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Key to symbols in this book

●? This symbol means that you may want to discuss a point with your teacher. If 

you are working on your own there are answers in the back of the book. It is 

important, however, that you have a go at answering the questions before looking 

up the answers if you are to understand the mathematics fully.

!  This is a warning sign. It is used where a common mistake, misunderstanding or 

tricky point is being described.

This is the ICT icon. It indicates where you could use a graphic calculator or a 

computer. Graphical calculators and computers are not permitted in any of the 

examinations for the Cambridge International AS and A Level Mathematics 9709 

syllabus, however, so these activities are optional.

This symbol and a dotted line down the right-hand side of the page indicates 

material which is beyond the syllabus but which is included for completeness.

vi



Introduction

This is one of a series of books for the University of Cambridge International 
Examinations syllabus for Cambridge International AS and A Level Mathematics 
9709. There are fifteen chapters in this book; the first nine cover Mechanics 1 
and the remaining six Mechanics 2. The series also includes two books for pure 
mathematics and one for statistics.

These books are based on the highly successful series for the Mathematics in 
Education and Industry (MEI) syllabus in the UK but they have been redesigned 
for Cambridge International students; where appropriate new material has been 
written and the exercises contain many past Cambridge examination questions. 
An overview of the units making up the Cambridge international syllabus is given 
in the diagram on the next page.

Throughout the series the emphasis is on understanding the mathematics 
as well as routine calculations. The various exercises provide plenty of scope 
for practising basic techniques; they also contain many typical examination 
questions.

In the examinations of the Cambridge International AS and A Level Mathematics 
9709 syllabus the value of g is taken to be 10 m s−2 and this convention is used in 
this book; however, in a few questions readers are introduced to a more accurate 
value, typically 9.8 m s−2.

An important feature of this series is the electronic support. There is an 
accompanying disc containing two types of Personal Tutor presentation: 
examination-style questions, in which the solutions are written out, step by step, 
with an accompanying verbal explanation, and test yourself questions; these are 
multiple-choice with explanations of the mistakes that lead to the wrong answers 
as well as full solutions for the correct ones. In addition, extensive online support 
is available via the MEI website, www.mei.org.uk.

The books are written on the assumption that students have covered and 
understood the work in the Cambridge IGCSE® syllabus. There are places where 
the books show how the ideas can be taken further or where fundamental 
underpinning work is explored and such work is marked as ‘Extension’.

The original MEI author team would like to thank Sophie Goldie who has 
carried out the extensive task of presenting their work in a suitable form for 
Cambridge international students and for her original contributions. They 
would also like to thank University of Cambridge International Examinations 
for their detailed advice in preparing the books and for permission to use many 
past examination questions.

Roger Porkess

Series Editor
vii

www.mei.org.uk


viiiviii

The Cambridge International 
AS and A Level Mathematics 
syllabus

Cambridge
IGCSE

Mathematics

AS Level
MathematicsP1 S1

M1

P2

A Level
MathematicsP3

M1

S1
S2

M1

M2

S1



Mechanics 1

M1



M
o

ti
o

n
 i
n

 a
 s

tr
a
ig

h
t 

li
n

e

2

M1 

1

Motion in a straight line

The whole burden of philosophy seems to consist in this – from the 

phenomena of motions to investigate the forces of nature. 

Isaac Newton 

The language of motion 

Throw a small object such as a marble straight up in the air and think about the 

words you could use to describe its motion from the instant just after it leaves 

your hand to the instant just before it hits the floor. Some of your words might 

involve the idea of direction. Other words might be to do with the position of the 

marble, its speed or whether it is slowing down or speeding up. Underlying many 

of these is time. 

Direction 

The marble moves as it does because of the gravitational pull of the earth. We 

understand directional words such as up and down because we experience this 

pull towards the centre of the earth all the time. The vertical direction is along the 

line towards or away from the centre of the earth. 

In mathematics a quantity which has only size, or magnitude, is called a scalar. 

One which has both magnitude and a direction in space is called a vector. 

Distance, position and displacement 

The total distance travelled by the marble at any time does not depend on its 

direction. It is a scalar quantity. 

1



T
h

e
 la

n
g

u
a
g

e
 o

f m
o

tio
n

 

3

M1
1

Position and displacement are two vectors related to distance: they have direction 

as well as magnitude. Here their direction is up or down and you decide which of 

these is positive. When up is taken to be positive, down is negative. 

The position of the marble is then its distance above a fixed origin, for example 

the distance above the place it first left your hand. 

When it reaches the top, the marble might have travelled a distance of 1.25 m. 

Relative to your hand its position is then 1.25 m upwards or +1.25 m. 

At the instant it returns to the same level as your hand it will have travelled a total 

distance of 2.5 m. Its position, however, is zero upwards. 

A position is always referred to a fixed origin but a displacement can be measured 

from any position. When the marble returns to the level of your hand, its 

displacement is zero relative to your hand but −1.25 m relative to the top. 

●? What are the positions of the particles A, B and C in the diagram below? 

 What is the displacement of B 

 (i) relative to A      (ii) relative to C? 

Diagrams and graphs 

In mathematics, it is important to use words precisely, even though they might be 

used more loosely in everyday life. In addition, a picture in the form of a diagram 

or graph can often be used to show the information more clearly. 

positive 
direction

position +1.25m

zero position

1.25 m

top

hand

Figure 1.1 

– 4

CBA

– 3 – 2 – 1 0 1 2 3 4 5 x

Figure 1.2 
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Figure 1.3 is a diagram showing the direction of motion of the marble and 

relevant distances. The direction of motion is indicated by an arrow. Figure 1.4 

is a graph showing the position above the level of your hand against the time. 

Notice that it is not the path of the marble. 

●? The graph in figure 1.4 shows that the position is negative after one second 

(point B). What does this negative position mean? 

Note 

When drawing a graph it is very important to specify your axes carefully. Graphs 

showing motion usually have time along the horizontal axis. Then you have to 

decide where the origin is and which direction is positive on the vertical axis. In this 

graph the origin is at hand level and upwards is positive. The time is measured from 

the instant the marble leaves your hand. 

Notation and units 

As with most mathematics, you will see in this book that certain letters are 

commonly used to denote certain quantities. This makes things easier to follow. 

Here the letters used are: 

●● s, h, x, y and z for position 

●● t for time measured from a starting instant 

●● u and v for velocity 

●● a for acceleration. 

 

1.25 m

A

H B

C

1 m

Figure 1.3 

–  1

position
(metres)

time (s)0.5

A

B

C

1.51
0

1

2

Figure 1.4 



E
x
e
rc

ise
 1

A

5

M1
1

The S.I. (Système International d’Unités) unit for distance is the metre (m), that 

for time is the second (s) and that for mass the kilogram (kg). Other units follow 

from these so speed is measured in metres per second, written m s−1. 

EXERCISE 1A  1  When the origin for the motion of the marble (see figure 1.3) is on the 

ground, what is its position 

(i) when it leaves your hand? 

(ii) at the top? 

2 A boy throws a ball vertically upwards so that its position y m at time t is as 

shown in the graph. 

(i) Write down the position of the ball at times t = 0, 0.4, 0.8, 1.2, 1.6 and 2. 

(ii) Calculate the displacement of the ball relative to its starting position at 

these times. 

(iii) What is the total distance travelled 

 (a) during the first 0.8 s     (b) during the 2 s of the motion? 

3 The position of a particle moving along a straight horizontal groove is given by 

x = 2 + t(t − 3) for 0  t  5 where x is measured in metres and t in seconds. 

(i) What is the position of the particle at times t = 0, 1, 1.5, 2, 3, 4 and 5? 

(ii) Draw a diagram to show the path of the particle, marking its position at 

these times. 

(iii) Find the displacement of the particle relative to its initial position at t = 5. 

(iv) Calculate the total distance travelled during the motion. 

4 For each of the following situations sketch a graph of position against time. 

Show clearly the origin and the positive direction. 

(i) A stone is dropped from a bridge which is 40 m above a river. 

(ii) A parachutist jumps from a helicopter which is hovering at 2000 m. She 

opens her parachute after 10 s of free fall. 

(iii) A bungee jumper on the end of an elastic string jumps from a high bridge.

1 t2

1
0

2
3
4
5
6

position
(m)

time (s)

7
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 5  The diagram is a sketch of 

the position–time graph for a 

fairground ride.

(i) Describe the motion, stating 

in particular what happens at 

O, A, B, C and D.

(ii) What type of ride is this?

Speed and velocity 

Speed is a scalar quantity and does not involve direction. Velocity is the vector 

related to speed; its magnitude is the speed but it also has a direction. When an 

object is moving in the negative direction, its velocity is negative. 

Amy has to post a letter on her way to college. The post box is 500 m east of 

her house and the college is 2.5 km to the west. Amy cycles at a steady speed of 

10 m s−1 and takes 10 s at the post box to find the letter and post it. 

Figure 1.5 shows Amy’s journey using east as the positive direction. The distance 

of 2.5 km has been changed to metres so that the units are consistent. 

After she leaves the post box Amy is travelling west so her velocity is negative. It 

is −10 m s−1. 

2500 m 500 m

10 m s HC P1

Figure 1.5 

      east 
positive 
direction

position

O
timeD

B

C

A
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The distances and times for the three parts of Amy’s journey are: 

Distance Time

Home to 
post box

500 m        = 50 s

At post box 0 m 10 s 

Post box to 
college

3000 m         = 300 s

These can be used to draw the 

position–time graph using home 

as the origin, as in figure 1.6. 

●? Calculate the gradient of the three portions of this graph. What conclusions can 

you draw? 

The velocity is the rate at which the position changes. 

●● Velocity is represented by the gradient of the position–time graph. 

Figure 1.7 is the velocity–time graph. 

Note

By drawing the graphs below each 

other with the same horizontal 

scales, you can see how they  

correspond to each other. 

Distance–time graphs 

Figure 1.8 is the distance–time 

graph of Amy’s journey. It differs 

from the position–time graph 

because it shows how far she 

travels irrespective of her direction. 

There are no negative values. 

The gradient of this graph 

represents Amy’s speed rather than 

her velocity. 

0

1000

500

– 500

– 1000

– 1500

– 2000

– 2500

position
(m)

50 100 150 200 250 300 350 time
(s)

Figure 1.6 

500
10

3000
10

0

10

– 10

velocity
(m s–1)

time
(s)

50 100 150 200 250 300 350

Figure 1.7 

50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

time
(s)

distance
(m)

Figure 1.8 
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●? It has been assumed that Amy starts and stops instantaneously. What would 

more realistic graphs look like? Would it make a lot of difference to the answers if 

you tried to be more realistic? 

Average speed and average velocity 

You can find Amy’s average speed on her way to college by using the definition 

●●

When the distance is in metres and the time in seconds, speed is found by 

dividing metres by seconds and is written as m s−1. So Amy’s average speed is 

Amy’s average velocity is different. Her displacement from start to finish is 

−2500 m so 

●●

  

If Amy had taken the same time to go straight from home to college at a steady 

speed, this steady speed would have been 6.94 m s−1. 

average speed =
total distance travelled

total time takeen

3500

360
9 72 1m

s
ms= −.

The college is in the 
negative direction.

average velocity = displacement

time taken

= −

= − −

2500
360

6 94 1. m s
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Velocity at an instant 

The position–time graph for a 

marble thrown straight up into the 

air at 5 m s−1 is curved because the 

velocity is continually changing. 

The velocity is represented by 

the gradient of the position–time 

graph. When a position–time graph 

is curved like this you can find the 

velocity at an instant of time by 

drawing a tangent as in figure 1.9. 

The velocity at P is approximately 

The velocity–time graph is shown in 

figure 1.10.

●? What is the velocity at H, A, B and C? The speed of the marble increases after it 

reaches the top. What happens to the velocity? 

At the point A, the velocity and gradient of the position–time graph are zero. We 

say the marble is instantaneously at rest. The velocity at H is positive because the 

marble is moving in the positive direction (upwards). The velocity at B and at C 

is negative because the marble is moving in the negative direction (downwards). 

1

position
(m)

A

P

H
0.5

B

C

1
0

1

2

time (s)

Figure 1.9 0 6
0 25

2 4 1.
.

. –= ms

– 6

– 4

– 2
time (s)

velocity
(m s–1)

C
B

A

P

H

0.5 1
0

2

4

6

Figure 1.10 

0.6 m

0.25 s
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EXERCISE 1B  1 Draw a speed–time graph for Amy’s journey on page 6. 

2 The distance–time graph 

shows the relationship between 

distance travelled and time for 

a person who leaves home at 

9.00 am, walks to a bus stop 

and catches a bus into town. 

(i) Describe what is happening 

during the time from A to B. 

(ii)  The section BC is much steeper than OA; what does this tell you about 

the motion? 

(iii) Draw the speed–time graph for the person. 

(iv) What simplifications have been made in drawing these graphs? 

3 For each of the following journeys find 

(a) the initial and final positions

(b) the total displacement

(c) the total distance travelled

(d) the velocity and speed for each part of the journey

(e) the average velocity for the whole journey

(f) the average speed for the whole journey. 

(i)   (ii) 

(iii)   (iv) 

4 A plane flies from London to Toronto, a distance of 5700 km, at an average 

speed of 1280 km h–1. It returns at an average speed of 1200 km h–1. Find the 

average speed for the round trip. 

9.00 9.15 9.30

A B

C

9.45

1

time

distance
(km)

2
3
4
5

1 2 3 4

2

4

position
(m)

4

8
6

time (s)

B

B

C

C
A

A

2
0

1 2 3 4 5 6

5

position
(m)

10

20
15

time (s)5
0

1 2 3 4 5 6

5

20

10
15
20

time (hours)5
0

10
15

10

10 20 30 40 50 60

20

40
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position
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40
60

time (minutes)20
0

1 2 3 4
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1 2 3 4 5 6
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20

10
15
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time (hours)5
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15

10
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20

40
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time (minutes)20
0
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2

4

position
(m)

4

8
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B

B
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C
A

A

2
0
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5
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1 2 3 4 5 6

5

20
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time (hours)5
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Acceleration 

In everyday language, the word ‘accelerate’ is usually used when an object speeds up 
and ‘decelerate’ when it slows down. The idea of deceleration is sometimes used in 
a similar way by mathematicians but in mathematics the word acceleration is used 
whenever there is a change in velocity, whether an object is speeding up, slowing 
down or changing direction. Acceleration is the rate at which the velocity changes. 

Over a period of time 

●●

Acceleration is represented by the gradient of a velocity–time graph. It is a vector 
and can take different signs in a similar way to velocity. This is illustrated by 
Tom’s cycle journey which is shown in figure 1.11. 

Tom turns on to the main road 
at 4 m s−1, accelerates uniformly, 
maintains a constant speed and 
then slows down uniformly to 
stop when he reaches home. 

Between A and B, Tom’s velocity 
increases by (10 −  4) = 6 m s−1 in 
6 seconds, that is by 1 metre per 
second every second. 

This acceleration is written as 1 m s−2 (one metre per second squared) and is the 
gradient of AB. 

From B to C acceleration = 0 m s−2 

From C to D acceleration  

From C to D, Tom is slowing down while still moving in the positive direction 

towards home, so his acceleration, the gradient of the graph, is negative. 

The sign of acceleration 

Think again about the marble thrown up 
into the air with a speed of 5 m s−1.

Figure 1.12 represents the velocity when 
upwards is taken as the positive direction 
and shows that the velocity decreases from 

+ 5 m s−1 to 5 m s−1 in 1 second. 

This means that the gradient, and hence 
the acceleration, is negative. It is −10 m s−2. 
(You might recognise the number 10 as an 
approximation to g. See Chapter 2 page 28.) 

average acceleration = change in velocity

time taken

1050 15 20 25 30

10

15

5

speed
(m s   )1

time (s)
D

B

A

C

Figure 1.11 

There is no change in velocity.

= −
−

= − −( )
( )

.
0 10

30 26
2 5 2ms
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(m s–1)

5

0
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0.5
A

C
B

H

time
(s)

1

Figure 1.12 
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●? A car accelerates away from a set of traffic lights. It accelerates to a maximum 

speed and at that instant starts to slow down to stop at a second set of lights. 

Which of the graphs below could represent 

(i) the distance–time graph

(ii) the velocity–time graph

(iii) the acceleration–time graph of its motion? 

EXERCISE 1C   1 (i) Calculate the acceleration for each part of the following journey. 

(ii) Use your results to sketch an acceleration–time graph. 

2 A particle moves so that its position x metres at time t seconds is x = 2t 3 − 18t.

(i) Calculate the position of the particle at times t = 0, 1, 2, 3 and 4.

(ii) Draw a diagram showing the position of the particle at these times.

(iii) Sketch a graph of the position against time.

(iv) State the times when the particle is at the origin and describe the direction 

in which it is moving at those times.

3 A train takes 45 minutes to complete its 24 kilometre trip. It stops for 1 minute 

at each of 7 stations during the trip.

(i) Calculate the average speed of the train.

(ii) What would be the average speed if the stop at each station was reduced to 

20 seconds?

A B C D E

Figure 1.13 

5 10 15 20
0

5

– 5

time
(s)(e)

(d)
(c)

(b)

(a)

velocity
(m s–1)
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4  When Louise is planning car journeys she reckons that she can cover distances 

along main roads at roughly 100 km h–1 and those in towns at 30 km h–1. 

(i) Find her average speed for each of the following journeys. 

(a) 20 km on main roads and then 10 km in a town

(b) 150 km on main roads and then 2 km in a town

(c) 20 km on main roads and then 20 km in a town

(ii) In what circumstances would her average speed be 65 km h–1? 

5 A lift travels up and down between the ground floor (G) and the roof garden 

(R) of a hotel. It starts from rest, takes 5 s to increase its speed uniformly to 

2 m s−1, maintains this speed for 5 s and then slows down uniformly to rest in 

another 5 s. In the following questions, use upwards as positive.

(i) Sketch a velocity–time graph for the journey from G to R. 

On one occasion the lift stops for 5 s at R before returning to G. 

(ii) Sketch a velocity–time graph for this journey from G to R and back. 

(iii) Calculate the acceleration for each 5 s interval. Take care with the signs. 

(iv) Sketch an acceleration–time graph for this journey. 

6 A film of a dragster doing a 400 m run from a standing start yields the 

following positions at 1 second intervals. 

(i) Draw a displacement–time graph of its motion. 

(ii) Use your graph to help you to sketch 

(a) the velocity–time graph 

(b) the acceleration–time graph. 

Using areas to find distances and displacements 
These graphs model the motion of a stone falling from rest. 

2.5 10 22.5 40 62.5 90 122.5 160 distance (m)

distance
(m)

speed
(m s–1)

time, t
(s)

1 2 3

10

20

30

40

50

1 time, t
(s)

2 3

10

00

20

30

40

50

Figure 1.14                                           Figure 1.15



M
o

ti
o

n
 i
n

 a
 s

tr
a
ig

h
t 

li
n

e

14

M1 

1

●? Calculate the area between the speed–time graph and the time axis from 

(i) t = 0 to 1  (ii) t = 0 to 2  (iii) t = 0 to 3. 

 Compare your answers with the distance that the stone has fallen, shown on the 

distance–time graph, at t = 1, 2 and 3. What conclusions do you reach? 

●● The area between a speed–time graph and the time axis represents the  

distance travelled. 

There is further evidence for this if you consider the units on the graphs. 

Multiplying metres per second by seconds gives metres. A full justification relies 

on the calculus methods you will learn in Chapter 7. 

Finding the area under speed–time graphs 

Many of these graphs consist of straight-line sections. The area is easily found by 

splitting it up into triangles, rectangles or trapezia. 

EXAMPLE 1.1 The graph shows Hinesh’s journey 

from the time he turns on to the 

main road until he arrives home. 

How far does Hinesh cycle? 

SOLUTION 

Split the area under the speed–time 

graph into three regions. 

P trapezium: area =   (4 + 10) × 6 = 42 m 

Q rectangle: area = 10 × 20 = 200 m 

R triangle: area =     × 10 × 4 = 20 m 

  total area = 262 m 

Hinesh cycles 262 m. 

●? What is the meaning of the area between a velocity–time graph and the time axis?

v

t

v

t

v

t

V2V1
T

V
V

TT

Figure 1.16 

Rectangle: area = VT

Trapezium:  

area =   (V1 + V2)T
1

2Triangle: area =   VT
1

2

105 15 20 25 30
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5
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speed
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time
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4
1010
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D
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Figure 1.17 
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The area between a velocity–time graph and the time axis 

EXAMPLE 1.2 Sunil walks east for 6 s at 2 m s−1 then west for 2 s at 1 m s−1. Draw 

(i) a diagram of the journey 

(ii) the speed–time graph 

(iii) the velocity–time graph. 

Interpret the area under each graph. 

SOLUTION 

(i) Sunil’s journey is illustrated below. 

(ii) Speed–time graph 

(iii) Velocity–time graph 

●● The area between a velocity–time graph and the time axis represents the 

change in position, that is the displacement.

When the velocity is negative, the area is below the time axis and represents a 

displacement in the negative direction, west in this case.

west east
5 10 15

2 m s 1 (6 s)

1 m s 1 (2 s)

Figure 1.18 

2 time (s)4 6 8

1 12

2

2

speed
(m s–1)

Figure 1.19 

Total area = 12 + 2 = 14.
This is the total distance 

travelled in metres.

2 time (s)4 6

1

0

12

– 2
– 1

2

8

velocity
(m s–1)

Figure 1.20 

Total area = 12 − 2 = 10.
This is the displacement 
from the start in metres.
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Estimating areas 

Sometimes the velocity–time graph does not consist of straight lines so you have 

to make the best estimate you can by counting the squares underneath it or by 

replacing the curve by a number of straight lines as for the trapezium rule (see 

Pure Mathematics 2, Chapter 5).

●? This speed–time graph shows the motion of a dog over a 60 s period.

 Estimate how far the dog travelled during this time.

EXAMPLE 1.3 On the London underground, Oxford Circus and Piccadilly Circus are 0.8 km 

apart. A train accelerates uniformly to a maximum speed when leaving Oxford 

Circus and maintains this speed for 90 s before decelerating uniformly to stop at 

Piccadilly Circus. The whole journey takes 2 minutes. Find the maximum speed. 

SOLUTION 

The sketch of the speed–time graph 

of the journey shows the given  

information, with suitable units.  

The maximum speed is v m s−1. 

The area is   (120 + 90) × v = 800

 v = 

 = 7.619 

The maximum speed of the train is 7.6 m s−1 (to 2 s.f.).

●? Does it matter how long the train takes to speed up and slow down? 

time (s)10 20 30 40 50 60

5

0

10

15

20

speed
(m s–1)

Figure 1.21 
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0

Figure 1.22 
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EXERCISE 1D 1    The graphs show the speeds of two cars travelling along a street. 

For each car find 

(i) the acceleration for each part of its motion

(ii) the total distance it travels in the given time 

(iii) its average speed. 

2 The graph shows the speed of a lorry when it enters a very busy road. 

(i) Describe the journey over this time. 

(ii) Use a ruler to make a tangent to the graph and hence estimate the 

acceleration at the beginning and end of the period. 

(iii) Estimate the distance travelled and the average speed. 

3 A train leaves a station where it has been at rest and picks up speed at a 

constant rate for 60 s. It then remains at a constant speed of 17 m s−1 for 

60 s before it begins to slow down uniformly as it approaches a set of signals. 

After 45 s it is travelling at 10 m s −1 and the signal changes. The train again 

increases speed uniformly for 75 s until it reaches a speed of 20 m s−1. A second 

set of signals then orders the train to stop, which it does after slowing down 

uniformly for 30 s. 

(i) Draw a speed–time graph for the train. 

(ii) Use your graph to find the distance that it has travelled from the station.

5 10 15

5

0

10

15

20

speed
(m s–1)

time (s) 10 20 30

5

0
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15

20
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5 10 15

5

0

10

15

20

speed
(m s–1)

time (s) 10 20 30

5

0

10

15

20

speed
(m s–1)

time (s)

car A
car B
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4  When a parachutist jumps from a helicopter hovering above an airfield her 
speed increases at a constant rate to 28 m s−1 in the first 3 s of her fall. It then 
decreases uniformly to 8 m s−1 in a further 6 s, remaining constant until she 
reaches the ground. 

(i) Sketch a speed–time graph for the parachutist.

(ii) Find the height of the plane when the parachutist jumps out if the 
complete jump takes 1 minute. 

5  A car is moving at 20 m s−1 when it begins to increase speed. Every 10 s it gains 
5 m s−1 until it reaches its maximum speed of 50 m s−1 which it retains. 

(i) Draw the speed–time graph of the car.

(ii) When does the car reach its maximum speed of 50 m s−1? 

(iii) Find the distance travelled by the car after 150 s. 

(iv) Write down expressions for the speed of the car t seconds after it begins to 
speed up. 

6  A train takes 10 minutes to travel between two stations. The train accelerates 
at a rate of 0.5 m s−2 for 30 s. It then travels at a constant speed and is finally 
brought to rest in 15 s with a constant deceleration. 

(i) Sketch a velocity–time graph for the journey. 

(ii) Find the steady speed, the rate of deceleration and the distance between 
the two stations. 

7  A train was scheduled to travel at 50 m s−1 for 15 minutes on part of its 
journey. The velocity–time graph illustrates the actual progress of the train 
which was forced to stop because of signals. 

(i) Without carrying out any calculations, describe what was happening to the 

train in each of the stages BC, CD and DE. 

(ii) Find the deceleration of the train while it was slowing down and the 

distance travelled during this stage. 

(iii) Find the acceleration of the train when it starts off again and the distance 

travelled during this stage. 

(iv) Calculate by how long the stop will have delayed the train. 

(v) Sketch the distance–time graph for the journey between A and F, marking 

the points A, B, C, D, E and F.            [MEI]

100 200 300 400 500

A B E F

C D
600 700 800 900

10

0

20

30

40

50
v (m s–1)
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8  A car is travelling at 36 km h−1 when the driver has to perform an emergency 

stop. During the time the driver takes to appreciate the situation and apply 

the brakes the car has travelled 7 m (‘thinking distance’). It then pulls up 

with constant deceleration in a further 8 m (‘braking distance’) giving a total 

stopping distance of 15 m. 

(i) Find the initial speed of the car in metres per second and the time that 

the driver takes to react. 

(ii) Sketch the velocity–time graph for the car.

(iii) Calculate the deceleration once the car starts braking. 

(iv) What is the stopping distance for a car travelling at 60 km h−1 if the 

reaction time and the deceleration are the same as before? 

9 The diagram shows the displacement–time graph for a car’s journey. The 

graph consists of two curved parts AB and CD, and a straight line BC. The 

line BC is a tangent to the curve AB at B and a tangent to the curve CD at C. 

The gradient of the curves at t = 0 and t = 600 is zero, and the acceleration of 

the car is constant for 0 < t < 80 and for 560 < t < 600. The displacement of 

the car is 400 m when t = 80.

(i) Sketch the velocity–time graph for the journey.

(ii) Find the velocity at t = 80.

(iii) Find the total distance for the journey.

(iv) Find the acceleration of the car for 0 < t < 80.

[Cambridge AS & A Level Mathematics 9709, Paper 4 Q5 November 2005]

s (m)

t (s)560 60080

400
A

B

C D
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10   A train travels from A to B, a distance of 20 000 m, taking 1000 s. The 

journey has three stages. In the first stage the train starts from rest at A and 

accelerates uniformly until its speed is V m s−1. In the second stage the train 

travels at constant speed V m s–1 for 600 s. During the third stage of the 

journey the train decelerates uniformly, coming to rest at B.

(i) Sketch the velocity–time graph for the train’s journey.

(ii) Find the value of V.

(iii) Given that the acceleration of the train during the first stage of the 

journey is 0.15 m s−2, find the distance travelled by the train during the 

third stage of the journey.

[Cambridge AS & A Level Mathematics 9709, Paper 4 Q6 November 2008]

11 The diagram shows the velocity–time graph for the motion of a machine’s 

cutting tool. The graph consists of five straight line segments. The tool moves 

forward for 8 s while cutting and then takes 3 s to return to its starting position.

Find

(i) the acceleration of the tool during the first 2 s of the motion,

(ii) the distance the tool moves forward while cutting,

(iii) the greatest speed of the tool during the return to its starting position.

[Cambridge AS & A Level Mathematics 9709, Paper 41 Q2 June 2010]

INVESTIGATION

Train journey 

If you look out of a train window in many countries you will see distance markers 

beside the track (in the UK they are every quarter of a mile). Take a train journey 

and record the time as you go past each marker. Use your figures to draw  

distance–time, speed–time and acceleration–time graphs. What can you conclude 

about the greatest acceleration, deceleration and speed of the train? 

v (m s–1)

t (s)2 6

0.18

O
8 11
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KEY POINTS

1 Vectors (with magnitude and direction) Scalars (magnitude only)

Displacement Distance
Position – displacement from a fixed origin
Velocity – rate of change of position Speed – magnitude of velocity
Acceleration – rate of change of velocity
 Time

●● Vertical is towards the centre of the earth; horizontal is perpendicular to 

vertical.

2 Diagrams 
●● Motion along a line can be illustrated vertically or horizontally (as shown). 

●●

●●

●●

3 Graphs 

●● Position–time 

●● Distance–time 

Positive direction

acceleration speed
increases

velocityvelocity zero position

position position 

position velocity acceleration

acceleration

velocity speed
decreases

speed
decreases

speed
increases

velocity

Average speed
total distance travelled

total time
=

taken

Average velocity
displacement

time taken
=

Average acceleration = changein velocity
time takenn

●● Velocity–time 
position

time

gradient  velocity
area  nothing useful

0

velocity

time

gradient  acceleration
area  displacement

0

position

time

gradient  velocity
area  nothing useful

0

velocity

time

gradient  acceleration
area  displacement

0

●● Speed–time 

distance

time

gradient  speed
area  nothing useful

0

speed

time

gradient  magnitude of
         acceleration

area  distance

0

distance

time

gradient  speed
area  nothing useful

0

speed

time

gradient  magnitude of
         acceleration

area  distance

0

initial position
initial position

negative 
displacement
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The constant acceleration 
formulae

The poetry of motion! The real way to travel! The only way to travel! 

Here today – in next week tomorrow! Villages skipped, towns and cities 

jumped – always somebody else’s horizon! 0 bliss! 0 poop-poop! 0 my! 

Kenneth Grahame (The Wind in the Willows) 

Setting up a mathematical model 

●? Figure 2.1 shows a map of railway lines near Tokyo in the east of Japan. Which of 

the following statements can you be sure of just by looking at this map? 

(i) Aldhabara is on the line from Tokyo to Ueno. 

(ii) The line from Aldhabara to Kinshico runs due East. 

(iii)  The line through Tokyo, Shinagawa, Shinjuku and Ueno goes round a 

perfect circle. 

(iv) Shinjuku is a railway junction. 

This is a diagrammatic model of the railway system which gives essential though 

by no means all the information you need for planning train journeys. You can 

be sure about the places a line passes through but distances and directions are 

only approximate and if you compare this map with an ordinary map you will 

see that statements (ii) and (iii) are false.  

Figure 2.1 

2
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Making simplifying assumptions 

When setting up a model, you first need to decide what is essential. For example, 
what would you take into account and what would you ignore when considering 
the motion of a car travelling from San Francisco to Los Angeles? 

You will need to know the distance and the time taken for parts of the journey, 
but you might decide to ignore the dimensions of the car and the motion of the 
wheels. You would then be using the idea of a particle to model the car. A particle 
has no dimensions. 

You might also decide to ignore the bends in the road and its width, and so 
treat it as a straight line with only one dimension. A length along the line would 
represent a length along the road in the same way as a piece of thread following a 
road on a map might be straightened out to measure its length. 

You might decide to split the journey up into parts and assume that the speed is 
constant over these parts. 

The process of making decisions like these is called making simplifying assumptions 
and is the first stage of setting up a mathematical model of the situation. 

Defining the variables and setting up the equations 

The next step in setting up a mathematical model is to define the variables with 
suitable units. These will depend on the problem you are trying to solve. Suppose 
you want to know where you ought to be at certain times in order to maintain 
a good average speed between San Francisco and Los Angeles. You might define 
your variables as follows: 

●● the total time since the car left San Francisco is t hours 

●● the distance from San Francisco at time t is x km 

●● the average speed up to time t is v km h–1. 

Then, at Kettleman City t = t1 and x = x1; etc. 

You can then set up equations and go through the mathematics required to solve 
the problem. Remember to check that your answer is sensible. If it isn’t, you 
might have made a mistake in your arithmetic or your simplifying assumptions 
might need reconsideration. 

The theories of mechanics that you will learn about in this course, and indeed 
any other studies in which mathematics is applied, are based on mathematical 
models of the real world. When necessary, these models can become more 
complex as your knowledge increases. 

●? The simplest form of the San Francisco to Los Angeles model assumes that the 

speed remains constant over sections of the journey. Is this reasonable? 
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For a much shorter journey, you might need to take into account changes in the 

speed of the car. This chapter develops the mathematics required when an object 

can be modelled as a particle moving in a straight line with constant acceleration. 

In most real situations this is only the case for part of the motion – you wouldn’t 

expect a car to continue accelerating at the same rate for very long – but it is a 

very useful model to use as a first approximation over a short time. 

The constant acceleration formulae 

The velocity–time graph shows part of 

the motion of a car on a fairground 

ride as it picks up speed. The graph is a 

straight line so the velocity increases at 

a constant rate and the car has a 

constant acceleration which is equal to 

the gradient of the graph. 

The velocity increases from 4 m s –1 to 

24 m s –1 in 10 s so its acceleration is  

24 4
10

2 2− = ms– .

In general, when the initial velocity is u m s–1 and the velocity a time t s later is 

v m s–1, as in figure 2.3 (on the next page), the increase in velocity is (v − u) m s–1 

and the constant acceleration a m s–2 is given by 

v u
t

a
− =

1
0 time (s)

2 3 4 5 6 7 8 9 10

4

8

12

16

velocity
(m s–1)

20

24

Figure 2.2 
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So      v − u = at 

          v = u + at.  1

The area under the graph represents the 

distance travelled. For the fairground car,  

that is represented by a trapezium of area 

( )
.

4 24
2

10 140
+ × = m

In the general situation, the area represents  

the displacement s metres and is 

s
u v

t= + ×( )
2

 2

●? The two equations, 1  and 2 , can be used as formulae for solving problems 

when the acceleration is constant. Check that they work for the fairground ride. 

There are other useful formulae as well. For example, you might want to find the 

displacement, s, without involving v in your calculations. This can be done by 

looking at the area under the velocity–time graph in a different way, using the 

rectangle R and the triangle T (see figure 2.5). 

  AC = v and BC = u 

so  AB = v − u 

  = at    from equation  1  

          total area = area of R + area of T 

so   s = ut  + 
1
2  × t  × at

Giving  s = ut  + 
1
2 at 2      3

time
O

u t

v

v  u

velocity

Figure 2.3 

time
O

u

t

v

v

velocity

Figure 2.4 

time
O

u

t

t

v

u

v  u  at

velocity

R

T

B

C

A

Figure 2.5 
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To find a formula which does not involve t, you need to eliminate t. One way to 

do this is first to rewrite equations 1  and 2  as 

v − u = at   and   v + u = 
2s
t

and then multiplying them gives 

(v − u)(v + u) = at  × 
2s
t

 v 2 − u 2 = 2as

 v 2 = u 2 + 2as          4

You might have seen the equations 1  to 4  before. They are sometimes called 

the suvat equations or formulae and they can be used whenever an object can be 

assumed to be moving with constant acceleration. 

!  When solving problems it is important to remember the requirement for 

constant acceleration and also to remember to specify positive and negative 

directions clearly. 

EXAMPLE 2.1 A bus leaving a bus stop accelerates at 0.8 m s−2 for 5 s and then travels at a 

constant speed for 2 minutes before slowing down uniformly at 0.4 m s−2 to come 

to rest at the next bus stop. Calculate 

(i) the constant speed 

(ii) the distance travelled while the bus is accelerating 

(iii) the total distance travelled. 

SOLUTION

(i) The diagram shows the information for the first part of the motion. 

A

0 m s–1

acceleration

velocity

time

distance

0.8 m s–2

B5 s

s1 m

v m s–1

Figure 2.6
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Let the constant speed be v m s−1. 

 u = 0, a = 0.8, t = 5, so use v = u + at 

 v = 0 + 0.8 × 5

    = 4 

The constant speed is 4 m s−1. 

(ii) Let the distance travelled be s1 m.

 u = 0, a = 0.8, t = 5, so use s = ut + 
1
2
at2

 s1 = 0 + 
1
2
 × 0.8 × 52

  = 10

 The bus accelerates over 10 m.

(iii)  The diagram gives all the information for the rest of the journey.

  Between B and C the velocity is constant so the distance travelled is  

4 × 120 = 480 m. 

 Let the distance between C and D be s3 m. 

u = 4, a = −0.4, v = 0, so use v 2 = u2 + 2as

  0 = 16 + 2(−0.4)s3 

  0.8s3 = 16 

  s3 = 20 

 Distance taken to slow down =  20 m 

  The total distance travelled is  

(10 + 480 + 20) m = 510 m. 

Want v 
know u = 0, t = 5, a = 0.8 
v2 = u2 + 2as   
v = u + at         

Use the suffix ‘1’ because there are 
three distances to be found in this 
question.

B

acceleration

velocity

time
distance

0 m s–2 –0.4 m s 

–2

C

4 m s–1 4 m s–1

D120 s
s2 m

t s
s3 m

0 m s–1

Figure 2.7 

velocity decreases so 
acceleration is negative

Want s
know u = 4, a = –0.4, v = 0
v = u + at      

s = ut + 1
2
at2    

s = 1
2
(u + v)t    

v2 = u2 + 2as    

Want s 
know u = 0, t = 5, a = 0.8 
s = 1

2
(u + v)t    

s = ut + 1
2
at2       
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Units in the suvat formulae

Constant acceleration usually takes place over short periods of time so it is best 

to use m s−2 for this. When you don’t need to use a value for the acceleration 

you can, if you wish, use the suvat formulae with other units provided they are 

consistent. This is shown in the next example.

EXAMPLE 2.2 When leaving a town, a car accelerates from 30 km h–1 to 60 km h–1 in 5 s. 

Assuming the acceleration is constant, find the distance travelled in this time. 

SOLUTION 

Let the distance travelled be s km. You want s and are given u = 30, v = 60 and 

t = 5 ÷ 3600 so you need a formula involving u, v, t and s.

s
u v

t= + ×( )
2

 

s = + ×( )30 60
2

5
3600

  = 1
16

The distance travelled is 1
16

 km or 62.5m.  

!  In Examples 2.1 and 2.2, the bus and the car are always travelling in the positive 

direction so it is safe to use s for distance. Remember that s is not the same as the 

distance travelled if the direction changes during the motion. 

The acceleration due to gravity 

When a model ignoring air resistance is used, all objects falling freely under 

gravity fall with the same constant acceleration, g m s−2. This varies over the surface 

of the earth. In this book it is assumed that all the situations occur in a place where 

it is 10 m s−2. The value 9.8 m s−2 is also used. Most answers are given correct to 

three significant figures so that you can check your working. 

30 km h–1
5 seconds 60 km h–1

s km

Figure 2.8 

To make the units compatible, 
change 5 s to hours.
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EXAMPLE 2.3 A coin is dropped from rest at the top of a building of height 12 m and travels in 

a straight line with constant acceleration 10 m s−2. 

Find the time it takes to reach the ground and the speed of impact. 

SOLUTION 

Suppose the time taken to reach the  

ground is t seconds. Using S.I. units, 

u = 0, a = 10 and s = 12 when the coin 

hits the ground, so you need to use a 

formula involving u, a, s and t. 

  s = ut + 1
2
at 2

12 = 0 + 1
2
 × 10 × t 2

 t 2 = 2.4 

   t = 1.55 (to 3 s.f.)

To find the velocity, v, a formula involving s, u, a and v is required. 

v 2 = u 2 + 2as 

v 2 = 0 + 2 × 10 × 12

v 2 = 240 

  v = 15.5 (to 3 s.f.)

The coin takes 1.55 s to hit the ground and has speed 15.5 m s−1 on impact. 

Summary 

The formulae for motion with constant acceleration are 

1   v = u + at          2    s
u v

t= + ×( )
2

3   s = ut + 
1
2at 2       4    v 2 = u 2 + 2as 

●? Derive formula 3  algebraically by substituting for v from formula 1   into

formula 2 .

If you look at these formulae you will see that each omits one variable. But there 

are five variables and only four formulae; there isn’t one without u. A formula 

omitting u is 

s = vt − 
1
2at2  5  

●? How can you derive this by referring to a graph or using substitution? 

s m 12 m

0 m s–1 O

Figure 2.9 

down is positive  
so a = +10
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!  When using these formulae make sure that the units you use are consistent. For 

example, when the time is t seconds and the distance s metres, any speed involved 

is in m s–1.

EXERCISE 2A 1  (i) Find v when u = 10, a = 6 and t = 2. 

(ii) Find s when v = 20, u = 4 and t = 10. 

(iii) Find s when v = 10, a = 2 and t = 10. 

(iv) Find a when v = 2, u = 12, s = 7. 

2 Decide which equation to use in each of these situations. 

(i) Given u, s, a; find v. (ii) Given a, u, t ; find v. 

(iii) Given u, a, t ; find s. (iv) Given u, v, s; find t. 

(v) Given u, s, v ; find a. (vi) Given u, s, t ; find a. 

(vii) Given u, a, v ; find s. (viii) Given a, s, t ; find v. 

3 Assuming no air resistance, a ball has an acceleration of 10 m s−2 when it is 

dropped from a window (so its initial speed, when t = 0, is zero). Calculate 

(i) its speed after 1 s and after 10 s 

(ii) how far it has fallen after 1 s and after 10 s 

(iii) how long it takes to fall 20 m. 

Which of these answers are likely to need adjusting to take account of air 

resistance? Would you expect your answer to be an over- or underestimate? 

4 A car starting from rest at traffic lights reaches a speed of 90 km h−1 in 12 s. 

Find the acceleration of the car (in m s−2) and the distance travelled. Write 

down any assumptions that you have made. 

5 A top sprinter accelerates from rest to 9 m s−1 in 2 s. Calculate his acceleration, 

assumed constant, during this period and the distance travelled. 

6 A van skids to a halt from an initial speed of 24 m s−1 covering a distance of 

36 m. Find the acceleration of the van (assumed constant) and the time it takes 

to stop. 

7 An object moves along a straight line with acceleration –8 m s−2. It starts its 

motion at the origin with velocity 16 m s−1. 

(i) Write down equations for its position and velocity at time t s. 

(ii) Find the smallest non-zero time when 

(a) the velocity is zero 

(b) the object is at the origin. 

(iii) Sketch the position–time, velocity–time and speed–time graphs for 

0  t  4. 
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Further examples

The next two examples illustrate ways of dealing with more complex problems. 

In Example 2.4, none of the possible formulae has only one unknown and there 

are also two situations, so simultaneous equations are used. 

EXAMPLE 2.4 James practises using the stopwatch facility on his new watch by measuring the 

time between lamp posts on a car journey. As the car speeds up, two consecutive 

times are 1.2 s and 1 s. Later he finds out that the lamp posts are 30 m apart. 

(i)  Calculate the acceleration of the car (assumed constant) and its speed at the 

first lamp post. 

(ii)  Assuming the same acceleration, find the time the car took to travel the 30 m 

before the first lamp post. 

SOLUTION 

(i)  The diagram shows all the information assuming the acceleration is a m s–2 

and the velocity at A is u m s–2. 

 For AB, s = 30 and t = 1.2. You are using u and you want a so you use 

    s = ut + 
1
2at  2

 30 = 1.2u + 
1
2a × 1.22 

 30 = 1.2u + 0.72a 1

  To use the same equation for the part BC you would need the velocity at B  

and this brings in another unknown. It is much better to go back to the 

beginning and consider the whole of AC with s = 60 and t = 2.2. Then again 

        using s = ut + 
1
2 at 2 

 60 = 2.2u + 
1
2a × 2.22 

 60 = 2.2u + 2.42a 2

  These two simultaneous equations in two unknowns can be solved more 

easily if they are simplified. First make the coefficients of u integers. 

	 1   × 10 ÷ 12   25 = u + 0.6a 3 

	 2   × 5 300 = 11u + 12.1a 4 

       then 3   × 11 275 = 11u + 6.6a 5 

A B

1.2 s
30 m

1 s
30 m

C

u m s–1
a m s–2

Figure 2.10 
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 Subtracting gives 

25 = 0 + 5.5a 

   a = 4.545 

 Now substitute 4.545 for a in 3  to find 

u = 25 − 0.6 × 4.545 = 22.273 

  The acceleration of the car is 4.55 m s−2 and the initial speed is 22.3 m s–1 

(correct to 3 s.f.). 

(ii) 

  For this part, you know that s = 30, v = 22.3 and a = 4.55 and you want t so 

you use the fifth formula. 

                                   s = vt − 1
2
at 2

                                30 = 22.3 × t − 1
2
 × 4.55 × t 2

 ⇒ 2.275t  2 − 22.3t + 30 = 0 

 Solving this using the quadratic formula gives t = 1.61 and t = 8.19. 

 The most sensible answer to this particular problem is 1.61 s. 

●? Calculate u when t = 8.19, v = 22.3 and a = 4.55. Is t = 8.19 a possible answer? 

Using a non-zero initial displacement 

What, in the constant acceleration formulae, are v and s when t = 0? 

Putting t = 0 in the suvat formulae gives the initial values, u for the velocity and 
s = 0 for the position. 

Sometimes, however, it is convenient to use an origin which gives a non-zero 
value for s when t = 0. For example, when you model the motion of an eraser 
thrown vertically upwards you might decide to find its height above the ground 
rather than above the point from which it was thrown. 

What is the effect on the various suvat formulae if the initial position is s0 rather 
than zero?

Z A

30 m

22.3 m s–1

4.55 m s–2

Figure 2.11 
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If the height of the eraser above the ground is s at time t and s0 when t =  0, the 

displacement over time t is s − s0. You then need to replace formula 3   with 

s − s0 = ut + 1
2
at  2

The next example avoids this in the first part but it is very useful in part (ii). 

EXAMPLE 2.5 A juggler throws a ball up in the air with initial speed 5 m s−1 from a height of 1.2 m. 

It has a constant acceleration of 10 m s−1 vertically downwards due to gravity. 

(i)  Find the maximum height of the ball above the ground and the time it takes 

to reach it. 

At the instant that the ball reaches its maximum height, the juggler throws up 

another ball with the same speed and from the same height. 

(ii) Where and when will the balls pass each other? 

SOLUTION

(i)  In this example it is very important 

to draw a diagram and to be clear 

about the position of the origin. 

When O is 1.2 m above the ground 

and s is the height in metres above 

O after t s, the diagram looks like 

figure 2.12. 

  At the point of maximum height, 

let s = H and t = t 1.

  The ball stops instantaneously before falling so at the top v =  0. 

 A formula involving u, v, a and s is required. 

v  2 = u2 + 2as 

 0 = 52 + 2 × (−10) × H

 H = 1.25 

 The maximum height of the ball above the ground is 1.25 + 1.2 = 2.45 m. 

 To find t1, given v =  0, a = −10 and u = +5 requires a formula in v, u, a and t. 

v = u + at 

0 = 5 + (−10)t1

t1 = 0.5 

 The ball takes half a second to reach its maximum height.

O
1.2 m

s m

H m

0 m s–1

5 m s–1

Figure 2.12 

up is positive 
so a = −10

Use the suffix because there are two 
times to be found in this question.

The acceleration given is 
constant, a = −10; u = +5;

v = 0 and s = H.
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(ii)  Now consider the motion from the instant the first ball reaches the top of its 

path and the second is thrown up. 

  Suppose that the balls have displacements above the origin of x1 m and x2 m, 

as shown in the diagram, at a general time t s after the second ball is thrown 

up. The initial position of the second ball is zero, but the initial position of 

the first ball is +1.25 m. 

  For each ball you know u and a. You want to involve t and s so you use 

 s − s0 = ut + 
1
2at   2

 i.e.       s = s0 + ut + 
1
2at   2

 For the first ball:

x1 = 1.25 + 0 × t + 
1
2 × (−10) × t  2

x1 = 1.25 − 5t  2    1 

 For the second ball: 

x2 = 0 + 5 × t + 
1
2 × (−10) × t   2

x2 = 5t − 5t   2         2 

  Suppose the balls pass after a time t s. This is when they are at the same 

height, so equate x1 and x2 from equations 1  and 2 . 

1.25 − 5t   2 = 5t − 5t   2

 1.25 = 5t 

       t = 0.25 

 Then substituting t = 0.25 in 1  and 2  gives 

x1 = 1.25 − 5 × 0.252 = 0.9375 

 and 

x2 = 5 × 0.25 − 5 × 0.252 = 0.9375 

  The balls pass after 0.25 seconds at a height of 1.2 m + 0.94 m = 2.14 m above 

the ground (correct to the nearest centimetre). 

O
1.2 m

first ball

0 m s–1

5 m s–1

x1 m

O
1.2 m

second ball

x2 m

Figure 2.13 

initial position
x1 = 1.25 initial velocity

x1 = 1.25 − 5t  2

x2 = 5t − 5t 2

up is positive so a = −10

initial velocity

This makes x1 = 1.25 
when t = 0.

x1 decreases as t increases.

These are the same, 
as expected.
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●? Try solving part (ii) of this example by supposing that the first ball falls x m and 

the second rises (1.25 − x)m in t seconds. 

Note

The balls pass after half the time to reach the top, but not half-way up. 

●? Why don’t they travel half the distance in half the time? 

EXERCISE 2B Use g = 10 m s−2 in this exercise. 

1 A car is travelling along a straight road. It accelerates uniformly from rest to a 

speed of 15 m s−1 and maintains this speed for 10 minutes. It then decelerates 

uniformly to rest. If the acceleration and deceleration are 5 m s−2 and 8 m s−2 

respectively, find the total journey time and the total distance travelled during 

the journey. 

2 A skier pushes off at the top of a slope with an initial speed of 2 m s−1. She gains 

speed at a constant rate throughout her run. After 10 s she is moving at 6 m s−1. 

(i) Find an expression for her speed t seconds after she pushes off. 

(ii) Find an expression for the distance she has travelled at time t seconds. 

(iii) The length of the ski slope is 400 m. What is her speed at the bottom of 

the slope? 

3 Towards the end of a half-marathon Sabina is 100 m from the finish line and 

is running at a constant speed of 5 m s−1. Daniel, who is 140 m from the finish 

and is running at 4 m s−1, decides to accelerate to try to beat Sabina. If he 

accelerates uniformly at 0.25 m s−2 does he succeed? 

4 Rupal throws a ball upwards at 8 m s−1 from a window which is 4 m above 

ground level. 

(i) Write down an equation for the height h m of the ball above the ground 

after t s (while it is still in the air). 

(ii) Use your answer to part (i) to find the time the ball hits the ground. 

(iii) How fast is the ball moving just before it hits the ground? 

(iv) In what way would you expect your answers to parts (ii) and (iii) to change 

if you were able to take air resistance into account? 
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5 Nathan hits a tennis ball straight up into the air from a height of 1.25 m above the 

ground. The ball hits the ground after 2.5 seconds. Find 

(i) the speed Nathan hits the ball 

(ii) the greatest height above the ground reached by the ball 

(iii) the speed the ball hits the ground 

(iv) how high the ball bounces if it loses 0.2 of its speed on hitting the ground. 

(v) Is your answer to part (i) likely to be an over- or underestimate given that 

you have ignored air resistance? 

6 A ball is dropped from a building of height 30 m and at the same instant a 

stone is thrown vertically upwards from the ground so that it hits the ball. 

In modelling the motion of the ball and stone it is assumed that each object 

moves in a straight line with a constant downward acceleration of magnitude 

10 m s−2. The stone is thrown with initial speed of 15 m s−1 and is hs metres 

above the ground t seconds later. 

(i) Draw a diagram of the ball and stone before they collide, marking their 

positions. 

(ii) Write down an expression for hs at time t. 

(iii) Write down an expression for the height hb of the ball at time t. 

(iv) When do the ball and stone collide? 

(v) How high above the ground do the ball and stone collide? 

7 When Kim rows her boat, the two oars are both in the water for 3 s and then 

both out of the water for 2 s. This 5 s cycle is then repeated. When the oars are 

in the water the boat accelerates at a constant 1.8 m s−2 and when they are not 

in the water it decelerates at a constant 2.2 m s−2. 

(i) Find the change in speed that takes place in each 3 s period of acceleration. 

(ii) Find the change in speed that takes place in each 2 s period of deceleration. 

(iii) Calculate the change in the boat’s speed for each 5 s cycle. 

(iv) A race takes Kim 45 s to complete. If she starts from rest what is her speed 

as she crosses the finishing line? 

(v) Discuss whether this is a realistic speed for a rowing boat. 

8 A ball is dropped from a tall building and falls with acceleration of magnitude 

10 m s−2. The distance between floors in the block is constant. The ball takes 

0.5 s to fall from the 14th to the 13th floor and 0.3 s to fall from the 13th floor 

to the 12th. What is the distance between floors? 

9 Two clay pigeons are launched vertically upwards from exactly the same spot 

at 1 s intervals. Each clay pigeon has initial speed 30 m s−1 and acceleration 

10 m s−2 downwards. How high above the ground do they collide? 
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10 A train accelerates along a straight, horizontal section of track. The driver 
notes that he reaches a bridge 120 m from the station in 8 s and that he 
crosses the bridge, which is 31.5 m long, in a further 2 s. 

The motion of the train is modelled by assuming constant acceleration. 
Take the speed of the train when leaving the station to be u m s−1 and the 
acceleration to have the value a m s−2. 

(i) By considering the part of the journey from the station to the bridge, 
show that u + 4a = 15. 

(ii) Find a second equation involving u and a. 

(iii) Solve the two equations for u and a to show that a is 0.15 and find the 
value of u. 

(iv) If the driver also notes that he travels 167 m in the 10 s after he crosses 
the bridge, have you any evidence to reject the modelling assumption 
that the acceleration is constant? 

[MEI]

11 The diagram shows the velocity–time graph for a lift moving between floors 
in a building. The graph consists of straight line segments. In the first stage 

the lift travels downwards from the ground floor for 5 s, coming to rest at the 

basement after travelling 10 m.

(i) Find the greatest speed reached during this stage.

v (m s–1)

t (s)5 15

V

O
18 24.5

station

120 m
31.5 m

end of station

railway track

bridge
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The second stage consists of a 10 s wait at the basement. In the third stage, 

the lift travels upwards until it comes to rest at a floor 34.5 m above the 

basement, arriving 24.5 s after the start of the first stage. The lift accelerates at 

2 m s−2 for the first 3 s of the third stage, reaching a speed of V m s–1.

Find

(ii) the value of V,

(iii) the time during the third stage for which the lift is moving at constant 

speed,

(iv) the deceleration of the lift in the final part of the third stage.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q6 June 2005]

12 A particle is projected vertically upwards from a point O with initial speed 

12.5 m s−1. At the same instant another particle is released from rest at a point 

10 m vertically above O. Find the height above O at which the particles meet.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q2 November 2007]

INVESTIGATION

The situation described below involves mathematical modelling. You will need to 

take these steps to help you. 

(i)  Make a list of the assumptions you need to make to simplify the situation to 

the point where you can apply mathematics to it. 

(ii)  Make a list of the quantities involved. 

(iii)  Find out any information you require such as safe stopping distances or a 

value for the acceleration and deceleration of a car on a housing estate. 

(iv)  Assign suitable letters for your unknown quantities. (Don’t vary too many 

things at once.) 

(v)  Set up your equations and solve them. You might find it useful to work out 

several values and draw a suitable graph. 

(vi)  Decide whether your results make sense, preferably by checking them against 

some real data. 

(vii)  If you think your results need adjusting, decide whether any of your initial 

assumptions should be changed and, if so, in what way. 

Speed bumps 

The residents of a housing estate are worried about the danger from cars being 

driven at high speed. They request that speed bumps be installed. 

How far apart should the bumps be placed to ensure that drivers do not exceed 

a speed of 40 km h–1? Some of the things to consider are the maximum sensible 

velocity over each bump and the time taken to speed up and slow down. 
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KEY POINTS

1 The suvat formulae

●● The formulae for motion with constant acceleration are

1   v = u + at

2   s = 
( )u v

t
+

×
2

3   s = ut + 
1
2at 2

4   v 2 = u2 + 2as

5   s = vt − 
1
2at 2

●● a is the constant acceleration; s is the displacement from the starting 

position at time t  ; v is the velocity at time t  ; u is the velocity when t = 0.

If s = s0 when t = 0, replace s in each formula with (s − s0).

2 Vertical motion under gravity

●● The acceleration due to gravity (g m s−2) is vertically downwards and is 

often taken to be 10 m s–2. The value 9.8 m s–2 is also used.

●● Always draw a diagram and decide in advance where your origin is and 

which way is positive.

●● Make sure that your units are compatible.

3 Using a mathematical model

●● Make simplifying assumptions by deciding what is most relevant. 

For example:  a car is a particle with no dimensions 

a road is a straight line with one dimension 

acceleration is constant.

●● Define variables and set up equations.

●● Solve the equations.

●● Check that the answer is sensible. If not, think again.
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Forces and Newton’s laws 
of motion 

Nature and Nature’s Laws lay hid in Night.  

God said, Let Newton be! and All was Light. 

Alexander Pope 

Force diagrams 

The picture shows crates of supplies being dropped into a remote area by 

parachute. What forces are acting on a crate of supplies and the parachute? 

One force which acts on every object near the earth’s surface is its own weight. This 

is the force of gravity pulling it towards the centre of the earth. The weight of the 

crate acts on the crate and the weight of the parachute acts on the parachute. 

The parachute is designed to make use of air resistance. A resistance force is 

present whenever a solid object moves through a liquid or gas. It acts in the 

opposite direction to the motion and depends on the speed of the object. The 

crate also experiences air resistance, but to a lesser extent than the parachute. 

Other forces are the tensions in the guy lines attaching the crate to the parachute. 

These pull upwards on the crate and downwards on the parachute. 

All these forces can be shown most clearly if you draw force diagrams for the crate 

and the parachute.

3
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Force diagrams are essential for the understanding of most mechanical situations. 

A force is a vector: it has a magnitude, or size, and a direction. It also has a line 

of action. This line often passes through a point of particular interest. Any force 

diagram should show clearly 

●● the direction of the force 

●● the magnitude of the force 

●● the line of action. 

In figures 3.1 and 3.2 each force is shown by an arrow along its line of action. The 

air resistance has been depicted by a lot of separate arrows but this is not very 

satisfactory. It is much better if the combined effect can be shown by one arrow. 

When you have learned more about vectors, you will see how the tensions in the 

guy lines can also be combined into one force if you wish. The forces on the crate 

and parachute can then be simplified. 

Wc

T3T2
T4

T1

Figure 3.1 Forces acting on the crate

FRAG
ILE

Wp T3T2
T4T1

Figure 3.2 Forces acting on the parachute

air resistance

weight of parachute

Wc

Rc

T

Figure 3.3 Forces acting on the crate

Wp

Rp

T

Figure 3.4 Forces acting on the parachute

weight of crate

air resistance on crate

combined tension

air resistance 
on parachute

weight of parachute

combined tension

air resistance

weight of crate

tensions in the cords
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Centre of mass and the particle model 

When you combine forces you are finding their resultant. The weights of the 
crate and parachute are also found by combining forces; they are the resultant of 
the weights of all their separate parts. Each weight acts through a point called the 
centre of mass or centre of gravity. 

Think about balancing a pen on your finger. The diagrams show the forces acting 
on the pen. 

So long as you place your finger under the centre of mass of the pen, as in figure 
3.5, it will balance. There is a force called a reaction between your finger and the 
pen which balances the weight of the pen. The forces on the pen are then said to 
be in equilibrium. If you place your finger under another point, as in figure 3.6, 
the pen will fall. The pen can only be in equilibrium if the two forces have the 
same line of action. 

If you balance the pen on two 
fingers, there is a reaction between 
each finger and the pen at the point 
where it touches the pen. These 
reactions can be combined into one 
resultant vertical reaction acting 
through the centre of mass. 

The behaviour of objects which are liable to rotate under the action of forces 
is covered in Mechanics 2 Chapter 11. In Mechanics 1 you will only deal with 
situations where the resultant of the forces does not cause rotation. An object can 
then be modelled as a particle, that is a point mass, situated at its centre of mass. 

Newton’s third law of motion 

Sir Isaac Newton (1642–1727) is famous for his work on gravity and the 

mechanics you learn in this course is often called Newtonian Mechanics because 

it is based entirely on Newton’s three laws of motion. These laws provide us with 

an extremely powerful model of how objects, ranging in size from specks of dust 

to planets and stars, behave when they are influenced by forces. 

R

W

*

Figure 3.5

R

W

*

Figure 3.6

reaction of finger on pen

centre of mass

weight of pen

reaction of finger on pen

centre of mass

weight of pen

R2R1

W

*

Figure 3.7

reaction of finger on pen

centre of mass

weight of pen
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We start with Newton’s third law which says that 

●● When one object exerts a force on another there is always a reaction of the 

same kind which is equal, and opposite in direction, to the acting force. 

You might have noticed that the combined tensions acting on the parachute 

and the crate in figures 3.3 and 3.4 are both marked with the same letter, T. The 

crate applies a force on the parachute through the supporting guy lines and the 

parachute applies an equal and opposite force on the crate. When you apply a 

force to a chair by sitting on it, it responds with an equal and opposite force on 

you. Figure 3.8 shows the forces acting when someone sits on a chair. 

The reactions of the floor on the chair and on your feet act where there is 

contact with the floor. You can use R1, R2 and R3 to show that they have different 

magnitudes. There are equal and opposite forces acting on the floor, but the 

forces on the floor are not being considered and so do not appear here. 

●? Why is the weight of the person not shown on the force diagram for the chair? 

Gravitational forces obey Newton’s third law just as other forces between bodies. 

According to Newton’s universal law of gravitation, the earth pulls us towards its 

centre and we pull the earth in the opposite direction. However, in this book we 

are only concerned with the gravitational force on us and not the force we exert 

on the earth. 

All the forces you meet in mechanics apart from the gravitational force are the 

result of physical contact. This might be between two solids or between a solid 

and a liquid or gas. 

B

S

R1

W1

Forces acting on person Forces acting on chair

B

S

R3R2

W2

Figure 3.8

force of person  
on chair seat

force of person on 
chair back

reaction 
of floor 

on person

reaction of 
floor on back 
legs of chair

force of chair back  
on person

force of chair seat  
on person

reaction of 
floor on front 
legs of chairweight of  

chair

weight of  
person
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Friction and normal reaction 

When you push your hand along a table, the table reacts in two ways. 

●● Firstly there are forces which stop your hand going through the table. Such 

forces are always present when there is any contact between your hand and the 

table. They are at right angles to the surface of the table and their resultant is 

called the normal reaction between your hand and the table. 

●● There is also another force which tends to prevent your hand from sliding. 

This is the friction and it acts in a direction which opposes the sliding. 

Figure 3.9 shows the reaction forces acting on your hand and on the table. By 

Newton’s third law they are equal and opposite to each other. The frictional force 

is due to tiny bumps on the two surfaces (see electronmicrograph below). When 

you hold your hands together you will feel the normal reaction between them. 

When you slide them against each other you will feel the friction. 

When the friction between two surfaces is negligible, at least one of the surfaces 

is said to be smooth. This is a modelling assumption which you will meet 

frequently in this book. Oil can make surfaces smooth and ice is often modelled 

as a smooth surface. 

R

R

F

F

direction of sliding 

Figure 3.9

friction force 
on hand

normal reaction 
on hand

normal reaction 
on table

friction force 
on table

Etched glass magnified to high resolution, showing the tiny bumps.
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●● When the contact between two surfaces is smooth, the only forces between 

them are normal reactions which act at right angles to any possible sliding.

●? What direction is the reaction between the sweeper’s broom and the smooth ice? 

EXAMPLE 3.1 A TV set is standing on a small table. Draw a diagram to show the forces acting 

on the TV and on the table as seen from the front. 

SOLUTION 

The diagram shows the forces acting on the TV and on the table. They are all 

vertical because the weights are vertical and there are no horizontal forces acting. 

weight of table

Forces on TV

Forces on table

R

R

W1

R1
R2

W2

Figure 3.10

resultant normal reaction 
of TV acting on table

resultant normal reaction 
of table acting on TV

resultant normal 
reaction of floor on 

right-hand legs

resultant normal 
reaction of floor on 

left-hand legs

weight of TV
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EXAMPLE 3.2 Draw diagrams to show the forces acting on a tennis ball which is hit downwards 

across the court

(i) at the instant it is hit by the racket

(ii) as it crosses the net

(iii) at the instant it lands on the other side.

SOLUTION

EXERCISE 3A  In this exercise draw clear diagrams to show the forces acting on the objects named 
in italics. Clarity is more important than realism when drawing these diagrams. 

1 A gymnast hanging at rest on a bar.

2 A light bulb hanging from a ceiling.

3 A book lying at rest on a table.

4 A book at rest on a table but being pushed by a small horizontal force.

5 Two books lying on a table, one on top of the other.

6 A horizontal plank being used to 
bridge a stream. 

7 A snooker ball on a table which can be assumed to be smooth 

(i) as it lies at rest on the table 

(ii) at the instant it is hit by the cue. 

8 An ice hockey puck 

(i)  at the instant it is hit when standing on smooth ice 

(ii)  at the instant it is hit when standing on rough ice. 

R1

W

P

W W

F

N
R2

Figure 3.11 

normal reaction of 
ground

friction force of ground

air resistance (when 
ball is moving quickly)

weight of ball

force of racket

(i) (iii)(ii)
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9 A cricket ball which follows the path 

shown on the right.  

Draw diagrams for each of the three 

positions A, B and C (include air 

resistance). 

10 (i) Two balls colliding in mid-air. 

(ii)  Two balls colliding on a snooker table. 

11 A paving stone leaning against 12  A cylinder at rest on 

a wall.         smooth surfaces. 

Force and motion 

●? How are the rails and handles 

provided in buses and trains used by 

standing passengers?

A

B

C
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Newton’s first law 

Newton’s first law can be stated as follows. 

●● Every particle continues in a state of rest or uniform motion in a straight 

line unless acted on by a resultant external force. 

Newton’s first law provides a reason for the handles on trains and buses. When you 
are on a train which is stationary or moving at constant speed in a straight line you 
can easily stand without support. But when the velocity of the train changes, a force 
is required to change your velocity to match. This happens when the train slows 
down or speeds up. It also happens when the train goes round a bend even if the 
speed does not change. The velocity changes because the direction changes. 

●? Why is Josh’s car in the pond? 

EXAMPLE 3.3 A coin is balanced on your finger and then you move it upwards. 

By considering Newton’s first law, what can you say about W and R in each of 

these situations? 

(i)  The coin is stationary. 

(ii)  The coin is moving upwards with a constant velocity. 

(iii)  The speed of the coin is increasing as it moves upwards. 

(iv)  The speed of the coin is decreasing as it moves upwards. 

oil

Figure 3.12 

R

W

Figure 3.13 

reaction of finger on coin

weight of coin
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SOLUTION 

(i)   When the coin is stationary the velocity does not change. The forces are in 

equilibrium and R = W. 

(ii)   When the coin is moving upwards with a constant velocity the velocity does 

not change. The forces are in equilibrium and R = W. 

(iii)   When the speed of the coin is increasing as it moves upwards there must be a 

net upward force to make the velocity increase in the upward direction so  

R > W. The net force is R − W. 

(iv)   When the speed of the coin is decreasing as it moves upwards there must be 

a net downward force to make the velocity decrease and slow the coin down 

as it moves upwards. In this case W > R and the net force is W − R. 

EXERCISE 3B 1 A book is resting on an otherwise empty table. 

(i) Draw diagrams showing the forces acting on 

(a) the book 

(b) the table as seen from the side. 

(ii) Write down equations connecting the forces acting on the book and on 
the table. 

2 You balance a coin on your finger and move it up and down. The reaction of 
your finger on the coin is R and its weight is W. Decide in each case whether R 
is greater than, less than or equal to W and describe the net force. 

(i) The coin is moving downwards with a constant velocity. 

(ii) The speed of the coin is increasing as it moves downwards. 

(iii)  The speed of the coin is decreasing as it moves downwards. 

R

W

Figure 3.14 

R

W

Figure 3.15 

constant velocity 
R = W

R

W

Figure 3.16 

R

W

Figure 3.17 

(i)                                                               (ii) 

(iii)                                                               (iv) 

decreasing  
velocity R < W

increasing velocity 
R > W
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3 In each of the following situations say whether the forces acting on the object 

are in equilibrium by deciding whether its motion is changing. 

(i)  A car that has been stationary, as it moves away from a set of traffic lights. 

(ii)  A motorbike as it travels at a steady 60 km h−1 along a straight road. 

(iii)  A parachutist descending at a constant rate. 

(iv)  A box in the back of a lorry as the lorry picks up speed along a straight, 

level motorway. 

(v)  An ice hockey puck sliding across a smooth ice rink. 

(vi)  A book resting on a table. 

(vii) A plane flying at a constant speed in a straight line, but losing height at a 

constant rate. 

(viii)  A car going round a corner at constant speed. 

4 Explain each of the following in terms of Newton’s laws. 

(i)  Seat belts should be worn in cars. 

(ii)  Head rests are necessary in a car to prevent neck injuries when there is a 

collision from the rear. 

Driving forces and resistances to the motion of vehicles 

In problems about such things as cycles, cars and trains, all the forces acting 

along the line of motion will usually be reduced to two or three: the driving force 

forwards, the resistance to motion (air resistance, etc.) and possibly a braking 

force backwards. 

Resistances due to air or water always act in a direction opposite to the velocity of 

a vehicle or boat and are usually more significant for fast-moving objects. 

Tension and thrust 

The lines joining the crate of supplies to the parachute described at the beginning 

of this chapter are in tension. They pull upwards on the crate and downwards 

on the parachute. You are familiar with tensions in ropes and strings, but rigid 

objects can also be in tension. 

When you hold the ends of a pencil, one with each hand, and pull your hands 

apart, you are pulling on the pencil. What is the pencil doing to each of your 

hands? Draw the forces acting on your hands and on the pencil. 

Now draw the forces acting on your hands and on the pencil when you push the 

pencil inwards. 

Your first diagram might look like figure 3.18. The pencil is in tension so there is 

an inward tension force on each hand. 
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When you push the pencil inwards the forces on your hands are outwards as in 
figure 3.19. The pencil is said to be in compression and the outward force on each 
hand is called a thrust. 

If each hand applies a force of 2 units on the pencil, the tension or thrust acting 
on each hand is also 2 units because each hand is in equilibrium. 

●? Which of the above diagrams is still possible if the pencil is replaced by a piece 

of string? 

Resultant forces and equilibrium 

You have already met the idea that a single force can have the same effect as several 
forces acting together. Imagine that several people are pushing a car. A single rope 
pulled by another car can have the same effect. The force of the rope is equivalent 
to the resultant of the forces of the people pushing the car. When there is no 
resultant force, the forces are in equilibrium and there is no change in motion. 

EXAMPLE 3.4 A car is using a tow bar to pull a trailer along a straight, level road. There are 
resisting forces R acting on the car and S acting on the trailer. The driving force 
of the car is D and its braking force is B. 

Draw diagrams showing the horizontal forces acting on the car and the trailer 

(i)  when the car is moving at constant speed 
(ii)  when the speed of the car is increasing 
(iii) when the car brakes and slows down rapidly. 

In each case write down the resultant force acting on the car and on the trailer. 

SOLUTION 

(i)   When the car moves at constant speed, the forces are as shown in figure 3.20 

(overleaf). The tow bar is in tension and the effect is a forward force on the 

trailer and an equal and opposite backward force on the car. 

forces on pencil

tension

Figure 3.18

forces on pencil

thrust

Figure 3.19

The forces on your hands 
are inwards. The pencil is 

in tension.

The forces on your hands  
are outwards. The pencil is 

in compression.
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There is no resultant force on either the car or the trailer when the speed is 

constant; the forces on each are in equilibrium.  

For the trailer: T − S = 0 

For the car: D − R − T = 0 

(ii)   When the car speeds up, the same diagram will do, but now the magnitudes 
of the forces are different. There is a resultant forward force on both the car 
and the trailer.  
For the trailer:   resultant = T – S 
For the car:      resultant = D – R – T 

(iii)   When the car brakes a resultant backward force is required to slow down the 
trailer. When the resistance S is not sufficiently large to do this, a thrust in 
the tow bar comes into play as shown in the figure 3.21. 

For the trailer:   resultant = T + S 

For the car:      resultant = B + R − T 

Newton’s second law 

Newton’s second law gives us more information about the relationship between 

the magnitude of the resultant force and the change in motion. Newton said that 

●● The change in motion is proportional to the force. 

For objects with constant mass, this can be interpreted as the force is proportional 

to the acceleration. 

Resultant force = a constant × acceleration                       1

Forces on trailer Forces on car
S DR

T T

Figure 3.20 Car travelling at constant speed

tension in the towbar

Forces on trailer Forces on car
S R B

T T

Figure 3.21 Car braking

thrust in the towbar
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The constant in this equation is proportional to the mass of the object: a more 

massive object needs a larger force to produce the same acceleration. For 

example, you and your friends would be able to give a car a greater acceleration 

than you would be able to give a lorry. 

Newton’s second law is so important that a special unit of force, the newton (N), 

has been defined so that the constant in equation  is actually equal to the mass. 

A force of 1 newton will give a mass of 1 kilogram an acceleration of 1 m s–2. The 

equation then becomes: 

Resultant force = mass × acceleration     

This is written:          F = ma 

The resultant force and the acceleration are always in the same direction. 

Relating mass and weight 

The mass of an object is related to the amount of matter in the object. It is a 

scalar. The weight of an object is a force. It has magnitude and direction and so is 

a vector. 

The mass of an astronaut on the moon is the same as his mass on the earth but 

his weight is only about one-sixth of his weight on the earth. This is why he can 

bounce around more easily on the moon. The gravitational force on the moon is 

less because the mass of the moon is less than that of the earth. 
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When Buzz Aldrin made the first landing on the moon in 1969 with Neil 

Armstrong, one of the first things he did was to drop a feather and a hammer 

to demonstrate that they fell at the same rate. Their accelerations due to the 

gravitational force of the moon were equal, even though they had very different 

masses. The same is true on earth. If other forces were negligible all objects would 

fall with an acceleration g. 

When the weight is the only force acting on an object, Newton’s second law 

means that 

Weight in newtons = mass in kg × g in m s−2. 

Using standard letters:

 W = mg 

Even when there are other forces acting, the weight can still be written as mg. 

A good way to visualise a force of 1 N is to think of the weight of an apple. 1 kg 

of apples weighs approximately (1 × 10) N = 10 N. There are about 10 small to 

medium-sized apples in 1 kg, so each apple weighs about 1 N. 

Note

Anyone who says 1 kg of apples weighs 1 kg is not strictly correct. The terms weight 

and mass are often confused in everyday language but it is very important for your 

study of mechanics that you should understand the difference. 

EXAMPLE 3.5 What is the weight of 

(i) a baby of mass 3 kg 

(ii) a golf ball of mass 46 g? 

SOLUTION 

(i) The baby’s weight is 3 × 10 = 30 N. 

(ii)  Mass of golf ball  = 46 g 

   = 0.046 kg 

 Weight  = 0.046 × 10

  = 0.46 N. 
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EXERCISE 3C  Data: On the earth g = 10 m s–2. On the moon g = 1.6 m s–2. 
1000 newtons (N) = 1 kilonewton (kN). 

1 Calculate the magnitude of the force of gravity on the following objects on  
the earth. 

(i) A suitcase of mass 15 kg. 

(ii) A car of mass 1.2 tonnes. (1 tonne =1000 kg) 

(iii) A letter of mass 50 g. 

2 Find the mass of each of these objects on the earth. 

(i) A girl of weight 600 N. 

(ii) A lorry of weight 11 kN. 

3 A person has mass 65 kg. Calculate the force of gravity 

(i) of the earth on the person 

(ii) of the person on the earth. 

4 What reaction force would an astronaut of mass 70 kg experience while 
standing on the moon? 

5 Two balls of the same shape and size but with masses 1 kg and 3 kg are 
dropped from the same height. 

(i)  Which hits the ground first? 

(ii) If they were dropped on the moon what difference would there be? 

6 (i) Estimate your mass in kilograms. 
(ii)  Calculate your weight when you are on the earth’s surface. 

(iii)  What would your weight be if you were on the moon? 

(iv)  When people say that a baby weighs 4 kg, what do they mean? 

●? Most weighing machines have springs or some other means to measure force 

even though they are calibrated to show mass. Would something appear to weigh 

the same on the moon if you used one of these machines? What could you use to 

find the mass of an object irrespective of where you measure it? 

Pulleys
In the remainder of this chapter weight will be represented by mg. You will learn 

to apply Newton’s second law more generally in the next chapter. 

A pulley can be used to change the direction of a force; for example it is much 
easier to pull down on a rope than to lift a heavy weight. When a pulley is well 
designed it takes a relatively small force to make it turn and such a pulley is 
modelled as being smooth and light. Whatever the direction of the string passing 
over this pulley, its tension is the same on both sides. 
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Figure 3.22 shows the forces acting when a pulley is used to lift a heavy parcel. 

Note

The rope is in tension. It is not possible for a rope to exert a thrust force. 

EXAMPLE 3.6 In this diagram the pulley is smooth and light 

and the 2 kg block, A, is on a rough surface. 

(i)  Draw diagrams to show the forces acting on 

each of A and B. 

(ii) If the block A does not slip, find the tension 

in the string and calculate the magnitude of the 

friction force on the block. 

(iii)  Write down the resultant force acting on each 

of A and B if the block slips and accelerates. 

SOLUTION 

(i)  

Forces acting on the ends of the rope Forces acting on the pulley

T

mg

T

S

T

T

Figure 3.22 

force of rope acting 
on the person

supporting force

when the pulley is 
light, its weight is 
assumed to be zero

these tension 
forces are equal

force of rope acting 
on the parcel

weight of 
parcel

tension in the rope

2 kg

A

B5 kg

Figure 3.23 

T N

5g N

A

yellup no secroFA no secroF

Forces on B

R N

F N T N

2g N

B

T N

T N

Figure 3.24 

the tensions on each 
side are equal for a 
smooth light pulley

A does not move vertically so 
the forces R and 2g balance
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Note

The masses of 2 kg and 5 kg are not shown in the force diagram. The weights 2g N 

and 5g N are more appropriate. 

(ii)   When the block does not slip, the forces on B are in equilibrium so 

    5g − T =  0 

        T = 5g 

The tension throughout the string is 5g N. 

For A, the resultant horizontal force is zero so 

   T − F = 0 

          F = T = 5g 

The friction force is 5g N towards the left. 

(iii)  When the block slips, the forces are not in equilibrium and T and F have 

different magnitudes. 

The resultant horizontal force on A is (T – F) N towards the right. 

The resultant force on B is (5g – T) N vertically downwards. 

EXERCISE 3D  In this exercise you are asked to draw force diagrams using the various types of force 
you have met in this chapter. Remember that all the forces you need, other than 
weight, occur when objects are in contact or joined together in some way. Where 
motion is involved, indicate its direction clearly. 

1 Draw labelled diagrams showing the forces acting on the objects in italics. 

(i)  A car towing a caravan. 

(ii)  A caravan being towed by a car. 

(iii)  A person pushing a supermarket trolley. 

(iv)  A suitcase on a horizontal moving pavement (as at an airport) 

(a)  immediately after it has been put down 

(b)  when it is moving at the same speed as the pavement. 

(v)  A sledge being pulled uphill. 

2 Ten boxes each of mass 5 kg are stacked on top of each other on the floor. 

(i)  What forces act on the top box? 

(ii)  What forces act on the bottom box? 

3 The diagrams show a box of mass m under different systems of forces. 

(i)  In the first case the box is at rest. State the value of F1.

(ii)  In the second case the box is slipping. Write down the resultant horizontal 

force acting on it. 

R N

F1 N 10 N

mg N

R N

F2 N 15 N

mg N
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4 In this diagram
the pulleys 
are smooth 
and light, the 
strings are 
light, and the 
table is rough. 

(i)  What is the direction of the friction force on the block B? 

(ii)  Draw clear diagrams to show the forces on each of A, B and C. 

(iii)  By considering the equilibrium of A and C, calculate the tensions in the 
strings when there is no slipping. 

(iv)  Calculate the magnitude of the friction when there is no slipping. 

Now suppose that there is insufficient friction to stop the block from slipping. 

(v)  Write down the resultant force acting on each of A, B and C. 

5 A man who weighs 720 N is doing some repairs to a shed. 
In each of these situations draw diagrams showing 

(a)  the forces the man exerts on the shed 

(b)  all the forces acting on the man (ignore any 
tools he might be using). 

In each case, compare the reaction between the 

man and the floor with his weight of 720 N.     

(i) He is pushing upwards on the ceiling with force U N. 

(ii) He is pulling downwards on the ceiling with force D N. 

(iii)  He is pulling upwards on a nail in the floor with force F N. 

(iv)  He is pushing downwards on the floor with force T N. 

6 The diagram shows a train, consisting of an engine of mass 50 000 kg pulling 
two trucks, A and B, each of mass 10 000 kg. The force of resistance on the 
engine is 2000 N and that on each of the trucks 200 N. The train is travelling at 
constant speed. 

(i)  Draw a diagram showing the horizontal forces on the train as a whole. 
Hence, by considering the equilibrium of the train as a whole, find the 
driving force provided by the engine. 

The coupling connecting truck A to the engine exerts a force T1 N on the engine 
and the coupling connecting truck B to truck A exerts a force T2 N  on truck B. 

(ii)  Draw diagrams showing the horizontal forces on the engine and on truck B. 

(iii)  By considering the equilibrium of the engine alone, find T1. 

(iv)  By considering the equilibrium of truck B alone, find T2. 

(v)  Show that the forces on truck A are also in equilibrium. 

4 kg

C

B

A 5 kg3 kg

720 N

B A
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Historical note

Isaac Newton was born in Lincolnshire in 1642. He was not an 

outstanding scholar either as a schoolboy or as a university 

student, yet later in life he made remarkable contributions in 

dynamics, optics, astronomy, chemistry, music theory and 

theology. He became Member of Parliament for Cambridge 

University and later Warden of the Royal Mint. His tomb in 

Westminster Abbey reads ‘Let mortals rejoice that there existed 

such and so great an Ornament to the Human Race’. 

Reviewing a mathematical model: air resistance

In mechanics you express the real world as mathematical models. The process

of modelling involves the cycle shown in Figure 3.25 and this is used in the 

example that follows.

Make assumptions to
allow work to begin

A PROBLEM

YES

NO

END

Compare with
theoretical results

Represent the problem
in mathematical form

Select information from
experience, experiment

or observation

Solve the mathematical
problem to produce
theoretical results Is the solution

to the problem
satisfactory?

Review and revise
assumptions

Figure 3.25
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●? Why does a leaf or a feather or 

a piece of paper fall more slowly 

than other objects? 

Model 1: The model you have used so far for falling objects has assumed no air 

resistance and this is clearly unrealistic in many circumstances. There are several 

possible models for air resistance but it is usually better when modelling to try 

simple models first. Having rejected the first model you could try a second one as 

follows. 

Model 2: Air resistance is constant and the same for all objects. 

Assume an object of mass m falls vertically through the air. 

The equation of motion is mg − R = ma 

                           a = g  −  R
m

The model predicts that a heavy object will have a greater acceleration than a 

lighter one because R
m

 is smaller for larger m. 

This seems to agree with our experience of dropping a piece of paper and a book, 
for example. The heavier book has a greater acceleration. 

●? However, think again about air resistance. Is there a property of the object 
other than its mass which might affect its motion as it falls? How do people and 
animals maximise or minimise the force of the air? 

Try dropping two identical sheets of paper from a horizontal position, but fold 
one of them. The folded one lands first even though they have the same mass. 

This contradicts the prediction of model 2. A large surface at right angles to the 
motion seems to increase the resistance. 

R

a m s–2

mg

Figure 3.26
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Model 3: Air resistance is proportional to the area perpendicular to the motion. 

Assume the air resistance is kA where k is constant and A is the area of the surface 
perpendicular to the motion. 

The equation of motion is now mg − kA = ma 

                                a = g − 
kA
m

According to this model, the acceleration depends on the ratio of the area to 
the mass.

EXPERIMENT

Testing the new model 

For this experiment you will need some rigid corrugated card such as that used 

for packing or in grocery boxes (cereal box card is too thin), scissors and tape. 

Cut out ten equal squares of side 8 cm. Stick two together by binding the edges with 

tape to make them smooth. Then stick three and four together in the same way so 

that you have four blocks A to D of different thickness as shown in the diagram. 

Cut out ten larger squares with 12 cm sides. Stick them together in the same way 

to make four blocks E to H. 

Observe what happens when you hold one or two blocks horizontally at a height 
of about 2 m and let them fall. You do not need to measure anything in this 
experiment, unless you want to record the area and mass of each block, but write 
down your observations in an orderly fashion. 

1 Drop each one separately. Could its acceleration be constant? 

2 Compare A with B and C with D.  Make sure you drop each pair from the 
same height and at the same instant of time. Do they take the same time 
to fall? Predict what will happen with other combinations and test your 
predictions. 

R

mg

R  kA

a m s–2

mg

Figure 3.27

8 cm 8 cm
8 cm

8 cm 8 cm

B C D
A

Figure 3.28
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KEY POINTS

1 Newton’s laws of motion 

I Every object continues in a state of rest or uniform motion in a straight 

line unless it is acted on by a resultant external force.

II Resultant force = mass × acceleration or F = ma.

III When one object exerts a force on another there is always a reaction 

which is equal, and opposite in direction, to the acting force.

●● Force is a vector; mass is a scalar.

●● The weight of an object is the force of gravity pulling it towards the centre 

of the earth. Weight = mg vertically downwards.

2 S.I. units

●● length: metre (m)

●● time: second (s)

●● velocity: m s–1

●● acceleration: m s–2

●● mass: kilogram (kg)

3 Force

1 newton (N) is the force required to give a mass of 1 kg an acceleration  

of 1 m s–2.

A force of 1000 newtons (N) = 1 kilonewton (kN).

3 Experiment in a similar way with E to H. 

4 Now compare A with E, B with F, C with G and D with H. Compare also the 
two blocks whose dimensions are all in the same ratio, i.e. B and G. 

●? Do your results suggest that model 3 might be better than model 2? 

If you want to be more certain, the next step would be to make accurate 

measurements. Nevertheless, this model explains why small animals can be 

relatively unscathed after falling through heights which would cause serious 

injury to human beings. 

●? All the above models ignore one important aspect of air resistance. What is that? 
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4 Types of force 

●● Forces due to contact 

between surfaces

●● A smooth light pulley 

5 Commonly used modelling terms 

●● inextensible  does not vary in length 

●● light   negligible mass 

●● negligible  small enough to ignore 

●● particle  negligible dimensions 

●● smooth  negligible friction 

●● uniform  the same throughout

6 Reviewing a model

tension

thrust or compression 
(rod only)

●● Forces in a joining rod or string 

normal reaction

friction

direction of possible sliding

●● Forces on a wheeled vehicle 

T

T

resistance

braking force

driving force

tensions on both 
sides are equal

Make assumptions to
allow work to begin

A PROBLEM

YES

NO

END

Compare with
theoretical results

Represent the problem
in mathematical form

Select information from
experience, experiment

or observation

Solve the mathematical
problem to produce
theoretical results Is the solution

to the problem
satisfactory?

Review and revise
assumptions

forces act on the objects 
attached at the ends
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Applying Newton’s second 
law along a line 

Nature to him was an open book. He stands before us, strong, certain 

and alone. 

Einstein on Newton 

Newton’s second law 

●? Attach a weight to a spring balance and move it up and down. What happens to 

the pointer on the balance? 

 What would you observe if you stood on some bathroom scales in a moving lift? 

 Hold a heavy book on your hand and move it 

up and down. 

 What force do you feel on your hand?

  

Equation of motion 

Suppose you make the book accelerate upwards at a m s−2. Figure 4.1 shows the 

forces acting on the book and the acceleration. 

R N

mg N

a m s–2

Figure 4.1 

4

the acceleration is shown with 
a different type of arrow

the weight is always shown 
as mg for moving bodies

forces acting 
on the book

M1 

4
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By Newton’s first law, a resultant force is required to produce an acceleration. In 

this case the resultant upward force is R − mg newtons. 

You were introduced to Newton’s second law in Chapter 3. When the forces 

are in newtons, the mass in kilograms and the acceleration in metres per second 

squared, this law is: 

              Resultant force = mass × a 

So for the book:   R − mg = ma                                     

When Newton’s second law is applied, the resulting equation is called the 

equation of motion. 

When you give a book of mass 0.8 kg an acceleration of 0.5 m s−2 equation  

becomes 

 R − 0.8 × 10 = 0.8 × 0.5

 R = 8.4

When the book is accelerating upwards the reaction force of your hand on the 

book is 8.4 N. This is equal and opposite to the force experienced by you so the 

book feels heavier than its actual weight, mg, which is 0.8 × 10 = 8 N. 

EXERCISE 4A 1   Calculate the resultant force in newtons required to produce the following 
accelerations. 

(i) A car of mass 400 kg has acceleration 2 m s−2. 

(ii) A blue whale of mass 177 tonnes has acceleration 
1
2 m s–2.

(iii)  A pygmy mouse of mass 7.5 g has acceleration 3 m s–2. 

(iv)  A freight train of mass 42 000 tonnes brakes with deceleration 0.02 m s–2.

(v)  A bacterium of mass 2 × 10–16 g has acceleration 0.4 m s–2. 

(vi)  A woman of mass 56 kg falling off a high building has acceleration 9.8 m s–2.

(vii) A jumping flea of mass 0.05 mg accelerates at 1750 m s–2 during take-off.

(viii) A galaxy of mass 1042 kg has acceleration 10–12 m s–2. 

2 A resultant force of 100 N is applied to a body. Calculate the mass of the body 
when its acceleration is 

(i)  0.5 m s–2  (ii) 2 m s–2 

(iii)  0.01 m s–2  (iv) 10g. 

3 What is the reaction between a book of mass 0.8 kg and your hand when it is 

(i)  accelerating downwards at 0.3 m s–2?

(ii)  moving upwards at constant speed? 

where force and acceleration 
are in the same direction

Reaction of hand
Weight of book, i.e. 
mass of book × g

Mass of book

Acceleration 
of book

E
x
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EXAMPLE 4.1 A lift and its passengers have a total mass of 400 kg. Find the tension in the cable 

supporting the lift when 

(i)  the lift is at rest 

(ii) the lift is moving at constant speed 

(iii)  the lift is accelerating upwards at 0.8 m s–2 

(iv)  the lift is accelerating downwards at 0.6 m s−2. 

SOLUTION 

Before starting the calculations you must define a direction as positive. In this 

example the upward direction is chosen to be positive. 

(i)  At rest 
  As the lift is at rest the forces must be in  

equilibrium. The equation of motion is 

   T − mg = 0 

T −  400 × 10 =  0 

            T = 4000 

 The tension in the cable is 4000 N. 

(ii)  Moving at constant speed 

  Again, the forces on the lift must be in 

equilibrium because it is moving at a 

constant speed, so the tension is 4000 N. 

(iii) Accelerating upwards 
 The resultant upward force on the lift is T – mg so the equation of motion is 

           T – mg = ma 

 which in this case gives 

 T – 400 × 10 = 400 × 0.8 

        T – 4000 = 320 

                    T = 4320 

 The tension in the cable is 4320 N. 

(iv)  Accelerating downwards 

 The equation of motion is 

          T – mg = ma 

 In this case, a is negative so 

T – 400 × 10 = 400 × (–0.6) 

      T – 4000 = –240 

                  T = 3760 

 The tension in the cable is 3760 N.

T N

mg N

a m s 2

Figure 4.2 

A downward acceleration 
of 0.6 m s−2 is an upward 
acceleration of −0.6 m s−2

M1 

4
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●? How is it possible for the tension to be 3760 N upwards but the lift to accelerate 

downwards? 

EXAMPLE 4.2 This example shows how the suvat formulae for motion with constant 

acceleration, which you met in Chapter 2, can be used with Newton’s second law. 

A supertanker of mass 500 000 tonnes is travelling at a speed of 10 m s−1 when its 

engines fail. It then takes half an hour for the supertanker to stop. 

(i)   Find the force of resistance, assuming it to be constant, acting on the 

supertanker. 

When the engines have been repaired it takes the supertanker 10 minutes to 

return to its full speed of 10 m s−1. 

(ii)   Find the driving force produced by the engines, assuming this also to be 

constant. 

SOLUTION 

Use the direction of motion as positive. 

(i)   First find the acceleration of the supertanker, which is constant for constant 

forces. Figure 4.3 shows the velocities and acceleration. 

 

 

 

 

a m s

+

–2

30 minutes  1800 s
10 ms–1 0 ms–1

Figure 4.3 

Since the supertanker is slowing 
down, you expect a to be negative.

You have to be very careful with 
signs: the resultant force and 
acceleration are both positive 

towards the right. 
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 You know u = 10, v = 0, t = 1800 and you want a, so use v = u + at. 

0 = 10 + 1800a 

a = – 1
180

  Now we can use Newton’s second law (Newton II) to write down the equation 

of motion. Figure 4.4 shows the horizontal forces and the acceleration. 

 

  

 

 

 

 

         The resultant forward force is D − R newtons. When there is no driving 

force D = 0 so Newton II gives 

                                               0 − R = 500 000 000 × a 

so when a =  – ,1
180            −R = 500 000 000 × – 1

180( )
 The resistance to motion is 2.78 × 106 N or 2780 kN (correct to 3 s.f.). 

(ii)  Now u = 0, v = 10 and t = 600, and you want a, so use v = u + at again. 

          10 = 0 + a × 600 

            a = 1
60

 Using Newton’s second law again 

         D − R = 500 000 000 × a

D −  2.78 × 106 = 500 000 000 × 
1

60

                D = 2.78 × 106 + 8.33 × 106 

 The driving force is 11.11 × 106 N or 11 100 kN (correct to 3 s.f.). 

Tackling mechanics problems 

When you tackle mechanics problems such as these you will find them easier if you: 

●● always draw a clear diagram 

●● clearly indicate the positive direction 

●● label each object (A, B, etc. or whatever is appropriate) 

●● show all the forces acting on each object 

●● make it clear which object you are referring to when writing an equation of 
motion. 

The acceleration is negative because 
the supertanker is slowing down.

a ms–2

R N D N

500 000 tonnes

Figure 4.4 

The upthrust of the water balances 
the weight of the supertanker in 

the vertical direction.

the mass must 
be in kg
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EXERCISE 4B 1  A man pushes a car of mass 400 kg on level ground with a force of 200 N. The 
car is initially at rest and the man maintains this force until the car reaches a 
speed of 5 m s−1. Ignoring any resistance forces, find 

(i)  the acceleration of the car 

(ii) the distance the car travels while the man is pushing. 

2 The engine of a car of mass 1.2 tonnes can produce a driving force of 2000 N. 
Ignoring any resistance forces, find 

(i)  the car’s resulting acceleration 

(ii)  the time taken for the car to go from rest to 27 m s− 1 (about 60 mph). 

3 A top sprinter of mass 65 kg starting from rest reaches a speed of 10 m s− 1 in 2 s. 

(i)  Calculate the force required to produce this acceleration, assuming it is 
uniform. 

(ii)  Compare this to the force exerted by a weight lifter holding a mass of 
180 kg above the ground. 

4 An ice skater of mass 65 kg is initially moving with speed 2 m s− 1 and glides 
to a halt over a distance of 10 m. Assuming that the force of resistance is 
constant, find 

(i)  the size of the resistance force 

(ii)  the distance he would travel gliding to rest from an initial speed of 6 m s−1 

(iii)  the force he would need to apply to maintain a steady speed of 10 m s−1. 

5 A helicopter of mass 1000 kg is taking off vertically. 

(i)  Draw a labelled diagram showing the forces on the helicopter as it lifts off 
and the direction of its acceleration. 

(ii)  Its initial upward acceleration is 1.5 m s−2. Calculate the upward force its 
rotors exert. Ignore the effects of air resistance. 

6 Pat and Nicholas are controlling the movement of a canal barge by means of 
long ropes attached to each end. The tension in the ropes may be assumed to 
be horizontal and parallel to the line and direction of motion of the barge, as 
shown in the diagrams. 

The mass of the barge is 12 tonnes and the total resistance to forward motion 
may be taken to be 250 N at all times. Initially Pat pulls the barge forwards 
from rest with a force of 400 N and Nicholas leaves his rope slack. 

(i)  Write down the equation of motion for the barge and hence calculate its 
acceleration. 

Nicholas

noitavelEnalP

rope
Pat

rope
Pat

rope
Nicholas

rope
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Pat continues to pull with the same force until the barge has moved 10 m. 

(ii)  What is the speed of the barge at this time and for what length of time did 
Pat pull? 

Pat now lets her rope go slack and Nicholas brings the barge to rest by pulling 
with a constant force of 150 N. 

(iii)  Calculate 

(a)  how long it takes the barge to come to rest 

(b)  the total distance travelled by the barge from when it first moved 

(c)  the total time taken for the motion.     [MEI] 

7 A spaceship of mass 5000 kg is stationary in deep space. It fires its engines, 
producing a forward thrust of 2000 N for 2.5 minutes, and then turns them off. 

(i)  What is the speed of the spaceship at the end of the 2.5 minute period? 

(ii)  Describe the subsequent motion of the spaceship. 

The spaceship then enters a cloud of interstellar dust which brings it to a halt 
after a further distance of 7200 km. 

(iii)  What is the force of resistance (assumed constant) on the spaceship from 
the interstellar dust cloud? 

The spaceship is travelling in convoy with another spaceship which is the 
same in all respects except that it is carrying an extra 500 kg of equipment. The 
second spaceship carries out exactly the same procedure as the first one. 

(iv)  Which spaceship travels further into the dust cloud? 

8 A crane is used to lift a hopper full of cement to a height of 20 m on a building 
site. The hopper has mass 200 kg and the cement 500 kg. Initially the hopper 
accelerates upwards at 0.05 m s−2, then it travels at constant speed for some time 
before decelerating at 0.1 m s−2 until it is at rest. The hopper is then emptied. 

(i)  Find the tension in the crane’s cable during each of the three phases of the 
motion and after emptying. 

The cable’s maximum safe load is 10 000 N. 

(ii)  What is the greatest mass of cement that can safely be transported in the 
same manner? 

The cable is in fact faulty and on a later occasion breaks without the hopper 
leaving the ground. On that occasion the hopper is loaded with 720 kg of cement. 

(iii)  What can you say about the strength of the cable? 

9 The police estimate that for good road conditions the frictional force, F, on a 
skidding vehicle of mass m is given by F = 0.8 mg. A car of mass 450 kg skids 
to a halt narrowly missing a child. The police measure the skid marks and find 
they are 12.0 m long. 

(i)  Calculate the deceleration of the car when it was skidding to a halt. 70

M1 
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The child’s mother says the car was travelling well over the speed limit of 

50 km h−1 but the driver of the car says she was travelling at 48 km h−1 and the 

child ran out in front of her.  

(ii)  Calculate the speed of the car when it started to skid. 

 Who was telling the truth? 

Newton’s second law applied to connected objects 

This section is about using Newton’s 

second law for more than one object. 

It is important to be very clear which 

forces act on which object in these cases. 

A stationary helicopter is raising two 

people of masses 90 kg and 70 kg as 

shown in the diagram. 

●? Imagine that you are each person in turn. Your eyes are shut so you cannot see 

the helicopter or the other person. What forces act on you? 

 Remember that all the forces acting, apart from your weight, are due to contact 

between you and something else. 

 Which forces acting on A and B are equal in magnitude? What can you say about 

their accelerations? 

EXAMPLE 4.3 (i)   Draw a diagram to show the forces acting on the two people being raised by 

the helicopter in figure 4.5 and their acceleration. 

(ii)  Write down the equation of motion for each person. 

(iii)  When the force applied to the first person, A, by the helicopter is 180g N, 

calculate 

(a) the acceleration of the two people being raised 

(b) the tension in the ropes. 

A
90 kg

B
70 kg

Figure 4.5 
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SOLUTION 

(i)   Figure 4.6 shows the acceleration and forces 

acting on the two people. 

(ii)   When the helicopter applies a force T1 N to A, 

the resultant upward forces are 

 A       (T1 − 90g − T2)N

 B       (T2 − 70g) N 

 Their equations of motion are 

 A (↑) T1 − 90g − T2 = 90a     1

 B (↑) T2 − 70g = 70a              2

(iii)   You can eliminate T2 from equations 1  and 2  

by adding: 

  T1 −  90g −  T2 + T2 − 70g = 90a + 70a

  T1 − 160g = 160a             3

 When the force, T1, applied by the helicopter is 180g 

  20g = 160a 

 a = 1.25 

 Substituting for a in equation  gives    T2 = 70 × 1.25 + 70g 

  = 787.5 

  The acceleration is 1.25 m s− 2 and the tensions in the ropes are 1800 N and 

787.5 N. 

●? The force pulling downwards on A is 787.5 N. This is not equal to B’s weight 

(700 N). Why are they different? 

Treating the system as a whole 

When two objects are moving in the same direction with the same velocity at all 

times they can be treated as one. In Example 4.3 the two people can be treated as 

one object and then the equal and opposite forces T2 cancel out. They are internal 

forces similar to the forces between your head and your body. 
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A

90g N

70g N

T1 N

T2 N

T2 N

a m s–2

B

a m s–2

Figure 4.6 
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The resultant upward force on both people is T1 − 90g − 70g and the total mass is 

160 kg so the equation of motion is: 

T1 – 90g – 70g = 160a 

So you can find a directly 

           when T1 = 180g 

                  20g = 160a 

                      a = 1.25 

Treating the system as a whole finds a, but not the internal force T2. 

You need to consider the motion of B separately to obtain equation 2   . 

                            T2 − 70g = 70a                                     2

                                      T2 = 787.5 

Using this method, equation 1  can be used to check your answers. Alternatively, 

you could use equation 1  to find T2 and equation 2  to check your answers. 

When several objects are joined there are always more equations possible than 

are necessary to solve a problem and they are not all independent. In the above 

example, only two of the equations were necessary to solve the problem. The 

trick is to choose the most relevant ones. 

A note on mathematical modelling 

Several modelling assumptions have been made in the solution to Example 4.3. It 

is assumed that: 

●● the only forces acting on the people are their weights and the tensions in the 

ropes (forces due to the wind or air turbulence are ignored) 

●● the motion is vertical and nobody swings from side to side 

●● the ropes do not stretch (i.e. they are inextensible) so the accelerations of the 

two people are equal 

●● the people are rigid bodies which do not change shape and can be treated as 

particles. 

All these modelling assumptions make the problem simpler. In reality, if you 

were trying to solve such a problem you might work through it first using these 

assumptions. You would then go back and decide which ones needed to be 

modified to produce a more realistic solution. 

In the next example one person is moving vertically and the other horizontally. 

You might find it easier to decide on which forces are acting if you imagine you 

are Alvin or Bernard and you can’t see the other person. 

as equation 3  above

as before
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EXAMPLE 4.4 Alvin is using a snowmobile to pull Bernard out of a crevasse. His rope passes 

over a smooth block of ice at the top of the crevasse as shown in figure 4.7 and 

Bernard hangs freely away from the side. Alvin and his snowmobile together have 

a mass of 300 kg and Bernard’s mass is 75 kg. Ignore any resistance to motion. 

(i)   Draw diagrams showing the forces on the snowmobile (including Alvin) and 

on Bernard. 

(ii)  Calculate the driving force required for the snowmobile to give Bernard 

an upward acceleration of 0.5 m s−2 and the tension in the rope for this 

acceleration. 

(iii)  How long will it take for Bernard’s speed to reach 5 m s−1 starting from rest 

and how far will he have been raised in this time? 

SOLUTION 

(i)  The diagram shows the essential features of the problem. 

Bernard

Alvin

300 kg

75 kg

Figure 4.7 

Forces acting on
Alvin’s snowmobile

Forces acting on Bernard

300g N

0.5 m s–2

0.5 m s–2

R N

75g N

T N

D NT N

Figure 4.8 

R = 300g because the snowmobile 
does not accelerate vertically. 
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(ii)   Alvin and Bernard have the same acceleration providing the rope does not 

stretch. The tension in the rope is T newtons and Alvin’s driving force is

D newtons. 

 The equations of motion are: 

 Alvin (→)      D − T    = 300 × 0.5 
                D − T    = 150                           1

 Bernard (↑)         T − 75g = 75 × 0.5 
                T − 75g = 37.5                          2

                                       T    = 37.5 + 75g
                                       T    = 787.5 

 Substituting in equation 1

D − 787.5 = 150 
              D = 937.5 

 The driving force required is 937.5 N and the tension in the rope is 787.5 N. 

(iii) When u = 0, v = 5, a = 0.5 and t is required 

 v = u + at 
 5 = 0 + 0.5 × t 
 t = 10 

 The time taken is 10 seconds. Using s = ut + 
1
2 at 2 to find s gives

s = 0 + 
1
2 at2

s = 
1
2  × 0.5 × 100

s = 25 

 The distance he has been raised is 25 m.

●? Alvin thinks the rope will not stand a tension of more than 1.2 kN. What is the 
maximum safe acceleration in this case? Under the circumstances, is Alvin likely 
to use this acceleration? 

 Make a list of the modelling assumptions made in this example and suggest what 
effect a change in each of these assumptions might have on the solution. 

The force towards the right  
= mass × acceleration 

towards the right

The upward force  
= mass × upward acceleration

v2 = u2 + 2as would also give s
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EXAMPLE 4.5 A woman of mass 60 kg is standing in a lift. 

(i)  Draw a diagram showing the forces acting on the woman. 

Find the normal reaction of the floor of the lift on the woman in the following cases. 

(ii)  The lift is moving upwards at a constant speed of 3 m s−1. 
(iii) The lift is moving upwards with an acceleration of 2 m s−2 upwards. 
(iv)  The lift is moving downwards with an acceleration of 2 m s−2 downwards. 
(v)  The lift is moving downwards and slowing down with a deceleration of 2 m s−2. 

In order to calculate the maximum number of occupants that can safely be 

carried in the lift, the following assumptions are made: 

The lift has mass 300 kg, all resistances to motion may be neglected, the mass of 

each occupant is 75 kg and the tension in the supporting cable should not exceed 

12 000 N. 

(vi)   What is the greatest number of occupants that can be carried safely if the 

magnitude of the acceleration does not exceed 3 m s−2?                [MEI]

SOLUTION 

(i)  The diagram shows the forces acting on the woman and her acceleration. 

  In general, when positive is upwards, her equation of motion is 

 (↑)      R −  60g = 60a 

(ii)  When the speed is constant a = 0 so R = 60g = 600. 

 The normal reaction is 600 N. 

a m s–2

R N

60g N

Figure 4.9

weight

normal reaction 
of floor

This equation contains all the 
mathematics in the situation. It can 
be used to solve parts (ii) to (iv).
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(iii) When a =  2 

      R −  60g = 60 × 2 

                      R =  120 + 600 

                           = 720 

 The normal reaction is 720 N. 

(iv)  When the acceleration is downwards, a = −2 so 

             R − 60g = 60 × (−2) 

                       R = 480 

 The normal reaction is 480 N. 

(v)  When the lift is moving downwards and slowing down, the acceleration is 

negative downwards, so it is positive upwards, and a = +2. Then R = 720 as in 

part (iii). 

(vi)  When there are n passengers in the lift, the combined mass of these and the 

lift is (300 + 75n) kg and their weight is (300 + 75n)g N. 

 The equation of motion for the lift and passengers together is 

T − (300 + 75n)g = (300 + 75n)a 

 So when a = 3 and g = 10,

 T = (300 + 75n) × 3 + (300 + 75n) × 10 

  = 13(300 + 75n) 

 For a maximum tension of 12 000 N 

 12 000 = 13(300 + 75n) 

 12 000 = 3900 + 975n 

 8100 = 975n 

 n = 8.31 (to 3 s.f.) 

 The lift cannot carry more than 8 passengers. 

a m s–2

T N

(300  75n)g N

n passengers

Figure 4.10 
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EXAMPLE 4.6 Two particles A and B, of masses 0.6 kg and 0.4 kg

respectively, are connected by a light inextensible 

string which passes over a smooth fixed pulley. The 

particles hang freely, as shown in the diagram, and 

are released from rest.

(i) Find the acceleration of the system and the tension in the string.

After 2 seconds the string is cut and in the subsequent motion both particles 

move freely under gravity.

(ii)  Find the height of both particles at the instant that the string is cut.

SOLUTION 

(i)  Since the pulley is smooth, the tension, T N, is the same throughout the 

string.

  When the particles start to move, particle A accelerates downwards and 

particle B accelerates upwards. Let their acceleration be a m s−2.

 Draw separate force diagrams for each particle.

 

 

 

 

 

 

 

 Applying F = ma to each particle gives:

 Particle A:    6 − T = 0.6a       1

 Particle B:    T − 4 = 0.4a       2

 Adding equations 1  and 2  gives: 

                            2 = 1a

 ⇒ a = 2

 Substituting a = 2 into equation 1   or 2   gives T = 4.8.

 The acceleration is 2 m s−2 and the tension is 4.8 N.

A

6 N

T

a
B

4 N

T

a

At the instant B starts 
to move, the normal 

reaction is 0.

A

5 m

B

Figure 4.11
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(ii)  Let the particles’ initial velocity be u m s−1 and the distance they have 

travelled t s after they are released be s m.

 u = 0 as the particles are initially at rest.

 To find the height, s, use

         s = ut + 
1
2 at 2

 with a = 2 and t = 2.

         s =  
1
2  × 2 × 22

         s = 4

  Particle A moves down 4 m and particle B moves up 4 m so that when the 

string is cut:

 particle A is 5 m − 4 m = 1 m above the ground

 particle B is 4 m above the ground.

EXERCISE 4C Remember: Always make it clear which object each equation of motion refers to. 

1 Masses A of 100 g and B of 200 g are attached to the ends 

of a light, inextensible string which hangs over a smooth 

pulley as shown in the diagram. 

Initially B is held at rest 2 m above the ground and A rests 

on the ground with the string taut. Then B is let go. 

(i)  Draw a diagram for each mass showing the forces 

acting on it and the direction of its acceleration 

at a later time when A and B are moving with an 

acceleration of a m s−2 and before B hits the ground. 

(ii)  Write down the equation of motion of each mass 

in the direction it moves using Newton’s second law. 

(iii)  Use your equations to find a and the tension in the 

string. 

(iv)  Find the time taken for B to hit the ground. 

2 The diagram shows a block of mass 5 kg lying on a smooth table. It is attached 
to blocks of mass 2 kg and 3 kg by strings which pass over smooth pulleys. The 
tensions in the strings are T1 and T2, as shown, and the blocks have 
acceleration a m s−2. 

A

0.2 kg B

0.1 kg

5 kg

B
T1 T2

A C3 kg2 kg

E
x
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(i)  Draw a diagram for each block showing all the forces acting on it and its 

acceleration. 

(ii)  Write down the equation of motion for each of the blocks. 

(iii)  Use your equations to find the values of a, T1 and T2. 

In practice, the table is not truly smooth and a is found to be 0.5 m s−2. 

(iv)  Repeat parts (i) and (ii) including a frictional force on B and use your new 
equations to find the frictional force that would produce this result. 

3 A car of mass 800 kg is pulling a caravan of mass 1000 kg along a straight, 
horizontal road. The caravan is connected to the car by means of a light, rigid 
tow bar. The car is exerting a driving force of 1270 N. The resistances to the 
forward motion of the car and caravan are 400 N and 600 N respectively; you 
may assume that these resistances remain constant. 

(i)  Show that the acceleration of the car and caravan is 0.15 m s−2. 

(ii)  Draw a diagram showing all the forces acting on the caravan along the line 
of its motion. Calculate the tension in the tow bar. 

The driving force is removed but the car’s brakes are not applied. 

(iii)  Determine whether the tow bar is now in tension or compression. 

The car’s brakes are then applied gradually. The brakes of the caravan come on 
automatically when the tow bar is subjected to a compression force of at least 50 N. 

(iv)  Show that the acceleration of the caravan just before its brakes come on 
automatically is 0.65 m s−2 in the direction of its motion. Hence, calculate the 
braking force on the car necessary to make the caravan brakes come on. 
                                                        [MEI] 

4 The diagram shows a goods train consisting of an engine of mass 40 tonnes 

and two trucks of 20 tonnes each. The engine is producing a driving force of  

5 × 104 N, causing the train to accelerate. The ground is level and resistance 

forces may be neglected. 

(i)  By considering the motion of the whole train, find its acceleration. 

(ii)  Draw a diagram to show the forces acting on the engine and use this to 

help you to find the tension in the first coupling. 

tow bar

5  104
 N
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(iii)  Find the tension in the second coupling. 

The brakes on the first truck are faulty and suddenly engage, causing a 

resistance of 104 N. 

(iv)  What effect does this have on the tension in the coupling to the last truck? 

[MEI, adapted] 

5 A short train consists of two locomotives, each of mass 20 tonnes, with a truck 

of mass 10 tonnes coupled between them, as shown in the diagram. The 

resistances to forward motion are 0.5 kN on the truck and 1 kN on each of the 

locomotives. The train is travelling along a straight, horizontal section of track.

Initially there is a driving force of 15 kN from the front locomotive only. 

(i)  Calculate the acceleration of the train. 

(ii)  Draw a diagram indicating the horizontal forces acting on each part of the 

train, including the forces in each of the couplings. Calculate the forces 

acting on the truck due to each coupling. 

On another occasion each of the locomotives produces a driving force of 

7.5 kN in the same direction and the resistances remain as before. 

(iii)  Find the acceleration of the train and the forces now acting on the truck 

due to each of the couplings. Compare your answer to this part with your 

answer to part (ii) and comment briefly. 

                                      [MEI] 

6 The diagram shows a lift containing a single 
passenger. 

(i) Make clear diagrams to show the forces acting 
on the passenger and the forces acting on the 
lift using the following letters: 

 the tension in the cable, T N 
the reaction of the lift on the passenger, RP N 
the reaction of the passenger on the lift, RL N 
the weight of the passenger, mg N 
the weight of the lift, Mg N. 

 The masses of the lift and the passenger are 450 kg and 50 kg respectively. 

(ii)  Calculate T, RP and RL when the lift is stationary. 

The lift then accelerates upwards at 0.8 m s−2. 

(iii)  Find the new values of T, RP and RL. 
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7 A man of mass 70 kg is standing 

in a lift which has an upward 
acceleration a m s−2. 

(i) Draw a diagram showing the 
man’s weight, the force, R N, that 
the lift floor exerts on him and 
the direction of his acceleration. 

(ii)  Find the value of a when 
R = 770 N. 

The graph shows the value of R from 
the time (t = 0) when the man steps 
into the lift to the time (t = 12) when he steps out. 

(iii)  Explain what is happening in each section of the journey. 

(iv)  Draw the corresponding speed–time graph. 

(v)  To what height does the man ascend? 

8 A lift in a mine shaft takes exactly one minute to descend 500 m. It starts from 
rest, accelerates uniformly for 12.5 seconds to a constant speed which it maintains 
for some time and then decelerates uniformly to stop at the bottom of the shaft. 

The mass of the lift is 5 tonnes and on the day in question it is carrying 12 
miners whose average mass is 80 kg. 

(i)  Sketch the speed–time graph of the lift. 

During the first stage of the motion the tension in the cable is 53 640 N. 

(ii)  Find the acceleration of the lift during this stage. 

(iii)  Find the length of time for which the lift is travelling at constant speed and 
find the final deceleration. 

(iv)  What is the maximum value of the tension in the cable? 

(v)  Just before the lift stops one miner experiences an upthrust of 1002 N from 
the floor of the lift. What is the mass of the miner? 

9 Particles P and Q, of masses 0.6 kg and 

0.2 kg respectively, are attached to the 

ends of a light inextensible string which 

passes over a smooth fixed peg. The 

particles are held at rest with the string 

taut. Both particles are at a height of 

0.9 m above the ground (see diagram). 

The system is released and each of the 

particles moves vertically.

2

R (N)

t (s)0 4 6 8 10 12

550
560

600

650

700

770
750

P

0.9 m

Q
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Find

(i) the acceleration of P and the tension in the string before P reaches the 

ground,

(ii) the time taken for P to reach the ground.

[Cambridge AS & A Level Mathematics 9709, Paper 4 Q4 June 2007]

10 Particles A and B are attached to the

ends of a light inextensible string which 

passes over a smooth pulley. The system 

is held at rest with the string taut and its 

straight parts vertical. Both particles are 

at a height of 0.36 m above the floor 

(see diagram). The system is released 

and A begins to fall, reaching the floor 

after 0.6 s.

(i) Find the acceleration of A as it falls.

The mass of A is 0.45 kg. Find

(ii) the tension in the string while A is falling,

(iii) the mass of B,

(iv) the maximum height above the floor reached by B.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q6 June 2009]

11 Particles A and B, of masses 0.5 kg 

and m kg respectively, are attached to 

the ends of a light inextensible string 

which passes over a smooth fixed pulley. 

Particle B is held at rest on the horizontal 

floor and particle A hangs in equilibrium 

(see diagram). B is released and each 

particle starts to move vertically. A hits 

the floor 2 s after B is released. The speed 

of each particle when A hits the floor  

is 5 m s−1.

(i) For the motion while A is moving downwards, find

(a) the acceleration of A,

(b) the tension in the string.

(ii) Find the value of m.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q5 November 2008]

A

0.36 m

B

A

m kg

0.5 kg

B
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12 Particles P and Q, of masses 0.55 kg 

and 0.45 kg respectively, are attached to 

the ends of a light inextensible string 

which passes over a smooth fixed pulley. 

The particles are held at rest with the 

string taut and its straight parts vertical. 

Both particles are at a height of 5 m above 

the ground (see diagram). The system  

is released.

(i) Find the acceleration with which 

P starts to move.

The string breaks after 2 s and in the subsequent motion P and Q move 

vertically under gravity.

(ii) At the instant that the string breaks, find

(a) the height above the ground of P and of Q,

(b) the speed of the particles.

(iii) Show that Q reaches the ground 0.8 s later than P.

[Cambridge AS and A Level Mathematics 9709, Paper 41 Q6 November 2009]

P

5 m

Q

KEY POINTS

1 The equation of motion

Newton’s second law gives the equation of motion for an object.

The resultant force = mass × acceleration or F = ma

The acceleration is always in the same direction as the resultant force. 

2 Connected objects

●● Reaction forces between two objects (such as tension forces in joining rods 

or strings) are equal and opposite.

●● When connected objects are moving along a line, the equations of motion 

can be obtained for each one separately or for a system containing more 

than one object. The number of independent equations is equal to the 

number of separate objects.
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Vectors

But the principal failing occurred in the sailing  

And the bellman, perplexed and distressed,  

Said he had hoped, at least, when the wind blew due East  

That the ship would not travel due West.

Lewis Carroll 

Adding vectors

●? If you walk 12 m east and then 5 m north, how far and in what direction will you 

be from your starting point? 

A bird is caught in a wind blowing east at 12 m s−1 and flies so that its speed 

would be 5 m s−1 north in still air. What is its actual velocity? 

 A sledge is being pulled by two children with forces of 12 N east and 5 N north. 

What single force would have the same effect? 

All these situations involve vectors. A vector has size (magnitude) and 
direction. By contrast a scalar quantity has only magnitude. There are many 
vector quantities; in this book you meet four of them: displacement, velocity, 
acceleration and force. When two or more dimensions are involved, the ideas 
underlying vectors are very important; however, in one dimension, along a 
straight line, you can use scalars to solve problems involving these quantities.

Although they involve quite different situations, the three problems above can 
be reduced to one by using the same vector techniques for finding magnitude 
and direction.

Displacement vectors

The instruction ‘walk 12 m east and then 5 m north’ can be modelled 

mathematically using a scale diagram, as in figure 5.1. The arrowed lines AB and 

BC are examples of vectors.

5
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We write the vectors as AB
→ 

 and BC 
→

. The arrow 
above the letters is very important as it indicates 
the direction of the vector. AB

→
 means from A 

to B. AB
→

 and BC 
→

 are examples of displacement 
vectors. Their lengths represent the magnitude of 
the displacements.

It is often more convenient to use a single letter 
to denote a vector. For example you might see the 
displacement vectors AB

→
 and BC 

→
 written as p and q (i.e. in bold print). When 

writing these vectors yourself, you should underline your letters, e.g. p and q.

The magnitudes of p and q are 
then shown as p  and q  or p and q 
(in italics). 
These are scalar quantities.

The combined effect of the two 
displacements AB

→
 (= p) and BC 

→
 (= q) 

is AC
→

 and this is called the resultant 
vector. It is marked with two arrows 
to distinguish it from p and q. The 
process of combining vectors in this 
way is called vector addition. We write 
AB

→
 + BC 

→
 = AC

→
 or p + q = s.

You can calculate the resultant using Pythagoras’ theorem and trigonometry. 

In triangle ABC AC = 12 52 2+  = 13
and tan α = 12

5

 α = 67° (to the nearest degree) 

The distance from the starting point is 13 m and the direction is 067°.

A special case of a displacement is a position vector. This is the displacement of a 
point from the origin.

Velocity and force

The other two problems that begin this chapter are illustrated in these diagrams.

12 m

5 mq

p

C

BA

N

Figure 5.1

12

5

α

α

q

p

s

C

BA

N

Figure 5.2

p = 12
q = 5

s = 12 52 2+

12 m s–1

5 m s–1 v

u

u  v

F

ED

N

Figure 5.3

12 N
5 N

F2

F1

F1  F2

J

HG

5 N

Figure 5.4

equivalent force  
on sledge

the lengths of GH and HJ 
represent 12 N and 5 N

actual velocity 
of bird

the lengths of DE and EF 
represent 12 m s−1 and 5 m s−1
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When DF  
→

 represents the velocity (u) of the wind and EF
→

 represents the velocity 

(v) of the bird in still air, the vector DF  
→

 represents the resultant velocity, u + v.

●? Why does the bird move in the direction DF? Think what happens in very small 

intervals of time. 

In figure 5.4, the vector GJ
→

 represents the equivalent (resultant) force. You 

know that it acts at the same point on the sledge as the children’s forces, but its 

magnitude and direction can be found using the triangle GHJ which is similar to 

the two triangles, ABC and DEF. 

The same diagram does for all, you just have to supply the units. The bird travels 
at 13 m s−1 in the direction of 067° and one child would have the same effect as 
the others by pulling with a force of 13 N in the direction 067°. In most of this 
chapter vectors are treated in the abstract. You can then apply what you learn to 
different real situations. 

Components of a vector

It is often convenient to write one vector in terms 

of two others called components.

The vector a in the diagram can be split into two 

components in an infinite number of ways. All 

you need to do is to make a one side of a triangle. 

It is most sensible, however, to split vectors into 

components in convenient directions and these 

directions are usually perpendicular. 

Using the given grid, a is 4 units east combined

with 2 units north.

You can write a in figure 5.5 as 
4
2



 . This is called a column vector. The unit vector    

1
0





  is in the direction east and the unit vector 

0
1





  is in the directions north.

Alternatively a can be written as 4i + 2j but this notation is not used in this book.

Note

You have already used components in your work and so have met the idea of  

vectors. For example, the total reaction between two surfaces is often split into two 

components. One (friction) is opposite to the direction of possible sliding and the 

other (normal reaction) is perpendicular to it. 

a

a

4

2

N

x642

y
6

4

2

0

Figure 5.5
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EXAMPLE 5.1 Four forces a, b, c and d are shown in 

the diagram. The units are in newtons.

(i) Write them in component form.

(ii)  Draw a diagram to show 2c and −d and 

write them in component form. 

(i) a = 
2
0



  

 b = 
0
2–







c = 
2
3



  

d = 
–2

2






(ii) 2c = 2 
2
3





         = 
4
6





−d = − 
–2

2






           = 
2
2–







Equal vectors and parallel vectors 

When two vectors, p and q, are equal then they must be equal in both magnitude 

and direction. If they are written in component form their components must  

be equal. 

So if p = 
a
b

1

1







and q = 
a
b

2

2







then a1 = a2 and b1 = b2.

x1– 1– 2 2 3 4 5

y

– 1

1

2

3

4

– 2

– 3

b

c

ad

Figure 5.6

x1O– 1– 2 2 3 4 5 6

y

1

2

3

4

5

6

7

2c

– d

Figure 5.7

x

y
b1

a1

p

O

b2

a2

q

Figure 5.8



C
o

m
p

o
n

e
n

ts o
f a

 v
e
c
to

r

89

M1
5

Thus in two dimensions, the statement p = q is the equivalent of two equations 

(and in three dimensions, three equations).

If p and q are parallel but not equal, 

they make the same angle with the x 

axis. 

Then      
b

a

b

a

a

a

b

b
1

1

2

2

1

2

1

2

= =or

●? If 
4
3



  is parallel to 

–8
y





  what is y ?

You will often meet parallel vectors when using Newton’s second law, as in the 

following example.

EXAMPLE 5.2 A force of 
6
8



  N acts on an object of mass 2 kg. Find the object’s acceleration as a 

column vector.

SOLUTION

Using  Force = Mass × Acceleration

 
6
8



  = 2 × Acceleration

So the acceleration is 
3
4



  m s−2.

Adding vectors in component form

In component form, addition and subtraction of vectors is simply carried out by 

adding or subtracting the components of the vectors. 

x

y

b2

b1

a1

p

O

q

a2

Figure 5.9

Notice that the force 
and acceleration are 

parallel vectors
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EXAMPLE 5.3 Two vectors a and b are given by a =  
2
3



  and b = 

–1
4





 .

(i) Find the vectors a + b and a − b.

(ii) Verify that your results are the same if you use a scale drawing. 

SOLUTION

(i) a + b = 
2
3



  + 

–1
4







a − b = 2
3



  − 

–1
4







 

(ii) 

 

 

 

 

 

 

 

 

 

 

 From the diagram you can see that a + b = 
1
7





 and a − b = 
3
1–





 .

 These vectors are the same as those obtained in part (i). 

●? a and b are the position vectors of points A and B

as shown in the diagram.

How can you write the displacement vector AB
→

 in 

terms of a and b?

 

 

= 
1
7





= 
3
1–







a
– b

a  (– b)  a  b

a  b
b

a

+

+
x1412108642

y

2

0

4

6

8

Figure 5.10

B

b

O

A

a

Figure 5.11
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EXERCISE 5A  1  The diagram shows a grid of 1 m squares.
A person walks first east and then north. 
How far should the person walk in each 
of these directions to travel

(i) from A to B?

(ii) from B to C?

(iii) from A to D?

2 The diagram shows nine different forces. The units are newtons. Write each of 

the forces as a column vector.

3 Two forces a and b are given in newtons by a = 
2
1–





  and b = 

1
4



 . Write the 

force 3a − 2b as a column vector.

4 Four forces a, b, c and d are given in newtons by a = 
4
1




 , b = 

–1
0





 , c = 

–
–

2
3





  

and d = 
2
6



 . Write each of the following forces as a column vector.

(i) a + 2b (ii) 2c − 3d

(iii) a + c − 2b (iv) −2a + 3b + 4d.

5 A, B and C are the points (1, 2), (5, 1) and (7, 8).

(i) Write down the position vectors of these three points. 

(ii) Find the displacement vectors AB
→

, BC 
→

 and C 
→

A.

(iii) Draw a diagram to show the position vectors of A, B and C and your 

answers to part (ii). 

6 A, B and C are the points (0, −3), (2, 5) and (3, 9).

(i) Write down the position vectors of these three points. 

(ii) Find the displacement vectors AB
→

 and BC 
→

.

(iii) Show that the three points all lie on a straight line. 

7 A, B, C and D are the points (4, 2), (1, 3), (0, 10) and (3, d).

(i) Find the value of d so that DC is parallel to AB. 

(ii) Find a relationship between BC 
→

 and AD
→

. What is ABCD?

C

A

D

B

N

a

c

e g

k

fd

h

b
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8 Four forces a, b, c and d are given in newtons by a = 
1
1



 , b = 

1
2





 ,

c = 
3
4−





  and d = 1

2( ).
A force given by 2a + 3b + c − 8d acts on a particle of mass 3 kg. Find the 

acceleration of the particle as a column vector and write down its magnitude.

The magnitude and direction of vectors written in  
component form

At the beginning of this chapter the magnitude of a vector was found by using 

Pythagoras’ theorem (see page 86). The direction was given using bearings, 

measured clockwise from the north. 

When the vectors are in an x−y plane, a mathematical convention is used for 

direction. Starting from the x axis, angles measured anticlockwise are positive 

and angles in a clockwise direction are negative as in figure 5.12.

      

Using the notation in figure 5.13, the magnitude and direction can be written in 

general form.

Magnitude of the vector a
a

a a1

2
1
2

2
2




= +

Direction                               tanθ =
a
a

2

1

y

x
+180° 0°

y

x– 180°
0°

y

x

B

A

Figure 5.12

a2 

a1 

a

θ

Figure 5.13

angle B is −110°

angle A is 110°
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EXAMPLE 5.4 Find the magnitude and direction of the vectors 
4
3





 , 

4
3−





 , 

−





4
3

 and −
−







4
3

.

SOLUTION

First draw diagrams so that you can see which lengths and acute angles to find. 

The vectors in each of the diagrams have the same magnitude and using 

Pythagoras’ theorem, the resultants all have magnitude 4 3 52 2+ = .

The angles θ are also the same size in each diagram and can be found using

tan θ = 3
4

 θ = 37°

The angles the vectors make starting from the x axis specify their directions: 

   
4
3





  37°

 
4
3−





  −37°

 
−





4
3

 180° − 37° = 143°

 −
−







4
3

 −143°

EXERCISE 5B  Make use of sketches to help you in this exercise. 

1 Find the magnitude and direction of 

(i) 
6
8−





  (ii) 

−





4
0

 (iii) 
−
−






1
2

.

2 Find the resultant, F1 + F2, of the two forces F1 = 
10
40





  and F2 = 

20
10−





  and 

then find its magnitude and direction. 

3 Find the resultant of the three forces F1 = 
−





1
5

, F2 = 
2

10−




  and

F3 = 
−





2
7

 and then find its magnitude and direction. 

Figure 5.14

3 –3

4

θ

–33

–4

–4

θ

θ

 

 

4

 

θ3 –3

4

θ

–33

–4

–4

θ

θ

 

 

4

 

θ
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●? (i) Show that 

0 6
0 8
.
.





  is a unit vector.

(ii) Find unit vectors in the directions of

(a) 8
6





  (b) 

1
1−





 .

Resolving vectors

A vector has magnitude 10 units and it makes an 

angle of 60° with the x axis. How can it be 

represented in component form? 

In the diagram: 

AC
AB

 = cos 60°    and     BC
AB

 = sin 60°

AC  = AB cos 60° BC = AB sin 60°

 = 10 cos 60°        = 10 sin 60°

The vector can then be written as 
10 cos 60°
10 sin 60°





  = 

5
8 66.





  (to 3 s.f.). 

In a similar way, any vector a with 

magnitude a which makes an angle 

α with the x axis can be written in 

component form as 

a = a
a

cos
sin

α
α





 .

When α is an obtuse angle, this expression is still true. For example, when

α = 120° and a = 10,

a = a
a

cos
sin

α
α







 = 
10 cos 120°
10 sin 120°







 = 
−





5
8 66.

However, it is usually easier to write 

a = 
− °

°






10 60
10 60

cos
sin

60°

10 sin 60°10

10 cos 60° C

B

A

Figure 5.15

OB  a cos α

AB  a sin α

BO

A

a

α

Figure 5.16

B O

A

120°60°

10 sin 60°
10

10 cos 60°

Figure 5.17

cos 120° = −cos 60°
sin 120° = sin 60°

AB is the opposite 
side to α so use sin.

OB is the adjacent 
side to α so use cos.

OA = a = a 
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EXAMPLE 5.5 Two forces P and Q have magnitudes 4 and 5 in the directions shown in the 

diagram.

Find the magnitude and direction of the resultant force P + Q.

SOLUTION

P = 4 30
4 30

cos
sin

°
°







 = 3 46
2
.





Q = − °
°







5 60
5 60

cos
sin

 = −





2 5
4 33

.

.

P + Q = 
3 46
2
.



  + 

−





2 5
4 33

.

.

 = 
0 96
6 33
.
.







This resultant is shown in Figure 5.19. 

Magnitude P Q+ = +0 96 6 332 2. .

 = 40 99.

 = 6.4

Direction tan θ = 6 33
0 96

.

.
 = 6.59

 θ = 81.4°

The force P + Q has magnitude 6.4 and direction 81.4°

relative to the positive x direction.

P

30°

4
60°

Q

30°

5

60°

y

x

y

x

Figure 5.18

P Q

y

x

6.33

0.96
θ

Figure 5.20

Q

P

P  Q

5

y

x

4

60°

30°

Figure 5.19
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EXERCISE 5C 1  Write the following forces as column vectors. 

(i)  (ii)  

(iii)  (iv)  

2 Draw a diagram showing each of the following displacements. Write each as a 

column vector in directions east and north respectively.

(i) 130 km, bearing 060°

(ii) 250 km, bearing 130°

(iii) 400 km, bearing 210°

(iv) 50 km, bearing 300°

3 A boat has a speed of 4 km h−1 in still water and sets its course north-east in 

an easterly current of 3 km h−1. Write each velocity as a column vector in 

directions east and north and hence find the magnitude and direction of the 

resultant velocity.

4 A boy walks 30 m north and then 50 m south-west.

(i) Draw a diagram to show the boy’s path.

(ii) Write each displacement using column vectors in directions east and 

north.

(iii) In which direction should he walk to get directly back to his starting point?

5 (a) Write each of the following forces as a column vector.

(b) Find the resultant of each set of vectors.

(i)  (ii)   

20°
6 N

y

x

y

x

y

x

y

x
50°

3 N

40°

7 N

60°

2.9 N

20°
6 N

y

x

y

x

y

x

y

x
50°

3 N

40°

7 N

60°

2.9 N

20°
6 N

y

x

y

x

y

x

y

x
50°

3 N

40°

7 N

60°

2.9 N

20°
6 N

y

x

y

x

y

x

y

x
50°

3 N

40°

7 N

60°

2.9 N

40°

30°

3.1 N
2 N

2 N

3 N

q

r

u

v

w

t

s

p

3.4 N

2.8 N

2.7 N 2.7 N

30°
10°

30°
60°

70°

y y

x x
40°

30°

3.1 N
2 N

2 N

3 N

q

r

u

v

w

t

s

p

3.4 N

2.8 N

2.7 N 2.7 N

30°
10°

30°
60°

70°

y y

x x
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6 (i)  Find the distance and bearing of Sean relative to his starting point if he 
goes for a walk with the following three stages.
Stage 1: 600 m on a bearing 030°
Stage 2: 1 km on a bearing 100°
Stage 3: 700 m on a bearing 340°

(ii)  Shona sets off from the same place at the same time as Sean. She walks at 
the same speed but takes the stages in the order 3–1–2.  
How far apart are Sean and Shona at the end of their walks? 

7 The diagram shows the journey of a yacht.

Express OA  
→

, AB
→

 and OB  
→

 as column vectors 
based on directions east and north  
respectively.

8 The diagram shows the big wheel ride at a 
fairground. The radius of the wheel is 5 m  
and the length of the arms that support  
each carriage is 1 m.

Express the position vector of the carriages  
A, B, C and D as column vectors. 

9 Two walkers set off from the same place in different directions. After a period 

they stop. Their displacements are 
2
5



  and 

–3
4





  where the distances are in 

kilometres and the directions are east and north. On what bearing and for 

what distance does the second walker have to walk to be reunited with the 

first (who does not move)? 

100 m

200 m

A

B

O

40°

N

E

N

O
80°

A

D
C

B

40°
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KEY POINTS

1 A scalar quantity has only magnitude (size). 

A vector quantity has both magnitude and direction. 

Displacement, velocity, acceleration and force are all vector quantities.

2 Vectors may be represented in either magnitude–direction form or in 

component form.

Magnitude–direction form Component form

Magnitude, r ; direction, θ         
a
a

1

2







where r = a a1
2

2
2+  a1 = r cos θ

and tan θ = 
a
a

2

1
 a2 = r sin θ = r cos (90° − θ)

3 When two or more vectors are added, the resultant is obtained. Vector 

addition may be done graphically or algebraically.

p + q = 
p
p

1

2





  + 

q
q

1

2





  = 

p q
p q

1 1

2 2

+
+







4 Multiplication by a scalar: n
a
a

na
na

1

2

1

2





 = 





5 The position vector of a point P is O
→

, its displacement from a fixed origin.

6 When A and B have position vectors a and b, AB
→

 = b − a.

7 Equal vectors have equal magnitude and are in the same direction.

p
p

1

2





  = 

q
q

1

2





  ⇒ p1 = q1 and p2 = q2.

8 When 
p
p

1

2





  and 

q
q

1

2





  are parallel, 

p
q

p
q

1

1

2

2
= .

θ

r

a1  r cos θ

a2  r sin θ
y

x
θ

r

a1 

a2 

θ

r

a1  r cos θ

a2  r sin θ
y

x
θ

r

a1 

a2 

p  (– q)  p  q

p  q

p

q

p2

p1

q2

q1

q1

– q
p

p1

q2p2

P



Forces in equilibrium and 
resultant forces 

Give me matter and motion and I will construct the Universe. 

René Descartes 

Finding resultant forces 

●? This cable car is stationary. Are the tensions in the cable greater than the weight 

of the car? 

A child on a sledge is being pulled up a smooth slope of 20° by a rope which 

makes an angle of 40° with the slope. The mass of the child and sledge together  

is 20 kg and the tension in the rope is 170 N. Draw a diagram to show the forces 

acting on the child and sledge together. In what direction is the resultant of  

these forces? 

When the child and sledge are 

modelled as a particle, all the 

forces can be assumed to be 

acting at a point. There is  

no friction force because the 

slope is smooth. Here is the 

force diagram. 

T

R

mg

20°

40°

Figure 6.1

normal reaction tension

weight
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●? The sledge is sliding along the slope. What direction is the resultant force acting 

on it? 

You can find the normal reaction and the resultant force on the sledge using two 

methods. 

Method 1: Using components 

This method involves resolving forces into components in two perpendicular 

directions as in Chapter 5. It is easiest to use the components of the forces 

parallel and perpendicular to the slope in the directions shown. 

Resolve parallel to the slope (): 

The resultant   F = 170 cos 40° – 20g sin 20° 

                  = 61.8 (to 3 s.f.)

Resolve perpendicular to the slope (): 

R + 170 sin 40° − 20g cos 20° = 0 

                      R = 20g cos 20° − 170 sin 40° 

                         = 78.7 (to 3 s.f.)

The normal reaction is 78.7 N and the resultant is 61.8 N up the slope. 

20°

40°

170

R

20g

components
of weight

components
of tension

20g

20g sin 20°

170 sin 40°

170 cos 40°

20g cos 20°

20°

170

40°

Figure 6.2

A dot in this angle could 
remind you that it is  

(90° – angle of the slope)

making this the angle of slope

The force R is perpendicular 
to the slope so it has no 

component in this direction.

cos (90° – 20°) = sin 20°

There is no resultant in 
this direction because 
the motion is parallel 

to the slope.
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Alternatively, you could have worked in column vectors as follows. 

Note

Try resolving horizontally and vertically. You will obtain two equations in the two 

unknowns R and F. It is perfectly possible to solve these equations, but quite a lot 

of work. It is much easier to choose to resolve in directions which ensure that one 

component of at least one of the unknown forces is zero. 

Once you know the resultant force, you can work out the acceleration of the 

sledge using Newton’s second law. 

       F = ma 

 61.8 = 20a 

The acceleration is 3.1 m s−2 (correct to 1 d.p.). 

Method 2: Scale drawing 

An alternative is to draw a scale diagram with the three forces represented by 

three of the sides of a quadrilateral taken in order (with the arrows following each 

other) as shown in figure 6.3. The resultant is represented by the fourth side AD. 

This must be parallel to the slope. 

●? In what order would you draw the lines in the diagram? 

From the diagram you can estimate

the normal reaction to be about 80 N 

and the resultant 60 N. This is a 

reasonable estimate, but components 

are more precise. 

Normal 
reaction

Tension Weight Resultant

Perpendicular to slope

Parallel to slope

0 170 40

170 40

20 20

R

g




+

°
°






+

cos

sin

– sin °°
°






=




– cos20 20 0g

F

60°

20°

70°

A

B
0 50

scale

100 N

C

170

mg  200

R

F D

Figure 6.3 

resultant 
force
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●? What can you say about the sledge in the cases when 

 (i)  the length AD is not zero? 

 (ii)   the length AD is zero so that the starting point on the 

quadrilateral is the same as the finishing point? 

 (iii)  BC is so short that the point D is to the left of A as shown 

in figure 6.4? 

EXERCISE 6A    For questions 1 to 6, carry out the following steps. All forces are in newtons. 

(i)  Draw a scale diagram to show the polygon of the forces and the resultant. 

(ii)  State whether you think the forces are in equilibrium and, if not, estimate the 

magnitude and direction of the resultant. 

(iii)  Write the forces in component form, using the directions indicated and so 

obtain the components of the resultant.  

Hence find the magnitude and direction of the resultant as on page 95. 

(iv)  Compare your answers to parts (ii) and (iii). 

60°

B

200
R

F

C

A
D
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Figure 6.4 

5 N

6 N

5 N

6 N

10 N

30°
3 N

10 N

5 N3 N

4 N 6 N

6 N 4 N

45°

45°

45°

45°60°

60°

2 N

2 N

18.66 N

50 N

32.14 N38.30 N24.77 N

30 N

10 N

20° 40°
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7   Forces of magnitudes 7 N, 10 N and 15 N act on a particle in the directions 

shown in the diagram.

(i) Find the component of the resultant of the three forces

(a) in the x direction,

(b) in the y direction.

(ii) Hence find the direction of the resultant.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q3 June 2009]

Forces in equilibrium 

When forces are in equilibrium their vector sum is zero and the sum of their 

resolved parts in any direction is zero. 

EXAMPLE 6.1  A brick of mass 3 kg is at rest on a rough plane inclined at an angle of 30° to the 

horizontal. Find the friction force F N, and the normal reaction R N of the plane 

on the brick. 

SOLUTION 

The diagram shows the forces acting on the brick. 

Use directions parallel and perpendicular to the plane, as shown. Since the brick 

is in equilibrium the resultant of the three forces acting on it is zero. 

80° 50°

10 N
15 N

7 N x

y

R

F

3g

(90°  angle of slope)

All forces in newtons

Components
of weight

30°

30°
30°

3g cos 30°

3g sin 30°

3g

Figure 6.5 
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Resolving parallel to the slope:           F − 30 sin 30° = 0                 1

                                            F = 15

Resolving perpendicular to the slope:    R − 30 cos 30° = 0                 2

                                            R = 26.0 (to 3 s.f.)

Written in vector form the equivalent is 

F
R0
0 30 30

30 30




 +





 +

− °
− °



sin
cos


 = 





0
0

This leads to the equations 1  and 2 . 

The triangle of forces 

When there are only three (non-parallel) forces acting and they are in 

equilibrium, the polygon of forces becomes a closed triangle as shown for the 

brick on the plane. 

Then            
F
g3

 = cos 60° 

                 F = 30 cos 60° = 15 N 

and similarly     R = 30 sin 60° = 26.0 N (to 3 s.f.)

This is an example of the theorem known as the triangle of forces. 

●● When a body is in equilibrium under the action of three non-parallel  

forces, then 

(i)  the forces can be represented in magnitude and direction by the sides 

of a triangle 

(ii) the lines of action of the forces pass through the same point. 

When more than three forces are in equilibrium the first statement still holds but 

the triangle is then a polygon. The second is not necessarily true. 

3g = 30

3g

F

R

30° All forces in newtons

60°

Figure 6.6

30

R

F

°60°

3g

All forces in newtons

Figure 6.7

The triangle is closed 
because the resultant 

is zero.
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Often mechanics questions involve the angles 30°, 45° and 60° so that you can 

use the exact values of cos θ, sin θ and tan θ in your working. Here is a table to 

remind you of the exact values.

θ° cos θ° sin θ° tan θ°

30°
3

2
1
2

1

3

45°  
1

2

1

2
1

60°  
1
2

3
2

3

EXAMPLE 6.2  This example illustrates two methods for solving problems involving forces in 

equilibrium. With experience, you will find it easier to judge which method is 

best for a particular problem. 

A sign of mass 10 kg is to be suspended by two strings arranged as shown in the 

diagram below. Find the tension in each string. 

SOLUTION 

The force diagram for this situation is given below. 

SIGN

30° 45°

Figure 6.9 

30° 45°

All forces in newtons

10g

T1

T2

Figure 6.10

You can see where these values 
come from in Pure Mathematics 1 

Chapter 7.
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Method 1: Resolving forces 

Vertically (↑):       T1 sin 30° + T2 sin 45° − 10g = 0 

                                  1
2

T1 + 1
2

T2 = 100                  1

Horizontally (→):       − T1 cos 30° + T2 cos 45° = 0 

                                                 − 3
2

T1 + 1
2

T2 = 0                      2

Subtracting 2  from 1              1
2

3
2

+



  T1 = 100

                                   1.366T1 = 100 
                                        T1 = 73.2 
Back substitution gives                     T2 = 89.7 

The tensions are 73.2 N and 89.7 N (to 1 d.p.). 

Method 2: Triangle of forces 

Since the three forces are 

in equilibrium they can be 

represented by the sides of a 

triangle taken in order. 

●? In what order would you draw the three lines in this diagram? 

You can estimate the tensions by measurement. This will tell you that T1 ≈  73 
and T2 ≈ 90 in newtons. 

Alternatively, you can use the sine rule to calculate T1 and T2 accurately. 

In the triangle ABC, ∠CAB = 60° and ∠ABC = 45°, so ∠BCA = 75°.

So
T T1 2

45 60
100

75sin sin sin°
=

°
=

°

giving            T1 =  100 45

75

sin

sin

°
°

   and   T2 =  
100 60

75

sin

sin

°
°

As before the tensions are found to be 73.2 N and 89.7 N. 

60°
30°

45°
45°

0 20 N

C

scale

B

A

10g

T1

T2

Figure 6.11
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●? Lami’s theorem states that when three forces 

acting at a point as shown in the diagram are in  

equilibrium then  

 

                

F F F1 2 3

sin sinα β γ
= =

sin
.

 Sketch a triangle of forces and say how the angles  

in the triangle are related to α, β and γ. Hence 

explain why Lami’s theorem is true. 

EXAMPLE 6.3  The picture shows three men involved in moving a packing case up to the top floor 

of a warehouse. Brian is pulling on a rope which passes round smooth pulleys at X 

and Y and is then secured to the point Z at the end of the loading beam. 

The wind is blowing directly towards the building. To counteract this, Eric is 

pulling on another rope, attached to the packing case at P, with just enough force 

and in the right direction to keep the packing case central between X and Z. 

At the time of the picture the men are holding the packing case motionless. 

(i)  Draw a diagram showing all the forces acting on the packing case using T1 

and T2 for the tensions in Brian’s and Eric’s ropes, respectively. 

(ii)   Write down equations for the horizontal and vertical equilibrium of the 

packing case. 

F2

F1

F3
α

βγ

Figure 6.12 

β β

α

wind

force F N
packing
case
weight W N

Eric

David

Brian

warehouse

loading beam Z

Y

P

Xroof

Figure 6.13
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In one particular situation, W = 100, F = 50, α = 45° and β = 75°. 

(iii) Find the tension T1. 

(iv)  Explain why Brian has to pull harder if the wind blows more strongly. 

[MEI adapted] 

SOLUTION 

(i)  The diagram shows all the forces

acting on the packing case and  

the relevant angles. 

(ii)  Equilibrium equations 

 Resolving horizontally (→):

T1 cos β + T2 cos α − F − T1 cos β = 0 

                           T2 cos α − F = 0                             1

 Resolving vertically (↑): 

T1 sin β + T1 sin β − T2 sin α − W = 0 

          2T1 sin β − T2 sin α − W = 0                             2

(iii) When F = 50 and α = 45° equation 1   gives 

                                                          T2 cos 45° = 50 

                                                      ⇒ T2 sin 45° = 50 

 Substituting in 2  gives     2T1 sin β − 50 − W = 0

 So when W = 100 and β = 75°           2T1 sin 75° = 150

                                            T1
150

2 75
=

°sin

 The tension in Brian’s rope is 77.65 N = 78 N (to the nearest newton).

(iv)  When the wind blows more strongly, 

F increases. Given that all the angles 

remain unchanged, Eric will have to pull 

harder so the vertical component of T2 

will increase. This means that T1 must 

increase and Brian must pull harder.

T1 NT1 N

β β

T2 N

F N

α

W N

Figure 6.14  Force diagram

This tells you that T2 is 
50

cos 45°
 

but you don’t need to work it out 
because cos 45° = sin 45°.

Or F = T2 cos α, so as F increases, 
T2 increases ⇒ T2 sin α + W 

increases ⇒ 2 T1 sin β increases. 
Hence T1 increases.

The tension is the 
same all along Brian’s 

rope because the 
pulleys are smooth.
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EXERCISE 6B 1  The picture shows a boy, Halley, 

holding onto a post while his two older 

sisters, Sheuli and Veronica, try to 

pull him away. Using perpendicular 

horizontal directions the forces, in 

newtons, exerted by the two girls are: 

Sheuli  
24
18







Veronica 
25
60







(i) Calculate the magnitude and 

direction of the force of each of the girls.

(ii) Use a scale drawing to estimate the magnitude and direction of the 
resultant of the forces exerted by the two girls.

(iii) Write the resultant as a vector and so calculate (to 3 significant figures) 
its magnitude and direction.

Check that your answers agree with those obtained by scale drawing  
in part (ii). 

2 The diagram shows a girder CD of mass 20 tonnes being held stationary by a 
crane (which is not shown). The rope from the crane (AB) is attached to a 
ring at B. Two ropes, BC and BD, of equal length attach the girder to B; the 
tension in each of these ropes is T N. 

(i)  Draw a diagram showing the forces acting on the girder. 

(ii)  Write down, in terms of T, the horizontal and vertical components of the 
tensions in the ropes acting at C and D. 

(iii)  Hence show that the tension in the rope BC is 155.6 kN (to 1 d.p.). 

(iv) Draw a diagram to show the three forces acting on the ring at B.

(v) Hence calculate the tension in the rope AB.

(vi) How could you have known the answer to part (v) without any calculations?

B

DC

A

40°40°
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3  The diagram shows a simple model 

of a crane. The structure is at rest  

in a vertical plane. The rod and 

cables are of negligible mass and the 

load suspended from the joint at A  

is 30 N. 
(i)  Draw a diagram showing the 

forces acting on 

 (a)  the load

 (b)  the joint at A. 

(ii)  Calculate the forces in the rod and cable 1 and state whether they are in 
compression or in tension. 

4 An angler catches a very large fish. When he tries to weigh it he finds that it is 
more than the 10 kg limit of his spring balance. He borrows another spring 
balance of exactly the same design and uses the two to weigh the fish, as 
shown in figure (A). Both balances read 8 kg. 

(i)  What is the mass of the fish? 

The angler believes the mass of the fish is a record and asks a witness to 

confirm it. The witness agrees with the measurements but cannot follow the 

calculations. He asks the angler to weigh the fish in two different positions, 

still using both balances. These are shown in figures (B) and (C). 

Assuming the spring balances themselves to have negligible mass, state the 
readings of the balances as set up in 

(ii)  figure (B)

(iii)  figure (C). 

(iv)  Which of the three methods do you think is the best? 

cable 1

rod

load

cable 2

A

70°

80°

70° 70°

a stick of
mass 0.25 kg

(A) (B) (C)
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5 The diagram shows a device for crushing scrap cars. The light rod AB is 

hinged at A and raised by a cable which runs from B round a pulley at D and 

down to a winch at E. The vertical strut EAD is rigid and strong and AD = AB. 

A weight of mass 1 tonne is suspended from B by the cable BC. When the 

weight is correctly situated above the car it is released and falls on to the car. 

Just before the weight is released the rod AB makes angle θ with the upward 

vertical AD and the weight is at rest. 

(i)  Draw a diagram showing the forces acting at point B in this position. 

(ii)  Explain why the rod AB must be in thrust and not in tension. 

(iii)  Draw a diagram showing the vector sum of the forces at B (i.e. the 

polygon of forces). 

(iv)  Calculate each of the three forces acting at B when 

 (a)  θ = 90°                         (b)  θ = 60°. 

6 Four wires, all of them horizontal, are attached to the top of a telegraph pole 

as shown in the plan view on the right. The pole is in equilibrium and tensions 

in the wires are as shown. 

(i)  Using perpendicular directions as shown in the diagram, show that the

 force of 60 N may be written as 
.
.

15 5
58 0−





  N (to 3 significant figures). 

(ii)  Find T in both component form and magnitude and direction form. 

(iii)  The force T is changed to 
40
35





  N. Show that there is now a resultant

 force on the pole and find its magnitude and direction. 

A

B

C

E

A

B
C

D

E

A B

C

D

E

A
θ

B
C

D

E

D

θ

T N

75°

30°

45°

60 N

40 N

50 N
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7 A ship is being towed by two tugs. Each tug exerts forces on the ship as 

indicated. There is also a drag force on the ship. 

(i) Write down the components of the tensions in the towing cables along 

and perpendicular to the line of motion, l, of the ship.

(ii) There is no resultant force perpendicular to the line l. Find T2. 

(iii) The ship is travelling with constant velocity along the line l. Find the 

magnitude of the drag force acting on it.

8 A skier of mass 50 kg is skiing down a 15° slope.

(i) Draw a diagram showing the forces acting on the skier.

(ii) Resolve these forces into components parallel and perpendicular to 

the slope.

(iii) The skier is travelling at constant speed. Find the normal reaction of the 

slope on the skier and the resistance force on her.

(iv) The skier later returns to the top of the slope by being pulled up it at 

constant speed by a rope parallel to the slope. Assuming the resistance on 

the skier is the same as before, calculate the tension in the rope.

9 The diagram shows a block of mass 

5 kg on a rough inclined plane. The 

block is attached to a 3 kg weight 

by a light string which passes over a 

smooth pulley and is on the point 

of sliding up the slope. 

(i)  Draw a diagram showing the forces acting on the block. 

(ii)  Resolve these forces into components parallel and perpendicular to 

the slope. 

(iii)  Find the force of resistance to the block’s motion. 

The 3 kg weight is replaced by one of mass m kg. 

(iv)  Find the value of m for which the block is on the point of sliding down 

the slope, assuming the resistance to motion is the same as before. 

l

T1  6000 N

T2

30°
20°

3 kg
25°

5 kg
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10  Two husky dogs are pulling a sledge. They both exert forces of 60 N but at 

different angles to the line of the sledge, as shown in the diagram. The sledge 

is moving straight forwards. 

(i) Resolve the two forces into components parallel and perpendicular to the 

line of the sledge. 

(ii) Hence find 

 (a) the overall forward force from the dogs 

 (b) the sideways force. 

The resistance to motion is 20 N along the line of the sledge but up to 400 N 

perpendicular to it. 

(iii) Find the magnitude and direction of the overall horizontal force on the 

sledge. 

(iv)  How much force is lost due to the dogs not pulling straight forwards? 

11 One end of a string of length 1 m is fixed to a mass of 1 kg and the other end 

is fixed to a point A. Another string is fixed to the mass and passes over a 

frictionless pulley at B which is 1 m horizontally from A but 2 m above it. The 

tension in the second string is such that the mass is held at the same 

horizontal level as the point A. 

(i)  Show that the tension in the horizontal string fixed to the mass and to A 

is 5 N and find the tension in the string which passes over the pulley at B. 

Find also the angle that this second string makes with the horizontal. 

(ii)  If the tension in this second string is slowly increased by drawing more 

of it over the pulley at B describe the path followed by the mass. Will the 

point A, the mass, and the point B, ever lie in a straight line? Give reasons 

for your answer. 

60 N

60 N

15°

10°

2 m

B

A
1 m 1 m
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12   A particle P is in equilibrium on a smooth horizontal table under the action 

of horizontal forces of magnitudes F N, F N, G N and 12 N acting in the 

directions shown. Find the values of F and G.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q3 June 2006]

13 Each of three light strings has a particle attached to one of its ends. The other 

ends of the strings are tied together at a point A. The strings are in 

equilibrium with two of them passing over fixed smooth horizontal pegs, and 

with the particles hanging freely. The weights of the particles, and the angles 

between the sloping parts of the strings and the vertical, are as shown in the 

diagram. Find the values of W1 and W2.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q3 November 2005]

Newton’s second law in two dimensions 

When the forces acting on an object are not in equilibrium it will have an 

acceleration and you can use Newton’s second law to solve problems about  

its motion. 

The equation F = ma is a vector equation. The resultant force acting on a particle 

is equal in both magnitude and direction to the mass × acceleration. It can be 

written in components as 

F

F
m

a

a

1

2

1

2






=







 

so that F1 = ma1 and F2 = ma2. 

●? What direction is the resultant force acting on a child sliding on a sledge down a 

smooth straight slope inclined at 15° to the horizontal? 

20°

50° P

12 N

F N

G N

F N

A

5 N

60°40°

W1 N W2 N
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EXAMPLE 6.4 Anna is sledging. Her sister gives her a push at the top of a smooth straight 15° 

slope and lets go when she is moving at 2 m s−1. She continues to slide for 

5 seconds before using her feet to produce a braking force of 95 N parallel to the 

slope. This brings her to rest. Anna and her sledge have a mass of 30 kg. 

How far does she travel altogether? 

SOLUTION 

To answer this question, you need to know Anna’s acceleration for the two parts 

of her journey. These are constant so you can then use the constant acceleration 

formulae. 

Sliding freely 

15°

finish
C

Anna brakes here 5 s

B

start
A

a1 m s 2

a2 m s 2

0 m s 1

2 m s 1

v m s 1

Figure 6.15

15°

15°

30g

All forces are in newtons

R

a1 m s 2

2 m s 1

30g cos 15°

30g sin 15°

R

Figure 6.16 

The acceleration is 
down the plane.

Initial velocity
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Using Newton’s second law in the direction of the acceleration gives:

30g sin 15° = 30a1 

                             a1 = 10 sin 15° 

                             a1 = 2.58...

Now you know a1 you can find how far Anna slides (s1) and her speed (v m s−1) 

before braking. 

Given u = 2, t = 5, a = 10 sin 15°:

 s = ut + 1
2
 at 2

s1 = 2 × 5 + 1
2
 × 10 sin 15° × 25 

s1 = 42.352...

So Anna slides 42.35 m (to the nearest centimetre).

v = u + at 

v = 2 + 10 sin 15° × 5 

v = 14.940...

So Anna’s speed is 14.9 m s−1 (to 3 s.f.).

Braking

By Newton’s second law down the plane:

 Resultant force = mass × acceleration 

30g sin 15° − 95 = 30a2 

                         a2 = −0.578... 

v2 = u2 + 2as 

 0 = 14.9...2 − 2 × 0.578... × s2

s2 =  14 9
2 0 578

2. ...
. ...×

 = 192.94...

Anna travels a total distance of (42.35... + 192.94...)m = 235 m to the nearest 

metre. 

Resultant force down the 
plane = mass × acceleration

15°

15°

30g

All forces are in newtons

R

95
a2 m s 2

14.9 m s 1

30g cos 15°

95

30g sin 15°

0 m s 1

R

Figure 6.17 

Given u = 14.9, v = 0, 
a = −0.578... 

Store all the working values in the memory of 
your calculator so that you avoid rounding errors.
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●? Make a list of the modelling assumptions used in Example 6.4. What would be 

the effect of changing these? 

EXAMPLE 6.5 A skier is being pulled up a smooth 25° dry ski slope by a rope which makes an 

angle of 35° with the horizontal. The mass of the skier is 75 kg and the tension in 

the rope is 350 N. Initially the skier is at rest at the bottom of the slope. The slope 

is smooth. Find the skier’s speed after 5 s and find the distance he has travelled in 

that time. 

SOLUTION 

In the diagram the skier is modelled as a particle. Since the skier moves parallel to 

the slope consider motion in that direction. 

      Resultant force = mass × acceleration 

350 cos 10° − 75g sin 25° = 75 × a 

                             a = 27 71
75
. ... = 0.369...

This is a constant acceleration so use the constant acceleration formulae. 

v = u + at 

v = 0 + 0.369... × 5 

Speed = 1.85 m s− 1 (to 2 d.p.). 

s = ut + 1
2
 at 2

s = 0 + 1
2
 × 0.369... × 25

Distance travelled = 4.62 m (to 2 d.p.). 

75g

All forces in newtons

25°

25°

10°

350

a m s 2

75g cos 25°

75g sin 25°

R

R  350 sin 10°

350 cos 10°

Figure 6.18 

Taking g as 10

u = 0, a = 0.369..., t = 5
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EXAMPLE 6.6 A car of mass 1000 kg including its driver, is being pushed along a horizontal 

road by three people as indicated in the diagram. The car is moving in the 

direction PQ.

(i) Calculate the total force exerted by the three people in the direction PQ.
(ii)  Calculate the force exerted overall by the three people in the direction 

perpendicular to PQ.
(iii)  Explain briefly why the car does not move in the direction perpendicular to PQ.

Initially the car is stationary and 5 s later it has a speed of 2 m s−1 in the direction PQ.

(iv)  Calculate the force of resistance to the car’s movement in the direction PQ 
assuming the three people continue to push as described above.

[MEI, part] 

SOLUTION

(i) Resolving in the direction PQ, the components in newtons are:

Kelly     200 cos 15° = 193
Dean                                    270
Emma   240 cos 25° = 218

 Total force in the direction PQ = 681 N.

(ii) Resolving perpendicular to PQ (↑) the components are:

Kelly   − 200 sin 15° = −51.8
Dean                   0
Emma      240 sin 25° = 101.4

 Total force in the direction perpendicular to PQ = 49.6 N.

(iii)  The car does not move perpendicular to PQ because the force in this 
direction is balanced by a sideways (lateral) friction force between the tyres 
and the road. 

(iv) To find the acceleration, a m s−2, of the car:

v = u + at

2 = 0 + 5a

a = 0.4

When the resistance to motion in the direction QP is R N, figure 6.20 shows 

all the horizontal forces acting on the car and its acceleration.

15°

25°

270 N
200 N

240 N

QP Dean

Kelly

Emma

Figure 6.19

u = 0, v = 2, t = 5
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 The resultant force in the direction PQ is (681 – R) N. So by Newton II

681 – R = 1000a
                R = 681– 400

 The resistance to motion in the direction Q is 281 N. 

EXERCISE 6C  1  The forces F1 = 
4
5−





  and F2 = 

2
1





 , in newtons, act on a particle of mass 4 kg. 

(i)  Find the acceleration of the particle in component form. 

(ii)  Find the magnitude of the particle’s acceleration. 

2 Two forces P1 and P2 act on a particle of mass 2 kg giving it an acceleration of

     
5
5





  (in m s−2). 

(i)  If P1 = 
6
1−





  (in newtons), find P2. 

(ii)  If instead P1 and P2 both act in the same direction but P1 is four times as 

big as P2 find both forces. 

3 The diagram shows a girl pulling a sledge at steady speed across level 

snow-covered ground using a rope which makes an angle of 30° to the 

horizontal. The mass of the sledge is 8 kg and there is a resistance force of 10 N. 

(i)  Draw a diagram showing the forces acting on the sledge. 

(ii)  Find the magnitude of the tension in the rope. 

The girl comes to an area of ice where the resistance force on the sledge is only 

2 N. She continues to pull the sledge with the same force as before and with the 

rope still taut at 30°. 

(iii)  What acceleration must the girl have in order to do this? 

(iv)  How long will it take to double her initial speed of 0.4 m s−1? 

30°

49.6

681

49.6

All forces in newtons

a m s–1

R 1000 kg

Figure 6.20 

sideways friction

The weight of the car is in the third 
dimension, perpendicular to this plane 
and is balanced by the normal reaction 

of the ground.
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4 The picture shows a situation which has arisen between two anglers, Davies 

and Jones, standing at the ends of adjacent jetties. Their lines have become 

entangled under the water with the result that they have both hooked the same 

fish, which has mass 1.9 kg. Both are reeling in their lines as hard as they can in 

order to claim the fish. 

(i)  Draw a diagram showing the forces acting on the fish. 

(ii)  Resolve the tensions in both anglers’ lines into horizontal and vertical 

components and so find the total force acting on the fish. 

(iii)  Find the magnitude and direction of the acceleration of the fish. 

(iv)  At this point Davies’ line breaks. What happens to the fish? 

5 A crate of mass 30 kg is being pulled up a smooth slope inclined at 30° to the 

horizontal by a rope which is parallel to the slope. The crate has acceleration 

0.75 m s−2. 

(i)  Draw a diagram showing the forces acting on the crate and the direction of 

its acceleration. 

(ii)  Resolve the forces in directions parallel and perpendicular to the slope. 

(iii)  Find the tension in the rope. 

(iv)  The rope suddenly snaps. What happens to the crate? 

6 A cyclist of mass 60 kg rides a cycle of mass 7 kg. The greatest forward force 

that she can produce is 200 N but she is subject to air resistance and friction 

totalling 50 N. 

(i)  Draw a diagram showing the forces acting on the cyclist when she is going 

uphill. 

(ii)  What is the angle of the steepest slope that she can ascend? 

The cyclist reaches a slope of 8° with a speed of 5 m s−1 and rides as hard as she 
can up it. 

(iii)  Find her acceleration and the distance she travels in 5 s. 

(iv)  What is her speed now? 

Davies
50°40°

30 N 40 N

Jones
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7 A builder is demolishing the chimney of a house and slides the old bricks 

down to the ground on a straight chute 10 m long inclined at 42° to the 

horizontal. Each brick has mass 3 kg. 

(i) Draw a diagram showing the forces acting on a brick as it slides down 

the chute, assuming the chute to have a flat cross section and a smooth  

surface. 

(ii)  Find the acceleration of the brick. 

(iii)  Find the time the brick takes to reach the ground. 

In fact the chute is not smooth and the brick takes 3 s to reach the ground. 

(iv)  Find the frictional force acting on the brick, assuming it to be constant. 

8 A box of mass 80 kg is to be pulled along a horizontal floor by means of a light 

rope. The rope is pulled with a force of 100 N and the rope is inclined at 20° to 

the horizontal, as shown in the diagram. 

(i)  Explain briefly why the box cannot be in equilibrium if the floor is 

smooth.

In fact the floor is not smooth and the box is in equilibrium. 

(ii)  Draw a diagram showing all the external forces acting on the box. 

(iii)  Calculate the frictional force between the box and the floor and also the 

normal reaction of the floor on the box, giving your answers correct to 

three significant figures. 

The maximum value of the frictional force between the box and the floor is 

120 N and the box is now pulled along the floor with the rope always inclined 

at 20° to the horizontal. 

(iv)  Calculate the force with which the rope must be pulled for the box 

to move at a constant speed. Give your answer correct to three  

significant figures. 

(v)  Calculate the acceleration of the box if the rope is pulled with a force of 

140 N. 

[MEI] 

floor

rope

100 N

20°80 kg
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9  A block of mass 5 kg is at rest on a plane which is inclined at 30° to the 

horizontal. A light, inelastic string is attached to the block, passes over a 

smooth pulley and supports a mass m which is hanging freely. The part of the 

string between the block and the pulley is parallel to a line of greatest slope of 

the plane. A friction force of 15 N opposes the motion of the block. The 

diagram shows the block when it is slipping up the plane at a constant speed.  

Give your answers correct to two significant figures. 

(i)  Copy the diagram and mark in all the forces acting on the block and the 

hanging mass, including the tension in the string. 

(ii)  Calculate the value of m when the block slides up the plane at a constant 

speed and find the tension in the string. 

(iii)  Calculate the acceleration of the system when m = 6 kg and find the 

tension in the string in this case. 

[MEI] 

30°
15 N

5 kg

m kg

KEY POINTS

1 The forces acting on a particle can be combined to form a resultant force  

using scale drawing or calculation by resolving the forces into their 

components.

Scale drawing

●● Draw an accurate diagram, then measure the resultant. This is less 

accurate than calculation.

●● To calculate the resultant, find the components of the various forces and 

add them. Then find the magnitude and directions of the resultant.

F2

F1

F3

R
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Components

When R = 
X
Y







   X = F1 cos α + F2 cos β − F3 cos γ

   Y = −F1 sin α + F2 sin β + F3 sin γ

         | R | = X 2 2+ Y

     tan θ = 
Y
X

2 Equilibrium

When the resultant R is zero, the forces are in equilibrium.

3 Triangle of forces

If a body is in equilibrium under three non-parallel forces, their lines of  

action are concurrent and they can be represented by a triangle.

4 Newton’s second law

When the resultant R is not zero there is an acceleration a and R = ma.

5 When a particle is on a slope, it is usually helpful to resolve in directions 

parallel and perpendicular to the slope.

F2

F1

F3

R
Y

β

θ

α
γ

X
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General motion in a 
straight line

The goal of applied mathematics is to understand reality 

mathematically.

G. G. Hall 

So far you have studied motion with constant acceleration in a straight line, but 

the motion of a car round the Brand’s Hatch racing circuit shown in figure 7.1 

is much more complex. In this chapter you will see how to deal with variable 

acceleration.

The equations you have used for constant acceleration do not apply when the 

acceleration varies. You need to go back to first principles. 

Consider how displacement, velocity and acceleration are related to each other. 

The velocity of an object is the rate at which its position changes with time. When 

the velocity is not constant the position–time graph is a curve. 

N

Hailwood     Hill

Pit garages

Pa
dd

oc
k Hill Bend

Druids
Bend

G
ra

ha
m

Hi

ll Bend

Co
op

er
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ra
ig

ht

Br
ab

ha
m

St
ra

ig
ht

Surtees McLaren

Clark Curve Clear
way

s

St
irl

ing Bend

Pilg
rim

s Dro
p

Haw
th

or
n Hill

Hawthorn Bend
Derek Minter Straight

W
es

tfi
el

d
B

en
d

Dingle

Del
l

Dingle Dell Corner

SOUTH
BANK

R
al

ly
 S

ta
ge

Figure 7.1

7



U
sin

g
 d

iffe
re

n
tia

tio
n

125

M1
7

The rate of change of the position 

is the gradient of the tangent to the 

curve. You can find this by 

differentiating.

v = d
d

s
t

 1

Similarly, the acceleration is the rate 

at which the velocity changes, so 

a = 
d
d

d

d

v
t

s

t
=

2

2
 2

Using differentiation

When you are given the position of a moving object in terms of time, you can use 

equations 1  and 2  to solve problems even when the acceleration is not constant. 

EXAMPLE 7.1 An object moves along a straight line so that its position at time t in seconds is 

given by

x = 2t 3 − 6t (in metres) (t   0).

(i) Find expressions for the velocity and acceleration of the object at time t. 

(ii) Find the values of x, v and a when t = 0, 1, 2 and 3. 

(iii) Sketch the graphs of x, v and a against time. 

(iv) Describe the motion of the object. 

SOLUTION

(i) Position         x = 2t 3 − 6t 1

Velocity         v = d
d

x
t

 = 6t 2 − 6 2

Acceleration a = 
d
d

v
t

 = 12t 3

You can now use these three equations to solve problems about the motion of the 

object. 

O
time

position

Figure 7.2

O
time

velocity

Figure 7.3

velocity is the 
gradient of 

tangent

acceleration is 
the gradient of 

tangent
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(ii) When t =   0   1   2   3

From 1  x =   0 −4   4 36

From 2 v = −6   0 18 48

From 3 a =   0 12 24 36

(iii) The graphs are drawn under each other so that you can see how they relate.

(iv)  The object starts at the 

origin and moves 

towards the negative 

direction, gradually 

slowing down.

At t = 1 it stops 

instantaneously and 

changes direction, 

returning to its initial 

position at about t = 1.7. 

It then continues 

moving in the positive 

direction with  

increasing speed. 

The acceleration is 

increasing at a constant 

rate. This cannot go 

on for much longer or 

the speed will become 

excessive.

1 time t (s)2 3

position
x (m) x  2t3  6t

5

0
– 5

10

15

20

25

30

35

1 time t (s)2 3

velocity
v (m s 1)

v  6t2  6

5

0

– 5

10

15

20

25

30

35

40

1 time t (s)2 3

acceleration
a (m s 2) a  12t

5

0

10

15

20

25

30

35

Figure 7.4

gradient = 0
when a = 0

gradient = 0
when v = 0
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EXERCISE 7A 1 In each of the following cases 

(a) find an expression for the velocity 

(b) use your equations to write down the initial position and velocity 

(c) find the time and position when the velocity is zero.

(i) s = 10 + 2t − t 2

(ii) s = −4t + t 2

(iii) x = t 3 − 5t 2 + 4

2 In each of the following cases

(a) find an expression for the acceleration

(b) use your equations to write down the initial velocity and acceleration.

(i) v = 4t + 3

(ii) v = 6t 2 − 2t + 1

(iii) v = 7t − 5

3 The distance travelled by a cyclist is modelled by

s = 4t + 0.5t 2 in S.I. units

Find expressions for the velocity and the acceleration of the cyclist at time t.

4 In each of the following cases

(a) find expressions for the velocity and the acceleration

(b) draw the acceleration–time graph and, below it, the velocity–time graph 

with the same scale for time and the origins in line

(c) describe how the two graphs for each object relate to each other

(d) describe how the velocity and acceleration change during the motion of 

each object.

(i) x = 15t – 5t 2

(ii) x = 6t 3 – 18t 2 – 6t + 3

Finding displacement from velocity

How can you find an expression for the position of an object when you know its 

velocity in terms of time?

One way of thinking about this is to remember that v = d
d

s
t

, so you need to do the

opposite of differentiation, that is integrate, to find s.

s = ∫ v dt The dt indicates that you must write 
v in terms of t before integrating.
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EXAMPLE 7.2 The velocity (in m s−1) of a model train which is moving along straight rails is

v = 0.3t 2 − 0.5

Find its displacement from its initial position 

(i) after time t 

(ii) after 3 seconds. 

SOLUTION

(i) The displacement at any time is s = ∫ v dt

 = ∫ (0.3t 2 − 0.5) dt

 = 0.1t 3 − 0.5t + c

 To find the train’s displacement from its initial position, put s = 0 when t = 0. 

 This gives c = 0 and so s = 0.1t 3 − 0.5t.

  You can use this equation to find the displacement at any time before the 

motion changes. 

(ii) After 3 seconds, t = 3 and s = 2.7 − 1.5.

The train is 1.2 m from its initial position. 

!  When using integration don’t forget the constant. This is very important in 

mechanics problems and you are usually given some extra information to help 

you find the value of the constant. 

The area under a velocity–time graph

In Chapter 1 you saw that the area 

under a velocity–time graph represents  

a displacement. Both the area under the 

graph and the displacement are found  

by integrating. To find a particular 

displacement you calculate the area 

under the velocity–time graph by 

integration using suitable limits.

The distance travelled between the  

times T1 and T2 is shown by the 

shaded area on the graph.

s = area = 
T

T

1

2∫  v dt

time (s)

velocity
(m s 1)

T1 T2

Figure 7.5
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EXAMPLE 7.3 A car moves between two sets of traffic lights, stopping at both. Its speed v m s−1 

at time t s is modelled by 

v = 1
20

t (40 − t), 0   t   40.

Find the times at which the car is stationary and the distance between the two sets 

of traffic lights. 

SOLUTION

The car is stationary when v = 0. Substituting this into the expression for the 

speed gives

0 = 1
20

t (40 − t)

⇒           t = 0 or t = 40.

These are the times when the car starts to move away from the first set of traffic 

lights and stops at the second set.

The distance between the two sets of lights is given by 

Distance d= ∫ 1
200

40
40( – )t t t

 = ∫1
20

40 2

0

40
( – )t t td

 = 





1
20

20
3

2
3

0

40

t
t

–

 = 533 3.m

Finding velocity from acceleration

You can also find the velocity from the acceleration by using integration. 

 a = 
d
d

v
t

⇒ v = ∫ a dt

The next example shows how you can obtain equations for motion using 

integration.

200

v

t40

10

20

Figure 7.6

The area is the 
displacement in the 

first 40 s.
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EXAMPLE 7.4 The acceleration of a particle (in m s−2) at time t seconds is given by

a = 6 − t.

The particle is initially at the origin with velocity −2 m s−1. Find an expression for 

(i) the velocity of the particle after t s

(ii) the position of the particle after t s.

Hence find the velocity and position 6 s later. 

SOLUTION

The information given may be summarised as follows: 

at t = 0, s = 0 and v = −2;

at time t, a = 6 − t.                           1

(i) d
d

v
t

 = a = 6 − t

Integrating gives 

                v = 6t − 1
2
t  2 + c

When t = 0, v = −2

so     −2 = 0 − 0 + c

     c = −2

At time t

                 v = 6t − 1
2
t  2 − 2    2

(ii) d
d

s
t

 = v = 6t − 1
2
t  2 − 2 

 Integrating gives 

s = 3t 2 − 1
6
t  3 − 2t + k

 When t = 0, s = 0

 so 0 = 0 − 0 − 0 + k

      k = 0

 At time t

s = 3t 2 − 1
6
t 3 − 2t                  3

!  Notice that two different arbitrary constants (c and k) are necessary when you 

integrate twice. You could call them c1 and c2 if you wish.

40
time t (s)

acceleration
a (m s 1)

a 6  t

82 6

5

10

40
time t (s)

velocity
v (m s 1)

s 3t2     t3  2t

82 6

5

– 2

10

15

40
time t (s)

position
s (m)

82 6

50
1
6

v  6t    t2  21
2

Figure 7.7
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Equations 1  , 2  and 3  can now be used to give more information about the 

motion in a similar way to the suvat formulae. (The suvat formulae only apply 

when the acceleration is constant.)

When t = 6 v = 36 − 18 − 2 = 16 from 2

When t = 6 s = 108 − 36 − 12 = 60 from 3

The particle has a velocity of +16 m s−1 and is at +60 m after 6 s.

EXERCISE 7B  1 Find expressions for the position in each of these cases.

(i) v = 4t + 3; initial position 0.

(ii) v = 6t  3 − 2t  2 + 1; when t = 0, s = 1.

(iii) v = 7t 2 − 5; when t = 0, s = 2.

2 The speed of a ball rolling down a hill is modelled by v = 1.7t (in m s−1).

(i) Draw the speed–time graph of the ball.

(ii) How far does the ball travel in 10 s?

3 Until it stops moving, the speed of a bullet t s after entering water is modelled 

by v = 216 − t 3 (in m s−1).

(i) When does the bullet stop moving?

(ii) How far has it travelled by this time?

4 During braking the speed of a car is modelled by v = 40 − 2t 2 (in m s−1) until it 

stops moving.

(i) How long does the car take to stop?

(ii) How far does it move before it stops?

5 In each case below, the object moves along a straight line with acceleration a in 

m s−2. Find an expression for the velocity v (m s−1) and position x (m) of each 

object at time t s.

(i) a = 10 + 3t − t 2; the object is initially at the origin and at rest.

(ii) a = 4t − 2t 2; at t = 0, x = 1 and v = 2.

(iii) a = 10 − 6t ; at t = 1, x = 0 and v = −5.

The constant acceleration formulae revisited

●? In which of the cases in question 1 above is the acceleration constant? Which 

constant acceleration formulae give the same results for s, v and a in this case? 

Why would the constant acceleration formulae not apply in the other two cases?
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You can use integration to prove the equations for constant acceleration.

When a is constant (and only then)

 v = ∫ a dt = at + c1

When t = 0, v = u u = 0 + c1

 ⇒ v = u + at 1

You can integrate this again to find s = ut + 1
2
at 2 + c2

If s = s0 when t = 0, c2 = s0 and s = ut + 1
2
at 2 + s0 2

●? How can you use these to derive the other equations for constant acceleration?

s = 1
2
 (u + v) t + s0  3

v 2 − u2 = 2a (s − s0)  4

 s = vt − 1
2
at 2 + s0  5

EXERCISE 7C  1  A boy throws a ball up in the air from a height of 1.5 m and catches it at the 

same height. Its height in metres at time t seconds is

y = 1.5 + 15t − 5t 2.

(i) What is the vertical velocity v m s−1 of the ball at time t ?

(ii) Find the position, velocity and speed of the ball at t = 1 and t = 2.

(iii) Sketch the position–time, velocity–time and speed–time graphs for 

0  t  3.

(iv) When does the boy catch the ball?

(v) Explain why the distance travelled by the ball is not equal to 
0

3

∫  v dt and 

state what information this expression does give.

2 An object moves along a straight line so that its position in metres at time  

t  seconds is given by

x = t 3 − 3t 2 − t + 3    (t  0).

(i) Find the position, velocity and speed of the object at t = 2.

(ii) Find the smallest time when

(a) the position is zero

(b) the velocity is zero.

(iii) Sketch position–time, velocity–time and speed–time graphs for 0  t  3.

(iv) Describe the motion of the object.

u and a are both 
constant
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3 Two objects move along the same straight line. The velocities of the objects 

(in m s−1) are given by v1 = 16t − 6t 2 and v2 = 2t − 10 for t  0.

Initially the objects are 32 m apart. At what time do they collide?

4 An object moves along a straight line so that its acceleration (in m s−2) is 

given by a = 4 − 2t. It starts its motion at the origin with speed 4 m s−1 in the 

direction of increasing x.

(i) Find as functions of t the velocity and position of the object.

(ii) Sketch the position–time, velocity–time and acceleration–time graphs for 

0  t  2.

(iii) Describe the motion of the object.

5 Nick watches a golfer putting her ball 24 m from the edge of the green and 

into the hole and he decides to model the motion of the ball. Assuming that 

the ball is a particle travelling along a straight line he models its distance,  

s metres, from the golfer at time t seconds by

s = –3
2
 t  2 + 12t 0  t  4.

(i) Find the value of s when t = 0, 1, 2, 3 and 4. 

(ii) Explain the restriction 0  t  4. 

(iii) Find the velocity of the ball at time t seconds. 

(iv) With what speed does the ball enter the hole? 

(v) Find the acceleration of the ball at time t seconds. 

6 Andrew and Elizabeth are having a race over 100 m. Their accelerations  

(in m s−2) are as follows: 

Andrew Elizabeth

a = 4 − 0.8t   0  t  5 a = 4 0  t  2.4

a = 0       t  5 a = 0 t  2.4 

(i) Find the greatest speed of each runner. 

(ii) Sketch the speed–time graph for each runner. 

(iii) Find the distance Elizabeth runs while reaching her greatest speed. 

(iv) How long does Elizabeth take to complete the race? 

(v) Who wins the race, by what time margin and by what distance? 

On another day they race over 120 m, both running in exactly the same 

manner.

(vi) What is the result now? 
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7 Christine is a parachutist. On one of her descents her vertical speed, v m s−1, 
t s after leaving an aircraft is modelled by 

v = 8.5t 0  t  10
v = 5 + 0.8(t − 20)2 10  t  20
v = 5 20  t  90
v = 0 t  90

(i) Sketch the speed–time graph for Christine’s descent and explain the 
shape of each section. 

(ii) How high is the aircraft when Christine jumps out? 

(iii) Write down expressions for the acceleration during the various phases of 
Christine’s descent. What is the greatest magnitude of her acceleration? 

8 A man of mass 70 kg is standing in a lift which, at a particular time, has an 
acceleration of 1.6 m s−2 upwards. He is holding a parcel of mass 5 kg by a 
single string. 

(i) Draw a diagram marking the forces acting on the parcel and the direction 

of the acceleration. 

(ii) Show that the tension in the string is 58 N.

(iii) Calculate the reaction of the lift floor on the man. 

During the first two seconds after starting from rest, the lift has acceleration 

in m s−2 modelled by 3t (2 − t), where t is in seconds. The maximum tension 

the string can withstand is 60 N.

(iv) By investigating the maximum acceleration of the system, or otherwise, 

determine whether the string will break during this time.

 [MEI, adapted]

9 A bird leaves its nest for a short horizontal flight along a straight line and 

then returns. Michelle models its distance, s metres, from the nest at time 

t seconds by

s = 25t − 5
2
t 2,    0  t  10.

(i) Find the value of s when t = 2. 

(ii) Explain the restriction 0  t  10. 

lift

string

parcel
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(iii) Find the velocity of the bird at time t seconds. 

(iv) What is the greatest distance of the bird from the nest? 

(v) Michelle’s teacher tells her that a better model would be 

s = 10t 2 − 2t 3 + 1
10

t 4.

Show that the two models agree about the time of the journey and the 

greatest distance travelled. Compare their predictions about velocity and 

suggest why the teacher’s model is better. 

 [MEI]

10 A battery-operated toy dog starts at a point O and moves in a straight line.  

Its motion is modelled by the velocity–time graph below. 

(i) Calculate the displacement from O of the toy 

(a) after 10 seconds (b) after 16 seconds. 

(ii) Write down expressions for the velocity of the toy at time t seconds in the 
intervals 0  t  4 and 4  t  8.

(iii) Obtain expressions for the displacement from O of the toy at time            
t seconds in the intervals 0  t  4 and 4  t  8. 

An alternative model for the motion of the toy in the interval 0  t  10 is 

v = 2
3
 (10t − t 2), where v is the velocity in cm s−1.

(iv) Calculate the difference in the displacement from O after 10 seconds as 
predicted by the two models. 

 [MEI]

11 A particle P moves along the x axis in the positive direction. The velocity of 

P at time t s is 0.03t 2 m s−1. When t = 5 the displacement of P from the origin 
O is 2.5 m.

(i) Find an expression, in terms of t, for the displacement of P from O.

(ii) Find the velocity of P when its displacement from O is 11.25 m.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q5 June 2005]

12 A particle P travels in a straight line from A to D, passing through the points 

B and C. For the section AB the velocity of the particle is (0.5t − 0.01t 2) m s−1, 

where t s is the time after leaving A.

v (cm s–1)

t (s)2 4 6 8 10 12 14 16

8

0

– 8

16
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(i) Given that the acceleration of P at B is 0.1 m s−2, find the time taken for P 

to travel from A to B.

The acceleration of P from B to C is constant and equal to 0.1 m s−2.

(ii) Given that P reaches C with speed 14 m s−1, find the time taken for P to 

travel from B to C.

P travels with constant deceleration 0.3 m s−2 from C to D. Given that the 

distance CD is 300 m, find

(iii) the speed with which P reaches D,

(iv) the distance AD.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q7 June 2009]

13 A particle P starts from rest at the point A and travels in a straight line, 
coming to rest again after 10 s. The velocity–time graph for P consists of two 
straight line segments (see diagram). A particle Q starts from rest at A at the 
same instant as P and travels along the same straight line as P. The velocity of 

Q is given by v = 3t − 0.3t 2 for 0  t  10. The displacements from A of P 
and Q are the same when t = 10.

(i) Show that the greatest velocity of P during its motion is 10 m s−1.

(ii) Find the value of t, in the interval 0  t  5, for which the acceleration of 

Q is the same as the acceleration of P.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q6 June 2007]

14 (i) A man walks in a straight line from A to B with constant acceleration 

0.004 m s−2. His speed at A is 1.8 m s−1 and his speed at B is 2.2 m s−1. Find 

the time taken for the man to walk from A to B, and find the distance AB.

(ii) A woman cyclist leaves A at the same instant as the man. She starts from 

rest and travels in a straight line to B, reaching B at the same instant as 

the man. At time t s after leaving A the cyclist’s speed is k(200t − t 2) m s−1, 

where k is a constant. Find

(a) the value of k,

(b) the cyclist’s speed at B.

(iii) Sketch, using the same axes, the velocity–time graphs for the man’s 

motion and the woman’s motion from A to B.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q6 November 2007]

t (s)

(m sv 1)

105O
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15 A particle P starts from rest at the point A at time t = 0, where t is in seconds, 

and moves in a straight line with constant acceleration a m s−2 for 10 s. For 

10  t  20, P continues to move along the line with velocity v m s−1, where 

 v = 800
2t

 − 2. Find

(i) the speed of P when t = 10, and the value of a,

(ii) the value of t for which the acceleration of P is −a m s−2,

(iii) the displacement of P from A when t = 20.

[Cambridge AS and A Level Mathematics 9709, Paper 41 Q7 November 2009]

16 A vehicle is moving in a straight line. The velocity v m s−1 at time t s after the 

vehicle starts is given by 

v = A(t − 0.05t  2) for 0  t  15,

v = 
B

t 2
 for t  15,

where A and B are constants. The distance travelled by the vehicle between 

t = 0 and t = 15 is 225 m.

(i) Find the value of A and show that B = 3375.

(ii) Find an expression in terms of t for the total distance travelled by the 

vehicle when t  15.

(iii) Find the speed of the vehicle when it has travelled a total distance 

of 315 m.
 [Cambridge AS and A Level Mathematics 9709, Paper 41 Q7 June 2010]

KEY POINTS

1 Relationships between the variables describing motion

Position Velocity Acceleration

 differentiate

s v = d
d

s
t

 a = d
d

d

d

v
t

s

t
=

2

2

Acceleration Velocity Position

 integrate

a v = ∫ a dt s = ∫ v dt

2 Acceleration may be due to change in direction or change in speed or both.
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A model for friction 

Theories do not have to be ‘right’ to be useful. 

Alvin Toffler 

This statement about a road accident was offered to a magistrate’s court by a 

solicitor. 

‘Briefly the circumstances of the accident are that our client was driving his 

Porsche motor car. He had just left work at the end of the day. He was stationary 

at the junction with Victoria Road when a motorcyclist travelling north down 

Victoria Road lost control of his motorcycle due to excessive speed and collided 

with the front offside of our client’s motor car. 

‘The motorcyclist was braking when he lost control and left a 26-metre skid 

mark on the road. Our advice from an expert witness is that the motorcyclist was 

exceeding the speed limit of 50 km h−1.’ 

●? It is the duty of a court to decide whether the motorcyclist was innocent or 

guilty. Is it possible to deduce his speed from the skid mark? Draw a sketch map 

and make a list of the important factors that you would need to consider when 

modelling this situation. 

8
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A model for friction 

Clearly the key information is provided by the skid marks. To interpret it, you 

need a model for how friction works; in this case between the motorcycle’s tyres 

and the road. 

As a result of experimental work, Coulomb formulated a model for friction 

between two surfaces. The following laws are usually attributed to him. 

1 Friction always opposes relative motion between two surfaces in contact. 

2 Friction is independent of the relative speed of the surfaces. 

3 The magnitude of the frictional force has a maximum which depends on the 

normal reaction between the surfaces and on the roughness of the surfaces  

in contact. 

4 If there is no sliding between the surfaces 

F   µR  

where F is the force due to friction and R is the normal reaction. µ is called the 

coefficient of friction. 

5 When sliding is just about to occur, friction is said to be limiting and F = µR. 

6 When sliding occurs F = µR. 

According to Coulomb’s model, µ is a constant for any pair of surfaces. Typical 

values and ranges of values for the coefficient of friction µ are given in this table. 

Surfaces in contact µ

wood sliding on wood 0.2–0.6

metal sliding on metal 0.15–0.3

normal tyres on dry road 0.8

racing tyres on dry road 1.0

sandpaper on sandpaper 2.0

skis on snow 0.02

How fast was the motorcyclist going? 

You can now proceed with the problem. As an initial model, you might make the 

following assumptions: 

1 that the road is level; 

2 that the motorcycle was at rest just as it hit the car. (Obviously it was not, 

but this assumption allows you to estimate a minimum initial speed for the 

motorcycle); 
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3 that the motorcycle and rider may be treated as a particle, subject to 

Coulomb’s laws of friction with µ = 0.8 (i.e. dry road conditions). 

The calculation then proceeds as follows. 

Taking the direction of travel as positive, let the motorcycle and rider have 

acceleration a m s−2 and mass m kg. You have probably realised that the 

acceleration will be negative. The forces (in N) and acceleration are shown in 

figure 8.1. 

Applying Newton’s second law: 

perpendicular to the road, since there is no vertical acceleration we have 

R − mg = 0;                                           1

parallel to the road, there is a constant force −µR from friction, so we have

−µR = ma.                                           2

Solving for a gives 

a
R

m

mg

m
g= − = =µ

– – .
µ

µ

Taking g = 10 m s−2 and µ = 0.8 gives a = −8 m s−2. 

The constant acceleration equation 

v 2 = u 2 + 2as 

can be used to calculate the initial speed of the motorcycle. Substituting s = 26, 

v = 0 and a = 8 gives 

u = × × =2 8 26 120.4 m s– .

Convert this figure to kilometres per hour: 

speed = ×20 4 3600
1000

.

  = 73.4 km h−1. 

So this first simple model suggests that the motorcycle was travelling at a speed of 

at least 73.4 km h−1 before skidding began. 

direction of travel

mg

R

F  µR

a m s–2

Figure 8.1

From 1  R = mg
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●? How good is this model and would you be confident in offering the answer as 

evidence in court? Look carefully at the three assumptions. What effect do they 

have on the estimate of the initial speed? 

Modelling with friction 

Whilst there is always some frictional force between two sliding surfaces its 

magnitude is often very small. In such cases we ignore the frictional force and 

describe the surfaces as smooth. 

In situations where frictional forces cannot be ignored we describe the surface(s) 

as rough. Coulomb’s law is the standard model for dealing with such cases. 

Frictional forces are essential in many ways. For example, a ladder leaning against 

a wall would always slide if there were no friction between the foot of the ladder 

and the ground. The absence of friction in icy conditions causes difficulties for 

road users: pedestrians slip over, cars and motorcycles skid. 

Remember that friction always opposes sliding motion. 

●? In what direction is the frictional force between the back wheel of a cycle and the 

road? 

Historical note 

Charles Augustin de Coulomb was born in Angoulême in France in 1736 and is best 

remembered for his work on electricity rather than for that on friction. The unit for 

electric charge is named after him. 

Coulomb was a military engineer and worked for many years in the West Indies, 

eventually returning to France in poor health not long before the revolution. He 

worked in many fields, including the elasticity of metal, silk fibres and the design of 

windmills. He died in Paris in 1806. 

EXAMPLE 8.1  A horizontal rope is attached to a crate of mass 70 kg at rest on a flat surface. 

The coefficient of friction between the floor and the crate is 0.6. Find the 

maximum force that the rope can exert on the crate without moving it. 

SOLUTION 

The forces (in N) acting on the crate are shown in figure 8.2. Since the crate does 

not move, it is in equilibrium. 
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 Horizontal forces:    T = F 

Vertical forces:       R = mg 

                                                                   = 70 × 10 = 700 

The law of friction states that 

F  µR 

for objects at rest.

So in this case

F  0.6 × 700

F  420

The maximum frictional force is 420 N. As the tension in the rope and the force 

of friction are the only forces which have horizontal components, the crate will 

remain in equilibrium unless the tension in the rope is greater than 420 N. 

EXAMPLE 8.2 Figure 8.3 shows a block of mass 5 kg on a rough table. It is connected by light 

inextensible strings passing over smooth pulleys to masses of 4 kg and 7 kg which 

hang vertically. The coefficient of friction between the block and the table is 0.4. 

(i)  Draw a diagram showing the forces acting on the three blocks and the 

direction of acceleration if the system moves.

(ii) Show that acceleration does take place.

(iii) Find the acceleration of the system and the tensions in the strings.

SOLUTION 

(i)

 If acceleration takes place it is in the direction shown and a > 0. 

mg

R

F
T

Figure 8.2 

5 kg

B

CA 7 kg4 kg

Figure 8.3 

C

B

A

7g4g

5g

R

F
T2

T2T1

T1

a m s–2

a m s–2

a m s–2

Figure 8.4 

forces in N

F is the 
frictional force

forces in newtons 
µ = 0.4
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(ii)   When the acceleration is a m s−2 ( 0), Newton’s second law gives 

 for B, horizontally:  T2 − T1 − F = 5a  1

for A, vertically upwards:        T1 − 4g = 4a  2

for C, vertically downwards:       7g − T2 = 7a  3

Adding 1  , 2  and 3 ,          3g − F = 16a  4

B has no vertical acceleration so                  R = 5g 

The maximum possible value of F is µR = 0.4 × 5g = 2g.

In 4  , a can be zero only if F = 3g, so a > 0 and sliding occurs. 

(iii)  When sliding occurs, you can replace F by µR = 2g 

Then 4  gives   g = 16a 

 a = 0.625 

Back-substituting gives T1 = 42.5 and T2 = 65.625. 

The acceleration is 0.625 m s−2 and the tensions are 42.5 N and 65.6 N. 

EXAMPLE 8.3 Angus is pulling a sledge of mass 12 kg at steady speed across level snow by means 

of a rope which makes an angle of 20° with the horizontal. The coefficient of 

friction between the sledge and the ground is 0.15. What is the tension in the rope? 

SOLUTION 

Since the sledge is travelling at steady speed, the forces acting on it are in 

equilibrium. They are shown in figure 8.5. 

Horizontally:              T cos 20° = F 

                                                        = 0.15R 

Vertically:           T sin 20° + R = 12g 

                         R = 12 × 10 − T sin 20° 

Combining these gives 

                                        T cos 20° = 0.15 (12 × 10 − T sin 20°) 

             T (cos 20° + 0.15 sin 20°) = 0.15 × 12 × 10 

                                                     T = 18.2 (to 3 s.f.) 

The tension is 18.2 N. 

20°

12g

R
T

F

Figure 8.5 

forces in N  
µ = 0.15

F = µR when the 
sledge slides
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!  Notice that the normal reaction is reduced when the rope is pulled in an upward 

direction. This has the effect of reducing the friction and making the sledge easier 

to pull. 

EXAMPLE 8.4 A ski slope is designed for beginners. Its angle to the horizontal is such that skiers 

will either remain at rest on the point of moving or, if they are pushed off, move 

at constant speed. The coefficient of friction between the skis and the slope is 

0.35. Find the angle that the slope makes with the horizontal. 

SOLUTION 

Figure 8.6 shows the forces on the skier.

The weight mg can be resolved into components mg  cos  α perpendicular to the 

slope and mg sin α parallel to the slope. 

mg

R

F

α

Figure 8.6 

mg cos α

mg sin α

mg cos α
mg

mg sin α

F

R

α α

α

90°  α

Figure 8.7 

normal reaction

frictional force

You can think of the weight mg as the 
resultant of two resolved components
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Since the skier is in equilibrium (at rest or moving with constant speed) applying 

Newton’s second law: 

Parallel to slope:                  mg  sin  α − F = 0 

                                                            ⇒  F = mg  sin  α                                         1

Perpendicular to slope:  R − mg cos α = 0 

                                                            ⇒  R = mg cos  α                                         2

In limiting equilibrium or moving at constant speed, 

 F = µR 

              mg  sin  α = µ mg  cos  α 

⇒                                                    µ α
α

α= =sin
cos

tan .   

In this case µ = 0.35, so tan α = 0.35 and α = 19.3°. 

Notes

1 The result is independent of the mass of the skier. This is often found in simple 

mechanics models. For example, two objects of different mass fall to the ground 

with the same acceleration. However when such models are refined, for example to 

take account of air resistance, mass is often found to have some effect on the result. 

2 The angle for which the skier is about to slide down the slope is called the angle 

of friction. The angle of friction is often denoted by λ (lambda) and defined by 

tan λ = µ. 

When the angle of the slope (α) is equal to the angle of the friction (λ), it is just 

possible for the skier to stand on the slope without sliding. If the slope is slightly 

steeper, the skier will slide immediately, and if it is less steep he or she will find it 

difficult to slide at all without using the ski poles. 

EXERCISE 8A You will find it helpful to draw diagrams when answering these questions. 

1 A block of mass 10 kg is resting on a horizontal surface. It is being pulled by 

a horizontal force T (in N), and is on the point of sliding. Draw a diagram 

showing the forces acting and find the coefficient of friction when 

(i)  T = 10 

(ii)  T = 5. 

Substituting for F and
R from 1  and 2
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2 In each of the following situations, use the equation of motion for each 

object to decide whether the block moves. If so, find the magnitude of the 

acceleration and if not, write down the magnitude of the frictional force. 

(i)  µ = 1
2
  (ii)  µ = 1

4

(iii)  µ = 0.3 (iv)  µ = 1
4

3 The brakes on a caravan of mass 700 kg have seized so that the wheels will not 
turn. What force must be exerted on the caravan to make it move horizontally? 
(The coefficient of friction between the tyres and the road is 0.7.)

4 A boy slides a piece of ice of mass 100 g across the surface of a frozen lake. Its 
initial speed is 10 m s−1 and it takes 49 m to come to rest. 

(i)  Find the deceleration of the piece of ice. 

(ii)  Find the frictional force acting on the piece of ice. 

(iii)  Find the coefficient of friction between the piece of ice and the surface of 
the lake. 

(iv)  How far will a 200 g piece of ice travel if it, too, is given an initial speed of 
10 m s−1? 

5 Jasmine is cycling at 12 m s−1 when her bag falls off the back of her cycle. The 
bag slides a distance of 9 m before coming to rest. Calculate the coefficient of 
friction between the bag and the road. 

6 A box of mass 50 kg is being moved across a room. To help it to slide a 
suitable mat is placed underneath the box. 

(i)  Explain why the mat makes it easier to slide the box.

 A force of 100 N is needed to slide the mat at a constant velocity. 

(ii)  What is the value of the coefficient of friction between the mat and 
the floor? 

 A child of mass 20 kg climbs onto the box. 

(iii)  What force is now needed to slide the mat at constant velocity? 

2 kg

5 kg

2 kg

3 kg

µ 1
2 µ 1

4

10 kg 3 kg

4 kg 6 kg 2 kg 5 kg

µ  0.3 µ 1
4

2 kg

5 kg

2 kg

3 kg

µ 1
2 µ 1

4

10 kg 3 kg

4 kg 6 kg 2 kg 5 kg

µ  0.3 µ 1
4

2 kg

5 kg

2 kg

3 kg

µ 1
2 µ 1

4

10 kg 3 kg

4 kg 6 kg 2 kg 5 kg

µ  0.3 µ 1
4

2 kg

5 kg

2 kg

3 kg

µ 1
2 µ 1

4

10 kg 3 kg

4 kg 6 kg 2 kg 5 kg

µ  0.3 µ 1
4
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7 A car of mass 1200 kg is travelling at 30 m s−1 when it is forced to perform 
an emergency stop. Its wheels lock as soon as the brakes are applied so that 
they slide along the road without rotating. For the first 40 m the coefficient 
of friction between the wheels and the road is 0.75 but then the road surface 
changes and the coefficient of friction becomes 0.8. 

(i)  Find the deceleration of the car immediately after the brakes are applied. 

(ii)  Find the speed of the car when it comes to the change of road surface. 

(iii)  Find the total distance the car travels before it comes to rest. 

8 Shona, whose mass is 30 kg, is sitting on a sledge of mass 10 kg which is being 
pulled at constant speed along horizontal ground by her older brother, Aloke. 
The coefficient of friction between the sledge and the snow-covered ground is 
0.15. Find the tension in the rope from Aloke’s hand to the sledge when 

(i)  the rope is horizontal; 

(ii)  the rope makes an angle of 30° with the horizontal. 

9 In each of the following situations a brick is about to slide down a rough 
inclined plane. Find the unknown quantity. 

(i)  The plane is inclined at 30° to the horizontal and the brick has mass 2 kg: 
find µ. 

(ii)  The brick has mass 4 kg and the coefficient of friction is 0.7: find the 
angle of the slope. 

(iii)  The plane is at 65° to the horizontal and the brick has mass 5 kg: find µ. 

(iv)  The brick has mass 6 kg and µ is 1.2: find the angle of slope. 

10 The diagram shows a boy on a simple playground slide. The coefficient of 
friction between a typically clothed child and the slide is 0.25 and it can be 
assumed that no speed is lost when changing direction at B. The section AB is 
3 m long and makes an angle of 40° with the horizontal. The slide is designed so 
that a child, starting from rest, stops at just the right moment of arrival at C. 

(i)  Draw a diagram showing the forces acting on the boy when on the 
sloping section AB. 

(ii)  Calculate the acceleration of the boy when on the section AB. 

(iii)  Calculate the speed on reaching B. 

(iv)  Find the length of the horizontal section BC. 

40°

A

B C
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11 A chute at a water sports centre has been designed so that swimmers first 
slide down a steep part which is 10 m long and at an angle of 40° to the 
horizontal. They then come to a 20 m section with a gentler slope, 11° to the 
horizontal, where they travel at constant speed.

(i)  Find the coefficient of friction between a swimmer and the chute. 

(ii)  Find the acceleration of a swimmer on the steep part. 

(iii)  Find the speed at the end of the chute of a swimmer who starts at rest. 
(You may assume that no speed is lost at the point where the slope changes.) 

An alternative design of chute has the same starting and finishing points but 
has a constant gradient. 

(iv)  With what speed do swimmers arrive at the end of this chute? 

12 One winter day, Veronica is pulling a sledge up a hill with slope 30° to the 
horizontal at a steady speed. The weight of the sledge is 40 N. Veronica pulls 
the sledge with a rope inclined at 15° to the slope of the hill. The tension in 
the rope is 24 N. 

(i)  Draw a force diagram showing the forces on the sledge and find the 
values of the normal reaction of the ground and the frictional force on 
the sledge. 

(ii)  Show that the coefficient of friction is slightly more than 0.1. 

Veronica stops and when she pulls the rope to start again it breaks and the  

sledge begins to slide down the hill. The coefficient of friction is now 0.1. 

(iii)  Find the new value of the frictional force and the acceleration down 

the slope. 

[MEI, adapted] 

40°

11°

30°

15°

sledge

rope
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13 A box of weight 100 N is pulled at steady speed across a rough horizontal 

surface by a rope which makes an angle α with the horizontal. The coefficient 

of friction between the box and the surface is 0.4. Assume that the box slides 

on its underside and does not tip up. 

(i)  Find the tension in the string when the value of α is 

(a) 10° 

(b)  20° 

(c)  30° 

(ii)  Find an expression for the value of T for any angle α. 

(iii)  For what value of α is T a minimum? 

14 A and B are points on the same line of greatest slope of a rough plane inclined 

at 30° to the horizontal. A is higher up the plane than B and the distance AB is 

2.25 m. A particle P, of mass m kg, is released from rest at A and reaches B 1.5 s 

later. Find the coefficient of friction between P and the plane.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q3 June 2005]

15 Particles P and Q are attached to opposite ends of a light inextensible string. 

P is at rest on a rough horizontal table. The string passes over a small smooth 

pulley which is fixed at the edge of the table. Q hangs vertically below the 

pulley (see diagram). The force exerted on the string by the pulley has 

magnitude 4√2 N. The coefficient of friction between P and the table is 0.8.

(i) Show that the tension in the string is 4 N and state the mass of Q.

(ii) Given that P is on the point of slipping, find its mass.

A particle of mass 0.1 kg is now attached to Q and the system starts to move.

(iii) Find the tension in the string while the particles are in motion.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q5 June 2006]

P

Q
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16 Two light strings are attached to a block of mass 20 kg. The block is in 

equilibrium on a horizontal surface AB with the strings taut. The strings 

make angles of 60° and 30° with the horizontal, on either side of the block, 

and the tensions in the strings are T N and 75 N respectively (see diagram).

(i) Given that the surface is smooth, find the value of T and the magnitude 

of the contact force acting on the block.

(ii) It is given instead that the surface is rough and that the block is on the 

point of slipping. The frictional force on the block has magnitude 25 N 

and acts towards A. Find the coefficient of friction between the block and 

the surface.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q7 June 2007]

17 A block of mass 8 kg is at rest on a plane inclined at 20° to the horizontal. The 

block is connected to a vertical wall at the top of the plane by a string. The 

string is taut and parallel to a line of greatest slope of the plane (see diagram).

(i) Given that the tension in the string is 13 N, find the frictional and normal 

components of the force exerted on the block by the plane.

The string is cut; the block remains at rest, but is on the point of slipping 

down the plane.

(ii) Find the coefficient of friction between the block and the plane.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q4 June 2009]

30°60°

A

T N

75 N

B

20°
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18 A stone slab of mass 320 kg rests in equilibrium on rough horizontal ground. 

A force of magnitude X N acts upwards on the slab at an angle of θ to the 

vertical, where tan θ = 7
24

 (see diagram).

(i) Find, in terms of X, the normal component of the force exerted on the 

slab by the ground.

(ii) Given that the coefficient of friction between the slab and the ground is 3
8
, 

find the value of X for which the slab is about to slip.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q4 November 2005]

19 A rough inclined plane of length 65 cm is fixed with one end at a height of 

16 cm above the other end. Particles P and Q, of masses 0.13 kg and 0.11 kg 

respectively, are attached to the ends of a light inextensible string which 

passes over a small smooth pulley at the top of the plane. Particle P is held at 

rest on the plane and particle Q hangs vertically below the pulley (see 

diagram). The system is released from rest and P starts to move up the plane.

(i) Draw a diagram showing the forces acting on P during its motion up the 

plane.

(ii) Show that T – F > 0.32, where T N is the tension in the string and F N is 

the magnitude of the frictional force on P.

The coefficient of friction between P and the plane is 0.6.

(iii) Find the acceleration of P.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q7 November 2007]

X N

θ

P

Q 16 cm

65 cm
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20 A block of mass 20 kg is at rest on a plane inclined at 10° to the horizonal. 

A force acts on the block parallel to a line of greatest slope of the plane. The 

coefficient of friction between the block and the plane is 0.32. Find the least 

magnitude of the force necessary to move the block,

(i) given that the force acts up the plane,

(ii) given instead that the force acts down the plane.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q2 November 2008]

21 A particle P of mass 0.6 kg moves upwards along a line of greatest slope of a 

plane inclined at 18° to the horizontal. The deceleration of P is 4 m s−2.

(i) Find the frictional and normal components of the force exerted on P by 

the plane. Hence find the coefficient of friction between P and the plane, 

correct to 2 significant figures.

After P comes to instantaneous rest it starts to move down the plane with 

acceleration a m s−2.

(ii) Find the value of a.

[Cambridge AS and A Level Mathematics 9709, Paper 41 Q5 November 2009]

22 A small ring of mass 0.8 kg is threaded on a rough rod which is fixed 

horizontally. The ring is in equilibrium, acted on by a force of magnitude 7 N 

pulling upwards at 45° to the horizontal (see diagram).

(i) Show that the normal component of the contact force acting on the ring 

has magnitude 3.05 N, correct to 3 significant figures.

(ii) The ring is in limiting equilibrium. Find the coefficient of friction 

between the ring and the rod.

[Cambridge AS and A Level Mathematics 9709, Paper 41 Q3 June 2010]

45°

7 N
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INVESTIGATION

The sliding ruler 

Hold a metre ruler horizontally across your two index fingers and slide your 

fingers smoothly together, fairly slowly. What happens? 

Use the laws of friction to investigate what you observe. 

Optimum angle 

A packing case is pulled across rough ground by means of a rope making an angle 

θ with the horizontal. Investigate how the tension can be minimised by varying 

the angle between the rope and the horizontal. 

KEY POINTS

Coulomb’s laws

1 The frictional force, F, between two surfaces is given by

F < µR when there is no sliding except in limiting equilibrium

F = µR in limiting equilibrium

F = µR when sliding occurs

  where R is the normal reaction of one surface on the other and µ is the 

coefficient of friction between the surfaces.

2 The frictional force always acts in the direction to oppose sliding.

3 Remember that the value of the normal reaction is affected by a force which 

has a component perpendicular to the direction of sliding.
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Energy, work and power 

I like work: it fascinates me. I can sit and look at it for hours. 

Jerome K. Jerome 

●? 

This is a picture of a perpetual motion machine. What does this term mean and 

will this one work? 

Energy and momentum

When describing the motion of objects in everyday language the words energy 

and momentum are often used quite loosely and sometimes no distinction is 

made between them. In mechanics they must be defined precisely. 

For an object of mass m moving with velocity v: 

●● Kinetic energy = 1
2
 mv 2 (this is the energy it has due to its motion) 

●● Momentum = m v 

Notice that kinetic energy is a scalar quantity with magnitude only, but 

momentum is a vector in the same direction as the velocity. 

Both the kinetic energy and the momentum are liable to change when a force acts 

on a body and you will learn more about how the energy is changed in  

this chapter. 

9
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Work and energy 

In everyday life you encounter many forms of energy such as heat, light, 

electricity and sound. You are familiar with the conversion of one form of energy 

to another: from chemical energy stored in wood to heat energy when you burn 

it; from electrical energy to the energy of a train’s motion, and so on. The S.I. 

unit for energy is the joule, J. 

Mechanical energy and work 

In mechanics two forms of energy are particularly important. 

Kinetic energy is the energy which a body possesses because of its motion. 

●● The kinetic energy of a moving object = 1
2
 × mass × (speed)2.

Potential energy is the energy which a body possesses because of its position. It 

may be thought of as stored energy which can be converted into kinetic or other 

forms of energy. You will meet this again on page 163. 

The energy of an object is usually changed when it is acted on by a force. When a 

force is applied to an object which moves in the direction of its line of action, the 

force is said to do work. For a constant force this is defined as follows.

●● The work done by a constant force = force × distance moved in the direction 

of the force.

The following examples illustrate how to use these ideas.

EXAMPLE 9.1 A brick, initially at rest, is raised by a force averaging 40 N to a height 5 m above 

the ground where it is left stationary. How much work is done by the force? 

SOLUTION 

The work done by the force raising the brick is

40 × 5 = 200 J.
5 m

40 N

Figure 9.1 
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Examples 9.2 and 9.3 show how the work done by a force can be related to the 

change in kinetic energy of an object. 

EXAMPLE 9.2 A train travelling on level ground is subject to a resisting force (from the brakes 

and air resistance) of 250 kN for a distance of 5 km. How much kinetic energy 

does the train lose? 

SOLUTION 

The forward force is −250 000 N.

The work done by it is –250 000 × 5000 = −1250 000 000 J. 

Hence −1250 000 000 J of kinetic energy are gained by the train, in other words 

+ 1250 000 000 J of kinetic energy are lost and the train slows down. This energy is 

converted to other forms such as heat and perhaps a little sound. 

EXAMPLE 9.3 A car of mass m kg is travelling at u m s−1 when the driver applies a constant 

driving force of F N. The ground is level and the road is straight and air resistance 

can be ignored. The speed of the car increases to v m s−1 in a period of t s over a 

distance of s m. Find the relationship between F, s, m, u and v. 

SOLUTION 

Treating the car as a particle and applying Newton’s second law: 

F = ma 

a
F
m

=

Since F is assumed constant, the acceleration is constant also, so using 

v 2 = u 2 + 2as 

⇒ 

v u
Fs
m

mv mu Fs

Fs mv mu

2 2

2 2

2 2

2

1
2

1
2

1
2

= +

= +

= – 1
2

Thus 

●● work done by force = final kinetic energy −  initial kinetic energy of car. 

The work–energy principle 

Examples 9.4 and 9.5 illustrate the work–energy principle which states that: 

●● The total work done by the forces acting on a body is equal to the increase in 

the kinetic energy of the body. 

Work and energy 
have the same units
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EXAMPLE 9.4 A sledge of total mass 30 kg, initially moving at 2 m s−1, is pulled 14 m across 

smooth horizontal ice by a horizontal rope in which there is a constant tension of 

45 N. Find its final velocity. 

SOLUTION 

Since the ice is smooth, the work done by the force is all converted into kinetic 
energy and the final velocity can be found using 

work done by the force = final kinetic energy − initial kinetic energy 

                      45 × 14 = 1
2
 × 30 × v  2 − 1

2
 × 30 × 22 

So v  2 = 46 and the final velocity of the sledge is 6.8 m s−1 (to 2 s.f.).

EXAMPLE 9.5 The combined mass of a cyclist and her bicycle is 65 kg. She accelerated from rest 
to 8 m s−1 in 80 m along a horizontal road. 

(i)   Calculate the work done by the net force in accelerating the cyclist and 
her bicycle. 

(ii) Hence calculate the net forward force (assuming the force to be constant). 

SOLUTION 

(i)  The work done by the net force F is given by 

work = final K.E. − initial K.E. 

 = 1
2
 mv  2 − 1

2
 mu  2

 = 1
2
 × 65 × 82 − 0

 = 2080 J 

 The work done is 2080 J. 
(ii) Work done = Fs 
 = F × 80 
 So 80F = 2080 
 F = 26

 The net forward force is 26 N. 

45 N

2 m s–1
14 m

30 kg

v m s–1

Figure 9.2 

This is the 
resultant force 
on the sledge

v  8 m s–1

80 m

u  0 m s–1

F N

Figure 9.3 



E
n

e
rg

y,
 w

o
rk

 a
n

d
 p

o
w

e
r 

158

M1 

9

Work 

It is important to realise that: 

●● work is done by a force 

●● work is only done when there is movement 

●● a force only does work on an object when it has a component in the direction 

of motion of the object. 

It is quite common to speak of the work done by a person, say in pushing a lawn 

mower. In fact this is the work done by the force of the person on the  

lawn mower. 

Notice that if you stand holding a brick stationary above your head, painful 

though it may be, the force you are exerting on it is doing no work. Nor is this 

vertical force doing any work if you walk round the room keeping the brick at 

the same height. However, once you start climbing the stairs, a component of the 

brick’s movement is in the direction of the upward force that you are exerting on 

it, so the force is now doing some work. 

When applying the work–energy principle, you have to be careful to include all 

the forces acting on the body. In the example of a brick of weight 40 N being 

raised 5 m vertically, starting and ending at rest, the change in kinetic energy  

is clearly 0. 

This seems paradoxical when it is clear that the force which raised the brick has 

done 40 × 5 = 200 J of work. However, the brick was subject to another force, 

namely its weight, which did −40 × 5 = 200 J of work on it, giving a total of 

200 + (−200) = 0 J. 

Conservation of mechanical energy 

The net forward force on the cyclist in Example 9.5 is the girl’s driving force 

minus resistive forces such as air resistance and friction in the bearings. In the 

absence of such resistive forces, she would gain more kinetic energy; also the 

work she does against them is lost, it is dissipated as heat and sound. Contrast 

this with the work a cyclist does against gravity when going uphill. This work 

can be recovered as kinetic energy on a downhill run. The work done against the 

force of gravity is conserved and gives the cyclist potential energy (see page 163). 

Forces such as friction which result in the dissipation of mechanical energy are 

called dissipative forces. Forces which conserve mechanical energy are called 

conservative forces. The force of gravity is a conservative force and so is the 

tension in an elastic string; you can test this using an elastic band. 
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EXAMPLE 9.6 A bullet of mass 25 g is fired at a wooden barrier 3 cm thick. When it hits the 
barrier it is travelling at 200 m s−1. The barrier exerts a constant resistive force of 
5000 N on the bullet. 

(i)   Does the bullet pass through the barrier and if so with what speed does it 
emerge? 

(ii) Is energy conserved in this situation? 

SOLUTION 

(i)  The work done by the force is defined as the product of the force and the 
distance moved in the direction of the force. Since the bullet is moving in 
the direction opposite to the net resistive force, the work done by this force 
is negative. 

Work done = −5000 × 0.03 
 = 150 J 

The initial kinetic energy of the bullet is 

 Initial K.E. = 1
2
 mu  2

 = 1
2
 × 0.025 × 2002 

 = 500 J 

  A loss in energy of 150 J will not reduce kinetic energy to zero, so the bullet 

will still be moving on exit. 

 Since the work done is equal to the change in kinetic energy, 

−150 = 1
2
 mv  2 −500

 Solving for v 

1
2
 mv  2 = 500 − 150

 v 2 = 2 500 150
0 025

× ( – )
.

 v = 167 (to nearest whole number) 

So the bullet emerges from the barrier with a speed of 167 m s−1. 

(ii)  Total energy is conserved but there is a loss of mechanical energy of
1
2
 mu  2 − 1

2
 mv 2 = 150 J. This energy is converted into non-mechanical forms 

such as heat and sound. 

200 m s–1

3 cm

5000 N

v m s–1

Figure 9.4 
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EXAMPLE 9.7 An aircraft of mass m kg is flying at a constant velocity v m s−1 horizontally. Its 
engines are providing a horizontal driving force F N. 

(i)  Draw a diagram showing the driving force, the lift force L N, the air 
resistance (drag force) R N and the weight of the aircraft.

(ii) State which of these forces are equal in magnitude.
(iii)  State which of the forces are doing no work. 
(iv)  In the case when m = 100 000, v = 270 and F = 350 000, find the work done in 

a 10-second period by those forces which are doing work, and show that the 
work–energy principle holds in this case. 

At a later time the pilot increases the thrust of the aircraft’s engines to 400 000 N. 
When the aircraft has travelled a distance of 30 km, its speed has increased to 
300 m s−1. 

(v)   Find the work done against air resistance during this period, and the average 
resistance force. 

SOLUTION 

(i) 

(ii) Since the aircraft is travelling at constant velocity it is in equilibrium. 

Horizontal forces: F = R 

Vertical forces: L = mg 

(iii)  Since the aircraft’s velocity has no vertical component, the vertical forces, L 
and mg, are doing no work. 

(iv) In 10 s at 270 m s−1 the aircraft travels 2700 m. 

Work done by force F = 350 000 × 2700 = 9 450 000 J
Work done by force R = 350 000 × −2700 = −9 450 000 J

The work–energy principle states that in this situation 

work done by F + work done by R = change in kinetic energy. 

Now work done by F + work done by R = (9 450 000 − 9 450 000) = 0 J, and 
change in kinetic energy = 0 (since velocity is constant), so the work–energy 
principle does indeed hold in this case. 

(v) Final K.E. − initial K.E. = 1
2
 mv  2 − 1

2
 mu  2

 = 1
2
 × 100 000 × 3002 − 1

2
 × 100 000 × 2702 

 = 855 × 106 J 

R

L

mg

F

Figure 9.5 
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Work done by driving force = 400 000 × 30 000 
 Total work done = K.E. gained 
 = 12 000 × 106 J 

Work done by resistance force + 12 000 × 106 = 855 × 106 
 Work done by resistance force = 11 145 × 106 J
 Average force × distance = work done by force 
 Average force × 30 000 = 11 145 × 106 

⇒ The average resistance force is 371 500 N (in the negative direction). 

Note 

When an aircraft is in flight, most of the work done by the resistance force results  

in air currents and the generation of heat. A typical large jet cruising at 35 000 feet 

has a body temperature about 30°C above the surrounding air temperature. For  

supersonic flight the temperature difference is much greater. Concorde used to fly 

with a skin temperature more than 200°C above that of the surrounding air. 

EXERCISE 9A 1 Find the kinetic energy of the following objects. 

(i)  An ice skater of mass 50 kg travelling with speed 10 m s−1. 

(ii)  An elephant of mass 5 tonnes moving at 4 m s−1. 

(iii) A train of mass 7000 tonnes travelling at 40 m s−1. 

(iv)  The moon, mass 7.4 × 1022 kg, travelling at 1000 m s−1 in its orbit round 

the earth. 

(v) A bacterium of mass 2 × 10−16 g which has speed 1 mm s−1. 

2  Find the work done by a man in the following situations. 

(i)  He pushes a packing case of mass 35 kg a distance of 5 m across a rough 
floor against a resistance of 200 N. The case starts and finishes at rest. 

(ii)   He pushes a packing case of mass 35 kg a distance of 5 m across a rough 
floor against a resistance force of 200 N. The case starts at rest and 
finishes with a speed of 2 m s−1. 

(iii)  He pushes a packing case of mass 35 kg a distance of 5 m across a rough 
floor against a resistance force of 200 N. Initially the case has speed 
2 m s−1 but it ends at rest. 

(iv)  He is handed a packing case of mass 35 kg. He holds it stationary, at the 
same height, for 20 s and then someone else takes it from him. 

3     A sprinter of mass 60 kg is at rest at the beginning of a race and accelerates to 
12 m s−1 in a distance of 30 m. Assume air resistance to be negligible. 

(i) Calculate the kinetic energy of the sprinter at the end of the 30 m. 

(ii) Write down the work done by the sprinter over this distance. 

(iii) Calculate the forward force exerted by the sprinter, assuming it to be 
constant, using work = force × distance. 

(iv) Using force = mass × acceleration and the constant acceleration 
formulae, show that this force is consistent with the sprinter having 
speed 12 m s−1 after 30 m. 
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4   A sports car of mass 1.2 tonnes accelerates from rest to 30 m s−1 in a distance 
of 150 m. Assume air resistance to be negligible. 
(i) Calculate the work done in accelerating the car. Does your answer 

depend on an assumption that the driving force is constant? 
(ii) If the driving force is in fact constant, what is its magnitude? 

5      A car of mass 1600 kg is travelling at speed 25 m s−1 when the brakes are 
applied so that it stops after moving a further 75 m. 
(i) Find the work done by the brakes. 
(ii) Find the retarding force from the brakes, assuming that it is constant and 

that other resistive forces may be neglected. 

6  The forces acting on a hot air balloon of mass 500 kg are its weight and the 
total uplift force. 
(i)  Find the total work done when the speed of the balloon changes from 

(a) 2 m s−1 to 5 m s−1  (b) 8 m s−1 to 3 m s−1.
(ii)  If the balloon rises 100 m vertically while its speed changes calculate in 

each case the work done by the uplift force. 

7  A bullet of mass 20 g, found at the scene of a police investigation, had 
penetrated 16 cm into a wooden post. The speed for that type of bullet is 
known to be 80 m s−1. 
(i)  Find the kinetic energy of the bullet before it entered the post. 
(ii) What happened to this energy when the bullet entered the wooden post? 
(iii) Write down the work done in stopping the bullet. 
(iv) Calculate the resistive force on the bullet, assuming it to be constant. 

Another bullet of the same mass and shape had clearly been fired from a 
different and unknown type of gun. This bullet had penetrated 20 cm into 
the post.
(v)  Estimate the speed of this bullet before it hit the post. 

8  The UK Highway Code give the braking distance for a car travelling at 
22 m s−1 (50 mph) to be 38 m (125 ft). A car of mass 1300 kg is brought to rest 
in just this distance. It may be assumed that the only resistance forces come 
from the car’s brakes. 
(i)  Find the work done by the brakes. 
(ii)  Find the average force exerted by the brakes. 
(iii) What happened to the kinetic energy of the car? 
(iv)  What happens when you drive a car with the handbrake on? 

9  A car of mass 1200 kg experiences a constant resistance force of 600 N. The 
driving force from the engine depends upon the gear, as shown in the table. 

Gear 1 2 3 4

Force (N) 2800 2100 1400 1000

Starting from rest, the car is driven 20 m in first gear, 40 m in second, 80 m in 
third and 100 m in fourth. How fast is the car travelling at the end? 
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10  A chest of mass 60 kg is resting on a rough horizontal floor. The coefficient of 

friction between the floor and the chest is 0.4. A woman pushes the chest in 

such a way that its speed–time graph is as shown below. 

(i)  Find the force of frictional resistance acting on the chest when it moves. 

(ii)  Use the speed–time graph to find the total distance travelled by the chest. 

(iii) Find the total work done by the woman. 

(iv) Find the acceleration of the chest in the first 2 s of its motion and hence 

the force exerted by the woman during this time, and the work done. 

(v) In the same way find the work done by the woman during the time 

intervals 2 s to 6 s, and 6 s to 7 s. 

(vi) Show that your answers to parts (iv) and (v) are consistent with your 

answer to part (iii). 

Gravitational potential energy 

As you have seen, kinetic energy (K.E.) is the energy that an object has because 

of its motion. Potential energy (P.E.) is the energy an object has because of its 

position. The units of potential energy are the same as those of kinetic energy or 

any other form of energy, namely joules. 

One form of potential energy is gravitational potential energy. The gravitational 

potential energy of the object in figure 9.6 of mass m kg at height h m above a 

fixed reference level, 0, is mgh J. If it falls to the reference level, the force of gravity 

does mgh J of work and the body loses mgh J of potential energy. 

10 2 3 4 5 6 7

1

time (seconds)

speed (m s–1)

O

h mg

Figure 9.6 
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A loss in gravitational potential energy is an alternative way of accounting for the 

work done by the force of gravity. 

If a mass m kg is raised through a distance h m, the gravitational potential 

energy increases by mgh J. If a mass m kg is lowered through a distance h m the 

gravitational potential energy decreases by mgh J. 

EXAMPLE 9.8 Calculate the gravitational potential energy, relative to the ground, of a ball of 

mass 0.15 kg at a height of 2 m above the ground. 

SOLUTION 

Mass m = 0.15, height h = 2. 

Gravitational potential energy = mgh 

 = 0.15 × 10 × 2 

 = 3 J. 

Note 

If the ball falls: 

loss in P.E. = work done by gravity 

 = gain in K.E. 

There is no change in the total energy (P.E. + K.E.) of the ball. 

Using conservation of mechanical energy 

When gravity is the only force which does work on a body, mechanical energy is 

conserved. When this is the case, many problems are easily solved using energy. 

This is possible even when the acceleration is not constant. 

EXAMPLE 9.9 A skier slides down a smooth ski slope 400 m long which is at an angle of 30° 

to the horizontal. Find the speed of the skier when he reaches the bottom of  

the slope. 

At the foot of the slope the ground becomes horizontal and is made rough in 

order to help him to stop. The coefficient of friction between his skis and the 

ground is 1
4
.

(i) Find how far the skier travels before coming to rest. 

(ii) In what way is your model unrealistic? 

SOLUTION 

The skier is modelled as a particle.



G
ra

v
ita

tio
n

a
l p

o
te

n
tia

l e
n

e
rg

y
 

165

M1
9

(i)   Since in this case the slope is smooth, the frictional force is zero. The skier is 
subject to two external forces: his weight mg and the normal reaction from 
the slope. 

The normal reaction between the skier and the slope does no work because 
the skier does not move in the direction of this force. The only force which 
does work is gravity, so mechanical energy is conserved. 

Total mechanical energy at B = mgh + 1
2
 mu 2

 = m × 10 × 400 sin 30° + 0 

 = 2000m J 

Total mechanical energy at A = (0 + 1
2
 mv  2) J

Since mechanical energy is conserved, 

 1
2
 mv 2 = 2000m 

 v 2 = 4000 

 v = 63.2...

The skier’s speed at the bottom of the slope is 63.2 m s−1 (to 3 s.f.).

 Notice that the mass of the skier cancels out. Using this model, all skiers 
should arrive at the bottom of the slope with the same speed. Also the slope 
could be curved so long as the total height lost is the same. 

For the horizontal part there is some friction. Suppose that the skier travels a 
further distance s m before stopping. 

Coulomb’s law of friction gives F = µR = 1
4
 R.

Since there is no vertical acceleration we can also say R = mg. 

So F = 1
4
 mg.

reference
level

mg

R

A

B

30°

0 m s–1

v m s–1

F  0

h m

Figure 9.7

AB = 400 m
so h = 

400 sin 30°

mg

R

s

F

CA

62.6 m s–1 0 m s–1

Figure 9.8
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 Work done by the friction force = F × (−s) = −1
4
 mgs.

 The increase in kinetic energy between A and C = (0 − 1
2
mv 2) J.

 Using the work−energy principle 

− 1
4
mgs  = − 1

2
mv 2 = − 2000m  from 

 Solving for s gives s = 800. 

 So the distance the skier travels before stopping is 800 m. 

(ii)  The assumptions made in solving this problem are that friction on the slope 

and air resistance are negligible, and that the slope ends in a smooth curve at 

A. Clearly the speed of 63.2 m s−1 is very high, so the assumption that friction 

and air resistance are negligible must be suspect. 

EXAMPLE 9.10 Ama, whose mass is 40 kg, is taking part in an assault course. The obstacle shown 

in figure 9.9 is a river at the bottom of a ravine 8 m wide which she has to cross by 

swinging on a rope 5 m long secured to a point on the branch of a tree, 

immediately above the centre of the ravine. 

(i) Find how fast Ama is travelling at the lowest point of her crossing

(a) if she starts from rest 

(b) if she launches herself off at a speed of 1 m s−1. 

(ii) Will her speed be 1 m s−1 faster throughout her crossing? 

Negative because 
the motion is in the 
opposite direction to 

the force.

8 m

5 m

Ama

Figure 9.9
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SOLUTION 

(i) (a) The vertical height Ama loses is HB in the diagram. 

Using Pythagoras            TH = 5 4 32 2– =
 HB = 5 − 3 = 2 

 P.E. lost = mgh 

  = 40g × 2 

K.E. gained = 1
2
mv 2 −  0

  = 1
2
 × 40 × v 2

By conservation of energy, K.E. gained = P.E. lost 

 1
2
 × 40 × v 2 = 40 × 10 × 2

 v = 6.32 

Ama is travelling at 6.32 m s− 1. 

(b)  If she has initial speed 1 m s− 1 at S and speed v m s− 1 at B, her initial K.E. is 
1
2
 × 40 × 12 and her K.E. at B is 1

2
 × 40 × v 2.

Using conservation of energy, 

1
2
 × 40 × v 2 − 1

2
 × 40 × 12 = 40 × 10 × 2

 v = 6.40

(ii)  Ama’s speed at the lowest point is only 0.08 m s−1 faster in part (i)(b) 
compared with that in part (i)(a), so she clearly will not travel 1 m s−1 faster 
throughout in part (i)(b).

Historical note 

James Joule was born in Salford in Lancashire on Christmas Eve 1818. He studied at 
Manchester University at the same time as the famous chemist, Dalton. 

Joule spent much of his life conducting experiments to measure the equivalence 
of heat and mechanical forms of energy to ever-increasing degrees of accuracy. 
Working with William Thomson, he also discovered that a gas cools when it expands 
without doing work against external forces. It was this discovery that paved the way 
for the development of refrigerators. 

Joule died in 1889 but his contribution to science is remembered with the S.I. unit for 
energy named after him.

T

HS

distance in
metres

5

5

4

B

v m s–1

0 m s–1

Figure 9.10
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Work and kinetic energy for two-dimensional motion 

●? Imagine that you are cycling along a level winding road in a strong wind. 

Suppose that the strength and direction of the wind are constant, but because the 

road is winding sometimes the wind is directly against you but at other times it is 

from your side. 

 How does the work you do in travelling a certain distance – say 1 m – change 

with your direction? 

Work done by a force at an angle to the direction of motion 

You have probably deduced that as a cyclist you would do work against 

the component of the wind force that is directly against you. The sideways 

component does not resist your forward progress. 

Suppose that you are sailing and the angle between the force, F, of the wind on 

your sail and the direction of your motion is θ. In a certain time you travel a 

distance d in the direction of F, see figure 9.11, but during that time you actually 

travel a distance s along the line OP. 

Work done by F = Fd 

Since d = s  cos  θ, the work done by the force F  is Fs  cos  θ. This can also be written 

as the product of the component of F along OP, F  cos  θ, and the distance moved 

along OP, s. 

F × s  cos  θ = F  cos  θ × s 

(Notice that the direction of F is not necessarily the same as the direction of the 

wind, it depends on how you have set your sails.) 

P
F

s d  s cos θ

θ
θ

O

Figure 9.11 
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EXAMPLE 9.11 As a car of mass m kg drives up a slope at an angle α to the horizontal it 

experiences a constant resistive force F N and a driving force D N. What can be 

deduced about the work done by D as the car moves a distance d m uphill if: 

(i) the car moves at constant speed? 

(ii) the car slows down? 

(iii) the car gains speed? 

The initial and final speeds of the car are denoted by u m s−1 and v m s−1 

respectively. 

(iv) Write v 2 in terms of the other variables. 

SOLUTION 

The diagram shows the forces acting on the car. The table shows the work done 

by each force. The normal reaction, R, does no work as the car moves no distance 

in the direction of R.

Force Work done

Resistance F −Fd

Normal reaction R 0

Force of gravity mg −mgd cos (90° − α) = −mgd  sin  α

Driving force D Dd

Total work done Dd – Fd – mgd  sin  α

(i)  If the car moves at a constant speed there is no change in kinetic energy so 

the total work done is zero, giving

Work done by D is

Dd = Fd + mgd  sin  α.

(ii) If the car slows down the total work done by the forces is negative, hence 

Work done by D is

Dd < Fd + mgd  sin  α.

R

F

D

mg
α

Figure 9.12 

Angle between mg 
and the slope is 

90° − α
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(iii)  If the car gains speed the total work done by the forces is positive so

Work done by D is 

Dd > Fd + mgd  sin  α. 

(iv) Total work done = final K.E. − initial K.E. 

⇒ Dd − Fd − mgd  sin  α = 1
2
mv 2 − 1

2
mu 2

Multiplying by 2
m

⇒ v 2 = u2 + 2d
m

(D − F) − 2gd  sin  α 

EXERCISE 9B    1   Calculate the gravitational potential energy, relative to the reference level 

OA, for each of the objects shown. 

(i)  (ii)  

(iii)  (iv) 

2 Calculate the change in gravitational potential energy when each object 

moves from A to B in the situations shown below. State whether the change 

is an increase or a decrease. 

(i)  (ii)   (iii)  

3 A vase of mass 1.2 kg is lifted from ground level and placed on a shelf at a 

height of 1.5 m. Find the work done against the force of gravity. 

4 Find the increase in gravitational potential energy of a woman of mass 60 kg 

who climbs to the twelfth floor of a block of flats. The distance between 

floors is 3.3 m. 

2.5 kg

40 cm

AO

3 kg

5 m

40°
AO

2 kg

3 m

AO

1.6 kg

4 m
20°

AO

2.5 kg

40 cm

AO

3 kg

5 m

40°
AO

2 kg

3 m

AO

1.6 kg

4 m
20°

AO

2.5 kg

40 cm

AO

3 kg

5 m

40°
AO

2 kg

3 m

AO

1.6 kg

4 m
20°

AO

2.5 kg

40 cm

AO

3 kg

5 m

40°
AO

2 kg

3 m

AO

1.6 kg

4 m
20°

AO

B
m  2 kg

1.2 m

A

2.6 m
A

m  4 kg

0.8 m

B

2.2 m m  0.6 kg

A
1 m

B

3 m
B

m  2 kg

1.2 m

A

2.6 m
A

m  4 kg

0.8 m

B

2.2 m m  0.6 kg

A
1 m

B

3 m

B
m  2 kg

1.2 m

A

2.6 m
A

m  4 kg

0.8 m

B

2.2 m m  0.6 kg

A
1 m

B

3 m
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5 A car of mass 0.9 tonnes is driven 200 m up a slope inclined at 5° to the 

horizontal. There is a resistance force of 100 N. 

(i)  Find the work done by the car against gravity. 

(ii)  Find the work done against the resistance force. 

(iii)  When asked to work out the total work done by the car, a student replied 

 ‘(900g + 100) × 200 J’. Explain the error in this answer. 

(iv)  If the car slows down from 12 m s− 1 to 8 m s− 1, what is the total work 

done by the engine? 

6 A sledge of mass 10 kg is being pulled across level ground by a rope which 

makes an angle of 20° with the horizontal. The tension in the rope is 80 N 

and there is a resistance force of 14 N. 

(i)  Find the work done while the sledge moves a distance of 20 m by 

(a) the tension in the rope 

(b)  the resistance force. 

(ii)  Find the speed of the sledge after it has moved 20 m 

(a)  if it starts at rest 

(b) if it starts at 4 m s−1. 

7 A bricklayer carries a hod of bricks of mass 25 kg up a ladder of length 10 m 

inclined at an angle of 60° to the horizontal. 

(i)  Calculate the increase in the gravitational potential energy of the bricks. 

(ii) If instead he had raised the bricks vertically to the same height, using a 

rope and pulleys, would the increase in potential energy be (a) less, 

(b) the same, or (c) more than in part (i)? 

8 A girl of mass 45 kg slides down a smooth water chute of length 6 m inclined 

at an angle of 40° to the horizontal. 

(i) Find 

(a) the decrease in her potential energy 

(b) her speed at the bottom. 

(ii)  How are answers to part (i) affected if the slide is not smooth? 

9 A gymnast of mass 50 kg swings on a rope of length 10 m. Initially the rope 

makes an angle of 50° with the vertical. 

(i)  Find the decrease in her potential energy when the rope has reached the 

vertical. 

(ii)  Find her kinetic energy and hence her speed when the rope is vertical, 

assuming that air resistance may be neglected. 

(iii)  The gymnast continues to swing. What angle will the rope make with the 

vertical when she is next temporarily at rest? 

(iv)  Explain why the tension in the rope does no work. 
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10 A stone of mass 0.2 kg is dropped from the top of a building 80 m high.
After t s it has fallen a distance x m and has speed v m s−1. 

(i) What is the gravitational potential energy of the stone relative to ground 
level when it is at the top of the building? 

(ii)  What is the potential energy of the stone t s later? 

(iii)  Show that, for certain values of t, v 2 = 20x and state the range of values of 
t for which it is true. 

(iv)  Find the speed of the stone when it is half-way to the ground. 

(v)  At what height will the stone have half its final speed? 

11 Wesley, whose mass is 70 kg, inadvertently steps off a bridge 50 m above 
water. When he hits the water, Wesley is travelling at 25 m s−1. 

(i) Calculate the potential energy Wesley has lost and the kinetic energy he 
has gained. 

(ii)  Find the size of the resistance force acting on Wesley while he is in the 
air, assuming it to be constant. 

Wesley descends to a depth of 5 m below the water surface, then returns to 
the surface. 

(iii)  Find the total upthrust (assumed constant) acting on him while he is 
moving downwards in the water. 

12 A hockey ball of mass 0.15 kg is hit from the centre of a pitch. Its position 
vector (in m), t s later is modelled by 

x
y

t
t t





 = −







10
10 4 9 2.  

where the directions are along the line of the pitch and vertically upwards. 

(i)  What value of g is used in this model? 

(ii)  Find an expression for the gravitational potential energy of the ball at 
time t. For what values of t is your answer valid? 

(iii)  What is the maximum height of the ball? What is its velocity at that instant? 

(iv)  Find the initial velocity, speed and kinetic energy of the ball. 

(v)  Show that according to this model mechanical energy is conserved and 
state what modelling assumption is implied by this. Is it reasonable in 
this context? 

13 A ski-run starts at altitude 2471 m and ends at 1863 m. 

(i)  If all resistance forces could be ignored, what would the speed of the skier 
be at the end of the run? 

 A particular skier of mass 70 kg actually attains a speed of 42 m s−1. The length 
of the run is 3.1 km. 

(ii)  Find the average force of resistance acting on a skier. 

Two skiers are equally skilful. 

(iii)  Which would you expect to be travelling faster by the end of the run, the 
heavier or the lighter? 
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14 Akosua draws water from a well 12 m below the ground. Her bucket holds 
5 kg of water and by the time she has pulled it to the top of the well it is 
travelling at 1.2 m s−1. 

(i)  How much work does Akosua do in drawing the bucket of water? 

On an average day 150 people in the village each draw six such buckets of water. 
One day a new electric pump is installed that takes water from the well and fills 
an overhead tank 5 m above ground level every morning. The flow rate through 
the pump is such that the water has speed 2 m s−1 on arriving in the tank. 

(ii)  Assuming that the villagers’ demand for water remains unaltered, how 
much work does the pump do in one day? 

It takes the pump one hour to fill the tank each morning. 

(iii)  At what rate does the pump do work, in joules per second (watts)? 

15 A block of mass 50 kg is pulled up a straight hill and passes through points A 
and B with speeds 7 m s−1 and 3 m s−1 respectively. The distance AB is 200 m 
and B is 15 m higher than A. For the motion of the block from A to B, find

(i) the loss in kinetic energy of the block,

(ii) the gain in potential energy of the block.

The resistance to motion of the block has magnitude 7.5 N.

(iii) Find the work done by the pulling force acting on the block.

The pulling force acting on the block has constant magnitude 45 N and acts 
at an angle α° upwards from the hill.

(iv) Find the value of α.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q6 June 2006]

16 A lorry of mass 12 500 kg travels along a road that has a straight horizontal 
section AB and a straight inclined section BC. The length of BC is 500 m.  
The speeds of the lorry at A, B and C are 17 m s−1, 25 m s−1 and 17 m s−1 
respectively (see diagram).

(i) The work done against the resistance to motion of the lorry, as it travels 
from A to B, is 5000 kJ. Find the work done by the driving force as the 
lorry travels from A to B.

(ii) As the lorry travels from B to C, the resistance to motion is 4800 N and 
the work done by the driving force is 3300 kJ. Find the height of C above 
the level of AB.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q5 June 2007]

A

17 m s–1

B

C25 m s–1

17 m s–1

500 m



E
n

e
rg

y,
 w

o
rk

 a
n

d
 p

o
w

e
r 

174

M1 

9

17 A crate of mass 50 kg is dragged along a horizontal floor by a constant force 

of magnitude 400 N acting at an angle α° upwards from the horizontal. 

The total resistance to motion of the crate has constant magnitude 250 N. 

The crate starts from rest at the point O and passes the point P with a speed 

of 2 m s−1. The distance OP is 20 m. For the crate’s motion from O to P, find 

(i) the increase in kinetic energy of the crate,

(ii) the work done against the resistance to the motion of the crate,

(iii) the value of α.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q2 November 2005]

18 The diagram shows the vertical cross-section of a surface. A and B are two 

points on the cross-section, and A is 5 m higher than B. A particle of mass 

0.35 kg passes through A with speed 7 m s−1, moving on the surface towards B.

(i) Assuming that there is no resistance to motion, find the speed with 

which the particle reaches B.

(ii) Assuming instead that there is a resistance to motion, and that the 

particle reaches B with speed 11 m s−1, find the work done against this 

resistance as the particle moves from A to B.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q4 November 2007]

19 A load of mass 160 kg is lifted vertically by a crane, with constant 

acceleration. The load starts from rest at the point O. After 7 s, it passes 

through the point A with speed 0.5 m s−1. By considering energy, find the 

work done by the crane in moving the load from O to A.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q4 November 2008]

5 m

A

B
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Power

It is claimed that a motorcycle engine can develop a maximum power of 26.5 kW 

at a top speed of 165 km h−1. This suggests that power is related to speed and this 

is indeed the case. 

Power is the rate at which work is being done. A powerful car does work at a 

greater rate than a less powerful one. 

You might find it helpful to think in terms of a force, F, acting for a very short 

time t over a small distance s. Assume F to be constant over this short time. 

Power is the rate of working so 

power
work
time

=

  = Fs
t

  = Fv

The power of a vehicle moving at speed v under a driving force F is given by Fv. 

For a motor vehicle the power is produced by the engine, whereas for a bicycle it is 

produced by the cyclist. They both make the wheels turn, and the friction between 

the rotating wheels and the ground produces a forward force on the machine. 

The unit of power is the watt (W), named after James Watt. The power produced by 

a force of 1 N acting on an object that is moving at 1 m s−1 is 1 W. Because the watt is 

such a small unit you will probably use kilowatts more often (1 kW = 1000 W). 

This gives you the power at an 
instant of time. The result is true 

whether or not F is constant.
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EXAMPLE 9.12 A car of mass 1000 kg can produce a maximum power of 45 kW. Its driver 

wishes to overtake another vehicle. Ignoring air resistance, find the maximum 

acceleration of the car when it is travelling at 

(i) 12 m s−1 (ii) 28 m s−1 

(these are about 43 km h−1 and 101 km h−1). 

SOLUTION 

(i) Power = force × velocity 

The driving force at 12 m s−1 is F1 N where 

45 000 = F1 × 12 

⇒              F1 = 3750. 

By Newton’s second law  F = ma 

⇒ acceleration m s= =3750
1000

3 75 2. .–

(ii) Now the driving force F2 is given by 

45 000 = F2 × 28 

⇒               F2 = 1607

⇒ acceleration m s= =1607
1000

1 61 2. .–

This example shows why it is easier to overtake a slow moving vehicle. 

EXAMPLE 9.13 A car of mass 900 kg produces power 45 kW when moving at a constant speed. It 

experiences a resistance of 1700 N. 

(i)  What is its speed? 

(ii)  The car comes to a downhill stretch inclined at 2° to the horizontal. What is 

its maximum speed downhill if the power and resistance remain unchanged?

SOLUTION 

(i)  As the car is travelling at a constant speed, there is no resultant force on 

the car. In this case the forward force of the engine must have the same 

magnitude as the resistance forces, i.e. 1700 N.

Denoting the speed of the car by v m s−1, P = Fv gives  

v = P
F

 = 
45 000

1700
 = 26.5. 

 The speed of the car is 26.5 m s−1 (approximately 95 km h−1). 
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(ii) The diagram shows the forces acting. 

 

 

 

 

 

 

 

 

  At maximum speed there is no acceleration so the resultant force down the 

slope is zero. 

 When the driving force is D N 

D + 900g  sin 2° − 1700 = 0 

               ⇒                                                                             D = 1386

 But power is Dv so       45 000 = 1386 v 

 ⇒    v = 
45 000
1386

 The maximum speed is 32.5 m s−1 (about 117 km h−1). 

Historical note 

James Watt was born in 1736 in Greenock in Scotland, the son of a house- and 

ship-builder. As a boy James was frail and he was taught by his mother rather than 

going to school. This allowed him to spend time in his father’s workshop where he 

developed practical and inventive skills. 

As a young man he manufactured mathematical instruments: quadrants, scales, 

compasses and so on. One day he was repairing a model steam engine for a friend 

and noticed that its design was very wasteful of steam. He proposed an alternative 

arrangement, which was to become standard on later steam engines. This was the 

first of many engineering inventions which made possible the subsequent industrial 

revolution. James Watt died in 1819, a well known and highly respected man. His 

name lives on as the S.I. unit for power. 

EXERCISE 9C  1   A builder hoists bricks up to the top of the house he is building. Each brick 

weighs 3.5 kg and the house is 9 m high. In the course of one hour the 

builder raises 120 bricks from ground level to the top of the house, where 

they are unloaded by his assistant. 

(i)  Find the increase in gravitational potential energy of one brick when it is 

raised in this way. 

(ii)  Find the total work done by the builder in one hour of raising bricks. 

(iii)  Find the average power with which he is working. 

D N
1700 N

2°
900g N

900g cos 2°

900g sin 2°

components of weight parallel
and perpendicular to slope

Figure 9.13 
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2 A weightlifter takes 2 seconds to lift 120 kg from the floor to a position 2 m 
above it, where the weight has to be held stationary. 

(i)  Calculate the work done by the weightlifter. 

(ii)  Calculate the average power developed by the weightlifter. 

The weight lifter is using the ‘clean and jerk’ technique. This means that 
in the first stage of the lift he raises the weight 0.8 m from the floor in 0.5 s. 
He then holds it stationary for 1 s before lifting it up to the final position in 
another 0.5 s. 

(iii) Find the average power developed by the weightlifter during each of the 
stages of the lift. 

3 A winch is used to pull a crate of mass 180 kg up a rough slope of angle 30° 
against a frictional force of 450 N. The crate moves at a steady speed, v, 
of 1.2 m s−1. 

(i) Calculate the gravitational potential energy given to the crate during 30 s. 

(ii)  Calculate the work done against friction during this time. 

(iii)  Calculate the total work done per second by the winch. 

The cable from the winch to the crate runs parallel to the slope. 

(iv)  Calculate the tension, T, in the cable. 

(v)  What information is given by T × v ? 

4 The power output from the engine of a car of mass 50 kg which is travelling 
along level ground at a constant speed of 33 m s−1 is 23 200 W. 

(i)  Find the total resistance on the car under these conditions. 

(ii)  You were given one piece of unnecessary information. Which is it? 

5 A Kawasaki GPz 305 motorcycle has a maximum power output of 26.5 kW 

and a top speed of 46 m s−1 (about 165 km h−1). Find the force exerted by the 
motorcycle engine when the motorcycle is travelling at top speed. 

6 A crane is raising a load of 500 tonnes at a steady rate of 5 cm s−1. What 
power is the engine of the crane producing? (Assume that there are no forces 
from friction or air resistance.) 

7 A cyclist, travelling at a constant speed of 8 m s−1 along a level road, 
experiences a total resistance of 70 N. 

(i)  Find the power which the cyclist is producing. 

(ii)  Find the work done by the cyclist in 5 minutes under these conditions. 

8 A mouse of mass 15 g is stationary 2 m below its hole when it sees a cat. It 
runs to its hole, arriving 1.5 seconds later with a speed of 3 m s−1. 

(i)  Show that the acceleration of the mouse is not constant. 

(ii)  Calculate the average power of the mouse. 
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9 A train consists of a diesel shunter of mass 100 tonnes pulling a truck of mass 

25 tonnes along a level track. The engine is working at a rate of 125 kW. The 

resistance to motion of the truck and shunter is 50 N per tonne. 

(i) Calculate the constant speed of the train. 

While travelling at this constant speed, the truck becomes uncoupled. The 

shunter engine continues to produce the same power. 

(ii)  Find the acceleration of the shunter immediately after this happens. 

(iii)  Find the greatest speed the shunter can now reach. 

10 A supertanker of mass 4 × 108 kg is steaming at a constant speed of 8 m s–1. 

The resistance force is 2 × 106 N. 

(i)  What power are the ship’s engines producing? 

One of the ship’s two engines suddenly fails but the other continues to work 

at the same rate. 

(ii)  Find the deceleration of the ship immediately after the failure. 

The resistance force is directly proportional to the speed of the ship. 

(iii)  Find the eventual steady speed of the ship under one engine only, 

assuming that the single engine maintains constant power output. 

11 A car of mass 850 kg has a maximum speed of 50 m s−1 and a maximum 

power output of 40 kW. The resistance force, R N at speed v m s−1 is 

modelled by 

R = kv 

(i) Find the value of k. 

(ii)  Find the resistance force when the car’s speed is 20 m s−1. 

(iii)  Find the power needed to travel at a constant speed of 20 m s−1 along a 

level road. 

(iv) Find the maximum acceleration of the car when it is travelling at 20 m s−1 

(a)  along a level road

(b) up a hill at 5° to the horizontal.
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12 A car of mass 1 tonne is moving at a constant velocity of 60 km h−1 up an 

inclined road which makes an angle of 6° with the horizontal. 

(i) Calculate the weight W of the car and the normal reaction R between the 

car and the road. 

Given that the non-gravitational resistance down the slope is 2000 N, find 

(ii)  the tractive force T which is propelling the car up the slope 

(iii)  the rate at which T is doing work. 

The engine has a maximum power output of 80 kW. 

(iv)  Assuming the resistances stay the same as before, calculate the maximum 
speed of the car up the same slope. 

[MEI] 

13 A boat of mass 1200 kg is winched a distance 30 m up a flat beach inclined at 
10° to the horizontal. 

Initially a very approximate model is used in which all resistances are neglected. 

(i) Calculate the work done. 

(ii)  Given that the process takes 2 minutes and that the boat moves at a 
constant speed, calculate the power of the winch motor. 

A better model takes account of the resistance of the beach to the motion. 
Assuming that the winch motor develops a constant 4.5 kW, the resistance of the 
beach on the boat is a constant 5 kN and the boat moves at a constant speed, 

(iii)  calculate how long the winching will take 

(iv)  show that if the winch cable suddenly broke off at the boat whilst the 
winching was in progress, the boat would come to rest in about 35 mm. 

[MEI] 

R N

W N
2000 N

6°

T N

10°

30 m
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14 A winch pulls a crate of mass 1500 kg up a slope at 20° to the horizontal. 

The light wire attached to the winch and the crate is parallel to the slope, as 

shown in figure (A).

(A)  (B)  

The crate takes 50 seconds to move 25 m up the slope at a constant speed 

when the power supplied by the winch is 6 kW. 

(i)  How much work is done by the tension in the wire in the 50 seconds? 

(ii)  Calculate the resistance to the motion of the crate up the slope. 

(iii)  Show that the coefficient of friction between the crate and the slope is 

0.5 (correct to one decimal place). 

The winch breaks down and the crate is then pushed up the slope by a 

mechanical shovel by means of a constant force of 16 000 N inclined at 15° to the 

slope, as shown in figure (B). You may assume that the crate does not tip up. 

(iv) Calculate the distance travelled by the crate up the slope as it speeds 

up from rest to 2.5 m s−1. (You may assume the coefficient of friction 

between the crate and the slope is exactly 0.5.)

[MEI, adapted] 

15 A car of mass 1000 kg moves along a horizontal straight road, passing 

through points A and B. The power of its engine is constant and equal to 

15 000 W. The driving force exerted by the engine is 750 N at A and 500 N at 

B. Find the speed of the car at A and at B, and hence find the increase in the 

car’s kinetic energy as it moves from A to B.

[Cambridge AS and A Level Mathematics 9709, Paper 41 Q1 November 2009]

16 A car of mass 1150 kg travels up a straight hill inclined at 1.2° to the 

horizontal. The resistance to motion of the car is 975 N. Find the acceleration 

of the car at an instant when it is moving with speed 16 m s−1 and the engine 

is working at a power of 35 kW.

[Cambridge AS and A Level Mathematics 9709, Paper 41 Q1 June 2010]

17 A car of mass 1200 kg travels along a horizontal straight road. The power 

provided by the car’s engine is constant and equal to 20 kW. The resistance to 

the car’s motion is constant and equal to 500 N. The car passes through the 

points A and B with speeds 10 m s−1 and 25 m s−1 respectively. The car takes 

30.5 s to travel from A to B.

(i) Find the acceleration of the car at A.

(ii) By considering work and energy, find the distance AB.

[Cambridge AS and A Level Mathematics 9709, Paper 4 Q7 June 2005]

20°

wire
winch

1500 kg

20°15°

1500 kg16 000 N
20°

wire
winch

1500 kg

20°15°

1500 kg16 000 N
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INVESTIGATION

Crawler lanes 

Sometimes on single carriageway roads or even some highways, crawler lanes are 

introduced for slow-moving, heavily laden lorries going uphill. Investigate how 

steep a slope can be before a crawler lane is needed. 

Data:  Typical power output for a large lorry: 45 kW 

 Typical mass of a large laden lorry: 32 tonnes

EXPERIMENT

Energy losses 

Set up a track like the one above. Release cars or trolleys from different heights 

and record the heights that they reach on the opposite side. Use your results to 

formulate a model for the force of resistance acting on them. 

Figure 9.14 

KEY POINTS

1 The work done by a constant force F is given by Fs where s is the distance 

moved in the direction of the force.

2 The kinetic energy (K.E.) of a body of mass m moving with speed v is 

given by 1
2
 mv 2. Kinetic energy is the energy a body possesses on account of 

its motion.

3 The work–energy principle states that the total work done by all the forces 

acting on a body is equal to the increase in the kinetic energy of the body. 

4 The gravitational potential energy of a body mass m at height h above a 

given reference level is given by mgh. It is the work done against the force of 

gravity in raising the body.

5 Mechanical energy (K.E. and P.E.) is conserved when no forces other than 

gravity do work.

6 Power is the rate of doing work, and is given by Fv.

7 The S.I. unit for energy is the joule and that for power is the watt.
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Motion of a projectile

Swift of foot was Hiawatha;  

He could shoot an arrow from him,  

And run forward with such fleetness,  

That the arrow fell behind him!  

Strong of arm was Hiawatha;  

He could shoot ten arrows upwards,  

Shoot them with such strength and swiftness,  

That the last had left the bowstring,  

Ere the first to earth had fallen! 

The Song of Hiawatha, Longfellow 

Look at the water jet in the picture. Every drop of water in a water jet follows its 

own path which is called its trajectory. You can see the same sort of trajectory if 

you throw a small object across a room. Its path is a parabola. Objects moving 

through the air like this are called projectiles. 

Modelling assumptions for projectile motion

The path of a cricket ball looks parabolic, but what about a boomerang? There 

are modelling assumptions which must be satisfied for the motion to be 

parabolic. These are 

●● a projectile is a particle 

●● it is not powered 

●● the air has no effect on its motion.

10
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Equations for projectile motion 

A projectile moves in two dimensions under the action of only one force, the 

force of gravity, which is constant and acts vertically downwards. This means 

that the acceleration of the projectile is g m s−2 vertically downwards and there 

is no horizontal acceleration. You can treat the horizontal and vertical motions 

separately using the equations for constant acceleration. 

To illustrate the ideas involved, think of a ball being projected with a speed of 

20 m s−2 at 60° to the ground as illustrated in figure 10.1. This could be a first 

model for a football, a chip shot from the rough at golf or a lofted shot at cricket.

Using axes as shown, the components are: 

 Horizontal Vertical

Initial position 0 0

Acceleration  ax = 0 ay = −10

Initial velocity ux = 20 cos 60° uy = 20 sin 60°

      = 10       = 17.32 

Using v = u + at in the two directions gives the components of velocity. 

Velocity Horizontal Vertical

 vx = 20 cos 60°  vy = 20 sin 60° − 10t 

 vx = 10         1 vy = 17.32 − 10t     2

      

50
60°

height
y (m)

horizontal distance
x (m)10 15 20 25 30 35

5

10

15
60°

20

10 m s–2

20 m s–1

20 sin 60°

20 cos 60°

Figure 10.1

acceleration

This is negative because the 
positive y axis is upwards.

as vectors

 a = 
0

10–







           u = 
20 60

20 60

cos

sin

°
°







ax = 0 ⇒ vx 
is constant

v = 
. –

10

17 32 10t






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Using s = ut + 1
2
 at2 in the two directions gives the components of position. 

Position  Horizontal  Vertical 

	 x = (20 cos 60°)t y = (20 sin 60°)t − 5t		2

	 x = 10t        3	 y = 17.32t − 5t		2         4

You can summarise these results in a table. 

Horizontal	motion Vertical	motion	

initial position 0 0 

a 0 −10 

u ux = 20 cos 60° = 10 uy = 20 sin 60° = 17.32 

v vx = 10 1 vy = 17.32 − 10t 2

r	 x = 10t 3 y = 17.32t − 5t	2 4 

The four equations 1		, 2 , 3  and 4   for velocity and position can be used to find 

several things about the motion of the ball. 

●? What is true at

 (i)  the top-most point of the path of the ball?

	 (ii) the point where it is just about to hit the ground?

When you have decided the answer to these questions you have sufficient 
information to find the greatest height reached by the ball, the time of flight and 
the total distance travelled horizontally before it hits the ground. This is called 
the range of the ball. 

The maximum height 

When the ball is at its maximum height, H m, the vertical component of its 

velocity is zero. It still has a horizontal component of 10 m s−1 which is constant. 

Equation 2	  gives the vertical 

component as 

 vy = 17.32 − 10t 

At the top: 0 = 17.32 − 10t 

 t = 
17 32

10
.

 = 1.732

r = 
. –

10

17 32 5 2

t

t t











y

xO

H

Figure 10.2

no vertical 
velocity
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To find the maximum height, you now need to find y at this time. Substituting 

for t in equation 4  ,

y = 17.32t − 5t 2 

y = 17.32 × 1.732 − 5 × 1.7322 

      = 15.0

The maximum height is 15.0 m. 

The time of flight 

The flight ends when the ball returns to the ground, that is when y = 0. 

Substituting y = 0 in equation 4  ,

                     y = 17.32t – 5t 2 

   17.32t − 5t2 = 0 

t (17.32 − 5t) = 0 

                      t = 0 or t = 3.46 

Clearly t = 0 is the time when the ball is thrown, so t = 3.46 is the time when it 

lands and the flight time is 3.46 s. 

The range 

The range, R m, of the ball is 

the horizontal distance it travels 

before landing. 

R is the value of x when y = 0.

R can be found by substituting t = 3.46 in equation 3  : x = 10t. The range is 

10 × 3.46 = 34.6 m. 

●? 1   Notice in this example that the time to maximum height is half the flight time. 

Is this always the case? 

2  Decide which of the following could be modelled as projectiles. 

     

What special conditions would have to apply in particular cases? 

y

xO
R

Figure 10.3

y = 0, x = R

a balloon a bird a bullet shot from a gun a glider 

a golf ball  a parachutist a rocket a tennis ball
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EXERCISE 10A  In this exercise take upwards as positive. All the projectiles start at the origin. 

1 In each of the following cases you are given the initial velocity of a projectile. 
(a) Draw a diagram showing the initial velocity and path. 

(b) Write down the horizontal and vertical components of the initial velocity. 

(c) Write down equations for the velocity after time t seconds. 

(d)  Write down equations for the position after time t seconds. 

(i) 10 m s−1 at 35° above the horizontal. 

(ii) 2 m s−1 horizontally, 5 m s−1 vertically. 

(iii) 4 m s−1 horizontally. 

(iv) 10 m s−1 at 13° below the horizontal. 

(v) U m s−1 at angle α above the horizontal. 

(vi) u0 m s−1 horizontally, v0 m s−1 vertically. 

2 In each of the following cases find 
(a)  the time taken for the projectile to reach its highest point 

(b)  the maximum height. 

(i) Initial velocity 5 m s−1 horizontally and 15 m s−1 vertically. 

(ii)  Initial velocity 10 m s−1 at 30° above the horizontal. 

3 In each of the following cases find 
(a)  the time of flight of the projectile 

(b)  the horizontal range. 

(i) Initial velocity 20 m s−1 horizontally and 20 m s−1 vertically. 

(ii)  Initial velocity 5 m s−1 at 60° above the horizontal. 

Projectile problems

When doing projectile problems, you can treat each direction separately or you 
can write them both together as vectors. Example 10.1 shows both methods. 

EXAMPLE 10.1 A ball is thrown horizontally at 5 m s−1 out of a window 4 m above the ground. 

(i) How long does it take to reach the ground? 

(ii)  How far from the building does it land? 

(iii)  What is its speed just before it lands and at what angle to the ground is it 
moving? 

SOLUTION 

Figure 10.4 shows the path of the ball. It is important to decide at the outset 
where the origin and axes are. You may choose any axes that are suitable, but you 
must specify them carefully to avoid making mistakes. Here the origin is taken 
to be at ground level below the point of projection of the ball and upwards is 
positive. With these axes, the acceleration is −g m s−2. 



P
ro

je
c
tile

 p
ro

b
le

m
s

189

M2
10

Method 1: Resolving into components 

(i) Position: Using axes as shown and s = s0 + ut + 1
2
at 2 in the two directions, 

Horizontally: x0 = 0, ux = 5, ax = 0 

        x = 5t  1

Vertically:         y0 = 4, uy = 0, ay = −10

        y = 4 − 5t 2 2

 The ball reaches the ground when y = 0. Substituting in equation 2   gives 

 0 = 4 − 5t 2

 t 2 = 
4
5

  t = 0.894...

The ball hits the ground after 0.894 s (to 3 s.f.). 

(ii)  When the ball lands x = d so, from equation 1  ,

d = 5t = 5 × 0.894... = 4.47...

The ball lands 4.47 m (to 3 s.f.) from the building. 

(iii) Velocity: Using v = u + at in the two directions, 

Horizontally vx = 5 + 0 

Vertically vy = 0 − 10t 

  To find the speed and direction just before it lands: 

The ball lands when t = 0.894... so vx = 5 and vy = −8.94... .

The components of velocity are shown in the diagram.

The speed of the ball is

5 8 942 2+ . ...  = 10.25 m s−1 (to 4 s.f.)

It hits the ground moving downwards at an

angle α to the horizontal where

tan α = 
8 94

5
.

 α = 60.8°

y

xd m

1

0

2

3

4
10 m s–2

5 m s–1

Figure 10.4 

8.94 m s 1

α

α

5 m s 1

v m s 1

Figure 10.5 
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 Method 2: Using vectors 

Using perpendicular vectors in the horizontal (x) and vertical (y) directions, the 

initial position is r0 = 0
4 0

5
0

0
10




 = 



 = 



 = 



r u a

d
–

 and the ball hits the ground when r =  0
4 0

5
0

0
10




 = 



 = 



 = 



r u a

d
–

. The initial 

velocity, u = 0
4 0

5
0

0
10




 = 



 = 



 = 



r u a

d
–

 and the acceleration a = 
0
4 0

5
0

0
10




 = 



 = 



 = 



r u a

d
–

.  

Using   r =   r0  +   ut    +    1
2
 at 2

d
t t

0
0
4

5
0

0
10

1
2

2



 = 



 +




 + 



–

     d = 5t 1

and      0 = 4 − 5t2  2

(i) Equation 2   gives t = 0.894 and substituting this into 1   gives (ii) d = 4.47. 

(iii)  The speed and direction of motion are the magnitude and direction of the 

velocity of the ball. Using 

v =   u   +     at 

 
v
v

tx

y






= 


 +







5
0

0
10–

So when t = 0.894, 
v
v

x

y






= 





5
8 94– .

You can find the speed and angle as before. 

Notice that in both methods the time forms a link between the motions in 

the two directions. You can often find the time from one equation and then 

substitute it in another to find out more information. 

Representing projectile motion by vectors 

The diagram shows a possible path for a marble which is thrown across a room 

from the moment it leaves the hand until just before it hits the floor.

                                  u (m s–1)

a (m s–2)

1
0

A

y

x2 3 4 5

0.5

1.0

1.5

r

2.0

2.5

v (m s–1)

R

Figure 10.6

position after t seconds
initial velocity

acceleration

velocity after t seconds
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The vector r = OR  
→

 is the position vector of the marble after a time t seconds and the 

vector v represents its velocity in m s−1 at that instant of time (to a different scale). 

!  Notice that the graph shows the trajectory of the marble. It is its path through 

space, not a position–time graph. 

You can use equations for constant acceleration in vector form to describe the 

motion as in Example 10.1, Method 2. 

velocity v = u + at   

displacement r − r0 = ut + 1
2
 at 2 so r = r0 + ut + 1

2
 at 2

!  Always check whether or not the projectile starts at the origin. The change in 

position is the vector r − r0. This is the equivalent of s − s0 in one dimension. 

EXERCISE 10B  In this exercise take upwards as positive. 

1 In each of the following cases 

(a)  draw a diagram showing the initial velocity and path 

(b) write the velocity after time t s in vector form 

(c) write the position after time t s in vector form. 

(i) Initial position (0, 10 m); initial velocity 4 m s−1 horizontally. 

(ii) Initial position (0, 7 m); initial velocity 10 m s−1 at 35° above the 

horizontal. 

(iii) Initial position (0, 20 m); initial velocity 10 m s−1 at 13° below the 

horizontal. 

(iv) Initial position O; initial velocity 
7

24




  m s−1. 

(v) Initial position (a, b) m; initial velocity 
u
v

0

0





  m s−1. 

ut

r   r0  ut     at2

v   u  at
r0

at2

at

u
1
2

1
2

Figure 10.7

This is what the displacement 
would be without gravity.

initial displacement This is the distance 
‘fallen’ due to gravity:

a = 0

–g





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2 In each the following cases find 

(a)  the time taken for the projectile to reach its highest point 

(b) the maximum height above the origin. 

(i)  Initial position (0, 15 m); velocity 5 m s−1 horizontally and 14.7 m s−1 

vertically. 

(ii)  Initial position (0, 10 m); initial velocity 
5
3



  m s−1. 

3 Find the horizontal range for these projectiles which start from the origin. 

(i)  Initial velocity 
2
7



  m s−1. 

(ii) Initial velocity 
7
2



m s−1. 

(iii) Sketch the paths of these two projectiles using the same axes. 

Further examples

EXAMPLE 10.2 In this question neglect air resistance. 

In an attempt to raise money for a charity, participants are sponsored to kick a 

ball over some vans. The vans are each 2 m high and 1.8 m wide and stand on 

horizontal ground. One participant kicks the ball at an initial speed of 22 m s−1 

inclined at 30° to the horizontal. 

(i)  What are the initial values of the vertical and horizontal components of velocity? 

(ii)  Show that while in flight the vertical height y metres at time t seconds 

satisfies the equation y = 11t − 5t 2. 

Calculate at what times the ball is at least 2 m above the ground. 

The ball should pass over as many vans as possible. 

(ii)  Deduce that the ball should be placed about 3.8 m from the first van and find 

how many vans the ball will clear. 

(iv)  What is the greatest vertical distance between the ball and the top of the vans? 

[MEI] 

30°
A123 ABC A234 XYZ

1.8 m

2.0 m
22 m s 1

Figure 10.8
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SOLUTION 

(i) Initial velocity 

 horizontally:  22 cos 30° = 19.05 m s−1

 vertically:  22 sin 30° = 11 m s−1

(ii) When the ball is above 2 m 

 Using axes as shown and  

 s = ut + 1
2
 at 2 vertically 

 ⇒                  y = 11t − 5t 2

 The ball is 2 m above the ground

 when y = 2, then

                       2 = 11t − 5t2

    5t 2 − 11t + 2 = 0 

 (5t − 1)(t − 2) = 0 

                        t = 0.2 or 2 

 The ball is at least 2 m above the ground when 0.2  t  2.

(iii) How many vans? 

Horizontally, s = ut + 1
2
 at 2 with

a = 0 

⇒ x = 19.05t 

When t = 0.2, x = 3.81 (at A) 

when t = 2, x = 38.1 (at B) 

  To clear as many vans as possible,  

the ball should be placed about  

3.8 m in front of the first van.

    AB = 38.1 − 3.81 m = 34.29 m 
34 29
1 8

.

.
 = 19.05 

 The maximum possible number of vans is 19. 

(iv) Maximum height 

 At the top (C), vertical velocity = 0, so using v = u + at vertically 

 ⇒ 0 = 11 − 10t 

 t = 1.1

 Substituting in y = 11t − 5t 2, maximum height is

11 × 1.1 − 5 × 1.12 = 6.05 m

 The ball clears the tops of the vans by about 4 m. 

22

30°
22 cos 30°

22 sin 30°

Figure 10.9 

0

y

x

2

Figure 10.10

a = −10 because
the positive direction 

is upwards.

0

y

x

2

C

A B

Figure 10.11

the vans are between 
A and B
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EXAMPLE 10.3 In this question use 9.8 m s−2 for g.

Sharon is diving into a swimming pool. During her flight she may be modelled 

as a particle. Her initial velocity is 1.8 m s−1 at angle 30° above the horizontal and 

initial position 3.1 m above the water. Air resistance may be neglected. 

(i) Find the greatest height above the water that Sharon reaches during her dive.

(ii)  Show that the time t, in seconds, that it takes Sharon to reach the water is 

given by 4.9t 2 − 0.9t − 3.1 = 0 and solve the equation to find t.

Explain the significance of the other root of the equation.

Just as Sharon is diving a small boy jumps into the swimming pool. He hits the 

water at a point in line with the diving board and 1.5 m from its end. 

(iii) Is there an accident? 

SOLUTION 

Referring to the axes shown: 

 Horizontal motion Vertical motion 

initial position 0 3.1

a  0 −9.8 

u  ux = 1.8 cos 30° = 1.56 uy = 1.8 sin 30° = 0.9

v vx = 1.56 1 vy = 0.9 − 9.8t 2 

r x = 1.56t 3 y = 3.1 + 0.9t − 4.9t 2 4

(i) At the top vy = 0 0 = 0.9 − 9.8t ⇒ t = 0.092 from 2  

When t = 0.092  y = 3.1 + 0.9 × 0.092 − 4.9 × 0.0922 = 3.14  from 4  

Sharon’s greatest height above the water is 3.14 m.

(ii)  Sharon reaches the water when y = 0 

                           0 = 3.1 + 0.9t − 4.9t 2 from 4

4.9t 2 − 0.9t − 3.1 = 0

                            t = 0.9 ± + × ×0 9 4 4 9 3 1
9 8

2. . .
.

                             t = −0.71 or 0.89 

y
(m)

x (m)

1

0

2

30°
3

S
4

1.8 m s–1

9.8 m s–2

Figure 10.12 
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Sharon hits the water after 0.89 s. The negative value of t gives the point on 

the parabola at water level to the left of the point (S) where Sharon dives. 

(iii)  At time t the horizontal distance from the diving board, 

x = 1.56t  from 3 

When Sharon hits the water

x = 1.56 × 0.89 = 1.39 

Assuming that the particles representing Sharon and the boy are located at 

their centres of mass, the difference of 11 cm between 1.39 m and 1.5 m is not 

sufficient to prevent an accident. 

Note 

When the point S is taken as the origin in the above example, the initial position is 

(0, 0) and y = 0.9t − 4.9t 2. In this case, Sharon hits the water when y = −3.1. This gives 

the same equation for t. 

EXAMPLE 10.4 A boy kicks a small ball from the floor of a gymnasium with an initial velocity of 

12 m s−1 inclined at an angle α to the horizontal. Air resistance may be neglected. 

(i)  Write down expressions in terms of α for the vertical speed of the ball and 

vertical height of the ball after t seconds. 

The ball just fails to touch the ceiling which is 4 m high. The highest point of the 

motion of the ball is reached after T seconds. 

(ii)  Use one of your expressions to show that 6 sin α = 5T and the other to form a 

second equation involving sin α and T. 

(iii)    Eliminate sin α from your two equations to show that T has a value of about 

0.89. 

(iv)  Find the horizontal range of the ball when kicked at 12 m s−1 from the floor 

of the gymnasium so that it just misses the ceiling. 

[MEI] 

y

xO

ceiling

floorα

12 m s–1

Figure 10.13  
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SOLUTION 

(i) Vertical components 

 speed  vy = 12 sin α − 10t  1

 height y = (12 sin α)t − 5t 2 2

(ii)  Time to highest point 

 At the top vy = 0 and t = T, so equation 1  gives 

12 sin α − 10T = 0 

           12 sin α = 10T 

             6 sin α = 5T 3 

When t = T, y = 4, so from 2

4 = (12 sin α)T − 5T 2 4

(iii) Substituting for 6 sin α from 3   into 4   gives 

4 = 2 × 5T × T − 5T 2 

4 = 5T 2

T = 0 8 0 89. .=  (to 2 d.p.)

(iv)  Range 

 The path is symmetrical so the time of flight is 2T seconds. 

 Horizontally a = 0 and ux = 12 cos α 

⇒    x = (12 cos α)t 

 The range is 12 cos α × 2T = 21.47 cos α m. 

 From 3         6 sin α = 5T = 4.47

  α = 48.19°

 The range is 21.47 cos 48.19° = 14.3 m (to 3 s.f.). 

●? Two marbles start simultaneously from the same height. One (P) is dropped and 

the other (Q) is projected horizontally. Which reaches the ground first? 

EXERCISE 10C 1  A ball is thrown from a point at ground level with velocity 20 m s−1 at 30° to 

the horizontal. The ground is level and horizontal and you should ignore air 

resistance. 

(i)  Find the horizontal and vertical components of the ball’s initial velocity. 

(ii)  Find the horizontal and vertical components of the ball’s acceleration. 

(iii)  Find the horizontal distance travelled by the ball before its first bounce. 

(iv)  Find how long the ball takes to reach maximum height. 

(v)  Find the maximum height reached by the ball. 

12 cos α

12 sin α10

initial velocity (m s–1)acceleration (m s–2)

Figure 10.14 
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2 In this question use 9.8 m s−2 for g.

 Nick hits a golf ball with initial velocity 50 m s−1 at 35° to the horizontal. 

(i)  Find the horizontal and vertical components of the ball’s initial velocity. 

(ii) Specify suitable axes and calculate the position of the ball at one second 

intervals for the first six seconds of its flight. 

(iii) Draw a graph of the path of the ball (its trajectory) and use it to estimate 

(a)  the maximum height of the ball 

(b) the horizontal distance the ball travels before bouncing. 

(iv) Calculate the maximum height the ball reaches and the horizontal 

distance it travels before bouncing. Compare your answers with the 

estimates you found from your graph. 

(v)  State the modelling assumptions you made in answering this question. 

3 Clare scoops a hockey ball off the ground, giving it an initial velocity of 

19 m s−1 at 25° to the horizontal. 

(i)  Find the horizontal and vertical components of the ball’s initial velocity. 

(ii) Find the time that elapses before the ball hits the ground. 

(iii)  Find the horizontal distance the ball travels before hitting the ground.

(iv)  Find how long it takes for the ball to reach maximum height. 

(v)  Find the maximum height reached. 

(vi)  A member of the opposing team is standing 20 m away from Clare in the 

direction of the ball’s flight. How high is the ball when it passes her? Can 

she stop the ball? 

4 A footballer is standing 30 m in front of the goal. He kicks the ball towards 

the goal with velocity 18 m s−1 and angle 55° to the horizontal. The height of 

the goal’s crossbar is 2.5 m. Air resistance and spin may be ignored. 

(i)  Find the horizontal and vertical components of the ball’s initial velocity. 

(ii)  Find the time it takes for the ball to cross the goal-line. 

(iii)  Does the ball bounce in front of the goal, go straight into the goal or go 

over the crossbar? 

(iv) In fact the goalkeeper is standing 5 m in front of the goal and will stop 

the ball if its height is less than 2.8 m when it reaches him. Does the 

goalkeeper stop the ball? 

5 A plane is flying at a speed of 300 m s−1 and maintaining an altitude of 

10 000 m when a bolt becomes detached. Ignoring air resistance, find 

(i)  the time that the bolt takes to reach the ground 

(ii)  the horizontal distance between the point where the bolt leaves the plane 

and the point where it hits the ground 

(iii)  the speed of the bolt when it hits the ground 

(iv)  the angle to the horizontal at which the bolt hits the ground. 
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6 Reena is learning to serve in tennis. She hits the ball from a height of 2 m. For 
her serve to be legal it must pass over the net which is 12 m away from her 
and 0.91 m high, and it must land within 6.4 m of the net. Make the following 
modelling assumptions to answer the questions. 

●● She hits the ball horizontally. 

●● Air resistance may be ignored. 

●● The ball may be treated as a particle. 

●● The ball does not spin. 

●● She hits the ball straight down the middle of the court. 

(i)  How long does the ball take to fall to the level of the top of the net? 

(ii)  How long does the ball take from being hit to first reaching the ground?

(iii)  What is the lowest speed with which Reena must hit the ball to clear the net? 

(iv) What is the greatest speed with which she may hit it if it is to land within 
6.4 m of the net? 

7 A stunt motorcycle rider attempts to jump over a gorge 50 m wide. He uses 
a ramp at 25° to the horizontal for his take-off and has a speed of 30 m s−1 at 
this time. 

(i)  Assuming that air resistance is negligible, find out whether the rider 
crosses the gorge successfully. 

The stunt man actually believes that in any jump the effect of air resistance is 
to reduce his distance by 40%. 

(ii)  Calculate his minimum safe take-off speed for this jump. 

8 A catapult projects a small pellet at speed 20 m s−1 and can be directed at any 
angle to the horizontal. 

(i)  Find the range of the catapult when the angle of projection is 

(a) 30° (b) 40° (c) 45° (d) 50° (e) 60°.

(ii)  Show algebraically that the range is the same when the angle of 
projection is α as it is when the angle is 90° − α. 

The catapult is angled with the intention that the pellet should hit a point on 
the ground 36 m away. 

(iii)  Verify that one appropriate angle of projection would be 32.1° and write 
down another suitable angle. 

In fact the angle of projection from the catapult is liable to error. 

(iv) Find the distance by which the pellet misses the target in each of the cases 
in (iii) when the angle of projection is subject to an error of +0.5°. Which 
angle should you use for greater accuracy? 
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9 A cricketer hits the ball on the half-volley, that is when the ball is at ground 
level. The ball leaves the ground at an angle of 30° to the horizontal and 
travels towards a fielder standing on the boundary 60 m away. 

(i)  Find the initial speed of the ball if it hits the ground for the first time at 
the fielder’s feet. 

(ii) Find the initial speed of the ball if it is at a height of 3.2 m (well outside 
the fielder’s reach) when it passes over the fielder’s head. 

In fact the fielder is able to catch the ball without moving provided that its 
height, h m, when it reaches him satisfies the inequality 0.25  h  2.1.

(iii)  Find a corresponding range of values for u, the initial speed of the ball. 

10 A horizontal tunnel has a height of 3 m. A ball is thrown inside the tunnel 
with an initial speed of 18 m s−1. What is the greatest horizontal distance that 
the ball can travel before it bounces for the first time? 

11 Use g = 9.8 m s−2 in this question.

The picture shows Romeo trying to attract Juliet’s attention without her nurse, 

who is in a downstairs room, noticing. He stands 10 m from the house and 

lobs a small pebble at her bedroom window. Romeo throws the pebble from a 

height of 1 m with a speed of 11.5 m s−1 at an angle of 60° to the horizontal. 

(i)  How long does the pebble take to reach the house? 

(ii)  Does the pebble hit Juliet’s window, the wall of the house or the 
downstairs room window? 

(iii)  What is the speed of the pebble when it hits the house? [MEI]

Juliet’s window

downstairs window
1 m

60°

10 m

11.5 m s–1

1 m

1 m

1.5 m

0.5 m

1 m
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12 A firework is buried so that its top is at ground level and it projects sparks all 

at a speed of 8 m s−1. Air resistance may be neglected. 

(i) Calculate the height reached by a spark projected vertically and explain 
why no spark can reach a height greater than this.

(ii) For a spark projected at 30° to the horizontal over horizontal ground, 
show that its height in metres t seconds after projection is 4t − 5t 2 and 
hence calculate the distance it lands from the firework.

(iii) For what angle of projection will a spark reach a maximum height of 2 m? 

[MEI] 

13 A stone is projected from a point O on horizontal ground with speed V m s−1 

at an angle θ above the horizontal, where sin θ = 3
5
. The stone is at its highest 

point when it has travelled a horizontal distance of 19.2 m.

(i) Find the value of V.

After passing through its highest point the stone strikes a vertical wall at a 
point 4 m above the ground.

(ii) Find the horizontal distance between O and the wall.

At the instant when the stone hits the wall the horizontal component of the 
stone’s velocity is halved in magnitude and reversed in direction. The vertical 
component of the stone’s velocity does not change as a result of the stone 
hitting the wall.

(iii) Find the distance from the wall of the point where the stone reaches the 
ground.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q7 June 2006]

30°30°

8 m s 1
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14  A particle A is released from rest at time t = 0, at a point P which is 7 m 
above horizontal ground. At the same instant as A is released, a particle B is 
projected from a point O on the ground. The horizontal distance of O from 
P is 24 m. Particle B moves in the vertical plane containing O and P, with 
initial speed V m s−1 and initial direction making an angle of θ above the 
horizontal (see diagram).

Write down

(i) an expression for the height of A above the ground at time t s,

(ii) an expression in terms of V, θ and t for

(a) the horizontal distance of B from O,

(b) the height of B above the ground.

At time t = T the particles A and B collide at a point above the ground.

(iii) Show that tan θ = 7
24

 and that VT = 25. 

(iv) Deduce that 7V 2 > 3125.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q7 June 2005]

15 A particle P is released from rest at a point A which is 7 m above horizontal 
ground. At the same instant that P is released a particle Q is projected from 
a point O on the ground. The horizontal distance of O from A is 24 m. 
Particle Q moves in the vertical plane containing O and A, with initial speed 

50 m s−1 and initial direction making an angle θ above the horizontal, where 

tan θ = 7
24

 (see diagram). Show that the particles collide.

[Cambridge AS and A Level Mathematics 9709, Paper 52 Q3 November 2009]

P

A

B

θ

24 m

7 m

O

V m s–1

A

P

Q

θ

24 m

7 m

O

50 m s–1
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The path of a projectile 

Look at the equations 

x = 20t 

y = 6 + 30t − 5t 2

They represent the path of a projectile. 

●? What is the initial velocity of the projectile? What is its initial position? What 

value of g is assumed? 

These equations give x and y in terms of a third variable t. (They are called 

parametric equations and t is the parameter.) 

You can find the cartesian equation connecting x and y directly by eliminating t 

as follows:

 x t t
x= =20
20

so y t t= +6 30 5 2–

can be written as y
x= + ×6 30
20

 – 5
20

2

× 





x

 y x
x= +6 1 5
80

2
. –

EXERCISE 10D 1  Find the cartesian equation of the path of these projectiles by eliminating the 
parameter t. 

(i)  x = 4t  y = 5t 2

(ii)  x = 5t  y = 6 + 2t − 5t 2

(iii) x = 2 − t y = 3t − 5t 2

(iv) x = 1 + 5t y = 8 + 10t − 5t 2

(v)  x = ut  y = 2ut − 1
2
 gt 2 

2 A particle is projected with initial velocity 50 m s−1 at an angle of 36.9° to the 

horizontal. The point of projection is taken to be the origin, with the x axis 

horizontal and the y axis vertical in the plane of the particle’s motion. 

(i)  Show that at time t s, the height of the particle in metres is given by 

y = 30t − 5t 2 

 and write down the corresponding expression for x. 

(ii)  Eliminate t between your equations for x and y to show that 

y = 3
4 320

2x x
– .

(iii) Plot the graph of y against x.

(iv)  Mark on your graph the points corresponding to the position of the 

particle after 1, 2, 3, 4, ... seconds. 

This is the cartesian 
equation.

⇒
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3 A golfer hits a ball with initial velocity 50 m s−1 at an angle α to the horizontal 

where sin α = 0.6. 

(i)  Find the equation of its trajectory, assuming that air resistance may be 
neglected. The flight of the ball is recorded on film and its position vector, 
from the point where it was hit, is calculated. The unit vectors i and j are 
horizontal and vertical in the plane of the ball’s motion. The results (to the 
nearest 0.5 m) are as shown in the table. 

Time (s) 0 1 2 3 4 5 6

Position 
(m)

0
0( ) 39 5

24 5
.
.( ) 78

39( ) 116 5
44

.( ) 152
39( ) 187 5

24 5
.
.( ) 222

0( )
(ii)  On the same piece of graph paper draw the trajectory you found in

part (i) and that found from analysing the film. Compare the two graphs 
and suggest a reason for any differences. 

(iii)  It is suggested that the horizontal component of the resistance to the motion 
of the golf ball is almost constant. Are the figures consistent with this? 

General equations 

The work done in this chapter can now be repeated for the general case using 
algebra. Assume a particle is projected from the origin with speed u at an angle α 
to the horizontal and that the only force acting on the particle is the force due to 
gravity. The x and y axes are horizontal and vertical through the origin, O, in the 
plane of motion of the particle. 

        

The components of velocity and position 

 Horizontal motion Vertical motion 

Initial position 0 0

a 0 −g 

u ux = u cos α  uy = u sin α 

v  vx = u cos α 1 vy = u sin α − gt 2

r x = ut cos α  3 y = ut sin α − 1
2
 gt 2 4

y

x

H

O

g

u

α

R

Figure 10.15

no vertical velocity

y = 0, x = R

ut cos α is preferable to u cos αt 
because this could mean 

u cos (αt) which is incorrect.
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The maximum height 

At its greatest height, the vertical component of velocity is zero. 

From equation 2

u  sin  α − gt = 0 

                   t = 
u

g

sin α

Substitute in equation 4  to obtain the height of the projectile: 

y = u × 
u

g

sin α   × sin α − 1
2
g  × 

( sin )u

g

α 2

2

      = 
u

g

u

g

2 2 2 2

2

sin
–

sinα α

The greatest height is

H = 
u

g

2 2

2

sin α
 

The time of flight 

When the projectile hits the ground, y = 0. 

From equation 4   y = ut  sin  α − 1
2
 gt 2 

 0 = ut sin  α − 1
2
 gt 2 

 0 = t (u  sin  α − 1
2
 gt)

The time of flight is  t = 
2u

g

sin α

The range 

The range of the projectile is the value of x when t = 
2u

g

sin α

From equation 4  :  x = ut  cos  α 

⇒ R = u ×  2u

g

sin α
 × cos α

 R = 
2 2u

g

sin cosα α

It can be shown that 2 sin α cos α = sin 2 α, so the range can be expressed as 

R = 
u

g

2 2sin α

The range is a maximum when sin 2 α = 1, that is when 2 α = 90° or α = 45°. The 

maximum possible horizontal range for projectiles with initial speed u is 

Rmax = u
g

2
.

The solution t = 0 is at 
the start of the motion.
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The equation of the path 

From equation 3 t = 
x

u cos α
Substitute into equation 4  to give 

y = u × 
x

u
g

x

ucos
sin –

( cos )α
α

α
× ×1

2

2

2

y = x 
sin

cos
–

cos

α
α α

gx

u

2

2 22

So the equation of the trajectory is

y = x tan α 
sin

cos
–

cos

α
α α

gx

u

2

2 22
.

In Pure Mathematics 2 you learn that 
1

2cos α  = 1 + tan2 α so

y = x tan α − 
gx

u

2

22
 (1 + tan2 α)

!  It is important that you understand the methods used to derive these formulae 

and don’t rely on learning the results by heart. They are only true when the given 

assumptions apply and the variables are as defined in figure 10.15. 

●? What are the assumptions on which this work is based? 

EXERCISE 10E   In this exercise use the modelling assumptions that air resistance can be ignored and 
the ground is horizontal. 

1 A projectile is launched from the origin with an initial velocity 30 m s−1 at an 
angle of 45° to the horizontal. 

(i)  Write down the position of the projectile after time t. 

(ii)  Show that the equation of the path is the parabola y = x − 0.011x  2. 

(iii)  Find y when x = 10. 

(iv)  Find x when y = 20. 

2 Jack throws a cricket ball at a wicket 0.7 m high with velocity 10 m s−1 at 14° 
above the horizontal. The ball leaves his hand 1.5 m above the origin. 

(i)  Show that the equation of the path is the parabola 

y = 1.5 + 0.25x – 0.053x 2. 

(ii)  How far from the wicket is he standing if the ball just hits the top? 
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3 In this question, take g = 9.8 m s−2.

While practising his tennis serve, Matthew 

hits the ball from a height of 2.5 m with a 

velocity of magnitude 25 m s− 1 at an angle 

of 5° above the horizontal as shown in 

the diagram.

(i)  Show that while in flight

 y = 2.5 + 0.087x − 0.0079x 2. 

(ii)  Find the horizontal distance from the serving point to the spot where the 

ball lands. 

(iii)  Determine whether the ball would clear the net, which is 1 m high and 

12 m from the serving position in the horizontal direction. 

4 Ching is playing volleyball. She hits the ball with initial speed u  m s−1 from a 

height of 1m at an angle of 35° to the horizontal. 

(i)  Define a suitable origin and x and y axes and find the equation of the 

trajectory of the ball in terms of x, y and u. 

The rules of the game require the ball to pass over the net, which is at height 

2 m, and land inside the court on the other side, which is of length 5 m. Ching 

hits the ball straight along the court and is 3 m from the net when she does so. 

(ii)  Find the minimum value of u for the ball to pass over the net. 

(iii)  Find the maximum value of u for the ball to land inside the court. 

5 A particle is projected from horizontal ground with speed u m s−1 at an angle of 

θ° above the horizontal. The greatest height reached by the particle is 10 m and 

the particle hits the ground at a distance of 40 m from the point of projection. 

In either order,

(i) find the values of u and θ,

(ii) find the equation of the trajectory, in the form y = ax − bx2, where x m and 

y m are the horizontal and vertical displacements of the particle from the 

point of projection. 

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q4 November 2005]

6 A particle is projected from a point O at an angle of 35° above the horizontal. 

At time T s later the particle passes through a point A whose horizontal and 

vertically upward displacements from O are 8 m and 3 m respectively.

(i) By using the equation of the particle’s trajectory, or otherwise, find (in either 

order) the speed of projection of the particle from O and the value of T.

(ii) Find the angle between the direction of motion of the particle at A and the 

horizontal.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q6 November 2007]

5°
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7 A particle P is projected from a point O on horizontal ground with speed V m s−1 

and direction 60° upwards from the horizontal. At time t s later the horizontal 

and vertical displacements of P from O are x m and y m respectively.

(i) Write down expressions for x and y in terms of V and t and hence show 

that the equation of the trajectory of P is

y = (√3)x − 20 2

2

x

V
.

P passes through the point A at which x = 70 and y = 10. Find

(ii) the value of V,

(iii) the direction of motion of P at the instant it passes through A.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q7 November 2008]

8 A particle is projected from a point O on horizontal ground. The velocity 

of projection has magnitude 20 m s−1 and direction upwards at an angle θ to 

the horizontal. The particle passes through the point which is 7 m above the 

ground and 16 m horizontally from O, and hits the ground at the point A.

(i) Using the equation of the particle’s trajectory and the identity

 sec2 θ = 1 + tan2 θ, show that the possible values of tan θ are 3
4
 and 17

4
.

(ii) Find the distance OA for each of the two possible values of tan θ.

(iii) Sketch in the same diagram the two possible trajectories.

[Cambridge AS and A Level Mathematics 9709, Paper 51 Q5 June 2010]

EXPERIMENT

The diagram shows how a wet 

ball projected on to a sloping table 

can be used to simulate a projectile. 

1 Ignoring rotation and friction, 

what is the ball’s acceleration? 

2 Does the mass of the ball affect 

the motion? 

Set up the apparatus so that you 

can move the ramp to make 

different angles of projection with 

the same speed. 

3 Can the same range be achieved using two different angles? 

4 What angle gives the maximum range? 

5 What is the shape of the curve containing all possible paths with the same 

initial speed?

ramp

path of wet ball
can be drawn over

paper

Figure 10.16
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INVESTIGATION

Fireworks 

A firework sends out sparks from ground level with the same speed, 20 m s−1, 

in all directions. A spark starts at an angle α to the horizontal. Investigate the 

accessible points for this speed by plotting the trajectory for different values of α. 

Using a graphic calculator or other graph plotter investigate the shape of the 

curve which forms the outer limit for all possible sparks with trajectories which 

lie in a vertical plane. 

Show that the trajectory of a spark is given by y = x tan α − 1
80

 x 2(1 + tan2 α). 

KEY POINTS

1 Modelling assumptions for projectile motion with acceleration due to gravity:

●● a projectile is a particle

●● it is not powered

●● the air has no effect on its motion.

2 Projectile motion is usually considered in terms of horizontal and vertical 

components.

When the initial position is O

Angle is projection = α

Initial velocity, u = 
u
u

cosα
αsin





  

Acceleration, g = 
0

−




g

●● At time t, velocity, v = u + at 
v
v

u
u g

tx

y






= 



 + −







cos
sin

α
α

0

vx = u  cos  α                   1

vy = u  sin  α – gt                 2

●● Displacement, r = ut + 1
2
 at 2   

x
y

u
u

t
g

t



 = 



 + −







cos
sin

α
α

1
2

0 2

x = ut  cos  α                   3

y = ut  sin  α – 1
2
 gt 2

u

O

y

R
α

x

g
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3 At a maximum height vy = 0.

4 y = 0 when the projectile lands.

5 The time to hit the ground is twice the time to maximum height.

6 When the point of projection is (x0, y0) rather than (0, 0)

r = r0 + ut + 1
2
 at2 

x
y

x
y

u
u

t
g





 = 



 +





 + −

0

0

1
2

0cos
sin

α
α





 t 2

7 The equation of the trajectory of a projectile is

y = x tan α − gx
u

2

2 22 cos α
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Moments of forces 

Give me a firm place to stand and I will move the earth. 

Archimedes 

The illustration shows a swing bridge over a canal. It can be raised to allow barges 

and boats to pass. It is operated by hand, even though it is very heavy. How is this 

possible? 

The bridge depends on the turning effects or moments of forces. To understand 

these you might find it helpful to look at a simpler situation.

Two children sit on a simple see-saw, made of a plank balanced on a fulcrum as 

in figure 11.2. Will the see-saw balance? 

If both children have the same mass and sit the same distance from the fulcrum, 

then you expect the see-saw to balance. 

Now consider possible changes to this situation: 

(i) If one child is heavier than the other then you expect the heavier one to go 

down;

(ii) If one child moves nearer the centre you expect that child to go up. 

You can see that both the weights of the children and their distances from the 

fulcrum are important. 

Figure 11.1 

fulcrum

Figure 11.2 

11



R
ig

id
 b

o
d

ie
s

211

M2
11

What about this case? One child has mass 35 kg and sits 1.6 m from the fulcrum 

and the other has mass 40 kg and sits on the opposite side 1.4 m from the fulcrum 

(see figure 11.3).

Taking the products of their weights and their distances from the fulcrum, gives 

A: 40g  ×  1.4 = 56g

B: 35g  ×  1.6 = 56g

So you might expect the see-saw to balance and this indeed is what would 

happen. 

Rigid bodies

Until now the particle model has provided a reasonable basis for the analysis of 

the situations you have met. In examples like the see-saw however, where turning 

is important, this model is inadequate because the forces do not all act through 

the same point. 

In such cases you need the rigid body model in which an object, or body, is 

recognised as having size and shape, but is assumed not to be deformed when 

forces act on it. 

Suppose that you push a tray lying on a smooth table with one finger so that the 

force acts parallel to one edge and through the centre of mass (figure 11.4). 

The particle model is adequate here: the tray travels in a straight line in the 

direction of the applied force. 

BA

1.6 m1.4 m

40g 35g

Figure 11.3

F

Figure 11.4 
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If you push the tray equally hard with two fingers as in figure 11.5, symmetrically 

either side of the centre of mass, the particle model is still adequate. 

However, if the two forces are not equal or are not symmetrically placed, or as in 

figure 11.6 are in different directions, the particle model cannot be used. 

The resultant force is now zero, since the individual forces are equal in 
magnitude but opposite in direction. What happens to the tray? Experience tells 
us that it starts to rotate about G. How fast it starts to rotate depends, among 
other things, on the magnitude of the forces and the width of the tray. The rigid 
body model allows you to analyse the situation. 

Moments

In the example of the see-saw we looked at the product of each force and its 
distance from a fixed point. This product is called the moment of the force about 
the point.

The see-saw balances because the moments of the forces on either side of the 
fulcrum are the same magnitude and in opposite directions. One would tend 
to make the see-saw turn clockwise, the other anticlockwise. By contrast, the 
moments about G of the forces on the tray in the last situation do not balance. 
They both tend to turn it anticlockwise, so rotation occurs. 

Conventions and units

The moment of a force F about a point O is defined by 

moment = Fd 

where d is the perpendicular distance from the point O to the line of action of the 

force (figure 11.7).

F

F

2F

Figure 11.5 

F

G

F

G

Figure 11.6 
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In two dimensions, the sense of a moment is described as either positive 

(anticlockwise) or negative (clockwise) as shown in figure 11.8. 

If you imagine putting a pin at O and pushing along the line of F, your page 

would turn clockwise for (i) and anticlockwise for (ii). 

In the S.I. system the unit for moment is the newton metre (Nm), because a 

moment is the product of a force, the unit of which is the newton, and distance, 

the unit of which is the metre. 

Remember that moments are always taken about a point and you must always 

specify what that point is. A force acting through the point will have no moment 

about that point because in that case d = 0.

●? Figure 11.9 shows two tools for undoing wheel nuts on a car. Discuss the 

advantages and disadvantages of each.

 

When using the spider wrench (the tool with two ‘arms’), you apply equal and 

opposite forces either side of the nut. These produce moments in the same 

direction. One advantage of this method is that there is no resultant force and 

hence no tendency for the nut to snap off. 

Figure 11.9 

(i) (ii)

F

d
O

Figure 11.7 

The line of the force 
and its perpendicular 

make a T (for ‘turning’)

F

O

F

O

Figure 11.8 

clockwise movement 
(negative)

anticlockwise movement 
(positive)

(i) (ii)
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Couples

Whenever two forces of the same magnitude act in opposite directions along 

different lines, they have a zero resultant force, but do have a turning effect. In 

fact the moment will be Fd about any point, where d is the perpendicular 

distance between the forces. This is demonstrated in figure 11.10. 

In each of these situations:

Moment about O F
d

F
d

2 2
+  = Fd

Moment about A 0 + Fd = Fd

Moment about B −aF + (a + d) F = Fd

Any set of forces like these with a zero resultant but a non-zero total moment is 

known as a couple. The effect of a couple on a rigid body is to cause rotation. 

Equilibrium revisited

In Chapter 3 we said that an object is in equilibrium if the resultant force on the 

object is zero. This definition is adequate provided all the forces act through the 

same point on the object. However, we are now concerned with forces acting at 

different points, and in this situation even if the forces balance there may be a 

resultant moment. 

Figure 11.11 shows a tray on a smooth 

surface being pushed equally hard at  

opposite corners.

The resultant force on the tray is clearly 

zero, but the resultant moment about its 

centre point, G, is 

P × 
a
2

 + P × 
a
2

 = Pa.

The tray will start to rotate about its centre and so it is clearly not in equilibrium. 

F

F

O

A

B

d

a

F

F
O

A
B

d

a

Figure 11.10 

anticlockwise is positive

P

PD

G

C

A B

a
2

a
2

Figure 11.11 
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Note

You could have taken moments about any of the corners, A, B, C or D, or any  

other point in the plane of the paper and the answer would have been the same,  

Pa anticlockwise.

So we now tighten our mathematical definition of equilibrium to include 

moments. For an object to remain at rest (or moving at constant velocity) when 

a system of forces is applied, both the resultant force and the total moment must 

be zero.

To check that an object is in equilibrium under the action of a system of forces, 

you need to check two things: 

(i) that the resultant force is zero; 

(ii)   that the resultant moment about any point is zero. (You only need to check 

one point.) 

EXAMPLE 11.1 Two children are playing with a door. Kerry 

tries to open it by pulling on the handle with a 

force of 50 N at right angles to the plane of the 

door, at a distance 0.8 m from the hinges. Peter 

pushes at a point 0.6 m from the hinges, also 

at right angles to the door and with sufficient 

force just to stop Kerry opening it. 

(i)  What is the moment of Kerry’s force

about the hinges?

(ii)  With what force does Peter push?

(iii)  Describe the resultant force on the hinges. 

SOLUTION

Looking down from above, the line of the hinges becomes a point, H. The door 

opens clockwise. Anticlockwise is taken to be positive. 

(i) 

Figure 11.12 

0.8 m
50 N

H

Figure 11.13 
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Kerry’s moment about H = −50 × 0.8

                 = −40 Nm

The moment of Kerry’s force about the hinges is −40 Nm.

(Note that it is a clockwise moment and so negative.) 

(ii) 

Peter’s moment about H = +F × 0.6

Since the door is in equilibrium, the total moment on it must be zero, so

F × 0.6 − 40 = 0

 F = 40
0 6.

 = 66.7 (to 3 s.f.)

Peter pushes with a force of 66.7 N.

(iii) Since the door is in equilibrium the overall resultant force on it must be zero.

All the forces are at right angles to the door, as shown in the diagram. 

 

 

 

 

 

 Resolve perpendicular to door:

R + 50 = 66.7

 R = 16.7 (to 3 s.f.)

The total reaction at the hinges is a force of 16.7 N in the same direction as 

Kerry is pulling.

Note

The reaction force at a hinge may act in any  

direction, according to the forces elsewhere in 

the system. A hinge can be visualised in cross 

section as shown in figure 11.16. If the hinge is 

well oiled, and the friction between the inner 

and outer parts is negligible, the hinge cannot 

exert any moment. In this situation the door is 

said to be ‘freely hinged’.

0.6 m
F N

H

Figure 11.14 

50 NR 66.7 N

Figure 11.15 

Figure 11.16

contact may occur 
anywhere inside this 

circle
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EXAMPLE 11.2 The diagram shows a man of weight 600 N standing on a footbridge that consists 

of a uniform wooden plank just over 2 m long of weight 200 N. Find the reaction 

forces exerted on each end of the plank.

SOLUTION

The diagram shows the forces acting on the plank. 

For equilibrium both the resultant force and the total moment must be zero.

As all the forces act vertically we have

R + S − 800 = 0 1

Taking moments about the point A gives

() R × 0 − 600 × 0.5 − 200 × 1 + S × 2 = 0 2

From equation 2  S = 250 and so equation 1   gives R = 550.

The reaction forces are 250 N at A and 550 N at B.

Notes

1 You cannot solve this problem without taking moments.

2  You can take moments about any point and can, for example, show that by 

taking moments about B you get the same answer.

3 The whole weight of the plank is being considered to act at its centre.

4  When a force acts through the point about which moments are being taken, its 

moment about that point is zero.

0.5 m
2 m

Figure 11.17 

0.5 m0.5 m 1 m
S NR N

600 N 200 N

BA

Figure 11.18 
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Levers

A lever can be used to lift or move a heavy object using a relatively small force. 

Levers depend on moments for their action. 

Two common lever configurations are shown below. In both cases a load W 

is being lifted by an applied force F, using a lever of length l. The calculations 

assume equilibrium. 

Case 1

The fulcrum is at one end of the lever, figure 11.19. 

Taking moments about the fulcrum:

() F × l − W × a = 0

                     F = W × 
a
l

Since a is much smaller than l, the applied force F is much smaller than the 

load W.

Case 2

The fulcrum is within the lever, figure 11.20.

Taking moments about the fulcrum: 

() F × (l − a) − W × a = 0

                               F = W × a
l a–

Provided that the fulcrum is nearer the end with the load, the applied force is less 

than the load. 

a

l

RF

W

load

fulcrum

Figure 11.19 

applied 
force

l

F W

R

load

fulcrum
a

Figure 11.20 

applied 
force
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These examples also indicate how to find a single force equivalent to two parallel 

forces. The force equivalent to F and W should be equal and opposite to R and 

with the same line of action. 

●? Describe the single force equivalent to P and Q in each of these cases. 

In each case state its magnitude and line of action. 

●? How do you use moments to open a screw-top jar?

 Why is it an advantage to press hard when it is stiff? 

EXERCISE 11A  1  In each of the situations shown below, find the moment of the force 

about the point and state whether it is positive (anticlockwise) or negative 

(clockwise). 

(i)  (ii)  

(iii)  (iv) 

O

QP

ba
O

Q

P

ba

Figure 11.21 

(i) (ii)

O

3 m

5 N
O

2 m

11 N

O

3 m

6 N

O4 m

7 N

O

3 m

5 N
O

2 m

11 N

O

3 m

6 N

O4 m
7 N

O

3 m

5 N
O

2 m

11 N

O

3 m

6 N

O4 m
7 N

O

3 m

5 N
O

2 m

11 N

O

3 m

6 N

O4 m

7 N
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2 The situations below involve several forces acting on each object. For each 

one, find the total moment. 

(i)  (ii)  

(iii)  (iv) 

3 A uniform horizontal bar of mass 5 kg has length 30 cm and rests on 

two vertical supports, 10 cm and 22 cm from its left-hand end. Find the 

magnitude of the reaction force at each of the supports. 

4 The diagram shows a motorcycle of mass 250 kg, and its rider whose mass is 

80 kg. The centre of mass of the motorcycle lies on a vertical line midway 

between its wheels. When the rider is on the motorcycle, his centre of mass is 

1 m behind the front wheel.

Find the vertical reaction forces acting through the front and rear wheels 

when

(i) the rider is not on the motorcycle

(ii) the rider is on the motorcycle. 

2 N 3 N
1.7 N

1.8 m 2.1 N

1.4 m

1.1 m
0.6 m

O

O

2.1 m

1.7 m

2.4 m
1 m

1.6 N1.2 N

1.3 N

1.7 m
0.9 m

4 N
3 N

5 N

1 NO
0.8 m

2 N 3 N
1.7 N

1.8 m 2.1 N

1.4 m

1.1 m
0.6 m

O

O

2.1 m

1.7 m

2.4 m
1 m

1.6 N1.2 N

1.3 N

1.7 m
0.9 m

4 N
3 N

5 N

1 NO
0.8 m

2 N 3 N
1.7 N

1.8 m 2.1 N

1.4 m

1.1 m
0.6 m

O

O

2.1 m

1.7 m

2.4 m
1 m

1.6 N1.2 N

1.3 N

1.7 m
0.9 m

4 N
3 N

5 N

1 NO
0.8 m

2 N 3 N
1.7 N

1.8 m 2.1 N

1.4 m

1.1 m
0.6 m

O

O

2.1 m

1.7 m

2.4 m
1 m

1.6 N1.2 N

1.3 N

1.7 m
0.9 m

4 N
3 N

5 N

1 NO
0.8 m

0.7 m 0.7 m
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5 Find the reaction forces on the hi-fi shelf shown below. The shelf itself has 

weight 25 N and its centre of mass is midway between A and D. 

6 Karen and Jane are trying to find the positions of their centres of mass. They 

place a uniform board of mass 8 kg symmetrically on two bathroom scales 

whose centres are 2 m apart. When Karen lies flat on the board, Jane notes 

that scale A reads 37 kg and scale B reads 26 kg.

(i) Draw a diagram showing the forces acting on Karen and the board and 

calculate Karen’s mass.

(ii) How far from the centre of scale A is her centre of mass? 

7 The diagram shows two people, an adult 

and a child, sitting on a uniform bench  

of mass 40 kg; their positions are as  

shown. The mass of the child is 50 kg,  

that of the adult is 85 kg. 

(i) Find the reaction forces, P and Q 

(in N), from the ground on the two 

supports of the bench. 

(ii) The child now moves to the mid-point 

of the bench. What are the new values 

of P and Q?

(iii) Is it possible for the child to move to a position where P = 0? What is the 

significance of a zero value for P ?

(iv) What happens if the child leaves the bench? 

m 8.0m 7.0m 5.0

70 N

Y NX N

60 N80 N
25 N

DCBA 

BA
2 m

1.0 m

A B

P Q

0.5 m0.5 m
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8 The diagram shows a diving board which some children have made. It 
consists of a uniform plank of mass 20 kg and length 3 m, with 1 m of its 
length projecting out over a pool. They have put a boulder of mass 25 kg on 
the end over the land; and there is a support at the water’s edge. 

(i) Find the forces at the two supports when nobody is using the diving board.

(ii) A child of mass 50 kg is standing on the end of the diving board over the 
pool. What are the forces at the two supports? 

(iii) Some older children arrive and take over the diving board. One of these 
is a heavy boy of mass 90 kg. What is the reaction at A if the board begins 
to tip over? 

(iv) How far can the boy walk from B before the board tips over? 

9 A lorry of mass 5000 kg is driven across a Bailey bridge of mass 20 tonnes. 
The bridge is a roadway of length 10 m which is supported at both ends.

(i) Find expressions for the reaction forces at each end of the bridge in terms of 
the distance x in metres travelled by the lorry from the start of the bridge. 

(ii) From what point of the lorry is the distance x measured? 

Two identical lorries cross the bridge at the same speed, starting at the same 
instant, from opposite directions.

(iii) How do the reaction forces of the supports on the bridge vary as the 
lorries cross the bridge? 

10 A simple suspension bridge across a narrow river consists of a uniform beam, 
4 m long and of mass 60 kg, supported by vertical cables attached at a distance 
0.75 m from each end of the beam.

(i) Find the tension in each cable when a boy of mass 50 kg stands 1 m from 
the end of the bridge.

(ii) Can a couple walking hand-in-hand cross the bridge safely, without it 
tipping, if their combined mass is 115 kg?

(iii) What is the mass of a person standing on the end of the bridge when the 
tension in one cable is four times that in the other cable? 

3 m total length
boulder

CB
A

1 m sticks out over pool

cables
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EXPERIMENT

Set up the apparatus shown in figure 11.22 below and experiment with two or 

more weights in different positions. 

Record your results in a table showing weights, distances from O and moments 
about O. 

Two masses are suspended from the rule in such a way that the rule balances in 
a horizontal position. What happens when the rule is then moved to an inclined 
position and released? 

Now attach a pulley as in figure 11.23. Start with equal weights and measure d 
and l. Then try different weights and pulley positions. 

mass, M2mass, M1

movable hangermetre rule

smooth pivot
at centre
of rule

O

clamp stand

Figure 11.22 

mass, M1

pulley

mass, M2

d

l

Figure 11.23 
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The moment of a force which acts at an angle 

From the experiment you will have seen that the moment of a force about the 

pivot depends on the perpendicular distance from the pivot to the line of the force.

In figure 11.24, where the system remains at rest, the moment about O of the 
20 N force is 20 × 0.45 = 9 Nm. The moment about O of the 25 N force is 
−25 × 0.36 = −9 Nm. The system is in equilibrium even though unequal forces act 
at equal distances from the pivot. 

The magnitude of the moment of the force F about O in figure 11.25 is given by 

F × l = Fd sin α

Alternatively the moment can be found by noting that the force F can be resolved 
into components F cos α parallel to AO and F sin α perpendicular to AO, both 
acting through A (figure 11.26). The moment of each component can be found 
and then summed to give the total moment. 

The moment of the component along AO is zero because it acts through O. The 

magnitude of the moment of the perpendicular component is F sin α × d so the 

total moment is Fd sin α, as expected.

20 N
36 cm

25 N

O

45 cm 45 cm

Figure 11.24 

F

d

l

A
α

O

Figure 11.25 

F sin α

F cos αd A
α

O

Figure 11.26 
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EXAMPLE 11.3 A force of 40 N is exerted on a rod as shown. Find the moment of the force about 

the point marked O.

SOLUTION 

In order to calculate the moment, the perpendicular distance between O and the 

line of action of the force must be found. This is shown on the diagram.

Here l = 1.5 × sin 50°.

So the moment about O is 

F × l = 40 × (1.5 × sin 50°)

                                          = 46.0 Nm.

Alternatively you can resolve the 40 N force into 

components as in Figure 11.29. 

The component of the force parallel to AO is  

40 cos 50° N. The component perpendicular to  

AO is 40 sin 50° (or 40 cos 40°) N.

So the moment about O is

40 sin 50° × 1.5 = 60 sin 50°

                                                                             = 46.0 Nm as before. 

50°

O

A

40 sin 50° N

40 cos 50° N

Figure 11.29 

50°

40 N

1.5 m

O

Figure 11.27 

50°

l

O

1.5 m

A
40 N

Figure 11.28 

Note the T shape 
(for ‘turning’)
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EXAMPLE 11.4 A sign is attached to a light rod of length 1 m

which is freely hinged to the wall and supported in 

a vertical plane by a light string as in the diagram. 

The sign is assumed to be a uniform rectangle of 

mass 10 kg. The angle of the string to the horizontal 

is 25°.

(i) Find the tension in the string.

(ii)  Find the magnitude and direction of the 

reaction force of the hinge on the sign.

SOLUTION

(i)  The diagram shows the forces acting on the rod, 

where RH and RV are the magnitudes of the 

horizontal and vertical components of the 

reaction R on the rod at the wall. 

Taking moments about O:

0 × RV + 0 × RH − 10g × 0.5 + T sin 25° × 1 = 0

                                                                                                    ⇒           T sin 25° = 5g 

                       T = 118 (to 3 s.f.)

The tension is 118 N.

(ii) You can resolve to find the reaction at the wall. 

Horizontally: RH = T cos 25°

 ⇒         RH = 107

Vertically: RV + T sin 25° = 10g

                               ⇒     RV = 10g − 5g = 50

 R = 107 502 2+
 = 118

 tan θ = 
50

107
 

 θ = 25° (to the nearest degree)

  The reaction at the hinge has magnitude 118 N and acts at 25° above the 

horizontal.

●? Is it by chance that R and T have the same magnitude and act at the same angle to 

the horizontal? 

Figure 11.30 

10g 

0.5 m
25°

0.5 mO

RV
RH

T

Figure 11.31 

107
θ

R
50

Figure 11.32
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EXAMPLE 11.5 A uniform ladder is standing on rough ground and leaning against a smooth 

wall at an angle of 60° to the ground. The ladder has length 4 m and mass 15 kg. 

Find the normal reaction forces at the wall and ground and the friction force at 

the ground. 

SOLUTION

The diagram shows the forces acting on the ladder. The forces are in newtons. 

The diagram shows that there are three unknown forces S, R and F so we need 

three equations from which to find them. If the ladder remains at rest (in 

equilibrium) then the resultant force is zero and the resultant moment is zero. 

These two conditions provide the three necessary equations. 

Equilibrium of horizontal components: S − F = 0 1

Equilibrium of vertical components: R − 15g = 0 2

Moments about the foot of the ladder:

R × 0 + F × 0 + 15g × 2 cos 60° − S × 4 sin 60° = 0

        ⇒      150 − 4S sin 60° = 0 3 

                                                                                                  ⇒ S = 150
4 60sin 

 = 43.3 (to 3 s.f.)

From 1           F = S = 43.3

From 2             R = 150

The force at the wall is 43.3 N, those at the ground are 43.3 N horizontally and 

150 N vertically.

60°

15g 
2 m

A

B
C

2 m

S

R

F

d

Figure 11.33 

d = AB = 4 sin 60° m
      BC = 4 cos 60° m

    1
2
BC = 2 cos 60° m
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EXERCISE 11B    1 Find the moment about O of each of the forces illustrated below. 

(i)  (ii)   (iii)  

(iv)  (v)   (vi)  

2 The diagram shows three children 

pushing a playground roundabout. 

Hannah and David want it to go one 

way but Rabina wants it to go the  

other way. Who wins?

3 The operating instructions for a small crane specify that when the jib is at an 

angle of 25° above the horizontal, the maximum safe load for the crane is 

5000 kg. Assuming that this maximum load is determined by the maximum 

moment that the pivot can support, what is the maximum safe load when the 

angle between the jib and the horizontal is

(i) 40° (ii) an angle θ?

4 N
P

O

30°

3 m

2 m
50°

O

P

7 N

O

P
3 m

10 N

130°

O

45°

2 m

P

3 N
3 N

45°

2 m

P

O

O

1.6 m
P

9 N

4 N
P

O

30°

3 m

2 m
50°

O

P

7 N

O

P
3 m

10 N

130°

O

45°

2 m

P

3 N
3 N

45°

2 m

P

O

O

1.6 m
P

9 N

4 N
P

O

30°

3 m

2 m
50°

O

P

7 N

O

P
3 m

10 N

130°

O

45°

2 m

P

3 N
3 N

45°

2 m

P

O

O

1.6 m
P

9 N

4 N
P

O

30°

3 m

2 m
50°

O

P

7 N

O

P
3 m

10 N

130°

O

45°

2 m

P

3 N
3 N

45°

2 m

P

O

O

1.6 m
P

9 N

4 N
P

O

30°

3 m

2 m
50°

O

P

7 N

O

P
3 m

10 N

130°

O

45°

2 m

P

3 N
3 N

45°

2 m

P

O

O

1.6 m
P

9 N

4 N
P

O

30°

3 m

2 m
50°

O

P

7 N

O

P
3 m

10 N

130°

O

45°

2 m

P

3 N
3 N

45°

2 m

P

O

O

1.6 m
P

9 N

51 N

115 N

77°

Rabina

65 N

70°

David

Hannah

θ

load
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4 In each of these diagrams, a uniform beam of mass 5 kg and length 4 m, freely 

hinged at one end, A, is in equilibrium. Find the magnitude of the force T in 

each case.

(i)  (ii)   (iii)  

5 The diagram shows a uniform rectangular sign 

ABCD, 3 m × 2 m, of weight 20 N. It is freely 

hinged at A and supported by the string CE, which 

makes an angle of 30° with the horizontal. The 

tension in the string is T (in N).

(i) Resolve the tension T into horizontal and 

vertical components.

(ii) Hence show that the moment of the tension in 

the string about A is given by

2T cos 30° + 3T sin 30°.

(iii) Write down the moment of the sign’s weight about A.

(iv) Hence show that T = 9.28.

(v) Hence find the horizontal and vertical components of the reaction on the 

sign at the hinge, A.

You can also find the moment of the tension in the string about A as d × T, 

where d is the length of AF as shown in the diagram. 

(vi) Find (a) the angle ACD (b) the length d.

(vii) Show that you get the same value for T when it is calculated in this way. 

30°

5g N

T
A

30°2 m

30°
5g N

10 N

T

1 m 1 m

20°

50°

5g N

T

2 m

AA
30°

5g N

T
A

30°2 m

30°
5g N

10 N

T

1 m 1 m

20°

50°

5g N

T

2 m

AA
30°

5g N

T
A

30°2 m

30°
5g N

10 N

T

1 m 1 m

20°

50°

5g N

T

2 m

AA

30° C

E

l

BA

D

30° C

F

E

T

d

BA

D
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6 The diagram shows a simple crane. The weight of the jib (AB) may be 

ignored. The crane is in equilibrium in the position shown. 

(i) By taking moments about the pivot, find the magnitude of the tension 
T (in N).

(ii) Find the reaction of the pivot on the jib in the form of components 
parallel and perpendicular to the jib.

(iii) Show that the total moment about the end A of the forces acting on the 
jib is zero. 

(iv) What would happen if

(a) the rope holding the 50 kg mass snapped?

(b) the rope with tension T snapped? 

7 A uniform plank, AB, of mass 50 kg and length 6 m is in equilibrium leaning 
against a smooth wall at an angle of 60° to the horizontal. The lower end, A, 
is on rough horizontal ground.

(i) Draw a diagram showing all the forces acting on the plank.

(ii) Write down the total moment about A of all the forces acting on the 
plank.

(iii) Find the normal reaction of the wall on the plank at point B. 

(iv) Find the frictional force on the foot of the plank. What can you deduce 
about the coefficient of friction between the ground and the plank?

(v) Show that the total moment about B of all the forces acting on the plank 
is zero. 

8 A uniform ladder of mass 20 kg and length 2l rests in equilibrium with 
its upper end against a smooth vertical wall and its lower end on a rough 
horizontal floor. The coefficient of friction between the ladder and the floor 
is µ. The normal reaction at the wall is S, the frictional force at the ground is 
F and the normal reaction at the ground is R. The ladder makes an angle α 
with the horizontal.

(i) Draw a diagram showing the forces acting on the ladder. 

For each of the cases, (a) α = 60°,    (b)   α = 45°

(ii) find the magnitudes of S, F and R

(iii) find the least possible value of µ.

55°

70°

pivot

A 3 m

1.2 m

B

T

50 kg
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9 The diagram shows a car’s hand brake. The force F is exerted by the hand in 

operating the brake, and this creates a tension T in the brake cable. The hand 

brake is freely pivoted at point B and is assumed to be light. 

(i) Draw a diagram showing all the forces acting on the hand brake.

(ii) What is the required magnitude of force F if the tension in the brake 

cable is to be 1000 N?

(iii) A child applies the hand brake with a force of 10 N. What is the tension 

in the brake cable?

10 The diagram shows four tugs manoeuvring a ship. A and C are pushing it, B 

and D are pulling it. 

(i) Show that the resultant force on the ship is less than 100 N.

(ii) Find the overall turning moment on the ship about its centre point, O. 

A breeze starts to blow from the south, causing a total force of 2000 N to act 

uniformly along the length of the ship, at right angles to it.

(iii) How (assuming B and D continue to apply the same forces) can tugs 

A and C counteract the sideways force on the ship by altering the 

forces with which they are pushing, while maintaining the same overall 

moment about the centre of the ship? 

F

T
C

AB  350 mm
BC  60 mm

B

35°

10°A

40°

0

45°

B

C

A
8000 N

20 m50 m

O

70 m

3000 N

10 000 N

14 000 N
D

60°

30 m

N
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11 The boom of a fishing boat may be used as a simple crane. The boom AB is 

uniform, 8 m long and has a mass of 30 kg. It is freely hinged at the end A.

In figure (A), the boom shown is in equilibrium supported at C by the boat’s 

rail, where the length AC is 3.5 m. The boom is horizontal and has a load of 

mass 20 kg suspended from the end B.

(i) Draw a diagram showing all the forces acting on the boom AB.

(ii) Find the force exerted on the boom by the rail at C.

(iii) Calculate the magnitude and direction of the force acting on the boom at A.

It is more usual to use the boom in a position such as the one shown in  

figure (B). AT is vertical and the boom is held in equilibrium by the rope 

section TB, which is perpendicular to it. Angle TAB = 30°. A load of mass 

20 kg is supported by a rope passing over a small, smooth pulley at B. The 

rope then runs parallel to the boom to a fixing point at A.

(iv) Find the tension in the rope section TB when the load is stationary. 

 [MEI, part]

12 Jules is cleaning windows. Her ladder is uniform and stands on rough ground 

at an angle of 60° to the horizontal and with the top end resting on the edge 

of a smooth window sill. The ladder has mass 12 kg and length 2.8 m and 

Jules has mass 56 kg.

(i) Draw a diagram to show the forces on the ladder when nobody is 

standing on it. Show that the reaction at the sill is then 3g N.

(ii) Find the friction and normal reaction forces at the foot of the ladder. 

Jules needs to be sure that the ladder will not slip however high she climbs.

(iii) Find the least possible value of µ for the ladder to be safe at 60° to the 

horizontal.

(iv) The value of µ is in fact 0.4. How far up the ladder can Jules stand before 

it begins to slip?

20 kg

BA C

boom

mast

B

30°

A

small
pulley

T

20 kg

(A) (B)
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13 Overhead cables for a tramway are supported by uniform, rigid, horizontal 

beams of weight 1500 N and length 5 m. Each beam, AB, is freely pivoted at 

one end A and supports two cables which may be modelled by vertical loads, 

each of 1000 N, one 1.5 m from A and the other at 1 m from B. 

In one situation, the beam is held in equilibrium by resting on a small 
horizontal support at B, as shown in figure (A).

(i) Draw a diagram showing all the forces acting on the beam AB. Show that 

the vertical force acting on the beam at B is 1850 N.

In another situation, the beam is supported by a wire, instead of the support at 
B. The wire is light, attached at one end to the beam at B and at the other to 
the point C which is 3 m vertically above A, as shown in figure (B).

(ii) Calculate the tension in the wire.

(iii) Find the magnitude and direction of the force on the beam at A. 
 [MEI]

14 A uniform beam AB has length 2 m and mass 10 kg. The beam is hinged at A 

to a fixed point on a vertical wall, and is held in a fixed position by a light 

inextensible string of length 2.4 m. One end of the string is attached to the 

beam at a point 0.7 m from A. The other end of the string is attached to the 

wall at a point vertically above the hinge. The string is at right angles to AB. 

The beam carries a load of weight 300 N at B (see diagram).

1000 N load

A B

1000 N load

1.5 m 2.5 m

3 m

beam
support

1 m

1000 N load

BA

C

(B)(A)

wire

1000 N load

beam

 
B

A

2.4 m

2 m

0.7 m

300 N
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(i) Find the tension in the string.

The components of the force exerted by the hinge on the beam are X N 

horizontally away from the wall and Y N vertically downwards.

(ii) Find the values of X and Y.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q3 November 2007]

INVESTIGATION

Toolbox

Which tools in a typical toolbox or kitchen drawer depend upon moments for 

their successful operation? 

KEY POINTS

1 The moment of a force F about a point O is given by the product Fd where d 

is the perpendicular distance from O to the line of action of the force.

2 The S.I. unit for moment is the newton metre (Nm).

3 Anticlockwise moments are usually called positive, clockwise negative.

4 If a body is in equilibrium the sum of the moments of the forces acting on it, 

about any point, is zero.

5 Two parallel forces P and Q (P  Q) are equivalent to a single force P + Q 

when P and Q are in the same direction and P − Q when they are in 

opposite directions. The line of action of the equivalent force is found by 

taking moments.

F

d

a
aα

O
O F cos α 

F sin αMoment about O
is F × a sin α

or F sin α × a + F cos α × 0



Centre of mass

Let man then contemplate the whole of nature in her full and grand 

mystery ... It is an infinite sphere, the centre of which is everywhere, 

the circumference nowhere. 

Blaise Pascal

●? Figure 12.1, which is drawn to scale, shows a mobile suspended from the point P. 

The horizontal rods and the strings are light but the geometrically shaped pieces 

are made of uniform heavy card. Does the mobile balance? If it does, what can 

you say about the position of its centre of mass? 

Figure 12.1 

You have met the concept of centre of mass in the context of two general models. 

●● The particle model
The centre of mass is the single point at which the whole mass of the body may 
be taken to be situated. 

●● The rigid body model
The centre of mass is the balance point of a body with size and shape. 
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The following examples show how to calculate the position of the centre of mass 
of a body.

EXAMPLE 12.1 An object consists of three point masses 8 kg, 5 kg and 4 kg attached to a rigid 

light rod as shown. 

Calculate the distance of the centre of mass of the object from end O. (Ignore the 

mass of the rod.)

SOLUTION

Suppose the centre of mass C is x– m from O. If a pivot were at this position the 

rod would balance.

For equilibrium R = 8g + 5g + 4g = 17g

Taking moments of the forces about O gives:

Total clockwise moment = (8g × 0) + (5g × 1.2) + (4g × 1.8)

 = 13.2g  Nm

Total anticlockwise moment = Rx–

 = 17gx–  Nm

The overall moment must be zero for the rod to be in balance, so

 17gx– − 13.2g = 0

⇒                17x– = 13.2

⇒                    x– = 13 2
17

.  = 0.776 (to 3 s.f.)

The centre of mass is 0.776 m from the end O of the rod. 

Note that although g was included in the calculation, it cancelled out. The answer 
depends only on the masses and their distances from the origin and not on the value 
of g. This leads to the following definition for the position of the centre of mass.

8 kg

O

5 kg1.2 m 0.6 m 4 kg

Figure 12.2

O C

R

0.6 m
x m

1.2 m8g 5g 4g

Figure 12.3

Forces in N
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Definition

Consider a set of n point masses m1, m2, ..., mn attached to a rigid light rod 
(whose mass is neglected) at positions x1, x2, ..., xn from one end O. The situation 
is shown in figure 12.4.

The position, x–, of the centre of mass relative to O, is defined by the equation: 

●● moment of whole mass at centre of mass = sum of moments of individual masses

        (m1 + m2 + m3 + ...)x– = m1x1 + m2x2 + m3x3 + ...
     or

                 Mx– = 
i

n

=
∑

1

 mi xi

     where M is the total mass (or ∑mi). 

EXAMPLE 12.2 A uniform rod of length 2 m has mass 5 kg. Masses of 4 kg and 6 kg are fixed at 

each end of the rod. Find the centre of mass of the rod. 

SOLUTION

Since the rod is uniform, it can be treated as a point mass at its centre. 

Figure 12.5 illustrates this situation. 

Taking the end A as origin,

 M x– = ∑mi xi

(4 + 5 + 6)x– = 4 × 0 + 5 × 1 + 6 × 2

 15x– = 17

      x– = 17
15

 = 1 2
15

So the centre of mass is 1.133 m from the 4 kg point mass.

●? Check that the rod would balance about a pivot 1 2
15

 m from A.

O
x1

m1 m2 m3

x2
x3

Figure 12.4

The symbol ∑ (sigma) 
means ‘the sum of’.

gk 5gk 4 m 1m 1 6 kg

BA

Figure 12.5
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EXAMPLE 12.3 A rod AB of mass 1.1 kg and length 1.2 m has its centre of mass 0.48 m from the 

end A. What mass should be attached to the end B to ensure that the centre of 

mass is at the mid-point of the rod? 

SOLUTION

Let the extra mass be m kg. 

Method 1 

Refer to the mid-point, C, as origin, so x– = 0. Then 

(1.1 + m) × 0 = 1.1 × (−0.12) + m × 0.6

⇒                       0.6m = 1.1 × 0.12

⇒                             m = 0.22.

A mass of 220 grams should be attached to B. 

Method 2 

Refer to the end A, as origin, so x– = 0.6. Then 

(1.1 + m) × 0.6 = 1.1 × 0.48 + m × 1.2

⇒              0.66 + 0.6 m = 0.528 + 1.2m

⇒                           0.132 = 0.6m

                                    m = 0.22 as before. 

Composite bodies

The position of the centre of mass of a composite body such as a cricket bat, 

tennis racquet or golf club is important to sports people who like to feel its 

balance. If the body is symmetric then the centre of mass will lie on the axis of 

symmetry. The next example shows how to model a composite body as a system 

of point masses so that the methods of the previous section can be used to find 

the centre of mass.

EXAMPLE 12.4 A squash racquet of mass 200 g and total length 70 cm consists of a handle of 

mass 150 g whose centre of mass is 20 cm from the end, and a frame of mass 50 g, 

whose centre of mass is 55 cm from the end. 

Find the distance of the centre of mass from the end of the handle. 

0.48 m 1.1 kg m kg

A C B
0.6 m 0.6 m

Figure 12.6

The 1.1 mass has 
negative x referred to C
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SOLUTION

Figure 12.7 shows the squash racquet and its dimensions.

The centre of mass lies on the axis of symmetry. Model the handle as a point 

mass of 0.15 kg a distance 0.2 m from O and the frame as a point mass of 0.05 kg a 

distance 0.55 m from the end O.

The distance, x–, of the centre of mass from O is given by 

(0.15 + 0.05) x– = (0.15 × 0.2) + (0.05 × 0.55)

 x– = 0.2875.

The centre of mass of the squash racquet is 28.75 cm from the end of the handle. 

EXERCISE 12A    1  The diagrams show point masses attached to rigid light rods. In each case 

calculate the position of the centre of mass relative to the point O.

(i)  (ii)  

(iii)  (iv)

(v)  (vi)

(vii)  (viii)

150 g axis of symmetry
O

20 cm

55 cm

50 g

Figure 12.7

O

0.2 m

0.55 m

0.15 kg 0.05 kg

Figure 12.8

5 kg

O

1.2 m 1 kg 2 kg 2 kg 4 kg

O

6 kg

0.6 m 0.6 m 0.6 m

3 kg

O

2.4 m 7 kg 3 kg

O 1.2 m

5 kg2 kg

0.7 m

1 kg 2 kg

O0.8 m

5 kg

0.6 m

7 kg 6 kg 5 kg 4 kg

O

3 kg

10 cm20 cm 10 cm 10 cm 10 cm

3 kg 2 kg

O

5 kg3 kg

1 m 0.2 m 1 m

8 kg 4 kg 3 kg 3 kg

O

3 kg

0.6 m 1.3 m 0.3 m 0.4 m

5 kg

O

1.2 m 1 kg 2 kg 2 kg 4 kg

O

6 kg

0.6 m 0.6 m 0.6 m

3 kg

O

2.4 m 7 kg 3 kg

O 1.2 m

5 kg2 kg

0.7 m

1 kg 2 kg

O0.8 m

5 kg

0.6 m

7 kg 6 kg 5 kg 4 kg

O

3 kg

10 cm20 cm 10 cm 10 cm 10 cm

3 kg 2 kg

O

5 kg3 kg

1 m 0.2 m 1 m

8 kg 4 kg 3 kg 3 kg

O

3 kg

0.6 m 1.3 m 0.3 m 0.4 m

5 kg

O

1.2 m 1 kg 2 kg 2 kg 4 kg

O

6 kg

0.6 m 0.6 m 0.6 m

3 kg

O

2.4 m 7 kg 3 kg

O 1.2 m

5 kg2 kg

0.7 m

1 kg 2 kg

O0.8 m

5 kg

0.6 m

7 kg 6 kg 5 kg 4 kg

O

3 kg

10 cm20 cm 10 cm 10 cm 10 cm

3 kg 2 kg

O

5 kg3 kg

1 m 0.2 m 1 m

8 kg 4 kg 3 kg 3 kg

O

3 kg

0.6 m 1.3 m 0.3 m 0.4 m

5 kg

O

1.2 m 1 kg 2 kg 2 kg 4 kg

O

6 kg

0.6 m 0.6 m 0.6 m

3 kg

O

2.4 m 7 kg 3 kg

O 1.2 m

5 kg2 kg

0.7 m

1 kg 2 kg

O0.8 m

5 kg

0.6 m

7 kg 6 kg 5 kg 4 kg

O

3 kg

10 cm20 cm 10 cm 10 cm 10 cm

3 kg 2 kg

O

5 kg3 kg

1 m 0.2 m 1 m

8 kg 4 kg 3 kg 3 kg

O

3 kg

0.6 m 1.3 m 0.3 m 0.4 m

5 kg

O

1.2 m 1 kg 2 kg 2 kg 4 kg

O

6 kg

0.6 m 0.6 m 0.6 m

3 kg

O

2.4 m 7 kg 3 kg

O 1.2 m

5 kg2 kg

0.7 m

1 kg 2 kg

O0.8 m

5 kg

0.6 m

7 kg 6 kg 5 kg 4 kg

O

3 kg

10 cm20 cm 10 cm 10 cm 10 cm

3 kg 2 kg

O

5 kg3 kg

1 m 0.2 m 1 m

8 kg 4 kg 3 kg 3 kg

O

3 kg

0.6 m 1.3 m 0.3 m 0.4 m

5 kg

O

1.2 m 1 kg 2 kg 2 kg 4 kg
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6 kg

0.6 m 0.6 m 0.6 m
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1 m 0.2 m 1 m

8 kg 4 kg 3 kg 3 kg

O

3 kg
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1.2 m 1 kg 2 kg 2 kg 4 kg

O

6 kg

0.6 m 0.6 m 0.6 m
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0.7 m
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0.6 m

7 kg 6 kg 5 kg 4 kg

O
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10 cm20 cm 10 cm 10 cm 10 cm

3 kg 2 kg

O

5 kg3 kg

1 m 0.2 m 1 m

8 kg 4 kg 3 kg 3 kg

O

3 kg

0.6 m 1.3 m 0.3 m 0.4 m
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2 A see-saw consists of a uniform plank 4 m long of mass 10 kg. Calculate the 
centre of mass when two children, of masses 20 kg and 25 kg, sit, one on 
each end.

3 A weightlifter’s bar in a competition has mass 10 kg and length 1 m. By 
mistake, 50 kg is placed on one end and 60 kg on the other end. How far is 
the centre of mass of the bar from the centre of the bar itself? 

4 The masses of the earth and the moon are 5.98 × 1024 kg and 7.38 × 1022 kg, 
and the distance between their centres is 3.84 × 105 km. How far from the 
centre of the earth is the centre of mass of the earth–moon system? 

5 A crossing warden carries a sign which consists of a 

uniform rod of length 1.5 m, and mass 1 kg, on top of which 

is a circular disc of radius 0.25 m and mass 0.2 kg. Find the 

distance of the centre of mass from the free end of the stick. 

6 A rod has length 2 m and mass 3 kg. The centre of 

mass should be in the middle but due to a fault in the 

manufacturing process it is not. This error is corrected by 

placing a 200 g mass 5 cm from the centre of the rod. Where 

is the centre of mass of the rod itself? 

7 A child’s toy consists of four uniform discs, all made out of the same 

material. They each have thickness 2 cm and their radii are 6 cm, 5 cm, 4 cm 

and 3 cm. They are placed symmetrically on top of each other to form a 

tower. How high is the centre of mass of the tower? 

8 A standard lamp consists of a uniform heavy metal base of thickness 4 cm, 

attached to which is a uniform metal rod of length 1.75 m and mass 0.25 kg. 

What is the minimum mass for the base if the centre of mass of the lamp is 

no more than 12 cm from the ground? 

9 A uniform scaffold pole of length 5 m has brackets bolted to it as shown in 

the diagram below. The mass of each bracket is 1 kg.

The centre of mass is 2.44 m from the left-hand end. What is the mass of  

the pole? 

10 An object of mass m1 is placed at one end of a light rod of length l. An object 

of mass m2 is placed at the other end. Find the position of the centre of mass. 

1.5 m

STOP
CHILDREN

0.5 m 0.5 m 1 m 1 m 1 m0.5 m 0.5 m
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11 The diagram illustrates a mobile tower crane. It consists of the main vertical 

section (mass M tonnes), housing the engine, winding gear and controls, 

and the boom. The centre of mass of the main section is on its centre line. 

The boom, which has negligible mass, supports the load (L tonnes) and the 

counterweight (C tonnes). The main section stands on supports at P and Q, 

distance 2d m apart. The counterweight is held at a fixed distance a m from 

the centre line of the main section and the load at a variable distance l m.

 

(i) In the case when C = 3, M = 10, L = 7, a = 8, d = 2 and l = 13, find the 

horizontal position of the centre of mass and say what happens to  

the crane. 

(ii) Show that for these values of C, M, a, d and l the crane will not fall over 

when it has no load, and find the maximum safe load that it can carry. 

(iii) Formulate two inequalities in terms of C, M, L, a, d and l that must hold 

if the crane is to be safe loaded or unloaded. 

(iv) Find, in terms of M, a, d and l, the maximum load that the crane can carry. 

Centre of mass for two- and three-dimensional bodies

The techniques developed for finding the centre of mass using moments can be 

extended into two and three dimensions. 

If a two-dimensional body consists of a set of n point masses m1, m2, ..., mn 

located at positions (x1, y1), (x2, y2), ..., (xn, yn) as in figure 12.9 (overleaf) then 

the position of the centre of mass of the body (x–, y–) is given by 

M x– = ∑mi xi     and     My – = ∑mi yi

where M (= ∑mi) is the total mass of the body. 

M

L

O

Not drawn
to scale

QP

la

C

2d
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In three dimensions, the z co-ordinates are also included; to find z– use 

M z– = ∑mi zi

The centre of mass of any composite body in two or three dimensions can be 

found by replacing each component by a point mass at its centre of mass. 

EXAMPLE 12.5 Joanna makes herself a pendant in the shape of a letter J made up of rectangular 

shapes as shown in figure 12.10.

(i) Find the position of the centre of mass of the pendant. 

(ii)  Find the angle that AB makes with the horizontal if she hangs the pendant 

from a point, M, in the middle of AB. 

She wishes to hang the pendant so that AB is horizontal. 

(iii)  How far along AB should she place the ring that the suspending chain will 

pass through? 

mn
(xn, yn) m1

(x1, y1)

y

x

m2
(x2, y2)

m3
(x3, y3)

m4
(x4, y4)

Figure 12.9

BA

2.5 cm

1 cm

O

3.5 cm

1 cm

5 cm

3 cm

M

Figure 12.10
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SOLUTION

(i)  The first step is to split the pendant into three rectangles. The centre of mass 

of each of these is at its middle, as shown in figure 12.11. 

You can model the pendant as three point masses m1, m2 and m3, which are 

proportional to the areas of the rectangular shapes. Since the areas are 5 cm2, 

2.5 cm2 and 3 cm2, the masses, in suitable units, are 5, 2.5 and 3, and the total 

mass is 5 + 2.5 + 3 = 10.5 (in the same units).

The table below gives the mass and position of m1, m2 and m3.

Mass m1 m2 m3 M

Mass units 5 2.5 3 10.5

Position of x 2.5 2.5 1.5 x–

centre of mass y 4 2.25 0.5 y–

Now it is possible to find x–:

    M x– = ∑mi xi

10.5 x– = 5 × 2.5 + 2.5 × 2.5 + 3 × 1.5

     x– = 23 25
10 5

.
.

 = 2.2 cm

Similarly for y–:

    My – = ∑mi yi

 10.5y– = 5 × 4 + 2.5 × 2.25 + 3 × 0.5 

                             y– = 27 125
10 5

.
.

 = 2.6 cm

The centre of mass is at (2.2, 2.6). 

(ii)  When the pendant is suspended from M, the centre of mass, G, is vertically 

below M, as shown in figure 12.12 (overleaf). 

BA

2 2

1

O

2.5

1

5

3

m1

m2

m3

Figure 12.11
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The pendant hangs like the first diagram but you might find it easier to draw 

your own diagram like the second.

        

GP = 2.5 − 2.2 = 0.3

 MP = 4.5 − 2.6 = 1.9

∴    tan α = 0 3
1 9

.

.
 ⇒ α = 9° 

  AB makes an angle of 9° with the horizontal (or 8.5° working with 

unrounded figures). 

(iii)  For AB to be horizontal the point of suspension must be directly above the 

centre of mass, and so it is 2.2 cm from A.

EXAMPLE 12.6 Find the centre of mass of a body consisting of a square plate of mass 3 kg and 

side length 2 m, with small objects of mass 1 kg, 2 kg, 4 kg and 5 kg at the corners 

of the square.

SOLUTION

Figure 12.13 shows the square plate, with the origin taken at the corner at which 

the 1 kg mass is located. The mass of the plate is represented by a 3 kg point mass 

at its centre. 

B

P

horizontal

vertical

M (2.5, 4.5)

G
(2.2, 2.6)

A

O

α

BM

G
α α

A

O

Figure 12.12

Rotate the page 
to see how the 
pendant hangs

90° − α

3 kg

2 m

2 m

4 kg
5 kg

2 kg x

y

1 kg

Figure 12.13
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In this example the total mass M (in kilograms) is 1 + 2 + 4 + 5 + 3 = 15.

The two formulae for x– and y– can be combined into one using column vector 

notation: 

Mx
My

m x

m y
i i

i i






= 





which is equivalent to

M 
x
y





  = ∑mi 

x
y

i

i







Substituting our values for M and mi and xi and yi :

15 1
0
0

2
2
0

4
2
2

5
0
2

x
y





 = 



 +




 +




 +




 +










 = 









 =

3
1
1

15
15
21

1
1

x
y

x
y .44







The centre of mass is at the point (1, 1.4).

EXAMPLE 12.7 A metal disc of radius 15 cm has a hole of radius 5 cm cut in it as shown in 

figure 12.14. Find the centre of mass of the disc. 

SOLUTION

Think of the original uncut disc as a composite body made up of the final body 

and a disc to fit into the hole. Since the material is uniform the mass of each part 

is proportional to its area. 

∑
∑

O

5 cm15 cm 10 cm

Figure 12.14
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 Uncut disc Final body Cut out disc

Area 152π = 225π 152π − 52π = 200π 52π = 25π

Distance from O 

to centre of mass

15 cm x– cm 20 cm 

Taking moments about O:

225π × 15 = 200π × x– + 25π × 20

⇒                                             x– = 
225 15 25 20

200
× ×–

                                                           = 14.375

The centre of mass is 14.4 cm from O, that is 0.6 cm to the left of the centre of  
the disc.

Centres of mass for different shapes

If an object has an axis of symmetry, then the centre of mass lies on it.

The centre of mass of a triangular lamina lies on the intersection of the medians.

The triangle in figure 12.16 is divided up 

into thin strips parallel to the side AB.

The centre of mass of each strip lies in  

the middle of the strip, at the points  

C1, C2, C3, … .

When these points are joined they form the 

median of the triangle drawn from C.

Similarly, the centre of mass also lies on the 

medians from B and from C. Therefore, 

the centre of mass lies at the intersection of 

the three medians; this is the centroid of the 

triangle. This point is 2
3
 of the distance along 

the median from the vertex.

Divide by 

The median of a triangle joins 
a vertex to the mid-point of 

the opposite side.

C

C1
A B

C2

C3

Figure 12.16

O 15

The uncut disc the final body the cut out disc+=

c.o.m. O c.o.m.
x O 15 5

c.o.m.

Figure 12.15
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The table below gives the position of the centre of mass of some uniform objects 

that you may encounter, or wish to include within models of composite bodies.

Body Position of centre of mass Diagram

Triangular lamina 2
3
 along the median from 

vertex

Solid cone or pyramid
3
4
h from vertex

r
h

Solid hemisphere
3
8r from centre

r

Hemispherical shell
1
2
r from centre

r

Circular sector of radius r 
and angle 2α radians

2

3

r sin α
α

 from centre

r2α

Circular arc of radius r 
and angle 2α radians

r sin α
α

 from centre

r2α

EXERCISE 12B    1 Find the centre of mass of the following sets of point masses.

(i)     (ii)    

1 x

y

2 3
3 m

2 m

40

1

2

– 2

– 1

3

4 m

m

0 x1 2 3– 3 – 2 – 1

y

1

2

3

4

2 m

3 m3 m

2 m

4 m

mm

1 x

y

2 m

0

1

– 4

– 1

– 2

– 3

0 x1 2 3– 3 – 2 – 1

y

1

2

3

4 m 5 m

2 m

m

2 m

m

5 m4 m
3 m

2 m

2 m

m

– 3 – 2– 5 – 4 – 1

– 1

– 2

1 x

y

2 3
3 m

2 m

40

1

2

– 2

– 1

3

4 m

m

0 x1 2 3– 3 – 2 – 1

y

1

2

3

4

2 m

3 m3 m

2 m

4 m

mm

1 x

y

2 m

0

1

– 4

– 1

– 2

– 3

0 x1 2 3– 3 – 2 – 1

y

1

2

3

4 m 5 m

2 m

m

2 m

m

5 m4 m
3 m

2 m

2 m

m

– 3 – 2– 5 – 4 – 1

– 1

– 2
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(iii)       (iv)   

2 Masses of 1, 2, 3 and 4 grams are placed at the corners A, B, C and D of 

a square piece of uniform cardboard of side 10 cm and mass 5 g. Find the 

position of the centre of mass relative to axes through AB and AD. 

3 As part of an illuminated display, letters are produced by mounting bulbs 

in holders 30 cm apart on light wire frames. The combined mass of a bulb 

and its holder is 200 g. Find the position of the centre of mass for each of the 

letters shown below, in terms of its horizontal and vertical displacement from 

the bottom left-hand corner of the letter. 

(i)   (ii)   (iii)  

4 Four people of masses 60 kg, 65 kg, 62 kg and 75 kg sit on the four seats of the 

fairground ride shown below. The seats and the connecting arms are light. 

Find the radius of the circle described by the centre of mass when the ride 

rotates about O.

1 x

y

2 3
3 m

2 m

40

1

2

– 2

– 1

3

4 m

m

0 x1 2 3– 3 – 2 – 1

y

1

2

3

4

2 m

3 m3 m

2 m

4 m

mm

1 x

y

2 m

0

1

– 4

– 1

– 2

– 3

0 x1 2 3– 3 – 2 – 1

y

1

2

3

4 m 5 m

2 m

m

2 m

m

5 m4 m
3 m

2 m

2 m

m

– 3 – 2– 5 – 4 – 1

– 1

– 2

1 x

y

2 3
3 m

2 m

40

1

2

– 2

– 1

3

4 m

m

0 x1 2 3– 3 – 2 – 1

y

1

2

3

4

2 m

3 m3 m

2 m

4 m

mm

1 x

y

2 m

0

1

– 4

– 1

– 2

– 3

0 x1 2 3– 3 – 2 – 1

y

1

2

3

4 m 5 m

2 m

m

2 m

m

5 m4 m
3 m

2 m

2 m

m

– 3 – 2– 5 – 4 – 1

– 1

– 2

60 kg

4 m

4 m

6 m6 m

62 kg

O

65 kg75 kg



E
x
e
rc

ise
 1

2
B

249

M2
12

5 Find the co-ordinates of the centre of mass of each of these shapes.

(i)  (ii)  

(iii)  (iv)  

6 The following shapes are made out of uniform card.

 For each shape find the co-ordinates of the centre of mass relative to O. 

7 A pendant is made from a uniform circular disc of mass 4m and radius 2 cm 

with a decorative edging of mass m as shown. The centre of mass of the 

decoration is 1 cm below the centre, O, of the disc. The pendant is 

symmetrical about the diameter AB. 

(i) Find the position of the centre of mass of the pendant. 

y

O O

O O

6

2 8 x

y

9

61.5 x

y

4

10 units

x

�
3

y

4

10 units

x

�
3

y

O O

O O

6

2 8 x

y

9

61.5 x

y

4

10 units

x

�
3

y

4

10 units

x

�
3

y

O O

O O

6

2 8 x

y

9

61.5 x

y

4

10 units

x

�
3

y

4

10 units

x

�
3

y

O O

O O

6

2 8 x

y

9

61.5 x

y

4

10 units

x

�
3

y

4

10 units

x

�
3

1 cm

3 cm

1 cm
O O

1 cm

3 cm3 cm

1 cm

1 cm

1 cm

1 cm

4 cm

C A

B

O

(i)

1 cm

3 cm

1 cm
O O

1 cm

3 cm3 cm

1 cm

1 cm

1 cm

1 cm

4 cm

(ii)
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The pendant should be hung from A but the light ring for hanging it is 
attached at C where angle AOC is 10°.

(ii) Find the angle between AB and the vertical when the pendant is hung 
from C. 

8 A uniform rectangular lamina, ABCD, where AB is of length a and BC of 
length 2a, has a mass 10m. Further point masses m, 2m, 3m and 4m are fixed 
to the points A, B, C and D, respectively. 

(i) Find the centre of mass of the system relative to x and y axes along AB 
and AD respectively. 

(ii) If the lamina is suspended from the point A find the angle that the 
diagonal AC makes with the vertical. 

(iii) To what must the mass at point D be altered if this diagonal is to hang 
vertically? 

 [MEI]

9 The diagram gives the dimensions of the design of a uniform metal plate. 

Using a co-ordinate system with O as origin, the x and y axes as shown and 
1 metre as 1 unit, 

(i) show that the centre of mass has y co-ordinate 1 and find its 
x co-ordinate.

The design requires the plate to have its centre of mass half-way across  
(i.e. on the line PQ in the diagram), and in order to achieve this a circular

hole centred on 1
2

1
2

,( ) is considered. 

(ii) Find the appropriate radius for such a hole and explain why this idea is 
not feasible. 

It is then decided to cut two circular holes each of radius r, both centred on 

the line x = 1
2
. The first hole is centred at 

1
2

1
2

,( ) and the centre of mass of the 

plate is to be at P.

(iii) Find the value of r and the co-ordinates of the centre of the second hole. 

 [MEI]

1 m

2.5 m

5 m

2 m

1 m3 m

QO

P

y

x

2 m

1 m
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10 A uniform triangular lamina ABC is right-angled at B and has sides 
AB = 0.6 m and BC = 0.8 m. The mass of the lamina is 4 kg. One end of a light 
inextensible rope is attached to the lamina at C. The other end of the rope is 
attached to a fixed point D on a vertical wall. The lamina is in equilibrium 
with A in contact with the wall at a point vertically below D. The lamina is in 
a vertical plane perpendicular to the wall, and AB is horizontal. The rope is 
taut and at right angles to AC (see diagram). 

Find

(i) the tension in the rope,

(ii) the horizontal and vertical components of the force exerted at A on the 
lamina by the wall.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q4 June 2007]

11 A uniform rigid wire AB is in the form of a circular arc of radius 1.5 m with 
centre O. The angle AOB is a right angle. The wire is in equilibrium, freely 
suspended from the end A. The chord AB makes an angle of θ° with the 
vertical (see diagram).

(i) Show that the distance of the centre of mass of the arc from O is 1.35 m, 
correct to 3 significant figures.

(ii) Find the value of θ.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q2 June 2008]

D

A B

0.8 m

0.6 m

C

A

O

B

1.5 m

θ°
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12 A uniform lamina ABCD is in the form of a trapezium in which AB and DC 

are parallel and have lengths 2 m and 3 m respectively. BD is perpendicular to 

the parallel sides and has length 1 m (see diagram).

(i) Find the distance of the centre of mass of the lamina from BD.

The lamina has weight W  N and is in equilibrium, suspended by a vertical 

string attached to the lamina at B. The lamina rests on a vertical support at C. 

The lamina is in a vertical plane with AB and DC horizontal.

(ii) Find, in terms of W, the tension in the string and the magnitude of the 

force exerted on the lamina at C.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q3 November 2005]

13 P is the vertex of a uniform solid cone of mass 5 kg, and O is the centre of its 

base. Strings are attached to the cone at P and at O. The cone hangs in 

equilibrium with PO horizontal and the strings taut. The strings attached at P 

and O make angles of θ° and 20°, respectively, with the vertical (see diagram, 

which shows a cross-section).

(i) By taking moments about P for the cone, find the tension in the string 

attached at O.

(ii) Find the value of θ and the tension in the string attached at P.

[Cambridge AS and A Level Mathematics 9709, Paper 52 Q6 November 2009]

1 m

2 m
A B

D
C

3 m

OP

20°

θ°
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14 A uniform lamina of weight 15 N has dimensions as shown in the diagram.

(i) Show that the distance of the centre of mass of the lamina from AB is 0.22 m.

The lamina is freely hinged at B to a fixed point. One end of a light 

inextensible string is attached to the lamina at C. The string passes over a 

fixed smooth pulley and a particle of mass 1.1 kg is attached to the other end 

of the string. The lamina is in equilibrium with BC horizontal. The string is 

taut and makes an angle of θ° with the horizontal at C, and the particle hangs 

freely below the pulley (see diagram).

(ii) Find the value of θ.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q5 June 2006]

Sliding and toppling

The photograph shows a double decker bus on a test ramp. The angle of the 

ramp to the horizontal is slowly increased.

[Photo courtesy of Millbrook Proving Ground Ltd]

●? What happens to the bus? Would a loaded bus behave differently from the empty 

bus in the photograph? 

B
0.6 m

0.6 m

0.2 m 1.1 kg

0.2 m

C

A

θ°
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EXPERIMENT

The diagrams show a force being applied in different positions to a cereal packet. 

In which case do you think the packet is most likely to fall over? In which case 

is it most likely to slide? Investigate your answers practically, using boxes of 

different shapes. 

●? Figure 12.18 shows the cereal packet placed on a slope. Is the box more likely to 

topple or slide as the angle of the slope to the horizontal increases? 

 

To what extent is this situation comparable to that of the bus on the test ramp? 

Two critical cases

When an object stands on a surface, the only forces acting are its weight W and 
the resultant of all the contact forces between the surfaces which must act 
through a point on both surfaces. This resultant contact force is often resolved 
into two components: the friction, F, parallel to any possible sliding and the 
normal reaction, R, perpendicular to F as in figures 12.19–12.21. 

Figure 12.17

Figure 12.18

W W W
E

E
E

Toppling about
the pivot edge E

About to topple
about the pivot edge E

In equilibrium
or sliding F µR

A

R R
R

F

F F

Figure 12.19

W W W
E

E
E

Toppling about
the pivot edge E

About to topple
about the pivot edge E

In equilibrium
or sliding F µR

A

R R
R

F

F F

Figure 12.21

W W W
E

E
E

Toppling about
the pivot edge E

About to topple
about the pivot edge E

In equilibrium
or sliding F µR

A

R R
R

F

F F

Figure 12.20
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Equilibrium can be broken in two ways:

(i) The object is on the point of sliding; then F = µR according to our model.

(ii) The object is on the point of toppling. The pivot is at the lowest point of 
contact which is the point E in figure 12.20. In this critical case: 

●● the centre of mass is directly above E so the weight acts vertically 
downwards through E; 

●● the resultant reaction of the plane on the object acts through E, vertically 
upwards. This is the resultant of F and R. 

●? Why does the object topple in figure 12.21? 

When three non-parallel forces are in equilibrium, their lines of action must be 

concurrent (they must all pass through one point). Otherwise there is a resultant 

moment about the point where two of them meet as in figure 12.21. 

EXAMPLE 12.8 An increasing force P N is applied to a block, as shown in figure 12.22, until the 

block moves. The coefficient of friction between the block and the plane is 0.4. 

Does it slide or topple? 

SOLUTION

The forces acting are shown in figure 12.23. The normal reaction may be thought 

of as a single force acting somewhere within the area of contact. When toppling 

occurs (or is about to occur) the line of action is through the edge about which it 

topples.

0.5 mP

2 kg 0.2 m

Figure 12.22

P

F

2 g

A

R

Figure 12.23

Forces in N
µ = 0.4
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Until the block moves, it is in equilibrium.

Horizontally: P = F 1

Vertically: R = 2g 2

If sliding is about to occur F = µR 

From 1 P = µR = 0.4 × 2g

     = 8

If the block is about to topple, then A is the pivot point and the reaction of the 

plane on the block acts at A. Taking moments about A gives 

()      2g × 0.25 − P × 0.2 = 0

                                           P = 25

So to slide P needs to exceed 8 N but to topple it needs to exceed 25 N: the block 

will slide before it topples. 

EXAMPLE 12.9 A rectangular block of mass 3 kg is placed on a slope 

as shown. The angle α is gradually increased. 

What happens to the block, given that the coefficient 

of friction between the block and slope is 0.6? 

SOLUTION

Check for possible sliding

Figure 12.25 shows the forces acting when the block is in equilibrium.

Resolve parallel to the slope: F = 3g sin α
Perpendicular to the slope: R = 3g cos α

When the block is on the point of sliding F = µR so

         3g sin α = µ × 3g cos α
⇒           tan α = µ = 0.6
⇒                α = 31°

The block is on the point of sliding when α = 31°.

R acts through A

3 kg

0.4 m

0.8 m

α

Figure 12.24

F

R

3g

0.4 m

0.8 m

α α

Figure 12.25

90° − α
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Check for possible toppling 

When the block is on the point of toppling  
about the edge E the centre of mass is  
vertically above E, as shown in figure 12.26. 

Then the angle α is given by: 

tan α = 0 4
0 8
.
.

                    α = 26.6°

The block topples when α = 26.6°.

The angle for sliding (31°) is greater than the angle for toppling (26.6°), so the 

block topples without sliding when α = 26.6°.

●? Is it possible for sliding and toppling to occur for the same angle?

EXERCISE 12C    1  A force of magnitude P N acts as shown on a block resting on a horizontal 

plane. The coefficient of friction between the block and the plane is 0.7. 

The magnitude of the force P is gradually increased from zero.

(i) Find the magnitude of P if the block is on the point of sliding, assuming 

it does not topple.

(ii) Find the magnitude of P if the block is on the point of toppling, 

assuming it does not slide.

(iii) Does the block slide or topple? 

2 A solid uniform cuboid is placed on a 

horizontal surface. A force P is applied as 

shown in the diagram. 

(i) If the block is on the point of sliding 

express P in terms of µ, the coefficient of 

friction between the block and the plane.

(ii) Find the magnitude of P if the cuboid is on the point of toppling.

(iii) For what values of µ will the block slide before it topples?

(iv) For what values of µ will the block topple before it slides?

E

αα

α

0.8 m

0.4 m

RF

3g

Figure 12.26

90° − α

70 cmP

4 kg 40 cm

6 cmP

2 kg

A

10 cm
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3 A horizontal force of increasing magnitude is applied to the middle of the 

face of a 50 cm uniform cube, at right angles to the face. The coefficient of 

friction between the cube and the surface is 0.4 and the cube is on a level 

surface. What happens to the cube? 

4 A solid uniform cube of side 4 cm and weight 60 N is situated on a rough 

horizontal plane. The coefficient of friction between the cube and the plane is 

0.4. A force P N acts in the middle of one of the edges of the top of the cube, 

as shown in the diagram. 

In the cases when the value of θ is (a) 60° (b) 80°, find

(i) the force P needed to make the cube slide, assuming it does not topple

(ii) the force P needed to make the cube topple, assuming it does not slide

(iii) whether it first slides or topples as the force P is increased.

For what value of θ do toppling and sliding occur for the same value of P, 

and what is that value of P ?

5 A uniform rectangular block of height 30 cm and width 10 cm is placed on 

a rough plane inclined at an angle α to the horizontal. The block lies on the 

plane with its length horizontal. The coefficient of friction between the block 

and the plane is 0.25.

(i) Assuming that it does not topple, for what value of α does the block 

just slide?

(ii) Assuming that it does not slide, for what value of α does the block just 

topple?

(iii) The angle α is increased slowly from an initial value of 0°. Which 

happens first, sliding or toppling?

6 A solid uniform cuboid, 10 cm × 20 cm × 50 cm, is to stand on an inclined 

plane, which makes an angle α with the horizontal. One edge of the cuboid is 

to be parallel to the line of the slope. The coefficient of friction between the 

cuboid and the plane is µ.

(i) Which face of the cuboid should be placed on the slope to make it 

(a) least likely and (b) most likely to topple?

(ii) How does the cuboid’s orientation influence the likelihood of it sliding?

θ

4 cm

P

4 cm
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(iii) Find the range of values of µ in the situations where 

(a) it will slide first whatever its orientation

(b) it will topple first whatever its orientation.

7 A cube of side 4 cm and mass 100 g is acted on by a force as shown in the 

diagram. 

The coefficient of friction between the cube and the plane is 0.3. What 

happens to the cube if

(i) θ = 45° and P = 0.3 N?

(ii) θ = 15° and P = 0.45 N?

8 A packing case is in the form of a cube of side 1 m. Its weight W newtons may 

be taken as acting at the centre of the cube. A man is trying to push the case 

up uniformly sloping ground inclined at an angle α to the horizontal, with a 

force P newtons applied to the middle of the top edge of the case, as shown in 

the diagram, in a direction parallel to the slope and at right angles to the edge 

of the case. The coefficient of friction between the case and the ground is µ.

(i) Find the normal reaction of the ground on the case in terms of some or 

all of W, P, µ, g and α.

Take the value of W to be 200 and that of α to be 30°. Assuming that the case 

does not turn about the edge AB, 

(ii) show that the case will slip if P  100(1 + 3µ ).

It is possible that the case turns about the line AB before it slips. Assume that 

this happens and that the case is on the point of turning.

(iii) Find the moment of the weight about the line AB and hence, or 

otherwise, find the values of P for which the case will turn. 

The man applies the least force P necessary to move the case.

(iv) For what values of µ will the case slip and not turn? 

 [MEI]

θ

P

P

A

B

α
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9 A filing cabinet has the dimensions shown in the diagram. The body of the 

cabinet has mass 20 kg and its construction is such that its centre of mass is 

at a height of 60 cm, and is 25 cm from the back of the cabinet. The mass of a 

drawer and its contents may be taken to be 10 kg and its centre of mass to be 

10 cm above its base and 10 cm from its front face. 

(i) Find the position of the centre of mass when all the drawers are closed. 

(ii) Find the position of the centre of mass when the top two drawers are 
fully open. 

(iii) Show that when all three drawers are fully opened the filing cabinet will 
tip over. 

(iv) Two drawers are fully open. How far can the third one be opened 
without the cabinet tipping over? 

10 A bird table is made from a uniform 
square base of side 0.3 m with mass 
5 kg, a uniform square top of side 
0.5 m and mass 2 kg, and a uniform 
thin rod of length 1.6 m and mass  
1 kg connecting the centre of the top 
and base. The top and base have 
negligible thickness. 

(i) Calculate the position of the 
centre of mass of the bird table.

(ii) At what angle can the bird table 
be turned about an edge of the 
base before it will topple?

It is decided to make the base heavier so that the bird table can be tipped at 
40° to the horizontal before it topples. The base still has negligible thickness.

(iii) Show that the centre of mass must now be about 0.18 m above the base.

(iv) What is the new mass of the base? 

 [MEI]

60 cm

40 cm

40 cm130 cm

O

40 cm
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11 Uniform wooden bricks have length 20 cm and height 5 cm. They are glued 

together as shown in the diagram with each brick 5 cm to the right of the one 

below it. The origin is taken to be at O.

(i) Find the co-ordinates of the centre of mass for 

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5 bricks.

(ii) How many bricks is it possible to assemble in this way without them 

tipping over? 

(iii) If the displacement is changed from 5 cm to 2 cm find the co-ordinates of 

the centre of mass for n bricks. How many bricks can now be assembled? 

(iv) If the displacement is 1
2
 cm, what is the maximum height possible for the 

centre of mass of such an assembly of bricks without them tipping over?

12 A uniform solid cone has height 30 cm and base radius r cm. The cone is 
placed with its axis vertical on a rough horizontal plane. The plane is slowly 
tilted and the cone remains in equilibrium until the angle of inclination of 
the plane reaches 35°, when the cone topples. The diagram shows a 
cross-section of the cone.

(i) Find the value of r.

(ii) Show that the coefficient of friction between the cone and the plane is 

greater than 0.7.

[Cambridge AS and A Level Mathematics 9709, Paper 51 Q2 June 2010]

0

5 cm

5 cm

r cm

30
 cm

35°
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13 A uniform prism has a cross-section in the form of a triangle ABC which is 

right-angled at A. The sides AB and AC have lengths 4 cm and 3 cm 

respectively. The prism is held with the edge containing C in contact with a 

horizontal surface and with AC making an angle of 60° with the horizontal 

(see diagram). The prism is now released. Determine whether it falls on the 

face containing AC or the face containing BC.

[Cambridge AS and A Level Mathematics 9709, Paper 52 Q1 November 2009]

14 Figure (A) shows the cross-section of a uniform solid. The cross-section has 
the shape and dimensions shown. The centre of mass C of the solid lies in the 
plane of this cross-section. The distance of C from DE is y cm.

(i) Find the value of y.

The solid is placed on a rough plane. The coefficient of friction between 

the solid and the plane is µ. The plane is tilted so that EF lies along a line of 

greatest slope.

(ii) The solid is placed so that F is higher up the plane than E (see figure (B)). 

When the angle of inclination is sufficiently great the solid starts to topple 

(without sliding). Show that µ  1
2
.

4 cm

3 cm

B

A

60° C

5 cm(A)

5 cm
y cm

5 cm

30 cm

20 cm

ED

C

F
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(iii) The solid is now placed so that E is higher up the plane than F (see 

figure (C)). When the angle of inclination is sufficiently great the solid 

starts to slide (without toppling). Show that µ  5
6
.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q7 November 2007]

15 A uniform solid cylinder has height 24 cm and radius r cm. A uniform solid 

cone has base radius r cm and height h cm. The cylinder and the cone are 

both placed with their axes vertical on a rough horizontal plane (see diagram, 

which shows cross-sections of the solids). The plane is slowly tilted and 

both solids remain in equilibrium until the angle of inclination of the plane 

reaches α°, when both solids topple simultaneously.

(i) Find the value of h.

(ii) Given that r = 10, find the value of α.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q2 November 2008]

E

F

(C)

24 cm

r cm

h cm

r cm

F

E

(B)



C
e
n

tr
e
 o

f 
m

a
ss

264

M2 

12

INVESTIGATIONS

Baby buggy

Borrow a baby buggy and investigate its stability. 

How stable is it when you hang some shopping on 

its handle? 

How could the design of the buggy be altered to 

improve its stability? 

Think about the handling of the buggy in other 

situations. Would your changes cause any problems? 

Sliding and toppling

Make a pile of rough bricks on a board, then raise one edge of the board so that it 

slopes. Investigate what happens as the angle of the slope is increased.

Drink can

A drink can is cylindrical. When the can is full the centre of mass is clearly  

half-way up. The same is true when it is completely empty. In between these two 

extremes, the centre of mass is below the middle.

Find the minimum height of the centre of mass.

Bridge

A bridge is made by placing identical bricks on top of each other as shown in the 

diagram. No glue or cement is used. How far can the bridge be extended without 

toppling over? You may use as many bricks as you like but only one is allowed at 

each level.

Figure 12.27 
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Finding the centre of mass

Collect a number of flat (but not necessarily uniform) objects, and investigate, 

for each of them, which is the most accurate method of determining its centre  

of mass.

(i) Calculation.

(ii) Balancing it on a pin.

(iii) Hanging it from two (or more) corners.

(iv) Balancing it on the edge of a table in a number of different orientations.

KEY POINTS

1 The centre of mass of a body has the property that the moment, about any 

point, of the whole mass of the body taken at the centre of mass is equal to the 

sum of the moments of the various particles comprising the body.

M r– = ∑mi ri where M = ∑mi

2 In one dimension 

M x– = ∑mi xi

3 In two dimensions

M x
y





  = ∑mi 

x
y

i

i







4 In three dimensions

M 
x
y
z













 = ∑mi 
x
y
z

i

i

i












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Uniform motion in a circle 

Whirlpools and storms his circling arm invest

With all the might of gravitation blest. 

Alexander Pope 

These pictures show some objects which move in circular paths. What other 

examples can you think of? 

●? What makes objects move in circles? 

Why does the moon circle the earth?  

What happens to the ‘hammer’ when the athlete lets it go?  

Does the pilot of the plane need to be strapped into his seat at the top of a loop in 

order not to fall out? 

The answers to these questions lie in the nature of circular motion. Even if an 

object is moving at constant speed in a circle, its velocity keeps changing because 

its direction of motion keeps changing. Consequently the object is accelerating 

and so, according to Newton’s first law, there must be a force acting on it. The 

force required to keep an object moving in a circle can be provided in many ways. 

Without the earth’s gravitational force, the moon would move off at constant 

speed in a straight line into space. The wire attached to the athlete’s hammer 

provides a tension force which keeps the ball moving in a circle. When the athlete 

lets go, the ball flies off at a tangent because the tension has disappeared. 

Although it would be sensible for the pilot to be strapped in, no upward force is 

necessary to stop him falling out of the plane because his weight contributes to 

the force required for motion in a circle. 

In this chapter, these effects are explained. 

13
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Notation 

To describe circular motion (or indeed any other topic) mathematically you 

need a suitable notation. It will be helpful in this chapter to use the notation 

(attributed to Newton) for differentiation with respect to time in which, for 

example, 
d
d

s
t
 is written as s, and  

d

d
as

2

2

θ θ
t

. 

Figure 13.1 shows a particle P moving round the circumference of a circle

of radius r, centre O. At time t, the position vector OP  
→

 of the particle makes

an angle θ (in radians) with the fixed direction OA  
→

. The arc length AP is

denoted by s. 

Angular speed 

Using this notation, 

s = r θ 

Differentiating this with respect to time using the product rule gives: 

d
d

d
d

d
d

s
t

r
t

r
t

= +θ θ .

Since r is constant for a circle, 
d
d

r
t

 = 0, so the rate at which the arc length 

increases is

d
d

d
d

or
s
t

r
t

s r= =θ θ

.. 

In this equation s  is the speed at which P is moving round the circle (often 

denoted by v), and θ  is the rate at which the angle θ is increasing, i.e. the rate at 

which the position vector OP  
→

 is rotating. 

The quantity 
d
d

θ
t

, or θ , can be called the angular velocity or the angular speed 

of P. In more advanced work, angular velocity is treated as a vector, whose 

direction is taken to be that of the axis of rotation. In this book, 
d
d

θ
t

 is often 

referred to as angular speed, but is given a sign: positive when θ is increasing 

(usually anticlockwise) and negative when θ is decreasing (usually clockwise).

O

P
r s
θ

A

Figure 13.1 
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Angular speed is often denoted by ω, the Greek letter omega. So the equation 


s r= θ  may be written as 

v = r ω. 

Notice that for this equation to hold, θ must be measured in radians, so the 

angular speed is measured in radians per second or rad s−1. 

●? Angular speeds are often written as multiples of π unless otherwise requested. 

Why is this? 

Figure 13.2 shows a disc rotating about its centre, O, with angular speed ω. The 

line OP represents any radius. 

Every point on the disc describes a circular path, and all points have the same 

angular speed. However the actual speed of any point depends on its distance 

from the centre: increasing r in the equation v = r ω increases v. You will 

appreciate this if you have ever been at the end of a rotating line of people in a 

dance or watched a body of marching soldiers wheeling round a corner. 

Angular speeds are sometimes measured in revolutions per second or revolutions 

per minute (rpm) where one revolution is equal to 2π radians. For example, 

turntables for vinyl records used to rotate at 45 or 33
1
3
 rpm while a computer 

hard disc might spin at 7200 rpm or more. At cruising speeds, crankshafts in car 

engines typically rotate at 3000 to 4000 rpm. 

O

P

θ

θ  ω

A

Figure 13.2
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EXAMPLE 13.1 A police car drives at 64 km h−1 around a circular bend of radius 16 m. A second 

car moves so that it has the same angular speed as the police car but in a circle of 

radius 12 m. Is the second car breaking the 50 km h−1 speed limit? 

SOLUTION

Converting kilometres per hour to metres per second gives

64 km h−1 = 
64 1000

3600
×

 m s−1

                                         = 160
9

 m s−1

Using v = r ω,              ω =
×

160
9 16

 rad s−1

                                         = 
10
9

 rad s−1

The speed of the second car is

v = 12ω

                                         = 
10
9

 × 12 m s−1

                                         = 
120 3600

9 1000
×

×
 km h−1

                                         = 48 km h−1

The second car is just below the speed limit.

Notes 

1  Notice that working in fractions gives an exact answer. 

2  A quicker way to do this question would be to notice that, because the cars 

have the same angular speed, the actual speeds of the cars are proportional  

to the radii of the circles in which they are moving. Using this method it is  

possible to stay in km h−1. The ratio of the two radii is 
12
16  so the speed of the 

second car is 
12
16  × 64 km h−1 = 48 km h−1.

EXERCISE 13A   1   Find the angular speed, in radians per second correct to one decimal place, 

of records rotating at 

(i)  78 rpm

(ii)  45 rpm 

(iii) 33
1
3 rpm.

2 A flywheel is rotating at 300 rad s−1. Express this angular speed in rpm, 

correct to the nearest whole number. 
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3 The London Eye observation wheel has a diameter of 135 m and completes 

one revolution in 30 minutes. 

(i) Calculate its angular speed in 

(a)  rpm  (b)  radians per second. 

(ii)  Calculate the speed of the point on the circumference where passengers 

board the moving wheel. 

4 A lawnmower engine is started by pulling a rope that has been wound round 

a cylinder of radius 4 cm. Find the angular speed of the cylinder at a moment 

when the rope is being pulled with a speed of 1.3 m s−1. Give your answer in 

radians per second, correct to one decimal place. 

5 The wheels of a car have radius 20 cm. What is the angular speed, in radians per 

second correct to one decimal place, of a wheel when the car is travelling at 

(i) 10 m s–1 (ii)  30 m s−1? 

6 The angular speed of an audio CD changes continuously so that a laser can 

read the data at a constant speed of 12 m s–1. Find the angular speed (in rpm) 

when the distance of the laser from the centre is 

(i)  30 mm  (ii)  55 mm. 

7 What is the average angular speed of the earth in radians per second as it 

(i)  orbits the sun?

(ii)  rotates about its own axis? 

The radius of the earth is 6400 km. 

(iii) At what speed is someone on the equator travelling relative to the centre 

of the earth? 

(iv) At what speed are you travelling relative to the centre of the earth? 

8 A tractor has front wheels of diameter 70 cm and back wheels of diameter 

1.6 m. What is the ratio of their angular speeds when the tractor is being 

driven along a straight road? 

  9 (i) Find the kinetic energy of a 50 kg person riding a big wheel with radius 

5 m when the ride is rotating at 3 rpm. You should assume that the 

person can be modelled as a particle. 

(ii) Explain why this modelling assumption is necessary. 

10 The minute hand of a clock is 1.2 m long and the hour hand is 0.8 m long. 

(i)  Find the speeds of the tips of the hands. 

(ii)  Find the ratio of the speeds of the tips of the hands and explain why this 

is not the same as the ratio of the angular speeds of the hands.
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11 The diagram represents a ‘Chairoplane’ ride at a fair. It completes one 

revolution every 2.5 seconds. 

(i)  Find the radius of the circular path which a rider follows. 

(ii)  Find the speed of a rider. 

12 The diagram shows a roundabout in a playground, seen from above. It is 

rotating clockwise. A child on the roundabout at X, aims a ball at a friend 

sitting opposite at Y. 

(i)  Once the ball is thrown, can the friend catch it? 

(ii)  Draw a plan of the path of the ball after it has been thrown. 

Velocity and acceleration 

Velocity and acceleration are both vector quantities. They can be expressed either 

in magnitude–direction form, or in components. When describing circular 

motion or other orbits it is most convenient to take components in directions 

along the radius (radial direction) and at right angles to it (transverse direction). 

For a particle moving round a circle of radius r, the velocity has: 

radial component:   0 

transverse component:  r θ  or r ω. 

2 m
72.5°

2 m
72.5°

3 m 3 m

X

Y
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The acceleration of a particle moving round a circle of radius r has: 

radial component:   −r θ2  or  −r ω2 

transverse component:  r θ  or  r ω .  

The transverse component is just what you would expect: the radius multiplied 

by the angular acceleration, θ . If the particle has constant angular speed, its 

angular acceleration is zero and so the transverse component of its acceleration is 

also zero. 

In contrast, the radial component of the acceleration, −r ω2, is almost certainly 

not a result you would have expected intuitively. It tells you that a particle 

travelling in a circle is always accelerating towards the centre of the circle, but 

without ever getting any closer to the centre. If this seems a strange idea, you may 

find it helpful to remember that circular motion is not a natural state; left to itself 

a particle will travel in a straight line. To keep a particle in the unnatural state of 

circular motion it must be given an acceleration at right angles to its motion, i.e. 

towards the centre of the circle. 

Circular motion with constant speed 

In this chapter, the circular motion is assumed to be uniform and so have no 

transverse component of acceleration. 

Problems involving circular motion often refer to the actual speed of the object, 

rather than its angular speed. It is easy to convert the one into the other using the 

relationship v = r ω. 

0
r θ  r ω

θ

r

r

Figure 13.3 Velocity 

The positive 
transverse direction

The positive  
radial direction

r θ  r ω

θ

r

r

r θ2  r ω2

Figure 13.4 Acceleration 
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The relationship v = r ω can also be used to express the magnitude of the 

acceleration in terms of v and r :

          ω = 
v
r

            a = r ω2 = r 
v
r





2

⇒       a = 
v
r

2

 towards the centre. 

EXAMPLE 13.2 A fly is standing on a small turntable at a distance of 8 cm from the centre. If the 

turntable is rotating at 45 rpm, find 

(i) the angular speed of the fly in radians per second 

(ii) the speed of the fly in metres per second 

(iii) the acceleration of the fly. 

SOLUTION 

(i)  One revolution is 2π rad so 

45 rpm = 45 × 2π rad min−1 

         = 
45 2

60
× π

 rad s−1 

         = 
3
2
π

 rad s−1. 

(ii) If the speed of the fly is v m s−1, v can be found using 

v = r ω 

   = 0.08 × 
3
2
π

      = 0.377... 

 So the speed of the fly is 0.38 m s−1 (to 2 d.p.). 

θ

r

a

v

 θ

Figure 13.5 

Velocity  
v = r ω

Angular speed  
θ
.
 = ω

Acceleration has magnitude 

a = rω2 =     and is directed

towards the centre

v
r

2
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(iii) The acceleration of the fly is given by 

r ω2 = 0.08 × 
3
2

2π





    = 1.78

The acceleration of the fly is 1.78 m s−2 directed towards the centre of the 

turntable. 

●? A wheel of radius r m is rolling in a straight line with forward speed u m s−1. 

What are 

(i)  the speed of the point which is instantaneously in contact with the ground? 

(ii)  the angular speed of the wheel? 

(iii)  the velocities of the highest point and the point on the edge of the wheel 

which is level with and behind the axle? 

The forces required for circular motion 

Newton’s first law of motion states that a body will continue in a state of rest or 

uniform motion in a straight line unless acted upon by an external force. Any 

object moving in a circle, such as the police car and the fly in Examples 13.1 and 

13.2 must therefore be acted upon by a resultant force in order to produce the 

required acceleration towards the centre. 

A force towards the centre is called a centripetal (centre-seeking) force. A 

resultant centripetal force is necessary for a particle to move in a circular path. 

Examples of circular motion 

You are now in a position to use Newton’s second law to determine theoretical 

answers to some of the questions which were posed at the beginning of this 

chapter. These will, as usual, be obtained using models of the true motion which 

will be based on simplifying assumptions, for example zero air resistance. Large 

objects are assumed to be particles concentrated at their centres of mass. 
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EXAMPLE 13.3 A coin is placed on a rotating turntable. Its centre is 5 cm from the centre of 

rotation and the coefficient of friction, µ, between the coin and the turntable is 0.5. 

(i)   If the speed of rotation of the turntable is gradually increased, at what 

angular speed will the coin begin to slide? 

(ii) What happens next? 

SOLUTION 

(i)   Because the speed of the turntable is increased only gradually, it can be 

assumed that the coin will not slip tangentially. 

 Figure 13.6 shows the forces acting on the coin, and its acceleration.  

The acceleration is towards the centre, O, of the circular path so there must 

be a frictional force F in that direction. 

There is no vertical component of acceleration, so the resultant force acting 

on the coin has no vertical component. 

Therefore R − mg = 0 

                                        R = mg  1

By Newton’s second law towards the centre of the circle: 

Force F = ma = mr ω2 2 

The coin will not slide so long as F  µR. 

Substituting from 2   and 1   this gives

                    mr ω2  µmg

 ⇒      r ω2  µg

Taking g in m s−2 as 10 and substituting r = 0.05 and µ = 0.5 

ω2  100

 ω  10

The coin will move in a circle provided that the angular speed is less than 

10 rad s−1, and this speed is independent of the mass of the coin. 

FO

a   rω2

r

mg

R

Figure 13.6 

Notice that the mass, m, 
has been eliminated at this 
stage, so that the answer 
does not depend upon it 
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(ii)  When the angular speed increases beyond this, the coin slips to a new 

position. If the angular speed continues to increase the coin will slip right  

off the turntable. When it reaches the edge it will fly off in the direction of 

the tangent. 

The conical pendulum 

A conical pendulum consists of a small bob tied to one end of a string. The other 

end of the string is fixed and the bob is made to rotate in a horizontal circle 

below the fixed point so that the string describes a cone as in figure 13.7. 

EXPERIMENT

1 Draw a diagram showing the magnitude and direction of the acceleration of a 

bob and the forces acting on it. 

2 In the case that the radius of the circle remains constant, try to predict the 

effect on the angular speed when the length of the string is increased or when 

the mass of the bob is increased. What might happen when the angular speed 

increases? 

3 Draw two circles of equal diameter on horizontal surfaces so that two people 

can make the bobs of conical pendulums rotate in circles of the same radius. 

Figure 13.7 

Figure 13.8 
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(i) Compare pendulums of different lengths with bobs of equal mass. 

(ii) Compare pendulums of the same length but with bobs of different masses.

Does the angular speed depend on the length of the pendulum or the mass of 

the bob? 

4 What happens when somebody makes the speed of the bob increase? 

5 Can a bob be made to rotate with the string horizontal? 

Theoretical model for the conical pendulum 

A conical pendulum may be modelled as a particle of mass m attached to a light, 

inextensible string of length l. The mass is rotating in a horizontal circle with 

angular speed ω and the string makes an angle α with the downward vertical. The 

radius of the circle is r and the tension in the string is T, all in consistent units 

(e.g. S.I. units). The situation is shown in figure 13.9. 

The magnitude of the acceleration is r ω2. The acceleration acts in a horizontal 

direction towards the centre of the circle. This means that there must be a 

resultant force acting towards the centre of the circle. 

There are two forces acting on this particle, its weight mg and the tension T in 

the string. 

As the acceleration of the particle has no vertical component, the resultant force 

has no vertical component, so 

T cos α − mg = 0  1

Using Newton’s second law towards the centre, O, of the circle 

T sin α = ma = mr ω2  2 

In triangle AOP

r = l  sin α 

A

PO
a   rω2

α

mg

T

l

r

Figure 13.9 
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Substituting for r in 2   gives

T sin α = m(l sin α)ω2

⇒     T = ml ω2 

Substituting this in 1   gives 

ml ω2 cos α – mg = 0

⇒             l cos α = 
g

ω 2
  3 

This equation provides sufficient information to give theoretical answers to the 

questions in the experiment. 

●● When r is kept constant and the length of the string is increased, the length

AO = l cos α increases. Equation  indicates that the value of 
g

ω 2  increases

and so the angular speed ω decreases. Conversely, the angular speed increases 

when the string is shortened. 

●● The mass of the particle does not appear in equation , so it has no effect on 

the angular speed, ω. 

●● When the length of the pendulum is unchanged, but the angular speed is 

increased, cos α decreases, leading to an increase in the angle α and hence in r.

●● If α  90°, cos α  0, so 
g

ω 2   0, which is impossible. You can see from figure

13.9 that the tension in the string must have a vertical component to balance 

the weight of the particle. 

EXAMPLE 13.4 The diagram on the right represents one of several arms of a fairground ride, 

shown on the left. The arms rotate about an axis and riders sit in chairs linked to 

the arms by chains.

The chains are 2 m long and the arms are 3 m long. Find the angle that the chains 

make with the vertical when the rider rotates at 1.1 rad s−1.

3 m

2 m

rider
1.1 rad s 1

chains

arm

Figure 13.10
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SOLUTION 

Let T N be the resultant tension in the chains holding a chair, and m kg the mass 

of chair and rider. 

If the chains make an angle α with the vertical, the motion is in a horizontal 

circle with radius given by 

r = 3 + 2 sin α. 

The magnitude of the acceleration is given by 

r ω2 = (3 + 2 sin α) × 1.12. 

It is in a horizontal direction towards the centre of the circle. Using Newton’s 

second law in this direction gives 

       Force = mr ω2

⇒ T sin α = m(3 + 2 sin α) × 1.12                                            1

                                  = 1.21m(3 + 2 sin α) 

Vertically:      T cos α − mg = 0

            ⇒              T = 
mg

cos α
Substituting for T in equation : 

     
mg

cos α
 sin α = 1.21m(3 + 2 sin α) 

⇒    10 tan α = 3.63 + 2.42 sin α 

This equation cannot be solved directly, but a numerical method will give you the 

solution 25° correct to the nearest degree. You might like to solve the equation 

yourself or check that this solution does in fact satisfy the equation. 

Note

Since the answer does not depend on the mass of the rider and chair, when riders of 

different masses, or even no riders, are on the equipment all the chains should make 

the same angle with the vertical. 

3 m

2 m
T

rω2

r  3  2 sin α

α

mg

Figure 13.11 

Since m cancels out 
at this stage, the angle 

does not depend on 
the mass of the rider
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Banked tracks 
ACTIVITY 13.1

!  Keep away from other people and breakable objects when carrying out this 

activity. 

Place a coin on a piece of stiff A4 card and hold it horizontally at arm’s length 

with the coin near your hand. 

Turn round slowly so that your hand moves in a horizontal circle. Now gradually 

speed up. The outcome will probably not surprise you. 

What happens, though, if you tilt the card? 

You may have noticed that when they curve round bends, most roads are banked 

so that the edge at the outside of the bend is slightly higher than that at the inside. 

For the same reason the outer rail of a railway track is slightly higher than the 

inner rail when it goes round a bend. On bobsleigh tracks the bends are almost 

bowl shaped, with a much greater gradient on the outside. 

Figure 13.12

Figure 13.13
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Figure 13.14 shows a car rounding a bend on a road which is banked so that the 

cross-section makes an angle α with the horizontal. 

In modelling such situations, it is usual to treat the bend as part of a horizontal 

circle whose radius is large compared to the width of the car. In this case, the 

radius of the circle is taken to be r metres, and the speed of the car constant at v 

metres per second. The car is modelled as a particle which has an acceleration of
v
r
2
 m s−2 in a horizontal direction towards the centre of the circle. The forces and

acceleration are shown in figure 13.15. 

The direction of the frictional force F will be up or down the slope depending on 

whether the car has a tendency to slip sideways towards the inside or outside of 

the bend. 

●? Under what conditions do you think each of these will occur? 

EXAMPLE 13.5 A car is rounding a bend of radius 100 m which is banked at an angle of 10° to the 

horizontal. At what speed must the car travel to ensure it has no tendency to slip 

sideways? 

SOLUTION 

When there is no tendency to slip there is no frictional force, so in the plane 

perpendicular to the direction of motion of the car, the forces and acceleration 

are as shown in figure 13.16. The only horizontal force is provided by the 

horizontal component of the normal reaction of the road on the car. 

α

Figure 13.14

α

R

r

v2

r

mg

F
centre of circle

acceleration 

Figure 13.15 

Resultant normal 
reaction

Resultant 
sideways friction



U
n

if
o

rm
 m

o
ti

o
n

 i
n

 a
 c

ir
c
le

 

282

M2 

13

R

v2

r

mg

10°

a 

Figure 13.16 

Vertically, there is no acceleration so there is no resultant force.

R cos 10° − mg = 0

                            ⇒   R = 
mg

cos10°
 

By Newton’s second law in the horizontal direction towards the centre of the 

circle,

R sin 10° = ma = mv
r

mv

2

2

100
=                          

mv
r

mv

2

2

100
=

Substituting for R from: :

mg mv
cos

sin
10

10
100

2

°




 ° =  

                   ⇒   v 2 = 100 g tan 10° 

                   ⇒      v = 13.3 (to 3 s.f.)

The speed of the car must be about 13.3 m s−1.

There are two important points to notice in this example. 

●● The speed is the same whatever the mass of the car. 

●● The example looks at the situation when the car does not tend to slide, and finds 

the speed at which this is the case. At this speed the car does not depend on 

friction to keep it from sliding, and indeed it could travel safely round the bend 

at this speed even in very icy conditions. However, at other speeds there is a 

tendency to slide, and friction actually helps the car to follow its intended path. 

Safe speeds on a bend 

What would happen in the previous example if the car travelled either more 

slowly than 13.3 m s−1 or more quickly? 

The answer is that there would be a frictional force acting so as to prevent the car 

from sliding across the road. 

The mass, m, cancels 
out at this stage, so 
the answer does not 

depend on it
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There are two possible directions for the frictional force. When the vehicle is 

stationary or travelling slowly, there is a tendency to slide down the slope and the 

friction acts up the slope to prevent this. When it is travelling quickly round the 

bend, the car is more likely to slide up the slope, so the friction acts down the slope. 

Fortunately, under most road conditions, the coefficient of friction between tyres 

and the road is large, typically about 0.8. This means that there is a range of 

speeds that are safe for negotiating any particular bend. 

●? 1   Using a particle model for the car, show that it will not slide up or down the 

slope provided 

rg v rg
(sin – cos )

(cos sin )

(sin cos )α µ α
α µ α

α µ α
+

< <
+

((cos – sin )α µ α

     If r = 100 and α = 10° (so that tan α = 0.176) the minimum and maximum safe 

speeds (in km h−1) for different values of µ are given in the following table. 

µ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Minimum safe speed 48 31 0 0 0 0 0 0 0 0 0 0 0

Maximum safe speed 48 60 71 81 90 98 106 114 121 129 136 143 150

2   Would you regard this bend as safe? How, by changing the values of r and α, 

could you make it safer? 

R

mg

10°

R

mg

10°

F

v2

ra 

F

v2

ra 

Figure 13.17 

Low speed: friction 
prevents the car from 

sliding down the slope

High speed: friction 
prevents the car from 
sliding up the slope
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EXAMPLE 13.6 A bend on a railway track has a radius of 500 m and is to be banked so that a 

train can negotiate it at 96 km h−1 without the need for a lateral force between its 

wheels and the rail. The distance between the rails is 1.43 m. 

How much higher should the outside rail be than the inside one? 

SOLUTION 

There is very little friction between the track and the wheels of a train. Any 

sideways force required is provided by the ‘lateral thrust’ between the wheels and 

the rail. The ideal speed for the bend is such that the lateral thrust is zero. 

Figure 13.18 shows the forces acting on the train and its acceleration when the 

track is banked at an angle α to the horizontal.  

When there is no lateral thrust, L = 0. 

Horizontally:          R sin α = 
mv

r

2
                                                     1

Vertically:           R cos α = mg                                                      2

Dividing 1  by 2  gives         tan α = 
v
rg

2

Using the fact that 96 km h−1 = 262
3  m s−1 this becomes 

                                                tan α = 
32
225

 

                                                                                        ⇒    α = 8.1° (to 2 s.f.) 

The outside rail should be raised by 1.43 sin α metres, i.e. by about 20 cm. 

v2

ra 

mg

1.43 mα
L

R

Figure 13.18 



E
x
e
rc

ise
 1

3
B

285

M2
13

EXERCISE 13B   1   The diagram shows two cars, A and B, travelling at constant speeds in 

different lanes (radii 24 m and 20 m) round a circular traffic island. Car A 

has speed 18 m s−1 and car B has speed 15 m s−1. 

Answer the following questions, giving reasons for your answers. 

(i)  Which car has the greater angular speed? 

(ii) Is one car overtaking the other? 

(iii)  Find the magnitude of the acceleration of each car. 

(iv)  In which direction is the resultant force on each car acting? 

2 Two coins are placed on a horizontal turntable. Coin A has mass 15 g and is 

placed 5 cm from the centre; coin B has mass 10 g and is placed 7.5 cm from the 

centre. The coefficient of friction between each coin and the turntable is 0.4. 

(i)  Describe what happens to the coins when the turntable turns at 

(a)  6 rad s−1    (b)  8 rad s−1    (c)  10 rad s−1. 

(ii)  What would happen if the coins were interchanged? 

3 A car is travelling at a steady speed of 15 m s−1 round a roundabout of 

radius 20 m. 

(i)  Criticise this false argument: 

The car is travelling at a steady speed and so its speed is neither increasing 

nor decreasing and therefore the car has no acceleration. 

(ii)  Calculate the magnitude of the acceleration of the car. 

(iii)  The car has mass 800 kg. Calculate the sideways force on each wheel 

assuming it to be the same for all four wheels. 

(iv)  Is the assumption in part (iii) realistic? 

4 A fairground ride has seats at 3 m and at 4.5 m from the centre of rotation. 

Each rider travels in a horizontal circle. Say whether each of the following 

statements is true, giving your reasons. 

(i)  Riders in the two positions have the same angular speed at any time. 

(ii)  Riders in the two positions have the same speed at any time. 

(iii)  Riders in the two positions have the same magnitude of acceleration at 

any time. 

A B
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5 A skater of mass 60 kg follows a circular path of radius 4 m, moving at 2 m s−1. 

(i)  Calculate: 

(a)  the angular speed of the skater 

(b)  the magnitude of the acceleration of the skater 

(c)  the resultant force acting on the skater. 

(ii)  What modelling assumptions have you made? 

6 Two spin driers, both of which rotate about a vertical axis, have different 

specifications as given in the table below. 

Model Rate of rotation Drum diameter 

A 600 rpm 60 cm

B 800 rpm 40 cm

State, with reasons, which model you would expect to be the more effective. 

7 A satellite of mass Ms is in a circular orbit around the earth, with a radius of 

r metres. The force of attraction between the earth and the satellite is given by 

F = 
GM M

r
e s
2

where G = 6.67 × 10−11 in S.I. units. The mass of the earth Me is 5.97 × 1024 kg. 

(i)  Find, in terms of r, expressions for 

(a)  the speed of the satellite, v m s−1

(b)  the time, T s, it takes to complete one revolution. 

(ii)  Hence show that, for all satellites, T 2 is proportional to r 3.

A geostationary satellite orbits the earth so that it is always above the same 

place on the equator. 

(iii)  How far is it from the centre of the earth? 

(The law found in part (ii) was discovered experimentally by Johannes 

Kepler (1571−1630) to hold true for the planets as they orbit the sun, and is 

commonly known as Kepler’s third law.) 
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8 In this question you should assume that the orbit of the earth around the sun 

is circular, with radius 1.44 × 1011 m, and that the sun is fixed. 

(i)  Find the magnitude of the acceleration of the earth as it orbits the sun. 

The force of attraction between the earth and the sun is given by 

F = 
GM M

r
e s
2

where Me is the mass of the earth, Ms is the mass of the sun, r the radius of 

the earth’s orbit and G the universal constant of gravitation (6.67 × 10−11 

S.I. units). 

(ii)  Calculate the mass of the sun. 

(iii)  Comment on the significance of the fact that you cannot calculate the 

mass of the earth from the radius of its orbit. 

9 Sarah ties a model plane of mass 180 g to the end of a piece of string 80 cm 

long and then swings it round so that the plane travels in a horizontal circle. 

The plane is not designed to fly and there is no lift force acting on its wings. 

(i)  Explain why it is not possible for the string to be horizontal. 

Sarah gives the plane an angular speed of 120 rpm. 

(ii)  What is the angular speed in radians per second? 

(iii)  Copy the diagram below and mark in the tension in the string, the weight 

of the plane and the direction of the acceleration. 

(iv)  Write down the horizontal radial equation of motion for the plane and 

the vertical equilibrium equation in terms of the angle θ. 

(v)  Show that under these conditions θ has a value between 85° and 86°. 

(vi)  Find the tension in the string. 

10 A rotary lawn mower uses a piece of light nylon string with a small metal 

sphere on the end to cut the grass. The string is 20 cm in length and the mass 

of the sphere is 30 g. 

(i)  Find the tension in the string when the sphere is rotating at 2000 rpm, 

assuming the string is horizontal. 

(ii)  Explain why it is reasonable to assume that the string is horizontal. 

(iii)  Find the speed of the sphere when the tension in the string is 80 N. 

θ
string

plane
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11 The coefficient of friction between the tyres of a car and the road is 0.8. The 

mass of the car and its passengers is 800 kg. Model the car as a particle. 

(i)  Find the maximum frictional force the road can exert on the car and 

describe what might be happening when this maximum force is acting 

(a)  at right angles to the line of motion 

(b)  along the line of motion. 

(ii)  What is the maximum speed that the car can travel without skidding on 

level ground round a circular bend of radius 120 m? 

The diagram shows the car, now travelling around a bend of radius 120 m on a 

road banked at an angle α to the horizontal. The car’s speed is such that there is 

no sideways force (up or down the slope) exerted on its tyres by the road. 

(iii)  Draw a diagram showing the weight of the car, the normal reaction of the 

road on it and the direction of its acceleration. 

(iv)  Resolve the forces in the horizontal radial and vertical directions 

and write down the horizontal equation of motion and the vertical 

equilibrium equation. 

(v)  Show that tan α = 
v

g

2

120
 where v is the speed of the car in metres per 

second. 

(vi)  On this particular bend, vehicles are expected to travel at 15 m s−1. At 

what angle, α, should the road be banked? 

12 Experiments carried out by the police accident investigation department 

suggest that a typical value for a coefficient of friction between the tyres of a 

car and a road surface is 0.8. 

(i)  Using this information, find the maximum safe speed on a level circular 

motorway slip road of radius 50 m. 

(ii)  How much faster could cars travel if the road were banked at an angle of 

5° to the horizontal? 

13 An astronaut’s training includes periods in a centrifuge. This may be 

modelled as a cage on the end of a rotating arm of length 5 m. 

α

5 m
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At a certain time, the arm is rotating at 30 rpm. 

(i)  Find the angular velocity of the astronaut in radians per second and her 
speed in metres per second. 

(ii)  Show that under these circumstances the astronaut is subject to an 
acceleration of magnitude about 5g. 

At a later stage in the training, the astronaut blacks out when her  
acceleration is 9g. 

(iii)  Find her angular velocity (in rpm) when she blacks out. 

The training is criticised on the grounds that, in flight, astronauts are not 
subject to rotation and the angular speed is too great. An alternative design 
is considered in which the astronaut is situated in a carriage driven round a 
circular railway track. The device must be able to simulate accelerations of up 
to 10g and the carriage can be driven at up to 100 m s−1. 

(iv)  What should be the radius of the circular railway track? 

14 A light, inelastic string of length 2a is attached to fixed points A and B where 

A is vertically above B and the distance AB < 2a. A small, smooth ring, P, of 

mass m slides on the string and is moving in a horizontal circle at a constant 

angular speed ω. The string sections AP and PB are straight and there is the 

same tension, T, in each section. The distance AP is x and AP and PB make 

angles α and β respectively with the vertical, as shown in the diagram. 

(i)  Show that x sin α = (2a − x)sin β. 

(ii)  By considering the vertical components of forces on the ring, explain 

why x > a. 

(iii)  By considering the radial motion of the ring, show that 

T(sin α + sin β) = mx ω2 sin α. 

(iv)  Using your answer to part (i), show that the tension in the string is

mx a x
a

ω 2 2
2
( – )

.

[MEI] 

A

P

x

B

α

ω

β
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15 A particle of mass 0.15 kg is attached to one end of a light inextensible string 

of length 2 m. The other end of the string is attached to a fixed point. The 

particle moves with constant speed in a horizontal circle. The magnitude of 

the acceleration of the particle is 7 m s−2. The string makes an angle of θ° with 

the downward vertical, as shown in the diagram.

Find

(i) the value of θ to the nearest whole number,

(ii) the tension in the string,

(iii) the speed of the particle.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q2 June 2005]

16 A hollow container consists of a smooth circular cylinder of radius 0.5 m, and 

a smooth hollow cone of semi-vertical angle 65° and radius 0.5 m. The 

container is fixed with its axis vertical and with the cone below the cylinder. 

A steel ball of weight 1 N moves with constant speed 2.5 m s−1 in a horizontal 

circle inside the container. The ball is in contact with both the cylinder and 

the cone (see figure (A)). Figure (B) shows the forces acting on the ball, i.e. its 

weight and the forces of magnitudes R N and S N exerted by the container at 

the points of contact. Given that the radius of the ball is negligible compared 

with the radius of the cylinder, find R and S.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q3 June 2007] 

2 mθ °

65°

0.5 m
R N

S N

1 N

(A) (B)
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17 One end of a light inextensible string is attached to a point C. The other end 

is attached to a point D, which is 1.1 m vertically below C. A small smooth 

ring R, of mass 0.2 kg, is threaded on the string and moves with constant 

speed v m s−1 in a horizontal circle, with centre at O and radius 1.2 m, where 

O is 0.5 m vertically below D (see diagram).

(i) Show that the tension in the string is 1.69 N, correct to 3 significant 

figures.

(ii) Find the value of v.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q3 June 2008] 

18 A particle of mass 0.12 kg is moving on the smooth inside surface of a fixed 

hollow sphere of radius 0.5 m. The particle moves in a horizontal circle 

whose centre is 0.3 m below the centre of the sphere (see diagram).

(i) Show that the force exerted by the sphere on the particle has 

magnitude 2 N.

(ii) Find the speed of the particle.

(iii) Find the time taken for the particle to complete one revolution.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q4 June 2009] 

1.2 m

0.5 m

1.1 m

C

D

O R

0.5 m

0.3 m
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19 A horizontal circular disc of radius 4 m is free to rotate about a vertical axis 

through its centre O. One end of a light inextensible rope of length 5 m is 

attached to a point A of the circumference of the disc, and an object P of 

mass 24 kg is attached to the other end of the rope. When the disc rotates 

with constant angular speed ω rad s−1, the rope makes an angle of θ radians 

with the vertical and the tension in the rope is T  N (see diagram). You may 

assume that the rope is always in the same vertical plane as the radius OA of 

the disc.

(i) Given that cos θ = 24
25

, find the value of ω.

(ii) Given instead that the speed of P is twice the speed of the point A, find 

(a) the value of T,

(b) the speed of P.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q6 November 2005] 

20 A particle of mass 0.24 kg is attached to one end of a light inextensible string 

of length 2 m. The other end of the string is attached to a fixed point. The 

particle moves with constant speed in a horizontal circle. The string makes an 

angle θ with the vertical (see diagram), and the tension in the string is T  N. 

The acceleration of the particle has magnitude 7.5 m s−2.

(i) Show that tan θ = 0.75 and find the value of T.

(ii) Find the speed of the particle.

[Cambridge AS and A Level Mathematics 9709, Paper 51 Q3 June 2010]

θ

4 m

5 m

T N

P

A

ω rad s–1

O

2 mθ
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INVESTIGATIONS

Hammer 

Investigate the action of throwing the hammer. Estimate the maximum tension 

in the wire for a top class athlete. (Data: the hammer is a ball of mass 3 kg 

attached to a light wire of length 1.8 m. A throw of 80 m is world class.)

Mountain biking

Why do those taking part in mountain bike rallies go home with mud on  

their backs?

Figure 13.19

KEY POINTS

1 Position, velocity and acceleration of a particle moving on a circle of radius r.

●● position (r cos θ, r sin θ)

●● velocity transverse component:  v = r θ  = r ω
  radial component: 0

where θ  or ω is the angular velocity of the particle.

●● acceleration transverse component:      r r

θ ω=  

   radial component: – –r r
v
r

θ ω2 2
2

= = −

where  θ ωor  is the angular acceleration of the particle.

O

r θ 

θ

r

r

r θ2 

Acceleration

(r cos θ, r sin θ)

r

rO

O

VelocityPosition

θ

x

y

0r θ 

θ

r
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2 By Newton’s second law the forces acting on a particle of mass m in circular 

motion are equal to

●● transverse component: mr mr

ω θ=  

●● radial component:         −mv
r

2

 = −mr ω2

●● or radial component:    +mv
r

2
 = +mr ω2 towards the centre.

3 Circular motion breaks down when the available force towards the centre 

is < mr
mv

r
ω 2

2
or . 



Hooke’s law

The only way of finding the limits of the possible is by going beyond 

them into the impossible.

Arthur C. Clarke

The picture shows someone taking part in the sport of bungee jumping. This is 

an extreme sport which originated in the South Sea islands where creepers were 

used rather than ropes. In the more modern version, people jump off a high bridge 

or crane to which they are attached by elastic ropes round their ankles. 

●? If somebody bungee jumping from a bridge wants the excitement of just reaching 

the surface of the water below, how would you calculate the length of rope required? 

The answer to this question clearly depends on the height of the bridge, the mass 

of the person jumping and the elasticity of the rope. All ropes are elastic to some 

extent, but it would be extremely dangerous to use an ordinary rope for this 

sport because the impulse necessary to stop somebody falling would involve a 

very large tension acting in the rope for a short time and this would provide too 

great a shock to the body. A bungee is a strong elastic rope, similar to those used 

to secure loads on cycles, cars or lorries, with the essential property for this sport 

that it allows the impulse to act over a much longer time so that the rope exerts a 

smaller force on the jumper. 

14
 H

o
o

k
e
’s la

w

295

M2
14



H
o

o
k

e
’s

 l
a
w

296

M2 

14

Generally in mechanics, the word string is used to represent such things as ropes 

which can be in tension but not in compression. In this chapter you will be 

studying some of the properties of elastic strings and springs and will return to 

the problem of the bungee jumper as a final investigation.

Strings and springs

So far in situations involving strings it has been assumed that they do not 

stretch when they are under tension. Such strings are called inextensible. For 

some materials this is a good assumption, but for others the length of the string 

increases significantly under tension. Strings and springs which stretch are said 

to be elastic. Open coiled springs are springs which can also be compressed. In this 

book springs are assumed to be open coiled.

The length of a string or spring when there is no force applied to it is called its 

natural length (figure 14.1(a)). If it is stretched, the increase in length is called 

its extension. If a spring is compressed it is said to have a negative extension or 

compression.

When stretched, a spring exerts an inward force, or tension, on whatever is 

attached to its ends (figure 14.1(b)).When compressed it exerts an outward force, 

or thrust, on its ends (figure 14.1(c)). An elastic string exerts a tension when 

stretched, but when slack exerts no force.

(a)

(b)

(c)

natural length

extension

compression

Thrust

Tension

Figure 14.1
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EXPERIMENT

You will need some elastic strings, some open coiled springs, some weights and a 

support stand. Set up the apparatus as shown. 

Before doing any experiments, predict the answers to the following questions: 

1 How are the extension of the string and the weight hanging on it related? 

2 If a string of the same material but twice the natural length has the same 

weight attached, how does the extension change? 

3 Does the string return to its original length when unloaded

(i) if the weight of the object is small? 

(ii) if the weight of the object is large? 

Now use the apparatus to plot a graph, for each string, of tension, i.e. the weight 

of the object (vertical axis), against the extension (horizontal axis) to help you to 

answer these questions. 

Design and carry out an experiment which will investigate the relationship 

between the thrust in an open coiled spring and the decrease in its length. 

From your experiments you should have made the following observations: 

 ● Each string or spring returned to its original length once the object was 

removed, up to a certain limit. 

 ● The graph of tension or thrust against extension for each string or spring was 

a straight line for all or part of the data. Strings or springs which exhibit this 

linear behaviour are said to be perfectly elastic. 

 ● The gradient of the linear part of the graph was roughly halved when the string 

was doubled in length. 

elastic string (or spring)

hook
clamp stand

metre rule
(vertical)

pointer
(horizontal)

weight

Figure 14.2 
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 ● If you kept increasing the weight, the string or spring might have stopped 
stretching or might have stretched without returning to its original length. In 
this case the graph would no longer be a straight line: the material had passed 
its elastic limit. 

 ● During your experiment using an open coiled spring you might have found 
it necessary to prevent the spring from buckling. You might also have found 
that there came a point when the coils were completely closed and a further 
decrease in length was impossible. 

Hooke’s law 

In 1678 Robert Hooke formulated a Rule or law or nature in every springing body 
which, for small extensions relative to the length of the string or spring, can be 
stated as follows: 

●● The tension in an elastic spring or string is proportional to the extension. 

If a spring is compressed the thrust is proportional to the decrease in  

length of the spring.

When a string or spring is described as elastic, it means that it is reasonable to 
apply the modelling assumption that it obeys Hooke’s law. A further assumption, 
that it is light (i.e. has zero mass), is usual and is made in this book. 

There are three ways in which Hooke’s law is commonly expressed for a string. 
Which one you use depends on the extent to which you are interested in the string 
itself rather than just its overall properties. Denoting the natural length of the string 
by l0 and its area of cross-section by A, the different forms are as follows. 

●● T = 
EA
l0

 x   In this form E is called the Young modulus and is a property of the 
material out of which the string is formed. This form is commonly 
used in physics and engineering, subjects in which properties of 
materials are studied. It is rarely used in mathematics. The S.I. unit 
for the Young modulus is N m−2. 

●● T = 
λ
l0

 x   The constant λ is called the modulus of elasticity of the string and  
will be the same for any string of a given cross-section made out of 
the same material. Many situations require knowledge of the natural 
length of a string and this form may well be the most appropriate in 
such cases. The S.I. unit for the modulus of elasticity is N. 

●● T = kx  In this simplest form, k is called the stiffness of the string. It is a 
property of the string as a whole. You may choose to use this form if 
neither the natural length nor the cross-sectional area of the string is 
relevant to the situation. The S.I. unit for stiffness is N m−1. 

Notice that  k = λ
l

EA
l0 0

=  

In this book only the form using the modulus of elasticity is used, and this can be 
applied to springs as well as strings. 
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EXAMPLE 14.1 A light elastic string of natural length 0.7 m and modulus of elasticity 50 N has 

one end fixed and a particle of mass 1.4 kg attached to the other. The system 

hangs vertically in equilibrium. Find the extension of the string. 

SOLUTION 

The forces acting on the particle are the tension, T N, upwards and the weight, 

1.4 g N, downwards. 

Since the particle is in equilibrium 

                          T = 1.4g 

Using Hooke’s law:      T = 
λ
l0

 x

                                                            ⇒  1.4g  = 
50
0 7.

 x

                                ⇒       x = 
0 7 1 4

50

. .× g

                                                 = 0.196

The extension in the string is 0.196 m. 

EXERCISE 14A 1  A light elastic spring of natural length 1.5 m is attached to the ceiling. A block 

of mass 2 kg hangs in equilibrium, attached to the other end of the spring and 

the spring is extended by 30 cm. 

(i) Draw a diagram showing the forces acting on the block.

(ii) Find the modulus of elasticity of the spring.

2 (i)  An elastic string has natural length 20 cm. The string is fixed at one end. 

When a force of 20 N is applied to the other end the string doubles in 

length. Find the modulus of elasticity. 

(ii) Another elastic string also has natural length 20 cm. When a force of 

20 N is applied to each end the string doubles in length. Find the modulus 

of elasticity. 

(iii)  Explain the connection between the answers to parts (i) and (ii). 

x

l0  0.7

T

1.4g

Figure 14.3 

natural length

extension
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3 A light spring has modulus of elasticity 0.4 N and natural length 50 cm. One 
end is attached to a ceiling, the other to a particle of weight 0.03 N which hangs 
in equilibrium below the ceiling. 

(i)  Find the tension in the spring.

(ii)  Find the extension of the spring.

The particle is removed and replaced with one of weight w N. When this hangs 
in equilibrium the spring has length 60 cm.

(iii) What is the value of w  ?

4 An object of mass 0.5 kg is attached to an elastic string with natural length 
1.2 m and causes an extension of 8 cm when the system hangs vertically in 
equilibrium. 

(i) What is the tension in the spring?

(ii) What is the modulus of elasticity of the spring?

(iii) What is the mass of an object which causes an extension of 10 cm?

5 The diagram shows a spring of natural length 60 cm which is being 
compressed under the weight of a block of mass m kg. Smooth supports 
constrain the block to move only in the vertical direction. 

The modulus of elasticity of the spring is 180 N. The system is in equilbrium 
and the length of the spring is 50 cm. Find

(i) the thrust in the spring

(ii) the value of m

More blocks are piled on.

(iii) Describe the situation when there are seven blocks in total, all identical to 
the first one.

6 A small sphere, A, of mass m kg moves in a circle with centre B on a smooth 
horizontal table. A is joined to a smoothly rotating vertical axle at B by an 
elastic string of natural length a m and modulus of elasticity λ N and has 
constant angular speed ω rad s−1. Find an expression for the radius of the circle 
in terms of m, a, λ and ω.

m
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Using Hooke’s law with more than one spring or string

Hooke’s law allows you to investigate situations involving two or more springs or 

strings in various configurations. 

EXAMPLE 14.2 A particle of mass 0.4 kg is attached to the mid-point of a light elastic string of 

natural length 1 m and modulus of elasticity λ N. The string is then stretched 

between a point A at the top of a doorway and a point B which is on the floor 2 m 

vertically below A. 

(i) Find, in terms of λ, the extensions of the two parts of the string. 

(ii)  Calculate their values in the case where λ = 10. 

(iii)    Find the minimum value of λ which will ensure that the lower half of the 

string is not slack. 

SOLUTION 

For a question like this it is helpful to draw two diagrams, one showing the 

relevant natural lengths and extensions, and the other showing the forces acting 

on the particle. 

Since the force of gravity acts downwards on the particle, its equilibrium position 

will be below the mid-point of AB. This is also shown in the diagram.

(i)  The particle is in equilibrium, so the resultant vertical force acting on it is zero. 

 Therefore   T1 = T2 + 0.4g  1

 Hooke’s law can be applied to each part of the string. 

 For AP:      T1 = 
λ

0 5.
 x1 2 

2 m

P

A

B

equilibrium position

0.5 m

0.5 m

x1 m

x2 m
P

A

B
ForcesLengths

T2

T1

0.4g

Figure 14.4

natural  
length

extension

extension

natural  
length
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 For BP:      T2 = λ
0 5.

 x2                                                                      3

 Substituting these expressions in equation 1   gives

λ λ
0 5 0 5

0 41 2. .
.x x g= +

       ⇒             λx1 − λx2 = 0.5 × 0.4 g

       ⇒                x1 − x2 = 0.2 
g

λ  4

        But from the first diagram it can be seen that 

                 x1 + x2 = 1  5

        Adding 4  and 5  gives: 

                           2x1 = 1 + 0.2 
g

λ
   

              ⇒                         x1 = 0.5 + 0.1
g

λ

        Similarly, subtracting 4  from 5  gives: 

                       x2 = 0.5 – 0.1
g

λ   6

(ii) Since λ = 10 the extensions are 0.6 m and 0.4 m. 

(iii)  The lower part of the string will not become slack providing x2 > 0. It follows 

from equation 6  that: 

                0.5 − 0.1
g

λ
 > 0

     ⇒               0.5 > 0.1
g

λ
         ⇒               λ > 0.2g

  The minimum value of λ for which the lower part of the string is not slack is 

2 N, and in this case BP has zero tension. 

Historical note 

If you search for Robert Hooke (1635–1703) on the internet, you will find that he was a man of many 

parts. He was one of a talented group of polymaths (which included his rival Newton) who have had an 

enormous impact on scientific thought and practice. Among other things, he designed and built Robert 

Boyle’s air pump, discovered the red spot on Jupiter and invented the balanced spring mechanism for 

watches. His work on microscopy led to his becoming the father of microbiology and he was the first 

to use the term ‘cell’ with respect to living things. Hooke worked closely with his friend Sir Christopher 

Wren in the rebuilding of the City of London after the great fire, and was responsible for the  

realisation of many of his designs including the Royal Greenwich Observatory. Both Hooke and Wren 

were astronomers and architects and they designed the Monument to the fire with a trapdoor at the top 

and a laboratory in the basement so that it could be used as an enormous 62 m telescope. Hooke, the 

great practical man, also used the column for experiments on air pressure and pendulums. 

Alternatively, you  
can use x for x1 and 

(1 − x) for x2.
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EXERCISE 14B 1   The diagram shows a uniform plank of weight 
120 N symmetrically suspended in equilibrium 
by two identical elastic strings, each of natural 
length 0.8 m and modulus of elasticity 1200 N. 

Find 

(i)  the tension in each string 

(ii)  the extension of each string. 

The two strings are replaced by a single string, also of natural length 0.8 m, 
attached to the middle of the plank. The plank is in the same position. 

(iii)  Find the modulus of elasticity of this string and comment on its 
relationship to that of the original strings. 

2 The manufacturer of a sports car specifies the coil spring for the front 
suspension as a spring of 10 coils with a natural length 0.3 m and a 
compression 0.1 m when under a load of 4000 N. 

(i)  Calculate the modulus of elasticity of the spring. 

(ii)  If the spring were cut into two equal parts, what would be the modulus 
of elasticity of each part? 

The weight of a car is 8000 N and half of this weight is taken by two such 
10-coil front springs so that each bears a load of 2000 N. 

(iii)  Find the compression of each spring. 

(iv)  Two people each of weight 800 N get into the front of the car. How much 
further are the springs compressed? (Assume that their weight is carried 
equally by the front springs.) 

3 The coach of an impoverished rugby club decides to construct a 
scrummaging machine as illustrated in the diagrams below. It is to consist of 
a vertical board, supported in horizontal runners at the top and bottom of 
each end. The board is held away from the wall by springs, as shown, and the 
players push the board with their shoulders, against the thrust of the springs.

support
and scale

support along which
board can slide

board shaped
for head and
shoulders

scale on
sliding
support

support
and scale

support

spring

spring

spring

players
push

wall

wall

PlanElevation
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The coach has one spring of length 1.4 m and modulus of elasticity 7000 N, 

which he cuts into two pieces of equal length.

(i)  Find the modulus of elasticity of the original spring.

(ii) Find the modulus of elasticity of each of the half-length springs.

(iii) On one occasion the coach observes that the players compress the springs 

by 20 cm. What total force do they produce in the forward direction? 

4 The diagram shows the rear view of a load of weight 300 N in the back of a 

pick-up truck of width 2 m. 

The load is 1.2 m wide, 0.8 m high and is situated centrally on the truck. The 
coefficient of friction between the load and the truck is 0.4. The load is held 
down by an elastic rope of natural length 2 m and modulus of elasticity 400 N 
which may be assumed to pass smoothly over the corners and across the top 
of the load. The rope is secured at the edges of the truck platform. Find 

(i)  the tension in the rope 

(ii)  the normal reaction of the truck on the load 

(iii) the percentage by which the maximum possible frictional force is 
increased by using the rope 

(iv) the shortest stopping distance for which the load does not slide, given 
that the truck is travelling at 30 m s−1 initially. (Assume constant 
deceleration.) 

5 The diagram shows two light springs, AP and BP, connected at P. The ends A 

and B are secured firmly and the system is in equilibrium. 

The spring AP has natural length 1 m and modulus of elasiticity 16 N.

The spring BP has natural length 1.2 m and modulus of elasticity 30 N. 

The distance AB is 2.5 m and the extension of the spring AP is x m. 

(i)  Write down an expression, in terms of x, for the extension of the spring BP. 

(ii)  Find expressions, in terms of x, for the tensions in both springs. 

(iii)  Find the value of x. 

load

P
BA
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6 The diagram shows two light springs, CQ and DQ, connected to a particle, Q, 

of weight 20 N. The ends C and D are secured firmly and the system is in 

equilibrium, lying in a vertical line. 

The spring CQ has natural length 0.8 m and modulus of elasticity 16 N. DQ 

has natural length 1.2 m and modulus of elasticity 36 N. The distance CD is 

3 m and QD is h m. 

(i)  Write down expressions, in terms of h, for the extensions of the two 

springs. 

(ii)  Find expressions, in terms of h, for the tensions in the two springs. 

(iii)  Use these results to find the value of h. 

(iv)  Find the forces the system exerts at C and at D. 

7 The diagram shows a block of wood of mass m lying on a plane inclined at an 

angle α to the horizontal. The block is attached to a fixed peg by means of a 

light elastic string of natural length l0 and modulus of elasticity λ; the string 

lies parallel to the line of greatest slope. The block is in equilibrium. 

Find the extension of the string in the following cases. 

(i)  The plane is smooth. 

(ii)  The coefficient of friction between the plane and the block is µ (µ  0) 

and the block is about to slide (a) up the plane (b) down the plane. 

8 A strong elastic band of natural length 1 m and modulus of elasticity 12 N is 

stretched round two pegs P and Q which are in a horizontal line a distance 

1 m apart. A bag of mass 1.5 kg is hooked on to the band at H and hangs in 

equilibrium so that PH and QH make angles of θ with the horizontal. Make 

the modelling assumptions that the elastic band is light and runs smoothly 

over the pegs. 

Q

C

D

m

α
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(i)  Use Hooke’s law to show that the tension in the band 

is 12 sec θ. 

(ii)  Find the depth of the hook below the horizontal line PQ. 

(iii)  Is the modelling in this question realistic? 

  9 A particle A and a block B are attached to opposite ends of a light elastic 

string of natural length 2 m and modulus of elasticity 6 N. The block is at rest 

on a rough horizontal table. The string passes over a small smooth pulley P at 

the edge of the table, with the part BP of the string horizontal and of length 

1.2 m. The frictional force acting on B is 1.5 N and the system is in 

equilibrium (see diagram). Find the distance PA.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q1 June 2008]

10 A light elastic string has natural length 0.6 m and modulus of elasticity λ N. 
The ends of the string are attached to fixed points A and B, which are at the 
same horizontal level and 0.63 m apart. A particle P of mass 0.064 kg is 
attached to the mid-point of the string and hangs in equilibrium at a point 
0.08 m below AB (see diagram).

peg

QP

H

1.5 kg

peg

θθ

1 m

sec θ = 1
cosθ

1.5 N
1.2 m

B
P

A

0.064 kg

0.63 m

0.08 m

A

P

B
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Find

(i) the tension in the string,

(ii) the value of λ.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q1 June 2006]

Work and energy 

In order to stretch an elastic spring a force must do work on it. In the case of the 

muscle exerciser in figure 14.5, this force is provided by the muscles working 

against the tension. When the exerciser is pulled at constant speed, at any 

given time the force F applied at each end is equal to the tension in the spring; 

consequently it changes as the spring stretches. 

Suppose that one end of the spring is stationary and the extension is x as in figure 

14.6. By Hooke’s law the tension is given by 

  T = 
λ

2 0l
x,    and so   F = 

λ
2 0l

x

The work done by a constant force F in moving a distance d in its own direction 

is given by Fd. To find the work done by a variable force the process has to be 

considered in small stages. 

Now imagine that the force extends the string a small distance δx. The work done

is given by    F δx = 
λ
l0

x δx. 

The total work done in stretching the spring many small distances is 

   ∑ F δx = ∑ k
λ
l0

x δx

T T FF

Figure 14.5

l0

T

x

F

Figure 14.6
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In the limit as δx → 0, the work done is:

  ∫F dx = ∫ 
λ
l0

x dx 

                       = 
λ

2 0l
x 2 + c

When the extension x = 0, the work done is zero, so c = 0. 

The total work done in stretching the spring an extension x from its natural length 

l0 is therefore given by 
λ

2 0l
 x 2.

The result is the same for the work done in compressing a spring. 

Elastic potential energy

The tensions and thrusts in perfectly elastic springs and strings are conservative 

forces, since any work done against them can be recovered in the form of kinetic 

energy. A catapult and a jack-in-a-box use this property. 

The work done in stretching or compressing a string or spring can therefore be 

regarded as potential energy. It is known as elastic potential energy. 

The elastic potential energy stored in a spring which is stretched or compressed 

by an amount x is 

λ
2 0l

x 2.

λ and l0 are 
constants for a 
given spring.

Figure 14.7 
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EXAMPLE 14.3 An elastic rope of natural length 0.6 m is extended to a length of 0.8 m. The 

modulus of elasticity of the rope is 25 N. Find 

(i)  the elastic potential energy stored in the rope 

(ii)   the further energy required to stretch it to a length of 1.65 m over a roof-rack. 

SOLUTION 

(i)  The extension of the elastic is (0.8 − 0.6) m = 0.2 m. 

 The energy stored in the rope is

              
λ

2 0l
 x 2 = 

25
2 0 6× .

 (0.2)2 

             = 0.83 J (to 2 d.p.). 

(ii)  The extension of the elastic rope is now 1.65 − 0.6 = 1.05 m 

 The elastic energy stored in the rope is 

            
25

2 0 6× .
 (1.05)2 = 22.97 J 

 The extra energy required to stretch the rope is 22.14 J (correct to 2 d.p.). 

!  In the example above, the string is stretched so that its extension changes from x1 

to x2 (in this case, from 0.2 m to 1.05 m). The work required to do this is 

λ λ λ
2 2 20

2
2

0
1
2

0
2
2

1
2

l x l x l x x– ( – )=

 You can see by using algebra that this expression is not the same as λ
2 0l

(x 2 − x1)2, 

so it is not possible to use the extra extension (x2 − x1) directly in the energy 

expression to calculate the extra energy stored in the string. 

EXAMPLE 14.4 A catapult has prongs which are 16 cm apart and the elastic string is 20 cm long. 

A marble of mass 70 g is placed in the centre of the elastic string and pulled back 

so that the string is just taut. The marble is then pulled back a further 9 cm and 

the force required to keep it in this position is 60 N. Find 

(i)  the stretched length of the string 

(ii)  the tension in the string and its modulus of elasticity 

(iii)  the elastic potential energy stored in the string and the speed of the marble 

when the string regains its natural length, assuming they remain in contact. 
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SOLUTION 

To solve this problem it is necessary to assume that there is no elasticity in the 

frame of the catapult, and that the motion takes place in a horizontal plane. In 

addition, any air resistance is ignored. 

In figure 14.8, A and B are the ends of the elastic 

string and M1 and M2 are the two positions 

of the marble (before and after the string is 

stretched). D is the mid-point of AB. 

(i)   Using Pythagoras’ theorem in triangle 

DBM1 gives 

   DM1 = 10 82 2–  = 6 cm. 

 So 

   DM2 = 9 + 6 = 15 cm. 

  Using Pythagoras’ theorem in triangle 

DBM2 gives 

   BM2 = 15 82 2+  = 17 cm. 

 The stretched length of the string is 2 × 17 cm = 0.34 m. 

(ii)  Take the tension in the string to be T N. 

 Resolving parallel to M2D:

          2T cos α = 60

 Now     cos α = 
DM

BM
2

2

0 15

0 17
=

.

.

 so       T = 34

  The extension of the string is 

(0.34 − 0.2) m = 0.14 m. 

  By Hooke’s law the modulus of 

 elasticity λ is given by 
λ
l0

x = T 

         λ = 
34

0 14.
 × 0.2 = 48.57...

The modulus of elasticity of the string is 48.6 N (to 3 s.f.). 

A D B

T N T Nα α

M2

60 N

Figure 14.9

16
A D

9

B

1010

M2

M1

Figure 14.8

All lengths in cm
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(iii) The elastic potential energy stored in the string is 

λ
2 0l

 x 2 = 
48 57
2 0 2

. ...
.×  × (0.14)2 = 2.38 J 

  By the principle of conservation of energy, this is equal to the kinetic energy 

given to the marble. The mass of the marble is 0.07 kg, so 

1
2
 × 0.07 v 2 = 2.38

             ⇒  v = 8.25...

 The speed of the marble is 8.3 m s−1. 

EXERCISE 14C 1  An open coiled spring has natural length 0.3 m and modulus of elasticity 6 N. 
Find the elastic potential energy in the spring when 

(i)  it is extended by 0.1 m 

(ii)  it is compressed by 0.01 m 

(iii)  its length is 0.5 m 

(iv)  its length is 0.3 m. 

2 A spring has natural length 0.4 m and modulus of elasticity 20 N. Find the 
elastic energy stored in the spring when 

(i)  it is extended by 0.4 m 

(ii)  it is compressed by 0.1 m 

(iii)  its length is 0.2 m 

(iv)  its length is 0.45 m. 

3 A pinball machine fires small balls of mass 50 g by means of a spring of 
natural length 20 cm and a light plunger. The spring and the ball move in a 
horizontal plane. The spring has modulus of elasticity 120 N and is 
compressed by 5 cm to fire a ball. 

(i)  Find the energy stored in the spring immediately before the ball is fired. 

(ii)  Find the speed of the ball when it is fired. 

4 A catapult is made from elastic string with 
modulus of elasticity 5 N. The string is attached 
to two prongs which are 15 cm apart, and is just 
taut. A pebble of mass 40 g is placed in the centre 
of the string and is pulled back 4 cm and then 
released in a horizontal direction. 

(i)  Calculate the work done in stretching the string. 

(ii)  Calculate the speed of the pebble on leaving the catapult. 

15 cm
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5 A simple mathematical model of a railway buffer consists of a horizontal 

open coiled spring attached to a fixed point. The modulus of elasticity of the 

spring is 2 × 105 N and its natural length is 2 m. 

The buffer is designed to stop a railway truck before the spring is compressed 

to half its natural length, otherwise the truck will be damaged. 

(i) Find the elastic energy stored in the spring when it is half its natural length.

(ii) Find the maximum speed at which a truck of mass 2 tonnes can 

approach the buffer safely. Neglect any other reasons for loss of energy of 

the truck.

A truck of mass 2 tonnes approaches the buffer at 5 m s−1. 

(iii)  Calculate the minimum length of the spring during the subsequent 

period of contact. 

(iv)  Find the thrust in the spring and the acceleration of the truck when the 

spring is at its minimum length. 

(v)  What happens next? 

6 Two identical springs are attached to a sphere of mass 0.5 kg that rests on a 

smooth horizontal surface as shown. The other ends of the springs are 

attached to fixed points A and B. 

The springs each have modulus of elasticity 7.5 N and natural length 25 cm. 

The sphere is at rest at the mid-point when it is projected with speed 2 m s−1 

along the line of the springs towards B. Calculate the length of each spring 

when the sphere first comes to rest.

0.5 kg

0.5 m

BA
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7 Two light springs are joined and stretched between two fixed points A and C 

which are 2 m apart as shown in the diagram. The spring AB has natural 

length 0.5 m and modulus of elasticity 10 N. The spring BC has natural length 

0.6 m and modulus of elasticity 6 N. The system is in equilibrium. 

(i)  Explain why the tensions in the two springs are the same. 

(ii)  Find the distance AB and the tension in each spring. 

(iii)  How much work must be done to stretch the springs from their natural 

length to connect them as described above? 

A small object of mass 0.012 kg is attached at B and is supported on a smooth 

horizontal table. A, B and C lie in a straight horizontal line and the mass is 

released from rest at the mid-point of AC. 

(iv) What is the speed of the mass when it passes through the equilibrium 

position of the system? 

[MEI]

8 A particle P of mass 0.4 kg is attached to one end of a light elastic string of 

natural length 1.5 m and modulus of elasticity 6 N. The other end of the 

string is attached to a fixed point O on a rough horizontal table. P is released 

from rest at a point on the table 3.5 m from O. The speed of P at the instant 

the string becomes slack is 6 m s−1. Find

(i) the work done against friction during the period from the release of P 

until the string becomes slack,

(ii) the coefficient of friction between P and the table.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q4 June 2005] 

9 A and B are fixed points on a smooth horizontal table. The distance AB is 

2.5 m. An elastic string of natural length 0.6 m and modulus of elasticity 24 N 

has one end attached to the table at A, and the other end attached to a 

particle P of mass 0.95 kg. Another elastic string of natural length 0.9 m and 

modulus of elasticity 18 N has one end attached to the table at B, and the 

other end attached to P. The particle P is held at rest at the mid-point of AB 

(see diagram).

(i) Find the tensions in the strings.

2 m

A
B

C

1.25  m 1.25 m
BA

P
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The particle is released from rest.

(ii) Find the acceleration of P immediately after its release.

(iii) P reaches its maximum speed at the point C. Find the distance AC.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q6 June 2007] 

10 A particle P of mass 1.6 kg is attached to one end of each of two light elastic 
strings. The other ends of the strings are attached to fixed points A and B 
which are 2 m apart on a smooth horizontal table. The string attached to A 
has natural length 0.25 m and modulus of elasticity 4 N, and the string 
attached to B has natural length 0.25 m and modulus of elasticity 8 N. The 
particle is held at the mid-point M of AB (see diagram).

(i) Find the tensions in the strings.

(ii) Show that the total elastic potential energy in the two strings is 13.5 J.

P is released from rest and in the subsequent motion both strings remain 
taut. The displacement of P from M is denoted by x m. Find

(iii) the initial acceleration of P,

(iv) the non-zero value of x at which the speed of P is zero.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q6 June 2009]  

Vertical motion 

This chapter began with a bungee jumper undergoing vertical motion at the end 
of an elastic rope. The next example involves a particle in vertical motion at the 
end of a spring. This, along with the questions in the following exercise, covers 
the essential work involved in modelling the bungee jump, which you are then 
invited to investigate. 

EXAMPLE 14.5 A particle of mass 0.2 kg is attached to the end A of a perfectly elastic spring OA 
which has natural length 0.5 m and modulus of elasticity 20 N. The spring is 
suspended from O and the particle is pulled down and released from rest when 
the length of the spring is 0.7 m. In the subsequent motion the extension of the 
spring is denoted by x m. 

(i)  Write down expressions for the increase in the particle’s gravitational 
potential energy and the decrease in the energy stored in the spring when the 
extension is x m. 

(ii) Hence find an expression for the speed of the particle in terms of x. 

(iii) Calculate the length of the spring when the particle is at its highest point. 

 
BA

P

M
2 m
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SOLUTION 

(i)

 The particle has risen a distance (0.2 − x) m 

    Increase in gravitational P.E. = mgh

                                      = 2 × (0.2 − x) 

                Stored energy = 
λ

2 0l
 x 2 

                            = 
20

2 0 5× .
 x 2

                            = 20x 2

                     Initial stored energy = 20 ×  0.22

                Decrease in stored energy = 20(0.22 − x 2) 

(ii) The initial K.E. is zero. 

         Increase in K.E. = 1
2
 × 0.2 ×  x2 − 0

                                 = 0.1 x2

 Using the law of conservation of mechanical energy, 

           Increase in K.E. + P.E. = Decrease in stored energy 

  0.1 x2 + 2(0.2 − x) = 20(0.22 − x 2) 

         and so v = x  = 200 0 2 20 0 22 2( . – ) – ( . – )x x

(iii) At the highest point, v = x
 = 0, 

 200(0.22 − x 2) − 20(0.2 − x) = 0 
  (0.2 − x)[200(0.2 + x) − 20] = 0 
⇒      x = 0.2 or 40 + 200x = 20 
⇒      x = 0.2 or x = −0.1 
but     x = 0.2 at the lowest position 
so      x = − 0.1 at the highest point 

  This negative value of x indicates a compression rather than an extension, so 
at its highest point the spring has length (0.5 − 0.1) m = 0.4 m. 

Note

For this question it is important that you are dealing with a spring, which still obeys 

Hooke’s law when it contracts, rather than a string which becomes slack. 

A   0.2 kg

OO

A

natural
length

λ  20

extension0.2

5.05.0

x

Figure 14.10

x is the same as v, 
the speed in the 

positive direction
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EXERCISE 14D 1  A particle of mass 0.2 kg is attached to one end of a light elastic spring 

of modulus of elasticity 10 N and natural length 1 m. The system hangs 

vertically and the particle is released from rest when the spring is at its 

natural length. The particle comes to rest when it has fallen a distance h m. 

(i)  Write down an expression in terms of h for the energy stored in the 

spring when the particle comes to rest at its lowest point. 

(ii)  Write down an expression in terms of h for the gravitational potential 

energy lost by the particle when it comes to rest at its lowest point. 

(iii)  Find the value of h. 

2 A particle of mass m is attached to one end of a light vertical spring of natural 

length l0 and modulus of elasticity 2mg. The particle is released from rest 

when the spring is at its natural length. Find, in terms of l0, the maximum 

length of the spring in the subsequent motion. 

3 A block of mass m is placed on a smooth plane inclined at 30° to the 

horizontal. The block is attached to the top of the plane by a spring of natural 

length l0 and modulus λ. The system is released from rest with the spring at 

its natural length. Find an expression for the maximum length of the spring 

in the subsequent motion. 

4 A particle of mass 0.1 kg is attached to one end of a spring of natural length 

0.3 m and modulus of elasticity 20 N. The other end is attached to a fixed 

point and the system hangs vertically. The particle is released from rest when 

the length of the spring is 0.2 m. In the subsequent motion the extension of 

the spring is denoted by x m. 

(i)  Show that  0.05 x2 + 
10
0 3.

 (x2 − 0.12) − (x + 0.1) = 0 

(ii) Find the maximum value of x. 

5 A small apple of mass 0.1 kg is attached to one end of an elastic string of 

natural length 25 cm and modulus of elasticity 5 N. David is asleep under 

a tree and Sam fixes the free end of the string to the branch of the tree just 

above David’s head. Sam releases the apple level with the branch and it just 

touches David’s head in the subsequent motion. How high above his head is 

the branch? 

6 A block of mass 0.5 kg lies on a light scale pan which is supported on a 

vertical spring of natural length 0.4 m and modulus of elasticity 40 N. Initially 

the spring is at its natural length and the block is moving downwards with 

a speed of 2 m s–1. Gravitational potential energy is measured relative to the 

initial position. 

(i) Find the initial mechanical energy of the system. 

(ii) Show that the speed v m s−1 of the block when the compression of the 

spring is m is given by v = 2 1 5 50 2+ x x– . 

(iii) Find the minimum length of the spring during the oscillations. 
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7 A scale pan of mass 0.5 kg is suspended from a fixed point by a spring of 
modulus of elasticity 50 N and natural length 10 cm. 

(i)  Calculate the length of the spring when the scale pan is in equilibrium. 

(ii)  A bag of sugar of mass 1 kg is gently placed on the pan and the system 
is released from rest. Find the maximum length of the spring in the 
subsequent motion. 

8 A bungee jump is carried out by a person of mass m kg using an elastic rope 
which can be taken to obey Hooke’s law. It is known that the jump operator 
does not exceed the total length limit of four times the original length of the 
rope in any jump. Prove that the tension in the rope is at most 

8
3
 mg N.

9 A conical pendulum consists of a bob of mass m attached to an inextensible 
string of length l. The bob describes a circle of radius r with angular speed ω, 
and the string makes an angle θ with the vertical as shown. 

(i)  Find an expression for θ in terms of ω, l and g. 

The string is replaced with an elastic string of modulus of elasticity λ and 
natural length l0. 

(ii)  Find an expression for the new value of θ in terms of ω, m, g, l0 and λ. 

10 Use g = 9.8 m s −2 in this question.

A light, elastic string has natural length 0.5 m and modulus of elasticity 49 N. 
The end A is attached to a point on a ceiling. A small object of mass 3 kg is 
attached to the end B of the string and hangs in equilibrium. 

(i)  Calculate the length AB. 

A second string, identical to the first one, is now attached to the object at B 
and to a point C on the floor, 2.5 m vertically below the point A. The system 
is equilibrium with B a distance x m below A, as shown in the diagram below.

θ

ω

l

m

2.5 m

A

B

C

x m
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(ii)  Find the tension in each of the strings in terms of x and hence show 

that x = 1.4. 

(iii)  Calculate the total elastic potential energy in the strings when the object 

hangs in equilibrium. 

The object is now pulled down 0.1 m from its equilibrium position and 

released from rest. 

(iv)  Calculate the speed of the object when it passes through the equilibrium 

position. Any resistances to motion may be neglected. 

[MEI] 

11 A light elastic string has natural length 4 m and modulus of elasticity 2 N. 

One end of the string is attached to a fixed point O of a smooth plane which 

is inclined at 30° to the horizontal. The other end of the string is attached to a 

particle P of mass 0.1 kg. P is held at rest at O and then released. The speed of 

P is v m s−1 when the extension of the string is x m.

(i) Show that v 2 = 45 − 5(x − 1)2.

Hence find

(i) the distance of P from O when P is at its lowest point,

(iii) the maximum speed of P.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q6 November 2008] 

12 A particle P of mass 0.35 kg is attached to the mid-point of a light elastic string 

of natural length 4 m. The ends of the string are attached to fixed points A and 

B which are 4.8 m apart at the same horizontal level. P hangs in equilibrium at 

a point 0.7 m vertically below the mid-point M of AB (see diagram).

(i) Find the tension in the string and hence show that the modulus of 

elasticity of the string is 25 N.

P is now held at rest at a point 1.8 m vertically below M, and is then released.

(ii) Find the speed with which P passes through M.

[Cambridge AS and A Level Mathematics 9709, Paper 51 Q6 November 2010] 

4.8 m

0.7 m

A

P

M
B
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INVESTIGATION

The bungee jump

(i) Experiment 

 Use a weight to represent the jumper and a piece of elastic for the bungee. 

Measure l0 and find the value of λ by suspending the weight in equilibrium. 

Try to predict the lowest point reached by the weight when it is dropped. 

Can you estimate a suitable length of elastic for any given weight to fall a 

standard height? 

(ii) Modelling 

 Typical parameters for a mobile crane bungee jump are: 

 Height of jump station: 55 m  

Bottom safety space: 5 m  

Static line length: 5 m (non-elastic straps etc.)  

Unstretched elastic rope length: 12 m  

Modulus of elasticity: 1000 N 

●? Calculate the maximum deceleration of the heaviest person who can jump safely. 

Would a lighter person experience a greater or lesser deceleration? 

Figure 14.11 
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●? In practice, bungee jumpers usually use a braided rope. The braiding not only 

keeps the elastic core stretched, it also prevents the rope from stretching too 

much. As the rope begins to approach its maximum length, the modulus of 

elasticity gradually increases until ‘lock out’ occurs at maximum extension. This 

rope then no longer obeys Hooke’s law. How would the jump feel different using 

a braided rope? 

KEY POINTS

1 Hooke’s law
The tension T in an elastic string or spring and its extension x are related by:

T = 
λ
l0

 x

where λ is the modulus of elasticity and l0 is the natural length of the string 

or spring.

2 When a spring is compressed, x is negative and the tension becomes a thrust.

3 Elastic potential energy
The elastic potential energy stored in a stretched spring or string, or in a 

compressed spring, is given by E.P.E. where:

E.P.E.   =    
λ

2 0l
 x 2.

This is the work done in stretching a spring or string or compressing a spring 

starting at its natural length.

4 The tension or thrust in an elastic string or spring is a conservative force and 

so the elastic potential energy is recoverable.

5 When no frictional or other dissipative forces are involved, elastic potential 

energy can be used with kinetic energy and gravitational potential energy to 

form equations using the principle of conservation of energy.



Linear motion under  
a variable force

Is it possible to fire a projectile up to the moon?

The Earth to the Moon by Jules Verne (1865) 

In his book, Jules Verne says that this is possible … ‘provided it possesses an 
initial velocity of 12 000 yards per second. In proportion as we recede from the 
Earth the action of gravitation diminishes in the inverse ratio of the square of the 
distance; that is to say at three times a given distance the action is nine times less. 
Consequently the weight of a shot will decrease and will become reduced to zero at 
the instant that the attraction of the moon exactly counterpoises that of the Earth; 
at 47

52
 of its journey. There the projectile will have no weight whatever; and if it 

passes that point it will fall into the moon by the sole effect of lunar attraction.’

●? If an unpowered projectile could be launched from the earth with a high enough 

speed in the right direction, it would reach the moon. 

What forces act on the projectile during its journey?

 How near to the moon will it get if its initial speed is not quite enough? 

In Jules Verne’s story, three men and two dogs were sent to the moon 
inside a projectile fired from an enormous gun. Although this is completely 
impracticable, the basic mathematical ideas in the passage above are correct. 
As a projectile moves further from the earth and nearer to the moon, the 
gravitational attraction of the earth decreases and that of the moon increases. In 
many of the dynamics problems you have met so far it has been assumed that 
forces are constant, whereas on Jules Verne’s space missile the total force varies 
continuously as the motion proceeds.

You may have already met problems involving variable force. When an object 
is suspended on a spring and bounces up and down, the varying tension in the 
spring leads to simple harmonic motion. You will also be aware that air resistance 
depends on velocity.

Gravitation, spring tension and air resistance all give rise to variable force 
problems, the subject of this chapter. 
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Newton’s second law as a differential equation

Calculus techniques are used extensively in mechanics and you will already have 

used differentiation and integration in earlier work. In this chapter you will see 

how essential calculus methods are in the solution of a variety of problems. 

To solve variable force problems, you can use Newton’s second law to give an 

equation for the instantaneous value of the acceleration. When the mass of a body 

is constant, this can be written in the form of a differential equation.

F = m d
d

v
t

It can also be written as

F = mv d
d

v
s

This follows from the chain rule for differentiation. 

d
d

d
d

d
d

d
d

v
t

v
s

s
t

v
v
s

= ×

=

Note

Here and throughout this chapter the mass, m, is assumed to be constant. Jules 

Verne’s spacecraft was a projectile fired from a gun. It was not a rocket whose mass 

varies, due to ejection of fuel. 

Deriving the constant acceleration formulae

To see the difference in use between the d
d

v
t

 and v d
d

v
s

 forms of acceleration, it is 

worth looking at the case where the force, and therefore the acceleration, Fm  is 

constant (say a). Starting from the d
d

v
t

 form,

d
d

v
t

 = a

Integrating gives 

 v = u + at

where u is the constant of integration (v = u when t = 0).

Since v = d
d

s
t

, integrating again gives

    s = ut + 1
2
at 2 + s0

assuming the displacement is s0 when t = 0.

These are the familiar formulae for motion under constant acceleration. 

This formula is also often 

written as F = mv
d
d

v

x
.
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Starting from the v d
d

v
s

 form,

v 
d
d

v
s

 = a

Separating the variables and integrating gives 

∫ v  dv = ∫ a  ds

⇒               1
2
v 2 = as + k

where k is the constant of integration. 

Assuming v = u when s = 0, k = 1
2
u 2, so the formula becomes

v 2 = u 2 + 2as

This is another of the standard constant acceleration formulae. Notice that time is

not involved when you start from the v d
d

v
s

 form of acceleration.

Solving F = ma for variable force

When the force is continuously variable, you write Newton’s second law in the 

form of a differential equation and then solve it using one of the forms of 

acceleration, v d
d

v
s

 or d
d

v
t

. The choice depends on the particular problem.  

Some guidelines are given below and you should check these with the examples 

which follow.

Normally, the resulting differential equation can be solved by separating the 

variables. 

The force is a function of time

When the force is a function, F(t), of time you use a = d
d

v
t

.

F(t) = m d
d

v
t

Separating the variables and integrating gives 

m ∫ dv = ∫ F(t) dt.

Assuming you can solve the integral on the right-hand side, you then have v in 

terms of t.

Writing v as d
d

s
t

, the displacement as a function of time can be found by 

integrating again.
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The force is a function of displacement

When the force is a function, F(s), of displacement, you normally start from

      F(s) = mv d
d

v
s

then ∫ F(s) ds = m ∫ v dv.

The force is a function of velocity

When the force is given as a function, F(v), of velocity, you have a choice. You 

can use 

F(v) = m d
d

v
t

or F(v) = mv d
d

v
s

You can separate the variables in both forms; use the first if you are interested in 

behaviour over time and the second when you wish to involve displacement. 

Variable force examples

The three examples that follow show the approaches used when the force is given 

respectively as a function of time, displacement and velocity. 

When you are solving these problems, it is important to be clear about which 

direction is positive before writing down an equation of motion. 

EXAMPLE 15.1 A crate of mass m is freely suspended at rest from a crane. When the operator 

begins to lift the crate further, the tension in the suspending cable increases 

uniformly from mg newtons to 1.2 mg newtons over a period of 2 seconds.

(i) What is the tension in the cable t seconds after the lifting has begun (t  2)? 

(ii) What is the velocity after 2 seconds? 

(iii) How far has the crate risen after 2 seconds? 

Assume the situation may be modelled with air resistance and cable stretching 

ignored. 

SOLUTION

When the crate is at rest it is in equilibrium and so the tension, T, in the cable 

equals the weight mg of the crate. After time t = 0, the tension increases, so there 

is a net upward force and the crate rises, see figure 15.1. 
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(i)  The tension increases uniformly by 0.2mg newtons in 2 seconds, i.e. it 

increases by 0.1mg newtons per second, see figure 15.2. 

 

 

 

 

 

 

 

 

 

 After t seconds, the tension is T = mg + 0.1mgt.

(ii)  As the force is a function of time use a = d
d

v
t

. Then at any moment in the 

2-second period, F = ma gives

(mg + 0.1mgt) − mg = m d
d

v
t

⇒                                    d
d

v
t

 = 0.1gt

 Integrating gives 

                                v = 0.05gt 2 + k

 where k is the constant of integration.

  When t = 0, the crate has not quite begun to move, so v = 0. This gives k = 0 
and v = 0.05gt 2.

 When t is 2,

                                v = 0.05 × 10 × 4
                                 = 2.

 The velocity after 2 seconds is 2 m s−1.

T N

mg N

a m s–2 +

Figure 15.1 

time t (s)

tension T (N)

1.2mg
mg

210

Figure 15.2 

upwards is positive
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(iii) To find the displacement s, write v as d
d

s
t

 and integrate again.

d
d

s
t

 = 0.05gt 2

 s = ∫ 0.05gt 2 dt

 s = 0.05g × 1
3
t 3 + c

 When t = 0, s = 0 ⇒ c = 0. 

 When t = 2 and g = 10, s = 4
3
.

 The crate moves 4
3
 m in 2 seconds. 

●? The displacement cannot be obtained by the formula s = 1
2
(u + v)t , which would 

give the answer 2 m. Why not? 

EXAMPLE 15.2 A prototype of Jules Verne’s projectile, mass m, is launched vertically upwards 

from the earth’s surface but only just reaches a height of one tenth of the earth’s 

radius before falling back. When the height, s, above the surface is small compared 

with the radius of the earth, R, the magnitude of the earth’s gravitational force on

the projectile may be modelled as mg 1
2

–
s

R




 , where g is gravitational acceleration

at the earth’s surface. 

Assuming all other forces can be neglected 

(i) write down a differential equation of motion involving s and velocity, v 

(ii)  integrate this equation and hence obtain an expression for the loss of kinetic 

energy of the projectile between its launch and rising to a height s 

(iii) show that the launch velocity is 0.3 2gR .

SOLUTION

mg s

a  v dv

s
R

−









1 2

ds

Figure 15.3 
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(i)  Taking the upward direction as positive, the force on the projectile is 

−mg 1
2

–
s

R




 . The force is a function of s, so start from the equation of 

motion in the form 

mv d
d

v
s

 = −mg 1
2

–
s

R






(ii) Separating the variables and integrating gives 

∫ mv dv = − ∫ mg 1
2

–
s

R




  ds

              ⇒     1
2
mv 2 = −mgs + 

mgs

R

2

 + k.

Writing v0 for the launch velocity, v = v0 when s = 0, so k = 1
2
mv 20 and 

rearranging gives

1
2
mv 20 − 1

2
mv 2 = mgs − 

mgs

R

2

.                                                                       1

The left-hand side is the loss of kinetic energy, so 

loss of K.E. = mgs − 
mgs

R

2

.

(iii) Dividing equation 1  by m and multiplying by 2 gives 

v 20 − v 2 = 2gs − 
2 2gs

R
.

If the projectile just reaches a height s = R
10

, then the velocity v is zero at that 

point.

Substituting s = R
10

 and v = 0 gives

v 20 = 2g R gR

R10

2

100

2



 –

                                             = 
18

100

gR

⇒       v0 = 3
10

2gR

So the launch velocity is 0.3 2gR .

EXAMPLE 15.3 A body of mass 2 kg, initially at rest on a smooth horizontal plane, is subjected to a 

horizontal force of magnitude 1
2 1v +

 N, where v is the velocity of the body (v  0).

(i) Find the time when the velocity is 1 m s−1.

(ii) Find the displacement when the velocity is 1 m s−1.

You would normally divide the 
equation by m, but it is useful to 

leave it in here in order to get kinetic 
energy directly from ∫mv dv.



L
in

e
a
r 

m
o

ti
o

n
 u

n
d

e
r 

a
 v

a
ri

a
b

le
 f

o
rc

e
 

M2 

15

SOLUTION

(i) Using F = ma = m dv
td

 1
2 1v +

 = 2d
d

v
t

.

Separating the variables gives 

∫dt = ∫2(2v + 1) dv

⇒  t = 2v 2 + 2v + k.

When t = 0, v = 0 so k = 0 and therefore

 t = 2v 2 + 2v

When v = 1, t = 4. That is, when the velocity is 1 m s−1, the time is 4 seconds.

(ii) Using F = ma = mv d
d

v
s

1
2 1v +

 = 2v d
d

v
s

Separating the variables gives

∫ds = ∫2v(2v + 1) dv

               ⇒ s = 4
3
v 3 + v 2 + k.

When s = 0, v = 0 so k = 0 and therefore

s = 4
3
v 3 + v 2

When v = 1, s = 7
3
. When the velocity is 1 m s−1, the displacement is 21

3
 m.

EXERCISE 15A    1  Each of the parts (i) to (viii) of this question assumes a body of mass 1 kg 

under the influence of a single force F N in a constant direction but with 

a variable magnitude given as a function of velocity, v m s−1, displacement, 

s m, or time, t seconds. 

In each case, express F = ma as a differential equation using either a = d
d

v
t

 or 

a = v d
d

v
s
 as appropriate. Then separate the variables and integrate, giving the 

result in the required form and leaving an arbitrary constant in the answer. 

(i)  F = 2v express s in terms of v 

(ii)  F = 2v express v in terms of t 

(iii)  F = 2 sin 3t express v in terms of t 

(iv)  F = −v 2 express v in terms of t 

(v)  F = −v 2 express v in terms of s 

(vi)  F = −4s + 2 express v in terms of s 

(vii)  F = −2v − 3v 2 express s in terms of v 

(viii) F = 1 + v 2 express s in terms of v 

Write acceleration in d
d
v
t
 form

since time is required.

Write acceleration in v 
d
d

v
s
 

form since displacement is 
required.
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2 Each of the parts (i) to (viii) of this question assumes a body of mass 1 kg 

under the influence of a single force F N in a constant direction but with a 

variable magnitude given as a function of velocity, v m s−1, displacement, s m, 

or time, t seconds. The body is initially at rest at a point O. 

In each case, write down the equation of motion and solve it to supply the 

required information. 

(i)  F = 2t 2 find v when t = 2

(ii)  F = –
( )

1

1 2s +
 find v when s = −1

9

(iii)  F = 1
3s +

 find v when s = 3

(iv)  F = 
1

1v +
 find t when v = 3

(v)  F = 1 + v 2 find t when v = 1

(vi)  F = 5 − 3v find t when v = 1

(vii)  F = 1 − v 2 find t when v = 0.5

  (Hint: Use partial fractions.) 

(viii) F = 1 − v 2 find s when v = 0.5

3 A horse pulls a 500 kg cart from rest until the speed, v, is about 5 m s−1. Over 

this range of speeds, the magnitude of the force exerted by the horse can be 

modelled by 500(v + 2)−1 N. Neglecting resistance, 

(i) write down an expression for v d
d

v
s

 in terms of v

(ii) show by integration that when the velocity is 3 m s−1, the cart has 

travelled 18 m

(iii) write down an expression for d
d

v
t

 and integrate to show that the velocity 

is 3 m s−1 after 10.5 seconds

(iv) show that v = −2 + 4 2+ t

(v) integrate again to derive an expression for s in terms of t, and verify that 

after 10.5 seconds, the cart has travelled 18 m.

4 The acceleration of a particle moving in a straight line is (x − 2.4) m s−2 when 

its displacement from a fixed point O of the line is x m. The velocity of the 

particle is v m s−1, and it is given that v = 2.5 when x = 0. Find

(i) an expression for v in terms of x,

(ii) the minimum value of v.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q5 June 2005]
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5 An object of mass 0.4 kg is projected vertically upwards from the ground, 

with an initial speed of 16 m s−1. A resisting force of magnitude 0.1v newtons 

acts on the object during its ascent, where v m s−1 is the speed of the object at 

time t s after it starts to move.

(i) Show that d
d

v
t

 = −0.25(v + 40).

(ii) Find the value of t at the instant that the object reaches its maximum 

height.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q4 June 2006] 

6 A particle P of mass 0.5 kg moves on a horizontal surface along the straight 

line OA, in the direction from O to A. The coefficient of friction between 

P and the surface is 0.08. Air resistance of magnitude 0.2v N opposes the 

motion, where v m s−1 is the speed of P at time t s. The particle passes through 

O with speed 4 m s−1 when t = 0.

(i) Show that 2.5d
d

v
t

 = −(v + 2) and hence find the value of t when v = 0.

(ii) Show that d
d

x
t

 = 6e−0.4t − 2, where x m is the displacement of P from O at 

time t s, and hence find the distance OP when v = 0.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q7 June 2008] 

7 A particle P starts from a fixed point O and moves in a straight line. When 

the displacement of P from O is x m, its velocity is v m s−1 and its acceleration 

is 1
2x +

 m s−2.

(i) Given that v = 2 when x = 0, use integration to show that

 v 2 = 2 ln 1
2

1x +( ) + 4.

(ii) Find the value of v when the acceleration of P is 1
4
 m s−2.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q3 June 2009] 

8 A particle of mass 0.25 kg moves in a straight line on a smooth horizontal 

surface. A variable resisting force acts on the particle. At time t s the 

displacement of the particle from a point on the line is x m, and its velocity is 

(8 − 2x) m s−1. It is given that x = 0 when t = 0.

(i) Find the acceleration of the particle in terms of x, and hence find the 

magnitude of the resisting force when x = 1.

(ii) Find an expression for x in terms of t.

(iii) Show that the particle is always less than 4 m from its initial position.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q7 November 2005]

330



E
x
e
rc

ise
 1

5
A

331

M2
15

9 A particle of mass 0.4 kg is released from rest and falls vertically. A resisting 

force of magnitude 0.08v N acts upwards on the particle during its descent, 

where v m s−1 is the velocity of the particle at time t s after its release.

(i) Show that the acceleration of the particle is (10 − 0.2v) m s−2.

(ii) Find the velocity of the particle when t = 15.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q4 November 2007]

10 A particle P of mass 0.5 kg moves along the x axis on a horizontal surface. 

When the displacement of P from the origin O is x m the velocity of P is 

v m s−1 in the positive x direction. Two horizontal forces act on P; one force 

has magnitude (1 + 0.3x 2) N and acts in the positive x direction, and the 

other force has magnitude 8e−x N and acts in the negative x direction.

(i) Show that v d
d

v
x

 = 2 + 0.6x 2 − 16e−x.

(ii) The velocity of P as it passes through O is 6 m s−1. Find the velocity of P 

when x = 3.

[Cambridge AS and A Level Mathematics 9709, Paper 5 Q3 November 2008] 

11 A particle P of mass 0.3 kg is projected vertically upwards from the ground 

with an initial speed of 20 m s−1. When P is at height x m above the ground, 

its upward speed is v m s−1. It is given that

3v − 90 ln(v + 30) + x = A,

where A is a constant.

(i) Differentiate this equation with respect to x and hence show that the 

acceleration of the particle is −1
3
(v + 30) m s−2.

(ii) Find, in terms of v, the resisting force acting on the particle.

(iii) Find the time taken for P to reach its maximum height.

[Cambridge AS and A Level Mathematics 9709, Paper 52 Q7 November 2009] 

12 A particle P of mass 0.25 kg moves in a straight line on a smooth horizontal 

surface. P starts at the point O with speed 10 m s−1 and moves towards a fixed 

point A on the line. At time t s the displacement of P from O is x m and the 

velocity of P is v m s−1. A resistive force of magnitude (5 − x) N acts on P in 

the direction towards O.

(i) Form a differential equation in v and x. By solving this differential 

equation, show that v = 10 − 2x.

(ii) Find x in terms of t, and hence show that the particle is always less than 

5 m from O.

[Cambridge AS and A Level Mathematics 9709, Paper 51 Q7 June 2010]
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KEY POINT

When a particle is moving along a line under a variable force F, Newton’s second 

law gives a differential equation. It is generally solved by writing acceleration as

d
d
v
t

  when F is given as a function of time, t

v
v
s

d
d

  when F is given as a function of displacement, s

d
d
v
t

 or v v
v
s

d
d

 when F is given as a function of velocity, v.
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Chapter 1

●? (Page 3)
−4, 0, 5

(i) +4

(ii) −5 

●? (Page 4)
The marble is below the origin. 

Exercise 1A (Page 5) 

  1 (i) +1 m

 (ii) +2.25 m 

  2 (i)  3.5 m, 6 m, 6.9 m, 6 m, 
3.5 m, 0 m 

 (ii)  0 m, 2.5 m, 3.4 m, 2.5 m, 
0 m, −3.5 m 

 (iii) (a) 3.4 m

  (b) 10.3 m 

  3 (i)  2 m, 0 m, −0.25 m, 0 m, 2 m, 
6 m, 12 m 

 (ii)   

 (iii) 10 m 

 (iv) 14.5 m 

  4 (i) 

 (ii) 

 (iii) 

  5 (i)  The ride starts at t = 0. At 
A it changes direction and 
returns to pass its starting 
point at B continuing past to 
C where it changes direction 
again returning to its initial 
position at D. 

 (ii)  An oscillating ride such as a 
swing boat. 

●? (Page 7)

10, 0, −10. The gradient represents 
the velocity. 

●? (Page 8)
The graph would curve where the 
gradient changes. Not over this 
period. 

●? (Page 9)
+5 m s−1, 0 m s−1, −5 m s−1, −6 m s−1. 
The velocity decreases at a  
steady rate. 

Exercise 1B (Page 10) 

  1 

  2 (i)  The person is waiting at the 
bus stop. 

 (ii) It is faster. 

 (iii)

 (iv)  constant speed, infinite 
acceleration 

  3 (i) (a) 2 m, 8 m 

  (b) 6 m 

  (c) 6 m 

  (d) 2 m s−1, 2 m s−1 

  (e) 2 m s−1 

  (f) 2 m s−1 

 (ii) (a) 60 km, 0 km 

  (b) −60 km 

  (c) 60 km 

  (d) −90 km h−1, 90 km h−1 

  (e) −90 km h−1 

  (f) 90 km h−1 

x (m)0 22 4 6 8

t  5t  4t  0, 3t  1, 2
t  1.5

10 12

time0

height above
river (m)

positive
direction

40

time0

height above
ground (m)

2000

time0

height above
bridge (m)

positive
direction

200100 300 400

10

5

speed
(m s–1)

time (s)

9.309.15 9.45

16

8

0

24

speed
(km h–1)

time

Answers 
Neither University of Cambridge International Examinations nor OCR bear any responsibility for the 

example answers to questions from their past question papers which are contained in this publication.
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M1  (iii) (a) 0 m, −10 m 

  (b) −10 m 

  (c) 50 m 

  (d)  OA: 10 m s−1, 10 m s−1; 
AB: 0 m s−1, 0 m s−1; 
BC: −15 m s−1, 15 m s−1 

  (e) −1.67 m s−1 

  (f) 8.33 m s−1 

 (iv) (a) 0 km, 25 km 

  (b) 25 km 

  (c) 65 km 

  (d)  AB: −10 km h−1, 
10 km h−1; 
BC: 11.25 km h−1, 
11.25 km h−1 

  (e) 4.167 km h−1 

  (f) 10.83 km h−1 

  4 1238.7 km h−1 

●? (Page 12)
(i) D 

(ii) B, C, E 

(iii) A 

Exercise 1C (Page 12) 

  1 (i) (a) +0.8 m s−2

  (b) −1.4 m s−2 

  (c) +0.67 m s−2 

  (d) 0 

  (e) +0.5 m s−2

 (ii) 

  2 (i)  0 m, −16 m, −20 m, 0 m, 56 m

 (ii) 

 (iii) 

 (iv)  after 0 s (negative direction) 

and 3 s (positive direction) 

  3 (i) 32 km h−1 

 (ii) 35.7 km h−1

  4 (i) (a) 56.25 km h−1

  (b) 97.02 km h−1

  (c) 46.15 km h−1

 (ii)  The average speed is not 

equal to the mean value of 

the two speeds unless the 

same time is spent at the two 

speeds. In this case the ratio 

of distances must be 10 : 3. 

  5 (i) 

 (ii) 

 (iii)  +0.4 m s−2, 0 m s−2, −0.4 m s−2, 
0 m s−2, −0.4 m s−2, 0 m s−2, 
+0.4 m s−2 

 (iv) 

  

6 (i)

 (ii) (a)

  (b) 

●? (Page 14)
(i) 5 

(ii) 20 

(iii) 45
They are the same. 

●? (Page 14)
It represents the displacement.

●? (Page 16)
Approx. 460 m 

●? (Page 16)
No, so long as the lengths of the 
parallel sides are unchanged the 
trapezium has the same area. 

Exercise 1D (Page 17) 

  1 Car A 

 (i) 0.4 m s−2, 0 m s−2, 3 m s−2

 (ii) 62.5 m 

 (iii) 4.17 m s−1 

105 15 20

1

0

– 1

 

(m s
acceleration

–2)

time
(s)

x (m)– 20 – 10 0 10 20

t  4t  1t  2 t  0, 3

30 40 50 60

21 3 4

20

40

60

0

– 20

x (m)

time
(s)

0

2

velocity (m s–1)

5 10 15 time (s)

5 10 15 20 25 30 350

2

– 2

time (s)

velocity (m s–1)

5 10 15 20 25 30 350
0.4

acceleration
(m s–2)

time (s)– 0.4

2 4 6 8

50

100

150

0

s (m)

time (s)

2 4 6 8

20

40

0
time (s)

v (m s–1)

2 4 6 8

5

0
time (s)

a (m s–2)



M1
 Car B

 (i)  −1.375 m s−2, −0.5 m s−2, 
0 m s−2, 2 m s−2 

 (ii) 108 m

 (iii) 3.6 m s−1 

  2 (i)  Enters the busy road at 
10 m s−1, accelerates to 
30 m s−1 and maintains
this speed for about 150 s. 
Slows down to stop after a 
total of 400 s. 

 (ii) Approx. 0.4 m s−2, −0.4 m s−2 

 (iii) Approx. 9.6 km, 24 m s−1 

  3 (i)

 (ii) 3562.5 m

  4 (i)

 (ii) 558 m 

  5 (i)

 (ii) after 60 s 

 (iii) 6.6 km 

 (iv) �v = 20 + 0.5t  for 0  t  60, 
v = 50 for t  60 

  6 (i) 

 (ii) 15 m s−1, 1 m s−2, 8.66 km 

  7 (i)  BC: constant deceleration, 
CD: stationary, DE: constant 
acceleration 

 (ii) 0.5 m s−2, 2500 m 

 (iii) 0.2 m s−2, 6250 m

 (iv) 325 s 

 (v) 

  8 (i) 10 m s−1, 0.7 s 

 (ii) 

 (iii) 6.25 m s−2 

 (iv) 33.9 m 

  9 (i) 

 (ii) 10 m s−1 

 (iii) 5400 m

 (iv) 0.125 m s−2 

10 (i) 

 (ii)  25

 (iii) 2920 m

11 (i)  0.09 m s−2 

 (ii)  1.08 m  

 (iii) 0.72 m s−1

Chapter 2

●? (Page 22)
See text which follows. 

●? (Page 23)
It might be reasonable as much 
of the journey is on Interstate 5, a 
major road, but it would depend on 
the traffic. 

●? (Page 25)
For the fairground ride, u = 4, 
v = 24, a = 2, t = 10 and s = 140. The 
equations hold with these values.

●? (Page 29)

s = 1
2

(2u + at) × t 

s = (u + 1
2

at) × t 

s = ut + 1
2

at�2 

●? (Page 29)

s = ut + 1
2

at�2 

s = (v − at) × t + 1
2

at�2

s = vt − at�2 + 1
2

at�2 

s = vt − 1
2

at�2 
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M1 Exercise 2A (Page 30) 

  1 (i) 22 

 (ii) 120 

 (iii) 0 

 (iv) −10 

  2 (i) v�2 = u�2 + 2as 

 (ii) v = u + at

 (iii) s = ut + 1
2

at�2

 (iv) s = 
( )u v+

2
 × t

 (v) v�2 = u�2 + 2as 

 (vi) s = ut + 1
2

at�2

 (vii) v�2 = u�2 + 2as 

 (viii) s = vt − 1
2

at�2

  3 (i) 10 m s−1, 100 m s−1 

 (ii) 5 m, 500 m 

 (iii)  2 s 

  Speed and distance after 10 s, 
both over-estimates. 

  4  2.08 m s−2, 150 m. Assume 
constant acceleration. 

  5 4.5 m s−2, 9 m 

  6 −8 m s−2, 3 s 

  7 (i) s = 16t − 4t�2, v = 16 − 8t 

 (ii) (a) 2 s 

  (b) 4 s 

 (iii) 

●? (Page 32)
u = −15.0, No 

●? (Page 35)
x = 5t�2 and 1.25 − x = 5t − 5t�2 
so 1.25 = 5t as before. 

●? (Page 35)
Because the velocity is not constant. 

Exercise 2B (Page 35) 

  1 604.9 s, 9037 m or 9.04 km 

  2 (i) v = 2 + 0.4t 

 (ii) s = 2t + 0.2t�2 

 (iii)  18 m s−1 

  3  No, he is 10 m behind when 
Sabina finishes. 

  4 (i) h = 4�+�8t − 5t�2

 (ii) 2 s 

 (iii) 12 m s−1 

 (iv) t greater, v less 

  5 (i) 12 m s−1 

 (ii) 8.45 m 

 (iii) 13 m s−1 

 (iv) 5.41 m 

 (v) underestimate 

  6 (i) 

 (ii) hs = 15t − 5t�2 

 (iii) hb = 30 − 5t�2 

 (iv) t = 2 s 

 (v) 10 m 

  7 (i) 5.4 m s−1 

 (ii) −4.4 m s−1 

 (iii) 1 m s−1 increase 

 (iv) 9 m s−1 

 (v) too fast 

  8 3 m 

  9 43.75 m 

10 (ii) u + 9a = 15.75
  or u + 5a = 15.15

 (iii) 14.4 

 (iv)  No, distance at constant 
acceleration is 166.5 m. 

11 (i) 4 m s−1

 (ii) 6

 (iii) 2 s

 (iv) 4
3

 m s−2

12 6.8 m

Chapter 3

●? (Page 43)
The reaction between the person 
and the chair acts on the chair.  
The person’s weight acts on the 
person only. 

●? (Page 45)
Vertically up. 

Exercise 3A (Page 46) 

In�these�diagrams,�W�represents�a�

weight,�N�a�normal�reaction�with�

another�surface,�F�a�friction�force,�R�

air�resistance�and�P�another�force.

  1 

  2 

  3 

42

16

0
time

(s)

position
(m)

42

16

– 16

0
time

(s)

velocity
(m s–1)

A

42

16

0
time

(s)

speed
(m s–1)

0 m s–1

hb

hs

10 m s–2

15 m s–1

30 m

W

N

W

T

W

N



M1
  4 

  5 

  6 

  7 

  8 

  9 

10 

11 

12 

●? (Page 47)
To provide forces when the velocity 
changes. 

●? (Page 48)
The friction force was insufficient to 
enable his car to change direction at 
the bend. 

Exercise 3B (Page 49) 

  1 (i) 

 (ii) (a) R = W1 

  (b) R1 + R2 = W2 + R

  2 (i) R = W, 0 

 (ii) W > R, W − R down

 (iii) R > W, R − W up 

  3 (i) No 

 (ii) Yes 

 (iii) Yes 

 (iv) No 

 (v) Yes 

 (vi) Yes 

 (vii) Yes 

 (viii) No 

  4  Forces are required to give 
passengers the same acceleration 
as the car. 

 (i)  A seat belt provides a 
backward force. 

 (ii)  The seat provides a forward 
force on the body and the 
head rest is required to make 
the head move with the body. 

●? (Page 51)
Figure 3.18 

Exercise 3C (Page 55) 

  1 (i) 150 N 

 (ii) 12 000 N = 12 kN 

 (iii) 0.5 N 

  2 (i) 60 kg 

 (ii) 1100 kg = 1.1 tonne 

  3 (i) 650 N 

 (ii) 650 N 

  4 112 N 

  5 (i)  Both hit the ground 
together. 

 (ii)  The balls take longer to hit 
the ground on the moon, 
but still do so together. 

  6 Answers for 60 kg 

 (ii) 600 N 

 (iii) 96 N 

 (iv) Its mass is 4 kg.

●? (Page 55)

No. Scales which measure by 
balancing an object against fixed 
masses (weights). 

Exercise 3D (Page 57) 

In�these�diagrams,�mg�represents�a�

weight,�N�a�normal�reaction�with�

another�surface,�F�a�friction�force,�R�

air�resistance,�T�a�tension�or�thrust,�

D�a�driving�force�and�P�another�force.�

  1 (i) 

 

 (ii) 

 

W

N

F
P
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NT

NB

N1 N2

W
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W
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W

P
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W
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F

P

R

R
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W
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P
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P
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N N
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R
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D
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M1  (iii) 

 

 (iv) (a)  

  (b)  

 (v)  

  2 (i)  Weight 5g = 50 N down and 
reaction (= 5g = 50 N) up. 

 (ii)  Weight 5g = 50 N down, 
reaction with box above  
(= 45g = 450 N down) and 
reaction with ground  
(= 50g = 500 N up). 

  3 (i) F1 = 10 

 (ii) 15 − F2 N 

  4 (i) towards the left 

 (ii) 

 (iii) 3g�N = 30 N, 5g  N = 50 N

 (iv) 2g N = 20 N

 (v)  T1 − 3g ↑, T2 − T1 − F →,
5g − T2 ↓ 

  5 All forces are in newtons 

 (i) greater 

   

 (ii) less 
   

 (iii) greater 
   

 (iv) less 

   

  6 (i) 2400 N 

 

 (ii) 2000 N 

 (iii) T1 = 400 

 (iv) T2 = 200

●? (Page 60)
The air resistance seems to affect 
them more. 

●? (Page 60)
Sky divers and flying squirrels 
maximise air resistance by presenting 
a larger surface area in the direction 
of motion. Cyclists minimise air 
resistance by reducing the area. 

●? (Page 62)
Yes 

●? (Page 62)
Air resistance depends on velocity 
through the air. The velocities of 
a pair of cards in the experiment 
do not differ very much over such 

small heights. 

Chapter 4 

●? (Page 64)

The pointer moves up and down as 

the force on the spring varies. Your 

weight would seem to change as the 

speed of the lift changed. You feel 

the reaction force between your 

hand and the book which varies as 

you move the book up and down. 

Exercise 4A (Page 65) 

  1 (i) 800 N 

 (ii) 88 500 N 

 (iii) 0.0225 N 

 (iv) 840 000 N 

 (v) 8 × 10−20 N 

 (vi) 548.8 N 

 (vii) 8.75 × 10−5 N 

 (viii) 1030 N 

  2 (i) 200 kg 

 (ii) 50 kg 

 (iii) 10 000 kg 

 (iv) 1kg 

  3 (i) 7.76 N 

 (ii) 8 N 

●? (Page 67)

There is a resultant downward force 
because the weight is greater than 
the tension.

Exercise 4B (Page 89) 

  1 (i) 0.5 m s−2 

 (ii) 25 m 

Friction

P

mg

N

F

Motion

mg

N

mg

N

F

Motion

mg

N

mg

N

N
P

F
mg

A

B

C

5g

F

3g

T1
T2

R

4g

T2T1

R1 R1

U U

720

R2 R2

D D

720

R1 R1

U U

720

R2 R2

D D

720

R4

T

720

R3

R3
F

F

720

R4
T

R4

T

720

R3

R3
F

F

720

R4
T

2400 N

B A

D N

2000 N

B

2400 N 200 N
T2 N

T1 N

338



M1
  2 (i) 1.67 m s−2 

 (ii) 16.2 s 

  3 (i) 325 N 

 (ii) 1800 N 

  4 (i) 13 N 

 (ii) 90 m 

 (iii) 13 N 

  5 (i) 

 (ii) 11 500 N 

  6 (i)  400 − 250 = 12 000a, 
a = 0.0125 m s−2 

 (ii) 0.5 m s−1, 40 s 

 (iii) (a) 15 s 

  (b) 13.75 m 

  (c) 55 s 

  7 (i) 60 m s−1 

 (ii) continues at 60 m s−1 

 (iii) 1.25 N 

 (iv) the first by 655 km 

  8 (i)  7035 N, 7000 N, 6930 N, 
2000 N 

 (ii) 795 kg 

 (iii) max T < 9200 N 

  9 (i) 8 m s−2 

 (ii)  13.9 m s−1 is just over 
49 km h−1

●? (Page 71)
Your own weight acts on you and 
the tensions in the ropes with which 
you have contact; the other person’s 
weight acts on them. The tension 
forces acting at the ends of the rope 
AB are equal and opposite. The 
accelerations of A and B are equal 
because they must always travel the 
same distance in each interval of time, 
assuming the rope does not stretch. 

●? (Page 72)
The tension in the rope joining 
A and B must be greater than B’s 
weight because there must be a 
resultant force on B to produce  
an acceleration. 

●? (Page 75)
Using v = u + at with u = 0 and 
maximum a = 6, the speed after 
1 second would be 6 m s−1 or about 
22 km h−1. Under the circumstances, 
a careful driver is unlikely to 
accelerate at this rate. 

Alvin and his snowmobile and 
Bernard are two particles each 
moving in a straight line, otherwise 
Bernard could swing from side 
to side; contact between the ice 
and the rope is smooth, otherwise 
the tensions acting on Alvin and 
Bernard are different; the rope is 
light, otherwise its tension would 
be affected by its weight; the rope 
is of constant length, otherwise the 
accelerations would not be equal; 
there is no air resistance, otherwise 
the equations of motion would 
involve a force to allow for it. 

Exercise 4C (Page 79) 

  1 (i) 

 (ii)  T − 0.1g = 0.1a, 
0.2g − T = 0.2a 

 (iii) 3.33 m s−2, 1.33 N 

 (iv) 1.10 s 

  2 (i)  

 (ii)  T1 − 2g = 2a, T2 − T1 = 5a, 
3g − T2 = 3a 

 (iii) 1 m s−2, 22 N, 27 N 

 (iv) 5 N 

  3 (ii) 750 N 

 (iii) tension, 44 N 

 (iv) 170 N 

  4 (i) 0.625 m s−2 

 (ii) 25 000 N 

 (iii) 12 500 N 

 (iv) reduced to 10 000 N 

  5 (i) 0.25 m s−2 

 (ii) 9000 N, 6000 N 

 (iii)  0.25 m s−2, tension 1500 N, 

thrust 1500 N. The second 

engine is now pushing  

rather than pulling back on 

the truck. 

  6 (i)   

 (ii) RP = RL = 50g, T = 500g 

 (iii) T = 5400, RP = RL = 540 

 7 (i) 

 (ii) 1 m s−2 

 (iii)  stationary for 2 s, 

accelerates at 1 m s−2 for 

2 s, constant speed for 5 s, 

decelerates at 2 m s−2 for 1 s, 

stationary for 2 s

F N

1000g N

a m s–2

 

a m s–2
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T N
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T NR N

5  104 N

40 000g N
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M1  (iv) 

 (v) 13 m 

  8 (i) 

 (ii) 1 m s−2

 (iii) 20 s, 0.455 m s−2

 (iv) 62.3 kN

 (v) 95.8 kg

  9 (i) 5 m s−2, 3 N

 (ii) 0.6 s

10 (i) 2 m s−2

 (ii) 3.6 N

 (iii) 0.3 kg

 (iv) 0.792 m

11 (i) (a) 2.5 m s−2

  (b) 3.75 N

 (ii) 0.3

12 (i) 1 m s−2

 (ii) (a) 3 m, 7 m

  (b) 2 m s−2

Chapter 5 

●? (Page 85)
See text which follows. 

●? (Page 87)
If the bird flies, say, 5 cm N, the 
wind would blow it 12 cm E and its 
resultant displacement would be 
13 cm along DF. This would occur in 
any small interval of time. 

●? (Page 89)
−6

●? (Page 90)

AO 
→

 + OB 
→

 = −a + b = b − a 

Exercise 5A (Page 91) 

  1 (i) 6 m E, 2 m N 

 (ii) −6 m E, 0 m N 

 (iii) 6 m E, 4 m N 

  2  a = 
−





2

0
, b = 

0

1







, c = 
−





3

0
, 

 d = 
0

3







, e = 
2

0







, f = 
1

1




 , 

 g = 
−
−







2

1
, h = 

1

2−




 , k = 

1

1−




  

  3 (4, −11)

  4 (i) 
2

1







 (ii) 
–

–

10

24







 (iii) 
4

2–







 (iv) 
–3

22







  5 (i) 
1

2

5

1

7

8
















, ,  

 (ii) 
4

1

2

7

6

6−









 −






, ,
–

 (iii) 

  6 (i) 
0

3

2

5

3

9−















, ,  

 (ii) 
2

8

1

4












,

 (iii) BC is parallel to AB

  7 (i) d = 9

 (ii)  BC is equal and parallel 
to AD so ABCD is a 
parallelogram. 

  8 Acceleration = 
0

4−






 m s−2,

 Magnitude = 4 m s−2

Exercise 5B (Page 93) 

  1 (i) 10 at −53° 

 (ii)  4 at 180° 

 (iii) 2.24 at −117°

  2 
30

30







, 42.4 at 45° 

  3 
−





1

2
, 2.24 at 117° 

●? (Page 94)

(i) 0 6 0 8 12 2. .+ =

(ii) (a) 
08

06

.

.







 

 (b) 
07071

07071

.

.−






Exercise 5C (Page 96) 

  1 (i) 
564

205

.

.







 (ii) 
−





536

450

.

.

 (iii) 
193

230

.

.−






 (iv) 
−
−







145

251

.

.

  2 (i) 
113

65







 (ii) 
192

161−






2 4 6 8 10 12

2

time
(s)

speed
(m s–1)

0

12.50 60 time
(s)

speed
(m s–1)

2

y

x4 6 8

2

0

4

6

8

A

B

C

N

60° 130 km 50° 250 km

N

N

60° 130 km 50° 250 km

N
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M1 (iii) 
−
−







200

346

 (iv) 
−





43

25

  3  
283

283

3

0

.

.
,












, 6.48 km h−1 at 064° 

  4 (i) 

 (ii) 
0

30





 , 

– .

– .

354

354







 (iii) 081°

  5 (i) (a)  p = 
−





092

254

.

.
, q = 

230

193

.

.





 , 

   r = 
17

294

.

.−




 , s = 

−
−







242

14

.

.
 

  (b)  
066

013

.

.







 (ii) (a)  t = 
135

234

.

.





 , u = 

268

155

.

.−




 , 

   v = 
−
−







035

197

.

.
, w = 

−





2

0
 

  (b)  
169

118

.

– .







  6 (i) 1.45 km at 046° 

 (ii) 0 m 

  7  
643

766

1532

1286

889

2052

.

.
,

.

.
,

.

.







−





−



  

  8  
5

1

087

392

321

483

0

6−











−
−





 −



,
.

.
,

.

.
, 


  

  9 079°, 5.1 km 

Chapter 6 

●? (Page 99)

Yes if the cable makes small angles 
with the horizontal.

●? (Page 100)
Parallel to the slope up the slope.

●? (Page 101)

Start with AB and BC. Then draw 
a line in the right direction for CD 
and another perpendicular line 
through A. These lines meet at D.

●? (Page 102)
(i)  The sledge accelerates up the 

hill.

(ii)  The sledge is stationary or 
moving with constant speed. 
(Forces in equilibrium.)

(iii) The acceleration is downhill.

Exercise 6A (Page 102) 

  1 (i) 

 (iii) 
3

5−




  ; 5.83 N, −59°

  2 (i) 

 (iii) 
0196

7

.

−




  ; 7.00 N, −88.4°

  3 (i) 

 (iii) Equilibrium

  4 (i) 

 (iii) Equilibrium

  5 (i) 

 (iii) 
−





1

0
 ; 1 N down incline

  6 (i) 

 (iii) Equilibrium

  7 (i) (a) 10.8 N

  (b) 22.4 N

 (ii)  64.2° anticlockwise from the 
x axis 

●? (Page 106)
Draw a vertical line to represent 
the weight, 10g� N = 100 N. Then 
add the line of the force T2 at 45° to 
the horizontal (note the length of 
this vector is unknown), and then 
the line of the force T1 at 30° to the 
horizontal (60° to the vertical). C is 
the point at which these lines meet.

30°400 km

N N

60°
50 km

30°400 km

N N

60°
50 km

30 m50 m

45°

N

10

3

5

6

10

30°

5

6

60°60° 5

2

3

2

45°

6

6

4

4

30

10

1

18.66

24.77

20°

40°

50

32.14

38.30
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M1 ●? (Page 107)
The angles in the triangle are  
180° − α etc. The sine rule holds and 
sin(180° − α) = sin α etc.

Exercise 6B (Page 109) 

  1 (i) 30 N, 36.9°; 65 N, 67.4°

 (ii) 

 (iii) 
49

78





 ; 92.1 N, 57.9°

  2 (i) 

 (ii)  T cos 40°, T sin 40°; 
T�cos 40°, T�sin 40°

 (iv) 

 (v) 200 000 N

 (vi)  Resolve vertically for the 
whole system.

  3 (i) (a) 

  (b) 

 (ii)  Rod: 56.4 N, compression, 
Cable 1: 59.1 N, tension

  4 (i) 15.04 kg

 (ii) Both read 10 kg

 (iii) Both read 7.65 kg

 (iv) Method A or C

  5 (i) 

 (ii)  A force towards the right 
is required to balance the 
horizontal component of T.

 (iii) 

 (iv) (a)  10 000 N, 14 142 N, 
10 000 N

  (b)  10 000 N, 10 000 N, 
10 000 N

  6 (ii) component form: 
561

612

.

.





  

   magnitude–direction form: 
83 N, 47.5°

 (iii) 30.8 N, −121°

  7 (i)  Cable 1: (5638, 2052);
Cable 2: (T2 cos 30°, 
T2 sin 30°)

 (ii) 4100 N

 (iii) 9190 N

  8 (i) 

 (ii) 
−



 −






F

R
,

129

483
 

 (iii) 483 N, 129 N

 (iv) 259 N

  9 (i) 

 (ii) 
T F

R0

211

453







−





−
−







, ,
.

.
 

 (iii) T = 30, 8.87 N

 (iv) 1.23 kg

10 (i) 
58

155

59

104.
,

.





 −




  

 (ii) (a) 117 N

  (b) 5.11 N

 (iii) 97 N forwards

 (iv) 3 N

11 (i) 11.2 N, 63.43°

 (ii)  A circle with centre A, radius 
1m; No; two parallel forces 
and a third not parallel 
cannot form a triangle

12 F = 28.3, G = 44.8

13 W1 = 4.40, W2 = 3.26

●? (Page 114)
Down the slope.

●? (Page 117)
Anna and the sledge are a particle. 
There is no friction and the slope 
is straight. Friction would reduce 
both accelerations so Sam would 
not travel so far on either leg of his 
journey.

Exercise 6C (Page 119) 

  1 (i) 
15

1

.

−




  m s−2

 (ii) 1.8 m s−2

  2 (i) 
4

11





  

 (ii) 
8

8

2

2












,  

  3 (i) 

 (ii) 11.55 N

 (iii) 1 m s−2

 (iv) 0.4 s

T NT N

20 000g N

40° 40°

DC

TAB N

40°40°

T NT N

T2 N

30 N

load

T2 N

T1 N

Tr N

A
70°

80°

T2 N

30 N

load

T2 N

T1 N

Tr N

A
70°

80°

B

θ

1000g N

TAB NT N

1000g N

TAB N

T N

θ

F N

R N

50g N

15°

R N
T N

F N

25°
5g N

30°
10 N

R N

8g N

T N
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  4 (i) 

 (ii)  11.4 N, 29.7 N

 (iii) 16.7 m s−2 at 69°

 (iv)  The fish swings sideways as 
it moves up towards Jones.

  5 (i) 

 (ii)  
T

R

g

g0

0 30 30

30 30












− °
− °







, ,
sin

cos
 

 (iii) 172.5 N

 (iv)  The crate slows down to a 
stop and then starts sliding 
down the slope.

  6 (i) 

 (ii) 12.9°

 (iii) 0.85 m s−2, 35.6 m

 (iv) 9.24 m s−1

  7 (i) 

 (ii) 6.69 m s−2

 (iii) 1.73 s

 (iv) 13.4 N

  8 (i)  The horizontal component 
of tension in the rope needs 
a balancing force.

 (ii) 

 (iii) 94.0 N, 766 N

 (iv) 128 N

 (v) 0.144 m s−2

  9 (i) 

 (ii) 4 kg, 40 N

 (iii) 1.82 m s−2, 49.1 N

Chapter 7

Exercise 7A (Page 127) 

  1 (i) (a) 2 − 2t

  (b) 10, 2

  (c) 1, 11

 (ii) (a) 2t − 4

  (b) 0, −4

  (c) 2, −4

 (iii) (a) 3t�2 − 10t

  (b) 4, 0

  (c) 0, 4 and 31
3

, −14.5

  2 (i) (a) 4

  (b) 3, 4

 (ii) (a) 12t − 2

  (b) 1, −2

 (iii) (a) 7

  (b) −5, 7

  3 v = 4 + t, a = 1

  4 (i) (a) v = 15 − 10t, a = −10

  (b) 

  (c)  The acceleration is the 
gradient of the velocity–
time graph.

  (d)  The acceleration is 
constant; the velocity 
decreases at a constant 
rate.

 (ii) (a) �v = 18t�2 − 36t − 6, 
a = 36t − 36

  (b) 

  (c)  The acceleration is the 
gradient of the velocity–
time graph; velocity is 
at a minimum when the 
acceleration is 0.

  (d)  It starts in the negative 
direction. v is initially 
−6 and decreases to −24 
before increasing rapidly 
to zero, where the object 
turns to move in the 
positive direction.

Exercise 7B (Page 131) 

  1 (i) 2t��2 + 3t

 (ii) 1.5t�4 − 2
3

t�3 + t + 1

 (iii) 7
3

t�3 − 5t + 2

  2 (i) 

 (ii) 85 m

  3 (i) When t = 6

 (ii) 972 m

  4 (i) 4.47 s

 (ii) 119 m

  5 (i)  v = 10t + 3
2

t�2 − 1
3

t�3, 

  x = 5t�2 + 1
2

t�3 − 1
12

t�4

 (ii)  v = 2 + 2t�2 − 2
3

t�3, 

  x = 1 + 2t + 2
3

t�3 − 1
6

t�4

 (iii)  v = −12 + 10t − 3t�2, 

   x = 8 − 12t + 5t�2 − t�3

40 N
30 N

1.9g N

50°40°

T N

30°

0.75 m s–2

R N

30g N

α
67g N

200 N

50 N

R N

3g N42°

R N

80g N

R N

F N

100 N

20°

5g N

T N
T N

R N

30°
15 N

mg N

acceleration

– 10
3 time21

velocity

15

3 time210

0

acceleration

– 36

36

3 time21

velocity

– 6
0

– 12

– 18

– 24

6

3 time21

0

5

speed

time10

10

0

20

C
h

a
p
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M1 ●? (Page 131)

Case (i); s = ut + 1
2

at�2; v = u + at; 
a = 4, u = 3.

In the other cases the acceleration is 
not constant.

●? (Page 132)
Substituting at = v − u in ➁ gives

s = ut + 1
2

(v − u)t + s0 

⇒ s = 1
2

(u + v)t + s0 ➂;

v − u = at and v + u = 2(s − s0)

⇒ (v − u)(v + u) = at × 2
t

(s − s0)

⇒ v�2 − u�2 = 2a(s − s0) ➃.

Substituting u = v − at in ➁ gives 

s = vt − 1
2

at�2 + s0 ➄.

Exercise 7C (Page 132) 

  1 (i) 15 − 10t

 (ii)  11.5 m, +5 m s−1, 5 m s−1; 
11.5 m, −5 m s−1, 5 m s−1

 (iii) 

 (iv) 3 s

 (v)  The expression does not 
equal the distance travelled 
because of changes in 
direction. The expression 
gives the displacement from 
the origin which equals 0.

  2 (i) −3 m, −1 m s−1, 1 m s−1

 (ii) (a) 1 s

  (b) 2.15 s

 (iii) 

 (iv)  The object moves in a 
negative direction from 
3 m to −3 m then moves in 
a positive direction with 
increasing speed.

  3 2 s

  4 (i) �v = 4 + 4t − t�2, 

s = 4t + 2t�2 − 1
3

t�3

 (ii) 

 (iii)  The object starts at the 
origin and moves in a 
positive direction with 
increasing speed reaching a 
maximum speed of 8 m s−1 
after 2 s.

  5 (i) 0, 10.5, 18, 22.5, 24

 (ii)  The ball reaches the hole 
at 4 s.

 (iii) −3t + 12 (m s−1)

 (iv) 0 m s−1

 (v) −3 m s−2

  6 (i)  Andrew 10 m s−1, 
Elizabeth 9.6 m s−1

 (ii) 

 (iii) 11.52 m

 (iv) 11.62 s

 (v) Elizabeth by 0.05 s and 0.5 m

 (vi) Andrew wins

  7 (i) 

   Christine is in free fall until  
t = 10 s then the parachute 
opens and she slows down to 
terminal velocity of 5 m s−1.

 (ii) 1092 m

 (iii)  8.5 m s−2, 1.6t − 32, 0 m s−2, 
16 m s−2

  8 (i) 

 (iii) 870 N

 (iv)  max tension = 65 N, string 
breaks

  9 (i) 40

 (ii) s = 0 when t = 0 and 10

 (iii) 25 − 5t

 (iv) 62.5 m

 (v)  In Michelle’s model the 
velocity starts at 25 m s−1 and 
then decreases. The teacher’s 
model is better because the 
velocity starts at zero and 
ends at zero.

12.75

1.5

y

t3210

15

– 15

v

t3210

15

speed

t3210

3

– 3

x

t32
2.15

10

– 1

– 4

v

t3210

1

4

speed

t3210

5

15

10
13.3

x

t210

v

t210

5

8
10

a

t210

5
4

10

10
v

t50

9.6

v

t2.4

Andrew Elizabeth

0

85

5

v

t10 20 30 40 50 60 70 80 900

5g N

T N

1.6 m s–2
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M1
10 (i) (a) 112 cm

  (b) 68 cm

 (ii) 4t, 16

 (iii) 2t�2, 16t − 32

 (iv) 1111
9

 cm, 8
9

 cm less

11 (i) 0.01t�3 + 1.25

 (ii) 3 m s−1

12 (i) 20 s

 (ii) 80 s

 (iii) 4 m s−1

 (iv) 1170 m (to 3 s.f.)

13 (ii) 12
3

14 (i) 100 s, 200 m

 (ii) (a) 0.0003

  (b) 3 m s−1

 (iii) 

15 (i) 6 m s−1, 0.6

 (ii) 13.9

 (iii) 50 m

16 (i) A = 4

 (ii) 450 − 3375
t

 (iii) 5.4 m s−1

Chapter 8

●? (Page 138)

Assumptions: motorcycle is a 
particle, uniform frictional force 
with road, horizontal, linear motion 
with constant deceleration. 

See also text which follows 

●? (Page 141)
Downward slope would extend skid 
so u is an overestimate; opposite for 
upward slope. Air resistance would 
reduce skid so u is an underestimate. 
Smaller µ would extend skid so u is 
an overestimate. 

●? (Page 141)
Friction is forwards when pedalling, 
backwards when freewheeling. 

Exercise 8A (Page 145) 

  1

 (i) 0.1 

 (ii) 0.05 

  2 (i) F = 2g 

 (ii) 2.5 m s−2 

 (iii) F = 2g 

 (iv) 2.25 m s−2 

  3 4.9 kN 

  4 (i) 1.02 m s−2 

 (ii) 0.102 N 

 (iii) 0.102 

 (iv) 49 m; independent of mass 

  5 0.8 

  6 (i) smoother contact 

 (ii) 0.2 

 (iii) 140 N 

  7 (i) 7.5 m s−2 

 (ii) 17.3 m s−1 

 (iii) 58.8 m 

  8 (i) 60 N 

 (ii) 63.8 N

  9 (i) 0.577 

 (ii) 35° 

 (iii) 2.14 

 (iv) 50.2° 

10 (i) 

 (ii) 4.51 m s−2 

 (iii) 5.20 m s−1 

 (iv) 5.42 m 

11 (i) 0.194 

 (ii) 4.94 m s−2 

 (iii) 9.94 m s−1 

 (iv) 9.94 m s−1 

12 (i) 

 (iii) 3.46 N, 4.05 m s−2

13 (i) (a) 37.9 N 

  (b) 37.2 N 

  (c) 37.5 N 

 (ii) 40
04cos . sinα α+

 (iii) 21.8° 

14 0.346

15 (i) Mass of Q = 0.4 kg

 (ii) 0.5 kg

 (iii) 4.5 N

16 (i) 130, 50 N

 (ii) 0.268

17 (i) 14.4 N, 75.2 N

 (ii) 0.364

18 (i) 3200 − 24
25

X

 (ii) 1875

3

1

2ve
lo

ci
ty

 (m
 s–1

)

time (s)
20 40 60 80 1000

car

motorbike

direction of motion

F

pedals make 
wheel rotate

friction opposes 
sliding

T N

R N

F N

10g  N

40°

RF

mg

R N

F N
30°

15°

24 N

40 N

R = 28.4
F = 3.18

C
h

a
p
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M1 19 (i) 

 (iii) 0.1 m s−2

20 (i) 97.8 N

 (ii) 28.3 N

21 (i) 0.546 N, 5.71 N, 0.0957

 (ii) 2.18

22 (ii) 1.62

Chapter 9

●? (Page 154)
The machine never stops (never 
loses energy). 

No, it is an optical illusion. 

Exercise 9A (Page 161) 

  1 (i) 2500 J

 (ii) 40 000 J 

 (iii) 5.6 × 109 J 

 (iv) 3.7 × 1028 J

 (v) 10−25 J

  2 (i) 1000 J 

 (ii) 1070 J 

 (iii) 930 J 

 (iv) None 

  3 (i) 4320 J 

 (ii) 4320 J 

 (iii) 144 N 

  4 (i) 540 000 J, No 

 (ii) 3600 N 

  5 (i) 500 000 J

 (ii) 6667 N

  6 (i) (a) 5250 J

  (b) −13 750 J

 (ii) (a) 505 250 J

  (b) 486 250 J

  7 (i) 64 J

 (ii) dissipated

 (iii) 64 J

 (iv) 400 N

 (v) 89.4 m s−1

  8 (i) 3.146 × 105 J

 (ii) 8.28 × 103 N

 (iii) dissipated as heat and sound

 (iv) some of work is dissipated

  9 18.6 m s−1

10 (i) 240 N

 (ii) 5.5 m

 (iii) 1320 J

 (iv) 0.5 m s−2, 270 N, 270 J

 (v) 960 J, 90 J

●? (Page 168)
More work cycling into the wind, 
less if at an angle, minimum if  
wind behind.

Exercise 9B (Page 170) 

  1 (i) 10 J

 (ii) 96.4 J

 (iii) −60 J

 (iv) −60.1 J

  2 (i) −28 J

 (ii) 56 J 

 (iii) −12 J 

  3 18 J 

  4 23 760 J 

  5 (i) 157 000 J 

 (ii) 20 000 J 

 (iii)  distance moved against 
gravity is 200 sin 5° 

 (iv) 138 000 J 

  6 (i) (a) 1500 J 

  (b) 280 J 

 (ii) (a) 15.6 m s−1

  (b) 16.1 m s−1

  7 (i) 2170 J 

 (ii) the same

  8 (i) (a) 1740 J 

  (b) 8.8 m s−1

 (ii) (a) unaltered 

  (b) decreased 

  9 (i) 1790 J 

 (ii) 1790 J, 8.45 m s−1 

 (iii) 50° 

 (iv)  it is always perpendicular to 

the motion 

10 (i) 160 J 

 (ii) 2(80 − x) = 160 − 10t�2

 (iii) 0  t < 4 

 (iv) 28.3 m s−1 

 (v) 60 m 

11 (i) 35 000 J, 21 875 J 

 (ii) 262.5 N 

 (iii) 5061 N 

12 (i) 9.8 m s−2 

 (ii)  1.47(10t − 4.9t�2), 

0  t  2.04 

 (iii) 5.1 m, 
10

0







 

 (iv) 
10

10







, 14.1 m s−1,15 J 

 (v) No air resistance; No 

13 (i) 110 m s−1 

 (ii) 117 N 

 (iii)  The heavier (relatively less 

affected by resistance). 

14 (i) 604 J 

 (ii) 774 000 J 

 (iii) 215 W 

15 (i) 1000 J

 (ii) 7500 J

 (iii) 8000 J

 (iv) 27.3

R

P

WF

T
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16 (i) 7100 kJ

 (ii) 24 m

17 (i) 100 J

 (ii) 5000 J

 (iii) 50.4

18 (i) 12.2 m s−1

 (ii) 4.9 J

19 2820 J

Exercise 9C (Page 177) 

  1 (i) 315 J 

 (ii) 37 800 J 

 (iii) 10.5 W 

  2 (i) 2400 J 

 (ii) 1200 W 

 (iii) 1920 W, 0 W, 2880 W 

  3 (i) 32 400 J 

 (ii) 16 200 J 

 (iii) 1620 J 

 (iv) 1350 N 

 (v) power = 1620 J 

  4 (i) 703 N 

 (ii) mass of car 

  5 576 N 

  6 250 kW 

  7 (i) 560 W 

 (ii) 168 000 J 

  8 (ii) 0.245 W 

  9 (i) 20 m s−1

 (ii) 0.0125 m s−2

 (iii) 25 m s−1

10 (i) 1.6 × 107 W 

 (ii) 0.0025 m s−2

 (iii) 5.7 m s−1

11 (i) 16 

 (ii) 320 N 

 (iii) 6400 W 

 (iv) (a) 1.98 m s−2

  (b) 1.10 m s−2

12 (i) 10 000 N, 9945 N 

 (ii) 3045 N 

 (iii) 50.8 kW 

 (iv) 94.6 km h−1 

13 (i) 62 500 J 

 (ii) 521 W 

 (iii) 47.2 s 

14 (i) 300 000 J 

 (ii) 6970 N 

 (iv) 3.23 m 

15 20 m s−1, 30 m s−1, 250 000 J

16 0.845 m s−2

17 (i) 1.25 m s−2

 (ii) 590 m

Chapter 10

●? (Page 186)
(i)  the vertical component of 

velocity is zero

(ii) y = 0

●? (Page 187)
  1  Yes for a parabolic path.

 uy − gt = 0 when t = 
u

g
y

 and uyt − 1
2

 gt�2 = 0 when t = 2 
u

g
y .

  2  The balls and the bullet can be 
modelled as projectiles when 
there is no spin or wind and air 
resistance is negligible. Also a 
rocket with no power. The air 
affects the motion of the others.

Exercise 10A (Page 188) 

  1 (i) (a) 

  (b) ux = 8.2

   uy = 5.7

  (c) vx = 8.2

   vy = 5.7 − 10t

  (d) x = 8.2t

   y = 5.7t − 5t�2

 (ii) (a) 

  (b) ux = 2

   uy = 5

  (c) vx = 2

   vy = 5 − 10t

  (d) x = 2t

   y = 5t − 5t�2

 (iii) (a) 

  (b) ux = 4

   uy = 0

  (c) vx = 4

   vy = −10t

  (d) x = 4t

   y = −5t�2

 (iv) (a)

  (b) ux = 9.7

   uy = −2.2

  (c) vx = 9.7

   vy = −2.2 − 10t

  (d) x = 9.7t

   y = −2.2t − 5t�2

 (v) (a) 

  (b) ux = U cos α

   uy = U sin α

  (c) vx = U cos α

   vy = U sin α − gt

  (d) x = Ut cos α

   y = Ut sin α − 1
2

gt�2

10 m s–1

y

x
35°

2 m s–1

5 m s–1

y

x0

4 m s–1

y

x0

10 m s–1
13°

y

x0

U

y

x0
α

C
h
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p
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M2  (vi) (a) 

  (b) ux = u0

   uy = v0

  (c) vx = u0

   vy = v0 − gt

  (d) x = u0t

   y = v0t − 1
2

gt�2

  2 (i) (a) 1.5 s

  (b) 11 m

 (ii) (a) 0.5 s

  (b) 1.25 m

  3 (i) (a) 4 s

  (b) 80 m

 (ii) (a) 0.88 s

  (b) 2.17 m

Exercise 10B (Page 191) 

1 (i) (a) 

  (b) 
4

10– t







  (c) 
4

10 5 2

t

t–







 (ii) (a) 

  (b) 
82

5 7 10

.

. – t







  (c) 
8 2

7 5 7 5 2

.

. –

t

t t+






 (iii) (a) 

  (b) 
9 7

2 2 10

.

– . – t







  (c) 
9 7

20 2 2 5 2

.

– . –

t

t t







 (iv) (a) 

  (b) 
7

24 10– t







  (c) 
7

24 5 2

t

t t–







 (v) (a) 

  (b) 
u

v gt
0

0 –







  (c) 
a u t

b v t gt

+

+ +











0

0
21

2

  2 (i) (a) 1.47 s

  (b) 26 m

 (ii) (a) 0.3 s

  (b) 10.45 m

  3 (i) 2.8 m

 (ii) 2.8 m

 (iii) 

●? (Page 196)
They land together because u, s and 
a in the vertical direction are the 
same for both.

Exercise 10C (Page 196) 

  1 (i) 17.3, 10 m s−1

 (ii) 0, −10 m s−2

 (iii) 35.3 m

 (iv) 1 s

 (v) 5 m

  2 (i) 41, 28.7 m s−1

 (ii) 

t 0 1 2 3 4 5 6

x 0 41 82 123 164 205 246

y 0 24 38 42 36 21 −4.3

 (iii) 

 (iv) 42 m, 239.7 m

 (v)  The ball is a particle, no 
spin, no air resistance so 
acceleration = g

  3 (i) 17.2, 8 m s−1

 (ii) 1.61 s

 (iii) 28.8 m

 (iv) 0.84 s

 (v) 3.4 m

 (vi) 2.58 m, No

  4 (i) 10.3, 14.7 m s−1

 (ii) 2.91 s

 (iii) Into the goal

 (iv) No

  5 (i) 44.7 s

 (ii) 13.4 km

 (iii) 539 m s−1

 (iv) 56.1°

  6 (i) 0.47 s

 (ii) 0.63 s

 (iii) 25.7 m s−1

 (iv) 29.1 m s−1

uo

vo

y

x0

4 m s–1
10

y

x0

10 m s–1
y

x0

35°7

10 m s–1
13°20

y

x0

7 m s–1

24 m s–1

y

x0

y

x0
uo

vo

(a, b)

0 1

y

x2 3
2.8

0 50

y

x100 150 200 250

25

– 25

50

348



M2
  7 (i) Yes, the range is 68.9 m.

 (ii) 33.0 m s−1

  8 (i) (a) 34.6 m

  (b) 39.4 m

  (c) 40 m

  (d) 39.4 m

  (e) 34.6 m

 (ii)  80 sin α cos α = 
80 cos(90° − α) sin(90° − α)

 (iii) 57.9°

 (iv)  +30 cm, 31 cm; lower angle 
slightly more accurate.

  9 (i) 26.3 m s−1

 (ii) 27.6 m s−1

 (iii) 26.4 < u < 27.2

10 25.2 m

11 (i) 1.74 s

 (ii) 3.5 m, Juliet’s window

 (iii) 9.12 m s−1

12 (i)  3.2 m, vertical component of 
velocity is always  8 m s−1

 (ii) 5.5 m

 (iii) 52°

13 (i) 20

 (ii) 32 m

 (iii) 3.2 m

14 (i) 7 − 5t�2

 (ii) (a) Vt cos θ
  (b) Vt sin θ − 5t�2

●? (Page 202)

20

30




  m s−1, (0, 6), 10 m s−2

Exercise 10D (Page 202) 

  1 (i) y = 5
16  x�2

 (ii) y = 6 + 0.4x − 0.2x�2

 (iii) y = −14 + 17x − 5x�2

 (iv) y = 5.8 + 2.4x − 0.2x�2

 (v) y = 2x − gx

u

2

22

  2 (i) x = 40t

 (iii) 

  3 (i) y = 3
4  x − 1

320 x�2

 (ii)  

   Air resistance would  
reduce x.

 (iii)  Yes, horizontal acceleration 
= −0.5 m s−2

●? (Page 205)
The projectile is a particle and there 
is no air resistance or wind. The 
particle is projected from the origin.

Exercise 10E (Page 205) 

  1 (i) (21.2t, 21.2t − 5t�2)

 (iii) 8.9

 (iv) 29.7 or 61.2

  2 (ii) 6.9 m

  3 (ii) 24.1 m

 (iii) Yes, y = 2.4 m

  4 (i) y = 1 + 0.7x − 745 2

2
. x
u

 (ii) u > 7.8 m s−1

 (iii) u < 8.5 m s−1

  5 (i) u = 20 m s−1, θ = 45°

 (ii) y = x − 0.025x�2

  6 (i) Speed = 13.5 m s−1, T = 0.721

 (ii) 2.85° to the horizontal

  7 (i) x = 1
2

vt, y = 3
2

vt − 5t�2

 (ii) 29.7

 (iii)  55.3° downward from the 
horizontal

  8 (ii) When tan θ = 3
4 , OA = 38.4 m

   When tan θ = 17
4 , 

OA = 17.8 m

 (iii) 

Experiment (Page 207) 

  1  g sin θ where θ is the angle 
between the table and the 
horizontal

  2  Not according to the simplest 
model

  3 Yes, at angles α and (90° − α)

  4 45°

  5 a parabola

Chapter 11

●? (Page 213)
The tool shown in figure 11.9(i) 
works with one hand but has less 
leverage (moment). See also text. 

●? (Page 219)
(i) �P + Q line of action parallel to 

P and Q and in same direction; 
distance from O is 

 a + 
bQ

P Q+
 (between P and Q) 

(ii) �P − Q line of action parallel to 
P and Q and in direction of the 
larger; distance from O is 

 �a − bQ
P Q–

 (to the left of P for 

 P > Q)

0

y

x40 80 120 160 200 240

20

40
t  1

t  0

t  2
t  3

t  4

t  5

t  6

0

y

x40 80 120 160 200 240

20

40 path of ball

0

y

x10 20 30 40

5

10

15

20
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M2 ●? (Page 219)
You produce equal and opposite 
couples using friction between one 
hand and the lid and between the 
other hand and the jar so that they 
turn in opposite directions. Pressing 
increases the normal reactions and 
hence the maximum friction possible. 

Exercise 11A (Page 219) 

  1 (i) 15 Nm 

 (ii) −22 Nm 

 (iii) 18 Nm

 (iv) −28 Nm 

  2 (i) 2.1 Nm 

 (ii) 6.16 Nm

 (iii) 0.1 Nm

 (iv) 0.73 Nm 

  3 29.2 N, 20.8 N

  4 (i) 1250 N, 1250 N

 (ii) 1479 N, 1821 N

  5 96.5 N, 138.5 N

  6 (i) 55 kg

 (ii) 0.8 m 

  7 (i) P = 27.5g, Q = 147.5g 

 (ii) P = 2.5g, Q = 172.5g 

 (iii)  If child is less than 0.95 m 
from the adult, P < 0 so 
the bench tips unless A is 
anchored to the ground. 

 (iv)  The bench tips if A is not 
anchored. 

  8 (i) 15g N, 30g N 

 (ii) 90g N, 5g N 

 (iii) zero 

 (iv) 2
3  m

  9 (i)  0.5g (30 − x) kN, 
0.5g (20 + x) kN 

 (ii) its centre of mass 

 (iii) constant 15g kN each 

10 (i) 35g N, 75g N 

 (ii) no 

 (iii) 36 kg 

●? (Page 226)

No, the system is symmetrical 
providing the rod is uniform. 

Exercise 11B (Page 228) 

  1 (i) 6 Nm 

 (ii) −10.7 Nm 

 (iii) 23 Nm 

 (iv) 0 

 (v) − 4.24 Nm 

 (vi)  4.24 Nm 

  2  David and Hannah 
(by radius × 0.027 Nm) 

  3 (i) 5915 kg

 (ii) 4532 sec θ kg 

  4 (i) 43.3 N 

 (ii) 28.1 N 

 (iii) 30.7 N

  5 (i) T cos 30°, T sin 30°

 (iii) 30 Nm 

 (v) 8.04 N, 15.36 N 

 (vi) (a) 33.7° 

  (b) 3.23 m 

  6 (i) 1434 N

 (ii) 651 N, 1644 N 

 (iv) (a) jib stays put, T = 0 

  (b) A drops 

  7 (i) 

 (ii) 0 

 (iii) 144 N 

 (iv) 144 N, µ  0.289 

  8 (i) 

 (a) (ii) 57.7 N, 57.7 N, 200 N

  (iii) 0.29 

 (b) (ii) 100 N, 100 N, 200 N

  (iii) 0.5 

  9 (i)  

 (ii) 162 N 

 (iii) 61.7 N 

10 (ii) 1 600 000 Nm (to 3 s.f.)

 (iii) 6830 N, 3830 N 

11 (i) 

 (ii) 80g = 800 N 

 (iii) 30g = 300 N vertically down 

 (iv) 17.5g = 175 N 

12 (i) 

 (ii) 26.0 N, 105 N 

 (iii) 0.51 

 (iv) 2.25 m 

13 (i) 

 (ii) 3596 N 

 (iii)  3497 N at 28.15° above the 
horizontal 

8gmg
x m

1 m

37g 26g

2 m

R1

R2

F2
50g

60°

B

A

3 m

3 m

S
l

l R

F

20g
α

X

Y

F

35°

40°

10°
A

C B
T

R

20g30gY

BA C

R

F

12g

60°

1.4 m

1.4 m

S

Y N R N

1000 N

1.5 m 1 m 1.5 m 1 m
BA

1500 N 1000 N
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M2
14 (i) 960 N

 (ii) X = 269, Y = 522

Chapter 12

●? (Page 235)

Yes, centre of mass vertically below P.

●? (Page 237)

4 × 1 2
15 + 5 × 2

15 = 6 × 13
15

Exercise 12A (Page 239) 

  1 (i) 0.2 m

 (ii) 0

 (iii) −0.72 m

 (iv) 1.19 m

 (v) +0.275 m

 (vi) 0.36 m

 (vii) −0.92 m

 (viii) 0.47 m

  2 2.18 m from 20 kg child

  3 4.2 cm (towards the 60 kg mass)

  4 4680 km (to 3 s.f.)

  5 0.92 m

  6 3.33 mm from centre

  7 2.95 cm

  8 1.99 kg

  9 42 kg

10 
m l

m m
2

1 2+( )  from m1 end

11 (i)  3.35 m from centre line,
tips over

 (ii) 4.55 tonnes

 (iii) �L�(l − d) < Md + C�(a + d), 
C�(a − d) < Md

 (iv) 2Mad
l d a d– –( )( )

Exercise 12B (Page 247) 

  1 (i) (2.3, −0.3)

 (ii) (0, 1.75)

 (iii) ( 1
24, 1

6 )

 (iv) (−2.7, −1.5)

  2 (5, 61
3 )

  3 (i) (20, 60)

 (ii) (30, 65)

 (iii) (30, 60)

  4 23 cm

  5 (i) (5, 2)

 (ii) (3, 6)

 (iii) (4, 20
π )

 (iv) (4, 30
π )

  6 (i) (1.5, −1.5)

 (ii) (1.5, −2.05)

  7 (i) 0.2 cm below O

 (ii) 9.1°

  8 (i) (0.5a, 1.2a)

 (ii) 3.9°

 (iii) 2m

  9 (i) 2.25

 (ii) 0.56 m

 (iii) 0.40, (1
2

, 11
2

)

10 (i) 16 N

 (ii) 12.8 N, 30.4 N

11 (ii) 15.3

12 (i) 1
3  m (towards C)

 (ii)  Tension = 8
9  W, 

force at C = 1
9  W

13 (i) 39.9 N

 (ii) θ = 47.5, tension = 18.5 N

14 (ii) 30°

●? (Page 253)
It is likely to topple. Toppling 
depends on relative mass of upstairs 
and downstairs passengers. 

●? (Page 254)
1st slide, 2nd topple. 

●? (Page 255)
R cannot act outside the surfaces 
in contact so there is a resultant 
moment about the edge E. 

●? (Page 257)
Yes, when µ = 0.5 and α = 26.6° 

Exercise 12C (Page 257) 

  1 (i) 2.8g N 

 (ii) 3.5g N 

 (iii) slide 

  2 (i) P = 2 µg 

 (ii) 0.6g N 

 (iii) µ < 0.3 

 (iv) µ > 0.3 

  3 It slides. 

  4 (a) (i) 22.5 N 

  (ii) 22.0 N 

  (iii) topples 

 (b) (i) 22.8 N 

  (ii) 25.9 N 

  (iii) slides. 63.4°, 22.4 N 

  5 (i) 14.0°

 (ii) 18.4°

 (iii) sliding 

  6 (i) (a) 50 by 20 

  (b) 20 by 10 

 (ii)  The shortest side is 
perpendicular to the plane 
of the slope for maximum 
likelihood of sliding.

 (iii) (a) µ < 0.2 

  (b) µ > 5 

  7 (i) stays put 

 (ii) topples 
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M2   8 (i) W cos α

 (iii) 137 Nm; P > 137 

 (v) µ < 0.211

  9 (i) (28, 60)

 (ii) (52, 60)

 (iii) (64, 60)

 (iv) 40 cm

10 (i) 0.5 m from ground

 (ii) 16.7°

 (iv) 19.4 kg

11 (i) (a) (10, 2.5)

  (b) (12.5, 5)

  (c) (15, 7.5)

  (d) (17.5, 10)

  (e) (20, 12.5)

 (ii) 5

 (iii) (9 + n, 2.5n), 11

 (iv) 102.5 cm

12 (i) 5.25

13  The prism falls on the face 
containing BC.

14 (i) 7.5

15 (i) 48

 (ii) 39.8

Chapter 13

●? (Page 266)
Forces which pull them towards the 
centre of the circle.

Gravity pulls it in.

It moves off at a tangent.

No

●? (Page 268)
They are often given in radians per 
second and one turn is 2π radians.

Exercise 13A (Page 269) 

  1 (i) 8.2 rad s−1

 (ii) 4.7 rad s−1

 (iii) 3.5 rad s−1

  2 2865 rpm

  3 (i) (a) 0.033 rpm

  (b) 0.0035 rad s−1

 (ii) 0.24 m s−1

  4 32.5 rad s−1

  5 (i) 50 rad s−1

 (iii) 150 rad s−1

  6 (i) 3820 rpm

 (ii) 2080 rpm (to 3 s.f.)

  7 (i) 1.99 × 10−7 rad s−1

 (ii) 7.27 × 10−5 rad s−1

 (iii) 465 m s−1

 (iv)  about 290 m s−1 at latitude 
51.5°

  8 2.29:1

  9 (i) 61.7 J

 (ii)  points on a large object 
would travel with different 
speeds

10 (i)  big: 2.09 × 10−3 m s−1, 
small: 1.16 × 10−4 m s−1

 (ii)  18:1 the radius is also 
involved

11 (i) 4.91 m

 (ii) 12.3 m s−1

12 (i) no

 (ii) 

●? (Page 274)
(i) 0 m s−1 so u = r ω

(ii) u
r

(iii)  2u m s−1 forwards and 2u  m s−1 
at 45° to the forward direction.

Activity 13.1 (Page 280)
When you turn fast enough, the 
coin flies off the card. When the 
card is tilted it stays put at higher 
angular speeds.

●? (Page 281)
See text that follows.

●? (Page 283)
  1  Resolve perpendicular to 

the slope

 �R − mg cos α = m v
r

2
 sin α. 

  Then parallel to the slope. No 
slipping down if 

 mg sin α − F = m v
r

2
 cos α, and

  F < µR. No slipping up if 

  mg sin α + F = m v
r

2
 cos α, and 

 F < µR.

  Substitute for F and R and 
rearrange.

  2  The bend is safe at 48 km h−1. In 
general bends are safer for larger 
r. So long as µ > tan α, there is 
no lower limit for v and then 
α can be increased in order to 
increase the upper limit.

Exercise 13B (Page 285) 

  1 (i)  Neither, both have 
ω = 0.75 rad s−1.

 (ii)  No because they have the 
same angular speed.

 (iii) 13.5 m s−2, 11.25 m s−2

 (iv)  towards the centre for 
circular motion

  2 (i) (a) neither slips

  (b) B slips, A doesn’t

  (c) both slip

 (ii)  A slips first, radius matters, 
mass doesn’t matter

  3 (i)  accelerates because direction 
changes

 (ii) 11.25 m s−2

 (iii) 2250 N

 (iv)  No, outside wheels go faster 
so force is greater

  4 (i) True for fixed seats

 (ii)  False, as v = r ω so speed 
depends on r.
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M2
 (iii)  False, as a = r ω2 so 

acceleration depends on r.

  5 (i) (a) 0.5 rad s−1

  (b) 1 m s−2

  (c) 60 N towards centre

 (ii) skater is particle

  6  B has greater force because 
greater acceleration

  7 (i) (a) 
2 107×( )

r
 (3 s.f.)

  (b) πr 3 2/  × 10−7 s

 (ii) T�2 = π2 × 10−14 r�3

 (iii) 4.23 × 107 m

  8 (i) 5.72 × 10−3 m s−2

 (ii) 1.77 × 1030 kg

 (iii)  any planet in this orbit 
would have the same period 
whatever its mass

  9 (i)  vertical force required to 
balance weight

 (ii) 12.57 rad s−1

 (iii) 

 (iv)  T�sin�θ = mr�ω2

= 0.18 × 0.8 sin�θ × (4π)2; 

T�cos�θ = mg = 1.8

 (vi) 22.7�N

10 (i) 263�N

 (ii)  The weight of the sphere is 

very small compared with 

the tension in the string.

 (iii) 23.1 m s−1

11 (i) 6400 N

  (a)  The car is about to skid 

on a bend.

  (b)  The car is accelerating 

or braking and is about 

to skid.

 (ii) 111 km h−1 (31 m s−1)

 (iii) 

 (iv) R sin α = 
mv

r

2
, R cos α = mg

 (vi) 10.6° or 0.185 rad

12 (i) 72 km h−1 (20 m s−1)

 (ii) 6.6 km h−1 (1.84 m s−1) faster

13 (i) π rad s−1, 5 π m s−1

 (iii) 40.5 rpm

 (iv) 100 m

14 (ii) cos α > cos β ⇒ α < β
  so x > 2a − x
       x > a

15 (i) 35

 (ii) 1.83 N

 (iii) 2.83 m s−1 

16 R = 1.10, S = 0.784

17 (ii) 3.93

18 (ii) 2.31 m s−1

 (iii) 1.09 s

19 (i) 0.735 rad s−1

 (ii) (a) 400 N

  (b) 10.3 m s−1

20 (i) T = 3

 (ii) 3 m s−1

Chapter 14

●? (Page 295)
Use energy considerations. See  
the investigation at the end of  
the chapter.

Exercise 14A (Page 299) 

  1 (i) 

 (ii) 100 N

  2 (i) 20 N

 (ii) 20 N

 (iii)  Tension required to double 
the length is the same. There 
is a 20 N force at the fixed 
end in part (i).

  3 (i) 0.03 N

 (ii) 0.0375 m

 (iii) 0.08

  4 (i) 5 N

 (ii) 75 N

 (iii) 0.625 kg

  5 (i) 30 N

 (ii) 3

 (iii)  Spring becomes fully 
compressed with fewer than 
seven blocks.

  6 λα
λ ω– ma 2

Exercise 14B (Page 303) 

  1 (i) 60 N

 (ii) 0.04 m

 (iii)  2400 N; could be two strings 

together

  2 (i) 12 000 N

 (ii) 12 000 N

 (iii) 0.05 m

 (iv) 0.02 m

  3 (i) 7000 N

 (ii) 7000 N

 (iii) 4000 N

  4 (i) 198 N

 (ii) 654 N

 (iii) 118%

 (iv) 51.6 m

  5 (i) (0.3 − x) m

 (ii) 16x N, 25(0.3 − x) N

 (iii) 0.183

0.18g N

T Nθ

acc

mg

R

α

acc

T

 

2g

 1.5 m

30 cm
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M2   6 (i) 2.2 − h m, h − 1.2 m

 (ii) 44 − 20h N, 30h − 36 N

 (iii) 1.2

 (iv) 20 N, 0 N

  7 (i) l0

λ
 mg sin α

 (ii) (a) l0

λ
 mg ( µcos α + sin α)

  (b) l0

λ
 mg (sin α − µcos α)

  8 (ii) 0.313 m

 (iii)  An elastic string is unlikely 
to pass smoothly over a peg.

  9 1.3 m

10 (i) 1.33 N

 (ii) 16

Exercise 14C (Page 311) 

  1 (i) 0.1 J

 (ii) 0.001 J

 (iii) 0.4 J

 (iv) 0 J

  2 (i) 4 J

 (ii) 0.25 J

 (iii) 1 J

 (iv) 0.0625 J

  3 (i) 0.75 J

 (ii) 5.48 m s−1

  4 (i) 0.006 67 J

 (ii) 0.577 m s−1

  5 (i) 5 × 104 J

 (ii) 7.07 m s−1

 (iii) 1.29 m

 (iv) 7.07 × 104 N, 35.4 m s−2

 (v)  Truck moves back along the 
rail at 5 m s−1 if other forces 
ignored.

  6 0.433 m, 0.067 m

  7 (i) B is in equilibrium

 (ii) 0.8 m, 6 N

 (iii) 2.7 J

 (iv) 10 m s−1

  8 (i) 0.8 J

 (ii) 0.1

  9 (i) 26 N, 7 N

 (ii) 20 m s−2

 (iii) 0.933 m

10 (i) 12 N, 24 N

 (iii) 7.5 m s−2

 (iv) 0.5

Exercise 14D (Page 316) 

  1 (i) 5h�2 J

 (ii) 0.2gh�J

 (iii) 0.4

  2 2l0

  3 l
mg

0 1+



λ

  4 (ii) 0.13

  5 0.463 m

  6 (i) 1 J

 (iii) 0.2 m

  7 (i) 0.1098 m

 (ii) 0.149 m

  9 (i) cos θ = 
g

lω 2

 (ii) cos θ = g m l

l

( – )λ ω
ω λ

2
0

2
0

10 (i) 0.8 m

 (ii) 98(x − 0.5) N, 98(2 − x) N

 (iii) 57.3 J

 (iv) 0.81 m s−1

11 (ii) 8 m

 (iii) 6.71 m s−1

12 (i) Tension = 6.25 N

 (ii) 4.90 m s−1

●? (Page 319)
20.3 m s−2 for a person weighing 90 kg. 
A lighter person would feel a greater 
deceleration, approximately 27 m s−2 
for somebody weighing 60 kg.

●? (Page 320)
The jumper would slow down more 
quickly at the end.

Chapter 15

●? (Page 321)

The forces are air resistance and the 
gravitational forces due to the earth 
and the moon. 

●? (Page 326)
Because the acceleration is not 
constant. 

Exercise 15A (Page 328) 

  1  In the following answers, k is an 
arbitrary constant. 

 (i) s = 1
2

v + k

 (ii) v = ke�2t

 (iii) v = − 2
3  cos 3t + k

 (iv) v = 
1

t k+
 (v) v = ke−s

 (vi) v = 4 1s s k–( ) +
 (vii) s = − 1

3  ln k�(3v + 2)

 (viii) s = 1
2

 ln�(1 + v�2) + k

  2 (i) 16
3

 (ii) − 12
 (iii) 2 2ln  or 1.177 

 (iv) 7 1
2

 (v) 
π
4  or 0.785

 (vi) 1
3

 ln 5
2

 or 0.305

 (vii) 1
2

 ln 3 or 0.549

 (viii) 1
2

 ln 4
3

 or 0.144

  3 (i) v dd
v
s

 = 1
2v +

 (iii) d
d

v
t

 = 1
2v +

 (v) s = −2t + 1
3

(4 + 2t)3/2 − 8
3
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M2  4 (i) v = x x2 4 8 6 25– . .+

 (ii) 0.7

  5 (ii) 1.35

  6 (i) t = 2.75

 (ii) OP = 4.51 m

  7 (ii) 2.32

  8 (i)  Acceleration = 4x − 16
Resisting force when x = 1 
is 3 N

 (ii) x = 4(1 − e−2t)

  9 (ii) 47.5 m s−1

10 (ii) 5.33 m s−1

11 (ii) 0.1v  N

 (iii) 1.53 s

12 (i) 0.25v d
d

v
x

 = −(5 − x)

 (ii) x = 5(1− e−2t�)
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Index

acceleration
	 angular			272
	 components,	in	circular	motion			

271–272
	 constant			24,	25,	26,	28,	29,	67
	 	 see also	constant	acceleration	

formulae
	 due	to	gravity			28–29
	 as	gradient	of	tangent			125
	 as	gradient	of	a	velocity–time	

graph			11,	24
	 instantaneous	value			322
	 mathematical	meaning			11–13
	 sign			11
	 variable			124
	 vector	quantity			11
angle	of	friction			145
angular	acceleration			272
angular	speed			267–271
angular	velocity,	vector	quantity			

267,	271
areas
	 estimating			16
	 using	to	find	distances	and	

displacements			13–20
area	under	velocity–time	graph			

14–15,	25,	128–129
axis	of	symmetry			238,	246

balance	point,	of	a	rigid	body			
235–237

bearings			85,	92
braking	force			50
bungee	jumping			295–296,	314
	 investigation			319–320

calculus	techniques
	 in	solution	of	problems			322
	 see also	differentiation;	

integration
cartesian	equation			202
centre	of	mass			42,	235–265
	 of	a	composite	body			238–240

	 for	different	shapes			246–253

	 investigations			264–265

	 for	two-	and	three-dimensional	

bodies			241–247

centripetal	force			274

centroid	of	a	triangle			246

chain	rule	for	differentiation			322

circular	arc	or	sector,	centre	of	mass			

247

circular	motion

	 with	constant	speed			272–274

	 forces	required			266,	272,	274

	 investigations			293

	 mathematical	modelling			274–276

	 Newton’s	second	law			274–276

	 notation			267

	 uniform			266–294

coefficient	of	friction			139

column	vectors			87–88

	 for	resolving	forces			101

components

	 addition	and	subtraction			88–89

	 in	circular	motion			271

	 magnitude	and	direction			92–94

	 in	projectile	motion			189,	203

	 resolving			100–103,	106

	 of	a	vector			87–92

composite	bodies,	centre	of	mass			

238–240

compression			51

	 as	negative	extension			296

cone,	centre	of	mass			247

conservation	of	energy			158–161,	

164–167

conservative	forces			158

constant	acceleration	formulae			

22–39,	131

	 deriving			322–323

	 for	projectile	motion			185–188

	 using	integration			132

	 see also	suvat	formulae

Coulomb,	Charles	Augustin	de			141

Coulomb’s	laws	of	friction			139,	141

couples			214

diagrams,	used	to	show	information			
3–4

differential	equation,	Newton’s	
second	law			322–324

differentiation
	 chain	rule			322
	 notation			267
	 and	rate	of	change			125–127
displacement
	 as	area	under	velocity–time	graph			

15,	25
	 finding	from	velocity			127
	 initial,	non-zero			32–33
	 measureable	from	any	position			3
	 position	vector			86
	 vector	quantity			3,	86
displacement	vectors			85–86
dissipative	forces			158
distance
	 above	a	fixed	origin			3
	 as	area	under	velocity–time	graph			

25
	 scalar	quantity			2
	 units			5
distance–time	graphs			7
driving	forces			50

earth,	gravitational	force			2,	266
elasticity			295–314
	 perfect			197
elastic	potential	energy			308–314
elastic	strings,	experiment			297–298
energy
	 conservation			158–161,	164–167
	 conversion	from	one	form	to	

another			155
	 defining			154
	 S.I.	unit			155
equation	of	motion			64–68
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equilibrium			42,	51–52
	 experiment			223
	 forces			103–114
	 for	forces	acting	at	different	

points			214–217
	 limiting			145
	 mathematical	definition			215
	 non-parallel	forces			256
escape	velocity			321
extension			296
	 negative	(compression)			296

force	diagrams			40–47,	57
forces
	 acting	at	an	angle			224–234
	 continuously	variable			323–331
	 in	equilibrium			103–114
	 as	a	function	of	displacement			

324,	326–327
	 as	a	function	of	time			323,	

324–326
	 as	a	function	of	velocity			324,	

327–328
	 line	of	action			41
	 moments			210–234
	 and	motion			47–55
	 resolving	into	components				

100–103,	106
	 	 see also	components
	 S.I.	unit			53
	 vector	quantity			41
	 and	velocity			86–87
friction
	 angle	of			145
	 coefficient	of			139
	 Coulomb’s	laws			139,	141
	 investigations			153
	 laws			139
	 limiting			139
	 in	mathematical	modelling			44,	

138–152
	 and	safe	speeds			282–286
	 smooth	surfaces			44
fulcrum			218

graphs
	 showing	motion			3–4
	 specifying	axes			4
	 used	to	show	information			3–4
gravitation,	universal	law			43
gravitational	force,	on	the	moon			

53–55

gravitational	potential	energy				

163–167,	170

gravitational	pull,	of	the	earth			2,	

266

gravity

	 acceleration	due	to			28–29

	 conservative	force			158

hammer	throwing			266,	293

hemisphere,	centre	of	mass			247

hinge,	reaction	force			216

Hooke,	Robert			302

Hooke’s	law			298–307,	315

	 with	more	than	one	spring	or	

string			301–307

integration

	 in	finding	displacement			127–128

	 in	finding	velocity			129–130

	 in	proving	constant	acceleration	

formulae			132

integration	constant			128,	130

Joule,	James			167

joule	(J),	unit	of	energy			155

Kepler,	Johannes			286

Kepler’s	third	law			286

kilogram	(kg),	unit	of	mass			5

kilowatt	(kW),	unit	of	power			175

kinetic	energy

	 due	to	motion			155

	 scalar	quantity			154

	 and	two-dimensional	motion			

168–174

Lami’s	theorem			107

length,	natural			296

levers			218–222

linear	motion			2–21

	 with	constant	acceleration			24

	 general			124–137

	 under	a	variable	force			321–331

lines	of	action,	concurrent			256

mass

	 units			5

	 and	weight			53

mathematical	modelling

	 air	resistance			59–62

	 bungee	jump			319

	 circular	motion			274–276

	 defining	variables			23
	 with	friction			141–152
	 point	mass			42
	 projectile	motion			184–201,	205
	 railway	system			22
	 of	the	real	world			23–24
	 road	accidents			138–141
	 simplifying	assumptions			23,	73,	

274
	 speed	bumps			38
mathematics,	precise	use	of	

language			3
maximum	height,	of	a	projectile			

186–187,	204
mechanical	energy			155–156
	 conservation			158–161,	164–167
metre	(m),	unit	of	distance			5
modelling	see	mathematical	

modelling
modulus	of	elasticity			298
moments
	 conventions	and	units			212–213
	 of	forces			210–234
	 of	a	force	which	acts	at	an	angle			

224–234
momentum
	 defining			154
	 vector	quantity			154
moon,	gravitational	force			53–55
motion
	 in	a	circle	see	circular	motion
	 equation	of			64–68
	 in	a	straight	line	see	linear	motion
	 see also	orbital	motion;	simple	

harmonic	motion

Newton,	Isaac			2,	40,	42,	59,	64
newton	metre	(Nm),	unit	of	

moment			213
newton	(N),	unit	of	force			53–54
Newton’s	first	law			48–50,	65,	274
	 in	circular	motion			266
Newton’s	second	law			52–53,	64–84
	 along	a	line			64–84
	 for	connected	objects			71–84
	 as	a	differential	equation				

322–324
	 parallel	vectors			88
	 in	two	dimensions			114–119
Newton’s	third	law			42–43,	44
normal	reaction			44,	254
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notation
	 circular	motion			267
	 differentiation			267
	 scalar	quantities			86
	 and	units			4–5
	 vectors			86

orbital	motion			266,	286–287

parabola,	trajectory	of	projectile			
184

parametric	equations			202
particle	model
	 centre	of	mass			42,	235–236
	 linear	motion	with	constant	

acceleration			24
	 simplifying	assumptions			23
path	of	a	projectile			202–203
	 general	equation			205
pendulum,	conical			276–278
perpetual	motion	machine			154
planets,	orbital	motion			266,	

286–287
point	mass			42
	 see also	particle	model
position
	 negative			4
	 referred	to	a	fixed	origin			3
	 vector	quantity			3,	86
position	component,	in	projectile	

motion			203
position	vector			86
position–time	graph			6,	9
	 for	non-constant	velocity				

124–125
potential	energy
	 elastic			308–314
	 gravitational			163–167,	170
	 positional			155
power			175–181
	 investigations			182
	 units			175
problems,	tackling			68,	85,	188–198,	

322
projectile	motion
	 components			189,	203
	 equations			185–188,	204–205
	 experiment			207
	 general	case			203–207
	 investigation			208
	 mathematical	modelling				

184–201,	205

	 maximum	height			186–187,	204
	 methods	for	problems			188–198
	 parabolic	trajectory			184
	 path			202–203,	205
	 range			186,	187,	204
	 vector	methods			190–191
pulleys			55–57
	 experiment			223
pyramid,	centre	of	mass			247

railway	system,	mathematical	
modelling			22

range,	of	a	projectile			186,	187,	204
reaction	force			42
	 at	a	hinge			216
resistance	force			40,	50
resolving	see	components
resultant	forces			42,	51–52,	65,	254
	 finding			99
	 zero	at	equilibrium			215
resultant	vector			86–87
rigid	body
	 balance	point			235–237
	 centre	of	mass			235–236
rigid	body	model			211–212
road	accidents,	mathematical	

modelling			138–141

scalar	quantities			2
	 distance			2
	 kinetic	energy			154
	 notation			86
	 speed			6
	 use	in	one-dimensional	problems			

85
scale	drawing,	for	resolving	forces			

101–102
second	(s),	unit	of	time			5
simple	harmonic	motion			321
simplifying	assumptions,	in	

mathematical	modelling			23,	
184–201

S.I.	(Système	International	d’Unités)	
units			5

skid	marks			128–129
sliding,	and	centre	of	mass			253–63
speed
	 angular			267–271
	 average			8
	 safe			282–286
	 scalar	quantity			6
	 units			5

speed	bumps,	mathematical	
modelling			38

speed–time	graphs,	area	under			14
springs
	 elastic			296
	 experiment			297–298
	 open	coiled			296
	 vertical	motion			314–318
stiffness,	of	a	string			298
strings
	 elasticity			295–298
	 inextensible			296

surfaces,	smooth	or	rough			44–45,	141
suvat	formulae			26,	28,	29–38,	67,	

131
	 see also	constant	acceleration	

formulae
symmetry,	axis			238,	246
system,	treating	as	a	whole			72–73

tension			40,	50–51,	296
	 conservative	force			158
thrust			51,	296
time,	units			5
time	of	flight,	of	a	projectile			187,	204
toppling,	and	centre	of	mass				

253–263
tracks,	banked			280–282
trajectory,	parabolic			184
triangle
	 centre	of	mass			246,	247
	 of	forces			104,	106

units
	 in	the	suvat	formulae			28
	 see also	S.I.	(Système	

International	d’Unités)	units
unit	vector			87

variable	force	problems,	calculus	
techniques			322

vector	methods,	for	projectile	
problems			190–191

vector	quantities
	 acceleration			11
	 angular	velocity			267,	271
	 displacement			3
	 forces			41
	 momentum			154
	 position			3,	86
	 velocity			6
	 weight			53
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vectors

	 addition			85–86

	 components			87–88,	92–94

	 definition			2

	 direction			92–94

	 equal			87

	 magnitude			85,	92–94

	 multiplication	by	a	scalar			98

	 notation			86

	 parallel			88

	 resolving			94–95

	 in	two	or	more	dimensions			85

	 see also	column	vector;	unit	

vector

velocity
	 angular			267,	271
	 average			8
	 finding	from	acceleration		129–130
	 and	force			86–87
	 gradient	of	position–time	graph			

7,	9
	 gradient	of	tangent			125
	 instantaneous			9
	 non-constant			124–125
	 rate	at	which	position	changes			6
	 vector	quantity			6
velocity	component
	 in	circular	motion			271–272
	 in	projectile	motion			203

velocity–time	graph			7,	24
	 area	under			14–15,	25,	128–129

Watt,	James			177
watt	(W),	unit	of	power			175
weight,	vector	quantity			53
work
	 defining			155–156,	158
	 done	by	a	force	at	an	angle	to	the	

direction	of	motion			168–174
	 to	stretch	an	elastic	spring				

307–308
work–energy	principle			156–158

Young	modulus			298
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