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EDITOR’S PREFACE

With the present publication of Projective Geometry, the project of
translating the famous German-language textbook Einfuhrung wn die
analytische Geometric und Algebra, by Otto Schreier and Emanuel
Sperner, originally published in two volumes, is now complete. As is
well known, the purpose of that textbook was to offer a course in Algebra
and Analytic Geometry which, when supplemented with a course on the
Calculus, would give the student all he needs for a profitable continua-
tion of his studies in modern mathematics. The Preface to the German
HEdition (see below) gives a more detailed deseription of the two volumes.
~ The only thange that has been made has been to divide the two volumes
somewhat differently in order that they might be usable independently.
The first volume and the early part of the second volume were combined
into a single book under the title Introduction to Modern Algebra and
Matriz Theory. The balance, consisting of the major portion of the
second volume is published herewith as Projective Geometry of n Dimen-
stons. The titles of the two books indicate their respective contents.

The chief prerequisite for reading the present book, aside from a few
elementary facts about affine space and systems of linear equations, is
a knowledge of the elements of matrix theory such as is contained, for
example, in the first four sections of Chapter V (Linear Transformations
and Matrices) of Introduction to Modern Algebra and Matriz Theory.

Professor Calvin A. Rogers, the translator of the present volume, died
before the preparation of the manuseript for the press was begun. The
numerous questions that always call for consultation between editor and
translator were referred to Professor Abe Shenitzer, whom the Editor
wishes to thank for his very considerable help. The Editor also wishes to
thank Professor F. Steinhardt. The final form of the manuscript is,
of course, the responsibility of the Editor alone.






FROM THE PREFACE TO THE GERMAN EDITION

Otto Schreier had planned, a few years ago, to have his lectures on
Analytic Geometry and Algebra published in book form. Death over-
took him in Hamburg on June 2, 1929, before he had really begun to
carry out his plan. The task of doing this fell on me, his pupil. I had
at my disposal some sets of lecture notes taken at Schreier’s courses,
as well as a detailed (if not quite complete) syllabus of his course drawn
up at one time by Otto Schreier himself. Since then, I have also given
the course myself, in Hamburg, gaining experience in the process.

In writing this textbook,! which is to be published in two volumes,
T have followed Schreier’s own presentation as closely as possible, so
that it might retain the characteristics impressed on the subject matter
in Otto Schreier’s treatment. In particular, as regards choice and arrange-
ment of material, I have followed Schreier’s outline faithfully, except
for a few changes of minor importance.

This textbook is motivated by the idea of offering the.student, in
two basie courses on Caleulus and Analytic Geometry, all that he needs
for a profitable continuation of his studies in accordance with modern
requirements. It is evident that this implies a stronger emphasis than
has been customary on algebra, in line with the recent developments in
that subject. ‘

The prerequisites for reading this book are few indeed. For the early
parts, a knowledge of the real number system—such as is acquired in
the first few lectures of almost any caleulus course—is sufficient. The
later chapters make use of some few theorems on continuity of real
functions and on sequences of real numbers. These also will be familiar
to the student from the caleulus. In some sections which give intuitive
interpretations of the subject matter, use is made of some well-known
theorems of elementary geometry, whose derivation on an axiomatic basis
would of course be beyond the scope of this text.

! See the preceding Editor’s Preface.
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‘What the book contains may be seen in outline by a glance at the
table of contents. The student is urged not to neglect the exercises at
the end of each section; among them will be found many an important

addition to the material presented in the text.
° * L

The authors’ earlier book on matrices has been incorporated into
[Chapter V of Introduction to Modern Algebra and Matriz Theory],?
with a few re-arrangements and omissions in order to achieve a more
organic whole. The arrangement of material in this chapter is such that
the first four sections of the chapter contain essentially all that is needed.,

for [Projective Geometry].
o * *

To Mr. W. Blaschke (Hamburg) I owe a debt of gratitude for his
continuous interest and help. I also wish to thank Messrs. 0. Haupt
(Erlangen) and K. Henke (Hamburg) for many valuable hints and sug-
gestions. In preparing the manuseript, I have had the untiring assistance
of my wife. For reading the proofs I am indebted to Mr. H. Biickner
(Konigsberg) in addition to those named above.

Konigsberg, October 1935
EMANUEL SPERNER

1 See the preceding Hditor’s Preface.
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CHAPTER 1 ‘

n-DIMENSIONAL PROJECTIVE SPACE

For certain geometrical questions, whose study is central to this book,
it is advantageous to extend affine (or euclidean) space by adding to it
certain new points, the so-called points at infinity. This procedure is
suggested by quite elementary geometrical facts. For example, in order
to avoid the oftentimes awkward distinetion between intersecting and
parallel lines in a plane, we are tempted to ascribe to parallel lines a
point of intersection ‘at infinity.” Another case in point is afforded by
the fact when one line of the affine plane is projected onto another by
means of central projection! this does not in general establish a one-to-
one correspondence between the points of these two lines, whereas it
may be made into such a correspondence by an appropriate adjunction
of points at infinity. The same is true for the central projection of two
planes in space upon each other.

Our immediate task, then, will be to establish and to give a precise
. analytic deseription of the introduction of these points at infinity.

Extension of the Affine Plane to the Projective Plane

Because of its intuitive appeal, we shall start with the two-dimensional

case. : .
We shall first of all introduce new coordinates in the affine plane

(the so-called homogeneous coordinates). In doing this, we begin with

1 The central projection upon each other of two lines g and h with respect to a
center of projection § is defined by the following rule: P, on g, is taken as the
image of @, on h, and conversely, @ is taken as the image of P, if P, ¢, and S lie on
a line.

It is therefore clear that P, on g has no image point on k if P.S is parallel to h.
Similarly, @, has no image point on g if Q.S is parallel to g. If we let P, correspond
to one point at infinity on % and @, to one point at infinity on g, then exactly one
point of h is associated with each point of g, and conversely
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linear coordinates and hence take as our starting point a fized linear
coordinate system in the plane. We get in this way a definite one-to-one
correspondence between the points of the plane and the ordered pairs of
real numbers. If a point P has the coordinates zi, z», We Wwrite
P = (.731, 232).

Next, we consider all the ordered triples of real numbers (&, &1, &3)
for which &7~ 0. These number triples and the points of the plane ar
now put into correspondence by means of the following rule:

P == (z;, z5) and an ordered triple (&, &1, &2) with &, 5% 0 are to cor-
respond to each other if and only if:

& 5
Xy —*g, Za ~§—O-

It follows immediately from this that to each triple (&o, &1, £2) there
corresponds only one point, namely, the point with linear coordinates

§_1 , % . On the other hand, to each point P == (z,, z,) there ecorrespond
0 0

infinitely many number-triples. For, the point P obviously corresponds
to the triples (&o, &1, &§2) and (A&, 181, A&,) for arbitrary real A 54 0, since

§ AL

oL e =1, 2).
E 15, @ )

Furthermore, the following holds: If two number-triples (&,, &1, &5)
and (&0, &1, &) with &, & 540, correspond to the same point, then there
: . "

exists a 45«0 such that & = 1&;, ¢ =0, 1, 2. For from —§f~ = —g—’
Y 0

(¢ =1, 2) it follows immediately that §; = %&-. Thus, §° is the
0 0

desired 1.
Hence, it is also evident that all the triples corresponding to the same

point may be obtained from a given one of them (&, &1, £) by multiply-
ing it by an arbitrary real i s 0.

In partieular, all the triples associated with the point P = (x4, z.)
are of the form (4, Az, sz) sinee (1, &, x5) is one particular triple of
this kind.

Since the numbers &; of one of our triples (&, &1, &2) uniquely deter-
mine the corresponding point, we may regard them as the coordinates
of that point. The coordinates introduced with the help of this corre-
spondence are called homogeneous coordinates, or ratio coordinates (since
they are determined only up to a common constant of proportionality).
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Now let P == (z;, z3) be a fixed point in the plane, distinet, however,
from the origin (Fig. 1). If we now set Q@ = (Az;, Azo) and let 1 vary
from + 1 to + o, then the point @ moves along the line g determined
by the points O and P (Fig. 1), from P outward to infinity (in the direc-
tion of the arrow).

X2

Fig. 1.

) %

‘We can take &, =%, &1 = x1, §2 = x5 as homogeneous coordinates

for Q. Then as A— o, we have §—0,5—x, §—>x,. We are accord-
ingly led to look upon 0, 21, z» as the homogeneous coordinates of a point
‘at imfinity’ (ov smproper point). It is clear that only the ratio of the
three coordinates is of significance here, for instead of considering the

homogeneous coordinates of € to be ;— , X1, Xz, we could equally well
have thought of them as being —% 021,072, with any fixed o (independent

of 1). Upon passing to the limit as 4 — co, we then obtain 0, ey, o2,
as coordinates of the point at infinity of g.

In all of this, the point P == (%1, z2) must be different from the origin.
Hence we can ascribe to the triple (0, 0, 0) neither a point in the finite
part of the plane nor a point at infinity. For this reason, we once and
for all rule out the triple (0,0,0); it shall not designate any point
whatever.

Finally, then, we have the following definition:

Every triple (0, &1, &) in whach not both &; and &, vanish is called a
point at infinity or, better, an improper point of the plane. Two improper
points (0, &1,E2) and (0, &, &) are said to be equal (or coincident) when-
ever there exists a A =0 such that § = 1§, & = A&,

The plane obtained by the adjunction of these improper points is called
the projective plane.

In contradistinetion to the improper points, all the points of the pro-
jective plane that can be represented by a coordinate triple (&, &1, &2)
with &9 5% 0 are called proper points.. The totality of proper points is
called, as before, the affine plane.
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We now wish to extend these definitions still further. To each line
through the origin of the fixed linear coordinate system we have already
assigned a point at infinity. Now, is it desirable to do the same for an
arbitrary line, and how can this be accomplished? In order to decide, let
us first consider the following question: Can the equation of a line be
written in homogeneous coordinates? o

In the affine plane a line g can always be represented by an equati%n
of the form

(1) a0+a1 .’L'1+ g Xy = 0.

That is to say, the totality of points whose linear coordinates x4, z, satisfy
equation (1), fill out a line in the affine plane. Now if P is a proper
point of the line g, with linear coordinates z;, 2 and homogeneous co-
ordinates &, &1, &5, then it follows, by the substitution of

U T
& So
into (1), that &, &, &2 satisfy the equation
(2 ao o+ as &1+ a2 & = 0,
And the converse is also true. If &, &;, &2 satisfy equation (2) and
&054 0, then x; = —i%, Zy = .i—: satisfy equation (1); that is to say, the

triple (&, &1, &2) represents a point of ¢. 3
Thus, we see that equation (2) is satisfied by oll those triples and only

those triples (&q, &1, &2), with &g £ 0, which represent (proper) points of g.2

The following definition now suggests itself: All those improper
points and only those improper points whose coordinates satisfy (2) shall
belong to g.

How many improper points is that? We claim: Exactly one. For
if (&, &1, &2) is one such point, then the & must satisfy the following
equations :

@ S0+ ay §1+ ay & = 0,
3 5, — 0.

This is a system of homogeneous equations in the three unknowns,
&o, &1, &2. The rank of the matrix of (3) is 2. For, @, and a; cannot both

2 Bquation (2) of our line g is homogeneous in the &, and a similar situation
obtains when the equation of any curve is written in terms of these new coordinates;
hence the name ‘ homogencous coordinates.’
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vanish; else (1) would not represent the equation of a line. According
to § 6 of Modern Algebra,® the totality of the vector solutions {&,, &1, &2}
of (3) form a one-dimensional linear vector space. That is to say, all the
vector solutions are multiples of a-fized one among them. This implies,
however, that all the triples (&, &, &;) that are solutions of (3), with the
exception of (0,0, 0), represent the same point in the projective plane
(and moreover, by virtue of the second equation of (3), an improper point).

‘We now ask, conversely: Does every homogeneous equation of the
form (2) represent a line? Up to now we have seen this to be the case
only for such equations of the form (2) as are derivable from an equation
of the form (1). In (1), however, a; and as must not vanish simultaneously.
Let us now consider the case a¢; = a3 ==0. Then (2) reduces to

(4) dy §0 = 0.

If ao=20 also, then of course equation (4) no longer represents a line
(since (4) is then satisfied by every point of the plane). Thus, let @y 5= 0.
Then (4) is equivalent to:

& =0

That is to say: The points that satisfy (4) are precisely all the points
at infinity. ‘
Now, for the sake of simplicity, we make the following definition.

The totality of all improper points is colled the improper line (or the
line at infinity).

Thus, we have: Ewery homogeneous equation (2) wn which not aoll
three coefficients vanish, represents a line.

Now, what can be said about the intersection of two lines conceived
of in this extended sense? Let g and & be two lines, g being given by
equation (2) and h by

(5) bo §o+ b1r1§1+ bg 52 _ 0.

The points common to g and & satisfy both equations (2) and (5) and
thus are the solutions of the system

8 Introduction to Modern Algebra and Matriz Theory, by O. Schreier and
E. Sperner. See Editor’s Preface to the present work.
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(6) (473 §0‘]L 45} §1+ 47 :52 = 0,
b S+ by §1+ bs §2 == 0.

The matrix of this system of homogeneous linear equations can have

rank 1 or 2. ‘
In the first case, the totality of solutions of (6) is identical with that

of each of (2) or (5) separately, that is, the two lines are identical. -

In the second case, the vector solutions {&, &y, &2} constitute a
one-dimensional linear vector space; that is, there exists exactly one point
whose homogeneous coordinates satisfy both the equations (6).

‘We have thus shown that any two distinct lines of the projective plane
intersect in exactly one point.

Consequently, parallel lines must also intersect in a point. However,
since such lines can have no proper point in common, this point of inter-
section must be an improper point. From the fact that each line has but
one improper point, it follows, in addition, that:

Parallel lines all go through one and the same point at infinity.

On the other hand, non-parallel lines have a finite point of intersec-
tion. Their improper points must therefore necessarily be distinet (since

two lines have only one point of intersection).
In what follows, the definitions that we have adopted for the plane

will be generalized to n dimensions (n > 0 an arbitrary integer).

n-Dimensional Projective Space

‘We proceed in complete analogy to the two-dimensional case. We
first define homogeneous coordinates in affine R. by establishing a rela-
tion between the points P == (%1, %2, . . ., Zn) of affine R, and the ordered
(n + 1)-tuples (&, &1, ..., &) of real numbers in which &, 54 0. Thls we
do in accordance with the following rule.

P= (21, gy - . ., zn) and (&, &1, . .., £a) shall be said to correspond if
and only if z; = —g—i—for alli=1,2,...,n
[t}

According to this rule, we see that, precisely as in the two-dimensional
case, just one point of B corresponds to each (n + 1)-tuple (&q, &1, . . ., &n)
with &p540. Furthermore, two (a4 1)-tuples (&, &1,...,&) and
(&0, &4, . .., &) correspond to the same point if and only if there exists a

4540 such that & = A&, & = A&, ..., & = A&,



I. n-DIMENSIONAL PROJECTIVE SPACE 17

If P = (%1, %2, . . . , #n) and (&, &1,. .., &x) correspond in accordance
with this rule, then the & are called the homogeneous coordinates (or

ratio coordinates) of P.

The homogeneous coordinates of a point are determined only up to a
constant of proportionality ; they determine the point, however, uniquely.
Let us now adopt the following notation: If a point P has the homo-
geneous coordinates &, &1, . . . , &n, We shall write P = [£o, 1, . . €] A

Our final step is the adjunction of the improper points. We adjoin
to affine R. the previously excluded (n + 1)-tuples [&o, &1,...,&x] in
which £, = 0, but in which not all the &; vanish simultaneously, and these
(n + 1)-tuples will also be called points; in contradistinction to the
‘proper’ points that we have been discussing hitherto, we shall call these
new points ‘émproper’ points (or points ‘a? infinity’). Our definition of
equality for the improper points (in analogy to that for the proper points)
will be as follows: P =[0,&, &, -+, &] and @ =[O0, &, &, - - -, &} will
be equel if and only if there exists a 150 such that §; — A& for
i=12...,n '

The extension of affine R. obtained by adjoining the improper points
in this way will be referred to as n-dimensional projective space and
will be denoted by Pn. '

‘We can summarize by saying: Projective Pn consists of the totality
of non-trivial® ordered (n + 1)-tuples of real numbers [§,, &, -, &), where
two such (n -+ 1)-tuples [&, &, - - -, &x] and [, &1, - - -, &) are said to be
equal (or coincident) if and only if there exists a A = 0 such that §; = rE
for t=10,1,...,n°

If P = [&o, &1, ..., &x] is a proper point and z; = Si (1=1,2,...,n),

[

that is, if P == (21, %2, ...,%x), then we call the z; the affine, or non-
homogeneous, coordinates of P, in contradistinction to the homogeneous
coordinates &;.

Now, what is to be understood by a linear subspace in P»? In affine
Rn, a linear subspace of dimension 7 can always be represented by a system
of linear equations

~ 4We have chosen brackets to avoid confusion with the points of (n + 1)-dimen-
sional affine space, which we always write in parentheses.
5 We mean by this the (n + 1) -tuples in which not all the § vanish simultaneously.
As in the two-dimensional case, we shall once and for all exclude the ‘trivial’ (n - 1)-
tuple [0,0,...,0]; it shall not designate any point whatever.
6 The essential difference between projective P. and (n + 1)-dimensional affine
Ry, lies in the way in which equality of two points is defined.
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Qo -+ a1y x1+"'+a11z30n207
Aso —+ oy x1+"'+d2n-7€n:07
(N
Amo+ Am1 x4 .- + @mn 2 = 0.

Here the rank of the coefficient matrix and that of the augmented matrix
in (7) are both equal to n — r.

Substituting z; == -§—i into (7), we see that the homogeneous coordi-
0

nates &o, &1,..., & of a point of this subspace satisfy the homogeneous
system of equations

Y3
€)) kZan'k"s'k:O, i=1,2,--,m

and conversely. The rank of the matrix of (8) is equal to n — r.
This suggests the following definition :

The totality of the points [&o, &y,...,&x] of P that satisfy a system
of equations of the form (8) having a matrix of rank n— r is called an
r-dimensional linear space. We must assume that the rank of this matrix
is =n. For otherwise, the only solution of (8) would be the trivial solu-
tion 0,0, ..., 0, which does not represent a point of P,

‘We now introduce a few more terms (in analogy to Ra).

A linear space of dimension 1 is called a line; a linear space of dimen-
sion 2 is called a plane; and a linear space of dimension n — 1 is called a
hyperplane. In the case of a hyperplane, the rank of the matrix of 8) .
is equal to 1, so that in this case one equation always suffices.

A linear space of dimension 0 consists of but a single point. For in
this case the rank of (8) is equal to u, that is, all the vector solutions
{0, &1,. .., &n} of (8) are multiples of some fixed one among them (54 0).
Thus, in this case all the (n + 1)-tuples [&,, &, ..., &x] that are solutions
of (8) represent the same point in Ph.

The only linear space of dimension # is the entire projective space Pn.
For the rank of the system of equations (8) is then equal to 0, that is,
all the coefficients are equal to zero, and this means that every point of
P, satisfies the system (8).

It is by no means true that every linear space contains proper points.
For if, beginning with any system of equations such as (8), we construct
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the corresponding system (7), it may happen that (7) is not solvable. In
this case (and in this case only), the linear space given by (8) consists
entirely of improper points. The space itself will then be called ‘improper.’

An example of an improper space is the improper hyperplane &, == 0,
which consists of all the improper points of P, and no others.

If L is a Lnear space of dimension r in P, that does contain proper
points, then the totality of all the proper points of L constitutes a linear
space of dimension 7 in Rn, as is immediately seen by passing from (8)
to the system of equations (7). The totality of improper points of L, on
the other hand, forms an improper (r — 1)-dimensional linear space in Pn.
For if L is given by (8), then the improper points of L satisfy the system
of equations obtained from (8) by adjoining the equation &, == 0, that is
to say, the system

n
(€)] k;) i S = 0, i=1,2,..-,m,
§o: 0.

‘We now must show that the matrix of (9), that is,

Q1o 11 Cag Gin
[CT Y S U} Qan
10) .
Omo  Ami Amz -+ Oma
1 0 o ... 0

has rank n— (r —1). The matrix of (8), that is, (10) without the last
row, is of rank n — r (since L is of dimension 7). Now if (10) also had
‘rank n — r, it would follow that both systems of equations, (8) and (9),
have the same solutions. But this cannot be, since (8) has solutions with
&, 54 0 (for I was assumed to contain some proper points), whereas &0 == 0
must hold for every solution of (9). Thus, the rank of (10) is n —r —1.

We shall next investigate what happens in P, to the concept of
parallelism as we know it in affine En.

To this end, let us first make the following observations. Let L be a
linear space of dimension r in Pn. Let L be defined by the system of
equations (8) and let L moreover contain proper points. Let 1’ be the
totality of proper points of L. This means that I/ is a linear space of
dimension 7 in R.. The affine (that is, non-homogeneous) coordinates



20 ProJECTIVE GEOMETRY OF 7 DIMENSIONS
Ly == —§i (¢=1,2,...,n) of a point of I’ satisfy the system of equa-

tions (7)
The totality of vectors PQ of affine R, having the property that the

initial point P as well as the terminal point @ lies in L’ form a linear
vector space L of dimension » (cf. Modern Algebra, §5). Every vector*
r == {1, Xs, ..., Tn} of L satisfies” the system of homogeneous equations

1 ZyF g et -+ 2= 0,

an Qo1 X1+ Qos .332.‘*‘ ‘|‘0/2n xn === O.,

Am1 1+ Gmz Xo+ -+ -+ Amnn = 0 -

If we now compare the vectors {zy, Zs, . . . , Zn} 0f Rx and the improper
points [0, 1, %2, ..., Zn] of P, we see that if {21, 2s,..., 22} is a vector
solution of (11), then [0, 1, Zs, . . . , #a] is a point solution of (8), and con-
versely. That is to say: If {x1,%s ...,2a} is a vector of 1, then
[0, z1, s, .. ., zn] is an tmproper point of L, and conversely.

‘We now wish to apply this natural relation between the vectors of L
and the improper points of L to fwo linear spaces L; and Ls. Let L@’, as
before, be the totality of all proper points of L; (i==1, 2), neither L’
nor Ly being empty. Furthermore, let the totality of vectors of B, whose
initial and terminal points lie in L; be denoted by 1; Finally, let us
denote by L;’ (i==1, 2) the totality of improper points of L.

Now, let Ly’ be parallel to Ly. Then, according to the definition of
parallelism, a? least one of the relations L; C Iy or Ly C 1y holds.® Suppose,
say, that 1; Cre. Then it follows immediately from the above relation
that LyC Ly. In the same way, it follows conversely from L{C L} that
L1 CLp. Thus, we see the following:

Parallelism of L;” and Ly implies that at least one of the two relations
{C Ly or LyC Ly holds, i.e., that all the improper points of one of the
two L; belong to the other.

In the special case that Ly and L are of the same dimension, L, and
Ly’ are parallel if and only if Li = Ly (for in this case, I, == Ly).

* The symbol ¢ is the German 2. The symbol T may be read as ‘small-cap 1’ (ie.,

small capital L).
7 Cf. Modern Algebra, § 6. ‘
8 As is well known, the notation ‘1:C 1.’ is used to express that 1z is contained in

Lz. The notation ‘L.DI1s’ means the same.
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If I, and L, are lines, then L; (i==1,2) consists of a single point.
From this, it follows that parallel lines intersect in a single ymproper
point.

In what follows, we make a slight extension of our fundamental
assumptions.

Up to this point we have only permltted real numbers as coordinates
of the points of Pn. However, it is highly advantageous on oceasion to
allow complex numbers as well. To keep our terminology straight, we
make the following definitions:

The totality of the homogeneous ordered (n -+ 1)-tuples of real num-
bers is called the real space Pn, or real P,

The totality of the homogeneous ordered (= -+ 1)-tuples of complex
numbers is called the complex projective n-dimensional space, or com-
plex Pa.

A single (n + 1)- tuple of complex numbers is called a point and is
written [&o, &1,...,8&x]. The complex numbers &; are then called the
coordinates of this point.

The definition of equality in complex P is completely analogous to
that in real Pn: Two points [&o, &1, ..., &n] and [&5, &4y ..., &n] are said
to be equal if and only if there exists a complex number A 54 0 such that
E=2& for 1=0,1,2,...

Let us furthermore agree on the following convention: When we
speak of projective n-dimensional space, or Pn, simply, and without quali-
fication, then whatever we say is understood to hold true for real P» as
well as for complex Pn.

The definitions given of a linear subspace for real P, also hold for
complex Pn. That is to say: An r-dimensional linear space in complex
P, (0 = r = n) will mean the totality of points [&o, &1,...,&n] of com:
plex P, that satisfy a system of homogeneous linear equations of the form
(8), where the rank of the matrix of (8) is equal to n —r. Of course, the
coefficients in (8) are now allowed to be complex numbers.

In conclusion, we should like to offer an example of a theorem that
holds true equally for real and for complex Px:

The intersection of two lmear spaces is either empty or is itself a

linear space.®

9 One ean also speak about projective Pn over an arbitrary field F, if we take the
coordinates from some arbitrary field ». Not all of the results of this book hold true
for so general a concept of projective space (in partieular, the later developments do
not). However, the content of Chapters II-IV, for example, does hold true even in
this general framework, as does that of Chapter V, with the exception of Theorems

7 and 8.
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Exercises

1. Let Pn be the complex and Pn* the real n-dimensional projective space. Also,
let L be a linear subspace of P and let  be the dimension of L. Let I* be the totality
of the points of L that belong to P.*. Show the following :

a) L*is a linear subspace of P.*;

b) The dimension s of L* satisfies the inequality: 2r—an S s <

¢) s can actually take on any of the values between 2r —n and 7, provided it

is = 0.

2. Let the notation be the same as in Exercise 1. Furthermore, let L, be a second
linear subspace of P, with dimension 7. Let I:* be formed analogously to L*, i.e., Ly*
is the intersection of L: with Po*. Let the dimension of Li* be s1.. Show that if r== S,
r1=8, and L* =I,% then L =L,

3. Let the notation again be the same as in Exercise 1. L is said to be ‘real’
if it is possible to find for L a system of homogeneous linear equations with purely
real coefficients. Show that:

a) L is real if and only if r=—g. .

b) L is real if and only if for every point [, &, -+, &] of L, the ‘complex
conjugate point’ [§,, &, ..., &,] also belongs to L.

4. Let @i =={[no, 9, ++., 9] a0nd Qo =1[&, &,+++, & ] be two points in Pn.
Let n -+ 1 continuous functlons folt), f1(2),...,f(t) be given on 0 <¢=1 such
that fi{0)==w, fe(1) =& for i==0,1, 271, and such that for no ¢ do all the
f+(t) vanish simultaneously. We then define a continuous path joining @: and Q. as
the totality of points [fo(¢), f2{2), ..., fu(t)] foral 0 <t =1. :

Now, let a hyperplane in P, be given by the equation:

aofot+aidit oo anka=0.

Show that: If @ and Q. are any two points not on the hyperplane, then there is a
continuous path joining @: and @, that does not intersect the hyperplane.

Hint: Tentatively set, say, fi() = (1 —1t)m+-t& and normalize the 7, &
suitably.



CHAPTER 1II

GENERAL PROJECTIVE COORDINATES

In order to utilize the vector caleulus in our investigation of the projec-
tive space Pn, we shall now study a certain fairly obvious correspondence
between, on the one hand, the points of real and of complex Py, and, on
the other hand, the vectors of the real and the complex (n + 1)-dimensional
vector space! Vaiy, respectively. This correspondence is defined as
follows : :

A point Q of P, and? a vector™ ¢ == {&o, &1,...,&n} of Vi1 shall be
said to correspond if and only if @ == [&o, &1, ..., &n], 1.6, if &0, &1y .., &n
are homogeneous coordinates of Q.3

If Q and p correspond to each other in this sense, then y is called a
coordinate vector of Q.

According to this rule, there corresponds to every non-vanishing vector
t of Vi, exactly one point of Pn. Only the null vector has no point of
P, corresponding to it. Further, according to the definition of equality
for points of P, it follows that two vectors* ¢ and y correspond to the
same point of P, if and only if there exists a == 0 such that t = 1y; in

1We recall the definition of the n-dimensional vector space V. over a field ¥
given in § 21 of Modern Algebra [Introduction to Modern Algebra and Matriz Theory,
by O. Schreier and E. Sperner; see the Editor’s Preface to the present work]. In
particular, the V» over the field of real numbers is called the real n-dimensional vector
space, and the V» over the field of complex numbers is called the complex n-dimensional
vector space.

2 & is to be thought of as the first component of ¢, & as the second component
and, in general, % as the (i -+ 1)-th component.

3 We speak here simply of Pn, without qualification. Hence aceording to the con-
vention that we adopted toward the end of the last chapter, Pn can refer equally to
real projective n-dimensional space and to complex projective n-dimensional space.
Of course, in either case we have to take the corresponding (real or complex) V1.

* The gymbol ¢ is German lower case x; the symbol § is German lower case ¥.
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other words, if ¢ is a coordinate vector of ), then all vectors Ar with
440, and these vectors only, are also ecoordinate vectors of Q.*

Thus, to each point @ of P, there correspond, exactly, all of the non-
null veetors of a one-dimensional linear vector space in Vo1 CWe call

this vector space Lg. _
It is clear that Ly %% Ly if @ 5% @’. Thus, the relation Q =Ly is a

one-to-one correspondence between the points of P, and the one-dimen-
sional linear vector spaces of V“ 1- ‘

Let us now investigate the following problem: What does the totality
of coordinate vectors of all the points of a linear space look like ?

In order to answer this, let us consider a system of homogeneous
equations of the form

ao Sotan &+ -+ an & =0,
tso Sot gy &1+ -+ am En=0,

Amo §o+ (17751 §1 44 amn_ En: 0.

Let the rank of the matrix (a;) be n —r. Then this system of equations
represents an r-dimensional linear space L in P.; but in Va,, it repre-
sents an (r + 1)-dimensional linear vector space L. Thus, we have:

TurEoREM 1. The totality of the coordinate vectors of all the points
of an r-dimensional linear space constitutes an (r + 1)-dimensional linear
vector space in Va1, with the omission of the null vector. And conversely,
all the points whose coordinate. vectors belong to a giwen (r + 1)-dimen-
stonal Winear vector space of Vst constitute an r-dimensional linear space
of Pn. ‘

The linear dependence or independence of the coordinate vectors has
important implications for the corresponding points. Let Q1,02 ...,0;
be & points in P, and let g; be a coordinate veetor of Q. (=1,2...,k).
The y; are not uniquely determined. We may, if we wish, replace each
of the 7; by A;x;, with 4,54 0. Can this in any way alter the linear depend-
ence or independence of the coordinate vectors of ©;? No. For an
equation in the A;3, ' ’ :

Cay (A x) - as (g L) + - - ‘f’ ax (A t) = 0

4 Here, 4 has to run through all the real values 5= 0, in the case of real P, and
Vn+1, and through all the complex values s« 0, in the case of complex Pn and Vo1,
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(the a; here may be either real or complex numbers) can be looked upon
as an equation in the g;, and conversely.

Thus, the vector systems I, Xz, ..., Lk and Aty s Lo, - - -, A 2
(4 54 0) are always either both linearly dependent or both linearly inde-
penderit.

~We see, then, that the linear dependence or independence of the
coordinate vectors of the points Qi, @, ..., Qr does not depend on the
choice of those vectors but is a property of the points themselves. We ean
aceordingly introduce the following concept.

A finite number of points of Pn is said to be linearly dependent or
lLinearly independent according as the coordinate vectors of these points
are linearly dependent or independent.

" Now let there be given a further point @, with eoordinate vector z.
If 1 can be represented by a'linear combination of the g, say,

k
6)) p = ;1 a i,

then the point @ is said to be a linear combination of the points
Qly Q2’ ) Qk

In what follows, let r; be fized coordinate vectors of the ;. Let the
maximal number of linearly independent points among @i, @z, ..., Q
be g. Then ¢ has the same meaning for the g;. Thus, we know that the
linear vector space L spanned by the 1; in Va+1 is of dimension g (ef.
Modern Algebra, §4, Theorem 5). Moreover,since every linear vector space
that contains all the g; must also contain L, it follows immediately that:

There is no linear vector space of dimension ¢ — 1 that eontains all
the r;. There is, on the other hand, exactly one linear vector space of
dimension ¢ in which all the g; are contained.

This statement, together with Theorem 1, yields at once the following
theorem about the points @1, @2, ..., @x:

5 If we replace each of the 41 by gy, with 4 5 0, and perhaps even replaee £ by
Az (254 0), we ean rewrite (1) in the form

i = _ﬁ () .

Thus the concept of ‘linear combination of points’ is again shown to be independent
of the choice of the coordinate vectors, and this justifies the definition.
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TueoREM 2. If g is the mazimal number of linearly independent

points among the k points Q1, Qs, . . ., Qu, then there is no linear space of
dimension q — 2 that contains all the Q, There 18, however, ezactly one
linear space of dimension q — 1 to which all the @; belong.

Let L designate the linear space of dimension q — 1 that contains all
the @;. It consists of all the points whose coordinate vectors lie in L.

If we now call the linear space of smallest dimension that contains
any given k points @i, Qo, ..., Q; of P, the spanning space of the Q,, we
have:

TrEOREM 8. The spanning space of the Q, consists precisely of the
totality of all linear combinations of the Q. :

This is true because the linear vector space spanned by the z; (x; con-
tinues to denote a coordinate vector of ;) consists precisely of the totality
of all linear combinations y, D k.

The following is a direct consequence of Theorem 2:

Tueorem 4. The spanning space L of k points, @1, Qs, ..., Qy of Pn
is of dimension k — 1 4f the Q; are linearly independent ; otherwise, L is of

dimension at most k — 2. ‘
Applying Theorem 4 to a special case, we have:

- Two linearly dependent points coincide; two lnearly independent
points are distinct. Three linearly dependent points lie on a straight line;
three linearly independent points do not. Four linearly dependent points
liec in a plane; four Uinearly independent points do not. n+ 1 linearly
dependent points lie in a hyperplane; n + 1 linearly independent points,
however, do not.

As a further special case of Theorem 3, we have:

If @, and Q; are two linearly independent points and g; and g, are
their respective coordir{ate vectors, then the coordinate vectors of all the
points on the line determined by @, and Q2 are of the form p, g+ p, Ls.

In like manner, the coordinate vectors of all the points of the plane
determined by three linearly independent points @y, Qs, @3, with coordi-
nate veetors 1y, L2, 3, may be obtained in the form 1 %1+ pe Lo -+ 13 25, and
all the points of the hyperplane determined by n linearly independent
points @1, @o, ..., @Qn, With coordinate vectors ¥, may be obtained by
taking all the linear combinations Lt ps Lot - - i I

The question of determining the linear space of least dimension that
contains a number of given points is but a special case of the more general
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question as to the linear space of least dimension that contains a finite
number of linear spaces. For the sake of later applications, we here take
up this more general question for the case of two given linear spaces.
For this purpose we merely need to adapt to linear spaces a theorem on
linear vector spaces, namely, Theorem 7 of § 4 of Modern Algebra.®

First, we introduce the following convenient notation: If a linear
space L of P, and a linear vector space L of Vi1 are related in the way
set forth in Theorem 1 above, then we shall write: L=1L.

Now, let L; and Ly be two given linear spaces in P, and let 1; and L
be the linear spaces of Va+1 for which the relations Ly =2 L; and Ly =2 1
hold. Let p be the intersection of L; and Lg, and s their sum. Then let
Dz=pand S=8. D can be empty; this happens when p is dimension 0
and thus consists of the null vector alone. Let the dimensions of 1.; and
Lg be r; and r,, respectively, and let the dimensions of 8 and D be s and d,
respectively. If D is empty, it will be convenient to set d =-— 1.7 Then
it follows that L; and L, are of dimension r; + 1 and r; + 1, respectively,
and s and p of dimension s + 1 and d + 1, respectively.

It is clear that D is the intersection of L, and L,. But what is S?
We claim that:

Every linear space that contains L; and L both, must also contain 8.

As proof, let L be a linear space such that L DL, and L D L,. Deter-
mine L by the correspondence L== L. Then L DLy, Ly, and from this it
follows that L Ds, since L contains every vector a; + az for which a; C 1,
and a; C Ly. Hence, we finally have: LDS.

We thus see the following: There is no linear space of dimension < s
that contains both L, and L,. But there is exactly one such space of
dimension s, and that space is S.

8 is aceordingly characterized, independently of s, as the linear space
of least dimension that contains both L; and Ls. Again, we call § the
spanning space of Ly and Lj, as a generalization of the definition of a
spanning space of points given above on p. 26.

According to Modern Algebra, § 4, Theorem 7, the following relation
exists among the dimensions of L;, Ly, D, and s: (ri+ 1)+ (re+1) =
(d+1)+ (s+1), ie,

ry+reo=d+s.

6 See Chapter I, footnote 3.
7 For, as a result, the discussion that follows will held true also in the case in
which p is of dimension 0.
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From this, we have:

TuroreM b. If D s the intersection of two linear spaces Ly and Lo
and 8 is the spamning space of Ly and Ly, and if, moreover, rq, ry, and s
are the respective dimensions of Ly, Ly, and 8, then ry + ro—s is the
dimension of D, if D is not empty ; on the other hand, if D is empty, then
rit+re—s=—1

In particular, if r; + 72 = n, then 7y + 7, — s =0, since s = =, ie.,
the intersection of Ly and Ly is certainly not empty in this case and indeed
is at least (ry + ry— n)-dimensional. For example, the intersection of a
hyperplane and a line is never empty, and the intersection of a hyperplane
and a plane is of dimension ot least one. ;

Another immediate consequence of Theorem 5, which we shall often
make use of, is the following :

Two lines of Pn which lie in o plane (i.e., in o 2-dimensional linear
space) always have a non-empty intersection and accordingly either have
@ point in common or are identical. -

For, the spanning space of two such lines is at most 2-dimensional,
so that s = 2, and from this it follows that d = r, + r, — s = 0.

The correspondence between the points of P, and the vectors-of Va+1
that we have been making use of until now is suseeptible of another
important generalization, which will lead to the concept of a general
projective coordinate system.

We begin with a linear space L of dimension r in P. Let Qo, Qy,. ..,
Q- be r + 1 linearly independent points of L (such points exist, by Theo-
rem 1), and let g; be a fized coordinate vector of @, (for i=0,1, ..., r).

We then define a correspondence between the points of L and the
(r + 1)-tuples (of real or complex numbers)® according to the following
rule: :

A point @ of L and an (r + 1)-tuple uo, g, . . . , - shall be said to cor-
. v
respond if and only if 3 w;z; is a coordinate vector of Q.
i=0

It is clear from Theorems 2 and 3 that this correspondence yields
every point of L and also every (r -+ 1)-tuple with the exception of the
one in which po=py =...=p,=0.

8 This is of course meant in the following sense: (r -+ 1)-tuples of real numbers
when we are dealing with real P, and of complex numbers when we are dealing with

complex Py,
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Now, if two (r + 1)-tuples po, 1, - . . , - and uo’, 1, . . . , i’ correspond
to the same point, then there must exist a 440 for which

r r
2wt =L X pig o Z (wi— A pg) g = 0.
1= = =10
By virtue of the linear independence of the r;, it follows that p; = A u;
forv=20,1,...,r. Theconverseis trivial. Hence:

Two (r + 1)-tuples correspond to the same point of L if and only if
they differ solely by a constant of proportionality 44 0.

This eorrespondence is thus of the same type as that between (n + 1)-
tuples and the points of P,. Since the g; play an essential role in the
definition, the correspondence will of course depend on the §;. If we
change the @Q;, the correspondence will certainly change. But even more
is true: The correspondence depends not only on the choice of the @,
but on the choice of the x; as well. If, holding the @; fixed, we change the
1;, then the correspondence may also change. We now examine this
interrelation more closely.

For this purpose, let r; and y; (=0,1,...,7) be two systems of
coordinate vectors of the points @;. We then set up the correspondence
defined above in two ways—{first, using the g;, second using the §;. Now,
under what condition would we get the same correspondence? This is

the case only if, for every (r + 1)-tuple uo, t1, . . . , tr, the vectors 2 M L
and 2 ;i Y); are always coordinate vectors of the same point. In partleu-

lar, thls must be true for po=p1=...=pu,==1. This means that a
A =% 0 must exist such that

Thus, equation (2) is a necessary condition.

But it is also sufficient. For assume that (2) is satisfied. Since both
the systems 1; and ); are coordinate vectors of @;, then for every ¢ there
exists a 1;5%0 such that 9, == A, If we substitute in (2), we get:

” .
> (A —2;) t;==0. By the linear independence of the r;, it follows that
=0 v ‘

A;==4A for all . That means that

3) V 9= Ay |
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”
for ¢==0,1,...,r. Then if the linear combinations Y p;1; and
r i=0 '
2 wiY); are formed with the same u;, it follows from (3) that
i=0

7 2
2 piY) = 1 2 i Liy
=0 =0

K 7
ie., X9 and X usx; are always coordinate vectors of the same point.

i=0 i=o
In other words: The correspondences we set up with the aid of the 1;

and the t);’are identical under assumption (2).

Condition (2) has a simple meaning, namely: The correspondence
established with the aid of the r; makes the (r + 1)-tuple po = = ... =
4 ==1 correspond to the same point as does the correspondence estab-
lished with the aid of the y;. And conversely, the coordinate vectors L
and p; employed in constructing the two correspondences that make the
same point correspond to the (r 4 1)-tuple po=— 1y =...—= =1,
satisfy equation (2). :

Thus, we see that among all the possible correspondences which ean be
set up by different choices of the g; (the Q, being fixed), no two are dis-
tinet which make the same point correspond to the (r -+ 1)-tuple o=

M1==...=u,==1, This means that: _
The correspondence is uniquely determined by the points Q; and the
point E that corresponds to the (r + 1)-tuple po==py = ... == p==1.

It is desirable to introduce some nomenclature at this point. o

If a correspondence is set up of the kind deseribed, we say that a
projective coordinate system has been introduced into L. Since such
a coordinate system is determined by the points @; and E, we designate
it by the symbol (Qo, Q4, ..., Q, | E). The numbers uo, ui, . .., y which
correspond to a point, are called the coordinates of this point in the co-
ordinate system (Qo, @y, ..., Q, | E). They are unique only up to a
common constant of proportionality. The points Qo, @4, . .., Q, are called
the fundamental points of the coordinate system. The coordinates of the
points @; in the (Qy, Q4,...,Q, | E) system are all 0 except for the
(¢ + 1)-st coordinate, which is equal to 1. The point E, all of whose co-
ordinates are equal to 1, is called the unit point.

The r + 1 points Q,, taken in their totality, are also called the funda-
mental simplex ; in particular, in the case r = 2 (three points), the funda-
mental triangle, and in the case r =23 (four points), the fundamental
tetrahedron. °

We already know that we can choose any r -+ 1 linearly independent
points of L as the fundamental points of a projective coordinate system.
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But we do not yet know the extent to which E may be chosen arbitrarily.
This question is equivalent to the following: Given @; and E, can the
1, (as coordinate vectors of ;) always be so chosen that

e=YoF L+ -+

is a coordinate vector of E?
From the equation

4 e:§o+§1+"'+xr

it follows that every r + 1 of the vectors 2o, 21, .. -, L, ¢ must be linearly
independent. For 1o, 81, . - ., Ir, this is true by assumption. However, if
Yo, L1y...,Lr—1, €, say, were linearly dependent, then (by Modern
Algebra, § 3, Theorem 5) a relation of the form

® e=Atothtt - +Ah1t
would exist. By elimination of e between (4) and (5), this would imply
A—2)+A—4)u+ - +0—24 )1+ 2-= 0.

This contradicts the linear independence of the %o, 21,...,%- Thus, we
see that:

A necessary condition for the existence of a projective coordinate
system (Qo, Q1, ..., Q- | E) in L is that not only the @, but also every
r+ 1 of the points Qo, Q1, . . . , @, E be linearly independent.

It turns out that this condition is also sufficient. To prove this,
assume the condition satisfied. Furthermore, let e be any coordinate
vector of E and let 9o, 91, . . . , Y- be any coordinate vectors whatsoever of
Qo, Q1,...,Q, By Theorem 3, we can write

(6) e == @Wotoh)+ - - +erhe.

None of the g; in this equation can equal zero. For, ¢;==0 (for a fixed %)
would imply that the vectors e, Yo, Y1, - - 5 Yi—1, Dit1, - -+, Jr are linearly
dependent, contrary to assumption. But since g;%<0, it follows that
== oi); is also a coordinate vector of @; (1==0,1,..., r). With these

1;, (6) becomes
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e.= Lo+t +r

This proves, then, that there does exist a coordinate system with the Q;
as fundamental points and E as unit point. We have thus shown the
following : .

To the symbol (Qo, @1, ..., Q.| E) there corresponds a projective co-
ordinate system if and only +f every r + 1 of the points Qo, @1, . . ., Qr, E
are linearly independent. ,

CIfr=2 (i.e, if L is a plane), this condition has the followmg geomet-
rical meaning: The points Qo, @1, Q2 must form a triangle, and E may
not be taken on any of the three sides or their extensmns A correspond-
ing statement holds for any r.

Liet us look a bit more closely at the special case r =n (i.e.,, L="Py).
In this case, (Qo, Q1, s @n | E) has the meaning of a new. coordinate
system for the whole of Pn.

There is this to be observed: To the points of P, which are given
by the (n -+ 1)-tuple [&, &1, ..., &a] there correspond, by definition,
the coordinates &g, &1, ..., &x. In a given projective coordinate system
(Qo; @1, ..., Qu| E), however, a point [&, &, ..., &] will in general be
assigned new coordinates, different from the &,

Nevertheless, the ‘natural’ coordinates &; of a point [&, &1,.. ., &n]
can actually be interpreted as coordinates in a certain particular projec-
tive coordinate system. We obtain this coordinate system by choosing the
points Qo, @1, ..., Qs in such a way that for every Q= [& & . 9
we have

<@ =@ 0] (] (i) @)
S =§ =.. = =8 = .-=§ =0, & =1.

Let E be the point [1,1,..., 1]; The n + 1 unit vectors ey, ez,...,en+1
of Vns1 can then be chosen as the coordinate vectors of the @;. In fact,

n+1 o
D' e; is then a coordinate vector of E. In this speeial coordinate

i=1 .
system (Qo, @1, ..., @n | E), the projective coordinates of a point @ =
[&0, &1, . . ., &n] are just the &,

Of the fundamental points of the projective coordinate system just
given, Q, is the only proper point. All the other @, are improper (because
their first coordinate is 0). We now wish to make clear the position of
the @, in relation to the affine R, from which P, was obtained by exten-
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sion. - All the affine (non-homogeneous) ecoordinates of the point
Qo=1[1,0,...,0] are 0. Thus, Qo is the origin of R,. On the other
hand, for t=1,2,...,n, @, is the improper point of the z;-axis of R,.
For, the z;-axis is given in affine coordinates by the equations

(7) = 0, X =0, -, 251 =0, Zipr == 0, .-, 2y = 0,
and hence, in homogeneous- coordinates :°
(8) 51:0, §2:O,"';§i—~1’:07 §i+1:0,"',§n20-

The coordinates of the @, do, in fact, satisfy equations (8).

To avoid ambiguity, let us expressly agree that the notation
Q = [&, &1, ..., &n] shall always mean the following: ¢ 4s the homo-
geneous (n + 1)-tuple [&0, &1, .., Ex]: In other words, we shall use the
notation @ == [&q, &1,. .., &x] only if the & are the coordinates of @ in
the special eoordinate system just mentioned, in which the origin of R,
and the improper points of the coordinate axes are the fundamental points
and [1, 1, ..., 1] is the unit point.! We shall make a corresponding
restriction on the use of the term ‘coordinate vector.” Hereafter, ‘z =
{0, &1, ..., &n} is a coordinate vector of @’ shall always mean Q =

[0, &1y ..., En].

‘When a projective coordinate system for the whole of P, is under con-
sideration, matrices may easily be used for purposes of deseription (or
definition). This may be done as follows.

Let there be given a projective coordinate system (Qo, @1, ..., Qx | E)
N 3

in Pn. Let 1; be coordinate vectors of the @, so that 2 %; is a coordinate
: i=0

vector of K.

Now, if @ == [, &1,...,&x] is any point in P, (according to our
convention, the &; have reference to our special coordinate system), and
if 7o, 71, . . . , 7m are its coordinates in the system (Qo, @1, . . ., Qn | E), then,

n
by definition, > #;1; is a coordinate vector of Q. Hence, there exists a
i=0

454 0 such that

(9) Z;;I']Z L = A (507 §17 o '.; §n}-

? Equations (7) and (8) are related to each other in the same way as equations
(7) and (8) of the preceding chapter to each other.
1 Compare the corresponding agreement for affine Ea on p. 117 of Modern Algebra.
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This equatlon can easily be written in matrix form. To do thls let
== {20i, X1, - -, Zns} and let

oo Lor - Xon

Zio X1 vt Zin
(-’L’z'lc) poim

o Xni v Lan

In addition, let the symbols (1) and (&) represent (as in M odern Algebra,
§ 22, p. 293) the matrices

7]0 O PRI O §0 O M O

0 ... 0 5 0 .. 0

a @=|"" """ @@= 7
7/n O . e 0 §n O ce 0

Then the matrix equation

(11) () - (1) = 4. (%)

is completely equivalent? to (9).
The matrix (z;) is non-singular, since the @, and hence also the 1,

are linearly independent. Consequently the inverse matrix (x) ! exists.
Thus, from (11) it follows that

(12) () = 4 (za)™* ().

If we now set X = () ~%, we can state the following theorem:

THEOREM 6. For every projective coordinate system (Qo, Qy,...,
Qn | E) of Pn a non-singular (n + 1)-rowed square matriz X ‘can be found
such that the coordinates w; of every pont Q = [, &1, ..., &n] are given
in that coordinate system by (n) == AX (§).

In this equation 4 may be assigned any arbitrary value s40. The
%oy N1, - - - » §n thus obtained will, regardless, always be homogeneous co-
ordinates of @ in (Qo, Q1,...,@n | E). It goes without saying that X
depends only on the coordinate system and not on Q.

2 Equivalent in the following sense: The components of the left-hand and right-
hand sides of (9) are equal to the elements of the first column of the left-hand and
right-hand sides, respectively, of (11). :
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Conversely, for every given non-singular matriz X there exists a
coordinate system (Qo, Q1,...,Qn| E) for which the two are related in
the way described in Theorem 6.

For one need only make an appropriate choice of (Qo, Q1,..., @ | E)
in order to obtain, in (9), any desired system of linearly independent
veetors go, L1, - . . , In and, hence, in (12), any desired matrix X = (zy) 1.

At this point we propose to make another important convention, which
will hold for the remainder of this volume. It will very often happen
that we shall wish to construct the first matrix of (10) using the coordi-
nates 7o, 1, . . . , 7 0f @ point ). We shall therefore reserve the notation
(n) for this matrix and shall refer to it as the coordinate matriz of Q in the
coordinate system (Qo, @1,...,@»| E). We shall of course also use other
letters, such as {;, &;, instead of the #; and shall then denote the correspond-
ing matrices by ({), (£).

By use of Theorem 6 we can easily get a clear picture of a given
transformation of coordinates. Let (Qo, Qs,..., Qx| E) and

(QO*; ,Ql*: LR ] Qﬂ* l E*):

say, be two given coordinate systems, and let the point @ =[&,, &y,. .., &]
have the coordinates 5o, 71, ..., #ain (Qo, @1, . .., Qu | E) and the coordi-
nates 0%, 7%, ..., 9a* in (Qo*, @1%, ..., @u* | B¥).

‘We now pose the following question: Given the 7;*, how do we com-
pute the #;, and vice versa?

By Theorem 6, there exist two matrices X and X* such that

(13) () = 21.X(%),
(14 (%) = A X*(¥).

By elimination of (&) between the two equations, we obtain

(15) () = ¢ X - X*(n%),
(16) (%) = o X* - X71(n),

where g = A/1*=1/0.
Equations (15) and (16) give us the desired relation between the n, -
and the #;*. Hence we call equations (15) and (16) the equations of trans-

formation between the two coordinate systems.
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If we now set X X*~1 == T = () and X* X~ == T—1 == (s;), we see
that the matrix equations (15) and (16) are equivalent to the two systems
of equations

n

an N, — © 'k‘;:) tj}{']}f; (f=0,1,2,---, n),
n

(18) = “'kzosf’””" (G=0,1,2,---,n).

Thus, we have:

TuEOREM 7. If the coordinates of a point @ in one projective co-
ordinate system (Qo, @1, ..., Qn | E) are denoted by no, N1, ..., Y, and
denoted by no*, 9%, ..., g™ n a second projective coordinatos’ystem
(Qo*, Q1%, ..., @u* | E*), then the relation between the n* omd“ the n; 18
given by equations (17) and (18) (in which the ty, and the sy, are constants
independent of the n; and the n*, with |ty | 40 and | sip | 5% 0).

The presence of the factors g, o in (15) and (16) (something similar
will happen quite frequently) is due to the fact that the »; and 5* are
uniquely determined only up to a constant of proportionality. If the #*
are a particular choice of coordinates for @ in (Qo*, @1*, ..., @»* | E¥),
then (15) always yields homogeneous coordinates #; for the point @ in
(@0, @1, ..., @n| E), no matter how ¢ 540 is chosen.

A system of equations of the form (17) is called a non-singular homo-
geneous linear substitution. It is important to note that every non-
singular homogeneous linear substitution can be looked upon as a trans-
formation of coordinates, i.e., can occur as a system of equations of trans-
formation for passing from one coordinate system to another. To prove
this, we need to show that, given a coordinate system (Qo, @1,..., Qx| E)
and a system of equations of the form (17), we can find a new coordinate
system (@o*, Q1%, ..., Qx* | E*) for which (17) is precisely the equations
of transformation for passing from the one system to the other.

Let the given coordinate system (Qo, @1, ..., @» | E) be related to the
matrix X in the way set forth in Theorem 6; and let the desired coordi-
nate system (Qo*, @1%, ..., Qx* | E*) be determined by the matrix X*,
still to be found. Then X* and X and the given matrix T = (t3) of
(17) must be related by T == X X*—1, - This means we have only to set
X*=1T-1X. Then X*, as a non-singular matrix,? is indeed the defining
matrix of a coordinate system (Qo*, Q:%, ..., @.*| E*). We summarize
this result in Theorem 8:

8 X* is non-singular because 7' and X, by assumption, are non-singular; cf, Modern
Algebra, § 22, Theorem 6 (p. 297).
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TueorEM 8. For a gwen coordinate system (Qo, @1, ..., Qn| E) of
P. and a given system of equations (17) with non-singular mairiz
T == (ti), there always exists a second projective coordinate system
(@o*, @1, . .., Qu* | E*) such that the coordinates 1, of an arbitrary point
in the first system will be related to its coordinates n* in the second sys-
tem precisely by the equations (17).

Using Theorem 6, we should now like to ascertain how a linear space
of dimension r can be represented in an arbitrary projective coordinate
system.

Let (Qo, @1, - .., Qx| E) be a given projective coordinate system and
let X be the corresponding matrix which, as in (13), gives the coordinates
N0, M1y - - - » M OF an arbitrary point [&o, &1,...,&n] of Pn in the coordi-

nate system (Qo, Q1,...,@n | E).
An r-dimensional linear space L was defined as the totality of all the

points Q == [&o, &1, . . . , £a] Whose coordinates &; satisfy a system of homo-
geneous equations of rank n —r:*

n N
(19) IZ;az-k&k: 0, G=1,2,--,8).
=y

We may assume that s, the number of equations in (19), is =n.5 We
then extend the matrix of (19) by the adjunection of n -+ 1— ¢ rows con-
sisting entirely of zeros, thus obtaining the following (n +1)-rowed

square matrix;

Mo Qg1 -+ Qin

g0 Qgx -+ OQ2n
A=lasw @1 -+ Qsn

0 0 - 0

By use of the second matrix of (10), we can now write the system of
equations (19) in matrix form as: »
4 By the rank of a system of equations is meant, of course, the rank of its matrix.

5 Since (19) is of rank # —r, any n— r linearly independent equations of (19),
for example, represent the same linear space. Cf., for example, Modern Algebra, p. 104.
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(20) A48 =

By substituting (&) = X~1(5)/4 from (13), (20) becomes (upon drop-
ping the factor 1/4):

(21) A- Xy =

Since, eonversely, we can also obtain (20) once again from (21) by the
use of (13), we see the following:

If the point @ == [&o, &1, ..., &n] has the coordinates 7o, %1, . . s I In
(Qo, Q1,...,Qu| E), then the &, satisfy the matrix equation (20) ¢f and
only if the #; satisfy equation (21).

That is to say, (21) is the system of equations for the linear space L in
the coordinate system (Qo, Q1,...,Qn| E).

Since 4 and X! are constant matrices (independent of the #;), (21)
is again a system of linear equations. Now, what is the rank of A*X—1¢
It is immediately seen that the row vectors of the matrix 4 X! are linear
combinations of the row vectors of X~ with the elements of 4 acting as
coefficients. Since X—1!is non-singular, and its row vectors are therefore
linearly independent, it follows at once, from § 10, Theorem 1, of Modern
Algebra, that the rank of A X! is equal to the rank of 4.% Thus, we
have Theorem 9.

THEOREM 9. A linear space of dimension r can always be represented
n a projective coordinate system of Py by a system of linear equations of
rank n—r.

If, conversely, we start with (21) as a given system of equations, then
we can always find a corresponding system of the form (20). For this
is merely to say that, given the matrix A+*X—1, we can compute

= (A*X~1)X. Thus, we have:

TaeorEM 10. Every system of linear equations of rank n—r in the
1, Where the w; are coordinates in the projective coordinate system
(@0, @1, ..., @n| E), represents a linear space of dimension r."-

As a final application of Theorem 6, we now prove the following
theorem :
6 This result shows that Theorem 1 of § 10 of Modern Algebra is equivalent to the

following theorem on matrices: If one of the two n-rowed square mairices 4 and B,
say A, is non-singular, then the products 4 «+B and B + 4 have the same rank as B.
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TaeoreM 11. If 81, 8s, ..., 8y are any k points of Pn and 5;0,%:1,%:2,
-, i are the coordinates of S; in a projective coordinate system
(@0, @1, ..., Qu| E), then the rank of the matriz

o T+ Na
(22) "]20 7]21 c vt 7]2%
Mo Ner == Nien

1s equal to the maximal number of linearly independent poinis among
S;[,Sz,...,gk. ‘

Proof: Since neither the rank of the matrix in question nor the maxi-
mal number of linearly independent points can ever exceed n + 1, we
immediately see the following: If Theorem 11 were false for k¥ > =n + 1,
then among the 8; we could choose % points Sy, Sy, --+, Sy, , With
k= n+1, for which Theorem 11 is false.” Thus, it suffices to prove
Theorem 11 for k. = n + 1. :

» Now, let 8;==[&n, &u, - -+, & for 1=1,2,...,k, and let X be the
matrix associated, in accordance with Theorem 6, with(Qo, @1, ...,@x | E);
moreover, let the &;; be so chosen that

fio o .-- 0 51’0 0O .-- 0
Yin o -.. 0 §zn 0O .- 0

(i.e., with A=1). We then form the matrix product

n-+1—k columns

s —

S0 &0 ¢ S0 O --- O

24) x. 511 52:1 cee §:k1 O vt 0
§1n §2n s §7m 0 .- 0

‘Now, the rank of the second (right-hand) factor of (24) is equal to the
maximal number of linearly independent points among the points S,

7Let ¥ be >n -+ 1, let ¢ be the rank of (22) and ¢’ the maximal number of
linearly independent points among the Si, and let g 5% ¢’. Clearly, we have ¢ =n + 1
and ¢ =n -4 1. If ¢ > ¢, then Theorem 11 is false for any ¢’ linearly independent
points S:. If, however, ¢ > ¢’, then we choose ¢ such points 8: for which the corre-
sponding submatrix of (22) has rank g.
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Since, however, the rank of the second factor of (24) is equal to the rank
of (24) itself® and since, by (23), the product (24) is equal to the matrix

1o Mo -+ fw O -+ O

M1 S O ... 0
(25) S Do o

Tin fon c ew O -+ O

we have that the rank of (25), and therefore also the rank of (22), is
equal to the maximal number of linearly independent points among the
8;, which was to be proved.

From Theorem 11 it follows immediately that the row vectors of (22)
are linearly dependent or independent according as the points 81, Sz, . . .,
8, are linearly dependent or independent. This can be expressed as

follows :
Linear dependence, and Uinear independence, of points of Pn s tn-
variant wnder a transformation of coordinates.

Exercises

1. Show that the matrix X which belongs in aecordance with Theorem 6 to eaéh
projective coordinate system, is uniquely determined by that coordinate system up to
an arbitrary numerieal factor 54 0.

2. Two projective coordinate systems in real Py, say (Qoy Ql,...,Qn]E) and
(Qo*, @:F, ..., @* | E®), are said to be continuously deformable into each other if

(n + 1)-dimensional (real} veetors fo(£), fi(£), -+, fa(f) can be found which are con-
tinuous functions of a parameter ¢ in the interval 0 = ¢ = 1 and which, in addition,

exhibit the following properties: ‘
(1) the n + 1 vectors f, (&), f (@), + - -, fa ({) are linearly independent for every ¢

in the interval 0 =t = 1;
(2) for t==0, f:(Q) is a coordinate vector of Q; (for all 4=0,1,...,7), and

n
2 f: (0) is a eoordinate vector of E;
i=0
(3) for t==1, f:(1) is a coordinate vector of @ (for all i==0,1,.. .y 1), and

n
> (1) is a coordinate vector of E*.
i=0
Show the following: ,
a) If (v, #1, -+, ¥a) is a permutation of the digits (0,1,2,...,n) such that
Sgn (¥o, ¥i, ..., ¥a) is +1 (ef. Modern Algebra §9, p. 88), then the co-

8 See footnote 6 above.
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ordinate system (Qo, Qi,..., @] E) is always continuously deformable into
(@vgr @vys -+, @u, | E) . (In this latter coordinate system the same Q. enter,
only permuted.)
; b) If sgn(ve, », +--, v,)=—1, then (@, @5, ..., Qx| E) is continuously de-
- formable into (@vy, Qv,, -+« Qv, | E) if and only if n, the dimension of the
P, under consideration, is an even number.

On account of b), the real spaces Pi, P, Ps,... are called orientable and the
spaces Py, Pi, Ps, ... non-orientable. A

Hint. If the continuous deformation ealled for in a) and b) is possible, then
both f;(1) and f,,(0) must be a coordinate vector of @), , whence fi(1) = 4,5, (0.

7 n
Sinee, moreover, Z fi(0) and 2 fi(1) are both coordinate vectors of E, we must
i=0 =0

n n
have 2 fo() =12 2 fi(0). It then follows from the linear independence of the
i=0 i=0
Qithat A = 2 = A4 = ... = A,. Accordingly, for the determinants

D (Fo (1), fr(1); + -, fa (1)

and

D(fo (O)) fl (0)1 ‘T fn (0))

we have the relation:

D(fﬂ o, f1(1), -, f’l @) = D(Jofvo 0), A fvl(o)y sy An f”n ()]
= " sgn (vo, v, "+ 4y va) * D(fo 0), f1(0), -+, T (O)).

From this and Modern Algebra, § 10, Theorem 4, it is seen that the necessary and
sufficient condition for the deformation to be possible is that there exist a real 2 such
that A"tlsgn(vo, #y, **+, 7a) be > 0.



CHAPTER III |

HYPERPLANE COORDINATES. THE DUALITY
PRINCIPLE

A hyperplane in P» is given by one equation:
(1) u0§o+u1§1+"'+un§n:0-

In this equation we may not have all of the u; equal to zero. The hyper-
plane is of course uniquely determined by the n + 1 coefficients u;. Now,
to what extent are the u;, conversely, determined by the hyperplane?

Let us compare (1) with, say, o
(2) v o fo it b =0
under the assumption that (1) and (2) represent ‘the same hyperplane.
Then the intersection of (1) and (2) is just the hyperplane itself, and
thus is itself (n — 1)-dimensional. That is to say, the matrix

lu,o Uy e Up

’UO ‘Ul e 'Un

must have rank 1. Hence,! there exists a 4 5= 0 such that u; = 1v; for all
1=0,1,...,n

Consequently, the u; are determined by the hyperplane up to a common
constant of proportionality. We have in this way thus obtained a relation
of the same kind between the totality of hyperplanes and homogeneous
(n + 1)-tuples as between the points of P» and the homogeneous (n+ 1)-
tuples. For this reason, the coefficients uo, %, ..., un are also called the
(homogeneous) coordinates (or hyperplane coordinates) of the hyperplane
represented by (1). For abbreviation, we shall designate a hyperplane
with coordinates wg, %1, . . . , Un by the symbol (uo, %1, . . . , Un).

1 Sinee {‘uo, Uty o s ,un} and {vo, vs,. .. ,Un} are two non-vanishing linearly de-
pendent vectors, each is a multiple of the other.
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The fact that we can associate coordinates with the hyperplanes of
P, in the same way as with the points of P, has important consequences.
For, all the theorems that state anything about points of Pn, about collec-
tions of such points, and about relations among them are after all nothing
but statements about homogeneous {n -+ 1)-tuples, colleetions of such
(n + 1)-tuples, and algebraic relations among them. But, as we have
just seen, a homogeneous (n -+ 1)-tuple may be interpreted not only as a
point but, equally well, as a hyperplane. Under this latter interpretation,
our theorems will yield corresponding results about hyperplanes and
collections of hyperplanes. Two statements which exactly correspond in
this way, the one being expressed in point coordinates and dealing with
points, the other in hyperplane coordinates and dealing with hyperplanes,
are said to be duals (or reciprocals) of each other. Dual statements are
nothing but different interpretations of one and the same algebraic result.
The fact of this possible double interpretation is called the principle of
duality.

~ In order to understand the concept and significance of this—as yet,
purely formal—principle, we need to form some sort of intuitive idea
of the collection of hyperplanes in question.? To this end, let us first
investigate the following question: What is the dual of a linear space?

We begin with the simplest case, that of the hyperplane itself. A
hyperplane is defined to be a collection of points; specifically, it is the
totality of all the points [&p, &1, ..., &n] whose coordinates &; satisfy a
homogeneous linear equation. The dual concept would accordingly be
that of the totality of all the hyperplanes (u, %1, ..., %n) Whose coordi-
nates u,; satisfy a homogeneous linear equation.

Let .
3 Yoo+ yityt o Fnttn = 0

be such an equation, with given y; not all of which are zero. Observe that
(by the definition of hyperplane coordinates) a point

[‘SO} 51’ DRICN | §n]

will lie on the hyperplane (uq, %, . - . , %) if and only if

2 The usefulness of the duality prineiple will, of course, depend in large measure
on whether or not the manifold of hyperplanes in question and the relations among
them can be given an intuitive interpretation. This is the case, as we shall soon see,
with the coordinates as we have chosen them.
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U So+ur &1+ - +Fundn = 0.

This equation is therefore referred to as the incidence condition. - Aceord-
ingly, (3) signifies the incidence of the fixed point [y, y1,..., y»] With
every hyperplane of the collection under consideration. Hence, we have

TueorEMm 1. The collection of hyperplanes defined by (3) consists
of all the hyperplanes that pass through the point [yo, Y1,. .., yn} and no
others. :

Such a colleetion is called a hyperbundle. The comimon point is called
the kernel or carrier of the hyperbundle. v

The dual concept of a general linear space is now the totality of hyper-
planes (o, %1, ..., us) Whose coordinates w, satisfy a system of homo-
geneous linear equations

oot 1t + - Frinun = 0,

TeoUoF rartts + - - - - yonttn = 0,
4)

YsoUo—F Vo1 U+ - - - + 7smttn = 0.

Let the rank of (4) be n—r. Then we call the totality of hyperplanes
that satisfy (4) a linear bundle of dimension r. If we now denote by S;
(fori==1,2,...,s) the point [y, ya, -~ +, 7] (which thus has the coeffi-
cients of the i-th equation in (4) as coordinates) and denote by L the
linear space of least dimension (i.e., of dimension n— r — 1) containing
all the §;, then we state the following theorem:

TaEOREM 2. The linear bundle represented by (4) consists precisely
of all the hyperplanes that contain L. Conversely, every point common
to all the hyperplanes of this bundle belongs to L.2

L is called the kernel or carrier of the bundle.

Proof: The equations (4) simply mean that every hyperplane of the
bundle contains the points 8y, 8z, . . ., §; (incidence condition). A hyper-
plane that contains all the S;, however, also contains I, which is, after all,
the set of all linear combinations of the S;. Thus, the first part of Theorem
2 is proved. Moreover, if [7s11,0, 7s41,1, * -+, ¥s+1,s] IS any point that
lies on all the hyperplanes of our bundle, then equations (4), supple-
mented by the equation

8 Thus, L is precisely the intersection of all the hyperplanes of this bundle.
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Vs+4+1,0 o+ }’s+1,1u1+ te ‘!")’s—l—l,nun == O,

must still represent the same bundle; ie., the matrix (yix) (¢=1,2,...,
s+1; k==0,1,...,n) has the same rank n —r as (4). Consequently,
the vector {yst1,0, 7s41,1, - -, ¥s+1,n} is necessarily a linear combination
of the s veetors {rw, 7i1, -+, 7in} (6=1,2,...,5).* Thus, the point
[s+1,05 ¥s+1,1, 75 7s+1,n] belongs to L.

A zero-dimensional linear bundle is a single hyperplane. This hyper-
plane itself, thought of as a linear space, is the carrier of this zero-
dimensional bundle. A one-dimensional linear bundle is also referred
to as a pencil, and its carrier is of dimension n— 2. And above we have
already called an (n — 1)-dimensional bundle, a hyperbundle. Its carrier
is a point. Finally, an n-dimensional bundle consists of the totality of all
the hyperplanes of P,. In this case, the carrier is empty.

It iscclear that every linear space L can occur as the kernel of a bundle,.
for the coefficients yy in (4), which determine L, can be chosen arbitrarily.
Thus, we immediately have the converse of Theorem 2, namely,

TuroreM 2a. The totality of all hyperplénes containing a given linear
space L represents a bundle, i.e., it can be represented in turn by a system
of homogeneous linear equations.

From the above meaning of linear bundles we shall now obtain a
further result, concerning the incidence relations of bundles, which is
important for the application of the principle of duality. Let B, and
B> be two bundles such that B; C By; that is, let every hyperplane of the
bundle B; belong to the bundle B,. Let the kernels of B; and B, be K,
and K, respectively. The relation B; C B then implies that every hyper-
plane that contains the linear space K also contains Ky, i.e., every point
of K, belongs to all the hyperplanes of B, and hence, according to Theorem
2, to Ky as well. In symbols: K,C K,. Conversely, it follows in similar
fashion from K,C K; that B;C B;. We thus see that the relations
B,C B, and K,C K, are equivalent.

Let us now apply the principle of duality to this. Let-L; and Ls be
two linear spaces such that L, C L. The relation L, C L, implies a cer-
tain algebraic relation among the systems of equations defining L; and

4 For it is (by, for example, Modern Algebra, § 3, Theorem 5) a linear combina-
tion of m— r linearly independent vectors from among

{7’10!7/117'”1717;}7 {yzoiyzn-o-:}/gn}y--- ’{73017/31!'--’7, }
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L,. According to the principle of duality, the systems of equations can
also be interpreted as linear bundles B; and B,. The algebraic relation
in question between the systems of equations then means for By and B,
as well that, necessarily, B; C Ba. ' '

Let the kernels of B; and B» be Ky and K, respectively. It follows
that K,C K,;. Since the relations B;C By and K,C K; are equivalent,
either of them may be looked upon as the dual of L; C Ls.

Now consider the dimensions involved. Let the dimensions of I
and L, be r; and r,, respectively. Then By and B; also have the respec-
tive dimensions ry and s, but K; and K, have the dimensions (#n — 7y — 1)
and (n—ry—1), respectively.

Thus, if two linear spaces Ly and L. with dimensions 7, and 7. oceur
in a theorem, and L; C Lo, then for the dual of the theorem we can either
replace I; by a bundle B; of dimension 7; (i==1,2) and the relation
L;C Ly by B;C By or we can equally well, if suitable, replace L; by a
linear space K; of dimension n — r;— 1 (4 == 1, 2} and the relation L, C L,
by K 1 DK 2.

This demonstrates the truth of the following important speaial case
of the duality prineiple:

A theorem concerning incidence relations among linear spaces of pro-
jective Py remains valid if we replace every dimension r that occurs in the
theorem by n—r—1, every relation C (= ‘is contained in’) by D
(== “contains’), and every relation DO by C.

By specializing this result in turn we obtain still other important con-
sequences. Suppose that the linear spaces dealt with are all of dimension
0 or n—1; thus, we are concerned solely with points and hyperplanes.
n— 1 and 0 are then dual dimensions, i.e., the hyperplanes and the points
are dual geometrical constructs. For this case, then, the above result
reads as follows:

A theorem dealing with incidence relations among points and hyper-
planes of projective Pn remains valid if the word ‘point’ is replaced
throughout by ‘hyperplane,” the word ‘hyperplane’ by ‘point,’ the rela-
tion C by D, and the relation D by C.

In projective P, there are only zero-dimensional and one-dimensional
linear subspaces, namely points and lines (= hyperplanes). According-
to what we have just said, we must here replace ‘point’ by ‘line’ and
‘line’ by ‘point’ and interchange the relations as above. Analogously,
in projective P3 we would need to replace ‘point’ by ‘plane,’ ‘line’ by
‘line,” and ‘plane’ by ‘point.’



" III. HyperrrLANE CoORDINATES. THE DuaLity PRINCIPLE 47

Let us now make a first application of our knowledge by dualizing
some of the theorems of Chapter IT on linear dependence and independ-
ence of points. Of course, the definitions of linear dependence and
independence of points carry over verbatim to hyperplanes. Likewise,
the correspondence between points and vectors carries over into a relation
between the hyperplanes of P, and the veetors of V, ;. Also, it is clear
what must be understood by a coordinate vector of a hyperplane. Then
Theorems 1 and 3 of Chap. II allow of immediate dualization. We shall
only formulate the dual of Theorems 2 and 4. According to the rules for
dualizing given above, these theorems become :

The puAL of Theorem 2 of Chap. I11: Let hy, hg, ..., hy be k hyper-
planes in P, and let q be the maximal number of linearly independent
hyperplanes among them. Then there is no linear space of dimension
n— (g —2) — 1 ==n—q+ 1 that is contained in all the h;, but there is
exactly one linear space of dimension n— (q—1) —1=n-—q that zs
contained in all the h,.

The puaL of Theorem 4 of Chap. II: If the hyperplanes hy, ha, ..., R
are linearly dependent, then there exists at least one linear space of dimen-
sion n—£k +1 that is contained in all the h;; in the other case, the
(uniquely determined) linear space of largest dimension contained in all
the hy is of dimension n —1F.

‘We shall now illustrate the principle of duality by an ezample in the
projective plane (i.e., in P,). We choose as our example the Theorem of
Desargues, which can be stated as follows:

Let the correspondingly numbered vertices S1, So, 83 and Ty, Ty, Ts of
two triangles® be joined and the sides s, Sz, s3 and ty, to, t; be extended
(where s; and t; are, respectively, the sides opposite S; and T; for 1=1,
2,8; Fig. 2). Then if the lines joining the pairs of points 8; and T,
(1=1,2,3) meet in a point Z, then the three points of intersection U,
of the pairs of lines s; and t; (1==1, 2, 3) lie on a line.

For the purposes of the proof we restrict ourselves to the case in which
each of the pairs of points S, 7; ( = 1, 2, 3) consists of two distinet points
and in which s, 5% ¢; for every 4. In the other cases, both the hypothesis
and the conclusion of the theorem are trivially satisfied.® Let the coordi-

5 Triangle = three linearly independent points.

6 Because of the possible indeterminacy of the lines joining §: and T': as well as
those joining the U, the theorem is to be interpreted in these exceptional eases as
follows: If there is a point Z such that S:, T, and Z all lie on a line for each value
of 4, then there also exists a line g such that si, 1, and g all belong to a pencil for each
value of <. The general case, to be sure, is also correctly given by this formulation.
But we have chosen the above wording because of its greater intuitive appeal.



48 ProJecrive GEOMETRY oF n DIMENSIONS

nate vector of Z be denoted by 3, that of §; by r; (=1, 2, 3) and that of

Tiby y; (1=1,2, 3). i
Then 3 can be represented by a linear combination of the g;°and y; for

each1=1,2 3, say:
(%) F =l F Y = Al = Aks+ s Ys.

Henece
’ Lti—Asks = pahs— oy Y1
(6) Ayte—AsLs = pahs—pabe,

Agts—AiLr = My —psYs.
This means the following: The point with the coordinate vector
A1L1 — Agxs is both a linear combination of §; and 8, and also (by the first
equation of (6)) a linear combination of T; and T»,. It must therefore lie

on both s; and %, and so must coincide with the point Us (Fig. 2). In
exactly the same way, it follows that A,y — 4525 is a coordinate vector
of Uy and Agx3— A1 %1 a coordinate vector of U,.

The obvious identity

At — 222)""(22@2“7“333)4‘(}“32?3_11@1) = 0 K

then shows that Uy, U, Uz are linearly dependent and therefore lie on a
line, as was to be proved. »

If we now dualize the theorem of Desargues, we obtain:

If the points of intersection of the pairs of lines s;, t; are collinear, then
the lines connecting the pairs of points S, T; are concurrent at a point i Z.

In this case, the dual of the theorem is its exact converse!

The definition of a general projective coordinate system as given in
Chapter II can, of course, be applied to bundles of hyperplanes. This is-
not, however, of great importance. But another question that ¢s signifi-
cant is the following :
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Let (Qo, @1, ..., Qx| E) and (Qo*, Q1% ..., @* | E*) be two projec-
tive coordinate systems in Pn. Let & be a fixed hyperplane. According
to Theorem 9 of Chap. II, this may be represented in each of the coordi-
nate systems by a linear equation, say by

u0§0+u1§1+ vt un 8 =0

in (QO)QI}”‘)Q‘"IE) and by
us &5 FulE - dun &y =0

in (Qo*, Q1% ..., Q% | E*), where & and &;* designate point coordinates
in (Qo, Q1 - .., Qn | E) and (Qo*, Q1*, ..., Qu* | E*), respectively. Then
the u; are uniquely determined up to a constant of proportionality, as are
the u*. The u; and the w;* are referred to as the hyperplane coordinates
in the coordinate system (Qo, @1, . .., @n| E) and (Qo*, Q1%, ..., Q*| E¥),
respectively.

Let us now consider the question, What relation exists between the
u; and the u;*? ‘

By Theorem 7, Chap. I, we know that there exists a non-singular
matrix T such that ‘

(M ' (E) = o-T-(%),

where (£*) and (&) are matrices analogous to those in (10) of Chap. II.
If in the same way we construct matrices (%) and (u*) with the u; and u,*,
respectively, we can also write the equations of hyperplane A in the two
coordinate systems in matrix form: (u)’(&) =10 in (@, @1, -+, Qn| E)
and (w*)’(£*%) = 0 in (Q5, Q5 - - -, Q:]E*) .7 If we substitute (7) in the
second of these equations, we obtain: '

(® o-(w*.-T-(§) = 0.

As follows from its derivation, this equation will be satisfied if and only
if the &; are the coordinates of a point of & in the coordinate system
(Qo, Q1,-..,Qun| E). The matrix ¢-(u*)'- T' has the following form:
The second to the (n -+ 1)-st rows inclusive consist entirely of zeros. The

7 4’ denotes the transpose of 4. (This is in conformity with Modern Algebra,
p. 801.)
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first row therefore contains just the hyperplane coordinates of A in
(Qo, Q1,...,Qn| E). Thus, except for a constant of proportionality
(540), e(w*)-T is equal to (#)’. Combining the constant of ‘propor-

tionality with o, we may write
(u) = A(u*). T,

or, by Modern Algebra, § 22,
(9) (w) = 21" ("), .
(10) @) = p(T) W) = w(T-Y- W)

“ The equations in (10) parallel (7). They also represent a non-singular
linear substitution, but with a different matrix. We call the substitution

(10) contragredient to (7), and we accordingly say :

Hyperplane coordinates and point coordinates transform contragre-
diently to each other upon passage to a new projective coordinate system.

We should like to conclude this chapter by going briefly into the
question of the natural limits of the applicability of the prineiple of
duality. There is of course no intrinsic reason why we cannot set up a
dual in hyperplane coordinates to match every definition and relation
in point coordinates. However, it turns out that for a number of concepts
the dual has no particular geometrical meaning, Take, for example, the
coneept of improper points. In many connections (for example, paral-
lelism), these points play a special role among the points of Pr.. But how
about their dual set of hyperplanes? Since a point [&o, &1,...,&x] is
improper if &g==0, the corresponding dual is the set of hyperplanes
(o, U1, . . . , Un) With 49 ==0. These hyperplanes have no particular geo-
metrical distinctiveness, however. They do not even include the improper
hyperplane, whose coordinates, in fact, are (1,0,...,0). Hence the duali-
zation of statements that involve improper points or concepts derived
from them (e.g., parallelism) is without geometrical meaning or
importance.®

‘We shall return to these non-dualizable coneepts in a later chapter,
and we shall then have the means of determining more exactly the scope
of the prineiple of duality (ef. Chap.XI., pp. 178-174). =

8 Any attempt.to establish the improper points as dual of the (single) improper
hyperplane (by a different choice of coordinates, say) is, of course, doomed to failure,
since the mere difference in number of the improper elements {at least, for n = 2)
destroys the symmetry of the hypotheses about points and hyperplanes.
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Exercises

1. Let two triples of points, say 1, 2, 3 and 1, 2’, 3/, be given in the projective
plane and let them, moreover, be in perspective position; that is to say, there exists
some point Z such that i, ¥, and Z are collinear for each i. Denote the line joining
the two points ¢ and ¥ by gu, the line joining the points i’ and ¥’ by gv«/, and that
joining the points 7 and ¥’ by gu.

Consider the following six pairs of lines:

iz, Guers  gas, st Gis, Guet;
Yo'y gor'; gest, gsety Grs'y g1’

Each pair will in general determine a point of intersection.

Show that there are four (new) lines whose six points of intersection are identical
with the six points of intersection of our six pairs of lines. What does the dual
theorem state?

As a special case, if the triples 1, 2, 3, and 1’, 2/, 3’ each lie on a straight line,
some of the above six points of intersection coincide. Show that the four distinet
remaining points of intersection all lie on a single line. What does the dual theorem
gtate?

2. Let two lines g1 and g- with point of intersection § be given in the projective
plane. Let 1, 2, 3 be three points on g: and 1/, 2, 3’ be three points on gz. Let g
be the line joining ¢ with ¥’. Extend the lines gi»' and ge¢ until they interseet. Call
the point of intersection S,. Likewise, let S: be the point of intersection of g and
gs¢ and 8: that of gz and gaer.

Show that the following statement is a direct consequence of the special case of
Exercise 1: If two of the points 81, Sz, Ss are collinear with 8, then so is the third.

State and prove the dual.
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THE CROSS RATIO

Let g be a line in (real or complex) P, and let (Q1; @2 | E) be a projective
coordinate system on g (cf. Chap. ITI). Also let @ be a point on ¢ distinet
from Q,, with the coordinates A1, A2 in (Q1, @2 | E). Since @ = @, it fol-
lows that 1554 0, and consequently the fraction 4 : Az is completely de-
termined by the four points @1, @2, E, and Q. It is called the cross ratio
(also, anharmonic ratio and double ratio) of the four points Q1, 0., E, Q

and is denoted by the symbol R(Q; @2 £ @). Thus,
2
(1) ‘ R QEQ = 1

In this definition, the coordinate vectors ¢ and ) of @y and Qs respec-
tively are normalized in such a way that the coordinate vector of E is
equal to 1 + y (by virtue of the fact that (@i, @2 | E) was to be a projec-
tive coordinate system). The ecoordinate vector of @ is, of course,
Aix + Aoy, But let us refrain from taking this special normalization into
account. Thus let usx + ueb, say, be a coordinate vector of E and A1 + 129,
once again, a coordinate vector of . Now what is the eross ratio
R(Q: Q2 E Q), computed in terms of the four numbers g1, p2, 41, 122

To bring this within the scope of the preceding definition, let p; r = ¢’
and wsh ==9’.1 Then the coordinate vector of @ can be written as follows
as a linear combination of ;g’ and 9" :

}"1 }' 12 '
- >+ ey =y +oty.
By our first definition, we thus have -
A, A
6 DO RQQREQ = >,
My Mo

N

1 For E now does have p, p+ ) = 3+ 9’ as coordinate vector.
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Note that the order in which the four points occur in the symbol
R(Q1 Q2 E Q) is essential, for the definition of the cross ratio is by no

means symmetric in the four points.

It follows directly from the definition that if @ < @’, then
R(Q:19:E Q) #R(Q1Q:E Q).

In (1), @ can stand for any point on the line g, with the exceptlon of
1. In order to eliminate this exceptional role of @,, at least in the
notation, we oceasionally write, symbolically,? R(Q; @2 E Q;) = .

In order to investigate how the cross ratio depends upon the order of
the four points, we begin with a more general question. Let S,, Sg, S3, S4
be four distinet points on g and let all of the S;, moreover, be distinet from
the points @, @2, B.®> Also, let »; = R(Q;, @2 E 8;) be given for 1=1, 2,
3, 4 Then what is R(S; 82 S3 84) in terms of the x,;?

To answer this question, we must determine the coordmates of 84 in
the coordinate system (S; 82| Ss). To this end, let ¢ and y again denote
the coordinate vectors of §; and s respectively and g + 1 a ecoordinate
vector of E. By definition of the cross ratio, 3; = #; £ -1 is a coordinate
vector of §;. From this we immediately obtain the following equations:

(#y—%5) g5 = (%5 — #5) 31—+ (1 — %) 32,
(%, —#9) 34 = (34— 2#3) %1 + (ot — %) 3o

Since all of the x; are different? from each other, we have at once from (2) :

Xy Hg Xy Hy

RS 8 8 8) = : ’
kg—x2 xl—‘—xg
7 or
R Ik U S|
®) RS S5 8) = bt

By the use of formula (3), we can easily get a clear picture of all the
possible values that the cross ratio can have under various orderings of
the points Sy, 8s, S5, §5.  All these values may be obtained by permuta-
tion of the subscripts in the right-hand side of (3). Among these permu-
tations there are certainly some that leave the right-hand side of (3)

2 Here 0 is to be understood as a pure symbol and by no means as a number of
infinitely large value. The notation R (Q:Q:FE @) — co merely means that @ — Q1.

3 For any given S, it is always possible to choose the coordinate system so that
this condition is satisfied.

4 Since the 8., by assumption, are all distinct from each other.
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unaltered: the identity permutation, for example, which leaves all the
subseripts the same, has this property. Now, all the permutations that
leave the expression on the right-hand side of (3) unaltered constitute a
subgroup of the complete permutation group® on the four given points
S1, 83, 83, 84, because the product of any two permutations with this
property, itself has this property. Call this subgroup H.

‘We then have the following result: Two permutations of the sub-
seripts in the right-hand side of (3) yield the same result if and only if,
as elements of the complete permutation group, they belong to the same
left coset of m. For if 7, and 1, are two permutations having the same
effect on the right-hand side of (3), then ¢, leaves the right-hand side
of (3) unaltered. Thus, ¢7?-7,= ¢, with o in H. From this it follows
that 7, = 7. ¢, ie., 7; and 2 belong to the same left coset of H. Con-
versely, two elements of a given left coset of m always yield ‘Ehe same
result, since the application of a product z.q, with ¢ in H and = an arbi-
trary permutation, yields the same result as the application of = alone.®

We can easily determine H. First of all, observe that the four permu-

tations that take (1, 2, 3, 4) into
(1,2,8,4), (2,1,4,3), 3,4,1,2), (4,3,2,1)

leave the right-hand side of (3) unaltered. Thus, the order of H is = 4.
On the other hand, the complete permutation group on four points has
order 24, so that the index of u in the complete permutation group must
be = 6. But by what has been said above, this index must also be the
number of different expressions obtainable from the right-hand side of
(3) by a permutation of the subscripts. Thus, if we can produce six
permutations which, when applied to (3), give completely different results,
then the index of H must be exactly equal to 6 and, consequently, the
order of u exactly equal to 4. But six such permutations can indeed be
found. We can take, for instance, the permutations that carry (1,.2, 3,4)
into
(1’ 27 3’ 4)} (1727.4’ 3)’ (173’ 27 4)7 (173’ 4’ 2)’
(1,4,2,8); (1,4,3,2).

Finally, if we determine the elements of all six cosets and denote
R(81 82 83 84) by o, we obtain ¥

5 For the definition of complete permutation group, see Modern Algebra, p. 256,
(The special case of the complete permutation group that we are dealing with here
is also called the symmetric group on four elements.)

6 Sinece 0 does not alter the right-hand side of (3).
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0 = R (5:8:88) =R (8:8:8:8) = R (88,5 8)
1 =% (84838281),
- = R (81 8:8,8:) = R (88 88,) == R (8,88 8:)
= R (88:8:8),
1—0 = R (8858) = R (S8:8:8) = R (S:5:5,5)
=R (S482835'1), 7

@ T = RESSS) = R (S5 S5 = R (5555
= R (8 8:8:8), /
lio' = R (6188:8) = R (5%85%8) = R (8415'215’185)
= R (8:8:8:8),
T = R(S585) = R(Su5%8) = R (S588)
= R (855, 80).

Now when do any of these values o, % , ete., coincide with any of the

others? To find these cases, it is sufficient to investigate the possibility
e e o g—
that o be equal to any one of the remaining five values, %, 1—a, p 1 ,

7

4 —
1—¢ 3% 57
By setting o equal to 5 e geto®’==1 0oro= =+ 1. o=+ 1means®
that 83 =298, This is a degenerate case, which we shall exclude for the
present, since we assumed to begin with that the S; are all distinet.

0 == — 1 yields

6= — = —1, 1—0 ==

Thus we obtain only three different values for the cross ratio, namely
—1,2,1/2. In this case, the four points Sy, S, S3, S: are called a

harmonic set.

If the points S, 83, 83, 84 of a harmonic set are arranged in such an
order that R(S;S:838.) ==-—1, then the pairs of points 81, 82 and
Ss, 84 are said to separate each other harmonically.

7 Since any one of the six possible values can be dentl)ted by ¢, the remaining five
'

. c—1
values are then, by (4), given by - 1-—oag, PR g and el

8 Cf, the defining equation (1) of the eross ratio.
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If we put 6 =1-—o0, we again get a harmonic set. And likewise,

yields, in the non-trivial case, or:ﬂy another

. o
putting o equal to p—

harmonic set.
On the other hand, by settmg o equal to either of the two values

1 d—1 .
1o’ o Ve get the equation ¢*—o-1 =0 for 0. This equation
has no real solution. This case is therefore ruled out in real Pn; but in
complex Py, it is possible. ¢ can then be either of the roots of

¢2—0c+1=0,
18 1+5V3

=",

2
‘We then get .
1 o—1 14+:V3 1 o 1—i V'3
0 = e — ——:1—6-: == »
1—o o 2 o o—1 ’ 2

where /3 in each instance stands for, say, the positive root. Thus we
get only two distinet values for the cross ratio. In this case, the four
points 81, Ss, S3, 84 are said to form an equianharmonic set.

The equianharmonic case is not of great interest for us, but we shall
soon be concerned with the harmonic ease in some detail.

It is customary to extend the validity of formula (3) to that case in
which only three of the points S; are distinet from each other, and thls

is done by stipulating that
R (818 85:8) =

(g~ 1) (4 — )
(w5 —5) (34— 2y)

provided x; — #, and x, — x, are 5% 0, but that
R (81 8:88,;) = o
if either 3 —x, or z,—x, is 0.° In particular, R(Sy8; 85 8;) = o,
which is in accord with our earlier. agreement.
By virtue of this extension of our definition, there is one more case

.in which the cross ratio assumes only three different values, namely, that
in whieh two of the points S; coincide. If, for example, S3 == 8, then

9 Only one at most of the four differences
Ky Ay, Kg=—HKg, g~ Ay, X4~ %3

can vanigh, since there are at least three distinet points.
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o‘——____——._].'_:l, 1——0:(TWI—:O’ 1 — il — L,
g g

In the following, we examine thie dual to the above definitions and
arguments. To this end, instead of starting out, as on page 52, with the
line g, we must start out with a pencil b of hyperplanes, i.e., with a one-
dimensional linear bundle (in Ps, a pencil of lines; in P;, a pencil of
planes). Also, let gy, ¢s, and e be three hyperplanes of b with the respec-
tive coordinate vectors uy, utz, and 1y -+ uz. Then let g% g1 be a further
hyperplane of b, with a coordinate vector b, and let b = 4; u; -+ 4, u,.
Then 4; : A2 will be the cross ratio of the four hyperplanes q, g2, ¢, g, and
in analogy to (1), we shall set

1

y)
®) R(@1 Qe eq) = “22—

The rest of what we have already said as regards points now carries over
word for word ; we need merely replace everywhere the expression ‘point
on the line g’ by ‘hyperplane of the pencil 5.’

Equations (4) in particular remain valid if we take the S; to mean
four distinet planes of the pencil b, If R (kg hg hg hy) = 1, we say, as
before, that the four hyperplanes h; constitute a harmonic set, or that
the pairs of hyperplanes hy, he and hg, hy separate each other harmonically.

The following is a fact of
particular importance. Let us
consider, in Ps, four lines hq,
ha, hs, hy of a pencil (Fig. 3),
and let their points of inter-
section with another line g, not
of the pencil, be respectively
Sl, Sz, Sg, 8s. Then

Fig. 8

‘R(kl hs ks h4) - ‘R(Sl Ss Ss 84) .

The proof that we shall now give will, of course, be of the #-dimensional
-generalization of this theorem. In this case, ki, hs, k3, ks shall mean four
hypérplanes of the pencil b, and g, a line that does not pass through the
carriert L of this pencil.

1 The carrier L is an (7 — 2)-dimensional linear space (Chap. ITI); for example,
in P it is a point, and in Ps, a line.
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It follows at once that g cannot belong to any hyperplane & of b. For
if gCh, then the spanning space of g and L would also be contained in
h, i.e., the spanning space would be at most (n— 1)-dimensional. By
Theorem 5 of Chap. II, it would then follow (if we recall that ¢ is one-
dimensional and L (n — 2)-dimensional) that the intersection of g and L
is non-empty. But this contradicts our assumption.

On the other hand, the intersection of ¢ and % can never be empty, and
s0 must consist of exactly one point.

And conversely, every point of g lies on exactly one hyperplane of b.
For since the intersection of L with any point @ of ¢ is always empty,?
the spanning space of L and @, by Theorem 5 of Chap. 11, is of dimension
n-—1, ie., the spanning space is a hyperplane. As a spanning space,
however, thls hyperplane is uniquely determined and moreover also be-
longs to b, since it contains L.

Now if §; is the point of intersection of A; with g, we may state the
following theorem.

Tusorem 1. If, for i =1, 2, 3, the points S; of g are incident with hi,
then the equation
R(8182 83 8s) =R (h1 ha ks hy)

is @ necessary and sufficient condition for the incidence of 84 with h,.

The theorem is trivial if two of the elements h; or S; coineide. For the
coincidence of two elements h;, hy necessarily entails the coincidence of
the correspondingly numbered S;, Sy, and conversely. Furthetmore, the
coincidence of two elements implies a definite value for the eross ratio
(namely, 0,1, or o ; ef. p. 55).

‘We may therefore assume the §;, and the &, as well, to be distinet. Then
let the coordinate vectors of 8y, 82, 83 and of hy, ks, hs be respectively
L1, &2, L5 and i, Us, us, and let them, moreover, be normalized in such a
way that gs=1+¥ and us=1u,+u,. If we set R (S, Sz 85 Ss) =41
and R(hy h ks k) = p, then by the definition of cross ratio, the vectors
Ax1+1to and puy+ 1, are the coordinate vectors of 84 and Ay, respectively.

Since, by assumption, S, is ineident with %; for i=1, 2, 3, we have?

(6) wy = 0, ULy = O, (1) (¢ +122) = 0.

From the last equation of (6), in conjunction with the first two, it follows
that

2 TLe., @ does not lie in L.

3Here ;% denotes the sealar product of the two vectors.
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(M U retue fy = 0.

The incidence in question of 84 and 4, is determined by the behaviour of

the expression (p ity -+ ug) (A g+ 12) .
From (6) and (7), we obtain

(8) (gt ug) Axi+22) = (w— ) Wy 1».

Now w1z is certainly s« 0, since S is not incident with k;. Hence, the
left-hand side of (8) will vanish if and only ¢f p==41. Thus, Theorem 1
is proved.

If we assign to each point of the line g that hyperplane of the pencil b
which goes through the point, and conversely, then we have, by definition,
a one-to-ome correspondence between the points of g and the hyperplanes
of b. Such a correspondence is called a perspectivity, and we shall say:
g and b are perspective or in perspective.?

Theorem 1 can now be rephrased as follows:
The cross ratio is invariant under perspectivities between g and b.

This theorem may be generalized still further. Consider two lines g
and ¢’ and a pencil b that is perspective to both. Then a one-to-one cor-
respondence between g and ¢’ is defined by associating with each other
the points of g and of ¢’ that lie in one and the same hyperplane. Such a
relation between g and g’ is likewise called a perspectivity. Of course,
the cross ratio is also invariant under perspectivities of this kind. Per-
spectivities between two pencils b and " may be defined dually.

For the sake of later application, we give here the following exzample
of a perspectivity:
Let ¢ be a (two-dimensional) plane of P, (n == 2) and let g, g be two

lines in e. Let Q be a point in ¢ that does not lie either on g or on g. We
now define a one-to-one correspondence between g and g as follows:

The image point of a point § of g shall be the point of intersection 8
of g with the line SQ.

We claim that this mapping is a perspectivity.

Proof: If n==2, then ¢==P,, and our assertion is trivial (for it is
then actually equivalent to the definition of perspeetivity).

4 Tt must not be forgotten that for such a correspondence to be possible, g must
not pass through the kernel of b.
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If » > 2, then we select a linear space L of dimension » — 2, having
the point ¢ but nothing else in common with ¢.> Then ¢ and g have no
points in common with L. All the hyperplanes that contain L form a
pencil b. A hyperplane of b passing through a point § of g contains the
entire straight line S@ and therefore the image point 8. We have thus
shown that the correspondence defined above is a perspectivity.'

Let us take up, as our next topic, a geometrical interpretation of the
harmonic set. ’

Let 8,, 82, 83, S be a harmonic set on a line g. Then 8, is uniquely
determined by the points 81,8, 85 and the condition R (81828384} =—1.

S84 can be found by a simple geometrical construction. This is accom-
plished as follows (Fig. 4): Let A be an auxiliary point not on g, and let

Fig:. 4

g1, g2, g3 be the lines joining A with Sy, 8, 8, respectively. Let B be any
point on g; distinet from A and S;, and denote by A; the line joining B
with §; and by Az the line joining B with S..

The lines h, and g, are certainly not identical, for h; contains the
point 83, which does not lie on ¢2.° On the other hand, h, and g, like
all the elements of the construction, lie in the plane determined by 83, Sa,
4, ie., in a two-dimensional linear space. This plane is the spanning space
of h; and g,. By Theorem 5 of Chap. I, 2; and g» therefore have just
one point of intersection, say €. C is certainly different from S and A4,

5 The existence of such a linear space can be seen as follows: Let @i, @2 be
points of e such that @, @1, @: are linearly independent. In addition, let @z, Qs ..., @n
be points of P, such that @, @1, @2, @, ..., @n in their totality are still linearly inde-
pendent. Then the linear space L of dimension n — 2 containing the points @, @s, @,
..., @Qn gives the desired result. For, the spanning space of L and e is the whole of
Prn, whenece the intersection of I and e, in accordance with Theorem 5 of Chap. II, is
zero-dimensional and is thus equal to @.

¢ For 4, 81, S: are linearly independent by assumption.
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for otherwise B would have to coincide with 83 or with A, contrary to

our assumption.
In exactly the same way it can be shown that h, and g¢; have in com-

mon just one point D, distinct from S; and A.

The line joining C and D is therefore different from g and conse-
quently intersects ¢ in a single point.

We assert the following: This point of intersection of CD and g s
precisely the fourth harmonic point Sy

Proof: We take Sy, 82, A as fundamental points and B as unit point
of a projective coordinate system in the plane determined by Sy, Sz, 4.
Let the coordinate vectors of S, 8,4 be r,1),3, respectively. Then
t + 9+ 3 is a coordinate vector of B.

Now since the vector ¢ + y is a linear combination of r and 1 and also
a linear combination of ¢ + Y + 3 and 3, the point with coordinate vector
¢ + b must lie both on ¢ and on g3 and hence must be the uniquely deter-
mined point of intersection S3. Thus ¢ + 4 is a coordinate veetor of S;.
In the very same way, it ean be shown that ¢ + 3 is a coordinate vector of

D, and y + 3 a ecoordinate vector of C.

‘We have still to find a coordinate vector for the point of intersection
of g with the line through € and D. Because of the uniqueness of this
point of intersection, it is once again a matter of finding a vector which
is both a linear combination of ¢ + 3 (point D) and y + 3 (point C) and a
linear combination of r and §. Such a vector is ¢t — 1.

~ Thus we see that the four points 8;, Sz, S5, 84 have 1, v, ¢+, r—1p
respectively as coordinate vectors. But from this it follows that
R (81 82 83 8¢) = — 1, which was to be proved.

The above construction of the point S,, the so-called fourth harmonic
point, employs just two basic operations (carried out a number of times
and in a definite sequence), namely :

1. Passing a line through two points;

2. Forming the intersection of two lines.

Constructions of this kind, which involve these two operations only, are
called linear constructions. Thus we can state:

TueorEM 2. The fourth harmonic point can be obtained by means of
a linear construction.

The possibility of the above construction is also called the Theorem of
the Complete Quadrilateral. This name comes about in the following
way :



62 Prosecrive GEOMETRY oF n DIMENSIONS

A complete quadrilateral is defined as the plane figure consisting of
four lines (no three of which go through the same point) and their six
points of intersection. The lines are called sides of the quadrilateral and
the points of intersection are called its vertices. Two vertices which have
no side in common are called opposite vertices.

Let us consider, for example, Fig. 4 (p. 60). g1, ga, k1, hs are the sides
of a ecomplete quadrilateral and 4, B, C, D, Sy, Sz are its vertices. 4, B
and C, D and 8;, Sz are then the three pairs of opposite vertices.

The lines joining opposite vertices are called diagonals. Thus, g, gs,
and the line joining C and D are the diagonals of the quadrilateral in
Fig. 4. Of the four points 8y, Ss, Ss, 84 on the diagonal g, the first pair
are the opposite vertices that lie on g, the second pair are the points of
intersection of g with the other two diagonals.

By use of these concepts, the fact that R(S; Sz 83 84) == —'1 can now
be expressed as follows:

THEOREM OF THE COMPLETE QUADRILATERAL: On every’ diagonal of
a complete quadrilateral, the pair of opposite vertices on that diagonal
and the pair of points of intersection with the other two diagonals separate
each other harmonically.

The theorem of the complete quadrilateral, as well as the foregoing
construction, can be dualized in the projective plane (i.e., in P;). As
regards the construetion, we leave that to the reader, and we confine
ourselves to mentioning that the concept dual to that of the complete
quadrilateral is called the ‘complete quadrangle.” Tts definition is
immediate :

Four points, every three of which are linearly independent, together
with the six lines joining them, constitute a complete quadrangle.

The points are again called vertices and the lines are again called sides
of the quadrangle. Two sides which have no vertex in common are called
opposite sides, and the points of intersection of two opposite sides are
called diagonal points.

The Theorem of the Complete Quadrangle then reads as follows: At
each diagonal point of a complete quadrangle, the opposite sides (which
pass through it) and the lines to the two other diagonal points separate
each other harmonically. ’

If, for example, we regard the points 8, 82, C, D in Fig. 4 as vertices
of a complete guadrangle, then A is a diagonal point and gy, g2 har-

7 Not only on g but, by reason of symmetry, on every one of the three diagonals.
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monically separate g3 and the line from A4 to ;. The same result could
have been obtained from Theorem 1 (cf. Fig. 3).

But it is not only the harmonic cross ratio that has geometrical prop-
erties; the general cross ratio has geometrical properties also, a few of
which we shall now derive. If in the relation

¢ RWG. 88 T) = a

the Sy, 82, 83 are thought of as three distinct fized points and T as a
variable point on a line g, then to each T £ 8; there belongs a uniquely
determined @, and to each @ there belongs a uniquely determined T'; that
18, (9) sets up a one-to-one correspondence between the numbers @ of the
(real or complex) ground field and all the points T £ §; of g.

Let @, b be two numbers of the ground field and let T,, T, be the points
of g that correspond to them in accordance with (9). Let T,4; be the
point corresponding to the sum e + b and let 7., be the point correspond-
ing to the product ¢+b. Surprisingly enough, it is possible to obtain
Pat» and Tp.p from 7, and T, by means of geometrical constructions—
and, what is more, by linear eonstructions alone.

In order to see this, we first resort to heuristic considerations in P,
(i.e., in the projective plane). Consider an ordinary rectangular coordi-

) R

nate system to be given in the plane so that (ef. Chap. I) every proper
point [ &g, &1, 2] of P; is represented by a point with the rectangular (non-
homogeneous) coordinates &;/&,, £2/&o.

Let us take the z;-axis as our line g and let us choose for the points
81, 82, and 83 the improper point of the z;-axis, the origin, and the unit
point of the z;-axis, respectively, i.e., let

'SII[O,I,O], 822[17070]:(07 O)) S3:[v1’1’01:(170)

Fig.
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(cf. Fig. 5). Now if any proper point on the x;-axis be given, say T\,
with abscissa @, so that T, == [1, @, 0], then we have at once the relation

{1, a,0} = a{0,1,0}+{1, 0, 0}

among the coordinate vectors of T,, 81, and S, -This means that
R(8, 8383 Ty) =a. Thus, the cross ratio has here a simple geometrical
meaning: R(S; 8283 T,) is equal to the abscissa of T,

In this special case, we can now immediately give a construction that
will yield 7,45, with abscissa @ + b, i.e.,, R(S: 82 83 To4s) = a + b, when
T, Ty are given. This construction can be read off directly from Fig. 5.
Point 4 in Fig. 5 is an auxiliary point and can be any arbitrary proper
point of the plane. 824 is parallel to T,B, and Sod == T,B? Finally,
AT, is parallel to BT,,3. The correctness of our construction follows
from the faet that S, T = TpTovo.

In this construction let us think of the improper line as an auxiliary
line h passing through 8;. Let the intersection of S:A and % (that is, the
improper point on the line S;A4) be denoted by C, and the intersection of
T.,4 and b, by D. Then we know that T, B also goes through € and 7T,++B
through D. Furthermore, AB, being parallel to the x;-axis, passes
through 8;. Accordingly, we can look upon the constructlon in Fig. 5 as
the realization of the following operations:

First, we pass a line through S and 4, and determine its intersection
C with A, Then we draw the two lines through T, and € and through 4
and S; and determine their point of intersection B. Finally, we connect
T, with A and form the intersection of this line with 2. Let D be the
point of intersection. If we then pass a line through B and D, its point
of intersection with g gives us the desired point Tgyp.

In this form, in which the word ‘parallel’ no longer appears, the con-
struction is of general validity. Indeed, let us return to Pn. There too
our starting point was a line g and three fixed points 8, 82, 83 on g¢.
Now let us draw through S; any auxiliary line % distinct from g, and
let us choose some fixed auxiliary point 4, not on ¢ or on &, but in the
plane determined by them.®* If we now carry out in P (in the plane
determined by g and k) the above operations, word for word as de-
seribed in the preceding paragraph (cf. Fig. 6), we assert that the follow-
ing is true for the point T, .5 thus constructed :

8 Ag in Modem Algebra, 8:4 denotes the length of the segment S:4.
9 The spanning space of two lines that interseet in a point is of dimension 2,
by Theorem 5, Chap. II, and accordingly is a plane.
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(R (SI Sz Sg Ta+b) == Q{ (Sx Sz Sa Ta) + Q{ (81 Sz Ss Tb)-

Proof : Let the coordinate vectors of Sy, 8z, 83 be , y, £ + 1), respectively,
and the coordinate vectors of 4 and C, 3 and y + 3, respectively.! By
assumption, we have R(8; 82 85 T,) = o and R(8; 82 83 T) = b, where
@, b are two numbers of the ground field. Hence (by definition of the
eross ratio), ax + 9 is a coordinate vector of T, and by + Y, a coordinate
vector of T.

The point B is uniquely? determined as the point of intersection of
CT, with A8;. Hence, any vector that is a linear combination of ¢ and 3

D
ag+n+y

oo’ I

o) g
Sz Ta Tb Ta+b SI h
) agtn  brto (a+b)pty H
Fig. 6

and at one and the same time a linear combination of by +y and y -+ 3
must be a coordinate vector of B. Such a linear combination is by — 3.
Similarly, ax + 9 + 3, being a linear combination of ¢ and ¢ + 3 on the
one hand and of 3 and ax + Y on the other, is a coordinate vector of D,
the uniquely determined point of interseetion of AT, with C8; (CS; is the
auxiliary line h).
Finally, T, 5, the uniquely determined point of intersection of DB
and 8;8;, has the coordinate vector (@ + b)x + 1y, since this vector is both
a linear combination of ¢ and y and of ag + 1y + 3 and by — 3. a

1 The possibility of such a choice is clear. For if we first set-the coordinate veetor
of A equal to 3, then the coordinate vector of € can certainly be represented in the
form Ay -3 . Both 1 and u are different from 0, inasmuch as Se, 4, and C are all

distinet. Thus 1)+—‘u}—§ is a coordinate veetor of C. We then merely need set
%3 == 3 to obtain the desired normalization.

2 Only one point of intersection exists, since the lines through CT: and 48: are
distinet from each other.
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It follows that
"R(Sl S S5 Ta+b) = g+ b,

as was to be shown.

The question of constructing 7',., may be disposed of in an entirely
similar way. We first proceed heuristically, as we did above.

Again, let g be the zj-axis of the projective plane; and let
8:==1[0,1,0], the improper point of g; Ss==[1,0,0] = (0,0); and

— S,

T, T, g
Fig. 7

S3=11, 1, 0] == (1, 0). Furthermore, let T, = [1, a, 0] = (a, Q) and
Ty==1[1,5,0] == (b,0). From this it follows that R(8; 8: 83 T.) =a
and "R(Sl Is’z S3 Tb) =, -

Fig. 7 then shows how the point T,., with abscissa a-b is to be
found. In Fig. 7, k is an auxiliary line through 8», distinet from ¢ but
otherwise arbitrary. A4 is any auxiliary point on % (but distinet from 8,,
and proper). Also, AS3is parallel to BT, and AT, parallel to BT,.,. The
validity of the construction follows from the equation

SQA:SQB:S2S3:&Tb:SQTaZSQTab
= 1 : b = a . : 8 Tuw,

that is,

82 Ta.b —_ ab.

Now let us again use the line at infinity % as an auxiliary line through
8., denoting by C the intersection of 2 with 834 and by D the intersection
of h with T,A. Then the intersection of T,B with A is also equal to C
and that of Ty, B with k, to D. ‘
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We can therefore interpret the construction of Figure 7 as the carry-
ing out of the following operations.

First we pass a line through §; and the auxiliary point 4 and deter-
mine its intersection C with h. Then we pass a line through T, and A
and find its point of intersection D with k. Finally, we connect ¢ with
T, and determine the point of intersection B of CT, and k. If we then
pass a line through B and D, its point of intersection with g gives us the
desired point T, .

In this way we have again obtained a form of the construction which
has general validity. Returning to our line g in P, with the three fixed
points 81, Sy, 83 and given T,, Ty (54 8;), with R(S; S» S, T,) == a and
R(8182 85 Ty) =0b, we must proceed as follows. We first draw an
auxiliary line h 4 g through 8;; second, another auxiliary line k=4 g
through 8¢; third, we choose on % an auxiliary point A distinet from S,
and not lying on h. Then we carry out, word for word, the operations
deseribed in the preceding paragraph. For the point T,, thus obtained,
the following holds:

‘R(Si sts Tab) = q{(sl S2S3 Ta) * CR(SI 825’3 Tb)-

The proof is carried out in exactly the same way as in the construction of
Toyy and can be read off from Figure 8 if one determines the indicated

D
ag+y

& O 'e, > I4
S, S; T, b Tab S, h
) ¢y arty bpdn abgdy x
~ Fig. 8

coordinate vectors of the points in the following order: 84, Sp, 83, 7o, T,
F (F is the intersection of & with &), C, 4, D, B, T, .
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Exercises

1. Let four distinct points @1, @2, @s, @« be given on a line of real projective Pn
and, moreover, let the @: all be proper points, so that they also represent points in
affine B.. Let the idea of euclidean length be introduced into affine E. and denote

the distance between @: and @ by @—;@—k Show that

@06

Dv (@, @: Qs 4) = =
[Dv (@ @2 @5 @) | 0.0 0.0

{

2. In the construction of Figure 6 on page 65 interchange the roles of T. and
T (leaving the auxiliary elements 4 and % fixed). Since a -+ b =b + a, the outcome
of the construction as thus altered must of course be the same final Teq4s. The fact
that the two configurations of lines of the two constructions end in the same point
gives a geometrical theorem. Convince yourself that this is precisely the theorem
of Exercise 2 of Chapter III.

If, similarly, the construction in Figure 8 is repeated with the roles of T. and
T, interchanged, the auxiliary elements 4, h, k¥ being held fixed, then the commuta-
tive law of multiplication gives the so-called Theorem of Pascal for a pair of lines:
If the vertices of a hexagon lie alternately on two lines, then its opposite sides intersect
in three points of a line. Carry out the two constructions and find Paseal’s Hexagon.

3a) In Figure 8 on page 67, the fact that the construetion is independent of the
choice of the auxiliary elements %, &, 4 is equivalent to the following theorem:

If the vertices of two complete quadrangles 4, B, C, D and 4’, B, C”,\D' are
considered as corresponding to each other in that order, 4 with A’, B with B’, ¢ with
¢’, D with I, then the following is true for the six points of intersection of correspond-
ing sides (i.e., for the intersection of AB with A’B’, of AC with 4°C’, ete.): If five
of them lie on a line g, then so does the sixth.

Remark: This theorem can also be proved easily as a consequence of the Theorem
of Desargues.

b) In Figure 6 on page 65, the fact that the construction is independent of the
choice of the auxiliary elements h, 4 is equivalent to a special case of the theorem
just mentioned. (Two of the points of intersection coineide in this case, namely, at S1.)



CHAPTER V

PROJECTIVITIES

In this ehapter we shall study certain important mappings between linear
spaces. Let L and L* be two linear spaces of P, and let there be defined
a one-to-one mapping between them—that is, let there exist a correspond-
ence between the points of L and those of L* such that exactly one point
of L* corresponds to each point of L, and conversely.

Besides this, we impose the following condition on our mapping:
Linearly dependent points shall always be carried into linearly dependent
points and linearly independent points always into linearly independent
points. This means that if @4, @s, ..., @ is any finite number of points
of L and if @.*, Q5*, ..., @ are their images in L*, then the Q; and the
Q.* are always either linearly dependent or linearly independent together,

It follows immediately that a mapping defined in this way can exist
between two linear spaces L and L* only if L and L* are of the same
dimension.

As proof, let s be the dimension of L and s* the dimension of L*. Then
we may assume, say, that s = s*, and we need to show that s > s* is
impossible. If we now choose s+ 1 linearly independent points in L,
say Qr, Qe - - -, @st1, then their images Qi, Q5 , ..., Q¥ , in L* must
also be linearly independent, i.e., s* must be af least equal to s, as was
to be shown.

We can assume from now on that s == s* for two linear spaces L and
L*, between which there exists a mapping with the required properties.
If s > 1, we shall see that our requirement singles out from the set of all
one-to-one mappings a class of special mappings that can be described
exactly. These mappings we call projectivities (also collineations or
projective relations) between L and L*.

In case s ==1, however, our condition tells us nothing that is not al-
ready implicit in the mapping being one to one. For, the maximal number
of linearly independent points in I, or in L* is 2. But for two points
linear independence or dependence merely means being distinet or being

coincident.
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In order to obtain in the case s == 1 mappings similar to those obtain-
able in the case s > 1, a further condition must be imposed. This will be
done later, after we first have considered the case s > 1.

Projective Relations between Two Linear Spaces
with Dimensions greater than 1

From now on, until page 79, let us assume that s = s* > 1, where s
and s* are the dimensions of L and L*. Moreover, let us consider as given?

a fixed projectivity between L and L*.
As a first property of such a projectivity we state the following:

TaeoreM 1. Let Ly be a linear subspace of L. For each point in Ly
find the image point in L*. The totality of these tmage points again fills
out a linear subspace Li* of L* with the same dimension as L.

Proof: * Liet r be the dimension of L;. Then if the r +1 points
Qo @1y ..., Qr of L are linearly independent, so also are their image
points Qs, Q1 , ..., QF in Ly*. Let Q be some other point in L, and Q*
its image point. Then according to Theorem 3 of Chapter II, @ belongs
to Ly if and only if @ is a linear combination of the @, i.e. (by Modern
Algebra, § 3, Theorem 4), if and only if the points @y, Qi,...,Qr, Q are
linearly dependent. It therefore also holds that @* belongs to L* if
and only if Qi, QF,..., QF, Q*are linearly dependent, i.e. (by Modern
Algebra, § 3, Theorem 5), if @* is a linear combination of the @;*. There-
fore Li* consists precisely of all linear eombinations of the @;* and is thus
a linear space, and indeed, the linear space of least dimension containing
all the @;*. As such, it has dimension . Thus, Theorem 1 is proved.

" We call Ly* the 1mage space or simply the image of L;.

Let Ls be another subspace of L, and Ly* its image (in L*). If the
intersection of L, and L, is empty, then since the mapping is one-to-one,
the intersection of I;* and Lo* must also be empty. In the opposite case,
it follows, likewise from the one-to-one nature of the mapping, that there
18 a point in the intersection of L,* and Lg* corresponding to each point
in the intersection of L; and L, and conversely. From Theorem 1 we
then immediately have Theorem 2. )

1 In order to eliminate any possible doubt as to the existence of such a corre-
spondence, it may be pointed out that for I =L* the identity correspondence (i.e.,
the correspondence that associates each point with itself) is a projeetivity. We shall
shortly become acquainted with more general examples.
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TrBOREM 2. The intersection of Li* and Lo* has the same dimension
as the intersection of Ly and L2

Now let us consider how, if at all, the cross ratio is altered by our
projectivity. Let g be a line in L and g¢* its image line. Also, let
(81, 82| 83) be a coordinate system on g and (Si*, 82* | 85*) a coordinate
system on g*, formed with the image points of the S;. Then, T and T*
being two further points corresponding to each other on g and g*, respec-
tively, we should like to compare the two values ¢ = R(S§;8: s T) and
a* = R(81* So* 85* T'*). ;

Sinee a = T and o* = T* are one-to-one correspondences between, on
the one hand, the elements of the ground field ¥, and, on the other hand,
the points of g other than s; and the points of g* other than 8,*, respec-
tively, and since in addition 7=2T*is a one-to-one correspondence between
the points of g other than §; and the points of g* other than Sy*, it follows
that ¢ =2 a* is a one-to-one mapping of r onto itself.

We shall write a*= o(a), @ = ¢~ (a*). The function o thus defined
has two very remarkable properties, namely: For any two elements a, b
of the field,

@ o(a+b) = a(a)+ o),
(2) o(a-b). = a(a)-o(@).

|

Proof: Let Tq, Tt, Tuts be three points of g (all distinet from ;)
for which

('R(kgl 15’2 ng Ta) = a, qa(S] SQ Sg Tb) — b, R(Sl Sz lg_a Ta+b) = @ —}" b.

We know that the point 7', , can then be found by the linear construction
given in Fig. 6, on p. 65. Let us now think of such a construction as being
carried out within L, i.e., all the points and lines of Fig. 6 so chosen that
they lie in L. This is possible because the construction of Fig. 6 can be
carried out in an arbitrary plane containing ¢ and thus, in particular, in
a plane lying wholly in L (and containing g). Such a plane exists, for the
dimension of L is by assumption = 2. We then apply the given projee-
tivity to all the points and lines of the construction. According to Theo-
rem 1, the image -of this figure as a whole will itself lie in a plane.
Furthermore, the images of two lines that intersect in a point will again
have exactly ‘one point in common, namely the image point of the point
of intersection (Theorem 2). From this we see that Fig. 6 maps under

2 Note that if the intersection is of dimension 0, Theorem 2 follows solely from
the fact that the correspondenee is one-to-one.
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a projectivity into an exactly analogous figure; indeed, we obtain the
image figure by simply putting an asterisk on each designation in Fig. 6.
But that means that the image point 7., of 7,4, can be found from
T,* and Ty* by exactly the same construction as T4y from T% and T,.
From the meaning of this construction it then necessarily follows that

(8) RTS8 Th) = RS 8 SF 1)+ RIS S 8 TrY)

But by the definition of g, N
R (8" S5 85" Tags) = o(a+b),
RS 8" 8 1) = o(a), R(S* S 85 T = a(b),

and a comparison of this with (3) immediately ylelds relation (1), the

relation to be proved.
Relation (2) follows in an exactly similar way from the fact that the

point T,.; can likewise be found from T, and T, by a linear construction

(namely, the construction in Fig. 8 on p. 67).
What we have just proved for ¢ we can, of course, also show for the

inverse mapping o—1, since the assumptions for ¢—1 are exactly the same
as for 0. Thus, the following also hold:

4) o (a+b) = o1 (a)-+ o1 (D),
() o~ (g-b) = o~1(a) - o1(h).

It should be noted, however, that equations (4) and (5) follow just as
well from (1) and (2) and the fact that o is a one-to-one mapping. For if
6~ a) and 6—1(b) are substituted for @ and b respectively in (1) and (2),

it follows that
d(c(@)+o 1) =a-+b, (¢ (a) -0~ 1(b) =a-b.

But these are equivalent to (4) and (5). ’
Any one-to-one mapping a* = o(a) of a field onto itself which satisfies
relations (1) and (2) is called an automorphism (of the field). -
From (1) and (2) we can derive some results that will presently be
of use. To begin with, we have

(6 o(0) = 0, a(l) =

For, we note that,\for any elements @ of the field, ¢ +0==0. It follows
from this that ¢ (a) -+ 0(0) = ¢ (a) and hence that ¢(0) = 0. Since the
correspondence o is one to one, we must have o(a) 540 for a4 0. Now,
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since the equation ¢ () = ¢ (@) - 6(1) holds for every a, it follows that

o(1) ==1.
If the element @ in (1) is replaced by ¢ — b, we now obtain

" o(a—b) = a(a)— a(b)

and by substituting ¢/b (b £ 0) for & in (2), we obtain

a a(a)

® (7] KON

In defining ¢ we have to choose the three fixed points Sy, Sa, Sa.
Therefore, it would appear as though ¢ depended on the choice of the ;.
This is not actually the case, however. To show this, we shall now give o a
meaning independent of the S; by means of the following theorem.

TurorEM 3. If Ty, T2, T3, T4 are any four points of the line g for
which R(Ty T T3 Ti) is defined and 5% o, then the following is always
true of the four image points T;*:

‘R(Tl* T Ta* T = o [R(Ty T: Ts T0)].

Proof: We may assume that all the T; are distinct. For if two of the
T; coincide, then R (T4 Te Ts T4s) must be either O or 1, since the value «
has been excluded.®? Then R(T* To* Ts* T4*) must have the same value
(i.e., either 0 or 1),* so that in these special cases the equality stated in
the theorem is true (by (6)).

Now consider first the case in which all the T, are different from 8;.
Then s; == R{(S; 82 83 T;) is a number of the field for each 1=1,2, 3, 4,
and according to formula (3) of Chapter IV, we have

Xy 2y Ky Xy

9 RILT, T3 Ty) =

Xy~ Hg ) Hy— %9 ’

Moreover, by the definition of g,

R (S A T == o(x),

3 The cross ratio was defined only for the case in which at least three points were
distinet; indeed, R (T:T2T>Ts) was =0 if Ta==1Ts or To=="T,y; it wag =1 if Ta=1"
or T3 ==T,; and it was== o0 if To=Ts or T1="T,,

4 For it follows from T,== T that T¢*=Ty*.
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and hence

ok ok omky 0 (%5) — (%) , o (%) — 0 (%)
(10) CR(TI T2 TS T4) - 0'(3!3)—‘—0‘(“2) . 0‘(564)-———0'(22) ¢

Repeated application of (7) and (8) now yields immediately that

() RO TTS ) = o [ B J = o[ RO T T,
Ky — xg Xy xg )
which proves our theorem for the case in which T;5£ 8; (1 =1, 2, 8, 4).
Now if any one of the T; coincides with S; we may always take Sy = Ty,
for sinece
R(T, T Té‘ T) = R(T; T, T, Tx)
=R(Ts TuTy Ts) = R, Ts Ty T)

(ef. Chap. IV, formula (4)), we see that any of the four points can be
made to oecupy the first place. Then it can be proved, the proof being

analogous to that of equation (3) of Chap. 1V, that?

(12) ROT, Ty Ty Ty) = —2—22
g — %9 1

From (12) and the analogous formula for the T;* it now follows, just as
above from (9) and (10), that our theorem is true for the case §; = 7.
Thus, Theorem 3 is completely proved. :

Theorem 3 shows that to every line g in L there belongs a definite
automorphism of the ground field which tells us how the given projec-
tivity affects the cross ratio of four points on g. We now wish to show,
further, that (for the fixed projectivity) the same automorphism belongs
to all the lines of L.

5If L, 9, £+ 9 are the coordinate vectors of S, Sa, Ss, then those of Ty, T2, Ts, T:
are r, z»t+Y, #%L+Yh, %3+, respectively. By formula (2) of Chap. IV, (12)
then follows at once from the identities

x5+ Y = (g5 #3) 3+ (0 3+ 1)

and
2L +Y = (e 22) L+ (%2 L+ D).
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It will suffice, for this purpose, to prove that two lines which interseet
in a point always have the same automorphism. For, the general case
can always be reduced to this special case by comparing the automorphism
of two lines g, g that do not intersect with the automorphism of a third
line § which intersects both ¢ and g.

Let ¢ and g, then, be two intersecting lines. To show that the auto-
morphisms associated with g and g under the projectivity are the same,
we must, according to the meaning of these automorphisms, show the
following :

It 84, S, 83, Sy and Sl, S2, Ss, 8, are any four points on g and g,
respectively, such that R (S, Sy S5 So)==R (8 S; Ss ;) and if S, S
(i==1, 2, 3, 4) are their respective images .on the image lines g* and g*,
then it also always holds that R(S* 85 85" 81 )= R(S* &5* S5 Si°).

The space spanned
by ¢g and g is a two-
dimensional plane ¢ in
L. Let @ be a point
of e that lies neither
ongnorong. Denote
the lines joining @
9), and let T; be the
point of intersection
of g; with g. Then by
Chap. IV, Theorem 1,
q{(sl 82 83 84) ==

R(T1 T2 T T4)

Fig. 9

and thus also

CR(SI Sy Sy 84) = RN T, T:Ty.
From this, by Theorem 3 of the present chapter,
(13) R (St S 8 8) = R(IF T Ts Ty,

If we now apply the given projectivity to all the points and lines of
Fig. 9, we obtain, according to Theorems 1 and 2, an exactly analogous
figure, from which it follows that -

(14) RIS T T T4 = RS & 8 S1F).
Comparison of (13) and (14) then yields the desired result. .
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Thus we have proved the following theorem.

THEOREM 4. To each projectivity there belongs o uniquely determined
automorphism o with the property that for any four points T, (1==1, 2, 3,
4) of L which lie on a line and for which R(T1 T2 Ts Ty) is a number of the
field,

RIS T Ty T4 = o | R (T, Ty Ty TW)].

Now let us consider a projective coordinate system (Qo, @1, ..., @s | E)
in L. Let @;*, E* be the image points in L*. Since every s+ 1 of the
points Qo*, @:%, ..., Q% E* must be linearly independent, it follows that
(Qo*, Q1*, ..., Q:*| E*) is a well-defined projective coordinate’ system
in L*, \

We now assert that the projectivity is uniquely determined by the
automorphism o, as given in Theorem 4, and by the choice of the s+ 2
image points @;*, E* of the @,  ; or in other words,

Trsorem 5. If (Qo, Q1,. .., Qs | E) and (Qo*, Q1*,..., Q| B*) are
two fized projective coordinate systems in L and L* respectively and o
18 @ giwen automorphism of ¥, then there exists one and only one projec-
tiwity between L and L* for which o has the meaning given in Theorem 4
and which, in addition, carries the Q; into the Q* and E into E*, -

Proof: We first prove the unigueness of the projectivity in question.
Let us consider, as before, a projectivity that satisfies the requirements of
Theorem 5. Then we want to show that under the assumptions of Theorem
5 alone the image point in L* of every point in L is uniquely determined.

We shall break up this uniqueness proof into three parts. Let us first
consider the line g;;, determined by a fixed two of the points Q,, @ (1 5% k)
and the (s — 1)-dimensional linear space L, determined by E and all the
@, with v £ i, k. Ly and gy, have exactly one point in common ;8 call it
Ey. 1t follows at once that the image point Ej; is uniquely determined.
For the image line g3, must pass through @;* and Q;* and is therefore
uniquely determined. The same is true of the image space L3, since by
Theorem 1 it is (s — 1)-dimensional and moreover must contain E* and
all the @, with v=£4, k. Thus Ej is also uniquely determined as the
point of intersection of g;, and L.

6 This exists, as we have so often seen before, by Theorem 5, Chap. II, because
the spanning space is L itself. .
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‘We next show the uniqueness of the image point of any point @ on
the line ¢y By our assumption regarding the meaning of ¢ for our pro-

jectivity, we have
R(QF Qi Eit Q) = 0 (R(Q: Qu Ene Qin))-

This equation already determines the image point (}; uniquely, however.

In the third, and final part of our proof, we prove the uniqueness of
the image for a general point . Consider all the (s — 1)-dimensional
linear spaces that pass through at least s — 1 of the fundamental points
@, and also through @.” These spaces have only the one point @ in
common. To see this, let us show that for every point @’ = @ there can
be found one of these linear spaces that does not contain . The following
statement is equivalent to this: For every @, @’ there can be found s — 1
fundamental points such that the totality of these s + 1 points is linearly
independent. But this is an immediate consequence of the Steinitz Re-
placement Theorem® applied to the coordinate vectors of our points. The
Steinitz Replacement Theorem then states that among the s 4 1 linearly
independent fundamental points we can always find two that can be
replaced by @, Q" without disturbing the linear independence.®

If we can now show that the images of the spaces under consideration
are all uniquely determined, then the same will be true of the image of Q,
as the sole point of intersection of these spaces. To show the uniqueness
of the image spaces it suffices to consider any one of them, say the linear
space L.y s which passes through @ and through Qo, @1, ..., Qs—2. Form
the intersection of the line gs—y s determined by Q,—; and @, with this
linear space. The point of intersection is uniquely determined; call it
Qs—1,s. This point, together with Qo, Q1,..., Qs_2, in turn uniquely
determines our linear space Ls-1,51 But we already know that Qs s,
as a point of the line gs ;,, has a unique image point @7, The
image space L;‘_l} s 1 consequently uniquely determined by the points
Qaky Q;ky Tty Q.;‘k-—27 Q;k~1,s-

7 In general, the number of such linear spaces is finite [= (3—12—1)] ; in certain
cases, however, there may be an infinite number: namely, if there are s—1 funda-
mental points that, together with @, form a linearly dependent set.

8 Cf. Modern Algebra, p. 20.

2 The coordinate vectors of @, @' are certainly linearly independent, by virtue of
the assumption @’ 5= @.

t For the points @s—1,5, o, @1, -+, Q.2 are linearly independent, since Qs—1,s ,
as a point of the line gs—1 s, cannot belong to the (s— 2)-dimensional linear space

determined by @, Q1, -+, Qo—2.
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The uniqueness has thus been proved. We now turn to proving the
existence of the projectivity in question. This we shall do by giving such
a mapping explicitly ; indeed, we assert that for arbitrary given Q,, Q/*,
E, E*, and o, a projectivity satisfying the requirements of Theorem 5 is
determined by the following condition: ‘

To a point @ in I with coordinates &, &1,..., &, in the coordinate
system (Qo, @1,..., Qs | E) there shall correspond, as image point, the
point @* in IL* with the coordinates 6(50), o (&), ..., 6(&) in the co-
ordinate system (Q5, Q1, ..., Qi | E*). , ‘

It remains to be shown that the mapping thus defined is truly a pro-
Jectivity. First, that the mapping is one-fo-one, is trivial. For, the co-
ordinates &; of the point @ in the one coordinate system and the coordinates
& of the image point @* in the other coordinate system determine each
other uniquely in accordance with therelations? & = o (§),5; = o~ (&}).

Further, consider any % points 83, 8z, ..., Spin L. Let Si*, 8%, ...,
Si* be their image points in L*. Also, let &y, &, ..., &, be the coordi-
nates of the point ; in the coordinate system (Qo, Q1, . .., Q. | E) and let
a(§i0), 0 (§a), . .., 0 (§is) be the coordinatesof 8i* in (Qo*, Q1*,...,Q,* | E*).
If the §; are now linearly dependent, there exists & constants Ay, A, . . . , %,

not all zero, for which
k
i=1

istrue forally=0,1,...,s. By applying o to both sides of this equation,
we find that

k
2, 0()- o) =0

holds for all v. But this means that the S;* must hkewxse be linearly
dependent, for certainly not all the o(4;) are equal to zero.

Since we can show, conversely, by use of the inverse automorphism
0~%, that the linear dependence of the S/* implies the linear dependence
of the 8, it follows that the §; and the S are either linearly dependent
or linearly independent together. Qur mapping is thus seen to be a
projectivity, and Theorem 5 is proved in full.

21f the & be multiplied by a constant A, the o (&) are multiplied by ¢(4), which
gives the same point. A similar argument holds in the other direction.

(
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For future reference, we summarize the results of the last part of
the proof in

TurorEM 6. The uniquely determined projectivity of Theorem 5 can
be characterized as follows: If a point Q has the coordinates &y, &y, ..., &,
tn the coordinate system (Qo, @y, ..., Q| E), then its image point Q*
has the coordinates o (&,), o (&), ---, 0(&) tn the coordinate system

(QO*y Ql*y sy Qs* ! E*)

Projective Relations between two Lines

Let us now examine the case in which the linear space L and its image
L* both have dimension 1, that is, in which both are lines in P,. As
already pointed out earlier in this chapter (p. 69), to require that linear
dependence, or linear independence, be invariant is of no use to us in the
present case. IHowever, we can require instead that the harmonic set?
be invariant. IHence we make the following definition:

A projectivity between the one-dimensional spaces L and L* is a one-
to-one mapping of L on L* that always takes harmonic sets into harmonic
sets.

This means that if 8;, S5, S35, 84 are four points of I and Sy*, §o*, 85*
S¢* are their image points on L*, then R(S; Sz 83 84) = — 1 always im-
plies that R (Sy* Sg* Sz* §4%) == — 1. It is not neeessary to require the
converse, that R(S;* Sy* S3* 84%*) == — 1 shall imply R(8;8;8:8,) =
—1, for this follows as a consequence of the first requirement. For if
R(81* 8o* S3* 84*) = — 1, there is certainly a uniquely determined point
@ for which R(S; Sz 83 Q@) = —1 (8; being the original points of the
8/*).” But from this it follows that R(S:* Sg* Sp* Q*) = —1 as well,
so that @* == §,*; ie, @ =8, and, accordingly, R(S1 8283 8:) =—1.

Let 81, 8, 83 be three different fixed points on the line L and let
S81*, 8o*, 83* be their image points on L*. If T is then any further point
5= 8; on L and T is its image, we set up a correspondence between the
values @ = R(S8: 82 83 T) and @* == R(S* Sg* Sy* T*).

The one-to-one mapping of the ground field onto itself which is thus
defined we again denote, as in the preceding section, by a* = o(a). We
wish to prove that o is an automorphism.

3 Of course, the harmonic set is invariant also under a projectivity between linear

spaces with dimensions > 1. This follows directly from Theorem 4, sinee for every

automorphism: ¢ it always holds that ¢(—1) =—1.
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To this end, let T, and T, be two points 5« S; on L with
RS, s S Ta) = a, R(S, S, S Tp) = b.
Also, let T.*, T,* be their image points on L*, whence we have ;
R(S" 8" 85" Ta") = a(a), RS 85" S5 T5") = o (b).

As coordinate vectors of the points Sy, S,, S5, 87, S5, S5 we may take
%9, LY, 1 9% &5V’ respectively. It then follows that axr-+y,
br+Y, o(a)g*+9* o(b)r*+9* are coordinate vectors of T, T,
To*, Tv*, respectively.

In addition to the points 7, T, of L let us now consider the points with
coordinate veetors (ag-+Y9)+(bg-+y) and (ax-+9)— (br-+y). Call
the first of these points T. The second vector represents the point §;—
to be sure, only if @%b, which we shall accordingly assume for the
moment. From the form of the coordinate vectors we can easily derive
the following relations:

(15) RE S5 T) = TP ;
(16) R(Tu Ty, T) = —1.

The second equation is meaningful, because we have assumed that @ = b,
i.e., T a 75 T be

Similarly, in L*, let us consider, besides T,* and T,*, the points with
the coordinate vectors (o(a) £*-9*) - (¢(0) £*-+9*) and (o(a)r*+ y*)
— (¢ (b) £*+9*). The second is Sy ; call the first one U. Then it again
follows that

an R(SE 85" S U) = _“_(@:;_"@’ |
(18) q{(Ta* Tb*Sl* U) = .__1.

A comparison of equations (16) and (18) shows at once that U = T*, ie.,
that U is the image of T'¢ Taking this into consideration, we see that
equations (15) and (17) immediately yield

¢ Owing to our assumption, it follows from (16) that the image point T*, when

substituted for U in (18), will satisfy that equation; on the other hand, there exists
only one point U that satisfies the equation.
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G(a;}—b) _ G(a)—;—o‘(b) .

19)

This equation, however, states essentially the same thing as the first
of the defining equations of an automorphism. First, observe that equa-
tion (19), proved for a £ b, is also trivially true for e ==0b. If we set
b =0, it follows that o(¢/2) = a(a)/2 for arbitrary a, and applying this
to the left-hand side of (19) yields

(20) o(a+b) = d(a)+a().

In order to obtain the second of the defining equations of an auto-
morphism, we proceed similarly. In addition to the points 74, T, we now
consider the points with coordinate vectors b(ax 94 a (bx-+y) and
h(agx-+9) —a(bgy-+y). This time, the second point is §» (again under
the assumption that @ 4 b), and the first is a point V. It follows that

(21) RS 8% 7) = 22
(22) R(TT)5 V) = —1.

In a similar way it may be shown that there exists a point Z for which
the following hold :

¥ g% gt 20(a)o(d)
(23) GR(SI S2 S3 Z) - 0‘(@)""' G(b) H
(24) R(Ty Ty 85 Z) = —1.

Comparison of (22) and (24) shows that Z = V*, whence it follows from
(21) and (23) that ‘

- 2ab\  20(a)o(d)
(25) "(a+b) = @ Lo

Of course, this equation only has meaning if @ + b 0. Its derivation,
as remarked, is valid only for a4 b. But on the other hand, (25) is,
again, trivial if a =2>.

Now, in (25) let us set a=1+ ¢ and b = 1 — ¢, where ¢ can be any
element of the ground field. Then ¢+ b==2; and sinee o(1) =17 it
follows from (20) that

5 This means merely that S,* is the image of S
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c@+o®) = s+ = o @ =o()+o(1)=2.

Hence, from (25) we obtain
6(1—¢*) =o(l+0-a(1l —¢

or, using (20),%
o) =0 () = [o(1)+ o @] [¢(1) — o (c)].

From this we readily compute that
(26) o (c®) = [o (g~
Let us now apply o to the identity

a-b= —;— [(a 4 8)*— a®—p?].

Use of the equation o(a/2) = o(a) /2, proved above, and of (20) and (26),
then yields «

5@ = 5 (@ @+ P [ @]'— [+ O,

With the aid of [o(a+ b)]® = [0 (a)+0o (b)]%, we have, finally, .
o(a-b) = d(a): o(b).
This was our goal; ¢ is now seen to be an automorphism.

We can draw the same conclusions as before from what we have just
proved. First, exaetly as in Theorem 3, it follows that ¢ is independent
of the choice of the three points 81, 82, 83 used to define it and is deter-
mined by the projectivity alone. ¢ again has the meaning it had in
Theorem 4. The same argument shows that Theorem 6 holds true. For
what is affirmed in the course of the proof of Theorem 3 implies for our
present one-dimensional case precisely this: If the law of formation
given in Theorem 6 holds good for a one-to-one mapping between two
lines (whether as the result of proof or by assumption), then the state-
ment of Theorem 3 also holds. From the assumption of that law of forma-
tion it also follows, in particular, that every harmonic set is mapped into
a harmonie set.

8 We have seen earlier that from (20) it follows that () + o(a—b)=0q(a),
ie., that ¢(g —b) == ¢ (a) — o (b).
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Lastly, Theorem 5 is also true. The only thing remaining to be proved,
namely, the uniqueness of a projectivity determined under the assump-
tions of this theorem, now follows at once in the same manner as the second
part of the uniqueness proof of Theorem 5.7

Projectivities in REAL P,

The most important projectivities for geometry are those in which
the automorphism o is the identity mapping of the ground field onto
itself, i.e., those in"which o(a) = @ for all a. Such projectivities are called
linear and are characterized by the fact that they leave all cross ratios
invariant.. The following very interesting and basic theorem holds: In
real P, there exist no projectivities other than linear projectivities. In
other words, we shall prove:

TueoreM 7. In the fiecld of real numbers the one and only auto-
morphism is the identity mapping.
Proof: Let o be an automorphism in the field of real numbers. It is

easily seen at once that o{a) = a for every integer a. We already know
this to be true for a =0 and a==1. If ¢ is now an integer > 1, then

by (1),

o(a) = o(l+14+.--+1) = c()+ol)+---F+0(1) = a.

@ times a times

That the equation o(a) = @ holds for a negative integer d then follows
immediately from

o(—a) = 0(0—a) = o) —o(a@ = —d(a)

Furthermore, o(a) = @ holds likewise for every rational number a.
This is an immediate consequence of formula (8). For, a rational number
@ is the quotient of two integers, say ¢ ==b/¢. Thus,

gl e® b
a(a)ma(,c)_ 0 = q.

7Cf. p. 7.
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As our next step we prove that if a > 0, then o(a) > 0 as well, and if
¢ <0 then o(a) <0 as well. Sinee every positive real number is the
square of another real number, but a negative number never is, it will
suffice to show that the property of being or not being a square is imvariont
under automorphism. But this is trivial. For by (2) it follows frpm
a=="b*that o(a) = [0(b)]>. And if a is not a square, then o(a) also cannot
be a square, for from o(a)==¢? it would follow that g — o~ Yc?) =
[o=%(c) ]2

Now let us assume there exists a number for which B s 6(B). We may
then take o(B) < B. (For if 6(B) > B, then o(—B) < —B.) Then there
is certainly some rational number @ such that®

(27 o(B) < a < B.
Then, since 6(a) = a, it follows from (27) that
o(B—a) =o(8) —a <0, :

whereas on the other hand B—a > 0. But this is in contradiction to
what we just proved.
Thus o(8) == B for all B, as was to be proved.

Let us make clear the meaning of this result for Theorems 5 and 6.
The automorphism ¢ which enters into these theorems nmust, in real P,
always be the identity automorphism. Hence, for the projectivity between
two s-dimensional linear 8paces L and L* of real Py, Theorem 5 takes on
the following form:

TaeoreM 8. If Q, Qi - - -. Qy, Q11 are any s + 2 points of L and
Q, Q-+, QF, @1 any s+ 2 points of L* such that, in both cases,
every s+ 1 of the points are linearly independent, then it follows that
there is one and only one pro Jjectivity between L and L* which, for every
1==0,1,...,s+1, maps the point Q; into Q.

Theorem 8 (or its equivalent) is sometimes referred to as The Funda-
mental Theorem of Projective Geometry. Tt is valid in complex P, only
if the additional requirement be made that the projectivity be linear. For
in the field of complex numbers there most certainly are automorphisms
that are different from the identity mapping.® For example, the map-
ping that sends every complex number into its conjugate is such an
automorphism.

8If ¥, say, is a rational number such that & < B—a(B), then there exists (at
least) one integer m such that o(B) <n-BE<B.

9 Indeed, there are infinitely many distinet automorphisms in the field of the
complex numbers,
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Finally, as regards Theorem 6, the description of a projectivity in
real P, now takes on a particularly simple form. It is seen that in the
reals Theorem 6 becomes: The tmage point Q* has the same coordinates
in the coordinate system (Qo*, @1*, ..., Q| E*) as @ does in the co-
ordinate system (Qo, Q1, ..., Qs | E).

All the observations of this section can of course be dualized. In
dualizing, we obtain mappings of bundles of hyperplanes onto each other.
The details of the reinterpretation are easy to carry out and are left to
the reader. One case, however, may be emphasized for purposes of later
application, namely, that in which two pencils (one-dimensional bundles)
are mapped onto each other. It is clear what is meant by a projectivity
between two such pencils. The definition is the exaet dual of that on
p. 79. If we confine ourselves, moreover, to linear projectivities, then
the duals of Theorems 5 and 6 read as follows:

THEOREM 9. If g1, g2, g3 are three distinct hyperplanes of a pencil by
and hy, ha, hg Likewise three hyperplanes of o pencil by, then there exists
one and only one linear projectivity between by and b which takes g; into
hi, for 1==1,2,3. Furthermore, if the coordinate vectors u, v; of g, hy
are chosen so that us = u;-+Us, D3=="b,-}+Ye, then the mapping
A+ pug = Ao+ ub, yields precisely the desired projectivity.

Exercises

1. In Chapter IV (p. 59), perspectivity between two lines was defined. It
follows from Theorem 1 of that chapter that every such perspectivity is a linear
projectivity., The concept of perspectivity can be generalized in the following way.

Let L and L* be two linear spaces in P. of the same dimension . Also, let a
linear space M be given which has no point in common with either L or L* Let the
dimension of M be %. In addition, we think of a one-to-one mapping of L onto L*
as being given. If Pisin L and P* is its image point in L*, let ¥ (P, P*, M) designate
the linear space of least dimension that contains P, P*, and M (i.e., the spanning
space of P, P* and M). For every P in L, inasmuch as no P lies in M, this space
has dimension greater than that of M, and thus has dimension at least ¥ 4 1. The
given one-to-one correspondence between L and L* is then called a perspectivity with
center M if for every P of L the dimension of V (P, P* M) is equal to ¥ 4+ 1 (and
thus is only greater by one than the dimension of M). If r==1 and k=n— 2, we
obtain the original definition given on p. 59, whereas if r==1and k==0 (ie, Misa
point) we recover the example given on p..59.

Show the following:
a) V (P, P* M) has only the point P in common with L and only the point P* in
common with L*,
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b) If s is the dimension of the spanning space of L and L*, then s—r—1=<
k=n—r—1. ‘

¢) Now take s > r ;\if a fixed perspectivity with any center is given between I
and L*, then for each % that is admissible under b), it is possible to find a linear
space M of dimension ¥k that can likewise serve as a center for the given perspectivity.

d) Every perspectivity with a center M is a linear projectivity. ‘

2. As in Ezxercise 1, let L and L* be two linear spaces of P, of the same dimen-
sion 7. Assume L 54 L*. Let D designate the intersection of L and L*, and set aside
the case in which D is empty. In the other case, let d be the dimension of D.

Now let a linear projectivity between L and L* be given that maps each point of
D (if such exists) into itself. Show that this projectivity is a perspectivity (in the
sense of Exercise 1).

Hint: TFirst consider the question for the case in which L, L* are two lines in P;.

3. Again let L, L* be two linear spaces of the same dimension 7. Let Ly desig-
nate the totality of the k-dimensional subspaces of L, and I the corresponding
totality for the space L*. By Theorem 1, every projectivity between L and L* induces
a one-to-one correspondence between Lj and f,;,*, for every k. According to Theorem
2, this correspondence has the property that the dimension of the intersection of a
finite number of spaces of L+ is invariant.

Conversely, if for any fixed ¥ == 1 there is given a correspondence of this kind
between Lr and Zk*, then there exists one and only one projectivity which induces
that eorrespondence. .

4. The defining property of a projectivity may be weakened by requiring the
invariance of linear independence or dependence of % points not for every %, but merely
for a fized k such that 3 Sk =< r + 1.

5. Let a one-to-one mapping be given of an r-dimensional linear space L on
another r-dimensional linear space L*. Let it have the property that for some definite
fixed integer %, which necessarily is = 3 and < r-+1,'it always maps & linearly
dependent points of L into % linearly dependent points of L*, (This is a weaker
requirement than that of Exercise 4.) Prove the following :

a) If Py, P, ..., P, are any points of L (h an arbitrary integer) and Py*, Po*,
..+, P)* are their images in L*, if, further, ¥ is the spanning space of the P; and,
lastly, if ¥* is the image set of 7, then every linear subspace of L* containing the
points Pi*, P:*, ..., P,* also contains V*, (The proof is easy by mathematical

induection. )
b) The given mapping is a projectivity between L and L* (use a)).



CHAPTER VI

LINEAR PROJECTIVITIES OF P, ONTO ITSELF

In the preceding chapter, we considered general projectivities between
two arbitrary s-dimensional linear spaces L, L* of Pn, where 1 = s = n.
In this chapter, we shall discuss in greater detail the special case in which
s=mn, i.e,, L=IL*= P,. In other words, from now on we consider
projectivities that map (real or complex) P, onto itself.

Such a projectivity can be described in a simple way by a system of
equations with respect to a single coordinate system of Pn. To see how
this is done, let us consider as given a fixed projective coordinate system
(@0, @1, ...,@Qn| E)in Pn. Furthermore, let (§) be the coordinate matrix*
of a point § in this coordinate system. Let 8* be the image point of §
under the given projectivity and (&*) the coordinate matrix of 8* (again
with reference to the same coordinate system (Qo, @1,...,@=| E)). We
pose the question: How may (&*) be computed, (&) being given?

Of course, we shall try to make use of Theorem 6 of Chap. V. Accord-
ingly, we employ the notation used there: @/* is the image point of Q;
(1=0,1,...,n)and E* the image point of E. Let o be the automorphism
that belongs, by Chap. V, Theorem 4, to our projectivity.

According to Chap. V, Theorem 6, (0(£)) is the coordinate matrix of
S* in the coordinate system (Qo*, @1%, ..., @.* | E*). In order to find
the coordinates of §* in the coordinate system (Qo, @1, ..., @» | E), let us
recall the formula for transformation of coordinates from Chapter II
(p. 86). According to that formula, there exists an (n + 1)-by-(n + 1)
matrix T = (tz), with | T' | 54 0, such that

@ §f=9'2tik"(§k’ i=20,1,---,m,
k=0

or, in matrix form,

1T.e., S has the coordinates (Qo, @1y, @n| E) in &, &, .-, &. C£f. Chap. II,
p. 35. :
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® () = o T- (e (8)).

In (1) or (2) we have already found the desired system of equations for
our projectivity.

Conversely, every system of equations (1) represents a projectivity.
To see this, we need merely show that by suitable choice of projectivity
the matrix (#z) can be made equal to any arbitrary preseribed non-
singular matrix. But this is an immediate consequence of Chap. I1, Theo-
rem 8 and Chap. V, Theorem 5. For we obtained (ti) as the matrix of
a coordinate system. To make it equal to a preseribed matrix, we need
merely, according to Chap. IT, Theorem 8, alter the points Q.;*, E* appro-
priately. By Chap. V, Theorem 5, however, such an alteration of Q.*, E*
is always possible by an appropriate choice of projectivity.

Now let us specialize our discussion still further to linear projectivities
of Py onto itself. Thus, ¢ becomes the identity automorphism, and equa-
tions (1) and (2) take on the linear homogeneous form

3) E?:ngo tir §x, izoyly""";
4 () = o-T-(%).

The matrix T that appears in (4), is, in a fixed coordinate system,
uniquely determined up to an arbitrary factor ¢ by the linear collineation.

For let, say,
5) E=¢-T-(5

be a second system of equations of the form (4), with non-singular matrix
T, that represents the same linear projectivity in the same coordinate
system. The inverse projectivity will then be represented by

® @) = = T @.

'°'|

The product? of (4) and (6) must be the identity transformation. That is
to say, if we substitute for the & in the right-hand side of (4) any n+1
numbers, compute the corresponding £;*, and in turn substitute these £*
into (6), we must always obtain, in the first column of the left-hand side

2 The product of two one-to-one mappings is defined in Modern Algebra, § 19.
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of (6), n + 1 numbers which differ from the &; merely by a common factor.
Thus it follows that the matrix Tt T-(§) is always equal, up to a
numerical factor 4 0, to (&) itself. But this means that the equation

%) ' ) = T-1.7.%)

represents, in (n -+ 1)-dimensional vector space, a linear transformation
that maps every vector into a multiple of itself.® Since this would then
be true, in particular, for every basis vector, it follows at once that the
matrix T—1. T must have diagonal form (cf. the rule for constructing
the matrix of a linear transformation given in Modern Algebra, p. 286),

say

o 0
~ o
T-1. 7T —=
0 oy
If we’could now show that ¢y = @, = - - - = a,, the last equation

would immediately tell us that 7 is equal to a constant factor times 7.
The equality of the a;, however, may be shown as follows. We set
E=§=...=&§,=1 in the right-hand side of (7), whence
o == 0, 1 = @y, +++, I, = &p. Since the 7;, however, can only differ
from the &; by a common constant of proportionality, all the a; must be
equal.

Now, how does the system of equations of a linear projectivity change
under a transformation of coordinates? Let (4), say, and

8 @) = 4-U-@)

(U = (us), a non-singular matrix) be the systems of equations for a linear
collineation in two different coordinate systems. Let V = (v;) be the
matrix of the equations for the transformation of coordinates, so that

® ) =p-V-&, - @) =»-V-(§,

where (1) and (&) represent the coordinate matrices of a point § in the
two different coordinate systems and (%*), (é*), similarly, the coordinate

3 That is not to say, however, that the same multiple is involved throughout. For
all we know thus far, two vectors £, §) might go over into ¢ %, c2+ ), with 1 5% 2
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matrices of the image point §*. Then it follows, upon substituting from

(9) into (8) (and setting %‘i = z) , that

(10) &) =.VLU.V.(5)

must also be a system of equations for our projectivity in the same co-
ordinate system as that in which (4) holds. Hence, "\

(11) . V"l. U.V = - T,
(12) U= a.V.T.V-1,

Thus, as with linear transformations, U is obtained from 7' essentially
(i.e., aside from the arbitrary constant of proportionality a) by trans-
formation with the matrix of the coordinate system. If we think of one
of the coordinate systems as fixed and the other as variable, we can make
V equal to any preassigned ‘arbitrary non-singular matrix by suitable
choice of the variable system (Chap. IT, Theorem 8). We can also express
this as follows: If T is the matriz of a linear projectivity in a certain
projective coordinate systems and V is any gwen mnon-singular square
matriz, then a projective coordinate system can always be found in which
VT +V=1is the matriz of the given prbjectivity.

In Chapter V of Modern Algebra we saw how a square matrix could
be reduced to eertain simple forms, the so-called normal forms, by trans-
formation with a suitable non-singular matrix. We can now make use
of this for the study of linear projectivities. It is quite clear that it will
be advantageous to study a linear collineation in a coordinate system with
reference to which the equations take on the simplest possible form. To
show how easy it is to deduce geometrical properties of the linear pro-
jeetivity in this way, we give a few examples.

As a first example, let us consider the diagonal form. What are the
implications for a linear projectivity if its matrix in some coordinate
system is susceptible of being put into diagonal form? The system of
equations of the projectivity will have the form

& = o-a- &,
(13) . E;k = Q-0 ¥,

§: :Q'“n'§n
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where ¢ is an arbitrary non-zero constant (the same, however, for all
n + 1 equations), while &, a4, ..., a, are fized numbers = 0. From
the equations (13) we readily deduce that the n + 1 fundamental points®
of our coordinate system are fized points of the linear projectivity.

Conversely, if a linear collineation is given having n + 1 linearly inde-
pendent fixed points, we can take these fixed points as the fundamental
points of a coordinate system. Let

' 7
(14) 5 = Q-kz; tir &k, i=0,1,...,n,

say, be the system of equations of the linear projeetivity in this coordinate
system. From these equations let the coordinates of the image points of
the h-th fundamental point (0 == % = n) be computed:® ton, tin, ..., tan.
From the invariance of the fundamental point considered it follows that
ti =0 for 154 h and 4,55 0. I.e., the matrix of (14) has diagonal form.

‘We have thus proved the following:

A linear projectivity in Py has n + 1 linearly independent fized points
of and only if its matriz can be put wmio diagonal form.

As a second example, we shall make use of the Jordan normal form
(Modern Algebra, § 26) in order to get a general picture of the linear
projectivities of Py, i.e., of straight lines. We know that a matrix over the
field of complex numbers can always be transformed into Jordan normal
form, but that a matrix over the field of real numbers cannot always be
so transformed. Accordingly, let us first consider complex P;. The
matrix of a linear projectivity of P; is a 2-by-2 matrix. Therefore
(Modern Algebra, § 26), the possible Jordan normal forms are

(o
0 e/
Thus, in complex P; a projective coordinate system can always be found

in which the matrix of a given linear projectivity takes one of the two
forms (15).

(15) (5 o)

4 The a; must all be %0, sinee the matrix of a linear projectivity is always non-
singular.

5 The unit point, of course, need not be a fixed point. If all the fundamental
points and the unit point are fixed points, then the linear projectivity is the identity
mapping (Chap. V, Theorem 5).

6 We have dropped the factor ¢ common to all the coordinates.
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It is clear from previous considerations that the matrix of a fixed
linear projectivity is not capable of both forms (15). For otherwise there
would be an equation of the kind (12) between the two matrices (15) (in
which the matrices (15) play the roles of 7 and U in (12)). That is, a
multiple of the first matrix of (15) would be obtainable from the second
by transformation. But that is impossible, because the elementary divisors
of the corresponding characteristic matrices are distinet.

The two cases can easily be distinguished geometrically. From our
previous discussion, we know that the first case can oceur if and only if
there are two distinct fized points. Consequently, in the second case
there can be only one fixed point at most. But such a fixed point does
occur, namely the point with coordinates 1, 0 in that coordinate system
in which the matrix of the linear projectivity has the form of the second
matrix of (15). The second case is thus characterized by the fact that
there exists one and only one fized point.

Let us now consider a linéar projectivity in real Py, which of course
has a real system of equations with a real matrix in a projective coordi-
nate system of real Py. By Modern Algebra, § 26, a matrix over the reals
can be transformed into Jordan normal form if and only if its charae-
teristic polynomial can be completely decomposed into real linear factors.
Thus, besides the again possible cases (15), we have the still further case
in which the characteristic polynomial has two complex roots, which, by
Modern Algebra, § 17, Theorem 10, are then necessarily conjugate.

In order to consider this last case more closely, let us think of the
matrix of the linear projectivity as being fixed” in a fixed coordinate
system, say A == (a;x). Let the roots of the characteristic polynomial be
a==a+1b, a=a—1b (a, b real, b>£0). The characteristic polynomial
itself is then y(u)= (4 — a)(u — a) =u%—2au + a2+ b2 The ele-
mentary divisors of the characteristic matrix of 4 also can be found
immediately. For, on the one hand, each of these elementary divisors
must be a divisor of y(u) (cf., for example, Modern Algebra, § 25, formula
(9)), and, on the other hand, %(u) has no proper real divisors. The ele-
mentary divisors of the characteristic matrix of 4 are therefore 1, x(u).
The same is true for every real matrix with characteristic polynomial ().
By Modern Algebra, § 26, Theorem 2, A may therefore be transformed by
a real transformation into any real matrix with characteristic polynomial
x{%). This must be true, in particular, for the matrix

" ILe., let even the arbitrary factor ¢ be thought of, for the sake of simplicity, as
fixed,
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16 @ )
a6 (—b al’

which we ean therefore use in this case as a (real) normal form for our
linear projectivity.

From this normal form we can again easily determine the number of
fixed points of our linear collineation. For such a fixed point (with
coordinates &, &), we must have, by (16),

&, a§o+b§17
A& ““b§o+a§u

|

an

|

where A must necessarily be real. Since we can also write (17) in the
form

(18) S-(a—W)+5-0 = 0,
§- (—b) +&-@@a—A =0,
— 2 b

we see that a_b a1 =0, i.e., that the real number A must be

a root of the characteristic polynomial y(u) of (16). But x(u) has no
real zeros. Consequently, our linear projectivity can have no real fixed
point in-this case.?

In summary, we can say:

The matriz of a linear projectivity of real Py can be made to assume
one of the following three forms by suitable choice of coordinate system.

av (5 ak (0a (S)

The first case occurs if and only if there are at least® two (real) fized
points, the second when there is exactly one fized point, and the third
when there 1s no (real) fized point.

The three cases (in the order in which they oceur in (19)) are sometimes
referred to as hyperbolic, parabolic, and elliptic, respectively.

8 Equations (17) have complex solutions; one need merely set A ==¢a or A=¢ .
And in fact, if &, & is a solution for A = @, then &, & is a solution for 4==&. For
this reason, we frequently speak of two complex conjugate fized points.

9 If more than two fixed points occur, the linear projectivity is the identity

mapping.
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Finally, let us consider the involutory linear projectivities of pré-
jeetive Py (real or complex). A one-to-one mapping of any set onto
itself is called involutory, or an imvolution, if its square is the identity
mapping. ‘

In particular, the square of a linear projectivity (&%) ==g+*4+(£) is
given by the equation (£¥) ==1+42+(&). The requirement that such a
projectivity be involutory then becomes: 42 must be equal, aside from a
non-zero numerical factor, to the unit matrix.

To apply this to Py, let us form the squares of the matrices (19). They

are, respectively,

(af O>’ (a’ 2a), (a2—~,6‘2 2a8 )

(20) 0 o 0 ot —2aB o—p?

The second of these matrices can not equal 0*E (o 5% 0) for any value
of a. Thus, a linear projectivity with exactly one fixed point can never
be an involution. In complex Py, therefore, only the case of the first
matrix (19) remains. By (20), it represents an involution if and only if
of == a2 = 9. Hence the first matrix (19) then has the form '

+Ve 0)
(o +Ve )

If the sign before the radical is the same in both cases, the mapping is the
identity. Since we can moreover always divide through by _,_VE or

_ Vo, we see the following :

The matriz of any involuntary linear pro jectivity of complex P, other
than the identity, can alwoys be put in the form

(21)

In real P; we also need to consider the third matrix of (19) or (20).
Since § is necessarily different from zero in this case,! the third matrix
of (20) can equal e*E (0540) only if a=0. From this, we see the
following :

1 Otherwise we just have the case of the first matrix of (19) over again.
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In real P; the mairiz of an tnvolutory linear projectivity other than
the identity can be put either into the form (21) or the form

(22) | (_(-)1 %))

In the case of the matrix (21), the fixed points are the fundamental
points of the coordinate system. Denote them by Qo, @1. Let § be any
point 54 Qo, Q1 and let z, z» be its coordinates with respect to the coordi-
nate system in question. Its image point 8* then has, by (21), the eo-
ordinates z;, — z. From this, by Chapter IV, we have

cR(QO) Ql; S; S*) = —1.

This tells us that every pair of corresponding points S, 8* separate
the fized points harmonically.

Conversely, a mapping that sends the point with coordinates o, ; in
the coordinate system (Qo, @1 | E) (the unit point E being arbitrary) into
the point with coordinates zy, — #; is an involutory linear projectivity
of the desired sort. Thus, it follows at once that for fwo given poinis
Qo, Q1 there always exists one and only one involutory linear projectivity,
distinct from the identity, which has Qq, @1 as fized points. In this form,
the theorem is valid for real as well as for complex Pi.

The totality of the linear projectivities of P, constitute a subgroup
of the complete permutation group of P, (Modern Algebra, § 19). For,
the product of two linear collineations as well as the inverse of a linear
collineation is always itself a linear collineation. The group of all linear
projectivities of P, is called the lénear projectivé group, and the terms
real or complex projective group are used depending on whether the
projectivities of real or of complex P, are meant.

An important subgroup of the projective group consists of those
linear projectivities that transform the proper points of P, into proper
points and the improper points into improper points. In real P these
projectivities are closely related to affine transformations; in fact, we
have the following:

A linear projectivity of real P that takes every improper point into
an improper point induces an affine transformation in affine Ra (i.e., in
the totality of the proper points of real Pr).
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To prove this, let us take as our projective coordinate system the one
in whieh each point has its natural coordinates. That is to say, we choose
the » + 1 points [1, 0,0, ...,0], [0,1,0,...,0],..., [0,0,...,0,1] as
fundamental points and [1, 1, ..., 1] as unit point.2 Then, as we know,
&o==0 is the equation of the improper hyperplane. Now let

n
(23) l§':k = 9720 tik-‘-ék) ¢ == 07 17 RN n,
it —

be the system of equations in this coordinate system of a linear projee-
tivity that maps the improper hyperplane onto itself. If in the right-
hand side of (23) we put

§0:§1="'=§h—1:0, §h=1, §h+1=§h+2:'-'=§n20

then, on the left-hand side we must have &* 54 0 for the case h — 0, but
&*==0 for the cases h>0. But this is possible only if #g % 0,
tn==loa==--- =1, =0. Thus, the system of equations (23), when
written out, has the form

§6k == (t00§0),

(24) lfik = (t1o §o+ tn 51 “I“ + tin §n):

g;zk == 0 (tno §0+ tn1 & + + Inn §n)

Conversely, it is easy to see that a linear projectivity whose system of
equations in our ‘natural’ eoordinate system has the form (24), carries
every proper point into a proper point and every improper point into an
improper point. Thus, the form (24) of the system of equations is char-
acteristic for a linear projectivity of this kind.

Let us now consider the linear collineation (24) only as regards how
it affects the proper points. Since for such points both & and &y*
are 5= 0, we can divide all the equations (24) by the first of them, thus
obtaining for the last » equations the form

ot e ) Bt ()i

tOO tOO §O tOO 0
If in this we now set % = z¥, »§—Z = x;, Wwe see that the mapping
0 0

2 Cf. Chap. 17, p. 32.
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induced in Ry can be represented in a certain linear coordinate system? by

the system of equations
* tio S .
(26) x = -+ — X, i=1,2,---, m.
tOO k=1 tOO
But this is the system of equations of an affine transformation and, more-
over, because of the one-to-one nature of the mapping, of a non-singular

affine transformation. (Cf. Modern Algebra, § 13.)

All non-singular affine transformations can be obtained in this way.
For by a suitable choice of (24), (26) can be made the system of equations
of any arbitrarily prescribed non-singular affine transformation of
affine R.. '

Can it happen that two different linear projectivities of P, both of
which leave the improper plane (as a whole) invariant will induce the
same transformation in affine B»? No! For each time we can choose a
projective coordinate system in P, whose fundamental points and unit
point are all proper points. Then if two linear collineations coineide in
their effects on the proper points, the fundamental points and unit point
must have the same images under both collineations. From this, however,
it follows at once, by Chap. V, Theorem 5 (o is now the identity auto-
morphism), that the two linear projectivities must be identical throughout
the whole of Pn. "

In summary we can say:

Euvery non-singular affine transformation of affine R is induced. by
one and only one linear projectivity of real projective Py,

Because of this relation, the linear projectivities that map the improper
plane onto itself are themselves called affine transformations of Py* and
the totality of these projectivities is referred to as the affine group of Pi.
We also agree that this latter term is to apply not only to real P, but to
complex Pn as well.

‘We leave as an exercise for the reader the simple but not particularly
important dualization of the discussion in the foregoing paragraphs.
It should be noted, however, that the dualization of our last results, con-
cerning affine transformations, is impossible—or at least, geometrically
meaningless—because of the use of the improper elements (ef. Chap. ITT).

3 This is the natural (affine) coordinate system, in which every point (%1, @z, ..., a)
has the z; themselves as eoordinates. Cf. Chap. I, p. 16.

4+ We here drop a modifier like ‘non-singular,’ ginee in projective Pn we never
consider anything but one-to-one mappings.
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Exercises

1. Show that there exist exactly two automorphisms of the field of complex
numbers which map every real number into a real number, namely, the identity auto-
morphism and the automorphism that takes every number into its complex eonjugate.

The projectivities formed with the latter automorphism, in conformity with
Theorem 6 of Chapter V; are called anti-collineations. '

2. Every point [&, &, ..., &] of real P» also belongs to complex P.. Such a
point is ealled a real point of complex P.. A projectivity of complex P. onto itself
that maps every real point into a real point induces a linear projectivity in real Pa.
Every linear projectivity of real P. can be induced by exactly two projectivities of
complex P., namely a linear collineation and an anti-collineation.

3. Let T be an n-by-n square matrix and let e.(u), e2(w),...,en(u) be the ele-

mentary divisors of its characteristic matrix 7 —uE. Furthermore, let v« be the
degree of ei{u) (i==1,2,...,n) and let p be a constant (an element of the field).

From e; (%) we derive a new polynomial by replacing the indeterminate u by —g—
and then multiplying the result by ¢ . The resulting polynomial, which again has
leading coefficient 1, we accordingly denote by ¢"%. e (—:}i) . Show that the n poly-

u
nomials ¢%. ei(—é—) ,4==1,2,...,n are the elementary divisors of the characteristic

matrix of o-T. 5
What relation exists between the Jordan normal forms of T and g - T (in'case their
Jordan normal forms exist) ?

4, Let 4, B be two (n -+ 1)-by-(n+ 1) square matrices with real or complex
numbers as elements. Let e (u),ei{u),...,en{u) be the elementary divisors of
A —uE and &(u),é(u),...,e(u) those of B—uE, and let » be the degree of’
ei(u) (§==0,1,...,n). The following is an easy comsequence of Exerecise 3.

A and B can appear as matrices of one and the same linear projectivity of Py
if and ‘only if there exists a single constant 05~ 0 such that for all 4=0,1,...,n,
simultaneously, we have &:{(u) = ¢"i- e (%)

5. If & denotes the complex conjugate of &, then the point [Eo, El, oee, En] is ealled
the complex conjugate of [&, &, « -+, &u].

Consider in complex P; an involutory linear projectivity different from the
identity and having no real fixed point. Show that the linear projectivity will map
each real point into another real point if and only if the fixed points are complex
conjugates.

6. Let h be a fixed hyperplane in P,.. Give an example of a linear projectivity
which leaves every point of » fixed, but has no fixed point outside of &.



CHAPTER VII

CORRELATIONS

Besides the mapping of two sets of points on each other and the dual
mapping between sets of hyperplanes, mappings of sets of points onto
sets of hyperplanes also play a certain role in projective geometry. We
restrict ourselves here to the case in which, on the one hand, the set of
points is all the points of P, and, on the other hand, the set of hyperplanes
is all the hyperplanes of Pq.

We now wish to consider a given mapping (correspondence) which
associates one and only one hyperplane with every point of Pn.. To get
something other than mappings of points, we must assume # = 2, since
the hyperplanes of P; are themselves merely points. Furthermore, we
" require that our mapping be one-to-one —that is, of such a nature that
every hyperplane is the image of one and only one point. Finally, we
require, in analogy to projectivities, that if @i, @, . .., @ are any finite
number of points of P, and k4, ke, ..., hy are their image hyperplanes,
then hy, ks, ..., hy shall always be linearly dependent if and only if this
is also true of @1, Q@s, ..., @z Such a mapping is called a correlation.

If the point [&o, &1, . . . , &n] is associated under our correlation with the
hyperplane (%o, %1, . . ., %n), Wwe shall write ’

(1) [§0; gl; Tty En] = <u0; Uty * =y un>.

To facilitate the investigation of this mapping, let us at the same time
consider the point-point mapping

(2) ['§0', §17 tt §7t] = [u07 Uiy -~ -y un]

of P, onto itself, a mapping which associates those points whose coordi-
nates &, uw; satisfy the relation (1). By virtue of the conditions imposed
on the correlation (1), it is clear that the mapping (2) is a projectivity of
P, onto itself.?

1 Keep in mind that we have assumed n = 2.
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As we have seen in the preceding chapter, there must exist an (n + 1)-
by-(n + 1) matrix T == (f;), with |T | 540, and an automorphism ¢ of
the ground field such that the mapping (2) can be represented by

(3) () = ¢-T-(a(5)

(see (2), Chap. VI). But since exactly the same numbers «; always appear
in the mapping (1) as appear in (2), it follows that (3) also represents the
mapping denoted by (1). Conversely, if we define the mapping (1) by
a preassigned system of equations of the kind given in (3), the mapping
will necessarily satisfy our conditions.

This derivation of equation (3) for a correlation remains valid when
we interpret the &; and w; as point and hyperplane coordinates respec-
tively in any projective coordinate system.

By comparing mappings (1) and (2), we can immediately draw some
further conclusions. Consider an r-dimensional linear space L. All the
image points of the points of I, under the mapping (2) again constitute,
by Chap. V, Theorem 1, an r-dimensional linear space, i.e., their coordi-
nates satisfy a system of homogeneous linear equations of rank n—7r.
This fact is not altered if we interpret the u;, not as point coordinates,
but as hyperplane coordinates. We thus have Theorem 1.

TurorEM 1. Under a correlation there corresponds to an r-dimensional
linear space of Pn eractly one r-dimensional linear bundle as the totality.
of its image elements, and conversely.

If we interpret equation (3) as a projectivity, in accordance with (2),
the automorphism o tells us, by Chap. V, Theorem 3, how the eross ratio
alters under the mapping. The same must therefore be true if we interpret
the u; as hyperplane coordinates in accordanee with (1). We thus have
Theorem 2. '

TaEOREM 2. If Q1, Q2 Qs, Qs are four points of a line with
R(Q1 Q2 Qs Q) 5= o and hy, hg, hs, hy are their image hyperplanes as
gwen by mapping (3), then R (hy hs hs hs) = o[R(Q1 Q2 Q5 Q4)].

Mappings of the type (3) in which ¢ is the identity automorphism are,
again, of particular geometrical importance. They are the counterpart
to linear collineations and are called linear correlations. By Theorem 2,
a correlation is linear if and only if it leaves all cross ratios invariant.

The system of equations for a linear correlation takes on the linear

homogeneous form
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@ W) = o- T- (%)

This holds for any arbitrary projective coordinate system. In a fixed
coordinate system the matrix 7T is uniquely determined up to an arbitrary

constant g (% 0).2
Let us now consider how the equations of a fized linear correlation in

two different coordinate systems are related. Let (4), say, be the equation
of a correlation in one coordinate system and

6)) ) =10-U-(9)

its equation in a seeond coordinate system. Let V be the matrix of the
equations of transformation, so that () =21+V+(§) and consequently,
by Chap. III, equation (10), (v) == pu*(V’)~1+(u). If we substitute this
in (5), we see that our correlation, in the coordinate system with respect
to which (4) was given, may be represented by the equation?

(6) ) = ¢-VUV(E).
Therefore a number a % 0 must exist such that

@ | ‘ T = a.V'UV.
But formula (7) is just the relation we were looking for.

We now seek to determine those points of P, which, under the linear
correlation (4), lie in their own image hyperplanes. The incidence re-
quirement for a point with coordinate matrix (&) and a hyperplane with
coordinate matrix (u) is, in matrix form,

(8) W) - (&) = 0.

If we replace (#) here by its expression from (4), we obtain (since ¢ 5= 0)
the equation

® ©-1-® =0

2 For two equations of form (4) representing the same linear correlation must
represent the same linear collineation if the w: as well as the & be interpreted as point
coordinates. From Chapter VI, however, we know that the matrix of a linear collinea-

tion is, except for o, uniquely determined. _ 2
3 We have again written ¢ in place of e
1
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as the necessary and sufficient condition that a point (&) must satisfy if it
is to lie in its own image hyperplane. This condition may also be written
in the form

n
(10) £ Otik & &= 0.
i k=

In analogous fashion, by putting (&) == 1/¢*T—*(u) in (8), we obtain
the equation

11) w T1(u) = 0

as the condition that hyperplane (#) pass through its own image point.

It can happen that equation (9), or (10), holds for every point of P.
The linear correlation is then called a null system. What conditions-
would have to be imposed on the matrix of correlation (4) for it to repre-
sent a null system? Since, in that case, the left-hand side of (10) must
then vanish for every value of &, it must do so, in particular, if for a

fixed 4, we set

‘50: ‘§1: v = §’l:—1:: O) .§l= 1’ ‘§Z+1= §z+2: e T §ni19-,a

From this, it follows that for every 1,

(12) ti = 0, i=0,1,---,n.

Furthermore, if for two different but fixed subseripts ¢, k& in (10), we set
&=26§,=1, and &, ==0 for h %14, k, it follows that

(13) bt b+t + e = 0, G, k=0,1,--.,n; is%4k.

From (12) and (13) We see we must have for every pair of subseripts ¢, k
(and this is also true for ¢ =1)

14) b = — s, L,k=0,1,---, n.

The relations (14) represent a necessary condition that (4) be a null
system. But, in addition, they are also sufficient. For if they are satis-
fied for every pair of subseripts ¢, %, it immediately follows that £, =0
for i==0,1,..., n. Moreover, for every pair 4, k with ¢s£ k, the terms
tii€n and $4;&:€, in (10) cancel each other. Thus, (10) is identically
satisfied in the &;.
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A matrix T = (f;;) that satisfies condition (14) is called skew-
symmetric. Thus we may state the following.

TueorEM 3. The linear correlation (4) is a null system if and only
if T is skew-symmetric.

The condition (14) can also be written in matrix form as

(15) T+ 7T = 0.

The question as to the existence of null systems is still not decided,
however, but is merely reduced to the following: Do non-singular skew-
symmetric matrices exist? If the (# + 1)-by-(n -+ 1) matrix T == (f;) is
skew-symmetrie, it follows from 7’ = (— ¢3) that

1) | 7] = (— 1 7).
However, since | 7" | == | T | for every square matrix, from (16) it follows,
for even m, that |T|=—|T |, and so | T |=0. Thus we see that in

even-dimensional spaces Py, there are no null spaces.

The reverse is true if n is odd. For then n + 1 is even, and conse-
quently & = (n + 1)/2 is a whole number. The matrix

an

furnishes an example of a non-singular skew-symmetrie (n + 1)-by-(n + 1)
matrix ; in this matrix only the elements of the secondary diagonal (from
-upper right to lower left) need be different from zero.

TaEoREM 4. Null sysfems exist in the spaces Py, Ps, P, . .., but not in
the spaces Py, Py, P, . . .. '
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Let there now be given a hyperplane &, whose coordinates with réfqr-
ence to a fixed projective coordinate system we shall denote by vo, vy, . . .,
vn. If we look for the image hyperplanes of each point of 4 under a given
linear eorrelation, these hyperplanes, by Theorem 1, constitute a hyper-
bundle with a single point @ as kernel. Tt is easy to compute the coordi-

nates Hoy N1y« -+ 5 Yn of Q
To this end, let us write the equation of .in matrix form

(18) W) = 0.

Let the equation of the linear correlation be given by (4). If we solve
(4) for (¢) and substitute it in (18), we see that the coordinates uq, 1ty . Yo
un of each one of the image hyperplanes must satisfy the equation ’

(19) @ Tt () = 0.

This equaﬁon, which is a linéhr homogeneous equation in the u;, does, in
fact, represent a hyperbundle. By Chap. III, Theorem 1, the kernel of
this hyperbundle has the coefficients of equation (19) as coordinates.

Thus, we must have

(20) ) = - (T -() = 0- (T (),
or*
(21) W =¢-T (.

Since this system of equations again is of the form (4), we have Theorem 5.

TurorEM 5. If, starting out with a giwen linear correlation (4), o
correspondence s set up between each hyperplane and the carrier of its
image hyperbundle, this correspondence 1is itself a linear correlation and
18 represented by equation (21). ,

In general, the correlation (21) will be different from the correlation
(4). If (4) and (21) represent the same linear correlation, the correlation
is ealled nvolutory.® When will this occur? As we know, T and T’ must

% We have once again replaced the factor 1/g, which appears on the left-hand side
when we solve (20) for (v), by ¢, since g, and hence 1/g¢ also, are entirely arbitrary.
5 The term may be justified as follows. A linear correlation ean be looked upon
as a one-to-one mapping of the set of all points and hyperplanes onto itself, in which
the image of a point is the hyperplane given by (4) and the image of a hyperplane
is the point given by (20). In the involutory case, the square of this mapping is

the identity.
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then be identical up to a constant of proportionality. Thus, there must
exist a 1 =% 0 such that

(22) , 7=14-T.

Now, equation (22) remains valid if we replace the matrices by their
transposes. Hence, \

(23) T=2-T
also. If we substitute in (23) the expression for 77 from (22), we obtain
249 T == 22.1.

Since not all the elements of the non-singuler matrix T can be equal to 0,
it follows from (24) that 12=1, and so A== =1, Thus, we have an
involutory linear correlation if and only if either 7"=—T or TV =1T.

‘We have already dealt with the skew-symmetric case 7" =— — 7. These
linear correlations are the null systems. -In the case 7" ==T —in other
words, when ‘the matrix is symmetric—the linear correlation is called a
polarity.® In this terminology, we can now state the following theorem.

THEOREM 6. The only involutory linear correlations are the null sys-
tems and the polarities.

Exercises

1. .Let ¢ and 7 be two one-to-one mappings in real P. of the totality of points
onto the totality of hyperplanes. Let ¢ and 7 be related as follows: If the hyperplane
% denotes the image of a point P under ¢, and the hyperplane v the image of a point
@ under 7, then the incidence of P and v always imiplies the incidence of @ and w.
Show that ¢ and T are necessarily linear correlations and are related in the way de-
seribed in Theorem 5.

2. Let (w) =90 T (4§ be a given linear correlation. Consider also the eorrelation
() =eoT'(§) related to it as in Theorem 5. - If, beginning with an arbitrary point
P, we pass to the image hyperplane # by the first correlation and thence from this
hyperplane % to its image point @ under the second correlation, then the mapping
P-> @ is a linear collineation w. Also consider the inverse collineation w—1 (i.e.,
@ —> P). The matrices of w and w—! in a fixed coordinate system are (after appro-
priate normalization) transformable into each other {in the sense of Modern Algebra,

§ 26, Theorem 2).

6 The existence of polarities is trivial; the identity mapping is always a polarity.



CHAPTER VIII

HYPERSURFACES OF THE SECOND ORDER

In the last chapter, upon inquiring into the condition under which a point
lies in its own image hyperplane under a given linear correlation of Py,

we obtained an equation of the form
n
e 2 bakis=0.
ik=0

From here on, the subject of our consideration will be the set of points
represented by such an equation. The totality of points whose coordinates
Eo, &1, ..., £n (in a fixed projective coordinate system) satisfy a (fixed)
equation of the form (1) is called a hypersurface of the second order
(in P3 and P, a surface of the second order and curve of the second order,
respectively). The equation itself is said to be homogeneous of the second

degreel :
The (n+ 1)-by-(n + 1) matrix (by), formed from the coefficients of

(1), is called the matrix of the hypersurface. It is easy to see that we can

always take this matrix to be symmetric. For if we use the given by, to

define (n + 1)2 new numbers a4 by means of the equations?

1 This name arises from the fact that only terms of the second degree appear in
the equation—either the square of a single variable or the product of two variables.
More generally, a function f(%, &, ..., &)of n - 1 variables is said to be komo-
geneous of degree k if, for arbitrary A and &, f(R&, A%, ..+, A%) always equals
A f (%, E1y+--,8n). Tt is a consequence of homogeneity that the equation

f(Eo: Ely MR 5’1) =0
is either satisfied, or not satisfied, by all the ecoordinate vectors of a point simulta-

neously.
2 In particular, @y =b¢ fori==0,1,...,n,
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(2) aik:“bi—k:;&) thk=0,1,---,n,

then, for arbitrary &, we have

n

bae & & = 2 Qg &5 ;clc,

0

s

A
and hence the equation
(3) : Z_; an il =0

represents exactly the same hypersurface as (1). But for the a;; defined
in this way it is indeed true that a;; = ay; for every pair of subseripts 4, .

Let us agree that in future the matrix of a hypersurface of the second
order will always be assumed to be symmetric without our making special
mention of this fact in every particular case.

It is often advantageous to express equation (3) in matrix form. If we
set A == (a;;) and let (&) denote a coordinate matrix, the equation

4 ’ &-4.-% =

represents the same hypersurface as (3). The condition a;; = ay; can
then be expressed in matrix form as 4 = 4’.

How is the equation of a hypersurface of the second order altered
under a transformation of coordinates? If we express our result in the
form (4), it is easy to see what happens. If we let & and &;* be the co-
ordinates of a point in two different projective coordinate systems, we
know that a relation of the form

(&) = eT ("

must exist, where T = (#;) is a certain non-singular matrix. By sub-
stituting this expression in (4), we see at once that:



108 ProsrcTive GEOMETRY OF 7 DIMENSIONS

If (4) is the equation of a fized hypersurface of the second order ina
gwen projective coordinate system, then for any other coordinate system
a non-singular matric T can be found such that the equation

(5) ET'ATEY =

represents the same hypersurface i that other coordinate system.?

Intersection with a Line

The first question to which we address ourselves is this: How many
points of intersection does a line have with a hypersurface of second order ¢
Let us think of the line as determined by two of its points, whose coordi-
nate matrices in the initial coordinate system are () and (£). Then the
coordinate matrix of an arbitrary point of the line has (by Chap. II, Theo- °
rem 3) the form 2 () + p (C) for suitable values of 4, 4. Our question then -
amounts to the determination of those 1 and u for which ‘the matrix
A ()4 (0) satisfies equation (4). If we replace (&) in (4) by the matrix
4 (7)-+w (), we obtain the following condition on 1 and u:

oY A +i-wlm) AQ+EC A@I+u* Q) AQ) =

The matrix (y1)’A({) which appears here is symmetrie, because it contains
only zeros except for the first entry in the first row (which is equal to the
second sum in equation (7) below). Since A4 is moreover assumed sym-
metrie, it follows that (1)’ A(L) = () A(D)) = ({Y A(y). Hence, the
last equation can also be written in the form ,

(6) Ay A +22u(@) A©)+ w2 @) AL =

To find the points of intersection it suffices to determine the numbers
4, g only up to a common factor or, in other words, to determine the ratio

3 We cannot say here that every equation of the hypersurface in this coordinate
system differs from (5) omly by a multiplicative constant. For, in real P, it is not
in general true that the equation of a hypersurface of the second order is determmed
by this up to a multiplicative constant. For example, the equations ’g’o+§1 = 0 and
§o+2 B =0 represent the same set of points in real P; (namely, the single point
§o=1§ =0,%=1). Sinece we have no_immediate need for a discussion of this
question, we shall postpone it to the chapter after next, where it can be more easily

handled. Cf., Chap. X, Theorem 5.
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of the two numbers. Let us first assume that neither of the two points
(1), (©) lies on the hypersurface. Then neither 1 nor u can vanish at a
point of intersection, and 4/u is a well-defined real or complex number
(54 0). Furthermore, since (1)’ A(n) 5% 0 and also (£)’A(L) % 0,* (6) rep-
resents in the present case a quadratic equation in 1/u; for (6) is equiva-
lent® to

O (F awnmr2 o[ 2 aunt) +

i k=0

n
2 age §i b = 0.
i, k=0
Sinee to every solutmn for A/u there corresponds a point of intersection,
we see that: (

If we consider the hypersurface (3) in complex Py, then it has in gen-
eral two points of intersection with owr line (which goes through the two
potnts (1), (£), both assumed not to lie on the hypersurface). It can also
happen, however, that there is only one point of intersection, which occurs
when equation (7) has a double root (i.e., a solution of multiplicity 2);
wm this latter case, it is customary to speak of two coincident points of
intersection.

If, on the other hand, we consider (3) in real Pr—in which case the
coefficients of (3) as well as those of (7) must be assumed to be real—
only one additional case can occur, nomely that there exists nmo point
of intersection, which happens when (7) hds no real solution for 1/p.

There still remains to be considered the possibility that at least one
of the two points (1), ({) lies on the hypersurface. Suppose this is (z),
say ; then ()’ A(n) = 0. We distinguish four cases, depending on whether
or not the other two coefficients in (6) vanish.

I (g A)= () A() = 0. Then every pair of values for 1, u
satisfy equation (6), i.e., the entire line lies in the hypersurface.

I () A(L) = 0; (£) A({)54 0. Then the equation is satisfied only
for p==0. That is to say, we now have the single pomt of intersection
(counted twice), =1, u=0.

01 () AQ) #0; ) A()=0. There are exactly two points of
~ intersection, namely, 1=1, p=0and 1 =0, u=1.

IV. () A £ 0; V4 () 54 0. Again there are two points of inter-
seetion, namely, A=1, u=0 and A = (Y A (), p = —2 () A ().

¢ Because the points (), () do not belong to the hypersurface (4).

5 The coefficients of equation (7) are the first elements of the first row of the
corresponding matrices of (6). The remaining elements of the matrices of (6) consist
only of zeros.
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In all four cases the results are valid for the real case as well as for the

complex case. Let us put these results in tabular form for future

reference.
PoinTs oF INTERSECTION OF THE LINE THROUGH (7), ({) WITH THE
HypPErsURFACE (£)’A(&) == 0 UNDER THE AssUMPTION (7)’A (%) =0.

Value of Value of Number of points of intersection
MA@ | 4@
I 0 0 The entire line lies in the hypersurface
I 0 7= 0 One point of intersection (counted twice)
III and IV 5 () arbitrary Two distinct points of interseetion

The Tangents to a Hypersurface of the Second Order at a Point

If a line either has just one point in common with a hypersurface of

the second order or lies entirely in the hypersurface, the line is called a
tangent to the hypersurface. In this case, the points of intersection are
also referred to as points of tangency. We now wish to determine all the
tangents that pass through a given point of a hypersurface of the second
order.
Let the hypersurface again be given by (4) and let () denote the
fixed point on the hypersurface. Our problem ean then be phrased as
follows: To find all the points ({), distinet from (), for which the line
Jjoining () and ({) is a tangent to the hypersurface. Since reference to
the above table shows that tangents exist only in cases I and II and that
these cases are characterized by the equation

(8 A% = 0,

we see that the desired points are simply the solutions ({) of equation (8).
With a fixed (1), condition (8) amounts to a homogeneous linear equa-
tionin o, &y, - -+, §n. If not all the coefficients® of this equation vanish,
then (8) defines a hyperplane. Since this hyperplane contains all? the
tangents through the point (), it is called the tangent hyperplane at

the point (n).

6 That is, the elements of the matrix (y)’. 4.

7 If we were working in P; and (3)'d4 5% 0, equation (8) could only be satisfied
by a single point, hamely ({) == (3). In this case, there is no tangent at the point ).
In P, assuming (3)'4 54 0, (8) represents a line, actually a tangent liné, the only one
through the point (). If n > 2 there is always an infinite number of tangents at ea¢h
point of a hypersurface of the second order.
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Can it happen that all the coefficients of equation (8), ie., all the
elements of the matrix (5)’4, vanish? This would mean that

n
©) Zg @i i == 0
. =

fork==0,1,...,n Since the #;, being coordinates of a point of Pn, can-
not all be zero, (9) can only be true if the determinant | A | =] a; | ==0.
But if, conversely, | 4 | =0, there always exists a non-trivial solution
Boy M1, « « -, Mn Of (9). Moreover, since it always follows from (5)'4A == 0
that ()’ 4(n) = O as well, every point () that satisfies (9) is also a point

of the hypersurface (4).
The vanishing of all the coefficients of equation (8) means that every

line through () is a tangent to the hypersurface. A point () of this
kind is called a double point of the hypersurface. Thus, | A | =0 is the
necessary and sufficient condition for the existence of double points.

The most important of these results are summed up in the following
theorems.

TarorEM 1. If (%) is @ point of the hypersurface (§)’A(&) = O, but
not @ double point, then the equation®

(7)-4-(8) = 0

represents the (uniquely determined) tangent hyperplane at the point ().

TueorREM 2. The hypersurface (£) A(&) = O has double points (i.e.,
points at which the tangent plane is not uniquely determined) if and only
if | A|==0. The double points are then given by the solutions of equa-
tion (9), and so fill out o linear space of dimension n— r, where r is the

rank of A.
If |A|==0, ie., if double points exist, the hypersurface is called
degenerate ; otherwise, non-degenerate.

Theorem 2 shows that the rank of the matrix 4 is independent of the
coordinate system as well as of the choice of the equation of the hyper-
surface. Hence we can call the rank of A the rank of the hypersurface

defined by (&) A(£) = 0.

8 We again denote the variable coordinates by & instead of &.
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Tangents to a Hypersurface of the Second Order from a Point
Exterior to the Hypersurface

Let us now start with a point with coordinate matrix (£) which does
not lie on the hypersurface (4). We are thus assuming that ()’ 4() 5% 0.
We again wish to determine all the tangents that go through (£). None
of these tangents can lie entirely in the hypersurface (since (£) does not).
Consequently each of them has but one point of tangency with the hyper-
surface, and our problem will be solved if we ean specify all these points
of tangency.

Therefore let us consider, in addition to ({), one other point of the
hypersurface (4). Let its coordinate matrix be (). Under what cireum-
stances will the line through () and ({) be a tangent line? A glance at
the table on p. 110 shows at once, since (£)’4(() 5% 0, that this can only
oceur in Case IT. The necessary and sufficient condition for this case is
given by the equation

(10) )AL —

Equation (10), which, by virtue of ()’ 4 (§) = (£)' 4 (1), we can
also write in the form
1y ‘ &A@ =
can not in the present case hold identically in the #;, since, for example,
it is not satisfied, by assumption, for () = (). Thus, equation (11), or
(10), always represents a hyperplane. The desired points of tangency
are the points of intersection of this hyperplane with the hypersurface (4).

If, for the sake of uniformity, we again write & for the varlable co-
ordinates #; in (11), we can state the following :

Turorem 8. If ({) is a fized point not on the hypersurface
(6)'A(&) == 0, the points of tangency of all the tangents through ) are
gwen by the points of intersection of the hyperplane

(12) &YAE) =0

with the hypersurface (£)A(£) = O.

It should be clearly noted that such points of intersection need not
always exist in the case of the reals. If no such points exist, then there
can exist no tangents through ({). In the complex case, on the other
hand, such points of intersection and corresponding tangents always

e

exist.?

9 For in the complex domain every line which lies in the hyperplane, for example,
has points in common with the hypersurface.
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The Polar

The hyperplane (12) has still other geometrical properties. To dis-
cover them, let us assume in what follows that ({) is not a point of the
hypersurface (4) and consider those pointsof the hyperplane (£)’4(£)=0
that, like (£), do not lie on the hypersurface (4). Let () be such a point
of the hyperplane. The line! through the point () and the fixed point
(£) will have either no points of interseetion with the hypersurface (4)
or exactly two. In the first case, which can only oceur in real Py, there
is nothing more to say. In the second case, however, we can take the
coordinate matrix of the point of intersection to be of the form A(y) + u(f).
Then, for a point of intersection, the 1 and u must satisfy equation (6).
The middle term in this equation, however, now vanishes.? Since by
assumption, (1)’ A(n) = 0 and ({Y’A({) 7 0, and hence neither 1 nor p
can be zero, it follows that for a point of intersection

. ] /AR

o - () Ay~
From this we see that if 1(y) -+ () is one of the points of intersection,
then 4 (5) — o (£)is the other. The cross ratio of the four points (1), (£),

A(p)+p (@), Ag) — w(C) is equal to — 1, ie., they form a harmonie set.
Thus we have Theorem 4.

TarEorREM 4. If ({) is a point not on the hypersurface (§)’A(8) = O
and if g s @ line through (£) which is not tangent to the hypersurface (but
does intersect it), then the point ({) and the point of intersection of g with
the hyperplane (§YA(£) = O, on the one hand, and the points of inter-
section of g with the hypersurface (§)A(E) =0, on the other hand,
separate each other harmonically.

Because of its remarkable properties, the hyperplane ({)’A(§) =0
is given a special name; it is called the polar of the point ({) with respect
to the hypersurface (§)’A(&) = 0. This designation is also extended to
the case in which () does lie on the hypersurface, but ({)’4 5= 0. The
polar is then identical (by Theorem 1) to the tangent hyperplane. The
point () is called the pole of the hyperplane ({)’4(&) = O.

1 Because (£)'4({) = 0, ({) does not belong to the hyperplane ({)'4(§) = 0.
Thus, ({) and () are distinet and determine a line.
2 () was a point of the hyperplane ({)'4 (§)==0. Hence,

A =)' A()=0.
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The resemblance between the terms ‘pole’ and ‘polar,” and the term
‘polarity’ by which we denoted the correlations at the end of Chapter VII,
is not accidental. For, if the hypersurface (4) is non-degenerate, then
every point of P, has a well-defined polar, and, in fact, the hyperplane
coordinates u, %1, . . . , #a of the polar of a point ({) are given by

(13) (w) = ¢-4-().

From the preceding chapter, we know that for | 4 | 40 this equation
represents a linear correlation, and moreover, since A is symmetrie, it
represents a polarity. The hypersurface (4) is then precisely the locus
of all the points that lie in their own image hyperplane under the polarity
(13) (cf. Chap. VII, p.101£.).

Thus, for a non-degenerate hypersurface of the second order, the rela-
tion ‘pole =2 polar’ satisfies, in particular, the defining properties of a
linear correlation: The relation is one to one and leaves all cross ratios
invariant. Further (by Chap. VII, Theorem 1), it associates a k-dimen-
sional linear bundle with a %k-dimensional linear space, and conversely.
Since, as a polarity, it is also an involutory correlation in the sense of
Chapter VII, it always takes a hyperplane into a hyperbundle whose
kernel is precisely the pole of the hyperplane.

Dualization

The duol of a hypersurface of the second order is called a hypersur-
face of the second class. In accord with the duality principle, this term
stands for the totality of all hyperplanes® whose coordinates wo, %1, . . . , #n*
satisfy an equation of the form

(14) Qi i up, = 0
k=0

or

(15) (W) A(w) = 0,

3 Despite the name hyper-‘surface,’ this dual concept is of course not that of a
set of points, but of a set of hyperplanes.
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where A == (a;;) is a symmetric matrix. The dual to a tangent is a pencil
of hyperplanes, called the fangent pencil, which have either just one
hyperplane in common with the hypersurface of the second class or else
belong to it entirely. Thus, if () is a fixed hyperplane of the hypersur-
face of the second class, all the tangent pencils through (u) fill out either
the entire space (i.e., every pencil through (u) is a tangent pencil) or one
single hyperbundle. In the first case, (%) is called a double hyperplane;
in the second ecase, the kernel of the hyperbundle, which is of course a
single point, is called a fangent point. Theorems 1 and 2 then hold true
under this dual interpretation. In like manner, the concepts degenerate
and non-degenerate hypersurface, pole, and polar can be dualized, to-
gether with the theorems coneerning them.

The totality of the tangent hyperplanes to a non-degenerate hyper-
surface of the second order constitute a hypersurface of the second class.

For it follows from (§)’A(&) == 0 (] 4 | 54 0) that

(16) (844714 (§) = 0.

If we now let ug, ui, ..., un denote the hyperplane coordinates of the
tangent hyperplane to the hypersurface (§)’A(&) = O at (&), we can, by
Theorem 1, set (u) == A(§), or (1)’ = (§)’A. If we substitute this in (16),
it follows that the equation

@an w41 () = ‘0

is necessarily satisfied by the coordinates of each one of the tangent
hyperplanes. Conversely, if (17) is satisfied for some hyperplane (u),
there exists, since | A |540, one and only one coordinate matrix (&)
satisfying the relation (u) = A(&). This (&) then also satisfies (16),
i.e., represents a point of the hypersurface (§)’4(&)==0 of which (u)
is a tangent hyperplane.

The dual argument shows that the equation (£)’4(&) = O yields the
totality of the tangent points of the hypersurface of the second class
given by (17). We thus have the following theorem.

TaeoreM 5. If | A |40, then the hypersurface of the second order
given by (5 A(&) = O and the hypersurface of the second class defined
by (u)A—1(u) = O are related as follows: The second is exactly the
totality of the tangent hyperplanes of the first, and the first is exactly
the totality of tangent points of the second.



116 Prosrcrive GEOMETRY OF 7 DIMENSIONS

‘Thus far we have not bothered to inquire if every equation of the
7w
form (3), ie., > i §; & =0, actually represents a set of points—in

%

other words, if there always exist peints that satisfy a given equation of
the seecond degree. In complex Pn, to be sure, this will always be the
case. For here, as we have seen, there is on every line at least one point
whose eoordinates satisfy the equation. In real P, there will always be
such points if | @z | ==0. For in this case there exist even special points
of the hypersurface, namely the double points.

On the other hand, if equation (3), thought of as over the reals, has
determinant | ay | 40, there do not always necessarily exist points of
real P, that satisfy it. For example, the equation

45+ 48 =0

has §o=&; =...=§&, =0 as its only real solution, and this does not
represent any point of Pn.. IHowever, it is neither customary nor desir-
able to bar this case from consideration. In the first place, every such’
hypersurface, while empty in the reals, has a non-empty complex part.
In the second place, moreover, many theorems on hypersurfaces of the
second order retain a perfectly sound meaning in this case, even when
considered solely in the reals. For example, every point of real Py still
has a real polar,* and the correspondence ‘pole = polar’ is, in this case
also, a correlation of real P,.

If a real equation (3) has no real point as solution, it is said to repre-
sent an ‘maginary hypersurface of the second order. The dual expres-
sion is imaginary hypersurface of the second class.

Exercises

1. What is the meaning of the concepts hypersurface of the second order, polar,
and, polarity in Py?

2. Show that a hypersurface of the second order in P. which les entirely in a
hyperplane, consists solely of double points. From this it also follows, among other
things, that on a non-imaginary non-degenerate hypersurface of the second order in
Py it is always possible to find n + 1 linearly independent points.

3. Let there be given in P a hypersurface of the second order of rank r>1
and a point P not on the hypersurface. Show that the tangents (==lines) to the
hypersurface of the second order from P constitute 2 hypersurface of the second order

of rank r—1..

4 The definition of the polar of the point ({) with respect to the hypersurface (4)
has been given in a purely algebraiec form as €Y4E =0. :



CHAPTER IX

PROJECTIVE CLASSIFICATION OF HYPERSURFACES
OF THE SECOND ORDER

Statement of the Problem

If a linear projeetivity® of P» is applied to a hypersurface of the second
order, the totality of image points of all the points of the hypersurface
itself constitutes a hypersurface of the second order. To see this, let us
think of the hypersurface of the seeond order as given by the equation

&) L wam = o 4= 4,

A

and the linear projectivity, as in Chapter VI, by
@) ; : : (§) = e T'().

If we ehmmate (&) between 1) and (2), we obtain
® ' (E) TTATE) = 0

as the equation for the image points. . And this is indeed the equatlon of a
hypersurface of the second order. .

If a hypersurface F'; can be transformed into a hypersurface F, by a
linear collineation; then there also exists a linear projectivity, namely
the inverse? of the given one, which transforms ¥, into F;; hence we may
make the following definition: Two hypersurfaces of the second order
which can be transformed into each other by suitable linear collineations
will be sald to be pro_]ectlvely equlvalent Since this defini’ci‘on tells"us

1A progectlwty of the kind cons1dered in Chapter VI is meant mapping P, onto
itself.

2 Here, and in what follows, the térms ‘inverse’ and ‘product’ are used in the
general group-theoretical semse, as stipulated in § 19 of Modern Algebra.



118 ProJecTive GEOMETRY OF # DIMENSIONS

nothing about the imaginary hypersurfaces of real P., we shall agree,
furthermore, to call any two imaginary hypersurfaces of real P, pro-
jectively equivalent.?

Every hypersurface of the second order is projectively equivalent
to itself, since, for example, it is transformed into itself by the identity
mapping of P,. The most important property of the concept ‘projective
equivalence’ is its transitivity, i.e.:

If F1, Fs, Fy are three hypersurfaces of the second order and if F is
projectively equivalent to Fs, and F, to Fa, then Fy is projectively
equivalent to Fs. .

For the real imaginary hypersurfaces, this is true by definition. That
it is true for the others follows immediately from the fact that linear
collineations constitute a group. For if x is a linear projectivity that
takes F'] into F'; and »” a second linear projectivity that takes Fy into B,
then the product »'- » (i.e., the collineation that results from first apply—
ing » and then applying x’ ) takes F'; into Fs. \

A fundamental problem is to find necessary and sufficient conditions
that two hypersurfaces of the second order be projectively equivalent.
The solution of this problem will be the subject of the present chapter.

- 'The problem as stated may be given another and somewhat broader
formulation. This formulation is arrived at as follows. The transitivity
of the relation of ‘projeetive equivalence’ has as a consequence a parti-
tion of the class of all hypersurfaces. More specifically, we define a
class of projectively equivalent hypersurfaces to be a (non-empty)-set ‘of
hypersurfaces of the second order having the following two properties:

1. Every two hypersurfaces of the class are projectively equivalent.
2. All hypersurfaces projectively equivalent to any one of the hyper-
surfaces of the class also belong to the class.

Property 2. can also be expressed as follows:

2*. A hypersurface of the class is never projectively equivalent to a
hypersurface that does not belong to the class.

An ezample of such a class is the set of all hypersurfaces of the second
order projectively equivalent to a fized hypersurface of the second order.
Properties 1. and 2. hold for this example merely by virtue of the trans1-
tivity of projective equivalence.

3 A real non-empty hypersurface, of course, cannot be transformed into an
imaginary surface by a real collineation. Cf. also p. 127, footnote 9.
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- This example immediately shows that every hypersurface of the sec-
ond order belongs to at least one class. However, it is also true, con-
versely, that every hypersurface of the second order appears in only one
class. Or to express it another way: Two different classes always have
an emply intersection. For if ¢; and ¢, are two classes with a common
element F, then by property 1., every hypersurface of cp is projeetively
equivalent to F, and hence, since F also belongs to ¢, every element of
Oz, by property 2., is contained in ¢;. But the same result obtains if we
reverse the roles of ¢; and ¢z, so that ¢; and ¢p are necessarily identical.

We see, then, that the totality of all hypersurfaces is so partitioned
among our classes that each hypersurface occurs in one and only one class.
Such a partitioning into classes is called disjoint. The problem posed
above may now be incorporated into the following somewhat more ambi-
tious one: To determine the classes of projectively equivalent hyper-
surfaces of the second order, and to discover simple criteria for deciding
to which class any given hypersurface belongs. By determining the
classes we mean giving a complete system of representatives, i.e., a system
of hypersurfaces of the second order containing one and only one repre-
sentative from each class. It will become apparent that this determina-
tion of classes is the cruecial part of our task, from which the rest follows
easily.

The connection of our problem with transformations of coordinates,
though not necessary for our later work, is in itself both interesting and
important. The conjecture that such a connection exists is suggested by
the fact that the same algebraic relation exists between equations (1) and
(3), representing projectively equivalent hypersurfaces of the second
order, as between equations (4) and (5) of Chap. VIII (p. 107£.), having
to do with a transformation of coordinates. To be sure, we do not yet
know at this point whether two equations that represent projectively
equivalent hypersurfaces of the second order in the same coordinate
system must necessarily always be related in the same way as (1) and (3) ;.
for we do not yet know all the forms that are possible for an equation
of a hypersurface of the second order in a fixed coordinate system. (See
footnote 3 (p. 108) of Chapter VIII and Theorem 5 of Chapter X below.)
Nevertheless, we are already in a position to state the following result:

Two equations (§)’A(§) = 0, (n)’B(n) == O referred to the same pro-
jective coordinate system represent projectively equivalent hypersurfaces
of the second order if and only if they can also be looked upon as the
equations of @ single hypersurface referred to two (in general, different)
coordinate systems,
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Proof: Let Fy, Fy designate the hypersurfaces represented, respec-
tively, by the equations (£)’4(&) = 0, (4)’B(%) = 0 in the coordinate
system (Qo, @1, ..., @ | E). Assume they are projectively equivalent,
and let » be a fixed linear collineation that takes F; into F,. Let the
image points of @;, K under » be Q;*, E*. From Chap. V, Theorem 6,
an image point @* in the coordinate system (Qo*, Q.*, ..., Qu* | E*)
always has the same coordinates as its original Q in (Q,, Q1, ..., Qx | E).
It follows at once from this that Fs, the image hypersurface of F, will
be given by every equation in (Qo*, Q1*, ..., Q.* | E*) that represents
Fi in (Qo, @1, ..., Q=] E) and thus, in particular, by (£)’4(&) =0.
Thus, each of our two equations proves to be an equation of the one
hypersurface Fy; in other words, the ‘only if’ part of our assertion
is proved. :

Conversely,.if we think of (S)'A(é‘) =0 and ()’'B(n) = 0 as glven
equations for Fj in the coordinate systems (Qo*, Q.%, ..., Qu* | E*) and
(Qo, @1, ..., Qn| E) rpspectlvely, then the collineation » must be deter-
mined as that linear projectivity which takes the points Q,, E into Q.*, B*,
respectively. The inverse collineation, applied to Fs, yields an image
hypersurface F; ; we show, as above, that this has the equation (£)’4(&) =0
in the coordinate system (Qo, @1, . .., @ | E).. Thus, the ‘if’ of our theo-

rem is also proved.

Normal Forms. Complete System of Invariants

As a first step in solving our problem we must think of what s1mp11f1-
cation can be effected on the equation of a hypersurface of the second
order by passing from form (1) to form (3). Since this auxiliary investi-
gation does not pertain directly to hypersurfaces of the second order,
but is a purely algebraie assertion about the behaviour of the expression
on the left-hand side of the equation for such a hypersurface, let us not
speak of hypersurfaces of the second order for a while but only of

expressions of the type

, ik & &,

A

4

2
where 4 = (a:z) is a fixed symmetric matrix s« O and &, &, ..., &, are
variables. We may take the ay to be elements of an arbitrary field. Such
an expression is called a quadratic form in the variables &,.
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In analogy with the way (3) was obtained from (1), we make a linear
substitution in (4) of the form

n

5) 7 §i=2tz‘k§1f, i=0,1, - -, m,

where the &o*, &:%, ..., &% are new variables and the ¢, are again ele-
ments of the ground field. We shall always assume that the matrix
T == (t;) is non-singular and we accordlngly call (), as usual, a non-
singular linear substitution.

The successive application of two non-singular substitutions ean, of
course, be replaced by a single such substitution?

It can happen that all the square terms in (4) vanish, i.e., that a; =0
for all e==0, 1, ..., »n. By assumption, however, not all a; with ¢4k
can also be 0. Let, say, ap1 = 0. Then the non-singular substitution

§o = §(>)k + 5;‘ ,
(6) Ez = §(=)k—§;k,
& = & for i =2, 3,
transforms (4) into a new equation in which the terms 2 ay; & ? and
—2a0: §;"2 oceur, so that the new form actually does contain square terms.
We shall now prove the theorem most important for our purposes:

TurOREM 1. A quadratic form (4) can always be transformed by an
appropriate non-singular linear substitution () into the form

10 o E o ol

containing square terms only.

The proof is by induction on the number of variables. The theorem
is true for one variable &,. We assume it proved for = variables and
show that it holds for » + 1 variables. By what was said above, we can
certainly assume there is at least one square term having a coefficient
different from zero. Let ago 5% 0, say. Then we can write (4) in the form

2 n
+ _; birc &

% 1

® oo (50 ot g < )

4 See for example Modern Algebra, § 19, equation (9).



122 PrOJECTIVE GEOMETRY OF # DIMENSIONS

N n
where, provided all the by do not vanish, 2 by & & is a certain quad-
ii=1

ratic form in only n variables, &1, &,, ..., &. The non-singular substi-

tution

I Qo1 7 Qo2 7 don p
0= Mo~ 1 —Yg— Ty,
Qoo Qoo . Qoo

Si=upfori=1,2,.-.-,n
takes (8) into the form

b W5 My

1 ¢

M-

9 N "/g + .

L3

If all the coefficients of the second part, i.e., of

n

2 bie i,

=1
vanish, then we are thréﬁgh. If not, then, according to the induction
hypothesis, this part can be transformed by a suitable non-singular sub-
stitution, say by

n

(10) ﬂi=k§,: tie &k, i=1,2 -, n; |ta]70,

into the form .
2 3
01§ik+02§;k+"'+cn ;:
If the equation
an 70 = &

is adjoined to the equations in (10), it is seen that (10) and (11) together
amount to a linear substitution with the matrix

10 0 ... 0
O t11 tlg e tln .
O tnl tﬂ.2 te tnn

and that its determinant, because of the assumption in (10) that [t | 0,
does not vanish. On the other hand, the substitution defined by (10) and
(11) takes (9) into the form

*2 2 2
g 85+ ¢, &F + et g

Thus, albeit in a somewhat different notation, we have our desired result.
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A form of the type
12) QB+ 84t 2

can be still further simplified if we assume, as we shall from now on,
that the coefficients of the forms and of the substitutions represent real
or complex numbers. However, since the result is simpler in the field
of complex numbers than in the field of real numbers, let us first con-
sider the complex case. That is to say, the ¢; in (12) and the coefficients
of the linear substitution to be used may be arbitrary complex numbers.
Then we apply to (12) the substitution

1
(13) &= V-_c: & for ¢; 540,

b= §&p for all % for which ¢z == 0.

The matrix of this substitution has diagonal form, contains only non-
zero elements along the main diagonal, and is thus non-singular. Upon
application of (13), (12) takes on the form

2 o2 .
14) &+ d 8. a5

where every d; is either 0 or 1. Finally, by a further non-singular linear
substitution, we can arrange that all the non-zero terms in (14) come first
and all the zero terms last,® so that dy = dy= ... = d, =1, say,
whereas d, 1 =...==dn==0. We thus have Theorem 2.

TaEOREM 2. A complex quadratic form (4) can always be reduced to
the form

SR RN o

by a suitable complex non-singulor substitution (5).

If the original form (12) is real and if only real coefficients are
allowed in the desired substitution, then not quite as much can be
achieved. Since V/c; in (13) need not be real, we must replace (13) by

5 To achieve thig, it is merely necessary to rearrange the variables; thus, a non-
singular substitution of the following form is indicated:

§O=§;01 51 == E;‘j §nz .E;‘;n,

It

where all the numbers 0,1,...,n appear among the »,, 7y, « o+, ¥y .
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1

§y= ——— & for ¢; 540,
(15) Ve
Ep= & for all % for which ¢; =0.

This substitution transforms (12) into a form (14) in which the d, can
take on only the values 0, 1, or — 1. If we arrange the order of the terms
so that all the terms with coefficient 4 1 come first, then those with —1,
and lastly, those with coefficient 0, we have Theorem 3.

Turorem 3. A real quadratic form (4) can always be reduced to the
form

2 %2
+§ik -+ - +§k"‘ k+1"‘“§k+2—"'—§:
by a real non-singular substitution (5).

We now wish to consider how the results just proved for quadratic
forms translate into results concerning our hypersurfaces of the second
order. Since performing a non-singular linear substitution on the left-
hand side of equation (1) amounts to nothing other than applying a
linear projectivity to the hypersurface of the second order représented
by (1), Theorem 2 translates at once into the following : ;

THEOREM 4. Gwen o hypersurface of the second order in complex
P, 1t is possible to find a projectively equivalent hypersurface of the
second order having an equation® of the form

(16) S+84. 48 =0

Theorem 3 may be reinterpreted similarly. Here, however, it should
be observed that 1f k+h=—=r—1, then the hypersurfaces & -+ g SN 1
—&ipa— - —& =0 and 5+ & 4 .. 5 — Gy — - — & =0 are
projectively equivalent. For, the second equation may be transformed
into the first by multiplying through by — 1 and then interchanging
coordinates (which is a non-singular linear substitution). Thus, we need

only consider the equations
§+84 +EH—Gnu——5=0
in which £+ 1=r—1%. Thus we have Theorem 5.

6 We have written § in place of &%, since it is immaterial what symbols are used
for the variables in the equation.
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THEOREM 5. In real P, given any hypersurface of the second order,
4t is possible to find a projectively equivalent hypersurface of the second
order having an equation of the form

an R+ Et R Ba— e —E =0,
where k+1=r—Fk.

This theorem is also true, of course, for the imaginary hypersurfaces
of real P,. For, by assumption, they are all projectively equivalent to

the hypersurface &+ &+ ... +&, =0.

‘We can now proceed directly to the solution of our problem. Suppose
a hypersurface of the second order (§)A(&) = O is given which can be
carried into the image hypersurface (£%)'B(£*) == 0 by the linear col-
lineation (&) == o+ T(£*). Also, let g be a line and g* the image line under
the same collineation. Inasmuch as this collineation is a one-to-one
mapping, the number of points of intersection of g with (£§)/A(&) == 0
must be exactly the same as those of g* with (§*)B(§*)=0; or, if g
lies entirely in the first hypersurface, g* must lie entirely in the second.
And, in particular, if g is tangent to (£)’4(&) = O, then, and only then,
will g* be tangent to (&%) B(£*) == 0.

Further, a point P on (£)’4(&) = O is or is not a double point accord-
ing as all, or not all lines through P are tangent to the hypersurface.
Since this latter property is invariant, the property appertaining to P
of being a double point or of failing to be a double pom’r must also be
invariant under a linear collineation.

The totality of the double points of (§)A(&) = O will therefore be
mapped precisely into the totality of all double points of (£*)’B(&) =0
by the linear collineation (&) = ¢+ T(&*). Both totalities are linear spaces
which, by Chap. V, Theorem 1, have equal dimensionality. By Chap.
VIII, Theorem 2, we thus have the following further result:

THEOREM 6. If (£§)'A(&) =0 and (£¥)'B(&*) == 0 are two projec-
tiwely equivalent hypersurfaces of the second order, then the matrices A
and B necessarily have the same rank.”

The rank of a hypersurface of the sécond order® is thus an-invariant
with respeet to linear collineations.

7 This could also have been. concluded from the fact that (£)' A () =0 and
(8%)' B (§¥) = 0, referred to two suitable coordinate systems, can represent the same
hypersurface. (ef. p. 119).

8 In Chap. VIII we called the rank of matrix 4 the rank of the hypersurface
&'AE®) = 0. :
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At this point we are very nearly through as regards complex P,. “For
here, by Theorem 4, every hypersurface of the second order is projec-
tively equivalent to at least one of the n + 1 hypersurfaces (16). In other
words, the classes represented by the hypersurfaces (16) already account
for all the hypersurfaces of the second order. If we can just show that
these n + 1 classes are disjoint, we shall have succeeded in determining
all the classes, as we set out to do at the beginning of this chapter.

Now, by Theorem 6, two hypersurfaces will certainly belong to dif-
ferent classes if they have different rank. The hypersurfaces (16),
however, all differ from each other in rank. To find the rank of any
particular hypersurface of the form (16), we need only take a look at the
matrix of equation (16); this has the following appearance:

0

The rank of (16) is therefore r + 1, so that the truth of our assertion is

self-evident.

It is also clear by now that the converse of Theorem 6 is likewise true:
For the fact that, on the one hand, the hypersurfaces (16) represent all
the classes and, on the other hand, all have different rank means that two
different classes necessarily consist of hypersurfaces of different rank.
Expressed somewhat differently: If two hypersurfaces of the second
order have equal rank, they belong to the same class.

We can summarize our results as follows.

TuroreM 7. In complex Pn there are in all n+ 1 classes of projec-
tively equivalent hypersurfaces of the second order. The equations (16)
constitute a complete system of representatives of these classes. Each
class is characterized by the rank of its hypersurfaces.

All the questions posed at the outset are now answered for complex
P.. Let us now turn to the real case. In this case we know first of all,
from Theorem 5, that all the classes are represented by the hypersurfaces
(17). The question still to be answered is: How often does each class
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oceur among the hypersurfaces (17)? Now, it will turn out that here,
too, each eclass is represented only once. To show this, we will show that
two equations of type (17) can only belong to the same class if they agree
both in rank » + 1 and in the number % + 1 of positive squares. From
this it will follow immediately that two different hypersurfaces (17)
always belong to different clases, because they can not simultaneously
have equal indices r and k.

Sinee we already know that two projectively equivalent hypersurfaces
(17) must always have the same rank (Theorem 6), it only remains to
prove the same for the index k. This is the burden of the following theo-
rem, which characterizes this index as an invariant (and, in fact, as an
invariant in a double sense).

THEOREM 8. In real Pa, the following holds for a hypersurface repre-
sented in @ projective coordinate system by (17): k 1s the greatest
integer for which there exists a k-dimensional linear space of Pn having.
no point in commonwith the hypersurface (17). Also,s == n—k—1 is the
greatest integer for which there exists an s-dimensional linear space lying
entirely in the hypersurface (17).°

Proof: The n— k equations
(18) Ser1=0;, Epa=0, -, & =10

define a k-dimensional linear space L having no (real) pbint in common
with hypersurface (17). For from (17) and (18) it follows that

48+ +8H=0,
which is satisfied for real & only if we also have

§0=§1:"’#§k20-

But no point exists in Py all of whose coordinates vanish.

On the other hand, an (n — k — 1)-dimensional space L lying in (17)
can easily be given. Of the k + 1 coordinates in (17) which appear with
a plus sign, set the first » —k, say, equal to &y1, &kto, - - -, &, Tespec-
tively, and the rest equal to zero. The resulting system of equations

9 Accordingly, there is only one imaginary hypersurface among the hypersurfaces
(17). Therefore (by Theorem 3), any two imaginary hypersurfaces can be trans-
formed into each other by a non-singular linear substitution. This gives an algebraic
meaning to our convention of regarding two imaginary hypersurfaces as projectively

equivalent.
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§0 = §k+17 ‘§1 — §k+2, M) Eﬂ’—k-—l - §1‘;

19
(19 & k=0, &1 =0, .-+, &= 0,

of rank k& + 1, does indeed define an {(n — k — 1)-dimensional linear space
all of whose points satisfy (17).

By Chap. II, Theorem 5, every linear space of dimension > k must
have points in common with L/, and hence also with (17). On the other
hand, every linear space whose dimension is > n-—%k-—1 must have
points in ecommon with L and therefore cannot belong entirely to the
hypersurface. This completes the proof of Theorem 8.

With this, we have now determined the classes in the real case also.
And we have proved, at the same time, that the rank and the second
invariant % characterize the classes, since all hypersurfaces which have
same rank and the same k always form exactly one class. We sum up the
results for the real case in Theorem 9. ‘

TueoreM 9. In real P. there exist as many classes of projectively
equivalent hypersurfaces of the second order as equations of the form
(A7). More specifically, these equations constitute a complete system of
representatives. Two hypersurfaces belong to the same class if and only
if they are identical both in rank and in the invariant k characterized by

Theorem 8.

‘The representatives (16) and (17) of the classes of projectively equiva-
lent hypersurfaces are often called projective normal forms of the hyper-
surfaces of the second order. By virtue of their relation to transforma-
tions of coordinates, as discussed on p. 120, the following result holds for
normal forms: For every hypersurface of the second order there can »
be found a coordinate system with reference to which the hypersurface:is
given by an equation in normal form.

Let us here introduce a new term, which we shall make use of later.
By ‘a complete system of invariants for o set of mathematical constructs
with respect to a group of mappings’ is meant a system of invariants
whose equality for two of the construets in question is sufficient! to insure
that they can be transformed into each other by a mapping of the group.
Thus, in our case, we have found a complete system of inwvariants for
hypersurfaces of the second order with respect to the linear projective
group; in complex P, this is the single invariant, rank; in real P, the
system consists of rank together with the second invariant, k.

1 That it is necessary is part of the concept ‘invariant.’
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In conclusion, it should be remarked that behind the invariance of the
index % that appears in the real normal forms there lies a somewhat more
general statement. Specifically, if we return from hypersurfaces of
the second order to quadratic forms and raise the question, in connection
with Theorem 3, whether two of the ‘normal forms’ that oceur in Theo-
rem 3 can be transformed into each other by a real non-singular linear
substitution, the result we obtain differs from our prevmus result as
follows: Two quadratle forms EE4... S—E& —...—& and
§o—f— .. +§¢_k 1— §,._k—---~—§,2. (the one containing as many posi-
tive terms as the other contains negative) can nof be transformed into
each other, even though these forms, when set equal to 0, represent pro-
jectively equivalent hypersurfaces of the second order.? This somewhat
more general result is called the Jacobi-Sylvester Low of Inertia. Since
we shall not need it in the sequel, its proof will be left to the Exercises

(cf. Exercise 2).

Related Questions

Just as hypersurfaces of the second order may be classified by the
use of the projective group, so may various other geometrical structures.
To illustrate, let us carry out this classification for two simple examples.

As our first example, let us consider ordered linear quadruples, i.e.,
systems of four distinet points on a line taken in a definite order. In
exact analogy to the foregoing, we are to find the conditions under which
two linear quadruples are projectively equivalent, i.e., can be transformed
into each other by means of a linear projectivity.

It follows at once from the invariance of the cross ratio under linear
projectivities that two linear quadruples are projectively equivalent only
if they have the same cross ratio. But it turns out that this is also
sufficient.

Let S1, 82, 83, 84 and S1*, 82*, §3*, S4* be two linear quadruples with
R(S; 82 83 84) = R(8* 8o* 8g* 84%). If we can find a linear projectivity
that takes Sy into 8%, S, into 82*, and S into S3*, then 8, will automati-
cally be taken into 84* because of the equality of the cross ratios. For if
the image point of S, be denoted at first by 7, then R(S;* 8x* 83* T) ==
CR(S;[* Sz* 83* 84*), from which it follows that 7 = 84*.

2 This is due to the fact that the necessary change of signs of all of the terms
of its equation, which is possible for the hypersurface, cannot be effected by a linear

substitution,
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But Theorem 5 of Chapter V readily enables us to construct a linear
projectivity that maps S, Sz, 83 into Sy*, Sg*, Ss*, respectively. In
order to apply this theorem, let us set up a coordinate system in which
8, 8 are two fundamental points and S; is the point of intersection of
the line joining §; and S, and the hyperplane determined by the unit
point and the remaining n — 1 fundamental points. Correspondingly,
let 81*, 8* be two fundamental points of a second coordinate system and
Ss* the point of intersection of the line joining Sy* and So* and the hyper-
plane determined by the remaining fundamental points and the unit
point. As soon as we have found two such coordinate systems, we are
through. For the uniquely determined linear projectivity which maps
the first coordinate system onto the second (Theorem 5, Chap.V) takes
the points 8, 85, 83 into 81%, So*, Sg*.

It only remains to show the existence of two such eoordinate systems.
This is done as follows. Let o be a coordinate vector of S; and 1; a
coordinate veetor of S, 'We so normalize go and r; that § = xo -1y will
be a coordinate vector of Sz If we now adjoin n-—1 other vectors
2, La, ..., In t0 Lo, 11 in such a way that all the g; are linearly independ-
ent, then the coordinate system with the r; as fundamental points and
Lo+ &1+ - - - + Ln as its unit point has the desired property. For y can
also be represented as a linear combination of the unit point and the

points zs, L3, ..., Ln:

h = Qo+t -+ —L—L— —I= Lt

that is, y also lies in the hyperplane determined by the unit point and the
points rs, I3, ..., Z». The second coordinate system, for 8%, Sp*, Sg*,

can be found in exactly the same way.

Thus we see that the linear quadruples fall into precisely as many
projectively equivalent classes as there are different values of the cross
ratio. The cross ratio is an tnvariont characterizing the classes.

As our second example, let us classify in the same way the linear
projectivities themselves. To clarify what is to be meant by projective
equivalence of linear projectivities, we must state what we mean by the
application of one linear projectivity z to another linear projectivity o.*

3 This is certainly possible, since Xo, §1, I are three distinet points of a line.
4 This is not to be confused with multiplication of linear projectivities.
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Now, by this we shall mean the following: To pass from the correspond-
ence P— o (P), representing the mapping o, to the correspondence
t (P) - 7 [0 (P)]. In other words, 7 is always applied simultaneously to a
point P and to its image o(P).

Another preassigned linear projectivity o* being given, if = can be
5o chosen that the correspondence v (P)— 7 [¢ (P)] is identical to the
correspondence P—>0*(P) defined by o* (i.e., the pair of points z(P)
and 7 [0 (P)] always represent an original point and its image point under
0*), then we shall say that ¢ and ¢* are projectively equivalent. In
terms of a formula:

o* [¢(P)] = z[e(P)].

As this must be true for every P, it follows that

c*t = vg, o* = govL,

The question, When are two linear projectivities ¢ and o* projectively
equivalent ¢ then amounts to asking, When does there exist a linear pro-
jectivity vsuch that o* = za71?

Now let us formulate the problem analytically. To this end, let us
think of the systems of equations of o, 0%, r as expressed in terms of a
fixed projective coordinate system of Pn. Let the matrices® of these sys-
tems of equations be 4, 4% B respectively. It then follows that the
matrix of the system of equations of 7= is B—1 and that of z¢z—1 is
BAB—'. But o* was to be equal to zez—1. Thus, the projective equiva-
lence of ¢ and o* means the following for the matrices 4, A*: When does
there exist a non-singular matrix B such that BAB~ is equal to 4%, up
to a numerical factor ¢? '

But this question is essentially answered by Theorem 2 of Modern
Algebra, § 26. Accordingly, the necessary and sufficient condition for
our problem s that there exist @ number ¢ % 0 for which the characteris-
tic matrices of A and oA* have the same elementary divisors.

For this criterion to be usable in actual practice, we would need to
know how to find the elementary divisors of pA* —uE, for arbitrary o,
from those of A* —uE. But the answer to this question has already
been given in Chap. VI, Exercise 3.

5Cf. p. 88. It should not be forgotten that the matrix of a linear projeetivity
is unique only up to a factor 54 0.
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Exercises

1. Define projective equivalence of arbitrary ordered k-tuples of points of Pn
just as was done for linear quadruples. Then show that:

L-tuples of linearly independent points are always projectively equivalent.

Two I-tuples of linearly dependent points, both of whieh, however, contain ¥ —1
linearly independent points, are projectively equivalent if and only if eorresponding
subsets are always either linearly dependent or linearly independent together.

This condition, however, is no longer sufficient for k-tuples with at most -2
linearly independent points. But in this case it is possible, as a generalization of the
concept of cross ratios, to find invariants that characterize the classes. To see how
this method applies to an example, consider those 5-tuples that lie in a plane and are
such that three points of each 5-tuple are linearly independent. If Py, Py, Ps, Py, P;
is sueh a 5-tuple, then the ratios of the coordinates of point Ps in the coordinate sys-
tem (P, P,, P;| Py) are invariants under linear projectivities and characterize the
classes of these 5-tuples.

In similar fashion, discuss the other eases for 5-tuples. Generalize the method

to arbitrary k-tuples.

2. The Jacobi-Sylvester law of inertia, mentioned on p.129, states that a quadratic
form in the normal form given in Theorem 3, i.e.,

A

E=zr

fIA

n,

Pt g - 0

can never be transformed into a second form of this type, say B b + &

— 5;‘, by o e ——Ef , by a real non-singular linear substitution
n
(*) ge = Zawfv, ‘i=0,1,---,'n.,
B r=0
if & 5= h.

For proof, let us assume the opposite. Thus, the first form becomes equal to
the second upon substitution of (*). This yields the following identity in the &.

n

L 2 n 2 0
(vgo Qoy Ev) + (Vzoaw Ev) T ( 2 ary 51)) + '572»-4-1 I

v=0

®

7 2 n 2
= h+Et--t (2 ak+1,,,ev) +oet (2 a,.vsv) .
v=>0 y=0

If now, for certain &-values, the left-hand side of (3) is equal to 0, then it necessarily
follows from the form of this equation that all the & must =0 for i==0,1,...,n.
But this is in contradiction to Theorem 5 of Modern Algebra, § 6, which says that
for k < h there assuredly are n 4 1 real numbers &, &, ..., & , not all zero, which
satisfy the homogeneous equations
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”
2 ao &y == 0, §n+1 =0,
=0
n
2 aw &y = 0, §h+2 = 0,
V=0
1
2@:1}5»20, E =0
Ye=0

3. We have given a complete answer, both in the real case (Ex. 2) and the complex
case, to the question of when two quadratie forms can be transformed into each other
by a non-singular linear transformation. For certain geometrical applications (ef.
Chap. X, Bx. 4), the same question is of interest for ordered pairs of quadratie
forms. We can write a quadratic form in matrix notation as (§)'4(§) . This is
transformed into (§) == T'(y) by the non-singular linear substitution (3)'T"4T(y) .
Stated in terms of matrices alone, our guestion is:

When does there exist a non-singular matriz T such that, given the ordered pairs
of symmetric matrices A, B, and A*, B* A%*==T'AT and B*= T'BT hold simulta-
neously ? \

In the complex case, with the added assumptions | B | 5« 0 and | B* | 52 0, then the
answer is simple: If and only if the polynomial matrices 4 —uB and A% — yB*
have the same elementary divisors.

That the condition is necessary follows at once, by Modern Algebra, § 25,

Theorem 4 from the equation

(I'AT)—u(T'BT) =T'(A—uB)T.

To show that the condition is also sufficient, first note that the general theorem
follows from the special ease in which B==B%*=F. This is an easy consequence of
Theorem 2 of this chapter (if we make use of | B| ¢ 0, | B* |54 0). If we now assume
the equality of the elementary divisors of 4 — uE and A* —uE, it can be shown
that the equations T"A4T == 4%, T'T==FE are solvable for T if and only if the equations

) X4 =A4X, X’'X =W'W

are solvable for X, where W is a matrix for which WAW —*== A* (whose existence fol-
lows from Modern Algebra, § 26, Theorem 2). Hint: Set X =TW.

Finally, in order to solve (*), first note that from WAW~*=A* and the sym-
metry of 4 and 4* we have (W'W)A=A(W'W). From this it may readily be
dedueed that if there exists a polynomial f(u) such that [f{W W)]2=W'W , then
X=f(W'W) is a solution of (*).

In Exercise 4 it will be shown how a polynomial f(u) ean be found such that for
any arbitrary non-singular complex matrix Z, [f(Z2)]* = Z .
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4. In Exercise 3 we used the theorem: For cvery non-singular complex matriz Z
there always exists a polynomial f(u) with complex coefficients that satisfies the

equation [f(Z)]?=2Z.
If m(%) is the minimal polynomial of Z, the theorem will be proved if we can

find an f{(u) for which [f(u)]®— u is divisible by m (u).

First, consider the case in which m(u) is a power of a linear factor. As the
minimal polynomial of a non-singular matrix, m(u) cannot have % as a factor; hence,
m(u) = (u— a)® with a4 0. Now, let us write the desired polynomial f(«) in the

form

F) = cotes(w—e)+ -+ + o1 (w— )

If we then arrange [f(u)]*—u =[f()]*— (v —@e)—e according to powers of
#— o and set the constant term and all the coefficients of (¥ —ea), (¥ —&)? ...,
(u— e)*—1 equal to 0, we obtain equations from which ¢, 61,. .., Ck—1 can be computed

in succession. .
In the general case, let m (4) = (u — ot,)k1 (u ——mg)k2 cor (u—e) ", with.ey 520
. ‘ R m (u) . L
for every i. If we now define  m;(w) = —(——m—?‘—, there exist » polynomials g,(%)
U - G
for which

§1(w) my (1) + ga (W) ma () + +» » +gr()me(u) = 1,

If, finally, we let h:(w) = gi (u)m:(u), then

a) hi{u)he(u) is divisible by m(u) for z%k
b) [hi(n)]*—hi(u) is divisible by m{u).

Lastly, if we determine, as in the first case, polynomials fi(u) for which
[Fi{u)]?~—u is always divisible by (u———ozi) %, then

fw) = ,;1 Siw) b ()

is the desired polynomial, for which [f(u)]®— w is divisible by m{(u). Hint: Apply
2) and b) to the identity

[i:élj;hi]z— Y= {Lé Ji h‘]z—_ig 5 h"> +i§1 fe=w htu (zél b= 1)'

5. The theorem set forth in Exercise 3 is valid for the case B= B*==F even if
we restrict ourselves to real forms and real substitutions. The general theorem, how-

ever, no longer holds. Give counter-examples.



CHAPTER X

PROJECTIVE PROPERTIES OF HYPERSURFACES
OF THE SECOND ORDER

Every property provgdr for one hypersurface of the second order will
hold true for all the hypersurfaces of its class provided the property is
invariant with respeet to linear collineation. Properties and theorems
that are invariant with respect to all the transformations of the linear
projective group are themselves called ‘projective.” In order to discover
projective properties of hypersurfaces of the second order, it will suffice
to study one representative of each class considered. The advantage in
doing this is obvious: one can try to select a representative so that its
equation is especially tractable and convenient for investigating a particu-
lar question. Of course, such a choice of a suitable representative ean also
be interpreted as a transformation of coordinates, as is evident from the
argument on p. 120.

For many projective theorems, the normal forms afford such suitable
representatives. As a first example, consider the hypersurfaces of the
second order of rank 1. Both in complex and in real P, they constitute
exactly one class, with the normal form &,2==0. This equation, being
completely equivalent to &,==0, represents this latter hyperplane.
Every point of this hyperplane is a double point of &2==0. These
statements about the hypersurface &2 =0 are invariant with respect to
linear collineations and therefore hold for all hypersurfaces of the class.
Thus we have the general result:

A hypersurface of rank 1 consists precisely of all the points of a
hyperplane; every point is a double point.

Let us now consider hypersurfaces of rank 2. Here, too, we ecan draw
conclusions about their nature from the normal forms. The hypersur-
faces of rank 2 form a single class in complex P, and two classes in real Pn.
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Let us consider the real case first. Here the two classes are represented
by the normal forms &p? + &% ==0, &>—&§%=0. The first is satisfied
only by real points for which & == &; =10. Thus it consists precisely of
all the points of the linear space of dimension n-— 2 given by the equa-
tions & ==0, & ==0. Again, every point is a double point. As above,
analogous statements hold for every hypersurface of this class.

The normal form &2 — &;2==0 of the other class in real P» can be
taken at the same time as a representative of the single complex eclass of
rank 2. Thus, every projective statement that is true for the hypersurface
£o2 — &2 =0 is true both for all the hypersurfaces of the real class it
represents and for all complex hypersurfaces of the second order with
rank 2. Now, the equation &,? — &;2 == 0 can also be written in the form
(&0 + &1)(Eo— &;) == 0. Since this equation is satisfied if and only if
at least one of the equations &+ & ==10 and & — &; =0 is true, the
hypersurface &¢* — &% == 0 consists precisely of all the points of the fwo
distinct hyperplanes 50 + & =0 and & — & =0. The double points
are all the points for which &, ==&, =0, i.e, the points of intersection
of the two hyperplanes.

Summing this up, we have: )
5,

In complex Pr, a hypersurface of the second order of rank 2 consists
of a pair of hyperplanes, the intersection of which constitute the totality
of its double points. In real Pn, there exists the additional case in which
the hypersurface consists solely of an (n— 2)- d'&menszonal linear space
of double points.t

As a final example of the degenerate hypersurfaces of the second
order of P, let us consider those of rank n. They have exactly one double

point. Their normal forms are
) BE+E+F - HE—a— o — = 0.

If k =n— 1 in this equation, then in real P» the hypersurface consists
of the double point only. In the other cases, ie., those of the remaining
real classes and that of the single complex class, we consider the inter-
section of the hypersurface (1) with the coordinate hyperplane & = 0.

1 In the latter case, the real equation of the hypersurface, considered as an equation
in complex Pn, represents two ‘conjugate eomplex’ hyperplanes that intersect pre-
cisely in the real double points. In the case of é(, + };1 = (), the conjugate complex
hyperplanes are given by &+ 4i&=0 and § —i&= 0.
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The same correspondence exists between the points of this hyperplane
and the homogeneous n-tuples formed from the first » coordinates
&o, &1, ..., E,—1 of these points as exists between the points of P,._; and
the homogeneous #n-tuples. This coordinate hyperplane may itself be
regarded, accordingly, as P,.i. The intersection, which, as regards the
first » coordinates of its points, is again given by equation (1), therefore
represents nothing other than a hypersurface of the second order in P, _;,
and as such, moreover, is non-degenerate.

If we now join the double point, which lies outside the hyperplane
&, =0 (indeed, its coordinates are & — & = ... =§, 1 =0, §,= 1),
with any point of the intersection just considered, the entire line lies on
the hypersurface of P,. Forif &, &1, ..., &r—1, &n == 0 are the coordinates
of a point of this intersection, the coordinates #o, %1, . . ., = of a point of
the connecting line in question can be written as

2) T — l§o+.“'0, N = l'§1+lﬁ‘0, ey -l = }v§n—1+,w-0,
I = A-0+4p- 1.

But these #; always satisfy (1), since &, &1, ..., &,—1 do so. Conversely,
if the numbers 7y, 71, . . . , 77n are the coordinates of any point of the hyper-
surface (1) other than the double point, then %o, 71, ..., -1, 0 Tepresents
a point of intersection of the hypersurface (1) with the hyperplane
&, =0 which is such that the line joining the double point with this’
point of intersection passes through the given point.

Thus we see that if we draw all the lines from the double point to the
points of intersection of the hypersurface (1) with the hyperplane &, =0,
then these lines constitute the whole hypersurface. For n =4, such a
hypersurface is called a (quadratic) hypercone; in the case of P, it is
called simply a (quadratic) cone; in Py, it is a pair of lines; and in Py, a
double point.

Our discussion has yielded, as an incidental result, that the non-
degenerate hypersurfaces of the second order of P,_; can be obtained
as the intersections of the hypersurface defined in P, by (1) and a hyper-
plane of P, (namely, &, =0). In particular, this is true for the hyper-
surfaces of Ps, i.e., the curves of the second order, which are for this
reason called comic sections. The term is also applied to the degenerate
curves of the second order, since they can be generated in the same way :
they are formed when the cutting plane passes through the vertex, ie.,
the double point of the cone. In the sequel, we shall usually use the
shorter term ‘conic section’ rather than ‘curve of the second order.’
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Projective Generation of Conic Sections

The preceding discussion takes care of all the hypersurfaces of the
second order in P; and the degenerate ones in P,. We now turn our atten-
tion to the remaining case, of the non-degenerate conic sections in Pj.
Again, all our statements will be projective in nature.

Let us first find out whether all the points of a line can belong to a
non-degenerate conic section in Ps. Let us assume that the line g is part
of a conie section. If the conic section consists of g alone, then all the
points of g are double points, and the conic section is accordingly degen-
erate. However, if there exists a point P of the conie section that is not
on g, then there also exists at least one tangent & of the conie section which
passes through P. Let the point of infersection of g and & be @. Since
at least two tangents pass through @ (namely g and k), no uniquely
determined tangent hyperplane® exists at @. Consequently (see Chap.
VIII, Theorem 1), @ is a double point, and thus, again, the conic section
is degenerate.

We see, then, that an entire line can never belong to a non-degenerate
conic section of P;. Every tangent
therefore has just one point in com-
mon with the conie section.

Liet us now consider two differ-
ent points @4, @2 of a non-degenerate
conic section. The tangents at @,
and @, are uniquely determined. Let
these tangents intersect in a point @,
(Fig. 10). We take Qo, @1, @2 as the
fundamental points of a projective
coordinate system. In this coordi-

nate system, the equation of the Fig. 10
conic seetion takes on a characteristie :
form.

Let us write the equation, to begin with, in the form
2
(3) kZ:OaZ‘k §'L' §k - 0‘, iy — aki-
LK =

Since the point @, lies on the conic section, (3) must be satisfied by &; =1,

2 For then evéry line of the plane distinet from g cuts the line g in just one point

and is thus a tangent.
3 A tangent hyperplane in P: is a line, and thus a tangent line.
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&g ==&, ==0. This shows that ¢,; = 0. Likewise, from the fact that Q.
lies on the conic section, it follows that @, ==0. Hence, the equation of
the tangent at @y is, by (8), @1080 + #1262 =0. On the other hand, we
know that this tangent is just the side Q,Q; of the fundamental triangle,
or §,=0. It follows that ¢10==0, a;25%0. Similarly, the tangent at
Q. is given, on the one hand, by a20&o + @2:1&;1 == 0 and, on the other hand,
by &; == 0, whence it follows that as9 == 0. Egquation (3) is thus reduced
to the form

(4) aob §g+ 2 59 §1 §2 = 0.

Now in (4), ago must certainly be different from zero, since the point
Qo does not lie on the conic section.! Hence, we may divide (4) by aqgo.
But then, merely by altering the unit point, we can absorb? the coefficient
— 2042/ a0 into the &, (or into the &;), so that our equation finally takes
on the form

(5) 55— 5 & = 0.

The fundamental points of our coordinate system are still Qq, @1, Q.

‘We now consider the pencils of lines with @1 and @, as carriers. Let
us call them b; and b, respectively. If we join any point B 5% Q; of the
conic section (5) to @y, we obtain a line g; of the pencil b; (Fig. 10). If
we let B run through all the points £ Q4 of the conic section, g, will run
through every line of the pencil by except Q1Q, and will do so just once.
For, every line ¢, of b, distinet from @,Q, has exactly one other point B
in addition to §; in common with the conic section, since gy is not a tan-
gent. This discussion also applies, of course, to b..

Thus, if we let the lines g1 of b; and g, of b correspond to each other
whenever g, and g, pass through the same point B of the conic section,

4 For the tangent Q,Q: has only the one point Q. in ecommon with the conic section.

5 This may be accomplished, say, by the eoordinate transformation

g(;k == §o, E;k == 517 E;f = g

This transformation ieﬁves the fundamental points fixed, while the point §=~1,

£ =1, &= — 2a°° becomes the unit in the &*-coordinates.

(45T
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distinet from Q; and Q., a one-to-one correspondence is defined which
makes each line of by distinet from @1Q, and @;@s correspond to a line
of by distinet from Q2Q, and Q.Q;, and conversely. It is an obvious step
to extend this correspondence to a one-to-one relation between the whole
of by and the whole of b, by stipulating that the line @1Q, of by shall have
Q4+Q; as its image in by and the line @1Q» of b; shall have @20, as its image
in bs.6 We now assert the following :

This correspondence is a linear projectivity between by and b,.

In order to prove this, we first observe that every line of 5, must have
an equation of the form

(6) Ao+ pé = 0.

For, a linear equation A& - »& -+ & =0 will be satisfied by the
coordinates of the point @y (i.e., by &o=§,=0, & ==1) if and only if
v==0., Similarly,”

) VE+p& =0

always represents a line of bs, and every such line has an equation of
this form. We now show that we again obtain our old correspondence
between b; and bg if we let each line of (6) correspond with that line of
(7) for which X' = 4, p' = p.

For 4 ==1, u==0, we obtain in (6) the line ¢,1Q- of by and for 1’ ==1,
W =0 we obtain in (7) the line @.Qy of by, But for 1=1==0,
u=u =1, Q100 and @20, correspond to each other. This is in accord
with our stipulation above. However, if 1=1 and p== 4 are both
different from zero, then @ does not lie on (6) nor @, on (7), so that the
point of intersection R of (6) and (7) must be different from Q; and Q..
It remains to prove that this point of intersection lies on the conic seetion
(5). The coordinates 7, 7y, 42 of the point of intersection R, by virtue

6 These agreements and the foregoing can be comprehended in one statement, as
follows: g: of b: and g» of b2 shall ecorrespond to each other whenever the pair of lines
91, g2 have precisely the points @i, @z and the point of intersection of g1, ¢g: in common
with the conic section. )

7 The reason why we employ a notation that makes the coefficients of § and &
in (7) correspond to the coefficients of & and &, ,respectively in (6) will soon become
apparent, )
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of (6) and (7), clearly satisfy the two equations

|

0,
0.

l’]o“{"l“]z

8
© A+ p

I

Since 1 and u are both different from zero, it follows that the determinant
of this system of homogeneous linear equations in 4, u vanishes:

To 72

9
L

This means that the #; satisfy equation (5), as was to be proved.

It is now easy to see that our correspondence is a linear projectivity.
The coordinate vectors (hyperplane coordinates) of the three lines

=0, & =0, £&5==0 are

§0=O5 uo::{l,0,0},
.‘gl = 0: u = 07170}7
& = 0: uy == {O, 0, 1}.

Our correspondence, as defined between equations (6) and (7), now
means simply this: To the lines of b; with coordinate vector Aup -+ pits
there corresponds the line An; + gy of 2. We need only recall Theorem
9 of Chapter V to see at once that we are indeed dealing with a linear
projectivity.®

The following converse of what we have proved holds:

Let there be given any two pencils of lines b; and by, whose carriers
we denote by @, @s. We assume Q1% Q. In addition, let a linear
projectivity be given between b, and b,. Each pair of corresponding
lines intersect in a point; the locus of all these points of intersection is a

conic section.

8 The second part of the theorem quoted, Theorem 9, of Chapter V, can be restated
as follows: If 1, u, are any two distinet hyperplanes of a pencil b; and p,, b, two
hyperplanes of a penecil b2, then the correspondence A it;-+ Bty 22 40,4 uby always
yields a linear projectivity between b: and be, namely, that which takes the three
hyperplanes Ui, Uz, U+ Uy into Dy, by, b+ by, respectively.
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In order to discover in the course of the proof when the resulting
conic section is degenerate and when it is not, we distinguish between
the case in which the line ¢ '
through @, Q. (which belongs
to both pencils) corresponds, un-
der the given projectivity to g
itself and the case in which it
does not. Lt us first consider
the case in which ¢ does not cor-
respond to itself;® i.e., g, thought
of as a line of by, has as its image
in by a line hy 54 g (Fig. 11) and,
similarly, thought of as a line of
bs, has an image hy;=4g in b;. Fig. 11
Let Qo dengte the point of inter- & .
section of k¢ and hs. - ?

Let us, in addition, select a line %, of by, distinet from g and k;. Let
its image in by be ks. Let E be the point of intersection of %; and k.
We then introduce the coordinate system (Qo, @1, @2 | E). The lines of
the pencil b, may now again be represented in the form (6) and those of
bs in the form (7). And, just as before, we consider, besides the given
projectivity, the correspondence that arises by letting each line of (6)
correspond to that line of (7) for which /=1, ¢/ = p. As we already
know, this correspondence is also a linear projectivity and takes the lines
hy, g of the pencil by into the lines g, kg of bs. Furthermore, for 1 =1,

pu==—1, the line (6) is identical with k;, because the unit point E
(S0 ==& == &5 ==1) lies on this line. Likewise, the line (7) coincides
with ks for =1, ¢/ =-—1. We thus have the result that the pre-

seribed linear projectivity and that defined between (6) and (7) by the
relation 1’ == A, w == u coincide in three pairs of corresponding lines,
namely in (hy, g) (g, he), (k1, k2). Therefore, by Chap. V, Theorem 9, our

two projectivities are identical.
But we have proved above that the points of intersection of correspond-

ing lines under the correspondence between (6) and (7) defined by ' =4,
W == p, fill out the conic section (5). The desired locus in our present

case Is thus a non-degenerate conic section.!

9 This was automatically the case in the preceding discussion.

1 Obviously also a non-imaginary conic section.
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It remains to consider the case in which the line g corresponds to
itself under the given linear projectivity between b; and b.. Then let
hi, hy and ks, ke (Fig. 12) be two further pairs of corresponding lines.
Let the points of intersection of Ay, ks and of ki, k2 be respectively S, 7.
Denote the line through 8, T by j. Let us now consider the new corre-
spondence which makes the line g, of b, and the line g, of b, correspond

"if they meet j in the same point U (Fig. 12). This correspondence, again,
is a linear projectivity (and even a perspectivity), it coincides with the
given linear projectivity in three pairs of corresponding lines, namely in

Fig. 12

(h1, h2), (9, @), (K1, k2), and it must accordingly be identical with the given
linear projectivity.

This time, the locus of the points of intersection of corresponding
pairs of lines therefore consists of the two lines g and j. Thus, it is a
degenerate conic section of rank 2. Summing up, we can state:

TuEOREM 1. If two pencils of lines with distinct kernels are linearly
projective to each other, then the locus of the points of intersection of
corresponding lines is a conic section: a conic section of rank 2 if the
common line of the two pencils corresponds to itself ; otherwise, of rank 3.
Every non-imaginary conic section of rank 2 or 3 can in fact be generated
tn this fashion, and, in the case of a non-degenerate comic section, any
two of its points can be chosen as the carriers of the generating pencils.?

2 This was the very first result to be proved. In the degenerate case, where, as
in Fig. 12 say, the conic section consists of the lines g and J, the carriers of the pencils
must be distinet from the intersection of g and j, and must either both lie on g or both

on j.
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The significance of this theorem lies in the fact that it affords a means
of constructing a conic section, given five of its points. More specifi-
cally, let @4, Q2, Qs, Q4, Q5 be given in the projective plane. We set our-
selves the problem of finding a conic section passing through all five points
Q. If among these five points there are three that lie on a line, then
every conie section that contains all the @; must also contain this line and
is therefore degenerate. In any such case the problem of finding all the
conie sections that pass through the @, is trivial.

We may therefore assume at the outset that no three of the five points
Q; are collinear. Then there exists no degenerate conic section contain-
ing the five points.® In order to find the (necessarily non-degenerate)
conie section of the desired kind, let us consider, say, the pencils of lines

Q, Fig. 13 2

with earriers @i, Q., which we may denote by b1, bs. The three lines
Q1Qs, Q:1Q4, Q:Q5 (Fig. 13), which we may call g1, gs, g3, belong to by,
whereas the lines Qe Qs, @ Qs, @2 @5, which we will call ki, ks, ks, belong
to bs. By virtue of our assumption concerning the @, the lines g1, g2, g3
are distinet ; likewise, h; 5= hy, for 2 5% k. Hence, there exists one and only
one linear projectivity between by and b, that takes the g; into the %, for
1==1, 2, 8. Since every conic section that passes through all the @, is
necessarily generated (‘generated’ in the sense of Theorem 1) by this
linear projectivity between b; and by, there exists one and only one conie
seetion of this kind. 3
Furthermore, a simple construction can be found for our linear pro-
jectivity that enables us to find the image line in b, of any line of b;, and
conversely. To this end, let the lines g3 and A4, say,? i.e,, @105 and @20,

3 For, any such conic section would have to consist either of one line or of a pair
of lines. If five points, however, are divided among at most two lines, there must be
three that are collinear.

4 Of course, we can here choose any pair g, hx, with ¢ 54 k.
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intersect at § (Fig. 14). Moreover, let us draw the line through @;Q,,
whieh we shall call j, and the line @405, which we may call k. None of

\
S ¢

Fig. 14

the points S, @1, Q; lies on % or on j.* Therefore if I is any line through

'S, intersecting j in §; and & in Sy, we can always make the line g, which

joins @, with §;, and the line k, which joins @, with 8y, correspond to
each other. It is easy to see (by repeated application of Theorem 1 of
Chap. IV) that this correspondence represents a linear projectivity be-
tween the pencils by and by. If we now let I coincide successively with
8Qs, 8Q4, 8Qs, it results that our correspondence takes gy into Ay, go into
o, and gs into A and is thus precisely the required linear projectivity.

This construction of the projectivity in question permits us to find
as many additional points of the conic section as we wish. We need
merely let any two corresponding lines g and h (Fig. 14) interseet, and
the point of intersection @ will be a point of the conie section.

Our construction admits of still another important interpretation, as
follows. If we think of the line I in Fig. 14 as fixed and, as before, denote
the point of intersection of g and & by @, then the hexagon @, Q@ Qs @s Qs Qs
all of whose vertices lie on the conic section, has the following property :
The points of intersection S, §j, S of the three pairs of opposite sides all
lie on I. Since, given any conic section, we could begin our construction
with any five points @y, @z, @s, @, @ and then obtain any other point
Q as our sixth point by a suitable choice of I, we have proved the
Theorem of Pascal, which may be stated as follows:

TuEoREM 2. The points of intersection of the three pairs of opposite
sides of a hexagon inscribed in a non-degenerate comic section always
lie on a line.

5 Suppose, for example, that S were to lie on ¥ or j. Then either @i, @s, @s or
Q2, @s, @« must lie on a line. And so forth.
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Note that this theorem remains valid if @ coincides with Q; or Q..
The ‘side’ Q@Q1, or QQs, of the hexagon in this case means (according to
the above construction) the tangent to the conic section at @; and @,
respectively. This remark gives the clue to a method of constructing the
tangent at a given point (namely, Q;) of a conic section, a method that
could also have been obtained, to be sure, dlrectly from the linear pro-
jeetivity between b; and bs. :

We made the assumption that no three of the five points Q; should lie
on aline. The reader can easily convince himself, however, that our argu-
ment remains valid, word for word, if instead of this assumption we make
the somewhat weaker one that the point @, is not collinear with any two
of the points @3, @4, @5 and that, similarly, Q. and every two of the points
Q3, Q4, Q5 are always linearly idependent. To be sure, the conic section
obtained by the above construction can then be degenerate. Of particular
interest is the now admissible degenerate case in which Q4, Q;, and Q.
are collinear. Then the points @3, @5, @ must necessarily also be collinear,
and we obtain Pascal’s Theorem for a pair of lines, the very case of
Pascal’s Theorem that we encountered in Chap. IV, Exercise 2.

The theorem dual to that of Pascal is called the Theorem of Brian-
chon. Taking Chap. VIII, Theorem 5 into account, it goes as follows:

THEOREM 3. The lines joining the three pairs of opposite vertices of
a hexagon circumseribed about a non-degenerate conic section all inter-

sect in a point.

The Families of Lines on Non-degenerate Surfaces’
of the Second Order in P,

We now turn to P3. Here, too, the discussion at the beginning of this
section eovers all the degenerate cases (rank 1, 2, 3=mn).* As regards
non-degenerate surfaces of the second order of rank 4, we shall derive,
in what follows, some descriptive results pertaining to the families of
straight lines which are to be found on such surfaces.

In real P, according to Chap. IX, Theorem 8, there is only one class
of non-degenerate surfaces of the second order on which straight lines are

6 We refrain from enumerating these cases separately at this point. However,
it is recommended. that the student do this and clarify for himself the geometrical
picture in each case, and that he do the same for P; and P.. In the next chapter, we
shall give a comprehensive table of all types of conic sections and surfaces of the
second order (cf. pp. 176 and 177).
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to be found. The normal form of this class is the surface
(10) E+EH—E—8 =0

In complex Py, the non-degenerate surfaces constitute but a single class,
of which we can also take (10) as representative.

Equation (10) does not have the most convenient form, however, for
the investigation we are about to make. We accordingly subject this

equation to the linear collineation

§0 = 7]0'*""737
(11) & = qo—1s,
§ = 51478,
§ == g —17s.

This transforms (10) into the projectively equivalent hypersurface

(12) To-a— 7192 = 0.
We now examine this surface. All our assertions will be projective in
nature, i.e., invariant under linear collineations, and thus they hold both
for every non-degenerate surface of complex P, and for every real sur-
face of the real class represented by (10). Moreover, we can also find
a coordinate system for each of these surfaces in which it is even repre-
sented by equation (12) (cf. p. 119).

Using two fixed numbers” 1 and g that do not both vanish and the
variables 79, 71, %3, 93, we form the system of equations

l"]o’*"l”h == 0,
Agg+pys = 0.

The rank of this system of equations is 2, and it therefore represents a
straight line in Pj. It ecan be seen immediately that for any arbitrary
choice of A and p the line (13) always lies on the surface (12). For since
4, p are not both zero, we must have, for the determinant formed from the
coordinates 7o, 71, 92, 3 of an arbitrary point of the line,

(13)

Mo 11
N2 s

= (),

(14)
ie., (12) is satisfied.

7 Real or complex numbers, according as we are dealing with real or complex Ps.
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Since 4 and p may be arbitrary, provided only they are not both zero,
we have thus found a whole ‘family’(13) of straight lines that lie on the
surface (12). Through each point of the surface (12) there passes-one and
only one line of the family (13). For, given %y, 71, 72, 95 satisfying (12)
and not all zero, the equations (13), with the given #, substituted in them
and with the 4, p considered as the unknowns, determines 4, ¢ up to a
constant of proportionality.®

Since only one line of (13) thus passes through each point of (12), it
immediately follows that two distinct lines of the famaly (13) can never
have a point in common, t.e., they are always skew to each other.

If, instead of (13), we take the equations

Mio’i‘ﬂ”?z = 0,

(15)
: a"h+.”"']3 = 0,

we can draw, word for word, exactly the same conclusions. Thus, we see
that (15) again yields a family of lines lying entirely on (12) and having
the same properties as (13). ,

But what relation does there exist between the lines of the families
(18) and (15)? Let g be any line of (13) and 2 any line of (15). We
claim that g and h have exactly one point in common. For if we denote
by 2, u the coefficients of g in (13) and by ', ¢ the coefficients 6f h in
(15), then the matrix of the intersection of g and &, i.e., the matrix of all
the four equations together, is

A o 0 0
0 0 1 p
0 A 0

The determinant of (16) is readily found to be 0. On the other hand,
since only one number at most of each of the number pairs A, wand X, ¢/
can be zero, there always exist third-order sub-determinants of (16) which
are 7= 0. For example, if 1540 and 1’ 54 0, such a sub-determinant may

/I

M2 7
of (13) ‘constitute a one-dimensional linear vector space.

8 Since the rank of the matrix ( ) is equal to 1, the solution vectors {2, y}
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" be obtained by striking out the third row and the last column. In every
case, the rank of (16) is thus 3, so that g and % have one and only one
point in common.

The lines of the families (13) and (15) constitute all of the lines that
lie on the surface (12); there are no others. For let k be any line belong-
ing entirely to (12), let P be a point of %, and e the tangent plane® at P.
Through P there passes one line g of the family (13) and one line & of the
family (15). “All three of the lines, &, g, A must certainly lie entirely in e.*
If we can show that ¢ has only the points of the lines g and % in common
with the surface (12), then we shall have proved that k& must be identical
with one of these two lines.

Now, every line g’ of the family (13) that is distinct from g is skew to
g, and aceordingly cannot lie in e. Consequently, ¢" has only one point
in common with ¢, and this must necessarily lie on %, because the inter-
section of ¢’ with & is not empty. However, since the lines of the family
(13) contain all the points of the surface, no point of the surface (12)
other than points of g and & can belong to ¢, as was to be proved.

Onee again, we summarize our results, as follows:

TuroreM 4. Ewery surface of the second order in Ps that con be
represented? in a suitable coordinate system by equation (12) has the
following properties: The lines that lie entirely in the surface fall into
two families, of such a nature that through every point of the surface
there passes one and only one line of each of the families. Every two lines
of the same family are skew, whereas two lines from different families
always intersect each other in a single point. The two lines, one from
each family, that pass through a fized point of the surface determine the
tangent plane at that point and, for its part, this plane has no other
points in common with the surface than these same two lines.

Thus a tangent plane can never belong in its entirety to such a surface.
Consequently, neither can any plane whatsoever of Pj, for it would then
be a tangent plane. We thus have the general result: 4 non-degenerate
surface of the second. order in Ps can never contain an entire plane®

% It is uniquely determined, since we are dealing with a non-degenerate surface.

1 They are indeed tangents at the point P. Cf. Chap. IX, p. 110.

2 As we have already pointed out, in complex P; these surfaces are all the non-
degenerate surfaces, and in real P; they are the surfaces belonging to the class that
has the normal form (10).

3 Por surfaces of real P; this is a consequence of Theorem 8 of the preceding
chapter.
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Let us try to gain still further insight into the relation between the
two families of lines. Consider a fixed line g of family (13). Every
plane e that contains g will be intersected by all the other lines of the
same family and must thus contain points of the surface (12) that do not
belong to g. Let @ be one such point. The line % of the family (15) that
passes through @ also intersects g and must therefore lie entirely in e.
Hence ¢ is the tangent plane at the point of intersection of g and h. Of
course, i is uniquely determined by e and, conversely, e by k. Thus we
see the following:

We obtain a one-to-one correspondence between the pencil of all planes
through g and the family of lines (15) ¢f we put into correspondence with
every plane through g that line of the family (15) that lies entirely in
the plane.

Aside from g, let there now be given two other lines gy, go of the
family (13), distinet both from each other and from g. We. obtain a
one-to-one correspondence between the points of g; and the points of g,
if we let a point of g, and a point of g, correspond to each other whenever
they are the points of intersection of g; and g, with one and the same line
of the family (15). Under this correspondence two associated points
always lie in the same plane through g. The correspondence is thus a
perspectivity and, as such, a linear projectivity between g; and gs (cf.
Chap. IV, Theorem 1 and p. 59). This is customarily expressed as follows:

The lines of family (15) intersect the lines of family (13) in a perspec-
tive set of points.
Of course, the family (13) does the same with respect to the family (15).

Now let us consider also the two pencils of planes by, be having the
two lines g1, g» as kernels. A one-to-one correspondence is also established
between by and b, if we always let two planes correspond to each other
whenever they pass through one and the same line of the second family
(15). Two corresponding planes intersect g in the same point, and there-
fore the correspondence between by and bz is again, by Chap. IV, Theorem
1, a linear projectivity.

‘What we have proved suggests the following method of generating
surfaces of the second order. If we start with two arbitrary skew lines
g1, 92 and prescribe a linear projectivity between g, and g and then
connect by a straight line the points that correspond under this projec-
tivity, we obtain a family of straight lines. We maintain that this family
of straight lines spans a non-degenerate surface of the second order.
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H

To prove this, consider three different pairs of points that correspond

to each other under the given linear projectivity, say: @i, @1*; @2, @2*;

Qs, @s* (Fig. 15). De-

note the line through @,

Q; Q;* by h;. Then every

two of the three lines A4,

ho, hy are skew.* Thus,

in particular, the four

points @1, Q1% @3, @s*

do not lie in a plane.

Furthermore, a point E

on he distinet from @,

X * TQ" and Q*, lies in none of

" the four planes deter-

Tig. 15 mined by any three of

the pOil’ltS Qh Ql*; QS}

Qs*.°

We can therefore choose the points @1, @:*, @3, @s* as the fundamental

points and & as the unit point of a projective coordinate system. For the
sake of definiteness, let us set

Q(IJ:QI) Qifo, Qé:QS; Q&;: Q;‘-

&

&2 - "
y

Let us now consider, in the coordinate system (Qo, @i, @5, @3] E), the
surface of the second order defined by the equation (12). On this surface
lie all the points for which 5o = 5, = 0, i.e., the points of the line through
Qs, Q5, namely hs. Likewise, on this surface lie all the points with
N2 == 53 == 0, i.e., hy; in addition, all the points with 5, =93 =20, i.e, g1;
and, finally, g, as well. Furthermore, E lies on the surface, so that the
line %, has the three points Qs, E, @2* in common with the surface and
consequently must lie entirely in the surface.

All the lines of Fig. 15 thus lie on the surface (12). Now the lines
hi, hs, ks (since each is skew to the other two) must belong to one of the
two families of lines on (12) and gi, g2 must belong to the other. In
addition to this, we know that the family of lines to which the k; belong
intersect g; and g in perspective point sets. This perspectivity, how-

4 For if ki, he, say, lay in a plane, then g and gz would necessarily belong to that
same plane, contrary to the assumption that gi, g. are skew.

5 For example, the plane determined by @i, ¢:*, @s can have but one point in
common with k2. But this point is @, and hence cannot be E.
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ever, carries the points @y, @2, @3 into Q*, Qo%, Qg* and accordingly, as
a linear projectivity, must be identical with the giwen projectivity

(Chap. V, Theorem 5). Thus, our assertion is proved.

The following theorem can be directly reduced to this last result.

Let there be given two pencils of planes, by, bs, with skew carriers
g1, g2. Let there also be given a linear projectivity between by and b,.
Then the family consisting of all the lines of intersection of two corre-
sponding planes spans @ non-degenerate surface of the second order.®

Indeed, it is easy to see that these lines of intersection give rise to a
linear projectivity between g; and g.. For if the plane ¢ of by corre-
sponds under the given projectivity to the plane e* of by, then the line of
intersection of ¢ and e* must pass through the point of intersection @ of
e* and g, as well as the point of intersection @* of ¢ and g.. Now, the
mappings e = @* and e* 2 @ are perspectivities. And since e =2 e* is a
linear projectivity, it follows immediately from Chap. IV, Theorem 1
that the mapping @ = @* is likewise a linear projectivity.

‘We should like to make here the following additional observation:
Let three lines g;, g2, g3 be given, each skew to the others. All the lines
that intersect g, ga, g5 simultaneously can be obtained in the following
way. Consider a plane ¢ through g3; it intersects g, in the point @, say,
and g. in the point @* Then the line Q@Q* also intersects g; (because it
lies entirely in ¢). The correspondence @ == Q* is a perspect1v1ty be-
tween g; and go. This shows the following:

If g1, g2, g3 are three lines, each skew to the others, then the family of
all lines that simultaneously intersect gy, gs, gs spans a non-degenerate
surface of the second order.

The lines g1, g2, gs themselves belong to the second family of lines of
this surface; every line of this family can be obtained by taking the
common intersector of three arbitrary lines of the first family.

The Determinacy of the Equation of a Hypersurface
of the Second Order

In conclusion, let us clear up the question of when the equation of a
hypersurface of the second order of P, is ‘essentially’ unique, i.e., de-
termined up to a common factor of all the coefficients. It should be

6 Thig theorem is the dual of the preceding one.
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observed at the outset that the property of determining its equation in
this sense is a projective property of the hypersurface of the second order
and is therefore applicable to all the hypersurfaces of one class (of pro-
jectively equivalent hypersurfaces) whenever it holds true for any single
example of the class. TFor consider a hypersurface F; which is repre-
sented in a fixed projective coordinate system by the two essentially’
_ different equations (§)’A(&) == O (&)’B(§) == 0. Let the linear collinea-
tion (&) == @T(£*) take F'; into Fe. Then F is represented, in the same
coordinate system, both by the equation (§*) T'A T (§*) = O and by the
equation (§*Y T BT (§*) = 0. These two equations are again, however,
essentially different.®
To settle our question, therefore, we need only consider one repre-
sentative for each class. Let us now investigate the equation

an g+84+- -+ & —Gu—-—8&5=0, k+1=r—k.

For k=7 =1 this equation will represent, in real Pn, a hypersurface
which is also given by, for example, every equation §0+ g itk
=0 with ¢ > 0. Thus, the hypersurface in question can in these cases
be represented in real P, by essentially different equations. We claim,
however, that these are the only cases of this kind, i.e., that the following

theorem holds:

TuarorEM 5. In complex Py the equation 2 i §; & = 0 of a hyper-
i,/e==0
surface of the second order is always determined up to a common non-
vanishing factor of all the coefficients. This is the case in real Pn only
for the hypersurfaces of those classes that can be represented by an equa-
tion (17) in which either r=0o0r k <.
In order to prove this, we have to compare a fixed equation of the

form (17) with the equation

M-

i & & =0

(18) ,

A

under the assumption that (17) and (18) represent the same hypersurface
of the second order in a fixed projective coordinate system. It then

7 This means, of course, that the matrices 4 and B do not differ simply by a

numerieal factor.
8 Wor it would follow from an equation of the form 7/AT =9 T'BT that

A =¢B.
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follows, first of all, that in (18) whenever at least one of the subscripts ¢, k
18 greater than r, we must always have ay == 0. For assume that a;; were
=40 and that » > r. From the fact that 4 > r it follows that the funda-
mental point with the coordinates

h=1,5=§==Hha=§pn=- =& =0

is a double point of (17) (ef. Chap. VIII, Theorem 2). On the other iland,
the double points of (18), which must be precisely the same® as those of
(17), are given by the equations

n
2 andr=0, i=0,1, -+, n.

k=0

But if we had a; 5% 0, then the (G + 1) st of these equations would not be
satisfied for

=1 &=8= - = a=8pu=...=§,=0.

Thus, we see that equation (18) must necessarily be of the form

r

(19) > am ik = 0.

ik=0

Furthermore, we must have a; 4 0 in (19) for ¢==0, 1, ..., r. For if we
had a3, =0 (0 = h = r), then ’

§h= 1, §o=:o-.=§h_l= §h+1:.-- - §n= 0

would be a solution of (19) without being a solution of (17).

For r==0, (17) has the form &> =0, and we are through. In the
contrary case, we have in real P, only the equations with £ < r to con-
sider. We can always make this assumption in complex P, as well, for in
this latter space there exists, in every class for which » > 0, a hypersur-
face of the form (17) with k& < r.

9 For, the definition of a double point as a point which is such that each line
through it is a tangent, is independent of the form of the equation.




X. ProJecTive PROPERTIES OF HYPERSURFACES OF SECOND ORDER 155

Thus, from now on we may assume 0 < k < r in (17). Let us now
choose two fixed indices j, A such that 0= Sk k+1=h=r. We
claim that for two such indices we have

(20) ajn= 0,
(21) @i = — Ok

For, the two points! with the coordinates § =1, & = 41, &= 0 for
4 % 4, h satisfy equation (17). They must therefore also satisfy (19), which
is possible only if the equations

i+ 2 am +amn = 0,

aii— 2 ajn+ app = 0

hold. By subtracting these equations, we first obtain (20) and then,

immediately, (21).
If we hold the index & in (21) fixed while letting j run from 0 to %,

we see that all a;; for j==0,1, ..., k are equal to one another ; denote their
common value by, say, ¢ 54 0. Then all the as, for b=k +1,k+2,...,r
are equal to — ¢. Thus,

(22) Qoo = (1 = +++ = Qg = €,

(23) A1, k4+1 == Qb2 = + 0 == Qpp == —C.

It only remains to show that a; == 0 also when j, & are both = k or
both > k. To see this, say, in the first case, consider the point having
the coordinates §==1, &==1, &,=41'2, but & =0 for all i 5% j, h, r.
These coordinates satisfy (17) and hence must also satisfy (19). Upon
substituting in (19) it follows at once, taking into consideration what we
have already proved above, that a¢;; = 0. We have thus shown that (19)
has the form

cEB+EF - E—Ep— - —8) =0,

as was to be proved.

1 Since the points used here have real coordinates, our conclusion holds both for
complex P, and for real P.. The same is true further on.
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Exercises

1. In the coordinate system (@Qo, @1, ..., @[ E) of Pn the linear space of dimen-
sion ¥ determined by the ¥ + 1 points Qo, @1, ..., Qr can be looked upon as a projec-
tive P, whose points are given by the coordinate (% --1)-tuple &, &,..., & . Now
let there be given a non-degenerate hypersurface of the second order in this Pi (that
is, a hypersurface of rank & - 1) ; call it H. If we now comstruet in P, the (n—F%)-
dimensional spanning space through a point of H and the n—¥% fixed points
Qet1, Qrtz, - .o, @n , then the totality of the points of all such spanning spaces consti-
tute a hypersurface of the second order of rank k -4 1 in P.. Every hypersurface of
the second order in P, of rank %k <+ 1 ean be generated in this way. ’

2, Show that in both real and complex P, if a linear space of dimension p lies on
a hypersurface of the second order, the hypersurface is at most of rank 2(n—p).

3. Let F be a hypersurface of the second order in Pa. Let Qo, Q1 ..., Q% be
% -+ 1 points not on F with the property that the polar of each point with respect to
F containg the other & points. Show that if ¥ -4 1 is less than the rank of F, an addi-
tional point @y, can always be found, Iying in the intersection of the polars of all the
Q:, which lies neither on F nor in the spanning space of the points Qo, @1, ..., @x.
The polar of Qi1 passes throughQe, @, ..., Q.

This fact makes possible, for example, the construction of a so-called polar-simplex
with respeet to a given non-degenerate #, i.e.,, n 4 1 linearly independent points of
such a nature that the hyperplane through any 2 of them is the polar of the re-
maining point. The first point may be chosen as any arbitrary point not on F;
the others are then restricted by the rule given above.

‘What is the equation of a non-degenerate hypersurface of the second order in a
coordinate system whose fundamental points form s polar simplex?

4, Let a linear collineation of P, be associated with an ordered pair Fi, F; of
non-degenerate hypersurfaces of the second order in the following way. From a point
P we pass to its polar h with respect to F> and then determine the pole P* of h with
respect to Fi. The mapping P> P* ig then the linear projectivity in question. In
complex Pn the following is true: If Fy, F: and Fo*, Fo* are two pairs of non-degenerate
hypersurfaces of the second order, then there exists a linear projectivity which simul-
taneously takes Fy into Fr* and F: into F.* if and only if the two collineations asso-
ciated with the pairs are projectively equivalent.

Hint: Use Exercise 3 of Chapter IX and Theorem 5 of the present chapter.

The theorem does not hold in general in real Pr.. Cf. Exercise 5 of Chapter IX.




CHAPTER XI

THE AFFINE CLASSIFICATION OF HYPERSURFACES
OF THE SECOND ORDER

In Chapter IX we answered the question of when two hypersurfaces of
the second order could be transformed into each other by a linear pro-
jectivity of Pn. In the present chapter we wish to pose a question of the
same kind, in which a restrietion is placed on the allowable projectivities.
Specifically, we shall now admit only a subgroup of the linear projec-
tive group, namely the affine group (Chap. VI). Our question will give
rise, just as in Chap. IX, to a partition of the hypersurfaces of the seecond
order into classes, but a partition that is finer than the one we then
obtained and from which we shall gain new knowledge about our hyper-
surfaces.

Let us recall at the outset that by an affine transformation in P we
mean a linear projectivity of P, onto itself that maps the improper hyper-
plane into itself! (Chap. VI). Since an affine transformation is accord-
ingly nothing other than a special linear projectivity, it always takes a
hypersurface of the second order into a hypersurface of the second order.
If the hypersurface F; is mapped into the hypersurface F» by a certain
affine transformation, the inverse affine transformation maps Fq into F.

We say that two hypersurfaces of the second order that can be mapped
into each other by a suitable affine transformation are affinely
equivalent. Obviously, every hypersurface of the second order is af-
finely equivalent to itself. Furthermore, the concept ‘affinely equiva-
lent’ is transitive, i.e., if I, is affinely equivalent to F; and F, to Ff,
then F, is also affinely equivalent to F3. This is an immediate conse-
quence of the group property of affine transformations.

1 Again we here expressly emphasize ( cf. footnote 4 on p. 97 ) that in this and
the following chapter we always mean by an affine transformation a.one-to-ome
mapping of P. onto itself. The mapping induced in affine R, by such a mapping is
thus always a non-singular affine transformation in the sense of Modern Algebra,

p. 180.
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As in Chap. IX, we now obtain a partition into classes. We call a
non-empty set C of hypersurfaces of the second order a elass of affinely
equivalent hypersurfaces if C possesses the following two properties :

a) Every two hypersurfaces of C are affinely equivalent.
b) A hypersurface in O is never affinely equivalent to a hypersurface

not in C.

‘We may also interpret b) as: Hvery hypersurface of the second order
that is affinely equivalent to a hypersurface in C, itself belongs to C.

It is easy to show, just as in Chapter IX, that this partition into classes
is disjoint, i.e., that every hypersurface of the second order belongs to
one and only one class. We again set ourselves the problem of deter-

mining all of the classes.

Determination of the Classes

Let .
n
) > anfif=0
i, k=0

be a hypersurface of the second order in P,. Let the coordinate system
be chosen in such a way that the equation of the improper hyperplane is
£,=0. Then all the improper points of the hypersurface (1) satisfy the
equation

n
2) > aw k= 0.
k=1

This is a homogeneous quadratic equation in the » variables &1, &, ..., &n
only. Since the improper hyperplane is nothing but a projective P,_,
consisting? of the homogeneous n-tuples &;, &z, ..., &n, the equation (2),
again, in general represents a hypersurface of the second order in this
P,_,. By ‘in general,” we mean, aside from the case in which all the
coefficients of (2) vanish. In order not to have to make special mention
of this latter case each time, we shall speak of the ‘hypersurface’ (2) in
this case also, meaning thereby the entire improper plane.?

2 As long as we are speaking only of the improper points of P., we can simply
drop the first coordinate &, since it is zero in our coordinate system for all improper
points.

3 For example, if we take n— 8, then (1) represents a surface in P; and (2), in
general, a conie section in the improper plane of P:. If in particular, however, (1) is
a pair of planes one of which is the improper plane itself, then we have the situation °
in which all the coefficients of (2) vanish.
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Hypersurface (2), considered as a hypersurface of a space P,_;, has
its own rank, namely, the rank of the matrix

Ay Gag " Qn
a a. PPN ae

(3) 21 22 n ;
an1 Qn2 -+ Oun

the significance of the rank s of this matrix in relation to (2), is one that
we already know (Chap. VIII): namely, that (n — 1) — s is the dimension
of the set of double points of (2).* Such a double point of (2) need not
necessarily, however, be a double point of (1). For a double point of (2),
regarded as a hypersurface of the improper space P,.1, is just any point
of (2) at which every improper® line of P, is tangent to (2). Needless to
say, however, not every proper line of P, through such a point need be
tangent to (1).* Nevertheless, every improper line that is tangent to (2)
is also tangent to (1), and we thus have a geometrical interpretation for
the rank s of (3) which pertains solely to (1), namely :

n—1—3s is the dimension of the linear space of all the improper
points @ of the hypersurface (1) having the property that every improper
line through @ is tangent to (1).

Let there now be given an affine transformation of P,, and let us
apply this transformation to (1). Since an affine transformation, being
a projectivity, takes tangents into tangents and, being affine, also takes
improper elements (points, lines, ete.) into improper elements, it follows
from the meaning of s just given, that s is invariant under affine trans-
formations.

‘We could also deduce the invariance of s, independently of the mean-
ing it has for (1), as follows: An affine transformation of P, induces in
the improper hyperplane a linear projectivity of this hyperplane onto
itself. Hence, if we have two affinely equivalent hypersurfaces of the
second order in Py, their improper parts, considered as hypersurfaces of
the improper space P,_i, are projectively equivalent. These improper
parts, as hypersurfaces of P,_,, must accordingly have the same rank,

4 In the case that all the coefficients of (2) vanish, we consider every point of
the improper plane as a double point of (2).

5 By an improper linear space we mean (Chap. I) a linear space of Pn. consisting
solely of improper points.

6 For example, if (1) is a pair of planes in P; one of which is the improper plane
itself, then the totality of double points of (2) is the entire improper plane, whereas
the totality of double points of (1) is only the line of intersection of the two planes.
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Besides this invariant s, we shall also have to take into consideration,
of course, the rank r of (1) itself. Moreover, in real P, we shall also
have to bring into the picture the invariant k¥ of Chap. IX, Theorem 8,
and the corresponding quantity A for (2). Thus, k is the maximal dimen-
sion of those linear spaces of P, that have no point in common with (1),
whereas h is the maximal dimension of the #mproper linear spaces that
have an empty interseetion with (1) (or with (2)). The notation just
given for all four invariants will be adhered to in the sequel.

‘We shall show that in complex Py, r and s already constitute a com-
plete system of invariants, i.e., r and s determine uniquely the classes of
affinely equivalent hypersurfaces of the second order. In real Py, r and
s do not suffice, and we obtain a complete system of invariants only by
taking all four of the quantities r, s, k, h. We shall carry through the
proof of these facts by again transforming the equations of the hyper-
surfaces of the second order into certain normal forms.

In making the transformation into normal form, we of course make
use, in accordance with our present problem, of affine transformations
only. Aswe know from Chap. VI, in a coordinate system in which §o =10
is the improper hyperplane, every affine transformation can be repre-
sented by a system of equations of the form

Mo == %‘0,

@ g o
Ny = kg;tik;ck, 1=1,2,---,m.

We always have &, = 5o == 0 for an #mproper point of P.; hence, in
order to observe the effect of our affine transformation on the improper
points, we need only know how to compute the last n coordinates
N1, 92, . .., §n Of an improper image point, given the last n coordinates
&1, &s, ..., &a of its improper pre-image. By (4), this.is done by means
of the equations

n
(5) ’lh:k;; tik-sk, i:],?,...’n_

Therefore we may regard equations (5) as the equations of the linear
projectivity induced in the improper hyperplane by the affine trans-
formation (4).
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We need now only apply substitution (5) to equations (2) in order to
see what effect the affine transformation (4) has on the improper portion
of hypersurface (1). Equation (2) is then transformed into the equation
of the image (itself improper) of the improper portion of (1).

We know from Chapter IX that we can always find a non-singular
substitution of the type (5) that transforms equation (2) into the form’

(6) nrnt A — g, — - —1 =0,

where s is the rank of matrix (3).® In the complex case, we can always
make j== s in (6), whereas in the real case j can take any value from 1
to s,° and it is even possible for only negative squares to appear in (6).

Now assume the &; in (5) so chosen that, as a result of applying (5),
(2) goes over into (6). Then we adjoin to the equations (5) the one
further equation

) No — &,.

Taken together, (5) and (7) define an affine transformation in P, that
we should like to apply to (1). We know the effect of the linear substi-
tution represented by (5) and (7) upon the terms in (1) that do not
contain &, (in other words, upon the terms comprising (2)). As for the
remaining terms, which do contain &, the application to them of this
substitution gives rise only to terms in which #o appears. We thus see
that the affine transformation represented by (5) and (7) takes (1) into
a hypersurface whose equation is

n
® wAut b =14+ 2 2 b o

7 In order to actually carry out the substitution, we must, of course, first solve
(5) for &, &, ..., & and then substitute.

8If s==0, (2) is already of this form. Aeccordingly we can, if we wish, assume
at the outset that s > 0. For, the conclusion that is to be drawn from what has been
said (i.e., the possibility of transforming (1) into (8)) is trivial for s==0.

9 In Chapter IX, multiplication of (6) if necessary by — 1 and the making of
a further affine transformation enabled us to bring about that the number of posi-
tive squares should not be less than the number of negative ones. It serves our purpose
here, however, to make no use of this possibility for the time being.



162 PRrOJECTIVE GEOMETRY OF % DIMENSIONS

Here, b, b, are constants which hold no special interest for us.
In this equation we can also make the terms b, 7, %, vanish for
vy=1,2,...,s. For we can write (8) as

("71 - bl "70)2 + (/']2“ b2 7]0)2 + .- + ("]j——bj ’]0)2

n i
— Wiy T by — =@ F b0, = cog+ 2 :28+1 b, % Uy s
where
¢ = bbbt R0, — =B

This shows at once that the affine transformation

‘ &= for v=0 and v =s-+1,s-+2,---, n,
€)] Lv=m—byyp » v== 1,2, ..,’j’
CVZ’-: 7],;—-!—1),,7]0 ” V:j+1,"',8

takes the hypersurface (8) into
7
o) g+g+---+o-0,— —= c-§§+2y=28+16y§osy.

TFurther treatment of this equation ealls for the distinguishing of
various cases. As our first case, let us consider the possibility that
€¢==Dbgyr1="Dbsra==...=bny=0 and thus that all the terms except the
first s squares vanish. In ecomplex P, where j==s, this is already the
final normal form. In the case of the reals we are likewise through if
j=s—j. Otherwise, just as in the proof of Theorem 5 of Chapte’f IX,
we can multiply (10) through by — 1, make a further affine transforma-
tion of P, (a permutation of the variables, with {, held fixed), and thus
see to it that the condition j = s — j is always satisfied.

As a second possibility, let us assume that not all the b, in (10) vanish
and that ¢ is arbitrary. For simplicity, we may assume that by, 540,
as this can be achieved by a suitable relabelling of the variables. - More-
over, in the reals, we may also assume that j = s — j, which can always
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"be achieved in the way just deseribed. We now define an affine trans-
formation in P, by

& =8 forv=0,1,.-.-,sand v =s-+2, .-, n,
(11) .
C‘Iq—{—l — ?go‘l‘ bs+1 §s+1+ bs—|—2 §s+2 + v + bn gn,

which reduces! equation (10) to
(12) G = = = 20 G

This is sufficient for our purposes.

There remains to be considered the third, and last, case, in which all
the b,=0 in (10) (for v=s+1,..., n), but ¢=£0. In the reals, it is
now more advantageous not to stipulate that j = s— j (for this would
necessitate a new breakdown into cases, according to the sign of ¢).
Instead of this, we now avail ourselves in the real case of the possibility
of multiplying equation (10) by — 1 to insure that ¢ is always positive,
so that ‘we can assume this to be true in (10) at the outset. In the com-
plex case, however, 'we shall assume, as before, that j =3, and we leave
¢ unaltered. Then the equations

C{) = V? CO ’

5=ty for »5£0
define, in both the real and the complex cases, an affine transformation?
which takes (10) into

13) U+8+ +—h— ==

and we have thus reduced these hypersurfaces as well to a normal form.

In order to get a clear picture of the situation, let us summarize what
we have proved thus far.

1 For example, if (11) be substituted in (12), we obtain (10). The substitution
(11) is non-singular, whence the necessity of the assumption b, , , 54 0.
2 We may take either of the two values of the root.
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In complex P, cvery hypersurface of the second order is aff@'nély
equivalent to at least one of the hypersurfaces® represented by the fol-
lowing forms of equation:

(14) | B84 8 =0,
(15) B84 8 = 28k,
(16) g+84... 18 =8.

In real Py, however, every hypersurface of the second order is affinely
equivalent to af least one of the following hypersurfaces:*

an s+&+ - +E—Hu— . —H=0, = j=s—]
a8) &H+&E+ - +E—Epu—- —& = 25 E&n, J =s—j,
19 &+8+  +E—Fu— . —& =8, 0<j<s.

In equations (14) and (17), any of the numbers 1, 2, ..., n is an ad-

missible value for s. In (15), (16), and (18), (19) it can of course happen
that all the terms on the left-hand side vanish; this happens when the
rank s of (3) is zero. On the other hand, however, equations of the form
(15) and (18) cannot occur if § == n.

Thus far, we have only shown that equations of the forms (14) through
(16) and (17) through (19), in the real and complex cases respectively,
contain representatives of all the classes of affinely equivalent hyper-
surfaces of the second order. We do not yet know, however, how often
each class occurs among them. What we now wish to show is that each
class actually occurs only once, i.e., that any two different equations of
the forms (14) through (16) and (17) through (19), respectlvely, always
belong to different classes.

We first prove this for complex Py, that is, for equations (14) through
(16). To this end, we use the invariants » and s. The invariant s, i.e., the
rank of the matrix (3), is, for each of the equations (14) through (16),
just the number of squares on the left-hand side of the equation. As for
the invariant 7, i.e., the rank of the full matrix of the equation, we may
compute it dlreetly, obtaining :

for an equation of the form (14), r==;
for an equation of the form (15), r =s+ 2;
for an equation of the form (16), r == s + 1.

3 We again employ £ for the variables.
4j==0 (in (19)) means that the left-hand side of (19) consists solely of negative
terms.
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From this it follows at once that two distinet equations from among (14)
through (16) can never coincide in both invariants r and s, and thus can
never belong to the same class of affinely equivalent hypersurfaces of the
second order. This shows at the same time that in eomplex P,, r and s
together constitute a complete system of invariants for hypersurfaces of
the second order with respect to the affine group of P.. For to any two
possible® fixed pair of values of 7, s there belongs just one equation of
type (14) through (16) and hence just one class of affinely equivalent
hypersurfaces.

To show the same for equations (17) through (19) with respect to
real Pn, we first observe that for equation (17) we must have r =s; for
(18), r==s+2; and for (19), r =5+ 1. All that this implies is that
~ two equations of type (17) through (19) can coincide in the two invariants
r and s only if the equations are either both of type (17), both of type
(18), or both of type (19).

Now, in order to show that two different equations, both of form (17),
must belong to different classes, we must have recourse to the invariants
k or h mentioned earlier (p. 160). Let us take, say, .. From Theorem 8
of Chap. IX,® it follows that k= j—1. Thus, two different equations
(17) can not have the same % and consequently can not be affinely
equivalent.

For the sake of variety, in the case of equations of the kind (18), let
us take the invariant A. Since we obtain for the improper part of a
hypersurface given by (18) exactly the same equation as in the case of
(17) (namely, the left-hand side of (18) set equal to zero), it follows that
for (18) h==j—1if s5%0.” Thus, two different equations of the form
(18) as well, cannot represent affinely equivalent hypersurfaces.

It remains to prove the same for equations of the form (19). Here it
does not suffice to deal with just one of the invariants %, h; we must
consider both. We can again determine them by Theorem 8 of Chapter IX,
but we must now keep in mind that in that theorem the number of positive

5As we have just seen, we necessarily have 0= r—s =2, Moreover, in the
case § =0, the only possible values of r are 1 or 2, and for s==n the only possible
values are r==n or r=mn -4 1.

6 For % is equal to the number of positive squares in the normal form, diminished
by one.

7 We need only consider s« 0. For, the case s==0 in equations of type (18) is
characterized by the fact that every improper point belongs to the hypersurface. Con-
sequently, 0 = 24, & cannot be affinely equivalent to any of the remaining equa-
tions (18).
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squares in the normal form was assumed to be at least as great as the
number of negative ones.® In order to take this into account, let us think
of the squares that appear in the equations under consideration as always
being so transposed that the number of positive squares is not less than
the number of negative ones. For the cases in which s 54 0,° it is easily

computed that

k=s—j  for jg—;,
(20)
S
k—j”—l ’ ..7>_2—’
. . 8
77/:8“"—]'——1 ” ]<§,
(21)
s
h=jy—1 ? jZ—2~

From this it follows that

IA

rofe w0

E—h =1 for j

~-

(22)
k—h =20 n g >
RS

Now, consider two equations (19) with two different j, say j==j1 in one
case and j == jp in the other (j; 5% j»). Let us assume that both hyper-
surfaces agree in their invariant k. Then it follows from (20) that the
numbers ji, jo cannot both be = s/2 nor both > s/2. Thus, let j1 = s/2,
jo > /2, say. Then (22) shows that the invariant is different for the
two hypersurfaces. Hence the hypersurfaces cannot be affinely equiva-
lent.

Thus, we have now determined the classes in the reals as well. In
addition, we see that in every case the class is uniquely determined by
specifying the values of the four invariants r, s, k, and h.

Gathering our results together once more, we state them as follows:

In complex Pn there exist precisely as many classes of af finely equiva-
lent hypersurfaces of the second order as there are types of equation (14)
through (16). Ezactly one representative of each class is to be found

8 This was actually made use of in the proof of this theorem. How?
9 Again, we see in advance that the case s==0 cannot be affinely equivalent to
any of the other equations (19).
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among these equations. The invariants r and s constitute a complete
system of invariants for hypersurfaces of the second order with respect
to the affine group of complex Ph.

In real Py there are as many classes of affinely equivalent hypersur-
faces of the second order as there are types of equation (17) through (19).
Again, each class is represented exactly once among these equations.
The invariants r, s, k, h constitute a complete system of invarionts.

Affine Geometry

Those theorems and properties that remain invariant under the map-
pings of the linear projective group were designated, in Chapter X, as
projective. We proceed in exactly the same way with respect to the affine
group, referring to statements or properties that are invariant under
affine transformations as effine. By affine geometry we mean, corre-
spondingly, the totality of affine theorems.

Anything that is invariant under all linear projectivities is a fortior:
also invariant under affine transformations. That is to say, every con-
cept and theorem of projective geometry is also a concept or theorem of
affine geometry. But the converse is by no means true. For example,
the concept ‘parallel’ is an affine concept, but not a projective one. For,
linear spaces that are parallel do not lose that property if we apply an
affine transformation to them; however, they may very well go over into
non-parallel linear spaces under a suitable linear projectivity which is
not an affine transformation. Similarly, the above invariants s and & of
a hypersurface of the second order are affine invariants but not projec-
tive invariants.
~ The study of the cross ratio of four points of a line one of which is an
improper point leads to another important affine invariant. If @y, Qs Qs,
say, are three proper points of a line g and @, denotes the improper point
of g, then we define the distance ratio D(Q1 @2 Q3) of these three points
to be the value of the expression

(23) D (G Qs @s) = R(Qr Qo Cs Q).

If we apply an affine transformation which takes the elements g, Q1, Q.,
Qs, Q. into g*, QF, Qé* , Q5 Q;’Z , respectively, then our fourth point Q;f is
again an improper point, and it follows that
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CD(QL Q2 Qg) = R (Q1 Qz Q3 Qu)
= R(QI @ Q5 Q)
= D(QF Q5 %)

The distance ratio is thus an affine invariant® of three points on @ line.

To clarify the behaviour of this affine invariant, let us compare its role
in affine geometry with that of the cross ratio in projective geometry.
According to Chapter IX, the classes of projectively equivalent linear
quadruples are characterized by the cross ratio itself. Thus, in projec-
tive geometry, linear quadruples fall into an infinite number of classes—
to be specific, as many classes as there are possible values of the cross
ratio. A quite different situation obtains for linear ¢riples (ie., ordered
systems of three distinet points on a line). Such a triple can be mapped
by a suitable linear projectivity of P» into any other linear triple.2 Thus,
linear triples constitute onily a single class in projective geometry. If we
pass over to affine geometry, however, the linear triples now also fall
into an infinite number of classes of affinely equivalent triples.

If we first consider the triples that contain improper points, we easily
see that those consisting of three improper points constitute one single
class, themselves, whereas those containing just one improper point con-
stitute three classes, characterized by the position of the improper point
in the triple. This can easily be proved by a refinement of the method
of Chap. IX, pp.129-130. For example, if 8y, Sz, 83 and 81*, 8%, Sg*
are two triples to be mapped into each other, of which S5 and 8% are im-
proper points and the rest proper, the coordinate system used on p. 130
must be so chosen that, with the exception of 8; and S¢*, all the funda-
mental points are improper. Then the linear projectivity that takes the
one coordinate system into the other automatically is an affine trans-
formation.

Now, for linear triples whose points are all proper, the distance ratio
plays the same role as the cross ratio does for quadruples. To be specifie,
we again have the result that two ordered linear triples of proper points
can be carried into each other by an affine transformation of P, if and only
if they have the same distance ratio. In short: The distance ratio is i
this case the invariant that characterizes the classes. That this condition
is necessary is an immediate consequence of the affine invariance of the

171t is not, of course, a projective invariant, for an arbitrary linear projectivity
need not necessarily take the improper point Q. of g into the improper point of g*.

2 Cf. Chap. IX, p. 130.
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distance ratio. That it is also sufficient may be shown as follows: Let
81, S, 83 and 81*, 82*, 83* be two linear triples of proper points for
which D(8; 82 83) = D(8:* So* S3*). Further, let §; and S be the
respective improper points of the lines containing the triples. Then we
also have R(S; S8z 83 8s) == R(81* 82* 83* 84*). Now let the triple
82, 83, 84 be mapped by an affine transformation, as in the preceding para-
graph, into Sp*, S83*, S4*. In view of the equality of the eross ratios, 8
also goes over into S;*, which proves our result.

To justify the name ‘distance ratio,” let us derive an intuitive inter-
pretation that this invariant has in the real case. To this end, we intro-
- duce the definition of euclidean length in the proper part of real Pa, i.e.,
in affine R.. If, then, @i, @2, @5 is a linear triple of proper points of
real P,, we shall prove that

(24) | D(Q Q@) = QQs:QQs,

where ©,Qs, @3 denote euclidean lengths. This formula is in itself
sufficient justification for the name. However, in this formula, the sign
of the distance ratio is still without meaning. We can take care of this
too by considering, in place of the distances, the affine vectors @:1Q; and
Q20s. For affine vectors, then, we will have the following relation :

(25) Q0= DQQQ)- e

In euclidean R, equation (24) is a direct consequence of (25). We
need therefore only prove the latter. To compute the components of the
vectors in question we must introduce non-homogeneous coordinates for
the points @, @2, Q3. We do this by normalizing the first of the n + 1
homogeneous coordinates to 1. Thus we have, say,

(26) @ = [1’ X1y o, "'7“’72]: Q@ = [1? Y, Yo, 7?/”]

The z;, y; are then the affine coordinates of these points. Since we are
assuming that Q4 s« Q,, the affine coordinates of @3 can be taken to be

of the form z; + A{y; — ;) ; thus,
27) Qs =11, (1—3)x1+1y1, (I—Way+Ays, -+, (1— 2) 20+ Aya].

In order to find the improper point @, of the line g determined by Q1, Qa,
we require a linear combination of the coordinate vectors of Q;, @, whose
first component vanishes. This may be had merely by forming the differ-
ence of the two coordinate vectors (26). Thus, we can write
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(28) Qu= [0,?/1“%7.%“‘«702,"',yn_wn]-

‘We then obtain (ef. Chap. IV, p. 53)

(29) @«&%Q9==ﬁ@M%%Q0=:lj4'

e T
On the other hand, computing the affine vectors @:Qs, @203 from the
last n coordinates of the points (26), (27), we find

Qs = l{y1”"901,?/2;—962, ey Yn— Xn},

(30)
Q: Qs = (l—jl){yx—xl, Yo— Xz, -+, Yn = Zn}.

In conjunction with (29), this immediately yields the validity of equa-
tion (25). ’ ;

As a particular case of (25), if D(Q1 Q2 Qs) = —1,° then @1Qs=
0:Q; ie., Qs is the midpoint of the segment Q:1Qs. We shall shortly
have occasion to make considerable use of this fact. “

It is possible to give meaning to equations (24) and (25) in the complex
case, by extending to the complex case the definition of euclidean length
and the concept of an affine vector. This is more than we need, however.
We shall make use only of the meaning of the distance ratio for the special
case D(Q; Q> Q3) =—1. This meaning, however, can be extended at
onece to the complex case if we make the following definition: If (26)
are any two proper points of complex P (x;, y; being arbitrary ecomplex
numbers), then by the midpoint of the segment Q@2 we shall mean that
point Q3 which is given by (27) for 1= %. Then in the complex space
P, also the equation D(Q, Qs Q3) == — 1 is completely equivalent with the
statement that Qs is the midpoint of the segment Q1Q.

By virtue of the meaning of the distance ratio in the reals, we see
that a large number of theorems of elementary geometry are affine theo-
rems. All the theorems in which only the concepts ‘parallel’ and ‘dis-
tance ratio’ oceur and concepts derivable from them, such as ‘midpoint,’
‘parallelogram,’ etc. are certainly theorems of affine geometry. Examples
of such theorems are: ‘The diagonals of a parallelogram bisect each
other,” and ‘The lines joining the midpoints of the successive sides of a
quadrilateral form a parallelogram.’ It is easy to find further examples
of this kind.

3 Le., @1, @ and @, Q. separate each other harmoniecally.
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‘We shall now use the meaning obtained for the distance ratio to give
a more intuitive meaning to some obvious invariants of hypersurfaces of
the second order. In doing so, we restrict ourselves to non-degenerate
hypersurfaces. Let us recall the polarity that is associated with every
such hypersurface ; to every hyperplane of P, it assigns a point, the pole.
In particular, this is also true for the improper hyperplane. Now, the
pole of the improper hyperplane can itself be either an improper or a
proper point. In the first case, the improper hyperplane is a tangent
hyperplane to the given hypersurface of the second order; in the second
case, it is not. It is obvious that the property of having or not having the
improper hyperplane as a tangent hyperplane is an affine invariant of
a hypersurface of the second order.

The (non-degenerate) hypersurfaces that have the improper hyper-
plane as a tangent hyperplane are called pareboloids. Which of the
affine normal forms (14) through (19) represent paraboloids? The nor-
mal forms (14) and (17) represent only degenerate hypersurfaces. In the
case of the non-degenerate hypersurfaces of the types (16) and (19) (i.e.,
those for which s == n), the pole of the improper hyperplane is a proper
point, namely the point §4==1,& =0fort=1,2,..., n. There remain
only the'non-degenerate normal forms of types (15) and (18), for which
s=mn-—1. All of these latter are paraboloids. For, the improper point
§n=1, §=§ = ... = &—1== 0 has the hyperplane &) = 0 as its polar,
i.e., the improper hyperplane is a tangent hyperplane at exactly that point.

As we have just ascertained, for the hypersurfaces that belong to the
classes represented by the normal forms (16) and (19) the pole of the
improper hyperplane is proper. The pole in these cases is not, of course,
a point of the hypersurface. Let F be a fixed hypersurface of this kind.
Let the pole of the improper hyperplane be denoted by M. If we draw
a line g through M, then by Chap. VIII, Theorem 3, this line will be
tangent to F if and only if g and F have an improper point in common.
If g is not a tangent, either g will not cut F at all (which is possible only
in the real space P») or it will have two different proper points in common
with F. Consider the latter case, and let P, @ be the proper points of
intersection of g with F. Then, by Chap. VIII, Theorem 4, the points
P, Q are harmonically separated by M and the improper point of g. Con-
sequently, D(PQM) = —1, i.e., M is the midpoint of the segment PQ.
Observe that this holds for any line g through M that cuts F in two proper
points. A (proper) point having this property is called the center of the
hypersurface of the second order. Thus we have shown that the non-
degenerate hypersurfaces of the classes represented by (16) and (19)
have at least one center.
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Conversely, it is clear that these hypersurfaces can not have more than
one center, aside from the case of the imaginary hypersurfaces. For,
by virtue of the property of a center, such a point must necessarily be
the pole of the improper hyperplane and, as such, is determined uniquely.
Likewise, it follows that the paraboloids have no center. The hyper-
surfaces of the classes represented by the non-degenerate normal forms
(16) and (19) are accordingly referred to as central hypersurfaces.?

Certain other concepts are closely bound up with that of a center.
A straight line through the center of a central hypersurface is called a
diameter. A hyperplane containing the center is called a diametral
hyperplane. The pole of a diametral hyperplane lies on the polar of the
center and is accordingly an improper point. A diametral hyperplane
and a digmeter are said to be conjugate if the diameter passes through the
pole of the diametral hyperplane.

Let % be a diametral hyperplane of a central hypersurface and g any
line parallel to the conjugate diameter. From Theorems 3 and 4 of Chap.
VIII, we have immediately the following further result:

If g is tangent to the hypersurface, then the point of tamgency lies
in h. If, however, g intersects the hypersurface in two points P, Q, then
the midpoint of the segment PQ lies in h.

This statement remains valid for a paraboloid as well, if we take A
to mean a hyperplane through the point of tangeney (= pole) of the im-
proper hyperplane and g to mean any line through the pole of &.

In the two-dimensional space P every ‘diametral hyi)érplane’ of a
central conic is itself a diameter. Two diameters g and k of a central
conic in P, are conjugate if the improper point of each is the pole of the
other. The improper points of g and h, together with the midpoint M,
constitute a polar triangle of the conic section, i.e., a triangle in which
each vertex is the pole of the opposite side.

The n-dimensional counterpart of a polar triangle is the polar simplex
with respect to a hypersurface of the second order in P.. By this we
mean #+ 1 linearly independent points (these are the vertices of the
simplex) having the property that each is the pole of the hyperplane
passing through the other n points. If n diameters of a central hyper-
surface of P, have the property that their improper points, together with
the center, form a polar simplex, we say that they constitute an n-hedral
of conjugate diameters. Similarly, the sides (== hyperplanes) of a polar

4 Here the name is restricted to non-degenerate hypersurfaces. It is sometimes
used for degenerate hypersurfaces as well.
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simplex, n of whose vertices are improper points, is called an n-tuple of
conjugate diametral hyperplanes.

The existence of an n-hedral of conjugate diameters with respect to a
non-degenerate central hypersurface reduces to the existence of a polar
simplex with one vertex at the center of the hypersurface. For instance,
in the case of the non-degenerate normal forms (16) and (19), the funda-
mental points of the coordinate system eonstitute such a polar simplex.
Aside from this, the procedure described in Exercise 3, Chap. X affords
a means of constructing all the n-hedrals of conjugate diameters, pro-
vided we begin with the center as the first vertex.

As a final example of eoncepts closely related to the coneept of center,
we mention the asymptotes. Asympiotes are those diameters that are at
the same time tangent to the given hypersurface. They are obtained
(according to Chap. VIII, Theorem 3) by connecting the center with the
improper points of the hypersurface.

If the equation of the central hypersurface is given in the normal form
(16) or in the normal form (19), the asymptotes can be found readily.
For the center is then given by §o=1, & =&y = ... = &Ep = 0, whereas
every smproper point of the hypersurface must satisfy the equation

(1) H+&8+.  +8—8,—...—8 — 0.

Now, if =0, &, &, ..., & are the coordinates of a definite improper
point of the hypersurface, a point on the asymptote through this point
has the coordinates u, A&y, 1&s, ..., A&n, Where u, A are two numbers of
the field. From this we see the following :

A point lies on an asymptote if and only if it satisfies.equation (31).
Thus, equation (31) represents the locus of all asymptotes. It is itself a
hypersurface of the second order, namely, a hypercone. It is called the
asymptotic cone.®

Whereas the principle of duality was fully applicable to the develop-
ments of the two preceding chapters, this is no longer the case as regards
the arguments of the present chapter, The validity of the duality prin-
ciple is confined to projective geometry. The concepts and theorems of
affine geometry are not, in general, dualizable. For, the transition from
projective to affine geometry involved the distinguishing of the improper

5If j=mn or j==0, i.e., if the same sign appears before all the squares in (31),
then the asymptotic cone is ‘imaginary,’ and its vertex alome (i.e., the eenter of the
hypersurface) is real.
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elements, in which points and hyperplanes are no longer dealt with in
symmetrical fashion (ef. Chap. I1I). Tt should be noted, in this connec-
tion, that the prineiple of duality is for the same reason not applicable
to the developments of the next chapter, in which we shall study a geom-

etry that subsumes affine geometry.

In conclusion, we append two tables containing, respectively, all of
the affine normal forms of the conic sections in the real space Ps and all
of the affine normal forms of the surfaces of the second order in the real
space P3 (pp. 176, 177). The following should be observed about these
tables. :

The arrangement is such that all the equations of type (17) come first,
then those of type (18), and lastly those of type (19).

The numbers 7, s, k, h denote the invariants we discussed above (p. 160).
We have put & ==— 1 in:those cases for which s == 0. This is the value
which would be given by, for example, formulas (21).

Cases 7, 14, and 15 of the second table represent cones with an im-
proper vertex (== double point). Such cones are called cylinders.® In
the case of cylinders, the lines through the vertex that lie on the surface
are all parallel. The names ¢parabolic,” ‘elliptie,” and ‘hyperbolic’ eyl-
inder are justified by the fact that the intersections with the plane &3 ==
a constant (or zz = a constant) are parabolas, ellipses, and hyperbolas,
respectively.

In the cases 3 and 7 of the first table, it is customary to say that the
conie section represents a pair of conjugate complex lines with real point
of intersection. Similarly, in cases 3 and 11 of the second table, we speak
of two conjugate complex planes with real line of intersection; in case 5,
of an imaginary cone with real vertex; and in ease 13, of an imaginary
cylinder.

As for the rest, the names and non-homogeneous equation forms will
already be familiar to the reader from elementary analytic geometry.

Exercises

1. Show that in the real space P there are n® + 3n 4+ 1 different classes of
affinely equivalent hypersurfaces of the second order. How many are there in the

complex gpace Pn?

‘9, Show that ordered k-tuples (with fixed % =a+41) of linearly independent
proper points of P» form a single elass with respect to the affine group of Ps.

6 More generally, in Pa a hypercone with an improper vertex is called a hyper-
eylinder.
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This is no longer true for k-tuples consisting of linearly dependent points. How-
ever, it is possible, by the use of Exercise 1 of Chap. IX, to derive for such k-tuples
invariants which characterize the classes in a way similar to that in which the distance
ratio was derived from the cross ratio. Let 81, Sz, ..., 8 and Ty, Te,..., Tk, say, be
two such ordered k-tuples. Denote by U and ¥ the improper points of the lines
8:8x and T:Tx, respectively. Then show that the necessary and sufficient condition.
for the existence of an affine transformation of P, taking §.: into Ty for i=1,2,...,
% is the existence of a linear projeetivity that not only takes eaeh S: into T': but also
each Uiy into the corresponding V.. Thus, a complete system of projective invariants
for the totality of all the points S:, U« is at the same time a complete system of affine
invariants for the k-tuples of the S..

3. If the k in the equation
B8+ i —fn— == k&

is allowed to vary over the entire (real or complex) field, we obtain a family of
hypersurfaces of the second order of P, all with the same center and the same asymp-
totic cone. Show that if a diameter and a diametral hyperplane are conjugate with
respeet to a single one of these hypersurfaces, they are conjugate with respect to all
of the others. Omne easily proved comsequence of this is that the chords cut out on an
arbitrary line by a non-degenerate central hypersurface and its asymptotie cone

have a common midpoint.

4, A non-degenerate hypersurface of the second order divides all the proper
points of P. that do not belong to the hypersurface, as follows, into two classes. We
write the normal form of the equation of the hypersurface in mnon-homogeneous
coordinates—in the case of a central hypersurface, for example, we write

eyt fa—ay, — e —al =1
—and then put into one class all the points (%, %2, ..., %) for which
*) wf—!—w‘;—{-'--+w]2.—acy?+l—---—9cf‘<1
and define the other elass, similarly, by means of
@ mtald b, —a > 1.

If we call a set of points of the affine space R. convex whenever, given any two
points of the set, the entire line joining them belongs to the set, we can state the

following result:
If j < m, neither of the two classeés (*) and (¥) is convex; if j==mn, (*) is
¢

convex but (%) is not.
The same holds true for paraboloids, if the classes are defined by the equations

® At tai—agy, = —al, <2,

H : @t alt e ol —af, — e —u > 20,
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CHAPTER XII

THE METRIC CLASSIFICATION OF HYPERSURFACES
OF THE SECOND ORDER

In the preceding chapters we have seen, in the case of two fundamental
examples, how the coneept of a group of transformations can be used
to classify and arrange geometrical configurations and theorems. This
was done by basing our ih}{(éstigation on a definite group of transforma-
tions (the projective group, the affine group). With respect to this
group a specified class of geometrical figures (hypersurfaees' of the seec-
ond order, linear quadruples of points, linear triples of points) were
partitioned into classes of equivalent figures, ie., figures that can be
mapped onto each other by the transformations of the group. A geomet-
rical property of these figures was considered as belonging to the geom-
etry defined by the group whenever the property was invariant under
all the transformations of the group. The problem of studying a particular
kind of geometrical figure in a certain geometry consequently amounts
to finding the invariants of the figures of this kind with respect to the
group defining the geometry. These principles, which have lent clarity
and perspective to the manifold theorems and problems of geometry, were
developed by Felix Klein in his famous Erlanger Programm.

In this chapter we shall make one final application of these funda-
mental principles. The group that we shall now take as our basic group -
is essentially the group of motions in euclidean E.. The geometry be-
longing to this group is called euclidean geometry.

The Group of Motions as a Subgroup of the Projective Group

Our discussion will at first be confined to the real space P,. For the
sake of clarity, let us fix upon a definite coordinate system to be used in
all that follows, and in faet let us take the nafural coordinate system
mentioned on p. 32, in which each point [&, &1, ..., &n] of Pn has pre-
cisely the coordinates &g, &1, .. ., &n. )
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The proper points of P, i.e., those in which &;54 0, constitute the
affine space R, (Chap. II). Just as in § 7 of Modern Algebra, we intro-
duce into this affine part of P, the euclidean definition of length. The
distance between two proper points S = [&, &, -+, &) and Q@ =
(05 %1y - -+ 7n] (E054 0, 5054 0), with the non-homogeneous coordinates

@y =Ei/ o, Yo==ni/m0 (¢==1,2, ..., n),is given by

5Q = l/ 3 x,)ﬁ——lgﬂl VZ'(%EO £ o).

Distance is not defined between two improper points or between an im-
proper and a proper point.

Let us now return to the rigid motions of the euclidean space R,
(Modern Algebra, §12). We know, from Modern Algebra § 13, that
every such motion is also an affine transformation and, indeed, a non-
singular affine transformation. In consequence, whatever wassaid about
non-singular affine transformations in Chapter VI of the present volume
holds true @ fortiori for motions. Thus, every motion of the euclidean
space Br—that is to say, of the proper part of the real space P,—is induced
by one and only one linear projectivity of P». Such a projectivity obvi-
ously maps the improper hyperplane onto itself, i.e., it belongs to the
affine group of P,. A linear projectivity of the real space P, that induces
a motion in the proper part of P, is itself called ¢ motion of Pn.

Since such a motion in the real space P, is characterized by the fact
that it leaves euclidean distances invariant in the proper part of Py, it
follows at once that the product of two such motions and the inverse of a
- motion is itself a motion. The rigid motions thus eonstitute a subgroup
of the linear projective group of P, and, indeed, even a subgroup of the
affine group of P,.

‘We should now like to ascertain what the system of equations of a
rigid motion looks like when expressed in the above fixed projective
coordinate system. A rigid motion, as a special kind of affine trans-
formation, can certainly always be represented by a system of equations
of the form

o = §0)

h = tio §o+tu §1+t12 §2+ e + tin §n,

(1) o %y == 1y §o+ 29 §1+ las §2+ R §n,

N == Ino §0+ tm §1+ tna §2+ . + trn En
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(cf. Chap. VI). However, since not every affine transformation is a
rigid motion, certain additional conditions must be satlsfled by the

coefficients of (1). We assert the following:
The system of equations (1) represents a rigid motion zf and only of
the square matriz

tlly t129 ft tln:
(2) T — tzu t227 Ty t2n,
tnly tn2, Tty tnn

s orthogonal.
Proof: The mapping induced in the proper part of Px by (1) is, in
affine coordinates (cf. Chap. VI, p. 97),

3) Y= tio+]§1tmxk, i=1,2 -, nm.

Sinee (1) was given in the natural coordinate system of Pa; (3) is ex-
pressed in the natural coordinates of the euclidean space En (cf. footnote
3 on p. 97), that is, in a cartesian coordinate system. In such a coordi-
nate system, however, (3) ean represent a rigid motion if and only if the
matrix (2) is orthogonal.

We now proceed to a study of hypersurfaces of the second order in
the geometry associated with the group of motions of Px just discussed.
Again, the chief problem is the classification of the hypersurfaces with
respect to this group, a classification usually referred to as euclidean-

metric or, simply, metric.

Metric Classification of Hypersurfaces of the Second Order

If two hypersurfaces of the second order in real P can be taken into
each other by a rigid motion, we call them congruent. We shall again
tackle the problem of determining the classes of congruent hypersurfaces
by trying to find a representative, i.e., a normal form, for each class. A
complete system of invariants for hypersurfaces of the second order with
respect to the group of motions of projective P will then be obtained

automatically.
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The procedure for obtaining these normal forms bears a strong resem-
blance to that of the preceding chapter. There our first step was to
change the hypersurface

i R == 0
0

4)

s

2

by & suitably chosen affine transformation, into an equation of the
form (8) on p. 161. Since we no longer have arbitrary affine transforma-
tions at our disposal, but only rigid motions, we can no longer achieve
quite as much as before. Nevertheless, the part of the equation contain-
ing no 7, can still be reduced, as we shall soon see, to pure squares. How-
ever, we will now have as coefficients of the square terms not just = 1, as
in the preceding chapter, but arbitrary real numbers.

We can carry out a rigid motion on (4) by replacing the #; by the
right-hand sides of (1).! In doing so we are again concerned first of all
with the behaviour of the improper part of the hypersurface, ie., with
that part of equation (4) that is free of 7, and that part of the result of
our substitution that is free of &, Thus, we first pay attention to what
result the substitution obtained from (1) (ef. equation (5) on p. 160),

namely,

n
(5) m“—“-—"k;; ti &k, i=1,2,.--,nm,

will have when applied to the expression

n
(6) kZ_ Qite Yi e -

i k=1

The simplification that may be achieved is easier to see if we make use of
matrix notation. Then (6) may be written as

@ () A(),

where (5) now, of course, stands for that n-by-n (square) matrix whose

first column consists of the elements 51, 92, .. ., #n (10 7o this time) and
whose remaining entries are zeros, while A stands for the n-by-n matrix

1 More precisely, this means we apply to (4) the inverse of the motion (1). For
we are going over from the y; to the & (ef. Chap. IX).
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Q11 g - Oan

_f %1 Qg -+ don

(8 A== 7 7
Oni Qnz -+ ++ Onpn

Moreover, using the matrix (2), we can write the substitution (5) in the

form
9 () = T(%.
Application of (9) now takes (7) into

(10) & T AT ).

In (10) are contained all the terms free of &, which result from appli-
cation of the substitution (1) to (4). But it was our purpose to choose
the motion (1) in such a way that in the expression resulting from the
substitution the part free of &, should consist of the square terms only.
This means, as regards (10), that 77AT must have diagonal form. Thus
our problem amounts to this: Given the real symmetric matrix A4, to
find an orthogonal matrix T such that 7"AT be of diagonal form. But
that this is always possible has been shown in Modern Algebra, § 24,
Theorem 13.

Thus, we have shown the following:

Every hypersurface of the second order of real Py is congruent to at
least one of the hypersurfaces of the form?

L n
an 2 0,8 =0b8+2 Ebi'@-&o, a; % 0.
Fe=

=1

The rest of our discussion as well directly parallels that of Chap. XI.
We first write (11) in a slightly different form, as follows:

s 2 n
b
(12) 2w (&—-—150) = chit+2 2 b&k,
i fo=1 [421 =841
N b2
where ¢ ==b-}- > —~. We next carry out the substitution

i=1 Q4

2 Cf. equation (8) on p. 161.
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§i=§ for ¢=0 and ¢ =s-+1,s+2, .-, n,

(13) 5
Bl = — ’50+§£ P i=1,2---, 8

This merely amounts to applying another rigid motion® to (12). For
simplicity, we drop the primes from our variables after making the sub-
stitution. We thus see that every hypersurface of the second order is
always congruent to one of the form

(14) Za, z——0§o+22 bi §i &o.

i=1

Now, just as in Chapter XI, we distinguish three different cases.

Case One: - All the coefficients of the right-hand side of (14) vanish.
Then we may assume to begin with that the number of positive terms on
the left-hand side of (14) is at least as great as the number of negative
terms; this can be brought about, if need be, by multiplying the equation
through by — 1. By further multiplication by a non-zero constant, we
make the largest a; >0 equal to 1. We then permute? the variables so that
the a; are arranged in descending order of magnitude. In the further
subease in which the number of positive terms is equal to the number of
negative terms, we can also insure that the first of the sums a, + a,,
@2+ as_1, ... that is not zero be positive.? Taking all this into account,
the final form that we achieve may be written as follows

a1§?—l—a2§§+~-+as§§=0 1 <5<,
l=agy 2> - Zu>0>an - >a, k=>s—k;
(15)
where, moreover, if s ==2k, the first non-vanmishing sum a; -+ a,,
g+ as_1, ... 1s positive,

3 More precisely, a translation of the euclidean space RBn, as is easily seen if the
equations be written in non-homogeneous eoordinates, as in (3).

4 A permutation of variables amounts to applying a rigid motion.

5 For if the number of positive terms is equal to the number of negative terms,
the conditions already attained are not changed by multiplication of the equation by
1/as and reversal of the numbering of the variables&, &, ..., &; that is, they
hold for the new equation that results from the carrying out of these two operations.
This means, however, that the above additional condition can always be satisfied if it
is not satisfied to béegin with.
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Case Two: In (14), all the b;=0, but ¢4 0. In this case, we divide
the equation through by ¢. If we simply write ¢; instead of @;/¢ and make
a suitable permutation of the variables, we arrive at the following form

of the equation :®

@M= g 2> 0> ap = 2 as,

&
2 42
ae  Zal =5 0<s<n, 0<k<s.

Case Three: The b; are not all equal to zero, and ¢ is arbitrary. In
this case, we first observe that by multiplying the equation through by a
suitable non-zero constant we can always insure that

n
a7 > b= 1.
i=5+1
‘We then apply the substifutgion

E=15§ for 1=0,1,2,.-.,s,
18) n
Eip1 = %%fo*{— D biE,

t=s+1

‘which takes (14) into the form (where we again simply write §; in place
of E@,) : ' '

8
(19) 2wl =255
However, the question now arises: Can this substitution be interpreted
as a rigid motion? This will be the case provided we can extend equations
(18) by the adjunction of m— (s <+ 1) other equations in the variables
Eita, . - -, &n to a system of equations for which the matrix corresponding
to (2) is orthogonal. But this means that we are to make the (s + 1)-by-

(s + 1) matrix

1 0 0 0 o ..- 0
0 1 o0 0 ---0
(20) .o e e e e e
0 0 1 0 o ... 0
00 0 bgp1 bsy2 -+ bn

6 3= 0 shall, of course, mean that the equation is of the form 0 == .
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into an orthogonal matrix by adding to it # — s — 1 suitable further rows.
But sinee, by virtue of (17), the row vectors of (20) already constitute
a normalized orthogonal system, the supplementation is always possible,
by § 11 of Modern Algebra.

Further, it is always possible to change the sign on one side only of
(19). For this may be done by applying the motion (of reflection) given by

Sopr = — &gt

1) & = § for is4s+1.

I

Hence we can treat the left-hand side of (19) in the same way as in case
one, so that we finally arrive at the following form for the equation in
this third and last case:

8

2 & = 2§ &,
=1 Ezs—k, 0< s < m;
@iy =za=--Za>0>an 2= as,
wn addition, if s==2k, the first non-vanishing sum a, -+ a,
G2 +as_1, ... 18 positive.

‘What we have shown thus far can be summed up as follows:

Every hypersurface of the second order of real Py is congruent to al
least one of the hypersurfaces represented by equations (15), (16), and
(22).

‘We now wish to see whether or not any two of the expressions we have
arrived at can be congruent. Let us begin by considering some cases that
display a special kind of behaviour. Such equations are those of the
form (15) in which %k ==s and those of the form (16) in which all the
coefficients on the left-hand side are negative.

If %k ==s¢ in (15), so that all the coefficients are positive, then the
hypersurface represented by (15) (remember that we are concerned with
the real space) consists simply of the linear space

§1 Py O’ §2 — 0, TN §S: 0_
This is also represented, however, by the equation
(23) 4 E4 - FE =0

Thus, for a given s, all equations of the type (15) for which k == s repre-
sent, not merely congruent, but identical hypersurfaces of the second
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order.” We accordingly regard (23) as the normal form of all these
hypersurfaces. It is also evident that the hypersurface (23) ecannot be
congruent to any of those of the type (15) with k£ < s, nor to any of the
hypersurfaces of the types (16) or (22), for it is not even affinely equiva-
lent to any of them.

Similarly, for a fized s, all hypersurfaces of the type (16) in which
the coefficients of the left-hand side are all negative, are identical with
(24) —H—E— . —& =&
and are not congruent to any other hypersurface (15), (16), or (22).

The special cases just considered are preecisely those for which, in
accordance with Chap. X, Theorem 5, the equation of the hypersurface
is not uniquely determined. For all other equations of the types (15),
(16), and (22), however, according to the same theorem, the equation is
uniquely determined. In:particular, there are no two different ones
among them that represent the same hypersurface. Let us now assume
that two different ones among these equations represent congruent hyper-
surfaces. These hypersurfaces, then, can be carried into each other by a
rigid motion ; and since their equations are essentially® uniquely deter-
mined, we can make the following statement :

If among the remaining equations (15), (16), and (22) there exist two
different ones representing congruent hypersurfaces of the second order,
then there must also exist a substitution (1) with orthogonal matrix (2)
that takes one of these equations into a multiple of the other.

But we shall prove that, on the contrary, a substitution of the form
(1) with orthogonal matriz (2) can never transform an equation of the
form: (15), (16), or (22) into a multiple of another equation of this kind.®

" In the real space P, be it noted! (15) with k==s and (23) do ot in general
coineide in their complex parts. If this be taken into consideration, the situation
takes on a completely different aspect. See footnote 9 below.

8Le., up to a non-zero constant of proportionality.

° This purely algebraic statement and the proof that follows holds true even for
those cases of (15) and (16) already treated. Thus although, say, equation (15)
with k == s represents the same hypersurface in the reals as does (23), it is not possible
to transform an arbitrary equation (15) into (28) by a real substitution (1) with
orthogonal matrix (2). This fact is in itself of interest and may be interpreted as
follows: If we alter the concept of congruence for the special cases of (15) and (16)
already treated to the extent that two of these hypersurfaces are to be considered
congruent only if there exists a rigid motion that brings into coincidence not only
their real parts but at the same time their complex parts as well, then we also have
that no two of the cases of (15) with k==s and 1o two of the cases of (16) with
k=0 can be congruent, l
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We will thus have proved that among the remaining equations of the form
(15), (16), and (22), there are no two that are congruent.

Suppose, then, that there is given an equation of the kind in question,
say

(25) it fasys = P,

where P stands for either 0 or qg or 2 7y 5541. For simplicity, we have
again written this initial equation in terms of the variables #; in order
to be able to use the substitution (1) without having to alter the notation.

‘We now assume that we have found a substitution (1) with orthogonal
matrix (2) that transforms (25) into a multiple of an equation of the
form (15), (16), or (22). We write the result of the substitution in the
form

(26) - S Et b5 =c P

Since the performing of substitution (1) always amounts to the applica-
tion of an affine transformation, it is clear from Chap. XI that
P =0, = &, or = 2& &1 according as P = 0, = 78, 0F == 2 7g 541,
respectively. As regards the b;, we can assume that they satisfy the
subsidiary econditions associated with whatever form of equation (15), (16),
or (22) is under consideration. And clearly, the left-hand sides of equa-
tions (25) and (26) have exactly the same number of terms, this number
being, in fact, even an affine invariant.

Again let us consider first of all only the terms free of 7y, i.e., the
left-hand side of equation (25), and compare them, as before, to the terms
free of &, in equation (26), which is formed from (25) as a result of the
substitution. We recall that in the general case the expression (7) repre-
sents the part of the initial equation that is free of #o and (10) the part
of the equation that, after the substitution, is free of &. In our present
case, we must, in (7), set 4 equal to the matrix

a 0

227

@7 A = " 2

0 )

while, by (26), for the matrix 7"AT of (10) we have
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(28)

TAT = ¢- b,

ProsucTivE GEOMETRY OF n DIMENSIONS

b 0
bs

0 0

Since T is assumed to be orthogonal, i.e., 77=T-1, we have in ex-
plicit form, after multiplying (28) on the left by T,

(29)] as ts1

@y by
(g b3y Qg tas

0

0

0y bys

s ts2

0

0

@ tin bitiy betis -+ betis O
g toy Ditay botes -+ Dglys O -
s tsn : C-

0

0 bitna batus -+ bstns O -

0

Since the a; and the b; are all different from zero, it follows at once from
& comparison of the two sides of (29) that

(30)

ti’s—}—l: ti’s+2: e — .ti’n,: O fOI' Z: 1, 2, Pty 3,

lset1,i == bt i = +-r == 0 7 i=1,2, ... 5.

This means the following :

L. The matriz (2) of our substitution must necessarily have the form

(31)

T

tiy - g |

ls1,8+1 ** lst1,n

tn, §41 M tn;n

The next consequence we derive from our assumption is the following :



XTII. Mrtric CLASSIFICATION oF HYPERSURFACES OF SECOND OrDER 189
II. The coefficients tyo, tao, . . ., ts0 9 (1) must also all vanish.

To see this, consider all the terms &&; with 1 = ¢ = s that result from
(25) when we make the substitution. By virtue of I, terms of this type
can certainly come only from the left-hand side of (25), whatever form
P may have. On the other hand, all of these terms must cancel out,
because the final equation is of the form (26). In other words, for every ¢
between 1 and s we have

s

(32) 2 2t trotyi =0, i=1,2,.-- 5.

=1

Since the s-by-s matrix

by --- b

(33)

ts1 o lss

is non-singular ((31) being non-singular), our result follows from (32)
(by Modern Algebra, § 9, Theorem 4).

In the case in which (25) is an equation of type (22), observe that we
have the following further result:

II1. If P== 2% qjs41 ‘n the right-hand side of (25) (whence, in (26),

P’ — 2 &, &s11), then the coefficients ts11,0 0nd tsr1,4with e >s+1
in (1) also vanish.

For otherwise, the substitution would produee on the right-hand side
of (25) terms containing &% and &¢&;, 1 > s + 1, which, by virtue of I and
II, would have nothing to cancel out against. In that case, however, the
result of the substitution could not have form (26).

Now let us return to equation (28). Since T”=T"1, passing from
the matrix A to T”AT represents a transformation in the sense of the
matrix ealeulus. But the roots of the characteristic polynomial are in-
variant under such a transformation. On the other hand, both A and
T’AT are diagonal matrices and thus contain in their principal diagonals
precisely the roots of the characteristic polynomial. Hence the totality
of terms in the principal diagonals of these two matrices must be the same.

Tt should be noted, further, that the @; and the b;, by virtue of the
stipulations regarding the forms of equations (15), (16), (22), are ar-
ranged in descending order of magnitude. Consequently, the numbers
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¢-by,c.by...,c. byare also arranged in descending or ascending order
of magnitude according as ¢ is positive or negative. Thus, if¢ > 0,¢ . by
must equal the greatest of the a;, i.e., a;; ¢ - b, the greatest of the elements
G2, @3, ..., Os, 1.6, @2; and so forth. On the other hand, if ¢ < 0, then
¢ -bi=0y ¢ by==a,_1, ete. Thus we have IV:

IV: If ¢ >0, then in (25) and (26) we must have a,==c . b; for
1=1, 2, ..., s, whereas if ¢ <0, then aqy=c¢ . bgjy1—; for ¢==
1,2 ...,s
We can, further, prove the following:
V: The constant ¢ of (26) is necessarily =+ 1, and whenever, in the
case of (25) (and (26)), we are dealing with an equation of the
form (16), 4t is mecessarily even equal to + 1.
In proving V, we first consider the case P= 4;%;, P =g, By II, no
terms containing &o? arise from applying the substitution to the left-hand
side of (25), and the right-hand side simply goes into &2. Henece, ¢ = + 1.

Secondly, consider the case P == 2 9 95+1. It then follows from I and
IIT that ¢s11, s+1 = =1 because of the orthogonality of matrix T. Con-
sequently, the right-hand side of (25) goes directly over into —4 2 & &4,
By 1, there is no contribution to this term from the left-hand side. Hence,
¢is =1

In the last case P==P’'= (0, by virtue of the subsidiary conditions
of (15), we must certainly have a; == b; == 1. Hence, if ¢ > 0, it follows
immediately from IV that ¢ = + 1. If, however, ¢ < 0, we need to recall
that the number of positive g, is not smaller than the number of negative
ones, and that this is likewise true for the b;. But on the other hand,
sinece by IV @;=c¢ . bsy1.;, the number of the positive a; must be equal
to the number of negative b; and the number of negative a; equal to the
number of positive b;. From this it follows that both for the a; and for
the b; precisely half the terms are > 0 and half < 0. Thus, ¢ < 0 is pos-
sible only if, in the notation of (15), s == 2k. But then, according to (15)
the first non-vanishing of the sums @, + a,, @5 + a5_1, . . . is positive. The
same must hold for the sequence made up of the b;: by + b, ba+ by_4,....
Since by IV, however, @+ asp1—s==c¢. (b;+ byyr1_;) and therefore
b; + bsy1-s is always negative whenever a; + @;,1_; is positive, all the
sums @; + @y41-; must be zero. In particular, a; +a,==0, so that
o, =-—1. But by IV ¢. b; = a,, and thus ¢ ==-— 1, which is what we
wished to show.

For the case ¢ ==—1, we then have VI.
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VI. The constant ¢ can == — 1 only if equation (25) is of the type (15)
or (22), the number of positive terms and of negative terms on the
left-hand side are equal and, in addition, ¢;— — ay41—; for
=12 ...,s

That ¢ = — 1 only under the conditions stated above, has just been
shown for the case P = P'== 0. For the case P = 2 9, 9s+1, the desired
result may be obtained by a precisely similar argument.

From IV and VI it now follows immediately that in the case ¢ = —1,
we must have

(34:) ay = b1, g = bg, ey (g bs.

That is to say, (26) is then nothing but (25) itself multiplied by — 1. But
for the case ¢ = + 1, (25) and (26) are, by IV, identical. We thus have

the final result:

VII. A substitution (1) with orthogonal matriz (2) which, when
applied to (25) gives an end result of the form (26), esther leaves
the equation (25) unoliered or multiplies ¢ by — 1.

In no case, then, can the end result be a multiple of any of the equa-
tions (15), (16), or (22) different from (25). Hence, our proof is com-

plete.

The question of euclidean-metric normal forms of the hypersurfaces
of the second order is now settled. We have seen that @ complete system
of representatives of the classes of congruent hypersurfaces is given by

equations (23), (24) ;

equations of the type (15) with k = s;
equations of the type (16) with &k > 0;
all equations of the type (22).

Once we know the normal forms, we can immediately give a complete
system of invariants with respect to the group of rigid motions. The four
invariants of Chap. X1 and the coefficients a;, that occur in our present
normal forms constitute such a system. To within a common normalizing
factor the a; are equal to the characteristic roots of the matrix (8). The
process of reduction to normal form given above contains a procedure for
determining the normalizing factor.
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‘We add a few remarks about the non-degenerate central hypersurfaces.
Their metric normal forms are given by

(35) a1§§+a2§§+...+an§i = £

It is clear that the fundamental simplex of our coordinate system is a
polar simplex (Chap. XI) with respect to every hypersurface (35). The
fundamental point Qo ==[1,0,0, ..., 0] is the center of (35). The lines
joining @, to the n remaining fundamental points @4, Qg, ..., @» thus
form an #-tuple of conjugate diameters.

On the other hand, the » lines Q¢@Qy, +==1, 2, ..., n, are such that, in
terms of euclidean measurement of angle, every two are perpendicular
to each other. Such an n-tuple of conjugate diameters is called a system
of principal axes. Since the fact of the existence of a system of principal
axes is invariant under rigid motions, such a system of axes certainly
exists for all hypersurfaces of the second order that are congruent to a
hypersurface of the form (35). But that means for all central hyper-
surfaces.

The transformation of a central hypersurface into the normal form
(35) by means of a rigid motion is called, in accordance with this inter-
pretation, a principal axis transformation, or a {ransformation o prin-
cipal azxes. This term is then extended to non-central hypersurfaces as
well by taking it to mean, more generally, the transformation of a hyper-
surface of the second order into euclidean-metric normal form. Finally,
this expression is also used for the algebraic essence of this transforma-
tion, i.e., for the statement given in Theorem 13, § 24, of Modern Algebra.

Moreover, as in Chap. IX, p. 119, the reduction of a hypersurface of
the second order to normal form can also be thought of as a transforma-
tion of coordinates. This transformation of coordinates then represents
the transition from the natural coordinate system to a new coordinate
system whse fundamental points are the n improper points of the lines
of a system of principal axes and the center of the hypersurface. For
the non-homogeneous coordinates of the proper points, this transforma-
tion of coordinates is given by the system of equations (3) ; it thus amounts
to passing from one cartesian coordinate system to another cartesian
coordinate system. ‘ o

If we determine the points of intersection of the lines QoQ; with the
hypersurface (35), we obtain the following values for their coordinates:

36) 5 =1, &= Va & = 0 for k%20 and k44,
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The two values of the square root give the two points of intersection.
The root is a real number, however, only if @; > 0. In this case, the

2 .
euclidean distance between the two points of intersection is ]T/:T This

number is accordingly called the length of the i-th principal axis. This
name is retained even in the ease a; < 0. Thus, we have obtained a
geometrical interpretation for the invariants a, for the case of a central

hypersurface.

The Absolute

From now on, we suppose the dimension n of P» to be greater than one.
In euclidean geometry those non-degenerate central hypersurfaces are
of special importance whose a; are all positive and equal to each other.
The normal form of such a hypersurface is thus as follows:

(37 a@@tn2+- ) = 72 a>0.

The hypersurfaces of the class represented by (37) are called hyper-
spheres (spheres in Py, circles in Py). They are characterized by the fact
that the distance from the center to a point on the surface is the same
for every point of the surface. This property can easily be read off from
the form of equation (37) (say, by writing it in non-homogeneous form).
The distance from the center to a point on a given hypersphere is- called
the radius of the hypersphere.

The general equations of hyperspheres are likewise easy to charac-
terize. For, by definition, the equation of every hypersphere can be
obtained by applying to the normal form (37) a suitable substitution (1)
with orthogonal matrix (2). Under such a substitution, however, that
part of (37) that is free of 7, cannot change in form. For the matrix 4
which appears in the expression (7) 1s, in the case of (37), a multiple of
the unit matrix. And the unit matrix does not change under transfor-
mation. The equation of a hypersphere must accordingly be of the form!

(38) a@+HE+ 48 = 205,

1This form of the equation may be derived with equal ease from the above

characterization.
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Conversely, every equation of the form (38) represents either a hyper-
sphere or a hypersurface of the type?

(39) g84+8+-.-+8 = 0.

This can be seen at once by reduction to the normal form.

In the reals, no hypersurface of the form (38) has a point in common
with the improper hyperplane. This is no longer the case, however, if
we consider equation (38) over the complex field, that is, if we extend
the hypersurface into the complex domain by the addition of all the
points of complex P, that satisfy this equation. The intersection of the
improper hyperplane with (38) is then represented by the equations

(40) 5,=0, B+E4..+8 =0

This defines a hypersurface of the second order in the improper hyper-
plane whose dimension is lower by one than that of the hyperplane. In
particular, in P, (40) represents a pair of (imaginary) improper points,
and in P3 an (imaginary) circle in the improper plane.

Now what is of significance here is that the set of points represented
by (40) is independent of the coefficients that appear in (38). This means
that all hypersurfaces of the type (38), and in particular all real hyper-
spheres, intersect the improper hyperplane in the set of points given
by (40). 'This set of points is therefore common to all hyperspheres.

Conversely, a hypersurface of the second order that intersects the
improper hyperplane in the set of complex points (40) can always be repre-
sented by an equation of the type (38). If we set &, equal to zero in a

n
hypersurface kZ ax&ibr =0, the resulting equation can represent the
4k=0
same set of points as (40) in complex improper P,_, only if it differs
from & + & 4 ... 4 & =0 solely by a constant non-zero factor (Chap.

X, Theorem 5).

Let us now return to the rigid motions of real P.. Every such motion
and, more generally, every affine transformation of real Pn., can be
extended into the complex domain. This simply means that we consider
the real system of equations (1) not just in real P, but in eomplex Py ;
and in the complex domain as well, the equations are referred to the

" natural coordinate system of p. 32f. Such an affine transformation,

21In the reals, this equation represents a single point; in the complex field, a
hypersphere with a real vertex.
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an affine transformation in the complex space Pn that is specialized to
the extent that the coefficients of its system of equations are all real is
called a real affine transformation of the complex space P,. Among all
the affine transformations of the complex space P., the real affine
transformations are characterized by the faect that they always map real
points into real points.

Among these real affine transformations of the complex space P are
to be found, in particular, the real rigid motions, i.e., those mappings of
complex P, that are represented in our coordinate system by a system
of equations (1) with real coefficients and orthogonal matrix (2). Such
a motion always takes the set of points (40) into itself. For a real hyper-
sphere certainly goes into a real hypersphere,® and hence the improper
part of a real hypersphere goes into the improper part of a real hyper-
sphere, that is, (40) goes into itself. Because of this invariance under
the group of rigid motions, the set of points (40) is called the absolute
of euclidean geometry.

The question immediately arises whether the rigid motions, as a sub-
class of the class of real affine transformations, are characterized by the
invariance of the absolute or whether there exist other real affine trans-
formations that map the absolute into itself. To decide this question,
consider a real affine transformation (1) that takes every point of (40)
into a point of (40). Since the mapping induced in the improper hyper-
plane by (1) (ef. Chap. X1) is given by the system of equations

mo= tu§it+teb+ -+ twné,
(41) 2 = tu S1-+tn o+t -+ ton &y, (e = & = 0)
M = b &1+ tn2§2+ <ot én
our question amounts to this: What substitutions of the type (41) take
the equation 73 92+ ... 72 = 0 into a multiple* of itself? Expressed
in matrix notation, our question takes the following form: Find a sub-
stitution: () == T(&) which, when applied to the equation ()’ - () = O,
yields a result that differs from the original equation only by a con-
stant factor. But the result of the substitution may be written
(&) -1'T « (&) == 0, so that our condition means that 7'T is to be a mul-
tiple of the unit matrix. But the matrix 7' is the matrix of (41), i.e., the

3 By virtue of the definition of hyperspheres as all the hypersurfaces of the second
order that are congruent to a hypersurface of the type (37).

4 The equation 72+ %%+ ...+ %2 ==0 of the absolute, as the equation of a hyper-
surface of the second order in the improper complex space P,._,, is determined up to a
non-zero constant of proportionality.
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matrix (2).  Thus we see the following: The absolute is invariant under
the mapping (1) if and only iof matriz (2) satisfies the equation

42) T-T = c¢-E,

where ¢ is a constant and F is the unit matrix.

It follows immediately from (42) that |7| -|T|==c, so that
¢=|T]|2 Consequently, since T was assumed real, ¢ must be positive.
Hence the square root of ¢ is a real number, and we can write (42) in the
form

T\ T
(43) ( > - ) —z
Ve Ve
o T . . '
But this implies that Ve is an orthogonal matrix. Thus we have the
¢

following result:

A real affine transformation (1) leaves the absolute invariant if and
only if (2) is a multiple of an orthogonal matriz.

The real affine transformations that map the absolute into itself are
called similarity transformations. Our result shows that there is a close
connection between the similarity transformations and the group of
motions of real P,. In order to stress this similarity we shall show that
certain fundamental invariants of euclidean geometry, i.e., invariants of
the group of rigid motions, are also invariant under similarity transfor-
mations. First of all:

A similarity transformation leaves all angles mvariant. For if the
matrix (2) is a multiple of an orthogonal matrix, say 7 ==c¢ - T* (with
¢ %= 0 and T* orthogonal), we decompose (1) into the product of two map-
pings by first applying the mapping

(44) 56:50, §%=C'§i fOI‘i:l,?,...’n

and then

! 1 < t ’ .
(4:5) B — §0, N = tiO Eo—{—k;; (—-—;—k—) §k, 7 = 1’ 2, s, M.
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We see immediately that all vectors of the proper part of P» go over
into their multiples by ¢ under the mapping (44), and thus the angle
between two such vectors, as defined in §7 of Modern Algebra, remains
unchanged. But the mapping (45) is a rigid motion (its matrix is T'*)
and thus in turn leaves the angle invariant.

This discussion also shows that under our similarity transformations
all distances are multiplied by the constant ¢c. For the mapping (44) has
this property, while (45) leaves distances invariant. It follows that
equality of distances is invariant under similarity transformations. Even
more: All relations of the form QR = 1 - ST between two distances are
unaltered by o similarity transformation.’

Moreover, the characterization of similarity transformations by the
invariance of the absolute permits us to think of the invariants of these
mappings as projective relations to the absolute. We should like to make
clear what the main points are of this reinterpretation, taking angle as
our example.

Let us begin with two non-vanishing vectors t = {®1, 2, ..., »} and
§=={Y1, Y2, ..., Yn} of the affine space R.. Each of the two vectors
determines a family of lines parallel to it, all having the same improper
point in common. Let U, and U, denote the respective improper points
of the families of lines parallel to y and y. The homogeneous coordinates
of these points are (ef., for example, Chap. I)

(46) Uy = [0, x1, 22, -+, Znl, Uy = [0, 1, ¥2, -y Z/n]'-

If ¢ and y are not parallel, which we shall assume to be the case, then
U,s~ U,. The line determined by these two points belongs entirely to
the improper space P,_; and therefore intersects the absolute in two
(distinet or coincident) points. Let the points of intersection be Vi, V.
We shall now express the angle between the vectors y and y in terms of
the cross ratio R(U, Uy Vi V3). :

Since the angle between y and y as well as the points U, and U, are
independent of the length of the vectors r and §, we shall assume, to
simplify our computation, that both vectors are of unit length. That is,

we assume that

7 n
(47 D=1, 2 y=1.
i=1

5 For an arbitrary affine transformation, this is in general true only if the four
points @, R, S, T are collinear. -
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Under this assumption, the angle o formed by the two vectors is given by
1
(48) cos @ = Zx‘i Yi.
i=1

Now, in order to determine the cross ratio mentioned above, we must
express the points V; as linear combinations of the points U,, U,. Since
the U,, U,, as real points,® are distinct from the necessarily non-real Vy, V,,
we can write the coordinates of the points V; in the form

(49) Aty
Since, moreover, the V; lie on the absolute, they must satisfy its equation,
i.e., we must have )
2 (it y)? =
i=1
or

12<2n‘x2>+2,1<2xz,/1)+2./,

In view of (47)-and (48), it follows that
(50) A24-22-.cosat1 =
From (50) we obtain the two possible values for 1 in (49)

Vi: A = —cosSe—isine
(51) 1 1 ~ ST,
Vo: Ay == — c08 ¢ + ¢sin «,

‘We now obtain immediately as the value of the required cross ratio

Ay cos @ —¢ 8in &
ROV = 30 = cosatisime

[cos (— ) -} 7 sin (— @)] - [cos & 7 sin a] -1
cos(— 2ea)+7-sin(— 2 ).

|

(52)

I

6 The assumption that %, ) are vectors of the affine space E. implies that the
numbers i, ¥, are real,
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The simple relation thus disclosed between the angle « and
R(U, U, VyV,) can be written in the form

(53) , R(UzUy V1 Vy) = e 2%
if we borrow the identity

€Y == €08 @ ~} 5 8in w
from analysis.”

Formula (52) (or (53)) is due to Laguerre. It reveals a surprising
connection between projective and euclidean-metric geometry. This con-
nection can be developed further. For example, it is easy to see that
perpendicularity of two veetors ¢ and y means that the cross ratio of the
points Ua, Uy, Vi, Vy has the value — 1 and thus that the four points
form a harmonic set. Moreover, perpendicularity of a hyperplane and
a line means that the improper parts of each represent pole and polar
with respeet to the absolute. And so forth.

The possibility of such a reinterpretation of euclidean-metric con-
cepts by means of the Laguerre formula paves the way, too, for new
‘non-euclidean’ geometries which, from this point of view, are entitled to
positions of equal standing alongside euclidean geometry.

In fact, the characterization of the similarity transformations by the
invariance of the absolute immediately suggests the following generali-
zation: We take, instead of the absolute, any other (degenerate or non-
degenerate) hypersurface of the second order and consider all projectivi-
ties that map this hypersurface onto itself. These projectivities consti-
tute a subgroup of the projective group. Then to each such subgroup
there belongs a particular geometry. In this way, we obtain a whole
host of new geometries, the study of which is readily accessible precisely
to the extent that their essential invariants can be derived from projec-
tive relations to the hypersurface considered as fixed. The importance
of the Laguerre formula lies in the fact that it shows how metric concepts
can be introduced to describe such geometries, whose properties, to be
sure, are often widely divergent from those of euclidean geometry.®

71If V, and V. be interchanged (in Pa, with n > 2, they are in fact indistinguish-
able without further information), the cross ratio goes into its reciproeal, i.e., the
minus sign disappears in the exponent in (53).

8 This train of thought, which we cannot pursue here in any detail, was initiated
by Cayley and Klein and has proved to be an extraordinarily fruitful approach. In
particular, it afforded a new approach to the non-euclidean geometries that were
already known, these appearing as special cases of the above. In this connection, the
reader is referred to Felix Klein’s admirable book, Vorlesungen iber nichi-euklidische
Geometrie (Berlin, 1928; New York, 1960).



200 . ProJgecTIVE GEOMETRY OF 7 DIMENSIONS
Exercises

1. Let 7, 7 be two real® planes in complex P; and let g denote éheir line of
intersection. Argue that through g there pass just two (conjugate complex) planes
@1, @ whose improper lines are tangents to the absolute of three-dimensional euclidean
geometry. Then show that

R (91 ;1’2 N ) == o,

where « is one of the two angles formed by the planes. If ¢, and ¢, are interchanged
in the formula, « is replaced. by its supplement.

Also prove the n-dimensional genel'alizatioxl of this. The angle formed by two
hyperplanes is to be understood to mean the angle between two veetors that are per-

pendieular to the respective hyperplanes.

9. Consider a fixed real non-degenerate hypersurface of the second order F in
the complex space Pn. Every real line g that is not tangent to F cuts F in two points
Vi, Vs, which are either both real or conjugates complex 6f each other. If @, Q. are
two other real points of g, then ‘1{(171 V2 Q1 Q:) is real in the first case and is a com-
plex number of absolute value 1°in the second case, as is easy to see. We therefore
set R (V1 V2 Q1 Qo) = - (cos ¢ +1 - sin @) with 7 > 0 and, since e/P==cos ¢ +4.sin @,
define: InR (V1 V2Q:Q:) =Inr+i-¢ (where Inr denotes the natural logarithm
of 7). :

If we start with two real points @i, @, the points Vi, V2 are determined except
for their order (as the points of intersection of the line through @, @ with F). Now,
with the use of a constant ¢, we construet the function B (Qu@2) == ¢ m R (V1 V> ¢4 Qs).
Now, E(Q:Q:) is called the non-euclidean distance between the points @, @ relative
to the non-euclidean absolute’ F. Show that '

a) E(Q:@.) is unique only up to sign and an added integral multxple of 2m .
b) If Q=0 (Qi 54 V1, V2), then E(Q:Q:) =0.
¢) If @, @ Q. are three real points of a line, then E(Q:Q:) +E(Qz Q) =
E(Q. Qs) if, in each of these expressions, the same order is retained for the
points of intersection ¥y, Vs of g with F. :

A non-euclidean angular measure relative to F as absolute may be introduced in
an exactly dual way (ef. Exercise 1). The angle A(m 7s) between two hyperplanes
71,7 is similarly defined by ‘the formula 4 (91 72) = ¢ "I R (P; P2 7179) where ¢, Ps
are the two tangent hyperplanes to F belonging to the pencil of planes determined
by #1,%:. Statements dual to a), b}, and ¢) above hold for this angular measure.

‘We obtain two 1mportant speclal cases of this non-euclidean measure if we take
for F the hypersurfaces m;+wz+--- L o8 ==+1 (in affine coordinates). We speak
of elliptic or hyperbolic measure, according as the ‘minus or the plus sign occurs on
the nght In the elliptic case F is imaginary; if one then takes ¢ in the definition of

9 By this is meant, of course, a plane that can be represented by an equation
with real coefficients with respect to a real coordinate system-—say, the natural eo-
ordinate system—of the complex space Ps. In what follows, the coneepts of a “real’
hypersurface of the second order and a ° real’ linear space are to be understood

analogously.
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E{(Q:Q:) to be a pure imaginary number, then all the distances E(@Q: @:) are real
(for real @:). In the hyperbolic case ¢ is taken as a real quantity; then E (@ Q) is
real for all pairs of points in the ‘interior’ of F (interior: :zzi—i— xg-{- see +wf.< 1).
The constant used in the definition of the ‘angle’ 4 (717 ) is taken as a pure imaginary
in both cases, with analogous consequences.

3. The non-eueclidean distances and angles defined in Exercise 2 are obviously
invariant under all linear projectivities of P, that map F into itself (the so-called
‘non-euclidean motions’ relative to F). But also, conversely, if E(Q. Q:) = E (@ @),
then there always exists a linear projeetivity of P. that takes F into itself and also
maps @, into @ and Q. into @2’. A corresponding dual statement holds true for the
angle.
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non-degenerate, 111

normal forms of, affine, 163
euclidean-metrie, 191
projective, 128

polar simplex with respect to, 156, 172

properties of, affine, 171
projective, 135

rank of, 111

tangents to, 110 ff.

uniqueness of equation of, 152 ff.

clagsification of, affine, 157 ff.
euclidean-metrie, 180 ff.
projective, 117 ff.

complete system of invariants of, 128,
166f., 191
for affine group, 160, 166 £,
for group of motions, 191
for projective group, 128

IMAGINARY CONE WITH REAL VERTEX, 174
Imaginary cylinder, 174 )
Imaginary hypersurface of second order,
116 '
Improper hyperplane, 19
Improper line, 15
Improper point, 13, 16, 17
Improper space, 19
Incidence condition, 44
Independence, linear, of hyperplanes, 47
of points of Pn, 25f., 40
Inertia, Jacobi-Sylvester law of, 129, 132
Infinity, line at, point at, etc. See Improper
line, improper point; ete.
Intersection of hypersurface of second
order with line, 109
Invariants, affine, 166 £., 168
complete system of, 128, 167, 191
of hypersurfaces of second order, 125,
128,129, 135,159, 166£., 1711f., 191
for affine group, 166 £.
for group of motions, 191
for projective group, 128
metrie, 193 ff.
projective, 128, 132, 135



206

Involution, 94

Involutory linear eorrelation, 104
Involutory projectivity, 94

Involutory transformation. See Involution

JacoBI-SYLVESTER LAW OF INERTIA, 129,
132

KERNEL, of hyperbundle, 44
of linear bundle, 44
Klein, Felix, 178

LAGUERRE, 199
Length, euclidean, 179
of principal axes of central hypersur-
face of second order, 193
Line (in projective space), 15, 18
improper, 15 e
Linear bundle, 44 B
Linear combination of points, 25
Linear construction, 61
of fourth harmonie point, 61
of sum and product of cross ratios, 63 ff.
Linear dependence and independence, of
hyperplanes, 47
of points, 25£., 40
Linear projective group, 95
Linear projectivities, 83, 85, 87 ff.
Linear space in Pa, 18, 21
Linear substitution, non-singular homo-
geneous, 36, 121
Linear triples, 168
Lines, families of, on non-degenerate sur-
faces of second order in Ps, 146 ff.

MATRICES, rank of product, 40
Matrix, of hypersurface of second order,
106
skew symmetric, 103
Metrie classifieation of hypersurfaces of
second order, 180
Metrie normal forms of hypersurfaces of
second order, euclidean-, 191
Motions, group of, as subgroup of pro-
jeetive group, 178
non-euclidean, 199, 201
Multiplication of eross ratios, linear eon-
struetion for, 66 £.

InDEX

NATURAL COORDINATES, 32
n-hedral of conjugate diameters, 172
Non-degenerate hypersurfaces of second
order, 111 P
Non-euelidean distance, 200
Non-euclidean geometry, 199 £.
Non-euclidean motion, 201
Non-homogeneous coordinates, 17
Normal forms, affine, of eonic sections in
real P», 174
of hypersurfaces of second order, 163,
166 £,
of surfaces of second order in real
P, 174,177
euclidean-metrie, of hypersurfaces of
second order, 192
projective, of hypersurfaces of second
order, 128
Null System, 102

ORIENTABILITY OF P, 41

“

PARABOLA, 174
Parabolic eylinder, 174, 177
Parabolic projectivity, 93
Paraboloid, 171
elliptie, 174
hyperbolic, 174
Parallelism, meaning in projective Pn, 20 f.
Paseal, theorem of, 68, 145
Pencil, of hyperplanes, 45
tangent, 115
Perpendicularity of veetors, projective
meaning of, 199
Perspective set of points, 150
Perspectivity, 59, 85
Plane, affine, 13
projective, 13, 18
Point, improper, 13, 17
of projective space, 16, 21
at infinity, 13, 17
Polar, 113
Polar-simplex with respect to hypersurface
of second order, 156, 172
Polar triangle with respeet to conic sec-
tion, 172
Polarity, 105, 114 £.
Pole, 113
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Principal axes, of central hypersurface of
second order, 192
length of, 193
system of, 192
transformation to, 192
Prineipal axis transformation, 192
Product of cross ratios, linear construction
for, 66 £,
Projective classifieation, of hypersurfaces
of second order, 117, 126, 127, 128
of linear projectivities, 130
of linear quadruples, 129
of systems of finite number of points,
132
Projective construetion of eonie sections,
138,143
Projective coordinate system in linear
space, 30
Projective equivalence,
1291f, 132
Projective geometry, fundamental theorem
of, 84
Projective group, 95
Projective normal forms of hypersurfaces
of second order, 128
Projective plane, 13
Projective properties of hypersurfaces of
second order, 135
Projective relations. See Projectivities
Projective space, n-dimensional, 17, 21
over an arbitrary field, 21
Projectively equivalent hypersurfaces, of
second order, 117
classes of, 118, 127, 128
Projectivities, between two linear spaces,
69, 79 ff.
dual of, 85
elliptic, 93
hyperbolie, 93
involutory, 94
linear, 83, 85, 87 ff,
parabolic, 93
of Pn onto itself, 87
in real P, 93
in real Py, 83
Proper point, 13

117, 118, 128,

QUADRANGLE, theorem of complete, 62
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Quadratic forms, 120
pairs of, 133
Quadratie cone, 137
Quadratic hypercone, 137
Quadrilateral, complete, 62
theorem of, 62
Quadruple, linear, 129

RADIUS OF HYPERSPHERE, 193
Rank, of hypersurface of second order, 111
of product of matrices, 40
of system of equations, 37
Ratio coordinates, 12, 17
Real Py, 21
Real affine transformation of complex Pn,
195
Real point, of complex Py, 98
Reciproeal, 43
Relations, projective. See Projectivities
Representatives, complete system of, 119
of affinely equivalent hypersurfaces of
second order, 164
of congruent hypersurfaces of second
order, 191
of projectively equivalent hypersur-
faces of second order, 128
Rigid motion. See Motion

SET, equianharmonie, 56
harmonie, 55
perspective, of points, 150
Similarity transformations, 196
Skew-symmetrie matrix, 103
Space, linear, in Py, 18
projective, 17, 21, 22
improper, 19
spanned by a set of vectors, 25, 26
spanned by two spaces, 27
Spanning space, 25, 26, 27
Sphere, 193
Substitution (s), contragredient, 50
non-singular linear homogeneous, 36, 121
Sum of cross ratios, linear construection
for, 63 ff.
Surface of second order, concept of, 106
families of lines on, 146
normal forms, affine, 174, 177
projective construction of, 150
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Sylvester, Jacobi-, law of inertia, 129, 132
System of eguations, of affine transforma-
tion, 95
of correlation, 99
of motion, 179
of projeetivity, 88
System of representatives, complete. See
Representatives

TANGENT, construetion of, to conic section,
146
to hypersurface of second order, 110 ff.
Tangent hyperplane of hypersurface of
second order, 110, 115
Tangent peneil, 115

InDEX

Tangent plane, of surface of second order,
149
Tangent point of hypersurface of second
class, 115
Tetrahedron, fundamental, 30
Transformation, of coordinates, 35, 50
equations of, 35
prineipal axig, 192
Transformations, contragredient, 50
Triples, linear, 168

UNIT POINT, of projective coordinate sys-
tem, 30

VECTOR, coordinate, 23, 33





