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PREFACE

This book, with apologies for the pretentious title, represents the text of a course
we have been teaching at Harvard for the past eight years. The course is aimed
at students with an interest in physics who have a good grounding in one-
variable calculus. Some prior acquaintance with linear algebra is helpful but not
necessary. Most of the students simultaneously take an intensive course in physics
and so are able to integrate the material learned here with their physics education.
This also is helpful but not necessary. The main topics of the course are the theory
and physical application of linear algebra, and of the calculus of several variables,
particularly the exterior calculus. Our pedagogical approach follows the ‘spiral
method’ wherein we cover the same topic several times at increasing levels of
sophistication and range of application, rather than the ‘rectilinear approach’ of
strict logical order. There are, we hope, no vicious circles of logical error, but we
will frequently develop a special case of a subject, and then return to it for a more
general definition and setting only after a broader perspective can be achieved
through the introduction of related topics. This makes some demands of patience
and faith on the part of the student. But we hope that, at the end, the student is
rewarded by a deeper intuitive understanding of the subject as a whole.

Here is an outline of the contents of the book in some detail. The goal of the
first four chapters is to develop a familiarity with the algebra and analysis of
square matrices. Thus, by the end of these chapters, the student should be thinking
of a matrix as an object in its own right, and not as a square array of numbers.
We deal in these chapters almost exclusively with 2 x 2 matrices, where the most
complicated of the computations can be reduced to solving quadratic equations.
But we always formulate the results with the higher-dimensional case in mind. We
begin Chapter 1 by explaining the relation between the multiplication law of 2 x 2
matrices and the geometry of straight lines in the plane. We develop the algebra
of . 2 x 2 matrices and discuss the determinant and its relation to area and
orientation. We define the notion of an abstract vector space, in general, and

explain the concepts of basis and change of basis for one- and two-dimensional
vector spaces.



In Chapter 2 we discuss conformal linear geometry in the plane, that is, the
geometry of lines and angles, and its relation to certain kinds of 2 x 2 matrices.
We also discuss the notion of eigenvalues and eigenvectors, so important in
quantum mechanics. We use these notions to give an algorithm for computing
the powers of a matrix. As an application we study the basic properties of Markov
chains.

The principal goal of Chapter 3 is to explain that a system of homogeneous
linear differential equations with constant coefficients can be written as du/dt = Au
where A is a matrix and u is a vector, and that the solution can be written as
e?'n, where u, gives the initial conditions. This of course requires us to explain
what is meant by the exponential of a matrix. We also describe the qualitative
behavior of solutions and the inhomogeneous case, including a discussion of
resonance.

Chapter 4 is devoted to the study of scalar products and quadratic forms. It is
rich in physical applications, including a discussion of normal modes and a detailed
treatment of special relativity.

Chapters 5 and 6 present the basic facts of the differential calculus. In Chapter 5
we define the differential of a map from one vector space to another, and discuss
its basic properties, in particular the chain rule. We give some physical applications
such as Kepler motion and the Born approximation. We define the concepts of
directional and partial derivatives, and linear differential forms.

In Chapter 6 we continue the study of the differential calculus. We present the
vector versions of the mean-value theorem, of Taylor’s formula and of the inverse
function theorem. We discuss critical point behavior and Lagrange multipliers.

Chapters 7 and 8 are meant as a first introduction to the integral calculus.
Chapter 7 is devoted to the study of linear differential forms and their line integrals.
Particular attention is paid to the behavior under change of variables. Other
one-dimensional integrals such as arc length are also discussed.

Chapter 8 is devoted to the study of exterior two-forms and their corresponding
two-dimensional integrals. The exterior derivative is introduced and invariance
under pullback is stressed. The two-dimensional version of Stokes’ theorem, i.e.
Green’s theorem, is proved. Surface integrals in three-space are studied.

Chapter 9 presents an example of how the results of the first eight chapters can
be applied to a physical theory — optics. It is all in the nature of applications, and
can be omitted without any effect on the understanding of what follows.

In Chapter 10 we go back and prove the basic facts about finite-dimensional
vector spaces and their linear transformations. The treatment here is a straight-
forward generalization, in the main, of the results obtained in the first four chapters
in the two-dimensional case. The one new algorithm is that of row reduction. Two
important new concepts (somewhat hard to get used to at first) are introduced:

those of the dual space and the quotient space. These concepts will prove crucial
in what follows.

Chapter 11 is devoted to proving the central facts about determinants of n x n
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matrices. The subject is developed axiomatically, and the basic computational
algorithms are presented.

Chapters 12—14 are meant as a gentle introduction to the mathematics of shape,
that is, algebraic topology. In Chapter 12 we begin the study of electrical networks.
This involves two aspects. One is the study of the ‘wiring’ of the network, that is,
how the various branches are interconnected. In mathematical language this is
known as the topology of one-dimensional complexes. The other is the study of
how the network as a whole responds when we know the behavior of the individual
branches, in particular, power and energy response. We give some applications to
physically interesting networks.

In Chapter 13 we continue the study of electrical networks. We examine the
boundary-value problems associated with capacitive networks and use these
methods to solve some classical problems in electrostatics involving conductors.

In Chapter 14 we give a sketch of how the one-dimensional results of Chapters 12
and 13 generalize to higher dimensions.

Chapters 15-18 develop the exterior differential calculus as a continuous version
of the discrete theory of complexes. In Chapter 15 the basic facts of the exterior
calculus are presented: exterior algebra, k-forms, pullback, exterior derivative and
Stokes’ theorem.

Chapter 16 is devoted to electrostatics. We suggest that the dielectric properties
of the vacuum give the continuous analog of the capacitance of a network, and
that these dielectric properties are what determine Euclidean geometry in three-
dimensional space. The basic facts of potential theory are presented.

Chapter 17 continues the study of the exterior differential calculus. The main
topics are vector fields and flows, interior products and Lie derivatives. These are
applied to magnetostatics.

Chapter 18 concludes the study of the exterior calculus with an in-depth
discussion of the star operator in a general context.

Chapter 19 can be thought of as the culmination of the course. It applies the
results of the preceding chapters to the study of Maxwell’s equations and the
associated wave equations.

Chapters 20 and 21 are essentially independent of Chapters 9-19 and can be
read independently of them. They are not usually included in our one-year course.
But Chapters 1-9, 20 and 21 would form a self-contained unit for a shorter course.

The material in Chapter 20 is a relatively standard treatment of the theory of
functions of a complex variable, suitable for students at the level of this book.

Chapter 21 discusses some of the more elementary aspects of asymptotics.

Chapter 22 shows how the exterior calculus can be used in classical thermo-
dynamics, following the ideas of Born and Carathéodory.

The book is divided into two volumes, with Chapters 1-11 in volume 1.

Most of the mathematics and all of the physics presented in this book were
developed by the first decade of the twentieth century. The material is thus at
least seventy-five years old. Yet much of the material is not yet standard in the



elementary courses (although most of it with the possible exception of network
theory must be learned for a grasp of modern physics, and is studied at some stage
of the physicist’s career). The reasons are largely historical. It was apparent to
Hamilton that the real and complex numbers were insufficient for the deeper study
of geometrical analysis, that one wants to treat the number pairs or triplets of
the Cartesian geometry in two and three dimensions as objects in their own right
with their own algebraic properties. To this end he developed the algebra of
quaternions, a theory which had a good deal of popularity in England in the
middle of the nineteenth century. Quaternions had several drawbacks: they more
naturally pertained to four, rather than to three dimensions —the geometry of
three dimensions appeared as a piece of a larger theory rather than having a
natural existence of its own; also, they have too much algebraic structure, the
relation between quaternion multiplication, for example, and geometric construc-
tions in three dimensions being somewhat complicated. (The first of these objections
would, of course be regarded far less seriously today. But it would be replaced by
an objection to a theory that is limited to four dimensions.) Eventually, the three-
dimensional vector algebra with its scalar and vector products was distilled from
the theory of quaternions. It was conjoined with the necessary differential
operations, and give rise to the vector analysis as finally developed by Gibbs and
promulgated by him in a famous and very influential text.

So vector analysis, with its grad, div, curl etc. became the standard language in
which the geometric laws of physics were taught. Now while vector analysis is
well suited to the geometry of three-dimensional Euclidean space, it has a number
of serious drawbacks. First, and least serious, is that the essential unity of the
subject is obscured. Thus the fundamental theorem of the calculus, Green’s theorem,
Gauss’ theorem and Stokes’ theorem are all aspects of the same theorem (now
called Stokes’ theorem). But this is not at all clear in the vector analysis treatment.
More serious is that the fundamental operators involve the Euclidean structure
(for example grad and div) or the three-dimensional structure and orientation as
well (for example curl). Thus the theory is wedded to a three-dimensional orientated
Euclidean space. A related problem is that the operators do not behave nicely
under general changes of coordinates — their expression in non-rectangular co-
ordinates being unwieldy. Already Poincaré, in his fundamental scientific and
philosophical writings which led to the theory of relativity, stressed the need to
distinguish between those laws of geometry and physics which are ‘topological’,
le. depend only on the differential structure of space and so are invariant under
smooth deformations, and those which depend on more geometrical structure such
as the notion of distance. One of the major impacts of the theory of relativity on
mathematics was to encourage the study of higher-dimensional spaces, a study
which had existed in the previous mathematical literature, but was not regarded
as central to the study of geometry. Another was to emphasize general coordinate
changes. The vector analysis was not up to these two tasks and so was supplemented
in the more advanced literature by tensor analysis. But tensor analysis with its
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jumble of indices has a number of serious drawbacks, the most serious of which
being that it is extraordinarily difficult to tell which operations have any geometric
significance and which are artifacts of the coordinate system. Thus, while it is
reasonably well-suited for computation, it is hard to assess exactly what it is that
one is computing. The whole purpose of the development initiated by Hamilton — to
have a calculus whose objects have a perceived geometrical significance — was
vitiated. In order to make the theory work one had to introduce a relatively
sophisticated geometrical construct, such as an affine connection. Even with such
constructs the geometric meanings of the operations are obscure. In fact tensor
analysis never displaced the intuitively clear vector analysis from the elementary
curriculum.

It is generally accepted in the mathematics community, and gradually being
accepted in the physics community, that the most suitable framework for geo-
metrical analysis is the exterior differential calculus of Grassmann and Cartan. This
calculus has the advantage that its computational rules are simple and concise,
that its objects have a transparent geometrical significance, that it works in all

Maxwell’s equations in the course of history
The constants c, j4,, and ¢, are set to 1.

The homogeneous The inhomogeneous
equation equation

Earliest form
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dimensions, that it behaves well under maps and changes of coordinates, that it
has an essential unity to its principal theorems and that it clearly distinguishes
between the ‘topological’ and ‘metrical’ properties. The geometrical laws of physics
take on a simple and elegant form in terms of the exterior calculus. To emphasize
this point, it might be useful to reproduce the above table, taken from Thirring’s
Course on Mathematical Physics.

Hermann Grassmann (1809-77) published his Ausdehnungslehre in 1844. It was
not appreciated by the mathematical community and was dismissed by the leading
German mathematicians of his time. In fact, Grassmann was never able to get a
university position in mathematics. He remained a high-school teacher throughout
his career. (Nevertheless, he seemed to have a happy and productive life. He raised a
large family and was recognized as an expert on Sanskrit literature.) Towards the
end of his life he tried again, with another edition of his Ausdehnungslehre, but this
fared no better than the first. Only one or two mathematicians of his time, such as
Mobius, appreciated his work. Nevertheless, the Ausdehnungslehre (or calculus of
extension) contains for the first time many of the notions central to modern
mathematics and most of the algebraic structures used in this book. Thus vector
spaces, exterior algebra, exterior and interior products and a form of the generalized
Stokes’ theorem all make their appearance.

Elie Cartan (1869—-1951) is now universally recognized as the leading geometer
of our century. His early work, of such overwhelming importance for modern
mathematics, on Lie groups and on systems of partial differential equations was
done in relative obscurity. But, by the 1920s, his work became known to the broad
mathematical community, due, in part, to the writings of Hermann Weyl who
presented novel expositions of his work at a time when the theory of Lie groups
began to play a central role in mathematics and in physics. Cartan’s work on the
theory of principal bundles and connections is now basic to the theory of elementary
particles (where it goes under the generic name of ‘gauge theories’). In 1922 Cartan
published his book Legons sur les invariants intégraux in which he showed how
the exterior differential calculus, which he had invented, was a flexible tool, not
only for geometry but also for the variational calculus and a wide variety of
physical applications. It has taken a while, but, as we have mentioned above, it
iIs now recognized by mathematicians and physicists that this calculus is the
appropriate vehicle for the formulation of the geometrical laws of physics.
Accordingly, we feel that it should displace the ‘vector calculus’ in the elementary
curriculum and have proceeded accordingly.

Some explanation is in order for the time and effort devoted to the theory of
electrical networks, a subject not usually considered as part of the elementary
curriculum. First of all there is a purely pedagogical justification. The subject
always goes over well with the students. It provides a down-to-earth illustration
of such concepts as dual space and quotient space, concepts which frequently seem
overly abstract and not readily accepted by the student. Also, in the discrete,
algebraic setting of network theory, Stokes’ theorem appears as essentially a
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definition, and a natural one at that. This serves to motivate the d operator and
Stokes’ theorem in the setting of the exterior calculus. There are deeper, more
philosophical reasons for our decision to emphasize network theory. It has been
recognized for about a century that the forces that hold macroscopic bodies
together are essentially electrical in character. Thus (in the approximation where
the notion of rigid body and Euclidean geometry makes sense, that is, in the
non-relativistic realm) the concept of a rigid body, and hence of Euclidean geometry,
derives from electrostatics. The frontiers of physics, both in the very small (the
study of elementary particles) and the very large (the study of cosmology) have
already begun to reopen fundamental questions as to the geometry of space and
time. We thought it wise to bring some of the issues relating geometry to physics
before the student even at this early stage of the curriculum. The advent of the
computer, and also some of the recent theories of physics will, no doubt, call into
question the discrete versus the continuous character of space and time (an issue
raised by Riemann in his dissertation on the foundations of geometry). It is to be
hoped that our discussion may be of some use to those who will have to deal with
this problem in the future.

Of course, we have had to omit several important topics due to the limitation
of a one-year course. We do not discuss infinite-dimensional vector spaces, in
particular Hilbert spaces, nor do we define or study abstract differentiable manifolds
and their properties. It has been our experience that these topics make too heavy
a demand on the sophistication of the student, and the effort involved in explaining
them is best expended elsewhere. Of course, at various places in the text we have
to pay the price for not having these concepts at our disposal. More serious is the
omission of a serious discussion of Fourier analysis, classical mechanics and
probability theory. These topics are touched upon but not presented as a coherent
subject of study. Our only excuse is that a thorough study of each would probably
require a semester’s course, and substantive treatments from the modern viewpoint
are available elsewhere. A suggested guide to further reading is given at the end
of the book.

We would like to thank Prof Daniel Goroff for a careful reading of the
manuscript and for making many corrections and fruitful suggestions for improve-
ment. We would also like to thank Jeane Morris for her excellent typing and
her devoted handling of the production of the manuscript from the inception of
the project to its final form, over a period of eight years.
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In Chapter 1 we explain the relation between the multi-
plication law of 2 x 2 matrices and the geometry of straight
lines in the plane. We develop the algebra of 2 x 2 matrices
and discuss the determinant and its relation to area and
orientation. We define the notion of an abstract vector space,
in general, and explain the concepts of basis and change of
basis for one- and two-dimensional vector spaces.

1.1. Affine planes and vector spaces

The familiar Euclidean plane of high-school plane geometry arose early in the
history of mathematics because its properties are readily discovered by physical
experiments with a tabletop or blackboard. Through our experience in using rulers
and protractors, we are inclined to accept ‘length’ and ‘angle’ as concepts which
are as fundamental as ‘point’ and ‘line’. We frequently have occasion, though, both
in pure mathematics and in its applications to physics and other disciplines, to
consider planes for which straight lines are defined but in which no general notion
of length is defined, or in which the usual Euclidean notion of length is not
appropriate. Such a plane may be represented on a sheet of paper, but the physical
distance between two points on the paper, as measured by a ruler, or the angle
between two lines, as measured by a protractor, need have no significance.

An example of such a plane is the one used to describe graphically the motion
of particles along a line (the x-axis). A point P or Q in this plane represents the
physical concept of event, something which has a time and place. A line [ also
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Figure 1.1

has physical significance; it corresponds to the motion of a particle which is subject
to no force. We can compare the lengths of segments along the t-axis (time intervals)
or along the x-axis (distances). Yet the distance between P and Q, as measured
with a ruler, is devoid of physical significance. Furthermore, the origin in such a
plane, where the axes cross, is of no fundamental physical significance.

The mathematical concept of real affine plane is the appropriate one to represent
this and many other ‘two-dimensional’ situations. An affine plane contains points,
which we shall represent by upper case letters P, Q, etc., and straight lines, which
we shall call simply lines and represent by lower-case letters I, m, etc. As our model
for the affine plane, we shall follow Descartes and consider the set of all pairs of
real numbers as our plane. A typical point is then an ordered pair of real numbers

denoted by [x] This plane is called AR2 The A stands for affine, and is to
y

remind us that we have no preferred origin. The R stands for the collection of real
numbers, and the superscript 2 indicates that we are considering pairs of real
numbers. (When we plot the plane on paper, the usual convention is to plot x
horizontally and y vertically along perpendicular axes. However, the notion of
‘perpendicular’ or the size of any angle is undefined for us at the moment. We
could just as well plot x and y along any axes.) A line is a particular kind of set
of points. We assume that you are familiar with (straight) lines from your previous
studies of geometry, and, in particular, that you are acquainted with the description
of lines in analytic geometry.

[’

=V

Figure 1.2



The lines of the affine plane AR? can be described in various ways. One way is
to give an equation satisfied by the points of the line, for example

i

) ) x .
This is to be read as ‘Il is the set of points [ ] such that the equation ax + by =¢
y

ax+by=c}.

is satisfied’. Here it is assumed that a and b are not both zero.
This method of characterizing a line is a little inconvenient because the para-
meters a, b, ¢ which characterize the line are not unique. For example

i
i

are the same line. More generally the parameters ra, rb, rc, for r # 0, describe the
same straight line as a, b, c.

A second method of characterizing a line in AR? is in terms of two points lying

ax+by=c}

and

3ax + 3by = 3C}

on the line. Given two distinct points P, = [on and P, = IiXI:]’ we construct
Yo Y1
the line through P, and P, as the set of all points

[x} _ |:x0 +t(x,; — xo)}
y Yo + t(y1 — Yo)

where the parameter ¢ ranges over the real numbers. This description of a line is
even more redundant than the previous one: we can replace our points P; and
P, by any other pair of distinct points on the same line.

Another convenient way of describing a straight line (a more ‘dynamic’ as
opposed to a ‘static’ way) is to give a point on the line and the ‘direction vector
of the line™ thus the set of all points of the form

{[Xo] + t<u> te[R{} where <u> #(0> is a fixed vector
Yo v v 0

is a line. (Here we think of the line as being traversed by a particle moving with

. . u ) X )
velocity vector’ ( ) and situated at |: 0] at time zero.) Here we have used
v Yo

. , u

four parameters to describe the line. But we can multiply ( ) by any non-zero
v

scalar and get the same line (just traversed with different velocity) and we can

. X .
displace [yo] along the line, showing that we have two redundant parameters.
0



Of course, this ties in with our second description if
U=x; — Xo,
V=Y — )1
There is a fourth, familiar description of a line which is not redundant, but has

the awkward feature that it does not describe absolutely all lines in the same way.
If a and b are any real numbers, the set

e

0
is a straight line which intersects the y-axis at the point [ b] and which has ‘slope’

a; i.e., for points on the line, an increase in one unit of x implies an increase in a
units of y. This set is a line, and the description is not redundant, for we have
described a and b in terms of geometric properties of the line. But not all lines
are of this form. We must add the lines which are parallel to the y-axis, and which

have the description
y

From a strictly logical point of view, we should take one of the four descriptions
given above as our definition of a straight line; for example, we should say that,
by definition, a line is a subset, [, of AR? such that there are three real numbers
a,b, and ¢ with a and b not both zero such that

=1

We should then prove that such a subset can be given by either of the other three
descriptions. We shall not go into such logical niceties here, since you have seen,
or can construct, such arguments from elementary analytic geometry.

It is important to remember that an affine plane has no origin and that it makes
no sense to add points of an affine plane. We attach no special significance to the
: 0 . , : . 2 3

point [ O:I, and we resist the temptation to add points like [ 1} and |: 6

‘coordinate by coordinate’. There is, however, a closely related mathematical
structure, called a two-dimensional vector space, in which an operation of addition
is defined. We construct a vector space from an affine plane by associating with

ax+by=c}.
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any pair of points the ‘displacement vector’ PQ whose ‘tail’ is at P and whose
‘head’ is at Q. We denote vectors by lowercase bold letters: v,w, etc. A vector v is

5 .
). (Notice that we use

also given as a pair of real numbers, for example v = ( )

5.
) is to be thought

() for vectors and not [ ] as for points.) The vector v =’( )



Figure 1.3

. . ) 11]. 6 .
of as that displacement which carries the point |: 3} into [5], carries the point

— 2
3 into and, in general, carries any point P = * | into Q0= x+3 ,
2 4 y y+2

Thus each vector v determines a (particular kind of) transformation of the affine
plane into itself, a rigid translation of the whole plane. If P is any point in the
plane, we will denote the displaced point @ by P“+”v: the “+” is a symbol for
this operation of vectors on points. Thus v sends P into Q = P“+”v. Explicitly,

if P= X and v= 4 , then P“+"v = xta .
y b y+b

We put quotation marks about the + sign because the operation is between
two different kinds of object, points and vectors, and so differs from the usual
notion of addition. Similarly, given any pair of points P and Q, there is a unique
vector v=Q “—"P such that

P“+”v=0Q.
We put quotation marks around the — because it relates different kinds of objects,
it gives a vector from a pair of points. You should convince yourself, by working
out some examples on graph paper, that two pairs of points, P, Q and R, S determine
the same vector, i.e., Q“—"P=8“—"R, if and only if F(?and Eg are opposite
sides of a parallelogram. For this reason, one frequently finds it said that a vector

is determined by ‘magnitude and direction’. But we want to refrain from introducing
either magnitude or direction as they are not invariant concepts for us.

Figure 1.4



We can define the sum of two vectors: if u=(Z> and v= (C

d
at+c
TV \b+a)

P“+”(u+V)=(P“+”u)“+”v (1.1)

), define their

sum by

Notice that

since, if u= (Z), v=<2) and P= [;}, then both the left and the right hand

a+c+x

b+d+y |
that the displacement corresponding to u+v can be obtained by successively
applying the displacement v and then the displacement u. Notice thatu +v=v+u.
We can visualize the addition of vectors by the familiar parallelogram law: if we
start with a point P and write R=P“+”u,Q =P“+”vand S = P “+”(u +v), then
the four points P, Q, S, R lie at the four vertices of a parallelogram. You should
convince yourself of this fact by working out some examples on graph paper. The

side of the above equation equal The equation (1.1) says

proof of this fact goes as follows. For any vector v= and any real number

a
b
ta
th

I={P“+”tv} (ast varies over R)

0
t, define their product, tv, by tv= ( ) If v# ( 0) and P is any point, the set

is a straight line passing through P (just look at the third of our four descriptions
of straight lines). If R is some other point, then the line

m={R“+”sv} (ass varies over R)

and | will intersect, i.e., have some point in common, if and only if there are some s,
and t, such that

R“+7s,v=P“+7t,v
which means that
R=P“+7(t;y — sy)v
and hence, for every s, that
R“+7sv=P“+7(s+1t; —$1)v.

This means that the lines m and [ coincide. In other words, either the lines | and
m coincide, or they do not intersect, i.., either they are the same or they are

. 0
parallel. Now let us go back to our diagram for vector addition. If v # (0>, then

the point Q = P“+”v lies on the line I through P and the point = R“+”y lies
on the line m through R. There are now two possibilities: if the point R does not
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lie on the line I, so that u #tv for any ¢, the lines | and m are parallel. A similar
argument applies to the other two sides and we conclude that the figure is a
parallelogram. If u = tv, then all four points lie on the line I. We can still view this
picture as a sort of ‘degenerate’ parallelogram:

//S
R
Q

P

Figure 1.5

, 0
If eitheru or v =<

0), the picture degenerates further:

/ Q
P
Figure 1.6

We say that the vectors u and v are linearly dependent if there are numbers r and s, not
both zero, such that

ra + sv=0.
If r # 0 we can solve this equation for u to obtain u= — (s/r)v and if s #0 we can
solve this equation for v= — (r/sju. In either case, the ‘addition parallelogram’

degenerates into segments on a line < oriffu=v= ( 0), into a single p01nt>. This

is the reason for the term linearly dependent. If two vectors are not linearly
dependent, we say that they are linearly independent.

0 :
The zero vector ( 0), denoted by 0, has the same point for its head and tail.

It is called an additive identity because

0+v=v+0=v forallv.

The set of all vectors v=(x
y

called R2. The space R? is an example of a vector space, to be defined in the
next section. The notational distinction between R? and AR? lies in the fact that

) where x and y are arbitrary real numbers is

in R? the point ( 0> has a special significance (it is the additive identity) and the

addition of two vectors in R? makes sense. These do not hold for AR2.

1.2. Vector spaces and their affine spaces

Itis easy to check that the operations of addition of vectors in R? and for multiplying
vectors by real numbers satisfy the following collection of axioms:



< .near transformations of the plane

Laws for addition of vectors
Associative law of addition: (u+v)+w=u+(v+w).

Commutative law of addition: u+v=v+u
Existence of additive identity:  there is a vector 0 such that 0 +v=v

for all v.
Existence of additive inverse: for every v there is a — v such that
v+ (—v)=0.

Laws involving the multiplication of vectors by real numbers
‘One’ acts as multiplicative
identity: Iv=v for every v.
Associative and distributive laws: for any real numbers r and s and any
vectors u and v
(rs)v = r(sv)
(r+s)v=rv+sv
ru+v)y=ru+rv.

The above axioms are known as the axioms for a vector space. By definition, a
vector space is a collection, V, of objects, u, v, etc., called vectors, such that we are
given a binary operation, +, which assigns to every pair of vectors u and v a third
vector u + v and a multiplication which assigns to every real number t and every
vector v another vector tv such that the above axioms hold.

We have verified that R? is an example of a vector space. As a second example,
we could take R® where a vector now consists of a triplet

)

of real numbers. Addition of vectors is done componentwise as in R?:

a, a, a;+a,
if v, = bl) and v2=(b2>, then v1+v2:(b1+b2>.
¢,y Cs, Cl+C2

The space R? is just the space of vectors in our familiar three-dimensional space.
We shall study the concept of dimension later on. We could also consider the
space R = R of the real numbers themselves as a vector space. Here addition is just
the ordinary addition and multiplication ordinary multiplication. When we
introduce the notion of dimension, this will be an example of a one-dimensional
vector space.

As a different looking example of a vector space, consider the collection of all
polynomials. We can add two polynomials:

(14 3x+7x2) + (2 —x2 + x* — x%) =3+ 3x + 6x? + x* — x°,
just add the coefficients. We can also multiply a polynomial by a real number:

7(1 + 3x +3x2) =7 + 21x + 21x7%.
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You should check that the axioms for a vector space are satisfied. We can also
consider the space of polynomials of at most a given degree. For example, the
most general polynomial of degree at most two is of the form

P=ax*+bx +c.
The sum of two such polynomials

P,=ax*+bx+c; and P,=a,x*+b,x+c,
1S
P, + P, =(a; +a,)x* + (b, + by)x + ¢; +c,.
For example, if
P,=3x*+2x+1, P,=7x*>—10x+2
then
P, +P,=10x*>—8x + 3.

The set of polynomials of degree at most two is also a vector space. Notice that it
‘looks like’ R in the sense that the preceding equations look like

ek ()

We will return to this point later.

Suppose that we are given a vector space V; for example, V could be R?, R? or
R*. By an affine space associated to V, we mean a set A consisting of points P, Q,
etc., and an operation “+” which assigns to each PeA and each veV another
point in 4 which is denoted by P*“+"v. This rule is subject to the following axioms:

Associative law: P“+7w)*+"v=P“+”(m+v) for any PeA
and u,veV.

‘Zero’ acts as identity: P“+”0=P for any PeA.

Transitivity: given any two points P and Qe A, there is a
veV such that P“+”v= Q.

Faithfulness: if, for any P, the equality P“+”u=P“+"v

holds, then u =v.
Combining the last two axioms, we can say that, given any two points P and Q,
there is a unique vector v such that P“+”v= Q. It is then sometimes convenient
to write v=Q“—"P.

The notion of a vector space and associated affine space lies at the basis of three
centuries of physical thought, from Newtonian mechanics through special relativity
and quantum mechanics. The purpose of the present chapter is to develop most
of the key ideas in the study of these structures by examining the intuitively simple
case of the two-dimensional* vector space R2. Let us begin, however, with some

* We will give a precise definition of the term ‘two-dimensional’ in §1.12, of ‘one-dimensional’ in
a few lines, and of the general concept of the dimension of a vector space in Chapter 10.



comments about the one-dimensional case. Here the concepts are so ‘obvious’ that
a detailed discussion of them may appear so pedantic as to be non-intuitive. Yet
it is worth the effort.

A vector space V is called one-dimensional if it satisfies the following two
conditions: (i) it possesses some vector v # 0; and (ii) if v # 0, then any ueV can
be written as u = rv for some real number r. Notice that the r in this equation is
unique: if

rlv == r2V,
then we claim that r, =r,. Indeed, from r,v=r,v we can write
If r, —r, #0, then setting s = (r; —r,)” !, we have

0=s[(r; —ryv]=(s(ry —ry))v
=1v

:V’

so v=0, contradicting our original assumption that v#0. (You should check
exactly which of the vector space axioms we used at each stage of the preceding
argument.) Once we have chosen a v # 0 in a one-dimensional vector space, then to
each vector u there is assigned a real number, r,

u—r where ua=rv.

If u; =r,v and u, =r,v, then u; +u, =(r; +r,)v. Thus u, +u, corresponds to
ry +r,. Similarly, if u=rv and t is any real number, then tu=(tr)v so that tu
corresponds to tr. In short, every vector corresponds to a real number, and the
vector operations correspond to the operations on R!. We say that we have an
isomorphism of the one-dimensional vector space V with R'. This identification of
V with R! depends on the choice of v. A choice of v is called a choice of basis of
¥V, and the number r associated to u via u =rv is called the coordinate of u relative
to the basis v. Suppose we choose a different basis, v'. Here v’ = av where a is some
non-zero real number. If u =rv, then

u=(ra” Yav
SO

u=rv where r=a lr

Thus, changing the basis, by replacing v by av, has the effect of changing the
coordinate of any vector by replacing the coordinate r of any vector by a~'r. The
choice of a basis in a one-dimensional vector space is much like the choice of a
unit for some physical quantity. If we change our units of mass from kilograms
to grams, an object that weighs 1.3 kilograms now weighs 1300 grams. The difference
is that, for many familiar physical quantities, the measurement of any object is
given by positive numbers (or zero) only. It usually makes no sense to say that
something has negative volume or mass, etc. An exception is in the theory of
electricity, where electric charge can be positive or negative. For instance, we might



imagine situations in which we might want to choose the charge of the electron
as our unit. In terms of this basis, the electron would have charge + 1 instead of
—1.602191 x 10~ 1° coulombs, where the coulomb is a ‘standard unit’, i.e., a basis
that has been agreed upon by international convention.

Let A be an affine space associated to the one-dimensional vector space V. If
we pick some point O in A, then every other point, P, determines a vector u =
P“—"0. If we also choose a basis, v of V, then each P gets assigned a number,
x(P), where

P=0“+"x(P)v.

We call x(P) the coordinate of P, but here we had to make two choices: we had
to choose an ‘origin’ O, which allowed us to identify points with vectors, and then
we had to choose a basis of V, which allowed us to identify vectors with numbers.
If we change our basis, by replacing v by v’ = av, then x is replaced by x’ where

x'(P)=a~'x(P).
If, in addition, we replace O by O’, where O’ =0 “+”w, then
P“="0"=(P“="0)—w.
If w=bv/, then this has the effect of replacing x’ by x”, where now
x"(P)=a"'x(P)—b.

We should compare the above discussion with Newton’s introduction of the
concept of absolute time. Newton wrote:

Absolute, true and mathematical time or duration flows evenly and equably from
its own nature and independent of anything external; relative, apparent and
common time is some measure of duration by means of motion (as by the motion
of a clock) which is commonly used instead of true time.

In our terminology, what Newton said is that there exists a concept of absolute
time, and the set of all absolute times has the structure of a one-dimensional affine
space. The idea of ‘flowing evenly and equably’ is made mathematically more
precise by the assertion that there is the action, given by “+”, of a one-dimensional
vector space V on the set of all times. It is this postulated action which allows us
to compare different intervals of time. Newton’s distinction between ‘true’ and
‘common’ time corresponds to our discussion of the degree of arbitrariness involved
in introducing coordinates on the affine line.

We should pause for a moment and ponder over this abstract postulate of
Newton, which lay at the cornerstone of physics for over two centuries. We have,
each of us, our own psychological perception of time. Our psychological time
differs in many important respects from Newton’s absolute time. The first striking
difference is that for us time has a definite direction. The future is to some extent
unknown and subject to our volition and intervention. (In many European
languages, for example, the future tense is indicated by volition (in English ‘I
will go’—‘I wish to go’) or compulsion (in French ‘’irai’—‘I have to go’).)



The past is, to some extent, known or remembered. Yet Newton’s laws of
motion are insensitive to the change of direction of time. If we were to
run a motion picture of Newton’s (and to all extents and purposes the actual)
planetary system backwards, we would discover no discrepancy with Newton’s
laws. The second difference is that our psychological time does not ‘flow
evenly and equably’, at least in comparison with Newton’s absolute time. We have
certain bodily functions which are recurrent, and so suggest to us a notion of a
time interval: we get hungry a ‘certain amount of time’ after having had our last
meal. But this is very variable, being determined by the level of our blood sugar,
which in turn depends on what exactly we ate, what we have been doing in the
interim, our overall physiological profile, etc. Also, our psychological perception
of these intervals of time varies greatly. Time passes quickly when we are interested
and excited by what we are doing, and slowly when we are bored. Nevertheless,
our internal rhythms appear to be somewhat correlated to periodicities in the
world about us; from the earliest records of civilization, the measurement of ‘external
time’, whether for civil or for scientific purposes, has always been based on the
revolution of the celestial bodies. The period of apparent revolution of the sun,
i.e., the interval between successive crossings of a meridian, has been the usual
standard for a day. The Egyptians divided the day into 24 hours of equal length,
while the Greeks divided the period from sunrise to sunset into twelve equal hours,
and similarly the night. These subdivisions were marked off by various devices
such as sundials during the day or water clocks. (Those who adopted the Greek
system had to furnish their water clocks with some compensating device so that
the hours could be modified according to the needs of the season.) All of these
devices have in common that they move in one direction with psychological time —
the shadow of the sundial moves in the same direction every day, the water always
runs downbhill. (The civil day itself is irregular, due to the varying motion of the
sun on the celestial sphere. The simplest relatively accurate measure of time is the
sidereal day. This is the revolution of the earth about its axis, and is measured by
observing some fixed star: the period between two successive transits of some fixed
star across some meridian line is a sidereal day. A civil day is, on the average,
about four minutes longer than a sidereal day.)

The earliest clocks seem to have come into use in Europe during the thirteenth
century, but were highly inaccurate. The first major step in the improvement of
the clock came in the seventeenth century when Galileo discovered that the time
intervals between swings of a pendulum were constant (as measured against a
normal pulse beat, for instance). He seems to have made little practical use of this
information, except for the invention of a little instrument for doctors to use in
measuring the pulse of their patients. His son, however, is said to have applied
the pendulum to clocks. From then on, the development of mechanical clocks was
fairly rapid. Thus, it was just around the time of Newton that one finally had a
method, which, in principle, could divide time into arbitrarily small equal intervals.
It is also worth noting that the direction of rotation of the hands of a mechanical
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clock is entirely conventional. It is also easily reversible. By a simple change of
the gearing, we can make the hands rotate counterclockwise instead of clockwise.
It is interesting to speculate how much the development of mechanical clocks had
to do with Newton’s conception of time.

1.3. Functions and affine functions

In the next few sections we will study those transformations of AR? into itself
which carry straight lines into straight lines. We must begin with some general
discussion of the notion of ‘transformation’ or ‘function’.

Let W and X be sets. A rule f: W— X which assigns one element f(w) of X to
each we W is called a function (or map, or mapping, or operator) from W to X. The
set W is called the domain of f. If A is a subset of W, we let f(A4) denote the subset
of X consisting of the element f(w) where we A:

f(A)={f(w)lwe4}.
The set f(W) is called the image of f: in general, it is a subset of X.

For example, suppose f is the map of R? into itself given by f(P)=P“+”v
where v is a fixed vector. Then f(A) is obtained from A4 by ‘translating 4 through
V. If A=1={P+tu} is a line, then f(I)={P + v+ tu} is another line. Thus the
image of a line under a translation is another line.

f

Figure 1.7

This notion of function is very general and powerful. The only restriction, really,
is that the ‘output’ of the function must be well-defined. It is not acceptable, for
example, to have a function f: R — R with the property that f(1)=2 and f(1) = 3.
There would be nothing wrong, however, with a function f:R— R? for which

2
f(1)=<3>.

Certain standard terminology concerning the domain and range of f is worth
learning.

L. If two distinct elements w,, w,e W are always mapped into distinct points
Xy, X,€X, then f is called injective (or one-to-one). Equivalently, f is
injective if f(w,) =f(w,) implies w; = w.,.
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2. Iftheimage of f, f (W), is the entire set X, then f is called surjective (or onto).
Equivalently, if the equation f(w)= x has at least one solution for each
xeX, then f is surjective.

3. If f is both injective and surjective, it is called bijective (or one-to-one onto).
Equivalently, f is bijective if the equation f(w) = x has a unique solution w
for each xeX. In this case there exists a function f~!: X — W, called the
inverse of f, which maps each xe X into the unique w for which f(w) = x.

Figure 1.8 may help you visualize why a function must be both injective and
surjective in order to be invertible.

@ww_ |, [x=rw
W, >x
\\\1.———'—
1w b x
L e I ——— f(w) 3
X1
Wiy Xa
\\.f-“_
© ['w f X

Wz\ f /x2

Figure 1.8(a) Surjective but not injective. Not invertible: F~'(x) would
not be well-defined. (b) Injective but not surjective. F ~!(x;) is not defined.
(c) Bijective (injective and surjective). F~(x;)=w; and F~!(x,) = w,.

In many cases we can describe a function by means of a formula. There are two
equivalent notations for associating the formula with the function. To describe
the familiar squaring function F: R — R, for example, we may write either F(x) = x?
or

F:xx2.
whichever notation we use, the symbol x is a ‘dummy’ having nothing to do with F:
the same function is described by

Fty=1t*
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or by
F:o o2,
A function described by a formula can involve more than one numerical
argument, for example

G(x,y)=2x+ 3y
or
G: (x,y)2x + 3y.
This function G takes the ordered pair of numbers (x, y) and produces the number
2x + 3y.
One further notion that applies to functions is that of composition. Let W, X, Y, Z
all denote sets, and suppose we have functions

fiW-X,
g:- XY,
h: Y- Z.

We denote the function which takes welW, operates on it with f to obtain an
element of X, then operates on that element with g to produce an element of Y,
by geof, called the composition of g with f. More succinctly, (gof)(w) = g(f(w)).
Notice that the composition
hogof iW—Z

(f followed by g followed by h) is the same as ho(gef) or as (hog)of. Thus the
operation of composition obeys an ‘associative law’ just as does multiplication of
real numbers.

We turn now to functions on affine lines and planes and on vector spaces,
beginning with one-dimensional examples which, although important, are so subtle
that they can easily be overlooked.

Let A be an affine line, illustrated in Figure 1.9. Given any ruler, we can choose

P R o
®- -® -—

Figure 1.9

an origin and orientation for this line and assign a coordinate to each point on
the line. Mathematically speaking, we have chosen an origin, O, of A and a basis,
v, of V as described in the last section. Thus we construct an affine coordinate
function

x:A-R.

Of course, there are many possible affine coordinate functions on a line, and which
one we construct depends on our origin and unit of measurement. We call x a
coordinate function because it is invertible: knowing x(P), we can reconstruct P.
Notice that x preserves the ‘interpolation property’ of a real affine line: if

R=(1—1tP +1t0Q,



then
X(R) = (1 — )x(P) + tx(Q).

In particular, if R is the midpoint of the segment PQ, then
X(R) = 3x(P) + 3x(Q).
You have probably never thought of this x as a function before. You cannot
write a formula for it. Yet you can hardly do elementary physics without it, because

it is what lets you express other functions on a line in terms of formulas. If, for
example, the force which acts on a particle on a line is a function of position

fA-R
you cannot write a formula for f, but you can introduce an affine coordinate
x:A->R

and a function F: R — R and write f(P) = F(x(P)) = (F °x)(P). This is what a formula
like Force =sin x, used to represent a function on a line, really means.

Time is an affine line whose points are ‘instants’. The affine coordinate function
t: A —» R assigns a number to each instant. To define t we use a clock. Clocks
which run at different rates lead to different functions ¢, but any ‘good’ clock yields
an affine function. A defective clock, for example a pendulum clock whose pendulum
varies in length because of temperature change, would yield a non-affine coordinate
function.

The motion of a particle along a straight line determines a function from one
real affine line A, (time) to another real affine line A, (space). This function
f:A,— A, acts on an instant of time E to yield a point P on the line, so that
P =f(E). We cannot write a formula for f because E and P are not numbers. If
we want a formula to describe the particle’s motion, we have to introduce affine
coordinate functions t and x. Then we can write

X(P) = F((E))

where F:R— R can be represented by a formula like F(«) = xo + vt + Lan?.

1.4. Euclidean and affine transformations

A map f:R? - R?is called a Euclidean transformation if f preserves distance. This

Y1 Y2
f(P,) to f(P,) is the same as the distance from P, to P,. If we express f in terms

of two functions ¢: R?> - R and ¢: R> >R so that

f[x] _ [¢><x, y)]
y W(x,y)
this condition amounts to the requirement

[P(x2, ¥2) — Plx1,¥1)1? + [W(x,, ¥5) — Y(xy,y1)1? = (x5 — xl)z + (2= y1)?
for all values of x4, y, X5, y.

means that for any two points P, =[xl} and P2=[x2:|, the distance from



Euclidean geometry can be thought of as the study of those properties of subsets
of the plane which are invariant under the application of any Euclidean trans-
formation. For instance, if 4 is a circle and f is a Euclidean transformation, then
f(A) is again a circle. If [ is a straight line, then f(I) is again a straight line. It is
clear from the definition that, if f and g are Euclidean transformations, then gof
is again Euclidean.

A map f:R*—R? is called an affine transformation if it carries straight lines
into straight lines. Thus f(/) must be a straight line for any straight line I. For
example, suppose f is the transformation defined by

£ x| | 2x+y+1
y| | y=x+5 1|
The most general straight line in the plane is given by an equation of the form

ax+by+c=0.

1)

w=2x+y+1l,z=y—x+5 and ax+by+c=0}.

That 1s,

ax+by+c=0},
So

o-{]

But we can solve the equations

w=2x+y+1
z=y—x+5
for x and y in terms of w and z.
The solution is

x=3w—1)—3z-79),
y=3w—1)+3z-95)
so the condition
ax+by+c=0
can be written as
al3(w—1)—3z—35)1+bBw—1)+3z—5]+c=0
or as
Ya+bw+G3Gb—%a)z+c+%a—5b=0.

In other words

f(A)={|:‘:] ew+gz+h=0}
where
e=%(a+Db),
g=3%b—3a,
and



This is again a straight line.

Notice that f is not a Euclidean transformation. Affine geometry consists of the
study of those properties of subsets of the plane which are invariant under all
one-to-one affine transformations. Thus, if 4 is a circle, f(A) need not be a circle
(but will be an ellipse as we shall see later on).

Suppose that f is such an affine transformation. Then f carries straight lines
into straight lines (by definition) and parallel straight lines into parallel straight
lines (since distinct points go into distinct points). Thus f carries parallelograms
into parallelograms. Thus the concept of a parallelogram makes sense in affine
geometry (figure 1.10) (while the concept of rectangle or square does not

(figure 1.11)).

A

Figure 1.10

Figure 1.11

1.5. Linear transformations

The simplest kind of affine (and Euclidean) transformations are the translations

X X+a

- .

y y+b
By a translation we can move any point of the plane into any other point. Before
proceeding further it is convenient to restrict attention to affine transformations

: 0 .

that keep one point, say [ 0:]’ fixed. We can then get to any other point by

applying a translation.
Let f be a one-to-one affine transformation which keeps the origin fixed. Choose

0 . . . . X s s
0 =[ ] as the origin. We can now identify a point P:[y} with its position



Figure 1.12

vector v=<x>, so P=0%“+"v. We shall, accordingly, drop the [ ] notation
y

and the distinction between AR? and R?. Since f carries parallelograms into
parallelograms, it follows immediately that, if the position vector of Q is v+ w,
the position vector of f(Q) is f(v) + f(w). Therefore

SV +w)=f(v)+f(w), (1.2)
if v#w. We can now show that f preserves ratios of segments along any line.
From the parallelogram spanned by w,v,v+ w and 2v, we see that

v+w

vt+v=2v

Figure 1.13

f@Rv)=21(v)

so (1.2) holds also when v = w. By repeating the argument,

fv)y=nf(v)
for any integer n > 0. Applied to (1/m)v, this implies

flav)y=af(v)
for any rational number a > 0.
From the parallelogram with vertices O, w, — v+ w, — v we see that

f(=v)=—f(

so that
flavy=af(v)

for any rational number, a, positive or negative, and alt v.



If we assume that f is continuous, it would follow that

flav)=af(v)

for all real numbers, a. It turns out that it is not necessary to make this assumption.
That is, it follows from properties of the real number system that knowing that f
carries lines into lines in the plane implies that f is continuous, and hence that
f(av) = af(v) for all real numbers a and all vectors v. The proof of this fact is a
little tricky, and we shall present it in an appendix at the end of this chapter. For
the moment we shall restrict attention to those affine transformations which do
satisfy f(av) = af(v) for all real a, although, as we said, this turns out not to be a
restriction at all. For such f, we have the identity

f(av+bw)=af(v)+ b f(w) (1.3)
for any real numbers a and b and for any vectors v and w in R?.

A map f:R?*— R? satisfying (1.3) is called a linear transformation of the plane.
We have converted the study of affine transformations of R* which hold the
origin fixed into the study of linear transformations of the vector space R2.

Any map of R?*— R? satisfying (1.3) is linear, by definition. Not every linear
transformation is one-to-one. For example, the transformation which maps every
vector in R? into the zero vector,

()-0) e ()

1s linear, but not one-to-one.
If f is a linear transformation,

fv+tw)=f(v) + tf(w).

If fis also one-to-one, then w#0 implies f(w)#0. Thus f carries the line
{v+tw|teR} into the line {f(v) + tf (w)[teR}, so f carries lines into lines. Hence
every one-to-one linear transformation is affine. A one-to-one linear transformation
is called regular or non-singular. A linear transformation which is not one-to-one
is called singular. We have seen that every regular linear transformation is affine.
We shall see that the singular ones collapse the whole plane either into the origin
or into a line.

It is clear that if f and g are linear transformations (regular or not) then geof is
again a linear transformation. Indeed, (gof)(av + bw) =g(af(v) + b f(w)) since f is
linear. Since g is linear this equals agef(v) + bgef(w) which shows that gof is linear.

To summarize: Linear transformations are, by definition, those f which satisfy
(1.3) for all pairs of vectors v and w and all real numbers a and b. An affine
transformation is a one-to-one map of R? into itself which carries lines into lines
Any affine transformation can be written as a (non-singular) linear transforma-
tion followed by a translation; that is, any affine transformation f satisfies

flw)=1I(w)+v

where | is a regular linear transformation. Conversely, every f of this form is affine.



1.6. The matrix of a linear transformation

. . . X\ .
Let f be a linear transformation. We can write any ( > in the plane as
y

()=o) ()
/()=o) (3)

This formula shows how f is completely determined by what it does to the two

: 1 0 1\ [a 0\ (b
basis vectors (0> and <1) Suppose that f(o)—(c> and f<1>—(d).

Then f is completely determined by the four numbers a,b, ¢, and d,

x\ (ax+by
f(y) B (cx +dy)'

We write these four numbers as a square matrix

b
Mat(f)=(j d)

1
where the first column is the image of < 0> and the second column is the image

so that

0
of (1> The image of any point <x> is then given by
y

a b\(x\_ [ax+by
<c d)(y)_<cx+dy> (14)

We regard (1.4) as a multiplication rule, telling us how to multiply the vector (i)

b
d

each of the two components. Thus the top component is ax + by which is obtained

. a .
by the matrix ( ), to give another vector. It says to take the row x column for
c

X

from the top row (a,b) of the matrix and the column (
y

). Similarly for the

bottom component.
For example, suppose that R, is counterclockwise rotation of the plane through

angle 0. Then
1 cos 6
R —
"(0) (sin 0 >

0 —sin 6
R0(1)=< cos@)

and



)
(5

Figure 1.14

cosf —sinf
sin 0 cosf )
The image of any point (i) is given by
cosf —sinb \(x\ [(cosbt)x—(sinb)y
sin 0 cosf )\ y /) \(sin@)x + (cosB)y )’
The formula (1.4) shows how to assign a linear transformation to each matrix. We
can thus identify 2 x 2 matrices with linear transformations of R2.

so that R, has the matrix

1.7. Matrix multiplication

. . . . . (a b
Suppose that F is a linear transformation whose matrix is (

. d)andGisa

linear transformation whose matrix is ( Q) Then FoG is again a linear trans-
g

formation. It has a matrix whose first column is
1 e a b\/fe ae + bg
FoG = = = .
( )(0> F(a) (c d)(Q) <Ce+dg)
The second column is
0 f a b\(f\_ af+ bh
(F G)(l)_F(h)_<c d)<h>_(cf+dh )

Thus we define the ‘multiplication’ of matrices to correspond to composition of
linear transformations, (Mat F) x (Mat G) = Mat (F° G). The rule for multiplication

is
a b\(e f\_ (aet+bg af-i—bh)
¢c dJ)\g h) \ce+dg cf+dh

For any position in the product matrix we take the same row from the first matrix
and the same column from the second matrix and multiply row by column.



For example, if Ry is (counterclockwise) rotation through angle 6 and R, is
rotation through angle ¢, then R,-R, =R, , and

cosf —sinf cos¢ —sing

. X .

sin 0 cos 0 sin ¢ cos ¢
_(cos@cos¢—sin95in¢ —cosBsinqS—sianosqb)

sin 0 cos ¢ + cos 0'sin ¢ cos O cos ¢ —sinfsin ¢

Comparing this with the matrix of R, ;

cos(0+ ¢) —sin(0+ ¢)
sin (0 + ¢) cos (0 + ¢)

gives the standard trigonometric formulae for cos (6 + ¢) and sin (0 + ¢). Thus you
need no longer remember the identities for the sine and cosine of the sum of
two angles. You can derive them from the more general rule of matrix multiplication.

Notice that matrix multiplication, in general, is not commutative: for example,

o 36 506 )
(0 3)(6 )= )

(Two rotations of R? do commute with one another since it does not matter through
which angle we rotate first. But, in general, two matrices need not commute.)

As an illustration of matrix multiplication, we prove a ‘triple product decom-
position’ which will be used later on. This decomposition states that any matrix

while

a b .
(c d) with a # 0 can be written as a triple product of the form

(€ 2606 D 1) 0

To prove this result we simply devise a procedure for determining y,r,s, and x.
We first multiply the matrices on the right. Since

o 2 1)=6 )
(@ 0-CN0 -0 )

Now we can equate corresponding entries in the left-hand and right-hand matrices.
First, a =r, and since by assumption a # 0, r # 0. Next, b = rx and so x =b/r = b/a
(remember that a 5 0). Similarly, ¢ =ry and so y =c/r =c/a. Finally, d=rxy +$
and so

we want

s=d—rxy=d—rb/r)(c/r)=d— (bc)/a.



A similar decomposition, important in the analysis of lens systems, is

(02 )E 06 )

valid for any matrix with ¢ # 0. The proof of this decomposition is simple: again,
just multiply out the triple product and equate corresponding matrix entries on
both sides of the equation.

1.8. Matrix algebra

Let F and G be two linear transformations of R?. We define their sum by
(F + G)(v) = F(v) + G(v).
Notice that

(F + G)(av + bw) = F(av + bw) + G(av + bw)
= aF(v) + bF(w) + aG(v) + bG(w)
= a(F(v) + G(v)) + b(F(w) + G(w))
= a(F + G)(v) + b(F + G)(w).
Thus F + G is again a linear transformation. It is clear that this addition is
associative and commutative, that the zero transformation, O(v) =0, for all v, is
the zero for this addition and that (— F)(v) = — F(v) defines the negative of F, i.e.,
(— F) + F =0, where 0 in this equation stands for the zero linear transformation.
If H is a third linear transformation, then composition, represented by matrix
multiplication, has the following property:
Ho(F + G)(v) = H[(F + G)(v)]
= H[F(v) + G(v)]
= H[F(v)] + H[G(v)]
= (H°F)(v) + (H° G)(v)
for all v, or, in short,
Ho(F+ G)=H°F + H°G,
and, similarly,
(F+ G)eH=F°H+ G°H.

Thus multiplication is distributive relative to this addition.
It follows directly from the definition of the sum of linear transformations that if
the matrices of F and G are

Mat(F)=(z Z) and (; ]Irl):Mat(G)

then the matrix of F + G is

a+e b+f

) _ Mat (F) + Mat(G).
c+g d+h

Mat(F+G)=(



In other words, we add matrices by adding the entries at each position. We can

: . b 2a 2b .
also multiply a matrix by a number: 2(? d) = < 2e 2 d)' Notice that

22 5)-Ce 3006 ) 2

We have now defined addition and multiplication for 2 x 2 matrices, and the
rules for addition and multiplication satisfy most of the familiar rules for adding
and multiplying numbers. Thus:

Addition is commutative and associative with the existence of a zero and a
negative;

e . . . . . 1 0
Multiplication is associative with the existence of an identity, ( 0 1), and

is distributive over addition.
There are, however, two important differences:
(1) multiplication is not commutative;

(2) the product of two non-zero matrices can be zero, so the cancellation law
for multiplication need not hold:

0 1 y 0 1\ (0 O
0 0 0 0/ \0 0/)
Nevertheless, we shall see that in many respects we can deal with linear

transformations as if they were numbers.
Instead of linear transformations of the vector space R?, we could consider linear

X
transformations of the vector space R>. The vectors of R* are described as | y ]and
z
1 0 0
there are now three basis vectors, | 0 }, | 1 ] and | 0 ). The most general linear
0 0 |

transformation of R is now described by a 3 x 3 matrix of the form

dijy Ayp dgs
dy; Qp; dyz
d3; Q43 Q4izj
1
where the first column is the image of the first basis vector { 0 ), etc. The formula for

0
multiplication is
ag; a4y Q43 by, by, by; Ci1 C12 €13
Ay; Ayy Ay3 )X\ by byy byz |=|cay €22 €23
a3; 4z, djzj3 by; b3, b C31 C33 C33

where, for any i and j ranging over 1,2,3,

Cij= ;1 byj+ a;by;+ a;3bs;.



Again, for any position, the row from the first matrix multiplies the column from the
second. Thus, for example, taking i = 2 and j = 3 in the above formula corresponds
to the diagram

—
v

Figure 1.15

The law for addition is again positionwise addition. The various associative,
distributive laws apply as before, as does the commutative law for addition.

Equally well, we could consider 4 x 4, 5 x 5, or in general n x n matrices. Also
we can multiply a vector in R® by a 3 x 3 matrix:

a b c\ [/x ax + by +cz
d e fllyl=ldx+ey+fz
g h i/ \z gx +hy+iz

and, more generally, vectors in R” by n x n matrices.

1.9. Areas and determinants

We return to the plane. Let f be a non-singular linear transformation of the plane.
Since f(v + tw) = f(v) + tf(w), we know that f carries lines into lines and hence is an
affine transformation. Thus f carries squares into parallelograms. Furthermore, let
[J, be the unit square whose left-hand lower corner is at v,

[] ={v+s<l)+t(0)
' 0 1
={v+wlwe,}
Then the image of [], under f, which we denote by f([1,), is just a translate of
the image of ], under f:
£(@O)={f®+fwiwell,}
={f(v)+uluef(Oo)}

and thus f([7],) has the same area as f([J,). The same clearly holds if we consider a
square of any size, not necessarily the unit square. On the other hand, we can

0<s<1, 0<t<1}



Figure 1.16

Figure 1.17

Figure 1.18

subdivide the unit square into four congruent squares and their images are all
congruent and fit together to form the image of [J,; thus each of these images has
area equal to % x (the area of f([,))-

By repeated subdivision we conclude that, if [ is any square whose side length is
1/2% then

area f (L)

area [ ]



is a number which is independent of [] (and of the size 2%). Let us denote this
number by Ar (f), so that

area-(f(0))
area[]

Ar(f)=

If D is any region in the plane

Figure 1.19

N4

/

L )
\\.

o]

Figure 1.20

we can approximate it by a union of squares (and its image by the image
parallelograms) so that

area f (D)
area D

Ar(f)=

for any (nice) region. (Strictly speaking, we should approximate it from the inside
and the outside. If we assume that we can cover the boundary by a finite union
of small squares whose total area can be made as small as we like, then the total
area of the parallelograms covering the image of the boundary will also be as
small as we like. Hence the approximation is legitimate. This is the meaning of
our qualification that the region be ‘nice’.)

Thus Ar(f) gives the factor which tells us how area changes when we apply f.
If f and g are two non-singular linear transformations,

area (fog)(0]) _arcafog(C))  areag(C)
area [] ~ areag([d) area []




SO

Ar(fog) = (Ar(f)) x (Ar(g)).

We now compute Ar(f) for some special cases by inspection then compose
them to get the general case. Notice that Ar(f)=area [f([0,)] =area of the
image of the unit square under f.

Case 1a: fis represented by

F___Mat(f)z(g 2) r>0 s>0

Ar(f)=rs.
9 e/
VA

Figure 1.21(a)

o‘\
S

Case 1b: f is represented by

r O
F=< > r<0 s>0
0 s

Ar(f)=|rs|.
ot "
VY &/

Figure 1.21(b)

In general it is clear that Ar(f)=|rs| in any case where F is a diagonal matrix.

Case 2a: fis represented by

Figure 1.22(a)



. . . 1 1
Since the shaded triangle with vertices (0>, ( 1>, ( i + x) can be obtained from

) ) ) 0 0
the shaded triangle with vertices ( O)’ ( 1), (T) by a translation <adding

1 ) .
< 0) to each vertex), the image of the unit parallelogram has the same area as

the unit parallelogram. That is, area is unchanged by this shear transformation.
Ar(f)=1 in this case.

Case 2b: f is represented by

)

Figure 1.22(b)

Again the two shaded triangles have the same area, and so Ar(f)=1 in this
case also.

: a b .
For any matrix F =< d) we define its determinant by

c

Det F = ad — bc. (1.6)
We wish to prove the basic formula

Ar(f)=|Det F|, (1.7)

We have proved this formula for each of the three kinds of matrices listed above.
To prove it in general we make use of the following important property of

determinants:
Det (FoG)=(Det F) x (Det G)

which can be verified by direct multiplication: if G = (; J;l) then

bg af + bh
Det(FoG)=Det<ae+ g af )

ce+dg cf +dh
= (ae + bg)(cf + dh) — (af + bh)(ce + dg)
= (ad — bc)(eh — fg) = (Det F) x (Det G).

From the two rules Ar(f°g)=(Arf) x (Arg) and Det(F°G) = (Det F) x (Det G)
we conclude that the formula

Ar f = |DetF| ]



is true for any matrix that can be written as a product of matrices for which we
already know the formula to be true. We proved in section 7 (equation (1.5)) that

if a #0 we can write
a b _ 1 O0\/r O0\/1 x
¢c d) \y 1J)\o s/\o 1)

We have thus proved the formula for all matrices with a #0. To deal with the
case a =0 we can proceed in either of two ways:

(i) Direct verification:
0 b
Det .

0 b
A — |be| =
r(c d) |bel
(Details of the proof are left to the reader.)

(i) Continuity argument: We can notice that both Ar f and Det F are continuous
functions of the entries of F (i.e., if we change the entries slightly, the values of

. .[{0b
Arf and of Det F change only slightly). Now, if ( p
c

) i1s non-singular, so is

eb

d) 1S non-zero>. Thus, since we
c

know that the equality

Cc

e b e b
Ar(c d)-’Det(c d)

1s true for all e close to zero, we conclude that it is true for e =0 as well.
We should point out the significance of the sign of Det F when Det F # 0. (We
have given a meaning to its absolute value.) The meaning, at present, is best
0
0 —1

<e Z) for sufficiently small e <indeed Ar(

illustrated by example. The transformation ( ) is a reflection about the

X-axis.

AT
PN
ly \
\ /I
N

([ ([l / £

"Y' Y YY" Y *

Figure 1.23

It has the effect of switching counterclockwise rotation into clockwise rotation.
Thus the fact that the determinant is negative has to do with the fact that the
Orientation of the plane is reversed.



32 Linear transformations of the plane

As an illustration, let us consider a Euclidean linear transformation of the plane,

1
represented by F. Since F (O) has length 1, we can write

F 1\ [cosf
0/ \sinf
) 0 ) ) cos 0
for some 0. Since F ) has length 1 and is perpendicular to we

sin 0
have the two possibilities

P 0 _ —sin @ cF 0 _ sin 0
1)7\ cose) ° 1) \ —cost /)

In the first case we have a rotation through angle 0.

F:(COSB —sinf

d DetF=1.
sin 0 cos@) e e

cos sin 0

In the second case the transformation F =< ), for which

sinff —cosf

. . ‘ cos 56
det F= —1 is a reflection about the line through | .

! ) It follows from
sinz 0

the addition formulas of trigonometry that

cos sinf \ (cos360\ (cos;0
sin@ —cosf/\sinif / \sinif
1

cos . . .. .
so that the vector ( , 129> is fixed and the line through the origin containing
Sin3

. . . 10 .
this vector is mapped into self. Furthermore, FoF = ( 0 1), so that F is indeed

a reflection.

1.10. Inverses

b
For any matrix F = (a d)’ we define F* by
c

Fa:( d _b>.
—C a

Direct multiplication shows that

. . (DetF 0 _ 1 0
F*F=FF _<O DetF>_DetF<O 1).

: 1
G is called the (multiplicative) inverse of F if GF =FG=( 0 ?) The above
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equation shows that F cannot have an inverse if DetF=0: if F G=(é (1)>,

we see from the above that

DetF 0

d =FFG'=(0 Det F

>G=(DetF)G

00\ . 00
which is impossible if Det F=0 and F#(O O); if F:(O 0> then it is

10
certainly impossible to find a G such that F G=< 0 1). The same equation,

F2 = (Det F)G, shows that if Det F # 0 then

G=(DetF) 'F®
is the inverse of F.
A direct check, by multiplication, shows that the above formula does give the
inverse of F. We have thus proved the following theorem:

A matrix F has an inverse if and only if Det F # 0. If Det F #0 then the
inverse matrix, F~! has the formula
d —b
FD
Pl Det et F (1.8)
—c a
DetF DetF| "~

We should understand the geometric meaning of F~!; it ‘undoes’ the effect of
F.If we apply first F and then F~! then we are back to the identity transformation.
10
01

Notice that, if F is singular, it cannot have an inverse, since Fv = Fw implies
F~'Fv=F~!'Fw or v=w for any F having an inverse.

It is reasonable that the condition Det F =0 corresponds to the singularity of
F in view of the interpretation of Det F in terms of area. Indeed, suppose that the

We see also that FF~! =( ) (by direct multiplication if you like).

b
parallelogram spanned by the origin and (j) and ( d) has non-zero area,

. b ..
meaning that ( z> and ( d) do not lie on same straight line through the origin.
ab

. ab
. d);é(),smce Det(c d)

In this case the inverse matrix exists, SO we can write

1 0\ [a b\fe f _(e S
(O 1)=<c d)(g h) where F 1=(g h>'
This is the same as saying that (é)ze(5)+g<z> and (?) =f<j)+h(z>'

This means that Det ( is the area of this parallelogram.




34 Linear transformations of the plane

This, of course implies that we can express any vector in the plane as a linear

b
combination of <j> and ( p

Recall that the vectors u and v are said to be linearly dependent if there are
numbers r and s, not both zero, such that

). (e, f, g and h are just numbers.)

ru +sv=0.
If r #0, we can solve this equation for u to obtain u= —(s/r)v and, if s #0, we
can solve this equation for v= — (r/s)u. In either case, the ‘addition parallelogram’

: . . 0y . : :
degenerates into segments on a line (or, if u=v=( O)’ into a single pomt).

This is the reason for the term linearly dependent. If two vectors are not linearly
dependent, we say that they are linearly independent.

Ifu= (x) and v= (i), then u and v are linearly independent if and only if the
y

(5 )

: . . . . 1 0}.
is non-singular. Indeed, the matrix M carries the unit vectors ( 0) and ( 1) into

matrix

u and v respectively. Thus u and v will lie on the same line if and only if M carries
the unit square into a degenerate ‘parallelogram’ of zero area, that is, if and only
if Det M = 0.

Suppose that u and v are linearly independent and introduce the matrix M as
above. Let w be any vector in the plane R?. Since M is non-singular, we can form
the matrix M ~! and consider the vector M~ 'w. This is a well-defined vector in
R? and hence we can write

wote=)=elo) (3)

If we apply M to both sides of this equation, we get

MM_1w=w=aM((1))+bM((l)>=au+bv.
Thus if u and v are linearly independent, every vector in the plane can be written
as a linear combination of u and v. Conversely, suppose that u and v are vectors
such that every vector in the plane can be written as a linear combination of u
and v. Then u and v clearly cannot lie on the same line through the origin, since
this would imply that every vector in the plane would have to lie on this line. Thus

Vectors u and v are linearly independent if and only if every vector in the
plane can be written as a linear combination of u and v.

Suppose that F is a matrix and u,; and u, are any pair of linearly independent
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vectors. The parallelogram spanned by u, and u, has non-zero area, hence
F(u,) and F(u,) will be linearly independent if and only if Det F = 0.

Thus the following assertions are all equivalent:

b

(1) F= (a ) has an inverse;
c d
(2) Det F #0;

b
(3) the vectors (j) and ( d) do not lie on the same line through the origin;

4) every vector in the plane is a linear combination of 4 and b ;
(4) every p c p

(5) for some pair uy,u, of vectors, the vectors F(u;) and F(u,) are linearly
independent;

(6) For any pair of linearly independent vectors, vy,v,, the vectors F(v,)
and F(v,) are linearly independent;

(7) F is not singular.

(1.9)

Let us use the preceding considerations to illustrate some reasoning in affine
geometry. We first remark that, in affine geometry, not only does the length of a
segment make no sense, but also the comparative lengths of two segments which
do not lie on the same line make no sense. Indeed, if u and v are two independent
vectors, there will be a unique linear transformation, f, which sends u—ru and
v—sv for any non-zero numbers r and s. Thus, by adjusting s/r, we can make the
ratio of the lengths of f(u) and f(v) anything we please. On the other hand, the
ratio of lengths of two segments lying on the same line does make sense. Indeed,
since translations preserve length, we may assume that the line | and its image
f(l) both pass through the origin. Since rotations preserve length, we may apply
a rotation and assume that f(I)= [ But then if 0 #u = [, the image f(u) also lies
in | so f(u)=cu for some constant ¢ and hence f(v)=cv for any v<l Thus f
changes the length of all segments on [ by the same factor |c|.

We should also point out that given any two triangles A; and A, there is an
affine transformation, f, with f(A,) = A,. Indeed, by translating, we may assume
that one of the vertices of A, is the origin. Let u, and v, be the two remaining
vertices. The vectors u, and v, are linearly independent since 0,u,, v, are vertices
of a triangle so do not lie on a line. Similarly we may assume that the vertices of
A, are 0,u,,v,. But then there is a unique linear f with f(u;) =u, and f(v;) =Va.

Now consider the following proposition: for any triangle, the three lines joining
the vertices to the midpoints of the opposite sides intersect at a single point.

This is an assertion in affine geometry — the notion of midpoint makes sense,
as does the assertion that three lines meet at a common point. To prove this
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theorem, it is enough to verify it for a single triangle, since we can find an affine
transformation carrying any triangle into any other, and, if the theorem is true
for one, it must be true for the other. But the theorem is clearly true for equilateral
triangles. So we have proved the theorem in general.

1.11. Singular matrices

Let us examine what can happen when Det F = 0. There are two alternatives:

) 0 O 0 O
eltherF—<0 0) or F#(O 0)

If F is the zero matrix, then F maps every vector into 0; it collapses the whole
plane into the origin. In the alternative case where F is not the zero matrix, but
Det F =0, we claim that the following two assertions hold:

(i) thereisaline, [, such that F(u)el for every uin R?. Furthermore, every vel is
of the form v = F(u). In other words F collapses the plane onto the line /.
(ii) there 1s a line, k, such that F(w) =0 if and only if wek. In other words, F
collapses k into the origin, and does not send any vector not in k into 0.

Let us prove assertion (i). Let

=(2)=r((0)) e e=()=r((7))

be the two columns of F = (a Z)
C

Since F is not the zero matrix, ¢, and ¢, can not both be equal to 0. On the
other hand, if ¢, and ¢, did not lie on the same line, then by the equivalence of
assertion (3) and assertion (1) of (1.9) (on the preceding page) we would conclude
that Det F # 0, contrary to our assumption. Thus ¢; and ¢, lie on a line. Call this
line I. Every vector u can be written as

"= x\ X 1 N 0
“\y/) o)
so F(u) = x¢; + yc, lies on . If ¢, #0, every vel can be written as v = x¢, for some

number x, hence v=F ((x

O)) Otherwise, we must have ¢, # 0 and thus v= yc,

0
for some number y and hence v=F ( ( )) This completes the proof of (i).

y
Let us now prove (ii). Let b, and b, be the first and second columns of the

matrix F° so that
—b
b1=( ") and b2=( )
—c a

Since Det F*=Det F =0, we know from (1.9) that b, and b, must be linearly
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dependent, and they can’t both be equal to 0 since some entry of F is #0 by
hypothesis. So they span a line. Call it k. Direct computation shows that

Fb, =0=Fb, so every wek satisfies Fw=0. If w= (;) satisfies Fw =0 then w

must satisfy the equation

ax —by=0.
This is the equation for a line, unless a =b =0, i.e. b, =0, and this line must then
be k. If b, =0, then ¢ and d can not both vanish. But w must also satisfy

cx —dy=0,

and this is the equation of a line, and the line must be k. This proves (ii).
For any F whatsoever, let im (F) denote the subset of R? consisting of all elements
of the form F(u). In symbols,

im(F) = {v|lv=F(u) for some u}.

The set im (F) is pronounced as ‘the image of F’. Similarly, we define the ‘kernel
of F” written as ker (F) to be the set of vectors which are sent into 0 by F. In symbols,

ker (F) = {w|f(w)=0}.
There are thus three possibilities:
(a) DetF #0. Then im(F) = R* and ker(F) = {0}.
(b) Det F=0 but F is not the zero matrix. Then im(F)=1[ is a line and
ker(F)=k is a line. In other words both im (F) and ker(F) are one-

dimensional vector spaces.
(c) F is the zero matrix. Then im(F) = {0} and ker(F) =

If we think of {0} as being a ‘zero-dimensional’ vector space we see that in all
cases we have

dimension of im(F) + dimension of ker(F) = 2.

Special kinds of singular transformations. We now examine some special kinds of
singular transformations.

kernel
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1. Projections
We call p a projection if it has the following property:
if v is a vector in the image of p, p(v) =v.
This is rather special, since all we can expect in general for a singular trans-
formation f is that f(v) lies on the same line as v; i.e., f(v) = av for some number
o. Now, if w is an arbitrary vector, v = p(w) is in the image of p, and

(pop)(W) = p(v) = v = p(W).
It follows that pop = p, and so the matrix P which represents a projection satisfies

P?=P. Thus
a b\(fa b\ [(a’®+bc ab+bd\ (a b
<c d)(c d)_(ac+cd bc+d2>_(c d)

So ab+bd=>b, and if b#0, a+d=1. Furthermore, ac+cd=c, so if ¢ #0,
a+d=1.Evenif b=0and ¢=0, we have a’>=a, d> =d, and DetP=ad =0, so
eithera=1,d=0ora=0,d=1, or P=0. Therefore, unless P =0, the trace of
P defined as tr P = a + d must equal 1.

To summarize: a non-zero (singular) projection p satisfies pop = p; its matrix P
satisfies P> = P and has zero determinant (ad — bc = 0) and unit trace (a + d = 1).

Conversely, suppose that ad —bc=0and a+d=1. Thenab+ bd=(a+db=>b
and ac + cd = ¢, while a®> + bc=a? + ad = a, and bc +d*> =d. Thus P>=P and p
is a projection onto a line.

More generally, let us call an operator p a projection if p> = p. Then there are
three possibilities.

(1) Pisnon-singular. In this case, we can multiply the equation P? = P on both
sides by P~ to obtain
pe 1 0
\0 1)

In this case, tr P =2 = dim (image(P)), where we write dim for dimension.
(2) P issingular but not zero. This is the case considered earlier. Here P maps
R2 onto a line and is the identity when restricted to this line. Here tr P =
1 = dim(im(p)), where we write im for image.
0 0
() P= (0 0
0 = dim (im (p)).
In all cases, we have tr P = dim (im (p)).

) so P maps the whole plane to the origin and trP =

2. Nilpotents

For a general singular matrix, the two lines imF and kerF will be
different. Let us consider a special kind of transformation, »n, with the property
that its image and its kernel are the same. Applying n to any vector w yields a
vector v = n(w) which is the image of n and hence also in the kernel. It follows
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that n(v) = nen(w) = 0. Thus non collapses the entire plane into the origin, and the
matrix N representing n must satisfy N 2-0.So

a b\(fa b\ (a’*+bc ab+bd\ (0 0
c dJ)\c¢c d) \ac+cd bc+d>) \0 o)
In particular, ab+bd=0and ac+cd=0,s0if b#0 or ¢#0, then a+d=0. If

bc=0, then a*=d*=0,s0 N = (8 8) In every case, then, N has zero trace.
Conversely, if tr N=a+d =0 and det N =ad — bc =0, then N2 =0.

Let us call a matrix nilpotent if some power of it vanishes. Thus N is nilpotent
if N¥=0 for some k. For such a matrix, we must have det N =0, for otherwise
we could keep multiplying the equation N* =0 by N~! until we get N =0. Thus
ad — be =0 and hence

a b\* ((a+da (a+db
c d) \@a+dc (a+dd)

N = (a+df 'a (@a+dF b
N\@+dfc (@a+ad)f1d)

This can only vanish if (@ + d) = 0. But then, we already know that N2 = 0. Thus,
in the plane, a matrix N is nilpotent if and only if N? = 0 and this holds if and only if

det N=0 and trN=0.

Then

1.12. Two-dimensional vector spaces

A vector space V is called two-dimensional if we can find two vectors,u; and u, in V,
such that every veV can be written uniquely as

v=a;u; +a,u,
The word ‘uniquely’ means that if
v=a,u, +a,u, and v=b,u, +b,u,
then we must have
a,=b; and a,=b,.
An ordered pair, u,,u, of vectors with the above property is called a basis of the

vector space. Such a choice of basis determines a map L=1L, , of V' onto R?

L
V- R?
by

L(V)=<Zl) if V=a1U1+a2i12

2

The ‘uniqueness’ part of our assumption above guarantees that the map L is
well-defined; the components a; and a, are completely determined by v. The map
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is also onto: given ( ) the vector v=a,u; + a,u, clearly satisfies L(v)

a,
If v=a,u, +a,u, and w=b,u; + b,u, then
vV+w=a,u, +a,u, +bu, +b,u,
=(a; + by)uy +(ay + by)u,
SO
L(v+ w)= L(v) + L(w)

and similarly
L(rv) =rL(v)

for any real number r and any vector v of V. We say that L is an isomorphism* of
V with R2. It allows us to identify all operations on and properties of the vector
space V with operations on and properties of R?, just as in the one-dimensional
case, a choice of basis allowed us to translate properties of a one-dimensional
vector space into those of R!. Of course, just as in the one-dimensional case, the
isomorphism, L, depends on the choice of basis. Thus, the choice of basis, {u;,u,}
is the two-dimensional analog of a ‘choice of units’. Only those properties which
are independent of the choice of basis will be interesting to us and of true geometrical
character. We shall shortly study how L changes with a change of basis. For the
moment, let us observe that the basis {u;,u,} can be recovered from L. Indeed

1 0
u1=L_1(O) and u2=L_1<1).

So giving a basis is the same as giving an isomorphism, L: V — R?. Given L, simply
define u; and u, by the preceding equation. Since every vector in R* can be written

1 0
uniquely as a linear combination of ( O> and ( 1) and since L is an isomorphism,

it follows that every vector of V can be written uniquely as a linear combination
of u; and u,, and the isomorphism associated with {u;,u,} is clearly L.

A linear transformation F:V —V is a map of V into V which satisfies our usual
identity:

F(au + bv) = aF(u) + bF(v).
A choice of basis gives an identification L: ¥ —R? and we can define a linear
transformation of R? by
LFL™ 1.

Here L™:R*—>V, then F:V—V and L:V—R2 It is best to visualize the
situation by a diagram:

vV

|

R2 ——— R?

V
L

* In mathematics, the word isomorphism means a one-to-one mapping which preserves all the
relevant structure. For vector spaces, V and W, we say that a map L from V to W is an
isomorphism if it is linear, is one-to-one and onto.
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The transformation LFL™! going from R? - R? along the bottom is obtained by
going up, across and down. Now any linear transformation of R*> - R? is given bya
matrix. Thus, once we have chosen the basis L, we have associated a matrix

Mat, (F) = Mat(LFL™ 1)
to any linear operator F:V— V. If G: V— V is a second linear transformation, then
LGFL '=LGL 'LFL™!
SO
Mat, (Go F) = Mat,(G)Mat,(F).

In other words, composition of linear transformations goes over into matrix multi-
plication. Similarly for addition of linear transformations. Thus the algebra of
linear transformations on V gets translated into the algebra of 2 x 2 matrices.

. . - 1
The space R? is itself a vector space. It has a ‘natural’ basis consisting of ( )

and <1) If £:R? — R? is a linear transformation, its matrix relative to this natural

basis is the matrix F, in the language of the preceding few sections. The map
L:R? > R?* =V corresponding to this basis is just the identity I. Thus the relation
between f and F should be written as

F = Mat,(f).

From a strictly logical point of view we should have used the notation Mat,(f)
instead of F from the very beginning, but it would have been too cumbersome.
From now on, once we have the idea of a linear transformation on a general vector
space, we shall drop the distinction between lower case letters and upper case letters.

The assignment of Mat,(F) to F does depend on an artifact, namely on the
choice of basis. We now must examine what happens when we change the basis.
So suppose that we are given two bases. This means that we are given two isomor-
phisms, L: V—R? and M:V —R2 Then we can consider the matrix B=ML™!:
R? > R2, so

M = BL.

We can visualize the situation by the diagram:

v\

R2
B

The matrix B is called the ‘change of basis matrix’ (relative to the bases Land M).
It is the two-dimensional analog of the factor 1000 by which we have to multiply
all numerical values of masses when we pass from kilograms to grams in our
choice of unit. To repeat: L(v) and M(v) are two points in R? corresponding to
the same point v in ¥ by the two choices, L and M, of bases. These two points in
R? are related to one another by the change of basis matrix:

M(v) = BL(v).
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The matrix B gives an isomorphism of R? — R?, i.e. it is non-singular. (It is clear
that, if we are given L and also given a non-singular matrix B, then we can define
M = BL, and this M is an isomorphism of V with R2. Thus, once we have fixed
some basis, L, of V, the set of all other bases is parameterized by the set of all
invertible 2 x 2 matrices, B.)

Now suppose that F: V— V is a linear transformation. Then

Mat, (F)= LFL ™!
and
Mat, (F)= MFM 1.
But MFM ™! =(BL)F(BL) ! = BLFL *B~* = B(LFL *)B~!, so
Mat,,(F) = BMat, (F)B~!.

This important formula tells us how the two matrices of the same linear transforma-
tion are related to one another when we know the change of basis matrix, B.
For a given linear transformation, F: V' — V, it may be possible to choose a basis,
L, so that Mat, (F) has a particularly convenient or instructive form. For example,
suppose that F: V' — V sends all of V onto a line and sends this line into 0, in other
words suppose that im F =ker F. Let us choose u, to be some vector that does
not belong to ker F and set u; = F(u,), so u; #0 and F(u,;) =0. We take u,,u, as

) 1 0
our basis. Then LFL—1<O)=LF(UI)=L(0):<O> and LFL_l((I)):LF(uz):

1
L(u,)= 0/ So, for this choice of basis we have

Mat, (F) = (8 é) (1.10)

Now in this entire discussion, there is nothing to prevent us from considering the
case where our vector space, V, happens to be R? itself. When we identified a linear
transformation with a matrix, it was with respect to the standard basis. In other
words, when we wrote F in sections 1.5 and 1.6, it should have been written
as Mat,(F). So, for example, let N be a non-zero nilpotent matrix. Thus
N = Mat,(F), where F is a linear transformation of R? with ker F = im F. (In words
we would say that N is the matrix of the linear transformation F relative to the
standard basis.) From the preceding considerations we know that we can find
some other basis, L, relative to which (1.10) holds. By the change of basis formula
(the change of basis from L to I) we know that

N—BO 13—1 1.11
_<0 0) ' (111)

We have thus proved: given any non-zero nilpotent matrix N, we can find an
invertible matrix, B such that (1.11) holds. We shall return to these kinds of
considerations (and, in particular, how to find B) in the next chapter.

For an important application to physics of the results of this chapter please
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turn to Chapter 9. There we show how Gaussian optics is really the study of 2 x 2
matrices. Most of Chapter 9 can be read with only a knowledge of Chapter 1.

Appendix: the fundamental theorem of affine geometry

We wish to prove the following:

0
). Then f is

0
Let f be an affine transformation of R* satisfying f <0> = (0

linear.

In proving this theorem, we can make a number of simplifying reductions. Notice
that, if g is an invertible linear transformation, then gof is linear if and only if f is

1 0
linear. Now f ( 0) and f ( 1) cannot lie on the same line through the origin. They

are thus linearly independent and hence we can find a linear transformation g with

1 1 0 0
gof(0>:<0> and gof<<1)) = (1) Thus, replacing f by gef, it is enough to

prove the following:

Let f be an affine transformation satisfying f<<g>>=<g>, f(((l))) =
(é) and f ( (?)) = ((1)) Then f is the identity transformation.

Proof. From section 1.2 we know that f((i)) =f(((1))> +f(((1))> _ ((1)) n
((1)) = G) (In fact, we proved that f ( (:)) = ( :) whenever r and s are rational.)

Thusf carries the x-axis, the y-axis and the line x = y | which is the line through 0

1 )
and ( 1)) into themselves.

Thus, for any real number a

a\\_ (¢
G)-(%)
where ¢ is some function. (We want to prove ¢(a) = afor all a.) Similarly f ((2)) =

0
< " > for some function ¥, and since

OO



we have

a ¢(a)
A(0)-(o)
b Y(b)
We claim that the functions ¢ and i are the same. Indeed, consider the line x = a.

It is parallel to the y-axis, and hence its image under f must be parallel to the
y-axis and hence its image must be the line x = ¢(a). Now the line x = a intersects

the line x = y at the point (Z), and the line x = ¢(a) intersects the line x =y at
d>(a)>
. Hence
pox

and so ¢(a) =y(a) for all a.

a ¢ (@)
Figure 1.25

v (1)) () ()

¢(a+ b) = ¢(a) + ¢(b).
All of this is essentially the same level of argument as in section 1.2. We now
establish the surprising fact that

d(ab) = ¢(a)p(b).
Indeed, consider figure 1.26:

The line joining <i) to (g) is parallel to the line joining <Z> to <6:)b). Thus

the value ab can be obtained by parallels and intersections. Therefore, drawing

b
the same diagram for < d)(()a)) and < d)(() )) we see that

B(ab) _ ; ab>_(¢(a)¢(b)>
o ) ’\o/ \ o0



Figure 1.26

SO
P(ab) = (a)$(b).
Now a real number x is positive if and only if x = y* for some other number y. Then
P(x) = d(y*) = $(y)*
SO
x>0 implies ¢(x)>0.

Thus a — b > 0 implies ¢(a) — ¢(b) > 0. Thus if

r<a<s
then

P(r) < Pp(a) < P(s).
Now for any real number a we can find rational numbers r and s with r<a<s
and s — r as small as we please. But, for rational numbers, ¢(r) = r and ¢(s) = s. Thus

r<doa)<s.

Hence |a — ¢(a)| < s —r. Since s —r can be chosen arbitrarily small, this implies
that ¢(a) = a for all real numbers. QED

Summary

A Transformations of the plane
You should be able to define the terms affine transformation, linear transformation,
and Euclidean transformation.

You should be able to identify geometric properties that are preserved by affine
transformations and properties that are preserved by Euclidean transformation.

B Matrix algebra

You should know how to add and multiply two square matrices of the same size.
You should be able to calculate the determinant of a 2 x 2 matrix and to write

down the inverse of an invertible 2 x 2 matrix.
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C Matrices and linear transformations
Given sufficient information about a linear transformation of the plane, you should
be able to write down the 2 x 2 matrix that represents the transformation.

You should understand the significance of matrix multiplication in terms of
composition of linear transformations and be able to apply this relationship.

You should be able to determine the image and kernel of the transformation
represented by a given 2 x 2 matrix.

You should be able to identify 2 x 2 matrices that represent transformations with
special properties (rotations, reflections, projections, nilpotent transformations).

Exercises

1.1 Here are some theorems of Euclidean plane geometry. Decide whether
each is a valid statement in affine plane geometry.

(a) The medians of a triangle meet at a point which is 2/3 of the way from
each vertex to the midpoint of the opposite side.

(b) The angle bisectors of an isosceles triangle are equal in length.

(c) The diagonals of a rhombus are perpendicular.

(d) The diagonals of a parallelogram bisect each other.

(e) Let PQR and P'Q'R’ be two triangles such that the lines PQ and P'Q’
are parallel, QR and Q'R’ are parallel, and PR and P'R’ are parallel.
Then the three lines PP’, QQ’, and RR’ are either parallel or
concurrent.

1.2(a) Let A, and A, be affine lines. Let x be an affine coordinate function on A ,;
let y be an affine coordinate function on A,. Let f:A, > A, be an
affine mapping. Associated with f is a function F:R— R such that if
Q = f(P), then y(Q) = Fox(P). Show that the most general formula for F is
Fl@)=ra+s.

(b) Let x'=ax+b, y=cy+d, so that x’ and y' are new affine coordinate
functions on A, and A, respectively. If y(Q) = Fox(P) where F(ax)=ra+s,
find the formula for the function F'(f) such that y'(Q) = F'°x'(P).

1.3 A function u: R2 — R is gffine if it is an affine function on each line of the
plane and if, for any parallelogram, u(P) + w(R) = u(Q) + u(S) where the
vertices are labeled as in figure 1.27. Suppose that u: R*> - R is affine and

1 3 2
that u =3, u =8, u :|=9.
[2] [3] [-—1

S

Q
Figure 1.27
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(a) Find a formula for u[x].
y

(b) Sketch R2, showing the lines u = constant.

1.4 Find the image of the rectangle ABCDE shown in figure 1.28 under the
linear transformation represented by each of the following matrices. In
each case calculate the determinant of the transformation and verify that
the area and orientation of the image of the rectangle are correctly
predicted by this determinant.

D C B
E 0 A
Figure 1.28

0 -1
(a) The rotation R, = (1 0).

) 1 -1
(b) The rotation R, , = (1/\/2)<1 1).

2 0
(c) The ‘distortion’ D, = (0 1/2>.

5/4 3/4)

(d) The ‘Lorentz transformation’ L, = (3/4 5/4

1 1
(e) The shear transformation S, =( )

0 1
f) The shear transf tion S ( 12 1/2>
(f) The shear raPs ormation §7 ={ 12 32)

1 0
(g) The reflection M, = (0 1).

0 1
(h) The reflection M, , = (1 O).

: _ 172172
(i) The projection P, = .

12 12

47
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L.5.

1.6.

1.7.

1.8.

Linear transformations of the plane

0 1
(j) The nilpotent transformation N, = ( )

0 0
. . —1/2 1)2
(k) The nilpotent transformation N, = .
—-12 12

Calculate algebraically each of the following products of matrices defined
in Exercise 1.4, and interpret geometrically the transformation defined by
the product matrix

(@) RypRy

(b) St

(C) Rn/2MO

(d) Pra

(©) Nﬁ/4

Calculate the inverse of each of the following matrices, and interpret the
result geometrically.

—1

(@ Rn/4=<1/¢2)(; 1).
s _(1 1)
(C) 1= 0o 1/

0 1
(d) Mn/4=(1 0>'

For each of the following matrices of determinant zero, determine the
image and the kernel.

)

(a) Pn,4=(j

2
A_(l 2)
@A={_; _,)

Apply the triple product decomposition proved in section 1.7 to express

the matrix
)
6 8

GGG )

(b) L, =<

Bl Al
ENTR N

D= D=

= D=
el o

(b) Nn:/4 = (

in the form

a b
1.9. Devise a procedure for writing any matrix ( d) with ¢ # 0 as a triple
c
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G C D6

. [ —12 26
and apply this procedure to the matrix .

product

— 4 — 8

C d

(a) direct verification (find the image of the unit square), and by
(b) usingthe decomposition in Exercise 1.9, which works even when a = 0.

0 b
1.10. Prove that Ar =
c d

1.11. Construct a 2 x 2 matrix which represents each of the following trans-
formations of the plane:
(a) A transformation P, satisfying P? = P, which maps the entire plane
onto the line y = 2x and which maps the line y = — 2x into the origin.
(b) A shear transformation S which carries every point on the line y = 2x
into itself, which transforms the y-axis into the line y = — x, and which
satisfies the condition (S — I)?> =0.

1 2
(c) A transformation which carries (2> into (4> and which carries

(2 (2)

(d) A nilpotent transformation N, satisfying N2 =0, whose image and
kernel are both the line y = 3x.

1.12. For practice in multiplying 3 x 3 matrices, consider the two matrices

0 10 0 0 O
U={0 0 1 ]JL=(1 0 O}
0 00 0 10

Calculate UL, LU and U?.
1.13. Define the determinant of a 3 x 3 matrix by

a;; 45 dis

(122 a23 a21 a23
a21 a22 a23 =a11Det< —alzDet
asz; d4sz a3y Q33

Gy Qjs
+ a13Det<
as; Q4s;

=0y1072033 — Q11023033 — Q12021033 + 12053031

az; dz; djzs

+ 13051035 — A1307503;.
Prove that

Det(FoG)=Det F x DetG.
1.14. Show that, if the matrix
i1 Gi2 43
ay1 Gy ay3 |=F
31 043z 4s;
satisfies the conditions a,; # 0 and a,,a,, — a,,a,, # 0, then we can write



1.15.

1.16.

From a geometric point of view we can give the following interpretation to
Exercise 1.16: We are considering the affine plane as the plane z=1 in R3. We
have identified the group of affine motions as a group of linear transformations

in R3. Now we can identify the point{ y ]in the plane z=1 with the line

F as a triple product
1 0 O\/e 0 O\/1 x,, X3
F= y21 1 0 0 f 0 O 1 x23 .
ys1 ys2 1/\0 0 ¢g/\0 O 1

In R? we can define Vol F for any non-singular linear transformation F
much as we defined Ar in the plane. Thus

_ volume F(D)

volume D

Vol F

for any region D and, in particular,
Vol(F°G)= Vol F x VolG
and Vol F =volume F([]), where [] is the unit cube. Prove that

Vol F =|Det F|.
Consider an affine transformation of the plane which does not leave the

origin fixed:
X X a
(3)-40)G)
y y b

where A represents an affine transformation which leaves the origin fixed.
Show that such a transformation can be represented by a 3 x 3 matrix:

a
A
0 Of1 .
where 4 is a 2 x 2 matrix, provided the vector ( ) in the plane is

y
X
represented by the three-component vector{ y ). You should verify the
1

following:
(a) Such a 3 x 3 matrix has determinant equal to Det A.

x
(b) When such a 3 x 3 matrix acts on| y |, the third component of the

1
resulting vector is 1.

1 0

(c) The matrices T(a,b)=| 0 1
0 O

they obey the composition law

T(a,b)T(c,d) = T(a+c, b + d).

a
b | represent pure translations, and
1

X

1
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= lo S

=y

Figure 1.29

joining that point to the origin: any point on our plane determines a unique line
through the origin; a line through the origin that intersects the plane z = 1 intersects
it at a unique point. We can thus identify ‘points’ in our affine plane with certain kinds
of lines through the origin in R>: those that intersect the plane z = 1. The advantage
to this interpretation is that it gives us a grip on the notion of (artistic) perspective:
two plane figures in R> (not containing the origin) are ‘in perspective’ from the
origin if they determine the same family of lines through the origin. This suggests

\ZI‘L/

\| ,

Figure 1.30

that we consider a new geometry in which ‘points’ are lines through the origin in
R3; in other words, we drop the requirement that the line must intersect the z=1
plane. The new ‘points’ that we have added are those lines through the origin in
R® which lie in the z = 0 plane, as these are the only lines through the origin which

a 0
donot meet the planez = 1. Let{ b || 0 |bea point of R?in the z = 0 plane and let
0 0
a
P denote the line through the origin and | b | so P is one of our new ‘points’. Thus
0

at
P= {(bt) } From the point of view of R3, where P is a line, we can approximate
0 teR
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P by the family of lines through the origin P, where

at
P.={| bt
&t eR
As £€—-0, P,— P. But P, intersects the z=1 plane, when t = 1/¢, at the point
ale
b/e |.
1

AZ

S

Figure 1.31

The points P, in the affine plane tend to infinity as ¢ —»0 in a definite direction
. a . e o .
given by the vector ( b)’ We can thus think of the new ‘point’ P as a ‘point at

infinity’ of the affine plane. These new ‘points at infinity’ were first introduced in
the theoretical study of perspective by artists and geometers of the fifteenth and
sixteenth centuries.

We have thus introduced a new space, called P2, the projective plane. A ‘point’
of P2 is just a line through the origin in R3. Let us now see how to define a ‘line’
in P2. From the point of view of R3, a ‘line’ in the affine plane z =1 consist of a
family of lines through the origin which intersect the plane z = 1 along a straight

M

Figure 1.32
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But this means that the family of lines through the origin sweep out a plane
in R3. In other words, from the R* point of view, a line in the affine plane is just
a plane through the origin in R which intersects the z =1 plane. It is now clear
what to do: we drop this last intersection condition and define a ‘line’ in P2 to be
a plane through the origin in R>. There is only one plane through the origin in
R3 which does not intersect the plane z =1 and that is the plane z=0. We have
thus to add just one ‘line at infinity’. A ‘point’ P lies on the ‘line’ [ if the line through
the origin lies in the plane through the origin, I. Two distinct ‘points’, P and Q
(that is, two distinct lines through the origin) determine a unique plane through
the origin, 1.e., two distinct ‘points’ determine a unique ‘line’. Any two distinct
planes through the origin in R? intersect in a line through the origin. Thus any
two ‘lines’ in P? intersect in a ‘point’. (Notice that this is different from affine
geometry where two lines can be parallel. Two parallel lines in the affine plane
intersect ‘at infinity’ in the projective plane.)

To summarize:

A ‘point’ in P? is a line through the origin in R
A “line’ in P? is a plane through the origin in R3;
Any two distinct ‘points’ lie on a unique ‘line’;

Any two distinct ‘lines’ intersect at a unique ‘point’.

Any invertible 3 x 3 matrix acts on R3 so as to carry lines through the origin into
lines through the origin and planes through the origin into planes through the
origin.
1.17. (a) Show that any invertible 3 x 3 matrix determines a one-to-one
transformation of the projective plane, P, which carries ‘lines’ into
‘lines’.
(b) Show that two invertible 3 x 3 matrices 4 and B determine the same
transformation of P? if and only if 4 = ¢B for some non-zero real
number, c.

1.18. Three vectors u,v and w in R> are called linearly independent if no
equation of the form

au+bv+cw=0

can hold unless a, b and ¢ are all zero. Show that if u, v and w are linearly
independent, then there exists a unique 3 x 3 matrix 4 such that

1 0 0
Au=| 0], Av=] 1 and Aw=[ O
0 0 1

and that A4 is invertible. (The general version of this theorem for any finite-
dimensional vector space will be proved later.)

1.19. (a) Let P,, P,, P, be the ‘points’ in P2 given by the lines through the origin

1 0 0
and ( 0), (1)and (O) respectively. Let Q,,0,,0; be any three
0 0 1

‘points’ of P2 which do not lie on the same ‘line’. Show that there is an
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invertible 3 x 3 matrix which carries Q, into P,, Q, into P, and Q; into
P,.

(b) Let @4, Q,, 03,0, be the four ‘points’ in P2, no three of which lie on the
same line. Let R, R,, R3, R, be another set of four ‘points’, no three of
which lie on a ‘line’. Show that there exists a 3 x 3 matrix which carries
Q,to R, Q,to R,, Q3 to Ry and Q, to R,.

(c) Prove the fundamental theorem of projective geometry’ which asserts
that any one-to-one transformation of P? which carries ‘lines’ into
‘lines’ comes from a 3 x 3 matrix. (Hint: Reduce to the fundamental
theorem of affine geometry proved in the appendix to this chapter.)

1.20. As an illustration of the use of 1.19(b), prove Fano’s theorem which says.
Let 4, B, C, D be four points, no three of which lie on a line

Figure 1.33

Let P be the point of intersection of AB and CD.

Let Q be the point of intersection of AC and BD.

Let R be the point of intersection of AD and BC.

Then P,Q and R do not lie on a line.

(Hint: Reduce to a special case; for example, 4, B, C, the three vertices of an
equilateral triangle and D its center.)
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In Chapter 2 we discuss conformal linear geometry in the
plane, that is, the geometry of lines and angles, and its relation
to certain kinds of 2 x 2 matrices. We also discuss the notion
of eigenvalues and eigenvectors, so important in quantum
mechanics. We use these notions to give an algorithm for
computing the powers of a matrix. As an application we
study the basic properties of Markov chains.

2.1. Conformal linear transformations

We wish to consider those linear transformations f of R? that

(1) preserve angle,
(2) preserve orientation, i.e., Det F > 0,

where F is a matrix representing f. Notice that, if f and g are two such linear
transformations, so is their composition gef.
Suppose that f preserves angle and orientation. We can find some rotation r_,

1 iy , 0\,
such that r_,of takes ( 0) into a point on the positive x-axis. Thenr _ yo f(( 1)) lies

on the positive y-axis since r_g° f preserves angles and Det(r_g°f)> 0. Thus the

Figure 2.1



matrix representing r_,°f is of the form

o=y )

) ) 1
with r > 0, s > 0. Since r_,°f preserves angles, it must carry the line through ( 1)

r

1y . . 1
into itself. To say that <0 0)( 1) lies on the line through ( 1> means that
S

0
r_gof = (:) r)'

The matrix representing f is therefore of the form
r 0\/cosf —sinf
F= )
0 r/\sinf cos 0
_(rcos® —rsinf\ [(a —b
~ \rsinb rcos/) \b a
where a=rcos 6, b=rsinf. It is clear that any such matrix preserves angle and
satisfies Det F = a® + b*> =r? > 0.

r=s. Thus

—b

Conversely, any non-zero matrix of the form (
a

) preserves angle and

orientation since, starting with

—b
(a ), a’+ b2 #0
b a

we can set r2 = a? + b? and then find 6 such that

1

cosO=ar™ !, sinf=>br"!

since a < r and sin?6 + cos?0 = (a* + b?)/r* = 1. And therefore it follows that
<a — b) B (rcos@ —rsinf )
b a rsin 6 rcos )’
Thus the most general matrix of the form
(Z —Z>, a’+b*#0,

preserves angle and orientation, with

Det(a —b>=a2 + b2
b a

The product of any two such matrices is clearly such a matrix, but notice in addition
that

a —b\(a —b"\_[(aa —bb _(ba’-}-a’b)):(a’ —b’)(a —b
b a)\b a) \ba+ab aa — bb’ b’ aj\b a



so that, in this case, multiplication is commutative. Furthermore, the inverse exists,
unless a = b =0, since the determinant = a? + b2. Finally

a —b + a —b\ [(a+d —(b+D)
b a b’ a) \b+?b a+d

. a
so that the sum of two matrices of the form (b 4

somewhat remarkable and not to have been expected from the definition. Let us call

) is again of this type. This is

a matrix of the form (a a) conformal. (We allow the possibility that a =b = 0.

b
Thus the non-zero conformal matrices are the ones that preserve angles and
orientation.)

We have proved that the set of all conformal matrices is closed under addition and
multiplication, that multiplication is commutative for such matrices, and each non-
zero conformal matrix has an inverse. Thus conformal matrices behave very much
like numbers.

We can write any conformal matrix as

(7=l Ve o)

0) is rotation through ninety degrees and thus

) G S |

0
Notice that ( 1

We write
1 0
f
1 for (0 1>
and
0 -1
f
1 for (1 O)
so that
—b
(Z a) =al +bi
where

i2=—1.

In other words, we can identify the set of conformal matrices with the set of complex
numbers. '

The usual representation of a complex number as a point in the plane simply is the

. . : o 1 :
1dentification of the complex number with image of ( O>' For conformal matrices

—b
the point (Z) determines the matrix <Z a)'



It is very easy to compute the nth power of a conformal matrix. Indeed, if we write
A= a —b\ (r 0\/cos@ —sing
\b a) \0 r/)\sin@ cos 0

0 ) .
) commutes with all 2 x 2 matrices,

r
An— r O\'/cosf@ —sinf \" [ 0\/cosnf —sinnb
“\0 r/ \sin6 cos6@) \0 r*)\sinnd cosnb /)

rcos@ —rsinf \" r*cosnf —r*sinnb
rsin 0 rcos 6 r" sin no r"cosnf )

In the language of complex numbers, this says that if

. r
then, since (0

Thus

z=r(cos 0 + 1sin §)
then
z" =r"(cos nf + isin nf)

and is known as DeMoivre’s theorem.
Another way of computing A" is to use the binomial formula: since

a 0\_ (10 g (0 —b)_,(0 !
0 a)-No 1) M \p 0_(1 0)
commute,
10 0 —1\}"
A" =
(o )=t o))

1 0 (0 —1 0 —1)2
n n-1p 1 _ n—21p2
0 1)+na (1 O)—{-Zn(n Da"" b (1 O) +

o= (D) (Do) (30)
(o= (w0 7o)

In the next section we will provide an efficient algorithm for computing powers of
any 2 x 2 matrix, not necessarily conformal. It will involve the notion of eigenvalue,
a concept that plays a key role in quantum mechanics.

2.2. Eigenvectors and eigenvalues

Let F be a linear transformation. We can ask whether F carries some line through
the origin into itself. (No non-trivial rotation has this property, for example, while
any non-zero singular transformation carries its image into itself.)



If v is a non-zero vector lying on such a line, we must have
F(v) =

for some real number 4. If this equation holds with v # 0, A is called an eigenvalue of f
corresponding to the eigenvector v. We can rewrite the above equation as

o g

Since v is not zero, this implies that

(111 1)

o)

S

which is an equation for A. Explicitly, if F =

(S

) so that

F_l<o (1)> ( c dbi>

the preceding equation becomes

Det<a_/1 b >=(a—/1)(d—/?,)—bc=)b2—(a+d)/1+(ad—bc)=
c d— A

or

A? —(tr F)A+ Det F = 0.

The polynomial
P(X)=X?*—(a+ d)X + (ad — bc)

: b :
1s called the characteristic polynomial of (a d> and the equation
c

P(A)=0
is called the characteristic equation. It will have real roots

=3l(a+d)+/{(a+d)*—4(ad —bc)}]

=%[(a+d)+/{(a—d)* +4bc}]
if and only if
(a —d)* + 4bc = 0.

If this occurs, we know that
(a—l b )(d—/1>=0
c d—1)\ —c
a— A b b _0
c d—AJ)\—@-1)

and



—(a—4)
d— 1 b _
lie on the same line, since Det( >= — Det <a A b ): 0.1If

ofd—4 b
so that if ( . ) or ( ) are non-zero they are eigenvectors and they both

—c —(a—4) c d—2
they are both zero, then a=1, b=c=0 and d = 4 so that

a ¢ A0
= F =24l
(b d) (0 A)’

and every (non-zero) vector in the plane is an eigenvector.

Case 1. Real Distinct Roots

If (a — d)* + 4bc > 0, so that there are two distinct real eigenvalues, A, and 1,, then
F # AI and so there are only two lines through the origin left fixed, each spanned by

. X X
an eigenvector v, :( 1) or v, =( 2). We have
V1 Y2

(£ 2)G)=x()
(@ )G)==)
(5 )

. . . X X . :
then B is not singular since < 1> and ( 2) do not lie on the same line, and we can

Y1 Y2
combine the two equations for the eigenvectors to read

FB=BA
) . (4 O
where A is the matrix , O
0 4,

A, O
_ -1 (M
L F=BAB™', A (0 22),

i, O
Conversely if F=BAB~! with A = (gl ; ), then
2

and

If we let B be the matrix




so the first column of B is an eigenvector of F with eigenvalue 4, and, similarly, the
second column is an eigenvector with eigenvalue 4,.

Case 2. Repeated Real Root

If (a— d)? + 4bc =0, so that P(X) =0 has a double root, 4, the situation is a little
more complicated. Consider the two matrices

0 0 nd 0 1

0o o0) ° 0 0)
For both of these matrices the characteristic polynomial is P(X) = X%sothat 1 = 01is
a double root. Every non-zero vector in the plane is an eigenvector of the first matrix

X . :
while only the vectors ( 0) are eigenvectors for the second. Notice, however, that

both matrices satisfy the equation F? =0, which we can write as P(F) =0, i.c., we

substitute F (as if it were a number) into 1ts own characteristic polynomial and we get

0. We claim that this is a general fact, called the Cayley—Hamilton theorem.
Given any matrix F whose characteristic polynomial is P(X) then

P(F)=0

a b\* a b 1 0
(c d) —(a+d)<c d)—i—(ad—bc)(() 1>=0.

For our case of 2 x 2 matrices this can be verified by direct calculation:
(a b>2_(a2+bc ab+bd> .
¢ d) \ca+cd cb+d?
a+d< b)=<a2+ad ab+bd)
d ca+cd ad+d*
0 ad — bc 0
(ad - bc)(o 1)2( 0 ad—bc>

a b\? a b 1 0
(C d) —(a+d)(c d>+(ad—bc)<0 1>=o.

If P(X) has a double root,

le.,

and

(Y

SO

P(X)=(X — 4
so that

there are two possibilities:

1 0 A. 0
F—A(O 1)—0 SO F:(O /1)
1 0
ri( )0

or



X1 X,

In this second case, let <
Y2

) be an eigenvector of F and let ( ) be some nON-Zero

Vi
vector which is nor an eigenvector of F. Then

(3 D)

A0

2
0 A)) =0, and so is some non-zero multiple of

is an eigenvector of F since (F — (

<x1). By multiplying <x2> by a suitable non-zero constant, we can arrange that
Y1 Y2

= 0IC)-C)
0 1 Va2 Y1
(53

Y1 V2
is non-singular, and we can write the above equation as

A1

FB=B
(6 )

A1
F=B B~

Conversely any matrix of the form

A1
F=B B!

1 0\]? 1 O
has the property that [F—Z(O >] =0but F —A( 1) # 0 as can easily be

Again the matrix

or

1 0
checked.

Case 3. Complex Roots

We still have to deal with the case of a transformation that has no real eigenvalues
or eigenvectors. The most obvious example of such a transformation is a rotation
through an angle that is not a multiple of 7. Such a rotation clearly does not carry
any non-zero vector into a multiple of itself. More generally, a conformal
transformation, which may be viewed as a rotation of the plane followed by a
uniform ‘stretching’, will have no real eigenvectors.

Consider, now, what happens if we try to find eigenvalues and eigenvectors for a

conformal matrix
C=<x _y>
y X



The characteristic equation is

(x—2)>+y*=0

so that
(A—x)?=— yz
A—x= =1y
and
A=x+1y.
We previously observed, in section 2.1, that the conformal matrix (; B J;) can

be used to represent the complex number x + iy; now we see that this complex
number is an eigenvalue of the matrix. Furthermore, given any pair of complex
conjugate numbers, x +1iy and x —1y, there is a real conformal matrix that has
these numbers as its eigenvalues. Of course, we cannot interpret these complex
eigenvalues geometrically, since the associated eigenvectors have complex com-
ponents and cannot be regarded as vectors in the real plane.

We will show that we can write a matrix F, whose eigenvalues are x £ iy, in the
form

y X

F=BCB™ !, c:(x _y)

Proof. Consider the matrix
G=F —xI.
The Cayley—Hamilton theorem says that

(F — xI)* + y*1=0.
Thus
G*= —y’I.
So pick any vector v, # 0 and define

v, =y 'Gv,
Then

GV, =y 'G’v; = —yv,
while, by definition

le = yV,.

Let B be the matrix whose columns are v, and v,. Then vlzB(l) and

0
0
V2=B(1),so
1 0\ 0 1 0 —y
GB( = _ _ .
(0) yB(I) and GB(1> yB(()) so GB B(y O)

Multiplying these equations by B! shows that G =B (O B g); ) B~L
Y



Thus

0 —vy
F=xI+B
y 0

0 —
— B(x)B~' + B(y Y

0

zB[xH(‘y’ —g)]g—l.

F=B<x _y>B‘1
y X

as was to be proved.

>B_ ' since B(xI)= (xI)B

So

. . 1
For example, we can make the convenient choice v, = ( 0), though any other
choice would have been equally suitable. Then, since Gv, = yv,, we have v, =
1 : . (1 :
y~1Gv, = y"lG(O). Thus v,, the first column of B, is (0), while v,, the second

column, is the first column of G divided by y.

b

To summarize: if F =<Z d) has eigenvalues x iy, with y#0, then F=

BCB™ !, where
B= b a=x)y and C=[" Y .
0 c/y y X
Furthermore, G = F — xI satisfies the equation G*> = — y?I.
o . . .. : 7 —10\ .

As in illustration of this decomposition, consider F = <2 1). Since TrF=6

and Det F = 13, the characteristic equation is 4> — 64+ 13 =0 and
l=6i\/(;6_52)=3i2i.

Thus x =3, y = 2. The matrix

G=F 31—4_10
7T\ \2 — 4

satisfies G2 = — 41, as expected. To construct the second column of B, we just
. 1/4 2 1 2
divide the first column of G by y: -2—(2)=(1). Hence B=<O 1) and F =

(06 )

Powers of a Matrix
Suppose we are given a matrix F and want to compute F" for many (or for



large) values of n. (In the next section, we shall give an instance where this problem
is of interest.)

Case 1. Real Distinct Roots
If

Ay O
A={"1

(o 1)
n_ A0
A‘(O Az>

So computing the powers of a diagonal matrix is reduced to computing the powers
of real numbers. If

then clearly

F=BAB™!
then
F?=BAB 'BAB !'=BA?’B™!
and (by induction)

F"=BA"B™ 1

Case 2. Repeated Real Root
Next let us examine the matrix

G- )

A
Now < 2) commutes with all 2 x 2 matrices and

0
0 1)?
(o o) =0

so, we may apply the binomial formula:
A1\ A0 0 1\\" /4 OV A 0\ 10 1
(o 3= %) o)) =G 3+ 36 o)
(as the remaining terms in the binomial formula vanish). Thus
(l 1)" B (/1" n/l””)
0 4 0 Y

ALY |
. F—B(0 X)B
then

A 1\ A" opArl
F": _1=B -1
T ol Vorma( % Y

So if




Case 3. Complex Roots
Finally, if
F=BCB™!

where C = <x y) is a conformal matrix, then
y X

F"=BC"B~!
and where we can compute C" by either of the two methods given at the end of
section 2.1.

Thus, for each of the three possibilities listed above (distinct real eigenvalues,
repeated eigenvalues, complex eigenvalues), we have a simple method for computing
the powers of a matrix F, once we have computed the eigenvalues and the change
of basis matrix B.

Actually, for the last two cases, we do not have to compute B: for case 2,

(F — A1) = N satisfies N> =0
S0

F'=(A + Ny'=X1+nA""'N

by the binomial formula.
For case 3, with eigenvalues x + iy,
F—xI=yH where H?’= —1]
SO

n
2>xn—2y2H2 4

=(xn_(;>x,._zyz+...),+((’;)xn—1y_<g)xn_3y3+...>H,

2.3. Markov processes

F"=(xI + yH)" = x"I + nx"_lyH—}-(

In this section we give an application of matrix multiplication to probability. We
do not want to write a whole introductory treatise on the theory of probability.
We just summarize the most basic facts: Probability assignments assign real
numbers
0<p4)<1, 0<pB)<l1,...

to ‘events’ A, B, etc., according to certain rules. These are

The probability of an event that is certain is 1;

The probability of an event that is impossible is 0;

If the event A can occur in k mutually exclusive ways (we write this as

A=A, U VA, AinA;=0, i#]



then
p(A) = p(A,) + -+ P(Ay)-
In particular, if A° denotes the ‘complementary event’, the event that 4 does not
occur, then

AU A° is certain (either A will occur or not)
and
ANAS =
SO
p(A) + p(4°9) = 1.
One also has ‘conditional probabilities’
p(B| A) = the conditional probability of B given A.

Thus, if 4 is the event ‘it is raining today’ and B is the event ‘it is clear tomorrow’,
then p(B|A) is the probability that it will be clear tomorrow given that it is raining
today. We then have the rule

p(A N B)=p(B|A)p(A)
Le.,
the probability of A4 and B equals the product of the conditional probability
of B given A with the probability of A.

In particular, if 4,,..., A, are mutually exclusive alternatives, AinA;= and B
can occur only if one of the events A; occurs:

B=BnA,u...uBnA4,
then
p(B)=pBnAy)+ -+ pBNA)
SO
p(B) = p(B|A)p(Ay) + -~ + p(B| A p(Ay)-

We shall now consider a system which can exist in one of two states; a switch
might be on or off, or, in a game of badminton, ‘state 1’ might denote the situation
where player number 1 is serving while ‘state 2’ is where player number 2 is serving.
We envisage a situation in which in one ‘step’ there can be a ‘transition’ from one
state to another. Thus, in our badminton example, at each ‘step’ in the process
(at each point of the game), the system can stay in the same state (server makes
the point and serves again) or make a transition from one state to the other (server
loses the point and opponent gets to serve). For example, we can imagine that at
some stage of the game if player 1 is serving, he has probability 0.8 of winning
the point and probability 0.2 of losing, while if player 2 is to serve, then she has
probability 0.7 of winninlg the point and probability 0.3 of losing. In a real game,
the probability of a given player winning a point at some stage of the game
will depend on a whole lot of factors (how encouraged or demoralized he is by
the game up to that stage, how tired she is, etc.). We make the drastic assumption



that none of these considerations matter, that all that matters is who are the
opponents and who is serving. We can thus summarize the above probability

assignments by the matrix
0.8 03
02 0.7)

Thus 0.8 represents the conditional probability of the system being in state 1 after
the step if it is in state 1 before the step, while 0.2 represents the conditional
probability of being in state 2 after the step if the system was in state 1 before the step.

In general a (discrete time, two-state, stationary) Markov process is a process
in which the states can change in discrete units of time, but where the probability
of transition from one state to another depends only on the state the system is in,
not on the past history of the system or on the time that the transition is taking
place. Thus there are four ‘transition probabilities’ which can be arranged as a

matrix
A= a b
“\e¢ d

a = probability of transition from state 1 to state 1;
b = probability of transition from state 2 to state 1;
¢ = probability of transition from state 1 to state 2;
d = probability of transition from state 2 to state 2.

where

Suppose that we do not know what state the system is in at a given time; all that
we know is that there is probability p that the system is in state 1 and probability
q=1—p that it is in state 2. This probability assignment can be represented by

the vector
-(2)
V= .
q

After one step, the law for conditional probability says that

probability of trans. prob. prob. of
being in state 1 » =< from state 1 x< being in
after the step to state 1 state 1
trans. prob. prob. of
+< from state 2 p x< being in
to state 1 state 2
=ap + bq

and similarly the probability of being in state 2 after one step is
cp + dq.

In other words, the new ‘probability vector’ is

ap+bq\ (a b)(p>=Av
cp+dq) \c d/\q



Let us illustrate this in our badminton examples. Suppose we know that player 1
is to serve the first point. The vector

(3

then represents the initial probability vector at the beginning of the game. After
the first point, the probability vector is

4 (08 03\(1)_(08
1= o=\ 02 07/\0o)"\o2/

After the second point, it is

08 03)/08\ [07) |
V2= AV = (0.2 0.7><0.2) - (0.3) =A%

After the third point,

08 03\/07\ [0.65
V3= Avs (0.2 0.7)<0.3) (o.35> Yo

and so on. In general, the effect of playing n points is represented by the matrix A".

On thinking about this situation, you may realize that the probability vector
after a large number of steps ought to be practically independent of the initial
state: whether player 1 is serving for the fifteenth point is unlikely to depend
strongly on which player served for the first point. This suspicion is confirmed by

calculation: we find
0.8 03\/08 03 0.7 0.55
0.2 07/)\02 0.7 0.3 045
44— 0.7 0.55 _ 0.63 0.56
0.3 045 0.37 0.44
0.63 0.56\? 0.602 0.598
0.37 044 0.398 0402

0.602 0. 598) (0.600 006 0.599 994)

0.398 0.402 0.399994 0.400 006

and we might conjecture that

, 0.6 0.6
"= tly.
Jim 4 (0.4 0.4) exactly

In fact it is easy to show in general that, as long as b and ¢ do not both equal
0 or both equal 1, lim,_, A" exists. We need only determine the eigenvalues and
eigenvectors of A. Since a+c=1, b +d =1, we may write

= 1—c b
B c 1—-b)"

Since TrA=2—(b+c¢)and DetA=1—b—c+bc—bc=1—(b+ ¢), the charac-



teristic equation 1s

P—R2—b+Ji+1—(b+c)=0
or
A=-DA-(1=b—c)=0.
The eigenvalues are 4, =1, 1, =1 — (b + ¢). Note that |1,| < 1, with equality only
ifb=c=0orifb=c=1.
The eigenvectors are easily found by considering

1—c b 1 0 —c b
A"M=< c 1—b>_<0 1>_< c —b)‘

The kernel of this singular matrix consists of multiples of the eigenvector corres-
ponding to 4, = 1: we normalize this vector so that its components sum to 1 and

find
1 b
" e '

The image of A — 1,1 consists of multiples of the eigenvector corresponding to 4,:

1
In terms of these eigenvectors and eigenvalues the operation of A is easily

: : . : —1
a convenient choice of this eigenvector is v, =( .

o . : . 1 0
visualized. The vector v, lies on the line segment joining ( 0) to ( 1), and any

. : —1 : /
vector on this segment is of the form v=v, +a 1). Since Av, =v; and
—1 -1
A =1
( 1) 2( 1),weﬁnd
—1
Av=v1+a/12( 1)

. (o) " (5)

Figure 2.2




and more generally

—1
A'v=v, +oc()v2)"< 1)-

Since | 45| < 1,1tis clear that, no matter what the vector vmay be initially,lim A"v = v,.
To diagonalize A4 explicitly, we write A = BAB~* where

bjb+c) —1 A 1 (10
B:(c/(b—{-c) 1)’ B ‘(—c/(b+c) b/(b+c)> and A_<() 12)-

Then
A"=BA"B™ L.

10
e
lim (o 0)’

i e (B0 =11 0 1 1
nrep _<c/(b+c) 1)(0 o><—c/(b+c) b/(b+c))
_(bjb+e) —1 (1 1
_<c/(b+c) 1) 0 0)
1 (b b
_b+c<c c>'
Thusifv=<2>withp+q=1,
P\ _[blb+0)
lim 4 <q>_(c/(b+c)> '

. . : . . a b :
To summarize: if A is a stochastic 2 x 2 matrix, that is A=< d) with
c

Since

we find

a=20, b=0, c=0, d>0, a+c=1, b+d=1, then its eigenvalues are 1 and
b/(b+ c)
c/(b+c¢)
strictly positive, then repeated action of 4 causes the system to approach the limiting

Cy . —1 ) ) )
1 — (b + ¢), with eigenvectors < ) and ( 1) respectively. If all its entries are

b/(b + : e
state (c//((b N C))> The ‘discrepancy’ between the current state and this limiting state
c

. o ' . 0.8 03
1s multiplied by 4, at each step. In the badminton example, with 4 = < 02 0 7),

%

e . (0.6 .
A, =0.5, and the limiting state is ( 0 4). On wandering into a game after many

points have been played, we expect to find player 1 serving 609 of the time.

The matrix 4 = (0

{ O) is a stochastic matrix which does not satisfy the strict



positivity conditions. It is clear that

4 — I if n is even,
| A4 if nis odd.

The meaning of the matrix 4 is obvious. It represents a sure transition to the
other state. There is no limit as n— c0. (Yet, in a certain average sense, we expect
to find each state occupied about half the time.)

It is a straightforward matter to represent Markov processes for systems with
more than two states by larger matrices — a three-state process by a 3 x 3 matrix,
and so on. The entries in each column are non-negative and sum to unity. A
typical 3 x 3 stochastic matrix is

05 0 01
A={03 06 O
02 04 09

The important features of the 2 x 2 case persist, with some differences. For instance

05 03 0 O
05 07 0 O
0 0 0 1
0 01 0

represents a system in which it is impossible to get from the first two states to the
last two and vice versa. A probability vector concentrated in the first two states
will tend to a limit. A vector concentrated in the last two states (i.e., with first two
components zero) will move around and its value will depend on whether n is
even or odd. It is not difficult to characterize when this kind of phenomenon can
occur in terms of the matrix entries of 4. With the exception of such cases, the
n-dimensional case is the same as the two-dimensional one — the matrix has an
eigenvalue of 1, with an associated eigenvector describing a limiting state, the
other eigenvalues are all less than one, and lim,_, A" is a singular matrix which
transforms any probability vector into the eigenvector corresponding to 4 = 1.

Summary

A Conformal matrices
You should be able to identify a conformal matrix and describe in geometric terms
the transformation that it represents.

You should be able to state and apply the isomorphism between conformal
matrices and complex numbers.

B Eigenvalues and eigenvectors
You should be able to form the characteristic equation of a 2 x 2 matrix and use it to
determine the eigenvalues of the matrix.

You should be able to determine eigenvectors corresponding to real eigenvalues



ofa 2 x 2 matrix and discribe the action of the matrix in terms of its eigenvectors and
eigen-values.

C Similarity of matrices
Given a 2 x 2 matrix A, you should be able to construct a matrix B so that A =
BCB ™!, where C is diagonal if A has distinct real eigenvalues, C is conformal if A

1Y . .
has complex eigenvalues, and C is of the form ( ) if A has a repeated eigen-

0 4
value, but A # Al. In each case you should be able to interpret the columns of B
geometrically.

D Markov processes
You should be able to write down the n x n matrix that represents a Markov process
with n states.

For a 2 x 2 matrix A that represents a Markov process, you should be able to
relate the eigenvalues and eigenvectors of A to the behavior of the probabilities of
the two states of the process.

Exercises

2.1 Consider the conformal matrices

3 -4 4 3
F,= and F,= .
4 3 -3 4

(a) Write the complex numbers z, and z, which correspond to these two
matrices.

(b) Express F, and F, each as the product of a multiple of the identity
matrix and a rotation. Using the identity e'® = cos 6 + isin 0, express z,
and z, in ‘polar form’ z = re*®.

(c) Calculate F{'. Calculate z!, rationalizing the denominator.
Compare.

(d) Calculate F,F, and F,F,. Calculate z,z, and compare.

2.2 Explicitly verify DeMoivre’s theorem for the conformal matrices F, and
F, of exercise 2.1; that is calculate F3 and F2.
08 —0.6

0.6 0.8
through an angle of about 37°. Calculate R™*.

2.3(a) Show that R=( ) represents a counterclockwise rotation

0
interpret it geometrically.

(c) Calculate 4 = RSR™'and interpret it geometrically. Do the same for 471,
for B=RS™'R™! and for B~ L.

1 2
(b) S =( 1) represents a shear along the + x-axis. Calculate S™' and

18
2.4 Apply the diagonalization procedure to F =( 8)’ as follows:

(@) Form the characteristic polynomial P(1) and set it equalto zero to find
the eigenvalues of F. (Answer: 1 =2,A= — 1))



(b) Check that P(F) =0, as promised by the Cayley—~Hamilton theorem.
(c) Find an eigenvector for each eigenvalue. Let y = 1 in each eigenvector.

(d) Form the matrices B and B™', and confirm that F = BAB~!.

2.5 Diagonalize the ‘Lorentz transformation’ matrix L, = (

Pl ple

), expressing

Pl Bl

it as L, = BAB™ !, where B is a rotation and A is diagonal. Interpret the
result geometrically.

2.6 Find an invertible matrix B and a diagonal matrix D such that

4 —3\__
B B '=D.
~1 2

-1
2.7 Diagonalize the matrix F = (

5), which has a repeated eigenvalue,

by the following procedure:

(a) Form the characteristic polynomial P(1) and find the eigenvalues.

(b) Find an eigenvector of F of the form <T1>

(c) Form the matrix G=F — Al. Show that the Cayley—Hamilton
theorem implies that G> =0, and confirm this explicitly. Find the
image and kernel of G.

. X2 . X3 X1

(d) Find a vector (1 ) with the property that G(l ) = (1 ) Now form

the matrices B and B~ ! and check that you have succeeded in writing

: A 1\ __
F in the form F=B< B~ 1.
0 1

2.8 Apply the ‘diagonalization’ procedure to the matrix

3 1
5 5

F__&l’
5 §

which has a repeated eigenvalue. Find the image and kernel of G = F — AI,
and describe geometrically the transformation represented by F.

29 Let A be a 2 x 2 matrix with eigenvalues 4, > 4, >0.

(a) Describe a procedure for calculating the matrix G, = A; " A" easily by
diagonalizing 4. Show that the matrix F =lim,_, G, is singular.

3
(b) Carry through this procedure for the matrix 4 = <1 0), calculat-

ing G, and F explicitly. Find the eigenvalues and eigenvectors of 4, and
find the image and kernel of the transformation F, and relate them to
the eigenvectors of A.

2.10 For any matrix A, the trace of the matrix, Tr A, is defined as the sum of the

a b
entries on the principal diagonal. Thus, if 4 =< d>’ TrAd=a+d.

c

(a) Provethatif A and B are two 2 x 2 matrices, Tr (AB) = Tr(BA)even if
A and B do not commute.

(b) Prove that Tr 4 equals the sum of the eigenvalues of A. Conclude that
if A=SBS™!, then TrA=TrB.

(c) Using the result of (a), prove that Tr(ABC)=Tr(BCA) = Tr(CAB).



2.11

2.12

2.13

2.14

2.15

. 3 .
Express the matrix F = (5 i), whose eigenvalues are complex, in the

form F = BCB™! by the following procedure.

(a) Find the eigenvalues of F.
(b) Construct a conformal matrix C with the same eigenvalues as F.

1
(c) Construct B in the form (O ;)

4 -5
Let A =<1 0). Find a conformal matrix C, and a matrix S that

represents a shear transformation, such that A =SCS™1.

a b
Let F = ( d) be a matrix with real distinct eigenvalues 4, and A,. Let
c

x=3(A + 42), y=3(A; — 4,).

(a) Show that H = F — xI obeys the equation H? = y?].
X

(b) Show that S =( y) has the same eigenvalues as F.

y X

(c) Devise a procedure for constructing a matrix B, whose first column is

1 0
( >,Such thatH=B< y)B_l and F=B<x y)B_l.
0 y 0 y X

(d) Find a matrix R such that

()=l S
y x 0 4,

1 0
Prove that BR<0> and BR(l) are eigenvectors of F.

Let F be a 2 x 2 matrix with distinct real eigenvalues 4, and A,. Define
1 = D EE——— P2 = .
A’l - A’Z '{2 - il

Prove the following properties of P, and P,:

(a) P, and P, are projections: P2 = P,, P2=P,.
(b) P,P,=P,P,=0.

(c) F=A,P, + A,P,.

(d) F'= AP, + A1 P,.

3 4
(e) Calculate P, and P, explicitly for the case F = ( 1 2), and use

the result to calculate F’.

Let F be a2 x 2 matrix whose characteristic equation has roots A = x + 1y.

We can alternatively write x +iy=re*", where r=./(x*+y*) and

et®=cos0 +isinf. If F is a conformal matrix, it rotates the plane
through angle 6 and stretches it uniformly by a factor of r. This problem

explores the case where F is not necessarily conformal.

(a) Show that F” is a multiple of the identity for integer »n if and only if
nf = mz for integer m, and that in this case



76 Eigenvectors an eigenvalues

F'= ( _ 1)"'7'"1.
Hint: F = BCB™!, where C is conformal.

(b) Write F=(
-1 -1

smallest integer n for which F" is a multiple of the identity. Check your
answer by direct multiplication.

(c) Show that your answer to (b) follows from the Cayley—Hamilton
theorem.

(d) Find a ‘square root’ of G = (

T\ .
) in the form BCB™!, and thereby find the

-2 =15

), i.e., find a matrix 4 such
3 10

that 4> = G. Reminder:
cos230=1(1 + cosh), sin?30=1(1—cosbh)

2.16 Modernistic composer Allie A. Tory constructs his two-tone works by the
following Markov process:

1. Ifnote N — 1 was an F, then the probability py that note Nisan Fis 3,
while the probability g, that note N is a G is 1.

2. If note N — 1 was a G, then the probability py that note N is an F is 3,
while the probability gy that note N is a G is 3.
(a) Construct a 2 x 2 matrix A which transforms the probabilities

()
(o)

(b) Suppose thatnote 1is an F. Use the matrix A to find the probability
that note 3 is an F.
(c) Determine the eigenvalues of 4 and find an eigenvector of A4

corresponding to each eigenvalue.
(d) Suppose that note 1 is an F, so that

(0)-(0)

41 0

Show on a diagram the sequence of vectors
(m) (m)
4./ \ds/’

Determine the limit of this sequence, and interpret it in terms of the
eigenvectors of A.

into the probabilities

2.17 The quarterback of the Houston Eulers, who majored in probability
theory in college, has devised a play-calling procedure with the following
properties:

1. Ifplay N — 1 was a pass, then the probability py that play N is a pass is
1 while the probability gy that play N is a run is 2.

2. If play N — 1 was a run, then the probability py that play N is a pass is
px =3, while the probability gy that play N is a run is gy =1%.



PN

(a) Construct the 2 x 2 matrix A which transforms the probabilities
(PN—1>
dn-1
(o)
an

(b) Determine the eigenvalues of 4 and find an eigenvector of A
corresponding to each eigenvalue. Illustrate on a diagram the
action of A on each eigenvector.

(c) No one knows how the quarterback decides what to do for play 1,

but observation of game films shows that play 2 is a pass half the
time, a run half the time. What are the probapbilities

(o)

2.18 Professor Constantine Bayes has been teaching his course ‘Stochastic
Methods in Classical Archaeology’ for decades. It is widely known that
Bayes selects examination questions by drawing colored balls from ancient
Greek urns which he keeps in his office, but the contents of the urns are
secret. However, by analyzing the pattern of Bayes’ final examinations,
which are on file in Lamont Library, students have learned the following:

into the probabilities

for the first play?

1. If the final examination in year N — 1 had a question on statues, the
final examination in year N will have a question on statues half the
time, a question on pottery half the time.

2. If the final examination in year N — 1 had a question on pottery, the
final examination in year N will have a question on statues % of the time,
a question on pottery 2 of the time.

(a) Write the matrix M which transforms the probabilities (ZN— 1),
N—-1
for a statue question or pottery question respectively, into the

PN

an

(b) Find the eigenvectors and eigenvalues of M, and write M in the
form SDS™!, where D is diagonal.

(c) By attending Bayes’ office hours regularly, a student has finally
learned details of his method. Bayes has two urns, but he uses them
once for the hour examination, then once again for the final
examination, so that the matrix M represents two steps of a Markov
process! By using your diagonalization of M, find the two possible
matrices N for one step of the process.

probabilities ( ) for the next year’s final examination.

2.19 John and Eli are playing a game with a ball that can roll into one of two
pockets labelled H and Y. John wants to keep the ball in H and Eli wants
tokeepitin Y. When it is John’s turn to play, if he finds the ball in H that is
fine with him and he does nothing; but if he finds it in Y he attempts to roll
itinto pocket H. This takes some skill; the probability that he succeeds is 3,



clues

there being a 4 chance that the ball will roll back into Y. When Eli’s turn
comes, he does nothing if the ball is in Y, but tries to get it there if he finds it
in H. Eli is less skillful than John and his probability of succeeding in his
effort is only 3.

(a) Starting with the ball in Y and John to play, what is the probability
that the ball will be in H after John’s second play?

(b) Find a formula for the probability that the ball is in H after John’s nth
play (i.e., after John has played n times and Eli (n — 1) times).

(c) Suppose the game has been going on for a ‘long time’ and you look in
just after Eli has played. What is the probability that the ball is now in
H? How many turns constitutes a ‘long time’ if we want to be certain
that this probability is correct within 0.001?

2.20 A bank has instituted a policy to prevent the tellers’ lines from ever getting
more than two persons long. If a third person arrives, all three customers
are escorted into the manager’s office to receive high-level personal
service, and the teller starts again with no line. Furthermore, an armed
guard at the entrance to the bank assures that no more than one customer
per minute can enter (it takes that long for a really thorough search). As a
result, the length of a teller’s line is determined by the following Markov
process, which describes what happens in a one minute interval of time.

1. If the line has zero customers, the probability is 3 that one customer
arrives, 3 that no one arrives.

2. If the line has one customer, the probability is £ that the customer is
served and leaves, 4 that a second customer joins the line, and % that
nothing happens.

3. If the line has two customers, the probability is ¢ that one customer is
served, £ that a third customer arrives and all three are taken to the
manager, leaving no line, and % that nothing happens.

P1
(a) Construct the matrix M which carries the probabilities (I;i) for

time ¢t into the probabilities for time t + 1.
(b) At 9 am, when the bank opens, p, = 1. What are the probabilities

1
<p2> at 9:03 am?
P3

(c) Find the eigenvalues and eigenvectors of M.

P1
(d) What is the limiting value of (iz) after the bank has been open for

3
a long time? Estimate at what time the probabilities p,, p,, and p,
will all be within 0.001 of these limiting values.
() On the average, how many customers per minute are served? How
many are taken to the manager’s office?

The Ehrenfest model. Suppose we have two boxes and N balls. There can be i
balls in the first box and N — i balls in the second. The state of the system is given



. C oot

by the integer i. So there are n + 1 states: i=0,i=1,...,i= N. At each instant of
time, one of the N balls is picked at random (i.e., with probability 1/N) and moved
from the box it is in to the other box. Thus i can change to either i—1 or i + 1
according as the ball picked was in the first or second box. The probabilities of
these transitions are iN ! and (N —i)N ~! respectively. Thus

Pi—1,i=iN_1
Pi+1,1=(N—iN~!
p;i=0, j#i—1lori+1.

For example, if N =4, the 5 x 5 transition matrix is

0+000
1 0410 0
P={0 2 0 3 0
004101
00010

Notice that P transforms any state with i even into a state with i odd and vice
versa. Thus P? transforms even states into even states and odd states into odd
states: P2 has the form
Pi—2,=i(i— N2
pii=[N—i+1)+(N—)@FE+1)]N"?
Piv2,i=(N—i)(N —i— N2
pi=0 if j#i—2,ii+2

Thus, for N =4, squaring the preceding matrix gives

P2 =

O o O ok O
X O Rw O oo
O ol O wjw O
B ORLw O O

O O s O pm

Since transitions for P? are only between states of the same parity, we may as
well consider the states i =0,2,4 and i = 1, 3, 5,... separately. (In the above matrix,
this means combining separately the matrices obtained by considering only the
even—even positions and the odd—odd positions:

1

2.21.(a) For the matrix Q show that (6)is an eigenvector with eigenvalue 1 and
1

0=

oojw ol
ool oojw

and Rz(

O Bl pp=
Q0= (W oo
Pl O

1
for R that (1) is an eigenvector with eigenvalue 1.



(b) Do the same computations for N = 5: Show that the ‘even’ eigenvector

(c)

2.22.

1

with eigenvalue 1 is proportional to 60>and the ‘odd’ one is propor-
5
5
tional to {10 }).
1

Prove in the general case that the ‘even’ and ‘odd’ eigenvectors with
eigenvalue 1 are proportional to the vector whose entries are the even or
odd binomial coefficients. In other words,

N

1

()
()] e |(5)

i

eigenvector  eigenvector.

Fibonacci numbers.

The sequence 0,1,1,2,3,5,8,13,... is called the Fibonacci sequence.
These numbers appear in the study of many interesting physical and
mathematical problems ranging from plant growth to celestial mechanics
(see, for example, D’Arcy Thompson’s On Growth and Form). The

recursion which generates the sequence is
Xn+2=Xpe1 T Xy x0=0

(a) Compute the ratio x,, ,/x, for n=1 up to 8 or so. Do you think this
sequence has a limit?
(b) Find a matrix such that

(xn+2> _ A<xn+ 1>‘
xn+1 xn

Xn+2 ). X1
Use A to express in terms of .
Xn+1 Xo

(c) Find an explicit expression for x, in terms of x, and x,. (Hint:
Diagonalize A.)

(d) Show that lim,_, ,x,. ;/x, exists and compute its value.

(e) What does (d) tell you about the infinite continued fraction

1

1+
1+
1+

1

(f) Are there any values of x, and x, such that lim,, . x,, ,/x, differs from
the value obtained in (d)?
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The principal goal of Chapter 3 is to explain that a system
of homogeneous linear differential equations with constant
coefficients can be written as du/dt = Au where A4 is a matrix
and u is a vector, and that the solution can be written as
e?'u, where u, gives the initial conditions. This of course
requires us to explain what is meant by the exponential of
a matrix. We also describe the qualitative behavior of
solutions and the inhomogeneous case, including a discussion
of resonance.

3.1. Functions of matrices

We have already encountered (in our discussion of the Cayley—Hamilton theorem)
a ‘polynomial in a matrix’. More generally, let Q(X) be any polynomial. If

0X)=a,X"+a, ;X" '+ +a; X +ag
then we define the matrix Q(F) by
QF)=a,F"+a,_,F" "'+ +a,F +a,.
Now we can multiply two polynomials (Q,Q,)(X) = Q,(X)Q,(X) to obtain a third.
Similarly
010,(F) = Q1(F)Q,(F).

There is no problem with the fact that in general matrix multiplication is not
commutative, since powers of a fixed matrix always commute with one another.

FkFl =Fk+l — Fle
on account of the associative law. Similarly,

(Q1 + Q2)(F) = Q4(F) + Q,(F).

In short, there is no trouble in evaluating a polynomial function at a fixed matrix,
and the usual algebraic laws are satisfied. We would like to consider some more



general functions of matrices, and for this we need a slight digression about power
series.
An expression of the form

RX)=ao+a; X +aX*+ - +a, X"+

where the a;,, i=0,1,..., are real numbers and X is a symbol (as is X* for all k)
is called a formal power series. We add two power series according to the rule

(ao+ a; X +a,X* 4+ )+ (bg+ b, X +b,X*> 4
=(ag+bo) +(a, +b)X +(a, +b)X* + -,

that is, we add the coefficients term by term. We multiply two power series by using
the rule X*- X'= X**! and collecting coefficients:

(@0 +a; X + a,X*+ ) (bo+ b, X +b,X> +-)
=agbg + (a;bo + agh1)X + (asbg + a;b; + agh))X* +--- .
Thus, for instance,
I+X+X°+ )0 +X+X>+)=14+2X+3X"+-.

It is easy to check that all the usual rules for addition and multiplication of
polynomials hold equally well for formal power series.
Let t be any real number. We define the formal power series exp (tX) by

1 1 1
exp(tX):1+tX+§t2X2+§t3X3+Z'-t4X4+"' : (3.1

Then

1 1
eXp(sX)GXp(tX)=<1 +sX+2—'SZX2 +--~)(1 +tX+jt2X2+-~>

1
=1+(S+t)X+§(SZ+23t+t2)X2+-~-

where, on the right, the coefficient of X" 1s

1 n—1
— S"+ns"_1t+n(—23"_2t2+"°+t"
n! 2

which, by the binomial theorem, is just (1/a!)(s + t)". Since
1 1
L+ (s+0)X +5(s + 1)’ X2 +§(s +13X3 4+ =exp(s+ )X

by definition, we conclude that
exp (sX)exp(tX)=exp(s+ )X (3.2)

as an identity in formal power series.

In contrast to polynomials we cannot, in general, ‘evaluate’ a formal power
series, R(X) at a number, r, or at a matrix F. That is, if we try to substitute the
real number r for the symbol X in

R(X)=ay+a; X +a,X>+



we get an ‘infinite sum’ of numbers
ag +ayr +asr’t 4+

which, as it stands, makes no sense. One way of trying to make sense of such an
infinite sum is to chop off the end at some finite value, so as to get a finite sum
and to hope that place where we chop it off makes little difference — provided that
we go out far enough. We would then assign to R(r) the value obtained as the
9imiting value’ of the finite sum. Let us explain this procedure more precisely. For
any integer M, define RM(r) to be the finite sum

RM(r)=ay+ a,r +ar* + -+ + apr™,
We say that the power series R(X) converges at the number r if, for any positive
number &, no matter how small, we can find some large enough M, so that for
any integers M and N > M, we have
|RM(r) — R¥(r)| <.

In other words, if we go far enough out, all the values RM(r) lie in some interval
of length ¢. Thus the further out we go, the closer the RM(r) cluster about some
limiting value, and this limiting value is what we call R(r).

We can now make essentially the same definition for matrices. For any matrix
F the expression

RM(F)=ay+a,F + -+ ayF"
makes perfectly good sense. The difference
RY(F) — RY(F)
is again a matrix, and we shall take the condition
|[RM(F)— RY(F)| <e

to mean that each of the four entries of the matrix R™(F) — R¥(F) has absolute

value less than ¢. We say that R(X) converges at F, if for any ¢ >0 there is an M,

such that |RM(F)— RY(F)| < ¢ for M and N > M,. When this happens each of the

entries of RM(F) clusters about some limiting value as we go out far enough. We

thus get a matrix of limiting values and this limiting matrix is denoted by R(F).
It is clear that if R,(X), R,(X) and R4(X) are formal power series such that

R{(X)R,(X) = R5(X)
and if all three of these series converge at F then
R, (F)R,(F) = R4(F)

since we can replace each R,(X) by a finite approximation. Similarly for addition:
if R;(X)+ R,(X)= R4(X) and the series all converge at F, then R,(F)+ R,(F)=
R,(F).

3.2. The exponential of a matrix

We have a formal power series (3.1) for the exponential function and we know
the identity (3.2). We will now prove that the power series for exp (tX) converges
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when we substitute a 2 x 2 matrix A for the symbol X. As a first step, We review
the proof that the series converges absolutely when we substitute any real number
k for X. We consider the power series

1 1
expy—1+y+2'y + y + - (3.3)

where y = |tk|. By making y a positive number, we ensure that every term of the
series is positive and thereby guarantee absolute convergence of exptk, once we
prove that (3.3) converges.

To show that the series for expy converges, we must demonstrate that the
‘remainders’ r,, , formed by summing terms from the mth to the (m + njth term
become and remain as small as we like when we choose a sufficiently large value
of m. This is easily shown by comparing the remainder series

1 1 1

— m+_— m+1+ m+2+'..
=Y T i m+ 1) mi(m+ )m+2)°
1

+m!(m+ D...(m+n)

m+n

y

with the geometric series

1

1 11
Sm’nz_v'ym_*_ ym+1+ ' 2ym+2_i__,._*__'_nym+n

m!m

Clearly, r,, , < s, , for all m. But we can sum s, , explicitly:

m 2 3 n
ot () ¢ () o+ ()
m! m m m

or
n+1
(-
m

where

yr 1

Sy ="— )

m! 1 —y/m

Thus
rm h < Sm

Suppose we choose m > 2y, so that
1 - 1 _
y—ym 1-3%
Then s,, < 2y™/m!, and, whenever we increase m by 1, we multiply s,, by a factor
which is less than 1. Clearly, by choosing m large enough, we can make s,, as

small as we like, and since r,, , <Ss,,, we can thus make r,, , as small as we like. It
follows that the series

2.

1 1
expth =1+ tk + 57 (k) + 3 (k) +
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converges absolutely. Incidentally, the well-known ‘ratio-test’, in which one proves
absolute convergence of a power series

Ao+ asy +asy® +azy’ + -
by showing that

m+1

m-—> oo amym

<1,

relies on the argument just presented.

. . a . . .
Suppose now that 4 1s a 2 x 2 matrix: A = ( , In which every entry is less

c d
: ., (a b\fa b\.
in magnitude than k/2. Each entry in A* = e alle 4)8 the sum of two terms,
each of which is smaller in magnitude than (k/2)*> = k?/4, and thus each entry in
A? is smaller than k?/2. By a similar argument, each entry in A3 is less than k3/2,
and by induction we can prove that each entry in A™ has absolute value less than
k™/2. Thus when we sum the series
2o
PR
each of the summands of the four entries in the resulting matrix is less than the
corresponding summand of the series
1+tk+t2 k2+t3 k3+
2 212 312
It follows that, for any real number ¢ and any 2 x 2 matrix 4, the series for exp (tA4)
converges. In fact, a similar argument, with k/2 replaced by k/n, shows that the
series converges when A is an n x n matrix.
It now follows that the fundamental identity for the exponential function

exp(tA)=1+tA+ A+

exp (s + t)A =exp(sA)exp(tA)
holds for matrices.
You might ask, how about a more general identity of the form

exp (4 + B) = (exp A)(exp B)

where 4 and B are arbitrary matrices? To see what is involved, let us expand both
sides
exp(A+B)=I+A+B+%A+ B>+

=1+ A+B+3A>+AB+BA+B*)+-
while

(expA)expB)=(I + A +34%*+--)I+B+1iB*>+--)
=1+A+B+(3A*+ AB+1B*) +---

Where --- denotes a sum of terms of degree higher than 2 in 4 and B. If we compare
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the quadratic terms, we see that they are not equal unless

3(AB + BA)= AB,
1.€., unless
AB = BA.

Thus, if the matrices A and B do not commute, there is no reason to expect that
exp (A4 + B) = (exp A)(exp B) and, in fact, it will not, in general, be true. For a

concrete example, take
A= 01 .
0 0

In this case A> =0, and hence all the higher order terms in exp A vanish and we
have the simple expression

epr=I+A=<(1) i)

Take
0 0
B= 2=
( ) 0) so B 0
and
1 0
B=I+B= .
exp + ( 11 )

Then

(epr)(expB)=((1) i)(i (1))=(:12 i)

On the other hand
0 1
A+B=
w5= (1 o)

SO
1 0
A+ B)? = .
Thus
1 1
eXp(A+B)=I+(A+B)+%I+3—'(A+B)+ZTI+"-
1 1 1 1
=<1+E+zﬂ+'”>[+<1+§!-+'5—!+"‘)(A+B).
Now
1 1 1 R § + -1
oyt =2eten)
and
1 1 1
1+ ~++==3—e71)



SO
-1 a1
exp(+B)=(eFeT o= L0 hexpB)
2\e—e™' e+e
The reason that we do have
exp (s + t)A = exp (s4) exp (t4)

is that the matrices s4 and t4 commute.
Having shown that exp (t4) is well-defined by its power series, we next generalize
the well-known formula

d
T [exp (tk)] = k exp (tk). (3.4)
We define the derivative of exp(t4) with respect to the real number ¢ by

— [exp (tAd)] = 11m h Lexp ((t + h)A) — exp(tA)].
h—0

(The limit on the right-hand side of this equation means that each of the matrix
entries tends to a limit.) Since exp ((t + h)A) =exp(hA)exp(tA), we have

- [exp (tA)]= 11m [exp (hA) — I'lexp(tA).

But
hZAZ h3A3
exp(hAd)—I=hA + o + 3 +
SO
1 hA?> h?A3
E(exp(hA)—I)—A o + 3
and
lim —- [exp(hA)—I] A.
o h

We have thus proved that

| & Lexp (1)1 = Aexp(4),

which is just like (3.4) except that the multiplication on the right is now matrix
multiplication.

Now let v, = (x
Yo

dependent vector v(t) defined by

) be a fixed vector in the plane, and consider the time-

b
v(t) =exp(tA)v, where A:(a d).
c

We can define ¥(t), the time derivative of v, by

¥(t) = lim 1 Lv(t + h) — v(t)].



If we write v(t) = (x(t))’ this simply means ¥(t) = X(1) . Since v, is constant, we
W) W)
have
.1
v(t) = hm;l [exp ((t + h)A) — exp(tA)]v,.
h—0
That is,
v(t) = 4 exp(tA4)
A\ = d[ p Vo
so that

V(t) = Aexp(tA)vy = Av(t).

We have shown that v(z) satisfies the differential equation

W(e)=Av(), v(0)=v,

x(t)

Writing v(t) = (y (0

) we see that

(X(t)) B (a b)(x(t))_
W) \c d)\y0)’
X(t) = ax(t) + by(t),
we) = ex(t) + dy(t).

x()\ " Xo
(y(t))_e p(tA)(yo>

1s a solution to the system of linear ordinary differential equations written above.

In fact, it is easy to prove that any solution to the differential equation ¥(z) =
Av(t) is of the form v(t) = exp (tA)v,. Simply consider the vector w(t) = exp (— tA)v(t).
Then

that is,

Thus

w(t) = % (exp (— tA))v(t) + exp (— tA)v(t).
But

ac—izexp(~tA)= — Aexp(—tA)

and by hypothesis

v(t) = Av(2).
SO
w(t)= — Aexp(—tAW(t) + exp(—tA)Av(t) =0
since the matrices A and exp (— t4) commute. It follows that w is a constant vector
(call it v,) and we have

vo = exp (— tA)v(t)



or

l(ﬁ v(t) = exp (tA)vo.

We thus see that the function exp (t4) determines the general solution to a system
of differential equations with constant coefficients. It becomes important to discuss
various methods for computing exp (tA4).

3.3. Computing the exponential of a matrix

Suppose F and G are matrices which are related as
F=BGB™.
Then
F*=BG*B™!
for any k, and hence it follows from the power series expansion of exp(tA4) that

exp (tF) = Bexp(tG)B™ L.

Case 1. F has distinct real eigenvalues. We can now make use of our
ability to diagonalize 2 x 2 matrices. Suppose that F has distinct real eigenvalues
A, and 4,. Then we can write

F=B 41 0 B!
~\o 4, '

A O\ (210
0 4,) \0 A

and it follows from the power series definition of the exponential function that
o At 0\ (e 0
Plo 4,/ Lo e

At O
exp(tF):B<eo ew>B‘1.

Clearly

so that

|
|
[ —

7 4
As a concrete example of this technique, take F =< g _5>. The

characteristic polynomial of this matrix is A2 — 24 — 3 =0, so the eigenvalues are
4 4

4iy=3, A,= —1. Considering (F—31)=(—8 g

>, we find eigenvectors

1 —1 (21
(L 2) ()

1 1
\Z1 2( 1>, the kernel of F — 31, and v, =< 2), the image of F — 3I. Thus



and
1 —1\/3 0\/2 1
F=
(—1 2)(0 —1)(1 1)'
It follows immediately that

ewen=(_y )6 )G )

and we can multiply out the matrices to obtain

2e3t _e—t e3

t_ et
—2e¥ 42" —e+ 26“)
Given any vector v, which specifies initial conditions, that is the value of v at t =0,
we can now write down the solution to v(t) = Fv(¢t). Suppose, for example, that

Vo= (i) Then
1 3¢ —2e7!
v(t) = exp(tF)(1> = (_ 363 4 4e")'

Differentiating each component, we find

(1) = 9e3 4 2¢7*
YWE\ — 93 — g
and we confirm that

7 4 3e3 —2e”! 9e3 + 2e 7
Fv(t)= —
V() (——8 _5>(_3e31+4e—t) (—9e3t—4e_t> also.
Case 2. Repeated eigenvalues. The method just described works when F has
distinct real eigenvalues. Suppose, instead, that F has a repeated eigenvalue 4. Then

exp(tF) =<

. A 0) . . e 0 .
either F = 0 1) in which case exp(tF) = 0 ek ) OT Ve can write

A1
F=B B~1.

(6 1)
At we write
0 At

At t 0 ¢
= Atl
<0 /u) * <0 0)

and make use of the fact that, if matrices C and D commute, then

exp(C + D) = (exp C)(exp D).

Since A1 commutes with any matrix we have

At t 0 ¢
exp(0 M):exp(,ltl)exp<0 O)'

To exponentiate (



0 t\* (0 O
But (0 0) = <O O)’ so we have from the power series for the exponential

exp (g é)t = ((1) (1)) + (8 g) + terms which are all zero,
0 ¢ 1 ¢
i.e., EXp (O 0) = (0 1), and so
exp()“t t) _ (e“ 0 )(1 t ) _ (e’“ te"‘)
0 it 0 e*/\0 1 0 e*

i1
if F=B B!

At

t At
then exp (tF) = B(eo ee,u )B_ 1

It follows that

As an example of this case, consider the system of equations

X=x+y,
y=—x+3y.
. t 1 .. . .
The matrix F= {3 has characteristic equation A* —41+4=0, with

-1 1
a double root A =2. Considering (F —2I)=< { 1) we find the eigenvector

v, = (1) and the vector v, = (?) for which (F — 2I)v, =v,. Thus
(0600
1 1/)\0 2/)\—-1 1/
Since exp(” f )= ( e’ ) we have
0 2t 0 e~
1 0\/e* te? 1 0
exP(tF):(l 1)(0 62‘)(—1 1)

(1—1t)e* te? )

—te* (14 1e*

or
exp(tF)= (

If, for example, we wish to solve the above differential equations for initial conditions
Xo=2, yo=1, we just form

2 2e? —te?!
eXp(tF)<l) = ( o2t _ tez:)'
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Then
x=4e* —e¥ —2te?' =x+y,
)-) — 262t _ e2t _ 2t62t = —x+ 3)/-

. A1
In fact, it is not really necessary to write F = B(O i)B_ ! in the case where
F has a repeated eigenvalue 4. By the Cayley-Hamilton theorem,
(F—AI)*=0

so the matrix G = F — Al is nilpotent. Now, since A and G commute,
exp (tF) = exp(Atl)exp (¢G).
But exp(tG) is easily computed from the power series:
exp(tG)=1+1tG

since (¢tG)? and all subsequent terms are zero. So

At

exp(tF)=<e

0
. eh)a +1G).

In the previous example,

1 1 -1 1
() omroan(T)

e 0 1 0 —t t
aver=(5 o) (o )+ (Z0 7))

(1 —1t)e* te?t
- _ teZt (1 + t)CZt

Case 3. Complex eigenvalues. We have finally to deal with the case where F has
complex eigenvalues. We have proved that, if the eigenvalues of F are a + i, we

and

as before.

can write F = BCB~! where C is the conformal matrix C=(Z *5) The

problem is now to exponentiate C.
. 0 —1
Notice that C=al+ J where J= ( ) 0
J>=—Tand corresponds to the complex number 1= \/ (—1). Because o and BJ
commute, we have

). The matrix J satisfies

exp (tC) = exp (tal)exp (¢t BJ).

e 0
exp (tal) = O etxt *

Of course,
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To compute exp (tBJ), we use the power series
exp(tBJ)=1+1tpJ +§1Y(t/3’J)2 +§1—!(tBJ)3 + Zl—!(t/sJ)‘* + el
Since J2=—1,J*= —J, J*=1, J5 =J, etc., we have

XDUBI) =1+ BT — 5 (T 3y (B + 3 (BT + -
By (th)* tp)
=(1— . +--»>I+<tﬁ—— i +-~->J.

The coefficient of I is the power series for cos ft; the coefficient of J is the power
series for sin fit, so we conclude that

exp(tfJ)=cosftl+sinftJ = (COS pr —sin ),

sin fit cos fit

which is a time-dependent rotation matrix. Identifying J with the complex number
i, we see also that

Thus, if C=(OC —5),

o
e 0 cosffit —sinfit
tC) =
exp(tC) (O e“‘)(sin pt cos Bt)
and, if F= BCB™ !, we can calculate exp(tF) as
exp (tF)= Bexp(tC)B~ 1.
3 —10

2 — 5
A2 4+24+5=0,withroots A= —14+2i. So F=BCB™ !, where C is the conformal

e'#' = cos Bt + isin Bt.

As an example, consider F =( ) The characteristic equation i1s

-1 - 1
matrix ( ) i) As described in section 2.2, we can choose ( 0) as

the first column of B, and the second column of B is then the first column of

1/3+1 2 1 2 1 2
ol divided by f: that 1s 2( 5 ) <1> So B (O 1> and F (0 1)

X(—l _2)<1 —2)' We now calculate exp(tC) by the procedure just

2 —1/\0 1
described: '
e " 0 cos2t —sin2t
exp(tC):( 0 e“)(sinZt cos2t>
and so

1 2 1 =23
exp(tF)=<0 1>exp(tC)<0 1).



Multiplying the matrices, we have
exp (iF) = (e“(cos_ztt + 2sin 2t) | —SeT'sin2i |
e 'sin2t €~ '(cos 2t — 2 sin 2t)
You can check for yourself that
d
aexp (tF)= Fexp(tF).

Again in this case, it is not really necessary to do the decomposition F = BCB™*
explicitly. Suppose that F has eigenvalues a + iff so that its characteristic equation is

(A—a)?+ p*=0.
Then, by the Cayley—Hamilton theorem,
(F—oad)*+p*1=0

so the traceless matrix G = F —al satisfies G> = — f*I. Writing F =al + G, we

see that
exp (tF) =exp(atl)exp(tG).

Again we exponentiate tG by using the power series:
t*G* 3G* t*G*
ZTRIE TR
Taking advantage of the fact that G*> = — 21, we obtain
2t2 2t3G 4t4

e, BEG P
2! 3! 4!
The coefficient of I is again the power series for cos Bt. The coefficient of G is

ﬁ2t3 ﬁ4t5 1 ,B3t3 ﬁsts )
T ﬁ(ﬁt— 31 s +"'>=(Smﬂt)/ﬁ'

We conclude that

exp(tG)=1+1tG+

exp(tG)=1+1tG— I+ -

t

exp (tG)=cos ft I + [(sin ft)/B1G
and

exp(tF) = ( eO e?“> exp(tG).

3 —10

Returning to the example F :< 5 5

), for which a=—1, f=2, we

4 —10
2 — 4

cos 2t 0 1. 4 —10
exp(tG)=< 0 cos2t>+zsm2t<2 4

cos 2t + 2sin 2t — 5sin 2t
sin 2t cos2t —2sin2t )

form G=F+1 =< ), a traceless matrix satisfying G> = — 4. Then

exp(tG) = (



On multiplying by exp(«tl) = (e(;l ‘L) we obtain the earlier result for exp(tF),
e

but with much less effort.

3.4. Differential equations and phase portraits

We have seen that the differential equation v= Av, with the initial condition
v(0) = vo, has the unique solution

v(t) =exp(tA)v,.

This solution v(t) defines a function from the time axis to a two-dimensional vector
space. Because exp(t4) is defined for negative t as well as positive ¢, the domain
of v(t) is — oo <t < 0. By plotting the point whose position vector is v for all
values of t, we obtain a solution curve for the differential equation. This curve is
like the path of a particle which moves in a plane, and the vector v(t) = Av(t),
which is like the velocity vector for that particle, is tangent to the path. Through
each point in the plane there passes a unique solution curve, and the effect of the
transformation exp(tA) is represented by moving ¢ units along the solution curve.

4

Vo

(1)

Figure 3.1

By plotting a whole family of solution curves, we can create a phase portrait
which conveys the important features of the solutions of the differential equation.
Although there are many different matrices 4 which could appear in the differential
equation v = Av, there are only a limited number of different types of phase portraits.
To be specific, if matrices A and F are conjugate, so that A= BFB™!, then the
solution curves for v = Av are obtained from those for w= Fw by the linear
transformation v(t) = Bw(t). The proof is simple: since B is constant, v(f) = BWw(t),
and it follows that, if w = Fw, then

v=Bw=BFw=BFB lv=Av.



Thus the phase portraits for v = Av are essentially the same as those for w=Fw
if A and F are conjugate. We can therefore determine possible phase portraits (up
to a linear transformation) by considering the different possibilities for the eigen-
values of A.

We note first that if v, is an eigenvector of A, with eigenvalue A, then

1
v(it)=exp(tA)vg=| 1 +tA+ ET(tA)Z + ---:lvo

- 1 + t}, + ‘—“(t).)z ]VO - CMVO.

So in this case the solution curve is the straight line through the origin on which
vo lies. If A is positive, v(f) moves away from the origin as ¢t becomes large and
positive; if A is negative, v(t) moves in toward the origin as t — co. If =0 then
v(t) = v, for all ¢, so each point on the line through v, stays fixed.

We can now enumerate all possible cases.

Case 1. A is a multiple of the identity matrix.

0 0 1t 0 :
Case la. A= (0 0), exp(tA) = <0 1). So all points stay fixed.

A O e* 0
A= A)=
Case 1b. A (0 ) ,exp(tAd)= ( u)

N

o el FARY

(a) (b)
Figure 3.2(a) 1> 0. Figure 3.2(b) 1 <0

Every vector is an eigenvector, so all solution curves are straight lines through the
origin. If 4 > 0, each point moves exponentially away from the origin as t — oo; if
A <0 each point moves towards the origin.

Case 2. A has real distinct eigenvalues A, and 4,.

Then
A, 0
B—l
A= B(O 12)
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Case 2a. A; and A, both positive, 1, > 4.

In the special case where B = I, the solution curves are as illustrated in figure 3.3(a).
The x- and y-axes are solution curves.

Since
X e*x,
y - AZIJ’ 0

and e*'* > e*?’, x/y becomes larger and larger as t — 0. As t > — 00, curves become

tangent to the y-axis.

-

(a)

A
Figure 3.3(a) A= ( 0 0 )
0 4,

A

More generally, let v, and v, be the eigenvectors of A. Lines along v; and v, are
solution curves. Since A, > 1,, other curves become parallel to v, as t— + oo,
tangent to v, as t — — o0, as illustrated in figure 3.3(b)

(b)

. Ay 0N
Figure 3.3(b) A =B B!
0 4,



Case 2b. A, and A, both negative, |1;| <|A,|. This is similar to Case 2a, but all
arrows are reversed. As t— oo, all solution curves approach the origin.

Case 2c. 1, positive, 1, negative. In the special case where B = I, the x-axisand y-
axis are again both solution curves. As t increases, x becomes larger, y smaller.

Other solution curves approach the x-axis as t — oo, the y-axis as t » — 00, as

illustrated in figure 3.4(a).

. A O x e*t’x,
Figure 3.4(a) A= o )\, = ety )

More generally, suppose eigenvector v, corresponds to eigenvalue 4, > 0, while
eigenvector v, corresponds to eigenvalue 4, < 0. Points along line through v, move
out, those along line through v, move in. Solution curves approach the line through
v, as t— + oo, the line through v, as t » — oo, as illustrated in figure 3.4(b).

(b)

Ay 0N
Figure 3.4(b) A=B B
0 4,

Case 2d. 1, positive, 4, zero.

In the special case where B = I the y-axis is held fixed. Lines parallel to the x-axis are
solution curves. Points move away from the y-axis as t— + co, toward it as



t— — oo. More generally, suppose eigenvector v, corresponds to 4; >0, while v,
corresponds to A, =0. The line through the origin along v, is held fixed. Lines
parallel to v, are solution curves. Points move away from the line through v, as
t — oo, toward this line as t - — o0.

2y 0
Figure 3.5(b) A =B B~ 1
g (b) (0 0)

Case 2e. 1, is negative, A, zero. Just reverse all arrows in the preceding case.
As t — 4 oo, entire plane is projected onto the line of eigenvector v,.

Case 3. Repeated eigenvalue A, but 4 # A1

— A - 1. — ReAt 1t -1
A-B(0 /”t)B ;exp(tA) = Be (O 1)B .

In this case there is only one eigenvector v, .

Case 3a. A>0.

In the special case where B = I, the eigenvector v, lies along the x-axis.

x-axis is a solution curve; points on it move out. As t— 00, x becomes much



greater than y; curve becomes parallel to x-axis. As t — — oo, x becomes opposite
in sign to y. All curves cross the y-axis for t = — x,/y,.

A1
Fi 36(a) A=
igure 3.6(a) (O A)

More generally, the line through the origin along v, is a solution curve; all other
curves become parallel to this line as t = 00. All curves cross every other line
through the origin.

(b)

i1
Figure 3.6(b) A = B(O jl)B‘1

Case 3b. 1 <0. Just reverse all arrows in the preceding case.
Case 3c. 1 =0.



In the special case where B = I, the x-axis stays fixed. Lines parallel to it are
solution curves. For any t, exp (t4) is a shear transformation.

Fi 37(a)A—<0 1) A—<1 '
igure 3. =lo o ,exp(td) = 0 1).

More generally, the line through the origin along eigenvector v, stays fixed; the
plane is sheared parallel to this line.

A1
Figure 3.7(b) A=B B!
igure 3.7(b) (0 l)

Case 4. A has complete eigenvalues o + 1p. In this case there are no eigenvectors.
Case 4a. o =0.
In the special case where B = I, the solution curves are circles centered at the



origin. The transformation exp(tA4) is a rotation. The solution is periodic with
period 27/p.

. (0 -8B _(cosPr —sinpt
Figure 3.8(a) 4= (ﬁ 0 ), exp(tA)= (sin B cos Bt).

More generally, the solution curves are ellipses. The solution is periodic with

period 27/f.

(b)

. (0 =B\,
Figure 3.8(b) A_B<ﬂ 0 >B

Case 4b. o> 0. Solution curves are counter-clockwise spirals. Points move out as

t'— oo, move into origin as t — — oo.



(a)

Figure 3.9(a) A = (; _ocB>’ exp (tA) = eat(cos pt  —sinpt >

sin fit cos fit

(b)

o4

. « =B\ _
Figure 39(b) A = B(ﬁ )B !
Case 4c. o< 0. Same as above, but spiraling into the origin as ¢ — c0.

3.5. Applications of differential equations

The best-known physical system which gives rise to a differential equation of the
sort we have just been considering consists of a mass M which moves under the

|

\W

O

z

N

Figure 3.10



influence of a spring which exerts a force, — kx and proportional to the displace-
ment, x, a ‘linear dashpot’ which exerts a force — zu, proportional to the velocity
u of the mass. Newton’s second law says that Mu = — kx — zy while the definition
of velocity gives x = u. The state of the system is completely described by specifying

X . :
the vector w =( ) whose components are the position and velocity of the mass.

u
Since
X=u
. k z y
= ——X — —
M M
we can write this differential equation as
w=Aw
where
0 1 k z
A= wi=—, I'=—.
< — w0} — r)’ °T M M

The character of the motion is determined by the eigenvalues of A. Since the
characteristic equation is
24T+ wi=0,
we have
=T+ /(T*—4w})

A
2

There are four distinct possibilities:

1. If I’ =0 (no friction), A = +iw,, and the oscillator is undamped. The phase
portrait corresponds to case 4a; the solution curves are ellipses in the xu-plane.
The equation of one of these ellipses is 1 Kx? + 1 Mu? = constant, which implies
conservation of energy. The period of the motion is 27/w,,.

=
v

(a)

Figure 3.11(a)



2. If I' > 0 but I'? — 402 < 0, the eigenvalues are

r . 1
= pei(onar)

The oscillator is called underdamped. The phase portrait corresponds to case 4c;
the solution curves spiral into the origin.

IN

Y

Figure 3.11(b)

3. If I'? = 4w} the characteristic equation has a double root A= —TI/2. The
oscillator is critically damped and the phase portrait corresponds to case 3b. On

looking at
ry2 1
ait=( 5 _rp)

-~

Yy

\

Figure 3.11(c)




1
—T/2

(- 3.
Uo —(T/2)x,

then x and u remain proportional throughout the subsequent motion.
4. If I'? > 4w} the characteristic equation has real negative roots

h=—T)2+ J(T%/4—wd).

The oscillator is overdamped, and the phase portrait corresponds to case 2b.

we see that the one eigenvector of 4 is w, =( ) This implies that if

A U

(d)
Figure 3.11(d)

In order to understand better these four types of motion, let us pick a typical
trajectory and plot the x-coordinate as a function of :

Case 1.

We have

0 1\ [wg'? 0 0 wo\[wd?* 0
—w2 0) \ 0 wi?/)\—-w, 0 0  wg'?
SO

0 1 we*? 0 coswot sinwgt \[wi? 0
cXp 2 = 1/2 : -1/2
—w§ 0 0  w? )\ —sinwet coswgyt 0 g

and x as a function of t will be of the form
X =mcos Wyt + nsin gyt
where m and n depend on the initial condition. Writing
m? + n2 = p?
and defining ¢ by

m=psin¢, n=pcos¢



we can write

” x(t) = p cos(wot + P).

The dependence is sinusoidal with frequency w,. The phase, ¢, and the amplitude,
p, depend on the initial conditions.

’\A/\

\
VA

Figure 3.12
Case 2. Here we know that
—-It It .;
e ''coswt —e ‘lsinwqt
exptA=B( _. . ' . VB!
e 'sinw,t e ‘cosw,t

where
w; =73 (dwi—T?).

Thus the x dependence on ¢ will be of the form

x(t) = pe T'cos(w,t + @)

where p and ¢ depend on the initial conditions. This is an exponentially damped
sinusoidal curve.

A

e_rt

e
Uf\ ﬂ NAWawaa

VEYAZAEE

Figure 3.13

Cases 3 and 4
There is no sinusoidal component, x decays exponentially with ¢t and crosses the
x =0 line at most one time.



>

Figure 3.14 Figure 3.15

Forced oscillation

Frequently the differential equations which arise in solving physics problems are
not homogeneous equations of the form v — Av = 0 but inhomogeneous equations of
the form

v — Av = b(t),
\ K
N\
\
\ z
\
Figure 3.16

with b not identically zero. To see how the term b(f) might arise, consider a driven
oscillator,a mass M acted upon by a spring, a dashpot, and a motor which supplies a
force F(t). Then x = u and mii = — kx — Zu + F(t) so that

<z> - ( - z?/M - Z/IMX;C) B (F(t?/M)'

To solve the equation v — Av = b(f) we generalize the method called variation
of parameters, a well-known technique for solving linear differential equations in



a single variable. Recall that for one dependent variable, to solve
x — kx = b(t)
we take advantage of the fact that e is a solution of the homogeneous equation

%x —kx=0 in order to write x(t) =e*u(t). Substituting this trial solution into
x — kx = b(t), we obtain

ke u(t) + e*u(t) — ke*u(t) = b(t)
so that
(1) = e ~¥b(2).

Then, integrating once with respect to time, we find

u(t) = Jt e *b(s)ds

0

and finally

x(t) = eu(t) = e’“J‘ e *b(s)ds
0
or

x(t) = J‘te"("”b(s)ds,

0
a solution which satisfies the initial condition x(0) =0. To obtain the general
solution, satisfying the initial condition x(0) = x,, we simply add on the appropriate
solution to the homogeneous equation, € x,, so that the solution to x — kx = b(t)
with x(0) = x, is

x(t) = j eI p(s)ds + e¥'x,.

0

Exactly the same approach works when we set out to solve v — Av = b(t). Since
exp(tA)v, is a solution of the homogeneous equation v — Av =0, we replace the
constant vector v, by a function w(t), and try the solution v(t) =exp(tA)w(z).
Substituting into v — Av = b(t), we obtain

Aexp(tA)w(t) + exp(tA)w(t) — A exp (tA)w(t) = b(t)
so that
w(t) =exp(— tA)b(2).

Integrating, we have

% w(t) = Jtexp( —sA)b(s)ds

0
and finally

v(t) = exp(tA)w(t),

v(t) = ftexp [(t —s)A]b(s)ds. -
0



oo e p C

. ) 0
This solution clearly satisfies v(0) = ( O); to find a solution satisfying any other

initial conditions, we add on the general solution to the homogeneous equation,
obtaining

v(t) = Ji exp [(t —s)A]b(s)ds + exp(tA)v,

0

which satisfies v(0) = v,.

This general solution is not the one which is usually found in discussions of the
forced oscillator in physics textbooks. There it is usually assumed that the driving
term b(t) is sinusoidal with fixed frequency w; for example,

b(t) = (sm wt + cos wt>.

3cos wt

Then b(t) satisfies b= — w?b, and we can use integration by parts to evaluate the
integral in the more general solution which we obtained above. The trick is the
same one used to evaluate antiderivatives like [e ~* sin s ds: integrate by parts twice
to get an equation for the unknown integral.

Let

V= j t exp [(t — s)A]b(s) ds.
0

Integrating once by parts, and assuming that A is non-singular, we have

t

v=[—exp[(t —s)A]A " 'b(s)]} + J exp [(t — s)A]A ™ *b(s)ds.

0

Integrating again by parts, we have

v=[—exp[(t —5)A]14™ 'b(s)], — [exp (t — 5)4~*b(s) T
t
+ J exp [(t — s)4]A4 ~2b(s)ds.
0
Replacing b(s) by — w?2b(s), we see that the last term is just — A~ 2w?v. Thus

v+ A 2w?v= —[exp[(t — ) A1 [A4 ™ b(s) + A~ 2b(s) 17},
or

(A% + 0?I)v = — [exp [(t — s)A] [B(s) + Ab(s)]T5.
Unless the eigenvalues of A are + iw, in which case (4% + w?I) would be singular,
we can multiply both sides by (42 + w?I)~! to obtain the explicit solution
v=— (A% + 02I)~[b(r) + Ab(t) — exp (tA)(B(0) + Ab(0))].

The term involving exp (tA) serves only to guarantee that v(0)=0; if I" > 0, then
exp tA times any vector tends to 0 as t » + co. Thus, for large ¢, we can drop this
term, obtaining the steady-state solution

v= — (A2 + w2D)"L[h(t) + Ab(D)].



To check this result, notice that

V= — (42 + w2I)~'[b(t) + 4b(t)]
and
Av= — (A% + 2I)" 1[Ab(t) + A%b(1)]
so that
V— Av = (A2 + 02I)" [w?b(t) + A%b(r)] = b(2).

This check shows that the result is correct even if A is a singular matrix!
Suppose, for example, we wish to solve

£\ (=1 —2\/x\ (sin3t
(y)—< 2 —1 (y N cos3t>'
-1 =2 sin 3t
A=< 2 —1)’ b(t):<cos3t>

and b(t) = — 3?b(¢), so w = 3. Then
1 —2\/=1 —2\ /9 0 6 4
2, 27 _ _
A“’I‘( 2 —1>< 2 —1)+(0 9) (—4 6)’

16 —4) 1/3 —2
2 21 _ —_
(A +a™l) _52(4 6) 26(2 3)

v 1 /3 =2 3cos 3t N —sin 3t — 2 cos 3t

—26\2  3/)|\ —3sin3t 2sin 3t — cos 3¢

1 /3 =2 cos3t—sin3t\ 1 (sin3t—5cos3t

~ 26\2  3)\ —cos3t—sin3t) 26\ Ssin3t+cos3t)
This is the steady-state solution to the original differential equation. Notice that
the components of v are again sinusoidal functions of ¢ with the same frequency
as the forcing term. However, both the amplitude of the wave form of the com-
ponents of v and its phase (the location of the crests and troughs) have been changed.

Let us examine what the steady-state behavior is for the case of the physical
system described at the beginning of the section, with sinusoidal forcing term, so

0 1 0
A= ( 0t — r)’ b(?) = <sinwt>'

Here

Then
42— —wiy =T
TFw I'*—w}
SO
+ w? —w? —T
A% + ?] = °
T ( T'w} F2+w2—w3>
and

Det (A2 + 0?]) = (0? — w2)? + IM(w? — wd) + M0} = (0? — wd)* + NP’



P ¢ Hid

Therefore

1 I'? + w?— w? I
AZ 21 -1 _ 0
(A + w?I) (wz _ wg)z + r2w2< _ F(l)% 2 — 61)(2)

and our formula for the steady-state behavior of the system is given by
— (A% + w?I)~ 1(b(r) + Ab(t))

—1 I+ w? — w} r 0 N sin wt
- (@? — w3)? + TMw? — Tw} w? — w} w cos wt —I'sinwt

Thus the x-component of the motion is
-1
(w? — wd)? +Tw?

= psin(wt + ¢)

x(t) = [wI cos wt + (w? — w3) sin wt]

where
1
p= J(@* —wd)? +Tw?)’
Notice that, if I' 1s small, the amplification factor is large for w near w,. This
phenomenon is known as resonance. Notice also how the phase shift, ¢, changes
from 0, for small values of w? to —x/2 for w? = wE, to arccos(— 1)= — x for
large values of w?.

¢ = arcsin (— F'w/p) = arccos (w2 — w?)/p.

I
]

v

AN w

Figure 3.17. Response curve

_1r/2 -

Figure 3.18. Phase shift graph



Summary

A. The exponential of a matrix
You should be able to express the exponential function e¢'* as a formal power
series in the matrix X and to evaluate this function in cases where the powers of
X have a particularly simple form.

You should be able to explain the meaning of the derivative (d/df)e'* and to
show that it equals Xe'X,

B. Linear differential equations
You should be able to show that every solution to v = Av is of the form v = e?'y,,.
You should be able to calculate e* for any 2 x 2 matrix A and thereby to solve
v = Av for given initial conditions.
By determining the eigenvalues of a 2 x 2 matrix A, you should be able to
identify or sketch a phase portrait that represents solution curves for v = Av.

C. Inhomogeneous equations and the harmonic oscillator
You should be able to convert the second-order differential equation that describes
a harmonic oscillator to the form v— Av=>b, where A is a 2 x 2 matrix and b a
time-dependent vector.

You should be able to solve the above equation and relate the solution to
properties of the behavior of an oscillator such as damping and resonance.

Exercises

3.1.(a) Write the power series expansions for (1 — X)™! and for (1 — X)™2.
(b) Multiply these two series and compare the general term with the series for
(1-Xx)"3

3.2(a) Let F =(

B e
PN

). Prove that F2=1F and that F" = F/2"~!. Using this

result, evaluate the series expansion of (I — F)~!. Compute the inverse
directly, and compare.

(b) Try to evaluate (

N N

-1
> by writing it as (I + P)~! where P is the

DW=

N= NP

1

projection (i ) and using the series expansion of (1 + X)~!. Notice
2
h

that although t

=

e inverse exists, the series fails to converge.
1

3.3.(a) The matrix Nn/4=(_ ) has the property that N2, =0. Taking

N =
= D=

advantage of this property, evaluate the matrix F(t)=exp(tN,,) and
check explicitly that F'(t) = N, F(t).

(b) The matrix Pn/4=(

[ T
= N

) has the property that P§/4=Pn/4. Taking



34.

3.5.

3.6.

3.7.

3.8.

3.9.

advantage of this property, evaluate G(t)=exp(tP,,) and check that
, n/4
G'(t) = P,,,G(2).
Suppose that a matrix P satisfies the equation P2 = 3P.
(a) What are the eigenvalues of P? Explain your reasoning.
(b) Using the power series for the exponential, show that exp (tP) can be
expressed in the form
exp (tP) =1+ g(t)P.
Find an expression for the function g(t).

Suppose that B is a 2 x 2 matrix which has a repeated eigenvalue A.

(a) Show that the matrix N = B — I is nilpotent (ie., N> =0).

(b) By writing B=N + Al and using the series for the exponential
function, show that

exp (tB) = (I + tN)exp (til).

Use exercise 3.5 to solve the system of equations
X(t) = x(t) — y(t)
y(1) = x(2) + 3y(t)

. . . x
for arbitrary initial conditions ( 0).
Yo

Calculate exp(t4) for the following matrices, and verify that (d/dr)
exp(tA) = Aexp(tA):

A_<—4 5)
@A={_, ;)

-1 9
(b) 4 =( ) 5). (Hint: A =21 + N where N is nilpotent.)

A_(s —1)
© 4= 5 —1)

Let A be a 2 x 2 matrix which has two distinct real eigenvalues 1, and 4,,

with associated eigenvectors v, and v,.

(a) Show that the matrix P, =(4 — A,I)/(A; — A,) is a projection onto the
line determined by the eigenvector v,:P{ = P, the image of P, is the
set of Av, and the kernel of P, is the set of Av,.

(b) Similarly P, =(A4 — A,I)/(%, — A,) is a projection onto the line deter-
mined by v,. Show that P,P, = P,P,; =0, that P, + P, =, and that
AP, + A,P, = A.

(c) By using the power series for the exponential, show that

exp (tA P, + tA,P,) = e"'P  +e*'P,.
(d) Use this result to solve the equations
X(t) = —4x(t) + 5y(®),
Y(t)= —2x(t) + 3y(t)

X
for arbitrary initial conditions < ").
Yo
Let 4 be a 2 x 2 matrix whose trace is 0 and whose determinant is 1.

(a) Write down the characteristic equation of A4, and state what this
implies about 42.



(b) Usingthe power series expansion of the exponential function, develop
an expression for exp(tA4) of the form

exp (tA) = F(t) + G(tH)A

where F(t) and G(¢) involve trigonometric functions of t.

(c) The solution curve for the equation v = Av, with initial condition
V=V, is an ellipse as shown in figure 3.19. Prove that all chords
joining exp (tA4)v, to exp(— tA)v, are parallel to Av, and that the

midpoint of each such chord lies on the diameter of the ellipse on
which v, lies.

diameter

exp(—tA) vy

Figure 3.19

3.10. Suppose that G is a matrix whose trace is zero and whose determinant
is — B2
(a) According to the Cayley—Hamilton theorem, what does G* equal?
(b) Using the power series for the exponential function, show that exp G
+ exp(— G) is a multiple of the identity matrix. Find a function f such
that

' exp(G) +exp(— G)=f(B)L.

(c) By multiplying the above identity by exp G and applying the Cayley—
Hamilton theorem, show that Det(exp(G))=1, and find an ex-
pression for the trace of exp G.

(d) Let F = AI + G. Using the above results, show that Det (exp F) = eF.

3.11. For each of the following differential equations, determine which of the
phase portraits given in cases 1 through 4¢ best represents the nature of the



3.12.

3.13.

3.14.

oo 'S [S—

general solution, then solve the equation completely for initial conditions

(2)=(0) =0

(a) X = _4ys
y=x—4y.
(b) x=x—2y,
y= —2x +4y.
(c) x=4x—135y,
y=4x —4y.
(d) x=2x+y,
y=—Xx+4y.
(e) )2:=X—5y,
y=12x—35y.
(f) x=—2x+4y,
y=—x+2y.

For each of the following differential equations, determine which of the
phase portraits given in cases 1 through 4c best represents the general
solution, then solve the equation completely for initial conditions

(o))

(a) x =3y,
y=x—2y.
(b) X=—x+y,
y=—>5x+3y.
(c) x=3x+y,
y=—x+y.
(d) x=—5x+4y,
p= —8x + 7y.
(e) x=—4x—2y,
y=>5x+2y
(f) x=x+2y,
y=2x—4y.

By generalizing what you know about calculating and using the
exponential of a 2 x 2 matrix to the 3 x 3 case, solve the differential
equations

X=y,

y=z,

i=—6x—11y—6z

' 1
for initial conditions (y) = ( 2) att=0.
z —1

(Note: The one tricky new step is inverting a 3 x 3 matrix. If you regard
this as the problem of solving three sets of simultaneous linear equations,
you can do it by brute force.)

By generalizing the techniques which you already know. Solve the
equations

X=x+y—z,



3.15.

3.16.(a)

(b)

(©)

3.17.

5’= —-x+5y+Za
= —2x+2y+4z,

G

By introducing the variable v = X, convert the second-order differential
equation

for initial conditions

X+4x+5x=0

to a pair of first-order equations, then solve these equations for arbitrary
X

initial conditions ( 0).
Uo

The differential equation for a critically damped harmonic oscillator,
expressed in units chosen so that w2 =1, is

X+2Xx+x=0.

Solve this equation by matrix methods, introducing v=x as a new

X X
variable. Write down the solution for initial conditions ( )z ( OO) and
v

X 0
for ( ) = ( ), and sketch phase portraits of these and other solutions.
v Vo

Show that x =0 or v =0 can occur at most once.

One way of solving the above equation without having to contend with a
repeated eigenvalue is first to solve X + 2x + (1 — &?)x = 0, which leads to a
matrix with distinct real eigenvalues, then let ¢ —»0. (Physically, this
corresponds to using a slightly weaker spring) Carry through the

X 0
procedure, first finding solutions for initial conditions ( 00) and ( ),
Uo

then letting ¢ > 0. Show what happens to the phase portraits as ¢ > 0.
Another alternative is first to solve X + 2x + (1 + ¢%)x = 0, which leads to a
matrix with complex eigenvalues, then let ¢ »0. Do this, again showing

X 0
what happens to the solutions for initial conditions ( 00) and ( ), and
Vo
to the phase portraits, as ¢ 0.

Consider the function costx.

(a) Show, by use of formal power series, that
d2
—(cos tx) = — x? cos tx
de?

and that

- d
—(costx)=0 for t=0.
dt

x
y

x(0)
root 4. Show that costA
¥(0)

), where B is a matrix which has a square

(b) Suppose that (x) = — B(
y

> 1s a solution to the second-order



3.18.

3.19.

3.20.(a)

system of equations
2

a—t;v(t) = — A%(r)

with initial conditions v(0) = v, and duv/d#(0) =0.

). Find a matrix 4, with positive eigenvalues, such

Nw N
[T Y

(c) LetB= (

that A? = B. (Hint: diagonalize B.)

(d) For the matrix 4 which you have just constructed, compute the matrix
cos (tA). (Hint: You have already diagonalized 4. Use procedure
similar to that for computing exp(¢A4).)

(e) Use the above results to solve the equations

X=— %x + %y >
y=3%x—3y
for initial conditions x(0) = y(0) =0, x(0) = x,, y(0) = y,.
Consider the system of differential equations
X=4fx—y
y=9x+ By
where f is a real-valued parameter.
(a) Solve the system for arbitrary initial conditions and ff=0.
(b) Find two critical values of the parameter, §, <0 and f, > 0, at which
the nature of the solution changes. Discuss the solutions for § = 8, and

B =B,
(c) Draw phase portraits which describe qualitatively the nature of the
solutions for < B,, B, <P <B,, and > f5,.

-2 1
LetA=( )
2 —1

(a) Find matrices D and B so that 4 = BDB™!.
(b) Construct the solution to the differential equation v = Ay for arbitrary
Xo

Yo
(c) Sketch a phase portrait for the equation v = Av. Determine the image

and kernel of the matrix

initial conditions v, = ( ) when ¢ = 0. Please remember that e® = 1.

F = lim exp (A4¢),
t— oo

and explain their significance in relation to the phase portrait.
(d) By using the trial solution v =exp (Af)w, construct a solution to the

2

By introducing u = X as a new variable, convert

1
differential equation v — Av = ( )

X+2x—3x=3sin2t+ 2cos 2t

to an equation of the form

(0)A)w



(b) Solve this equation for initial conditions x(0) =0, u(0) =0 by using the

3.21.

results developed in section 3.4.

When an undamped oscillator is acted upon by a force at the natural
frequency of the oscillator, conventional methods of solution fail because
no steady state is ever achieved. The formula developed in the notes,

W(t) = J exp[(t — )4Tb(s)ds,

0
works fine, however. Use it to solve

(- 0)(0)(amee)

for initial conditions x(0) = 0, #(0) =0.



4

Scalar products

4.1 The Euclidean scalar product 120
4.2 The Gram-Schmidt process 124
4.3 Quadratic forms and symmetric matrices 131
4.4 Normal modes 137
4.5 Normal modes in higher dimensions 141
4.6 Special relativity 148
4.7 The Poincaré group and the Galilean group 157
4.8 Momentum, energy and mass 160
4.9 Antisymmetric forms 166

Summary 167

Exercises 168

Chapter 4 is devoted the study of scalar products and
quadratic forms. It is rich in physical applications, including a
discussion of normal modes and a detailed treatment of
special relativity.

4.1. The Euclidean scalar product

In an affine plane, as you will recall, we have only a very restricted notion of
length: we can compare lengths of segments of parallel lines, but not lengths of
segments along lines which are not parallel. For example, it is meaningful to say
that the length of QR (or Q'R’) is twice the length of PQ in figure 4.1, but we
cannot compare the length of PQ’ with that of PQ.

Q

Figure 4.1

A Euclidean plane is an affine plane endowed with a distance function which
assigns to every pair of points a non-negative real number, D(P, Q), called the
distance between them. This distance function is compatible with the limited notion
of length in affine geometry; e.g., D(Q’, R))=2D(P,Q) in figure 4.1, but it also
permits us to compare lengths of nonparallel segments such as PQ and PQ'. In
the Euclidean plane R2, the distance function is defined by the well-known formula



D(P, Q) = /[ (xo— xp)* + (o — yp)*]-
A Euclidean transformation f:R? - R? is an affine transformation which preserves
this distance function: i.e., D(f(P), f(Q))= D(P, Q).
Turning our attention to the Euclidean vector space of displacements in the
Euclidean plane, we see that the distance function provides a way of assigning a
length to each vector: the length is simply the distance from ‘head’ to ‘tail’. We

denote the length of a vector v by | v||. Clearly, if v= (x>, then [[v] =/(x? + y?).
y

Figure 4.2

In general, the linear transformations of the vector space R? do not preserve
the lengths of vectors. Those linear transformations which do preserve length are
called orthogonal transformations: they are all either rotations about the origin
or reflections in lines through the origin.

f(P)
Figure 4.3 FR)

Since a Euclidean transformation of the plane preserves length, it carries every
triangle into a congruent triangle and hence preserves angles as well as lengths. In
particular, the notion of ‘perpendicular’ makes good sense in Euclidean geometry
(though not in affine geometry). We say that two vectors v and w are perpendicular or
orthogonal if the triangle which they define satisfies the Pythagorean theorem: i.e., if

VP TP =y — wil,

Figure 4.4
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In terms of length and angle, we can now define the Euclidean scalar product

4

X x
of two vectors. If v= (y) and v =<y’) are two vectors, their scalar product,

(v,v) is defined as

v,V)=|[v| v |cosb

Figure 4.5

where 6 is the angle between the two vectors. Geometrically this means the
following: we take the projection of v’ onto the line through v; we then multiply
the length of this projected vector with the length of v with a plus or minus sign
according as to whether the projected vector points in the same or in the opposite
direction as v. Since the scalar product is defined entirely in terms of the Euclidean
geometry of the plane any linear transformation which preserves length must also
preserve the scalar product: any such linear transformation preserves lengths of
vectors and the angle between them, hence preserves their scalar product. In other
words, if M is any orthogonal transformation then

(Mv, MV) = (v, V)

for any pair of vectors v and v'. We shall give a more algebraic proof of this fact
(cf. eq. (4.1)) below. Conversely, since (v,v)=|v|?, any M which satisfies the
above equation for all v and v is certainly orthogonal. Suppose we hold v fixed
and consider (v, v’) as a function of v. We claim that (v,v’) is a linear function of
v; i.e. that

(v,av' + bw') = a(v,v') + b(v,w') for any numbers a and b and any vectors v' and w'.

We can see this most simply as follows. Suppose that we first consider the special

case where v=<g> lies on the x-axis. Then (v,v)=cx" for v’=(x,>. This
y



expression clearly depends linearly on v/, so we have verified the above assertion
for this special case. But now let v be any vector. We can find a rotation M which
moves v to the x-axis. But (v,v') = (Mv, Mv') depends linearly on Mv'; and My
depends linearly on v’ so we are done. To repeat the argument in more detail:
(v,av' + bw) =(Myv, M(av' + bw")) since M is orthogonal

=(Mv,aMV + bMw) since M is linear

= a(Mv, Mv') + b(Mv, Mw') because we have verified this in the

special case that Mv lies on the x-axis

= a(v,v') + b(v,w') since M is orthogonal.
Since the scalar product (v, V') is symmetrical in v and v/, we see that (v, v)) is also
linear as a function of v when we hold v’ fixed. These two facts allow us to write

down the formula for the scalar product: write v=<x>: x( (1) >+ y(?) and
y

’ 1 0 1
V = )= x’ +y' . Now the scalar product of with 0
Y 0 1 0 1

vanishes since the vectors are orthogonal, and each of these basis vectors has
length one. So,

I (AR (0 p——
(o} o)) == (@)=~ () (C)}0)

using linearity in v’

et e () 1-((0)
(GHO)--((10)

We have thus found a convenient formula for the scalar product of two vectors in the
plane:
(v,vV)=xx"+yy'.
We can summarize the important properties of the Euclidean scalar product as
follows:

(1) Symmetry: (v,v') = (v, v).
(2) Bilinearity: (v,av' + bw') = a(v, v') + b(v, w').
(3) Positive definiteness: (v,v) = 0, and (v,v) =0 only if v=0.

Using these properties, it is easy to express the scalar product in terms of length.
Just consider

[v—w[2=(v—w,v—w)



Because the scalar product is linear in each factor,
”V'—WHZ —_—(V,V)_(V,W)_(W,V) +(w,W)
But since (v,v) = | v|%, (w,w) = | w|* and (w, v) = (v, w), we have

2v, W)= [[v[*+ w[*—[v—w]?
and so

(v, w)=3{IvII> + Iwli? — v —w(?}. (4.1)

This formula makes it clear that the Euclidean scalar product follows immediately
from the Euclidean notion of length. If you write (v,w)= | v| || w| cos @ and look
at figure 4.6 you will see that (4.1) is nothing more than the ‘law of cosines’ in
disguise.

v

Figure 4.6

4.2. The Gram-Schmidt process

Let V be an abstract two-dimensional vector space and suppose that we are given
a positive-definite scalar product, ( , ), on V. That is, suppose we are given a
function which assigns to each pair of vectors v,v, in V a real number (v,,v,),
and which satisfies the conditions of symmetry, bilinearity and positive definiteness.
We claim that there exists a linear isomorphism* L:V — R? such that

(v, V2)y = (Lvy, Lv,).

In other words, by the correct choice of a basis on V, we can arrange that the
scalar product ( , ), on V looks just like the Buclidean scalar product ( , ) on R?,
To prove this, choose some non-zero vector w in V. Since ||w ||} = (w,w),, >0, the
vector

o "
' | wlly
has unit length, i.e.,
1
e ?=(e,e))y=—>(W,w), =1
“ 1“ ( 1 l)V HWHIZ/ | 4

* We recall that the word isomorphism means that L is linear, is one to one, surjective (and
therefore has a linear inverse), see §1.12.



Now let u be any vector in V which is linearly independent of e;. We know that
such a u exists since V is two-dimensional. Let

u, =u—(u, e )ve;.
We observe that u, is perpendicular to e, that is,

(uy, 1)y =0.
Indeed,
(uy,e,)y =(u—(u,e;)yes, e )y

=(u,e;)y — (w,e;)y(e;,e)y

=(u,e)y —(w,e;)y =0
since (e, e;)y=1. Also w, #0, for otherwise e; and u would be linearly
dependent. Now set

1

u,.
[y Iy

e2:|

Then (e,,€,)y =(1/]u,|ly)(n,,e.)y =0,and ||e, ||, = 1. We will use e,, e, as our basis
of V. The most general vector in V can be written as

V=Xxe; + ye,.
Notice that
x=(v,e;)
since (e,,e;) =0 and (e,,e;) = 1. Similarly
y= (Vs e2)'
Suppose that
Vi =Xx.€; + )€
and
Vy =X,€; + V1€,

so that the map L: V— R? by our basis satisfies

Lvlz(xl) and Lv2=<x2>.
Y1 Y2

(Vi, o)y = (x,€; + y1€5,x,€, + y,e5)y,
=X1X;+ Y1y, as (e, e,), =(e,,e,), =0

and (e, e;), = (e, e,), =1

Then

- (LVl, LVZ)'

This is what we wanted to prove.
On R?® we can define the Euclidean scalar product by

X4 X5
(()H)a(h)) =X1Xp + V1V2 + 212,.
Zy 22 ’



x
Again, it is clear that if v= ( y) then

V4
vl =(v,v)

represents the square of the Euclidean length of the vector v. The argument given
above shows that we can recover the scalar product from the length by the same
formula, (4.1):

v, w) =3(IvII> + Iwli> — v —w]?).

So any rotation of three-dimensional space preserves the scalar product. In parti-
cular, if we are given two vectors, v and w, we can rotate the plane that they
span into the z =0 plane. For vectors in that plane, the scalar product reduces to
the scalar product for R% For such vectors we know that

(v, W)= | v [|w]l cos

and hence (since both sides are invariant under rotation) it is true for all pairs of
vectors.

A vector space V is called three-dimensional if every four vectors are linearly
dependent but there are three vectors which are linearly independent. Thus given
any four vectors v, v,,v3,v, we can find four numbers a,, a,,a,,a, not all zero
such that

a;vi+a,v, +azvy+auv, =0

but there exist three vectors u, v, w such that
au+bv+cw=0

1s not true unless a = b = ¢ = 0. Suppose that V has a positive-definite scalar product
( , )y. We can now repeat the argument given above for the two-dimensional case.
Pick some non-zero vector. By multiplying by a scalar, we can arrange that it has
unit length. Call it e,. Choose some vector u so that e, and u are linearly
independent. Set
u,=u—(u,e,)ye,
and
1

= u,.
[y |y

€,

Then e, and e, satisfy
lelly=le,lly=1 and (e;,e,),=0.

The set of all vectors of the form xe, + ye, is isomorphic to R? and hence is a
two-dimensional vector space. Thus it can not be all of V. (We can not find three
linearly independent vectors in this set.) Thus there must be some vector w in V
which is not of the form xe, + ye,. Thus

Wy =W — (W, e,)ye; — (W,e;)pe,



is not zero. Set

1

lwslly

63 W3.

Then

leilly =lle,lly = lleslly =1
and

(e1,€5)y = (e, €3)y = (€5, €3), =0.
If v is any vector in V, we claim that
v—(v,e)ye; —(v,e;) €, — (v, e3)ye; =0.
Indeed, by the same argument as before, we set

V4 =V — (V, el)el - (V, ez)ez —_— (V, 63)83
then

(V4 €1)y =(Va, €3)y = (V4. €3)y = 0.

But this means that if v, # 0 the vectors e,, e,, e5, v, would be linearly independent:
indeed, taking the scalar product of

a,e; +ae, +aze;+auvy,=0
with e;,e, and e; shows that a, =0, a, =0, a;=0. Thus, if v, #0, a, =0. This
contradicts the assumption that V is three-dimensional.

Thus every vector in V can be written as
v=2xe, +ye,+ze; where x=(v,e,),y=(v,e,),z=(v,e;).

Just as in the two-dimensional case, we can define the map

LV-R3

X
L(v)=(y) if v=xe, + ye, + ze;.
z

This map is a linear, one-to-one, map of V onto R* and
(u,v)y = (Lu, Lv)gs.

It is clear that we can prove the same sort of result in four, five, ..., n dimensions.
On R" define the Euclidean scalar product

X1 W,y

N =X;Wy + 0+ X,W,
xn wn

A vector space V is called n-dimensional if there exist n linearly independent vectors
but every collection of n+ 1 vectors is linearly dependent. We shall study the
general theory of n-dimensional vector spaces in Chapter 10. If V is n-dimensional

and has a positive-definite scalar product, then we can find an orthonormal basis



e;,...,e, That is, we can find n vectors e,,... e, such that

leglly =llexlly=---= le,lly =1
and
(ese)y =0 i#j.
Every vector v in V can be written as
V=xle1+"'+xnen, xi=(V,ei)

and thus define the map L: V- R"

X1
Lv=< )
xn

(v, w);, = (Lv, Lw).

In fact, if we start with nindependent vectors v,,. .., v,, we can get es by the algorithm

Then

| 1

P

u, = v, —(vp,€g)ey,

1

u, ]

u; = vy —(v3, e;)e; —(vs,€5)e,,
1

|us |

e2 |]2,

Uj,

e3=‘

L

etc. This algorithm is known as the Gram—Schmidt orthonormalization procedure.
As a firstexample of the Gram—Schmidt process, let us apply it (or begin to apply
it) to vectors v,,v,, v3,v, in R* where

1

1
vy = 1 » Y2 =
—1 3

(We will only carry it to the first two steps so v; and v, are irrelevant.) The scalar
product in R* is the ‘usual’ one. That is, we are assuming that

1 0 0 0
0 1 0 0
ortoprrp1o
0 0 0 1

form an orthonormal basis.
The first step is to convert v, to a unit vector:

(v,v,) =12+ 12+ 12+ (— 1)2=4



SO

\/(Vp v,)=2
and

1

2

3

e =3V, = 1

2

_ 1

2

Next we subtract the component of v, along e;:

3 3 2 3
_|3 3 b 2
s s P gl
s/ 3/ )
3 3 1
3 3,3,5_3 3 1
W=l [-Gt+tit3—3) L=l 5]
3 _if s

Finally we convert w, to a unit vector:
1 1
I 1 212412 4 <2
Wa,Wa)= || 3 bf ]| =17 +12+32+52=36
5/\5

SO

1 1
As a check, note that i , ; =0.
—1 5

Now we can easily write any vector v in R* as the sum of a vector nv which is a
linear combination of e; and e, (and hence of v, and v,) and a vector which is
perpendicular to both e, and e,. Consider, for example,

4
v 0
—_1r
, 7
Define nv by
v =(v,e,)e; + (v,e,)e,

4 1 1 4 1 1
1 0 1 1 1 0 1 1
=2 =t 1] 36(l-1) {3 ]| 3
7 —1 -1 7 5 5



1 1 ~1 1 0
1 1 -
7'CV=%(——4) 1 +316 36 3 = __i + :13 = g .
—1 5 1 5 6
Then you can check that
4 0 4
_ O] (O} _[ O
VTIVE T 2T -3
7 6 1

is orthogonal to e, and e,, either by verifying that it is orthogonal to the original
basis vectors v; and v, or to the orthonormal vectors e; and e,. We say that
the transformation 7 sending v into nv is orthogonal projection onto the subspace
W spanned by v, and v,.

As a second example of the Gram-Schmidt process, consider the (four-
dimensional) space of polynomials of degree < 3, with scalar product

(8= f " foutoa:

(Check that this defines a scalar product!) We start with the ordered basis
Vl = 1, VZ == [, V3 == tz, V4 - t3.

If we started with different basis elements, or even the same elements in a different
order, we would end up with a different orthonormal basis. We first calculate

1
(Vl,V1)=f dt=2

-1

and convert v; to a unit vector:

€= V1/\/(V1,V1) = 1/\/5-

We next calculate

(e, v,) = J_ll(t/ﬁ)dz =0
and conclude that v, is already orthogonal to e;. Since
(¥4, V)= jl t3dt =2/3
-1
we have e, =1/,/(2/3) = /(3/2)t.

Next we calculate w;:

Wy =v; —e(e;,v3) —ey(ey,vs)

1 3 1
=t2—lf tzdt——tf 3dt
215 2 ],



Since

1
(W3, W3) = J (2 —§)*dt =35
-1

the third normalized basis vector is

ey = \/(45) = /&) —H=J/RC - 1)
Finally, we calculate w,:

W, =v,—eg(e,v,) —ey(ey,v,) —ez(es,vy)
1 1 1
=t — %J 3dt — %tf t*dt —332 —1) |  (3t5—3)ds
-1 -1 -1
=t>?—0—324-0=¢"—31.
Dividing by ./(w,,W,) we obtain finally

W,
\/ (Wy,W,)
Clearly, proceeding in this manner, we could construct a sequence of orthogonal
polynomials of higher and higher degree. These polynomials, known as the
Legendre polynomials, will appear naturally in the solution of problems in
electrostatics using spherical polar coordinates. Indeed, it is usually true in physical
applications that vector spaces of functions, which frequently arise as solutions to
differential equations, have orthogonal bases which arise naturally from physical
considerations. For this reason it is rarely necessary in practice to carry out the
tedious Gram—Schmidt process.

€, =

= /%(5¢3 = 31).

4.3. Quadratic forms and symmetric matrices

In sections 4.1 and 4.2 we have studied the Euclidean scalar product which satisfied
three conditions: it was bilinear, symmetric, and positive-definite. We now want to
investigate more general ‘scalar products’, which are not necessarily positive-
definite. They play a central role in the theory of relativity.

We return to R2. Suppose that we are given a scalar product, { , » on R?, which
1s not necessarily positive-definite. Thus we assume that { , > is

bilinear: (v, au + bw) = alv,u) + b{v,w)
and
symmetric: {u,v) = {v,u)

for all vectors u, v, w and all real numbers a and b. We wish to compare { , ) with
the Euclidean scalar product ( , ). We begin with the following elementary lemma.
Let I: R?> » R be a linear map. Then there is a unique vector w such that

I(v) = (v,w) for all v in R2.



Indeed, [ is given by a 1 x 2 matrix (a b), i.e,,

l(x) =ax+by foranyv= <x>eR2.
y y

Then take

>
Il
A
S Q
N

SO

o= ((2)(2))-ax v

as desired, and it is clear that w is the unique vector in R? with this property. Now
consider {u,v) as a function of v for fixed u. This is a linear function of v, hence there
is a vector w such that

{u,v) =(v,w) for all veV.

The vector w depends on u, so we should write w(u) in the above equation. To repeat,
w(u) is that vector whose Euclidean scalar product with any v equals {u,v>. Let u,
and u, be two vectors, and w(u,) and w(u,) their corresponding ws. Now
(au; + bu,,v) ={v,au; + bu,» by symmetry

=a{v,u,y + b{v,u,)> Dby bilinearity

=adluy,v) + b{u,,v)> by symmetry

= a(v, w(uy)) + b(v, w(u,))

= (v, aw(u,) + b(w(u,))).
Thus w(au, + bu,) = aw(u,) + bw(u,). In other words, w depends linearly on u. Thus

we can write w(u) = Au, where A is a linear transformation. Going back to the
definition of w = Au, we see that

|
|
forallwand vin R2. So far we have only used the fact that <u, v) is bilinear, i.e., linear
in u when v is fixed and linear in v when u is fixed. (This is how we used the symmetry

of (', ».) Now let us use the fact that {, ) is symmetric. Since

{u,v) =<v,u)

{u,v) = (v, Au)

this implies that
(v, Au) = (u, Av)

and, since (u, v) = (v, u), that
(v, Au)= (Av,u)

for all w and v in V. Let us see what this says for the matrix A.
For any matrix B, the expression (Bv, u)is linear in vand u separately. Thus, by our



preceding argument, there is a unique linear transformation, call it BT, the transpose
of B, such that

(Bv,u) = (v, BTu)

for v,u in V. To see what BT is, suppose

() o-(5) e o=, )

Then
(Bv,u) = (ex + fy)x' + (gx + hy)y’
= exx’ + fyx' + gxy' + hyy’
= x(ex’ + gy') + y(fx' + hy')
SO
BT x _ ex' + gy’
yl fxl + hyl
or

r_[(€ ¢
B _(f h)'

In other words, the transpose of a matrix is obtained by flipping the matrix along the
diagonal.
Then our symmetry condition says that

A=AT,

in other words, A is a symmetric matrix. Thus 4 has the form

(3 ?)

o(v) = v, v

If we set

then, as in section 4.1,

{u,v) =3(Qw) + Q(v) — Q(u —v))

and

Q(v) = (Av,v) = ax? + 2bxy + cy?

()

A function Q of this type is called a quadratic form. Thus by the preceding formulas,
each quadratic form Q determines a scalar product ¢ , ), and every scalar product
determines a quadratic form.

The coefficients a,2b, ¢ of the quadratic polynomial Q(v) give us the matrix 4,
which is just another way of saying that Q determines 4 and hence also < , ).

if



The characteristic polynomial of 4 is

x* —(a+ ¢)x + ac — b?
and
(a+c)> —4ac — b*) =(a—c)? + 4b% > 0.
This expression, (a — c)® + 4b?, is called the discriminant of the quadratic form Q.
The discriminant can equal zero if and only if

a=c and b=0

a 0
A= =al
(6 o)

{u,v) = a(u,v).
In this case, { , ) is just a scalar multiple of ( , ).
Suppose that 4 has two distinct eigenvalues, 4; # 4, corresponding to eigenvec-
tors v, and v,. We claim that v, and v, are orthogonal, ie., that (v, v,) = 0. The proof
is easy:

SO

and

(Av,,v,)=(v,,Av,) because A4 is symmetric;
(A,v{,V,) =(v{,4,V,) because v, and v, are eigenvectors;
A(vy,V,) = A,(v{,V,) because the scalar product 1s linear;
(v,,v,)=0 because 4, # 4,.
Conversely, suppose that we start with an eigenvector v, of A corresponding to
the eigenvalue 4,. Let v, be a non-zero vector orthogonal to v,, so
(Vl s Vz) = 0.
(Vi, AVy) =(Avy,V5) = A1(v1,V,) =0

so Av, is again orthogonal to v, . But there is only one line perpendicular to v, , and
0 # v, lies on it. Hence Av, must be some multiple of v,, i.e., Av, = 1,v, for some
eigenvalue 4,.

We have thus shown that any symmetric matrix A4 has two orthogonal
eigenvectors, v, and v,. By multiplying v, and v, by suitable scalars, we can arrange

that v, and v, both have length 1, and that the matrix (;1 x2>’ where v, = <x1>
1 Y2 Y1

Then

X5\ . .
and v, =( 2 ), 1s a rotation.
Y2

Thus A =R A 0
0 4,

matrix M satisfies (Mv, Mv) = (v, MTMv) = (v, v) for all v. We see that MT=M "1,
and we can equivalently write

. el ) l

)R"l for some suitable rotation R. Since an orthogonal




Suppose that we have chosen our eigenvectors so that A, >4,. Then the
eigenvector v,, which has been chosen to have unit length, can be characterized,
among all vectors v of unit length, as one for which Q(v) assumes its maximum value,
while v, is the vector of unit length for which Q(v, v) assumes its minimum value: i.e.,

Q(vy) = Q(v) = Q(v2)

for any v with (v,v)= 1. To prove this statement, we write v=v, cosf + v, sin .
Clearly, since the eigenvectors v, and v, are orthogonal and have unit length,

(v,v) = (v,,v,)cos? 0 + (v,,v,)sin* 0 = 1.

V2

Figure 4.7
Then

Q(v) = (Av,v)

=(Av,cos 8+ Av,sind,v, cos 8 + v, sin 0)

=(A,v,co80 + A,v,sinB,v, cos O + v, sin 0)

= A,(v;,V)cos2 0+ A(v,,V,)sin? 0, since (v;,v,) =0

=), cos”* 0+ 4,sin* 0

=A, — (4, — 4,)sin? 0.
Clearly Q(v) achieves its maximum value when sin? § =0, (when v= +v,) and its
minimum value when sin?0 =1 (when v = +v,).

It is now apparent how to draw the graph of Q(v) = (Av,v) = constant. We can
diagonalize A by a rotation R:

so that

Q) = (R(él 2 )R—lv,v>.

Since R is orthogonal, R" = R™!, and we have

Nv) — Ay 0 -1 -1
Q(V)—((O 12>R v, R v).
If we write <x,> = R‘l(x> = R v, then
Y y

on-(( ) (5))-ir i



If A, and 4, are both positive, the graph of Q(v, v) = k is an ellipse if k > 0, the origin
only if k =0, empty if k < 0. If ; and 4, are both negative, the graph is an ellipse if
k <0. If 4, and A, have opposite signs, the graph of Q(v) is a hyperbola, which
degenerates to two straight lines if k = 0. The vertices of the ellipse or hyperbola,
where the distance from the origin is a local extremum, lie along the lines determined
by the eigenvectors of A.

9 2
Suppose, for example, that 4 = ( ) 6)’ so that
0(v) =9x? 4+ 4xy + 6y2.

\ . : : 2
The eigenvalues of A are 4, =10, 4, =5, with associated eigenvectors ; and

—1 , 10 O ) )
< 2). We can write A = R( 0 S)R_l, where R is the rotation

1 /2 —1
R=—- .
J5\1 2
By introducing new coordinates

()= C)-ssl 2)0)

x' \/5(2x+y

1.€.,

Y =J§(-‘x +2y),
we can write
O(v) = 10x'2 + 5y'2,
The graph of Q(v) =1, ie., of
10x2 +5y2 =1

is an ellipse of minor axis /{5, major axis /3. The axes coincide with the

eigenvectors of A:(f) and <_ ;)

Va2 \ {\S
y x -2

Vi

Figure 4.8



Suppose we allow not only rotations as changes of coordinates but also non-

orthogonal transformations such as x” = ax’ and y” = fy’. Then, in terms of x”
and y”, we have

/:L ” }”2 "2
Q(v)=&%x g gy
If 1, # 0, we can choose a2 = | 4, | so that 1,/a*> = +1 and similarly for /,. We have
thus proved:
Let O be any quadratic form in R?. We can then find coordinates x” and y” such
that Q has one of the following expressions:

xr/2 4 yuZ

x//2

0

_ xl”

Q(v) = 1

2

x;/Z . y//2

__xuz . yuz_

If there are two plus signs, Q(v) has a minimum at v=0; if two minus signs, a
maximum. If there is one plus sign, one minus sign, then Q(v) has neither a
maximum nor a minimum, but rather a saddle point, as suggested in figure 4.10.

Figure 4.9 Figure 4.10

4.4. Normal modes

One of the most important applications of the results of the preceding section is to

the theory of coupled oscillators. To explain what is involved, consider the following

mechanical system. We have two undamped oscillators which we connect by a

spring with spring constant k. The equations of motion, from Newton’s laws, are
myXy = —kyx; —k(x; — x,),

myX, = —kyx, —k(x; —x4)

r(5)=-(2)

or



where the symmetric matrices T and H are

T:<m1 O)’ H:(k1+k ——k .
0 m, ~k  k,+k

Figure 4.11 Uncoupled oscillators

kl my k niy kz
—» X; — X,

Figure 4.12 Coupled oscillators

Our strategy will be to try to simultaneously diagonalize T and H, so as to
‘uncouple’ the equations. Let us discuss the general case. We want to consider two
symmetric matrices T and H where T is positive-definite. Our first claim is that we
can find a positive-definite matrix B such that

T= B2

Indeed, if T is diagonal, as in our example, set

mi2 0
P=lo mn)

Otherwise, we can find a rotation R, such that
T=R,AR} where A is a diagonal matrix.
Write A = C? with C positive-definite. Then
B=R,CR]

is symmetric, positive-definite, and satisfies B> = T. Now define

w = By
SO

v=B"'w
Then

v=B"lw
and the equation Tv= — Hv becomes

TB w= —HB 'w
or, since T = B?

Bw= —HB 'w



or
W= —Aw where A=B 'HB™ ..

Note that A4 is again symmetric, so we have reduced the problem to the case where
T = I. (The astute reader may have noticed that, from a geometric point of view, we
have simply passed to a coordinate system in which the quadratic function associated
to T takes on the normal form x2 4 y2.)

To solve the equation w = — Aw, all we have to do is to find the eigenvalues and
eigenvectors of A. Suppose that v, is an eigenvector of 4 with eigenvalue w? > 0.
Then, for any choice of amplitude p and phase o, the function

w(t) = pcos(w t +a)v,

is clearly a solution. Similarly for the second eigenvector and eigenvalue giving
pcos(wyt + o). These are called the normal modes of oscillation of the vibrating
system.

Suppose that

A=RDR™!
where D is a diagonal matrix. Then writing
w = Ru
we have
W= Rii= —RDR ™ 'Ru
or

u= —Du

Since D is diagonal, this is just two separate differential equations for each of the
components. Assume that the eigenvalues of 4 are both positive — say w? and w3.
Then the general solution of

u= —Du
1s
up\ [ picos(wt+ay)
u, P, CoS(w,t +ay) )
If
1 0
=R =R
are the two eigenvectors of A4, we see that the most general solution of W = — Aw is
D w=p;cos(w1t+oc1)v1 + p, cos(wyt + o5)v,. )

Thus the general solution is a ‘superposition’ of normal modes.
Let us illustrate this result in the case of two identical coupled springs. W?’ thus
assume that m, = m, and k; =k,. In the absence of the coupling, the equation of

each spring would be



o 2
X = _a)ox, wO:kl/m1=k2/m2-

In the presence of the coupling, it is

X1 = —(wd + 8)x, + sx,, Xy =158%x; — (0§ + 8)x,, s=k/m

or

2
. Wy + 8 —
V= — Ay, A=< 0 5 S )

By symmetry we see that the eigenvectors of 4 are

1
( 1) with eigenvalue w3

and

1
( 1) with eigenvalue wj + 2s.

These are the two normal modes of oscillation in this case. The first corresponds to
the bobs moving in tandem, the second to their moving in opposite directions.

\

@' = (w§ + 25)1? ~ wg + s/wg,if s/wg is small.

Figure 4.13

Then the general solution for our differential equation is
Xy = pycos(wet + aq) + p,cos(w't + a,),
Xy = p;cos(wot + ;) — p,cos(w't + a5).

Let us examine the particular solution where we excite one spring and let it go at
time ¢ = 0. Thus we wish to consider the initial conditions.

x,(00=C, x,(0)=0,
x,(0)=0, x,(0)=0.

Substituting into the above equations, we see that p, = p, =+C and a; = x, =0.
The particular solution is this:

x; =+C(cos wyt + cos w't),
X, =1C(cos wyt — cos w't).

Recall that coso =4(e* + e ™) and therefore

cosoc+cosB:2cos<a;ﬁ>cos(a;B>




and similarly

cos o — cos ff = —2sin(a;B)sin(a;ﬁ>.

Substituting « = wet and B = w't, we see that our particular solution is given by
x; = Ccos(w — wy)t Cos Wy,
x2 = — C S]n (CI)/ — wo)t Sln wot.
In the case of small coupling o’ — w, is a small quantity. If we graph the motion of
both springs, we get figure 4.14. The oscillators of each spring (with natural
frequency w,) are modulated. The beats are determined by the modulating factors
cos (W' — wy)t, sin (" — w,)t. The energy alternates between the two springs; when

one oscillates with maximum amplitude, the other is at rest. This phenomenon is
known as resonance.

Figure 4.14

In case the two springs are not identical, but are only slightly ‘out of tune’, the
behavior is similar. There will still be modulated harmonic motion at both springs.
The second spring will come to rest at periodic intervals, but the first will continue to
oscillate even when the second is oscillating at maximum amplitude. Imperfect
‘tuning’ results in an incomplete transfer of energy from the first spring to the second.
We will leave the details, which are a straightforward, if somewhat messy,
calculation of eigenvectors and eigenvalues of A, as an exercise to the reader.

4.5. Normal modes in higher dimensions

Let V be an n-dimensional vector space equipped with a positive-definite scalar pro-
duct. Let ¢ , ) be some other, not necessarily positive-definite, scalar product. An
examination of the argument given in section 4.3 will show that there exists a linear
transformation A4: V— V such that

{u,v) =(Au,v) for all u,vinV
and A is symmetric in that
(Au, v) = (u, Av).



In fact, we know from section 4.2 that we can find an isomorphism of ¥ with R" so
that (, ) is carried over into the Euclidean scalar product. Then the arguments of
section 4.3 work without any change to show that A4 is a symmetric matrix.

We claim that we can turn the argument of section 4.3 around to show that A hasn
mutually perpendicular eigenvectors. Indeed, consider the quadratic form

Q(v) =<v,v) = (4v,v)
restricted to the unit sphere
{vlivl=1}

This function is continuous and is bounded. Indeed, if all the entries 4;; of 4 satisfy

Ayl <M
for some number M, then if
X1
v=| -
xn

we have ||v||2=Zx? =1 so |x;/ <1 for all i and
(Av,v) =) A;x;x;

ijvi
SO

[(Av, V)| <Y 4,1 < nM.

Let v be a point on the unit sphere where Q(v) takes on its maximum value. (At this
juncture, we are really using some deep properties of the real number system which
guarantee that there will indeed exist a point on the sphere where Q takes on its

maximum value). We claim that v is an eigenvector of A. Indeed, define the vector w
by

w=Av — (Av,V)v.
We will show that w = 0 if Q takes its maximum at v. Since (v, v) = 1, the vector w is
perpendicular to v,

(w,v)=0,
and hence
(Av,w) = | w]>.
Then, for any real number s

v+ swl|2=(v+sw,v+sw)=||v]|>+s*|w|>=1+s%|w|?
and

(A(V + sw), v + sw) = (Av, V) + (AW, V) + S(Av, w) + s*(Aw, w)
or, since (Av, w) = (w, Av),
(A(V + sW), v + sw) = (AV, V) + 25(Av, W) + s*(Aw, w)
= (Av,v) + 2s||w]|* + s*(Aw, w).



Let us rescale the vector v 4+ sw so as to make it of unit length: replace it by

1

u=——(v+ sw)
v+ swl

Then

def

f(s)=(Au,u) = W—l—l—z—(A(v + SW),V + SW)

V -+ SW|
1
- ((A 2 2 2
T 52w AV Y 2wl s5(Aw, w)),

This expression is a differentiable function of s. By hypothesis, it has a maximum at
s = 0. We conclude that its derivative, f(0), at s = 0 must vanish. But f'(0) = 2 || w||%.
So ||w||?> =0 and hence w=0. Thus

Av = (Av,v)v.

In other words, v is an eigenvector of A with eigenvalue (Av, v). Call this eigenvector
v, and the eigenvalue (4Av,,v,) = 4;.

Now consider the space of all vectors z in V which are perpendicular to v;. Thus
we look at all z such that

(z,v))=0.
For such z,
(Az,v,) = (2, Av,) = A,(z,v{) =0, A, =(A4v,v,).
Consider the set of all z of unit length, that is the set of all z such that
lzll=1, (z,v)=0

Vi

Figure 4.15

Let v, be a point where Q takes a maximum among these vectors. Write
AVZ - (AVZ’ VZ)VZ + Wz.

Since (v,,v,) =0 and (Av,,v;) =0, we see that (w,,v,) = 0. As before, we conclude



that (w,,v,) =0, then that

1
— (A
” v, + SW, ” 2( (VZ + SwZ)s (v2 + SWZ))

1
= m—”—z((f‘lvza V2) + 25w, || 2 + s2(Aw,, W,))
2

has a maximum at s =0 and hence that w, =0, and v, is an eigenvector of 4.

We keep proceeding in this manner: Look at all zsatisfying(z, v;) = (z,v,) = 0 and
|z|| = 1, etc. At each stage, we produce a new eigenvector of 4, perpendicular to all
the previous ones. When does it all come to an end? When we run out of non-zero
vectors perpendicular to vy, ..., v,. This can happen only if k = n. Indeed, k can not
be >n since then v,,...,v,,; would be mutually perpendicular and hence linearly
independent. This contradicts the assumption that V' has no n+1 linearly
independent vectors (one of the hypotheses is the assumption that V is n-
dimensional). On the other hand, if k < n, the equations

(Vls W) =0

(Vo W) =0

in R" are a system of k homogeneous linear equations in n unknowns. This always
has a solution. We will prove this general fact among others in Chapter 10. Here is a
proof for the existence of w # 0. If the nth component of v, is #0, i.e.,

X1
vk=( ) with x, # 0,
xn

xlwl + A +xnwn=0

the last equation is

which we can solve for w, in terms of w,,...,w,_:

-1
wn = x (xlwl + “’xn—lwn—l)’

n

Substituting this into the preceding equation gives k— 1 equations in n—1
unknowns and we can proceed by induction. If the nth component of any of the
vectors vy,...,v, does not vanish, we can still do the same ~ just use the v; with
non-vanishing nth component to solve for w,. If the nth components of all the
Vy,...,¥, vanish, then the vector

0

1

is a solution (all the first n — 1 components vanish).
So we must keep on going until k =n.



Normal Modes as Waves
Let us now work out an interesting n-dimensional example. We shall imagine a
sequence of identical mass points, each one connected to its nearest neighbor by a
spring, with all the springs identical as well. Thus the force acting on the ith mass
point is

— (ko — x4 1) + k(x; — x; - 1)).
Newton’s equations then say

mx; = —k(2x; — X;—1 — X;4 1)

We will also assume that the first and last point are also connected by the same
spring: so we can imagine the points arranged in a circle.

Figure 4.16

Thus with w? = k/m, the equations are

X=—w?Ax
where A is the matrix
2 —1 o .- 0 -1
—1 2 —1
0o -1 2
S -1
—1 0 —1 2

Our problem is to find the eigenvalues and eigenvectors of A. Before describing the
general solution, let us work out a few low-dimensional cases, beginning with the
case n=3.
2 —1 —1\/1 0
—1 2 —1}{11})={0
-1 -1 2/ \l 0

1
so| 1 ]is an eigenvector with eigenvalue 0. We know the other eigenvectors must be
1



1 1
orthogonal to(l). So let us try (— 1). Then
1 0
2 -1 -1 1 3 1
(—1 2 —1)(—1>: —3>=3(—1>.
-1 -1 2\ 0 0 0

1 0

So (- 1) and similarly ( 1) are eigenvectors with eigenvalue 3. Thus 0O and 3 are
0 —1

the eigenvalues, with 3 occurring with multiplicity 2.

Now to n=4:
2 —1 0 —1
—1 2 -1 0
A=l o -1 2 -1}
—1 0 -1 2
Then
1 0
1 0
4 1] 10
1 0
as before. Also
1 1
—1 —1
A ) =4 )
—1 —1
The remaining eigenvectors must be orthogonal to these. Let us try
1
0
—1l
0
Then
2 -1 0 —1 1 1
—1 2 -1 0 01l ) 0
0 -1 2 —1){-1] “|—-1
—1 0o —1 2 0 0
and similarly
2 -1 0 -1
—1 2 -1 0 P

0 0
1 1
0 —1 2 -1 0 0/
—1 0 -1 2/ \—1 —1

Thus 0 and 4 are eigenvalues occurring once and 2 occurs twice.



In order to deal with the n-dimensional case, we shall introduce some
methodology of far reaching significance. Notice that the problem is invariant under
the ‘rotation’ sending the first point into the nth, the second into the first, etc.,
with the nth into the (n — 1)st. This is the matrix:

0 1 0 -+ -+ 0
0O 0 1 O .
S=|:
O oo eee e e 1
1 0 - 0 - 0
It is easy to check that
SA = AS.

We shall find eigenvectors of S. If Sw = Aw, then SAw = ASw = A(Aw) = AAw. So if w is
an eigenvector of S with eigenvalue 4; so is Aw. We will find n distinct eigenvalues of
S. Then if Sw = Aw, Aw will have to be a multiple of w — hence an eigenvector of A.

The ‘eigenvalues’ of S that we will find will be complex numbers and the
‘eigenvectors’ will have complex entries. Both the real and imaginary parts of these

eigenvectors will be eigenvectors of 4. Here are the details:
Let

27i/n

T=¢

SO

Then

1 1
2 "L'2
4 4
= 1,'2 T
6 T6
2(n 1) 2(n.—1)

etc. The eigenvalues 1,7,72,...,7" " ! are all distinct. Thus each of the eigenvectors
of § must be an eigenvector of 4. Let us call these ‘eigenvectors’ e, ...e,. We know
that

Aek = lkek

for some 4,, which we must now compute.



Now the entry of the second row of Ae, is

1
— Tk
(=12 -1 0.0 %

=— 142" 1% =(- T k42 — h)k
= 2(1 — cos 2nk/n))z*.
We conclude that the kth eigenvalue is
A = 2(1 — cos 27k /n)).

This is the same eigenvalue for k and for n — k. We may thus get real eigenvectors
by adding and subtracting the eigenvectors for k and for n — k. Thus

1 0
cos(2nk/n) sin(2nk/n)
cos(4nk/n) |and | sin(4nk/n)

cos (67mk/n) sin(67tk/n)

are orthogonal eigenvectors with eigenvalue
2(1 + cos(2wk/n)).
If n=2m is even, then the second column vanishes for k =m. Otherwise all

the vectors do not vanish. We can thus consider each normal mode of the system
as a sine or cosine ‘wave’ of compression of the system.

4.6. Special relativity

In this section we wish to study in some detail the geometry of a two-dimensional
vector space with a quadratic form Q(v) = {v,v) which takes on both positive and
negative values. As we know, we can identify this space with R? and the quadratic
form Q with

0=0
Figure 4.17



We shall see that the geometry of this space gives a good model for understanding
special relativity. We use the word model in the following sense. Our ordinary
space is three-dimensional. Therefore, if we add time as an additional dimension,
we get a four-dimensional spacetime. In our model, we shall imagine that space
is one-dimensional, so that our spacetime becomes two-dimensional instead of
four, and we will be able to draw all the geometric constructs. Actually, most of
what we have to say works in the honest four-dimensional world, with little
modification from our two-dimensional model.

The first postulate of special relativity is to keep Newton’s law which asserts
that particles not subject to any forces will move along straight lines. Thus the
geometry of our spacetime singles out the straight lines among all possible curves.
Our spacetime is the affine plane with, perhaps, some additional geometrical
structure.

The second postulate is that the speed of light is a finite absolute constant.
Thus, at each point of spacetime there are two well-defined lines representing light
moving to the right or to the left. The spatial and temporal invariance of the speed
of light says that translating P into Q will carry the two light rays through P into
the two light rays through Q.

Figure 4.18

We want to investigate those affine transformations that carry light rays into
light rays. Since translations do, we are reduced to investigating which linear
transformations preserve the light rays through the origin. We are thus given two
lines x = =+ ct, and ask for the linear transformations which preserve these lines.
In doing our computations, it will be convenient to introduce natural units of
length and time so that the speed of light is unity. For example, we could measure
t in years and x in light-years. Or, if we choose a nanosecond (102 seconds) as
the unit of time, then the corresponding unit of length is one foot to remarkable
accuracy. So we could introduce natural units by measuring ¢ in nanoseconds and
x in feet.

We thus are interested in studying those linear transformations which preserve
the figure given by the pair of lines x =t and x = —:



N

x=-—t

Figure 4.19

To repeat: having determined these linear transformations, we will have deter-
mined all transformations of spacetime which preserve straight lines and preserve the
speed of light.

In fact, we wish, at least temporarily, to exclude certain kinds of transformations.
For example, the reflections

()= () e (0)-(2)

Figure 4.20

Figure 4.21

t —t
—>

X —X

Figure 4.22

and the inversion



all send the pair of lines x = + ¢ into x = + ¢, possibly interchanging the lines. They
interchange the various four regions of the plane as shown. So, by multiplying by
one of them, we can arrange that the transformations we wish to study preserve
each of the four regions. Thus we are looking at linear transformations, F, of the
plane that preserve each of the lines x =t and x= — ¢ and the forward region
2>x2%t>0.

To study such transformations, we might as well pass to coordinates in which
these lines become the coordinate axes:

(0)-2 () ==( 70 =)

X

j‘ q %(f X)
\\\\
t

p=4%(x—1)

—

Thus R~ FR preserves the coordinate axes and the positive quadrant. Thus R~!FR
is a transformation which preserves the coordinate axes, hence a diagonal matrix,
and preserves the first quadrant. Thus

Figure 4.23

0
R'lFRz(a ) a>0, d>0.

0 d

Let us write ad = s and a/d =r? so

R“FR—SO r O
“\o s/\o r 1)

Therefore we have proved that

where

£—x2=1

tl
Figure 4.24. ( ,> = L,(
X X

N——



is a scale transformation and

r 0 oy Ifr4rt p—pt
L.=R R == ) 4.
(0 r 1> 2(1*——r_1 r4+rt 4.2
The transformation L, is called a proper Lorentz transformation with parameter r.
We claim that

<LrV17Lrv2> = <V1,V2> (43)

for any pair of vectors v,,v,. Indeed, by the analogue of (4.1) for the scalar product
{ , >, it is sufficient to prove that

Q(v) = Q(L,v)

Now
Q) =1t*—x*= —dpq
and if
v’=L,v=(t,>, then (p’>:<7‘_1p>
X q rq
and

Q)= —4p'q = —4pqg=Q(v)
which is what we wanted to prove.

The effect of the scale transformation S is to multiply all lengths and time
measurements by a factor of s. The existence of atomic clocks, along with definite
spectral lines, shows that the transformation S, for s # 1,is not a symmetry of nature.

A linear transformation A which preserves the quadratic form Q in the sense that

Q(Av)=Q(v) forallvin V

is called a Lorentz transformation. Such an A must carry the light cone (also called
the null cone)

{vlg(v)=0}
into itself, i.e., preserve the set {x = =+ t}. If, in addition, A carries the forward region
into itself, it must be a proper Lorentz transformation
A=L,,
for some r.

The proper Lorentz transformations can be characterized among all Lorentz
transformations by the property that they can be continuously deformed to the
identity through a family of Lorentz transformations. Indeed, let A(f) be a family
of Lorentz transformations with 4(0)=1I, A(1)= A. Let v be some point in the
forward region. Then A(t)v can not cross the null cone since Q(A(t)v) = A(v) > 0.
Similarly Det A = + 1 for any Lorentz transformation since A times a matrix of

0 1 +1 0 .
the form ( ) 0) or <_ 0 + 1) is a proper Lorentz transformation —
and Det L=1 for a proper Lorentz transformation L. Thus since Det A(t) varies



continuously with ¢ and Det A(0) = 1, we must have DetA(t)=1 so Det4 = 1.
Thus, if 4 can be continuously deformed to the identity, 4 must be proper. On
the other hand, if A =L,, just set A(t)=L,, so A(0)=1 and A(1)= A.

The product of two proper Lorentz transformations is again a proper Lorentz
transformation. Indeed, if

r 0 r 0
L,=R -1 . =R -1
(0 r‘1>R and L, <0 r’_l)R ,
r 0 r 0
L.L.=R -1 -1
o (O r“l)R R(O r’_l)R
so

' L.L,=L,. (4.4)

It is convenient to write r = e* and set

1/e*+e * e*—e ™ “
LaZLeaZ—“ _ _ .
2\e*—e * e*4e ¢

then

Then

[2 18 =127, 4.5)

Sometimes, the hyperbolic functions

cosha=3%(e*+¢€™%
and
sinhoa=4(*—e™%

I cosha sinha
~ \sinha  cosha /)
Then the Lorentz transformations L* look very much like the rotations R,:

cosha sinha cos —sinf
I*= i = .
(sinh o cosh cx) while R, (sin 0 cos 9>

are used so

We have the multiplication formulas
l:xl'l;a2 - La1+a2 While R01.R92 = R01+02.

as we let a vary, the point L,v moves along a hyperbola, except in the limiting
case where v lies on the light cone, in which case I*v moves in or out along the
light cone (unless v = 0 when I*v = 0 for all ). It is for this reason that the functions
cosh and sinh are called hyperbolic functions, with cosh called the hyperbolic cosine
and sinh the hyperbolic sine. As we let 0 vary, the point R,v moves along a circle,
except for v=0 which stays fixed. This is why cos and sin are called circular
functions. '



A Euclidean motion of the plane is a transformation of the form (X)H
y

X a .
R(y>+<b> where R is an orthogonal transformation; in other words, a

Euclidean transformation is the composite of a translation and an orthogonal
transformation. Euclidean geometry is the study of properties of subsets of the
plane which are invariant under all Euclidean transformations. A Poincaré

transformation of the plane is a transformation of the form <x>l—>L<x> + (Z)
y y

where Lis a Lorentz transformation. The geometry of special relativity is concerned
with those properties which are invariant under all Poincaré transformations. To
be parallel to the y-axis is not a Euclidean property of a line, : if | is parallel to
the y-axis, then Rl will not be parallel to the y-axis if R is a rotation other than
through 0° or 180°. Similarly, to be parallel to the x-axis is not an admissible
property of a line in special relativity; if [ is parallel to the x-axis, then LI will not
be, for any proper Lorentz transformation L other than the identity. This last
assertion 1s usually formulated by saying that ‘the notion of simultaneity does not
make sense for spatially separated points in the theory of special relativity’.
Similarly, the notion of a particle ‘being at rest’ makes no sense. We might want
to say that the line x =0, the t-axis, represents a stationary particle at the origin.
But the Lorentz transformation L, carries this line into the line through the

origin and
L 1 :1 r+r:1 |
0 2\r—r71

Thus L applied to the t-axis is the line

r—r Y 21

x=uvt where v= = )
r+r b r241

This now looks like the line of a particle moving with constant velocity v. We can
solve the equation

v=(r>—1)/r*+1)
for r in terms of v

r=((1+0v)/(1-0))
as can easily be checked. We can, if we like, use v as a parameter to describe L: define
L(U) = L,. = Lea
where

r=(1+v)/(1 —v))=e¢"

1

r—r" e*—e * sinha
»— _ _

= — = = =tanh«
r+r e*+e * cosha

Notice that
Lw)L@)=L,,, r=((1+v)/1—0v), r=(1+v)/1-1)).



But

v+v T2
o 1+
v+
140
SO
v+ |
N = . 4.7
L(v)L(v") L( - w,) (4.7)

This is the addition of velocity law in special relativity.
We are thus using three different parametrizations of the same proper Lorentz
transformation:
L,=L'=L(v)
where

r=e*=,/((1 +v)(1 —v)).

The formula for multiplying two of them is given by equations (4.4), (4.5), or (4.7),
depending on the parametrization.

We have shown that the linear transformations of special relativity preserve the
quadratic form Q(v). But we have not given a direct physical interpretation of Q(v).
Here is one involving only light rays and clocks: Consider the points ¢, and ¢, on

. . t . .
the t-axis which are joined to ( > by light rays (lines parallel to t = x and t = — x).
X

Figure 4.25

Then

t—t;=x or t;=t—x
and

tz—t=x or t2=t+x



SO

tit, =0(v) for v=<t>.
X

) 0 . . . i )
Point <O)’ at rest or in uniform motion, wishes to communicate with v. It records

the time t; when a light signal emitted at ¢ will reach v and records the time t,
when the return signal, issued immediately is received. The product, t,t,, is the
Minkowski distance Q(v) between the two events. Notice that if v lies on the line
x =0 then t, =t, =t since the transmission will take no time at all. If v lies on a

0
light ray through (()), then t; =0. If Q(v) <O, then ¢t; <0 and ¢, > 0.

Figure 4.26

Here is another important property of the geometry of Minkowski space: Recall
that in Euclidean geometry, we have the triangle inequality

lu+v]<full+ v,

with equality only if u and v lie on the same line and point in the same direction.
This is illustrated in figure 4.27.

c=a+b, a=luf, b=]v].

Figure 4.27



The broken path is clearly longer than the straight line. This shows that ‘the
straight line is the shortest distance between two points’ in Euclidean geometry.
Now let us consider a similar diagram in our spacetime geometry, where the
circles
|A—P|?>=a* and |B—R|*=b*
are replaced by hyperbolas Q(A — P)=a? and Q(B — R) =b>. But now for any
segments | and m which give a broken path from P to R we have

o) <a®> and Q(m)<b’.

Q(B-R)=Db* Q4-P)=a?

Figure 4.28

Now Q()) is just the square of the length of time elapsed on a clock moving
uniformly along the line of I. Thus, we have the reverse triangle inequality.

The time measured by a clock moving uniformly from P to R will be longer
than the time measured by a clock moving along any broken path joining P
to R.

This is called the twin effect. The twin moving along the broken paths (if he
survives the bumps) will be younger than the twin moving uniformly from P to
R. This is sometimes known as the twin paradox. It is, of course, no paradox, just
an immediate corollary of the reverse triangle inequality.

4.7. The Poincaré group and the Galilean group

So far we have been describing the transformations of Euclidean geometry and of
special relativity in terms of natural units. The points of spacetime are sometimes
called events. They record when and where something happens. If we record the
total events of a single human consciousness (say roughly 70 years measured in
seconds) and several hundred or thousand meters measured in seconds we get a
set of events which is enormously stretched out in one particular time direction
compared to the space directions, by a factor of something like 102, Being very



APx

Figure 4.29

skinny in the space direction as compared with the time direction we tend to have
a preferred splitting of spacetime with space and time picked out; and to measure
distances in space with much smaller units (such as meters) than the units we use
(such as seconds) to measure time. Of course, if we use a small unit the correspond-
ing numerical value of the measurement will be large; that is in terms of human
or ‘ordinary’ units, the space distances will be greatly magnified in comparison to
the time differences. This suggests that we consider variables T and X related to
the natural units t and x by T=t and X = c¢x, or

T\ (1 0\/t
()6 2)C)
where ¢ is a large number. The light cone |x| = |t| goes over into ¢~ *|X|=|T] or
| X|=c|T].

We say that ‘the speed of light is ¢ in ordinary units’. Similarly, the hyperbola
t> —x2=k goes over into the curve T2 —c2X?=k; the ‘timelike hyperbolas’
corresponding to k >0 look very flattened out, almost like vertical straight lines
for small values of X.

Let us see how to express a Lorentz transformation in terms of ordinary units.

. T ) t
We do this as follows: we pick a point (X)’ find the point (x> = <(1) c?1><;>

. . t .
that it corresponds to then apply the Lorentz transformation L to to obtain
X

1 0 \/T . . : .
L(O c‘1>< X) and then express this new vector in ordinary units by multi-



Figure 4.30

1 0
plying by the matrix (0 ) to get
c

1 0 1 0 T
L _ .
0 ¢ 0 ¢ 'J\X
. : : . T\ .
Thus, in ordinary units a Lorentz transformation sends the vector (X) into the

T
vector M ( X> where M is the matrix

u=(o o )

Let us take L= I* and carry out the multiplication so as to obtain

h ~lsinh
Mz(co's o ¢ lsin cx)'
¢ sinh o cosh o

This is the expression for any a. Let us look at Lorentz transformations, L, for
which « 1s ‘small’: Let tanh o« = sinh «/cosh « = v/c, where we think of ¢ as being a
very large velocity and v an ordinary sized velocity, so that « is very small. Now

M:< cosh a ¢! tanh o cosh oc)

ctanh o cosh o cosh o
or
3 1 2
M= coshoc( vfe )
v 1
Now

1 _
cosh o = (1 — tanh?a)*/? =1 —v?/c)712




SO
cosha=1+3v?/c? + ...

Substituting into the above expression for M we get

1v? 1 v/c?
=1 -
1 0
M=< >+E
v 1

where the entries of E are all of order ¢~ 2. The matrix

o (10
" \p 1

is called a velocity transformation corresponding to velocity v. It preserves the lines

T T
T = constant; in fact G”(X) = <X oy T>' We thus see that the velocity trans-

or

formations can be regarded as ‘limiting cases’ of Lorentz transformations. When
considering the velocity of light to be very large, the timelike hyperbolas go over
into vertical straight lines, and Lorentz transformations with small values of «
become velocity transformations.

The collection of velocity transformations also forms a group, G, G,, = G,, +,,
as can easily be checked; and this group preserves the notion of simultaneity.
;) + (Z) 1s known as a Galilean
transformation. Thus a Galilean transformation is a translation composed with a
velocity transformation. Newtonian mechanics was based on the geometry of
Galilean relativity — those concepts invariant under all Galilean transformations.
It was the genius of Lorentz, Poincaré and Einstein to recognize that our notion of
simultaneity is only approximately valid, over small distances and velocities, and
1

v

A transformation of the form (§>D—+Gv<

. : 0
that the velocity transformation GU:< 1) must be regarded as an

approximation to the Lorentz transformation:

<1/\/(1 —v?/c?) v/t (1 - vz/cz))
v/ /(1 =v%/c?) 1/ /(1 =v*/c?)

(expressed in ordinary units).

4.8. Momentum, energy and mass

The passage from the Galilean group to the Poincaré group required a refor-
mulation of the basic concepts of mechanics. The outline for such a theory
was pointed out by Poincaré in his address to the World’s Fair in St Louis
in 1904 and was carried out by him, and, independently, by Einstein, in their
fundamental papers in 1905. We will describe some of the ideas here.



In classical mechanics there are two principles which are useful in describing the
motion of particles — the conservation of momentum and the conservation of
energy. For example, suppose we are studying the collision of two particles, A and B.
Let p, denote the momentum of particle 4 before the collision, and p/; denote its

momentum after the collision. Similarly for particle B. The law of conservation of
momentum says that

conservation

+pg=Ppy+P, .
PATPB=Pa™PB o omentum

The collision is called elastic if the total kinetic energy is conserved. An example of an
inelastic collision is one where the particles get stuck together upon impact.
Conversely, if two particles are initially in contact, and at rest, say, with an explosive
charge between them, when the charge is exploded the particles will move apart.
This can be regarded as a reverse ‘collision™ if we ran a film of it backwards, it would
look like two particles colliding and sticking together. Total kinetic energy is not
conserved — the total kinetic energy was zero before the explosion and positive after
the particles were set in motion. The energy released by the explosion was converted
into kinetic energy. Similarly, we believe that when two particles collide and stick
together, kinetic energy is converted into energy of some other form; heat or
potential energy. For an inelastic collision one still has the law of conservation of
momentum. In an elastic collision, there is no exchange between kinetic and other
forms of energy so the total kinetic energy is conserved:

conservation

E,+Eg=E,+E
atEp=Rat S of energy

where E , denotes the kinetic energy of particle A before the collision, E', its kinetic
energy after the collision, etc.

It turns out that the laws of conservation of momentum and of energy hold in
special relativity just as they do in Newtonian mechanics. What must be changed is
the definition of momentum and of energy:

In Newtonian mechanics, the momentum of a particle is defined as

p=myv

where v is the velocity of a moving particle and m is its mass. The velocity (and hence
the momentum) is a vector in three-dimensional space. In our model universe it will
be considered as one-dimensional. (Alternatively, we can consider particles cons-
trained to move on a line.) The mass can, in principle, be defined by the following
series of experiments. Suppose we have a collection of objects — say little balls made
of different materials. We consider two held together at rest and then pulled apart by
an explosion set off between them or by a spring released between them. One object
will then move to the right and the other to the left. If the two objects are identical —

Figure 4.31



the same size balls made of the same material, say — we would expect that the
motion will be completely symmetrical. For example, if there are reflecting barriers
placed at equal distances from the point of explosion, we expect that the two objects
will bounce back and collide with one another at precisely the initial point of
explosion. We can perform the experiment and observe that this is indeed the case.
Next let us take two balls made of the same material but of different sizes. Say the
larger ball is on the right. We will then observe that the point of collision will be to
the right of center — the smaller ball will have travelled further. We can then perform
the same experiment with balls of differing materials. For example, we will find that if
we use two balls of the same diameter, one of lead on the right and one of aluminum
on the left, the point of collision will be to the right. On the other hand, if we take a
very small ball of lead on the right with our fixed size ball of aluminum on the left, we
will find that the point of collision will be to the left. Assuming that we have enough
sizes of balls of lead, we will find a lead ball which exactly matches the aluminum
ball.

We can now compare lead balls with copper balls, say. Suppose we found an
aluminum ball that matches a lead ball (in the sense that the point of recollision is at
the center) and a copper ball that matches the lead ball. We can than compare the
aluminum ball with the copper ball. It is an experimental fact that the aluminum ball
will match the copper ball. This is a law of nature, not an assertion in logic.* But we
can now define the notion of mass by declaring that two objects have the same mass if
they match in our explosion—collision experiment. The law of nature referred to
above is then the assertion that this notion of mass is well defined — if 4 has the same
mass as B and B has the same mass as C, then 4 has the same mass as C. We can
observe the following law of nature: If A, matches B, and A, matches B,, then
performing the experiment with the two balls; A, and 4, against B, and B,, will
show that A, and 4, match B, and B,. (Alternatively, we could also observe that the

—e—o

| |
[ |
| o o |
[ © S !
’[ Co—e— {

Figure 4.32

mass of a ball of the same material is proportional to its volume: if a ball of radius r 4
of lead matches a ball of radius rp of copper, then a ball of radius 3r, of lead will
match 27 balls of radius rp of copper.) This allows us to introduce units of mass:
having fixed one object say a lead ball of volume 1cm?, we can then compare any
other object with a multiple of our given object (a lead ball of volume m) and this
assigns, in a well-defined way, a numerical value to any mass. Originally, in the
metric system the gram was taken to be the mass of the 1 cubic centimeter of water of

* We will also find as a law of nature that turning the apparatus around —that is, interchanging
right and left — will not affect the matching or non-matching properties of objects.



4 °C. Since water at 4 °C is difficult to work with in our collision experiments, we
might want to define the gram as a mass of a ball of copper whose volume is 0.11. ..
cm?>. It is interesting to observe that in the above series of experiments we did not
need any clocks.

We now return to the conservation of momentum. In Newtonian mechanics
this laws says that if we define momentum by

p=my

then the total momentum is conserved. (In fact, it is not hard to show that this
version of the law of conservation of momentum is a consequence of our definition
of mass and of the assumption that the laws of nature are invariant under the
Galilean group. See Feynman’s Lectures on Physics, I, Chapter 10 for a very lucid

presentation of this argument.) In special relativity this definition of momentum
makes no sense because velocity makes no sense! After all, velocity is defined as

dx
V=—
dt

and this presupposes that we have chosen x and t axes and have decided to
parameterize the curve describing the motion of the particle by ¢ — that is why we
are writing the curve as x(t). If we apply a Lorentz transformation, we will get
different t'- and x’-axes and hence a different velocity, v. Let us put the problem
another way. Suppose we decide to parametrize the curve describing the motion
of the particle in spacetime by some neutral third parameter, s. For example, s
might be the reading on some internal clock that the particle might be carrying
along with it on its motion. Thus the curve in our space time plane is given by

o-(2)

At some instant s,, we can compute the tangent vector

du /dit/ds\ = [a
ds dx/ds)_w_<b>‘

[ 104

-~

Figure 4.33



The velocity v = dx/dt is then given by
v=bja,

in the t, x coordinate system. It is clear that for a vector

(0

the ratio v = b/a makes no sense in that if we replace w by

w =Lw

w':(cbl,>, U’:b’/a,

then (unless v = + 1 or L= I) v’ will not be equal to v. The one property of w that is
conserved is

and write

O(w) = a? — b2

The condition Q(w) > 0 is the same as the condition |v| < 1. Since 1 is the speed
of light in our units, it does make sense to say that the velocity v is less than the
speed of light.

It is an experimental fact that all particles with positive rest mass (defined below)
move at speeds less than the speed of light — that, for them, Q(w) > 0.

So let us call

Qw)=u>>0
SO
a? —b? =2

and let
bla=v

in a particular spacetime splitting. Notice that the equation b/a = v only determines
the ratio of b to a. (This is a reflection of the fact that we have not really specified
the mysterious parameter s in the curve u(s).) But we can solve the two equations
a? —b?=p? and bj/a = to get

Ao

Ja—=vy’

U
b=———5,

J =%

in a given spacetime splitting. For small values of v we have the Taylor expansion
1 — 1 + lvz —
NIEES) ’
so
a=p+iw*+-,

b= puv+5su+---.



Notice that the expression for b looks very much like p =mv if we identify p
with m, and ignore the higher order terms in v. In the same way the second term
in the expression for a looks just like the expression for kinetic energy in Newtonian
mechanics. We are thus led to the following modification of the definitions of
energy and momentum. Associated to any object there is a definite value of u. To
avoid confusion this value is denoted by m and called the rest mass of the object.
If the object happens to be at rest in some space time splitting, this rest mass
coincides (up to a choice of units, of course) with the rest mass defined experi-
mentally above. Suppose that my > 0 (as we have been implicitly assuming). Then,
when the object is in motion, its energy-momentum vector is defined to be the

w_

Q(w)=E? —p? =mg

such that
and du
w is a scalar multiple of |'1=a§ where u(s) is the curve describing the

motion of the object in spacetime.

In terms of a given spacetime splitting where

1= (i(ss)>>

SO .
[ US)
us) = (X(s))
and
_dx X(s)
v Et_ = ?(;)_
we have
. mg
P a—)
and
m
E=—"2_.
J—v)

In particular, if the object is at rest in a spacetime splitting so that v =0, then
p=0 and E=m,

in that system of coordinates.
The law of conservation of energy-momentum now says that

o)+ (G- i)+ )

at any collision — a conservation law for vectors in spacetime.



We have written all of the above equations in terms of natural units where the
speed of light is one and v is a number, so an expression such as J1—= v?) makes
sense. If we use ‘psychological units’, then v is not a number but a velocity expressed
in cm/s, for example. So an expression such as ,/(1 — v?) makes no sense as it
stands. We must replace it by \/(1 — (v?/c?)). To make p look as it should in the
small v approximation, we must write

myv/c
JA—v¥e?y
Similarly, to make the units of E and the kinetic energy term come out right, we
must write

p:

myc?

JA =v?/cy
This is the appropriate rescaling. For the particle at rest, we get the famous Einstein
mass—energy relation

E =

_ 2
E =myc”.

4.9. Antisymmetric forms

We have considered two kinds of scalar product between vectors in the plane,
the Euclidean scalar product defined by

(w,w)=xx"+yy where w= (x) and W = <;,)
y

and the Lorentz scalar product

t t
(v,v)=1tt'— xx’ where v=< ) and v’=( ,)-
X X

Both of these scalar products are bilinear, that is, when one variable is held fixed,
we get a linear function of the other:

(aw; + bw,, W) = a(w,, W) + b(w,, W)
and so on. Also, both of these scalar products are symmetric:
(W, W) = (W', w)
and
(v, V) = (v, V).
We now introduce a third kind of product between two vectors in the plane which
is bilinear, but anti-symmetric: we define

w(VaV’)=qp’—q’p=Det(q q,) where v=<q> and v'=(q,>.
P D p p

Here
w(v,v)= — (¥, V)
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which is what we mean by anti-symmetric. The geometric meaning of w(v,v') is
clear; it is the oriented area of the parallelogram spanned by v and v'. It is also
clear that (v,v’) is bilinear. Such an w is called a symplectic scalar product.

A linear transformation, 4, is called symplectic if it preserves the scalar product
. Thus A is symplectic if and only if

w(Av, AV') = w(v, V')

for all v and v. The matrix whose columns are Av and Av' is just the product of

). Therefore

/

the matrix 4 with the matrix (:’) z,

w(Av, AV') = Det A (q q,) — (Det A)(Det (:1) Z,)) — Det Aa(y, V).
P p

Thus A is symplectic if and only if Det A = 1. Any symplectic matrix clearly has
an inverse which is again symplectic and the product of two symplectic matrices is
again symplectic. Thus the collection of all 2 x 2 symplectic matrices forms a group,
called the (two-dimensional) symplectic group. The symplectic group plays a very
important role in the study of optics, as we shall see in Chapter 9.

Summary

A Euclidean scalar product
You should be able to list and apply the properties of a Euclidean scalar product.
You should be able to write down the transpose of a matrix and to apply the
transpose operation in connection with scalar products and Euclidean
transformations.
Given a vector space of 2 or more dimensions, with a Euclidean scalar product,
you should know how to use the Gram—Schmidt process to construct an ortho-
normal basis and to find the orthogonal projection onto a subspace.

B Quadratic forms
You should be able to express a quadratic form Q(v,v) in terms of a symmetric
matrix 4 and relate maximum and minimum values of Q to the eigenvectors and
eigenvalues of A. .

Given a quadratic form Q on the plane, you should be able to introduce



coordinates x’ and y’ so that

Q=2,x%+ Ay y'?
and to use these coordinates as an aid in graphing Q = constant.

C Coupled oscillations
You should be able to reduce the problem of two coupled oscillators to the form
w= — Aw and to solve for the normal modes in terms of the eigenvectors and

eigenvalues of A.

D Lorentz scalar product

You should be able to calculate the Lorentz scalar product of two vectors, identify-
ing Lorentz transformations that preserve this scalar product, and apply these
concepts to the special theory of relativity.

Exercises

4.1.(a) Using the three properties of the scalar product (symmetry, linearity,
positive-definiteness), prove the Cauchy—Schwartz inequality

(v, W) </ ((v, V) (W, W))
for any pair of vectors v and w.
(Hint: Consider (v — aw, v — aw). This is a quadratic polynomial in «, but it
can not have any real roots unless v = aw.)
(b) Prove the triangle inequality

v+ wl < vl + lIwl

(where | v]|2 = (v,v), etc.) (Hint: square both sides and use (a))

4.2.(a) Letvand v be two vectors in the plane. Show that a rotation R, through

an angle 0 for which
(v,v)

J(,9)(,¥)

2
will carry v into a multiple of v'. Determine the angle between <1> and

(o)

(b) Let vand v’ be two vectors in two-dimensional spacetime which are either
both spacelike, both forward timelike, or both backward timelike. Show
that a proper Lorentz transformation L, for which

{v.v}
JE VYY)

cosf =

cosho =

will carry v into a multiple of v'.

) ) . [(5).
Use this result to find a Lorentz transformation which carries (4) into

5
a multiple of (3)



4.3.

44.

4.5

What goes wrong if v is spacelike but v’ is timelike? If v is forward
timelike but v’ is backward timelike? If v or v’ is lightlike?
For practice with the Lorentz scalar product, consider the following
vectors in two-dimensional spacetime. (The first coordinate is t; the second

is x.) v1=(_§>’ v2=(_;)’ v3=<;), VFC)
() ()

(a) Calculate the Lorentz scalar product {v, v} of each vector with itself.
Plot each vector on a spacetime diagram and identify each as
spacelike, forward or backward lightlike, or forward or backward
timelike.

(b) Calculate the Lorentz scalar products {v,,v;}, {vs,vs}, and {v;,v¢}.

(c) Calculate the vectors wy,...,ws which result from applying the
Lorentz transformation:

ne3 3
4

to each of the vectors v, ...v,. Plot the transformed vectors on the
spacetime diagram.

(d) Calculate {w,,w,}, {we,Ws}, {Wy, W3}, {Ws,ws}, and {w;,we}. All
these scalar products should be the same as for the corresponding v
vectors.

Pl
Sl plw

Let S be a symmetric matrix with positive eigenvalues. Define a new scalar
product [v,w]s by the equation [v,w]g = (Sv, w).

(a) Show that this scalar product is symmetric, bilinear, and positive
definite.

(b) Show that a matrix C preserves this scalar product (t.e., [Cv, Cw]g =
[v,w]s if and only if CTSC = S).

(c) Describe a procedure for constructing a matrix B with the property
thatifv = B~ 'v,w' = B~ 'w, then [v, w]5 = (¥, w). Explain how, given
one matrix B with this property, you could construct many others.

_ 37 09
In the preceding problem, let S = .
09 13

1
(a) Find a vector v which is orthogonal to w =< 1) under the scalar

product defined by S, so that [v,w]s=0.

(b) Construct a matrix B with the properties described in 4.4(c), and
verify that with v and w as in part (a), (B~ 'v, B~ 'w) =0.

(c) Construct an orthogonal projection matrix P, satisfying P? = P, whose

1 :
image consists of multiples of w=( ) and which satisfies

[w, Pv]g = [w, V] for all vectors v. )
(d) Construct a matrix C, satisfying C> = — I, which preserves the scalar



product defined by S. (Hint: R= ((1) - 1) satisfies R? = — I and
0

preserves the ordinary scalar product.)

4.6. Apply the following procedure to the quadratic form
Q(v) =8x% + 12xy + 17y?:

(a) Write Q in the form (Av,v) where A is a symmetric matrix.
(b) Find the eigenvalues of A.
(c) Express A4 in the form

;1.1 0 1
A = Ro Ro .
0 A,

(d) Find coordinates x" and )’ such that Q can be expressed in the form
O(v) =20x"2 + 5y2.

(e) Sketch a graph of the equation Q(v) = 20. Indicate both the xy-axes
and x'y’-axes on the sketch.

9 2
4.7.(a) Determine the eigenvalues 4, and 4, of the matrix § = ( 5 6)’ and find

eigenvectors v, and v, associated with these two eigenvalues.

(b) Construct a rotation matrix R such that S = RAR ™!, where A is diagonal.
Be sure that R represents a rotation!

(c) Find new coordinates x" and V', linear functions of x and y, such that

9x2 +4xy + 6y* = A x> + A,y'%.

4.8.(a) Determine the eigenvalues and eigenvectors of the matrix

(10 6

A= .

6 10

(b) Construct a rotation matrix R and a diagonal matrix A such that
A=RAR™ ..

(c) Sketch the graph of the equation 10x? + 12xy + 10y = 24.

4.9.(a) Find coordinates x’ and y’ such that the quadratic form
Q(V) = — x? + 6xy + 7y*
can be expressed in the form
OV) = A X2+ 4,52
Identify and sketch the graph of Q(v) = 40.
(b) Let x and y lie on the unit circle, so that x = cos 6, y = sin . Find the values
of 0 for which Q achieves its maximum and minimum values, and calculate

those maximum and minimum values. What is the relationship of these
answers to the answers to part (a)?

4.10. Suppose that M and K are both symmetric 2 x 2 matrices.

(a) Construct an example to show that M~ 'K is not necessarily
symmetric.

(b) Describe how to construct a symmetric matrix B such that B> = M~ !,
Show that the matrix S = BK B is symmetric, and hence can be written

A 0
as S=RAR !, where R is a rotation and A =( 01 5 )
2



(c) Show thatif 4 = BR, then M~ 'K = AAA~'. This proves that M 'K
has real eigenvalues.

! X
(d) Define new coordinates x’ and )’ by (x,) = A—1< ) Show that, if
y y

X
v= ) ) then (Mv,v) = x'2 + y'2, while (Kv,v) = ;X2 + 1,)"%.

(Hints: B is symmetric, so (Bv,w)=(v,Bw). R is orthogonal, so
(Rv,w)=(v,R™'w).)

. 0 « :
4.11.(a) Show that, if A =< 0), exp(tA) is a Lorentz transformation.
o

(b) In relativistic mechanics, the total energy E and the linear

4.12.

4.13.

momentum p of a particle of mass m moving along a line form a

E
vectorv = ( )with {v,v) = E? — p? = m?. If the particle moves so that its
p

acceleration is always « according to an observer who sees the particle as
instantaneously at rest, then E and p are related by

dE dp

—=ap, —=uak,

dr dt
where 7 1s time as measured by a clock carried along with the particle.
Solve these equations to determine

(o)
p(7)
EO) when 1 =0.
Po

Suppose that distances along two perpendicular axes in the plane are
measured in units which differ by a large factor ¢. For example, in
considering straight lines which might be drawn along a straight super-
highway which is 1000 kilometers long (along x) but only 1000 centimeters
wide (along y), we might wish to define new ‘ordinary’ coordinates by
X =x and Y=_cy, where ¢ =10 so that X is measured in kilometers
while Y is measured in centimeters. Construct the matrix that represents a
rotation through angle 0 in terms of coordinates X and Y, and show that
for lines whose slope Y/X in ordinary coordinates is a number of the order
of unity, the rotation matrix becomes a shear matrix in the limit ¢ — co.
Explain this phenomenon geometrically by considering what happens to
the circles x% + y? = k.

(Note: After working this problem, reread the discussion of the limit ¢ — co
for Lorentz transformations, in section 4.3.)

for initial conditions (

Calculate the symplectic scalar product w(v,,v,) for the vectors

)

Confirm explicitly that this scalar product is preserved under the action of

the symplectic matrix
( 5 3
A= ,
-2 -1



4.14.

4.15.

4.16.

Consider the system of springs and masses shown in figure 4.35.

K

aM fUU\ M
= "

X2

3K

Figure 4.35

(a) Show that, if x;, and x, represent displacements to the right of
equilibrium, then the motion of this system is governed by

(5)=-n(3)
r=(o 1) m=(7 7))

(b) Let B be the diagonal matrix with positive entries satisfying B> = T.
Construct the matrix 4 = B"'HB™!, find its eigenvalues and eigen-
vectors, and use them to determine the general solution to w = — Aw.

(c) Describe the normal modes of the system by specifying the frequency
of each in terms of w, = ,/(K/M) and by specifying the ratio x,/x;.

where

Consider the system of masses and springs shown in figure 4.36. Let x, and
x, denote displacements to the right of equilibrium.

2K K
o i
]—--»

X1 X2

Figure 4.36

(a) Determine the frequencies w, and w, of the normal modes and
determine the ratio x,/x; for each mode.

(b) Suppose the masses are released from rest, with initial displacements
x, =A, x,=0. Find expressions x,(t) and x,(t) that describe the
subsequent motion of the system.

A particle whose energy-momentum vector 1is (p) is subjected to a
Lorentz transform represented by the matrix

Ufr+r ! r—r!

2\r—=r"t r4+r )
Show that the sum of its energy and momentum is multiplied by r, while

their difference is divided by r. Interpret this result in terms of eigenvectors
and eigenvalues of L.

4.17. A particle of mass 15 (arbitrary units) moving at velocity u = 12 (in units



4.18.

4.19

4.20.

where ¢ = 1) collides with a stationary particle whose mass is 6 units, and
the two combine to form a single particle.

. E .
(a) Determine the energy-momentum vector < p) for each of the colliding

particles and for the single particle formed in the collision. Thereby
determine the mass and velocity of the particle that is formed.

), which

3
(b) Using the Lorentz transformation matrix L=( i’

Wi wlp

3
corresponds to a velocity of %¢, determine the energy-momentum

vector ( ) for each particle as viewed from a frame of reference
p
moving to the right at speed %c.

. E
Suppose that two particles have energy-momentum vectors w, =( 1)
D1

E :

and w, = ( 2) respectively, where m, = E} — p}, m, = E3 — p2.
P

(a) Write the Lorentz scalar product.of these two vectors as {w,,w,} =

m,m, cosho. Show that v = tanha = \/(cosh®« — 1)/cosh o represents
the speed of one of these particles in a frame of reference where the
other is at rest.

(b) Determine v for the case where

el %) )

and for the case where

(%) ()

In units where c is not numerically equal to 1, the matrix that represents a

: ty.
Lorentz transformation acting on ( ) 18
X

csinh o cosha

( cosha  (1/c)sinh oc)

E
(a) Show that the matrix that transforms <

) is the transpose of this
p

matrix.
(b) Show that the same matrix L will serve to transform energy-
momentum if we represent it as a row vector, ie.,

(E',p')=(E,p)L.
A photon has energy and momentum that are equal in magnitude (in units

1
where ¢ = 1). That is, its energy-momentum vector is of the form E ( { ) or

1 )
E ( 1), depending on its direction of motion.

(a) Suppose that a stationary particle of mass 2m decays into a particle of



4.21.

4.22.

4.23.

4.24.

mass m plus a photon. Use conservation of energy-momentum to
determine the speed of the particle of mass m and the energy of the
photon.

(b) Use the Lorentz transformation to describe this decay process in a

frame of reference where the particle of 2m is initially moving at speed
3

5.

E
A photon of energy E,, whose energy-momentum vector is ( Y> in units

Y
where ¢ = 1, collides with a stationary particle of mass m, to form a single

particle of mass m,. Show that

m3 —m3
E =

! 2m,

Using the scalar product (f,g) = [ f(¢)g(¢)dt, construct an orthonormal
basis for the space of functions which satisfy the differential equation
X+3x+2x=0.

Construct an orthonormal basis for the subspace of R* spanned by the
three vectors

N o= O

Define a scalar product on R? by (v,,v,) =4x,x, + y,y,. Construct a
2 x 2 matrix P which projects any vector v orthogonally (with respect to

1
the above scalar product) onto the line (1) Show that (I — P)v is

orthogonal to Pv.
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Chapters 5 and 6 present the basic facts of the differential
calculus. In Chapter 5 we define the differential of a map from
one vector space to another, and discuss its basic properties,
in particular the chain rule. We give some physical applic-
ations such as Kepler motion and the Born approximation.
We define the concepts of directional and partial derivatives,
and linear differential forms.

Our first goal is to develop the theory of the differential calculus for four types of

functions:

Introduction

(i) functions from R — R?,

(ii) functions from R?— R?,
(i) functions from R!— R!, and
(iv) functions from R* — R2

Functions from R! — R? can be visualized as curves in the plane: The graph of a
function from R? — R can be visualized as a surface in three-space. Functions from
R! - R?! are familiar from first-year calculus. We studied linear functions from one

plane to another in Chapter 1.

p

//\%)

Figure 5.1 A function from R! to R2
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Figure 5.2 A function from R? to R!

We now want to extend that study to include nonlinear functions from one
plane to another: In order not to have to consider the various cases separately,
we will introduce some uniform notation when we develop the theory. In what
follows we will let V, W, Z, etc. stand for either R! or R?. So when we write

VW
/ \.
p f@
R? R’
Figure 5.3

(read: °f maps V to W’ or ‘f is a function from V to W’), we can be in any of the
four cases according as V is R or R? and W is R! or R? In fact, our notation
and proofs will be such that we can allow V, W, etc. to be the spaces R", or, more
generally, any finite-dimensional real vector spaces or affine spaces (when we get
to learn what these spaces are in Chapter 10). In fact, we shall illustrate some of
these more general computations in this chapter, even though we will not have
made all of the formal definitions.

We begin by pointing out a fact that the reader is probably aware of by now, as an
easy generalization of the discussion in Chapter 1: alinear map from R? to R?is given
by a matrix with q rows and p columns. Thus

5 2 I 0 1
A=|{4 1 -1 0 3
30 1 10



gives the linear map from R® to R3 with

If
1 5 9
2 6 10
B=13 7 11
4 8 12

so that B maps R® — R*, then BA maps R®> — R* and so is a matrix with four rows
and five columns whose entries are computed according to the usual rules of
matrix multiplication.

BA=|

x =(2)(1) + (6)(— 1) + (10)(1) in our example.

In particular, a linear map from R? - R* = R (usually just called a linear function)
is given by a matrix with one row and p columns. This is usually called a row
vector. Thus

1=(1, 2, 3,4)
is the linear map from R*— R such that
1 0
0 1
| ol = 1, 1 0|7 2, etc
0 0

X
1 f =x+2y+ 3z +4w.
w

So again, the value of the row vector
1=(a,b,c,d)

on the column vector

T N X



is given by the usual rule of matrix multiplication — this time with just one entry:

I(v) = ax + by + ¢z + dw.
If A:RP>R? and I:R?>R, then lcA:RP>R is again given by matrix
multiplication: a 1 x g matrix times a g x p matrix. For example, if g =3 and p = 5
and

1=(1,2,3)
5 2 1 0 1
A=[4 1 —1 0 3
30 1 10
then
5 2 1 0 1
A=(1,2,3){4 1 -1 0 3]=(22,4,2,3,7).
3 0 1 10
One final bit of notational reminder from section 4.1. On the space R* we have
the Euclidean scalar product ( , ) and associated norm || | given by
IVIZ=(v,v)=x7+ - +xi
when
X1
v=|:
Xk

The triangle inequality says that
Ju+ vl <luff+[v].

5.1. Big ‘oh’ and little ‘oh’

In the theory of the differential calculus of one variable, a function f is said to

have a derivative A at a point x if f is defined in some neighborhood of x and the
difference quotient,

Jxr+v)—f(x)

v

defined for all sufficiently small v 0, tends to the limit A as v—0. We would like
to generalize this definition to maps f: ¥V — W. Our first obstacle is that division
by a vector makes no sense, so we cannot use the notion of a difference quotient.
So we consider rather

fx+v)—f(x)=Av+ p(v). (5.1)
The condition that 4 be the derivative of f at x is that the error term ¢(v) go to

zero ‘faster than v'. We can give a precise meaning to the assertion in quotation
marks by requiring that

limwzo as | v|—0, (5.2)

vl



or, to be even more precise, this means that

Given any & > 0 there exists a § > 0 such that

oM <elvl (5.3)

for all v such that ||v|| <.

In (5.2) and (5.3), the expression || v|| denotes the length of the vector v in the space
¥ and perhaps we should make this explicit by writing ||v||,,. Similarly, || ¢(v)||
denotes the length of the vector ¢(v) in the space W, so to emphasize this point,
we might want to write ||¢(v)|,. We would then write the first inequality in
(5.3) as

oM lw <elvlly.
Since these subscripts would tend to clutter up the notation, we will not use them,
but stick to the notation (5.2) and (5.3).
For example, suppose that f, and hence ¢, is a map from R? to R!. Suppose that

y
simplicity, write ¢(v) as ¢(x, y). Then || v|| = (x* + y?)*? and || ¢(v) || = |p(x, y)|. In this
case, condition (5.3) reads:

: . X ,
we write the most general vector v in R? as v=< ) and, for typographical

Given any ¢ > 0 there exists a § > 0 such that

|B(x, y)| < e(x? + y?)!/2
for all x and y such that
(x* + yH2 <.
A function ¢:V— W which is defined in some ball about the origin and which
satisfies (5.3) is said to be ‘little oh of v’. In symbols, we write ‘¢ is o(v) or, with some

abuse of notation, ¢ = o(v). Thus we would write the condition that 4 is the
derivative of f at x as

f(x+v)—f(x)=Av+ ¢(v) where ¢(v)is o(v) or ‘where ¢(v) = o(v)
or, even more succinctly, as
f(x +v)— f(x) = Av + o(v). . (5.4)

This last version is logically a bit sloppy but is the one that we will frequently use for
convenience. The expression o(v) in (5.4) really stands for ‘some function ¢(v) which is
o(v). In many cases we are not interested in the error functions ¢, we just want to
know that they satisfy (5.3). So it is convenient not to have to introduce a separate
symbol for each function ¢ that arises.

To get some feeling for the concept of o(v), let us prove the following lemma:

Suppose that ¢:V — W is a linear transformation and that ¢(v)= o(v). Then
¢ =0. (5.5)

Proof. Suppose that ¢(v) = Bv. Then ¢(rv) = r¢(v) for any real number r. For any
€>0, choose the & so that |¢(V)|| <ellv| when ||v| <. Now for any vector w,



choose r = ||w||/0, and write

w=rw ifwz#0.
Then [|W'|| =6 so
LW =7l W) | <rellw || = or6 = e]| w].
So
lp(w)l <ellw| for all w##0

(and this is clearly true for w = 0 as well, since ¢(0) = 0 if ¢ is a linear map). But this
inequality is to hold for all &. So ¢ =0.

From (5.5) it follows that if (5.4) holds, then the 4 occurring in (5.4) is uniquely
determined. Indeed, suppose that

f&x+v) = f(x)= AV + $(v)
and

Jx+v)—f(x)=AV+ d'(v)
where both ¢ and ¢’ are o(v). Then

(A" = AV = $(v) — ¢'(v).
But, we claim, the sum or difference of two functions that are both o(v) is again o(v).
Indeed, for any ¢ > 0, we can find é, >0 and J, > 0 such that

loW) | <zellvll for |v]<d,
and
lo' M <zellv] for |Iv]<d,.

Then choosing J to be the smaller of the two numbers ¢, and J,, we obtain, by the
triangle inequality,

[¢(W) £ oM < oW I+ o'W <ellvl.

The linear transformation 4’ — A is o(v) and hence must vanish; in other words,
A=A

A function f which satisfies (5.4) for some (and hence a unique) 4 is said to be
differentiable at x. The unique linear transformation A is then called the differential of
fat x and will be denoted by df,. To repeat, the differential of f at x is the unique
linear map from Vto Wwhich approximates the actual change in f at x for small v in
the sense that

Sx+v) = f(x)=df,[v] + o(v).

In order to prove the basic theorems about the differential calculus, we will need
to assemble some facts about functions that are o(v), and for this it is convenient to
introduce some more notation.

A subset S of Vis called a neighborhood of 0 if it contains some ball about the
origin, i.e., if, for some 6 > 0, it contains the set of all v with | v|| <. Clearly, the
intersection of two neighborhoods is again a neighborhood (just take the smaller of
the two balls, it is contained in the intersection). Similarly, we can talk of the



neighborhood of any point x. It will be a set which contains some ball about x, i.e.

which contains a set of the form {y||y — x|l <}
If A is an invertible linear transformation from ¥V to W(so, in particular, Vand W
have the same dimension), then we can find constants k; and k; >0 so that

[Av] <k [Vl
and
A7 W <k, lwl
or, setting w = Ayv,
ky vl <[l Av].
Thus the image of any ball of radius r is contained in a ball of radius k,r and contains

a ball of radius k; 'r. In particular, 4 carries neighborhoods into neighborhoods as
does AL

o

RZ

Figure 5.4

Let us now return to the general case where ¥ and W do not necessarily have
the same dimension. We will let o(V, W) denote the space of all functions which
are o(v). Thus, a function ¢ belongs to o(V, W) if ¢ = o(v). In detail:

deo(V, W) if ¢ is defined in some neighborhood of the origin and satisfies
(5.3).

We say that a function v is O(v) (read as ‘Y is big oh of v’) if i is defined in some

neighborhood of 0 and there is some constant k > 0 such that .

Iyl < k|l

for all v in this neighborhood. For example, any linear map is automatically O(v).
Also, clearly any function which is o(v) is certainly O(v). We let O(V, W) denote the
space of all functions which are O(v). Finally, we let I(V, W) denote the space of
functions defined near 0 which tend to 0 as v— 0. Thus

xel(V, W) if y is defined in some neighborhood of the origin and, for every
¢ >0, there is a 6 > 0 such that

Iz <e when |[v] <.
Clearly
oV, W)= O(V, W) = I(V, W),



If for example we take V= W = R! and define

$(x) = x?

Y(x)=x
and

x(x) = [x['/2,

then

peo(V, W),

YyeO(V,W) but yeo(V,W)

and

xel(V,W) but x¢0(V, W)
so the above inclusions are strict.

We have proved that the sum of two functions in o(V, W) is again in o(V, W). The
same proof shows that the sum of two functions in O(V, W) is in O(V, W) and
similarly for I(V, W).

We now study the behavior of these spaces under composition. Let X be a third
space. We will prove the following three useful facts:

If Y, €0(V, W) and y,eO(W, X), then Y, oy, €0(V, X), (5.6)
If Y ,€0(V, W) and y,e0(W, X), then oy, eo(V, X), (5.7)
If Y eo(V, W) and y,eO(W, X), then ¥,y co(V, X). (5.8)

Proof If [y, (V)| <k [v] for [[v|| <&, and [[y,(w)[| <k, [w] when |[w] <6, then
Y,°Yy will be defined for ||v|| < where ¢ is the smaller of the two numbers d,
and 6,/k,. For this range of v, we have

122 | = (s (I < Ko (1Y S kskey (V]

proving (5.6). If ¥,e0(W, X) we can make k, as small as we like by choosing 9,
(and hence §) small. This proves (5.7). If y,eo(V, W), then we can choose k; as
small as we like by choosing §, (and hence §) sufficiently small. This proves (5.8).

If ¢ is a function from ¥ to W and g: V— R a real-valued function, the product
g(v)¢(v) makes sense for any v that lies in the domain of both ¢ and g. So we can
form the function g¢ which is a map from a subset of V to W.

If yeO(V, W) and gel(V,R), then gy eco(V, W). (5.9)

Proof. We are told that there is a k such that || {/(v) | < k| v| in some neighborhood

of the origin. Given any &> 0, choose J so small that ||g(v)|| < e/k for all v with
vl < 4. Then, for such v,

gy W)l < /Ry <ellv]
proving (5.9). Similar arguments prove
If yeI(V,W) and geO(V, R), then gy co(V, W). (5.10)
If yeo(V,W) and g is a bounded function from V — R, then gy eo(V, W).
(5.11)



If s is a bounded map from V to W defined in some neighborhood of the
origin, and geo(V, R), then gy eo(V, W). (5.12)
(To say that a map y:V— W is bounded means there is some positive
real number k such that || y(v)|y <k for all vin V)

We have collected all the necessary lemmas to begin the study of the differential
calculus.

5.2. The differential calculus

Let f: V— W be defined in some neighborhood of a point xe V. Define the function
V_f by the formula

Vo () =f(x+h)— ()
It is defined for all h in some neighborhood of 0 and measures the change in f
relative to its value at x. The function f is continuous at x if V_felI(V, W). (This
means that V_f(h) tends to 0 as h— 0, so f(x + h) > f(x).) Recall that the function
f is said to be differentiable at x if there is a linear transformation df,:V—W
such that

V/(h)=df,[h] + o(h).
The linear transformation df, is uniquely determined by this equation and is called
the differential of f at x. Any linear function belongs to O(V, W), and the sum of
a function in O(V, W) and a function in o(V, W) lies in O(V, W). From this we
conclude that

If f 1s differentiable at x, then Vf, eO(V, W). (5.13)

(In particular, since O(V, W) < I(V, W), we conclude that, if f is differentiable at x,
then it is certainly continuous at x.) If f is a linear function, f(x) = Ax, then
Vf [h] = A(x + h) — Ax = Ah, so, -

A linear function f(x)= Ax is differentiable at all points, and its differen-
tial is given by df, = A, independent of x.
If f is a constant function, then Vf, =0, and (5.4) holds with A =0, so

A constant function is differentiable everywhere and its differential is
identically zero.

We now state and prove the rule about the differential of a sum:

If f and g are two functions from V to W and both are differentiable at x,
then so is their sum and

d(f + g),=df, + dg,. (5.14)
Proof. 1t is clear that V(f + g), = Vf, + Vg,. Since
fo = dfx + d)l



and
Vg =dg, + ¢,
where ¢, and ¢, are in o(V, W), we conclude that
V(f +9)=df, +dg, + ¢, + 2.

Since (¢, + ¢,)eo(V, W), this proves (5.14).

We can multiply an R-valued function g with a W-valued function to get a
W-valued function. For this combination we can state the usual rule for the
derivative of a product:

Suppose that f: V— Wand g: V- R are both differentiable at x. Then their
product, gf, is also differentiable at x and

d(gf)[h] = g(x)df,[h] + (dg,[h]) f(x).
Proof.
V(gf)[h]=g(x +h)f(x + h) — g(x) f (x)
=g(x + W) (f(x +h) — (%)) + (9(x + h) — g(x)) f (x)
=g(x)(f(x +h) — f(x)) + (g(x + h) — g(x)) f (x)
+(9(x + h) — g(x))(f(x + h) — f(x))
= g(x)Vf,[h] + (Vg,[h])f(x) + (Vg,[h])(VS,[h])
=g(x)(df,[h] + o(h) + (dg,[h] + o(h)) f(x) + O(h)-O(h),

since f and g are both differentiable at x and hence both Vf, and Vg, are o(h) by
(5.13). Now the product of two functions which are O(h) is o(h) by (5.9). Both f
and g are bounded near x since, in fact, g(x + h) — g(x) and f(x + h) — f(x) both
tend to zero. The product of a bounded function and one which is o(h) is again
o(h). Putting these facts into the last expression above gives

V(gf ) [h] = g(x)df,[h] + (dg,[h]) f (x) + o(h)
which was to be proved.
We now come to the very important:

Chain rule. Suppose that f:V— W is differentiable at xeV and that ‘
g: W— X isdifferentiable aty = f(x)e W. Then gof: V— X is differentiable at ‘
x and its differential is given by

d(gef), = (dg;,) (@f)). (5.15)

_J

(On the right-hand side of this equation we have the composition of two linear
transformations, dg,,.W—-X and df.:V—->W. On the left-hand side we
have the composition of g and f))

Proof.

V(gef)[h]=g(f(x + h) —g(f(x))
= g(f(x) + Vf,[h]) = g(f (x))



= Vg, [Vf[hl]
=dg,,[df,[h]] + dg i [o[h]] + (¢=y)(h),
where ¢eo(V, X) (coming from the error term in Vg,,) and  =Vf eO(V, W) by
(5.13). By (5.8) this composite function is in o(V, X). Also dg,,, is linear, and hence in
O(W, X), and thus the second term is a composite of an element in O(W, X) with an
element of o(V, W) and so is o(V, X) by (5.7). Thus
V(geof),[h] = (dg,°df)[h] + o(h)

as was to be proved.

Examples
We now give some examples of differentials and the chain rule. For functions
«: R' - R?, the differential do, when evaluated on some heR is given by multi-
plication by the derivative «'(x). Thus

da, [h] = o' (x)h.
This is just the definition of the derivative o'(x). For example, let o: R! - R! and
p: R > R* be given by

oY) =y Blx)=5x>+1
so that
ao f(x) = (5x3 + 1)2.
Then
de, 1s multiplication by 2y,
dp, is multiplication by 15x2,
d(xo B), is multiplication by 2(5x3 + 1)(15x2)

SO
day,, is multiplication by 2(5x> + 1)
and
dag,odp, is multiplication by 15x* followed by multiplication by
2(5x3 + 1) or
da g, °dp, is multiplication by 2(5x> + 1) (15x?)
or

dotgyodB, = d(a° B), — the chain rule.

It is clear that the notation here is cumbersome. Leibniz’s notation for functions of
one variable is better:

If o is a function of y write

or rather

do = o'dy.



This last equation is taken to mean that at any value of y
da,(h) = o (y)h.
In other words, dy is a dummy symbol into which we substitute the value of . Thug
d(y?) = 2ydy,
and, similarly,
d(5x3 + 1) = 15x2dx.

The chain rule now says substitute
y=05x>+1)

dy = 15x2dx
into the formula for d(y?) to get the formula for d[(5x® + 1)2]. The chain rule
becomes mechanical substitution in the Leibniz notation.

We will continue to do some examples in our more cumbersome notation where,
we hope, the meaning of the operations is clear.

Let f:R! - R? and g: R? - R! be given by

(521 o)

To evaluate df,, we note that

Visl=f(x+s)—f(x)
[ 2xs N (sz)
—< 2s ) 0
= (2;)5 + o(s)

so that df, is represented by the matrix

and

Similarly,

Vg(,yc)[C)] =(x+ ) (y+1)—x?y

= x2t + 2sxy + 2sxt + s%y + s*t
B NE s
-e0(0) (7))

dg(;) = (2xy, x?).

so that dg(x) is the matrix
y

The composite function gof: R! — R?! is given by
gof(x)=(x*+1)*(2x — 1)



so that
d(gof), =2(x% + 1)(2x)(2x — 1) + 2(x* + 1)%.
The chain rule says this must equal the matrix product dg ,(,,°df, which is given by
2 2 o[ 2%
dgsodf, = (2(x* + D(2x — 1), (x* + 1)*) )
=2(x2 + 1)(2x — 1)(2x) + 2(x* + 1)?

which equals d(gef)..
We can also form the composite function fog: R* — R? given by

ol (3)= G )
\\v/)) 22y —1)

To compute d(f° g)(x), we expand

s (x+s)*(y+0)?+1 x*y* +1
V(fog) X = 2 . - 2
G\ \ ¢ 2(x + 52 (y + 1) — 1 2x2y—1
C((x* +4xPs + 6x75% + 4xs® 4 5y + 2yt + £7) — x*y?
B 2(x* + 2xs + s*)(y + 1) — 2x2y
2x*yt + 4x3y?s
2x*t + 4xys

(X Ayt )+ (63787 + s + s (y + 1)
4xst + s*y + s*t

(% 30)+(0)

4x3y* 2x*y
4xy  2x* )’
The chain rule says that this must equal dfq((x))Odg(x) which is given by
y y N

so that

d(f°g)(;) = <

2

2x%y
df enodg . = 2
TG0 46 ( 2 >(2"y )
_ 4x3y? 2x*y
4xy  2x?
G
As another example of the chain rule, let F: R? »R? and G: R? — R? be given by

AG)-C57) «(C)-C2)

which equals d(f°g)



We then have
VFx(<S>)=<(x+S)2+(y+t) B x2+y>
G\ (x+5)(y + 1) xy

(2xs+t s2
xt+sy)+<st>
G0 (()

+o0
y x/J\t t

so that
2x 1
dF()yc)z(y x>'
Similarly
ol ()42 (7)
G\ \ ¢ (x + s) x
(3sy2 + 3xy(2t)> ( 3xt? + 352yt + t2)>
= + 5
2xs S
_(3y* 6xy\/[s s
(e T)C)+A0)
so that

3y? 6xy
dG x\y — .
(y) ( 2x 0 )

The composite function FoG:R?* — R? is given by
2 2)2 2
ol (* _F 3xy _ (Bxy*)* + x
y x?2 3xy*x?

B 9x2y4+x2
- 3x3y2 :

We then have

L (6)

[ Ax + 5Py + 1)+ (x + ) 9x2y* + x2
—< 3(x + )3 (y + 1)? >_< 3x3y? )
_ [ 9(2xs)y* + 9x*(4y>t) + 2xs
B ( 3(3x2s)y? + 3x3(2yt) )
N <9x2(6y2t2 + 4yt3 + 4t) + 18xs[(y + D* — y* ] + 9s%(y + t)”')
3x3t% 4+ 3(3xs? + s3)(y + £)2 + IxZs(2yt + t2)

[ 18xy*+2x 36x%y*\ (s +0((s>>
B 9x2y? 6x3y J\t t



so that

18xy* + 2x 36x2y3>

dFO =
( G)(f) ( 9x2y? 6x3y

By the chain rule, this must equal dF _ x,°dG x, Which is given by
o(3) T 6)

2(3xy?) 1 3y*  6xy
dF 1y © x\ —
() dG(y) ( x2 3xy*J\2x 0
[ 18xy*+2x  36x*y?
C\3x2y? 4+ 6x2)%  6x3y
= d(F°G), x.
=9
In the next few sections we will spend some time extracting important conse-
quences of the chain rule.
We first give some more ‘abstract’ examples of the chain rule and introduce some
notation.

5.3. More examples of the chain rule

Let us consider the multiplication map g: R? » R! defined by

()
([ o

gv+h=(x+7r(y+s)=xy+xs+yr+rs
= g(v) + xs + yr + o(h)
SO
d,g(h) = xs + yr,
and its matrix (with one row and two columns) is
(», X).
Let f:R! —» R? be given. We can think of f as describing a curve in the plane, or,
more simply, as giving a pair of real-valued functions of one real variable,

(x(0)
0= (ym)'

Then
x(t + h) x(t) + x'(t)h + o(h)
h = =
Je+h (y(t ; h)) (ym YR+ o(h>>
SO )
£t +h)—f(0) = h("ﬁ‘”) + o(h)
y'(t)



or
iy —  X(®)
7 (y'(t)>'
dg s = (¥(t), x(2))

d t= ! —_ x,(t))
e

Multiplying the matrices

and

gives
dlgef). = (g°f Y1) = x'(O)p(r) + x(2)y'(2).

But (gof)(t) = x(t)y(t). Thus the chain rule implies Leibniz’s formula for the
derivative of the product of two functions.

Before proceeding, it will be convenient to introduce and explain some further
notation. Instead of writing

dg,(h)=yr + xs where v=(x>, hz(r) and g((x)>=xy,
y S y

1t 1S more convenient to write all of this information as
d(xy) = ydx + xdy.

In this equation, the symbol dx occurring on the right-hand side is understood
as a linear map from R?—R!: the map which assigns to each vector its first
coordinate. Thus

dxh)=r if h= (")

S
and similarly,

dy(h) =s.
In the expression ydx, the y is a function of v, that function which assigns to v its

, X
second coordinate, where v =<
y

kinds of variables, the variable v which tells us where we are computing the deriva-
tive and the h which is the measure of the small displacement. The d(xy) that occurs
on the left-hand side is a shorthand way of writing ‘dg,,; where g is that function

>. So the terms like ydx really depend on two

defined by g(v)= xy when v= (x) In applying the chain rule as in the above
y

example, we would say

Consider x as the function* on R? which assigns to each vector its first coordi-
nate. Then (xof)(t) = x(t) by the definition of the map f. By the chain rule,

* It might be instructive here to reread the lengthy discussion in section 1.3 where we discuss
how a coordinate. such as x, is to be viewed as a function.



d(x°f), = x'(¢)dt, where, in this equation, x'(t) is a function evaluated at the point ¢
where we are computing the derivative, and dt is the part which measures the
small increment. So when we think of x as a function of ¢ given to us by the map £,
we make the ‘substitution’ dx = x'dt where now x’ is a function of ¢. Similarly, the
chain rule tells us that if we consider y as a function of ¢ given to us by the map f,
then we must ‘substitute’ dy = y’dt.

We would then write
d(gef) = yx'dt + xy'dt

with x, y, x" and y’ substituted on the right-hand side as explicit functions of t.
For example, suppose x(f) =t + sin ¢, y(t) = e?*. Then we would write

dg =d(xy) = ydx + xdy,
t+sint 1 + cost
df= d< 2t ) = ( 262t )dt

d(gef)=d((t +sint)(e*)) = (e*(1 + cost) + 2e%(t + sint))dt.

Let us state the chain rule once more in diagrammatic form: We are given two
differentiable maps f:V—>W and g:W—Z, so we can form their composite
gef:V—Z. At some point v in ¥ we can apply f to get to f(v) and then g to get
to g(f(v)). In computing d(g ° f),(h) we can follow the maps along, by first applying
df, to h and then dg,, to the image.

and

il dgre)
/ ] dfy w &gf(v)(dfv(h))= dg-1), (h)
k_—*/_/f(v)\——*/'g )
gf—u &
Figure 5.5

Let us now do some slightly more sophisticated computations with the chain
rule. In these computations we will take V, W etc. to be higher-dimensional vector
spaces, so the logical purist might want to postpone studying them until after
reading the chapter on linear algebra. Nevertheless, we recommend having a look
at them here. We begin with a computation of the derivative of a product of two
matrices. Let V be the vector space consisting of pairs of n x n matrices, so a typical
vector in V is of the form

A
()

where 4 and B are n x n matrices. (This becomes a vector space by componentwise
addition and scalar multiplication:

A (A h , [(A+A dav aA
Ifv= B and v = B then v+ v = B+ B an =\ 8/



This obviously makes V' into a vector space of dimension 2n2.) Let W denote the

A
vector space of all n x n matrices, and define the map g: V— W by g((B)) = AB.

A X
va=(B> and h=<Y>then

gv+h) —gv)=(A+X)B+Y)—AB=XB+ AY+ XY= XB+ AY + o(h)
SO
dg,(h)=XB+ AY. (5.16)

In doing computations, we might want to use our more convenient notation which
drops the subscript v and the values at a particular h. We could write (5.16) as

d(AB) = (dA)B + AdB. (5.17)

In this notation, the AB occurring on the left is a sloppy but convenient way of
writing the function g. The dA4 occurring on the right is the derivative of the function

A .
which assigns to (B) the matrix A. This derivative when evaluated at the point
A X\ . . . :
(B) on the vector (Y) yields the value X. Thus dA is the linear map which
. X i . .
assigns to each (Y) the value X. So, for example, (d4)B is the linear map which

X . ..
assigns to (Y) the value XB. In this sense, (5.17) is a shorthand form of writing

(5.16).
As another example of this notation, let f denote the map from W to V given by

f(A)=(j).

Since f is linear, we know that its derivative is independent of 4 and is just the
same map again, evaluated on vectors, i.e.

ar0=(% )

In the differential notation we would write this as
A dA
(4)-(64)
(Where again, d4 is the linear function which assigns the value X to any element
X). Now let us consider the map h of W— W defined by
h(A)= A2
We clearly have h(4) = g(f(A)) or h = g°f. So the chain rule applies:

YA () e

XA+ AX
Figure 5.6



It says:

z
dhy(Z) = d(gof)4(Z) = dg ;4 (A 4(Z)) = dg f(,,)( Z) =ZA+ AZ.

We would write this computation in the ‘differential notation’ as follows: Make
the ‘substitutions’ A = A and B= 4 in (5.17) to obtain

d(A2) = (dA)A + A(dA).

(Notice once again, that on account of the non-commutative nature of matrix multi-
plication this is the correct generalization of the formula d(x?) = 2xdx of functions
of one variable. It is not true that d(4%) =2A4dA.)

The Born expansion

Let us now consider the map (inv) which assigns to each invertible matrix its
inverse, SO

(inv)(4)=A"1.
The map (inv) is not defined on all of W, but only on that subset of W consisting

of all matrices which are invertible. Assuming that inv is differentiable where defined,
we shall show how to compute the derivative of the map (inv) using the chain

rule: Define the map f by
A
f(4)= ( A_l)

_{ (d)
f= <(inv)>'

Recall that g is the map defined by

A(2)-.

Then (gof)(A)= AA~ ' =1 where I is the unit matrix. In other words, gof is a
constant, and hence d(gef) = 0. By the chain rule,

_ (A0 _( X
df (X)) = (dA(inv)(X)> B (d(inV)A(X))

and, by the chain rule again,
0 = [d gl daf (X)) = XA~ + A(d 4(inv)(X)).
Multiplying this equation on the left by 4~ ! and solving for d ,(inv)(X) gives
d(inv)(X)=—A"1XA"L

In ‘differential notation’ we would write the preceding argument as follows: Since
AA~' =1, we know that d(44™*) = 0. ‘Substituting’ A and A™* for 4 and B in
the formula d(4B) =(dA)B + A(dB) gives

0=d(4A™ ") =(dA)A"! + Ad(A~Y)

or, more symbolically,



and solving this equation for d(4™ ') gives the formula

[ dA ) =—A"YdAa)4 L. (5.18)

(This is the correct generalization to matrices of the formula d(1/x) = — (1/x?)dx
of one-variable calculus.) We pause to give a slightly different explanation of the
preceding formula. Suppose that A4 is an invertible matrix, i.e. that Det A # 0. Then
if X is a matrix whose entries are sufficiently small, Det(4 + X) # 0 so that A + X
is also invertible. We can write

A+X=(I+ XA 1A,
If X is sufficiently small the matrix XA ~! will also be small and the series
T+XAH 1=T—(XA"H+ XA )Y —(XA7 )3 + .-
will converge. Then we have
A+X) 1=[I+ XA HA] '=4"I+X4"H)!
=AY —-(XA " H+ (XA )2 -
or
(A+X) '=A4"1—A"1XA" ' +A471XA71XA™!
— AT XATIXATIXAT
In the physics literature this series is known as the Born expansion after the famous
theoretical physicist Max Born. The formula (5.18) follows from the Born expansion
when we drop all terms which are of higher order in X. In the physics literature
the approximation given by (5.18) is known as the first Born approximation. It is
of basic importance in scattering theory. As we have seen, we did not have to know
the entire Born expansion in order to derive the first Born approximation; we got

it straight from the chain rule.

On the other hand, a moment’s reflection shows that the Born expansion implies
that
A+X)"1—A71'=—A"1XA" + o(X).

This proves that the function (inv) is differentiable — a fact that we had to assume
in applying the chain rule.
Let B be a constant matrix, and consider the map f(4) = ABA™'. Then
d(ABA~')=(dA)BA~' + AB(dA™?)

=(dA)BA~! — ABA~}(dA)4~ .
In other words,

df(X)=XBA ' —ABA™'XA™.
Suppose that t — A(t) is some differentiable curve of matrices, and let
C(t)= A()BA(®) ™!

where Bis a constant matrix and we assume that A(t) is invertible for all ¢. Applying
the chain rule and the preceding formula we see that

C'(t)= A'(t)BA(t) "t — A(t)BA()A'(t)A(t)~ .



Suppose that A(0) = I and A’(0) = X. Then setting ¢ = 0 into the preceding formula
gives

l— C'(0)= XB — BX.

This formula is one of the most basic in mathematics and physics. The right-hand
side of this formula is called the commutator of X and B and is denoted by [ X, B],
o)

[X,B]=XB— BX.
For example, suppose that A(t) =exptX so
Ay =T+tX + 52X + ...
Then clearly A(0) =1 and A'(0) = X so the above formula applies. Let us verify it
directly. We have A(t)™' =(exptX) ' =exp(—tX)=1—tX +12X? + -.-s0
A@MBA®M) ' =(I +tX +32X> + - )BUI —tX + 112 X2 — ..)
=B+ t(XB—BX)+3t*(X?B—2XBX + BX?) + ---.
Collecting the terms which are of degree two or higher in ¢ gives

A(t)BA(t)"' = B+ t[ X, B] + o(¢).

Kepler motion
We have seen that the chain rule implies Leibniz’s rule for the derivative of a
product —even for the product of matrices where the multiplication is not
commutative. We now want to apply this same reasoning to the so-called vector
product in R*. (We will remind you of its definition in a moment.) As a consequence,
we will derive Kepler’s second law for planetary motion.

In three-dimensional space there is a vector product defined as follows:

X p yr—zq
Ifv={y )] and w=|[gq | thenvxw=|zp—xr }.
z r xXq —yp

It follows immediately from the definition that
(Vi + V)XW=V, XWH+V, XW, VX(W +W,)=VXW +VXW,

(av) x w=v x (aw) = a(v x w)

and
vxv=0.

It follows from the first three equations that x acts like a multiplication and hence
that

divxw)=dv x w+v x dw.

In particular, if v(t) and w(t) are curves in R* and if we set

u(t) = v(t) x w(t)
then i
w' () =v () x w(t) + v(t) x w'(2).



Suppose that r(t) denotes the position at time ¢ of a particle moving in space, and
suppose that p(z) denotes the momentum at time ¢ of the particle. The vector

u(t) =p(t) x r(t)
is called the angular momentum of the particle relative to the origin (at time ¢).

Suppose that the particle has mass m and that it is subject to a force F(t) pointing
along the line from the origin to the particle, so that F(t) = c(¢)r(t). Then

r'(®)=(1/mp@) and p'()="F()=c@Or@)

and hence

p'(6)=p'(t) x x(t) + p(t) x r'(1)
= c(O)r(t) x r(t) + (1/m)p(t) x p(t) = 0.

In other words, g must be a constant. This law is known as the conservation of
angular momentum. Let us suppose (for simplicity) that g # 0. It follows easily from
the definition of vector multiplication that for any vectors v and w we always have
(v x w)'w =0. Since g = p(t) x r(t) we conclude that g-r(t)=0 for all ¢t. In other
words the particle always moves in a fixed plane, the plane perpendicular to . Let us
rotate our coordinate system in R® so that g lies along the z-axis, and hence the
particle lies in the xy-plane. Thus

x(1) x'(t) 0
r(t) = y(t) | and therefore p(t)=m| y'(t) | and g=m 0
0 0 x'(t)y(t) — x()y' ()

Thus the condition that g be constant implies that the expression x'(¢) y(t) — x(t)y'(¢)
is constant. To understand the meaning of this condition, let us draw the trajectory
of the particle in the xy-plane. Up to terms which are o(h), the area bounded by the
x(t + h)

x(t) .
vector , the trajectory, and the vector
(y(t)> oy (y(t + h)

) 1s the same as the area of the

(1) wt+h)
hatched region in figure 5.7. The area of the triangle is (up to sign) given by

3(x(t + h)y() — x(O)y(t + h)).

: . t t+h)\ . :
triangle determined by the two vectors < X )) and ( e+ )); i.e. we can ignore the

r(t+h)

r(n)

Figure 5.7



But

x(t + h) = x(t) + hx'(¢) + o(h)
and

y(t +hy=y(t) + hy'(t) + o(h)

so the area of the triangle is given by

3(x'(@)y(t) — x(6)y'(©)h + o(h).

We conclude that the rate at which ‘area is swept out by the radius vector’ is a
constant, Kepler’s second law. Thus, by use of the chain rule, we see that Kepler’s
second law, and the fact that the particle moves in a fixed plane, follow whenever
there is a central force law. The fact that the planets move in a fixed plane and
sweep out equal areas in equal times is a consequence of the fact that their motion
is determined by a force directed toward the sun. The preceding derivation of
Kepler’s second law is due to Newton.

5.4. Partial derivatives and differential forms

In this section we will introduce some concepts and some notation that are
convenient for the chain rule. Let us consider a differentiable function f: R* — R.
For example, take k =3 and suppose that

X
MLy ) )=x2y22*
Z

Then df, is a linear map from R* — R. So df, can be represented as a row vector. We
X

claim that, at any point v={ y |, the row vector is given by
z
df, = (2xy3z*,3x%y?z%,4x%y323).

1 0 0
To check this, we need only to evaluate on each of the vectors 0), 1 Jand (O)

0 0 1
1 S
flv+sl O —f(v)=dfv<0>+o(s)
0 0
1
=sdf,{ 0 |+ o(s)
0

by the definition of df, and the fact that df,[h] is linear in h. Now

ORI

For example,



and the limit of this expansion as s— 0 is just the derivative of f with respect to
the variable x when y and z are kept fixed. This is called the partial derivative of
f with respect to x and 1s denoted by df /ox. If

0
1)

from elementary calculus. Thus

1
of
Y O) Tox
0
- _of
o (0)) oy
0
” )) o
1 Z

of O ) O
df,= (ax(v) U ())

A direct check for f = x2y3z* now verifies the computation claimed above. There
is a more convenient way of organizing this information. Recall that we have written
dx for the linear function which assigns to each vector its first component. Thus

dx =(1, 0, 0)

then

Similarly,

and

Thus

and similarly
dy=(0,1,0), dz=(0,0,1).

Then we can write the equation

0
df, = ( T aﬁ <v>,§—;’<v>) 7 001,00+ 2000, 1,0+ 2 (90,0, 1
as
f f of
df = ax 5 —dy +8 dz.
Thus

d(x2y3z%) = 2xy3z4dx + 3x2y?z*dy + 4x2)323 dz.

The expression on the right is a sum of three terms, each a function times a dx



or ady or a dz. Such a sum is called a linear differential form. Its meaning is that
it is a rule which assigns to each point of R* a row vector.
The formula is consistent in the sense that if we substitute the function

then
QJ:EI, —aZE , gEO
x dy z
to get
df =dx.

With this notation, the chain rule reduces to substitution. Let us illustrate what we
mean. Consider the map ¢: R* — R? given by

o((5))=(ome)

Let f: R* —» R be some function, say

()
o)

The map d¢ ) will be some 2 x 2 matrix: say
0

a b
gy = (c d>'

To find the top row of this matrix, we need only to multiply it on the left by the

row vector (1,0) so
(1,0)(" b) = (a,b).
c d

Now (1,0) is just dx. The chain rule says that

Then

dx () 4Py = APy

But xoqﬁ<<;>> =r cos 6, so

d(xO(l))(g) =cosfdr—rsinfdb
=(cos 6, — rsin 0)

as a row vector. So a=cosf, b= —rsin 0. Similarly

a b .
(c,d)=(0, 1)<c d) = dyd)(((r)))"d(f)(g) = d(yoqb)(g) =sinfdr +rcos0db

= (sin 6. r cos O).



So ddb(,) i1s the matrix
6
(cos 0 —rsinf
sin 0 rcosf )

df=(3x*+ y¥)dx + 2yxdy,

Now

and
d(fo¢)=3r*cosOdr — r3sin 0 d6.

In principle, the chain rule says

s —rsinf
(3r% cos?0 + r? sin*6, 2r* sin 0 cos 9)(:.0 rom

(22 3.
in 0 rcose)_(3r cos 0, — r°sin 6).

This is, of course, correct. But in effect, the chain rule says substitute
x=rcosf, dx=cosfdr—rsinfdo,
y=rsinf, dy=sinfdr+ rcosfdf

into the expression

df = (3x* + y*)dy + (2xy)dy
then multiply, collect coefficients and you will get

d(f°¢).

In other words, think of x as a function of r and 6, which it becomes by the
map ¢, i.e., x is replaced by the function x°¢ =rcos0, and then take d of this
function.

In doing these computations it is convenient to remember that

d(gh) = gdh + hdg.
(Here, for example, in R?

a9 a9
dg=—Zdx + -
9 ox x+8ydy
SO
0 0
hdg = h L ax + n ay.
0x dy
Then

d[(gh)°¢1=(g°¢)d(h°p) + (hop)d(go ).

Thus, in our example

F(;) =x3 4+’ x=(x*+y*)x= gh(;)

with
g=x*>+y* and h=x.
Thus
fo¢p=r*rcosf
SO

d(fo¢) = (rcos 0)2rdr + r*(cos 6 dr —rsin 0 d6)
= 3r2cos 0 dr — r3sin 0d6.



This procedure is completely general: let y,, .. . , y, denote the coordinate functions

on R!—so a typical point of R is
(){1
i

Let f:R'—>R be a differentiable function. Then

of of
df =—"dy, + - +=—4dy,.
f ayl yl ayl 1
Suppose that x,, ..., x, are coordinates on R*. Let ¢: R¥ - R! be a differentiable map.

Define ¢, = y;°¢, ¢, =y,° ¢, etc., so

(¢ 1(v) Xy
¢(v) = : where v={ @ |
Gbl(v)) Xk)

Then
0, 0,
d(bl = ax1 Xm + - +5;,:dx"
o, 00,
=g dxit o F g dx

and the linear map d¢, is given by the matrix

06, 9,

3%, (v) - ox, (v)
o6, oy
w5

0 9
0x, 0xy,
d¢ : .
0 I
0x4 0x;,

or, put more simply,

The chain rule says that

of %
Ao B)= 5 ogdpy + -+ Dapdd,
Y1 Vi
0, 09, s fomal
where the expressions d¢; = é;-dxl + -+ —a—x—dxk are used in this formula.
1 k

We close this section with two theoretical points.
The differentiability of f at p was used to define the partial derivative. The
existence of the partial derivatives with respect to x and with respect to y does



not necessarily imply the differentiability of f at p as can be shown by some

pathological examples. Sufficient conditions for the differentiability of f at p are
given by the following theorem.

0 %)
Theorem. Let f:R*>—R' have continuous partial derivatives v and qg

0x ﬁy @ P
Then f is differentiable at p.

Proof. 1f f is differentiable at p, then the linear map df, must be given by

s of of
d hCl =
fp<<t>> Sa p+ tay
of of . g . . :
Thus, if E and E™ exist, then f 1s differentiable at p if and only if
X |p Vip
S of of
— e 7 RZ Rl
pr((t» 2% +t(3y + of ).

Letting p= (;"), we can expand pr(C)) as
P

W((f)) =1 (5 + 5.3, + 0= (5, 7,)

:f(xp + 5, yp + t) —f(xluyp + t) +f(xps yp + t)—f(xps yp)
of

The continuity of —
ox |,

one-variable calculus that

and M implies by the mean-value theorem of
Yip

f(xp+5=yp+t)—f(xp’yv+t)zsg| *
0x ( 0)
Yptt

of
0

()

for some x, and y, satisfying x, < x, < x,+s and y, <y, <y, + t. Therefore

i (0))=5 )5l

(yp+t)+té;
()-8
L) "o I N
() e () ()

Y o
tends to zero, the coefficients of s and t each tend to zero so that these

S(Xpy, + 0 =[x, y,)=t

so that

(45

Ve

As

(0




coefficients are in I(R2 R!). Since s and t considered as functions are each in
O(R?,RY), the entire expression is in o(R?, R!), completing the proof.

Another important property of partial derivatives is given by

Theorem: Let f:R* >R be differentiable at p with continuous second partial

0 (0 0
derivatives 8—( 03{) and — o (gi ) at p. Then
of o (0f
ay ox )|, ox ay)l,
The intuitive idea behind the proof of this important theorem is very simple.

. he 1. it x xX+s X and X+s
Consider the four points v ) S pat)
( X ) (x+s)
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y+t y+t
(x) (x+s)
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We can break up the sum
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If the error terms implied by the expressions o(s) were actually zero, then we would
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Apply the same argument to (5.20) and the sum will give

9
“ax{y) )+ o0

oof o0af

dx 0y Odyox’
In order to make this argument work, we just need to take care in examining the
error terms. We can do this by appealing to the mean value theorem in the calculus

y y

The function g is differentiable in y and our sum (5.20) is just

g(y +1)—g(y)

and hence, dividing by ts

By the mean-value theorem

gy +1)—g(y)=1g'(y)
where y is some point between y and y + t. But

1
gy = 113!3 E(g(,\7 + &) —g(y)

() AC ) O AC)
()

By assumption, the function 0f/dy is differentiable. So applying the mean-value
theorem once more we get

5)-3(6) -5 GNE)

Thus the sum given by (5.20) equals

5/(()

By assumption, the function ;(?) is continuous. So for any ¢ > 0 we can find a
X\ 0y



8> 0 such that

_5_3 X 0 0 X
oxay’ (<y)> “oxdy’ ((y

Thus (5.20) becomes

where |r;| <eif |s| + [t] <. Similarly, (5.19) is

- (aay Zﬁ(( »”2)

Assume |st| > 0. Dividing by st we see that
0 of ([x _5_ if_
ox oy \ \\y Oy O0x\ \ y

[ral Iyl +1raf <2 3f [s]+ e[ <0

<r,

where

Since the left-hand side of this inequality does not depend on & —it is just the
difference between two numbers — and r; can be made as well as we like, we conclude

: . 0 0
the equality of the crossed derivatives | i.e., ——f nd i@: .
" 0x 0y Jy0x

5.5. Directional derivatives

Let I be some interval containing 0 in R* and let y: I — V be differentiable at 0. (As
usual, V' can be any of our choices of vector spaces, but let us visualize the case where
V = R?.) Suppose that y(0) = x. We will use the notation y'(0) to denote the vector
dye(1) so that

7'(0) = dyo(1) = lim [(1/5)(y() — »(0))].
The vector y'(0) is called the tangent vector to the curve y at t = 0. If y, is a second
curve with y,(0) = y(0) and y',(0) = y'(0), then we say that y and y, are tangent at 0, or
agree to first order at 0. If y is tangent to y, at zero and y, is tangent to y, at zero, then

Figure 5.8



clearly y is tangent to y, at zero. In other words, we have defined an equivalence
relation on differentiable curves; two curves are equivalent if they agree to first order
at zero. If y'(0) = v, then the pair {x, v} determine the equivalence class. We visualize
this equivalence class as a (little) vector v whose tail starts at x, and we call it a tangent
vector at Xx. Any x and v comes from an equivalence class, because we can always
consider the straight line curve

Wt)=x+tv

which satisfies y(0) = x and y'(0) = v. We will sometimes use a single Greek letter such
as & for a tangent vector at x. So & specifies both x and v.

Suppose that V= R?. The curve y is then specified by giving the two functions Xoy
and ye°y, usually written as x(¢) and y(t). Thus, for example

x(t)y=tsint + 1
y(t) = ¢

y(t)z(tsintt+1>
€
1
v(0)=(1)
o (0
V(O)—<1>-

d(x°oy)=d(tsint + 1) =(sint + tcos t)dt
d(yey)=d(e') =¢'d
so that the first and second coordinates of

, sint +tcost
Y ()= ,

€

specifies the curve

with

and

Notice that

can be recovered as the coefficients of dt in d(x°y) and d(y°y).

Let /: V— R be a function defined in some neighborhood of p. For each curve y
with y(0) = p, the function fev is defined near 0 in R. If f is differentiable at p and
v is differentiable at 0, then, by the chain rule, f°y is a (real-valued) function which is
differentiable at 0 and its derivative is given by

(foy)(0) = df(»'(0)
according to the chain rule.
In terms of our differential form notation in R?, we would substitute d(xy) for dx,
d(yey)for dy and of /ox, df /0y for 8f /0x and f /0y in the expression for d f. Thus, in
our preceding example, if we took



f<;>=x2+y2,

df =2xdx + 2ydy,
d(foy)=2(tsint + 1)(sint + t cos £)dt + 2e’-e' dt
= 2(tsint + 1)(sint + t cos t) + 2e*'dt.
The coefficient of dt is (f°y)(¢). Setting t =0 gives (f°7)(0).
Notice that (f°7)(0) depends on p and y'(0) but on no further information about

the curve 7. In short, it depends on the tangent vector &. We shall write this value as
D,f. We call D, f the directional derivative of f with respect to & Thus

D,/ =df,® if é={p.v}.

1 0
0) then D, f = %(p). Let f, and f, be two functions which are
differentiable at x, and let f=f, + f,. Let y be a curve passing through x whose

tangent vector at pis &. From the calculus of functions of one variable we know that

(fo9)(0) = (f1°9)(0) + (f2°7)(0)

For example, if v = (

and so we conclude that

Dg(f1 +f2) =D¢f1 + Dgfz-

Similarly, if we set h=f, f,, we know from elementary calculus that

(hoyY(0) = (f1°9Y(O)(f2°9)(0) + (f1 °¥)(O)(f2°7) (0)
= (f1°7)(0) f2(x) + f1(x)(f2°7)(0),
since (f, °y)(0) =f,(y(0)) = f,(x) and similarly for f,. Thus we can write

L Dg(flfz)z(Dgfl)fz +f1Dgf2-

Another example of the directional derivative follows. Let y: R — R? with

—1
y(t)z(t2i2t+2)’ f((;)>=x2y+y3.

Then df, ) and & = {y(0),y'(0)} are given by

syeam s <=0}

D,(f) = df(—%)(G)) =(—4, 13)(5) — _4426=22.

To verify that this equals (f°y)(0), we note that
foy(®) =@ — D2t + 2t +2) + (£ + 2t + 2)3,
(foyY () =20t — 1 +2t +2)+ (t — 1)* (2t +2)
+ 3(t% + 2t + 2)%(2t + 2)

so that



so that
(fo9)(0) =2(—=1)(2) + (- 1)2(2) + 3(2)%(2) = 22.

As an example of the formula for the directional derivative of a product, et

, X
g: R? >R be given by g((y)) = x? — y2. Then the product mapping fg: R? - R is

oG CM))-eror-

The differentials dg and d(fg) are given by
dg(x) = (2x, —2y)
d(fg)x) = @xp(x* = y*) + (<% + y?)(2x), (x* + 3y?) (x* — ?)
+(x*y +y*)(=2y)).
We then have

1
D.(f9)=d(fg)- ;)((2))

1
=(—4(—3)+10(—2), 13(—3) + 10(—4))<2>
= —8—158 = —166.
By the product formula, D,(fg) must also be given by

_ 1
D, =Dy0( ) +1( "} )po
with

—1 2 2 _ —1 (L 1\2 3 _
g( 2)=(—1) —2*= 3,f( 2)_( 1)22+23=10

1 1
o= () -+-o(3) -

D,(fg) = 22(—3) + 10(— 10) = — 166

which agrees with the previous calculation. It will be convenient for us to think of the
set of all tangent vectors at x as constituting a vector space, called the tangent space
atx and denoted by TV,. Thus, if £ = {x, v} and g ={x, w} are two tangent vectors at
X, then their sum is defined as & + 5 = {x, v + w}. Similarly, if £ = {x, v} and a is any
real number, then a& = {x, av}. In short, TV, looks just like V except that it has the
extra dummy label x attached to everything. At present this seems like a
cumbersome piece of excess notational baggage, but its value will become clear later.
If £ ={x,v} and 5 = {x, w}, then

D, f=df[v+w]
=df x[v] + df,[w]
=D,f+Dyf,

so that



SO

D,,,/=D,f+D,f
—

Similarly,

D,.f=aD,f.

5.6. The pullback notation

Let ¢: V— W be a differentiable function with ¢(x)=y. If f: W— R is a function
defined neary, then fo ¢ is a function defined near x. In order to emphasize a point of
view which will be central in this book, we will denote this function by ¢*f and call it
the pullback of f under ¢. So

O*f=[°9,
(@*/)(x) = f((x)).
We think of ¢ as fixed and f as varying, so that ¢* pulls all functions on Wback to V.
Notice that

¢*(f1 +f2)= ¢*f1 + ¢*f,
and

O*(f1f2) = (@*f)(@*]>)

so algebraic operations are preserved by ¢*.
Thus, if ¢: R* - R? is the map giving the transition from polar to rectangular

coordinates,
r rcos 6
¢((9>) - (rsin@)’

¢*x =rcos0,

we would write

¢*y=rsinb.

We should pause to explain our point of view about these equations. We have
an rf-plane and an xy-plane. We are thinking of ¢ as the map which assigns to each
point of the rf-plane a point in the xy-plane. We are considering x as a function on
the xy-plane: that function which assigns to each point its x-coordinate. Then ¢*x

0 y

¢ -~
I :\\\

r } X

Figure 5.9



becomes a function on the rf-plane, and in fact,

$*x =rcosf
and similarly
¢*y =rsin0.
We now want to define the pullback under ¢ of differential forms. We begin by
defining the pullback of the basic forms dx and dy. We define

¢*dx =d(¢p*x) = cos0dr — rsin 8 d0,
¢*dy =d(¢p*y) =sin0dr + rcos 0 do
and for any linear differential form such as

x2dx + y*dy
we define
¢*(x*dx + y*dy) = p*(x?) p*dx + $*(y*)p*dy
= (r? cos? 0)(cos 8 dr — rsin 0 d6) + (r* sin? O)(sin 6 dr + r cos 6 d6)
= r2(cos> 0 + sin3 0)dr + r3(sin? 0 cos 0 — cos? O sin H)d6.
In other words, for a differential form
adx + bdy

where a and b are functions, we define

¢*(adx + bdy) = p*(a)p*(dx) + ¢*(b)p*(dy),

where we then collect coefficients of dr and df. Notice that if f is any function in the
xy-plane

So

prdf = c/>*( o )cb*d +¢*(af )¢*dy

=(go¢)d<xo¢>+(g—fo¢)d<yo¢>
y

=d(f°¢)
by the chain rule. Thus

¢p*df = d(@*f)

This notation works in complete generality for differentiable maps from R*— R’
For example, consider the map ¢ of R*—>R? given by

(()-()




Then, if X, y,z denote the three coordinates on R, then
P*x=r? so ¢*dx=2rdr,
o*y=sr so ¢*dy=sdr+rds,
p*z=s* so ¢p*dz =2sds.

For any function f on R3

5f Lo of
= —d
df = 6 Y+ P —dz
and we can compute ¢*(df) in either of two ways; either as
d(¢*f)

or as
$¥(df) = ¥ (f>¢>*d +¢*( f)cp*d +(b*(af>¢*dz

For example, suppose that

SO
df = —zdx +2ydy — xdz.
Then
¢*f=0
SO

¢*df = d(¢*f)=0.
Computing ¢*df directly, we get
— 52 2rdr + 2sr-(sdr 4 rds) — r*-2sds
=[—s%2r + 2s%r]dr + [ —r?-2s + 2r?s]ds
=0.

The general situation is now clear. If x,,...,x, are the coordinates on R* and
Y1,...,¥, are the coordinates on R/, then a differentiable map ¢: R* — R'is given by

¢(V) X
o= : | v=(:)
<J5(V) X

09, 094
ax1d 1 + - +ak—dxk,

Then
P*y, = ¢1, p*dy, =do, =

¢*yi = ¢, ¢*dy, =dé¢,.
The operation ¢* carries functions on R' to functions on R¥ and linear differential
forms on R’ to linear differential forms on R*. All algebraic operations, such as



adding or multiplying two functions, adding two forms, multiplying a function by 3
form, are preserved by ¢*. Furthermore, the chain rule says that

p*df=de*f,
for any function f on R
Suppose that we have

¢:V->W and yYy:W-Z.

We can compose the two maps to obtain

Yop: Vo> Z.
If g is any function on Z, we can form
Yy*g=goy

which is a function on W and then
P*(W*g)=(goy )¢
which is a function on V. By the associative law for composition, we know that
(go)od=geo(Yod).
Thus
Wod)*g = o*(Y*g),

so that on functions

(o d)* = p*oy™.

Notice the reversal of the order.

Suppose V=R, W=R' and Z=R" with coordinates x!,...,x* y!,...,y%
zt,...,z™ then if
w=a,dz' + .- +q,dz"

1s a differential form on R™, then

Yrw
is a differential form on R! and

P Y*w
is a differential form on R¥. If follows from the chain rule that
d*Y*df=¢*(dy*f)

=do*y*f

=d(yed)*f.
Since ¢* and y* preserve all algebraic operations, so does (o ¢)*,

d*Y*(gdf) = (o P)*(gdf),

and since the most general linear differential form is a sum of terms like gdyf, i.e. is of



the form

a,dz' + --- +a,,dz",
it follows that

L (Yo p)¥(w) = p*Y*w (5.21)

for all linear differential forms.
Let y:R—V be a curve passing through x ie., y(0)=x. Then ¢oy is a curve
passing through y. If y is differentiable at 0, then so is ¢°y and, by the chain rule,

(¢°7)(0) = do,(y'(0)).
The right-hand side of this equation depends only on the tangent vector £ associated

to 7. Thus d¢, maps tangent vectors at x to tangent vectors at ¢(x):
do,: TV, - TW,,

where we define
dop.&={p(x),dp (v} if &={x,v}.
We can thus visualize the differential d¢, as taking infinitesimal curves through x
into infinitesimal curves through ¢(x).
Now let f:W—R be a function which is differentiable at ¢(x). Then by the
associative law for composition

(@*f)ey=fedoy
= fo(doy).

Differentiating this equation at t = 0 gives

| D,(¢*f) = Dy, .- (5.22)

This means we can pull f back by ¢ and then take the directional derivative with
respect to &, or, we can push forward by d¢, and then take the directional derivative
of f with respect to d¢,&. Both procedures yield the same answer.

Letting £ = {x, v}, the above identity is given explicitly by

D{x,v}((tb*f) = Dq‘)(x).d(bx[v](f)
or equivalently,
d(f° ¢)[v] = df,,[do,[v]]
which states that
d(f° ¢), = df¢‘x)0d¢x

which is a special case of the chain rule.
As an example of this identity, let f: W— R and ¢: V— W be given by

()= ol(2))-(0)



Then
df x = (2xy, x?)
G)
cosf —rsinf
d ry —
¢(9) (sin 0 r cos 0)

so that

D{¢((5))>d¢(§)£v] } (f)=4df (,,(g)od(b(g)[v]

- o) cosf —rsinb \ /v,
= (2(r cos 6)(r sin 0), (r cos 0)) sin @ rcos 0 )\ vy

v, cos 0 — rvgsin 6)

_ (7,2 i 2cos? 6 .
(2r*cos fsin 0, r ) v,sin 8 + rvg cos 0

— 2r2 cos O sin O(v, cos O — rv,sin 0) + 1> cos? O(v, sin 6 + rv, cos )
— 372 cos? Osin O v, + r3(— 2 cos Osin? 6 + cos O,

To verify that this equals D () }(qb* f), we note that
2] ¥

¢*f<<;)) =f<(';::g)) = (rcos 0)*rsinf = r*cos? fsin 0

d((b*f)(g) = (3r% cos? O sin 6, r3(2 cos O (— sin H)sin O + cos® 0)).
We then have

* — * Uy
P ¢/ =% )(s)<(v,,))

= 3r2cos? O sin O v, + r*(—2 cos B sin® 0 + cos® O)v,.

so that

Summary

A Differentials and partial derivatives
You should be able to state the definition of the differential df of a function fin terms
of ‘0’ and ‘O’ notation.

You should be able to state and apply the rules for differentiating the sum,
product, or composition of functions.

You should be able to express the differential of a function in terms of partial
derivatives and to construct the matrix that represents the differential of a function
f=R?->R?

B Coordinate transformations
Given a transformation that can be used to introduce new coordinates on the plane,



you should be able to use the chain rule to express differentials and partial
derivatives in terms of these new coordinates.

C Applications of differentials
You should know how to determine the equation of the line or plane tangent to the
graph of a function at a given point.

You should be able to use the chain rule to solve ‘related rate’ problems that
involve functions on the plane.

Exercises

5.1. Show that if f: V— W is differentiable at & and if T: W — Z is linear, then

Tof is differentiable at o and
d(Tef),= Todf,.

5.2. Let F:V— R be differentiable at o and let f: R — R be a function whose
derivative exists at a = F(a). Prove that fo F is differentiable at a and that

d(f°F),=f"(a)dF,.

53. Let F:V—>W and G: W—V be continuous maps with GeF(v)=v and
FoG(w)=w for all vin V and w in W. Suppose that F is differentiable at o
and G is differentiable at f = F(a). Prove that

dGy= (dF )~ 1.

5.4. Let f: V— R be differentiable at a. Show that g =" is differentiable at a

and that
dg,=nf""1df,.

t

e
5.5. Let y: R —» R? denote the curve () =< , t)’ and let F: R? - R? be the
sin

AG)-Ca0)

(a) Compute the tangent vector for y at t =0 and t =7/2
(b) Find the directional derivative of F with respect to each of these
tangent vectors.

5.6. Let f:R? -»R? and g: R? —» R? be given by

(G)-G2) oAC)-(as)

Verify the chain rule for the mapping gof: R* —» R?.

mapping

. x x2e’
5.7. Letg: V— Whbethe mappingg = ,and let A: R — Vbe the
y COS Xy

()

straight line



5.8.

5.9.

5.10.

5.11

5.12.

(a) Find the tangent vector at ( i) to the curve go 4.

(b) Compute the directional derivative D( 3) (1)(g) in two ways.
—=1/\2

rcos @

. r
Let ¢: V— Wbe the mapping ¢: (0) —>( 0) and letf: W— Rbe given

rsin
X .
by f:f~ |- x3y* Verify that
y
D:(¢*f)=Dyye.f

for all tangent vectors & = (, v).
Define mappings F: R? > R%, G:R* - R?, f:R! > R?, and g: R?> > R! by

G727 A0)-C5)
(5 o))

5y =dF y(()° 46¢z)

()
(c) d(gof )(z) =dg f(t)OdF ®

(@) d(fe9) )= df ())°%9(x)

x
y

Verify that

(2) d(F<G),

(b) d(GoF)jx) =G (o) °dF s

)

X0

Let f: R* — R be differentiable in some neighborhood of (
Yo

) and satisfy

Xo _
the mapping g,
Yo Yo

given by g(<x>) —1/ f((x>> is differentiable and that
y y
o=~/ (1(())
IG5 Go) vo)))

A function f on the plane is defined in terms of affine coordinates x and y
by

f((x())) # 0. Show that in some neighborhood of(

f(P)=/(x(P)y(P)])
(@) Is f continuous at the origin Py(x =0,y =0)? Justify your answer
carefully in terms of the definition of continuity.
(b) Isf differentiable at the origin? Justify your answer carefully in terms of
the definition of differentiability.

So-called parabolic coordinates on the plane are defined in terms of
Cartesian coordinates x and y by

()=o)
v) \J*+y)+x



5.13.

5.14.

du
(a) Express ( ) in terms of (dx
dv dy

. . dx du
this matrix to express in terms of .
dy do

) by means of a 2 X 2 matrix, then invert

. x -
(b) Invert the coordinate transformation by solving for ( ) in terms of u

y
. ) dx\ . du

and v. Differentiate to express in terms of .
dy dv

(c) Show that the curves u = constant and v = constant are parabolas
which are perpendicular where they cross. Sketch these families of
curves.

(d) Consider the function f on the plane defined by f(p) = 1/(u(p) + v(p)).
Expressd, f, where q1s the point with coordinates u(q) = 4, v(q) = 16,in
terms of du and dv, then in terms of dx and dy.

(e) Suppose that a particle moves along the path defined by the function

o: R — R? such that
X 2+t
(5 eo=("")
y t

Calculate the derivatives of xcea, yoa, uca, and vea at t=2.
Consider coordinates u and v in the plane which are related to x and y by

the equations
y - u—v?)

(a) Calculate the derivative (the Jacobian matrix) of this transformation at
dx du

the point u = 2, v = 1 (equivalently, express (d ) in terms of <d ) at
y v

this point).

(b) Consider the function f (u, v) = u?v>. Find the equation, in terms of x
and y, of the line tangent to the curve f (4, v) = 4 at the pointu =2, v =1
(ie., at x =4, y = 3). (Do not try to solve for u and v as functions of x
and y; just use the chain rule.)

(c) Suppose that a particle moves along the path

y) \it)
At the instant ¢ =2, when the particle is passing through the point

u 2 . . .
( ) = ( ) ), at what rate are its u and v coordinates changing; i.e., what
v

are du/dt and dv/dt at this instant?

Let A denote an affine plane, let P, be a point in this plane. Invent a
functionf: A — R, satisfying f(P,) = 0, which has the property that for any

0 0
affine coordinates s(P), t(P) on the plane, (a—f ) and (5]:) are defined and
N t t s

equal to zero at P,, yet f is not differentiable at P,. (Hint: replace
‘differentiable’ by ‘continuous’, ‘partial derivative’ by ‘limit as a function of



5.15.

one coordinate’, and an answer would be

0 at Py,
f(P)y=< x%y ,
m otherwise

where x(P,) and y(P,) are both zero.)

In Quadratic Crater National Monument, the altitude above sea level is
described by the function

z(x,y) = \/ (x2 +4y?), (x, ¥,z in kilometers).
The Fahrenheit temperature is described by
T(x,y)= 100+ 2x — +x?y2.
(a) Express dz and dT'in terms of dx and dy at the point x =3, y = 2.
(b) Find the equation of the tangent plane to the crater at the point x = 3,
y=2.
(c) At the point x =3, y =2, along what direction is the temperature
changing most rapidly? If one follows a path along this direction, what

is the rate of change of temperature with respect to altitude (accurate
to the nearest degree per kilometer)?
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In Chapter 6 we continue the study of the differential calculus.
We present the vector versions of the mean-value theorem, of
Taylor’s formula and of the inverse function theorem. We
discuss critical point behavior and Lagrange multipliers. You
might want to read the chapter quickly without concentrating
on details of the proofs. But do the exercises.

6.1. The mean-value theorem

This is one of the few theorems that we will not be able to state, in the higher-
dimensional calculus, with the same degree of precision as in the one-variable case.
We first recall the statement in one variable. It says that, if f is continuously
differentiable on some interval [a, b], then

Jb)—fla)=f(z)(b—a) (6.1)

where z is some interior point of the interval. The point z is in fact difficult to
determine explicitly, and the mean-value theorem is usually applied as an inequality:

If f'(x) < m for all xe[a,b], then f(b) — f(a) <m(b — a). (6.2)

This inequality is of course an immediate consequence of the mean-value theorem as
stated above, since f'(z) < m. But it is easy to give a direct proof of this inequality
using the fundamental theorem of the calculus:

f(b) —f(a)=be’(s)ds<meds<m(b—a). (6.3)

For purposes of generalization to the higher-dimensional case, it is convenient to
rewrite argument (6.3) slightly:



td
f(b)—f(a)=j TS+ (b~ a))de = j ' fla+ b — a)(b—a)dr
0

o dt
i
<(b—a) f f'(@+ t(b — a))dt < m(b — a). (6.4)
0

(Notice that the second equality involved a use of the chain rule.) One advantage of
(6.2) or (6.4) over the original mean-value theorem (6.1)is that it extends immediately
to the case where fis a mapping from R to R*. Suppose that f is such a map, so fis
given as a function:

1)
fo=y :
Gy
Then f'(t) = lim,_, o (1/h)(f(t + h) — f(t)) = df,[ 1] (where we think of 1 as a vector in
R! in the notation of the preceding sections). Clearly the vector f'(t) is given as

f1(@)
o=t :
oy
We can now write, as in the first equations of (6.4),
1 1

d
f(b)—f(a)=J' af(a%—t(b—a))dt:(J f’(a+t(b—a))dt)(b—a). (6.5)
0 0

By the integral of a vector-valued function g we simply mean the vector whose
components are the integrals of the components:

g1 fg:(Ddt
If g={ - then jg(t)dt = :
I f gi(t)de
Of course, we have the direct definition of the integral from approximating sums:

f g()dt = lim (1/m) 3. g(ifn).

Since each of the components of this approximating sum of vectors is an
approximating sum for the integral of the corresponding component function, the
two definitions of integral for a vector-valued function of one variable coincide.
Since [[v, + v, | < |lv,|| + [|v,], it follows for the approximating sum and hence,
passing to the limit, for the integral that

J g)dt|| < j lg(2) | dt.

Substituting into (6.5) with g =f", we get
If®)—f@l <mb—a) if |f@OI<m forall te(ab) (6.6)

At this point we can see the trouble involved in trying to generalize (6.1) to an




Rk-valued function. We could apply (6.1) to each component fjoff. For each such
component we would get f i(b) — fila)= f'j(Z,-)(b — a), but the z; would vary from
one j to another. There will, in general, be no point z that can work for all the
f;s and so the analogue of (6.1) need not be true. Nevertheless, (6.5) is true.

We now want to generalize (6.6) to the case where f is a map from V— W and
where V 1s not necessarily one-dimensional. We have already observed that the
generalization of f'(x) is df,. Now df, is a linear transformation, and we have to
understand what we mean by ||A| when A is a linear transformation from V to
Ww. We define

Al =ﬁa>§HAUH

or, equivalently,

A
1 AJl = max AY]
v#0 HV“
Thus

lAvl <[ A] livll forall v
and || A| is the smallest number with this property, i.e., if

|Av|| <k|v| forall v,
then
|All <k

If A, and A, are two linear transformations from V to W, then
1Ay + AVl = [ Ay + AV S T Agvl + TAv S HAL T+ A2 D v

SO
[Ay + Azl < Al + (A (6.7)

For any points a and b in V' we shall let [a,b] denote the line segment joining a
to b, so [a,b] consists of all points of the form a + t(b — a) for 0 <t < 1. (This is
a natural generalization of the one-dimensional notation.)

a¥ 1Q

2 /Q;,a)

t

Figure 6.1

We wish to prove the following:

Suppose that f:V— W is differentiable at all points of [a,b] and its
differential, df,, is a continuous function of x on this segment. Suppose
further that

ldf. | <m forall xe[a,b].



Then

L; Lf(b)—f@)| <m|b—al. mé;w

Proof. Let h:[0,1]—[a,b] be the map given by
h(t) =a + t(b — a).

Let F=foh, so F(t)y=f(a+t(b—a)). Then F is a differentiable map from
[0,1]— W and, by the chain rule,

dFt = dfh(t)odht'

Now dh,[1]=b—a so

F(ty=dF,[1]= dfh(t) [b—a]
Also

1

fb)—f(a)=F(1)—-F0) = j F'(t)dt

0

1
=f dfyo[b —alds

= A(b — a) (6.9)

where A is the linear transformation

1
A=fdmmt (6.10)
0

In (6.10) we are integrating a linear-transformation-valued function, the function
which assigns to each ¢ the linear transformation df,,. We can treat such integrals
Just as we dealt with vector-valued integrals, for instance, since ¥ and W have
standard bases, we can identify every linear transformation with a matrix. The
integral of a matrix-valued function g, where

g(t) = (gij(t))
is given as the matrix whose ijth entry is the integral of the numerical valued function
gi;- Or, as before, the integral can be given as a limit of approximating sums. It
follows then from (6.7) that
‘Pmm

In particular, substituting into (6.10) and using the hypothesis that || d f || <mforall
X€[a,b], we conclude that

< Jllg(t) Idt.

Al <m
and hence, from (6.9), that (6.8) holds.

6.2. Higher derivatives and Taylor’s formula

Let f:R? >R be a function which is differentiable. If f/dx and Jf/dy are both
Continuously differentiable, we can form



8 (a . 0f
$<5£) which we denote by ix2’
o (of . o*f
a_y <6—y> which we denote by PR
and
o [of . o*f
Il s te b .
o <6y> which we denote by 3x 3y

We have already seen that

o’f _a(of
oxdy Oy\ox )
Similarly we can define higher-order partial derivatives when they exist, and have
the appropriate equality among mixed partials. For example,

() E)-(5(3)

etc. The significance of the second (and similarly higher) derivatives is given by
Taylor’s formula which we will now state and prove.
For notational simplicity, we first state and prove it at the origin. Suppose that

: L 0 .
f has continuous first- and second-order derivatives near ( o) For convenience,

we will write f(x, y) for f<<: ))) Then

1d
0

0

=f(0,0) + Jl (g(tx, ty)x + a—f(tx, ty)y)dt.
0x dy

Let

1 1

fl(x’y)zj

0

if—(tx,ty)dt and fz(x,y)zj
0x

0

g (tx,ty)dt.
dy

Then f, and f, are differentiable functions, and
JG, ) =10,0) + xf1(x,y) + yf(x, )
or, more succinctly.

f=10,0)+xf, + yfs.

Furthermore,

%)
f1(0,0) = 6—){ (0,0) and f,(0,0)= g—f(o, 0).

Now apply the same argument to f; and f,:
1106 =110,0) + xf;1(x, ) + yf12(x, y)



where

lafl 10f1

fi11(x,y)= g(tx,ty)dt and fi12(x,y)= O-é—y—

and similarly,

(tx,ty)dt
0

f2=15(0,0)+ xf,, + xf5,.
Thus

f=1(0,0)+xf1(0,0) + ¥£,(0,0) + x*f1; + xy(f12 +f21)-
If f has continuous derivatives up to third order, we can repeat the process once
again to get
f=1(0,0) 4 xf1(0, 0) + yf(0, 0) + x*f11 (0, 0) + xy(£1,(0, 0) + /241(0, 0))
+¥%f220, 00+ x3f1 14 + X*y(f112 + 121 +f211)
+ xy*(f122 + fa12+221) + VS 222
where all the functions f;,,, f11,, etc., are continuous. If we compute the second

derivatives of both sides of this equation at the origin, we conclude that

2

0
2/1,(0,0)=535(0,0)

11200, 00+ £24(0,0) = =-(0,0)
x 0y
and
of *

2f22(09 0) = a_y?(o, 0)-

Thus we have proved

J(x,y)=1(0,0) + xgj:(0,0) + yg—f(0,0) +1x2 o’f

X y ox?
o2f 02 x
0,0)+1y> =2
axay PO 5 (y)

It is clear that, if f has still higher-order continuous derivatives, we can keep on
going. It is also clear that the same argument works in R* as well as in R2. Finally,
X

)by u+v:
y

Let f: R* - R have continuous derivatives up to order n+ 1. Then there is a poly-
nomial P, in the coordinates of v such that

fa+v)=P,v)+0(|v[").

The coefficients of P,(v) can be determined by successive differentiations and
evaluation at v=0.

If f: R* —» R!, the matrix of second partial derivatives

(0,0)

3

+xy (0,0) + O (6.11)

.. (0
we may replace the origin < 0) by any vector u and (

o%f o’ f
%2 (p) ox 0y (p)
Hp(f) = aZf az




is called the Hessian matrix and the corresponding quadratic form is denoted by

d? fo-
We use simply H when f and p are understood. Thus we can rewrite (6.11) as
S(p+v) =1 (p) + df,(v) +3d2f,() + o(llv]?) (6.11)
where
v
d*f(v)=v'Hv=(vy, UZ)H(Ul). (6.12)
2

The Hessian d°f,, as a quadratic form, is subject to the analysis we presented in
Chapter 4. For example, if f (P) = [x(P)]*y(P), then, at the point where x =2, y = 3,
we have

of of _ o*f i

02f
___=2 =12’ —_— = :4, ——:2 :6’ =2 :4, —_——— ==
ax Y oy ox? axay ay?

0,

so that at p= (i)dfis represented by (12,4) and H by (j g)

Maxima and minima
The Hessian is especially useful in analyzing the behavior of a function near

a critical point where its differential df is zero. If P, = <x0) is such a point, then
Yo

f®o +v)=f(Po) +3d°f(v).

If the quadratic form d? 1, 1s positive definite (H has two positive eigenvalues), then
it follows from Taylor’s formula that (P, + v) > f (P,) for small v and f achieves
a minimum at P,. If 2f is negative definite (H has two negative eigenvalues), then
f(Py+v)<f(P,) and f achieves a maximum at P,,. Finally, if H has one positive
and one negative eigenvalue, then d?f(v) achieves both positive and negative
values for small v, so that f achieves neither a maximum nor a minimum at P;
what it has there is a saddle point. If H has one or more zero eigenvalues, and is
therefore singular, we have to inspect higher derivatives to determine whether f
has a maximum or a minimum at P,

As an example of using the Hessian, we find and classify the critical points of
the function

f=3x*+2y* —6xy.

To locate the critical points, we set the partial derivatives with respect to x and
y equal to zero:

if—=f’1(x,y)=6x—6y=0 sOoXxX=y
ox
0
a—£=f’2(x,y)=6y2—6x=0 sox=‘y2

The critical points are therefore at x=0, y=0and x=1, y= 1.



Next we calculate the second partial derivatives in order to form the Hessian:
Pf o O _ *f
ox* 7 0xdy 0y

At x =0, y =0, the Hessian is therefore

H= 6 —6 .
—6 0
This has a negative determinant, hence its eigenvalues are of opposite sign and
the critical point at the origin is a saddle point. To confirm this conclusion, we
note that f(x, y) is positive for points near the origin along the x-axis, while along

the line x = y the function is negative near the origin.
At x =1, y=1 the Hessian is

H= 6 —6 .
-6 12

This has positive determinant, so its eigenvalues are of the same sign; since the
trace is positive, both eigenvalues are positive. Hence F(x, y) has a relative minimum
atx=1,y=1.

On an affine plane, the only property of the second differential d2f which is
independent of choice of coordinates is the number of positive, negative, and zero
eigenvalues of the Hessian. On a Euclidean plane, we can inquire about another
coordinate-independent property of a function f: namely, how its average value
on a small circle surrounding a point P, compares with its value at P,. We write,
from (6.11),

— 6, 12y.

f(Py+v)=f(Po)+df[v] +1d%f(v)+error.

hcos@
P°+(h sino)

Figure 6.2

Since df [ — v] = —df[v], the average value of df[v] for any circle centered at
Py is clearly zero. To find the average value of 1d2f(v), we set v= <Zcf)83>,
sin

so that using (6.12)

142 _1 . 0*f/ox*  0°*f/oxdy\ [ hcosH
3d°f(v) =3(hcos 6, hsin 0) (62f/6x6y 021 10y )(hsin(?)



or

2 2 62
1d%f(v)=4h? —6—160829 +2 o7 cos@sinO + {ssz:l
0x? 0x 0y 0

Since the average value of cos? 6 or sin2 6 on [0, 27] is 3, while the average value of
sin O cos 0 is zero, we see that

2f o*f
142 1
<2d f(v)>average - 4h [ax ay ]
and that
2
<f(P0 + V)>average =f(P0) + 1h2<a {'{" ay{) + error.

The quantity 8*f/0x* + 0*f /0y*, which determines whether f increases or decreases
‘on the average’ as we move away from P, is called the Laplacian of f. By virtue of its
definition in terms of an average over a circle, for any coordinates obtained from x
and y by a rotation, the Laplacian will have the same value. For this reason the
equation

2 2
ox* dy

called Laplace’s equation, describes a property of a function on a Euclidean plane
which does not depend on the choice of Euclidean coordinates. Not surprisingly,
this equation arises frequently in conjunction with functions on a plane which have a
physical significance: electric potential, for example, or temperature.

Before leaving the subject of maxima and minima, we shall consider the con-
strained extremum problem on the plane: where, along the curve defined by g(P) =
constant, does the function f(P) achieve a maximum or minimum? The condition

=0,

Py

g = constant

Figure 6.3

for such an extremum to occur at P, is that dfp,(v) =0 for any vector v which lies
tangent to the curve g(P) = constant. But such a vector satisfies dg(v) = 0. It follows
that, at the point P, where the maximum or minimum is achieved, df; p, Must be a
multiple of dgp :say df = Adg. Thus we are led to the Lagrange multiplier method for



the constrained extremum problem: to maximize or minimize f(P) along the curve
g(P) = constant, consider the function f — lg, where A is an undetermined scalar
called the Lagrange multiplier, and set d( f — 1g) = 0. The resulting two equations,
along with g = constant, determine the unknown quantities x,y, and 1. To
determine whether the extremum thus found is a maximum, a minimum, or neither,
we first find a vector v for which dg(v) = 0. This vector is tangent to the level curves
f = constant and g = constant at the critical point P. We then consider the function
h=f — Jg, which, by construction, has a critical point at P as a function on the plane,
We calculate the best quadratic approximation to h near this critical point and
evaluate it on our vector v for which df(v) = dg(v) = 0. If this quantity, 1d2h(v), is
positive, we claim that h(P) > h(P,) at all points near P, on the curve. Indeed,
suppose we parameterize the curve g =0 by p = p(t). That is, we choose a function
p:R— R? such that

gp®)=0, pO)=p, and p0)=v.
(That this is always possible will be proved in the next section — it is a consequence of
the implicit function theorem to be proved there.) Then
hop=fop since gop=0.
Also
(hopy(0) =dh, (V) =0
and
(fop)" = (hop)'(0) = d*hp ().
Thus (h°p)”(0) > 0 and hence f has a minimum at P, along g = 0. Similarly, f has a
maximum along the curve g = 0 if d2A(v) <O.
For example, suppose we wish to maximize the quadratic form
O(x, y) = 8x2 — 12xy + 17y?
on the circle G(x, y) = x> + y* = 1. Setting the differential of Q — 1G equal to zero,
we find
16x — 12y —24Ax =0
and
—12x+ 34y — 24y =0.
On eliminating A between these equations, we find
16 — 12(y/x) = — 12(x/y) + 34

or
(x/y) — (y/x) = 3/2.
Thus
x?—3xy—y*=0
SO

(x —2y)(x +3y) =0.

The extreme values of Q therefore occur where the lines x =2y and x= —3y



intersect the circle x2 + y2 = 1, at

(i) s 1)

We now investigate the nature of these critical points. The differentials of Q and G
are
dQ = (16x — 12y)dx + (— 12x + 34y)dy,
dG =2xdx +2ydy.

Figure 6.4

At P, where x =2y, we have
dQ =10xdx + 5xdy, dG=2xdx+ xdy.
As we expected, dQ is a multiple of dG, with 4= 5. A vector v for which dQ(v) =

: 1 : - : .
dG(v)=0 i1s (_2). The Hessian of Q — AG is just the constant matrix which

represents the quadratic form Q — 5G:
3 -6
"= ( —6 12)'

— 1 1
We calculate (1, — 2)( 3 6)( )-_— 1, - 2)< 5) =75 and conclude

6 12 2 —30
that Q has a minimum on the circle at P,.
At the other critical point, where y = — 2x, we find

dQ =40xdx — 80xdy; dG=2xdx—4xdy, so A=20.

A vector for which dQ(v) =dG(v)=0 is (?), and, on evaluating the Hessian of

Q — 20G for this vector, we find that

—12 —6\/2 —30
(2% 5)3)e)-

so that Q has a local maximum on the circle x> + y? =1 at the point [

s



6.3. The inverse function theorem

Let U and V be vector spaces of the same dimension, and let f:U—>V be 3
differentiable map with f(p,) = q,. We would like to know when there exists ap
inverse map g: V— U such that gof=id. Before we formulate the appropriate
theorem, we first examine some necessary limitations on the problem.

If we expect that g is also to be differentiable, then the chain rule says that
dg;p°df, =id.
Thus the linear map d f, had better be invertible. If it is, then we expect the formula

dgr="[df,17"
to hold.

Figure 6.5

A familiar case where df is not invertible is where U = V= R! and f(x) = x2. At
0, df, =0 and there is trouble with g(y) = \/ y near y =0. In fact, there are three
kinds of trouble. First of all, \/y is not defined (over the reals) for y <0. More
precisely, no point y < 0 is in the image of f. Secondly, the square root for y is not
uniquely specified: for a given y > 0 there are two values of x with x? = y. Thirdly,
the derivative of \/y blows up as y —0. To get around the second of these difficulties,
we can proceed as follows. Suppose we choose some x, #0 with x2 = y,. For

Yo

Xo

Figure 6.6



the sake of argument, suppose x, > 0. Then in a sufficiently small neighborhood
about y, (small enough so as not to include y = 0), there is a unique inverse function,
the square root, specified by the requirement that the values be close enough to
xo (In this case ‘close enough’ means not to be negative —once we specify that
the square root be positive, it is uniquely determined.)

We can not only assert the existence of the square root, we can give an
algorithm for computing as close an approximation to the square root as we like. We
recall one of these algorithms — Newton’s method — but formulate it more generally.

Suppose we are given a map f: U — V with f(py) = qo. We are given some q near
qo and wish to find a p near p, such that f(p)=q. Finding p is the same as
finding p — po- We wish to have

f(Po+pP—po)=4.
But

J(Po + P —Po) =S (o) + df,, (P — Po) + o(p — Po)
=qo+df, (P~ Po) + op — Po)-
If we could ignore the term o(p — p,), we would obtain the approximate equation
q—qo=df, (p—po)

or, since d fpO has an inverse,

P=Ppo+df, (q—qo).
This suggests defining

P:=po+df, (q—qo)
as an approximate solution, then defining

q; =f(p,)

and starting anew. Thus Newton’s method
P.=p; +df, (4 —qy),

etc.

Suppose U = V= R! and f(p) = p*. Then df,, is multiplication by 2p and hence
df, *(w) =w/2p. Thus, in this case,

P1= Do +21E(q_510)~
For example, suppose we take
Po=3 so go=9
and take g = 10. Then

p;=3+%(10 —9)=3.166...
Then

q,=p?=10.02777....



(Notice that p; is already a much better approximation to \/10.) The next
approximation is given by

pz == 3.16 +

IERTS (10 —10.027)

=3.1622816....

Then
g, = p3 = 10.000 024

so p, is correct to four decimal places.
Let us give a second example, with U = V= R Suppose that the map f is given

) (-2

Then df, %) is the linear transformation whose matrix is
y

3x2  —3y?
2y 2x )

Suppose
2

Po = <1>
so that

8—1 7

o= (2-2~1 ) - (4)’

and

12 -3

=5 73)

and

I A
(@/3) _54<—2 12)'

=(33)

Suppose we take

Then
P1=po+(dfp)_l(q—%)
(2 1/ 4 3\/ 05
={1)F 54\ 22 2 /\ o2
_(2.026
10937 )
we get

(7493
11 =1\ 3796



which is already quite close. Notice that at each successive stage in this algorithm
we have to compute a different value of d ;.

A mathematical theorem will be formulated which asserts that, under suitable
hypotheses about f, Newton’s method will give a sequence of points p; which
converge to a solution p of f(p) = q, provided that q is sufficiently close to qq,.

Another algorithm which converges much more slowly than Newton’s method is
to set

L=@f,)""
and
P: =Po + L(q — qy),
q; =f(py),
P, =p: +Lg—q,),
q,=f(py), etc.
This is known as Picard’s method. For example, with f:R—R, f(p)=p? and
po = 3, we get
q, = 10.027,
as before, but
p,=3.16 + (- 0.027) = 3.162 036,
q,=9.9984817, etc.
An advantage of Picard’s method is that we only need to compute L once. It is
easier to formulate and prove the slow convergence of Picard’s or Newton’s method

with fewer assumptions about f than it is to prove the fast convergence of Newton’s
method, which requires more hypotheses about f, as we shall see.

Proofs of convergence

We now formulate the hypotheses we need about f and prove the convergence of
both methods. Recall that, if f is differentiable at p, then

S =f(p)+df (' —p)+ o' —p)

which means that given any ¢ we can find a § such that

1/ (") =/ () —df(p* —p)ll <&l p' —pl (6.13)

whenever |p* —p| < 4. The § that is required for this inequality may depend on
the point p. Let us assume that f is uniformly differentiable in the sense that for
any ¢ we can find a d such that (6.13) holds for all points p and p* in some ball
centered at p,. So we assume that there is some a > 0 such that given any ¢ we
can find a  such that (6.13) holds if

Ip' —pl <9, lIp—poll<a, |Ip'—poll<a

Let us also assume thatd f ! is uniformly bounded, i.e., that there is some constant



K such that
Idfp)~ ' I<K forall |p—pol <a (6.14)
We also assume that d f itself is uniformly bounded, i.e., that
ldf, <M forall |p—p,l<a

Finally, for the Picard method, let us assume that d f,, is continuous in the sense that
for any ¢ > 0 there is a ¢ such that

ldf,—dfull<3e if [[pP—p' 1< p—poll<alp'—PpPoll<a (6.15)

and we only need assume that (df, )™ " exists.

Convergence of Newton’s method
Now let us look at Newton’s method. The step going from p; to p;, ; is given by

P =p+df)" q—1(p)).

But

S@)=f(Pi-1 +Pi—Pi-1)=f(pi-1) +df, _ (Pi —Pi-1) + o(p: — Pi-1)
and

q—f(p;i-1) ‘*‘dfp,_l(l’i —p;-1)=0.
Also, if || p; — pi-1 || <0 then [lo(p; — p;— 1) | <&llp; — pi- ¢ || by (6.13). So

Ipivs —Pill < Kellp;—pi-q . (6.16)

We may choose ¢ small enough so that K¢ <3 and also K¢ < 1a, provided § is
sufficiently small. Now

P: =Po +df, (4 —qo) g0 =1 (po)
so if

ld—qoll <é/K
then

Ip1 — Poll < 0.
If 26 < a, so in particular § < 1a, the point p, will satisfy

Ip; —poll <a

so that, in particular, p, is in the domain of definition of f, and we can use the
algorithm to define p,. It follows from (6.16) that
Ip2 —p1 [l <30 <3(Ga)
SO
P2 —Poll <llpz —pill + IP1 —Poll <G+ D3a<a.

Thus p, is again in the ball of radius a so we can apply the algorithm and (6.16)
to get

Ips — P2l <3NP, —Pull <26
and hence

Ips—Poll SG+3+1)za<a



etc. We can always continue to the next step since (by induction)

Ipi—pi-i I < 5/2i
and

11
Hpi—polls<§ Tt +1> <2}a<a.

The sequence of points p; converges to some point p since

1
IPi+r —Pill <ZIGN 4+ +1)0 < S3i= ~=19—0 as i-o0o.
Finally,
lq =)l =lldf,Pir1 —P)I < M|p;sy—p;[| -0

so, by the continuity of f, we see that

fp)=4q.
Uniqueness of solution
We now look at uniqueness. Notice that K is determined by f. We are free to
choose a smaller value of q, if we wish, without changing K. This is at the expense
of choosing ¢ and hence /K smaller. In particular, we may assume that a has
been chosen so small to start with that (6.13) holds for any pair of points p and
p' where ¢K < 1. Now for any pair of points

Ip—p* I =1(df) " @dfp—pNI <KIdf,(p—pHI.

If f(p)=f(p"), then (6.13) implies that |Idfp(p —p)| <e|lp! —p|l and combining
these two inequalities we get

lp—p'll<eK|p—p'll, eK<1

which can only happen if |p—p*| =0, i.e, p=p*. Thus there can be at most one
solution of f(p)=q with |[p—pol <a.

Convergence of Picard’s method

Now let us look at Picard’s method. Let L=(df, )™ '. Then
Pi1 =P + Lg =1 (p:)
=pi+ Lq—f(p;-1) +df, ,(pi—Pi-y) + 0(pi — Pi- 1))

as before. Now
q—f(pis+1) + df,,o(Pi —pi-1)=0

SO

la=f (i) +df,_@—pi )l = 1S, —df, )P~ pi=)]
<%HP£“P;‘-1 I

provided we take a small enough. Also, we can choose § small enough so that ¢
is replaced by 3¢ in (6.13). Then

Ipis1—pill Sk(%(?llpi—l’i—lll +%8“pi_Pi—1”).<k8||l’i_l’i—1“



so that (6.16) holds as before, where k = || L||. Actually, we can use the mean-value
theorem to rephrase the argument for the Picard method so as to avoid the
unnecessary assumption of uniform differentiability. Indeed, consider the map

h(p)=p + L(q — f(p))
where L=(df, )"~ 1. By the continuity of d f, we can choose a small enough so that

Idhyll = 11— Ld £, <3.
Then
D1 —Pill = [1A(p:) — h(pi— DIl < 11Dy — Pi—1 |
by the mean-value theorem and we can proceed as before.
We can also understand why Newton’s method converges so much more rapidly,
when it works. Suppose that f has two continuous derivatives. Then, by Taylor’s
formula,

| f)—f(p)—df (' —p)<clp' —pl?
(where c is a constant given by the maximum of |d? f|), a much stronger inequality

than (6.13). Going back to the proof of (6.16) and substituting this inequality, we
get

IPiss — Pl <kllp;—pizs 1%
If, for example, we started out with |p; —poll small enough so that
kip; —Pollt’? <1 (and ||p; — po || < 1), the above inequality would say that

Piv: — Pl <P — Py ”3/2

SO
Ipis s — Pl <Ny — Po 1P,
an exponential rate of decrease instead of the geometrical one ||p;,; —p;| <
(eK)"lp; — Po || given by the Picard method.
Let us summarize what we know so far. We have shown that under suitable
hypotheses there exists a ball B around q, =f(p,) and a ball C around p, such

that for each qeB there is a unique peC with f(p)=q. In other words, we have
defined a map

g:B->C
such that

feg=1d
and

gef=i1d.

Differentiability of solution

We now want to prove that g is differentiable. Notice that the uniqueness of ¢
implies that g is actually continuous. Indeed, suppose that g(q) = p. Draw a small
ball around p. Then apply the results obtained so far to p and q. This means that
there will be a small ball around q and a function inverse to f mapping into a
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small ball around p. But, by uniqueness, this inverse must coincide with g. Hence
g maps a small ball around q into a small ball around p, i.e., is continuous. Now

v=/(9(q +v))—f(9(q)) = d f (9(q + v) — g(q)) + o(g(q + v) — g(q)).
Applying (df,)™" to both sides we get
(df,)”'(v) = g(q + v) — g(q) + o(g(q + v) — g(q)).

Since g is continuous we can choose v small enough so that | o(g(q + v) — g(g))|| is
smaller than 3|/g(q + v) — g(q)||. The preceding equation implies that

1(df) ™ W + lolgla +v) — g(@) |l > I g(g + ) — g(@) |
SO

lg(@+v)—g@ | <21I@f) ‘W)l
1e., g(q + v) — g(q) = O(v). But then

o(g(q + v) — 9(q)) = 0o(O(v)) = o(v)
so from the above we have

g9(q +v)—g(p) = (df) " (v) + o(v),
ie, g is differentiable at q with derivative

dg,,=@df)™"

We have thus proved the

Inverse function theorem. Let f:U —V be continuously differentiable with
f(po)=qe and d fpo invertible. Then there exist balls B and C around q, and p,,
such that there is a unique map g: B— C such that fog=id. This map is
continuously differentiable and

dgf(P) = (dfp)_ L

The implicit function theorem
Let us draw some consequences of the inverse function theorem. Suppose
G:R? - R! with G(x,, yo) =0 and

0G
5}7 ;é 0 at (x05 )’0)



Let f:R?— R2? be defined by

Then
1 0
df=
/ _Qg oG
ox Qdy

Xo

as a matrix, and is nonsingular at ( ) By the inverse function theorem we

Yo
can find an inverse map g with fog =1d. We may write

U F(u,v)
o((2))- )
so that the equation feg =id becomes
F(u,v) =u,
G(F(u, v), H(u,v)) = v.
Substituting the first equation into the second gives
G(u, Hu,v))=v
and setting v =0, h(u) = H(u, 0) gives
G(u, h(u)) =0.
The function h(u) is differentiable and is the unique solution to this equation. The
existence of uniqueness and differentiability of h is the content of the implicit

function theorem. Thus the implicit function theorem in one variable is a consequence

of the inverse function theorem in two variables. We state it once more as a formal
theorem.

The implicit function theorem. Let G be a differentiable function with
G(xg,y0) =0 and (0G/0y)(x, Vo) # 0. Then there exists a unique function h(x) defined
near x = x,, such that h(x,) =y, and G(x,h(x))=0. The function h is differentiable
and h'(x) = — (0G/dx)/(0G/0Dy).

We can reformulate the preceding argument. The simplest map (other than the
constant map) that we can imagine from R?— R! is projection onto one of the

factors
1R 5 RY n((u)) =,
v

Now let G:R? - R! be any continuously differentiable map and suppose that
deo is surjective (which, in our case, where the range is one-dimensional, means
that de0 # 0). We claim that there are local changes of coordinates, i.e., maps

g: RZ > R2



locally defined and having a differentiable inverse so that
Gog = 7T.

Indeed, since dGpO #0, we can make a preliminary linear change of coordinates
in the plane so that 0G/dy #0. Then the above argument applies to give a map
g such that Gog = 7. Thus, if we allow arbitrary changes of coordinates, the most
general continuously differentiable map with dG, surjective looks like’ projection
onto a factor. For example

G(x, ) = (> +y2)} G-gl0.r=r

N

g(2)=(reesf) |

Figure 6.8

The simplest non-trivial map from R* — R? is the map i which simply injects R? as
the ‘x-axis’

ERISR? i(x) = (g)

We claim that if G: R! — R? is any continuously differentiable map with dG, #0,we
can find a change of coordinates, i.e., a continuously differentiable map f with
differentiable inverse such that

foG =i,

Figure 6.9

Indeed, by a preliminary linear change of variables in the plane, we can arrange that

1
a6, (1).

By a translation we may assume that G(p,) = (];0). Now define

‘R? - R? V)= Gi(x) )
! F<(Y>> <Gz(X)+y



where
_{ Ga(1)
o= (Gz(t)).
1 0
dF(S“):(o 1)

and hence F has a continuously differentiable inverse. Now

G
Foi=| _')=¢G
()

by the definitions of F and i. Hence, taking f=F~'
i =foG.

Locally, we can ‘straighten out any curve’ by a change of variables.

Then

6.4. Behavior near a critical point

Suppose that f has a critical point at p,. Let us assume that we have made a
preliminary choice of coordinates so that p,=0 in R% Suppose df, is non-
degenerate i.e. that Det(d?f,) # 0. In other words, we assume that the symmetric
matrix-valued function

02f azf
ox?  0x,0x,
H=\"ep a2

0x,0x,  0x3

1s non-degenerate at 0. By the results of section 4.2, we know that we can make a
linear change of coordinates L so that LH(0)LT has one of the three forms

(/1 0
0 1)

—1 0
LH(0)LT =/ ( 0 1),

L‘”(#(l) _(1)>

Let us assume that we have made this preliminary linear change of coordinates,
so that d? f, already has one of these three standard forms. Now by our proof of the
Taylor expansion, we know that

F06,9) =£(0) + by 1(x, Y)x* + 2b1,5(x, Y)Xy + by (x, y)y?

bll bl
=10 ”"’y’(bu b)(;)

= £(0) + (x, y)B(j)




where the b;; are continuous functions of x and y and the matrix valued function
B when evaluated at the origin is just d*f,, i.e.,

B(0) = H(0)
or
52
bl 1(0) = —a—x[(O),
82
b2(0) = 5;3{; (o)
o*f

b,5(0) = 32 (0).
Now B is a symmetric matrix. Let us apply the Gram—-Schmidt procedure to

1 0 .
B(x)( O) and B(x)( 1). By the continuity of B we know that the scalar products

(I,O)B(X)<(1)>,
(I,O)B(X)G)

(0, 1)B(x) (?)

depend continuously on x. Hence for x close enough to zero we can find an invertible
matrix Q(x) (given by the Gram—Schmidt procedure) such that

B(x) = Q(x)" B(0)Q(x).
The Gram—Schmidt algorithm guarantees that Q is a differentiable function of x.
Thus

and

f(x)=1(0) +x"Q(x)TH(0)Q(x)x

or

f(x)=£(0)+y"H(0)y,
where

y = Q(X)x.
Now the map xi—y given by this formula is invertible by the inverse function
theorem! In more detail: let ¢: R?—R? be defined by

P(x) = Q(x)x.
Then, by the product formula,

doo(x) = (dQ(x))0 + Q(0)x
or

dd)o = ld.
Thus the inverse function theorem guarantees that ¢ has a differentiable inverse

x = y(y).



But then (¥* f)(y) = f(x) so

Y*f(y) = f(0) + y"H(0)y.
In other words, ¥*(f—/(0,0)) is quadratic! We have proved that, near any non-
degenerate critical point, it is possible to introduce coordinates y, and y, such that

Juy2) =)+ Q(yy1,¥,)
where
Q01 y2)= (i +y3), or —yi+y3.
Which of the three alternatives holds is determined by the normal form (the number
of negative eigenvalues) of d*f,.
This proof is completely general — it works in n dimensions: So, if 0 is a non-
degenerate critical point of f, it is possible to find coordinates in terms of which

fy)=10)+Q(y)

Oy)=+yi+ys+-.

The number of — signs (called the index of Q) is the same as the number of negative
eigenvalues of the matrix d2f,. This result is known as Morse’s lemma. We will
make use of this lemma in our study of asymptotic integrals in Chapter 21.

where

Summary

A Higher derivatives
You should be able to write down the Taylor expansion of a function on the plane
through terms involving second partial derivatives.

You should be able to apply the chain rule in order to express second partial
derivatives or second-order partial differential equations in terms of new
coordinates.

B Critical points
You should be able to locate the critical points of a function on the plane and to
classify each critical point as a maximum, minimum, or saddle point.

You should know how to use the method of Lagrange multipliers to find the
Critical values of a function of several variables subject to constraints.

C Inverse functions
You should be able to state and apply the inverse function theorem.

You should know how to use Newton’s method to find an approximate solution
to f(p)=q where f is a function from R? to R2.

Exercises
0 fx=y=0
6.1. Let F(x,y) =< x3y
2

——— Otherwise.
X“+y



6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

(a) Calculate 0F/dx and oF /0y. Are they continuous at (0,0)?

(b) Calculate 92F /0x0y and 9*F/0yodx. Are they continuous at (0,0)?
(Note: If they are not, you may not compute their values at the origin
by finding a general formula and trying to let x and y both approach
zero!)

(c) Show that (62F/dxay)(0,0) # (62F/0y 9x)(0,0).

(d) Invent a smooth curve through the origin described by x = X(z),
y=1Y(t) with X(0)= Y(0)=0, such that the function G(t) = F(X(¢),
Y(#)) is not differentiable at the origin.

Find and classify all the critical points of the function F: R? —» R given by

F(x,y)= x>+ y*> — 3xy.

Let F(x,y) = x*y — 3xy + 1x? + y2.

(a) Find the equation of the tangent plane to the graph of z = F(x, y) at the
point x=2,y=2,z=2.

(b) The function F(x, y) has three critical points, two of which lie on the
line x=y. Locate these critical points and classify each as
maximum, minimum or saddle point.

Consider the function F on R? given by

F(x,y)=x?—4xy+ y*>—6x" L.

(a) Find the equation of the plane tangent to the graph z = F(x, y) at the
point corresponding to x= — 1, y= — 2.

(b) Locate the critical point of this function and determine its nature.

Find and classify all critical points of the function F(x,y)=y*+

(x?2 —3x)log y, defined in the upper half-plane y > 0.

Show that the function F(x, y) = y(e** — 1) + 9x2 + 6y? has a critical point
at the origin, and determine the nature of this critical point. Describe the
level curves of F(x, y) in the neighborhood of the origin. Sketch a couple of
typical curves. Describe the level curves of F(x, y) in the neighborhood of
the point x =0, y =1, and sketch typical curves.

Find the critical points of the following function:
F(x,y)=5x3—3x%y + 6xy? — 4y — 27x + 27y

and determine their nature. (At a suitable point in the calculation add two
equations. The resulting homogeneous polynomial factors. The critical
points have integer coordinates.)

6.8.(a) Find the critical points of the function F(x, y) = xy%e~**?.
(b) Determine the nature of the critical point which is not at the origin.

Sketch, as accurately as you can, some level curves near the point.

(c) For the critical point at the origin, the Hessian vanishes and is no help.

6.9.

Figure out whether the critical point is a maximum, minimum, or saddle
point. Sketch some level curves near the origin.

Let x and y be the usual affine coordinate functions on a plane. Another
pair of coordinate function on the right half-plane (x > 0) is defined by the
equations.

u=x?—y? v=2xy

(a) Express du and dv in terms of dx and dy, and write the matrix which

du dx .
expresses (d > in terms of (d > at the point P with coordinates
v y
x=2,y=lLu=3,v=4



6.10.

6.11.

6.12.

6.13.

(b) Find the approximate x and y coordinates of a point Q such that
u(Q)=3.5,v(Q) =4.

(c) Let ¢ denote the electric potential function on the plane. Given that at
the point P(x=2, y=1, u=3, v= 4)(0¢p/ou) =2 and op/0v = — 1,
calculate d¢/0x and d¢/dy at this point. Describe the direction along
which ¢ increases most rapidly.

(d) At thesame point, express d2¢/0ydx in terms of partial derivatives of ¢
with respect to u and v. Your answer may also involve explicit
functions of x and y, of course.

Suppose that coordinates u and v on the plane are expressed in terms of x

and y by
u cosa —sina \/x
(v>=(sinoc coscx)(y)'
Let f be a twice-differentiable function on the plane. Show that
Of o*f o*f f
o7 97 ox’ | ay

Polar coordinates r, 0 on the plane are related to Cartesian coordinates by

the equations
(x) (r cos 6)
y) \rsinf/)

Suppose f:R*—R is a function satisfying Laplace’s equation,
azf 62f
—+—=0.
ox*  Oy?

Express this equation entirely in terms of derivatives of f with respect to r
and 6.

. . ) . X rcos(
Let f:R?—>R be a twice-differentiable function. If ( >=( _ >
y rsin ()

express 02 f/060% in terms of partial derivatives of f with respect to x and y.
Let f:R%? - R be a twice-differentiable function. If x # 0 and

e
6) \arctan(y/x)/’

express 02 f /0x? in terms of partial derivatives of f with respect to r and 0.

6.14. Given that 0f/0x=f+0f/0y, show that 0%>f/ox*—0*f/oy* =

6.15.

f+20f/oy).

With polar coordinates as in exercise 6.11:

(a) Let f be a function on the plane. Suppose that at the point whose
coordinates are x=3, y=4, 6f/0x=2 and Jdf/0y=1. Calculate
0f/or and 0f /00 at this point.

(b) Suppose that f satisfies the partial differential equation

o*f 1of 1 0*f

orr ror rrog*
Express this equation entirely in terms of partial derivatives of f with
respect to x and y.



6.16.

6.17.

6.18.

6.19.

6.20.

6.21.

.«

Suppose that f is a function on the plane which satisfies Laplace’s
equation 92 f /ox? + 8% f/dy* = 0. Express this equation in terms of the
parabolic coordinates of exercise 5.13. It may involve 0%f/ou?, 90*f/ov?,
0%f /oudv, Of /ou, of /ov, u, and v, but not x, y, or any partial derivatives
with respect to x or y.

Let ¢: R? —» R? be the mapping

x e’ +¢
¢ =\« )
y e¥—e
Show that ¢ can be inverted in the neighborhood of any point and

compute the Jacobian of the inverse map.

Con31der the surface in R*® defined by z= F(x,y), where F(x,y)=
x2 —2xy +2y* 4+ 3x + 4y.

. 1
(a) Find the best affine approximation to F near the point <x> =( )
y 1

. . 1
(b) Write the equation of the plane tangent to the surface at (1>
(c) Find the equation of the line normal to the surface at the same point.
(d) The equation F(x, y) =8 defines a function y = g(x). Evaluate g'(1).

An important problem of statistical mechanics is the following: Consider
a physical system which can have energy + E, 0 or — E. Let x denote
the probability that the energy is + E; let y denote the probability that
the energy is — E. Then 1 — x — y is the probability that the energy is
zero. Maximize the entropy S, defined as
S(x,y)= —xlogx —ylogy — (1 —x — y)log(1 —x — )
subject to the constraint that the average energy is E; i.e.,
F(x,y)=xE—yE=E,.

Solve this problem using a Lagrange multiplier 8, and show that x oc ¢ ~#,
y=e"PE where E, = — 2E sinh BE. (The Lagrange multiplier in this case
turns out to equal 1/7, where T is absolute temperature.)

Consider the function a: R*> — R? defined by the formula

x xy3i?
P =F(| )=\ o _ 2

(a) Calculate the 2 x 2 Jacobian matrix which represents the linear part of

X 4 .
the best affine approximation to a near the point ( ) = (1) Use this
Yy

42
matrix to determine the approximate value of F ((1 1))

X
(b) Use the matrix to obtain an approximate solution of F ((y)) =

(42)
6.6/
Let f(x,y) =/(x*y* + 9x?)

(a) Find the best dffine approximation to this function near the point x = 1,
y=2.



(b) At the point x =1, y =2, along what direction is the rate of change of
the function f(x,y) greatest?
(c) A solution of the equations

f(x’ y) = Sa
X+y=3

is x =1, y=2. Construct an approximate solution to the equations
S(x,y) =534,
x+y=3.05
by using the approximation from part (a).

6.22 Functions s and t are defined in terms of the affine coordinate functions x
and y on the region x >0, y > 0 of the plane by

s=xy, t=logy—logx.

(a) Express the differentials ds and dt, at the point whose coordinates are
x=1, y=2, in terms of dx and dy.

(b) At the point x=1, y=2, the values of s and t are s=2, t=
log2 ~0.693. Use the Jacobian matrix at this point to find the
approximate x and y coordinates of a point where s = 2.02, t = 0.723.

(c) Let f be a twice differentiable function on the plane. Express @ f/0x,

0f /0y and 8 f /(Oy 0x) in terms of x, y, and partial derivatives of f with
respect to s and ¢.
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Chapters 7 and 8 are meant as a first introduction to the
integral calculus. Chapter 7 is devoted to the study of linear
differential forms and their line integrals. Particular attention
is paid to the behavior under change of variables. Other one-
dimensional integrals such as arc length are also discussed.

Introduction

In this chapter we shall disclose the true geometric meaning of linear differential
forms: they are objects which are to be integrated over oriented paths to yield
numbers. We begin with some examples. Consider the one-form

o =3(xdy — ydx).
By its definition it is the rule which assigns to every point ( ) the row vector
y
1(— y,x). Now a row vector is a linear function on vectors. The row vector

r) the number

1(— y,x) is the linear function that assigns to the vector h= (S

@ h]= 3(xs — yr)

x+tr
yts

Figure 7.1

: : X r
which is just the oriented area of the triangle from the origin to (x) to ( ) + ( )
y



x(t)

()
p; on the curve and let h; =p,,; — p,. Then the sum

Suppose we had a curve Of(t)=( ) We can choose a number of points

b w, [h;]
h,
h;
h,
h,
Figure 7.2

is the total oriented area of the various triangles. In the limit, as the polygon
joining the p; approximates the curve, we expect this sum will tend to a limit — the
(oriented) area swept out by the radius vector moving along the curve. We have
already encountered this notion in our study of Kepler’s second law.

A second example to keep in mind is the notion of a force field. In three
dimensions, a force field

w=Fdx+ Gdy+ Hdz
gives a linear function
(F, G, H)

at each point of space. This linear function measures the resistance or impetus to
any infinitesimal motion — it assigns
Ux
(F,G,H)[ v
v

= Fv, + Gv, + Ho,

y

4

to any displacement vector v at the point p. Along any path, I', we expect to be
able to integrate and get

J w = the work done by moving along I'.
r

Notice that we wish to be able to assign work to all paths. We can imagine a
two-dimensional universe in which a force field would be

w=Fdx+ Gdy.

For example, see figure 7.3, we can imagine feeling the influence of gravity while
being constrained to move on a surface

z=f(x, ).



— S/

Figure 7.3

The force field would then be proportional to

0 ax + 91 4
df=-~L
w=df= axdx+6y

Suppose we had a perfectly reversible electric car. (By perfectly reversible we mean
that all the energy of braking is returned to the battery — no air or other kind of
resistance.) We could keep track, using a meter, of the total energy flow into and
out of the battery. Let us call this Br — B, (the difference between the final and
initial readings of the battery). We can also consider the kinetic energy at the
beginning and end of the trip, KE, and KEg. The principle of conservation of
energy says that

KEg —KE, + B, — B, = j w = the work done along the path.
r

(Throughout this discussion we are assuming that the forces are not velocity
dependent: that there is a definite force field where the force depends only on the
location in space.)

Notice a subtle difference in viewpoint from the use of force in Newton’s laws.
In Newton’s laws, we are interested in predicting how a particle will move — if we
set a pebble rolling on our surface, how will it continue to move? Newton says
that the motion is determined by the equations

dp
dt

In our present discussion we are interested in how much energy is used in driving
along a given curve. The force field w assigns energies to paths I, If w = d f, then
we expect that the total work done along the path is just the potential difference

f(Q) —f(P)
0

=F p=mv=momentum v = velocity vector.

P
Figure 7.4



where P and Q are the initial and final points of the path.
With this motivation in mind, we now turn to the mathematical discussion.

7.1. Paths and line integrals

By an oriented path in the plane (or in R¥) we shall mean a curve which is to be
traversed in a specified sense. A path like I', whose endpoints do not coincide, has
a well-defined ‘beginning’ (P, in figure 7.5) and ‘end’ (P,); interchanging ‘beginning’
and ‘end’ reverses the orientation. A closed path like I', has no well-defined
endpoints; any point P can function as both ‘beginning’ and ‘end’. For this sort
of closed path, it is still possible to assign an orientation, which then determines
a ‘beginning’ and ‘end’ for any piece of the path.

Figure 7.5 Figure 7.6

Physically, such a path is appropriate to represent the trajectory of a particle
in circumstances where we know through what points the particle moved, and in
what order, but not the speed with which the particle traveled. It is permissible
for a segment of a path to be traversed two or more times; for example, a particle
might move twice counterclockwise around the unit circle, or it might move from
P, to Q, then back to R, then forward again to P,. Such paths may be difficult to
represent unambiguously by drawing curves with arrows attached, but they make
good physical sense, and as we shall see, they are easy to describe in terms of
functions.

Figure 7.7



We shall restrict our attention exclusively to piecewise differentiable paths—
continuous paths for which a well-defined tangent exists at all except possibly a
finite number of points. Such a path can be described as the image of an interval
of the real line under a continuous map

o R— R?

Figure 7.8

which is differentiable except at finitely many points where o may not be
differentiable. The function « is called a parameterization of the path. Physically we
may think of « as the function which assigns to each instant of time the position of
the particle at that instant. We usually describe « by specifying the pullback of the

'\
]
=]

Figure 7.9

coordinate functions; that is, by writing formulas which give the numerical values of
the x- and y-coordinates as functions of time. For example, if a particle moves along

R 0 o
a circular arc of radius R from < 0) to (R) we may describe its path by

Rcost
ot — . o2t
Rsint

or by
o*x = Rcost, o*y= Rsin.t.
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Figure 7.10

A given path may have many different parameterizations, which correspond
physically to traversing the path at different rates. For example, the segment of

0 1
the hyperbola y? —x?>=1 from < 1) to ( \/ 2) may be parameterized in any of

the following ways:

wkx=ta*y=,/(*+1) 0<t<]1
a*x =sinht,a*y =cosht O0<t<arcsinh 1
o¥x =tant,a*y =sect 0<dt<n

=y

Figure 7.11

Paths that involve traversing portions of the same curve more than once are
frequently easy to describe in parameterized form. For example, the parameter-
1zation

a*¥x =cost,a*y=sint 0<t<4n
describes the unit circle traversed twice counterclockwise, while

a*x =sin?t, a*y =sin’t 0<2t<37n
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describes the line segment from (8) to (i) traversed forward from (g) to

(1), then backward, then forward again.

As a practical matter, each differentiable segment of a path is usually parameter-

ized separately. For example, the path shown in figure 7.12 might be parameterized
as

*x=ta*y=t 0<t<l1

(\6 2) X
Figure 7.12
followed by
a¥x =./2cos(n/4—t),a*y = /2sin(n/4 —1) 0<4r<m

A piecewise differentiable path can be well-approximated by a sequence of vectors
laid ‘head to tail’. We simply introduce subdivision points, Py, P, P,,..., Py, where
P, is the beginning of the path, Py its end, being sure to include as subdivision
points any points where the curve fails to have a tangent. Then we introduce the
displacement vectors

Vo=PoP, vy =P P;,Vy_y =Py_,Py.

Figure 7.13



By choosing the subdivision points close enough together, we can in this manner
approximate any piecewise smooth path as accurately as we like by a polygonal
path given by a sequence of vectors. Incidentally, it is easy to construct paths that
cannot be well-approximated in this manner, but such paths cannot be parameter-
ized by differentiable functions, and we shall not concern ourselves with them.

We now describe a natural way in which a differential form assigns a real
number to any path. Each segment of the path is specified by a point P; with a
vector v; attached. The differential form w assigns to such a segment the real
number w(P,)[v;]. We form the sum over all segments:

N-1

Iy= Z o(P;)[v]

i=0
which is very much like a Riemann sum for an ordinary integral. We now take
the limit as the number of subdivision points increases in such a way that all
vectors v; approach zero. If this limit exists, independent of the precise manner
in which the subdivision points are chosen, it defines the line integral of the one-form
w over the path T', which we denote by {rw. That is,

j o=Tim Y o(P)v]
T

N—>w i=0
We shall soon prove that for piecewise differentiable paths, the limit exists, and
is independent of the subdivision, and shall give a formula for r® using pullback.

Three properties of the line integral |rw are apparent from the definition:

(1) It is linear in w: that is, if @ =w; + ®,, then [rw = {rw; + [fw, and if
o = Aw' for a real number 4, then [rw = Afrw’. Both these results follow immediately
from the definition of the sum of differential forms and the product of a differential
form and a real number.

(2) If I consists of I'; followed by I',, then

Jw-—-j w+J .
r I I

This implies that we can always subdivide a piecewise differentiable path into
differentiable portions, as suggested by figure 7.14, and calculate the line integral
over each portion.

Figure 7.14

(3) If ' and I" differ only in their orientation, then

o]



This is true because reversing the orientation of I' just changes the sign of each
of the vectors v, and, since w is linear,

o(P)[— v] = — w(P)[v].
We turn now to the problem of computing the numerical value of a line integral.

The strategy is to reduce the problem to calculation of an ordinary integral over
the parameter for the path of integration. The parameterization

a: R— R?
maps an interval [a,b] of the real line into the path I We assume that g,
the lower bound of the interval [a, b], is mapped onto the beginning point P, of
the path, while b is mapped into the end point P,. By looking separately at the

smooth pieces of our path, we may assume that o can be described by a pair of
differentiable functions,

o*x = X(t), a*y = Y(2),

Figure 7.15

so that, by the chain rule,
o*dx = X'(¢)dt, a*dy = Y'(r)dt.
We may assume that our subdivision of the path corresponds to a subdivision

a=ty<t,<---<t,=b

o= (io)

w =gdx + hdy.

SO

Suppose that



Thus our approximating expression to the line integral can be written as

Z (P [odt; 1) — a(t;)]
Z g(P)dx[odt; s ) — aft;)] + h(P)dy[ot; 1) — (t:) 1}

= D A9(dt)) (Xt v 1) — X(2,)) + h(alt)) (Y (54 1) — YD} (7.1)
Recall that ’
o*w = fdr
where
S(£) = g(a())X"(2) + h(o(2)) Y'(2).
We will show (under appropriate hypotheses on «, f and g) that the approximating
expression (7.1) converges to

j fdt (7.2)

as the subdivision (and hence the polygonal approximation to our path) gets more
and more refined. This will prove that the limit is independent of the choice of
subdivisions. So we wish to compare (7.1) and (7.2) for a fixed subdivision and
show that their difference tends to zero as the mesh size, maxt;, ; —t;) goes to
zero. Now we can write

X(t ) — X(t)= | "' X'(s)ds

J I

and

Y(ti, 1) — Y(t) = Y'(s)ds

v i

so (7.1) can be written as

{g(a(t))f S)d8+h(ot(t))f Y'(s)d }

while (7.2) can be written as

2 jtwl f(s)ds = Z{Jtﬁl g(o(s)) X' (s)ds +J‘tl+1 M) ds}.

1

The difference between these two expressions is that for (7.1) we have g(«(t;)) or
h(a(t;)) occurring outside the integrals in each summand, while in (7.2) we have
g(«(s)) and h(e(s)) occurring under the integral sign. It is intuitively clear that, for
/ and g continuous and « smooth, the sum of these differences is negligible for a
fine enough subdivision. Here are the assumptions we shall make in order to get
a precise estimate on the difference between (7.1) and (7.2). Weaker assumptions
would suffice, but require more careful argument.

() We assume that g and h are uniformly continuous, ie., that for any ¢>0
there is an 5 > 0 such that | P — Q|| < # implies that |g(P) — 9(Q)| < ¢ and |h(P) —
9(Q)| <e. This is an assumption about w. By the mean-value theorem it will hold



(with nN =¢) if the derivatives dg and dh satisfy [[dg|l <N and ||dh|| <N at all
points.

(1) We assume that there is a constant M such that
1X'(1)] < M
and
lY'(t)| <M
for all t. This is an assumption about the path a.
By the mean-value theorem, we can find a 6 > 0 such that for any ' and t” with
|t —t"| <o
we have
lo(t) — af2")| < m.
Let us choose our subdivision so that its mesh size is less than ¢, i.e., |t;,; — ;| <
for all i. Thus by (i) we have
|g(efs)) — glot;))| <e for &, <s<tiyy
with a similar estimate for h. Thus

L

g(odt,)) f X'(t)dt — j " (o)) X (s) ds

13 13

< Jtm 19(0(t)) — gleds))|| X (s)|ds

t

13

<eMlti -1l

Summing up, and with a similar estimate for the h term, we see that the difference
between (7.1) and (7.2) is at most

We can arrange to have ¢ as small as we like by making J, i.e., the mesh size,
small enough. This proves our assertion.

As fdt =o*w we can write
b b
J~ fdt= J o*w
a a

where the right-hand side here is defined to be the left. We can thus write

b
o=\ o*w
r a

In this equation, the left-hand side has an obvious intuitive meaning, while we use
the right-hand side for computation.

Example
As an example of the use of this result, we evaluate the integral I of w=

: . 0 1 :
xydx + x2dy along two different paths joining (1> to, (0> Path T'; lies along

the parabola y = 1 — x?, while I', is a straight line segment. See figure 7.16.
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Figure 7.16

To parameterize I'; we introduce

t
it 0«1,
o H(l_t2>

le.,
a¥x =t  o*y=1-—1¢2
so that
a*dx =dt, a*dy = — 2tdt.

. . 0 . 1
The orientation is correct: a(0) = ( 1), while «(1) = ( 0).

Then
a*w = t(1 —t2)dt + t2(— 2t dt) = (t — 3t3)dt
and

R

1
J w=J (t—3)dt =[5> —3t*16 = —
Iy 0

To parameterize I', we introduce

t
peo(, L)

Le.,
Prx=t, pry=1-—t
so that
p*¥dx =dt, p*dy= —dt
and

B*w = t(1 —t)dt + t3(— dt) = (t — 2t?) de.
For this path, then,

1
szj (t—2t3)dt =[5> —3t>]5= — &
I'2 0



Exact forms

In this example, you will note, the value of the line integral depends on the path, not
just upon the endpoints. This is true in general, but there is one important exception.
Suppose that the one-form w = df. In this case

j df= jba*(df)= J d(a* f).

By the fundamental theorem of calculus,
b
j d(o* f) = o* f(b) — a* f(a).

But o* f(b) = f((b)) = f(P,), where P, is the endpoint of I, and similarly, o* f(a) =
f(P,). We conclude that, if I" extends from P, to P,

Ldf =f(Py) —f(P.)

independent of the choice of T

Notice that this result, combined with the preceding calculation, shows that not
every differential form w can be written as w = d f. Indeed, it is easy to write down
a necessary condition: suppose

w=6Gdx+ Hdy= df——ldx—i-z)f;
By the equality of cross derivatives, i.e. since 6° f/0xdy = 9% f /0ydx, we must have
o _on
oy Ox’
In the example above, G = xy and H = x? so
0G 0H
6_y =X# e = 2X.

A differential form w which can be written as w = df is called exact.
We will now show that locally (we shall explain what this entails) the condition

0G 0OH
dy  ox
is enough to guarantee that w =df for some f, determined up to a constant.
We first choose a convenient point P, and declare that f(P,) = 0. We then define
f by the rule f(P)= {rw, where I is a convenient path extending from P, to P.
Of course, we could add a constant to f without changing its differential df. The
choice of P, in effect chooses this constant of integration.
Let us describe this procedure in terms of coordinates. Suppose that

o = G(x, y)dx + H(x, y)dy.

’ 0
For simplicity we may assume P, to be the origin; so that f (( 0)) =0. The



most convenient path I' joining the origin to the point <x> is a straight line
y

segment, easily parameterized by

xt
a:t—»( ) 0<t<1.
yt

Figure 7.17

Since we are using x and y to describe the endpoints of the path I', we will use x
and y as names for the dummy variables of integration. Thus

o*x = xt, a*y = yt,
o*dx = xdt, o*dy=ydt
and
oa*w = G(xt, yt)xdt + H(xt, yt)ydt.
Then
1
f(P)= J o*w
0
so that
1
fix,y)= J [xG(xt, yt) + yH(xt, yr)] dt (7.3)
0

is a formula by which we reconstruct a function f from w. Notice that this
construction will succeed only if the functions G and H are defined everywhere
on the path I

So far we have not used any hypothesis on w, other than that it be defined
along the paths of integration. So we do not expect, in general, that d f = w. Here
is where our hypothesis will come in. Let us compute Jf/0x. By differentiating
with respect to x under the integral sign in the definition of f, we see that

T Y oH
a— J;) G(Xt,yt) dt +J‘ <Xt Ox (Xta yt)+ ty—@?(Xtayt)>dt

0

Now

d G(xt = G(xt, yt) +t aG(xt t)—i—ta—G(tt
a(t (x7yt))"‘ (xsy) xax » Y yay xay)
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SO
1d
G(x, y) = [tG(xt, yt) 14 = f Et—(tG(xt, yt))dt
0
- G t aG(xt )+t aG(t t) |d
- o (Xtayt)+ xax sy yay XL,y t.
Substituting this into the expression for 0 f/0x, we see that

of L oH G
g - G(X, y) + J() ty(g;(xt,yt) _E(XIs yt)>dt

Under our assumption

a_G _OH

dy Ox
everywhere, so

of

o G.
Similarly

of

P H
or

w=df.

As an explicit example of reconstructing a function from its differential, we
consider

w = 2xy3dx + 3x%y2dy.

Since w is defined everywhere, and
0 0
— (2xy%) = 6xy? = — (3x?y?),
oy 0x

w is a differential, d /- We find f by calculating

1

flx,y)= f [xG(xt, yt) + yH(xt, yt)] dt

fix,y) = j (2x2y3 + 3x2y3)et de = x2y>.
0

Indeed,
d(x?y?) = 2xy3 dx + 3x2y2dy.

Closed forms that are not exact

Our construction shows that if @ is defined and bounded in a star-shaped region, a
region R, whose points may all be joined to some interior point, O, by straight line
segments lying in R, then the condition 0G/dy = dH/0x is sufficient to show that @ is



exact. If G or H fails to be defined at one point in the region, then this conclusion no
longer holds.

Figure 7.18

For example
Yy
o ————-————-——d [
@ X2+ )2 x+x2+y2
satisfies 0G/0y = 0H/0x, but w is not defined at x=0, y=0. In this case there

exists no function f for which w = df. Indeed, the integral of w around the unit
circle is easily shown to be different from zero. Take

dy

oa*x = cost, a*y =sint,
a*dx = —sintdt, o*dy=cost
so that
a*w = sin? t dt + cos? t dt = d.
Then

2n
J = J‘ dt =2n.
unit 0

circle

If @ were exact, its integral around this closed path would have to be zero. In a
later chapters we shall consider this and related ideas, which are of great significance
for electromagnetic theory, in detail.

A form w=Gdx+ Hdy defined in some region of R? is called closed if
0H/0x = 0G/dy. If the region is star-shaped we have proved that a closed form is
exact. In general this is not true.

Pullback and integration
Since the definition of the line integral e is independent of any specific choice
of parameterization for I', it is clear that the calculated value of the integral cannot

a b s (@) a(b) 1

Figure 7.19



depend on the parameterization. Still, it is worth demonstrating this independence

explicitly. Suppose that we have two alternative parameterizations of I in terms
of parameters s and ¢.

Then there exists a one-to-one mapping o of the s-line into the t-line, as shown
in figure 7.19, so that we may write the parameterizations of I' as

P=p@t) and P =p(as)) = Poa(s).

Using the parameter s, we calculate

b b a(b)
f w=J (ﬁ"a)*w—_-J ¥ (f*w) = B*w
r a a a(a)

by the chain rule, and by the change-of-variables formula for ordinary integrals.

This is exactly what we would have obtained by using the parameter t. As a
practical matter, this means that using a different parameterization is equivalent
computationally to making a change of variable in the integral set up by using
the original parameterization.

It is also possible to transform a line integral from one plane to another, as
suggested by figure 7.20. Here f is a differentiable one-to-one mapping of the path
I' in plane A into a path (I') in plane B. Given a one-form w on plane B, we
have defined its pullback by

pr*o(P)Lv] = w(B(P))[dBp[V]].

. 5
(44 T P
a bt
Figure 7.20

We claim that

j W= J f*w.
B(T) r

f B*w = lim Z B*w(P,)[v;]

N—-ow i=

Indeed, by definition,

= lim Z w(ﬂ(Pi))[dﬁP,-[vi]]-

N—>w i=0

But, as N — oo, the vectors df[v;] lie along the path B(I") more and more closely,
so that this last sum, in the limit N — oo, equals the integral s . Indeed if we
parameterize I' by the mapping «, we have

frﬂ*w= [ o*(f*w) = [ (Boa)y*w



by the chain rule. But B« is a parameterization of B(I'), so this last integral equals
{pay, which is what we wanted to prove.

Example

The implication of this last result is that we may introduce any convenient
coordinate system in the plane for purposes of evaluating a line integral. For
example, if we wish to evaluate the integral of w = xdy — y dx over the unit semi-

-1\ . ..
circle from ((1)) to ( 0) in the xy-plane, we may express the semicircle as

the image of a directed line segment I' in the polar coordinate plane by means of

0
the mapping f: (;)_)(rcos ) Then

rsin 6
B*w = (r cos H)d(r sin 6) — (r sin )d(r cos 0) = r>d6.

4y

Figure 7.21

On the segment I', r =1 and so

j p*w = Jnd0=n.
r 0

. . . T cost
Of course, calculation of [, using the obvious parameterization t—»( . t)’
sin
leads to exactly the same integral.

7.2. Arc length

So far we have considered only directed line integrals, evaluated over an oriented
path on a plane where no scalar product is necessarily defined. Given a scalar

Figure 7.22
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product, it is possible to define also an absolute line integral of a function f over
a path T To define the integral [rfds, we again break the path I' into short
segments, with v, = P,P, , ,, then take the length of each segment by using the scalar
product: s; = ||v;[| =./(v, v;). The integral is again defined as the limit of a sum:

j fds=lim S F(PYs,

N—ow i=0

Clearly in this case the orientation of I does not matter, since the length of v, is
the same as the length of —v;,.

To evaluate an absolute line integral, it is again convenient to parameterize I.
We write

a*x = X(t), a*y=Y()
so that
a*dx = X'(t)dt, o*dy=Y'(t)dt.

Then the vector u; =t;t;, ; is mapped into the vector

X'(t)

dofu,] = (Y'm

)dt[ui].

Figure 7.23

If the scalar product is the ordinary Euclidean one, the length of this vector is

Idafu ]l = /(X'(t)* + Y'(t))*) de[u;].
By definition

f(Py)=f(alt;)) = o™* f(2;)
so that

fds=lim Y a*f6) /(X0 + Yty — )

N—-w i=0

which may be recognized as the integral

J fds= jba* fOJ X' @)+ Y'()* dr.

If f=1, the integral [ds defines the length of the curve I'. More generally, f(P)
might represent the linear mass density of a thin wire in the form of the curve I';
then [ f ds represents the total mass of the wire.

A physically important example of an absolute line integral for which the relevant
scalar product is not Euclidean is the calculation of the proper time associated



with the world line of a moving particle, which is the elapsed time as measured
by a clock moving with the particle. In this case, since ¢t always increases along a
world line, it will serve as a parameter, so we write
a¥t =t, o*(x) = X(¢)
and
a*dt =dt, o*(dx)= X'(¢)dt.

XA

do[u,]
/ —
3
oA
o 7
Figure 7.24
Now the Lorentz length of the vector
dofu;] = dt[u;
o[u;] ( X,(t)) [u]

is \/(1 — X'(t)?)dt[u,;]. Since X'(t) is just the velocity v of the particle, we may write

J J(1—v?)dt

as the integral which defines proper time.

Summary

A Line integrals
You should be able to explain the meaning of a line integral of the form [ and to
list and apply properties of this integral.

You should know the prescription for evaluating a line integral by pullback, and
you should be able to introduce appropriate parameterizations for evaluating line
integrals and specified paths.



B Differentials and differential forms

Given a one-form o defined on a star-shaped region of the plane, you should be able
to determine whether or not w can be expressed as the differential of a function f, and
to calculate such a function f if one exists.

Exercises

7.1. Let w =(ycosxy + e*)dx + (x cos xy + 2y)dy.

0
(a) Evaluate [w along the segment of the parabola y = x? from (0> to

1
(1>. Use the parameterization ¢ described by the pullback

(6r)2)
¢*y) \2)
(b) Evaluate [y for the case where I' is the straight line joining the origin

o
to the point 8) Do the same for the case where I” consists of the segment

0 < x <« on the x-axis, followed by the segment x=a, 0 <y <.
(c) Find a function f(x, y) such that w =df.

7.2. Let o =(ycos xy + e*)dx + (xcos xy + 2y)dy.
(a) Evaluate (o along the parabola y defined by

X t
()-(2) o ozret.
y t

(b) Find f(x, y) such that w =df.
7.3. Let w = ydx — xdy.

-1 1
(a) Evaluate |, along the semicircle y from ( 0) to (0> defined by

X (—cost)
y B sin t
forO0<t<m.

(b) Show explicitly that you can obtain a different value from that in (a) by

-1 1
choosing a different curve joining ( 0) to (0>

7.4. Let o = (15x*y* — 3y)dx + (10x3y — 3x)dy. Evaluate [rw, where I is the
path from (— 1,0) to (1,0) along the semicircle x* + y* =1, y>0.
7.5.(a) Evaluate [rw, where

w=dx +2xdy

and T is the segment of the parabola x =1 — y? between y= —1 and
y= + 1, as shown in figure 7.25.
(b) Find a constant a and a function f such that e?w =df.



Ay

Figure 7.25

7.6.(a) Let w = (x* —2xy)dx + (y* — 2xy)dy. Evaluate [, where I is the path
from (—1,1) to (1,1) along the parabola y = x?.
(b) Let o =30x%y°dx + 40x3y*dy. Find an integer n and a function f such
that df = (xy)"o.
7.7. Let w = 10y*dx + 4xydy.

1
(2) Evaluate [, where I is the circular arc of radius 1 joining (O) to

0
(1>. (Hint: use 6 as a parameter.)

Figure 7.26

(b) Find an integer n and a function f such that x"w = df.
7.8.(a) Show that the differential form

o = 3xydx + 2xdy

is not the differential of any function f.
(b) Find the equation for the one-parameter family of curves with the



property that w(v) =0 for any vector v which is tangent to one of the
curves.

(Hint: If y= F(_x), v :(

F (x).)

(c) Find functions f(x, y) and g(x, y) such that df = gw.
(Hint: / must be constant along the curves which you found in part (b).)

7.9.(a) Sketch the semi-¢ellipse described by the polar equation
9

yr==—————

5—4cosf

>, and you have a differential equation for
F'(x)

for 0<0<nm.

Recalling that x = rcos 0, y = rsin 0, show that this semi-ellipse is part of
the graph of

(x—4)* y
+ —=
25 9
(b) Express the differential form
xydy — y*dx
T X2 4 y?

in terms of polar coordinates (in terms of r,6,dr, and d6).

(c) Evaluate [rw, where I' is the semi-ellipse of part (a), using polar
coordinates. The coordinate 6 makes a convenient parameter.

(d) Evaluate |- by using x and y as coordinates. A convenient parameteriz-
ation is the one defined by the mapping

<4+5cost)
t— ) o0<t<gm=.
3sint

7.10.(a) Suppose that u and v are curvilinear coordinates on a region D on the

plane, with the Jacobian
ou/ox 0u/d
Det( u/ox. ouf y)
dv/0x 0Ov/dy

nowhere zero on D. Let w be a smooth differential form defined on D, let I”
be a curve in D. Show that [ has the same value whether w and I" are
expressed in terms of x and y or in terms of u and v. (The preceding
problem was an example of this result.)

(b) Let I" be a closed path described in polar coordinates by p = F(0), with
F(0) > 0 and F(2n) = F(0). Show that the area enclosed by this closed path
equals [rw, where w =3p*d6.

(Hint: Try expressing w in terms of Cartesian coordinates.)

7.11. The state of a gas confined to a cylinder can be represented by a pointin a
plane. In terms of coordinates P (pressure) and V (volume) on this plane,
the quantity of heat absorbed by the gas during a process represented by a
path T in the plane is Q = o, where

w=3PdV +3VdP.



(8, 1)
8 vV

Figure 7.27

(a) Evaluate [ where I is the broken line shown in figure 7.27, connec-
ting V=1,P=32to V=1,P=8,thento V=8, P=1.

(b) Evaluate [ whereI" is the curve PV*/* = 32joining V =1, P = 32 to
V=8, P=1.

(c) Find a function S such that dS = w/PV.

7.12.(a) A uniform wire of mass M is bent into a semicircle of radius R as shown in
figure 7.28. Find the y-coordinate of its center of mass, and calculate its
moment of inertia about the x-axis.

Ay

Figure 7.28

(b) Solve the same problem for the case where the linear density of the wire is
proportional to y, with the mass still equal to M.

1
7.13. Express the length of the cubic curve y = (x — 2)® connecting ( 1) and

3
(1> in the Euclidean plane as an integral.

7.14. Consider the differential form
w = Sydx + 3xdy.
(a) Find the integers m and n such that d(x™y"w) = 0.



(b) For these integers find a function f such that df = x"y"w.
(c) If we map the uv-plane into the xy-plane so that

(oz a+ B )
H

B B2+ 2a

what is the pullback of w?

. 0 1
(d) Calculate fw over the path I'y and I';, connecting <0> and (1 ) where

1
I', goes in two straight segments via (0> and T", in two straight

()
segments via 1)

(e) Evaluate the absolute arc-length integral fp [ | ds.

(You may leave one term of your answer in the form of an ordinary
definite integral.)
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Chapter 8 continues the study of integral calculus and is
devoted to the study of exterior two-forms and their corre-
sponding two-dimensional integrals. The exterior derivative
is introduced and invariance under pullback is stressed. The
two-dimensional version of Stokes’ theorem, i.e. Green’s
theorem, is proved. Surface integrals in three-space are
studied.

8.1. Exterior derivative

We have already seen how the differential of a function f provides the best linear
approximation to the change in the value of f as we move from a point P to a
nearby point P + v. To be specific,

df (P)[v]=/(P +v)—f(P) + o(v)
where the error, o(v), goes to zero faster than the length of v if v is made small.
We can think of df as a linear function whose value on the vector v is determined
by the values of the function f itself on the boundary (endpoints) of the segment
defined by v, in the limit where the vector v becomes very small.

Using a similar approach, we can construct from a one-form t a two-form dr,
called the exterior derivative of t, which is, at each point P, a bilinear function of
two vectors vand w: Given a point P, an ordered pair of vectors v, w, and a one-form
T, we can obtain a number by integrating t around the parallelogram spanned
by v and w, moving ‘forward’ from P along the first vector v of the pair, eventually
backwards along the second vector w. If the vectors v and w are small enough,
and 1 is reasonably well-behaved near P, then we expect the value of this integral
to be approximately bilinear, i.e., to depend approximately linearly on v (for fixed
w) and linearly on w (for fixed v). Denoting the parallelogram spanned by hv and



Figure 8.1

kw by P(h,k) we would like to define dz (P) by

f T = hkdt(P)[v,w] + error (8.1)
P(h,k)
w
kw
—y
hv
Figure 8.2

where (we hope) the error term goes to zero faster than h as h — 0 (with k fixed), and
also goes to zero faster than k as k— 0 (with h fixed).

If dz(P) exists, it is unique. The proof is essentially the same as the proof that
the differential of a function is unique. Suppose that equation (8.1) holds for two

different bilinear functions dr and dr. Then, letting ¢ denote the difference
dr — dt, we would have
0 = hko[v,w] + error.
Dividing by hk and letting h approach zero, we find
0=o[v,w]+ ! lim (error/h).
k h-o
But the error approaches zero faster than h, so g[v, w] = 0. This proves that o[v, W]

is the zero function, so that drt cannot be different from dr.

We turn next to the problem of calculating dt(P) and proving that it exists. For
simplicity, we assume initially that t is of the form f dx, where f is twice differentiable
everywhere near P. Here dx is the form which assigns to every tangent vector its

x-component. In particular, dx[hv] = hdx[v] = hv, if 'v=<z;x). A typical con-

y



tribution from one side of the parallelogram, say the side from P to P+ hv, is
found by using the parameterization t— P + thv so that the contribution is

f f(P + thv)x'(t)dt = J f(P + thv)dx[hv]dt = hdx[v]j f(P + thv)dt.
0 0 0

P+hv+ikw
t=0
P+iw
t:
P+hAv
p hv
Figure 8.3

The contribution from the opposite side, from P + hv + kw to P + kw, is similarly

— hdx[v] Jlf(P + kw + thv)dt.

Combining the two terms, we obtain

— hdx[v] J 1 [f(P + thv + kw) — f (P + thv)]d.

Since f is assumed twice differentiable, we may apply Taylor’s formula

f(p+thy + kw)—f(p + kw) =d f,, , 4, [kw] + O(K?)

to write this last expression as

1

— hdx[v] J d S p . gy kW] dt + O(hK2).

0

From the other two sides of the parallelogram we obtain terms which combine
similarly to give

1
+ kdx[w] J dfp s w[hv]de + O(h?K).
0

Substituting these results into the integral around the parallelogram, we get
1

J T= hk[ — jldfﬂ,ﬁhv)[w]dt-dx[v] +'J df(Pka)[v]dt-dx[w]]
P(hk) 0 0

+ O(h*k) + O(hk?).
Now dfp., ., is just the row vector
of of
' —(P + thv) |.
(ax (P + thv), ay( + v))

By assumption, the partial derivatives of f are differentiable. Hence, by the mean-



value theorem

of o
5 (P thv) === (P)+ O(h)

SO
df(P+thv) [w]l=dfplw] + O(h)
or, upon integration,

1
J df e, o [W1dt = dfp[W] + O(h).

0

Substituting into our integral around the parallelogram gives

j v = hk(df,[vIdx[w] — df,[w]dx[v]) + O(h%k) + O(hK?).
P(h,k)

We thus get our desired expression (8.1) if we set

‘ drp[v, w] = dfp[v]dx[w] —dfp[w]dx[V].

We see that dr is an antisymmetric function of its two arguments: dc[w,v] =
—dz[v,w].

We can express dt more concisely by introducting the exterior or ‘wedge’ product
of two one-forms, defined by

(6 A A)[v,w] =0c[v]A[W] — o[W]AL[V]

where ¢ and 1 are one-forms, v and w are vectors. Then we may write

dtp[v,w] =(dfp A dx)[v, W]
or, more concisely,

dr=df A dx.

From the definition of the wedge product it is clear that

ANC= —0 A4,

lie, the product is antisymmetric. In particular, 6 A6 = —0cAc=0: the
wedge product of any one-form with itself is zero.
It is also apparent that

(c+w)Aid=(cAd)+ (0 Al

the wedge product is distributive with respect to addition. ‘
Consider now the most general one-form fdx + gdy. The same argument applied
to gdy will lead to

d(gdy) =dg A dy.
Since the integral of w is linear in w, we get ‘
d(fdx+gdy)=df ndx+dg A dy



as can also be verified directly from the definition of d. But we may express df
and dg in terms of dx and dy:

of of 0g dg
/ 0x Oy Y dg 0x dx+5y Y

Since dx A dx =0 and dy A dy =0, we find

0
dt =—fdy A dx +g—)gcdx A dy.

ay
Finally, since dy A dx = —dx A dy, we have
dg Of
dr=(-——-"-)dxad
[ (2 )ar 0y

As an example, let

T=x%y*dx + x>ydy.
Then
dr =d(x%y?) A dx + d(x3y) A dy
= (2xy?dx + 2x?ydy) A dx + Bx%ydx + x3dy) A dy
=2x?ydy A dx + 3x2ydx A dy = x%ydx A dy.
In the special case where the one-form 7 is exact, T =d¢, we find that dt =0.

This is obvious from the definition of dz: since dt[v, w] is the best linear approxima-
tion to the line integral [t around a parallelogram, and since the integral of a

differential around any closed path is zero, clearly d(d¢) = 0. Alternatively, we may
prove the same result by direct computation:

., 09 0¢p
r-—dqb————ax dx + 3y dy,
0% bRl
dr = + =
T ayaxdy/\dx 6x6deAdy 0

because of the equality of mixed second partial derivatives. Thus we see that the
condition for a form to be closed is precisely that

[_ dr=0 4J

We have shown that, if f is differentiable and if x is the coordinate function,
then d(fdx) =df A dx. We now use this result to prove a more general product
formula

d(ft)=df nt+fdr

where f is a differentiable function and t a differentiable one-form. Writing
T =gdx + hdy, we have ft = (fg)dx + (fh)dy, so that

d(fr) = d(fg) A dx + d(fh) A dy.



Therefore

d(f1)=gdf Andx+fdg Andx+hdf Andy+fdh Ady
and we see that
d(f7)=df A (gdx + hdy) + f(dg A dx + dh A dy),

1.€.,

L d(fry=df A t+ fdr.

8.2. Two-forms

Since the most general one-form in the plane has the expression fdx + gdy, the
most general product of two one-forms will be some function multiple of dx A dy.
We call such an expression a two-form so a two-form looks like

o =fdx A dy = F(x, y)dx A dy.
We want to think of the value of the two-form at P, i.e., F(P)dx A dy, as a rule
which assigns numbers to pairs of vectors.
To understand the ‘constant’ two-form dx A dy, we first evaluate it on the pair
of unit vectors (e,,e,). By definition,

dx A dy[e,,e,] =dx[e ]dy[e,] —dx[e ,Jdy[e,]=11-00=1.

A

ke

i

he

X

Figure 8.4

More generally,
dx A dy[he,, ke,] = hk.

Clearly this is the area of the rectangle defined by the vectors he, and ke,, in units
where the rectangle defined by e, and e, is taken to have unit area.

More generally still, we can evaluate dx A dy on an ordered pair of vectors (v, w).
We may write v=ae, +ce,, W=be, +de, so that, in terms of the matrix

a b 1 0
= = = . Th
A (c d),v A(0>,w A<1> en

dx A dy[v,w] =dx[v]dy[w] — dx[w]dy[v]
=ad — bc
= Det A4.



- Jouble integrals

A general two-form o is a function of three variables p, v, and w. For fixed p it
is a bilinear and antisymmetric function of v and w. If ¢ = fdx A dy then

o(p)(v,w) = f(p)Det 4

where v,w and A4 are as above. We can think of o(p) as assigning a notion of
signed area to each parallelogram based at p. The signed area of the parallelogram
spanned by v and w (in that order) is o(p)(v, w).

It isimportant to remember that the value of dx A dy on a parallelogram depends
on the orientation of the parallelogram, as determined by the ordering of the
vectors which define the parallelogram. On the oriented rectangle which corres-
ponds to the pair [e,, e ], the value of dx A dy is + 1, while the value of dy A dx
is — 1. On the same rectangle with opposite orientation, which corresponds to the
pair [e,,e,], the value of dy Adx is +1 but the value of dx A dy is —1. More
generally, to evaluate a two-form t on a parallelogram defined by v and w, we
look at the orientation to determine which vector, v or w is ‘first’, then evaluate
t[v,w] or t[w,v] as appropriate.

§ 1
ey > ey >
- >
e, €x
dx A dy [e,, e, ]=+1 dx A dy [ey, e,]=—1
Figure 8.5

8.3. Integrating two-forms

Since a two-form t assigns a number to each small oriented parallelogram (pair
of vectors) just as a one-form assigns a number to each small directed line segment
(vector), we can integrate two-forms over a region R in the plane much as we
integrate one-forms along paths. Given a rectangular region R, oriented as shown

l}y

Figure 8.6
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in figure 8.6, we break it up into N N, small rectangles, then form the Riemann sums

Nx—1Ny—1 d—C
NxNy Z Z U(PU)[ exa N ey:|-
i=0

y

If
o= F(x,y)dx A dy,
then

b—ad—cN1 Myt
S = F
NNy TN N, i=ZO Z (X3 3)

where, of course,
i J
xi:a+N—x(b—a), yJ=C+N—y(d_c)

We then define the integral of the two-form t over the oriented region R as

.[ 1= lim Sy_y,
R Nx— o0
Ny—=
provided the limit is independent of the refinements of the partition.
We may evaluate the double integral of F(x, y)dx A dy over the rectangle R as

an iterated integral. To evaluate the expression

b—ad—chot ™!

Z Z F(xhyj)

Ny— o Nx Ny j=0 j=0

we may first sum over j for each fixed i, then let N, —» co before summing over i. Since

d— Ny 1 d

lim —]V— z F(xuyj) j F(xny)dy
Ny— oo y J=0 ¢

by the definition of the ordinary Riemann integral of a function of one variable,

we have

g Nx—1
= iim 2227% JF(xl,y)dy

Nx— o x i=0

Again recognizing the limit of a Riemann sum as an integral, we may express

this as
b d
I=J (j F(x,y)dy)dx

an iterated integral which can be evaluated by techniques of single-variable calculus.
We could equally well have summed first over i, then over j, to obtain

I=f (JbF(x,y)dx)dy.

In evaluating the integral of a two-form t over an oriented rectangle R, we must
pay attention to the orientation of the rectangle. If R is oriented so that x is the
first’ coordinate, y the ‘second’, as in figure 8.7(a), we write t = F(x, y)dx A dy,



yy Ay
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a b X a I
»d AX
b bl
R) R)
a 4 a
é d y c d y

Figure 8.7 (a) Oriented with x first. (b) Oriented with y first.

then evaluate the iterated integral.

jb<JdF(x, y)dy)dx or Jd< ij(x, y)dx)dy.

If, on the other hand, R is oriented so that y is the ‘first’ coordinate, as in figure
8.7(b), we must write

t1=G(y,x)dy Adx (where G(y,x)= — F(x, y))

and evaluate the iterated integral

jb(jdG(y,x)dy>dx or fd(JbG(y,x)dx>dy.

Reversing the orientation of R changes the sign of the integral.

In the case of a line integral, the notion of orientation — and why the sign changes
when we reverse the orientation — is intuitively clear. (For example, in the case of
the force field, the line integral gave the work along the path, a difference in energy
readings, E; — E ,, on some internal meter, perhaps. Changing the direction replaces
Eg— E, with E, — Eg.) It is important to have a similar intuitive example for our
two-dimensional integrals. Here is one: One way of visualizing a change in orienta-
tion in the plane is to look at it from above and from below. That is, suppose
that we imagine our xy-plane as being the z = 0 plane in three-dimensional space.
Then a rotation which is clockwise when viewed from above will appear counter-
clockwise when viewed from below. So choosing an orientation on a surface in
space is closely related to choosing a ‘side’ of the surface. Now imagine that
material is flowing through the surface. For instance, imagine that the surface is

O T N

Figure 8.8




a piece of a cell membrane and we are interested in the transport of a particle
ion across the membrane.

Then, of course, in using the word ‘across’ we must specify a definite choice of
direction — a definite ‘side’ regarded as ‘in’ — for the surface. Thus in measuring the
total flux across the surface, we must choose an orientation. Changing the orienta-
tion will change the sign of the total flux.

Double integrals
Frequently one encounters absolute double integrals, which are to be evaluated
over a region in the plane which has no orientation. If, for example, o represents
the density (mass per unit area) of a plane lamina in the shape of a rectangle R,
then the mass of the lamina is given by the double integral

M=j‘ cdA.
R

Clearly M must be a positive number; orientation of R cannot matter. We may
regard dA4 in such an integral as a function which assigns to any small parallelogram
its true geometrical area; that is, the absolute value of its directed area. If we are
using x and y as coordinates, we may write dA =dx dy or dA =dydx; the

AY
d+

s+
bﬂ
%Y

Figure 8.9

order of the coordinates does not matter. The absolute integral [gF(x, y)dxdy may
be evaluated as the iterated integral

N ( JdF(x, y)dy)dx
"d( J‘bF(x, y)dx)dy.

The important point is that there are two quite distinct types of geometric
objects — expressions such as odA4, which we may call densities, which assign
numbers to regions R by integration independent of any orientation — and two-
forms — expressions like © = Fdx A dy, whose evaluation depends on a choice of

or as




orientation. They are each appropriate in quite different physical contexts. As we
shall see, they behave differently, under change of variables or pull-back. We shall
return to this important point later.

Double integrals as iterated integrals

Double integrals may be evaluated as iterated integrals for any region which is
bounded by lines x = constant and by function graphs which do not cross. For
example, in the region in figure 8.10, bounded on the left by x =a, on the right by

YA

Figure 8.10

x=>b, on top by the graph of y = ¢(x), and on the bottom by y = y/(x), the double
integral [ F(x,y)dxdy may be evaluated as

b X
j ( f" 'F(x, y))dydx.
a 1763}

As an illustration, we calculate the integral I = [z2xy dx dy over the quarter-circle
bounded by x=0, x=4a, y=0 and the circular arc y =,/(a*> — x?). Integrating

Figure 8.11



first over y, then over x, we find

a V(a2 —x2)
I=J (J 2xydy>dx
o\Jo

1 =Jv [xyz:lb/(az"xz) dx =J X(az - xz) dx 2%03.

0 0
Sometimes a double integral is more easily evaluated as an iterated integral if
the integration over x is performed first. For example, the integral I = {sF(x, y)dxdy
over the region § in figure 8.12, which is not easily evaluated by first integrating

Ay

Figure 8.12

over y, may be calculated as

d B)
Izj (J F(x,y)dx)dy.
¢ a(y)

Even for regions which are not rectangular, it is frequently possible to evaluate
a double integral as an iterated integral in either order. Suppose, for example, that
we wish to evaluate I = [rydxdy for the region R between the parabola y = x?

Figure 8.13



and the line y = x. This may be evaluated a5

1 x L 1
0 x2 0 3 .

Alternatively, we may describe the line as x = y, the parabola as x = \/y’ and
integrate first over x:

1 vy 1 1
I=j (J dX>ydy=L [Jy—y]ydy=f (3% —y*)dy = 1s.

Sometimes it pays to regard an iterated integral as a double integral in order
to reverse the order of integration. For example, the integral

1 1
Izj (j e—yzdy)dx
0 x

is unattractive to evaluate as it is written. We can, however, convert it to the double
integral

I =j e’ dxdy
R
where R is the triangular region bounded by x =0, y =1, and the line y = x. This

Ay

Figure 8.14

double integral can be evaluated by integrating first with respect to x, then with

respect to y:
f‘l y
I= e_”z(J dx)dy
JO 0

1 1
I=| ye ¥dy= J le7*du=4i(1—-e™1)

JO 0

SO

Incidentally, the original integral can be evaluated as it is written. If we define
an antiderivative of e ~** by

y
G(y)= f e~ dt,



so that

G(y)=e
then

I= Jl dxfewzdy: jl(c;(l)— G(x))dx.
0 x 0

Now integration by parts yields
1

I'=[(G(1) — G(x))x]} - f x(— G'(x)) dx.

0
The first term vanishes at both limits. Since G'(x) =e™*", we find that
1
I= j xe X dx=4(1—eY),
0

exactly as before.
Sometimes, in order to evaluate a double integral in terms of integrals over x
and y, it is necessary to divide up the region of integration. For example, to

YA

=V

Figure 8.15

evaluate [F(x,y)dxdy over the circular sector shown, we first divide the sector
into regions R, and R,, then evaluate

J F(x,y)dxdy+j F(x,y)dxdy
R4 R»

by converting each integral to an iterated integral. A more natural way to evaluate
the same integral is to introduce polar coordinates. We shall discuss this important
problem of change of variables in section 8.5.

8.4. Orientation

We have seen that the sign of a line integral depends on the orientation of the
path and that of a two-form on the orientation of the plane. We hope that you
have an intuitive idea of what orientation means, but suspect that you might feel
the need for a precise mathematical definition. That is our purpose in this section.



Before plunging into abstract mathematical definition, let us consider the problem.
In the plane, for example, it is intuitively clear that there are two possible
orientations:

Ay Ay

Figure 8.16

We cannot intrinsically characterize one or another but do know that they are
different and that there are only two of them. Similarly for the line:

» <

Figure 8.17

or for three-space when we try to describe right- or left-handedness:

Az

y

%y

Figure 8.18

Getting back to the plane, we do know (see section 1.5) that a nonsingular
matrix A preserves or reverses orientation according as Det A is positive or negative.
This provides us with the clue that we need for the general definition:*

Let V be an abstract two-dimensional vector space. As we saw at the end of
Chapter 1, giving a basis of V is the same as giving an isomorphism L: V— R% If
L and L' are two such bases, then

L'=BL

L L

R? B e

Figure 8.19

* As we shall see the same definition works for one-, three- or n-dimensional vector spaces.
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where B is a nonsingular 2 x 2 matrix. Let us call L and L similar if Det B>0
and opposite if Det B < 0. We claim that the set of all bases of V' decomposes into
two collections; call them %, and & ,. All bases in the collection & ; are mutually
similar, as are all the bases in the collection & ,; and every basis in the collection
F | 1s opposite to every basis in the collection & ,. Indeed, pick some basis L,.
Let &, consist of all bases of the form

BL, DetB>0

and let &, consist of all bases of the form

BL, DetB<0.

Every basis must belong to one or the other of these collections. If L and L both
belong to & ;, then

L=BL,, L'=B'L, DetB>0, DetB >0
SO
L'=BB 'L and DetB'B™!=DetB (DetB) !>0,

so L and L are similar. If both Det B< 0 and Det B’ <0 in the above, we shall
get that L and L' are similar; while, if one of the determinants is positive and the
other negative, we see that L and L are opposite. Thus, if we let # denote the
collection of all bases of V, we have

F=F VF, F nF,=.

An orientation in V is defined to be a choice of one or the other of these two
collections. In other words, an orientation on V is defined to be a collection of
bases of V such that any two bases in the collection are similar, and any basis
similar to a basis in the collection is in the collection.

Notice that giving a basis, L, of V determines an orientation on V — the set of
all bases similar to L.

Once we have chosen an orientation on V, then a basis L' will be called good
or positive if it belongs to the collection and bad or negative if it does not. Thus
once we have chosen an orientation, every basis is either good or bad. (Of course,
if we had chosen the opposite orientation, these appellations would be reversed.)

Let W be a second two-dimensional vector space and let A: V— W be a linear
isomorphism. That is, A has an inverse A~!: W— V. Suppose that we have chosen
an orientation, ¢, on V and an orientation Oy, on W. Let M €@y, be a good basis

V—‘»w
M

RZ

Figure 8.20



of W.Now M: W—R2s0o M°A: V—R?is an isomorphism; hence is a basis of V. So

there are now two possibilities; Mo A4 is either good or bad. We can put this
alternative another way. Let L be a good basis of V.

C = Mat; ,,(A)=MAL™?

Ve W

[ E S

Figure 8.21

Then C = MAL™ ! is the change of basis matrix between M 4 and L; in other words

MA=CL.

So M A is good if and only if Det C > 0. If we replace L by L' = B, L(Det B, > 0)
and M by M’ = B,M(Det B, > 0), then

C'=MAL '=B,MAL 'B;'=B,CB;!
SO
Det C' = Det B, Det C Det B;'?

has the same sign as Det C. Thus the question of whether Det C is positive or
negative is independent of the particular choice of Le®, and Me0y,.

If Det C >0 we say that A4 is orientation-preserving (or positive). If Det C <0
we say that A is orientation-reversing (or negative). Suppose that vAW and

4 : . . : :
W— Z are two linear isomorphisms and we have chosen orientations on each of the
three spaces. Then it is easy to check that

If A and A" are orientation-preserving, so is A'c A4;

If A and A’ are both orientation-reversing, then 4> A4 is orientation-
preserving;

If one is orientation preserving and the other is orientation reversing, then
A’° A is orientation reversing.

Let ¢:V — W be a differentiable map. Then, at each peV,d¢,:V — W is a linear
map. We say that ¢ is orientation preserving if d¢, is an orientation preserving
linear map for every p. (In particular, we assume that d¢, is a linear isomorphism
for each p.)

In our definition, we have assumed that V was two-dimensional. This is irrelevant.
For example, if V' is three-dimensional, the same definitions work. We merely need
to know that a 3 x 3 matrix is invertible if and only if its determinant is not zero
and that any three linearly independent vectors in a three-dimensional space V



form a basis of V' — hence an isomorphism with R3. Then the discussion at the end
of Chapter 1 applies as do all the preceding discussions in this section. Similarly
for an n-dimensional space — this requires the definition of n dimensions and of the
determinant of an n x n matrix. We will discuss these topics in Chapters 10 and
11. (In one dimension, a basis is just a non-zero vector, 1 x 1 matrix (a) is just a
number and this number a can be regarded as the determinant of (a).)

8.5. Pullback and integration for two-forms

The usual motivation for introducing new coordinates in a double integral is to
simplify the integration. For example, the region W shown in the xy-plane can be
expressed as the image of a rectangle R in the rf-plane by making the familiar
polar coordinate transformation « defined by a*x =rcosf, a*y =rsin 6. We can

a(B)

Figure 8.22

use this transformation to convert a directed double integral |, into the integral
of a suitable two-form in the rf-plane. This is achieved by defining the pullback
of a two-form, a*1, so that, if W= «(R), then

J ’EZJVOC*‘L‘.
w R

To define pullback of a two-form, we extend the definition of the pullback of
a one-form in the obvious way. Just as, for a one-form A, we defined a*1 by

da(w)

Py v a(P)

da(v)

Figure 8.23

o*A(p)[v] = A(ee(p))[dae[v]], we now define the pullback of a two-form by applying
do to both the vector arguments of 7. That is,

oa*7(p)Lv, W] = t(a(p)) [der[v], dx[w]].

This definition will ensure that the formula jRa*r =L<R)T will hold for any



rectangular region R, provided of course that « is differentiable and orientation
preserving and that both integrals exist. We approximate jRa*r as a Riemann sum
over many small rectangles:

*
oarT T

Pl av R a(R)

Figure 8.24

The contribution of the rectangle at point p is a*t(p)[hv, kw]. By definition, this
equals t(c(p))[da[hv], du[kw]], that is, the value of T on the parallelogram which
is the best linear approximation to the image under a of the rectangle defined by

hv and kw.
Of course, the image of the rectangle under « is not precisely a parallelogram

Figure 8.25

and the value
t(o(p)) [dex(hv), da(kw) ]

does not precisely equal the integral of T over the image of the rectangle. So we
make two types of error: replacing the image a(rect.) by a parallelogram, call it P,
and so

(1) j.az(rect.) by IP’
then

(i) replacing [, by t(a(p)) [dee(hv), da(hw)].
Now, if 7 is continuous, the error involved in (i) is clearly o(hk): if © had uniformly
bounded first derivatives on the entire region bounded by k say, then

|t(q) — t(o(p))| < k(h* + k*)'/* for any qin P.
Thus the error involved in (ii) is at most
k(h? + k*)/?hk.

Theerrorinvolved in (i) can be estimated by Taylor’s formula; for example, replacing
the curved image of each side by an approximating straight line. The error here
(assuming the first and second derivatives of « are bounded over R) will be a sum



¥ac. anc 1 ¢t - _
of terms bounded by h2k and hk? multiplied by a suitable constant, thus

a*(t(p;)) [hv, hw] = T -+ error

a(rect.)

where
lerror| < C(h? + k*)!/? x (the area of R).

Summing over all rectangles, we get

Y o*(z(p;)) [hv, hw] =J 7 + error

a(R)
where

lerror| < C(h? + k?®)'/? x (the area of R).

As we make the mesh finer and finer, the sum on the left approaches [zo*t while
the error on the right approaches zero. It follows that

J oc*‘czj T.
R a{R)

For a more careful proof of this important result, not requiring such stringent
hypotheses on o and on 7, and valid in n dimensions, see Loomis and Sternberg,
Advanced Calculus section 8.11. In fact, we recommend Chapter 8 of Loomis and
Sternberg (which can be read independently of the rest of the book) for its treatment
of the theory of integration.

We still need a procedure for computing the pullback of a two-form. Since any
two-form in the plane can be expressed as a wedge product of two one-forms, we
first calculate a*(4 A o), where A and ¢ are one-forms. By definition,

a*(A A o)[v,w] = A o)[dafv], da[w]]=A[da[v]]o[da[w]]
— A[da[w]]e[da[v]].

On the other hand,
(a*A A a*o)[v,w] = a*A[v]a*o[w] — a*A[w]a*a[v].

By the definition of pullback for a one-form, a*A[v] = A[da[v]]. It follows then that

0a*¥(AAo)=a*L A a*o

that is, pullback commutes with the wedge product.
Since the most general two-form in the xy-plane is of the form

t=fdx Ady
we find immediately that
a*t = (a*f)d(a*x) A d(o*y).
If, for example, a*x =rcos 0, a*y = rsin 6, then
d(o*x) A d(a*y) = (cos 6dr —rsinfde) A (sinfdr.+rcosfdb)=r dr A dé.

We have therefore established the change of variables formula for polar



coordinates:

J (@*F)(r,0)rdr A d0 = J F(x,y)dx A dy.
R

a(R)
The two-form rdr A df assigns to any small parallelogram in the rf-plane not
its directed area (dr A d@ does that) but rather the directed area of its image in the
xy-plane under the transformation «.
We can now establish the general change of variables formula for directed double
integrals. Let R be an oriented region in the uv-plane which is carried by the
differentiable transformation « into the oriented region «(R) in the xy-plane. We

A
o*r y

7 @/C/’/gﬂ

Figure 8.26

<
oY

describe o by specifying the pullback of the coordinate functions x and y:

o*x = X(u,v), a*y=Y(u,v)

so that
a(cx x) 0(o*x) 0X 0X
* —_—
d(o*x) = u+ % dv 5ud +——av dv,
O(oc* o(a*
diorty) = & y)du+ Y 4529 qu 1+ Y g
ou ov ou ov

The two-form t on the xy-plane may be expressed as T =f dx A dy = F(x, y)dx A dy.
Its pullback is

¥ L3 *
a*t = o* fd(a*x) A d(a*y) = a* f 6(0( x) o) _ %) o) du A dv
ov ov ou
or, equivalently,
0X oY 0XdY
o*t = F(X(u,v), Y(u,0)) — —— — |du A dv
ou dv  Ov ou

We recognize the factor in square brackets as the determinant of the Jacobian
matrix J which represents do relative to the given coordinates,

O(o*x) O(a*x) 0X 0X
| ou ov _ ou  ov
da*y) oe*y) | | oY oy

ou ov ou v



so that we may write

fdx/\dyzj' o* fDetJ du A dv.
R

a(R)
This is entirely reasonable. Since DetJ is the ‘area-transforming’ factor for the
linear transformation da, Det J du A dv assigns to any small region in the uv-plane
the directed area of its image in the xy-plane. If the ordering of u and v has been
determined by the orientation of R and the ordering of x and y by the orientation
of a(R), and if o is orientation-preserving, then the Jacobian matrix J will have a
positive determinant. Reversing the order of u and v, or of x and y, corresponds
to a change in orientation in the uv- or xy-planes. It will interchange columns or
rows of J and thereby change the sign of Det J.

As an illustration of the change of variables formula, we calculate the area of
the oriented region W bounded by the x-axis, the line y=mx, the hyperbola
x?—y* =1, and the hyperbola x> — y* =4. To achieve this we write W= a(R)
where o*x = ucosh v, a*y = usinh v. Then « maps the oriented rectangle R, defined
by 1 <u <2,0<v< arctanhm,into the region W. For example, the vertical segment
u =2 is mapped into a portion of the hyperbola x* — y* =4.

e
o /4
W 3
+
v Ay w//\' S
% 7
D C i a(C)
aD)-
9 )
«(B)
A B
1 2 u a(4) 1 2 x
Figure 8.27 Figure 8.28

Since W has the ‘x-first’ orientation, its area is 4 = {dx A dy. Pulling back, we
have A= [ra*(dx Andy)=[gDetJdurdv. Here o*(dx A dy)=d(ucoshv) A
d(u sinh v) = (cosh vdu + u sinh vdv) A (sinh vdu + u cosh vdv) = u cosh*vdu A dv +
usinh?vdv A du = udu A dv so that

2 tanh ™ 'm
A=JuduAdv=J uduJ dv=3tanh™ 'm.
R

1 0

Equivalently, we may compute

DetJ — det(COSh v usinhv > .,

sinhv wucoshv

in order to see that A = [gudu A do.



Clearly the secret of a useful coordinate transformation is to make the boundary
of the region W be the image of the sides of a rectangle in the uv-plane. If, for example,
W is the triangle bounded by the coordinate axes and the line x + y = 1, a useful

«(4), «(B) 1 aC) x

Figure 8.29

coordinate transformation will be one which carries the lines u = constant, for a
fixed interval in v, into segments x + y = constant between the coordinate axes. Such
a coordinate transformation is described by a*x = uv, a*y = u(1 — v), which has the
property that a*(x + y) =u. You should convince yourself that « carries the unit
square R in the uv-plane into the region W, but that R must be given the ‘v-first’
orientation in order to make the orientation of «(R) agree with that of W.
Confirmation of this fact is that, when v is taken as the first coordinate, the Jacobian

O(a*x) d(a*x)
s ov ou _( u v )
da*y)  O(a*y) —u l1—v
ov ou

has determinant u, which is positive. (If u were the first coordinate, Det J would
equal —u.)
We may use this coordinate transformation to evaluate the integral

I J‘ e_(x+.v) d
=| ———dxady
w \/(XY)

which would be very difficult as an iterated integral over x and y. We find

e——(x+y)) e-—u e—u 1

a* i i

( Jxy) ) YWl =] u J(l —v)]

and a*(dx A dy) = (udv + vdu) A (—udv + (1 — v)du) = udv A du, so that the integral
in the uv-plane is simply

e-—u
I=| ————dv Adu
J ry/ [v(1 —0)]
: : : e "
Note that, because R has the ‘v-first’ orientation, we write ————dv A du, not

JIo(l—0)]

its negative, before converting to an iterated integral. The final result is I =



—u do : .
j(l)e du 5m = (1 — e 1)z (In evaluating the second integral we used the

dv

fact that | Ny

We turn finally to the question of changing variables in an absolute double
integral, I = {, fdxdy. To make such a variable change, we may first convert I to a
directed double integral I = [y, f dx A dy, giving W the ‘x-first’ orientation. We next

= —arcsin(—2v + 1).)

v A yﬂ
(04

R /—’_\

Figure 8.30

X,

write Was a(R); this procedure assigns an orientation to R. If Det J ( Y ) 1s positive,
u,v

R has the ‘u-first’ orientation, and

I= jR o* f(Det J)du A dv = JR o*f(Det J)dudo.

(ufirst) (unoriented)

X\ . : : :
If DetJ < y> is negative, R has the v-first orientation, and

b

I= JR o*f(Det J)(dv A du) = — j o*f(Det J)duduv.

R
(vfirst) (unoriented)

In either case, the rule is to use the absolute value of Det J:

1=J axf DetJ(x’y)
R U, v

When this rule is used, questions of orientation, or of the order of coordinates, never
arise; interchanging x and y, or u and v, does not affect the absolute value of Det J.
In Chapter 15 we will discuss integration of forms in higher dimensions.

dudv.

8.6. Two-forms in three-space

In the preceding section, we defined pullback for two-forms. The computational rule
was very simple: if w, and w, are linear differential forms, then

P*wy A @y) = d*w; A P*w,.
If f is a function and 7 is a two-form, then

o*(f1) = ¢*(f)d*r.



If 7, and 7, are two-forms, then

O*(ty + 15) = p*1, + P*1,.
In short, all algebraic operations are preserved. We also defined the linear operator ¢
going from one-form to two-forms,

d(fdg) = df A dg,
or, more generally,
d(fw)=df A v+ fdow,
and
dlw; + w,)=dw, + dw,.
The pullback ¢* commutes with d in the sense that

o*(df)=de¢*f f a function
and
¢*dow =do*w w a one-form.

The notion of a two-form makes perfectly good sense in R*: a typical two-form
in R (where the coordinates are x, y, z) is an expression of the form

adx A dy+ bdx A dz+cdy A dz,
where a,b and ¢ are functions. If
o= Adx + Bdy+ Cdz
is a one-form, then the rules for d and for exterior multiplication give
do=dAAdx+dBAady+dC adz

0A 0A 0A 0B 0B 0B
dx + —dy +— — —
<6x x + 5 y-i—a dz>/\dx+(a dx+6ydy+azdz>/\dy

oC 0C oC
+ (adx a—dy + a—dz) A dz

0B 0A 0C 04 0C 0B
(G5 Jemnare (55 Jexnae (T Jarnas

If : R* » R? and 7 is a two-form in R3, then ¢*1 is a two-form on R2. If R is some
region in R? and we have chosen an orientation on R?, then we can form the integral
f r¢$*t which we might think of as the ‘integral of T over the oriented surface «(R).

B N B

Figure 8.31




8.7. The difference between two-forms and densities
Let us return to two dimensions. We have seen that the pullback, o*t, is defined for

any two-form 7. Explicitly, if « maps the uv-plane into the xy-plane, then

a*(fdx A dy) = (a*f) (Det J)du A dv (8.2)
where J is the Jacobian matrix

Oy 0%y

J— ou Ov Cae ocl.
Oy 0% %
du  Ov

This formula is correct for any differentiable map «. We also proved that, if o is one-
to-one and orientation preserving, then

J o*(1) = J .. (8.3)
R a(R)

This is true when we consider the integral of a two-form, where the orientation
matters. Suppose, however, we want to consider an absolute integral. Then a choice
of orientation should not matter — but then the formula for change of variables or
pullback for the expression fdA or fdxdy should not be the same as (8.2). In fact, if
we go back to the proof of the change of variables formula on page 290 we replaced

j by t(P)[da(hv), do(kw) |
a(rect.)

= f(P) x oriented area of rect.

Itis clear that in the absolute integral case we must replace oriented area by absolute
area. So we must replace (8.2) by

o*(f dxdy) = a*f-| Det J|dudo. (8.4)

The reader should check — as an instructive exercise — that, if « is one-to-one and
invertible, then

J o*(fdxdy) =J fdxdy
R a(R)

without any conditions on orientation.

So two-forms, T = fdx A dy, and densities like fdxdy are quite different objects —
they transform differently under change of variables. For example, a density can be
positive or negative (as in a density of electric charge): if f > 0 then making a change
of variables replaces fdxdy by o*(f)|Det J|dudv and o*f- |Det J| is still positive (if
Det J # 0. which will hold if o~ ! is differentiable). But it makes no sense to ask
whether a two-form 7 is positive or negative — since the factor DET J which enters
into (8.2) can be positive or negative. It is only when we choose an orientation (and
so only allow orientation-preserving changes of variable — those for which
Det J > 0) that we can identify two-forms and densities.



8.8. Green’s theorem in the plane

In considering line integrals we have encountered one generalization of the
fundamental theorem of the calculus, namely

fdf=f(B)~f(A)

where the path y runs from A to B. This theorem relates the integral of df over a one-
dimensional region (the path y) to the values of f'itself on the boundary of the path
(the endpoints of the path).

Figure 8.32

A similar result involving a two-dimensional region and its one-dimensional
boundary is known as Green’s theorem. This theorem states that, for any
differentiable one-form t and any oriented region R in the plane,

Jdrzj T.
R R

Here the integral on the left is the integral of the two-form dt over the region R, while
the integral on the right is the integral of the one-form t over the path 0R which is the
boundary of R. The sense in which the path dR is to be traversed is determined by the
orientation of R. For example, if R is an annular region with a counter-clockwise
orientation, as shown in figure 8.33, then 0R consists of the outer bounding circle
traversed counterclockwise and the inner bounding circle traversed clockwise. If R
were given a clockwise orientation, the R would consist of the same two circular
paths, but each traversed in the opposite sense.

oR

Figure 8.33



Before proving Green’s theorem formally, it is worth reviewing the definition of
the operator d acting on a one-form in order to see why such a theorem ought to
hold. Recall that we defined dt as an antisymmetric bilinear function on a pair of
vectors v, w with the property that

dt(P)[hv,kw] = T + error
P(h,k)

where P(h, k) is the parallelogram spanned by vectors hv and kw, and the error term
goes to zero faster than the product hk (faster than the area of the parallelogram). If

kw

Figure 8.34

we now consider a region which is a union of N parallelograms, each spanned by
vectors hv and kw, we have

i=1

=

N N N
3 de(P)[hv,kw] = j 14 3 (erron),

In the sum of line integrals over the parallelograms, the contributions from the
interior segments, each of which is common to two parallelograms, cancel, since
each segment appears once with each orientation. Thus all that remains is a single
line integral around the boundary of R, and we have

sz: dt(P;)[hv,kw] = j T+ i (error);.
i=1 R i=1

Now, as h and k approach zero, the sum on the left side approaches the integral
frdz. Since N is proportional to 1/hk, while each error term goes to zero faster
than hk, the sum of the error terms approaches zero as h and k approach zero,

and we have
J dt = J T
R oR

for any region which is a union of parallelograms.



To prove Green’s theorem more rigorously, we first consider the special case
where 7 = G(x, y)dy and evaluate the line integral IBRT around a rectangle with sides
parallel to the x- and y-axes. The only contributions to the integral come from the

Ay

b -

Figure 8.35

side x = a, traversed from y =0 to y =b, and from the side x =0, traversed from
y=>bto y=0. Thus

j ‘r=rG(a,y)dy+rG(0,y)dy

b

= J G(a, y)dy — J G(0, y)dy.
0 0

But, by the fundamental theorem of calculus,

a

oG
Gla.y)— G(0.y) = j % (e

We may therefore express [,,7 as the iterated integral
b a aG
J (J. —(an)dx)dy
o\ Jo 0x
which in turn is equal to the directed double integral
oG
J —(x,y)dx A dy.
rOX

A similar argument, applied to the one-form [ F(x, y)dx, yields the result

J F(x,y)dx = J‘a< Jw?-li(x,y))dx Ady
R 0 0 0y

= — JH(F(x, b) — F(x,0))dx.

Adding this to the previous result, we have

oG oF
=| — ——(x,y)d .
LRF(x,y)derG(x,y)dy J I (x,y) 3 (x,y)dx A dy

R



But, of course, if
1= F(x,y)dx + G(x,y)dy,
then
OF
oy
so we have again proved that

0G
dr = (x,y)dx A dy + Bg(x, y)dx A dy

j T= J dr,
oR R
which is Green’s theorem.
We can now extend the proof of Green’s theorem to any region in the plane which
is the image of a rectangle under a smooth transformation «. The strategy is familiar:

we pull back the integrals {7 and |, . dz to the st-plane, in which the region of
integration is just a rectangle:

¢ Yy
wtr 3[a(R)]

T

[
=

Figure 8.36

It is clear that, if « is continuous, then the boundary of R is carried into the
boundary of «(R). Therefore
J T= J o*1.
o[a(R)] JR

But for the rectangular region R we have already proved that

j OC*T—-—J d(o*7).
oR R
f dr = j o*(dt)
a(R) R

by the definition of pullback. To prove that | oaR)]T = ) «rd7, therefore, we need only
to show that

Furthermore,

o*(dt) = d(a*7).
This is easily done by direct computation.
Let T = fdx + gdy. Using the rule a*(dx) = d(a*x), a*(dy) = d(a*y), we have
a*t = (a*f)d(o*x) + (a*g)d(o*y).



Then, using the rule d(fdh) = df A dh, we have

do*7) = d(@*f) A d(a*x) + d(a*g) A d(e*y). (%)

On the other hand, we know that
dr=df A dx +dg A dy.

Using the rule a*(c A w) =a*0 A a*w, we have

a*dt = a*(df) A a*(dx) + a*(dg) A a*(dy)
so that

a*dt =d(a*f) A d(o*x) + d(o*g) A d(ec*y).
Comparing with (8.2) above, we see that
d(o*7) = o*(d7).

j T =J o¥*T = j d(a*7) = f o*(d7) = J dt
a(dR) éR R R a(R)

which proves Green’s theorem for a region which is the image of a rectangle.

We have proved Green’s theorem for a region which is the image of a rectangle.
Unfortunately, this is not general enough. We would like to consider more general
polygons. Now, in the plane, every polygon can be decomposed into triangles.
Indeed, we can decompose any polygon into convex polygons:

Thus we have

Figure 8.37

Any convex polygon can be decomposed into triangles by simply choosing a point
in the interior and joining it to all the vertices:

Figure 8.38

If we knew Green’s theorem for one-forms and triangles, then we would know it
for all polygons, since the integrations over the interior boundaries cancel out:
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Figure 8.39

We thus need only to prove the theorem for triangles. Since any triangle can
be mapped into any other by an affine transformation, the invariance of the
integrals under smooth (in particular, affine) transformations means that it is
enough to prove it for a single triangle. So consider the triangle T, = {0 < x < y < 1}
in the xy-plane.

5]

T,

Figure 8.40

We may consider the quadrilateral T, {x < y,e < y < 1} for any ¢. Clearly, by passing
to the limit, if we know Green’s theorem for T,, ¢ > 0, it will follow for the triangle
T, since the line and area integrals around the little tip become vanishingly small.
But T for ¢ >0 is the image of the rectangle 0<u <1, e<v <1 in the uv-plane
under the map

= uv,

And this map has a smooth inverse,
u=x/y,
v=y,

so long as y>¢>0. Hence we have reduced the theorem to a case we already
know — the image of a rectangle. QED

vﬂ; y

u x

Figure 8.41



As an illustration of Green’s theorem, we consider the integral of the one-form

T=x2dy

Figure 8.42

0 1
over the closed path dR formed by the line segment from ( 0) to (0

1 0 1 0
y=1-—x?from <0> to <1>, and the line segment from (0> to (0) The two line

segments contribute nothing to the integral. Parameterizing the parabola by
Prx=1—1t, Pf*y=1—-(1-1)*=2t—t> O0<t<l1

), the parabola

we find

B*t = (1 —1)*(2 — 20)dt = 2(1 —t)3ds,

1
f rz[ 2(1 —t)*dt =13.
OR 0

According to Green’s theorem, the integral of dz = 2xdx A dy over the region R
should have the same value. Evaluating this integral as an iterated integral, we

obtain
1 1—x2
f 2xde‘ dyzj 2(1 — x*)xdx =14,
0 0 0
as expected.

We can use Green’s theorem to obtain expressions for the area of a region in terms
of line integrals. For example, if t = xdy, then dt =dx A dy, and

J r=fdx/\dy=areaofR,
oR R

assuming that R has a counterclockwise orientation. Of course, any one-form
"= xdy + df, where fis an arbitrary differentiable function, has the same property,

and



since
dr’ = d(xdy) + d(df) =dx A dy =dx.
Choosing f= —1xy, for example, we obtain
7 = xdy — 3xdy — 3ydx = 3(xdy — ydx).
On introducing polar coordinates by the formulas
a*x =rcosf, o*y=rsin0"
we obtain, after some calculation,
a*t =1r2do
which leads to the well-known formula

2n
A= f 11240

0
for the area of the region bounded by a closed curve which is described in terms of
polar coordinates.
The basic formulas of this chapter:

AnG=—0A4k
(i +w)Ao=w, Ac+w, A0
d(fw)=df n o+ fdw
a*(A A o)=a*i A a*o
oa*(t, + 1,) =¥t +a*r,
a*dt = da*r

(‘
j a¥t = t for orientation-
R JaR preserving o

m
t=| drt
3R JR

Summary

A Two-forms
Given a differential one-form z on the plane, you should be able to state the
definition of its exterior derivative dt and to calculate dr in terms of coordinates x
and y.

You should know how to define and evaluate the integral of a two-form over an
oriented rectangular region of the plane.

' Frequently in applications the «* is dropped, and one wri'tes simply x =rcosf, y=rsin 6.



B

Youshould be able to evaluate double integrals over regions of the plane by carrying
out iterated integrals with appropriate limits of integration, and to reverse the order

Double integrals

of integration in an integral by converting it to a double integral.

Given a transformation from one region of the plane to another, you should be
able to evaluate integrals over the second region by pullback, and you should be able
to invent such transformations to simplify the evaluation of double integrals.

C

Green’s theorem

You should be able to state and apply Green’s theorem in the plane.

8.1.

8.2.

8.3.(a)

(b)

8.4.

8.5.

Exercises

In each of the following cases, u and v are functions on a plane where x and
y are affine coordinates. Express dx A dy in terms of du A dv. Make a
sketch showing typical curves u = constant and v = constant in the first
quadrant (x,y > 0) and try to give a geometric interpretation to the re-
lations between dx A dy and du A dv by applying both to a parallelogram
whose sides are tangent to u = constant and v = constant respectively.

(@) x=wucosv. y=usinv.

(b) x=ucoshv, y=usinhv.

() x=u*—v? y=2un

Evaluate{|sx®y*dxdy, where S is the bounded portion of the first
quadrant lying between the hyperbolas xy = 1 and xy = 2 and the straight
lines y = x‘and y = 4x.

Show, by reversing the order of integration, that

Ja<Jyem("_x)f(x)dx>dy = Ja(a — x)e™@ 9 (x)dx
o\Jo 0

where a and m are constants, a > 0.

Show that [5([3[[6 f()dt]du)dv =% [5(x — t)*f(¢)dt.

If you do this in two steps, you never actually have to consider a triple
integral!

Evaluate the iterated integral

1 1= gin ntx
I=| vy —dx |dy
0 0 X

by expressing it as a double integral over a suitable region W, then
evaluating the integral as an iterated integral in the opposite order. Make
a sketch to show the region W. (You may want to consult an integral
table if you find the evaluation of the single integrals hard.)

Consider the mapping defined by the equations
x=u+v, y=v—u?

(a) Compute the Jacobian determinant of this mapping as a function of u
and v.

(b) A triangle T in the uv-plane has vertices (0,0), (2,0), (0, 2). Sketch its
image S in the xy-plane.



(c) Calculate the area of S by a double integral over S and also by a double

integral over T
JJ’ dxdy
s(x—y+ 1>

(d) Evaluate
8.6.(a) Letsdenote the unit square in the uv-plane. Describe and sketch the image

of s under the mapping
(o
: > .
v (2 —u?)

Label ¢(A4), ¢(B), ¢(C) on your sketch.

Figure 8.43

(b) Evaluate {{ydxdy over this region in the xy-plane.
(c) Evaluate this same integral by integrating the appropriate function over
the square s in the uv-plane.

8.7.(a) Evaluate the integral

J (x + 2y)dxdy
w

for the triangular region W shown in figure 8.44.

Figure 8.44



(b) Evaluate the same integral by using coordinates u and v related to x and y

by x =2uv,y = u — uv.
[
0 0

8.8. Evaluate
first as an iterated integral over y and x, then by using polar coordinates.

8.9.(a) Evaluate the iterated integral
1 1/v
J (J‘ u5v9du)dv.
0 1

(b) Interpret this integral as a double integral over a suitable region in the uo-
plane. Draw a picture of this region labelling its boundary curves clearly.
(Do not be concerned, here or later, by the fact that the region is
unbounded.)

(c) Reinterpret the double integral as an iterated integral in the other order,
and evaluate this integral.

(d) Make the substitution u=x?y~3,v=x"!y? in the double integral,
obtaining a new double integral in the xy-plane. Draw a picture of the
domain of this new integral.

(e) Convert the new double integral to an iterated integral and evaluate it.

(f) Show that x, y are differentiable coordinates on the whole of the (open)
first quadrant of the uv-plane.

8.10.(a) Evaluate
e
Q

where Q is the first quadrant of the unit disk, by convertingit to an iterated
integral in x and y. (‘4A’ refers to the usual area in the xy-plane.)

(b) Introduce polar coordinates r and 6 into the xy-plane as usual and convert
the given integral into an integral over a suitable region in the r8-plane.
Describe this region carefully. (By the r0-plane is meant a new copy of R?
in which the usual coordinates are called » and 6.)

(c) Convert the new integral to an iterated integral in r and 6 and evaluate it
again.

8.11.(a) Evaluate the integral I = [,2ydx A dy as the sum of two iterated integrals
in the xy-plane. The region W is bounded by the lines y =2x and y = 2x
and the hyperbolas xy =2 and xy = 8.

—
[\
N

Figure 8.45



(b) Find a rectangle R in the uv-plane such that Wis the image of R under the
transformation o described by a*x = 2uv, a*y = u/v.
(c) Calculate a*(2ydx A dy).

(d) Evaluate the integral I as an integral over the region R.
8.12.(a) Evaluate the line integral {(2y? + 3x)dx + 2xydy over the curve y shown
in figure 8.46, which consists of the line segments 0 < x <2and 0 y <2
and the circular arc x? + y*> =4 for x>0,y > 0.
(b) Construct a double integral over the region bounded by y which must be
equal to the line integral in (a). Evaluate this double integral by
transforming to polar coordinates.

Ay

-
m

Figure 8.46

(c) Find a function f(x) with the property that

jf(x)[(Zyz + 3x)dx + 2xydy] =0

when the integral is evaluated around any closed curve in the plane.

8.13. One way to change coordinates in a directed double integral I =
fW fdx A dy, where W = ¢(8), 1s to use Green’s theorem to express [ as a
line integral over the closed path W, transform the result to a line integral
in the uv-plane, then use Green’s theorem again to express I as a double

integral in the uv-plane. Use this approach to derive the change of
variables formula for double integrals.

8.14. Let u and v be functions on the plane whose first and second partial
derivatives with respect to x and y are continuous. Let S be a connected
region in the plane with boundary dS. Show that

~ ~ a a 82 ~2
J |:<vﬂ—u£li dx+(u-ﬁ—li—v—qﬁ)dy]=2J‘J‘ <u 0 —v il )dxdy.
as Ox  0x cy 0oy s\ Oxdy  Ox0y

8.15.(a) The moment of inertia for a plane lamina S of uniform density (mass per




oS

Ay
S

%y

Figure 8.47

unit area) o about the x-axis is

I = JJ y*dxdy.
S

Show that I,=a|,xy*dy where 0S is the boundary of the lamina
traversed counter clockwise.
(b) The moment of inertia about the y-axis is

I,= GJ‘xzdxdy.

Find two different differential forms w and 7 such that
I,= O'J' W= O'J‘ T.
aS as
(c) The moment of inertia about the z-axis is
I,= c)'JA(x2 +y?)dxdy=1I,+1,.

Find a differential form Q such that I, = ¢ [,,Q. Express Qin terms of polar
coordinates r and 0.
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Chapter 9 presents an example of how the results of the first
eight chapters can be applied to a physical theory — optics. It
is all in the nature of applications, and can be omitted without
any effect on the understanding of what follows.

9.1. Theories of optics

In the history of physics it is often the case that, when an older theory is superseded
by a newer one, the older theory retains its validity, either as an approximation
to the newer theory, an approximation that is valid for an interesting range of
circumstances, or as a special case of the newer theory. Thus Newtonian mechanics
can be regarded as an approximation to relativistic mechanics, valid when the
velocities that arise are very small in comparison to the velocity of light. Similarly,
Newtonian mechanics can be regarded as an approximation to quantum mechanics,
valid when the bodies in question are sufficiently large. Kepler’s laws of planetary
motion are a special case of Newton’s laws, valid for the inverse square law of force
between two bodies. Kepler’s laws can also be regarded as an approximation to the
laws of motion derived from Newtonian mechanics when we ignore the effects of the
planets on each other’s motion.

The currently held theory of light is known as quantum electrodynamics. It
describes very successfully and very accurately the interaction of light with charged
particles, explaining both the discrete character of light, as evinced in the photo-
electric effect, and the wave-like character of electromagnetic radiation. The triumph
of nineteenth century physics was Maxwell’s electromagnetic theory, which was a
self-contained theory explaining electricity, magnetism and electromagnetic radi-
ation. Maxwell’s theory can be regarded as an approximation to quantum
electrodynamics, valid in that range where it is safe to ignore quantum effects.
Maxwell’s theory fails to explain a whole range of phenomena that occur at the
atomic or subatomic level.



One of Maxwell’s remarkable discoveries was that visible light is a form of
electromagnetic radiation, as is radiant heat. In fact, since Maxwell, optics is a special
chapter of the theory of electricity and magnetism which treats electromagnetic
vibrations of all wavelengths, from the shortest y rays of radioactive substances
(having a wavelength of one hundred-millionth of a millimeter) through the X-rays,
the ultraviolet, visible light, the infra-red, to the longest radio waves (having a
wavelength of many kilometers). In the flood of invisible light that is accessible to the
mental eye of the physicist, the physiological eye is almost blind, so small is the
interval of vibrations that it converts into sensations.

Maxwell’s theory dealt with the source of electromagnetic radiation as well as its
propagation. Before Maxwell, there was a fairly well-developed wave theory of light,
due mainly to Fresnel, which dealt rather successfully with the propagation of light
in various media, but had nothing to say about the production of light. Fresnel’s
theory did account for three physical effects which could not be explained by earlier
theories — diffraction, interference, and polarization. Diffraction has to do with the
behavior of light in the immediate vicinity of surfaces through which it is transmitted
or reflected. A typical diffraction effect is the fact that we cannot produce an
absolutely straight, arbitrarily narrow beam of light. For example, we might try to
produce such a beam by lining up two opaque screens with holes in them, to
collimate light arriving from the left of one of them. When the holes get very small (of
the order of the wavelength of the light), we find that the region to the right of the
second screen is suffused with light, instead of there being a narrow beam.
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Figure 9.1

‘Interference’ refers to those phenomena where the wave character of light manifests
itself by the constructive or destructive superposition of light travelling different
paths. Typical is the famous Young interference experiment illustrated in figure 9.2.
‘Polarization’ refers to the fact that when light passes through certain materials, it
appears to acquire a preferred direction in the plane perpendicular to the ray; such
effects can be observed, for example, by using Polaroid filters.

Geometrical optics is the approximation to wave optics in which the wave
character of light is ignored. It is valid whenever the dimensions of the various
apertures are very large when compared to the wavelength of the light, and when we



Screen

Figure 9.2

do not examine too closely what is happening in the neighborhood of shadows or
foci. It does not account for diffraction, interference or polarization.

Linear optics is an approximation to geometrical optics that is valid when the
various angles which enter into consideration are small. In linear optics one makes
the approximation sin 6 = 6, tan 6 = 6, cos 0 = 1, etc.; i.e., all expressions which are
quadratic (or of higher order) in the angles are ignored. For example, in geometrical
optics, Snell’s law says that if light passes from a region whose index of refraction
(relative to vacuum) is n, into a region whose index of refraction is n’, then nsini =
n’sini’ where i and i’ are the angles that the light ray makes with the normal to the
surface separating the regions. In linear optics we replace this law by the simpler law

Figure 9.3

ni =n'i’, which is a good approximation if i and i’ are small. (This approximate law
was known to Ptolemy.) The deviations between geometrical optics and the linear
optics approximation are known as (geometrical) aberrations. For instance, if a
bundle of parallel rays is incident on a spherical mirror, a careful examination of the
reflected rays shows that they do not all intersect at a common point. The rays near
the diameter do intersect near a common focal point. In linear optics we restrict
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ourselves to rays close enough to the diameter so that we may assume that there is a

common focus. (This deviation from focussing for a spherical mirror is a case of
spherical aberration.)

Gaussian optics is a special case of linear optics in which it is assumed that all
the surfaces that enter are rotationally symmetric about a central axis. This is a very
important special case since all ground lenses and most polished mirrors have this
property. We can summarize our discussion in figure 9.5.

9.2. Matrix methods

In Gaussian optics we are interested in tracing the trajectory of a light ray as it
passes through the various refracting surfaces of the optical system (or is reflected by
reflecting surfaces). We introduce a coordinate system so that the z-axis (pointing
from left to right in our diagram) coincides with the optical axis (i.e., the axis of
symmetry of our system). We shall restrict attention to coaxial rays — those that
lie in a plane with the optical axis.*

By rotational symmetry, it is clearly sufficient to restrict attention to rays lying in
one fixed plane. The trajectory of a ray, as it passes through the various refracting
surfaces of the system, will consist of a series of straight lines. Our problem is to relate
the straight line of the ray after it emerges from the system to the entering straight
line. For this we need to have a way of specifying straight lines. We do so as follows:
we choose some fixed z value. This amounts to choosing a plane perpendicular to the
optical axis, called the reference plane. Then a straight line is specified by two
numbers, its height, g above the axis at z, and the angle 0 that the line makes with the
optical axis. The angle § will be measured in radians and considered positive if a
counterclockwise rotation carries the positive z-direction into the direction of the
ray along the straight line. It is convenient to choose new reference planes, suitably

10
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Figure 9.6

adjusted to each stage in the calculation. Thus, for example, if light enters our optical
system from the left and emerges from the right, we would choose one reference
plane z, to theleft of the system of lenses and a second reference plane z, to the right.

* Although this is introduced here as a simplifying assumption, it can be proved that linearity
implies that the study of the most general ray can be reduced to the study of coaxial rays by
projection onto two perpendicular components.



Figure 9.7

A ray enters the system as a straight line specified by g, and 0, at z, and emerges asa
straight line specified by ¢, and 6, at z,. Our problem, for any system of lenses, is to
find the relation between (gq,,6,) and (g, 0,).

Now comes a simple but crucial step, of far reaching significance, which is basic to
the geometry of optics and of mechanics.

Replace the variable 8 by p = nf where nis the index of refraction of the medium at
the reference plane. (In mechanics, the corresponding step is to replace velocity by
momentum.)

We thus describe a light ray by the vector ( Z) and our problem is to find (zz) as
2

q.

a function of (
D1

). Since we are ignoring all terms quadratic or higher, it follows

q,
D2

()= (5)

for some matrix M, . The key effect of our choice of p instead of 8 as variable is the
assertion that

di

Py

from our approximation that ( ) is a linear function of (

), 1.e., that

DetM,, = 1. |

In other words, that the study of Gaussian optics is equivalent to the study of the
group of 2 x 2 real matrices of determinant one, the group S1(2,R). To prove
this, observe that if we have three reference planes, z, , z,, and z,, situated so that the
light ray going from z, to z; passes through z,, then by definition

M31 :M32M21-

Thus, if our optical system is built out of two components, we need only verify
Det M = 1 for each component separately. To simplify the exposition, assume that
our system does not contain mirrors.

The basic components
Any refracting lens system can be considered as the composite of several
systems of two basic types.



(a) A translation, in which the ray continues to travel in a straight line between
two reference planes lying in the same medium. To describe such a system we must
specify the gap, t, between the planes and the refractive index, n, of the medium. It is
clear for such a system that 6 and hence p do not change and that g, = q, + (¢/n)p,.

q2
}t(tarﬂ),)i@,t:(;)pl

0, |91
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Figure 9.8

We write T=t/n (called the reduced distance) and see that

()=l 1)) ol 1)

(b) Refraction at the boundary surface between two regions of differing refractive
index. We must specify the curvature of the surface and the two indices of refraction,
n, and n,. The two reference planes will be taken immediately to the left and
immediately to the right of the surface.

At such a surface of refraction, the g value does not change. The angle, and hence
the p, changes according to (the linearized version of) Snell’s law. Now Snell’s law
involves the slope of the tangent to the surface at the point of refraction. In our
approximation, we are ignoring quadratic terms in this slope, hence terms of degree
three or higher in the surface. We may thus assume that the curve giving the
intersection of this surface with our plane is a parabola

z—z, =3+kq*
Then the derivative of z with respect to q is z'(q) = kq, which is tan (n/2 — ) where
 is the angle in figure 9.9. For small angles 6, i.e., for small values of g,  will be close
to /2 and hence we may replace tan (n/2 — ) by 7/2 — , if we are willing to drop

higher order terms in g or p. Thus n/2 — y = kq is our Gaussian approximation. On
the other hand, if (n/2 — i,) denotes the angle that the incident ray makes with this

91 /{P

Figure 9.9



tangent line, then the fact that the sum of the interior angles of a triangle add up to
shows that (x —y)+ 0, +(n/2—i,))=1n or

=0, + kg
and similarly

iy =0,+ kg

where g = q; = g, is the point where the rays hit the refracting surface. Multiplying
the first equation by n, and the second equation by n,, and using Snell’s law in the
approximate form n;i; = n,i,, give

()= )G
P2 —P 1)\p,
where P = (n, — n,)k is called the power of the refracting surface.

Conjugate planes
Thus each Gaussian optical system between two reference planes corresponds to a
matrix

A B
M:(C D) with AD—BC=1

and one can set up a dictionary which translates properties of the matrix into optical
properties.

For instance, the two planes are called conjugate (or in focus with one another) for
any q, at z, ifall the light rays leaving g, converge to the same point g, at z,. This of
course means that g, should not depend on p,, ie., that

B=0.
The thin lens

1 0 :
Notice that the product of two matrices of the form ( P 1 ) again has this same

form
( 1 0>( 1 0 _ 1 0
—pP, 1 —P, 1>_(—(P1+P2) 1).

This gives the equation for the so-called thin lens consisting of refracting surfaces
with negligible separation between them. In this case, the reference planes z, and z,

R, Ry

C

Figure 9.10



can conveniently both be taken to coincide with the plane of the lens. The plane z,
relates, of course, to rays incident from the left, while z, relates to rays which emerge
from the lens and continue to the right.

The matrix for the left refracting surface is

1 0
—nz—nl 1 .
R,

The matrix for the right refracting surface is
1 0
ny—n,

R,

(Note that R, is negative in figure 9.10.) Multiplying these matrices, we find that the
matrix for the thin lens is

1

1 0
(—1/f 1)’ where - 1/f=(n, = n)(1/R, — 1/R,).

We shall assume that the lens is in a vacuum, so n, = 1 and n, > 1. In the case where

R, is positive, R, is negative, and n, — n, > 0 (a double-convex lens), the focal length
fis positive. If we calculate the matrix of the thin lens between a reference plane F,

A
V
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located a distance fto the left of the lens and a reference plane F, located a distance f
to the right, we find

(:) D(—:/f (1)><(1) DZ(—?M 9

The plane F, is called the first focal plane. If a ray, incident on the lens, passes
through this plane at g, = 0 with slope p,, then the outgoing ray has

()=(0 0G5

i.e., it has zero slope and so is parallel to the axis. Conversely, if the incident ray has
zero slope, the outgoing ray has

(:):(—?/f J;)(qo) =('-q°1/f>’



i.€., it crosses the axis in the second focal plane. More generally, we can see that p; is
independent of g;, so that incident rays passing through a given point in the first
focal plane emerge as parallel rays, all with the same slope. Furthermore, g, is
independent of p,, so that incident rays all emerge to pass through the same position
in the second focal plane.

As a simple illustration of the use of matrix methods to locate an image, suppose
that we take reference plane z; to lie a distance s, to the left of a thin lens, while z, lies
a distance s, to the right of the lens. Between these planes, the matrix is

1 s, 1 0)(1 s1>_<1—s2/f 32+sl—slsz/f>
<0 1><—l/f 1J\0 1) \ —-1f 1—s,/f )

The planes are conjugate if the upper right entry of this matrix is zero. Thus we
obtain 1/s; + 1/s, = 1/f, the well-known thin lens equation. We shall write this as

S+, — Ps;s, =0,

where P=1/f.

We can solve this equation for s, so long as s; # 1/P. Thus each plane other
than the one corresponding to s, = f has a unique conjugate plane. For s, =/, i.e.,
at the first focal plane, all light rays entering from a single point g emerge parallel, so
the conjugate plane to the first focal plane is ‘at infinity’. A similar discussion (with
right and left interchanged) applies to the second focal plane.

For s, # f and s, corresponding to the conjugate plane, the magnification is given

by
’p) Sy 1 1) Sa
~=1l—-<=1-s,|—+— )= —--=.
q: f 2<S1 Sa Sy

If s, and s, are both positive (object to left of lens, image to right), then the
magnification is negative, which means that the image is inverted.

By multiplying matrices, it is straightforward to construct the matrix for any
combination of thin lenses. For example, in the case of thin lenses with focal length f
and f,, separated by distance [ in air, we find the matrix

( 1 0)(1 l)( 1 0)_( 1—1l/f, l )
—1/f, 1)\0 1 \=1/f, 1) \Ufifa=1/fa=1/fi 1=1If,

between the reference plane z, (first lens) and z, (second lens).
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The telescope
A particularly interesting situation arises when [=f,+f,, for then the matrix

takes the form
A B
0O D)

i.e., C = 0. This means that p, = Dp,, i.e. that the outgoing directions depend only on
the incoming directions. The condition is satisfied in the astronomical telescope,
which consists of an objective lens of large positive focal length f, and an eyepiece of
small positive focal length f,, separated by a distance f; + f,. Such a telescope
converts parallel rays from a distant star into parallel rays which are presented to the
eye.
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The angular magnification of such a telescope is the ratio of the slope of the
outgoing rays to the slope of the incoming rays, which equals

by L Nt f

fr fa fa

This magnification is negative (the image is inverted) and its magnitude is the ratio
of the focal length of the objective to that of the eyepiece.

The general system
We now want to show that any 2 x 2 matrix with determinant 1 can arise as the
matrix of some optical system. First of all, suppose that the matrix is telescopic,

1 0\[/4 B A B
ie, C=0. Then 4 #0, and if P #0, then _p 1Mo p =\ _pP4 D—PB

. (A B :
has PA #0, so is not telescopic. We shall show that every matrix ( c D) with

C # 0 can be written as

EO-eaee e



and thus arises as an optical matrix. If C =0, then we need only multiply

A B b b0 on the lef A B so it too 1s an optical
_pa p—prB) Y \p 1 e left to get 0o D) ptica
matrix. To prove (9.1), consider

I s\(A B\(l t\ (A+sC y(A+sC)+B+s+D
0 1/\B DJ\0O 1) C Ct+D '

Since C # 0, we can choose s so that 4 + sC =1 and then choose ¢t = — (Bs + D).
The resulting matrix has 1 in the upper left-hand corner and zero in the upper
right-hand corner. This implies that the lower right-hand corner is also 1 so that
the matrix on the right has the form

(e 1)

and this proves our assertion.

Gauss decomposition
Notice that s and t were uniquely determined. Thus, for any non-telescopic optical
system, there are two unique planes such that the matrix between them has the

1 O . .
form (C 1). These planes are conjugate to one another and have magnifi-
cation one. Gauss called them the principal planes. If we start with the optical

. (1 0 .
matrix ( c 1) between the two principal planes, we can proceed exactly as for

the thin lens, to find the conjugate plane to any plane. All we have to do is write
C= — P= —1/f. For instance, the two focal planes are located f units to the
right and left of the principal planes:

(o D) D )= o)

Gauss gave the following interpretation in terms of ray tracing of the decomposition
we derived above for the more general non-telescopic system. Suppose a ray (g),

parallel to the axis, enters the system at z,. When it reaches the second principal

=

Second principal plane
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plane, it is at the same height but is bent into ( ) and is focussed on the

q
—a/f
axis at the second focal point, F,. Similarly, a ray emerging from the first focal
point is bent at the first principal plane into a ray parallel to the axis and arrives
at z, still parallel to the axis and at the same height above the axis as it was at
the first principal plane.

We see that the most general optical system which is not telescopic can be
expressed simply in terms of three parameters — the location of the two principal
planes and the focal length. (We know that there should be three parameters, since
there are only three free parameters in the matrix, the fourth matrix coefficient
being determined by the fact that the determinant must equal 1.)

Once we have located the principal planes, we have also located the focal planes
by

Hl_Flzf and FZ_H2=f'

If we use the two focal planes as the reference planes for our system, then, by the
very definition of focal planes, we know that the optical matrix for these two planes
must have zeros in the upper left-hand corner and in the lower right-hand corner.
Thus the matrix between the two focal planes is given by

U
(—l/f 0>'

Suppose that we now consider two other planes, y, and y,, related to the focal planes
by

Fi—y =nx; and y,—F,=n,x,.

— N1 X1 k——n2x2—>

Figure 9.15

The matrix between these two planes will be

1 x, 0 IAYARETRY — X/ f f—(xlxz/f)>
0 1 J/\—=1/f 0/J\0 1) \ —1/f —x/f )

We see that y, and y, are conjugate if and only if x,x, = f? (this is known as
Newton’s equation), in which case the magnification is given by

m=—x,/f=—f/x.
For instance, if y, lies to the right of F,, so that x, is positive, and if the focal
length, f, is positive, then m is negative, i.e., the image is inverted.



We can summarize the results of this section as follows: Let SI(2, R) denote the
group of all 2 x 2 matrices of determinant 1. We have shown that there is ap
isomorphism between S1(2,R) and Gaussian optics. Each matrix corresponds to
an optical system, multiplication of matrices corresponds to composition of the
corresponding system.

We next turn to Hamilton’s ideas, in embryonic form.

9.3. Hamilton’s method in Gaussian optics

Suppose that z, and z, are planes in an optical system which are not conjugate.
This means that the B term in the optical matrix is not zero. Thus, from the equations

q, = Aq, + Bp,
p.=Cq, + Dp,

we can solve for p, and p, in terms of ¢, and ¢, as

p, =(1/B)(q, — Aq)
and

p» =(1/B)(Dq, — q,)
(where we have used the fact that AD — BC = 1). This has the following geometrical
significance: given a point g, on the z,-plane and a point g, on the z,-plane, there
exists a unique light ray joining these two points. (This 1s exactly what fails to
happen if the planes are conjugate. For conjugate planes, if ¢, is the image of ¢,
there will be an infinity of light rays joining ¢, and q,; in fact, all light rays leaving
q, arrive at g,. If ¢, is not the image of ¢,, then there will be no light ray joining
g, and ¢q,.) Let W= W(q,, q,) be the function

W(q:,42) =(1/2B)(Aq} + Dq; —29,9,) + K
where K is a constant. Then we can write the equations for p, and p, as
py= —(0W/oq,) and p,=0W/oq,.

Hamilton called this function the point characteristic of the system. In the modern
physics literature this function is sometimes called the eikonal. Suppose that z,, z,
and z5 are planes such that no two of them are conjugate, with z, < z, < z5, and
such that z, does not coincide with a refracting surface. Let W,, be the point
characteristic for the z,~z, system and let W, be the point characteristic for the
z,~z3 system. We claim that (up to an irrelevant additive constant) the point
characteristic for the z,~—z; system is given by

W31(41,93) = W11(q1, 92) + W32(92, 43)
where, in this equation, g, = ¢,(q,, g5) is taken to be the point where the ray from
q, to g5 hits the z,-plane.
To see why this is so, we first observe that since the z,-plane does not coincide
with a refracting surface, the direction of the ray does not change at z,. Thus

P2 =(0W,1/04:)(q1,92) = — (0W32/04,)(q4, q3).



Now apply the chain rule to conclude that 0W5,/0q; = — p; and similarly that
0W31/0q3 = ps at (415 3).

The function W is determined by the above properties only up to an additive
constant. Hamilton showed that, by an appropriate choice of the constant, we can
arrange that W(q,, q,) is the optical length of the light ray joining q, to q, where
the optical length is defined as follows. For a line segment of length [ in a medium
of constant index of refraction, n, the optical length is nl. A path, y, is defined to
be a broken line segment, where each component segment lies in a medium of
constant index of refraction. If the component segments have length [, and lie in
media of refractive index n;, then the optical length of y is

L(y)= znili'

Let us prove Hamilton’s result within the framework of our Gaussian optics
approximation. Our approximation is such that terms in p and g of degree
higher than one are dropped from the derivatives of W. Thus, in computing optical
length and W, we must retain terms up to degree two but may ignore terms higher
than the second. We will prove this by establishing the following general formula
for the optical length (in the Gaussian approximation) of a light ray y whose

q:

) and whose outgoing parameters, at z,,
Py

incoming parameters, at z,, are (

are <q2>:
D>
L(y) = Ls + %(Pz‘b —D14,)

where L,,,, denotes the optical length from z, to z, of the axis(p; = q, =0=p, =q,)
of the system. Notice that once this is proved, then, if we assume that z, and z,
are non-conjugate, we can solve for p, and p, as functions of ¢, and g,, ie,
substituting p, = (1/B)(q, — A4,), p» = (1/B)(Dg, — q,) into the above formula gives
our expression for W with K = L,,;..

To prove the above formula for L(y), we observe that it behaves correctly when
we combine systems: if we have z,, z, and z5, then the length along the axis certainly
adds, and 3(p,g, — P141) + 3(P3ds — P242) = 3(P3q3 — P1qs)- So we need only
prove the formula for our two fundamental cases.

(1) If n is constant,

L(y) = n(d* + (g, — q,)*)"?
In
=nd '*'53(‘12 —qy)°

1| n
=nd + §|:E (g2 — ‘h):l(‘h —q,)
=nd + 3p(q, — q1)
where p, = p; = p=(n/d)(q, — q,) is the formula which holds for this case.

(2) At a refracting surface, z' — z = 1kq? with index of refraction n, to the left
and n, to the right. Here the computation must be understood in the following



q
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Figure 9.16

sense. Suppose we choose some point z5 to the left and some point z, to the right
of our refracting surface. If n, were equal to n,, the optical length would be
n,ly + n,(l + 1,) where I5 is the portion of the ray to the left of our plane and [ + 1,
is the portion to the right, and where [, is the portion to the right of the surface.
(We have drawn the figure with k > 0, but a similar argument works for k <0.) If
n, #n,, then n,l, will be different, but would be calculated by (1) from z to z,. In
addition, an effect of the refracting surface is to replace n,/ by n,/ in the above
expression, i.e., to modify the optical length by

(nl - nz)l.
This is the contribution at the refracting surface. Now
l=(z" —z)cosec B,

where z' is determined by the pair of equations

ZII —z =%—kq”2

q"=(tan0,)(z" —z) +q.
It is clear that up to terms of higher order we may take z” =z =31kg* +z and
replace cosecf; by 1 so

1

(n, —ny)l = %k(n1 —n,)q°> = —2Pq
=%[k(n1 —n,)qlq

12— 1)

since q, =g, =q and p,=p, —pq at a refracting surface, where p = k(n, —n,).
This completes the proof of our formula.

2

9.4. Fermat’s principle

Let us consider a refracting surface with power p = (n, — n,)k located at z. Here
P might be zero. Consider planes z, to the left and z, to the right of z. We assume



Fermat’s principle 397

constant index of refraction between z, and z and between z and z,. Let g, be a
point on the z,-plane, q, a point on the z,-plane and g a point on the z-plane.
Consider the path consisting of three pieces: the light ray joining g, to ¢, across

)
I 123
q, /ﬁ— b G2
Zy zZ Zy
Figure 9.17

the surface of refraction at g and then the light ray joining g to ¢,. This path will not,
in general, be an optical path, since g can be arbitrary. However, its optical length

nlll + nl + n212

is given, in the Gaussian approximation, by the sum of three terms, as we saw in the
last section:

L(91,9192) = Layis +3(p1(q — 41) + (9> — ) — pg?).

In this expression,

P1= El‘ (g — ‘h)
and
n,
P> i, (@, —9)
SO we can write
1d d
L= Lo +5 -0t +-2p3 —pg’.
ny 2

Suppose that we hold g, and g, fixed, and look for that value of g which
extremizes L: in other words, we wish to solve the equation dL/dg =0 for fixed
values of ¢, and ¢,. Substituting into the last expression for L, together with facts
that dp,/0q = (n,/d,)(0q,/0q) = — n,/d,, we obtain the equation

Pr— P2, —pq=0.
In other words:
P>=pq+p,. )
But this is precisely the relation between p, and p, given by the refraction matrix
at z.



We have thus proved the following fact. Let us fix g, and q, and consider the
set of paths joining q to q, which consists of two segments, from q' to q,. Among
all such paths, the actual light ray can be characterized as that path for which |
takes on an extreme value, i.e., for which

oL
dq
This is (our Gaussian approximation to) the famous Fermat principle of least time.

Let us substitute p; =(n,/d{)(q — q,) and p, = (n,/d,)(q, — q) into our formula for
L to obtain a third expression for L:

L=n,d, +n,d, + %[(’H/dl)(q —q,) + (ny/d2)(q, — 9)* — pg*].
The coefficient of g* is n,/d; + n,/d, — P. Thus the extremum is a minimum if
(n1/dy) + (ny/dy) — P> 0
and a maximum if
nl/dl + n2/d2 i P < 0.

If P > 0 we see that we get a minimum for small values of d, and d, but a maximum
for large values of d, and d,. The situation is indeterminate (and we cannot, in
general, solve for ¢') when

n,/d, +n,/d, =P

which is precisely the condition that the planes be conjugate. Thus, we get a
minimum 1if the conjugate plane to z, does not lie between z, and z, and a
maximum otherwise. The fact that L is minimized only up to the first conjugate
point is true in a more general setting, where it is known as the Morse index theorem.

To see an intuitively obvious example of this phenomenon, let us consider light
being reflected from a concave spherical mirror. We take a point Q inside the
sphere and let the light shine along a diameter so that it bounces back to Q. Then
it is clear that the distance to the mirror is a local minimum if Q is closer than
the center, and a maximum otherwise.

9.5. From Gaussian optics to linear optics

What happens if we drop the assumption of rotational symmetry but retain the
approximation that all terms higher than the first order in the angles and distances
to one can be ignored? First of all, in specifying a ray, we now need four variables:
4. and g,, which specify where the ray intersects a plane transverse to the z-axis,
and two angles, 0, and 6, which specify the direction of the ray. A direction in
three-dimensional space is specified by a unit vector, v = (v,,v,,0,). If v is close to
pointing in the positive z-direction, it will have the form v=(0,,0,,v,), where
v,=1—3(02+62)=1, provided 6, and 6, are small. Again, we replace the 0
variables by p variables, where p, = nf, and p, = nf,. (If the medium is anisotropic,
as is the case in certain kinds of crystals, the relation between the 6 variables and



the p variables can be more complicated, but we will not concern ourselves with
that here.) All of this, of course, is taking place at some fixed plane. If we consider
two planes z, and z,, the ray will correspond to vectors

dx1 qx2
dy1 — q}’2

u, = and u, =
! DPx1 g Px2
Dy1 Py2

at the respective planes.
Our problem is to find the form of the relationship between u, and u,. Since
we are ignoring all higher-order terms, we know that

u, = Mu,,

where M is some 4 x 4 matrix. Our problem is to ascertain what kind of 4 x 4
matrices can actually arise in linear optics. The most obvious guess is that M must

w

Figure 9.18

satisfy the requirement Det M = 1. This is not the right answer, however. It is true
that all optical matrices must have unit determinant, but it is not true that all
4 x 4 matrices of determinant 1 can actually arise as transformation matrices in
linear optics. There is a stronger condition that must be imposed. In order to
explain what this stronger condition is, we first go back and reformulate the
condition that a 2 x 2 matrix has determinant 1. We then formulate this condition

in four variables. Let
w=(q> and w’=<q,>
14 14

be two vectors in the plane. We defined in section 4.9 an antisymmetric ‘product’,
o(w,w’), between these two vectors by the formula

(W, W) =qp" —4q'p.
The geometric meaning of w(w,w’) is that it represents the oriented area of the

parallelogram spanned by the vectors w and w’ (see figure 9.18). It is clear from
both the definition and the geometry that w is antisymmetric:

(W, W)= — (W, w). .

A 2 x 2 matrix preserves area and orientation if and only if its determinant



equals 1. Thus a 2 x 2 matrix M has determinant 1 if and only if
o(Mw, Mw') = w(w, W)
for all w and w'. Now suppose that

gx g
u={P| and w= q’y
DPx Dx
py P;

are two vectors in four-dimensional space. We define
w(u, w') = q,p, — 45Dx + 4yPy — 45Dy-
The product o is still antisymmetric,
o', u) = — o(u,w)

but the geometric significance of w is not so transparent.
It turns out that a 4 x 4 matrix M can arise as the transformation matrix of a
linear optical system if and only if

w(Mu, Mu') = o(u, w),

for all vectors uand u'. These kinds of matrices are called (linear) canonical transfor-
mations in the physics literature, and are called (linear) symplectic transformations in
the mathematics literature. They (and their higher-dimensional generalizations)
play a crucial role in theoretical mechanics and geometry.

After developing some of the basic facts about the group of linear symplectic
transformations in four variables, we shall see that our arguments showing that
Gaussian optics is equivalent to Sl(2, R) can be used to show that linear optics is
equivalent to Sp(4, R), the group of linear symplectic transformations in 4 variables.

In general, let V be any (finite-dimensional, real) vector space. A bilinear form
Q on Vis any function Q: ¥V x ¥V — R that is linear in each variable when the other
variable is held fixed; that is, Q(u, v) is a linear function of v for each fixed u and
a linear function of u for each fixed v. We say that Q is antisymmetric if Q(u,v) =
— Q(v,u) for all w and v in V. We say that Q is nondegenerate if the linear function
Q(u, ') is not identically zero unless u itself is zero. An antisymmetric, nondegenerate
bilinear form on V is called a symplectic form. A vector space possessing a given
symplectic form is called a symplectic vector space, or is said to have a symplectic
structure. If V' is a symplectic vector space with symplectic form Q, and if A 1s a
linear transformation of V¥ into itself, we say that A4 is a symplectic transformation
if Q(Au, Av) = Q(u,v) for all u and vin V. It is a theorem (cf Guillemin & Sternberg,
Symplectic Techniques in Physics Chapter II) that every symplectic vector space
must be even-dimensional and that every symplectic linear transformation must
have determinant 1 and, hence, be invertible. It is clear that the inverse of any
symplectic transformation must be symplectic and that the product of any two
symplectic transformations must be symplectic. The collection of all symplectic

linear transformations is known as the symplectic group (of V), and is denoted
by Sp(V).



Now let us assume that V = R” + R” and write the typical vector in V as

q.l D
u= (q>, where q={ : and p=| :
P dn Dn

on V there is the symplectic form Q given by

Qu,u)=p-q —p"q,
where - denotes ordinary scalar product in R". In terms of the scalar product
u-w' =q-q + p-p’ we can write this as

Qu,u’)=u""Ju,

) I )
where J is the 2n x 2n matrix ( ) and I is the n x nidentity matrix. A linear

-1 0
transformation T on V is symplectic if, for all u and w’,
Q(Tu, Tu') = Q(u, u).
We can write this as
TYJTu-v' = Ju-v,
where TT denotes the transpose of T relative to the scalar product on V. Since

this is to hold for all u and u’ we must have

T'JT=J.

rr( 9\ _(A4a+Bp
p Cq+Dp)’

where A4, B, C, and D are n x n matrices; that is,
A B
T= .
C D

. (AT CT
"=\pr pr)

where AT denotes the n-dimensional transpose of A4, etc. The condition T*JT =J
becomes the conditions ATC = CT4, B'D = DB, and ATD — C™B = I. Notice that
T, which is also symplectic, is given by

_ DT . BT
T = _ CT AT ’
DCT"=CDT and BAT = AB".

We now turn to the problem of justifying the assertion that the group of linear
symplectic transformations (in four dimensions) is precisely the collection of all
transformations of linear optics. As in the case of Gaussian optics, the argument
can be split into two parts. The first is a physical part showing that (in the linear

We can write

Then

and so we also have



0
—P 1
corresponds to refraction at a surface between two regions of constant index of

approximation) the matrix ( >, where P = PT is a symmetric matrix,

dl :
refraction (and that every P can arise) and that ((I) I ) corresponds to motion

in a medium of constant index of refraction, where d is the optical distance along
the axis. The second is a mathematical argument showing that every symplectic
matrix can be written as a product of matrices of the above types.

We will omit the mathematical part, which is a rather tricky generalization of
the arguments of section 9.2. We refer the reader to Guillemin & Sternberg
Symplectic Techniques in Physics section 4, pp. 27-30. We concentrate on the
physical aspects of the problem. As in Gaussian optics, we describe the incoming
light ray by its direction v = (v,,v,,v,) and its intersection with the plane parallel
to the xy-plane passing through the point z on the optical axis. Here |v||?=
vZ+v?+v2=1 Now

v,=(1—vi+v)12=1-3@2+0v)+ =1,
since we are ignoring quadratic terms in v, and v,, which are assumed small. We
set
px=nv,, p,=nhuv,
where n is the index of refraction. Moving a distance t along the optical axis is

the same (up to quadratic terms in v, and v,) as moving a distance t along the
line through v and hence

dox —q1x= tvx
and

q2y - qu = tvy

()6 1)

where d = t/n (see figure 9.19).

or

Figure 9.19



Now let us turn to refraction. We may assume that our surface is quadratic,
and is given by

7 —z=%kqq,

where k is a symmetric 2 x 2 matrix. The normal to this surface at the point q is
given by

u=(kq, — 1)

(Up to quadratic terms and higher, u has length 1.) The projection of a vector v
onto the tangent plane to the surface at q is given by

v—(v-u)u.
Writing v = (v,,v,, 1) = (v,1) we see that v-u=kg-v — 1 and
v—(vuyu=w1)—(kq-v— 1)(kq, — 1).
Ignoring the quadratic term kg-v this becomes
(v + kq,0).
Snell’s law says that n, (v, — (v, *u)u) = n,(v, — (v, -u)u). In the linear approximation,
with p, =nv, and p, = nv,, this becomes

P1—nikq=p,—n,kq
or

P>.=p;— Pq,

where
P=—(n, —n,)k.

I 0
We thus get the refraction matrix ( p I)' This concludes our proof that

linear optics is isomorphic to the study of the group Sp(4, R).

There is one more point relating to Gaussian optics that deserves mention.
Suppose that our optical system is rotationally invariant; then at each refracting
surface, the power matrix P is of the form P = ml, where m is a scalar and I 1s the
2 x 2 identity matrix. It is clear that the collection of matrices that one can get

o ) ) I el i al bl
by multiplying such matrices with 0 will be of the form :

1 cl dl

Note that a matrix of the above form, when acting on

dx

dy

Px |’

Dy
. a b . qx q.V 1
is the same as . d acting separately on and b ) Thus, 1 our

x y

study of Gaussian optics the restriction to paraxial rays was unnecessary. We
could have treated skew rays by simply treating the x- and y-components separately
in the same fashion. This is a consequence of the linear approximation.



The basic formula for the optical length

L= Ly +3(p2°92 — P1°q1)
(where the p and q components are now vectors) is proved exactly as it was in

the Gaussian case, by looking at what happens at each of our basic components.
There is no point in repeating the proof.

Two planes are called nonconjugate if, in the optical matrix relating them, the
matrix B is nonsingular. Then we can solve the equations

q, = Aq, + Bp,
and
p.=Cq, + Dp,;

for p; and p, as
p,=—-B '4Aq; + B q,
and
p.=(C—DB 'A)q, + DB 'q,.
We can then write

L = Laxis + W(qI’ qz)s
where

W(;.9,) =2[PB"'q,"q, + B"'4q,°q, —(2B") " 'q;°q,].
(In proving this formula we make use of the identity
— (B "'=C—DB™ 4,

which follows for nonsingular B from A™D — B'C = ) A direct computation (using
the above identity) shows that (in the obvious sense)

oL
Ezpz
and
oL
5—(1—1 = —P1

Thus a knowledge of L allows us to determine p, and p, in terms of q, and q,.
We can now briefly describe the transition to (nonlinear) geometrical optics.

We can put the condition that the matrix 4 be symplectic in the following way.
Consider the two-form

w=dq, Adp, +dg, A dp,
on R* Then the linear map A: R* - R* is symplectic if and only if
A*w = w,

in other words, the pullback of w under 4 is again w. We can now call a differentiable
map ¢ symplectic if

o*ow = o.



We simply drop the condition that ¢ be linear. (In the older literature, symplectic
maps were called canonical transformations.) Hamilton showed that the maps (from
incoming to outgoing maps) in geometrical optics are precisely the symplectic maps.
He also showed that under approximate non-congruency hypotheses, a symplectic
map is determined by the characteristic function L as above, where L(q,,q,) is the
optical length of the path joining q; to q,. (Of course, L no longer has the simple
formula given above.)

Some ten years after writing his fundamental papers on optics, Hamilton made
a startling observation: that the same formalism applies to mechanics of point
particles. Let ¢,,...,q, represent the (generalized) position coordinates of a system of
particles and py,..., p, the corresponding momenta. Replace the optical axis, z, by
the time. Then the transformation from initial position and momenta to final
position and momenta is always symplectic. This discovery led to remarkable
progress in theoretical mechanics in the nineteenth century. In the 1920s — almost
a century later — Hamilton’s analogy between optics and mechanics served as one
of the major clues in the discovery of quantum mechanics.

Summary

A Matrix formulation of Gaussian optics
You should understand the use of a two-component vector to represent a ray
passing through a reference plane.

You should be able to develop and use the 2 x 2 matrices that represent the effect
of a translation, a refracting surface, or a thin lens.

B Lens systems
You should be able to calculate the matrix for a system of refracting surfaces or thin
lenses between two given reference planes.

Given such a lens system, you should be able to locate the principal planes and
focal planes, use them for ray tracing, and locate the image of a given object.

C Hamiltonian optics

For a Gaussian optical system, you should know how to write down the
Hamiltonian point characteristic between two reference planes and to use it to
determine what ray connects a pair of points in the two planes.

Exercises

9.1. Figure 9.20 shows the focal planes and principal planes for a thick lens.
Rays incident from the left which are parallel to the axis are refracted so
that they pass through a focal point in the plane F,, while rays emanating
from the focal point in the plane F, are refracted so that they emerge
parallel to the axis. Principal planes H, and H, are associated with F; and
F, respectively.



1 cm

.o 4n op IcS

(a) By ray tracing on the diagram, locate the image of the object in the
plane z,. Trace the ray R, plus two other rays.
(b) Use Newton’s equation to calculate the position of the image which

you located in (a). Specify the location of this image with respect to one
of the planes in figure 9.20.

(c) Construct the matrix of the system between planes z; and z,. Use this
matrix to determine the position and slope of ray R, as it emerges from
the lens at z,.

Fy H, H,z, F,
Zy,

4
i
-+
-

Figure 9.20

9.2. The thick lens shown in figure 9.21 is made of glass with n = 3. Construct

9.3.

9.4.

the matrix between reference planes z, and z,. Locate the focal planes F,
and F, and principal planes H, and H,, and show them on a diagram. By
tracing rays on the diagram, locate the image of an object located 1 cm to
the left of z,, and check your result by using Newton’s equation.

- 6 cm —
Zl 22

IRI=4cm IRI=6cm
Figure 9.21

Suppose that you take ray tracing as the fundamental characterization of

the properties of a thin lens; i.e., you assume that the intersection of a ray

through the center of the lens with a ray which is parallel to the axis on the

left and is bent through the focal point on the right determines the

intersection of all the rays from a given object.

(a) Derive the thin lens equation from this assumption. Consider only the
case where p,q and f are all positive.

(b) Prove from the same assumptions that a thin lens can be represented
by a 2 x 2 matrix, and derive the form of this matrix.

A crystal ball of radius 6 cm is made of glass with index of refraction $. For
rays which are close to a diameter, this crystal ball behaves like a linear
thick lens (i.e., a cylindrical core, with a diameter as its axis, is just a thick
lens). Construct the matrix for this lens between the reference planes z, and
z,, between the focal planes, and between the principal planes. Draw a
diagram showing all these planes.



9.5.(a)

(b)

(©)

(d)
(©)

9.6.

Exercises

6 cm
| |
| |
| |
Zy n =% l
Z2
Figure 9.22
f=12cm f=8cm
I
- 4 cm
¥
Zy Za
Figure 9.23

For the system of two converging lenses shown in figure 9.23, work out the
matrix between planes z, and z,.

Locate the focal planes z| and z,, both by using the thin lens equation and
by using the matrix for the system, as described in the notes. Construct the
matrix between the focal planes.

Locate the principal planes H; and H, and construct the matrix between
them. The easy way to do this is to use the fact that the focal lengthis f = 6
and that each principal plane is therefore 6 cm away from the correspond-
ing focal plane. Notice that both principal planes lie between the two
lenses, and that H, lies to the right of H, in this case.

Make a diagram of this optical system, showing the focal planes and
principal planes.

Let z5 be the plane 12 cm to the left of z;. Find the plane conjugate to this
plane in four ways: by matrix multiplication, by using the thin lens
equation twice, by using Newton’s equation x; x, = f %, and by ray tracing.
A lens system consists of two thin lenses, whose focal lengths are f; and f,

- [ ——><————t—><——-lz—>

Figure 9.24



9.7.

9.8.

9.9.

9.10.

respectively, mounted a distance r apart. The first focal planeislocated at a
distance /; to theleft of lens 1, the second focal plane is located a distance /,
to the right of lens 2. Prove that the focal length f of this system satisfies the
equationf? —tf —I;1, = 0. Bearing in mind that/,, l,, f.f; and f, all make
sense even if they are negative, decide which root of this quadratic
equation is physically meaningful.

Invent a system of thin lenses whose optical matrix is the identity matrix

0
constructing a system whose matrix M satisfies M? =1.)

1 0 .
( 1>. (Note: this takes several lenses. You might wish to start by

A ray enters the optical system shown in figure 9.25 at z; with coordinates

1
(ql) = (2) Find the coordinates of the outgoing ray at z,.

AT VAN AN
VARWAN

Z3 =1 f=-1 =1 Z2
Figure 9.25
g 9 cm G
IR1=6cm IRI=9 cm
Figure 9.26

The thick lens shown in figure 9.26 is made of glass with index of refraction
—3
=3

(a) Construct the matrix between reference planes z; and z,.
q1

) is transformed into the outgoing
141

(b) Determine what incoming ray (

p) 3
ray ( ): <f> at plane z,.
125} 6

The converging lens shown in figure 9.27 has f = 10 cm. It is made of glass

with n= 1.4, and its two convex surfaces both have the same radius of

curvature R.

(a) Calculate R, and determine the thickness b of the lens as a function of
the distance g from the axis. (Note: b(2) =0.)

(b) A ray from A will follow the path ACF. Show that this path requires a
minimum time compared with any path which passes through the lens
at a different value of q.

(c) Show that the path ACB requires greater time than any other path
from A to B via the lens.

(d) Write down the function W(q,, qr) for the planes of 4 and F, and
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Figure 9.27 Not to scale.

show that Hamilton’s equations give the correct slopes for the ray with
d4=1, gr =0. Do the same for the planes of 4 and B. Finally, use
W(q 4, qg) to determine what ray passes through the axis in the planes
of both A and B.
9.11. Let v, = <ql) and Vv, = (?1) denote two rays entering an arbitrary
P1 P1
Gaussian optical system. The symplectic scalar product of these vectors is

defined by w(vy,¥y) =qP; —G1p;-

(a) Show that this scalar product is preserved by the action of the optical
system: i.e., w(v,,V,) = o(v{, V).

(b) Show that w(v,,¥;)=0if v;,¥; denote rays which meet anywhere on
the optical axis.

(c) Suppose that two rays pass through the same point g, in reference
plane z,, with an angle ¢, between them. If these rays meet in the
conjugate plane z, with angle ¢, between them, what is their distance
q, from the axis? (Assume n =1 at planes z; and z,.)
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In Chapter 10 we go back and prove the basic facts about
finite-dimensional vector spaces and their linear transform-
ations. The treatment here is a straightforward generaliz-
ation, in the main, of the results obtained in the first four
chapters in the two-dimensional case. The one new algorithm
is that of row reduction. Two important new concepts
(somewhat hard to get used to at first) are introduced: those of
the dual space and the quotient space. These concepts will
prove crucial in what follows.

Introduction

We have worked extensively with two-dimensional vector spaces, but so far always
with one of two specific models in mind. A vector space V was either the set of
displacements in an affine plane, or it was R?, the set of ordered pairs of real
numbers. By introducing coordinates, we were able to identify any two-dimensional
vector space with R? and thereby to represent any linear transformation of the
space by a 2 x 2 matrix.

We shall now begin to view more general vector spaces from an abstract and
axiomatic point of view. The advantage of this approach is that it will permit us
to consider vector spaces that are not defined either in geometrical terms or as
n-tuples of real numbers. It will turn out that any such vector space containing
only a finite number of linearly independent elements can be identified with R for
some integer n so that eventually we shall return to the study of R” and the use of
matrices to represent linear transformations. In what follows, you should keep in
mind the familiar two-dimensional geometrical model of a vector space in order
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to remind yourself that the definitions and axioms are reasonable. The emphasis
in the examples, however, will be on vector spaces that do not arise in a geometrical
context. Such vector spaces are part of the natural mathematical language of many
branches of physics, notably electromagnetic theory and quantum mechanics.

10.1. Properties of vector spaces

We begin by repeating the basic definitions.

A vector space, also known as a linear space, consists of a set of elements called
vectors which satisfy certain axioms listed below. We shall denote vector spaces
by capital letters, e.g., V, W*,C,, and elements by lower-case bold letters, e.g.,
v, W,,bl.

Part of the characterization of a vector space V' is a rule that assigns to any
two elements v, and v, a unique third element v, usually called the sum and denoted
v, + v,. This operation satisfies the same axioms as addition of real numbers:

Commutative law: v, + v, =v, + v;. (10.1)
Associative law: (v, + v,) + v3 = v, + (v, + v3). (10.2)
Existence of zero: There is an element 0 such that v+ 0 =v for all v.
(10.3)
Existence of negative: For any v there is an element — v such that — v +
v=0. (10.4)

In some cases the operation of addition is defined directly in terms of addition
of real numbers, so that it is clear from the definition that these axioms are satisfied.
For example, in R* we define

a, b,] \a,+b,)

Similarly, we might consider the two-dimensional vector space of all functions
defined on a two-element set, {4, B}, with addition defined pointwise, so that
h=f+ g is the function with the property that

h(4) = f(4) + g(4),
h(B) = f(B) + g(B).

As a final example, we might consider the space of all continuous functions on
the interval [0,1], with addition again defined pointwise, so that if f and g are
elements of the space, their sum is the function h given by h(x) = f(x) + g(x). In this
case it is crucial to notice that, for any f and g, the sum h is also a continuous
function and so lies in the vector space.

In all these examples it is clear that the zero element and inverse element are
unique. In fact this is true in any vector space, but it need not be assumed, since
it is easily proved from the axioms. The proofs are left to the reader.

The other operation that must be defined as part of the characterization of a



vector space is multiplication of a vector by a scalar. In this chapter the scalar
will always be a real number and the resulting vector space a real vector space,
but we later consider complex vector spaces in which elements may be multiplied
by complex numbers. Again the axioms are those of ordinary multiplication, so
that, if ¢, and ¢, are scalars and v, and v, are vectors, we have

Associative law: ¢, (c,v) = (¢, c,)v. (10.5)
+ey)v= :

Distributive laws: (€t ev=civteyv } (10.6)
c(v, +v,)=cv, +cv,

Multiplication by 1 is the identity: 1v=yv for all v. (10.7)

Because the axioms of addition and scalar multiplication in any vector space
are the same as in ordinary arithmetic, almost any property which is true in
arithmetic is also true in vector algebra. Here is a list of such properties, all readily
provable from the axioms. Think about these, and convince yourself that they
really require proof: they are not true just by definition.

(@) Ov=20

(b) c0=0

© (—cv=—(cv)=c(—V)

(d) v+v=2v,v+ v+ v=73y, etc.

(e) If av=0 then either a=0or v=0
) —(v+rw=—v+ —w

10.2. The dual space

Given any vector space V, we can consider the set of all linear functions from V
to R. These form a vector space, called the dual space V*, as we shall now show.
We shall denote elements of V* by bold Greek letters and also, introducing a
convention which will be useful later on, identify them by superscripts rather than
by subscripts. Thus v,,v,,... are elements of V, while a!, &2, ... are elements of V*.
The action of an element V* on an element of V will be denoted by using square
brackets, e.g., a[v].

We define the sum of two elements of V* in the usual manner for functions:
ie, for any veV, (e + a?)[v] = a'[v] + a*[v]. Since the sum of linear functions is
is also a linear function, ! + a? is indeed an element of V*, and it is easy to
see that all the addition axioms (10.1)—(10.4) are satisfied, with the zero element in
V* being the zero function, which is certainly linear. Similarly, we define scalar
multiplication by

(ca)[v] = c(elv])

and thus see immediately that ce is linear and that the axioms for multiplication
are satisfied.

While the abstract concept of dual space is straightforward, there are a bewilder-



ing variety of ways in which elements of a dual space may be defined. Here are
some examples:

x
1. V is R?, with a typical element v = (y) Then V* may be identified with

two-component row vectors, for example a=(a,b), with a[v]=(a,b)(x>=

ax + by.
2. Vs the space of all functions on the two-element set {4, B}. Then the rule
o?: V— R which assigns to an element feV its value on the element A4, so that

o [f]1=1(A), is an element of V*. In this case, in fact, the general element of V*
is of the form

a[f]=af(A)+bf (B)

for arbitrary a and b. What is interesting about this example is that we have
identified 4 with a* and similarly can identify B with a®. Although an expression
like ‘aA + bB’ makes no sense, aa? + ba® makes perfect sense as an element of V'*.
Thus we have a procedure for associating a vector space to any finite set so that
the elements of the set become vectors: just take the dual space of the space of
functions on the set! This construction will prove useful in the theory of electric
networks.

3. V is the space of differentiable functions f(t) on the interval [0, 1]. Then all
the following are elements of V*:

o:f>£(0)
Bt~ f'(0)

y:f}—»jlf(t)dt

0

5:f}—>fltf(t)dt
eff(H+ 3+ ﬁtf (H)dt
3

10.3. Subspaces

Frequently a vector space W arises as a subspace of a larger vector space V with
addition and scalar multiplication defined in W just as in V. In such a case, since
V is known to satisfy all the vector space axioms, there is no need to check them
for W. All that must be done to confirm that W is a vector space is to show that
it is closed under addition and multiplication; i.e., that for any w,, w,eW, the sum
w, + w, is an element of W, and, for any real number ¢ and any weW, cw is an
element of W. In particular, the zero vector must be an element of W.

In practice, subspaces are usually defined by one of two methods, either by
specifying a set of elements of V or a set of elements of V*.



Method 1. Let wy, w,,..., W, be vectors in V. Then the set of all linear combinations
of the form

k
W= W,
i=1
is a subspace of V. (It may, of course, be the entire space V.)

Method 2. Let o', a?,...,a" be elements of VV*. Then the set W of elements ve V
satisfying

al[v] =0,
az[vJ =0,
at"[vj =0

is a subspace of V. The proof is simple. Let w, and w, be two vectors in this set
W. Then, because the functions a!, a?,...are all linear,
d[w, +w,]=a[w, ]+ [w,]=0 i=12,....k
so that w, + w,eW. Similarly,
a'[cw] = cal[w] =0

so that cwe W. Thus W is closed under addition and scalar multiplication and is
a subspace. (It may, of course, be {0} — the zero subspace consisting of 0 above.)

A familiar example of these two methods is the construction of a plane (through

the origin) in R3. Method 1 describes the plane in terms of two vectors that span
it; e.g.,

| 0 1 — 1
1 and 1], or | 2] and 0
0 2 2 2

Method 2 describes the plane by means of a linear equation, e.g.,
2x —2y+z=0,
which is the same as saying that a[w] =0 where

X
a=(2,—2,1) and w=[y

Z

As another example, consider the space V of polynomial functions of degree
< 2, with a typical element

f(t)=a+ bt + ct>.

A one-dimensional subspace W can be described by method 1 as the space of all
constant multiples of the function 1 — t%. The same subspace can alternatively be
described by method 2 in terms of the two conditions

f(1)=0 and f(—1)=0



Jimenst « ..

o1, more obscurely, by

J3
f(0)=0 and f(Hdt=0.

10.4. Dimension and basis

To proceed further with the study of vector spaces, we need the notions of linear
dependence and linear independence of a set of vectors. A set of vectors {v,,v,,...,v,}
is said to be linearly dependent if there exist real numbers 4,,4,,...,4,, not all
zero, such that

If this equation holds only for 4, = 4, = --- = 1, =0, then the set of vectors is said
to be linearly independent.

Here are some examples of these important concepts:

1. Let ¥V be R3, and consider

1 0 2
vi=|11} v,=(2] vy3=[4].
1

0 1

The set {v,v,,v5} is linearly dependent because

2 0 2
2vi+v,—vy=|2 |4+ 2 || 4
0 1 1

On the other hand, the set {v,,v,} is linearly independent, because

1 0 2,
A1 4,02 )= A, +24,
0 1 A

and it is apparent on inspection that this last vector can only be zero if 4, =0
and 4, =0.
2. Let V be the space of functions on [0,27] and consider

0.

v, =cos’t, v,=sin’t, v;=cos2t.

This set of vectors is linearly dependent because v; —v, —v3;=0.
3. Let V be the space of functions on the set {4, B}, and consider

f,:f1(4)=1,1,(B)=2,
f,: f,(A4)=2, f5(B)= —3,
f3: f3(A4)= -3, f3(B)=1.
This set is linearly dependent, because f, + f, + f5 = 0 (it is the zero function).
4. Let V be the space of polynomials of degree < 2: Consider the following



elements of V'*:

2

a:. f— tf(r)dt,

-2
B: /- 1(0).
Writing f(t) = A + Bt + Ct* we find

2
a[f] = f (At + Bt?> + Ct3)dt =B
-2

and
plf]1=B
so (a —18B)[f] =0 and the set {a, B} is linearly dependent.

It is probably clear from these examples that there are situations in which it
may not be apparent on inspection whether a set of vectors is linearly dependent
or independent. We shall have to develop a systematic procedure for investigating
this question.

We say that a set of vectors {v;,v,,...,V,} spans a vector space V if any vector
veV can be written as a linear combination >¥_, uv;. (The set {v,,...,v,} may
be linearly dependent, in which case the coefficients u;,...,u, are not uniquely

determined.) Consider the following examples:
1. Let V be R>. The set

1\ /70\ /O
Oltt1)io0
0/ \0 1

My
clearly spans R?, since any element ( U, | can be written
K3

Uy 1 0 0
ty J=us{ O )+l 1 J+us| O
Us 0 0 1

Less obviously, the set
1\ /0)\ /1
1{1})to
0/ \1 1

)0

2. Let V be the space of functions f(¢) on [0, c0) which satisfy the differential
equation

also spans R3, but the set

"+ 31 +2f=0.



The vectors e~* and e~ 2* span V, because the general solution to the equation is
of the form

f(r)= Ae™" + Be™ %"
3. Let V be the space of functions of the form f(tf) = 4 + Bt>. Then the vectors
a:f—£(0),

ﬂ:f—+J‘1 tf(t)dt

span the dual space V*. Clearly
alf]=4,

Blf]= Jl (2At + Bt*)dt = %B.

But any element yeV* must be of the form y[f]=aA + bB for some constants
a and b. Thus y =aa + 3bf, and « and B span V*.

Let vy,...,v, be a finite set of linearly independent vectors that spans a vector
space V. The number n of vectors in such a collection is called the dimension of
V. To establish that dimension is a well-defined integer; i.e., that all such sets for
a given space contain the same number of elements, we must prove the following
result:

Theorem. Let {v,v,,...,v,} be a set of vectors that span a vector space V.
Then any set of k + 1 vectors in V is linearly dependent.

The proof is by induction: we first establish the result for k = 1; then we show
that if it is true for a space spanned by k—1 vectors, it is true for a space
spanned by k vectors. When k = 1, the theorem states that, if V' is spanned by one
vector v, then any two vectors in V are linearly dependent. Indeed, consider two
such vectors, w, and w,. Since v spans V, there exist real numbers y; and yu, such
that w, = u,v and w, = pu,v. Clearly, then,

PaWy — UyWo = Ho gV — fly iV =0
so that w, and w, are linearly dependent.

We now assume that the theorem is true for any set of k vectors in a space
spanned by k — 1 vectors, and we consider a set of k + 1 vectors, {Wy,..., W11},
in a space spanned by {v;...v,}. We can write w, =a; v, +a;,V, + " +auV
because the vectors {v;} span V. If w, = 0, then rw, = 0 with r # 0 gives a non-trivial
relation among the ws and there is nothing further to prove. So we may assume
that w, # 0 and hence we may as well assume that we have ordered the vectors

{V{,V5,..., ¥} so that a;; #0. Thus
1 a a
12 1k
——Wl =V1 +__._V2+o--+__vk_
a1 Ay a1

But X
WZ = a21V1 + a22V2 e e a2ka.



Thus

in terms of the k — 1 vectors {v,,...,v,}. But we are assuming that the theorem is
true for k — 1 vectors, so that the set of k vectors

sy asy A+ 1)1
{WZ——w15w3—"—'—w1a"-swk+1— Wy
aiq ayq agy

is linearly dependent. Thus there exist constants 4,,...,4,, not all zero, such that

a, asq A+ 1)1
Az(wz—'_lwl)'l‘l:;(w:;*“—-wl +.”+Ak Wk+1—— ( ) Wl —_—0.
aiq apq ai

But this means that {w,,w,,...,w,,,} is a linearly dependent set, as we wished to
show.

Now we can easily show that the dimension of a vector space is well-defined.
Suppose we have, in a vector space ¥, a collection {vi,...,v,} which is linearly
independent and spans, and a second such collection {wy,...,w,}. By the theorem
just proved, n < k, otherwise the vectors {w,,...,w,} would be linearly dependent.
By the same argument k < n, otherwise {vy,...,v,} would be linearly dependent.
We conclude that k = n, so that any finite collection of linearly independent and
spanning vectors in a vector space contains the same number of vectors. Hence
we have the right to call this number the dimension of V.

In fact, in a vector space V of dimension n, any set of n independent vectors
spans the space. Let {v,...,v,} be a set of independent vectors in ¥ and let w be
an arbitrary non-zero vector. The set {w,v,,...,v,}, which contains n + 1 vectors,
must be linearly dependent, so there exist constants Ay, 44,..., 4, such that

AoW 4+ Avy +--+ 4,v,=0.

Now 4, cannot be zero; otherwise {vi,...,v,} would be dependent, contrary to
hypothesis. Hence we can write

1
Ao

and we have expressed the arbitrary non-zero vector w as a linear combination
of {v,...,v,}, which therefore spans.

A linearly independent and spanning collection of vectors, {v,,...,v,}, when
written in a specified order is called a basis of V. Thus {v,v,,...,v,} is a different
basis from {v,,v,v;,...,v,}.

Starting with fewer than n independent vectors in an n-dimensional space V,
say wy,...,w, (k <n), we can always find a vector v, , ; which is not in the subspace
spanned by {w,...,w,}. Continuing this process for n—k steps, we eventually

W= (Alvl +”'+invn)



arrive at a basis for V which includes the vectors wy,...,w,. In particular, given
a vector space V of dimension »n with a subspace W of dimension k, we can always
construct a basis for V in which the first k vectors form a basis for W. This process
is called extending a basis for the subspace W to a basis for the entire space V.

Once we have chosen a basis, say {ej,...,¢,}, for a vector space V, we can write
any element of V uniquely as a linear combination of basis vectors

v=Xx,e; + X,&, + "+ Xx,e,.

The numbers x,...,x, are called the components of v with respect to the given
basis. To show that they are uniquely determined, we imagine that v can be
expressed alternatively as

V:'—ylel +y2e2+'“+ynen'
Then, subtracting, we have
0=(x; —yi)es +(x;—yr)es + -+ (x, — y,)e,
But, since the basis elements are linearly independent, x; —y; =x, —y, =" =

x, — ¥, = 0 which proves the uniqueness of the components.
Thus, a basis determines an isomorphism, L, of V with R”, where

1 0
Lv, = 0 , Lv,=
0
Conversely, if L is such an isomorphism, then

1
=LY%, v,=L
i
is a basis V. We may thus identify a basis {vi,...,v,} with the corresponding
isomorphism L, just as we did in Chapter 1 in the two-dimensional case.
Let L: V- R" and L. V- R" be two bases of the same n-dimensional space, V.

y
L \ L' =BL
B

1
ol etc.

, ¢€tc.

O = O

R" —— R"

Then B=L-L™! is a linear isomorphism of R" - R", hence an invertible n X n
matrix. It is called the change of basis matrix.

Let V be a vector space of dimension k and W a vector space of dimension [.
Let T:V— W be a linear transformation. Suppose that we choose bases of V' and
of W. So we have isomorphisms L: ¥— R¥ and M: W— R and we can define the map

MTL 'R R

We can regard MTL™! as a matrix with [ rows and k columns. We call MTL"™ !



the matrix of T relative to the bases L and M, and denote it by Mat; ,(T). So
Mat, \(T)=MTL .
We can picture the situation by the diagram

T
y

v

t~
x© ————————
R

R* >
Mat; ,,(T)

If we make a different choice L' = PL of basis on ¥V and M’ = QM of basis on W,
then

)5 1 L~ 1P—- 1
SO
MTL '=QMTL P!
or
Maty, p(T) = Q(Mat, (T))P~ !
when

L'=PL, M'=0Q0M

is the change of basis formula. It tells us how the matrix representation of a linear
transformation changes when we change the basis.

10.5. The dual basis

Having constructed a basis for a vector space ¥, we can readily construct a dual basis

for the dual space V*. Let {e,,e,,...,e,} be a basis for V. Then any vector veV
can be written uniquely in the form

V= xlel + xZez + e + X,,en.
Now let & be an element of V*. Since « is a linear function on V,
ofv] =xale ] +x,x[e,]+ -+ + x,x[e,].

This means that « is determined completely by its values on the basis vectors
{e;,...,e,}. We therefore introduce vectors £!,...,&" in V* with the property that

. 1 if i=j,
g'fe.]= .
Le;] {o if o]
To prove that the elements £° are linearly independent, we consider £4,£°. Applying
this to an arbitrary basis element e;, we obtain

Thus, if ¥/.e! is the zero element in V*, A;=0 for all j. This proves that the set
f: ',...,&"} is independent.



Now, given any aelV*, we write
a=ale ]e! +ale,]e? + - +ale,]e".

Clearly both sides of this expression have the same value on any basis elements e;
and so are the same element of V*. This proves that the elements £?,..., £" span V*.
Since these elements are also independent, we conclude that V* is also n-
dimensional and {&',...,&"} form a basis for it.

We can use this basis to identify V* with R"*. When we express an element ac V'*
in terms of the dual basis:

o=+ 18>+ -+ A"

we find it convenient to identify elements of R"* as row vectors. So & becomes
identified with the row vector (44, 4,,...,4,). An advantage of this notation is that
the action of a on v is then described by the usual rule for multiplying matrices:

X1
VI = (A, Agseves ) | 72| = A%y + Ay + o + Ay

Xn

Itis important to bear in mind that this technique is correct only if the identification
of ¥V and V* has been done consistently: the basis used in identifying V* with R”
must be dual to the basis used in identifying V with R".

Suppose now that we have an n-dimensional space V with a k-dimensional
subspace W. We can choose a basis for V'in which the first k vectors form a basis for
w:

(Ve s Vis Vit 155 V)
and then construct the dual basis
1 k. k+1
{o,...;a5 a1, "}

so that
ai[vj]={1 if i =j,

The (n — k)-dimensional subspace spanned by {o***, ..., «"} is called the annihilator
space of W, denoted W+. It derives its name from the fact that if ere W' and weW,
then o[w] = 0; that is, W' ‘annihilates’ the subspace W. What was earlier called
method 2 for describing a subspace was in fact a specification in terms of the
annihilator space. For example, the vector (a,b,c) defines a one-dimensional
subspace W* of the dual of R3. The subspace W of R® annihilated by W™ is two-
dimensional: it is the plane ax + by + cz = 0. If we specify two independent elements
of the dual of R3, (a,,b,,c;) and (a,, b,, c,), then the subspace of R* annihilated by
these is one-dimensional: it is the line which satisfies the pair of equations

0 otherwise

a;x+by+c;z=0,
azx + bzy + sz = O



Notice that the annihilator space W+ of a subspace W< V does not depend on
any specific choice of basis for V. Introducing a basis was only a convenient device to
permit us to calculate the dimension of W+,

We still lack a systematic procedure for calculating the dimension of a subspace
spanned by specified elements of a vector space, or of a subspace annihilated by
specified elements of the dual of a vector space. Such a procedure is the row reduction
algorithm, which will be presented in a later section.

10.6. Quotient spaces

We continue to consider an n-dimensional vector space V with a subspace W of
dimension k.

It seems reasonable that there should be a space of dimension n — k which is in
some sense the ‘difference’ between V and W. This space is called the quotient space
V/W. Its elements are not elements of V, however; they are sets of elements of V called
equivalence classes. Before defining these classes, we should first see why something
simpler will not suffice.

For a concrete example of a vector space V with subspace W, we can take ¥ to be
the plane R? and W a line in the plane, as depicted in figure 10.1. One possibility for
forming the ‘difference’ between 1 and W would be to consider the set of elements of
V which are not in W. Alas, these span the entire space V; for example, in figure 10.1,
the vectors v, and v,, neither of which is in W, clearly span the entire plane.

Another possibility would be to choose a basis of k vectors for W, extend it to a
basis for V, and form the subspace which is spanned by the n — k basis vectors which
are not in W. This gives a subspace of the desired dimension, but one which depends
on arbitrary choice of basis elements and so is not well-defined. For example, in

V2

V3

Vi

Figure 10.1



figure 10.1, we select w as the first basis vector, and we could then choose v,, v,, or v,
as a second basis vector, obtaining quite a different subspace with each choice. If
there were a scalar product defined on ¥, we could select the subspace orthogonal to
W, but, lacking a scalar product, there is no way to prescribe a choice of the second
basis element.

The construction which works is to define equivalence classes (modulo W), each
consisting of a set of vectors in ¥ whose differences all lie in W. We denote the
equivalence class of a vector by writing a bar over it; thus, for example, v denotes the
set of all vectors of the form v + w, where v is a specified element of ¥ and w is an
arbitrary element of W.

Figure 10.2

Referring to figure 10.2, we see, for example, that 0, the equivalence class of the
zero vector, is the subspace W, a line through the origin. The vectors v, and v,, which
differ by an element of W, belong to the same equivalence class, which we may denote
v, or v,. This equivalence class is a line which does not pass through the origin. The
equivalence class v, is a different line, again not passing through the origin. In this
case the equivalence classes are a family of lines parallel to W. More generally, we
can view a subspace Was a k-dimensional hyperplane through the origin of Vand the
equivalence classes modulo W as a family of hyperplanes parallel to this one.

To introduce the operation of addition of equivalence classes, we look first at the
arithmetic of the integers modulo 4, with which you are probably familiar. Here there
are four equivalence classes:

0=1{0,4, —4, 8 —8,...} = {4n),
T={1,5-3, 9,—7,...) = {dn+1),
2=1{2,6,-2,10,—6,...} = {4n + 2},

3={3,7,—1,11,—5,...} = {4n + 3}.

To add two equivalence classes, we select any integer from each class, add these



together and then find the class to which the sum belongs. For example, to add 2 and
3, we could select 6 from the class 2, 3 from the class 3, and form the sum 6 +3 =9,
which belongs to the class 1. So 2 + 3 =T, Since any other choice (say —2+ —1 =
—3) would have led to the same conclusion, this operation of addition is well
defined.

Addition of equivalence classes of vectors modulo the subspace W is defined
similarly. We simply make the definition v, + v, = (v, + v,); i.e., add any two vectors
from the classes ¥, and ¥,, and find the class to which the sum belongs. Suppose we
choose v, + w, from ¥, and v, + w, from ¥,, where w, and w, are arbitrary elements
of W. Then the sum v, + ¥, is the equivalence class containing (v, + v,) + (w; + w,);
which is (v, + v,), no matter what choice of w; and w, may have been made.

This operation of addition is illustrated geometrically in figure 10.3. The point is
that ¥, +v, =V, no matter whether v, and v, or u;, and u, are chosen as
representatives of the classes v, and v,.

Figure 10.3

We define multiplication of an equivalence class by a scalar in a similar way:

cVy =(cvy). That is, multiply any element of ¥, by ¢, and take the equivalence class of
the result. Because W is a subspace, the result is unique.

It is now straightforward to check that the equivalence classes of ¥ modulo a
subspace W form a vector space. This space is called the quotient space V/W. To
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construct a basis for it, simply choose a basis for Wand extend it to a basis for all of V.
The basis elements of V are therefore W;,W,,...,w, (elements of W) and
Vi, V2,..., ¥, (not elements of W). We claim that the equivalence classes
Vi;V2,...,V,_, form a basis for V/W. To prove this, we must show that they are
independent and that they span V/W.

Let us deal first with the question of independence. Suppose that v,,v,,...,¥
were not independent. Then constants 4y, 4,,...,4,_, exist such that

n—k

/1171 + ﬂ.«sz + v + An_kvn_k - 6
which implies that
llvl + 2,2"2 + e + ln_kvn_kEW

contradicting the assumption that the set of vectors {wy,...,w;;vy,...,v,_,} is
linearly independent.
We can write a vector velV as a linear combination of basis elements:

V=Xx,V; +X,V, + -+ X,_,V,_, +clement of W
which implies that
V = x1V1 + XZVZ + + xn_kvn_k.

This proves that the equivalence classes v,,V,,...,V,_, span the space V/W. We
conclude that v,,v,,...,v,_, form a basis for V/W, and that

dim(V/W)=dim V — dim W.

The time has come for some examples of quotient spaces:

Example 1. Vis R W is the one-dimensional subspace spanned by { 1 |. Since

o - 0
1 0 0 0 0
1 ,11},and| O ) span R* we can choose| 1 Jand | 0 ]as a basis for the two-
0 0 1 0 1
dimensional quotient space V/W. Now, for example,
3 1 0 0
1)]=3{1]-211}+|0
1 0 0 1
SO
3 0 0
l)==-2{1]+{0
1 0 1
In a similar manner we can express the equivalence class of any vector in R® as a
0 0

linear combination of { 1 Jand | O
0 1



1 0

Notice, incidentally, that (0) and (1) would not serve as a basis for V/W.
0 0

Because their sum is an element of W, they are not linearly independent elements of

T OO0 00

Example 2. V is the space of polynomials f(z) of degree <2; W is the
two-dimensional subspace of such polynomials satisfying the additional condition
f(1)=0. A basis for Wis f; ()=1—1t and f,(tf)=1—t> A basis for V/W is the
equivalence class 1. In this case, the general element of V is

f(®)=A + Bt + Ct?
SO
f()=A+B+C—B(1 —t)— C(1 —t?).

This means that

f(t)=(A+ B+ O]1.

If you think of elements of V/W as planes, this is obvious: the subspace Wis the plane
f(1)=0, and the equivalence class of any other function f(t) is determined by the
value of f(1).

We can now put together the concepts of dual space and quotient space to obtain
a powerful result. Earlier, we found that, if Wis a subspace of V, the annihilator space
W+ is a subspace of V*. Now suppose that « is an element of W*, and consider its
action on an equivalence class v. Because a[w] = 0 for all weW, and « is linear,

alv+w]=a[v]

That is, & has the same value on any element in a equivalence class, and it can
therefore be regarded as a linear function on the space of equivalence classes.

Conversely, any linear function on V/W can be regarded as a linear function on
V. Simply define B[v] as

Blvl=B[v]
Then B[w]=p[0]1=0. So B is an element of W*. We can therefore
identify W with the dual space of the quotient space V/W. Recall that both W= and
V/W have dimension equal to dim V — dim W.
Similarly, we may consider the quotient space V*/W™, whose elements are
equivalence classes f§ whose elements differ by elements of W, i.e.,

F={B+aacW}.

Define the action of f on a vector we W by f[w] = B[w]. This is legitimate since,
for any ae W, (B + a)[w] = B[w]. If B[w] =0 for all weW then B[w] =0 for all



weW. This says that pe W+ or f=0. So B is completely determined by the linear
function it defines on W.

Conversely, we claim that every ye W* is of the form y = § for some feV*,
Indeed choose a basis w,,...,w, of W and extend it to a basis wy,...,W;,Vy,...,V,_,
of V.

Let B be any linear function with g[w;]= y[w;] for all i and let § take any
values on the vs. Then = y. We can therefore identify the space of these equivalence
classes, the quotient space V*/W*, with the dual space W*.

The results just proved may be summarized in the following diagram:

V¥*W* « V¥ W
W-V -V/W

Here the spaces which are dual to one another are arranged vertically: ¥ and V*
(dimension n) are dual, W and V*/W" (dimensionk) are dual, V/W and W+
(dimension n — k) are dual.

Much of linear algebra and its applications to electric network theory rests on this
single theorem, which deserves your most careful consideration.

As an illustration of the theorem, let V be the space of polynomials f(t) of degree
<2, and let W be the two-dimensional subspace of even polynomials. Then V/Wis
one-dimensional, and a basis element, which we shall call h,, is the equivalence class

of the function f(t) = t. Thus if f(t) = A + Bt + Ct?, f(t) = Bh,.
In this case, the annihilator space W* is also one-dimensional. One choice for a
basis element is the linear operator

1

a:f(t)n—»J tf(t)dt.
-1
Since
jl t(A + Bt + Ct*)dt =3B
-1
we see that & does indeed annihilate any even polynomial and assign the value 3 to
the polynomial f(t) =t, which specifies the basis h, of V/W. That is, 3¢ is the

basis element dual to h,,.
We can extend a to a complete basis for V* by adjoining the basis elements

B f(O)=f(0)

and
B.: f(©)~3f"(0)
whose effect is to pick out the coefficients 4 and C respectively. That is,
B.[A+ Bt + Ct*] = 4,
B,[A+ Bt + Ct*] =C.

The equivalence classes B, and §,, which form a basis for V*/ W+, clearly also form a



basis for W*; indeed, they are the dual basis elements for the basis elements 1 and ¢?
in the subspace W of even polynomials.

10.7. Linear transformations

We consider now a linear transformation
AV->W

where Vis a vector space of dimension m and Wis a space of dimension n. As always,
to state that A is linear means that A(c,v, + ¢,v,) = c;Av; + ¢, Av,.

Associated with a linear transformation A: V— Ware two subspaces, the kernel of
A and the image of A.

The kernel of 4, denoted ker A4, is the set of vectors ve V'such that Av = 0. To verify
that ker 4 is a subspace of V, we note that, if v, and v, are in the kernel of A, then
A(cyvy + cav,) =c AV, + c,Av, = 0so that ¢ vy + c,v,eker A also. This proves that
ker A is closed, and hence a subspace.

The image of A, denoted im A, is the set of vectors we Wwhich are of the form Av
for some ve V. If w, and w, are vectorsinim A, then w, = Av, and w, = Av, for some
vy, V,€V. Because of the linearity of A,

A(Clvl + 02V2) = CIAVI + CZAVZ = CIWI + Czwz

so that ¢, w; + ¢, W, is also an element of im 4. This proves that im A is a subspace
of W.

The dimensions of ker A and of im 4 are related by the equation

dim (im A4) + dim (ker A) = dim V. (10.8)

The dimension of the image of A4 is called the rank of A, the dimension of the kernel of
A is called the nullity of A, and equation (10.8) is called the rank-nullity theorem.
You are already familiar with the theorem in the special case of transformations
of the plane into itself. Recall that there were three possibilities for 4: R — R%:

(1) A has the entire plane as its image and carries no non-zero vector into the
origin (rank 2, nullity 0).

(2) A collapses the plane into a line, and carries a line into the origin (rank 1,
nullity 1).

(3) A collapses the entire plane into the origin (rank O, nullity 2).

To prove the rank—nullity theorem we choose a convenient basis for V. Suppose
that dim V= n, dim(ker A) = k. We choose a basis {u,u,,...,u,} for ker 4, then
extend this to a basis for all of V by choosing r =n — k vectors v,,v,,...,V,. For
convenience, we order this basis as

(VisVasoos Vs Uy, Uy, ., )

so that the first r vectors in the basis do not lie in ker A. The problem is now to show
that the r vectors {A4v,, Av,,..., Av,} form a basis for im 4.



We first show that the vectors {AV;,AV,,...,Av,} are linearly independent.
Suppose that

S A= 0.
i=1

Because A is linear, this is the same as

A( i /livi> =0
i=1

which implies that 37/_ 2,v;eker A. But the vectors {v;}, along with the basis {u i} for
ker A, form a basis for V. Therefore

Y Av;=u with uekerA4
i=1

implies that all the 4; are zero, and therefore that {Av,, Av,,... ,Av,} are linearly
independent.

To show that the vectors {Av,, Av,,..., Av,} span im A, we consider an arbitrary
vector weim A. There is some vector veV such that w= Av. We can write

r k
v= Y av,+ ) bu,.
i=1 =1

But all the basis vectors u; are in ker A4, so

r k r
W= A( ICATESDY bj“j) = 2, a{Av);
i=1 i=1 i=1

ie, any w can be written as a linear combination of {Av,, Av,,..., Av,}.

We conclude that the r vectors {Av,, Av,,..., Av,} forma basis for im 4. It follows
that dim(im A)=r. But r=n—k, where dim V=n and dim(ker A)=k. Thus
dim (im A) = dim V— dim (ker A), which is the rank—nullity theorem.

The rank—nullity theorem provides a proof of a result which you have probably
already conjectured about the annihilator space of a subspace. Suppose that

{a',a?,...,a"} are elements of V*. Then we can define a linear transformation
AV-R"
by
a'[v]
Av = a.z[v]
a"[v]

The vectors {a',a?,...,a"} span a subspace U* < V* which annihilates the subspace
ker A. The rank—nullity theorem says that dim (im 4) = dim V — dim (ker A4). But we
saw in section 10.4 that
dim (U") = dim V — dim (ker A).
It follows that -
dim (im A) = dim U™.



In terms of matrices, each element & is a row of the matrix, and dim U™ is the
dimension of the subspace of V* spanned by the rows of the matrix. On the other
hand, dim (im A) is the dimension of the subspace of W spanned by the columns of the
matrix. Both of these numbers equal 7, the rank of the matrix.

This view of the rows of a matrix as elements of the dual space V* is particularly
useful when we are trying to solve systems of linear equations. For example, the
system of equations

X+y+z=0,
X+2y+3z=0,
2x+3y+4z=0

may be represented as Av =0 where

1 1 1 X
A={1 2 3}, v=|y
2 3 4 z

Here the rows of A are associated with individual equations. Because the third
equation is the sum of the first two, the three rows span only a two-dimensional
subspace of V'* the rank of the matrix A is 2 and its nullity is 3 — 2 = 1. Therefore
ker A is one-dimensional, and there exists a one-dimensional subspace of non-trivial
solutions to the equation Av=0.

10.8. Row reduction

Consider now a linear transformation
T VW

where Vis m-dimensional, Wis n-dimensional, and the rank of T'is . We have seen
that by a proper choice of basis for ¥ and W we can assure that T has an especially
simple matrix representation. We simply choose as a basis for V the vectors

(Vi Voo s Vel Ve 1seees Vi)
where the last m —r basis vectors form a basis for ker T, so that Tv, ,=
Tv,,,=--=Tv,=0. Then Tv,,Tv,,..., Ty, form a basis for im 7. We choose
wy=Tv,w,=Tv,,...,w,= Tv, as a basis for im T, then extend to a basis for all of
W. Now the matrix representation of T relative to this basis is simply the matrix
I, 0

4 NTOWS 10.9

\*W

m columns

which has a string of r 1s down the diagonal from the upper left-hand corner and all
its other entries zero.

Usually, alas, the transformation T'is described by a matrix 4 which represents it
relative to some other, less convenient basis. An important computational problem



is then to find the change of basis for V' and W which converts the matrix
representation relative to the given basis, 4, to I,. In practice this is most efficiently
achieved by the algorithm of row reduction, which is in essence just a systematic
procedure for solving linear equations by the familiar process of elimination. We
first describe the process and illustrate it, then explain why it solves the general
problem.

Suppose we are given the matrix

0 4 —4 8
M=[2 4 0 2
30 6 —9

The index of any non-zero row of M is the position of the first non-vanishing
entry, and this entry is called the leading entry. Thus, for the first row of M, the index
is 2 and the leading entry is 4, while for the third row the index is 1 and the leading
entry is 3.

The first step in row reduction is to locate a row of smallest index, to move it to the
top position by interchanging it with the top row if necessary, and to divide it by its
leading entry. For the given matrix M, we interchange the first and second rows to
obtain

2 4 0 2
0 4 -4 8
3 0 6-9
and we then divide the top row by its leading entry, 2, to obtain
1 2 0 1
0 4 —4 8 )
3 0 6 —9

The second step is to clear the column under the leading entry of the top row. This is
achieved by subtracting the appropriate multiple of the top row from each other row
in turn. In our example, we subtract 3 times the top row from the third row,
obtaining

1 2 0 1
0 4 -4 8
0 —6 6 —12
The matrix now has a leading entry one in the top row, and all other rows which
are not zero have an index greater than the index of the top row. We next move a row
of next smallest index to the second position and divide by its leading entry. In the
example, the second row already has next smallest index, and we divide it by its
leading entry, 4, to obtain

1 2 0 1
0 1 —1 2
0 -6 6 —12
We now clear the column corresponding to the leading entry in the second row by



subtracting a suitable multiple of the second row from all other rows. In the example,
we subtract twice the second row from the first and substract —6 times the second
row from the third, obtaining

10 2 -3
01 —1 2} (10.10)
00 0 0

Now the first and second columns both contain just a single 1, which is the leading
entry of a row.

In the general case, we now again interchange rows, if necessary, to move a row of
smallest leading entry-to the third position, divide this row by its leading entry, and
subtract multiples of it from all other rows to clear the column of the leading entry.
Eventually there are no more non-zero rows, and we have a matrix in row-reduced
form. In the example this has already happened. Note the following features of a
row-reduced matrix such as given in (10.10).

(a) All zero rows, if any, are at the bottom.

(b) The non-zero rows are arranged in order of increasing index.

(c) Every column containing the leading entry of a non-zero row has a one as
its leading entry and zeros elsewhere.

Each operation in the row-reduction process can be achieved by left multiplic-
ation by an invertible n x n matrix. For example, multiplying on the left by the
matrix

0 1 0
S;={1 0 0
0 0 1
interchanges the first and second rows:
0 1 0\/0 4 —4 8 2 4 0 2
1 0 012 4 2 0 4 -4 8
0 0 1I/)\3 O -9 3 0 6 -9

Multiplying on the left by the matrix

divides the first row by 2:

10 0\/2 4 2 1
01004—48 0
0 0 1/\3 0 —9 3

Multiplying on the left by the matrix

S A~
|
N B O

|
OO0
\.__/



subtracts three times the first row from the third:

1 0 0\/1 2 0 1 1 2 0 1
o1 0o 4 —4 8)]={0 4 —4 8]
30 1/J\3 0 6 -9/ \0 -6 6 —12

Thus we can write the final row-reduced matrix B as
B = SkSk—l ‘“S3S281M
or as
B=SM
where S is an invertible n x n matrix. Notice that, since S is invertible, dim
im B=dimim M.
The image and kernel of the row-reduced matrix B are easy to determine. Clearly

the image is the r-dimensional subspace corresponding to the r non-zero rows of B,
spanned by the columns

1\ /0

1
ollol
0/ \0

which contain the leading entries of all the non-zero rows. By the rank—nullity
theorem, the kernel of B has dimension m — r, equal to the number of columns that
do not contain leading entries. To find a basis for ker B, we consider vectors which
have a 1 in one of the m — r positions corresponding to the columns with non-leading
entries, and zeros in the remaining m — r positions, then use the rows of the matrix B
one at a time to calculate the components in the positions of the leading-entry
columns.
For example, with

1 0 2 -3
B={0 1 -1 2
0 0 0 0
1 0
a basis for im Bis clearly| O Jand{ 1 |. The columns without leading entries are the

0 0
third and fourth, so we search for basis vectors of ker B which have the form

X1 Y1
u, = xlz and u,= JE)Z
0 1

Setting Bu, = 0, we find



SO

Setting Bu, =0, we find

SO

Of course, we were interested in the kernel and image of the original matrix 4, not
of the row-reduced matrix B. However, B = SA, where S is invertible, so

A=S"'B.
Clearly any vector in the kernel of B s also in the kernel of A, so by finding the kernel
of B we have also found the kernel of A. To find the image of 4 we must invert S and
let $™! act on the image of B. To summarize, we have B = SA, ker B = ker A4, and
dimim B = dimim A4.
Suppose now that we wish to solve an equation of the form
Av=w.
We apply the operations of row reduction both to the matrix 4 and to the vector w,
obtaining
SAv=Sw or Bv=u

where B is row-reduced and u = Sw. This equation is of a form like

1o 2 -3\/" u;
X

01 —1 2] = 4
X

o0 o o0o/\? Us
X

4
and it can be solved by inspection, as follows.

(1) If any component of u corresponding to a zero row of B is different from
zero, the equation has no solution.

(2) Ifthe components of u corresponding to the zero rows of B are all zero, then
ug
Vo = uOZ
0

is one solution to the equation.

(3) The general solution to the equation is of the form v, + v, where veker A.



In practice, before applying the row-reduction procedure, it is convenient to
combine the matrix 4 and the vector w into a single array so that row reduction can

be applied to both at once. Here is an example of the complete process. We wish to
solve

Av=w,

2 4 2 2 0
A=11 3 2 0 and w=| —1
31 -2 8 5

We combine 4 and w into the array

2 4 2 2 0
1 3 2 0 -1
3 1 -2 8 5

and apply row reduction, obtaining successively

1 2 11 0

where

1 3 2 0 -1,
3 1 -2 8 5
1 2 1 1 0
0 1 1 —1 -1,
0O -5 -5 5 5
1 0 —1 3 2
0 1 1 —1 —1
00 0 0 0
One solution to the equation is therefore
2
—1
ol
0
To find the general solution, we must construct a basis for the kernel of 4. One basis
1
. |-1
vector, with one in the third position and zero in the fourth, is e The other,
0
-3
) 1
with zero in the third position and one in the fourth, is ol So the general
1
solution to Av=w is
2 1 -3
—1 . 1—=1 1
V= 0 + A 1 + 4, 0
\ O 0 1



where 4, and A, are arbitrary real numbers. Note the characteristic form of the
solution in relation to the columns of the row reduced matrix which do not contain
leading entries of rows (in this case, columns 3 and 4). The particular solution to the
equation has zeros in both the third and fourth positions, while the basis vectors for
ker A each have zeros in all but one of these positions. There are many ways to write
the general solution to the equation, but this is the simplest.

For a non-singular square matrix A, the technique just described provides an
efficient method of matrix inversion. The transformation S that row-reduces 4 to
the identity matrix is just the matrix A ™', and it can be calculated step by step if each
individual row-reduction operation is applied to a matrix that begins as the identity

1 2 1
matrix. Suppose, for example, that 4 = 2 3 3 ). We begin with 4 and the
-1 -1 0
identity matrix,
1 2 11 1 0 0
2 3 31 01 0],
-1 —1 0] 0 0 1

and apply row-reduction operations to both. Substract twice row 1 from row 2; add
row 1 to row 3:

1 2 1 1 00

0O -1 1 =21

0 1 1 1 0 1
Divide row 2 by —1:

1 1 0

o O
(S0
|

- NI
|
[E—y

— O

Subtract twice row 2 from row 1; subtract row 2 from row 3:

1 0 3] -3 20
0 1 -1 2 -1
0 0 2 -1

Divide row 3 by 2:
1 0 3] -3 20
01 -1 2 -1 0}
00 1l -1 43

Subtract 3 times row 3 from row 1; add row 3 to row 2:

1 00
010
0 0 1

|+

[N ST Y
ol = Nojw

D= 1w bl



Row rec uction

It follows that 4! is the matrix

-3 1 -3
-1 3 -1 1
—1 1 1

Let us now return to the case of a general rectangular matrix. Instead of
performing row operations, we could perform column operations: just the same
operations as in row reduction, but with the word ‘row’ replaced by ‘column’. We
would end up with a matrix

C=MT
where T is an invertible square matrix and C is column reduced. That is:

(@) All zero columns of C, if any, are on the right;

(b’) The non-zero columns of C are arranged in order of increasing index (when
the index of a non-zero column is the position of the first non-vanishing
entry);

and

(c') Every row containing the leading entry of a non-zero column has a one as
its leading entry and zeros elsewhere.
Notice that now
imC=imM
and the r non-zero columns of C will be linearly independent. Hence they will give a
basis of im M. Thus, to summarize:

To find a basis of im M, apply column reduction. The non-zero columns
of the resulting matrix C provide such a basis.

To find a basis of ker M apply row reduction. The resulting rows of the
row reduced matrix B=SM give a set of r equations for ker B which are in
‘solved’ from — solved for the positions of the columns containing leading
entries in terms of the remaining m — r positions. A basis can be found by
successively choosing 1 for one of the remaining positions with the other
remaining positions zero and solving.

We can also perform both column and row operations. For example, suppose we
perform column operations to the row-reduced matrix

1 0 2 3
B={0 1 -1 2
0 0 0 0
Subtracting multiples of the first column from the third and fourth yields
10 0 0

01 -1 2
0 0 0 0



and subtracting multiples of the second column from the third and fourtp vields

1 0 0 O
01 0 O}
0 0 0 O

In general, by performing column operations to row-reduced matrix B, we can firsg
arrange (by switching columns) that the leading columns are exactly the first .
columns. (This step was not needed in the example above). Then, successively syb-
tracting off multiples of each of the first r columns from the remaining 5 —,
columns, we end up with a matrix whose only non-zero entries are r 1s down the
principal diagonal, i.e., of the form (10.9). We have thus described an effective
algorithm for finding matrices S and T such that

SMT has the form (10.9).

10.9. The constant rank theorem*

If we combine the results of the preceding section with those of section 6.3, we obtain
some very powerful information about the behavior of differentiable maps. Let V
and W be vector spaces of dimension m and n respectively. Let O be some (open)
region in V and suppose that

f:0O->W

is a differentiable map. At each point peO we can compute the differential, d f,, of fat
p. The differential df, is a linear map of Vinto W, and so we may compute its rank. Of
course, this rank depends on the point p. Our purpose is to prove the following
theorem.

The constant rank theorem. Suppose that there is a constant integer r such that the
rank df, =r for allpeO. Then for any x€O we can find a one-to-one differentiable map
¢ mapping a neighborhood of x into R™ such that ¢ has a differentiable inverse, and a
one-to-one differentiable map \y mapping a neighborhood of f(x) in Winto R, also with
differentiable inverse, such that the composite map

Yofog RM SR
is a linear map with matrix (10.9).
In short, this theorem says that, for differentiable maps of constant rank, the main

theorem of row reduction holds: we can ‘make changes of variables’, i.e., find maps ¢
and ¥, such that

X1
Wofodp™) x:,,, = 0
0

* This section can be omitted on first reading.



Proof. By making a preliminary change of variables consisting of a translation in
v, we may assume that x =0 and, by another translation in W, we may assume
that f(x) = 0. Thus, in order to simplify the notation, we may assume that f(0) =0,
and that we are interested in f near 0. By row reduction, we can bring the linear map
df, to the form (10.9), that is, we can find invertible linear maps R: W— R" and
S: V— R" such that

d(RfS™ 1)y = Fdf,S~!
has the form (10.9). Thus we can write

fi

-1 __ fr
RfS B fr:l—l

f"

af
0x; )izt

.....

is the identity matrix at 0. Hence it is invertible in some neighborhood of 0. Consider
the map g defined near 0 in R™ by

where the matrix

/i
N\ _| 7

g : X
Xm :

x.m

That is, the first r components of g are given by f,....f,, while the last m —r
components are just the last m — r coordinates. Notice that the matrix

Ui ’

ag; - axj rows
0x; B ! 1. O m—r
0 .

0 -1 rows
r m-—r

columns columns

is invertible at 0, and hence is invertible near 0. We now apply the inverse function
theorem of section 6.3 to the map g. Review the proof there to see that it was valid for
arbitrary finite-dimensional vector spaces. (Observe also that the implicit function
theorem and its proof are valid, where x and y are taken as vector variables and the
condition there on dg/dy (which is now a matrix)is that it be invertible.) Getting back
to our current problem, we can find an inverse for g. Let

h=(RfS™1)og~1.



Then

and
fi
X, .
g (()) = xf’
X, r+i
x'm
SO
y.1
N [
’ gr+1(y)
Vi :
gn(y)

for suitable functions g, , ;,..., g, defined on R™ near 0. Now the chain rule says that
dh, = d(Rf,S™Y)°dg, ' where q=g(Sp).

Hence
rank dh, =r.
Looking at the matrix
I, 0 r
( oh, ) - rows
0; 0gi | n—r
: 3y; | rows
r n—r

columns columns

the only way that this can happen is if all the partial derivatives occuring in the
lower right-hand corner vanish identically. Thus the last n — r hs must depend only
on the first r coordinates, y. That is,

Ir+1 =gr+1(y19°°-ayr503-"90)3 etc.
Now introduce the transformation H on R" given by

Z1 Z1
z z
H r — r
Zr+1 Zov1 — Grr1(215--+52,,0,...,0)

z, Z,—gulZ15..+52,,0,...,0)



This is a smooth map defined near z=0 in R". It is clearly invertible. Indeed, its
inverse is given by

Wy

IJ_1 . = Wr .
;/V Wr+1+gr+1(wlﬂ"'swr909-'-50)

W+ GuWys...sw,,0,...,0)

Then
Y1
)41 .
o . | Y
Vim :
0

Substituting the definition h=(RfS~!)eg~! into Hoh gives
Heh=(HR)°fo(S"'g™").

Defining
Y =He°R
and
¢=g°S
shows that yofo ¢! has the desired form:
)’.1
V1 ;
ofoch™1 . — Vr
S A
Ym .
0

Q.ED.

The most important application of this theorem is to the case where r =n, the
dimension of the image. If df,, is continuous and has rank n at some point p, then we
claim that it has rank n at all points sufficiently close to p. Indeed, by row reduction,
we can find R and S such that Rdf,§ ™" has the form (10.9) with » = n. Now, for q close
to p, the upper left-hand block of Rdf, S~ ! will be close to the identity matrix. Hence
the dimension of the image of df‘l is at least n. Since the dimension of this image
cannot exceed dim W=n, we conclude that rankdf,=n for all q in some
neighborhood of p. From the constant rank theorem, we conclude:

The solution set theorem. Suppose that f: 0 — W is a continuously differentiable map
and that df, is surjective at p, that is, that rank dfp=dim W. Then we can find
differentiable maps ¢ mapping a neighborhood of p. into R" and Y mapping a



neighborhood of f(p) into R", both with continuously differentiable inverses such thqy
¢(p) =0 in R™ and Y(f(q))=0 in R" and

G

0

In particular, a point X is the solution to the equation

f(X)=f(p) x nearp
if and only if

0
0
x=¢ !
¢ Ym+1
Vn
WIth Vit 15> Vm+25- -5 Yn 0ll near 0.

Introducing a little terminology will make the statement of the solution set
theorem more succinct. Let H,,_, denote the subspace of R™ determined by the
equations

x,=0,...,x,=0.

(Here n is assumed to be <m.) A subset M of an m-dimensional vector space V is
called a submanifold of codimension m — n if it has the following property: about each
point xe M we can find a neighborhood O in V and a differentiable map ¢: 0 -»R™
with ¢(x) = 0, such that ¢ maps O in a one-to-one fashion into a neighborhood, U, of
0, and ¢ ! is differentiable, and such that

dSMnO)=UnH,_,.

Figure 10.4



In other words, the condition on M says that, near each of the points, we can find a
smooth distortion of the full space (the distortion being given by the map ¢) so that
M gets flattened out and looks like a piece of hyperplane. For example, the circle
x? + y? = 1 is a submanifold of codimension 1 in R?, because we can introduce the
map

— r2 -1
P(x,y) = (arctan v/ x)>

at all points with x # 0 (followed by an appropriate shift in the vertical direction
to center the image at the origin). At the points x = 0, we can use arctan (x/y). The
perimeter of a square is not a submanifold, because there is no smooth way of
straightening out the corners.

Let f:0 — W be a continuously differentiable map. A point peO is called a regular
point of f if df, is surjective; in other words, if rank d f, = dim W. A point which
is not a regular point is called a critical point. If W= R, then p is a critical point
if d f, =0. This agrees with our earlier notation.

A point qe W is called a regular value if all points p in f ~!(q) are regular points.
Then we can formulate our theorem as

If q is a regular value of f, then f~'(q) is a submanifold.

Here are some examples.
X
(a) Take n=1 and f:R">R! =R given by f[{ : )| =x%+--+ x2. Then
Xm
df, #0if p#0. Thus any non-zero value of f is a regular value. For ¢ >0, f~ (c)
is the sphere of radius \/c. Thus spheres are submanifolds.

(b) Let M(k) denote the vector space of all k x k matrices, so m = dim V= k2,
Let W=S(R) denote the vector space of all k x k symmetric matrices — those
matrices D which satisfy DT = D. Then n = dim W= 3k(k + 1). Consider the map

VoW f(A)=AA".
Then
df,B)=BAT + ABT
as you can easily check. We claim that the identity matrix, I, is a regular value
of f. We must show that d f, is surjective if AAT = I. That is, we must be able to
solve

BAT+ ABT=C
for B given any symmetric matrix C. Indeed, take B =31CA. Then
BAT + ABT=1CAAT +1A4ATCT
=1C+1CT since AAT=ATA=1
=C since C=C".



Thus the set of all orthogonal matrices — those satisfying AAT =1 —1is a sub-
manifold of the space of all matrices.

10.10. The adjoint transformation

When studying transformations from one affine plane to another, we made use of
the concept of pullback of a function. Recall that a transformation ¢ from an affine
plane A4 to another affine plane B gave rise, in a natural way, to a linear trans-
formation from the functions on B to the functions on A, as depicted in figure 10.5.

¢*
= B N
4 o f ) f
/ — | T~
P @ F)P) = FG(P)
Figure 10.5

The pullback of a function f on plane B, denoted by ¢* f, is a function on plane
A defined by

(@* )(P)=f(p(P)).
This concept of pullback can be extended immediately to the case of a transform-
ation from any vector space V to any other vector space W. We will take special
interest in the pullback of linear functions on W (i.e., of elements of the dual space
W*) which arises as a consequence of a linear transformation A from V to W. In
this case the pullback transformation from W* to V* is called the adjoint of A.
We denote the adjoint by A*, and define its action on an element fe W* by

(A*P)[v] = B[ Av].
The proof that A*, thus defined, is linear in B is the same as the proof that
pullback in general is linear: if B and B? are elements of W*, then

(A*(c1B* + c2B?) V] = (1B + o) [AV]
=c, B [AV] + c, B[ AV]

= ¢, A*B[V] + c,A*B*[V]
so that

A*(Clﬁl + Czﬁz) = ClA*ﬂl + CZA*ﬂZ



and A* is linear. Notice that the linearity of # and A imply that A*f is a linear
function of v, so that A*B does indeed lie in V'*.

It is crucial to observe that the adjoint A* acts ‘in the opposite direction’ to A.
Note carefully: if 4 transforms a vector veV into a vector Ave W, the adjoint A*
transforms a vector e W* into a vector A*BeV'*. This can be summarized in the
diagram

A+

V*( _W*

4
V—Ww

As an example of the adjoint transformation, let V be the three-dimensional space
of even polynomials of degree <4, and let W be the two-dimensional space of
odd polynomials of degree < 3. Then the operation of differentiation defines a
linear transformation D from V to W:

D: fO)>f'(®).
A typical element of W* is
B:gHg(1).
For example, B(t +2t3) =1+ 2=3. To calculate D*f we use the definition

D*p[f] = p[Df].
In the case at hand, Df = f'(t) and B[Df]=f'(1). We conclude that D*f is the
linear function on V (element of V*).

D*B: f(t) - f'(1).

Another element of W* is

a.gr Jl g(t) dt.

0
Now

D*a[f] = a[Df] = J [ dt=f(1)—£(0)

so D*« is the linear function

D*a: f(t)-f (1) —f(0).

When we introduce bases for V, W, V*, and W*, the description of the adjoint
becomes particularly simple. Suppose that V is m-dimensional, with basis
{V1,¥3,..., V), and that we have introduced a dual basis {e", a?,...,a™} in the dual
space V*. Similarly, let {w,,w,,...,w,} and {8', B2,..., B"} be dual bases in W and
W* respectively. If A is a linear transformation from ¥V to W, then

n

Av; = Z a;wj,

j=1

where the quantities {a;,as...,a,} form the ith column of the matrix which



represents A. Now we can calculate how A* acts on a basis element of W*:

(A*BYH[v] =B [Av,] = ﬁ"[ i aﬁwj:l = il a;B*Iw;].

But since the basis {#',..., 8"} is dual to {w,,...,w,}, we have
1 j=k
k _ s
Biw;]l= {0 itk
so that
(A*BY[vi] = ay.
Thus we may express A*B* in terms of the basis elements {a’,...,a™} of V* as
A*Br= > aya.
=1

The quantities {ay} = {a,1, dis .-, Gy form the kth column of the matrix which
represents A*, but they are also the kth row of the matrix which represents A.
This means that the matrix which represents A* is just the transpose of the matrix
which represents 4. Thus, for example, if V'is three-dimensional, W two-dimensional
and A: V— W is represented by

a a a
A — ( 11 12 13)
a1 Az 0433
the adjoint transformation A*: W* — V'* is represented by
i1 4y
A*=|a;, ap
di13 dz3
An easy way to see that the matrices representing A and A* are transposes of

one another is to recall that elements of the dual space may be represented as row

vectors. In the present example, an element of W* may be thought of as a two-
component row vector:

B=(11,45)
while an element of V is a three-component column vector:
X1
v=| X,
X3

Now (4*B)[v] = B[ Av] is written as
(A, A )<a11 aiz a13> U1
12742

A1 4z 4jzz

It is most natural to think of the matrix A4 as acting first on the column vector to
its right to yield Av, which is then acted upon by B. Alternatively, though, we can
think of it as acting first on the row vector to its left:

a a a
(/115/12)( H 12 13>=(N1aﬂ2:ﬂ3)

Q1 Az dz3



where (i, u,, u;) represents the vector (A*f)eV*, which then acts on veV. Thus,
if we reverse the usual conventions of matrix multiplication, letting a matrix act
on a row vector to its left, the same matrix represents both 4 and 4*. If we want
to represent 4* more conventionally, by a matrix which acts on a column vector

to its right, we must write
M1 i1 4y Ay
Ha 1= Q12 4G22 (/1 )
M3 i3 dzs 2

Now, of course, the matrix representing A* is the transpose of the one which
represents A.

We turn now to an investigation of the kernel and image of the adjoint A4*. If
BeW* is in the kernel of A*, then A*B[v] = 0 for all veV, so that PLAv] = 0. This
means that f annihilates all vectors of the form Av. We conclude that the kernel
of A* annihilates the image of A.

Now suppose that e V* is in the image of A*, so that

a=A*B for some PeW*.
Suppose that v is an element of ker 4. Then

alvl=A*B[v]=p[Av]=0.
We conclude that the image of A* annihilates the kernel of A.
Putting these results together with the general results about dual spaces and
quotient spaces proved at the end of section 10.5, we can construct two diagrams

which summarize our general picture of vector spaces and linear transformations.
Looking at subspaces of V and V*, we have

V*/im A* « V*«—1im A*
ker A - V-V /ker A.

This diagram reflects the fact that the quotient space V*/im A may be identified
with the dual of ker A, while the image of 4* is dual to V /ker A.
Looking at subspaces of W and W*, we have the diagram
W*/ker A* —« W* « ker A*
imA—->W-W/im A.
Here W* /ker A* may be identified with the dual of im A4, while ker A* is dual to

W /im A. Numerous examples of these relationships will appear as we study electric
network theory.

Summary

A Vector spaces
You should know the axioms for a vector space and be able to apply them.



Given a basis for a vector space, you should be able to recognize or construct
a dual basis for its dual space.

Given a subspace U of a vector space V, you should be able to construct and
use a basis for the annihilator space UL and the quotient space V/U.

B Linear transformations
You should be able to write down the matrix that represents a linear transformation
A: V— W between given bases.

You should be able to state, prove and apply the rank—nullity theorem.

Given the matrix of a linear transformation 4, you should know how to use
row reduction to determine bases for ker 4 and im A and to find the general
solution to Av=w.

You should know the definition of the adjoint A* of a linear transformation A4
and be able to state, prove, and apply relations between the kernel and image of
A and the kernel and image of 4*.

Exercises

10.1. Consider the five-dimensional vector space V of polynomials f(t) of degree
< 4. Determine whether each of the following is a subspace. If not, explain
why. If so, find a basis.

(a) Elements of V satisfying f(t) =f(—t).
(b) Elements satisfying f(0)=1.
(c) Elements satisfying f(1)=f(— 1).
(d) Elements satisfying |~ ¢f(t)dt=0.
10.2.(a) Find a basis for the subspace of R* defined by a[v] = 0, where
a=(2,—-3,1)

(b) Find a basis for the subspace of R* defined by a[v] =0 and B[v] =0,
where a=(2, —3,1) and g=(2,1, — 1).
(c) Find a basis for the annihilator space of the subspace WeR? spanned by
2 2

—3 }and 1}
1 —1

10.3.(a) Show that the set of functions f(t) satisfying f” + 5f' 4+ 6 f =0 is a vector

space V.
(b) Three elements of the space V* dual to this space are
a'=f£(0),
a? =fi['(0),

a’=f (e f(H)dt.

Find a relation among &', a2, «* which shows that they are linearly
dependent.
(c) As a basis for V, choose

vi=e H+e ¥,

v,=2e % —e” 3



.Xercises

Express the dual basis elements ' and B2 in terms of &' and e&? above.
10.4.(a) Show that, if S and T are subspaces of a vector space V, then their

intersection SN T (the set of elements common to S and T) is also a
subspace of V.

(b) Show that S + T (the set of vectors that are linear combinations of vectors
in S and T) is a subspace of V.

(c) Show that dim(S + T') = dim(S) + dim (T) — dim (S~ T)).
Hint: Start with a basis for S~ T and extend it to a basis for S+ T.

1 2 |
. 4 . O 1 . 2
(d) Suppose Vis R*, S is spanned by X and 5 ,and T is spanned by |
0 1 1
0
1
and ol Construct a basis for SN T, for S + T, and for the annihilator
0
space of (S+ T).
1
10.5. Let W be the subspace of R* spanned by| 2
4
1 1
(a) Show thate; ={ 1 Jand e, =| 1 Jform a basis for the quotient space
0 1/
1 0 0
R3/W. Express| O || 1 Jand| O ]as linear combinations of these
0 0 1

basis elements.

(b) Show that a=(2, — 1,0) and B= (4,0, — 1), both elements of the dual
of R3, are a basis for the annihilator space W*. In terms of & and B,
construct a basis {&!, £2} for W™ which is dual to the basis {e,, e, } for
R3/W.
10.6.(a) Let W be a subspace of a vector space V; let U be a subspace of W. Prove
that W/U is a subspace of V/U, and show that there is a natural

identification of

v/iu
with V/W.
U

(b) For the case where V is R3, W is the plane x + y + z =0, and U is the line
1
spanned by [—2 }, construct explicit bases for these spaces.
1
(c) Figure out what is happening in the dual space, that is, construct
subspaces of V* which are the dual spaces or annihilator spaces for the
various spaces in (a). Do this first in general, then for the explicit case
described in (b).
10.7. Consider the space V of functions on [1,2] of thé form f(t) = At + Bjt.
Choose a basis v, =t, v, = 1/t.



¢C. N near trans orm ns

Two elements of the dual space V* are

Bl f()—f (1),
B*f(—f(2.
Express the basis elements {a', a2} which are dual to {v,V,} as linear
combinations of #' and B2. Before working exercises 10.8—10.12 reread
section 4.2 on the Gram-Schmidt process.
10.8.(a) Find the dimension of the space of trigonometric polynomials spanned by
{1,sin?x, cos’x, sin*x, sin®x cos®x, cos*x}.
(b) Define a scalar product on this space by

1 T
(f,9)= - J f(x)g(x)dx.

With respect to this scalar product, construct an orthonormal basis.
10.9(a) Consider the vector space of odd polynomials of degree <3 with basis

{t,t3} and scalar product [} f()g(r)dt. Construct an orthogonal basis (you
need not normalize).

(b) Given the linear operator f: V — V defined by f'(p(t)) = tp'(t), construct the
matrix A which represents f with respect to the {z, 3} basis and the matrix
A which represents f with respect to the orthogonal basis which you
constructed.

(c) Three elements of V* the dual space to V, may be defined as follows:
a'[p] = p(1), @*[p] = p'(0), &*[p] = [5tp(t)dt.
Find a relationship among &', &2, &> which shows explicitly that they are
dependent.

10.10. Let V be the two-dimensional vector space of functions that are linear
combinations of f; =1 and f, = cos?t. Define a scalar product on this
space by (f,g) = (2/m) [ f()g(t)dt.

(a) Construct an orthonormal basis for V.

Note:

2 /2 1 2 nf2

—j cosztdt=—;—f cos*tdt=3/8
T Jo 2 n),

(b) Three elements of the dual space V* are:

nf2 /2
al:f = f(n/2), azzfaj f(t)costdt, oc3:f—->f f(t)sintdt.
0 0

Show explicitly that these are linearly dependent.

10.11. Consider the three-dimensional vector space V whose elements are the
polynomials of degree <2 multiplied by e *". A basis for this space is
vi=e ¥ v,=te ¥ vy=te %
(a) With respect to this basis, write down the matrix D which represents
the operation of differentiation; i.e.,

Df(®)=71"().
(b) Construct the matrix D? 4+ 4D + 4. (There are a lot of zeros in this
matrix!)
(c) The general solution to the equation X + 4% + 4x =e~* lies in the
vector space V. Find it by using the matrix that you constructed in (b).



10.12.

10.13.

10.14.

Consider the vector space V of solutions to the differential equation
X+3x+2x=0-

Define a scalar product on this space by

(f.g) = j f(t)g() de

0

(Remember that {Fe™* = 1/a.)

(a) Take f, = e~ ' as the first basis vector for V. Construct a second vector
f, that is orthogonal to f,.

(b) With respect to the basis {f,,f,}, construct the matrix D that
represents the operation of differentiation with respect to ¢. Verify that
D?+3D+2[=0.

Three elements of the dual space V* are the following:

a,[f] =1£(0),
a,[f] =1(0),

as[f] = J f(r)dt.
0
(c) State onwhat grounds you know that there exist numbers Ay, A,and A5
(not all zero) such that

/lldl + /12&2 + )L3a3 == 0.

Then determine 4,,4, and ;.
(d) In terms of &r; and ar,, construct a basis {f,, B, } for V* that is dual to
the basis {f,,f,} that you constructed in part (a).

Let V be the four-dimensional vector space of polynomials of degree < 3,

with basis elements 1,¢,t2, 3. Let D be the differentiation operator on this

space: Df(t)=f'(t), and let T, be the translatlon operator: T,f(t)=

ft+a).

(a) Construct the matrices which represent D and T, relative to the given
basis, and show that

T,=1+Da+1iD?a* +iD3d’
(b) Prove, that if V is the space of polynomials of degree <n,
T,=¢eP*

(Hint: Think of Taylor’s theorem, and you need not construct any
matrices.)

Let V be the space of one-forms on the plane for which the coefficients of
dx and dy are quadratic functions. A basis for V is x2dx, xydx, y*dx, x*dy,
xydy, y?dy. Any curve I in the plane defines an element ey of the dual

space V* by the rule
ar[w] = J .
r

(a) Invent a non-trivial curve I' for which ay is the zero element of V*.

(b) Find a basis for the subspace of V which is annihilated by a, where I'
is any closed curve.

(c) Let I',,T", and I'; be any three closed curves in the plane. Prove that
or,, %r,, and ar, are linearly dependent. (Hint: Use Green’s theorem to
convert the integrals to double integrals.)



10.15.

10.16.

10.17.

< ¢ ¢ lpear {ran. o t B

(d) Find curves I';,I',..., I (straight line segments will do the job) so
that the elements or, ar.,,..., ap, form a basis for V* which is dual to
the basis listed above. For example

fx2dx=1 while szdx=0 j=2,3,4,5,6
Iy r,

nydx=1 while nydx:O j=13,4,5,6.
| 3] r,

Consider the linear transformation f from R* to R*® whose matrix is

1 2 0 1
1 0 2 -3
0 1 -1 2

(a) Find a basis for the kernel (null space) of f, and construct the general
solution to the equation

1
fym={ 3}
—1
(b) Let N denote the kernel of f; let G be the quotient R*/N. Construct a

basis for G, and explain how you are sure that your basis vectors are
independent elements of G.

Consider the linear transformation f from R* to R® whose matrix is

2 4 2 2
1 3 2 0}
31 -2 8

(a) Find a basis for the kernel of f, and construct the general solution to
the equation

0
-1}
5

(b) Write down a basis for the image of f.
(c) Two elements of the quotient space H are

fv)=

0 0
0 1

Show explicitly that h, and h, are linearly dependent. (Hint: Look back
at part (a).)

Let A be the matrix of a linear transformation f: R* - R* given by

1 0 —1 1
0 2 4 -8
A= 2 1 —4 6
1 1 -3 5

(a) By row reduction, find the rank of 4 and find a basis for the kernel.
Label this basis v,,..., v, (k =dimker A).
(b) Find the solutions w,...,w, to the equations Aw; =v,.



(¢) Do the vectors Wy, ..-»Wi, Vi,---» ¥, form a basis for R*? What does
your answer 1mply about the transformation f‘)
(d) Find a basis forimA and express this basis in terms of the w; and the v;.
How does this answer relate to your answer to (c)? Hint: Something
strange is going on!)
10.18. Let 4 denote the 4 x 4 matrix

2 4 2 2

1 2 0 2
A=

3 6 5 1

0 0 3 -3

(a) Using row reduction, construct a basis for the kernel of A and a basis
for the image of A, and construct the general solution to the equation
4

3
4l
-3

Av =

(b) Construct basis vectors u, and u, for the quotient space U = R*/ker A.

4
3%.

Express the vector 4 | terms of u; and u,.

-3
10.19. Let W be the subspace of R* spanned by the vectors
1 3 1
1 3 1

1= i 2T s M T3

— 1 3 5

The scalar product in R* is the ordinary Euclidean one.
(a) Construct an orthonormal basis for W.

4

(b) Write the vector v= { as the sum of a vector in W and a vector
7
orthogonal to W.

(c) Let f:R*—R3 be defined by
(Wy,v)
S ={(wy,v) }
(W3,v)
Write down the matrix representing f. By row-reduction, construct
the general solution to the equation
4
fv)= 6 )
—2
10.20. Using row reduction, find a basis for the subspace U < R®> whose



annihilator space U™ is spanned by the row vectors

a'=(1,2,0, — 1,2),
a’=(2,4,3,4,4),
a®=(0,0, 1,2, 1),
a*=(3,6,5,7, 8).
Then construct the general solution to the simultaneous linear equations
a'[vl=5 oa’[vl=16; o&*[v]=3; a*[v]=27.

10.21. Use row reduction to calculate the inverse of the matrix

1 -2 1
A=1-2 5 —4)
1 —4 6

10.22. Let V be the space of functions f on R? with the property that
f(Ax, iy) = 23f(x,y). A basis for Vis

{V1 =x3, V2 =x2y, V3 =xy2, V4 =y3}.
Let W be the space of one-forms on the plane which are quadratic
functions of x and y, with basis
{w, =x*dx, w, = xydx, wy = y*dx, w, = x*dy, ws = xydy, we = y*dy}.

The operator d is then a linear transformation from V to W.

(a) Write down the matrix which represents d relative to the given bases.

(b) Construct a basis for the image of d and for the quotient space
G = W/(imd).

AY

AY

%y

—1 >

Figure 10.6

(c) Two elements of the dual space W* are &', which assigns to any we W
the value of the integral | 1w, where a' is the unit square 0 < x < 1,
0 < y < 1, traversed counterclockwise, and a2, which uses instead the
unit square 0 < x <1, — 1 < y <0. Construct the row vectors which
represent &' and &2, and construct linear combinations of &' and &2
which are the dual basis for your basis of G.

(d) Let U denote the space of two-forms on the plane which depend
linearly on x and y, with basis

{u; = xdx A dy, u, = ydx A dy}.

Construct the matrix which represents the operator d from W to U.
What is the kernel of this operator?



10.23,

10.24.

10.25.

Let A be a linear transformation from V to W, A* the adjoint transform-
ation from W* to V*. Suppose that we have not chosen dual bases in V and
V* Instead, we have a basis {Vy,V2,...,V,} for V, a basis {a',a?,..., 0™}
for V*, with a'[v;]=S;;. The numbers §;; form an m x m matrix S.
Similarly, we have bases {w;,W,,...,w,}and {#',#%,..., "} in Wand W*
respectively, with g*[w,] = T;. The numbers T,, form an n x n matrix T.
(If we had chosen dual bases, S and T would both be identity matrices.)
If A4 is the matrix of the transformation relative to bases {v;} and {w,},
what is the matrix of A* relative to bases { '} and {&'}? Express your
answer in terms of A7, the transpose of the matrix A4, and the matrices S
and T.
For a vector space V with a scalar product (v, v,), the adjoint A* of a linear
transformation A:V — V is another linear transformtion A*:V -V de-
fined by

(A*vy,v3) =(vq, AVy).

(a) Show that this definition follows from the definition of A* as a
transformation from V* to V*, combined with the usual identification
of V* with V which arises from the scalar product.

(b) Show that, relative to an orthonormal basis {e,...,e,}, the matrix
representing A* is the transpose of the matrix representing A.

(c) Let = denote the linear operation of orthogonal projection from V
onto a subspace W, i.e., for any veV, znv lies in W, and v —nv is
orthogonal to nv. (Note: 7 is a transformation from V to V, with
im7 = W.) Show that n* = .

(d) Let V be the space of polynomials of degree < 2, with scalar product
(f,g) =[5/ (t)g(t)dt. Choose a basis v; =1, v, =t, v; = t* (which is not
orthonormal). Let A be the linear transformation defined by

Af(t)y=1 (¢ +1).
Construct the matrix which represents A* relative to the given basis.

Consider the linear transformation from a four-dimensional vector space
V to a three-dimensional vector space W, which is represented by the
matrix

1 1 0 3
A=|2 1 2 2
2 3 -2 10
1
(a) Let M denote the image of A. Show that the vectors m; =| 2 Jand
2
1
m, =] 1 Jform a basis for M.
3
(b) Let H= W/M. Show that a basis for this quotient space consists of the
1
single element h; =| 0 |, which is the equivalence class containing all
0 R
1

vectors| O }+ m, where m is an element of ‘M. Show that| 1 }=
0 0



1/ 0 A
— Zhl ie., find an element m of M such that{ 1 }= ~1 01+ m).
0

0
Then express | 0 ] in terms of h,.
1
1
(c) Let N denote the kernel of A. One element of Nisn, = | (4) Find a
1

second vector n, such that n; and n, form a basis for N. | Hint: Apply

a
row reduction to A, then look for a vector of the form 113 )
0

(d) Let G denote the quotient space V/N. Define basis vectors in this space

1 0 [0
0 1 0

byg, = ol&=\ol Then show that L IF 2g, — 2g, and express
0 0 0

in terms of g, and g,.

*—‘OOO]

(e) Construct the non-singular 2 x 2 matrix C which represents A4 as a
transformation from G (basis g,,8g,) to M (basis m,m,).

2
(f) Express{ 1 ]interms of m; and m,. (Hint: Apply the same operations
7
that you used to row-reduce the matrix.) Then apply C !, and thereby
2
solve the equation Av=| 1 |, obtaining the answer in the form v=
7
a
b . . ,
ag, + bg, = o +n, where n is an arbitrary element of N.
0

10.26. Let f* denote the adjoint of the transformation f in the preceding
problem. The adjoint f * is a transformation from the dual space W* to the
dual space V*, defined by f*B(v)= B(fv), where B and v are arbitrary
elements of W* and V. With respect to the bases which are dual to the



original bases in ¥ and W, it is represented by the transpose of A:

1 2 2
1 1 3
T_
A_OZ =2
3 2 10

(a) Show that the image of f* is dual to the space G. Let gT and g% be
elements of V* which are dual to g, and g, and express each column of
A" in terms of g¥ and g%.
(b) Show that the kernel of f* is dual to the space H. Let 7" be dual to
h,ie., y'(h,) = 1. Let B* be the element of W* which picks out the first
a
component of a vector; i.e., wi{ b |=a. Express g! in terms of y’. Do
¢
the same for B> and B3, which pick out the second and third
components respectively.
(c) Find vectors &' and &? in W* such that f*a! = B!, f*a* = B. Show
that a!, 2, y’ form a basis for W*.
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Chapter 11 is devoted to proving the central facts about
determinants of n x n matrices. The subject is developed
axiomatically, and the basic computational algorithms are
presented.

Introduction

In this chapter we discuss properties of the determinants of n x n matrices. Let 4
be an n x n matrix. We will let A,,..., A, denote the columns of A. Thus, if I is
the n x n identity matrix,

0
For any matrix 4, then
A, =Al,,...,A,=Al,;

in other words, A, is just the image of I; the ith element of the standard
basis, under A.

We expect to be able to define Det A as the oriented volume of the parallelepiped
spanned by A,,...,A,. Our experiences in Chapters 1 and 9 suggest that this
oriented volume may be multi-linear — that is, linear in 4,, when A4,,..., 4, are
held fixed, linear in 4, when A4,, 45, ..., A, are held fixed, and so on. Also (due to
the orientation), we expect that Det A should be antisymmetric in the columns;
that is, interchanging the columns of a matrix changes the sign of its determinant.
We must define the determinant, and prove that it has the requisite properties. In
fact, we shall follow the classical treatment of Artin and characterize the determinant
axiomatically. That is, we shall write down a simple list of properties we expect



the determinant function to have, and shall show that these properties uniquely
characterize the determinant. In other words, there is only at most one such function.
Also we shall get some rules for computingit (if it exists). We will then show that there
does exist a function satisfying the axioms. By showing that various other definitions
also satisfy the axioms, we will be able to conclude that all these definitions must
give the same function.

In what follows, we will be interested in a function, D, of matrices. When it is
evaluated on a matrix A we write D(A) or D(4,,..., A,) when we want to emphasize
that it is a function of the n column vectors A4,4,..., 4,. If we keep all the columns
but the kth constant, we obtain a function of a single column. We shall write this
function as D,. (It is understood that all the other columns are held fixed with given
values.) For example, we shall write

X 1 x 7
D,{l v for D |{-2 vy 9
z 3 z -1
1
(Strictly speaking, we should specify the vectors A;=|-—2 and
3
7
Ay = 9 ]in the notation for D,, and write
—1

D 1 7 (y
21-21 9 7
3 -1

but the notation would be overly cumbersome.)

11.1. Axioms for determinants

A function D of matrices is called a determinant if it satisfies the following
conditions:

Each of the functions D, is linear:
Dy (A + A3) = Di(Ay) + Di(A42),
Dk(CAk) = CDk(Ak) (1 1.1)
In other words, D is linear in each column when all the other columns are
kept fixed.
If two adjacent columns of a matrix 4 are equal, then D(4)=0. (11.2)
And
D()=1. (11.3)
We will now draw some consequences from (11.1) and (11.2) — assuming that
some function D exists satisfying (11.1) and (11.2).



Adding any multiple of one column to an adjacent column does not change the value
of D.
Proof
D(A,,..., A, cA + Apyqy. .., A)
=D(Ay,..., A Aks1s-- s A) +cD(Ay, ..., A A - - Ay)
by (11.1). But D(A4,..., Ay, Ak ---, 4,) =0 by (1.2). So
D(A,,...,cA + Ay, A4)=D(A4,..., A). (11.4)

4 7 1 4—-41 7
5 8) = 2 5-42 8
6 9 3 6-43 9

1 0 7

=D({2 -3 8

3 -6 9

Now add the kth column to the (k + 1)st, then subtract the resulting (k + 1)st
column from the kth, then add the kth to the (k + 1)st again — so

D(A)::D(Ala"'aAk,Ak+Ak+1,Ak+2,...,An)
=D(Als"':Ak——(Ak+Ak+1)sAk+Ak+15"'sAn)

For example,

=D(Ay,..s — v, A+ A 155 A4))

=D(Ay,..., = Ay, A+ Ay — Api1s -, Ay)

=D(Ay,. .., —Aps 1, A Ak 1255 Ap)

= —D(Ay,..., Aps 1y A Aps1s-.-sA) by (11.1). (11.5)

Thus

Interchanging two adjacent columns changes the sign of D(A).
Now this implies that

If any two columns of A are equal, then D(A) = 0. (11.6)
Indeed, if two columns are equal, we can keep interchanging adjacent columns until

the two columns are adjacent then apply (11.5) to conclude (11.6). We can now apply
the argument proving (11.4) to conclude:

Adding any multiple of one column to another does not change the value of
D(A). (11.6)

Thus, continuing our example,

D é ‘51 ; _D ; g ;;/ subtract 7 x first
3 6 0 - 3 : 6 9 column from last
_D :1)' 2 (6) now add — 2 x second
- 3 - p :12 column to last



1 0 0
=D (2 -3 0]] =0by(11.1).
3 —6 0

Let us do another example.
D g i' subtract 2 x second
4 _ 1)) column from first
4
1 add 2 x first
column to second
4
add first column
1 to third
4
0 subtract 4 x second
column from third

by (11.1)

I
o
|

i
S
R AT

I
>

[
o
——— /—-\
N B

N O = NON DO D= N
-y

subtract 2 x third
column from second

/l NS O O O=O O=O O =0

I

l

\O

)
—

interchange first
and second columns

0
o)} by 1y
1
)

we conclude from the axioms that

)

We also observe that it follows from (11.7) (as in the proof of (11.5)) that
Interchanging any two columns changes the sign of D(A). (11.8)

Il
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OO O —= O

O = O OO O -
_—O O
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)
/‘\
oo 6‘0\»—*"/1\‘
O = O |
o
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(@)

If we now apply (11.3

We can also conclude:
If the columns of A are linearly dependent, then D(A) =0. (11.9)
Indeed, if 1,4, + - +4,4,=0 and some A;#0, then we can solve for the ith



column in terms of the others
Aj—cAy—-—c,4,=0, ¢;=0.

So subtracting c¢;A4,, etc. from the ith column does not change D(A) (by (11.6))
and yields a matrix whose ith column vanishes. Then by (11.1) D(A4) = 0.
In particular, we know that any n vectors of the form

0
a,

a

(with a zero in the first position) are linearly dependent. Therefore
If all the entries of the top row of A are zero, then D(A4)=0. (11.10)
Suppose that at least one entry in the top row of A4 does not vanish. By an

interchange of columns, if necessary, we can arrange that the first column has a
non-zero entry in the top row. So

D(A)= + D(B) where b,, #0.
Now
D(B)=b,,D(B)
where the first column, B, of B’, is B} =(1/b,)B;.
By subtracting off suitable multiples of the first column from each of the

remaining columns we can arrange that all the other entries in the top row vanish,
1e.,

D(B') = D(B")
where 1 ]0..0
B'= B;“ C

B,

Now consider D(B”) as a function of the columns of C. Clearly it satisfies conditions
(11.1) and (11.2). Also, if C were the (n— 1) x (n — 1) identity matrix, we could
without changing the value of D(B”) make all the entries b}, b%,, etc., in the first
column vanish just by subtracting off multiples of the second, third, etc., columns
from the first. For example,

1 0 0O )
subtracting
2 1 0 0
D = 2 x the second
3 010 lumn from the first
4 0 0 1 colu
000 subtracting 3 x the
O 1 00 X
D = third column from the
30190 second
4 0 0 1



( 1 (1) 8 8 subtracting 4 x the
D 0 = fourth column from
0 0 10 the third

4 0 0 O

1 0 0 O

01 00
PlWo o1 0f

st

In other words,

1] 0...0
D(\Byf
n1

as a function of C, satisfies all the axioms for a determinant for (n — 1) x (n — 1)
matrices. Therefore

D(B") = D(C)
where, on the right, we mean the D-function (if it exists) for (n — 1) x (n — 1) matrices.
Applying the same argument over again, we conclude that either D(C) =0 (if
all the entries in its top row are zero) or we can express D(C) in terms of a D-function

for (n — 2) x (n — 2) matrices. Eventually we get down to a 1 x 1 ‘matrix’ where
the axioms (11.1) and (11.3) imply that

D(a) = a(D(1)) = a.
This proves that the D function, if it exists, is unique and gives a definite recipe for
computing it.
For example, suppose

0 3 -1 4
a=|_5 7 28]
2 9 3 2
D(A) = — D(B) where
-1 3 0 4
5= 57 g s
3 9 2 2
D(B) = D(B") where
1 0 0 O
B — -1 7 2 9

-2 13 -4 16
—3 18 2 14



and D(B") = D(C) where

C

7 2 9
13 —4 16
18 2 14

7 1 9
DC)=2D (13 =2 16))
8 1 14
1 0 0
=—2D ({[-2 13 16)
1 1 14

Now

= —227(5+34%).

In the next section we shall give a different proof of the uniqueness of D(A4), and
a different recipe. The uniqueness implies that these two recipes must give the
same answer. But we must still show that a D(A4) satisfying (11.1), (11.2) and (11.3)
exists.

We can, however, derive an important consequence from our current algorithm
procedure for computing D(A4). Suppose the matrix A4 is of the form

(e )

where L is a k x k matrix, N an (n — k) X (n — k) matrix and M a matrix with k
rows and n — k columns. In other words, suppose that the first k columns of A4
all have zeros in their last n — k positions. Then the first k columns of A4 are linearly
dependent or independent if and only if the columns of L are. That is, the last
n— k zero positions in these vectors do not affect the dependence or independence
of these columns. If these columns are linearly dependent, then

D(A)=0 and D(L)=0.

If these columns are linearly independent, then in applying our algorithm, we can
use the first k columns in the first k steps and thus replace M by the zero matrix



but not affect the entries of N at all, until we get to the (k + 1)st step. Thus

L M
_ 11.11
D( 0 N) D(L)D(N). (11.11)

This is the generalization to n dimensions of the ‘base times height’ formula for
the area of a parallelogram. In two dimensions it says that

<
\

Figure 11.1

(=

i.e, that the oriented area of the parallelogram spanned by ( nd (u) is the
v

*) a
0
0
same as the oriented area of the parallelogram spanned by (g) and ( ) In

three dimensions it says that

D

O < =
o c &
N
Il
!
//'—\\\
= ¥
SN
N’
!
oy
=

with a similar interpretation.

-

Figure 11.2
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11.2. The multiplication law and other consequences of the axioms

Let us draw some further consequences from (11.8). Let (vy,...,V,) be any permu-
tation of (1,...,n). We can rearrange the columns, one at a time in the matrix

D((A,,,...,A,,,..., 4,))

until they are back in their original order. At each stage we apply (11.8), and
conclude that

D((A,,,-..,A,)) =+ D((A;,..., A,)) (11.12)

where the + does not depend on the particular entries of A. Applying (11.12) to
the identity matrix, we see that

D((I,,,....1,)) = +1
and hence that
D((A4,,,...,A,))=D((,,,...,1,))D(A). (11.13)
Now let B = (b;;) be a second n x n matrix and let
C=AB.

The columns of C are given by
Coe=buA; +by A+ + byA,.

Now in computing D(C) we may first apply (11.1) to the first column of C getting
a sum; then to each summand we apply (11.1) to the second column and so on.
For example, in the 3 x 3 case

Ci=0b11A1 +by1A; + b3, 45,
Cy=b13A; +b;3,A4, +bj3,45,
C3=by3A, + by3A4; + bj34,
sO
D(Cli' CZ: C3) = bl lD(Als C23 C3) + bZlD(A25 C29 C3) + bSID(A3s C23 C3)
= bll{bllD(Als Ala C3) + b22D(A15 AZB C3) + b32D(A15 A35 C3)}
+ b21{b12D(A2’ Al, C3) + bZZD(AZa A25 C3) + b32D(A23 A3, C3)}
+ b31 {bIZD(ASD A19 C3) + b22D(A39 A2> C3) + b32D(A3’ A3a C3)}
Before proceeding to the next step, we can eliminate all repeated columns. It is
clear that at the end only expressions of the form D((4, , 4,., A,,)) will be left and
these, by (11.12), are equal to + D((A4)). Thus, in general, we see that
D(C)=D(A)> +b,,1b,,5...b, ., (11.14)

where the sum is taken over all permutations and the + sign is the one given by
(11.12).

Suppose we use (11.14) and take A = I. Then C = B and we conclude that
DB)=Y +b, b, . (11.15)

This gives an explicit formula for D(B) and again proves that it is unique — if it exists.
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If we substitute (11.15) into (11.14), we get

D(AB) = D(A)D(B) (11.16)

the multiplication law for determinants.
Each term in (11.15) contains exactly one entry from each row of B. Therefore

D(B) is a linear function of each row, when all other rows are held fixed.
(1.1y

Now in (11.14) take i to be some number 1 <i < n and take 4 to be the matrix with

Ai=1i+ 14y,
Aiv1 =0,
For example, with n =3 and i =2 we would have the matrix
1 0 0
0 1 0
010

Notice that AB has all its rows except the (i + 1)st the same as the rows of B. The
(i + 1)st row has been replaced by the ith. In the above example

1 0 O\/1 5 9 1 59
0 1 0)J{2 6 8]=12 6 8
01 0/\3 7 4 2 6 8

Also D(A) = 0 since it has one whole column zero. For this we conclude that
If B has two adjacent rows equal, then D(B) = 0. (11.2)y
This means that
D(B") satisfies axioms (11.1) and (11.2)

because replacing B by its transpose, BT, interchanges the role of rows and columns.
But IT = I, so (11.3) is also satisfied. Thus D(BT) satisfies axioms (11.1)-(11.3), hence
by uniqueness must coincide with D(B). In other words

D(B) = D(B). (11.17)

11.3. The existence of determinants

We shall now prove the existence of determinants. That is, we shall construct a
function of n x n matrices that clearly satisfies (11.1), (11.2) and (11.3).

Forn=1
define D((a)) = a.

deﬁneD((a b)) =ad —.bc.
¢ d

Forn=2



It is easy to check directly that (11.1)—(11.3) are satisfied. We now proceed
inductively. Suppose that we assume the existence of (n — 1) x (n — 1) determinants.
Let

A= (ay)
be an n x n matrix. Consider some definite position, say the position at the ith
row and kth column. Let us cancel the ith row and kth column in A and take the
determinant of the remaining (n — 1)-rowed matrix. This determinant multiplied

by (— 1)'** will be called the cofactor of a; and be denoted by A,,. The distribution of
the sign (—1)'** follows the chessboard pattern, namely

+ — 4+ -
-+ — +
+ - 4+ -
-+ — 4+

Let i be any number from 1 to n. We consider the following function D of the
matrix (A):

D=a;;A;; +a;A;p + -+ + a;,A;,. (11.18)

It is the sum of the products of the ith row and their cofactors.

Consider this D and its dependence on a given column, say A4,. For v #k, A4;,
depends linearly on 4, and q;, does not depend on it; for v = k, A;, does not depend
on A, but g;, is one element of this column. Thus (11.1) is satisfied. Assume next that
two adjacent columns 4, and A4, ,, are equal. For v #k, k + 1, we have then two
equal columns in 4;, so that 4;, = 0. The determinants used in the computation of
A;,and A4, , , are the same but the signs are opposite; hence 4; , = — A; ,, ; whereas
A =0a;,4+,- Thus D =0and (11.2) holds. For the special case 4, =1,,v=1,2,...,n,
we have a;, =0 for v#1i, while a;; =1, 4;;= 1. Hence D =1 and this is (11.3). This
proves the existence of an n-rowed determinant as well as the truth of formula
(11.18), the so-called development of a determinant according to its ith row.
Equation (11.18) may be generalized as follows. In our determinant replace the ith
row by the jth row and develop according to this new row. For i # j that determinant
is 0 and for i =j it is D:

(11.19)

D for j=i
aj1 A + a4, + - +a,A,, ‘—"{ J=h }

0 for j#i

If we interchange the rows and the columns, we get the following formula:

D for h=k,
aypA+ appAa + o+ apAp, = 0 for hek(° (11.20)
Equation (1 1.20) says that, if we form the matrix
B= (Aij)

called the cofactor matrix of A, then

BTA = D(A)I.
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Notice that we have already proved that if A is singular (so that the columns of 4 are
linearly dependent), then D(4) = 0. The preceding equation gives a formula for 4~
if D(A4) # 0. Thus we have proved

A matrix A is invertible if and only if D(A) #0. If D(A) # 0, then

-1 __ 1 T
A =508 (11.21)
where B is the cofactor matrix of A.

This formula for A" is known as Cramer’s rule. It is not an effective way of
computing A~ ! if n > 2. (For n =2, it coincides with the prescription in Chapter 1.)
For n>2, it is better to use the algorithm described in Chapter 10. However,
Cramer’s rule does have theoretical importance. For instance, it shows that the
entries of A™! are all quotients of a polynomial in the entries of A4 by the

determinant.

Summary

A Determinants
You should know the axioms for determinants and be able to use them directly for

evaluation of determinants.
You should be able to state and apply the rule for evaluating a determinant by use

of cofactors.
You should be able to state and apply Cramer’s rule for the inverse of a

nonsingular square matrix.

Exercises

Youshould write down several 3 x 3 and 4 x 4 matrices and evaluate their
determinants. You will find that already in the 4 x 4 case the expression
(11.15) or (11.19) becomes quite unpleasant (involving 4! multiplications
on 4! — 1 additions) while the algorithm described in section 11.1 is quite
manageable. Here are several against which you can check your
arithmetic.

2 3 4
g 11 12
9 13 15
10 14 16

(a) Det = -2

(b) Det

W W W o ~ O\ D =
[\

W W
WA NN

(c) Det

N NN =
NN W =
[\ L US BRNUS I



11.1.

11.2.

11.3.

11.4.

11.5.
11.6.

Jeterminants

1 1 1 1
2 3 6
4 9 25 36
8 27 125 216

In generalization of example (b), show that

(d) Det =72=03-2)(5-2)(6—2)(5-3)

X (6 — 3)(6 — 5).

r, a a a

b r, a a bf(a)—af(b)
b b ry a - b—a

b b b r,

Det if a#b

where f(x) =(r; — x)(r, — x)(r; — x)(ry — x).
Hint: The determinant of the matrix below is a function F(x).
rh—Xx a—x a—x a—x
b—x r,—x a—-x a—x
b—x b—x r;—x a—x
b—x b—x b—x r,—x
But it is a linear function of x since we may subtract the first row from all
the remaining rows to eliminate the x from all but the first row. Hence

F(x)=A+ Bx

for some constants A and B. But F(a) = f(a) and F(b) = f(b): So solve for 4
and set x =0. What does the formula become when a = b?

In generalization of example (c), show that
1 1 1 1
Det | ¥ ¢ ¢ 4 =(@a=x)0b-y)c—2)
x y b b
X y z ¢
In generalization of (c), show that

1 1 1 1
X y z w

2 e | = 0E =X = X)) =)= 2)

x3 y3 Z3 w3
State and prove the corresponding fact with 4 replaced by n.

Show that

[Det(Ay, ..., AN <Ay |- [ 4,
When does equality hold?
(Hint: Use the interpretation of [Det| in terms of volume.)
Show that if O is an orthogonal matrix (so OO" =1), then DetO = + 1.
A matrix R is a rotation if RRT = ] and Det R = + 1. Show that a rotation
in an odd-dimensional space always leaves at least one non-zero factor

fixed; i.e., R has 1 as an eigenvalue.
(Hint: Consider Det(R — I).)



SUGGESTED READING

The short list of books that we give at the end of this section is not meant as
bibliography. Rather, it consists of books that students of the course have found
helpful in supplementing and extending the material covered in this volume. The
book by Loomis and Sternberg can be considered as a companion text. The
presentation there is more abstract and formal, with more of an emphasis on
mathematical proof. The actual mathematical prerequisites are the same as for this
book, but the demands on mathematical sophistication and on tolerance for formal
definitions and argumentation are greater. On one or two occasions in this book and
in Volume 2 we have referred to Loomis and Sternberg for the detailed proof of
some key theorems. The Feynman Lectures form another general reference giving an
elegant presentation of physics at the level of this book.

One of our main subjects is linear algebra. The text by Halmos is a classic, with a
tilt towards extension of the finite dimensional theory in the direction of Hilbert
space. The text by Lang discusses the subject from the viewpoint of abstract algebra.
The text by Strang emphasizes computational techniques and applications that we
barely touch upon here. A good strategy is to read all three to get a balanced view of
the subject.

Our discussion in Chapter 1 started with the geometry of lines. The natural place
to go from there is to the study of projective geometry, and we gave some indications
in this direction in the appendix to Chapter 1 and in Exercises 1.16—1.20. The text by
Hartshorne gives a coherent introduction to the subject.

At the end of Chapter 2 we make a brief mention of probability theory, and it is
one of our major gaps that we don’t give a serious discussion of this important topic.
A good all-round introduction to probability which does not make heavy
mathematical demands are the three volumes by Hoel, Port, and Stone. Probability
theory can easily lead into rather imposing mathematical machinery such as
measure theory and intricate questions in Fourier analysis. These books have the
advantage of illustrating the important ideas without getting into the subject deeply
enough to be entangled in heavy mathematics. The book by Moran is harder
reading, but worth the effort. The book by Kemeny and Snell gives a self-contained



discussion of finite Markov chains and can be read as a continuation of Chapter 2.
The book by Doyle and Snell is a delightful short introduction to both Markov
chains and to networks, which we shall study in Volume 2.

Chapter 3 gives an introduction to differential equations. The text by Hirsch and
Smale would be a natural next book from a point of view close to the one we
espouse here. The book by Braun is organized much more along standard lines. (The
exponential of a matrix does not make its appearance until p. 321!) However, the
attention paid to the details of many and varied applications makes this book
worthwhile. The book by Simmons is also fairly standard but has interesting
historical information. The two books by Arnol’d are classics and are delightful
reading. The interplay between geometry and analysis displays the sure hand of one
of the masters of the subject.

In Chapter 4 we spend two sections on relativity theory. We have listed three
books on the subject. The book by Misner et al. is big and heavy, but full of ideas.
The book by Taylor and Wheeler is short and inspirational and involves a minimum
of mathematics. The book Spacetime, Geometry, Cosmology by Burke develops
many of the mathematical ideas we try to explain in our book and gives a very well
thought out discussion of the physics of relativity. It is ‘user friendly’ and we
recommend it strongly.

The other book by Burke, together with the books by Flanders and by Spivak, can
be regarded as parallel with ours, and are recommended as general supplementary
and collateral reading.

In Chapter 6 and again in section 10.9 we touch on topics which naturally belong
in a course on differential topology. The book by Guillemin and Pollack is written in
a discursive style with many pictures and intuitive guides along with the formal
presentation of the theory. The book by Bricker and Lander is just the opposite. It is
very terse, with concise statements of the theorems and proofs and a minimum of
discussion. But of course this can be an advantage. The books cover somewhat
different topics and we recommend them both.
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