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About This Monograph (Foreword I)

“Therefore, conclusions based on the renormalization group arguments concerning the the-
ory summed to all orders are dangerous and must be viewed with due caution. So is it with
all conclusions from local relativistic field theories.”

J.D. Bjorken, S.O. Drell (1965)

“Because of improved divergence, Yang-Mills theories (without Higgs fields) can not
be consistently interpreted by conventional perturbation theory.”

J.C. Taylor (1976)

“There are methods and formulae in science, which serve as master-key to many appar-
ently different problems. The resource of such thing have to be refilled from time to time.
In my opinion at the present time, we have to develop an art of handling sums over random
surfaces.”

A.M. Polyakov (1981)

“QCD = String Theory´´ , A.M. Migdal (1981)

“Modern Physics = Quantum Geometry”, Luiz C.L. Botelho (2006)

About This Monograph (Foreword II)

When still a graduate student in 1980, I became acquainted with a set of CERN lec-
tures on functional integrals written by V.N. Popov. Since that time I have been working
steadly on the use of functional integrals methods in order to handle non-pertubative is-
sues in Quantum Field Theory – specially about the problem of correct quantization of
Yang-Mills Chromodynamics and Einstein Quantum Gravity (in terms of Astekar variables)
through quantum geometric path integrals (Loop and Random Surfaces representations).

The general scheme to apply ideas of Quantum Geometry may be sketchy as follows.

1- By firstly, one should try to represent the formal path integrals of the theory under
quantization, originally defined in terms of wave-field configurations, by means of purely
geometrical objects (quantum loops and surfaces) and writing thus the relevant governing
field motion equations in terms of these quantum geometrical variables.
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2 - As a second step, one should try to solve the quantum geometric wave equations
through string path integrals and finally one must use the whole formalism of continuum
quantum geometric path integrals to make calculations of physical observable (loop space
path integrals and string scattering amplitudes).

This monograph is writen on topics in the subject of Continuum Quantum Geomet-
ric Path Integrals applied to Yang-Mills theory and variants (QCD, Chern-Simons Theory,
Ising Models, etc.) – the called Random Geometry in Quantum Field theory, which are
hoped to be useful to graduate students of quantum physics and applied mathematics, with
a focused weight towards to those interested in applying the concepts of continuum quan-
tum geometry in other branches of modern physics, like superconductivity, nuclear physics,
polymer theory, string theory, etc...

As a monograph, I have choose to present those topics which I subjectively in the path
integral framework consider that are basic to give a sound understanding of quantum ge-
ometric path integrals representations. As a consequence of this choice our exposition is
entirely based in our studies made in the subject in last 26 years (1980-2006).

The methodology used to write our monograph is the same exposed in our previous
work in random classical physics: “Methods of Bosonic Path Integrals Representations –
Random Systems in Classical Physics - Nova Science Publisher, (2006) U.S.A.”: Exposi-
tions and formulas should be chewed, swallowed and digested. This process of analysis
should not be abandoned until it yields a comprehension of the overall pattern of the pro-
posed ideas and math, so after this step, one is ready to make improvements, corrections
or criticisms on the path integrals representations of our book. Important material is fre-
quently exposed in forum of appendixes to the main exposition with the unique objective
of not divert our readers from the central discussions in his/her first lecture and to serve as
“exercises” to our readers.

Another point I wish stress to our readers is that I have chosen to not give extensive
references on this monograph, because I still consider the attitude to distribute scientific
intellectual credits in an ongoing notoriously difficult subject like Quantum Geometry, a
subjective, incomplete, sometimes “political oriented” and not less, a “dangerous” attitude:
I am far away to claim to have some competent background to be a Science Historian. This
monograph should be considered as another attempt to discuss theories and protocols which
have never been completely understood and we wrote it with the sincere hope in mind that,
although imperfect, it will stimulate deeper reflections in the subject of continuum quantum
geometry by others – specially graduate students.

Cumbersome use of English and the certainly types and spelling mistakes existent in our
monograph (reporting mostly our original results) naturally reflects the author’s limitations
and rather short time taken to write this book. The reader’s criticism will be welcome.

Luiz Carlos Lobato Botelho
Full Professor - Universidade Federal Fluminense

Niterói/Rio de Janeiro/Brazil – 2006
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Chapter 1

Loop Space Path Integrals
Representations for Euclidean
Quantum Fields Path Integrals and
the Covariant Path Integral

1.1. Introduction

In this introductory chapter we present from an operational point of view the basic method-
ology of re-writing Euclidean quantum field path integrals in term of Loop Space path
integrals, the important Feynman’s idea of describing quantum phenomena by means of
geometrical objects (Feynman trajectories made up of: paths; surfaces, metrics, etc...).

In section 2, we present the above Bosonic Loop space reformulation in the simplest
example of a O(N)-scalar field theory with a O(N)-invariant quartic interaction.

In the section 3, we present similar Loop Space reformulation for Quantum Chromody-
namics and finally in section 4, we present in details the theory of covariant path integration,
the basic mathematical method to study the objects in the theory of Random Surfaces as ex-
posed in the next chapters of this monograph.

Some Mathematical oriented studies on Euclidean Path Integrals are presented in chap-
ter 19 “Domains of Bosonic Functional Integrals and Some Applications to the Mathemat-
ical Physics of Path Integrals and String Theory” and chapter 20 “Non-Linear diffusion in
Rν and in Hilbert Space, a Path Integral study”.

1.2. The Bosonic Loop Space Formulation of the O(N)-Scalar
Field Theory

Let us start our expositon in this section by considering the following O(N)-invariant path-
integral in an Euclidean Space-time Rν, the called Generating Functional of the Green func-
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tion of the composite O(N)-invariant operator (
N
∑

h=1
(φkφk)(x)).

Z[J(x)] =
1

Z(0)

{∫ (
N

∏
n=1

DF [φk(x)]

)
×

∫
DF [β(x)]

exp

(
− 1

2

[∫
dνx(φk(−Δ+ m2 + igβ+ J)φk)(x)

])

exp

(
− 1

2

[∫
dνxβ2(x)

])}
(1.1)

Note that after the evaluation of the Gaussian β(x)-path integral, we obtain our quartic
O(N)-invariant interaction term

Z̃ =
∫

DF [β(x)]exp

(
− 1

2

[∫
dνxβ2(x)

])
exp

(
− 1

2

[
ig

∫
dνx

( N

∑
h=1

φkφk
)

(x)β(x)
])

= exp

{
− g2

2

∫
dνx

( N

∑
h=1

(φkφk)(x)
)2

}
(1.2)

In order to apply the Loop Space reformulation to the path-integral eq.(1.1), we re-
alize the Guaussian functional integration related to the set of scalar (neutral) fields
{ϕk(x)}k=1,...,N . Namely

∫ (
N

∏
k=1

DF [φk(x)]exp

(
− 1

2

[∫
dνx(φk(−Δ+ m2 + igβ+ J)φk)

]))

= det−
N
2 (−Δ+ m2 + igβ+ J) = e−NW [J] (1.3)

which can be re-written as a trajectory path-integral for the effective action W [J].

W [J] =
+1
2

lgdet(−Δ+ m2 + igβ+ J)

= −1
2

lim
ε→0+

{∫ ∞

ε

dt
t

TraceF(e−t[−Δ+m2+igβ+J])

}

= −1
2

lim
ε→0+

∫ ∞

ε

dt
t

e−tm2

[∫
dνxμ

∫
Xμ(0)=Xμ(t)=xμ

(
ν

∏
μ=1

DF [Xμ(σ)]

)

× exp

(
− 1

2

∫ t

0
dσ(Ẋμ(σ))2

)
× exp

(
−

∫ t

0
dσJ(Xα(σ))

)

× exp

(
+ ig

∫ t

0
dσβ(Xμ(σ))

)
(1.4)

where TraceF ≡ TrF means the complete functional trace applied to operator in question.
Note that all the Feynman Wienner trajectories entering in the Bosonic Loop Space ex-

pression eq.(1.4) are very rough geometrical objects in Rν, since they are non-differentiable
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paths possesing alone mathematical continuity. As a consequence one can not assign with-
out a subtle analysis lenghts, topological properties, etc., to them as it is usually done for
smooth geometrical objects in the field of the non-random geometry.

At this point we may consider the complete object in the Loop Space:

Z̃[J(x)] =
∫

DF [β(x)]e−
1
2

∫
dνxβ2(x)e−NW [J]

=
∫

DF [β(x)]e−
1
2

∫
dνxβ2(x)(1−NW [J]+

N2(W (J))2

2
+ . . .)

= 1− N
2

lim
ε→0+

{∫ ∞

ε

dt
t

e−tm2

[∫
dνxα

∫
Xμ(0)=Xμ(t)=x

( ν

∏
μ=1

DF [Xμ(σ)]
)

× exp

(
− 1

2

∫ t

0
dσ(Ẋμ(σ))2

)

× exp

(
−

∫ t

0
dσJ(Xα(σ)

)

× exp

(
− g2

2

∫ t

0
dσ

∫ t

0
dσ′δ(ν)(Xβ(σ)−Xβ(σ′))

)
+ O(N2) (1.5)

We have, thus, reformulated all field dynamics in terms of random bosonic paths with a
pure self-avoiding geometrical interaction with strenght g2 as one can see from the last term
in eq.(1.5) by considering a formal power series expansion on the N factor corresponding
to the group order O(N).

It is worth to see that the two-point Green function associate to the composite operators(
N
∑

h=1
(φkφk)(x)

)
is given entierely by a random loop geometrical intercept point object

δ2

δJ(x)δJ(y)
Z̃[J(x)]

∣∣∣∣∣
J≡0

= −N
2

lim
ε→0+

{∫ ∞

ε

dt
t

e−tm2
[∫

dνxα
∫

Xμ(0)=Xμ(t)=xμ

ν

∏
μ=1

DF [Xμ(σ)]exp

(
− 1

2

∫ t

0
dσ(Ẋμ(σ))2

)

× exp

(
−

∫ t

0
dσJ(Xα(σ))

)
exp

(
− g2

2

∫ t

0
dσ

∫ t

0
dσ′δ(ν)(Xβ(σ)−Xβ(σ′))

)

×
[∫ t

0
dσ

∫ t

0
dσ′δ(ν)(Xα(σ)− xα)δ(ν)(Xα(σ′)− yα)

]
+ O(N2). (1.6)

One can follow ref.[3], to see that the usual Feynman Diagramatic perturbative expan-
sion can be easily obtained from the above written Bosonic Loop space path-integrals.

An important point to be called the reader attention for, is that the above Bosonic loop
quantum field reformulation allows us traightforwardly to consider the field configurations
to live in a compact space-time. For instance, the whole effect of considering our O(N)-
invariant scalar fields living on spherical field configurations surface

N

∑
k=1

(φkφk)(x) = r (1.7)



4 Luiz C.L. Botelho

is to introduce a formal further path-integration on eq.(1.6)
∫

DF [λ(x)]e−iR
∫

dνxλ(x)× same

integrand of eq.(1.6) added with the factor exp

[
+ i

∫ t
0 dσλ(Xβ(σ))

]
as a result of writing

the (formal) classical constraint eq.(1.7) into the path-integral schene

N

∑
h=1

(φkφk)(x) = R ⇔ lim
n→∞

{(
1√
2π

)n ∫ +∞

−∞
dλ(x1) . . .dλ(xn)

e
i∑N

�=1

[
λ(x�)

(
∑N

k=1(ϕ
kϕk)(x�)−R

)]}

≡
∫

DF [λ(x)]exp

{
i
∫

dνx

[
λ
( N

∑
h=1

ϕkϕk −R

)]
(x)

}
(1.8)

At this point of our exposition, we refer our readers to the ref.[3], where it is attempted a
rigorous mathematical analysis of the above written self-avoiding bosonic loop space theory
eq.(1.6)-eq.(1.8).

Another important basic point to be called the reader attention for is that in the presence
of charged SU(N) scalar fields interacting with Yang-Mills fields, it appears as other object
in the path-integral of the bosonic loop space representation eqs.(5)-(6), the famous Wilson

Loop Phase Factor defined by the Yang-Mills field Aμ(x) =
N2−1
∑

i=1

(
Ai
μ(x)λi

)
in the SU(N)

fundamental representation ([1]-[3]).

W

[
Aμ ; Xβ(σ)

]
=

1
N

TrSU(N)

{
P

[
exp ig

(∫ t

0
dσAμ(Xβ(σ)Ẋβ(σ)

)]}
(1.9)

In the case of the presence of (formally) quantized Yang-Mills fields, one further con-
siders the average on the Yang-Mills fields, with the (ill-defined) Yang-Mills Path-Integral
(see appendix A) ∫

DF [Aμ(x)]e−
1
4

∫
dνx(TrSU(N)[F2

μν(A)])(x) (1.10)

where the Yang-Mills strenght is given by

Fμν(A) = ∂μAν−∂νAμ+ ig[Aμ,Aν] (1.11)

Finally, we end this section to point out that all the Quantum Field analysis presented
still remains in present days, a somewhat formal (high complex!) Mathematical Methods
approach, even in the framework of the subject of Quantum Field Path Integrals. The aim
of the further chapters of our monograph is to present studies in the problem of given a
precise operational formulation of this Random Loop Space formalism in the context of
Quantum Field Theory. Some rigorous mathematical analysis is however presented in the
last chapters 19–20, of this monograph.

1.3. A Fermionic Loop Space for QCD

One of the most interesting problems in particle physics is that of understanding QCD in
terms of colour single fields [1,2].
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Our aim in this section 3 is to propose a generalisation of the usual bosonic loop space
formulation for gauge theory in the case of fermionic interacting matter [3] (quantum chro-
modynamics).

Let us start our analysis by considering the QCD Euclidean partition functional with the
fermionic quark degrees integrated out:

ZQCD =
∫

DAμexp(−S[Aμ])Det[�D(Aμ)] (1.12)

where S[Aμ] denotes the Yang-Mills action and �D(Aμ) = γμ(i∂μ+Aμ) is the Euclidean Dirac
operator in the presence of the external Yang-Mills field Aμ(X).

By using the proper-time definition for the above-mentioned functional determinant, we
consider the formal relationship for its modulus [4]

logDet|[�D(Aν)]|
= | log[Det(

1
2
[D(Aμ)D∗(Aμ)+ D∗(Aμ)D(Aμ)])]1/2|

= −
∫ ∞

0

dτ
τ

Tr[exp(−H(Aμ)τ)] (1.13)

where we have introduced the (Euclidean)Hamiltonian

H(Aμ) = [
1
2
(D(Aμ)D∗(Aμ)+ D∗(Aμ)D(Aμ))]1/2. (1.14)

In the loop approach to QCD the next step is to write the propagator Tr[exp(−H(Aμ)τ)]
as a kind of “continuous” sum of closed trajectories [2]. At this point we introduce our
suggestion: since the Hamiltonian H(Aμ) corresponds to a particle possessing Lorentz and
colour spin (interacting with the external Yang-Mills fields) the closed trajectories enter-
ing into the Feynman path-integral expression for Tr[exp(−H(Aμ)τ)] should reveals in an
explicit way their fermionic particle dynamical degrees of freedom.

A natural framework for analysing this case is pseudoclassical mechanics where the
worldline of a spinning coloured particle is described by the usual vector position Xμ(ξ)
added to a set of Grassmann complex variables {θl(ξ), θ∗l (ξ)} associated with the particle
colour charges [5] and another set of real ψμ(ξ) Grassmann variables corresponding to the
Lorentz spin [6].

In the simplest Abelian case, the above path integral expression was proposed by Rumpf
[7] and given explicitly by the following expression:

Tr[exp(−H(Aμ))]

=
∫

dDX
∫

Xμ(0)=0=Xμ(τ)=X
D(Xμ(ξ)) Tr

Dirac

×
∫
ψμ(0)=ψμ(τ)

D(ψμ(ξ)exp[−L(Xμ)(ξ), Ψμ(ξ),Aμ(ξ))] (1.15)

where the pseudoclassical Lagrangian L[Xμ(ξ),ψμ(ξ),Aμ(ξ)] is given by [6]:

L(Xμ(ξ),ψμ(ξ),Aμ(ξ)) =
1
4
(Ẋμ)2 +

1
4

iψ̇μψν+ Aμ(X)Ẋμ+
1
4

i[ψμ,ψν]Fμν(X(ξ)). (1.16)
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In the non-Abelian case we propose to consider the analogues of (1.16) and (1.17), the
coloured version of our previous pure coloured path integral

Tr[exp(−H(Aμ)τ)]

=
∫

dXD
∫

Xμ(0)=Xμ(τ)=X
D[Xμ(ξ)] Tr

Dirac

×
∫
ψμ(0)=ψμ(ξ)

D(ψμ(ξ))
∫

D(θ(ξ))D(θ∗(ξ))θi(0)θ∗i (τ)

× exp[−L(Xμ(ξ), ψμ(ξ),θ(ξ),θ∗(ξ), Aμ(X))] (1.17)

where our proposed pseudoclassical gauge-invariant Lagrangian for a spinning coloured
particle is given by

L(Xμ(ξ), θ(ξ), θ∗(ξ),ψμ(ξ),Aμ(X))

=
1
2
(Ẋμ)2 +

1
4

iψ̇μψν +
1
2

i

(
N

∑
i=1

(θ∗i θ̇i − θ̇∗i θi)(ξ)

)
−g(θ∗l (λi)lkθk)(ξ)

×Ai
μ(X(ξ))Ẋμ(ξ)+

1
4

i[ψμ, ψν](ξ)(θ∗l (λi)lkθk)(ξ)Fi
μν(X(ξ)). (1.18)

By exactly integrating out the colour Grassmannian variables in (18), we can see the nat-
ural appearance of the fermionic Wilson loop factor considered in chapters 7–8 for quantum
chromodynamics and quantum gravity

W [X (F)
μ (S,θ)] = Tr

colour
P exp

(∫ 1

0
dS

∫
dθAμ(XF

μ (S,θ))DX (F)
μ (S,θ)

)
(1.19)

where we have used a super-loop notation to write the Yang-Mills interacting term in (1.19)
in a compact form (see chapters 7–8 for the super-loop notation).

1.4. Invariant Path Integration and the Covariant Functional
Measure for Einstein Gravitation Theory

1.4.1. Introduction

The path integral for gravitational interactions has been discussed several times in the past
([9]–[12]) and the important problem of the gravitational path-integral measure has been
reexamined.

In this section we intend to propose an approach for the quantization of Einstein’s grav-
itational theory in the framework of path integrals suitable to the analysis of the above-
mentioned problem of the path-covariant local measure.

The basic idea in our discussion [9], [13] is the introduction of a Riemann structure into
the functional manifold of the metric field variables compatible with the invariance group
of the theory and consider the associated partition functional as an infinite-dimensional
version of an invariant integral in a Riemann manifold [13]. As a result we will not need
to introduce the add hoc insertion of the Faddeev-Popov unity resolution into the path-
integral measure in order to extract the gauge orbit volume [14], since we will be able to
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implement this calculation in a purely geometric way. So, in the proposed framework, it
is not necessary to use a posteriori a constraint Halmiltonian path integral [15] to justify
the Faddeev-Popov procedure; besides our approach leads to a natural and adequate local
covariant pah measure.

1.4.2. Invariant Integration

We start our analysis by briefly reviewing the basic results of the theory of invariant integrals
in Riemann manifolds.[13]

Let T be a homomorphism of a compact Lie group G in the isometry group of a given
Riemann manifold M. Let us consider the integral∫

M
f (x)[dμ](x), (1.20)

where f (x) is invariant under the action of G[ f (T (g)x) = f (x), ∀g ∈ G] and [dμ] is the
measure in M induced by its Riemann metric. The orbit of a point x ∈ M [the submanifold
of M formed by all the points {T (g)x}, g ∈ G] will be denoted by 0(x). The orbit quotient
space M/G can be realized as a submanifold of M which are not related by a group element.
The measure induced by the M-Riemann metric in M/G is denoted by [dμ] and that induced
in 0(x) by [dν]. Now we can state the basic result of the theory [13]. We have the following
relationship between the integral (1.1) and an integral defined only over the orbit quotient
space M/G: ∫

M
f (x)[dμ](x) =

∫
M/G

f (x)[dμ](x)ν(x) (1.21)

with
ν(X) =

∫
0(x)

[dv](X). (1.22)

We remark that [dv](x) is a G-invariant measure over the group G, since O(x) can be
realized as a “copy” manifold of G.

This result is fundamental for our analysis.
Another result of differential geometry which we will use is the coordinate expression

for the induced metric in a given submanifold of M. Let {gh j(x)} denote the matrix of the
metric tensor in M with 1 ≤ h, j ≤ N (N being the dimension of M). Here, x belongs to an
M coordinate domain. Let H be a submanifold of M described by the parametric equations

Xj = R j(zl) (1.23)

with {zl} (1 ≤ zl ≤ k; k ≤ N) belonging to a domain D (coordinate domain for H). As-
suming that the matrix [A] jk(zl) = ∂R j/∂zk(zl) has maximal characteristic k in D the metric
{gh j(x)} induces the following metric in H:

g(ind)
pq (Zk) = (gh jA

hpA jq)(Zk) (1.24)

with the volume element given by

[dv](zk) = [det g(ind)
pq (zR)]1/2dz1 . . .dzk. (1.25)

After having displayed the basic results of invariant integration we pass to the problem
of the path-integral quantization for the Einstein theory.
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1.4.3. A Quantum Path Measure for Einstein Theory

Let us start our analysis writing the Einstein-Hilbert action for the theory of gravitation
defined in a d-dimensional Minkowinski space-time manifold E with fixed topology and
without boundary (see Ref. [16] for the case of an open space-time):

S[{gαβ(x)}] =
1

16πG

∫
E
(
√−gR)(x)dDx, (1.26)

where the field variables are given by those metric tensors {gαβ(x)} that can be defined
in E , i.e., compatible with its topological structure, −g(x) = det{gμν(x)}, R(x) being the
scalar of curvature induced by gμν in M and G the Newton graviational constant.

The starting point of the Feynman path-integral quantization for the Einstein theory is
the formal continous sum over {gμν(x)} histories:

Z = ∑
({gμν(x)}

exp

[
i
�

S[gμν(x)}]
]
. (1.27)

The precise meaning for the continous sum eq.(1.27) is achieved by introducting a
path measure in the functional space of all possible field configurations (denoted by M);
[dμ][gαβ(x)], such that (1.27) can be written as

Z =
∫

M
[dμ][gαβ(x)]exp

[
i
�

S[gαβ(x)]
]
. (1.28)

The fundamental problem in Eq.(1.28) is to define appropriately the path measure since
the Einstein action possesses of the physical invariance under the action of the group of
the coordinate transformations in M (the Einstein general-relativity principle) denoted by
Gdiff(E):

xμ → lμ(xα), (1.29)

gμν(x) → ∂lμ(xα)
∂xσ

gσρ(lμ(xα))
∂lν(xα)
∂xρ

≡ (Lgσρ)μν(xα) (1.30)

and which in its infinitesimal version Gdiff(E) is given by

δxμ = εμ(xα), (1.31)

δgμν(xα) = (∇μεν +∇νεμ)(xα), (1.32)

where �α is the usual covariant derivative defined by the metric {gαβ(x)}.
This invariance property leads us to treat the above path integral as an infinite-

dimensional version Gdiff(E) -invariant integral in M [see Eq.(1.21)].
So, we intend to use the fundamental relation Eqs.(1.22) and (1.23) in its functional

version in order to get its expression in the physical path manifold M/Gdiff(E). As a first
step to implement the invariant integration theory we have to introduce a metric structure
in M compatible with the group Gdiff(E). By folllwing DeWitt’s analysis [9] we introduce
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a metric (functional) tensor γμν;αβ[gσρ](x,x′) on the functional path space M for which the
actions of Gdiff(E) are isometries.

The unique (ultralocal) functional metric satisfying the above condition is given by the
following expression [9]-(17) (the well-known “DeWitt functional metric”):

ds2 =
∫

E
dDx

√
−g(x)

∫
E

dDx′
√
−g(x′)δgμν(x)

× γμν;αβ[gσρ](x,x′)δgαβ(x
′), (1.33)

where the ultralocal tensor density γ(μν;αβ)[gσρ](x,x′) is explicitly given by (c �= −2/D)

γμν;αβ[gσρ](x,x′) =
1√
2

δ(D)(x− x′)√−g(x′)

× (gμαgνβ + cgμνgαβ)(x) (1.34)

and (δgμσ(x) denotes the functional infinitesimal displacements on M.
After introducing a Riemann structure on the path functional manifold M we can use

the basic relationship, Eqs. (1.21) and (1.22), to give a precise meaning for the path integral:

Z =
∫

M
[dμ][gαβ](x)exp

[
i
�

S[{gαβ(x)}]
]
. (1.35)

As a first step, we have to realize the abstract orbit quotiente space M/Gdiff(E) in M.
For this task we consider a set of D functionals f μ(gσρ)(x)) defined in M and in such a way
that equations in Gdiff(E),

f μ(Lgαβ(x)) = 0, μ= 1, . . . ,D , (1.36)

have only the identity solution for a given {gαβ(x)}; i.e., we have fixed our gauge. In order
to simplify the discussion below we restrict our analysis to the class of the linear functionals
f μ(gσρ)(x)) satisfying the following condition:
δ f μ(gαβ(x))/δgμν(x′) is a functional independent
of the field variables

{gσξ(x)}. (1.37)

For instance, the well-known harmonic guage ∂αgμα(x) = f μ(gαβ(x)) belongs to the
above-cited class. Thus, we can realize the orbit quatient space M/Gdiff(E) in M as the
path inequivalente manifold solution of Eq.(1.36) in M:

gαβ(x) ∈ M/Gdiff ⇔ f μ(gαβ(x)) = 0. (1.38)

With this implicit M/Gdiff parametrization the induced path measure is, thus, given by
the well-known DeWitt result [see Ref. 9, Eq.(14.52)]

[dμ][gαβ(x)] = ∏
(x∈E)

[dgαβ(x)]det{γμν;αβ)(x,x′)}×δF( f μ(gσρ(x))), (1.39)

where

det{γμν;αβ)(x,x′)} = (−1)D−1
[

1+
cD
2

]
× (

√−g)(D−4)(D+1)/4 (1.40)
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and the functional delta δF( f μ(gσρ(x))) in the functional measure (1.39) restricts its support
to the manifold of inequivalent metrics [Eq.(1.38)].

Now we have to evaluate the orbit (functional) volume defined by a given inequivalent
configuration {gαβ(x) ∈ M/Gdiff(E)}. For this purpose we need an explicit parametrization
of the orbit submanifold O(gαβ(x)). Such an expression is given explicitly by the path
integral:

Yμν[L;gαβ] =
∫

M

[
∏
x∈E

dgρσ(x)

]
gμν(x)×δF( f μ(gρσ(x)− f μ((L ·g)ρσ(x))). (1.41)

We remark that the {gρσ(x)} functional integration in Eq.(1.41) is defined over the
whole functional manifold M and the Gdiff(E) is the parameter domain for the orbit mani-
fold O(gαβ(x)).

The functional integration over M gives straightforwardly the result

Yμν[L;gαβ(x)] = (Lg)μν(x)×
[

D

∏
μ=1

det F

[
δ f μ(gαβ)
δgρσ

]
(x)

]−1

(1.42)

and since the functional determinants involved in Eq.(1.42) are gαβ(x) independent by the
condition eq.(1.37) we find that Yμν[L;gαβ(x)] is an explicit parametrization of the orbit
O(gαβ(x)); i.e., the image of G under Yμν[L;gαβ(x)] coincides with the orbit associated with
the inequivalente metric {gαβ(x)}.

In order to evaluate the induced metric in O(gαβ(x)) by the DeWitt metric Eq.(33) we
use the functional version of Eq.(1.25) with Eq.(1.42) playing the role of Eq.(1.23). So, the
differential line element in O(gαβ(x)) is given by

ds2
ind =

∫
dDxdDx′

(
δ

δερ(x)
Yμν[εγ,gαβ]

)
δερ(x)

×
√
−g(x)γ(μν;αβ)(gαβ)(x,x

′)
√

−g(x′)

×
[

δ
δεσ(x′)

Yαβ[εγ,gαβ]
]
δεσ(x′), (1.43)

where we have considered the group transformation L ∈ Gdiff(E) being infinitesimal and
characterized by the infinitesimal generators {εγ(x)} [see Eqs.(1.31) and (1.32)].

Evaluating the functional derivatives in Eq.(1.43),

δ
δερ

Yμν[εγ,gαβ] =
∫

M

[
∏
x∈E
(β,σ)

dgβσ(x)

]
gμν(x)

δ
δερ(x)

[δF( f μ(gγξ)− f μ((L ·g)γξ))]

= ∑
(α′,β′)

[∫
M

[
∏
x∈E
(β,σ)

dgβσ(x)

]
gμν(x)

[
− δ
δgα′β′(x)

[δF( f μ(gγξ)− f μ((L ·g)γξ))

]

×
D

∏
μ=1

det F

[
δ f μ((L ·g)γξ)

δερ(x)

]]
(1.44)
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and using the functional version of the usual relation

∫ +∞

−∞
g(x)

d
dx

δ( f (x)) = − ∑
{x0}∈S

g′(x)
f ′(x)

∣∣∣∣
x=x0

(1.45)

[where S denotes the set of zeros of f (x)] to evaluate the above functional integral; we get
the (formal) result

δ
δερ

Yμν[εγ;gαβ] = ∑
(α′β′)

{
δ

δgα′β′

[
gμν

D

∏
σ=1

det F

[
δ f σ((L ·g)γξ)

δερ

]]}

= ∑
α′β′

δμα′δνβ′

[
D

∏
σ=1

det F

[δ f σ((L ·g)γξ)
δερ

]]
, (1.46)

where we have used that δ f μ(gαβ)/δgρσ(x) is a functional independent of the metric
{gγξ(x)} and δ/δgαβ f μ(L ·g) ≡ 0 since {gαβ(x)} is a fixed metric.

By substituting Eq. (1.46) into Eq. (1.43) we thus obtain

ds2
ind =

∫
dDxdDx′

√
−g(x)det

[
δ f μ((L ·g))
δερ(x)

]
[δερ(x)]

×Tr[γ(μν;αβ)(g)
√

−g(x′)δ(D)(x− x′)det

[
δ f μ((L ·g)
δερ′(x′)

]
[δερ′(x′)], (1.47)

where
Tr[γ(μν;αβ)(g] = ∑

(σ1,σ2,σ3,σ4)
{[δσ1

μ δσ2
ν (gμαgνβ + cgμνgαβ)δσ3

α δσ4
β ]} (1.48)

is the trace of the DeWitt metric defined by the fixed metric gαβ(x).
The functional measure induced by Eq.(1.47) in O(gμν(x)) is then given by [see Eqs.

(1.22)-(1.25)]

[dv][gαβ(x)] =
∫
∏
x∈E

(
√

−gdερ)(x){Tr[γ(μν;αβ)(g)]}1/2 det[δ f μ((L ·g)αβ)/δερ]. (1.49)

Since we are considering the infinitesimal group transformations in Eq. (1.49) we can
use the Taylor expansion for the functional δ f μ(L ·g)/δερ i.e.,

δ f μ(L ·g)αβ)
δερ

=
δ f μ(L ·g)αβ)

δερ

∣∣∣∣∣
ερ≡0

(x)+ O(|ε|2(x)) (1.50)

and, as consequence of Eq. (1.50), we get the result where the invariant group volume is
covariantly factorized from the path integral:

[dv][gαβ(x)] = {Tr[γ(μν;αβ)(g)]}1/2 det

[
δ f μ(L ·g)
δερ(x)

][∫
Gdiff
∏
x∈E

√
−g(x)(dερ)(x)

]
. (1.51)
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Finally by grouping together the obtained resuts Eqs.(1.39) and (1.51) [see Eqs.(1.22)
and (1.36)] we obtain our proposed path measure for Einstein gravitation theory:

[dμ](gαβ) = ∏
x∈E

[dgαβ det (μν;αβ)
γ δF( f μ(g))Tr(γ(μν;αβ))1/2](x)det

⎛
⎝δ f μ(L ·g)

δερ

∣∣∣∣∣
ερ≡0

⎞
⎠ .

(1.52)
At this point of our study it is instructive to point out that the above written measure

differs from the original DeWitt measure by the factor Tr(γ(μν;αβ)) [see Eq.(1.51)] which in
our framework takes into account the contribution from the geometric intersection between
the orbit submanifold O(gαβ(x)) [see Eq.(1.43) with the quotient space M/Gdiff(E) in M
[see Eqs.(1.44)-(1.49)]. However, we can see that this factor is irrevelant in the physical
space-time D = 4, since the functional measure

∏
x∈E

(dgαβ detγ(μν;αβ)(x))

becomes “flat” [see Eq. (1.40)]. So, we can now safely use the dimensional regularization
scheme to vanish the “tadpole” contribution Tr(γ(μν;αβ)). This result in turn coincides with
that proposed in Ref. [17] by DeWitt in D = 4.
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Appendix A.
A Grassmanian Loop Space Approach for Fermionic Bell Func-
tional Integral

Analysis of quantum many-body systems by means of the so-called Bell functional integral
[1] has proved to be an useful technique to understand phenomena such as superconductiv-
ity, superfluidity, etc., all features expected to be present in the systems’ non-perturbative
regime. [2]

Our aim in this appendix is to propose a generalization of the usual bosonic Bell func-
tional integral for the case of existence of explicitly (two-body) spin interaction potential
by using the Grassmanian Loop space formalism as proposed in chapter 1 and Ref. 3.

Let us start our analysis by considering the canonical partition functional associated
with a system of N spin 1

2 particles in a volume Ω and temperature T = 1
kβ

Z(N,β,Ω) =
1

N!∑P
(sgnP)×Tr(exp(−βH)P). (A1)

where P denotes the permutation operator in the Hilbert space of N spin particles and the
N-body Hamiltonian is given explicitly by

H =
N

∑
j=1

(
− �

2

2M
Δ j +W(r j)

)
+

1
2

N

∑
i< j

(V(0)(ri − r j)+ Si ·S jV(1)(ri − r j)) (A2)

We denote by (V(0),V(1)) the system’s two-body (spin dependent) interaction. W (r) is
an external scalar field and Si = (Six,Siy,Siz) represents the spin operator associated with
the spin degrees of freedom of the i-particle. We can thus write Eq.(A1) as a continuous
sum of R3 Grassmanian trajectories (Xa(σ),Ψ j

α(σ)) (1 ≤ j ≤ N) (a = 1,2,3), where, the
j-particle trajectory is described by the usual R3 vector position Xa(σ) added to a set of R3

Grassmanian real variables Ψa(σ) corresponding to the spin variables:

Z(N,β,Ω) =
1

N!

N

∏
j=1

[∫
d3r j

∫ Xj(β)=r j

Xj(0)=ri

DF(Xj(σ))

×
∫
Ψ j(0)=Ψ j(β)

DF(Ψ j(σ))exp

(
−

∫ β

0
dσF(Xj(σ),ψ j(σ))

)]
. (A3)
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The path integral weight in Eq.(A3) is given by the pseudo-classical Hamiltonian asso-
ciated to the quantum Hamiltonian [3, 4] Eq.(A2)

F(Xj(σ),ψi(σ)) = +
1

2M

N

∑
j=1

{(
dXj(σ)

dσ

)2

+ψ j(σ)
(

i
∂
∂σ

)
ψ j(σ)+W (Xj(σ))

}

+
1
2

N

∑
i< j

∫ β

0
dσ′ (V(0)(Xi(σ)−Xj(σ′)

)
+ψi(σ) ·ψ j(σ′)V(1)

(
Xj(σ)−Xj(σ′)

)
. (A4)

We can reduce the above lengthy expression by replacing the two-body non-local in-
teractions by an independent local interaction of each particle with Gaussian fluctuating
external fields followed by an average process over these stochastic felds.[5] We thus in-
troduce a set of Gaussian random scalar and vector fields (Φ(0)(r),Φ(1)(r)) with two-point
correlation functions as given by

Φ(1)(r) =
(
Φ(1)

a (r)
)

a=1,2,3〈
Φ(0)(r)Φ(0)(r′)

〉
= +V(0)(r− r′)〈

Φ(1)
a (r)Φ(1)

b (r′)
〉

= +V(1)(r− r′)δab . (A5)

We, thus, rewrite the canonical partition functional in the following suitable form,

Z(N,β,Ω) =
1

N!

N

∏
j=1

[∫
d3r j

∫ Xj(β)=r j

Xj(0)=ri

DF(Xj(σ))

×
∫
ψ j(0)=Ψ j(β)

DF(ψ j(σ))
〈

exp

(
−

∫ β

0
dσF̂[Xj,ψ j,W,Φ(0),Φ(1)](σ)

)〉]
. (A6)

where the new path integral weight is now given by

F̂[Xj,ψ j,W,Φ(0),Φ(1),(σ)] =
N

∑
j=1

1
2M

(
dXj(σ)

dσ

)2

+ψ j(σ)
(

i
∂
∂σ

)
ψ j(σ)+W(Xj(σ))

+ i
(
Φ(0)(Xj(σ)

)
+Ψ(a)

j (σ) ·Φ(a)
j (Xj(σ)) (A7)

Analysis of thermodynamical properties of this quantum many-body system may be im-
plemented by considering the associated grand canonical partition functional by introducing
the system activity variable z,

Z(z,β,Ω) =
∞

∑
N=0

Z(N,β,Ω)zN . (A8)

In order to write (A8) as a functional integral over fields (the so-called Bell func-
tional integral[6] we introduce the following Schrödinger-Pauli operator acting on complex
spin− 1

2 fields (ψ+(r,σ),ψ−(r,σ)).

Ŝ[W,Φ(0), (1)] =
∂
∂σ

− 1
2m

Δr −W (r)− (Φ(0)(r)+ S · (1)(r))+μ .
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The complex spin− 1
2 fields defining the domain of the operator Ŝ[W,Φ(0), (1)] are cho-

sen as eigenfunctions of the z-component spin operator S3 and, besides, these fields should
satisfy a periodicity condition on the fictious time (temperature) σ, i.e.: Ψ±(r,σ+ β) =
Ψ±(r,σ).[6]

Let us, thus, consider the functional determinant of the above-defined Schrödinger-Pauli
operator (� = 1)

logdet(Ŝ[W,Φ(0), (1)])

=
+∞

∑
m=−∞

e2πim log det

[
−2πim

β
− 1

2M
Δr −W(r)− i( (0)(r)+ S · (1)(r))+μ

]
. (A9)

By using the proper-time definition for the above-written functional determinant,we can
consider the following loop space representation for it.[3]

log det

[
1

2M
Δr −W (r)− i(Φ(0)(r)−S · (1)(r))+

(
μ− 2πim

β

)]

= −
+∞

∑
m=−∞

∫ β

0
e−μT exp

(
−2πim

(
T −β
β

))
∫
Ω

d3r
∫ X(β)=r

X(0)=r
DF(X(σ))

∫
Ψ(0)=Ψ(β)

DF(ψ(σ))

exp

(
− 1

2M

∫ T

0

(
Ẋ2(σ)+ψ(σ)i

∂
∂σ

ψ(σ)
))

exp

(
−

∫ T

0
dσ

(
W (x(σ))+ i (0)(X(σ))+ i (1)(X(σ)) ·ψ(σ)

))
. (A10)

By summing the series ∑+∞
m=−∞ ei2πm(T /β−1) = (βδ(T −β)) the integral over the proper-

time T in Eq.(A10) is replaced by the Boltzman factor β. By identifying now the activ-
ity z with the parameter μ through the relationship z = (e−μβ)β, we can see that the de-
terminant of the Schrödinger-Pauli operator in Eq.(A9) averaged over the Gaussian fields
(Φ(0)(r), (1)(r)) coincides exactly with the grand canonical partition functional Eq.(A8).
Explicitly we have obatined the following representation for the system’s grand canonical
partition functional Eq.(A8),

Z(z,β,Ω) =
〈

det

[
∂
∂σ

+
1

2M
Δr −W(r)− iΦ(0)(r)− i (1)(r) ·S− 1

β
lg(

z
β
)
]〉

(A11)

Let us write the functional determinant of the Schrödinger-Pauli operator in
Eq.(A11) as a Gaussian functional integral over spin− 1

2 doublet complex field Ψ(r,σ) =
(Ψ+(r,σ),Ψ−(r,σ)),

Z(z,β,Ω) =
〈∫

DF [Ψ(r,σ)]DF [Ψ∗(r,σ)]

× exp

{
−

∫
Ω

d3r
∫ β

0
dσΨ∗(r,σ)

(
∂
∂σ

− 1
2M

Δr −W(r)− i (0)(r)

−iS · (1)(r)+
1
β

lg(
z
β

)
)
Ψ(r,σ

}〉
(A12)
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By evaluating straightforwardly the Guassian averages associated with the fields
(Φ(0), (1)) we finally obtain our proposed Bell functional integral representation for the
grand canonical partition functional associated with the Fermi many-body sustem described
by the Hamiltonian Eq.(A2):

Z(z,β,Ω) =
∫

DF [Ψ(r,σ)]DF [Ψ∗(r,σ)]exp(−S[Ψ,Ψ∗]) . (A13)

Here the functional integral weight S[Ψ,Ψ∗] is given by the following action functional

S[Ψ,Ψ∗] =
∫

S
d3r

∫ β

0
dσΨ∗(r,σ)

(
∂
∂σ

− 1
2

MΔr −W (r)+
1
β

lg(
z
β
)
)
Ψ(r,σ)

+
∫
Ω

d3rd3r′
∫ β

0
dσ(|Ψ(r,σ)|2V(0)(r− r′)|Ψ(r′,σ)|2

+Ψ∗(r′,σ)S ((r′,σ))V(1)(r− r′)ψ∗(r,σ)S ((r,σ))). (A14)

This expression is the main result of our appendix A. We remark that, for weak two-
body interactions

∫
Ω d3r|V(0,1)|2 << 1, it is possible to analyze perturbatively Eq.(A13).

The free one-body Green function may be expressed in the following explicity form,[5, 6]

G(r,r′,σ) =∑
K

ϕk(r)ϕk(r′)e−iσEk

1− eEk
× (Φ(σ)+ e−EkΦ(−σ)) . (A15)

where ϕk(r) denotes the eigenfunctions of the one-body interaction Schrödinger-Pauli op-
erator and Ek its associated eigenvalue:(

∂
∂σ

− 1
2M

Δr −W (r)+
1
β

lg(
z
β
)
)
ϕk(r) = Ekϕk(r) . (A16)

It is worth observing the iβ-periodicity of Eq.(A15) in the fictitious time variable σ.
Finally we would like to point out that, by considering the Grassmanian variables associated
with the U(N) color degrees in the Grassmanian path integral representation, Eq.(A1), as
in chapter 1, we can easily write the following Bell functional integral for a gas of spin− 1

2
U(N)-charged particles interacting with and external 3D Yang-Mills field A(r)

Z(z,β,Ω,A(r)) =
∫

DF [Ψ(r,σ)]DF [Ψ∗(r,σ)]exp(−S[Ψ,Ψ∗,A]) . (A17)

where the weight functional is now given by

S[Ψ,Ψ∗,A] =
∫

S
d3r

∫ β

0
dσΨ∗(r,σ)

×
(

∂
∂σ

− 1
2M

(�∇−�A)2 −W (r)+
1
β

lg(
z
β
)
)
Ψ(r,σ)

+
∫ β

0
dσ

∫
Ω

d3rd3r′(|Ψ(r,σ)|2V(0)(r− r′)|Ψ(r′,σ)|2

+( ∗(r,σ)S ((r,σ))V(1)(r− r′)( ∗(r,σ)Sk ((r′,σ))))

+ i
g2

2M

∫ β

0
dσ

∫
Ω

d3εi jkFi j(A)( ∗(r,σ)SkΨ(r,σ)) . (A18)
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The complex field (r,σ) now belongs to the fundamental representation of the color
group U(N).

At this point our analysis it becomes worthwhile to remark that if we consider a further
average in Eq.(A17) by considering the second quantized Yang Mills fields we are naturally
led to considering it as a possible definition for the partition functional for a gas of strings
in a volume Ω and temperature β, since the field excitations are now confined as a result
of its interaction with the quantized 3D-Yang Mills fields.[1, 4] Work on thermodynamic
analysis of this string gas will be reported in next appendix.
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Appendix B.
Bell Functional Integral for Gas of Strings

One of the most useful technique to analyze the statistical Physics of point-particle many-
body systems with two-body interaction is to represent the system’s grand canonical parti-
tion functional by means of a quantum field functional integral, the so-called Bell functional
Integral. (see appendix A).

In the previous decades, the study of the statistical mechanics of strings (or random
surfaces), has became a unifying concept Physics of collective phenomena.[1-4] (see sec-
tion 3.7 – chapter 3).

Following our previous work (appendix A),in this appendix we propose a generaliza-
tion of the usual point-particle Bell functional integral for the case of statistical systems of
random surfaces with two-body interaction.[4, 5]

Let us start our analysis by considering the statistical system of N closed strings de-
scribed by functions r j(α)(0 ≤ α ≤ L,r j(0) = r j(L)), contained in a volume Ω ⊂ R

D and
at temperature T = 1/kβ. The generalization of the point-particle Feynman path integral
expression for the Canonical partition functional associated with this string ensemble will
need functional integrals over random surfaces instead of the usual point-particle world
line;[3] Let us, thus, introduce the associated string world sheet at temperature T = 1/kβ.
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It is described by a two-dimensional field Rμ(α,τ) in R
D with 0 ≤ α≤ L,0 ≤ τ≤ β and sat-

isfying the periodicity condition Rμ(α,τ+ iβ) = Rμ(α,τ). The interactions will be given by
the interaction of the random surface Rμ(α,τ) with external fields in R

D, V0(rμ) and V1(rμ)
represent the analogous one-body and two-body interaction for surfaces respectively.

In order to write the canonical partition functional for the above described ensemble of
strings we follow the simplest generalization of the Boltzman weight of point-particles for
strings.[5] It will be given by the path integrations below written

Z(N,β,Ω) =
1

N!

N

∏
j=1

∫ ∞

0
dL

∫
Ω

dr( j)
μ

× ∑
{r( j)
μ (α)}

∫
R( j)
μ (α,0)=r( j)

μ (α)
DF [R( j)

μ (α,τ)]exp

[
−1

2

N

∑
j=1

∫ β

0
dτ

∫ L

0
dα

×
(
∂R( j)

μ (α,τ)
∂α

)2

+

(
∂R( j)

μ (α,τ)
∂τ

)2
⎤
⎦

×exp

(
−

N

∑
j=1

∫ β

0
dτ

∫ L

0
dαV0(R

( j)
μ (α,τ))

)

×exp

(
−

N

∑
i, j=1

∫ β

0
dτ′

∫ L

0
dα′

∫ β

0
dτ

∫ L

0
dαV1(R

(i)
μ (α,τ)−R( j)

μ (α′,τ′))

)
(B1)

where the string “continuous sum” ∑{r( j)
μ (α)}, which replaces the usual integration dr j over

the particle position in the point-particle canonical partition functional, is defined by the
following path integration over rμ(α), (see chapter 1).

∑
{rμ(α)}

=
∫

rμ(0)=rμ(L)=r( j)
μ

DF [rμ(α)]exp

{
−1

2

∫ L

0
ṙ2
μ(α)dα

}
. (B2)

The weight exp{−(1/2)
∫ L

0 ṙμ(α)2} is introduced in the string sum in order to make it
formally convergent.[4]

Now, we can write the two-body non-local surface interaction by an independent local
interaction of each random surface with a Gaussian fluctuating external Field followed by
an average over this stochastic field [1]. We, thus introduce a Gaussian Random scalar field
Φ with two-point correlation function given by

〈
(rμ), (rμ)′

〉
= V1(rμ− r′μ) which by its

turn enables us to rewrite Eq.(B1) in the following suitable form,

Z(N,B,Ω) =
1

N!

N

∏
j=1

∫ ∞

0
dL

∫
Ω

dr( j)
μ ∑

{r( j)
μ (α)}

∫
R( j)
μ (α,0)=r( j)

μ (α)
DF [R( j)

μ (α,τ)]

× exp

⎡
⎣−1

2

N

∑
j=1

∫ β

0
dτ

∫ L

0
dα

(
∂R( j)

μ (α,τ)
∂α

)2

+

(
∂R( j)

μ (α,τ)
∂τ

)2
⎤
⎦
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× exp

(
−

N

∑
j=1

∫ β

0
dτ

∫ L

0
dαV0(R

( j)
μ (α,τ))

)

×
〈

exp

(
−

N

∑
i, j=1

∫ β

0
dτ

∫ L

0
dα (R( j)

μ (α,τ))

)〉
Φ

(B3)

Analysis of thermodynamical properties of this many-random-surface system may be
done by considering the associated grand canonical partition functional by introducing the
system activity variable z

Z(z,β,Ω) =
∞

∑
N=0

Z(N,β,Ω)zn . (B4)

Now our aim is to write (B4) as a functional integral over complex disorder fields.
For this task, we propose to consider a disorder field defined over the functional space of
closed strigss rμ(α) and depending on a evolution parameter A in the range 0 ≤ A ≤ β.
This proposed field is denoted by ψ[rμ(α)),A] and is supposed to be periodic in A, i.e.,
ψ[(rμ(α)),A] = ψ[rμ(α);A + iβ].

Following closely the study of Appendix A, a natural candidate to be the Schrödinger
operator to act on the proposed string disorder field ψ[rμ(α),A] is given by (see chapter 9)

Ŝ([V(0)], [Φ]) =
∂
∂A

− Δ̂(rμ(α)) +
∫ L

0
[V(0)(rμ(α)+Φ(rμ(α)]dα+μ (B5)

where Δ̂ is the generalization of the point-particle Laplacean for strings (see section 3.7).

Δ̂(rμ(α)) =
∫ L

0
dα

(
1
2

δ2

δ2rμ(α)
− 1

2
|r′μ(α)|2

)
. (B6)

Proceeding from our point-particle study,[2] we should consider the functional deter-
minant of the Schrödinger operator Eq.(B6) after taking into account a Fourier expansion
in the A-variable for the disorder field ψ[rμ(α),A].

lg

(
DET(Ŝ([V(0)], )

DET(Ŝ([V(0) = 0, = 0])

)
=

−∞
∑

m=−∞
e2πimlg DET

(
2πim
β

− Δ̂{r(α)}

+
∫ L

0
dα(V0,(rμ(α))+ (rμ(α)))+μ

)
. (B7)

We use now the proper-time technique to define the functional determinant in Eq.(B7)

lg DET

(
+

2πim
β

− Δ̂{r(α)}+
∫ L

0
dα

(
V(0),(rμ(α)

)
+ (rμ(α)))+μ

)

= −
−∞
∑

m=−∞

∫ ∞

0

dT
T

eμT exp

(
−2πim

(
T
β
−1

))
× ∑

{rμ(α)}〈
rμ(α)

∣∣∣∣exp

{
−T

[
−Δ̂{r(α)}+

∫ L

0
dα

(
V(0)(rμ(α)

)
+ (rμ(α)))

]}∣∣∣∣rμ(α)
〉

(B8)
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At this point of our exposition, it is instructive to survey the main result of chapter 11
which will be used in what follows. In this chapter it has been shown that the free string
propagator

〈
rμ(α)|exp(−T Δ̂)|r′μ(α))

〉
= G(rμ(α),T ) satisfies the Schrödinger string equa-

tion

i
∂
∂A

G(rμ(α),A) = Δ̂{r(α)}G(rμ(α),r′μ(α),A) , (B9)

lim
A→0+

G(rμ(α),r′μ(α),A) = ∏
0≤α≤L

δ(d)(rμ(α)− r′μ(α)) . (B10)

For Euclidean evolution parameter A = iT , we have the functional integral representa-
tion for this string propagator

∠r′μ(α)|exp(−T Δ̂)|rμ(α)〉 =
∫

Rμ(α,0)=rμ(α)
Rμ(α,T )=r′μ(α)

DF [Rμ(α,τ)]exp

{
−1

2

∫ T

0
dτ

∫ L

0
dα

×
[(

∂Rμ(α,τ)
∂α

)2

+
(
∂Rμ(α,τ)

∂τ

)2
]}

. (B11)

By taking into account the above results, we have the following random surface repre-
sentation for the (Euclidean) string propagator in Eq.(B8) in the presence of external fields〈

rμ(α)
∣∣∣∣exp

{
−T

[
−Δ̂{r(α)}+

∫ L

0
dα

(
V(0)(rμ(α)

)
+( (rμ(α)))

]}∣∣∣∣rμ(α)
〉

=
〈

rμ(α)
∣∣∣∣
∫

R( j)
μ (α,0)=R( j)

μ (α,τ)=rμ(α)
DF [Rμ(α,τ)]exp

{
−1

2

∫ β

0
dτ

∫ L

0
dα

×
[(

∂Rμ(α,τ)
∂α

)2

+
(
∂Rμ(α,τ)

∂τ

)2

+V(0)(Rμ(α,τ))+ (Rμ(α,τ))

]}∣∣∣∣∣rμ(α)

〉
.

(B12)

By identifying the activity z with the parameter μ through the relationship z = e−μβ/β,
we obtain that the inverse of determinant Eq.(B7) averaged over the fluctuating field (rμ)
coincides exactly with the grand canonical partition functional (B4). Explicity, we have the
result

Z(z,β,Ω) =

〈
DET−1

(
Ŝ[V(0), ]

Ŝ[V(0) = 0, = 0]

)〉
. (B13)

We can rewrite (B13) in the form of a Gaussian functional integral over the proposed
bosonic complex disorder field ψ[r(α),A]

Z(z,β,Ω) =
∫

DF(ψ[(rμ(α),A)])DF(ψ∗[(rμ(α),A])

×
〈

exp

{
−1

2

∫ β

0
dA ∑

{rμ(α)}

(
ψ∗[(rμ(α),A)]

(
∂
∂A

− Δ̂{rμ(α)}

+
∫ L

0

(
V(0)(rμ(α)

)
+ (rμ(α))+μ)ψ[(rμ(α)),A]

])}〉
. (B14)
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By evaluating the -average we obtain our proposed random surface Bell functional
integral

Z(z,β,Ω) =
∫

DF(ψ[(rμ(α),A)])DF(ψ∗[(rμ(α),A])

× exp

{
−1

2

∫ β

0
dA ∑

{rμ(α)}

(
ψ∗[(rμ(α),A)]

(
∂
∂A

− Δ̂{rμ(α)}

+
∫ L

0

(
V(0)(rμ(α)

)
+μ

)
ψ[(rμ(α)),A]

)}

× exp

⎧⎨
⎩−

∫ β

0
dA

∫ β

0
dA′

∫ L

0
dα

∫ L

0
dα′ ∑

{r′μ(α′)}
∑

{rμ(α)}
|ψ[(rμ(α)),A]|2

× V1(rμ(α)− r′μ(α
′))|ψ[(r′μ(α

′)),A′]|2} (B15)

This expression is the main result of this Appendix B.
It is instructive to point out that in the situation of “collapsing strings” rμ(α) to a point r′μ

the above written Bell functional integral Eq.(B15) may be implemented by using the free
propagator Eq.(B11) for the two-point propagator of the disorder string field ψ[rμ(α),A]
(with V0(r) ≡ 0). Results on thermodynamical properties of this quantum bosonic string
gas will be left to our readers.
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Appendix C.
Invariant Path Integral Quantization of Yang-Mills Theory

Let us start our study by considering the path-integral associated to a classical SU(N) Yang-
Mills theory defined in a finite valume Ω⊂ R4.

Z =
∫

D [Aμ(x)]exp

{
−1

4

∫
Ω

d4xTr
(
F2
μν(x)

)}
(C1)
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here the SU(N) Gauge field has N2 −1 components

Aμ(x) =
N2−1

∑
a=1

Aa
μλa (C2)

with the hermitian traceless generators of SU(N) satisfying the structure commutation re-
lations below

[λa,λb] = i fabcλc (C3)

(λa)pq(λa)p′,q′ = (δpp′δqp′ − 1
N
δpqδp′q′) (C4)

Note the gauge covariant objects below defined

Fμν(x) = −1
g
[Dμ,Dν] =

N2−1

∑
a=1

Fa
μ λa = ∂μAμ−∂νAμ+ ig[Aμ,Aν] (C5)

Dμ = 1∂μ− igAa
μλa (C6)

As noted in the bulk of this chapter, the path-integral infrared-divergent free (since
vol(Ω) < ∞, Ω being a compact set of R4), has the gauge invariance under the local gauge
group G : C∞(Ω,SU(N)) ⊂ ∏

x∈R4
(SU(N))x:

Ω(x) ∈Π(SU(N))x

Aμ → AΩ
μ = ΩAμΩ−1 +

i
g
Ω∂μΩ−1 (C7)

Fμν → FΩ
μν =Ω(x)Fμν(x)Ω−1(x) (C8)

By introducing some ultra-violet cut-off in the free kinetic action associated to eq(C1), it
can be showed that all “rough-distributional” aspects of the path-integrated gauge field con-
figurations turns out to become point-functions and as a consequence the formal functional
domain of eq(C1) becomes the space of SU(N)-valued functions L2(Ω,SU(N) (see chap-
ter 19), besides of producing a well-defined cylindrical measure in the infinite-dimensional
Manifold Space

M =
L2(Ω,SU(N))
C∞(Ω,SU(N))

⊗C∞(Ω,SU(N))

In order to write exactly the path-integral measure in this functional Manifold M , we
follow our geometrical procedure described in section 1.4 by introducing a flat Riemmanian
structure in the Functional Bundle M

ds2 =
∫
Ω

d4x′
∫
Ω

d4x
[
(δAa

μ)(x)(δ
abδμν)δ(4)(x− x′)(δAb

ν)(x
′)
]

(C9)

After this step has been taken we should choose a fixed-gauge (bundle section) base
Manifold N ⊂ M, through a function (infinite-dimensional) hyper surface

F(A) =
N2−1

∑
a=1

f a(Ac
μλc)λa = 0 ,
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called the gauge-fixing functional.
Since we are in an infinite-dimensional setting, let us restrict our study to the class of

those functionals which are linear in the gauge field variable,namely

δF(Aν)
δAμ(x)

=
N2−1

∑
a=1

[
λa δ
δAa

μ(x)
F(A)

]
= field-independent (C10)

besides of satisfying the linear argument condition

F(Aν+ Bν) = F(Aν)+ F(Bν) (C11)

Let us write an explict parametrization equation of a given orbit associated to an fixed-
gauge field configuration Āμ = ∑N2=1

a=1 Āa
μλa

F(Āμ) = 0 , (C12)

namely

Y a
μ (Ω, [Ā]) = det

F

{
δF(A)
δA

∣∣∣
A=ĀΩ

}
×
(∫

M
DF [Aμ(x)](Aa

μ(x)×δF(F(Aμ− ĀΩ
μ ))

)
(C13)

It is straightfoward to see that the path-integral eq.(C13) produces as a result of this
explicit evaluation the gauge orbit Manifold passing through the gauge fixed configuration
Āμ,namely

Y a
μ (Ω(x), [Āμ]) =

detF
{(

δF(A)
δA

)∣∣∣
A=ĀΩ

}
detF

{(
δF(A)
δA

)∣∣∣
A=ĀΩ

} × ((Āa
μ)
Ω) = (Āa

μ)
Ω (C14)

The induced functional Riemanian metric eq(C9) on this orbit Manifold is explicitly
given by the operational formulae below

dS2 =
∫

d4xd4x′
{(

δ
δΩ

Y a
μ (Ω, [Ā]))

)
(x)

}
(δΩ(x))

×δ(4)(x− x′)δμνδab

{(
δ
δΩ

Y b
ν (Ω, [Ā])

)
(x)

}
(δΩ(x)) (C15)

where

δ
δΩ

Y a
μ (Ω, [Ā]) =

∫
M

DF [Aμ(x)]Aa
μ(x)

{
−
(
δF(ĀΩ)
δΩ

)
(x)

}
× (δ′)(F)(F(A)−F(ĀΩ)) (C16)

Here (δ′)(F)(·) denotes the (functional) derivative of the delta functional.
The evaluation of eq(C15) by means of the result eq(C16) can be done by using the well

known distributional formula expected to be correct in the infinite-dimensional setting M .
∫ +∞

−∞
dxh(x)

(
d
dx

δ( f (x))
)

= −∑
{xn}

(
h′(x)
f ′(x)

)∣∣∣
x=xn

(C17)
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where {xn} is the set of (single) zeroes of f (x).
We have thus in M

∫
M

DF [Aμ(x)]
(

Aa
μ

(
−δF(ĀΩ)

δΩ

))
(δ′)(F) (F(A)−F(ĀΩ)

)

=

⎧⎨
⎩ 1

detF
{
δF(A)
δA

}
[
− ∑

(ν,b)

(
δ
δAb

ν

(
Aa
μ
δF(ĀΩ)
δΩ

))]⎫⎬
⎭

∣∣∣
A=ĀΩ

= − ∑
(μ,b)

[(δAa
μ

δAb
ν

)
δF(ĀΩ)
δΩ

]
= −(δμνδab)

δF(ĀΩ)
δΩ

(C18)

By substituting eq(C18), we obtain the explicit form of the functional Riemmanian
metric of the orbit Manifold generated by a given fixed field configuration

dS2 =
∫

d4xd4x′ δ(4)(x− x′)
(
δF(ĀΩ)
δΩ

(x)
)

(δΩ(x))(
∑

γ,γ′,e,e′

(
δμγδac(δμνδab)δνγ′δbc′)

))(
δF(ĀΩ)
δΩ

(x′)
)

(δΩ(x′)) (C19)

which by its turn lead us to volume element of the orbit Manifold, as first deduced by
Faddev-Popov as a “trick”

dμ[ĀΩ] = det F

{
δF(ĀΩ

δΩ

}
dHaarμ(Ω) . (C20)

Here dHaarμ(Ω) =∏x∈Ω(Ω−1dΩ)(x) is the formal gauge invariant measure in the local
gauge group C∞(Ω,SU(N)).

As a consequence the path-integral measure takes a gauge fixed form in M .

Z =
∫

DF [Āμ]exp

{
−1

4

∫
Ω

d4xTr(F2
μν(Ā))

}
δ(F)(F(Ā))

×
(∫

G
det F

{
δF(ĀΩ)
δΩ

}
dHaarμ(Ω)

)
(C21)

This is an important result of ours in the subject.
In the so called perturbative case, it is possible to evaluate the volume of the gauge orbit

by using the “infinitesimal” local gauge group Gin f , which is formed by all infinitesimal
gauge transformations in a neighborhood of the group element identit 1.

det F

{
δ
δΩ

F(ĀΩ)
}∣∣∣

Ω=1+iεωa(x)λa

= det F

{
δ
δΩ

(
F(Ā)+

δF
δΩ

(Ā)
∣∣∣
Ω=1

(δΩ)+
δ2F
δΩδΩ

(δΩ)2
∣∣∣
Ω=1

+ · · ·
)}

= det F

{
δF
δΩ

(Ā)
∣∣∣
Ω=1

}
+ O(ε2) (C22)
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which lead us to the famous weak field-perturbative result of the Faddev-Popov

∫
Gin f

det F

{
δF
δΩ

(ĀΩ)
∣∣∣
Ω=1

}
dHaarμ(Ω) (C23)

= det F

{
δF
δΩ

(ĀΩ)
∣∣∣
Ω=1

}
×
(∫ N2−1

∏
a=1

DF [ωa(x)]

)
, (C24)

where the infinitesimal gauge group volume is absorbed in an over all factor, when evalu-
ating observables the theory by means of path integrals, like the Wilson Loops, etc. (see
Chapter 2).

It still to be an open problem to analyze in full, our result eq.(C21),including the
important case of the existence non-trivial homotopical class of the local gauge group
G = C(Ω,SU(N)). We left this “infinite-dimensioanl homotopical” problem to the future
inquiries of our readers with the very important mathematical remark that all gauge field
configurations possessing differentiable structures supporting topological-differential struc-
ture assignments (Chern-Simon Classes, etc...) forms a set of functional zero measure in
the functional domain of the path integral eq.(C21) (see chapter 19). As a consequence,
these smooth C∞-field configurations are relevant solely as objects to be used in saddle
point evaluation of eq.(C22) (see A.M. Polyakov – Compact Gauge Fields and the infrared
catastrophe – Phys. Lett. 59B, 82 (1975)).

Appendix D.
Polyakov Invariant Path Integral Quantization of Gravity in Two-
Dimensional Manifolds

In this appendix, we intend to apply the method of invariant path integration to the “cos-
mological” action of a two-dimensional metric field path integral (Quantum Gravity in the
two-dimensional domain D ⊂ R2).

Z =
∫

dμ[gab(x)]eμ
2 ∫

D d2x(
√

g(x)) (D1)

We note that the evaluation of eq.(D1) must preserve the invariance of the objects inside
it under the action of the infnitesimal dipheomorfism-coordinates change group in D

δxa = gab(x)εb(x) (D2)

δgab(x) = (∇aεb +∇bεa)(xb) , (D3)

with the covariant objects

(∇aεb)(x) =
(

∂
∂xa εb −Γc

abεc

)
(x) = (∂aεb −Γc

ab)(x) (D4)

Γc
ab(x) =

1
2

{
gcd(∂agbd +∂bgad −∂dgab)

}
(x) , (D5)
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It appears suitable to define eq.(D1) through the method of Functional Riemann metrics
as exposed in section 1.4 of this chapter.

dS2 =
∫

D
d2x(δgab)(x)γab,a′b′ [gcd(x)](δga′b′)(x) (D6)

with(c �= 1/2)
γ(ab,a′b′)[gcd(x)] =

(√
g(gaa′gbb′ + cgabga′b′)

)
(x) (D7)

with the conformal gauge gab(x) = eϕ(x)δab as a gauge fixing functional.
It is worth call attention that due to the fact that there are only 3 independent components

of the path-integrated metric field gab(x)(g12(x) = g21(x)), the functional metric takes the
form below

dS2 =
∫

D
d2x

{
(δg11,δg12,δg22)[γ̄i j]1≤i≤3

1≤ j≤3
(δg11,δg12,δg13)T

}
(x) (D8)

with the coeficients

γ̄11 = γ(11,11)[g], γ22 = γ(12,12)[g], γ̄(22,22)[g] = γ̄23

γ̄12 = γ(11,12)[g], γ̄13 = γ(11,22)[g], γ̄31 = γ(22,11)[g]

γ̄23 = γ(12,12)[g], γ̄32 = γ(22,12)[g]. (D9)

We have thus for gab = eϕδab

det[γ̄i j] =

∣∣∣∣∣∣
1+c
eϕ 0 c

eϕ

0 1
eϕ 0

c
eϕ 0 1+c

eϕ

∣∣∣∣∣∣ =
1+ 2c

e3ϕ (D10)

We can see thus, that only for c �= −1/2, eq.(D6) defines an infinite-dimensional Rie-
maniann structure on the space of the (distributional) metrical fields in D (see chapter 19).

A general dispalcement metric field δgab(x), around the fixed-gauge configuration ḡab =
eϕδab is given by

(δgab)(x) = δϕ(x)ḡab +(∇aεb +∇bεa)(x)

which by its turn leads to the more invariant form for the associated functional metric
eq.(D6)

dS2 =
∫

D
d2xeϕ(x)

{
(δϕga

b +∇aεb +∇bεa)(δϕgb
a +∇bεa +∇aεb)+ 4c(∇cεc +δϕ)2

}
(x)

=
∫

D
d2xeϕ(x)

{
(∇aεb +∇bεa − (∇cεc)ga

b)(∇
bεa +∇aεb − (∇cεc)gb

a)

+2(1+ 2c)(∇cεc +δϕ)2)
}

= 2(1+ 2c)
{∫

D
d2xeϕ(x)(∇cεc +δϕ)2)

}

−2

{∫
D

d2xeϕ(x) {εae−ϕ(∇c∇c)εb + εae−ϕ[∇a,∇b]εb
}

(x)
}

, (D11)
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where we have used the integration by parts formula with covariant derivatives, for general
objects (tensors) T and S.∫

D
d2x

√
g S(∇dT ) = −

∫
D

d2x
√

g(∇dS)T (D12)

As a consequence the functional volume element takes the Faddev-Popov form

dμ[Gab] =

(
∏
x∈D

d(e
ϕ
2 (x))

)
×det1/2

F

{
∇c∇c +[∇b,∇a]

}
×

⎛
⎜⎝ ∏

x∈D
a=1,2

dεa(x)

⎞
⎟⎠ (D13)

As a result of the evaluation of the metric field path integral eq.(D1)) in the conformal
gauge gab(x) = ρ(x)δab,it takes the form below after an explicitly evaluation of the Faddev-
Popov functional determinant in eq.(D13) (A.M. Polyakov).

Z = lim
δ→0

{∫
DF [

√
ρ]exp

[
− 13

12π

∫
D

d2x

(
∂
∂xa

lg(
√
ρ)
)2

+
(
μ2 − 1

2πδ

)∫
D

d2x(
√
ρ)2(x)

]}

=
∫

DF [β(x)]︷ ︸︸ ︷(
∏
x∈D

dβ(x)

)
exp

[
−13

6π

(∫
D

d2x
1
2

(
∂aβ
β

)2
)

+μ2
ren

∫
D

d2xβ2(x)

]
(D14)

Note that we have introduced the correct degree of freedom to describe induced (quan-
tum) two-dimensional gravity in the region D (without boundary). It is worth call the
reader attention that the appearance of a kind of “Goldstone Massive Bóson” β(x) is due
to the dynamical breaking of the conformal group (scaling) of the theory at the quantum
level by means of the induction of a counter-term of the form of a cosmological constant
limδ→0 exp{(μ2 − 1

2δ)
∫

D d2x
√

g(x)} in the induced σ-like model scalar action as given in
eq.(D14).

A complete use of these formulae will appear in chapters 9–16.
At this point we comment that perturbative evaluation of the two-dimensional σ-model

(scalar) field theory as expressed by eq.(D14) can be implemented through an natural flat
background weak fluctuation metrical variations of small strength ε, namely β= 1+εβ(1) +
ε2β(2) + · · · . Perturbative analysis in this context will be left to our readers.

In the important string case of taking into account explictly the existence of non-trivial
topology in D (a bounded / boundaryless open domain with holes inside), we must take
into account the conformal gauge fixing with Teichmüller parameters (see M. Nakahara
– Geometry, Topology and Physics – Graduate student Series in Physics – IOP Publishing
Ltd. 1990 and Chapters 12, 14 and 17) gab(x) = eϕ(x) ·hab(ti,x), where ti are the Teichmüller
parameters in an open domain LTeich(g) in R6g−6 (if D possesses g holes) and R2 (if D
possesses a single hole).

The final answer is given by the scalar σ-model in the back-ground field hab(ti), as
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written below

Z = ∑
Topologies

{∫
dμ[gab]e(

∫
D d2x(

√
gR)(x)e−μ

2 ∫
D d2x(

√
g)(x)

}

=
∞

∑
g=0

e−2π(2−2g)

{∫
LTeich(g)

6g−6

∏
i=1

[∫ (
∏
x∈D

d(
√

hab(ti)β(x)

)

×
{

exp−
[

13
12π

∫
D

d2x
√

hab(tc) ·hab(ti)
(
∂aβ
β

)(
∂bβ
β

)
(x)

]}

× exp

(
−1

2

∫
D

d2x(
√

hab(tc)β2(x)
)]}

(D15)

In our opinion it remains an important problem in Quantum Field Theory to understand
the exact meaning of the Liouville field theorie (in the correct form of “Scalar σ-model” –
eq.(D14) in a Quantum Field two-dimensional Framework, with the very important remark
to keep in mind that quantum geometric bosonic field configurations with C∞-differentiable
topological structure made up a set of zero functional measure in all non-trivial quantum
geometric path integrals (A.Yu. Morozov, A.M. Porelomov, String theory and Complex
Geometry, Phys. Reports, 1992).

Appendix E.
Functional Determinants Evaluations on the Seeley Approach

In this somewhat technical appendix, we intend to highlight the mathematical evaluation of
the functional determinants involved in the theory of random surface path integral (Chap.
9, 10, 11, 12).

Let us start by considering a differential elliptic self-adjoint operator of second or-
der acting on the space of infinitely differentiable functions of compact support in
R2,C∞

c (R2,Cq) with values in C
q

A = ∑
|α|≤2

aα(x)Dα
x (E-1)

with α = (α1,α2) multi-indexes and

Dα
x =

(
1
i

∂
∂x1

)α1
(

1
i

∂
∂x2

)α2

(E-2)

and Aα(x) ∈C∞
c (R2,Cq).

By introducing the usual square-integrable inner product in C∞
c (R2,Cq) and making the

hypothesis that A is a positive definite operator, one may consider the (contractive) semi-
group generated by A and defined by the spectral calculus

e−tA =
1

2πi

{∫
C

dλ
e−tλ

(λ1q×q −A)

}
(E-3)
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with C being an (arbitrary) path containing the positive semi-axis λ > 0 (the spectrum of
the operator A) with a counter-clock wise orientation.

According to Seeley, one must consider the symbol associated to the resolvent pseudo-
differential operator (λ1q×q −A)−1 and defined by the relationship below

σ(A−λ1) = e−ixξ(A−λ1)eixξ =
2

∑
| j|=0

A j(x,ξ,λ) (E-4)

with

A j(x,ξ,λ) =

(
∑

|α|=α1+α2= j

a j(x)(ξα1
1 )(ξα2

2 )

)
0 ≤ j < 2 (E-5)

A2(x,ξ,λ) = −λ1q×q +

(
∑

|α|=α1+α2= j

a j(x)(ξα1
1 )(ξα2

2 )

)
j = 2 (E-6)

It is basic for symbols calculations, the important scaling properties as written below

A j(x,cξ,c2λ) = (c) j A j(x,ξ,λ) (E-7)

It is too a fundamental result of the Seeley’s theory of pseudo-differential operators that
the resolvent operator (A−λ1)−1 (the associated Green function of the operator A) has an
expansion of the form below in a suitable functional space

σ(A−λ1)−1) =
∞

∑
j=0

C−2− j(x,ξ,λ) (E-8)

and satisfies the relationship below

σ(A−λ1) ·σ((A−λ1)−1) = 1 (E-9)

1
a!

{
∑

|α|≤2

∞

∑
j=0

[(
Dα
ξ (σ(A−λ1)

)
(x,ξ)Dα

x

[
C−2− j(x,ξ,λ)

]}
= 1 (E-10)

Recurrence relationships for the explicitly determination of the Seeley coefficients of
the resolvent operator eq. (E-8) can be obtained through the use of the scaling properties

ξ = pξ′ ; λ
1
2 = p(λ′)

1
2 (E-11)

C−2− j(x, pξ′,(p(λ′)
1
2 )2) = p−(2+ j)C−2− j(x,ξ′,λ′) (E-12)

After using eq. (E-11) in eq. (E-10) and for each integer j, comparing the resultant

power series in the variable 1/p

(
1 = 1+ 0

(
1
p

)
+ · · ·0

(
1
p

)n

+ . . .

)
, one gets as a result

C−2(x,ξ) = (A2(x,ξ)−1) (E-13)

0 = a2(x,ξ)C−2− j(x,ξ)+

⎧⎪⎪⎨
⎪⎪⎩

1
α! ∑

�< j
k−|α|−2−�=− j

Dα
ξ ak(x,ξ)

(
(iDα

x C−2−�(x,ξ,λ))

⎫⎪⎪⎬
⎪⎪⎭ (E-14)
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For the explicit operator in C∞
c (R2,Rq) as given below

A =−
(

g11
∂2

∂x2
1

+ g22
ø2

∂x2
2

)
1q×q

− (A1)q×q
∂
∂x1

− (A2)q×q
∂
∂x2

− (A0)q×q (E-15)

with all the coefficients in C∞
c (R2,Rq), one obtains the following results after calculations

A2(x,ξ,λ) = (g11(x)ξ2
1 + g22ξ2

2 −λ)1q×q (E-16)

A2(x,ξ,λ) = −iA1(x)ξ1 − iA2(x)ξ2

A0(x,ξ,λ) = −A0(x)

and

C−2(x,ξ) = (g11(x)ξ2
1 + g22(x)ξ2

2 −λ)−1

C−3(x,ξ) = i(A1(x)ξ1 + A2(x)ξ2)(C−2(x,ξ))2

−2ig11(x)ξ1

[(
∂
∂x1

g11

)
(ξ1)2 +

(
∂
∂x2

g22

)
(ξ2)2

]
(C−2(x,ξ))3

−2ig22(x)ξ2

[(
∂
∂x2

g11

)
(ξ1)2 +

(
∂
∂x2

g22

)
(ξ2)2

]
(C−2(x,ξ))3 (E-17)

By keeping in view evaluations of the heat kernel of our given differential operator, let
us write its expansion in terms of the Seeley coefficients of (E-8):

Tr(e−tA) =
∞

∑
j=0

(
1

2π

)2{∫
R2

d2xσ(e−tA)(x,ξ)
}

=
∞

∑
j=0

(
1

2π

)2( 1
2πi

)[∫ −∞

+∞
d(−is)eist

(∫
R2×R2

d2xd2ξC−2− j(x,ξ,−is)
)]

=
∞

∑
j=0

{
1
t

1
(2π)3

∫
R2

d2ξ
∫

R2
d2x

[∫ +∞

−∞
eis C−2− j

(
x,ξ,

−is
t

)
ds

]}

=
∞

∑
j=0

{
1
t

1
(2π)3

∫
R2

d2ξ
∫

R2
d2xeis t(

2+ j
2 )C−2− j(x, t

1
2 ξ,−is)

}

=
∞

∑
j=0

{
t

( j−2)
2 (2π)−3

∫
R2

d2ξ
∫

R2
d2x

∫ +∞

−∞
C−2− j(x,ξ,−is)

}
(E-18)

By applying eq. (E-17) to the differential operator as given by eq. (E-15), we obtain the



Loop Space Path Integrals Representations... 31

short-time Seeley expansion as an asymptotic expansion in the variable t

Tr
(
e−tA)∼ q

4πt

(∫
d2x

√
g11 g22

)

+
q

4π

(∫
d2x

√
g11 g22

(
−1

6
R

))

+
∫

d2x

⎛
⎜⎜⎜⎜⎜⎝−1

2
1√

g11 g22
Tr

[
(
− 1

2 divcov�A)︷ ︸︸ ︷(
∂
∂x1

(
√

g11g22A1

)
+
(

∂
∂x2

(
√

g11 g22A2)
)]

⎞
⎟⎟⎟⎟⎟⎠

+
∫

d2x

(
−1

4
Tr

[
(A1)2

g11
+

(A2)2

g22
+ A0

])
+ 0(t) (E-19)

For applying the above formulae for the Polyakov’s covariant path integrals, let us by
firstly introduce the R2 complex structure

z = x1 + x2 , z̄ = x1 − ix2 (E-20)

∂
∂z

=
∂
∂x1

− i
∂
∂x2

,
∂
∂z̄

=
∂
∂x1

+ i
∂
∂x2

(E-21)

For each integer j, let us define two Hilbert spaces Hj and H j as follows:
a) Hj is defined as the vector space of all complex functions f (z, z̄) = f1(x,y)+ i f2(x,y)

with the following tensorial behavior under the action of a conformal tranformation

z = z(w) (E-22)

f (z, z̄) =
(
∂w
‘∂z

)− j

f̃ (w, w̄) (E-23)

Let us introduce into Hj the following inner product

(q, f )Hj =
∫

R2
dzz̄ (ρ(z, z̄) j+1 ḡ(z, z̄) f (z, z̄) (E-24)

with ρ( z̄) a positive continuous real-valued function of compact support in R2 and associ-
ated to a conformal metric

ds2 = ρ(z, z̄)dz∧dz̄

b) H j is the same definition as above exposed with the following tensor low

f (z, z̄) =

((
∂w
∂z

))− j

f̃ (w, w̄) (E-25)
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At this point, we can verify that the above written inner products are conformal invariant

(g, f )Hj =
∫

R2
dwdw̄

(
∂z
∂w

)(
∂z̄
∂w

)(∣∣∣∣∂w
∂z

∣∣∣∣
2

ρ̃(w, w̄)

) j+1

[(
∂
∂z

w

)− j

f̃ (w, w̄)

]⎡⎣(∂w
∂z

)− j

(g̃(w, w̄))

⎤
⎦

=
∫

R2
dwdw̄(ρ̃(w, w̄)) j+1 f̃ (w, w̄)(g̃(w, w̄)) (E-26)

Let us now introduce the following weighted Cauchy-Riemann operators with a U(1)-
real valued connection A = (Az,Az̄) in R2 ≡ C.

a) L j = Hj −→ H−( j+1)

f −→ (ρ(z, z̄)) j (∂z̄ + Az̄)) f

b) L j = H j −→ H( j+1)

f −→ (ρ(z, z̄)) j (∂z + Az)) f

(E-27)

together with the adjoint operators (L jϕ, f )H−( j+1)
= 〈ϕ,L∗

j f 〉Hj
, namely:

L∗
j = −L−( j+1) : H−( j+1) −→ Hj (and L

∗
j = −L−( j+1))

f −→−(ρ(z, z̄))−( j+1) (∂z + Az)) f
(E-28)

For simplicity, we consider the case of Az = Az ≡ 0.
The second order positive definite operators below

L j = L∗
j L j = −L−( j+1)L j : Hj → Hj

L j = (L j)∗ L j : −L−( j+1)L j : H−( j+1) → H−( j+1)
(E-29)

possesses the explicitly expressions (for ρ(z, z̄) = eϕ(z,z))

L j = −e−( j+1)ϕ(z,z̄) ∂z e jϕ(z,z̄) ∂z̄

L j = −e−( j+1)ϕ(z,z̄) ∂z̄ e jϕ(z,z̄) ∂z (E-30)

They have the following Seeley expansion:

lim
t→0+

TrC∞
c (R2)

(
e−tL j

)
=

∫
dzdz̄

(
ρ(z, z̄)

2πt
− (1+ 3 j)

j2π
Δ�gρ(z, z̄)

)
(E-31)

lim
t→0+

TrC∞
c (R2)

(
e−tL j

)
=

∫
dzdz̄

(
ρ(z, z̄)

2πt
+

(2+ 3 j)
j2π

Δ�gρ(z, z̄)
)

(E-32)

The above written expressions come from the Seeley asymptotic expansion

lim
t→0+

TrC∞
c (R2)

(
e−tA)∼ ∫

d2x

{(√
g

4π
Tr (1)2×2

)(
1
t

)

−
(

1
24π

√
gR

)
Tr(1)2×2

+
1

4π
√

gB0

}
+ O(t) (E-33)
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where A is the elliptic second-order self-adjoint differential operator in the presence of a
Riemann metric ds2 = gμν dxμ dxν (in a tensorial notation in the space L2(R2,

√
gdx1dx2):

A =
(
− 1√

g
(∂μ12×2 + Bμ)

√
ggμν(∂ν12×2 + Bν)

)
− (B0) (E-34)

with Bμ(xν) denoting C∞
c (R2,R2) functions.

After all these preliminaries discussions, we pass to the problem of evaluating func-
tional determinant (without zero modes)

�g det L j = lim
ε→0+

−
{∫ ∞

ε

dt
t

TrC∞
c (R2)(e

−tL j )
}

(E-35)

It is straightforward to verify that the following chain of equations related to the func-
tional variations of the conformal structure hold true [Herewith Tr ≡ TrC∞

c (R2)]

δ�g detL j = lim
ε→0+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

ε
dt Tr

⎛
⎜⎜⎜⎝

δL j︷ ︸︸ ︷
δL j

δϕ
δϕe−tL j

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= lim
ε→0+

{∫ ∞

ε
dt Tr

[(−( j + 1)δϕL j − jL( j+1)δϕL j
)

e−tL j
]}

= lim
ε→0+

{∫ ∞

ε
dt Tr

[
−( j + 1)δϕL j e−tL j + jδϕL−( j+1)e

−tL−( j+1)

]}
(E-36)

where we have used the functional identity

Tr
(− jL−( j+1)δϕL j e−tL j

)
= Tr

[
− j L−( j+1)

(
L−( j+1)

)−1(δϕ)L j L−( j+1) e−tL−( j+1)

]
= Tr

[
− j ·1δϕ(−L−( j+1)

)
e−tL−( j+1)

]
(E-37)

since
e−tL−( j+1) =

(
L−( j+1)

)−1
e−tL j L−( j+1) (E-32)

is a consequence of the operatorial relationship

L−( j+1) =
(
L−( j+1)

)−1 L j L−( j+1) (E-33)

As a consequence, we obtain the results below:

δ(�g det L j) =− ( j + 1) lim
ε→0+

Tr
(
δϕe−εL j

)
+ j lim

ε→0+
Tr

(
δϕe−εL−( j+1)

)
(E-34)

= −( j + 1)
[∫

R2
d2xδϕ(x)

{
1

2πε
eϕ(x) − (1+ 3 j)

12π
Δϕ(x)

}]∣∣∣∣
ε→0+

+ j

[∫
R2

d2xδϕ(x)
{

1
2πε

eϕ(x) +
(2+ 3 j)

12π
Δϕ(x)

}]∣∣∣∣
ε→0+

(E-35)
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Grouping together, we obtain our final “basic-brick” formulae of the quantum geometric
path integrals for Random surfaces:

δ�g det L j = lim
ε→0+

(
− 1

2πε

)[∫
R2

d2xδϕ(x)eϕ(x)
]

+
(1+ 6 j( j + 1))

12π

[∫
R2

d2xδϕ(x)Δϕ(x)
]

(E-36)

which produces the “brick” result (A.M. Polyakov)

�g det L j =
[

lim
ε→0+

(
− 1

2πε

)∫
R2

d2xeϕ(x)
]

[
−1+ 6 j( j + 1))

12π

∫
R2

d2x

{
1
2

(∂aϕ)2(x)
}]

(E-37)

The result in the presence of gauge fields can be obtained through bosonization tech-
niques and only will lead to the following additional term to be added to eq. (E-37) in its
right-hand side

exp

[
− 1

2π

∫
R2

d2xeϕ(x){A1(x)A1(x)+ A2(x)A2(x)
}]

= exp

[
− 1

2π

∫
(dz∧dz̄)(Az ·Az̄)

]
(E-38)
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Chapter 2

Path Integrals Evaluations in
Bosonic Random Loop Geometry -
Abelian Wilson Loops

2.1. Introduction

In this somewhat long chapter we present several basic elementary calculations on the use
of Gaussian Euclidean Path Integrals in combination with the previously exposed Bosonic
Loop Space for representing Euclidean Gauge Theories in the chapter 1. The main objective
of these loop space-path integrals evaluations is to show the usefulness and the computa-
tional power of these non-perturbative mathematical techniques to obtain exactly results,
otherwise extremely difficult to obtain by another mathematical methods like Feynman Di-
agrammatics; operatorial perturbative expansions, etc.

The content of this chapter is the following. In the section 2.2, we examine some fea-
tures of longe-range interactions between electrically neutral systems represented by rect-
angular Wilson Loops in the presence of a heat reservoir. The temperature independence
of the interaction is obtained. In the section 2.3, we present similar path-integrals analysis
by evaluating explictly the quark-antiquark static potential in Quantum Chromodynamics
Q.C.D(SU(3)) by using the Dimensional Regularization scheme in the context of the Man-
delstam approximation for the Gluonic interaction. We obtain its charge confining behavior
in oppostion to those non-confining of the section 2.2. In the section 2.4, we present path-
integrals studies - based on the previous sections on the problem of confinement in the
presence of fermiomic and scalar magnetic monopole fields.

2.2. Abelian Wilson Loop Interaction at Finite Temperature

a) Introduction

The analysis of the interaction of neutral colour states in non-abelian quantum gauge theo-
ries at zero temperature has revealed the existence of long-range forces, like van der Waals
forces in atomic and molecular physics [1],[2],etc. On the other hand, it is well-known that
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the introduction of a heat reservoir can modify the zero-temperature physical phenomena.
In this section we analyse these long-range interactions in the simple case of a quantized

electromagnetic field in contact with a heat reservoir by computing the interaction of elec-
trically neutral systems represented by rectangular Wilson loops by means of elementary
path integrals evaluations.

Our conclusion concerns the temperature independence of these long-range forces in
these simple path examples in Quantum Field Theory, otherwise difficult result to be ob-
tained in the operatorial framework.

b) Wilson Loop Evaluation at Zero-Temperature

We consider a neutral system simulated as an external current circulating around a rectangle
C(R,T ).

The interaction energy between two such neutral sources separated by a a space-like
distance h is computed by evaluating the vacuum energy of the quantized electromagnetic
field in the presence of these sources and then subtracting off their self-energies

E(h) = lim
T→∞

− 1
2T

log

⎡
⎣ 〈exp( ie

∮
C(1)

(R,T )
Aμdxμ)exp( ie

∮
C(2)

(R,T )
Aμdxμ)〉

〈exp( ie
∮

C(1)
(R,T )

Aμdxμ)〉〈exp( ie
∮

C(2)
(R,T )

Aμdxμ)〉

⎤
⎦ (2.1)

where the rectangle c(2)
(R,T ) is translated through the distance h from the rectangle C(1)

(R,T )
along its spatial direction. The factor 2 in eq. (2.1) prevents the double counting of the
interaction energy.

The quantum average ,< > in eq. (2.1) is defined by the Euclidean generating fuc-
tional of the quantized electromagnetic field, an Gaussian exactly soluble path integral

〈0(Aμ) =
∫

d[Aμ(x)]exp

(
−1

4

∫
dDxF2

μν

)
0(Aμ) (2.2)

where 0(Aμ) denotes an observable, and D[Aμ(x)] is the appropriately normalized functional
measure (< 1 >= 1) including gauge fixing terms. We call attention to the usefulness of
the representation of neutral objects by Wilson loops, since eq. (2.1) manifestly exhibits
the gauge-invariance of the calcuation, a result impossible to be achieved in others quantum
field theoretical calculations schemes.

In order to evaluate eq. (2.1) it is convenient to express the Wilson loops by means
of external currents Jμ(x; C(i)

(R,T )) circulating around the contours C(i)
(R,T ) parametrized by

x(i)
μ = x(i)

μ (s) with i = 1,2 ([6],[7])

Jμ(x,C
(i)
(R,T )) = ie

∮
C(i)

(R,T )

δ(D)(xμ− x(i)
μ (s))(μ = 0,1; . . . ;D−1) (2.3)

The interaction energy in eq.(2.1) can be exactly evaluated, as the euclidean functional
integrals involved are of the Gaussian type, as it has been observed thus giving the following
result:

E(h) = lim
T→∞

− 1
T

log

[
exp{1

2

∫
dD xdD yJμ(x ,C(1)

(R,T ))Δ
(E)
μν (x− y)Jν(y;C(2)

(R,T ))}
]

(2.4)
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Δ(E)
μν (x− y) = δμν

∫
dDk

(2π)D e−ik·(x−y) · 1
k2

Δ(E)
μν (x− y) means the associated (Euclidean) Feynman propagator.

The evaluation of eq.(2.4) can be accomplished by writing it in momentum space

E(h) = lim
T→∞

− 1
2T

[∫
dDk

(2π)D fμ(k;C(1)
(R,T ))

δμν
k2 fν(−k;C(2)

(R,T ))
]

(2.5)

with
fμ(k;C(i)

(R,T )) = ie
∮

C(i)
(R,T )

e−ikα ·xα(s)dxμ(s), (α,μ = 0,1, . . .D−1) (2.6)

As the rectangles C(i)
(R,T ) are contained in a two-dimensional sub-space of the space-time

RD, we can decompose the vector�k as�k = k0�e0 + k1�e1 + k̂, where k̂ is the projection of�k
over the sub-space perpendicular to the sub-space {�e0;�e1} containing C(i)

(R,T ). In addition,
the space coordinate system is chosen so that the x -axis direction coincides with the one

defined by the spatial sides of the rectangles C(i)
(R;T ). This coordinate choice implies the

validity of the following relations between the contour-functionals in eq. (2.6)

f0(k;C(2)
(R,T ) = e−ik1·h f0(k;C(1)

(R,T ))

and
f1(k;C(2)

(R,T ) = e−ik1·h f1(k;C(1)
(R,T )) (2.7)

A simple evaluation of eq.(2.6) provides the solutions

f0(k;C(1)
(R,T ) = −4e

k0
sin(

k0T
2

)sin(
k1R
2

)

and

f1(k;C(1)
(R,T ) =

4e
k1

sin((
k0T

2
)sin(

k1R
2

) (2.8)

Inserting eqs.(2.7) and (2.8) into eq.(2.5), we obtain

E(h) = lim
T→∞

+
8e2

T

{∫ +∞

−∞
dk1

(2π)
e−ik1·h sin2( k1R

2 )
k2

1[∫
dD−2k̂

(2π)D−2

(∫ +∞

−∞
dk0

(2π)
(k2

0 + k2
1)

k2
0

1

(k2
0 + k2

1 + k̂2
sin2(

k0T
2

)
)]}

(2.9)

The integration in k0 -variable is easily performed by using the formulas 3.824-1 and
3.826-1 from Ref. 8. After taking the limit T→∞, we get

E(h) = 2e2
[∫ +∞

−∞
dk1

(2π)
e−ik1·h sin2(

k1 ·R
2

)
(∫

dD−2k̂
(2π)D−2

1

(k2
1 + k̂2)

)]
(2.10)
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In order to calculate eq.(2.10) we use the dimensional regularization scheme [9]. By
making use of the relation (3.8) from Ref. 9 (analytically continued to Euclidean space-
time) we can perform the integration in k̂-variable

E(h) = − e2Γ(2− D
2 )

2D−1π(D−2)/2

[∫ +∞

−∞
dk1

(2π)
|k1|D−4

(
e−ik1(R+h) + e−ik1·(R−h)− e−ik1h

)]
(2.11)

The Fourier transforms in eq. (2.11) are tabulated [10] in the form

1√
2π

∫ +∞

−∞
e−iα·x|x|βdx = −2sin

βπ
2

·Γ(β+ 1)|α|−β−1 (2.12)

Finally, we obtain the expression for the interaction energy between Wilson loops at
zero temperature

E(h) =
e2Γ(2− D

2 )Γ(D−3)
2D−1 ·πD/2

sin((D−4)
π
2
){(h+ R)−D+3 +(h−R)−D+3−2h−D+3}

(2.13)
In order to study eq. (2.13) for the physical limit D = 4 we note that the pole of the

gama-function Γ(2− D
2 ) cancels the zero of the sine function sin(D−4)π2 , namely

lim
D→4

Γ(2− D
2

)sin(D−4)
π
2

= −π (2.14)

which provides the four-dimensional interaction energy as a multiple expansion

E(h) =
e2

8π
{(h+ R)−1 +(h−R)−1−2 ·h−1} = − e2

4π

( ∞

∑
k=1

R2h

h2k+1

)
(2.15)

From eq. 2.(15) we readily observe that the dominant term in the asymptotic limit
h → ∞ comes from the classical dipole-dipole interaction. Furthermore, the interaction is
atractive since the dipolar moments of the neutral systems analysed are parallel.

For completeness we have evaluated the static potential of two sources by using Wilson
loops and the dimensional regularization scheme, which is

V (R) = lim
T→∞

− 1
T

log〈exp(ie
∮

C(R,T )

Aμdxμ)〉 (2.16)

The result yields the (D−1) Dimensional Coulomb law

V (R) =
e2Γ(2− D

2 )
πD/22D−2

sin

(
(D−4)π

2

)
Γ(D−3)|R|−D+3 (2.17)

where we have used the dimensional regularization rule which assigns the value zero to the
tad pole R-independent integral

e2Γ(2− D
2 )

2D−2π(D−2)D/2

∫ +∞

−∞
dk1

(2π)
|k1|D−4 = 0 (2.18)

The usual Coulomb law in there dimensions is obtained by taking the physical limit
D → 4 in eq. 2.(17), resulting V (R) = −e2/4πR.



Path Integrals Evaluations in Bosonic Random Loop Geometry... 39

c) Wilson Loop Evaluation at Non-zero-Temperature

We now examine the presence of a heat reservoir at temperature T = 1/kBβ (kB is the
Boltzmann’s constant) in the quantum gauge system.

We first evaluate the free energy of two static sources [3]

V (R;β) = −1
β

log〈exp ie
∮

C(R;β)

Aβ
μ(x)dxμ〉 (2.19)

where now the rectangle C(R;β) has its temporal sides extending from 0 to β. The quantum
average 〈 〉 involved in eq.(2.19) is defined by the Euclidean partition functional of the
quantized electromagnetic field at temperature T ([11])

〈0(Aβ
μ(x))〉 =

∫
D[Aβ

μ(x)]exp {1
4

∫ β

0
dx0

∫
dD−1�x(F2

μν)} ·0(Aβ
μ(x)) (2.20)

Here D[Aβ
μ(x)] means the normalized functional measure over all thermal gauge fields

Aβ
μ(x) satisfying the periodicity condition

Aβ
μ(�x,0) = Aβ

μ(�x,β) (2.21)

A convenient interpretation for eqs.(2.19) and (2.21) consists in considering that at finite
temperature the space-time possesses the topology of a cilinder S1 ×RD−1 instead of the
usual topology RD.

The periodicity conditions in eq. (2.21) imply that the Wilson loop contour integration
around C(R;β) is reduced to the contour integration along their temporal sides only, i.e.

exp (ie
∮

C(R;β)

Aβ
μ(x)dxμ) = exp (ie

∫ β

0
Aβ

0(0,τ)dτ) exp (−ie
∫ β

0
Aβ

0(R,τ)dτ) (2.22)

In order to evaluate eq.(2.19) we express the Wilson Strings in eq.(2.22) by means of
external localized currents

J̃0(�x,τ) = ie[δ(D−1)(�x)−δ(D−1)(�x−�R)]
J̃i(�x,τ) = 0 (i = 1; . . . ,D−1) (2.23)

and compute the Gaussian functional integration, yielding the result

V (R,β) = −1
β

{
1
2

∫ β

0
dτ

∫ β

0
dτ′

∫
dD−1�xdD−1�y J̃μ(�x,τ)Δ

(E)
μν (�x−�y,τ− τ′;β)J̃ν(�y,τ′)

}
(2.24)

where Δ(E)
μν (�x−�y,τ−τ′;β) denotes the thermal Euclidean Feynman propagator in the Feyn-

man gauge [11], namely

Δ(E)
μν (x− y,τ− τ′,β) =

1
β

+∞

∑
n=−∞

δμν
∫

dD−1�k
(2π)D−1

ei�k·(x−y)+iωn(τ−τ′)

(�k2 +ω2
n)

(ωn =
2πn
β

;n ∈ Z) (2.25)
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With the orthogonality relations

∫ β

0
dτ

∫ β

0
dτ′ eiωn(τ−τ′) =

{
0 n �= 0
β2 n = 0

(2.26)

which suppress the modes with ωn �= 0 in eq.(2.25) we simplify eq.(2.24) to the form

V (R;β) = −e2
∫

dD−1�k
(2π)D−1

(1− cos�k ·�R)
�k2

(2.27)

We observe in eq.(2.27) the temperature independence of the free energy. Now it is
convenient to choose the k1-axis along the direction vector R. We thus obtain the result

V (R;β) = −e2

[∫
dk1

(2π)
1
2
(eik1R + e−ik1R)

∫
dD−2k̂

(2π)D−2

1

(k2
1 + k̂2)

]
(2.28)

which is evaluated as before (see eqs.(2.11) and (2.12)), giving

V (R;β) =
e2

2D−2πD/2
Γ(2− D

2
)Γ(D−3)sin(

(
D−4

2

)
π) · |R|−D+3 (2.29)

From eq.(2.29) we notice its coincidence with the electrostatic potential at zero temper-
ature. (see eq.(2.17)).

Finally, we evaluate the free energy of the previous Wilson loops simulating neutral
objects in contact with a heat reservoir at temperature T .

The evaluation of eq.(2.1) is now performed by means of the quantum average furnished
in eq.(2.20) and its result in coordinate space reads

E(h,β) = −1
β

{
− e2

2

∫ β

0
dτ

∫ β

0
dτ′

∫
dD−1�xdD−1�y[

δ(D−1)(�x)−δ(D−1)(�x−�R)
]
Δ(E)
μν (�x−�y,τ− τ′,β)

[
δ(D−1)(�y−�h)−δ(D−1)(�y−�R−�h)

]}
(2.30)

Writing eq.(2.30) in momentum space we obtain the expression

E(h,β) =

= −1
2

e2
{∫ +∞

−∞
dk1

(2π)

∫
dD−2�k

(2π)D−2

1

(k̂2 + k2
1)

(e−k1·(R+h) + e−k1·(R−h)−2e−ik1·R)

=
e2Γ(2− D

2 )Γ(D−3)
2D−1πD/2

sin[(D−4)
π
2
]
{

(h+ R)−D+3 +(h+ R)−D+3−2h−D+3
}

(2.31)

The above result result clearly shows that the free energy interaction of neutral systems
repesented by rectangular Wilson loops is temperature independent and turns out to be of
the same form as the corresponding quantity in the zero temperature regime (see eq.(2.13)).

We now make some concluding remark on the results in eqs.(2.29) and (2.31). We un-
derstand that these results imply that to detect the temperature effects in the interactions
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analysed above, one should consider the matter fields in the quantum system (quantum
electrodynamics) since in this case the radiative corrections induced on the N-point pho-
ton propagator are temperature dependent, which results in an renormalized temperature
dependent electronic charge e(R;β) in the interactions in eqs.(2.29) and (2.31)

We left to our readers the introduction of the matter fields in the interactions analysed
in this section 2.2.

2.3. The Static Confining Potential for Q.C.D. in the Mandel-
stam Model through Path Integrals

a) Introduction

One of the still unsolved problem in the Gauge theory for strong interactions as given by
Quantum Chromodynamics with gauge group SU(3) is to produce arguments for the color
charge confinement of the related field excitations ([12]).

A long time ago ([13]), it was argued by S. Mandelstam through a somewhat intrincate
non-perturbative analysis of the Q.C.D. Schwinger-Dyson equations that one should use as
a first approximation for the small momenta (infrared regime) of the non-abelian quantum
Yang-Mills path measure, including its non-perturbative aspects, an effective (somewhat
phenomenological) purely abelian Gluonic action but with a free effective propagator al-
ready including the sum of a certain class of relevant Feynman diagrams for Gluons color-
charge exchange. It was conjectured that the use of this scheme would be suitable if such
an effective dynamics led directly to the color confinement.

It is the purpose of this section to evaluate the static potential between two statics
charges with opposite signal on the above mentioned Mandelstam effective Gluon theory
and show exactly its envisaged color-charge confining property; a basic physical require-
ment to use directly continuum Q.C.D. with improved Mandelstam-Feynman diagrammat-
ics, at least on the level of Dyson-Schwinger equations as earlier proposed on ref [13] by S.
Mandelstam.

b) The Wilson Loop in the Mandelstam Model

We start our analysis by considering the (Euclidean) Effective Mandelstam Gluonic action
written in terms of a path-integral in a ν-dimensional space-time Rν

Z =
∫

DF [Aμ(x)] exp

{
−1

2

∫
dνx dνy Aμ(x)Dm(x− y)Aμ(y)

}
(2.32)

where the Mandelstam (free) propagator with logarithmic term is given explicitly by the
Fourier transform on the (Tempered) Schwartz distributional space

Dm(x− y) =
1

(2π)ν

∫
dνp eip(x−y) �g(|p|2α)

|p|4 (2.33)

with α a positive model resummation constant (including factor index groups, etc...). (see
ref [13])
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The static potential between a quark and an anti-quark in the Feynman picture for par-
ticle propagations in the space-time is given by the vacuum Gluonic energy as given by
eq.(2.32), but in presence of the above spatial-static charges. This vacuum energy of such
charges separated by a space-like distance R is computed by evaluating the temporal (er-
godic) limit ([12,13,14]).

V (R) = lim
T→∞

− 1
T

�g

⎡
⎢⎣〈exp ie

∮
C(R,T )

Aμdxμ
〉

A

⎤
⎥⎦ (2.34)

where the rectangle C(R,T ) is the Feynman trajectory of the neutral pair in the space-time
and the Mandelstam Gluonic normalized average as represented by the operation 〈 〉A is
given explicitly by the Gaussian path integral eq.(2.32).

In order to evaluate the static potential eq.(2.34) it is convenient to re-write the Wilson
loop inside eq.(2.34) by means of an external current Jμ(x;C(R,T )) circulating around the
pair finite-time propagation space-time trajectory C(R,T ) = {xμ(s)}, namely ([14])

Jμ(x;C(R,T )) = ie
∮

C(R,T )

δ(ν)(xμ− xμ(s))dxμ(s) (2.35)

The Gaussian path integral eq.(2.34) can be exactly evaluated and yielding the following
result

V (R) = lim
T→∞

− 1
T

�g

[
exp

{
+

1
2

∫
dνxdνyJμ(x;C(R,T ))Dm(x− y)Jμ(y,C(R,T ))

}]
(2.36)

The evaluation of eq.(2.36) can be accomplished by writing it in momentum space

V (R) = lim
T→∞

− 1
T

[∫
dνp

(2π)ν
fμ(pα,C(R,T ))×

α�g(p2)
p4 × f μ(−pα,C(R,T ))

]
(2.37)

with the contour form factors

fμ(pα,C(R,T )) = ie
∫

C(R,T )

e−i pμxμ(s)dxμ(s) (2.38)

A simple evaluation of eq.(2.38) provides the solutions

f0(p,C(R,T )) = −4e
p0

sin

(
p0T

2

)
sin

(
p1R
2

)
(2.39)

and

f1(p,C(R,T )) = +
4e
p1

sin

(
p0T

2

)
sin

(
p1R
2

)
(2.40)
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After inserting the contour form factors eq.(2.39), eq.(2.40) into eq.(2.37), we obtain as
a result

V (R) = lim
T→∞

1
T

⎧⎨
⎩16e2α

∫ +∞

−∞
d p1

(2π)

sin2
(

p1R
2

)
p2

1

×
[∫ +∞

−∞
dν−2 p̂

(2π)ν−2

(∫ +∞

−∞
d p0

(2π)
(p2

0 + p2
1)

p2
0

sin2
(

p0T
2

)
× �g(p2

0 + p2
1 + p̂2)

(p2
0 + p2

1 + p̂2)2

)]}
.

(2.41)

Note that we have considered the pair spatial-static trajectory C(R,T ) contained in a
two-dimensional sub-space of the (Euclidean) space-time Rν in a such way that we can
decompose the vector �p ∈ Rν as �p = p0�e0 + p1�e1 + p̂, where p̂ denotes the projection
of p̂ over the sub-space perpendicular to the sub-space {�e0,�e1} containing the square
C(R,T ) = {(x0,x1);−T

2 ≤ x0 ≤ +T
2 ;−R

2 ≤ x1 ≤ +R
2}.

The ergodic limit of T → ∞ and the p0-integration is easily evaluated through the use
of the Distributional limit

lim
T→∞

sin2
(

p0T
2

)
p2

0T
= 2π δ(p0) (2.42)

As a consequence we get the result

V (R) = 16e2α

⎡
⎣∫ +∞

−∞
d p1

(2π)
·

sin2
(

p1R
2

)
p2

1

×
∫

dν−2 p̂
(2π)ν−2 ·

�g(p2
1 + p̂2)

(p2
1 + p̂2)2

⎤
⎦ (2.43)

Let us analyze the (D−2)− P̂ dimensional integration. In order to evaluate such inte-
gral, we use the well-known formulae (from I.S. Gradshteyn & I.M. Ryzhik table of inte-
grals – page 558 – eq.(14) – Academic Press – 1980.

∫
dν−2 p̂

(2π)ν−2 ·
�g(p2

1 + p̂2)
(p2

1 + p̂2)2

= (π)
ν−2

2

{
Γ
(

6−ν
2

)
Γ(2)

(|p1|)ν−6

}

× (ψ(2)−ψ(3− ν
2
)+ 2�n(|p1|) (2.44)

For the evaluation of the final p1-integration we use the well-known Gelfand results of
the Fourier Transform of Tempered (Finite-part) Distributions ([15]).

sin2
(

k1R
2

)
= −1

4
(ek1R + e−k1R −2) (2.45)

and ∫ +∞

−∞
eip1R|p1|β d p1 = −2sin

(
βπ
2

)
Γ(β+ 1)|p|−β−1 (2.45-a)
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with∫ +∞

−∞
eip1R|p1|β�n(|p1|)d p1

= ieiβ π
2

{[
Γ′(β+ 1)+

iπ
2
Γ(β+ 1)

]
(|R|+ iε)−β−1 −Γ(β+ 1)(|R|+ iε)−β−1 · �n(|R|+ iε)

}

− ie−iβ π
2

{[
Γ′(β+ 1)− iπ

2
Γ(β+ 1)

]
(|R|− iε)−β−1 −Γ(β+ 1)(|R|− iε)−β−1 · �n(|R|− iε)

}
(2.45-b)

By passing to the Physical limit of ν→ 4 and noting that the pole of the Gamma function
cancels out either with the sinus zero for ν→ 4, namely.

lim
ν→4

sin
(π

2
(ν−6)

)
Γ(ν−4−1)

∼ − 1
(ν−5)

Γ(ν−4) · sin
(π

2
(ν−4)

)
= +π (2.46)

We obtain, thus, the finite result for the static quark-antiquark potential in the Mandel-
stam Gluonic effective theory on the physical space-time R4.

V (R) = (e2α) · c · |R|(1+ �n(|R|)) (2.47)

Here c denotes a positive constant which depends on the Fourier Transform normaliza-
tion factors, etc...

We see, thus, that the Effective Gluonic Mandelstam theory leads in a very natural way
to a quark-antiquark confining potential and not to a dynamics of charge color screening as
it would be expected in a first analysis ([12]). This is the main result of this section.

At this point, it is worth remark that if one has added to the logarithmic propagator
eq.(2.33) a pure quartic term of the following form

D̃m(x− y) =
1

(2π)ν

∫
dνp eip(x−y) · 1

|p|4 (2.48)

one obtains the same result as given by eq.(2.47) without the logarithmic term.
Another important point to be called the reader’s atention is that if one tries to evaluate

the self-energy of the quark propagator with the effective Mandelstam propagator eq.(2.33),
namely

Σ(p) ∼ e2
∫

dνk
(2π)ν

(
γμ(� p− � k)γμ

(p− k)2

)
�g(k2)

k4

= 3
∫ 1

0
dx(1− x)

{∫
dνk

(2π)ν

[
((1− x) � p− � k)�g((k + xp)2)

{k2 + x(1− x)p2}3

]}
(2.49)

with the power series expansion for the logarithmic term in eq.(2.49) as given below

�g(k2 + x2 p2 + 2(x · p)x) = �g(k2)+
∞

∑
n=1

(−1)n+1

n

[
(2x(k · p)+ x2 p2)

(k)2

]n

(2.50)



Path Integrals Evaluations in Bosonic Random Loop Geometry... 45

one should arrives at the standard Mandelstam behavior after tedious calculations.

Σ(p) ∼ � p
[

A + B�g(p2)
p4

]
(2.51)

with A and B constant p-independent, (including possible divergences at ν→ 4 !).
As a consequence one see that the quark-antiquark propagator should have a behavior

of the form (in the Euclidean world)

Gμν
i j (x− y) =

〈
0
∣∣∣T (ψμi (x)ψ

ν
j (y))

∣∣∣0〉
Eucl.

∼

∫
d4 p

(p2) � peip(x−y)

p4 + B�g(p2)+ A
(2.52)

signaling again that at p2 → 0+ (the L.S.Z´s asymptotic limit) we find branch-cuts instead
of mass-physical poles. This indicates again that it is a completely ill-defined process to
apply L.S.Z´s framework to Quarks and Gluons since the quark field excitations are not
physically-quantum mechanical observable. This leads one to consider only composite op-
erators from the very beginning, as Mandelstam did in ref. [13], in order to apply correctly
the L.S.Z’ Quantum Field Methods, even at the higher momenta region.

c) The Two-Dimensional Mandelstam-Schwinger Model: Its Chiral Path-
Integral Bosonization

It is well-known that two-dimensional models has proved to be a useful theoretical labora-
tory to understand difficult dynamical features expected to be present in four-dimensional
quantum chromodynamics. It is the purpose of this part c) to complement the analy-
sis of confining of four-dimensional dynamical fermions in the infrared leading approxi-
mate Mandelstam model of part b) by means of a higher-derivative exactly soluble two-
dimensional model.

Let us start this section by writing the (Euclidean) Hermitian Lagrangean of our pro-
posed higher-derivative two-dimensional model

Lμ(ψ,ψ,Aμ) = (ψ,ψ)
{

0 (�DA �D∗
A)μ �DA

�D∗
A(�D∗

A �DA)μ 0

}(
ψ
ψ

)

+
1
2

F2
μν(A)+ (ψ,ψ)

(
η
η

)
(2.53)

where (ψ,ψ) denotes the (independent Euclidean fermion fields two-dimensional) quarks;
Aμ the usual (confining) two-dimensional eletromagnetic field with a quartic propagator on
the Landau Gauge (see below) and �DA is the (Euclidean) Dirac operator in the presence of
this 2D quantum Gauge field. The Dirac γ matrices algebra we are using satisfy the relations

{γμ,γν} = 2δμν , γμγ5 = iεμνγν ; γ5 = iγ0γ1 (2.54)

Note that this γ-matrices algebra is choosen in a such way that the Dirac operator �DA may
by written in the chiral-phase form when one considers the general Hodge decomposition
of the two-dimensional electromagnetic field.

Aμ = εμν ∂ν ϕ+∂μ ρ (2.55)
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�DA = eigρ eigγ5ϕ · (�∂)e−igρ eigγ5ϕ (2.56)

Here μ is a free-parameter ranging on the interval [1,∞) (eq.(2.53)).
Let us consider the associated path-integral expression for the 2D-quantum higher

derivative model eq.(2.53) in the fermion sector.

Z[η,η] =
1

Z(0,0)

∫
DFψDFψ DAμ× exp

(
−

∫
d2xLμ(ψ,ψ,Aμ)(x)

)
(2.57)

In order to solve exactly the two-dimensional path-integral eq.(2.57) by means of the
Gauge invariant Bosonization technique, we consider the change of variable on the field
dynamics

Aμ(x) = (εμν ∂ν)ϕ(x) (2.58)

ψ(x) = e−igγ5ϕ(x)(−Δ)−μx χ(x) (2.59)

ψ(x) = χ(x)e−igγ5ϕ(x) (2.60)

It is worth call the reader attention that in the Euclidean world ψ(x) is an independent
field of ψ(x), opposite in Minkowisky space where ψ(x) = (ψ∗(x))T γ0. That is the reason
about the difference between eq.(2.59) and eq.(2.60).

At the quantum level of the path measures we have the non-trivial jacobians (see refs.
[16]) physically related to the dynamical breaking of the models axial (chiral) symmetry,
namely

DF [Aμ(x)] = det(−Δ) ·DF [ϕ(x)] (2.61)

DF [ψ(x)]DF [ψ(x)] =
det[(�DA· �D∗

A)μ �DA]
det[�∂] DF [χ(x)]DF [χ(x)]

=
det[(�DA �D∗

A)μ(�DA �D∗
A)1/2]

det(�∂) DF [χ(x)]DF [χ(x)]

=

{
det[(�DA �D∗

A)μ+
1
2 ]

det[�∂ �∂∗]μ+ 1
2

×det(�∂ �∂∗)μ
}

DF [χ(x)]DF [χ(x)]

=

{(
det

[ �DA �D∗
A

�∂ �∂∗
])μ+ 1

2

× (det(−Δ))μ
}

DF [χ(x)]DF [χ(x)] (2.62)

After implementing equations (2.58) - (2.62) on the fermionic generating functional
eq.(2.57), we obtain the Bosonized associated model, where one can evaluate exactly all
the models correlation field functions.

Z[η,η] =
1

Z(0,0)

∫
D[ϕ(x)]DF [χ(x)]DF [χ(x)]

× exp

{
−g2

π
(μ+

1
2
)
∫

d2x

(
1
2
(∂ϕ)2

)
(x)

}
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× exp

{
−1

2

∫
d2x((∂2ϕ)2)(x)

}

× exp

{
−1

2

∫
d2x

(
(χ,χ)

[
0 �∂←−
∂ ∗ 0

](
χ
χ

))
(x)

}

× exp

{∫
d2x

[(
ηe−igγ5ϕ(−Δ)−μχ

)
(x)+ (χe−igγ5ϕη)(x)

]}
(2.63)

It is important to remark that we have used the basic identity below to arrive at eq.(2.63)
with α a real positive parameter and used throughout on the formulae

(�DA �D∗
A)α �DA = eigγ5ϕ[(�∂ �∂∗)α �∂]eigγ5ϕ

= eigγ5ϕ((−Δ)α �∂)eigγ5ϕ (2.64)

It is important point out that the part of the Lagrangean with Fermions sources in the
new field parametrization are not symmetric in its form as that of eq.(2.53) in the old field
parametrization as a consequence of our asymmetric change of variable in the (independent
in the Euclidean world!) two-dimensional quarks fields.

Finally we have the explicitly expression for our Fermion propagator in terms of the
free-propagators of the Bosonized theory

〈
ψ(x)ψ(y)

〉
= (−Δ)−μx

{〈
χ(x)χ(y)

〉(0)×

exp

{
−1

2
g2

[
π

g2(μ+ 1
2)

(
(−∂2)−1(x.y)− (−∂2 +

g2

π
(μ+

1
2
))−1(x,y)

)]}
(2.65)

Here 〈
χα(x)χβ(y)

〉(0)
=

1
2π

(γμ)αβ
(xμ− yμ)
|x− y|2 (2.66)

and

(−∂2)−1(x,y) = − 1
2π

�g|x− y| (2.67)

(−∂2 +
g2

π
(μ+

1
2
))−1(x.y) =

1
2π

K0

(√
g2

π
(μ+

1
2
)|x− y|

)
(2.68)

Note that we have used the general decomposition in eq.(2.65)

(a(−∂2)2 + b(−∂2))−1(x,y) =
1
b

{
− 1

2π
�g|x− y|− 1

2π
K0

(√
b
a
|x− y|

)}
(2.69)

The short-distance behavior of the fermion propagator is strong than the usual free case
by a μ-power derivative (strong asymptotic freedom).

lim
|x−y|→0

〈
ψ(x)ψ(y)

〉
∼ (−Δ)−μx

〈
χα(x)χβ(y)

〉
(2.70)
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The long-distance behavior by its turn is exactly given by

lim
|x−y|→∞

〈ψ(x)ψ(y)〉 ∼

lim
|x−y|→∞

{
(−Δ)−μx

[〈
χ(x)χ(y)

〉(0)
×|x− y||4μ+2|

]}
(2.71)

which shows an anomalous behavior in the infra-red limit and signaling the impossibility
to use L.S.Z interpolating fields for the 2D fermion fields as similar phenomenon in the
Mandelstam model analyzed on part b).

Anyway it is a straightforward procedure the exactly computation of all fermionic cor-
relation function of the higher derivative model eq.(2.63) as in last references of ref. [16].

d) Color Charge Screening in the Mandelstam Model

Sometimes it is argued that it is important to realize that the absence of coulored states in the
expected nuclear strong force theory of Quantum Chromodynamics may not be equivalent
to the ethernal quark-gluon confinement as showed by us in the Effective Abelian Gluon
Mandelstam model analyzed in part b) by an explicitly Wilson Loop evaluation.

The absence of color charged states can still be a result of these color quantum numbers
just screened by the quark-antiquark pairs creation on the presence of the Gluon field and
leading, thus, to the physical picture that the test charges (a static pair!) are surrounded by
a cloud of quark-antiquark pairs playing the role of plasmons. It is, thus, expected that the
resulting Wilson loop colorless object of part b) no longer leads to a rising linear confining
potential as showed on that section, but rather to an exponentially falling potential charac-
terizing the short range screened strong interactions like similiar screening phenomena in
two-dimensional Q.E.D. (see part b) ) for the case of μ= 0).

In this section we intend to show such screening phenomena by an explicitly calculation
in the above mentioned four-dimensional Effective Gluon Mandelstam model by consider-
ing the existence of totally reflecting walls on the point z = 0 and z = a of the space-time
which turns out to be of the cylindrical form Rν−1 × [0,a]. We further impose Dirichlet
boundary conditions on the “effective” abelian Gluonic Mandelstam field at the walls z = 0
and z = a. Its propagator, thus, posseses the following analytical expression on momentum
space by taking into account explicitly the above pointed out Boundary condition

G((�r,z, t);(�r′,z′, t ′)) =
∞

∑
m=0

{∫ +∞

−∞
dν−2�p

(2π)ν−2 ·
d p0

(2π)
e−i�p(�r−�r ′)e+ip0(t−t ′)

×sin
(mπ

a
z
)

sin
(mπ

a
z′
)
× [p2

0 + p2 +
(mπ

a

)2
]2
}

(2.72)

The static-potential of such a screened pair separated by a space-like distance R on the
sub-space perpendicular to the plane z (and with a coordinate z = z) is given by the temporal
(ergodic) limit result (see Wilson Loop´s discussions on section 1) namely

V (R) = e2
∞

∑
m=1

[(
1− cos

(
2πm

a
z

))
Vm(R)

]
(2.73)
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with p = (p̂, p1) ∈ Rν−2

Vm(R) =

⎧⎨
⎩

∫ +∞

−∞
dν−3 p̂

(2π)ν−3

d p1

(2π)

sin2
(

p1R
2

)
p2

1

× lim
T→∞

⎧⎨
⎩

∫ +∞

−∞
dk0

(2π)

sin2
(

p0T
2

)
T

(
1+

p2
1

p2
0

)
× 1

(p̂2 + p2
1 + p2

0 +
(

mπ
a

)2)2

⎫⎬
⎭ (2.74)

The evaluation of the ergodic limit on eq.(2.73 ) is similar to those analyzed in part a)
and leading to the result

Vm(R) =
∫ +∞

−∞
d p1

(2π)
· sin2

(
p1R
2

)[∫
dν−3 p̂

(2π)ν−3

1

(p̂2 + p2
1 +

(
mπ
a

)2)2

]

= c(ν)
∫ +∞

−∞
d p1

(2π)
sin2

(
p1R
2

)(
p2

1 +
(mπ

a

)2
) ν−7

2

(2.75)

with c(ν) a positive constant, finite for ν→ 4 and depending on the Fourier integral defini-
tion normalization factors geometrical sizes of the loop C(R,T ), etc... which exact value will
not be of our interest here, since it is convergent for ν→ 4 as a function of the space-time
dimensionality ν. The evaluation of the integral on eq.(2.75 ) can be easily accomplished
through the useful formula

∫ +∞

−∞
dx

sin2(ax)
(x2 + b2)μ

=
∫ ∞

0
dx

1
(x2 + b2)μ

−
∫ ∞

0
dx

cos(2ax)
(x2 + b2)μ

=
(

b−2μ+1

2

)
Γ(1

2)Γ(μ− 1
2)

Γ(μ)
− 1√

π

(
b
a

)μ+ 1
2

cos

(
π(μ+

1
2
)
)
Γ(μ+ 1)K−(μ+ 1

2 )(2ab)

(2.76)

and leading to the envisaged result for the harmonic m-potential contributing to the Fourier
expansion eq.(2.73)

Vm(R) = c(ν)

{[(mπ
2a

)ν−6 Γ(1
2)Γ(6−ν

2 )
Γ(D−ν

2 )

]

−
[

1√
π

(
2mπ
aR

) 8−ν
2

cos

(
π
(

8−ν
2

))
Γ
(

9−ν
2

)
×K( ν−8

2 )(
mπ
a

R)

]}
(2.77)

Now its straightforward to see directly from eq.(2.77 ) the Casimir vacuum-energy con-
tent of the Abelian Gluonic Mandelstam Field as given by the convergent Fourier series
below

E Casimir (z) = e2c(ν)
∞

∑
m=1

[(
1− cos

(
2mπ

a
z

))]
×
[(mπ

2a

)ν−6 Γ(1
2)Γ(6−ν

2 )
Γ(7−ν

2 )

]
(2.78)



50 Luiz C.L. Botelho

The expected exponential falling at large distance R of the static potential, signaling
screening of color charges for our Mandelstam Gluonic Abelian field with pure quartic
propagator, is given by the second term on eq.(2.77 )

V (R) ∼
R→∞

(−e2)
∞

∑
m=1

[(
1− cos

(
2πm

a
z

))]

×
[

1√
π

(
2mπ

a

) 8−ν
2

cos

(
π
(

8−ν
2

))
Γ
(

9−ν
2

)
e−

mπ
a R

]
(2.79)

∼ e−
π
a R(−e2)

{
∞

∑
m=1

[(
1− cos

(
2πm

a
z

))]

×
[

1√
π

(
2mπ

a

) 8−ν
2

cos

(
π
(

8−ν
2

))
Γ
(

9−ν
2

)
e−

(m−1)π
a R

}

∼ (−e2)(e−
π
a R)W (R) (2.80)

where the harmonic sum on the integers m is convergent due to the Bessel function argument
(see eq.(2.77)).

Finally, we call the reader attention that similiar result is obtained for a propagator with
a logarithmic term as that one considered in part b).

Detailed calculations taking into account quantum corrections, finite temperature efects,
etc... will left to our readers as an extensive calculation exercise.

Path-Integrals on Quantum Magnetic Monopoles

a) Introduction

The question of the existence of Magnetic Monopoles has been a fruitful research path on
modern theoretical physics since the appearance of the seminal work of P.M. Dirac ([17]) in
the subject. In the modern framework of Non-Abelian Gauge theories, most of the relevant
dynamical questions about the physical modeling of particles interactions are transferred
to the difficult and more subtle mathematical analysis of special gauge-field configurations
(instantons, merons, strings, magnetic monopoles, etc...) which are expected to constitute
the non-perturbative vacuum structure of the underlying Bosonic Yang-Mills Gauge theory.
Among those special field configurations, the Magnetic Monopole has been considered
as one of the basic hypothetical non-perturbative excitation expected to be connected to
practically all non-trivial charge confining dynamical effects ocurring on non-abelian Gauge
theories. This fact is due to the hope that Magnetic Monopoles are the best candidates for
explain naturally the (electrical) charge confinement ([18]). However magnetic monopoles
by themselves should not be observed in the particle spectrum as a physical excitation. Note
that this last constraint on monopole confinement makes the use of the standard Quantum
Field techniques to handle magnetic monopoles dynamics a very difficult task ([19], [20]).

In this section we address to these dynamical questions on Magnetic Monopole theory
by path integrals analysis, specially the technique of four-dimensional chiral bosonization
path-integral as earlier proposed by this author ([21]).
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This secton is organized as follows
In part b), we show how to obtain by a direct evaluation, the area behavior for an abelian

Wilson Loop phase Factor in the presence of an effective second quantized electromagnetic
field generated by an (condensate) second quantized monopole fermion field, as much as
envisaged as an dynamical mechanism in the famous Nambu-Mandelstam propose for the
existence of a Meissner effect for magnetic manopoles vacuum condensation in Yang-Mills
theory in order to explain the quark-gluon confinement. As a new result of our study, we
claim, thus, to have produced a well-defined path integral procedure to prove the electric
charge confining in the presence of a quantum dynamics of magnetic monopoles, with a
Fermi-Dirac statistics.

In part c), we exactly analyze by path-integrals techniques the quantum field dynamics
of (massless) fermions field interacting with Kalb-Ramond tensor fields, expected to rep-
resent dynamically quark fields interacting with rank-two tensor field, with the later field
representing the disorder field of a vacuum structure formed by condensation of magnetic
monopoles ([19]). We show, thus, that it is ill-defined to associated physical observables
LSZ interpolating fields for the fermion fields in the theory as consequence of the explicitly
Bosonized structure formulae obtained for the matter excitations interacting with rank-two
tensor fields through a spin orbit coupling with the Kalb Ramond field strenght, which by
its turn provides another support for electrical charge confining in the presence of magnetic
monopoles.

b) The Abelian Confinement in Presence of Magnetic Monopoles, a Wilson
Loop Gauge Invariant Path-Integral Evaluation

Let us start this section by considering the Euclidean path integral average associated to a
U(1)-abelian field Aμ(x) whose dual strength field intensity has a second quantized mag-
netic monopole as a (chiral) electromagnetic source (∗Fμν(A) ≡ EμναβFαβ(A))

〈W [C(R,T )]〉 =
∫

DF [Aμ]DF [Ω]DF [Ω]δ(F)[∂∗μF
μν(A))− (gΩγνγ5Ω)]

× exp

(
−1

2

∫
d4x(Ω,Ω)

[
0 i �∂+ M

(i �∂+ M)∗ 0

](
Ω
Ω

))

× exp

(
ie
∮

C(R,T )

Aμ(xα)dXμ

)
(2.81-a)

Here (Ω,Ω)(x) are the Euclidean Fermion (second-quartized) point-like fundamental
monopole fields with g denoting the magnetic charge which by its turn is supposed to be
related to the U(1)-electric charge e by the Dirac quantization relation eg = n

4 (with n ∈
Z). M denotes the magnetic monopole mass and W [C] = exp{ie

∮
C(R,T )

AμdXμ} is the U(1)-
Wilson Loop phase factor defined by the (Euclidean) space-time trajectory of two static
eletric carrier external charges interacting with the fluctuating Aμ(x) field generated by the
(fluctuating) second quantized magnetic monopole fermionic source (see the constraint on
eq.(2.81-a)). Note that C(R,T) is the boundary of the square S(R,T ) below

C(R,T ) = ∂S(R,T ); S(R,T ) =
{

(x0,x1) ∈ R2;−T
2
≤ x0 ≤ +

T
2

; −R
2
≤ x1 ≤ +

R
2

}
⊂ R4.

(2.81-b)
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It is worth call the reader attention that the above written quantum Wilson Loop as-
sociated to static quarks charges can be physically replaced by the complete Generating
functional of the second quantized Quark fields interacting with the Monopole Generated
Electromagnetic field, namely

Z[η,η] =
∫

DF [Aμ]DF [Ω]DF [Ω][δ(∂μ ∗Fμν(A)− (gΩγνγ5Ω)]

× exp

(
−1

2

∫
d4x(Ω,Ω)

[
0 i �∂+ M

(i �∂+ M)∗ 0

](
Ω
Ω

))

× exp

(
−1

2

∫
d4x(ψ,ψ)

[
0 i �∂+ �A

(i �∂+ �A)∗ 0

](
ψ
ψ

))

× exp

(
i
∫

dhx(ψ,ψ)
(
η
η

))
(2.81-c)

For static charges eq.(2.81-c) reduces to eq.(2.81-a) as it is showed in first ref. [22].
In order to evaluate the path-integral eq.(2.81-a) from the physical point of view of an

effective field theory ([21]), we should consider firstly the magnetic monopole field as a
London large mass excitation in the fermonic path-integral weight of the Wilson Loop path
integral average eq.(2.81-a). The reason why we should evaluate our Wilson Loop average
in this context can be related to the fact that very heavy monopoles (but with small quantum
fluctuations) are expected to populating the non-perturbative vacuum phase of any non-
abelian Gauge Theory (at least in its confining phase) ([18], [19]). Let us, thus, re-write the
magnetic monopole axial current constraint in eq.(2.81-a) by means of an axial-vectorial
Lagrange multiplier field λμ(x), namely:

〈W [C(R,T )]〉 =
{∫

DF [Aμ]DF [Ω]DF [Ω]DF [λμ]

× exp

(
i
∫

d4x[λν(∂∗μF
μν(A)−gΩγνγ5Ω)](x)

]

× exp

[
−1

2

∫
d4x(Ω,Ω)

[
0 i �∂+ M

(i �∂+ M)∗ 0

](
Ω
Ω

))
× exp

(
ie
∫

C(R,T )

AμdXμ

)}
(2.82)

At this point we follow well known studies in the literature in order to give a correct
meaning for the effective field theory associated to very heavier magnetic monopoles Lon-
don large mass limit in the monopoles Fermionic determinants ([21]). It is a standard result
in the subject that the (mathematical) leading limit of (renormalized) magnetic monopole
large mass should be given by the auxiliary Gauge field mass term, (see refs. [21] for the
calculational details at this London limit for Fermion determinants)

lim
Mren→∞

|det(i �∂+ Mren + gγ5 �λμ)|2

∼= exp

{
−1

2
(ΛQCD ·g2)

∫
d4x(λμ(x))2

}
+ O(1/Mren) (2.83)

Note that the appearance [through the phenomenological QCD vacuum scale ΛQCD =
(Mren)+2] of a mass term for the auxiliary vector field λμ(x) which by its turn, should sig-
nals the expected dynamical breaking of the U(1)-axial gauge invariance (with opposite



Path Integrals Evaluations in Bosonic Random Loop Geometry... 53

parity ([20], [21]) of this (non-physical) vectorial field by the phenomenon of dimensional
transmutation on the adimensional g-coupling constant. This result indicates strongly the
dynamical breaking of the U(1)-axial symmetry of the fermionic magnetic monopole sec-
ond quantized field {Ω(x),Ω(x)}.

After inserting eq.(2.83) into eq.(2.82) and by realizing the Gaussian λμ-field path inte-
gral, we are led to consider the effective fourth-order Wilson Loop path integral average for
eq.(2.81) as the leading London limit on the magnetic monopole mass M, namely:

〈W [C(R,T )]〉 =
{∫

DF [Aμ(x)]δ(F)(∂μAμ)

× exp

(
− 1

2(g2ΛQCD)

∫
d4x(Aμ[(−∂2)2]Aμ)(x)

)

× exp

(
ie
∫

C(R,T )

AμdXμ

)}
+ O(M−1) (2.84)

The static inter-quark linear risen potential can be obtained from eq.(2.84) by using
the dimensional regularization scheme of Bollini-Giambiagi for evaluating the Feynman-
diagrams integrals as it is exposed in details on refs. ([22]). It yields the expected linear
raising confining potential

V (R) = (e2 ·g2)(ΛQCD)R

= An2(ΛQCD) ·R = A

(
n2

2πα′

)
R = αeff(N2)R (2.85)

Here A is a model-calculational positive adimensional constant, which details will not
be needed for our study, and α′ denotes the Regge Slope parameter associated to the non-
perturbative vacuum scale ΛQCD ∼ ( 1

2πα′ ). It is worth call the reader attention that we have
obtained somewhat the infinite quantized number of parallel Regge trajectories from the
Dirac topological quantization rule for electric and magnetic charges as it is suggested in
the effective Regge slope parameter αeff(n2) = n2/2πα′.

Thus we see that the effective path integral eq.(2.81) for the Wilson Loop in the presence
of an electromagnetic field generated by a heavy quantum monopole leads naturally to a
dynamics of Wilson Loop area behavior for the electrical charges in the theory, a result
obtained by us explicitly through an exactly gauge invariant path-integral evaluation.

c) Monopoles Interacting with Kalb-Ramond Fields through Spin-Orbit
Coupling

In the last years, Kalb-Ramond field theory has been widely studied as an alternative dy-
namical quantum field scheme to the Higgs mechanism, as well as in relation to the dynam-
ics of strings in the problem of string representation for Q.C.D. at large number of colors as a
dynamical disorder field representing the effects of existence of magnetic monopoles ([18],
[19]). The basic formalism used to analyze such Kalb-Ramond non-perturbative quantum
dynamics has been the path-integral formalism, which has shown itself to be a very power-
ful procedure to understand correctly the different phases of the associated Kalb-Ramond
Quantum Field Theory [23].
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One important problem in those Path-integral studies, still missing in the literature,
is that one related to the presence of interacting dynamical fermions (simulating second
quantized matter fields) in the Kalb-Ramond Gauge theory. In this Section 3 we shall
describe the extension of previous path-integral dualization-bosonization studies [24] to
the case of Fermionic matter coupling through a spin-orbit field quantum interaction as
it is expected to be relevant to describe the interacting physics of quarks and magnetic
monopoles.

Let us start by considering the Abelian Kalb-Ramond first order action but now in the
presence of massless dynamical fermions in the four-dimensional Euclidean world.

S[H,B,ψ,ψ] =
∫

R4
d4x

{
1
12

HλμνHλμν− 1
6

Hλμν∂[λBμν] +ψ(i �∂+ igγαγβγμHαβμ)ψ
}

.

(2.86)
Here the dynamical fields are the independent three-form H , the KR gauge field B and

the Dirac fermion fields (ψ,ψ).
We shall apply the bosonization procedure in the path-integral framework through the

following theory’s generating functional (normalized to unity)

Z[J,η,η] =
∫

DF [H]DF [B]DF [ψ]DF [ψ]

× exp{−S[H,B,ψ,ψ]}

× exp

{
−i

∫
R4

d4x(ηψ+ψη+ JμνBμν)(x)
}

. (2.87)

It is worth call the reader attention that the Path-integral eq.(2.87) is invariant under
the KR gauge symmetry, provide the external source corrent Jμν is chosen to be divergence
free and our proposed action term related to the direct interaction of the quantum fermionic
matter with the Kalb-Ramond gauge field through its strenght three-form H – the spin orbit
fermion interaction. (see eq.(2.86)).

The Path-Integral Bosonization analysis proceeds as usually by integrating exactly out
the Kalb-Ramond gauge potential field which produces as a result the delta functional [24].

Z[J,η,η] =
∫

DF [H]DF ]ψ]DF [ψ]δ(F)(∂λHλμν− Jμν)

× exp

{
−

∫
R4

d4x

[
1

12
HλμνHλμν+ψ(i �∂+ igγαγβγμHαβμ)ψ

]
(x)

}
. (2.88)

Let us note that the delta functional integrand inside of the path integral eq.(2.88) im-
poses the classical equations of motion on the three-form Kalb-Ramond strenght H which
by its turn can be exactly solved by the Rham-Hodge theorem in terms of the effective
dual scalar axion (zero-form) dynamical degree of freedom in the KR theory defined in a
space-time topologically trivial as considered in our path integral eq.(2.88)

Hλμν = gελμνρ∂ρϑ+∂[λ 1
∂2 Jμν]. (2.89)

At this point we re-write the effective action eq.(288) in a four-dimensional bosonized
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chiral action [25]

Z[J,η,η] =
∫

DF [ϑ]

× exp

{
−1

2

∫
R4

d4x

[
g2∂μϑ∂μϑ+

1
2

Jμν
(
− 1
∂2

)
Jμν

]
(x)

}

×
∫

DF [ψ]DF [ψ]exp

{
−1

2

∫
R4

d4x(ψeigγ5ϑ �∂eigγ5ϑψ)(x)
}

× exp

{
−1

2

∫
R4

d4x

(
igψ

[
γαγβγρ∂[α 1

∂2 Jβρ]
])

ψ
}

(x)

× exp

{
−i

∫
R4

d4x(ψη+ψη)(x)
}

. (2.90)

After considering the chiral-fermion field variable change on the fermionic path-integral
term of eq.(2.90)

ψ = χe−igγ5ϑ (2.91-a)

ψ = e−igγ5ϑχ (2.91-b)

D[ψ]D[ψ] = D[χ]D[χ]
det[eigγ5ϑ �∂eigγ5ϑ]

det[�∂]
= D[χ]D[χ]J[ϑ], (2.91-c)

we obtain the exactly bosonized path-integral representation for the KR first order theory
as given by eq.(2.87), namely:

Z[J,η,η] =
∫

DF [ϑ]D[χ]D[χ]J[ϑ]

× exp

{
−

∫
R4

d4x

[
g2

2
∂μϑ∂μϑ− 1

2
Jμν(∂2)−1Jμν

]
(x)

}

× exp

{
−1

2

∫
R4

d4x(χ �∂χ)(x)
}

× exp

{
−1

2
ig

∫
R4

d4x

(
χ
(
γαγμγν∂[α 1

∂2 Jμν]
]
χ
)

(x)
}

× exp

{
−i

∫
R4

d4x
(
χe−igγ5ϑη+ηe−igγ5ϑχ

)
(x)

}
, (2.92)

here the functional Fermion Jacobian eq.(2.91-c) has been exactly evaluated in refs. [25]
(see Appendix A e B - Chapter 18)

Jε[ϑ] = exp

{
g2

4π2ε

∫
R4

d4x(∂μϑ)2(x)
}

× exp

{
− g2

4π2

∫
R4

d4x(∂2ϑ)(∂2ϑ)(x)
}

× exp

{
g4

12π2

∫
R4

d4x[ϑ(∂μϑ)2(−∂2ϑ)](x)
}

. (2.93)
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As a first remark to be made on the above written result we note that its first term has
the effect of formally inducing a renormalisation of the g-charge after the cutt-off removing
ε→ 0 on the complete result eq.(2.87), namely

g2
bare(ε)

(
1+

1
4π2ε

)
= g2

ren. (2.94)

By secondly, we point out the appearance of the fourth-order kinetic term for the scalar
effective KR field ϑ(x), a very important result for the model ultra-violet finiteness.

An another important physical result coming from the set eq.(2.92)–eq.(2.94) is the
explicitly fermionic matter asymptotic freedom as can be see directly from the factorized –
decoupled form of the full interacting matter fermionic propagator, namely

1
(i)3

δZ[η,η,J]
δηα(x)δηβ(y)

∣∣∣ J=0
η=η=0

= Sαβ(x− y)×F(x,y) (2.95)

with Sαβ(x− y) denoting the free fermion propagator and the (decoupled) Kalb-Ramond
form factor being given exactly by the (perturbative finite) fourth-order ϑ-path integral as
remarked above.

F(x,y) =
∫

DF [ϑ]e−
1
2 g2

ren
∫

R4 (∂μϑ)2(x)d4x

× e−
g2

ren
4π2

∫
R4 (∂2

μϑ)2(x)d4x

× e+ g2
ren

4π2

∫
R4 [ϑ(∂μϑ)2(−∂2

μϑ)](x)d4x

×{(exp−igrenγ5ϑ(x))(exp−ierenγ5ϑ(y)} (2.96)

which goes to 1 in the high energy limit of |x − y| → 0 as a result of the path-integral
super renormalizability associated to the effective axion scalar dual Kalb-Ramond theory
eq.(2.86)) [the well-known phenomenon of asymptotic freedom in confining gauge theo-
ries]. A low energy study of the form-factor eq.(2.96) has been carried out in refs. [25]
(Appendix). There, we have suggested that these bosonized fermionic fields do not pos-
sesses LSZ interpolating fields, since the associated two-point Euclidean correlation func-
tion eq.(2.95) defines Wightman functions which are ultra-distributions in Jaffe Distribu-
tional Spaces and not in the usual Schwartz Tempered Distributional Spaces naturally asso-
ciated to the existence of LSZ interpolating fields (a well defined Scattering Matrix) in the
quantum field theory eq.(2.87).

A calculational remark to be made at this point of this section is related to the straight-
forward exactly solubility for the Macroscopic radiative corrections evaluations of the Kalb-
Ramond gauge potential propagator

1
i2

δ2[J,η,η]
δJμν(x)δJαβ(y)

∣∣∣η−η=0
J=0

= 〈Bμν(x)Bαβ(y)〉

= (−∂2)−1(x,y)+ e2
ren

∫
d4zd4z′(−∂2)−1(z− x)(−∂2)−1(z− y)

×∂[λ
z ∂λ

′
z′ 〈(χ(z)(γλγ[μγν])χ(z))(χ(z′)(γλ

′
γ[αγβ])χ(z′))〉(0), (2.97)
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here 〈 〉(0) denotes the free fermion average path integral

〈 〉(0) =
∫

D(χ]D[χ]e−
1
2

∫
R4 d4x(χ �∂x)(x). (2.98)

The exactly evaluation of the quantum correction eq.(2.97) is standard and can be easily
obtained by just using the well-known Dirac matrixes relationship and will be left as an
exercise to our readers

γλγμγν = (Sλμνσ + ελμνσγ5)γσ (2.99)

Sλμνσ = (δλμδνσ+δμνδλσ−δλνδμσ). (2.100)

The above exposed results concludes our part c) on path-integral exactly studies on the
four-dimensional path-integral Bosonization of our abelian interacting KR field.

References

[1] W. Fischler, T. Appelquist, (1978) Phys. Lett. 77B, 405.

[2] G. Bhanot, W. Fischier, S. Rudaz, (1979) Nucl. Phys. B155, 208.

[3] Gross, R.D., Pisarski, L.G., Yaffe, (1981) Rev. Mod. Phys. Vol. 53, no 1.

[4] B. Kogut, (1979) Rev. Mod. Phys. Vol. 51, no 4.

[5] Symanzik, (1970) Comm. Math. Phys. 15, 50.

[6] Falomir, R.E.G. Saravi, F.A. Schaposnik, Phys. Rev. D25, 547 (1982).

[7] Bud, C. G., Bollini, J.J. Giambiagi, Nucl. Phys. B204, 105 (1982).

[8] Gradshteyn, I.M. Ryzhik, Tables of Integrals (Academic Press,

[9] Elbbrandt, (1975) Rev. Mod. Phys. Vol. 47, no 4.

[10] Guelfan, G.E. Chilov, Lés Distributions (Dunod-Paris, 1962).

[11] Bernard, (1974) Phys. Rev. D9, 3312.

[12] - B. Kogut, (1979) Rev. Mod. Phys. vol 51, no 4.

- A. Falomir, R.E. Saravi, F.A. Schaposnik, (1982) Phys., Rev. v.25, 547.

- A. Di Giacomo, H.G. Dosch, U.S. Sheuchenko, Yu. A. Siman, (2002) Phys., Rep.
372, 319.

- D.J. Gross, I.R. Klebanov, A.V. Matytsin and A.V. Smilga, (1996) Particle Physics,
B461. 109.

[13] - S. Mandelstam, (1979) Phys. Rev. 20D, 3223.



58 Luiz C.L. Botelho

[14] - C.G. Bollini and J.J. Giambiagi, (1972) Phys. Lett. 40B, 566.

- M. Abud, C. G. Bollini, J.J. Giambiagi, (1982) Nucl., Phys. B204, 105.

- C.G. Bollini, J.J. Giambiagi and A. Gonzales Dominguez,(1964) Nuov. Cim. 31,
550.

[15] - I. Gelfand, G.E. Chilov, (1962) Les Distributions, Dunod-Paris.

[16] - A. Casher, B. Kogut and L. Susskind, (1974) Phys. Rev. D10, 732.

- J.H. Lowenstein and J.A. Swieca, (1971) Ann. of Phys. 68, 172.

- J.A. Swieca, Fortschr, (1972) Phys. 25, 303.

- B. Schroer at al, (1979) Nucl. Phys. B153, 112.

- Luiz C.L. Botelho, (1989) Phys. Rev. 31D, 1503 (1985), Phys. Rev. 39D, 3051.

- R. Roskies and F. Schaposnik, (1981) Phys. Rev. D23, 558.

[17] P.A.M. Dirac, (1948) Phys. Rev. 74, 817.

[18] S. Mandelstam, (1975) Phys. Lett. B 53, 476.

– K.I. Kondo, (1998) Phys. Rev. D57, 7467 – W. Ellwanger, (1998) Nucl. Phys. B
531, 593

– Z. Ezawa, A. Iwazaki, (1982) Phys. Rev. D25, 2681

– Y. Nambu, (1974) Phys. Rev. D10, 4246

[19] A.M. Polyakov, (1997) Part. Phys. B486, 23.

– L.C.L. Botelho, (2005) Mod. Phys. Lett 20A, 12.

– D. Antonov, D. Ebert, (1999) Eur. Phys. J. C8, 343–351.

[20] Chan Hung-Mo, Tsou sheung, Tsun and, (1997) Phys. Rev. D56, 3646

[21] Luiz C.L. Botelho, (2000) Int. J. Mod. Phys. A 15 (5): 755-770

– M. Faber et al., Eur. Phys. J. C7, 685–695 (1999)

[22] Luiz C.L. Botelho, (2004) Phys. Rev. D70, 045010

– Luiz C.L. Botelho, (2005) Eur. Phys. J. C44, 267–276.

[23] Orland P. (1982) Nucl. Phys. B205, 107.

– Aurilia A., Takahashi, Y., (1981) Prog. Theor. Phys. 66, 69.

– Savit R., (1980) Rev. Mod. Phys. 52, 453.

– Luiz C.L. Botelho, (1989) J. Math. Phys. 30 (9): 2160.

[24] Smailagic A. and Spallucci, E., (2000) Phys. Rev. D61, 067701.

[25] Luiz C.L. Botelho, (1989) Phys. Rev. D39(10): 3051–3054.

Damgard P.H., Nielsen, H.B., Sollacher, P. (1992) Nucl. Phys. B385, 227–250.

[26] A.I. Karanikas, C.N. Ktorides, N.G. Stefanis, (2003) Eur. Phys. J. C26, 445–455.



Chapter 3

The Triviality – Quantum
Decoherence of Quantum
Chromodynamics SU(∞) in the
Presence of an External Strong
White-Noise Eletromagnetic Field

3.1. Introduction

For a long time, a very interesting (and conceptually) important problem in Quantum Field
theory has been the correct understanding of the triviality phenomena of interacting fields as
a kind of “phase-transition”phenomena depending on external parameters including the fa-
mous space-time dimensionality. The basic formalism used to understand such an important
phenomena is – until present time – the re-writing of the given interacting quantum field
generating functional in terms of the famous Symanzik Loop Space (even at the Lattice)
[1–3].

The purpose of this chapter is to point out quantum field triviality phenomena in another
context, however in a more complicated Quantum Field theory than those analyzed on liter-
ature which is Quantum Chronodynamics at large number of colors but in the presence of an
external random abelian field. The main idea is to show that exactly such a triviality result
for Q.C.D. (SU(∞)) will be the systematic use of the Loop Space representation for Q.C.D.
which, by its turn, allows us to exactly integrate out the external random abelian field when
one is analyzing the Q.C.D (SU(∞)) on the physical sector (observable) of abelian quark
currents (form factors).

In section II we present our ideas and a complete Loop Analysis of Q.C.D. (SU(∞))
triviality in the presence of randomness. In section III, we present a path-integral renormal-
ization analysis of the resulting effective random surface theory. In section IV, we apply the
previous Q.C.D. Loop analysis to the important case of non-relativistic (many-body) field
theories. In section VI, we present a Tensor Model for improved QCD(SU∞)) and finally
in section VII, we propose a string second-quantized field theroy for the random surface
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theory of section VI.

3.2. The Triviality – Quantum Decoherence Analysis

In order to show such a triviality – quantum decoherence on Bosonic Q.C.D(∞) let us con-
sider the Euclidean generating functional of the abelian (for simplicity) quarks currents
on the presence of an external white-noise electromagnetic field Bμ(x), simulating a kind
of “dissipative” vaccum structure or quantum external resorvoir acting in the system (see
second reference of refs.[2]).

Z [Jμ(x),Bμ(x)] =
〈

detNc
f ( �D(Aμ,Bμ,Jμ) �D∗(Aμ,Bμ,Jμ))

〉
Aμ

(3.1)

Here the Euclidean Dirac operator is explicitly given by

�D(Aμ,Bμ,Jμ) = iγμ(∂μ+ eBμ+ Jμ+ gAμ) (3.2)

with gAμ denoting the Yang-Mills non-abelian quantum field configurations averaged on
eq.(3.1) by means the usual Yang-Mills Path integral, Jν(x) is the auxiliary source field as-
sociated to the abelian quarks currents and Bμ(x) is a random external electromagnetic field
with a strenght field Fμγ(B) satisfying a Gaussian statistics with randomness of intensity
λ > 0.

EF
{

Fμγ(B)Fαβ(B)(y)
}

= λδ(D)(x− y) · (δμαδγβ−δμβδγα) (3.3)

Here EF denotes the stochastic average on the ensemble of the external strenght abelian
field F(B).

In the Bosonic loop space framework [3] we can express the quark functional
determinant eq.(3.1) – which was obtained as an effective generating functional for
the color singlet quark current after integrating out the Euclidean quark action –
, as a functional on the Bosonic loop space composed of all trajectories Cxx ={

Xμ(σ),Xμ(0) = Xμ(T ) = x;0 ≤ σ≤ T
}

Z[Jμ(x),Bμ(x)]

=

〈
exp−

{
Nc∑

Cxx

[Φ[Cxx,Bμ]Φ[Cxx,Jμ]Trc (W [Cxx,Aμ])]

}〉
Aμ

(3.4)

where Φ[Cxx,Bμ] is the usual Wilson-Mandelstan loop variable defined by the random
external electromagnetic field Bμ(x), W [Cxx,Aμ] is the same loop space object, however
with a sum path order and defined by the non-abelian Yang-Mills quantum Euclidean field
Aa
μ(x)λa. Namely

Φ[Cxx,Bμ] = exp

(
ie
∮

Cxx

Bμ(Xβ(σ)dXμ(σ)
)

(3.5)

W [Cxx,Aμ] = P

[
exp

(
i
∮

Cxx

Aμ(Xβ(σ))dXμ(σ)
)]

(3.6)
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The sum over the closed loops Cxx with end-point x is given by the proper-time bosonic
path integral below

∑
Cxx

=
∫ ∞

0

dT
T

∫
dDx

∫
X(0)=x=X(T)

DF [X(σ)]exp

{
−1

2

∫ T

0
Ẋ2(σ)dσ

}
(3.7)

In refs.[3], the factorization of the color gauge invariant averages of the products of
Wilson loops associated to the Yang-Mills fields Aμ at SU(∞) was presented on the basis of
a diagrammatic analysis. As a consequence of this result the non trivial dynamical content
of the generating functional of abelian quark currents is entirely given by the fermionic
functional determinant written in the SU(∞) bosonic loop space functional with a factorized
form in relation to the loop fields entering in its (loop space) structural form as given below

− lnZ[Jμ(x),Bμ(x)]SU(∞)

=

{
∑
Cxx

Φ[Cxx,Bμ]Φ[Cxx,Jμ]
〈
TrcW [Cxx,Aμ]

〉
SU(∞)

}
(3.8)

In order to show the triviality quantum decoherence of the bosonic loop space gener-
ating functional eq.(3.8) when averaging over the quark currents dependence on the ex-
ternal white-noise abelian field Bμ(x), we consider the stochastic average of the Wilson-
Mandelstan phase factor defined by the abelian random field with the following result

EF
{
Φ[Cxx,Bμ]

}
= EF

{
exp ie

∫
∑(Cxx)

Fμv(x)dσμv(x)
}

=
{
−(e2λ)

2

∫
∑(Cxx)

dσμν(x)δ(D)(x− y)dσμν(y)
}

(3.9)

Let us analyze the behavior of the loop space functional eq.(3.9) in terms of the metric
properties of the surface ∑(Cxx) bounded by the loop Cxx(σ). In order to analyze such a
geometrical behavior of eq.(3.9) we consider an explicitly parametrization of the (fixed)
surface ∑(Cxx) possesing as boundary the loop Cxx:

∑(Cxx) =
{
ϕμ(s,σ),0 ≤ s ≤ 2π;0 ≤ σ≤ T

}
(3.10)

In terms of this two-dimensional surface vector parametrization we re-write the loop
functional eq.(3.9) in the coordinate invariant parametrization form, suitable to analyze its
geometrical content

ln
(
E
{
Φ[Cxx,Bμ]

})
= −(e2λ)

2

∫
dsdσ

∫
ds′dσ′√h(s,σ)

√
h(s′,σ′)

× τμν
(
ϕβ(s,σ))τμν(ϕβ(s′,σ′)

)(
δ(D) (ϕβ(s,σ)−ϕβ(s′,σ′)

))
(3.11)

Here the surface area tensor is given by

dσμν(xβ)
∣∣∣∣
xβ=Φβ(s,σ)

=
(√

h(s,σ)τμν
(
ϕβ(s,σ)

)
dsdσ

)
(3.12)
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with √
h(s,σ) =

(√
det(∂aϕβ∂bϕβ)(s,σ)

)
(3.13)

τμν(Φβ(s,σ) =
(
εab∂aϕμ∂bϕν/

√
h(s,σ)

)
(3.14)

By introducing a regularization form to the singular delta-function appearing on the
surface function eq.(3.11)

δ(D)
(ε)

(
ϕβ(s,σ)−ϕβ(s′,σ′)

)
=

∫
|k|>1/ε

dDk exp
(
ikα(ϕα(s,σ)−ϕα(s′,σ′))

)
, (3.15)

one obtains as the leading geometrical functional associated to the trivial surface self-
intersecting case (σ,s) = (σ′,s′), the well-known Nambu-Goto area surface functional [4],
and see section 3.3 of this chapter.

− ln
{

E (Φ[Cxx,Bμ])
}

= c̄(e2λ)
∫

dsdσ
(√

hhab∂aϕμ∂bϕμ
)

(s,σ) (3.16)

Here c̄ is a positive RD-dimensional constant related to the renormalization parameters
ε used on the regularization form eq.(3.15) and somewhat related to the analogous expected
phenomena of dimensional transmutation on Q.C.D(SU(∞)). Note that we have used the
normalization condition of the surface area tensor to obtain the area functional eq.(3.16):

τμν(ϕβ(s,σ))τμν(ϕβ(s,σ)) = 1 (3.17)

At this point, it is straightforward to see that for a large white-noise external abelian
field λ→ ∞ [2], the noise averaged Wilson loop on eq.(3.1) is vanishing small for any loop
Cxx. It is worth call the reader attention that for a given fixed noise strenght λ �= 0, all loops
Cxx bounding large minimal areas surfaces ∑[Cxx] are suppressed on the bosonic loop path
integral eq.(3.8) and leading to a dynamics of Gluon condensates [3].

Note that the same loop Cxx appearing on eq.(3.9) enters in the definition of all loop
space objects on eq.(3.8). This result in turns show us that at the very large noise strenght
limit λ → +∞,we have the strong triviality of SU(∞)-Quantum Chromodynamics in the
sector of the abelian quark currents, since all closed loops Cxx(σ) degenerate to the loop
base point x, namely

lim
λ→∞

EB
{

Z(Jμ(x),Bμ(x)
}

= lim
λ→∞

exp

{
− ∑

(Cxx(σ)→x)
e−c̄λe2Area(Σ[Cxx ])Ω[Cxx,Jμ]×

〈
TrC(W [Cxx,Aμ])

〉}

= exp(0) = 1 (3.18)

This is the first main conclusion of this chapter about the Q.C.D(SU(∞)) triviality –
quantum decoherence.

A second result we wishe to present is related to the somewhat different situation of our
abelian randon field is now originating from a source described by a manifold of random
currents obeying a pure-white noise statistics in a physical our-dimensional space-time R4

ΔBμ(x) = jμ(x) (3.19)
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with the white-noise (spaghetti-vaccum [12]) current source correlation function (see chap-
ter 2, page 65)

E j
{

jμ(x) jν(y)
}

= λδ(4)(x− y)δμν (3.20)

In order to see the area behavior for the abelian phase factor Φ[Cxx,Bμ] in eq.(3.4), we
probe the system vacuum energy by considering a static pair of quark-antiquark interacting
with the random electromagnetic field eq.(3.19)–eq.(3.20).

The binding electromagnetic energy between such static probing charges e, separated
by a distance R is computed by evaluating the energy of the abelian white-noise field Bμ(x)
in the presence of these static quark sources and given explicitly by the following Wilson
loop average (see chapter 2).

V (R) = lim
T→∞

− 1
T

lgE j

{
exp ie

∮
C(R,T )

Bμ(x, [ j])dXμ

}
(3.21)

where the quark-antiquark static space-time trajectory is given by a rectangle C(R,T ) ={−T
2 ≤ t ≤ +T

2 ;−R
2 < σ < R

2

}
and E j denotes the stochastic average over the vacuum cur-

rent sources eq.(3.20).
The evaluation of the binding energy V (R) can be more invariantly accomplished by

writing it in momentum space and using the dimensional regularization of Bollini and Gi-
ambiagi [5], after evaluating explicitly the source average on eq.(3.21)

V (R) = lim
T→∞

− 1
2T

[∫
dDk

(2π)D fμ(k;C(R,T )) ·
λδμν
(k2)2 × fν(−k,C(R,T ))

]
(3.22)

with the rectangle form factor written as follows

fμ(k,C(R,T )) = ie
∮

C(R,T )

e−ikα(σ) dXα(σ)
dσ

(3.23)

As the rectangles C(R,T ) is contained in a two-dimensional sub-space of the space-time

RD, we can decompose the vector�k as�k = k0�e0 + k1�e1 + k̂, where k̂ is the projection of k̂
over the sub-space perpendicular to the sub-space {�e0,�e1} containing C(R,T ). In addtion,
the space coordinate system is chosen so that the x-axis direction coincides with the one
defined by the spatial sides of the rectangles C(R,T ), this coordinate choice leads us to the
solutions

f0(k,C(R,T )) = −4e
k0

sin

(
k0T

2

)
sin

(
k1R
2

)

f1(k,C(R,T )) = +
4e
k1

sin

(
k0T

2

)
sin

(
k1R
2

)
(3.24)

After substituting eq.(3.24) into eq.(3.22), we face the problem of evaluating the fol-
lowing dimensionally regularized integral limit of T → ∞. We get as a result:

V (R) = lim
T→∞

8(e2λ)
T

{∫ +∞

−∞
dk1

(2π)
sin2( k1R

2 )
(k1)2

×
[∫

dν−2k̂
(2π)ν−2

(∫ +∞

−∞
dk0

(2π)
(k2

0 + k2
1)

k2
0

sin2( k0T
2 )

(k2
0 + k2

1 + k̂2)2

)]}
(3.25)
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By using the elementary improper integral formula for the evaluation of the k0-integrand
on eq.(3.25)

lim
b→∞

1
b

{∫ +∞

−∞

(
1+

a2

x2

)
sin2(bx)
(x2 + c2)2

}

=
2πa2

c4 (3.26)

We arrive at the (partial) result

V (R) = +
(e2λ)

(4π)D
2 −1

{∫
dk1

(2π)
sin2( k1R

2 )
k2

1

× Γ
(

6−ν
2

)
|k1|ν−4

}
(3.27)

with the final result on the dimensional regularized form (a general space-time with a con-
tinuum dimension ν) and where we have introduced a Coulomb term (by hand) to eq.(3.27)
associated to a 1/k2 propagator – just for completenness (see chapter 2).

V (R) = VCoul(R)+VCon f (R) (3.28)

with

VCoul(R) = +
(e2λ)

(4π) ν
2−1

×
{
Γ(ν−3)

sin((ν−4)π2 )
2π

Γ
(

4−ν
2

)}
(R)−ν+3 (3.29)

and

VCon f (R) = +
(e2λ)

(4π) ν
2−1

×
{
Γ
(

6−ν
2

)
sin(π2 (ν−6))

2π
Γ(ν−5)

}
(R)−ν+5 (3.30)

At this point one can see that the potential energy term as given by eq.(3.30) at the
physical four-dimensional space-time leads to the expected “confining” area behavior to
the stochastic abelian phase factor

E j

{
exp ie

∮
C(R,T )

Bμ(x, [ j]dXμ

}
∼ expexp

{−c̄T ·R(e2λ)
}

(3.31)

whith c̄ a positive adimensional constant.
It is worth remark that the term eq.(3.29) leads to the usual Coulom Law at D = 4,

namely

VCoul(R) = − e2λ
4πR

(3.32)

3.3. Random Surface Dynamical Factor in the Analytical Regu-
larization Scheme

Sometimes, it is argumented on the literature [6], that one should consider a dynamical
random surface path-integral sum to the surface functional as given by eq.(3.11) in the case



The Triviality – Quantum Decoherence of Quantum Chromodynamics SU(∞)... 65

of the existence of only trivial self-intersections (σ,s) ≡ ξ = (σ′,s′) = ξ′ on the domain
functional

Z[ϕ](gbare) =
1

Z(0)

∫
DF [ϕ(ξ)]exp

{
−1

2

∫
d2ξ

(
ϕμ(−Δ)+αϕμ

)
(ξ)

}

× exp

{
−gbare

∫
d2ξδ(D) (ϕμ(ξ)−ϕμ(ξ′)

)}
(3.33)

Here α is a regularizing theory’s parameter α≥ 1.
Let us address the problem of renormalization on this self-avoiding random surface

functional eq.(3.33). Firstly, we point out that one can safely replace the surface self-
avoidance on the path-integral interaction weight by an interaction with the tangent plane
at the surface point ϕμ(ξ), namely;

δ(D) (ϕμ(ξ)−ϕμ(ξ′)
)

= δ(D) (ϕμ(ξ)−Tμ(ξ)) (3.34)

where the tangent plane equation is given by

Tμ(ξ′) = Tμ(ξ) = t0
μ ·ξ0 + t(1)

μ ξ1 (3.35)

with {t(0)
μ , t(1)

μ } denoting the surface tangent vectors at ϕμ(ξ̄).
By a simple variable change

ϕμ(ξ) → ϕμ(ξ)−Tμ(ξ) (3.36)

we obtain as an effective random surface path-integral to be analyzed from a renormaliza-
tion point of view, the self-avoiding random surface interacting with the origin [6].

Z[ϕ](gb) =
1

Z(0)

∫
DF [ϕμ(ξ)]exp

{
−1

2

∫
d2ξ

(
ϕμ(−Δ)+αϕμ

)
(ξ)

}

× exp

{
−gb

∫
d2ξδ(D) (ϕμ(ξ))

}
(3.37)

where gb denotes the (positive) bare self-avoiding random surface coupling constant.
It is instructive to point out that the formal perturbation expansion around the massless

2D fluctuating surface vector position {ϕμ(ξ)} is ill defined in the case of α= 1 on eq.(3.37)
due to the severe infrared divergences of the associated Laplacean Green function on R2.
As a consequence of the above made remark, we start from the begining with the Riesz-
Hadamard expression of the Seeley α-power of the Laplacean as written on the kinetic term
of eq.(3.37).

Gα(ξ1,ξ2) = (−Δ)−α(ξ1,ξ2)

=
e−iπαΓ(1−α)
4α(π)1/2Γ(α)

|ξ1 −ξ2|2(α−1)

=
∫

d2keik(ξ1−ξ2)|k|−2α (3.38)
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We, thus, renormalize eq.(3.33) from eq.(3.37) by means of the renormalization pre-
scription at the physical case of α = 1 (pure Laplacean).

gb =
gren

(1−α)D/2
(3.39)

ZR[ϕμ](gren) = lim
α→1
α>1

Z[ϕμ](gb(α)) (3.40)

Let us show that eq.(3.40) is a well defined in a formal power expansion in the renor-
malized coupling constant gren as given by eq.(3.39)

In order to show this result, we make the power expansion of the α-regularized path-
integral eq.(3.37)

ZR[ϕμ](gren) =
∞

∑
�=0

(−gb)N

N!

{
N

∏
j=1

∫
d2ξ jdet−

D
2 [Gα(ξi,ξ j)]

}
(3.41)

The finites of eq.(3.41) for each N under the renormalization prescription eq.(3.39) is a
straightforward consequence of the following properties:

Firstly,

lim
α→0
α>1

(ϕα(ξ1,ξ2)) = lim
α→1
α>1

{
e−iπαΓ(1−α)

4απ 1
2Γ(α)

(0)2α−1)

}
= 0 (3.42)

Secondly

lim
α→1
α>1

det

[
Gα(ξ1,ξ2) Gα(ξ1,ξ2)
Gα(ξ2,ξ1) Gα(ξ2,ξ1)

]
=

lim
α→1
α>1

[
−e−2πiα

42απ

(
Γ(1−α)
Γ(α)

)2
]

(|ξ1 −ξ2|)4(α−1) =
C2

(1−α)2 (3.43)

Thirdly:

lim
α→1
α>1

det

⎡
⎣ 0 Gα(ξ1,ξ2) Gα(ξ1,ξ2)

Gα(ξ2,ξ1) 0 Gα(ξ2,ξ1)
Gα(ξ3,ξ1) Gα(ξ3,ξ2) 0

⎤
⎦ =

=
e−3πiα

43απ 3
2

(
Γ(1−α)
Γ(α)

)3

(1+ 1′) =
C3(1)

(1−α)3 (3.44)

Finally;

lim
α→1
α>1

det
NXN

[Gα(ξ1,ξ2)] =
e−πiαN

4Nαπ N
2

· 1
(1−α)N CN (3.45)

with
CN = det[Ai, j] = −(N −1)(−1)N (3.46)

where [Ai, j] is the matrix whose entries are

[Ai, j] =
{

0 i f i = j
1 i f i �= j

(3.47)
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As a consequence of the analysis above exposed, we obtain our renormalization result
for the eq.(3.41) at the limit α→ 1.

ZR[ϕμ](gren) =
∞

∑
�=0

(−gren)�

�!
C� ·A� <∞ (3.48)

with A =
∫

d2ξ denoting the internal random surface area and C� = e−iπ�/4� pi�/2 × (−1)�×
(1− �).

Finally, let us complement our studies on the area behavior of the surface functional as
given as by eq.(3.9) in a more physical way. Let us see its area behavior by using distribution
theory on sufaces [6]. Firstly, we introduce a RD vector basis along the coordinate lines ∂φμ

∂σ
and ∂φμ

∂s . We have, thus, the surface-intrinsic distributional results

δ(D) (φμ(s,σ)−φμ(s′,σ′)
)

= δ(D−2)
ε (0)×

(
1√

h((s,σ)
δ(1)(s− s′)δ(1)(σ−σ′)

)
(3.49)

and
dσμν(x)

∣∣∣
xα=φα(s,σ)

=
√

h(s,σ) ·dsdσ · τμν(φα(s,σ) (3.50)

Here δ(D−2)
ε (0) means a regualrized form of the delta function singular value δ(D−2)(0)

and physically related to the non-trivial structure of the non-perturbative phenomenon of the
coupling constant dimensional transmutation (see appendix of the first reference on ref.[4]).

After substituting eq.(3.49)–eq.(3.50) into the random surface term eq.(3.9) – section
3.2, we get our result

eq(11) =
e2λ
2

∫ T

0
dσ

∫ 2π

0
ds
√

h(φα(s,σ))
∫ T

0
dσ′

∫ 2π

0
ds′

√
h(φα(s′,σ′))

{
δ(2)
ε (0)

δ(σ−σ′)δ(s− s′)√
h(φα(s′,σ′))

}

=
e2λ
2

∫ T

0
dσ

∫ 2π

0
dσ

√
h(φα(s,σ)) = Area

(
∑
Cxx

)
× e2λ

2
(3.51)

3.4. The Non-relativistic Case

In this complementary section, we apply the analysis presented in section 3.2 for Quan-
tum Chromodynamics at t’Hooft limit in a non-relativistic finite-temperature non-linear
Schörindger theory (see appendix A, chapter 1).

Let us start our analysis by considering the partition functional of the following
Schrödinger Bosonic many-body field theory with a quartic interaction at the temperature
T = (kβ)−1 (k denotes the Boltzman constant in the physical space R3 and the partition
functional is written in the form of a Bell-Wiegel path integral [7]

Z[T,�B] =
∫
ψ(r,0)=ψ(r,β)

DF [ψ(r, t)]
∫
ψ̄(r,0)=ψ̄(r,β)

DF [ψ̄(r, t)]

× exp

{
−1

2

∫ β

0
dt

∫
Ω

d3rψ∗(r, t)

[
− �

2

2m

(
i�∇− e�

mc
�B

)2

+
∂
∂t

]
ψ(r, t)

}

× exp

{
−1

2

∫ β

0
dt

∫
Ω

d3rd3r · |ψ(r, t)|2V (r− r′)|ψ(r′, t)|2
}

(3.52)



68 Luiz C.L. Botelho

Note the presence of the external random magnetic vector potential supposed to satisfy
the white-noise statistics with randomness strenght λ

EB

{
(rot�B)i(�r)(rot�B) j(�r′)

}
= λδ(3)(�r−�r′)δi j (3.53)

and the non-relativistic field excitations interacting through a short-range pair potential
V (r− r′).

At this point, we re-write the partition functional by means of the Siegert’st trick
of reducing the non-local spatial pair interaction by an independent interaction of each
Schörindger field excitation with a fluctuating external scalar field φ(�r, t) with a Gaussian
(non white) statistics:

Eφ
{
φ(�r, t)φ(�r′, t ′)

}
= V (�r−�r′)δ(t − t ′) (3.54)

One finds, thus, the following result for the partition functional written as statistics
averages over ensembles of the physical random magnetic field rot �B(r, t) and the auxiliary
scalar field φ(�r, t). Namely

EB

{
Z(T,�B)

}

= EB

{
Eφ

[
− 1

2

det

(
∂
∂t

+
�

2

2m

(
i�∇− e�

mc
�B

)2

+ iφ(�r, t)

)]}
(3.55)

Let us go from the field path integrals on eq.(3.55) to the ensemble of spatial loops
through a loop expansion for the functional determinant resulting from integrating out the
Schrödinger Bosonic matter quantum fields. It yields as a result the following functional
defined on the Bosonic three-dimensional loop space {�x(σ),0 ≤ σ≤ β,�x(0) =�x(β) =�r}

lg
− 1

2

det

(
∂
∂t

+
�

2

2m

(
i�∇− e�

mc
�B

)2

+ iφ(r, t)

)

= +
1
2

{
N
∫
Ω

d3r

[∫ �x(β)=�r

�x(0)=�r
DF [�x(σ)]exp

(
−1

2
m
∫ β

0
(�̇x(σ))2dσ

)

exp

(
ie
�c

∫ β

0
�B(�x(σ))�̇x(σ)dσ

)
× exp

(
−

∫ β

0
φ(�x(σ),σ)dσ

)]}
(3.56)

where we have introduced explicitly the integer N, given by the number of different Bosonic
matter species.

After substituting the purely Bosonic loop space eq.(3.56) into the statistics averages as
given by eq.(3.55) and evaluating them by means of a cummulant expansion (in a generic
from) and valid, at least for the limit N → 0, [1].

E{eN f} = exp

{
N
〈

f
〉
+

1
2

N2
(〈

f 2〉− 〈
f
〉2
)

+ O(N3)
}

, (3.57)

one obtains explicitly that the dominant behavior of the random magnetic field average on
eq.(3.56) is governed by the three-dimensional analogous of that area-surface functional
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eq.(3.9) of secton 1

E�B

{
exp

(
ie
�c

∫
Σ
(rot�B)(Σ)d�σ

)}

= exp

{
− λe2

�2c2

∫
Σr

∫
Σr′

d�σ(�r)δ(3)(�r−�r′)d�σ(�r′)
}

(3.58)

where Σ is the “minimal” area surface bounded by the bosonic closed contour (loop) �x(0)
entering on the loop path integral eq.(3.56).

As a consequence of eq.(3.58), one can see that for a large white-noise magnetic field
strenght λ → ∞, this averaged phase-factor is only non-zero for a surface Σ of zero area,
which is equivalent to the suppression of the quantum phenomena and reducing the quan-
tum gas partition functional eq.(3.52) to a classical gas partition functional since all closed
quantum trajectories reduce to the loop base point (see theorem 10.1 in second reference of
ref.[7]).

Hence, one can see again that quantum phenomena in fluctuating magnetic field can be
viewed as quantum phenomena in a dissipative media that destroys quantum phase coher-
ence and leading to the theory’s triviality.

3.5. The Static Confining Potential in a Tensor Axion Model

One of the still unsolved basic problem in the Gauge theory for strong interactions as given
by Quantum Chromodynamics is to produce arguments for the colour charge confinement
of the coloured Q.C.D.’ field excitations, quarks and gluons [9].

Some time ago, through a somewhat intrincate path integral analysis, A.M.Polyakov
[10] has proposed that – at least at the t’Hooft large number of colors limit – one should
expect that the basic loop space dynamical variable as described by the averaged SU(∞)
Wilson Loop (in the Euclidean world).

〈W [C]〉(∞) =
〈

TrP
{

exp

[
+i

∫
Aμdxμ

]}〉(∞)

(3.59)

should be equivalently represented from a calculational point of view by a string-like func-
tional integral Ansatz based on a coupling of an abelian rank-two tensor field Bμν(x) – the
called by us of Polyakov’s axion field – with the dynamics of random surfaces Sc living in a
mathematical space [11], however possessing as boundary the previous loop C, understood
as the quark-antiquark space-time physical (on-shell) Feynman trajectory, with the axion
effective dynamics of B2 << (dB)2.

〈W [C]〉Q.C.D.(∞) =

{∫
DF [Bμν]e−S[Bμν]e(i

∫
S[C] Bαβ(x)dσαβ(x)δ(x−c))∫

DF [Bμν]e−S[Bμν]

}
= 〈Φ[C]〉(B) . (3.60)
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The effective local effective axion action is thus given explicitly by

S(B) =
1

4e2

∫
dνx

(
B2
μν+ dBarcsin

(
dB
m2

)
−
√

m4 − (dB)2

)
(x)

m2→∞∼ 1

4e2
bare

∫
dνx

(
B2
μν +

(dB)2

m2 + m2

√
1−

(
dB
m2

))

m2→∞∼ 1

4e2
bare

∫
dνx

(
B2
μν +

(dB)2

m2

)
(x) ∼ 1

4e2
barem2

∫
dνx(dB)2(x) (3.61)

where m2 = O(N) is a dimensional transmutation parameter on the SU(∞) gauge coupling
constant e2

∞ = limN→∞(e2
bareN) < ∞ and Φ(C) = exp(i

∫
S[C](Bdσ)δ(x− c)) denotes the on-

shell phase flux on the string C, boundary of the mathematical random surfaces S[C]. It
is very important at this point of our exposition to call the reader attention that the phase
flux factor on the left-hand side of eq.(3.60) is taken to be of a form of “string on-shell
vertex” by considering the point x constrained to be on the physical pair trajectory C. It is
the purpose of this section 3.6 – to evaluate the static potential between two static charges
(with opposite charge signal) on the above mentioned random surface axion-rank-two tensor
abelian field theory at SU(∞) eq.(3.61) by means of the dimensional regularization scheme
[9] and show exactly its so much envisaged color-charge confining property; a first basic
physical requirement to consider the axion-string propose eq.(3.60)–eq.(3.61) as an useful
calculational scheme – at least as a leading effective quantum geometric field theory for
Q.C.D (SU(∞)).

Finally in section 3.6, we address the problem of implementing a non-perturbative self-
avoiding representation for a λϕ4-closed string field theory by the same procedure used
years ago by Symanzik in his non-perturbative self-avoiding contour representation for
the usual λφ4 (point like) (see chapter 3.1) field theory and underlying the Axion-String
Polyakov framework for Q.C.D.(SU(∞)).

3.6. The Confining Potential on the Axion-String Model in the
Axion Higher-Energy Region

The static potential between two charges of opposite signal separated by a space-like dis-
tance R is computed in the path-integral framework by considering the vacuum energy of
the rank-two tensor theory in the presence of the boundary flux of such colored charges,
namely

V (R) = lim
T→∞

− 1
T
〈
[〈

W [C(R,T )]
〉(∞)

]
=

= lim
T→∞

− 1
T
〈
[
〈Φ[C]〉(B)

]
(62a)

where the rectangle C(R,T ) denotes the space-time (euclidean) closed trajectory of the neutral
pair and <>(B) average is defined explicitly by the Gaussian path integral eq.(7.2) with the
rank-two tensor weight as given by the effective largee N free action eq.(3.61).
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In order to evaluate the static potential at our proposed rank-two tensor theory at higher
energy as given by eq.(3.62a) it appears convenient to re-write the on-shell abelian ax-
ion flux given by eq.(3.60) by means of an external current Jμ(x;C(R,T )) solely circulating
around the pair finite-time propagation (−T

2 ≤ t ≤ +T
2 ) space-time quark-antiquark trajec-

tory C(R,T ) = {xμ(s),a ≤ s ≤ b}, namely

i
∫

S[C(R,T )]
Bαρ(x)dσαp(x)δ(x− c) =

≡
∫

dνxBαρ(x)
[

i
∮

C(R,T )

δ(ν)(x− xμ(s)xα(s)dxρ(s)
]

(3.62b)

Note that the point x on the planar surface S[C(R,T )] = {σxμ(s),0 ≤ σ ≤ 1,a ≤ s ≤ b}
area tensor on the left-hand side of eq.(3.62b) is constrained to be on the physical planar
loop C(R,T ) = {xμ(x),a ≤ s ≤ b} as written on the right-hand side of this equation by mean
of the delta function δ(x− c) ≡ δ(σ−1).

The Gaussian path integral eq.(3.61) can be exactly evaluated and yielding the following
effective result where we note the appearance of the fourth-order Mandelstam effective
propagator as the leading effective propagator in the analysis.

V (R) ∼ lim
T→∞

− 1
T
〈
[

exp

{
1
2

∫
dνxdνyJμ(x;C(R,T ))

× Dm(x− y)Jν(y,C(R,T )
}]

. (3.63a)

Here the purely fourth-order Mandelstam propagator [9] in momentum space is given
by

Dm(x− y) =
1

(2π)ν

∫
dνpeip(x−y) 1

|p|4 (3.63b)

and the purely vectorial contour form factor is defined by the pair physical trajectory on the
space-time and reads explicitly as (see eq.(3.62b)

Jμ(x,C(R,T )) = ie
∮

C(R,T )

δ(ν)(xμ− xμ(s))dxμ(s) (3.63c)

The evaluation of eq.(3.63a) can be accomplished by writing it in momentum space

V (R) = lim
T→∞

− 1
T

[∫
dνp

(2π)ν
fμ(pα;C(R,T ))

× 1
p4 fμ(−pα,C(R,T ))

]
(3.64)

with the momentum-space contour form factors

fμ(pα,C(R,T )) = ie
∫

C(R,T )

e−ipμxμ(s)dxμ(s) (3.65)

A simple evaluation of eq.(3.65) provides the solutions

f0(pα,C(R,T )) = −4e
p0

sin

(
p0T

2

)
sin

(
p1R
2

)
(3.66)
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and

f1(pα,C(R,T )) = +
4e
p1

sin

(
p0T

2

)
sin

(
p1R
2

)
(3.67)

After inserting the contour form factors eq.(3.66). eq.(3.67) into eq.(3.62), we obtain as
a result

V (R) = lim
T→∞

+
1
T

{
+16e2

∫ +∞

−∞
d p1

(2π)
sin2( p1T

2 )
p1

×
[∫

dν−2 p̂
(2π)ν−2

(∫ +∞

−∞
d p0

(2π)
(p2

0 + p2
1)

p2
0

sin2
(

p0T
2

)
1

(p2
0 + p2

1 + p̂2)2

)]}
(3.68)

Note that we have considered the pair spatial-static trajectory C(R,T ) contained in a two-
dimensional sub-space of the (Euclidean) space-time Rν in a such way that we can decom-
pose the vector �p ∈ Rν as �p = p0�e0 + p1�e1 + p̂, where p̂ is the projection of �p over the
sub-space perpendicular to the sub-space {�e0,�e1} containing C(R,T ).

The integration in the p0-variable is easily perfomed by using the formulae given below.

F̃1(a,c) =
∫ +∞

−∞
dx

sin2(ax)
(x2 + c2)

=
π
2c

(1− e−2ac) (3.69)

and ∫ +∞

−∞
dx

sin2(ax)
(x2 + c2)2 = F̃2(a,c) = − d

d(c2)
(F̃1(a,c)) (3.70)

As a consequence we have that

lim
a→∞

1
a

F̃2(a,c) = − d
d(c2)

{
lim
a→∞

1
a

F̃1(a,c)
}

= 0 (3.71)

Note either that we have the additional formulae:

lim
a→∞

1
a

∫ +∞

−∞
dxsin2(ax)

1
x2(x2 + c2)2

= lim
a→∞

1
a

{
− d

d(c2)

[∫ +∞

−∞
dxsin2(ax)

1
x2(x2 + c2)

]}

= lim
a→∞

1
a

{
− d

d(c2)

[
π

4c2

(
2a− 1

c
(1− e−2ac)

)]}
=

π
2c4 (3.72)

As a consequence we get the following explicitly result for the p0-integration and the
associated ergodic limit, where only the result provenient from the analogous of eq(3.72)
survive at the limit of T → ∞.

lim
T→∞

1
T

{∫
d p0

(2π))

(
1+

p2
1

p2
0

)
sin2

(
p0T

2

)
1

(p2
0 + p2

1 + p̂2)2

}
=

4p2
1

π
1

(p2
1 + p̂2)2

(3.73)
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Inserting the result eq.(3.73) back the complete expression eq.(3.68), we have the partial
result for the static potential between the neutral color charges in rank-two effective theory
for Q.C.D. (∞)

V (R) = 16e2

[∫ +∞

−∞
d p1

(2π)
sin2( p1R

2 )
p2

1

∫
dν−2 p̂

(2π)ν−2 ·
4p2

1

(p2
1 + p̂2)2

]
(3.74)

Let us evaluate the (ν−2)-dimensional integration on eq.(3.74).
Firstly we note that in the dimensional regularization scheme

∫ +∞

−∞
dν−2 p̂

(2π)ν−2 ·
1

(p2
1 + p̂2)2

=
Γ(2− (ν−2)

2 )

(2π) ν−2
2 Γ(2)

|p|ν−6 (3.75)

where we have used the formula below to obtain explicity the above written result.

∫
dνp

(2π)ν
· 1
(p2 + a)γ

=
Γ(γ− ν

2)

(4π) ν
2Γ(γ)

(a)
ν
2−γ (3.76)

We arrive, thus, at the final effective result for the (ν−2) integration on eq.(3.74), with
a renormalized constnat c̄(ν) finite at the physical limit of ν→ 4.

∫
dν−2 p̂

(2π)ν−2 ·
1

(p2
1 + p̂2)2

= c̄(ν)|p1|ν−6 (3.77)

We face, thus, the final (and last!) p1-integration

V (R) = 16e2 × 4
π
× c̄(ν)

∫ +∞

−∞
d p1

(2π)
sin2( p1R

2 )
p2

1

× p2
1 ×|p1| ν−6

2 (3.78)

The p1-integration is easily evaluated as a Fourier transform on the sense of Distribution
theory [11] by means of the formula.∫ +∞

−∞
eipx|x|βdx = −2sin

(
βπ
2

)
Γ(β+ 1)|p|−β−1 (3.79)

and the trivial identity

sin2(x) = −1
4
(e2ix + e−2ix −2) (3.80)

Finally, we obtain the expression for the static inter-quark potential in the Axion Effec-
tive Gluon theory in space-time Rν

V (R) = −64e2

π
× c̄(ν)

×
{
− 2

2π
sin

(π
2
(ν−6)

)
Γ(ν−5)

∣∣∣∣R
2

∣∣∣∣
−ν+5

}
(3.81)

By passing to the Physical limit of ν→ 4, and by taking into account that

lim
ν→4

sin
(π

2
(ν−6

)
Γ(ν−4−1) ∼ −1

ν−5
×
(
Γ(ν−4)× sin

(π
2
(ν−4)

))
∼ +π (3.82)
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We obtain the finite result for the static inter-quark potential in the Axion Gluonic ef-
fective theory in R4

V (R) = +e2Ā|R| (3.83)

Here Ā is a model-calculation postive constant, which detalils will be not nedeed on our
study.

We see, thus, that the Effective Axion’s path integral representation quark potential
leads to the confining property and not to a dynamics of charge color screening as it would
be expected in a first analysis [9]. This is the main result of this section.

Finally let us consider the generating functional of the color neutral quark vectorial
abelian currents on Q.C.D(SU(∞)). Namely〈

exp

{
ie
∫

dνx(ψ̄γμψ)(x)Jμ(x)
}〉

Q.C.D.(∞)

=
〈

det
[
iγμ(∂μ+ eA(∞)

μ + Jμ)
]〉

YM(∞)

= Z[Jμ(x)] (3.84)

Here <>YM denotes the quantum average defined by the Yang-Mills theory {A(∞)
μ } at

the topological t’Hooft limit of SU(∞) ]9] (or chapter 4).
In the loop space “bosonization” framework of ref.[8]-ref-[10], we can re-write

eq.(3.84) into the quantum geometrical (off-shell) form involving solely a dynamics of
Loops, Random Surfaces with arbitrary topology and the general axion tensor field.

Z[Jμ(x)]SU(∞) =

∑
{S(Cxx)}

{〈
exp−

{
∑
Cxx

Φ[Cxx,Jμ]exp

(
ie
∫

S(Cxx)
Bμνdσμν

)〉
B

}}
(3.85)

where Φ[Cxx,Jμ] is the Wilson loop space variable associated to the quarks abelian current
classical source Jμ(x).

Φ[Cxx,Jμ] = exp

(
i
∮

Cxx

Jμdxμ
)

. (3.86)

The sum over the closed loops Cxx with end-point x is given by the proper-time bosonic
path integral below

∑
Cxx

=
∫ ∞

0

dT
T

∫
dνx

∫
x(0)=x=x(T )

DF [X(σ)]exp

{
−1

2

∫ T

0
Ẋ2(σ)dσ

}
(3.87)

and the nedded sum over off shell random surfaces S(Cxx)-bounding the “fractal” (Haus-
dorff dimension 2) on-shell physical countors Cxx-should be defined by the path-integrals
of refs.[11] (chapter 2). It is worth remark that we have here withdraw from the flux-phase
factor (which is a kind of string vertex) the on-shell condition used on our static-potential
analysis as expressed by the constraint for the axion flux be restricted to the loop Cxx as
imposed by eq.(3.62b).
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As a consequence the generating functional of the abelian quark currents leads naturally
to a purely dynamical quantum geometrical objects evaluations. For instance, the two-
point Q.C.D. (SU(∞)) abelian quark current – an physical observable – has the quantum
geometrical closed expression in this phenomenological quantum geometric framework.〈

(ψ̄γαψ)(x)(ψ̄γβψ)(y)
〉(∞

) = Fαβ ((x− y))Q.C.D.(∞)

∼ ∑
{S(Cxx)}

{
δ2

δJα(x)δJβ(y)

[〈
exp−

(
∑
Cxx

Φ[Cxx,Jμ]exp

(
ie
∫

S(Cxx)
Bμνdσμν

))〉]}
J(x)≡0

(3.88)

After evaluating the functional derivatives, one obtains a quantum loop-surface space
partitional functional for on-shell non-planar closed loops Cxx and off-shell random surfaces
S(Cxx) bounding them. We get as a result, the exactly expression below for the vectorial
current quark form factor at the t’Hooft limit of large number of colors

Fαβ((x− y))Q.C.D.(∞)) = ∑
{S(Cxx)}

{
∞

∑
n=0

(−1)n

n!

×
⎡
⎣ ∑
{Cx1x1}

. . . ∑
{Cxnxn}

(∮
δ(ν) (Cx1x1 − x)dCα

x1x1

)(∮
δ(Cx1x1 − y)dCβ

x1x1

)

×·· ·
(∮

δ(ν) (Cxnxn−x)dCα
xnxn

)(∮
δ)ν) (Cxnxn − y)dCβ

xnxn

)]
×

exp

[
−1

2
e2

n

∑
i, j=0

(∫
S(Cxixi )

dσαβ(xi)
∫

S(Cx jx j )
dσα

′β′(x j)(−∂2)−1(xi,x j)δαα
′
δββ

′
)]}

(3.89)

Studies on such dynamics of gas of loops and self-avoiding surfaces [11] will be pre-
sented in next section in a λφ4-String Field theory closely related to the our proposed
Q.C.D.(SU(∞))-string representation eq.(3.60).

3.7. A λφ4 String Field Theory as a Dynamics of Self Avoiding
Random Surfaces

Let us start our analysis by considering the generating functional of the following math-
ematical λφ4 Closed String Field Path Integral on the critical dimension D = 26 (see M.
Kaku book of ref.[4] for the general covariant discussion in a closely related, but different
string Q.F.T model).

Z[J(C)] =
∫

DF [Φ(C)]×

exp

{
−∑

[C]

(
Φ(C)Δ̂CΦ(C)+ J(C)

)

+λ2

(
∑

[C0,C1]
δ(D)(C0 −C1)Φ2(C0)Φ2(C1)

)}
. (3.90)
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The notation is as follows: i) the string field is given by a functional Φ(C) defined over
the space of all closed string configurations C = {Xμ(σ),−π≤ σ≤ π,Xμ(−π) = Xμ(π)}; ii)
The sum over all closed string configurations is defined by the path integral

∑
(C)

=
∫

dDx

(∫
Xμ(−π)=Xμ(π)=Xμ

DF [Xμ(σ)]

exp

(
−1

2

∫ π

−π
(Ẋμ(σ))2dσ

)
; (3.91)

iii) The critical D = 26 string free kinetic term is associated to the string D’Alembertian
(see chapters 9, 11, 12)

Δ̂C =
1
2

δ2

δ2Xμ(σ)
− 1

2πα′ |X ′
μ(σ)|2; (3.92)

iv) The string functional measure in equation eq.(3.90) is given by the usual Feynman prod-
uct measure

DF [Φ(C)] = ∏
{Xμ(σ)}

dΦ(Xμ(σ)); (3.93)

and iv) The interaction action in equation eq.(3.90) is given by the following vertex with D-
dimensional delta functions supported on the string configurations and involving a positive
λ2 coupling constant in the extrinsic space

λ2 ∑
{C0,C1}

δ(D)(C0 −C1). (3.94)

The proposed interaction vertex was defined in such way that it allows the replacement
of the four string field interaction in equation eq.(3.90) by an independent interaction of
each string with an extrinsic Gaussian stochastic field W (x) followed by an average over
the fluctuating field W (x). It is instructive to point out that similar procedure is well known
in many-body path integral quantum field theory [15]. So, we can write equation eq.(3.59)
in the following convenient form

Z[J(C)] =
〈∫

DF [Φ(C)]

exp

{
−∑

{C}
Φ(C)(Δ̂C − iλW (C))Φ(C)

+ J(C)Φ(C)
}〉

W
. (3.95)

Here, W (C) means that the external stochastic field W (x) is projected on the string
configuration C

W (C) =
∫ π

−π
dσW (Xμ(σ)) (3.96)

and satisfies the white noise stochastic correlation function with x ∈ RD

〈
W (x)W (x′)

〉
W = δ(D)(x− x′). (3.97)
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In the free case, λ= 0, the String Path Integral Field Theory equation eq.(3.95) is exactly
soluble with the following quantum string field generating functional

Z[J(C)]
Z[J(C) ≡ 0]

= exp

⎧⎨
⎩+

1
2 ∑

[C,C̄]

J(C)Δ̂−1(C,C̄)J(C̄)

⎫⎬
⎭ . (3.98)

Here Δ̂−1(C,C̄) denotes the Green’s Function for the string Laplacian and is given ex-
plicitly by the Random Surface Path Integral

Δ̂−1(C,C̄) =
∫ ∞

0
dA

〈
C|e−AΔ̂C |C̄

〉
, (3.99)

with 〈
C|e−AΔ̂c |C̄

〉
=

∫
Xμ(σ,0̄)=Cμ(σ)
Xμ(σ,Ā)=C̄μ(σ)

DF [Xμ(σ,τ)]×

exp

(
−1

2

∫ A

0
dτ

∫ π

−π
dσ

[
(∂σXμ)2 +(∂τXμ)2](σ,τ)

)
. (3.100)

In order to reformulate the closed string field theory equation eq.(3.95) as a dynamics
of self-Avoiding Random Surface, we evaluate formally the Gaussian Field Path Integral in
equation eq.(3.95)

Z[J(C)] =
〈
[det(Δ̂C + iλW (C)]−1/2×

exp

⎧⎨
⎩+

1
2 ∑
{C,C̄}

J(C)(Δ̂C + iλ(C))−1J(C̄))

⎫⎬
⎭
〉

(3.101)

Let us define the string functional determinant in equation eq.(3.101) by the proper-time
technique

1
2

logdet[Δ̂C + iλW (C)] =

= −
∫ ∞

0

dA
A ∑

(C,C̄)

δ(F)(C−C̄)×
〈
C|exp(−A(Δ̂C + iλW (C))|C̄〉

(3.102)

with 〈
C|exp(−A(Δ̂C + iλW (C)))|C̄〉

=∫
Xμ(σ,0)=Cμ(σ)
Xμ(σ,Ā)=C̄μ(σ)

DF [Xμ(σ,τ)]×

exp

{
−1

2

∫ A

0
dτ

∫ π

−π
dσ(∂aXμ)2(σ,τ)

−iλ
∫ A

0
dτ

∫ π

−π
dσW (Xμ(σ,τ))

}
. (3.103)
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By substituing equations eq.(3.102) and eq.(3.103) into equation eq.(3.101) and making
a power expansion in the coupling constant λ, we obtain the String Field Theory equation
eq.(3.90) as a Theory of Random Cylindrical Surfaces (with boundaries being closed string
configurations) interacting with an external Gaussian Stochastic Field W (x). The Gaussian
average < ... >W may be straightforwardly evaluated at each order of the λ-power expan-
sion and produces self-avoiding interaction among the cylindrical random surfaces similar
to the usual self-avoiding Symanzik contour gas for the λφ4 Field Theory. For instance,
by neglecting the functional determinant on eq.(3.101), which physically means suppress-
ing surfaces creation – annihilation (second-quantization) process, we have the following
expression for free theory’s propagator

〈
Φ(Cin)Φ(Cout)

〉(0)
=∫ ∞

0
dA

∫
Xμ(σ,0)=Cin

Xμ(σ,A)=Cout

DF [Xμ(σ,τ)]×

exp

{
−1

2

∫ A

0
dτ

∫ π

−π
dσ(∂Xμ)2(σ,τ)

−iλ
∫ A

0
dτ

∫ π

−π
dσW (Xμ(σ,τ))

}
. (3.104)

Note that self-intersectı́ng lines are invariant under reparametrizations of the full string
world sheet.

The next string quantum field correction for eq.(3.104) in our proposed framework will
be given by

〈
Φ(Cin)Φ(Cout)

〉(1)
=∫ ∞

0
dĀ

∫ ∞

0

dA
A ∑

{C,C̄}
δ(F)(C−C̄)×

〈〈
C|exp[−A(Δ̂e + iλW (c))]|C̄〉×〈

Cin|exp[−Ā(Δ̂e + iλW (c))]|Cout
〉〉

W , (3.105)

where
δ(F)(C−C̄) = ∏

π≤σ≤π
δ(D)(Cμ(σ)−C̄μ(σ)). (3.106)

We may write eq.(3.106) in the form of a two body random surface path integral with
self-avoiding interactions

〈
Φ(Cin)Φ(Cout)

〉(1)
=∫ ∞

0
dĀ

∫ ∞

0

dA
A ∑

{C,C̄}
δ(F)(C−C̄)

∫
Xμ

(1)(σ,O)=Cμ(σ)
Xμ

(1)(σ,A)=C̄μ(σ)

DF [Xμ
(1)(σ,τ)]
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Xμ

(2)(σ,O)=Cin
μ (σ)

Xμ
(2)(σ,A)=C̄out

μ (σ)

DF [Xμ
(2)(σ,τ)]

exp

(
−1

2

∫ A

0
dτ

∫ π

−π
dσ(∂Xμ

(1))
2(σ,τ)

)
×

exp

(
−1

2

∫ Ā

0
dτ′

∫ π

−π
dσ′(∂Xμ

(2))
2(σ′,τ′)

)
×

exp

(
−λ2

2

∫ A

0
dτ

∫ Ā

0
dτ′

∫ π

−π

dσ
∫ π

−π
dσ′δ(D)

(
Xμ

(1)(σ,τ)−Xμ
(2)(σ

′,τ′))
)
×

exp

(
−λ2

2

∫ A

0
dτ

∫ Ā

0
dτ′

∫ π

−π

dσ
∫ π

−π
dσ′δ(D)

(
Xμ

(1)(σ,τ)−Xμ
(1)(σ

′,τ′))
)
×

exp

(
−λ2

2

∫ A

0
dτ

∫ Ā

0
dτ′

∫ π

−π

dσ
∫ π

−π
dσ′δ(D)(Xμ

(2)(σ,τ)−Xμ
(2)(σ

′,τ′))
)

. (3.107)

Let us point out that the perturbative renormalizability of the interacting string propa-
gator eq.(3.107), may be given by the renormalization group of the self avoiding random
surfaces theories. An alternative regularization study for eq.(3.107) may be implemented
in a pure geometrical framework as proposed in ref.[13] for the loop space formulation
of point particle field theories). In order to implement this study for random surface, we
start by extracting the trivial selfintersect points Xμ(σ,τ) = Xμ(σ′,τ′) with σ = σ′,τ = τ′
from the λ2 interaction term of eq.(3.107). Thus, let us introduce a D-dimensional regular-
ization parameter Λ on the self avoiding D-dimensional interaction in order to extract the
(geometrical) infinities associated to the trivial self-intersect surface points

I[Xμ(σ,τ)] =
λ2

2

∫ A

0
dτ

∫ A

0
dτ′

∫ π

−π
dσ

∫ π

−π
dσ′

(∫
|k|<Λ

dDK exp
[
iKμ(Xμ(σ,τ)−Xμ(σ′,τ′))

])
(3.108)

The above equation may be written in the more suitable form after introducing the
extrinsic λ coupling constant as a scaling of the Xμ(σ,τ) – field, i.e.:

I[Xμ(σ,τ)] =
1
2

C(D)
∫ A

0
dτ

∫ Ā

0
dτ′

∫ π

−π
dσ

∫ π

−π
dσ′

(∫ Λ

0
d|K| · |K|D/2 1

λD/2
|Xμ(σ,ζ)−Xμ(σ′,ζ′)|1−D/2

J p
2 −1

( |K|
λ2/D

|Xμ(σ,ζ)−Xμ(σ′,ζ′)|
)

(3.109)
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where C(D) is a constant depending only on the space time dimension and Jν(x) denotes
the usual Bessel Function of order ν.

By power expanding the Bessel Function we reduce equation eq.(3.109) to a sum of the
form

I[Xμ(σ,τ)] =
1
2

C(D)

∞

∑
K=0

(−1)k(λ22/D)k

k!22kΓ(D
2 − k)

I(k)(Xμ(σ,τ),Λ), (3.110)

where the partial contribuitons in equation eq.(3.107) are of the form

I(K)[Xμ(σ,τ),A] =∫ Λ
d|K| · |K|D+2K−1

∫ π

−π
dσ

∫ π

−π
dσ′

∫ A

0
dτ

∫ A

0
dτ′|Xμ(σ,τ)−Xμ(σ′,τ′)|2K . (3.111)

To regularize the infinities in equation eq.(3.111), we propose to introduce the already
used parameter Λ in eq.(3.109) on the two dimensional string space-time {(σ,τ);−π≤ σ≤
π;0 ≤ τ ≤ A} by using the following unity decomposition into the integrand of equation
eq.(3.111)

1 = δ(2)
(Λ)((σ,τ)− (σ′,τ′))

+
[
1−δ(2)

(Λ)((σ,τ)− (σ′,τ′))
]
, (3.112)

where the regularized two dimensional delta function is given explicity by

δ(2)
(Λ)((σ,τ)− (σ′,τ′))

⎧⎨
⎩

Λ σ− 1
Λ ≤ σ′ ≤ σ+ 1

Λ
τ− 1

Λ ≤ τ′ ≤ τ+ 1
Λ

0 otherwise
(3.113)

By Taylor expanding the integrand of eq.(3.111) around the point ξ = (σ′,τ′), where
ξ = (σ,τ),

|Xμ(ξ)−Xμ(ξ′)|2k ={
∞

∑
�=2

[
r1+r2=�

∑
r1≥1,r2≥1

Dr1
ξ Xμ(ξ)Dr2

ξ (ξ)|ξ−ξ′|r1+r2

]}k

, (3.114)

inserting the identity eq.(3.112) and eq.(3.113) into eq.(3.111) and making use of the result

∫ π

−π
dσ

∫ A

0
dτδ(2)

Λ ((σ,τ)− (σ′,τ′))

(σ−σ′)n(τ− τ′)m f (σ′,τ′)

=
{

Λ(n+m)/2 f (σ′,τ′) n,m = even
0 otherwise,

(3.115)
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we are able to show that the most general extrinsic counter term arising from the non-trivial
self-intersect limit Λ→ ∞ is an exponential of a four variable quadratic polinomial with a
renormalized extrinsic λR coupling constant,

∫ π

−π
dσ

∫ A

0
dτexp{P [∂σXμ,∂τXμ,∂2

σXμ,∂2
τX

μ]}. (3.116)

All other contributions on the derivative order greater than the second derivative van-
ishes on the trivial self intersect limit of Λ→ ∞.

The contribution of the non trivial self intersect points associated to the term (1 −
δΛ′(σ,τ)− (σ′,τ′))) at Λ → ∞ leads to a kind of surface self-avoiding topological index
[6]

�
∫ A

0
dτdτ′ �

∫ π

−π
dσdσ′δ(D)(Xμ(σ,τ)−Xμ(σ′,τ′)). (3.117)

The slash in the integration symbols f in eq.(3.117) means that the trivial self intersect
points σ = σ′,τ = τ′ are excluded from the integrand.

We remark that eq.(3.107), after being renormalized as described above, describes a two
dimensional super-renormalizable field theory on the string space-time {(σ,τ),−π ≤ σ ≤
π,0 ≤ τ≤ A} since the counter term, eq.(3.116), generates a term to be added to the “free
kinetic extrinsic string action” with the form ≈C(ΛR)[(∂2

σXμ)2 +(∂2
τXμ)2] where C(λR) is

a function of the extrinsic renormalized self-supressing coupling constant [6].
Finally we comment that our proposed string quantum field theory is, in principle, dif-

ferent from those already proposed by other authors since our interaction vertex, eq.(3.90),
is a combination of D-dimensional delta functions and not as functional delta functions as
in ref [12] and directly inspired on the pure self-avoiding trivial case of eq.(3.89) on the
extrinsic ultra-violet regime, namely [7].∫

S(Cxx)

∫
S(Cxx)

dσαβ(xi)(−∂2)−1(xi,x j)dσαβ(x j)

→
∫

S(Cxx)

∫
S(Cxx)

dσαβ(xi)δ(D)(xi − x j)dσαβ(x j) (3.118)

Appendix A.
A Convariant Version of the Proposed λφ4 String Field Theory

In this appendix we will make comments on the covariance of the theory under the action
of the string diffeomorphism group.

In order to have from the beginning a covariant string field theory we must consider our
theory for sub-critical strings D ≤ 26. The main change in our study is that we have to take
into account 2D induced pure quantum gravity which is needed by the dynamical status
acquired by the intrinsic metric field gab(σ,τ). This step may be easily implemented on the
random surface path integrals, eqs.(3.100)-(3.104). For instance, the theory’s propagator,
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eq.(3.104), will take the reparametrization invariant form.

〈
Φ(Cin)Φ(Cout)

〉(0)
=∫ ∞

0
dA

∫
Xμ(σ,O)=Cμin(σ)
Xμ(σ,A)=Cμout(σ)

DC[Xμ(σ,τ)]
∫

DC[gab(σ,τ)]×

exp

[
−1

2

∫ A

0
dτ

∫ π

−π
dσ(

√
ggab∂aXμ∂bXμ)(σ,τ)

]

× exp

[
−λ2

2

∫ A

0
dτ

∫ A

0
dτ′

∫ π

−π
dτ

∫ π

−π
dσ′√g(σ,τ)δ(D)(Xμ(σ,τ)−Xμ(σ′,τ′))

×
√

g(σ′,τ′)
]
. (A1)

Unfortunately, the theory of sub-critical strings was not exactly solved yet. However,
at D = 26 we can show that the gab(σ,τ) field decouples, from the full string propagator,
eq.(A1), at least for the weak perturbative coupling phase for the λ-constant (the result
for λ = 0 was proved by Polyakov). This result afford us to choose and, thus, to fix the
decoupling gauge gab(σ,τ) = δab in our proposed theory.

It is worth to point out that in a rigorous mathematical procedure one should consider,
as in usual gauge theories, first Ward-Takahashi identities associated to the diffeomorphism
(non-conformal) group at D ≤ 26. Thus, take the limit D = 26 on the these identities.
Anyway, the physical objects in string theories are not the string propagators but the scat-
tering amplitudes which are physical observables and may be calculated directly from the
eq. (A1) and tested to have the necessary invariances as shown by a perturbative analysis in
λ coupling constant.

We remark that difficulties in considering non gauge fixed thoeries is shared by others
string field theories considerd in the literature as the B.R.S.T. and light cone string field
theories.

As a final comment we notice that the important problem of invariances in string field
theory is waiting the solution of the theory of sub-critical string (see chapter 3.1 and sup-
plementary appendixes A and B at the end of this book).

Appendix B.
Our Proposed λφ4 String Field Theory as an Infinite Component
Field Theory of String Excitations

Let us consider a harmonic oscilator expansion for the closed string configuration with
Xμ(0) = xμ; i.e.:

Xμ(σ) = xμ+
+∞

∑
n�=0

n=−∞

Aμ
n einσ. (B1)

In this base, the second quantized string field will be decompose in all possible string
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excitations

Φ[Xμ(σ)] = O(x)+ Aμ(x)A
μ
(1) + · · ·Bμ1...μN (x)Aμ1

(N) · · ·AμN
(N) + · · · (B2)

The sum over all closed string configurations are weighted by (see eq.(3.60)∫ +∞

−∞
dDx

∫
∏
(Nμ)

dAμ
(N)e

−|Aμ
(N) |2 . (B3)

The Feynman product measure, eq.(3.97), is factorized in the product of all Feynman
measures associated to the point-like field string excitations, eq.(B2), and thus

DF [Φ(C)] =
∞

∏
N=1

DF [Bμ1...μN (x)]DF(O(x)], (B4)

with

Δ̂c = − ∂2

∂x2
μ
+

∞

∑
(N �=0)
N=−∞

∂2

∂Aμ
N∂Aμ

−N
. (B5)

Finally our proposed vertex takes the form

δ(D)(C0 −C1) =∫
dDk exp iKμ

[
+∞

∑
N=−∞

Aμ,(0)
N eiNσ−

+∞

∑
N=−∞

Aμ,(1)
N eiNσ

]
. (B6)

After substituting the above writen equations in our proposed action, eq.(3.59), we ob-
tain an interacting infinite-component field theory associated to the string excitations.
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exp

{
−(e2λ)

2

∫
RD

dx
[
∂ν(ψ̄γμψ)(x) ·�−2(x,y)∂ν(ψ̄γμψ)(y)

]}

=
∫

D[Fμν]exp

{
− 1

2λ

∫
RD

dx(Fμν)2(x)
}
δ(F)(∂βBβ = 0)

×δ(F)(∂μFμν)−�Bν)exp

{
ie
∫

RD
(ψ̄γμψ) ·Bμ)(x)

}





Chapter 4

The Confining Behaviour and
Asymptotic Freedom for
QCD(SU(∞)) - A Constant Gauge
Field Path Integral Analysis

4.1. Introduction

Since 1950, the quantum field theory of light and electrons (Q.E.D) has been a very con-
sistent framework for the description of the interaction of light and charged matter. In
1967, this quantum field theory of particles has arrived at another success with the ad-
vent of the Weinberg-Salam quantum field theory which handled successfully the weak-
electromagnetic component of the nuclear scattering processes.

These quantum field methods are based on a principle of minimal action with (local and
global) symmetries and the existence of a mathematical Generating Functional (Schwinger)
defined on the space of classical source fields (test functions in the language of Schwart
Distribution Theory). This Generating Functional, by its turn, contains all the probabilities
ocurrences associated to all physically possible quantum scatterings involving the elemen-
tary particle field excitations.

However, it remains until present time as a difficult challenge in the subject, the direct
application of the above Scattering Quantum Field methods (L.S.Z methods) to describe
the pure strong-nuclear interaction as a Particle Field theory based in the framework of the
non-abelian Gauge theory of Quantum Chromodynamics - QCD. The basic and conceptual
difficulty in applying the L.S.Z - quantum field method on Quantum Chromodynamics is
rooted on the first QCD model assumption of the charge-color confinement to which must
be subject all QCD particles which by its turn constrains particles only with a color-singlet
compound structure to be subject to Physical L.S.Z. scattering process.

It is important to remark that strong mathematical clues for this charge-color confine-
ment on QCD were obtained by K. Wilson (1974) in a discretized space-time by using
as dynamical variables the well-known gauge-invariant discretized Mandelstam-Feynman
phase factors instead of Gauge-variant discretized fields. Although there is a strong indi-
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cation that it is possible to remove the difficulties of the direct use of a discrete space-time
through a phase transition of second-order leading to zero lattice spacing limit, this step
remains as an somewhat unsolved problem within the Wilson’s program for QCD until
present days.

The purpose of this chapter is to consider another Quantum Yang-Mills reduced model
with an explicitly confining behavior at the limit of large number of charge-colours (t’Hooft
limit), however defined on a continuum space-time. This quantum dynamical reduced
model is defined by introducing directly on Rν, a Functional Manifold of Constant Gauge
Fields configurations ([1]), which by its turn are expected to generate an effective dynamics
on the Manifold of the full Gauge Field configurations at the t’Hooft limit SU(∞) for the
Yang-Mills path integral. We show the Wilson confining area-behavior for QCD(SU(∞))
as described by our proposed SU(∞) effective reduced dynamics of constant gauge fields.
We show exactly our SU(∞)-model solubility when added with full dynamical quark fields
and the related fermionic field asymptotic freedom. These studies are presented an Section
4.3 of this chapter.

Another interesting and conceptually important problem in Quantum Field Theory is
to understand the triviality of quantum field theories as a “phase-transition” phenomena
depending on external parameters, including the famous space-time dimensionality.

It is argued sometimes that there are no non-renormalizable quantum field theories.
What is really happening is the appearance of the Quantum Field Theory Triviality phenom-
ena. However, there is some analysis in literature pointing out that through resummations-
specially by means of the large N expansions - one could be able to make such non-
renormalizable Field theories (like the Thirring fermion quantum field model) turn out to be
non-trivial renormalizable ones. We aim in section 3 to present an analysis, based on an ap-
proximate chiral path-integral bosonization and the E. Witten reduced constant gauge field
dynamics of section 2, to show that such resummation renormalization phenomenon does
not happen. In section 4 we complement our previous path integral analysis by presenting
a triviality argument by means of a Loop space analysis for any N.

4.2. The Model and Its Confining Behavior

One of the basic quantum field variables used to probe in the nonperturbative phase of
non-abelian Gauge field theories is the well-known (Euclidean) path integral average asso-
ciated to the non-abelian Faraday flux defined by a space-time loop C-the so called Wilson-
Mandelstam loop variable

W [C] =
1

W (0)

{∫
S′(Rν×SU(N))

DF [Aμ(x)]× exp

(
−1

2

∫
Rν

Tr(Fμν)2(x)dνx

)

×
(

1
N

Tr P

[
exp

(
ig

∮
C

Aμ dxμ

)])} (4.4.1)

where the domain of the quantum average on equation (4.1) is composed of Schwartz-
tempered SU(N) valued connections associated to the bundle Rν×SU(N).

A long time ago ([1]), it was argued by E. Witten that at the limit of infinite-number of
colors N → ∞ with the diagrammatic restriction lim

N→∞
(g2N) = g2

∞ < ∞, the full domain of
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the Yang-Mills functional integral eq.(4.1) would be expected to be reduced to a manifold
of translation invariant constant gauge fields. Let us, thus, define our reduced Yang-Mills
model by considering from the beginning only constant gauge fields configurations on the
functional domain of equation (4.1) as our basic assumption.

We now show the usefulness of such effective dynamics by giving a proof of the colour-
charge confining through an explicit evaluation of the Wilson-Mandelstam phase factor at
N → ∞, an important result supporting the possibility of the above reduction of degrees of
freedom for Yang-Mills theory at SU(∞), as first conjectured in Refs. [1].

The main idea to make explicitly this path-integral evaluation for constant gauge-fields
is to consider the [non gauge-invariant] Cartan decomposition of each constant gauge field
Aμ entering in the path integral average equation (4.1).

Aμ = Ba
μHa + Gb

μEb (4.2)

where the Cartan basis {Ha,Ea} of the SU(N) Lie algebra have the following distinguished
calculational properties ([2])

a) For a,b = 1,2, . . . ,N −1
[Ha,Hb]− = 0 (4.3)

b) For b = ±1, . . . ,± N(N −1)
2

[Ha,Eb]− = ra(b)Eb (4.4)

c) For a = 1,2, . . . ,
N(N −1)

2

[Ea,E−a]− =
N−1

∑
�=1

rc(a)Ha (4.5)

d) For a �= −b; a,b = ±1, . . . ,± N(N −1)
2

[Ea,Eb]− = Nab Ea+b (4.6)

Since one has to fix the gauge on the path-integral equation (4.1) and at the same time
one should preserve the non-abelian field variable character, which is expected to be dy-
namically significant for explain the charge confinement – we impose the vanishing of the
abelian components as our gauge fixing condition (the Bollini-Giambiagi gauge - see last
reference on ref. [1]).

Ba
μ ≡ 0. (4.7)

Note that the use of the Gauge fixing condition allows us to simplify considerably the
objects to be path-integrated on our proposed SU(∞) constant gauge field model.

For instance, the constant gauge field Yang-Mills path integral weight is obtained by
simple substituting eq.(4.2) in the Yang-Mills action and leading by its turn to a pure fourth-
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order pure polynomial action

S[Gb
μEb] =

1
2

∫
Ω

dνx
(
Tr(∂μAν−∂νAμ+ ig[Aμ,Aν])2)

= −g2

2
·V Tr([Gμ,Gν]2)

= −g2

2
V Ga

μGb
νGc

μGd
ν[Labcd ]

(4.8)

Here we have introduced an appropriate finite-volume domain Ω ⊂ Rν such that
vol(Ω) = V and with the topology product form Ω = S× [0, �3]× [0, �4] in order to extract
the area behavior of equation (4.1) at the limit of large area behavior S →∞ (infinite volume
V ). The colour indexes matrix Labcd are given explicitly by (with Tr(EaEb) = +2δab)

Labcd =

(
N−1

∑
i,�=1

ri(a)r�(c)δi� δc,−d δa,−b

)

+
(
Nab Ncd(1−δa,−b)(1−δc,−d)δa+b,−(c+d)

)
.

(4.9)

We have the following exact result for the Mandelstam Phase factor as a straightfor-
ward consequence of the non-abelian Stokes theorem applied to the planar loop C, which is
supposed to be entirely contained in the plane (μ= 0, ν= 1, (containing the Euclidean time
axis) and S denotes the area of the minimal surface bounded by C with the disc topology
(for a rigorous proof see section 3).

P

{
e

ig
∮

C0,1
Aμ dxμ

}
= exp

(−g2S Tr[A0,A1]
)
, (4.10)

The leading limit of N → ∞ in eq.(4.10) (similar to the deduction of the large number
law in Statistics!) yields the closed result below

1
N

Tr P

{
e

iS
∮

C0,1
Aμ dxμ

}
= exp

{
+

(g2S)2

2N
(Tr[A0,A1])2

}
+ O

(
1
N

)

= exp

{
+

(g2S)2

2N
Ga
μGb

νGc
μGd

ν[Labcd ]δμ0 δν1

} (4.11)

At this point of our path-integral study, let us make a technical remark not used in what
follows and related to the fact that the path-integral average equation (4.1) for constant
gauge fields is fully SU(N) gauge invariant and, as a consequence, one should in princi-
ple evaluate the Faddev-Papov Jacobian associated to our proposed gauge fixing equation
(4.7). In order to implement this technical step, one considers the infinitesimal functional
displacements through a gauge transformation with parameters [δωa,δεb}

δAμ =
{
(δGb

μ)Eb + i(δωa)(Gb′
μ Eb′)(−ra(b′))

+ i(δεb)

[
Gb′
μ δb,−b′

(
N−1

∑
�=1

r�(b)H�

)]

+ i(δεb)[Gb′
μ Nbb′ Eb+b′(1−δb,−b′)]

}
,

(4.12)
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which after substituting in the functional metric ([3]),

δs2
A = Tr

(∫
Ω
(δA ·δA)dνx

)
= [δσ,δε,δω]T M[σ,ε,ω][δσ,δε,δω]

(4.13)

would lead us to the Faddev-Popov Jacobian as the functional metric determinant averaged
over the Gauge group (with infinitesimal Gauge Group neighborhood implying the use of
the Feynman measure!)

ΔFP[Gμ] =
∫

SU(N)
DF(δε,δω) det

1
2 {M[σ̄,δε,δω]} . (4.14)

However, it is expected that in the large N limit equation (4.14) does not affect the
confining area behavior of the averaged Wilson loop equation (4.1). We thus neglect its
contribution to the average equation (4.1).

ΔFP[Gμ] = 1+ O

(
1
N

)
(4.15)

By collecting equation (4.8) and equation (4.11), one finally obtains our proposed path
integral representation for the Wilson loop for constant gauge fields at the large number of
colours N → ∞.

W [C01] = lim
N→∞

{
1

W (0)

∫ (
N2−N

∏
a=1

ν−1

∏
μ=0

dGa
μ

)}

× exp

{
+

1
2

Ga
μGb

νGc
μGd

ν Labcd ×
[

g2V +δμ0δν1
(g2S)2

N

]}
.

(4.16)

Now the area behavior at the t’Hooft large number of colors N → ∞ is exactly ob-
tained after considering a simple rescaling on the Ga

μ-variables in both path integral fac-
tors in equation (4.16) (including the normalization factor W (0)!) namely Ga

(0,1) →

Ga
(0,1)

[
g2V +

(g2S)2

N

]− 1
4

in the numerator and Ga
μ→Ga

μ[g2V ]−
1
4 in the denominator as well.

W [C] =

[
g2V

(
1+ g2S2)

NV

)]− (N2−N)ν
4

[g2V ]−(N2−N) ν4
=

(
1+

g2S2

NV

)− N(N−1)ν
4

(4.17)

which in the large N limit gives us exactly the expected exponential area behavior in a four-
dimensional space time of the cylindrical form Ω(∞) = R2× [0, �3]× [0, �4], with S →∞ (the
area bounded by C).
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W [C] ∼ expS→∞

⎧⎪⎪⎨
⎪⎪⎩−

(
lim

N→∞
(g2(N −1))

)
(�3�4)S

·S2

⎫⎪⎪⎬
⎪⎪⎭ ∼ exp

{
−
(

g2
∞

(�3�4)

)
S

}
(4.18)

It is very important to point out the appearance of a kind of Dual Models-String slope

parameter
g2
∞

(�3�4)
as an over-all coefficient in the area behavior equation (4.18), which by

its turn signals the existence of the phenomenon of dimensional transmutation on the adi-
mensional SU(∞) gauge coupling constant in four-dimensional space-time, phenomena ex-
pected to be responsible for the existence of strings structures on QCD(SU(∞)) besides of
generating the expected scale of mass for Hadrons in the observed nuclear particle forces
([4]). Note that the string tension on eq.(4.18) depends solely of the “area vacuum cross
section” A = �3�4 as expected ([4]). In the three-dimensional case one obtains a pure length
behavior for the Wilson Loop on the basis of eq.(4.18).

Finally, in the two-dimensional case one obtains the area behavior, however without the
phenomenon of dimensional transmutation for the N =∞ coupling constant ([4]).

After producing arguments for the confining behavior in our reduced-constant Gauge
Field Model through explicit evaluations, we now introduce full dynamical chiral Fermion
fields in our proposed constant gauge field Yang-Mills SU(∞) theory.

The associated quark field generating functional in the presence of the background con-
stant gauge fields can be explicitly evaluated.

Let us show briefly this result since we make a complete analysis in this problem in the
next section 3. Firstly we have the following chiral quark field Euclidean path integral

Z[η, η̄] =
1

Z(0,0)

∫
DF [ψ(x)]DF [ψ̄(x)]δ(F)(γ5ψ−ψ)×δ(F)(γ5ψ̄− ψ̄)

× exp

{
−1

2

∫
Ω

dνx(ψ, ψ̄)
[ © U(φ) �∂U(φ)
U(φ)∗ �∂∗U∗(φ) ©

](
ψ
ψ̄

)}

× exp

{
−i

∫
Ω
(ψ̄η+ η̄ψ)dνx

} (4.19)

where the chiral SU(N) phase U(φ) associated to the constant gauge fields configuration is
given explicitly by the expression

U(φ) = {exp [−igγ5(Aa
α · xα)λa]} = P

{
e−igγ5

∫ x
−∞Aa

α·dxα
}

(4.20)

where φ= φaλa = Aa
α xαλa is the chiral phase.

We can proceed as in the chiral bosonization path integral framework in order to
“Bosonize” (solve exactly) the quark field path integral equation (4.19) by means of the
chiral change of variables ([5])

ψ(x) = exp{−igγ5 φ(x)}χ(x)
ψ̄(x) = χ(x) exp{−igγ5 φ(x)}

(4.21)
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After the change equation (4.21), the generating functional takes the decoupled form

Z[η, η̄] =
1

Z(0,0)

∫
DF [χ(x)]DF [χ̄(x)]

exp

{
−1

2

∫
Ω

dνx(χ, χ̄)(x)
[© �∂
�∂∗ ©

](
χ
χ̄

)
(x)

}

exp

{
− i

2

∫
Ω

dνx
(
χe−igγ5 φ(x)η+ η̄e−igγ5 φ(x)χ

)
(x)

}
×det+1

F [U(φ) �∂U(φ)]

(4.22)

At this point, we remark the validity of the free-field result for the Fermionic functional
determinant in the path integrand equation (4.22) (see next section for detailed calculations)

det F [U(φ) �∂U(φ)] = det F [�∂] (4.23)

Here we have used the Alvarez-Romanov-Schwartz teorem ([5]), the condition
∫
Ω

dνx ·
xμ = 0 and the non-existence of zero modes of the Dirac operator in presence of constant
gauge field configurations in order to obtain equation (4.23).

As a consequence of the above displayed results, one gets the famous asymptotic free-
dom property of the quark fields in our SU(∞) constant gauge field model after writing
explicitly the quark two-point function

〈ψ(x)ψ̄(y)〉 =
δ2Z[η, η̄]
δη̄(x)δη(y)

∣∣∣∣
η=η=0

= 〈χ(x)χ(y)〉(0) exp

(
−igγ5

∫ y

x
Aμ dxμ

)
∼

|x−y|→0
〈χ(x)χ(y)〉(0) (4.24)

Here 〈χ(x)χ(y)〉 denotes the free Fermion propagator coming from the “bosonized” action
and the contour on the gauge field path-phase factor is a straight line connecting the points
xα and yα, which reduces to unity at the higher-energy limit of |x− y| → 0. (see eq.(4.20).

At this point, let us call the reader’s attention to the fact that phenomenon of asymptotic
freedom should be analyzed for Gauge-invariant quark bilinear fields. For instance, we have
the Gauge-invariant result:

〈(ψ(x)ψ̄(x))(ψ(y)ψ̄(y))〉 ∼ 〈χ(x)χ̄(y)〉(0)〈χ(y)χ̄(x)〉(0)

×
{

TrSU(∞)P(+ig
∮

Cxy

Aμdxμ)
}

(4.24-b)

Here Cxy denotes an arbitrary planar closed contour intercepting the ”marked” points x
and y. We can see that for large |x−y| separation, the above quark-bilinear field correlation
function approximates to the free field fermion correlation functions as the family of planar
loops Cxy entering in the gauge-invariant expression eq.(4.24-b) reduces to a point as the
geometrical result of the superposition of the segments of straight-line connecting the points
x and y (see eq.(4.24)), however with opposite orientation. Note that all those loops Cxy with
a large area |x− y|2 have a negligible contribution to eq.(4.24-b).
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4.3. The Path-Integral Triviality Argument for the Thirring
Model at SU(∞)

We start our analysis by considering the chiral non-abelian SU(Nc) Thirring model La-
grangean on the Euclidean space-time of finite volume Ω⊂ R4 as done in Section 2

L(ψ,ψ) =
1
2

[
ψa(i

−−→
γμ∂μψa)+ (ψai

←−−
γμ∂μ)ψa

]
+
(

g2

2
(ψbγ

μγ5(λA)bcψc)2
)

(4.25)

Here (ψa,ψa) are the Euclidean four-dimensional chiral fermion fields belonging to
a fermionic fundamental representation of the SU(Nc) non-abelian group with Dirichlet
boundary condition imposed at the finite-volume region Ω. In the framework of path inte-
grals, the generating functional of the Green’s functions of the quantum field theory associ-
ated with the Lagrangean eq.(4.25) is given by (�∂ = iγμ∂μ)

Z[ηa,ηa] =
1

Z(0,0)

∫ N2−N

∏
a=1

D[ψa]D[ψa]

× exp

{
−1

2

∫
Ω

d4x(ψa,ψa)

[
0 ��∂←−�∂ ∗ 0

](
ψa

ψa

)
(x)

}

× exp

{
−g2

2

∫
Ω

d4x(ψbγ
5γμ (λA)bcψc)2(x)

}

× exp

{
−i

∫
Ω

d4x(ψaηa +ηaψa)(x)
}

(4.26)

In order to proceed with a bosonization analysis of the fermion field theory described
by the above path-integral, it appears to be convenient to write the interaction Lagrangian
in a form closely parallel to the usual fermion-vector coupling in gauge theories by making
use of an auxiliary non-abelian vector field Aa

μ(x), but with a purely imaginary coupling
with the axial vectorial fermion current (at the Euclidean world).

Z[ηa,ηa] =
1

Z(0,0)

∫ N2−N

∏
a=1

D[ψa(x)]D[ψa(x)]
∫ N2−N

∏
a=1

3

∏
μ=0

D[Aa
μ(x)]

× exp

{
−1

2

∫
Ω

d4x(ψa,ψa)
[

0 �∂+ igγ5 �A
(�∂+ igγ5 �A)∗ 0

](
ψa

ψa

)
(x)

}

× exp

{
−1

2

∫
Ω

d4x(Aa
μAa

μ)(x)
}

× exp

{
−i

∫
Ω

d4x(ψaηa +ηaψa)(x)
}

(4.27)

In this point of our analysis we present our idea to bosonize (solve) exactly the above
written fermion path integral. The main point is to use the old suggestion that at the strong
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coupling and at a large number of colors (the t’Hooft limit), one should expect a great
reduction of the (continuum) vector dynamical degrees of freedom to a manifold of constant
gauge fields living on the infinite dimensional Lie algebra of SU(∞) ([1], [6]). In t’ Hooft
limit of large number of colors, we can evaluate exactly the fermion path-integral by noting
that the Dirac kinetic operator in the presence of the constant SU(N) gauge fields can be
written in the following suitable form

exp

{
−1

2

∫
Ω

d4x(ψaψa)
[

0 U(ϕ) �∂U(ϕ)
U(ϕ)∗ �∂∗U∗(ϕ)

](
ψa

ψa

)
(x)

}
(4.28)

where the chiral hermitean phase-factor is given by

U(ϕ) = exp[−gγ5(Aa
μx
μ)λa] (4.29)

with the chiral SU(N) valued phase defined by the constant gauge field configuration

ϕ(xμ) = ϕaλa = (Aa
μx
μ)λa (4.30)

Note that due to the attractive coupling of the axial current - axial current interaction of
our Thirring model eq.(4.26), the axial vector coupling is made of an imaginary - complex
coupling constant ig.

Now we can follow exactly as in the well-known chiral path-integral bosonization
scheme ([5],[7]) in order to solve exactly the quark field path integral eq.(4.28) by means
of the chiral change of variables

ψ(x) = exp{−gγ5ϕ(x)}χ(x) (4.31)

ψ(x) = χ(x)exp{−gγ5ϕ(x)} (4.32)

After implementing the variable change eq.(4.31)-eq.(4.32), the fermion sector of the
Generating functional takes the form where the independent euclidean fermion fields are de-
coupled from the interacting - intermediating non-abelian constant vector field Aa

μ, namely

Z[ηa, ηa] =
1

Z(0,0)

∫ N2−N

∏
a=1

D[χa(x)]D[χa(x)]

×
∫ +∞

−∞

N2−N

∏
a=1

d[Aa
μ]× exp

{
+

V
2

TrSU(N)(A2
μ)
}

×det+1
F [(�∂+ igγ5 �A)(�∂+ igγ5 �A)∗]

× exp

{
−1

2

∫
Ω

d4x(χa,χa)
[

0 �∂
�∂∗ 0

](
χa

χa

)
(x)

}

× exp

{
−i

∫
Ω

d4x(χae−gγ5ϕ(x)ηa +ηae−gγ5ϕ(x)χa)(x)
}

(4.33)

Let us now evaluate exactly the fermionic functional determinant on eq.(4.33) which is
given by the functional Jacobian associated to the chiral fermion field reparametrizations
eq.(4.31)-eq.(4.32).
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In order to compute this fermionic determinant, �ndet+1
F [(�∂+ ig �A)(�∂+ ig �A)∗], we use

the well-known theorem of Schwarz-Romanov ([7]) by introducing a σ-parameter (0 ≤σ≤
1) dependent family of interpolating Dirac operators (see eq.(4.23) - section 4.2).

�D(σ) = (�∂+ ig �A(σ)) = exp{−gσγ5ϕ(x)}(�∂)exp{−gσγ5ϕ(x)} (4.34)

Since we have the relationship for the interpolating Dirac operators

d
dσ

�D(σ) = (−gγ5ϕ) �D(σ)+ �D(σ)(−gγ5ϕ) (4.35)

and the usual proper-time definition for the functional determinants under analysis

log det+1
F (�D(σ) �D(σ)∗)

= lim
ε→0+

∫ ∞

ε

ds
s

TrF(e−s( �D (σ) �D (σ)∗
), (4.36)

one obtains straightforwardly the following differential equation for the Fermionic func-
tional determinant

d
dσ

{log det+1
F (�D(σ) �D(σ)∗)}

= 4 lim
ε→0

{∫
d4xTrF

[
gγ5ϕ× exp(−ε �D(σ) �D(σ)∗)

]}
(4.37)

where TrF denotes the complete trace over the color, Dirac and space-time indices. At
this point we note that the diagonal part of exp(−ε �D(σ) �D(σ)∗) has a well-known gauge -
invariant asymptotic expansion in four-dimensions ([4]) (where σμν = 1

2i(γ
μ γν− γν γμ))

exp(−ε �D(σ) �D(σ)∗) =
1

4π2

{
1
ε2 +

1
ε
(Fb
μν(σA)σμνλb)

+
1
4

(
−1

3
Fb
μν(σA)Fb′

μν(σA)λbλb′ − 1
2

Fc
αβ(σA)Fc′

α′β′(σA)λcλc′γαγβγα
′
γβ

′
)

+ 0(ε)
}
(4.38)

After substituting the Seeley-Hadamard expansion on eq.(4.38), by taking into account
eq.(4.30), together with the fact that Tr Dirac (γ5) = 0 and Tr Dirac (γ5σμν) = 0, one obtains
finally the only possible non-zero term in our evaluations

W [Aa
μ] = 16

{(∫
Ω

d4x
(−g)
(4π)2

(
−1

8

)
xμ
)

× (σAa
μ)(F

c
αβ(σA)∗Fc′

αβ(σA)TrSU(N)(λaλcλc′)) (4.39)

By supposing explicit space-time symmetry of the finite-volume region Ω, one has that
the “symmetry integral” vanishes ∫

Ω
d4x · xμ ≡ 0 (4.40)
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As a consequence, we get the somewhat expected result that the Fermion functional
determinant in the presence of constant gauge external fields coincides with the free one,
(see eq.(4.23) namely:

detF
[
(�∂+ ig �A)(�∂+ ig �A)∗

]/
detF

[
(�∂)(�∂)∗

]
= 1 (4.41)

Let us return to our “Bosonized” Generating functional (after substituting the above
obtained results on its previous expression eq.(4.33).)

Z[ηa,ηa] =
1

Z(0,0)

∫ N2−N

∏
a=1

D[χa(x)]D[χa(x)]

×
∫ +∞

−∞

N2−N

∏
a=1

d[Aa
μ]exp

{
+

1
2

V TrSU(N)(Aμ)
2
}

× exp

{
−1

2

∫
Ω

d4x(χa,χa)
[

0 �∂
�∂∗ 0

](
χa

χa

)
(x)

}

× exp

{
−i

∫
Ω

d4x(χae−gγ5(Aa
μλa)xμηa +ηae−gγ5(Aa

μλa)xμχa)(x)
}

(4.42)

Let us argument in favor of the theory’s triviality by analyzing the long-distance
behavior associated to the SU(N) gauge-invariant fermionic composite operator B(x) =
ψa(x)ψa(x). It is straightforward to obtain its exact expression from the bosonized path-
integral eq.(4.42) 〈

B(x)B(y)
〉

=
〈
(χa(x)χa(x))(χa(y)χa(y))

〉(0)
×G((x− y)) (4.43)

here the reduced model’s Gluonic factor is given exactly in its structural-analytical form by
the path-integral (without bothering us with the γ5-Dirac indexes)

G((x− y)) ∼ 1
G(0)

∫ +∞

−∞

N2−N

∏
a=1

d[Aa
μ] exp

{
+

1
2

vol (Ω)TrSU(N)(Aμ)
2
}

×TrSU(Nc)P

⎧⎨
⎩exp−g

∮
Cxy

Aαdxα

⎫⎬
⎭ (4.44)

with Cxy a planar closed contour containing the points x and y and possesing an area S given
roughly by the factor S = (x− y)2.

The notation 〈 〉(0) means that the Fermionic average is defined solely by the fermion
free action as given in the decoupled form eq (42).

Let us pass to the important step of evaluating the Wilson phase factor average eq (44)
at the limit of t’Hooft of large number of colors N →∞. As the first step to implement such
evaluation, let us consider our loop Cxy as a closed contour lying on the plane μ= 0, ν = 1
bounding the planar region S (see section 2).
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We now observe that the ordered phase-factor for constant gauge fields can be exactly
evaluated by means of a triangularization of the planar region S, i.e.,

S =
M⋃

l=1

Δ(i)
μν (4.45)

Here, each counter-clock oriented triangle �(i)
μν is adjacent to next one �(i)

μν ∩�(i+1)
μν =

common side with the opposite orientations.
At this point we note that

P{e
−g

∫
Δ(i)
μν

Aα·dxα} ∼= e−gAα·�(1)
α · e−gAα·�(2)

α · e−gAα·�(3)
α (4.46)

where {�(i)
α }1=1,2,3 are the triangle sides satisfying the (vector) identity �

(1)
α +�

(2)
α +�

(3)
α ≡ 0.

Since we have that

P{e−g
∮
(x) Aαdxα} = lim

n→∞

n

∏
i=1

P{e
−g

∫
Δ(i)
μν

Aαdxα} (4.47)

and by using the Campbel Hausdorff formulae to sum up the product limit eq.(4.47) with X
and Y denoting general elements of the SU(N) - Lie algebra:

eX · eY = eX+Y+ 1
2 [X ,Y ] + 0(g2) (4.48)

one arrives at the non-Abelian Stokes theorem for constant Gauge Fields (see second refer-
ence in refs. [1]).

P{e−g
∫

Cxy Aαdxα} = P{e−g
∫∫

S F01dσ01}
= P{e+(g)2 [A0,A1]·S} (4.49)

As a consequence, we have the following result (exact at N → ∞) to be used in our
analysis below

TrSU(N) P{e−g
∫

Cxy Aαdxα} ∼ exp

{
+

(g2S)2

2
(TrSU(N)[A0,A1])2

}

+ O

(
1
N

)
(4.50)

Note that eq.(4.50) is a rigorous result and eq.(4.49) is a rigorous proof of the Non-
Abelian Stokes theorem as used on section 2.

Let us now substitute eq.(4.50) into eq.(4.44) and taking into account the natural two-
dimensional degrees of freedom reduction on the average eq.(4.44)

G((x− y)) =
1

G̃(0)

∫ +∞

−∞

N2−N

∏
a=1

d[Aa
1]d[Aa

0] exp

{
+

1
2

V
[
TrSU(N)(A

2
0 + A2

1)
]

× exp

{
+

(g2S)2

2
(TrSU(N)[A0,A1])2

}
(4.51)
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where G̃(0) is the normalization factor given explicitly by

G̃(0) =
∫ +∞

−∞

N2−N

∏
a=1

d[Aa
1]d[Aa

0]exp

{
−1

2
vol (Ω)[(Aa

0)
2 +(Aa

1)
2]
}

(4.52)

By looking closely at eq.(4.51)–eq.(4.52), one can see that the behavior of the Wilson
phase factor average at large N is asymptotic to the value of the integral below

G((x− y))N>>1 ∼
{∫ +∞

−∞
da exp

{
−1

2
vol (Ω)a2

}

× exp

{
−(g2S)2

2
a4
}

×
(∫ +∞

−∞
da exp

{
−1

2
vol (Ω)a2

})−1
}N2−N

(4.53)

By using the well-known result (see ref [9] - pag 307, eq(3). 323 -3)

∫ ∞

0
exp(−β2x4 −2γ2x2)dx = 2−

3
2

(
γ
β

)
e

γ4

2β2 K 1
4

(
γ4

2β2

)
(4.54)

we obtain the closed result (at finite volume V = vol (Ω) < ∞).

G((x− y))N>>1 ∼

⎧⎨
⎩
⎛
⎝√

vol (Ω)N

2 ·
(

g2SN√
2

)
⎞
⎠

× e

+ ( vol (Ω))2

32
N2

(
g2SN√

2

)2

K 1
4

(
( vol (Ω))2 N2

16g4N2S2

)

×

⎛
⎜⎝

√
π

2 ·
(

vol (Ω)
2

) 1
2

⎞
⎟⎠

−1⎫⎪⎬
⎪⎭

N2−N

(4.55)

Let us now give a theoretical physicist’s argument of the theory’s triviality at infinite
volume vol(Ω) → ∞ on the basis of the explicit representation. Let us firstly define the
infinite-volume theory’s limit by means of the following limit

vol (Ω) = S2 (4.56)

and consider the asymptotic limit of the correlation function at |x− y| → ∞ (S → ∞).
By using the standard asymptotic limit of the Bessel function

lim
z→∞

K 1
4
(z) ∼ e−z

√
π
2z

(4.57)
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one obtains the result ( lim
N→∞

g2 N = g2
∞ <∞) in four dimensions

G((x− y)) N>>1
|x−y|→∞

∼ lim
S→∞

{
N
S
· e N2S4

16S2

√
16π

N2S22
e−

S2N2
16

}N2−N

∼
1

|x− y|4(N2−N)
(4.58)

So, we can see that for N a very large parameter, there is a fast decay of eq.(4.58) without
any bound on the power decay law. However in the usual L.S.Z. framework for Quantum
Fields, it would be expected the opposite behavior through a non decay of such factor as
in the two-dimensional case (see eq.(4.58) for vol(Ω) = S), meaning physically that one
can observe fermionic scattering free states at large separation. However at N → ∞, where
we expect the full validity of our analysis, one obtains [on the basis of the formal behavior
of eq.(4.58)] the vanishing of the above analyzed fermionic correlation function eq.(4.43),
faster than any power of |x− y| for large |x− y|. This result shows that g2

bare may be zero
from the very beginning and strongly signalling the fact that the chiral Thirring model -
for large number of colors - may remain a trivial Quantum Field Theory, a result not fully
expected at all in view of previous claims on the subject that large N resummations al-
ways turn non-renormalizable field theories in non-trivial renormalizable useful ones ([8]).-
However, rigorous mathematical proofs are needed to establish such an important triviality
result in full ([8]).

Finally and as a last remark on our formulae eq.(4.55)-eq.(4.58), let us point out that a
mathematical rigorous sense to consider these results is by taking as our continuum space-
time Ω, a set formed of n hyper-four-dimensional cubes of a side a - the expected size of
the non-perturbative vacuum domain of our theory (see the first reference in [1]) - and the
surface S being formed, for instance, by n squares on the Ω plane section contained on the
plane μ= 0 , ν= 1. As a consequence of the construction above exposed, we can see that
the large behavior is given exactly by

G(na)N>>1
n→∞∼

⎧⎪⎨
⎪⎩

N

g2
∞ ·na2

e

(N2n2a8

32.

(
g2∞na2√

2

)2

×K 1
4

(
N2(n2a8)

16(g2
∞)2 n2a4

}N2−N

∼

(
1

na4

)N2−N

∼ e−N(N−1)�g(na4)
∼

N→∞
0 (4.59)

4.4. The Loop Space Argument for the Thirring Model
Triviality

In order to argument one more time for the triviality phenomenon of the SU(N) non-abelian
thirring model of section 3 for finite N, let us consider the generating functional eq.(4.27)
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for vanishing fermionic sources ηa = ηa = 0, the so-called vacuum energy theory’s content
or the theory’s partition functional

Z(0,0) =
∫ N2−N

∏
a=1

3

∏
μ=0

D[Aa
μ(x)]e

− 1
2

∫
Ω d4x(Aa

μAa
μ)(x)

×detF [(�∂+ igγ5 �A)(�∂+ igγ5 �A)∗] (4.60)

At this point of our analysis, let us write the functional determinant on eq.(4.60) as a
functional on the space of closed bosonic paths {Xμ(σ), 0 ≤ σ≤ T, Xμ(0) = Xμ(T ) = xμ},
namely ([6] and first reference on [8]).

�gdetF [(�∂+ igγ5 �A)(�∂+ igγ5 �A)∗]

=∑
Cxx

⎧⎨
⎩PSU(N) ·P Dirac exp

[
−g

∮
Cxx

Aμ(Xβ(σ)dXμ(σ)

+
i
2
[γα,γβ]

∮
Cxx

Fαβ(Xβ(σ))ds
]⎫⎬
⎭ (4.61)

The sum over the closed loops Cxy with fixed end-point xμ is given by the proper-time
bosonic path integral below

∑
Cxx

= −
∫ ∞

0

dT
T

∫
d4xμ

∫
χμ(0)=xμ=χμ(T )

DF [X(σ)]

× exp

{
−1

2

∫ T

0
Ẋ2(σ)dσ)

}
(4.62)

Note the symbols of the path ordenation P of the both, Dirac and color indexes on the
loop phase space factors in the expression eq.(4.61).

By using the Mandelstam area derivative operator δ
/
δσγρ(X(σ)) ([4]), one can re-

writes eq.(4.61) into the suitable form as an operation in the loop space-with Dirac matrices
bordering the loop Cxx, namely:

�gdetF [(�∂+ igγ5 �A)(�∂+ igγ5 �A)∗]

=∑
Cxx

P Dirac exp

{∮
Cxx

dσ
i
2
[γα,γβ](σ)

δ
δσαβ(X(σ))

PSU(N)

[
exp(−g

∮
Cxx

Aμ(Xβ(σ)dXμ(σ))
]}

(4.63)

In order to show the triviality of functional fermionic determinant when averaging over
the (white-noise!) auxiliary non-abelian fields as in eq.(4.60), we can use a cummulant
expansion, which in a generic form reads as

〈e f 〉Aμ = exp

{
〈 f 〉Aμ +

1
2
(〈 f 2〉Aμ −〈 f 〉2

Aμ)+ · · ·
}

(4.64)
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So let us evaluate explicitly the first order cummulant

∑
Cxy

P Dirac

{∮
Cxy

ds
i
2
[γα(σ),γβ(σ)]

δ
δσαβ(X(σ))

×
〈

PSU(N)[exp(−g
∮

Cxx

Aμ(Xβ(σ))dXμ(σ)]
〉

Aμ
(4.65)

with the average 〈 〉Aμ defined by the path-integral eq.(4.60).
By using the Grassmanian zero-dimensional representation to write explicitly the

SU(N) path-order as a Grassmanian path integral ([10])

PSU(N)[exp(−g
∮

Cxx

Aμ(Xβ(σ))dXμ(σ))]

=
∫ N2−N

∏
a=1

DF [θa(σ)]DF [θ∗a(σ)](
N2−N

∑
a=1

θa(0)θ∗a(T ))

× exp

(
i
2

∫ T

0
dσ

N2−N

∑
a=1

(
θa(σ)

�d
dσ

θ∗a(σ)+θ∗a(σ)
d

dσ
θa(σ)

))

× exp

(
g
∫ T

0
dσ(Aa

μ(X
β(σ))(θb(λa)bcθ∗c)(σ)dXμ(σ))

)
(4.66)

one can easily see that the average over the Aμ(x) fields is straightforward and producing as
a result the following self-avoiding loop action〈

PSU(N)[exp(−g
∮

Cxx

Aμ(Xβ(σ))dXμ(σ))]
〉

Aμ

=
∫ N2−N

∏
a=1

DF [θa(σ)]DF [θ∗a(σ)](
N2−N

∑
a=1

θa(0)θ∗a(T ))

×exp

(
i
2

∫ T

0
dσ

N2−N

∑
a=1

(
θa(σ)

�d
dσ

θ∗a(σ)+θ∗a(σ)
�d

dσ
θa(σ)

))

exp
{g2

2

∫ T

0
dσ

∫ T

0
dσ′

[
(θb(λa)bcθ∗c)(σ)(θb(λa)bcθ∗c)(σ

′)
]

×δ(D)(Xμ(σ)−Xμ(σ′))dXμ(σ)dXμ(σ′)
}

(4.67)

At this point one can use the famous probabilistic - topological Parisi argument ([11]) to
show the λϕ4 triviality at the four-dimensional space-time [8]: due to the fact that Hausdorff
dimension of our Brownian loops {Xμ(σ)} is two, and the topological rule for continuous
manifold holds true in the present situation, one obtains that for ambient space greater
than (or equal) to four, the Hausdorff dimension of the closed path intersection set of the
argument of the delta function in eq.(4.67) is empty. So, we have as a consequence〈

PSU(N)[exp(−g
∮

Cxx

Aμ(Xβ(σ)dXμ(σ))]
〉

Aμ
= 1 (4.68)
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Proceeding in analogous way for higher-order cummulants, one uses again the afore-
mentioned Parisi topological argument to arrive at the general results for a set of m Brown-
ian paths {C(�)

xx }�=1,...,m〈
m

∏
�=1

[
PSU(N) exp

(
−g

∮
C(�)

xx

Aμ(X
(�)
β (σ))dX (�)

μ (σ)
)]〉

Aμ

= 1. (4.69)

At this point we note that for finite Nc the following result holds true as a consequence
of eq.(4.60) and eq.(4.69)

Z(0,0) =
〈

exp
{
∑
Cxx

PDirac

{∮
Cxx

dσ
i
2
[γα,γβ](σ)

δ
δσαβ(X(σ))

PSU(N)[exp(−g
∮

Cxx

Aμ(Xβ(σ))dXμ(σ)]
}〉

Aμ

= exp
{
∑
Cxx

PDirac

{∮
Cxx

dσ
i
2
[γα,γβ](σ)

δ
δσαβ(X(σ))〈

PSU(N)[exp(−g
∮

Cxx

Aμ(Xβ(σ))dXμ(σ)]
〉

Aμ

+
1
2 ∑

C(1)
xx

∑
C(2)

xx

{∮
Cxx

dσ1 i
2
[γα,γβ](σ1)

δ
δσαβ(X1(σ1))

×
∮

C(2)
xx

i
2
[γρ,γJ](σ2)

δ
δσρJ(X2(σ2))〈

PSU(N)

[
exp(−g

∮
C(1)

xx

Aμ(X1
β (σ1))dX1

μ (σ
1)
]
PSU(N)

[
exp(−g

∮
C(2)

xx

Aμ(X2
β (σ2))dX2

μ (σ
2)
]〉

Aμ

+ · · ·
}

= exp(0) = 1 = detF(�∂ �∂∗], (4.70)

which by its turn leads to the Thirring model’s triviality for space-time RD with D ≥ 4.
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Chapter 5

Triviality - Quantum Decoherence of
Fermionic Quantum
Chromodynamics SU(Nc) in the
Presence of an External Strong U(∞)
Flavored Constant noise Field

5.1. Introduction

In chapters 3 and 4 we have proposed a bosonic loop space formalism for understanding
the important problem of triviality in interacting Gauge Field theories ([1], [2]). The basic
idea used in our work above mentioned in order to analyze such kind of quantum triviality
phenomena was the systematic use of the framework of the loop space to rewrite particle-
field path integrals in terms of its ensembre of quantum trajectories and the introduction of
a noisely electromagnetic field as an external quantized reservoir.

The purpose of this chapter - of complementary nature to the above mentioned chapters
3 and 4 is to point out quantum field triviality phenomena in the context of our previous loop
space formalism for the case of Fermionic Quantum Chromodynamics with finite number
of colors but in presence of an external non-abelian translation independent U(∞)-flavor
charged white noise simulating a quantum field reservoir ([1]).

In order to show exactly this triviality result for Q.C.D(SU(Nc)) in such a context of
an external non-abelian reservoir, we use of Migdal-Makeenko loop space expression for
the spin quark generating functional of abelian vectorial quarks currents ([3]) – associated
to the physical abelian vectorial mesons, added with the explicitly evaluation of U(M)-
flavor Wilson Loops at the t’Hooft M → ∞ limit for translation invariant noise-flavor field
configurations.

We finally arrive at our main result that the triviality of Quantum Chromodynamics at
such a kind of flavor reservoir, is linked to the problem of quantum decoherence in Quantum
Physics ([1]). In appendix A, we present an aplication of our study to the Physical Problem
of Confining in Yang-Mills Theory. In appendix B, we present the detailed analysis of
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the problem of large N in Statistics, which mathematical ideas have underlyning our Path-
Integral Analysis in the bulk of this chapter.

5.2. The Triviality - Quantum Decoherence Analysis for Quan-
tum Chromodynamics

In order to show such a triviality - quantum decoherence on Fermionic Q.C.D(SU(Nc)) with
finite number of colors in the presence of U(∞) flavored random reservoirs, let us consider
the physical Euclidean generating functional of the Abelian quarks currents in the presence
of an external translation invariant white-noise U(M) non-abelian field B(M)

μ , considered
here as a kind of “dissipative” non-abelian reservoir structure and corresponding to the
interaction quarks flavor charges with a U(M) vacuum-reservoir structure, namely

Z[Jμ(x),B
(M)
μ ] =

〈
detF

[
0 �D(Aμ,B

(M)
μ ,Jμ)

�D∗(Aμ,B
(M)
μ ,Jμ) 0

]〉
Aμ

(5.1)

Here the Euclidean Dirac operator is explicitly given by

�D(Aμ,B
(M)
μ ,Jμ) = iγμ(∂μ+ g(M)B(M)

μ + eAμ+ Jμ) (5.2)

with eAμ(x) denoting the SU(Nc) Yang-Mills non-Abelian quantum field (translation de-
pendent) configurations averaged in eq.(5.1) by means of the usual Yang-Mills path integral
denoted by 〈 〉Aμ , Jμ(x) is the auxiliary source field associated to the abelian quark currents

and g(M)B(M)
μ is a random translation invariant external U(M) flavor Yang-Mills field with

a constant field strength

Fμν(B) = (igM)[B(M)
μ ,B(M)

ν ]. (5.3)

Here E(M)
F denotes the stochastic average on the ensemble of the external random U(M)

non-abelian strenght fields defined by the U(M)-invariant path-integral ([4])

E(M)
F {O(Bμ)} ≡ 1

E(M)
F {1}

(∫ ( D

∏
μ=1

M2

∏
a=1

dBa
μ

)

× exp

{
−1

2

[
(igM)2TrU(M)([B

(M)
μ ,B(M)

ν ]2)
]}

×O(B(M)
μ )

)
(5.4)

with O(B(M)
μ ) denoting an U(M)-flavor invariant observable on the presence of an external

translation invariant random U(M)-valued non-abelian reservoir field B(M)
μ .

In the fermionic loop space framework ([1], [2], [3]), we can express the quark func-
tional determinant, eq.(5.1) – which has been obtained as an effective generating functional
for the color Nc-singlet quark current after integrating out the Euclidean quark action –
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as a purely functional on the bosonic bordered loop space composed of all trajectories
Cxx = {Xμ(σ),Xμ(0) = Xμ(T ) = x; 0 ≤ σ≤ T}, namely

Z[Jμ(x),B
(M)
μ ] =

〈
exp

{
−Ncspur

[
∑
Cxx

PDirac

[
exp

(∮
Cxx

dσ
i
2
[γμ,γν](σ)

× δ
δσμν(X(σ))

]
×TrU(M)(Φ[Cxx,B

(M)
μ ])

}
×Φ[Cxx,Jμ]×TrSU(Nc)(W [Cxx,Aμ]

)]}
(5.5)

where Φ[Cxx,B
(M)
μ ] is the usual Wilson-Mandelstam path-ordered loop variable defined by

the translation invariant random external (reservoir) U(M) field B(M)
μ , and W [Cxx,Aμ] is the

same loop space object for the dynamical quantum color gauge field SU(Nc).
Note the appearance of the Migdal-Makeenko area – loop derivative operator with

the Dirac index path ordenation in order to take into account explicitly the relevant
spin-orbit interaction of the quarks Dirac spin with the set of interacting vectorial fields
{Aμ(x),Bμ,Jμ(x)} in the theory described by eq.(5.1) ([3]) (the well-know bordered loops).

The sum over the closed bosonic loops Cxx, with end-point x is given by the proper-time
bosonic path integral below ([1],[2])

∑
Cxx

=
∫ ∞

0

dT
T

∫
dDx

∫
X(0)=x=X(T )

DF [X(σ)]× exp

{
−1

2

∫ T

0
Ẋ2(σ)dσ

}
. (5.6)

Following the idea of our previous work on Triviality-Quantum Decoherence of Gauge
theories [1], we need to show in eq.(5.5) that at the t’Hooft topological limit of M → ∞ in
the ensemble of external white-noise reservoir fields B(M)

μ as implemented in ref. [1], one

obtains for the Wilson Loop EF(Φ[Cxx,B
(M)
μ ]) an area-power behavior on the (minimal) area

S[Cxx] bounded by the large area loops Cxx inside the loop space functional on eq.(5.5), after
considering the average of the infinite-flavor limit on the external translation independent
white-noise Bμ field eq.(5.3)–eq.(5.4).

In the context of a cummulant expansion for the loop space integrand in eq.(5.5) defined
by the U(M) path integral eq.(5.4), one should firstly evaluate the following Wilson Loop

path integral (loop normalized to unity) on the U(M)-noise reservoir field B(M)
μ :

E(M)
F {TrU(M)(φ[Cxx,B

(M)
μ ])}

=
1

E(M)
F {1}

∫ +∞

−∞

(
M2

∏
a=1

D

∏
μ=1

dBa,(M)
μ

)

× exp

{
+

1
2
(gM)2TrU(M)([B

(M)
μ ,B(M)

ν ]2)
}

× 1
M

TrU(M)P
{

eigM
∮

Cxx B(M)
μ dXμ

}
. (5.7)

By using the non-abelian Stokes theorem for constant gauge fields, one obtains the
following result for large M ([4]):

1
M

(
TrSU(M)P

{
eigM

∮
Cxx B(M)

μ dxμ
})

=
1
M

(
TrSU(M)P

{
eigM

∫
S[Cxx ] F12(B(M))S12

})
(5.8-a)
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or equivalently:

1
M

TrSU(M)

(
Pe−(gM)2[B1,B2]S[Cxx ]

)
= exp

{
+

(g2
MS[Cxx])2

2M
(Tr[B(M)

1 ,B(M)
2 ])2

}
+ O(

1
M

)

(5.8-b)
where we have choosen the large loop Cxx to be contained in the plane μ= 1, ν= 2 without
loss of generality.

A simple field re-scaling on the path-integral eq.(5.7) as written below, after insert-
ing the M → ∞ leading exact result of the Wilson Loop noise factor eq.(5.8) on the cited
equation (5.7):

Ba
μ=1 → B̃a

μ=1

[
g2

M +
(g2

MS[Cxx])2

M

]− 1
4

(5.9)

Ba
μ=2 → B̃a

μ=2

[
g2

M +
(g2

MS[Cxx])2

M

]− 1
4

(5.10)

Ba
μ�={1,2} → B̃a

μ�={1,2}[g
2
M ]−

1
4 (5.11)

leads us to the exactly result at the t’Hooft limit of U(∞) flavor charge

lim
M→∞

(E(M)
F {TrU(M)(Φ[Cxx,B

(M)
μ ])}) = lim

M→∞

⎧⎪⎨
⎪⎩

[
g2

M

(
1+ g2

MS[Cxx]2

M

)]− 1
2 M2

[g2
M ]−( (M2D)

4 )
[g2

M ]−
M2(D−2)

4

⎫⎪⎬
⎪⎭

= exp

{
−1

4
(g∞)2S2[Cxx]

}
+ O(

1
M

) (5.12)

where g2
∞ = limn→∞((gM)2M) <∞ denotes the U(∞)-flavor reservoir t’Hooft coupling con-

stant. Note that we have used the leading M →∞ limit on the weight on the numerator of the
reservoir field path integral eq.(5.7). For instance (here Bμ ≡ Ba

μλa with [λa,λb] = fabcλc)

lim
n→∞

{
exp

[(
1
2
(gM)2 +

(gM)4(S[Cxx])2

2M

)
×
(

B̃a
1B̃b

2B̃a′
1 B̃b′

2 fabc f ca′b′
)]}

∼ exp

{[(
1
2
(gM)2

)
× B̃a

1B̃b
2B̃a′

1 B̃b′
2 fabc f ca′b′

]}

+ O

(
1
M

)
(5.13)

which produces as the only non-trivial result at M → +∞ in the average eq.(5.7), that one
arising from the ratio of the Jacobians of the measure change associated to re-scalings
eq.(5.9)–eq.(5.11) on the path integral numerator eq.(5.7) and the normalization path-
integral denominator respectively.

As a result, we get an exponential behavior for our noise U(∞)-averaged Wilson Loop
with an power square area argument.

Finally, we can see that the loop space quark fermion determinant eq.(5.1) is entirely
supported at those loops Cxx with vanishing small area S[Cxx] for large values of the noise-
field vacuum streinght g2

∞ → +∞, since those of large area S[Cxx] are suppressed on the
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loop space expression generating functional eq.(5.1) above mentioned, as much as similar
K. Wilson mechanism for charge confining in Q.C.D.

Note that the same matter loop Cxx appearing in eq.(5.12) enters in the definition of all
loop space objects in eq.(5.5). As a consequence, we have produced a loop space analysis
supporting that at very large noise strenght (g(∞) → +∞), one has exactly the strong trivial-
ity of the SU(Nc) on the sector of the quark abelian currents, in the mathematical sense that
the dominant loops on the loop path integral eq.(5.5) are degenerate to the loop base point
x or to the straight line vector bilinear quark field excitations trajectories motion. It yield as
a result, thus

lim
M→∞

E(M)
F (Z[Jμ(x),B

(M)
μ ]) = exp(0) = 1. (5.14)

This result leads us to the conclusion that the theory has on free field behavior ([5]) at
very strong noise-reservoir of the type introduced in this work signaling a kind of quantum
field phenomena in a flavored dissapative vacuum media that destroys quantum phase co-
herence and leading to the theory’s triviality as much as similar mechanism underlying the
phenomena which has been obtained in ref. [1] for white-noise abelian reservoirs.

Appendix A.
The Confining Property of the U(∞) - Charge Reservoir

We intend to show the own quantum decoherence/triviality of the U(∞)-charged reservoir
considered in the bulk of this work. Let us, thus, consider our translation invariant U(M)
non-abelian gauge field theory of the previous analysis. However defined in a finite volume
domain Ω with vol(Ω) = ma4, where m is an positive integer with a playing the rule of
a fundamental lenght scale associated to the elementary cell of volume a4 of our finite-
volume space-times (euclidean). We introduce at this point of our argument a closed loop
C contained in the plane (μ,ν) – section of the domain Ω⊂ R4 and possesing area (planar)
S[Cμν] = na2. (See eq.(5.7)).

〈W [C]〉(∞) = lim
M→∞

(
IM[C]
IM [0]

)
(5.A-1)

The explicitly expressions for the objects on eq.(5.A-1) are the following C. Bollini and
J.J. Giambiagi translation invariant gauge field path integrals ([5])

IM [C] =
∫ +∞

−∞

(
M2−M

∏
a=1

4

∏
μ=1

dAa
μ

)
× exp

{
g2

2
(ma4)TrU(M)([Aμ,Aν]2

}

×
(

1
M

TrU(M)P

[
exp

(
ig

∫
C

Aμdxμ

)])
(5.A-2)

and

IM(0) =
∫ +∞

−∞

(
M2−M

∏
a=1

4

∏
μ=1

dAa
μ

)
× exp

{
g2

2
(ma4)TrU(M)([Aμ,Aμ]

2)
}

(5.A-3)
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The exactly evaluation of eq.(5.A-2) was presented in our previous analysis, with the
result below, after considering the re-scaling integration variable

Aa
μ → Aa

μ

[
g2

2
(ma4)+

g4(na2)2

M

]− 1
4

μ= 1,2 (5.A-4)

Aa
μ → Aa

μ

[
g2

2
(ma4)

]− 1
4

μ �= 1,2 (5.A-5)

with the result

IM[C] =
[

g2

2
(ma4)+

g4(na2)2

M

]−(M2)

. (5.A-6)

The same procedure is applied too in eq.(5.A-3) with the associated re-scaling Aa
μ →

Aa
μ

[
g2

2 (ma4)
]− 1

4
. It yields the exactly result for the path-integral normalization factor

IM[0] =
[

g2

2
(ma4)

]−M2

. (5.A-7)

As consequence, we get the following result for the U(∞)-Loop Wilson average
((g∞)2 = lim

M→∞
(g2M) < ∞)

〈W [C]〉(∞) = lim
M→∞

(
IM[C]
IM[0]

)

= exp

{
−(g∞)2 ·

(
[na2]2

ma4

)}

= exp

{
−
(

(g∞)2

a2

)
·
[(

n2

m
·a2

)]}
. (5.A-8)

At this point of our study we call the reader attention that in the final result eq.(5.A-
8), we have considered already the case D = 4, where one must taken into account the
transmutation phenomena of the Gauge coupling constant g(∞) by considering the existence
of a vacuum area domain a2 (the cell of our space-time) as much as the famous “Q.C.D.
spaghetti vacuum” of Nielsen, Olesen et. al. ([1]).

The area behavior of eq.(5.A-6) is easily obtained for large area loops n2 >> m in
the following situation: If one considers the relationship n = γm, with γ an adimensional
number (γ < 1) which will be kept constant at the limit of infinite volume m → ∞, one can
see that eq.(5.A-8) gives area behavior for the Q.C.D. Wilson Loop for very large loop area

〈W [C]〉(∞) ∼
m→∞

exp

{
−
(
γ(g∞)2

a2

)
·na2

}

= exp

{
−(g∞)2

a2
eff

· Area S[C]
}

(5.A-9)

At this point, one should envisage to implement a formal Feynman diagrammatic field
theoretic 1

M – expansion on the finite order group U(M) – Gauge theory by considering
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next translation – dependent field corrections on our reservoir field configurations of the
form Aa

μ(x) = A(∞)
μ + 1

M Ga
μ(x) in the usual Path-Integral measure with the matter confining

behavior eq.(5.A-9) already built in the formalism, namely:

D

∏
μ=1

M2−M

∏
a=1

dAa
μ(x) =

D

∏
μ=1

M2−M

∏
a=1

dAa
μ ·dGa

μ(x) (5.A-10)

exp

{
−1

2

∫
Ω

TrSU(M)(Fμν)
2(x)dDx

}

= exp
{
− 1

2

∫
Ω

TrSU(M)

(
(∂μGν−∂νGμ)(x)

+
ig(∞)
√

Ma

[
Aμ+

1
M

Gμ(x),Aν +
1
M

Gν(x)
])2}

. (5.A-11)

It is worth remarking that the Feynman’s Diagrammatic associated to the Back-Ground
field decomposition in eqs.(5.A-10)–(5.A.11) leads to an exchange of “massive” Gluons
and leading, thus, to a infrared-free perturbation analysis of the theory’s observables.

Appendix B.
On the Law of Large Number in Statistics

Let us present the usual mathematical methods procedure to define the large N limit in
Statistics.

The large N problem in Statistics starts by considering a set of N-independent random
variables {X�(w)}�=1,...,N , with w belonging to a given fixed probability space (Ω,dμ(w)),
besides of satisfying the following additionals constraints:

a) Theirs mean value posseses all the same value m:∫
Ω

X�(w)dμ(w) = E{X�(w)} = m (5.B-1)

b) Theirs associated variance are all equals:

σ2

[(∫
Ω

X2
� (w)dμ(w)

)2

−
(∫

Ω
X�(w)dμ(w)

)2
]

(5.B-2)

The large N problem in Statistics can be stated now as the problem of defining math-
ematically the normalized limit of “large numbers” N → ∞, of the sequence of random
variables sum below

lim
N→∞

ŜN(w) = lim
N→∞

(
1

σ
√

N

(
N

∑
�=1

X�(w)−m

))
. (5.B-3)

The path-integral solution for this problem contains all needed ideas and expose clearly
the method which were implemented in our analysis in Gauge Field Theory.
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Firstly, we define the associated Generating Functionals for each independent random
variable X�(w), with J ∈ R. Namely:

Z{X�}((J)) = E{eiJX�(w)} =
∫
Ω

eiJX�(w)dμ(w)

=
∞

∑
k=0

ikJk

k1

(∫
Ω
(X�(w))kdμ(w)

)
(5.B-4)

It is straightforward to see that the Generating Functional associated to the finite N
random variable sum eq.(5.3)

ZN(J) =
N

∏
�=1

[
Z{X�}

(
J

(
X�−m

σ
√

N

))]

=

[
∞

∑
k=0

1
k!

ikMk

σkNk/2
· Jk

]N

=
(

1− J2

2N
− iM3J3

6σ3N3/2
+

M4J4

24σ4N2 + . . .

)N

, (5.B-5)

with the k-power averages given by the integral expressions below, which are supposed to
be �-independent

Mk =
∫
Ω
(X�(w)kdμ(w). (5.B-6)

At this point, we define mathematically the large N limit by defining the effective statis-
tics distribution parameters:

lim
N→∞

(σ
√

N) = σe f f < ∞ (5.B-7)

lim
N→∞

(mN) = me f f < ∞ (5.B-8)

and by taking the N →∞ limit of eq.(5.5) in the context of the definitions eq.(5.7)–eq.(5.8),
by considering just for simplicity of our formulae writing m = 0 (see eq.(5.1)).

As a result, we have the simple expression below

lim
N→∞

[lgZN(J)] = N lg

[
1− J2

2N
− iM3J3

6σ2N3/2
+

M4J4

24σ4N2 + . . .

]

= −
(

J2

2N

)
N = −J2

2
, (5.B-9)

or equivalently

lim
N→∞

ZN(J) ≡ Ze f f
N=∞(J) = e−

J2
2 , (5.B-10)

which is nothing more than the Generating Functional associated to the Gaussian Statistics
distribution:

Ze f f
N=∞(J) =

1√
2π ·σ ×

∫ +∞

−∞
dxe−ixJ e−

x2

2σ2 (5.B-11)

which is formally the limit (with m �= 0)

lim
N→∞

{
1√

2π(σ
√

N)
e−

(x−Nm)2

2Nσ2

}
=

1√
2πσ

e−
(x−m)2

2σ2 (5.B-12)
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Chapter 6

Fermions on the Lattice by Means of
Mandelstam-Wilson Phase Factors:
A Bosonic Lattice Path-Integral
Framework

6.1. Introduction

One of the long-standing unsolved problems in the lattice approach to QCD is how to han-
dle discretized massless fermionic fields [1]. In this chapter we propose a solution for the
above-mentioned problem by considering as the QCD natural field variable to be discretized
on the lattice the Mandelstam-Wilson phase factor defined by the color-singlet quark cur-
rents, instead of the fermion field as proposed by previous studies. Additionally, we show
the usefulness of this propose by obtaining, in an unambiguous way, the associated QCD
Nambu-Jona-Lasinio fermionic model, which, upon being bosonized, leads to a low-energy
theory of the mesons and baryons of QCD (see Chapter 18).

6.2. The Framework

Let us start our study by considering the Euclidean QCD [SU(Nc)] generating functional
for the color-singlet scalar and vectorial quark currents:

Z[σ+ γ5β,Jμ+ γ5Ãμ] =
∫

DF [Aμ(x)[exp

(
−1

4

∫
d4xTr[F2

μν(A)](x)
)

(6.1)

×
{∫

DF [ψ̄(x)]DF [ψ(x)]exp

(
−
∫

d4x(ψ̄[iγμ∂μ−igγμAμ+σ+γ5β+γμJμ+γμγ5Ãμ]ψ)(x)!
)}

where ψ(x), ψ̄(x) are the independent Euclidean quark fields, σ(x) + γ5β(s) and Jμ(x) +
γ5Ãμ(x) are the external sources for the scalar, scalar-axial, and axial-vectorial QCD quark
currents. Aμ(x) denotes the SU(Nc) gluon field.
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In order to obtain effective quark field theories from eq.(6.1) we propose to integrate
out their gluon degrees of freedom in the lattice; i.e., let us first consider the pure gluonic
functional integral

I[ψ, ψ̃] =
∫

DF [Aμ(x)]exp(
(
− 1

4

∫
d4xTr[F2

μν(A)](x)
)

× exp

(
ig

∫
d4x(ψ̄γμψ)(x)Aμ(x)

)
. (6.2)

Our procedure to evaluate eq.(6.2) is, first, to introduce a lattice space-time. At this
point we put forward our idea to handle correctly fermonic fields on the lattice. As was
shown in [1], it is impossible to have a well-defined procedure to define massless fermion
fields on the usual lattice {xμ = [nμ],nμ ∈ Z} (with spacing a) [1]. We propose, thus, to
consider directly the bosonic quark fermion current on the lattice by means of its associated
Mandelstam-Wilson phase factor defined on each lattice link ([nμ], [nμ]+α)

Φα([nμ]) = exp(iag(ψ̄γαψ)([nμ])). (6.3)

Note that the above-written phase factor has indices (i, j) on the group SU(Nc) and an
index α related to the Lorentz group as it should be.

The associated gluon U(N) group-valued Mandelstam-Wilson phase factor is still given
by the link lattice gluon variable

Uμ([nα]) = exp(iaAμ([nα])). (6.4)

At this point of our study, we point out that the quark gluon coupling on the lattice may
be written as a product of the Mandelstam-Wilson phase factor given by eqs.(6.3) and (6.4)
since we have the formal continuum limit at the lattice space going to zero as one can see
by expanding the exponentials

lim
a→0

[
∑

{[nα ]}
a2 Tr({Uμ([nα])−1}×{φμ([nα])−1}+ hc)

]
= ig

∫
d4xAμ(x)(ψ̃γμψ)(x).

(6.5)
Our proposed gauge-invariant lattice version of the gluon functional integral, eq.(6.2),

is, thus, given by

I[ψ, ψ̃] =
∫

DH [Uμ([nα])]exp(
(
− 2

4g2 ∑
{[nα]}

Tr{Uμ([nα])Uν([nα+ν])U†
μ ([nα+ν])U†

ν ([nα])}
)

× exp

(
∑

{[nα]}
a2 Tr{Uμ([nα])−1}

)
×
(
Φμ([nα]−1)†

)
. (6.6)

The advantage of this lattice phase factor approach to analyze the gluonic path integral,
eq.(6.2), is its allowance for an exact integration of the lattice gluon phase factor in both the
perturbative and the nonperturbative regimes. Let us show its usefulness by evaluating in
closed form eq.(6.6) in the leading limit of the number of colors and in the leading limit of
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strong coupling as in ([2] - Eq.(3.17)):

I[ψ, ψ̃] g2 →∞
Nc →∞

= lim
Nc→∞

∫
DH [Uμ([nα])]exp

(
−a2 ∑

{[nα]}
Tr(Uμ([nα])){Φμ([nα])−1})†

)

= exp

(Λ(a)
QCD/Nc

Nc
∑

{[nα ]}
Tr({φμ([nα])−1}{φμ([nα])−1}†

)
, (6.7)

where Λ(a)
QCD is the QCD strong-coupling phenomenological scale with dimension of inverse

area (the gluon nonperturbative condensate) which by its turn is lattice spacing dependent.
It is very important to remark that the Jacobian J of the variable change Uμ([nα]) →

Uμ([nα])+ 1 on the lattice functional integrals, Eqs. (6) and (7), is unity only at the contin-
uum limit a → 0 (or at large Nc) since it is explicitly given by the ratio

J(a) = ∏
([nμ])

{
det1/2(Mi j{Uμ([nα])+ 1})(a)

det1/2(Mi j{Uμ([nα])})(a)

}
(6.8)

and for a → 0 we have that (1+U†
μ ([nα]))→ 1. Here the Haar measure ∏[nα] D

H{Uμ([nα])}
on the group ∏[nα]U(Nc) follows from the metric tensor group on each factor U(Nc) [3]:

Mi j = Tr

(
U−1([nα])

∂
∂ti

U([nα])×U−1([nα])
∂
∂t j

U([nα])
)

(6.9a)

DH [Uμ([nα])] =∏
(i)

(dti det1/2[Mi j(t)]), (6.9b)

where the derivatives are with respect to the group parameters {ti}; i.e.,

Uμ([nα]= exp(itl([nμ])λl). (6.10)

The formal continuum limit a → 0 of the result, eq.(6.7), after a Fierz transformation,
leads to the following quartic fermionic action in the continuum:

Icontinuum[ψ, ψ̃] g2 →∞
Nc →∞

= exp

{
g2

F

Nc

∫
d4x[(ψ̄ψ)2−(ψ̄γ4ψ)2+

1
2
(ψ̄γμψ)2−1

2
(ψ̄γμγ5ψ)2](x)

}
.

(6.11)
Here the fermion/ic effective coupling constant g2

F is defined in the continuum by thee

formal limit g2
F = lim

a→0
Λ(a)

QCD · g2 and signaling the usual QCD dimensional transmutation

phenomenon.
After substituting eq.(6.11) into eq.(6.1) we get our proposed fermionization for quan-

tum chromodynamics in the very low-energy region with the gluon field U(Nc) integrated
out for large Nc in the sense of Ref. [2]. We remark that by introducing the Hubbard-
Stratonovich ansatz to linearize the quartic fermion interactions, we obtain the U(1) chiral
scalar and vectorial bosonized QCD [U(∞)] meson theory which improves that considered
in [4] which was deduced by using solely phenomenological guessing arguments:
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Z[σ+ γ5β,Jμ+γ5Ãμ]=DF [σ̂]DF [β̂]DF [Ĵμ]DF [Âμ]exp

(
−Nc

g2
F

∫
d4x[(

1
2
σ̂2+

1
2
β2+

1
2

Ĵ2
μ+

1
2

Â2
μ)](x)

)

×{detNc [iγ∂+(σ+ iσ̂)+ γ5(β+ iβ̂)+ γμ(Jμ+ iĴμ)+ γ5γμ(iÂμ+ Ãμ)]}. (6.12)

Note that in eq.(6.12), (σ̂+ iγ5β̂) and (Ĵμ + iγ5Âμ) should be identified with the U(1)
chiral scalar and vectorial low-energy physical meson fields. Let us comment that the dy-
namics for the meson fields above comes from the evaluation of the quark function determi-
nant [4]. In the limit of the heavy scalar meson mass (〈σ̂〉 → ∞, one can easily implement
the technique of [5] to get the full effective hadronic action in terms of 1/〈σ̂〉 power series
(see Chapter 18).

In the case of baryonlike field excitations of the form Ω(x) = εi jkψi(x)ψ j(x)ψk(x) it
is still posible to analyze them in our proposed framework. For this task we consider a
Hubbard-Stratonovich ansatz to write the generating functional for the baryonlike excitation
B(x): namely,

Z[B(x)]=
∫

DF [Δ]D f [λ]DF [Aμ]DF [ψ]DF([ψ]exp

(
−
∫

d4x{ψp[iγ
μ∂μδpq+iλpq+γμ(Aμ)qp]ψq}(x)

)

× exp

(
−

∫
d4x[B(x)εi jkψi(x)Δ jk(x)]

)
exp

(
−i

∫
d4x[λpq(x)Δqp(x)]

)
. (6.13)

where (p,q) ae U(Nc) indices and the auxiliary fields (Δ,λ) belong to the adjoint U(Nc)
representation.

After integrating out the gluon field Aμ(x) folloowing the steps leading to eq.(6.7) and
the quark field as in eq.(6.9), we get our proposed effective QCD-baryon field theory:

Z[B(x)]=
∫

DF [σ̂]DF [β̂]DF [Ĵμ]DF [Âμ]DF [Δ]DF [λ]

× exp

(
−Nc

g2
F

∫
d4x[

1
2
σ̂2 +

1
2
β̂2](x)+ [

1
2

Ĵ2
μ +

1
2

Â2
μ](x)

)

× exp

(∫
d4xTr(λΔ)(x)

)
det{[iγ∂+(σ̂+iγ5β̂)+γμ(Ĵμ+iγ5Âμ)]pq−iλpq}

× exp

{
−
∫

d4xd4yB(x)εi jk(x)[(iγ∂+(σ̂+iγ5β̂)+γμĴμ+iγμγ5Âμ−λ]−1
ii′ (x,y)εi′ j′k′Δ j′k′(y)B(y)

}
.

(6.14)

It is instructive to remark that eq.(6.14) indicates the impossibility to consider baryon
excitations in isolation from the meson excitations in our proposed bosonized effective QCD
field theory.

It is worth pointing out that strong-coupling corrections from the neglected gluon field
kinetic action in eq.(6.7) are straighforwardly implemented on the lattice by using the usual
quantum field theory perturbation theory with the external lattice gluon source coupling [2]:
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∑
[nμ]

Jμ([nα])Uμ([nα]);

I[ψ, ψ̃]Nc→∞ = lim
Jν([nα])→0

{
exp

[
− 1

4g2 ∑
([nα])

(
δ

δJμ([nα])
+ 1

)(
δ

δJν([nα +μ])
+ 1

)

×
(

δ
δJ+
μ ([nα]+ν)

+ 1
)(

δ
δJ†

ν([nα])
+ 1

)]
Ĩ[ψ, ψ̃] g2 →∞

Nc →∞

}
, (6.15)

where [see eq.(6.7)]

Ĩ[π, ψ̃] g2 →∞
Nc →∞ = exp

(Λ(a)
QCD ·a4

Nc
∑

{[nα]}
Tr{(Φμ+Jμ−1)([nα])(Φμ+Jμ−1)†([nα])}

)
. (6.16)

The associated 1/4g2 corrected fermionized QCD [U(∞)] effective theory will, thus,
be given by nonlocal current-quark correlation functions averaged with the leading Namu-
Jona-Lasinio quark field theory. eq.(6.11). Unfortunately, only at the limit of large mass
(see Chapter 18), it is posible to implement reliable approximate calculations useful for
nuclear physics at low evergy. Work on these applications for very low-energy nuclear
hadron dynamics will be left to the future endeavors of our readers in this subject.
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Chapter 7

A Connection between Fermionic
Strings and Quantum Gravity States
– A Loop Space Approach

7.1. Introduction

The dynamical formulation of Einstein General Relativity in terms of a new set of com-
plex SU(2) coordinates has opened new perspectives in the general problem of quantiza-
tion of the gravitation field by non-perturbative means. The new set of dynamical vari-
ables proposed by Ashtekar are the projection of the tetrads (the so called triads) on the
three-dimensional base manifold M of our cylindrical space-time M ×R added with the
four-dimensional spin connection for the left-handed spinor again restricted to the embed-
ded space-time base manifold M (the Ashtekar-Sen SU(2) connections) [1] and paralleling
successful procedure used to quantize canonically pure three-dimensional gravity [2].

The fundamental result obtained with this approach is related to the fact that it
is possible to canonically quantizes the Einstein classical action in the same way one
canonically quantizes others quantum fields [3]. As a consequence, the governing
Schörindger-Wheeler-Dewitt dynamical equations which emerges in such gravity gauge
field parametrization supports exactly highly non-trivial prospective explictly (regularized)
functional solutions [4].

In this chapter we intend to present in Section 7.3 a Loop Space-Path integral supporting
the fact that the formal continuum limit of a 3D Ising model, a Quantum Fermionic String on
the space-time base manifold M, is a (formal operatorial) solution of the Wheeler-De Witt
equation in the above mentioned Ashtekar-Sen parametrization of the Gravitation Einstein
field. We present too a propose of ours on a Loop geometrodynamical representation for
a kind of λϕ4 third-quantized geometrodynamical field theory of Einstein Gravitation in
terms of Ashtekar-Sen gauge fields.
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7.2. The Loop Space Approach for Quantum Gravity

Let us start our analysis by writing the governing wave equations in the following operato-
rial ordered form [5].

Ĉ[A]ψ[A] = εi jk δ2

δAi
μ(x)δA j

ν(x)

{[
Fk
μν(A(x))ψ[A]

]}
= 0 ; (7.1)

Ĉμ[A]ψ[A] =
δ

δAk
ν(x)

{
Fk
μν(A(x))ψ[A]

}
= 0 ; (7.2)

Qμ = Di

{
δ

δAi
μ(x)

ψ[A]

}
= 0 ; (7.3)

where we have considered in the usual operatorial-functional derivative form the Hamilto-
nian,diffeomorphism and Gauss law constraints respectively implemented in a functional
space of quantum gravitational states formed by wave functions ψ[A] [1].

At this point we come to the usefulness of possessing linear-functional field equations
by considering explicitly functional solutions for the set eq.(7.1)-eq.(7.3).

Let us therefore, consider the space of bosonic loops with a marked point x ∈ M and the
associated Gauge invariant Wilson Loop defined by a given Ashtekar gauge field configu-
ration Ai

μ(x).

W [Cxx] = Tr

(
PSU(2)

{
exp i

∮
Cxx

Ai
μ(X(σ)dXμ(σ)

})
; (7.4)

here the bosonic loop Cxx is explicitly parametrized by a continuous (in general everywhere
non-differentiable) periodic function Xμ(σ) = Xμ(σ+T ) and such that Xμ(T ) = Xμ(0) = xμ
(see refs.[6]–[7]).

Following refs [4], one shows that eq.(7.4) satisfies the diffeomorphism constraint,
namely (

δ
δAi

ν(x)

[
∂μAi

ν−∂νAi
μ+ εirsAr

μA
s
ν
]
(x)

)
W [Cxx]

+ Fi
μν(A(x))

(
δ

δAi
ν(x)

W [Cxx]
)

= 2× [(
∂x
μ+ εirsδsiAr

μ(x)
)

W [Cxx]

+
(

P
{

Fi
μν(A(X(0)) ·X ′ν(0)W [Cx(0)x(0)]

}]
= 2×

(
∂x
μ+

δ
δXμ(0)

)
W [Cxx] = 0 ; (7.5)

where we have the Migdal usual derivative relation for the marked Wilson Loop – note that
the loop orientability is responsible for the minus signal on the Wilson Loop marked point
derivative [6].

−∂x
μW [Cxx] = lim

σ→0

{
δ

δXμ(σ)
W [Cxx]

}
; (7.6)
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If one had used the usual Smolin factor ordering as given below instead of that of
Gambini-Pullin eq.(7.1)-eq.(7.3), one could not satisfy in a straightforward way the diffeo-
morphism constraint

Fi
μν(A(x))

δ
δAi

ν(x)
W [Cxx]

= P
{

Fμν(A(X(0))Ẋν(0)W [Cxx]
}

= P
{

Ẍμ(0)W [Cxx]
} �= 0 ; (7.7)

Note that we have assumed the validity of the Lorentz dynamical equation for the loops
Xμ(σ) (0 ≤ σ≤ T ) on the last line of eq.(7.7).

Also, the Schörindger-Wheeler-De Witt equation is solved by the marked point Wilson
Loop within the same functional derivative procedure. Firstly, we note that the Smolin and
Gambini-Pullin operator ordering coincides in the realm of the Wheeler-DeWitt equation.
Namely:

εi jk δ2

δAi
μ(x)δA j

ν(x)

{
Fk
μν(A(x))W [Cxx]

}

=

(
εi jk δ2

δAi
μ(x)δA j

ν(x)
Fk
μν(A(x))

)
W [Cxx]

+ εi jk

(
δ

δAi
μ(x)

Fk
μν(A(x))

)(
δW [Cxx]

δA j
ν(x)

)

+ εi jk

(
δ

δA j
ν(x)

Fk
μν(A(x))

)(
δW [Cxx]
δAi

μ(x)

)

+ εi jkFk
μν(A(x))

(
δ2

δAi
μ(x)δA j

ν(x)
W [Cxx]

)

= 0+ 0+ 0+ εi jkFk
μν(A(x))

δ2W [Cxx]

δAi
μ(x)δA j

ν(x)
; (7.8)

An important step should be implemented at this point of our analysis and related to a
loop regularization process. We propose to consider a weak form of the Wheeler-DeWitt
operatorial equation as expressed below

Ĉ(ε)[A] =
∫

M
dxdyδ(ε)(x− y)εi jkFk

μν(A(x))

(
δ2

δAi
μ(x)δA j

ν(y)

)
; (7.9)

here δ(ε)(x − y) is a C∞(M) regularization of the delta function on the space-time base
manifold M. Rigorously, one should consider eq.(7.9) in each local chart of M with the
usual induced volume associated to the flat metric of R4. Note that the validity of eq.(7.9)
(at least locally) comes from the supposed cylindrical topology of our (Euclidean) space-
time.
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Proceeding as usual one gets the following result

Ĉ(ε)[A]W [Cxx]

=
∫

M
dx

∫
M

dyδ(ε)(x− y)
{∮

Cxx

δ(x−X(σ))dXμ(σ)
∮

Cxx

δ(y−X(σ′))dXν(σ′)

×TrSU(2)P
{

Fk
μν(A(X(σ)))εi jkW [CX(0)X(σ′)]

λ jW [CX(σ′)X(σ)]λiW [CX(σ)X(T )]
}}

=
∮

Cxx

∮
Cxx

δ(ε)(X(σ)−X(σ′))dXμ(σ)dXν(σ′)

×TrSU(2)P
{

Fk
μν(A(X(σ)))εi jkW [CX(0)X(σ′)]

λ jW [CX(σ′)X(σ)]λiW [CX(σ)X(T )]
}

= 0 ; (7.10)

As a consequence, one should expect that the cut-off removing ε → 0 will not be a
difficult technical problem in the case of everywhere self-intersecting Brownian loops Cxx

[7]. Note that in the case of trivial self-intersections σ= σ′, the validity of eq.(7.10) comes
directly from the fact that dXμ(σ)dXν(σ) is a symmetric tensor on the spatial indexes (μ,ν)
and Fμν(A(X(σ)) is an antisymmetric tensor with respect to these same indexes. In the
general case of smooth paths with non-trivial self-intersection [1], one should makes the
loop restrictive hypothesis of the (μ,ν) symmetry of the complete bosonic loop space ob-
ject δ(ε)(X(σ)−X(σ′))dXμ(σ)dXν(σ′) [8,9], otherwise we can not obviously satisfy the
Wheeler-DeWitt equation – a common non-trivial fact in the Literature of Wilson Loop as
formal quantum states defined by smooth C∞ – differentiable paths! [1].

At this point we remark that all the governing equations of the theory eq(7.1)-eq(7.3)
are linear. As a consequence one can sum up over all closed Brownian loops Cxx (with a
fixed back-ground metric) in the following way (see second ref. on [6]).

Ω[Ai
μ] = −

∫
M

d3xμ

∫ ∞

0

dT
T

∫
Xμ(0)=Xμ(T )=xμ

DF [Xμ(σ)]e−
1
2

∫ T
0 (Ẋμ(σ))2dσW [Cxx]

= 〈det[∇A∇∗
A] ; (7.11a)

where one can see naturally the appearance of the functional determinant of Gauged-Klein-
Gordon operator as a result of this loop sum.

At this point we introduce Fermionic Loops – an alternative procedure –, which do
not have non-trivial spatial self-intersections on R3 – and representing now closed path –
trajectories of SU(2) Fermionic particles on the Wilson Loop eq.(7.4) [8].

Here the Fermionic closed loop CF
xx is described by a fermionic (Grassmanian) vector

poistion X (F)
μ (σ,θ) = Xμ(σ)+ iθψμ(σ), with Xμ(σ) the ordinary periodic (bosonic) position

coordinate and ψμ(σ) Grassman variables associated to intrinsic spin loop coordinates. The
Fermionic Gauge-Invariant Wilson Loop is given as (see section 1.3, chapter 1).

W [X (F)
μ (σ,θ)]= TrSU(2)

{
P

[
exp

(∫ T

0
dσ

∫
dθAμ(X

(F)
μ (σ,θ))

(
∂
∂σ

+ iθ
∂
∂σ

)
XF
μ (σ,θ)

)]}
;

(7.11b)
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we get as a result the following expression:

Ĉ(ε)[A]W [CF
xx]

=
∮

CF
xx

dσdθ
∮

CF
xx

dσ′dθ′DXμ
(F)(σ

′,θ′)DXν
(F)(σ,θ)(εi jk)δ(3)(Xμ

(F)(σ,θ)−Xμ
(F)(σ

′,θ′))δ(σ−σ′)

×TrSU(2)P
{

Fk
μν

(
A(X (F)(σ,θ))

)
W

[
CF

X(0)X(σ′)

]
λ jW

[
CF

X(σ′)X(σ)

]
λiW

[
CF

X(σ)X(T)

]
} ; (7.11c)

By proceeding analogously as in the bosonic loop case eq.(7.11a), we obtain as a (for-
mal) operatorial quantum state of Gravity, the functional determinant of the Dirac Operator
on M (with a fixed back-ground metric associated to the embedding of M on R4! which is
not relevant in our study!) as another formal Einstein gravitation quantum state to be used
in the analysis which follows [11], an important result by itself.

Ω[Ai
μ(x)] = 〈det[�D(A) �D∗(A)] ; (7.12)

We note that the others constraints eq.(7.2)-eq.(7.3) are satisfied in a straightforward
manner in the same way one verifies them for the Bosonic Loop case [(eq.(7.5)-eq.(7.6))
and note the explicitly gauge invariance of the Fermionic Wilson Loop [8]].

Let us present our proposed Loop Space argument that one can obtain the continuum
version of Ising models on M from the quantum gravity state 3D fermionic determinant
eq.(7.12).

In order to see this formal connection let us consider an ensemble of continuous surfaces
Σ on M and the restriction of the Ashtekar-Sen SU(2) connection to each surface Σ. Since
the Ashtekar-Sen connection is the M-restriction of the four-dimensional left-handed spin
connection, one can see that the Σ-restricted quantum gravity state can be re-written as a
fermionic path-integral of covariant two-dimensional fermions now defined on the surface
Σ, namely (see section 7.2)(

Z(n)[Ai
μ]
)

= exp
(
Ω̃Σ[Ai

μ(x)]
)

=
∫

d(cov)[Σμ(ξ,σ)]dcov[ψ(n)(ξ,σ)]

× exp

(
− 1

2πα′

∫
dξdσ

(√
ggab∂aΣμ∂bΣμ)(ξ,σ)

))

× exp

(
−1

2

∫
dξdσ

(√
gψ(n)

μ (γ∇̃a)ψ
(n)
μ

)
(ξ,σ)

)
; (7.13)

The main point of our argument on the connection of the string theory eq.(7.13) and the
Ising model on M is basicaly related to the fact that the two-dimensional spin connection on
the 2D-fermionic action eq.(7.13) is exactly given by the restriction of the four-dimensional
spin connection to the surface Σ or – in an equivalently geometrical way – the restriction of
the three-dimensional Ashtekar-Sen connection to the surface Σ!.

Let us now give a Loop Space argument that the string theory eq.(7.13) repre-
sents a 3D Ising model at a formal replica limit on the geometrical fermionic degrees
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{ψ(n)
μ , ψ̄(n)

μ }1≤n≤N . This can easily be seen by integrating out these geometrical fermion
fields, writing the resulting surface two-dimensional determinant in terms of closed loops
{CL(t),L = 1,2;CL(t) ∈ Σ} on the string world-sheet Σ by using the replica limit together
with a surface proper-time representation for 2D fermion determinant [9]

lim
N→0

(
Z(N)[Ai

μ]−1

N

)
= 〈det[∇̃a]

= ∑
{CL(t)}

[
TrSU(2) exp

(
i
∫

CL

ωL(CL)dCL
)]

; (7.14)

At this point one verifies that the Wilson Loop on the string surface as given by eq.(7.14)
and defined by the two-dimensional spin connection ωL coincides with the Ising model sign
factor of Sedrakyan and Kavalov [9] which is expected to underlying the continuum string
representation of the partition functional of the three-dimensional Ising model on a regular
lattice in R3 at the critical point, namely

Zising[β→ βcrit] =

lim
β→βcrit

⎧⎨
⎩(coshβ)N ∑

{Σ̃}CZ3

{
exp

[
−A(Σ̃) ln

(
1

tanhβ

)]}
Φ[C̃(Σ̃)]

⎫⎬
⎭ ; (7.15)

where the sum in the above written equation is defined over the set of all closed two-
dimensional lattice surfaces Σ̃CZ3 with a weight given by the (lattice) area of Σ̃; N is the
number of the plaquettes, β = J/kT denotes the ratio of the Ising hope parameter and the
temperature. The presence of the Ising wheight Φ[C̃(Σ̃)] inside the partition functional ex-
pression eq.(7.15) is the well-known sign factor defined on the manifold of the lines of
self-intersection C̃(Σ̃) appearing on the surface Σ̃ with the explicitly Polyakov-Sedrakyan-
Kavalov expression Φ[C̃(Σ̃)] = exp{iπlength[C̃(Σ̃)]}.

As a consequence of the above made remarks, one can see that at the replica limit
of N → 0 eq.(7.14) should be expected to coincide at the critical point of the partition
functional eq.(7.15), since the phase factor inside eq.(7.14) is the continuum version of the
Ising model factor Φ[C̃(Σ̃)] [9].

This completes the exposition of our Loop Space argument that critical Ising models on
M may be relevant quantum states to understand the new physics of quantum gravity when
parametrized by the Gauge field-like connections of Ashtekar-Sen.

All the above made analysis would be a mathematical rigorous proof if one had a math-
ematical result that Fermionic Loops (Grassmanian Wiener Trajectories) do not have non-
trivial space-time self-intersections on eq.(7.11c) (see next chapter 8 and chapter 9).

On the other hand this formal mathematical fact about the nonexistence of non-trivial
self-intersection fermionic paths that leads naturally to the triviality of the Thirring model
(a “λϕ4” – Fermion Field Theory!) in space-times with dimension greater than 2 (see
chapter 4). Finally, let us comment that it is expected that the Ashtekar-Sen connections
defining the above studied quantum gravity states are distributional objects with a functional
measure given by a σ-model like path integral with a scalar intrinsic field E(x, t) on M×R,
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the geometrodynamical anologous of the σ-dimensional manifold particle covariant Brink-
Howe-Polyakov path integral, namely

dμ[Ai
β] = ∏

x∈M
t∈[0,∞]

3

∏
i=1

[
d(Ai

β(x, t)d(E(x, t))
]

× exp

{
− 1

16πG

∫ ∞

0
dt

∫
M

d3x(E(x, t))−1

×
[(

∂
dt

Ai,μM
μi,ν j[A]

∂
∂t

A j,ν

)
(x, t)

]}

× exp

{
−μ

∫ ∞

0
dt

∫
M

d3xE(x, t)
}

; (7.16)

where the invariant metric on the Wheeler-DeWitt super space of Ashtekar-Sen connections
is given explicity by

Mμi,ν j[A] = (b(A))−1 (JμiJν j − Jμ jJνi)(A) ; (7.17)

with

Jμa(A) =
1
2
εμαρFa

αρ(A) ; (7.18)

and
b(A) = det(J(A)μa); (7.19)

Work on the averaged, Wilson Loop eq.(7.4) with the functional path space measure
eq.(7.16) – expected to be relevant to analyze the matter interaction with Quantum Gravity
is presented in next section.

7.3. The Wheeler - De Witt Geometrodynamical Propagator

The starting point in Wheeler-De Witt Geometrodynamics is the Probability Amplitude for
metrics propagation in a cylindrical Space Time R3× [0,T ], the so called Wheeler Universe

G[3gIN ;3 gOUT ] =
∫ 3gOUT

3gIN
dμ[hμν]exp[−S(hμν)] (7.20)

where the integration over the four metrics Functional Space on the cylinder R3 × [0,T ]
is implemented with the Boundary conditions that the metric field hμν(x, t) induces on
the Cylinder Boundaries the Classically Observed metrics 3gIN(x) and 3gOUT (x) re-
spectivelly. The Covariant Functional measure averaged with the Einstein S(hμν) =∫

R3×[0,T ] d
3xdt(

√
gR(g)) is given explicitly in ref.4.

Unfortunatelly the use of eq.(7.20) in terms of metrics variables is difficulted by the
“Conformal Factor Problem” in the Euclidean Framework. In order to overcome such diffi-
culty I follow section 7.2 by using from the begining, the Astekar Variables to describe the
Gometrodynamical Propagation.
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Let me thus, consider Einstein Gravitation Theory Parametrized by the SU(2) Three-
Dimensional Astekar - Sen connection Aa

μ(x, t) associated to the Projected Spin Connection
on the Space - Time Three - Dimensional Boundaries.

Aa,IN
μ (x) = −iω0a

μ (x,0)+
1
2
εa

biω
bi
μ (x,0) (7.21)

Aa,OUT
μ (x) = −iω0a

μ (x,T )+
1
2
εa

biω
bi
μ (x,T ) (7.22)

An appropriate action on the Functional Space of Astekar-Sen connections is proposed
by myself to be given explicitly by a slight modification of that proposed in chapter 1. My
proposed action is given by a covariant σ-model like Path Integral with a scalar intrinsic
field E(x, t) on R3× [0,T ]. Here μ2 denotes a scalar “mass” parameter which my be vanish-
ing (massless Wheeler-Universes).

Sμ2 [Aa
μ(x, t),E(x, t)] =

1
16πG

∫ T

0
dt

∫
R3

d3x(E(x, t))−1

[(
∂
∂t

Aa,μ

)
Gμa,νb[A]

(
∂
∂t

)
Ab,ν

]
+μ2

∫ T

0
dt

∫
R3

d3xE(x, t), (7.23)

where the invariant metric on the Wheeler-de Witt superspace of Astekar connections is
given by

Gμa,νb[A] = (b(A))−1(JμaJνb − JμbJνa)(A), (7.24)

with

Jμa(A) =
1
2
∈μαρ Fa

αρ(A) (7.25)

and
b(A) = det(J(A))μ;a. (7.26)

My proposed quantum geometrodynamical propagator will be given now by the follow-
ing formal path integral:

G[AIN ,AOUT ] =
∫ Aa

μ(x,T )=Aa,OUT
μ (x)

Aa
μ(x,0)=Aa

μ(x,0)=Aa,IN
μ (x)

dINV (Aa
μ(x, t))×

∫ (
∏

(x,t)∈R3×[0,T ]
(dE(x, t))

)
exp(−Sμ2 [Aa

μ;E]) (7.27)

where the invariant functional measure over the Astekar-Sen connections is given by the
invariant functional metric

dS2
INV =

∫
R3×[0,T ]

d3xdt[(δAμ,a)Gμa,νb[A](δAν,b)](x, t). (7.28)

In order to show that the geometrodynamical propagator equation (7.27) satisfies the
Wheeler-de Witt equation, I follow our procedure to deduce the functional wave equations
from geometrical path integrals by exploiting the effective functional translation invariance
on the functional space of the scalar intrinsic metrics (E(x, t)) at the boundary t → 0+
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(chapter 9). As a consequence, we have that the propagator equation (7.27) satisfies the
Wheeler-de Witt equation with the “mass” parameter μ2.

∈abc Fc
μν(A

IN)(x)
δ2

δAa,IN
μ (x)δAb,IN

ν (x)
G(AIN ;AOUT ) =

= −μ2G(AIN ;AOUT )+δ(F)(AIN,a
μ −AOUT,a

ν ), (7.29)

where we have used the Enclidean commutation relation[(
Gμa,νb[A]

E
×
(
∂
∂t

Aν,b

))
(x, t);Aμ,a(x′, t)

]
= δ(3)(x− x′). (7.30)

It is instructive to remark that the classical canonical momentum written in eq. (7.30)
is given by the Schrödinger functional representation in the euclidean quantum-mechanical
equation (7.29)

Πμa(x) =
δ

δAa,IN
μ (x)

(7.31)

It is worth pointing out that the usual covariant Polyakov path integral for Klein-Gordon
particles may be considered as the 0-dimensional reduction of the geometrodynamical prop-
agator equation (7.27).

At this point we remark that by fixing the gauge E(x, t) = E
μ2 , with μ2 the “mass” param-

eter, we arrive at the analogous proper-time Schwinger representation for this geometrody-
namical quantum gravity propagator

GẼ [AIN ,AOUT ] =
∫ ∞

0
dte−(Ẽt) ×

∫
dINV (Aa

μ)exp(−S[Aa
μ(x, t)]). (7.32)

where E = (E,μ2)× vol(R3) is the renormalized mass parameter in the Schwinger Proper-
Time representation.

In the next we will use the proper-time-dependent propagator given below as usually is
done in the Symanzik’s loop space approach for quantum field theories (chapter 1) to write
a third-quantized theory for gravitation Einstein theory in terms of Astekar-Sen variables.

G[AIN ,AOUT ;T ] =
∫ Aa

μ(x,T )=Aa,OUT
μ

Aa
μ(x,0)=Aa,IN

μ (x)
dINV (Aa

μ)×

× exp

{
− 1

16πG

∫ T

0
dt

∫
R3

[(
∂
∂t

Aa,μ

)
×Gμa,νb[A]×

(
∂
∂t

Aν,b

)]
(x, t)

}
. (7.33)

Unfortunatelly exactly solutions for eq.(7.29) with μ2 �= 0 or eq.(7.14) were not found
yet. However its σ-like structure and (SU(2) Gauge Invariance may afford to truncated
aproximate solutions as usually done for the Wheeler-De Witt equations by means of the
Mini-Super Space Ansatz. Finally let me comment on the introduction of a Quantized
Matter Field represented by a massless field φ(x, t) on the Space Time.

By considering the effect of the introduction of this quantized field as a flucturation
on the Geometrodynamical Propagator eq.(7.27) one should consider the following func-
tional representing the interaction of this massless quantized matter and the Astekar-Sen
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connection as one can easily see by making E(x, t) variations

SINT [Aa
μ;E,ϕ] =

∫ T

0
dt

∫
R3

d3x

{[
ϕ
(
− ∂
∂t

(
E
∂
∂t

))
ϕ
]
(x, t) +

+
(
ϕ
[
∂μ

(
1
E

Ga,μ,bρ[A]
∂
∂t

Ab,ρ×Gμσ,aν[A] · ∂
∂t

Aσμ

)
∂ν
]
ϕ
)

(x, t)
}

(7.34)

Now the effect on integrating at the scalar matter field in eq.(7.33) is the appearence of the
further effective action to be added on the σ-like action of our Proposed Geometrodynami-
cal Propagator.

SEFF [Aa
μ,E,T ] = −1

2
〈detF

{
− ∂
∂t

(
E
∂
∂t

)
+∂μ

(
1
E

Ga,μ,bF [A]
∂
∂t

Aρb ×Gμσ
aν [A]

∂
∂t

Aσμ

)
∂ν
}

(7.35)
The coupling with (Weyl) Fermionic Matter is straight forward and leading to the Left-

Handed Fermionic Functional determinant in the presence of the Astekar-Sen connection
Aa
μ(x, t).

The joint probability for the massless field propagator in the presence of a fluctuating
geometry parametrized by the Astekar-Sen connection is given by

G[AIN
μ ,AOUT

μ ;〈ϕ(x1, t1)ϕ(x2, t2)〉] =
∫ Aa

μ(x,+∞)=Aa,OUT
μ

Aa
μ(x,−∞)=Aa,IN

μ

dINV [Aa
μ]×

exp

{
− 1

16πG

∫ +∞

−∞
dt

∫
R3

d3x×

×
(

1
E(x, t)

×
(
∂
∂t

Aa,μ

)
Gμa,νb[A]

(
∂
∂t

Aμ,b

)
(x, t)

)
+μ2

∫ +∞

−∞
dt

∫
R3

d3xE(x, t)
}
×

×det−
1
2

[
− ∂
∂t

(
E
∂
∂t

)
+∂μ

(
1
E

Gaμ,bρ[A]
∂
∂t

Aμ,b ×Gμσ
aν [A]× ∂

∂t
∂
∂t

Aσ,μ

)
∂ν
]
×

× lim
J(x,t)→0

δ
δJ(x1, t1)

δ
δJ(x2, t2)

× exp

{
−1

2

∫ +∞

−∞
dtdt ′

∫
R3

d3xd3y×{
EJηabcεμνρ

(
Gaμ,b′ρ′ ∂

∂t
Ap′,b′ ×Gbν,b′′ρ′′ ∂

∂t
Ap′′,b′′ ×Gcρ,b′′′ρ′′′ ∂

∂t
Ap′′′,b′′′

)}
(x, t)×

[
− ∂
∂t

(
E
∂
∂t

)
+∂μ

(
1
E

Gaμ,bρ[A]
∂
∂t

Aρ,bGμσ
aν

∂
∂t

Aσμ

)
∂ν
}−1

((x, t),(y, t))×{
EJηabcεμνρ

(
Gaμ,b′ρ′ ∂

∂t
Ap′,b′ ×Gbν,b′′ρ′′ ∂

∂t
Aρ′′,b′′G

cρ;b′′′ρ′′′ ∂
∂t

Aρ′′′,b′′′

)
(y, t ′)

}
(7.36)

7.4. A λφ4 Geometrodynamical Field Theory for Quantum
Gravity

Let me start the analysis by considering the generating functional of the following ge-
ometrodynamical field path integral as the simplest generalization for quantum gravity of a
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similar well-defined quantum field theory path integral of strings and particles [6]

Z[J(Z)] =
∫

DF(φ[A])×

×exp

[
−

∫
dν(A)φ[A]×

(∫
d3x

(
∈abc Fc

μν(A)
δ2

δAa
μδAb

ν

)
(x)

)
φ[A]

}
×

×exp

{
−λ

∫
d3xd3y

∫
dν(A)dν(Ā)(φ2[A(x)](φ2[Ā(y)])×δ(3)(Aμ(x)− Āμ(y)

}

×exp

{
−

∫
dν(A)J(A)φ[A]

}
. (7.37)

The notation is as follows: i) The quantum gravity third-quantized field is given by
a functional φ[A] defined over the space of all Astekar-Sen connections configurations
M = {Aa

μ(x);x ∈ R3}. The sum over the functional space M is defined by the gauge and
diffeomorphism invariant and topological non-trivial path integral of a Chern-Simons field
theory on the Astekar-Sen connections

dν(A) =
∫ (

∏
x∈R3

dAa
μ(x)

)
× exp

{
−

∫
d3x(A∧dA +

2
3

A∧A∧A)(x)
}

. (7.38)

ii) The third quantized functional measure in eq. (7.37) is given formally by the usual
Feynman product measure

DF(φ[A]) = ∏
A∈M

dφ[A]. (7.39)

iii) The λφ4-like interaction vertex is given by a self-avoiding geometrodynamical interac-
tion among the Astekar-Sen field configurations in the extrinsic space R3

λ
3

∑
a=1

δ(3)(Aa
μ(x)− Āa

μ(y)). (7.40)

The proposed interaction vertex was defined in such a way that it allows the replacement
of the Four Universe interaction in eq.(7.37) by an independent interaction of each Astekar-
Sen connection with an extrinsic triplet of Gaussian stochastic field W a(x) followed by an
average over W a. A similar procedure is well known in the many-body and many-random
surface path integral quantum field theory. So, we can write eq.(7.37) in the following form

Z[J(A)] =
〈∫

DF(φ[A])× exp

{
−

∫
dν(A)

[
φ[A]

(
L(A)−

− iλ
∫

d3x

(
3

∑
a=1

W a(Aa
μ)

))
φ[A]+ J(A)φ[A]

]]〉
W

. (7.41)

Here, W a(Aa) means the external a-component of the triplet of the external stochastic
field {W a} projected on the Astekar-Sen connection {Aa

μ}, namely

W a(Aa) = W a(Aa
1(x),A

a
2(x),A

a
3(x)), (7.42)
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and has the white-noise stochastic correlation function〈
W a(xμ)W b(yν)

〉
= δ(3)(xμ− yμ)δab. (7.43)

The L(A) operator on the functional space of the universe field is the Wheeler-de Witt
operator defining the quadratic action in eq. (7.41).

In the free case λ = 0. The third-quantized gravitation path integral equation (7.37)is
exactly soluble with the following generating functional:

Z[J(A)]
Z[0]

= exp

⎧⎨
⎩+

1
2

∫
dν(A)dν(Ā)J(A)

(∫
d3x ∈abc Fc

μν(A)
δ2

δAa
μδAb

ν

)−1

(A, Ā)J(Ā)

⎫⎬
⎭ .

(7.44)
Here the functional inverse of the Wheeler-de Witt operator is given explicitly by the

geometrodynamical propagator equation (7.32) with Ẽ = 0

(∫
d3x ∈abc Fc

μν(A)
δ2

δAa
μδAb

ν

)−1

(A, Ā) =
∫ ∞

0
dT G[A, Ā,T ]. (7.45)

In order to reformulate the third-quantized gravitation field theory as a dynamics of self-
avoiding geometrodynamical propagators, we evaluate formally the Gaussian φ[A] func-
tional path integral in eq.(7.37) with the following result

Z[J(A)] =

〈
det−

1
2

[∫
R3

d3x ∈abc Fc
μν(A)

δ2

δAa
μδAb

ν
+ iλ

(
3

∑
a=1

W a(Aa(x))

)]
×

× exp

{
+

1
2

∫
dν(A)dν(Ā)× J(A)

[∫
R3

d3x ∈abc Fc
μν(A)

δ2

δAa
μδAb

ν
+

iλ

(
3

∑
a=1

W a(Aa
μ(x))

)]−1

(A, Ā)× J(Ā)
}〉

(7.46)

Let us follow our previous studies implemented for particles and strings in previous
chapters by defining the functional determinant of the Wheeler-de Witt operator by the
proper-time technique

− 1
2

logdet

[
L(A)+ iλ

∫
R3

d3x

(
3

∑
a=1

W a(Aa
μ(x))

)]
=

=
∫ +∞

0

dT
T

{∫
dν(A)dν(Ā)δ(F)(A− Ā) ×

×
〈

A|exp

[
−T

(
L(A)+ iλd3x

(
3

∑
a=1

W a(Aa
μ(x))

))]
|Ā
〉}

. (7.47)
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with the geometrodynamical propagator (see eq.(7.33) in the presence of the extrinsic po-
tential {W a

μ (x)} which is given explicitly by the path integral below〈
A|exp

[
−T (L(A))+ iλ

∫
R3

d3x

(
3

∑
a=1

W a(Aa
μ(x))

)]
|Ā
〉

=

=
∫

dINV [Ba
μ(x, t)]exp

{
− 1

16πG

∫ T

0
dt

∫
R3

d3x[(
∂
∂t

Ba,μ

)
×Gμa,νb[B]

(
∂
∂t

Bb,ν

)]
(x, t)

}
×

× exp

[
−iλ

∫ T

0
dt

∫
R3

d3x

(
3

∑
a=1

W a(Ba
μ(x, t))

)]]
. (7.48)

By substituting eq.(7.48) and eq.(7.47) into eq.(7.46) and making a loop expansion of
the functional determinant, we obtain eq.(7.37) as a theory of an ensemble of geometrody-
namical propagators interacting with the extrinsic Gaussian stochastic field {W a(x)}. The
Gaussian average

〈〉
w may be straightforwardly evaluated at each loop expansion produc-

ing the self-avoiding interaction among the geometrodynamical propagators (the Wheeler
quantum universes) and leading to the picture of joining and splitting of these Wheeler Uni-
verses as necessary for the description of the Universe in its Space-Time Third Quantized
form picture of Wheeler. For instance, by neglecting the functional determinant in eq.(7.46)
we have the following expression for the geometrodynamical third quantized propagator:〈

Φ[Aa,IN
μ ]Φ[Aa,OUT

μ ]
〉(0)

=∫ ∞

0
dT ×

∫
Ba
μ(x,0)=A;Ba

μ(x,T )=Ā
dINV [Ba

μ(x, t)]×

× exp

{
− 1

16πG

∫ T

0
dt

∫
R3

d3x

[(
∂
∂t

Ba,μ

)
Gμa,νb[B]

(
∂
∂t

Bν,b

)]
(x, t)

}
×

× exp

{
−λ2

2

∫ T

0
dt

∫ T

0
dt ′

∫
R3

d3xd3y

(
3

∑
a=1

δ(3)(Ba
μ(x, t)− (Ba

μ(y, t
′)))

)}
. (7.49)

Next corrections will involve self-avoiding interactions among differents Wheeler Uni-
verses associated to different Astekar-Sen connections associated to different Geometro-
dynamical Propagators appearing from the functional determinant loop expansion equation
(7.47).

Finally, I comment that calculations will be done sucessfully only if one is able to handle
correctly the Gometrodynamical Propagator eq.(7.33) on eq.(7.36) and, thus, proceed to
generalized for this Quantum gravity case the analogous framework used in the Theory of
Random Lines and Surfaces.

Appendix A

In this short appendix we call the reader attention that there are (formal) states satisfying the
Wheeler-DeWitt equation (7.1), the diffeomorphism constraint eq.(7.2), but not the gauge-
invariant Gauss law eq.(7.3).
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For instance, the non-gauge invariant “mass term” wave functional below

M[A] = exp

{
−1

2

∫
M

d3xAi
μ(δ

i1δ j1δμν)A j
ν

}
; (A1)

satifies the Wheeler-DeWitt equation, since(
εi jkFk

μν(A)(x)
δ2

δAi
μ(x)δA j

ν(y)
M[A]

)
∼ ε11k(· · · ) = 0; (A2)

and the diffeomorphism constraint

δ
δAi

ν(x)

(
Fi
μν(A)M[A]

)
= ∂x

μM[A]

+ Fi
μν[A]M[A]

(
−1

2
A1
μ(x)

)
δi1δνμ

= 0− 1
2

A1
μ(x) ·Fμμ(A) = 0; (A3)

At this point and closely related to the above made remark it is worth call the reader
attention that the 3D-fermionic functional determinant with a mass term still satisfies the
Wheeler-DeWitt and the diffeomorhism constraint. However, at the limit of large mass
m →∞, one can see the appearance of a complete cut-off dependent mass term like eq.(A1),
added with Chern-Simon terms and higher order terms of the strenght field Fαβ(A(x)) in the
full quantum state [12]. As a result one can argue that this “fermion classical limit” of large
mass may be equivalent to the appearance of a dynamical cosmological constant, if one
neglects the gauge-violating quantum induced mass term [1].
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Chapter 8

A Fermionic Loop Wave Equation
for Quantum Chromodynamics at
Nc = +∞

8.1. Introduction

In last decades new quantization of Yang-Mills gauge fields has been pursued by several
authors, which seems appropriate for handling its confining phase.It makes use of the so-
called “quantum Wilson loop” as dynamical variable (see ref. [1] for an extensive review)
which has the meaning of being the probability amplitude of a bosonic (Klein-Gordon)
colored particle propagating along a closed world line Xμ(s) and in the presence of the
vacuum of a pure gauge theory.

A closed wave equation for this dynamical variable at the ’t Hooft topological limit was
derived: the Migdal-Makeenko equation [1,2] which supports a string solution (see Chapter
9).

In this chapter, we consider the case that the above particle possesses Dirac spin degrees
by making use of the pseudo-classical mechanics formalism as exposed in ref. [4].

8.2. The Fermionic Loop Wave Equation

The basic dynamical variable in the loop space formulation for euclidean (QCD)Nc at
Nc = +∞ is the amplitude for a quark loop propagating in the vacuum of a pure Yang-
Mills. At this point our idea is implemented. Since the quark possesses Dirac spin degrees
of freedom, its (euclidean) world line should reveals the existence of these fermionic de-
grees. A natural framework to implement this idea is pseudo-classical mechanics [4-6]
where the world line of a spinning particle is described by a fermionic vector position
X (F)
μ (s,θ) = X (B)

μ (s)+ iθψμ(s) with s being the evolution parameter, X (B)
μ (s) the ordinary

(bosonic) position coordinate and ψμ(s) are Grassman variables associated to the spin co-
ordinates.

In this framework, the quark loop amplitude associated to a given spinning closed world
line {X (F)

μ (s,θ); 0 ≤ s ≤ 1; X (B)
μ (0) = X (B)

μ (1) = X ∈ RD} in the presence of the vacuum



138 Luiz C.L. Botelho

of a pure U(N) Yang-Mills gauge theory is proportional to the following dynamical factor
(the fermionic version of the usual (bosonic) Wilson Loop) (see eq. (25) in ref. [4]):

W (F)[X (F)
μ (s,θ)] =

〈
Tr

{
P

[
exp

(∫ 1

0
ds

∫
dθAμ(X

(F)
μ (s,θ))DX (F)

μ (s,θ)
)]}〉

(8.1)

where Aμ(x) denotes the usual U(N) Yang-Mills potential, P the path ordering of the

U(N) matrix indices of the exponent in (8.1) along the bosonic path X (B)
μ (s) and D =

∂/∂θ+ iθ∂/∂s the covariant derivative. The quantum average 〈 〉 is defined by the parti-
tion functional of the pure Yang-Mills theory (see Chapter 1).

An important remark to be used below is that (8.1) possesses the fermionic mixing
symmetry [4]

δX (B)
μ (s) = iεψμ(s), δψμ(s) = εX (B)

μ (s), (8.2)

with ε a grassmanian spinor parameter.
We note that by realizing the θ-integration in the phase in (8.1) we get in addition to the

usual term
∫ 1

0 dsAμ(X
(B)
μ (s))dX (B)(s)), a term responsible for the interaction between the

spin degrees and the field strength, namely: 1
2 i[ψμ,ψν]+(s)Fμν(X

(B)
μ (s)).

In order to deduce a closed functional for the fermionic Wilson Loop (8.1) we shift the
Aμ(x)-variable and get the result [2]

1
2g2N

〈
Tr

{
P

[
(DμFμν)(x)exp

(∫ 1

0
dθAμ(X

(F)
μ (s,θ))DX (F)

μ (s,θ)
)]}〉

=
∫ 1

0
dσ

∫
dθδ(D)(X (F)

μ (σ,θ)−x)DXν(σ,θ)
〈

Tr

{
P

[
exp

(∫ σ

0
ds

∫
dθAμ(X

(F)
μ (s,θ))DX (F)

μ (s,θ)
)]}〉

×
〈

Tr

{
P

[
exp

(∫ 1

σ
ds

∫
dθAμ(X

(F)
μ (s,θ))DX (F)

μ (s,θ)
)]}〉

. (8.3)

Now we note the crucial fact that we have here a very irregular path X (B)
μ (s) which in-

tercepts itself at every point [7] and, further, ensures the gauge invariance of each fermionic
Wu-Yang factor on the right-hand side eq.(8.3). As a consequence of this remark, the rela-
tion (8.3) takes a closed form at the ’t Hooft limit Nc →∞ (limNc→∞ g2Nc = λ2) (see Chapter
4).

〈(Tr{P{(DμFμν)(x)ψ[X (F)
μ (s,θ);0 ≤ s ≤ 1]}}〉

= 2λ2
∫ 1

0
dσ

∫
dθδ(D)(X (F)

μ (σ,θ)−X)DX (F)
ν (σ,θ)〈ψ[X (F)

μ (s,θ);0 ≤ s ≤ σ]〉〈ψ[X (F)
μ (s,θ);σ≤ s ≤ 1]〉,

(8.4)

where we have introduced a more compact notation for the fermionic Wu-Yang factors in
eq.(8.3)

ψ[X (F)
μ (s,θ);σ1 ≤ s ≤ σ2] = P

[
exp

(∫ σ2

σ1

ds
∫

dθAμ(X
(F)
μ (s,θ))DX (F)

μ (s,θ)
)]

. (8.5)

At this point of the analysis it is convenient to multiply both sides of eq.(8.4) by the
fermionic current density jμ(x) = δ(D)(x−X (F)

μ (σ̃, θ̃)DXμ(σ̃, θ̃) and integrate out the result
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in relation to the space-time variable x. So we get

〈Tr{P{(DμFμν)(X
(F)
μ (σ̃, θ̃)ψ[X (F)

μ (s,θ;0 ≤ s ≤ 1]}}〉

= 2λ
∫ 1

0
dσ

∫
dθδ(D)(X (F)

μ (σ,θ)−X (F)
μ (σ̃, θ̃))DX (F)

μ (σ,θ)DX (F)
ν (σ̃, θ̃)

×〈ψ[X (F)
μ (s,θ);0 ≤ s ≤ σ]〉〈ψ[X (F)

μ (s,θ);σ ≤ s ≤ 1]〉. (8.6)

In order to write the left-hand side of relation (8.6) in a form similar to the usual string
equations, we note the relations

δTr(ψ[X (F)
μ (s,θ);0 ≤ s ≤ σ])/δX (F)

μ (σ̃, θ̃)

= Tr{P{Fμν(X
(F)
μ (σ̃, θ̃))DX (F)

ν (σ̃, θ̃)ψ[X (F)
μ (s,θ);θ ≤ s ≤ σ]}}, (8.7)

and consequently (compare with the similar bosonic relation in Chapter 9:

∂2 Tr(ψ[X (F)
μ (s,θ);0 ≤ s ≤ 1])/∂2 X (F)

μ (σ̃, θ̃)

= lim
ζ→0+

∫ +ζ

−ζ
dζ

δ2

δX (F)
μ (σ̃+ 1

2ζ, θ̃)δX (F)
μ (σ̃− 1

2ζ; θ̃)
Tr(ψ]X (F)

μ (s,θ);0 ≤ s ≤ 1])

= Tr{P{(DμFμν)(X
(F)
μ (σ̃, θ̃))DX (F)

ν (σ̃, θ̃)ψ[X (F)
μ (s,θ);0 ≤ s ≤ 1]}}. (8.8)

So we can rewrite eq.(8.6) in the form

∂2W (F)[X (F)
μ (s,θ),0 ≤ s ≤ 1]/∂X2

μ (σ̃, θ̃)

2λ
∫ 1

0
dσ

∫
dθδ(D)(X (F)

μ (σ,θ)−X (F)
μ (σ̃, θ̃))DX (F)

μ (σ,θ)DX (F)
μ DX (F)

μ (σ̃, θ̃)

×W (F)[X (F)
μ (s,θ),0 ≤ s ≤ σ] ·W (F)[X (F)

μ (s,θ);σ ≤ s ≤ 1]. (8.9)

This is the proposed fermionic loop wave equation for QCD at Nc = +∞.
Note the initial condition imposed on the solutions of eq.(8.9) and related to the asymp-

totic freedom of QCD
W (F)[X (F)

μ (s,θ) ≡ 0] = 1. (8.10)

Since our equation is deduced formally, the important problem of its regularization and
renormalization shows up. At first, we note that in loop dynamics the paths X (B)

μ (s) are very
irregular geometric objects in euclidean space, so all Feynman diagrammatic perturbative
analyses break down [8]. A probable useful scheme should be the introduction of its discrete
version, as in ref. [9], and the continuous limit is taken together with other kinematical
factors [4].

Another more interesting point of view is to solve formally eqs.(8.9), (8.10) in terms
of the functional integral of a string theory (see Chapter 9). Due to the fermionic mixing
symmetry (8.2) of the fermionic Wilson Loop (8.1), it appears naturally to consider as a
string ansatz a fermionic string [10, 11] with all of its good spectral features (Chapter 16).

To summarize, we propose a fermionic loop wave function for QCD at Nc = +∞ which
supports hope for the existence of a QCD fermionic string ansatz (restricted to its bosonic
sector as in Chapter 16).
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Chapter 9

String Wave Equations in Polyakov’s
Path Integral Framework

9.1. Introduction

In the Feynman path integral formulation for (first) quantization of a physical system,1 the
central object is the transition amplitude for the system evolution from a prescribed initial
state to a prescribed final state. Its explicit expression is given by the continuous sum
over all system trajectories connecting these states and weighted by the classical system
action. This quantization procedure does not rely on the conventional operator Heisenberg-
Schrödinger formulation of quantum mechanics. However, for most of the physical systems
analyzed up to the present time, the formal equivalence between these two alternatives is
implemented by showing that the above-mentioned Feynman transition amplitude satisfies
the associated wave equation obtained from the operator approach.

The purpose of this chapter is to describe a simple procedure for writing string wave
equations directly from the Feynman path integral for the covariant bosonic and fermionic
string transition amplitude presented by Polyakov some years ago.2 In Sec. 9.2 we present
our ideas in the simple case of covariant particle dynamics. The reason for writing wave
equations in the Polyakov path integral is that it may shed some light on the role of the
Liouville conformal freedom degree in the string quantization below the critical dimension.
This study is presented in Sec. 9.3. Another more important motivation is that the quantum
chromodynamic [SU(∞)] (bosonic) contour average satisfies a closed stringlike evolution
equation.3 With a general procedure for writing string wave equations directly from the
string path integral, the search for its (string) solutions becomes a simple and transparent
task. This analysis is presented in Sec. 9.4. Finally in Sec. 9.5 we deduce a kind of Dirac-
Ramond-Marshall string wave equation by extending the bosonic path integral formalism
to the fermionic case.

9.2. The Wave Equation in Covariant Particle Dynamics

In the covariant description of a relativistic bosonic particle,4 the particle trajectory is
described by two degrees of freedom: the usual vector position Xμ(ζ), with 0 < ζ < 1,



142 Luiz C.L. Botelho

and an additional one-dimensional metric e(ζ). Theparameter ζ describes the evolution of
the system and the particle trajectory Xμ(ζ) does not change its orientation in space-time
[Xμ(ζ) �= Xμ(ζ′),ζ �= ζ′] (see Ref. 1).

The covariant classical action for this particle, moving under the influence of an external
potential V (x), is given by

S[Xμ(ζ),v(x)] =
∫ 1

0

(
1
2

Xμ(ζ)2

e(ζ)
+

1
2

m2e(ζ)+ e(ζ)V [Xμ(ζ)]
)

. (9.1)

where m2 is the particle mass.
Following Feynman, the transition amplitude for which a particle initial state (X in

μ ,ein)
propagates to a final state (Xout

μ ,eout) is given explicitly by the path integral:

G[(Xout
μ ,eout);(X in

μ ,ein)]∫⎛
⎝ Xμ(0) = X in

μ

Xμ(1) = Xout
μ

⎞
⎠ dμ[Xμ(ζ)]

∫⎛
⎝ e(0) = ein

e(1) = eout

⎞
⎠ dμ[e(ζ)]

× exp{−S[Xμ(ζ),V (x)]}. (9.2)

Here the covariant Feynman measures dμ[e(ζ)] and dμ[Xμ(ζ)] are, respectively, defined
as the volume element of the covariant functional metrics

||δe||2 =
∫ 1

0
(δeδe)(ζ)dζ

and ∫ 1

0
e(ζ)(δXμ ·δXμ)dζ.

It is possible to evaluate explicitly the above transition amplitude in the proper-time
gauge e(ζ) = const, thus producing the (Euclidean) Green’s function of the Klein-Gordon
operator in the presence of the external potential V (x).

An alternative way to obtain the above result is by closely following Feynman,1 and by
considering the identity that results by making varitions of the intrinsic metric at the end-
point trajectory. Since a gauge exists where e(ζ) can be fixed as the trajectory proper-time
parameter, we expect that this identiy should produce a covariant wave equation that (in the
proper time gauge) reduces to the usual Klein-Gordon equation (see the Appendix of Ref.
1).

As a consequence of the invariance under functional translations of the functional mea-
sure dμ[e(ζ)], we show that the following relation holds true:

0 =
∫⎛
⎝ Xμ(0) = X in

μ

Xμ(1) = Xout
μ

⎞
⎠ dμ[Xμ(ζ)]

∫⎛
⎝ e(0) = ein

e(1) = eout

⎞
⎠ dμ[e(τ)]

× exp{−S[Xμ(ζ),V (x)]}. (9.3)
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By considering the boundary ζ̄ → 0 in eq.(9.3) we show that transition amplitude,
eq.(9.2), satisfies the identity∫⎛

⎝ Xμ(0) = X in
μ

Xμ(1) = Xout
μ

⎞
⎠ dμ[Xμ(ζ)]

∫⎛
⎝ e(0) = ein

e(1) = eout

⎞
⎠ dμ[e(ζ)]exp{S[Xμ(ζ),V (x)]}

lim
ζ→0+

(
(∏
μ

(ζ̄))2 − 1
2

m2 −V (xμ(ζ̄))

)
(9.4)

where ∏μ(ζ) = Xμ(ζ)/e(ζ) denotes the classical canonical momentum of the covariant par-
ticle.

In order to translate the path integral constraint equation (9.4) into an operator state-
ment, we have to use the covariant Heisenberg commutation relation

[∏
μ

(ζ),xν(ζ′)] = −[i/e(ζ′)]δ(ζ′ −ζ)δμν (i =
√−1),

which in the Schrödinger representation is given explicitly by

∏
μ

(ζ) = − i
e(ζ)

δ
δXμ(ζ)

·

After fixing the particle proper-time gauge [since eq.(9.4) is invariant under the group of
the trajectories reparametrization] and taking into account that the particle trajectory does
not self-intersect in “time” [Xμ(ζ) �= Xμ(ζ′) if ζ �= ζ′], we finally, obtain that eq.(9.4) reduces
to the Klein-Gordon wave equation in the presence of the external potential V (x), namely(

−�X in +
1
2

m2 −V (X in)
)

G(Xout;X in) = 0. (9.5)

It is instructive to point out that by considering functional variations of the functional
metric dmu[Xμ(ζ)] we obtain constraints without dynamical content that are associated to
the invariance of the theory under the action of the space-time translation Poincaré group.

9.3. The Wave Equation in the Covariant Bosonic String Dy-
namics

The basic object in the Polyakov approach2,5 for the string covariant quantization (in the
trivial topological sector) is that the following transition amplitude for an initial string state

Cin = {(X in
μ (σ,ein(σ)); 0 ≤ σ≤ 1}

propagates to a final string state [Cout = {(Xout
μ (σ),eout(σ))}]

G[eout,ein] =
∫

dμ[gab]dμ[φμ]e−I0(gab,φμ), (9.6)



144 Luiz C.L. Botelho

where the covariant string action is given by

I0(gab,φμ) =
∫

D

(
1
2
√

ggab ∂aφμ∂bφμ+μ2
0
√

g

)
(σ,ζ)dσdξ. (9.7)

The string surface parameter domain is taken to be the rectangle D = {(σ,ζ),0 ≤ σ≤
1,0 ≤ ζ≤ T}. The functional measures dμ[gab] and dμ[φμ] are defined over all cylindrical
quantum surfaces without holes and handles having as a boundary the string end config-
urations {Cin;Cout}; i.e., φμ(σ,0) = X in

μ (σ) and φμ(σ,T ) = Xout
μ (σ). The intrinsic metric

{gab(σ,ζ)} (which, roughly, plays the role of the covariant string proper-time parameter)
can be chosen to satisfy the conformal gauge

gab(σ,ζ) = exp β(σ,ζ)δab

and the initial end-point boundary condition ein(σ) = exp(β(σ,0)).
At this point a fundamental difference appears between the string and particle case (see

9.1). In the last case it is always possible to fix the proper-time gauge e(ζ) = const = 1,
where the intrinsic metric decouples from the dynamical description of the theory. This
result reveals itself in the form of the associated wave equation [eq.(9.5), Sec. 9.2], where
it does not have any functional dependence on the intrinsic metric. This decoupling phe-
nomenon will not happen in the string case due to the conformal anomaly of the theory2,5

unless it is canceled. Further, the associated string wave equation will depend on the intrin-
sic Liouville field at the boundary β(σ,0) = βin(σ), as we will show explicitly below.

Let us now proceed as in the particle case by considering the following identity related
to the integrand invariance under translations in the conformal factor β(σ,ζ) functional
space [gab(σ,ζ) = exp(β(σ,ζ)δab}] in the string propagator eq.(9.6):

∫
D[β(σ,ζ)]exp

{
− 26

48π

∫
D

(
1
2
(∂aβ)2 +

1
2
μ2

R eβ
)}

lim
ζ→0+

⎛
⎝e−β(σ̄,ζ̄)

↔
δ

δβ(σ̄, ζ̄)
δab

⎞
⎠F(φμ,gab), (9.8)

where
F(φμ,gab) =

∫
dμ[φμ]exp(−I0(φμ,gab)) (9.9)

denotes the pure string vector position term in eq.(9.6).
It is worthwhile to remark that this procedure for deducing a dynamical (wave) equation

is the two-dimensional analog of that used to write the Wheeler-De Witt equation four-
dimensional quantum gravity from the path integral expression for the universe propagator.6

The variation associated to the Faddeev-Popov term is given by

∫
D[β(σ,ζ)]exp

{
− 26

24π

∫
D

(
1
2
(∂aβ)2 +

1
2
μ2eβ

)

× (σ,ζ)dσdζ
}

26
24π

(R(eβ)+μ2)(σ̄, ζ̄)F(φμ,gab), (9.10)
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where R(eβ) = −(e−βΔβ)(σ,ζ) denotes the scalar of curvature associated to the metric
gab(σ,ζ) = exp(β(σ,ζ))δab .

The δ/δβ(σ̄, ζ̄) functional derivative of the term F(φμ,gab = eβδab) is more subtle since
the covariant functional measure dμ[φμ] [see Eq. (9) of Ref. 2] depends in a nontrivial way
on the conformal factor β(σ,ζ) as a consequence of its definition as the functional volume
element associated to the covariant functional metric

||δψμ|| =
∫

D
(eβδφμδφμ)(σ,ζ)dσdζ. (9.11)

Its evaluation proceeds in the following way:

dμ[φμ,(eδh+β)δab]−dμ[φμ,eβδab]
def=

δ
δβ

dμ[φμ,eβδab]+ O(h2). (9.12)

Since, as a consequence of eq.(9.11), we have the result

dμ[φμ,eδh+β δab] = dμ[eδh/2φμ,eβδab], (9.13)

and effect of the functional string vector position measure under a conformal scale was
evaluated exactly by Fujikawa [see Eqs. (3) and (39) in Ref. 5],

dμ[eδh/2φμ,eβδab] = exp

{
D

48π

∫
D
(∂aβ)2 +

1
2
μ2eβ)δh

}
dμ[φμ,eβδab], (9.14)

we thus have the following esult by taking h(σ,ζ) = εδ(σ− σ̄)δ(ζ− ζ̄) and considering the
linear term in ε:

δ
δβ(σ̄, ζ̄)

dμ[φμ,eβδab]

=
1
ε

lim
ε→0+

(dμ[φμ,eδh+βδab]−dμ[φμ,eβδab]

= (D/24π)(R(eβ(σ̄,ζ̄))+μ2)×dμ[φμ,eβδab]. (9.15)

Finally the term [δ/δβ(σ̄, ζ̄)]I0(φμ,gab = eβδab) is given by diagonal component of the
string energy momentum tensor:(

e−β
δ
δβ

)
(I0(φμ,gab = eβδab))(σ̄, ζ̄). (9.16)

By grouping together Eqs. (10), (15), and (16), we obtain that the string transition
amplitude in the conformal gauge satisfies the dynamic constraint

0 =
∫

dμ[gab]
∣∣
gab=eβδab

∫
dμ[φμ]

× exp(−I0(gab,φμ))
{

26−D
48π

lim
ζ̄→0+

(R((σ̄, ζ̄))+μ2)

+

(
1
2

in

∏
μ

(σ̄)2 − 1
2
|X ′μ

in (σ̄)|2
)}

, (9.17)
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where dμ[gab]
∣∣
gab=dβδab

means that the functional measure over the intrinsic metric field

{gab(σ̄, ζ̄)} is defined in the conformal gauge,

in

∏
μ

(σ̄) = lim
ζ̄→0+

∂ζ̄φμ(σ̄, ζ̄)

denotes the string canonical momentum and

X ′μ
in (σ̄) = lim

ζ̄→0+
∂σ̄φμ(σ̄, ζ̄).

In order to translate the above path integral relation into a wave equation form,7 we
introduce covariant string commutation relations8

[
in

∏
μ

(σ̄),Xν(σ̄′)

]
= [i/�

(D)][ein(σ̄)]δ(σ̄− σ̄′), (9.18)

with �
(D) being the Planck constant in the physical space-time RD. Using the Schrödinger

representation for this commutation elation,

in

∏
μ

(σ) =
i

�(D)ein(σ)
δ

δX in
μ (σ)

, (9.19)

we can express eq.(9.17) in the following form, which generalizes the usual D = 26 Nambu-
Virasoro wave equation7:{

− 1
2

e−2βin(σ)

(�D)2δX in
μ (σ)δX in

μ (σ)
− 1

2
|Xβin(σ)|2

+
26−D

24π

(
−1

2

in

∏
β

(σ)2 − 1
2
β′in(σ)2 +

1
2
μ2eβin(σ)

)}

×G((X in
μ (σ,eβin(σ));(Xout

μ (σ,eβout(σ))) = 0, (9.20)

where we have written the conformal contribution in eq.(9.17) in the Polyakov proposed
Liouville Hamiltonian,2 with

in

∏
β

(σ) = lim
ζ→0+

∂ζβ(σ,ζ)

being the canonical momentum associated with the Liouville field β(σ,ζ) at the boundary.
We note that it has the following representation:

in

∏
β

(σ) =
i

�(2)

δ
δβin(σ)

· (9.21)
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Here �
(2) now denotes the Planck constant associated with two-dimensional string

space-time D.
It is worth mentioning that the dynamical status acquired by the metric gab(σ,ζ) =

exp(β(σ,ζ))δab in eq.(9.20) induced pure quantum gravity in D as a result of the dynam-
ical breaking of the complete diffeomorphism ground of the action in eq.(9.7), denoted
by Gdiff(D), to the subgroup Gdiff(D)/GWeil(D)diff, where GWeil,diff(D) is the subgroup of
Gdiff(D) that acts on the metric field as a Weil scaling.

As a consequence of these remarks we can see that only at D = 26 can be choose
the proper time string gauge gab(σ,ζ) = δab in an analogous way as in covariant particle
dynamics (see Sec. 92), since now the invariance of the theory under Gdiff(D) is preserved
by quantization.

9.4. A String Solution for the QCD[SU(∞)] Bosonic Contour
Average Equation

There are several compelling arguments for the existence of a string representation for quan-
tum chromodynamics (QCD) at the ’t Hooft large number of colors. One of these arguments
is that the QCD[SU(∞)] covariant loop average with an additional intrinsic global SO(M)
flavor group (see Appendix A),

Wik[CX(−π),X(π)]

=
1

Nc

〈
T color

c exp

(
i
∮

CX(−π),X(π)

Aμ(Xμ(σ))
dXμ(σ)

e(σ)

)〉
, (9.22)

satisfies the following (formal) stringlike contour equation3 [e(σ) = 1]:

δ(2)

δXμ(σ)δXμ(σ)
Wik[CX(−π),X(π)]

λ2
0�

∮
CX(−π),X(π)

dσ̄X ′
μ(σ)δ(D)(Xμ(σ)−Xμ(σ̄))X ′

μ(σ̄)

× (Wi j[CX(−π),X(σ)]Wjk[CX(σ),X(π)])

− γ2|X ′
μ(σ)|2Wik[CX(−π),X(π)], (9.23)

where the contour integral �

∮
CX(−π),X(π)

means that the coincident σ = σ̄ does not contribute

for the integrand (Cauchy principal value).
It is thus conjectured that some sort of string propagator should solve eq.(9.23) in some

sense. Our aim in this section is to present an interacting string theory with an intrinsic
fermionic structure that posesses as a string wave equation (in our proposed framework of
Sec. 9.3) eq.(9.23) with a fixed flavor group SO(22).

Let us start our analysis by describing the covariant string action of our proposed
QCD [SU(∞)] string:
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S[φμ(σ,ζ),ψ(k)(σ,ζ),gab(σ,ζ)] = S0[φμ(σ,ζ),gab(σ,ζ)]
+ S1[ψ(k)(σ,ζ),ga(σ,ζ)]+ Sint[φμ(σ,ζ),ψ(k)(σ,ζ),gab(σ,ζ)], (9.24)

where

S0[φμ(σ,ζ),gab(σ,ζ)] =
1
2

(∫
D
(
√

ggab ∂aφμ ∂bψμ)(σ,ζ)dσdζ
)

, (9.25a)

S1[ψ(k)(σ,ζ),gab(σ,ζ)] =
1
2

∫
D
(
√

gψ̄(k)γa(σ,ζ)∂aψ(k))(σ,ζ)dσdζ, (9.25b)

Sint[φμ(σ,ζ),ψ(k)(σ,ζ),gab(σ,ζ)]

= β
(∫

D
dσdζ

√
g(ψ̄(k)ψk)T̂ μν(φμ)(σ,ζ)

×
(∫

D

√
g(σ̄, ζ̄)δ(D)(φμ(σ,ζ)−φμ(σ̄, ζ̄))× T̂ μν(φμ(σ̄, ζ̄))

)
dσ̄dζ̄

)
(9.5c)

The notation is as follows: The bosonic degrees of freedom are {φμ(σ,ζ),gab(σ,ζ)} as
in Sec. 9.2. Additionally we introduce a set of intrinsic two-dimensional Weyl spinors in the
string surface and belonging to the SO(M) fundamental representation. They are denoted
by {ψ(k)(σ,ζ),k = 1, . . . ,m}. We impose on them the Neumann boundary condition

lim
ζ→0+

∂σψ(k)(σ,ζ) = 0.

The bosonic {ψk(σ,ζ),gab(σ,ζ)} string sector interacts with fermionic {ψ(k)(σ,ζ)}
sector through a self-avoiding interaction involving the surface orientation tensor

T̂ μν(φμ(σ,ζ)) = (εab∂aφμ ∂bψν/
√

h(σ,ζ),
h = dethab , hab = ∂aφμ ∂μφν,

and an attractive (β < 0) delta function potential supported at the self-intersecting lines
of the string surface. These non-trivial self-intersections are supposed to arise at those
submanifolds where Xμ(σ,ζ) = Xμ(σ′,ζ′) with σ �= σ′ for every ζ ∈ [0,T ]. We notice that
self-intersections of the form Xμ(σ,ζ) = Xμ(σ,ζ′) with ζ �= ζ′ arise only in the case where
the string surface possesses holes and handles, which is not the case here.

After having described our string theory, we consider the following O(M) string transi-
tion amplitude9:

Zkl [CX(−π),X(σ)] =
∫

dμ[gab]dμ]φμ]

×dμ[ψ(k)](ψ(k)(−π,0)ψ̄l(π,0))

× exp{−S[φμ,ψ(k),gab]}. (9.26)
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In order to write the wave function equation associated with the above string Green’s
function, in the physical space-time R4, we proceed as in Sec. 9.3 by considering the
analogous identity of eq.(9.8), namely,∫

dμ[gab]dμ[φμ]dμ[ψ(k)](ψ(k)(−π,0)ψ̄(l)(π,0))exp{−S[φμ,ψ(k),gab}

×
(

1
2∏)μin(σ)2 − 1

2
|X ′
μ(σ)|2 + lim

ζ→0+
(ψ̄(k)γ1 ∂aψ(k))(σ,ζ)

)

=
β
2

∫ π

−π
dσ̄X ′μ(σ)δ(D)(Xμ(σ)−Xμ(σ̄))X ′μ(σ̄)

∫
dμ[gabdμ[φμ]dμ[ψ(k)]

×
(

22

∑
(p)=1

ψ(p)ψ̄(p)

)
(σ,0)(ψ(k)(−π,0)ψ̄(l)(π,0))exp{−S[φμ,ψ(k),gab]}. (9.27)

Our choice of the intrinsic “flavor” group to be SO(22) is dictated by the fact that the
QCD [SU(∞)] string should preserve the full invariance under the diffeomorphism group
and this happens only in the case where the conformal anomaly of the theory vanishes (see
Sec. 9.3). Since, in our proposed theory (D = 4), the anomalous term is proportional to
[26− (D + M)]/24π we see that only for M = 22 can we preserve the above-mentioned
symmetry.

We thus can rewrite eq.(9.27) in the form(
−1

2
δ(2)

δXμ(σ)δXμ(σ)
− 1

2
|X ′
μ(σ)|2

)
Zkl[CX(−π),X(σ)]

=
β
2

∫ π

−π
dσ̄X ′

μ(σ)δ(D)(Xμ(σ)−Xμ(σ̄))X ′
μ(σ̄)(Zkp[CX(−π),X(σ)]Zpl[CX(σ),X(π)]), (9.28)

where we have used the string measure factorization properties∫
∏

−π<β<π
0<ζ<T
1<k<22

(dψ(k)(β,ζ))(ψ(k)(−π,0)ψ̄(l)(π,0))(ψ(p)(σ,0)ψ̄(p)(σ,0))exp{−S[φμ,ψ(k),gab]}

=
∫

∏
−π<β<σ
0<ζ<T
1<k<22

(dψ(k)(β,ζ))(ψ(k)(−π,0)ψ̄(p)(σ,0))exp{−S(1)[φμ,ψ(k),gab]}

×
∫

∏
σ<β<π
0<ζ<T
1<k<22

(dψ(k)(β,ζ))(ψ(p)(σ,0)ψ̄(l)(π,0))exp{−S(2)[φμ,ψ(k),gab]} (9.29a)
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and

∫ ⎛
⎜⎝ ∏

−π<β<π
0<τ<T

dφμ(β,ζ)
∣∣
CX(π),X(−π)

⎞
⎟⎠exp

{
−1

2

∫
D[−π,π]×[0,T ]

(∂aφμ)2
}

=
∫

⎛
⎜⎜⎝ ∏

−π<β<σ
0<ζ<T

dφμ(β,ζ)
∣∣
CX(−π)×X(σ)

⎞
⎟⎟⎠exp

{
−1

2

∫
D[−π,σ]×[0,T ]

(∂aφμ)2
}

×
∫

⎛
⎜⎜⎝ ∏

σ<β<π
0<ζ<T

dφμ(β,ζ)
∣∣
CX(σ),X(+π)

⎞
⎟⎟⎠exp

{
−1

2

∫
D[σ,π]×[0,T ]

(∂aφμ)2
}

. (9.29b)

Here ⎛
⎜⎜⎝ ∏

−π<β<π
0<ζ<T

dφμ(β,ζ)
∣∣
CX(−π),X(π)

⎞
⎟⎟⎠

means that the functional integration is done with the boundary condition φμ(β,0) =
CX(−π),X(π) .

We remark that these factorization properties hold true only in the case that the split
string surfaces φμ(D[−π,σ]×[0,T ]) and φμ(D[σ,π]×[0,T ]) possess the same topology as in our
case of trivial topology and are homotopical deformations of the loop boundary which by
their turns are smooth and possessing only isolated double point at path self-intersections
as a consequence of Pauli-Exclusion occupation number for fermions.

Let us now identify the string wave equation [eq.(9.28)] with the QCD [SU(∞)] con-
tour average equation [eq.(9.23)]. The first step is to identify the SU(∞) gauge coupling
constant λ2

0 with the string interactoin coupling −β. Second, we make the identification of
the constant −γ2 (the Euclidean gluon condensate – see Appendix A) with the Regge slope
parameter 1/πa′, which was adjusted to unit in our study.

After these coupling constant identifications we see that the Euclidean self-suppressing
string theory should represent Euclidean QCD [SU(∞)] in the gauge invariant observable
algebra (color singlet currents, spectrum, etc.).

9.5. The Neveu-Schwarz String Wave Equation

Let us start by considering the open fermionic string action in a D-dimensional Euclidean
space-time10 (μ= 1, . . . ,D,(A) = 1,2,a = 1,2):

S[φμ(σ,ζ),ψμ(σ,ζ),e(A)
a (σ,ζ),χa(σ,ζ)]

=
∫

D
dσdζe(σ,ζ)

[
1
2
∂aψμ ∂bψμ gab +

1
2

iψμ(γ∂)ψμ

− 1
2

F2 − 1
2

i(χaγbγaψμ)
(
∂bψμ− 1

4
iχbψμ

)]
(σ,ζ)+ boundary terms. (9.30)
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Here the fermionic string is characterized by two (external) fields: the usual bosonic
vector position φμ(σ,ζ) and the Majorana spinor ψμ(σ,ζ) describing the string Lorentz

spin. The presence of the vierbein e(A)
a (σ,ζ) and of the two-dimensional vector Majorana

spinor χa(σ,ζ) together with the auxiliary scalar field F(σ,ζ) ensures, respectively, the
action’s invariance under general Lorentz and coordinate transformations together with the
world-sheet local supersymmetric transformations.

Following Polyakov the (formal) fermionic string propagator is given by the follwoing
path integral connecting the initial Cin string state to a final string state Cout:

C[Cout;Cin] =
∫

dμ[φμ,ψμ,e(A)
a ,χa]exp{−S[φμ,ψμ,e(A)

a ,χa]} (9.31)

(here the boundary terms were absorbed in G[Cout;Cin]).
In order to write dynamical wave equations we exploit the invariance under transla-

tions in the superconformal factor (ϕ(σ,ζ);ζ(σ,ζ)) functional space of the fermionic string
propagator [eq.(9.31)]

gab(σ,ζ) = exp(2ϕ(σ,ζ)δab) χa(σ,ζ) = γ(B)
a ζ(B)(σ,ζ)],

which produces the following identities:

∫
dμ[φμ,ψμ,e(A)

a ,χa]e−S[φμ,ψμ.e(A)
a ,χa]

(
−δS[φμ,ψμ,e(A)

a ,χa]
δϕ(σ̄, ζ̄)

)
=

=
∫ (

δ
δϕ(σ̄, ζ̄)

dμ[φμ,ψμ,e(A)
a ,χa]

)
e−S[φμ,ψ,μ,e(A)

a ,χa] (9.32a)

and

∫
dμ[φμ,ψμ,e(A)

a ,χa]e−S[φμ,ψμ.e(A)
a ,χa]

(
−δS[φμ,ψμ,e(A)

a ,χa]
δζ(B)(σ̄, ζ̄)

)
=

=
∫ (

δ
δζ(B)(σ̄, ζ̄)

dμ[φμ,ψμ,e(A)
a ,χa]e−S[φμ,ψ,μ,e(A)

a ,χa]

)
(9.32b)

By noting that the fermionic string is defined at the quantum level only at D = 10 (the so-
called Neveu-Schwarz string) or at D →−∞,11 we will consider D = 10, which means that
the functional measure variations in the right-hand side of Eqs. (32a) and(32b) vanish. In
the superconformal gauge and using the Euclidean identity γ(A)γ(B) = iε(A)(B)γs , we rewrite
Eqs. (32a) and (32b) as

∫
dμ[φμ,ψμ]e−S[φμ,ψμ] 1

2
((∂ζφμ)2 − (∂σφμ)2 +ψμγ(1) ∂σψμ(σ̄, ζ̄) = 0, (9.33a)

∫
dμ[φμ,ψμ]e−S[φμ,ψμ] 1

2
(1+ γ5)ψμ(σ̄, ζ̄)(∂ζφμ−∂σφμ)(σ̄, ζ̄) = 0 (9.33b)

respectively.



152 Luiz C.L. Botelho

In order to translate the above-written string path integral identities into a wave equation
form we take its boundary limit ζ̄→ 0+ and translate the result into an operator equation
by using the Schörindger quantum representation

lim
ζ→0+

∂ζφμ(σ,ζ) ⇔ i

�(D)
δ

δφin(σ)
, (9.34a)

lim
ζ→0+

∂σφμ(σ,ζ) ⇔ φ′μin(σ), (9.34b)

lim
ζ→0+

ψμ(σ,ζ) ⇔ Γμin(σ). (9.34c)

Here the quantum Cin string state in the operator framework is characterized by the
coordinaes (Γμin(σ),φμin(σ)) where the Γμin(σ) are string valued Dirac matrices obeying the
space-time anticommuting relations8

{Γμ(A) in(σ),Γν(B),in(σ
′)} = 2δ(σ−σ′)δμνδ(A),(B).

By noting that the Neveu-Schwarz string fermion field ψμ(σ,τ) satisfies the Neumann
condition

lim
τ→0+

∂σψμ(σ,τ) = 0,

we obtain a fermionic string wave equation

D(±)
Cin G[Cin,Cout] = 0, (9.35)

where

D(±)
Cin =

1
2
(1+ γ5)

(
i

�(D)Γ
μ
in

δ
δπμin

−Γμinφ
′μ
in

)
(σ). (9.36)

It is instructive to remark that in eq.(9.35) the same Γμin)σ) used in the momenta operator
is also ued in the string length factor φ′ inμ (σ), opposite to the earlier proposed Ramond-
Marshall fermionic string wave equation8 where two different sets of Γμ(σ) matrices are
used.

Finally we note that the formal anticommutator {D(±)
Cin (σ);D(±)

Cin (σ)} is equal to the
bosonic

−ΔCin = −1
2

δ(2)

δφin
μ (σ)δφin

μ (σ)
− 1

2
|φ′ inμ (σ)|2

string wave D’Alembertian since we have preserved the superdiffeomorphism group of the
theory, which, in turn, manifests itself in the following constraint imposed in the physical
Hilbert space of Neveu-Schwarz string states:(

φ′μin(σ)
δ

δφμin(σ)

)
G[Cin,Cout] = 0. (9.37)
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Appendix A.
The QCD(S(∞)) Bosonic Contour Average

The basic dynamical variable in the loop space formulation for Euclidean QCD [SU(∞)]
is the amplitude for a quark loop propagating in the quantum (confining) vacuum of a
pure Yang-Mills field, since at the t’ Hooft limit for a large number of colors the second-
quantized quark matter effective action reduces to the quark first-quantized action, namely,9

lim
(g2Nc) fixed

Nc→∞

(det(iγμ(∂μ+ Aμ))) =
∫

dDX

⎛
⎜⎜⎝ ∑

CX(π),X(−π)
X(π)=X(−π)=X

〈Tr U [CX(π),X(−π)]〉

⎞
⎟⎟⎠ (9.A1)

where

U [CX(−π),X(π)] = P

{
exp

∫ π

−π
dσAμ(Xμ(σ))

dXμ(σ)
e(σ)

}
(9.A2)

denotes the covariant Wu-Yang phase factor defined by the closed (covariant) quark trajec-
tory

CX(−π),X(π) = {(Xμ(σ),e(σ)); −π < σ < π}
and representing the interaction of the pair with the Yang-Mills external field Aμ(x). The
notation 〈 〉 means the quantum average defined by the Yang-Mills functional integral at
Nc → ∞ (planar graphs).

In order to deduce a closed contour functional equation for the amplitude inside
eq.(9.A2), we remark the validity of the classical second-order functional derivatives
results3 [e(σ) = 1]

lim
σ→σ′

δ2

δxμ(σ)δxμ(σ′)
(Tr U [CX(−π),X(π)])

lim
σ→σ′ δ(σ−σ′)Tr((∇μFμν)(x(σ))X ′ν(σ)(U [CX(σ),X(π)]U [CX(−π),X(σ)]))

+ lim
σ→σ′ θ(σ−σ′)Tr(U [CX(−π),X(σ′)]Fαβ(X(σ′))X ′β(σ′)U [CX(σ′),X(σ)]Fαρ(X(σ))X ′ρ(σ)U [CX(σ),X(π)])

+ limθ(σ′ −σ)Tr( above written expression with σ exchanged by σ′). (9.A3)

By using that θ(σ′ −σ) = 1
2 if σ = σ′ and imposing the loop periodicity property

U [CX(a),X(a+2π)] = U [CX(−π),X(π)] (−π≤ a ≤ π), (9.A4)

we can finally rewrite eq.(9.A3) in the loop invariant form

δ2

δXμ(σ)δXμ(σ′)
Tr U [CX(−π),X(π)]

= Tr((∇μFμν)(X(σ))X ′ν(σ)(TrU [CX(−π),X(π)]))

+ Tr(Fαβ(X(σ))X ′β(σ)Fαρ[X(σ))X ′
ρ(σ)(TrU [CX(−π),X(pi)])). (9.A5)
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In order to write the (unrenormalized) quantum analogous loop equation, we take the
quantum (Nc → ∞) average of both sides of eq.(9.4a) and observe the quantum results

〈Tr(∇μFμν)(X(σ))X ′ν(σ)Tr U [CX(−π),X(π)]〉
= λ2

0�

∮
X(−π),X(π)

X ′
μ(σ)δ(D)(Xμ(σ)−X ′

μ(σ̄)〈Tr U [CX(−π),X(σ)]〉〈Tr U [CX(σ),X(π)]〉 (9.A6)

and

〈Tr(Fαβ(X(σ))X ′β(σ)Fαβ((σ))X ′
ρ(σ)U [CX(−π),X(π)])〉

=
(∫

dDx〈Tr(FαβFαβ)(x)〉
)
|X ′(σ)|2〈Tr U [CX(−π),X(π)]〉. (9.A7)

Equation (9.A7) was obtained by supposing the very existence of confining in
QCDSU(N)] for any value of the color parameter N signaled by the (formal) nonvanishing
gauge invariant SU(N) gluon condensate in RD: (see chapter 4).∫

dDx〈Tr(FαβFαβ)(x)〉 = −γ2. (9.A8)

By making the assumption that confining persists at Nc →∞ we obtain the QCD [SU(∞)]
loop wave equaiton [eq.(9.23)] in the proper-time gauge e(σ) = 1.

Appendix B.
The β Term

In this Appendix we present the calculations leading to the β term in eq.(9.27).
Therefore let us consider the boundary value of the following quantity:

lim
τ→0+

∫
D

dσ̄dζ̄ T̂μν(φμ(σ,ζ))δ(D)(φμ(σ,ζ)−φμ(σ̄, ζ̄)T̂μν(σ̄, ζ̄)). (9.B1)

We can evaluate eq.(9.B1) by taking into account the following results.
First, formally

lim
τ→0+

δ(D)(φμ(σ,ζ)−φμ(σ̄, ζ̄))

= lim
τ→0+

δ(D)(φμ(σ,ζ)−φμ(σ̄, ζ̄))δ(ζ− ζ̄)

= δ(D)(Xμ(σ)−Xμ(σ̄))δ(ζ̄), (9.B2)

since our topologically trivial string surface does not possess self-intersections in the intrin-
sic string time variable ζ, which in turn, is related to the nonexistence of handles and holes
in the string world sheet.

Second, in the asymptotic limit ζ→ 0+ the string surface has the behavior

lim
τ→0+

φμ(σ,ζ) = lim
τ→0+

Xμ(σ)(1+ζ),

since the string surface is a homotopical (contractible) deformation of its boundary.
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As a consequence of the above-mentioned remark, we obtain, in the string isothermal
gauge [X ′

μ(σ ·Xμ(σ) = 0], the value in eq.(9.B1):

lim
τ→0+

T̂ μν(φμ(σ,ζ))T̂ (φμ(σ̄, ζ̄))

= [X ′
μ(σ

/√
X ′
μ(σ)2][X ′

μ(σ̄)
/√

X ′
μ(σ̄)2], (9.B3)

where we have taken into account that Xμ(σ) = Xμ(σ̄) in eq.(9.B1). By making eq.(9.B3)

covariant, i.e.,
√

(X1
μ (σ))2 → e(σ), we obtain the β term in eq.(9.27), which for M =

22[e(σ) = const], is simply given by

β
2

∫ π

−π
dσ̄X ′

μ(σ)(δ(D)(Xμ(σ)−Xμ(σ̄)))X ′
μ(σ̄). (9.B4)

Appendix C.
The Migdal-Elfin String as a Particular Case

Our aim in this Appendix is to show how to obtain the proposed Migdal-Elfin string for
QCD [SU(∞)] 12 as a particular case of our proposed self-suppressing fermionic string when
the string world sheet does not possess nontrivial self-intersections, i.e., φμ(σ,ζ) = φμ(σ̄, ζ̄)
means that σ = σ̄, ζ = ζ̄.

In order to analyze this case let us introduce orthonormal coordinates on the string
surface {φμ(σ,ζ)}:

∂σφμ ∂ζφμ = 0, (∂σφμ)2 = (∂ζφμ)2,

h(σ,ζ) = det{hab(σ,ζ)} = det{∂aφμ ∂bφμ}
= (∂σφμ)2 = (∂ζφμ)2. (9.C1)

Not that this is possible since we have canceled the model’s conformal anomaly by
choosing M = 22.

By introducing a tangent vector along coordinates lines ∂φμ/∂ζ and ∂φμ/∂σ, we have
the relationship (see the Appendix of Ref. 13)

δ(D)(φμ(σ,ζ)−φμ(σ̄, ζ̄))

= δ(D−2)
ε (0)([1/h(σ,ζ)1/2 ]δ(2)((σ− σ̄),(ζ− ζ̄))), (9.C2)

where δ(D−2)
ε (0) means a regularized form of the delta function singular value δ(D−2)(0)

(see Ref. 13).
Substituting eq.(9.C2) into the string self-interaction term [eq.(9.25)] we obtain the

more invariant expression for the fermion action:

β(R)
∫

D
(ψ̄(k)ψ(k))(δ,ζ)

×
⎛
⎝ ∑

{φμ(σ,ζ)=φμ(σ̄,ζ̄)}
T̂ μν(φμ(σ,ζ))T̂ μν(φμ(σ̄, ζ̄))

⎞
⎠ , (9.C3)
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where β(R) = βδ(D−2)
ε (0) is the regularized string constant.

At this point we can see that eq.(9.C3) reduces to a mass term for the intrinsic SO(22)
fermion field ψζ(σ,ζ), which, in the case of the string world sheet has only the trivial self-
intersection

φμ(σ,ζ) = φμ(σ̄, ζ̄) ⇒ σ = σ̄, ζ = ζ̄,

wince
T̂ μν(φμ(σ,ζ))T̂μν(φμ(σ,ζ)) = 1.

We thus get
22

∑
k=1

β(R)
∫

D
(ψ̄(k)ψ(k))

√
h(σ,ζ)dσdζ. (9.C4)

For the non-trivial self-intersecting case [σ multivalued φμ(σ,zeta) functions] we have
to add to eq.(9.C4) the term responsible for the theory’s interaction, which is supported at
the nontrivial string’s surface self-intersection lines φμ(σ,ζ) = φμ(σ̄, ζ̄) with σ �= σ̄ as given
by our interaction action [eq.(9.25C)] and previously conjectured in Ref. 14.

Appendix D.
On Polyakov’s Bosonic String Path Integral - Revisited on the
Light of Correct Measures Definition

In opinion of A.M. Polyakov “there are methods and formulae in science, which serve as
master-key to many apparently different problems. The resources of such things have to
be refilled from time to time. In my opinion at the present time we have to develop an art
of handling sums over random surfaces. These sums replace the old-fashioned sum over
random paths. The replacement is necessary, because today gauge invariance plays the
central role in physics” (A. M. Polyakov).

The general picture has been envisaged as follows: one should try to solve loop-space or
generalized Schrödinger functional wave equations by the appropriate flux lines functionals
represented by transition amplitudes given by the sums over all possible surfaces with fixed
boundary.

G(C) = ∑
(SC)

exp

{
− 1

2πα′ A(Sc)
}

(9.1-d)

here C is some loop (smooth or a random closed path), SC is a surface bounded by the loop
C and A(SC) is the area of this surface and α′ an extrinsinc (lenght square) constant (the
Regge slope parameter).

The main point on Polyakov’s propose is to introduce besides the surface parametriza-
tion Xμ(ξ1,ξ2), an intrinsic metric tensor gab(ξ1,ξ2) and a quadratic functional on the ran-
dom surface Xμ(ξ1,ξ2) field substituting the area functional in eq.(9.1-d) (with 2πα′ = 1)

A(SC) =
1
2

∫
D

d2ξ(
√

ggab∂a Xμ∂bXμ)(ξ) (9.2-d)

It is very important to remark that the above 2D-gravity induced surface functional has
the geometrical meaning of the area spanned by the surface Xμ(ξ1,ξ2) only at the classical
level α′ → 0.
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In order to proceed to the quantum theory, A.M. Polyakov has proposed that
the quantum surface average of any extended reparametrization invariant functional
Φ[Xμ(ξ1,ξ2);gab(ξ1,ξ2)] should be given by the following expression

∫
dμ[S]φ(SC)

def≡
∫

[Dgab(ξ)]exp(−μbare

∫ √
gd2ξ)

∫
[D[Xμ(ξ)][

exp

(
−1

2

∫
D
(
√

ggab∂aXμ∂bXμ)(ξ)d2ξ)
)]

Φ[Xμ(ξ),gab(ξ)] (9.3-d)

The reparametrization invariant functional measures on eq.(9.3-d) are associated to the
following functional measures

‖δXμ‖2 =
∫

d2ξ(g(ξ))1/2 δXμ(ξ)δXμ(ξ) (9.4-d)

and
‖δgab‖2 =

∫
d2ξ[g(ξ)]1/2 (gaa′ gbb′ +Cgabga′b′)δgabδga′b′ (9.5-d)

where C �= − 1
2 is an arbitrary constant.

The reparametrization invariant gaussian functional integral Xμ(ξ1,ξ2) is easily eval-
uated with the result in the conformal gauge gab = ρ2δab (for closed boundary-less 2D-
compact Riemannian manifolds)

det −D/2(−Δgab=ρ2δab
) = exp

{
D

48π

∫
d2ξ

[
(∂aρ)2)
ρ2 +

(
lim
ε→0

D
4πε

)
ρ2

]}
(9.6-d)

The functional integration on the intrinsic metric field is well-known with infinitesimal
coordinate transformation {∈a (ξ1,ξ2)} around the conformal orbit (i.e., ∇c

gab=ρ2δab
· ∈c= 0)

‖δgab‖2 = (1+ 2c)
∫

d2ξδρ(ξ)δρ(ξ)+
∫

d2ξ
√

gφb
aφ

a
b (9.7-d)

Here
φab = (∇a ∈b +∇b ∈a)gab=ρ2δab

(9.8-d)

From eq.(9.7-d) we derive the correct integration measure in terms of the Feynman
measures, denoted by the symbol DF(·) = ∏

ξ
d(·)

[Dgab(ξ)] = DF [ρ(ξ)]DF [∈a (ξ)](det1/2L) (9.9-d)

Here the Polyakov’s operator L is obtained from eq.(9.7-d) and given by

(L ∈)a = ∇b(∇a ∈b +∇b ∈a)|gab=ρ2δab
(9.10-d)

and its functional determinant was exactly evaluated (acting on smooth C∞ compact support
vector-sections on S)

−1
2

log detL =
13
6π

∫
ξ

([
1
2

(∂aρ)2

ρ2

]
+

∫
ξ

(
lim
ε→0

2
4πε

)
ρ2(ξ)

)
d2ξ (9.11-d)
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By combining eq.(9.6-d) with eq.(9.11-d) and eq.(9.3-d), we obtain the partition func-
tion for the closed surfaces defined in terms of the natural conformal quantum degrees of
freedom ρ(ξ1,ξ2)

Z =
∫

DF [ρ(ξ)]exp

(
−(26−D)

12π

∫
ξ

[
1
2

(∂aρ)2

ρ2

]
+

∫
ξ
μ2

Rρ
2
)

(9.12-d)

This expression shows the origin of the commonly known critical dimension 26 in the
string theory: at this value of the dimension one does not have dynamics for the metric field
gab(ξ) = ρ2(ξ)δab. However for D < 26 one must examine the “σ-model like” in eq.(9.12-
d) which is not the Liouville field theory as originally stated by A.M. Polyakov because the
natural theory’s dynamical variable in this framework is the scalar field ρ(ξ) instead of that
proposed initially by Polyakov 2lgρ(ξ) = ϕ(ξ). These above cited 2D-theories coincides
only for very weak fluctuations around the 2D-flat metric ρ(ξ) = 1 + ερ(ε → 0) in our
opinion.

Note that the quantum field equation associated to the obtained effective partition func-
tional is given by (the the two-dimensional effective Einstein equations for this induced
2D-gravitation!)

(∂a∂a)ρ(ξ) =
12πμ2

R

(26−D)
(ρ(ξ))3 +

12π
(26−D

(∂aρ)2

ρ2 (ξ) (9.13-d)

Note that our σ-model like (Euclidean) lagrangian (with μ2
R = μ2

bare + lim
∈→0+

(2−D)
4πε

)

describing the closed random surface sum

L(ρ,∂aρ) =
26−D

12π

∫
ξ

[
1
2
∂a

(
1
ρ

)
∂a(ρ)

]
(ξ)d2ξ+μ2

R

∫
ξ
ρ2(ξ)d2ξ (9.14-d)

does not possesses in principle a full conformal symmetry as a consequence of the correct
variable to be quantized. It is worth remark that even in the original Polyakov’s work the
symmetry which remains after specification of the conformal gauge are the conformal trans-
formation of the ξ-domain |dw

dz |2 = 1 for φ(z) defined as a scalar field. We conjecture that
the only phase in which the 2D-quantum field theory makes sense is its perturbative phase
around the “flat” configuration ρ2(ξ) = 1 + 1

Dρ
−2
q (ξ) in a 1

D -expansion of other suitable
classical ρcl(ξ) solution of eq.(9.13-d) ρ2(ξ) = ρ2

cl(ξ)+ 1
D ρ−2

q (ξ).
The intercept point probabilities (the scalar N-scattering amplitude) in this random sur-

face theory is straightforwardly reduced to the average

A(δ)(p1, · · · , pN) = (δ)
(

N
∑

i=1
p2

i )
∫
ξ
ΠN

i=1d2ξ j (ΠN
i< j|ξi −ξ j|pi·pj

)

×
∫

DF [ρ]e−L(ρ,∂aρ) (ΠN
i=1[ρ(ξ j)]+2(1−p2

i )) (9.15-d)

It is possible to show that only for (Euclidean) values of external momenta 1− p2
i =

−1,−2, · · · or p2
i = 0,−1,−2, · · · , and suggesting, thus, to a spectrum without the usual

lowest state being a tachyon.
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So, our main conclusion is that the summation of Bosonic random surface understood
as 2D-induced quantum gravitation as originally proposed by A.M. Polyakov is reduced
to a massive σ-model scalar field lagrangean obtained in eq.(9.12-d), and not to the Liou-
ville somewhat ill-defined 2D-quantum model as originaly put forward by A.M. Polyakov.
Note that the simplest supersymmetric version of the Bosonic Quantum Field eq.(9.12-d)
describes the sum of fermionic random surfaces with critical dimension D = 10 and will be
analyzed in the next section.

Let us finally point out that there is a formal propose to describe the closed random
surface partitional functional eq.(9.12-d) by means of Liouville-Polyakov degree of free-
dom φ(ξ) = 2lgρ(ξ) which has the advantages of taking into account directly in the path
integral the positivity of the quantum field ρ(ξ). The important formal step in this study is
the variable functional change

DF [ρ(ξ)] = Πξd[e
φ
2 (ξ)] = Πξ(det(e

φ
2 )(ξ))d(φ(ξ)) (9.16-d)

Unfortunately the functional Jacobian det(e
φ
2 ) does not makes sense as a functional

change of functional measures. However, one can propose a definition for the above cited
Jacobian as in the original Fujikawa’s ”hand-wave” prescription to handle the axial anomaly
as follows:

det F [(e
φ
2 )(ξ)] = lim

ε→0+
exp Tr(ξ) [lg(e

φ
2 )(ξ)e−εΔgab=eφδab ] =

lim
ε→0+

exp

{∫
d2ξeφ(ξ)

φ
2
(ξ)

[
1

4πε
− 1

12π
(e−φΔφ)

]
(ξ)

}
=

exp

{
1

48π

∫
ξ

[
1
2
(∂aφ)2

]}
exp

{
1

8πε

∫
ξ

eφ(ξ)φ(ξ)
}

(9.17-d)

By analyzing eq.(9.17-d) we feel that is not sound as it stands since 1) one could use
other regularizing operator as that one of eq.(9.17-d); 2) the term in front of kinetic term for
the Liouville weight decreases and leading to a new (incorrect) critical dimension for string
theory, etc... Anyway eq.(9.17-d) deserves further studies and will be left to our readers.

Appendix E.
On Polyakov’s Fermionic String Path Integral - Revisited

In the last section of our chapter we review the original paper by A.M. Polyakov (Quan-
tum Geometry of Fermionic Strings (Phys. Lett. 103B, 211, 1981) with corrections and
improvements on the concepts exposed there.

In this previous Appendix D, we have clarified and improved the Polyakov’s procedure
for quantizing Bosonic strings as 2D quantum gravity models by a carefull analysis of the
involved path-integrals.

Let us begin from the supersymmetric extension of the Bose string (quantum gravity!)
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lagrangean.

S =
1

2πα′

{∫
d2ξ

[
1
2
√

ggαβ∂αXA∂βXA +
1
2
ψA(iγα∂α)ψA

χαγ
βγα(∂βχA +

1
2
χβψA)ψA

]}
+μ

∫
D

d2ξ
√

g(ξ) (9.1-e)

Here, the surface is parametrized by XA = XA(ξ), (A = 1 · · ·D); ψA is a ξ-two component
Majorana spinor, gαβ(ξ) is a metric tensor and χα is a spinor gravitino field. The Polyakov’s
strategy as exposed in the previous paper, was to integrate out the χA and ψA fields firstly
and, then, he has examined the resulting theory of ”induced ξ-supergravity”. By choosing
the ”super-conformal” gauge

gαβ(ξ) = ρ2(ξ)δαβ ; χα(ξ) = (γαχ)(ξ) (9.2-e)

Polyakov has showed that the only expression which satisfies all ξ-supersymmetries not
destroyed by the super-conformed gauge eq.(9.2-e) is the direct supersymmetric extension
of the Bosonic action given in Appendix D, namely

e−W =
∫

DψADXae−S (9.3-e)

In terms of the original fields ρ(ξ) and χ(ξ), the component form of eq.(9.3-e) can be
(correctly) rewritten as (with 2πα′ = 1)

W [ρ,χ] =
10−D

8π

∫
[
1
2

(∂ξρ
ρ

)
+
[

1
2

iχ(γ∂)χ+
1
2
μ(χγ5χ)ρ+

1
2
μ2ρ2

]
(ξ)d2ξ (9.4-e)

Note that in the usual Liouville field parametrization the induced 2D-supergravity is
written as (ρ = eϕ/2)

W [ϕ,χ] =
10−D

8π

∫
ξ

[
1
2
(∂W )2 +

1
2

iχ(γ∂)χ+
1
2
μ(χγ5χ)eϕ +

1
2
μ2e2ϕ

]
(ξ) (9.5-e)

At this point it is worth remark that the intrinsic fermionic degrees of freedom in eq.(9.5-
e) may be easily integrated out with the following result: [if one considers χ(ξ) as an usual
2D-Dirac fermion field]∫

DF [χ(ξ)DF [χ(ξ)]exp

{
−
(

10−D
8π

)∫
ξ

d2ξ
[

1
2

iχ(γ∂)χ+
1
2
μ(χγ5χ)ρ

]}

= det

[
iγ∂+

1
2
μγ5ρ

]
= I(ρ) (9.6-e)

At this point, we note that (after introducing the notation σ+ = β
(

1+ γ5

2

)
β and σ− =

β
(

1− γ5

2

)
β, we have the μ-expansion (μ<< 1)

I(ρ) =
∞

∑
n=0

(− 1
2μ)

n

n!

∫
d2ξ1 · · ·d2ξn

∫
DβDβ exp

[
−1

2

∫
ξ
(β(iγ∂)β)

]
(σ+ρ−σ−ρ)(ξ1) · · · (σ+ρ−σ−ρ)(ξn) (9.7-e)
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and it is a result of a well-known theorem on 2D-Fermionic model’s that the only non zero
terms of eq.(9.7-e) are those with equal number of σ‘

+s and σ‘−s. We get, thus, that eq.(9.6-
e) becomes the bosonized path-integral below written

I(ρ) =
∫

DF [a(ξ)]exp

(
−1

2

∫
d2ξ(∂a)2(ξ)

)
exp

(
−

∫
d2ξ

[
1
2
μeΔ(0) 1

4π
sen(

√
4πa+ρ)

]
(ξ)

)
(9.8-e)

where the (bare) ξ-cosmological constant μ (gets a multiplicative ultraviolet) renormaliza-
tion μR = 1

2μ(ε)
− 1

2π .
As a final comment let us use as dynamical degrees of freedom the Polyakov’s origi-

nal conformal factor ϕ(ξ) = lgρ(ξ). In terms of this variable the bosonized theory’s path
integral is written as

Z =
∫

DF [eϕ(ξ)]exp

{
−1

2

∫
ξ

[
(∂ϕ)2(ξ)+μ2

(
10−D

8π

)
e

2
√

8π
10−Dϕ

]
(ξ)

}

×
{∫

DF [a(ξ)]exp

(
−1

2

∫
d2ξ(∂a)2(ξ)

)

exp

(
−

∫
d2ξ

[
1

8π
μR sin (

√
4πa)e

√
8π

10−Dϕ
]
(ξ)

)}
(9.9-e)

It is worth to note that the one must use as the Feynman product measure that written in
eq.(9.9-e) Πξ(eϕ(ξ)dϕ(ξ)) since the associated functional (ξ-covariant) functional metric is
given by

‖δgab‖2 =
∫
ξ
(e2ϕ(ξ)δϕ ·δϕ)(ξ)d2ξ =

∫
ξ
[δ(eϕ)δ(eϕ)](ξ)d2ξ (9.10-e)

Note that only for weak intrinsic metric fluctuations (or for D = 10 − ε) eϕ(ξ) may
be replaced directly by ϕ(ξ) inside the Feynman product measure as it was supposed in
Polyakov’s original propose
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Chapter 10

A Random Surface Membrane Wave
Equation for Bosonic Q.C.D. (SU(∞))

10.1. Introduction

In last decades, representations for Quantum Chromodynamics as extended objects have
been pursued by several authors ([1], [2], [3], [4]). Among these, the representation of the
meson wave functional by the quantum amplitude of a closed trajectory of a colored particle
in the vacuum of a pure Yang-Mills field has strongly suggested the equivalence between
Bosonic – non supersymmetric QCD (SU(∞)) and a dynamic of strings ([1], [2]).

In this chapter, we propose to replace the one-dimensional closed trajectory in the
above quantum amplitude by a two-dimensional random surface possessing color degrees
as another collective non-perturbative variable for probing non-pertubative structures on
Q.C.D(SU(∞)). Thus, we deduce (formally) its associated surface wave equation in the
t’Hooft topological limit of large number of colors Nc = +∞. This study is presented in
section 2. On the section 3 we suggest a path-integral argument on the connection of our
proposed Random Surface Wave functional and the Path-Integral Partition Functional of the
usual (Bosonic) Yang-Mills Gauge theory. Finally on Section 4 and Appendix B, we make
some comments on previous work on the subject and on the regularization program.

10.2. The Random Surface Wave Functional

Let us start our analysis by considering the problem of associating a wave functional for a
random surface Σ possessing SU(N) color degrees of freedom interacting with an external
quantized Yang-Mills field Aμ(X), the most simple geometrical gauge-invariant generaliza-
tion of the usual Wilson Loop variable for Q.C.D.

The colored random surface is characterized by two fields: first, by the usual (bosonic)
vector position Xμ(ξ), ξ ∈ D (μ = 1, . . . ,D, where D is the space-time dimension), and
second, by the random surface color variable g(ξ) which is an element in the fundamental
representation of the SU(N) group. Here, we have fixed the two-dimensional flat domain D
to be the rectangle

D|0,2π|×|0,T | = {(ξ0,ξ1); 0 ≤ ξ0 ≤ 2π and 0 ≤ ξ1 ≤ T}.
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The classical action for this membrane is naturally given by ([5], [6], [7]).

S = S0 + S(B)
1 (10.1)

with

S0 =
1
2

∫
D

d2ξ(∂aXμ∂aXμ)(ξ) (10.1a)

S(B)
1 =

1
4πm

∫
D

T (c)
R (g−1∂ag)2(ξ)d2ξ+ 4πiΓWZ[g], (10.1b)

where ΓWZ[g] denotes the two-dimensional Wess-Zumino functional. Its existence, together
with the integer m in the above written σ-model on the action of g(ξ)’s afford us to consider
the bosonized fermionic equivalent action

S(F)
1 =

∫
D
ψ(ξ)(iγa∂a)ψ(ξ)d2ξ, (10.2)

where the two-dimensional Dirac field ψ(ξ) belongs to the fermionic fundamental SU(N)
representation.

At this point, the simplest action taking into account the interaction with the external
non-Abelian field is given by

Sint[ψ(ξ);Aμ(X)] =
∫

D
ψ(ξ)(γa∂aXμ(ξ)Aμ(X(ξ))ψ(ξ)d2ξ (10.3)

The complete classical interacting action (eqs. (10.1a), (10.2) and (10.3)) is invariant
under the gauge transformations

Aμ(Xμ(ξ)) → (h−1Aμh+ h−1∂μh)(Xμ(ξ))
ψ(ξ) → h(Xμ(ξ))ψ(ξ)

ψ(ξ) → ψ(ξ)h−1(Xμ(ξ))
(10.4)

Before turning to the construction of a quantum wave functional for the above sys-
tem, it is instructive to remark that eqs. (10.1a), (10.2) and (10.3) are the random surface
generalizations of the analogous formulae in the one-dimensional string case, where the
colored string is described by the position vector Xμ(σ) and the one-dimensional complex
fermion (Grassmanian) field {θ(σ),θ�(σ)} in the SU(N) fundamental representation. The
associated action is

S[Xμ(σ),θ(σ),θ�(σ),Aμ(Xμ(σ))]

=
∫ T

0

1
2

Ẋμ(σ)2dσ+
∫ T

0
θ�(σ)θ̇(σ)+

∫ T

0
Ẋμ(σ)AI

μ(X(σ))(θ(σ)λIθ�(σ))dσ
(10.5)

where {λI} denotes the Hermitian generators of the SU(N) Lie algebra.
In this string case, a quantum wave functional is given by the following path integral(1)

W [Xμ(σ),Aμ(X)]

=
∫

d[θ(σ)]d[θ�(σ)]
N2−1

∑
α=1

θα(0)θ∗α(T )exp{−S[Xμ(σ),θ(σ),θ�(σ),Aμ(Xμ(σ))]}
(10.6)
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which leads to the well-known Wilson Loop factor defined by the closed string {Xμ(σ)}.
The complete quantum wave functional is defined by the average 〈W [Xμ(σ),Aμ(X)]〉 where
〈 〉 denotes the partition functional of the pure Yang-Mills theory ([1]).

We shall now use eq.(10.6) to propose the following functional integral as a quantum
wave functional for a SU(N) colored random surface Σ interacting with the quantum vac-
uum of a SU(N) Yang-Mills theory.

Trcolor(ψ[Σ]) def=
N2−1

∑
R=1

∫
d[ψ(ξ)]d[ψ(ξ)](ψ(0,0)

λR

Nc
ψ(2π,0))

× exp{−S[Xμ(ξ),Aμ(X(ξ),ψ(ξ))]}.
(10.7)

Notice that our above proposed random surface phase factor Trcolor(ψ[Σ]) is a 2× 2
matrix in the flat domain D(a = 1,2).

In order to deduce a closed wave functional for the quantum average 〈Trcolor(ψ[Σ])〉 in
the limit Nc = +∞, we proceed as in the string case1,2 by shifting the Aμ(X) field variable,
which by its turn, produces the following result (λ2

0 = lim
Nc→∞

(g2
0Nc) < ∞)

1

4λ2
0

〈Trcolor{(DμFμν)(X)ψ[Σ]}〉

=
∫

D
δ(D)(X −Xμ(σ,ξ))∂cXμ(σ,τ)〈Trcolorψ[Σ1]〉〈Trcolorγ(c)ψ[Σ2]〉,

(10.8)

where the split membranes Σ(1) and Σ(2) are respectively defined by the restriction of the
mapping Xμ(ξ1,ξ2) for the (split) domains

D(1) = {(ξ0,ξ1); 0 ≤ ξ0 ≤ σ; 0 ≤ ξ1 ≤ T}

and
D(2) = {(ξ0,ξ1) | σ≤ ξ0 ≤ 2π; 0 ≤ ξ1 ≤ T}.

It is now convenient to multiply both sides of eq.(10.8) by the membrane current density

J(a)(X) = δ(D)(X −Xμ(σ,τ)∂aXμ(σ,τ)

and integrate out the result relative to the space-time variable X . So, we get the result

〈Trcolor{(DμFμν)(Xμ(σ,τ))∂aXμ(σ,τ)ψ[Σ]}〉
= 4λ2

0

∫
D
δ(D)(Xμ(σ,τ)−Xμ(σ,τ))∂cXμ(σ,τ)∂aXμ(σ,τ)

×〈Trcolorψ[Σ(1)]〉γ(c)〈Trcolorψ[Σ(2)]〉.
(10.9)

In order to write the left-hand side of the above result in a form similar to the random
surface wave equation of ref. [11] we use the relations{

δ
δXμ(σ,τ)

}
Trcolor(ψ(Σ)) = Trcolor(ψ(Σ1)Fμν(X(σ,τ))∂cXν(σ,τ)γ(c)ψ(Σ2)), (10.10a)
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PF

{
δ2

δXμ(σ,τ)δXμ(σ,τ)

}
Trcolor(ψ(Σ))

= Trcolor(DμFμν(Xμ(σ,τ))∂cXν(σ,τ)γ(c)ψ(Σ)),
(10.10b)

where the derivative-finite part operations is given by ( [1] ).

PF

{
δ2

δXμ(σ,τ)δXμ(σ,τ)

}

≡ lim
ε→0+

∫ ε

−ε
dβ

δ2

δXμ(σ+β,τ+β)δXμ(σ−β,τ−β)
.

(10.10c)

By substituting eq.(10.10b) into eq.(10.9), we obtain our proposed random surface ver-
sion of the string Migdal-Makkenko wave equation (compare with eq.(10.9), ref. 2, and
eq.(10.7), ref, 4).

PF

{
δ2

δXμ(σ,τ)δXμ(σ,τ)

}
〈Trcolor(ψ(Σ))〉

= 4λ2
0

∫
D
δ(D)(Xμ(σ,τ)−Xμ(σ,τ))∂bXμ(σ,τ)∂cXμ(σ,τ)

〈Trcolorγ(b)ψ[Σ(1)]〉〈Trcolorγ(c)ψ[Σ(2)]〉. (10.11a)

To summarize, we propose a continuum random surface version of the string Migdal-
Makkenko loop wave equation in SU(∞), which we hope to open a new path to under-
stand the non-pertubative structure of Quantum Chromodynamics as a dynamics of random
surfaces as much sucessuful studies implemented in Loop Space approach for Quantum
Gravity ([11]).

10.3. A Connection with Q.C.D(SU(∞))

In this section we present an path-integral argument connecting our proposed random sur-
face wave functional eq.(7) to the Q.C.D(SU(∞)), thus, showing the usefulness of our pro-
pose on Section 10.2.

In order to achieve such goal, let us consider the quantum vaccum of the Yang-Mills the-
ory as an ensemble of random SU(N) connections with an uniform distribution interacting
with the random surface Σ constraint to remains on the sphere SD+1 on RD. Formally one
is considering the strong bare coupling g2

bare →∞ vaccum limit on the Yang-Mills quantum
average and the random surface rigid limit Xμ(ξ) = Xμ+

√
α′Yμ(ξ) , with α′ → 0 denoting

the physical observable Regge slope constant, namely:

〈Trcolor(ψ(Σ))〉g2→∞ =
∫

(Π(X,μ,a)dAa
μ(X))Haar

∫
DF [Xμ(ξ)]

× exp

[
−1

2

∫
R2

d2ξ(∂AXμ∂AXμ)(ξ)
]
δ(F)((XμXμ(ξ)−1)

×
∫

DF [ψa,ψa]exp

[
−1

2

∫
R2

d2ξ(ψ(iγA∂A)ψ)(ξ)
]

× exp

[
ie
∫

H2
d2ξ

[
Ai
μ(X

β(ξ))(ψaγ
A(λi)abψb)(ξ)(∂AXμ)(ξ)

]]
.

(10.11b)
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In order to connect eq.(10.11b) with Q.C.D(SU(∞)), we consider the “Harmonic
gauge” fixing in the Haar-Yang-Mills path integral in eq.(10.11b), namely (Xμ(ξ)−Xμ) ·
Aμ(Xβ(ξ)) = 0, which allow us in its turn to rewrite the interaction term in eq.(10.11b)
in terms of the Yang-Mills strength field in the chart V (X) at large random surface
scale (α′ → 0), since in this harmonic gauge we have the expansion Aμ(Xβ(ξ)) =
− 1

2Fμν(X
α)
√
α′Y ν(ξ)+ O(

√
α′)

IV (X)[A
μ
a(X)] =

∫
DF [Y μ(ξ)exp

[
−1

2

∫
R2

d2ξ(∂AY μ∂AYμ)(ξ)
]

×
(

lim
λ→∞

exp

[
−〈λ〉

∫
R2

d2ξ[(Y μYμ)(ξ)−1]
])

×
∫

DF [ψa,ψa]exp

[
−1

2

∫
R2

d2ξ(ψ(iγA∂A)ψ)(ξ)
]

× exp

[
−ieα′

∫
R2

d2 ξ
1
2

Y P(ξ)Fi
ρμ(X

α)(ψaγ
A(λi)abψ)(ξ)(∂AY μ)(ξ)

]
.

(10.12)
Note that we have used the condensate Polyakov approximation ([1]) for the functional

delta inside eq.(10.11), expected to hold true in the limit of α′ → 0 and effectively generat-
ing a mass term for the random surface vector position field

δ(F)((XμXμ)(ξ)−1)

=
∫

DF [λ(ξ)]e+i
∫

R2 d2ξλ(ξ)[(XμXμ)(ξ)−1]

∼ lim
〈λ〉→∞

{
e+i

∫
R2 i〈λ〉conden[(XμXμ)(ξ)−1]d2ξ

}
∼ lim

〈λ〉→∞
e−〈λ〉conden

∫
R2 d2ξ[(XμXμ)(ξ)] (10.13-a)

At this point we evaluate the Yμ(ξ)-Gaussian functional integral with the exact result

IV(X)[A
μ
a(X)]

= lim
〈λ〉→∞

〈
det−

1
2

[
(−∂2)ξημν(X)+

1
2
(Fμν

i (X) ji
a(ξ))∂

a
ξ + 〈λ〉

]〉
ψ,ψ

(10.13-b)

where 〈,〉ψ,ψ denotes the functional integral over the SU(N) string intrinsic Dirac fields and
ji
a(ξ) is the conserved fermion SU(N) current on the random surface sheet.

At the condensate value 〈λ〉 → ∞, we obtain the following result for eq.(10.13)

IV (X)[A
a
μ(X)] ∼

〈
exp

[
− 1

16π
Fi
μν(X)Fρ

μν(X)( ja
i (ξ) ja

ρ(ξ))
]〉

ψ,ψ
(10.14)

which at large N, give us the final result depending only the “infinite-tensioned random
surface macroscopic space-time fixed vector position X”

IV(X)[A
a
μ(X)](N→∞) = exp

⎡
⎣−

⎛
⎝〈∫ d2ξ ja

i (ξ) ja
i (ξ)〉(N→∞)

ψ,ψ

16π

⎞
⎠Fi

μν(X)Fi
μν(X)

⎤
⎦ . (10.15)
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The complete path integral equation (10.15) is, thus, exactly the SU(∞) Yang-Mills
quantum field path integral for the space-time at large random surface scale (after integrat-
ing out the space-time macroscopic surface space-time point X)

∫
DF [Aa

μ(X)]exp

[
− 1

16g2
QCD

∫
dDX(F2

μν(X))

]
= ∑

(membranes)

{
< Trcolor(ψ(Σ)) >Nc→∞

g2
bare→0

}
(10.16)

Note that the QCDNc=+∞ coupling constant is expressed in terms of the intrinsic
Fermion fields in an explicitly form

(gQCD)2 =
1
π

〈∫
d2ξ ja

i (ξ) ja
i (ξ)

〉(N→∞)

ψ,ψ
(10.17)

Appendix A.
Rank Two Antisymmetric Path-Integrals the Q.C.D String:
Some Comments

The most important problem in the present days of theoretical and mathematical physics is
how to quantize correctly Non-Abelian Gauge Field Theories defined on the physical con-
tinuum space-time. The only result in this direction still remains a somewhat formal Ansatz
from the experimental and theoretical point of view of the use of the Higgs mechanism.
Probably, this Ansatz is formal from a strict quantum field theoretic point of view since
its makes heavier use of a trivial λφ4-field theory in four dimensions and of the associated
gauges of t’Hooft for the Yang-Mills Fields (see the comments on pag. 38 the J.C. Tay-
lor book “Gauge theories of weak interactions - Cambridge Monographs on Mathematical
Physics). However, it was realized by K. Wilson that in the Ising like euclidean path integral
crude approximation framework (Lattice Gauge Theory) theses non-abelian gauge field the-
ories in the lattice at a bare strong coupling regime are naturally expressed in terms of the
Euclidean Wilson Loops defined by the matter content trajectories C = {Xμ(σ); 0 ≤ σ≤ 1
σ =proper-time parameters}

W [C] = TrP

{
exp

[
+i

∮
C

AμdXμ
]}

. (10.1-A)

Note that typical interaction energy densities, such as ψψ,ψγ5ψ,ψγμψAμ which are real
function (distributions) in the Minkowski space-time are complex on the Euclidean world.

It was argued on ref. [10] by A.M. Polyakov, an euclidean string functional integral
Ansatz for eq.(10.1-A) based on a coupling of an abelian rank-two antisymmetric tensor
field Bμν(x) (the Polyakov’s axion field) with the string orientation area tensor previously
proposed by this author but with an important difference: This rank-two antisymmetric
tensor field B has a non trivial dynamic content. Namely (see eq.((10.12)-(10.15)) - ref.
[10]).

W [C] =
∫

DF [Bμν]e−S[Bμν] e(i
∫
ΣC

Bdσ)∫
DF [Bμν]e−S[Bμν]

(10.2-A)

where the axion action is given by
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S(B) =
1

4e2

∫
dνx(B2

μν + dB · arc sen
dB
m2 −

√
m4 − (dB)2) (10.3-A)

At this point we point out that the functional integral weight eq.(10.3-A) makes sense
only for those field configurations which makes eq.(10.3-A) a real number, namely:
sup
x∈Rν

|dB(x)| ≤ m2.

Unfortunately this bound on the kinetic energy of the axion field is impossible for
those distributional fields configurations making the domain of the axion functional inte-
gral eq.(10.2-A), unless m2 → ∞ and comments below eq.(10.40) of ref. [10]. (A quantum
field may be bounded but not its kinetic energy!).

So, in the deep infrared regime of Q.C.D(SU(∞)) eq.(10.3-A) should turns into a pure
White-Gaussian action for the axion field B dominated by almost constant gauge field con-
figurations

S[B] ∼ 1
4e2

∫
B2(x)dνx (10.4-A)

One has, thus, the following effective result for the Wilson loop surface dependence in
the very low momenta regime

W [C] ∼ exp [−F(C;∑
C

)] (10.5-A)

where the surface functional weight is given by the self-avoiding extrinsic action firstly
proposed in a minimal area context solution for the Q.C.D-Loop wave equation in ref. [1]
with β a (positive) coupling constant

F(C,∑
C

) = β
∫
Σ

dσμα(x)(δμλδαρδν(x− y))dσλρ(y). (10.6-A)

It is straightforward to see that for fixed constant e2, the limit m2 → ∞ leads to a pure
Nambu-Goto action strongly coupled ([10])

F(C,∑
C

) ∼ lim
m2→∞

c1(e2m)
∫

d2ξ
√

g(ξ)+ lim
m2→∞

c2(e2/m)
∫

d2ξ(∇tμν)2√g

+ O

(
1
m

)
∼ 1

2πα′

∫
d2ξ

√
g(ξ)

(10.7-A)

and by its turn suggesting a random surface wave functional behavior like eq.(10.7)
for the quantum averaged Q.C.D(SU(∞)) Wilson loop eq.(10.6)-eq.(10.1-A). in the
Q.C.D(SU(∞)) deep infrared regime.

Appendix B.
On the Self-avoiding Membrane Wave Functional

In this appendix we present some comments on the renormalization program to the random
surface wave functional associated to the self-avoiding extrinsic reparametrization func-
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tional for QCD(SU(∞)) in RD as given by eq.(10.5-A) of the previous Appendix A

F[Xα(ξ)] = β
∫
ξ

√
h(X(ξ))

∫
ξ

√
h(X(ξ′))(Γμν(X(ξ))Γμν(X(ξ′))−1)

×δ(D)(Xα(ξ)−Xα(ξ′)).
(10.1-B)

With Xα(ξ) denoting the parametrization of the Σ-surface on the surface wave function
ansatz eq.(10.5-A).

Here the surface area tensor responsable by the extrinsic properties of QCD(SU(∞))
quantum geometry is explicitly given by

Γμν(X(ξ)) =
(εab∂aXμ∂bXν)(ξ)√

h(X(ξ))
(10.2-B)

and the random surface scalar area is written as√
h(X(ξ)) =

√
det{∂aXμ∂bXμ}(ξ). (10.3-B)

As a first step to analyze eq.(10.1-B), one should extract the pure string world sheet U.V
divergence associated to the trivial self-avoiding surface case Xμ(ξ) = Xμ(ξ′) with ξ = ξ′.

Let is follow our study.
Firstly we note that a regularized form for eq.(10.1-B) in the U.V case ξ= ξ′ is explicitly

given by

W(Λ)[X(ξ)] = β
∞

∑
p=0

(−1)p

p!22p ·Γ(D
2 + p)

(
ΛD+2p

D + 2p

)
·δΛ(ξ,ξ′)

×X

{∫
ξ

d2
ξd2

ξ′

√
h(ξ)

√
h(ξ′)(Γμν(X(ξ)Γμν(X(ξ′))−1)|X(ξ)−X(ξ′)|2p

}
(10.4-B)

with

δΛ(ξ,ξ′) =

⎧⎪⎨
⎪⎩
Λ if

{
ξ1 − 1

Λ ≤ ξ′1 ≤ ξ1 + 1
Λ

ξ2 − 1
Λ ≤ ξ′2 ≤ ξ2 + 1

Λ
0 otherwise

(10.5-B)

By considering the taylor expansion around ξ = ξ′

Γμν(X(ξ))Γμν(X(ξ′))−1 = −(∂aΓμν)(∂bΓμν(X(ξ))(ξ−ξ′)a(ξ−ξ′)b + higher terms
(10.6-B)

one can see that all reparametrization invariant counter-terms are of the second order deriva-
tive on the surface vector position and on the area tensor object namely, at one-loop case
(p ≤ 1); one has the following explicit counter-terms involving the extrinsic geometry (note
the subtraction of the pure self-avoiding term in eq.(10.1) which at the level of loop equa-
tions means that a non-vanishing Gluon condensate was already taken into account by con-
sidering a non-zero Regge slope parameter, i.e., (2πα′)−1 = 〈0|F2|0〉 �= 0:

W1[X(ξ)] ∼ β(Λ)4
∫
ξ

√
h(ξ)(∂aΓμν∂aΓμν)(ξ)
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W2[X(ξ)] ∼ β(Λ)4
∫
ξ

√
h(ξ){(∂aΓαβ)(∂aΓμβ)(∂bXα)(∂bXμ)+ · · ·}

W3[X(ξ)] ∼ β
∫
ξ

√
h(ξ){(∂2Γαβ(∂2Γαβ)} (7-B)

At this point we consider the extrinsic ultraviolet divergences Xμ(ξ) = Xμ(ξ′) but with
ξ �= ξ′ .

In the physical situation of line self-intersections, where the equation Xμ(ξ) = Xμ(ξ′)
defines a sub-manifold of dimension 1 (the Σ-surface is generically discribed by the union
of vertical surfaces cylinders locally in contact along self-intersecting vertical lines passing
through the points σ j = {ξ1

j ,τ} with Xμ(ξ′j,τ) = Xμ(ξ1
j+1,τ) 1 ≤ j ≤ m). The resulting

random surface wave functional path integral still remains formally renormalizable. In
order to show the correctness of this claim, one can see that Γμν(X(σ j))Γμν(X(σ j+1)) =
cosX(σ j;σ j+1), the constant angle between the extrinsic surface tangent planes possesing
the comon self-intersecting non-trivial line Xμ(σ j)(orXμ(σ j+1)!). Now it is straightforward
to see that the action eq.(10.1-B) reduces to a pure (intrinsic) self-avoiding action of the
cylinder surfaces branches with the associated tangent plane above cited. In this simple case
one can follow our previous exposed results in ([3]) to show its formal renormalizability as
a two-dimensional Quantum Field Theory.
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Chapter 11

Covariant Functional Diffusion
Equation for Polyakov’s Bosonic
String

11.1. Introduction

The attempt to formulate a convariant quantum theory of strings in terms of the line func-
tional has a basic object the string transition amplitude.([1]−[3]) The main idea in this frame-
work is to consider the string world-sheet area playing the role of a proper time. The string
propagator, thus, should satisfy a kind of functional diffusion equation in the area space
variable.[2]

In this chapter we analyze the associated functional diffusion equation in Polyakov’s
quantum bosonic string theory by taking into account in an explicit way the theory’s con-
formal anomaly (see Chapters 1 and 19).

11.2. The Covariant Equation

The transition amplitude for an initial (Euclidean) string state

{(xin
μ (σ),ein(σ)), 0 ≤ σ≤ 1}

propagating to a final string

{(xout
μ (σ),eout(σ)), 0 ≤ σ≤ 1}

in Polyakov’s theory is given by ([1] and Chapters 1 and 19)

G[cout,cin] =
∫

dμ[gab]dμ[φμ]exp[−I0(gab,φμ,μ2,λ)], (11.1)

where the covariant string action with a cosmological term μ2 and a “quark-mass” parameter
λ is the Brink-Di Vecchia-Howe action [4]

I0(gab,φμ,μ2,λ) =
1
2

∫
D

dσdζ(
√

ggab∂aφμ∂bφμ+μ2
0)+λ0

∫
∂D

ds. (11.2)
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The string surface parameter domain is taken to be the rectangle D = {(σ,ζ),0 ≤ σ≤
1,0 ≤ ζ < T}. The covariant functional measures dμ[gab]dμ[φμ] are defined over all cylin-
drical (random) surfaces without holes and handles with the string configurations as non-
trivial boundaries: i.e., φμ(σ,) = xin

μ (σ). φμ(σ,T ) = xout
μ (σ).

In order to write an area functional diffusion equation for the string propagator,
Eq.(11.1), we rewrite it in a form where the string’s world-sheet area plays a role as a
string proper time:

G[Cout,Cin] = exp

[
−λ0

∫
Cin

ds−λ0

∫
Cout

ds

]∫ ∞

0
dAe−μ

2 AG[Cout,Cin,A], (11.3)

where G[Cout,Cin,A] is the fixed-area string propagator

G[Cin,Cout,A] =
∫

dμ[gab]dμ[φμ]δ
((∫

D
dσdζ

√
g(σ,ζ−A

))
exp[−I0(gab,φμ,μ2 ≡ 0)].

(11.4)
The δ-function constraint in Eq.(11.4) ensures that only the random surfaces with fixed

area A contribute.
Let us evaluate the area partial derivative of the area-fixed propagator: namely,

∂
∂A

G[Cin,Cout,A] = −
∫

dμ[gab]dμ[φμ]δ′
[∫

D
dσdζ

√
g(σ,ζ)−A

]
(11.5)

with δ′(x) being the first derivative of the δ distribution.
At this point we consider the identity

= δ′
[∫

D
dσdζ

√
g(σ,ζ)−A

]
= lim

ζ→0+

[
1

2
√

gg00

δ
δg00

]
(σ̄,ζ)δ

[∫
D

dσdζ
√

g(σ,ζ)−A

]
(11.6)

which can be easily verified by using the Fourier integral representation for the δ functional
and the relationship δ√g = 1

2
√

gg00δg00 .
By substituting Eq.(11.6) into Eq.(11.5) we obtain the result (see Chapter 9)

∂
∂A

G[Cout,Cin,A] = lim
ζ→0+

∫
dμ[gab]

⎡
⎣− 1

2
√

gg00

↔
δ

δg00

⎤
⎦(σ̄,ζ)F(φμ,gab), (11.7)

where δ/δg00(σ̄,ζ) acts on the measure dμ[gab] and on the string-field term

F(φμ,gab) =
∫

dμ[φμ]exp[−I0(φμ,gab,μ
2 ≡ 0)]. (11.8)

The δ/δg00(σ̄,ζ) functional derivative of the term F(φμ,gab) is subtle since the co-
variant functional measure dμ[φμ] depends in a nontrivial way on the metric gab(σ,ζ) as a
consequence of its definition as the functional volume element associated with the covariant
functional metric5

||δφμ||2 =
∫

D
(
√

gδφμδφμ)(σ,ζ)dσdζ. (11.9)
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Its evaluation proceeds in the following way. The g00(σ̄,ζ) functional derivative of the
Brink-Di Vecchia-Howe action without the boundary term is trivially given by the (0,0)
component of the stress-energy tensor:3

δ
δg00(σ̄,ζ)

I0(gab,φμ,μ2 ≡ 0) = (∂0φμ∂0φμ− 1
2

g00gcd∂cφμ∂dφμ)(σ̄,τ). (11.10)

In the conformal gauge gab = eρδab Eq.(11.10) takes the simple form below at the
boundary limit ζ→ 0+ with πin

μ (σ̄) = lim
ζ→0+

δ0φμ(σ̄,ζ) being the string canonical momentum

and x′ inμ (σ̄) = lim
ζ→0+

∂1φμ(σ̄,ζ):

1
2

[πin
μ (σ̄)2 − x′ inμ (σ)2]. (11.11)

Let us evaluate the δ/δg00(σ̄,ζ) functional derivative of the functional measure dμ[φμ]
in the conformal gauge where the results are given by local expressions.

The Frechet derivative of the functional measure is (by its definition) given by the rela-
tionship (see Chapters 1 and 9)

eρ(σ̄,ζ̄) δ
δρ(σ̄, ζ̄)

(dμ[φμ;eρδab]) = lim
ε→0+

1
ε
(dμ[φμ;eρ+δhδab]−dμ[φμ,eρδab]) (11.12)

with δh = εδ(σ− σ̄)δ(ζ− ζ̄).
Since we have, as a straightforward consequence of the theory’s covariance [see

Eq.(11.9)],
dμ[φμ,eρ+δhδab] = dμ[eδh/2φμ,eρδab] (11.13)

and the effect of the functional measure dμ[φμ] under a conformal rescaling can be exactly
evaluated, [6] (Chapters 1 and 9)

dμ[φμ,eρ+δhδab] = dμ[φμ,eρδab]exp

[
D

24π

[∫
D

1
2
(∂aρ)(∂aδh)+μ2(ε)eρδh+λ0(ε)

∫
∂D

eρδh

]]
,

(11.14)
we thus have the result

e−ρ(σ̄,ζ) δ
δρ(σ̄,ζ)

dμ[φμ,eρδab] =
D

24π
[R(ρ(σ̄,ζ))+μ2

0(ε)+λ0(ε)]dμ[φμ,eρδab], (11.15)

where R(ρ(σ̄,ζ)) = e−ρ(σ̂,ζ)Δρ(σ̄,ζ) is the scalar of curvature associated with the intrinsic
metric e−ρδab and μ0(ε), λ0(ε) are infinite constants which depend on the regularization
scheme used to evaluate the functional determinants of two-dimensional Beltrami-Laplace
operators in Polyakov’s effective action (Chapter 1).

It is instructive to remark that one can implement the above calculation without choos-
ing the conformal gauge since the measure functional derivative may be alternatively de-
fined by the ratio

δ
δg00(σ̄, ζ̄)

dμ[φμ,gab] =
det−D/2[Δgab +δg00(σ̄, ζ̄)]

det−D/2(Δgab)
(11.16)
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and we have the general covariant result

In det(Δgab) =
1

4δπ

∫
0

dσdζ
∫

D
dσ′dζ′(

√
gR)(σ,ζ)Δ−1

gab
(σ−σ,ζ−ζ′)(

√
gR)(σ′,ζ′),

(11.17)
where Δ−1

gab
(σ−σ′,ζ− ζ′) denotes the Green’s function of the Laplace Beltrami operator

Δgab = (1/
√

g)∂a(gab∂b) in the presence of the intrinsic metric {gab}.
However, it is important to note that only in the conformal gauge do our calculations

take a local form as a functional of the intrinsic metric tensor. This is the technical reason
that we use the conformal gauge at the end of our calculations.

Finally the g00(σ̄,ζ) derivative of dμ[gab] in the conformal gauge is easily evaluated: 3,5

e−ρ(σ̄,ζ) δ
δρ(σ̄,ζ)

dμ[gab = eρδab] = − 26
24π

[R(ρ(σ̄,ζ))+μ2
0(ε)+λ0(ε)]dμ[gab = eρδab],

(11.18)
since we have explicitly

dμ[gab = eρδab] = Dcov[ρ]exp

[
− 26

48π

∫
D
[
1
2
(∂aρ)2 +μ2(ε)eρ]+λ(ε)

∫
∂D

eρds

]
[

Dcov[ρ] = ∏
(σ,ζ)∈D

eρ(σ,ζ) dρ(σ,ζ)

]
. (11.19)

By grouping together Eqs.(11.11), (11.15), (11.18), and introducing the covariant string
commutation relation1

[πμin(σ),xν(σ′)] =
iδ(σ−σ′)
�ein(σ)

{ein(σ) = lim
ζ→0+

exp[+ρ(σ,ζ)]}

which produces the Schrödinger representation πμin(σ) = −�e−1
in (σ)δ/δxin

μ (σ), we can fi-
nally write Eq.(11.7) as a covariant diffusion equation for Polyakov’s bosonic string which
takes into account in an explicitly and local way the presence of the world sheet intrinsic
metric

exp[ρ(σ,ζ)]
[
− 1

2
δ2

ein(σ̄)2δxin
μ (σ̄)δxin

μ (σ̄)
− 1

2
|x′ inμ (σ̄)|2 +

26−D
24π

lim
ζ→0+

[R(ρ(σ̄,ζ))+C∞]
]

G[Cout,Cin,A]

=
∂
∂A

G[Cout,cin,A]. (11.20)

The above -written string wave equation is the main result of this chapter.
Let us comment that at D = 26, where the invariance of Polyakov’s string theory under

the world-sheet diffeomorphism group is restored (otherwise it is partially broken to the
quotient group of the complete diffeomorphism group by the Weyl diffeomorphism sub-
group) we can fix ein(σ) = 1 and the above area diffusion equation takes the simple form

∂
∂A

G[Cout,Cin,A] =

[
−1

2
δ2

δxin
μ (σ̄)δxin

μ (σ̄)
− 1

2
|x′ inμ (σ̄)|2

]
G[Cout,Cin,A]. (11.21)
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A simple functional solution of Eq.(11.21) is

G[Cout,Cin,A] = e−EAΦ[Cin]Φ[Cout], (11.22)

where the string functional Φ[Cin] satisfies the string wave equation[
− 1

2
δ2

δxin
μ (σ̄)δxin

μ (σ̄)
−|x′ inμ (σ̄)|2

]
ΦE [Cin] = −EΦE [Cin] (11.23)

Here we can see that the possible values of E are exactly the eigenvalues of the “func-
tional Klein-Gordon” operator on the left-hand side of Eq.(11.23) which can be identified
with the −L0 Virasoro constraint written in the Schrödinger representation (see Chapter 20,
Appendix D) – Supplements.

11.3. The Wheeler - De Witt Equation as a Functional Diffusion
Equation

We aim in this section to present a path integral framework where the three-metric quantum
gravity propagator Ref. ([10]-[22]) in Einstein theory satisfies a kind of functional diffusion
equation with the Space-Time four volume playing the role of a proper time for Space-Time
quantum evolution as much as similar analysis presented in 11.2.

We, thus, recover the Wheeler - De Witt equatIon in the situation of vanishing Space-
Time four volume.

Let us start our analysis by considering a Space-Time M which has topology of a
cylinder. This means that M can be considered as a homotopical deformation of a three-
dimensional manifold S.

In Four-Dimensional Einstein Gravitation Theory (Chapter 1), the dynamical fields are
rank two symmetric tensor hμν(x) and defining metric strucures in M compatible with its
cylindrical topology. The basic object in the (formal) Feynman path integral approach for
quantization is the number of quantum gravitational field states with a fixed four volume
V and satisfying the boundary condition that the metric field hμν(x) induces in the three-
dimensional manifold S a given field (classical observable) metric ĝi j(�x)

N(V ) =
∫

Dc[hμν]exp

{
− 1

8G2
N

∫
M

d4x(
√

hR)(x)
}

×δ
(∫

N
d4x(

√
h(x)−V )

)
(11.24)

The Delta function in Eq.(11.24) ensures that only the gravitational states hμν(x) with a
fixed four-volume V contribute. The covariant functional measure Dc[hμν]is given explicitly
in Chapter 1. The metric boundary condition and the topology of M is taken into account
by using the Lapse-Shift form of the metric field ([14])

hμν(x) = −(N(�x,ζ)2(h)2 + gi j(�x,ζ)(dxi + Ni(�x,ζ)dζ)× (dx j + N j(�x,ζ)dζ) (11.25)

where�x ∈ S, ζ ∈ [0,T ]; N(�x,0) = Ni(�x,0) = 0 and gi j(�x,0) = ĝi j(�x) .
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In order to write a four-volume functional diffusion equation for the Quantum Gravity
propagator Eq.(11.24), we re-write it is a form where the new field variables are given by
the lapse-shift (scalar and vectorial) fields (N,Ni) and the three-dimensional metric field
gi j(�x,ζ)

N(V ; ĝi j) =
∫

Dc[N]Dc[Ni]Dc[gi j]

× exp

{
− 1

8πG2
N

∫ T

0
dζ

∫
S

d3 xSADM [N,Ni,gi j]
}

δ
(∫ T

0
dζ

∫
S

d3x(
√

gN)(�x,ζ)−V

)
(11.26)

where
√

g = det(3)(gi j) and SADM[N,Ni,gi j] denotes the Arnowitt, Deser and Misner ex-
pression for the Einstein-Hilbert action is term of the three dimensional geometric intrinsic
objects (N,Ni,gi j) and the extrinsic curvatue Ki j ([14])

SADM[N,Ni,gi j] =
∫

M
(
√

hR)(x)d4x

=
∫

M
(N

√
g(Ki jK

i j −K2 + (3) R))(x)d4x (11.27)

It is important to point out that the (formal) Jacobian of the field transformation (hμν →
(N,Ni,gi j)) is the tad-pole term exp

(
−δ(4)(0)

∫
S dx3 ∫ T

0 dζN(x,ζ)
)

which may be assigned

the value 1 by using the Dimensional Regularization Scheme since the general covariant
functional measure Dc[hμν] reduces to the usual Feynman Measure (see Chapter 1).

Another remark is related to the fact that the object N(V ) does not depends on the
(homotopical) parameter T since it is integrated out in the formal definition of the product
Feynman measure D[N(x,ζ)] = ∏

ζ∈[0,T ]
(dN(x,ζ)).

Let us now evaluate the V -derivative of the N(V )

∂
∂V

N(V, ĝi j) =
∫

DF [N]DF [Ni]DF(gi j]

× exp

(
− 1

8πG2
n

∫
SADM[N,N ,gi j]

)

×−δ′
(∫ T

0
dx

∫
S

d3x
√

gN −V

)
(11.28)

with δ′(x) being the usual first-derivative of the δ(x) distribution.
At this point we consider the identity

−δ′
(∫

S
d3x

∫ T

0
dζ(N

√
g−V )

)

= lim
ζ→0+

1√
gi j(�x,ζ)

δ
δN(�x,ζ)

δ
(∫

S
d3x

∫ T

0
dζN

√
g−V

)
(11.29)

which can be verified by using the usual Fourier Integral representation for the δ-function.
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By substituting Eq.(11.29) into Eq.(11.18) and using the fact that Dc[N(x,ζ)] is the
usual Feynman Measure we can re-write Eq.(11.28) in more invariant form after doing a
partial functional N-integration:

∂
∂V

N(V, ĝi j) =
∫

Dc[N,Ni,gi j]×

lim
ζ→0+

1√
g(�x,ζ)

δ
δN(�x,ζ)

(
− 1

8πG2
N

SADM[N,Ni,gi j]
)

exp

(
− 1

8πG2
n

SADM[N,Ni,gi j]
)
×

×
(∫ T

0
dζ

∫
M

d3x
√

gN −V

)
(11.30)

Now we have the result

δ
δN(�x,ζ)

SADM[N,Ni,gi j] =
√

gi j(Ki jKi j −K2 + (3)R)(�x,ζ) (11.31)

In the functional integral fremework we have in a formal way the usual Schrödinger
representation inside Eq.(11.30)

lim
ζ→0+

Ki j(�x,ζ) = (
√

ĝ)−
1
2

(
δ
δĝi j

− 1
2

ĝi j ĝ
k� δ
δĝk�

)
(�x,0) (11.32)

lim
ζ→0+

Ki j(�x,ζ) = −1
2

(
(
√

ĝ)−1 ĝi j δ
δĝi j

)
(�x) (11.33)

After substituting Eq.(11.32), Eq.(11.33) into Eq.(11.31)-Eq.(11.30) and taking the
limit of ζ → 0+ (see Eq.(11.25)) we obtain our proposed Four-volume gravitational dif-
fusion equation (in the Euclidean section of the space-time M ([17])

∂
∂V

N(V, ĝi j) =−
(

1√
ĝ

G(i, j),(k�)(ĝ)
δ2

δĝi jδĝk�

+
(3)R√

ĝ

)
(�x)N(V, ĝi j) (11.34)

where G(i, j),(k�)(ĝ) denotes the Wheeler - De Witt metric over metrics (see Chapter 1)

G(i, j),(k�)(ĝ) =
1

2
√

ĝ
(ĝikĝ j� − ĝi jĝk�) (11.35)

It is worth point out the similar equation for two-dimensional quantum gravity obtained
by the author in section 11.2 ([18]).

A simple solution of Eq. (33) is given by

N(V, ĝi j) = e−EV Ψ(E)(ĝi j) (11.36)
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where Ψ(E)(ĝi j) are the formal eingenfunctions of the functional Wheeler - De Witt “Lapla-
cian” L

(
Lψ(E)

)
(ĝi j) =

1√
ĝ

[
G(i, j),(k�)(ĝ)

δ2

δgi j δgk�

− (3)R(ĝ)
]
ψ(E)(ĝi j)

= Eψ(E)(ĝi j) (11.37)

Now we can see that for zero eigenvalue E = 0:

ψ[E=0](ĝi j) = lim
V→0+

N(V, ĝi j)

satisfies the “Universe Wheeler - De Witt wave equation”.
The most general solution should be given by a superposition of eigenfunctions

N(V, [ĝi j]) =
∫

Spec(L)
ψE [ĝi j]e−EV ρ(E)dE (11.38)

where the spectral weight ρ(E) is determined by some unkown boundary - initial condition
on N(V, [ĝi j) ([17]). These further enquiries on universe initial conditions are left to our
readers. (See Appendix D in the supplementary appendixes in the end of this book).
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Chapter 12

Covariant Path Integral for
Nambu-Goto String Theory

12.1. Introduction

To attempt to understand collective phenomena in field theories has become the central
problem of quantum field theory [1,2]. One of the most promising frameworks to solve this
fundamental prolem in quantum field theories is to write the associated field theory path
integral in loop space and, thus, search for string solutions for the loop space field equations
of motion (see Chapter 9). This effort, in turn, has recently led to intensive research into
the problem of the correct meaning for the string path integral. Most of these studies were
based on Polyakov’s analysis of the conformal anomaly of two-dimensional massless fields
interacting with induced DeWitt quantum gravity in two dimensions (see Chapter 1 and
Chapter 19).

Unfortunately the Polyakov proposal of DeWitt two-dimensional quantum gravity as the
correct meaning for the string path integral may be considered only as a guessed effective
action study for the full Nambu-Goto area functional, since it involves the full use of a mean
field approximation [1].

It is purpose of this chapter to solve the above mentioned problem by quantizing directly
the Geometrical non effective Nambu-Goto string path integral and thus solving this long-
standing unsolved problem in Quantum Geometry.

12.2. The Nambu-Goto Full Path Integral

Let us start our analysis by considering the original Polyakov path integral for the Nambu-
Goto string propagator in a form useful for non-Abelian gauge theories, (Eq. (9.76) of Ref.
[1]) and Ref. [3]:

G(C) = ∑
[gab]
∑
[Xμ]

exp

[
− 1

2πα′

∫
D
(
√

g)(ξ)d2ξ
]
δ(F)

cov [gab(ξ)−hab(Xμ(ξ))]. (12.1)

The continuous sum over the string world sheet vector position Xμ(ξ) and the intrinsic
two-dimensional (2D) metric gab(ξ) in Eq. (1) are defined by DeWitt functional metrics on
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hemispherical manifolds possessing as non-trivial boundaries the string configuration {C}
(see Chapter 1)

||δXμ||2 =
∫

D
(
√

gδXμδXμ)(ξ)d2ξ, (12.2a)

||δgab|| =
∫

D
[
√

gδgab(gaa′gbb′)δga′b′ ](ξ)d2ξ. (12.2b)

The δ functional inside Eq.(12.1) restricts the nonphysical variable (intrinsic metric)
gab(ξ) to be the world sheet induced metric (see Chapter 1)

hab(Xμ(ξ)) = (∂aXμ)(∂bXμ)(ξ).

Let us biefly recall Polyakov’s covariant analysis. In his explicitly convariant scheme
one writes the delta functional by means of a covariant Fourier path integral:

G(C) = ∑
[gab]

exp

[
− 1

2πα′

∫
D
(
√

g)(ξ)d2ξ
][
∑
[Xμ]
∑
[λab]

exp
[
i
∫

D
d2ξ[

√
gλab(∂aXμ∂bXμ−gab]] .

(12.3)
By making the guess of the exact validity of the covariant mean field average for the

Lagrange multiplier (see Eq. (9.88a) of Ref. [1]),

λab(ξ) = i〈λ〉gab(ξ), (12.4)

one obtains Polyakov’s result of 2D massless scalar fields interacting with DeWitt two-
dimensional quantum gravity as a definition for the string path integral Eq.(12.1) after sub-
stituting Eq.(12.4) into Eq.(12.3) and defining an effective cosmological constant:

μ0 = 1/2πα′ + 〈λ〉.

Unfortunately, in string theory the conditions for the full validity of Eq.(12.4) on the
string energy phase space is still an open question. This, in turn, makes Polyakov’s approach
[1] at most a path integral effective theory for string quantization.

We, thus, make a departure from the above Polyakov approximate analysis and try to
consider exactly the original expression Eq.(12.1) with the δ function without making any
mean field approximation of the sort of Eq.(12.4).

The invariant measure associated with the DeWitt supermetric Eq.(12.2b) on the func-
tional space of the fields gab(ξ) in the path integral formalism was shown in chapter 1 to be
correctly defined by the DeWitt measure

∑
[gab]

∫
∏

(ξ,a,b)
[[dgab(ξ)](

√
g(ξ))−6/4]δ(F)[M(gab)]

[[
∏
(ξ,c)

dεc(ξ)
√

det(
√

ggab)

]
det[δM(gεab)/δε]

]
,

(12.5)
where M(gab) is a gauge-fixing functional and [εc(ξ)] denotes the infinitesimal vector field
generators of a general coordinate transformation in D. The powers of

√
g(ξ) in the above

written equation come from the root square of the DeWitt super metric determinant in the
invariant measure (Eq.(12.2) of Ref. [5] for R2).

We point out that direct use of Eq.(12.5) for calculations is very subtle since it contains
the usual Feynman product measure on the variables dgab(ξ) and dεc(ξ) weighted with
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factors of the form (
√

g(ξ))m which, in turn, lead to the use of a new field reparametrization
in the path integral in order to reduce the functional measure to the usual Feynman measure.
For instance, if one wants to evaluate formally a path integral of the form

I = ∑
gab]

exp

[
−

∫
D

d2ξL(gab(ξ))
]
, (12.6)

where L(gab) denotes an invariant coordinate transformation action functional for the gab(ξ)
field, we must consider first the variable change

∂ϕab(ξ)
∂ξl

=
[
∂
∂ξl

gab(ξ)
]
(
√

g(ξ))−3/2, (12.7)

which will reduce the weighted measure Eq.(12.5) to the usual Feynman product measure

I =
∫ [

∏
(ξ,a,b)

dϕab(ξ)

]
exp

[
−

∫
D

d2ξL̃(ϕab(ξ)
]
, (12.8)

where L̃(ϕab) is the new expression of the action in terms of the new variable Eq.(12.7)
added with the Faddeev-Popov ghost action. It is worth remarking that in the functional
integral form Eq.(12.8), practical calculations are very cumbersome and not explicitly co-
variant under the action of the diffeomorphism group.

Fortunately, in two dimensions it is possible to obtain a closed expression for Eq.(12.6)
in the conformal gauge gab(ξ) = eϕ(ξ)δab as has been shown by Polyakov by directly using
the DeWitt super metric Eq. (2b) to rewrite the covariant measure Eq.(12.5) in terms of the
conformal factor (see Chapter 1 and Chapters 9/10)

∑
[gab=eϕ(ξ)δab]

=
∫
∏
ξ

[d(eϕ(ξ)δ11)d(eϕ(ξ)δ22)e−3ϕ(ξ)/2]exp

[
− 26

48π

∫
D

d2ξ
[

1
2
(∂ϕ)2 +μ2eϕ

]
(ξ)

]

=∏
ξ

d(eϕ(ξ)/2)exp

[
− 26

48π

∫
D

d2ξ
[

1
2
(∂ϕ)2 +μ2eϕ

]
(ξ)

]
. (12.9a)

By making the choice eϕ(ξ)/2 = γ(ξ) as the correct dynamical degree of freedom, we get
the final expression for the gab invariant measure to be used in our study:

∑
gab

∫
∏
ξ

d[γ(ξ)]exp

[
− 26

48π

∫
D

d2ξ
1
2

[
∂a(γ2)
γ2

]2
]

exp

[
lim
δ→0+

1
4πδ

∫
D

d2ξγ2(ξ)
]
. (12.9b)

Next, we consider the Xμ(ξ) functional integral [16]. In order to reduce the covariant
path integral over the world sheet string vector position to a Feynman functional measure as
in Eq.(12.9b) we first consider the following covariant Gaussian functional integral which
may be used to define the covariant sum in Eq.(12.1) [see Eq. (2a)]:

Î[gab] = ∏
(ξ,μ)

[dXμ(ξ) 4

√
g(ξ)]exp

[
−1

2

∫
D

d2ξ[
√

gXμ(−Δg)Xμ](ξ)
]
, (12.10)
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where Δg is the Laplace Beltrami operator associated with the metric gab(ξ). Now we note
that Eq.(12.10) is a Gaussian path integral:

Î[gab] = det−D/2(−Δg). (12.11)

It is possible to write the above functional determinant as a local field action for the
conformal factor γ(ξ) [1]: namely

Î[gab = γ2δab] = exp

[
D

4uπ

∫
D

d2ξ
1
2

[
∂a(γ2)
γ2

]2

(ξ)

]
exp

[
+ lim

δ→0+

D
δ

∫
D

d2ξγ2(ξ)
]
. (12.12)

Let us now consider a metric conformal scaling in Eq.(12.10) [6]:

gab(ξ) = eλ(ξ)ĝab(ξ). (12.13)

We, thus, write (12.10) as well as

Î[gab] =
∫
∏
(ξ,μ)

[dXμ(ξ)ĝ(ξ)]1/4eλ(ξ)/2]exp

[
−1

2

∫
D

d2ξ[
√

ĝXμ(−Δg)Xμ](ξ)
]
. (12.14)

We remark that the classical action of massless scalar fields on a compact manifold
without boundary (the domain D) is conformally scale invariant, so it does not depend
on the conformal factor. The effects of the conformal scaling are nontrivial only at the
quantum level or, equivalently, at the level of the functional measures as may be seen from
Eq.(12.14).

Now we note tht change on the functional measure Eq.(12.13) is taken into account
entirely by a Jacobian J[λ(ξ)] which is a functional of the conformal scale factor (the well-
known Fujikawa conformal anomaly factor [6,9]:[

∏
(ξ,μ)

dXμ(ξ)eλ(ξ)/2[ĝ(ξ)]1/4]

]
= J[λ(ξ)]

[
∏
(ξ,μ)

dXμ(ξ)[ĝ(ξ)]1/4]

]
. (12.15)

After substituting Eq.(12.15) into Eq.(12.14) and evaluating the resulting Gaussian co-
variant functional integral, we get the explicit expression for the above-mentioned Jacobian:

J[λ(ξ)] = det−D/2(−Δeλĝ)/det−D/2(−Δĝ). (12.16)

Let us make use of Eqs.(12.14)-(12.16) for ĝab = δab and λ(ξ) = 21nγ(ξ), since we can
always consider the conformal gauge in Eq.(12.10)

gab(ξ) = γ2(ξ)δab .

As a result we obtain the following relation between the covariant measure and the
Feynman product measure parametrization:[

∏
(ξ,μ)

[dXμ(ξ)γ(ξ)]

]
= exp

{
D

48π

∫
D

d2ξ

(
1
2

[
∂u(γ2)
γ2

]2

+μ2γ2

]
(ξ)

}
∏
(ξ,μ)

[dXμ(xi)].

(12.17)
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At this point, we return to the original Eq.(12.3) and rewrite it in the conformal gauge
by using the Feynman functional measure parametrization Eqs.(12.9) and (12.17):

G[C] =
∫ [

∏
ξ

dγ(ξ)

][
∏
(ξ,μ)

[dXμ(ξ)]

]
exp

{
−26−D

48π

∫
D

d2ξ

[
1
2

[
∂aγ2

γ2

]2

+μ2γ2

]
(ξ)

}

× exp

[
− 1

2πx′

∫
D

d2ξ(∂aXμ)2(ξ)
]
δ(F)

cov [γ2(ξ)δab −hab(Xμ(ξ))]. (12.18)

It is instructive to remark that we must rewrite the covariant delta functional inside
Eq.(12.18) in a Feynman parametrization form. In order to implement this step of our
study we consider the covariant Fourier path integral representation written directly in the
conformal gauge gab(ξ) = γ2(ξ)δab [see Eq. (3)]:

δ(F)
cov[γ2(ξ)δab −hab(Xμ(ξ))] =

∫ [
∏
ξ

[dλ11(ξ)γ−1(ξ)]

][
∏
ξ

[dλ22(ξ)γ−1(ξ)]

]

× exp

{
i
∫

D

λ11(ξ)
γ(ξ)

[∂1Xμ∂1Xμ)(ξ)− γ2(ξ)]
γ(ξ)

}

× exp

{
i
∫

D

λ22(ξ)
γ(ξ)

[∂2Xμ∂2Xμ)(ξ)− γ2(ξ)]
γ(ξ)

}
. (12.19)

The covariant functional measure ∑[λab] for the Fourier tensor field variable λab(ξ) in the
conformal gauge gab(ξ) = γ2(ξ)δab used in Eq.(12.9) is still defined by us with the DeWitt
covariant measure Eq.(12.2b) for two-dimensional tensors λab(ξ):

||δλab||2 =
∫

D
d2ξ

[
γ2(ξ)(δλab)(ξ)

δaa′

γ2(ξ)
δbb′

γ2(ξ)
(δλa′b′)(ξ)

]
. (12.20)

Following the discussion after Eq.(12.6) about the correct meaning of a convariant path
integral, we note that by making the variable change

λ̃11(ξ) = λ11(ξ)/γ(ξ), λ̃22(ξ) = λ22(ξ)/γ(ξ), (12.21)

the covariant delta functional Eq.(12.19) in the conformal gauge has the same form of the
delta functional defined from the usual Feynman product measure definition:

δ(F)
cov [γ2(ξ)δab −hab(Xμ(ξ))] =

∫ [
∏
ξ

dλ̃11(ξ)

][
∏
ξ

dλ̃22(ξ)

]
exp

[
i
∫

D
d2ξ

[
λ̃11

(∂1Xμ∂1Xμ− γ2)
γ

[
(ξ)

]

×exp

[
i
∫

D
d2ξ

[
λ̃22

(∂2Xμ∂2Xμ− γ2)
γ

[
(ξ)

]

= δ(F) [γ2(ξ)δab −hab(Xμ(ξ))]. (12.22)
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Next, we can evaluate exactly the root-square conformal factor γ(ξ) auxiliary functional
integral due to the usual delta functional Eq.(12.21) which produces the result [4]

G[C] =
∫ [

∏
(ξ,μ)

dXμ(ξ)

]
exp

[
− 1

2πα′

∫
D

dξ+dξ−](∂+Xμ)(∂−Xμ)](ξ+,ξ−)
]

× exp

[
−26−D

48π

∫
D

dξ+dξ−
[
(∂2

+Xμ)(∂−Xμ)(∂2−Xμ)(∂+Xμ)
[(∂+Xμ)(∂−Xμ)]2

]
(ξ+,ξ−)

]
. (12.23)

Note that the use of the conformal gauge in Eq.(12.1) implicitly constrains the use of
the orthonormal coordinates for the string world sheet vector position (Ref. [3], Appendix
C):

(∂+Xμ)(∂+Xμ) = (∂−Xμ)(∂−Xμ) ≡ 0, (∂+Xμ)2 = (∂−Xμ)2; (12.24)

Equation (12.23) is, thus, the exact path integral meaning to the sum over surfaces
Eq.(12.1) in the string world sheet orthonormal gauge as originally conjectured in Ref. [4].

At this point of our chapter we remark that scalar scattering amplitudes as random
surfaces which intercept point probabilities at the critical dimension D = 26 [1] are given
exactly by the usual nontachyonic dilaton scattering amplitudes which solve the problem of
tachyonic excitation on string theory.

If we now consider a further term, taking into account the surface rigidity extrinsic
functional in Eq.(12.1), namely,

exp

[
− k

2

∫
D

d2ξ[
√

g(−ΔgXμ)2](ξ)
]
, (12.25)

we obtain straightforwardly a well-defined path integral quantization of the extrinsic string
on the conformal gauge, a result which was used in Ref. [7] on an suggestion basis:

G[C] =
∫ [

∏
(ξ,μ)

dXμ(ξ)

]
exp

[
− 1

2πα′

∫
D

dξ+dξ−[(∂+Xμ)(∂−Xμ)](ξ+,ξ−)
]

exp

{
−k

∫
D

dξ+dξ−
[
(∂+∂−Xμ)(∂+∂−Xμ)

1
(∂+Xμ)(∂−Xμ)

]
(ξ+,ξ−)

}

exp

[
−26−D

48π

∫
D

dξ+dξ−
[
∂2

+Xμ)(∂−Xμ)(∂2−Xβ)(∂+Xβ)
(∂+Xμ∂−Xμ)2

]
(ξ+,ξ−)

]
. (12.26)

Let us recall that it is a subtle problem if the Liouville terms Eqs.(12.23) and (12.26)
do not disturb the ultraviolet theory renormalizability. In addition, by considering complex
fermionic degress of freedom belonging to the fundamental representation of an intrinsic
group such as SU(22) we can cancel this nonpolynomial Liouville piece of the action [3].

Finally we call attention to the fact that if we had followed Polyakov [1] by using
the complete conformal factor ρ(ξ) = eϕ(ξ) instead of its square root eϕ(ξ)/2 as the scalar
dynamical degree of freedom to be quantized in the gab-functional integral,

∑
[gab]

=
∫
∏
ξ

[dρ(ξ)]exp

{
− 26

48π

∫
D

d2ξ

[
1
2

[
∂aρ
ρ

]2
]

(ξ)

}
exp

[
lim
δ→0+

1
4πδ

∫
D
ρ(ξ)d2ξ

]
.

(12.27)
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we would have obtained the following delta functional for Eq.(12.22):

δ(F)
cov [ρ(ξ)δab −hab(Xμ(ξ))] = δ(F)

[
∂1Xμ∂1Xμ−ρ√ρ

]
δ(F)

[
∂2Xμ∂2Xμ−ρ√ρ

]

=
√

(∂1Xμ∂1Xμ)(∂2Xμ∂2Xμ)δ(F)(∂1Xμ∂1Xμ−ρ)δ(F)(∂2Xμ∂2Xμ−ρ) (12.28)

as a simple result of the usual identity

δ[(y−a)/
√

a] =
√

aδ(y−a)

used in its functional integral version.
The result implied by Eq.(12.28) will lead us to consider a further weight of the form√

h(Xμ(ξ)) on the Feynman differentials dXμ(ξ) in our final Eqs.(12.23) and (12.26) for a
sum over surfaces in the orthonormal coordinates [see Eq, (12.24)]; and it is worth pointing
out that a similar weighted path integral result was put forward some decades ago in Ref.
[8] without proof from first principles. (See Appendixes A), B) and C) of supplementary
appendixes at the end of this book for studies on string moving on manifolds).
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Chapter 13

Topological Fermionic String
Representation for Chern-Simons
Non-Abelian Gauge Theories

13.1. Introduction

It was suggested in Ref. 1 that topological non-Abelian quantum field theories in three
dimensions (3D) may be solved exactly by means of a noncritical fermionic string theory.
The correctness of this string representation holds great potential for high-Tc superconduc-
tivity since it produces evidence in favor of a fermionic string picture for the fermionic
magnons advocated in Ref. 2.

In this short chapter we address the problem of solving exactly the Chern-Simons loop
wave equation in the formalism proposed in Chapter 1 and Chapters 9-16.

13.2. The Fermionic String Representation

Let us start our analysis by considering a set of multiplet scalar field β(x) interacting with
an SU(N) non-Abelian Chern-Simons gauge theory (in the Euclidean sector) in 3D with a
nongauged “flavor” group SO(M):

L(β,β†,A(a)
i ) =

1
4
|(∂i −gAi)β|2(x)+ εi jk Tr[Ai(∂ jAk −∂kA j

+
2
3
[A j,Ak](x), [i = 1,2,3;(a) = 1, . . . ,M]. (13.1)

Physically the Lagrangian in Eq.(13.1) may be thought of as the effective Lagrangian
obtained by integrating out the quark sector of the Weinberg-Salam electroweak theory at
finite temperature and in the very-low-energy regime.5 After integrating out the Gaussian
action of the scalar field β(x) and expressing the resulting funcitonal determinant as a func-
tional in the bosonic loop space (Chapter 1 and [5], [6]) we get the following expression for
the theory’s Euclidean vacuum energy (Ref. 7):
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Z =
〈

exp

[
−∑

Cxx

Tr(c)ΦCS[Cxx

]〉
, (13.2)

where ΦCS[Cxx] is the usual (normalized) Mandelstam loop defined by the loop Cxx and the

Chern-Simons gauge field A(a)
i (x).The quantum average in Eq.(13.2) is defined by the pure

Chern-Simons action of Eq.(13.1) and the sum over the loops Cxx = {Xi(σ),0 < σ < T} is
given by the bosonic loop path integral

∑
Cxx

= −
∫ ∞

0

dT
T

∫
d3x

∫
X(0)=x
X(T )=x

DF [X(σ)]exp

(
−1

2

∫ T

0
Ẋ2(σ)dσ

)
. (13.3)

In Ref. 1 the factorization (Ref. 6) of the averages of the products of Wilson loops
on the basis of a diagrammatic analysis was presented. As a consequence of this result
the nontrivial dynamical content of Eq.(13.2) is entirely given by the quantum Wilson loop
which is turn is a matrix in the “flavor” space SO(M):

W(a)(b)[Cxx] =
1
N

〈
Tr(c) P

[
exp

(
i
∮

Cxx

Ai(X(σ))dXi(σ)
)]〉

. (13.4)

In order to deduce a loop wave equation for W(a)(b)[Cxx], as in chapter 9, we at first
consider the covariant version of the loop Cxx by introducing an intrinsic metric e(σ) on it,

Cxx = {(Xi(σ),e(σ));0 ≤ σ≤ 2π;Xi(0) = Xi(2π) = x},
and by replacing in Eq.(13.4) the tangent loop vector dXμ(σ) by its covariant version
dXi(σ)/e(σ). By shifting the Ai(x) variable and introducing the Mandelstam scalar area
derivative δ|σ|(X(σ′)) at an arbitrary point X(σ′) ∈Cxx, we get the following unrenormal-
ized covariant loop equation (λ = g2N): 1,4

δ
δ|σ|(X(σ′))

W(a)(b)[CX(0),x(2π)] = λ�

∫ 2π

0

dXi(σ)
e(σ)

dXj(σ′)
e(σ′)

Xk(σ′)εi jkδ(3)(X(σ)−X(σ′))

×W(a)(c)[CX(0),X(σ)]W(c)(b)[CX(σ),X(2π)] (13.5)

where the line integral �

∫ 2π

0
means that only the nontrivial self-intersection loop points

Xi(σ) = Xi(σ′) with σ �= σ′ contribute to the integrand in Eq.(13.5) since the condensate
term 〈F2(x)〉 vanishes identically in Chern-Simons gauge theories (see Appendix A of Ref.
4).

In order to solve Eq.(13.5) by means of a string theory as exposed in Chapters 9 and 10
let us consider an arbitrary (but fixed) 3D surface

∑= {φi(σ,ζ);0 ≤ σ≤ 2π;0 ≤ ζ≤ T ; i = 1,2,3}
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possessing as a boundary the loop Cxx [this will always be possible if ∑ is a homology
three-sphere (Ref. 1)].

Let us introduce in ∑ an O(M) (neutral) spinor structure ψ(a)(σ,ζ) together with a
metric structure {gμν(σ,ζ);μ,ν = 1,2]. We, thus, consider the following O(M) fixed-area
string propagator (the reader should compare this with the QCD[SU(∞)] string propagator
of Chapter 9):

G(a)(b)(Cxx;A) =
∫

Dc[gμν]Dc[ψa]{[ψ(a)(0,0)ψ̄(b)(2π,0)}

×δ
(∫ 2π

0
dσ

∫ T

0
dζ

√
g(σ,ζ)−A

)
exp

(
−

∫ 2π

0
dσ

∫ T

0
dζ(ψ̄ �Dgψ)(σ,ζ)

)

×
(
−λ�

∫ 2π

0
dσ

Ẋl(σ)
e(σ)

�

∫ T

0
dζ′[

√
g(σ′,ζ′)(ψ̄ψ)(δ′,ζ′)

×δ(3)(φl(σ′,ζ′)−Xl(σ))εi jkTjk(φl(σ′,ζ′))]
)

(13.6)

where �Dg denotes the covariant Dirac operator associated with the intrinsic metric gμν ,

Tjk(φ(σ′,ζ′)) = [(1/
√

h)eμν∂μφ j∂νφk](σ′,ζ′)

is the (normalized) orientation tensor of the surface ∑ at the point φl(σ′,ζ′) and �

∫
means

that only the nontrivial self-intersection points of the surface ∑ with its boundary Cxx con-
tribute. The intrinsic metric gμν satisfies the boundary condtion lim

ζ→0+

√
g(σ,ζ) = e(σ) and

the intrinsic fermions ψ(σ,ζ) satisfy the Neumann condition lim
ζ→0+

∂σψ(σ,ζ) ≡ 0.

Let us remark that the λ-interaction term in Eq.(13.6) for nondynamical fermions,
(ψ̄(a)ψ(a))(σ,ζ) = μ = const, is topologically invariant, being an entanglement index of
the loop Cxx with respect to the surface ∑. As a result our string propagator depends func-
tionally only on the topological class of the ∑ surface. This is one of the reasons that we do
not consider surface fluctuations in the above-written string propagator.

It is important to point out that it is inconsistent to consider string solutions for Eq.(13.5)
which have surface fluctuations since these flucutuations will lead one to consider second-
order loop wave equations for W(a)(b)[Cxx] as in QCD[SU(∞)] which is not the case in Chern-
Simons gauge theory since it has a nondynamical content 〈∇iFik(x)W [Cxx]〉 ≡ 0. However,
the area A induced by the intrinsic fluctuating metric gμν still is a variable quantity since the
metric structure on ∑ is fluctuating in Eq.(13.6). So, our string representation differs from
that suggested in Ref. 1. Eq.(13.22). Another important remark to be pointed out is related
to the conformal invariance of the O(M) string propagator in Eq.(13.6). This propagator
has its conformal anomaly canceled if M = 26, producing, thus, a noncritical string.

Let us show that G(a)(b)(Cxx,A) satisfies the same loop equation, Eq.(13.5). In order
to write the area equation for G(a)(b)(Cxx,A) we evaluate its area partial derivative as it is
exposed in Chapter 11:



194 Luiz C.L. Botelho

∂
∂A

G(a)(b)(Cxx,A) = − lim
ζ→0+

[∫
Dc[gμν]δ

(∫ 2π

0
dσ

∫ T

0
dζ

√
g(σ,J)−A

)

×
(
− 1

2
√

gg00

↔
δ

δg00(σ̄,ζ)

)
I(a)(b)[ψ(a),gμν]

]
, (13.7)

where the pure fermionic string propagator is

I(a)(b)[ψ,gμν] =
∫

Dc[ψ]ψ(a)(0,0)ψ̄(b)(2π,0)exp

(
−

∫ 2π

0
dσ

∫ T

0
dζ(ψ̄ �Dgψ)(σ,ζ)

)

exp

(
−λ�

∫ 2π

0
dσ

Ẋl

e(σ)
�

∫ 2π

0
dσ′

∫ T

0
dζ

√
g(σ′,ζ′)(ψ̄ψ)(σ′,ζ′)δ(3)

× (φl(σ′,ζ′)−Xl(σ))ei jk Tjk(φl(σ′,ζ′))
)

. (13.8)

By canceling the conformal anomaly by choosing M = 26 and evaluating the boundary
limit of Eq.(13.8) as in Chapter 9 we get the following result for the right-hand side of
Eq.(13.7):

∂
∂A

G(a)(b)CX(0);X(2π);A) = λ�

∫ 2π

0
dXi(σ)dXj(σ′)Xk(σ′)εi jkδ(3)(Xl(σ)−Xl(σ′))

×G(a)(c)(CX(0)X)σ);A)G(c)(b)(CX(σ)X(2π);A). (9)

The above-written equation coincides with the Chern-Simons loop wave equation in the
loop proper-time gauge.
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Chapter 14

Fermionic String Representation for
the Three-Dimensional Ising Model

14.1. Introduction

It is well known that the partition functional of the three-dimensional (3D) Ising gauge
model can be rigorously described on a regular lattice in R3 by a sum over self-intersecting
surfaces [1] on this lattice manifold (here after denoted by Z3):

Z[β] = (coshβ)N ∑
{S}⊂Z3

{
exp

[
−A(S)

(
ln

1
tanhβ

)}
Φ[C̃(S)]

}
, (14.1)

where the sum in the above written equation is defined over the set of all closed two-
dimensional surfaces S ⊂ Z3 with a weight given by the (lattice) area of S; N is the number
of the plaquettes, β = J/kT denotes the ratio of the Ising hope parameter and the tempera-
ture. The presence of the Ising model functional Φ[C̃(S)] inside Eq.(14.1) is a further weight
given by the famous sign factor defined on the manifold of the lines of self-intersection C̃(S)
of a given surface S on the sum Eq.(14.1). Its explicit expression is given by

Φ[C̃(S)] = (−1)l[C̃(S)] = exp{iπl[C̃(S)]}, (14.2)

where l]C̃(S)] denotes the total length of C̃(S) ⊂ S.
It has been argued elsewhere [2] that the dependence of the 3D Ising model partition

functional Eq.(14.1) on the area of the lattice closed surfaces S is a strong indication that,
near its critical point, some formal continuum string theory representation should be possi-
ble.

In this chapter we address the problem of writing a geometric string path integral involv-
ing only the string world-sheet geometry as in our previous work [3], which upon fermion-
ization possesses formally on the lattice the same partition functional given by Eq.(14.1)
after a “replica” limit. This study is presented in Sec. I. In the same section we show the
usefulness of our proposed string framework for the 3D Ising model by writing in the lattice
the associated partitional functional in the presence of an external magnetic field.
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14.2. The Proposed String Theory

In our previous study, we proposed on formal mathematical grounds the following geomet-
rical path-integral as a continuum limit of the sum Eq.(14.1) without the sign factor [3]:

Z(α′) =
∫

dcov
μ [gab,X

i]δ(F)
cov(gab −∂aX i∂bXi)

× exp

[
− 1

2πα′

∫ +∞

−∞
d2ξ

(
1
2
√

ggab∂aX i∂bXi

)
(ξ)

]
. (14.3)

The above written string path integral is the same as that considered by Polyakov [2], but
with a fundamental difference: we have used a covariant functional restricting the intrinsic
metric field gab(ξ) to be the string world-sheet-induced metric. As a result, the physical
quantum theory obtained after integrating the gab(ξ) field depends only on the string vector

position [after considering ((2πα′)−1 = 1)] and the metric piece h(J)
ab (ξ) related to the metric

module space associated with the nontrivial topology of S (see Chapter 12):

Z =
∫

d(Weyl)
μ [h(J)

ab (ξ)]
∫

Dcov√
h(J) [X

i(ξ)]

× exp

[(
−1

2
+μ2

0
(26−3)

48π

)

×
∫ +∞

−∞
d2ξ(

√
h(J)h(J)

ab ∂
aX i∂bXi)(ξ)

]

× exp

[
−
(

26−3
48π

)∫ +∞

−∞
d2ξ{

√
h(J)h(J)

mn∂m

× [ln(h(J)
ab ∂

aX i∂bXi)]∂n[ln(h(J)
a′b′∂

a′Xi∂b′Xi)]}(ξ)
]
. (14.4)

At this point we proceed by analogy by searching a continuum functional defined on the
physical geometrical string degrees of freedom leading formally on the lattice to the sign
factor Φ[C̃(S)]. Our purpose is to consider a new intrinsic field Ω(ξ) taking values on the
SO(3) group with a similar role of the intrinsic metric field in Eqs.(14.1)-(14.3). We have,
thus, to consider in Eq.(14.1) besides the terms already written there, a further path integral
over the Ω(ξ) field with a weight given by a σ model action added with a Wess-Zumino
functional ΓWZ(Ω) and the following SO(3)-invariant δ functional:

δ(F)
Haar(Ωi j(ξ)−Ĉi j(ξ, [Xi], [gab])). (14.5)

Here Ĉi j denotes the (covariant) Cartan matrix relating the orthonormal basis e1 = (1,0,0),
e2 = (0,1,0), and e3 = (0,0,1) to the orthonormal basis defined by the tangent vectors
{v1(ξ),v2(ξ)} and the normal vector {v3(ξ)} on the string surface at the point {Xi(ξ)} [4]:

ei = Ĉi j(ξ, ]Xi], [gab])v j(ξ), (14.6)

where

v(i)
1 (ξ) = ∂1X (i)(ξ)/(∂1Xag11∂1Xa)1/2, (14.7)

v(i)
2 (ξ) = ∂2X (i)(ξ)/(∂2Xag22∂2Xa))1/2, (14.8)
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v(i)
2 (ξ) =

(
v1(ξ)∧ v2(ξ)
|v1(ξ)∧ v2(ξ)|

)(i)

(14.9)

The geometrical string path integral to be considered now is given by (see Chapter 10)

Z(α′) =
∫

dcovμ[gab;Xi]Dcov
Haar[Ω]δ(F)

cov(gab −∂aX i∂bXi)δ
(F)
Haar(Ω(ξ)−Ĉ(ξ, [Xi], [gab]))

× exp

{
−1

2

∫ +∞

−∞
d2ξ(

√
ggab∂aX i∂bXi)(ξ)

}

× exp

{
−1

2

∫ +∞

−∞
d2ξ(

√
gTr(Ω−1∂a(Ω)2)(ξ)

}
× exp{4πiΓWZ [Ω]}. (14.10)

where the quantum meaure defining the σ-quantum model is the invariant SO(3) measure
associated with the invariant metric

dS2 =
∫ +∞

−∞
d2 ξ[

√
gTr(Ω−1δ(Ω)2](ξ). (14.11)

It is an important step in our study to consider the fermionic version of the above dis-
played σ-model path integral as a result of the presence of the Wess-Zumino functional in
Eq.(14.10): (see Appendix 22-E).

Z(α′) =
∫

dcovμ[gab;Xi]dcov μ[gab;Xi]dcov[ψA; ψ̄A]δ(F)
cov(gab −∂aX i∂bXi)

× exp

(
− 1

2πa′

∫ +∞

−∞
d2ξ(

√
g ab∂aX i∂bXi)(ξ)

)

× exp

{
−1

2

∫ +∞

−∞
d2ξ

[
3

∑
A=1

(
√

gψ̄A(γa∇a)ψA)(ξ)

]}
(14.12)

Here, the Dirac curved space-time matrices satisfy the usual (Euclidean) anticommuting
relationship {γa(ξ),γb(ξ)}+ = gab(ξ) = ea

b′(ξ)e
bb′(ξ) and the spin connection is given by the

following expression involving the surface Cartan matrix:

ωa(ξ) = ea′
a γa′(ξ)(Ĉ−1∂aĈ)(ξ). (14.13)

Let us now give a formal argument that the string theory Eq.(14.12) represents the
3D Ising model at a replica limit on the geometrical fermionic degrees of freedom. In
order to implement such an argument, we introduce N copies of the fermionic field
{(ψ(m)

A .ψ̄(m)
A )i 1 ≤ m ≤ N} in the fermionic action Eq.(14.12). After integrating out these

fermion fields, writing the fermionic functional determinant by the Grassmanian proper-
time technique implemented on the surface loop space (see [5], Appendix B) and using the
well-known replica limit on the fermion species, we have the following loop space path



198 Luiz C.L. Botelho

integral for the fermionic effective action in Eq.(14.12) (see Chapter 18 for details):

lim
N→0

(detN(γa∇a)−1)/N

=
1
2

∫ ∞

0
dT exp(−l(Ca)T )

∫ +∞

−∞
d2ξ

√
g(ξ)

×TrDirac

{∫
Ca(0)=Ca(T )=ξa

D[Ca(t)]D[πa(t)]

× exp

(
i
∫ T

0
dt πa(t)dCa(t)

)

×PDirac

{
exp

(
i
∫ T

0
dt(γaπa)(t)

)}

×TrSO(3)

{
exp

[
i
∫ T

0
dt

(
(Ĉ−1∂aĈ)(t)

dCa(t)
dt

)]}}
(14.14)

where {la(t)} belongs to the manifold of closed bosonic trajectories on the string surface
and {πa(t)} the Grassmanian degrees of freedom associated to the 2D Dirac indexes. If
one considers formally the above replica limit on the lattice, one can see that the Wilson
loop defined by the Cartan matrix in Eq.(14.14) coincidess exactly with the sign factor as
Sedrakyan and Kavalov showed by using topological-homotopical techniques.

As a consequence, we have the following string representtion at the critial point for the
3D-Ising model with β = arctanh(e−1/2πα′

),

Zcritical point [B] =
∫

dcovμ[gab;Xi]δ(F)
cov(gab −∂aX i∂bXi)

× exp

(
− 1

2πα′

∫ +∞

−∞
d2ξ(

√
ggab∂aX i∂bXi)(ξ)

)

× lim
N→0

{
detN(γμ∇a)−1

N

}
(14.15)

This is our main result in this chapter.
It is worth remarking that all of the above results are of a formal mathematical nature

and real checks will be to compute (at least numerically) physical quantities. However, one
can use Eq.(14.15) to suggest some new formulas on the lattice. Let us show the usefulness
of Eqs.(14.12)-(14.15) by coupling the proposed Ising string theory to an external magnetic
field �H(ξ) by means of the well-known string electromagnetic flux action (see Chapter 10):

exp

{
−1

2
e
∫ +∞

−∞
d2ξ

√
g(ξ)Hi[X j(ξ)]∂aXi(ξ)

}(
3

∑
A=1

ψ̄A(γa)ψA

)
(ξ). (14.16)

By considering the replica limit of the resulting string path integral as in Eq.(14.14), we
obtain as a candidate for the partition Ising model in the presence of the external magnetic
field the following sum over closed surfaces on the lattice:

Z[β,e�H] = (coshβ)N ∑
{S}⊂Z3

{
exp

[
−
(

ln
1

tanhβ

)
A(S)

]

×Φ[C̃(S)]×W [C(S)]
}

, (14.17)
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where we note the appearance of the usual Wilson loop defined by the 2D-closed loops
{la(t)} on the surface S and the external magnetic field:

W [C(S)] = ∏
{C(S)⊂S}

{
exp

(
ie
∫

C(S)
H̃a[Cb(t)]

dCa(t)
dt

)}
, (14.18)

where H̃a[Cb(t)] is the restriction of the surface magnetic flux Hi(X j(ξ))∂aXi(ξ) to the
2D loop {la(t),a = 1,2} which are obtained from the string surface parametrization by
supposing an implicit relation of the form [ξ = (ξ1,ξ2)]

ξ2 = β(ξ1) ⇒ Xi(ξ1,β(ξ1)) = Xi(C1(ξ),C2(ξ)). (14.19)
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Chapter 15

A Polyakov Fermionic String
as a Quantum State of Einstein
Theory of Gravitation

15.1. Introduction

In recent years a new quantization of Einstein gravitation theory has been pursued by sev-
eral authors, which seems appropriate for writing explicit solutions of the Wheeler-De Witt
equation. It makes use of the so called SU(2)-Ashtekar-Sen connection as dynamical vari-
able (see Refs. [1,2]) which has the geometrical meaning of being the projected spin con-
nection on the space-time (three-dimensional) boundary [3].

A linear wave equation for this new quantum gravity dynamical variable was derived
which supports a Wilson Loop solution (see Chapter 7).

In this chapter, following our previous studies in this subject (Chapter 9-Chapter 10;
[4]), we consider a new solution for the above mentioned equation defined by a Polyakov
fermionic string functional integral (Chapter 9 and [5]).

15.2. The Quantum Gravity String

Let us start our analysis by considering the following Polyakov string functional integral in
the presence of a SU(2) connection Aμ(x)

GAS[Aμ(x); lμ(σ)] =
∫

acovμ[gAB]dcovμ[ψ, ψ̄]dcovμ[Xa]

(
3

∑
i=1

[ψi
A(0,0)ψ̄i

B(0,2π)]

)
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× exp

{
−μ2

0

∫ +∞

−∞
dξ

∫ 2π

0
dσ(

√
g(ξ,σ))

}
exp

{
−1

2

∫ +∞

−∞
dξ

∫ 2π

0
dσ(

√
ggAB∂AXμ∂BXμ)(ξ,σ)

}

× exp[
{
− 1

2

∫ +∞

−∞
dξ

∫ 2π

0
dσ

×
[
(ψ, ψ̄)

( 0

(
←
∂ g + e(γA∂AXμ)(A�

μ(X
p)λl)

(
→
∂ g + e(γA∂AXμ)(A�

μ(X
p)λl)

0

)(
ψ
ψ̄

)]
(ξ,σ)

}
(15.1)

The open string surface {Xμ(ξ,σ),μ = 1,2,3} is immersed in the space-time (three-
dimensional) boundary and does not possess holes and handles. The string surface parame-
ter domain is taken to be the half-strip R2

2π = {(ξ,σ,−∞≤ ξ≤+∞;0≤σ≤ 2π} without loss
of generality. The Polyakov two-dimensional quantum gravity (string) metric is denoted by
(gAB(ξ,σ))] and satisfies the trivial topological condition

∫ +∞
−∞ dξ

∫ π
0 dσ(

√
gR(g))(ξ,σ) =

2π. The two-dimensional intrinsic fermions Dirac fields belong to a complex SU(2) funda-
mental representation and are denoted by {ψi

A(ξ,σ); ψ̄i
A(ξ,σ)} with the subscript A associ-

ated to the two-dimensional string (Euclidean) Lorentz Group SO(2) and the superscript i
associated to the SU(2) group index. The interaction of the Polyakov string and the SU(2)
three-dimensional Ashtekar-Sen connection is given by the explicit interaction of the SU(2)
connection flux and the intrinsic fermion current as in the SU(2). QCD gauge theory (see
Chapter 10).

The functional measures in the Polyakov string funcitonal integral are the well-known
De-Witt covariant functional measures with boundary terms (we take the string boundary
Xμ(0,σ) = lμ(σ) to have zero geodesic induced curvature [6,7]).

Let us show that Eq.(15.1); which may be considered as the Polyakov string propagator
with a SU(2) QCD action and describing the “creation” of a string {lμ(σ)} from the vacuum
{0} in the (Euclidean) space-time boundary; satisfies the Wheeler-De Witt equation in terms
of Ashtekar variables [4]

(
εi jk Fi

μν(A)(x)× δ2

δA j
μ(x)δAk

μ(s)

)
G′

AB[Aμ(x), lμ(σ)] = 0. (15.2)

A straightforward calculation shows that [4]

∫
M

d3x

(
εi jkFi

μν(A)
δ2

δA j
μδAk

ν

)
(x)GAB[Aμ(x), lμ(σ)]

=
〈∫

R2
(2π

dξdσ
∫

R2
(2π)

dξ′dσ′(
√

g)(ξ,σ)(
√

g)(ξ′,σ′)(∂CXμ)(ξ,σ)(∂DXμ)(ξ′,σ′)

× (e2(μ)AB(δ(3)(Xμ(ξ,σ)−Xμ(ξ′,σ′))(ψ̄γCλ jψ)(ξ,σ)(ψ̄γDλkψ)(ξ′,σ′)

× (εi jk Fi
μν(A))(Xρ(ξ,σ))

〉
(15.3)
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where 〈 〉 denotes the string average defined by the covariant string path integral equation
(Eq.(15.1)). e2(u)AB =∑3

i=1 ψi
A(0,0)ψ̄i

B(0,2π)) is the constant matrix fermion number den-
sity projected on the string boundary �μ(σ)

In order to evaluate Eq.(15.3), we note that the condition that the string surface
{Xμ(ξ,σ),μ = 1,2,3} does not posseses self-intersections leads to the following regular-
ized expression for the delta-function string surface term in Eq.(15.3)

δ(3)(Xρ(ξ,σ)−Xρ(ξ′,σ′)) =
1√

h(Xρ(ξ,σ))
δ(ξ−ξ′)δ(σ−σ′) ·δ(1)

0 (ε) (15.4a)

with

h = det(hAB)
hAB = (∂AXμBBXμ)(ξ,σ) (15.4b)

where δ(1)
ε (0) is a regularized form of the singular term δ(1)(0) (see Ref. [5] for details).

The evaluation of the fermionic functional integral average in Eq.(15.3) is straightfor-
ward, since in two-dimensional QCD (SU(2)) one can use the Roskies gauge decoupling
fermion gauge [9.9] and thus, the ultra-violet limit implied by Eq.(15.4) leads that the
average of the fermion currents in Eq.(15.3) is effectively defined by Fermion free fields
(asymptotic freedom). It yields terms of the form

aĀ

a2

aB̄

a2 (εĀAεB̄B ±δĀAδB̄B ±δĀεB̄B ±δB̄BεĀA)[e2δ(1)
ε (0)]

(∂AXμ)(ξ,σ)(∂BXν)(ξ,σ)√
h(X p(ξ,σ))

×Fμν(A(Xα(ξ,σ)) (15.5)

where the UV regularized form of the fermion propagator used to obtain Eq.(15.5) is given
by

Si j
AB((ξ,σ);(ξ′,σ′))(a) =

i(γ1)(ξ−ξ′+ a)+ i(γ2)(σ−σ′+ a)
(ξ−ξ′+ a)2 +(σ−σ′+ a)2 δi j. (15.6)
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By absorbing the two-dimensional UV infinity a → 0 in the bare model coupling con-
stant e2δ(1)

ε (0), we can follow the argument of Refs. [2,4] to conclude that Eq.(15.5) van-
ishes identically as a consequence of being a contraction of the antisymmetric (μ,ν) tensor
Fμν(A(Xα(ξ,σ))) and the (μ,ν) symmetric tensor in front of the above mentioned tensor in
Eq.(15.5). It is worth pointing out that we have used the Polyakov conformal gauge

gAB(ξ,σ) = eϕ(ξ,σ) δAB (15.7)

in the above calculations in order to factorize the metric field dependence of the fermionic
propagator under analysis.

Another important observation to be made is that proposed Polyakov string quantum
gravity state Eq.(15.11) contains the usual Wilson loop quantum gravity state celebrated in
the literature [1-3] as a simple overall factor. In order to show this claim it is enough to
integrate the fermions fields in the string path integral to obtain the result ([2])

GAB[Aμ(x); lμ(σ)] = TrSU(2) P

{
exp ie

∮
lμ

Aμ dXμ
}

(μ−1)AB

×det
(
(� ∂g+ � B�[Xα(ξ,σ)]λ�)(� ∂g+ � B�[Xα(ξ,σ)]λi)∗) (15.8)

where the two-dimensional QCD external SU(2) gauge field entering in the fermion funci-
tonal determinant in Eq.(15.8) is given explicitly by the 2D surface induced SU(2) gauge
field

B�
A[Xα(ξ,σ)] = (A�

μ(X
α(ξ,σ))λ�)(∂AXμ(ξ,σ)) (15.9)

Note that the appearance of the Wilson Loop functional in Eq.(15.8) is nothing more
than the (boundary) fermion propagator associated to our dermion boundary current in
Eq.(15.1) projected on the spatial loop lμ(σ) = Xμ(0,σ)(Xμ(0,0) = xμ).

Let us comment the results presented in this chapter differ some what from those of
Ref. [4] since here we have not considered the theory of self-avoiding string neither the
restrictive Ashtekar-Sen connection boundary condition (∂x

μF
μν(A)(x)≡ 0); both conditions

necessary to obtain the validity of the results presented in this reference.
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At this point of our chapter, the question of physical observable suitable to our string
quantum gravity state Eq.(15.1) should be considered. We start our discussion on this very
important question by calling attention that it remains an open problem to understand canon-
ical quantum gravity in light of the Copenhagen school interpretation of quantum mechan-
ics. In the Wheeler-De Witt (canonical) frame work, there is no time parameter in the as-
sociated quantum gravity Schrödinger equation (the well-known Wheeler-De Witt equation
(Eq.(15.2))) (see Chapter 11).

As a consequence, the operation of taking quantum system averages makes no sense
physically for the observer. Not that there are no bound-states, currents, energy observ-
ables, etc. in the canonical Wheeler-De Witt quantum gravity framework. There is only, in
principle, the “vacuum” state of the 3D geometry satisfying the homogeneous Wheeler-De
Witt equation and that was the main reason for the search of new field parametrization in
Einstein quantum gravitation theory. We remark that among these frameworks for Quan-
tum Gravity the Ashtekar-Sen parametrization is the most promising scheme devised until
now, since it leads to a mapping of the 3D metric field to the well studied SU(2) gauge
theory (the old Faraday line interpretation for fields) and making, thus, the original non-
linear Wheeler-De Witt equation a linear wave quation in terms of these new variables
(Chapter 7).

However, some geometrical (non-physical) objects have been studied [9] and leading
to the result that the Ashtekar-Sen-Smolin Wilson Loop associated to smooth loops are
eigenstates of these geometrically operators with eigenvalues given by the entanglement
index of these infinitely differentiable loops with the smooth surface and smooth volume
which are fixed by an (somewhat unphysical) observer measuring area and volume in the
3D geometry.

Following these attempts to evaluate formal observables in order to get a better insight in
this very difficult problem, we remark that our string quantum stte may be useful to evaluate
a kind of spatial gravitation propagator given by the dollowing quantum state average (see
appendix of Ref. [5])

〈
G[Aμ;�μ]|(√̂ggi j)(x)(

√̂
ggkl)(x)|0〉. (15.10)

This object has a formal meaning of describing the process of a “spatial graviton”
propagation from the pure vacuum state (nothing) to our proposed string state equation
(Eq.(15.1)) defined by the Ashtekar-Sen connection Aμ(x) and loop lμ(σ).

Following the Copenhagen School interpretation, we substitute the metric operations
below [2]

(
√̂

ggi j)(x) = δ2/δAi
μ(x)δA j

μ(x) (15.11)
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(
√̂

ggkl)(y) = δ2/δAk
ν(y)δAl

ν(y) (15.12)

inside the Polyakov string path integral representing the non-trivial quantum state in
Eq.(15.10). As a consequence, we can easily write the “3D graviton propagator” as a
two-point Polyakov string scattering amplitude associatred to our proposed string theory
Eq.(15.1). Studies of the possible relevance of these scattering amplitudes for quantum
gravity will be intentionally left to our readers.

Finally the argument that another surface solution with a topology of a cylinder may
be obtained by simply taking the Wilson loop of the Ashtekar-Sen connection along a one
parameter family of closed loops in the spatialmanifold, and integrate the resulting one-
parameter family of numbers over the parameter is not correct since this object is not defined
as a functional over the surface vector position {Xμ(ξ,σ)} and, thus, losing all meaning of a
functional of the cylinder surface. The above cited construction is nothing more than a su-
perposition of the Wilson Loop solutions which still satisfies the Wheeler-De Witt equation
written in terms of Ashtekar-Sen variables, since this Schrödinger quantum gravity equation
is linear in this SU(2) gauge field parametrization. As a consequence of these remarks, this
kind of superposition loop solutions do not bring new features besides those already studied
in Ref. [9]. Note that our proposed solution being a string theory opens the possibility of
using all machinery of 2D-quantum field models (see Chapters 16 and 17 and [10]-[11]) to
understand four-dimensional Einstein quantum gravity.
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α +
√
αaYα(ξ,σ) with Yα(ξ,σ) denoting the minimal surface bounded

by the loop �μ(σ), we have the following leading approximate expression for the
Fermionic Functional Determinant under analysis (see chapter 21)

det[(� ∂g+ � B)] ∼
α′→0

exp

{
−1
π

∫
D

dξdσ
√

gTrSU(2)(� BA(ξ))2
}

α′→0∼
[

exp

{
−α′

π

∫
D

dξdσ
√

g(∂aYα)2
}

exp{−α′

π
[TrSU(2)F

2(A)(Xα]}
]





Chapter 16

A Scattering Amplitude in the
Quantum Geometry of Fermionic
Strings

16.1. Introduction

Polyakov [1,2] has developed a formalism for closed strings quantization, later further gen-
eralized by including the case of open strings [3-5].

An important problem in the formalism concerns the definition of a scattering amplitude
for these strings, whose knowledge affords (in principle) the determination of the associated
spectrum. A natural definition for these scattering amplitudes remains, however, the main
problem. Probably its complete solution will require the determination of the exact QCD
string (Chapter 9).

In the lack of a QCD scattering definition, a suggestion for the closed bosonic string was
put forward by Polyakov [1] and generalized for the bosonic open string case in ref. [3].
A remarkable feature of these scattering amplitudes is that the standard dual (Veneziano)
model can be easily obtained in a saddle point approximation [3].

Our aim in this chapter is to propose a scattering amplitude for the open fermionic string
[2,5] with the property that the spectrum does not possess the usual tachionic excitation
in the saddle point approximation D → −∞, and leading thus to the solution of a long-
standing problem in Quantum Geometry of strings as the correct Dual Model theory for
Strong Interactions.

16.2. The Scattering Amplitude

Let us start our analysis by considering the fermionic string action in a D-dimensional
euclidean space-time [2,5,8,9]; namely

S[φ(A)(ξ),ψ(A)(ξ),ea
μ(ξ,χν(ξ)] =

∫
D

d2ξe(ξ)[
1
2

dμφ(A)∂νφ(A)gμν +
1
2

iψ(A)γμDμψ(A)

− 1
2

F2 − 1
2

i(χμγνγμψ(A)(φνφ(A)− 1
4

iχνψ(A))](ξ). (16.1)
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Here the fermionic string is charactereized by two fields; firstly, the vector-position
φ(A)(ξ) (A = 1, . . . ,D) and secondly by ψ(A)(ξ) = (ψ(A)

1 (ξ),ψ(A)
2 (ξ)), a two-dimensional

Majorana spinor describing the string fermionic degrees of freedom. D denotes a two-
dimensional parameter domain (embedded in the euclidean space) with the boundary de-
noted by ∂D . The presence of the vierbein ea

μ(ξ) and of the two-dimensional vector-
Majorana spinor χμ(ξ) together with the auxiliary scalar field F(ξ) insure respectively that
the action (16.1) is invariant under general Lorentz and coordinate trnsformations, and local
supersymmetry transformation [5,8,9].

The average of a functional W (φ(A)(ξ),ψ(A)(ξ)) defined on the fermionic string random
surface is given by the following prescription:

〈W [φ(A)(ξ),ψ(A)(ξ)]〉F =
1
Z

(∫
D[φ(A)(ξ)]D[ψ(A)

(ξ) ]

×D[εa
μ(ξ)] ·D[χμ(ξ)exp{−S[φ(A)(ξ),ψ(A)(ξ),ea

μ(ξ),χν(ξ)]}W [φ(A)(ξ),ψ(A)(ξ)]
)

, (16.2)

where Z denotes the usual measure normalization factor.
The functional measures in (16.2) are invariant under local supersymmetry, and general

Lorentz and coordinate transformations. They are obtained as the functional element of
volume associated to the following functional Riemann metrics (Chapter 1):

||δφ(A)||2 =
(∫

D
d2ξe(ξ)[δφ(A)(ξ) ·δφ(A)(ξ)]

)
+Γ1(χμ(ξ),φ(A)(ξ),ψ(A)(ξ),ea

μ(ξ)),

(16.3a)

||δψ(A)||2 =
(∫

D
d2ξe(ξ)[δψ(A)(ξ) ·δψ(A)(ξ)]

)
+Γ2(χμ(ξ),φ(A)(ξ),ψ(A)(ξ),ea

μ(ξ)),

(16.3b)

||δea
μ||2 =

(∫
D

d2ξe(ξ)[eμ
′

a eμa′(δea
μ)(δea′

μ′)+ ceμaeμ
′

a′(δea
μ)(δea′μ′)+ c′eaμeaμ′(δeμaeaμ′(δea

μ)(δeaμ′)]
)

Γ3(χμ(ξ),φ(A)(ξ),ψ(A)(ξ),ea
μ(ξ)), (16.3c)

||δχμ(ξ)||2 =
(∫

D
d2ξe(ξ)[gμνδχμ ·δχν(ξ)]

)
+Γ4(χμ(ξ),φ(A)(ξ),ψ(A)(ξ),ea

μ(ξ)),

(16.3d)
where c and c′ > 1 are arbitrary constants and Γi(χμ(ξ),φ(A)(ξ),ψ(A)(ξ),ea

μ(ξ)) (i = 1, . . . ,4)
represents term of these functional metrics which vanish for χμ(ξ)≡ 0 and insure invariance
of the associated element of volume by local supersymmetry transformations. As we will
explain below, its explicit expression is not necessary.

For the evaluation of the average (16.2), one has to fix the gauge associated to the local
symmetries of the action (16.1), quoted above. As proposed by Polyakov [2], a natural
gauge is the super-conformal gauge specified by the relations
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ea
μ(ξ) = exp[δ(ξ)]δa

μ , e(ξ) = exp[2δ(ξ)] = ρ(ξ)) , χμ(ξ) =
1
2
γμχ(ξ) = exp[−1

2
δ(ξ)]γμζ(ξ).

(16.4)
Thus, the integrand becomes an effective functional of the fields δ(ξ), ζ(ξ) and an auxil-

iary field f (ξ) necessary to insure the remnants of the local analytic supersymmetry, which
are not destroyed by the gauge (16.4). Because of this residual symmetry, we can evaluate
(16.2) for χμ(ξ) ≡ 0 and use this residual super symmetry to determine the dependence of
the effective integrand in terms of the fields ζ(ξ) and f (ξ). We notice that, as a conse-
quence of this fact, we need not know the exressions Γi(χμ(ξ), φ(A)(ξ), ψ(A)(ξ), ea

μ(ξ)) in
(16.3a)-(16.3d).

After having described above the formalism to compute averages in the theory, we now
pass on to the problem of defining an off-shell scattering amplitude. For this task, we follow
our basic idea: the proposed N-point of-shell scattering amplitude is given by the sum over
all fermionic random surfaces which contains a given set of fixed points {Xj} ( j = 1, . . . ,N),
i.e.: (see Chapter 8)

A(X1, . . . ,XN) =
〈 N

∏
j=1

d2ξ(H)
j e(ξ j)dθ

( j)
1 dθ( j)

2 δ(D)(φ(A)(ξ j)+ iθ( j)
1 ψ(A)

1 (ξ j)+ iθ( j)
2 ψ(A)

2 (ξ j)−Xj)
〉

,

(16.5)

where φ(A)(ξ j) + iθ( j)
1 ψ(A)

1 (ξ j) + iθ( j)
2 ψ(A)

2 (ξ j) denotes the “fermionic-position” of the

fermionic string random surface with (θ( f )
1 ,θ( f )

2 ) grassmanian parameters, and ∏N
j=1 d2ξ(H)

j
is the Möbius invariant Haar measure, which takes into account the (physical) residual sym-
metry of the projective group not fixed by the conformal gauge ea

μ(ξ) = exp[δ(ξ)]δa
μ . Their

explicit expression is given by

N

∏
j=1

d2 ξ(H)
j =

N

∏
j=1

j �=a,b,c

d2ξ j|ξb −ξa|2 |ξc −ξa|2. (16.6)

The indices a, b, c are fixed but choosen arbitrarily. We observe that the effective
number of integrated variables in (16.6) is N −3 and is related to the maximum number of
mutually non-overlapping channels of the scattering process.

The physical spectrum is determined by considering the poles in the {Xj}-Fourier trans-
formed expression for such amplitude, whose associated residues are identified with the
on-shell scattering amplitudes.

In order to evaluate (16.5) is convenient to write (16.5) in momentum-space:

Â(P1, . . . ,PN) =
〈∫

D

N

∏
j=1

d2ξ(H)
j e(ξ j)exp[i(P(A)

j ;φ(A)(ξ j))](P
(A)
j ;ψ(A)

1 (ξ j))(P
(A)
j ;ψ(A)

2 (ξ j))
〉

F
,

(16.7)
where ( ; ) means the euclidean scalar product over the Lorentz indices.
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On the super-conformal gauge (16.4), the interaction lagrangian involving the
vector-spinor Xμ(ξ) vanishes and the functional integration over the “matter” fields
(φ(A)(ξ,ψ(A)(ξ)) becomes of the gaussian type. In order to evaluate these functional in-
tegrations we have to choose appropriate boundary conditions since we are in the presence
of a quantum theory defined in a two-dimensional space-time D with a non-trivial bound-
ary. At this point we fix the domain D as the upper-half plane R+

2 with the real axis being the
boundary. Then, we assume as in ref. [5] that the “matter fields” satisfy the supersymmetric
boundary conditions corresponding to the Neveu-Schwarz model (see eqs.(16.3)-(16.7) in
ref. [1], we also ref. [5]) and the Faddeev-Popov determinants associated to (16.4), the
boundary condtions as discussed in ref. [4].

By introducing the family of self-adjoint operators acting on an appropriate space of
two-component real functions on R+

2 with boundaary conditions indicated by N (Neumann)
or D (Dirichlet) [4],

L j =
(−ρ−( j+1)∂z̄ρ j ∂z), (16.8)

we can thus perform the gaussian functional integration over the scalar field φ(A)(ξ) with
the result

Det−D/4(LNN
0 )exp

[
−
(

N

∑
(i, j)=1

(P(A)
i ,P(A)

j )K(e)(z j,z j,2δ(zi,z
∗
i ))

)]
, (16.9)

where K(e)(z,z′,2δ(z,z∗)) is the conformally regularized Green function for the laplacian in
the metric gμν(z,z∗) = exp[2δ(z,z∗)]δμν with the Neumann boundary conditions along the
real axis [3]. Its expression reads:

K(ε)(z,z′,2δ(z,zi)) = −(1/2π)(�n|z− z′||z− z′∗|) z �= z′

= δ(z,z∗)/2π− (1/4π)�nε− (1/2π)�n|z− z| z = z′ (16.10)

The integration over the Majorana fields ψ(A)(ξ) is carried out by using the fact that
the Green function (iγμDμ)−1

(N)(zi,z j), with the Neumann boundary conditions along the real

axis, is related to the corresponding flat propagator (iγa∂a)−1
(N)(zi,z j) by (see eq. (6.11) in

ref. [10])

(iγμDμ)−1(zi,z j) = exp[−δ(zi,z
∗
i )](iγa∂a)−1

(N)(zi,z j)exp[−δ(z j,z
∗
j)], (16.11)

where
(iγa∂a)−1

(N)(zi,z j) = (iγa∂a)[−(1/2π)�n(|zi − z j| |zi − z∗j |)]. (16.12)

As again the functional integration over the Majorana fields are gaussian, we get the
result:
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DetD/4(LND
−1/2)

{
exp

[
−
(

N

∑
i=1

δ(zi,z
∗
j)

)]

×∑
(

N

∏
(i, j)

(P(A)
i ;P(A)

j ) ∏
(α1,α2)

((iγa∂a)−1
(N)(zi,z j))α1α2

)}
, (16.13)

where the Σ in (16.13) means that we have to sum over all ways of pairing the fermion fields
in (16.7) and the subscripts (α1,α2) denotes the matrix indices of the propagator (16.12).

We note that N should be an even number. This implies that the Polyakov fermionic
string model possesses a quantum number which is subject to conservation and can be
related to the NS−G parity [11]. By evaluating the Faddeev-Popov determinants associated
to the gauge (16.4), we get the effective action and hence the final expression conformally
regularized for the n-point off-shell scattering amplitude.

Â(E)(P1, . . . ,PN) =
1
2

{∫
D[δ]D[ζ]D[ f ] exp(−Seff[δ,ζ, f ])

×
{∫

R2
+

N

∏
j=1

d2ξ(H)
j exp

(
N

∑
j=1

2δ(z j,z
∗
j)

)
exp

[
−
(

N

∑
(i, j)

(P(A)
i ;P(A)

j )K(ε)(zi,z j,2δ)

)]

×
[
−
(

N

∑
j=1

δ(zi,z
∗
j)

)](
∑

N

∏
(i, j)

(P(A)
i ;P(A)

j ) ∏
(α1,α2)

((iγa∂a)−1
(N)(zi,z j))α1α2

)}}
, (16.14)

where the effective action is given by the expression [5]:

Seff[δ,ζ, f ] =
10−D

8π

[∫
R+

2

d2ξ[
1
2
(∂δ)2 − 1

2
iζT (γ ·∂·)ζ− 1

2
f 2]

+
1
4

i

(∫ +∞

−ω
dξ0(ζγ5ζ)|ξ1=0

)
+

D
8π

(
μ ·

∫
R+

2

d2ξ exp[δ(ξ)]( f − 1
2

iζγ5ζ)(ξ)−μ
∫ +∞

−∞
dξ0(eδ)|ξ1=0

−
∫ +∞

−∞
dξ0[ f +(∂/∂ξ1)δ]|ξ1=0

)]
. (16.15)

It was pointed out in ref. [5] that the term f (ξ)exp[δ(ξ)] in (16.15) produces a Liouville
term after being formally integrated over f , a very important remark on the analysis.

Since the complete solution of the supersymmetric Liouville field theory in R+
2 was not

found yet, which would provide the complete solution of (16.14), we implement a saddle-
point approximation to evaluate (16.14) as introduced in refs.[2,5]: we take the Majorana
field ζ≡ 0 and consider the classical motion equaiton for the resulting action [5]:

Δδ = [D2/(10−D)2]μ2e2δ−δ′(ξ1)([D/(10−D)]−ξ1{[D2/(10−D)2]μeδ +[D/(10−D)]μeδ +∂ξ1
δ}).
(16.16)
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A solution of (16.16) having the property of vanisnhing automatically at the boundary
conditions is the Poincaré metric in R2

+, namely:

δ(ξ1,ξ2) = �n{[D/(10−D)]/μξ1} = �n{[D/(10−D)]/μ|z− z∗|}. (16.17)

By substituting this expression in eq. (16.14) and taking into account that the action
evaluated in (16.17) cancels out with the same term arising from the normalization factor,
we finally get:

Â(E)(P1, . . . ,PN) =
∫

R+
2

N

∏
j=1

d2z(H)
j (εΣ

N
i=1[(P

2
i )/2π])

(
D

(10−D)μ

) N

∑
i=1

[(1−P2
i )/2π]

×
(

N

∏
i< j

(|zi − z′j| |zi − z′∗j |)
)

(P(A)
i ;P(A)

j )/π

(
N

∏
j=1

|zi − z∗i |P
2
i /π−1

)

×

⎛
⎜⎜⎝∑ N

∏
(i, j)
i�= j

(P(A)
i ;P(A)

j ( ∏
(α1,α2)

((iγa∂a)−1
(N) (zi,z j))α1α2

⎞
⎟⎟⎠ . (16.18)

In order to isolate the on-shell scattering amplitudes, we first have to find the poles in
the external momentum variables (Pi)2 = (P(A)

i ;P(A)
i ). Such poles occur when zi and z∗i

come close together, i.e. the only contribution for the associated residues comes only from
the region �m(zi)→ 0 in the integrand in (16.18). This phenomenon reduces the integration
over R∗

2 to the integration along the real axis. As a result, there exist (euclidean) poles when

(Pi)2/π−1 = −1,−2, . . . or (Pi)2/π = 0,−1.−2, . . . . (16.19)

This fact implies that the proposed scattering amplitude (16.5) leads to a spectrum with-
out the usual lowest state being a tachyon [compare with the bosonic case, eq. (4.21) in ref.
[3]].

For the lowest massless excitation, we obtain an expression similar to the S-matrix
elements encountered in the Neveu-Schwarz model [11]

S(P1, . . . ,PN) =
(

D
(10−D)μ

)N [∫ +∞

−∞

N

∏
j=1

d1z(H)
j

(
N

∏
i< j

|zi − z j|
2(P(A)

i ;P(A)
j

π

)

×

⎛
⎜⎜⎝∑ N

∏
(i, j)
i�= j

2(P(A)
i ,P(A)

J ) ∏
(α1,α2)

((iγa∂a)−1(zi,z j))α1α1

⎞
⎟⎟⎠

]
, (16.20)

where now

((iγa∂a)−1(zi,z j))α1α1 = ((iγa∂a)[−(1/2π)�n|zi − z j|])α1α2 , (16.21)

and the Möbius invariant Haar measure ΠN
j=1 d1z(H)

j is taken over the real axis.
The next 1/D-corrections to the saddle-point analysis presented in this chapter are left

to our readers (see Chapter 7).
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Chapter 17

Path-Integral Bosonization
for the Thirring Model on a Riemann
Surface

17.1. Introduction

Analysis of quantum field models defined on Riemann surface as two-dimensional space-
time is a fundamental issue for strings field theory in Polyakov’s approach [1,2].

It is the purpose of this chapter to solve exactly the Abelian-Thirring model defined on
a Riemann surface in the framework of chiral path integrals, an useful calculational path-
integral result for our QCD string representation presented in Chapter 9–Chapter 16, for the
case of non-trivial string world sheet topology (next 1

Nc
-corrections).

17.2. The Path-Integral Bosonization on a Riemann Surface

We start our analysis by considering the Abelian-Thirring model associated to a complex
spin field associated to a spin structure (θi,φi) of a genus g Riemann surface D(g)

L(ψ, ψ̄)(θi,φi) = ψ̄iγμDμψ+
g2

2
(ψ̄γμψ)2. (17.1)

Here the Dirac operator is given by

igμDμ = iγa êμa

(
∂μ+

1
8
ωμab(ê)εab γ5

)
, (17.2)

where êμa are fixed background two-beins satisfying the topological genus constraint∫
D(g)

√
ĝR(ĝ) = 2π(2−2g). (17.3)
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R(ĝ) is the scalar of curvature associated to ĝμν and ωμab(ĝ) is the spin connection
defined by the relation ∇μêν = 0.

The γμ = êμa γa Euclidean (curved) Dirac matrices are defined by the relationship below
(ξ ∈ D(g)):

⎧⎨
⎩
{γμ,γν}+(ξ) = 2ĝμν(ξ),

γμ(ξ)γ5 = i

(
εμνγν√

ĝ

)
(ξ),

(17.4)

where γa are the usual flat-space Dirac matrices.

In the framework of path integrals, the generating functional of the Green’s function
of the (mathematical) quantum field theory associated with the Lagrangian eq. (17.1) is
defined by the following covariant functional integration (Chapter 1):

Z[ρ, ρ̄] =
1

Z(0,0)

∫
dc[ψ]dc[ψ̄]× exp

[
−

∫
D(g)

d2ξ(
√

ĝL(ψ, ψ̄))(ξ)
]

× exp

[
−

∫
D(g)

d2ξ(
√

ĝ(ρ̄ψ+ ψ̄ρ))(ξ)
]
. (17.5)

It is worth pointing out that the classical action in eq. (17.5) is invariant under the local
diffeomorphism group and the global Abelian-chiral groups acting on the spin field restrict
to any local region R of D(g). These symmetries have the associated Noether covariant
conserved currents

∇μ(ψ̄γ5γμψ) = 0; ∇μ(ψ̄γμψ) = 0. (17.6)

In order to implement the path-integral gauge and local diffeomorphism invariant
bosonization, we rewrite the fermion interaction term in the Hubbard-Stratonovitch form
by using an auxiliary vector field Aμ(ξ)

Z[ρ, ρ̄] =
1

Z(0,0)

∫
dc[ψ]dc[ψ̄]dc[Aμ]× exp

[
−

∫
D(g)

d2ξ
√

ĝ
[
ψ̄iγμ(Dμ+ gAμ)ψ+

1
2

AμA
ν](ξ)]×

× exp

[
−

∫
D(g)

d2ξ
√

ĝ(ρ̄ψ+ ψ̄ρ)(ξ)
]
. (17.7)

Let us now proceed as in [4-6] by making the local field change in eq. (17.7)
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Aμ(ξ) = −
(
εμν∂νη√

ĝ

)
(ξ)+ AH

μ (ξ), (17.8)

ψ(ξ) = (exp[iγ5η(ξ)]) ·χ(ξ), (17.9)

ψ̄(ξ) = χ̄(ξ) · exp[iγ5η(ξ)], (17.10)

where ∇μ(Aμ−AH
μ )≡ 0 and AH

μ (ξ) is the Hodge topological vector field which is explicitly
given in terms of canonical Abelian differentials ωi and their complex conjugates ω̄i [7]:

AH
μ (ξ) = 2π

g

∑
l=1

(pi ·αi
μ(ξ)+ riβi

μ(ξ)), (17.11)

αi
μ(ξ) = −Ω̄ik(Ω− Ω̄)−1

k j ω
i
μ(ξ)+ c;c; . (17.12)

βi
μ(ξ) = (Ω− Ω̄)−1

i j ω j
μ(ξ)+ c.c. (17.13)

The period matrix Ω is defined by∫
aj

ai = δi j ,
∫

bi
a j = Ωi j (17.14)

where ai and bi are (canonical) homology cycles on D(g).

As it has been shown by Fujikawa [5], the transformation of eqs. (17.9)-(17.10) are not
free of cost, since the functional measures dc[ψ]dc(ψ̄] are defined in terms of the normalized
eigenvectors of the covariant and U(1) gauge invariant Dirac operator eq. (2) in the presence
of the auxiliary vector field Aμ .

The associated Jacobian of eqs. (17.9), (17.10) is given by [6]

dc[ψ]dc[ψ] = dc[χ]dc[χ̄]× det[iγμ(Dμ+ cAμ)]
det[iγμ(Dμ+ cAH

μ )]
· (17.15)

At this point we note that after the chiral change takes place the new quantum fermionic
vacuum is defined by the fermionic field χ(ξ) (with the same spin structure of ψ(ξ)) in the
presence solely of the Hodge topological field AH

μ (eq. (17.11)).
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The Jacobian associated to eq. (17.8) is [7]

dc[Aμ] = dc[η]

(
(2π)2g

g

∏
l=1

d pi dri

)
×det1/2

(
〈αi

μ,αi
μ〉 〈αi

μ,β
j
μ〉

〈βi
μ,α

j
μ〉 〈βi

μ,βi
μ〉

)
, (17.16)

where the covariant scalar product in the space of vector fields in D(g) is defined by

〈Σμ,θμ〉 =
∫

D(g)
d2ξ

(√
ĝḡαβ Σαθβ

)
(ξ). (17.17)

Let us remark that with this definition we have

〈ωi
μ,ω

j
μ〉 = 2�mΩi j . (17.18)

So, we face the problem of the evaluaiton of the ratio of two Dirac determinants related
themselves by a chiral rotation:

J[Aμ] =
det[exp[icγ5η]igaμ(Dμ+ cAμ)exp[icγ5η]]

det[iγμ(Dμ+ cAH
μ )]

· (17.19)

By following the procedure of ref. [6] we, at first, introduce a one-parameter family
of Dirac operators interpolating the Dirac opeator iγμ(Dμ+ cAH

μ ) = D(AH
μ ) and the chirally

rotated exp[icγ5η)D(AH
μ ) · exp[iγ5η]:

D
(ζ)(Aμ) = exp[iγ5ζη]D(AH

μ ) · exp[icγ5ζη], (0 ≤ ζ≤ 1). (17.20)

By using a proper-time prescription to define the funcitonal determinant of D
(ζ) (after

making the analytic extension c = −ic̄), we have the following differential equation for log
det D

(ζ):

d
dζ

logdetD(ζ) =−2 lim
ε→0+

Tr[c̄γ5ηexp[−σD
(ζ)2

]× (1−P
(ζ)]1/ε

ε +

+ lim
ε→0+

∫ 1/ε

ε

dσ
σ

Tr

(
exp[−σD

(ζ)2 d
dζ

P
(ζ)

)
= I(ζ)

(1) [Aμ]+ I(ζ)
(0) [Aμ],

(17.21)
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where P
(ζ) = ∑n 〈 ,φ(0),(ζ)

n 〉φ(0),(ζ)
n denotes the projection over the zero modes φ(0),(ζ)

n of the
Dirac interpolating operator D

(ζ). These zero modes are related by an analytically continued
chiral rotation to those of D(AH

μ ):

φ(0),(ζ)
n = exp[−ĉγ5ζη] · φ̃(0)

n (17.22)

and
D(AH

μ ) · φ̃(0)
n = 0. (17.23)

Since D
(σ)2

(Aμ) is a self-adjoint invertible operator in the manifold orthogonal to the
subspace generated by the zero modes, we can use the Seeley-De Witt technique to evaluate
the first term in eq. (17.21) which yields

I(ζ)
(1) [Aμ] = lim

ε→0+
Tr[ĉγ5ηexp[−σD

(η)2
](1−P

(ζ)]
∣∣1/ε
ε =

= −2
π
ζTr

[
−ic̄

(
η

1√
ĝ
∂α(ĝαβ∂β)η

)
+
εμν
2

Fμν(AH)
]
. (17.24)

The second term on the left side of eq. (21) is easily evaluated giving the result

I(ζ)
(0) [Aμ] = lim

ε→0+

∫ 1/ε

ε

dσ
σ

Tr

(
exp[−σD

(ζ)2
]

d
dζ

P
(ζ)

)
=

= lim
ε→0+

(4 · logε · c̄)∑
n

∫
D(g)

d2ξ(
√

ĝ φ̃(0)
n ·ηψ̃(0)

n )(ξ). (17.25)

The final result for the functional determinants ratio eq. (17.19) is thus given by

J[Aμ] =
(c(R))2

π

∫
D(g)

d2ξ
1
2
(
√

ĝ∂αηĝαβ∂βη)(ξ)+

+
c(R)

π

∫
D(g)

d2ξ
[
(εμνFμν(AH

μ ) ·η)
√

ĝ
]
(ξ)− e(R)∑

n

∫
D(g)

d2ξ(
√

ĝφ̃(0)
n ·ηφ̃(0)

n )(ξ),

(17.26)

here c(R) is the usual multiplicative infrared coupling constant renormalization due to zero-
mode terms.

The generating funcitonal thus takes the more invariant form:
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Z[ρ, ρ̄] =
1

Z(0,0)

∫
dm(pi,ri)Z(0)[ρ, ρ̄,(pi,ri ], (17.27)

where the measure over the (pi,ri) parameters is given by [7]

dm(pi,ri) = (2π)2g ·
g

∏
l=1

d pl ·drl ×det

(
〈αi

μ,αi
μ〉 〈αi

μ,β
j
μ〉

〈β j
μ,βi

μ〉 〈β j
μ,β j

μ〉

)
×

× exp

[
−2π2

∫
D(g)

d2ξ
{√

ĝ[(pkΩ̄ki − ri)(�mΩ)−1
i j (Ω ji pl − rl)]

}
(ξ)

]
. (17.28)

The (bosonized) generating functional is explicitly given by

Z|(0)[ρ, ρ̄] =
1

Z(0)

∫
dc[η]exp[iW [φ̂(0)

n , φ̂
(0)
n ,AH

μ ]]×

×
∫

dc[χ]dc[χ̄]exp

[
− 1

2

(
1− c(R)2

π

)∫
D(g)

d2ξ
√

ĝ[ĝαβ∂αη∂βη)(ξ)+

+(χ̄iγμ(Dμ+ e(R)AH
μ )χ)(ξ)+ (χ̄exp[ic(R)γ5η]ρ+ ρ̄exp[ic(R)γ5η]χ)(ξ)

]
,

(17.29)

where the functional W [φ̂(0)
n , φ̂

(0)
n ,AH

μ ] is defined by the interaction with the (external) zero-

mode fermion fields φ̂(0)
n , φ̂

(0)
n :

W [φ̂(0)
n , φ̂

(0)
n ,AH

μ ] =
∫

D(g)
d2ξ

√
ĝ

[(
−i

c(R)

π
εμνFμν(AH)η

)
+(−c(R)φ̂(0)

n ηφ̂
(0)
n )

]
(ξ).

(17.30)

We remark that the fermions χ(ξ) still interact with the Hodge topological field AH
μ by

the minimal gauge invariant interaction D(AH
μ ) and with the η(ξ) field by the coupling with

the source term.

Let us exemplify our main result, eq. (17.29), by displaying the general structure of the
two-point fermion correlation function
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〈ψα(ξ1)ψ̄β(ξ2)〉 =
1

Z(0)

∫ +∞

−∞
dm(pi,ri)det[iγμ(Dμ+ c(R)AH

μ )]·

· exp

[
−1

2
c(R)2

1− (c(R)2/π) Δ
−1(ξ1,ξ2)

]
D
−1(AH

μ ), (17.31)

where Δ−1(ξ1,ξ2) is the Green’s function of the Laplace operator on the Riemann surface
D(g) and D

−1(AH
μ ) = (iγμ(Dμ+c(R)AH

μ ))−1(ξ1,ξ2) is the Green’s function of the Dirac oper-
ator with spin structure (θi,φi) in the presence of the topological Hodge vector field AH

μ (ξ)
[1].

The determinant in eq. (17.31) was exactly evaluated ref. [1] and expressed in terms of
ϑ-functions

det iγμ(Dμ+ c(R)AH
μ ) = |l(Ω)|2 ·

∣∣∣∣ϑ
[ 1

2 +θi

1
2 −φi

]
(0|Ω)

∣∣∣∣ . (17.32)

The Green’s function of the laplace operator may be expressed in terms of the theta-
functions

Δ−1(ξ1,ξ2) = − 1
4π

log |ϑ[(ξ1|Ω)]−ϑ[(ξ2|Ω)]|+ lm(ξ1 −ξ2)2

δ(ImΩ)
· (17.33)

Finally a formal expression for the Green’s function of the Dirach operator is given by
[3]

exp

[
−i

c(R)

2

∫
Cξ1,ξ2

(AJ
μ+ γ5εμνAν,H)dξμ

]
× (iγμDμ(AH)−1

(φi,θi)(ξ1,ξ2)×

× exp

[
+i

c(R)

2

∫
Cξ1,ξ2

(AJ
μ+ γ5εμνAν,H)dξμ

]
,

(17.34)

where Cξ1,ξ2
is an arbitrary contour on the Riemann surface D(g) which has a nonempty

intersection with each canonical homology cycles on D(g) and connecting the points ξ1 and
ξ2 .

As we have shown, chiral changes in path integrals even for fermion model on a Rie-
mann surface provide a quick, mathematically and conceptually simple way to analyse these
models, with potential for exactly evaluations on Quantum Geometry of Riemann surfaces.
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Chapter 18

A Path-Integral Approach for
Bosonic Effective Theories
for Fermion Fields in Four
and Three Dimensions

18.1. Introduction

Analysis of fermionic quantum models in four-dimensional space-time always have been a
very difficult mathematical problem [1]. Fortunately, nonperturbative effective actions have
shown its usefulness to analyzing new phenomena in these theories, It is the purpose of this
chapter to propose a new technique to arrive at an effective bosonic action, suitably adapted
from similar exactly obtained results on two dimensions. This main result of our study is
the content of Secs. 2 and 3. In Sec. 4 we present our study of Polyakov’s Fermi-Bose
transmutation in the Abelian Thirring model in detail [3].

Finally in Sec. 5 we comment on some papers in the literature related to the topic of
higher-dimensional bosonization and in Sec. 6 we present a loop space proof of the model
triviality as a quantum field theory (Chapter 4).

18.2. The Bosonic High-Energy Effective Theory

We start this section by considering the generating functional for the correlation functions
generated by vectorial and axial currents in a theory of Euclidean Abelian massive fermions
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in a Euclidean four-dimensional space-time R4

Z[Vμ,Aμ](m) =
1

Z(0,0)

∫
DF [ψ(x)]DF [ψ̄(x)]

×δ(F)(∂μ(ψ̄μψ)(x))δ(F)([∂μ(ψ̄γμγ5ψ)−2imψ̄ψ](x))

× exp

(
−

∫
d4[ψ̄(iγμ∂+ m + γμγ5Aμ+ γμVμ)ψ](x)

)
, (18.1)

where we have taken into account in an explicit way, in the functional domain of integration
of Eq. (18.1), the current-charge law for the theory, in response to phase local variable field
change

ψ(x) → eigV θ(x) eigAγ5ω(x)ψ(x),

ψ̄(x) → ψ̄(x)e−igV θ(x) eigAγ5ω(x).
(18.2)

It is worth pointing out that our fermionic functional measues are defined in terms of
the spectral set (eigenfunctions and eigenvalues) associated with the free massless Dirac
operator � ∂ ≡ iγμ∂μ instead of the full massive Dirac operator ∂(A,V )−m ≡ iγμ(∂μ+Vμ+
γ5AV ) + m, since the external sources (Aμ,Vμ) are not dynamical and thus leading to the
absence of the axial-anomaly piece in the chiral current law associated with these fields.
Besides, the mass term is defined as a perturbation of the massless case as in 2D models
[4]. We now write the generating functional eq. (18.1) in a local way by expressing the
functional Delta constraints in Fourier functional domain:

Z[Vμ,Aμ](m) =
1

Z(0,0)

∫
DF ]ψ(x)]DF ]ψ̄(x)]

∫
DF [θ(x)]DF [ω(x)]

× exp

[
−

∫
d4xigA(ψ̄γμγ5ψ)(x)∂μω(x)−2m

∫
d4x(ψ̄ψ)(x)ω(x)

]

× exp

[
−i

∫
d4xgV (ψ̄γμψ)∂μθ(x)

]

× exp

[
−

∫
d4xψ̄[i � ∂(A,V )+ m]ψ (18.3)

At this point of our study, we implement the phase variable change Eq. (18.2) into Eq.
(18.3) by taking into consideration the nonunity Jacobian associated with the chiral rotation
[Ref. 5 - Eq. (9)] and Appendix 22-E].

DF [ψ̄(x)]DF [ψ(x)] = DF [(ψ̄(e+igAγ5ω e−igV θ))(x)]

×DF [((eigAψ5ω eigV θ)ψ)(x)]
detF [eigAγ5ω(i � ∂)eigAγ5ω]

detF [i � ∂] · (18.4)
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The ratio of the functional Dirac determinants was evaluated in ref. 5 [Eqs. (18.17) and
(18.18)] and yielded the following functional weight for the chiral dynamical phase ω(x)
(with a UV cutoff Λ):

detF [eigAγ5ω(i � ∂)eigAγ5ω]/[detF(i � ∂)]

× exp

[(gA

Λ

)2 ∫
d4xω(−∂2)ω

]

× exp

[
−(gA)2

4π2

∫
d4x(−∂2ω)(−∂2ω)(x)

]

× exp

[
(gA)4

12π2

∫
d4(ω)∂μω)2(−∂2ω))(x)

]
. (18.5)

By substituting Eq. (18.4) into Eq. (18.3) and by noting the validity of the equation

∫
DF [ψ̄(x)e(+igAγ5ω−igVω)(x)]D f [e(+igAγ5ω+igVθ)(x)ψ(x)]

× exp

[
−

∫
d4x{(ψ̄eigAγ5ω−igVθ)[i � ∂(A,V )

+ me−2(igAγ5ω)(1+ 2ω)](eigAγ5ω+igVθψ)}(x)
]

= detF [i � ∂(A,V )+ m(1+ 2ω)exp(−2igAγ5ω)]. (18.6)

we finally obtain the result sought in the leading limit of high ultraviolet region m → 0,
which improves those models studied in the second reference of Ref. 1.

Z̃[Vμ,Aμ](m)

=
1

Z̃(0,0)

∫
DF [θ(x)]DF [ω(x)]

exp

⎛
⎝∫

d4xω(x)

⎧⎨
⎩− Λ2

F

(gA)−1π2

[
1

−(∂2)+ ( 2π
ΛF

)2
− 1

−∂2

]−1

(x,y)

⎫⎬
⎭ω(y)

⎞
⎠

× exp

(
(gA)4

12π2

∫
d4(ω(∂μω)2)(−∂2ω))(x)

)

× exp

{
−2

∫
d4xd4y[(m(1+ 2ω)e2i(gAγ5ω))(x)(i � ∂)−1(x,y)

× (Vμ+ γ5Aμ)(y)(i � ∂)−1(y,x)]+ O(m2)
}

. (18.7)
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Comments related to this effective high-energy bosonic field theory for the current al-
gebra of observables are made in Sec. 4 of this chapter.

18.3. The Bosonic Low-Energy Effective Theory

Let us start our analysis in this section by writing the generating functional for the cor-
relations functions generated by vectorial and axial currents in a theory of free massive
Euclidean fermion fields in R4

Z̃[Vμ,Aμ] =
1

Z(0,0)

∫
DF [ψ(x)]DF [ψ̄(x)]

× exp

[
−

∫
d4xψ̄(i � ∂(A,V,m)ψ)(x)

]
. (18.8)

The main point of our approximate bosonization procedure for Eq. (18.8) is to introduce
a massive feermion field theory invariant under the field rotation Eq. (18.2) by elevating
the involved local (ω(x),θ(x)) to being dynamical degrees of freedom and functionally
integrating them out. As a consequence, we propose to approximate Eq. (18.8) in the
infrared region by means of the chiral-invariant functional integral with a mass parameter
term,

Z̃[Vμ,Aμ]R = lim
m→∞

∫
DF [ω(x)]DF [θ(x)]

∫
DF [ψ̄θ,ω(x)]DF [ψ(θ,ω)(x)]

× exp

{
−

∫
d4xψ̄(θ,ω)(i � ∂(A,V )+ m)ψ(θ,ω)(x)

}
, (18.9)

where the fields rotated in Eq. (18.9) are given by Eq. (18.2):

ψ(θ,ω)(x) = eigV θ(x) eigAγ5ω(x)ψ(x),

ψ̄(θ,ω)(x) = ψ̄(x)e−igV θ(x) eigAγ5ω(x).
(18.10)

We thus proceed in the inverse path of that followed in Sec. 18.2 by using the inverse
field variable change Eq. (18.4):
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Z̃[Vμ,Aμ]R = lim
m→∞

∫
DF [ω(x)]DF [θ(x)]

× exp

(−(g1Λ

12π2

)∫
(ω(∂μ(ω)2 × (−∂2ω)(x)))d4x

× exp

⎛
⎝∫

d4xω(x)

⎧⎨
⎩ ΛF

(gA)44π2

[
1

(−∂2)+ ( 2π
ΛF

)2
− 1

(−∂2)

]−1
⎫⎬
⎭(x,y)ω(y)

⎞
⎠

×detF [i � ∂(Vμ+ igV∂μθ,Aμ+ igA∂μω)+ mexp(2igAγ5ω)], (18.11)

where ΛF denotes the intrinsic cutoff from the original fermion field theory (see Chapter 6),
which, by its turn, determines the effective energy scale where our effective bosonic theory
is expected to be working.

Let us now analyze the fermion functional determinant involving the sources in this
low-energy limit m → ∞. At this limit, we can easily improve the asymptotic expansion in
terms of the inverse power of the bare mass parameter m of Ref. 6 by approximating the
term mexp(2gAγ5ω) by the simple mass term m (this procedure being correct only at this
limite of m → ∞).

We thus consider the following differential equation for this functional determinant,
where the parameter s ranges in the interpolating 0 ≤ s ≤ 1:

lim
m→∞

d
ds

{detF [i � ∂(s(Vμ+ igV∂μθ);s(Aμ+ igA∂μω))+ m]}

∼
∫ ∞

0
dt e−tm2 ×TrF [(γμVμ+ γ5γμAμ)]

× [i � ∂(s(Vμ + igV∂μθ);s(Aμ+ gA∂μω))+ m]

exp{−t[i � ∂(s(Vμ+ igV∂μθ);s(Aμ+ igA∂μω))]2}. (18.12)

By applying the saddle oint technique to evaluate the Laplace transform (see Ref. 6),
we obtain the leading effective infrared effective source-dependent action

Seff(Aμ,Vμ)R = exp

{
+

(m|Λ f )2

4π

∫
d4x([Vμ + igV∂μθ)2

+(Aμ+ igA∂μω)2(x)]+ [c1F2
μV (Aμ)− c2F2

μV (Aμ)

+ c3Fμν(Vμ)Fμν(Aμ)(x)+ 0((m|ΛF )−2)
}

(18.13)
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Hence c1 and c2 are positive constants whose values depend on the regularization
scheme used and the Dirac matrices representation. By substituting the massive Abelin
gauge field (source) action above into the functional integral Eq. (18.11), we get our pro-
pose IR effective bosonic theory for the algebra generated by vectorial and axial currents
of a massive free fermion field theory. At this point the reader should compare the UV -
effective action Eq. (18.13) with IR-effective action given by Eq. (18.7).

It is instructive to point out that in the important use of D ≡ 2, all functional integrals
are of Gaussian type and leading to the following result in the IR-region:

Z̃[Aμ,Vμ] =
∫

DF [ω(x)]DF [θ(x)]

× exp

[
− 1

2π

∫
d2x[(∂θ)2 +(∂ω)2(x)]

]

× exp

[
−m2

2π

∫
d2x[(Vμ + igV∂μθ)2 +(Aμ+ igA∂μω)2](x)

]

= exp

{∫
d2xd2yVμ(x)

[
m2δμν−4

g2
V(1+m2g2

V
π

) ∂mu∂V

(−∂2)

]
Vν(y)

}

× exp

{∫
d2xd2yAμ(x)

[
m2δμν− 4g2

A(
1+ m2g2

A
π

) ∂μ∂ν
(−∂2)

]
(x,y)Aν(y)

}
. (18.14)

By analyzing the two-dimensional effective bosonic theory we conclude that the result
is clearly not gauge invariant on the source gauge fields as the gauge symmetry is dynami-
cally broken in two-dimensional space-time.

In the important case of the presence of a quantized electromagnetic field Gμ(x), we can
follow our previous procedure of the section. The main difference is the introduction of the
“topological charge” of the electromagnetic field in the delta function of Eq. (18.1):

δ(F)([∂μ(ψ̄γμγ5ψ)−2imψ̄ψ]) → δ(F)([∂μ(ψ̄γμγ5ψ)−2imψ̄ψ− 1
32π2

∫
d4x(∗FμνFμν)(Gμ)])

(18.15)

and the replacing of the full Dirac operator below in Eq. (18.12),

� ∂(A,V )+ m →� ∂(A,V + G)+ m.

It is worth pointing out the natural appearance of an “axion like” interaction between
the chiral phase neutral field ω(x) and the electromagnetic field Gμ(x), namely
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Saxion[ω,Gμ] = exp

{
i
∫

d4xω(x)(∗FμνFμν)(G)(x)
}

. (18.16-a)

The generalization of our study for the non-Abelian case is straightforward and left
to our readers and leading to the non-Abelian generalization of our previous study (see
Ref. 12) where the non-Abelain evaluation of the chirality-rotated Jacobian Eq. (18.4) is
presented in full details.

Finally, it is instructive to point out that one should show explicitly the “Euclideanicity”
of our approach by considering the nonunitary (Euclidean) variable change below

ψ(x) → egV θ(x) egV γ5ω(x)ψ(x),

ψ̄(x) → ψ̄(x)egAγ5ω(x) e−gVθ(x).
(18.16-b)

Instead of the classical unitary Eq. (2), the Jacobain will now be a functional involv-
ing the nonunitary phases (θ(x),ω(x)). Note that Eq. (18.16’) is allowed in Euclidean
space-time since the energy densities ψ̄ψ, ψ̄γ5Aμ are not real as ψ̄ and ψ are independent
anticommuting Euclidean fields and, thus, living in different functional spaces.

18.4. Polyakov’s Fermi-Bose Transmutation in 3D Abelian-
Thirring Model

Polyakov’s Fermi-Bose transmutation in the infrared regime of the CP1 model has became
a basic phenomenon for understanding approximate bosonization in fermion field theory
in three-dimensional space-time. In this section we present in detail the above-cited phe-
nomenon in the Thirring model. This study is based on our unpublished research (7), prior
to all the results that appeared on the subject since then.

Let us start our study in this section by considering the massive three-dimensional
Thirring Lagrangian in the Euclidean space-time with a repulsive interaction

L(ψ, ψ̄) = ψ̄(iγ∂)ψ+ mψ̄ψ− g2

2
(ψ̄γμψ)2. (18.17)

The 3D Euclidean Hermitian γμ matrices which we are using obey the relationship

{γμ,γν} = δμν, [γμ,γν] =
1
2
εμνρ γρ . (18.18)

The independent Euclidean fields ψ(α)(x) and ψ̄(β)(x) satisfy the Euclidean anticom-
muting relation (α,β = 1,2,3)
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{ψ(α)(x), ψ̄(β)(y)} = δαβ δ(3)(x− y). (18.19)

The Lagrangian (17) is invariant under the global Abelian group ψ→ exp(iΩ)ψ1 , ψ̄→
exp(−iΩ)ψ̄ with the Noetherian conserved current

∂μ(ψγμψ̄) ≡ 0. (18.20)

In order to analyze Polyakov’s boson-fermion transmutation, we consider the generating
function

Z[η, η̄] =
1

Z(0,0)
×
{∫

DF [ψ(x)]DF [ψ̄(x)]× exp

[∫
d3x(L(ψ, ψ̄)+ηψ̄+ψη̄)(x)

]}
.

(18.21)

By making use of the Hubbard-Stratonovich field reparametrization, we rewrite Eq.
(18.21) in a form useful for our bosonization purpose:

Z[η, η̄] =
1

Z(0,0)
×
{∫

DF [ψ(x)]DF [ψ̄(x)]DF [Aμ(x)]

× exp

(
−1

2

∫
d3xA2

μ(x)
)
δ(F)[(∂μAμ)]

× exp

(
−

∫
d3x[ψ̄(iγ∂+ gγA + m)ψ+ηψ̄+ψη̄](x)

)}
, (18.22)

where Aμ(x) is an auxiliary Euclidean Abelian real vector field satisfying the Landau gauge
as a consequence of Eq. (18.20), since it should coincides with the vectorial current at the
operator level.

At this point, it becomes important to remark that the fermionic measures
DF [ψ̄1(x)]DF [ψ(x)] in Eq. (18.22) are defined in terms of the normalized eigenvectors of
the self-adjoint Euclidean Dirac operator iγμ(∂− igAμ) since we want to keep the model’s
physical local gauge invariance in the pure fermion sector of the theory:

ψ(x) → ψ(x)exp(igΩ(x)),
ψ̄(x) → ψ̄(x)exp(−igΩ(x)), (18.23)

Aμ(x) → Aμ(x).
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Note that this local Abelian gauge invariance in the fermionic parametrization Eq.
(18.17) is a consequence of the current conservation Eq. (18.20) at the quantum level of the
generating functional Eq. (18.21), and differs from the usual local gauge invariance of the
gauge models involving the shift Aμ → Aμ+ g∂μΩ. The local invariance Eq. (18.23) is a
consequence of the following path integral identity:

∫
DF [ψ(x)eigΩ(x)]DF [ψ̄(x)e−igΩ(x)]

× exp

{
−

∫
d3L(ψ(x)eigΩ(x), ψ̄(x)e−igΩ(x))

}

=
∫

DF [ψ(x)]DF [ψ̄(x)]exp

{
−

∫
d3xL(ψ(x), ψ̄(x))

}

× exp

[
−i

∫
d3Ω(x)(∂μ(ψ̄γμψ))(x)

]
. (18.24)

In this quantum field path-integral framework, the infrared Polyakov’s Fermi-Bose
transmutation (3) may be understood as the large fermion mass limit of the otherwise trivial
3D Abelian quantum field Thirring model (Chapter 4).

Explicitly, we first introduce an ultra-violet cutoff in Eq. (18.22) and integrate out the
Euclidean Fermi fields. Let us, thus consider the effective path integral

Z[η, η̄] =
1

Z(0,0)
×

∫
DF [Aμ(x)]

× exp

(
−1

2

∫
d3xA2

μ(x)
)
×δ(F)[(∂μAμ)]

×det[iγ∂+ gγA + m]

× exp

{
+

1
2

∫
d3xd3y(η̄(x)(iγ∂+ gγA + m)−1(x,y)η(y)]

}
. (18.25)

The fermion vacuum loops associated with the fermion functional determinant may
be easily evaluated in the limit of large mass by using the proper-time definition for this
functional determinant (see App. A):

logdet(iγ∂+ gγA + m) = +
1
2
× lim

ε→0+

∫ ∞

ε

dt
t
×Tr(F)[exp(−t[iγ∂+ gηA + m]2)]. (18.26)

where Tr(F) denote the functional trace.
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We thus have the following result for the family of interpolating Dirac operator iγ∂+
sgγA + m(0 ≤ s ≤ 1):

d
ds

(log det[iγ∂+ sgγA + m])

× lim
ε→0+

∫ ∞

ε
dt e−tm2

Tr(F){(gγA)(iγ∂+ sgγA−M)

× exp(−t[iγ∂+ sgγA + m]2)} (18.27)

By taking the limit of large fermion mass as in Ref. 6 and App. A, we get the result
below, after integrating the interpolating parameter in the range 0 ≤ s ≤ 1,

log[det(iγ∂+ gγA + m)/det(iγ∂+ m)](ε)

=
g2m

(4π) 3
2

·
(

1
ε

)
·
∫

d3x

(
1
2

A2
μ(x)

)

−g2
√
π

2
m
|m|

∫
d3x(AμεμνρFνρ(A))(x)+ 0

(
1
m

)
. (18.28)

It is worth pointing out the existence (in principle) of an induced (cutoff dependent)
mass term for the auxiliary ector field (this auxiliary vector at the quantum level coincides
with the Noetherian U(1) global current: Aμ(x) = (ψ̄γμψ)(x).

Note that this mass term signals the dynamic breaking of the usual gauge invariance
in the pure fermionic sector of Eq. (18.25) which involves the gauge change Aμ(x) →
Aμ(x)+ g∂μΩ(x) as in 2D models (see Eq. (18.23)).

The physical consequence of this term is a formal renormalization of the bare gauge
field mass mR at one loop, as similar phenomenon happened in the Jacobian evaluation of
Eq. (18.4):

mR =
m
ε
· (18.29)

The second term in the right-hand side of Eq. (18.28) is the Chern-Simons Lagrangian.
By substituting Eqs. (18.28) and (18.29) in Eq. (18.25) we get the result with fermion loops
integrated out at large mass,
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Z[η, η̄] ∼ 1
Z(0,0)

×
∫

DF [Aμ(x)]× exp

{
−1

2

(
1− g2mR

(4π) 3
2

)
·
∫

d3xA2
μ(x)

}

× exp

{
−g2√π

2

∫
d3x(AμεμνρFγρ(A))(x)

}
×δ(F)[(∂μAμ)]

× exp

{
+

1
2

∫
d3xd3yη̄(x)(iγ∂+ gγA + m)−1(x,y)η(y)

}
. (18.30)

Following closely Ref. 3 now we analyze the large bare m limit of the external fermion
sources by considering the Feynman path integral representation for the Feynman-Green
function of the Dirac operator in the presence of Aμ(x):

(iγ∂+ gγA + m)−1
αβ (x,g) =

∫ ∞

0
dt e−mt ×

{∫
Xμ(0)=xμ

Xμ(t)=yμ
DF [Xμ(σ)]

×Φαβ(x,y) · exp

(
ig

∫ t

0
dσAμ(X(σ))Ẋμ(σ)

)}
, (18.31)

where the sping-factor is explicitly given by

Φαβ(x,y) =
∫

DF [πμ(σ)]exp

(
i
∫ t

0
dσ(πμ(σ) · Ẋμ(σ))

)

×P

{
exp i

∫ t

0
dσ(γμ ·πμ(σ))

}
. (18.32)

Here P means the path order of the 3D γμ matrices along Feynman trajectory Xμ(σ) ·(0≤
σ≤ t).

In the limit of large m, only the classical straight-line trajectory entering the path integral
leads to Eqs. (18.31) ande (18.32), producing the result

(iγ∂+ gγR + m)−1
αβ (x,y) ∼ (U (1)

α U (2)
β )exp

(
iy
∫ y

x
Aμ(x)dXμ

)
, (18.33)

where U (1),(2)
α are the usual Euclidean spinorial bases associated with the free massive

fermion fields {ψ̄(x),ψα(x)}.

By grouping Eqs. (18.33) and (18.34), we finally obtain our Polyakov’s infrared bosonic
theory for the 3D Thirring model:
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Z[η, η̄,(m → ∞)] =
∫

DF [Aμ(x)]exp

{
−1

2

(
1− g2mR

(4π) 3
2

·
∫

d3xA2
μ(x)

)}

× exp

{
−g2√π

2
m
|m|

∫
d3x(AμεμνρFνρ(A)(x)

}

×δ(F)[(∂μAμ)]exp

{
+

1
2

∫
d3xd3y(η̄α(x)ηβ(y)) · (Uα

1 U
β
2)

× exp

(
ig

∫ y

x
Aμ(X)Ẋμ

)}
. (18.34)

Now it is a straightforward consequence of Eq. (18.34) the infrared (large mass)
bosonization formulae of 3D Abelian Thirring model analogous to those associated to 2D
Thirring model

ψ1
α(x)

m→∞∼ ψ1
α, free(x)× exp

(
ig

∫ x

−∞
Aμ(X) ·Xμ

)
,

ψ2
α(x)

m→∞∼ ψ2
α, free(x)× exp

(
ig

∫ x

−∞
Aμ(X) ·Xμ

)
,

(18.35)

Here Aμ(x) is the quantum field associated with the “massive” Chern-Simon theory

L(Aμ) =
1
2

(
1− g2mR

(4π) 3
2

)
·
∫

d3dxA2
μ(x)

− g2√π
2

m
|m| ·

∫
d3x(AμεμνρFνρ(A))(x). (18.36)

Equations (28) and (36) are our main result in this section about approximate bosoniza-
tion for the Thirring model in the large mass limit.

In the important case for high-Tc superconductivity, modeled by the Thirring model
coupled to an external divergence free current

W (ψ̄,ψ,Jμ) = L(ψ,ψ)+
∫

d3xJμ(x)(ψ̄γμψ)(x), (18.37)

we can proceed as exposed above and obtain the associated Polyakov’s full bosonized gen-
erating functional for correlation function involving vectorial currents from the 3D-Thirring
model Eq. (18.17):
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Weff(Jμ) =
∫

DF [Aμ(x)] ·δ(F)[(∂μAμ)]

× exp

{
−1

2

∫
d3x(Aμ− Jμ)2(x)

}

× exp

{
− 1

2

(
1− g2mR

(4π) 3
2

)∫
d3x(A2

μ(x))

− g2√π
2

m
|m| ·

∫
d2x(AμεμνρFνρ(A))(x)

}
. (18.38)

Finally, we point out that we have neglected in Eq. (18.25) the zero modes of the 3D
Dirac operator which will be left to our readers.

18.5. Effective Four-Dimensional Bosonic Actions – Some
Comments

The effective bosonic action obtained in Secs. 2 and 3 are higher-order four-dimensional
bosonic field theories, and this should be considered only as an approximate and effective
action as it shares all the drawbacks and usefulness of all effective action proposed in the
literature) ([9], [12]). However, there are some hints that theories of the kind obtained in
this chapter may be given a meaning by nonperturbative procedures and this point may be
advantageous for implementing realizable approximate calculations useful for realistic 4D
field theories.

In three dimensions, we disagree with similar studies presented in Ref. 11, since in this
reference it used the Deser-Jackiw interpolating field to rewrite the effective action in terms
of Maxwell-Chern-Simon field theory, which does not hold true when one is analyzing
observables and leads to a cumbersome theory in the non-Abelian case (a theory in the
strong limit g2

phy →∞). Finally, the use of Wilson loops of Ref. 11 is unclear since the non-

Abelian Stokes theorem was proved only in R2, namely for Rn (n > 2) it was not proved
rigorously that

Tr,P

(
exp

∮
e
·Aμ · Ẋμ

)
= TrS

[(
exp

∫
Σ

dΣμν Trt

(
δ

δΣμν
·W [C̃SWt ]

))]
, (18.39)

where C̃S
t are closed trajectories in the surface Σ (see Ref. 13 for the notation) in R3. (Unless

for those planar surfaces homotopical to its boundary).

As an alternative for the study of Ref. 11 one should writes the loop wave equation
for the Wilson Loops. Eq. (18.39), and solve them by means of effective theory of Chern-
Simons string as exposed in previous Chapter 13.
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We start this final part of our chapter by considering the fermionic determinant of the
self-adjoint Dirac operator in L2(R3):

logdet(D(A)+ m) = Seff(S,s) = −1
2

lim
ε→0+

∫ ∞

ε

dt
t

Tr(F)(e[−t( �DS(A)+m)]2), (18.40)

where we have introduced a one-parameter family of Dirac operators interpolating the free
operator and that in the presence of an external gauge field

� Ds(A)+ m = iγμ(∂μ− isgAμ)+ m. (18.41)

We have regulated the fermion determinant by the proper-time method. At this point
we remark that Seff(A;s) satisfies the differential

d
ds

Sself(A;s) = lim
ε→0+

∫ ∞

ε
dt Tr(F)[(g(γμAμ) · (� D(A)+ m)

× exp(−t(� D2
S(A)+ m2 + 2m � DS(A)))]. (18.42)

Since we are interested in the large fermion mass limit m → ∞, we neglect the term
exp(−2m �D(A)) ∼ 1 inside the trace operation of Eq. (18.42). We have thus, at large m,

lim
m→∞

d
ds

Seff(A,s) ∼ lim
ε→0+

∫ ∞

ε
dt e−tm2

Tr(F)[+g(A)(�D(A)+ m) · exp(− � D2(A))]

∼− g

(4π) 3
2

∞

∑
�=0

(∫ ∞

0
dt e−tm2 · t�− 3

2

)

×
∫

d3xTr(F)((� γA)[� D(A)+ m]×b�(x,r,A,s)), (18.43)

where b�(x,x,A,s) are the Seeley-De Witt coefficients associated with the asymptotic short-
time t → 0+ of Eq. (18.43) since we are considering the asymptotic limit of m → ∞ by
means of the Laplace method for handling saddle-point of integral [6]. Explicit expressions
for these coefficients are easily calculated [5]. In the large fermion mass limit, only the first
2 Seeley-De Witt coefficients will be needed in R3, namely

b0(x,x,A,s) = 1iden (18.44)
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and

b1(x,x,A,s) = −gs

2
[γμ,γν]mFμν(A)+ g2A2

μ+ ig(∂μ,Aμ). (18.45)

After substituting Eqs. (18.44) and (18.45) into Eq. (18.43) and solving the s-
differential equation we get Eq. (18.28) as displayed in the text.

We point out that a similar procedure may be used to evaluate the fermion propaga-
tor in the large mass limit. However, this evaluation is of no help in deducing infrared
bosonization formulae of the kind of Eq. (18.25).

Finally we remark that the same procedure, now involving the Seeley-De Witt coeffi-
cient b2(x,x,A,s), was used to deduce Eq. (18.13).

18.6. The Triviality of the Abelian-Thirring Quantum Field
Model

One of the most interesting problems in D-dimensional Euclidean field theories is the ap-
pearance of a critical dimensionality above which the associated field theory becomes trivial
([15], [16]).

Our aim in this section is to present the Parisi geometrical analysis [17] generalized to
the fermionic case by analyzing the critical space-time dimension for the vectorial four-
fermion interaction (the Abelain-Thirring model).

Let us start our analysis by considering the Thirring model Euclidean partition func-
tional in R

D with the fermionic fields integrated out

Z(g) =
∫

DAμ exp

[
−1

2

∫
dxD A2

μ(x)
]

det � D(Aμ), (18.46)

where �D(Aμ ≡ γμ(∂μ+ gAμ) is the Euclidean Dirac operator in the presence of the external
auxiliary vectorial field and g is the bare theory’s coupling constant.

We aim to show that Z[g] = Z[g = 0] when D > 2 since this result will lead, formally at
least, to triviality of Eq. (18.46).

By using the fermionic loop representation for det �D(Aμ), as displayed in Chapter 8, we
can write this funcitonal determinant as a Grassmannian path integral:
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det �D(Aμ) = ∑
[χF
μ (ξ,θ)]

exp

(∫ 1

0
dξ

∫ 1

0
dθAμ[χF

μ (ξ,θ)][DχF
μ (ξ,θ)]

)

= ∑
[χF
μ (ξ,θ)]

∫
dD xAμ(x)JF

μ [χF
μ (ξ,θ)], (18.47)

where the ∑[χF
μ (ξ,θ)] is defined in Ref. 18 and JF

μ [χF
μ (ξ,θ)] is the current associated with the

Grassmannian loop χF
μ (ξ,θ) = χμ(ξ) + iθψμ(ξ) (θ2 = 0;0 ≤ ξ ≤ 1). Through a g-power

series expansion and integrating the Gaussian Aμ(x) functional integral we get, for instance,

for its first coefficient
dZ[h]

dg

∣∣∣∣
g=0

= Z1 the following expression:

Z1 = ∑
[χF
μ (ξ,θ)]

exp
1
2

∫ 1

0
dξdθ

∫ 1

0
dξ′ dθ′ DχF

μ (ξ,θ)δ(D)

× (χF
μ (ξ,θ)−χF

μ (ξ′,θ′))(DχF(ξ′,θ′). (18.48)

We can understand Eq. (18.48) as the partition functional associated with a gas of closed
polymers [χF

μ (ξ,θ)] possessing a Grassmannian structure and interacting among themselves

by a self-avoiding interaction δ(D)[χF
μ (ξ,θ)−χμ(ξ′,θ′)] (see Chapter 9).

In order to argue for the triviality of the fermionic polymer gas we follow Parisi [17]
by assigning a Hausdorff dimension dH for the “set” [χF

μ (ξ,θ).θ2 = 0;0 ≤ ξ ≤ 1]. A nat-
ural Hausdorff dimension for this set is given by the exponent of the fermion free-field
propagator in the momentum space which is 1, so dH [χF

μ (ξ,θ)] = 1.

By using now the geometrical intersection rule dH(A∩B) = dH(A)+ dH(B)−D [17]
with D being the space-time dimensionality, we obtain that the support set of the self-
avoiding interaction [δ(D)(χμ(ξ,θ)− χμ(ξ′,θ′))] has a negative Hausdorff dimension for
D > 2, which means that this set is empty.

As a consequence we have the analytical relation

∫ 1

0
dξdθ

∫ 1

0
dξ′dθ′DFχμ(ξ,θ)δ(D)(χF

μ (ξ,θ)−χF
μ (ξ′,θ′))DχF

μ (ξ′,θ′) = 0, (18.49)

which indicates, in turn, the triviality of the theory, since this argument can be straightfor-
wardly applied for any arbitrary coeficient Zn , leading to the result Zn = 0.

Finally we remark that by reformulating the Thirring theory in the loop space, we can
in principle define the theory for any general manifold m as space-time by including the
constraint [XF

μ (ξ,θ)] ⊂ m in the path integral Eq. (18.46). Note that m may be fluctuating
[17].
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Work in this direction is left to our readers.

Appendix A

Let us write a formal path integral for Dirac particles by using only bosonic trajectories
Xμ(σ), instead of the supersymmetric trajectories of Refs. 8-18.

By using the usual plane wave Euclidean spinor basis

|x,α〉 = eipxU (1)
α (p), 〈 y,β| = U (2)

β (p)eipy, (18.A.1)

where the spinors {U (1)
α (p),U (2)

β (p)} satisfy the free Dirac equation and the completeness
relation

U (1)
α (p) ·U (2)

β (p) = δαβ , (18.A.2)

one can write the fermion propagator in the presence of an external field in the following
form (see Ref. 3):

Sαβ(x− y) =
∫ ∞

0
dt 〈x,α|exp(−T (−iγ∂+ gγA + m))| y,β〉

×
∫ ∞

0
dT e−mT

∫
Xμ(0)=x
Xμ(T )=y

DF [Xμ(σ)]
∫

[pμ(σ)]

× exp

(
i
∫ T

0
dσ pμ(σ) · Ẋμ(σ)

)

×PDirac

{
exp

(
i
∫ T

0
γμ(pμ(σ)+ gAμ(x(σ))dσ

)}
. (18.A.3)

where PDirac means the order along the bosonic trajectory of the Dirac indexes coming
from the γμ-exponential involving the external gauge fields Aμ(X). Note that the pμ(σ) path
integral is free at the end points.

Let us now consider the formal variable change in the path integral in Eq. (18.A.3)

pμ(σ)+ gAμ(X(σ)) = πμ(σ). (18.A.4)

As a consequence of Eq. (18.A.5), we get the path integral fermion propagator formal
expression used in Eq. (18.33) of the text.
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Sαβ(x− y) =
∫ ∞

0
dT e−T

∫
Xμ(0)=x
Xμ(T )=y

DF [Xμ(σ)]

×
∫

DF [piμ(σ)]× exp

(
i
∫ T

0
dσπμ(σ) · Ẋμ(σ)

)

× exp

(
−ig

∫ T

0
dσAμ(X(σ))Ẋμ(σ)

)

×PDirac

{
exp i

∫ T

0
dσ(γμπμ)(σ)

}
. (18.A.5)
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Chapter 19

Domains of Bosonic Functional
Integrals and Some Applications to
the Mathematical Physics of Path
Integrals and String Theory

19.1. Introduction

Since the result of R.P. Feynman on representing the initial value solution of Schrodinger
Equation by means of an analytically time continued integration on a infinite - dimensional
space of functions, the subject of Euclidean Functional Integrals representations for Quan-
tum Systems has became the mathematical - operational framework to analyze Quantum
Phenomena and stochastic systems as showed in the previous decades of research on The-
oretical Physics ([1]–[3]).

One of the most important open problem in the mathematical theory of Euclidean Func-
tional Integrals is that related to implementation of sound mathematical approximations to
these Infinite-Dimensional Integrals by means of Finite-Dimensional approximations out-
side of the always used [computer oriented] Space-Time Lattice approximations (see [2],
[3] - chap. 9). As a first step to tackle upon the above cited problem it will be needed to
characterize mathematically the Functional Domain where these Functional Integrals are
defined.

The purpose of this chapter is to present in section 19.2, the formulation of Euclidean
Quantum Field theories as Functional Fourier Transforms by means of the Bochner-Martin-
Kolmogorov theorem for Topological Vector Spaces ([4], [5] - theorem 4.35) and suitable
to define and analyze rigorously Functional Integrals by means of the well-known Minlos
theorem ([5] - theorem 4.312 and [6] - part 2) and presented in full details in section 3.

In section 4, we present news results on the difficult problem of defining rigorously
infinite-dimensional quantum field path integrals in general space times Ω ⊂ Rν (ν =
2,4, . . . ) by means of the analytical regularization scheme.
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19.2. The Euclidean Schwinger Generating Functional
as a Functional Fourier Transform

The basic object in a scalar Euclidean Quantum Field Theory in RD is the Schwinger Gen-
erating Functional (see refs. [1], [3]).

Z[ j(x)] = 〈ΩVAC|exp

(
i
∫

dDx j(�x, it)φ(m)(�x, it)
)
|ΩVAC〉 (19.1)

where φ(m)(�x, it) is the supposed Self-Adjoint Minkowski Quantum Field analytically con-
tinued to imaginary time and j(x) = j(�x, it) is a set of functions belonging to a given Topo-
logical Vector Space of functions denoted by E which topology is not specified yet and
will be called the Schwinger Classical field source space. It is important to remark that
{φm(�x, it)} is a commuting Algebra of Self-Adjoints operators as Symanzik has pointed out
([7]).

In order to write eq.(19.1) as an Integral over the space Ealg of all linear functionals
on the Schwinger Source Space E (the called Algebraic Dual os E), we take the following
procedure, different from the usual abstract approach (as given - for instance - in the proof of
th IV - 11 - [2]), by making the hypothesis that the restriction of the Schwinger Generating
Functional eq.(19.1) to any finite-dimensional RN of E is the Fourier Transform of a positive
continuous function, namely.

Z

(
N

∑
α=1

Cα j̄α(x)

)
=

∫
RN

exp

(
i

N

∑
α=1

CαPα

)
g̃(P1, . . . ,PN)dP1, . . . ,dPN (19.2)

Here {�jα(x)}α=1,··· ,N is a fixed vectorial base of the given finite-dimensional sub-space
(isomorphic to RN) of E .

As a consequence of the above made hypothesis (based physically on the Renormaliz-
ability and Unitary of the associated Quantum Field Theory), one can apply the Bochner
- Martin - Kolmogorov Theorem ([5] - theorem 4.35) to write eq.(19.1) as a Functional
Fourier Transform on the Space Ealg (see appendix A)

Z[ j(x)] =
∫

Ealg

exp(ih( j(x))dμ(h) (19.3)

where dμ(h) is the Kolmogorov cylindrical measure on Ealg = Πλ∈A(Rλ) with A denoting
the index set of the fixed Hamel Vectorial Basis used in eq.(19.2) and h( j(x)) is the action
of the given Linear (algebric) Functional (belonging to Ealg) on the element j(x) ∈ E .

At this point, we relate the mathematically non-rigorous physicist point of view to
the Kolmogorov measure dμ(h) eq.(19.3) over the Algebraic Linear Functions on the
Schwinger Source Space. It is formally given by the famous Feynman formulae when
one identifies the action of h on E by means of an “integral” average

h( j) =
∫

RD

dxD j(x)h(x) (19.4)
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Formally we have the equation

dμ(h) =

(
∏

x∈RD

dh(x)

)
exp{−S(h(x))} (19.5)

where S is the classical action of the Classical Field Theory under quantization, but with the
necessary coupling constant renormalizations need to make the associated Quantum Field
Theory well-defined.

Let us outline these proposed steps on a λφ4 - Field Theory on R4.
At first we will introduce the massive free field theory generating functional directly in

the infinite volume space R4.

Z[ j(x)] = exp

{
−1

2

∫
d4xd4x′ j(x)((−Δ)α + m2)−1(x,x′) j(x′)

}
(19.6)

where the Free Field Propagator is given by

((−Δ)α + m2)−1(x,x′) =
∫

d4k
eik(x−x′)

k2α+ m2 (19.7)

with α a regularizing parameter with α> 1.
As the source space, we will consider the vector space of all real sequences on

Πλ∈(−∞,∞)(R)λ, but with only a finite number of non-zero components. Let us define the
following family of finite-dimensional Positive Linear Functionals {LΛ f } on the Functional
Space C( ∏

λ∈(−∞,∞)
Rλ;R)

LΛ f

(
e(Pλs1

, · · ·PλsN
)
)

=
∫

( ∏
λ∈Λ f

Rλ)

g(Pλs1
, . . . ,PλsN

)exp

{
−1

2 ∑
λ∈Λ f

(λ2α + m2)(Pλ)2

}

(
∏
λ∈Λ f

d(Pλ
√
π(λ2α+ m2))

)
(19.8)

Here Λ f = {λs1 , · · · ,λsN} is an ordered sequence of real number of the real line which
is the index set of the Hamel Basis of the Algebraic Dual of the proposed source space.

Note that we have the generalized eingenproblem expansion

((−Δ)α + m2)eiλx = (λ2α + m2)eiλx (19.9)

By the Stone-Weirstrass Theorem or the Kolmogoroff Theorem applied to the fam-
ily of finite dimensional measure in eq.(19.8), there is a unique extension measure
dμ({Pλ}λ∈(−∞,∞)) to the space Πλ∈(−∞,∞)R

λ = Ealg and representing the Infinite-volume
Generating Functional on our chosen source space (the usual Riesz-Markov theorem ap-
plied to the linear functional L = lim

{Λ f }
sup LΛ f , on C(Πλ∈(−∞,∞)R

λ,R) leads to this extension
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measure ) ([10]).

Z[ j(x)] = Z[{ jλ}λ∈Λ f ] =
∫

∏
λ∈(−∞,∞)

Rλ

dμ(0)·(α)({Pλ}λ∈(−∞,∞))

×exp

(
i ∑
λ∈(−∞,∞)

jλPλ

)
= exp

{
−1

2 ∑
λ∈Λ f

( jλ)2

λ2α+ m2

}
(19.10)

At this point it is very important remark that the generating functional eq.(19.10) has
continuous natural extension to any test space ( S(RN),D(RN), etc) which contains the con-
tinuous functions of compact support as a dense sub-space.

At this point we consider the following Quantum Field interaction functional which
is a measurable functional in relation to the above constructed Kolmogoroff measure
dμ(0)·(α)({Pλ}λ∈(−∞,∞)) for α non integer in the original field variable φ(x)

V (α)(φ) = λRφ4 +
1
2
(Z(α)

φ (λR,M)−1)φ((−Δ)α)φ− 1
2
[(m2Z(α)

φ (λR,m)−1

− (δm2)(α)(λR)]φ2 − [Z(α)
φ (λR,m)(δ(α)λ)(λR,m)]φ4 (19.11)

Here the renormalization constants are given in the usual analytical finite-part regular-
ization form for a λφ4 - Field Theory. It still a open problem in the mathematical-physics of
quantum fields to prove the integrability in some Distributional space of the cut-off remov-
ing α→ 1 limit of the interaction lagrangean exp(−V (α)(φ)) (see section 19.4 for a analysis
of this cut off removing on space of functions).

19.3. The Support of Functional Measures - The Minlos
Theorem

Let us now analyze the measure support of Quantum Field Theories generating functional
eq.(19.3).

For higher dimensional space-time, the only available result in this direction is the case
that we have a Hilbert structure on E([4], [5], [6]).

At this point of our paper, we introduce some definitions. Let ϕ : Z
+ → R be an in-

creasing fixed function (including the case ϕ(∞) = ∞). Let E be denoted by H and HZ

be the sub-space of Halg = (Πλ∈A=[0,1]R
λ) (with A being the index set of a Hamel basis of

H), formed by all sequences {xλ}λ∈A ∈ Halg with coordinates different from zero at most a
countable number

HZ = {(xλ)λ∈A|xλ �= 0 for λ ∈ {λμ}μ∈Z} (19.12)

Consider the following weighted sub-set of Halg

HZ
(e) = {{xλ}λ∈A ∈ HZ}

and

lim
N→∞

{
1

ϕ(N)

N

∑
n=1

(xλσ(μ))
2

}
< ∞}
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for any σ : N → N, a permutation of the natural numbers.
We now state our generalization of the Minlos Theorem.

Theorem 3. Let T be an operator, with Domain D(T ) ⊂ H , and T ;D(T )→ H such that for
any finite-dimensional space HN ⊂ H , the sum is bounded by the function ϕ(N)(

N

∑
(i, j)=1

〈Tei,Te j〉(0)

)
≤ ϕ(N) (19.13)

Here 〈,〉(0) is the inner product of H and {ep}1≤p≤N is a vectorial basis of the sub-space
HN with dimension N.

Suppose that Z[ j(x)] is a continuous function an D(T ) = (D(T ),〈,〉(1)) where 〈,〉(1) is
a new inner product defined by the operator T (〈 j, j〉(1) = 〈T j,T j〉(0)) we have, thus, that
the support of the cylindrical measure eq.(19.3) is the measurable set HZ

e .

Proof: Following closely references ([1]) - Theorem 2.2., [4]) let us consider the following
representation for the characteristic function of the measurable set HZ

e ⊂ Halg

·XHZ
e
({xλ}λ∈A) =

lim
α→0

lim
N→∞

exp

{
− 1α

2ϕ(N)

N

∑
�=1

x2
λl

}

= 1 if lim
N→∞

1
ϕ(N)

N

∑
�=1

x2
λl

< ∞ (19.14)

0 otherwise

Now its measure satisfies the following inequality∫
Halg

dμ(h) = μ(Halg) = 1 > μ(HZ
e ) (19.15)

But

μ(HZ
e ) = lim

α→0
lim

N→∞

∫
Halg

dμ(h)exp−
{

α
2ϕ(N)

N

∑
�=1

x2
λ�

}
=

lim
α→0

lim
N→∞

{
1

( 2πα
ϕ(N) )

N/2

}∫
RN

d j1, · · ·d jN (19.16)

exp

(
−1

2

(
ϕ(N)
α

) N

∑
�=1

j2
�

)
Z̃( j1, · · · ,JN)

where

Z̃( j1, · · · , jN) =
∫
πRλ

λ∈A

dμ({xλ})exp

(
i

N

∑
�=1

xλ�
j�

)
=

∫
Halg

dμ(h)exp

(
i

N

∑
�=1

xλ�
j�

)
(19.17)
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Now due to the continuity and positivity of Z[ j] in D(T ); we have that for any ε > 0 →
∃δ such that the inequality below is true since we have that: Z( j1, · · · jN)≥ 1−ε− 2

δ2 ( j, j)(1)

1(
2πα
ϕ(N)

)N/2

∫
RN

d j1 · · ·d jN exp

(
−1

2
ϕ(N)
α

N

∑
�=1

j2
�

)
Z̃( j1 · · · , jN)

≥ 1− ε− 2
δ2

⎧⎪⎨
⎪⎩

N

∑
(m,n)=1

1(
2πα
ϕ(N)

)N/2

∫
RN

d j1 · · ·d jN exp

(
−1

2

(
ϕ(N)
α

) N

∑
�=1

j2
�

)
jm jn < em,en >(1)

⎫⎪⎬
⎪⎭ (19.18)

= 1− ε− 2
δ2

{(
α

ϕ(N)

) N

∑
(m,n)=1

δmn < Ten,Tem >(0)

}

≥ 1− ε− 2
δ2

(
α

ϕ(N)

)
ϕ(N) ≥ 1− ε− 2

δ2 α

By substituting eq.(19.18) into eq.(19.15), we get the result

1 ≥ μ(HZ
e ) ≥ 1− ε− 2

δ2

(
lim
α→0

α
)

= 1− ε (19.19)

Since ε was arbitrary we have the validity of our theorem.
As a consequence of this Theorem in the case of ϕ(N) being bounded (so T T ∗ is an

operator of Trace Class), we have that HZ
e = H which is the usual Topological Dual of H .

At this point, a simple proof may be given to the usual Minlos Theorem on Schwartz
Spaces ([5], [6],).

Let us consider S(RD) represented as the countable normed spaces of sequences ([8])

S(RD) =
∞⋂

m=0

�2
m (19.20)

where

�2
m = {(xn)n∈Z,xn ∈ R

∣∣∣ N

∑
n=0

(xn)2nm < ∞} (19.21)

The Topological Dual is given by the nuclear structure sum ([8])

S′(RD) =
∞⋃

n=0

�2
−n =

∞⋃
n=0

(�2
n)

∗ (19.22)

We, thus, consider E = S(RD) in eq.(19.3) and Z[ j(x)] = Z[{ jn}n∈Z] as a continuous

on
∞⋂
n

�n. Since Z[{ jn}n∈Z] ∈C(
∞⋂

n=0
�2

n,R) we have that for any fixed integer p,Z[{ jn}n∈Z] is

continuous on the Hilbert Space �2
p which, by its turn, may be considered as the Domain of

the following operator.

Tp : �2
pc�0 → �0

{ jn}→ {np/2 jn} (19.23)
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It is straightforward to have the estimate

∣∣∣ N

∑
(m,n)=1

〈Tpem , Tpen〉(0)
∣∣∣≤ N(Bp) (19.24)

for some positive integer B and {ei} being the canonical orthonormal basis of l2
o . By an

application of our theorem for each fixed p; we get that the support of measure is given by
the union of weighted spaces

supp dμ(h) =
∞⋃

p=0

(�2
p)

∗ =
∞⋃

p=0

�2
−p = S′(RD) (19.25)

At this point we can suggest, without a proof a straightforward (non topological) gen-
eralization of the Minlos Theorem.

Theorem 4. Let {Tβ}β∈C be a family of operators satisfying the hypothesis of Theorem

3. Let us consider the Locally Convex space
⋃
β∈C

Dom(Tβ) (supposed non-empty) with the

family of norms ‖ ψ ‖β=< Tβψ,Tβψ>1/2

If the Functional Fourier Transform is continuous on this Locally Convex Space,
the support of the Kolmogoroff measure eq.(19.3) is given by the following sub-set of
[
⋃
β∈C

Dom(Tβ)]alg, namely

suppdμ(h) =
⋃
β∈C

H2
ϕβ (19.26)

where ϕβ are the functions given by Theorem 3. This general theorem will not be applied
in what follows.

Let us now proceed to apply the above displayed results by considering the
Schwinger Generating Functionals for two-dimensional Euclidean Quantum Eletrodynam-
ics in Bosonized Parametrization ([9])

Z[ j(x)] = exp

⎧⎨
⎩−1

2

∫
R2

d2x
∫
R2

d2y j(x)((−Δ)2 +
e2

π
(−Δ))−1(x,y) j(y)

⎫⎬
⎭ (19.27)

where in eq.(19.27), the electromagnetic field has the decomposition in Landau Gauge

Aμ(x) = (εμν∂νφ)(x) (19.28)

and j(x) is, thus, the Schwinger Source for the φ(x) field taken as a basic dynamical variable
([9]).

Since eq.(19.27) is continuous in L2(R2) with the inner product defined by the trace
class operator ((−Δ)2 + e2

π (−Δ))−1, we conclude on basis of theorem 3 that the associated
Kolmogoroff measure in eq.(19.3) has its support in L2(R2) with the usual inner product.
As a consequence, the Quantum Observable Algebra will be given by the Functional Space
L1(L2(R2),dμ(h)) and usual orthonormal Finite - Dimensional approximations in Hilbert
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Spaces may be used safely i.e if one considers the basis expansion h(x) =
∞
∑

n=1
hnen(x) with

en(x) denoting the eigenfunctions of the operator in eq.(19.27) we get the result

∞⋃
n=1

L1(RN ,dμ(h1, · · · ,hN)) = L1(L2(R2),dμ(h)) (19.29)

It is worth mentioning that if one uses the Gauge Vectorial Field parametrization for the
(Q.E.D)2 - Schwinger Functional

Z[ j1(x), j2(x)] = exp

⎧⎨
⎩−1

2

∫
R2

d2x
∫
R2

d2y ji(x)
(
−Δ+

e2

π

)−1

(x,y)δil jl(x)

⎫⎬
⎭ (19.30)

the associated measure support will now be the Schwartz Space S′(R2) since the op-
erator (−Δ+ e2

π )−1 is an application of S(R2) to S′(R2). As a consequence it will be very
cumbersome to use Hilbert Finite Dimensional approximations ([8]) as in eq.(19.29).

An alternative to approximate tempered distributions is the use of its Hermite expansion
in S′(R) distributional space associated to the eigenfunctions of the Harmonic-oscillator
V (x) ∈ L∞(R)

⋃
L2(R) potential pertubation (see ref. [3] for details with V (x) ≡ 0).

(− d2

dx2 + x2 +V (x))Hn(x) = λnHn(x) (19.31)

Another important class of Bosonic Functionals Integrals are those associated with an
Elliptic Positive Self-Adjoint Operator A−1 on L2(Ω) with suitable Boundary conditions.
Here Ω denotes a D-dimensional compact manifold of RD with volume element dν(x).

Z[ j(x)] = exp

⎧⎨
⎩−1

2

∫
Ω

dν(x)
∫
Ω

dν(y) j(x)A+1(x,y) j(y)

⎫⎬
⎭ (19.32)

If A is an operator of trace class on (L2(Ω),dν) we have, thus, the validity of the usual
eigenvalue Functional Representation

Z[{ jn}μ∈Z] =
∫ (

∞

∏
�=1

d(c�

√
λ�)

)
exp

(
−1

2

∞

∑
�=1

λ�c
2
�

)
X�2({cn}n∈Z)exp(i

∞

∑
�=1

c� j�)

with the spectral set

A−1σ� = λ�σ�

j� = 〈 j,σ�〉 (19.33)

and the characteristic function set

X�2({cn}n∈Z) =

⎧⎨
⎩1 if

∞
∑

n=0
c2

n < ∞

0 otherwise
(19.34)
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It is instructive point out the usual Hermite functional basis (see 5.4 - [5]) are a complete
set in L2(Ealg,dμ(h)), only if the Gaussian Kolmogoroff measure dμ(h) is of the class above
studied

A criticism to the usual framework to construct Euclidean Field Theories is that is very
cumbersome to analyze the infinite volume limit from the Schwinger Generating Functional
defined originally on Compact Space Times. In two dimensions the use of the result that
the massive Scalar Field Theory Generating Functional

exp

⎧⎨
⎩−1

2

∫
R2

d2x
∫
R2

d2y j(x)(−Δ+ m2)−1(x,y) j(y)

⎫⎬
⎭ (19.35)

with j(x) ∈ S(R2); is given by the limit of Finite Volume Dirichlet Field Theories

lim
L→∞
T→∞

exp
{
− 1

2

∫ L

−L
dx0

∫ T

−T
dx1

∫ L

−L
dy0

∫ T

−T
dy1 j(x0,x1)(−ΔD + m2)−1(x1,y1,x0,y0) j(y0,y1) (19.36)

may be considered, in our opinion, as the similar claim made that is possible from a mathe-
matical point of view to deduce the Fourier Transforms from Fourier Series, a very, difficult
mathematical task (see appendix B).

Let us comment on the functional integral associated to Feynman propagation of fields
configurations used in geometrodynamical theories in the scalar case

G[βin(x);βout(x),T ]( j) =
∫
φ(x,0)=βin(x)
φ(x,T )=βout(x)

exp

⎧⎨
⎩−1

2

T∫
0

dt

+∞∫
−∞

dνx

(
φ
(
− d2

dt2 + A

)
φ
)

(x, t)

⎫⎬
⎭

exp

⎛
⎝i

T∫
0

dt

+∞∫
−∞

dνx j(x)t)φ(x, t)

⎞
⎠ (19.37)

If we define the formal functional integral by means of the eigenfunctions of the self-
adjoint Elliptic operator A, namely:

φ(x, t) =∑
{k}

φk(t)ψk(x) (19.38)

where
Aψk(x) = (λk)2ψk(x) (19.39)

it is straightforward to see that eq.(19.36) is formally exactly evaluated in terms of an infinite
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product of usual Feynman Wiener - path measures

G[βin(x);βout(x),T ]( j) =

=∏
{k}

∫
ck(0)=φk(0)
ck(T )=φk(T )

DF [ck(t)]exp

{
−1

2

∫ T

0

(
ck

(
− d2

dt2 +λ2
k

)
ck

)
(t)dt exp

(
i
∫ T

0
dt jk(t)ck(t)

)}

=∏
{k}

{√
+

λk

sin(λkT )
exp

{
− λk

2sin(λkT )

[
(φ2

k(T )+φ2
k(0))cos(λkT )−2φk(0)φk(T )

}}

− 2φk(T )
λk

∫ T

0
dt jk(t)sin(λkt)− 2φk(0)

λk

∫ T

0
dt jk(t)sin(λk(T − t)){

− 2
(λk)2

∫ T

0
dt

∫ t

0
ds jk(t) jk(s)sin(λk(T − t))sin(λks)

]}
(19.40)

Unfortunately, our theorems do not aply in a straightforward way to infinite (continuum)
measure product of Wiener measures in eq.(19.40) to produce a sensible measure theory on
the functional space of the infinite product of Wiener trajectories {ck(t)} (Note that for each
x fixed, a sample field configuration φ(t,0) in eq.(19.36) is a Hölder continuous function,
result opposite to the usual functional integral representation for the Schwinger generating
functional eq.(19.1)- eq.(19.5)) where it does not make a mathematical sense to consider a
fixed point distribution φ(t,0) - see section 19.4 - eq.(19.74).

Let us call attention that still there is a formal definition of the above Feynman Path
propagator for fields eq.(19.37) which at large time T → +∞ gives formally the Quantum
Field Functional integral eq.(19.5) associated to the Schwinger Generating Functional.

We thus consider the functional domain for eq.(19.37) as composed of field configura-
tions which has a classical piece added with another fluctuating component to be function-
ally integrated out, namely

σ(x, t) = σCL(x, t)+σq(x, t) (19.41)

Here the classical field configuration problem (added with all zero modes of the free
theory) defined by the kinetic term £(

− d2

dt2 + £

)
σCL(x, t) = j(x, t) (19.42)

with
σCL(x,−T ) = β1(x);σCL(x,T ) = β2(x) (19.43)

namely

σCL(x, t) =
(
− d2

dt2 + £

)−1

j(x, t)+ ( all projection on zero modes of £) (19.44)

As a consequence of the decomposition eq.(19.41), the formal geometrical propagator
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with an external source below

G[β1(x),β2(x),T, [ j]]

=
∫
σ(x,−T )=β1(x)
σ(x,+T )=β2(x)

D[σ(x, t)]exp

(
−1

2

∫ T

−T
dtdνxσ(x, t)

(
− d2

dt2 + £

)
σ(x, t)

)

exp(i
∫ T

−T
dt

∫
dνx j(x, t)σ(x, t)) (19.45)

may be defined the following mathematically well defined Gaussian functional measure

exp

{
−1

2

∫ T

−T
dt

∫
dνx j(x, t)σCL(x, t)

}
×

∫
σq(x,−T )=0
σq(x,+T )=0

dσq(x, t)exp

{
−1

2

∫ T

−T
dt

∫
dνxσq(x, t)

(
− d2

dt2 + £

)
σq(x, t)

}
(19.46)

The above claim is a consequence of the result below∫
σq(x,−T )=0
σq(x,T )=0

D[σq(x, t)]exp

{
−1

2

∫ T

−T
dt

∫
dDxσq(x, t)

(
− d2

dt2 + £

)
σq(x, t)

}

= det
− 1

2
Dir

[
− d2

dt2 + £
]

(19.47)

where the sub-script Dirichlet on the functional determinant means that one must impose

formally the Dirichlet condition on the domain of the operator
(
− d2

dt2 + £
)

on D′(RD ×
[−T,T ]) (or L2(RD × [−T,T ] if £−1 belongs to trace class). Note that the operator £ in
eq.(19.46) does not have zero modes by the construction of eq.(19.41).

At this point, we remark that at the limit T → +∞ eq.(19.45) is exactly the Quantum
Field functional eq.(19.5) if one takes β1(x) = β2(x) = 0 (Note that the classical vacuum
limit T →∞ of Wiener measures is mathematically ill-defined (see theorem 5.1. of ref [1]).

It is a important point to remark that σCL(x, t) is a regular C∞([−T,T ]×Ω) solution of
the Elliptic problem eq.(19.42) and the fluctuating component σq(x, t) is a Schwartz distri-

bution in view of the Minlos - Dao Xing theorem 3, since the Elliptic operator − d2

dt2 + £ in
eq.(19.47) acts now on D′([−T,T ]×Ω) with range D([−T,T ]×Ω), which by its turn shows
the difference between this framework and the previous one related to the infinite product of
Wiener measures since these objects are functional measures in different Functional Spaces

Finally we comment that Functional Schrodinger equation, may be mathematically de-
fined for the above displayed field propagators eq.(19.37) only in the situation of eq.(19.40).
For instance, with £ =−Δ (the Laplacean), we have the validity of the Euclidean field wave
equation for the Geometrodynamical path-integral eq (37)

∂
∂T

G[β1(x),β2(x),T, [ j]] =

=
∫
Ω

dνx
[
+

δ2

δ2β2(x)
−|∇β2(x)|2 + j(x,T )

]
G[β1(x),β2(x),T, [ j]] (19.48)

with the functional initial - condition

lim
T→0+

G[β1(x),β2(x),T ] = δ(F)(β1(x)−β2(x)) (19.49)
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19.4. Some Rigorous Quantum Field Path Integral
in the Analytical Regularization Scheme

In this core section of our paper we address the important problem of producing concrete
non-trivial examples of mathematically well - defined (in the ultra - violet region!) path
integrals in the context of the exposed theorems on the previously sections of this paper,
specially section 19.2 - eq.(19.11).

Let us thus start our analysis by considering the Gaussian measure associated to the
(infrared regularized) α-power (α> 1) of the Laplacean acting on L2(R2) as an operational
quadratic form (the Stone spectral theorem)

(−Δ)αε =
∫
εIR≤λ

(λ)α dE(λ) (19.50-a)

Z(0)
α,εIR [ j] = exp

{
−1

2

〈
j,(−Δ)−αε j

〉
L2(R2)

}

=
∫

d(0)
α,εμ [ϕ] exp

(
i
〈

j,ϕ
〉

L2(R2)

)
(19.50-b)

Here εIR > 0 denotes the infrared cut off.
It is worth call the reader attention that due to the infrared regularization introduced on

eq (50-a), the domain of the Gaussian measure is given by the space of square integrable
functions on R2 by the Minlos theorem of section 19.3, since for α> 1, the operator (−Δ)−αεIR

defines a classe trace operator on L2(R2), namely

Tr∮
1
((−Δ)−αεIR

) =
∫

d2k
1

(|K|2α + εIR)
< ∞ (19.50-c)

This is the only point of our analysis where it is needed to consider the infra-red cut off
considered on the spectral resolution eq (50-a). As a consequence of the above remarks,
one can analize the ultra-violet renormalization program in the following interacting model
proposed by us and defined by an interaction gbareV (ϕ(x)), with V (x) denoting a compact
support function on R such, that it posseses an essentially bounded Fourier transform and
gbare denoting the positive bare coupling constant.

Let us show that by defining a renormalized coupling constant as (with gren < 1)

gbare =
gren

(1−α)1/2
(19.51)

one can show that the interaction function

exp

{
−gbare(α)

∫
d2xV (ϕ(x))

}
(19.52)

is an integrable function on L1(L2(R2),d(0)
α,εIRμ [ϕ]) and leads to a well-defined ultra-violet

path integral in the limit of α→ 1.
The proof is based on the following estimates.
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Since almost everywhere we have the pointwise limit

exp

{
−gbare(α)

∫
d2xV (ϕ(x))

}

lim
N→∞

{
N

∑
n=0

(−1)n(gbare(α))n

n!

∫
R

dk1 · · ·dkn Ṽ (k1) · · ·Ṽ (kn)
∫

R2
dx1 · · ·dxn eik1ϕ(x1) · · ·eiknϕ(xn)

}

(19.53)

we have that the upper-bound estimate below holds true∣∣∣Zα
εIR

[gbare]
∣∣∣≤ ∣∣∣ ∞

∑
n=0

(−1)n(gbare(α))n

n!

∫
R

dk1 · · ·dknṼ (k1) · · ·Ṽ (kn)

∫
R2

dx1 · · ·dxn

∫
d(0)
α,εIRμ[ϕ](e

i
N
∑

�=1
k�ϕ(x�)

)
∣∣∣ (19.54-a)

with

Zα
εIR

[gbare] =
∫

d(0)
α,εIRμ[ϕ] exp

{
−gbare(α)

∫
d2xV (ϕ(x))

}
(19.54-b)

we have, thus, the more suitable form after realizing the d2ki and d(0)
α,εIRμ[ϕ] integrals respec-

tivelly ∣∣∣Zα
εIR=0[gbare]

∣∣∣≤ ∞

∑
n=0

(gbare(α))n

n!

(||Ṽ ||L∞(R)
)n

∣∣∣∫ dx1 · · ·dxn det−
1
2

[
G(N)
α (xi,x j)

]
1≤i≤N
1≤ j≤N

∣∣∣ (19.55)

Here [G(N)
α (xi,x j)]1≤i≤N

1≤ j≤N
denotes the N ×N symmetric matrix with the (i, j) entry given

by the Green-function of the α-Laplacean (without the infra-red cut off here! and the needed
normalization factors !).

Gα(xi,x j) = |xi − x j|2(1−α)Γ(1−α)
Γ(α)

(19.56)

At this point, we call the reader attention that we have the formulae on the asymptotic
behavior for α→ 1.{

lim
α→1
α>1

det−
1
2 [G(N)

α (xi,x j)]

}
∼ (1−α)N/2 ×

(∣∣∣(N −1)(−1)N

πN/2

∣∣∣)− 1
2

(19.57)

After substituting eq.(19.57) into eq.(19.55) and taking into account the hypothesis of
the compact support of the non-linearily V (x) (for instance: suppV (x)⊂ [0,1]), one obtains
the finite bound for any value grem > 0, and producing a proof for the convergence of the
perturbative expansion in terms of the renormalized coupling constant.

lim
α→1

∣∣∣Zα
εIR=0[gbare(α)]

∣∣∣≤ ∞

∑
n=0

(‖Ṽ‖L∞(R))n

n!

(
gren

(1−α)
1
2

)n

× (1n)√
n

(1−α)n/2

≤ egren‖Ṽ‖L∞(R) < ∞ (19.58)
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Another important rigorously defined functional integral is to consider the following
α-power Klein Gordon operator on Euclidean space-time

L = (−Δ)α + m2 (19.59)

with m2 a positive ”mass” parameters.
Let us note that L−1 is an operator of class trace on L2(Rν) if and only if the result

below holds true

TrL2(Rν)(L−1) =
∫

dνk
1

k2α + m2 = C̄(ν)m( να−2)×
{ π

2α
cosec

νπ
2α

}
< ∞ (19.60)

namely if

α >
ν
2

(19.61)

In this case, let us consider the double functional integral with functional domain L2(Rν)

Z[ j,k] =
∫

d(0)
G β[v(x)]

×
∫

d(0)
(−Δ)α+v+m2 μ[ϕ]

× exp

{
i
∫

dνx( j(x)ϕ(x)+ k(x)v(x))
}

(19.62)

where the Gaussian functional integral on the fields V (x) has a Gaussian generating func-
tional defined by a

∮
1-integral operator with a positive defined kernel g(|x− y|), namely

Z(0)[k] =
∫

d(0)
G β[v(x)] exp

{
i
∫

dνxk(x)v(x)
}

= exp

{
−1

2

∫
dνx

∫
dνy(k(x)g(|x− y|)k(x))

}
(19.63)

By a simple direct application of the Fubbini-Tonelli theorem on the exchange of the
integration order on eq.(19.62), lead us to the effective λϕ4 - like well-defined functional
integral representation

Zeff[ j] =
∫

d(0)
((−Δ)α+m2)μ [ϕ(x)]

exp

{
−1

2

∫
dνxdνy |ϕ(x)|2 g(|x− y|) |ϕ(y)|2

}

× exp

{
i
∫

dνx j(x)ϕ(x)
}

(19.64)

Note that if one introduces from the begining a bare mass parameters m2
bare depend-

ing on the parameters α, but such that it always satisfies eq.(19.60) one should obtains
again eq.(19.64) as a well-defined measure on L2(Rν). Of course that the usual pure
Laplacean limit of α → 1 on eq.(19.59), will needed a renormalization of this mass pa-
rameters ( lim

α→1
m2

bare (α) = +∞!) as much as done in the previous example.
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Let us continue our examples by showing again the usefulness of the precise determi-
nation of the functional - distributional structure of the domain of the functional integrals
in order to construct rigorously these path integrals without complicated limit procedures.

Let us consider a general Rν Gaussian measure defined by the Generating functional on
S(Rν) defined by the α-power of the Laplacean operator −Δ acting on S(Rν) with a of small
infrared regularization mass parameter μ2

Z(0)[ j] = exp

{
−1

2

〈
j, ((−Δ)α +μ2

0)
−1 j

〉
L2(Rν)

}

=
∫

Ealg(S(Rν))
d(0)
α μ[ϕ] exp(iϕ( j)) (19.65)

An explicitly expression in momentum space for the Green function of the α-power of
(−Δ)α +μ2

0 given by

((−Δ)+α +μ2
0)

−1(x− y) =
∫

dνk
(2π)ν

eik(x−y)
(

1

k2α +μ2
0

)
(19.66)

Here C̄(ν) is a ν-dependent (finite for ν-values !) normalization factor.
Let us suppose that there is a range of α-power values that can be choosen in such way

that one satisfies the constraint below∫
Ealg(S(Rν))

d(0)
α μ[ϕ](‖ϕ‖L2 j(Rν))

2 j < ∞ (19.67)

with j = 1,2, · · · ,N and for a given fixed integer N, the highest power of our polinomial
field interaction. Or equivalently, after realizing the ϕ-Gaussian functional integration, with
a space-time cutt off volume Ω on the interaction to be analyzed on eq.(19.70)

∫
Ω

dνx[(−Δ)α +μ2
0]
− j(x,x) = vol(Ω)×

(∫
dνk

k2α +μ2
0

) j

= Cν(μ0)(
ν
α−2)×

( π
2α

cosec
νπ
2α

)
< ∞ (19.68)

For α > ν−1
2 , one can see by the Minlos theorem that the measure support of the

Gaussian measure eq.(19.65) will be given by the intersection Banach space of measurable
Lebesgue functions on Rν instead of the previous one Ealg(S(Rν))

L2N(Rν) =
N⋂

j=1

(L2 j(Rν)) (19.69)

In this case, one obtains that the finite - volume p(ϕ)2 interactions

exp

{
−

N

∑
j=1

λ2 j

∫
Ω

(ϕ2(x)) j dx

}
≤ 1 (19.70)

is mathematically well-defined as the usual pointwise product of measurable functions and
for positive coupling constant values λ2 j ≥ 0. As a consequence, we have a measurable
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functional on L1(L2N(Rν); d(0)
α μ[ϕ]) ( since it is bounded by the function 1). So, it would

make sense to consider mathematically the well-defined path - integral on the full space Rν

with those values of the power α satisfying the contraint eq.(19.67).

Z[ j] =
∫

L2N (Rν)
d(0)
α μ[ϕ] exp

{
−

N

∑
j=1

λ2 j

∫
Ω
ϕ2 j(x)dx

}
× exp(i

∫
Rν

j(x)ϕ(x)) (19.71)

Finally, let us consider a interacting field theory in a compact space-time Ω⊂Rν defined
by an iteger even power 2n of the Laplacean operator with Dirichlet Boundary conditions
as the free Gaussian kinetic action, namely

Z(0)[ j] = exp

{
−1

2

〈
j,(−Δ)−2n j

〉
L2(Ω)

}

=
∫

W n
2 (Ω)

d(0)
(2n) μ[ϕ] exp(i〈 j,ϕ〉L2(Ω)) (19.72)

here ϕ ∈ W n
2 (Ω) - the Sobolev space of order n which is the functional domain of the

cylindrical Fourier Transform measure of the Generating functional Z(0)[ j], a continuous
bilinear positive form on W−n

2 (Ω) (the topological dual of W n
2 (Ω)).

By a straightforward application of the well-known Sobolev immersion theorem, we
have that for the case of

n− k >
ν
2

(19.73)

including k a real number the functional Sobolev space W n
2 (Ω) is contained in the continu-

ously fractional differentiable space of functions Ck(Ω). As a consequence, the domain of
the Bosonic functional integral can be further reduced to Ck(Ω) in the situation of eq.(19.73)

Z(0)[ j] =
∫

Ck(Ω)
d(0)

(2n) μ[ϕ] exp(i〈 j,ϕ〉L2(Ω)) (19.74)

That is our new result generalizing the Wiener theorem on Brownian paths in the case
of n = 1 , k = 1

2 and ν = 1
Since the bosonic functional domain on eq.(19.74) is formed by real functions and not

distributions, we can see straightforwardly that any interaction of the form

exp

{
−g

∫
Ω

F(ϕ(x))dνx

}
(19.75)

with the non-linearity F(x) denoting a lower bounded real function (γ> 0)

F(x) ≥−γ (19.76)

is well-defined and is integrable function on the functional space (Ck(Ω), d(0)
(2n) μ[ϕ]) by a

direct application of the Lebesque theorem

∣∣∣exp

{
−g

∫
Ω

F(ϕ(x))dνx

}∣∣∣≤ exp{+gγ} (19.77)
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At this point we make a subtle mathematical remark that the infinite volume limit of
eq.(19.74) - eq.(19.75) is very difficult, since one looses the Garding - Poincaré inequalite
at this limit for those elliptic operators and, thus, the very important Sobolev theorem.
The probable correct procedure to consider the thermodynamic limit in our Bosonic path
integrals is to consider solely a volume cut off on the interaction term Gaussian action as in
eq.(19.71) and there search for vol(Ω) → ∞.

As a last remark related to eq.(19.73) one can see that a kind of “fishnet” exponential
generating functional

Z(0)[ j] = exp

{
−1

2

〈
j,exp{−αΔ} j

〉
L2(Ω)

}
(19.78)

has a Fourier transformed functional integral representation defined on the space of the
infinitelly differentiable functions C∞(Ω), which physically means that all field configura-
tions making the domain of such path integral has a strong behavior like purely nice smooth
classical field configurations.

As a general conclusion of this central section of our work, we can see that the tech-
nical knowledge of the support of measures on infinite dimensional spaces-specially the
powerfull Minlos theorem of section 19.3 is very important for a deep mathematical phys-
ical understanding into one of the most important problem in Quantum Field theory and
Turbulence which is the problem related to the appearance of ultra-violet (short-distance)
divergences on perturbative path integral calculations.

19.5. Remarks on the Theory of Integration of Functionals on
Distributional Spaces and Hilbert-Banach Spaces

Let us first consider a given vector space E with a Hilbertian structure 〈 ,〉, namely H =
(E,〈〉), where 〈 〉 means a inner product and H a complete topological space with the
metrical structure induced by the given 〈 , 〉. We have, thus, the famous Minlos theorem
on the support of the cylindrical measure associated to a given quadratic form defined by a
positive definite class trace operator A ∈ ∮

1(H ,H ) (see apendix for a discussion on Fourier
Transforms in Vector Spaces of Infinite-Dimension)

exp

{
−1

2
〈b,Ab〉

}
= exp

{
−1

2
〈|A| 1

2 b, |A| 1
2 b〉

}

=
∫

H
dAμ(v) · exp(i〈v,b〉) (19.79)

since any given class trace operator can be always be considered as the composition of two
Hilbert-Schmidt, each one defined by a function on L2(M ×M, dν⊗dν).
Here the cylindrical measure dAμ(v), firstly defined on the vector space of the linear forms
of E , with the topology of pontual convergence – the so called algebraic dual of E –, has its
support concentrated on the Hilbert spaces H , through the isomorphism of H and its dual
H ′ by means of the Riesz theorem.

This result can be understood more easily, if one represents the given Hilbert space
H as a square-integrable space of measurable functions on a complete measure space
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(M,dν) L2(M,dν). In this case, the class trace positive definite operator is represented by
an integral operator with a positive-definite Kenel K(x,y). Note that it is worth to re-write
eq.(19.79) in the Feynman path integral notation as written below

exp

{
−1

2

∫
M×M

dν(x)dν(y) f (x)K(x,s) f (s)
}

=
1

Z(0)

∫
L2(M,dν)

(
∏
x∈M

dϕ(x)

)
exp

[
−1

2

∫
M×M

dν(x)dν(y)ϕ(x)K−1(x,y)ϕ(y)
]

× exp

{∫
M

dν(x) f (x)ϕ(x)
}

(19.80)

Here the “inverse Kenel” of the operator A is given by the relationship below∫
M

dν(y)K(x,y)K−1(y,x′) = identity operator (19.81)

and the path-inegral normalization factor is given by the functional determinant Z(0) =
det−

1
2 (K) = det

1
2 (K−1).

A more invariant and rigorous representation for the Gaussian path-integral eq.(19.79)-
eq.(19.80) can be exposed through an eigenfunction-eigenvalue harmonic expansion asso-
ciated to our given class trace operator A, namely

Aβn = λnβμ (19.82-a)

v =
∞

∑
n=0

vnβn ; ϕ =
∞

∑
n=0

ϕnβn (19.83-b)

exp

{
−1

2

∞

∑
n=0

λn|vn|2
}

= limsup
N

⎧⎨
⎩

∫
RN

d〈ϕ|ϕ1〉 . . .d〈ϕ|ϕN〉e
− 1

2

(
N
∑

n=0

|〈ϕ|ϕn〉|2
λn

)(
N

∏
n=0

1
2πλn

) 1
2

exp

(
i

N

∑
n=0

ϕn v̄n

)⎫⎬
⎭

(19.84)

The above cited theorem for the support characterization of Gaussian path integrals can
be generalized to the highly non-trivial case of a non-linear functional Z(v) on E , satisfying
the following conditions:

a) Z(0) = 1

b)
N
∑
j,k

Z(v j − vk)z jz̄k ≥ 0, for any {zi}1≤i≤N : zi ∈ N (19.85)

and {vi}1≤i≤N : vi ∈ E .
c) there is a a H-subspace of E with a inner product 〈 , 〉, such that Z(v) is continuous in

relation to a given inner product 〈 ,〉A coming from a quadratic form defined by a positive
definite class trace operator A on H , in others words, we have the sequential continuity
criterium (if H is separable):

lim
n→∞

Z(vn) = 0 (19.86)
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if
lim
n→∞

〈vn,Avn〉 = 0 (A ∈
∮

1
(H )) (19.87)

We have thus, the following path integral representation

Z(v) =
∫

H
dμ(ϕ)exp(i〈v,ϕ〉) (19.88)

where ∫
H

dμ(ϕ) = 1. (19.89)

Another less mathematically rigorous result is that one related to an inversible self-
adjoint positive-definite operator A in a given Hilbert space (H,〈 ,〉) – not necessarily a
bounded operator in the class trace operator as considered previously. In order to write
somewhat formal path-integrals representations for the Gaussian functional

Z( j) = exp

{
−1

2
〈 j,A−1 j〉

}
(19.90)

with f ∈ Dom(A−1) ⊂ H ,we start by considering the usual spectral expression for the
following quadratic form

〈ϕ,Aϕ〉 =
∫
σ(A)

λ〈ϕ,dE(λ)ϕ〉 (19.91)

with σ(A) denoting the spectrum of A (a subset of R+!) and dE(λ) are the spectral projec-
tions associated to the spectral representation of A.

In this case one has the result for the path-integral weight

exp

{
−1

2

∫
σ(A)

λ〈ϕ,dE(λ)ϕ〉
}

= exp

{
−1

2
〈ϕ,Aϕ〉

}

= lim sup

{
∏

λ∈σFin(A)
exp

(
−1

2
〈ϕ,λdE(λ)ϕ〉

)}
, (19.92)

here σFin(A) denotes all sub-sets with a finite number of elements of σ(A).
As a consequence one should define formally the generating functional as

Z( j) = exp

{
−1

2
〈 j,A−1 j〉

}

= lim sup

{
∏

λ∈σFin(A)

∫ +∞

−∞
dxλ · e−

1
2 λ(xλ)

2
ei jλxλ

√
λ

2π

}
(19.93)

associated to the self-adjoint operator A acting on a Hilbert space H

Z( j) =
∫

H
dAμ(ϕ)ei〈 j,ϕ〉. (19.94)
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Otherwise, one should introduces formal redefinitions of parameters entering in the
definition of our action operator A, in such a way to render finite the functional determinant
in eq.(19.80). Let us exemplify such calculational point with the operator (−Δ+m2), acting
on L2(RN) (with domain being given precisely by the Sobolev space H2(RN)). We note that

TrL2(RN)(exp(−t(−Δ+ m2)))

=
(

1√
2π

)2[∫ +∞

−∞
dNk e−tk2

e−tm2
]

= e−tm2
C(N)×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(N −2)!!

2(2t)
N−1

2

√π
t it N −1 is even

((N −2
/

2))!
2

1

(t)
N
2

if N −1 is odd

(19.95)

with C(N) denoting a N-dependent constant.
It is worth to note that one must introduce in the path-integral eq.(19.93), some for-

mal definition for the functional determinant of the self-adjoint operator A, which by its
term leads to the formal process of the “Infinite Renormalization” in Quantum Field Path
Integrals

∫
H

dAμ(ϕ) = lim
(R-valued net)

sup

{
∏

λ∈σFin(A)

∫ +∞

−∞
dxλ√

2π
e−

1
2 λ(xλ)

2

}

= lim sup

(
∏

λ∈σFin(A)

{
1√
λ′

})
= det

− 1
2

F [A]

= lim
ε→0+

{
∏

λ∈σFin(A)
exp

[
+

1
2

∫ 1/ε

ε

dt
t

e−tλ
]}

= lim
ε→0+

{
exp

(
+

1
2

∫ 1/ε

ε

dt
t

Tr(e−tA)
)}

(19.96)

In the case of the finitude of the right hand side of eq.(19.96) (which means that e−tA is
a trace class operator and its finitude up the proper-time parameter t), one can proceed as in
the appendix to define mathematically the Gaussian path-integral.

Let us now consider the proper-time (Cauchy principal value sense) integration process
as indicated by eq.(19.95), for the case of N be an even space-time dimensionality

I(m2,ε) =
∫ 1/ε

ε

dt
t

e−tm2

tN/2
=

∫ 1/ε

ε
dt

e−tm2

t
N+2

2

(19.97)

The whole idea of the renormalization/regularization program means a (non-unique)
choice of the mass parameter as a function of the proper-time cut-off ε in such way that the
otherwise infinite limit of ε→ 0+ turns out to be finite, namely
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lim
ε→0+

I(m2(ε),ε) <∞. (19.98)

A slightly generalization of the above exposed Minlos-Bochner Theorem in Hilbert
spaces is the following theorem

Theorem 1. Let (H ,〈 , 〉1) be a separable Hilbert space with a inner product 〈 , 〉1 . Let
H0,〈 ,〉0) be a sub-space of H , so there is a trace class operator T : H → H , such that the
inner product 〈 ,〉0 is given explicitly by 〈g,h〉1 = 〈g,T h〉0 = 〈T 1/2g,T 1/2h〉0 . Let us, thus,

consider a positive definite functional Z( j) ∈ C((H ,〈 , 〉1),R) [if jn
|| ||1−→ j, then Z( jn) →

Z( j) on R+]. We obtain that the Bochner path integral representation of Z( j) is given by a
measure supported at these linear functionals, such that their restrictions in the sub-space
H0 are continuous by the norm induced by the “trace-class” inner product 〈 , 〉1 .

With this result in our hands, it became more or less straightforwardly to analyze the
cylindrical measure supports in Distributional Spaces. For instance, the basic Euclidean
Quantum Field Distributional Spaces of Tempered Distributions in RN : S′(RN), can always
be seen as the strong topological dual of the inductive limit of Hilbert spaces below consid-
ered

sp =

{
(xn) ∈ C | lim

n→∞
npxn = 0, with the inner product 〈(xn),(yn)〉sp

=
∞

∑
n=1

n2pxnȳn

}
(19.99)

We note now that

S(RN) =
∞⋃

p≥1

sp (19.100)

and

S′(RN) =
∞⋃

p≥1

s−p . (19.101)

An important property is that sp ⊃ sp+1 and they satisfy the hypothesis of the Theorem
1, since

∞

∑
n=1

n2p|xn|2 =
∞

∑
n=1

n(2p+2) 1
n2 |x2

n| (19.102)

and
∞

∑
n=1

1
n2 =

π2

6
. (19.103)

As a consequence

||(xn)||sp ≤
π2

6
||(xn)||sp+1 (19.104)

If one have an arbitrary continuous positive-definite functional in S(RN), necessarilly
its measure support will always be on the topological dual of sp+1 , for each p. As a conse-

quence its support will be on the union set
∞⋃

p=1
s−p (since s−p ⊂ s−(p+1)) and thus it will be

the whole Distribution Space S′(RN).
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Similar results hold true in others Distributional Spaces.
The application of the above cited result in Gaussian Path-Integrals is always made with

the use of the famous result of the kernel theorem of Schwartz-Gelfand.

Theorem 2 (Gelfand): Any continuous bilinear form B( j, j) defined in the teste space of
the tempered distribuiton S′(RN) has the following explicitly representation:

B( j, j) =
∫

dNxdNy j(x)(Dm
x Dn

y F)(x,y) j̄(y) (19.105)

with j ∈ S(RN), F(x,y) a continuous function of polynomial growth and Dm
x , Dn

y are distri-
butional derivatives of order m ande n respectively.

In all cases of application of this result to our study presented in the previous chapters
were made in the context that (Dm

x Dn
y F)(x,y) is a fundamental solution of a given differen-

tial operator representing the kinetic term of a given Quantum Field Lagrangean.
As a consequence we have the basic result in the Gaussian Path Integral in Euclidean

Quantum field theory

e−
1
2 B( j, j) =

∫
T∈S′(RN)

dμ(T )exp{i(T ( j))} (19.106)

where T ( j) denotes the action of the distribution T on the test function j ∈ S(RN).
At this point of our exposition let us show how to produce a fundamental solution for a

given differential operator P(D) with constant coefficients, namely

P(D) = ∑
|ρ|≤m

ap Dp (19.107)

A fundamental solution for eq.(19.107) is given by a (numerique) distribution E ∈
S′(RN) such that for any ϕ ∈ S(RN), we have:

(P(D)E)(ϕ) = δ(ϕ) = ϕ(0) (19.108)

or equivalently
E(tP(D)ϕ) = δ(ϕ) (19.109)

where tP(D) is the transposte operator through the duality of S(RN) and S′(RN).
By means of the use of a Harmonic-Hermite expansion for the searched fundamental

solution

E
S′(RN)
=

∞

∑
p=1

(E,Hp)Hp =
∞

∑
p=1

EpHp (19.110)

with Hp denoting the appropriate Hermite Polinomials in RN , together with the test function
harmonic expansion

ϕ
S(RN)
=

∞

∑
p=1

(ϕ,Hp)Hp =
∞

∑
p=1

ϕpHp (19.111)

and the use of the relationship between Hermite polinomials
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tP(D)Hp = ∑
|q|≤�(p)

Mpq Hq (19.112)

with �(p) depending on the order of Hp and the order of the differential operator tP(D).

(For instance in S(R):
d
dx

Hn(x) = 2nHn−1(x);

d2

d2x
Hn(x) = 2n

d
dx

Hn−1(x) = 4n(n−1)Hn−2(x), etc...),

one obtains the recurrence equations for the searched coefficients Ep in eq.(19.110)

∑
n
ϕn

[
∑

|q|≤�(n)
Mnq Eq

]
=∑

n
ϕn Hn(0) (19.113)

for any (ϕn) ∈ �2

or equivalently:

∑
|q|≤�(n)

Mnq Eq = Hn(0) (19.114)

the solution of the above written infinite-dimensional system produces a set of coefficients
{Ep}p=1,...,∞ satisfying a condition that it belongs to some space s−r , where r is the order
of the fundamental solution being searched (the rigorous proof of the above assertions is
left as an exercise to our mathematically oriented reader!).

Finally let us sketech the connection between path integrals and the operator framework
in Euclidean Quantum Field Theory, both still mathematically non rigorous from a strict
mathematical point of view. In ther former approach, one has a self-adjoint operator H( j)
indexed by a set of functions (the field classical sources of the Quantum Field Theory under
analysis) belonging to the Distributional Space S(RN). This self-adjoint operator is formally
given by the space-time integrated Lagrangean Field Theory and the basic object is the
Generating functional as defined by the vacuum-vacuum transition amplitude

Z( j) = 〈eiH( j)ΩVAC,ΩVAC〉 (19.115)

with ΩVAC denoting the theory vacuum state. It is assumed that Z( j) is a continuous pos-
itive definite functional on S(RN). As a consequence of the above exposed theorems of
Minlos and Bochner, there is a cylindrical measure dμ(T ) on S′(RN) such that the Generat-
ing Functional Z( j) is represented by the Quantum Field Path integral defined by the above
mentioned measure:

Z( j) =
∫

S′(RN)
dμ(T )exp{i(T ( j)} (19.116)

which in the Feynman symbolic notation express itself in the following symbolic-
operational Feynman notation

Z[ j(x, t)] =
1

Z(0)

∫
S′(RN)

DF [T (x, t)]e−
1
2

∫ +∞
−∞ dn−1xdtL(T,∂t T,∂xT ) ei

∫ +∞
−∞ dn−1xdt j(x,t)T (x,t)

(19.117)



268 Luiz C.L. Botelho

with L(T,∂tT,∂xT ) means generically the Lagrangean density of our Field Theory under
quantization.

Let us exemplify the Feynman symbolic Euclidean Path Integral as given by eq.(19.117)
in the Gaussian case (free Euclidean Field Massless Theory in RN , N ≥ 2)

exp

{
−1

2

∫ +∞

−∞
dNx

∫ +∞

−∞
dNy j(x)

(
(−1)

(n−2)Γ(n)|x− y|n−2

)
j(y)

}

=
∫

S′(RN)
DF [T (x)]exp

{
−1

2

∫ +∞

−∞
dNx

∫ +∞

−∞
dNyT (x)

(
(−Δ)xδ(N)(x− y

)
T (y)

}

det+
1
2
(
(−Δ)xδ(N)(x− y)

)
× exp

{
i
∫ +∞

−∞
dNx j(x)T (x)

}
(19.118)

Or for the heat differential operator in S′(RN ×R+)

exp

{
−1

2

∫ +∞

−∞
dNx

∫ ∞

0
dt

∫ +∞

−∞
dNy

∫ ∞

0
dt ′ J(x,t)

(
1(√

2π(t − t ′))
)N exp

(
− |x− y|2

4(t − t ′)

))
θ(t − t ′)J(y,t ′)

}

=
∫

S′(RN×R+)
DF [T (x,t)]exp

{
−1

2

∫ +∞

−∞
dNx

∫ ∞

0
dt T (x,t)

[(
Δx − ∂

∂t

)
T (x,t)

])

×·det1/2
[
Δx − ∂

∂t

]
× exp

{
i
∫ +∞

−∞
dNx

∫ ∞

0
dt J(x,t)T (x,t)

}
(19.119a)

It is worth to point out that the fourth-order path integral in S′(R4):

exp

{
−1

2

∫ +∞

−∞
d4x

∫ +∞

−∞
d4(x) j(x)

(
1

8π
|x− y|2 �n(x− y)

)
j(y)

}

=
∫

S′(R4)
DF [ϕ(x)]e−

1
2

∫ +∞
−∞ d4x(ϕ(x)(Δ2)ϕ(x))

=
∫

R′(R4)
dΔ2μ(ϕ)eiϕ( j) ei

∫ +∞
−∞ d4x j(x)ϕ(x) (19.119-b)

holds mathematically true since the locally integrable function
1

8π
|x|2 �n|x| is a fundamen-

tal solution of the differential operator Δ2 : S′(R4) → S(R4) when acting on Distributional
Spaces.

As a last important point of this section, we present an important result on the geomet-
rical characterization of massive free field on an Euclidean Space-Time.

Firstly we announcing a slightly improved version of the usual Minlos Theorem.

Theorem 3. Let E be a nuclear space of tests functions and dμ a given σ-measure on its
topologic dual with the strong topology. Let 〈 , 〉0 be an inner product in E , inducing a
Hilbertian structure on H0 = (E,〈 , 〉0), after its topological completation.
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We suppose the following:

a) There is a continuous positive definite functional in H0, Z( j), with an associated
cylindrical measure dμ.

b) There is a Hilbert-Schmidt operator T : H0 → H0 ; invertible, such that E ⊂
Range (T ), T−1(E) is dense in H0 and T−1 : H0 → H0 is continuous.

We have thus, that the support of the measure satisfies the relationship

support dμ⊆ (T−1)∗(H0) ⊂ E∗ (19.120)

At this point we give a non-trivial application of ours of the above cited Theorem 3.
Let us consider an differential inversible operator L : S′(RN) → S(R), together with an

positive inversible self-adjoint elliptic operator P : D(P) ⊂ L2(RN) → L2(RN). Let Hα be
the following Hilbert space

Hα =
{

S(RN),〈Pαϕ,Pαϕ〉L2(RN) = 〈 ,〉α , for α a real number
}

. (19.121)

We can see that for α > 0, the operators below

P−α : L2(RN) → H+α

ϕ → (P−αϕ)
(19.122)

Pα : H+α → L2(RN)
ϕ → (Pαϕ)

(19.123)

are isometries among the following sub-spaces

D(P−α),〈 ,〉L2) and H+α

since
〈P−αϕ,P−αϕ〉H+α

= 〈PαP−αϕ,PαP−αϕ〉L2(RN) = 〈ϕ,ϕ〉L2(RN) (19.124)

and
〈Pα f ,Pα f 〉L2(RN) = 〈 f , f 〉H+α

(19.125)

If one considers T a given Hilbert-Schmidt operator on Hα , the composite operator
T0 = PαT P−α is an operator with domain being D(P−α) and its image being the Range
(Pα). T0 is clearly an invertible operator and S(RN) ⊂ Range (T ) means that the equation
(T P−α)(ϕ) = f has always a non-zero solution in D(P−α) for any given f ∈ S(RN). Note
that the condition that T−1( f ) be a dense subset on Range (P−α) means that

〈T−1 f ,P−αϕ〉L2(RN) = 0 (19.126)

has as unique solution the trivial solution f ≡ 0.
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Let us suppose too that T−1 : S(RN) → Hα be a continuous application and the bilinear
term (L−1( j))( j) be a continuous application in the Hilbert spaces H+α ⊃ S(RN), namely:

if jn
L2−→ j, then L−1 : P−α jn

L2−→ L−1P−α j, for { jn}n∈Z and jn ∈ S(RN).
By a direct application of the Theorem 3, we have the result

Z( j) = exp

{
−1

2
[L−1( j)( j)]

}
=

∫
(T−1)∗ Hα

dμ(T )exp(iT ( j)) (19.127)

Here the topological space support is given by

(T−1)∗Hα =
[(

P−αT0Pα)−1
]∗(

(Pα(S(RN)))
)

=
[
(Pα)∗(T−1

0 )∗(P−α))∗
]
Pα(S(RN))

= PαT−1
0 (L2(RN)) (19.128)

In the important case of L = (−Δ+m2) : S′(RN)→ S(RN) and T0T ∗
0 = (−Δ+m2)−2β ∈

∮
1(L

2(RN)) since Tr(T0T ∗
0 ) =

1

2(m2)β

(
m2

1

) N
2 Γ(N

2 )Γ(2β− N
2 )

Γ(β)
< ∞ for β >

N
4

with the

choice P = (−Δ+ m2), we can see that the support of the measure in the path-integral
representation of the Euclidean measure field in RN may be taken as the measurable sub-set
below

supp {d(−Δ+m2) u(ϕ)} = (−Δ+ m2)−α · (−Δ+ m2)+β(L2(RN)) (19.129)

since L−1P−α = (−Δ+ m2)−1−α is always a bounded operator in L2(RN) for α> −1.
As a consequence each field configuration can be considered as a kind of “fractional

distributional” derivative of a square integrable function as written below

ϕ(x) =
[(−Δ+ m2) N

4 +ε−1
f
]
(x) (19.130)

with a function f (x) ∈ L2(RN) and any given ε > 0, even if originally all fields configura-
tions entering into the path-integral were elements of the Schwartz Tempered Distribution
Spaces S′(RN) certainly very “rough” mathematical objects to characterize from a rigorous
geometrical point of view.

We have, thus, make a further reduction of the functional domain of the free massive
Euclidean scalar field of S′(RN) to the measurable sub-set as given by eq.(19.130) denoted
by W (RN)

exp

{
−1

2

[
(−Δ+ m2)−1 j

]
( j)

}
=

∫
S′(RN)

d(−Δ+m2)μ(ϕ)eiϕ( j) =

=
∫

W(RN)⊂S′(RN)
d(−Δ+m2)μ̃( f )ei〈 f ,(−Δ+m2)

N
4 +ε−1 f 〉L2(RN )

(19.131)
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Appendix A

In this appendix we give new functional analytic proofs of the Bochner-Martin-Kolmogorov
Theorem of section II.

Theorem of Bochner-Martin-Kolmogorov (Version I) let f : E → R be a given real
function with domain being a vector space E and satisfying the following properties

1) f (0) = 1
2) The restriction of f to any finite-dimensional vector sub-space of E is the Fourier

Transform of a real continuous function of compact support.
Then there is a measure dμ(h) on a σ-algebra containing the Borelians if the Space of

Linear Functionals of E with the topology of pontual convergence denoted by Ealg such
that for any y ∈ E

f (g) =
∫

Ealg
exp(ih(g))dμ(h) (19.A.1)

Proof: Let {êλ∈A} be a Hamel (Vectorial) basis of E and E(N) a given sub-space of E of
finite-dimensional. By the hypothesis of the Theorem, we have that the restriction of the
functions to E(N) (generated by the elements of the Hamel basis {êλ1 , . . . , êλN} = {eλ}λ∈ΛF

is given by the Fourier Transform

f

(
N

∑
�=1

σλ�êλ�

)
=

∫
∏

λ∈ΛF

Rλ
(dPλ1

· · ·dPλN
)exp

[
N

∑
�=1

aλ�
Pλ�

]
ĝ(Pλ1

, · · · ,PλN
) (19.A.2)

with ĝ(Pλ1 , · · · ,PλN ) ∈Cc

(
∏

λ∈ΛF

Rλ

)
As a consequence of the above written result we consider the following well-defined

family of linear positive functionals on the space of continuous function on the product
space of the Alexandrov Compactifications of R denoted by Rw :

LλF ∈
[
C

(
∏
λ∈ΛF

(Rw)λ;R

)]Dual
(19.A.3)

with

LΛF [ĝ(Pλ1
, . . . ,PλN

)] =
∫

∏
λ∈ΛF

(Rw)λ

∫
ĝ(Pλ1

, . . . ,PλN
)(dPλ1

. . .dPλN
) (19.A.4)

Here ĝ(Pλ1
, · · · ,PλN

) still denotes the unique extension of eq.(19.A-2) to the Alexandrov
Compactification Rw.

We remark noe that the above family of linear continuous functionals have the following
properties:

1) The norm of LλF is always the unity since

||Lλ1 || =
∫

∏
λ∈ΛF

(Rw)λ
ĝ(Pλ1 , . . . ,PλN )dPλ1 . . .dPλN = 1 (19.A.5)



272 Luiz C.L. Botelho

2) If the index set ΛF , contains ΛF the restriction of the associated linear functional ΛF ,

to the space C

(
∏

λ∈Λ f

(Rw)λ,R

)
coincides with LΛF .

Now a simple application of the Stone-Weisrtress Theorem show us that the topo-
logical closure of the union of the sub-space of functions of finite variable is the space

C

(
∏
λ∈A

(Rw)λ,R
)

, namely

⋃
ΛF⊂A

C

(
∏
λ∈ΛF

(Rw)λ,R

)
= C(∏

λ∈A

(Rw)λ,R) (19.A.6)

where the union is taken over all family of sub-sets of finite elements of the index set A.
As a consequence of the remark 2 and eq.(19.A-6) there is a unique extension of the

family of linear functionals {LΛF} to the whole space C

(
∏
λ∈A

(Rw)λ,R
)

and denoted by L∞.

The RieszMarkov Theorem give us a unique measure dμ(h) on ∏
λ∈A

(Rw)λ representing the

action of this functional on C

(
∏
λ∈A

(Rw)λ,R
)

.

We have, thus, the following functional integral representation for the function f (g):

f (g) =
∫

( ∏
λ∈A

(Rw)λ)
exp(ih̄(g))dμ(h̄) (19.A.7)

Or equivalently (since h(g) =
N
∑

i=1
piai for some {pi}i∈N < ∞), we have the result

f (g) =
∫

( ∏
λ∈A

Rλ)
(exp ih(g))dμ(h) (19.A.8)

which is the proposed theorem with h ∈ ( ∏
λ∈λF

Rλ) being the element which has a the image

of h on the Alexandrov Compactification ∏
λ∈λF

(Rw)λ.

The practical use of the Bochner-Martin Kolmogorov Theorem is difficulted by the
present day non existence of an algorithm generating explicitly a Hamel (Vectorial) Basis
on Function of Spaces. However, if one is able to apply the theorems of section III one can
construct explicitly the functional measure by only considering Topological Basis as in the
Gaussian Functional integral eq.(19.32).

Theorem of Bochner-Martin-Kolmogorov (Version 2)

We have now the same hypothesis and results of theorem version 1 but with the more
general condition.
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3) The restriction of f to any finite-dimensional vector sub-space of E is the Fourier
Transform of a real continuous function vanishing at “infinite”.

For the proof of the theorem under this more general mathematical condition, we will
need two lemmas and some definitions.

Definitions 1. Let X be a normal Space, locally compact and satisfying the following σ-
compacity condition

X =
∞⋃

n=0

Kk (19.A.9)

with
Kn ⊂ int(Kn+1) ⊂ Kn+1 (19.A.10)

we define the following space of continuous function “vanishing” at infinite

C̃0(X ,R) =

{
f (x) ∈C(X ,R)| lim

n→∞
sup

x∈(Kn)c
| f (x)| = 0

}
(19.A.11)

We have, thus, the following lemma.

Lemma 1. The Topological closure of the functions of compact support contains C̃0(X ,R)
in the topology of uniform convergence.

Proof: Let f (x) ∈ C̃0(X ,R) and gμ ∈ C(X ,R), the (Uryhson) functions associated to the
closed disjoints sets Kn and (Kc

n+1). Now it is straightforwardly to see that ( f · gn)(x) ∈
Ci(X ,R) and converges uniformly to f (x) due to the definition (19.A-11).

At this point, we consider a linear positive continuous functional L on C̃0(X ,R). Since
the restriction of L to each sub-space C(Kn,R) satisfy the conditions of the Riesz-Markov
Theorem, there is a unique measure μ(n) on Kn containing the Borelians on Kn and repre-
senting this linear functional restriction. We now use the hypothesis eq.(19.A-10) to have a
well defined measure on a σ-algebra containing the Borelians of X

μ̄(A) = limsupμ(n)(A
⋂

Kn) (19.A.12)

for A in this σ-algebra and representing the functional L on C̃0(X ,R)

L( f ) =
∫

X
f (x)dμ̄(x) (19.A.13)

Note that the normally of the Topological Space X is a fundamental hypothesis used in
this proof by means of the Uryhson lemma.

Unfortunatelly, the non-countable product space ∏
λ∈A

Rλ is not a Normal Topological

Space (the famous Stone counter example) and we can not, thus, apply the above lemma to
our Vectorial case eq.(19.A-8). However, we can overcame the use of the Stone Weirstrass
Theorem in the Proof of the Bochner-Martin-Kolmogorov Theorem by considering directly
a certain Functional Space instead of that given by eq.(19.A-6).
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We define, thus, the following Space of Infinite-Dimensional functions vanishing at
finite

C0(R∞,R) ≡C0

(
∏
λ∈A

Rλ,R

)
def=

⋃
ΛF⊂A

C̃0

(
∏
λ∈λF

Rλ,R

)
(19.A.14)

where the closure is taken in the topology of uniform convergence.

If we consider a given continuous linear functional L on C0

(
∏
λ∈A

Rλ,R

)
there is a unique

measure μ∞ on the union of the Borelians ∏
λ∈ΛF

Rλ representing the action of L on C0(R∞,R).

Conversely, given a family of consistent measures {μΛF} on the finite-dimensional

spaces ( ∏
λ∈ΛF

Rλ) satisfying the property of μΛF

(
∏

λ∈ΛF

Rλ

)
= 1, there is a unique measure

on the cylinders ∏
λ∈A

Rλ associated to the functional L on C0

(
∏
λ∈A

Rλ,R

)
.

Collecting the results of the above written lemmas we get the Proof of eq.(19.A-8) in
this more general case.

Appendix B
On the Support Evaluations of Gaussian Measures

Let us show explicitly by one example of ours of the quite complex behavior of cylindrical
measures on infinite dimensional spaces R∞.

Firstly we consider the family of Gaussian measures on R∞ = {(xn)1≤n≤∞,xn ∈ R} with
σn ∈ �2.

d(∞)μ({xn}) = lim
N

sup

{
N

∏
n=1

(dxn
1√
σnπ

)e
− x2

n
2σ2

n

}
(19.B-1)

Let us introduce the measurable sets on R∞

E(αn) =

{
(xn) ∈ R∞ ; ‖x‖2

(xn) =
∞

∑
n=1

α2
n x2

n < ∞

}

and
∞

∑
�=1

α2
nσ

2
n < ∞ (19.B-2)

Here {αn} is a given sequence suppose to belonging to �2 either.
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Now it is straightforward to evaluate the “mass” of the infinite-dimensional set E(xn),
namely

(∞)μ(E(αn)) =
∫

R∞
d∞μ({xn})

[
lim
ε→0+

e
−ε(

∞
∑

n=1
α2

nx2
n)
]

= lim
ε→0+

{
lim sup

0≤�≤n

[ n

∏
�=1

(1+ 2εα2
nσ

2
n)

− 1
2

]}
(19.B-3)

Note that (
n

∏
�=1

(1+ 2εα2
nσ

2
n)

− 1
2

)
≤ 1

1+
n
∑

�=1
α2

nσ2
n

(19.B-4)

As a consequence one can exchange the order of the limits on eq.(19.B-3) and arriving
at the result

(∞)μ(E(αn)) = lim sup
0≤�≤n

{
lim
ε→0+

[ n

∏
�=1

(1+ 2εα2
nσ

2
n)

− 1
2

]}

= lim sup
0≤�≤n

{1} = 1 (19.B-5)

So we conclude on basis if eq.(19.B-5) that the support of the measure eq.(19.B-1) is
the set E(αn) for any possible sequence {αn} ∈ �2. Let us show that (E(αn))

C ∩E(βn) �= {φ},
so these sets are not coincident.

Let be the sequences

σn = n−σ

αn = nσ−1

βn = nσ−λ (19.B-6)

with γ > 1 and σ > 0.
We have that

∑α2
nσ

2
n =∑ 1

n2 =
π2

6
(19.B-7)

∑β2
nσ

2
n =∑n−2λ < ∞ (19.B-8)

So E{αn} and E{βn} are non-empty sets on R∞.

Let us consider the point {x̄n} ∈ R∞ and defined by the relationship

x̄2
n = n−2(σ−1)−ε (19.B-9)

We have that

∑(x̄n)2α2
n =∑ n−2(σ−1)−ε ·nn2(σ−1)

=∑ n−ε
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and

∑(x̄n)2β2
n =∑n−2(σ−1)−ε ·n2(σ−λ)

=∑ n2−ε−2λ

If we choose ε= 1 ; γ> 1 (γ= 3
2 !), we obtain that the point {x̄n} belongs to the set E{βn}

(since ∑n2 = π2

6 ), however it does not belongs to E{xn} (since
∞
∑

n=0
n−1 = +∞ ), although the

support of the measure eq.(19.B-1) is any set of the form E{γn} with {γn} ∈ �2.
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Chapter 20

Non-linear Diffusion in RD

and in Hilbert Spaces, a Path
Integral Study

20.1. Introduction

The deterministic non-linear diffusion equation is one of the most important topics in the
Mathematical-Physics of the non-linear evolution equation theory [1-3]. An important class
of initial-value problems in turbulence has been modeled by non-linear diffusion stirred by
random sources [4].

The purpose of this chapter 20 in Mathematical methods for Physics is to provide a
model of non-linear diffusion were one can use and understand the compacity functional
analytic arguments to produce theorems of existence and uniqueness on weak solutions for
deterministic sitirring in L∞([0,T ]×L2(Ω)). We use these results to give a first step “proof”
for the famous Rosen path integral representation for the Hopf charactheristic functional as-
sociated to the white-noise stirred non-linear quantum field diffusion model. These studies
are presented on section II.

In section III we present a study of a Linear diffusion equation in a Hilbert Space, which
is the basis of the famous Loop Wave Equations in String and Polymer surface theory of
the previous presented studies.

20.2. The Non-linear Diffusion

Let us start our chapter by considering the following non-linear diffusion equation in some
strip Ω× [0,T ] with Ω denoting a C∞-compact domain of RD.

∂U(x, t)
∂t

= (+ΔU)(x, t)+Δ(∧)(F(U(x, t))+ f (x, t)) (20.1)

with initial and Dirichlet boundary conditions as given below.

U(x,0) = g(x) ∈ L2(Ω) (20.2)
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U(x, t) |∂Ω≡ 0 (for t > 0) (20.3)

We note that the non-linearitity of the diffusion-spatial term of the parabolic problem
eq(1) takes into account the physical properties of non-linear porous medium’s diffusion
saturation physical situation where this model is supposed to be applied [1] - by means of
the hypothesis that the regularized Laplacean operator Δ(∧) in the non-linear term of the
governing diffusion eq.(20.1) has a cut-off in its spectral range. Additionaly we make the
hypothesis that the non-linear function F(x) is a bounded real continuously differentiable
function on the extended interval (−∞,∞) with its derivative F ′(x) strictly positive there.
The external source f (x, t) is supposed to belong to the space L∞([0,T ]×L2(Ω)) or to be a
white-noise external stirring of the form ([2] - pp. 61) when in the random case

F(·, t) =
d
dt

{
∑
n∈Z

√
λnβn(t)ϕn(·)

}
=

d
dt

w(t). (20.4)

Here {ϕn} denotes a complete orthonormal set on L2(Ω) and βn(t), n ∈ Z are indepen-
dent Wiener processes.

Let us show the existence and uniqueness of weak solutions for the diffusion prob-
lem above stated by means of Galerking Method for the case of deterministic f (x, t) ∈
L∞([0,T ]×L2(Ω)).

Let {ϕn(x)} be spectral eigen-functions associated to the Laplacean Δ. Note that each
ϕn(x) ∈ H2(Ω)∩H1

0 (Ω) [3]. We introduce now the (finite-dimensional) Galerkin approxi-
mants

U (n)(x, t) =
n

∑
i=1

U (n)
i (t)ϕi(x)

f (n)(x, t) =
n

∑
i=1

( f (x, t),ϕi(x))L2(Ω)ϕi(x) (20.5)

subject to the initial-conditions

U (n)(x,0) =
n

∑
i=1

(g(x),ϕi)L2(Ω)ϕi(x) (20.6)

here ( , )L2(Ω) denotes the usual inner product on L2(Ω).
After substituting eqs.(20.5), (20.6) in eq.(20.1), one gets the weak form of the non-

linear diffusion equation in the finite-dimension approximation as a mathematical well-
defined systems of ordinary non-linear differential equations, as a result of an application
of the Peano existence-solution theorem.(

∂U (n)(x, t)
∂t

,ϕ j(x)

)
L2(Ω)

+
(
−ΔU (n)(x, t),ϕ j(x)

)
L2(Ω)

=
(
∇(∧) · [(F ′(U (n)(x, t))∇(∧)U (n)(x, t)],ϕ j(x)

)
L2(Ω)

+ ( f (n)(x, t),ϕ j(x))L2(Ω) (20.7)
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By multiplying the associated system eq.(20.7) by U (n) we get the diffusion equation in
the finite dimensional Galerking sub-space in the integral form:

1
2

d
dt
‖U (n)‖2

L2(Ω)

+ (−ΔU (n),U (n))L2(Ω)

+
∫
Ω

d3x(F ′(U (n))(∇(∧)U (n) ·∇(∧)U (n))(x, t) = ( f ,U (n))L2(Ω) (20.8)

This result, by its turn, yields a prior estimate for any positive integer p:

1
2

d
dt

(
‖U (n)‖2

L2(Ω)

)
+ γ(Ω)‖U (n)‖2

L2(Ω) +‖(F ′(U (n)))
1
2 (∇U (n))‖2

L2(Ω)

≤ 1
2

{
p‖ f (x, t)‖2

L2(Ω) +
1
p
‖U (n)‖2

L2(Ω)

}
(20.9)

Here γ(Ω) is the Garding-Poincaré constant on the inequalite of the quadratic form
associated to the Laplacean operator defined on the domain H2(Ω)∩H1

0 (Ω).

‖U (n)‖2
H1(Ω) =

(−ΔU (n),U (n))
L2(Ω) ≥ γ(Ω)‖U (n)||2L2(Ω). (20.10)

By chosing the integer p big enough and applying the Gronwall lema, we obtain that
the set of function {U (n)(x, t)} forms a bounded set in L∞([0,T ],L2(Ω))∩L∞([0,T ],H1

0 (Ω))
and in L2([0,T ],L2(Ω)). As a consequence of this boundeness property of the func-
tion set {U (n)}, there is a sub-sequence weak-star convergent to a function U(t,x) ∈
L∞([0,T ],L2(Ω)), which is the candidate for our “weak” solution of eq.(20.1).

Another important estimate is to consider again eq.(20.9), but now considering the
Sobolev space H1

0 (Ω) on this estimate eq.(20.9), namely:

1
2

(‖U (n)(T )‖2
L2(Ω)−‖U (n)(0)‖2)+C0

∫ T

0
dt||U (n)||2H1

0 (Ω)

≤ 1
2

p

(∫ T

0
|| f ||2L2(Ω)dt

)
+

1
2p

(∫ T

0
‖U (n)‖2

L2(Ω)dt

)
< M < ∞ (20.11)

since we have the coerciviness condition for the Laplacean operator

(−ΔU (n),U (n))L2(Ω) ≥C0(U (n),U (n))H1
0 (Ω). (20.12)

Note that ‖U (n)(0)‖2 ≤ 2‖g(x)‖2
L2(Ω) (see eq.(20.8)) and {‖U (n)(T )‖2

L2(Ω)} is a bounded
set of real positive numbers.

As a consequence of a prior estimate of eq.(20.11), one obtains that the previous se-
quence of functions {U (n)} ∈ L∞([0,T ],H1

0 (Ω)∩H2(Ω)) forms a bounded set on the vector
valued Hilbert space L2([0,T ],H1

0 (Ω)) either.
Finally, one still has another a prior estimate after multiplying the Galerkin system
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eq.(20.7) by the time-derivatives U̇ (n), namely∫ T

0
dt

∥∥∥∥dUn(t)
dt

∥∥∥∥
2

L2(Ω)

≤ Real(AUn(T ),Un(T ))− (AUn(0),Un(0))

+
∫ T

0
dt

∥∥∥∥Δ(∧)F(Un(t))
dUn

dt

∥∥∥∥
L2(Ω)

≤ 1
2

p

(∫ T

0

∥∥∥Δ(∧)F(Un(t))
∥∥∥2

L2(Ω)
dt

)

+
1

2p

(∫ T

0
dt

∥∥∥∥dUn

dt

∥∥∥∥
2

L2(Ω)

)
(20.13)

By noting that ∫ T

0
‖Δ(∧)F(Un(t))‖2

L2(Ω)dt

≤ ‖Δ(∧)‖2
op ×

(
sup {F(x)}

x ∈ [−∞,∞]

)2

×
∫ T

0
dt‖Un(t)‖2

L2(Ω) < ∞ (20.14)

one obtains as a further result that the set of the derivatives {dUn
dt } is bounded in

L2([0,T ],L2(Ω)) (so in L2([0,T ],H−1(Ω)).
At this point we apply the famous Aubin-Lion theorem [3] to obtain the strong conver-

gence on L2(Ω) of the set of the Galerkin approximants {Un(x, t)} to our candidate U(x, t),
since this set is a compact set in L2([0,T ],L2(Ω)) (see appendix A).

By collecting all the above results we are lead to the strong convergence of the L2(Ω)-
sequence of functions F(Un(x, t)) to the L2(Ω) function F(U(x, t)).

We now assemble the above obtained rigorous mathematical results to obtain U(x, t) as
a weak solution of eq.(20.1) for any test function v(x, t) ∈C∞

0 ([0,T ]),H2(Ω)∩H1
0 (Ω))

lim
n→∞

∫ T

0
dt
[(

U (n),−dv
dt

)
L2(Ω)

+ (−ΔU (n),v)L2(Ω)(
F(U (n)),−Δ(∧)v)L2(Ω)

]
= lim

n→∞

∫ T

0
dt( f (n),v) (20.15)

or in the weak-generalized sense above mentioned∫ T

0
dt
(

U(x, t),−dv(x, t)
dt

)
L2(Ω)

+
(
U(x, t),(−Δv)(x, t)

)
L2(Ω)

+
(
F(U(x, t),−(Δ(∧)v(x, t)

)
L2(Ω)

=
∫ T

0
dt( f (x, t),v(x, t))L2 (Ω), (20.16)
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since v(0,x) = v(T,x) ≡ 0 by our proposed space of time-dependent test functions as
C∞

0 ([0, t],
H2(Ω) ∩ H1

0 (Ω)), suitable to be used on the Rosens path integrals representations
for stochastic systems (see equations (22a)-(22b) in what follows).

The uniqueness of our solution U(x, t), comes from the following lemma [4].

Lemma 1. If U (1) and U (2) in L∞([0,T ]× L2(Ω)) are two functions satisfying the weak
relationship below

∫ T

0
dt

{(
U (1)−U (2),−

∂v
∂t

)
L2(Ω)

+ (U (1)−U (2),+Δv)L2(Ω)(
F(U (1)−F(U (2));+Δv

)
L2(Ω)

}
≡ 0 (20.17)

then U (1) = U (2) a.e in L∞([0,T ]× L2(Ω)). The proof of eq.(20.17) is easily obtained
by considering the family of test functions on eq.(20.16) of the following form vn(x, t) =
g(ε)(t)e+αntϕn(x) with −Δϕn(x) = αnϕn(x) and g(t) = 1 for (ε,T − ε) with ε > 0 arbitrary.
We can see that it reduces to the obvious identity (αn > 0).

∫ T−ε

ε
dt exp(αnt)

(
F(U (1))−F(U (2)),ϕn

)
L2(Ω) ≡ 0, (20.18)

which means that F(U (1)) = F(U (2)) a.e on (0,T )×Ω since ε is an arbitrary number. We
have thus U (1) = U (2) a.e, as F(x) satisfies the lower bound estimate by our hypothesis on
the kind of non-linearity considered in our non-linear diffusion eq.(20.1).

|F(x)−F(y)| ≥
(

inf(F ′(x))
−∞ < x < +∞

)
|x− y| (20.19)

Let us now consider a path-integral solution of eq.(20.1) (with g(x) = 0) for f (x, t)
denoting the white-noise stirring [4].

E( f (x, t) f (x′, t ′)) = λδ(D)(x− x′)δ(t − t ′) (20.20)

where λ is the noise-strenght.
The first step is to write the generating process stochastic functional (the Euclidean

Quantum Field Diffusion) through the Rosen-Feynman path integral identities [4] (see
chapter 1)

Z[J(x, t)] = E f

[
exp

{
i
∫ T

0
dt

∫
Ω

dDxU(x, t, [ f ])J(x, t)
}]

(20.21-a)

= E f

[∫
DF [U ]δ(F)(∂tU −ΔU −Δ(∧)(F(U)− f ))

]

× exp

{
i
∫ T

0
dt

∫
Ω

dDxU(x, t)J(x, t)
}

(20.21-b)
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= E f

[∫
DF [U ]DF [λ]exp

{
i
∫ T

0
dt

∫
Ω

dDxλ(x, t)

× (
∂tU −ΔU −Δ(∧)(F(U))− f

)}]
× exp

{
i
∫ T

0
dt

∫
Ω

dDxU(x, t)J(x, t)
}

(20.21-c)

=
∫

DF [U ]exp

{
− 1

2λ

∫ T

0
dt

∫
Ω

dDx

× [(∂tU −ΔU −Δ(∧)(F(U))]2(x, t))
}

× exp

{
i
∫ T

0
dt

∫
Ω

dDxU(x, t)J(x, t)
}

(20.21-d)

The important step made rigorous mathematically possible on the above written (still
formal) Rosen’s path integral representation by our previous rigorous mathematical analysis
is the use of the delta functional identity on eq.(20.21-b) which is true only in the case of
the existence and uniqueness of the solution of the diffusion equation in the weak sense at
least for multiplier Lagrange fields λ(x, t) ∈C∞

0 ([0,T ],H2(Ω)∩H1
0 (Ω)).

As an important mathematical result to be pointed out is that in general case of a non-
porous medium [4] in R3, where one should model the diffusion non linearity by a complete

Laplacean ΔF(U(x, t)), one should observes that the set of (cut-off) solutions {U
(∧)(x, t)}

of eq.(20.1) still remains a bounded set on L∞([0,T ],L2(Ω)). Since we have the a pri-
ori estimate uniform bound for the U (n)-derivatives below in D = 3 (with G′(x) = F(x)).
Namely:∣∣∣∣∣∣

∫ T

0
dt

∥∥∥∥∥dU (n)

dt

∥∥∥∥∥
2

L2(Ω)

∣∣∣∣∣∣≤
∣∣∣∣∣
∫ T

0
dt

(∫
Ω

d3x(ΔF(U (n)(t))) ·
(

dU (n)(t)
dt

))∣∣∣∣∣
+

∣∣∣∣∣
∫
Ω

d3x f (x, t)
d(U (n)(x, t))

dt

∣∣∣∣∣
≤

∣∣∣∣
∫ T

0
dt Real

{
d
dt

∫
Ω

d3xΔG(U (n)(t)
}∣∣∣∣+ 1

2

{
sup

0≤t≤T
p‖ f (x, t)‖2

L2(Ω) +
1
p
‖ ·
U

(n)
‖2

L2(Ω)

}

≤
∣∣∣∣Real

(∫
Ω

d3x(ΔG(U (n)(T,x))−ΔG(U (n)(0,x))
)∣∣∣∣

+
1
2

sup
0≤t≤T

{
p‖ f (x, t)‖2

L2(Ω) +
1
p
‖ ·
U

(n)
‖L2(Ω)

}

≤ 1
2

p‖ f‖2
L∞((0,t),L2(Ω)) +

1
2p

‖ ·
U

(n)
(t)‖L∞((0,t),L2(Ω)) < ∞ (20.22)

Where U (n)(T,x)
∣∣∣
∂Ω

= U (n)(0,x)
∣∣∣
∂Ω

= 0 (see eq.(20.3). The uniform bound for the

derivatives is achieved by choosing 1
2p < 1.

As another point worth to call the attention for we note that the above considered
function space is the dual of the Banach space L1([0,T ],L2(Ω)). So, one can extract
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from the above set of cut-off solutions a candidate U
(∞)(x, t), in the weak-star topology

of L∞([0,T ],L2(Ω)) for the above cited case of cut-off removing ∧= +∞ [6]. However, we
will not proceed throughly in this straightforward technical question of cut-off removing in
our model of non-linear diffusion in this chapter for general spaces RD.

Finally, we remark that in the one-dimensional case Ω ∈ R1, one can further show by
using the same compacity methods the existence and uniqueness of the diffusion equa-
tion added with the hydrodynamic advective term 1

2
∂

dx (U(x, t))2, which turns the diffusion
eq.(20.1) as a kind of non-linear Burger equation on a porous medium.

It appears very important to remark that Galerking methods applied directly to the finite-
dimensional stochastic eq.(20.7) (see eq.(20.4)) may be saving-time computer simulation
candidates for the “turbulent” path-integral eq.(22a)-eq.(22d) evaluations by approximate
numerical methods ([2]-second reference).

20.3. The Linear Diffusion in the Space L2(Ω)

Let us now present some mathematical results for the diffusion problem in Hilbert Spaces
formed by square-integrable functions L2(Ω) [5], with the domain Ω denoting a compact
set of RD.

The diffusion equation in the infinite-dimensional space L2(Ω) is given by the following
functional differential equation (see first reference of [5] for the mathematical notation).

∂ψ[ f (x); t]
∂t

=
1
2

TrL2(Ω)
(
[QD2

fψ[ f (x, t)]
)

ψ[ f (x), t → 0+] = Ω[ f (x)], (20.23)

Here ψ[ f (x), ·] is a time-dependent functional to be determined through the govern-
ing eq.(20.23) and belonging to the space L2(L2(Ω),dQμ( f )) with dQμ( f ) denoting the
Gaussian measure on L2(Ω) associated to Q – a fixed positive self-adjoint trace class op-
erator

∮
1(L

2(Ω)) – and D2
f is the second – Frechet derivative of the functionalψ[ f (x), t]

which is given by a f (x)-dependent linear operator on L2(Ω) with associated quadratic
form (D2

fψ[ f (x), t] ·g(x),h(x))L2 (Ω).
By considering explicitly the spectral base of the operator Q on L2(Ω)

Qϕn = λnϕn, (20.24)

The L2(Ω)-infinite – dimensional diffusion equation takes the usual form:

Ψ[∑
n

fnϕn, t] = ψ(∞)[( fn), t] (20.25a)

Ω[∑
n

fnϕn] = Ω(∞)[( fn)] (20.25b)

∂ψ(∞)[( fn), t]
∂t

=∑
n

[(λnΔ fn)ψ
(∞)[( fn), t]] (20.25c)

ψ(∞)[( fn),0] = Ω(∞)[( fn)] (20.25d)
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or in the Physicist’s functional derivative form (see ref. [5]).

∂
∂t
ψ[ f (x), t] =

∫
Ω

dDx
∫
Ω

dDx′Q(x,x′)
δ2

δ f (x′)δ f (x)
ψ[ f (x), t] (20.26a)

ψ[ f (x),0] = Ω[ f (x)] (20.26b)

Here the integral operator Kernel of the trace class operator is explicitly given by

Q(x,x′) =∑
n

(λnϕn(x)ϕn(x′)) (20.26c)

A solution of eq.(26a) is easily written in terms of Gaussian path-integrals [5] which
reads on the physicist’s notations

ψ[ f (x), t] =
∫

L2(Ω)
DF [g(x)]Ω[ f (x)+ g(x)]×det+

1
2

[
1
2t

Q−1
]

× exp

{
− 1

2t

∫
Ω

dDx
∫
Ω

dDx′g(x) ·Q−1(x,x′)g(x′)
}

(20.27)

Rigorously, the correct functional measure on eq.(20.27) is the normalized Gaussian
measure with the following Generating functional

Z[ j(x)] =
∫

L2(Ω)
dtQμ[g(x)]exp

{
i
∫
Ω

j(x)g(x)dDx

}

= exp

{
− t

2

∫
Ω

dDx
∫
Ω

dDx′ j(x)Q+1(x,x′) j(x′)
}

(20.28)

At this point, it becomes important remark that when writting the solution as a
Gaussian-path integral average as done in eq.(20.27), all the L2(Ω) functions in the func-
tional domain of our diffusion functional field ψ[ f (x), t] belongs to the functional domain
of the quadratic form associated to the classe trace operator Q the so-called reproducing
kernel of the operator Q which is not the whole Hilbert Space L2(Ω) as naively indicated
on eq.(20.27), but the following subset of it:

Dom(ψ[·, t]) = { f (x) ∈ L2(Ω)|Q− 1
2 f ∈ L2(Ω)}

⊂
�= L2(Ω) (20.29)

The above written result gives a new generalization of the famous Cameron-Martin
theorem that the usual Wienner measure (defined by the one-dimensional Laplacean with
Dirichlet conditions on the interval end-points) is translation invariant, i.e dWienμ[ f + g] =
dWienμ[ f ]×

(
dWienμ[ f+g]

dWienμ[ f ]

)
, if and only if the shift function g(x) is absolutely continuous with

derivative on L2([a,b]). In other words g ∈ H1
0 ([a,b]) = Dom

{√
− d2

d2x

}
.

Another point important to call the reader attention is that one can writte eq.(20.27) in
the usual form of Diffusion in finite dimensional case (see appendix B)

ψ[ f (x), t] =
∫

L2(Ω)
DF [g(x)]Ω[ f (x)+

√
tg(x)]×

exp

{
− 1

2t

∫
Ω

dDx
∫
Ω

dDx′g(x)Q−1(x,x′)g(x)
}

, (20.30)
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At this point is worth call the reader attention that dtQμ and dQμ Gaussian measures
are singular to each other by a direct application of Kakutani theorem for Gaussian infinite
dimensional measures for any time t > 0.

dtQμ[g(x)]
/

dQμ[g(x)] = +∞ (20.31)

Let us apply the above results for the Physical diffusion of Polymer Rings (closed
strings) described by Periodic Loops �X(σ) ∈ RD,0 ≤ σ≤ T,�X(σ+ T) = �X(σ) with a non-
local diffusion coeficient Q(σ,σ′) (such that

∫ T
0 dσ

∫ T
0 dσ′Q(σ,σ′) = Tr[Q] < ∞). The fun-

cional governing equation in Loop Space (formed by Polymer rings) is given by

∂ψ(ε)[�X(σ);A]
∂A

=
∫ T

0
dσ

∫ T

0
dσ′Q(ε)

i j (σ,σ′)
δ2

δ�Xi(σ)δ�Xj(σ)
ψ(ε)[�X(σ),A] (20.32a)

ψ(ε)[�X(σ);0] = exp

{
−λ

2

∫ T

0
dσ

∫ T

0
dσ′�Xi(σ)Mi j(σ,σ′)�Xj(σ′)

}
. (20.32b)

Here the ring polymer surface probability distribuition ψ(ε)[�X(σ),A] depends on the
area parameter A, the area of the cylindrical polymer surface of our surface-polymer chain.
Note the presence of a parameter ε on the above written objects takes into account the local
(the integral operator kernel) case Q(σ,σ′) = δ(σ−σ′) as a limiting case of the rigorously
mathematical well-defined (class trace) situation on the end of the observable evaluations

Q(ε)
i j (σ,σ′) =

1√
πε

[
exp

(
−(σ−σ′)2

ε2

)]
(20.33)

The solution of eq.(32a) is straightforwardly written in the case of a self-adjoint kernel
M on L2(Ω×Ω).

exp

{
−1

2

∫ T

0
dσ

∫ T

0
dσ′�Xi(σ)Mi j(σ,σ′)�Xj(σ′)

}

×det−
1
2 [1+ AλM(Q(ε))−1]

exp

{
+

1
2

∫ T

0
dσ

∫ T

0
dσ′ �(MX)i(σ)

(
(λM +(Q(ε))−1 · 1

A

)
�(MX) j(σ

′)
}

(20.34)

The functional determinant can be reduced to the evaluation of an integral equation

det
1
2 [1+ AλM(Q(ε))−1]

= exp

{
−1

2
TrL2(Ω)lg(1+λAM(Q(ε))−1

}

= exp

{
−1

2
TrL2(Ω)

∫ λ

0
dλ′[(Q(ε))−1M)(1+λ′A(Q(ε))−1M)−1]

}

= exp

{
−1

2
TrL2(Ω)

∫ λ

0
dλ′R(λ′)

}
(20.35)

Here the kernel operator R(λ′) satisfies the integral equation (accesible for numerical
analysis)

R(λ′)(1+λ′A(Q(ε))−1M = (Q(ε))−1M (20.36)
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Which in the local case of ε → 0+, when considered in the final result eq.(20.34) -
eq.(20.35), produces the explicitly candidate solutions for our Polymer-surface probalility
distribuition with M a class trace operator on the Loop space: L2([0,T ]).

ψ[�X(σ),A] = exp

{
−1

2
TrL2(Ω)

∫ λ

0
dλ′[M(Q(ε) +λ′AM)−1]

}

× exp

{
−λ

2

∫ T

0
dσ

∫ T

0
dσ′Xi(σ) ·Mi j(σ,σ′)�Xj(σ′)

}

× exp

{
+

1
2

∫ T

0
dσ

∫ T

0
dσ′ �(MX)i(σ)

(
λM +(Q(ε))−1 · 1

A

)
(σ,σ′) �(MX) j(σ

′)
}

(20.37)

It is worth call the reader attention that if A ∈ ∮
1 and B is a bounded operator - so A ·B

is a class trace operator-, the functional determinant det[1+ AB] is a well-defined object as
a direct result of the obvious estimate, result which was used to arrive at eq.(20.37).

lim
N→∞

N

∏
n=0

(1+λn) ≤ exp

(
N

∑
n=0

λn

)
= exp(TrAB)

As a last comment on the linear infinite-dimensional diffusion problem eq.(20.23), let
us sketchy a (rigorous) proof that eq.(20.27) is the unique solution of eq.(20.23). Firstly,
let us consider the initial condition on eq.(20.23) as belonging to the space of all mappings

G
...L2(Ω)→ R that are twice Fréchet differentiable on L2(Ω) with uniformly continuous and

bounded second derivative D2
f G (a bounded operator of L(L2(Ω)) with norm C). This set

of mappings will be denoted by uC2[L2(Ω),R]. It is, thus, straightforward to see through an
application of the mean value theorem that the following estimate holds true

sup
f (x)∈Q

1
2 L2(Ω)

|ψ[ f (x), t]−G[ f (x)]|

≤
∫

L2(Ω)
|G( f (x)+ g(x))−G(g(x))|dtQμ[g(x)]

≤
∫

L2(Ω)

[
|DG( f (x),g(x))L2 (Ω) +

∫ 1

0
dσ(1−σ)(D2G[ f (x)+σg(x)]g(x),g(x)L2 (Ω)|

]
× dtQμ[g(x)]

≤ 0+C
∫ 1

0
dσ(1−σ)

∫
L2(Ω)

‖g(x)‖2
L2(Ω)dtQμ[g(x)]

≤C

(∫
L2(Ω)

‖g(x)‖2
L2(Ω)dtQμ[g(x)]

)
≤CTr(tQ) = (CTr(Q)t → 0 as t → 0+. (20.38)

We have thus defined a strongly continuous semi-group on the Banach Space
UC2[L2(Ω),R] with infinitesimal generator given by the infinite-dimensional Laplacean
Tr[QD2] acting on the space L2(Q

1
2 (L2(Ω)),R). By the general theory of semi-groups

on Banach spaces we obtain that eq.(20.27) satisfies the infinite-dimensional diffusion ini-
tial value problem eq.(20.23), at least for initial conditions on the space uC2[L2(Ω),R].
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Since purely Gaussian functionals belong to uC2[L2(Ω),R] and they form a dense set on
the space L2(L2(Ω),dQμ), we get the proof of our result for general initial condition on
L2(L2(Ω),dQμ).

Finally, we point out that the general solution of the diffusion problem on Hilbert Space
with sources and sinks, namely

∂
dt
ψ[ f (x), t] =

1
2

TrL2(Ω)[QD2
fψ[ f (x), t]]−V [ f (x)]ψ[ f (x), t] (20.39)

with
ψ[ f (x), t → 0+] = Ω[ f (x)], (20.40)

posseses a generalized Feynman-Wiener-Kac Hilbert L2(Ω) space valued path integral rep-
resentation, which in the Feynman Physicist formal notation reads as

ψ[h(x),T ] =
∫

C([0,T ],L2(Ω))
DF [X(σ)]

× exp

{
−1

2

∫ T

0
dσ

(
dX
dσ

,Q−1 dX
dσ

)
L2(Ω)

(σ)

}

×Ω
[(∫ T

0
X(σ)dσ

)
+ X(0)

]

× exp

{
−

∫ T

0
dσV

[(∫ T

0
X(σ′)dσ′

)
+ X(0)

]}
(20.41)

Where the paths satisfy the end-point constraint X(T ) = h(x) ∈ L2(Ω);X(0) = f (x) ∈
L2(Ω).

Appendix A.
The Aubin-Lion Theorem

Just for completenesse in this mathematical appendix for our mathematical oriented read-
ers, we intend to give a detailed proof of the basic result on compacity of sets in function
spaces of the form L2(Ω) and througout used on section 2. We have, thus, the Aubin-Lion
Theorem[3] in the Gelfand triplet H1

0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) = (H1
0 (Ω))∗

“Aubin-Lion - If {Un(x, t)} is a sequence of time-differentiable functions in a
bounded set of L2([0,T ],H1

0 (Ω)) such that its time derivatives forms a bounded set of
L2([0,T ],H−1

0 (Ω)), we have that {Un(x, t)} is a compact set on L2([0,T ],L2(Ω))”.

Proof: the basic fact we are going to use to give a mathematical proof of this theorem is
the following identity (Ehrling’s lemma): For any given ε> 0, there is a constant C(ε) such
that

‖Un‖L2(Ω) ≤ ε‖Un‖H1
0 (Ω) +C(ε)‖Un‖2

H−1(Ω) (20.A-1)
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As a consequence, we have the following estimate

∫ T

0
‖Un −Um‖2

L2([0,T ]),L2(Ω)

≤
∫ T

0
dt(ε‖Un −Um‖H1

0 (Ω) +C(ε)‖Un −Um‖H−1(Ω))
2

≤ ε2
(∫ T

0
dt‖Un −Um‖2

H1
0 (Ω)

)
+(C(ε)2

(∫ T

0
dt‖Un −Um‖2

H−1(Ω)

)

+ 2εC(ε)
(∫ T

0
dt(‖Un −Um‖H1

0 (Ω)×‖Un −Um‖H−1
0 (Ω))

)

≤ ε2
(∫ T

0
dt‖Un −Um‖2

H1
0 (Ω)

)
+C(ε)2

(∫ T

0
dt‖Un −Um‖2

H−1(Ω)

)

+ 2εC(ε)
(∫ T

0
dt‖Un −Um‖2

H1
0 (Ω)

) 1
2

+
(∫ T

0
dt‖Un −Um‖2

H−1(Ω)

) 1
2

≤ 2ε2M + 2εC(ε)M
1
2

(∫ T

0
dt‖Un −Um‖2

H−1(Ω)

) 1
2

+(C(ε)2)
(∫ T

0
dt‖Un −Um‖2

H−1(Ω)

)
(20.A2)

At this point, we use the Arzela-Ascoli theorem to see that {Un(x, t)} is a compact set
on the space C([0,T ],H−1(Ω)) since we have the set equicontinuity:

‖Un(t)−Um(s)‖H−1(Ω) ≤
∫ t

s
‖U ′

n(τ)‖H−1
0 (Ω)dτ

≤ |t − s|(1− 1
2 )×

(∫ T

0
‖U ′

n(τ)‖2
H−1(Ω)dτ

) 1
2

≤ M|t − s| 1
2 (20.A3)

It is a crucial step now by remarking that H1
0 (Ω) is compactly immerse in L2(Ω) (Rel-

lich Theorem). Let us not that for each t (almost everywhere in [0,T ]), Un(x, t) is a bounded
set on H1

0 (Ω) since Un(x, t) belongs to a bounded set L2([0,T ], H1
0 (Ω)) by hypothesis. As a

consequence, {Unk ,(x, t)} is a compact set on L2(Ω) (Rellich Theorem) and so in H−1(Ω)
almost everywhere in [0,T ] since L2(Ω) ↪→H−1(Ω). By an application of the Arzela-Ascoli
theorem, there is a sub-sequence{Unk(x, t)} of {Un(x, t)} (and still denoted by {Un(x, t)}
such that it converges uniformly to a given function U(x, t) ∈ C([0,T ],H−1(Ω)). As a di-
rect result of this fact we, have that (for T < ∞!) for (n,m) → ∞.

(∫ T

0
‖Un −Um‖2

H−1(Ω)

) 1
2

≤ (sup |Un −Um|C([0,T ],H−1(Ω))×
(∫ T

0
1 ·dt

) 1
2

→ 0 (20.A4)

Returning to our estimate eq.(20.A2), we see that this sub-sequence is a Cauchy se-
quence in L2([0,T ],L2(Ω)). As a consequence, for each fixed t ∈ [0,T ] (almost every-
where), Un(x, t) converges to U(x, t) in L2(Ω).
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Appendix B.
The Linear Diffusion Equation in Hilbert Spaces

Let us show mathematically the basic functional integral representation eq.(20.30) for the
L2(Ω)-Space Diffusion Equation eq.(20.23) .

As a first step for such proof, let us call the reader attention that one should consider
the second order (Laplacean) D2U(x, t) as a bounded operator in L2(Ω) in order to the
operatorial composition with the positive definete class trace operator Q still be a class
trace operator as it is explicitly supposed in the right-hand side of eq.(20.23).

We thus impose as the sub-space of initial condition the Diffusion Equation eq.(20.23)
for the (dense) vector sub-space of C(L2(Ω),R) composed of all functionals of the form.

f (x) =
∫

L2(Ω)
dQμ(p)F(p)exp

(
i〈p,x〉L2(Ω)

)
(20.B1)

with F(p) ∈ L2(L2(Ω),dQμ).
By substituting the inital condition eq.(20.B1) into the integral representation eq.(20.30)

and by using the Fubbini-Toneli Theorem to exchange the needed integrations order in the
estimate below, we get:

U(x, t) =
∫

L2(Ω)
f (x+

√
tξ)dQμ(ξ)

=
∫

L2
dQμ(ξ)

{∫
L2

dQμ(p)F(p)ei〈p,x+
√

tξ〉L2

}

=
∫

L2
dQμ(p)F(p) · ei〈p,x〉L2 e−

1
2 t〈p,Qp〉L2 . (20.B2)

Note that we have already proved that U(x, t) is a bounded functional of
C
(
L2(Ω)× [0,∞];R

)
on the basis of our hypothesis on the initial functional date eq.(20.B1).

At this point we observe that the second order Frechet derivatives of the Functional
exp i〈p,x〉L2 are easily (explicitly) evaluated as [(7)]

QD2
(

ei〈p,x〉L2

)
=

(
∞

∑
�=1

λ�
∂2

∂2x�

)[
ei(∑∞

n=1 pnxn)
]

= −(〈p,Qp〉L2)ei〈p,x〉L2 (20.B3)

We have thus a straightforward proof of our claim above cited on the basis again of the
chosen initial date sub-space

Tr[QD2U(x, t)]

≤
∫

L2(Ω)
dQμ(p)|F(p)|〈p,Qp〉L2

≤
(∫

L2(Ω)
dQμ(p)|F(p)|2

) 1
2
(∫

L2(Ω)
dQμ(p)|〈p,Qp〉L2(Ω)|2

) 1
2

≤ (TrQ)2‖F‖2
L2(L2(Ω),dQμ) < ∞. (20.B4)
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Now, it is a simply application to verify that eq.(20.B2) satisfies the Diffusion Equation
in L2(Ω) (or in any other Separable Hilbert Space). Namely:

∂U(x, t)
∂t

=
∫

L2(Ω)
dQμ(p)F(p)ei〈p,x〉L2

{
−1

2
〈p,Qp〉L2(Ω)

}

× e−
t
2 〈p,Qp〉L2(Ω) (20.B5)

TrL2(Ω)[QD2U(x, t)] =
∫

L2(Ω)
dQμ(p)F(p)TrL2(Ω)

{
QD2ei〈p,x〉

}
e−

t
2 〈p,Qp〉L2(Ω)

=
∫

L2(Ω)
dQμ(p)F(p){−〈p,Qp〉L2}ei〈p,x〉e−

t
2 〈p,Qp〉L2(Ω) (20.B6)

with

U(x,0) =
∫

L2(Ω)
dQμ(p)F(p)ei〈p,x〉

{
lim

t→0+
e−

t
2 〈p,Qp〉L2(Ω)

}
= f (x). (20.B7)
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Chapter 21

Basics Integrals Representations in
Mathematical Analysis of Euclidean
Functional Integrals

In this complementar chapter, we expose additional rigorous mathematical concepts and
theorems behind Euclidean Functional Integrals as proposed by us in Chapters 19-20 of
this book and used throughly in another chapters.

In Section 1.1, we present a pure topological proof of the basic measure theory Riesz-
Markov theorem, mathematical concept basic to construct rigorously functional integrals.
In Section 1.2, we present analogous results on the mathematics structure of the L. Schwartz
Distributions.

In Section 1.3, we present the important Kakutani theorem on the Equivalence of Gaus-
sian Measures in Hilbert Spaces, the mathematical basis for the rigorous framework for
Jacobian Transformations in Euclidean Path Integrals.

21.1. On the Riesz-Markov Theorem

“The words set and function are not as simple as they may seem. They are potent words.
They are like seeds, which are primitive in appearance but have the capacity for vast and
intrincate developments - G.F. Simmons.”

The Riesz Representation Theorem

Theorem 1. Let X be a Topological Compact Hausdorff Space. Let L be a positive linear
functional on C(X). There exists a unique positive measure dLμ and an associated σ-algebra
on X which represents L in the sense that

L( f ) =
∫

X
f (x)dLu(x) (1)

Let us begin our proof by introducing the ring of compact subsets of X .
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Another mathematical structure we needed is the following Banach space. Let pC(X)
be the vector space formed by all linear combinations of the elements of C0(X) and the
characteristic functions of the compact sets of X . We introduce the sup norm on this vector
space and take its completation still denoted by pC(X) (which is a Banach Space). It is
a straightforward consequence of the Hahn-Banach Theorem that the given positive linear
functional L has an unique extension to pC(X) still denoted by L in what follows.

We define now an equivalence relation on the Algebra of sets above introduced through
the relationship

∀β, α ∈ A and α∼ β ⇔ L(χαΔβ) = 0, (2)

here αΔβ denotes the topological closure of the difference set αΔβ = (α−β)∪ (β−α) =
(α∩β′)∪ (β∩α′). On this Coset Algebra of sets A/∼, denoted by EBaire(X), we introduce
a metrical structure by means of the metric set function

dL(A,B) = L

((
χAΔB

))
. (3)

By considering the topological completation of the metric space (EBaire(X),dL) we ob-
tain our proposed σ-algebra on X and a measure defined by the simple metrical relation

μL(α) = dL(α,φ). (4)

At this point it is evident that the Extension Theorem of Caratheodory is a simple re-
phrazing of eq(4), since for a given μL-measurable set Ω ∈ (EBaire(X),μL) and ε > 0, there
is a finite family of disjoint compact sets on X : {Ke}e=1....,N(c) such that

d

(
Ω,

N(ε)⋃
�=1

K�

)
≤ ε ⇔

(N(ε)

∑
�=1

μL(Ke)
)
− ε≤ μL(Ω) ≤ ε+

(N(ε)

∑
�=1

μL(Ke)
)

(5)

Let us introduce the large Banach Space Cbounded(EBaire(X),R) with the usual sup norm.
It is straightforward to see that the given functional L ∈ (pC(X))∗ has an unique extension
L̃ to this new space of continuous function on EBaire(X) [which is straightforwardly identi-
fied with the measurable functions on (EBaire(X), uL)!] Since the characteristic functions of
compact sets are elements of Cbounded(EBaire(X),R) any f ∈ C(x) is the limit on the topol-
ogy of C(EBaire(X),R) of the simple functions (monotone non-decreasing) sequence below
written

f (x) = lim
n→∞

{ n2n

∑
j=1

j−1
2n χEn, j(x)+ nχFn(x)

}
≡ lim

n→∞
Sn( f )(x). (6)
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Here the (compact!) sets En, j and Fn in X are defined by

En, j = f−1
([

j−1
2n ,

j
2n

])
(7-a)

Fn = f−1
(

[n, || f ||C(x)]
)

(7-b)

Now the assertive expressed by eq(1) is a simple result of the definition of integration

L( f ) = L̃( f ) = L̃( lim
n→∞

Sn( f )) = lim
n→∞

L(Sn( f ))

= lim
n→∞

( n2n

∑
j=1

j−1
2n μL(En, j)+ nμL(Fμ)

)

= lim
n→∞

(∫
X

fn(x)dLμ(x)
)

def≡
∫

X
f (x)dLμ(x) (8)

which proves the Riesz-Markov theorem.

As a last point of this section let us give a criterion for the existence of invariant sets in
relation to a given (measurable) transformation

T :
(
EBaire(X),dL) → (EBaire(X),dL). (9)

If the measurable transformation is a contraction (or some of its power!) between the
above Complete Metric Spaces Namelly: if there is c < 1 and an integer P ∈ Z

+ such that

dL(T ρA,T ρB) =
∫

X
dLμ(x)χ(T ρAΔTρB)(x) ≤ e

(∫
X

dLμ(x)χAΔB)(x)
)

, (10)

then there is a point-fixed set A, such that

T (A) = A (11)

in the sense that

dL(T (A),A) =
∫

X
dLμ(x)X(T (A)ΔA)(x) = 0. (12)

We now show a concrete version of the Riesz representation theorem
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Theorem 2. Let L be a continuous linear functional on the C(Ω), the space of the continu-
ous function defined in a compact set Ω⊂ R4 and satisfying the following property

L

(
e

i
( N
∑

j=1
pjx j)

χΩ(x)
)

= fΩ(p1, . . . , pn) = fΩ(p) ∈ L1(RN) (13)

Then there is a (unique) function φL(x) ∈C(Ω) representing the action of the functional
eq(13) on C(Ω) by the integral representation

L(g(x)) =
∫
Ω

dNxφL(x)g(x). (14)

Proof: Let us firstly consider the Fourier Transform of the function fΩ(P). Namely

φL(x) =
(

1√
2π

)n ∫
RN

dN p · eiP·x fΩ(p). (15)

Obviously φL(x) ∈C0(RN).

Due to supposed continuity of the functional L, one can show that fΩ(p) ∈C∞(RN) and
we have the differentiality relation below written (M = (�1, . . . , �N)) (exercise)

∂|M|

∂p�1
1 . . .∂p�N

n
( fΩ(p)) = L

{
(ix1)�1 . . . (ixn)�N

(
exp i

( N

∑
j=1

pjx j

))
χΩ(x)

}
(16)

which means that the inversion Fourier transform theorem holds true

L
(
(x1)�1 . . .(xn)�n

)
=

(
1√
2π

)N ∫
RN

dN xe−ipx
{

(x1)�1 . . .(xn)�n φL(x)
}∣∣∣∣

p=0

=
(

1√
2π

)N{∫
RN

dNx(x1)�1 . . . (xn)� φL(x)
}

(17)

By the Weistrass Theorem, we have finally our envisaged result on C(Ω)

L(g(x)) =
∫

RN
dNxg(x)φL(x)χΩ(x) =

∫
Ω

dNxg(x)φL(x). (18)

21.2. The L. Schwartz Representation Theorem on C∞(Ω)
(Distribution Theory)

“– The Quantum and Random World is an application of Cantor Set Theory in its develop-
ments – Luiz Botelho.”
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After have exposed the fundamental abstract result of Riesz-Markov on the structure of
the elements of the dual space of continuous linear functionals in C(X), with X denoting
a general compact topological space, we pass on to the problem of describing continuous
functionals on the vector space C∞(Ω), with Ω denoting a open set of RN .

Let us thus start by considering a sequence of compact sets Kn , with the property in-

terior (Kn+1) ⊃ Kn and such that Ω =
∞⋃

n=1
Kn , together with the Complete Metrical Space

C∞(Kn), defined by the vector space of infinitely differentiable functions in Ω, with support
in Kn with the Frechet metric

d( f ,g) =
∞

∑
m=0

2−m|| f −g||m
1+ || f −g||m , where || f ||m : sup

x∈Ω
sup
|p|≤m

|Dp f (x)|

The basic contribution of L. Schwartz is to consider the Topology of the inductive limit

on C∞(Ω) as writing formally as topological spaces C∞
ind(Ω) =

∞⋃
n=0

C∞(Kn) rigorously mean-

ing that the topology in C∞(Ω) is the weakest topology which makes all the canonical in-
jections

DN : C∞(Kn) →C∞(Ω) (19)

continuous applications.

A Topological Basis for the origin of C∞(Ω) is formed by all those convex and barreleds
sets U ⊂ C∞(Ω) such that U ∩C∞(Kn) is always a neighborhood of the origin in C∞(Kn).
The main result and reason for introducing such Inductive Topology in C∞(Ω) is that it
leads to the fundamental result that C∞

ind(Ω) is a Sequentially Complete Toplogical Vector
Space.

At this point is worth call the reader attention that the usual non-distributional topo-

logical definition of C∞(Ω) as
∞⋃

m=0
Cm(Ω) [always used in others approach of Generalized

Functions] is stronger than the L. Schwartz inductive topology above introduced.

We always re-write C∞
ind(Ω) in the well-known L. Schwartz motation as D(Ω): the

Schwartz Test function space. The description of the notion of convergence in D(Ω) is
straightforward since we have the sequential completeness topological property. Namely: a
sequence ϕn(x) ∈ D(Ω) converges in D(Ω) if there is a set Kn such that ϕn → ϕ in C∞(Kn).

Another basic result as consequence of the introduction of the Inductive limit topology
in C∞(Ω) is the straightforward description of the Dual Space of D(Ω), denoted by D′(Ω)
and named as the L. Schwartz Distribution Space in Ω

D′(Ω) =
(⋃

n

C∞(Kn)
)∗

=
⋃
n

(C∞(Kn))∗. (20)
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Note that the structural description of (C∞(Kn))∗ is expected to be closely related to that
one of C(Kn)∗ (the Riesz-Markov Theorems). In fact, we have the L. Schwartz generaliza-
tion of the Functional Integral representation of Riesz-Markov theorem.

Theorem 2 (Laurent Schwartz). Any given continuous linear functional L ∈ D′(Ω) may be
represented by a sequence of complex Borel measures dnu(x) in Kn , a sequence of multi-
indexes {Pn} = {p1

n, . . . , pN
n } through the integral representation

L(ϕ) =
∞

∑
n=0

(∫
Kn

dμn(x)(DPnϕ)(x)
)

, (21)

there

(Dpϕ)(x) =
∂(P1

n +···+PN
n )

∂xP1
n

1 . . .∂xPN
n

N

ϕ(x1, . . . ,xN). (22)

Proof: Let L ∈ Dq(Ω), but with compact support Ks ⊂ Ω. By the inductive limit topology
(exercise 1, there is a constant cs > 0, and an integer ms > 0, such that for any ϕ ∈ D(Ω),
we have the estimate

|L(ϕ)| ≤ cs sup
x∈Ks

(
sup

|p|≤ms

|Dpϕ(x)|) (23)

Note that the triple (C,Ks,ms) is not unique. We now consider the following Elliptic

operator Lp =
(

∂
∂x1

p1
)

. . .

(
∂
∂xn

)pn

(p = p1 + · · ·+ pn). Since Lp is an injetive applica-

tion of C∞(Ω) into C∞(Ω) and this T restricts to the dense subspace Lp[D(Ω)] (range of L p

in D(Ω), satisfies the obvious estimate below

f ∈C(Ks) : L
(
L−1

p f
)≤ cs · sup

x∈Ks

| f (x)| (24)

we can apply the Riesz-Markov Theorem 1 to the composed functional L◦L−1
p in C(Ks).

L(L−1
p f ) =

∫
Ks

ds μ(x) · f (x) (25)

or equivalently (exercise) for any ϕ ∈ D(Ω), we have the functional integral representation

L(ϕ) =
∫

Ks

dsμ(x)(Dpsϕ)(x). (26)

In the general case, we just consider an unity partition subbordinate to a given open
cover of Ω (1 = ∑

n
hn(x),Kn ⊂ supphn ⊂ Kn+1,Kn compact set of Ω and UKu = Ω and

hn(x) = 1, for x ∈ Kn)
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L =
∞

∑
n=1

hn(x)L =
∞

∑
n=1

Ln . (27)

At this point we introduce the weak-* topology in D′(Ω) through a sequential criterion:
A sequence of Distributions Ln ∈ D′(Ω) converges weak-star if the sequence of measures
in eq(25) converges in the weak-star topology of C(Ks)∗.

After the proof of L. Schwartz representation theorem, let us introduce the operation
of derivation in the Distributional sense. Firstly, let us recall some definitons in Functional
Analysis of Vector Topological Spaces. Let E and F be two vector spaces with topologies
compatible with its vectorial structure and U : E → F a linear continuous application be-
tween them. For any y′ ∈ F ′ (dual of F), we can associate the element x′ of E ′ through the
definition (tU : F ′ → E ′)

(x′) = x′(x) = y′(U(x)) = (tU(y)). (28)

It can be showed that if U is continuous, the tU remains continuous if E and F are
Frechet Spaces like C∞(Ks)).

As a consequence of the above remarks, the usual derivative operator is a linear contin-
uous application between D(Ω). Namelly

D : D(Ω) → D(Ω).

By the duality eq(28) above mentioned, one has a natural derivative application in
Dq(Ω)

(−DL)
def≡ (tD)(L)( f )

def≡ L(D f ), (29)

besides of being always a continuous operation in D′(Ω) if Ln
D′(Ω)−→⇔ tDLn

D′(Ω)−→ tDL.

At this point we call our reader to how that the sequence of functions fn(x) =
1
n

sen(nx)

as seen as kernels of distributions in D′(R) obviously converges to the zero distribution in
D′(R):

lim
n→∞

∫
R

dx

(
1
n

sennx

)
ϕ(x) = 0. (30)

As a consequence of the above made remark, we have the validity of the result called
the Riemann-Lebesgue Lemma

lim
n→∞

∫
R

dx cos(nx)ϕ(x) = 0. (31)
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Namelly
d
dx

(
sennx)

n

)D′(R)

= cos (nx)
D′(R)−→ 0 (32)

A further finner structural analysis can be implemented to eq(21) by means of an appli-
cation of the Radon-Nikodym theorem to the pair of complex Borel measures (dus(x),dNx)
on the Borelians of Ω.

L(ϕ) =
∞

∑
s=0

(∫
Ω
(Dpsϕ)(x)

( hs(x)︷ ︸︸ ︷
dus(x)

dnx

)
dnx

)

+
∞

∑
s=0

(∫
Ω
(Dpsϕ)(x)dνsing

s (x)
)

, (33)

where hs(x) ∈ L1(Ω,dNx) and dνsing
s (x) is a singular measure (in relation to the Lebesgue

measure dNx in Ω) with support at points (Dirac delta functions) and on sets of Lebesgue
zero measure

dνsing
s (x) =

∞

∑
�=0

a�,s δ(x− x�,s)+ dV (continuous singular)
s (x) (34)

Another important Distributional Space in the (Topological) dual of the Space of test
functions with polynomial decreasing S(RN), a very basic object in Wave Fields Quantum
Path Integral (see Chapter 19)

S(RN) =
{

u ∈C∞(RN) | ||ϕ||n,m = sup
x∈RN

|xn Dmϕ(x)| < (∞)
}
. (35)

We have the following structural theorem, analogous to the Theorem 1 of L. Schwartz.

Theorem 3. Given a functional L in (S(Rn))′, we can always represent L by a Borel complex
measure du(x) in RN by means of (xp = xp1

1 . . .xpn
N ,etc..)

L(ϕ) =
∫

RN
dμ(x)(xp Dqϕ)(x) (36)

The proof of the above written integral representation for distributions in S′(RN) is based
on the fact that for a given L ∈ S′(RN), these are multi indexes (p,q), such that there is a
positive constant c with

|L(ϕ)| ≤ c||ϕ||p,q (37)

Note that the Elliptic operator Lp = xp Dq = xp1
1 . . .xpn

n

(
∂
∂x1

)q1

. . .

(
∂
∂xN

)qN

is an sur-

jective application of S(RN) into S(RN) and Lp(S(RN)) is dense in C0(RN) (continuous
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functions vanishing at ∞), the great usefulness of S1(RN) in Quantum Field Theoretic Path
Integrals is related by the fact the usual Fourier Transform is a vectorial/topological isomor-
phism in S(RN). By duality, one straightforwardly define the Fourier Transforms in S′(RN)
which remains a topological isomorphism in the Distributional Space S′(RN)

F : S(RN) → S(RN) (38)
tF : S′(RN) → S′(RN) (39)
tF (L)(ϕ) = L(F (ϕ)) (40)

the above written equations are important results in Applications of Distribution Theory
of L. Schwartz is given by the following result: Let A be a continuous linear application
between a locally convex topological vector space E with values in the topological dual of
another locally convex topological vector space F ′. Then the bilinear form in E ×F defined
by the relation B( f ,g) = (A f )(g) is continuous in E ×F ′, when one introduces the weak
topology on F ′. As a consequence, every continuous bilinear form on S(RN) is of the linear
supperposition of forms below written for a pair of multi-indexes (m,n)

B( f ,g) =
∫

RN×RN
F(x,y)(Dm f (x))(Dng(x))dnxdny. (41)

Here F(x,y) is a continuous function of polynomial grow in RN

(
∃ p ∈ Z

+ | �g
|x|→∞
|y|→∞

F(x,y)(|x|2 + |y|2)−p = 0

)

21.3. Equivalence of Gaussian Measures in Hilbert Spaces and
Functional Jacobians

In this somewhat long section, we present the mathematical analysis of the Jacobian Change
of Variable in Gaussian Functional Integrals in Hilbert Spaces through the formalism of the
Kakutani Theorem.

Let A−1 and B−1 be positive definite trace class operators in a given Hilbert Space
(H,〈,〉) and operators inverse of the operators A and B.

The spectral representations for theses operators

Aϕn = λnϕn (42-a)

Bσn = αnσn (42-b)
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define Gaussian measures dA−1u(ϕ) and dB−1u(ϕ) in the Borelian Algebra of the cylinders
sets in H and are defined by

dA−1μ(ϕ) = limsup
N

{ N

∏
n=1

d〈ϕ,ϕn〉exp

{
− λn

2
〈ϕ,ϕn〉2

}
×
(√

λn

2π

)}
(43-a)

dB−1ν(ϕ) = limsup
N

{ N

∏
n=1

d〈ϕ,σn〉exp

{
− αn

2
〈ϕ,σn〉2

}
×
(√

αn

2π

)}
(43-b)

We have thus the Kanutani theorem and the measure equivalence of the above written
measues.

Kanutani Theorem 4. The two measures eqs(43-a), eq(43-b) are mutually equivalent or
singular. In the first case we have the criterium that

∑
n

(
λ2

n −α2
n

λnαn

)
< ∞ (44)

and the Radon-Nykodin derivative of the above measures is given by

dA−1μ(ϕ)
dB−1ν(ϕ)

= lim
N→∞

{ N

∏
[
λn

αn
exp

(
− 1

2
(λn −αn)

(
∑
n

(ϕ,σn)2)
)]}

(45)

Note that in the case for the Radon-Nykodim derivative

dA−1μ(ϕ)
dB−1ν(ϕ)

= det(AB−1)exp

{
− 1

2
〈ϕ,(A−B)ϕ〉

}
(46)

On basis of eq(45)-(46), one can show the Wiener result about translation invariant of
Gaussian Measures: Let Th : H → H be the translation operator in H . Let us consider the
translated Gaussian measure

dA−1μ(Thϕ) = dA−1μ(ϕ+ h) =
( ∞

∏
n=1

d〈ϕ|ϕn〉e− 1
2λn[〈ϕ,ϕn〉+〈h,ϕm〉]2

}
(47)

By the Kakutani theorem, the translated measure dA−1μ(Thϕ) is equivalent to the mea-
sure dA−1μ(ϕ) if and only if

∑
n

|〈h,ϕn〉|2
1
λn

= 〈Ah,h〉 <∞, (48)

or equivalently: the translational-invariance of the measure is insured if h belongs to the
domain of the operator A.

At this point we remark that Dom(A) is a set of zero measure for (H,dA−1μ(ϕ)). [Finite
action smooth field configurations, makes a set of zero functional measure – see Chapter
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1]. Let us give a simple proof of such important result in practical calculations with Path
Integrals.

Firstly, let us re-write the Finite Action set of path integrated configurations (= Dom(A))
in the following form (for ε > 0)

χDm(A)(ϕ) = lim
α→0+

lim
N→∞

exp{−α〈pNϕ,APNϕ〉} =

{
1 if 〈ϕ,Aϕ〉 < ∞
0 otherwise

(49)

where the orthogonal projections Pn → 1 in the strong sense.

Let as evaluate formally in the “Physical way” its functional measure content

MA−1(χDm(A)(ϕ)) = lim
α→0

{
lim

N→∞

[∫
H

dA−1μ(ϕ)e−α〈PNϕ,APNϕ〉
]}

lim
α→0+

(
lim

N→∞
exp

(
− N

2
�g(1+α)

))
= lim

α→0
lim

N→∞

(
e−

N
2 α

)
= e−∞ = 0 (50)

At this point one can see that the usual Schwinger procedure to deduce functional equa-
tions for the Quantum Field Generating functional of Chaper 19 does not make sense in
the Euclidean framework of Path Integrals since the measure is not translational invariant.
Namely in the usual Feynman notation

∫
H

DF [ϕ]
δ
δϕ

{
e−

1
2 〈ϕ,Aϕ〉 e−V (ϕ)

}
�= 0. (51)

As one can see from the above exposed result, the Minlos theorem is a power “tool” in
the Functional Integration Theory in Infinite Dimension Vectorial Spaces.





Chapter 22

Supplementary Appendixes

Appendix 22.A.
String Theory in Embeddings Manifolds

In modern quantum field theory, the framework of strings moving in manifolds has been
successfully used to shed light in the basic problem of quantizing the Gravitation field ([1]).
Moreover, until now the severe problems of the infrared divergencies of the string theory
path integral when viewed as a σ-model two-dimensional field theory in the parameter string
domain R2 has been an issue not completely understood ([2]). Although there is a strong
indication that it is possible to remove such quantum field theoretic difficulties of the use
of a mathematically ill-defined 2D-massless quantum scalar-field [represented by the string
vector position] by means of a string third quantization (the so called String Field Theory),
this step remains an unsolved problem in the present framework of String Theory.

The purpose of this long appendix to Chapter 12 is to consider another fremework for
the problem of the infrared divergencies in String Theory by applying the Nash theorem of
Riemann metrics parametrized by immersions in order to show the appearance of a string
mass effective matrix as a result of the dynamical interaction with the positive curvature of
the given string ambient space-time M, considered as a smooth C∞-differentiable manifold.

2 – The String Mass from the smooth Space-Time manifold Shape-Bending in the Extrinsic
Space.

Let us start our analysis by considering the following convenient euclidean Polyakov’s
string functional integral in the presence of a given back-ground fixed Riemannian metric
in the manifold M where the string dynamics takes place.

Z =
{∫

dcovμ[gab(ξ)]dcovμ[Xμ(ξ)]

× exp

{
− 1

2πα′

∫
R2

d2ξ{√ggab∂a Xμ∂b XνGμν(X(ξ))}

×
{ (s(d)−d)

∏
�=1

δ(F)(H�( f A(XB(ξ))
)}}

(1)

the (closed) string surface {Xμ(ξ),μ = 1, . . . ,d} is immersed in the space-time M given by
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a manifold possessing a C∞(M)-smooth Riemannian structure (metric) {Gμν(xγ)}μ=1,...,d
ν=1,...,d

the manifold parametric explicit set of equations is denoted here by H�( f A(xB)) ≡ 0, A =
1, . . . ,s(d)) and f A : M → Rs(d) is the set of real-valued immersions such that we have
for them the Nash theorem for our smooth given space-time manifold metric {Gμν(xγ)}.
Namely ([3])

Gμν(xγ) =
s(d)

∑
A=1

[
∂ fA

∂xμ
∂ fA

∂xν

]
(xγ). (2)

Here s(d) is the minimal Whitney immersion dimension of the manifold M in
Rd(S(d) > 2d).

The covariant functional measures in the Polyakov path integral eq(1) are the well-
known De-Witt covariant functional metrics without boundary terms. Namely: ([4])

dS2[gab] =
∫

R2
d2ξ

[√
g(δgab)[gaa′ gbb′ + cgab ga′b′ ](δga′b′)

]
(ξ) (3)

dS2[Xμ] =
∫

R2
d2ξ

[√
gδXμ(ξ)Gμν(X γ(ξ))δXν(ξ)

]
(ξ) (4)

Let us show the announced phenomenon of geometrical mass generation for the 2D-
scalar string vector-position fields {Xμ(ξ),ξ = 1, . . . ,d}, in the situation of a weakly space-
time manifold of positive curvature.

Our main propose is to consider the following variable change in the string vector po-
sition dynamical degree of freedom (see eq(2)) in the full String Partition Functional Path
Integral eq(1).

Y A(ξ) = f A(Xμ(ξ)), A = 1, . . . ,s(d) (5-a)

S[Y A(ξ)] =
1

2πα′

∫
R2

d2ξ
√

ggab(∂aY A ∂bYA′)(ξ) (5-b)

dS2(Y A(ξ)] =
∫

R2
d2ξ

[√
gδY A δYA](ξ) (5-c)

At this point of our study we point at the usefulness on the explicitly use of the geo-
metrical constraint that the string world-sheet Σ is in M through the writing of the supposed
known set of the Space-Time Manifold parametric equations {H�(Y A) = 0, � = 1, . . . ,s(d)−
d,{Y A} ∈ M} defining M as an embedding geometrical-positional sub-manifold of the
(Absolute-Extrinsic) Euclidean Whitney Space Rs(d). This last step is the basic mech-
anism for our proposal of generating mass for the mean effective string vector position
{Y A(ξ),A = 1, . . . ,s(d),ξ ∈ R2}.

In order to show these string mass generation mechanism by geometric means, let us
suppose that we have a manifold with very low positive curvature.

In this case we can replace the delta functional geometrical constraint in eq(5) by the
effective string mass term as written below
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(s(d)−a)

∏
�=1

δ(F)
cov

(
H�(Y A(ξ))

) ∼=
(low extrinsic

curvature)

(s(d)−d)

∏
�=1

δ(F)
cov

[(
α′

2
∂2H�

∂Y A∂Y B (Y c)Ỹ AỸ B
)

(ξ)
]

(6)

where we have used the zero mode of mean string vector position variable in terms of the
constant mode Y and its α′-vanishing small fluctuation

Y A(ξ) = Y
A +

√
πα′ Ỹ A(ξ). (7)

By making the usual hypothesis of the exact validity of the covariant mean field average
for the Lagrange multiplier in the Path-Integral representation for the effective functional
delta eq(6), we get the following explicitly results

s(d)−d

∏
�=1

δ(F)
[(

α′ ∂2H�

∂Y A∂Y B (Y c)Ỹ A Ỹ B
)

(ξ)
]
∼=

s(d)−d

∏
�=1

[∫
dcovμ[λ�(ξ)]exp

{
iα′

∫
D

d2ξ
√

g

[
λ�

(
1δ2H�(Y c)
2∂Y A∂Y B

Ỹ AỸ B
)]

(ξ)
]}

∼ exp

{
−μAB(Y c)

∫
D

d2ξ(
√

gỸ AỸ B)(ξ)
}

(8)

Here the string mass matrix is given explicitly by the combination of the curvature
position Hessian Space-Time manifold matrix at the point {Y

c} ∈ M and the (positive)
condensate value of Lagrange multiplier field λ�

ab(ξ) ∼= 〈λ〉, producing thus the result

μAB(Y c) =
1
2
〈λ〉

(
∂2H�

∂Y A∂Y B (Y c)
)

(9)

At this point appears worthing mentioning that the non-linearity of the original theory
appears fully as a consequence of the highly non-trivial re-writing of the string vertexs in
terms of the somewhat decoupling-ambient geometry eq(5-A).

Now we proceed to the Nambu-Goto string path integral which depends functionally
solely on the string world sheet imbedding Xμ(ξ) : R2 → RD, namely

Z =
∫

dhμ[Xμ(ξ)]exp

{
− 1

2πα′

∫
R2

d2ξ
(√

h(Xα(π)
)}

(10)

here the string world sheet metric tensor is always given by the imbedding variable Xμ(ξ)

hab(Xα(ξ)) = ∂a Xμ(ξ)Gμν(Xβ(ξ))∂b Xν(ξ). (11)

In this string theory, the main difficulty comes from the diffeomorphism invariant mea-
sure Dcov[Xμ(ξ)] which is strongly non-linear when written as a Feynman product measure
as given below

dhμ[Xx(ξ)] = ∏
ξ∈R2

[(
h(Xμ(ξ))

)1/4(
G(Xμ(ξ))

)1/2
dXμ(ξ)

]
(12-a)

d2S[Xμ(ξ)] =
∫

R2
d2ξ

√
h(Xα(ξ))

(
δXμGμν(X γ)δXν)(ξ) (12-b)
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In order to overcome such problem, we proceed as in the previous chapter by consider-
ing the 2D-fluctuating metric tensor fields gab(ξ) as a purely auxiliary Lagrange multiplier
field without any singled out geometrical-physical role and whose dynamics must be sup-
pressed at the end of the path integrals evaluations

Z =
∫

dμ[gab(ξ)]
∫

dμ[X(ξ)]exp

{
− 1

2πα′

∫
R2

d2ξ(
√

g)(ξ)
}

× exp

{
− 1

2

∫
R2

d2ξ(
√

ggab ∂a XμGμν(X)∂b Xν)(ξ)
}

×δ(F)
cov

(
[gab − (∂a Xμ∂b XνGμν(X)](ξ)

)
. (13)

It is worth call the reader attention that the original Polyakov’s propose eq(1) must
be considered as an effective (analytical) path integral proceedure in the light of the Nash
Theorem when applied to the string world sheet as a two-dimensional manifold immersed
(not fully embedded) in RD (0 ≥ 4) since there is a clear over counting of the degrees of
freedom in eq(1) parametrizing the string dynamics: For each two-dimensional metric field
gab(ξ) in the string world sheet tangent bundle there is an immersion Xμ(ξ, [g]) : Σ→ RJ,
in some Whitney ambient space Rd̄ (d̄ > 3) and satisfying the metrical constraint

gab(ξ) =
∂Xμ(ξ, [g])

∂ξa

∂Xμ(ξ, [g])
∂ξb

· (14)

As a consequence of the above remark, one can see that our propose eq(13) already
takes into account this deep geometrical-topological constraint between the string world-
sheet metrical fields and the immersion/string vector position in the extrinsic space in a
correct mathematical may by means of the (covariant) delta functional inside eq(13).

By proceeding as in the bulk of this chapter we can evoluate the covariant path integrals
in terms of the usual Feynman product measures in the light-cone gauge

Z =
∫

DF [Y A(ξ)]exp

{
− 1

2πα′

∫
R2

dξ+ dξ−
[
(∂+Y A ∂−YA)(ξ+,ξ−)

]}

× exp

{
− (26− s(D))

48π

∫
R2

dξ+ ξ−
[
(∂2

+Y A)(∂−YA)(∂2−Y B)(∂+YB)
(∂+Y A ∂−YA)2

]
(ξ+,ξ−)

}

× exp

{
− 1

2

∫
R2

dξ+ dξ−(μAB(γ)(Y AYB)(ξ))
}

. (15)

The introduction of non-trivial topology in the string world sheet is now straightfor-
ward in our Path-Integral analysis and the suppression of the Liouville dynamics for the
unphysical field gab(ξ) can be made by introducing N fermion species in order to change

the conformal anomaly coefficient to the new factor
26− (S(D)+ N)

48
, which can vanishes

if one choose N = S(D).
As a last remark in this Appendix, let us point out that in the case of a compact string

parameter domain D ⊂ R2 (not the fully R2), one should introduces in the path integral
eq(8)/eq(10) a further sum over these domains, in order to obtain full covariance. For
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instance, if one choose the rectangle DA = {(ξ1,ξ2),0 ≤ ξ1 ≤ A; 0 ≤ ξ2 ≤ 2π}, one should
introduce a further integration in relation to the “moduli” A, namelly

Z =
∫ ∞

0
dA

{∫
dhμ[Xμ(ξ)]exp

[
− 1

2πα′

∫
DA

d2ξ(
√

h(Xμ(ξ)))
]}

. (16)

Note that the Green function associated to the compact domain DA does not posseses
infrared divergencies as in R2, as one can see for its explicitly expression below (see chapter
18).

〈Xμ(z, z̄〉Xν(ζ, ζ̄)〉DA =(
− 1

2π
Re

{
log

[
σ(z−ζ,w1,w2)σ(z+ζ,w1,w2)
σ(z− ζ̄,w1,w2)σ(z+ ζ̄,w1,w2)

]})
δμν. (17)

Here

z = x+ iy, ζ = ξ+ iπ
w1 = A, w2 = 2π

and the Weirstrass-Elliptic σ-function has the expression

σ(z) = z∏
w

[(
1− z

2w

)
e
(

3
2w + z2

8w2

)]
,

w = kA + �kπi, (k = 0,±1, . . . ); (� = 0,±1, . . . ).
The reader should compare with the String Green function in R2

〈Xμ(z, z̄)Xν(ζ, ζ̄)〉 = δμν
(
− 1

4π
�g|z−ζ|

)
. (18)
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Appendix 22.B.
The Einstein-Hilbert Action as an effective theory for Random
(Stringy) Fluctuations of the Space-Time

In this somewhat appendix, we intend to show how the Einstein-Hilbert action for Ein-
stein Gravitation Theory appears in a rather natural way from a Bosonic Polyakov’s String
interacting with the ambient (extrinsic) manifold fluctuating metrical structure.

Let us thus firstly write the Polyakov’s string path integral in the presence of the metric
tensor Gμν(Xα):

Z[Gμν(Xα(ξ)] =
∫ [

∏
ξ∈R2

(√
GGμν(Xμ(ξ))

)1/2
dY μ(ξ)

]

× exp

{
− 1

2πα′

∫
R2

d2ξ
[
(
√

GGμν)(Y β)∂aY μ ∂aY ν](ξ)} (1)

In order to see how (Higher order) Einstein-Hilbert actions emerges as an effective
theory from eq(1), let us consider the geodesic expansion for the metrical objects in eq(1)
through a power series expansion in the string lenght extrinsic scale α′. (Here σαβ(ξ) =
(XαXβ)(ξ)):

Y μ(ξ) = Y
z
μ+

√
α′Xμ(ξ) (2)

√
G(Y μ(ξ)) = 1− α′

6
Rμν(Y

B) · (σμν)(ξ)− (α′)3/2

12
(∇αRμν)(Y

β)(Xασμν)(ξ)

+
(α′)2

24

{[
− 3

5
(∇μ∇νRαβ)(Y

β)+
1
3

(RμνRαβ)(Y
β)

− 2
15

Rμσνw(Y β)Rασβw(Y β)
]
(σμν σαβ)(ξ)

}
+ O((α′)2+n) (3)

Gμν(Y μ(ξ)) = δμν− (α′)
3

Rαμβν(Y )(XαXβ)(ξ)

− 1
6
(α′)3/2 (∇αRβμσν(Y

β)(XαXβXσ)(ξ)

+
(α′)2

36

{[
−18∇α∇βRwμσν+ 16RαμβγRwνσγ

]
(Y β)

× (XαXβXw Xσ)(ξ)
}

+ O((α′)2+n). (4)

At this point let us re-write eq(1) in terms of the composite operator σαβ(ξ) =
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(XαXβ)(ξ) by considering the identity insertion

δ(F)(σαβ(ξ)− (XαXβ)(ξ)
)

=
∫ (

∏
ξ∈R2

dλ(ξ)
)

exp

{
i
∫

R2
d2ξ

√
G(Y )Gxβ(Y )X λ(ξ)

[σxβ(ξ)− (Xx Xβ)(ξ)]
}

∼= exp

{
−〈λ〉

∫
R2

d2ξ
√

G(Y )Gxβ(Y )[σxβ(ξ)− (XxXβ)(ξ)
}

; (5)

As a consequence we have the result

Z[Gμν(Xα)] = ∏
Y∈M

Z̃[Gμν(Y )] (6-a)

with

Z̃[Gμν(Y )] =
∫
∏
ξ∈R2

(
√

GGμν(Y ))1/2 dX(ξ)

exp

{
− 1

2πα′

∫
R2

d2ξ(eq(3))(eq(4))∂aXμ∂aXν
}

= det−
1
2

[(
δμν +

α′〈σ〉
3

Rαμαν(Y )+
4
9

(α′)2〈σ〉2(RαμαγRγ
βνβ)(Y )

+ . . .)(−∂a∂a)ξ+ 〈λ〉δμν
]

(6-b)

× exp

{
− 1

2

∫
R2×R2

d2ξd2ξ′
[
− (α′)3/2

12
(∇α Rμν(Y )+ . . .

]
μζ[(

δμν+
α′〈σ〉

3
Rαμαν+ . . .

)
(−∂a∂a)ξ + 〈λ〉δμν)

]−1

ζσ′
(ξ,ξ)

×
[
− (α′)3/2

12
(∇αRμμ)(Y )+ . . .

]
σ′μ

}
(7)

where we have supposed another time the condensate formation for the bilinear field
σαβ(ξ) = 〈σ〉Gαβ(Y ) and the implicity use of the saddle-point limit of 〈λ〉 → ∞ for the
Lagrange multiplier.

At this point and for pedagogical purpose let us evaluate the following sample calcula-
tions of eq(7).

lim{ α′→0
〈λ〉→∞

}
{

det−
1
2

[(
δμν+

〈σ〉
3

(α′)Rμανα(Y )
)

(−∂2)ξ + 〈λ〉δμν
]}

= lim{ α′→0
〈λ〉→∞

}det−
1
2

[
(−∂2)ξ δμν + 〈λ〉

(
δμν− 〈σ〉

3
α′ Rμανα(Y )

)]
(8)
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Now one can see (details as exercise for our readers)

log det−
1
2

[
(−∂2)ξ δμν + 〈λ〉

(
δμν− 〈σ〉

3
α′ Rμανα(Y )

)]

= lim{ α′→0
〈λ〉→∞

}
∫ ∞

ε

dt
t

e−t〈λ〉 ·Tr exp

{
− t

[
(−∂2)ξ δμν+〈λ〉

(
δμν−〈σ〉

3
α′ Rμανα(Y )

)]}

=
∫ ∞

ε

dt
t

e−t〈λ〉 lim
t→0+

Tr exp{−t [above written operator]

∼
√

G(Y )
{

c0(ε)
∫ ∞

ε

dt
t

e−t〈λ〉
}

−
√

G(Y )R(Y )
{ 〈λ〉〈σ〉α′

3
c1(ε)

∫ ∞

ε

dt
t

e−1〈λ〉
}

+ O((α′)2). (9)

After inserting eq(9) into eq(6-a), we get as the leading limit of α′ → 0 of the String
Theory eq(1), the Einstein-Hilbert action with an effective cosmological constant and New-
ton Gravitation constant

Z̃[Gμν(Y )] = exp

{
−μeFF

∫
M

dY
√

G(Y )− 1

8πGeFF
N

∫
N

dY
√

G(Y )R(Y )
}

(10)

where

(
A =

∫
R2

d2ξ
)

μeFF(ξ) ∼ A
∫ ∞

ε

dt
t2 e−t〈λ〉 (11)

1

8πGeFF
N

∼
(ε)

A

(∫ ∞

ε

dt
t

e−t〈λ〉
)(〈λ〉〈σ〉α′

3

)
(12)

If one consider the fluctuations of our metrical tensor Gμν(Y ) on M, one should consider
a further path-integral on eq(1) as in Chapter 1.

At this point we leave as on exercise to our readers to evaluate next higher-order deriva-
tives terms and to consider the Supersymmetric case in order to obtain Supergravity Theo-
ries.

Appendix 22.C.
Nash Bosonization in Path Integral for Quantum Riemannian
Geometry

Introduction

One of the most challenge mathematical problems in modern field theory is certainly the
problem of choice of the correct dynamical variable to be quantized (or path integrated) in
the theory of Random Geometry of metric fields in a given (fixed) manifold M. Several
frameworks on the last decades have been proposed (see Chapters 1, 7), however without
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producing yet a consistent quantum field theoretic framework, useful to implement eval-
uations outside the usual (non-renormalizable) coupling constant perturbation Feynmann-
Dhyson scheme.

In this Appendix C we intend to contribute for such a difficult problem of quantizing
Quantum Gravitly by proposing as suitable variables to be quantized on phenomenological
grounds, the field of the immersions applications of a given manifold of dimension n in a
convenient ambient extrinsic Euclidean. Space Rd (with d > n): The famous Whitney &
Nash imbeddings/immersion-embeddings theorems applied to our C∞ space-time manifold
M where the dynamics takes place. These ideas are proposed in thiss complementary ap-
pendix and can be considered as an approximate Bosonization of the usual metric variable
theory in terms of “stress-strain” degrees of freedom associated to the Nash parametrization
of the metric tensor.

We show the usefulness of this phenomenological path integral scheme for Quantum
Riemannian Geometry, by evaluating straightforwardly the Classical Newton Potential by
means of a Wilson Loop evaluation associated to a static trajectory of a pair of massive par-
ticle and quantum averaged in an effective induced quantum gravity dynamics of fermionic
matter at the leading semi-classical limit of c →∞ (here c denotes the light-velocity param-
eter).

1 – Quantum Riemannian Geometry as a dynamics of bosonic quantum immersions and the
Newton Gravitation law.

Let us start this section by recalling the Nash Theorem that asserts that every Rieman-
nian metric in a C∞-manifold M {gμν(x)} (a C2(M)-tensor field) can be always obtained
from an immersion f A : M → Rs(d) ( f A ∈C1(M) and rank Dx f = d) in a suitable Euclidean
space Rs(d), here the dimension of the Euclidean ambient space is strictly greater than d (a
better lower bound is given by the inequalite s(D) ≥ 2d −1) ([1])

gμν(x) =
s(d)

∑
A=1

∂ fA

∂xμ
∂ fA

∂xν
=

∂ f A

∂xμ
∂ fA

∂xν
(1)

We would thus expect that in this vectorial like bosonization all equations and path-
integrals in Riemannian Geometry should acquires a more invariant and suitabe expres-
sions for analysis. Let us thus set up some formulae related to this new metrical variable
parametrization as pointed out by eq(1).

Let us consider the context of an effective scheme, where one should consider “lenght”
scales appropriated for the governing quantum dynamics under analysis. In this context it
appears important to consider already built in the formulae, the important non-relationship
limit represented by the hypothesis of the analicity of the geometrical objects in relation
to the inverse of light velocitye. As a consequence one should envisages an expansion in

powers of
1
c

for the Nash scalar immersion fields

fA(xγ) = xαδαA +
∞

∑
�=1

(
1
c

)�

ϕ�
A(xγ). (2)
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The metrical vaiable takes the simple form at the leading c → ∞ limit:

gμν(xγ) =
(
δA
μ +

1
c

∂
∂xμ

ϕ(1)
A

)(
δνA +

1
c

∂
∂xν

ϕ(1)
A

)

= δμν +
1
c

(
∂
∂xμ

ϕ(1)
ν +

∂
∂xν

ϕ(1)
μ

)
(xγ) (3)

gμν(xγ) = δμν− 1
c

(
∂ϕ(1)

ν
∂xμ

+
∂
∂xν

ϕ(1)
μ

)
(xγ) (2-b)

The Christofell connections are straightforwardly computed at this leading limit and
take the very simple form

Γμαβ(x) =
1
2

gμγ
(

∂
∂xα

gβγ +
∂
∂xβ

gαγ− ∂
∂xγ

gαβ

)

=
1
c
∂2ϕ(1)

μ (xγ)
∂xα ∂xβ

+ O

(
1
c2

)
(3)

The Riemann four-tensor is simply given by

Rμγ,αβ(x) =
1
c2

{
∂2ϕ(1)

μ

∂xα∂xγ′
∂2ϕ(1)

γ′

∂xγ∂xβ
− ∂2ϕ(1)

μ

∂xβ∂xγ′
∂2ϕ(1)

γ′

∂xγ∂xα

}
+ O

(
1
c4

)
, (4-a)

which produces the following expression for the Ricci tensor

Rαβ(x) = Rμα,μβ =
1
c2

{
∂2ϕ(1)

μ

∂xμ∂xγ′
∂2ϕ(1)

γ′

∂xα∂xβ
− ∂2ϕ(1)

μ

∂xβ∂xγ′
∂2ϕ(1)

γ′

∂xα∂xμ

}
+ O

(
1
c4

)
, (4-b)

and the associated scalar of curvature

R(x) =
(
gβα Rαβ

)
(ξ) =

1
c2

[
∂2ϕ(1)

μ

∂xμ∂xγ
∂2ϕ(1)

γ

∂xβ∂xβ
− ∂2ϕ(1)

μ

∂xβ∂xγ
∂2ϕ(1)

γ

∂xβ∂xμ

]
(4-c)

At the quantum geometrical level the functional-path integral measure leads to the usual
Feynman path integral measure as defined by the c → ∞ leading Nash immersion fields
{ϕ(1)

μ }μ=1,...,d as one can see from the simple variable change written below

ds2 =
∫

M
dDx

{√
gδgab

(
gaa′gbb′ + gabga′b′)δga′b′

}
(x)

=
1
c2

∫
M

dDx

[
(δϕ(1)

μ )
(
− ∂2

∂xμ∂xν

)
(δϕ(1)

ν

]
(x) (5)

and thus

dμ[gαβ] ∼= DF [ϕ(1)
μ ] =

{ D

∏
μ=1

(
∏
x∈M

dϕ(1)
μ (x)

)

×det−
1
2

[
− 2

c2

∂2

∂xα∂xβ

]
; (6)
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At this point is worthing call the reader attention that next
1
c

-corrections can be easily

taken into account in the formulae above written generating now a fixed degree polino-
mial non-linearity on then and a non-trivial Faddev-Popov determinant in the new product
Feymman measure eq(6) (Chapter 1).

We take as the weight for our Wilson Loop averages in our leading Nash fields a higher
order Einstein-Hilbert action as given by the effective action obtained after integrating out
a massive femionic matter field at the limit of large mass (Chapter 18)

det
[/
∂+Γμαβσ

αβ + m
]

c→∞
m→∞

∼ lim
c→∞

{
exp

{
− 1

2Geff

∫
M

dνx

[√
gΓμαβ gαα

′
(−Δ)gββ

′
Γμα′β′

]
(x)

}}

= exp

{
− 1

8πGN

∫
M

dνx
[
ϕ(1)
α (−Δ)3ϕ(1)

α
]}

. (7)

Here GN is the (somewhat effective) Newton Gravitation constant.
Let us deduce the Newton Gravitation Law from the above written formulae in terms of

the Nash field.
In the Riemannian quantum geometry, the above written Holonomy factor defined by

the SO(d)-valued vector field Γμαβ(x)σ
αβ, here σαβ are the generators of the SO(D) Group

(the Euclidean Lorentz Group) is expected to lead to the Newton law in the non-relativistic
and dimension mean-field limits D →∞ evaluation of its quantum average for a static (non-
fluctuating) trajectory

〈W [C(R,T )]〉 ∼
1
Z

∫
DF [ϕ(1)

μ (x)]exp

{
− 1

8πGN

∫
dDx

[
ϕ(1)
α (−Δ)3ϕ(1)

α
]}

(x)

× 1
D

TrSO(D)

{
P

[
exp i

(∮
CR,T )

Γμ(C(σ))Ċμ(σ)dσ
)]}

(8)

here P is path SO(D)-indexes ordenation operator along the static trajectory C(R,T ) =

{Cμ(σ), 0 ≤ σ ≤ T} and given by the boundary of a rectange

{
− T

2
≤ x0 ≤ T

2
,−R

2
≤

x1 ≤ R
2

}
.

The Newton gravitation potential should be given by the lowest quantum energy state
associated to the quantum propagation of the gravitation interacting pair and it is given
explicitly by the ergodic-temporal (non-relativistic) limit of eq(8)

V (R) = lim
T→∞

− 1
T

�g
{〈W [C(R,T )]〉

}
. (9)

In order to evaluate the quantum non-abelian Holonomy factor eq(8) at the Gravitaton
mean field limit D → ∞, as much as similar calculations done in Yang-Mills Theory ([4]),
we write the Holonomy path ordered object as the one-dimensional fermion (Grasmanian
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variables) living on the contour C(R,T ) (Chapters 1 and 4)

1
D

TrSO(D)

{
P

[
exp i

∮
C(R,T )

Γμαβ(C(σ))(σαβ)Ċμ(σ)
]}

∫
θα(0)=θα(T )
θ∗α(0)=θ∗α(T )

∏
σ∈[0,T ]

(dθα(σ))(dθ∗α(σ))exp

(
i
2

∫ T

0
dσ

(
θ∗α

d
dσ

θα +θα
d

dσ
θ∗α)(σ)

)

× 1
D

( D

∑
α=1

(θα(σ)θ∗α(T ))
)
× exp

[
i
∫ T

0
dσ

(
θ∗α(σ)σαβ θβ(σ)

)
Γμαβ(C(σ))Ċμ(σ)

]

=
1
D

TrSO(D)

{
exp

(
iMeff

[∫ T

0
dσΓμ(C(σ)Ċμ(σ)

])
αβ

}

=
1
D

TrSO(D)

{
exp i

Meff

C

[∫ T

0
dσ

∂2ϕ(1)
μ

∂xα∂xβ
(C(σ))Ċμ(σ)

]}
(9)

Here we have used the gravitational charge (mass) of our static pairs circulating around
the loop C(R,T ) throught a cumulant (leading order) evaluation of the Grassmanian variables.
Namelly

Meff =
∫
θα(0)=θα(T )
θ∗α(0)=θ∗α(T )

DF [θα(σ)]DF [θ∗α(σ)]
( D

∑
α=1

(
θα(σ)θ∗α(T )

))×(
θ∗α(σ)σαβ θβ(σ)

)
. (10)

As a consequence, one should expect that (at least for large dimensionality D →∞), the
effective Holonomy Factor can be written as follow in the Fourier Space

W [C(R,T )] = exp

{
iMeff

[∫
dDk ϕ̃α(−k)k2 jα(k,C(R,T ))

]}
+ O

(
1
D

)
. (11)

Here the Fourier Transformed scalar immersion Nash field ϕ(1)
μ is explicitly given by

ϕ̃α(−k) =
1

(2π)D/2

∫
d0k eikβxβ ϕ(1)

α (x); (12)

We have used the dimensional regularization rule of Bollini-Giambiagi for handling the

SO(D) indexes inside the ordinary integrals kαkβ =
k2

D
δαβ and the contour form factor

inside eq(11) is given explicitly by

jα(k,C(R,T )) =
1
D

[∮
C(R,T )

e−ikμCμ(σ)Ċμ(σ)dσ
]
. (13)

After inserting all the above results into our effective sixth-order Gaussian path-integral
eq(8), one obtains the following expression for the Newton potential in our Bosonized-
metric framework of Nash immersions for Quantum Phenomenological Gravity

V (R) = lim
T→∞

{
− Meff2

T

[∫
dDk

(2π)D

| jα(k,C(R,T )|2
k2

]}
. (14)

This potential can be explicitly evaluated (Chapter 2) and leading to the Newton Law
of Gravitation in this phenomenological scheme for quantizing Riemann metric fields
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V (R) = −
(

4π|Meff|2 GN · 1
R

)
. (15)
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Appendix 22.D.
The Eigenvalue Problem for Diffusion Equation in Loop Spaces:
Elementary Comments

Let us consider the following eigenvalue problem for the Diffusion Equation in a given
Hilbert (separable) space H to be solved in L2(H,dQu):

TrH
[
QD2Uλ(x)

]
= −λUλ(x) . (2a)

It is straightforward to see that all eigenvalues of the positive definite trace class operator
Q, satisfies eq(1) with the Hilbert Space (Infinite-Dimensional) Plane Waves, of the special
form given below. Namely

TrH
[
QD2(ei〈Pn,x〉H

)]
= −λn ei〈Pn,x〉H . (2b)

At this point one can add perturbation terms of the following forms:

a) V (x) =
∫

H
dQμ[q]F(q)ei〈q,x〉H (3)

b) As in the explictly case of H = L2
periodic([0,2π]) (Loop Space) one may considere the

self-avoiding intersection useful in Polymer Theory of Chapter 20

V (x) =
∫ 2π

0
dσ

∫ 2π

0
dσ′V0

(|x(σ)− x(σ′)|2) (4)

with V0(x) ∈ Cc(R), a positive funciton of compact support in R; and now trying to evalu-
ate by the usual Rayleigh-Schörindger perturbation series framework the eigenvalues and
eigenfunctionals of the perturbed Diffusion Equation bellow

TrH(QD2Uλ(x)]+V (x)Uλ(x) = −λUλ(x). (5)

Finally let us point out that the usual Gaussian Functional in L2(Ω) defined by a sym-
metric kernel K(y,y′) = K(y′,y) ∈ L∞(Ω×Ω) and associated to a positive definite trace
class operator

ψ[ f ] = exp

{
− 1

2

∫
Ω

dνy
∫
Ω

dνy′ f (y)KΩ(y,y′) f (y′)
}

(6)
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satisfies the following Poisson like functional equation in a space of finite volume Ω
∫
Ω×Ω

dνxdνzK−1
Ω (x,z)

δ2

δ f (x)δ f (z)
ψ[ f ]

= (−vol(Ω))ψ[ f ]+
∫
Ω×Ω

dνydνy′ f (y)KΩ(y,y′) f (y′) ψ[ f ] (7)

Let us now pass to the problem of solving the functional Schörindger wave equation in
L2(L2(Ω),dKμ( f )) below written

i
∂
∂t
ψ[ f , t] =

(∫
Ω×Ω

dvxdvx′ K−1(x,x′)
δ2

δ f (x)δ f (x′)
ψ[ f , t]

)

−
(∫

dvydvy′ f (y)K(y,y′) f (y′)ψ[ f , t]
)

(8-a)

ψ[ f ,0] = Ω[ f ]. (8-b)

By applying perturbation methods, we have the following result at the first perturbative
order

En = −(
λ(0)

n + ελ(1)
n

)
+ O(ε2) (9-a)

ψn[ f ] = ψ(0)
n [ f ]+ εψ(1)

n [ f ]+ O(ε2) (9-b)

Here

λ(1)
n = −

{∫
dνydνy′K(y,y′)

[∫
dKμ[ f ] f (y) f (y′)

]}
= −1 (9-c)

ψ(0)
n [ f ] = exp

(
i
∫
Ω

f (x)g(0)
n (x)dx

)
(9-d)

ψ(1)
n [ f ] =∑

m
C(1)

nmψ
(0)
m [ f ] (9-e)

C(1)
nm =

1

λ(0)
n −λ(1)

n

{
−

∫
dνydνy′

[∫
dku( f ) f (y) f (y′)

× exp i

(∫
dνx(g(0)

n −g(1)
m )(x) f (x)

)]}
(9-f)

As usual, one should consider the ansatz for the full wave functional

ψ[ f , t] =∑
{n}

Cn eiEn t ψn[ f ] (10)

with the coefficients Cn adjusted from the initial date. Calculations are left as exercise to
our readers.



Supplementary Appendixes 321

On the basis of the mathematical (rigorous) results presented in the Chapter 20, one
can see that the correct framework to solve functional Schörindger equations in Quantum
Field Theory as exposed in Chapters 9-11 is to consider the “regularized” form below with
cut-offs Λ2 > 0 and α = 1+ ε takes as an example of a λϕ4-scalar field theory

∂ψ[ϕ, t]
∂t

= TrH

{
−

∫
Ω×Ω

dvydvy′(−Δ+Λ2)−α(y,y′)
δ2

δϕ(y)δϕ(y′)
ψ(Λ,ε)[ϕ, t]

}

+ vol(Ω)ψ(Λ,ε)[ϕ(y)]−
{∫

Ω×Ω
dvy|∇ϕ|2(y)

}
ψ(Λ,ε)[ϕ, t]

− (
m2

bare +Λ2)(∫
Ω×Ω

dvyϕ2(y)
)
ψ(Λ,ε)[ϕ, t]

+λ bare
4!

(∫
Ω×Ω

dvyϕ4(y)
)
ψ(Λ,t)[ϕ, t] (11)

Again, extensive calculations of solutions for eq(11) in the space of Euclidean λϕ4-quantum
field functionals L2(L2(Ω),d(−Δ+m2)1/2u(ϕ)) = V will be left to the inquires of our mathe-
matically oriented readers.

Appendix 22.E.
Some Calculations of the Q.C.D. Fermion Functional Determi-
nant in Two-Dimensions and (Q.E.D.)2 solubility

Let us firstly define the functional determinant of a self-adjoint, positive definite operator A
(without zero modes) by the proper-time method

log detF(A) = − lim
ε→0+

{∫ ∞

ε

dt
t

Tr f (e−tA)
}

(1)

where the subscript f remainds us of the functional nature of the objects under study and
so its trace.

It is thus expected that the definition eq(1) has divergents counter terms as ε → 0+,
since exp(−tA) is a class trace operator only for t ≥ ε. Asymptotic expressions at the short-
time limit t → 0+ are well-known in mathematical literature (see Appendix E of Chapter
1). However this information is not useful in a first sight of eq(1) since one should know
TrF(e−tA) for all t-values in [ε,∞).

An useful remark on the exactly evaluation is in the case where the operator A is of the
form A = B + m21 and one is mainly interested in the effective asymptotic limit of large
mass m2 →∞. In this particular case, one can use a Saddle-Point analysis of the expression
in eq(1)

lim
m2→∞

[log detF(B + m21)] = − lim
ε→0

{∫ ∞

ε

dt
t

e−m2t
[

lim
t∈0+

TrF(e−tB)
]}

(2)

The above effective evaluation has been used extensively in Chapters 10, 18 and in the
previous supplementary appendixes A, B.
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Another very important case is covered by the (formal) Schwarz-Romanov Theorem
announced below (see Chapter 17).

Theorem 1. Let A(σ) be an one-parameter family of positive-definite self-adjoints opera-
tors and satisfying the parameter derivative condition (0 ≤ σ≤ 1)

d
dσ

A(σ) = f A(σ)+ A(σ)g (3-a)

where f and are σ-independents objects (may be operators).
Then we have the explicitly result

log

(
detF(A(1))
detF(A(0))

)
=

=
{∫ 1

0
dσ lim

ε→0+
TrF

[
f e−ε(A

(σ))2]
+

∫ 1

0
dσ lim

ε→0+
TrF

[
qe−ε(A

(σ))2]}
(3-b)

The proof of the equation (3) is based on the validity of the differential equation in
relation to the σ-parameter

d
dσ

[
log detF(A(σ))2] = lim

ε→0+
2

{
TrF

(
f e−ε(A(σ))2)

+ Trε
(
G e−ε(A(σ))2)

}
(4)

which can be seen from the obvious calculations written down in the above equation[
log detF(A(σ))2] =

= − lim
ε→0+

{∫ ∞

ε
dt TrF

[
( f A(σ)+ A(σ)g)A(σ)+ A(σ)( f A(σ)+ A(σ)g)

(− (A(σ))−2) d
dt

(
exp(−t(A(σ))2)

)]}
(5)

= eq(4).
Let us apply the above formulae in order to evaluate the functional determinant of the

“Chrially transformed” self-adjoint Dirac operator in a two-dimensional space-time

D(σ) = exp(σγ5ϕ2(x)λa)|∂|(exp(σγ5ϕa(x)λa). (6)

Here the Chiral Phase W [ψ] in eq(6) takes value in SU(N) for instance.
One can see that

(
/
D(σ))2 = −(∂μ+ iGμ(σ))21− 1

4
[γμ,γν]Fμν(−iGμ(σ)) (7-a)

with the Gauge Field
γμGμ = γμ(W−1 ∂μW ) (7-b)

The asymptotics of the operator eq(7-a) are easily evaluated (see Chapter 1 - Appendix E)

lim
ε→0+

TrF
(

exp(−ε(D(σ))2)
)

= lim
ε→0+

Tr

{
1

4πε

{
1+

g(iεμνγ5)
2

Fμν(−iGμ(σ))
}}

(8-a)
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where we have used the Seeley expansions below for the square of the Dirac operator in the
presence of a non-abelian connection

A : C∞
0 (R2) →C∞

0 (R2) (8-b)

Aϕ =
(

(−Δ)−V1(ξ1,ξ2)
∂
∂ξ1

−V2(ξ1,ξ2)
∂
∂ξ2

−V0((ξ1,ξ2)
)
ϕ (8-c)

lim
t→0+

{
TrC∞

c (R2)(e
−tA)

}
=

1
4πt

+
{(

− 1
8π

(
∂
∂ξ1

V1 +
∂
∂ξ2

V0

))

− 1
16π

(V 2
1 +V 2

2 )− 1
4π

V0

}
(ξ1,ξ2)+ O(t) (8-d)

(
/
∂− ig

/
Gμ)2 = (−∂2)ξ +(2igGμ∂mu)ξ

+
[

ig(∂μGμ)+
igσμν

2
Fμν(G)+ g2 G2

μ

]
ξ

(8-e)

Which leads to the following exactly integral (non-local) representation for the non-
Abelian Dirac Determinant

log

{
detF(D(1))

detF(∂)

}
=

i
2π

∫
d2x TrSU(N)

{
ϕa(x)λa ×

[∫ 1

0
dσEμνFμν(−iGμ(σ))

]}
(9)

A more invariant expression for eq(9) can be seen by considering the decomposition of
the “SU(N) gauge Field” Gμ(σ) in terms of its vectorial and axial components:

(W−1(σ)∂μW (σ)) = Vμ(σ)+ γ5 Aμ(σ) (10)

or equivalently (εμνγnu,γ5 = itμνYν,γs = iγ0γ1, [γμ,γν] = −2iEμνγ5):

Gμ(σ) = Vμ(σ)+ iEμνAν(σ). (11)

At this point we point out the formulae

Fμν(−iGμ(σ)) =
{
(iDV

α(σ)Aα(σ))Eμν− [Aμ(σ),Aν(σ)]+ Fμν(Vμ(σ)).
}

(12)

Here
DV
α Aβ = ∂αAβ+[Vα,Aβ]. (13)

Note that Aμ(σ) and Vμ(σ) are not independents fields since the Chiral Phase W (σ)
satisfies the integrability condition

Fμν(W ∂μW ) ≡ 0 (14)

or equivalently
Fμν(Vβ(σ)) = −[Aμ(σ),Aν(σ)] (15)

DV
μ Aν(σ) = DV

ν Aμ(σ). (16)
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After substituting eqs(12)-(16) in eq(9), one obtains the result

log

{
detF(D(1))

detF(∂)

}

=
i

2π

{∫
d2x TrSU(N)

(
λaφa(α)×

∫ 1

0
dσ(2iDμ(σ)Aμ(σ)

+ Eμν
(−[Aμ(σ),Aν(σ)]︷ ︸︸ ︷

Fμν(Vα(σ))
)− [Aμ(σ),Aν(σ)]

)
(17)

=
i

2π

{∫
d2x TrSU(N)

(
λaφa(x)

∫ 1

0
dσ(2iDμ(σ)Aμ(σ))

)}

+
i

2π

{∫
d2x TrSU(N)

(
λaφa(x)

(∫ 1

0
dσ(−2[Aμ(σ),Aν(σ)])

)}
= I1(φ)+ I2(φ). (18)

Let us show now that the term I1(φ) is a mass term for the physical Gauge Field Aμ(σ=
1) = Aμ .

Firstly we observe the result

TrDirac ⊗TrSU(N)

{
γ5 Aμ(σ)

Lμ(σ)︷ ︸︸ ︷
d

dσ
(W∂μW )(σ)

}

= TrDirac ⊗TrSU(N)

{
γ5 φa(x)λa(γ5(∂μAμ(σ))− [γ5Aμ(σ),Lμ(σ)]

)
(x)

}

= 2TrSU(N)

{
λaφa(x)

(
∂μAμ(σ)+ [Vμ(σ),Aμ(σ)](x)

)}
= 2 TrSU(N)

{
λaφa(x)Dμ(σ)Aμ(σ)

}
= I1(φ). (19)

By the other side

TrDirac ⊗TrSU(N)
{
γ5 Aμ(σ)Lμ(σ)

}
= TrDirac ⊗TrSU(N)

{
γ5 Aμ(σ)

(
d

dσ
Vμ(σ)+ γ5

d
dσ

Aμ(σ)
)}

= TrSU(N)

(
d

dσ
(Aμ(σ)Aμ(σ))

)
. (20)

At this point it is worth to see the appearance of a dynamical Higgs mechanism for
Q.C.D. in two-dimensions.

Let us now analyse the second term I2(φ) in eq(18)

exp

{
− i

2π

∫
d2x TrSU(N)

(∫ 1

0
dσEμν(2φa(x)λa[Aμ(σ),Aν(σ)](x))

)}

= exp

{
− i

2π

∫
d2x TrDirac⊗SU(N)

(∫ 1

0
dσ(

1︷︸︸︷
γ5γ5 Eμν φa(x)λa

× [
γ5W−1(σ)∂μW (σ)− γ5Vμ(σ),γ5 W−1(σ)∂νW (σ)− γ5Vν(σ)

])}
(21)
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Since we have the identity as a consequence of the fact that [σγ5 φa(x)λa,
γ5 φb(x)λb] = σ(φa(x)φb(x)[λa,λb] ≡ 0;

W−1(σ)
∂
∂σ

W (σ) = γ5 φa(x)λa, (22)

we can see the appearance of a term of the form of a Wess-Zumino-Novikov topological
functional for the Chiral Group SU(N), namelly

I2(φ) = exp

{
− i

2π

∫
d2x TrColor⊗Dirac(

Eμν γ5W−1(σ)
∂
∂σ

W (σ)[γ5W−1(σ)∂μW (σ),γ5 W−1(σ)∂νW (σ)]
)}

+ terms (φ,Vμ), (23)

which after the one-point compactification of the space-time to S3 and considering only
smooths phases (φ(x) ∈C∞(S3)) one can see that the Wess-Zumino-Novikov functional is
a homotopical class invariant. For the Closed Ball S3 × [0,1] = ({x̄ ≡ (x1,x2,σ)})

∫
S3×[0,1]

d3x̄ TrSU(N)axial

{
(γ5(W−1 ∂αW )(x̄))

(γ5(W−1 ∂μW )(x̄)(γ5 W−1∂νW ))(x̄)
}

= απn (24)

with α an over all factor and n ∈ Z
+.

Finally let us call our readers attention that the Dirac operator in the presence of a
Non-Abelian SU(N) Gauge Field Aμ(x) = Aa

μ(x)λa , can always be re-written in the “Chiral
Phase” in the so called Roskies Gauge Fixing

iγμ(∂μ−gGμ) = eiγs φ̃a(x)(iγμ∂μ)eiγs φ̃a(x) = W̃ [φ](iγμ∂μ)W̃ [φ]. (25)

Here

W̃ [φ] = eiγsφ̃a(x) ≡ PDirac

{
PSU(N) eiγs

∫ x
−∞ dξμ(εμνGν)(x)

}
(26)

Since
(γμGμ)(x) = +γμ(W̃ )∂μ(W̃ )−1(x) (27)

It is worth now to use the formualism of Invariant Functional Integration – Appendix
Chapter 1 to change the quantization variables of the Gauge Field Aμ(x) to the SU(N)-axial
phases W̃ (φ). This task is easily accomplished through the use of Riemannian functional
metric on the manifold of the Gauge connections

dS2 =
∫

d2x TrSU(N)(δGμ δGμ)(x)

=
1
4

∫
d2x TrSU(N)⊗Dirac[(γμ δGμ)(γμ δGμ)](x)

= detF [
/
D
/
D∗]adg ×

{∫
d2xTrSU(N)Axial

[(δW̃W−1)(δW̃W−1)]
}

, (28)
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since

γμ(δGμ) = γμ
{
∂μ(δW̃ )W̃−1 +∂μW̃ (−W̃−1(δW̃ )W̃−1)

}
= γμ(∂μ− [Gμ, ])(δW̃W̃−1)

and
[γμ,δW̃W̃−1] = δW̃{γμ,W̃−1}+{γμ,δW̃}W̃−1 ≡ 0 (29)

and leading to new parametrization for the Gauge Field measure

DF [Gμ(x)] =
[

detF,adj(
/
D
/
D∗)

] 1
2

DHaar[W̃ (x)]. (30)

Here detF,adj
( � D � D∗) 1

2 is the functional Dirac Operator in the presence of the Gauge
Field and in the adjoint SU(N)-representation. Its explicitly evaluations is left to our read-
ers.

The full Gauge-Invariant Expression for the Fermion Determinant is conjectured to
be given on explicitly integration of the Gauge parameters considered now as dynamical
variables in the Gauge-fixed result. For instance in the Abelian Case and in the Gauge
Fixed Roskies Gauge eq(6) result, we have the Schwinger result,

detF [iγμ(∂μ− ieAμ)] =
1
2

∫
DF [W (x)]

× exp

{
− e2

π

∫
d2x

1
2

(Aμ−∂μW (x))2
}

=
∫

DF [W (x)]exp

{
− e2

2π

∫
d2x

[
A2
μ+(∂μW )2 + 2Aμ ∂μW ]

}

= exp

{
− e2

π

∫
d2x

[
Aμ

(
δμν− ∂μ∂ν

(−∂2)

)
Aν

]
(x)

}
. (31)

This result generalized to the SU(2) in an approximate form case has been used in
Chapter 15 - footnote [12].

Note that the Haar measure on the Abelian Group U(1) is

δS2
W =

∫
d2x

[
δ
(
eiW∂μe−iW )

δ
(
eiW∂μe−iW )]

(x)

=
∫

d2x
(
δW (−∂2)δW )(x) (32)

Let us solve exactly the two-dimensional Quantum Electrodynamics.
Firstly, the equation (10) takes the simple form in term of the chiral phase in the Roskies

Gauge
Gμ(x) =

(
εμν ∂ν φ)(x). (33)

Now the somewhat cumbersome non-abelian eq(3) has a straightforward form in the
Abelian case

DF [Gμ] = detF(−Δ)DF [φ] (34)
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and we have thus the exactly soluble expression for the (Q.E.D.)2-Generating Functional (a
non-gauge invariant object!)

Z[Jμ,η, η̄] =
1
2

{∫
DF [φ]DF [χ]DF(χ]

exp

{
− 1

2

∫
d2x

[
φ(−∂4 +

e2

π
∂2
)
φ+ Eμν(∂νJμ)φ

]
(x)

}

× exp

{
− 1

2

∫
d2x(χ,χ)

[
0 i

/
∂

i
/
∂ 0

](
χ
χ

)}

exp

{
−

∫
d2x(χ,χ)

[
e−igγsφ 0

0 e−igγsφ

](
η
η

)}}

For instance, correlations functions are exactly solved and possessing an “coherent
state” factor given by the φ-average below (after “normal ordenation” at the coincident
points) and explicitling given a proof of the confinement of the fermionic fields since one
can not assign LSZ-scattering fields configuration for them by the Coleman Theorem since

then grown as the factor |x− y|
1

2g2 at large separation distance〈
e−i(γs)xφ(x) e−i(γs)yφ(y)

〉
φ
=

= 〈cos(ϕ(x)) cos(ϕ(y))φ 1x ⊗1x

+ γs ⊗1〈sen(ϕ(x)) cos(ϕ(y))〉φ
+ γs ⊗1〈cos(ϕ(x)) sen(ϕ(y))〉φ
− γs ⊗ γs 〈sen(ϕ(x)) sen(ϕ(s))〉φ
= e−g2

[(
−∂2+ g2

π

)−1
−(−∂2)−1

]
(x,y)

= exp

{
+

π
g2

(
1

2π
K0

(
g√
π
|x− y|

)
+

1
2π

�g|x− y|
}

(1x ⊗1y). (35)

The 2-point function for the 2D-Electromgnetic field shows clearly the presence of a
massive excitation (Fotons have acquired a mass term by dynamical means)〈

Gμ(x)Gν(g)
〉
φ
=

∫
d2k
(2π)

(EμαEνβ)(kαkβ)
1eik(x−s)

k2(k2 + e2

π )

=
1

2π

∫
d2k

δμν︷ ︸︸ ︷
[EμαEνβ]

δαβk2eik|x−y|

k2(k2 + e2

π )
(36)

As an important point of this supplementary appendix, we wish to point out that the
chirially transformed Dirac operator eq(6) in four-dimensions, still have formally an exactly
integrability as expressed by the integral representation eq(3) (see the asymptotic expansion
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eq4.38) - Chapter 4). It reads as of

log

[
det(

/
D(σ)2)

det(∂)2

]

= − i
2π2

∫
d4x TrSU(N)

{
φa(x)λa

×
[∫ 1

0
dσFc

αβ(−iGμ(σ))Fc′
μν(−iGμ(σ))εαβμν λcλc′

}
(37)

where
−iγμGμ(σ) = exp

(
σγ5φa(x)λa

)
(i∂)exp(σγ5 φa(x)λa) (38)

and we have the formulae [C.G. Collor, Jr., S. Coleman, J. Wess and B. Zumino] – “Struc-
ture of Phenomenological Lagrangians” - II, Phys. Rev., 177, 2247 (1969).

− iγμGμ(σ) = Vμ(σ)+ γ5 Aμ(σ) (39-a)

Aμ(σ) = Δ−1
γsφaλa

{
senh(Δγsφaλa)◦∂μ(γ5φaλa)

}
(39.b)

Vμ(σ) = Δ−1
γsφaλa

{
(1− cosh(Δγsφaλa))◦∂μ(γ5φaλa)

}
(39-c)

with the matrix operation
ΔX ◦Y = [X ,Y ] (39-d)

and Δ(n)
X denoting its n-power.

For a complete quantum field theoretic analysis of the above formulae in on Abelian
(theoretical) axial model we point out our work Luiz C.L. Botelho: Path-integral bosoniza-
tion for a non renormalizable axial four-dimensional Fermion Model; Phys. Rev. D39, 10,
3051-3054, (1989) and Chapters 6 and 18.

Finally and just for completeness and pedagogical purposes, let us deduce the formal
short-time expansion associated to the second-order positive differential elliptic operator in
Rν used in the previous cited reference

L = −(∂2)x + aμ(x)(∂μ)x +V (x). (40)

Its evolution kernel k(x,y, t) = 〈x|− exp(−t L) | y〉 satisfies the heat-kernel equation

∂
∂t

K(x,y, t) = −Lx K(x,y, t) (41)

K(x,y,0) = δ(ν)(x− y). (42)

After substituting the asymptotic expansion below into eq(41) [with K0(x,y, t) denoting
the Free Kernel (aμ ≡ 0 and V ≡ 0)]

K(x,y, t)
t→0+

! K0(x,y, t)
[ ∞

∑
n=0

tn Hn(x,y)
]

(43)
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and by taking into account the obvious relationship for t > 0(
∂μK0(x,y, t)

)|x=y = 0 (44-a)

we obtain the following recurrence relation for the coefficients Hn(x,x):

(n+ 1)Hn+1(x,x) = −
{

(−∂2
x)Hn(x,x)+ aμ(x) ·∂μHn(x,x)+V (x)

}
. (45)

For the Axial Abelian Case in R4, we have the result:(
egγsφ(i∂)egγsφ

)2

= (−∂2)14×4 +
((

1
2

gγs[γμ,γν]
)
∂μφ(x)

)
∂ν

+
[−gγs ∂2φ+(g)2(∂μφ)2] (46)

Note that in R4

H0(x,x) = 14×4

H1(x,x) = −V (x)

H2(x,x) =
1
2

[−∂2V + aμ∂μV +V 2](x) (47)
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