that the Fermionic average is defined solely by the fermion
free action as given in the decoupled form eq (42).

Let us pass to the important step of evaluating the Wilson phase factor average eq (44)
at the limit of t'Hooft of large number of colors N — <. Asthefirst step to implement such
evaluation, let us consider our loop C,y as aclosed contour lying ontheplaneuy=0,v=1
bounding the planar region S(see section 2).
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We now observe that the ordered phase-factor for constant gauge fields can be exactly
evaluated by means of atriangularization of the planar region S, i.e.,

S=
|

AD) (4.45)

IC=

Here, each counter-clock oriented triangle ASV) is adjacent to next one ASV) N Af,'f V_

common side with the opposite orientations.
At this point we note that

=9/ (i) Aa-Xa (1) (2) @)
]P;{e A'ulv } [ engq‘ch . engq‘ch . eng‘iX'[{“ (446)

where {¢{/'}1_1 2 3 are the triangle sides satisfying the (vector) identity ¢\” +¢Z + ¢ = 0.
Since we have that

]P’{e‘gﬁx)AudX“} lim H P{e 9 “ } (4.47)

N—o0 i

and by using the Campbel Hausdorff formulae to sum up the product limit eq.(4.47) with X
andY denoting general elements of the U (N) - Lie algebra:

X .ol — XY +3XY] +0(gz) (4.48)

one arrives at the non-Abelian Stokes theorem for constant Gauge Fields (see second refer-
encein refs. [1]).

P{e—glbxonch} — [p{efgffs':mdcm}
= P{e"® ?[Po A ISy (4.49)

As a consequence, we have the following result (exact at N — <) to be used in our
analysis below

2

L0 (%) (4.50)

o 2g)2
TI’SJ(N)P{G gJCXyA“dX“} ~ eXp{—FM(TrsJ(N)[AO»Al])Z}

Note that eq.(4.50) is a rigorous result and eq.(4.49) is a rigorous proof of the Non-
Abelian Stokes theorem as used on section 2.

Let us now substitute eq.(4.50) into eq.(4.44) and taking into account the natural two-
dimensional degrees of freedom reduction on the average eq.(4.44)

G((x— / +°° NHN d[A%]d[Ag] exp {+ ;v Trasm (A +A3)|

2Q)\2
xexp{+@<Trw<N>[Ao,Aﬂ>2} (@51
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where G(O) is the normalization factor given explicitly by

oo N2—
/ ' H d[AZ]d exp{—% vol (Q)[(A8)2+(A"i‘)2]} (4.52)

By looking closely at eg.(4.51)—eq.(4.52), one can see that the behavior of the Wilson
phase factor average at large N is asymptotic to the value of the integral below

G((X=Y))N>>1 ~ {,/700 danp{—% vol (Q)az}
" exp{_@a4}

"0

2

oo 1 1y N?-N
x(/ da@<p{—§ vol (Q)a2}> } (4.53)

By using the well-known result (see ref [9] - pag 307, eg(3). 323 -3)

/exp (— ¢ — 2/2%)dx = 2 %<E>e2;2|<1 (%) (4.54)

we obtain the closed result (at finite volumeV = vol (Q) < <0).

G((X— Yoot ~ { (VV"”Q)N)

FN
2(%%)
+ (voI(Q))Zz onio
32 92;3N> (vol (Q))°N
N\VZ ) Ky | —
xe %< 169°N2S?
_1 N?-N
X VT T (4.55)
2

vol (Q)
2 (+25%)
Let us now give a theoretical physicist's argument of the theory’s triviality at infinite

volume vol(Q) — < on the basis of the explicit representation. Let us firstly define the
infinite-volume theory’s limit by means of the following limit

vol (Q) = (4.56)

and consider the asymptotic limit of the correlation function at [X—y| — o (S— o).
By using the standard asymptatic limit of the Bessel function

T
—Z
limK; (@) ~e? /= (4.57)
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one obtains the result (,\Ilim g?N = @2 < =) in four dimensions

N2—N
N w2 16w _ a2
G((x— ~lim{ —=-ew 4/ ———€ 16
(=9) N>t %w{s =V Nes2 }

1

So, we can seethat for N avery large parameter, thereisafast decay of eq.(4.58) without
any bound on the power decay law. However in the usual L.S.Z. framework for Quantum
Fields, it would be expected the opposite behavior through a non decay of such factor as
in the two-dimensional case (see eq.(4.58) for vol(2) = S), meaning physically that one
can observe fermionic scattering free states at large separation. However at N — o, where
we expect the full validity of our analysis, one obtains [on the basis of the formal behavior
of eg.(4.58)] the vanishing of the above analyzed fermionic correlation function eq.(4.43),
faster than any power of |x—y| for large [x—y|. This result shows that gaare may be zero
from the very beginning and strongly signalling the fact that the chiral Thirring modd -
for large number of colors - may remain atrivial Quantum Field Theory, a result not fully
expected at al in view of previous claims on the subject that large N resummations a-
ways turn non-renormalizable field theories in non-trivial renormalizable useful ones ([8]).-
However, rigorous mathematical proofs are needed to establish such an important triviality
result in full ([8]).

Finaly and as alast remark on our formulae eq.(4.55)-eq.(4.58), let us point out that a
mathematical rigorous sense to consider these results is by taking as our continuum space-
time Q, a set formed of n hyper-four-dimensiona cubes of a side a - the expected size of
the non-perturbative vacuum domain of our theory (see the first reference in [1]) - and the
surface Sheing formed, for instance, by n squares on the Q plane section contained on the
planeu =0 , v = 1. Asaconsequence of the construction above exposed, we can see that
the large behavior is given exactly by

- N 32.(93"”32)
G(na 7 ——
( )N>>1 ggo ] na2

N?(n?a®) N*-N
XKi | —=—=——=—=—
4 <16(9§o)2n2a4}

1\ o
~ (@) ~ efN(Nfl)kg(na ) NN 0 (4.59)

4.4. TheLoop Space Argument for the Thirring Mode
Triviality

In order to argument one more time for the triviality phenomenon of the U (N) non-abelian
thirring model of section 3 for finite N, let us consider the generating functional eq.(4.27)
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for vanishing fermionic sources n, =M, = 0O, the so-called vacuum energy theory’s content
or the theory’s partition functional

2(0,0) = / H H D[AR(x o 3 Jo XAIAN (X

a=1 u=
x detr (9 +igys X) (9 +igys X)'] (4.60)

At this point of our analysis, let us write the functional determinant on eg.(4.60) as a
functional on the space of closed bosonic paths {X,(c), 0< o < T, X,(0) = X,(T) =X,},
namely ([6] and first reference on [8]).

(gdetr[(J+igys K)(J +igys K)°]

E{PSJ - IP pirac €XP g‘?{Ay 6)dX,(o)

S1P] § FupO(0))ds } (4.61)
Ci

The sum over the closed loops C,y with fixed end-point X, is given by the proper-time
bosonic path integral below

Y L F
/o T / ‘ Xﬂ/xu(o)—xu—xu(T) D IX(e)]
X exp{—%/;)'(z(c)dc)} (4.62)

Note the symbols of the path ordenation IP of the both, Dirac and color indexes on the
loop phase space factors in the expression eq.(4.61).
By using the Mandelstam area derivative operator 8/86y,(X(c)) ([4]), one can re-

writes eq.(4.61) into the suitable form as an operation in the loop space-with Dirac matrices
bordering the loop Cy, namely:

(gdetr (9 +igys X)(d + igYs X

d
—ZPDlrac @(p{]{ dG aYB (o)

8048(X(0))
[evt-af ACu@x©)] | (469
In order to show thetriviality of functional fermionic determinant when averaging over

the (white-noise!) auxiliary non-abelian fields as in eq.(4.60), we can use a cummulant
expansion, which in ageneric form reads as

(€n, =0 { (D, + (1208, ~ (D3) 4+ | (464
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S0 let us evaluate explicitly the first order cummulant

d
Beowe {, ds5if 01t ”W

<]P’51J (g ;4 Ay (08X, (0)]) (465)
with the average ( )a, defined by the path-integral eq.(4.60).

By using the Grassmanian zero-dimensional representation to write explicitly the
SJ(N) path-order as a Grassmanian path integral ([10])

N>[exp<—g 74 A,,<xs<c>>dxy<c>>]

i T N2-=N
X exp (IE /o do 3, (ea(o)%e;(o)+e;(o)%ea(o)>>
<ep (g ] do(ALXH () Ou(iaectt) (0)0X"(0)) (456)

one can easily see that the average over the A, (x) fieldsis straightforward and producing as
aresult the following self-avoiding loop action

(Paslem(-g fc‘mAu<xs<c>>dxu<c>>]> N

= DF[04(c)]DF[0;(c 04(0
i I3 o

i N2—N g T
X exp ('5 /0 do ¥ (ea(c)%e;(o)+e;(o)%ea(o)>)

a=1

2
ep{ S [ do [ do[(0u0a)x00) () 000)c00) ()]
% 3(P)(X,(0) — X(0))dX, (o)X, (o)} (467)

At this point one can use the famous probahilistic - topological Parisi argument ([11]) to
show the A@* triviality at the four-dimensional space-time [8]: dueto the fact that Hausdorff
dimension of our Brownian loops {X,(o)} is two, and the topological rule for continuous
manifold holds true in the present situation, one obtains that for ambient space greater
than (or equal) to four, the Hausdorff dimension of the closed path intersection set of the
argument of the delta function in eq.(4.67) is empty. So, we have as a consequence

(Pamlen(-af AG@E)]), =1 (4.68)

\u
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Proceeding in analogous way for higher-order cummulants, one uses again the afore-
mentioned Parisi topological argument to arrive at the general results for aset of m Brown-

ian paths {CXX b=t

1111

<ﬁ [PSJ(N) exp <—9 ]({: p Aﬂ(Xé”(cs))dx,S@(o)ﬂ > ~1 (4.69)

Au

At this point we note that for finite N; the following result holds true as a consequence
of eq.(4.60) and eq.(4.69)

2(0,0) = (o] époirac{ f%dogwﬁ]@m

wlew(-gf Ao} ),

)
ZPDlrac ?{ dG v 1P)(o )W

(Payon)[exp( gf AuXp(@))dXu(0)])
1 [ 5
23 Z U e

i d
]{@ E[Yp,YJ](GZ)W
(Pasw [ep(-0 ., AOG(EY)dX}(0") [Pasiy [ep(-0 f, ACG(E2)dXE (] ),

o = epl0) = 1= dete (7 7, (4.70)

which by its turn leads to the Thirring model’s triviality for space-time RP with D > 4.

X
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Chapter 5

Triviality - Quantum Decoherence of
Fermionic Quantum
Chromodynamics SJ(N;) in the
Presence of an External Strong U (<o)
Flavored Constant noise Field

5.1. Introduction

In chapters 3 and 4 we have proposed a bosonic loop space formalism for understanding
the important problem of trividity in interacting Gauge Field theories ([1], [2]). The basic
idea used in our work above mentioned in order to analyze such kind of quantum triviality
phenomena was the systematic use of the framework of the loop space to rewrite particle-
field path integrals in terms of its ensembre of quantum trgjectories and the introduction of
anoisaly electromagnetic field as an external quantized reservoir.

The purpose of this chapter - of complementary nature to the above mentioned chapters
3and 4isto point out quantum field triviality phenomenain the context of our previousloop
space formalism for the case of Fermionic Quantum Chromodynamics with finite number
of colors but in presence of an external non-abelian trandation independent U (e<)-flavor
charged white noise simulating a quantum field reservoir ([1]).

In order to show exactly this triviality result for Q.C.D(SU (N¢)) in such a context of
an external non-abelian reservoir, we use of Migdal-M akeenko loop space expression for
the spin quark generating functional of abelian vectorial quarks currents ([3]) — associated
to the physical abelian vectorial mesons, added with the explicitly evaluation of U (M)-
flavor Wilson Loops at the t' Hooft M — <o limit for trandlation invariant noise-flavor field
configurations.

We finally arrive at our main result that the triviality of Quantum Chromodynamics at
such akind of flavor reservoir, islinked to the problem of quantum decoherence in Quantum
Physics ([1]). In appendix A, we present an aplication of our study to the Physical Problem
of Confining in Yang-Mills Theory. In appendix B, we present the detailed analysis of
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the problem of large N in Statistics, which mathematical ideas have underlyning our Path-
Integral Analysisin the bulk of this chapter.

5.2. TheTriviality - Quantum Decoherence Analysis for Quan-
tum Chromodynamics

In order to show such atriviality - quantum decoherence on Fermionic Q.C.D(SJ (N;)) with
finite number of colors in the presence of U (o) flavored random reservoirs, let us consider
the physical Euclidean generating functional of the Abelian quarks currents in the presence
of an externa trandation invariant white-noise U (M) non-abelian field Bf,M), considered
here as a kind of “dissipative” non-abelian reservoir structure and corresponding to the
interaction quarks flavor charges with aU (M) vacuum-reservoir structure, namely

M)y _ 0 (A B, J,)
Z[3u(x),By "] = <det,: [D*(Ame(lM)vJﬂ) 0 ] >A (5.1)

\u

Here the Euclidean Dirac operator is explicitly given by

D(A,BM,3,) = ivu(0, +9d™BM +eA, + ) (5.2)
with eA,(x) denoting the SJ(N;) Yang-Mills non-Abelian quantum field (trandation de-
pendent) configurations averaged in eg.(5.1) by means of the usual Yang-Mills path integral
denoted by ( )a,, J.(X) isthe auxiliary source field associated to the abelian quark currents

and g™ B is arandom trangation invariant external U (M) flavor Yang-Mills field with
aconstant field strength

F(B) = (igw)[BM™, BM)]. (5.3
(M)

Here E.™ denotes the stochastic average on the ensemble of the external randomU (M)
non-abelian strenght fields defined by the U (M)-invariant path-integral ([4])

EM (0B} =~y (/ (M1 1Tee)

EéM){l} p=la=1
<ep] [t T (8,801 |

X O(B,(,M))) (5.4)

with O(Bf,M)) denoting an U (M)-flavor invariant observable on the presence of an external
trandation invariant random U (M )-valued non-abelian reservoir field BE,M).

In the fermionic loop space framework ([1], [2], [3]), we can express the quark func-
tional determinant, eg.(5.1) —which has been obtained as an effective generating functional

for the color Nc-singlet quark current after integrating out the Euclidean quark action —
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as a purely functional on the bosonic bordered loop space composed of al trgjectories

Cox = {Xu(0),X,(0) = X,(T) =% 0< 6 < T}, namely

Z[3,(x), B;(JM)] = <exp{ — Nespur [éPDirac [eXp (fox dclz[YyaYV](G)

X m] X TrU(M)((D[CXXaB,t(JM)])}
% D[C, ] X Tray vy (WICe, A )| | (55)

where ®[Cyy, By, BM )] is the usual Wilson-Mandelstam path-ordered loop variable defined by
the trandation invariant random external (reservoir) U (M) field Bf, ), and WI[Cu,A.] isthe
same loop space object for the dynamical quantum color gauge field SU (N¢).

Note the appearance of the Migdal-Makeenko area — loop derivative operator with
the Dirac index path ordenation in order to take into account explicitly the relevant
spin-orbit interaction of the quarks Dirac spin with the set of interacting vectoria fields
{Au(X), By, Ju(x) } in the theory described by eq.(5.1) ([3]) (the well-know bordered loops).

The sum over the closed bosonic |oops Cy, With end-point x is given by the proper-time
bosonic path integral below ([1],[2])

% = /omd?T/de/%(O)_x_x(T) DF [X(0)] x exp{—%/;)'(z(cs)dc}. (5.6)

Following the idea of our previous work on Triviaity-Quantum Decoherence of Gauge
theories [1], we need to show in eq.(5.5) that at the t' Hooft topological limit of M — < in

the ensemble of external white-noise reservoir fields B(M) as implemented in ref. [1], one

obtains for the Wilson Loop Er (®[Cu, B, BM )]) an area-power behavior on the (minimal) area
SCx] bounded by the large arealoops Cxx inside the loop space functional on eq.(5.5), after
considering the average of the infinite-flavor limit on the external translation independent
white-noise B, field eq.(5.3)—eq.(5.4).

In the context of acummulant expansion for the loop space integrand in eg.(5.5) defined
by the U (M) path integral eq.(5.4), one should firstly evaluate the following Wilson Loop

path integral (Ioop normalized to unity) on the U (M)-noise reservoir field BY":

EX{Tru ) (0Cx. BI])}

1 [t
“EMy |- (gPdB )
xexp{ L o) 2Tr oy (B B 1)}
X%Tru {éngchBu dxy} (5.7)

By using the non-abelian Stokes theorem for constant gauge fields, one obtains the
following result for large M ([4]):

(o)) L (e () g
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or equivaently:

2 2
iTrSJ(M) (]}De*(QM)Z[Bl.Bz]S[CmO — exp{+M(Tr[B§M)’B(2M)])2} _1_0(%)

M 2M
(5.8-b)
where we have choosen the large loop C to be contained in the plane u = 1, v = 2 without
loss of generality.
A simple field re-scaling on the path-integral eq.(5.7) as written below, after insert-
ing the M — <o leading exact result of the Wilson Loop noise factor eg.(5.8) on the cited
equation (5.7):

1
. 2 C 27171
B, — B, [gﬁ + W} (5.9)
o [ (GSCx)?]
B> — Bl [gM + MT} (5.10)
= _1
Bl.i12) = Bis(12) o] (5.11)

leads us to the exactly result at the t' Hooft limit of U (=) flavor charge

a5

Jim (BT ) (@[Co. B ))) = fim F e
h g~
1 2 1
—ep{-J@rsdf o) 612

where g2 = limp_...((gum)?M) < o denotes the U (eo)-flavor reservoir " Hooft coupling con-
stant. Note that we have used the leading M — <o limit on the weight on the numerator of the
reservoir field path integral eq.(5.7). For instance (here B, = BjAa With [Aa, Ap] = fapcAc)

rlmiﬂl{@(p [(%(QM)Z‘FW) X (éﬁégéﬁ/éz, fabcfca/b()}}

2M
~ e | 3law?) ~ BIERETEY fuc = |
Lot (5.13)
L .

which produces as the only non-trivial result at M — -+ in the average eq.(5.7), that one
arising from the ratio of the Jacobians of the measure change associated to re-scalings
€0.(5.9)—€q.(5.11) on the path integral numerator eq.(5.7) and the normalization path-
integral denominator respectively.

As aresult, we get an exponential behavior for our noise U (e-)-averaged Wilson Loop
with an power square area argument.

Finally, we can see that the loop space quark fermion determinant eg.(5.1) is entirely
supported at those loops Cy with vanishing small area SCyy] for large values of the noise-
field vacuum streinght g2 — o, since those of large area S[Cy| are suppressed on the
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loop space expression generating functional eq.(5.1) above mentioned, as much as similar
K. Wilson mechanism for charge confining in Q.C.D.

Note that the same matter loop Cy appearing in eg.(5.12) enters in the definition of all
loop space objects in eq.(5.5). As a consequence, we have produced aloop space analysis
supporting that at very large noise strenght (g(°°) — +-o0), One has exactly the strong trivial-
ity of the SU (N;) on the sector of the quark abelian currents, in the mathematical sense that
the dominant loops on the loop path integral eq.(5.5) are degenerate to the loop base point
x or to the straight line vector bilinear quark field excitations trajectories motion. It yield as
aresult, thus

lim B (23,2, 8"']) = exp(0) = 1. (5.14)

This result leads us to the conclusion that the theory has on free field behavior ([5]) at
very strong noise-reservoir of the type introduced in this work signaling a kind of quantum
field phenomena in a flavored dissapative vacuum media that destroys quantum phase co-
herence and leading to the theory’s triviality as much as similar mechanism underlying the
phenomena which has been obtained in ref. [1] for white-noise abelian reservairs.

Appendix A.
The Confining Property of theU (<) - Charge Reservoir

We intend to show the own quantum decoherence/triviality of the U (eo)-charged reservoir
considered in the bulk of thiswork. Let us, thus, consider our trandation invariant U (M)
non-abelian gauge field theory of the previous analysis. However defined in afinite volume
domain Q with vol () = ma* where mis an positive integer with a playing the rule of
a fundamental lenght scale associated to the elementary cell of volume a* of our finite-
volume space-times (euclidean). We introduce at this point of our argument a closed loop
C contained in the plane (u,v) — section of the domain Q C R* and possesing area (planar)
SIC] = né?. (See eq.(5.7)).

(WIC)™) = lim ('M[ ]> (5.A-1)

The explicitly expressions for the objects on eg.(5.A-1) are the following C. Bollini and
J.J. Giambiagi trandation invariant gauge field path integrals ([5])

oo [M2-M 4 2
wic)= | (H HdA,"’}) xewp{%(ma“)Truw)([AH,Av]z}

- a=1 u=1

X (%TrU(M)P [exp (ig/CA,,dx,,>]> (5.A-2)

and

2

«Q

Iw(0) = /j (Mi‘[M 1 dAf}) x exp{

a=1 u=1

(ma“)TrU(M)([A,,,A,,]Z)} (5.A-3)

N
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The exactly evaluation of eq.(5.A-2) was presented in our previous analysis, with the
result below, after considering the re-scaling integration variable

2 4 na2 2713
AL AR [%(ma“) + Q(T)] p=12 (5.A-4)
? -3
A2 A {E(ma )] UA12 (5.A-5)
with the result )
2 4 2\27
Im[C] = [%(ma“) + 9 (rl\'/? ) ] . (5.A-6)

The same procedure is applied too in eq.(5.A-3) with the associated re-scaling Af —
_1
A [9—22(ma4)] * . It yields the exactly result for the path-integral normalization factor
' -
o= | S met)| (5A7)

As consequence, we get the following result for the U(e)-Loop Wilson average
((g7)? = lim (g°M) < )

ol o ()
() [EA) e

At this point of our study we call the reader attention that in the final result eq.(5.A-
8), we have considered aready the case D = 4, where one must taken into account the
transmutation phenomena of the Gauge coupling constant g**) by considering the existence
of avacuum area domain a? (the cell of our space-time) as much as the famous “Q.C.D.
spaghetti vacuum” of Nielsen, Olesen et. al. ([1]).

The area behavior of eq.(5.A-6) is easily obtained for large area loops n® >> min
the following situation: If one considers the relationship n = ym, with y an adimensional
number (y < 1) which will be kept constant at the limit of infinite volume m — <o, one can
see that eq.(5.A-8) gives area behavior for the Q.C.D. Wilson Loop for very large loop area

wie)® o~ epf- (15 net]

a

2
= exp{—(i%- AreaS[C]} (5.A-9)

f

At this point, one should envisage to implement a formal Feynman diagrammatic field
theoretic % — expansion on the finite order group U (M) — Gauge theory by considering
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next trandation — dependent field corrections on our reservoir field configurations of the
form A(x) = Af,°°> + ﬁGﬁ(X) in the usual Path-Integral measure with the matter confining
behavior eq.(5.A-9) aready built in the formalism, namely:

D M2-M

IT IT dmix ]2[ ]‘_[ dA3 - dG(x (5.A-10)
u=1 acl

u=1 a=1

eXp{_%/QTr&J 2(x)d®x }
=exp ——/TrgJ(M)<(ava—ava)(X)

|g(
\/_
It isworth remarking that the Feynman’s Diagrammatic associated to the Back-Ground

field decomposition in egs.(5.A-10)—«5.A.11) leads to an exchange of “massive’ Gluons
and leading, thus, to ainfrared-free perturbation analysis of the theory’s observables.

[A,,+ L600.A + %GV(X)DZ}. (5.A-11)

Appendix B.
On the Law of Large Number in Statistics
Let us present the usual mathematical methods procedure to define the large N limit in
Statistics.
The large N problem in Statistics starts by considering a set of N-independent random

variables {X;(w)},~1_..n, With w belonging to a given fixed probability space (€2, du(w)),
besides of satisfying the following additionals constraints:

a) Theirs mean value posseses al the same value m:
[ Xewdw) = E{Xe(w)} = m (5.8-1)

b) Theirs associated variance are al equals:

RING 7NN R

The large N problem in Statistics can be stated now as the problem of defining math-
ematically the normalized limit of “large numbers’ N — oo, of the sequence of random
variables sum below

A : 1 ([
Jim Su(w) = lim (m <21X5(W) — m>> : (5.B-3)

The path-integral solution for this problem contains al needed ideas and expose clearly
the method which were implemented in our analysis in Gauge Field Theory.
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Firstly, we define the associated Generating Functionals for each independent random
variable X,(w), with J € R. Namely:

Zix((3)) = E{e™ W} = / X gl (w)

—i Tik ( | oxetw)auw )> (5.8-4)

It is straightforward to see that the Generating Functional associated to the finite N
random variable sum eq.(5.3)

H{< (o))

i N
lle k]

k! oKNKk/2
2 Ml . M4J4 . N
T 2N 603N32 ' 2404N2 ’

with the k-power averages given by the integral expressions below, which are supposed to
be ¢-independent

(5.B-5)

M= [ (% (w)du(w) (58-6)

At this point, we define mathematically thelarge N limit by defining the effective statis-
tics distribution parameters.
lim (6V/N) = Geff < oo (5.B-7)

N—sco
’\Illm (MN) = Mggt < o0 (5.B-8)
and by taking the N — << limit of eq.(5.5) in the context of the definitions eq.(5.7)—eq.(5.8),
by considering just for simplicity of our formulae writing m = 0 (see eq.(5.1)).
As aresult, we have the simple expression below
J2 iMgd® N M4J4
2N 602N3/2 2404N2

NliggougzNun:NIg{l—

J? J?
= <2N> N=-. (5.B-9)
or equivalently
2
lim Zy(3) = 22" J)=e7, (5.B-10)

which is nothing more than the Generating Functional associated to the Gaussian Statistics
distribution:

z¢ (gy= 1L " ixe W e a2 5.B-11
New(d) = \/Z_Tc.ax_w xe e 2 (5.B-11)

which isformally the limit (with m = Q)

lim {ée
N—= | v/2n(cv/N)

_ (cNm?2 1 em?
2N = —e = (5.B-12)
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Chapter 6

Fermionson the Lattice by Means of
Mandelstam-Wilson Phase Factors:
A Bosonic L attice Path-Integral
Framework

6.1. Introduction

One of the long-standing unsolved problems in the lattice approach to QCD is how to han-
dle discretized masdess fermionic fields [1]. In this chapter we propose a solution for the
above-mentioned problem by considering asthe QCD natural field variable to be discretized
on the lattice the Mandel stam-Wilson phase factor defined by the color-singlet quark cur-
rents, instead of the fermion field as proposed by previous studies. Additionally, we show
the usefulness of this propose by obtaining, in an unambiguous way, the associated QCD
Nambu-Jona-L asinio fermionic model, which, upon being bosonized, leads to alow-energy
theory of the mesons and baryons of QCD (see Chapter 18).

6.2. TheFramework

Let us start our study by considering the Euclidean QCD [SU(N;)] generating functional
for the color-singlet scalar and vectorial quark currents:

Zlo+1spd,+15h] - [ O lew (3 [aXTEEMIN)  (6)
{000 w9l exp - a0, g o3, 4P PR WY )}
where y(x), y(x) are the independent Euclidean quark fields, o(x) + ysB(s) and J,(x) +

y5ﬂﬂ(x) are the external sources for the scalar, scalar-axial, and axial-vectorial QCD quark
currents. A,(x) denotes the SU(Nc) gluon field.
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In order to obtain effective quark field theories from eq.(6.1) we propose to integrate
out their gluon degrees of freedom in the lattice; i.e., let us first consider the pure gluonic

functiona integral
/DF )] exp <——/d4xTr [F2 (A )>

<eep (ig [ &) 08,9 ). 62)

Our procedure to evaluate eq.(6.2) is, first, to introduce a lattice space-time. At this
point we put forward our idea to handle correctly fermonic fields on the lattice. As was
shown in [1], it isimpossible to have a well-defined procedure to define massless fermion
fields on the usual lattice {x, = [n,],n, € Z} (with spacing a) [1]. We propose, thus, to
consider directly the bosonic quark fermion current on the lattice by means of its associated
Mandel stam-Wilson phase factor defined on each lattice link ([n,], [n,] + o)

Do ([n]) = exp(iag(wy w)(Inu]))- (6.3)

Note that the above-written phase factor has indices (i, j) on the group SU(N) and an
index o related to the Lorentz group asit should be.

The associated gluon U(N) group-valued Mandel stam-Wilson phase factor is still given
by the link lattice gluon variable

Up.([no]) = exp(iai,([nal))- (6.4)

At this point of our study, we point out that the quark gluon coupling on the lattice may
be written as a product of the Mandel stam-Wilson phase factor given by egs.(6.3) and (6.4)
since we have the formal continuum limit at the lattice space going to zero as one can see
by expanding the exponentials

= ig [ A0 () (9.

(6.5)
Our proposed gauge-invariant lattice version of the gluon functional integral, eg.(6.2),
is, thus, given by

lim [ Y, @Tr({Up(Ina]) — 1} x {gu([ne]) — 1} +he)
{lna]}

a—0

0951 = D Uadlendl (- 5 3, THU( U DU DU )

x ap({m%}azTr{uy<[na]>—1}> < (@u(ind -17"). (66)

The advantage of this lattice phase factor approach to analyze the gluonic path integral,
eq.(6.2), isitsalowance for an exact integration of the lattice gluon phase factor in both the
perturbative and the nonperturbative regimes. Let us show its usefulness by evaluating in
closed form eq.(6.6) in the leading limit of the number of colors and in the leading limit of
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strong coupling asin ([2] - Eq.(3.17)):

v ¥l o = Jim [ D" [Uy([n)]ex e (-a ' 3 T ) nul) - 1))
A@
—ep( %2 3 Tr<{¢ﬂ<[na1>—1}{%([%})—1}*), 67)

¢ {nal}

where AS"%D isthe QCD strong-coupling phenomenological scale with dimension of inverse
area (the gluon nonperturbative condensate) which by its turn is lattice spacing dependent.

It is very important to remark that the Jacobian J of the variable change U,([ny]) —
U,([n«]) + 1 on the lattice functional integrals, Egs. (6) and (7), is unity only at the contin-
uum limit a — O (or at large N) since it is explicitly given by the ratio

det?/2(M;{U,([ns])) + 1})(a)
Ja) = 6.8
@ anﬂn{ der2(M;; {U, (Ine)}) (a) } (68)

and for a— Owehavethat (1+U,!([n,])) — 1. Herethe Haar measure [T, s D" {U,([no])}
on the group [T, U (Nc) follows from the metric tensor group on each factor U (Nc) [3]:

Mij = Tr (Ul([na])ait

U () %V 50 () ) (6%)

D" (U, (Ina])] = [ (clt det™2[M;j (t)]), (6.9b)
(i)
where the derivatives are with respect to the group parameters {t;}; i.e.,

Uy ([N = exp(it! ([m]) ). (6.10)

The formal continuum limit a — 0 of the result, eq.(6.7), after a Fierz transformation,
leads to the following quartic fermionic action in the continuum:

| continuum [V, W] PR oo — eXp{ /d4 \lﬂlf —(wy W) (UTYyW)z_%(\FYyYSW)Z] (X)} .

. (6.11)

Here the fermion/ic effective coupling constant g2 is defined in the continuum by thee
formal limit g2 = L[T)AS%D -¢? and signaling the usual QCD dimensional transmutation
phenomenon.

After substituting eg.(6.11) into eg.(6.1) we get our proposed fermionization for quan-
tum chromodynamics in the very low-energy region with the gluon field U (N.) integrated
out for large N in the sense of Ref. [2]. We remark that by introducing the Hubbard-
Stratonovich ansatz to linearize the quartic fermion interactions, we obtain the U(1) chiral
scalar and vectorial bosonized QCD [U (e=)] meson theory which improves that considered
in [4] which was deduced by using solely phenomenological guessing arguments:
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Z[o-+Ysf, Ju+15A,] = D" [5]DF [BDF (3, IDF A ]exp(—— a8+ 52+ 52+ SR >)

><{detNC[wa—i—(0+|G)+Y5(B+IB)+yy( +id, +Y5Y“ IA#+A N} (6.12)

Note that in eq.(6.12), (6 + ivsP) and (J, + iysA,) should be identified with the U(1)
chiral scalar and vectorial low-energy physical meson fields. Let us comment that the dy-
namics for the meson fields above comes from the evaluation of the quark function determi-
nant [4]. In the limit of the heavy scalar meson mass ({(G) — oo, one can easily implement
the technique of [5] to get the full effective hadronic action in terms of 1/(G) power series
(see Chapter 18).

In the case of baryonlike field excitations of the form Q(x) = &jyi (X)yj (X) ¥ (X) it
is still posible to analyze them in our proposed framework. For this task we consider a
Hubbard-Stratonovich ansatz to write the generating functional for the baryonlike excitation
B(x): namely,

] | O [AID" (0" A, 10" vID (] exp — f iy, g (4, v} )

xexp< / B (98309] ) @ 1 [ cixron(¥] ). 613

where (p,q) ae U (N.) indices and the auxiliary fields (A,A) belong to the adjoint U (N¢)
representation.

After integrating out the gluon field A, (x) folloowing the steps leading to eq.(6.7) and
the quark field asin eq.(6.9), we get our proposed effective QCD-baryon field theory:

2B = | D 61D [A1D* 4,107 [AJ0F AIDF 1
cop (o a5+ 507100+ -+ 50100
coxp ([ TI(1)0) det{ [0 + (6168 +97 0y 168, ) D)

wcoxp{ - [ Aa'yBs )10+ (6B + 3,6, Al Hox e e (VBO) |
(6.14)

It is instructive to remark that eq.(6.14) indicates the impossibility to consider baryon
excitations in isolation from the meson excitations in our proposed bosonized effective QCD
field theory.

It is worth pointing out that strong-coupling corrections from the neglected gluon field
kinetic action in eq.(6.7) are straighforwardly implemented on the lattice by using the usual
guantum field theory perturbation theory with the external lattice gluon source coupling [2]:
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[nZ] Ju([na))Yu([no]);

) S L
: (WH> <m+l>]l[w’wﬁi :z}’ (6.15)

where [see eq.(6.7)]

@ 4
Tl = —eo (S5 3 T{(®,+3,- D)@+~ ()} ). (619
: Ne iy

The associated 1/4g? corrected fermionized QCD [U («)] effective theory will, thus,
be given by nonlocal current-quark correlation functions averaged with the leading Namu-
Jona-Lasinio quark field theory. eq.(6.11). Unfortunately, only at the limit of large mass
(see Chapter 18), it is posible to implement reliable approximate calculations useful for
nuclear physics at low evergy. Work on these applications for very low-energy nuclear
hadron dynamics will be left to the future endeavors of our readers in this subject.
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Chapter 7

A Connection between Fermionic
Strings and Quantum Gravity States
— A Loop Space Approach

7.1. Introduction

The dynamical formulation of Einstein General Relativity in terms of a new set of com-
plex SJ(2) coordinates has opened new perspectives in the general problem of quantiza-
tion of the gravitation field by non-perturbative means. The new set of dynamical vari-
ables proposed by Ashtekar are the projection of the tetrads (the so called triads) on the
three-dimensional base manifold M of our cylindrical space-time M x R added with the
four-dimensional spin connection for the left-handed spinor again restricted to the embed-
ded space-time base manifold M (the Ashtekar-Sen SU (2) connections) [1] and paralleling
successful procedure used to quantize canonically pure three-dimensional gravity [2].

The fundamental result obtained with this approach is related to the fact that it
is possible to canonically quantizes the Einstein classical action in the same way one
canonicaly quantizes others quantum fields [3]. As a consequence, the governing
Schorindger-Wheeler-Dewitt dynamical equations which emerges in such gravity gauge
field parametrization supports exactly highly non-trivial prospective explictly (regularized)
functional solutions[4].

In this chapter weintend to present in Section 7.3 aLoop Space-Path integral supporting
thefact that the formal continuum limit of a3D Ising model, a Quantum Fermionic String on
the space-time base manifold M, is a (formal operatorial) solution of the Wheeler-De Witt
equation in the above mentioned Ashtekar-Sen parametrization of the Gravitation Einstein
field. We present too a propose of ours on a Loop geometrodynamical representation for
akind of A@* third-quantized geometrodynamical field theory of Einstein Gravitation in
terms of Ashtekar-Sen gauge fields.
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7.2. ThelLoop Space Approach for Quantum Gravity

Let us start our analysis by writing the governing wave eguations in the following operato-
rial ordered form [5].

ST . {[FAAcowIA } =0; (7.2)
SA,()SAL(x) L ’ '
R S _
ClPVIA = aes { (A vIAT} =0; (72)
8 .
Q. =D {5 AL(X)M} =0; (73)

where we have considered in the usual operatorial-functiona derivative form the Hamilto-
nian,diffeomorphism and Gauss law constraints respectively implemented in a functional
space of quantum gravitational states formed by wave functions y[A] [1].

At this point we come to the usefulness of possessing linear-functional field equations
by considering explicitly functional solutions for the set eq.(7.1)-eq.(7.3).

Let ustherefore, consider the space of bosonic loops with amarked point x € M and the
associated Gauge invariant Wilson Loop defined by a given Ashtekar gauge field configu-
ration Al,(X).

W[C = Tr (PSJ@ {expi féﬁAL(X(G)dXAG)}) ; (7.4)

here the bosonic loop Cy is explicitly parametrized by a continuous (in general everywhere
non-differentiable) periodic function X, (o) = X,(c+ T) and such that X,(T) = X,(0) = x,
(seerefs.[6]-{7]).

Following refs [4], one shows that eq.(7.4) satisfies the diffeomorphism constraint,
namely

4 i i iIrSpr AS
<m [0,A, — 0vA, + " ALAT] (X)> WI[Cx]
+ F(AG9) (WS(X)W[CXXD

=2x [(9%+€"8YA (X)) W[Cx]

+ (P{RL(AX(0)- X" (OW[Cyopo }]
)
=2 *+———= |W[C«] =0; 7.5
where we have the Migdal usual derivative relation for the marked Wilson Loop — note that
the loop orientability is responsible for the minus signal on the Wilson Loop marked point
derivative [6].

—PW[Ca] = ;@,{%W[@x}} ; 76)
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If one had used the usual Smolin factor ordering as given below instead of that of
Gambini-Pullin eq.(7.1)-eq.(7.3), one could not satisfy in a straightforward way the diffeo-
morphism constraint

Fly (A(x))%W[Cxx]
= P{Fu (AX(0)) X" (0)W[C }

=P {X,(OW[Cx]} #0; (7.7)
Note that we have assumed the validity of the Lorentz dynamical equation for the loops
X,(0) (0< 0o <T)onthelast line of eq.(7.7).
Also, the Schorindger-Wheeler-De Witt equation is solved by the marked point Wilson
L oop within the same functional derivative procedure. Firstly, we note that the Smolin and
Gambini-Pullin operator ordering coincides in the realm of the Wheder-DeWitt equation.
Namely:

) 52
ijk___ ~
SAL(X)SA) (x)

_ ijk & k
_ <8, A0 FW(A(x))> W([Cx

e SW[Cy
+elf <5A;,(x) Fn (A(X))> ( SAL(X)

ik O OW([Cx
Ll <—5A$(x) F#V(A(x))> ( A

- 52
+e TR (AX) <.—-W[Cxx]
SAL(X)3AY(X)
FW[Cx] .
A, (X)3AY (X)
An important step should be implemented at this point of our analysis and related to a

loop regularization process. We propose to consider a weak form of the Wheeler-DeWitt
operatorial equation as expressed below

{FA(ACOWICA] |

N——

=0+0+0+¢&"%FX (A(X) (7.8)

A _ ©) (v \Nelikpk & _ :
ColA /M dxdy3® (x— y)e KEK (A(X)) <6A;,(x)6A¢ (y)) : (7.9)

here 8(®)(x —y) is a C*(M) regularization of the delta function on the space-time base
manifold M. Rigorously, one should consider eg.(7.9) in each local chart of M with the
usual induced volume associated to the flat metric of R*. Note that the validity of eq.(7.9)
(at least locally) comes from the supposed cylindrical topology of our (Euclidean) space-
time.
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Proceeding as usual one gets the following result
Clo) [AW[Cx

_ /M dx /M dySe) (X~ Y) { f% 5(x— X (0))dXH () 74 5(y— X (0'))dX"(c)

C
x Trgy(2)P {Fykv (A(X(0)))e' "W [Cx (o) (0")]
MW [Cy (1) ()M W [Cx(0)x(T)] } }

_ ]{ f 3e)(X(0) — X(0))dX*(c)dX" (o)
Cxx ¥/ Cxx
X Tra o) P{ FiS (A(X(6)))e MW [Cx o )]

}\‘jW[CX(c/)X(G)]}“iW[CX(G)X(T)]} =0; (7.10)

As a conseguence, one should expect that the cut-off removing € — 0 will not be a
difficult technical problem in the case of everywhere salf-intersecting Brownian loops Cyy
[7]. Note that in the case of trivial self-intersections o = o’, the validity of eq.(7.10) comes
directly from the fact that dX*(c)dX" (o) isasymmetric tensor on the spatial indexes (u, v)
and F,y(A(X(0)) is an antisymmetric tensor with respect to these same indexes. In the
general case of smooth paths with non-trivial self-intersection [1], one should makes the
loop restrictive hypothesis of the (1, v) symmetry of the complete bosonic loop space ob-
ject 8¢y (X (o) — X(0'))dXH(c)dX"(c’) [8,9], otherwise we can not obvioudly satisfy the
Whed er-DeWitt equation — a common non-trivia fact in the Literature of Wilson Loop as
formal quantum states defined by smooth C* — differentiable paths! [1].

At this point we remark that all the governing equations of the theory eq(7.1)-eq(7.3)
are linear. As a consequence one can sum up over al closed Brownian loops Cy (With a
fixed back-ground metric) in the following way (see second ref. on [6]).

/ & / dT/ DF X, (0)]e™ 2 /o (%u(0)*dowy[C]
o (7.119)

where one can see naturally the appearance of the functional determinant of Gauged-Klein-
Gordon operator as aresult of thisloop sum.

At this point we introduce Fermionic Loops — an alternative procedure —, which do
not have non-trivia spatial self-intersections on R — and representing now closed path —
trajectories of U (2) Fermionic particles on the Wilson Loop eq.(7.4) [8].

Here the Fermionic closed loop CF, is described by a fermionic (Grassmanian) vector
poistion X}EF)(G, 0) = X,(0) +i6y, (o), with X,(c) the ordinary periodic (bosonic) position
coordinate and y, (o) Grassman variables associated to intrinsic spin loop coordinates. The
Fermionic Gauge-Invariant Wilson Loop is given as (see section 1.3, chapter 1).

WX (6,0)] = Trey 2 {P [exp (/OT dc/deA,,(xf)(G, 0)) (% + i9%> XF (o,e)ﬂ } :

(7.11b)



A Connection between Fermionic Strings and Quantum Gravity States... 125

we get as aresult the following expression:

Cio) [AWIC]

- j[ dodo ?é do'd0/DX., (o, 6/)DX, (0,0) ()5 (X! (0,6) — X! (', 6)))8(0 — )
3 3

x Tray )P {Fly (AXT(6,6)) )W |CF (o1
Aw [C)Iz(c’)x(c)} MW [C)E(G)X(T)] b (7.11¢)

By proceeding analogously as in the bosonic loop case eg.(7.11a), we obtain as a (for-
mal) operatorial quantum state of Gravity, the functional determinant of the Dirac Operator
on M (with afixed back-ground metric associated to the embedding of M on R*! which is
not relevant in our study!) as another formal Einstein gravitation quantum state to be used
in the analysis which follows [11], an important result by itself.

Q[A,(x)] = (det[D(A) P*(A)] ; (7.12)

We note that the others constraints eq.(7.2)-eq.(7.3) are satisfied in a straightforward
manner in the same way one verifies them for the Bosonic Loop case [(eq.(7.5)-eq.(7.6))
and note the explicitly gauge invariance of the Fermionic Wilson Loop [8]].

Let us present our proposed Loop Space argument that one can obtain the continuum
version of Ising models on M from the quantum gravity state 3D fermionic determinant
eq.(7.12).

In order to seethisformal connection let usconsider an ensemble of continuous surfaces
> on M and the restriction of the Ashtekar-Sen SJ (2) connection to each surface . Since
the Ashtekar-Sen connection is the M-restriction of the four-dimensional left-handed spin
connection, one can see that the Z-restricted quantum gravity state can be re-written as a
fermionic path-integral of covariant two-dimensional fermions now defined on the surface
2, namely (see section 7.2)

<z<“> [AL]) — exp (ﬁz[AL(X)])
- / d(®)[2(€,0)]d" [y (€,0)]
X exXp (— ! /d&dc (ﬂgabaaz“abfﬂ)(iaﬁ)»

2mo/

<ep (5 [ dedo (vau? (i) €.0)) (.13

Themain point of our argument on the connection of the string theory eq.(7.13) and the
Ising model on M is basicaly related to the fact that the two-dimensional spin connection on
the 2D-fermionic action eq.(7.13) is exactly given by therestriction of the four-dimensional
spin connection to the surface X or —in an equivaently geometrical way — the restriction of
the three-dimensional Ashtekar-Sen connection to the surface X!.

Let us now give a Loop Space argument that the string theory eq.(7.13) repre-
sents a 3D Ising model at a formal replica limit on the geometrical fermionic degrees
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(ul” W cnen. This can easily be seen by integrating out these geometrical fermion
fields, writing the resulting surface two-dimensional determinant in terms of closed loops
{CL(t),L =1,2;C_(t) € £} on the string world-sheet X by using the replica limit together
with a surface proper-time representation for 2D fermion determinant [9]

_ (ZNA]-1 ~
lim —N = (det[Vg]

N—O

=Y [Tfsu(z)exp <i /CLwL(CL)dCLﬂ ; (7.14)

{CL®}

At this point one verifies that the Wilson Loop on the string surface as given by eq.(7.14)
and defined by the two-dimensional spin connection m_ coincides with the Ising model sign
factor of Sedrakyan and Kavalov [9] which is expected to underlying the continuum string
representation of the partition functional of the three-dimensional Ising model on aregular
lattice in R® at the critical point, namely

Zising|[B — Berit] =

BEET”{(COShB)N » {exp {A(f)ln(@)”@[@(i)]} ; (7.15)

(Z)cz3

where the sum in the above written equation is defined over the set of all closed two-
dimensional lattice surfaces SCZ3 with a weight given by the (lattice) area of =; N is the
number of the plaguettes, B = J/KT denotes the ratio of the Ising hope parameter and the
temperature. The presence of the Ising wheight ®[C(Z)] inside the partition functional ex-
pression eq.(7.15) is the well-known sign factor defined on the manifold of the lines of
self-intersection C( ) appearing on the surface > with the explicitly Polyakov-Sedrakyan-
Kavalov expression ®[C(Z)] = exp{inlength[C(Z)]}.

As a consequence of the above made remarks, one can see that at the replica limit
of N — 0 eq.(7.14) should be expected to coincide at the critical point of the partition
functional eq.(7.15), since the phase factor inside eg.(7.14) is the continuum version of the
Ising model factor ®[C(X)] [9].

This compl etes the exposition of our Loop Space argument that critical 1sing models on
M may be relevant quantum states to understand the new physics of quantum gravity when
parametrized by the Gauge field-like connections of Ashtekar-Sen.

All the above made analysis would be amathematical rigorous proof if one had amath-
ematical result that Fermionic Loops (Grassmanian Wiener Tragjectories) do not have non-
trivial space-time self-intersections on eq.(7.11c) (see next chapter 8 and chapter 9).

On the other hand this formal mathematical fact about the nonexistence of non-trivial
self-intersection fermionic paths that leads naturaly to the triviality of the Thirring model
(a“r@* — Fermion Field Theory!) in space-times with dimension greater than 2 (see
chapter 4). Finally, let us comment that it is expected that the Ashtekar-Sen connections
defining the above studied quantum gravity states are distributional objectswith afunctional
measure given by ac-model like path integral with ascalar intrinsic field E(x,t) on M x R,
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the geometrodynamical anologous of the o-dimensional manifold particle covariant Brink-
Howe-Polyakov path integral, namely

dulAg] = [T TT|dApxdE(xD))]

1 e
——— [ dt [ d*(E(x,t))"*
xexp{ o L ot [ dxEXD)

[(gnrmio) )

X exp{—y/()mdt/'\‘/I d3xE(x,t)} : (7.16)

where the invariant metric on the Wheeler-DeWitt super space of Ashtekar-Sen connections
is given explicity by

WA = (b(A)) (12" - 12)(A) ; (747

with
JR(A) = %s“o“’F(j‘p(A) : (7.18)

and
b(A) = det(J(A)*); (7.19)

Work on the averaged, Wilson Loop eq.(7.4) with the functional path space measure
€g.(7.16) — expected to be relevant to analyze the matter interaction with Quantum Gravity
is presented in next section.

7.3. TheWheeler - De Witt Geometrodynamical Propagator
The starting point in Whed er-De Witt Geometrodynamics is the Probability Amplitude for
metrics propagation in acylindrical Space Time R® x [0, T], the so called Wheeler Universe

ouT

d.“[huv] eXp[_S(hyv)] (7.20)

3 IN.3,0UT ’g
G'g™ g™ | = /39,N
where the integration over the four metrics Functional Space on the cylinder R® x [0, T]
is implemented with the Boundary conditions that the metric field h,,(x,t) induces on
the Cylinder Boundaries the Classically Observed metrics 3g'N(x) and 3g%VT(x) re-
spectivelly. The Covariant Functional measure averaged with the Einstein S(h,,) =
Jrex (o) @%xdt(,/GR(g)) is given explicitly inref.4.

Unfortunatelly the use of eq.(7.20) in terms of metrics variables is difficulted by the
“Conformal Factor Problem” in the Euclidean Framework. In order to overcome such diffi-
culty | follow section 7.2 by using from the begining, the Astekar Variables to describe the
Gometrodynamical Propagation.
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Let me thus, consider Einstein Gravitation Theory Parametrized by the SU (2) Three-
Dimensional Astekar - Sen connection A%(x,t) associated to the Projected Spin Connection
on the Space - Time Three - Dimensional Boundaries.

_ 1, 4
AN () = —i0f*(x,0) + Seg o}l (x.0) (7.21)

_ 1, 4
AT (X) = —iofP(x.T) + Segoy (. T) (7.22)

An appropriate action on the Functional Space of Astekar-Sen connections is proposed
by mysdlf to be given explicitly by a slight modification of that proposed in chapter 1. My
proposed action is given by a covariant 6-model like Path Integral with a scalar intrinsic
field E(x,t) on R® x [0, T]. Here % denotes ascalar “mass’ parameter which my be vanish-
ing (massless Wheeler-Universes).

SelAR(x 1), E(x)] = ﬁ/; dt/%sd3x(E(x,t))‘1

0 0 T
K&Aa") G*avb[p| <§> Ab.V} + 1 /0 dt /Ra d3xE(x,t), (7.23)

where the invariant metric on the Wheeler-de Witt superspace of Astekar connections is
given by

G'YPIA] = (b(A)) (TP — I 32) (A, (7.24)
with 1
YA(A) =5 € R (A) (7.25)
and
b(A) = det(J(A))a- (7.26)

My proposed quantum geometrodynamical propagator will be given now by the follow-
ing formal path integral:

AR T)=ATT(x)

GIAN, AUT] :/ d'NV (AR(x,1))

A2(x,0)=A3(x,0)= AE,I Nix)

/< I1 (dE(X,t))> exp(—Se (AL E]) (7.27)

(xt)eREX[0,T]

where the invariant functional measure over the Astekar-Sen connections is given by the
invariant functional metric

Ao = [ o, ST A5 ). (7.2
XY,

In order to show that the geometrodynamical propagator equation (7.27) satisfies the
Whedler-de Witt equation, | follow our procedure to deduce the functional wave equations
from geometrical path integrals by exploiting the effective functional trandation invariance
on the functional space of the scalar intrinsic metrics (E(x,t)) at the boundary t — O
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(chapter 9). As a consequence, we have that the propagator equation (7.27) satisfies the
Wheeler-de Witt equation with the “mass’ parameter 1.

82
FC A|N G AIN;AOUT —
Cabc ,uv( )(X)SAﬁ'IN(X)SAS’IN(X) ( )
= —PG(AN; AVT) 4 5 (AN — ADUT), (7.29)

where we have used the Enclidean commutation relation

[(Gﬂa;bw . <§ Av~b>> <Xﬁt>:Ay,a<%,t)] =83 (x—x). (7.30)

It is instructive to remark that the classical canonical momentum written in eq. (7.30)
is given by the Schrodinger functional representation in the euclidean quantum-mechanical

equation (7.29)

T"3(x) = _5 (7.31)

3AL™ ()

It isworth pointing out that the usual covariant Polyakov path integral for Klein-Gordon
particles may be considered asthe O-dimensional reduction of the geometrodynamical prop-
agator equation (7.27).

At this point we remark that by fixing the gauge E(x,t) = ;% with u? the“mass’ param-
eter, we arrive at the analogous proper-time Schwinger representation for this geometrody-
namical quantum gravity propagator

Ge[AIN, AUT] — /0 " dte B0 « / d'V (A%) exp(— A (x,1))). (7.32)

where E = (E,1?) x vol (R®) is the renormalized mass parameter in the Schwinger Proper-
Time representation.

In the next we will use the proper-time-dependent propagator given below as usualy is
done in the Symanzik’s loop space approach for quantum field theories (chapter 1) to write
athird-quantized theory for gravitation Einstein theory in terms of Astekar-Sen variables.

a _ Aa0uUT
G[AN, AT 71 = //-\H(X.T)—Aﬂ
AR(x0)=A"™ (x)

X exp{—mniG /0 "t /Ra K%Aa#> x GHaVB[A] x (%Av,bﬂ (x,t)}. (7.33)

Unfortunatelly exactly solutions for eq.(7.29) with 1 # 0 or eq.(7.14) were not found
yet. However its o-like structure and (SUJ (2) Gauge Invariance may afford to truncated
aproximate solutions as usually done for the Wheeler-De Witt equations by means of the
Mini-Super Space Ansatz. Finally let me comment on the introduction of a Quantized
Matter Field represented by a massless field ¢(x,t) on the Space Time.

By considering the effect of the introduction of this quantized field as a flucturation
on the Geometrodynamical Propagator eg.(7.27) one should consider the following func-
tional representing the interaction of this massless quantized matter and the Astekar-Sen

'™V (A%) x
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connection as one can easily see by making E(x,t) variations

SinT A% E, ¢] = /dt/ a3 H ( ( §t>> }(x,t)+
+ ((p [ay (%G""*"b" A gAup X GHOAV[A] - %Aq,> av] (p> (x,t)} (7.34)

Now the effect on integrating at the scalar matter field in eq.(7.33) is the appearence of the
further effective action to be added on the o-like action of our Proposed Geometrodynami-
cal Propagator.

SFIALE,T] = 2<detp{ E?t <E§t> +9, ( Ga“bF[A]gtAp xG‘éS[A]%AGy> av}
(7.35)
The coupling with (Weyl) Fermionic Matter is straight forward and leading to the L eft-
Handed Fermionic Functional determinant in the presence of the Astekar-Sen connection
A2(x,1).
g The joint probability for the masdess field propagator in the presence of a fluctuating
geometry parametrized by the Astekar-Sen connection is given by

P (x, +o0)=AZVT
GIAN,AXT (00, o0 ) = [

Aa(x,—o0)=AF"N
1 [t 3

@(p{ 167G dt/ d>xx
w (2 (an,) @A (LA ) () +u2/+wdt/ BRE(x.t) b x

E(x,t) = \ot °* ot " ’ ’

1| 0 0 1 0

-5 _Y v au,bp ,uG

x det 2[ ot (Eat>+a“<EG A5 < Gav[A] atatA"”>aV}
d d tee 3,43

% )I(It —0 SJ(Xl,tl) 8J(X2,t2 { / dtdt / d*d yx

EJNabee™™? ( GHOP '5 Ay x GVO'P ”g Ay x GPY'P ”’g Ay, w) } (x,t)x

{
[ ( ) (Ga"bp[ |5 A0 GavatAG,u> }_1((x,t),(y,t))><
{

A"V (A% x

b//a b// ua

/1 /// a
EINapce*? (Ga“ s G™vbe priad  GPEP A w) (y,t’)} (7.36)

7.4. A A* Geometrodynamical Field Theory for Quantum
Gravity

Let me start the analysis by considering the generating functional of the following ge-
ometrodynamical field path integral as the simplest generalization for quantum gravity of a
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similar well-defined quantum field theory path integral of strings and particles [6]

23(2)) = [ OF (olA)) x

. 2
X exp [— / dv(A)O[A] x ( / d3x | Eape F&(A)%) (x)) ¢[A]} x
cop{ 2. [ ity [ av(AVA) GZHAR] @AY x5 (4,00~ A0 |
x exp{— / dv(A)J(A)q)[A]}. (7.37)

The notation is as follows. i) The quantum gravity third-quantized field is given by
a functional ¢[A] defined over the space of al Astekar-Sen connections configurations
M = {A%(x);x € R3}. The sum over the functional space M is defined by the gauge and
diffeomorphism invariant and topological non-trivial path integral of a Chern-Simons field
theory on the Astekar-Sen connections

dv(A) :/ (H dAﬁ(x)) ><@(p{—/de’x(A/\dA%—gA/\A/\A)(x)}. (7.38)

XER3

ii) The third quantized functional measure in eq. (7.37) is given formally by the usua
Feynman product measure
DF (o[A]) = [T do[Al. (7.39)
AeM
iii) The A¢*-like interaction vertex is given by a self-avoiding geometrodynamical interac-
tion among the Astekar-Sen field configurations in the extrinsic space R®

3
Ay 8P (AR(x) — Ad(y)). (7.40)
a=1

The proposed interaction vertex was defined in such away that it allows the replacement

of the Four Universe interaction in eq.(7.37) by an independent interaction of each Astekar-
Sen connection with an extrinsic triplet of Gaussian stochastic field W2(x) followed by an
average over W2. A similar procedure is well known in the many-body and many-random
surface path integral quantum field theory. So, we can write eq.(7.37) in the following form

2] = { 0 01a) xexp{ - [ av(ay [0l LA)-
—in /d3x (iw%«m) >¢[A] +J(A)¢[A]” > . (7.41)
a=1

w

Here, W2(A?) means the external a-component of the triplet of the external stochastic
field {W?} projected on the Astekar-Sen connection {A7}, namely

W2(A%) = WA(AT(X), A5(x), A3(X)), (7.42)
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and has the white-noise stochastic correlation function
(WREWP(Y")) = 83) (¢ — )52, (7.43)

The L(A) operator on the functional space of the universe field is the Wheeler-de Witt
operator defining the quadratic action in eq. (7.41).

In the free case A = 0. The third-quantized gravitation path integral equation (7.37)is
exactly soluble with the following generating functional :

— 2 -1
z[;[(é]%)] = exp {+% / dv(A)dv(A)J(A) ( / d3X €ane F&(N%) (AA)I(A)

(7.44)
Here the functiona inverse of the Whed er-de Witt operator is given explicitly by the
geometrodynamical propagator equation (7.32) withE =0

2 -1 _ w0 _
( / d3x €ape F&(A)6A§6Ab> (AA) = /O dTG[A A T]. (7.45)
w Vv

In order to reformulate the third-quantized gravitation field theory asadynamics of self-
avoiding geometrodynamical propagators, we evaluate formally the Gaussian ¢[A] func-
tional path integral in eq.(7.37) with the following result

2

3
Z[3(A)] = <det% /R X Eare F:V(A)SAE—W Fik (lea(Aa(x))>

X
1 — 3 . 52
X exp{—ké/dv(A)dv(A) x J(A) /Rad X Eahc FW(A)SAa—SAe—F
3 -1 '
i\ < D wa(Af;(x))> (AA) x J(A‘)}> (7.46)
a=1

Let us follow our previous studies implemented for particles and strings in previous
chapters by defining the functional determinant of the Wheeler-de Witt operator by the
proper-time technique

1
—Elogdet

. 3 3 aspa
L(A)+|k/R3d X<§1W (Ay(x))>] =
_ /()*”d% {/dv(A)dv(A_\)S(F)(A—A_\) x

T <L(A) +ird®x ( §3}W""(A2(X))> >
a=1

X <A\ exp

\/I> } . (7.47)
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with the geometrodynamical propagator (see eq.(7.33) in the presence of the extrinsic po-
tential {W2(x)} which is given explicitly by the path integral below
|x> -

<A|@(p m/ d®x <2Wa (A(x )
_ [ 4NV [Ra 1 3
_/d [B#(x,t)]exp{ 167G /o dt de X

K ;t Ba#> x G*VP[B (%Bm)] (x,t)} X
X exp [—ix/; thad3x<§i:1Wa(Bﬁ(x,t))>]]. (7.48)

By substituting eq.(7.48) and eq.(7.47) into eq.(7.46) and making a loop expansion of
the functional determinant, we obtain eq.(7.37) as atheory of an ensemble of geometrody-
namical propagators interacting with the extrinsic Gaussian stochastic field {W?2(x)}. The
Gaussian average (), may be straightforwardly evaluated at each loop expansion produc-
ing the sdlf-avoiding interaction among the geometrodynamical propagators (the Wheeler
gquantum universes) and leading to the picture of joining and splitting of these Wheeler Uni-
verses as necessary for the description of the Universe in its Space-Time Third Quantized
form picture of Wheeler. For instance, by neglecting the functional determinant in eq.(7.46)
we have the following expression for the geometrodynamical third quantized propagator:

(@[AM@(AzUT))®

/ de/Baxo B AV B)x

“al i o n)emen (Ge) )
xexp{—% /O dt /0 at /R 3d3xd3y<2116(3>(82(x,t)—(Bf}(y,t’))))}. (7.49)

Next corrections will involve self-avoiding interactions among differents Wheeler Uni-
verses associated to different Astekar-Sen connections associated to different Geometro-
dynamical Propagators appearing from the functional determinant loop expansion equation
(7.47).

Finaly, I comment that cal culations will be done sucessfully only if oneisableto handle
correctly the Gometrodynamical Propagator eq.(7.33) on eq.(7.36) and, thus, proceed to
generalized for this Quantum gravity case the analogous framework used in the Theory of
Random Lines and Surfaces.

Appendix A

In this short appendix we call the reader attention that there are (formal) states satisfying the
Wheedler-DeWitt equation (7.1), the diffeomorphism constraint eq.(7.2), but not the gauge-
invariant Gauss law eq.(7.3).



134 Luiz C.L. Botelho

For instance, the non-gauge invariant “ mass term” wave functional below

MIA] = @(p{—% /M d3xAj,(5‘15115fN)A$}; (A1)
satifies the Whedler-DeWitt equation, since
. &2
ijkek v ~ellke Y 0
<£ Fa(A)(X) SAL(X)S A (y)M[A]) el (- )=0; (A2)
and the diffeomorphism constraint
5 i _ X
SAL (Y (FW(AMIA]) = GM[A]
+FLAM[A (--Aj(x)> 83w
=0— %A;(x) ‘Fu(A) =0; (A3)

At this point and closely related to the above made remark it is worth call the reader
attention that the 3D-fermionic functional determinant with a mass term gtill satisfies the
Whedler-DeWitt and the diffeomorhism constraint. However, at the limit of large mass
m — oo, ONe can see the appearance of acomplete cut-off dependent massterm like eg.(Al),
added with Chern-Simon terms and higher order terms of the strenght field F,g(A(x)) inthe
full quantum state [12]. Asaresult one can argue that this“fermion classical limit” of large
mass may be equivalent to the appearance of a dynamical cosmological constant, if one
neglects the gauge-violating quantum induced mass term [1].
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Chapter 8

A Fermionic Loop Wave Equation
for Quantum Chromodynamics at
NC — oo

8.1. Introduction

In last decades new quantization of Yang-Mills gauge fields has been pursued by severa
authors, which seems appropriate for handling its confining phase.lt makes use of the so-
called “quantum Wilson loop” as dynamical variable (see ref. [1] for an extensive review)
which has the meaning of being the probability amplitude of a bosonic (Klein-Gordon)
colored particle propagating along a closed world line X,(s) and in the presence of the
vacuum of a pure gauge theory.

A closed wave equation for this dynamical variable at the 't Hooft topological limit was
derived: the Migdal-Makeenko equation [1,2] which supports astring solution (see Chapter
9).

In this chapter, we consider the case that the above particle possesses Dirac spin degrees
by making use of the pseudo-classical mechanics formalism as exposed in ref. [4].

8.2. TheFermionic Loop Wave Equation

The basic dynamical variable in the loop space formulation for euclidean (QCD)y, at
. = +eo is the amplitude for a quark loop propagating in the vacuum of a pure Yang-
Mills. At this point our ideais implemented. Since the quark possesses Dirac spin degrees
of freedom, its (euclidean) world line should reveals the existence of these fermionic de-
grees. A natura framework to implement this idea is pseudo-classica mechanics [4-6]
where the world line of a spinning particle is described by a fermionic vector position
XlEF)(s,e) = XfSB)(s) +i0y,(s) with s being the evolution parameter, XlEB)(s) the ordinary
(bosonic) position coordinate and ,,(S) are Grassman variables associated to the spin co-

ordinates.
In this framework, the quark loop amplitude associated to a given spinning closed world

®)(1) = X € RP} in the presence of the vacuum

line {X,EF)(S,G); 0<s<1 X,SB)(O) =Xy
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of apureU (N) Yang-Mills gauge theory is proportional to the following dynamical factor
(the fermionic version of the usua (bosonic) Wilson Loop) (see eg. (25) inref. [4]):

W(F>[X,EF>(s,e)]:< { [@(p(/ ds/deAﬂ )(5,0)DX (s, )>]}> (8.1)

where A,(x) denotes the usual U (N) Yang-Mills potential, P the path ordering of the
U(N) matrix indices of the exponent in (8.1) along the bosonic path X.®'(s) and D =
0/00 +100/9s the covariant derivative. The quantum average () is defined by the parti-
tion functional of the pure Yang-Mills theory (see Chapter 1).

An important remark to be used below is that (8.1) possesses the fermionic mixing
symmetry [4]

SX\B(s) =iewu(s), Sw,(s) =eX\P(s), (82)

with € agrassmanian spinor parameter.

We note that by realizing the 6-integration in the phase in (8.1) we get in addition to the
usual term [FdsA, (X (s))dX(®)(s)), aterm responsible for the interaction between the
spin degrees and the field strength, namely: L iy, y)+ (S)Fuw(X\(9)).

In order to deduce aclosed functional for the fermionic Wilson Loop (8.1) we shift the
A, (x)-variable and get the result [2]

_ / do / 465 () (5,0) fx)DXV(0,6)<Tr{P exp(/o %ds deAy(x;F>(s,e))Dx;F)(&e)) }>

(ol ef it et )}

Now we note the crucia fact that we have here avery irregular path X}SB) (s) which in-
terceptsitself at every point [ 7] and, further, ensures the gauge invariance of each fermionic
Wu-Yang factor on the right-hand side eq.(8.3). As a consequence of this remark, the rela-
tion (8.3) takes aclosed form at the 't Hooft limit Ne — oo (limy, ... g?N = A?) (see Chapter
4).

ZgiN <Tr {P {(DuFuv)(x) exp (/o1 doA (X" (5,0)DX (s, e))

(TH{P{(DuF) WX (5.0);0 < s < 1]}})
= Zszold"/ d03® (% (5,0) — X)X (5,0) (WX (5,6);0 < s < o) (w(X" (5,0);6 < s < 1)),
(8.4)

where we have introduced a more compact notation for the fermionic Wu-Yang factorsin
€g.(8.3)

w[X£F><s,e>;clssgcz]=P[exp(/ “ds [ do, (%" (0))DX" ><s,e>)]. (85)

At this point of the analysis it is convenient to multiply both sides of eq.(8.4) by the
fermionic current density j,(x) = 8® (x— X\ (&,8)DX,(5,8) and integrate out the result
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in relation to the space-time variable x. So we get
(TH{P{(DuFm) (X7 (8,8)uXi™ (5,00 < s < 1}
_ /0 "do / d05® (xF)(6,0) - X7 (5,8)) DX (5,0) DX (5, )
x (X4 (5,0);0 < s< o)) w[Xi (s.0);0 <s<1)). (86)

In order to write the left-hand side of relation (8.6) in aform similar to the usual string
equations, we note the relations

STr(w[X <><se> o<s<c1>/6><u (G f)
= Tr{P{Fu (X" (8,8))DX (8,8)w[xi™ (5.6);0 < s < ol}}, (87)

and consegquently (compare with the similar bosonic relation in Chapter 9:

2 Tr(w[x\™ (s.0);0 < s< 1))/2x7) (5,8)

~im [ Ca > TrwX (5,0);0 < < 1)
cole e iexe-que T T

= Tr{P{(DuFu) (X" (5,8)) D7 (3, 8)wX." (5.0):0 < s < 1)}}. ©8)

So we can rewrite eq.(8.6) in the form
W) [x()(s.0),0 < s < 1]/9X2(5,)

2"/01"" [ 408 (%7 (,0) - % (5,8) DX (0,0)D%7 DX (5. 6)
x WX (50),0 < s < o] WO X, (5,6);0 <5< 1) (8.9)

Thisis the proposed fermionic loop wave equation for QCD at N = +-co.
Note theinitial condition imposed on the solutions of eq.(8.9) and related to the asymp-
totic freedom of QCD

W x{F(s,0) = 0] = 1. (8.10)

Since our equation is deduced formally, the important problem of its regularization and
renormalization shows up. At first, we note that in loop dynamics the paths X,EB) (s) arevery
irregular geometric objects in euclidean space, so al Feynman diagrammatic perturbative
analyses break down [8]. A probable useful scheme should betheintroduction of itsdiscrete
version, as in ref. [9], and the continuous limit is taken together with other kinematical
factors [4].

Ancther more interesting point of view is to solve formally egs.(8.9), (8.10) in terms
of the functional integral of a string theory (see Chapter 9). Due to the fermionic mixing
symmetry (8.2) of the fermionic Wilson Loop (8.1), it appears naturally to consider as a
string ansatz afermionic string [10, 11] with al of its good spectral features (Chapter 16).

To summarize, we propose afermionic loop wave function for QCD at N, = 0 which
supports hope for the existence of a QCD fermionic string ansatz (restricted to its bosonic
sector asin Chapter 16).
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Chapter 9

String Wave Equationsin Polyakov’s
Path Integral Framework

9.1. Introduction

In the Feynman path integral formulation for (first) quantization of a physical system,* the
central object is the transition amplitude for the system evolution from a prescribed initial
state to a prescribed fina state. Its explicit expression is given by the continuous sum
over al system trgjectories connecting these states and weighted by the classical system
action. This quantization procedure does not rely on the conventional operator Heisenberg-
Schrodinger formulation of quantum mechanics. However, for most of the physical systems
analyzed up to the present time, the formal equivalence between these two aternatives is
implemented by showing that the above-mentioned Feynman transition amplitude satisfies
the associated wave equation obtained from the operator approach.

The purpose of this chapter is to describe a smple procedure for writing string wave
equations directly from the Feynman path integral for the covariant bosonic and fermionic
string transition amplitude presented by Polyakov some years ago.? In Sec. 9.2 we present
our ideas in the smple case of covariant particle dynamics. The reason for writing wave
equations in the Polyakov path integral is that it may shed some light on the role of the
Liouville conformal freedom degree in the string quantization below the critical dimension.
Thisstudy is presented in Sec. 9.3. Another more important motivation is that the quantum
chromodynamic [SJ (=) (bosonic) contour average satisfies a closed stringlike evolution
equation.® With a general procedure for writing string wave equations directly from the
string path integral, the search for its (string) solutions becomes a simple and transparent
task. Thisanalysisis presented in Sec. 9.4. Finally in Sec. 9.5 we deduce akind of Dirac-
Ramond-Marshall string wave equation by extending the bosonic path integral formalism
to the fermionic case.

9.2. TheWave Equation in Covariant Particle Dynamics

In the covariant description of a relativistic bosonic particle® the particle trajectory is
described by two degrees of freedom: the usual vector position X,((), with 0 < { < 1,
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and an additiona one-dimensional metric e({). Theparameter { describes the evolution of
the system and the particle trgjectory X,({) does not change its orientation in space-time
[Xu(§) # Xu(§). & # €] (see Ref. 1),

The covariant classical action for this particle, moving under the influence of an external
potential V (x), is given by

2
Q0] = [ (7 G reOV@]). (@)

where n¥ is the particle mass.

Following Feynman, the transition amplitude for which a particle initial state (X", e")
propagates to afinal state (X, e™") is given explicitly by the path integral:

G[(Xout out) (Xm eln)]

/ X,(0) = Xin du[Xu(C)]/ &(0) = &" dule(?)]
(Xu(l) = Xﬁ”‘) (e(l) = e°m>

x exp{—SX,(8),V (¥)]}- (9.2)

Here the covariant Feynman measures du[e({)] and du[X, ()] are, respectively, defined
as the volume element of the covariant functional metrics

o6 = [ (e eyt

and 1
| o0 ®%,-5%,).

It is possible to evauate explicitly the above transition amplitude in the proper-time
gauge e(£) = const, thus producing the (Euclidean) Green's function of the Klein-Gordon
operator in the presence of the external potential V (x).

An alternative way to obtain the above result is by closely following Feynman,! and by
considering the identity that results by making varitions of the intrinsic metric at the end-
point trajectory. Since a gauge exists where e({) can be fixed as the trajectory proper-time
parameter, we expect that thisidentiy should produce a covariant wave equation that (in the
proper time gauge) reduces to the usual Klein-Gordon equation (see the Appendix of Ref.
1).

As a conseguence of the invariance under functional trandlations of the functional mea-
sure du(e(£)], we show that the following relation holds true:

0= ( XII’]) X (C)] /( e(0) = epn) dule(t)]

— xou e(1) = et
><@<|0{—S[XH(C), (9]} (9.3)
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By considering the boundary €—> 0 in eg.(9.3) we show that transition amplitude,
€0.(9.2), satisfies the identity

/(xm _ x;,n) dulX, ()] /( o0) = én) dule(0)) exp{SXu(O).V ()]}

X,(1) = XOU e(1) = et
Jim ((1;[@)2 -3 mz—v<x,,<i>>> (9.4)

where ], () = X.(£)/e(C) denotes the classical canonical momentum of the covariant par-
ticle.

In order to translate the path integral constraint equation (9.4) into an operator state-
ment, we have to use the covariant Heisenberg commutation relation

1% ()] = ~li/e@)8(C ~ 08 (i = v~1),

u
which in the Schrodinger representation is given explicitly by
)

|
O =-27

1 &(C) 8%(%)

After fixing the particle proper-time gauge [since eq.(9.4) isinvariant under the group of

the trgjectories reparametrization] and taking into account that the particle trajectory does

not self-intersect in“time” [X,(8) # X, ({') if {# '], wefinally, obtain that eq.(9.4) reduces
to the Klein-Gordon wave equation in the presence of the external potential V (x), namely

(—Dxm + % m? —V(xi”)> G(X: XM = 0. (9.5)

It is instructive to point out that by considering functional variations of the functional
metric dmu[X,({)] we obtain constraints without dynamical content that are associated to
the invariance of the theory under the action of the space-time translation Poincaré group.

9.3. The Wave Equation in the Covariant Bosonic String Dy-
namics

The basic object in the Polyakov approach?® for the string covariant quantization (in the
trivial topological sector) isthat the following transition amplitude for aninitia string state

C"={(X!"(0,e"(0)); 0< o<1}

propagates to afinal string state [C*' = {(X"(5),e™(0))}]

Gie™, %) = [ chlguulg,Je”o00 %) 9
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where the covariant string action is given by

0(00,) = [ (5 VBI"020/000"+ 465 (0. 0)do ©7

The string surface parameter domain is taken to be the rectangle D = {(5,(),0 < 0 <
1,0 < { < T}. Thefunctional measures du[gap| and du(d,| are defined over all cylindrical
guantum surfaces without holes and handles having as a boundary the string end config-
urations {C'";C}; i.e., ¢,(0,0) = X"(0) and ¢,(0,T) = X™(c). The intrinsic metric
{gap(0,8)} (which, roughly, plays the role of the covariant string proper-time parameter)
can be chosen to satisfy the conformal gauge

an(0,8) = exp B(0,8)dan

and the initial end-point boundary condition €"(c) = exp(B(c,0)).

At this point afundamental difference appears between the string and particle case (see
9.1). Inthe last case it is always possible to fix the proper-time gauge e({) = const = 1,
where the intrinsic metric decouples from the dynamical description of the theory. This
result reveals itsdlf in the form of the associated wave equation [eq.(9.5), Sec. 9.2], where
it does not have any functional dependence on the intrinsic metric. This decoupling phe-
nomenon will not happen in the string case due to the conformal anomaly of the theory?®
unlessit is canceled. Further, the associated string wave equation will depend on the intrin-
sic Liouville field at the boundary B(c,0) = B'"(c), as we will show explicitly below.

Let us now proceed as in the particle case by considering the following identity related
to the integrand invariance under trandations in the conformal factor (o, ) functional

space [gan(0, £) = exp(B(o, £)3av}] in the string propagator eq(9.6):

o0 exp{ L@/(%(faamhéuéeﬂ}

5 8
i _B(G7C)
where
F (00 Gao) = | 0ul0,] (-~ 1o(0y,Ga) ©9

denotes the pure string vector position term in eg.(9.6).

Itisworthwhile to remark that this procedure for deducing adynamical (wave) equation
is the two-dimensiona analog of that used to write the Wheder-De Witt equation four-
dimensional quantum gravity from the path integral expression for the universe propagator.®

The variation associated to the Faddeev-Popov term is given by

[osevlen{ - 2= [ (G087 50 )

x (o, C)dch}% (R(E) +12) (5, 0)F (44, Gab), (9.10)
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where R(eb) = — (e PAB)(o,{) denotes the scalar of curvature associated to the metric
9ab(0,C) = exp(B(0,C))dap -

The §/5p(5, ) functional derivative of the term F (¢, gap = €*3ap) is more subtle since
the covariant functional measure du[¢,] [see Eq. (9) of Ref. 2] depends in anontrivial way
on the conformal factor (o, ) as a consequence of its definition as the functional volume
element associated to the covariant functional metric

3wl = [ (F8030") (0. C)do L CEEY
Its evaluation proceeds in the following way:
it (V0] — e o] & Lot Sl +OMD). (012

Since, as a consequence of eg.(9.11), we have the result
dul¢*, &P Sap] = du[e™ 20+, €8a), (9.13)

and effect of the functional string vector position measure under a conformal scale was
evaluated exactly by Fujikawa [see Egs. (3) and (39) in Ref. 5],

QulE20, P5a5) — exp { o | @+ %fe%h} Qo o), (0.14)

we thus have the following esult by taking h(c,{) = €8(c — 6)8({ — {) and considering the
linear termin €:

d

— dulo*, P8
B0 [0, €]
= 2 lim (dufo, @ Pos] — ule?, &3
— (D/24m) (R 4 12) x du0¥, P). (9.15)

Finally the term [5/8B(c, {)]lo(¢*, gap = €%84) is given by diagonal component of the
string energy momentum tensor:

(e‘%) (Io(6" g — 5)) (5. ). (0.16)

By grouping together Egs. (10), (15), and (16), we obtain that the string transition
amplitude in the conformal gauge satisfies the dynamic constraint

0= / du(Gen]| o, —es5,, / dulo,]

S dm (R(@.0)+48)

x exp<—|o<gab,¢y>>{

n (;'r:[@Z— - |><,¢@|2> b .17
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where dg[gabH gu—dbs,, Means that the functional measure over the intrinsic metric field

{9ab(0,Q)} is defined in the conformal gauge,
in —

[1@ = Jim 9z0,(5.)

u

denotes the string canonical momentum and

¢—0*

In order to trandlate the above path integral relation into a wave equation form,” we
introduce covariant string commutation relations?

[lm[(@xv(@) = [i/h®][€"(G)8(5 - 7). (9.18)

u

with 2(®) being the Planck constant in the physical space-time RP. Using the Schrodinger
representation for this commutation elation,

in i N
1;[(0) = h(D)ein(G) SXLn(G)’ (9.19)

we can express eq.(9.17) in the following form, which generalizes the usual D = 26 Nambu-
Virasoro wave equation’:

1 —2fin(c) 1
{ : Ll

- 2(hP)28Xi"(0)8X!N (o)

26-D( 140 5 1, 1 2 Bin(o)
t i <—21;[(0)2 ZB.n(G)2+2uZeB ) }
x G((XI"(c,en(@)); (XM (5, houl0))) = 0, (9.20)

where we have written the conformal contribution in eq.(9.17) in the Polyakov proposed
Liouville Hamiltonian,? with

being the canonical momentum associated with the Liouville field §(o, {) at the boundary.
We note that it has the following representation:

in i 5
l;[(c) = 5@ SPma) (9.21)
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Here 42 now denotes the Planck constant associated with two-dimensional string
space-time D.

It is worth mentioning that the dynamical status acquired by the metric gap(o,8) =
exp(B(o,))dap in €g.(9.20) induced pure quantum gravity in D as a result of the dynam-
ical breaking of the complete diffeomorphism ground of the action in eq.(9.7), denoted
by Gdiff(D), to the subgroup Ggit (D) /Gweil (D)diti, Where Gweil ditf (D) is the subgroup of
Gqitf (D) that acts on the metric field as a Weil scaling.

As a consequence of these remarks we can see that only at D = 26 can be choose
the proper time string gauge gap(0, &) = dap in an analogous way as in covariant particle
dynamics (see Sec. 92), since now the invariance of the theory under Gyt (D) is preserved
by quantization.

9.4, A String Solution for the QCD[SUJ ()] Bosonic Contour
Average Equation

There are several compelling arguments for the existence of astring representation for quan-
tum chromodynamics (QCD) at the 't Hooft large number of colors. One of these arguments
is that the QCD[U (==)] covariant loop average with an additional intrinsic global SO(M)
flavor group (see Appendix A),

Wik [Cx (—m) X (m)]

satisfies the following (formal) stringlike contour equation® [e(c) = 1]

5(2)
WWK[CXER%X(’T)]

B, a0 06(0) - X(6)X,(0)

X (W [Cx (=m) x (o)) Wik[ Cx (o) X (m)])
— V(X! (0) [P Wik [ G-y x ) (9.23)

where the contour integral means that the coincident 6 = ¢ does not contribute
Cx(—m) X (m)
for the integrand (Cauchy principal value).

It is thus conjectured that some sort of string propagator should solve eg.(9.23) in some
sense. Our aim in this section is to present an interacting string theory with an intrinsic
fermionic structure that posesses as a string wave equation (in our proposed framework of
Sec. 9.3) eg.(9.23) with afixed flavor group SO(22).

Let us start our analysis by describing the covariant string action of our proposed

QCD [ (e0)] string:
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S[(I)‘u(ﬁ, C)?W(k) (67 C)J gab(G, C)] = SO[(D,U(GJ C)? gab(G, C)]

+ SII.[W(k) (07 C)v 93(07 C)] + St [(I)#(G, C)vW(k) (07 C)v gab(07 C)]? (9.24)

where
50,(0:0).0(0:0)] = 3 ([ (vB00a0" 000000000 ). (0259
Sk (0,8),9an(0,0)] = %/D(\/_gﬁ(k)\(a(ﬁaC)aallf(k))(@ ¢)dodg, (9.250)

St [(D‘u(G, C)»W(k) (07 C)v gab(G, C)]
—8( [ dodt vaiiigw T (0,)0.0)

< ([ Voe05% 0,(0.0 - 0,3.0) < T(0,G.0) ) dodk) (@50

The notation is as follows: The bosonic degrees of freedom are {¢,(0,{),dan(0,0)} as
in Sec. 9.2. Additionally weintroduce a set of intrinsic two-dimensional Weyl spinorsin the
string surface and belonging to the SO(M) fundamental representation. They are denoted
by {w(0,8),k=1,...,m}. Weimpose on them the Neumann boundary condition

lim o =0.
A 0¥ (0,0)

The bosonic {yk(c,8),0an(0,)} string sector interacts with fermionic {y ) (c,0)}
sector through a self-avoiding interaction involving the surface orientation tensor

T (9u(0,8)) = (6%0a0" dow" /V(5,0),
h = dethy,, hap = dad* 9,0",

and an attractive (f < 0) delta function potential supported at the self-intersecting lines
of the string surface. These non-trivial self-intersections are supposed to arise at those
submanifolds where X, (o, ) = X,(c’,{') with 6 # o for every { € [0, T]. We notice that
self-intersections of the form X, (o, () = X,(0,{’) with { # {’ arise only in the case where
the string surface possesses holes and handles, which is not the case here.

After having described our string theory, we consider the following O(M) string transi-
tion amplitude®:

Zy [Cx(-m) x(0)] = / du(Gab)du] 0]

x du[y ] (o (=7, 0)y (,0))
X eXP{ =Sy, W(k) Ga] }- (9.26)
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In order to write the wave function equation associated with the above string Green's
function, in the physical space-time R*, we proceed as in Sec. 9.3 by considering the
analogous identity of eq.(9.8), namely,

| dilganl o, b ) (Wi (. 0) i (. 0) PS03 Wit G}

X <% [De"(0)? - %’XL(G) 2+ C'Lrg(ﬁ(k)\(laa\l!(k))(ﬁa C))

=8 [ dx4(0)3®)(%,(0)  X,())X*(3) [ dulgusclui v

—T

22
X <(§, W(p)ﬁ(p)) (6,0) (W) (—,0)w() (1, 0)) exp{ — Sy, Wk) Gab] }- (9.27)
p)=1

Our choice of the intrinsic “flavor” group to be SO(22) is dictated by the fact that the
QCD [ (e0)] string should preserve the full invariance under the diffeomorphism group
and this happens only in the case where the conformal anomaly of the theory vanishes (see
Sec. 9.3). Since, in our proposed theory (D = 4), the anomalous term is proportional to
[26 — (D + M)] /24 we see that only for M = 22 can we preserve the above-mentioned
symmetry.

We thus can rewrite eq.(9.27) in the form

1 8(2) 1 ’
<‘z X (0)5%,(0) 2 ‘Xﬂ“’)’z) Al
=2 [ d6X,(0)3°) (X,(0) ~ X,(@)X,(3) Zeple( - xi0) 28 Crie xcu)): (928)

where we have used the string measure factorization properties

J T (@i B.0) ¥ (=m0 (0¥t (0.0 (0:0) {0 G}
0<C<T
1<k<22

=/ 1_[! (dwig (B, ) (ko (—7, 00w ) (0, 0)) exp{ — SV [0y, Wirg , Gan] }
0<C<T
1<k<22

X/ l;[ (dw (B, 0)) (W(p) (0, 00w (1) (m,0)) exp{—S? [0, Wk, Gab] } (9.299)
0<C<T
1<k<22
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1
dq)/J(B’ C) | mx(-) =P { N E /D[n,n]x[O,T] (aaq)ﬂ)z}

7n<B<n
0<t<T
[ I ool |eo{-5) @2}
_n<p<o X(Em(o) 2D g0
0<C<T
1
S| T vl |eof{-3[ @) o
o<p<n x[oT)
0<C<T
Here
[T do"B.0lg, ,xe
—n<f<n
0<C<T
means that the functional integration is done with the boundary condition ¢*(f3,0) =
X (=m) X(m) -

We remark that these factorization properties hold true only in the case that the split
string surfaces ¢, (D(_r)x[0,1]) @d 0,(Djsmx[o1)) POSSESS the same topology as in our
case of trivial topology and are homotopical deformations of the loop boundary which by
their turns are smooth and possessing only isolated double point at path self-intersections
as a consequence of Pauli-Exclusion occupation number for fermions.

Let us now identify the string wave equation [eq.(9.28)] with the QCD [SJ(e)] con-
tour average equation [eq.(9.23)]. The first step is to identify the SU (e=) gauge coupling
constant A3 with the string interactoin coupling —f. Second, we make the identification of
the constant —y? (the Euclidean gluon condensate — see Appendix A) with the Regge slope
parameter 1/ma’, which was adjusted to unit in our study.

After these coupling constant identifications we see that the Euclidean self-suppressing
string theory should represent Euclidean QCD [SU ()] in the gauge invariant observable
algebra (color singlet currents, spectrum, etc.).

9.5. TheNeveu-Schwarz String Wave Equation

Let us start by considering the open fermionic string action in a D-dimensional Euclidean
space-time® (u=1,...,D,(A)=1,2,a=1,2):

S[(I)‘u(ﬁ, C)?W.U(G7 C)? et'(ilA) (07 C)?XG(GJ C)]
— [ dodte(o.0)| J0avaun e+ Sivi i),
D

1 1. 1
_ E|:2 _ E| (XaYbYaW#) <abw" — Z|xbw"> } (0,£) + boundary terms. (9.30)
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Here the fermionic string is characterized by two (external) fields. the usual bosonic
vector position ¢*(o,{) and the Majorana spinor y*(o,{) describing the string Lorentz
spin. The presence of the vierbein eéA)(o, €) and of the two-dimensional vector Maorana
spinor xa(o,£) together with the auxiliary scalar field F(o,{) ensures, respectively, the
action’s invariance under general Lorentz and coordinate transformations together with the
world-sheet local supersymmetric transformations.

Following Polyakov the (formal) fermionic string propagator is given by the follwoing
path integral connecting the initial C'™™ string state to afinal string state COU:

cleoc = / dulo, v, &, xa) exp{— o, v & xa]} (9:31)

(here the boundary terms were absorbed in G[CO;C'")).
In order to write dynamical wave equations we exploit the invariance under tranda-
tions in the superconformal factor (¢(o,); {(o,{)) functional space of the fermionic string

propagator [eg.(9.31)]

Ga(0,5) = exp(20(0,0)8a)  %a(0,) =4 gy (0,0)),

which produces the following identities:

‘ u AN
/d,u[(b'u,\lf'u,eg(iA)7Xa]e_s[¢”7W“<egA)7Xa] _SS[(D#,W iea 7Xa] _
59(, )

_ / < oy, eg ),X ]> e*S[(D“JU#,eéA)’Xa] (9.32a)

and

‘ u g™ 4 , #7e(A)7
/dy[(byawyyegA)7Xa]e_s[¢y7w € Xal | _ S[qyu v _a Xa] _
8 (0, C)

:/ O ot vl yae Sl 1 (9.32b)
8Cg)(0,0)

By noting that the fermionic string is defined at the quantum level only at D = 10 (the so-
called Neveu-Schwarz string) or at D — —eo,'* we will consider D = 10, which means that
the functional measure variations in the right-hand side of Egs. (32a) and(32b) vanish. In
the superconformal gauge and using the Euclidean identity y(a)yg) = i€(a)B)Ys, We rewrite
Egs. (32a) and (32b) as

[ duler wle SIS (@02 - @00t + W dw G0 =0, (9333

[l we SOV S (e GO0 90 (ED =0 (933)
respectively.
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In order to trandlate the above-written string path integral identities into awave equation
form we take its boundary limit { — 0" and trandlate the result into an operator equation
by using the Schorindger quantum representation

: i d
C'L%L dc¢¥(0,8) & #0) 50m(0) (9.349)
Jim 960/(0,5) < ¢in (o), (9.34b)
lim y*(c,8) < I, (o). (9.34c)

{—0t

Here the quantum C'" string state in the operator framework is characterized by the
coordinaes (I (6), ¢/, (0)) where the I% (o) are string valued Dirac matrices obeying the
space-time anticommuting relations?

{Ta)in(0).T{g)in(0")} = 25(0 — 6')808(a),B)-

By noting that the Neveu-Schwarz string fermion field y* (o, 1) satisfies the Neumann
condition
lim dsw*(o,T) =0,
—0t

we obtain afermionic string wave eguation

DG, Glch,c) = o, (9.35)
where 1 _ 5
+ |
DL — 5(1+1s) <er'n = ~T ;ﬁ> (o). (9.36)

Itisinstructive to remark that in eq.(9.35) the same I )o) used in the momenta operator
is aso ued in the string length factor (b;j”(o), opposite to the earlier proposed Ramond-
Marshall fermionic string wave equation® where two different sets of I'“(c) matrices are
used.

Finally we note that the formal anticommutator {D(Cﬁ)(cs);D(cﬁ)(c)} is equa to the

bosonic ?
o 1 5 1 /in 2
AC'” - 2 6(1)‘”](0)8(1);1”(0) 2 M),u (G)‘
string wave D’ Alembertian since we have preserved the superdiffeomorphism group of the
theory, which, in turn, manifests itself in the following constraint imposed in the physical

Hilbert space of Neveu-Schwarz string states:

(0h0) 55777 ) SIS =0 037
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Appendix A.
The QCD(S(<~)) Bosonic Contour Average

The basic dynamica variable in the loop space formulation for Euclidean QCD [SU (co)]
is the amplitude for a quark loop propagating in the quantum (confining) vacuum of a
pure Yang-Mills field, since at the t” Hooft limit for a large number of colors the second-
quantized quark matter effective action reduces to the quark first-quantized action, namely,®

olim (Gein@,+A) = [X| I (UGmxcol | A
Ne—oo X(m)=X(~m)=X
where - g
UlGkmal = P{ep [ dom,x,(o) Ta | (042

denotes the covariant Wu-Yang phase factor defined by the closed (covariant) quark trajec-
tory

CX(fn),X(ﬂ:) = {(X#(G),G(G)); —n<o< TC}

and representing the interaction of the pair with the Yang-Mills externa field A,(x). The
notation ( ) means the quantum average defined by the Yang-Mills functional integral at
N¢ — oo (planar graphs).

In order to deduce a closed contour functional equation for the amplitude inside
eg.(9.A2), we remark the validity of the classical second-order functional derivatives

results® [e(c) = 1]

52
Jim, %0 % (') (TrU[Cx(—m) x(m)])
1im 80— &) Tr((V,Fu) (X(9)X" (0) (U[Ge(o) (U [k ) x(0)))

+ 1im 6(c — ') Tr(U[Cx(—m) x(o)]Fop(X())X B(G U [Cx (1) X (0)]Fap (X(0))X"P(0)U [Cx () x (m)))

+1im6(o’ — o) Tr( above written expression with ¢ exchanged by ¢'). (9.A3)

By using that 6(c’ — o) = 5 if 6 = o’ and imposing the loop periodicity property
U[C(a) x(@aten)] =U[C(cmxm] (- <a<n), (9.A4)

we can finally rewrite eq.(9.A3) in the loop invariant form
2
5Xu(0)dX,(c")
= Tr((VuFw) (X(0))X" (0) (TrU [Cx(—n) x(m]))
+Tr(Fop(X(0)XP(0)F X (0)) X5 (0) (TrU [Cx () x(pi)])- (9.A5)

TFU[CX ) X(n )]
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In order to write the (unrenormalized) quantum analogous loop equation, we take the
quantum (N — o) average of both sides of eq.(9.4a) and observe the quantum results

(Tr(VuFw) (X(0))X" (6) Tr U[Cx (—m) x(m)])
= kg/j{((—n),xm X! ()82 (X, () — X! () Tr U[Cx(—m) x(o)){ T U [Cx(o) x(m)])  (9AB)

and
(Tr(Fop(X ()X (0)F P (())X)(0)U [ Cx(—m) x(m))))

— ([ PHTEAFHR) ) X @FT UGl (@A)

Equation (9.A7) was abtained by supposing the very existence of confining in
QCD U (N)] for any value of the color parameter N signaled by the (formal) nonvanishing
gauge invariant SU (N) gluon condensate in RP: (see chapter 4).

/ AOX(Tr(FopF %) (X)) = —y2 (9.A8)

By making the assumption that confining persists at N; — e we obtain the QCD [ ()]
loop wave equaiton [eg.(9.23)] in the proper-time gauge e(c) = 1.

Appendix B.
They Term

In this Appendix we present the calculations leading to the § term in eq.(9.27).
Therefore let us consider the boundary value of the following quantity:

A~

Jim [ d50CT0(0,(0.0)5% (00,0 - 0,(5.0Tw(3.0). (2B
We can evaluate eq.(9.B1) by taking into account the following results.
First, formally

lim S(D)(q)#(c, C) - ¢,u(67 C)

T7—0t
= 1im 8°)(0(0,0) ~ 0u(5.0)3((  §)
= 30 (X,(0) — Xu(8))3(0), (9.82)

since our topologically trivial string surface does not possess self-intersections in the intrin-
sic string time variable {, which in turn, is related to the nonexistence of handles and holes
in the string world sheet.

Second, in the asymptotic limit  — O the string surface has the behavior

i (0.0 = i %01+

since the string surface is a homotopical (contractible) deformation of its boundary.
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As a consequence of the above-mentioned remark, we abtain, in the string isothermal
gauge [X/(c - X,(c) = 0], the value in eq.(9.B1):

1im T(0,(0,0))T (0u(5.0))

X.(6/1/X1(0)[XL(5) /\/XL(5)2], (9.B3)

where we have taken into account that X, (o) = X,(c) in €g.(9.B1). By making eg.(9.B3)
covariant, i.e,, /(X1(c))? — €(c), we obtain the § term in eq.(9.27), which for M =
22[e(o) = const], issimply given by

b [ 4%(0)(50)(%,(0) - X,())%,(3) 05

Appendix C.
The Migdal-Elfin String asa Particular Case

Our aim in this Appendix is to show how to obtain the proposed Migdal-Elfin string for
QCD [U (=0)] 2 asaparticular case of our proposed self-suppressing fermionic string when
the string world sheet does not possess nontrivial self-intersections, i.e., ¢,(0,%) = ¢,(c,{)
meansthat 6 =6, { = (.

In order to analyze this case let us introduce orthonormal coordinates on the string
surface {9,,(0, )}

acq),u agq)ﬂ =0, (ac¢y)2 = (agq),u)z?
h(c,{) = det{hap(c,) } = det{0%¢" dp¢'}
= (06¢")? = (0c0")%. (9.C1)
Not that this is possible since we have canceled the model’s conforma anomaly by
choosing M = 22.
By introducing a tangent vector along coordinates lines d¢* /0C and d¢*/do, we have
the relationship (see the Appendix of Ref. 13)

8©)(¢(0,%) - ¢(5,0))
=5°72(0)(11/h(0,0)Y213?) (6 - 3), (& (9.C2)

where 8§D_2)(0) means a regularized form of the delta function singular value 5(°—2)(0)
(see Ref. 13).

Substituting eg.(9.C2) into the string self-interaction term [eg.(9.25)] we obtain the
more invariant expression for the fermion action:

X ( Yo T(Gu(o )T (¢u(67<:))), (9.C3)
(0u(0.0-0,(30))
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where BR = 5" (0) is the regularized string constant.

At this point we can see that eq.(9.C3) reduces to a mass term for the intrinsic SO(22)
fermion field y¢ (o, ), which, in the case of the string world sheet has only the trivial self-
intersection

0.(0,0) = 0.(5,0) = 6 =5, { =,

wince R
T (0u(0,8)) Tuv(du(0,8)) =1
We thus get
2
> B [ (Wiwi)vVhio.Odods, (0.c1)
k=1 D

For the non-trivial self-intersecting case [c multivalued ¢* (o, zeta) functions] we have
to add to eq.(9.C4) the term responsible for the theory’s interaction, which is supported at
the nontrivial string’s surface self-intersection lines ¢, (o, {) = ¢,(o, {) with 6 # c as given
by our interaction action [eq.(9.25C)] and previously conjectured in Ref. 14.

Appendix D.
On Polyakov’'s Bosonic String Path Integral - Revisited on the
Light of Correct Measures Definition

In opinion of A.M. Polyakov “there are methods and formulae in science, which serve as
master-key to many apparently different problems. The resources of such things have to
be refilled from time to time. In my opinion at the present time we have to develop an art
of handling sums over random surfaces. These sums replace the old-fashioned sum over
random paths. The replacement is necessary, because today gauge invariance plays the
central role in physics’ (A. M. Polyakov).

Thegenera picture has been envisaged asfollows. one should try to solve loop-space or
generalized Schrodinger functional wave equations by the appropriate flux lines functionals
represented by transition amplitudes given by the sums over al possible surfaces with fixed
boundary.

1
G(C) = (é) exp{—%A(S;)} (9.1-d)

here C is some loop (smooth or arandom closed path), & is a surface bounded by the loop
C and A(S) is the area of this surface and o an extrinsinc (lenght square) constant (the
Regge slope parameter).

The main point on Polyakov’s propose is to introduce besides the surface parametriza-
tion X,(€1,&2), an intrinsic metric tensor gan(&1,&2) and a quadratic functional on the ran-
dom surface X, (1,&>) field substituting the area functional in eq.(9.1-d) (with 2mo = 1)

ASE) =5 [ e /B0 X,0X) ) (02:9)

It is very important to remark that the above 2D-gravity induced surface functional has
the geometrical meaning of the area spanned by the surface X, (€1,&,) only at the classical
level o — O.
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In order to proceed to the quantum theory, A.M. Polyakov has proposed that
the quantum surface average of any extended reparametrization invariant functional
D[X,(&1,82);9ab(E1,E2)] should be given by the following expression

[ auiSo(se) € [ 1Dgan(E)]exw(—stme [ vEAE) [ IDIX,(E)]
o0~ [ (VaF3X K EID) ) | €1, G(E) @3

The reparametrization invariant functional measures on eg.(9.3-d) are associated to the
following functional measures

I8x412 = [ 6PE(g(E)M28%,(E)6%,(8) (949

and
|18Gan||? = / d?€[g(€)]Y2 (6 ¢ + Cog™" ) 808Gty (9.5-d)

where C # —% isan arbitrary constant.

The reparametrization invariant gaussian functional integral X,(£1,&) is easily eval-
uated with the result in the conformal gauge ga, = p2Sap (for closed boundary-less 2D-
compact Riemannian manifolds)

det “/2(~Ag,_25,) = exp{ o[ d &[(aa")) (lm%)pzﬂ (9.60)

The functional integration on the intrinsic metric field is well-known with infinitesimal

coordinate transformation { €, (§1,&2) } around the conformal orbit (i.e., Vg 25, €= 0)
80012 = (1+20) [ d®E8p(E)3p(E) + [ o6 /G028 0.7-0)

Here
Oab = (Va €b+Vb €a)gy—p25., (9.8-d)

From eq.(9.7-d) we derive the correct integration measure in terms of the Feynman
measures, denoted by the symbol DF () = [1d(")
3
[Dgav(&)] = DF[p(&)]DF [€a (§)](det™?L) (9.9-d)
Here the Polyakov’s operator £ is obtained from eq.(9.7-d) and given by
(L €)a=VP(Va €b+Vb €a)lgy—p5a (9.10-d)

and itsfunctional determinant was exactly evaluated (acting on smooth C* compact support
vector-sections on §)

1 13 1 (0ap)? 2
—5logdetL = — §<[§ 02 }*é(lﬁ%%) pz(a)> d?¢ (9.11-d)




158 Luiz C.L. Botelho

By combining eg.(9.6-d) with eg.(9.11-d) and eq.(9.3-d), we obtain the partition func-
tion for the closed surfaces defined in terms of the natural conformal quantum degrees of
freedom p(&1,&2)

2= [ jen (- 22 [[2O00) 4 [ 47) @120

This expression shows the origin of the commonly known critical dimension 26 in the
string theory: at this value of the dimension one does not have dynamics for the metric field
Jab(E) = p?(£)3ap. However for D < 26 one must examine the “c-model like” in eq.(9.12-
d) which isnot the Liouville field theory as originaly stated by A.M. Polyakov because the
natural theory’s dynamical variable in this framework is the scalar field p(§) instead of that
proposed initialy by Polyakov 21gp(&) = ¢(&). These above cited 2D-theories coincides
only for very weak fluctuations around the 2D-flat metric p(§) = 1+ ¢€p (e — 0) in our
opinion.

Note that the quantum field equation associated to the obtained effective partition func-
tional is given by (the the two-dimensional effective Einstein equations for this induced
2D-gravitation!)

12mi 121 (04p)3

(%0200(®) = 55— 1y PO+ 35— g0 @ (9.13-d)
i i : o2 2 . (2-D)
Note that our o-model like (Euclidean) lagrangian (with ug = pg,. + EI Lrg+ W)

describing the closed random surface sum

clpap) = 25 [ 308 (5)0s0)| @0Pe it [ 2000 (@149

does not possesses in principle afull conformal symmetry as a consequence of the correct
variable to be quantized. It is worth remark that even in the original Polyakov’s work the
symmetry which remains after specification of the conformal gauge are the conformal trans-
formation of the &-domain | |2 = 1 for ¢(2) defined as a scalar field. We conjecture that
the only phase in which the 2D -quantum field theory makes sense is its perturbative phase
around the “flat” configuration p?() = 1+ épa 2(€) in a S-expansion of other suitable
classical pg (&) solution of eq.(9.13-d) p?(&) = p3 (§) + & pg 2(€).

Theintercept point probabilities (the scalar N-scattering amplitude) in this random sur-
face theory is straightforwardly reduced to the average

Z p|
A(S)(pl” N /H dzéj I<]|é| é]|p pJ)
/DF L(p,0ap) (lel[p@j)]ﬁ(lfm) (9.15-d)
It is possible to show that only for (Euclidean) values of external momenta 1 — p? =

—1,-2,--- or pP?=0,-1,—2,---, and suggesting, thus, to a spectrum without the usual
lowest state being a tachyon.
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So, our main conclusion is that the summation of Bosonic random surface understood
as 2D-induced quantum gravitation as originally proposed by A.M. Polyakov is reduced
to amassive 6-model scalar field lagrangean obtained in eg.(9.12-d), and not to the Liou-
ville somewhat ill-defined 2D-quantum model as originaly put forward by A.M. Polyakov.
Note that the smplest supersymmetric version of the Bosonic Quantum Field eq.(9.12-d)
describes the sum of fermionic random surfaces with critical dimension D = 10 and will be
analyzed in the next section.

Let us finaly point out that there is a formal propose to describe the closed random
surface partitional functional eg.(9.12-d) by means of Liouville-Polyakov degree of free-
dom ¢(&) = 2lgp(&) which has the advantages of taking into account directly in the path
integral the positivity of the quantum field p(&). The important formal step in this study is
the variable functional change

Nl-e

9
D" [p(&)] = I d[e?©)] = IT(det(e?) (€)) d(0(2)) (9.16-d)
Unfortunately the functional Jacobian det(e%) does not makes sense as a functional
change of functional measures. However, one can propose a definition for the above cited
Jacobian asinthe original Fujikawa's”hand-wave” prescription to handle the axial anomaly
asfollows:

det ¢ [(e%)(g)] = 8|Lr(r)1+ expTre I g(e%)(g)efmgab:evaab] _

im ep{ [ @@ |- et @) -

N 4ne 121

oo igx [ |30007] oo { g [#90) @179

By analyzing eq.(9.17-d) we fed that is not sound as it stands since 1) one could use
other regularizing operator as that one of eq.(9.17-d); 2) theterm in front of kinetic term for
the Liouville weight decreases and leading to anew (incorrect) critical dimension for string
theory, etc... Anyway eq.(9.17-d) deserves further studies and will be left to our readers.

Appendix E.
On Polyakov’s Fermionic String Path Integral - Revisited

In the last section of our chapter we review the original paper by A.M. Polyakov (Quan-
tum Geometry of Fermionic Strings (Phys. Lett. 103B, 211, 1981) with corrections and
improvements on the concepts exposed there.

In this previous Appendix D, we have clarified and improved the Polyakov’s procedure
for quantizing Bosonic strings as 2D quantum gravity models by a carefull anaysis of the
involved path-integrals.

Let us begin from the supersymmetric extension of the Bose string (quantum gravity!)
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lagrangean.
1
- 2no!

1 1_,..
{/dzé [éx/ggaﬁaaanBXA—F EWA('Yaaoc)\IfA

APV (Opx ™ + %XBWA)\IJA} } +u /D d?e./g(&) (9.1-e)

Here, the surfaceis parametrized by Xa = Xa(€), (A= 1---D); y” isa&-two component
Majorana spinor, g.g (&) isametric tensor and y,, isaspinor gravitino field. The Polyakov's
strategy as exposed in the previous paper, was to integrate out the x” and y* fields firstly
and, then, he has examined the resulting theory of "induced &-supergravity”. By choosing
the " super-conformal” gauge

9op(8) = P2(E)80p; Xa(&) = (o) () (9.2-¢)

Polyakov has showed that the only expression which satisfies all £-supersymmetries not
destroyed by the super-conformed gauge eq.(9.2-€) is the direct supersymmetric extension
of the Bosonic action given in Appendix D, namely

e W= / Dy DXqe S (9.3-¢)
In terms of the origina fields p(&) and (&), the component form of eq.(9.3-€) can be
(correctly) rewritten as (with 2ro’ = 1)

D r1/9
Wi =52 [15 (52 + |G+ gutene + 3207 @ (@49

Note that in the usual Liouville field parametrization the induced 2D-supergravity is
written as (p = €/2)
~10-D 1 5 1. 1 _ 0. 122
Wi = 50 [ |GOW)P 4 G+ gumsod + 3| @ @59
At thispoint it isworth remark that theintrinsic fermionic degrees of freedomin eg.(9.5-

€) may be easily integrated out with the following result: [if one considers (&) as an usua
2D-Dirac fermion field]

O [u@)DF @) en ] — () [ | Szt + putzrsnp
/ J

= det [iy&) + %/JY5D:| =1(p) (9.6-€)

1+vs
2

At this point, we note that (after introducing the notation o =8 < ) Bando_ =

B (1_2Y5> B, we have the y-expansion (u << 1)

o (1 3n
o) = 3 2 [ ey g,

n=0
[ oposes|-; (B
(0+p—0-p)(&1) - (0+:p —0-p)(En) (9.7-€)
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and it isaresult of awell-known theorem on 2D-Fermionic model’s that the only non zero
terms of eq.(9.7-e) are those with equal number of cs'+s and 6_s. We get, thus, that eq.(9.6-
€) becomes the bosonized path-integral below written

)= [ O a@le( - [ 2002 ) e [ e | 5uet® L an(Vama )| @) (089

where the (bare) &-cosmological constant i (gets a multiplicative ultraviolet) renormaliza
tion ur = %,u(s)fi.

As afinal comment let us use as dynamical degrees of freedom the Polyakov’s origi-
nal conformal factor ¢(&) =Igp(&). In terms of this variable the bosonized theory’s path
integral iswritten as

zz/DF[e‘P@]ap{—% J(acp)z(é)wz (108—;D> o %“’} (é)}

«{ [ofa@nen (-5 [ #20ar)
exp <—/d2<§ [%m sin (V4na)e 15}_%("} (é))} (9.9-¢)

It isworth to note that the one must use as the Feynman product measure that written in
€q.(9.9-e) Hé(e‘P@d(p(é)) since the associated functiona (&-covariant) functional metric is
given by

18Gab||* = /%(e2¢(§>8<p-6cp)<§)d2a= /é [5(€°)5(e")](€)d% (9.10-¢)

Note that only for weak intrinsic metric fluctuations (or for D = 10 —¢) €*®) may
be replaced directly by ¢(&) inside the Feynman product measure as it was supposed in
Polyakov’s original propose
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Chapter 10

A Random Surface M embrane Wave
Equation for Bosonic Q.C.D. (SJ («))

10.1. Introduction

In last decades, representations for Quantum Chromodynamics as extended objects have
been pursued by several authors ([1], [2], [3], [4]). Among these, the representation of the
meson wave functional by the quantum amplitude of a closed trajectory of acolored particle
in the vacuum of a pure Yang-Mills field has strongly suggested the equivaence between
Bosonic — non supersymmetric QCD (SJ (e=)) and adynamic of strings ([1], [2]).

In this chapter, we propose to replace the one-dimensiona closed trgectory in the
above guantum amplitude by a two-dimensional random surface possessing color degrees
as another collective non-perturbative variable for probing non-pertubative structures on
Q.C.D(J(==)). Thus, we deduce (formally) its associated surface wave equation in the
t'Hooft topological limit of large number of colors No = +-<-. This study is presented in
section 2. On the section 3 we suggest a path-integral argument on the connection of our
proposed Random Surface Wave functional and the Path-Integral Partition Functional of the
usual (Bosonic) Yang-Mills Gauge theory. Finally on Section 4 and Appendix B, we make
some comments on previous work on the subject and on the regularization program.

10.2. TheRandom Surface Wave Functional

Let us start our analysis by considering the problem of associating a wave functiona for a
random surface X possessing SJ (N) color degrees of freedom interacting with an external
quantized Yang-Millsfield A, (X), the most simple geometrical gauge-invariant generaliza-
tion of the usual Wilson Loop variable for Q.C.D.

The colored random surface is characterized by two fields: first, by the usua (bosonic)
vector position X,(€), £ € D (u=1,...,D, where D is the space-time dimension), and
second, by the random surface color variable g(&) which is an element in the fundamental
representation of the SJ (N) group. Here, we have fixed the two-dimensional flat domain D
to be the rectangle

Dio2rxjo1] = {(€0,81); 0<&<2rm and 0<E <T}.
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The classical action for this membrane is naturaly given by ([5], [6], [7]).

S=5+8° (10.1)

with
-3 / d°E(9aX"0aX") (€) (10.19)
4nm/ (977020)°(8)dE + 4rilz g, (10.1b)

where I'yz(g denotes the two-dimensional Wess-Zumino functional. Its existence, together
with the integer min the above written o-model on the action of g(&)’s afford usto consider
the bosonized fermionic equivalent action

SF = [ w(E)(ia0a)W(E)d2%, (102)
D

where the two-dimensional Dirac field y(&) belongs to the fermionic fundamental SU (N)
representation.

At this point, the simplest action taking into account the interaction with the external
non-Abelian field is given by

S™w(E); Au(X)] = /D W(E) (rad* X (E)Au(X () w(&)d?E (10.3)

The complete classical interacting action (egs. (10.1a), (10.2) and (10.3)) is invariant
under the gauge transformations

Au(Xu(8)) — (M A+ h10,h) (Xu(8))
W(&) = h(X.(&)w (&) (10.4)
V(&) — W(Eh ™ (X(€))

Before turning to the construction of a quantum wave functional for the above sys-
tem, it isinstructive to remark that egs. (10.1a), (10.2) and (10.3) are the random surface
generalizations of the analogous formulae in the one-dimensional string case, where the
colored string is described by the position vector X, (o) and the one-dimensional complex

fermion (Grassmanian) field {6(c),6* (o)} in the SU(N) fundamental representation. The
associated action is

SX.(0),6(0),6%(c )Auxu(c))]
= / 2xﬂ 6)%do + / 0*(0)0(0) + / XH(c)A,(X(0))(6(c)116%(0))do (105)

where {, } denotes the Hermitian generators of the SJ (N) Lie algebra
In this string case, a quantum wave functional is given by the following path integral (V

W[X,(0), Au(X)]
(10.6)
- / d[6(o)]d z 00.(0)0;, (T) eXp{—S[X.(0),8(5),0%(5), Au(Xu(0))]}
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which leads to the well-known Wilson Loop factor defined by the closed string {X,(c)}.
The complete quantum wave functional is defined by the average (W[X,(c),A.(X)]) where
(') denotes the partition functional of the pure Yang-Mills theory ([1]).

We shall now use eq.(10.6) to propose the following functional integral as a quantum
wave functional for a SJ(N) colored random surface X interacting with the quantum vac-
uum of aSJ (N) Yang-Mills theory.

N2-1 R
T (y(z)) €Y / d[\u(&)]d[ﬁ(é)](W(QO)},('—W(Z’@O))
R=1 ¢

X &xXp{ =X, (8), Au(X (&), w(&))]}-

Notice that our above proposed random surface phase factor Tr9% (y([2]) isa 2 x 2
matrix in the flat domain D(a=1,2).

In order to deduce a closed wave functional for the quantum average (Tr% (y[X])) in
the limit N = +o, we proceed as in the string case'-2 by shifting the A, (X) field variable,
which by its turn, produces the following result (A3 = Nlci an(gSNc) < o)

(10.7)

1

4—%<Tr°°'°r{(Dprv)(X)\|![Z]}>

(10.8)
= [ 80X = X,(0,8))9X(0.7) (TEy 1)) (Trry Oy 3],

where the split membranes X ;) and %, are respectively defined by the restriction of the
mapping X, (&1,&2) for the (split) domains

Dy ={(0,&1); 0<& <o0; 0<& <T}

and
Dz = {(€0,&1) |0 <& <2m 0<& <T}.

Itisnow convenient to multiply both sides of eq.(10.8) by the membrane current density
Jay(X) = 8P (X — X,(5,7)9.X"(5,7)
and integrate out the result relative to the space-time variable X. So, we get the result
(Tr{ (D) (X¥(G.7))9aX4 (B, D)W(Z]})
— 42 /D 50)(X,(5,%) — Xu(0.7))XH (6, 1)9aX" (5, 7) (10.9)
X (TroONy [z ) )y (TroMy 2 ]).

In order to write the left-hand side of the above result in aform similar to the random
surface wave equation of ref. [11] we use the relations

8 color _ color v c
{W}Tr (W(E)) = Treo (y(21) P (X(0,7))0X" (0, Y P (22)),  (10.108)



166 Luiz C.L. Botelho

82 color
e ) T ) (10.100)
= Tr(D, P (X(5,7))cX (0, )y O w(E)),
where the derivative-finite part operationsis given by ( [1] ).

52
i {8 G,T)5X4(G,T }
Xu(G,T)8X#(6,7)
li ) d &
=0 ) Px G BB B
By substituting eq.(10.10b) into eg.(10.9), we obtain our proposed random surface ver-

sion of the string Migdal-Makkenko wave equation (compare with eq.(10.9), ref. 2, and
€q.(10.7), ref, 4).

(10.10c)

62 color
*{ scmamaE | e

— 52 /D 50) (X, (5,%) — X, (0,7))9pXH (0, 7)IcXH (5, )

<TI’COI0rY(b)W[Z(1)]> <TFC0|orY(C)\IJ[Z(2)] ). (10.11a)

To summarize, we propose a continuum random surface version of the string Migdal-
Makkenko loop wave equation in SJ (<), which we hope to open a new path to under-
stand the non-pertubative structure of Quantum Chromodynamics as a dynamics of random
surfaces as much sucessuful studies implemented in Loop Space approach for Quantum
Gravity ([11)).

10.3. A Connection with Q.C.D(SUJ (<))

In this section we present an path-integral argument connecting our proposed random sur-
face wave functiona eg.(7) to the Q.C.D(SU (<)), thus, showing the usefulness of our pro-
pose on Section 10.2.

In order to achieve such goal, let us consider the quantum vaccum of the Yang-Mills the-
ory as an ensemble of random SUJ (N) connections with an uniform distribution interacting
with the random surface = constraint to remains on the sphere S°+1 on RP. Formally one
is considering the strong bare coupling gﬁare — oo Vaccum limit on the Yang-Mills quantum
average and the random surface rigid limit X,(§) = X,, + VoY, (€) , with o — 0 denoting
the physical observable Regge dope constant, namely:

<Tr°°|°r(\ll(z))>gzﬂ°° - /(H(K#,a)dAz(Y))Haar/DF[X#@)]

<exp| - I d2a<an*lan,,><a>] 8F) (X, XH(E) ~ 1)

1

« [ O lvawew |5 [ wiran )]

<op e % [, 046 T o) )2 &)
- (10.11b)
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In order to connect eq.(10.11b) with Q.C.D(SU (<)), we consider the “Harmonic
gauge” fixing in the Haar-Yang-Mills path integral in eg.(10.11b), namely (X, (&) — X,,) -
A, (XP(&)) = 0, which alow us in its turn to rewrite the interaction term in eq.(10.11b)
in terms of the Yang-Mills strength field in the chart V(X) a large random surface
scale (of — 0), since in this harmonic gauge we have the expansion A,(XP(E)) =

— 3P (XYY () + (V)
Iy ) [&(X) / DF[Y¥(&) exp H / dZE(IaY*0™Y,)( é)]

x(xlim @(p{ 0 >/ d2E](YAY,) D
/D wa,wa]exp[——/ dE (W (i )W) (€ ]

cop | e [ PEZYPRLC) Tt )an) )0AY) )|
(10.12)
Note that we have used the condensate Polyakov approximation ([1]) for the functional
deltainside eg.(10.11), expected to hold true in the limit of o — 0 and effectively generat-
ing a mass term for the random surface vector position field

P((X*%)(E) -1
_ / DF [A(£)] e re PEDI06%,)(&)-1]

~ lim {e+i Jr2 i<k>condm[(x”xy)(§)—1]d2g}

(h)—eo
~ <}!>| m e (M) conden fRZ d2§[(xpxp) (&)] (1013-&)

At this point we evaluate the Y, (£)-Gaussian functional integral with the exact result

1 1 (10.13-b)
m {(det? | (-2 () + 57 (R @)22-+ ) )
Waﬁ
where (, )y i denotes the functional integral over the SU (N) string intrinsic Dirac fields and
j5(&) isthe conserved fermion U (N) current on the random surface sheet.
At the condensate value (A) — oo, we obtain the following result for eg.(10.13)

i 8001~ (@0 [V RRAX (RO )] ) (1014

AT
which at large N, give us the fina result depending only the “infinite-tensioned random
surface macroscopic space-time fixed vector position X”

e Jd? (N—e0)
v ) [AZX) ] (N—eo) = EXP { (< gif (?&I(é»ww ) £ 1

X)F, (X)] . (10.15)
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The complete path integral equation (10.15) is, thus, exactly the SJ (=) Yang-Mills
quantum field path integral for the space-time at large random surface scale (after integrat-
ing out the space-time macroscopic surface space-time point X)

/DFAal )exp[

Note that the QCDn,—+.. coupling constant is expressed in terms of the intrinsic
Fermion fields in an explicitly form

(N—seo)
(Gocp)? = < / d2Ej3( > (10.17)

A7

] =y {< Trodlo" (y (%)) >N2Wj0} (10.16)

(membranes) Goare

Appendix A.
Rank Two Antisymmetric Path-Integralsthe Q.C.D String:
Some Comments

The most important problem in the present days of theoretical and mathematical physicsis
how to quantize correctly Non-Abelian Gauge Field Theories defined on the physical con-
tinuum space-time. The only result in this direction still remains asomewhat formal Ansatz
from the experimental and theoretical point of view of the use of the Higgs mechanism.
Probably, this Ansatz is formal from a strict quantum field theoretic point of view since
its makes heavier use of atrivial A¢*-field theory in four dimensions and of the associated
gauges of t'Hooft for the Yang-Mills Fields (see the comments on pag. 38 the J.C. Tay-
lor book “Gauge theories of weak interactions - Cambridge Monographs on Mathematical
Physics). However, it wasrealized by K. Wilson that in the Ising like euclidean path integral
crude approximation framework (L attice Gauge Theory) theses non-abelian gauge field the-
ories in the lattice at a bare strong coupling regime are naturally expressed in terms of the
Euclidean Wilson Loops defined by the matter content trgjectories C = {X,(c); 0< o<1
o =proper-time parameters}

W[C] = TrP {exp [+i fc AHdX“] } . (10.1-A)

Notethat typical interaction energy densities, such asz,Wysw,WyﬂwAy which areredl
function (distributions) in the Minkowski space-time are complex on the Euclidean world.

It was argued on ref. [10] by A.M. Polyakov, an euclidean string functional integral
Ansatz for eq.(10.1-A) based on a coupling of an abelian rank-two antisymmetric tensor
field B,y (x) (the Polyakov’s axion field) with the string orientation area tensor previously
proposed by this author but with an important difference: This rank-two antisymmetric
tensor field B has a non trivial dynamic content. Namely (see eg.((10.12)-(10.15)) - ref.
[10]).
f DF [ ] e SBuw] ('ch Bdo)

WI[C] = [DF [B]e B

(10.2-A)

where the axion action is given by
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_ 1 \4 2 . d_B 2 _
_E/d X(B2, +dB-arcsen — —\/mé— (dB)?) (10.3-A)

At this point we point out that the functional integral weight eq.(10.3-A) makes sense
only for those field configurations which makes eg.(10.3-A) a real number, namely:

sup |[dB(x)| < .
xeRY
Unfortunately this bound on the kinetic energy of the axion field is impossible for

those distributional fields configurations making the domain of the axion functiona inte-
gra €g.(10.2-A), unless n? — < and comments below eq.(10.40) of ref. [10]. (A quantum
field may be bounded but not its kinetic energy!).

So, in the deep infrared regime of Q.C.D(SJ (<)) €g.(10.3-A) should turns into a pure
White-Gaussian action for the axion field B dominated by almost constant gauge field con-
figurations

B| ~ % / B2(x)d"x (10.4-A)

One has, thus, the following effective result for the Wilson loop surface dependence in
the very low momenta regime

W[C] ~ exp[—F(C; Y] (10.5-A)
C

where the surface functional weight is given by the self-avoiding extrinsic action firstly
proposed in aminimal area context solution for the Q.C.D-Loop wave equation in ref. [1]
with B a (positive) coupling constant

F(C, }Cj) —B /Z 016,0(X) (5 5%°8" (X — y) oz (¥). (10.6-A)

It is straightforward to see that for fixed constant €2, the limit m? — oo leads to a pure
Nambu-Goto action strongly coupled ([10])

F(C 2 ~ lim c1(e#m) /dzé\/_ )+ lim. c2(€2/m) /dzé V)20

1o (5) o [ ey

and by its turn suggesting a random surface wave functional behavior like eq.(10.7)
for the quantum averaged Q.C.D(SU(e=)) Wilson loop eq.(10.6)-eq.(10.1-A). in the
Q.C.D(SU(==)) deep infrared regime.

(10.7-A)

Appendix B.
On the Self-avoiding M embrane Wave Functional

In this appendix we present some comments on the renormalization program to the random
surface wave functional associated to the self-avoiding extrinsic reparametrization func-
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tional for QCD (U (=)) in RP as given by eq.(10.5-A) of the previous Appendix A

=B [VROK(E) [\ @) K@) =Y
< 80 (X7(8) = X“(€).

With X*(&) denoting the parametrization of the X-surface on the surface wave function
ansatz eq.(10.5-A).

Here the surface area tensor responsable by the extrinsic properties of QCD(SU (<))
guantum geometry is explicitly given by

(8ab8axﬂabxv)@

P (X(8)) = hOX(©)

(10.2-B)

and the random surface scalar areais written as

VPX(E)) = /det (X405, ) (E). (10.3-B)

Asalfirst step to analyze eq.(10.1-B), one should extract the pure string world sheet U.V
divergence associated to the trivial self-avoiding surface case X,(&) = X, (') with& = &'.

Let isfollow our study.

Firstly we note that aregularized form for eq.(10.1-B) inthe U.V case & = &' isexplicitly
given by

S T L i :
WlXE1 =B o o (5ozs) 31(68)

x X { /é dZdZ 4 /h(E)\/hE) (™ (X(E)Tw(X(E)) — DIX(E) - X(&)) Izp}

(10.4-B)

with

SA(8,€) = Eo— <& <&+3i (10.5-B)

0 otherwise

A it {al—%saagm%

By considering the taylor expansion around & = &’

T (X (E)) Ty (X (&) — 1= —(3al™) (6T (X (£)) (& — €)a(& — &) + higher terms

(10.6-B)
one can seethat all reparametrization invariant counter-terms are of the second order deriva-
tive on the surface vector position and on the area tensor object namely, at one-loop case
(p<1); one hasthefollowing explicit counter-terms involving the extrinsic geometry (note
the subtraction of the pure self-avoiding term in eq.(10.1) which at the level of loop equa
tions means that a non-vanishing Gluon condensate was already taken into account by con-
sidering anon-zero Regge slope parameter, i.e., (2na’)~t = (0|F2|0) # O:

WX ()] ~ B(A)* /é \/N(E) (0aT™33T,,) (2)
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VB[X(8)] ~ B(A)* /é \/NE){ (@I *) (0°T*P) (3pX) (9%,) +-- }

Ws[X ()] ~ B /é /(2T (@7Tp)} (7-B)

At this point we consider the extrinsic ultraviolet divergences X, () = X,(&") but with
E#8.

In the physical situation of line self-intersections, where the equation X,(&) = X,(&)
defines a sub-manifold of dimension 1 (the XZ-surface is generically discribed by the union
of vertical surfaces cylinders locally in contact along self-intersecting vertical lines passing
through the points 6; = {£],7} with X,(&},7) = X,(&},4,7) 1< j <m). The resulting
random surface wave functional path integral still remains formally renormalizable. In
order to show the correctness of this claim, one can see that ',y (X(c;))[*(X(0j+1)) =
cosX(oj;0j+1), the constant angle between the extrinsic surface tangent planes possesing
the comon self-intersecting non-trivial line X,(c;)(orX,(cj+1)!). Now it is straightforward
to see that the action eq.(10.1-B) reduces to a pure (intrinsic) self-avoiding action of the
cylinder surfaces branches with the associated tangent plane above cited. Inthissimple case
one can follow our previous exposed resultsin ([3]) to show itsformal renormalizability as
atwo-dimensional Quantum Field Theory.
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Chapter 11

Covariant Functional Diffusion
Equation for Polyakov’s Bosonic
String

11.1. Introduction

The attempt to formulate a convariant quantum theory of strings in terms of the line func-
tional has a basic object the string transition amplitude.(~[3) The main idea in this frame-
work isto consider the string world-sheet area playing the role of a proper time. The string
propagator, thus, should satisfy a kind of functional diffusion equation in the area space
variable.[2]

In this chapter we analyze the associated functional diffusion equation in Polyakov's
guantum bosonic string theory by taking into account in an explicit way the theory’s con-
formal anomaly (see Chapters 1 and 19).

11.2. The Covariant Equation

The transition amplitude for an initial (Euclidean) string state
{(x1(0),€"(0)), 0< 0 <1}
propagating to afinal string
{(x}"(0),e™(0)), 0< 0 <1}
in Polyakov's theory is given by ([1] and Chapters 1 and 19)
Ge™,¢" = [ culgaoldul,] pL-TolGap. 2%, (11

where the covariant string action with acosmological term u? and a“ quark-mass’ parameter
A isthe Brink-Di Vecchia-Howe action [4]

) .
oG- ys %) = 5 [ dode(/Gg 00400 +18) 410 [ ds (112
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The string surface parameter domain is taken to be the rectangle D = {(5,(),0 < 0 <
1,0 < { < T}. The covariant functional measures du|gap|du[d,] are defined over all cylin-
drical (random) surfaces without holes and handles with the string configurations as non-
trivial boundaries: i.e., 9,(c,) = X"(0). 9.(c,T) = xM*(o).

In order to write an area functional diffusion equation for the string propagator,
Eq.(11.1), we rewrite it in a form where the string’s world-sheet area plays a role as a
string proper time:

GIC™, C" — exp [—xo /C s~ /C y ds} /0 TdAeFAGICM CN AL (113)

where G[C,C'", A is the fixed-area string propagator

GICM.C A = | dulgelchlo 3 ( [ dodty/aio.C- ) ) epl-ofgun.d,s = O

(11.4)
The d-function constraint in Eq.(11.4) ensures that only the random surfaces with fixed
area A contribute.
Let us evaluate the area partial derivative of the area-fixed propagator: namely,

ai\G[On cot A /du ) dp[0,,]d {/ dodCy/o( ] (11.5)

with &’(x) being the first derivative of the & distribution.
At this point we consider the identity

U dodCF } o [2@ 8900] [/ dodCF ]

(11.6)
which can be easily verified by using the Fourier integral representation for the 6 functional
and the relationship 8,/G = % ,/G9%800o -

By substituting Eq.(11.6) into Eq.(11.5) we obtain the result (see Chapter 9)

—

d

1
2./gg® 3900

where §/8g0o(0, {) acts on the measure du|gap] and on the string-field term

9

= GIC™".C Al = Am / Aui[Gab) { } (0,0F (0 Gab),  (11.7)

F (00 Gao) = | Gulf,] P —1o(0y: a2 = O). (118

The 8/3guo(0, ) functional derivative of the term F (¢, dab) is subtle since the co-
variant functional measure du(¢,,| depends in a nontrivial way on the metric gap(0,() asa
consequence of its definition as the functional volume element associated with the covariant
functional metric®

180,12 = [ (v550,80,) (0. O)dods, (11.9)
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Its evaluation proceeds in the following way. The goo(o, £) functional derivative of the
Brink-Di VecchiazHowe action without the boundary term is trivialy given by the (0,0)
component of the stress-energy tensor:3

3 1 _
——— 10(Gap, Oy 12 = 0) = (900"900" — = Joog™ 00 dgd") (T, T). 11.10
500000 0(Gab: Oy, 4" = 0) = (do¢*'d0¢*' — 5 Goog™ e 9a¢”) (0, 7) (11.10)

In the conformal gauge gan = €8z EQ.(11.10) takes the simple form below at the
boundary limit { — 0" with (o) = gIir(r)1+ do¢* (o, €) being the string canonical momentum

and XI"(c) = C[gl 010,(0,C):

(@2 %Mo) (11.12)

Let us evaluate the 8/8goo(0, {) functional derivative of the functional measure du[¢,,]
in the conformal gauge where the results are given by local expressions.
The Frechet derivative of the functional measure is (by its definition) given by the rela
tionship (see Chapters 1 and 9)
) 1
&Y ——— (du(0,; € 8a))
(0,0

with 8h = &8(c — 6)3(¢ — ().
Since we have, as a straightforward consequence of the theory’s covariance [see
Eq.(11.9)],

= lim = (du(g; € ap] — A0y, Bep])  (11.12)

[, €8] = €20, € 8ap) (11.13)

and the effect of the functional measure du|¢,] under a conformal rescaling can be exactly
evaluated, [6] (Chapters 1 and 9)

dul0", €M) = (0", €50] exp [ﬁ[’n [ | 3(0a0)(@a30) + 2030+ 20fc) [ De%h” ,

(11.14)
we thus have the result
_ S _
e Ped) mdxxw,e%ab] = %[R(p(o, 0)) +u5(e) + Ao(e)|duloH, €z,  (11.15)

where R(p(c,{)) = e P08 Ap(5, ) is the scalar of curvature associated with the intrinsic
metric € P34, and wo(€), Ao(€) are infinite constants which depend on the regularization
scheme used to evaluate the functional determinants of two-dimensional Beltrami-L aplace
operators in Polyakov's effective action (Chapter 1).

It isinstructive to remark that one can implement the above calculation without choos-
ing the conformal gauge since the measure functional derivative may be alternatively de-
fined by the ratio

det~P/2[Agab + 89oo(0, §)]

11.16
det’D/z(Agab) ( )

m du[dy, Gab) =
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and we have the general covariant result

In det(Aguy) = 75 [ dod [ dodC/(VGR)(0, 00— 0.0~ L) (VR L),
(11.17)
where A&i(" —0',{— ') denotes the Green's function of the Laplace Beltrami operator
Agy, = (1/,/G)9a(g%9p) in the presence of the intrinsic metric {gap }.

However, it is important to note that only in the conformal gauge do our calculations
take alocal form as afunctional of the intrinsic metric tensor. This s the technical reason
that we use the conformal gauge at the end of our calculations.

Finally the goo(, ) derivative of du[gap] in the conformal gaugeis easily evaluated: 3°

26

= 5
—p(cl) Y — - _ =
e du[Qap = €°3ap) Sl [

R(p(G, L)) + 4 (€) + ho(e)]du(Gan = € 8ap)],

dp(c,8)
(11.18)
since we have explicitly
du[Gab = € 3ap] = D™ [p] exp [—% /D [%(aap)2+ 12 (e)e’] + A(e) /a ] epds]
[DCOV = ] €¢°“Ydp(o, c)] . (11.19)
(6.0)eD

By grouping together Egs.(11.11), (11.15), (11.18), and introducing the covariant string
commutation relation®
i5(c —o’) :
o X (o= —~2 = lim ex
(@)X (6)] = e~ {en(0) = Jim expl+p(0.0)]}
which produces the Schrodinger representation mf,, (o) = —hq}l(c)S/SXL”(G), we can fi-
nally write Eq.(11.7) as a covariant diffusion equation for Polyakov’s bosonic string which
takes into account in an explicitly and local way the presence of the world sheet intrinsic
metric

explp(c,8)] -2 & —}M‘“(E)|2+267D lim [R(p(5,8)) +Cw) | GIC™,C", A
PPl = 2 @ @odie) 2™ 2 M RO, cn,
) & out ~in
= S5 GlC™, ¢ Al (11.20)

The above -written string wave equation is the main result of this chapter.

Let us comment that at D = 26, where the invariance of Polyakov's string theory under
the world-sheet diffeomorphism group is restored (otherwise it is partially broken to the
guotient group of the complete diffeomorphism group by the Weyl diffeomorphism sub-
group) we can fix en(c) = 1 and the above area diffusion equation takes the smple form

GCH.ChAI= =3 Sm@yinie) 2% (@) SleenAL L2y
u u

9
oA
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A simple functional solution of Eq.(11.21) is
GOt C" A = e FAD[CIM d[C, (11.22)
where the string functional ®[C'"] satisfies the string wave equation

1 52 2 i
— e 6)] g[C"] = —E®g[C'] (11.23)
2 3xn(0)dxin(c)

Here we can see that the possible values of E are exactly the eigenvalues of the “func-
tional Klein-Gordon” operator on the left-hand side of Eq.(11.23) which can be identified
with the —Lg Virasoro constraint written in the Schrodinger representation (see Chapter 20,
Appendix D) — Supplements.

11.3. TheWheeler - De Witt Equation asa Functional Diffusion
Equation

We aim in this section to present apath integral framework where the three-metric quantum
gravity propagator Ref. ([10]-[22]) in Einstein theory satisfies akind of functional diffusion
equation with the Space-Time four volume playing the role of aproper time for Space-Time
guantum evolution as much as similar analysis presented in 11.2.

We, thus, recover the Wheeler - De Witt equation in the situation of vanishing Space-
Time four volume.

Let us start our anaysis by considering a Space-Time M which has topology of a
cylinder. This means that M can be considered as a homotopical deformation of a three-
dimensional manifold S.

In Four-Dimensional Einstein Gravitation Theory (Chapter 1), the dynamical fields are
rank two symmetric tensor h,,(x) and defining metric strucures in M compatible with its
cylindrical topology. The basic object in the (formal) Feynman path integral approach for
quantization is the number of quantum gravitational field states with a fixed four volume
V and satisfying the boundary condition that the metric field h,,(x) induces in the three-
dimensional manifold Sagiven field (classical observable) metric Gij(X)

/DC exp{——/d4 x(VhR)(x )}
><5< /Nd4x( h(x)—V)> (11.24)

The Deltafunction in Eq.(11.24) ensures that only the gravitational states h,, (x) with a
fixed four-volumeV contribute. The covariant functional measure D°[h,, |is given explicitly
in Chapter 1. The metric boundary condition and the topology of M is taken into account
by using the Lapse-Shift form of the metric field ([14])

() = —(N(%,)(h)? + i (%, §)(cX + N'(%,£)dC) x (A + NI(R,0)dl)  (11.25)

whereX€ S, { € [0,T]; N(X0) =N/(X,0) =0and|gij(X,0) = Gij(X) |
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In order to write afour-volume functiona diffusion equation for the Quantum Gravity
propagator Eq.(11.24), we re-write it is a form where the new field variables are given by
the lapse-shift (scalar and vectorid) fields (N,N') and the three-dimensional metric field

6ij(X,%)
N(ViG;) = [ DINJDIN'D[g
xexp{ m/ d‘:/dgstDM IN,N' gl]]}

5 </(;TdC/Sd3x(\/§N)(X, 0 —v> (11.26)

where /g = det®(gj) and S°M[N,Ni,g;j] denotes the Arnowitt, Deser and Misner ex-
pression for the Einstein-Hilbert action is term of the three dimensional geometric intrinsic
objects (N,N',gij) and the extrinsic curvatue K;; ([14])

SADM[N,Ni,gij]:/(\/HR)(X)d4X
M
:/M(N\/Q(Ki,-Kii—K2+<3> R))(x)d (11.27)

Itisimportant to point out that the (formal) Jacobian of the field transformation (h,, —
(N,Ni,gi;)) isthe tad-pole term exp (—5<4> (0) fdh® [T dCN(x, Q) which may be assigned
the value 1 by using the Dimensional Regularization Scheme since the genera covariant
functional measure D[h,,] reduces to the usual Feynman Measure (see Chapter 1).

Another remark is related to the fact that the object N(V) does not depends on the
(homotopical) parameter T since it is integrated out in the formal definition of the product
Feynman measure D[N(x,8)] = TI (dN(x,Q)).

CeloT]
Let us now evaluate the V -derivative of the N(V)

0

57 N(V.6) = [ DFINIDFIN'ID" (g

><exp< o GZ/SADM[N Ng,,])

«—§ ( /0 dx /S 3 /gN —v> (11.28)

with &' (x) being the usua first-derivative of the §(x) distribution.
At this point we consider the identity

5 </d3x/Td§(N\/§—V)>

C—>0+\/g.176N (/d3/ diN,/g- V) (11.29)

which can be verified by using the usual Fourier Integral representation for the §-function.
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By substituting Eq.(11.29) into Eq.(11.18) and using the fact that D¢[N(x, )] is the
usual Feynman Measure we can re-write Eq.(11.28) in more invariant form after doing a
partial functional N-integration:

a—VN(V,Qij) = /DC[N>Ni>gij]X

) 1 d DM [
. Ja® D) SN < E;nc;ZSA NN g”]>
@<p< 8n GZSADM[N N g"]>
x (/0 dC/MdSX\/QN—V> (11.30)

Now we have the result

SN C)SADM[N N',gij] = v (KVKij — K2+ ®R)(,0) (11.31)

In the functional integral fremework we have in a formal way the usual Schrodinger
representation inside Eq.(11.30)

~_1( 06 1 d
Clm Kij(X,C) = (\/a) 2 <8g” zgljgkf Sgkﬁ> (X,0) (11.32)
1/ - .8
tim k028 =~ 5 (VA0 557 ) 4 D

After subgtituting Eq.(11.32), Eq.(11.33) into Eq.(11.31)-Eq.(11.30) and taking the
limit of { — 0" (see Eq.(11.25)) we obtain our proposed Four-volume gravitational dif-
fusion equation (in the Euclidean section of the space-time M ([17])

28—~ (G000 g5
N i) = NG (i,),(ke) 850k
—@R) RINWV.6)) (1139
+ 79” )
V8 !
where G; j) k) (§) denotes the Wheeler - De Witt metric over metrics (see Chapter 1)
G (6) = 5 (GG — Gii60) (11.35
(i), (ko) 2./3 ikdje — HijSke .

It isworth point out the similar equation for two-dimensional quantum gravity obtained
by the author in section 11.2 ([19]).
A simple solution of Eq. (33) isgiven by

N(V,Gij) =e = ¥ (G)) (11.36)
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where ¥ (Gij) arethe formal eingenfunctions of the functional Wheeler - De Witt “Laplar
cian” L

1 &
L 6 ) = — | Gy: ; q) ———
( W(E)) (glj) \/'g' |: (I,J),(kﬂ) (g) 89” Sgkf
~® R(@)} Ve (Gij)
_ EW(E)(Q”) (11.37)

Now we can see that for zero eigenvalue E = 0:
We=0(Gij) = lim N(V.Gij)

satisfies the * Universe Wheeler - De Witt wave equation”.
The most general solution should be given by a superposition of eigenfunctions

N(V,[6ij]) = /;pec(L>“’E[gij]e_Ev p(E)dE (11.38)

where the spectral weight p(E) is determined by some unkown boundary - initial condition
on N(V,[Gij) ([17]). These further enquiries on universe initial conditions are left to our
readers. (See Appendix D in the supplementary appendixes in the end of this book).
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Chapter 12

Covariant Path Integral for
Nambu-Goto String Theory

12.1. Introduction

To attempt to understand collective phenomena in field theories has become the central
problem of quantum field theory [1,2]. One of the most promising frameworks to solve this
fundamental prolem in quantum field theories is to write the associated field theory path
integral in loop space and, thus, search for string solutions for the loop space field equations
of motion (see Chapter 9). This effort, in turn, has recently led to intensive research into
the problem of the correct meaning for the string path integral. Most of these studies were
based on Polyakov’s analysis of the conformal anomaly of two-dimensional massless fields
interacting with induced DeWitt quantum gravity in two dimensions (see Chapter 1 and
Chapter 19).

Unfortunately the Polyakov proposal of DeWitt two-dimensional quantum gravity asthe
correct meaning for the string path integral may be considered only as a guessed effective
action study for the full Nambu-Goto areafunctional, since it involves the full use of amean
field approximation [1].

It ispurpose of this chapter to solve the above mentioned problem by quantizing directly
the Geometrical non effective Nambu-Goto string path integral and thus solving this long-
standing unsolved problem in Quantum Geometry.

12.2. The Nambu-Goto Full Path Integral

Let us start our analysis by considering the original Polyakov path integral for the Nambu-
Goto string propagator in aform useful for non-Abelian gauge theories, (Eq. (9.76) of Ref.

[1]) and Ref. [3]:
c0)=Y zexp{ L
[Gab) [Xu]

2o/

[ (vorodE] shlgm(@ -t @). (122

The continuous sum over the string world sheet vector position X, () and the intrinsic
two-dimensional (2D) metric gan(§) in Eq. (1) are defined by DeWitt functional metrics on
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hemispherical manifolds possessing as non-trivia boundaries the string configuration {C}
(see Chapter 1)

Joxe? = [ (vaxesxe) @), (1229

18| = | [v030an(g™' 6™ )30 ()%, (1220

The & functiond inside Eq.(12.1) restricts the nonphysical variable (intrinsic metric)
Gab (&) to be the world sheet induced metric (see Chapter 1)

han (X¥(§)) = (0aX*) (dpX*)(8)-

Let us biefly recall Polyakov's covariant analysis. In his explicitly convariant scheme
one writes the delta functional by means of a covariant Fourier path integral:

G(C) = 2] exp [—%/D(\/_ dzé] [2 Y exp /dzg /Ghap(93XHRPXH — ]]

(Gab (X¥] [Aab]

(12.3)

By making the guess of the exact validity of the covariant mean field average for the
Lagrange multiplier (see Eq. (9.88a) of Ref. [1]),

Aap(&) = 1(A)Gab(E), (12.4)

one obtains Polyakov’s result of 2D massess scalar fields interacting with DeWitt two-
dimensiona quantum gravity as a definition for the string path integral Eq.(12.1) after sub-
stituting Eq.(12.4) into Eq.(12.3) and defining an effective cosmological constant:

Uo = 1/2ma + ().

Unfortunately, in string theory the conditions for the full validity of Eq.(12.4) on the
string energy phase spaceisstill an open question. This, in turn, makes Polyakov’s approach
[1] at most a path integral effective theory for string quantization.

We, thus, make a departure from the above Polyakov approximate analysis and try to
consider exactly the original expression Eq.(12.1) with the § function without making any

mean field approximation of the sort of Eq.(12.4).

The invariant measure associated with the DeWitt supermetric Eq.(12.2b) on the func-
tional space of the fields gap(&) in the path integral formalism was shown in chapter 1 to be
correctly defined by the DeWitt measure

3 [ T 00l /o) Hndec 6)y/det(/Bo™)

(&,a,b)

det[SM(gib)/Sﬁ]] ,

(12.5)
where M (gap) isagauge-fixing functional and [e¢(§)] denotes the infinitesimal vector field
generators of ageneral coordinate transformation in D. The powers of /g(&) in the above
written equation come from the root square of the DeWitt super metric determinant in the
invariant measure (Eq.(12.2) of Ref. [5] for R?).

We point out that direct use of Eq.(12.5) for calculations is very subtle since it contains
the usua Feynman product measure on the variables dgap(&) and dec(§) weighted with
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factors of the form (/g(&))™ which, in turn, lead to the use of anew field reparametrization
in the path integral in order to reduce the functional measure to the usual Feynman measure.
For instance, if one wants to evaluate formally a path integral of the form

I_%ap[ | ¢PEL (g >>] (126)

where L(gap) denotes an invariant coordinate transformation action functional for the gap(&)
field, we must consider first the variable change

a(Pab(é) _ |:i :| ~3/2
which will reduce the weighted measure Eq.(12.5) to the usual Feynman product measure
/ [ [1 doan(S ] exp [— / dz‘:t(@ab(é)} : (12.8)
£,ah) D

where E((pab) is the new expression of the action in terms of the new variable Eq.(12.7)
added with the Faddeev-Popov ghost action. It is worth remarking that in the functiona
integral form Eq.(12.8), practical calculations are very cumbersome and not explicitly co-
variant under the action of the diffeomorphism group.

Fortunately, in two dimensions it is possible to obtain a closed expression for Eq.(12.6)
in the conformal gauge gap (&) = €°(%)8 4, as has been shown by Polyakov by directly using
the DeWitt super metric Eq. (2b) to rewrite the covariant measure Eq.(12.5) in terms of the
conformal factor (see Chapter 1 and Chapters 9/10)

5, = [T s o = Hen| - [ o500 i) @)
[Gap=e%)Sap)]

26

~TTece e g [ e[ F002 e @) (1299

By making the choice e°(5)/2 = y(&) as the correct dynamical degree of freedom, we get
the final expression for the gq, invariant measure to be used in our study:

gZab / l;[d[v(é)]eXp [—4%1 /D dzé% [%fq 2] exp L[rg%a /D dzéyz(é)]. (12.9b)

Next, we consider the X, (€) functional integral [16]. In order to reduce the covariant
path integral over the world sheet string vector position to a Feynman functional measure as
in Eqg.(12.9b) we first consider the following covariant Gaussian functional integral which
may be used to define the covariant sum in Eq.(12.1) [see Eqg. (28)]:

Tlgas] = [T [AX¥(2) {/g(E)] exp [—— el (A | (1210
(7))
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where Aq is the Laplace Beltrami operator associated with the metric gap(€). Now we note
that Eqg.(12.10) isa Gaussian path integral:

1[gab] = det®/%(—Ay). (12.11)

It is possible to write the above functional determinant as a local field action for the
conformal factor y(§) [1]: namely

Lo ol o] e

Let us now consider ametric conformal scaling in Eq.(12.10) [6]:

11gab = 28] = exp

Gab(8) = € Gan (8). (12.13)
We, thus, write (12.10) aswell as
/ H [dXH(£)G(E)]Y %)/ 2 exp [—— / d2E[/GXH(— @|. (1214

We remark that the classical action of massless scalar fields on a compact manifold
without boundary (the domain D) is conformally scale invariant, so it does not depend
on the conformal factor. The effects of the conformal scaling are nontrivial only at the
quantum level or, equivalently, at the level of the functional measures as may be seen from
Eq.(12.14).

Now we note tht change on the functional measure Eq.(12.13) is taken into account
entirely by a Jacobian J[A(§)] which is afunctional of the conformal scale factor (the well-
known Fujikawa conformal anomaly factor [6,9]:

E[ dXx#(&)e&/2[g (&)Y 4] =JA []&‘[ dXH(E 1/4]] (12.15)
&n) (En)

After substituting Eq.(12.15) into Eq.(12.14) and evaluating the resulting Gaussian co-
variant functional integral, we get the explicit expression for the above-mentioned Jacobian:

JA(E)] = det P/2(—Agg)/ det™ /2 (—Ag). (12.16)

Let us make use of Eqgs.(12.14)-(12.16) for Gap = dap and A() = 21ny(&), since we can
always consider the conformal gauge in Eq.(12.10)

As a result we obtain the following relation between the covariant measure and the
Feynman product measure parametrization:

D 2)1?
[H[dx“(é)v(é)]] ex"’{m / 2&( EalRes

(&)

(é)} [T [dx*(4)).

()
(12.17)
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At this point, we return to the original Eq.(12.3) and rewrite it in the conformal gauge
by using the Feynman functional measure parametrization Egs.(12.9) and (12.17):
(€) }

26D o4
o= e [ o] oof 252 [ 3] o
P [_ ZiX’ /Ddzé(aaxy)z@] 8600 [ (£)8ab — hap(X*(2))]. (12.18)

It is instructive to remark that we must rewrite the covariant delta functional inside
Eq.(12.18) in a Feynman parametrization form. In order to implement this step of our
study we consider the covariant Fourier path integral representation written directly in the

conformal gauge gap(&) = 12(&)3as [see Eq. (3]

SEPE)30 — ha(XH(E)] = [ [H[dxn@w%@]]

H[dkzz(i)vl(é)]]

€ £
1 n(®) PXXE)(E) — (8]
Xex"{'/o V) v(E) }
1 al®) PAXHRXE(E) (8]
Xexp{'/o @ 1) } (12.19)

The covariant functional measure ¥, ., for the Fourier tensor field variable Aap(€) inthe
conformal gauge gan (&) = v?(€)Sap used in Eq.(12.9) is still defined by us with the DeWitt
covariant measure Eq.(12.2b) for two-dimensional tensors Aqy(&):

6aa 6bb(
v?(8) (&)

Following the discussion after Eq.(12.6) about the correct meaning of a convariant path
integral, we note that by making the variable change

M1(8) = A1 (8) ¥(E), Aoa(E) = haa(8) /¥(E), (12.21)

the covariant delta functional Eq.(12.19) in the conforma gauge has the same form of the
deltafunctional defined from the usual Feynman product measure definition:

(F)p2 B _ 5 5 [ o [5 (9TXHIIXH —2)
Scov [Y7(E)dab — hap(X#(E))] —/ [l;[d}"ll(?:)} {E{dkzz(i)} exp {I/Dd é3{7»11—3{ {(i)}

oo

= 3F) [y?(€)8ab — han (X" (€))]- (12.22)

||Shav||? = /D d% [v2< (hab) (&) = (%@(é)] (12.20)
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Next, we can eval uate exactly the root-square conformal factor y(&) auxiliary functional
integral due to the usual deltafunctional Eq.(12.21) which produces the result [4]

-/ Texe 00| 5oy [[GE X0 XN(E 8 )]

26D (92 XH) (9 XH) (92 XH) (9, XH) )
[_ 48n / dg " [ [(a+xu)(a_xu)]z+ ](‘?a‘: )] (12.23)

Note that the use of the conformal gauge in Eq.(12.1) implicitly constrains the use of
the orthonormal coordinates for the string world sheet vector position (Ref. [3], Appendix
Q).

(04 XH) (O XH) = (0_XH)(9_XH) = 0, (94 XH)? = (0_XH)?; (12.24)

Equation (12.23) is, thus, the exact path integra meaning to the sum over surfaces
Eqg.(12.1) in the string world sheet orthonormal gauge as originally conjectured in Ref. [4].

At this point of our chapter we remark that scalar scattering amplitudes as random
surfaces which intercept point probabilities at the critical dimension D = 26 [1] are given
exactly by the usual nontachyonic dilaton scattering amplitudes which solve the problem of
tachyonic excitation on string theory.

If we now consider a further term, taking into account the surface rigidity extrinsic
functional in Eq.(12.1), namely,

o0 |3 | FelVa-ax 8 (122

we obtain straightforwardly awell-defined path integral quantization of the extrinsic string
on the conformal gauge, aresult which was used in Ref. [7] on an suggestion basis:

:/ (g[)dxf‘(&)] exp [—
exp{—k [ dae [<a+a_x~><a+a_x“>m} <a+,a->}

2 %Y (9~ XH) (D2 XB B
[ 26— D/ de+ - [a+x )(0~XH) (92 XB) (0, XP)

e 65T (0. X X (E 8

(04 XH9_XH)2

(€%, %)] - (12.29)

Let us recall that it is a subtle problem if the Liouville terms Eqgs.(12.23) and (12.26)
do not disturb the ultraviolet theory renormalizability. In addition, by considering complex
fermionic degress of freedom belonging to the fundamental representation of an intrinsic
group such as SJ (22) we can cancel this nonpolynomial Liouville piece of the action [3].

Finally we call attention to the fact that if we had followed Polyakov [1] by using
the complete conformal factor p(£) = €% instead of its square root €9(5)/2 as the scalar
dynamical degree of freedom to be quantized in the gan-functional integral,

3 - [T exp{ =y a[ ﬁ"H(é)} p|Jim s [ pleee].

(12.27)
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we would have obtained the following delta functional for Eq.(12.22):

S0~ P05 =57 | PXOXP e [ XX

v v
= \/ (01XHIXH) (92X#02XH)5F) (91XH91XH — p)3(F) (92XH9?XH — p) (12.28)

asasimple result of the usual identity

d[(y—a)/va = Vad(y—a)

used in its functional integral version.
The result implied by Eq.(12.28) will lead us to consider a further weight of the form
h(X#(&)) on the Feynman differentials dX#(&) in our final Egs.(12.23) and (12.26) for a
sum over surfaces in the orthonormal coordinates [see Eq, (12.24)]; and it is worth pointing
out that a similar weighted path integral result was put forward some decades ago in Ref.
[8] without proof from first principles. (See Appendixes A), B) and C) of supplementary
appendixes at the end of this book for studies on string moving on manifolds).
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Chapter 13

Topological Fermionic String
Representation for Chern-Simons
Non-Abelian Gauge Theories

13.1. Introduction

It was suggested in Ref. 1 that topological non-Abelian quantum field theories in three
dimensions (3D) may be solved exactly by means of a noncritical fermionic string theory.
The correctness of this string representation holds great potentia for high-T; superconduc-
tivity since it produces evidence in favor of a fermionic string picture for the fermionic
magnons advocated in Ref. 2.

In this short chapter we address the problem of solving exactly the Chern-Simons loop
wave equation in the formalism proposed in Chapter 1 and Chapters 9-16.

13.2. TheFermionic String Representation

Let us start our analysis by considering a set of multiplet scalar field 3(x) interacting with
an U (N) non-Abelian Chern-Simons gauge theory (in the Euclidean sector) in 3D with a
nongauged “flavor” group SO(M):

LB, BT A) = 71001~ 9B + & THIA DA~ deAy

FoALAL), =123 (@) =1....M] (13.)

Physically the Lagrangian in EQ.(13.1) may be thought of as the effective Lagrangian
obtained by integrating out the quark sector of the Weinberg-Salam electroweak theory at
finite temperature and in the very-low-energy regime.® After integrating out the Gaussian
action of the scalar field 3(x) and expressing the resulting funcitonal determinant as afunc-
tional in the bosonic loop space (Chapter 1 and [5], [6]) we get the following expression for
the theory’s Euclidean vacuum energy (Ref. 7):
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Z= < exp [— PRI @Cs[cxx] > (13.2)
Cix

where ®°S[C,,] is the usual (normalized) Mandelstam loop defined by the loop Cx and the
Chern-Simons gauge field Ai(a) (X).The quantum average in Eq.(13.2) is defined by the pure
Chern-Simons action of Eq.(13.1) and the sum over the loops Cyx = {Xi(5),0< o < T} is
given by the bosonic loop path integral

%:—/:d%/dB’x/ _ DFX(0)lew <—%/(;TX2(G)dG>. (13.3)

X(0)
X(T)=x

In Ref. 1 the factorization (Ref. 6) of the averages of the products of Wilson loops
on the basis of a diagrammatic analysis was presented. As a consequence of this result
the nontrivial dynamical content of Eq.(13.2) isentirely given by the quantum Wilson loop
which isturn isamatrix in the “flavor” space SO(M):

Wia) () [Cod] = §<Tr<°> P [exp (i fc‘m/sq(xw))dmc))] > (13.4)

In order to deduce a loop wave equation for W) (n) [Cx], @s in chapter 9, we at first
consider the covariant version of the loop Cy by introducing an intrinsic metric e(c) on it,

Cax = {(Xi(0),€(0));0 < 0 < 2m;%(0) = Xi(2n) = x},
and by replacing in Eq.(13.4) the tangent loop vector dX,(c) by its covariant version
dXi(o)/e(c). By shifting the Aj(x) variable and introducing the Mandelstam scalar area
derivative §|c|(X(0’)) at an arbitrary point X(o’) € Cx, we get the following unrenormal-
ized covariant loop equation (A = g°N): 14

d . 2n dX (G) de (G/) Ne. s(3) /
Ww(a)(b) [Cx(0)7x(2n)] = k% ) W Xk(0")gi k0" (X (o) — X(0'))
x Wiay (c) [Cx (0) x(0)[WMe) (b) [Cx (o) X (2)] (13.5)

2n
where the line integral 4 means that only the nontrivial self-intersection loop points

0
Xi(o) = Xi(o’) with 6 # o’ contribute to the integrand in Eq.(13.5) since the condensate
term (F2(x)) vanishes identically in Chern-Simons gauge theories (see Appendix A of Ref.
4).

In order to solve Eq.(13.5) by means of a string theory as exposed in Chapters 9 and 10
let us consider an arbitrary (but fixed) 3D surface

Y ={0i(0,0;0<0<2m0<{<T;i=123}
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possessing as a boundary the loop Cy [this will aways be possible if ¥, is a homology
three-sphere (Ref. 1)].

Let us introduce in ¥ an O(M) (neutral) spinor structure (5 (c,) together with a
metric structure {g,v(c,0);u,v = 1,2]. We, thus, consider the following O(M) fixed-area
string propagator (the reader should compare this with the QCD[SU (e)] string propagator
of Chapter 9):

Gayv) (Coc A) = / D[] D°[wal{ [W(a) (0,0) (1) (27,0) }

<o [Mao / dtyfo(0:0)-A) e (- [ "o [ ae(i DI (6.0))

( A @40 o2’ [y/a(e", &) () (8,8

e(o)
<3><¢| (0',8) =X (0))e " Tik(01(', c’m) (136)
where [J4 denotes the covariant Dirac operator associated with the intrinsic metric g,y ,
Tik(0(0',8)) = [(1/vh)e"9,010,6"](¢", )

is the (normalized) orientation tensor of the surface Y, at the point ¢;(c’,{’) and ,/ means

that only the nontrivial self-intersection points of the surface Y, with its boundary C, con-
tribute. The intrinsic metric g, satisfies the boundary condtion gIir(r)w+ g(o,0) = e(o) and

the intrinsic fermions y(o, {) satisfy the Neumann condition CIir(r)1+ sV (0,8) =0.

Let us remark that the A-interaction term in EQ.(13.6) for nondynamical fermions,
(ﬁ(a)llf(a))(@ €) = u = congt, is topologically invariant, being an entanglement index of
the loop Cyx with respect to the surface Y. Asaresult our string propagator depends func-
tionally only on the topological class of the Y, surface. Thisis one of the reasons that we do
not consider surface fluctuations in the above-written string propagator.

It isimportant to point out that it isinconsistent to consider string solutions for Eq.(13.5)
which have surface fluctuations since these flucutuations will lead one to consider second-
order loop wave equations for Wi, ) [Cxx] @sin QCD[SU ()] whichisnot the casein Chern-
Simons gauge theory since it has a nondynamical content (ViFk(X)W[Cx]) = 0. However,
the area A induced by the intrinsic fluctuating metric g, still is avariable quantity since the
metric structure on Y, is fluctuating in EQ.(13.6). So, our string representation differs from
that suggested in Ref. 1. Eq.(13.22). Another important remark to be pointed out is related
to the conformal invariance of the O(M) string propagator in Eq.(13.6). This propagator
has its conformal anomaly canceled if M = 26, producing, thus, a noncritical string.

Let us show that Gg)(n) (Cux,A) satisfies the same loop equation, Eq.(13.5). In order
to write the area equation for Gg)(n) (Cxx,A) We evaluate its area partial derivetive asit is
exposed in Chapter 11:
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aiG 1) (Cx,A) = — lim {/chﬂV8</c)2nd0/()TdC\/m_A>

{—0t

- ( 2\/’900 5900? ,c>> @ S ] (=0

where the pure fermionic string propagator is
- _ 21 T _
o Gl = /Dcmwa)(o,omb)<2n,0>e«p(— o [ dacwpano)
2n
e (- do—4 4o’ [ dt/o(o.0) ) (o, )5
x (¢1(0',8) =X (0))€] Tjk(¢|(o’,C’))>- (13.8)

By canceling the conformal anomaly by choosing M = 26 and evaluating the boundary
limit of Eqg.(13.8) as in Chapter 9 we get the following result for the right-hand side of
Eq.(13.7):

0

2n
9AC@OCxOx (2 A) =1 dXi (0)dX;(0')Xk(0")ei k8 (X (6) — X (c”))

% G(a)(c) (Cx(0)x)0): A) G()(b) (Cx (o)X (21): A)- ©

The above-written equation coincides with the Chern-Simons loop wave equation in the
loop proper-time gauge.
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Chapter 14

Fermionic String Representation for
the Three-Dimensional |sing M odel

14.1. Introduction

It is well known that the partition functional of the three-dimensional (3D) Ising gauge
model can be rigorously described on aregular lattice in R® by a sum over self-intersecting
surfaces [1] on this lattice manifold (here after denoted by Z3):

Z[] = (coshp)N ¥ {exp [—A(S) (lntanlhﬁ>}q>[6(3)]}, (14.1)

{S}cz?

where the sum in the above written equation is defined over the set of all closed two-
dimensional surfaces Sc Z2 with aweight given by the (lattice) areaof S; N is the number
of the plaguettes, 3 = J/KT denotes the ratio of the Ising hope parameter and the tempera-
ture. The presence of the Ising model functional ®[C(S)] inside Eq.(14.1) isafurther weight
given by the famous sign factor defined on the manifold of the lines of self-intersection 6(8)
of agiven surface Son the sum Eq.(14.1). Itsexplicit expression is given by

®[C(9)] = (~1)'C5) = exp(inl [C(S)]}, (142)

where 1]C(S)] denotes the total length of C(S) c S

It has been argued elsewhere [2] that the dependence of the 3D Ising model partition
functional Eq.(14.1) on the area of the lattice closed surfaces Sis a strong indication that,
near its critical point, some formal continuum string theory representation should be possi-
ble.

In this chapter we address the problem of writing ageometric string path integral involv-
ing only the string world-sheet geometry asin our previous work [3], which upon fermion-
ization possesses formally on the lattice the same partition functional given by Eq.(14.1)
after a“replica’ limit. This study is presented in Sec. I. In the same section we show the
usefulness of our proposed string framework for the 3D Ising model by writing in the lattice
the associated partitional functional in the presence of an external magnetic field.
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14.2. The Proposed String Theory

In our previous study, we proposed on formal mathematical grounds the following geomet-
rical path-integral as a continuum limit of the sum Eq.(14.1) without the sign factor [3]:

Z(of) = | 5™ iga, X155} (G — 0aX'9X)
X exp [— anal [ jdzg (%\/ggabaaxiabm> (g)} . (14.3)

The abovewritten string path integral isthe same asthat considered by Polyakov [2], but
with afundamental difference: we have used a covariant functiona restricting the intrinsic
metric field gap(§) to be the string world-sheet-induced metric. As a result, the physica
quantum theory obtained after integrating the ga (&) field depends only on the string vector

position [after considering ((2mo!' )~ = 1)] and the metric piece hg} (€) related to the metric
module space associated with the nontrivial topology of S(see Chapter 12):

z= / d"*h / D |
Y
x [ jdza(\/ﬁhgi}aax‘a%)(é)]
xexp[— <E>/ a2 {v/h) hipom

48m _

>< [In(h;fﬁaaX‘abx>]anun<hé?&aa’xia”m1}<a>} . (14.4)

At this point we proceed by analogy by searching a continuum functional defined on the
physical geometrical string degrees of freedom leading formally on the lattice to the sign
factor ®[C(S)]. Our purpose is to consider a new intrinsic field Q(&) taking values on the
SO(3) group with asimilar role of the intrinsic metric field in Egs.(14.1)-(14.3). We have,
thus, to consider in Eq.(14.1) besides the terms already written there, afurther path integral
over the Q(&) field with a weight given by a c model action added with a Wess-Zumino
functional T'\wz(Q) and the following SO(3)-invariant § functional:

8(F) (i (8) — Gij (& X, [gab)))- (145)

HereG; j denotes the (covariant) Cartan matrix relating the orthonormal basise; = (1,0,0),
& = (0,1,0), and &3 = (0,0,1) to the orthonormal basis defined by the tangent vectors
{v1(§),v2(&)} and the normal vector {v3(&)} on the string surface at the point {X'(&)} [4]:

6 = C/:\ij (év]xi]v [gab])vj (é)? (14-6)

where
W (€) = 9:X D (&) /(01X3gM91 %) V2, (14.7)
vy (8) = 92X 1) () (02X°602%a)) 2. (148)
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i) o [ Va(E) Ava(&) \V
v (5)= <|v‘1<&> AVz<a>|> (149)

The geometrical string path integral to be considered now is given by (see Chapter 10)

Z(of) = [ d°ulgas; X'|DER% (8L} (G — 9aX 3% )8 (2(8) ~ C(&. (X' [g]))

X exp{—% /J:o dzé(\/ﬁgabaaxiabxi)(é)}

cep{ -5 [ dVaTIR @8 |

x exp{4nilwz[Q]}. (14.10)

where the quantum meaure defining the o-quantum model is the invariant SO(3) measure
associated with the invariant metric

ds — /:mdzé[\/ﬁTr(Q‘léS(Q)z](é). (14.12)

It is an important step in our study to consider the fermionic version of the above dis-
played 6-model path integral as aresult of the presence of the Wess-Zumino functional in
Eq.(14.10): (see Appendix 22-E).

Z(of) = [ @ plgans X0 g X0 [y i 550 G~ 9aX 30X,
<P~ | PEUVEPIXX)E))

- 3
X exp{—%/Jr d?¢ [2 (vVOUA(Y*Va)wa)(€)
—e A1

} (14.12)

Here, the Dirac curved space-time matrices satisfy the usual (Euclidean) anticommuting
relationship {y2(£),y?(€) } = g™ (&) = €, (£)€™ (&) and the spin connection isgiven by the
following expression involving the surface Cartan matrix:

wa(€) = v (£)(C0:C)(8). (14.13)

Let us now give a formal argument that the string theory EQ.(14.12) represents the
3D Ising model at a replica limit on the geometrical fermionic degrees of freedom. In
order to implement such an argument, we introduce N copies of the fermionic field
{(w™ %Y1 < m< N} in the fermionic action Eq.(14.12). After integrating out these
fermion fields, writing the fermionic functional determinant by the Grassmanian proper-
time technique implemented on the surface loop space (see [5], Appendix B) and using the

well-known replica limit on the fermion species, we have the following loop space path
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integral for the fermionic effective action in Eq.(14.12) (see Chapter 18 for details):
Ilm(detN( AV,) —1)/N

/ dT exp(—1 (Ca)T) /+ 0?2, /9(6)

Mo [ DCatIDmlt)

X exp <i /0 "t na(t)dCa(t)>
X Poirac {Pxp (i /OT dt(v*1a) (t)> }
% Treo(s) {exp {i /0 "t ((6—1aa6) ® dcd—at(t)ﬂ } } (14.14)

where {l4(t)} belongs to the manifold of closed bosonic trajectories on the string surface
and {ma(t)} the Grassmanian degrees of freedom associated to the 2D Dirac indexes. If
one considers formally the above replica limit on the lattice, one can see that the Wilson
loop defined by the Cartan matrix in Eq.(14.14) coincidess exactly with the sign factor as
Sedrakyan and Kavalov showed by using topol ogical-homotopical techniques.

As a consequence, we have the following string representtion at the critia point for the
3D-Ising model with f = arctanh(e~1/2),

Zitical point [B] = / dcovlu[gab;xi]at(:g\z(gab - aaxiabxi)
1 e :
cop (5o [ FE/EFIXX)))

x lim {detN(Y“—Va)_l} (14.15)

N—0 N

Thisis our main result in this chapter.

It is worth remarking that al of the above results are of a forma mathematical nature
and real checks will be to compute (at least numerically) physical quantities. However, one
can use Eq.(14.15) to suggest some new formulas on the lattice. Let us show the usefulness
of Egs.(14.12)-(14.15) by coupling the proposed Ising string theory to an external magnetic
field H(&) by means of the well-known string electromagnetic flux action (see Chapter 10):

exp{——e | Joenixd@pax >}<§1mwﬁ>w) ©. (1416

By considering the replicalimit of the resulting string path integral asin Eq.(14.14), we
obtain as a candidate for the partition Ising model in the presence of the external magnetic
field the following sum over closed surfaces on the lattice:

Z[B,ef] = (coshp)N 3 {@(p[— (lntanlhB>A(5)}

{S}cz3

x ®[C(9)] x W[C(S)]}, (14.17)
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where we note the appearance of the usual Wilson loop defined by the 2D-closed loops
{I3(t)} onthe surface Sand the external magnetic field:
. ~ dCy(t)
W[C(S)] = ex |e/ H[ch(t L)} 14.18
csl= T1_{en(ie] Atcon®s (1419

{C(5)cs}

where H2[CP(t)] is the restriction of the surface magnetic flux Hi(X1(£))0aX;(€) to the
2D loop {I2(t),a = 1,2} which are obtained from the string surface parametrization by
supposing an implicit relation of the form [§ = (&1,&7)]

&= B(E1) = X' (E1,B(E1)) = X' (C1(E),Ca(E)). (14.19)

References

[1] EJ. Wegner. J. Math. Phys. (N.Y.) (1971) 12, 2259 ;
Luiz C.L. Botelho, CBPF Report 1986 No. NF-044, (unpublished).

[2] A.M. Polyakov, Gauge Field and Strings (1987) (Harwood, Chur, Switzerland, .

[3] LuizC.L.Botelho, Phys. Rev. (1994) D 49, 1975 .

[4] Shlomo Sternberg, Lectureson Differential Geometry (Chelsea, New York, 1983).

[5] Luiz C.L.Botelho, Phys. Rev. (1995) D 52, 6941 .






Chapter 15

A Polyakov Fermionic String
as a Quantum State of Einstein
Theory of Gravitation

15.1. Introduction

In recent years a new quantization of Einstein gravitation theory has been pursued by sev-
eral authors, which seems appropriate for writing explicit solutions of the Wheeler-De Witt
equation. It makes use of the so called SU (2)-Ashtekar-Sen connection as dynamical vari-
able (see Refs. [1,2]) which has the geometrical meaning of being the projected spin con-
nection on the space-time (three-dimensiona) boundary [3].

A linear wave equation for this new quantum gravity dynamical variable was derived
which supports a Wilson Loop solution (see Chapter 7).

In this chapter, following our previous studies in this subject (Chapter 9-Chapter 10;
[4]), we consider a new solution for the above mentioned equation defined by a Polyakov
fermionic string functional integral (Chapter 9 and [5]).

15.2. The Quantum Gravity String

Let us start our analysis by considering the following Polyakov string functional integral in
the presence of a SJ (2) connection A, (x)

3
GrslAu (i1 (0)] = [ ™ ulgreld* . Wd™ui X (; Wh(0,0)¥5(0 2n>1>
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xexp{ ,uo/ dé/ do( &0))}exp{——/+wdé/ dcngBaAXﬂaBX)(gc)}

1 [+
x exp| -5/ d& dcs

- {("”@((59+e(vAaAgﬂfo,(xp)m>(ag+e( AaA)é“)(Aé(xp)m)( ﬂ(‘;’ 0)} 15D

The open string surface {X*(&,0),u = 1,2,3} is immersed in the space-time (three-
dimensional) boundary and does not possess holes and handles. The string surface parame-
ter domain istaken to bethe half-strip R%n ={(&,0,—o0 <& < +00;0< 6 < 21t} without loss
of generality. The Polyakov two-dimensional quantum gravity (string) metric is denoted by
(9re(&,0))] and satisfies the trivial topological condition [* d§ [§ do(,/GR(9))(§,0) =
2n. The two-dimensiond intrinsic fermions Dirac fields belong to acomplex SJ (2) funda-
mental representation and are denoted by {y (€,6); Wh(&,5)} with the subscript A associ-
ated to the two-dimensiona string (Euclidean) Lorentz Group SO(2) and the superscript i
associated to the U (2) group index. The interaction of the Polyakov string and the SU (2)
three-dimensional Ashtekar-Sen connection is given by the explicit interaction of the J (2)
connection flux and the intrinsic fermion current as in the U (2). QCD gauge theory (see
Chapter 10).

The functional measures in the Polyakov string funcitonal integral are the well-known
De-Witt covariant functional measures with boundary terms (we take the string boundary
X,(0,0) =1,(c) to have zero geodesic induced curvature [6,7]).

Let us show that Eq.(15.1); which may be considered as the Polyakov string propagator
withaSU (2) QCD action and describing the “ creation” of astring {l,(c)} from the vacuum
{0} inthe (Euclidean) space-time boundary; satisfies the Wheeler-De Witt equation in terms
of Ashtekar variables [4]

ik i & ) _
<£J Fiv(A)(X) x 76A),(X)5A5(S)> GalAu(x),1,(c)] =0. (15.2)

A straightforward calculation shows that [4]

| 62
/M d3x (s‘kF (A)SA,,S A5>( X)Gag[Au(X),14(0)]

~( o, g0 [, 0 (/DEDNVDE )X ED)EPXE.)
(2)

(00l (& ) XH(E o) 16w (6,0) (T ) €.
< (EREL () (X <ac>>> (153)
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where () denotes the string average defined by the covariant string path integral equation
(Eq.(15.2)). €2(u)as = 32 1 Wh(0,0)Wk(0,2n)) isthe constant matrix fermion number den-
sity projected on the string boundary £, (o)

In order to evaluate Eq.(15.3), we note that the condition that the string surface
{X*(&,0),u =1,2,3} does not posseses self-intersections leads to the following regular-
ized expression for the delta-function string surface term in Eq.(15.3)

53 (XP (£, 0) ~ XP(,0')) = m SE-EW(o—0)-50(e)  (1549)
with
h = det(hag)
he = (9aX"BeX,) (&, 0) (15.4b)

where 8§1) (0) is aregularized form of the singular term §(Y(0) (see Ref. [5] for details).

The evaluation of the fermionic functional integral average in EQ.(15.3) is straightfor-
ward, since in two-dimensional QCD (SJ(2)) one can use the Roskies gauge decoupling
fermion gauge [9.9] and thus, the ultra-violet limit implied by Eq.(15.4) leads that the
average of the fermion currents in Eq.(15.3) is effectively defined by Fermion free fields
(asymptotic freedom). It yields terms of the form

(SP_«ASBB + SKASB_B + SA_EB_B + SBTBsA_A) [928(1) (O)] (an'u)(‘; G) (aBXV)(‘Za G)
) h(XP(E.0))
Fuv (A(X®(&,0)) (15.5)

2,2
Rl

X

where the UV regularized form of the fermion propagator used to obtain EQ.(15.5) is given
by

i (5 oy (e @ = (0DE—EF+a)+ilr)(0—0'+3)
S6((60)iE. )Y = T a0 (158



204 Luiz C.L. Botelho

By absorbing the two-dimensional UV infinity a — 0 in the bare model coupling con-
stant e26£1)(0), we can follow the argument of Refs. [2,4] to conclude that Eq.(15.5) van-
ishes identically as a consequence of being a contraction of the antisymmetric (u, v) tensor
Fu (A(X*(€,0))) and the (u,v) symmetric tensor in front of the above mentioned tensor in
Eq.(15.5). It isworth pointing out that we have used the Polyakov conformal gauge

9ms(&,0) = "5 55 (15.7)

in the above calculations in order to factorize the metric field dependence of the fermionic
propagator under analysis.

Ancther important observation to be made is that proposed Polyakov string quantum
gravity state Eq.(15.11) contains the usual Wilson loop quantum gravity state celebrated in
the literature [1-3] as a smple overal factor. In order to show this claim it is enough to
integrate the fermions fields in the string path integral to obtain the result ([2])

Gl (:1,(0)] = Traa, P expie f A,0x | u S
et ((Bg+ BXUE ) (Pt BIXUEOA)) (159

where the two-dimensional QCD external J (2) gauge field entering in the fermion funci-
tonal determinant in Eq.(15.8) is given explicitly by the 2D surface induced U (2) gauge
field

BAX*(£,0)] = (A,(X*(€,0))A) (0aX" (€, 0)) (15.9)

Note that the appearance of the Wilson Loop functional in Eq.(15.8) is nothing more
than the (boundary) fermion propagator associated to our dermion boundary current in
Eq.(15.1) projected on the spatial loop |,(c) = X#(0,05)(X#(0,0) = ).

Let us comment the results presented in this chapter differ some what from those of
Ref. [4] since here we have not considered the theory of self-avoiding string neither the
restrictive Ashtekar-Sen connection boundary condition (d;,F*"(A)(x) = 0); both conditions
necessary to obtain the validity of the results presented in this reference.
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At this point of our chapter, the question of physical observable suitable to our string
guantum gravity state Eq.(15.1) should be considered. We start our discussion on this very
important question by calling attention that it remains an open problem to understand canon-
ical quantum gravity in light of the Copenhagen school interpretation of quantum mechan-
ics. In the Wheeler-De Witt (canonical) frame work, there is no time parameter in the as-
sociated quantum gravity Schrodinger equation (the well-known Wheeler-De Witt equation
(Eq.(15.2))) (see Chapter 11).

As a consequence, the operation of taking quantum system averages makes no sense
physically for the observer. Not that there are no bound-states, currents, energy observ-
ables, etc. in the canonical Wheeler-De Witt quantum gravity framework. Thereisonly, in
principle, the “vacuum” state of the 3D geometry satisfying the homogeneous Wheeler-De
Witt equation and that was the main reason for the search of new field parametrization in
Einstein quantum gravitation theory. We remark that among these frameworks for Quan-
tum Gravity the Ashtekar-Sen parametrization is the most promising scheme devised until
now, since it leads to a mapping of the 3D metric field to the well studied SJ(2) gauge
theory (the old Faraday line interpretation for fields) and making, thus, the origina non-
linear Wheeler-De Witt eguation a linear wave quation in terms of these new variables
(Chapter 7).

However, some geometrical (non-physical) objects have been studied [9] and leading
to the result that the Ashtekar-Sen-Smolin Wilson Loop associated to smooth loops are
eigenstates of these geometrically operators with eigenvalues given by the entanglement
index of these infinitely differentiable loops with the smooth surface and smooth volume
which are fixed by an (somewhat unphysical) observer measuring area and volume in the
3D geometry.

Following these attempts to eval uate formal observablesin order to get abetter insight in
thisvery difficult problem, we remark that our string quantum stte may be useful to evaluate
akind of spatia gravitation propagator given by the dollowing quantum state average (see
appendix of Ref. [5])

—_—

(GlA; 4]l (vagT) (x) (vag! ) (x)]0). (15.10)

This object has a formal meaning of describing the process of a “spatial graviton”
propagation from the pure vacuum state (nothing) to our proposed string state equation
(Eq.(15.1)) defined by the Ashtekar-Sen connection A, (x) and loop | ,(o).

Following the Copenhagen School interpretation, we substitute the metric operations
below [2]

(v/3gT)(x) = 8%/3A, (x)3AL(X) (15.11)
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(VGG9)(y) = 8 /8A ()AL, (y) (15.12)

inside the Polyakov string path integral representing the non-trivial quantum state in
Eq.(15.10). As a consequence, we can easily write the “3D graviton propagator” as a
two-point Polyakov string scattering amplitude associatred to our proposed string theory
Eq.(15.1). Studies of the possible relevance of these scattering amplitudes for quantum
gravity will be intentionally left to our readers.

Finaly the argument that another surface solution with a topology of a cylinder may
be obtained by simply taking the Wilson loop of the Ashtekar-Sen connection along a one
parameter family of closed loops in the spatiamanifold, and integrate the resulting one-
parameter family of numbers over the parameter isnot correct since this object is not defined
asafunctional over the surface vector position {X,(&,c)} and, thus, losing all meaning of a
functional of the cylinder surface. The above cited construction is nothing more than a su-
perposition of the Wilson L oop solutions which still satisfies the Wheel er-De Witt equation
written in terms of Ashtekar-Sen variables, since this Schrodinger quantum gravity equation
islinear inthis J (2) gauge field parametrization. Asa consequence of these remarks, this
kind of superposition loop solutions do not bring new features besides those aready studied
in Ref. [9]. Note that our proposed solution being a string theory opens the possibility of
using al machinery of 2D-quantum field models (see Chapters 16 and 17 and [10]-[11]) to
understand four-dimensional Einstein quantum gravity.
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Chapter 16

A Scattering Amplitudein the
Quantum Geometry of Fermionic
Strings

16.1. Introduction

Polyakov [1,2] has developed aformalism for closed strings quantization, later further gen-
eralized by including the case of open strings [3-5].

Animportant problem in the formalism concerns the definition of a scattering amplitude
for these strings, whose knowledge affords (in principl€e) the determination of the associated
spectrum. A natural definition for these scattering amplitudes remains, however, the main
problem. Probably its complete solution will require the determination of the exact QCD
string (Chapter 9).

Inthelack of aQCD scattering definition, a suggestion for the closed bosonic string was
put forward by Polyakov [1] and generdized for the bosonic open string case in ref. [3].
A remarkable feature of these scattering amplitudes is that the standard dual (VVeneziano)
model can be easily obtained in a saddle point approximation [3].

Our aim in this chapter isto propose a scattering amplitude for the open fermionic string
[2,5] with the property that the spectrum does not possess the usual tachionic excitation
in the saddle point approximation D — —eo, and leading thus to the solution of a long-
standing problem in Quantum Geometry of strings as the correct Dual Modd theory for
Strong Interactions.

16.2. The Scattering Amplitude

Let us start our anaysis by considering the fermionic string action in a D-dimensional
euclidean space-time [2,5,8,9]; namely

SOX(E). W (). EE1(0)] = | dee®)5d,0Va0 g Sy, D
~ 5P 516w (00 )‘Z‘Xv"’( >>]<&>. (161
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Here the fermionic string is charactereized by two fields; firstly, the vector-position
0™ (&) (A=1,...,D) and secondly by y® (&) = (y{¥ &),y (€)), a two-dimensional
Majorana spinor describing the string fermionic degrees of freedom. 9 denotes a two-
dimensiona parameter domain (embedded in the euclidean space) with the boundary de-
noted by 0. The presence of the vierbein (&) and of the two-dimensional vector-
Majorana spinor y,,(&) together with the auxiliary scalar field F (&) insure respectively that
the action (16.1) isinvariant under general Lorentz and coordinate trnsformations, and local
supersymmetry transformation [5,8,9].

The average of afunctional W (o™ (&), (&)) defined on the fermionic string random
surface is given by the following prescription:

Wi @.v ¥ @) = 7 ([ Dlo® @Dl
< DIEE(E)] - Dit©) (-5 (6. Q). (0 GIWHH ©.w A @) ). 162

where Z denotes the usual measure normalization factor.

The functional measuresin (16.2) are invariant under local supersymmetry, and genera
Lorentz and coordinate transformations. They are obtained as the functional element of
volume associated to the following functional Riemann metrics (Chapter 1):

130112 = ( ] cze(e)Bo @) 36 @)]) + a2 04 €)W D). (),
(16.39)

3912 = ( [ Pea@ibn @) ou N @) ) + Talu(E). 0% ©.0 N €. ),
(16.3b)

/

8632 = < || ceel) e o (568 (665) + cetlf (865 (86 ) + Cewue™ (deke (36f) <8ea,,/>]>

T3(4u(8), 0™ (€), WA (). €(©)), (16.3¢)

15,017 = ( | Peeeladn, 51,61 ) + Tala() 0™ vV E). ),
(16.3d)

wherecand ¢’ > 1 arearbitrary constants and T (x,,(£), 0V (&), W (§), €(€)) (i=1,...,4)
represents term of these functional metricswhich vanish for x,(§) = 0 and insure invariance
of the associated element of volume by local supersymmetry transformations. As we will
explain below, its explicit expression is not necessary.

For the evaluation of the average (16.2), one has to fix the gauge associated to the local
symmetries of the action (16.1), quoted above. As proposed by Polyakov [2], a natural
gauge is the super-conformal gauge specified by the relations



A Scattering Amplitude in the Quantum Geometry of Fermionic Strings 211

€(8) = exp[3(€)]5, e(€) = exp[25(8)] = p(§)), xu(€) = %m(%) = exp[—%ﬁ(%)]m(é)-
(16.4)

Thus, the integrand becomes an effective functiona of thefieldsd(§), £(&) and an auxil-
iary field (&) necessary to insure the remnants of the local analytic supersymmetry, which
are not destroyed by the gauge (16.4). Because of this residual symmetry, we can evaluate
(16.2) for x,(§) = 0 and use this residual super symmetry to determine the dependence of
the effective integrand in terms of the fields {(&) and (). We notice that, as a conse-
quence of this fact, we need not know the exressions T (3, (), 0 (E), WM (€), €(€)) in
(16.3a)-(16.3d).

After having described above the formalism to compute averages in the theory, we now
pass on to the problem of defining an off-shell scattering amplitude. For thistask, wefollow
our basic idea: the proposed N-point of-shell scattering amplitude is given by the sum over
all fermionic random surfaces which contains agiven set of fixed points {X;} (j =1,...,N),
i.e.: (see Chapter 8)

AKX <Hd2a 605 ® (6™ (&) + 100w (&) + 109y ;) >>,

(16.5)

where 0@ (&) + 00yl (€)) + 165wV (€;) denotes the “fermionic-position” of the

fermionic string random surface with (6(1 ),6(2 )) grassmanian parameters, and H'J-\'Zl dzéﬁH)

isthe Mobius invariant Haar measure, which takes into account the (physical) residual sym-

metry of the projective group not fixed by the conformal gauge €(€) = exp[8(£)]55 . Their
explicit expression is given by

N N
[To2g™ = TT d%;/e — Eal?|&c— Eal® (16.6)
= j;«ia_t.é,c

The indices a, b, ¢ are fixed but choosen arbitrarily. We observe that the effective
number of integrated variables in (16.6) isN — 3 and is related to the maximum number of
mutually non-overlapping channels of the scattering process.

The physical spectrum is determined by considering the polesin the {X; }-Fourier trans-
formed expression for such amplitude, whose associated residues are identified with the

on-shell scattering amplitudes.
In order to evaluate (16.5) is convenient to write (16.5) in momentum-space:

~ - N
AP = ( [ TTeete) expi (B0 E IR ) FP g @)
Dij=1 F

where (; ) means the euclidean scalar product over the Lorentz indices.
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On the super-conforma gauge (16.4), the interaction lagrangian involving the
vector-spinor X, (&) vanishes and the functional integration over the “matter” fields
(0™ (&, (£)) becomes of the gaussian type. In order to evaluate these functional in-
tegrations we have to choose appropriate boundary conditions since we are in the presence
of a quantum theory defined in a two-dimensional space-time D with a non-trivial bound-
ary. At thispoint wefix the domain D asthe upper-half plane R} withthereal axis being the
boundary. Then, weassume asinref. [5] that the “ matter fields’ satisfy the supersymmetric
boundary conditions corresponding to the Neveu-Schwarz model (see egs.(16.3)-(16.7) in
ref. [1], we aso ref. [5]) and the Faddeev-Popov determinants associated to (16.4), the
boundary condtions as discussed in ref. [4].

By introducing the family of self-adjoint operators acting on an appropriate space of
two-component real functions on R} with boundaary conditionsindicated by N (Neumann)
or D (Dirichlet) [4], _ _

Li=(—p " 9zpl0,), (16.8)

we can thus perform the gaussian functional integration over the scalar field ¢* () with
the result

Det ®/*(3N) exp [— ( > <P§’*%P§A>>K<e><zj,zj,26<a7ﬁ>>>] , (16.9)

(i,j)=1

whereK(®)(z,Z,25(z,z)) isthe conformally regularized Green function for the laplacian in
the metric g, (z,Z°) = exp[28(z z*)]5,,» with the Neumann boundary conditions along the
real axis[3]. Its expression reads.

K (2.Z,28(2.2)) = —(1/2n)(tnz— Z||2— 2']) 22
=38(zZ")/2n— (1/4n)tne — (1/2n)ln|z— 2| z=2Z (16.10)

The integration over the Mgjorana fields w(A>(§) is carried out by using the fact that
the Green function (iy, Dﬂ)(*Nl) (z,zj), with the Neumann boundary conditions along the real

axis, is related to the corresponding flat propagator (iYaaa)(NJ}(Zi,Zj) by (see eq. (6.11) in
ref. [10])

(,D,)2(@.2)) = pl-3(z.2)] (vada) b (2.2) XP[-3(z;,Z))],  (16.11)

where
(iYada) ;2 2)) = (ivada) [~ (1/2m)(n(|2 — 24| |7 - Z]])]. (16.12)

As again the functional integration over the Mgjorana fields are gaussian, we get the
result:
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i o] (0]

<Y (H PA)) I1 ((waaa)(Nl (a,zj))ala2> } (16.13)

(i,1) (ou1,02)

wherethe X in (16.13) means that we have to sum over al ways of pairing the fermion fields
in (16.7) and the subscripts (o, 012) denotes the matrix indices of the propagator (16.12).

We note that N should be an even number. This implies that the Polyakov fermionic
string model possesses a quantum number which is subject to conservation and can be
related to the NS— G parity [11]. By evaluating the Faddeev-Popov determinants associated
to the gauge (16.4), we get the effective action and hence the final expression conformally
regularized for the n-point off-shell scattering amplitude.

A®)(Py.....Py) = 5 [ DBIDILDIf] e85 &, 1)

Uefoeren($aen ool - (et eam)

(W)

X [— (Zlﬁ(mzf))] <2H(Pi(A);Pj(A>) IT ((ivada) iy >(z ZJ))a1a2> }} (16.14)
I= (i.J)

(01,012)

where the effective action is given by the expression [5]:

8n
#31( ) deo(Crs0ly o) + g (1 [ P2 @@ - 310~ [ Aol o
- [ dulf + /028l o) | (1615)

S 1) = 15 | [ PEG087 - 5l (r-0)0- 5 1

It was pointed out in ref. [5] that theterm f (&) exp[8(&)] in (16.15) produces aLiouville
term after being formally integrated over f, avery important remark on the analysis.

Since the complete solution of the supersymmetric Liouville field theory in R was not
found yet, which would provide the complete solution of (16.14), we implement a saddle-
point approximation to evaluate (16.14) as introduced in refs.[2,5]: we take the Mg orana
field L = 0 and consider the classical motion equaiton for the resulting action [5]:

A8 = [D?/(10— D)2)uPe® —§/(&1)(ID/(10— D)] - £1{[D?/(10— D)2u€ + [D/(10— D) |ue® + 3, 5}).
(16.16)
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A solution of (16.16) having the property of vanisnhing automatically at the boundary
conditions is the Poincaré metric in RZ, namely:

8(€1,&2) = ¢n{[D/(10—D)]/u&1} = ¢n{[D/(10—D)]/ujz—Z'|}. (16.17)

By substituting this expression in eg. (16.14) and taking into account that the action
evaluated in (16.17) cancels out with the same term arising from the normalization factor,
we finaly get:

N
ATy = [, T @ H0120) (o) S —rfyen

: (ﬁﬁﬁ ~3lla —if‘l>> (R™;P)/m (ﬁm —z-*ﬁz/“—l)
j=1

i<j

N
ZH(H(A):P,-(A)( [T ((va%) ) (#:2i))oscs | - (16.18)

(i,]) (01,012)
i#]

In order to isolate the on-shell scattering amplitudes, we first have to find the polesin
the external momentum variables (P)? = (Pi(A); Pi(A)). Such poles occur when z and z*
come close together, i.e. the only contribution for the associated residues comes only from
the region /m(z) — O intheintegrand in (16.18). This phenomenon reduces the integration

over R} to the integration along the real axis. Asaresult, there exist (euclidean) poles when
(P)?/m—1=-1,-2,... or (P)?/n=0,-1.-2,.... (16.19)

Thisfact implies that the proposed scattering amplitude (16.5) leads to a spectrum with-
out the usual lowest state being a tachyon [compare with the bosonic case, eq. (4.21) in ref.

[31]-
For the lowest massless excitation, we obtain an expression similar to the S-matrix
elements encountered in the Neveu-Schwarz model [11]

S(Py,...,Py) = ((10 . ) [/+del (H\z—z, 2P, P_(A>>

i<]

> ﬁ 2P PP TT ((iva0a) 2(@:21))ones } : (16.20)
(ilyé]j) (oug,00)
where now
((iYada) M(Z,2j) ) = ((iYada) [—(1/20)¢0|Z — Zj[]) 005 » (16.21)

and the Mobius invariant Haar measure H’j\‘:ldlng) is taken over the real axis.
The next 1/D-corrections to the saddle-point analysis presented in this chapter are left
to our readers (see Chapter 7).
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Chapter 17

Path-I ntegral Bosonization
for the Thirring Model on a Riemann
Surface

17.1. Introduction

Analysis of quantum field models defined on Riemann surface as two-dimensional space-
timeis afundamental issue for strings field theory in Polyakov’s approach [1,2].

It is the purpose of this chapter to solve exactly the Abelian-Thirring model defined on
a Riemann surface in the framework of chiral path integrals, an useful calculational path-
integral result for our QCD string representation presented in Chapter 9-Chapter 16, for the
case of non-trivial string world sheet topology (next Nic—corrections).

17.2. The Path-Integral Bosonization on a Riemann Surface

We start our analysis by considering the Abelian-Thirring model associated to a complex
spin field associated to a spin structure (6',¢') of agenus g Riemann surface D(9)

2

LOW W) o9y = Wi Dy + - (w2 (17.2)

Here the Dirac operator is given by

ig'D, =iy?é& (8,, + %wyab(é)eabyg,) , (17.2)

where & are fixed background two-beins satisfying the topological genus constraint

/D . VAR(@) =2n(2-20) (17.3)
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R(Q) is the scalar of curvature associated to §,, and w,ap(4) is the spin connection
defined by the relation V.6, = 0.

They* = &y, Euclidean (curved) Dirac matrices are defined by the relationship below
(e D(g));

{{Y#aYv}+(§) =20 (%),

P (ENs = (’%) ©, (174

where v, are the usual flat-space Dirac matrices.

In the framework of path integrals, the generating functional of the Green's function
of the (mathematical) quantum field theory associated with the Lagrangian eq. (17.1) is
defined by the following covariant functional integration (Chapter 1):

2.0 = 55, [ I x| - [ dVELwR)E
cop |- [ SE(/EEw T (79
D)

It isworth pointing out that the classical action in eq. (17.5) isinvariant under the local
diffeomorphism group and the global Abelian-chiral groups acting on the spin field restrict
to any local region R of D@. These symmetries have the associated Noether covariant
conserved currents

Vu(Wr¥y) =0, V(') = 0. (17.6)

In order to implement the path-integral gauge and local diffeomorphism invariant
bosonization, we rewrite the fermion interaction term in the Hubbard-Stratonovitch form
by using an auxiliary vector field A, (&)

2951~ 5o | WAL xep |- [ LV, - oA)w+ SAA] @) «
<op|- [ FeVEpurimE].  an

Let us now proceed asin [4-6] by making the local field change in eg. (17.7)
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AE) = - (’3;@“) €+ A @), 178)
W(E) = (elivsn(®)]) - 1(®), 179)
(&) = 7(&) - explivsn(©)) (17.10)

where V¥ (A, — A;' )=0and A;' (&) isthe Hodge topological vector field which is explicitly
given in terms of canonical Abelian differentials ; and their complex conjugates w; [7]:

9

AlE) = anz(pi co, () +1iBL(8)), (17.12)
=1

ol (8) = —Qi(Q — Q) (8) + ¢ ;. (17.12)

BL(E) = (Q—Q);; 0}(&) +c.c. (17.13)

The period matrix Q is defined by

/'ai:gsm /‘ai:g;ij (17.14)
al b'

where @ and b' are (canonical) homology cycleson D(9.

Asit has been shown by Fujikawa [5], the transformation of egs. (17.9)-(17.10) are not
free of cost, since the functional measures d°[y|d®(y] are defined in terms of the normalized
elgenvectors of the covariant and U (1) gauge invariant Dirac operator eg. (2) inthe presence
of the auxiliary vector field A,, .

The associated Jacobian of egs. (17.9), (17.10) is given by [6]

i) = 60 * e oo (1719

At this point we note that after the chiral change takes place the new quantum fermionic
vacuum is defined by the fermionic field x(&) (with the same spin structure of y(&)) in the
presence solely of the Hodge topological field A;' (eg. (17.12)).
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The Jacobian associated to eq. (17.8) is[7]

-1 (B o) (BB

g iyl i @l
d°[A,] = d°fn] <<2n>29Hdpi dri> X det!/? <<°‘w°‘#> <“~’Bﬂ>> . ar)
where the covariant scalar product in the space of vector fieldsin D9 is defined by

(0,0 = [ o (VBT a05) ©) (17.17)

Let us remark that with this definition we have

(0, o)) = 20mey; . (17.18)

(had”

So, we face the problem of the evaluaiton of the ratio of two Dirac determinants related
themselves by achiral rotation:

_ det[explicysn]igat (D, + cA,) explicysn]
A= detfiy(D, + cAY)] | 4

By following the procedure of ref. [6] we, at first, introduce a one-parameter family
of Dirac operators interpolating the Dirac opeator iy* (D, + cAl') = D(A}) and the chirally
rotated explicysn)D(AY) - explivsn]:

DI (A,) = explivsinID(AL) - explicysin],  (0<{<1). (17.20)

By using a proper-time prescription to define the funcitonal determinant of D(® (after
making the analytic extension ¢ = —ic), we have the following differential equation for log
det D©):

_ [Yedo 2 d ©) ©)
+ lim F Tr (exp[—cs]D)(Q d—CP(Q> = I(l) [A,u] + I(o) [A#]>

e—0T Je
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where PO = 3, (626 {0® denotes the projection over the zero modes o> of the
Dirac interpolating operator D(%). These zero modes arerelated by an analytically continued
chiral rotation to those of D(A):

—

on ) = exp[—6ystn] - Y (17.22)

and
D(AH) -5 = 0. (17.23)

Since D(©)°(A,) is a self-adjoint invertible operator in the manifold orthogonal to the
subspace generated by the zero modes, we can use the Seeley-De Witt technique to evaluate
thefirst termin eq. (17.21) which yields

) . , .
I((lg)) (A = EILrgL Tr[€ysn exp[—cs]D)(“) J(1— ]P’(Q] |g/£ _

= - 27 |-ig(nJgau@ o ) + A (17.2)

The second term on the |eft side of eq. (21) is easily evaluated giving the result

/e do 2. d
©ra 1= li = _oD® ZLp©) =
lo) [A] EILr(r;+ = Tr (exp[ oD ]dCP >
. ~ —(0
= lim (4-1oge-O) Y, [ d®E(/Ga T )(©) (17.25)
- n

Thefina result for the functional determinants ratio eq. (17.19) is thus given by

(c®)?

ol =L [ e /Bang g @)+
L ®

T /D@ d%E [ (e F™ (AT) M)/ (&)—G(R)zn:/mg) (/G0 'ﬂgﬁO))(ﬁ),
(17.26)

here c(R) isthe usual multiplicative infrared coupling constant renormalization due to zero-
mode terms.

The generating funcitonal thus takes the more invariant form:
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Z[p,p] = W{O)/dm(pi,ri)Z(O)[p,E,(pi.n],

where the measure over the (p;, ri) parametersis given by [7]

g i i pi
) — 29, . <(X,L_H(X_y> <(XH76I_1>
amipr.ri) = (2n)- [1dp d”””(@ﬁ;» <BA,B;>>X

(17.27)

X exp {—an/;)(g) dzﬁ{\/é[(pkg_lki - ri)(BmQ)i‘jl(jS p— I’|)]}(§):| . (17.28)

The (bosonized) generating functional is explicitly given by

VPl = ﬁ/ ] expiw[d. 3, AL

(R)?
« [ e -3 (1— °—> [, &v/8g aumagm) &)+

T

+ (10 (D + P A7) (€) + (xexplic®ysn]p + pexplic®ysn]x) (€) |

(17.29)

~(g) =0
where the functional W[¢§]°),q>f] ),Aﬂ] is defined by the interaction with the (external) zero-

~ (0
mode fermion fields q>,2°>,q>,(1 ,

~ =~ ) ~ =
W6 Al = [ [(—u—e F*”(AH)n)+<—c<R>¢%°>n¢ff’)>] ).

(17.30)

We remark that the fermions (&) still interact with the Hodge topological field AH by
the minimal gauge invariant interaction ]D)(AH) and with then (&) field by the coupling Wlth

the source term.

Let us exemplify our main result, eg. (17.29), by displaying the general structure of the

two-point fermion correlation function
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—+oo

WG ()) = 5 [ dm(p, i) et (D, + CPA ]

(0) J-

ex —ELR)ZA—%:& DL(AH (17.31)
P |3 T grrm A (Guge) | DA, -

where A=1(€1,&>) is the Green's function of the Laplace operator on the Riemann surface
D@ and D~(Al) = (iv* (D, + cPA)) ~1(E1,&2) isthe Green's function of the Dirac oper-
ator with spin structure (6;,¢;) in the presence of the topological Hodge vector field A;' (€)
[1].

The determinant in eq. (17.31) was exactly evaluated ref. [1] and expressed in terms of
O-functions

detiv* (D, +cPAT) = I(Q)?-

o E * q(ﬂ (op)‘ . (17.32)

The Green’s function of the laplace operator may be expressed in terms of the theta
functions

Im(E, — )7

S0) (17.33)

A e E) = —% log [8[(81]€Q)] — B[(E2/Q)] [ +

Finally aformal expression for the Green's function of the Dirach operator is given by

(3]

c®
exp | —i——

<Aj+vss,NAVvH>d<:“] X (D (A s (1. E2) %

1,62

c® J v.H
X exp Jrl—/C (AL +vse0A)dE! |
3

2 1.62

(17.34)

where C;, ¢, is an arbitrary contour on the Riemann surface D9 which has a nonempty
intersection with each canonical homology cycles on D@ and connecting the points &; and

&.

As we have shown, chiral changes in path integrals even for fermion model on a Rie-
mann surface provide aquick, mathematically and conceptually simple way to analyse these
models, with potential for exactly evaluations on Quantum Geometry of Riemann surfaces.
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Chapter 18

A Path-Integral Approach for
Bosonic Effective Theories
for Fermion Fieldsin Four
and Three Dimensions

18.1. Introduction

Analysis of fermionic quantum models in four-dimensional space-time aways have been a
very difficult mathematical problem [1]. Fortunately, nonperturbative effective actions have
shown its usefulness to analyzing new phenomena in these theories, It isthe purpose of this
chapter to propose anew technique to arrive at an effective bosonic action, suitably adapted
from similar exactly obtained results on two dimensions. This main result of our study is
the content of Secs. 2 and 3. In Sec. 4 we present our study of Polyakov's Fermi-Bose
transmutation in the Abelian Thirring model in detail [3].

Finaly in Sec. 5 we comment on some papers in the literature related to the topic of
higher-dimensional bosonization and in Sec. 6 we present aloop space proof of the model
triviaity as a quantum field theory (Chapter 4).

18.2. The Bosonic High-Energy Effective Theory

We start this section by considering the generating functional for the correlation functions
generated by vectorial and axial currentsin atheory of Euclidean Abelian massive fermions
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in a Euclidean four-dimensional space-time R*

2V, AJ(m) = 555 | O OOIDF o)
x 8F) (9, (W) (x ))8< (I y(wv“vsw)—ZimW](X))
X exXp (—/d4[\|7(iy“8+m+y,,y5A,,+y,,V,,)\|f] (x)> , (18.1)

where we have taken into account in an explicit way, in the functional domain of integration
of Eq. (18.1), the current-charge law for the theory, in response to phase local variable field
change

W(x) — V000 dOatsnlys ()

W(x) = W(x)e 100 dontsul, o

It is worth pointing out that our fermionic functional measues are defined in terms of
the spectral set (eigenfunctions and eigenvalues) associated with the free massess Dirac
operator 4 = iy*d, instead of the full massive Dirac operator d(A,V) —m= iy*(d,+V, +
vsAv) + m, since the external sources (A,,V,,) are not dynamical and thus leading to the
absence of the axia-anomaly piece in the chiral current law associated with these fields.
Besides, the mass term is defined as a perturbation of the massess case as in 2D models
[4]. We now write the generating functional eq. (18.1) in aloca way by expressing the
functional Delta constraints in Fourier functional domain:

0] [ DFO(0I0F [0(x)

xexp| / dXgA(F¥r°w) (X09,0(4 — 2m [ d“x(ﬁw)(x)w(x)}

ZNa A

<ep| i [ atxn <u7y~w>aye<x>]

<exp| / d*uli AAV)+mly (18.3)

At this point of our study, we implement the phase variable change Eq. (18.2) into Eq.
(18.3) by taking into consideration the nonunity Jacobian associated with the chiral rotation
[Ref. 5 - EQ. (9)] and Appendix 22-E].

D" [W(x)]D" [(x)] = D" [(w(e"'9s e719%)) (x)]

TR detr [§9450 (. g)eonse]
x DF[((€9V2 d90)y) (x)] detr [i 7] '

(18.4)
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Theratio of the functiona Dirac determinants was evaluated in ref. 5[Eqgs. (18.17) and
(18.18)] and yielded the following functional weight for the chiral dynamical phase m(x)
(with aUV cutoff A):

detr [e'g“%m( P)€%%]/[dete (i 9)]
X exp g—A /d4x03(—82)w]

xexp: e /d4 (—0%0)(~3%0)( )]

xexp:lznz /d4 ©)2,0)2(—9%0)) (X )] (185)

By substituting Eq. (18.4) into Eq. (18.3) and by noting the validity of the equation

/ DF [\(x) e{H19a150-10v0) (] B f [ +18aT50+H1Gv0) (X) ()]

" exp[ [ aixcgese 90 pav)
+ me2094150) (1 | 2¢p) ] (€IR¥5HOOyp) (x)
=dete[i A(AV)+m(1+2m)exp(—2igaysm)]. (18.6)

we finaly aobtain the result sought in the leading limit of high ultraviolet region m — 0,
which improves those models studied in the second reference of Ref. 1.

Z[VmAﬂ](m)
1

- M/ DF [8(x)]D" [(x)]

A2 1 117
exp (/ d*xo(x) { (gA)flnz — D (EE —82] (x,y)} co(y))

><exp<12 2/o|4 (9,0)2 azm))(x)>
9 exp{ ~2 [[atdtyl(m1-+ 20) @) 7))

< (Vu + 1A 2) )] +0<m2>}. (187)
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Comments related to this effective high-energy bosonic field theory for the current a-
gebra of observables are made in Sec. 4 of this chapter.

18.3. TheBosonic Low-Energy Effective Theory

Let us start our analysis in this section by writing the generating functional for the cor-
relations functions generated by vectorial and axia currents in a theory of free massive
Euclidean fermion fieldsin R*

2V, = 57557 | D WOOID" i)

X Exp {— / d*(i AV, M) . (18.8)

Themain point of our approximate bosonization procedure for Eq. (18.8) isto introduce
a massive feermion field theory invariant under the field rotation Eq. (18.2) by eevating
the involved local (w(x),0(x)) to being dynamica degrees of freedom and functionally
integrating them out. As a consequence, we propose to approximate Eq. (18.8) in the
infrared region by means of the chiral-invariant functional integral with a mass parameter
term,

ZN,, AuJr = lim | D [@(x)]D" [(x)] / D" [y (x)]DF [w**) (x)]

< exp { ~ [t pav) + m)w”v“”(x)} , 189)
where the fields rotated in Eq. (18.9) are given by Eqg. (18.2):

Y00 (x) = VO ORIy (),

“7(97(1)) (X) = ﬁ(x)e‘ig\/e(x) eigA“{s(k)(X) ) (18.10)

We thus proceed in the inverse path of that followed in Sec. 18.2 by using the inverse
field variable change Eq. (18.4):
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ZNy A = fim [ D¥w(0]DF (6()
<op (T ) [ 00,00 (~20) )

-1
A 1 1
X ep (/ 4w { (G | o+ (B (—82)] }(X’y)w(y) )

x detg [I ﬂ(Vy + |gva'ue,A# + igAay(u) + mexp(2| gA’Ys(.l))], (18.11)

where Ag denotes the intrinsic cutoff from the original fermion field theory (see Chapter 6),
which, by its turn, determines the effective energy scale where our effective bosonic theory
is expected to be working.

Let us now anayze the fermion functional determinant involving the sources in this
low-energy limit m — oo, At thislimit, we can easily improve the asymptotic expansion in
terms of the inverse power of the bare mass parameter m of Ref. 6 by approximating the

term mexp(2gaysw) by the simple mass term m (this procedure being correct only at this
limite of m — o).

We thus consider the following differential equation for this functional determinant,
where the parameter sranges in the interpolating 0 < s< 1.

lim dﬂs {dete[i A(S(V, +i0v9,0); S(A, + igad,®)) +m]}

- /O Tt e ™ ¢ Tre [(¥V, -+ vsreAl)]
x [i A(S(Vy+19v0,0); S(A, + gad,m)) + m|
exp{—t[i A(S(V,+igvd,0);S(A, +igad,m))]?}. (18.12)

By applying the saddle oint technique to evaluate the Laplace transform (see Ref. 6),
we obtain the leading effective infrared effective source-dependent action

2
St (Au, V)R = exp{ + (m‘%f)/d“x([vy + ig\/aﬂe)2

+ (Au+ igAau(D)z(x)] + [C]-F,u%/ (A) — CZFyZ\/ (A)

R (P (A0 +O((miAe) )} (1813
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Hence ¢; and ¢, are positive constants whose values depend on the regularization
scheme used and the Dirac matrices representation. By substituting the massive Abelin
gauge field (source) action above into the functional integral Eq. (18.11), we get our pro-
pose | R effective bosonic theory for the algebra generated by vectorial and axial currents
of a massive free fermion field theory. At this point the reader should compare the UV-
effective action Eq. (18.13) with | R-effective action given by Eq. (18.7).

It isinstructive to point out that in the important use of D = 2, al functional integrals
are of Gaussian type and leading to the following result in the | R-region:

ZIA. M = [ D" [0(9]D" (6(x)]
X exp [—%/dzx[(ae)% (aw)z(x)]]

X exp [—g /dzx[(v,, +igv0,0)2 + (A + igad,0)?] (x)}

Vu(y) }

2 0,0y
X exp{/d2xd2yA#(x) [mZS,N — (1;19@) (—#82)] (x,y)AV(y)}. (18.14)

. 9\2/ amuaV
NP3,y 4(1+ng@) )

= exp { / d?xd?W,,(x)

By anayzing the two-dimensional effective bosonic theory we conclude that the result
is clearly not gauge invariant on the source gauge fields as the gauge symmetry is dynami-
cally broken in two-dimensional space-time.

In theimportant case of the presence of aquantized electromagnetic field G,(x), we can

follow our previous procedure of the section. The main difference is the introduction of the
“topological charge’ of the electromagnetic field in the delta function of Eq. (18.1):

) (DT Pw) — 2mipw) — 8 (0, Pw) — 2Amiy — = [ d*X(FF)(G,)
(18.15)

and the replacing of the full Dirac operator below in Eq. (18.12),
AAV)+m—JgAV+G)+m.

It is worth pointing out the natural appearance of an “axion like” interaction between
the chiral phase neutral field w(x) and the electromagnetic field G,,(x), namely
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Sacion[®, G, = exp {i / d4><m(x)(*F,NFﬂV)(G)(x)} . (18.16-3)

The generalization of our study for the non-Abelian case is straightforward and left
to our readers and leading to the non-Abelian generalization of our previous study (see
Ref. 12) where the non-Abelain evaluation of the chirality-rotated Jacobian Eq. (18.4) is
presented in full details.

Finaly, it isinstructive to point out that one should show explicitly the “ Euclideanicity”
of our approach by considering the nonunitary (Euclidean) variable change below

W(x) — O My (x), (18.16-h)
Y(X) — p(x)eH150X) g0 :

Instead of the classical unitary Eqg. (2), the Jacobain will now be a functiona involv-
ing the nonunitary phases (6(x),o(x)). Note that Eq. (18.16") is alowed in Euclidean
space-time since the energy densities yy, wy°A, are not real as y and y are independent
anticommuting Euclidean fields and, thus, living in different functional spaces.

18.4. Polyakov’'s Fermi-Bose Transmutation in 3D Abelian-
Thirring Model

Polyakov’s Fermi-Bose transmutation in the infrared regime of the CP* model has became
a basic phenomenon for understanding approximate bosonization in fermion field theory
in three-dimensional space-time. In this section we present in detail the above-cited phe-

nomenon in the Thirring model. This study is based on our unpublished research (7), prior
to all the results that appeared on the subject since then.

Let us start our study in this section by considering the massive three-dimensional
Thirring Lagrangian in the Euclidean space-time with a repulsive interaction

2
£y ) = W)y -+ iy — - ()2 (18.17)

The 3D Euclidean Hermitian y* matrices which we are using obey the relationship
1
W =8 =58, (18.18)

The independent Euclidean fields () (x) and wP)(x) satisfy the Euclidean anticom-
muting relation (o, = 1,2,3)
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W), wP ()} =88 (x—y). (18.19)

The Lagrangian (17) isinvariant under the global Abelian group v — exp(iQ)w1 , W —
exp(—iQ)y with the Noetherian conserved current

3, (Wy, W) = 0. (18.20)

In order to analyze Polyakov’s boson-fermion transmutation, we consider the generating
function

2 = 515y * | f P WOOIDF 0] x ep | a2+ i+ w9 |

(18.21)

By making use of the Hubbard-Stratonovich field reparametrization, we rewrite Eq.
(18.21) inaform useful for our bosonization purpose:

201 = 57557 * | O WD 0IDF A, 0]
( 1/ d3fo,<x>) 57 [(0,A)
X eXp <—/d3x[\|7(iya+gyA+ my +ny+ unﬂ(x)) } (18.22)

where A, (x) isan auxiliary Euclidean Abelian real vector field satisfying the Landau gauge
as a consequence of Eq. (18.20), since it should coincides with the vectorial current at the
operator level.

At this point, it becomes important to remark that the fermionic measures
DF [w1(X)]DF [w(x)] in Eq. (18.22) are defined in terms of the normalized eigenvectors of
the self-adjoint Euclidean Dirac operator iy,(d —igA,) since we want to keep the model’s
physical local gauge invariance in the pure fermion sector of the theory:

X) exp(—ng(x;), (18.23)
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Note that this local Abelian gauge invariance in the fermionic parametrization EQ.
(18.17) isa consequence of the current conservation Eqg. (18.20) at the quantum level of the
generating functional Eqg. (18.21), and differs from the usua local gauge invariance of the

gauge models involving the shift A, — A, +00,Q. The loca invariance Eq. (18.23) isa
consequence of the following path integral identity:

| D w(e59 D f(x)e-19%0%)
xe«p{ / L0 9. X () |

— [ O D" e { - [ dxeu. ) |
<ep|-i / d3sz<x><ay<xm>><x>] . (18.22)
In this quantum field path-integral framework, the infrared Polyakov's Fermi-Bose
transmutation (3) may be understood as the large fermion mass limit of the otherwisetrivial

3D Abelian quantum field Thirring model (Chapter 4).

Explicitly, we first introduce an ultra-violet cutoff in Eq. (18.22) and integrate out the
Euclidean Fermi fields. Let us, thus consider the effective path integral

Zin.i) = 3755 DA

<op (-~ [ E00) x3710,4))
x det[iyo + gyA+m|

X exp{ / dBExd3y(m(x) (iyd + gyA+m) L (x, y)n(y)] } . (18.25)

The fermion vacuum loops associated with the fermion functional determinant may

be easily evaluated in the limit of large mass by using the proper-time definition for this
functional determinant (see App. A):

oo

logdet(iyo + gyA+m) = +% x lim ? x Tr(e [exp(—t[iyd + gnA+ m?)]. (18.26)

e—0t Je¢

where Trg denote the functional trace.
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We thus have the following result for the family of interpolating Dirac operator iyo +
sgyA+m(0<s<1):

d :
P (logdet[iyo + sgyA+m)])

x lim dt e Tre){(gyA) (iyd +sgyA—M)

e—0 €

x exp(—t[iyd + sgyA+m?)} (18.27)

By taking the limit of large fermion mass asin Ref. 6 and App. A, we get the result
below, after integrating the interpolating parameter in therange 0 < s< 1,

log|det(iyd + gyA+m)/ det(iyd +m)] )

- 25 () foise)
2\é_|2|/d3 (ALE™P Fyp (A ))(X)Jro(n%). (18.29)

It is worth pointing out the existence (in principle) of an induced (cutoff dependent)
mass term for the auxiliary ector field (this auxiliary vector at the quantum level coincides
with the Noetherian U (1) global current: A,(X) = (wy,¥)(X).

Note that this mass term signals the dynamic breaking of the usua gauge invariance
in the pure fermionic sector of Eq. (18.25) which involves the gauge change A,(x) —
A, (X) 4+ 99,£2(x) asin 2D models (see Eq. (18.23)).

The physical consequence of this term is a formal renormalization of the bare gauge
field mass mr at one loop, as similar phenomenon happened in the Jacobian evaluation of
Eq. (18.4):

Mg = (18.29)

m
€
The second term in the right-hand side of Eqg. (18.28) is the Chern-Simons Lagrangian.

By substituting Egs. (18.28) and (18.29) in Eq. (18.25) we get the result with fermion loops
integrated out at large mass,
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Z,m] ~ 2(30) X /DF[A#(X)] XPXp{—% ( an
2

X exp{—# / A3X(ALE"P Fyp (A }

)™

xexp{+%/d3xd3 () (Y0 + gyA+ m)~L(x,y)n ()} (18.30)

) /dSXAZ }

Following closely Ref. 3 now we analyze the large bare m limit of the external fermion
sources by considering the Feynman path integral representation for the Feynman-Green
function of the Dirac operator in the presence of A, (X):

(Y0 + gvA+m), 2 (x.g) = /O “dte ™ { /XH(OH,, DF [X*(o)]

< uglxy) o0 ig [ doA,(X(0)io) ) | (18:3)

where the sping-factor is explicitly given by

t :
@uplxy) = [ OF ') exp i [ dol (o) X¥(0)
X P {exp i /t do(y* .n,,(cs))} . (18.32)
0
Here P meansthe path order of the 3D y* matrices along Feynman trgjectory X,(c)- (0 <
o <t).

Inthelimit of large m, only the classical straight-line trajectory entering the path integral
leads to Egs. (18.31) ande (18.32), producing the result

i B i y

(ivd + gyR+m) 5 (x.y) ~ (Uél)Uéz)) exp (ly/x A,l(x)dX“> : (18.33)
where UM"® are the usual Euclidean spinorial bases associated with the free massive
fermion fields {y(X), W (X)}.

By grouping Egs. (18.33) and (18.34), wefinaly obtain our Polyakov’s infrared bosonic
theory for the 3D Thirring model:
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Z[mﬁ,(mwn=/DF[Aﬂ<x>1exp{ ( ng /d3 XAZ(x) )}
2
X @<p{—g f % / d®x(AEP va(A)(x)}
<30, ep{ + 5 [ Ay (9my(y) - (V70

X Exp <ig /X yAH(X)X“> } (18.34)

Now it is a straightforward consequence of Eq. (18.34) the infrared (large mass)
bosonization formulae of 3D Abelian Thirring model analogous to those associated to 2D
Thirring model

VX ™ el < 00 i [ AX)x).

: (18.35)
VX ™ el < 00 i [ AX) X,

Here A, (x) is the quantum field associated with the “massive” Chern-Simon theory

L(A) = % (1— (:n ) /d3dxA2 X)
g m

W [ A R () () (18.36)

Equations (28) and (36) are our main result in this section about approximate bosoniza-
tion for the Thirring model in the large mass limit.

In the important case for high-T. superconductivity, modeled by the Thirring model
coupled to an externa divergence free current

Wiy, d, W)+ [ 300w (4. (18.37)

we can proceed as exposed above and obtain the associated Polyakov's full bosonized gen-
erating functional for correlation function involving vectorial currents from the 3D-Thirring
model Eq. (18.17):
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Y P e
x@(p{ 5 (l (475)%) /d X(AL(X))
2
_8 zﬁ |—rr:| - / A2 (AP va(A))(x)}. (18.38)

Finaly, we point out that we have neglected in Eq. (18.25) the zero modes of the 3D
Dirac operator which will be left to our readers.

18.5. Effective Four-Dimensional Bosonic Actions — Some
Comments

The effective bosonic action obtained in Secs. 2 and 3 are higher-order four-dimensional
bosonic field theories, and this should be considered only as an approximate and effective
action as it shares all the drawbacks and usefulness of all effective action proposed in the
literature) ([9], [12]). However, there are some hints that theories of the kind obtained in
this chapter may be given a meaning by nonperturbative procedures and this point may be
advantageous for implementing realizable approximate calculations useful for realistic 4D
field theories.

In three dimensions, we disagree with similar studies presented in Ref. 11, sincein this
reference it used the Deser-Jackiw interpolating field to rewrite the effective action in terms
of Maxwell-Chern-Simon field theory, which does not hold true when one is analyzing
observables and leads to a cumbersome theory in the non-Abelian case (a theory in the
strong limit gf)hy — o0), Finaly, the use of Wilson loops of Ref. 11 isunclear since the non-
Abelian Stokes theorem was proved only in R?, namely for R" (n > 2) it was not proved
rigorously that

Tr.p (exp f[é A, Xﬂ) ~ Trs [(exp /Z A5 Tr, (zi -W[GS\M]> >] . (1839

Oy

whereC? are closed trajectories in the surface S (see Ref. 13 for the notation) inR®. (Unless
for those planar surfaces homotopical to its boundary).

As an dternative for the study of Ref. 11 one should writes the loop wave equation
for the Wilson Loops. Eg. (18.39), and solve them by means of effective theory of Chern-
Simons string as exposed in previous Chapter 13.
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We start this final part of our chapter by considering the fermionic determinant of the
self-adjoint Dirac operator in L2(R®):

logdet(D(A) + m) = S (S s) = 1 lim ?Tr( ) (et PsAFmy (18.40)
E— €

where we have introduced a one-parameter family of Dirac operators interpolating the free
operator and that in the presence of an externa gauge field

Ds(A) +m=iy*(d, —isgA,) +m. (18.41)

We have regulated the fermion determinant by the proper-time method. At this point
we remark that Sx;(A; ) satisfies the differential

S Sur(A9 = lim [ dTre (A, (P(A)+m
x exp(—t(DE(A) + P+ 2m Ds(A)))]. (18.42)

Since we are interested in the large fermion mass limit m — <, we neglect the term
exp(—2mBP(A)) ~ 1 inside the trace operation of Eq. (18.42). We have thus, at large m,

lim S s(A9) ~ Eim " dte ™ Trie [+g(A)(P(A) +m) - exp(— D2(A))]

€

(/ dte . t“‘)
(4TI 2 /=0

x/d3xTr(F> Aa)[D(A) +m) x by(x,1r,AS)), (18.43)

where by(x,x, A, s) are the Seeley-De Witt coefficients associated with the asymptotic short-
timet — 0" of Eq. (18.43) since we are considering the asymptotic limit of m — < by
means of the L aplace method for handling saddle-point of integral [6]. Explicit expressions
for these coefficients are easily calculated [5]. In the large fermion mass limit, only thefirst
2 Secley-De Witt coefficients will be needed in R®, namely

bO(X7 XJ A7 S) = 1iden (1844)
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and

by (%, %,A,8) = —= [y, ]MFuy (A) + 0PA% +ig(0,,, Ay).- (18.45)

After substituting Egs. (18.44) and (18.45) into Eq. (18.43) and solving the s
differential equation we get Eq. (18.28) as displayed in the text.

We point out that a similar procedure may be used to evaluate the fermion propaga-
tor in the large mass limit. However, this evaluation is of no help in deducing infrared
bosonization formulae of the kind of Eqg. (18.25).

Finaly we remark that the same procedure, now involving the Seeley-De Witt coeffi-
cient by (X, x, A, s), was used to deduce Eq. (18.13).

18.6. The Triviality of the Abelian-Thirring Quantum Field
Model

One of the most interesting problems in D-dimensional Euclidean field theories is the ap-
pearance of acritical dimensionality above which the associated field theory becomestrivial
([15], [18]).

Our am in this section is to present the Parisi geometrical analysis [17] generalized to
the fermionic case by analyzing the critical space-time dimension for the vectoria four-
fermion interaction (the Abelain-Thirring model).

Let us start our analysis by considering the Thirring model Euclidean partition func-
tional in RP with the fermionic fields integrated out

1 n
Z(g) = / DA, exp [_E / dxP Aﬁ(x)] det D(A,), (18.46)
where P (A, = v,(9,+ gA,) is the Euclidean Dirac operator in the presence of the external
auxiliary vectoria field and g is the bare theory’s coupling constant.

We aim to show that Z[g] = Z[g = 0] when D > 2 since this result will lead, formally at
least, to triviality of Eq. (18.46).

By using the fermionic loop representation for det [D(A,), as displayed in Chapter 8, we
can write this funcitonal determinant as a Grassmannian path integral:
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1 1
det P(A,) = exp( [ dE [ dBA[x (E.0)][Dyy (E.6)]
& [xﬁ(z;en </° /0 A * >

. /deA,,(x)JE[XE(a,e)], (18.47)
b €0)

where the 3¢ (¢ )] is defined in Ref. 18 and J7 [x;; (£,0)] is the current associated with the
Grassmannian loop x; (,0) = x.(&) +i0y,(&) (6% = 0;0 <& < 1). Through a g-power
series expansion and integrating the Gaussian A, (x) functional integral we get, for instance,

dz[h

for itsfirst coefficient ——

dg = Z, the following expression:

g=0

1 1
2= Y epr / de do / dE o/ DyF (2, 0)5)
c 2 Jo 0 H
b €0

X (XE (é? e) - XE (g? e/))(DXF (‘:/7 e/) (1848)

We can understand Eq. (18.48) asthe partition functional associated with agas of closed
polymers [xE (€,0)] possessing a Grassmannian structure and interacting among themselves

by aself-avoiding interaction 8(°)[xf (£,0) — x,.(&',6')] (see Chapter 9).

In order to argue for the triviality of the fermionic polymer gas we follow Parisi [17]
by assigning a Hausdorff dimension dy for the “set” [xf (£,0).62 = 0;0 < £ < 1]. A nat-
ural Hausdorff dimension for this set is given by the exponent of the fermion free-field
propagator in the momentum space whichis 1, so dy [xE (€,0)] =1.

By using now the geometrical intersection rule dy (ANB) = dy(A) 4+ dy(B) — D [17]
with D being the space-time dimensionality, we abtain that the support set of the self-
avoiding interaction [5(®)(,(&,0) — x.(&',6'))] has a negative Hausdorff dimension for
D > 2, which meansthat this set is empty.

As a consequence we have the analytical relation

/0 " dedo /0 " 40D x, (2, 0)5) (0F (2,6) — 15 (2, 0)DxE (2,0 =0, (18.49)

which indicates, in turn, the triviality of the theory, since this argument can be straightfor-
wardly applied for any arbitrary coeficient Z,, leading to the result Z, = 0.

Finaly we remark that by reformulating the Thirring theory in the loop space, we can
in principle define the theory for any general manifold m as space-time by including the
constraint [X#F (€,0)] € min the path integral Eq. (18.46). Note that m may be fluctuating

[17].
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Work in this direction is |eft to our readers.

Appendix A

Let us write a formal path integral for Dirac particles by using only bosonic trajectories
X*(o), instead of the supersymmetric trajectories of Refs. 8-18.

By using the usua plane wave Euclidean spinor basis

x.0) =ePUM(p),  (y.Bl=U? (p)e™. (18A.1)

where the spinors {U&l)(p),uéz)(p)} satisfy the free Dirac equation and the completeness
relation

P) = 8op, (18A.2)

one can write the fermion propagator in the presence of an external field in the following
form (see Ref. 3):

S(x-y) = [ dt (x.olep(~T(~iv0-+ grA+m)|B)
< [Carem /2#((%1§ D" %,(0)] [ [Pulo)
X exp <i /o " do p(0) - X“(0)>
« Poirac {exp (i /0 " (oul(o) + gA,,(x(o))dcs> } . (18A.3)

where Ppirac means the order along the bosonic trgjectory of the Dirac indexes coming
from the y*-exponential involving the external gauge fields A,(X). Note that the p,(c) path
integral isfree at the end points.

Let us now consider the formal variable change in the path integral in Eqg. (18.A.3)

Pu(0) +gA,(X(0)) = m,(o). (18.A.9)

As a consegquence of Eg. (18.A.5), we get the path integral fermion propagator formal
expression used in Eqg. (18.33) of the text.
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« D [Xu(0)]

y

D=l
X /DF[pi#(o)] X exp <i /OT dcn#(cs)-)'(“(cs)>
T .
X eXp (—ig/o dGA,,(X(G))X“(G))
T
xPDirac{@(pi /0 dc(y”ny)(c)}. (18.A.5)
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Chapter 19

Domains of Bosonic Functional
|ntegrals and Some Applicationsto
the Mathematical Physics of Path
Integralsand String Theory

19.1. Introduction

Since the result of R.P. Feynman on representing the initial value solution of Schrodinger
Equation by means of an analytically time continued integration on ainfinite - dimensional
space of functions, the subject of Euclidean Functiona Integrals representations for Quan-
tum Systems has became the mathematical - operational framework to analyze Quantum
Phenomena and stochastic systems as showed in the previous decades of research on The-
oretical Physics ([1]-{3]).

One of the most important open problem in the mathematical theory of Euclidean Func-
tional Integrals is that related to implementation of sound mathematical approximations to
these Infinite-Dimensiona Integrals by means of Finite-Dimensional approximations out-
side of the always used [computer oriented] Space-Time Lattice approximations (see [2],
[3] - chap. 9). As afirst step to tackle upon the above cited problem it will be needed to
characterize mathematically the Functional Domain where these Functional Integrals are
defined.

The purpose of this chapter is to present in section 19.2, the formulation of Euclidean
Quantum Field theories as Functional Fourier Transforms by means of the Bochner-Martin-
Kolmogorov theorem for Topological Vector Spaces ([4], [5] - theorem 4.35) and suitable
to define and analyze rigorously Functional Integrals by means of the well-known Minlos
theorem ([5] - theorem 4.312 and [6] - part 2) and presented in full details in section 3.

In section 4, we present news results on the difficult problem of defining rigorously
infinite-dimensional quantum field path integrals in general space times Q C R¥ (v =
2,4,...) by means of the analytical regularization scheme.
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19.2. The Euclidean Schwinger Generating Functional
asa Functional Fourier Transform

The basic object in ascaar Euclidean Quantum Field Theory in RP is the Schwinger Gen-
erating Functional (seerefs. [1], [3)).

21i(x)] = (@usclep (i [ Pxi(Rit)o™ (i) ) [2uic) (19

where ¢(™ (X, it) is the supposed Self-Adjoint Minkowski Quantum Field analytically con-
tinued to imaginary time and j(x) = j(X,it) isa set of functions belonging to a given Topo-
logical Vector Space of functions denoted by E which topology is not specified yet and
will be called the Schwinger Classical field source space. It is important to remark that
{0M(X,it) } isacommuting Algebra of Self-Adjoints operators as Symanzik has pointed out
(7))

In order to write eg.(19.1) as an Integral over the space E&9 of al linear functionals
on the Schwinger Source Space E (the called Algebraic Dual os E), we take the following
procedure, different from the usual abstract approach (as given - for instance - in the proof of
th IV - 11 - [2]), by making the hypothesis that the restriction of the Schwinger Generating
Functional eq.(19.1) to any finite-dimensional RN of E isthe Fourier Transform of apositive
continuous function, namely.

N N
i (2 Caja(x)> _ /exp (i D capa> §(Py,....P\)dPy,... dPy (19.2)
o=1 RN o=1

Here {jo(X) }o—1... N iSafixed vectorial base of the given finite-dimensional sub-space
(isomorphic to RY) of E.

As a consequence of the above made hypothesis (based physically on the Renormaliz-
ability and Unitary of the associated Quantum Field Theory), one can apply the Bochner
- Martin - Kolmogorov Theorem ([5] - theorem 4.35) to write eq.(19.1) as a Functiona
Fourier Transform on the Space E@9 (see appendix A)

2[j(9) = | ep(in(j(x))du(h) (193

Edo

where du(h) is the Kolmogorov cylindrical measure on E&9 = IT, .4(R*) with A denoting
the index set of the fixed Hamel Vectorial Basis used in eg.(19.2) and h(j(x)) is the action
of the given Linear (algebric) Functional (belonging to E39) on the element j(x) € E.

At this point, we relate the mathematically non-rigorous physicist point of view to
the Kolmogorov measure du(h) eq.(19.3) over the Algebraic Linear Functions on the
Schwinger Source Space. It is formally given by the famous Feynman formulae when
one identifies the action of h on E by means of an “integral” average

h(j) = / X} (x)h(x) (19.4)
RD
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Formally we have the equation

du(h) = (H dh(x)) exp{—S(h(x))} (195)

XxeRP

where Sisthe classical action of the Classical Field Theory under quantization, but with the
necessary coupling constant renormalizations need to make the associated Quantum Field
Theory well-defined.

L et us outline these proposed steps on aA¢* - Field Theory on R*.

At first we will introduce the massive free field theory generating functional directly in
the infinite volume space R*.

219 =ep{ -5 [aEHIR(-0) i)} (196)

where the Free Field Propagator is given by

k(=)
(—A)% + M) L(x,X) = / Ak os (19.7)

with o aregularizing parameter with a0 > 1.

As the source space, we will consider the vector space of al real seguences on
er(_m7w>(R)x, but with only a finite number of non-zero components. Let us define the
following family of finite-dimensional Positive Linear Functionals {L, } on the Functional

SpaceC( [I R4R)
—eo0)

Ae(

LAf(e(szl,--'me))z / g(szl,-.-,me)exp{—%2(x2a+mz)(Px)2}
(1 RY

1 R

AEAF

(H d(PM/n(AZHm?))) (19.8)

AEA$

Here At = {Ag,--- ,Ag, } IS @n ordered sequence of real number of the real line which
isthe index set of the Hamel Basis of the Algebraic Dual of the proposed source space.
Note that we have the generalized eingenproblem expansion

((—A)* + mP) e = (A2* + )™ (19.9)

By the Stone-Weirstrass Theorem or the Kolmogoroff Theorem applied to the fam-
ily of finite dimensiona measure in eg.(19.8), there is a unique extension measure
du({Py }re(—wes)) toO the space er(_m7w>l?\ = E39 and representing the Infinite-volume
Generating Functional on our chosen source space (the usual Riesz-Markov theorem ap-
plied to the linear functional L = {I}\rr} supLa;, 0N C(IT) e (oo co) R, R) leads to this extension

f
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measure ) (]10]).

20 =2{iher] = [ O O(PYie )

n r
Ae(—e2)

xexp|i P exps —= o (19.10)
<xe<§ow> ) { % x2““2}

)

At this point it is very important remark that the generating functional eq.(19.10) has
continuous natural extension to any test space ( S(RY), D(RVY), etc) which contains the con-
tinuous functions of compact support as a dense sub-space.

At this point we consider the following Quantum Field interaction functional which
is a measurable functiona in relation to the above constructed Kolmogoroff measure

@) ({Pu}re(—c0s)) fOr oo non integer in the original field variable ¢(x)

VD(0) = A0+ 2 (24 (A M) — D((~A))0 — S[(TPZL (A1) — 1
— (3m") ) (hR)]0% — (2" () (3()2) (A, M)]o* (1911)

Here the renormalization constants are given in the usual analytical finite-part regular-
ization form for aA¢* - Field Theory. It still aopen problem in the mathematical-physics of
quantum fields to prove the integrability in some Distributional space of the cut-off remov-
ing o. — 1 limit of the interaction lagrangean exp(—V (*)(¢)) (see section 19.4 for aanalysis
of this cut off removing on space of functions).

19.3. The Support of Functional Measures- The Minlos
Theorem

Let us now anayze the measure support of Quantum Field Theories generating functional
€9.(19.3).

For higher dimensional space-time, the only available result in this direction is the case
that we have a Hilbert structure on E([4], [5], [6]).

At this point of our paper, we introduce some definitions. Let ¢ : ZT — R be an in-
creasing fixed function (including the case () = ). Let E be denoted by H and H?
be the sub-space of H¥9 = (Myen=(o.1 R)\) (with A being the index set of a Hamel basis of
H), formed by all sequences {x; },ca € H#9 with coordinates different from zero at most a
countable number

H? = {(%)nea, #0for A € {Au}uez} (19.12)
Consider the following weighted sub-set of H&9

H = {{%.}aea € HY}

lim 1
N—oo () N)

=}
IN\gE:

(XXG(,U))Z} < oo}
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for any 6 : N — N, apermutation of the natural numbers.
We now state our generalization of the Minlos Theorem.

Theorem 3. Let T be an operator, with Domain D(T) C H, and T;D(T) — H such that for
any finite-dimensional space HN c H, the sum is bounded by the function @(N)

( i <Ta,Tej>(°)> <o(N) (19.13)
(i.)=1

Here (,)(@ istheinner product of H and {ep}1<p<n iSavectorial basis of the sub-space
HN with dimension N.

Suppose that Z[j(x)] is a continuous function an D(T) = (D(T), (,))) where (,)® is
anew inner product defined by the operator T((j,7)® = (Tj,T])(©@) we have, thus, that
the support of the cylindrical measure eq.(19.3) is the measurable set HZ.

Proof: Following closely references ([1]) - Theorem 2.2., [4]) let us consider the following
representation for the characteristic function of the measurable set HZ  H¥9

'XHg({XX}XeA) =
lo &
L'L%N'Tl@(p{ 2(p(N)2X7"}

N
Y <o (19.14)

=1 if [im
0 otherwise

Now its measure satisfies the following inequality

/ du(h) = p(H¥9) = 1> u(HE) (19.15)
Halg
But
(HZ) = lim I|m/d ) ex o ixz B
H _OL~>ON~>oo H p= 2(p(N) = Ve
lim fim § —— JACI] (19.16)
0—0N—oo (ﬁ)N/2 = J1, N )
N N
@(p<_§<(p( )>2112> Z(ja,-+ )
=1
where
5, . N
Z(Jla"‘aJN):Amdy({Xk})@(p iy %0 | = /d,u exp ZXM/ (19.17)
AEA (=1 Halg
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Now due to the continuity and positivity of Z[j] in D(T); we have that for any e>0—
35 such that theinequality below istruesincewe havethat: Z(jg,- - jn) >1—€e— —(j )W

" . 1 (N ~ .
W/djlmdmexp( 2(p(a)2n2~>2(11~~7m)

N 1 1 N
A N/Z/dll djnexp ——( )2 jmin < emen >} (19.18)
(m,n)—l(ﬂ) o -1
o(N)
HEIP:
=l-e—59 (=] D 8mn<TenTaﬂ><)}
52{ o(N) (mn)=1

By substituting €g.(19.18) into eg.(19.15), we get the result

2 (.
1>uHZ) >1— 8—82 <(L|L%oc>:l—£ (19.19)

Since € was arbitrary we have the validity of our theorem.

As a consequence of this Theorem in the case of ¢(N) being bounded (so TT* isan
operator of Trace Class), we have that HZ = H which is the usual Topological Dual of H.

At this point, a smple proof may be given to the usual Minlos Theorem on Schwartz
Spaces (18], [6].).

Let us consider S(RP) represented as the countable normed spaces of sequences ([8))

S(RP) = ﬁ o (19.20)
m=0
where N
2 = {(%)nez, % € R| Y (%0) 2™ < oo} (19.21)
n=0

The Topological Dual is given by the nuclear structure sum ([8])

U 2, U (19.22)

n=0
We thus, consider E = S(RD) in eg.(19.3) and Z[j(x)] = Z[{n}nez] &s a continuous
on ﬂén Since Z[{ jn}nez] € C( ﬂ 72 R) we have that for any fixed integer p,Z[{jn}nez] is

contmuous on the Hilbert Space £2 which, by its turn, may be considered as the Domain of
the following operator.

Tp . E%C&) — fo
{in} — {n"2jn} (19.23)
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It is straightforward to have the estimate

N
| Y (Toem, Toen) @] <N (19.24)
(mn)=1

for some positive integer B and {g} being the canonical orthonormal basis of 12. By an
application of our theorem for each fixed p; we get that the support of measure is given by
the union of weighted spaces

suppdu(h) = | J (63)" = |J ¢, =S(R°) (19.25)
p=0 p=0

At this point we can suggest, without a proof a straightforward (non topological) gen-
eraization of the Minlos Theorem.

Theorem 4. Let {Tg}pec be afamily of operators satisfying the hypothesis of Theorem

3. Let us consider the Locally Convex space |J Dom(Tg) (supposed non-empty) with the
peC

family of norms || v [|g=< Tpw, Ty >/

If the Functional Fourier Transform is continuous on this Locally Convex Space,
the support of the Kolmogoroff measure eq.(19.3) is given by the following sub-set of
[ U Dom(Tp)]¥9, namely
BeC

suppdu(h) = ( J H(ﬁﬁ (19.26)
peC
where @g are the functions given by Theorem 3. This general theorem will not be applied
in what follows.
Let us now proceed to apply the above displayed results by considering the
Schwinger Generating Functionals for two-dimensional Euclidean Quantum Eletrodynam-
icsin Bosonized Parametrization ([9])

Z[j(9] = exp{% [ e [ dyioo(-a)?+ %(A))l(x,ymy)} (19.27)
2 R2

where in eg.(19.27), the electromagnetic field has the decomposition in Landau Gauge

Au(X) = (&dv0)(X) (19.28)

and j(x) is, thus, the Schwinger Source for the ¢(x) field taken asabasic dynamical variable
(19))-

Since €q.(19.27) is continuous in L2(R?) with the inner product defined by the trace
class operator ((—A)? + %(—A))*l, we conclude on basis of theorem 3 that the associated
Kolmogoroff measure in eqg.(19.3) has its support in L?(R?) with the usual inner product.
As aconsequence, the Quantum Observable Algebrawill be given by the Functional Space

L(L?(R?),du(h)) and usual orthonormal Finite - Dimensional approximations in Hilbert
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Spaces may be used safely i.eif one considers the basis expansion h(x) = 2 hnen(X) with
en(X) denoting the eigenfunctions of the operator in eg.(19.27) we get the result

LL(RY, du(hy, -+ b)) = LY(L2(RP), du(h) (19.29)

s

n=1

It isworth mentioning that if one uses the Gauge Vectorial Field parametrization for the
(Q.E.D); - Schwinger Functional

Z[j2(3); J2(¥)] = Wp{%/dzx/dz)’Ji(X) <—A+§>
R? R2

the associated measure support will now be the Schwartz Space S(R?) since the op-
erator (—A+ €)1 isan application of S(R?) to S(R?). As a consequence it will be very
cumbersome to use Hilbert Finite Dimensional approximations ([8]) asin eq.(19.29).

An dternative to approximate tempered distributions is the use of its Hermite expansion
in S(R) distributional space associated to the eigenfunctions of the Harmonic-oscillator
V(x) € L(R)UL2(R) potential pertubation (see ref. [3] for details with V (x) = 0).

-1

(%, ¥)3i ji (X) } (19.30)

2
(—£z+x+V(» 7(X) = AnHn(X) (19.31)

Ancther important class of Bosonic Functionals Integrals are those associated with an
Elliptic Positive Self-Adjoint Operator A~ on L?(Q) with suitable Boundary conditions.
Here Q denotes a D-dimensional compact manifold of RP with volume element dv(x).

Z[j(%)] ap{/dv u/m/ A*lxwmw} (19.32)

If Aisan operator of trace class on (L?(Q),dv) we have, thus, the validity of the usual
eigenvaue Functional Representation

Z[{jn}uez] = /(Hdw/_}m<é§) )M{mmzmaiwn

with the spectral set

Aflﬁg = A¢Oy
je=(j.00) (19.33)

and the characteristic function set

1if 3 <o
Xe2({Cn}nez) = n=0 (19.34)

0 otherwise
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Itisinstructive point out the usual Hermite functional basis (see 5.4 - [5]) are acomplete
setin L2(E®9, du(h)), only if the Gaussian Kolmogoroff measure du(h) is of the class above
studied

A criticism to the usua framework to construct Euclidean Field Theoriesisthat isvery
cumbersome to analyze the infinite volume limit from the Schwinger Generating Functional
defined originally on Compact Space Times. In two dimensions the use of the result that
the massive Scalar Field Theory Generating Functional

exp{% [ [ @i <x><A+mZ>1<x,y>j<y>} (19.35)
R2 R2

with j(x) € S(R?); is given by the limit of Finite Volume Dirichlet Field Theories
l
lim exp { dxo/ dx/ dy?
T*)oo
/ dytj (0,35 (—Ap 4+ M) 2,y 30,40 (42,31 (19.36)

may be considered, in our opinion, asthe similar claim made that is possible from a mathe-
matical point of view to deduce the Fourier Transforms from Fourier Series, avery, difficult
mathematical task (see appendix B).

Let us comment on the functional integral associated to Feynman propagation of fields
configurations used in geometrodynamical theories in the scalar case

G[Bin(x);BOUt(x)’T](j) = /(b(x.O):Bi"(x)
O(xT)=p*(x)
2

T o
exp{%o/dt/de<q>< §t2+A> q>> (x,t)}
( / dt / dVxj (X ) (19.37)

If we define the formal functional integral by means of the eigenfunctions of the self-
adjoint Elliptic operator A, namely:

t) =Y ok(t)wk(x) (19.38)
{k}
where
Ayk(X) = () *wi(X) (19.39)
itisstraightforward to seethat eq.(19.36) isformally exactly evaluated interms of aninfinite
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product of usua Feynman Wiener - path measures
GIB™(x); B (), TI(j) =
. T 2 .
T o0 O 0l 5 [ (o~ 5+ ) o) watenp (i [ sttty )}

:H{ +9n<xkaexp{ zsn)& T) Gy >+¢E<0>>Cos<%kT>—2¢k<0>¢k<T>}}
_2¢'<_(T)/Tdtjkt sin(Axt) _q’k_/Tdtjkt )SN(Ak(T —1))
{ (}i / dt/ dsjk(t) jk(s) Sn(Ak(T —t))sn(kks)}} (19.40)

Unfortunately, our theorems do not aply in astraightforward way to infinite (continuum)
measure product of Wiener measuresin eq.(19.40) to produce a sensible measure theory on
the functional space of theinfinite product of Wiener trajectories {c(t)} (Notethat for each
x fixed, a sample field configuration ¢(t,0) in eg.(19.36) is a Holder continuous function,
result opposite to the usua functional integral representation for the Schwinger generating
functional eg.(19.1)- eg.(19.5)) where it does not make a mathematical sense to consider a
fixed point distribution ¢(t,0) - see section 19.4 - eq.(19.74).

Let us call attention that still there is a formal definition of the above Feynman Path
propagator for fields eq.(19.37) which at large time T — +oo gives formally the Quantum
Field Functional integral eq.(19.5) associated to the Schwinger Generating Functional .

We thus consider the functional domain for eqg.(19.37) as composed of field configura
tions which has a classical piece added with another fluctuating component to be function-
aly integrated out, namely

o(x,t) = ocL(X,t) +0og(x,t) (19.41)

Here the classical field configuration problem (added with all zero modes of the free
theory) defined by the kinetic term £

d? .
(— et £> Lix,t) = j(xt) (19.42)

with
o (x,—T) = Ba(x); 6 (%, T) = B2(¥) (19.43)

namely

2 -1
ocL(Xt) = ( :tz + £> j(x,t) -+ ( all projection on zero modes of £) (19.44)

As a conseguence of the decomposition eg.(19.41), the forma geometrical propagator
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with an external source below

G[Bl(X),Bz(X),T, [JH

= Jox_T)=puv PO D] XD =5 dtd"xo(x,t) :22 £)o(xt)
f oo (-

o(x+T)=P2(x)
exp(i / dt/ dVxj(x,t)o(x,t)) (19.45)
may be defined the following mathematically well defined Gaussian functional measure

@(p{—}/T dt/dvxj(x,t)csc"(x,t)} X

%;q(x7_T) 0doq(X, t)exp{——/ dt/decsq xt)< 322 £> Gq(X,t)} (19.46)

6q(X,+T)=0
The above claim is a consequence of the result below

fv-oDioatetlen{ =3 [t [ Progte) (— 55+ ontrn |

6g(x,T)=0
d2

o 5] (19.47)

where the sub-script Dirichlet on the functional determinant means that one must impose
formally the Dirichlet condition on the domain of the operator (—gTzz +£) on D'(RP x

[~T,T]) (or L?(RP x [T, T] if £7* belongs to trace class). Note that the operator £ in
€0.(19.46) does not have zero modes by the construction of eq.(19.41).

At this point, we remark that at the limit T — 40 €g.(19.45) is exactly the Quantum
Field functional eq.(19.5) if one takes B1(x) = B2(x) = O (Note that the classical vacuum
limit T — oo of Wiener measures is mathematically ill-defined (see theorem 5.1. of ref [1]).

It isaimportant point to remark that ocy (x,t) isaregular C*([—T,T] x Q) solution of
the Elliptic problem eq.(19.42) and the fluctuating component o4(x,t) isa Schwartz distri-
bution in view of the Minlos - Dao Xing theorem 3, since the Elliptic operator —(‘j't—zz +£in
€0.(19.47) actsnow on D/ ([T, T] x Q) withrange D([—T, T] x Q), which by its turn shows
the difference between this framework and the previous one related to the infinite product of
Wiener measures since these objects are functional measures in different Functional Spaces

Finally we comment that Functional Schrodinger equation, may be mathematically de-
fined for the above displayed field propagators eg.(19.37) only in the situation of eq.(19.40).
For instance, with £ = —A (the Laplacean), we have the validity of the Euclidean field wave
equation for the Geometrodynamical path-integral eq (37)

2 GlBa(x), Bz(X) T.[i]) =
= / d'x| 826 IVBz(x)|2+j(x,T)]G[Bl(x),Bz(x),T,[j]] (19.48)

with the functional initial - condltion

1lim G[B1(x), B2(x),T) = 87 (B1() — B2(x)) (19.49)

= det{)i: [
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19.4. Some Rigorous Quantum Field Path Integral
in the Analytical Regularization Scheme

In this core section of our paper we address the important problem of producing concrete
non-trivial examples of mathematicaly well - defined (in the ultra - violet region!) path
integrals in the context of the exposed theorems on the previoudly sections of this paper,
specialy section 19.2 - eg.(19.11).

Let us thus start our analysis by considering the Gaussian measure associated to the
(infrared regularized) a-power (o > 1) of the Laplacean acting on L?(R?) as an operational
guadratic form (the Stone spectral theorem)

(A% = /8 (e (19.50-)

o1l = @(p{_%<j’(_A)8_u j>L2(R2>}

_ / dule] exp <|< j,(p>L2(R2)> (19.50-b)

Here ¢;r > 0 denotes the infrared cut off.

It isworth call the reader attention that due to the infrared regularization introduced on
eq (50-a), the domain of the Gaussian measure is given by the space of square integrable
functions on R? by the Minlos theorem of section 19.3, since for o. > 1, the operator (—A);g
defines a classe trace operator on L?(R?), namely

1

—_— < 19.50-c
(K T em) (19.50-)

Tr (—A);%) = / %k
Thisisthe only point of our analysis where it is needed to consider the infra-red cut off
considered on the spectral resolution eq (50-a). As a consequence of the above remarks,
one can analize the ultra-violet renormalization program in the following interacting model
proposed by us and defined by an interaction guaeV (9(X)), With V(X) denoting a compact
support function on R such, that it posseses an essentially bounded Fourier transform and
Ovare denoting the positive bare coupling constant.
Let us show that by defining arenormalized coupling constant as (with gren < 1)

Oren
Obare = —(l )iz (19.51)

one can show that the interaction function
eXp{—gbare(oc) / dZXV(cp(x))} (19.52)

is an integrable function on LY(L2(R2),d % u[¢]) and leads to a well-defined ultra-violet
path integral in the limit of oo — 1.
The proof is based on the following estimates.



Domains of Bosonic Functiona Integrals and Some Applications... 257

Since aimost everywhere we have the pointwise limit

e Gl | dxv(o00) |

N
lim {2 %/ dky - - dknV (Kp) - -V (kn) /dexl...dxneiqu)(xl)...eikn(l)(xn)}

N-—co

n=0
(19.53)
we have that the upper-bound estimate below holds true
2t ool | < | 3 SO i) Vi)
n=0
/ dxy - dx, / d% e 'W(X’)) (19.54-3)
with
28 ol = [ ualo] @0 { -l | v (00 (1954b)

we have, thus, the more suitable form after realizing the d2k and di), u[e] integrals respec-
tivelly

< 5, @O (1V))-o)"

/dxl dxndet‘? [G& )(x, xj)]

Z£| r=0 gbare

1<i< (19.55)

1<j<
Here [G((XN)(Xi,XJ‘)]]_SiSN denotes the N x N symmetric matrix with the (i, j) entry given

1<j<N

by the Green-function of the a-L aplacean (without the infra-red cut off here! and the needed

normalization factors!).

Nli—o)

IN(®)

At this point, we call the reader attention that we have the formulae on the asymptotic

behavior for oo — 1.

{nm det-3 G >(>q,x,-)]} ~ (= a2 <((N_73N$1)ND_ (19.57)

oa—1
oa>1

Ga(Xi,Xj) = [ —xj 2% (19.56)

After substituting eq.(19.57) into eq.(19.55) and taking into account the hypothesis of
the compact support of the non-linearily V (x) (for instance: suppV (x) C [0, 1]), one obtains
the finite bound for any value grem > 0, and producing a proof for the convergence of the
perturbative expansion in terms of the renormalized coupling constant.

26 ofgmelc]| < 3 LI (ﬁe&ﬁ) Da-ap

< Sl V@ < o (19.58)
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Anacther important rigorously defined functional integral is to consider the following
o-power Klein Gordon operator on Euclidean space-time

L=(—A)%4n? (19.59)

with m? apositive "mass’ parameters.
Let us note that £~ is an operator of class trace on L2(R") if and only if the result
below holds true

_ 1 = v_ v VT
TrLZ(Rv)(L l) = / dvkm = C(V) m(a 2) X {£C0££} < o (1960)
namely if

o> ; (19.61)

Inthis case, let us consider the double functional integral with functional domain L2(RY)

Z[j,k]:/dg))Bvx
X/d(g)A oc+v+m21u[(p]
xexp{ /dV X) -+ k() V( ))} (19.62)

where the Gaussian functiona integral on the fields V (x) has a Gaussian generating func-
tional defined by a §,;-integral operator with a positive defined kernel g(|x—y|), namely

/d @(p{ /dek ()}
—exp{—— [ [ dykax-yhioo) | (1969

By a simple direct application of the Fubbini-Tonelli theorem on the exchange of the
integration order on eq.(19.62), lead us to the effective A¢* - like well-defined functional
integral representation

Zeali] = [ A sy pepl0X)
e -3 [ @yl Palx—y) ot 2}
xexp{i/dvxj(x)(p(x)} (19.64)

Note that if one introduces from the begining a bare mass parameters mgwe depend-
ing on the parameters a, but such that it always satisfies eq.(19.60) one should obtains
again eq.(19.64) as a well-defined measure on L?(RY). Of course that the usual pure
Laplacean limit of oo — 1 on eq.(19.59), will needed a renormalization of this mass pa
rameters ((Ixi im M4 (0) = +oo!) @ much as done in the previous example.
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Let us continue our examples by showing again the usefulness of the precise determi-
nation of the functional - distributional structure of the domain of the functional integrals
in order to construct rigorously these path integrals without complicated limit procedures.

Let us consider ageneral R Gaussian measure defined by the Generating functional on
S(R”) defined by the o-power of the Laplacean operator —A acting on S(RY) with aof small
infrared regularization mass parameter 1

Z(o)[j] = exp{—%<i, ((_A)a+#(2))lj>|_2(Rv)}

B éag(s(m)) di” lo) exp(io(])) (19.65)

An explicitly expression in momentum space for the Green function of the o-power of
(~A)*+ 423 given by

dk 1
(—A) " +4f) H(x—y) = / o koY) (km +,,g> (19.66)

Here C( (v) isav-dependent (finite for v-values ) normalization factor.
L et us suppose that there is arange of o-power values that can be choosen in such way
that one satisfies the constraint below

‘ d )2 < oo 10.67
J (T (1967)

with j =1,2,--- /N and for a given fixed integer N, the highest power of our polinomial
field interaction. Or equivalently, after realizing the ¢-Gaussian functional integration, with
a space-time cutt off volume Q on the interaction to be analyzed on eq.(19.70)

/de[(—A)‘*+u5]—i(x,x):vol(g)x( ‘ﬂ)’
Q

k20( _1_“%
v_ T VTT
=Cy(uo)'v 2 x (ﬁcose(:E) < oo (19.68)

For o > V;zl one can see by the Minlos theorem that the measure support of the
Gaussian measure €q.(19.65) will be given by the intersection Banach space of measurable
L ebesgue functions on R" instead of the previous one E¥9(S(R"))

N
ﬂ L2(RY)) (19.69)
In this case, one obtains that the finite - volume p(¢). interactions

{ 2 Joi / de} <1 (19.70)

is mathematically well-defined as the usua pointwise product of measurable functions and
for positive coupling constant values A, > 0. As a consequence, we have a measurable
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functional on L1(Lon (RY); d¥ ufe]) ( since it is bounded by the function 1). So, it would
make sense to consider mathematically the well-defined path - integral on the full space R
with those values of the power o satisfying the contraint eq.(19.67).

. 0 N [ o2 [
Z[j] = /LQN(RV)da u[o] eXp{ J_}:)l?»zj /Q<o ‘(X)dX} x exp(i /RV j¥o(x)  (19.71)

Finally, let us consider ainteracting field theory in acompact space-time Q C RY defined
by an iteger even power 2n of the Laplacean operator with Dirichlet Boundary conditions
as the free Gaussian kinetic action, namely

Z(O)[j] — exp{—%<ja (_A)an>L2(Q)}

A, ulo] exp(i(j, 0)20) (19.72)

W3(Q)

here ¢ € W;(Q) - the Sobolev space of order n which is the functional domain of the
cylindrical Fourier Transform measure of the Generating functional Z(9)[j], a continuous
bilinear positive form on W, " () (the topological dual of WJ'(Q)).

By a straightforward application of the well-known Sobolev immersion theorem, we
have that for the case of

n—k> % (19.73)

including k areal number the functional Sobolev space W,'(€2) is contained in the continu-
ously fractional differentiable space of functions C¥(Q). As a consequence, the domain of
the Bosonic functional integral can befurther reduced to CX(Q) in the situation of eq.(19.73)

. 0 .
2005] = [ dlanplo) ewi(],0)iza) (1974
That is our new result generalizing the Wiener theorem on Brownian paths in the case
ofn=1,k=%andv=1

Since the bosonic functional domain on eq.(19.74) isformed by real functions and not
distributions, we can see straightforwardly that any interaction of the form

exp{—g/ F((p(X))dVX} (19.75)
Q
with the non-linearity F(x) denoting alower bounded real function (y > 0)

F(x) > —y (19.76)

is well-defined and is integrable function on the functional space (C¥(2), d(3) []) by a
direct application of the L ebesque theorem

‘ exp { —g /Q F(o(x)) dVX} ‘ < exp{+0y} (19.77)



Domains of Bosonic Functiona Integrals and Some Applications... 261

At this point we make a subtle mathematical remark that the infinite volume limit of
€0.(19.74) - e9.(19.75) is very difficult, since one looses the Garding - Poincaré inequalite
a this limit for those eliptic operators and, thus, the very important Sobolev theorem.
The probable correct procedure to consider the thermodynamic limit in our Bosonic path
integralsisto consider solely avolume cut off on the interaction term Gaussian action asin
€qg.(19.71) and there search for vol (Q) — oo.

As alast remark related to eg.(19.73) one can see that a kind of “fishnet” exponential
generating functional

ZOj] = ap{—%<1,@<p{—aA}j>L2(Q)} (19.78)

has a Fourier transformed functional integral representation defined on the space of the
infinitelly differentiable functions C(Q), which physically means that all field configura-
tions making the domain of such path integral has a strong behavior like purely nice smooth
classical field configurations.

As a genera conclusion of this central section of our work, we can see that the tech-
nical knowledge of the support of measures on infinite dimensional spaces-specially the
powerfull Minlos theorem of section 19.3 is very important for a deep mathematical phys-
ical understanding into one of the most important problem in Quantum Field theory and
Turbulence which is the problem related to the appearance of ultra-violet (short-distance)
divergences on perturbative path integral calculations.

19.5. Remarks on the Theory of Integration of Functionals on
Distributional Spaces and Hilbert-Banach Spaces

Let us first consider a given vector space E with a Hilbertian structure (), namely # =
(E,()), where ( ) means a inner product and H a complete topological space with the
metrical structure induced by the given (, ). We have, thus, the famous Minlos theorem
on the support of the cylindrical measure associated to a given quadratic form defined by a
positive definite class trace operator A € ¢, (H, H ) (see apendix for adiscussion on Fourier
Transforms in Vector Spaces of Infinite-Dimension)

e {5 (0.a0) ) —ep{ - (altb. D)}
= [, dnu(v) - exp(i ) (19.79)

since any given class trace operator can be always be considered as the composition of two
Hilbert-Schmidt, each one defined by afunction on L>(M x M, dv @ dv).
Here the cylindrical measure dau(V), firstly defined on the vector space of the linear forms
of E, with the topology of pontual convergence — the so called algebraic dual of E —, hasits
support concentrated on the Hilbert spaces #, through the isomorphism of # and its dual
H' by means of the Riesz theorem.

This result can be understood more easily, if one represents the given Hilbert space
H as a sguare-integrable space of measurable functions on a complete measure space
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(M, dv) L2(M,dv). In this case, the class trace positive definite operator is represented by
an integral operator with a positive-definite Kenel K(x,y). Note that it is worth to re-write
€0.(19.79) in the Feynman path integral notation as written below

exp{—% ‘ dv(x)dv(y)f(x)K(x,s)@}

MxM
1 17 -
~Z(0) /I_Z(M,dv) (xl;\ln d(p(X)) &P [_E MM dv(x)dv(y) o(x) K~ (x,Y)o(y)
x @(p{ / dv(x)f(x)@} (19.80

Herethe “inverse Kend” of the operator A isgiven by the relationship below
/ dv(y)K(x,y)K1(y,X) = identity operator (19.81)
M
and the path-inegral normalization factor is given by the functional determinant Z(0) =
det~2(K) = det? (K1)
A more invariant and rigorous representation for the Gaussian path-integral eq.(19.79)-

€0.(19.80) can be exposed through an eigenfunction-eigenvalue harmonic expansion asso-
ciated to our given class trace operator A, namely

ABn = AnBy (19.82-3)

V=D ViBni 0= Y @nbn (19.83-b)
n=0 n=0

1 (o]
expl —= Y, An|Vnl?
2n:0

. _%<§ \(W}?n)\z) N g 2 N
— limsu / d .d e\ M exp | i v
1supy o delen). d{olon) EOZWM p Z,Ocpn n

(19.84)

The above cited theorem for the support characterization of Gaussian path integrals can
be generalized to the highly non-trivial case of anon-linear functional Z(v) on E, satisfying
the following conditions:

aZz0)=1

N _
b) %Z(Vj —W)zjz > 0, forany {z}1<i<n:z €N (19.85)
j

and {Vi }1<i<n: Vi € E.

c) thereisaaH-subspace of E with ainner product (, ), such that Z(v) is continuous in
relation to a given inner product (,), coming from a quadratic form defined by a positive
definite class trace operator A on #, in others words, we have the sequential continuity
criterium (if # is separable):

limZ(vy) =0 (19.86)

N—oco
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lim (v, AV) =0 (A€ ]{ (9)) (19.87)
—o0 1
We have thus, the following path integral representation
2(v) = | du(e) exp(i(v.0)) (1989)
where
/ du(p) = L. (19.89)
H

Ancther less mathematically rigorous result is that one related to an inversible self-
adjoint positive-definite operator A in a given Hilbert space (H,(,)) — not necessarily a
bounded operator in the class trace operator as considered previoudly. In order to write
somewhat formal path-integrals representations for the Gaussian functional

Z(J’)=€XD{—%<LA11>} (19.90)

with f € Dom(A~1) c # ,we start by considering the usual spectral expression for the
following quadratic form

(0.A0) = | 1{g.dER)) (19.91)

c(A)

with 6(A) denoting the spectrum of A (a subset of R™!) and dE(A) are the spectral projec-
tions associated to the spectral representation of A.
In this case one has the result for the path-integral weight

exp{—%/ﬁ(A)M@,dE(k)@} = ap{—% <<p,A<p>}

:Iimsup{ [T ew (—%((p,kdE(k)(p))}, (19.92)

AECFin(A)

here orin(A) denotes all sub-sets with afinite number of elements of 6(A).
As a consequence one should define formally the generating functional as

2()—ep{ -5 (.A)}

oo -
=1lim sup{ H / dx}\.e—%l(x}\)ZéJxX}» 2&} (19.93)
Ol &

AEGFin

associated to the self-adjoint operator A acting on a Hilbert space #H

2(3) = [, du(@)€. (19.94)
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Otherwise, one should introduces formal redefinitions of parameters entering in the
definition of our action operator A, in such away to render finite the functional determinant
ineq.(19.80). Let usexemplify such calculational point with the operator (—A+m?), acting
on L?(RY) (with domain being given precisely by the Sobolev space H2(RV)). We note that

Triz(en) (&Xp(—t(—A+n1)))

:&%gjfmwmwew
Tc —

I
(N-— %)1 T it N—1liseven
2(2t) =
— e ™C(N) x (19.95)
N—2/2))
u 1. if N—1lisodd
2 (t)2

with C(N) denoting a N-dependent constant.

It is worth to note that one must introduce in the path-integral eq.(19.93), some for-
mal definition for the functional determinant of the self-adjoint operator A, which by its
term leads to the formal process of the “Infinite Renormalization” in Quantum Field Path

Integrals
" dXx o 3A00)?
/dA‘u (Rvaluednet) { H /

KEGF

. 1 "
= limsup (xgg(A){ﬁ}> = det 2 [A]

il T ee[s3 [ e

XGGF

(i men))

In the case of the finitude of the right hand side of eg.(19.96) (which means that e A is
atrace class operator and its finitude up the proper-time parameter t), one can proceed asin
the appendix to define mathematically the Gaussian path-integral.

Let us now consider the proper-time (Cauchy principal value sense) integration process
asindicated by eq.(19.95), for the case of N be an even space-time dimensionality

i dt
t tN/2 e "%

/e gt etm 1/e —tm?
(M) = / © € (19.97)
€
The whole idea of the renormalization/regularization program means a (non-unique)
choice of the mass parameter as afunction of the proper-time cut-off € in such way that the
otherwise infinite limit of € — O turns out to be finite, namely
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lim I (mP(g),€) < eo. (19.98)

e—0t

A dlightly generaization of the above exposed Minlos-Bochner Theorem in Hilbert
spaces is the following theorem

Theorem 1. Let (H,(,),) be a separable Hilbert space with a inner product (, ),. Let
Ho, (,)o) be asub-space of #, so there is atrace class operator T: H — #, such that the
inner product (, ), is given explicitly by (g,h), = (g, Th), = (T¥2g, T%?h),. Let us, thus,

consider a positive definite functional Z(j) € C((#,(,)1),R) [if jn 112 |, then Z(jn) —

Z(j) on R"]. We obtain that the Bochner path integral representation of Z(j) is given by a
measure supported at these linear functionals, such that their restrictions in the sub-space
Ho are continuous by the norm induced by the “trace-class’ inner product (, ), .

With this result in our hands, it became more or less straightforwardly to analyze the
cylindrical measure supports in Distributional Spaces. For instance, the basic Euclidean
Quantum Field Distributional Spaces of Tempered Distributions in RN : S(RV), can dways
be seen as the strong topological dual of the inductive limit of Hilbert spaces below consid-
ered

(=)

Sp = {(xn) eC| rI]i_r)r;npxn = 0, with the inner product ((Xa), (Yn))s, = D nPxa¥n

n=1
(19.99)
We note now that B
SRY = sp (19.100)
p>1
and N
SRY) = Jsp. (19.101)
p>1

An important property isthat s, O S,,1 and they satisfy the hypothesis of the Theorem
1, since

3 2P |xp|2 = Y, n2Pt2) %lxﬁl (19.102)
n=1 n=1 n
and ,
o 1 =
= =—. 19.103
ngll n2 6 ( )
As a consequence
2
T
[100)l1s, < 5 1100l (19.104)

If one have an arbitrary continuous positive-definite functional in S(RN), necessarilly
its measure support will always be on the topological dua of sy 1, for each p. Asaconse-

quence its support will be on the union set |J s_p (sinces-p C's_(py1)) and thusit will be
p=1
the whole Distribution Space S(RV).
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Similar results hold true in others Distributional Spaces.
The application of the above cited result in Gaussian Path-Integrals is always made with
the use of the famous result of the kernel theorem of Schwartz-Gelfand.

Theorem 2 (Gelfand): Any continuous bilinear form B(j, j) defined in the teste space of
the tempered distribuiton S(RN) has the following explicitly representation:

B(J.J) = [ d%dyj(0(DFDYF)(x) [) (19.105)

with j € S(RN), F(x,y) acontinuous function of polynomial growth and DY, Dy are distri-
butional derivatives of order mande n respectively.

In al cases of application of this result to our study presented in the previous chapters
were made in the context that (DZ'DYF )(x,y) isafundamental solution of a given differen-
tial operator representing the kinetic term of a given Quantum Field Lagrangean.

As a consequence we have the basic result in the Gaussian Path Integral in Euclidean
Quantum field theory

o 1B(L) _ /TES(RN)dy(T)eXp{i(T(j))} (19.106)

where T (j) denotes the action of the distribution T on the test function j € S(RVY).
At this point of our exposition let us show how to produce a fundamental solution for a
given differential operator P(D) with constant coefficients, namely

PD)= Y a,DP (19.107)

lpl<m

A fundamental solution for eq.(19.107) is given by a (numerique) distribution E €
S(RY) such that for any ¢ € S(RY), we have:

(P(D)E)(0) =5(¢) = 9(0) (19.108)

or equivalently
E('"P(D)g) =3(9) (19.109)

where 'P(D) is the transposte operator through the duality of S(RY) and S(RVY).
By means of the use of a Harmonic-Hermite expansion for the searched fundamental

solution
S(RY) — nd
E”=" Y (E;HpHp= > EpHp (19.110)

p=1 p=1
with Hy, denoting the appropriate Hermite Polinomialsin RN, together with the test function
harmonic expansion

SRY) -
¢ =" (0,Hp)Hp =Y @pHp (19.112)

p=1 p=1
and the use of the relationship between Hermite polinomials
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'P(D)Hp= Y, MpgHq (19.112)
lal<£(p)

with ¢(p) depending on the order of H, and the order of the differential operator 'P(D).

(For instance in S(R): %( Hn(X) = 2nHn-1(X);

d2

d

one obtains the recurrence equations for the searched coefficients E in eq.(19.110)

2 ¢n [ Y, MngEq| =) @nHn(0) (19.113)
n lg/<é(n) n
for any (¢n) € ¢2
or equivalently:
Y, MngEq=Hn(0) (19.114)

[q/<é(n)

the solution of the above written infinite-dimensional system produces a set of coefficients
{Ep}p=1,.. satisfying a condition that it belongs to some space s_, , wherer is the order
of the fundamental solution being searched (the rigorous proof of the above assertions is
left as an exercise to our mathematically oriented reader!).

Finally let us sketech the connection between path integrals and the operator framework
in Euclidean Quantum Field Theory, both still mathematically non rigorous from a strict
mathematical point of view. In ther former approach, one has a self-adjoint operator H(j)
indexed by aset of functions (the field classical sources of the Quantum Field Theory under
analysis) belonging to the Distributional Space S(RV). This self-adjoint operator isformally
given by the space-time integrated Lagrangean Field Theory and the basic object is the
Generating functional as defined by the vacuum-vacuum transition amplitude

Z2(j) = ("D Quac, Quac) (19.115)

with Qyac denoting the theory vacuum state. It is assumed that Z(j) is a continuous pos-
itive definite functional on S(RY). As a consequence of the above exposed theorems of
Minlos and Bochner, there is acylindrical measure du(T) on S(RY) such that the Generat-
ing Functional Z(j) isrepresented by the Quantum Field Path integral defined by the above
mentioned measure;

2(j) = [, du(T)ewm(i(T()} (19.116)
S(RV)

which in the Feynman symbolic notation express itsaf in the following symbolic-
operational Feynman notation

1

. _ 1 pteeqn—1 oo n—1 .
Z[j(x,1)] = m/S’(RN)DF[T(X’t)]e 3 /72 A" It L(T.0T0xT) J [2 d™ Pxelt j(xt) T (xt)

(19.117)



268 Luiz C.L. Botelho

with L(T,0;T,0xT) means genericaly the Lagrangean density of our Field Theory under
guantization.

L et us exemplify the Feynman symbolic Euclidean Path Integral as given by eq.(19.117)
in the Gaussian case (free Euclidean Field Massless Theory in RY, N > 2)

ool -5/ %] it (g 19}

= ,/;(RN) DF[T(X)]eXp{—%/:)ode/:)odNyT(X)((_A)XS(N)(X_y)T(y)}

det™2 ((—A)xs™ (x—y))
x exp{i /_ Ny j(x)T(x)} (19.118)

Or for the heat differential operator in S(RY x R*)

exp{ 1 dN/ dt/ dNy/ dt’ I(x,t) ( 21t(t1—t’))) exp(—f((t__yt'f)))e(t—t/)J(y,t’)}
:/;(RNXW)D [T(x,t)]exp{—;/+mdN / dt T (x,t) [(Ax aa)T(x,t)D

« -detl/2 [AX—% xexp{i/m de/(; dtJ(xJ)T(x,t)} (19.119)

It is worth to point out that the fourth-order path integral in S(R?):

eof-3 [ ax [ ¢ i (g x-vEmx-y) i

= / DF [(x)]e~} /= d(000(82)000)
S

_ / dypi(0)d@l) @ /= i 0000 (19.119-b)
R(RY)

holds mathematically true since the locally integrable function % X2 ¢n|x| is a fundamen-

tal solution of the differential operator A?: S(R*) — S(R*) when acting on Distributional
Spaces.

Asalast important point of this section, we present an important result on the geomet-
rical characterization of massive free field on an Euclidean Space-Time.

Firstly we announcing a dightly improved version of the usual Minlos Theorem.

Theorem 3. Let E be anuclear space of tests functions and du a given o-measure on its
topologic dual with the strong topology. Let (, ), be an inner product in E, inducing a
Hilbertian structure on Ho = (E, (, )), after itstopological completation.
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We suppose the following:

a) There is a continuous positive definite functional in Hp, Z(j), with an associated
cylindrical measure du.

b) There is a Hilbert-Schmidt operator T: Hy — Ho; invertible, such that E C
Range (T), T-Y(E) isdensein #Ho and T~1: Ho — #p is continuous.

We have thus, that the support of the measure satisfies the relationship
support du C (T~ 1)*(#Hp) c E* (19.120)

At this point we give anon-trivial application of ours of the above cited Theorem 3.

Let us consider an differential inversible operator £: S(RY) — S(R), together with an
positive inversible self-adjoint eliptic operator P: D(P) C L?(RV) — L2(RN). Let Hy be
the following Hilbert space

Hoy = {S(RN), (P*@,P*@) 2y = (), for o area number} . (19.121)
We can seethat for o > 0O, the operators below

P LARY) — #Hq

_ (19.122)
¢ — (P %)
P L?(RY
Hoo = LR (19.123)
¢ — (P%)
are isometries among the following sub-spaces
D(p—(x)’ < ) >L2) and H+0c
since
(P™%0,P™%@) 5., = (P*P™%0,P*P™%0) 2y = (0. 9) 2(ry) (19.124)
and
<P“f,P“f>Lz(RN) =(f, ., (19.125)

If one considers T a given Hilbert-Schmidt operator on H, , the composite operator
To = P*TP~“ is an operator with domain being D(P~%) and its image being the Range
(P%). To is clearly an invertible operator and S(RV) ¢ Range (T) means that the equation
(TP~%)(¢) = f has aways a non-zero solution in D(P~%) for any given f € SRY). Note
that the condition that T—(f) be a dense subset on Range (P~%) means that

(T7H,P%0) 2mn) = 0 (19.126)

has as unique solution the trivial solution f = 0.
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Let us suppose too that T~1: S(RN) — H,, be a continuous application and the bilinear
term (L£1(j))(j) be acontinuous application in the Hilbert spaces H,, > S(RY), namely:

if jn o j, then £71: P2, 5 £-1P% for {jnlncz and jn € S(RY).
By adirect application of the Theorem 3, we have the result

2()=ep{ 3L 2000} = [, duT)eliT() (19.127)

Here the topological space support is given by

1= (e | (PR

= [(P*)*(To )" (P~)"[P*(S(RY))
= P*T, H(L2(RY)) (19.128)

In the important case of £ = (—A+n?): S(RY) — SRY) and ToTg = (—A+mP) "2 ¢

N _N
$(L2(RY)) since Tr(ToTy) = Z(—rr::z)ﬁ (?) %

choice P = (—A + n?), we can see that the support of the measure in the path-integral
representation of the Euclidean measure field in RN may be taken as the measurable sub-set
below

NIZ

< oo for B > % with the

SUPP (e U(0)} = (—A-+11P) - (—A+P) B(L2(RY)) (19.129)

since L71P~% = (—A+4 mP?)~1~* isalways a bounded operator in L>(RN) for oo > —1.
As a consequence each field configuration can be considered as a kind of “fractional
distributional” derivative of a square integrable function as written below

000 = [(—a+m?) 1] (19.130)

with afunction f(x) € L2(RV) and any given € > 0, even if originally all fields configura-
tions entering into the path-integral were elements of the Schwartz Tempered Distribution
Spaces S(RV) certainly very “rough” mathematical objects to characterize from arigorous
geometrical point of view.

We have, thus, make a further reduction of the functional domain of the free massive
Euclidean scalar field of S(RV) to the measurable sub-set as given by eq.(19.130) denoted
by W(RV)

exp{—% [(—=A+m?)~ 1] (J)} = /;(RN) di_asmpy(0) €°0) =

. i Noie-1
= d _ 7 f e|<f7(—A-H’T12>7[ f>|_2(RN)
/W(RN)CS(RN) (—asmp) ()

(19.131)
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Appendix A

In this appendix we give new functional analytic proofs of the Bochner-Martin-Kolmogorov
Theorem of section 11.

Theorem of Bochner-Martin-Kolmogorov (Version |) let f : E — R be a given red
function with domain being a vector space E and satisfying the following properties

1) f(0)=1

2) The restriction of f to any finite-dimensional vector sub-space of E is the Fourier
Transform of area continuous function of compact support.

Then there is a measure du(h) on a 6-agebra containing the Borelians if the Space of
Linear Functionals of E with the topology of pontual convergence denoted by E®9 such
that foranyy e E

f(g)= [ exp(in(g))du(h) (19.A.1)

Edlg

Proof: Let {&.a} be aHamel (Vectorial) basis of E and E™N) a given sub-space of E of
finite-dimensional. By the hypothesis of the Theorem, we have that the restriction of the
functions to EN) (generated by the elements of the Hamel basis {&,,...,8,,} = {& }rear
is given by the Fourier Transform

N N
f (2 GMéM> :/n Rk(dle---dPxN)exp [2 am'%] G(Py,--,Py)  (19A2)

=1 e =1

Withg(Pkp"'vP}»N)GCC H RA

}\.EAF
As a consequence of the above written result we consider the following well-defined
family of linear positive functionals on the space of continuous function on the product
space of the Alexandrov Compeactifications of R denoted by RV :

Ly, € [c < TT RV R) }D“aj (19.A.3)
AEAE
with
LAF[Q(PM?"'?P?»N)] :/]_[ (R‘N)A/Q(PMP"7P?»N)(dPK1"'dP?»N) (19A4)

AeAE

Hereg(Py,,- - , Py, ) still denotes the unique extension of eq.(19.A-2) to the Alexandrov
Compectification RV,

We remark noe that the above family of linear continuous functionals have the following
properties:

1) Thenormof L, isaways the unity since

|ILay |l = | 6(Py,...,Py)dP, ...dP =1 (19.A.5)
[T (RY)*

AEAE
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2) If theindex set Ag, contains Ar therestriction of the associated linear functional Ar,

tothespaceC( [T (RY* R coincides with L.
AEAT

Now a ssimple application of the Stone-Weisrtress Theorem show us that the topo-
logical closure of the union of the sub-space of functions of finite variable is the space
C ( 1 (RY)*, R> , namely

AEA

Uc ( I1 (F@N)MR) =C([T(R"".R (19.A.6)

ApCA AEAE AEA

where the union is taken over al family of sub-sets of finite elements of the index set A.
As a conseguence of the remark 2 and eg.(19.A-6) there is a unique extension of the

family of linear functionals {L A, } to the whole space C < I1 (R, R> and denoted by L...
AeA

The RieszMarkov Theorem give us a unique measure dz(h) on [T (RY)* representing the
AEA

action of this functional on C ( 1 (R, R> .
AEA
We have, thus, the following functional integral representation for the function f(g):

(9= ., ewlne)du(h) (19A.7

AEA

_ N
Or equivaently (sinceh(g) = ¥ pia for some {p; }ien < <), we have the result
i=1

()= [ (expih(@)du(h) (19A.8)
(IR
AeA
which isthe proposed theorem with h € ( [] R)\) being the element which has athe image
)\.6)\4:
of h on the Alexandrov Compactification [] (RY)*.
)\.6)\4:

The practical use of the Bochner-Martin Kolmogorov Theorem is difficulted by the
present day non existence of an algorithm generating explicitly a Hamel (Vectoria) Basis
on Function of Spaces. However, if oneis able to apply the theorems of section |11 one can
construct explicitly the functional measure by only considering Topological Basis asin the
Gaussian Functional integral eq.(19.32).

Theorem of Bochner-Martin-Kolmogorov (Version 2)

We have now the same hypothesis and results of theorem version 1 but with the more
general condition.
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3) The restriction of f to any finite-dimensional vector sub-space of E is the Fourier
Transform of areal continuous function vanishing at “infinite”.

For the proof of the theorem under this more genera mathematical condition, we will
need two lemmas and some definitions.

Definitions 1. Let X be anormal Space, locally compact and satisfying the following o-
compacity condition

X =[JKx (19.A.9)
n=0
with
Kn Cint(Kni1) C Kny1 (19.A.10)

we define the following space of continuous function “vanishing” at infinite

Co(X,R) = {f(x) eC(X,R)[lim sup [f(X)] :0} (19.A.112)

| i
M= xe(Kn)©
We have, thus, the following lemma.

Lemma 1. The Topologica closure of the functions of compact support contains CO(X, R)
in the topology of uniform convergence.

Proof: Let f(x) € Co(X,R) and g, € C(X,R), the (Uryhson) functions associated to the
closed disjoints sets K, and (Kf, ;). Now it is straightforwardly to see that (f - gn)(x) €
Ci(X,R) and converges uniformly to f(x) due to the definition (19.A-11).

At this point, we consider alinear positive continuous functional L on CO(X, R). Since
the restriction of L to each sub-space C(Kp, R) satisfy the conditions of the Riesz-Markov
Theorem, there is a unique measure u(™ on K, containing the Borelians on K, and repre-
senting this linear functional restriction. We now use the hypothesis eg.(19.A-10) to have a
well defined measure on a c-algebra containing the Borelians of X

H(A) = limsupp™ (A()Kn) (19.A.12)

for Ain this c-algebra and representing the functiona L on éo(x, R)

L(f) = /x f (x)di(x) (19.A.13)

Note that the normally of the Topological Space X is afundamenta hypothesis used in
this proof by means of the Uryhson lemma.

Unfortunatelly, the non-countable product space [] R* is not a Norma Topological
AEA
Space (the famous Stone counter example) and we can not, thus, apply the above lemmato

our Vectoria case eg.(19.A-8). However, we can overcame the use of the Stone Weirstrass
Theorem in the Proof of the Bochner-Martin-Kolmaogorov Theorem by considering directly
acertain Functiona Space instead of that given by eq.(19.A-6).
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We define, thus, the following Space of Infinite-Dimensional functions vanishing at
finite

Co(R°,R) =Co <H R/\R) N Net ( 1 R&R) (19.A.14)
AEA ApCA AEAE

where the closure is taken in the topology of uniform cornvergence.

If we consider agiven continuous linear functional L onCp < 1R, R> thereisaunique
AEA

measure 1 on the union of the Borelians [] R* representing the action of L on Co(R*,R).
AEAF

Conversely, given a family of consistent measures {ua, } on the finite-dimensiona

spaces ( [T R’\) satisfying the property of . < [1 R* | =1, there is a unique measure
AEAE AEAE

on the cylinders [] R* associated to the functional L on Cy ( 1 RR).
AEA AEA
Collecting the results of the above written lemmas we get the Proof of eg.(19.A-8) in

this more general case.

Appendix B
On the Support Evaluations of Gaussian M easures

Let us show explicitly by one example of ours of the quite complex behavior of cylindrical
measures on infinite dimensional spaces R™.

Firstly we consider the family of Gaussian measures on R* = {(Xn)1<n<, Xn € R} with
on € (2.

N x4
du({xa}) = lim SUp{H(an V%)e‘ﬂ } (19.B-1)
n=1 n

Let us introduce the measurable sets on R

) = {<xn> RN, = 50 < oo}
n=1

and Y’ 007 < oo (19.B-2)
(=1

Here {0} is agiven sequence suppose to belonging to ¢2 either.
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Now it is straightforward to evaluate the “mass’ of the infinite-dimensional set Ey),
namely

oo

22)

(=) Y B . —S(ng O5XE
#(Ewn))—/Rmd u({xn})[glme L ]

n
— lim { lim sup [H 1+ 2 0262) -%} (19.B-3)
e—0t o<t<nlyp—q
Note that
n 71 l
[TA+2eaicd) 2 | < ———— (19.B-4)
=1 1+ Y olo?
/=1

As a consequence one can exchange the order of the limits on eq.(19.B-3) and arriving
at the result

n
() = lim sup { lim []‘[ 1+ 2c0202) —%]}

0</<n -0t

=lim sup {1} =1 (19.B-5)
0</¢<n
So we conclude on basis if eq.(19.B-5) that the support of the measure eq.(19.B-1) is
the set Eq,) for any possible sequence {aw} € 2. Let us show that (E(,))¢ NEg,) # {0},
S0 these sets are not coincident.
L et be the sequences

—0

Gn =N

(Xn == nc_l

Bn=n"" (19.B-6)

withy > 1and o > 0.
We have that
7t

Y adoh = 2 == (19.B-7)
Ypioi=Yn?<e (19.B-8)

So Ey,,,y and Eyg,y are non-empty sets on R™.
Let us consider the point {x,} € R and defined by the relationship
Xa =n-2o-be (19.B-9)

We have that
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and

2 Xn BZ 2n720 1)— 2(c—A)
_ 2 n2 e—2\
If wechoosee=1;y>1(y=23! 5!), we obtain that the point {)?n} belongstotheset Eg

(snce ¥ n? = 6) however it does not belongs to Ey , (since 2 n~1 = 4+, athough the

support of the measure eg.(19.B-1) is any set of the form E{Yn} W|th {yn} € £2.
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Chapter 20

Non-linear Diffusion in R°
and in Hilbert Spaces, a Path
Integral Study

20.1. Introduction

The deterministic non-linear diffusion equation is one of the most important topics in the
Mathematical-Physics of the non-linear evolution equation theory [1-3]. Animportant class
of initial-value problems in turbulence has been modeled by non-linear diffusion stirred by
random sources [4].

The purpose of this chapter 20 in Mathematical methods for Physics is to provide a
model of non-linear diffusion were one can use and understand the compacity functional
analytic arguments to produce theorems of existence and uniqueness on weak solutions for
deterministic sitirring in L ([0, T] x L?(Q)). We use these results to give afirst step “proof”
for the famous Rosen path integral representation for the Hopf charactheristic functiona as-
sociated to the white-noise stirred non-linear quantum field diffusion model. These studies
are presented on section 11.

In section 111 we present astudy of aLinear diffusion equation in aHilbert Space, which
is the basis of the famous Loop Wave Equations in String and Polymer surface theory of
the previous presented studies.

20.2. The Non-linear Diffusion

Let us start our chapter by considering the following non-linear diffusion equation in some
strip Q x [0, T] with Q denoting aC~-compact domain of RP.

U (x,t)
at

withinitial and Dirichlet boundary conditions as given below.

= (+AU) (1) + AN (F(U (1)) + f(x1)) (20.1)

U(x,0) =g(x) € LAQ) (20.2)
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U(X,t) [so=0 (fort > 0) (20.3)

We note that the non-linearitity of the diffusion-spatial term of the parabolic problem
eq(1) takes into account the physical properties of non-linear porous medium’s diffusion
saturation physical situation where this moddl is supposed to be applied [1] - by means of
the hypothesis that the regularized Laplacean operator A"V in the non-linear term of the
governing diffusion eg.(20.1) has a cut-off in its spectral range. Additionaly we make the
hypothesis that the non-linear function F(x) is a bounded real continuously differentiable
function on the extended interval (—eo, ) with its derivative F'(x) strictly positive there.
The external source f(x,t) is supposed to belong to the space L= ([0, T] x L2(Q)) ortobe a
white-noise external stirring of the form ([2] - pp. 61) when in the random case

HM=%{Z%@MWW%=%MW (204

nezZ

Here {¢n} denotes a complete orthonormal set on L2(Q) and By(t), n € Z are indepen-
dent Wiener processes.

Let us show the existence and uniqueness of weak solutions for the diffusion prob-
lem above stated by means of Galerking Method for the case of deterministic f(x,t) €
L=([0,T] x L2(Q)).

Let {on(X)} be spectral eigen-functions associated to the Laplacean A. Note that each
on(X) € H2(Q) N H(Q) [3]. We introduce now the (finite-dimensional) Galerkin approxi-
mants

UMt = YU Wi
i=1

FO(8) = 3 (0.8, 9) (e (9 (205)
i=1

subject to the initial-conditions

n

mengﬁmwm@ww (20.6)

here (', ) 2(q) denotes the usual inner product on L2(Q).

After substituting egs.(20.5), (20.6) in eg.(20.1), one gets the weak form of the non-
linear diffusion equation in the finite-dimension approximation as a mathematical well-
defined systems of ordinary non-linear differential equations, as a result of an application
of the Peano existence-solution theorem.

aU ™ (x, 1)
= B 5 _AUM .
( at 7(pj (X) LZ(Q) + ( AU (X7t)7 (pj (X)> LZ(Q)

= (VY IF U ) VOU D )]0 (), +(FO 0,050 i) (207)

L2(Q)
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By multiplying the associated system eg.(20.7) by U (" we get the diffusion equation in
the finite dimensional Galerking sub-space in the integral form:

1d
E&HU(n)HEZ(Q)

+ (—AU (n),U (n))LZ(Q)

+ / dx(F/(U ™) (VAU . TO) (x,1) = (F,U™) 20 (20.8)
Q

Thisresult, by itsturn, yields a prior estimate for any positive integer p:
1d
2dt

LI 2 1.2
SE p| (th)‘|L2(Q)+_p||U 122 (20.9)

1
(I ®1Z2(q) ) + Y@V O Eaq) + I (F' L )EVUD) 2, g

Here y(Q) is the Garding-Poincaré constant on the inequalite of the quadratic form
associated to the Laplacean operator defined on the domain H2(Q) NH(Q).

JUO s g = (AU UMY, > y(@)UO] 2y . (20.10)

L2(Q)

By chosing the integer p big enough and applying the Gronwall lema, we obtain that
the set of function {U (" (x,t)} formsabounded set in L= ([0, T],L2(Q))NL=([0, T],H3(Q))
and in L%([0,T],L?(Q)). As a consequence of this boundeness property of the func-
tion set {UM}, there is a sub-sequence weak-star convergent to a function U (t,x) €
L=([0,T],L%(Q)), which is the candidate for our “weak” solution of eq.(20.1).

Ancther important estimate is to consider again eq.(20.9), but now considering the
Sobolev space H3(Q) on this estimate eq.(20.9), namely:

1 o T
S (UM~ VO] +8o [ atllu @[y

1 T e LMo =
< 5P (/o Hf\!Lz(Q)dt> + T (/o U |]L2(Q>dt> <M <o (20.11)

since we have the coerciviness condition for the L aplacean operator
(—AU® U™) 20 > ToU™, UMW) ). (20.12)

Notethat [|U (™ (0)||2 < 2||g(x)||EZ(Q) (see eq.(20.8)) and {||U ™ (T)HEZ(Q)} isabounded
set of real positive numbers.

As a consequence of a prior estimate of eq.(20.11), one obtains that the previous se-
quence of functions {U (M} € L=([0, T],H3(Q) NH2(Q)) forms abounded set on the vector
valued Hilbert space L%([0, T],H(Q)) either.

Finaly, one dtill has another a prior estimate after multiplying the Galerkin system
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e0.(20.7) by the time-derivatives U (", namely
T 2
/ dtHdUn(t)
0 dt iz
< Real (AU (T),Un(T)) — (AUA(0),Un(0))
T ‘ du,

A(A)F(Un(t))w o)
12(Q

< %p( [ s rwnof, o)

( HdU” ) (20.13)
L2(Q
[ 1A F U0 e g

guwuépx(xefﬁ e

]
x / Gt Un ()2 ) < (20.14)

By noting that

2

one obtains as a further result that the set of the derivatives {dU” is bounded in
L2([0,T],L2(@)) (s0in L2([0, T],H ().

At this point we apply the famous Aubin-Lion theorem [3] to obtain the strong conver-
gence on L?(Q) of the set of the Galerkin approximants {Un(x,t)} to our candidate U (xt),
since this set is acompact set in L?([0, T],L?(Q)) (see appendix A).

By collecting all the above results we are lead to the strong convergence of the L?(Q)-
sequence of functions F (Up(x,t)) to the L2(Q) function F (U (x,t)).

We now assemble the above obtained rigorous mathematical results to obtain U (x,t) as
aweak solution of eq.(20.1) for any test function v(x,t) € C5 ([0, T]),H?(Q) NH(Q))

T dv
i (m _ =¥ Ay
jim 0 dt[(U ’ dt)LZ(Q)+( AU Vi)
(FU™), _A(A)V)LZ(Q)}

;
=lim [ dt(f", v) (20.15)

N—co O

or in the weak-generalized sense above mentioned

a2,

+ (U(xt V)(%,t)) 2 L2(Q)
+ (F(U( (A)V(X’t))LZ(Q)
-/ Tdt(f(x,t),v(x,t))LZ(Q), (20.16)
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since v(0,x) = v(T,x) = 0 by our proposed space of time-dependent test functions as
cs([o.1],
H?(Q) N HY(Q)), suitable to be used on the Rosens path integrals representations
for stochastic systems (see equations (22a)-(22b) in what follows).

The uniqueness of our solution U (x,t), comes from the following lemma[4].

Lemma 1. If Uy and Uy in L=([0,T] x L%(Q)) are two functions satisfying the weak
relationship below

+ (U — Uz, +AV) 2(g)
(FO@—FU@)i+AV) g } =0 (20.17)

then Uy = Uy aein L=([0,T] x L%(Q)). The proof of eq.(20.17) is easily obtained
by considering the family of test functions on eq.(20.16) of the following form v,(x,t) =
e ()€ @n(X) With —A@n(X) = otn@n(x) and g(t) = 1for (e, T —e) with e > O arbitrary.
We can see that it reduces to the obvious identity (o, > 0).

T—e o o
/8 dtexp(ant) (F(U 1)) = F(U2),¢n) 2, =0, (20.18)

which means that F (U 1)) = F(U()) aeon (0,T) x Q since ¢ is an arbitrary number. We
have thus U(l) = U(2> ae, as F(x) satisfies the lower bound estimate by our hypothesis on
the kind of non-linearity considered in our non-linear diffusion eq.(20.1).

F)—F(y)| > ( inf(F'()) ) x—y] (20.19)

—o0 < X < +oo

Let us now consider a path-integral solution of eg.(20.1) (with g(x) = 0) for f(x,t)
denoting the white-noise stirring [4].

E(f(x,t)f(X,t) = AP (x—X)3(t —t') (20.20)

where A is the noise-strenght.

The first step is to write the generating process stochastic functiona (the Euclidean
Quantum Field Diffusion) through the Rosen-Feynman path integral identities [4] (see
chapter 1)

Z[I(x.t)] = E¢ [exp{i/ont/QdeU(x,t,[f])J(x,t)H (20.21-3)

_E [/DF[U]E)(H(atu ~AU - AV (FU) - f))]

x@(p{i /0 Tt /Q deU(x,t)J(x,t)} (20.21-b)
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_E [/DF[U]DFW@@{i/ont/Qdex(x,t)
x (U — AU — AW (F(U)) — f)}]

x@(p{i /0 Tt /Q deU(x,t)J(x,t)} (20.21-0)

:/DF[U]exp{—i ‘Tdt/de
2\ Jo Q

%[0 =AU =AM (F L)) }

xexp{i /O "t /Q dPxu (x,t)J(x,t)} (20.21-d)

The important step made rigorous mathematically possible on the above written (still
formal) Rosen’s path integral representation by our previous rigorous mathematical analysis
is the use of the delta functional identity on eq.(20.21-b) which is true only in the case of
the existence and uniqueness of the solution of the diffusion equation in the weak sense at
least for multiplier Lagrange fields A(x,t) € C3([0, T],H2(Q) N H(Q)).

As an important mathematical result to be pointed out is that in genera case of a non-
porous medium [4] in R®, where one should mode! the diffusion non linearity by acomplete
Laplacean AF (U (x,t)), one should observes that the set of (cut-off) solutions {U(A) (x1)}
of €qg.(20.1) il remains a bounded set on L*([0,T],L?(Q)). Since we have the a pri-
ori estimate uniform bound for the U ("-derivatives below in D = 3 (with G'(x) = F(x)).

Namely:
T du ()
(M () -
» < /O dt </Qd3x(AF(U (1)) < & ))'

]
/ dt <
0
dU ™ (x,t)) ‘

qum |7
dt

3
+ /Qd xf(x,t) "

/TdtReaI E/dme(um)(t) s B+ S0
0 at Jo > ogthp iz ™y L2(Q)

< 'Real < /Q d3x(AG(U (" (T,x)) — AG(U <”>(o,x))>

<

+—1 { 1) [122(q +—1H.(n)H }
su X, U
ZOStSpT P L@ p ke

1 1 -
< ép”fHE‘”((O,t),LZ(Q)) + Z_pHU ®)llL=((0p) L2(@)) <°° (20.22)

Where U™ (T,x)‘ag = U0, x)‘aQ = 0 (see eq.(20.3). The uniform bound for the
derivatives is achieved by choosing 4 < 1.

As another point worth to call the attention for we note that the above considered
function space is the dual of the Banach space L1([0,T],L?(Q)). So, one can extract
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from the above set of cut-off solutions a candidate U™ (x,1), in the weak-star topology
of L*([0,T],L2(R)) for the above cited case of cut-off removing A = +o [6]. However, we
will not proceed throughly in this straightforward technical question of cut-off removing in
our model of non-linear diffusion in this chapter for general spaces RP.

Finally, we remark that in the one-dimensional case Q € R!, one can further show by
using the same compacity methods the existence and uniqueness of the diffusion equa-
tion added with the hydrodynamic advective term %%(U (x,t))?, which turns the diffusion
€g.(20.1) as akind of non-linear Burger equation on a porous medium,

It appears very important to remark that Gal erking methods applied directly to thefinite-
dimensiona stochastic eq.(20.7) (see eq.(20.4)) may be saving-time computer simulation
candidates for the “turbulent” path-integral eq.(22a)-eq.(22d) evaluations by approximate
numerical methods ([2]-second reference).

20.3. TheLinear Diffusion in the Space L?(Q)

Let us now present some mathematical results for the diffusion problem in Hilbert Spaces
formed by square-integrable functions L2(Q) [5], with the domain Q denoting a compact
set of RP.

The diffusion equation in the infinite-dimensional space L?(Q) is given by the following
functional differential equation (see first reference of [5] for the mathematical notation).

WV iz (D7 (1)
WF(X),t — 0] = Q[f ()], (20.23)

Here y[f(x),-] is a time-dependent functional to be determined through the govern-
ing €g.(20.23) and belonging to the space L2(L%(Q),dqu(f)) with dou(f) denoting the
Gaussian measure on L?(Q) associated to Q — a fixed positive self-adjoint trace class op-
erator $,(L%(Q)) — and D% is the second — Frechet derivative of the functionaly[f (x),t]
which is given by a f(x)-dependent linear operator on L?(Q) with associated quadratic
form (Dfw[f(x),1]-9(x), h(X))L2 (-

By considering explicitly the spectral base of the operator Q on L?(Q)

Qpn = An@n, (20.24)
The L2(Q)-infinite — dimensional diffusion equation takes the usual form:
WY fan,t] = v [(fa), ] (20.253)
n
QLY. fon] = Q[(fo)] (20.25b)
n

oy [(f),t .

WL 3 fha 0 [0 1) (20250

n

v [(f0),0] = Q[(fn)] (20.250)



286 Luiz C.L. Botelho

or in the Physicist’s functional derivative form (see ref. [5]).

0 ‘ ‘ 52
&\U[f (X),t] = /Q dDX‘/Q dDXI(Q(X7 X,) m\u[f (X),t] (2026&)
v[f(x),0] = Q[f(x)] (20.26D)
Here the integral operator Kernel of the trace class operator is explicitly given by
Q(x,X) = 2(}\'n(Pn(X)(Pn(XJ)) (20.26¢)

n

A solution of eg.(264) is easily written in terms of Gaussian path-integrals [5] which
reads on the physicist’'s notations

wife9 = [, DFlamoialt(0 + ] xder't | 20
XQXP{ / o / d°Xg(x)- Q7 (xx)g <%>} (20.27)

Rigoroudly, the correct functional measure on eq.(20.27) is the normalized Gaussian
measure with the following Generating functional

2i9] = |, deulaxlen{i [ e}

L2()
:@<p{—£ dPx / X j()QL(x,X) j(x’)} (20.28)
2/)o Q

At this point, it becomes important remark that when writting the solution as a
Gaussian-path integral average as done in €q.(20.27), al the L?(Q) functions in the func-
tional domain of our diffusion functional field y[f(x),t] belongs to the functional domain
of the quadratic form associated to the classe trace operator Q the so-called reproducing
kernel of the operator Q which is not the whole Hilbert Space L?(Q) as naively indicated
on eq.(20.27), but the following subset of it:

Dom(y[-t]) = {f(x) € LA(@)|Q} f € L3Q)} £LA(Q) (20.29)

The above written result gives a new generdization of the famous Cameron-Martin
theorem that the usual Wienner measure (defined by the one-dimensional Laplacean with
Dirichlet conditions on the interval end-points) is trandlation invariant, i.e dV'®yu[f + g =

dWien,[ ] x (%&W) , if and only if the shift function g(x) is absolutely continuous with

d2
T dx

Anacther point important to call the reader attention is that one can writte eg.(20.27) in
the usual form of Diffusion in finite dimensional case (see appendix B)

wIT00.10= [, D7 lg0Rlf) +vigho)
@(p{——/ dPx /dD%g “1(x,¥)g(x )} (20.30)

derivative on L2([a,b]). In other words g € H}([a,b]) = Dom
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At this point is worth call the reader attention that diou and dou Gaussian measures
are singular to each other by adirect application of Kakutani theorem for Gaussian infinite
dimensional measures for any timet > 0.

dkou[9(X)] / dqulg(x)] = +o° (20.31)

Let us apply the above results for the Physical diffusion of Polymer Rings (closed
strings) described by Periodic Loops X(c) € R?,0 < 6 < T,X(c+ T) = X(o) with anon-
local diffusion coeficient Q(c,o’) (such that [y do [y do’Q(c,0’) = Tr[Q] < ). Thefun-
cional governing equation in Loop Space (formed by Polymer rings) is given by

€)Y . T T 2
WOX(0)A _ / do / dG’Qf?)(G,G’)#\u(S) X(c),A]  (20.323)
0A 0 0 : 8% (0)8X; (o)

y®[X(0);0] = exp{—& Tdc / ! do’X;(0)Mij(c,6")X; (0’)} . (20.32b)
2.Jo 0

Here the ring polymer surface probability distribuition () [X(c), A depends on the
area parameter A, the area of the cylindrical polymer surface of our surface-polymer chain.
Note the presence of a parameter € on the above written objects takes into account the local
(the integral operator kernel) case Q(c,6’) = 8(c — ¢’) as alimiting case of the rigorously
mathematical well-defined (class trace) situation on the end of the observable evaluations

o=l 52 e

82

The solution of eq.(324) is straightforwardly written in the case of a self-adjoint kernel
M on L?(Q x Q).

@(p{—— / do / dG/Xi(G)Mij(G,G/)Xj(G/)}
2Jo 0
x det™2[1+ AAM (Q®) 1]
T T . .
@(p{+% /o do /0 do’(MX);(o) ((AM+(Q<€>)1%> (MX)J-(G’)} (20.34)
The functional determinant can be reduced to the evaluation of an integral equation
detZ[1+ AAM(Q®) Y

— exp{—%TrLz(Q)Ig(l—kKAM(Q(£>)_1}
1 » ! €)\— / e\ — _
—ep{~5Trizg [ GIQY) ML+ ¥AQY) M)}

A
:exp{—%Tr,_z(Q) /O dk’R(k’)} (20.35)

Here the kernel operator R(A') satisfies the integral equation (accesible for numerical
analysis)
RA)(1+VAQE) M = (Q¥)™'m (20.36)
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Which in the local case of € — 0", when considered in the fina result eq.(20.34) -
€g.(20.35), produces the explicitly candidate solutions for our Polymer-surface probalility
distribuition with M a class trace operator on the Loop space: L%([0,T]).

WIX (o)Al = exp{—%Ter [ am@? +x'AM>-1]}
x exp{—%/()T dcs/OT do'Xi(o) Mi,-(o,o')i,-(o’)}
x exp{+% /OT dG/OT do’ (MX); (o) (xM +(QE)~L. %) (6,0')(MX), (G’)} (20.37)

It isworth call the reader attention that if A € §; and B is abounded operator - so A-B
is a class trace operator-, the functional determinant det[1+ AB] is a well-defined object as
adirect result of the obvious estimate, result which was used to arrive at eq.(20.37).

Ijlmrf[()(1+kn) <exp (i xn> = exp(TrAB)

n=0

As alast comment on the linear infinite-dimensional diffusion problem eq.(20.23), let
us sketchy a (rigorous) proof that eq.(20.27) is the unique solution of eg.(20.23). Firstly,
let us consider the initial condition on eq.(20.23) as belonging to the space of al mappings

GiL?(Q) — Rthat are twice Fréchet differentiable on L?(Q) with uniformly continuous and
bounded second derivative D?G (a bounded operator of £(L?(Q)) with norm C). This set

of mappings will be denoted by UC?[L?(Q), R]. Itis, thus, straightforward to see through an
application of the mean value theorem that the following estimate holds true

sp W[t = GIf (3]l
f(x)eQ2L2(Q)

< /1y G100 ~ Glg(x) Ik rlg0)]

. 1
S/LZ(Q) [IDG(f(X),g(X))u(g)Jr/O do(1- 0)(D?G[f (X) + 69(X)]g(X),9(X) 2(q) |
X tu[9(X)]

1
<0+ [ do(1-o0) [ s 1909 2 0 k(900

<C( [, 1801 g o)
< CTF('[Q) = (CTF(Q)I —0 as t—0". (20.38)

We have thus defined a strongly continuous semi-group on the Banach Space
UC?[L?(Q),R] with infinitesmal generator given by the infinite-dimensional Laplacean
Tr[QD? acting on the space L2(Q2(L2(Q)),R). By the general theory of semi-groups
on Banach spaces we abtain that eq.(20.27) satisfies the infinite-dimensional diffusion ini-
tial value problem eq.(20.23), at least for initial conditions on the space uC?[L?(Q),R].
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Since purely Gaussian functionals belong to uC?[L?(Q2),R] and they form a dense set on
the space L2(L?(Q),dqu), we get the proof of our result for general initial condition on
L2(L2(Q), dop).

Finally, we point out that the general solution of the diffusion problem on Hilbert Space
with sources and sinks, namely

W10, = STria@ [QDAVIF(. - VIT (0.1 (2039
with
W[F(X),t — 0] = Q[f (X)), (20.40)

posseses a generalized Feynman-Wiener-K ac Hilbert L?(Q) space valued path integral rep-
resentation, which in the Feynman Physicist formal notation reads as

TI= / c(oT), L2< >>DF[X(G>]
(1),

([ xo )mo@

xexp{— /0 doV K /0 TX(G’)dG’> +x<o>]} (20.41)

Where the paths satisfy the end-point constraint X(T) = h(x) € L2(Q);X(0) = f(x) €
L%(Q).

wlh(x),

X eX

Appendix A.
The Aubin-Lion Theorem

Just for completenesse in this mathematical appendix for our mathematical oriented read-
ers, we intend to give a detailed proof of the basic result on compacity of sets in function
spaces of the form L?(Q) and througout used on section 2. We have, thus, the Aubin-Lion
Theorem[3] in the Gelfand triplet H3 (Q) — L?(Q) — H~1(Q) = (H}(Q))*

“Aubin-Lion - If {Un(x,t)} is a sequence of time-differentiable functions in a
bounded set of L2([0,T],H3(Q)) such that its time derivatives forms a bounded set of
L2([0,T],Hy 1(Q)), we have that {Un(x,t)} is acompact set on L?([0,T],L%(Q))".

Proof: the basic fact we are going to use to give a mathematical proof of this theorem is
the following identity (Ehrling’s lemma): For any given € > 0, thereisaconstant C(¢) such
that

Unllz(0) < ElUnllug ) +CE)UnlIZ g, (20.A-1)
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As a consequence, we have the following estimate

;
2
/0HUn—UmHLZ([omLZ(Q)

;
< [ dt(el]Un—Unlligio) +CLe) lUn—=Unli 0

T T
g82</0 dtHUn—UmIIﬁ&(Q)>+(C(8)2</0 dtuun—umllﬁ.l(g))

T
+2¢C(e) </0 dt([|Un — Uz (o) X [|Un _Um”Hol(Q))>
2 [T 2 2 [T 2
<e (/O dtHUn—UmHH&(Q)) +Cle) </0 dt||Un—UmHH1(Q)>
T , 2 T , :
+28C(8) </0 dtHUn—UmHH&(Q)> + </0 dtHUn—UmHHl(Q)>

1
T 2
< 262M 4 2eC(e)M? </ dtHUn—UmHﬁl(Q))
0
]
# € ( [ otIn - Unlf o (20A2)

At this point, we use the Arzela-Ascoli theorem to see that {U,(x,t)} is acompact set
on the space C([0, T],H~1(Q)) since we have the set equicontinuity:

t
Un(®) = Un(8) -0 < [ IURD) sy e

(1-1) T 2 :
< It= 2 ([ 10O 1 0
<Mjt—92 (20.A3)

Itisacrucial step now by remarking that H}(Q) is compactly immersein L2(Q) (Rel-
lich Theorem). Let us not that for eacht (almost everywherein [0, T]), Uy (X,t) isabounded
set on H (Q) since Un(x,t) belongs to abounded set L2([0, T], H3(Q)) by hypothesis. Asa
consequence, {Un,, (x,t)} isacompact set on L?(Q) (Rellich Theorem) and so in H~1(Q)
amost everywherein [0, T] since L?(Q) — H~1(Q). By an application of the Arzela-Ascoli
theorem, there is a sub-sequence{Upy (x,t)} of {Un(x,t)} (and still denoted by {Un(x,t)}
such that it converges uniformly to a given function U (x,t) € C([0, T],H~%(Q)). Asadi-
rect result of this fact we, have that (for T < oo!) for (n,m) — oo.

1
T 2 T
</0 ||Un—Um||a1(g)> < (sUp|Un —Unlc(o)H-1(@) X </0 1'dt> —0 (20.A4)

Returning to our estimate eq.(20.A2), we see that this sub-sequence is a Cauchy se-
quence in L%([0,T],L?(Q)). As a consequence, for each fixed t € [0, T] (almost every-
where), Un(x,t) converges toU (x,t) in L?(Q).
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Appendix B.
The Linear Diffusion Equation in Hilbert Spaces

Let us show mathematically the basic functional integral representation eg.(20.30) for the
L?(Q)-Space Diffusion Equation eq.(20.23) .

As afirst step for such proof, let us cal the reader attention that one should consider
the second order (Laplacean) D?U (x,t) as a bounded operator in L?(Q) in order to the
operatorial composition with the positive definete class trace operator Q still be a class
trace operator asit is explicitly supposed in the right-hand side of eg.(20.23).

We thus impose as the sub-space of initial condition the Diffusion Equation eg.(20.23)
for the (dense) vector sub-space of C(L?(Q), R) composed of all functionals of the form.

(0 = [ Go(PIF (P e® ({0120 (2081)

with F(p) € L?(L%(Q), dou).

By substituting theinital condition eg.(20.B1) into theintegral representation eq.(20.30)
and by using the Fubbini-Toneli Theorem to exchange the needed integrations order in the
estimate below, we get:

UGt = [, 100 ViE)dau(d)

~ [ ut@){ [ doutpiF(praeevieie |

- / dou(p)F (p)-€PHize (P2, (20.82)
L

Note that we have aready proved that U(x,t) is a bounded functional of
C (L%(Q) x [0,]; R) onthe basis of our hypothesis on theinitial functional date eq.(20.B1).

At this point we observe that the second order Frechet derivatives of the Functional
expi(p,x) > are easily (explicitly) evaluated as[(7)]

. = 92\ .
QD? (e|<p7X>L2) _ (Z‘l}wfﬂ_x) |:e|(2n:1pnxn):| = — ({p,Qp)2) P12 (20.83)

We have thus a straightforward proof of our claim above cited on the basis again of the
chosen initial date sub-space

Tr[QD?U (x,t)]
< /2y (PIF (P (p. Q)

. , 1, 2
< (g eutPIFE) ([, dontPl(p.P0 )
< (TP IE2 20, aqu) <> (20.B4)

1
2
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Now, it isasimply application to verify that eq.(20.B2) satisfies the Diffusion Equation
in L?(Q) (or in any other Separable Hilbert Space). Namely:

U (x1) - 1
) d F(p)g{P¥2 ) _ =
p /LZ(Q) Qu(p)F (p)e"P { 2<p,Qp>Lz(g>}
% e_ti<p7Qp>|_2<g) (20.B5)

TrL20)[QD?U (x,1)] = /

i _L
L2(@) dou(P)F (P)Tr 2 {QD2e'<"’~’<> } e 2(PQPzg)

- L2(Q) dou(p)F (p) {—(p,Qp)L2} d(PX) g 2(PQPl2(g) (20.B6)

with

U0 = [, duPF (R { imetPPol 1. (08)
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Chapter 21

Basics I ntegrals Representationsin
Mathematical Analysis of Euclidean
Functional Integrals

In this complementar chapter, we expose additional rigorous mathematical concepts and
theorems behind Euclidean Functional Integrals as proposed by us in Chapters 19-20 of
this book and used throughly in another chapters.

In Section 1.1, we present a pure topological proof of the basic measure theory Riesz-
Markov theorem, mathematical concept basic to construct rigoroudly functional integrals.
In Section 1.2, we present anal ogous results on the mathematics structure of the L. Schwartz
Distributions.

In Section 1.3, we present the important Kakutani theorem on the Equivalence of Gaus-
sian Measures in Hilbert Spaces, the mathematical basis for the rigorous framework for
Jacobian Transformations in Euclidean Path Integrals.

21.1. On the Riesz-M ar kov Theorem

“The words set and function are not as simple as they may seem. They are potent words.
They are like seeds, which are primitive in appearance but have the capacity for vast and
intrincate developments - G.F. Simmons.”

The Riesz Representation Theorem

Theorem 1. Let X be a Topological Compact Hausdorff Space. Let L be a positive linear
functional on C(X). There exists a unique positive measure di u and an associated o-algebra
on X which represents L in the sense that

L(f) = [ F6o0ut )

Let us begin our proof by introducing the ring of compact subsets of X.
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Another mathematical structure we needed is the following Banach space. Let ,C(X)
be the vector space formed by all linear combinations of the elements of Cy(X) and the
characteristic functions of the compact sets of X. We introduce the sup norm on this vector
space and take its completation still denoted by ,C(X) (which is a Banach Space). It is
a straightforward consequence of the Hahn-Banach Theorem that the given positive linear
functional L has an unique extension to ,C(X) still denoted by L in what follows.

We define now an equivalence relation on the Algebra of sets above introduced through
the relationship

VB, o€ A and oc~B<:>L(XOLTB):O, 2

here AP denotes the topological closure of the difference set aAB = (a—B)U (B — o) =
(anp U (Bna’). Onthis Coset Algebra of sets A/ ~, denoted by Eggire(X), we introduce
ametrical structure by means of the metric set function

d.(AB)=L ( <xm> > : ©)

By considering the topological completation of the metric space (Egaire(X),dL) we ob-
tain our proposed c-algebra on X and a measure defined by the simple metrical relation

p(o) = di (o, 9). (4)

At this point it is evident that the Extension Theorem of Caratheodory is a simple re-
phrazing of eq(4), since for agiven u -measurable set Q € (Eggire(X), 1) and € > 0O, there

is afinite family of dijoint compact setson X: {Ke}o ; () Such that

N(S) N(g)
d(aUk)see (Tuk)-em@ <e+(2uL <) ©
/=1

(=1

L et usintroduce the large Banach Space Cpounded (Egaire(X ), R) with the usual sup norm.
It is straightforward to see that the given functional L € (,C(X))* has an unique extension
L to this new space of continuous function on Egaire(X) [which is straightforwardly identi-
fied with the measurable functions on (Egaire(X), UL )!] Since the characteristic functions of
compact sets are elements of Cpounded (Egaire(X),R) any f € C(x) is the limit on the topol-
ogy of C(Egaire(X), R) of the simple functions (monotone non-decreasing) sequence below
written

nm{nEznj = lim Sy(f
- Xew, (09 Nt6, (9 | = 1im Su()(x). ©)

N—cc
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Here the (compact!) sets Ep, j and F, in X are defined by

Enj = fl([";l,zlnb (7-8)

Foe f-l([n,ufuqx)]) (7-b)

Now the assertive expressed by eq(1) isasimple result of the definition of integration

L(f) =L(f) =L(limS(f)) = limL(S(f))

N—oco N—oo

N—oco

:n”i';</xf” ) u(x ) /f )l p(X) 8)

n2n .
= lim <2 Jzn p(Enj) +nuc(Fy ))

which proves the Riesz-Markov theorem.

Asalast point of this section let us give acriterion for the existence of invariant setsin

relation to a given (measurable) transformation

T: (EBaire(X)7dL) — (Egaire(X),dL). )

If the measurable transformation is a contraction (or some of its power!) between the

above Complete Metric Spaces Namelly: if thereisc < 1 and an integer P € Z* such that

ATAT) = [ dst)mame) < e [ dutne (). @0

then there is a point-fixed set A, such that

TA =A (11)

in the sense that

T(A),A) = /x diu(X) X (a)am) (X) = 0. (12)

We now show a concrete version of the Riesz representation theorem
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Theorem 2. Let L be acontinuous linear functional on the C(Q), the space of the continu-
ous function defined in a compact set Q ¢ R* and satisfying the following property

i( 3 iXj)
L(e(lep x§<x>> — fa(pr..... pn) = fa(p) € LYRY) (13)

Then thereisa (unique) function ¢, (x) € C(Q) representing the action of the functional
eq(13) on C(Q) by the integral representation

:/ﬁd'\'xq)L(x)g(x). (14)
Proof: Let usfirstly consider the Fourier Transform of the function fo(P). Namely
13" Np. aP
X)=|— d p-€"fo(p). 15
¢L( ) <\/E> RN p Q(p) ( )

Obviously ¢ (X) € Co(RVY).

Due to supposed continuity of the functional L, one can show that fo(p) € C*(RY) and
we have the differentiality relation below written (M = (¢4,...,¢N)) (exercise)

oM
apfl apn

(talp) = L] (). ) esp » o) a0} a9

i=1

which means that the inversion Fourier transform theorem holds true

L((x0)™... (%))

(%)N F;N dN xe‘ip"{(xl)é1 (%) ¢L(x)} .

(\/%)N{ %Nde(xl)él...(xn)€¢L(x)} 17)

By the Weistrass Theorem, we have finally our envisaged result on C(Q)

)= [ @"xa000. (a9 = | dxg0or (). (18)

21.2. TheL. Schwartz Representation Theorem on C*(Q)
(Distribution Theory)

“— The Quantum and Random World is an application of Cantor Set Theory in its devel op-
ments — Luiz Botelho.”
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After have exposed the fundamental abstract result of Riesz-Markov on the structure of
the elements of the dual space of continuous linear functionals in C(X), with X denoting
a general compact topological space, we pass on to the problem of describing continuous
functionals on the vector space C™(Q), with Q denoting a open set of RV,

Let us thus start by considering a sequence of compact sets Ky, with the property in-
terior (Kn11) D Ky and such that Q = U Kn, together with the Complete Metrical Space

C>=(Ky), defined by the vector space of |nf| nitely differentiable functionsin Q, with support
in Ky, with the Frechet metric

o H—m
d(f,g) = 27t~ Gl , where || f||m: sup sup |DPf(x)|
nbol"i'“f || XeQ |p|<m

Thebasic contribution of L. Schwartz isto consider the Topol ogy of the inductive limit
onC=(Q) aswriting formally astopological spacesCiry(22) = U C>=(Ky) rigorously mean-

ing that the topology in C*(Q2) is the weakest topology WhICh makes all the canonical in-
jections

Dn: C*(Kn) — C(Q) (19)

continuous applications.

A Topological Basisfor the origin of C*(€2) isformed by all those convex and barreleds
setsU € C(Q) such that U NC=(K,) is aways a neighborhood of the origin in C*(Kp).
The main result and reason for introducing such Inductive Topology in C*(Q) is that it
leads to the fundamental result that C-,(€2) is a Sequentially Complete Toplogical Vector

Space.
At this point is worth call the reader attention that the usual non-distributional topo-
logical definition of C*(Q) as U Cm( ) [always used in others approach of Generalized

Functiong] is stronger than the L Schwartz inductive topology above introduced.

We aways re-write Ciry(€2) in the well-known L. Schwartz motation as D(Q): the
Schwartz Test function space. The description of the notion of convergence in D(Q) is
straightforward since we have the sequential completeness topological property. Namely: a
seguence @n(x) € D(Q) converges in D(Q) if there isa set K, such that ¢ — @ inC”(Kp).

Anather basic result as consequence of the introduction of the Inductive limit topology
in C=(Q) is the straightforward description of the Dual Space of D(Q), denoted by D'(Q)
and named as the L. Schwartz Distribution Space in Q

— <LnJC°°(Kn)>* = J€=(Kn))*. (20)

n
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Note that the structural description of (C(Kp))* isexpected to be closely related to that
one of C(Kp)* (the Riesz-Markov Theorems). In fact, we have the L. Schwartz generaliza-
tion of the Functional Integral representation of Riesz-Markov theorem.

Theorem 2 (Laurent Schwartz). Any given continuous linear functional L € D’'(Q) may be
represented by a sequence of complex Borel measures dyu(x) in K, a sequence of multi-
indexes {P} = {p?, ..., pN} through the integral representation

L@) = 3 (| dunl00™0)09). @
there
o(Pa+PY)
(DPg)(x) = o QX1 XN (22)

- ———
oxp" ... OX\

Proof: Let L € DY(Q), but with compact support Ks C Q. By the inductive limit topology
(exercise 1, there is a constant ¢ > 0, and an integer ms > 0, such that for any ¢ € D(Q),
we have the estimate

IL(@)] < cssup ( sup [DPo(x)]) (23)
xeKs |p|<mg

Note that the triple (C,Ks, ms) is not unique. We now consider the following Elliptic
P1 n
operator L, = <£ > <£> (P=p1+---+pn). Since Ly isan injetive applica-
1 n
tion of C*(Q) into C*(Q) and this T restricts to the dense subspace L,[D(L2)] (range of LP
in D(Q), satisfies the obvious estimate below

feC(Ks): L(L,Mf) < cs- sup|f(x)| (24)

xeKs

we can apply the Riesz-Markov Theorem 1 to the composed functiona L o ngl inC(Ks).

L(£,1) = [ deu)- 1 (25)

or equivalently (exercise) for any ¢ € D(Q), we have the functional integral representation
Lie)= | dsut(X) (DPo@) (x). (26)

In the general case, we just consider an unity partition subbordinate to a given open
cover of Q (1= Y hy(x),K, C supphy C Kny1, K, compact set of Q and UK, = Q and
n

hn(X) = 1, for x € Kp)
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L= Y haxL= Y Lo, 27)
n=1 n=1

At this point we introduce the weak-* topology in D’(€2) through a sequential criterion:
A sequence of Distributions L, € D’(Q) converges weak-star if the sequence of measures
in eq(25) converges in the weak-star topology of C(Ks)*.

After the proof of L. Schwartz representation theorem, let us introduce the operation
of derivation in the Distributional sense. Firstly, let us recall some definitons in Functional
Analysis of Vector Topological Spaces. Let E and F be two vector spaces with topologies
compatible with its vectoria structure and U : E — F alinear continuous application be-
tween them. For any ¥ € F’ (dua of F), we can associate the element X' of E’ through the
definition (‘U : F’ — E)

(X) =X =Y (Ux) = (U(y). (29)

It can be showed that if U is continuous, the 'U remains continuous if E and F are
Frechet Spaces like C*(Ks)).

As a consequence of the above remarks, the usual derivative operator isalinear contin-
uous application between D(Q). Namelly

D: D(Q) — D(Q).

By the duality eq(28) above mentioned, one has a natural derivative application in
DY(Q)

d

@,

def

(-DL) = ('D)(L)(f) = L(DF), (29)

besides of being always a continuous operation in D'(Q) if Ly, @ ‘DL, "@ipy

At this point we call our reader to how that the sequence of functions f,(x) = % sen(nx)

as seen as kernels of distributions in D'(R) obviously converges to the zero distribution in
D'(R):

lim ‘ dx(l sennx> o(x) =0. (30)
n—e JR n
As a consequence of the above made remark, we have the validity of the result called

the Riemann-L ebesgue Lemma

lim ‘dx cos(nx)o(x) = 0. (32)

N—co R
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Namelly

d (sennx)

D'(R) o
_ (R
ix S > =cos(nx) — 0 (32)

A further finner structural analysis can be implemented to eg(21) by means of an appli-
cation of the Radon-Nikodym theorem to the pair of complex Borel measures (dus(x), dVx)
on the Borelians of Q.

’—hs/(&

+2( | @ 0)dvm(x >>, (39

where hg(x) € L1(Q,dVx) and dvi"¥(x) is a singular measure (in relation to the Lebesgue
measure dVx in Q) with support at points (Dirac delta functions) and on sets of Lebesgue
zero measure

dvgng (X) — 2 34758(X o XAS) + dVS(continuous singular) (X) (34)
(=0

Ancther important Distributional Space in the (Topological) dua of the Space of test
functions with polynomial decreasing S(RV), a very basic object in Wave Fields Quantum
Path Integral (see Chapter 19)

S(RY) = {ue C(R") | ||o][nm = sup [x"D"o(x)| < (=)} (35)

XxeRN

We have the following structural theorem, analogous to the Theorem 1 of L. Schwartz.

Theorem 3. Givenafunctiona Lin (S(R"))’, wecan alwaysrepresent L by aBorel complex
measure du(x) in RN by means of (xP = x{*...x{", etc..)

L(g) = [, du00 (D) () (3)

The proof of the above written integral representation for distributionsin S(RN) isbased
on the fact that for a given L € S(RV), these are multi indexes (p,q), such that there is a
positive constant ¢ with

IL(@) < cllollpq (37)

aXl
jective application of S(RY) into S(RY) and Lp(S(RN)) is dense in Co(RY) (continuous

a1 AN
Note that the Elliptic operator L, = xPD9 = x{* ... xf" <i> (W) isan sur-
N
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functions vanishing at <), the great usefulness of S'(RY) in Quantum Field Theoretic Path
Integralsisrelated by the fact the usual Fourier Transform is avectorial/topological isomor-
phism in S(RY). By dudlity, one straightforwardly define the Fourier Transformsin S(RVY)
which remains a topological isomorphism in the Distributional Space S(RV)

F: SRY) — SRY) (38)
t7: S(RY) — S(RY) (39)
"F(L)(9)=L(F(9)) (40)

the above written equations are important results in Applications of Distribution Theory
of L. Schwartz is given by the following result: Let A be a continuous linear application
between alocally convex topological vector space E with values in the topological dual of
another locally convex topological vector space F’. Then the bilinear formin E x F defined
by the relation B(f,g) = (Af)(g) is continuous in E x F’, when one introduces the weak
topology on F’. Asa consequence, every continuous bilinear form on S(RV) is of the linear
supperposition of forms below written for apair of multi-indexes (m,n)

B(f.g) = [, Fxy)(D™()(D"g00)d"xcly. (@

RN xRN

Here F (x,y) is acontinuous function of polynomial grow in RN

(apez+r g F(x,y><rx\2+\yrz>-p=0)
e

|y|—ee

21.3. Equivalence of Gaussian Measures in Hilbert Spaces and
Functional Jacobians
In this somewhat long section, we present the mathematical analysis of the Jacobian Change

of Variable in Gaussian Functional Integralsin Hilbert Spaces through the formalism of the
Kakutani Theorem.

Let A~ and B! be positive definite trace class operators in a given Hilbert Space
(H,(,)) and operators inverse of the operators A and B.

The spectral representations for theses operators

APn = An@n (42-9)
BGn = OnOn (42'b)
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define Gaussian measures dp-1u(¢@) and dg-1u(¢) in the Borelian Algebra of the cylinders
setsin H and are defined by

deuto) =imsn{ Taoonen] - 2o}« ((2)} @

g 1v(9) = Iimep{f[ld<<p,on>ap{ - o« (\/g) b @

We have thus the Kanutani theorem and the measure equivalence of the above written
measues.

Kanutani Theorem 4. The two measures eqs(43-a), eq(43-b) are mutually equivalent or
singular. In thefirst case we have the criterium that

22— ocﬁ)
< oo 44
zn: ( Anin 4
and the Radon-Nykodin derivative of the above measures is given by

Qastl0) _ iy {ﬁ 2ap(~S0n-on (o)} @

dB*“’(@) n
Note that in the case for the Radon-Nykodim derivative

da-1u(9)
dz-1v(9)

~ de(AB ) ep{ — 3 (0. (A~ )0} | (46

On basis of eq(45)-(46), one can show the Wiener result about translation invariant of
Gaussian Measures. Let T,: H — H be the trandation operator in H. Let us consider the
trandated Gaussian measure

dA,llu(Th(p) = dA,l‘u((p + h) = < H d<(p|(pn>e_%kn[<¢7¢n>+<h~,q’m>]2} (47)
n=1
By the Kakutani theorem, the translated measure da-1u(Th) IS equivalent to the mea-

sure da-1u(@) if and only if

[{h, @n) 2

RS

= (Ah,h) <o, (48)

2

3

or equivalently: the trandational-invariance of the measure is insured if h belongs to the
domain of the operator A.

At this point we remark that Dom(A) is a set of zero measure for (H, da-1u(@)). [Finite
action smooth field configurations, makes a set of zero functional measure — see Chapter
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1]. Let us give asimple proof of such important result in practical calculations with Path
Integrals.

Firstly, let usre-write the Finite Action set of path integrated configurations (= Dom(A))
in the following form (for € > 0)

L 1if (@,AQ) < oo
= lim lim exp{—o(pno,Al = 49
Xoma) (@) = lim_1im exp{—o(pne, APN) } { 0 otherwise (49)
where the orthogonal projections P, — 1 in the strong sense.
Let asevaluate formally in the “Physical way” its functional measure content
Masotomin () = i { fim | [ dsulgye o] |
o—0 | N—oo H
. . N T N,
iy (mew (54 ) ) =g fm (e
= e_oo = O (50)

At this point one can see that the usual Schwinger procedure to deduce functional equa
tions for the Quantum Field Generating functional of Chaper 19 does not make sense in
the Euclidean framework of Path Integrals since the measure is not trandational invariant.
Namely in the usual Feynman notation

/H DF [g] % {e-% (0.40) e—V<<P>} L0, (51)

As one can see from the above exposed result, the Minlos theorem is a power “tool” in
the Functional Integration Theory in Infinite Dimension Vectorial Spaces.






Chapter 22

Supplementary Appendixes

Appendix 22.A.
String Theory in Embeddings M anifolds

In modern quantum field theory, the framework of strings moving in manifolds has been
successfully used to shed light in the basic problem of quantizing the Gravitation field ([1]).
Moreover, until now the severe problems of the infrared divergencies of the string theory
path integral when viewed asac-model two-dimensional field theory in the parameter string
domain R? has been an issue not completely understood ([2]). Although there is a strong
indication that it is possible to remove such quantum field theoretic difficulties of the use
of amathematically ill-defined 2D-mass ess quantum scalar-field [represented by the string
vector position] by means of a string third quantization (the so called String Field Theory),
this step remains an unsolved problem in the present framework of String Theory.

The purpose of this long appendix to Chapter 12 isto consider another fremework for
the problem of the infrared divergencies in String Theory by applying the Nash theorem of
Riemann metrics parametrized by immersions in order to show the appearance of a string
mass effective matrix as aresult of the dynamical interaction with the positive curvature of
the given string ambient space-time M, considered as a smooth C*-differentiable manifold.

2 —The String Mass from the smooth Space-Time manifold Shape-Bending in the Extrinsic
Space.

Let us start our analysis by considering the following convenient euclidean Polyakov's
string functional integral in the presence of a given back-ground fixed Riemannian metric
in the manifold M where the string dynamics takes place.

z- { [ 0 ulgan @) €

cop{ gy [ PEVOT XX G (X D))

RZ
(s(d)—d)
(F) (1al/ $A B
{ T 87 (H(1°(x <a>>)}} @

the (closed) string surface {X*(§),u=1,...,d} isimmersed in the space-time M given by
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amanifold possessing a C*(M)-smooth Riemannian structure (metric) {G,y(X')} =1, d

the manifold parametric explicit set of equations is denoted here by H!(fA(xB)) =0, A=
1,...,8(d)) and fA: M — RS9 is the set of real-valued immersions such that we have
for them the Nash theorem for our smooth given space-time manifold metric {G,, (X')}.
Namely ([3]) o
S|

[% %:| (XY).

Guw(X') =
w A; o OxX

(2)

Here s(d) is the minima Whitney immersion dimension of the manifold M in

RI(S(d) > 2d).

The covariant functional measures in the Polyakov path integra eq(l) are the well-
known De-Witt covariant functional metrics without boundary terms. Namely: ([4])

S gw] = [, P8 | V@60 g '+ oY )| () ®

aSX'] = [ % | VEIX(E) Gi(X1(2) X)) @

Let us show the announced phenomenon of geometrical mass generation for the 2D-
scalar string vector-position fields {X#(&),§ =1,...,d}, in the situation of aweskly space-
time manifold of positive curvature.

Our main propose is to consider the following variable change in the string vector po-
sition dynamical degree of freedom (see eq(2)) in the full String Partition Functiona Path

Integral eq(1).

YAE) = FAXH(E)), A=1,...,5(d) (5-9)
SYAQ) = 5 [ FPEVEGP @Y A3V ) 5
aS (YA E)] = | aE[vaaYAavAI(E) (59

At this point of our study we point at the usefulness on the explicitly use of the geo-
metrical constraint that the string world-sheet X isin M through the writing of the supposed
known set of the Space-Time Manifold parametric equations {H*(YA) =0,/ =1,...,s(d) —
d,{YA} € M} defining M as an embedding geometrical-positional sub-manifold of the
(Absolute-Extrinsic) Euclidean Whitney Space RY. This last step is the basic mech-
anism for our proposal of generating mass for the mean effective string vector position
{YAE),A=1,...,5(d),E € R?}.

In order to show these string mass generation mechanism by geometric means, let us
suppose that we have a manifold with very low positive curvature.

In this case we can replace the delta functional geometrical constraint in eq(5) by the
effective string mass term as written below
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(s(d)-a) ~  (s(d)-d) o 92H!
g Sg\z(HZ(YA(é)))(Iwe(trinsic I ((:E\)KEBYABYB

curvature) =1

el o

where we have used the zero mode of mean string vector position variable in terms of the
constant mode Y and its o -vanishing small fluctuation

YAE) = YA+ Vi YAE). 7)

By making the usual hypothesis of the exact validity of the covariant mean field average
for the Lagrange multiplier in the Path-Integral representation for the effective functional
deltaeq(6), we get the following explicitly results

s(d)—d 92H!
(F) L (YO)\YAYB =
1:[ 5 Koc N AGVE YOYAY )(a)] o

4
T [ auntnen]i [ eava (vl ove)] o]}
~ ep{ —wel¥) [ PV | ®

Here the string mass matrix is given explicitly by the combination of the curvature
position Hessian Space-Time manifold matrix at the point {VC} € M and the (positive)
condensate value of Lagrange multiplier field xgb(g) = (\), producing thus the result

2147
re(¥9) = 3 ) (a&% <V°>) ©

[

At this point appears worthing mentioning that the non-linearity of the original theory
appears fully as a consequence of the highly non-trivial re-writing of the string vertexs in
terms of the somewhat decoupling-ambient geometry eq(5-A).

Now we proceed to the Nambu-Goto string path integral which depends functionally
solely on the string world sheet imbedding X*(€): R?> — RP, namely

2 [ uixt(@ep] — 5y [ Pel/n0x0(m) | (10
here the string world sheet metric tensor is always given by the imbedding variable X*(&)
hab(X*(€)) = 0aX¥(&) Gy (XP(§))3p X" (8). (11)

In this string theory, the main difficulty comes from the diffeomorphism invariant mea-
sure DV [X*(&)] which is strongly non-linear when written as a Feynman product measure
as given below

X)) = ] {(Wx“(a)))1/“(G<><ﬂ<a>>>”2d><ﬂ<a> (12-9)

EeR?

QPSXU(E)] = [ o8 /h(X(8)) (X Gy (X1)8X") () (120
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In order to overcome such problem, we proceed as in the previous chapter by consider-
ing the 2D-fluctuating metric tensor fields gan(§) as a purely auxiliary Lagrange multiplier
field without any singled out geometrical-physical role and whose dynamics must be sup-
pressed at the end of the path integrals evaluations

2mo/

Z:/dy[gab(&)]/d”[x(a)]exp{ /F;Zdzﬁ(\/@)(‘i)}

<op] =5 [ VAP0 G (X)) )|
x 86 ([Gab — (92 X*3p X" Gy (X)](E)). (13)

It is worth call the reader attention that the original Polyakov’s propose eg(1l) must
be considered as an effective (anaytical) path integral proceedure in the light of the Nash
Theorem when applied to the string world sheet as a two-dimensional manifold immersed
(not fully embedded) in RP (0 > 4) since there is a clear over counting of the degrees of
freedom in eq(1) parametrizing the string dynamics. For each two-dimensional metric field
Jab(&) in the string world sheet tangent bundle there is an immersion X#(E,[g]): £ — R’,
in some Whitney ambient space RY (d > 3) and satisfying the metrical constraint

gab(é) = ax#;g;[g]) axﬂgzg[g]) )

(14

As a consequence of the above remark, one can see that our propose eq(13) aready
takes into account this deep geometrical-topological constraint between the string world-
sheet metrical fields and the immersion/string vector position in the extrinsic space in a
correct mathematical may by means of the (covariant) delta functional inside eg(13).

By proceeding asin the bulk of this chapter we can evoluate the covariant path integrals
in terms of the usual Feynman product measures in the light-cone gauge

Z= / DF[YA(a)]exp{— = /R JdgTde” [(8+YA8—YA)(§+7§_)]}

2mo/

(26-SD)) [ i o [BYNEYRRYDENE)] s,
conl P [ |G €6

<op{ 5 [ 08" d ()Y . s

The introduction of non-trivial topology in the string world sheet is now straightfor-
ward in our Path-Integral analysis and the suppression of the Liouville dynamics for the
unphysical field gap(E) can be made by introducing N fermion species in order to change

the conformal anomaly coefficient to the new factor 26~ (Sz(lsD) +N)

if one choose N = §(D).

Asalast remark in this Appendix, let us point out that in the case of a compact string
parameter domain D C R? (not the fully R?), one should introduces in the path integral
eq(8)/eq(10) a further sum over these domains, in order to obtain full covariance. For

, Which can vanishes
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instance, if one choose the rectangle Da = {(£1,£2),0< &1 < A; 0< &, < 2r}, one should
introduce afurther integration in relation to the “moduli” A, namelly

= 1
2 ["anl [auix@nen| -5 [ SevRoe@n| ) a9
0 T JDa
Note that the Green function associated to the compact domain D does not posseses
infrared divergencies asin R?, as one can seefor its explicitly expression below (see chapter
18).

(X(z.Z)X"(C,8))pa =
<_% Re{log [G(Z— C,wi,wz)0(z+ C,wl,wz)] }) 5 an

o(z— g, w1, Wp)o(z+ §,wa, Wp)

Here
z=x+iy, {=E&+im
wi=A W =27
and the Weirstrass-Elliptic o-function has the expression
3 2

()

w=KA+tkni, (k=0,£1,...); ((=0,£1,...).
The reader should compare with the String Green function in R?

002D CE) =8 (4 2. (19
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Appendix 22.B.
The Einstein-Hilbert Action as an effective theory for Random
(Stringy) Fluctuations of the Space-Time

In this somewhat appendix, we intend to show how the Einstein-Hilbert action for Ein-
stein Gravitation Theory appears in arather natural way from a Bosonic Polyakov's String
interacting with the ambient (extrinsic) manifold fluctuating metrical structure.

Let usthus firstly write the Polyakov's string path integral in the presence of the metric
tensor G, (X%):

26 (x“@)] = [ | T (VGG (@) “av(e)

EcR?

cop{ — g [ PEIVEE (Y 2Y 0 0} &
In order to see how (Higher order) Einstein-Hilbert actions emerges as an effective
theory from eq(1), let us consider the geodesic expansion for the metrical objects in eq(1)
through a power series expansion in the string lenght extrinsic scale of. (Here G“B(é) =

(XXP) (&)):
YH(E) =Y u+ Vo XH(E) 2

((X/)3/2

G(YH(E) =1~ % Ra(P%)-(0)(&) ~ LT (VuR) (P) X 0) 1)

n2
o |2 ORI+ 3 RaR )

- 25 R Raapa(P)| (0¥ 0PI @) | +O(@ ) @

G(Y4(8)) =8 — &) Ry (V) (X7XP) &)

L2V Ry (P XXX
(o)?
36

< (x‘*xﬁxWXC’)(&)} L O(()2). @

_|_

([ 185, R 18R]

At this point let us re-write eq(1) in terms of the composite operator 6*#(&) =
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(X“XP)(&) by considering the identity insertion
87 (6% () - (X*XP)(¥))

_/<de ) {/de%\/ﬁexﬁ(\?)xx

EeR?2

() <xXxB><a>]}

~ep{ - () [,/ Gy (@) - (0PI 2 | ®

As a consequence we have the result

Z[Gw(XM] = [] ZIGw(Y (6-2)
YeM
with

Z[Guw (V)] /H (VGG (Y))M2dX (€)

EcR?

eXp{ = /deza (eq(3))(eq(4))daX* aaxV}

—det 3 (84 L R (1) (2001 (R Rl )
+...><_aaaa>§+<x>aﬂv} (6-b)

( )3/2

cep{ -3 [ et~ “R‘”(v””']yg

[(@N + R et ) (~9a0%; + <x>5,,v>] C@ 3

« [_ (0‘1)23/2 (V(XRW)(V)Jr...L/y} W)

where we have supposed another time the condensate formation for the bilinear field
o) = (6)G*(Y) and the implicity use of the saddle-point limit of (A) — oo for the
Lagrange multiplier.

At this point and for pedagogica purpose let us evaluate the following sample calcula
tions of eq(7).

im }{det-%[(st( RosaV)) (- + 05 |

{ &;:80

= { I/|m0 deti% [(—82)§8#V + <}\4> <8/_N -
o —
(e

& R ®
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Now one can see (details as exercise for our readers)

log det 2 [(—aZ)gs,N + () (6,N - %> of R;,owa(\?)ﬂ

() s

= dt . .
= / < et Jlim Tr exp{—t [above written operator]
S —

e [ o)

~emRO{ P o) [T

elW} +O((c!)?). 9)

After inserting eq(9) into eq(6-a), we get as the leading limit of o — 0 of the String
Theory eq(1), the Einstein-Hilbert action with an effective cosmological constant and New-
ton Gravitation constant

2G¥)) - ep{ 4" [ &7\/60)— e [ ¥ JoTRY)} (10
where <A: /F;Z d2§>

WEE A [ et (11)
1 = dt —t<x>><<7¥>(0>0€/>
8nGeF (E)A</g t® 3 (12)

If one consider the fluctuations of our metrical tensor G, (Y) on M, one should consider
afurther path-integral on eg(1) asin Chapter 1.

At this point we leave as on exercise to our readers to evaluate next higher-order deriva
tives terms and to consider the Supersymmetric case in order to obtain Supergravity Theo-
ries.

Appendix 22.C.
Nash Bosonization in Path Integral for Quantum Riemannian
Geometry

I ntroduction

One of the most challenge mathematical problems in modern field theory is certainly the
problem of choice of the correct dynamical variable to be quantized (or path integrated) in
the theory of Random Geometry of metric fields in a given (fixed) manifold M. Severa
frameworks on the last decades have been proposed (see Chapters 1, 7), however without
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producing yet a consistent quantum field theoretic framework, useful to implement eval-
uations outside the usual (non-renormalizable) coupling constant perturbation Feynmann-
Dhyson scheme.

In this Appendix C we intend to contribute for such a difficult problem of quantizing
Quantum Gravitly by proposing as suitable variables to be quantized on phenomenological
grounds, the field of the immersions applications of a given manifold of dimension nin a
convenient ambient extrinsic Euclidean. Space RY (with d > n): The famous Whitney &
Nash imbeddings/immersion-embeddings theorems applied to our C* space-time manifold
M where the dynamics takes place. These ideas are proposed in thiss complementary ap-
pendix and can be considered as an approximate Bosonization of the usua metric variable
theory interms of “ stress-strain” degrees of freedom associated to the Nash parametrization
of the metric tensor.

We show the usefulness of this phenomenological path integral scheme for Quantum
Riemannian Geometry, by evaluating straightforwardly the Classical Newton Potential by
means of a Wilson Loop evaluation associated to a static trajectory of apair of massive par-
ticle and quantum averaged in an effective induced quantum gravity dynamics of fermionic
matter at the leading semi-classical limit of ¢ — <o (here ¢ denotes the light-velocity param-
eter).

1 — Quantum Riemannian Geometry as a dynamics of bosonic quantum immersions and the
Newton Gravitation law.

Let us start this section by recalling the Nash Theorem that asserts that every Rieman-
nian metric in a C*-manifold M {gﬂv( )} (aC?(M)-tensor field) can be always obtained
from an |mmerS|on fA: M — RYY (fA ¢ C(M) and rank Dy f = d) in asuitable Euclidean
space RS9 here the dimension of the Euclidean ambient space is strictly greater than d (a
better lower bound is given by the inequalite s(D) > 2d — 1) ([1])

D ofadfa A 0fa
S0 XY o oxY

O (X) = (2)

We would thus expect that in this vectoria like bosonization all equations and path-
integrals in Riemannian Geometry should acquires a more invariant and suitabe expres-
sions for analysis. Let us thus set up some formulae related to this new metrical variable
parametrization as pointed out by eq(1).

L et us consider the context of an effective scheme, where one should consider “lenght”
scales appropriated for the governing guantum dynamics under analysis. In this context it
appears important to consider aready built in the formulage, the important non-relationship
limit represented by the hypothesis of the analicity of the geometrical objects in relation
to the inverse of light velocitye. As a consequence one should envisages an expansion in

powers of % for the Nash scalar immersion fields

X°‘8A—|—§ ( ) : @)
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The metrical vaiable takes the smple form at the leading ¢ — oo limit:

Al 10 (@
Qv (X') = <5 c o PA 8A+Caxv(pA

1/0 0
=B+~ (ax,,cp$> axvcp£>>< ') ®)

1 /09" 9
g““(xY>=6w—E< T ch>>< ') (2b)

The Christofell connections are straightforwardly computed at this leading limit and
take the very simple form

1 d d d
Fﬁﬁ()_ guy<axag[3y aﬁgow axygocﬁ>

1 az<p,, (XV) 1
T oo +O<?> @

The Riemann four-tensor is simply given by

2ol 9 g2l P, 1
Rias) = {axaaxv O~ 30 axvaxa}+o<@>’ (43

which produces the following expression for the Ricci tensor

1 ( 920 az(p(}) 320V az(p(}) 1
R0 =R = 3 { S s~ s s 1O ): @

OXHOXY Ox%9xP  9xPoaxY oxcoxu

and the associated scalar of curvature

Rol?  92lY 9%lM }

B2
— (B L B
R(x) = (9" Rap) (§) = 2 [axyaxv axBaxB axﬁaxY OxBox )

At the quantum geometrical level the functional-path integral measure leads to the usual
Feynman path integra measure as defi ned by the C— oo Ieading Nash immersion fields

.....

dszz/ dPx{ \/G8Gan (6% 0™ + 007 )8 gary } (%)

=5 [ dx [Scpu ( axfaxv)@cps”] ) ®)

and thus
D
dulgup] = DF o)) = { I1 < IT det” (X)>

xdet%[—za—z}; (6)
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At this point is worthing call the reader attention that next —-corrections can be easily

taken into account in the formulae above written generating ncow a fixed degree polino-
mial non-linearity on then and a non-trivial Faddev-Popov determinant in the new product
Feymman measure eq(6) (Chapter 1).

We take as the weight for our Wilson Loop averages in our leading Nash fields a higher
order Einstein-Hilbert action as given by the effective action obtained after integrating out
amassive femionic matter field at the limit of large mass (Chapter 18)

det [ D+ Ty 0% +m] G2
. 1 " ! /
~ lim { exp{ T /M dvx[\/ﬁrﬁﬁ g** (—a)g® Fﬁdﬁ’} (X)}}
1
= exp{ g [ X0l (=8)%0 } (7)

8nGN

Here GN is the (somewhat effective) Newton Gravitation constant.

L et us deduce the Newton Gravitation Law from the above written formulae in terms of
the Nash field.

In the Riemannian quantum geometry, the above written Holonomy factor defined by
the SO(d)-valued vector field I’ (x) 5°, here o are the generators of the SO(D) Group
(the Euclidean Lorentz Group) is expected to lead to the Newton law in the non-relativistic
and dimension mean-field limits D — < evaluation of its quantum average for a static (non-
fluctuating) trajectory

Wicwn]) ~ 5 [0l Wlem{ - g [ Pxlold (a0l L0

x % Treo) {]P’ [exp i ( ](f: . F"(C(G))Cy(cs)dcsﬂ } ©)

here IP is path SO(D)-indexes ordenation operator along the static trgectory Crr
{C.(6),0 < 6 < T} and given by the boundary of a rectange { — g <X < ;—

—

NI O
IA

R
xE< =%,
-2

The Newton gravitation potential should be given by the lowest quantum energy state
associated to the quantum propagation of the gravitation interacting pair and it is given
explicitly by the ergodic-tempora (non-relativistic) limit of eq(8)

V(R) = lim ~ 2 tg{ W[Cr)))}. ©

In order to evaluate the quantum non-abelian Holonomy factor eq(8) at the Gravitaton
mean field limit D — <, as much as similar calculations done in Yang-Mills Theory ([4]),
we write the Holonomy path ordered object as the one-dimensional fermion (Grasmanian
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variables) living on the contour Cr 1) (Chapters 1 and 4)
5 Treoo) {Flei | 12y(C(0)(0).0)] |
D Crr)
[T (d0u(0)) (005 () exp (5 [ (03 = 00 +00 - 0)(0)
o0 O pzocadca adGaG

(T
% (T) o€[0,T]

D ‘ .
X % Y (ea(G)BZ;(T))> X exp [i /OT do(6;,(c)0™ eB(G))F‘&B(C(G))CH(G)]

— % Trsop) { &P (i Met [/OT dGFy(C(G)Cﬂ(G)] > uﬁ}

1 ™ T 92 (1) .
“gwo (e[ [oiBscot0]] o

Here we have used the gravitational charge (mass) of our static pairs circulating around
theloop Cr 1) throught acumulant (leading order) evaluation of the Grassmanian variables.
Namelly

D
Mesr = A<o>:ea<ﬂ DF [8(0)]D" [65,(0)] ( 2 (ea(G)GE(T))> x (65,(0)0" 8g(0)). (10)

05,(0)=65,(T) =1

As a consequence, one should expect that (at least for large dimensionality D — <), the
effective Holonomy Factor can be written as follow in the Fourier Space

. " Di~ _ 1
W[CrT)] = exp{l Meit [/ dPk e (—k)k? Ja(k,C(RJ))] } + O<5> . (12)
Here the Fourier Transformed scalar immersion Nash field (pf,l) isexplicitly given by

0u( ) = aiors | k0l 0 (12

We have used the dimensiona regularization rule of Bollini-Giambiagi for handling the
2

SO(D) indexes inside the ordinary integrals kokg = kBSaB and the contour form factor
inside eq(11) is given explicitly by

) 1 B o)
jo(k,.CrT) = = [ ]{ g 1KiCul )C#(G)dc]. (13)
D | Jegr

After inserting al the above results into our effective sixth-order Gaussian path-integral
€q(8), one obtains the following expression for the Newton potential in our Bosonized-
metric framework of Nash immersions for Quantum Phenomenological Gravity

. Mgrz [ [ dPk |ia(k Crr)l?
V(R)_T'T[L{_ T U(Zn)D k2 ]} (14

This potential can be explicitly evaluated (Chapter 2) and leading to the Newton Law
of Gravitation in this phenomenological scheme for quantizing Riemann metric fields
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V(R) = - (4rMar PG ) (15
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Appendix 22.D.
The Eigenvalue Problem for Diffusion Equation in Loop Spaces:
Elementary Comments

Let us consider the following eigenvalue problem for the Diffusion Equation in a given
Hilbert (separable) space H to be solved in L2(H, dgu):

Tru [QD?U, (X)] = AU, (%). (2a)

Itisstraightforward to seethat all eigenvalues of the positive definite trace class operator
Q, satisfies eq(1) with the Hilbert Space (Infinite-Dimensional) Plane Waves, of the specia
form given below. Namely

Try [QD?(ePXH)] = — &P, (2b)

At this point one can add perturbation terms of the following forms:
3 V() = [ dold]F (@& ©

b) Asinthe explictly case of H = Lgeriodic([o, 2n]) (Loop Space) one may considere the

self-avoiding intersection useful in Polymer Theory of Chapter 20
14 2n
V(X) = / do [ do’Vo(|x(c) = x(c)|?) (4)
0 0

with Vp(x) € C¢(R), a positive funciton of compact support in R; and now trying to evalu-
ate by the usua Rayleigh-Schorindger perturbation series framework the eigenvalues and
eigenfunctionals of the perturbed Diffusion Equation bellow

Tri QDU (x)] +V () Uz (x) = —AUj. (%), ©)

Finally let us point out that the usual Gaussian Functional in L?(Q) defined by a sym-
metric kernel K(y,y') = K(Y,y) € L*(Q x Q) and associated to a positive definite trace
class operator

wlf] —ep{-3 [ @ [ @ fy)Ka(y) 1)} ©
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satisfies the following Poisson like functiona equation in a space of finite volume Q

ey — 52 _
/ngd xd"zKg 1 (x,2) ST05F2 V[ f]

= (~vol(@)TIf)+ [ dydy 1(y)Ka(wy) () W) o

Let us now pass to the problem of solving the functional Schorindger wave equation in
L2(L?(Q), dku(f)) below written
ii\u[f t] = / d'xd"x K~1(x X’)L\U[f t]
ot "’ QxQ TSt 8f(x) T
- ([ avay s ko) o/ wita) ®)

v[f,0 = Q[f]. (8-b)

By applying perturbation methods, we have the following result at the first perturbative
order

En=— (A +eAi”) +0(¢?) (9-3)
wnlf] = wi” [] + ey’ [ 1]+ O(e?) (9-b)
Here
W ={ [aeveykuy)| [t i|b=-1 @9
O[] = exp (i JRICE R dx) (@d)
v (] = T Ccmu[f] (9-€)
@ _ 1 Ve,V
=l ey | [aunimy)
< expi ( [ i@ -0 f<x>)] } (@)
As usual, one should consider the ansatz for the full wave functional
y[f,t :cheiE"t\Ifn[f] (10)
{n}

with the coefficients C,, adjusted from the initial date. Calculations are left as exercise to
our readers.
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On the basis of the mathematical (rigorous) results presented in the Chapter 20, one
can see that the correct framework to solve functional Schorindger equations in Quantum
Field Theory as exposed in Chapters 9-11 isto consider the “regularized” form below with
cut-offs A% > 0 and o, = 1+ ¢ takes as an example of a Ag*-scalar field theory

oy, t] N ‘ Vy, V. —a 8
T Try {— /ngd yd }/(—A‘H\z) A% WW(A@[Q’J]}

+Vol(Q)W(a e [@(Y)] — { /Q
— (MBe+ A2) ( /

Qx

RACEeS

X

) dVy<p2<y>) Voo lo.t
+7»%e (/gzxgd"y(p"'(y))\lf(/\,t) [0,1] (11)

Again, extensive cal culations of solutions for eq(11) in the space of Euclidean A¢*-quantum
field functionals L?(L2(Q),d,_a. npy2u(@)) = V will be left to the inquires of our mathe-
matically oriented readers.

Appendix 22.E.
Some Calculations of the Q.C.D. Fermion Functional Determi-
nant in Two-Dimensions and (Q.E.D.)» solubility

Let usfirstly define the functional determinant of a self-adjoint, positive definite operator A
(without zero modes) by the proper-time method

log detg (A) = — lim { / dt Try (e‘tA)} 1)
e—0t e t

where the subscript f remainds us of the functional nature of the objects under study and

so itstrace.

It is thus expected that the definition eg(1) has divergents counter terms as € — 07,
since exp(—tA) isaclass trace operator only fort > €. Asymptotic expressions at the short-
time limit t — O™ are well-known in mathematical literature (see Appendix E of Chapter
1). However this information is not useful in afirst sight of eq(1) since one should know
Tre(e7'A) for all t-valuesin [g, ).

An useful remark on the exactly evaluation is in the case where the operator A is of the
form A = B+ m?1 and one is mainly interested in the effective asymptotic limit of large
mass ¥ — oo, In this particular case, one can use a Saddle-Point analysis of the expression

ineq(1)

[log detg (B+nP1)] = —m{ /: ? e [ lim Trp(etB)} } )

lim
M —oo te0t

The above effective evaluation has been used extensively in Chapters 10, 18 and in the
previous supplementary appendixes A, B.
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Anacther very important case is covered by the (formal) Schwarz-Romanov Theorem
announced below (see Chapter 17).

Theorem 1. Let A(c) be an one-parameter family of positive-definite self-adjoints opera-
tors and satisfying the parameter derivative condition (0 <o < 1)
d
do A(o) = fA(o)+A(o)g (3-8
where f and are o-independents objects (may be operators).
Then we have the explicitly result

detF(A(l))>

log | s | =

JC==ecy
1 . e (A©))2 1 : (A2

:{ do lim Tre [fe®"/] + [ do lim Tre [ge™ >]} (3-b)
0 €~ 0 €~

The proof of the egquation (3) is based on the vaidity of the differential equation in
relation to the o-parameter

d .
i [log detr (A(0))?] = lim 2{ Tre (f e SO 4 Tr, (G o A©@)) } (4)

which can be seen from the obvious calculations written down in the above equation

[log detr (A(5))?] =
= - lim { / Tt Tre {( tA(6) +A(0)g)A(6) + A(0)(fA(S) + A(6)g)
(~ (@) ) e (eP(-t(A)?) | | ®

= eq(4).
Let us apply the above formulae in order to evaluate the functional determinant of the
“Chridly transformed” self-adjoint Dirac operator in atwo-dimensional space-time

D(0) = exp(cY° 97 (X)1a) 9] (EXP(0Y° 0% (X)1a). (6)

Here the Chiral Phase W|y] in eq(6) takes value in U (N) for instance.
One can see that

(1D(0))? = ~(@u+1Gu(0)PL~ 1] i (i Gu() -2

with the Gauge Field
VuGu = Y. (W~ 19,W) (7-b)

The asymptotics of the operator eq(7-a) are easily evaluated (see Chapter 1 - Appendix E)

Ellrg+ Tre (exp(—€(D(0))?))

— lim Tr{ﬂls {1+ g(is‘;%) Fay(—i G#(G))}} (8-a)

e—0t
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where we have used the Seeley expansions below for the square of the Dirac operator in the
presence of anon-abelian connection

A: C3(R?) — C3(R?) (8-b)
A@zQ—M—W@LQB%—Wﬁbébg—%W%@0¢ (80
) _ 1 1/ 0 d
i { T = (e (g )
- g (V) o (1) +O) &)
(D—ig5,)? = (—0°): + (2igG,0mu)z
+ [ig(ayGy) + g%ﬂv Fu(G) g Gﬁ] 89
€

Which leads to the following exactly integral (non-local) representation for the non-
Abelian Dirac Determinant

Iog{de;';tF } /dszr { (xaxMldczWFW(—iGy(o))]} ©)

A more invariant expression for eq(9) can be seen by considering the decomposition of
the “SU (N) gauge Field” G, (o) interms of its vectorial and axial components:

(W™(0)0,W(0)) = V,(0) +¥°Au(0) (10)
or equivalently (g,,¥nU,Ys = it Yy, ¥s = iYoY1, [Yu, W] = =2 Ep¥s):
Gu(0) = Vu(0) +iEwA(G). (12)
At this point we point out the formulae
Fav(~1Gu(0)) = {(iDY(0) Au(0)) E* — [Au(0). Av(0)] + Fun(Vu(0)).}  (12)

Here
De A = 90, Ag + [Var, Agl- (13)

Note that A,(c) and V,(c) are not independents fields since the Chiral Phase W(o)
satisfies the integrability condition

Fi(W9,W) =0 (14)

or equivalently
Fuv(VB(0)) = —[Au(0),Av(0)] (15)

Dy Av(0) = Dy A,(0). (16)
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After substituting eqs(12)-(16) in eq(9), one obtains the result

dete (D(1))
'°g{ )
{ / X Trgy ) (A20a(ct /0 " do (2D, (6) Au(o)
~[Au(0) A (0)
———
+ B (Fv(Va(0)) ) — [Au(0), Ay (0)]) (17)

_ 2I_n{ / A Tray(n) (A a(x) /:dG(Zi Pu(0)A(o) ))}
+2i_n{/d2XTrS1J(N) (ka(ba(x)(/Oldc(_z[A"(G)’AV(G)m}

= 13(9) +12(9). (18)

L et us show now that the term 11(¢) isamassterm for the physical Gauge Field A,(c =
1) =A,.

Firstly we observe the result

Lu(o)
—_—N—

TrDira:®TrSJ(N) {’YSA'U(G) di(Wf)'uW)(G) }
 Trome® Ty {y 0022 (F(2,A,(0)) — [1PAL(0). Lu(0)]) <x>}

S N {m ) yAy<o>+[vy<o>,Aﬂ<o>]<x>>}

=2TrgyN {xa(ba Du(o )Au(c)} =11(9). (19
By the other side

Trpirac @ Tray(n {Y Au(o)L (G)}

= Troirac ® Tray(n {y Ao )( d V(o )+Y5dd A (0)>}
~Tran ( g5 (Au01A0)) 20

At this point it is worth to see the appearance of a dynamical Higgs mechanism for
Q.C.D. intwo-dimensions.
Let us now analyse the second term I2(¢) in eg(18)

o]~ 5 [ @xTram ( [ o 2007080 A G)) ) |
1

I =
= PXD{ - %/deTrDirac@)&J(N) (/o do(YsYs B Ga(X)A2

x [ysW™1(6) 8,W(0) —v5V,(0),ys W (0)dyW(0) —vva(cs)]) } (21)
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Since we have the identity as a consequence of the fact that [ovs®a(X)A2,
5 06(X)AP] = o(da(X)dp(X)[A2,AP] = O;

W-(0) 2 Wi(o) = 150a(0% 22)

we can see the appearance of a term of the form of a Wess-Zumino-Novikov topological
functional for the Chiral Group SU (N), namelly

12(9) = exp{ - 2I_n ‘/‘dzx TreoloreDirac
(16w H(0) S W)W (02, W(0) 15w o2 W(o)]) |

+ terms (¢, V,,), (23)

which after the one-point compactification of the space-time to S* and considering only
smooths phases (¢(x) € C(S*)) one can see that the Wess-Zumino-Novikov functional is
ahomotopical class invariant. For the Closed Ball S* x [0,1] = ({x= (x},x%,0)})

d3XTr . W L9uW) (X
o E T80 { 15082205
SV 3,0) 6 15w} = (22)
with o an over all factor and ne Z+.
Finaly let us call our readers attention that the Dirac operator in the presence of a

Non-Abelian U (N) Gauge Field A, (X) = A%(X)Aa , can always be re-written in the “ Chiral
Phase” in the so called Roskies Gauge Fixing

(0 — 0G,) = €19°0) (iy#a), )&% = W9 (i, )W]9]. (25)
Here B
Wio] = 16700 — ]pDira:{]sz e da‘(swevxx)} (26)
Since N N
(4 Gu) (X) = +1u(W)3, (W)~ H(x) (27)

It is worth now to use the formualism of Invariant Functional Integration — Appendix
Chapter 1 to change the quantization variables of the Gauge Field A, (x) to the SU (N)-axial
phases W(¢). This task is easily accomplished through the use of Riemannian functional
metric on the manifold of the Gauge connections

d< = /deTfaJ(N)(SG,,SG“)(x)
B %1 / o Tray(n)@pirac] (Yu 8G,) (¥ 8G*)] (X)

= detr[ D D adg x { / dszrsJ(mAxid[(vaw1)(5Ww1)]}, (28)
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since
Yu(8G,) = {a (6W)W +0 W( (SW) )}
= Yy(a# - [G,Uv])(&fvwil)

and
[V SWW 1] = SW{y,, W1} 4 {y,,0W}W 1 =0 (29)

and leading to new parametrization for the Gauge Field measure
DF [G,(X)] [detp a (D O*) } DM W (x)]. (30)

Here detEadj( D D*)% is the functional Dirac Operator in the presence of the Gauge
Field and in the adjoint SJ (N)-representation. Its explicitly evaluations is left to our read-
ers.

The full Gauge-Invariant Expression for the Fermion Determinant is conjectured to
be given on explicitly integration of the Gauge parameters considered now as dynamical
variables in the Gauge-fixed result. For instance in the Abelian Case and in the Gauge
Fixed Roskies Gauge eq(6) result, we have the Schwinger result,

dete [iv(9, — i A,)] /DF

x exp{ - E/dzx% (Ay—ayW(X))z}

= [orwilen] - £ [ dx(ag+ G+ 280w}

00
—ep{ < [ax[a(sn- 255 )a ). (31
This result generalized to the SU(2) in an approximate form case has been used in

Chapter 15 - footnote [12].
Note that the Haar measure on the Abelian Group U (1) is

5%, = /dzx [5(€V9,e7™)5(Wa,e )] (x)
— [ dx(EW(-aPW) () (32)

Let us solve exactly the two-dimensional Quantum Electrodynamics.
Firstly, the equation (10) takes the simple form in term of the chira phase in the Roskies
Gauge
Gu(X) = (€u v ) (X). (33)

Now the somewhat cumbersome non-abelian eq(3) has a straightforward form in the
Abelian case
DF[G,] = detr (—A) D" [¢] (34)
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and we have thus the exactly soluble expression for the (Q.E.D.),-Generating Functional (a
non-gauge invariant object!)

2n = 5{ [ OFl6l0"0F (7

{ /d2[ (~9*+ = az>¢+ v(a\/\]y)q)](x)}
ol ousnls 1)
eo~ [0 | (1)}

For instance, correations functions are exactly solved and possessing an “coherent
state” factor given by the ¢-average below (after “normal ordenation” at the coincident
points) and explicitling given a proof of the confinement of the fermionic fields since one
can not assign L SZ-scattering fields configuration for them by the Coleman Theorem since

1
then grown asthe factor [x—y| 2 at large separation distance

<e (100 - (vs>y¢(>> _
0

— (cos(9(x)) cos(@(y))o L@ 1y
15 L(sen(e(x)) cos(o(¥)))e
15 L{cos(e(x)) (o))
—vs®ys<sen<<o<x>> < <>>>¢

_ e L) - oy

B n/1 g 1
—ep+ 2 (2 Ko<ﬁ\X—Y\> o). @

The 2-point function for the 2D-Electromgnetic field shows clearly the presence of a
massive excitation (Fotons have acquired a mass term by dynamical means)

d2k 1eik(x—s)
(0i060), = | Gy BB K)o

1 r ,—/ASOLBKZéle*Yl

K2(k2+ ) (39

As an important point of this supplementary appendix, we wish to point out that the
chirially transformed Dirac operator eq(6) in four-dimensions, till have formally an exactly
integrability asexpressed by the integral representation eq(3) (see the asymptotic expansion
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eg4.38) - Chapter 4). It reads as of

det(/D(0)?)
'°9{ o) |
~5 / d*x Trey(n {(ba( X)A8
x [/O dcsF;B(—ie,,(o))Fﬂfi(—ie,,(c))eaﬁﬂvxcxd} 37)
where
~i7,Gy(0) = exp (07°0%(X)Aa) (1) eXp(0Y° $*(X)Aa) (38)

and we have the formulae [C.G. Callor, Jr., S. Coleman, J. Wess and B. Zumino] — “ Struc-
ture of Phenomenological Lagrangians’ - I, Phys. Rev., 177, 2247 (1969).

—iy,Gu(0) =V,(6) +7°A,(0) (39-a)
o) =8 b { (B 0) 03, (150%a) | (30.)
Vu(o) =A iﬁk {(l — cosh(A,an,)) © 9y (y5¢axa)} (39-0)

with the matrix operation
Ax oY =[X,Y] (39-d)

and AJY denoting its n-power.

For a complete quantum field theoretic analysis of the above formulae in on Abelian
(theoretical) axial model we point out our work Luiz C.L. Botelho: Path-integral bosoniza-
tion for anon renormalizable axia four-dimensional Fermion Model; Phys. Rev. D39, 10,
3051-3054, (1989) and Chapters 6 and 18.

Finally and just for completeness and pedagogical purposes, let us deduce the formal
short-time expansion associated to the second-order positive differential elliptic operator in
RY used in the previous cited reference

= —(9%)x+au(x) (Qu)x +V (¥). (40)
Its evolution kernel k(x,y,t) = (x| —exp(~t £) | y) satisfies the heat-kernel equation

0
gK(X,y,t) = _LXK(X7y7t) (41)

K(x,y,0) =8 (x—y). (42)

After substituting the asymptotic expansion below into eq(41) [with Ko(X,y,t) denoting
the Free Kernel (a, =0andV = 0)]

K(vavt) t_é) KO X yv |: 2 tn :| (43)
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and by taking into account the obvious relationship for t > 0

(ay KO(X7 yat)) ’x:y =0

we obtain the following recurrence relation for the coefficients Hy (X, X):

(04 1)Hn 2 (%) = —{(—a@Hn(x,x) 18,(%) 3, H(x.X) +v<x>}.

For the Axial Abelian Casein R*, we have the result:

2
(@) = a2+ ((Gorivr e oo
+ [~ 9¥s0%0 + (9)%(940)?]
Note that in R*

Ho(X,X) = 14x4
Hi(x,x) = =V (x)
1

HZ(Xv X) 2

[~V +a,0,V +V?](x)

(44-a)

(45)

(46)

(47)
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