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MEI Structured Mathematics

Mathematics is not only a beautiful and exciting subject in its own right but also
one that underpins many other branches of learning. It is consequently
fundamental to the success of a modern economy.

MEI Structured Mathematics is designed to increase substantially the number of
people taking the subject post-GCSE, by making it accessible, interesting and
relevant to a wide range of students.

It is a credit accumulation scheme based on 45 hour modules which may be taken
individually or aggregated to give Advanced Subsidiary (AS) and Advanced GCE
(A Level) qualifications in Mathematics, Further Mathematics and related
subjects (like Statistics). The modules may also be used to obtain credit towards
other types of qualification.

The course is examined by OCR (previously the Oxford and Cambridge Schools
Examination Board) with examinations held in January and June each year.

This is one of the series of books written to support the course. Its position
within the whole scheme can be seen in the diagram above.
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Mathematics in Education and Industry is a curriculum development body which

aims to promote the links between Education and Industry in Mathematics at

secondary level, and to produce relevant examination and teaching syllabuses and

support material. Since its foundation in the 1960s, MEI has provided syllabuses for

GCSE (or O Level), Additional Mathematics and A Level.

For more information about MEI Structured Mathematics or other syllabuses and

materials, write to MEI Office, Albion House, Market Place, Westbury, Wiltshire,

BA13 3DE or visit www.mei.org.uk.
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Introduction

The twelve chapters of this book cover the pure mathematics required for the A2

subject criteria. The material is divided into the two units (or modules) for MEI

Structured Mathematics: C3, Methods for Advanced Mathematics and C4,

Applications of Advanced Mathematics. It is the second in a series of pure

mathematics books for AS and A Levels in Mathematics and Further Mathematics.

Since their total content is the same, this book also covers the requirements of all

the other specifications for A2 Mathematics, and it is also suitable for other

courses at this level.

Throughout the series the emphasis is on understanding rather than mere

routine calculations, but the varied exercises do nonetheless provide plenty of

scope for practising basic techniques. Extensive on-line support is available via

the MEI site, www.mei.org.uk.

This book is part of the third edition of this series and is written on the

assumption that you have already studied AS Mathematics. Much of its content

was previously in Pure Mathematics 2 and 3 but it has now been reorganised to

meet the requirements of the new specification being first taught in September

2004. Thanks are due to Val Hanrahan for her work in preparing the new edition

and for her original contributions. Thanks are also due to the various

examination boards who have given permission for their past questions to be

included in the exercises.

Roger Porkess

Series Editor
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Key to symbols in this book

This symbol means that you may want to discuss a point with your

teacher. If you are working on your own there are answers in the back of

the book. It is important, however, that you have a go at answering the

questions before looking up the answers if you are to understand the

mathematics fully.

This is a warning sign. It is used where a common mistake,

misunderstanding or tricky point is being described.

This is the ICT icon. It indicates where you should use a graphic calculator

or a computer.

● This symbol invites you to join in a discussion about proof. The answers to

these questions are given in the back of the book.

● This symbol and a dotted line down the right-hand side of the page

indicates material which is beyond the criteria for the unit but which is

included for completeness.

Harder questions are indicated with stars. Many of these go beyond the

usual examination standard.
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Proof

Mathematics teaches us to solve puzzles. You can claim to be a

mathematician if, and only if, you feel that you will be able to solve a

puzzle that neither you, nor anyone else, has studied before. That is

the test of reasoning.

W W Sawyer

● Figure 1.1 shows a square of side c inside a square of side a + b.

How can you deduce Pythagoras’ theorem (c2 = a2 + b2) by finding two ways of

expressing the area of the central square?

You have now reached the stage where it is no longer always satisfactory to assume

that a fact is true without proving it, since one fact is often used to deduce another.

A proof deals with a general case and there are a number of different techniques

that you can use. You are invited to participate in discussions about proof at points

throughout the rest of the book. They are indicated by the icon ●.

Proof by direct argument

EXAMPLE 1.1 Prove that the product of an even number and an odd number is always even.

SOLUTION

Here are two examples of ‘an even number × an odd number’.

2 × 3 = 6 8 × 5 = 40 
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In both cases it is true that the right-hand side is even but, however many

examples you take, this is still not a proof.

To construct a proof, you need to go back to the definition of an even number; a

number that is divisible by 2.

Let m and n represent any two numbers, so 2m will be even and 2n + 1 will be odd.

2m × (2n + 1) = 2[m(2n + 1)] 

This is a multiple of 2 and so must be even.

Direct proof is often used to prove geometrical theorems, as in Example 1.2.

EXAMPLE 1.2 Prove that the opposite angles of a cyclic quadrilateral are supplementary (add 

up to 180°).

You may assume the result that the angle subtended by an arc at the centre of a

circle is twice the angle subtended by the same arc at the circumference.

SOLUTION

Figure 1.2 shows a circle centre O and a cyclic quadrilateral ABCD. 

∠ABC = x and ∠ADC = y.

Reflex ∠AOC = 2x and obtuse ∠AOC = 2y.

Adding the two angles at O gives 2x + 2y = 360°

⇒ x + y = 180°.

The sum of the four angles of any quadrilateral is 360°, so the sum of each pair of

opposite angles of a cyclic quadrilateral is 180°.

Proof by exhaustion

For some conjectures it is possible to test all possible cases, as in Example 1.3.
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EXAMPLE 1.3 Prove that when a two-digit number is divisible by 3, reversing its digits will also

give a number that is divisible by 3.

SOLUTION

There are only 30 two-digit numbers divisible by 3.

12, 15, 18, 21, …, 93, 96, 99

Reversing each of these give the following.

21, 51, 81, 12, …, 39, 69, 99

These numbers are also divisible by 3, so the conjecture has been proved.

Note

There is a well-known result on divisibility that includes the conjecture above.

A number is divisible by 3 if and only if the sum of its digits is divisible by 3.

Similarly:

A number is divisible by 9 if and only if the sum of its digits is divisible by 9.

Proof by contradiction

In some cases it is possible to deduce a result by showing that the converse is

impossible, as in the following examples.

EXAMPLE 1.4 Prove that the sum of the interior angles x and y for a pair of parallel lines, as

shown in figure 1.3, is 180°.

SOLUTION

Assume that x + y � 180° as in figure 1.4.
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In this case the lines AB and CD, when extended, will meet at a point E, where

∠BED = 180° – x – y.

This means that AB and CD are not parallel.

Similarly, assuming that x + y � 180°, as in figure 1.5, will give angles (180° – x)

and (180° – y) with a sum of (360° – (x + y)).

360° – (x + y) � 180°, so now AP and CQ when extended will meet at a point R,

showing that AP and CQ are not parallel.

Consequently, x + y = 180°.

EXAMPLE 1.5 Prove that 2 is irrational.

SOLUTION

Assume that 2 is rational, so 2  = where m and n have no common factor.

Squaring      ⇒ 2 = 

⇒ 2n2 = m2 ➀

Since 2n2 is a multiple of 2, it is even, so m2 is even.

Since m2 is even, so is m.

Let m = 2p.

In equation ➀ this gives 

2n2 = (2p)2 = 4p2,

so

n2 = 2p2.

Continuing with the same argument as before, 2p2 is a multiple of 2, and

therefore even, so n2 and therefore n are even.

You have now shown that both m and n are even numbers, which contradicts the

assumption that m and n had no common factor.

Consequently, 2 is not rational, so must be irrational.
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Disproof by the use of a counter-example

Sometimes you may come across a conjecture that looks as if it might be true, but

is in fact false. Always start by checking the result for a few particular values, to

try and get a ‘feel’ for what is happening. Next, if you think that it is true, you

could try to prove it using any of the methods discussed earlier. If you seem to be

getting nowhere, then finding just one case, a counter-example, when it fails is

sufficient to disprove it.

EXAMPLE 1.6 Is it true that any number whose square is the sum of two squares is itself the sum

of two squares? 

Either prove it or find a counter-example.

SOLUTION

Pythagorean triples, such as (3, 4, 5), (5, 12, 13) and (8, 15, 17) form the basis of

this conjecture.

Checking a few of these:

5 = 12 + 22

13 = 22 + 32

17 = 12 + 42

So it seems possible that this could be true.

However, looking at multiples of some of the basic triples gives you a 

counter-example. One of these is (9, 12, 15).

152 = 92 + 122

15 can be written as 1 + 14 or 2 + 13 or 3 + 12 or 4 + 11 or 5 + 10 or 6 + 9 or 7 + 8

showing that 15 cannot be written as the sum of two squares.

Historical note

This is one of a number of results proposed by Charles Dodgson who, under the nom-de-plume of Lewis

Carroll, wrote Alice in Wonderland.

EXERCISE 1A In each question a conjecture is given. Decide whether it is true or false. 
If it is true, prove it using a suitable method and name the method. 
If it is false, give a counter-example.

1 (a + b)2 – (a – b)2 = 4ab

2 The triangle with sides of length 2n + 1, n and (n + 1) is right-angled.

3 No square number ends in a 8.

4 The sum of the squares of any two consecutive integers is an odd number.
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5 3 is irrational.

6 If T is a triangular number (given by T = n(n + 1) where n is an integer), then 

(i) 9T + 1 is a triangular number

(ii) 8T + 1 is a square number.

7 (i) A four-digit number formed by writing down two digits and then

repeating them is divisible by 101.

(ii) A four-digit number formed by writing down two digits and then

reversing them is divisible by 11.

8 The value of (n2 + n + 11) is a prime number for all positive integer values of n.

9 (i) The sum of the squares of any five consecutive integers is divisible by 5.

(ii) The sum of the squares of any four consecutive integers is divisible by 4.

10 For any pair of numbers x and y, 2(x2 + y2) is the sum of two squares.

KEY POINTS

The methods of proof are

1 proof by direct argument

2 proof by exhaustion

3 proof by contradiction.

The methods of disproof are

4 disproof by direct argument

5 disproof by the use of a counter-example.

1–
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Natural logarithms and
exponentials

Normally speaking it may be said that the forces of a capitalist

society, if left unchecked, tend to make the rich richer and the poor

poorer and thus increase the gap between them.

Jawaharlal Nehru

The shaded region in figure 2.1 is bounded by the x axis, the lines x = 1 and x = 3, 

and the curve y = . The area of this region may be represented by ∫
3

1
dx.

●? Explain why you cannot apply the rule

∫kxn dx = + c

to this integral.

However, the area in the diagram clearly has a definite value, and so we need to

find ways to express and calculate it.

INVESTIGATION

Estimate, using numerical integration (for example the trapezium rule), the areas

represented by these integrals.

(i) ∫
3

1
dx (ii) ∫

2

1
dx (iii) ∫

6

1
dx

What relationship can you see between your answers?

1–
x

1–
x

1–
x

kxn+1
––––
n + 1

1–
x

1–
x
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A new function

The area under the curve y = between x = 1 and x = a, that is ∫
a

1
dx, depends

on the value a. For every value of a (greater than 1) there is a definite value of the

area. Consequently, the area is a function of a.

To investigate this function you need to give it a name, say L, so that L(a) is the area

from 1 to a and L(x) is the area from 1 to x. Then look at the properties of L(x) to

see if its behaviour is like that of any other function with which you are familiar.

The investigation you have just done should have suggested to you that

∫
3

1
dx + ∫

2

1
dx = ∫

6

1
dx.

This can now be written as

L(3) + L(2) = L(6).

This suggests a possible law, that

L(a) + L(b) = L(ab).

At this stage this is just a conjecture, based on one particular example. To prove it,

you need to take the general case and this is done in the activity below. (At first

reading you may prefer to leave the activity, accepting that the result can be proved.)

ACTIVITY 2.1 Prove that L(a) + L(b) = L(ab), by following the steps below.

● (i) Explain, with the aid of a diagram, why

L(a) + ∫
ab

a
dx = L(ab).

(ii) Now call x = az, so that dx can be replaced by adz. Show that

∫
ab

a
dx = ∫

b

1
dz.

Explain why ∫
b

1
dz = L(b).

(iii) Use the results from 1 and 2 to show that

L(a) + L(b) = L(ab).

What function has this property? Look back to AS Pure Mathematics, Chapter 11,

and you will see that for all logarithms

log(a) + log(b) = log(ab).

Could it be that this is a logarithmic function?

1–
z

1–
z

1–
x

1–
x

1–
x

1–
x

1–
x

1–
x

1–
x

A
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ACTIVITY 2.2 Satisfy yourself that the function has the following properties of logarithms.

(i) L(1) = 0 (ii) L(a) – L(b) = L( ) (iii) L(an) = nL(a)

The base of the logarithm function L(x)

Having accepted that L(x) is indeed a logarithmic function, the remaining

problem is to find the base of the logarithm. By convention this is denoted by the

letter e. A further property of logarithms is that for any base p

logpp = 1 (p � 1).

So to find the base e, you need to find the point such that the area, L(e) under the

graph, is 1. See figure 2.2.

You have already estimated the value of L(2) to be about 0.7 and that of L(3) to

be about 1.1 so clearly the value of e is between 2 and 3.

ACTIVITY 2.3 You will need a calculator with an area-finding facility, or other suitable

technology, to do this. If you do not have this, read on.

Use the fact that ∫
e

1
dx = 1 to find the value of e, knowing that it lies between 2 

and 3, to 2 decimal places.

The value of e is given to 9 decimal places in the key points on page 18. Like π, e

is a number which occurs naturally within mathematics. It is irrational: when

written as a decimal, it never terminates and has no recurring pattern.

The function L(x) is thus the logarithm of x to the base e, loge x. This is often

called the natural logarithm of x, and written as ln x.

Values of x between 0 and 1

So far it has been assumed that the value of x within lnx is greater than 1. As an

example of a value of x between 0 and 1, look at ln .1–
2

1–
x

a–
b
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Since ln ( )= lna – lnb

⇒ ln ( )= ln 1 – ln 2

= –ln2 (since ln 1 = 0).

In the same way, you can show that for any value of x between 0 and 1, the value

of lnx is negative.

When the value of x is very close to zero, the value of lnx is a large negative

number.

ln ( ) = –ln1000 = –6.9

ln ( ) = –ln1000000 = –13.8

So as x → 0, ln x → –∞ (for positive values of x).

The natural logarithm function

The graph of the natural logarithm function (shown in figure 2.3) has the

characteristic shape of all logarithmic functions, and like other such functions it

is only defined for x � 0. The value of lnx increases without limit, but ever more

slowly: it has been described as ‘the slowest way to get to infinity’.

Historical note

Logarithms were discovered independently by John Napier (1550–1617), who lived at Merchiston

Castle in Edinburgh, and Jolst Bürgi (1552–1632) from Switzerland. It is generally believed that Napier

had the idea first, and so he is credited with their discovery. Natural logarithms are also called

Naperian logarithms but there is no basis for this since Napier’s logarithms were definitely not the

same as natural logarithms. Napier was deeply involved in the political and religious events of his day

and mathematics and science were little more than hobbies for him. He was a man of remarkable

ingenuity and imagination and also drew plans for war chariots that look very like modern tanks, and

for submarines.

1–––––––
1000000

1––––
1000
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b
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The exponential function

Making x the subject of y = lnx, using the theory of logarithms developed in 

AS Pure Mathematics, Chapter 11, you obtain x = ey.

Interchanging x and y, which has the effect of reflecting the graph in the line 

y = x, gives the exponential function y = ex.

The graphs of the logarithm function and its inverse are shown in figure 2.4.

You will see in Chapter 3 that reflecting in the line y = x gives an inverse function,
so it follows that ex and lnx are each the inverse of the other.

Notice that e(lnx) = x, using the definition of logarithms, and

ln(ex) = x lne = x.

Although the function ex is called the exponential function, in fact any function

of the form ax is exponential. Figure 2.5 shows several exponential curves.

The exponential function y = ex increases at an ever-increasing rate. This is
described as exponential growth.
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By contrast, the graph of y = e–x, shown in figure 2.6, approaches the x axis ever

more slowly as x increases: this is called exponential decay.

You will meet ex and lnx again later in this book. In Chapter 4 you learn how to

differentiate these functions and in Chapter 5 you learn how to integrate them. In

this secion you focus on practical applications which require you to use the

button on your calculator.

EXAMPLE 2.1 The number, N, of insects in a colony is given by N = 2000e0.1t where t is the

number of days after observations have begun.

(i) Sketch the graph of N against t.

(ii) What is the population of the colony after 20 days?

(iii) How long does it take the colony to reach a population of 10000?

SOLUTION

(i)

(ii) When t = 20, N = 2000e0.1 × 20 = 14778.

The population is 14778 insects.

(iii) When N = 10000, 10000 = 2000e0.1t

5 = e0.1t.

Taking natural logarithms of both sides,

ln5 =ln(e0.1t) = 0.1t

and so t =10 ln5 = 16.09… .

It takes just over 16 days for the population to reach 10 000.
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When t = 0, N = 2000e0 = 2000

Remember
ln(ex) = x.



EXAMPLE 2.2 The radioactive mass, Mg in a lump of material is given by M = 25e–0.0012t where t

is the time in seconds since the first observation.

(i) Sketch the graph of M against t.

(ii) What is the initial size of the mass?

(iii) What is the mass after 1 hour?

(iv) The half-life of a radioactive substance is the time it takes to decay to half of

its mass. What is the half-life of this material?

SOLUTION

(i)

(ii) When t = 0, M = 25e0

= 25.

The initial mass is 25g.

(iii) After 1 hour, t = 3600

M = 25e–0.0012 × 3600.

The mass after 1 hour is 0.33g (to 2 decimal places).

(iv) The initial mass is 25g, so after one half-life,

M = × 25 = 12.5g.

At this point the value of t is given by 

12.5 = 25e–0.0012t.

Dividing both sides by 25 gives 

0.5 = e–0.0012t.

Taking logarithms of both sides:

ln 0.5 = lne–0.0012t

= –0.0012t

⇒ t =

= 577.6 (to 1 decimal place).

The half-life is 577.6 seconds. (This is just under 10 minutes, so the substance

is highly radioactive.)

ln0.5–––––––
–0.0012
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EXAMPLE 2.3 Make p the subject of ln(p) – ln(1 – p) = t.

SOLUTION

ln( ) = t

Writing both sides as powers of e gives

eln( ) = et

⇒ = et

p = et(1 – p)

p = et – pet

p + pet = et

p(1 + et) = et

p = .

EXERCISE 2A 1 Make x the subject of lnx – lnx0 = kt.

2 Make t the subject of s = s0e–kt.

3 Make p the subject of lnp = –0.02t.

4 Make x the subject of y – 5 = (y0 – 5)ex.

5 A colony of humans settles on a previously uninhabited planet. 

After t years, their population, P, is given by

P = 100e0.05t.

(i) Sketch the graph of P against t.

(ii) How many settlers land on the planet initially?

(iii) What is the population after 50 years?

(iv) How long does it take the population to reach 1 million?

6 Ela sits on a swing. Her father pulls it back and then releases it. 

The swing returns to its maximum backwards displacement once every 

5 seconds, but the maximum displacement, i°, becomes progressively smaller

because of friction. At time t seconds, i is given by

i = 25e–0.03t (t = 0, 5, 10, 15, …).

(i) Plot the values of i for 0 � t � 30 on graph paper.

(ii) To what angle did Ela’s father pull the swing?

(iii) What is the value of i after 1 minute?

(iv) After how many swings is the angle i less than 1°?

et
–––––
1 + et

p
––––
1 – p

p
––––
1 – p

p
––––
1 – p
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7 Alexander lives 800 metres from school. One morning he sets out at 8.00 am

and t minutes later the distance sm, which he has walked is given by 

s = 800 (l – e–0.lt).

(i) Sketch the graph of s against t.

(ii) How far has Alexander walked by 8.15 am?

(iii) What time is it when Alexander is half-way to school?

(iv) When does Alexander get to school?

8 A parachutist jumps out of an aircraft and some time later opens the parachute. 

His speed at time t seconds from when the parachute opens is v ms–1.

It is given by

v = 8 + 22 e–0.07t.

(i) Sketch the graph of v against t.

(ii) State the speed of the parachutist when the parachute opens, and the final

speed that he would attain if he jumped from a very great height.

(iii) Find the value of v as the parachutist lands, 60 seconds later.

(iv) Find the value of t when the parachutist is travelling at 20 ms–1.

9 The height h metres of a species of pine tree t years after planting is modelled by

the equation

h = 20 – 19 × 0.9t.

(i) What is the height of the trees when they are planted?

(ii) Calculate the height of the trees after 2 years, and the time taken for the

height to reach 10 metres.

The relationship between the market value £y of the timber from the tree and

the height h metres of the tree is modelled by the equation

y = ahb,

where a and b are

constants. The diagram

shows the graph of lny

plotted against lnh.

(iii) Use the graph to

calculate the values of 

a and b.

(iv) Calculate how long it

takes to grow trees

worth £100.
[MEI]
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10 A new car is tested for the amount of petrol it uses.

Suppose the rate of consumption at v miles per hour (mph) is p miles per

gallon.

At a steady 49 mph, its rate of consumption is 45 miles per gallon.

At a steady 81 mph, its rate of consumption is 35 miles per gallon.

One model for the petrol consumption is

p = abv,

where a and b are positive constants.

(i) Show that plotting lnp against v gives a straight line graph if this model is

appropriate.

(ii) The diagram shows a straight line drawn through the points (49, ln45)

and (81, ln35).

Use the graph to find the petrol consumption of the car at 25mph and at 

64mph according to this model.

An alternative model for the petrol consumption is

p = cv–d,

where c and d are positive constants.

(iii) Show that, using this model,

d = .

Use the laws of logarithms to simplify this expression, and hence show
that d = .
Show also that c = 315.

Find the petrol consumption of the car at 25 mph and at 64 mph
according to this model.

(iv) Further testing of the car yields the results v = 25, p = 55 and v = 64, 
p = 40.
Comment on the suitability of the two models.

[MEI]
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KEY POINTS

1 ∫ dx = loge|x | + c.

2 logex is called the natural logarithm of x and denoted by ln x.

3 e = 2.7182818284 … is the base of natural logarithms.

4 ex and ln x are inverse functions: eln x = x; ln(ex) = x.

1–
x



Functions

Still glides the stream and shall forever glide;

The form remains, the function never dies.

William Wordsworth

Why fly to Geneva in January?

Several people arriving at Geneva airport from London were asked the main

purpose of their visit. Their answers were recorded.

David

Joanne Skiing

Jonathan Returning home

Louise
To study abroad

Paul
Business

Shamaila

Karen

This is an example of a mapping.

The language of functions

A mapping is any rule which associates two sets of items. In this example, each of

the names on the left is an object, or input, and each of the reasons on the right is

an image, or output.

For a mapping to make sense or to have any practical application, the inputs and

outputs must each form a natural collection or set. The set of possible inputs (in

this case, all of the people who flew to Geneva from London in January) is called

the domain of the mapping. The set of possible outputs (in this case, the set of all

possible reasons for flying to Geneva) is called the co-domain of the mapping.

The seven people questioned in this example gave a set of four reasons, or

outputs. These form the range of the mapping for this particular set of inputs.

The range of any mapping forms part or all of its co-domain.
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Notice that Jonathan, Louise and Karen are all visiting Geneva on business: each

person gave only one reason for the trip, but the same reason was given by several

people. This mapping is said to be many-to-one. A mapping can also be one-to-one,

one-to-many or many-to-many. The relationship between the people and their UK

passport numbers will be one-to-one. The relationship between the people and

their items of luggage is likely to be one-to-many, and that between the people and

the countries they have visited in the last 10 years will be many-to-many.

Mappings

In mathematics, many (but not all) mappings can be expressed using algebra.

Here are some examples of mathematical mappings.

(a) Domain: integers Co-domain: real numbers
Objects Images

–1 3

0 5

1 7 

2 9

3 11

General rule: x 2x + 5

(b) Domain: integers Co-domain: real numbers
Objects Images

1.9

2 2.1

2.33

2.52

3 2.99

r

General rule: Rounded whole numbers Unrounded numbers

(c) Domain: real numbers Co-domain: real numbers, 
y :  –1 � y � 1

Objects Images

0

45 0

90 0.707

135 1

180

General rule: x° sin x°
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(d) Domain: quadratic Co-domain: real numbers
equations with real roots
Objects Images

x2 – 4x + 3 = 0 0
x2 – x = 0 1
x2 – 3x + 2 = 0 2

3

General rule: ax2 + bx + c = 0 x =

x =

●? For each of the examples above:

(i) decide whether the mapping is one-to-one, many-to-many, one-to-many or

many-to-one

(ii) take a different set of inputs and identify the corresponding range.

Functions

Mappings which are one-to-one or many-to-one are of particular importance,

since in these cases there is only one possible image for any object. Mappings of

these types are called functions. For example, x → x2 and x → cos x° are both

functions, because in each case for any value of x there is only one possible

answer. The mapping of rounded whole numbers on to unrounded numbers is

not a function, since, for example, the rounded number 5 could be the image of

any unrounded number between 4.5 and 5.5.

There are several different but equivalent ways of writing a function. For

example, the function which maps x on to x2 can be written in any of the

following ways.

● y = x2
● f(x) = x2

● f:x → x2

It is often helpful to represent a function graphically, as in the following example,

which also illustrates the importance of knowing the domain.

EXAMPLE 3.1 Sketch the graph of y = 3x + 2 when the domain of x is

(i) x ∈ �

(ii) x ∈ �+ (i.e. positive real numbers)

(iii) x ∈ �.

–b + b2 – 4ac––––––––––––
2a

–b – b2 – 4ac––––––––––––
2a
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SOLUTION

(i) When the domain is �, all values of y are possible. The range is therefore �, also.

(ii) When x is restricted to positive values, all the values of y are greater than 2, so

the range is y � 2.

(iii) In this case the range is the set of points {2, 5, 8, …}. These are clearly all of

the form 3x + 2 where x is a natural number (0, 1, 2, …). This set can be

written neatly as {3x + 2 : x ∈ �}.

When you draw the graph of a mapping, the x co-ordinate of each point is an

input value, the y co-ordinate is the corresponding output value. The table below

shows this for the mapping x → x2, or y = x2, and figure 3.2 shows the resulting

points on a graph.

Input (x) Output (y) Point plotted

–2 4 (–2, 4)

–1 1 (–1, 1) 

0 0 (0, 0)

1 1 (1, 1)

2 4 (2, 4)

If the mapping is a function, there is one and only one value of y for every value

of x in the domain. Consequently the graph of a function is a simple curve or line

going from left to right, with no doubling back.

Figure 3.3 illustrates some different types of mapping. The graphs in (a) and (b)

illustrate functions, those in (c) and (d) do not.
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EXERCISE 3A 1 Describe each of the following mappings as either one-to-one, many-to-one, 
one-to-many or many-to-many, and say whether it represents a function. 
In each case state whether the co-domain and range are equal.
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(a) One-to-one (b) Many-to-one

(c) One-to-many (d) Many-to-many

Figure 3.3

(i)

(iii)

(v)

(vii)

(ii)

(iv)

(vi)

(viii)

domain: –5 � x � 5
co-domain: –5 � x � 5



2 For each of the following mappings:

(a) write down a few examples of inputs and corresponding outputs

(b) state the type of mapping (one-to-one, many-to-one, etc.)

(c) suggest suitable domains and co-domains.

(i) Words ⎯→ number of letters they contain

(ii) Side of a square in cm ⎯→ its perimeter in cm

(iii) Natural numbers ⎯→ the number of factors (including 1 and the

number itself)

(iv) x ⎯→ 2x – 5

(v) x ⎯→ x

(vi) The volume of a sphere in cm3 ⎯→ its radius in cm

(vii) The volume of a cylinder in cm3 ⎯→ its height in cm

(viii) The length of a side of a regular hexagon in cm ⎯→ its area in cm2

(ix) x ⎯→ x2

3 (i) A function is defined by f(x) = 2x – 5. Write down the values of

(a) f(0) (b) f(7) (c) f(–3).

(ii) A function is defined by g:(polygons) ⎯→ (number of sides). What are

(a) g(triangle) (b) g(pentagon) (c) g(decagon)?

(iii) The function t maps Celsius temperatures on to Fahrenheit temperatures. 

It is defined by t: C ⎯→ + 32. Find

(a) t(0) (b) t(28) (c) t(–10) (d) the value of C when t(C) = C.

4 Find the range of each of the following functions. 

(You may find it helpful to draw the graph first.)

(i) f(x) = 2 – 3x x � 0

(ii) f(i) = sin i 0° � i � 180°

(iii) y = x2 + 2 x ∈ {0, 1, 2, 3, 4}

(iv) y = tan i 0° � i � 90°

(v) f : x ⎯→ 3x – 5 x ∈ �

(vi) f : x ⎯→ 2x x ∈ {–1, 0, 1, 2}

(vii) y = cos x – � x �

(viii) f : x ⎯→ x3 – 4 x ∈ �

(ix) f(x) = x ∈ �

(x) f(x) = x – 3 + 3 x � 3

5 The mapping f is defined by f(x) = x2 0 � x � 3

f(x) = 3x 3 � x � 10.

The mapping g is defined by g(x) = x2 0 � x � 2

g(x) = 3x 2 � x � 10.

Explain why f is a function and g is not.

1–––––
1 + x2
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Using transformations to sketch the curves of functions

In AS Pure Mathematics you used translations and one-way stretches to relate the

equation of a function to that of a standard function of the same form. This then

allowed you to obtain a sketch of the curve of your function.

It is possible to combine translations and stretches, but care must be taken over

the order in which these are applied, as shown in Activity 3.1.

ACTIVITY 3.1 Copy the triangle in figure 3.4 and, for each of

parts (i) to (v), perform the transformations in the

order given. 

In each case comment if the end results are the

same or different.

(i) (a) Translate the triangle through ( ) and then stretch the image with a scale 

factor of 2 parallel to the x axis.

(b) Stretch the triangle with a scale factor of 2 parallel to the x axis and then

translate the image through ( ).

(ii) (a) Translate the triangle through ( ) and then stretch the image with a scale 

factor of 2 parallel to the y axis.

(b) Stretch the triangle with a scale factor of 2 parallel to the y axis and then 

translate the image through ( ).

(iii) (a) Translate the triangle through ( ) and then stretch the image with a scale 

factor of 2 parallel to the x axis.

(b) Stretch the triangle with a scale factor of 2 parallel to the x axis and then 

translate the image through ( ).

(iv) (a) Translate the triangle through ( ) and then stretch the image with a scale

factor of 2 parallel to the y axis.

(b) Stretch the triangle with a scale factor of 2 parallel to the y axis and then 

translate the image through ( ).

(v) (a) Stretch the triangle with a scale factor of 2 parallel to the x axis and then

stretch the image with a  scale factor of 3 parallel to the y axis.

(b) Stretch the triangle with a scale factor of 3 parallel to the y axis and then

stretch the image with a scale factor of 2 parallel to the x axis.
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Activity 3.1 should have emphasised to you the importance of performing the

transformations in the correct order. It is a good idea to check your results using

a graphic calculator whenever possible.

EXAMPLE 3.2 (i) Find the values of a, p and q when y = 2x2 + 4x – 1 is written in the form

y = a[(x + p)2 + q].

(ii) Show how the graph can be obtained from the graph of y = x2 by successive

transformations, and list the transformations in the order in which they are

applied.

SOLUTION

Expanding the equivalent expression

a[(x + p)2 + q] = a[x2 + 2px + p2 + q]

= ax2 + 2apx + a(p2 + q).

Comparing the coefficients in y = 2x2 + 4x – 1 with those above gives

– coefficient of x2: a = 2

– coefficient of x: 2ap = 4, which gives p = 1

– constant term: a(p2 + q) = –1, which gives q = –1 .

The equation of the curve can be written as y = 2[(x + 1)2 – 1 ].

To sketch the graph, start with the curve y = x2.

The curve y = x2 becomes y = (x + 1)2 – 1 by applying the translation ( –1
–1 ).

The curve y = (x + 1)2 – 1 becomes y = 2[(x + 1)2 – 1 ] by applying a stretch of

scale factor 2 parallel to the y axis.
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parallel to the y axis



Note

Notice in figure 3.5 how the stretch doubles the y co-ordinate of every point on the

curve, including the turning point.

Points on the x axis have a zero y co-ordinate, so are unchanged.

● How would you prove that the equation (x + a)2 + b = 0 has no real roots if b � 0?

EXAMPLE 3.3 Starting with the curve y = cosx, show how transformations can be used to sketch

the curves

(i) y = 2cos3x (ii) y = 3 + cos (iii) y = cos(2x – 60°).

SOLUTION

(i) The curve with equation y = cos3x is obtained from the curve with equation
y = cosx by a stretch of scale factor parallel to the x axis. There will
therefore be one complete oscillation of the curve in 120° (instead of 360°).

The curve of y = 2cos3x is obtained from that of y = cos3x by a stretch of
scale factor 2 parallel to the y axis. The curve therefore oscillates between
y = 2 and y = –2 (instead of y = 1 and y = –1). This is shown in figure 3.6.

(ii) The curve of y = cos is obtained from that of y = cos x by a stretch of scale

factor 2 in the x direction. There will therefore be one complete oscillation of

the curve in 720° (instead of 360°).

The curve of y = 3+ cos is obtained from that of y = cos by a translation ( ).

The curve therefore oscillates between y = 4 and y = 2 (see figure 3.7).
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(iii) The curve of y = cos (x – 60°) is obtained from that of y = cos x by a

translation of ( ).

The curve of y = cos(2x – 60°) is obtained from that of y = cos(x – 60°) by a

stretch of scale factor parallel to the x axis (see figure 3.8).

EXERCISE 3B 1 Starting with the graph of y = x2, state the transformations which can be used
to sketch each of the following curves.

Specify the transformations in the order in which they are used and, where

there is more than one stage in the sketching of the curve, state each stage.

State the equation of the line of symmetry. 

(i) y = x2 – 2 (ii) y = 3x2

(iii) y = (x – 2)2 (iv) y = 3(x – 2)2

(v) y = (3x – 2)2 (vi) y = x2 – 4x

(vii) y = 2x2 + 4x – 1 (viii) y = 3x2 – 6x – 2
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2 The diagram shows a sketch of the graph of y = f(x), where f(x) = x2 + 4x.

For each of the following 

(i) y = f(x) + 7

(ii) y = f(x – 2)

(iii) y = 2f(x) + 3

(iv) y = f(2x) + 3

(v) y = 3f(x – 2)

(a) explain how the graph of y = f(x) could be used to sketch the graph

(b) draw a separate sketch of the graph.

3 The diagram shows a sketch of the graph of y = f(x), where f(x) = 6x – x2.

Use this graph to sketch

(i) y = f(x – 2)

(ii) y = f(x)

(iii) y = 2f(x – 1)

indicating clearly where these graphs

cross the x axis and the co-ordinates of

the highest point.

4 The diagram shows the graph of y = f(x).

Sketch the graph of each of these functions.

(i) y = f(2x) (ii) y = f(x + 2)

(iii) y = 2f(x – 1) (iv) y = 3f(x)

(v) y = f( – 1) (vi) y = f(3x + 1)
x–
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5 Starting with the curve y = cosx, show how transformations can be used to

sketch these curves.

(i) y = 3 cos 2x

(ii) y = cos – 1

(iii) y = cos(2x + 30°)

6 (i) Each diagram shows the graph of y = sin x (where x is measured in

degrees) together with the graph of another sine function. These are

labelled y = f(x), y = g(x) and y = h(x) respectively.

(a) Write down expressions for f(x), g(x) and h(x).

(b) Write down equations for the graphs which result from the following

transformations of the graph of y = sin x.

(A) A translation of 2 units in the positive y direction

(B) A translation of 90 units in the positive x direction

(c) Write down a value for a such that sin(x + a) = –sin x.

(ii) The function F(x) is defined by

F(x) = b – c sin x,      0° � x � 360°,

where b and c are constants, with c � 0.

(a) Find the range of F(x) in terms of b and c.

(b) Show that the graph of y = F(x) crosses the x axis if –c � b � c.

Given that b = c, find the co-ordinates of the points where the graph

crosses the x axis, and sketch the graph.

[MEI]

Reflections

ACTIVITY 3.2 Sketch the curves of y = f(x) and y = –f(x) for each of the following functions.

(i) x2 (ii) sinx (iii) x3 – 6x2 + 11x – 6

Describe the relationship between the graphs of y = f(x) and y = –f(x) in these

cases. Would you be confident to generalise this result?
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Figure 3.9 shows the graphs of y = cosx and y = –cosx for 0° � x � 180°. For any

particular value of x, the y co-ordinates of the two graphs have the same magnitude

but opposite signs. The graphs are reflections of each other in the x axis.

In general, starting with the graph of y = f(x) and replacing f(x) by –f(x) gives a

reflection in the x axis. This is the equivalent of replacing y by –y in the equation. 

In the next activity you investigate the effect of replacing x by –x.

ACTIVITY 3.3 Sketch the curves of y = f(x) and y = f(–x) for each of the following functions.

(i) x2 (ii) sinx (iii) x3 – 6x2 + 11x – 6

Describe the relationship between the graphs of y = f(x) and y = f(–x) in these

cases. Would you be confident to generalise this result?

Figure 3.10 shows the graph of y = 2x + 1, a straight line with gradient 2 passing

through (0, 1). The graph of y = 2(–x) + 1 (which can be written as y = –2x + 1)

is a straight line with gradient –2, and as you can see it is a reflection of the line

y = 2x + 1 in the y axis.

In general, starting with the graph of y = f(x) and replacing x by (–x) gives a

reflection in the y axis.
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EXAMPLE 3.4 Figure 3.11 shows the graph of y = 2x. The curve passes through the point (0, 1).

Sketch, on separate diagrams, the graphs of

(i) y = 2–x (ii) y = –(2x).

SOLUTION

(i) Replacing x by –x reflects the (ii) The equation y = –2x can be written

curve in the y axis (see figure 3.12). as –y = 2x. Replacing y by –y

reflects the curve in the x axis

(see figure 3.13).

The general quadratic curve

You are now able to relate any quadratic curve to that of y = x2.

EXAMPLE 3.5 (i) Write the equation y = 1 + 4x – x2 in the form y = a[(x + p)2 + q].

(ii) Show how the graph of y = 1 + 4x – x2 can be obtained from the graph of

y = x2 by a succession of transformations, and list the transformations in the

order in which they are applied.

(iii) Sketch the graph.

SOLUTION

(i) If 1 + 4x – x2 / a[(x + p)2 + q]

then –x2 + 4x + 1 / ax2 + 2apx + a(p2 + q)
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Comparing coefficients of x2: a = –1.

Comparing coefficients of x : 2ap = 4, giving p = –2.

Comparing constant terms: a(p2 + q) = 1, giving q = –5.

The equation is y = –[(x – 2)2 – 5].

(ii) The curve y = x2 becomes the curve y = (x – 2)2 – 5 by applying the

translation ( ) as shown in figure 3.14.

The curve y = (x – 2)2 – 5 becomes the curve y = –[(x – 2)2 – 5] by

applying a reflection in the x axis (see figure 3.15).
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EXERCISE 3C 1 Starting with the graph of y = x2, state the transformations which can be used 

to sketch the following curves. 

Specify the transformations in the order in which they are used and, where 

there is more than one stage in the sketching of the curve, state each stage.

State the equation of the line of symmetry.

(i) y = –2x2 (ii) y = 4 – x2 (iii) y = 2x – 1 – x2

2 For each of the following curves

(a) sketch the curve

(b) identify the curve as being the same as one of the following.

y = ±sinx, y = ±cosx,     or y = ±tanx

(i) y = cos(–x) (ii) y = tan(–x)

(iii) y = sin(180° – x) (iv) y = tan(180° – x)

(v) y = sin(–x)

3 (i) Write the expression x2 – 6x + 14 in the form (x – a)2 + b where a and b

are numbers which you are to find.

(ii) Sketch the curves y = x2 and y = x2 – 6x + 14 and state the transformation

which maps y = x2 on to y = x2 – 6x + 14.

(iii) The curve y = x2 – 6x + 14 is reflected in the x axis.

Write down the equation of the image.

4 (i) Sketch the curve with equation y = x2.

(ii) Given that f(x) = (x – 2)2 + 1 sketch the curves with the following

equations on separate diagrams. Label each curve and give the co-ordinates

of its vertex and the equation of its axis of symmetry.

(a) y = f(x) (b) y = –f(x) (c) y = f(x + 1) + 2

[MEI]

5 Write the expression 2x2 + 4x + 5 in the form a(x + b)2 + c where a, b and c are

numbers to be found.

Use your answer to write down the co-ordinates of the minimum point on the

graph of y = 2x2 + 4x + 5.
[O & C]

6 The circle with equation x2 + y2 = 1 is stretched with scale factor 3 parallel to

the x axis and with scale factor 2 parallel to the y axis. Sketch both curves on the

same graph, and write down the equation of the new curve. (It is an ellipse.)

7 In each of the diagrams opposite, the curve drawn with a dashed line is

obtained as a mapping of the curve y = f(x) using a single transformation. It

could be a translation, a one-way stretch or a reflection. 

In each case, write down the equation of the image (dashed) in terms of f(x).

Fu
n

ct
io

n
s

34

C3
3



8 The sketch shows the curve
with equation y = 2 – 6x – 3x2

and its axis of symmetry 
x = –1.

(i) Give the co-ordinates of the vertex and the value of y when x = 0.
(ii) Find the values of the constants a, b such that 2 – 6x – 3x2 = a(x + 1)2 + b.
(iii) Copy the sketch and draw in the reflection of the curve with equation  

y = 2 – 6x – 3x2 in the line y = 2.
(iv) Write down the equation of the new curve and give the co-ordinates

of its vertex. [MEI]
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9 The diagram shows the graph of y = f(x). The curve passes through the origin

and has a maximum point at (1, 1).

Sketch, on separate diagrams, the graphs of

(i) y = f(x) + 2 (ii) y = f(x + 2) (iii) y = f(2x)

giving the co-ordinates of the maximum point in each case.
[UCLES]

Composite functions

It is possible to combine functions in several different ways, and you have already

met some of these. For example, if f(x) = x2 and g(x) = 2x, then you could write

f(x) + g(x) = x2 + 2x.

In this example, two functions are added.

Similarly if f(x) = x and g(x) = sinx, then

f(x).g(x) = x sinx.

In this example, two functions are multiplied.

Sometimes you need to apply one function and then apply another to the answer.

You are then creating a composite function or a function of a function.

EXAMPLE 3.6 A new mother is bathing her baby for the first time. She takes the temperature of

the bath water with a thermometer which reads in Celsius, but then has to

convert the temperature to degrees Fahrenheit to apply the rule that her own

mother taught her:

At one o five

He’ll cook alive

But ninety four

is rather raw.

Write down the two functions that are involved, and apply them to readings of

(i) 30°C (ii) 38°C (iii) 45°C.
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SOLUTION

The first function converts the Celsius temperature C into a Fahrenheit

temperature, F.

F = + 32

The second function maps Fahrenheit temperatures on to the state of the bath.

F � 94 Too cold

94 � F � 105 All right

F � 105 Too hot

This gives

(i) 30°C ⎯→ 86°F ⎯→ too cold

(ii) 38°C ⎯→ 100.4°F ⎯→ all right

(iii) 45°C ⎯→ 113°C ⎯→ too hot.

In this case the composite function would be (to the nearest degree)

C � 34°C too cold

35°C � C � 40°C all right

C � 41°C too hot.

In algebraic terms, a composite function is constructed as

Input x ⎯→f Output f(x)

Input f(x) ⎯→
g

Output g[f(x)] (or gf(x)).

Thus the composite function gf(x) should be performed from right to left: start

with x then apply f and then g.

Notation

To indicate that f is being applied twice in succession, you could write ff(x) but

you would usually use f2(x) instead. Similarly g3(x) means three applications of g.

In order to apply a function repeatedly its domain and co-domain must be the same.

Order of functions

If f is the rule ‘square the input value’ and g is the rule ‘add 1’, then

x ⎯→f x2 ⎯→
g

x2 + 1.
square add 1

So gf(x) = x2 + 1.
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Notice that gf(x) is not the same as fg(x), since for fg(x) you must apply g first. In

the example above, this would give:

x ⎯→
g

(x + 1) ⎯→f (x + 1)2

add 1 square

and so fg(x) = (x + 1)2.

Clearly this is not the same result.

Figure 3.16 illustrates the relationship between the domains and co-domains of

the functions f and g, and the co-domain of the composite function gf.

EXAMPLE 3.7 Given that f(x) = 2x, g(x) = x2, and h(x) = , find the following.

(i) fg(x) (ii) gf(x) (iii) gh(x)

(iv) f 2(x) (v) fgh(x) (vi) hfg(x)

SOLUTION

(i) fg(x) = f[g(x)] (ii) gf(x) = g[f(x)]

= f(x2) = g(2x)

= 2x2 = (2x)2

= 4x2

(iii) gh(x) = g[h(x)] (iv) f 2(x) = f[f(x)]

= g( ) = f(2x)

=
= 2(2x)

= 4x

(v) fgh(x) = f[gh(x)] (vi) hfg(x) = h[fg(x)]

= f ( ) using (iii) = h(2x2) using (i)

= =
1–––

2x2

2––
x2

2––
x2

1––
x2

1–
x

1–
x
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Inverse functions

Look at the mapping x → x + 2 with domain and co-domain the set of integers.

Domain Co-domain
… …
… …
–1 –1

0 0
1 1
2 2

… 3
… 4

x x + 2

The mapping is clearly a function, since for every input there is one and only one

output, the number that is two greater than that input.

This mapping can also be seen in reverse. In that case, each number maps on to

the number two less than itself: x → x – 2. The reverse mapping is also a function

because for any input there is one and only one output. The reverse mapping is

called the inverse function, f–1.

Function: f : x → x + 2 x ∈ �.

Inverse function: f–1: x → x – 2 x ∈ �.

For a mapping to be a function which also has an inverse function, every object

in the domain must have one and only one image in the co-domain, and vice

versa. This can only be the case if the mapping is one-to-one.

So the condition for a function f to have an inverse function is that, over the given

domain and co-domain, f represents a one-to-one mapping. This is a common

situation, and many inverse functions are self-evident as in the following

examples, for all of which the domain and co-domain are the real numbers.

f : x → x – 1; f–1 : x → x + 1

g : x → 2x; g–1 : x → x

h: x → x3; h–1: x →
3

x

●? Some of the following mappings are functions which have inverse functions, and

others are not.

(a) Decide which mappings fall into each category, and for those which 

do not have inverse functions, explain why.

(b) For those which have inverse functions, how can the functions and 

their inverses be written down algebraically?

1–
2

In
verse fu

n
ctio

n
s

39

C3
3



(i) Temperature measured in Celsius → temperature measured in 

Fahrenheit.

(ii) Marks in an examination → grade awarded.

(iii) Distance measured in light years → distance measured in metres.

(iv) Number of stops travelled on the London Underground → fare.

You can decide whether an algebraic mapping is a function, and whether it has an

inverse function, by looking at its graph. The curve or line representing a one-to-

one mapping does not double back on itself, has no turning points and covers the

full domain and co-domain. Figure 3.17 illustrates the functions f, g and h given

on the previous page.

Now look at  f(x) = x2 for x ∈ � (figure 3.18). You can see that there are two

distinct input values giving the same output: for example f(2) = f(–2) = 4. When

you want to reverse the effect of the function, you have a mapping which for a

single input of 4 gives two outputs, –2 and +2. Such a mapping is not a function.

If the domain of f(x) = x2 is restricted to �+ (the set of positive real numbers),

you have the situation shown in figure 3.19. This shows that the function which is

now defined is one-to-one. The inverse function is given by f–1(x) = x, since the

sign means ‘the positive square root of ’.
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It is often helpful to restrict the domain of a function so that its inverse is also a

function. When you use the inv sin (i.e. sin–1 or arcsin) key on your calculator the

answer is restricted to the range –90° to 90°, and is described as the principal

value. Although there are infinitely many roots of the equation sinx = 0.5 

(…, –330°, –210°, 30°, 150°, …), only one of these, 30°, lies in the restricted range

and this is the value your calculator will give you.

The graph of a function and its inverse

ACTIVITY 3.4 For each of the following functions, work out the inverse function, and draw the

graphs of both the original and the inverse on the same axes, using the same scale

on both axes.

(i) f(x) = x2 x ∈ �+ (ii) f(x) = 2x

(iii) f(x) = x + 2 (iv) f(x) = x3 + 2

Look at your graphs and see if there is any pattern emerging.

Try out a few more functions of your own to check your ideas.

Make a conjecture about the relationship between the graph of a function and

its inverse.

You have probably realised by now that the graph of the inverse function is the

same shape as that of the function, but reflected in the line y = x. To see why this

is so, think of a function f(x) mapping a on to b; (a, b) is clearly a point on the

graph of f(x). The inverse function f–1(x), maps b on to a and so (b, a) is a point

on the graph of f–1(x).

The point (b, a) is the reflection of the point (a, b) in the line y = x. This is shown

for a number of points in figure 3.20.

This result can be used to obtain a sketch of the inverse function without having

to find its equation, provided that the sketch of the original function uses the

same scale on both axes.
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Finding the algebraic form of the inverse function

To find the algebraic form of the inverse of a function f(x), you should start by

changing notation and writing it in the form y = … .

Since the graph of the inverse function is the reflection of the graph of the

original function in the line y = x, it follows that you may find its equation by

interchanging y and x in the equation of the original function. You will then need

to make y the subject of your new equation. This procedure is illustrated in

Example 3.8.

EXAMPLE 3.8 Find f–1(x) when f(x) = 2x + 1.

SOLUTION

The function f(x) is given by y = 2x + 1

Interchanging x and y gives x = 2y + 1

Rearranging to make y the subject: y =

So f–1(x) = .

Sometimes the domain of the function f will not include the whole of �. When

any real numbers are excluded from the domain of f, it follows that they will be

excluded from the co-domain of f–1, and vice versa.

x – 1––––
2

x – 1––––
2
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EXAMPLE 3.9 Find f–1(x) when f(x) = 2x – 3 and the domain of f is x � 4.

SOLUTION

Domain Co-domain
Function: y = 2x – 3 x � 4 y � 5

Inverse function: x = 2y – 3 x � 5 y � 4

Rearranging the inverse function to make y the subject,

y = .

The full definition of the inverse function is therefore

f–1(x) = for x � 5.

You can see in figure 3.22 that the inverse function is the reflection of a restricted

part of the line y = 2x – 3.

EXAMPLE 3.10 (i) Find f–1(x) when f(x) = x2 + 2, x � 0.

(ii) Find f (7) and f–1 f (7). What do you notice?

SOLUTION

(i) Domain Co-domain
Function:  y = x2 + 2 x � 0 y � 2

Inverse function: x = y2 + 2 x � 2 y � 0

Rearranging the inverse function to make y its subject:

y2 = x – 2.

This gives y = ± x – 2, but since you know the co-domain of the inverse

function to be y � 0 you can write:

x + 3––––
2

x + 3––––
2
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y = + x – 2        or just y = x – 2.

The full definition of the inverse function is therefore:

f–1(x) = x – 2 for x � 2.

The function and its inverse function are shown in figure 3.23.

(ii) f(7) = 72 + 2 = 51

f–1 f(7) = f –1 (51) = 51 – 2 = 7

Applying the function followed by its inverse brings you back to the original

input value.

Note

Part (ii) of Example 3.10 illustrates an important general result. For any function f(x)

with an inverse f –1(x), f –1f(x) = x. Similarly ff –1(x) = x. The effects of a function and its

inverse can be thought of as cancelling each other out.

EXAMPLE 3.11 Find the inverse of the function f(x) = 10x, and sketch f(x) and f–1(x) on the

same diagram.

SOLUTION

The function f(x) is given by y = 10x.

Interchanging x and y, the inverse function is given by 

x = 10y.

This can be written as log10 x = y, so the inverse function is 

f –1(x) = log10 x.

The function and its inverse function are shown in figure 3.24. 
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●? Many calculators have a function and its inverse on the same key, for example log

and 10x, and x2, sin and arcsin, ln and ex.

(i) With some calculators you can enter a number, apply x2 and then , and

come out with a slightly different number. How is this possible?

(ii) Explain what happens if you find sin199° and then the arcsin of the answer.

Inverse trigonometrical functions

The functions sine, cosine and tangent are all many-to-one mappings, so their

inverse mappings are one-to-many. Thus the problem ‘find sin30°’ has only one

solution, 0.5, whilst ‘find i such that sini = 0.5’ has infinitely many solutions.

You can see this from the graph of y = sini (figure 3.25).

In order to define inverse functions for sine, cosine and tangent, a restriction has

to be placed on the domain of each so that it becomes a one-to-one mapping.

The restriction of the domain determines the principal values for that

trigonometrical function. The restricted domains are not all the same. They are

listed below.
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Function Domain (degrees) Domain (radians)

y = sini –90° � i � 90° – � i �

y = cosi 0° � i � 180° 0 � i � π

y = tani –90° � i � 90° – � i �

Figure 3.26 shows the graph of each trigonometrical function over its restricted
domain, and that of its corresponding inverse function. The inverse functions have
been drawn using the reflection property and, since this requires that the same
scale is used on both axes, the angle must be plotted in radians rather than degrees.

In Chapter 8 you will meet the reciprocal trigonometrical functions, 

y = cosecθ = , y = secθ = and y = cotθ = ,

each have the same restricted domain as their parent function.

● How can you prove that the equation secθ = 0.5 has no solution 

(i) for 0 � θ � (ii) for any value of θ?π–
2

1––––
tanθ

1––––
cosθ

1––––
sinθ

π–
2

π–
2

π–
2

π–
2

Fu
n

ct
io

n
s

46

C3
3

Figure 3.26



EXERCISE 3D 1 The functions f, g and h are defined by f(x) = x3, g(x) = 2x and h(x) = x + 2. 
Find each of the following, in terms of x.

(i) fg (ii) gf (iii) fh

(iv) hf (v) fgh (vi) ghf

(vii) g2 (viii) (fh)2 (ix) h2

2 Find the inverses of the following functions.

(i) f(x) = 2x + 7 (ii) f(x) = 4 – x

(iii) f(x) = (iv) f(x) = x2 – 3 x � 0

3 The function f is defined by f(x) = (x – 2)2 + 3 for x � 2.

(i) Sketch the graph of f(x).

(ii) On the same axes, sketch the graph of f–1(x) without finding its equation.

4 Express the following in terms of the functions f: x → x and

g: x → x + 4.

(i) x → x + 4 (ii) x → x + 8

(iii) x → x + 8 (iv) x → x + 4

5 The functions f, g and h are defined by

f(x) = g(x) = x2 h(x) = 2 – x.

(i) For each function, state any real values of x for which it is not defined.

(ii) Find the inverse functions f–1 and h–1.

(iii) Explain why g–1 does not exist when the domain of g is �.

(iv) Suggest a suitable domain for g so that g–1 does exist.

(v) Is the domain for the composite function fg the same as for the composite

function gf? Give reasons for your answer.

6 A function f is defined by:

f: x → x ∈ �, x ≠ 0.

Find (i) f 2(x) (ii) f 3(x) (iii) f–1(x) (iv) f 999(x).

7 (i) Show that x2 + 4x + 7 = (x + 2)2 + a, where a is to be determined.

(ii) Sketch the graph of y = x2 + 4x + 7, giving the equation of its axis of

symmetry and the co-ordinates of its vertex.

The function f is defined by f : x → x2 + 4x + 7 and has as its domain the set

of all real numbers.

(iii) Find the range of f.

(iv) Explain, with reference to your sketch, why f has no inverse with its given

domain. Suggest a domain for f for which it has an inverse.

[MEI]
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8 The function f is defined by f: x → 4x3 + 3 x ∈ �.

Give the corresponding definition of f–1.

State the relationship between the graphs of f and f–1.
[UCLES]

9 Two functions are defined as f(x) = x2 and g(x) = x2 + 4x – 1.

(i) Find a and b so that g(x) = f(x + a) + b.

(ii) Show how the graph of y = g(x) is related to the graph of y = f(x) and

sketch the graph of y = g(x).

(iii) State the range of the function g(x).

(iv) State the least value of c so that g(x) is one-to-one for x � c.

(v) With this restriction, sketch g(x) and g–1(x) on the same axes.

10 You are given that the function f(x) is defined by

f(x) = (x � c),

where a, b and c are positive. The sketch shows the graph of y = f(x).

(i) Write down (in terms of a, b, c) the co-ordinates of the points P, Q, R and S.

(ii) If y = , express x in terms of y, a, b, and c. Hence show that the 

inverse function is given by

f–1 (x) = .   

(iii) Find the values of a, b and c for which the function has all the following 

properties:

– it is self-inverse;

– its range is the set of all real numbers except 3;

– its graph passes through (2, –2).

(iv) Find the values of a, b and c for which the graph of y = f(x) can be 

obtained from that of y = by a translation of 1 unit parallel to the x axis

followed by a translation of 3 units parallel to the y axis.

[MEI]

1–
x

cx – b–––––x – a

ax – b–––––x – c

ax – b–––––x – c
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11 (i) A curve has equation y = 12 × 4x. Find the value of x for which y = 20000.

(ii) The graph of y = 12 × 4x is translated by 1 unit parallel to the positive

x axis. Given that the new graph has equation y = cdx, write down the

values of c and d.

(iii) The graph of y = 12 × 4x is transformed by a stretch of scale factor 2

parallel to the x axis followed by a stretch of scale factor parallel to the

y axis. Given that the new graph has equation y = ghx, find the values of

g and h.
[MEI]

Even, odd and periodic functions

Several of the curves with which you are familiar have symmetry of one form or

another. For example

● the curve of any quadratic in x has a line of symmetry parallel to the y axis

● the curve of y = cosx has the y axis as a line of symmetry

● the curves of y = sinx and y = tanx have rotational symmetry of order 2 about

the origin

● all the trigonometrical graphs have a repeating pattern (translational symmetry).

In this section you will be looking at particular types of symmetry.

Even functions

A function is even if its graph has the y axis as a line of symmetry. This is true for

all three of the functions in figure 3.27.

1–
3
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Reflecting a curve y = f(x) in the y axis gives the curve y = f(–x), so a curve which

has the y axis as a line of symmetry satisfies the condition

f(–x) = f(x).

This relationship can be used to check whether a function is even, without

drawing its graph.

EXAMPLE 3.12 Show that the function f(x) = x4 – 2x2 + 3 is an even function.

SOLUTION

f(–x) = (–x)4 – 2(–x)2 + 3

= x4 – 2x2 + 3

= f(x),

so the function is even.

Note

In general, if f(x) is any polynomial function containing only even powers of x, and

possibly a constant term, then f(x) is an even function.

Odd functions

A function whose curve has rotational symmetry of order 2 about the origin, like

the curves shown in figure 3.28, is called an odd function.
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In all of these, the left-hand side of the graph is obtained from the right-hand

side by rotating it through 180° around the origin.

In such cases, 

f(–x) = –f(x).

EXAMPLE 3.13 Show that the function f(x) = 3x5 – 2x3 + x is an odd function.

SOLUTION

f(–x) = 3(–x)5 – 2(–x)3 +(–x)

= –3x5 + 2x3 – x

= –(3x5 – 2x3 + x)

= –f(x),

so the  function is an odd function.

Note

Any polynomial function f(x) containing only odd powers of x is an odd function.

Not all functions can be classified as even or odd – in fact the majority are neither.

EXAMPLE 3.14 For each of the graphs in figure 3.29, say whether the function is odd, even

or neither.

SOLUTION

(i) The graph is symmetrical about the y axis, therefore the function is even.

(ii) A rotation of 180° about the origin leaves the graph unchanged, therefore the

function is odd.

(iii) The graph is changed by a rotation of 180° about the origin, and the y axis is

not a line of symmetry, therefore the function is neither odd nor even.

● Prove that the function f(x) = x2 – 2x is neither even nor odd.
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Periodic functions

A periodic function is one whose graph has a repeating pattern, just as a periodic

sequence is a sequence which repeats itself at regular intervals. You have already

met the most common periodic functions – the trigonometrical functions such

as f(x) = sinx (shown in figure 3.30).

A periodic function f(x) is such that there is some value of k for which 

f(x + k) = f(x) for all values of x.

The smallest value of k for which this is true is called the period of the function.

The functions f(x) = sinx and f(x) = cosx both have a period of 360° (or 2π), and

f(x) = tanx has a period of 180° (or π).

EXAMPLE 3.15 (i) Sketch the curve of the function f(x) = 3sin(2x – 30°).

(ii) State the period of this function.

SOLUTION

(i)

(ii) Period = 180°
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You can draw the graph of a periodic function if you know its behaviour over

one period.

EXAMPLE 3.16 The function f(x) is periodic with period 2. Given that

f(x) = x2 0 � x � 1

f(x) = 2 – x 1 � x � 2,

sketch the graph of f(x) for –2 � x � 4.

SOLUTION

The first part of figure 3.32 shows the parts of the line and the curve which define

f(x). These parts span an interval of length 2 (the period of the function) and

thus form the basic repeating pattern. The second diagram shows this pattern

repeated three times in the interval –2 � x � 4.

EXERCISE 3E 1 For each of the following curves, say whether the function is odd, even 
or neither.
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2 For each of the following functions, say whether it is odd, even, periodic, or

any combination of these. For any function that is periodic, find its period.

(i) f(x) = 2 – x2 (ii) f(x) = sin3x

(iii) f(x) = x2 + 2x – 3 (iv) f(x) = 2x3 – 3x

(v) f(x) = sinx + cosx (vi) f(x) = sinx cosx

3 (i) Sketch the function f(x) = sin 2x for 0° � x � 360° and hence state its period.

(ii) Say how the period of this function is related to the period of sinx.

(iii) What are the periods of the following functions?

(a) f(x) = sin4x (b) f(x) = sin3x (c) f(x) = sin

4 The function f is even, periodic with period 2 and, for 0 � x � 1, f(x) = x.

Sketch the graph of f(x) for –4 � x � 4.

5 A function f has as its domain the set of real numbers. 

For 0 � x � 1, it is given by the equation 

f(x) = 1 – x.

Given also that f is an even function with period 2, draw its graph over the

interval –3 � x � 3.

Write down equations of the function for

(i) –1 � x � 0 (ii) 2 � x � 3.

[SMP]

6 A function g(x) of period 2 is defined by

g(x) = x2 for 0 � x �

g(x) = for � x � 1.

Given also that g(x) = g(–x) for all x, sketch the graph of g(x) for –2 � x � 2.

1–
2

1–
4

1–
2

x–
2
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7 The sketch shows part of the graph of y = f(x). The points A, B, C and D have

co-ordinates (0, 1), (1, 0), (2, 1) and (3, 0) respectively.

(i) Given that f(x) is a periodic function with the shape of section BCD

repeated

(a) state its period

(b) give its equation for –1 � x � 1.

(ii) Sketch separately the graphs of

(a) y = f(2x)

(b) y = f(x + 3),

stating in each case the co-ordinates of the points corresponding to A, B, C

and D.

8 A light elastic string is stretched between two points A and B which are 3m

apart on a smooth horizontal surface. A heavy object attached to the 

mid-point of the string is pulled 50cm towards A and then released.

During the subsequent motion the string remains taut, and the object oscillates

along part of the line AB in such a way that its displacement xcm from the

centre of AB at a time t seconds after the motion commences is given by

x = 0.5cos2.5t where the angle is in radians.

Sketch the graph of x against t for 0 � t � 2π.

Hence show that the motion is periodic, and state its period.

9 The functions f(x) and g(x) are defined by

f(x) = x2 + 18, g(x) = 2x –1,

for all real values of x.

(i) State the ranges of f(x) and g(x). Explain why g(x) has an inverse function

and f(x) does not. 

Find an expression for the inverse function g–1(x) in terms of x.
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(ii) Find expressions for gf(x) and fg(x).

(iii) Solve the equation gf(x) = fg(x).

A function y = h(x) is defined for all real values of x.

The diagram shows a sketch of part of the graph of this function for 0 � x � 1.

The function h(x) is an odd function and is periodic with period 2.

Sketch the graphs of the following functions for –4 � x � 4.

(iv) y = h(x) (v) y = h( x) (vi) y = h(x)

[MEI]

The modulus function

Look at the graph of y = f(x), where f(x) = x.

The function f(x) is positive when x is positive and negative when x is negative.

Now look at the graph of y = g(x), where g(x) = |x |.

1–
2

1–
2
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The function g(x) is called the modulus of x. g(x) always takes the positive

numerical value of x. For example, when x = –2, g(x) = 2, so g(x) is always

positive. The modulus is also called the magnitude of the quantity.

Another way of writing the modulus function g(x) is 

g(x) = x for x � 0

g(x) = –x for x � 0.

●? What is the value of g(3) and g(–3)?

What is the value of | 3 + 3 |, | 3 – 3 |, | 3 | + | 3 | and | 3 | + | –3 |?

The graph of y = g(x) can be obtained from the graph of y = f(x) by replacing

values where f(x) is negative by the equivalent positive values. This is the

equivalent of reflecting that part of the line in the x axis.

EXAMPLE 3.17 Sketch the graphs of the following on separate axes.

(i) y = 1 – x

(ii) y = | 1 – x |
(iii) y = 2 + | 1 – x |

SOLUTION

(i) y = 1 – x is the straight line through (0, 1) and (1, 0).
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(ii) y = | 1 – x | is obtained by reflecting the part of the line for x � 1 in the x axis.

(iii) y = 2 + | 1 – x | is obtained from the previous graph by applying the 

translation ( ).

Inequalities involving the modulus sign

You will often meet inequalities involving the modulus sign. 

●? Look back at the graph of y = | x | in figure 3.34.

How does this show that | x | � 2 is equivalent to –2 � x � 2?

EXAMPLE 3.18 Solve the following.

(i) | x + 3 | � 4

(ii) | 2x – 1 | � 9

(iii) 5 – | x – 2 | � 1

SOLUTION

(i) | x + 3 | � 4 ⇔ –4 � x + 3 � 4

⇔ –7 � x � 1

0
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(ii) | 2x – 1 | � 9 ⇔ 2x – 1 � –9 or 2x – 1 � 9

⇔ 2x � –8 or 2x � 10

⇔ x � –4 or x � 5

(iii) 5 – | x – 2 | � 1 ⇔ 4 � | x – 2 |
⇔ | x – 2 | � 4

⇔ –4 � x – 2 � 4

⇔ –2 � x � 6

Note

The solution to part (ii) represents two separate intervals on the number line, so

cannot be written as a single inequality.

EXAMPLE 3.19 Express the inequality –2 � x � 6 in the form | x – a | � b, where a and b are to

be found.

SOLUTION

| x – a | � b ⇔ –b � x – a � b

⇔ a – b � x � a + b

Comparing this with –2 � x � 6 gives

a – b = –2

a + b = 6.

Solving these simultaneously gives a = 2, b = 4, so | x – 2 | � 4.

EXERCISE 3F 1 Solve the following inequalities.

(i) | x + 3 | � 5

(ii) | x – 2 | � 2

(iii) | x – 5 | � 6

(iv) | x + 1 | � 2

(v) | 2x – 3 | � 7

(vi) | 3x – 2 | � 4

2 Express each of the following inequalities in the form | x – a | � b, where 

a and b are to be found.

(i) –1 � x � 3

(ii) 2 � x � 8

(iii) –2 � x � 4

(iv) –1 � x � 6

(v) 9.9 � x � 10.1

(vi) 0.5 � x � 7.5
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3 Sketch each of the following graphs on a separate set of axes.

(i) y = | x + 2 |
(ii) y = | 2x – 3 |
(iii) y = | x + 2 | – 2

(iv) y = | x | + 1

(v) y = | 2x + 5 | – 4

(vi) y = 3 + | x – 2 |

Curve sketching

You have already had some experience of curve sketching, and have probably

realised that it is of fundamental importance in mathematics. Throughout this

course, the curve sketching techniques available to you will be progressively

extended. This section reviews the techniques you have met so far.

When sketching a curve you need to mark points in approximately the right

positions and join them up in the right general shape. You should also indicate

the co-ordinates of any important points, such as points of intersection with the

axes and turning points. Your sketch should show up any symmetry which the

curve possesses, any asymptotes, and should indicate the behaviour of the curve

for large values of x or y.

A graphic calculator or suitable computer graph-drawing package is often useful,

but you must be careful that important features of a graph are not missed. This

happens most often when either a turning point is off the screen with the range

which is being used, or two or more turning points are so close together that they

cannot be distinguished. The following activity shows how this can happen, and

suggests some questions which you should ask yourself before you accept the

graph that is displayed.

ACTIVITY 3.5 Use a graphic calculator or computer graph-drawing package with the range set

at x min: –2, x max: 2, y min: –10, y max: 20.

1 Sketch the graph of f(x) = x3 – 15x2 + 27x + 1.

(i) How many turning points are there in the display?

(ii) The function is a cubic function. How many turning points might you

expect?

(iii) The function has a positive x3 term. What would you expect for the

general shape of the curve?

(iv) Use your answers to parts (ii) and (iii) to alter the range so that you obtain

a true picture of the function.

Fu
n

ct
io

n
s

60

C3
3



C
u

rve sk
etch

in
g

61

C3
3

2 Sketch the graph of f(x) = 10x4 – x2 + 1.

(i) How many turning points seem to be in the display?

(ii) The function is a quartic (fourth degree) function. How many turning

points might you expect?

(iii) The function has a positive x4 term. What would you expect for the

general shape of the curve?

(iv) Use your answers to parts (ii) and (iii) to alter the range (or zoom in) so

that you obtain a more detailed picture of the function.

3 Sketch the graph of f(x) = .

(i) The display obviously shows only part of the curve. The function has the

term x – 5 in the denominator: which value of x must therefore be excluded

from the domain?

(ii) Alter the range setting so that this value is visible. You will find that

altering it just to include this value tells you very little more about the

curve – you need to make quite considerable alterations to get a good idea

of the correct graph. Possible settings are x min: –10, x max: 20, y min:

–20, y max: 40.

INVESTIGATION

Investigate the relationship between the graphs of y = f(x) and y = for

different functions f(x).

1–––
f(x)

8x + 3–––––
x – 5



KEY POINTS

Mappings and functions

1 A mapping is any rule connecting input values (objects) and output values

(images). It can be many-to-one, one-to-many, one-to-one or many-to-many.

2 A many-to-one or one-to-one mapping is called a function. It is a mapping

for which each input value gives exactly one output value.

3 The domain of a mapping or function is the set of possible input values

(values  of x).

4 The co-domain of a mapping or function is the set of possible output

values (values of y).

5 The range of a mapping or function is the set of output values which are

actually achieved.

Transformations of the graphs of the function y = f(x)

Function Transformation

f(x – t) + s Translation ( )
a f(x) One-way stretch, parallel to y axis, scale factor a

f(ax) One-way stretch, parallel to x axis, scale factor

–f(x) Reflection in x axis

f(–x) Reflection in y axis

Composite functions

6 A composite function is obtained when one function (say g) is applied after

another (say f). The notation used is g[f(x)] or gf(x).

Inverse functions

7 For any one-to-one function f(x), there is an inverse function f–1(x).

8 The curves of a function and its inverse are reflections of each other in the

line y = x.

Special functions

9 For an even function f(x) = f(–x): the y axis is a line of symmetry. 

10 For an odd function f(–x) = –f(x): it has rotation symmetry about the origin.

11 For a periodic function f(x + k) = f(x): it has a repeating pattern of length k.

12 The modulus of x, written | x | , means the positive value of x.

13 The modulus function is

| x | = x, for x � 0
| x | = –x, for x � 0.
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Techniques for
differentiation

Almost everything that distinguishes the modern world from earlier

centuries is attributable to science, which achieved its most

spectacular triumphs in the seventeenth century.

A W Bertrand Russell (1872–1970)

●? What information is given by and ?

What information is given by × ?

The chain rule

How would you differentiate an expression like

y = x2 + 1?

Your first thought may be to write it as y = (x2 + 1)q-∑ and then get rid of the 

brackets, but that is not possible in this case because the power is not a positive 

integer. Instead you need to think of the expression as a composite function, a

‘function of a function’.

You have already met composite functions in Chapter 3, using the notation

g[f(x)] or gf(x).

In this chapter we call the first function to be applied u(x), or just u, rather than f(x).

In this case, u = x2 + 1

and y = u = uq-∑.

This is now in a form which you can differentiate using the chain rule.

1–
2

dh––
dt

dV––
dh

dh
––
dt

dV––
dh

Volume V

h

4



Differentiating a composite function

To find for a function of a function, you consider the effect of a small change 

in x on the two variables, y and u, as follows. A small change δx in x leads to a

small change δu in u and a corresponding small change δy in y, and by simple

algebra,

= × .

In the limit, as δx → 0,

→ , → and →

and so the relationship above becomes

= × .

This is known as the chain rule.

EXAMPLE 4.1 Differentiate y = (x2 + 1)q-∑.

SOLUTION

As you saw earlier, you can break down this expression as follows.

y = uq-∑, u = x2 + 1

Differentiating these gives

= u–q-∑ =

and

= 2x.

By the chain rule  

= ×

= × 2x

=

Notice that the answer must be given in terms of the same variables as the

question, in this case x and y. The variable u was your invention and so should

not appear in the answer.

x––––––
x2 + 1

1––––––––
2 x2 + 1

du
––
dx

dy
––
du

dy
––
dx

du
––
dx

1––––––––
2 x2 + 1

1–
2

dy
––
du

du
––
dx

dy
––
du

dy
––
dx

du
––
dx

δu
––
δx

dy
––
du

δy
––
δu

dy
––
dx

δy
––
δx

δu
––
δx

δy
––
δu

δy
––
δx

dy
––
dx
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You can see that effectively you have made a substitution, in this case 

u = x2 + 1. This transformed the problem into one that could easily be solved.

Note

Notice that the substitution gave you two functions that you could differentiate.

Some substitutions would not have worked. For example, the substitution u = x2,

would give you

y = (u + 1)
1–2 and u = x2.

You would still not be able to differentiate y, so you would have gained nothing.

EXAMPLE 4.2 Use the chain rule to find when y = (x2 – 2)4.

SOLUTION

Let u = x2 – 2, then y = u4.

= 2x

and

= 4u3

= 4(x2 – 2)3

= ×

= 4(x2 – 2)3 × 2x

= 8x (x2 – 2)3.

● A student does this question by first multiplying out (x2 – 2)4 to get a polynomial

of order 8. Prove that this heavy-handed method gives the same result.

With practice you may find that you can do some stages of questions like this in

your head, and just write down the answer. If you have any doubt, however, you

should write down the full method.

Differentiation with respect to different variables

The chain rule makes it possible to differentiate with respect to a variable which

does not feature in the original expression. For example, the volume V of a sphere

of radius r is given by V = πr3. Differentiating this with respect to r gives the 

rate of change of volume with radius, = 4πr2. However you might be more dV––
dr

4–
3

du
––
dx

dy
––
du

dy
––
dx

dy
––
du

du
––
dx

dy
––
dx
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interested in finding , the rate of change of volume with time, t.

To find this, you would use the chain rule:

= ×

= 4πr2

You have now differentiated V with respect to t.

The use of the chain rule in this way widens the scope of differentiation and this

means that you have to be careful how you describe the process. 

‘Differentiate y = x2’ could mean differentiation with respect to x, or t, or any

other variable. In this book, and others in this series, we have adopted the

convention that, unless otherwise stated, differentiation is with respect to the

variable on the right-hand side of the expression. So when we write ‘differentiate

y = x2’ or simply ‘differentiate x2’, it is to be understood that the differentiation is

with respect to x.

The expression ‘increasing at a rate of ’ is generally understood to imply

differentation with respect to time, t.

EXAMPLE 4.3 The radius r cm of a circular ripple made by dropping a stone into a pond is

increasing at a rate of 8 cm s–1. At what rate is the area A cm2 enclosed by the

ripple increasing when the radius is 25 cm?

SOLUTION

A = πr2

= 2πr

The question is asking for , the rate of change of area with respect to time.

Now = ×

= 2πr .

When r = 25 and = 8

= 2π × 25 × 8

� 1260 cm2 s–1.

dA––
dt

dr––
dt

dr––
dt

dr––
dt

dA––
dr

dA––
dt

dA––
dt

dA––
dr

dr––
dt

dV––
dt

dr––
dt

dV––
dr

dV––
dt

dV––
dt
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EXERCISE 4A In some of these questions you are asked to find the stationary points of a curve and

then to use them as a guide for sketching it. You will find it helpful to use a graphic

calculator to check your answers in these cases.

1 Use the chain rule to differentiate the following functions.

(i) y = (x + 2)3 (ii) y = (2x + 3)4 (iii) y = (x2 – 5)3

(iv) y = (x3 + 4)5 (v) y = (3x + 2)–1 (vi) y =

(vii) y = (x2 – 1)e-∑ (viii) y = ( + x)3
(ix) y = ( x – 1)4

2 Given that y = (3x – 5)3

(i) find

(ii) find the equation of the tangent to the curve at (2, 1)

(iii) show that the equation of the normal to the curve at (1, –8) can be written

in the form

36y + x + 287 = 0.

3 Given that y = (2x – 1)4

(i) find

(ii) find the co-ordinates of any stationary points and determine their nature

(iii) sketch the curve.

4 Given that y = (x2 – 4)3

(i) find

(ii) find the co-ordinates of any stationary points and determine their nature

(iii) sketch the curve.

5 Given that y = (x2 – x – 2)4

(i) find

(ii) find the co-ordinates of any stationary points and determine their nature

(iii) sketch the curve.

6 The length of a side of a square is increasing at a rate of 0.2cm s–1.

At what rate is the area increasing when the length of the side is 10cm?

7 The force F newtons between two magnetic poles is given by the formula             

F = , where r m is their distance apart. 

Find the rate of change of the force when the poles are 0.2 m apart and the

distance between them is increasing at a rate of 0.03ms–1.

8 The radius of a circular fungus is increasing at a uniform rate of 5 cm per day.

At what rate is the area increasing when the radius is 1 m?

1–––––
500r2

dy
––
dx

dy
––
dx

dy
––
dx

dy
––
dx

1–
x

1–––––––
(x2 – 3)3
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9 The graph of y = (x3 – x2 + 2)3, is shown in the diagram.

(i) Find the gradient function .

(ii) Verify, showing your working clearly, that when x = –1 the curve has a

point of inflection and when x = 0 the curve has a maximum.

(iii) The curve has a minimum when x = a.

Find a and verify that this corresponds to a minimum.

(iv) Find the gradient at (1, 8) and the equation of the tangent to the curve at

this point.

10 Some students on an expedition reach the corner of a very muddy field. They

need to reach the opposite corner as quickly as possible as they are behind

schedule. They estimate that they could walk along the edge of the field at

5km h–1 and across the field at 3km h–1. They know from their map that the

field is a square of side 0.5 km.

How far should they walk along the edge of the field before cutting across?

The product rule

Figure 4.1 shows a sketch of the curve of y = 20x(x – 1)6.

dy
––
dx
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If you wanted to find the gradient function, , for the curve, you could expand 

the right-hand side then differentiate it term by term – a long and cumbersome

process!

There are other functions like this, made up of the product of two or more

simpler functions, which are not just time-consuming to expand – they are

impossible to expand. One such function is

y = (x – 1)q-∑(x + 1)6.

Clearly you need a technique for differentiating functions that are products of

simpler ones, and a suitable notation with which to express it.

The most commonly used notation involves writing

y = uv,

where the variables u and v are both functions of x. Using this notation, is

given by

= u + v .

This is called the product rule and it is derived from first principles in the next

section.

The product rule from first principles

A small increase δx in x leads to corresponding small increases δu, δv and δy in u,

v and y. And so

y + δy = (u + δu)(v + δv)

= uv + vδu + uδv + δuδv.

Since y = uv, the increase in y is given by

δy = vδu + uδv + δuδv.

Dividing both sides by δx,  = v + u + δu .

In the limit, as δx → 0, so do δu, δv and δy, and

→ , → and → .

The expression becomes = v + u .

Notice that since δu → 0 the last term on the right-hand side has disappeared. 

dv
––
dx

du
––
dx

dy
––
dx

dy
––
dx

δy
––
δx

dv
––
dx

δv
––
δx

du
––
dx

δu
––
δx

δv
––
δx

δv
––
δx

δu
––
δx

δy
––
δx

du
––
dx

dv
––
dx

dy
––
dx

dy
––
dx

dy
––
dx
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EXAMPLE 4.4 Given that y = (2x + 3)(x2 – 5), find using the product rule.

SOLUTION

y = (2x + 3)(x2 – 5)

Let u = 2x + 3 and v = x2 – 5.

Then = 2 and = 2x.

Using the product rule, = v + u

= (x2 – 5) × 2 + (2x + 3) × 2x

= 2(x2 – 5 + 2x2 + 3x)

= 2(3x2 + 3x – 5).

Note

In this case you could have multiplied out the expression for y.

y = 2x3 + 3x2 – 10x – 15

= 6x2 + 6x – 10

= 2(3x2 + 3x – 5)

EXAMPLE 4.5 Differentiate y = 20x (x – 1)6.

SOLUTION

Let u = 20x and v = (x – 1)6.

Then = 20, and = 6(x – 1)5 (using the chain rule).

Using the product rule, = v + u

= (x – 1)6 × 20 + 20x × 6(x – 1)5

= 20(x – 1)5 × (x – 1) + 20(x – 1)5 × 6x

= 20(x – 1)5[(x – 1) + 6x]

= 20(x – 1)5(7x – 1)

The factorised result is the most useful form for the solution, as it allows you to

find stationary points easily. You should always try to factorise your answer as

much as possible. Once you have used the product rule, look for factors straight

away and do not be tempted to multiply out.

dv
––
dx

du
––
dx

dy
––
dx

dv
––
dx

du
––
dx

dy
––
dx

dv
––
dx

du
––
dx

dy
––
dx

dv
––
dx

du
––
dx

dy
––
dx
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The quotient rule

In the last section, you met a technique for differentiating the product of two

functions. In this section you will see how to differentiate a function which is the

quotient of two simpler functions.

As before, you start by identifying the simpler functions. For example, the function

y = ,

can be written as y = where u = 3x + 1 and v = x – 2. Using this notation, is

given by

v – u
= ––––––––––

v2

This is called the quotient rule, and it is derived from first principles below.

The quotient rule from first principles

A small increase, δx in x results in corresponding small increases δu, δv and δy in

u, v and y. The new value of y is given by

y + δy = ,

and since y = , you can rearrange this to obtain an expression for δy in terms of

u and v.

δy = – 

=

=

=

Dividing both sides by δx gives

v – u
= ––––––––––.

v(v + δv)

In the limit as δx → 0, this is written in the form you met on the previous page.

v – u
= ––––––––––

v2

dy
––
dx

dv
––
dx

du
––
dx

δy
––
δx

δv
––
δx

δu
––
δx

vδu – uδv–––––––––
v(v + δv)

uv + vδu – uv – uδv––––––––––––––––––––
v(v + δv)

v(u + δu) – u(v + δv)––––––––––––––––––––
v(v + δv)

u–
v

u + δu––––––
v + δv

u–
v

u + δu––––––
v + δv

dy
––
dx

dv
––
dx

du
––
dx

dy
––
dx

u–
v

3x + 1––––––
x – 2
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ACTIVITY 4.1 Verify that the quotient rule gives correctly when u = x10 and v = x7.

EXAMPLE 4.6 Given that y = , find using the quotient rule.

SOLUTION

Letting u = 3x + 1 and v = x – 2 gives

= 3    and     = 1.

v – u
Using the quotient rule, = ––––––––––

v2

=

=

= .

EXAMPLE 4.7 Given that y = , find using the quotient rule.

SOLUTION

Letting u = x2 + 1 and v =3x – 1 gives

= 2x and    = 3.

v – u
Using the quotient rule, = ––––––––––

v2

=

=

= .3x2 – 2x – 3–––––––––––
(3x – 1)2

6x2 – 2x – 3x2 – 3––––––––––––––––
(3x – 1)2

(3x – 1) × 2x – (x2 + 1) × 3–––––––––––––––––––––––––
(3x – 1)2

dy
––
dx

dv––
dx

du––
dx

dv––
dx

du––
dx

dy
––
dx

x2 + 1–––––
3x – 1

–7–––––––
(x – 2)2

3x – 6 – 3x – 1–––––––––––––
(x – 2)2

(x – 2) × 3 – (3x + 1) × 1–––––––––––––––––––––––
(x – 2)2

dy
––
dx

dv––
dx

du––
dx

dv––
dx

du––
dx

dy
––
dx

3x + 1–––––
x – 2

dy
––
dx
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EXERCISE 4B 1 Differentiate the following functions using the product rule or the quotient rule.

(i) y = (x2 – 1)(x3 + 3) (ii) y = x5(3x2 + 4x – 7)

(iii) y = x2(2x + 1)4 (iv) y =

(v) y = (vi) y = (2x + 1)2(3x2 – 4)

(vii) y = (viii) y =

(ix) y = (x + 1) x – 1

2 The graph of y = is shown below.

(i) Find .

(ii) Find the gradient of the curve at (0, 0), and the equation of the tangent

at (0, 0).

(iii) Find the gradient of the curve at (2, 2), and the equation of the tangent

at (2, 2).

(iv) What can you deduce about the two tangents?

3 Given that y = (x + 1)(x – 2)2

(i) find

(ii) find any stationary points and determine their nature

(iii) sketch the curve.

4 Given that y =

(i) find

(ii) find the equation of the tangent to the curve at the point (6, 1.5)

(iii) find the equation of the normal to the curve at the point (5, 2)

(iv) use your answer from (i) to deduce that the curve has no turning points,

and sketch the graph.

dy
––
dx

x – 3–––––
x – 4

dy
––
dx

dy
––
dx

x––––
x – 1

x – 2––––––––
(x + 3)2

2x – 3–––––––
2x2 + 1

x3
–––––
x2 + 1

2x–––––
3x – 1 E
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5 Given that y = (2x – 1)3(x + 1)3

(i) find and factorise the expression you obtain

(ii) find the values of x for which = 0, and determine the nature of the 

corresponding stationary points.

The graph of y = (2x – 1)3(x + 1)3 is shown below. 

(iii) Write down the co-ordinates of P, Q and R.

6 The graph of y = , which is undefined for x < 0 and x = 1, is shown 

below. P is a minimum point.

(i) Find .

(ii) Find the gradient of the curve at (9, 9), and show that the equation of the

normal at (9, 9) is y = –4x + 45.

(iii) Find the co-ordinates of P and verify that it is a minimum point.

(iv) Write down the equation of the tangent and the normal to the curve at P.

(v) Write down the point of intersection of

(a) the normal found in (ii) and the tangent found in (iv), call it Q

(b) the normal found in (ii) and the normal found in (iv), call it R.

(vi) Show that the area of the triangle PQR is .441–––
8

dy
––
dx

2x––––––
x – 1

dy
––
dx

dy
––
dx
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7 The graph of y = is shown below.

(i) Find .

(ii) Use your answer from part (i) to find any stationary points of the curve.

(iii) Classify each of the stationary points and use calculus to justify your answer.

8 A curve has the equation y = .

(i) Find .

Hence find the co-ordinates of the stationary points on the curve.

(ii) You are given that = .

Use this information to determine the nature of the stationary points in (i).
[MEI]

9 You are given that x = y2 + 4.

(i) Find in terms of y.

(ii) Rearrange x = y2 + 4 in the form y = g(x).

(iii) Differentiate y = g(x) to find in terms of x.

(iv) Show that × = 1.

(v) For what values of x are your answers valid?
[MEI]

10 You are given that f(x) = .

(i) Find f(0), f(1), f(2).

(ii) Show that f´(x) = .

Hence show that there is only one stationary point for x � 0 and state its

co-ordinates.

(iii) State what happens to f(x) as x → ∞.

(iv) Using the information gained so far, sketch the graph of y = f(x) for x � 0.

(v) Show that f(x) is an odd function and hence complete the sketch graph

for all values of x.

(vi) Given that g(x) = (x ≠ 0), prove that: fg(x) = f(x).
[MEI ]

1–
x

4(1 – x2)
–––––––
(x2 + 1)2

4x–––––
x2 + 1

dx
––
dy

dy
––
dx

dy
––
dx

dx
––
dy

2––––––
(2x + 1)3

d2y
–––
dx2

dy
––
dx

x2
–––––
2x + 1

dy
––
dx

x2 – 2x – 5–––––––––
2x + 3
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11 The diagram shows a sketch of the graph of y = f(x), where

f(x) = .

The graph cuts the x axis at points P and Q, and the y axis at R.

(i) Find the co-ordinates of the points, P, Q and R.

Find also the limiting value of the function f(x) as x → ∞.

(ii) Verify algebraically that f(–x) = f(x).

Explain what this result tells you about the graph.

(iii) Show that the derivative f´(x) is given by

.

Hence show that f´(x) is an odd function.

Interpret this result by relating it to the graph in the diagram.

(iv) Find the co-ordinates of the two points on the graph of y = f(x) where

the second derivative f´´(x) is zero. 

What can you say about the shape of the graph at these points?

[MEI]

12 The diagram shows part of the graph with the equation y = x 9 – 2x2.

It crosses the x axis at (a, 0).

(i) Find the value of a, giving your answer as a multiple of 2.

(ii) Show that the result of differentiating 9 – 2x2 is .
–2x––––––––

9 – 2x2

–4x
––––––––
(1 + x2 )2

1 – x2
––––––
1 + x2
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Hence show that if y = x 9 – 2x2 then

= .

(iii) Find the x co-ordinate of the maximum point on the graph of y = x 9 – 2x2 .

Write down the gradient of the curve at the origin.

What can you say about the gradient at the point (a, 0)?

Differentiating an inverse function

ACTIVITY 4.2 What is the relationship between and ? 

Follow the steps below to help you to answer this question.

1 Differentiate y = x3.

2 Rearrange y = x3 in the form x = f(y), and hence find as a function of y.

3 Write as a function of x.

4 Write down a relationship between and .

5 Repeat steps 1–4 for other functions such as y = 2x , y = x2 and y = x4.

6 Use your results to propose a general rule relating and .

For part 6 of the activity you may have proposed the general result =  1–– .

If so, well done! The result looks algebraically obvious, but remember that 

and are not fractions. The function is the rate of change of y with x , and 

is the rate of change of x with y.

The geometrical interpretation of this result can be seen in figure 4.2 where, as an

example, the line y = q-∑x is drawn first with the axes the normal way round, and

then with them interchanged.

dx
––
dy

dy
––
dx

dx
––
dy

dy
––
dx

dx––
dy

dy
––
dx

dx
––
dy

dy
––
dx

dx
––
dy

dy
––
dx

dx
––
dy

dx
––
dy

dx
––
dy

dy
––
dx

9 –4x2
––––––––

9 – 2x2

dy
––
dx
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● How does this demonstrate that =  1–– ?

Does it prove it?

EXAMPLE 4.8 Given that x = y q-†, find 

(i) by first finding 

(ii) by first making y the subject.

SOLUTION

(i) x = y q-† ⇒ = × y q-† –1

= y – r-†

1
= –––––

5(y q-†)4

1
= –––

5x4

Since =  1–– it follows that = 1––

= 5x 4.

(ii) x = y q-† ⇒ y = x5 ⇒ = 5x 4.

Note

The result = 1–– has applications in two areas which you have met earlier: 

inverse functions and their gradients, and differentation with respect to different

variables.

EXAMPLE 4.9 (i) Sketch the graphs of y = x2 + 1 for x ∈ � and its inverse function y = x – 1.

(ii) Find the gradient of y = x – 1 at the point (5, 2) by 

(a) direct differentiation

(b) relating it to the gradient of y = x2 + 1 at the point (2, 5).

dx
––
dy

dy
––
dx

dy
––
dx

1–––
5x4

dy
––
dxdx––

dy

dy
––
dx

1–
5

1–
5

dx
––
dy

dx
––
dy

dy
––
dx

dx––
dy

dy
––
dx
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SOLUTION

(i)

(ii) (a) y = x – 1

= (x – 1)q-∑

= (x – 1)– q-∑ × 1    (chain rule)

=

At (5, 2) the gradient is  = . 

(b) Since any function and its inverse are reflections of each other in the line

y = x, the two tangents shown in the sketch will meet on the line y = x.

1
So the gradient of y = x – 1 at (5, 2) = –––––––––––––––––––––––––––––

gradient of y = x2 + 1 at (2, 5)

1
= ––––––––––––

2x when x = 2

1
= –

4
.

Note

This is an illustration of the general result

1
gradient of f –1(x) at (a, b) = ––––––––––––––––––––––

gradient of f(x) at (b, a)

and this is particularly useful when the equation of the inverse function cannot be

found easily.

1–
4

1–––––––
2   5 – 1

1–––––––
2 x – 1

1–
2

dy
––
dx
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EXAMPLE 4.10 The area of a circular patch of mould is increasing at a rate of 0.4 cm2 h–1.

Calculate the rate at which the radius is increasing when the radius is 5 cm.

SOLUTION

You are required to find 

= × .

But A = πr2, so = 2πr

= 1–– = ,

so = × .

When r = 5 and = 0.4

= × 0.4

=

= 0.0127 cm h–1.

EXERCISE 4C 1 The area of a circle is increasing at the uniform rate of 8cm2 min–1. Calculate 
the rate at which the radius is increasing when the circumference is 50cm.

2 (i) Sketch f(x) = x(x + 1)(x + 2) for x ∈ �.

(ii) The function g(x) = x(x + 1)(x + 2) for x ∈ �+.

Sketch g(x) and g–1(x) on the same axes.

(iii) Find the gradient of g(x) at the point (2, 24) and hence find the gradient

of g–1(x) at (24, 2).

3 Sand is poured on to a horizontal floor at a rate of 4 cm3 s–1 and forms a pile 

in the shape of a right circular cone, of which the height is three-quarters of

the radius. 

Calculate the rate of change of the radius when the radius is 4 cm, leaving your

answer in terms of π.

(The formula for the volume of a cone is V = πr2h.)

4 A filter funnel is in the shape of a cone (vertex downwards) of vertical angle

90° with a small tube leaving at the vertex as shown in the diagram on the 

next page.

(i) When the depth of liquid in the funnel is 4 cm, the level is falling at

0.2 cm s–1. At what rate is the volume decreasing?

(ii) If the rate found in part (i) is steady, how fast is the level falling when the

depth is 2 cm?

1–
3

1–––
25π

1–––––
2π × 5

dr––
dt

dA––
dt

dA––
dt

1–––
2πr

dr––
dt

1–––
2πrdA––

dr

dr––
dA

dA––
dr

dA––
dt

dr––
dA

dr––
dt
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5 You are given a curve with the equation y = x2(4 – x).

(i) Find the values of x for which = 0.

(ii) Denoting the values of x which you have just calculated by a and b, where 

a < b, show that is positive when a < x < b.

(iii) Sketch the graph of y in the interval a < x < b, using the same scale on each

axis.

(iv) A function f(x) = x2(4 – x) is defined over the domain a � x � b and has 

inverse function f–1(x). Find the gradient of f–1(x) at the point ( , ).

[MEI]

6 The sketch below shows the graph of y = f(x).

(i) Sketch the graphs of

(a) y = 2f(x) (b) y = f(–x) (c) y = f(x + 2)

in each case superimposing them on a copy of the graph of y = f(x).

(ii) Explain why the function f(x) does not have an inverse function.

(iii) The function f(x) restricted to the domain x � 2 is called g(x).

The inverse function of g(x) is g–1(x).

Sketch the graphs of y = g–1(x) and y = g(x) on the same axes.

(iv) Given that g(x) = x2(x – 2), for x � 2, calculate the gradient of the graph

of y = g(x) at the point (3, 9). 

Deduce the gradient of the graph y = g–1(x) at the point (9, 3).
[MEI]

1–
2

7–
8

dy
––
dx

dy
––
dx
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ACTIVITY 4.3 Follow the steps below to prove that the rule

y = xn ⇒ = nxn–1,

is true for all positive rational numbers n. You use the fact that it is true for all

positive integers.

Since n is a positive rational number it can be written as n = where p and q are 

positive integers. 

Therefore y = xn = x
p
–q .

Raising to the power q gives yq = xp = z (say).

(i) Find and .

(ii) Use these results together with the chain rule and the relationship 

= 1–– to show that = x(p
–q –1).

Since n = , this proves the result.

● How would you describe this proof: direct argument, exhaustion or contradiction?

Differentiating natural logarithms and exponentials

In chapter 2 you learnt that the integral of is lnx. It follows, therefore, that the

differential of lnx is .

So y = ln x ⇒ = .

The differential of the inverse function, y = ex, may be found by interchanging

y and x.

x = ln y ⇒ =

⇒ = 1–– = y = ex.

Therefore ex = ex.

The differential of ex is itself ex. This may at first seem rather surprising.

d
––
dx

dx––
dy

dy
––
dx

1–
y

dx
––
dy

1–
x

dy
––
dx

1–
x

1–
x

p
–q

p
–q

dy
––
dxdz––

dy

dy
––
dz

dz
––
dy

dz
––
dx

p
–q

dy
––
dx
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● The function f(x) is a polynomial in x of order n.

So

f(x) = anxn + an–1xn–1 + ... + a1x + a0

where an, an–1, ..., a0 are all constants and at least an is not zero.

How can you prove that f(x) cannot equal f(x)?

Since the differential of ex is ex, it follows that the integral of ex is also ex.

∫exdx = ex + c.

This may be summarised as in the following table.

Differentiation Integration

y ⎯→ y ⎯→ ∫ y dx

ln x ⎯→ ⎯→ ln x + c

ex ⎯→ ex ex ⎯→ ex+ c

These results allow you to extend very considerably the range of functions which
you are able to differentiate and integrate.

EXAMPLE 4.11 Differentiate y = e5x.

SOLUTION

Make the substitution u = 5x to give y = eu.

Now = eu = e5x and = 5.

By the chain rule,

= ×

= e5x × 5

= 5e5x.

This result can be generalised as follows.

y = eax ⇒ = aeax where a is any constant.

This is an important standard result, and you would normally use it

automatically, without recourse to the chain rule.

dy
––
dx

du
––
dx

dy
––
du

dy
––
dx

du
––
dx

dy
––
du

1–
x

1–
x

dy
––
dx

d
––
dx
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EXAMPLE 4.12 Differentiate y = .

SOLUTION

y = = 4e–2x

⇒ = 4 × (–2e–2x)

= –8e–2x

EXAMPLE 4.13 Differentiate y = 3e(x2+1).

SOLUTION

Let u = x2 + 1, then y = 3eu.

⇒ = 3eu = 3e(x2+1) and      = 2x

By the chain rule, 

= ×

= 3e(x2+1) × 2x

= 6xe(x2+1).

EXAMPLE 4.14 Differentiate the following functions.

(i) y = 2 ln x (ii) y = ln(3x)

SOLUTION

(i) = 2 ×

=

(ii) Let u = 3x, then y = ln u

⇒ = = and     = 3.

By the chain rule,

= ×

= × 3

= .1–
x

1
––
3x

du
––
dx

dy
––
du

dy
––
dx

du
––
dx

1
––
3x

1–
u

dy
––
du

2–
x

1–
x

dy
––
dx

du
––
dx

dy
––
du

dy
––
dx

du
––
dx

dy
––
du

dy
––
dx

4–––
e2x

4–––
e2x
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Note

An alternative solution to part (ii) is

y = ln(3x) = ln 3 + ln x ⇒ = 0 + = .

●? The gradient function found in part (ii) above for y = ln(3x) is the same as that

for y = ln(x). What does this tell you about the shapes of the two curves?

EXAMPLE 4.15 Differentiate the following functions.

(i) y = ln(x4) (ii) y = ln(x2 + 1)

SOLUTION

(i) By the properties of logarithms

y = ln(x4)

= 4ln(x)

⇒ = .

(ii) Let u = x2 + 1, then y = lnu

⇒ = = and      = 2x.

By the chain rule,

= × 

= × 2x

= .

If you need to differentiate functions similar to those in the examples above,

follow exactly the same steps. The results can be generalised as follows.

2x––––
x2 + 1

1––––
x2 + 1

du
––
dx

dy
––
du

dy
––
dx

du
––
dx

1––––
x2 + 1

1–
u

dy
––
du

4–
x

dy
––
dx

1–
x

1–
x

dy
––
dx D

ifferen
tiatin

g
 n

atu
ral lo

g
arith

m
s an

d
 exp

o
n

en
tials

85

C3
4

y = alnx ⇒ = y = aex ⇒ = aex

y = ln(ax) ⇒ = y = eax ⇒ = aeax

y = ln(f(x)) ⇒ = y = ef(x) ⇒ = f´(x)ef(x)dy
––
dx

f´(x)––––
f(x)

dy
––
dx

dy
––
dx

1–
x

dy
––
dx

dy
––
dx

a–
x

dy
––
dx



EXAMPLE 4.16 Differentiate y = .

SOLUTION

Here y is of the form where u = lnx and v = x

⇒ = and     = 1.

By the quotient rule, 

v – u

= ––––––––––
v2

x × – 1 × lnx
= –––––––––––––

x2

= .

EXERCISE 4D 1 Differentiate the following functions.

(i) y = 3ln x (ii) y = ln(4x)

(iii) y = ln(x2) (iv) y = ln(x2 + 1)

(v) y = ln( ) (vi) y = x lnx

(vii) y = x2 ln(4x) (viii) y = ln( )
(ix) y = ln x2 – 1 (x) y =

2 Differentiate the following functions.

(i) y = 3ex (ii) y = e2x

(iii) y = ex2
(iv) y = e(x+1)2

(v) y = xe4x (vi) y = 2x3e–x

(vii) y = (viii) y = (e2x + 1)3

3 Knowing how much rain has fallen in a river basin, hydrologists are often able

to give forecasts of what will happen to a river level over the next few hours. 

In one case it is predicted that the height h, in metres, of a river above its

normal level during the next 3 hours will be 0.12e0.9t, where t is the time

elapsed, in hours, after the prediction.

(i) Find , the rate at which the river is rising.

(ii) At what rate will the river be rising after 0, 1, 2 and 3 hours?

dh––
dt

x––
ex

lnx–––
x2

x + 1––––
x

1–
x

1 – lnx––––––
x2

1–
x

dy
––
dx

dv
––
dx

du
––
dx

du
––
dx

1–
x

du
––
dx

u–
v

lnx–––
x
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4 The graph of y = xex is shown below.

(i) Find and .

(ii) Find the co-ordinates of the minimum point P.

5 The graph of f(x) = x ln(x2) is shown below.

(i) Describe, giving a reason, any symmetries of the graph. 

(ii) Find f ´(x) and f ´´(x).

(iii) Find the co-ordinates of any stationary points.

6 Given that y =

(i) find

(ii) find the co-ordinates of any stationary points on the curve of the function

(iii) sketch the curve.

7 (i) Differentiate lnx and xlnx with respect to x.

The sketch shows the graph of y = x lnx for 0 �x � 3.

(ii) Show that the curve has a stationary point ( , – ).
[MEI]

1–
e

1–
e

dy
––
dx

ex
––
x

d2y
–––
dx2

dy
––
dx

E
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8 The diagram shows the graph of y = xe–x.

(i) Differentiate xe–x.

(ii) Find the co-ordinates of the point A, the maximum point on the curve. 

[MEI]

9 In a biological experiment, bacteria are being grown in a culture. The mass of 

the bacteria at time t hours is P milligrams. At time t = 0, P = 3 and = 6.

(i) A standard model for this situation is given by P = Aekt, where A and k

are constants.

(a) Write down in terms of A, k and t. Find the values of A and k.

(b) Find the value of t for which P = 12.

(c) According to this model, what happens to the mass of the bacteria

after a long time?

(ii) As the experiment progresses it is found that the value of P increases to a

maximum at time t = 10 and then begins to decrease. A new model is

proposed in which P = 3eat–bt2, where a and b are constants.

(a) Express in terms of a, b and t. Find the values of a and b.

(b) According to this new model, what happens to the mass of the

bacteria after a long time?
[MEI]

10 A sample of a radioactive substance has a mass m at time t, where m = ae–bt

(where a and b are positive constants), in appropriate units.

dP
––
dt

dP
––
dt

dP
––
dt
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(i) Explain why a graph of lnm against t will be a straight line.
(ii) The graph of lnm against t (shown) passes through (0, 3) and (5, 1). 

Find the values of a and b.
(iii) At what time will m have reduced to 0.01?
(iv) A second radioactive sample is known to consist of a mixture of two

substances. The total mass m = m1 + m2, where m1 = pe–0.3t and
m2 = qe–0.2t (where p and q are positive constants).

Express in terms of p, q and t.

The diagram shows a sketch of the graph of m against t. The tangent to this
curve at the point (0, 17) passes through the point (4.25, 0).

(v) Form two simultaneous equations for p and q and solve them.
[MEI]

11 For x > 0 the function f(x) is given by

f(x) = 2x – x lnx.

The diagram shows part of the graph of this function.

(i) Show that f(e3) = –e3.
(ii) Find f´(x) and f ´´(x).
(iii) Show that the curve y = f(x) has just one stationary point and find its

co-ordinates. Verify that f ´´(x) < 0 at this point.

The function g(x) is defined for the domain x � e. In this domain g(x) = f(x).

(iv) Write down the range of g(x).
(v) Explain why g(x) has an inverse, g–1(x).

Sketch, on the same axes, graphs of y = g(x) and y = g–1(x).
Calculate the gradient of the graph of y = g–1(x) at the point where x = – e3.

[MEI]

dm––
dt

E
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12 The diagram shows the graph of y = .

(i) Show that = .

Hence find the co-ordinates of the
minimum point P.

(ii) A function is defined by f(x) = .

Three different transformations are
applied to the graph of y = f(x) in the
diagram producing the graphs with
equations

(a) y = f(x – 1)
(b) y = f(–x)
(c) y = f(2x).

In each case, describe the transformation and state the co-ordinates of
the point corresponding to P.

(iii) Show that, for a certain value of k,

f(x – 1) = k( )2
f(x).

State the value of k.
[MEI]

13 The diagram shows a sketch of the graph of y = f(x), where 

f(x) = (x � 0).

The graph crosses the x axis at the point P and has a turning point at Q.

(i) Write down the x co-ordinate of P.

(ii) Find the first and second derivaties, f ´(x) and f ´́ (x), simplifying your

answers as far as possible.

(iii) Hence show that the x co-ordinate of Q is e.

Find the y co-ordinate of Q in terms of e.

Find f ´́ (e), and use this result to verify that Q is a maximum point.

[MEI, part]

lnx–––
x

x––––
x – 1

e2x
–––
x2

2(x – 1)e2x
––––––––––

x3
dy
––
dx

e2x
–––
x2
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14 The diagram shows a sketch of the graph of y = (x2 – 3)e–x.

The graph crosses the x axis at points A and D and the y axis at C. 

Points B and E are stationary points on the curve.

(i) Find the co-ordinates of the points A, C and D.

(ii) Show that = –(x2 – 2x – 3)e–x.

(iii) Deduce that the x co-ordinates of the points B and E are –1 and 3 

respectively, and find the corresponding y co-ordinates.

(iv) Copy the diagram and mark clearly the positions of two points of

inflection.

You are given that = (x2 – 4x – 1)e–x.

Deduce from this result that there are exactly two points of inflection.

[MEI]

Differentiating sinx and cosx

ACTIVITY 4.4 Figure 4.4 shows the graph of y = sinx, with x measured in radians together with

the graph of y = x. You are going to sketch the graph of the gradient function for

the graph of y = sinx.

Draw a horizontal axis for the angles, marked from –2π to 2π, and a vertical axis
for the gradient, marked from –1 to 1.

d2y
–––
dx2

dy
––
dx
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First, look for the angles for which the gradient of y = sinx is zero. Mark zeros at

these angles on your gradient graph.

Decide which parts of y = sinx have a positive gradient and which have a negative

gradient. This will tell you whether your gradient graph should be above or below

the y axis at any point.

Look at the part of the graph of y = sinx near x = 0 and compare it with the graph

of y = x. What do you think the gradient  of y = sinx is at this point? Mark this

point on your gradient graph. Also mark on any other points with plus or minus

the same gradient.

Now, by considering whether the gradient of y = sinx is increasing or decreasing

at any particular point, sketch in the rest of the gradient graph.

The gradient graph that you have drawn should look like a familiar graph. What

graph do you think it is?

Sketch the graph of y = cosx, with x measured in radians, and use it as above to

obtain a sketch of the graph of the gradient function of y = cosx.

●? Is y = x still a tangent of y = sinx if x is measured in degrees?

Activity 4.4 showed you that the graph of the gradient function of y = sinx

resembled the graph of y = cosx. You will also have found that the graph of the

gradient function of y = cosx looks like the graph of y = sinx reflected in the x

axis to become y = –sinx.

● Both of these results are in fact true but the work above does not amount to a

proof. Explain why.

(They are proved on page 214, once the necessary trigonometry has been

covered.)
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Summary of results

(sinx) = cosx (cosx) = –sinx

Remember that these results are only valid when the angle is measured in radians,

so when you are using any of the derivatives of trigonometrical functions you

need to work in radians.

ACTIVITY 4.5 By writing tanx = , use the quotient rule to show that 

(tanx) = where x is measured in radians.

( is the reciprocal function secx.)

You can use the three results met so far to differentiate a variety of functions

involving trigonometrical functions, by using the chain rule, product rule or

quotient rule, as in the following examples.

EXAMPLE 4.17 Differentiate y = cos2x.

SOLUTION

As cos2x is a function of a function, you may use the chain rule.

Let u = 2x ⇒ = 2

y = cosu ⇒ = –sinu

= × 

= –sinu × 2

= –2sin2x.

With practice it should be possible to do this in your head, without needing to

write down the substitution.

This result may be generalised.

y = coskx ⇒ = –k sinkx.

Similarly

y = sinkx ⇒ = kcoskx.
dy
––
dx

dy
––
dx

du
––
dx

dy
––
du

dy
––
dx

dy
––
du

du––
dx

1––––cos x

1–––––
cos2 x

d––
dx

sinx––––
cosx

d
––
dx

d
––
dx
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EXAMPLE 4.18 Differentiate y = x2 sinx.

SOLUTION

x2 sinx is of the form uv, so the product rule can be used with u = x2 and v = sinx.

= 2x = cosx

Using the product rule

= v + u

⇒ = 2x sinx + x2 cosx.

EXAMPLE 4.19 Differentiate y = etanx.

SOLUTION

etanx is a function of a function, so the chain rule may be used.

Let u = tanx ⇒ =

y = eu ⇒ = eu.

Using the chain rule

= ×

=

= .

EXAMPLE 4.20 Differentiate y = .

SOLUTION

is of the form so the quotient rule can be used, with

u = 1 + sinx and v = cosx

⇒ = cosx and = –sinx.

The quotient rule is

v – u
= –––––––––– .

v2

dy
––
dx

dv
––
dx

du
––
dx

dv
––
dx

du
––
dx

u
–
v

1 + sin x––––––––
cos x

1 + sin x––––––––
cos x

etanx
–––––
cos2 x

eu
–––––
cos2 x

du
––
dx

dy
––
du

dy
––
dx

dy
––
du

1–––––
cos2 x

du
––
dx

dy
––
dx

dv
––
dx

du
––
dx

dy
––
dx

dv
––
dx

du
––
dx
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Substituting for u and v and their derivatives gives

dy (cosx)(cosx) – (1 + sinx)(–sinx)–– = –––––––––––––––––––––––––––
dx (cosx)2

cos2 x + sinx + sin2 x= –––––––––––––––––
cos2 x

1 + sinx= ––––––– (using sin2 x + cos2 x = 1).
cos2 x

EXERCISE 4E 1 Differentiate each of the following functions.

(i) 2cosx + sinx (ii) tanx + 5 (iii) sinx – cosx

2 Use the product rule to differentiate each of the following functions. 

(i) x tanx (ii) sinx cosx (iii) ex sinx

3 Use the quotient rule to differentiate each of the following functions.

sinx ex x + cosx
(i) –––– (ii) –––– (iii) –––––––

x cosx sinx

4 Use the chain rule to differentiate each of the following functions.

(i) tan(x2 + 1) (ii) cos2 x (iii) ln(sinx)

5 Use an appropriate method to differentiate each of the following functions.

(i) cos x (ii) extanx (iii) sin4x2

sinx
(iv) ecos 2x (v) ––––––– (vi) ln(tanx)1 + cosx

6 (i) Differentiate y = x cosx.

(ii) Find the gradient of the curve y = x cosx at the point where x = π.

(iii) Find the equation of the tangent to the curve y = x cos x at the point

where x = π.

(iv) Find the equation of the normal to the curve y = x cos x at the point

where x = π.

7 The function y = sin3 x has five stationary points in –π � x � π.

dy
(i) Find –– for this function.

dx

(ii) Find the co-ordinates of the five stationary points.

(iii) Determine whether each of the five points is a maximum, minimum or

point of inflection.

(iv) Use this information to sketch the graph of y = sin3 x for values of x in

–π � x � π.

dy d2y
8 If y = ex cos3x, find –– and ––– and hence show that

dx dx2

d2y dy
–– – 2 –– + 10y = 0.
dx2 dx

[MEI]
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9 Consider the function y = e–x sinx, where –π � x � π.

dy
(i) Find –––.

dx

(ii) Show that, at stationary points, tanx = 1.

(iii) Determine the co-ordinates of the stationary points, correct to 2

significant figures.

(iv) Explain how you could determine whether your stationary points are

maxima or minima. You are not required to do any calculations.

[MEI]

Differentiating functions defined implicitly

All the functions you have differentiated so far have been of the form y = f(x).

However, many functions cannot be arranged in this way at all, for example

x3 + y3 = xy, and others can look clumsy when you try to make y the subject.

An example of this is the semi-circle x2 + y2 = 4, y � 0, illustrated in figure 4.6.

The curve is much more easily recognised in this form than in the equivalent

y = 4 – x2.

When a function is specified by an equation connecting x and y which does not

have y as the subject it is called an implicit function.

Although restrictions on x or y are often necessary to make the function

unambiguous, these are frequently assumed and not mentioned.

The chain rule = × and the product rule (uv) = u + v are

used extensively to help in the differentiation of implicit functions.

du
––
dx

dv
––
dx

d
––
dx

du
––
dx

dy
––
du

dy
––
dx
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EXAMPLE 4.21 Differentiate each of the following with respect to x.

(i) y2 (ii) xy (iii) 3x2y3 (iv) siny

SOLUTION

(i) (y2) = (y2) × (chain rule)

= 2y

(ii) (xy) = x + y (product rule)

(iii) (3x2y3) = 3(x2 (y3) + y3 (x2)) (product rule)

= 3(x2 × 3y2 + y3 × 2x) (chain rule)

= 3xy2(3x + 2y)
(iv) (siny) = (siny) × (chain rule)

= (cosy)

EXAMPLE 4.22 The equation of a curve is given by y3 + xy = 2.

(i) Find an expression for in terms of x and y.

(ii) Hence find the gradient of the curve at (1, 1) and the equation of the tangent

to the curve at that point.

SOLUTION

(i) y3 + xy = 2

⇒ 3y2 + (x + y) = 0

⇒ (3y2 + x) = –y

⇒ =

(ii) At (1, 1), = –

⇒ using y – y1 = m(x – x1) the equation of the tangent is (y – 1) = – (x – 1)

⇒ x + 4y – 5 = 0.

1–
4

1–
4

dy
––
dx

–y–––––––
3y2 + x

dy
––
dx

dy
––
dx

dy
––
dx

dy
––
dx

dy
––
dx

dy
––
dx

dy
––
dx

d
––
dy

d
––
dx

dy
––
dx

dy
––
dx

d
––
dx

d
––
dx

d
––
dx

dy
––
dx

d
––
dx

dy
––
dx

dy
––
dx

d
––
dy

d
––
dx
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●? Figure 4.7 shows the graph of the curve with the equation y3 + xy = 2.

(i) How can you use your graphic calculator to sketch this? 

(Hint: What effect does interchanging x and y have on a graph?)

(ii) Why is this not a function?

Stationary points

As before these occur where = 0.

Putting = 0 will not usually give values of x directly, but will give a

relationship between x and y. This needs to be solved simultaneously with the

equation of the curve to find the co-ordinates.

EXAMPLE 4.23 (i) Differentiate x3 + y3 = 3xy with respect to x.

(ii) Hence find the co-ordinates of any stationary points.

SOLUTION

(i) (x3) + (y3) = (3xy)

⇒ 3x2 + 3y2 = 3[x + y].

(ii) At stationary points, = 0

⇒ 3x2 = 3y

⇒ x2 = y

To find the co-ordinates of the stationary points, solve

x2 = y } simultaneously
x3 + y3 = 3xy

dy
––
dx

dy
––
dx

dy
––
dx

d
––
dx

d
––
dx

d
––
dx

dy
––
dx

dy
––
dx
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Substituting for y gives

x3 + (x2)3 = 3x(x2)

⇒ x3 + x6 = 3x3

⇒ x6 = 2x3

⇒ x3(x3 – 2) = 0

⇒ x = 0    or x =
3

2

y = x2 so the stationary points are (0, 0) and ( 
3

2,
3

4).

The stationary points are A and B in figure 4.8.

Types of stationary points

As with explicit functions, the nature of a stationary point can usually be 

determined by considering the sign of the second derivative at the 

stationary point.

EXAMPLE 4.24 The curve with equation sinx + siny = 1 for 0 � x � π, 0 � y � π is shown in

figure 4.9.

d2y
–––
dx2
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(i) Differentiate the equation of the curve with respect to x and hence find the

co-ordinates of any stationary points.

(ii) Differentiate the equation again with respect to x to determine the nature of

the stationary points.

SOLUTION

(i) sinx + siny = 1

⇒ cosx + (cosy) = 0 �1

⇒ = – .

At any stationary point = 0   ⇒ cosx = 0

⇒ x = (only solution in range)

Substitute in sinx + siny = 1.

When x = , sinx = 1 ⇒ siny = 0

⇒ y = 0 or y = π

⇒ turning points at ( , 0) and ( , π).

(ii) Differentiating equation �1 again with respect to x.

cosx + (cosy) = 0

⇒ –sinx + [(cosy) + ((–siny) )] = 0

At ( , 0), = 0 

⇒ –sin + (cos 0) = 0     

⇒ = 1 ⇒ minimum turning point at ( , 0).

At ( , π), = 0

⇒ –sin + (cos π) = 0

⇒  –1 – = 0

⇒ = –1 ⇒ maximum turning point at ( , π).

These points are confirmed by considering the sketch in figure 4.9.

π–
2

d2y
–––
dx2

d2y
–––
dx2

d2y
–––
dx2

π–
2

dy
––
dx

π–
2

π–
2

d2y
–––
dx2

d2y
–––
dx2

π–
2

dy
––
dx

π–
2

dy
––
dx

dy
––
dx

d2y
–––
dx2

dy
––
dx

π–
2

π–
2

π–
2

π–
2

dy
––
dx

cosx
––––
cosy

dy
––
dx

dy
––
dx
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EXERCISE 4F 1 Differentiate each of the following with respect to x.

(i) y4 (ii) x2 + y3 – 5 (iii) xy + x + y

(iv) cosy (v) e(y + 2) (vi) xy3

(vii) 2x2y5 (viii) x + lny – 3 (ix) xey – cosy

(x) x2 lny (xi) xesin y (xii) x tany – y tanx

2 Find the gradient of the curve xy3 = 5 lny at the point (0, 1).

3 Find the gradient of the curve esin x + ecos y = e + 1 at the point ( , ).

4 (i) Find the gradient of the curve x2 + 3xy + y2 = x + 3y at the point (2, –1).

(ii) Hence find the equation of the tangent to the curve at this point.

5 Find the co-ordinates of all the stationary points on the curve x2 + y2 + xy = 3.

6 A curve has the equation (x – 6)(y + 4) = 2.

(i) Find an expression for in terms of x and y.

(ii) Find the equation of the normal to the curve at the point (7, –2).

(iii) Find the co-ordinates of the point where the normal meets the curve again.

(iv) By rewriting the equation in the form y – a = identify any 
asymptotes and sketch the curve.

7 A curve has the equation y = xx for x � 0.

(i) Take logarithms to base e of both sides of the equation.

(ii) Differentiate the resulting equation with respect to x.

(iii) Find the co-ordinates of the stationary point, giving your answer to 

3 decimal places.

(iv) Sketch the curve for x � 0.

8 (i) Show that the graph of xy + 48 = x2 + y2 has stationary points at (4, 8) 

and (–4, –8).

(ii) By differentiating with respect to x a second time determine the nature of

these stationary points.

b––––x – c

dy
––
dx

π–
2

π–
2
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KEY POINTS

1 y = kxn ⇒ = knxn–1where k and n are real constants.

2 Chain rule: = × .

3 Product rule (for y = uv): = v + u .

v – u
4 Quotient rule (for y = ): = –––––––––– .

v2

1
5 = ––– .

6 (lnx) = 

7 (ex) = ex

8 (sinkx) = kcoskx

(coskx) = –k sinkx

(tankx) =
k–––––

cos 2kx
d

––
dx

d
––
dx

d
––
dx

d
––
dx

1
–
x

d
––
dx

dx
––
dy

dy
––
dx

dy
––
dx

u
–
v

dv
––
dx

du
––
dx

dv
––
dx

du
––
dx

dy
––
dx

du
––
dx

dy
––
du

dy
––
dx

dy
––
dx
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Techniques for integration

The mathematical process has a reality and virtue in itself, and once

discovered it constitutes a new and independent factor. 

Winston Churchill (1876–1965)

Figure 5.1 shows the graph of y = x.

●? How does it allow you to find the area shaded in the graph in figure 5.2?

Integration by substitution

The graph of y = x – 1 is shown in figure 5.3.

The shaded area is given by

∫1

5
x – 1 dx = ∫1

5
(x – 1)q-∑ dx.
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You have not needed to find such an integral before, but you do know how to

evaluate ∫a

b
uq-∑ du, so making the substitution u = x – 1 will transform the integral

into one that you can do.

When you make this substitution it means that you are now integrating with

respect to a new variable, namely u. The limits of the integral, and the ‘dx’, must

be written in terms of u.

The new limits are given by x = 1 ⇒ u = 1 – 1 = 0

and x = 5 ⇒ u = 5 – 1 = 4.

Since u = x – 1, = 1.

Even though is not a fraction, it is usual to treat it as one in this situation (see 

the warning below), and to write the next step as ‘du = dx’.

The integral now becomes:

u e-∑

∫u=0

u=4
uq-∑ du = [––]

4

0e-∑

2u e-∑

= [–––]4

03

= 5 .

This method by integration is known as integration by substitution. It is a very

powerful method which allows you to integrate many more functions. Since you

are changing the variable from x to u, the method is also referred to as integration

by change of variable.

The last example included the statement ‘du = dx’. Some mathematicians are

reluctant to write such statements on the grounds that du and dx may only            

be used in the form , i.e. as a gradient. This is not in fact true; there is a well 

defined branch of mathematics which justifies such statements but it is well

beyond the scope of this book. In the meantime it may help you to think of it as 

shorthand for ‘in the limit as δx → 0, → 1, and so δu = δx ’.
δu
––
δx

du
––
dx

1–
3

du
––
dx

du
––
dx
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EXAMPLE 5.1 Evaluate ∫1

3
(x + 1)3 dx by making a suitable substitution.

SOLUTION

Let u = x + 1.

Converting the limits: x = 1 ⇒ u = 1 + 1 = 2

x = 3 ⇒ u = 3 + 1 = 4.

Converting dx to du:

= 1 ⇒ du = dx.

∫1

3
(x + 1)3 dx = ∫2

4
u3 du

u4
= [––]

4

24

= – 

= 60

●? Can integration by substitution be described as the reverse of the chain rule?

EXAMPLE 5.2 Evaluate  ∫3

4
2x(x2 – 4)q-∑ dx by making a suitable substitution.

SOLUTION

Notice that 2x is the derivative of the function in the brackets, x2 – 4, and so

u = x2 – 4  is a natural substitution to try.

This gives = 2x ⇒ du = 2x dx.

Converting the limits: x = 3 ⇒ u = 9 – 4 = 5

x = 4 ⇒ u = 16 – 4 =12.

So the integral becomes: 

∫3

4
(x2 – 4)q-∑2xdx = ∫5

12
u q-∑ du

2u e-∑

= [–––]12

53

= 20.3 (to 3 significant figures).

du
––
dx

24
––
4

44
––
4

du
––
dx
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Note

In the last example there were two functions of x multiplied together, the second

function being an expression in brackets raised to a power. The two functions are in

this case related, since the first function, 2x, is the derivative of the expression in

brackets, x2 – 4. It was this relationship that made the integration possible.

EXAMPLE 5.3 Find ∫x(x2 + 2)3 dx by making an appropriate substitution.

SOLUTION

Since this is an indefinite integral there are no limits to change, and the final

answer will be a function of x.

Let u = x2 + 2, then:

= 2x ⇒ du = xdx.

So ∫x(x2 + 2)3 dx = ∫(x2 + 2)3xdx

= ∫u3 × du

= + c

= + c.

Always remember, when finding an indefinite integral by substitution, to

substitute back at the end. The original integral was in terms of x, so your final

answer must be too.

EXAMPLE 5.4 By making a suitable substitution, find ∫x x – 2 dx.

SOLUTION

This question is not of the same type as the previous ones since x is not the

derivative of (x – 2). However, by making the substitution u = x – 2 you can still

make the integral into one you can do.

Let u = x – 2, then:

= 1 ⇒ du = dx.

There is also an x in the integral so you need to write down an expression for x

in terms of u. Since u = x – 2 it follows that x = u + 2.

du
––
dx

(x2 + 2)4
––––––––

8

u4
––
8

1–
2

1–
2

du
––
dx
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In the original integral you can now replace x – 2 by uq-∑, dx by du, and x by u + 2.

∫x x – 2 dx = ∫(u + 2)uq-∑ du

= ∫(ue-∑ + 2u q-∑) du

= ut-∑ + r-́ue-∑ + c

Replacing u by x – 2 and tidying up gives (3x + 4)(x – 2)e-∑ + c.

ACTIVITY 5.1 Complete the algebraic steps involved in tidying up the previous answer.

EXERCISE 5A 1 Find the following indefinite integrals by making the suggested substitution. 
Remember to give your final answer in terms of x.

(i) ∫(x + 1)3 dx, u = x + 1 (ii) ∫2 2x – 1 dx, u = 2x – 1

(iii) ∫3x2(x3 + 1)7 dx, u = x3 + 1 (iv) ∫2x(x2 + 1)5 dx, u = x2 + 1

(v) ∫3x2(x3 – 2)4 dx, u = x3 – 2 (vi) ∫x 2x2 – 5 dx, u = 2x2 – 5

(vii) ∫x 2x + 1 dx , u = 2x + 1 (viii) ∫ dx, u = x + 9

2 Evaluate each of the following definite integrals by using a suitable

substitution. Give your answer to 3 significant figures where appropriate.

(i) ∫–1

4
(x – 3)4 dx (ii) ∫0

3
(3x + 2)6 dx

(iii) ∫5

9
x – 5 dx (iv) ∫2

15 3
2x – 3 dx

(v) ∫1

5
x2(x3 + 1)2 dx (vi) ∫–1

2
2x(x – 3)5 dx

(vii) ∫1

5
x x – 1 dx

3 The graph of y = (x – 2)3 is shown here.

(i) Evaluate ∫2

4
(x – 2)3 dx.

(ii) Without doing any calculations, state what you think the value of

∫0

2
(x – 2)3 dx would be. Give reasons.

(iii) Confirm your answer by carrying out the integration.

x–––––
x + 9

2––
15

2–
5
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4 The graph of y = (x – 1)4 – 1 is shown below.

(i) Find the area of the shaded region A by evaluating ∫ –1

0
((x – 1)4 – 1) dx.

(ii) Find the area of the shaded region B by evaluating an appropriate integral.

(iii) Write down the area of the total shaded region.

(iv) Why could you not just evaluate ∫–1

2
((x – 1)4 – 1) dx to find the total area?

5 Find the area of the shaded region for each of the following graphs.

6 The sketch shows part of the graph of y = x 1 + x.
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(i) Find the co-ordinates of point A and the range of values of x for which

the function is defined.

(ii) Show that the area of the shaded region is . 

You may find the substitution u = 1 + x useful.
[MEI]

7 (i) By substituting u = 1 + x or otherwise, find

(a) ∫(1 + x)3 dx

(b) ∫–1

1
x(1 + x)3 dx.

(ii) By substituting t = 1 + x2 or otherwise, evaluate ∫1

0
x 1 + x2 dx.

[MEI]

8 Sketch the graph of y = showing any asymptotes.

Find the area contained between the curve and the x axis for 0 � x � 2.
[MEI]

9 (i) Differentiate (2x – 1)7 with respect to x.

The diagram shows a sketch of the curve with equation y = 4x(2x – 1)7.

(ii) Show that = 4(2x – 1)6(16x – 1).

Hence find the x co-ordinate of the minimum point on the curve.                

(iii) Using the substitution 2x – 1 = u, find the area of the shaded region

enclosed between the curve and the x axis.

(iv) The function f with domain x � is defined by f(x) = 4x(2x – 1)7.

Given that f(1) = 4, find the value of {f –1(x)} when x = 4.
[MEI]

d
––
dx

1–
2

dy
––
dx

x––––––
4 + x2

4––
15
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10 (i) Integrate with respect to x the following functions.

(a) + (b) 6x(1 + x2)q-∑

(ii) Show that the substitution x = u2 transforms ∫1

4

dx into an 

integral of the form ∫a

b
k(1 + u)3 du.

State the values of k, a and b.

Evaluate this integral.
[MEI]

Integrals involving the exponential function

Since you know that 

(eax) = aeax,

you can see that 

∫eax dx = eax + c.

This increases the number of functions which you are able to integrate, as in the

following example. 

EXAMPLE 5.5 Find the following integrals.

(i) ∫e2x dx (ii) ∫5

1
6e3x dx

SOLUTION

(i) ∫e2x dx = e2x + c

(ii) ∫1

5
6e3x dx = [ ]

5

1

= [2e3x]5

1

= 2(e15 – e3)

= 6.54 × 106 (to 3 significant figures)

EXAMPLE 5.6 By making a suitable substitution, find ∫0

4
2xex2 dx.

SOLUTION

∫0

4
2xex2 dx = ∫0

4
ex2 2xdx.

Since 2x is the derivative of x2, let u = x2.

= 2x ⇒ du = 2xdx

The new limits are given by x = 0 ⇒ u = 0 

and x = 4 ⇒ u = 16.

du
––
dx

6e3x
––––

3

1–
2

1–
a

d
––
dx

(1 + x)3
––––––

x

3––
x3

4–––
x
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The integral can now be written as 

∫0

16
eu du = [eu]16

0

= e16 – e0

= 8.89 × 106 to 3 significant figures.

Integrals involving the natural logarithm function

You have already seen that

∫ dx = lnx + c.

There are many other integrals that can be reduced to this form either by

rearrangement or by substitution.

EXAMPLE 5.7 Evaluate ∫2

5
dx.

SOLUTION

∫2

5
dx = [lnx]5

2

= (ln 5 – ln 2)

= 0.458          (to 3 significant figures)

In this example the was taken outside the integral, allowing the standard result 

for to be used. It is not always possible to do this, and in the following example 

a substitution is necessary.

EXAMPLE 5.8 Evaluate ∫1

5
dx.

2x–––––
x2 + 3

1–
x

1–
2

1–
2

1–
2

1–
x

1–
2

1––
2x

1–
x
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SOLUTION

In this case, substitute u = x2 + 3, so that 

= 2x ⇒ du = 2xdx

The new limits are given by x = 1 ⇒ u = 4 

and x = 5 ⇒ u = 28.

∫1

5
dx = ∫4

28
du

= [ln u]
28

4

= ln28 – ln4

= 1.95        (to 3 significant figures)

The last example is of the form ∫ dx, where f(x) = x2 + 3. In such cases the 

substitution u = f(x) transforms the integral into ∫ du. The answer is then            

ln u + c or ln(f(x)) + c (assuming that u = f(x) is positive). This result may be

stated as the working rule below.

If you obtain the top line when you differentiate the bottom line, the integral is

the natural logarithm of the bottom line. So,

∫ dx = ln(f(x)) + c.

EXAMPLE 5.9 Evaluate ∫1

2
dx.

SOLUTION

You can work this out by substituting u = x5 + x2 + 4 but, since differentiating the

bottom line gives the top line, you could apply the rule above and just write:

∫1

2
dx = [ln(x5 + x2 + 4)]2

1

= ln 40 – ln 6 = 1.90        (to 2 significant figures).

In the next example some adjustment is needed to get the top line into the

required form.

EXAMPLE 5.10 Evaluate ∫0

1
dx.

SOLUTION

The differential of x6 + 7 is 6x5, so the integral is rewritten as ∫0

1
dx.

Integrating this gives [ln(x6 + 7)]1

0
or 0.022 (to 2 significant figures).

1–
6

6x5
–––––
x6 + 7

1–
6

x5
–––––
x6 + 7

5x4 + 2x–––––––––
x5 + x2 + 4

5x4 + 2x–––––––––
x5 + x2 + 4

f ´(x)––––
f(x)

1
–
u

f ´(x)––––
f(x)

1
–
u

2x–––––
x2 + 3

du
––
dx
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Extending the domain for logarithmic integrals

The use of ∫ dx = ln x + c has so far been restricted to cases where x � 0, since

logarithms are undefined for negative numbers.

Similarly, for ∫ dx = ln(f(x)) + c it has been required that f(x) � 0.

Look, however, at the area between –b and –a on the left-hand branch of the curve  

y = in figure 5.6. You can see that it is a real area, and that it must be possible to 

evaluate it.

ACTIVITY 5.2 1 What can you say about the areas of the two shaded regions?

● 2 Try to prove your answer to part 1 before reading on.

Proof

Let A = ∫ –b

–a
dx.

Substituting u = –x gives new limits: x = –b ⇒ u = b

x = –a ⇒ u = a.

= –1 ⇒ dx = –du.

So the integral becomes

A = ∫ b

a
(–du)

= ∫ b

a
du

= [lna – lnb]

= –[lnb – lna]= –area B.

1–
u

1––
–u

du
––
dx

1–
x

1–
x

f ´(x)––––
f(x)

1–
x
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So the area has the same size as that obtained if no notice is taken of the fact that

the limits a and b have minus signs. However it has the opposite sign, as you

would expect because the area is below the axis.

Consequently the restriction that x � 0 may be dropped, and the integral is written

∫ dx = ln |x | + c.

Similarly, ∫ dx = ln | f(x) | + c.

EXAMPLE 5.11 Find the value of ∫5

7
dx.

SOLUTION

To make the top line into the differential of the bottom line, you write the

integral as

– ∫5

7
dx = –[ln | 4 – x |]7

5

= –[(ln | –3 |) – (ln | –1|)]
= –[ln3 – ln1]

= –1.10         (to 3 significant figures).

Since the curve y = is not defined at the

the discontinuity at x = 0 (see figure  

5.7), it is not possible to integrate across 

this point.

Consequently in the integral ∫
q

p
dx both

the limits p and q must have the same 

sign, either + or –. The integral is invalid

otherwise.

● For non-trigometrical functions, how can you tell from the equation of a curve

whether it has a discontinuity?

How can you prove y = x2 – 2x + 3 has no discontinuities?

EXERCISE 5B 1 Find the following indefinite integrals.

(i) ∫ dx (ii) ∫ dx (iii) ∫ dx

(iv) ∫ dx (v) ∫ dx (vi) ∫ dx
2x + 3––––––––––

3x2 + 9x – 1
2x–––––

x2 + 1
1–––––

2x – 9

1––––
x – 5

1––
4x

3–
x

1–
x

1–
x

–1–––––
4 – x

1–––––
4 – x

f ´(x)––––
f(x)

1–
x

Te
ch

n
iq

u
es

 f
o

r 
in

te
g

ra
ti

o
n

114

C3
5

Figure 5.7

!



2 Find the following indefinite integrals.

(i) ∫e3x dx (ii) ∫e–4x dx (iii) ∫e– dx

(iv) ∫12x2 ex3
dx (v) ∫ dx (vi) ∫ dx

3 Find the following definite integrals. 

Where appropriate give your answers to 3 significant figures.

(i) ∫0

4
4e2x dx (ii) ∫1

3
dx (iii) ∫2

3
2xe–x2

dx

(iv) ∫–1

1
(ex + e–x) dx (v) ∫–2

1
e3x–2 dx (vi) ∫2

4
dx

4 The sketch shows the graph of y = xex2
.

(i) Find the area of region A.

(ii) Find the area of region B.

(iii) Hence write down the total area 

of the shaded region. 

5 The graph of y = xe–x2 is shown here.

(i) Find using the product rule.

(ii) Find the x co-ordinate, p, of the maximum point. 

(You do not need to prove that it corresponds to a maximum.)

(iii) Use your answer from part (ii) to find the area of the shaded region.

6 The graph of y = is shown below.

Find the area of each shaded region.

x + 2–––––––––
x2 + 4x + 3 

dy
––
dx

x + 2–––––––––
x2 + 4x – 3 

4–––––
2x + 1 

e3x + 4–––––––
e2x

10–––
e5x

x–
3
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7 The graph of y = x + is shown below.

(i) Find the co-ordinates of the minimum point, P, and the maximum point, Q.

(ii) Find the area of each shaded region.

8 (i) Find ∫0

X
x e–x2 dx in terms of X.

(ii) Evaluate ∫0

X
x e–x2 dx for X = 1, 2, 3 and 4. 

(Give your answers to 4 significant figures.)

(iii) As X gets bigger (i.e. as X → �), towards what value does ∫0

X
x e–x2 dx tend?

[MEI]

9 A curve has the equation y = (x + 3)e–x.

(i) Find .

(ii) Find the x and y co-ordinates of the stationary point S on the curve.

(iii) Calculate at the point S. 

What does its value indicate about the stationary point?

(iv) Show that the substitution u = ex converts ∫ du into ∫ dx.

(v) Hence evaluate ∫1

e
du.

[MEI]

10 (i) Use a substitution, such as u2 = 2x – 3, to find ∫ 2x 2x – 3 dx.

(ii) Differentiate x q-∑ lnx with respect to x. Hence find ∫ dx.

(iii) The function f(x) has the property f´(x) = e–x2.

(a) Find f ´́ (x).

(b) Differentiate f(x3) with respect to x.
[MEI]

11 (i) Find the following integrals.

(a) ∫1

6
dx

(b) ∫ dx (Use the substitution v = 9 + x2, or otherwise.)

(ii) (a) Show that (e–x2) = –2xe–x2.
d

––
dx

x––––––––
9 + x2

1––––––
2x + 3

2 + lnx–––––––
x

2 + lnu–––––––
u2

2 + x–––––
ex

2 + lnu–––––––
u2

d2y
–––
dx2

dy
––
dx

4–
x
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The sketch below shows the curve with equation y = x e–x2.

(b) Differentiate x e–x2 and find the co-ordinates of the two stationary

points on the curve.

(c) Find the area of the region between the curve and the x axis for

0 � x � 0.4.
[MEI]

12 (i) Sketch the curve with equation y = for values of x between 0 and 2.

(ii) Find the area of the region enclosed by this curve, the axes and the line x = 2.

(iii) Find the value of ∫1

e
dt.

(iv) Compare your answers to parts (ii) and (iii). Explain this result.

13 (i) Show that ∫5

10
du = ln 2.

The function f(x) is defined by f(x) = .

The graph of y = f(x) for positive values of x is shown below.

(ii) Calculate ∫2

3
f(x) dx. (You may wish to use the substitution u = x2 + 1.)

(iii) Show that f(x) is an odd function.

Write down the value of ∫–3

–2
f(x) dx.

(iv) State a transformation which will transform the graph of y = f(x) into the

graph of y = f(x + 1).

(v) Using parts (iii) and (iv), or otherwise, calculate the value of

∫–4

–3
dx.

[MEI]

x + 1––––––––––
x2 + 2x + 2

x––––––
x2 + 1

1–
u

2t–––––
t2 + 1

ex
–––––
ex + 1
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14 (i) Differentiate with respect to x

(a) e–2x2
(b) xe–2x2.

You are given that f(x) = xe–2x2.

(ii) Find ∫0

k
f(x) dx in terms of k.

(iii) Show that f ´́ (x) = 4xe–2x2(4x2 –3).

Show that there is just one stationary point on the curve y = f(x) for positive x.

State its co-ordinates and determine its nature.
[MEI]

15 The diagram illustrates the graph of y = ex. The point A has co-ordinates

(ln 5, 0), B has co-ordinates (ln 5, 5) and C has co-ordinates (0, 5).

(i) Find the area of the region OABE enclosed by the curve y = ex, the x axis,

the y axis and the line AB. Hence find the area of the shaded region EBC.

(ii) (a) The graph of y = ex is transformed into the graph of y = lnx.

Describe this transformation geometrically.

(b) What stretch will transform the graph of y = lnx to the graph of 

y = ln(x3)?

(iii) Using your answers to parts  (i) and (ii) (a), or otherwise, show that

∫1

5
ln x dx = 5 ln 5 – 4.

(iv) Deduce the values of

(a) ∫1

5
ln (x3) dx

(b) ∫1

5
ln (3x) dx.

[MEI]

Te
ch

n
iq

u
es

 f
o

r 
in

te
g

ra
ti

o
n

118

C3
5

O A x

C

y

B (ln 5, 5)

E



16 P and Q are two points on a hillside. P is 500 m above sea level and Q is

2000 m due east of P.

The graph below shows the height, y, of the hillside above sea level against the

horizontal distance, x, from P. The units are 100m on each axis.

The equation of this graph is y = 5e–0.08x.

(i) Calculate the height of Q above sea level to the nearest metre.

(ii) Find . What is the gradient of the hillside at P?

(iii) Find by integration the area under the graph from x = 0 to x = 20, in

units2, correct to 2 decimal places.

A stream has its source at P and flows due east. It has cut a gorge down into

the rock of the hillside, so that its present position is given by

y = ,

as illustrated below. The gorge is 5m wide.

(iv) Use integration to calculate ∫0

20
dx, giving your answer correct to 

2 decimal places. 

Hence estimate the volume of rock (in m3) removed by the stream

between P and Q, giving your answer to 2 significant figures.

[MEI]

25–––––
5 + x

25–––––
5 + x

dy
––
dx

E
xercise 5

B

119

C3
5

20

Q

x

y

5

O

P

20

Q

x

y

5

O

P

hillside

stream



17 The diagram shows a sketch of the curve y = .

(i) Differentiate y = .

(ii) Hence find the co-ordinates of the two turning points of the curve.

(iii) By substituting t = x2 + 1, or otherwise, find ∫ dx.

(iv) Hence find the x co-ordinate of the point P, given that the area of the

region between the curve and the x axis, from the origin to P, is 10 units2.
[MEI]

18 The diagram shows a sketch of the graph y = f(x), where

f(x) = .

The graph crosses the y axis at the point P. It approaches the horizontal line 

l as x → ∞.

The shaded region is bounded by the graph of y = f(x), the x axis, the y axis

and the line x = 1.

(i) Write down the co-ordinates of the point P, and the equation of the line l.

(ii) Find f ´(x), simplifying your answer as far as possible.

Hence calculate the gradient of the curve at the point P.

(iii) Find the exact area of the shaded region, using the substitution u = 1 + ex,

or otherwise.

Express your answer as a single logarithm.

(iv) Show that f(x) + f(–x) = 1, and interpret this result graphically.
[MEI]

ex
–––––
1 + ex

x–––––
x2 + 1 

x–––––
x2 + 1 

x–––––
x2 + 1 
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19 The diagram shows the graph of y = f(x), where

f(x) = .

(i) Show algebraically that f(x) is an odd function.

State what feature of the graph corresponds to the fact that f(x) is an odd

function.

(ii) Find, using calculus, the co-ordinates of the stationary points on the

graph of y = f(x).

Verify that the maximum and minimum points are as shown in the diagram.

Justify the shape of the graph as x → ∞ and as x → –∞.

(iii) Find the area of the finite region between the graph of y = f(x), the x axis

and the line x = 1, giving your answer in terms of a logarithm.
[MEI]

20 The diagram shows a sketch of the graph of y = .

P is a stationary point on the curve. The line x = a is an asymptote to the curve.

(i) Write down the value of a.

(ii) Show that = – .

Hence find the co-ordinates of P. 

The area of the region enclosed by the graph of y = , the x axis, and

the lines x = 1 and x = 2 is denoted by A.

(iii) Using a suitable substitution, show that A = ∫1

3
du.

Deduce that A = .

[MEI]

3ln3 + 2––––––––
12

u + 1–––––
4u2

x–––––––
(2x – 1)2

2x + 1–––––––
(2x – 1)3

dy
––
dx

x–––––––
(2x – 1)2

x–––––
1 + x2
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INVESTIGATION

● A series for ex

The exponential function can be written as the infinite series

ex = a0 + a1x + a2x2 + a3x3 + a4x4 + …

where a0, a1, a2, … are numbers.

You can find the value of a0 by substituting the value zero for x.

Since e0 =1, it follows that 1 = a0 + 0 + 0 + 0 + … , and so a0 = 1.

You can now write: ex = 1 + a1x + a2x2 +a3x3+ a4x4 + … .

Now differentiate both sides: ex = a1 + 2a2x + 3a3x2 + 4a4x3 + … ,

and substitute x = 0 again: 1 = a1 + 0 + 0 + 0 + … , and so a1 = 1 also.

Now differentiate a second time, and again substitute x = 0. This time you find

a2. Continue this procedure until you can see the pattern in the values of a0, a1,

a2, a3, … .

When you have the series for ex, substitute x = 1. The left-hand side is e1 or e, and

so by adding the terms on the right-hand side you obtain the value of e. You will

find that the terms become small quite quickly, so you will not need to use very

many to obtain the value of e correct to several decimal places.

If you are also studying statistics you will meet this series expansion of ex in

connection with the Poisson distribution.

INVESTIGATION

● Compound interest

You win £100000 in a prize draw and are offered two investment options.

A You are paid 100% interest at the end of 10 years, or

B You are paid 10% compound interest year by year for 10 years.

Under which scheme are you better off?

Final money £200 000
Clearly in scheme A, the ratio R = ––––––––––––– is –––––––– = 2.

Original money £100 000

What is the value of the ratio R in scheme B?

Suppose that you asked for the interest to be paid in 20 half-yearly instalments of

5% each (scheme C). What would be the value of R in this case?

Continue this process, investigating what happens to the ratio R when the interest

is paid at increasingly frequent intervals.

Is there a limit to R as the time interval between interest payments tends to zero?
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Integrating sinx and cosx

Since (sinx) = cosx

it follows that ∫ cosx dx = sinx + c

Similarly, since (cosx) = –sinx

it also follows that (–cosx) = sinx

and therefore ∫ sinx dx = –cosx + c

With this knowledge, you can now integrate not only the functions sinx and cosx,

but also many other functions by using substitution.

EXAMPLE 5.12 Find ∫sin7x dx.

SOLUTION

Make the substitution u = 7x. Then differentiate.

= 7

⇒ dx = du.

∫ sin7x dx = ∫ sinu du

= – cosu + c

= – cos7x + c

Note

You would not usually use a substitution for an integral like this but would quote the

general result that 

1∫ sinkx dx = – – coskx + c.
k

1Similarly ∫ coskx dx = – sinkx + c.
k

1–
7

1–
7

1–
7

1–
7

du
––
dx

d
––
dx

d
––
dx

d
––
dx
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EXAMPLE 5.13 Find ∫ 2x cos(x2 + 1) dx.

SOLUTION

Make the substitution u = x2 + 1. Then differentiate.

= 2x

⇒ 2x dx = du

∫ 2x cos(x2 + 1) dx = ∫ cosu du

= sinu + c

= sin(x2 + 1) + c

Notice that the last example involves two functions of x multiplied together,

namely 2x and cos(x2 + 1). These two functions are related by the fact that 2x is

the derivative of x2 + 1. Because of this relationship, the substitution u = x2 + 1

may be used to perform the integration. You can apply this method to other

integrals involving trigonometrical functions, as in the next example.

EXAMPLE 5.14 Find ∫
π-∑

0
cosx sin2 x dx.

(Remember that sin2 x means the same as (sinx)2.)

SOLUTION

This integral is the product of two functions, cosx and (sinx)2.

Now (sinx)2 is a function of sinx, and cosx is the derivative of sinx, so you

should use the substitution u = sinx.

Differentiating:

= cosx ⇒ du = cosx dx.

The limits of integration need to be changed as well:

x = 0 ⇒ u = 0

x = ⇒ u = 1

Therefore ∫
π-∑

0
cosx sin2 x dx = ∫1

0
u2du

u3 1
= [ ]3 0

= .

Note

You may find that as you gain practice in this type of integration you become able to

work out the integral without writing down the substitution. However, if you are

unsure, it is best to write down the whole process.

1–
3

π–
2

du
––
dx

du
––
dx
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EXERCISE 5C 1 Integrate the following functions with respect to x.

(i) sinx – 2cosx (ii) 3cosx + 2sinx (iii) 5sinx + 4cosx

2 Integrate the following functions by using the substitution given, or otherwise.

(i) cos3x u = 3x

(ii) sin(1 – x) u = 1 – x

(iii) sinx cos3 x u = cosx

sinx(iv) ––––––– u = 2 – cosx
2 – cosx

sinx(v) tanx u = cosx (write tanx as ––––)cosx
(vi) sin2x(l + cos2x)2 u = 1 + cos2x

3 Use a suitable substitution to integrate the following functions.

(i) 2x sin(x2) (ii) cos xesin x

tan x cos x(iii) –––– (iv) ––––
cos2 x sin2 x

4 Evaluate the following definite integrals by using suitable substitutions.

(i) ∫0
cos(2x – ) dx (ii) ∫0

cosx sin3x dx

(iii) ∫
π

0
xsin(x2) dx (iv) ∫0

dx

1
(v) ∫ 0

––––––––––––– dx
cos2 x(1 + tanx)

5 (i) Use a graphic calculator or computer to sketch the graph of the function 

y = sinx(cosx – 1)2 for 0 � x � 4π.

(ii) Use definite integration to find the area between the positive part of one

cycle of the curve and the x axis.

Integration by parts

There are still many integrations which you cannot yet do. In fact, many

functions cannot be integrated at all, although virtually all functions can be

differentiated. However, some functions can be integrated by techniques which

you have not yet met. Integration by parts is one of those techniques.

EXAMPLE 5.15 Find ∫x cosx dx.

SOLUTION

The function to be integrated is clearly a product of two simpler functions, x and

cosx, so your first thought may be to look for a substitution to enable you to

perform the integration. However, there are some functions which are products

but which cannot be integrated by substitution. This is one of them. You need a

new technique to integrate such functions.

π–
4

etanx
–––––
cos2x

π–
4

π–
4π–

2

π–
2
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Take the function x sinx and differentiate it, using the product rule.

d–– (x sinx) = x cosx + sinx.
dx

Now integrate both sides. This has the effect of ‘undoing’ the differentiation, so

x sinx = ∫ x cosx dx + ∫ sinx dx.

Rearranging this gives

∫ x cosx dx = x sinx – ∫ sinx dx

= x sinx – (–cosx) + c

= x sinx + cosx + c.

This has enabled you to find the integral of x cosx.

The work in this example can be generalised into the method of integration by

parts. Before coming on to that, do the following activity.

ACTIVITY 5.3 For each of the following

(a) differentiate the given function f(x) using the product rule

(b) rearrange your expression to find an expression for the given integral I

(c) use this expression to find the given integral.

(i) f(x) = x cosx I = ∫ x sinx dx

(ii) f(x) = xe2x I = ∫ 2xe2x dx

●? The work in Activity 5.3 has enabled you to work out some integrals which you

could not previously have done, but you needed to be given the functions to be

differentiated first. Effectively you were given the answers.

Look at the expressions you found in part (b) of Activity 5.3. 

Can you see any way of working out these expressions without starting by

differentiating a given product?

The general result for integration by parts

The method just investigated can be generalised.

Look back at Example 5.15. Use u to stand for the function x, and v to stand for

the function sinx.

Using the product rule to differentiate the function uv

d                 du dv–– (uv) = v –– + u ––.
dx dx dx
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Integrating gives

du dvuv = ∫ v –– dx + ∫ u –– dx.
dx dx

Rearranging gives

dv du∫ u–– dx = uv – ∫ v –– dx.
dx dx

This is the formula you use when you need to integrate by parts.

In order to use it, you have to split the function you want to integrate into two

simpler functions. In Example 5.15 you would split x cosx into the two functions 

x and cosx. One of these functions will be called u, and the other , to fit the 

left-hand side of the expression. You will need to decide which will be which. Two 

considerations will help you.

● As you want to use on the right-hand side of the expression, u should be a 

function which becomes a simpler function after differentiation. So in this 

case, u will be the function x.

● As you need v to work out the right-hand side of the expression, it must be 

possible to integrate the function to obtain v. In this case, will be the 

function cosx.

So now you can find ∫x cosx dx.

Put u = x ⇒ = 1

and = cosx ⇒ v = sinx

Substituting in

∫u dx = uv – ∫v dx

gives

∫xcosx dx = x sinx – ∫1 × sinx dx

= x sinx – (–cosx) + c

= x sinx + cosx + c.

EXAMPLE 5.16 Find ∫2xex dx.

SOLUTION

First split 2xex into the two simpler functions, 2x and ex. Both can be integrated

easily, but as 2x becomes a simpler function after differentiation and ex does not,

take u to be 2x.

du––
dx

dv––
dx

dv––
dx

du––
dx

dv––
dx

dv––
dx

du––
dx

dv––
dx
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u = 2x ⇒ = 2

= ex ⇒ v = ex

Substituting in

∫u dx = uv – ∫v dx

gives

∫2xex dx = 2xex – ∫2ex dx

= 2xex – 2ex + c.

In some cases, the choices of u and v may be less obvious.

EXAMPLE 5.17 Find ∫x lnx dx.

SOLUTION

It might seem at first that u should be taken as x, because it becomes a simpler

function after differentiation.

u = x ⇒ = 1

= lnx

Now you need to integrate lnx to obtain v. Although it is possible to integrate 

lnx, it has to be done by parts, as you will see in the next example. The wrong

choice has been made for u and v, resulting in a more complicated integral. 

So instead, let u = lnx.

u = lnx ⇒ =

= x ⇒ v = x2

Substituting in

∫u dx = uv – ∫v dx

gives

x2

∫x ln x dx = x2 ln x – ∫ dx

= x2 ln x – ∫ x dx

= x2 lnx – x2 + c.1–
4

1–
2

1–
2

1–
2

–––
x

1–
2

1–
2

du––
dx

dv––
dx

1–
2

dv––
dx

1–
x

du––
dx

dv––
dx

du––
dx

du––
dx

dv––
dx

dv––
dx

du––
dx
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EXAMPLE 5.18 Find ∫ lnx dx.

SOLUTION

You need to start by writing ln x as 1 lnx and then use integration by parts.

As in the last example, let u = lnx.

u = lnx ⇒ =

= 1 ⇒ v = x

Substituting in

∫u dx = uv – ∫v dx

gives

∫1lnx dx = x lnx – ∫x
1
/ ×

/ 1
dx

= x lnx – x + c.

● Using integration by parts twice

Sometimes it is necessary to use integration by parts twice or more to complete

the integration successfully.

EXAMPLE 5.19 Find ∫x2 sinx dx.

SOLUTION

First split x2 sinx into two: x2 and sinx. As x2 becomes a simpler function after

differentiation, take u to be x2.

u = x2 ⇒ = 2x

= sinx ⇒ v = –cosx.

Substituting in

∫u dx = uv – ∫v dx

gives

∫x2 sinx dx = –x2 cosx – ∫–2x cosx dx

= –x2 cosx + ∫2x cosx dx. �1

du––
dx

dv––
dx

dv––
dx

du––
dx

1–
x

du––
dx

dv––
dx

dv––
dx

1–
x

du––
dx
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Now the integral of 2x cos x cannot be found without using integration by parts

again. It has to be split into the functions 2x and cos x, and as 2x becomes a

simpler function after differentiation, take u to be 2x.

u = 2x ⇒ = 2

= cos x ⇒ v = sin x

Substituting in

∫u dx = uv – ∫v dx

gives

∫2xcosx dx = 2x sinx – ∫2 sin x dx

= 2x sinx – (–2 cos x) + c

= 2x sinx + 2 cos x + c.

So in �1 ∫x2 sinx dx = –x2 cosx + 2x sinx + 2cosx + c.

The technique of integration by parts is usually used when the two functions 

are of different types: polynomials, trigonometrical functions, exponentials,

logarithms. There are, however, some exceptions, as in questions 3 and 4 of

Exercise 5D.

Integration by parts is a very important technique which is needed in many other

branches of mathematics. For example, integrals of the form ∫ x f(x) dx are used

in statistics to find the mean of a probability density function, and in mechanics

to find the centre of mass of a shape. Integrals of the form ∫ x2 f(x) dx are used in

statistics to find variance and in mechanics to find moments of inertia.

EXERCISE 5D 1 For each of these integrals

(a) write down the function to be taken as u and the function to be taken

as

(b) use the formula for integration by parts to complete the integration.

(i) ∫xex dx (ii) ∫xcos3x dx

(iii) ∫(2x + 1)cosx dx (iv) ∫xe–2x dx

(v) ∫xe–x dx (vi) ∫x sin2x dx

2 Use integraton by parts to integrate each of these functions. 

(i) x3 lnx (ii) 3xe3x

(iii) 2xcos2x (iv) x2 ln2x

dv––
dx

du––
dx

dv––
dx

dv––
dx

du––
dx
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3 Find ∫x 1 + x dx

(i) by using integration by parts 

(ii) by using the substitution u = 1 + x.

4 Find ∫2x(x – 2)4 dx

(i) by using integration by parts

(ii) by using the substitution u = x – 2.

5 (i) By writing lnx as the product of lnx and 1, use integration by parts to find

∫ lnx dx.

(ii) Use the same method to find ∫ ln3x dx.

(iii) Write down ∫ lnpx dx where p � 0.

● The remaining questions relate to enrichment material.

6 Find ∫x2ex dx.

7 Find ∫(2 – x)2 cosx dx.

Definite integration by parts

When you use the method of integration by parts on a definite integral, it is

important to remember that the term uv on the right-hand side of the expression

has already been integrated and so should be written in square brackets with the

limits indicated.

b∫ b

a
u dx = [uv] – ∫ b

a
v dx.

a

EXAMPLE 5.20 Evaluate ∫2

0
xex dx.

SOLUTION

Put u = x ⇒ = 1

and = ex ⇒ v = ex.

Substituting in

b∫ b

a
u dx = [uv] – ∫ b

a
v dx

a

du––
dx

dv––
dx

dv––
dx

du––
dx

du––
dx

dv––
dx
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gives

∫ 2

0
xex dx = [xex]2

0
– ∫ 2

0
ex dx

= [xex]2

0
– [ex]2

0

= (2e2 – 0) – (e2 – e0)

= 2e2 – e2 + 1

= e2 + 1.

EXAMPLE 5.21 Find the area of the region between the curve y = x cosx and the x axis, between

x = 0 and x = . 

SOLUTION

Figure 5.8 shows the region whose

area is to be found.

To find the required area, you

need to integrate the function 

x cosx between the limits 0 and .

You therefore need to work out 

∫0
x cosx dx.

Put u = x ⇒ = 1

and = cosx ⇒ v = sinx

Substituting in

b

∫ b

a
u dx = [uv] – ∫ b

a
v dx.

a

gives

∫ 0
x cosx dx = [x sinx]

0
– ∫0

sinx dx

= [x sinx]
0

– [–cosx]
0

= [x sinx + cosx]
0

= ( + 0) – (0 + 1)
= – 1.

So the required area is – 1 square units.π–
2

π–
2

π–
2

π–
2

π–
2

π–
2

π–
2π–

2
π–
2

du––
dx

dv––
dx

dv––
dx

du––
dx

π–
2

π–
2

π–
2
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EXERCISE 5E 1 Evaluate these definite integrals.

(i) ∫1

0
xe3x dx (ii) ∫

π

0
(x – 1)cosx dx

(iii) ∫2

0
(x + 1)ex dx (iv) ∫2

1
ln2x dx

(v) ∫0
x sin2x dx (vi) ∫4

1
x2 lnx dx

2 (i) Find the co-ordinates of the points where the graph of y = (2 – x)e–x cuts

the x and y axes.

(ii) Hence sketch the graph of y = (2 – x)e–x.

(iii) Use integration by parts to find the area of the region between the x axis,

the y axis and the graph y = (2 – x)e–x.

3 (i) Sketch the graph of y = x sinx from x = 0 to x = π and shade the region 

between the curve and the x axis.

(ii) Find the area of this region using integration by parts.

4 Find the area of the region between the x axis, the line x = 5 and the graph 

y = lnx.

5 Find the area of the region between the x axis and the graph y = x sinx from  

x = 0 to x = .

6 Find the area of the region between the negative x axis and the graph 

y = x x + 1

(i) using integration by parts

(ii) using the substitution u = x + 1.

7 The sketch shows the curve with equation y = x2 ln2x.

Find the x co-ordinate of the point where the curve cuts the x axis.

Hence calculate the area of the shaded region using the method of integration by

parts applied to the product of ln 2x and x2.

Give your answer correct to 3 decimal places.

[MEI]

π–
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2
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● The remaining questions relate to enrichment material.

8 Show that ∫1

0
x2ex dx = e – 2.

Show that the use of the trapezium rule with five strips (six ordinates) gives an

estimate that is about 3.8% too high. 

Explain why approximate evaluation of this integral using the trapezium rule

will always result in an overestimate, however many strips are used.
[MEI]

9 If In = ∫1

0
tne–t dt, where n is an integer, show that I0 = 1 – e–1.

By integrating by parts, show that In = nIn – 1 – e–1 for n � 1.

Hence evaluate I3, leaving your answer in terms of e–1.
[MEI]

KEY POINTS

1 ∫kx n dx = + c where k and n are constants but n ≠ –1.

2 Substitution is often used to change a non-standard integral into a

standard one.

3 ∫ex dx = ex + c

4 ∫ dx = ln |x | + c

f ´(x)
5 ∫ –––– dx = ln | f(x) | + c

f(x)

6 ∫sinkx dx = – coskx + c

∫coskx dx = sinkx + c

7 Some products may be integrated by parts using the formula

∫u dx = uv – ∫v dx.
du––
dx

dv––
dx

1–
k

1–
k

1–
x

kxn+1
––––
n + 1
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Numerical solution of
equations

It is the true nature of mankind to learn from his mistakes.

Fred Hoyle

●? Which of the following equations can be solved algebraically, and which cannot? 

For each equation find a solution, accurate or approximate.

(i) x2 – 4x + 3 = 0 (ii) x2 + 10x + 8 = 0 (iii) x5 – 5x + 3 = 0

(iv) x3 – x = 0 (v) ex = 4x

You probably realised that the equations x5 – 5x + 3 = 0 and ex = 4x cannot be

solved algebraically. You may have decided to draw their graphs, either manually

or using a graphic calculator or computer package, as in figure 6.1.

The graphs show you that

● x5 – 5x + 3 = 0 has three roots, lying in the intervals [–2, –1], [0, 1] and [1, 2].

● ex = 4x has two roots, lying in the intervals [0, 1] and [2, 3].

The problem now is how to find the roots to any required degree of accuracy, and

as efficiently as possible.

In many real problems, equations are obtained for which solutions using

algebraic or analytical methods are not possible, but for which you nonetheless

want to know the answers. In this chapter you will be introduced to numerical

methods for solving such equations. In applying these methods, keep the

following points in mind.
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● Only use numerical methods when algebraic ones are not available. If you can

solve an equation algebraically (e.g. a quadratic equation), that is the right

method to use.

● Before starting to use a calculator or computer program, always start by

drawing a sketch graph of the function whose equation you are trying to solve.

This will show you how many roots the equation has and their approximate

positions. It will also warn you of possible difficulties with particular methods.

When using a graphic calculator or computer package ensure that the range of

values of x is sufficiently large to, hopefully, find all the roots.

● Always give a statement about the accuracy of an answer (e.g. to 5 decimal

places, or ± 0.000 005). An answer obtained by a numerical method is

worthless without this; the fact that at some point your calculator display

reads, say, 1.676 470 588 2 does not mean that all these figures are valid.

● Your statement about the accuracy must be obtained from within the

numerical method itself. Usually you find a sequence of estimates of ever-

increasing accuracy.

● Remember that the most suitable method for one equation may not be that for

another.

Note

An interval written as [a, b] means the interval between a and b, including a and b.

This notation is used in this chapter. If a and b are not included, the interval is written

(a, b). You may also elsewhere meet the notation ]a, b[, indicating that a and b are

not included.

Interval estimation – change of sign methods

Assume that you are looking for the roots of the equation f(x) = 0. This means

that you want the values of x for which the graph of y = f(x) crosses the x axis.

As the curve crosses the x axis, f(x) changes sign, so provided that f(x) is a

continuous function (its graph has no asymptotes or other breaks in it), once

you have located an interval in which f(x) changes sign, you know that that

interval must contain a root. In both of the graphs in figure 6.2, there is a root

lying between a and b.
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You have seen that x5 – 5x + 3 = 0 has roots in the intervals [–2, –1], [0, 1] and [1, 2].

There are several ways of homing in on such roots systematically. Three of these are

now described, using the search for the root in the interval [0, 1] as an example.

Decimal search

In this method you first take increments in x of size 0.1 within the interval [0, 1],

working out the value of the function f(x) = x5 – 5x + 3 for each one. You do this

until you find a change of sign.

There is a sign change, and therefore a root, in the interval [0.6, 0.7] since the

function is continuous. Having narrowed down the interval, you can now

continue with increments of 0.01 within the interval [0.6, 0.7].

This shows that the root lies in the interval

[0.61, 0.62].

Alternative ways of expressing this information are that the root can be taken as

0.615 with a maximum error of ± 0.005, or the root is 0.6 (to 1 decimal place).

This process can be continued by considering x = 0.611, x = 0.612, … to obtain

the root to any required number of decimal places.

●? How many steps of decimal search would be necessary to find each of the values

0.012, 0.385, and 0.989, using x = 0 as a starting point?

When you use this procedure on a computer or calculator you should be aware

that the machine is working in base 2, and that the conversion of many simple

numbers from base 10 to base 2 introduces small rounding errors. This can lead

to simple roots such as 2.7 being missed and only being found as 2.699 999.

Interval bisection

This method is similar to the decimal search, but instead of dividing each interval
into ten parts and looking for a sign change, in this case the interval is divided
into two parts – it is bisected.

Looking as before for the root in the interval [0, 1], you start by taking the 

mid-point of the interval, 0.5.

In
terval estim

atio
n

 – ch
an

g
e o

f sig
n

 m
eth

o
d

s

137

C3
6

x 0.60 0.61 0.62

f(x) 0.08 0.03 –0.01

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

f(x) 3.00 2.50 2.00 1.50 1.01 0.53 0.08 –0.33



f(0.5) = 0.53, so f(0.5) � 0. Since f(1) � 0, the root is in [0.5, 1].

Now take the mid-point of this second interval, 0.75.

f(0.75) = –0.51, so f(0.75) � 0. Since f(0.5) � 0, the root is in [0.5, 0.75].

The mid-point of this further reduced interval is 0.625.

f(0.625) = –0.03, so the root is in the interval [0.5, 0.625].

The method continues in this manner until any required degree of accuracy is

obtained. However, the interval bisection method is quite slow to converge to the

root, and is cumbersome when performed manually.

ACTIVITY 6.1 Investigate how many steps of this method you need to achieve an accuracy of

1, 2, 3 and n decimal places, having started with an interval of length 1.

● Linear interpolation

A refinement of this type of method arises when you use not only the signs of the

function at the end points of the interval, but its values there as well, to help you

to define a reduced interval. As before, an interval (usually of unit length)

containing the root is first located. The part of the curve in this interval is then

approximated by the chord joining its end points, and the x co-ordinate of the

point where the chord crosses the x axis is calculated.

Looking again at the function f(x) = x5 – 5x + 3, you can see that f(0) = 3 and

f(1) = –1. Figure 6.3 shows the chord of the curve between (0, 3) and (1, –1).

It crosses the x axis at 0.75.

The value of x5 – 5x + 3 at x = 0.75 is then calculated: f(0.75) = –0.5127.

Since f(0) � 0 and f(0.75) � 0, the root must lie in the interval [0, 0.75].

The procedure is then repeated successively until the required level of accuracy is

achieved. The second approximation is shown in figure 6.4.
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For this example, the method of linear

interpolation approaches the root more

rapidly than the previous methods, the

successive intervals being

[0, 1], [0, 0.75], [0, 0.6405],

[0, 0.6209], [0, 0.6184],

[0, 0.6181], [0, 0.6180].

The sequence of numbers representing

the right-hand end of the interval

appears to be converging, so that you

would suspect it to be getting close to

the root. (It is not always the right-hand

end of the interval that does this: in

other examples, it may be the left-hand end.) The left-hand end of the interval is

still far from the root, however, so you cannot be sure of your level of accuracy. You

now need to see if you can move the left-hand end much closer to the suspected

root without a change of sign. You might look at x = 0.6179, for example. It turns

out that f(0.6179) is positive, so the interval for the root is now closed down to

[0.6179, 0.6180].

This last step – finding a bound for the other end of the interval – is absolutely

essential in order to justify the accuracy of any stated solution.

It is difficult to predict the number of steps of linear interpolation which would

be needed to reach any required level of accuracy. The rate at which the root is

found (the rate of convergence) is very variable for this method, as shown in

figure 6.5.
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y = f(x)
x

y

(0.75, –0.5127)

second approximation: 0.6405

Figure 6.4

!
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xO

root

first approximation

second approximation

y = f (x)
y

xO

root

first approximation
second approximation

y = f (x)

third approximation
fourth approximation

Slow rate of convergenceRapid rate of convergence

Figure 6.5



ACTIVITY 6.2 Given that the equation f(x) = 0 has a root between x = a and x = b, show that

linear interpolation would next lead you to investigate

x = .

Error (or solution) bounds

Change of sign methods have the great advantage that they automatically provide

bounds (the two ends of the interval) within which a root lies, so the maximum

possible error in a result is known. Knowing that a root lies in the interval

[0.61, 0.62] means that you can take the root as 0.615 with a maximum error

of ± 0.005.

Problems with change of sign methods

There are a number of situations which can cause problems for change of sign

methods if they are applied blindly, for example by entering the equation into a

computer program without prior thought. In all cases you can avoid problems by

first drawing a sketch graph, provided that you know what dangers to look out for.

The curve touches the x axis

In this case there is no change of sign, so change of sign methods are doomed to

failure (see figure 6.6).

There are several roots close together

Where there are several roots close together, it is easy to miss a pair of them. 

The equation

f(x) = x3 – 1.9x2 + 1.11x – 0.189 = 0 

has roots at 0.3, 0.7 and 0.9. A sketch of the curve of f(x) is shown in figure 6.7.

bf(a) – af(b)–––––––––––
f(a) – f(b)
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In this case f(0) � 0 and f(1) � 0, so you know there is a root between 0 and 1.

A decimal search would show that f(0.3) = 0, so that 0.3 is a root. You would be

unlikely to search further in this interval.

Interval bisection gives f(0.5) � 0, so you would search the interval [0, 0.5] and

eventually arrive at the root 0.3, unaware of the existence of those at 0.7 and 0.9.

Linear interpolation would give you 0.9 only.

There is a discontinuity in f(x)

The curve y = has a discontinuity at x = 2.7, as shown by the asymptote in

figure 6.8.

The equation = 0 has no root, but all change of sign methods will  

converge on a false root at x = 2.7.

None of these problems will arise if you start by drawing a sketch graph.

Note: Use of technology

It is important that you understand how each method works and are able, if

necessary, to perform the calculations using only a scientific calculator. However,

these repeated operations lend themselves to the use of a spreadsheet or a

programmable calculator and you need to use a variety of approaches when working

through the following exercises. Many packages, such as Autograph, will both

perform the methods and illustrate them graphically.

1–––––
x – 2.7 

1–––––
x – 2.7 
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EXERCISE 6A 1 Find the roots of x5 – 5x + 3 = 0 in the intervals [–2, –1] and [1, 2], correct to 
2 decimal places, using

(i) decimal search  
(ii) interval bisection.

Comment on the ease and efficiency with which the roots are approached by

each method.

2 (i) Use a systematic search for a change of sign, starting with x = –2, to locate 

intervals of unit length containing each of the three roots of

x3 – 4x2 – 3x + 8 = 0.

(ii) Sketch the graph of f(x) = x3 – 4x2 – 3x + 8.

(iii) Use the method of interval bisection to obtain each of the roots correct to

2 decimal places.

(iv) Use your last intervals in part (iii) to give each of the roots in the form       

a ± (0.5)n where a and n are to be determined.

3 The diagram shows a sketch of the graph of f(x) = ex – x3 without scales.

(i) Use a systematic search for a change of sign to locate intervals of unit

length containing each of the roots.

(ii) Use a change of sign method to find each of the roots correct to 3 decimal

places.

4 (i) Show that the equation x3 + 3x – 5 = 0 has no turning points.

(ii) Show with the aid of a sketch that the equation can have only one root,

and that this root must be positive.

(iii) Find the root, correct to 3 decimal places.

5 (i) How many roots has the equation ex – 3x = 0?

(ii) Find an interval of unit length containing each of the roots.

(iii) Find each root correct to 2 decimal places.

6 (i) Sketch y = 2x and y = x + 2 on the same axes.

(ii) Use your sketch to deduce the number of roots of the equation 2x = x + 2.

(iii) Find each root, correct to 3 decimal places if appropriate.
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7 Find all the roots of x3 – 3x + 1 = 0, giving your answers correct to 2 decimal

places.

8 For each of the equations below

(a) sketch the curve

(b) write down any roots

(c) investigate what happens when you use a change of sign method with a

starting interval of [–0.3, 0.7].

(i) y = (ii) y = (iii) y =

Fixed point iteration 

In fixed point iteration you find a single value or point as your estimate for the

value of x, rather than establishing an interval within which it must lie. This

involves an iterative process, a method of generating a sequence of numbers by

continued repetition of the same procedure. If the numbers obtained in this

manner approach some limiting value, then they are said to converge to this value.

INVESTIGATION

Notice what happens in each of the following cases, and try to find some

explanation for it.

(i) Set your calculator to the radian mode, enter zero if not automatically

displayed and apply the cosine function repeatedly.

(ii) Enter any positive number into your calculator and apply the square root

function repeatedly. Try this for both large and small numbers.

(iii) Enter any positive number into your calculator and press the sequence

repeatedly. Write down the number which appears each time 

you press . The sequence generated appears to converge. You may recognise

the number to which it appears to converge: it is called the Golden Ratio.

Two methods of fixed point iteration are introduced in this chapter: the first one

involves rearranging the equation to be solved into the form x = g(x). The second

is called the Newton–Raphson method; it is actually a special case of rearranging

the equation, but it is treated as a separate method here.

Rearranging the equation f(x) = 0 into the form x = g(x)

The first step, with an equation f(x) = 0, is to rearrange it into the form x = g(x).

Any value of x for which x = g(x) is clearly a root of the original equation, as

shown in figure 6.9.

x2
–––––
x2 + 1 

x–––––
x2 + 1 

1–
x

E
xercise 6

A

143

C3
6

1

+

= √

√



When f(x) = x2 – x – 2, f(x) = 0 is the same as x = x2 – 2.

The equation x5 – 5x + 3 = 0 which you met earlier can be rewritten in a number of

ways. One of these is 5x = x5 + 3, giving

x = g(x) = .

Figure 6.10 shows the graphs of y = x and y = g(x) in this case.

x5 + 3–––––
5
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This provides the basis for the iterative formula

xr+1 = .

Taking x = 1 as a starting point to find the root in the interval [0, 1], successive

approximations are:

x1 = 1, x2 = 0.8, x3 = 0.6655, x4= 0.6261, x5 = 0.6192,

x6 = 0.6182, x7 = 0.6181, x8 = 0.6180, x9 = 0.6180.

In this case the iteration has converged quite rapidly to the root for which you

were looking.

●? Another way of arranging x5 – 5x + 3 = 0 is x =
5

5x – 3. What other possible

rearrangements can you find? How many are there altogether?

The iteration process is easiest to understand if you consider the graph. Rewriting the

equation f(x) = 0 in the form x = g(x) means that instead of looking for points where

the graph of y = f(x) crosses the x axis, you are now finding the points of intersection

of the curve y = g(x) and the line y = x.

What you do What it looks like on the graph

● Choose a value, x1, of x Take a starting point on the x axis

● Find the corresponding value of g(x1) Move vertically to the curve y = g(x)

● Take this value g(x1) as the new Move horizontally to the line y = x

value of x, i.e. x2 = g(x1)

● Find the value of g(x2) and so on. Move vertically to the curve

xr
5 + 3

––––––
5
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The effect of several repeats of this procedure is shown in figure 6.11. The

successive steps look like a staircase approaching the root: this type of diagram is

called a staircase diagram. In other examples, a cobweb diagram may be produced,

as shown in figure 6.12.

Successive approximations to the root are found by using the formula

xr+1 = g(xr).

This is an example of an iterative formula. If the resulting values of xr approach

some limit, a, then a = g(a), and so a is a fixed point of the iteration. It is also a

root of the original equation f(x) = 0.

Note

In the staircase diagram, the values of xr approach the root from one side, but in a

cobweb diagram they oscillate about the root. From figures 6.11 and 6.12 it is clear

that the error (the difference between a and xr) is decreasing in both diagrams.

Using different arrangements of the equation

So far only one possible arrangement of the equation x5 – 5x + 3 = 0 has been

used. What happens when you use a different arrangement, for example 

x =
5

5x – 3, which leads to the iterative formula

xr+1 =
5

5xr – 3?

The resulting sequence of approximations is:

x1 = 1, x2 = 1.1486..., x3 = 1.2236..., x4 = 1.2554...,

x5 = 1.2679..., x6 = 1.2727..., x7 = 1.2745..., x8 = 1.2752...,

x9 = 1.2755..., x10 = 1.2756..., x11 = 1.2756..., x12 = 1.2756....
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In the calculations the full calculator values of xr were used, but only the first 4

decimal places have been written down.

The process has clearly converged, but in this case not to the root for which you

were looking: you have identified the root in the interval [1, 2]. If instead you 

had taken x1 = 0 as your starting point and applied the second formula, you

would have obtained a sequence converging to the value –1.6180, the root in

the interval [–2, –1].

The choice of g(x)

A particular rearrangement of the equation f(x) = 0 into the form x = g(x) will

allow convergence to a root a of the equation, provided that –1 � g´(a) � 1 for

values of x close to the root.

Look again at the two rearrangements of x5 – 5x + 3 = 0 which were suggested.

When you look at the graph of

y = g(x) =
5

5x – 3,

as shown in figure 6.13, you can see that its gradient near A, the root you were

seeking, is greater than 1. This makes

xr+1 =
5

5xr – 3,

an unsuitable iterative formula for finding the root in the interval [0, 1], as you

saw earlier.
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When an equation has two or more roots, a single rearrangement will not usually

find all of them. This is demonstrated in figure 6.14.

ACTIVITY 6.3 Try using the iterative formula xr+1 = to find the roots in the intervals        

[–2, –1] and [1, 2]. In both cases use each end point of the interval as a starting

point. What happens? 

Explain what you find by referring to a sketch of the curve y = .

Accuracy of method of rearranging equation

Iterative procedures give you a sequence of point estimates. A staircase diagram,

for example, might give the following.

1, 0.8, 0.6655, 0.6261, 0.6192

What can you say at this stage?

Looking at the pattern of convergence it seems as though the root lies between

0.61 and 0.62, but you cannot be absolutely certain from the available evidence. 

To be certain you must look for a change of sign.

f(0.61) = +0.034…    f(0.62) = –0.0083… 

● Explain why you can now be quite certain that your judgement is correct. 

Note

Estimates from a cobweb diagram oscillate above and below the root and so

naturally provide you with bounds.

When does this method fail?

It is always possible to rearrange an equation f(x) = 0 into the form x = g(x), but

this only leads to a successful iteration if successive iterations converge and they

converge to the root for which you are looking.

x5 + 3–––––
5

xr
5 + 3

–––––
5
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Figure 6.14

The gradient of y = g(x) is greater 
than 1 (i.e. the gradient of the line y = x)
and so the iteration xr+1 = g(xr) does not

converge to the root x = b.

The gradient of y = g(x) is less than
1 (i.e. the gradient of the line y = x)

and so the iteration xr+1 = g(xr)
converges to the root x = a.



When deciding on the suitablity or otherwise of a particular rearrangment you

must check its gradient near the root you are seeking. In most cases, it is adequate

to do this by comparing the gradient with that of y = x or y = –x.

A graphic calculator or computer package is  particularly helpful here.

EXERCISE 6B 1 (i) Show that the equation x3 – x – 2 = 0 has a root between 1 and 2.

(ii) The equation is rearranged into the form x = g(x), where 

g(x) =
3

x + 2. 

Sketch y = g(x) and show that –1 � g´(x) � 1 for values of x in the interval 

[1, 2].

(iii) Use the iterative formula suggested by this rearrangement to find the value

of the root to 3 decimal places.

2 (i) Show that the equation e–x – x + 2 = 0 has a root in the interval [2, 3].

(ii) The equation is rearranged into the form x = g(x) where g(x) = e–x + 2.

Show that – 1 � g´(x) � 1 for values of x in the interval [2, 3].

(iii) Use the iterative formula suggested by this rearrangement to find the value

of the root to 3 decimal places.

3 (i) By considering f´(x), where f(x) = x3 + x – 3, show that there is exactly one

real root of the equation x3 + x – 3 = 0.

(ii) Show that the root lies in the interval [1, 2].

(iii) Rearrange the equation into the form x = g(x) where –1 � g´(x) � 1 for

values of x close to the root and illustrate this.

(iv) Hence find the root correct to 4 decimal places.

4 (i) Show that the equation ex + x – 6 = 0 has a root in the interval [1, 2].

(ii) Show that this equation may be written in the form x = ln(6 – x).

(iii) Hence find the root correct to 3 decimal places.

5 (i) Sketch the curves y = ex and y = x2 + 2 on the same graph.

(ii) Use your sketch to explain why the equation ex – x2 – 2 = 0 has only one

root.

(iii) Rearrange this equation in the form x = g(x).

(iv) Find the root correct to 3 decimal places

6 (i) Show that x2 = ln(x + 1) for x = 0 and for one other value of x.

(ii) Use the method of fixed point iteration to find the second value to 

3 decimal places.

7 (i) Sketch the graphs of y = x and y = cos x on the same axes, for 0 � x � .

(ii) Find the solution of the equation x = cos x to 5 decimal places.
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ACTIVITY 6.4 (i) Show that the equation lnx – sinx = 0 has only one root.

(ii) Rearrange the equation in the form x = g(x).

(iii) Explain your results when you try to find the root using the iteration

xr+1 = g(xr).

The Newton–Raphson method

This is another fixed point iteration method and, as for the previous method, it is

necessary to use an estimate of the root as a starting point.

You start with an estimate, x1, for a root of f(x) = 0. You then draw the tangent to

the curve y = f(x) at the point (x1, f(x1)). The point at which the tangent cuts the

x axis then gives the next approximation for the root, and the process is repeated,

as shown in figure 6.15.

The gradient of the tangent at (x1, f(x1)) is f´(x1). Since the equation of a straight

line can be written

y – y1 = m(x – x1),

the equation of the tangent is

y – f(x1) = f´(x1)[x – x1].

This tangent cuts the x axis at (x2, 0), so

0 – f(x1) = f´(x1)[x2 – x1].

Rearranging this gives

x2 = x1 – .

This gives rise to the Newton–Raphson iterative formula

xr+1 = xr – .f(xr)–––––
f´(xr)

f(x1)
–––––
f´(x1)
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Figure 6.15

This method is
sometimes referred to as

‘tangent-sliding’.



Returning to the equation x5 – 5x + 3 = 0, which has a root in the interval [0, 1],

you can write

f(x) = x5 – 5x + 3 and so f´(x) = 5x4 – 5.

The iterative formula is therefore

xr+1 = xr –

= xr –

=

Starting with x1 = 0 gives

x2 = 0.6, x3 = 0.6178676…, x4 = 0.6180339…, …

which is a faster rate of convergence than any of the earlier methods gave.

INVESTIGATION

What happens when you try x1 = 1 as a starting point in the iteration

xr+1= xr – ?

Illustrate this on a graph.

In this example the Newton–Raphson method gives an extremely rapid rate of

convergence. This is the case for most examples, even when the first

approximation is not particularly good. A discussion of the rate of convergence

of this method is beyond the scope of this text, but for manual calculations it is

almost always the most efficient method.

Problems with the Newton–Raphson method

Most problems that arise with the Newton–Raphson method fall into one or

other of the following three categories.

Poor choice of starting value

If your initial value is close enough to a root, the method will nearly always give

convergence to it. However if the initial value is not close to the root, or is near a

turning point of y = f(x), the iteration may diverge, or converge to another root.

When the first approximation is close to a turning point, f´(x1) will be very small.

In most cases this will mean that x2 is not very close to the root, as shown in

figure 6.16.

xr
5 – 5xr + 3

––––––––––
5xr

4 – 5

4xr
5 – 3

––––––
5xr

4 – 5

xr
5 – 5xr + 3

––––––––––
5xr

4 – 5

f(xr)–––––
f´(xr)
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In this case you may find that after two or three steps the values you compute are

converging rapidly, but they may be converging to a root other than the one

which you are trying to locate.

When the first approximation is at a stationary point, f ´(x1) = 0 so the method

cannot proceed.

The function is discontinuous

As with all numerical methods for solving equations, this method can break

down when the equation is that of a discontinuous function.

The function is not defined over the whole of 

In this case the tangent at (xi , f(xi)) may meet the axis at a point outside the

domain of the function.

EXERCISE 6C 1 (i) Sketch the curve f(x) = – x + 2.

(ii) Using the Newton–Raphson method find the root of the equation f(x) = 0,

starting with x1 = –5, correct to 3 decimal places.

(iii) What happens if the starting value is taken to be x1 = 0.5?

2 (i) Show that the equation x4 – 7x3 + 1 = 0 has a root in the interval [0, 1].

(ii) Use the Newton–Raphson method to find this root correct to 2 decimal

places, starting with  x1 = 1.

(iii) Explain why x1 = 0 is not a suitable starting point.

3 (i) Show that the equation ex – 3x2 = 0 has three roots in the interval [–1, 4].

(ii) Use the Newton–Raphson method to find each of the roots correct to

2 decimal places. In each case state the starting value which gave

convergence to the particular root.

(iii) A starting value x1 = 0, gives x2 = –1. Explain this result.

4 (i) Show that the equation x2 – 3x ln x = 0 has two roots in the interval [1, 5].

(ii) Use the Newton–Raphson method to find each root correct to 2 decimal

places.

5 Using the Newton–Raphson method or otherwise find, correct to 3 decimal

places, the value of x for which x = e–x.
[MEI]

x3
––
3
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6 (i) Show that the equation x3 – x2 – 2x + 1 = 0 has three roots in the 

interval [–2, 2].

(ii) Use the Newton–Raphson method to find each of the three roots correct

to 4 decimal places.

(iii) Investigate whether the root found is always that nearest the starting point.

7 (i) Show that the equation x3 – 3x2 + 1 = 0 has exactly three roots.

(ii) Use the Newton–Raphson method to find each of the two smaller roots

correct to 3 decimal places.

(iii) Find the largest root to the limit of the accuracy of your calculator, using

x1 = 20 as a starting point.

(iv) Investigate how many digits the method has fixed after each iteration, and

comment on your findings.

8 (i) Sketch the curves y = ex and y = . At how many points do they intersect?

(ii) Sketch the graph of the function – ex for all values of x.

(iii) Use the Newton–Raphson method to find the value of x where the curve     

y = – ex crosses the x axis, correct to 3 decimal places, taking x1 = 2.

(iv) Explain what happens if you use a starting value of x1 = 3.

The following investigations illustrate cases where problems arise when using the

Newton–Raphson method. In each case finish the investigation by suggesting

how the roots can be found as easily as possible.

INVESTIGATIONS

1 The function f(x) = ln(x + 2) – x is not defined for x � –2. The line x = –2 is

an asymptote, as shown in figure 6.17.

A systematic search for a sign change reveals that there are roots in the

intervals [–2, –1] and [1, 2]. Using the Newton–Raphson method with 

x1 = –1, try to find the smaller root. Describe what happens.

Now try x1 = –1.5. What happens now?

4–
x

4–
x

4–
x
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2 When using the sign-change principle to locate the roots of f(x) = 0, where 

f(x) = 9 – ,

the following results are obtained.

This shows that there are roots in each of the intervals [1, 2] and [2, 3].

Investigate what happens when the Newton–Raphson method is used to find

the smaller root using 1, 1.2, 1.4, 1.6, 1.8 and 2 as starting points.

KEY POINTS

Interval estimation

1 When f(x) is a continuous function, if f(a) and f(b) have opposite signs, there

will be at least one root of f(x) = 0 in the interval [a, b].

2 When an interval [a, b] containing a root has been found, this interval may be

reduced systematically by one of the following methods.

● Decimal search within the interval

● Interval bisection

●Linear interpolation

3 Solution bounds are provided automatically by these methods.

Fixed point iteration

4 Fixed point iteration may be used to solve an equation f(x) = 0 by either of 

the following methods.

● Rearranging the equation f(x) = 0 into the form x = g(x) where

–1 � g´(x) � 1 near the root, and using the iteration

xr+1 = g(xr).

● The Newton–Raphson method using the iteration

xr+1 =xr – .

5 Solution bounds are usually confirmed by demonstrating a change of sign of

f(x) between them.

f(xr)–––––
f´(xr)

1––––––––––
x2 – 4x + 4.1

x 0 1 2 3 4

f(x) 8.76 8.09 –1 8.09 8.76
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Algebra

At the age of twenty-one he wrote a treatise upon the Binomial

Theorem. ... On the strength of it, he won the Mathematical Chair at

one of our smaller Universities.

Sherlock Holmes on Professor Moriarty 

‘The Final Problem’ by Sir Arthur Conan Doyle

How would you find 101 correct to 

3 decimal places, without using a calculator?

Many people are able to develop a very high

degree of skill in mental arithmetic, particularly

those, such as bookmakers, whose work calls

for quick reckoning. There are also those who

have quite exceptional innate skills. M. Hari

Prasad, pictured right, is famous for his

mathematical speed; on one occasion he found

the square root of a six-digit number in just 

1 minute 3.8 seconds. 

While most mathematicians do not have

M. Hari Prasad’s high level of talent with

numbers, they do acquire a sense of when

something looks right or wrong. This often involves finding approximate values

of numbers, such as 101, using methods that are based on series expansions,

and these are the subject of the first part of this chapter.

INVESTIGATION

Using your calculator, write down the values of  1.02, 1.04, 1.06, …, giving

your answers correct to 2 decimal places. What do you notice?

Use your results to complete the following, giving the value of the constant k.

1.02 = (1 + 0.02)q-∑ ≈ 1 + 0.02k

1.04  = (1 + 0.04)q-∑ ≈ 1 + 0.04k

What is the largest value of x such that 1 + x ≈ 1 + kx is true for the same

value of k?
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The general binomial expansion

You have already met the binomial expansion in the form 

n n n n
(1 + x)n = 1 + ( )x + ( )x2 + ( )x3 + … + ( )xr + …

1         2           3                     r

which holds when n is any positive integer (or zero), that is n � �.

This may also be written as

n(n – 1) n(n – 1)(n – 2)
(1 + x)n = 1 + nx + ––––––– x2 + –––––––––––– x3 + …

2!                         3!

n(n – 1)(n – 2) … (n – r + 1)
+ –––––––––––––––––––––––– xr + …

r !

which, being the same expansion as above, also holds when n � �.

The general binomial theorem states that this second form, that is

n(n – 1) n(n – 1)(n – 2)
(1 + x)n = 1 + nx + ––––––– x2 + –––––––––––– x3 + …

2!                          3!

n(n – 1)(n – 2) … (n – r + 1)
+ –––––––––––––––––––––––– xr + …

r!

is true when n is any real number, but there are two important differences to

note when n � �.

● The series is infinite (or non-terminating).

● The expansion of (1 + x)n is valid only if |x | � 1.

Proving this result is beyond the scope of an A-level course but you can assume

that it is true.

Consider now the coefficients in the binomial expansion:

n(n – 1) n(n – 1)(n – 2) n(n – 1)(n – 2)(n – 3)
1 n ––––––– –––––––––––– –––––––––––––––––– …

2!                      3!                                  4!

When n = 0, we get 1    0    0    0    0    …    (infinitely many zeros)

n = 1 1    1    0    0    0    … ditto

n = 2 1    2    1    0    0    … ditto

n = 3 1    3    3    1    0    … ditto

n = 4 1    4    6    4    1    … ditto
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so that, for example

(1 + x)2 = 1 + 2x + x2 + 0x3 + 0x4 + 0x5 + …

(1 + x)3 = 1 + 3x + 3x2 + x3 + 0x4 + 0x5 + …

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4 + 0x5 + …

Of course, it is usual to discard all the zeros and write these binomial coefficients

in the familiar form of Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

and the expansions as

(1 + x)2 = 1 + 2x + x2

(1 + x)3 = 1 + 3x + 3x2 + x3

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4

However, for other values of n (where n � �) there are no zeros in the row of

binomial coefficients and so we obtain an infinite sequence of non-zero terms.

For example:

(–3)(–4)      (–3)(–4)(–5)      (–3)(–4)(–5)(–6)n = –3   gives    1      –3     ––––––– –––––––––– –––––––––––––– …
2!                      3!                             4!

that is 1      –3      6      –10      15 …

( )(– ) ( )(– )(– ) ( )(– )(– )(– )
n = gives 1       –––––– –––––––––– ––––––––––––– …

2!                   3!                            4!

that is 1       – – …

so that (1 + x)–3 = 1 – 3x + 6x2 – 10x3 + 15x4 + …

and (1 + x)q-∑ = 1 + x – x2 + x3 – x4 + …

But remember: these two expansions are valid only if | x | � l.

● Show that the expansion of (1 + x)q-∑ is not valid when x = 8.

These examples confirm that there will be an infinite sequence of non-zero

coefficients when n � �. You can also see that, after a certain stage, the remaining

terms of the sequence will alternate in sign.

5–––
128

1––
16

1–
8

1–
2

5–––
128

1––
16

1–
8

1–
2

1–
2

1–
2

5–
2

3–
2

1–
2

1–
2

3–
2

1–
2

1–
2

1–
2

1–
2
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In the investigation at the beginning of this chapter you showed that

1 + x ≈ 1 + x

is a good approximation for small values of x. Notice that these are the first two

terms of the binomial expansion for n = q-∑. If you include the third term, the

approximation is

1 + x �1 + x – x2.

Take y =1 + x, y = 1 + x – x2 and y = 1 + x.

They are shown in the graph in figure 7.1 for values of x between –1 and 1.

INVESTIGATION

For n = the first three terms of the binomial expansion are 1 + x – x2.

Use your calculator to verify the approximate result

1 + x ≈ 1 + x – x2

for ‘small’ values of x.

What values of x can be considered as ‘small’ if you want the result to be correct

to 2 decimal places?

Now take n = –3. Using the coefficients found earlier suggests the approximate result

(1 + x)–3 ≈ 1 – 3x + 6x2.

Comment on values of x for which this approximation is correct to 

2 decimal places.

When |x | � 1, the magnitudes of x2, x3, x4, x5, … form a decreasing geometric

sequence. In this case, the binomial expansion converges (just as a geometric series

converges for –1 � r � 1, where r is the common ratio) and has a sum to infinity.

1–
8

1–
2

1–
8

1–
2

1–
2

1–
8

1–
2

1–
2

1–
8
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2
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2
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ACTIVITY 7.1 Compare the geometric series 1 – x + x2 – x3 + … with the series obtained by

putting n = –1 in the binomial expansion. What do you notice?

To summarise: when n is not a positive integer or zero, the binomial expansion of

(1 + x)n becomes an infinite series, and is only valid when some restriction is

placed on the values of x.

The binomial theorem states that for any value of n:

n(n – 1) n(n – 1)(n – 2)
(1 + x)n = 1 + nx + –––––– x2 + ––––––––––– x3 + …

2!                        3!

where

● if n � �, x may take any value;

● if n � �, | x | � 1.

Note

The full statement is the binomial theorem, and the right-hand side is referred to as

the binomial expansion.

EXAMPLE 7.1 Expand (1 – x)–2 as a series of ascending powers of x up to and including the term

in x3, stating the set of values of x for which the expansion is valid.

SOLUTION

n(n – 1) n(n – 1)(n – 2) (1 + x)n = 1 + nx + ––––––– x2 + ––––––––––––– x3 + …
2!                            3!

Replacing n by –2, and x by (–x) gives

(–2)(–3)(1 + (–x))–2 = 1 + (–2)(–x) + ––––––– (–x)2

2!

(–2)(–3)(–4)+ –––––––––– (–x)3 + …    when |–x | � 1
3!

which leads to

(1 – x)–2 ≈ 1 + 2x + 3x2 + 4x3 when |x | � 1.

Note

In this example the coefficients of the powers of x form a recognisable sequence,

and it would be possible to write down a general term in the expansion. The

coefficient is always one more than the power, so the r th term would be rxr–1.

Using sigma notation, the infinite series could be written as
∞
∑ rxr–1.
r=1
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EXAMPLE 7.2 Find a quadratic approximation for and state for which values of t the

expansion is valid.

SOLUTION

1= ––––––– = (1 + 2t)–q-∑

(1 + 2t)q-∑

The binomial theorem states that

n(n – 1) n(n – 1)(n – 2)
(1 + x)n = 1 + nx + ––––––– x2 + –––––––––––– x3 + …

2!                         3!

Replacing n by – and x by 2t gives

(– )(– )
(1 + 2t)–q-∑ = 1 + (– )(2t) + ––––––– (2t)2 + …      when | 2t | � 1

2!

⇒ (1 + 2t)–q-∑ ≈ 1 – t + t2 when | t | � .

INVESTIGATION

Example 7.1 showed how using the binomial expansion for (1 – x)–2 gave a

sequence of coefficients of powers of x which was easily recognisable, so that the

particular binomial expansion could be written using sigma notation.

Investigate whether a recognisable pattern is formed by the coefficients in the

expansions of (1 – x)n for any other negative integers n.

The equivalent binomial expansion of (a + x)n when n is not a positive integer is

rather unwieldy. It is easier to start by taking a outside the brackets:

x n
(a + x)n = an (1 + – )a

The first entry inside the bracket is now 1 and so the first few terms of the

expansion are

x n(n – 1) x 2 n(n – 1)(n – 2) x 3
(a + x)n = an [1 + n (–) + ––––––– (–) + –––––––––––– (–) + …]a 2! a 3! a

xfor ⎪ – ⎪ � 1.a

Note

Since the bracket is raised to the power n, any quantity you take out must be raised

to the power n too, as in the following example.

1–
2

3–
2

1–
2

3–
2

1–
2

1–
2

1–––––––
1 + 2t

1–––––––
1 + 2t
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EXAMPLE 7.3 Expand (2 + x)–3 as a series of ascending powers of x up to and including the

term in x2, stating the values of x for which the expansion is valid.

SOLUTION

1(2 + x)–3 = ––––––
(2 + x)3

1= ––––––––
x 3

23(1 + – )2

1 x –3
= – (1 + –)8        2 

Take the binomial expansion

n(n – 1) n(n – 1)(n – 2)(1 + x)n = 1 + nx + ––––––– x2 + –––––––––––– x3 + …
2!                           3!

xand replace n by –3 and x by – to give
2

1 x –3 1 x (–3)(–4) x 2 x–(1 + –) = –[1 + (–3)( – ) + ––––––– (–) + …] when ⎪ – ⎪ � 1
8         2        8                   2             2!       2                                2

1     3x 3x2
≈ – – –– + ––– when | x | � 2.

8     16     16

●? The chapter began by asking how you would find 101 to 3 decimal places

without using a calculator. How would you find it?

(2 + x)
EXAMPLE 7.4 Find a quadratic approximation for –––––– , stating the values of x for which the

expansion is valid. 
(1 – x2)

SOLUTION

(2 + x)–––––– = (2 + x)(1 – x2)–1

(1 – x2)

Take the binomial expansion

n(n – 1) n(n – 1)(n – 2)
(1 + x)n = 1 + nx + ––––––– x2 + –––––––––––– x3 + …

2!                          3!
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and replace n by –1 and x by (–x2) to give

(–1)(–2)(–x2)2
(1 + (–x2))–1 = 1 + (–1)(–x2) + –––––––––––– + …      when |–x2 | � 1

2!

(1 – x2)–1 = 1 + x2 + …      when |x2 | � 1, i.e. when |x | � 1.

Multiply both sides by (2 + x) to obtain (2 + x)(1 – x2)–1:

(2 + x)(1 – x2)–1 ≈ (2 + x)(1 + x2)

≈ 2 + x + 2x2 when |x | � 1.

Sometimes two or more binomial expansions may be used together. If these

impose different restrictions on the values of x, you need to decide which is the

strictest.

EXAMPLE 7.5 Find a and b such that

1––––––––––––– ≈ a + bx
(1 – 2x)(1 + 3x)

and state the values of x for which the expansions you use are valid.

SOLUTION

1––––––––––––– = (1 – 2x)–1(1 + 3x)–1

(1 – 2x)(1 + 3x)

Using the binomial expansion:

(1 – 2x)–1 ≈ 1 + (–1)(–2x) for |–2x | � 1

and (1 + 3x)–1 ≈ 1 + (–1)(3x) for |3x | � 1

⇒ (1 – 2x)–1(1 + 3x)–1 ≈ (1 + 2x)(1 – 3x)

≈ 1 – x (ignoring higher powers of x)

giving a = 1 and b = –1.

For the result to be valid, both |2x | � 1 and |3x | � 1 need to be satisfied.

|2x | � 1 ⇒ – � x �

and |3x | � 1 ⇒ – � x � .

Both of these restrictions are satisfied if  – � x � . This is the stricter

restriction.
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Note

The binomial expansion may also be used when the first term is the variable. For

example:

x –1
(x + 2)–1 may be written as  (2 + x)–1 = 2–1 (1 + –)2

and (2x – 1)–3 = [(–1)(1 – 2x)]–3

= (–1)–3(1 – 2x)–3

= –(1 – 2x)–3.

●? What happens when you try to rearrange x – 1 so that the binomial expansion

can be used?

EXERCISE 7A 1 For each of the functions below

(a) write down the first three non-zero terms in their expansions as a series of

ascending powers of x

(b) state the values of x for which the expansion is valid

(c) substitute x = 0.1 in both the function and its expansion and calculate the

relative error, where

absolute error × 100relative error = ––––––––––––––––– %.
true value 

(d) If you have access to a graphic calculator or suitable computer package,

draw the graphs of each function and the first three terms of its binomial

expansion on the same axes. In each case, notice how the graphs illustrate

the need for some restriction on the values of x.

1(i) (1 + x)–2 (ii) ––––– (iii) 1 – x2

1 + 2x

1 + 2x(iv) ––––– (v) (3 + x)–1 (vi) (1 – x) 4 + x
1 – 2x

x + 2 1 1 + 2x(vii) –––– (viii) ––––––– (ix) –––––––
x – 3 3x + 4 (2x – 1)2

1 + x2 1(x) ––––– (xi)
3

1 + 2x2 (xii) ––––––––––––
1 – x2 (1 + 2x)(1 + x)

2 (i) Write down the expansion of (1 + x)3.

(ii) Find the first four terms in the expansion of (1 – x)–4 in ascending powers

of x. For what values of x is this expansion valid?

(iii) When the expansion is valid

(1 + x)3
–––––– = 1 + 7x + ax2 + bx3 + … .
(1 – x)4

Find the values of a and b. [MEI]

A
lg

eb
ra

164

C4
7



3 (i) Write down the expansion of (2 – x)4.

(ii) Find the first four terms in the expansion of (1 + 2x)–3 in ascending

powers of x. For what range of values of x is this expansion valid?

(iii) When the expansion is valid

(2 – x)4
––––––– = 16 + ax + bx2 + … .
(1 + 2x)3

Find the values of a and b.
[MEI]

4 Write down the expansions of the following expressions in ascending powers

of x, as far as the term containing x3. In each case state the values of x for

which the expansion is valid.
1

(i) (1 – x)–1 (ii) (1 + 2x)–2 (iii) –––––––––––––
(1 – x)(1 + 2x)2

[MEI]

5 1        1       x – q-∑
(i) Show that ––––––– = – (1 – – ) .

4 – x 2        4

x
(ii) Write down the first three terms in the binomial expansion of (1 – – )

– q-∑

4
in ascending powers of x, stating the range of values of x for which this 

expansion is valid.

2(1 + x)
(iii) Find the first three terms in the expansion of  ––––––– in ascending 

4 – x
powers of x, for small values of x.

[MEI]

6 (i) Expand (1 + y)–1, where –1 � y � 1, as a series in powers of y, giving the 

first four terms.

2 –1
(ii) Hence find the first four terms of the expansion of (1 + –)x

2where –1 � – � 1.x

2 –1 x x x –1
(iii) Show that (1 + –) = –––– = –(1 + –) .

x x + 2   2         2
x x –1 x

(iv) Find the first four terms of the expansion of – (1 + –) where –1 � – � 1.
2        2                          2

2 –1
(v) State the conditions on x under which your expansions for (1 + –) andxx x –1

– (1 + –) are valid and explain briefly why your expansions are different.
2         2

[MEI]

7 (i) Use integration by parts to show that

∫k

l
t lnt dt = k2 lnk – k2 +

where k is positive.

(ii) Expand (1 – 2x)–q-∑ in ascending powers of x, up to and including the term

in x3, giving your answer in simplified form. 

State the range of values of x for which the expansion is valid.

(iii) Hence show that, provided x is small,(1 – 2x)–q-∑ ln(1 + x) is approximately

equal to t lnt, where t = 1 + x.

ln(1 + x)
Hence find an approximate value for ∫

0.1

0

–––––––– dx.
1 – 2x [MEI]

1–
4

1–
4

1–
2
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Review of algebraic fractions 

f(x)
If f(x) and g(x) are polynomials, the expression ––– is an algebraic fraction

g(x)
or rational function. It may also be called a rational expression. There are many 

occasions in mathematics when a problem reduces to the manipulation of

algebraic fractions, and the rules for this are exactly the same as those for

numerical fractions.

Simplifying fractions 

To simplify a fraction, you look for a factor common to both the numerator

(top line) and the denominator (bottom line) and cancel by it. 

For example, in arithmetic

15    5 × 3   3–– = –––– = –
20    5 × 4    4

and in algebra

6a 2 × 3 × a 2––– = –––––––––– = ––.
9a2 3 × 3 × a × a 3a

Notice how you must factorise both the numerator and denominator before

cancelling, since it is only possible to cancel by a common factor. In some cases

this involves putting brackets in.

2a + 4          2(a + 2)            2––––– = ––––––––––– = –––––
a2 – 4    (a + 2)(a – 2)    (a – 2)

Multiplying and dividing fractions

Multiplying fractions involves cancelling any factors common to the numerator

and denominator. For example:

10a 9ab 2 × 5 × a 3 × 3 × a × b 6a2
––– × ––– = ––––––– × –––––––––– = –––.
3b2 25      3 × b × b 5 × 5            5b

As with simplifying, it is often necessary to factorise any algebraic 

expressions first.

a2 + 3a + 2  12      (a + 1)(a + 2)      3 × 4––––––––– × –––– = ––––––––––––– × –––––
9 a + 1             3 × 3            (a + 1)

(a + 2)    4= –––––– × –
3         1

4(a + 2)= –––––––
3
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Remember that when one fraction is divided by another, you change ÷ to × and

invert the fraction which follows the ÷ symbol. For example:

12           4                   12            (x + 1)––––– ÷ –––– = ––––––––––– × –––––
x2 – 1 x + 1     (x + 1)(x – 1)        4

3= ––––– .
(x – 1)

Addition and subtraction of fractions 

To add or subtract two fractions they must be replaced by equivalent fractions,

both of which have the same denominator. 

For example:

+ = + = .

Similarly, in algebra:

+ = + =

and + = + = .

You must take particular care when the subtraction of fractions introduces a sign

change. For example:

4x – 3    2x + 1  2(4x – 3) – 3(2x + 1)––––– – ––––– = –––––––––––––––––
6            4                         12

8x – 6 – 6x – 3
= ––––––––––––

12

2x – 9
= ––––– .

12

Notice how in addition and subtraction, the new denominator is the lowest

common multiple of the original denominators. When two denominators have no

common factor, their product gives the new denominator. For example:

2            3    2(y – 2) + 3(y + 3)–––– + –––– = ––––––––––––––––
y + 3 y – 2          (y + 3)(y – 2)

2y – 4 + 3y + 9
= ––––––––––––

(y + 3)(y – 2)

5y + 5
= –––––––––––

(y + 3)(y – 2)

5(y + 1)
= ––––––––––– .

(y + 3)(y – 2)

11–––
12x

3–––
12x

8–––
12x

1––
4x

2––
3x

11x–––
12

3x––
12

8x––
12

x–
4

2x––
3

11––
12

3––
12

8––
12

1–
4

2–
3
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It may be necessary to factorise denominators in order to identify common

factors, as shown here.

2b 3                  2b 3–––––– – –––– = ––––––––––– – ––––––
a2 – b2 a + b (a + b)(a – b)    (a + b)

2b – 3(a – b)= –––––––––––
(a + b)(a – b)

5b – 3a= ––––––––––––.
(a + b)(a – b)

EXERCISE 7B Simplify the expressions in questions 1–10.

6a a 5xy
1 –– × ––– 2 ––– ÷ 15xy2

b 9b2 3

x2 – 9 5x – 1 x2 + 6x + 9
3 ––––––––––– 4 ––––– × ––––––––––

x2 – 9x + 18 x + 3      5x2 + 4x – l

4x2 – 25 a2 + a – 12           3
5 –––––––––––– 6 ––––––––– × ––––––

4x2 + 20x + 25 5             4a – 12

4x2 – 9      2x – 3 2p + 4
7 ––––––––– ÷ ––––– 8 ––––– ÷ (p2 – 4)

x2 + 2x + 1 x2 + x 5

a2 – b2 x2 + 8x + 16 x2 + 2x – 3
9 ––––––––––– 10 –––––––––– × –––––––––

2a2 + ab – b2 x2 + 6x + 9 x2 + 4x

In questions 11–24 write each of the expressions as a single fraction in its

simplest form.

1      1 x (x + 1)
11 –– + –– 12 – – ––––––

4x 5x 3          4

a 1 2           3
13 –––– + –––– 14 –––– + ––––

a + 1 a – 1 x – 3 x – 2

x 1 p2 p2
15 ––––– – –––– 16 ––––– – ––––––

x2 – 4 x + 2 p2 – 1 p2 + 1
2 a 2y 4

17 –––– – ––––– 18 –––––– – ––––
a + 1 a2 + 1 (y + 2)2 y + 4

1 2                3 
19 x + –––– 20 ––––––––– – ––––

x + 1 b2 + 2b + 1 b + 1

2                 3 6               2x
21 –––––– + –––––– 22 ––––––– – ––––––

3(x – 1)    2(x + 1) 5(x + 2)    (x + 2)2

2 a – 2 1        1         1
23 –––– – ––––––––– 24 –––– + – + ––––

a + 2    2a2 + a – 6 x – 2 x x + 2
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Equations involving algebraic fractions

The easiest way to solve an equation involving fractions is usually to multiply

both sides by an expression which will cancel out the fractions.

EXAMPLE 7.6 Solve + = 4.

SOLUTION

Multiplying by 15 (the lowest common multiple of 3 and 5) gives

15 × + 15 × = 15 × 4

⇒ 5x + 6x = 60

⇒ 11x = 60

⇒ x = .

A similar method applies when the denominator is algebraic.

EXAMPLE 7.7 Solve     – = 1.

SOLUTION

Multiplying by x(x + 1) (the lowest common multiple of x and x + 1) gives

5x(x + 1)     4x(x + 1) 
–––––––– – –––––––– = x(x + 1)

x x + 1

⇒ 5(x + 1) – 4x = x(x + 1)

⇒ 5x + 5 – 4x = x2 + x

⇒ x2 = 5

⇒ x = ± 5.

In Example 7.7, the lowest common multiple of the denominators is their

product, but this is not always the case.

4––––
x + 1

5–
x

60––
11

2x––
5

x–
3

2x––
5

x–
3
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EXAMPLE 7.8 Solve + = – .

SOLUTION

Here you only need to multiply by x(x – 3)(x – 1) to eliminate all the fractions.

This gives

x(x – 3)(x – 1) x(x – 3)(x – 1)     –x(x – 3)(x – 1)
–––––––––––– + –––––––––––– = –––––––––––––
(x – 3)(x – 1) x(x – 1) x(x – 3)

⇒ x + (x – 3) = –(x – 1)

⇒ 2x – 3 = –x + 1

⇒ 3x = 4

⇒ x = .

Fractional algebraic equations arise in a number of situations, including, as in

the following example, problems connecting distance, speed and time. The

relationship

distancetime = –––––––
speed

is useful here.

EXAMPLE 7.9 Each day I travel 10 km from home to work. One day, because of road works, my

average speed was 5 km h–1 slower than usual, and my journey took an extra

10 minutes.

Take x km h–1 as my usual speed.

(i) Write down an expression in x which represents my usual time in hours.

(ii) write down an expression in x which represents my time when I travelled

5 km h–1 slower than usual.

(iii) Use these expressions to form an equation in x and solve it.

(iv) How long does my journey usually take?

SOLUTION

distance 10
(i) Time = ––––––– ⇒ usual time = ––.

speed x

10
(ii) I now travel at (x – 5) km h–1, so the longer time = ––––.

x – 5

(iii) The difference in these times is 10 minutes, or hour, so

10       10     1
–––– – –– = – .
x – 5 x 6

1–
6

4–
3

1–––––––
x(x – 3)

1–––––––
x(x – 1)

1––––––––––––
(x – 3)(x – 1)
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Multiplying by 6x(x – 5) gives

60x(x – 5)     60x(x – 5)   6x(x – 5)
––––––––– – ––––––––– = –––––––

(x – 5) x 6

⇒ 60x – 60(x – 5) = x(x – 5)

⇒ 60x – 60x + 300 = x2 – 5x

⇒ x2 – 5x – 300 = 0

⇒ (x – 20)(x + 15) = 0

⇒    x = 20  or x = –15.

(iv) Reject x = –15, since x km h–1 is a speed.

Usual speed = 20 km h–1.

10
Usual time = –– hours = 30 minutes.x

EXERCISE 7C 1 Solve the following equations.

2x x 5       3      11
(i) –– – – = 3 (ii) –– + –– = ––

7      4 4x 2x 16

2         5 x + 2
(iii) – – ––––– = 0 (iv) x – 3 = ––––

x 2x – 1 x – 2

1                 13 2x 1
(v) – + x + 1 = –– (vi) –––– – ––– = 1

x 3 x + 1 x – 1

x x – 1
(vii) –––– – –––– = 2 (viii) – = 0

x – 1 x

(ix) – = 1 (x) – = 11

2 The numerator of a fraction is five less than the denominator. 

If the numerator and denominator are each increased by nine, the value of the

new fraction formed is . 

Find the original fraction.

3 Lucy has constructed a new website and so far this has received 156 hits. 

If it gets 54 hits next week, the average number of hits per week will increase 

by four.

(i) Write down an equation for n, the number of weeks since this site was

launched.

(ii) Solve this equation to find n.

3–
4

6––––
r + 1

2––––
2r – 1

1––––
a + 1

18––––
4a – 1

3–––––
1 – 3p

2––––
p + 1
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4 I have £6 to spend on crisps for a party. 

When I get to the shop I find that the price has been reduced by 1 penny per

packet, and I can buy one packet more than I expected. 

Take x pence as the original cost of a packet of crisps.

(i) Write down an expression in x which represents the number of packets

that I expected to buy.

(ii) Write down an expression in x which represents the number of packets

bought at the reduced price.

(iii) Form an equation in x and solve it to find the original cost.

5 The distance from Manchester to Oxford is 270 km. 

One day, road works on the M6 meant that my average speed was 10 km h–1

less than I had anticipated, and so I arrived 18 minutes later than planned.

Take x km h–1 as the anticipated average speed.

(i) Write down an expression in x for the anticipated and actual times of

the journey.

(ii) Form an equation in x and solve it.

(iii) Find the time of my arrival in Oxford if I left home at 10 am.

6 Of the three statements given below, one is true for all values of x, one is true

for just one value of x and one is true for just two values of x.

Identify the one that is true for all values of x and solve the other two.

(i) – = 

(ii) – = 

(iii) – = 

7 Each time someone leaves the firm of Honeys, he or she is taken out for a meal

by the rest of the staff. 

On one such occasion the bill came to £272, and each member of staff

remaining with the firm paid £1 extra to cover the cost of the meal for the one

who was leaving. 

Taking £x as the cost of the meal, write down an equation in x and solve it.

How many staff were left working for Honeys?

8 A Swiss roll cake is 21 cm long. When I cut it into slices, I can get two extra

slices if I reduce the thickness of each slice by cm. 

Taking x as the number of thicker slices, write down an equation in x and

solve it.

1–
4

5–
6

x – 1––––
x + 1

x + 1––––
x – 1

2–––––
x2 – 1

x – 1––––
x + 1

x + 1––––
x – 1

4x–––––
x2 – 1

x – 1––––
x + 1

x + 1––––
x – 1
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9 Two electrical resistances may be connected in series or in parallel. 

In series, the equivalent single resistance is the sum of the two resistances, but

in parallel, the two resistances R1 and R2 are equivalent to a single resistance

R where

1      1      1–– + –– = –.
R1 R2 R

(i) Find the single resistance which is equivalent to resistances of 3 and

4 ohms connected in parallel.

(ii) What resistance must be added in parallel to a resistance of 6 ohms to give

a resistance of 2.4 ohms?

(iii) What is the effect of connecting two equal resistances in parallel?

● Prove that the equation

x x – 1–––– + –––– = 2
x – 1 x

has no solution.

Partial fractions

Until this point, any instruction to simplify an algebraic fractional expression was

asking you to give the expansion as a single fraction. Sometimes, however, it is

easier to deal with two or three simple separate fractions than it is to handle one

more complicated one. This is the case when you are using the binomial theorem

to obtain a series expansion. 

For example:

1––––––––––––
(1 + 2x)(1 + x)

may be written as

2               1––––––– – ––––– .
(1 + 2x)   (1 + x)

2                1The two-part expression  ––––––– – ––––– is much easier to expand
(1 + 2x)     (1 + x)

1than –––––––––––– .
(1 + 2x)(1 + x)

When integrating, it is even more important to work with a number of simple

fractions than to combine them into one. For example, the only analytical method
1 2                1for integrating –––––––––––– involves first writing it as ––––––– – ––––––.

(1 + 2x)(1 + x) (1 + 2x)     (1 + x)

You will meet this application in Chapter 10. 
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1This process of taking an expression such as –––––––––––– and writing it in the 
(1 + 2x)(1 + x)

2               1form  –––––– – ––––– is called expressing the algebraic fraction in partial fractions.
(1 + 2x)   (1 + x)

How can this be done in general?

It is sufficient to consider only proper algebraic fractions, that is fractions where

the order of the numerator (top line) is strictly less than that of the denominator

(bottom line). The following, for example, are proper fractions:

2      5x – 1             7x––––, –––––, ––––––––––– .
1 + x x2 – 3   (x + 1)(x – 2)

Examples of improper fractions are

2x 2–––– (which can be written as 2 – –––– )x + 1 x + 1

and

x2 4–––– (which can be written as x + 2 + –––– ).x – 2 x – 2

It can be shown that, when a proper algebraic fraction is decomposed into its

partial fractions, each of the partial fractions will be a proper fraction.

When finding partial fractions you must always assume the most general

numerator possible, and the method for doing this is illustrated in the following

examples.

Type 1: denominators of the form (ax + b)(cx + d )

EXAMPLE 7.10 4 + xExpress ––––––––––– as a sum of partial fractions.
(1 + x)(2 – x)

SOLUTION

Assume

4 + x A B––––––––––– / –––– + ––––.
(1 + x)(2 – x)     1 + x 2 – x

Multiplying both sides by (1 + x)(2 – x) gives

4 + x / A(2 – x) + B(1 + x). �1

This is an identity; it is true for all values of x.

There are two possible ways in which you can find the constants A and B.

You can either
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● substitute any two values of x in �1 (two values are needed to give two

equations to solve for the two unknowns A and B); or

● equate the constant terms to give one equation (this is the same as putting 

x = 0) and the coefficients of x to give another.

Sometimes one method is easier than the other, and in practice you will often

want to use a combination of the two.

Method 1: Substitution

Although you can substitute any two values of x, the easiest to use are x = 2 and

x = –1, since each makes the value of one bracket zero in the identity

4 + x / A(2 – x) + B(1 + x).

x = 2 ⇒ 4 + 2 = A(2 – 2) + B(1 + 2)

6 = 3B ⇒ B = 2

x = –1 ⇒ 4 – 1 = A(2 + 1) + B(1 – 1)

3 = 3A ⇒ A = 1

Substituting these values for A and B gives

4 + x 1           2––––––––––– / –––– + ––––.
(1 + x)(2 – x)    1 + x 2 – x

Method 2: Equating coefficients

In this method, you write the right-hand side of

4 + x / A(2 – x) + B(1 + x)

as a polynomial in x, and then compare the coefficients of the various terms.

4 + x / 2A – Ax + B + Bx

4 + 1x / (2A + B) + (–A + B)x

Equating the constant terms: 4 = 2A + B.

Equating the coefficients of x: 1 = –A + B.

Solving these simultaneous equations gives A = 1 and B = 2 as before.

●? In each of these methods the identity (/) was later replaced by equality (=).

Why was this done?

In some cases it is necessary to factorise the denominator before finding the

partial fractions.
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EXAMPLE 7.11 2Express ––––– as a sum of partial fractions.
4 – x2

SOLUTION

2                    2
––––– / –––––––––––
4 – x2 (2 + x)(2 – x)

A B
/ ––––– + –––––

2 + x 2 – x

Multiplying both sides by (2 + x)(2 – x) gives

2 / A(2 – x) + B(2 + x) �1

2 / (2A + 2B) + x(B – A).

Equating constant terms: 2 = 2A + 2B. �2

Equating coefficients of x: 0 = B – A, so B = A.

Substituting in �2 gives A = B = .

Using these values

2
––––––––––– / –––– + ––––
(2 + x)(2 – x)     2 + x 2 – x

1                1
/ ––––––– + –––––––.

2(2 + x)    2(2 – x)

EXERCISE 7D 1 Express each of the following fractions as a sum of partial fractions.

5 1 6(i) ––––––––––– (ii) ––––––– (iii) –––––––––––
(x – 2)(x + 3) x(x + 1) (x – 1)(x – 4)

x + 5 3x 4(iv) ––––––––––– (v) –––––––––––– (vi) ––––––
(x – 1)(x + 2) (2x – 1)(x + 1) x2 – 2x

2 x – 1 x + 2(vii) –––––––––––– (viii) ––––––––– (ix) ––––––
(x – 1)(3x – 1) x2 – 3x – 4 2x2 – x

7 2x – 1 2x + 5(x) ––––––––– (xi) ––––––––––– (xii) –––––––
2x2 + x – 6 2x2 + 3x – 20 18x2 – 8

Type 2: denominators of the form (ax + b)(cx2 + d )

EXAMPLE 7.12 2x + 3Express ––––––––––– as a sum of partial fractions.
(x – 1)(x2 + 4)

SOLUTION

You need to assume a numerator of order 1 for the partial fraction with a

denominator of x2 + 4, which is of order 2.

2x + 3 A Bx + C–––––––––––– / –––– + ––––––
(x – 1)(x2 + 4) x – 1 x2 + 4

1–
2

1–
2

1–
2
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Multiplying both sides by (x – 1)(x2 + 4) gives

2x + 3 / A(x2 + 4) + (Bx + C)(x – 1) �1

x = 1 ⇒ 5 = 5A ⇒ A = 1.

The other two unknowns, B and C, are most easily found by equating coefficients.

Identity �1 may be rewritten as

2x + 3 / (A + B)x2 + (–B + C)x + (4A – C).

Equating coefficients of x2: 0 = A + B ⇒ B = –1.

Equating constant terms: 3 = 4A – C ⇒ C = 1.

This gives

2x + 3              1 1 – x–––––––––––– / –––– + ––––– .
(x –1)(x2 + 4) x – 1 x2 + 4

Note

Notice how Example 7.12 uses a combination of the two methods.

Type 3: denominators of the form (ax + b)(cx + d )2

The factor (cx + d)2 is of order 2, so it would have an order 1 numerator in the

partial fractions. However, in the case of a repeated factor there is a simpler form.

4x + 5Consider ––––––– .
(2x + 1)2

This can be written as 2(2x + 1) + 3
–––––––––––

(2x + 1)2

2(2x + 1)           3
/ –––––––– + –––––––

(2x + 1)2 (2x + 1)2

2                 3/ –––––– + ––––––.
(2x + 1)   (2x + 1)2

Note

In this form, both the numerators are constant.

px + q
In a similar way, any fraction of the form ––––––– can be written as

(cx + d)2

A B––––––– + ––––––– .
(cx + d)   (cx + d)2

When expressing an algebraic fraction in partial fractions, you are aiming to find

the simplest partial fractions possible, so you would want the form where the

numerators are constant.
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EXAMPLE 7.13 x + 1 Express –––––––––––– as a sum of partial fractions.
(x – 1)(x – 2)2

SOLUTION

Let x + 1 A B C–––––––––––– / ––––– + ––––– + ––––– .
(x – 1)(x – 2)2 (x – 1)    (x – 2)    (x – 2)2

Multiplying both sides by (x – 1)(x – 2)2 gives

x + 1 / A(x – 2)2 + B(x – 1)(x – 2) + C(x – 1).

x = 1 (so that x – 1 = 0) ⇒ 2 = A(–1)2 ⇒A = 2

x = 2 (so that x – 2 = 0) ⇒ 3 = C

Equating coefficients of x2 ⇒ 0 = A + B ⇒ B = –2.

This gives

x + 1                2          2            3–––––––––––– / –––– – –––– + ––––––.
(x – 1)(x – 2)2 x – 1 x – 2    (x – 2)2

EXAMPLE 7.14 5x2 – 3Express  –––––––– as a sum of partial fractions.
x2(x + 1)

SOLUTION

5x2 – 3 A B CLet ––––––– / –– + –– + ––––.
x2(x + 1) x x2 x + 1

Multiplying both sides by x2(x + 1) gives

5x2 – 3 / Ax(x + 1) + B(x + 1) + Cx2.

x = 0 ⇒ –3 = B

x = –1 ⇒ +2 = C

Equating coefficients of x2: +5 = A + C ⇒ A = 3.

This gives

5x2 – 3       3       3         2–––––––– / – – – + ––––.
x2(x + 1) x     x2 x + 1

EXERCISE 7E 1 Express each of the following fractions as a sum of partial fractions.

4 4 + 2x 5 – 2x(i) ––––––––––––– (ii) ––––––––––––– (iii) –––––––––––
(1 – 3x)(1 – x)2 (2x – 1)(x2 + 1) (x – 1)2(x + 2)

2x + 1 2x2 + x + 4 x2 – 1(iv) ____________ (v) ––––––––––––– (vi) ––––––––
(x – 2)(x2 + 4) (2x2 – 3)(x + 2) x2(2x + 1)

x2 + 3 2x2 + x + 2 4x2 – 3(vii) –––––––– (viii) ––––––––––––– (ix) ––––––––
x(3x2 – 1) (2x2 + 1)(x + 1) x(2x – 1)2

A
lg

eb
ra

178

C4
7

Notice that you only
need (x – 2)2 here
and not (x – 2)3.



2 Given that

x2 + 2x + 7 A Bx + C––––––––––––– / ––––––– + –––––––
(2x + 3)(x2 + 4)    (2x + 3)     (x2 + 4)

find the values of the constants A, B and C.
[MEI, part]

3 Calculate the values of the constants A, B and C for which

x2 – 4x + 23 A Bx + C–––––––––––– / ––––– + –––––.
(x – 5)(x2 + 3)     (x – 5)    (x2 + 3)

[MEI, part]

Using partial fractions with the binomial expansion

One of the most common reasons for writing an expression in partial fractions is

to enable binomial expansions to be applied, as in the following example.

EXAMPLE 7.15 2x + 7Express ––––––––––– in partial fractions and hence find the first three terms of 
(x – 1)(x + 2)

its binomial expansion, stating the values of x for which this is valid.

SOLUTION

2x + 7 A B––––––––––– / ––––– + –––––
(x – 1)(x + 2)    (x – 1)    (x + 2)

Multiplying both sides by (x – 1)(x + 2) gives

2x + 7 / A(x + 2) + B(x – 1).

x = 1 ⇒ 9 = 3A ⇒ A = 3

x = –2 ⇒ 3 = –3B ⇒ B = –1

This gives

2x + 7                3              1––––––––––– / ––––– – ––––– .
(x – 1)(x + 2)     (x – 1)     (x + 2)

In order to obtain the binomial expansion, each bracket must be of the form

(1 ± …), giving

2x + 7              –3              1––––––––––– / ––––– – ––––––
(x – 1)(x + 2)     (1 – x) x2(1 + –)2

1 x –1
/ –3(1 – x)–1 – – (1 + –) . �1

2        2 

The two binomial expansions are

(–1)(–2)(1 – x)–1 = 1 + (–1)(–x) + ––––––– (–x)2 + … for |x | � 1
2!

≈ 1 + x + x2
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x –1 x (–1)(–2) x 2 xand (1 + –) = 1 + (–1)(–) + ––––––– (–) + … for ⎪– ⎪ � 1
2                      2             2!       2 2

x x2
≈ 1 –  – + –– .

2      4

Substituting these in �1 gives

2x + 7                                       1 x x2
––––––––––– ≈ –3(1 + x + x2) – – (1 – – + ––)(x – 1)(x + 2)                                 2         2      4

7    11x 25x2
= – – – ––– – ––––.

2      4         8

xThe expansion is valid when |x | � 1 and ⎪ – ⎪ � 1. The stricter of these is |x | � 1
2

INVESTIGATION

Find a binomial expansion for the function

1f(x) = ––––––––––––
(1 + 2x)(1 – x)

and state the values of x for which it is valid

(i) by writing it as (1 + 2x)–1(1 – x)–1

(ii) by writing it as [1 + (x – 2x2)]–1 and treating (x – 2x2) as one term

(iii) by first expressing f(x) as a sum of partial fractions.

Decide which method you find simplest for the following cases.

(a) When a linear approximation for f(x) is required.

(b) When a quadratic approximation for f(x) is required.

(c) When the coefficient of xn is required.

EXERCISE 7F 1 Find the first three terms in the binomial expansion of the following fractions.

4 4 + 2x(i) ––––––––––––– (ii) –––––––––––––
(1 – 3x)(1 – x)2 (2x – 1)(x2 + 1)

5 – 2x 2x + 1(iii) –––––––––––– (iv) ––––––––––––
(x – 1)2(x + 2) (x – 2)(x2 + 4)

7 – 4x A B
2 (i) Express –––––––––––– in partial fractions as ––––––– + –––––– where  

(2x – 1)(x + 2)                                       (2x – 1)     (x + 2)
A and B are to be found.

1
(ii) Find the expansion of –––––– in the form a + bx + cx2 + … where a, b

(1 – 2x)
and c are to be found. 
Give the range of values of x for which this expansion is valid.
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1(iii) Find the expansion of –––––– as far as the term containing x2.
(2 + x)

Give the range of values of x for which this expansion is valid.

7 – 4x(iv) Hence find a quadratic approximation for –––––––––––– when |x | is
(2x – 1)(x + 2)

small.

Find the relative error in this approximation when x = 0.1.

[MEI]

3 (i) Expand (2 – x)(1 + x).

Hence express in partial fractions.

(ii) Use the binomial expansion of the partial fractions in part (i) to show that

= x – x2 + ... .

State the range of values of x for which this result is valid.

[MEI, part]

4 (i) Given that f(x) = , express f(x) in partial fractions.

Hence show that

f ´(x) = (1 – x)–2 – (1 – )
–2

.

(ii) Using the results in part (i), or otherwise, find the x co-ordinates of the

turning points on the graph of y = f(x).

(iii) Use the binomial expansion, together with the result in part (i), to expand

f ´(x) in powers of x up to and including the term in x2.

(iv) Show that, when f ´(x) is expanded in powers of x, the coefficients of all the

powers of x are positive.
[MEI]

x–
3

8x – 6–––––––––––
(1 – x)(3 – x)

3–
4

3–
2

3x––––––––
2 + x – x2

3x––––––––
2 + x – x2
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KEY POINTS

1 The general binomial expansion for n � � is

n(n – 1) n(n – 1)(n – 2)(1 + x)n = 1 + nx + ––––––– x2 + ––––––––––––– x3 + … .
2!                         3!

In the special case when n � �, the series expansion is finite and valid

for all x.

When n � �, the series expansion is non-terminating (infinite) and valid 

only if |x | � 1.

x n
2 When n � �, (a + x)n should be written as an(1 + –) before obtaining the 

a
binomial expansion.

3 When multiplying algebraic fractions, you can only cancel when the same

factor occurs in both the numerator and the denominator.

4 When adding or subtracting algebraic fractions, you first need to find a

common denominator.

5 The easiest way to solve any equation involving fractions is usually to

multiply both sides by a quantity which will eliminate the fractions.

6 A proper algebraic fraction with a denominator which factorises can be

decomposed into a sum of proper partial fractions.

7 The following forms of partial fraction should be used.

px + q A B––––––––––––– / –––––– + ––––––
(ax + b)(cx + d) ax + b cx + d

px2 + qr + r A Bx + C–––––––––––––– / –––––– + –––––––
(ax + b)(cx2 + d) ax + b cx2 + d

px2 + qx + r A B C–––––––––––––– / –––––– + –––––– + ––––––––
(ax + b)(cx + d)2 ax + b cx + d (cx + d)2



Trigonometry

Music, when soft voices die,

Vibrates in the memory –

P.B. Shelley

●? Both of these photographs show forms of waves. In each case, estimate the

wavelength and the amplitude in metres (see figure 8.1).

Use your measurements to suggest, for each curve, values of a and b which would

make y = a sinbx a suitable model for the curve.
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Figure 8.1

y = asinbx



Reciprocal trigonometrical functions

As well as the three main trigonometrical functions, there are three more which

are commonly used. These are their reciprocals – cosecant (cosec), secant (sec)

and cotangent (cot), defined by

cosec θ = ;        sec θ = ;       cot θ = (= ).

Each of these is undefined for certain values of θ. For example, cosec θ is

undefined for θ = 0°, 180°, 360°, … since sin θ is zero for these values of θ.

Figure 8.2 shows the graphs of these functions. Notice how all three of the

functions have asymptotes at intervals of 180°. Each of the graphs shows one of

the main trigonometrical functions as a broken line and the related reciprocal

function as a solid line. 

cosθ––––
sinθ

1––––
tanθ

1––––
cosθ

1––––
sinθ

Tr
ig

o
n

o
m

et
ry

184

C4
8

–360º –180º 0 180º 360º
–1

1

y

x
y = sinx

y = cosecx

–360º –180º 0 180º 360º
–1

1

y

x

y = cosx

y = secx

–1

1

y

x360º180º–180º–360º 0º

y = tanx

y = cotx

Figure 8.2



Using the definitions of the reciprocal functions two alternative trigonometrical

forms of Pythagoras’ theorem can be obtained.

(i) sin2 θ + cos2 θ / 1

Dividing both sides by cos2i: + /

⇒ tan2 θ + 1 / sec2 θ.

This identity is sometimes used in mechanics.

(ii) sin2 θ + cos2 θ / 1

Dividing both sides by sin2 θ: + /

⇒ 1 + cot2 θ / cosec2 θ.

Questions concerning reciprocal functions are usually most easily solved by

considering the related function, as in the following examples. 

EXAMPLE 8.1 Find cosec120° leaving your answer in surd form.

SOLUTION

cosec120° =

= 1 ÷

=

EXAMPLE 8.2 Find values of θ in the interval 0° � θ � 360° for which sec2 θ = 4 + 2 tanθ.

SOLUTION

First you need to obtain an equation containing only one trigonometrical function. 

sec2 θ = 4 + 2 tanθ

⇒ tan2 θ + 1 = 4 + 2 tanθ

⇒ tan2 θ – 2 tanθ – 3 = 0

⇒ (tanθ – 3)(tanθ + 1) = 0

⇒ tanθ = 3 or tanθ= –1

tanθ = 3 ⇒ θ = 71.6° (calculator)

or θ = 71.6° + 180° = 251.6° (see figure 8.3)

2––
3

3––
2

1–––––––
sin 120°

1–––––
sin2 θ

cos2 θ–––––
sin2 θ

sin2 θ–––––
sin2 θ

1–––––
cos2 θ

cos2 θ–––––
cos2 θ

sin2 θ–––––
cos2 θ
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tan θ = –1 ⇒ θ = –45° (not in the required range)

or θ = –45° + 180° = 135° (see figure 8.3)

or θ = 135° + 180° = 315°

The values of θ are 71.6°, 135°, 251.6°, 315°.

EXERCISE 8A 1 Solve the following equations for 0° � x � 360°.

(i) cosecx = 1 (ii) secx = 2 (iii) cotx = 4

(iv) secx = –3 (v) cotx = –1 (vi) cosecx = –2

2 Find the following giving your answers as fractions or in surd form. 

You should not need your calculator.

(i) cot135° (ii) sec150° (iii) cosec240°
(iv) sec210° (v) cot270° (vi) cosec225°

3 In triangle ABC, angle A = 90° and secB = 2.

(i) Find the angles B and C.

(ii) Find tanB.

(iii) Show that 1 + tan2 B = sec2 B.

4 In triangle LMN, angle M = 90° and cotN = 1.

(i) Find the angles L and N.

(ii) Find secL, cosecL, and tan L.

(iii) Show that 1 + tan2 L = sec2 L.

5 Malini is 1.5 m tall. 

At 8 pm one evening her shadow is 6m long. 

Given that the angle of elevation of the sun at that moment is α
(i) show that cotα = 4

(ii) find α.
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θ360º180º0

3

y = tanθ

Figure 8.3



6 (i) For what values of α, where 0° � α � 360°, are secα, cosecα and cotα all

positive?

(ii) Are there any values of α for which secα, cosecα and cotα are all negative?

Explain your answer.

(iii) Are there any values of α for which secα, cosecα and cotα are all equal?

Explain your answer.

7 Solve the following equations for 0° � x � 360°.

(i) cosx = secx (ii) cosecx = secx

(iii) 2 sinx = 3 cot x (iv) cosec2 x + cot2 x = 2

(v) 3 sec2 x – 10 tanx = 0 (vi) 1 + cot2 x = 2 tan2 x

The photographs at the start of this chapter show just two of the countless

examples of waves and oscillations that are part of the world around us.

Because such phenomena are modelled by trigonometrical (and especially sine

and cosine) functions, trigonometry has an importance in mathematics far

beyond its origins in right-angled triangles.

Compound-angle formulae

ACTIVITY 8.1 Find an acute angle θ so that sin(θ + 60°) = cos(θ – 60°).

Hint: Try drawing graphs and searching for a numerical solution.

You should be able to find the solution using either of these methods, but

replacing 60° by, for example, 35° would make both of these methods rather

tedious. In this chapter you will meet some formulae which help you to solve

such equations more efficiently.

It is tempting to think that sin(θ + 60°) should equal sinθ + sin60°, but this is

not so, as you can see by substituting a numerical value of θ. For example, putting

θ = 30° gives sin(θ + 60°) = 1, but sinθ + sin60° ≈ 1.366.

To find an expression for sin(θ + 60°), you would use the compound-angle formula

sin(θ + z) = sinθ cosz + cosθ sinz.

This is proved below in the case when θ and z are acute angles. It is, however,

true for all values of the angles. It is an identity.

● As you work through this proof make a list of all the results you are assuming.
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Using the trigonometrical formula for the area of a triangle in figure 8.4:

area ABC = area ADC + area DBC

ab sin(θ + z) = bh sinθ + ah sinz

ab sin(θ + z) = ab sinθcosz + abcosθ sinz

which gives

sin(θ + z) = sinθcosz + cosθ sinz �1

This is the first of the compound-angle formulae (or expansions), and it can be

used to prove several more. These are true for all values of θ and z.

Replacing z by –z in �1 gives

sin(θ – z) = sinθcos(–z) + cosθ sin(–z)

⇒ sin(θ – z) = sinθcosz – cosθ sinz. �2

ACTIVITY 8.2 Derive the rest of these formulae.

(i) To find an expansion for cos(θ – z) replace θ by (90° – θ) in the expansion of

sin(θ + z).

Hint: sin(90° – θ) = cosθ and cos(90° – θ) = sinθ

(ii) To find an expansion for cos(θ + z) replace z by (–z) in the expansion of

cos(θ – z).

sin(θ + z)
(iii) To find an expansion for tan(θ + z), write tan(i + z) = –––––––––.

cos(θ + z)

Hint: After using the expansions of sin(i + z) and cos(i + z), divide the

numerator and the denominator of the resulting fraction by cosicosz to

give an expansion in terms of tani and tanz.

(iv) To find an expansion for tan(θ – z) in terms of tanθ and tanz, replace z by

(–z) in the expansion of tan(θ + z).

1–
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1–
2

1–
2

Tr
ig

o
n

o
m

et
ry

188

C4
8

Figure 8.4

h = a cosz

from �DBC
h = b cos θ

from �ADC

cos(–z) = cosz sin(–z) = –sinz



● Are your results valid for all values of θ and z?

Test your results with θ = 60°, z = 30°.

The four results obtained in Activity 8.2, together with the two previous results,

form the set of compound-angle formulae.

sin(θ + z) = sin θcosz + cos θ sinz

sin(θ – z) = sin θcosz – cos θ sinz

cos(θ + z) = cos θcosz – sin θ sinz

cos(θ – z) = cos θcosz + sin θ sinz

tan θ + tanztan(θ + z) = –––––––––––– θ, z and (θ + z) ≠ 90°, 270°, ...
1 – tan θ tanz

tan θ – tanztan(θ – z) = –––––––––––– θ, z and (θ – z) ≠ 90°, 270°, ...
1 + tan θ tanz

You are now in a position to solve the earlier problem more easily. To find an

acute angle θ such that sin(θ + 60°) = cos(θ – 60°), you expand each side using

the compound-angle formulae.

sin(θ + 60°) = sin θcos 60° + cos θ sin 60°

=  sin θ + cos θ �1

cos(θ – 60°) = cos θcos 60° + sin θ sin 60°

=  cos θ + sin θ �2

From �1 and �2

sin θ + cos θ = cos θ + sin θ

sin θ + 3 cos θ = cos θ + 3 sin θ.

Collect like terms:

⇒ ( 3 – 1)cos θ = ( 3 – 1)sin θ

cos θ = sin θ.

Divide by cos θ:

1 = tani

i = 45°.

Since an acute angle was required, this is the only root.

3––
2

1–
2

3––
2

1–
2

3––
2

1–
2

3––
2

1–
2
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When do you use the compound-angle formulae?

You have already seen compound-angle formulae used in solving a

trigonometrical equation and this is quite a common application of them.

However, their significance goes well beyond that since they form the basis for a

number of important techniques. Those covered in this book are as follows.

● The derivation of double-angle formulae
The derivation and uses of these are covered on pages 192 to 196.

● The addition of different sine and cosine functions
This is covered on pages 197 to 200 and 201 to 204 of this chapter. The work on

pages 197 to 200 is enrichment material. It is included here because the basic

wave form is a sine curve. It has many applications, for example in applied

mathematics, physics and chemistry.

● Calculus of trigonometrical functions
This was introduced in Chapter 4 but is covered more rigorously later in this

chapter. Proofs of the results depend on using either the compound-angle

formulae or the factor formulae which are derived from them.

You will see from this that the compound-angle formulae are important in the

development of the subject. Some people learn them by heart, others think it is

safer to look them up when they are needed. Whichever policy you adopt, you

should understand these formulae and recognise their form. Without that you

will be unable to do the next example, which uses one of them in reverse.

EXAMPLE 8.3 Simplify cos θcos3θ – sinθ sin3θ.

SOLUTION

The formula which has the same pattern of coscos – sinsin is 

cos(θ + z) = cosθcosz – sinθ sinz

Using this, and replacing z by 3θ, gives

cos θcos3θ – sinθ sin3θ = cos(θ + 3θ)

= cos 4θ.

EXERCISE 8B 1 Use the compound-angle formulae to write the following as surds.

(i) sin75° = sin(45° + 30°) (ii) cos135° = cos(90° + 45°)

(iii) tan15° = tan(45° – 30°) (iv) tan75° = tan(45° + 30°)

2 Expand each of the following expressions.

(i) sin(θ + 45°) (ii) cos(θ – 30°)

(iii) sin(60° – θ) (iv) cos(2θ + 45°)

(v) tan(θ + 45°) (vi) tan(θ – 45°)
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3 Simplify each of the following expressions.

(i) sin2θcosθ – cos2θ sinθ
(ii) coszcos3z – sinz sin3z

(iii) sin120°cos60° + cos120°sin60°

(iv) cosθcosθ – sinθ sinθ

4 Solve the following equations for values of θ in the range 0° � θ � 180°.

(i) cos(60° + θ) = sinθ
(ii) sin(45° – θ) = cosθ
(iii) tan(45° + θ) = tan(45° – θ)

(iv) 2sinθ = 3cos(θ – 60°)

(v) sinθ = cos(θ + 120°)

5 Solve the following equations for values of θ in the range 0 � θ � π.

(When the range is given in radians, the solutions should be in radians, using

multiples of π where appropriate.)

(i) sin(θ + ) = cosθ

(ii) 2 cos(θ – ) = cos(θ + )
6 Calculators are not to be used in this question.

The diagram shows three points L(–2, 1), M(0, 2) and N(3, –2) joined to form

a triangle. The angles α and β and the point P are shown in the diagram.

(i) Show that sinα = and write down the value of cosα.

(ii) Find the values of sin β and cos β.

(iii) Show that sin�LMN =   .

(iv) Show that tan�LNM = .

[MEI]

11––
27

11–––
5   5

2––
5

π–
2

π–
3

π–
4

E
xercise 8

B

191

C4
8

y

xO

α
β

M(0, 2)

N(3, –2)

L(–2, 1)

P



7 (i) Find ∫x coskx dx, where k is a non-zero constant.

(ii) Show that

cos(A – B) – cos(A + B) = 2sinA sinB.

Hence express 2sin5x sin3x as the difference of two cosines.

(iii) Use the results in parts (i) and (ii) to show that 

∫0
x sin5x sin3x dx = .

[MEI]

8 (i) Use the formulae for cos(θ + z) and cos(θ – z) to prove that 

cos(θ – z) – cos(θ + z) = 2sinθ sinz. ∗

Prove also that sin (π – θ) = sinθ.

In triangle PQR, angle P = π radians, angle Q = α radians, and QR = 1 unit.

The point S is at the foot of the perpendicular from R to PQ, as shown in the

diagram.

(ii) Show that PQ = 2sin(α + π).

By finding RS in terms of α, deduce that the area A of the triangle is given by

A = sin(α + π)sinα.

Find the value of α for which the area A is a maximum. [You may find the

result ∗ helpful.]

(iii) Expand sin(α + π), and hence show that, for small values of α,

A ≈ pα + qα2, where p and q are contants to be determined.

[For small θ, sin θ � θ and cos θ � 1.]
Find the value of this expression when α = 0.1, and find also the

corresponding value of A given by the expression in part (ii). [MEI]

Double-angle formulae

● As you work through these proofs, think how you can check the results.

Is a check the same as a proof?

1–
6

1–
6

1–
6

1–
6

π – 2–––––
16

π–
4

Tr
ig

o
n

o
m

et
ry

192

C4
8

R

S
P Q

απ
1
6



Substituting z = θ in the relevant compound formulae leads immediately to

expressions for sin2θ, cos2θ and tan2θ, as follows.

(i) sin(θ + z) = sinθcosz + cosi sinz

When z = θ, this becomes

sin(θ + θ) = sinθcosθ + cosθ sinθ

giving sin2θ = 2sinθcosθ.

(ii) cos(θ + z) = cosθcosz – sinθ sinz

When z = θ, this becomes

cos(θ + θ) = cosθcosθ – sinθ sinθ

giving cos2θ = cos2 θ – sin2 θ .

Using the Pythagorean identity cos2 θ + sin2 θ = 1, two other forms for cos2θ can

be obtained.

cos2θ = (1 – sin2 θ) – sin2 θ ⇒ cos2θ = 1 – 2sin2 θ

cos2θ = cos2 θ – (1 – cos2 θ) ⇒ cos2θ = 2cos2 θ – 1

These alternative forms are often more useful since they contain only one

trigonometrical function.

tanθ + tanz
(iii) tan(θ + z) = –––––––––––– (θ + z) ≠ 90°, 270°, ...

1 – tanθ tanz

When z = θ this becomes

tanθ + tanθ
tan(θ + θ) = –––––––––––

1 – tanθ tanθ

2tanθgiving tan2θ = –––––––– θ ≠ 45°, 135°, ... .
1 – tan2 θ

Uses of the double-angle formulae

In modelling situations

You will meet situations, such as that below, where using a double-angle formula

not only allows you to write an expression more neatly but also thereby allows

you to interpret its meaning more clearly.
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When an object is projected, such as a golf ball being hit as in figure 8.5, with

speed u at an angle α to the horizontal over level ground, the horizontal distance

it travels before striking the ground, called its range, R, is given by the product of 
(2u sinα)the horizontal component of the velocity u cos α and its time of flight –––––––.g

2u2 sinαcosα
R = –––––––––––g

Using the double-angle formula, sin2α = 2sin α cos α allows this to be written as

u2 sin2αR = –––––––.
g

Since the maximum value of sin2α is 1, it follows that the greatest value of the 
u2

range R is –– and that this occurs when 2α = 90° and so α = 45°. Thus an angle of g
projection of 45° will give the maximum range of the projectile over level ground. 

(This assumes that air resistance may be ignored.)

In this example, the double-angle formula enabled the expression for R to be

written tidily. However, it did more than that because it made it possible to find

the maximum value of R by inspection and without using calculus.

In calculus

The double-angle formulae allow a number of functions to be integrated and you

will meet some of these later in this chapter.

The formulae for cos2θ are particularly useful in this respect since

cos2θ = 1 – 2sin2 θ ⇒ sin2 θ = (1 – cos2θ)

and

cos2θ = 2cos2 θ – 1 ⇒ cos2θ = (1 + cos2θ)

and these identities allow you to integrate sin2 θ and cos2 θ .
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In solving equations

You will sometimes need to solve equations involving both single and double

angles as shown by the next two examples.

EXAMPLE 8.4 Solve the equation sin2θ = sinθ for 0° � θ � 360°.

SOLUTION

sin2θ = sinθ

⇒ 2sinθcos θ = sinθ

⇒ 2sinθcos θ – sinθ = 0

⇒ sinθ(2cos θ – 1) = 0

⇒ sinθ = 0  or  cos θ =

sinθ = 0 ⇒ θ = 0° (principal value) or 180° or 360° (see figure 8.6).

cosθ = ⇒ θ = 60° (principal value) or 300° (see figure 8.7).

The full set of roots for 0° � θ � 360° is θ = 0°, 60°, 180°, 300°, 360°.

When an equation contains cos2θ, you will save time if you take care to choose

the most suitable expansion.
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EXAMPLE 8.5 Solve 2 + cos 2θ = sinθ for 0 � θ � 2π. (Notice that the request for 0 � θ � 2π,

i.e. in radians, is an invitation to give the answer in radians.)

SOLUTION

Using cos2θ = 1 – 2 sin2 θ gives

2 + (1 – 2 sin2 θ) = sinθ

⇒ 2sin2 θ + sinθ – 3 = 0

⇒ (2sinθ + 3)(sinθ – 1) = 0

⇒ sinθ = – (not valid since –1 � sinθ � 1)

or sinθ = 1.

Figure 8.8 shows that the principal value θ = is the only root for 0 � θ � 2π.

EXERCISE 8C 1 Solve the following equations for 0° � θ � 360°.

(i) 2sin2θ = cosθ (ii) tan2θ = 4tanθ (iii) cos2θ + sinθ = 0

(iv) tanθ tan2θ = 1 (v) 2cos2θ = 1 + cos θ

2 Solve the following equations for –π � θ � π.

(i) sin2θ = 2sinθ (ii) tan2θ = 2tanθ (iii) cos2θ – cosθ = 0

(iv) 1 + cos2θ = 2sin2 θ (v) sin4θ = cos2θ

(Hint: Write the expression in part (v) as an equation in 2θ.)

3 By first writing sin3θ as sin(2θ + θ), express sin3θ in terms of sinθ.

Hence solve the equation sin3θ = sinθ for 0 � θ � 2π.

4 Solve cos3θ = 1 – 3cosθ for 0° � θ � 360°.

1 + cos2θ5 Simplify –––––––– .
sin2θ

6 Express tan3θ in terms of tanθ.

1 – tan2 θ7 Show that –––––––– = cos2θ.
1 + tan2 θ
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8 (i) Show that tan( + θ)tan( – θ) = 1.

(ii) Given that tan 26.6° = 0.5, solve tanθ = 2 without using your calculator.

Give θ to 1 decimal place, where 0° � θ � 90°.

9 (i) Sketch on the same axes the graphs of

y = cos2x and y = 3sinx – 1    for    0 � x � 2π.

(ii) Show that these curves meet at points whose x co-ordinates are solutions

of the equation 2sin2 x + 3sinx – 2 = 0.

(iii) Solve this equation to find the values of x in terms of π for 0 � x � 2π.

[MEI]

● The factor formulae

In algebra, the term ‘factorising’ means writing expressions as products.

For example, ‘factorise x2 – 3x + 2’ means ‘write x2 – 3x + 2 as (x – 1)(x – 2)’.

The same idea of factorising applies in trigonometry: you write sums or

differences of trigonometrical functions as products.

● A student writes ‘sinα + sinβ = sin(α + β)’.

There are two ways to prove this is wrong. What are they?

The factor formulae are derived from the compound-angle formulae.

Start with the compound-angle formulae for sin(θ + z) and sin(θ – z).

sin(θ + z) = sinθcosz + cosθ sinz �1

sin(θ – z) = sinθcosz – cosθ sinz �2

Adding �1 and �2 gives

sin(θ + z) + sin(θ – z) = 2sinθcosz. �3

At this point, it is helpful to change variables by writing

θ + z = α and θ – z = β

so that θ = (α + β)      and z = (α – β).

Substituting for θ and z in �3 gives

α + β α – βsinα + sinβ = 2sin(–––––) cos(–––––).
2                 2 

The left-hand side is a sum and the right-hand side is a product, so the expression

has been factorised.
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Similarly, subtracting �2 from �1 gives

α + β α – βsinα – sinβ = 2cos(–––––) sin(–––––).
2                2 

ACTIVITY 8.3 Write down the expressions for cos(θ + z) and cos(θ – z) and use these to obtain

factor formulae for cos α + cosβ and for cos α – cos β.

● When do you use the factor formulae?

● Addition of waveforms 

The factor formulae allow you to add together sine and cosine functions. This

operation is equivalent to the physical situation of combining waves of the same

size (amplitude).

INVESTIGATION

● Two musicians playing in tune

The sound of two musicians playing in tune with the same loudness may be

modelled as two waves given by x1 = a sinωt and x2 = a sin(ωt + ε).

The constant ω is related to the frequency of these waves and so to the pitch of the 
ωmusical notes. (The frequency is given by ––). The two waves are not in phase 2π

and this is represented by the constant ε in the expression for x2 (see figure 8.9).
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Show that x1 + x2 is a single wave. That is, the musicians sound as one but louder.

● Two musicians playing slightly out of tune

In this case, the waves are given by x1 = a sinωt and x2 = a sin(ω + δ)t, where δ is

very small compared to ω.

Find the expression for x1 + x2.

Explain how this makes the combined note of the musicians vary in loudness, a

phenomenon known as beats. How do beats help a piano tuner?

● Manipulation

The factor formulae are often useful in tidying up expressions and in solving

equations, as in the next example.
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EXAMPLE 8.6 Solve sin3θ + sinθ = 0 for 0° � θ � 360°.

SOLUTION

Using

α + β α – βsinα + sinβ = 2sin(–––– )cos (––––)2               2

and putting α = 3θ and β = θ gives

sin3θ + sinθ = 2 sin 2θcos θ

so the equation becomes

2sin2θcosθ = 0

⇒ cosθ = 0      or      sin2θ = 0.

From the graphs for y = cosθ and y = sinθ

cosθ = 0 gives   θ = 90° or 270°

sin2θ = 0 gives 2θ = 0°, 180°, 360°, 540° or 720°

so θ = 0°, 90°, 180°, 270° or 360°.

The complete set of roots in the range given is θ = 0°, 90°, 180°, 270°, 360°.

EXERCISE 8D ● The questions in this exercise relate to enrichment material.

1 Factorise the following expressions.

(i) sin4θ – sin2θ
(ii) cos5θ + cos θ
(iii) cos 7θ – cos3θ
(iv) cos(θ + 60°) + cos(θ – 60°)

(v) sin(3θ + 45°)+ sin(3θ – 45°)

2 Factorise cos4θ + cos2θ. Hence, for 0° � θ � 180°, solve

cos4θ + cos2θ = cos θ .

sin5θ + sin3θ3 Simplify ––––––––––––.
sin5θ – sin3θ

4 Solve the equation sin3θ – sinθ = 0 for 0 � θ � 2π.

5 Factorise sin(θ + 73°) – sin(θ + 13°) and use your result to sketch the graph of

y = sin(θ + 73°) – sin(θ + 13°).

6 Prove that sin2 A – sin2 B = sin(A – B) sin(A + B).

7 (i) Use a suitable factor formula to show that

sin3θ + sinθ = 4sinθcos2 θ .

(ii) Hence show that sin3θ = 3sinθ – 4sin3 θ .
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The forms r cos(θ ± α), r sin(θ ± α)

Another modification of the compound-angle formulae allows you to simplify

expressions such as 4sinθ + 3cosθ and hence solve equations of the form       

a sinθ + bcosθ = c.

To find a single expression for 4sinθ + 3cosθ, you match it to the expression

r sin(θ + α) = r(sinθcosα + cosθ sinα).

This is because the expansion of r sin(θ + α) has sinθ in the first term, cosθ in the

second term and a plus sign in between them. It is then possible to choose

appropriate values of r and α.

4 sinθ + 3cosθ / r(sinθcosα + cosθ sinα)

Coefficients of sinθ:      4 = r cosα

Coefficients of cosθ:      3 = r sinα.

Looking at the right-angled triangle in figure 8.11 gives the values for r and α.

In this triangle, the hypotenuse is 42 + 32 = 5, which corresponds to r in the

expression above.

The angle α is given by

sinα = and      cosα = ⇒ α = 36.9°.

So the expression becomes

4sinθ + 3cosθ = 5sin(θ + 36.9°).

The steps involved in this procedure can be generalised to write 

a sinθ + b cos θ = r sin(θ + α)

where

b ar = a2 + b2 sinα = ––––––– cosα = –––––––.
a2 + b2 a2 + b2
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The same expression may also be written as a cosine function. In this case,

rewrite 4sinθ + 3cosθ as 3cosθ + 4sinθ and notice that:

(i) The expansion of cos(θ – β) starts with cos θ … just like the expression

3cos θ + 4sinθ.

(ii) The expansion of cos(θ – β) has + in the middle, just like the expression 

3cos θ + 4sinθ.

The expansion of rcos(θ – β) is given by

rcos(θ – β) = r(cosθ cosβ + sinθ sinβ).

To compare this with 3cos θ + 4sinθ, look at the triangle in figure 8.12 in which

r = 32 + 42 = 5          cosβ = sin β = ⇒ β = 53.1°.

This means that you can write 3cosθ + 4sinθ in the form

rcos(θ – β) = 5cos(θ – 53.1°).

The procedure used here can be generalised to give the result

acos θ + b sinθ = rcos(θ – α)

a bwhere    r = a2 + b2 cosα = –           sinα = –.r r

Note

The value of r will always be positive, but cos a and sina may be positive or

negative, depending on the values of a and b. In all cases, it is possible to find an

angle a for which –180° � a � 180°.

You can derive alternative expressions of this type based on other compound-

angle formulae if you wish α to be an acute angle, as is done in the next example.
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EXAMPLE 8.7 (i) Express 3sinθ – cosθ in the form r sin(θ – α), where r � 0 and 0 � α � .

(ii) State the maximum and minimum values of 3sinθ – cosθ.

(iii) Sketch the graph of y = 3sinθ – cosθ for 0 � θ � 2π.

(iv) Solve the equation 3sinθ – cosθ = 1 for 0 � θ � 2π.

SOLUTION

(i) r sin(θ – α) = r(sinθcosα – cosθ sinα)

= (rcosα)sinθ – (r sinα)cosθ.

Comparing this with 3sinθ – cosθ, the two expressions are identical if

rcosα = 3          and          r sinα = 1.

From the triangle in figure 8.13

r = 1 + 3 = 2     and     tanα = ⇒ α =

so                 3 sinθ – cosθ = 2sin(θ – ).

(ii) The sine function oscillates between 1 and –1, so 2sin(θ – ) oscillates

between 2 and –2. 

Maximum value = 2

Minimum value = –2.

(iii) The graph of y = 2sin(θ – ) in figure 8.14 is obtained from the graph of         

y = sinθ by a translation ( ) and a stretch of factor 2 parallel to the y axis.
0

(iv) The equation 3sinθ – cosθ = 1 is equivalent to

2sin(θ – ) = 1

⇒ sin(θ – ) = .

Let x = (θ – ) and solve sinx = .1–
2
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Solving sinx = gives x = (principal value) 

or x = π – = (from the graph in figure 8.15)

giving θ = + = or      θ = + = π.

The roots in 0 � θ � 2π are θ = and π.

Always check (for example by reference to a sketch graph) that the number of

roots you have found is consistent with the number you are expecting. When

solving equations of the form sin(θ – α) = c by considering sinx = c, it is

sometimes necessary to go outside the range specified for θ since, for example, 

0 � θ � 2π is the same as –α � x � 2π – α.

Using these forms

There are many situations, as on page 201, which produce expressions which can

be tidied up using these forms. They are also particularly useful for solving

equations involving both the sine and cosine of the same angle.

The fact that acosθ + b sinθ can be written as rcos(θ – α) is an illustration of the

fact that any two waves of the same frequency, whatever their amplitudes, can be

added together to give a single combined wave, also of the same frequency.

EXERCISE 8E 1 Express each of the following in the form rcos(θ – α), where r � 0 and 
0° � α � 90°.

(i) cosθ + sinθ (ii) 3cosθ + 4sinθ
(iii) cosθ + 3sinθ (iv) 5cosθ + 2sinθ

2 Express each of the following in the form rcos(θ + α), where r � 0 and

0 � α � .

(i) cosθ – sinθ (ii) 3 cosθ – sinθ
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3 Express each of the following in the form r sin(θ + α), where r � 0 and

0° � α � 90°.

(i) sinθ + 2cosθ (ii) 3sinθ + 4cosθ

4 Express each of the following in the form r sin(θ – α), where r � 0 and

0 � α � .

(i) sinθ – cosθ (ii) 3 sinθ – cosθ

5 Express each of the following in the form rcos(θ – α), where r � 0 and

–180° � α � 180°.

(i) cosθ – 3sinθ (ii) 2 2cosθ – 2 2sinθ

(iii) sinθ + 3cosθ (iv) 5sinθ + 12cosθ

(v) sinθ – 3cosθ (vi) 2sinθ – 2cosθ

6 (i) Express 5cosθ – 12sinθ in the form rcos(θ + α), where r � 0 and

0° � α � 90°.

(ii) State the maximum and minimum values of 5cosθ – 12sinθ.

(iii) Sketch the graph of y = 5cosθ – 12sinθ for 0° � θ � 360°.

(iv) Solve the equation 5cosθ – 12sinθ = 4 for 0° � θ � 360°.

7 (i) Express 3sinθ – 3cosθ in the form r sin(θ – α), where r � 0 and

0 � α � .

(ii) State the maximum and minimum values of 3sinθ – 3 cosθ and the

smallest positive values of θ for which they occur.

(iii) Sketch the graph of y = 3sinθ – 3cosθ for 0 � θ � 2π.

(iv) Solve the equation 3sinθ – 3cosθ = 3 for 0 � θ � 2π.

8 (i) Express 2sin2θ + 3cos2θ in the form r sin(2θ + α), where r � 0 and

0° < α < 90°.

(ii) State the maximum and minimum values of 2sin2θ + 3cos2θ and the

smallest positive values of θ for which they occur.

(iii) Sketch the graph of y = 2sin2θ + 3cos2θ for 0° � θ � 360°.

(iv) Solve the equation 2sin2θ + 3cos2θ = 1 for 0° � θ � 360°.

9 (i) Express cosθ + 2sinθ in the form rcos(θ – α), where r � 0 and

0° < α < 90°.

(ii) State the maximum and minimum values of cosθ + 2sinθ and the

smallest positive values of θ for which they occur.

(iii) Sketch the graph of y = cosθ + 2sinθ for 0° � θ � 360°.

(iv) State the maximum and minimum values of

1––––––––––––––––
3 + cosθ + 2 sinθ

and the smallest positive values of θ for which they occur.
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10 The diagram shows a table jammed in a corridor. The table is 120 cm long

and 80 cm wide, and the width of the corridor is 130 cm.

(i) Show that 12sin θ + 8cosθ = 13.

(ii) Hence find the angle θ. (There are two answers.)

11 (i) Use a trigonometrical formula to expand cos(x + α).

(ii) Express y = 2cosx – 5sinx in the form rcos(x + α), giving the positive

value of r and the smallest positive value of α.

(iii) State the maximum and minimum values of y and the corresponding

values of x for 0° � x � 360°.

(iv) Solve the equation

2cosx – 5sinx = 3,   for 0° � x � 360°.
[MEI]

12 (i) Find the value of the acute angle α for which

5cosx – 3sinx = 34cos(x + α)

for all x.

Giving your answers correct to 1 decimal place,

(ii) solve the equation 5cosx – 3sinx = 4 for 0° � x � 360°

(iii) solve the equation 5cos2x – 3sin2x = 4 for 0° � x � 360°.
[MEI]

13 (i) Find the positive value of R and the acute angle α for which

6cosx + 8sinx = Rcos(x – α).

(ii) Sketch the curve with equation

y = 6cosx + 8sinx,   for 0° � x � 360°.

Mark your axes carefully and indicate the angle α on the x axis.

(iii) Solve the equation

6cosx + 8sinx = 4,   for 0° � x � 360°.

(iv) Solve the equation

8cosθ + 6sinθ = 4,   for 0° � θ � 360°.
[MEI]
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14 In the diagram below, angle QPT = angle SQR = θ, angle QPR = α, PQ = a,

QR = b, PR = c, angle QSR = angle QTP = 90°, SR = TU.

(i) Show that angle PQR = 90°, and write down the length of c in terms of 

a and b.

(ii) Show that PU may be written as acos θ + b sinθ and as c cos(θ – α).

Write down the value of tanα in terms of a and b.

(iii) In the case when a = 4, b = 3, find the acute angle α.

(iv) Solve the equation

4cosθ + 3sinθ = 2  for    0° � θ � 360°.

[MEI]

15 The diagram shows the graph, for –1 � x � 4, of y = f(x), where

f(x) = 2(2cosx – sinx)sin x

and x is in radians.

The x co-ordinate of the point P (where the graph crosses the x axis) is λ.

(i) Show that tanλ = 2. 

Find the exact value of sinλ.

(ii) Show that f(x) can be expressed in the form a sin 2x + b cos 2x – 1, where

a and b are constants to be determined.

(iii) Show that f(x) = R cos(2x – λ) – 1, where R is a constant to be

determined.

Deduce the exact range of the function f(x).

(iv) Show that the area of the shaded region is 2 – λ.

[MEI]
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16 (i) Express 3cosx + sinx in the form Rcos(x – α), giving the value of R and

the smallest positive value of α.

(ii) Use your answer to part (i) to solve the equation

3cosx + sinx = 1,   for 0° � x � 360°.

(iii) Solve the equation (3cosx)2 = (1 – sinx)2 by substituting for cos2 x in

terms of sinx and solving the resulting quadratic equation in sinx.

(iv) Explain why the answers to parts (ii) and (iii) are not the same.
[MEI]

17 In the diagram, OAB is a bent rod, wth OA = 1 metre, AB = 2 metres and

angle OAB = 120°.

The bent rod is in a vertical plane. It is free to rotate in this plane about the

point O.

OA makes an angle θ with the horizontal, where –90° � θ � 90°.

The vertical height BD of B above the level of O is h metres.

The horizontal through A meets BD at C.

(i) Show that angle BAC = θ + 60°, and show that h = sinθ + 2sin(θ + 60°).

(ii) Hence show that h = 2 sinθ + 3cosθ, and find the angle θ for which h = 0.

(iii) Express 2sinθ + 3cosθ in the form R sin(θ + α).

Hence or otherwise find the maximum value of h, and find an angle θ for

which h = 2.5.
[MEI]
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INVESTIGATION

The simplest alternating current is 

one which varies with time t

according to 

I = A sin2πft,

where f is the frequency and A is the 

maximum value. The frequency of 

the public AC supply is 50 hertz 

(cycles per second).

Investigate what happens when 

two alternating currents                 

A1 sin2πft and A2 sin(2πft + α) with 

the same frequency f but a phase 

difference of α are added together.

The previous exercises have each concentrated on just one of the many

trigonometrical techniques which you will need to apply confidently. The

following exercise requires you to identify which technique is the correct one.

EXERCISE 8F 1 Simplify the following.

(i) 2sin3θcos3θ
(ii) cos2 3θ – sin2 3θ
(iii) cos2 3θ + sin2 3θ

θ
(iv) 1 – 2sin2 –

2

(v) sin(θ – α)cosα + cos(θ – α)sinα
(vi) 3sinθcosθ

sin2θ(vii) –––––
2sinθ

(viii) cos2θ – 2cos2 θ

2 Express

(i) (cosx – sinx)2 in terms of sin2x

(ii) cos4 x – sin4 x in terms of cos2x

(iii) 2cos2 x – 3sin2 x in terms of cos2x.

3 Prove that

1 – cos2θ(i) –––––––– / tan2 θ
1 + cos2θ

(ii) cosec2θ + cot2θ / cotθ
4t(1 – t2)(iii) tan4θ / ––––––––– where t = tanθ.

1 – 6t2 + t4

E
xercise 8

F

209

C4
8



4 Solve the following equations.

(i) sin(θ + 40°) = 0.7 0° � θ � 360°

(ii) 3cos2 θ + 5sinθ – 1 = 0 0° � θ � 360°

(iii) 2cos(θ – ) = 1 –π � θ � π

(iv) cos(45° – θ) = 2sin(30° + θ) –180° � θ � 180°

(v) cos2θ + 3sinθ = 2 0 � θ � 2π
(vi) cosθ + 3sinθ = 2 0° � θ � 360°

(vii) tan2 x – 3tanx – 4 = 0 0° � θ � 180°

Small-angle approximations

In this section θ is in radians, not degrees.

Figure 8.16 shows the graphs of y = θ, y = sinθ and y = tanθ on the same axes, for 

0 � θ � . The same scale is used for both axes. 

From this, it appears that in this interval, sinθ � θ � tanθ.

To prove this result, look at figure 8.17. PT is a tangent to the circle, radius r units

and centre O.
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● Why does θ need to be in radians?

Considering areas:

�OPQ � sector OPQ � �OPT

⇒ r2 sinθ � r2θ � × r × r tanθ

⇒ sinθ � θ � tanθ.

Use a graphic calculator to draw y = θ, y = sinθ and y = tanθ on the same axes,

for 0 � θ � 0.2 radians. Notice how close the graphs are. This suggests that for

small values of θ, sinθ ≈ θ and tanθ ≈ θ.

The result sinθ ≈ θ for small angles θ is a fundamental result which you will meet

again later in this chapter when you differentiate trigonometrical functions. To

prove this, take the relationship sin θ � θ � tanθ proved earlier for 0 � θ � 

and divide through by sinθ to give

θ tanθ1 � –––– � ––––
sinθ sinθ

θ 1⇒ 1 � –––– � ––––.
sinθ cosθ

θAs θ → 0, cosθ → 1, so –––– is sandwiched between 1 and something 
sinθ

approaching 1, showing that as θ → 0, sinθ ≈ θ. This can be written formally as

θlim –––– = 1
i → 0 sinθ

Dividing each term in the relationship sinθ � θ � tanθ by tanθ gives

sinθ θ–––– � –––– � 1
tanθ tanθ

θ⇒ cosθ � –––– � 1.
tanθ

θAs θ → 0, cos θ → 1, showing that lim –––– = 1.
i → 0 tanθ

You know that cos0 = 1, and for small values of θ, cosθ ≈ 1 but it is easy to obtain

a closer approximation.

Using the double-angle formula cos2θ = 1 – 2sin2 θ and replacing 2θ by  

θ (and θ by θ–2) gives

θcosθ = 1 – 2sin2 –. �1
2

π–
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1–
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1–
2

1–
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θ must be in radians

for this formula for

the area of a sector.

base × height
1–
2ab sin C

1–
2



θ θ θWhen θ is small, so is –, so sin – ≈ –. In �1 this gives2             2    2

θ 2
cosθ ≈ 1 – 2(–)2

θ2
⇒ cosθ ≈ 1 – ––.

2

All of these approximations are very good for –0.1 � θ � 0.1 radians.

●? What do you think is meant by the expression ‘very good’ above?

Can you quantify it by calculating the maximum percentage error?

EXAMPLE 8.8 1 – θGiven that θ is small, show that tan( – θ) ≈ –––––.
1 + θ

SOLUTION

tan – tanθ
tan( – θ) = –––––––––––

1 + tan tanθ

1 – tanθ
= ––––––– since tan = 1

1 + tanθ

1 – θ≈ ––––.
1 + θ

These approximations can also be used to find the limit of a fractional expression

as θ → 0 in cases when substituting θ = 0 gives , which is undefined.

ACTIVITY 8.4 (i) Show that substituting θ = 0 into the expression

cos θ – cos2θ–––––––––––
θ2

gives , which is undefined.

(ii) Investigate the behaviour of this expression as θ → 0 by evaluating

cos θ – cos2θ–––––––––––
θ2

for values of θ (in radians) starting with θ = 0.2 and decreasing in steps of 0.02.

EXAMPLE 8.9 (i) Find an approximation for cosθ – cos2θ when θ and 2θ are both small.

(ii) Hence find

cosθ – cos2θlim –––––––––––.
i → 0 θ2
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0

0–
0
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SOLUTION

(i) When θ and 2θ are both small

θ2
cosθ ≈ 1 – ––

2

(2θ)2
and cos2θ ≈ 1 – ––––

2

≈ 1 – 2θ2.

Using these approximations, when θ is small

θ2
cosθ – cos2θ ≈ (1 – ––) – (1 – 2θ2)

2

3θ2
= –––.

2

cosθ – cos2θ 3θ2
(ii) ––––––––––– ≈ –––

θ2 2θ2

3≈ –
2

This is consistent with the result in Activity 8.4 and may be written as

cosθ – cos2θ 3lim –––––––––– = –.
i → 0 θ2 2

EXAMPLE 8.10 (i) Simplify tan( + θ) when θ is small.

(ii) Hence use the binomial theorem to find a quadratic approximation for 

tan( + θ) when θ is small.

SOLUTION

tan + tanθ
(i) tan( + θ) = –––––––––––

1 – tan tanθ

1 + tanθ= –––––––
1 – tanθ

1 + θ≈ –––– when θ is small.
1 – θ

(ii) 1 + θ–––– = (1 + θ)(1 – θ)–1

1 – θ
(–1)(–2)(–θ)2

= (1 + θ)[1 + (–1)(–θ) + –––––––––––– + …]2!

≈ (1 + θ)(1 + θ + θ2)

≈ 1 + 2θ + 2θ2
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Differentiating y = sinx from first principles

In Chapter 4 you deduced the result (sinx) = cosx by looking at the graph of 

y = (sinx). You are now able to prove this result.

● As you work through the proof, list what you now know (but did not know

earlier) that allows you to prove the result.

Figure 8.18 shows part of the graph

of y = sinx. The point P is a general

point (x, sinx) on the graph. The

point Q is a very small distance

further on, so it has x co-ordinate 

x + δx, where δx is very small, and 

y co-ordinate sin(x + δx).

You can find the gradient at the

point P by finding the limit of the

gradient of the chord PQ as 	x

approaches zero.

dy sin(x + δx) – sinx–– = lim ––––––––––––––
dx δx → 0 δx

sin(x + 	x) may be simplified by using the compound-angle formula.

sin(x + δx) = sinx cos δx + cosx sinδx

As δx is small, you can replace cosδx and sinδx by their small-angle approximations

cosδx ≈ 1 – (δx)2 sinδx ≈ δx

which leads to

sin(x + δx) ≈ (sinx)[1 – (δx)2] + (cosx)δx

= sinx – (sinx)(δx)2 + (cosx)δx.

sin(x + δx) – sinxSubstituting this in the expression ––––––––––––––– gives
δx

sinx – (sinx)(δx)2 + (cosx)δx – sinx
–––––––––––––––––––––––––––––––

δx

– (sinx)(δx)2 + (cosx)δx
= –––––––––––––––––––––

δx

= – (sinx)δx + cosx.1–
2

1–
2

1–
2

1–
2

1–
2

1–
2
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––
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d
––
dx
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Figure 8.18

sinx
(x, sin x)

y = sin x



In the limit as δx → 0, this becomes simply cosx. So

dy–– = cosx.
dx

You have now proved the result which you found in Activity 4.4 by sketching the

gradient graph.

EXERCISE 8G 1 When θ is small enough for θ3 to be ignored, find approximate expressions for 
the following.

θ sinθ(i) ––––––– (ii) 2cos( + θ)1 – cosθ
θ tanθ(iii) cosθcos2θ (iv) ––––––––

1 – cos2θ
cos4θ – cos2θ (v) –––––––––––– (vi) sin(α + θ)sinθ (Note: α is not small.)
sin4θ – sin2θ

2 (i) Find an approximate expression for sin2θ + tan3θ when θ is small enough 

for 3θ to be considered as small.

(ii) Hence find

sin2θ + tan3θlim ––––––––––––.
i → 0 θ

3 (i) Find an approximate expression for 1 – cosθ when θ is small.

(ii) Hence find

1 – cosθlim –––––––.
i → 0 4θ sinθ

4 (i) Find an approximate expression for sinθ[sin( + θ) – sin ] when θ is small.

(ii) Find an approximate expression for 1 – cos2θ when θ is small.

(iii) Hence find

sinθ[sin( + θ) – sin ]
lim ––––––––––––––––––––.
i → 0 1 – cos2θ

5 (i) Find an approximate expression for 1 – cos4θ when θ is small enough for 

4θ to be considered as small.

(ii) Find an approximate expression for tan2 2θ when θ is small enough for 2θ
to be considered as small.

(iii) Hence find

1 – cos4θlim  –––––––– .
i → 0 tan2 2θ
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16 (i) Find an approximate expression for –––––––– when θ is small.
1 + tanθ

(ii) Hence use the binomial theorem to find a quadratic approximation

1for ––––––––.
1 + tanθ

(iii) When θ = 0.1 radians, find the percentage errors which arise when you use

each of the expressions you have derived in parts (i) and (ii) in place 
1of –––––––– .

1 + tanθ

7 (i) Find an approximate expression for 1 + sinθ when θ is small. 

(ii) Hence use the binomial theorem to find a quadratic approximation

for 1 + sinθ .

(iii) Say which of these approximations you would expect to be the more

accurate, and give a reason for your answer. 

(iv) Check your answer to part (iii) by substituting θ = 0.1 radians.

18 (i) By writing secθ as ––––– find an approximate expression for secθ when θ
cosθ

is small.

(ii) Hence use the binomial theorem to find a quadratic approximation for secθ.

(iii) Use a trial and improvement method to find the largest value of θ for

which the error incurred in using your answer to part (ii) in place of secθ is

less than 1%.

(iv) Comment on your answer to part (iii).

9 There are regulations in fencing to

ensure that the blades used are not

too bent. For épées, the rule states

that the blade must not depart by

more than 1cm from the straight line

joining the base to the point (see

figure A). For sabres, the

corresponding rule states that the

point must not be more than 4cm

out of line, i.e. away from the tangent

at the base of the blade (see figure B).

Suppose that a blade AB is bent to

form an arc of a circle of radius r,

and that AB subtends an angle 2θ at

the centre O of the circle. Then with

the notation of figure C, the épée

bend is measured by CD, and the

sabre bend by BE.
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Figure B

Figure C

Figure A



(i) Show that CD = r (1 – cosθ).

(ii) Explain why angle BAE = θ.

(iii) Show that BE = 2r sin2 θ.

(iv) Deduce that if θ is small, BE � 4CD and hence that the rules for épée and

sabre amount to the same thing.

10 (i) Solve the equation sin2x + cos2x = 0 for – � x � , giving your

answers in radians.

(ii) Show that cos2x ≈ 1 – 2x2 for small values of x.

Write down a small-angle approximation for sin2x.

(iii) Using the results in part (ii), find a quadratic function Q(x) which is an

approximation to sin2x + cos2x for small values of x.

(iv) Solve the equation Q(x) = 0.

(v) Comment on your answers to parts (i) and (iv).

[MEI]

211 (i) Express ––––––––––– in partial fractions.
(2 – x)(1 – x)

Show that, for small values of x,

2––––––––––– ≈ 1 + kx + x2

(2 – x)(1 – x)

where k is to be found.

(ii) By using a suitable small-angle approximation for cosθ, together with the

result of part (i), show that, for small values of θ

2––––––––––––– ≈ 1 + θ2.
(1 + cosθ)cosθ

(iii) Given that θ is small, find an approximate solution of the equation

2––––––––––––– = 0.99 + sin2 θ.
(1 + cosθ)cosθ

[MEI]

12 (i) Use a compound-angle formula to write down an expression for           

sin(x + δx).

(ii) Rewrite your answer to part (i) using small-angle approximations for

sinδx and cosδx.

(iii) Use your answer to part (ii) to write down an expression for

sin(x + δx) – sinx–––––––––––––– .
δx

(iv) State

sin(x + δx) – sinxlim ––––––––––––––.
δx → 0 δx

(v) Explain the significance of your answer to part (iv).
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13 (i) Find ∫θcos2θ dθ.

(ii) Find the expansion of (1 + 2x)–3 up to and including the term in x3,

giving the coefficients in their simplest form. 

State the range of values of x for which the expansion is valid.

(iii) Show that, provided θ is small, cos2θ ≈ 1 – 2θ2.

Hence find a and b such that (cos2θ)–3 is approximately a + bθ2,

provided θ is small.

Use this approximation to find an estimate for

θ∫
0.1

0

––––––– dθ.
(cos2θ)3

[MEI]

14 (i) (a) Find the exact value of ∫
π

0
xcos2xdx.

(b) By writing cos2x in terms of cos 2x, show that

∫
π

0
x cos2 x dx = (π2 – 4).

(ii) The variables x and y satisfy = x cos x, and y = 0 when x = 0.

(a) Using the approximation cos x ≈ 1 – x2 and a suitable substitution,

show by integration that, for small values of x,

y ≈ – (1 – x2)e-∑.

(b) Using a binomial expansion on this result, show that for small values

of x

y ≈ ax2 + bx4,

where a and b are constants to be determined.

[MEI]

INVESTIGATION

Explain why tan 89° is approximately but not exactly equal to the number of

degrees in a radian.

● The general solutions of trigonometrical equations 

The equation tanθ = 1 has infinitely many roots:

…, –315°,   –135°,   45°,   225°,   405°, … (in degrees)

…, – , – , – , , , …       (in radians).9π––
4

5π––
4

π–
4

3π––
4

7π––
4

1–
2

2–
3

2–
3

1–
2

dy
––
dx

1––
16

1–
2

1–
2
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Only one of these roots, namely 45° or , is denoted by the function arctan1. This 

is the value which your calculator will give you. It is called the principal value.

The principal value for any inverse trigonometrical function is unique and lies

within a specified range:

– � arctanx �

– � arcsinx �

0 � arccosx � π.

It is possible to deduce all other roots from the principal value and this is shown

below.

To solve the equation tanθ = c, notice how all possible values of θ occur at

intervals of 180° or π radians (see figure 8.19). So the general solution is

θ = arctanc + nπ n � � (in radians).

The cosine graph (see figure 8.20) has the y axis as a line of symmetry. Notice

how the values ±arccos c generate all the other roots at intervals of 360° or 2π. So

the general solution is

θ = ±arccos c + 2nπ n � � (in radians).
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Figure 8.19

Figure 8.20
–arccosc arccos c

principal value

arctan c
principal value

π––
2

π–
2

3π––
2

5π–––
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3π–––
2

π––
2

π–
2

3π––
2

5π––
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7π––
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To solve the equation sin θ = c, notice that there are two roots located 

symmetrically each side of θ = , which generate all the other possible roots (see 

figure 8.21). This gives rise to the slightly more complicated expressions

θ = ± ( – arcsin c) + 2nπ

or θ = (2n + )π ± ( – arcsin c) n � �.

You may, however, find it easier to remember these as two separate formulae:

θ = 2nπ + arcsin c or θ = (2n + 1)π – arcsin c.

ACTIVITY 8.5 Show that the general solution of the equation sinθ = c may also be written

θ = nπ + (–1)n arcsin c.

● Using trigonometrical identities in integration

Sometimes, when it is not immediately obvious how to integrate a function

involving trigonometrical functions, it may help to rewrite the function using

one of the trigonometrical identities.

EXAMPLE 8.11 Find ∫ sin2 x dx.

SOLUTION

A substitution cannot be used in this case. However, you know the identity

cos2x = 1 – 2sin2 x.

(Remember that this is just one of the three expressions for cos2x.)

This identity may be rewritten as

sin2 x = (1 – cos2x).1–
2

π–
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Figure 8.21
arcsin c

principal value

(180° – arcsin c)
or (π – arcsinc)

3ππ–π 2π–2π–3π



By putting sin2x in this form, you will be able to perform the integration:

∫ sin2 x dx = ∫ (1 – cos2x) dx

= (x – sin2x) + c

= x – sin2x + c.

You can integrate cos2 x in the same way, by using cos2 x = (cos2x + 1). Other

even powers of sinx or cosx can also be integrated in a similar way, but you have

to use the identity twice or more.

EXAMPLE 8.12 Find ∫ cos4 x dx.

SOLUTION

First express cos4 x as (cos2 x)2:

cos4 x = [ (cos2x + 1)]2

= (cos2 2x + 2cos2x + 1).

Next, apply the same identity to cos2 2x :

cos2 2x = (cos4x + 1).

Hence cos4 x = ( cos4x + + 2cos2x + 1)
= ( cos4x + 2cos2x + )
= cos4x + cos2x + .

This can now be integrated:

∫ cos4 x dx = ∫ ( cos4x + cos2x + ) dx

= sin4x + sin2x + x + c.

For odd powers of sinx or cosx, a different technique is used, as in the next

example.

EXAMPLE 8.13 Find ∫ cos3 x dx.

SOLUTION

First write cos3 x = cosx cos2 x.

Now remember that

cos2 x + sin2 x = 1 ⇒ cos2 x = 1 – sin2 x.

This gives

cos3 x = cosx(1 – sin2 x)

= cosx – cosx sin2 x.
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The first part of this expression, cosx, is easily integrated to give sinx.

The second part is more complicated, but you can see that it is of a type that you

have met already, as it is a product of two functions, one of which is a function of

sinx and the other of which is the derivative of sinx. This can be integrated either

by making the substitution u = sinx or simply in your head (by inspection). So

∫ cos3 x dx = ∫ (cosx – cosx sin2 x) dx

= sinx – sin3 x + c.

Any odd power of sinx or cosx can be integrated in this way, but again it may be

necessary to use the identity more than once. For example:

sin5 x = sinx(sin2 x)(sin2 x) = sinx(1 – cos2 x)2

= sinx(1 – 2cos2 x + cos4 x)

= sinx – 2sinx cos2 x + sinx cos4 x.

This can now be integrated.

KEY POINTS

1 secθ = ;    cosecθ = ;    cotθ =

2 tan2 θ + 1 = sec2 θ;    1 + cot2 θ = cosec2 θ

3 Compound-angle formulae

● sin(θ + z) = sinθcosz + cosθ sinz

● sin(θ – z) = sinθcosz – cosθ sinz

● cos(θ + z) = cosθcosz – sinθ sinz

● cos(θ – z) = cosθcosz + sinθ sinz

tanθ + tanz
● tan(θ + z) = ––––––––––– (θ + z) ≠ 90°, 270°, ...

1 – tanθ tanz

tanθ – tanz
● tan(θ – z) = ––––––––––– (θ – z) ≠ 90°, 270°, ...

1 + tanθ tanz

4 Double-angle and related formulae

● sin2θ = 2sinθcosθ

● cos2θ = cos2θ – sin2 θ = 1 – 2sin2 θ = 2cos2 θ – 1

2tanθ
● tan2θ = –––––––– θ ≠ 45°, 135°, ... 

1 – tan2 θ

● sin2 θ = (1 – cos2θ)

● cos2 θ = (1 + cos2θ)1–
2

1–
2

1––––
tanθ

1––––
sinθ

1––––
cosθ
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5 The r, α formulae

● a sinθ + bcosθ = r sin(θ + α)

● a sinθ – bcosθ = r sin(θ – α)

● acosθ + b sinθ = rcos(θ – α)

● acosθ – b sinθ = rcos(θ + α)

6 The small-angle approximations (for θ in radians)

● sinθ ≈ θ

● tanθ ≈ θ

θ2
● cosθ ≈ 1 – ––

2

θ sinθ
● lim –––– = lim –––– = 1

i → 0 sinθ i → 0 θ

● Factor formulae

α + β α – β
● sinα + sinβ = 2sin(–––––)cos(––––)2                2

α + β α – β
● sinα – sin β = 2cos(––––)sin(–––– )2               2

α+ β α – β
● cosα + cosβ = 2cos(–––– )cos(––––)2                2

α + β α – β
● cosα – cosβ = –2sin(–––––)sin(–––– )2                2
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cosα = r
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sinα = r

Note the minus
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Parametric equations

A mathematician, like a painter or poet, is a maker of patterns. If his

patterns are more permanent than theirs it is because they are made

with ideas.

G.H. Hardy

When you go on a ride like the one in the picture, your body follows a very

unnatural path and this gives rise to sensations which you may find exhilarating

or frightening.

You are accustomed to expressing curves as mathematical equations. How would

you do so in a case like this?

Figure 9.1 shows a simplified version of such a ride.
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Figure 9.1

AP has in total
turned through

angle 3θ.

(a) (b)



The passenger’s chair is on the end of a rod AP of length 2m which is rotating

about A. The rod OA is 4m long and is itself rotating about O. The gearing of the

mechanism ensures that the rod AP rotates twice as fast relative to OA as the rod

OA does. This is illustrated by the angles marked on figure 9.1(b), at a time when OA

has rotated through an angle θ.

At this time, the co-ordinates 

of the point P, taking O as the

origin, are given by

x = 4cosθ + 2cos3θ

y = 4sinθ + 2sin3θ

(see figure 9.2).

These two equations are called parametric equations of the curve. They do not

give the relationship between x and y directly in the form y = f(x) but use a third

variable, θ, to do so. This third variable is called the parameter.

To plot the curve, you need to substitute values of θ and find the corresponding
values of x and y.

Thus θ = 0° ⇒ x = 4 + 2 = 6

y = 0 + 0 = 0 Point (6, 0)

θ = 30° ⇒ x = 4 × 0.866 + 0 = 3.464

y = 4 × 0.5 + 2 × 1 = 4 Point (3.46, 4)

and so on.

Joining points found in this way reveals the curve to have the shape shown in
figure 9.3.

●? At what points of the curve would you feel the greatest sensations?
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Figure 9.2

Figure 9.3



Graphs from parametric equations

Parametric equations are very useful in situations such as this, where an

otherwise complicated equation may be expressed reasonably simply in 

terms of a parameter. Indeed, there are some curves which can be given by

parametric equations but cannot be written as cartesian equations (in terms of

x and y only).

The next example is based on a simpler curve. Make sure that you can follow the

solution completely before going on to the rest of the chapter.

36EXAMPLE 9.1 A curve has the parametric equations x = 2t, y = ––.
t2

(i) Find the co-ordinates of the points corresponding to t = 1, 2, 3, –1, –2 

and –3.

(ii) Plot the points you have found and join them to give the curve.

(iii) Explain what happens as t → 0.

SOLUTION

(i)

The points required are (–6, 4), (–4, 9), (–2, 36), (2, 36), (4, 9) and (6, 4).

(ii) The curve is shown in figure 9.4.

(iii) As t → 0, x → 0 and y → ∞. The y axis is an asymptote for the curve.
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t –3 –2 –1 1 2 3

x –6 –4 –2 2 4 6

y 4 9 36 36 9 4

Figure 9.4



EXAMPLE 9.2 A curve has the parametric equations x = t2, y = t3 – t.

(i) Find the co-ordinates of the points corresponding to values of t from –2  to

+2 at half-unit intervals.

(ii) Sketch the curve for –2 � t � 2.

(iii) Are there any values of x for which the curve is undefined?

SOLUTION

(i)

(ii)

(iii) The curve in figure 9.5 is undefined for x � 0.

Graphic calculators

Graphic calculators can be used to sketch parametric curves but, as with cartesian

curves, you need to be careful when choosing the range. 

Finding the equation by eliminating the parameter

For some pairs of parametric equations, it is possible to eliminate the parameter

and obtain the cartesian equation for the curve. This is usually done by making

the parameter the subject of one of the equations, and substituting this

expression into the other.
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t –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x 4 2.25 1 0.25 0 0.25 1 2.25 4

y –6 –1.875 0 0.375 0 –0.375 0 1.875 6

Figure 9.5



tEXAMPLE 9.3 Eliminate t from the equations x = t3 – 2t2, y = –.
2

SOLUTION

ty = – ⇒ t = 2y.
2

Substituting this in the equation x = t3 – 2t2 gives

x = (2y)3 – 2(2y)2 or x = 8y3 – 8y2.

Sometimes you need to consider the parametric equations simultaneously. There

is often more than one way in which you can do this, and the next example gives

two different options.

EXAMPLE 9.4 The parametric equations of a curve are

1                       1x = t + – y = t – –.
t t

(i) Find the co-ordinates of the points corresponding to t = –2, –1, –0.5,  0, 

0.5, 1, 2.

(ii) Sketch the curve for –2 � t � 2.

(iii) For what values of x is the curve undefined?

(iv) Eliminate the parameter by 

(a) first finding x + y

(b) first squaring x and y.

SOLUTION

(i)

(ii)
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t –2  –1 –0.5 0 0.5 1 2

x –2.5 –2 –2.5 undefined 2.5 2 2.5

y –1.5 0 1.5 undefined –1.5 0 1.5

Figure 9.6



(iii) The curve is undefined for –2 � x � 2.

(iv) (a) Adding the two equations gives

x + yx + y = 2t or t = ––––.
2

Substituting for t in the first equation (it could be either one) gives

x + y 2x = –––– + ––––.
2 x + y

At this point the parameter t has been eliminated, but the equation is not

in its neatest form. 

Multiplying by 2(x + y) to eliminate the fractions:

2x(x + y) = (x + y)2 + 4

⇒ 2x2 + 2xy = x2 + 2xy + y2 + 4

⇒ x2 – y2 = 4.

(b) Squaring gives

1x2 = t2 + 2 + ––
t2

1y2 = t2 – 2 + –– .
t2

Subtracting gives

x2 – y2 = 4.

Note

Figure 9.7 shows that the curve is the rectangular hyperbola xy = 2 rotated clockwise

through 45°.
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Trigonometrical parametric equations

When trigonometrical functions are used in parametric equations, a particular

trigonometrical identity may help you to eliminate the parameter. The next

example illustrates this.

EXAMPLE 9.5 Eliminate θ from x = 4cosθ, y = 3sinθ.

SOLUTION

The identity which connects cosθ and sinθ is

cos2 θ + sin2 θ = 1 �1

x = 4cosθ ⇒ cosθ =

y = 3sinθ ⇒ sinθ = .

Substituting these in �1 gives

2 2( ) + ( ) = 1.

This is usually written as

+ = 1

and is the equation of the ellipse shown in figure 9.8.

Note

x2 y2
The standard equation of the ellipse is –– + –– = 1 and this crosses the x axis at

a2 b2

(–a, 0) and (a, 0) and the y axis at (0, b) and (0, –b).

y2
––
9

x2
––
16

y
–
3

x
–
4

y
–
3

x
–
4
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The expansions of cos2θ in terms of either sinθ or cosθ are also useful in this

context.

EXAMPLE 9.6 Eliminate θ from x = cos2θ, y = sinθ + 2.

SOLUTION

The relationship between cos2θ and sinθ is

cos2θ = 1 – 2sin2 θ.

Now y – 2 = sinθ

so x = 1 – 2(y – 2)2.

The parametric equation of a circle

The circle with centre (0, 0)

The circle with centre (0, 0) and radius 4 units has the equation x2 + y2 = 16.

Alternatively, using the triangle OAB and the angle θ in figure 9.9, you can write

the equations

x = 4cosθ

y = 4sinθ.

Generalising, a circle with centre (0, 0) and radius r has the parametric equations

x = rcosθ

y = r sinθ.
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The circle with centre (a, b)

Translating the centre of the circle to the point (a, b) gives the circle in figure 9.10

with the parametric equations 

x = a + rcosθ

y = b + r sinθ

● The parametric equations of other standard curves

Ellipse

In Example 9.5, you saw that the parametric equations

x = 4cosθ

y = 3sinθ

were equivalent to the cartesian equation

+ = 1.

In general the equations

x = acosθ y = b sinθ

correspond to the ellipse

+ = 1

(see figure 9.11).

y2
––
b2

x2
––
a2

y2
––
9

x2
––
16
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The general point P 
has co-ordinates 

(a + rcosθ, b + r sinθ).



● How do you prove this result?

Here the parameter θ is not an angle in the ellipse, as it was in the circle. It does,

however, have a physical interpretation as an angle in the circumscribing circle.

Parabola

The parabola in figure 9.12 with the x axis as its line of symmetry and the point

(a, 0) as its focus, has the cartesian equation y2 = 4ax. The corresponding

parametric equations are

x = at2 y = 2at.

Rectangular hyperbola

The rectangular hyperbola xy = c2 shown in figure 9.13(a) has the

parametric equations

cx = ct y = – .
t
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When you convert the equation of a curve from parametric to cartesian form,

you must take care that there are no restrictions on the values of x and y. For 
cexample, in figure 9.13(b), the curve x = ct2, y = – (c � 0) is restricted to positive
t2

values of x and y (since t2 � 0). However, its cartesian form, xy = c2, would

appear to allow negative values of x and y.

Note

When the parametric equations can be recognised as those of a standard curve, the

curve can be sketched immediately without the need for further investigation.

EXERCISE 9A In this exercise you should sketch the curves by hand. If you have access to a graphic
calculator, you can use it to check your results.

1 In each of the following

(a) find the co-ordinates of the points corresponding to values of t from –2 to

+2 at half-unit intervals, or values of θ from 0° to 360° in 30° intervals

(b) sketch the curve

(c) find the cartesian equation of the curve.

(i) x = 2t (ii) x = cos2θ (iii) x = t2

y = t2 y = sin2 θ y = t3

(iv) x = sin2 θ (v) x = 2cosecθ (vi) x = 2sin2 θ
y = 1 + 2sinθ y = 2cotθ y = 3cosθ

t(vii) x = tanθ (viii) x = t2 (ix) x = ––––
1 + t

y = tan2θ y = t2 – t ty = ––––
1 – t
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2 Sketch the standard curves given by the following equations.

(i) x = 5cosθ (ii) x = 3cosθ
y = 5sinθ y = 3sinθ

(iii) x = 4 + 3cosθ (iv) x = 2cosθ – 1

y = 1 + 3sinθ y = 3 + 2sinθ

3 (i) Sketch both of these curves on the same axes.

1 4(a) x = t     y = – (b) x = 4t y = –
t t

(ii) Comment on the relationship between them.

4 A curve has the parametric equations x = t2, y = t4.

(i) Find the co-ordinates of the points corresponding to t = –2 to t = 2 at half-

unit intervals.

(ii) Sketch the curve for –2 � t � 2.

(iii) Why is it not quite accurate to say this curve has equation y = x2?

5 When a tennis ball is served in still air, its trajectory (path) may be modelled

by the parametric equations x = 20t, y = 10t – 5t2, where t is the time in

seconds after the service.

(i) Find the cartesian equation of its trajectory.

(ii) Sketch its trajectory.

6 A student is investigating the trajectory of a golf ball being hit over level

ground. At first she ignores air resistance and this leads her to an initial model

given by x = 40t, y = 30t – 5t2, where x and y are the horizontal and vertical

distances in metres from where the ball is hit, and t is the time in seconds.

(i) Plot the trajectory on graph paper for t = 0, 1, 2, …, until the ball hits the

ground again.

(ii) How far does the ball travel horizontally before bouncing, according to

this model?

The student then decides to make an allowance for air resistance to the

horizontal motion and proposes the model x = 40t – t2, y = 30t – 5t2.

(iii) Plot the trajectory according to this model using the same axes as you did

in part (i).

(iv) By how much does this model reduce the horizontal distance the ball

travels before bouncing?

7 A curve has parametric equations x = (t + 1)2, y = t – 1.

(i) Find the co-ordinates of the points corresponding to t = –4 to t = 4 at

intervals of one unit.

(ii) Sketch the curve for –4 � t � 4.

(iii) State the equation of the line of symmetry of the curve.

(iv) By eliminating the parameter, find the cartesian equation of the curve.
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8 A curve has parametric equations x = e t, y = sin t, where t is in radians.
(i) Find, to 2 decimal places, the co-ordinates of the points corresponding to

values of t from –2 to +2 at half-unit intervals.
(ii) What can you say about the values of x for which the curve is defined?
(iii) Sketch the curve for –2 � t � 2.
(iv) Predict how this graph would continue if all values of t were considered

(that is, t � –2 and t �2).

9 The path traced out by a marked point on the rim of a wheel of radius a

when the wheel is rolled along a flat surface is called a cycloid.

The diagram shows the wheel in its initial position when the lowest point on
the rim is PO, and when it has rotated through an angle θ (radians). In this
position, the point PO has moved to P1 with parametric equations given by

x = OA – P1B = aθ – a sinθ

y = AC – BC = a – acosθ.

(i) Find the co-ordinates of the points corresponding to values of θ from 0

to 6π at intervals of .

(ii) Sketch the curve for 0 � θ � 6π.

(iii) What do you notice about the curve?

10 The curve with parametric equations 

x = acos3 θ y = a sin3 θ

is called an astroid.

(i) Sketch the curve.

(ii) On the same diagram sketch the curve

x = acosn θ y = a sinn θ

for n = 1, 2, 3, 4, 5, 6. What happens if n = 0?

(iii) What can you say regarding the shape and position of the curve when

n � 7 and 

(a) n is even (b) n is odd?
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INVESTIGATIONS

Cutting out patterns 

A soft ball is to be made from felt, as in 

figure 9.14. The surface of the finished ball

is composed of 16 equal sections, and is

approximately spherical with a radius of 

8 cm.

Investigate the shape needed for each of the

sections and draw out a pattern that you can

use to cut them out from flat pieces of felt.

The apparent motion of planets

Most of the planets go round the Sun in elliptical (but nearly circular) orbits, and

lie in very nearly the same plane. In this investigation you should assume the

orbits are circular and you will find it helpful to work, at least to start with, with

the suggested approximate data given in the table.

As seen from the Earth, it appears that the Sun is moving in a circle with the

other planets circling around it.

(i) Find parametric equations for the paths of Mercury and Mars as seen from

Earth, and so sketch their paths.

(ii) What is the effect of taking approximate values for the radius of the orbit and

the length of the year?

(iii) If you observe a planet at night over a period of weeks or months you will see

that it appears to move across the pattern of background stars. However, at

times it will stop and move backwards (retrograde) before resuming its

forward motion. How do your sketches of the planets’ paths allow you to

explain this phenomenon?

(iv) Some astronomy books will tell you that only the superior planets (those

further from the Sun than Earth) are retrograde. Is this true, and if not how

could such a mistake be made?
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Planet Mean radius of orbit (km) Length of year: time for one 

rotation of the Sun (Earth days)

Accurate Approximate Accurate Approximate

Mercury 5.79 × 107 6 × 107 87.97 90

Earth 14.96 × 107 15 × 107 365.26 360

Mars 22.79 × 107 23 × 107 686.98 720



Parametric differentiation

To differentiate a function which is defined in terms of a parameter t , you need to

use the chain rule:

dy dy dt–– = –– × ––.
dx dt dx

Since

dt 1–– = ––
dx dx––

dt

it follows that

dy––dy dt–– = ––
dx dx––

dt

dxprovided that –– ≠ 0.
dt

EXAMPLE 9.7 A curve has the parametric equations x = t2, y = 2t.

dy
(i) Find –– in terms of the parameter t.

dx

(ii) Find the equation of the tangent to the curve at the general point (t2, 2t).

(iii) Find the equation of the tangent at the point where t = 3.

(iv) Eliminate the parameter, and hence sketch the curve and the tangent at the

point where t = 3.

SOLUTION

dx(i) x = t2 ⇒ –– = 2t
dt

dyy = 2t ⇒ –– = 2
dt

dy––dy dt 2 1–– = –– = –– = –.
dx dx 2t t––

dt

(ii) Using y – y1 = m(x – x1) and taking the point (x1, y1) as (t2, 2t), the equation

of the tangent at the point (t2, 2t) is

1y – 2t = – (x – t2)
t

⇒ ty – 2t2 = x – t2

⇒ x – ty + t2 = 0.
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parameter, and is called the equation
of the tangent at the general point. 

The gradient of
the curve at

(t2, 2t).



(iii) Substituting t = 3 into this equation gives the equation of the tangent at the

point where t = 3.

The tangent is x – 3y + 9 = 0.

(iv) Eliminating t from x = t2, y = 2t gives

y 2
x = (–) or y2 = 4x.

2

This a parabola with the x axis as its line of symmetry.

The point where t = 3 has co-ordinates (9, 6).

The tangent x – 3y + 9 = 0 crosses the axes at (0, 3) and (–9, 0).

The curve is shown in figure 9.15.

EXAMPLE 9.8 An ellipse has parametric equations x = 4cosθ, y = 3sinθ.

dy
(i) Find –– at the point with parameter θ.

dx

(ii) Find the equation of the normal at the general point (4cosθ, 3 sinθ).

(iii) Find the equation of the normal at the point where θ = .

(iv) Find the co-ordinates of the point where θ = .

(v) Show the ellipse and the normal on a sketch.

SOLUTION

dx(i) x = 4cosθ ⇒ –– = –4sinθ
dθ

dyy = 3sinθ ⇒ –– = 3cosθ
dθ

π–
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dy––dy dθ 3cosθ–– = –– = ––––––
dx dx –4sinθ––

dθ

3cosθ= ––––––
4sinθ

(ii) The tangent and normal are perpendicular, so the gradient of the normal is

1 4sinθ––– which is +––––––.
dy 3cosθ
––
dx

Using y – y1 = m(x – x1) and taking the point (x1, y1) as (4cosθ, 3 sinθ), the

equation of the normal at the point (4cosθ, 3 sinθ) is

4sinθy – 3sinθ = –––––(x – 4cosθ)
3cosθ

⇒ 3y cosθ – 9sinθ cosθ = 4x sinθ – 16sinθ cosθ

⇒ 4x sinθ – 3y cosθ – 7sinθ cosθ = 0.

(iii) When θ = , cosθ = and sinθ = , so the equation of the normal is

4x × – 3y × – 7 × × = 0

⇒ 4 2x – 3 2y – 7 = 0

⇒ 4x – 3y – 4.95 = 0 (to 2 decimal places).

(iv) The co-ordinates of the point where θ = are

(4cos , 3 sin ) = (4 × , 3 × )
� (2.83, 2.12).

(v)

1––
2

1––
2

π–
4

π–
4

π–
4

1––
2

1––
2

1––
2

1––
2

1––
2

1––
2

π–
4
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Turning points

When the equation of a curve is given parametrically, the easiest way to 
dydistinguish between turning points is usually to consider the sign of  ––. If you 
dx

use this method, you must be careful to ensure that you take points which are to 

the left and right of the turning point, i.e. have x co-ordinates smaller and larger

than those at the turning point. These will not necessarily be points whose

parameters are smaller and larger than those at the turning point.

EXAMPLE 9.9 Find the turning points of the curve with parametric equations x = 2t + 1, y = 3t – t3,

and distinguish between them.

SOLUTION

dxx = 2t + 1 ⇒ –– = 2
dt

dyy = 3t – t3 ⇒ –– = 3 – 3t2

dt

dy––dy dt 3 – 3t2 3(1 – t2)–– = –– = ––––– = –––––––
dx dx 2                 2––

dt

dyTurning points occur when –– = 0:
dx

⇒ t2 = 1 ⇒ t = 1      or t = –1.

At t = 1: x = 3, y = 2.

At t = 0.9: x = 2.8 (to the left); = 0.285 (positive).

At t = 1.1: x = 3.2 (to the right); = –0.315 (negative).

There is a maximum at (3, 2).

At t = –1: x = –1, y = 2.

At t = –1.1: x = –1.2 (to the left); = –0.315 (negative).

At t = –0.9: x = –0.8 (to the right); = 0.285 (positive).

There is a minimum at (–1, –2).

● An alternative method

d2y dy
Alternatively, to find ––– when –– is expressed in terms of a parameter requires a 

dx2 dx
further use of the chain rule:

d2y d   dy d  dy dt
––– = –– (––) = ––(––) × –– .
dx 2 dx dx dt dx dx

dy
––
dx

dy
––
dx

dy
––
dx

dy
––
dx
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dy
EXERCISE 9B 1 For each of the following curves, find ––  in terms of the parameter.

dx

(i) x = 3t2 (ii) x = θ – cosθ
y = 2t3 y = θ + sinθ

1(iii) x = t + – (iv) x = 3cosθ
t
1 y = 2sinθy = t – –
t

(v) x = (t + 1)2 (vi) x = θ sinθ + cosθ
y = (t – 1)2 y = θ cosθ – sinθ

t(vii) x = e2t + 1 (viii) x = ––––
1 + t

y = et

ty = ––––
1 – t

2 A curve has the parametric equations x = tan θ, y = tan 2θ. Find
dy

(i) the value of –– when θ =
dx

(ii) the equation of the tangent to the curve at the point where θ =

(iii) the equation of the normal to the curve at the point where θ = .

1
3 A curve has the parametric equations x = t2, y = 1 – –– for t � 0. Find2t

(i) the co-ordinates of the point P where the curve cuts the x axis

(ii) the gradient of the curve at this point

(iii) the equation of the tangent to the curve at P

(iv) the co-ordinates of the point where the tangent cuts the y axis.

4 A curve has parametric equations x = at 2, y = 2at, where a is constant.

Find

(i) the equation of the tangent to the curve at the point with parameter t

(ii) the equation of the normal to the curve at the point with parameter t

(iii) the co-ordinates of the points where the normal cuts the x and y axes.

5 A curve has parametric equations x =cosθ, y = cos2θ.

dy
(i) Show that –– = 4cosθ.

dx

dy d2y
(ii) By writing –– in terms of x , show that ––– – 4 = 0.

dx dx2

b6 The parametric equations of a curve are x = at , y = –, where a and b are 
t

constant. Find in terms of a, b and t

dy
(i) ––

dx
b(ii) the equation of the tangent to the curve at the general point (at, –)t

(iii) the co-ordinates of the points X and Y where the tangent cuts the x and y axes.

(iv) Show that the area of triangle OXY is constant, where O is the origin.
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π–
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7 The diagram shows a sketch of the curve given parametrically in terms of t by

the equations x = 4t and y = 2t2 where t takes positive and negative values.

P is the point on the curve with parameter t.

(i) Show that the gradient at P is t.

(ii) Find and simplify the equation of the tangent at P.

The tangents at two points Q (with parameter t1) and R (with parameter t2)

meet at S.

(iii) Find the co-ordinates of S.

(iv) In the case when t1 + t2 = 2 show that S lies on a straight line. 

Give the equation of the line.

[MEI, adapted]

8 The diagram shows a sketch of the curve given parametrically in terms of t by

the equations x = 1 – t2, y = 2t + 1.

(i) Show that the point Q(0, 3) lies on the curve, stating the value of t

corresponding to this point.

(ii) Show that, at the point with parameter t ,

dy 1–– = – – .
dx t

(iii) Find the equation of the tangent at Q.

(iv) Verify that the tangent at Q passes through the point R(4, –1).

(v) The other tangent from R to the curve touches the curve at the point S and

has equation 3y – x + 7 = 0. Find the co-ordinates of S.

[MEI]
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9 The diagram shows a sketch of the curve with parametic equations x = 1 – 2t ,

y = t2. The tangent and normal at P are also shown.

(i) Show that the point P(5, 4) lies on the curve by stating the value of t

corresponding to this point.

dy
(ii) Show that, at the point with parameter t , –– = –t.

dx

(iii) Find the equation of the tangent at P.

(iv) The normal at P cuts the curve again at Q. Find the co-ordinates of Q.

[MEI]

10 A particle P moves in a plane so that at time t its co-ordinates are given by

x = 4cos t , y = 3sin t. Find

dy
(i) –– in terms of t

dx

(ii) the equation of the tangent to its path at time t

(iii) the values of t for which the particle is travelling parallel to the line x + y = 0.

11 A circle has parametric equations x = 3 + 2cos θ , y = 3 + 2sinθ.

(i) Find the equation of the tangent at the point with parameter θ.

(ii) Show that this tangent will pass through the origin provided that         

sinθ + cosθ = – .

(iii) By writing sinθ + cosθ in the form R sin(θ + α), solve the equation       

sinθ + cosθ = – for 0 � θ � 2π.

(iv) Illustrate the circle and tangents on a sketch, showing clearly the values of

θ which you found in part (iii).

12 The parametric equations of the circle with centre (2, 5) and radius 3 units 

are x = 2 + 3cosθ, y = 5 + 3sinθ.

(i) Find the gradient of the circle at the point with parameter θ.

(ii) Find the equation of the normal to the circle at this point.

(iii) Show that the normal at any point on the circle passes through the centre.

(This is an alternative proof of the result ‘the tangent and radius are

perpendicular’.)

2–
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13 The parametric equations of a curve are

x = 3cosθ, y = 2sinθ for 0 � θ � 2π.

(i) By eliminating θ between these two equations, find the cartesian

equation of the curve.

(ii) The diagram shows a sketch of the curve. On a copy of the diagram show

the pair of tangents which pass through the point (6, 2).

dy
(iii) Use the parametric equations to calculate –– in terms of θ.

dx

You are given that the equation of the tangent to the curve at (3cosθ, 2sinθ) is 

2x cosθ + 3y sinθ = 6.

(iv) Show that, for tangents to the curve which pass through the point (6, 2),

2cosθ + sin θ = 1.

(v) Solve the equation in part (iv) to find the two values of θ (in radians

correct to 2 decimal places) corresponding to the two tangents.

[MEI, adapted]

14 An ellipse has equation given in parametric form by x = 4cosθ, y = 3sinθ,

0 � θ � 2π.
The sketch illustrates this ellipse and point P(4cosθ, 3 sinθ), 0 � θ � .

Rectangle PQRS has PQ parallel to the x axis and PS parallel to the y axis,
with Q, R and S also on the ellipse.
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(i) (a) Express the equation of the ellipse in cartesian form.
(b) The length, L, of the perimeter of PQRS is given by L = 12sinθ + 16cosθ.

Express L in the form r sin(θ + α), where r and α are constants to  
be determined.

(c) Find the maximum value of L and the value of θ, 0 � θ � , for
which it occurs.

(ii) The line PS produced meets the line y = –8 at the point U with               

co-ordinates (4cosθ, –8), where 0 � θ � .

(a) Write down the gradient of OU.
(b) Calculate the gradient of the tangent at P.
(c) Find the value of θ for which OU is parallel to the tangent at P. 

Give your answer correct to 2 decimal places.

[MEI]

15 The curve shown in the diagram has parametric equations

1                              1x = ––––, y = –––––––––– ,        (t ≠ ± 1).
1 + t (1 + t)(1 – t)

(i) Express t in terms of x.

x2
Hence show that the cartesian equation of the curve is y = –––––.

2x – 1

dy dx
(ii) Find –– and –– and hence show that 

dt dt

dy 2t–– = – ––––––.
dx (1 – t)2

(iii) You are given that the equation of the tangent at the point T having

parameter t is 2tx + (1 – t)2y = 1.

Find the y co-ordinate of the point P where this tangent cuts the line x = .1–
2

π–
2

π–
2

P
ar

am
et

ri
c 

eq
u

at
io

n
s

246

C4
9

y

xO

T

P

Q

R



(iv) The point Q is the intersection of the line x = and the straight line

joining the origin to the point T. Point R has co-ordinates ( , 0).

Show that RQ = QP.

[MEI]

16 The diagram shows the curve with parametric equations

x = cos t, y = sin2t

for 0 � t � 2π. The curve is symmetrical about both axes.

(i) Copy the diagram. Locate and label on your sketch the points

having parameters

t = 0, t = ,    t = π and t = .

dy
(ii) Find an expression for –– in terms of the parameter t.

dx
Hence show that, at the origin, the curve crosses itself at right angles.

(iii) Show that the cartesian equation of the curve is y2 = x2(1 – x2).

(iv) Show that the parameters of the points where the gradient of the curve is
– satisfy the equation 4sin2 t + 7sin t – 2 = 0.

Find the parameters of these points.

[MEI]

17 The curve in the diagram is given by the parametric equations 

x = 2cosθ + sinθ, y = cosθ + 2sinθ for 0 � θ � 2π.

7–
2

3π––
2

π–
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(i) Express x in the form Rcos(θ – α), where R � 0.

Between what values must x lie?

(ii) Find the gradient of the curve at the point where θ = .

(iii) Show that, for any point on the curve,

x2 + y2 = 5 + 4sin2θ.

(iv) Find the greatest and least distances of a point on the curve from the origin.

[MEI]

18 The diagram shows a sketch of the curve given by the parametric equations

x = sin t, y = t sin t for 0 � t � π.

(i) On a copy of the diagram mark the points having parameters t = 0, π and π.

(ii) Show that = t + tan t.

Find the gradients of the curve at the origin.

(iii) Find ∫t sin2t dt.

Hence show that ∫0

π
t sin2tdt = – π.

(iv) You are given that the area of the region enclosed by this curve is

| ∫0

π
y dt |.

Evaluate this area.

[MEI]

19 (i) Given that tanα = 2 and 0 � α � π, find the exact values of sinα, cosα
and sin2α.

The diagram shows a sketch of the curve given by the parametric equations

x = cos t + 2 sin t, y = sin2t (0 � t � π).

The curve cuts the x axis at the points A, B and D. The point on the curve 

where the x co-ordinate attains its maximum value is C.
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(ii) Find the x co-ordinates of the points A, B and D.

(iii) Show that cos t + 2sin t can be expressed in the form R cos (t – α), where α is

the angle given in part (i) and R is to determined.

Hence or otherwise find the exact co-ordinates of C.

(iv) Find in terms of t.

Deduce the value of the gradient of the curve at the point A.
[MEI]

20 The curve with parametric equations

x = θ – sinθ, y = 1 – cosθ,   0 � θ � 2π,

is a cycloid. Its graph is shown in the diagram.

(i) Find in terms of θ.

Deduce the co-ordinates of the stationary point P.

(ii) At the point on the curve with parameter α, the gradient is . Show that

2sinα + cosα = 1

By expressing the left-hand side of the equation in the form Rcos(α – β),

solve this equation for α, giving your answer in radians correct to 

3 decimal places.

(iii) The area of the region enclosed by the curve and the x axis is A, where

A = ∫
2π

0
y dθ.

Show that A = ∫
2π

0
(1 – cosθ)2 dθ.

Hence find A, giving your answer as a multiple of π.

(Hint: cos2 θ = ) [MEI]

1 + cos2θ–––––––––
2

dx
––
dθ

1–
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dx
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––
dx
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21 The diagram shows a sketch of the curve with equation y2 = (1 – 2x)3.

The curve meets the x axis at A and crosses the y axis at the points B and C.

(i) Find the co-ordinates of the points A, B and C.

(ii) Show that the gradient of the curve at the point B is –3.

(iii) Verify that

x = (1 – t2), y = t3

are parametric equations for the curve.

Find in terms of t, and show that the equation of the tangent to the 

curve at the point with parameter t is

6tx + 2y + t3 – 3t = 0.
[MEI]

dy
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dx
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22 The ellipse shown in the diagram has parametric equations

x = 2cosθ, y = sinθ (0 � θ � 2π).

The ellipse crosses the positive co-ordinate axes at A and B.

(i) Write down the parameters and co-ordinates of each of the points A and B.

(ii) Find the cartesian equation of the ellipse.

(iii) Find an expression in terms of θ for the gradient of the tangent to the

ellipse at the point P with parameter θ.

The points Q and R have parameters α and α+ π respectively, where 0�α� π.

(iv) Find the co-ordinates of R in terms of α.

Hence write down an expression in terms of α for the gradient of the

chord QR.

(v) Show that

= .

Hence or otherwise deduce that the tangent at P is parallel to the chord

QR when θ = α + π or θ = α + π.

[MEI]

5–
4

1–
4

cosα – sinα––––––––––
cosα + sinα1–

4

1–
4cos(α + π)

––––––––––
sin(α + π)
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KEY POINTS 

1 In parametric equations the relationship between two variables is expressed

by writing both of them in terms of a third variable or parameter.

2 To draw a graph from parametric equations, plot the points on the curve

given by different values of the parameter.

3 Eliminating the parameter gives the cartesian equation of the curve.

4 The parametric equations of circles:

● Circle centre (0, 0) and radius r

x = rcosθ y = r sinθ

● Circle centre (a, b) and radius r

x = a + rcosθ y = b + r sinθ

dy––dy dt dx
5 –– = –– provided that –– ≠ 0.

dx dx dt––
dt

d2y d dy d dy dt
● ––– = –– ( ––) = –– ( –– ) × ––

dx2 dx dx dt dx dx

● The parametric equations of some other standard curves:

● Ellipse centre (0, 0) with major axis 2a and minor axis 2b

x = acosθ y = b sinθ

● Parabola with line of symmetry the x axis

x = at2 y = 2at

● Rectangular hyperbola xy = c2

cx = ct y = –
t
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Further techniques 
for integration

A mind once stretched by a new idea never regains its original

dimensions.

Oliver Wendell Holmes

These photographs show spiral galaxies. One is taken from near its axis of

rotation, the other from a point in its plane. Our own galaxy is a spiral of radius

100000 light years. At its thickest it is 1000 light years across.

●? How would you estimate the volume of our galaxy?
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Finding volumes by integration

When the shaded region in figure 10.1 is rotated through 360° about the x axis,

the solid obtained, illustrated in figure 10.2 is called a solid of revolution. In this

particular case, the volume of the solid could be calculated as the difference between

the volumes of two cones (using V = πr2h), but if the line y = x in  figure 10.1 was

replaced by a curve, such a simple calculation would no longer be possible.

●? 1 Describe the solid of revolution obtained by a rotation through 360° of

(i) a rectangle about one side

(ii) a semi-circle about its diameter

(iii) a circle about a line outside the circle.

2 Calculate the volume of the solid obtained in figure 10.2, leaving your answer 

as a multiple of π.

Solids formed by rotation about the x axis

Now look at the solid formed by rotating the shaded region in figure 10.3

through 360° about the x axis.
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The volume of the solid of revolution (which is usually called the volume of

revolution) can be found by imagining that the solid can be sliced into thin discs.

The disc shown in figure 10.4 is approximately cylindrical with radius y and

thickness δx, so its volume is given by 

δV = πy2δx.

The volume of the solid is the limit of the sum of all these elementary discs as

δx → 0,

i.e. the limit as δx → 0 of δV

or the limit as δx → 0 of πy2δx.

The limiting values of sums such as these are integrals so

V = ∫b

a
πy2dx

The limits are a and b because x takes values 

from a to b.

Since the integration is ‘with respect to x’, indicated by the dx and the fact that

the limits a and b are values of x, it cannot be evaluated unless the function y is

also written in terms of x.

EXAMPLE 10.1 The region between the curve y = x2, the x axis and the lines x = 1 and x = 3 is

rotated through 360° about the x axis.

Find the volume of revolution which is formed.

SOLUTION

The region is shaded in figure 10.5. 
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πy2dx

emphasising that the limits
a and b are values of x, not y.

!

O 1 3

y

x

y = x2

Figure 10.5



Using V = ∫a

b
πy2dx

volume = ∫1

3
π(x2)2dx

= ∫1

3
πx4dx

= [ ]1

3

= (243 – 1) 

= .

The volume is cubic units or 152 cubic units (3 s.f.).

Unless a decimal answer is required, it is usual to leave π in the answer, which is

then exact.

EXAMPLE 10.2 (i) Find the volume of a spherical ball of radius 2cm using integration.

(ii) Verify your result using the formula for the volume of a sphere.

SOLUTION

(i) The volume is obtained by rotating the top half of the circle x2 + y2 = 4

through 360° about the x axis.

242π––––
5

242π––––
5

π–
5

πx5
–––

5
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(i) Using V = ∫b

a
πy2dx and y2 = 4 – x2 from the circle equation

volume =  ∫–2

2
π(4 – x2)dx

= π[4x – ]–2

2

= π[(8 – ) – (–8 + )]
= cm3.

(ii) Volume of a sphere = πr3

= π × 23

= cm3.

Rotation about the y axis

When a region is rotated about the y axis a very different solid is obtained.

Notice the difference between the solid obtained in figure 10.8 and that in figure 10.4.

For rotation about the x axis you obtained the formula 

Vx axis = ∫b

a
πy2dx.

In a similar way, the formula for rotation about the y axis

Vy axis = ∫
q

p
πx2dy can be obtained.

In this case you will need to substitute for x2 in terms of y.

● How would you prove this result?

32π–––
3

4–
3

4–
3

32π–––
3
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3
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EXAMPLE 10.3 The region between the curve y = x2, the y axis and the lines y = 2 and y = 5 is

rotated through 360° about the y axis.

Find the volume of revolution which is formed.

SOLUTION

The region is shaded in figure 10.9.

Using V = ∫
q

p
πx2dy

volume = ∫5

2
πydy since x2 = y

= [ ]2

5

= (25 – 4)

= cubic units.

EXERCISE 10A 1 Name six common objects which are solids of revolution.

2 In each part of this question a region is defined in terms of the lines which

form its boundaries. Draw a sketch of the region and find the volume of the

solid obtained by rotating it through 360° about the x axis.

(i) y = 2x, the x axis and the lines x = 1 and x = 3

(ii) y = x + 2, the x axis, the y axis and the line x = 2

(iii) y = x2 + 1, the x axis and the lines x = –1 and x = 1

(iv) y = x, the x axis and the line x = 4

21π–––
2

π–
2

πy2
–––

2
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3 (i) Find the co-ordinates of 

A and B, the points of 

intersection of the circle 

x2 + y2 = 25 and the line 

y = 4.

(ii) A napkin ring is formed by
rotating the shaded area
through 360° about the 
x axis. By considering the
shaded area as the
difference between two
areas, and hence the
volume of the napkin ring
as the difference between
two volumes, find the volume of the napkin ring.

4 (i) Sketch the line 4y = 3x for x � 0.
(ii) Identify the area between this line and the x axis which, when rotated through

360° about the x axis, would give a cone of base radius 3 and  height 4.
(iii) Calculate the volume of the cone using

(a) integration
(b) a formula.

5 (i) Sketch the graph of y = (x – 2)2 for values of x between x = –1 and x = 5. 
Shade in the region under the curve, between x = 0 and x = 2.

(ii) Calculate the area you have shaded.
(iii) Show that (x – 2)4 = x4 – 8x3 + 24x2 – 32x + 16.
(iv) The shaded region is rotated about the x axis to form a volume of revolution. 

Calculate this volume, using your answer to (iii) or otherwise.
[MEI]

6 (i) Sketch the graph of y = (x + 1)2 for values of x between x = –1 and x = 4.
(ii) Shade in the region under the curve between x = 1, x = 3 and the x axis.

Calculate this area.
(iii) Expand (x + 1)4.
(iv) The shaded region in (ii) is rotated about the x axis to form a solid of

revolution.
Calculate the volume of this solid.

[MEI]

● The remaining questions relate to enrichment material.

7 In each part of this question a region is defined in terms of the lines which
form its boundaries. Draw a sketch of the region and find the volume of the
solid obtained by rotating through 360° about the y axis.
(i) y = 3x, the y axis and the lines y = 3 and y =6
(ii) y = x – 3, the y axis, the x axis and the line y = 6

(iii) y = x2 – 2, the y axis and the line y = 4
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8 A hemispherical bowl is formed 

by rotating the bottom half of 

the circle x2 + y2 = 100 about the

y axis as shown in the diagram. 

(Units are in centimetres.)
(i) Find the volume of the bowl.

(ii) The bowl is filled with 

water to a depth of 8cm. 

Find the volume of water 

in the bowl.

9 A mathematical model for a large garden pot is obtained by rotating through

360° about the y axis the part of the curve y = 0.1x2 which is between x = 10

and x = 25 and then adding a flat base. Units are in centimetres.
(i) Draw a sketch of the curve and shade in the cross-section of the pot,

indicating which line will form its base.
(ii) Garden compost is sold in litres. How many litres will be required to fill

the pot to a depth of 45cm? (Ignore the thickness of the pot.)

10 The graph shows the curve y = x2 – 4. 

The region R is formed by the line y = 12, the x axis, the y axis and the curve 

y = x2 – 4 for positive values of x.

(i) Copy the sketch graph and shade the region R.
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The inside of a vase is formed by rotating the region R through 360° about
the y axis. Each unit of x and y represents 2cm.

(ii) Write down an expression for the volume of revolution of the region R
about the y axis.

(iii) Find the capacity of the vase in litres.

(iv) Show that when the vase is filled to of its internal height it is three-
quarters full.

[MEI]

The use of partial fractions in integration

●? Why is it not possible to use any of the integration techniques you have learnt so 

2
far to find ∫ ––––– dx?

x2 – 1

Partial fractions

Since x2 – 1 can be factorised to give (x + 1)(x – 1), you can put the function to

be integrated into partial fractions.

2 A          B––––– = –––– + ––––
x2 – 1 x – 1 x + 1

2 / A(x + 1) + B(x – 1)

Let x = 1 2 = 2A ⇒ A = 1.

Let x = –1 2 = –2B ⇒ B = –1.

Substituting these values for A and B gives

2           1         1––––– = –––– – ––––.
x2 – 1 x – 1 x + 1

The integral then becomes

2                  1               1 ∫––––– dx = ∫–––– dx – ––––– dx.
x2 – 1 x – 1 x + 1

Now the two integrals on the right can be recognised as logarithms. So

2∫––––– dx = ln |x – 1 | – ln |x + 1 | + c
x2 – 1

x – 1= ln⎪ ––––⎪ + c.x + 1

5–
6
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Here you worked with the simplest type of partial fraction, in which there are two

different linear factors in the denominator. This type will always result in two

functions both of which can be integrated to give logarithmic functions. You will

now look at the other types of partial fraction.

A repeated factor in the denominator

x + 4EXAMPLE 10.4 Find ∫ ––––––––––––– dx.
(2x – 1)(x + 1)2

SOLUTION

First put the expression into partial fractions:

x + 4 A             B             C––––––––––––– = –––––– + ––––– + –––––––
(2x – 1)(x + 1)2 (2x – 1)   (x + 1)     (x + 1)2

where x + 4 / A(x + 1)2 + B(2x – 1)(x + 1) + C(2x – 1).

Let x = –1 3 = –3C ⇒ C = –1.

Let x = = A( )2 ⇒ = A ⇒ A = 2.

Let x = 0 4 = A – B – C ⇒ B = A – C – 4 = 2 + 1 – 4 = –1.

Substituting these values for A, B and C gives

x + 4                    2             1               1––––––––––––– = –––––– – ––––– – ––––––.
(2x – 1)(x + 1)2 (2x – 1)    (x + 1)   (x + 1)2

Now that the function is in partial fractions, each part can be integrated

separately.

x + 4                          2                    1 1 ∫––––––––––––– dx = ∫–––––– dx – ∫––––– dx – ∫–––––– dx.
(2x – 1)(x + 1)2 (2x – 1)          (x + 1)          (x + 1)2

The first two integrals give logarithmic functions as you saw above. The third,

however, is of the form u–2 and therefore can be integrated by using the

substitution u = x + 1, or by inspection (i.e. in your head). So

x + 4                                                               1∫–––––––––––– dx = ln |2x – 1 | – ln |x + 1 | + –––– + c
(2x – 1)(x + 1)2 x + 1

2x – 1 1= ln⎪ –––––⎪ + –––– + c.
x + 1 x + 1 
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A quadratic factor in the denominator

x – 2 EXAMPLE 10.5 Find ∫ –––––––––––– dx.
(x2 + 2)(x + 1)

SOLUTION

First put the expression into partial fractions:

x – 2 Ax + B C–––––––––––– = ––––––– + ––––––
(x2 + 2)(x + 1)    (x2 + 2)    (x + 1)

where x – 2 / (Ax + B)(x + 1) + C(x2 + 2).

Rearranging gives

x – 2 / (A + C)x2 + (A + B)x + (B + 2C).

Equating coefficients:

x2 ⇒ A + C = 0

x ⇒ A + B = 1

constant terms ⇒ B + 2C = –2.

Solving these gives A = 1, B = 0, C = –1. Hence

x – 2 x 1–––––––––––– = –––––– – ––––––
(x2 + 2)(x + 1)   (x2 + 2)   (x + 1)

x – 2 x 1∫–––––––––––– dx = ∫ –––––– dx – ∫–––––– dx
(x2 + 2)(x + 1)             (x2 + 2)           (x + 1)

2x 1= ∫––––– dx – ∫–––– dx
x2 + 2 x + 1

= ln |x2 + 2 | – ln |x + 1 | + c

x2 + 2= ln⎪––––––⎪ + c.
x + 1

Note

Ax + BIf B had not been zero, you would have had an expression of the form ––––– to
x2 + 2

integrate. This can be split into

Ax         B–––– + ––––
x2 + 2 x2 + 2 

The first part of this can be integrated as in Example 10.5, but the second part cannot

be integrated by any method you have met so far. If you go on to study the FP2 unit,

you will meet integrals of this form then. If in the meantime you come across a case

(for example in modelling a situation) where you need to find such an integral, you

may choose to use the standard result that

1               1 x∫–––––– dx = – arctan (– ) + c.
(x2 + a2) a a
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EXERCISE 10B 1 Express the functions in each of the following integrals in partial fractions, and
hence perform the integration.

1 7x – 2
(i) ∫ ––––––––––– dx (ii) ∫––––––––––––– dx

(1 – x)(3x – 2) (x – 1)2(2x + 3)

x + 1 3x + 3
(iii) ∫––––––––––– dx (iv) ∫––––––––––––– dx

(x2 + 1)(x – 1) (x – 1)(2x + 1)

1 1
(v) ∫––––––– dx (vi) ∫–––––––––––– dx

x2(1 – x) (x + 1)(x + 3)

2x – 4 5x + 1
(vii) ∫––––––––––– dx (viii) ∫–––––––––––––– dx

(x2 + 4)(x + 2) (x + 2)(2x + 1)2

2 Express in partial fractions the function

3x + 4f(x) = ––––––––––––
(x2 + 4)(x – 3) 

and hence find ∫2

0
f(x) dx.

[MEI]

13 Express ––––––––– in partial fractions. Hence show that 
x2(2x + 1)

dx∫2

1
––––––––– = + 2 ln .
x2(2x + 1) 

[MEI]

34 (i) (a) Express –––––––––––– in partial fractions.
(1 + x)(1 – 2x)

(b) Hence find

3∫0.1

0
–––––––––––– dx
(1 + x)(1 – 2x)

giving your answer to 5 decimal places.

(ii) (a) Find the first three terms in the binomial expansion of 

3(1 + x)–1(1 – 2x)–1.

(b) Use the first three terms of this expansion to find an approximation for 

3∫0.1

0
–––––––––––– dx
(1 + x)(1 – 2x)

(c) What is the percentage error in your answer to part (b)?

5 (i) Given that 

x2 – x – 24 B C–––––––––––– / A + –––––– + –––––– ,
(x + 2)(x – 4)           (x + 2)    (x – 4)

find the values of the constants A, B and C.

x2 – x – 24(ii) Find ∫
3

1
––––––––––– dx.
(x + 2)(x – 4)

[MEI]

5–
6

1–
2
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6 (i) Find ∫xe2x dx.

(ii) Find the exact value of ∫
π

π
sin23x dx.

x2
(iii) The expression ––––––––––– is to be written in partial fractions of the form

(x – 4)2(x – 2)

A B C–––––– + –––– + ––––.
(x – 4)2 x – 4 x – 2

Show that B = 0 and find A and C.

x2
Hence show that ∫8

5
––––––––––– dx = 6 + ln2.
(x – 4)2(x – 2)

[MEI]

7 (i) Express the function f(x) = in the form + .

(ii) Use the binomial series to show that, for suitably small values of x,

f(x) ≈ 1 – 5x + 9x2.

State the range of values of x for which the binomial series expansion is valid.

(iii) By using a small-angle approximation for sinθ, together with the result in

part (ii) above, find an approximation for

1 – 3sinθ∫0.1

0

–––––––––––––––– dθ.
(1 + 2sinθ)(1 + θ2)

[MEI]

16 + 2x + 15x2 A + Bx C
8 (i) Given that f(x) = –––––––––––– / –––––– + ––––, find the values of

(1 + x2)(2 – x)      1 + x2 2 – x

B and C and show that A = 0.

(ii) Find ∫1

0
f(x) dx in an exact form.

(iii) Express f(x) as a sum of powers of x up to and including the term in x4.

Determine the range of values of x for which this expansion of f(x) is valid.

[MEI]

9 (i) Show that = 2 + . Hence express in partial fractions.

(ii) Using the substitution u = x, show that 

∫4

9
dx = ∫2

3
du.

Deduce that ∫4

9
dx = ln 3 – ln 2 + 2.

(iii) Use integration by parts, and the result of part (ii), to show that

∫4

9
dx = 20 ln2 – 6 ln3 – 4.

[MEI]

ln(x – 1)––––––––
x

x––––
x – 1

2u2
–––––
u2 – 1

x––––
x – 1

2u2
–––––
u2 – 1

2–––––
u2 – 1

2u2
–––––
u2 – 1

Bx + C
––––––
1 + x2

A
––––––
1 + 2x

1 – 3x
––––––––––––––
(1 + 2x)(1 + x2)

1–
4
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General integration

You now know several techniques for integration which can be used to integrate a

wide variety of functions. One of the difficulties which you may now experience

when faced with an integration is deciding which technique is appropriate! This

section gives you some guidelines on this, as well as revising all the work on

integration that you have done so far.

●? Look at the integrals below and try to decide which technique you would use and,

in the case of a substitution, what function you would write as u. Do not attempt

actually to carry out the integrations. Make a note of your decisions – you will

return to these integrals later.

x – 5 x + 1(i) ∫––––––––– dx (ii) ∫––––––––– dx
x2 + 2x – 3 x2 + 2x – 3

(iii) ∫xex dx (iv) ∫xex 2 dx

(v) ∫ dx (vi) ∫cosx sin2x dx

Choosing an appropriate method of integration

You have now met the following standard integrals.

If you are asked to integrate any of these standard functions, you may simply

write down the answer.

2x + cosx–––––––––
x2 + sinx

Fu
rt

h
er

te
ch

n
iq

u
es

fo
r

in
te

g
ra

ti
o

n

266

C4
10

f(x) ∫f(x) dx
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1– ln⎥ x⎥x

ex ex
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For other integrations, the following table may help.

Type of function to be integrated Examples Method of integration

Simple variations of any of the cos(2x + 1) Substitution may be used, but it should 

standard functions e3x be possible to do these by inspection.

Product of two functions of the 2x ex2 Substitution u = f(x)

form f´(x)g[f(x)]
x2(x3 + 1)6

Note that f´(x) means [f(x)]

Other products, particularly x ex Integration by parts

when one function is a small x2sin x
positive integral power of x

or a polynomial in x

f´(x) x Substitution u = f(x) or, better, Quotients of the form –––– ––––
f(x) x2 + 1 by inspection:

or functions which can easily sin x k ln | f(x) | + c,
––––

be converted to this form cos x where k is known

Polynomial quotients x + 1 Split into partial fractions ––––––
which may be split into x(x – 1) and integrate term by term 

partial fractions x – 4––––––––
x2 – x – 2

Odd powers of sin x or cos x cos3 x Use cos2 x + sin2 x = 1 and write 

in form f´(x)g[f(x)]

● Even powers of sin x or cos x sin2 x Use the double-angle formulae to 
cos4 x transform the function before

integrating.

It is impossible to give an exhaustive list of possible types of integration, but the

table above and that on the previous page cover the most common situations that

you will meet.

ACTIVITY 10.1 Now look back at the integrals in the discussion point on the previous page and

the decisions you made about which method of integration should be used for

each one.

x – 5 x + 1(i) ∫ ––––––––– dx (ii) ∫––––––––– dx
x2 + 2x – 3 x2 + 2x – 3

(iii) ∫xex dx (iv) ∫xex2 dx

(v) ∫ dx (vi) ∫cosx sin2 x dx2x – cosx–––––––––
x2 + sinx

d
––
dx
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EXERCISE 10C 1 Choose an appropriate method and integrate the following functions. 
You may find it helpful first to discuss in class which method to use.

2x + 1(i) ∫cos(3x – 1) dx (ii) ∫–––––––––– dx
(x2 + x – 1)2

(iii) ∫e1–x dx (iv) ∫cos2x dx

x(v) ∫ ln2x dx (vi) ∫––––––– dx
(x2 – 1)3

4x – 1(vii) ∫ 2x – 3 dx (viii) ∫–––––––––––– dx
(x – 1)2(x + 2)

5
(ix) ∫x3 lnx dx (x) ∫–––––––––– dx

2x2 – 7x + 3

sinx – cosx
(xi) ∫(x + 1)ex 2+2x dx (xii) ∫–––––––––– dx

sinx + cosx

● The remaining parts of this question relate to enrichment material.

(xiii) ∫x2 sin2x dx (xiv) ∫sin3 2x dx

2 Evaluate the following definite integrals.

dx dx 9x
(i) ∫24

8
––––––– (ii) ∫24

8
––––– (iii) ∫24

8
––––– dx

3x – 8 3x – 8 3x – 8

(iv) ∫ 0
sin3x dx (v) ∫ 2

1
x2 lnx dx

x2
3 Evaluate ∫

2

0
––––––– dx, using the substitution u = 1 + x3, or otherwise.

1 + x3

[MEI]

sinθ
4 Find ∫0

––––– dθ in terms of 2 .
cos4 θ

[MEI]

5 Using the substitution u = lnx, or otherwise, find ∫
2

1
dx , giving your 

answer to 2 decimal places.
[MEI, part]

6 Find ∫ 0
x cos2x dx, expressing your answer in terms of π.

[MEI]

7 (i) Find ∫xe–2x dx.

x(ii) Evaluate ∫ 1

0
–––––– dx, giving your answer correct to 3 significant figures.
(4 + x2)

[MEI]

8 (i) Find ∫sin(2x – 3) dx.

(ii) Use the method of integration by parts to evaluate ∫
2

0
xe2x dx.

x
(iii) Using the substitution t = x2 – 9, or otherwise, find ∫––––– dx.

x2 – 9

[MEI]

π–
4

ln x–––x

π–
4

π–
4
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9 Evaluate

(i) ∫ 1

0
(2x2 + 1)(2x3 + 3x + 4)q-∑ dx

lnx(ii) ∫
e

1
––– dx.
x3

[MEI]

10 Find ∫ 0
sinx cos3 x dx and ∫ 1

0
te–2t dt.

[MEI]

Integrals you cannot do

Sometimes you will need to evaluate a definite integral that you cannot do. It may

be that it can be done but you do not know how, or it may be that it just cannot

be done algebraically.

●? Think of a function that cannot be integrated algebraically.

Can you find a function that cannot be differentiated?

When you need to find the value of such a definite integral you can use a

numerical method, like the trapezium rule which you met in AS Pure

Mathematics, Chapter 9.

A ≈ × h × [y0 + yn + 2(y1 + y2 + ... + yn–1)]

to work out an approximate value for the area between a curve and the x axis.

The formula uses n strips, each of width h, as shown in figure 10.10.

1–
2

π–
2
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●? Look at the three graphs in figure 10.11 and, in each case, state

(a) whether the trapezium rule would underestimate or overestimate the area, or

whether you cannot tell

(b) whether taking a greater number of strips would improve the estimate, or

whether you cannot tell.

A numerical method does not give you an exact answer but, by using it repeatedly,

you can find the correct answer to whatever level of accuracy you require.

To see how to do this, do Activity 10.2.

ACTIVITY 10.2 1 The trapezium rule is to be used to approximate I = ∫ 6

2
dx , using n strips. 

Figure 10.12 shows the graph of y = over the interval [0, 6]. 

Using a computer package, or 

otherwise, complete the following 

table, where n is the number of 

strips used and h is the width of 

each strip. Give your answers to

the number of figures on your 

computer or calculator.

2 Use your table of results to predict the accurate answer to as many decimal

places as you feel are justified.

1–––––
1 + x2

1–––––
1 + x2
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x

y

x

y

x

Figure 10.11

0 1 2 3 4 5 6

y

x

y =
1

1 + x2

Figure 10.12

(i) (ii) (iii)

n h Approximation to I

1 4

2 2

4

8

16



Notice how the answers converge. Applying a numerical method repeatedly does

two important things.

● It gives you a more accurate answer.

● It allows you to judge the likely error in your answer.

●? You apply the trapezium rule just once to estimate the area under a curve. What

can you say about the possible error in your answer?

Now do Activity 10.3. This looks at how quickly the error decreases and the

answer converges.

ACTIVITY 10.3 1 You can actually evaluate the integral in Activity 10.2 exactly since

∫ dx = arctanx + c.

(Note that x is measured in radians.)

Find the value of the area to calculator accuracy.

2 Add two further columns to your table from Activity 10.2 to show the values of

the absolute error, ε, to the accuracy of your other figures and the value of 

to 3 decimal places. 

Comment on your results.

This activity should have convinced you that the error in a trapezium rule

approximation is approximately proportional to the square of the step length, h.

Another way of saying the same thing is that, if you double the number of strips,

the error goes down to about one quarter of what it was before.

In the early stages of a set of trapezium rule calculations the error may not be

quite as predictable as this, particularly if the curve is partly concave and partly

convex, i.e. if the function has a point of inflection in the region in question.

ε––
h2

1–––––
1 + x2
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● Two applications of the trapezium rule

You can use two applications of the trapezium rule to give you an estimate of the

true value of the integral. This is how it is done.

Let Tn be the approximate value obtained using a strip width of hn for n = 1, 2.

⇒ T1 – I ≈ kh1
2 and T2 – I ≈ kh2

2 where I is the true value of the integral

⇒ T1 – T2 ≈ k(h1
2 – h2

2)

⇒ k ≈

I ≈ T2 – kh2
2

⇒ I ≈ T2 – × h2
2

● Explain each step of the derivation of this result.

EXAMPLE 10.6 (i) Use the trapezium rule with h = 0.4, 0.2 and 0.1 to give successive 

approximations for ∫
0.8

0

dx to 6 decimal places.

(ii) Use the last two of these approximations to improve your estimate for the 

true value of ∫
0.8

0

dx to 6 decimal places.

(iii) You are given that ∫ dx = arcsinx where x is measured in radians. 

Find the true value of  ∫
0.8

0

dx to 6 decimal places and the percentage 

error obtained using the estimate in part (ii).

SOLUTION

(i) Using A ≈ × h × [y0 + yn + 2(y1 + y2 + ... + yn–1)] gives the following results.

h1 = 0.4 ⇒ approximation T1 = 0.969769

h2 = 0.2 ⇒ approximation T2 = 0.939009

h3 = 0.1 ⇒ approximation T3 = 0.930335

(ii) Using I ≈ T3 – × h3
2 ⇒ I ≈ 0.927 444 (6 d.p.)

(iii) ∫
0.8

0

dx = [arcsinx]0.8

0
= 0.927 295 (6 d.p.)

Percentage error = = 0.016%.
0.927444 – 0.927295––––––––––––––––––

0.927295

1––––––
1 – x2

T2 – T3––––––
h2

2 – h3
2

1–
2

1––––––
1 – x2

1––––––
1 – x2

1––––––
1 – x2

1––––––
1 – x2

T1 – T2––––––
h1

2 – h2
2

T1 – T2––––––
h1

2 – h2
2
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EXERCISE 10D You may find it helpful to use a spreadsheet with this exercise.

1 The trapezium rule is used to estimate the value of I = ∫1.6

0
1 + x2 dx.

(i) Draw the graph of y = 1 + x2 for 0 � x � 1.6.

(ii) Use strip widths of 0.8, 0.4, 0.2 and 0.1 to find approximations to the value

of the integral.

(iii) State the value of the integral to as many decimal places as you can justify.

2 The trapezium rule is used to estimate the value of ∫1

0
sinx dx.

(i) Draw the graph of y = sinx for 0 � x � 1.

(ii) Use 1, 2, 4, 8 and 16 strips to find approximations to the value of the

integral.

(iii) State the value of the integral to as many decimal places as you can justify.

3 The trapezium rule is used to estimate the value of ∫ 1

0
dx .

(i) Draw the graph of y = for 0 � x � 1.

(ii) Use strip widths of 1, 0.5, 0.25 and 0.125 to find approximations to the

value of the integral.

(iii) State the value of the integral to as many decimal places as you can justify.

4 A student uses the trapezium rule to estimate the value of ∫ 2

0
(2 – cos2πx) dx.

(i) Find approximations to the value of the integral by applying the trapezium

rule using strip widths of 

(a) 2 (b) 1 (c) 0.5 (d) 0.25.

(ii) Sketch the graph of y = 2 – cos2πx for 0 � x � 2.

On copies of your graph shade the areas you have found in part (i)(a) to (d).

(iii) Use integration to find the exact value of this integral.

5 In statistics the curve of the normal distribution is given by f(z) = e
–

.

Use the trapezium rule to estimate the value of ∫ 1

0
f(z) dz.

(This is denoted by Φ(1) in statistics.)

Repeated with progressively more strips until you are certain that the answer is

correct to 2 decimal places.

INVESTIGATION

● This investigation relates to enrichment material.

(i) Sketch the graphs of y = e–x, y = sinx and y = e–x sinx for 0 � x � 2π.

(ii) Find the trapezium rule estimates for the area between the curve 

y = e–x sinx and the x axis, using 4 strips and 8 strips, for 0 � x � π.

(ii) Use your answers to part (ii) to give a better estimate for the area.

z2
–
2

1–––
2π

4–––––
1 + x2

4–––––
1 + x2
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KEY POINTS

1 Volumes of revolution

About the x axis V = ∫ b

a
πy2 dx

About the y axis V = ∫
q

p
πx2 dy

2 Some fractional expressions may be integrated by first splitting them into 

partial fractions.

3 You can use the trapezium rule, with n strips of width h, to find an 

approximate value for a definite integral as

A = [y0 + 2(y1 + y2 + ... + yn–1) + yn]

Increasing the number of strips used usually gives a more accurate result.

h
–
2
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Vectors

We drove into the future looking into a rear view mirror.

Herbert Marshall McLuhan

●? What information do you need

to decide how close the two

aircraft which left these vapour

trails passed to each other?

Vectors

A quantity which has both size and direction is called a vector. The velocity of an
aircraft through the sky is an example of a vector, having size (e.g. 600 mph) and
direction (on a course of 254°). By contrast the mass of the aircraft (100 tonnes)
is completely described by its size and no direction is associated with it; such a
quantity is called a scalar.

Vectors are used extensively in mechanics to represent quantities such as force,
velocity and momentum, and in geometry to represent displacements. They are
an essential tool in three-dimensional co-ordinate geometry and it is this
application of vectors which is the subject of this chapter. However, before
coming on to this, you need to be familiar with the associated vocabulary and
notation, in two and three dimensions.

Terminology

In two dimensions, it is common to represent a vector by a drawing of a straight
line with an arrowhead. The length represents the size, or magnitude, of the
vector and the direction is indicated by the line and the arrowhead. Direction is
usually given as the angle the vector makes with the positive x axis, with the
anticlockwise direction taken to be positive.
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The vector in figure 11.1 has magnitude 5, direction +30°. This is written (5, 30°)

and said to be in magnitude–direction form or in polar form. The general form of a

vector written in this way is (r, θ) where r is its magnitude and θ its direction.

Note

In the special case when the vector is representing real travel, as in the case of the

velocity of an aircraft, the direction may be described by a compass bearing with

the angle measured from north, clockwise. However, this is not done in this

chapter, where directions are all taken to be measured anticlockwise from the

positive x direction.

An alternative way of describing a vector is in terms of components in given

directions. The vector in figure 11.2 is 4 units in the x direction, and 2 in the y

4direction, and this is denoted by (  ).
2

This may also be written as 4i + 2j, where i is a vector of magnitude 1, a unit
vector, in the x direction and j is a unit vector in the y direction (figure 11.3).

In a book, a vector may be printed in bold, for example p or OP, or as a line

between two points with an arrow above it to indicate its direction, such as OP
→

.

When you write a vector by hand, it is usual to underline it, for example, p or OP,

or to put an arrow above it, as in
→

OP.

To convert a vector from component form to magnitude–direction form, or vice

versa, is just a matter of applying trigonometry to a right-angled triangle.
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EXAMPLE 11.1 Write the vector a = 4i + 2j in magnitude–direction form.

SOLUTION

The magnitude of a is given by the length a in figure 11.4.

a = 42 + 22 (using Pythagoras’ theorem)

= 4.47 (to 3 significant figures)

The direction is given by the angle θ.

2tanθ = – = 0.5 
4

θ = 26.6° (to 3 significant figures)

The vector a is (4.47, 26.6°).

The magnitude of a vector is also called its modulus and denoted by the symbols

| | . In the example a = 4i + 2j, the modulus of a, written | a |, is 4.47. Another

convention for writing the magnitude of a vector is to use the same letter, but in

italics and not bold type; thus the magnitude of a may be written a.

EXAMPLE 11.2 Write the vector (5, 60°) in component form.

SOLUTION

In the right-angled triangle OPX

OX = 5cos60° = 2.5

XP = 5sin60° = 4.33 

(to 2 decimal places)

2.5OP
→

is (      ) or     2.5i + 4.33j.
4.33

This technique can be written as a general rule, for all values of θ.

r cosθ(r, θ) → (       ) = (r cosθ)i + (r sinθ)j
r sinθ
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EXAMPLE 11.3 Write the vector (10, 290°) in component form.

SOLUTION

In this case r = 10 and θ = 290°.

10cos290° 3.42(10, 290°) → (               ) = ( ) to 2 decimal places.
10sin290° –9.40    

This may also be written 3.42i – 9.40j.

In Example 11.3 the signs looked after themselves. The

component in the i direction came out positive, that in

the j direction negative, as must be the case for a

direction in the fourth quadrant (270° � θ � 360°). This will always be the case

when the conversion is from magnitude–direction form into component form.

The situation is not quite so straightforward when the conversion is carried out

the other way, from component form to magnitude–direction form. In that case,

it is best to draw a diagram and use it to see the approximate size of the angle

required. This is shown in the next example.

EXAMPLE 11.4 Write –5i + 4j in magnitude–direction form.

SOLUTION

In this case, the magnitude r = 52 + 42 = 41

= 6.40 (to 2 decimal places).

The direction is given by the angle θ in figure 11.7, but first find the angle α.

4tan α = – ⇒ α = 38.7° (to nearest 0.1°)
5

so θ = 180 – α = 141.3°

The vector is (6.40, 141.3°) in magnitude–direction form.
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Using your calculator 

Most graphic calculators include the facility to convert from polar co-ordinates

(r, θ) to rectangular co-ordinates (x , y), and vice versa. This is the same as

converting one form of a vector into the other. Once you are clear what is

involved, you will probably prefer to do such conversions on your calculator.

Equal vectors

The statement that two vectors a and b are equal means two things.

● The direction of a is the same as the direction of b.

● The magnitude of a is the same as the magnitude of b.

If the vectors are given in component form, each component of a equals the

corresponding component of b.

Position vectors

Saying the vector a is given by 4i + 2j tells you the components of the vector, or

equivalently its magnitude and direction. It does not tell you where the vector is

situated; indeed it could be anywhere.

All of the lines in figure 11.8 represent the vector a.

There is, however, one special case which is an exception to the rule, that of a

vector which starts at the origin. This is called a position vector. Thus the line 
3joining the origin to the point (3, 5) is the position vector ( ) or 3i + 5j. Another 
5

3way of expressing this is to say that the point (3, 5) has the position vector ( ).
5
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EXAMPLE 11.5 Points L, M and N have co-ordinates (4, 3), (–2, –1) and (2, 2).

(i) Write down, in component form, the position vector of L and the vector MN
⎯→

.

(ii) What do your answers to part (i) tell you about the lines OL and MN?

SOLUTION

4(i) The position vector of L is OL
→

= ( ).
3

4The vector MN
⎯→

is also ( ) (see figure 11.9).
3

(ii) Since OL
→

= MN
⎯→

, lines OL and MN are parallel and equal in length.

Note

A line joining two points, like MN in figure 11.9, is often called a line segment,

meaning that it is just that particular part of the infinite straight line that passes

through those two points.
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EXERCISE 11A 1 Express the following vectors in component form.
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2 Draw diagrams to show these vectors and then write them in magnitude–

direction form. You may find it helpful to use your calculator to check 

your answers.

3 –4(i) 2i + 3j (ii) (   ) (iii) (   )–2 –4

(iv) –i + 2j (v) 3i – 4j

3 Draw diagrams to show these vectors and then write them in component

form. You may find it helpful to use your calculator to check your answers.

(i) (5, 45°) (ii) (10, 210°) (iii) (4, )
(iv) (8, 2π) (v) (4, )

4 Write, in component form, the vectors represented by the line segments joining

the following points.

(i) (2, 3) to (4, 1) (ii) (4, 0) to (6, 0)

(iii) (0, 0) to (0, –4) (iv) (0, –4) to (0, 0)

(v) (–3, –4) to (–4, –3) (vi) (–4, –3) to (–3, –4)

(vii) (0, 0) to (8, 0) (viii) (8, 0) to (0, 0)

(ix) (3, 1) to (5, –3) (x) (3, –1) to (7, 3)

5 The points A, B and C have co-ordinates (2, 3), (0, 4) and (–2, 1).

(i) Write down the position vectors of A and C.

(ii) Write down the vectors of the line segments joining AB and CB.

(iii) What do your answers to parts (i) and (ii) tell you about

(a) AB and OC

(b) CB and OA?

(iv) Describe the quadrilateral OABC.

Multiplying a vector by a scalar

When a vector is multiplied by a number (a scalar) its length is altered but its

direction remains the same.

The vector 2a in figure 11.10 is twice as long as the vector a but in the same direction.

When the vector is in component form, each component is multiplied by the

number. For example:

2 × (3i – 5j) = 6i – 10j

3           62 × (   ) = (     ).
–5       –10

5π––
4

π–
2
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The negative of a vector

In figure 11.11 the vector –a has the same length as the vector a but the opposite

direction.

When a is given in component form, the components of –a are the same as those

for a but with their signs reversed. So

23       –23–(     ) = (     ).
–11       +11

Adding vectors

When vectors are given in component form, they can be added component by

component. This process can be seen geometrically by drawing them on graph

paper, as in the example below.

EXAMPLE 11.6 Add the vectors 2i – 3j and 3i + 5j.

SOLUTION

2i – 3j + 3i + 5j = 5i + 2j
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The sum of two (or more) vectors is called the resultant and is usually indicated

by being marked with two arrowheads.

Adding vectors is like adding the legs of a journey to find its overall outcome (see

figure 11.13).

When vectors are given in magnitude–direction form, you can find their resultant
by making a scale drawing, as in figure 11.13. If, however, you need to calculate
their resultant, it is usually easiest to convert the vectors into component form,
add component by component, and then convert the answer back to
magnitude–direction form.

Subtracting vectors

Subtracting one vector from another is the same as adding the negative of the vector.

EXAMPLE 11.7 Two vectors a and b are given by 

a = 2i + 3j b = –i + 2j.

(i) Find a – b.

(ii) Draw diagrams showing a, b, a – b.

SOLUTION

(i) a – b = (2i + 3j) – (–i + 2j)
= 3i + j

(ii)
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When you find the vector represented by the line segment joining two points, you

are in effect subtracting their position vectors. If, for example,

1P is the point (2, 1) and Q is the point (3, 5), PQ
→

is ( ), as figure 11.15 shows.
4

You find this by saying

PQ
→

= PO
→

+ OQ
→

= –p + q.

In this case, this gives

2      3       1   PQ
→

= –( ) + ( ) = ( )1      5        4

as expected.

This is an important result, that

PQ
→

= q – p

where p and q are the position vectors of P and Q.

Geometrical figures

It is often useful to be able to express lines in a geometrical figure in terms of

given vectors, as in the next example.
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EXAMPLE 11.8 Figure 11.16 shows a hexagon ABCDEF. 

The hexagon is regular and consequently AD
→

= 2BC
→

.

AB
→

= p and BC
→

= q. Express the following in terms of p and q.

(i) AC
→

(ii) AD
→

(iii) CD
→

(iv) DE
→

(v) EF
→

(vi) BE
→

SOLUTION

(i) AC
→

= AB
→

+ BC
→

= p + q

(ii) AD
→

= 2BC
→

= 2q

(iii) Since AC
→ 

+ CD
→

= AD
→

p + q + CD
→

= 2q

and so      CD
→

= q – p

(iv) DE
→

= –AB
→

= –p

(v) EF
→

= –BC
→

= –q

(vi) BE
→

= BC
→

+ CD
→

+ DE
→

= q + (q – p)+ –p
= 2q – 2p

Notice that BE
→

= 2CD
→

.
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Unit vectors

A unit vector is a vector with a magnitude of 1, like i and j. To find the unit vector

in the same direction as a given vector, divide that vector by its magnitude.

Thus the vector 3i + 5j (in figure 11.18) has magnitude 32 + 52 = 34, and so the
3            5vector ––– i + ––– j is a unit vector. It has magnitude 1.
34     34

The unit vector in the direction of vector a is written as â and read as ‘a hat’.

EXERCISE 11B 1 Simplify the following.

2        4    2        –1 (i) ( ) + ( ) (ii) (   ) + (   )3       5 –1          2

3        –3 2             1(iii) ( ) + (   ) (iv) 3( ) + 2(   )4        –4 1           –2

(v) 6(3i – 2j) – 9(2i – j)

2 The vectors p, q and r are given by

p = 3i + 2j q = 2i + 2j r = –3i – j.

Find, in component form, the following vectors.

(i) p + q + r (ii) p – q
(iii) p + r (iv) 3(p – q) + 2(p + r)

(v) 4p – 3q + 2r
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This is the unit vector
3          5–––– i + –––– j.
34     34    



3 In the diagram, PQRS is a parallelogram and PQ
→

= a, PS
→

= b.

(i) Write, in terms of a and b, the following vectors.

(a) QR
→

(b) PR
→

(c) QS
→

(ii) The mid-point of PR is M. Find

(a) PM
⎯→

(b) QM
⎯→

.

(iii) Explain why this shows you that the diagonals of a parallelogram bisect

each other.

4 In the diagram, ABCD is a kite. AC and BD meet at M.

AB
→

= i + j and      AD
→

= i – 2j

(i) Use the facts that the diagonals of a kite meet at right angles and that M is

the mid-point of AC to find, in terms of i and j,

(a) AM
⎯→

(b) AC
→

(c) BC
→

(d) CD
→

.

(ii) Verify that |AB
→

| = |BC
→

| and |AD
→

| = |CD
→

|.
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5 In the diagram, ABC is a triangle. L, M and N are the mid-points of the sides

BC, CA and AB.

AB
→

= p and          AC
→

= q

(i) Find, in terms of p and q, BC
→

, MN
⎯→

, LM
⎯→

and LN
→

.

(ii) Explain how your results from part (i) show you that the sides of triangle

LMN are parallel to those of triangle ABC, and half their lengths.

6 Find unit vectors in the same directions as the following vectors.

2 –2(i) (   ) (ii) 3i + 4j (iii) (   ) (iv) 5i – 12j
3 –2

–2 –1 3(v) 6i (vi) (    ) (vii) (    ) (viii) (   )4 2 6

r cosα 1(ix) (     ) (x) (       )r sinα tanβ

Co-ordinate geometry using vectors: two dimensions

Two-dimensional co-ordinate geometry involves the study of points, given as

co-ordinates, and lines, given as cartesian equations. The same work may also be

treated using vectors.

3The co-ordinates of a point, say (3, 4), are replaced by its position vector (  ) or
4

3i + 4j. The cartesian equation of a line is replaced by its vector form, and this is 

introduced on page 291.

Since most two-dimensional problems are readily solved using the methods of

cartesian co-ordinate geometry, as introduced in AS Pure Mathematics, Chapter

2, why go to the trouble of relearning it all in vectors? The answer is that vector

methods are very much easier to use in many three-dimensional situations than

cartesian methods are. In preparation for that, we review some familiar two-

dimensional work in this section, comparing cartesian and vector methods.
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The vector joining two points

In figure 11.19, start by looking at two points A(2, –1) and B(4, 3); that is the 
2                   4points with position vectors OA

→
= (  ) and OB

→
= (  ), alternatively 2i – j and 4i + 3j.

–1                    3

The vector joining A to B is AB
→

and this is given by

AB
→

= AO
→

+ OB
→

= –OA
→

+ OB
→

= OB
→

– OA
→

4          2        2= (  ) – (    ) = (  ).
3        –1        4

2Since AB
→

= (  ), then it follows that the length of AB is given by
4

|AB
→

| = 22 + 42

= 20.

You can find the position vectors of points along AB as follows.

The mid-point, M, has position vector OM
⎯→

, given by

OM
⎯→

= OA
→

+ AB
→

2      1  2= (   ) + – (  )–1      2  4

3= (   ).
1

1–
2
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In the same way, the position vector of the point N, three-quarters of the distance

from A to B, is given by

2      3  2 ON
⎯→

= (   ) + – (  )–1      4  4 

3q-∑= (   )2

and it is possible to find the position vector of any other point of subdivision of

the line AB in the same way.

● A point P has position vector OP
→

= OA
→

+ λAB
→ 

where λ is a fraction.

Show that this can be expressed as 

OP
→

= (1 – λ) OA
→

+ λOB
→

.

The vector equation of a line

It is now a small step to go from finding the position vector of any point on the

line AB to finding the vector form of the equation of the line AB. To take this

step, you will find it helpful to carry out the following activity.

ACTIVITY 11.1 The position vectors of a set of points are given by

2           2r = (   ) + λ ( )–1           4

where λ is a parameter which may take any value.

6(i) Show that λ = 2 corresponds to the point with position vector (   ).
7

(ii) Find the position vectors of points corresponding to values of λ of –2, –1,

0, , , 1, 3.
(iii) Mark all your points on a sheet of graph paper and show that when they are

joined up they give the line AB in figure 11.19.
(iv) State what values of λ correspond to the points A, B, M and N. 
(v) What can you say about the position of the point if 

(a) 0 � λ � 1?
(b) λ � 1?
(c) λ � 0?

Conclusions from the activity

This activity should have convinced you that

2           2r = (   ) + λ (  )–1           4

is the equation of the line passing through (2, –1) and (4, 3), written in vector form. 

3–
4

1–
2
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You may find it helpful to think of this in these terms.

You should also have noticed that when:

λ = 0 the point corresponds to the point A

λ = 1 the point corresponds to the point B

0 � λ � 1 the point lies between A and B

λ � 1 the point lies beyond B

λ � 0 the point lies beyond A.

The vector form of the equation is not unique; there are many (in fact infinitely

many) different ways in which the equation of any particular line may be

expressed. There are two reasons for this: direction and location.
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λ

2 Move to the point A 
2

with position vector (   ).
–1

and then

1 Start at the
origin.

2
3 Move λ steps of ( ) (i.e.

4
in the direction AB

→
). λ need

not be a whole number and
may be negative.



Direction

2The direction of the line in the example is (  ). That means that for every 2 units 
4

along (in the i direction), the line goes up 4 units (in the j direction). This is 

equivalent to stating that for every 1 unit along, the line goes up 2 units,

corresponding to the equation

2          1r = (    ) + λ(   ).
–1          2

The only difference is that the two equations have different values of λ for
4particular points. In the first equation, point B, with position vector (  ),
3

corresponds to a value of λ of 1. In the second equation, the value of λ for B is 2.

2                            1                                         1                 3       –5 The direction (  ) is the same as (  ), or as any multiple of (  ) such as (  ), (     ) 4                            2                                         2                 6     –10
100.5or (        ). Any of these could be used in the vector equation of the line.
201

Location

In the equation

2          2r = (     ) + λ(  )–1          4

2(    ) is the position vector of the point A on the line, and represents the point at 
–1

which the line was joined. However, this could have been any other point on the 

line, such as M(3, 1), B(4, 3) etc. Consequently

3          2r = ( ) + λ( )1          4 

and

4          2r = (  ) + λ(  )3         4

are also equations of the same line, and there are infinitely many other

possibilities, one corresponding to each point on the line.

Notes

1 It is usual to refer to any valid vector form of the equation as the vector equation

of the line even though it is not unique.

2 It is often a good idea to give the direction vector in its simplest integer form:

2         1for example, replacing ( ) with (  ).
4         2
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The general vector form of the equation of a line

If A and B are points with position a and b, then the equation

r = OA
→

+ λAB
→

may be written as r = a + λ(b – a)

which implies r = (1 – λ)a + λb.

This is the general vector form of the equation of the line joining two points.

ACTIVITY 11.2 Plot the following lines on the same sheet of graph paper. When you have done

so, explain why certain among them are the same as each other, others are parallel

to each other, and others are in different directions.

2          1 2         –1 0         1(i) r = (     ) + λ(   ) (ii) r = (     ) + λ(     ) (iii) r = (   ) + λ(   )–1 2 –1 2 2         2

1          3 4             1(iv) r = (    ) + λ(   ) (v) r = (   ) + λ(    )–3           6 3          –2

Cartesian and vector forms of the equation of a line

To find the cartesian form of the equation of a line which is given in vector form

2           2r = (     ) + λ(   )–1          4

xwrite r as (   ), so the equation of the line becomes
y

x 2          2(   ) = (     ) + λ(   )y –1          4

or x = 2 + 2λ

y = –1 + 4λ

The last two equations can be rewritten as

x – 2 y + 1–––– = λ and –––– = λ
2 4

x – 2 y + 1⇒ –––– = –––– (= λ).
2          4

The equation is now in cartesian form and may be tidied up to give y = 2x – 5.

When converting from cartesian form to vector form, you need to find any point

on the line, and to convert the gradient into a vector with the same direction, as

shown in the following example.
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EXAMPLE 11.9 Write y = x + 2 in vector form.

SOLUTION

First find any point on the line. For example, when x = 0, y = 2 and so the point 
0(0, 2) with position vector (  ) is on the line. 
2

Then convert the gradient into a vector with the same direction. The equation of

the line is of the form y = mx + c and so its gradient m is . 

3The vector ( ) has gradient .
1

So the vector equation of the line is

0          3r = (   ) + λ( ).
2           1

Remember that there are other ways of writing this vector equation.

The intersection of two lines

EXAMPLE 11.10 Find the position vector of the point where the following lines intersect.

2          1 6              1r = (   ) + λ( ) and r = (  ) + μ(    )3          2 1            –3 

Note here that different letters are used for the parameters in the two equations to

avoid confusion.

SOLUTION

When the lines intersect, the position vector is the same for each of them.

x 2          1       6             1 r = (   ) = (   ) + λ( ) = (  ) + μ(    )y 3          2       1 –3

1–
3
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3
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This gives two simultaneous equations for λ and μ.

x : 2 + λ = 6 + μ ⇒ λ – μ = 4

y : 3 + 2λ = 1 – 3μ ⇒ 2λ + 3μ = –2

Solving these gives λ = 2 and μ = –2. Substituting in either equation gives

4r = (   )7

which is the position vector of the point of intersection.

EXAMPLE 11.11 Find the co-ordinates of the point of intersection of the lines joining A(1, 6) to

B(4, 0), and C(1, 1) to D(5, 3).

SOLUTION

4       1           3AB
→

= (   ) – (  ) = (   )0       6      –6

and so the vector equation of line AB is

r = OA
→

+ λAB
→

1             3r = (   ) + λ(     )6           –6

5        1        4CD
→

= ( ) – ( ) = ( )3        1        2
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and so the vector equation of line CD is

r = OC
→

+ μCD
→

1          4 r = (   ) + μ(   ).
1          2 

The intersection of these lines is at

1             3       1          4r = (   ) + λ(    ) = (  ) + μ(   ).
6           –6       1          2

x: 1 + 3λ = 1 + 4μ ⇒ 3λ – 4μ = 0 �1

y: 6 – 6λ = 1 + 2μ ⇒ 6λ + 2μ = 5 �2

Solve �1 and �2 simultaneously:

�1 : 3λ – 4μ = 0

�2 × 2: 12λ + 4μ = 10

Add: 15λ = 10

⇒ λ = .

Substitute λ = w-́ in the equation for AB:

1            3⇒ r = (  ) + (   )6            –6

3⇒ r = (   ).
2

The point of intersection has co-ordinates (3, 2).

Note

Alternatively, you could have found μ =
1–2 and substituted in the equation for CD.

EXERCISE 11C 1 For each of these pairs of points, A and B, write down:

(a) the vector AB
→

(b) |AB
→

|
(c) the position vector of the mid-point of AB.

(i) A is (2, 3), B is (4, 11). 

(ii) A is (4, 3), B is (0, 0). 

(iii) A is (–2, –1), B is (4, 7). 

(iv) A is (–3, 4), B is (3, –4). 

(v) A is (–10, –8), B is (–5, 4).

2–
3

2–
3
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2 Find the equation of each of these lines in vector form.

(i) Joining (2, 1) to (4, 5).

(ii) Joining (3, 5) to (0, 8).

(iii) Joining (–6, –6) to (4, 4).

(iv) Through (5, 3) in the same direction as i + j.
(v) Through (2, 1) parallel to 6i + 3j.

–1(vi) Through (0, 0) parallel to ( ).4
(vii) Joining (0, 0) to (–2, 8).

(viii) Joining (3, –12) to (–1, 4).

3 Write these lines in cartesian form.
1          1 –2         –2(i) r = (   ) + λ( ) (ii) r = (    ) + λ(   )2          3 0         –1

1          4 4          1 (iii) r = (   ) + λ(  ) (iv) r = (   ) + λ( )0          4 3           1

2          4(v) r = (   ) + λ(   )5          0

4 Write these lines in vector form.

(i) y = 2x + 3 (ii) y = x – 4

(iii) y = q-∑x – 1 (iv) y = –q-®x

(v) x + 2y = 8

5 Find the position vector of the point of intersection of each of these pairs of lines.

2          1 3          1 (i) r = (   ) + λ(   ) : r = (  ) + μ( )1          0 0          1

2          1 1(ii) r = (     ) + λ(  ) : r = μ( )–1          2 1

0            –2 0          1(iii) r = (   ) + λ(    ) : r = (    ) + μ(  )5            –2 –7          2

–2          –1 1          2(iv) r = (    ) + λ(    ) : r = (  ) + μ(  )–3            3 3          –1 

2            1 5          1(v) r = (   ) + λ(   ) : r = (  ) + μ(  )7          –1 1          2

6 In this question the origin is taken to be at a harbour and the unit vectors

i and j to have lengths of 1 km in the directions E and N.

A cargo vessel leaves the harbour and its position vector t hours later is given by

r1 = 12ti + 16tj.

A fishing boat is trawling nearby and its position at time t is given by

r2 = (10 – 3t)i + (8 + 4t)j.

(i) How far apart are the two boats when the cargo vessel leaves harbour?

(ii) How fast is each boat travelling?

(iii) What happens?
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7 The points A(1, 0), B(7, 2) and C(13, 7) are the vertices of a triangle. 

The  mid-points of the sides BC, CA and AB are L, M and N.

(i) Write down the position vectors of L, M and N.

(ii) Find the vector equations of the lines AL, BM and CN.

(iii) Find the intersections of these pairs of lines.

(a) AL and BM (b) BM and CN

(iv) What do you notice?

The angle between two vectors

● As you work through the proof in this section, make a list of all the results that

you are assuming.

To find the angle θ between the two vectors

OA
→

= a = a1i + a2j and      OB
→

= b = b1i + b2j

start by applying the cosine rule to triangle OAB in figure 11.23.

OA2 + OB2 – AB2
cosθ = –––––––––––––––

2OA × OB

In this, OA, OB and AB are the lengths of the vectors OA
→

, OB
→

and AB
→

, and so

OA = | a | = a2
1 + a2

2 and OB = | b | = b2
1 + b2

2.

The vector  AB
→

= b – a

= (b1i + b2j) – (a1i + a2j)

= (b1 – a1)i + (b2 – a2)j

and so its length is given by

AB = | b – a | =  (b1 – a1)2 + (b2 – a2 )2.
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Substituting for OA, OB and AB in the cosine rule gives

(a2
1 + a2

2) + (b2
1 + b2

2) – [(b1 – a1)2 + (b2 – a2)2]
cosθ = ––––––––––––––––––––––––––––––––––––––

2 a2
1 + a2

2 × b2
1 + b2

2

a2
1 + a2

2 + b2
1 + b2

2 – (b2
1 – 2a1b1 + a2

1 + b2
2 – 2a2b2 + a2

2)
= –––––––––––––––––––––––––––––––––––––––––––––.

2 | a | | b |

This simplifies to

2a1b1 + 2a2b2cosθ = –––––––––––
2 | a | | b |

a1b1 + a2b2= ––––––––– .
| a | | b |

The expression on the top line, a1b1 + a2b2, is called the scalar product (or dot

product) of the vectors a and b and is written a.b. Thus

a . bcosθ = ––––– .
| a | | b |

This result is usually written in the form

a.b = | a | | b | cosθ.

The next example shows you how to use it to find the angle between two vectors

given numerically.

3                 5EXAMPLE 11.12 Find the angle between the vectors (  ) and (      ).
4             –12

SOLUTION

3Let a = (  ) ⇒ | a | = 32 + 42 = 5
4

5and b = (      ) ⇒ | b | = 52 + (–12)2 = 13.
–12

The scalar product

3         5( ).(      ) = 3 × 5 + 4 × (–12)
4      –12

= 15 – 48

= –33.

Substituting in a . b = | a | | b | cosθ gives

–33 = 5 × 13 × cosθ

–33cosθ = –––
65

⇒ θ = 120.5°.
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Perpendicular vectors

Since cos90° = 0, it follows that if vectors a and b are perpendicular then a.b = 0.

Conversely, if the scalar product of two non-zero vectors is zero, they are

perpendicular.

2                      6EXAMPLE 11.13 Show that the vectors a = (  ) and b = (    ) are perpendicular.
4                   –3

SOLUTION

The scalar product of the vectors is 

2       6a.b = (   ).(    )4      –3

= 2 × 6 + 4 × (–3)

= 12 – 12 = 0.

Therefore the vectors are perpendicular.

Further points concerning the scalar product

● You will notice that the scalar product of two vectors is an ordinary number. It
has size but no direction and so is a scalar, rather than a vector. It is for this
reason that it is called the scalar product. There is another way of multiplying
vectors that gives a vector as the answer; it is called the vector product. This is
covered in FP3.

● The scalar product is calculated in the same way for three-dimensional vectors.
For example:

2      5( 3).( 6) = 2 × 5 + 3 × 6 + 4 × 7 = 56.
4    7

In general

a1 b1(a2).( b2) = a1b1 + a2b2 + a3b3.

a3 b3

● The scalar product of two vectors is commutative. It has the same value
whichever of them is on the left-hand side or right-hand side. Thus a.b = b.a,
as in the following example.

2     6 6     2(  ).(  ) = 2 × 6 + 3 × 7 = 33 (   ).(  ) = 6 × 2 + 7 × 3 = 33.
3     7 7     3

● How would you prove this result?
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EXERCISE 11D 1 Find the angles between these vectors.

(i) 2i + 3j and 4i + j (ii) 2i – j and i + 2j
–1             –1(iii) (    ) and (    ) (iv) 4i + j and i + j
–1             –2

2            –6 3             –6(v) (   ) and (     ) (vi) (    ) and (     )3               4 –1               2

2 Points A, B, C and D are (1, 0), (9, 4), (6, 1) and (9, 7), respectively.

(i) Write down the vector equation of line AB. 

(ii) Write down the vector equation of line CD. 

(iii) Find the position vector of the point of intersection.  

(iv) Find the angle between the lines AB and CD.

3 The equations of the four sides AB, BC, CD, DA of a quadrilateral are:

1             4 1            1AB: r = (   ) + λ1(  ) BC: r = (   ) + λ2(  )1            1 1            3

6            4 6             1 CD: r = ( ) + λ3(  ) DA: r = (   ) + λ4(  ).
5            1 5             3

(i) Look carefully at the equations of the four lines and state, with reasons,

what sort of quadrilateral ABCD is.

(ii) Find the co-ordinates of the four vertices of the quadrilateral.

(iii) Find the internal angles of the quadrilateral.

4 The points A, B and C have co-ordinates (3, 2), (6, 3) and (5, 6), respectively.

(i) Write down the vectors AB
→

and BC
→

.

(ii) Show that the angle ABC is 90°.

(iii) Show that |AB
→

| = |BC
→

|.

The figure ABCD is a square. 

(iv) Find the co-ordinates of the point D.

5 Three points P, Q and R have position vectors, p, q and r respectively, where

p = 7i + 10j, q = 3i + 12j, r = –i + 4j.

(i) Write down the vectors PQ
→

and RQ
→

, and show that they are perpendicular.

(ii) Using a scalar product, or otherwise, find the angle PRQ.

(iii) Find the position vector of S, the mid-point of PR.

(iv) Show that |QS
→

| = |RS
→

|.
Using your previous results, or otherwise, find the angle PSQ.

[MEI]
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Co-ordinate geometry using vectors: three dimensions

Points

In three dimensions, a point has three co-ordinates, usually called x , y and z.

The axes are conventionally arranged as shown in figure 11.24, where the point P

is (3, 4, 1). Even on correctly drawn three-dimensional grids, it is often hard to

see the relationship between the points, lines and planes, so it is seldom worth

your while trying to plot points accurately.
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Figure 11.24

This point is
(3, 4, 1).



There are many important results that can be extended from two dimensions into

three dimensions. Here you are asked to prove two of these.

The length of a vector

In two dimensions, the use of Pythagoras’ theorem leads to the result that a

vector a1i + a2j has length | a | given by

| a | = a2
1 +a2

2.

● Show that the length of the three-dimensional vector a1i + a2j + a3k is given by

| a | = a2
1 + a2

2 + a2
3.

The angle between two vectors

The angle θ between the vectors a = a1i + a2j and b1i + b2j in two dimensions is

given by

alb1 + a2b2 a.b
cosθ = –––––––––––––––––– = –––––

a2
1 + a2

2 × b2
1 + b2

2 | a | | b |

where a.b is the scalar product of a and b. This result was proved by using the

cosine rule on pages 299–300.

● Show that the angle between the three-dimensional vectors

a = a1i + a2j + a3k and b = b1i + b2j + b3k

is also given by

a.bcosθ = –––––| a | | b |

but that the scalar product a.b is now

a.b = a1b1 + a2b2 + a3b3.

Vectors

The position vector of the point P in figure 11.24 is given by

3
3i + 4j + k or ( 4 )1

and other vectors are given in the same style, with k the unit vector in the z direction.
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The vector equation of a line is just like that in two dimensions. For example: 

3           2
r = ( 4 ) + λ( 3 )1           6

3                                2
represents a line through the point with position vector ( 4 ), in the direction ( 3 ).1                                6 

By contrast the cartesian form of a line in three dimensions is rather more

complicated. The equation 

x 3           2
r = ( y ) = (4 ) + λ( 3)z 1           6

contains three relationships, which are parametric equations for the line.

x = 3 + 2λ y = 4 + 3λ z = 1 + 6λ

Making λ the subject of each of these gives

x – 3 y – 4 z – 1λ = –––– λ = –––– and λ = ––––
2 3 6

which leads to

x – 3 y – 4 z – 1–––– = –––– = ––––.
2           3           6

This is the cartesian form of the equation of the line.

Note

2
The line’s direction vector ( 3 ) can be read from the denominators of the three 

6
expressions in this equation, and a point through which it passes (3,4,1) from the 

three numerators.

The procedure may be generalised to write the equation of a straight line passing

in direction u through a given point A with position vector a, as in figure 11.25.

a1 u1
a = ( a2 ) u = (u2 )a3 u3
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In vector form this is given by r = OA
→

+ λu

which may be written as r = a + λu

or in component form as

x a1 u1
r = ( y ) = (a2) + λ(u2).

z a3 u3

This may then be written as the cartesian form of the equation.

x – a1 y – a2 z – a3––––– = ––––– = –––––u1 u2 u3

The cartesian form involves two = symbols rather than one.

Special cases of the cartesian form

In the general cartesian form of the equation of the straight line

x – a1 y – a2 z – a3––––– = –––––=–––––u1 u2 u3

u1
the vector ( u2) gives the direction of the line.

u3

In this vector, at least one of u1, u2 and u3 must be non-zero (otherwise the line

would not be going anywhere and so would not be a line). However, there is no

reason why more than one should be non-zero.
1 4( 0) and ( 1) are both valid directions.
0 0

V
ec

to
rs

306

C4
11

Figure 11.25
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The position vector 
a1

of this point is ( a2 )a3

.



In such cases, the equation of the line needs to be written differently, as in the

following examples.

EXAMPLE 11.14 Find the cartesian form of the equation of the line through (7, 2, 3) in the 
0

direction (5 ).
2

SOLUTION

Substituting in the general form

x – a1 y – a2 z – a2––––– = ––––– = –––––
u1 u2 u3

gives

x – 7 y – 2 z – 3–––– = –––– = –––– .
0           5           2

There is clearly a problem here since the first fraction involves division by zero.

This difficulty is explained by the fact that for every point on the line x – 7 = 0, or 
x – 7            0x = 7. What was –––– is now –; this is still undefined and so it is not equated to 

0               0
the other two expressions in the equation. Instead, the equation of the line 

is written

y – 2 z – 3
x = 7   and –––– = ––––.

5           2

EXAMPLE 11.15 Find the cartesian form of the equation of the line through (4, 2, 3) in the 

1
direction ( 0).

0

SOLUTION

Substituting in the general form

x – a1 y – a2 z – a3––––– = –––––= –––––u1 u2 u3

gives

x – 4 y – 2 z – 3
–––– = –––– = ––––.

1            0           0

The last two expressions tell you that y = 2 and z = 3.

x – 4The first part –––– does not really give any further information: x may take any 
1

value, and this is understood when the equation of the line is written as

y = 2    and z = 3.

The line is shown in figure 11.26.
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The vector forms of the equations of the lines given in the last two examples are

x 7           0 x 4          1
r = (y ) = (2 ) + λ( 5) and r = (y ) = (2 ) + λ(0).

z 3          2 z 3           0

These are considerably simpler than the equivalent cartesian forms. You will

usually find it much easier to work with the equation of the line in vector form.

To convert from cartesian to vector form, you can reverse the procedure as in the

following example. Usually, however, you would just write down the answer by

looking at the numbers in the three numerators and denominators.

EXAMPLE 11.16 Write the equation of this line in vector form.

x – 5 y + 1 z + 3–––– = –––– = ––––
2           1           6

SOLUTION

x – 5 y + l z + 3–––– = –––– = –––– = λ
2           1           6

x – 5–––– = λ ⇒ x = 5 + 2λ
2

y + 1–––– = λ ⇒ y = –1 + λ
1

z + 3–––– = λ ⇒ z = –3 + 6λ
6
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Figure 11.26

At every point on this line
y = 2    and z = 3.

The value of x is different
for each point.



So

x 5 + 2λ
r = (y ) = ( –1 + λ )z –3 + 6λ

which is written

5          2
r = (–1) + λ( 1 ).

–3          6

2
This line passes through (5, –1, –3) in the direction (1).

6

The angle between two directions

When working in two dimensions you found the angle between two lines by using

the scalar product. On page 304 you proved that this method can be extended into

three dimensions, and its use is shown in the following example.

EXAMPLE 11.17 The points P, Q and R are (1, 0, –1), (2, 4, 1) and (3, 5, 6). Find ∠QPR.

SOLUTION

The angle between PQ
→

and PR
→

is given by θ in

PQ
→

. PR
→

cosθ = ––––––––
|PQ
→

| |PR
→

|

In this

2         1        1
PQ
→

= ( 4 ) – ( 0) = (4 ) | PQ
→

| = 12 + 42 + 22 = 21
1       –1       2

Similarly

3         1        2
PR
→

= (5) – ( 0) = (5) | PR
→

| = 22 + 52 + 72 = 78
6       –1        7

Therefore

1     2
PQ
→

. PR
→

= (4 ) .(5)2      7

= 1 × 2 + 4 × 5 + 2 × 7

= 36
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Substituting gives

36cos θ = ––––––––––
21 × 78

⇒ θ = 27.2°

You must be careful to find the correct angle. To find ∠QPR (see figure 11.28),

you need the scalar product PQ
→

. PR
→

. If you take QP
→

. PR
→

, you will obtain ∠Q´PR,

which is 180° – ∠QPR.

Even if two lines do not meet, it is still possible to specify the angle between them.

The lines l and m shown in figure 11.29 do not meet; they are described as skew.

The angle between them is that between their directions; it is shown in figure

11.29 as the angle θ between the lines l and m´, where m´ is a translation of the

line m to a position where it does intersect the line l.

V
ec

to
rs

310

C4
11

Figure 11.27

!

R

Q

P

Q′

θ

Figure 11.28

Figure 11.29
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EXAMPLE 11.18 Find the angle between the lines

1            2 2          3
r = (0) + λ( –1) and r = (–1) + μ( 0).

4          –1 3          1

SOLUTION

2            3
The angle between the lines is the angle between their directions ( –1) and ( 0).

–1            1

a.bUsing cosθ = –––––| a | | b |

2 × 3 + (–1) × 0 + (–1) × l
cosθ = –––––––––––––––––––––––––––––––

22 + (–1)2 + (–1)2 × 32 + 02 + 12

5
cosθ = –––––––––

6 × 10

⇒ θ = 49.8°.

EXERCISE 11E 1 Find the equations of the following lines in vector form.

3
(i) Through (2, 4, –1) in the direction (6)4

1
(ii) Through (1, 0, –1) in the direction ( 0)0

(iii) Through (1, 0, 4) and (6, 3, –2)

(iv) Through (0, 0, 1) and (2, 1, 4)

(v) Through (1, 2, 3) and (–2, –4, –6)

2 Write the equations of the following lines in cartesian form.
2          3 1          1

(i) r = ( 4) + λ(6 ) (ii) r = ( 0) + λ(3)–1           4 –1          4

3          1 0          2
(iii) r = (0) + λ(0) (iv) r = ( 4 ) + λ(0)4          2 1          4

–2          0
(v) r = (–7) + λ( 1)3           0

3 Write the equations of the following lines in vector form. 

x – 3 y + 2 z – 1 x + 6 y z + 4
(i) –––– = –––– = –––– (ii) –––– = – = ––––

5           3           4 6        2        3

y     z + 1
(iii) x = – = –––– (iv) x = y = z

2        3

(v) x = 2 and y = z
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4 Find the angles between these pairs of vectors.

2 2
(i) (1) and (–1)3 4

1                   3
(ii) (–1) and (1)0                   5

(iii) 3i + 2j – 2k and    –4i – j + 3k

5 Find the angles between these pairs of lines. 

2          1 6 2
(i) r = ( 1 ) + λ( 4) and r = (10) + λ( 1)3         0 4 1

4 7            1
(ii) r = λ( 1) and r = ( 0) + λ( 2)4 –3           –1

x – 4 y – 2 z + 1 x – 5 y – 1 z
(iii) –––– = –––– = –––– and –––– = ––––= ––

3           7          –4 2           8       –5

6 The room illustrated in the diagram has rectangular walls, floor and ceiling. 

A string has been stretched in a straight line between the corners A and G.

The corner O is taken as the origin. A is (5, 0, 0), C is (0, 4, 0) and D is 
(0, 0, 3), where the lengths are in metres. 

(i) Write down the co-ordinates of G. 

(ii) Find the vector AG
→

and the length of the string | AG
→

|.
(iii) Write down the equation of the line AG in vector form.

A spider walks up the string, starting from A. 

(iv) Find the position vector of the spider when it is at Q, one quarter of the

way from A to G, and find the angle OQG. 

(v) Show that when the spider is 1.5m above the floor it is at its closest point

to O, and find how far it is then from O.

[MEI]
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7 The diagram shows an extension to a house. Its base and walls are rectangular

and the end of its roof, EPF, is sloping, as illustrated.

(i) Write down the co-ordinates of A and F.

(ii) Find, using vector methods, the angles FPQ and EPF.

The owner decorates the room with two streamers which are pulled taut. One

goes from O to G, the other from A to H. She says that they touch each other

and that they are perpendicular to each other. 

(iii) Is she right?

8 The drawing shows an ordinary music stand, which consists of a rectangle

DEFG with a vertical support OA.

Relative to axes through the origin O, which is on the floor, the co-ordinates of

various points are given (with dimensions in metres) as:

A is (0, 0, 1) D is (–0.25, 0, 1) F is (0.25, 0.15, 1.3).
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DE and GF are horizontal, A is the mid-point of DE and B is the mid-point of GF. 

C is on AB so that AC = q-́AB.

0
(i) Write down the vector AD

→
and show that EF

→
is ( 0.15).

0.3
(ii) Calculate the co-ordinates of C.

(iii) Find the equations of the lines DE and EF in vector form.

[MEI, part]

9 The diagram illustrates the flight path of a helicopter H taking off from an

airport.

Co-ordinate axes Oxyz are set up with the origin O at the base of the airport

control tower. The x axis is due east, the y axis due north, and the z axis vertical.

The units of distance are kilometres throughout.

The helicopter takes off from the point G.

The position vector r of the helicopter t minutes after take-off is given by

r = (1 + t)i + (0.5 + 2t )j + 2t k.

(i) Write down the co-ordinates of G.

(ii) Find the angle the flight path makes with the horizontal. 

(This angle is shown as θ in the diagram.)

(iii) Find the bearing of the flight path. 

(This is the bearing of the line GF shown in the diagram.)

(iv) The helicopter enters a cloud at a height of 2 km. 

Find the co-ordinates of the point where the helicopter enters the cloud.

(v) A mountain top is situated at M(5, 4.5, 3). 

Find the value of t when HM is perpendicular to the flight path GH. 

Find the distance from the helicopter to the mountain top at this time.
[MEI]
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Planes

●? Which balances better, a three-

legged stool or a four-legged stool?

Why? What information do you

need to specify a particular plane?

There are various ways of finding

the equation of a plane. Two of these

are given in this book. Your choice

of which one to use will depend on

the information you are given.

● The equation of a plane, given three points on it

There are several methods used to find the equation of a plane through three

given points. The shortest method involves the use of vector product which is

beyond the scope of this book but is covered in FP3. The method given here

develops the same ideas as were used for the equation of a line. It will help you to

understand the extra concepts involved, but it is not a requirement of the MEI

Core 4 subject criteria.

To find the vector form of the equation of the plane through the points A, B and

C (with position vectors OA
→

= a, OB
→

= b, OC
→

= c), think of starting at the origin,

travelling along OA to join the plane at A, and then any distance in each of the

directions AB
→

and AC
→

to reach a general point R with position vector r, where

r = OA
→

+ λAB
→

+ μAC
→

.
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Figure 11.30

!

OR
→

= OA
→

+ λAB
→

+ nAC
→

z

y
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This is a vector form of the equation of the plane. Since OA
→

= a, AB
→

= b – a and

AC
→

= c – a, it may also be written as 

r = a + λ(b – a) + μ(c – a).

EXAMPLE 11.19 Find the equation of the plane through A(4, 2, 0), B(3, 1, 1) and C(4, –1, 1).

SOLUTION

4
OA
→

= (2)0

3       4        –1
AB
→

= OB
→

– OA
→

= ( 1) – (2) = (–1)1       0          1

4        4          0
AC
→

= OC
→

– OA
→

= (–1) – ( 2 ) = (–3)1       0         1

So the equation r = OA
→

+ λAB
→

+ μAC
→

becomes

4         –1            0
r = ( 2) + λ(–1) + μ(–3).

0            1            1

This is the vector form of the equation, written using components.

Cartesian form

You can convert this equation into cartesian form by writing it as

x 4          –1             0(y ) = ( 2) + λ( –1) + μ(–3)z 0            1             1

and eliminating λ and μ. The three equations contained in this vector equation

may be simplified to give

λ = –x + 4 �1

λ + 3μ = –y + 2 �2

λ + μ = z. �3

Substituting �1 into �2 gives

–x + 4 + 3μ = –y + 2

3μ = x – y – 2

μ = (x – y – 2).1–
3
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Substituting this and �1 into �3 gives

–x + 4 + q-́(x – y – 2) = z

–3x + 12 + x – y – 2 = 3z

2x + y + 3z = 10

and this is the cartesian equation of the plane through A, B and C.

Note

In contrast to the equation of a line, the equation of a plane is more neatly

expressed in cartesian form. The general cartesian equation of a plane is often

written as either

ax + by + cz + d = 0 or n1x + n2y + n3z + d = 0.

The direction perpendicular to a plane

●? Lay a sheet of paper on a flat horizontal table and mark several straight lines on

it. Now take a pencil and stand it upright on the sheet of paper (see figure 11.31).

(i) What angle does the pencil make with any individual line?

(ii) Would it make any difference if the table were tilted at an angle (apart from

the fact that you could no longer balance the pencil)?

Figure 11.31



The discussion on the previous page shows you that there is a direction (that of

the pencil) which is at right angles to every straight line in the plane. A line in

that direction is said to be perpendicular to the plane or normal to the plane.

This allows you to find a different vector form of the equation of a plane which

you use when you know the position vector a of one point A in the plane and the

direction n = n1i + n2j + n3k perpendicular to the plane.

What you want to find is an expression for the position vector r of a general point
R in the plane (see figure 11.32). Since AR is a line in the plane, it follows that AR
is at right angles to the direction n.

AR
→

.n = 0

The vector AR
→

is given by

AR
→

= r – a

and so                   (r – a).n = 0.

This can also be written as

r.n – a.n = 0

x n1
or (y) . (n2 ) – a.n = 0

z n3

⇒  n1x + n2y + n3z + d = 0

where d = –a.n.

Notice that d is a constant scalar.
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Figure 11.32

The point R has
position vector r.

The vector AR
→

is r – a.

The point A has
position vector a.



EXAMPLE 11.20 Write down the equation of the plane through the point (2, 1, 3) given that
4

the vector ( 5) is perpendicular to the plane.
6

SOLUTION

2
In this case, the position vector a of the point (2, 1, 3) is given by a = (1 ).

3

The vector perpendicular to the plane is

n1 4
n = (n2) = (5).

n3 6

The equation of the plane is

nlx + n2y + n3z – a.n = 0

4x + 5y + 6z – (2 × 4 + 1 × 5 + 3 × 6) = 0

4x + 5y + 6z – 31 = 0.

Look carefully at the equation of the plane in Example 11.20. You can see at once 
4

that the vector ( 5 ), formed from the coefficients of x , y and z , is perpendicular to 
6

the plane.

n1
The vector (n2) is perpendicular to all planes of the form

n3

n lx + n2y + n3z + d = 0

whatever the value of d (see figure 11.33). Consequently, all planes of that form

are parallel; the coefficients of x, y and z determine the direction of the plane, the

value of d its location.
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The intersection of a line and a plane

The point of intersection of a line and a plane is found by following the

procedure in the next example.

EXAMPLE 11.21 Find the point of intersection of the line

2             1
r = ( 3) + λ( 2)4           –1

with the plane 5x + y – z = 1.

SOLUTION

The line is

x 2          1
r = ( y ) = ( 3) + λ( 2)z 4          –1

and so for any point on the line

x = 2 + λ y = 3 + 2λ and z = 4 – λ.

Substituting these into the equation of the plane 5x + y – z = 1 gives

5(2 + λ) + (3 + 2λ) – (4 – λ) = 1

8λ = –8

λ = –1.

Substituting λ = –1 in the equation of the line gives

x 2        1        1
r = ( y ) = (3) – ( 2) = ( 1)z 4        –1        5

so the point of intersection is (1, 1, 5).

As a check, substitute (1, 1, 5) into the equation of the plane:

5x + y – z = 5 + 1 – 5 

= 1 as required.
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The distance of a point from a plane

The shortest distance of a point, A, from a plane is the distance AP, where P is the

point where the line through A perpendicular to the plane intersects the plane

(see figure 11.34). This is usually just called the distance of the point from the

plane. The process of finding this distance is shown in the next example.

EXAMPLE 11.22 A is the point (7, 5, 3) and the plane π has the equation 3x + 2y + z = 6. Find 

(i) the equation of the line through A perpendicular to the plane π
(ii) the point of intersection, P, of this line with the plane 

(iii) the distance AP.

SOLUTION

3
(i) The direction perpendicular to the plane 3x + 2y + z = 6 is (2) so the line 

1
through (7, 5, 3) perpendicular to the plane is given by

7          3
r = ( 5) + λ( 2).

3          1

(ii) For any point on the line

x = 7 + 3λ y = 5 + 2λ and z = 3 + λ.

Substituting these expressions into the equation of the plane 3x + 2y + z = 6

gives

3(7 + 3λ) + 2(5 + 2λ) + (3 + λ) = 6

14λ = –28

λ = –2.

So the point P has co-ordinates (1, 1, 1).

(iii) The vector AP
→

is given by

1       7       –6( 1) – (5) = (–4)1       3       –2

and so the length AP is (–6)2 + (–4)2 + (–2)2 = 56.
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Note

In practice, you would usually not follow the procedure in Example 11.22 because

there is a well-known formula for the distance of a point from a plane. You are

invited to derive this in the following activity.

ACTIVITY 11.3 Generalise the work in Example 11.22 to show that the distance of the point

(α, β, γ) from the plane n1x + n2y + n3z + d = 0 is given by

|n1α + n2β + n3γ + d |
–––––––––––––––––– .

n2
1 + n2

2 + n2
3

EXERCISE 11F 1 The points A, B and C have co-ordinates (0, 1, 1), (–2, –1, –5) and (1, –1, 0).

(i) Find the vectors AB
→

and AC
→

.

(ii) Find the equation of the plane ABC in the form

r = OA
→

+ λAB
→

+ μAC
→

.

(iii) Verify that A, B and C lie in the plane 5x + 4y – 3z = 1.

(iv) Show that

5                  5
AB
→

. ( 4) = BC
→

. ( 4) = 0
–3                –3

and explain the significance of these results.

2 The points L, M and N have co-ordinates (0, –1, 2), (2, 1, 0) and (5, 1, 1).

(i) Write down the vectors LM
→

and LN
→

.

(ii) Show that

1                 1
LM
→

. (–4) = LN
→

. ( –4) = 0.
–3               –3

(iii) Find the equation of the plane LMN.

3 The points A, B and C have co-ordinates (3, 0, 0), (3, 1, 2) and (3, 4, –2).

(i) Show that the equation of the plane ABC may be written as

3          0            0
r = (0) + λ( 1 ) + μ( 2).

0          2            –1

(ii) Show that the equation of the plane may also be written in the form x = 3.

(iii) Describe this plane.



4 (i) Show that the points A(1, 1, 1), B(3, 0, 0) and C(2, 0, 2) all lie in the 

plane 2x + 3y + z = 6.

(ii) Show that

2               2 
AB
→

. ( 3) = AC
→

. (3) = 0.
1               1

(iii) The point D has co-ordinates (7, 6, 2). D lies on a line perpendicular to

the plane through one of the points A, B or C. 

Through which of these points does the line pass?

2          1                       4          1
5 The lines l, r = (1 ) + λ(1), and m, r = (0) + μ(0), lie in the same plane π.

0          1                         2           1

(i) Find the co-ordinates of any two points on each of the lines.

(ii) Show that all the four points you found in part (i) lie on the plane x – z = 2.

(iii) Explain why you now have more than sufficient evidence to show that the

plane π has equation x – z = 2.

(iv) Find the co-ordinates of the point where the lines l and m intersect.

6 Find the points of intersection of the following planes and lines.

1           1
(i) x + 2y + 3z = 11 and r = (2 ) + λ( 1)4          1

x + 2 y + 3 z + 4
(ii) 2x + 3y – 4z = 1 and –––– = –––– = ––––

3            4           5

8          1
(iii) 3x – 2y – z = 14 and r = ( 4) + λ(2 )2          1

1
(iv) x + y + z = 0 and r = λ(1)2

x – 3 y + 1 z – 2
(v) 5x – 4y – 7z = 49 and –––– = –––– = ––––

2            5          –3

7 In each of the following examples you are given a point A and a plane π. Find

(a) the equation of the line through A perpendicular to π
(b) the point of intersection, P, of this line with π
(c) the distance AP.

(i) A is (2, 2, 3); π is x – y + 2z = 0

(ii) A is (2, 3, 0); π is 2x + 5y + 3z = 0

(iii) A is (3, 1, 3); π is x = 0

(iv) A is (2, 1, 0); π is 3x – 4y + z = 2

(v) A is (0, 0, 0); π is x + y + z = 6
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8 The points U and V have co-ordinates (4, 0, 7) and (6, 4, 13). 

The line UV is perpendicular to a plane and the point U lies in the plane.

(i) Find the equation of the plane in cartesian form.

(ii) The point W has co-ordinates (–1, 10, 2). 

Show that WV2 = WU2 + UV2.

(iii) What information does this give you about the position of W? 

Confirm this information by a different method.

9 (i) Find the equation of the line through (13, 5, 0) parallel to the line

2              3
r = (–1) + λ( 1).

4            –2

(ii) Where does this line meet the plane 3x + y – 2z = 2? 

(iii) How far is the point of intersection from (13, 5, 0)?

10 A is the point (1, 2, 0), B is (0, 4, 1) and C is (9, –2, 1).

(i) Show that A, B and C lie in the plane 2x + 3y – 4z = 8.

(ii) Write down the vectors AB
→

and AC
→

and verify that they are at
2

right angles to ( 3).
–4

(iii) Find the angle BAC.

(iv) Find the area of triangle ABC (using area = q-∑bc sinA).

11 P is the point (2, –1, 3), Q is (5, –5, 3) and R is (7, 2, –3). Find 

(i) the lengths of (a) PQ (b) QR

(ii) the angle PQR 

(iii) the area of triangle PQR

(iv) the point S such that PQRS is a parallelogram.

12 P is the point (2, 2, 4), Q is (0, 6, 8), X is (–2, –2, –3) and Y is (2, 6, 9).

(i) Write in vector form the equations of the lines PQ and XY.

(ii) Verify that the equation of the plane PQX is 2x + 5y – 4z = –2.

(iii) Does the point Y lie in the plane PQX?

(iv) Does any point on PQ lie on XY? (That is, do the lines intersect?)

13 (i) Find, in vector or cartesian form, the equation of a line passing through 

the two points A(4, 1, 3) and B(6, 4, 8).

(ii) Find the co-ordinates of the point P where the line which you have found

in part (i) meets the plane x + 2y – z + 3 = 0.

A line is drawn through A perpendicular to the plane.

(iii) Find the co-ordinates of the point Q where this line cuts the plane and also

the co-ordinates of the point A1, the mirror image of the point A in the plane.

(iv) Use scalar products to calculate the angles PAQ and PA1Q.

[MEI]
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14 You are given the four points O(0, 0, 0), A(5, –12, 16), B(8, 3, 19) and

C(–23, –80, 12).

(i) Show that the three points A, B and C all lie in the plane with equation

2x – y + 3z = 70.

(ii) Write down a vector which is normal to this plane.

(iii) The line from the origin O perpendicular to this plane meets the plane at

D. Find the co-ordinates of D.

(iv) Write down the equations of the two lines OA and AB in vector form.

(v) Hence find the angle OAB, correct to the nearest degree.

[MEI]

15 (i) Write down in vector or cartesian form the equation of the line joining 

A(8, 0, –4) to B(12, 2, –6).

(ii) This line meets the plane 2x + y – z = 2 at C. Find the co-ordinates of C.

(iii) Find the length of the line joining C to B.

(iv) Find the ratio in which the point A divides CB.

(v) Find the angle AOB where O is the origin.

[MEI]

16 In bad weather, the roof of a barn begins to sag. It is decided to support it as

shown in the diagram.

When the roof is supported, ADB is a straight line. Two points on the roof are

A(2, 0, 15) and B(14, 9, 9) relative to an arbitrary origin. 

(i) Find the equation of the line AB in vector form.

The support CD, resting on concrete blocks at C, is perpendicular to the

line AB. C is the point (3, –1, 1).

(ii) Write down the vector CP
→

, where P is a general point on the line AB.

Hence, using a scalar product, find the co-ordinates of D on AB such that

CD is perpendicular to AB.

(iii) Calculate the length of the support CD.

(iv) Calculate the ratio AD : DB.

[MEI]
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17 A pyramid in the shape of a tetrahedron has base ABC and vertex P as shown

in the diagram. The vertices A, B, C, P have position vectors

a = –4j + 2k,

b = 2i + 4k,

c = –5i – 2j + 6k,

p = 3i – 8j + 12k

respectively.

The equation of the plane of the base is

2
r. (–3) = 20.

4

(i) Write down a vector which is normal to the base ABC.

The line through P, perpendicular to the base, cuts the base at L.

(ii) Find the equation of the line PL in vector form and use it to find the

co-ordinates of L.

(iii) Find the co-ordinates of the point N on LP, such that LN
→

= q-®LP
→

.

(iv) Find the angle between PA and PL.

[MEI]

18 The diagram shows an arrow embedded in a target. The line of the arrow

passes through the point A(2, 3, 5) and has direction vector 3i + j – 2k. The

arrow intersects the target at the point B. The plane of the target has equation

x + 2y – 3z = 4. The units are metres.

(i) Write down the vector equation of the line of the arrow in the form

r = p + λq.

(ii) Find the value of λ which corresponds to B. 

Hence write down the co-ordinates of B.
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(iii) The point C is where the line of the arrow meets the ground, which is the

plane z = 0. Find the co-ordinates of C.

(iv) The tip, T, of the arrow is one-third of the way from B to C. 

Find the co-ordinates of T and the length of BT.

(v) Write down a normal vector to the plane of the target. 

Find the acute angle between the arrow and this normal.
[MEI]

19 The position vectors of three points A, B, C on a plane ski-slope are

a = 4i + 2j – k, b = –2i + 26j + 11k, c = 16i + 17j + 2k,

where the units are metres.

(i) Show that the vector 2i – 3j + 7k is perpendicular to AB
→

and also

perpendicular to AC
→

.

Hence find the equation of the plane of the ski-slope.

The track for an overhead railway lies along DEF, where D and E have

position vectors d = 130i – 40j + 20k and e = 90i – 20j + 15k, and F is a point

on the ski-slope.

(ii) Find the equation of the straight line DE.

(iii) Find the position vector of the point F.

(iv) Find the length of the track DF.
[MEI]

20 A plane π has equation ax + by + z = d.

(i) Write down, in terms of a and b, a vector which is perpendicular to π.

Points A(2, –1, 2), B(4, –4, 2), C(5, –6, 3) lie on π.

(ii) Write down the vectors AB
→

and AC
→

.

(iii) Use scalar products to obtain two equations for a and b.

(iv) Find the equation of the plane π.

(v) Find the angle which the plane π makes with the plane x = 0.

(vi) Point D is the mid-point of AC. Point E is on the line between D and B

such that DE : EB = 1 : 2. Find the co-ordinates of E.
[MEI]

21 ABCD is a parallelogram. The co-ordinates of A, B and D are (4, 2, 3), 

(18, 4, 8) and (–1, 12, 13) respectively. The origin of co-ordinates is O.

(i) Find the vectors AB
→

and AD
→

. Find the co-ordinates of C.

(ii) Show that ABCD is a square of side 15 units.

(iii) Show that OA
→

can be expressed in the form λAB
→

+ μAD
→

, stating the values

of λ and μ. What does this tell you about the plane ABCD?

(iv) Find the cartesian equation of the plane ABCD.
[MEI]
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22 The diagram, which is not to scale, illustrates part of the roof of a building. Lines

OA and OD are horizontal and at right angles. Lines BC and BE are also

horizontal and at right angles. Line BC is parallel to OA and BE is parallel to OD.

Axes are taken with O as origin, the x axis along OA, the y axis along OD and

the z axis vertically upwards. The units are metres.

Point A has the co-ordinates (50, 0, 0) and point D has the co-ordinates (0, 20, 0).     
x     y     z The equation of line OB is – = – = – . The equation of plane CBEF is z = 3.
4     3    2

(i) Find the co-ordinates of B.

(ii) Verify that the equation of plane AOBC is 2y – 3z = 0.

(iii) Find the equation of plane DOBE.

(iv) Write down normal vectors for planes AOBC and DOBE. Find the angle

between these normal vectors. Hence write down the internal angle

between the two roof surfaces AOBC and DOBE.

[MEI]

23 A tunnel is to be excavated through a hill. In order to define position,

co-ordinates (x , y, z) are taken relative to an origin O such that x is the

distance east from O, y is the distance north and z is the vertical distance

upwards, with one unit equal to 100m.

1
The tunnel starts at point A(2, 3, 5) and runs in the direction ( 1 ).

–0.5
It meets the hillside again at B. At B the side of the hill forms a plane with 

equation x + 5y + 2z = 77.

(i) Write down the equation of the line AB in the form r = u + λt.
(ii) Find the co-ordinates of B.

(iii) Find the angle which AB makes with the upward vertical.

4            7
(iv) An old tunnel through the hill has equation r = ( 1) + μ(15).

2           0

Show that the point P on AB where x = 7q-∑ is directly above a point Q in the

old tunnel. Find the vertical separation PQ of the tunnels at this point.

[MEI]
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24 Point A has co-ordinates (2, –1, 3) and point B has co-ordinates (1, 0, 5).

(i) Write down the equation of the line AB in the form r = a + tu.

Find the point of intersection of AB with the plane x – 2y + 3z – 7 = 0.

(ii) Find the cartesian equation of the plane which passes through the points

(3, 0, 0), (2, 0, 5) and (4, –3, 1).

(iii) Show that, for any value of λ, a point (x, y, z) on the line

x 1 –4( y) = (3) + λ( 7)z 4 6

lies in the plane x – 2y + 3z – 7 = 0 and also in the plane in part (ii).

(iv) Find the angle between the line AB and the line in part (iii), giving your

answer to the nearest degree.

[MEI]

25 ABCD is a parallelogram. The co-ordinates of A, B and D are (–1, 1, 2), 

(1, 2, 0) and (1, 0, 2) respectively.

(i) Find the co-ordinates of C.

(ii) Use a scalar product to find the size of angle BAD.

(iii) Show that the vector i + 2j + 2k is perpendicular to the plane ABCD.

(iv) The diagonals AC and BD intersect at the point E. 

Find a vector equation of the straight line l through E perpendicular to the

plane ABCD.

(v) A point F lies on l and is 3 units from A.

Find the co-ordinates of the two possible positions of F.

[MEI]

26 The position vectors of four points are as follows.

A: i + 2j + 3k
B: 3i + 2j + k
C: 3j
V: i + j – 2k

(i) Find the length of the line VA.

(ii) Show that the vector i + 4j + k is perpendicular to each of the lines AB

and AC.

(iii) Deduce the cartesian equation of the plane ABC.

The line through V perpendicular to the plane ABC meets the plane at D.

(iv) Find a vector equation of the line VD.

Deduce the co-ordinates of D.

(v) Find the angle AVD.

[MEI]
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27 With respect to co-ordinate axes Oxyz, A is the point (2, 0, 0), B is (0, 0, 1)

and C is (3, 1, 3).

(i) Find the vectors CA
→

and CB
→

.

Hence find angle ACB.

(ii) Write down the cartesian equation of the plane p through A with normal

vector i – j + 2k.

Verify that B also lies in this plane.

(iii) Write down the vector equation of the line through C perpendicular to the

plane p.

Find the point of intersection of this line with the plane, and the distance

from C to the plane.

[MEI]

28 With respect to co-ordinate axes Oxyz, A is the point (3, 0, 1), B is (1, 0, 3), 

C is (3, 2, 3) and D is (2, –1, 1).

(i) Show that triangle ABC is equilateral.

(ii) Show that the vector AD
→

can be expressed as λAB
→

+ μAC
→

, where λ and μ

are constants to be determined.

What can you deduce about the points A, B, C and D?

(iii) Verify that the vector n = i – j + k is perpendicular to the plane ABC.

Hence or otherwise find the cartesian equation of the plane ABC.

(iv) Find the angle between the lines AB and DC.

[MEI]

29 In the diagram, ABCDPQ represents a tent, held up by vertical poles OP 

and RQ. 

The axes Ox and Oy are horizontal at ground level, and Oz is vertically

upwards.

V
ec

to
rs

330

C4
11

P(0, 0, 1)

z M

Q(0, 6, 2)

(–1, 6, 0)

y

R

B(1, 6, 0)

A(0.5, 0, 0)

O

x

E

D(–0.5, 0, 0)

C



The co-ordinates of A, B, C, D, P and Q are as shown in the diagram. Lengths

are in metres.

(i) Find the length of PQ.

(ii) Show that the vector n1 = 12i – j + 6k is perpendicular to each of the

lines AP and PQ. 

Hence find that cartesian equation of the plane APQ. 

Verify that the point B lies in this plane.

(iii) The vector n2 = –12i – j + 6k is a normal to the plane DCQP.

Find the angle between the vectors n1 and n2.

Deduce the acute angle in degrees between the planes ABQP and DCQP.

(iv) A rope ME of length 2 metres is stretched from the mid-point M of PQ to

the ground.

Given that the rope is perpendicular to PQ, find the co-ordinates of E.

[MEI]

30 An explorer comes across a hollow pyramid with a square base of side 100m

and with height 100m.

Take the origin to be the middle point of the base and 1 unit to be 1m.

(i) Write down the co-ordinates of the vertices of the pyramid.

(ii) Show that the face BCE has equation 2x + z = 100 and write down the

equations of the other three sloping faces.

The explorer finds that inside the pyramid a rope is hanging from vertex E,

and begins to climb it.

(iii) When he has climbed 20m, he shines his torch directly on to the face

BCE. Find the equation of the line of the torch beam, in vector form, and

hence find how far the explorer is from the face.

(iv) When the explorer has climbed to a height h metres, he is the same

distance from the ground as he is from each of the sloping faces. Show that 

100h = ––––––.
1 + 5
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INVESTIGATION

Magic eye

You may well have seen other pictures like that in figure 11.35. Although it is nothing

more than a collection of marks on a flat sheet of paper, your eyes can be tricked into

seeing it as a three-dimensional object at some distance beyond the page. 

As shown in figure 11.36, the principle is very simple.

V
ec

to
rs

332

C4
11

Figure 11.35



Take the paper as the xy plane, that is the plane z = 0, with the origin at the centre

of the paper and 1 cm to represent 1 unit.

Taking the positions of your eyes to be (4, 0, –30) and (–4, 0, –30), find the

positions on the paper of the two points needed to produce a single image at the

point (2, 6, 45).

Design a simple ‘magic eye’ of your own.

KEY POINTS

1 A vector quantity has magnitude and direction.

2 A scalar quantity has magnitude only.

3 Vectors are typeset in bold, a or OA, or in the form OA
→

. They are

handwritten either in the underlined form a, or as OA
→

.

4 The length (or modulus or magnitude) of the vector a is written

as a or as | a |.

5 Unit vectors in the x, y and z directions are denoted by i, j and k, respectively.
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6 A vector may be specified in

● magnitude–direction form: (r, θ)    (in two dimensions)

x
● component form: x i + y j or (  ) (in two dimensions)

y

x
x i + y j + zk or (y) (in three dimensions).

z

7 The position vector OP
→

of a point P is the vector joining the origin to P.

8 The vector AB
→

is b – a, where a and b are the position vectors of A and B.

9 The vector r often denotes the position vector of a general point.

10 The vector equation of the line through A with direction vector u is given by

r = a + λu.

11 The vector equation of the line through points A and B is given by

r = OA
→

+ λAB
→

= a + λ(b – a)

= (1 – λ)a + λb.

u1
12 The equation of the line through (a1, a2, a3) in the direction (u2) is given by

u3a1 u1
r = (a2) + λ(u2) vector form

a3 u3

x – a1 y – a2 z – a3–––– = –––– = –––– cartesian form.
u1 u2 u3

13 The angle between two vectors, a and b, is given by θ in

a.bcosθ = –––––| a | | b |

where   a.b = a1b1 + a2b2 (in two dimensions)

= a1b1 + a2b2 + a3b3 (in three dimensions).

n1
14 The cartesian equation of a plane perpendicular to the vector n = (n2) is

n3
n1x + n2y + n3z + d = 0.

15 The equation of the plane through the point with position vector a, and

perpendicular to n, is given by (r – a).n = 0.

● The vector equation of the plane through the points A, B and C is

r = OA
→

+ λAB
→

+ μAC
→

.
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Differential equations

The greater our knowledge increases, the more our ignorance unfolds.

John F. Kennedy

Suppose you are in a hurry to go out and want to

drink a cup of hot tea before you go. 

How long will you have to wait until it is cool

enough to drink?

To solve this problem, you would need to know

something about the rate at which liquids cool

at different temperatures. Figure 12.1 shows an

example of the temperature of a liquid plotted

against time.

Notice that the graph is steepest at high temperatures and becomes less steep as

the liquid cools. In other words, the rate of change of temperature is numerically

greatest at high temperatures and gets numerically less as the temperature drops.

The rate of change is always negative since the temperature is decreasing.

If you study physics, you may have come across Newton’s law of cooling: The rate

of cooling of a body is proportional to the temperature of the body above that of

the surrounding air.

dθThe gradient of the temperature graph may be written as ––, where θ is the 
dt
dθtemperature of the liquid, and t is the time. The quantity –– tells us the rate at 
dt

dθwhich the temperature of the liquid is increasing. As the liquid is cooling, –– will 
dt

dθbe negative, so the rate of cooling may be written as –––.
dt
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The temperature of the liquid above that of the surrounding air may be written as

θ – θ0, where θ0 is the temperature of the surrounding air. So Newton’s law of

cooling may be expressed mathematically as:

dθ– –– 
 (θ – θ0)
dt

dθor –– = –k(θ – θ0)
dt

where k is a positive constant.

dθ dy d2y
Any equation, like this one, which involves a derivative, such as ––, –– or ––– , is 

dt dx dx2

known as a differential equation. A differential equation which only involves a 
dy

first derivative such as –– is called a first-order differential equation. One which 
dx d2y

involves a second derivative such as ––– is called a second-order differential
dx2

equation. A third-order differential equation involves a third derivative and so on. 

In this chapter, you will be looking only at first-order differential equations such

as the one above for Newton’s law of cooling.

By the end of this chapter, you will be able to solve problems such as the tea

cooling problem given at the beginning of this chapter, by using first-order

differential equations.

Forming differential equations from rates of change

If you are given sufficient information about the rate of change of a quantity,

such as temperature or velocity, you can work out a differential equation to

model the situation, like the one above for Newton’s law of cooling. It is

important to look carefully at the wording of the problem which you are studying

in order to write an equivalent mathematical statement. For example, if the

altitude of an aircraft is being considered, the phrase ‘the rate of change of height’

might be used. This actually means ‘the rate of change of height with respect to 
dhtime’ and could be written as ––. However, you might be more interested in how
dt

the height of the aircraft changes according to the horizontal distance it has 

travelled. In this case, you would talk about ‘the rate of change of height with
dhrespect to horizontal distance’ and could write this as ––, where x is the horizontal 
dx

distance travelled.

Some of the situations you meet in this chapter involve motion along a straight

line, and so you will need to know the meanings of the associated terms.
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The position of an object (+5 in figure 12.2) is its distance from the origin O in

the direction you have chosen to define as being positive.

The rate of change of position of the object with respect to time is its velocity,

and this can take positive or negative values according to whether the object is

moving away from the origin or towards it.

dsv = ––
dt

The rate of change of an object’s velocity with respect to time is called its

acceleration, a.

dva = ––
dt

Velocity and acceleration are vector quantities but in one-dimensional motion

there is no choice in direction, only in sense (i.e. whether positive or negative).

Consequently, as you may already have noticed, the conventional bold type for

vectors is not used in this chapter.

EXAMPLE 12.1 An object is moving through a liquid so that the rate at which its velocity

decreases is proportional to its velocity at any given instant. When it enters the

liquid, it has a velocity of 5ms–1 and the velocity is decreasing at a rate of 1ms–2.

Find the differential equation to model this situation.

SOLUTION

The rate of change of velocity means the rate of change of velocity with respect to 
dvtime and so can be written as ––. As it is decreasing, the rate of change must be 
dt

negative, so

dv– –– 
 v
dt

dvor –– = –kv
dt

where k is a positive constant.

When the object enters the liquid its velocity is 5ms–1, so v = 5, and the velocity is

decreasing at the rate of 1ms–2, so

dv–– = –1.
dt

Putting this information into the equation gives

–1 = –k × 5 ⇒ k = .

So the situation is modelled by the differential equation

dv v–– = ––.
dt 5

1–
5
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EXAMPLE 12.2 A model is proposed for the temperature gradient within a star, in which the

temperature decreases with respect to the distance from the centre of the star at a

rate which is inversely proportional to the square of the distance from the centre.

Express this model as a differential equation.

SOLUTION

In this example the rate of change of temperature is not with respect to time but

with respect to distance. If θ represents the temperature at a point in the star and

r the distance from the centre of the star, the rate of change of temperature with 

dθrespect to distance may be written as – –– , so 
dr

dθ 1       dθ k– –– 
 –– or –– = – ––
dr r2 dr       r2

where k is a positive constant.

Note

This model must break down near the centre of the star, otherwise it would be

infinitely hot there.

EXAMPLE 12.3 The area A of a square is increasing at a rate proportional to the length of its 
dsside s. The constant of proportionality is k. Find an expression for ––.
dt

SOLUTION

dAThe rate of increase of A with respect to time may be written as –––.
dt

As this is proportional to s, it may be written as

dA––– = ks
dt

where k is a positive constant.

ds dA
You can use the chain rule to write down an expression for –– in terms of –––.

dt dt

ds ds dA–– = ––– × –––
dt dA dt
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dsYou now need an expression for –––. Because A is a square
dA

A = s2

dA⇒ –––= 2s
ds

ds 1⇒ –––= ––.
dA 2s

ds dA dsSubstituting the expressions for ––– and ––– into the expression for ––
dA dt dt

ds 1⇒ –– = –– × ks
dt 2s

ds⇒ ––= q-∑k.
dt

EXERCISE 12A 1 The differential equation

dv–– = 5v2

dt

models the motion of a particle, where v is the velocity of the particle in ms–1

dvand t is the time in seconds. Explain the meaning of –– and what the 
dt

differential equation tells you about the motion of the particle.

2 A spark from a Roman candle is moving in a straight line at a speed which is

inversely proportional to the square of the distance which the spark has

travelled from the candle. Find an expression for the speed (i.e. the rate of

change of distance travelled) of the spark.

3 The rate at which a sunflower increases in height is proportional to the natural

logarithm of the difference between its final height H and its height h at a

particular time. Find a differential equation to model this situation.

4 In a chemical reaction in which substance A is converted into substance B, the

rate of increase of the mass of substance B is inversely proportional to the mass

of substance B present. Find a differential equation to model this situation.

5 After a major advertising campaign, an engineering company finds that its

profits are increasing at a rate proportional to the square root of the profits at

any given time. Find an expression to model this situation.

6 The coefficient of restitution e of a squash ball increases with respect to the

ball’s temperature θ at a rate proportional to the temperature, for typical

playing temperatures. (The coefficient of restitution is a measure of how

elastic, or bouncy, the ball is. Its value lies between zero and one, zero meaning

that the ball is not at all elastic and one meaning that it is perfectly elastic.)

Find a differential equation to model this situation.
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7 A cup of tea cools at a rate proportional to the temperature of the tea above

that of the surrounding air. Initially, the tea is at a temperature of 95°C and is

cooling at a rate of 0.5°Cs–1. The surrounding air is at 15°C. 

Find a differential equation to model this situation.

8 The rate of increase of bacteria is modelled as being proportional to the

number of bacteria at any time during their initial growth phase.

When the bacteria number 2 × 106 they are increasing at a rate of 105 per day.

Find a differential equation to model this situation.

9 The acceleration (i.e. the rate of change of velocity) of a moving object under

a particular force is inversely proportional to the square root of its velocity.

When the speed is 4ms–1 the acceleration is 2ms–2. Find a differential

equation to model this situation.

10 The radius of a circular ink blot is increasing at a rate inversely proportional 
dAto its area A. Find an expression for –––.
dt

11 A poker, 80cm long, has one end in a fire. The temperature of the poker

decreases with respect to the distance from that end at a rate proportional to

that distance. Halfway along the poker, the temperature is decreasing at a rate

of 10°C cm–1. Find a differential equation to model this situation.

12 A conical egg timer, shown in the diagram,

is letting sand through from top to bottom

at a rate of 0.02cm3 s–1.

Find an expression for the rate of change of 

height ( ) of the sand in the top 

of the timer.

13 A spherical balloon is allowed to deflate. The rate at which air is leaving the

balloon is proportional to the volume V of air left in the balloon. When the

radius of the balloon is 15cm, air is leaving at a rate of 8cm3s–1.
dVFind an expression for –––.
dt

14 A tank is shaped as a cuboid with a square base of side 10cm. Water runs out

through a hole in the base at a rate proportional to the square root of the

height, hcm, of water in the tank. At the same time, water is pumped into the 
dhtank at a constant rate of 2cm3 s–1. Find an expression for –– .
dt

dh––
dt
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INVESTIGATION

Figure 12.4 shows the isobars (lines of equal pressure) on a weather map

featuring a storm. The wind direction is almost parallel to the isobars and its

speed is proportional to the pressure gradient.

Draw a line from the point H to the point L. This runs approximately

perpendicular to the isobars. It is suggested that along this line the pressure

gradient (and so the wind speed) may be modelled by the differential equation

dp
–– = –a sinbx
dx

Suggest values for a and b, and comment on the suitability of this model.

Solving differential equations

Finding an expression for f(x) from a differential equation involving derivatives

of f(x) is called solving the equation.

Some differential equations may be solved simply by integration.

EXAMPLE 12.4 Solve the differential equation

dy
–– = 3x2 – 2.
dx

SOLUTION

Integrating gives

y = ∫ (3x2 – 2) dx

y = x3 – 2x + c.
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The general solution of the differential equation

Notice that when you solve a differential equation, you get not just one solution,

but a whole family of solutions, as c can take any value. This is called the general

solution of the differential equation. The family of solutions for the differential

equation in the example above would be translations in the y direction of the

curve y = x3 – 2x. Graphs of members of the family of curves can be found in

figure 12.5 on page 345.

The method of separation of variables 

It is not difficult to solve a differential equation like the one in Example 12.4,

because the right-hand side is a function of x only. So long as the function can be

integrated, the equation can be solved. 

Now look at the differential equation 

dy
–– = xy.
dx

This cannot be solved directly by integration, because the right-hand side is a

function of both x and y. However, as you will see in the next example, you can

solve this and similar differential equations where the right-hand side consists of

a function of x and a function of y multiplied together.

EXAMPLE 12.5 Find, for y � 0, the general solution of the differential equation

dy
–– = xy.
dx

SOLUTION

The equation may be rewritten as

1  dy
–  –– = x
y dx

so that the right-hand side is now a function of x only.

Integrating both sides with respect to x gives

1 dy∫ – –– dx = ∫x dx .
y dx

dy
As –– dx can be written as dy

dx

1∫ – dy = ∫x dx .
y
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Both sides may now be integrated separately.

ln |y | = x2 + c

●? Explain why there is no need to put a constant of integration on both sides

of the equation.

You now need to rearrange the solution above to give y in terms of x . Making

both sides powers of e gives

elny = eq-∑x 2+c

⇒ y = eq-∑x 2+c

⇒ y = eq-∑x 2

ec.

This expression can be simplified by replacing ec with a new constant A.

So y = Aeq-∑x 2.

Note

Usually the first part of this process is carried out in just one step

dy–– = xy
dx

can immediately be rewritten as

1∫ – dy = ∫ x dx.y

This method is called separation of variables. It can be helpful to do this by
dy

thinking of the differential equation as though –– were a fraction, and trying to 
dx

rearrange the equation to obtain all the x terms on one side and all the y terms

on the other. Then just insert an integration sign on each side. Remember that 

dy and dx must both end up on the top line (numerator).

EXAMPLE 12.6 Find the general solution of the differential equation

dy
–– = e–y.
dx

SOLUTION

Separating the variables gives

1∫–– dy = ∫dx
e–y

1–
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⇒ ∫ ey dy = ∫dx.

The right-hand side can be thought of as integrating 1 with respect to x.

ey = x + c

Taking logarithms of both sides gives 

y = ln(x + c).

ln(x + c) is not the same as lnx + c.

EXERCISE 12B 1 Solve the following differential equations by integration.
dy dy

(i) –– = x2 (ii) –– = cosx
dx dx

dy dy
(iii) –– = ex (iv) –– = x

dx dx

2 Find the general solutions of the following differential equations by separating

the variables.
dy dy     x2

(i) –– = xy2 (ii) –– = ––
dx dx    y

dy dy
(iii) –– = y (iv) –– = ex–y

dx dx

dy     y dy
(v) –– = – (vi) –– = x y

dx     x dx
dy dy     x(y2 + 1)

(vii) –– = y2 cosx (viii) –– = –––––––
dx dx     y(x2 + 1)

dy dy x lnx
(ix) –– = xey (x) –– = ––––

dx dx y2

Particular solutions

You have already seen that a differential equation has an infinite number of

different solutions corresponding to different values of the constant of

integration. In Example 12.4, you found that

dy
–– = 3x2 – 2
dx

had a general solution of y = x3 – 2x + c.

Figure 12.5 shows the curves of the solutions corresponding to some different

values of c.
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If you are given some more information, you can find out which of the possible

solutions is the one that matches the situation in question. For example, you

might be told that when x = 1, y = 0. This tells you that the correct solution is the

one with the curve that passes through the point (1, 0). You can use this

information to find out the value of c for this particular solution by substituting

the values x = 1 and y = 0 into the general solution.

y = x3 – 2x + c

0 = 1 – 2 + c

⇒ c = 1

So the solution in this case is y = x3 – 2x + 1. 

This is called the particular solution.

dy
EXAMPLE 12.7 (i) Find the general solution of the differential equation –– = y2.

dx

(ii) Find the particular solution for which y = 1 when x = 0.

SOLUTION

(i) Separating the variables gives ∫ dy = ∫dx

1– – = x + c.
y

1The general solution is y = – ––––.
x + c

1
––
y2
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Figure 12.6 shows the set of solution curves.

(ii) When x = 0, y = 1, which gives

11 = – – ⇒ c = –1.c

So the particular solution is

1 1y = – –––– or y = ––––.
x – 1 1 – x

This is one of the curves illustrated in figure 12.6.

EXAMPLE 12.8 The acceleration of an object is inversely proportional to its velocity at any given

time and the direction of motion is taken to be positive. 

When the velocity is 1ms–1, the acceleration is 3ms–2.

(i) Find a differential equation to model this situation.

(ii) Find the particular solution to this differential equation for which the initial

velocity is 2ms–1.

(iii) In this case, how long does the object take to reach a velocity of 8ms–1?

SOLUTION

dv k
(i) –– = –

dt v

dv dv 3When v = 1, –– = 3 so k = 3, which gives –– = –.
dt dt v
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(ii) Separating the variables:

∫v dv = ∫3 dt

v2= 3t + c.

When t = 0, v = 2 so c = 2, which gives

v2 = 3t + 2

v2 = 6t + 4.

Since the direction of motion is positive

v = 6t + 4.

(iii) When v = 8 64 = 6t + 4

60 = 6t ⇒ t = 10.

The object takes 10 seconds.

The graph of the particular solution is shown in figure 12.7.

Sometimes you will be asked to verify the solution of a differential equation. In

that case you are expected to do two things:

● substitute the solution in the differential equation and show that it works

● show that the solution fits the conditions you have been given.
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EXAMPLE 12.9 Show that sin y = x is a solution of the differential equation

dy 1
–– = ––––––
dx 1– x2

given that y = 0 when x = 0.

SOLUTION

sin y = x

dy⇒ cos y –– = 1
dx

dy 1⇒ –– = ––––
dx cos y

Substituting into the differential equation:

1                          1                1             1L.H.S. –––– R.H.S –––––– = –––––––––– = ––––
cosy 1 – x2 1 – sin2 y cosy

So the solution fits the differential equation.

Substituting x = 0 into the solution siny = x gives siny = 0

and this is satisfied by y = 0.

So the solution also fits the particular conditions.

EXERCISE 12C 1 Find the particular solution of each of the following differential equations.

dy
(i) –– = x2 – 1 y = 2 when x = 3

dx

dy
(ii) –– = x2y y = 1 when x = 0

dx

dy
(iii) –– = xe–y y = 0 when x = 0

dx

dy
(iv) –– = y2 y = 1 when x = 1

dx

dy
(v) –– = x(y + 1) y = 0 when x = 1

dx

dy
(vi) –– = y2 sinx y = 1 when x = 0

dx
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2 A cold liquid at temperature θ°C, where θ < 20, is standing in a warm room.

The temperature of the liquid obeys the differential equation

dθ–– = 2(20 – θ)
dt

where the time t is measured in hours.

(i) Find the general solution of this differential equation.

(ii) Find the particular solution for which θ = 5 when t = 0.

(iii) In this case, how long does the liquid take to reach a temperature of 18°C?

3 A population of rabbits increases so that the number of rabbits N (in

hundreds), after t years is modelled by the differential equation

dN––– = N.
dt

(i) Find the general solution for N in terms of t.

(ii) Find the particular solution for which N = 10 when t = 0.

(iii) What will happen to the number of rabbits when t becomes very large?

Why is this not a realistic model for an actual population of rabbits?

ds
4 An object is moving so that its velocity v (= ––) is inversely proportional to its 

dt
displacement s from a fixed point. 

If its velocity is 1ms–1 when its displacement is 2m, find a differential equation

to model the situation. 

Find the general solution of your differential equation.

1
5 (i) Write –––––– in partial fractions.

y(3 – y)

1
(ii) Find ∫ –––––– dy.

y(3 – y)

(iii) Solve the differential equation

dy
x ––– = y(3 – y)

dx

where x = 2 when y = 2, giving y as a function of x.

[MEI]

6 Given that k is a constant, find the solution of the differential equation

dy
–– + ky = 2k
dt

for which y = 3 when t = 0.

Sketch the graph of y against |kt |, making clear how it behaves for large values

of |kt |.
[MEI]
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7 A colony of bacteria which is initially of size 1500 increases at a rate

proportional to its size so that, after t hours, its population N satisfies the

equation

dN––– = kN.
dt

(i) If the size of the colony increases to 3000 in 20 hours, solve the differential

equation to find N in terms of t.

(ii) What size is the colony when t = 80?

(iii) How long did it take, to the nearest minute, for the population to increase

from 2000 to 3000?

[MEI]

8 (i) Show that

x2 + 1 2
––––– = 1 + ––––– .
x2 – 1 x2 – 1

(ii) Find the partial fractions for

2––––––––––– .
(x – 1)(x + 1)

(iii) Solve the differential equation

dy
(x2 – 1)–– = –(x2 + 1)y (where x � 1)

dx

given that y = 1 when x = 3. Express y as a function of x.

[MEI]

9 A hemispherical bowl of radius a has its axis vertical and is full of water. At

time t = 0 water starts running out of a small hole in the bottom of the bowl

so that the depth of water in the bowl at time t is x. The rate at which the

volume of water is decreasing is proportional to x. Given that the volume of

water in the bowl when the depth is x is π(ax2 – x3), show that there is a

positive constant k such that

dx
π(2ax – x2) –– = –kx.

dt

Given that the bowl is empty after a time T, show that

3πa2
k = ––––.

2T

[MEI]

1–
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10 The square horizontal cross-section of a container has side 2m. Water is

poured in at the constant rate of 0.08m3s–1 and, at the same time, leaks out of a

hole in the base at the rate of 0.12x m3s–1, where x m is the depth of the water

in the container at time ts. So the volume, Vm3, of the water in the container at

time t is given by V = 4x and the rate of change of volume is given by

dV––– = 0.08 – 0.12x.
dt

dxUse these results to find an equation for ––– in terms of x and solve this to 
dt

find x in terms of t if the container is empty initially.

Determine to the nearest 0.1s the time taken for the depth to rise from 0.1 

to 0.5m.

[MEI]

11 To control the pests inside a large greenhouse, 600 ladybirds were introduced.

After t days there are P ladybirds in the greenhouse.

In a simple model, P is assumed to be a continuous variable satisfying the

differential equation

dP–– = kP,  where k is a constant.
dt

(i) Solve the differential equation, with initial condition P = 600 when t = 0,

to express P in terms of k and t.

Observations of the number of ladybirds (estimated to the nearest hundred)

were made as follows.

(ii) Show that P = 1200 when t = 150 implies that k ≈ 0.004 62. 

Show that this is not consistent with the observed value when t = 250.

In a refined model, allowing for seasonal variations, it is assumed that P

satisfies the differential equation

dP–– = P[0.005 – 0.008cos(0.02t)]
dt

with initial condition P = 600 when t = 0.

(iii) Solve this differential equation to express P in terms of t, and comment

on how well this fits with the data given above.

(iv) Show that, according to the refined model, the number of ladybirds will

decrease initially, and find the smallest number of ladybirds in the

greenhouse.

[MEI]
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12 A patch of oil pollution in the sea is approximately circular in shape. When

first seen its radius was 100m and its radius was increasing at a rate of 0.5m

per minute. At a time t minutes later, its radius is r metres. An expert believes

that, if the patch is untreated, its radius will increase at a rate which is 
1proportional to ––.
r2

(i) Write down a differential equation for this situation, using a constant of 

proportionality, k.

(ii) Using the initial conditions, find the value of k. Hence calculate the

expert’s prediction of the radius of the oil patch after 2 hours.

The expert thinks that if the oil patch is treated with chemicals then its radius 
1

will increase at a rate which is proportional to ––––––– .
r2(2 + t)

(iii) Write down a differential equation for this new situation and, using the

same initial conditions as before, find the value of the new constant of

proportionality.

(iv) Calculate the expert’s prediction of the radius of the treated oil patch after

2 hours.

[MEI]

1
13 (i) Express ––––––––––– in partial fractions.

(2 – x)(1 + x)

An industrial process creates a chemical C. At time t hours after the start of

the process the amount of C produced is x kg. The rate at which C is

produced is given by the differential equation

dx–– = k(2 – x)(1 + x)e–t,
dt

where k is a constant.

(ii) When t = 0, x = 0 and the rate of production of C is kg per hour.

Calculate the value of k.

1 + x
(iii) Show that ln(––––) = –e–t + 1 – ln 2, provided that x � 2.

2 – x

(iv) Find, in hours, the time taken to produce 0.5kg of C, giving your answer

correct to 2 decimal places.

(v) Show that there is a finite limit to the amount of C which this process can

produce, however long it runs, and determine the value of this limit.

[MEI]

14 (i) Use integration by parts to evaluate

∫4x cos2x dx.

(ii) Use part (i), together with a suitable expression for cos2x , to show that

∫8x cos2 x dx = 2x2 + 2x sin2x + cos2x + c.
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3
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(iii) Find the solution of the differential equation

dy 8x cos2 x
–– = –––––––
dx y

which satisfies y = 3 when x = 0.

(iv) Show that any point (x , y) on the graph of this solution which satisfies 

sin2x = 1 also lies on one of the lines y = 2x + 1 or y = –2x – 1.

[MEI]

15 A curve C is given by the parametic equations x = t 2, y = 2t.

(i) Find the cartesian equation of the curve.

(ii) Find in terms of t.

Hence, or otherwise, show that = at any point on the curve.

(iii) Another curve D has gradient given by = – . Show that, at any 

point where C and D intersect, the two curves are perpendicular.

(iv) Solve the differential equation = – , and hence find the equation 

of D given that y = 2 when x = 0.

(v) Draw on the same axes a sketch showing the curves C and D.

[MEI]

1
16 (i) Express –––––––– in partial fractions.

(3x – 1)x

A model for the way in which a population of animals in a closed

environment varies with time is given, for P � , by

= (3P 2 – P)sin t

where P is the size of the population in thousands at time t.

(ii) Given that P = when t = 0, use the method of separation of variables to

show that 

3P – 1ln( ––––– ) = (1 – cos t).
P

(iii) Calculate the smallest positive value of t for which P = 1.

(iv) Rearrange the equation at the end of part (ii) to show that

1
P = –––––––––– .

3 – eq-∑(1 – cos t)

Hence find the two values between which the number of animals in the

population oscillates.

[MEI]

1–
2

1–
2

1–
2

dP
––
dt

1–
3

2x
––
y

dy
––
dx

2x
––
y

dy
––
dx

y
––
2x

dy
––
dx

dy
––
dx
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17 (i) Use integration by parts to show that

∫ lnx dx = x lnx – x + c.

(ii) Differentiate ln(sinx) with respect to x , for 0 � x � .

Hence write down ∫cotx dx , for 0 � x � .

(iii) For x � 0 and 0 � y � , the variables y and x are connected by the  

differential equation

dy lnx
–– = ––––,
dx coty

and y = when x = e.

Find the value of y when x = 1, giving your answer correct to 3 significant

figures. 

Use the differential equation to show that this value of y is a stationary

value, and determine its nature.

[MEI]

18 (i) Newton’s law of cooling states that the rate at which an object cools is

proportional to the difference in temperature between the object and its

surroundings.

The temperature, θ°C, of a hot drink, t minutes after it has been poured,

satisfies the differential equation

= –a(θ – b),

where a and b are constants. The temperature of the surroundings of the

drink is 25°C. 

Write down the value of b.

The rate of cooling when θ = 65 is 8°C per minute. Find the value of a.

(ii) The temperature, z°C, of another hot drink, t minutes after being

poured, satisfies the differential equation

= –k(z – 20),

where k is a constant.

dz
––
dt

dθ
––
dt

π–
6

π–
2

π–
2

π–
2
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(a) Solve this differential equation to show that z = A + Be–kt, where A

and B are constants and the value of A is to be found.

(b) Given that z = 80 when t = 0 and that z = 50 when t = 2, find the

values of B and k.

(iii) An object in an industrial oven has temperature T°C at time t, where

T = 1000 + 200esin t

and t is measured in days.

Find a function f(t) and a constant c such that

= f(t)(T – c).

[MEI]

19 The curve C has parametric equations

x = 2cosθ – sinθ + 2, y = cosθ + 2sinθ – 1      (0 � θ � 2π).

(i) Show that the point with parameter θ = 0 has co-ordinates (4, 0).

(ii) Find in terms of θ.

Deduce that x and y satisfy the differential equation

= – .

(iii) Solve this differential equation, using the condition that y = 0 when x = 4.

Hence show that the equation of C may be written in the form

(x – 2)2 + (y + 1)2 = 5.

Describe the curve C.

(iv) Express 2cosθ – sinθ in the form Rcos(θ + α), where R and α are

constants to be determined.

Show also that, for the same values of R and α,

cosθ + 2sinθ = R sin(θ + α).

(v) The equation of C given in part (iii) can also be obtained by eliminating θ
between the parametric equations for x and y. Use the results of part (iv)

to carry out this elimination.

[MEI]

x – 2–––––
y + 1

dy
––
dx

dy
––
dx

dT
––
dt
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20 The population of a city is P millions at time t years. When t = 0, P = 1.

(i) A simple model is given by the differential equation

= kP,

where k is a constant.

(a) Verify that P = Aekt satisfies this differential equation, and show that 

A = 1.

Given that P = 1.24 when t = 1, find k.

(b) Why is this model unsatisfactory in the long term?

(ii) An alternative model is given by the differential equation

4 = P(2 – P).

(a) Express in partial fractions.

(b) Hence, by integration, show that

= eq-∑t.

(c) Express P in terms of t. Verify that, when t = 1, P is approximately 1.24.

(d) According to this model, what happens to the population of the city in

the long term?

[MEI]

21 (i) Express in the form + .

(ii) Hence show that the solution of the differential equation

= ,

given that y = 1 when x = 0, is

y = .

(iii) Find the first three terms of the binomial expansion of .

Hence find a polynomial approximation for y = up to the term

in x5.

[MEI]

1 + x–––––––
1 + x2

1–––––––
1 + x2

1 + x–––––––
1 + x2

y(1 – x)
–––––––––––––
(1 + x)(1 + x2)

dy
––
dx

Bx + C–––––
1 + x2

A–––––
1 + x

1 – x–––––––––––––
(1 + x)(1 + x2)

P
––––
2 – P

4
–––––––
P(2 – P)

dP
––
dt

dP
––
dt
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22 A wind is blowing offshore and so the waves become larger the further from

the shore you travel. At the water’s edge the waves have zero height. 

Three models are considered for the rate of increase in wave height h with

respect to distance s from the shore.

(i) Rate of increase of h with respect to s is proportional to s.

(ii) Rate of increase of h with respect to s is inversely proportional to (s + 5).

(ii) Rate of increase of h with respect to s is proportional to e–cs, where c is a

positive constant.

(a) For each of these models, form and solve a differential equation.

(b) For each model, sketch the graph of h against s.

(c) Discuss which of the models is the most realistic. In particular,

consider the behaviour for large values of s.

INVESTIGATION

Investigate the tea cooling problem introduced on page 335. You will need to

make some assumptions about the initial temperature of the tea and the

temperature of the room.

What difference would it make if you were to add some cold milk to the tea and

then leave it to cool?

Would it be better to allow the tea to cool first before adding the milk?

KEY POINTS

1 A differential equation is an equation involving derivatives such as

dy d2y
–– and –––.
dx dx 2

2 A first-order differential equation involves a first derivative only.

3 Some first-order differential equations may be solved by separating the

variables.

4 A general solution is one in which the constant of integration is left in the

solution, and a particular solution is one in which additional information is

used to calculate the constant of integration.

5 A general solution may be represented by a family of curves, a particular

solution by a particular member of that family.
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Chapter 1

● (Page 2)

c2 = (a + b)2 – 4 × ab

⇒ c2 = a2 + 2ab + b2 – 2ab

⇒ c2 = a2 + b2

Exercise 1A (Page 6)

1 True – direct proof – remove the brackets

2 True – direct proof using the converse of Pythagoras’

theorem

3 True – proof by exhaustion considering the squares

of one-digit numbers

4 True – direct proof – let the numbers be n and n + 1

5 True – proof by contradiction

6 (i) True – direct proof

(ii) True – direct proof

7 (i) True – direct proof

(ii) True – direct proof

8 False, e.g. n = 10

9 (i) True – direct proof

(ii) False, e.g. 1, 2, 3, 4

10 True – direct proof

Chapter 2

●? (Page 8)

= x–1. This means that n = –1 and so n + 1 = 0. You 

cannot divide by zero.

Investigation (Page 8)

(i) 1.099

(ii) 0.693

(iii) 1.792

∫1

3
dx + ∫1

2
dx = ∫1

6
dx

Activity 2.1 (Page 9)
(i)

(ii) ∫a

ab
dx x = az ⇒ dx = adz

converting the limits:

= ∫1

b
× a dz x = a ⇒ z = 1

x = ab ⇒ z = b

= ∫1

b
dz

∫1

b
dz = ∫1

b
dx = L(b)

(iii) L(a) + ∫a

ab
dx = L(ab) ⇒ L(a) + L(b) = L(ab)

Activity 2.2 (Page 10)

(i) L(1) = ∫1

1
dx = 0

(ii) L(a) – L(b) = ∫1

a
dx – ∫1

b
dx

= ∫b

a
dx

Let x = bz

∫b

a
dx = ∫1

a–b dz

= L( )
(iii) L(an) = ∫1

an

dx

Let x = zn then dx = nz n–1 dz.

∫1

a
dx = ∫1

a
× nzn–1 dz

= n ∫1

a
dz

= n L(a)

1–
z

1––
zn

1–
x

1–
x

a–
b

1–
z

1–
x

1–
x

1–
x

1–
x

1–
x

1–
x

1–
x

1–
z

1–
z

1––
az

1–
x

x

y

O 1 a ab

y =
1
x

L(a) 1
x∫

ab
a dx

1–
x

1–
x

1–
x

1–
x

1–
2

Answers



Activity 2.3 (Page 10)
e = 2.72 (2 d.p.)

Exercise 2A (Page 15)

1 x = x0ekt

2 t = ln( )
3 p = 25e–0.02t

4 x = ln( )
5 (i)

(ii) 100

(iii) 1218

(iv) 184 years

6 (i)

(ii) 25°

(iii) 4.1°

(iv) 22

7 (i)

(ii) 621.5 m

(iii) 8.07 am (to the nearest minute)

(iv) Never

8 (i)

(ii) 30 ms–1, 8 ms–1

(iii) 8.33 ms–1

(iv) 8.7 seconds

9 (i) 1 m

(ii) 4.61 m, 6.09 years

(iii) a = e–2 = 0.135, b = 2.5

(iv) 11 years

10 (ii) 54.6 mpg, 40.0 mpg

(iii) 63 mpg, 39.4 mpg

(iv) The first model gives the better results overall.

Chapter 3

●? (Page 21)

(i) (a) One-to-one

(b) One-to-many

(c) Many-to-one

(d) Many-to-many

Exercise 3A (Page 23)

1 (i) One-to-one, yes, equal 

(ii) Many-to-one, yes, not equal  

(iii) Many-to-many, no, equal

(iv) One-to-many, no, equal  

(v) Many-to-many, no, not equal

(vi) One-to-one, yes, not equal 

(vii) Many-to-many, no, equal  

(viii) Many-to-one, yes, not equal

2 (i) (a) Examples: one → 3,

word → 4

(b) Many-to-one

(c) Domain: words, 

co-domain: �+

(ii) (a) Examples: 1 → 4, 2.1 → 8.4

(b) One-to-one

(c) Domain: �+,

co-domain: �+

y – 5
––––
y0 – 5

s0–
s

1–
k
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(iii) (a) Examples: 1 → 1, 6 → 4

(b) Many-to-one

(c) Domain: �
+
,

co-domain: �
+

(iv) (a) Examples: 1 → –3,

–4 → –13

(b) One-to-one

(c) Domain: �, co-domain: �

(v) (a) Examples: 4 → 2, 9 → 3

(b) One-to-one 

(c) Domain: x � 0,

co-domain: x � 0

(vi) (a) Examples: 36π → 3,

π → 1.5

(b) One-to-one  

(c) Domain: �+,

co-domain: �+

(vii) (a) Examples: 12π → 3,

12π → 12

(b) Many-to-many  

(c) Domain: �+,

co-domain: �+

(viii) (a) Examples: 1 → 3 , 

4 → 24 3   

(b) One-to-one 

(c) Domain: �+,

co-domain: �+

(ix) (a) Examples: 4 → 16,

–0.7 → 0.49

(b) Many-to-one

(c) Domain: �,

co-domain: x � 0

3 (i) (a) –5 (b) 9 (c) –11

(ii) (a) 3 (b) 5 (c) 10

(iii) (a) 32 (b) 82.4 (c) 14 (d) –40

4 (i) f(x) � 2

(ii) 0 � f(i) � 1

(iii) y ∈ {2, 3, 6, 11, 18}

(iv) y ∈ �+

(v) �

(vi) { , 1, 2, 4}
(vii) 0 � y � 1

(viii)�

(ix) 0 � f(x) � 1

(x) f(x) � 3

5 For f, every value of x (including x = 3) gives a

unique output, whereas g(2) can equal either 4 or 6.

Activity 3.1 (Page 25)

(i) (a) Vertices at (6, 0), (8, 3) and (10, 0).

(b) Vertices at (3, 0), (5, 3) and (7, 0).

Different

(ii) (a) Vertices at (3, 0), (4, 6) and (5, 0).

(b) Vertices at (3, 0), (4, 6) and (5, 0).

Same

(iii) (a) Vertices at (0, 3), (2, 6) and (4, 3).

(b) Vertices at (0, 3), (2, 6) and (4, 3).

Same

(iv) (a) Vertices at (0, 6), (1, 12) and (2, 6).

(b) Vertices at (0, 3), (1, 9) and (2, 3).

Different

(v) (a) Vertices at (0, 0), (2, 9) and (4, 0).

(b) Vertices at (0, 0), (2, 9) and (4, 0).

Same

● (Page 27)

You can prove it by reference to the graph which has a

minimum at (−a, b) and so never crosses the x axis.

Alternatively you can prove it algebraically. 

(x + a)2 = −b

⇒ (x + a) = ± −b

but there is no real value of −b.

1–
2

3–
2

9–
2
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Exercise 3B (Page 28)

1 (i) Translation ( ) ; x = 0

(ii) Stretch parallel to the y axis of s.f. 3; x = 0

(iii) Translation ( ); x = 2

(iv) Stretch parallel to the y axis of s.f. 3 and 

translation ( ) in either order; x = 2

(v) Translation ( ) then stretch s.f. parallel to the 

x axis; x =

(vi) y = (x – 2)2 – 4; translation ( ); x = 2

(vii) y = 2[(x + 1)2 – 1 ]:

translation ( ); then stretch parallel to y axis

of s.f. 2; x = –1

(viii) y = 3[(x – 1)2 – ]:

translation ( ); then stretch parallel to y axis

of s.f. 3; x = 1 

2 (i) (a) Translation ( )
(b)

(ii) (a) Translation ( )
(b)

(iii) (a) Stretch parallel to the y axis, s.f. 2; then 

translation ( )
(b)

(iv) (a) Stretch parallel to the x axis, s.f. ; then 

translation ( )
(b)

(v) (a) Translation ( ); then stretch parallel to the 

y axis, s.f. 3

(b)

3 (i)

(ii) y

O 6 x

(3, 4  )
1
2

y

O 2 8 x

(5, 9)

y

O x–2

–12

2

2
0

y

O x
(–1, –1)

3

0
3

1–
2

–2

y

O x

3

(–2, –5)

0
3

y

2 xO

–4

–2

2
0

y

O x

(–2, 3)

7

0
7

5–
3

1
–

5–
3

1–
2

–1
–1

1–
2

2
–4

2–
3

1–
3

2
0

2
0

2
0

0
–2
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(iii)

4 (i)

(ii)

(iii)

(iv)

(v)

(vi)

5 (i) Stretch s.f. in the x direction and stretch s.f. 3 

in the y direction

(ii) Stretch s.f. 3 in the x direction and translation 

( )
(iii) Translation ( ) followed by stretch s.f. in 

the x direction

6 (i) (a) f(x) = 3 sin x

g(x) = sin 2x

h(x) = 2 sin

(b) (A) y = sin x + 2

(B) y = sin(x – 90°)

(c) 180°

(ii) (a) b – c � F(x) � b + c

(b) (30°, 0), (150°, 0)

0
180º 360º

3c
2

c

c
2

c
2

–

x–
2

1–
2

–30
0

0
–1

1–
2

0

1

y

x
–1 1 2

0
1

1

y

x
2 3 4 5 6

0
1

1

y

x

2

3

2

0
1

1

x
2 3

2

y

0
–2

1

x
–1

y

0

1

x
1

y

y

O 1 7 x

(4, 18)
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Activity 3.2 (Page 30)

(i)

y = –x2 gives a reflection in the x axis.

(ii)

y = –sin x could be a reflection in the x axis or a

translation ( ).

(iii)

y = –(x3 – 6x2 + 11x – 6) could be a reflection in the 

x axis or a reflection in the line x = 2.

The only option in common is a reflection in the x axis.

Activity 3.3 (Page 31)

(i)

y = (–x)2 seems unchanged but could be a reflection 

in the y axis.

(ii)

y = sin(–x) could be a reflection in the y axis or a 

reflection in the x axis.

(iii)

y = (–x)3 – 6(–x)2 + 11(–x) – 6 is a reflection in the 

y axis.

The only option in common is a reflection in the y axis.

Exercise 3C (Page 34)

1 (i) Stretch parallel to y axis of s.f. 2, and reflection in 

x axis, either order; x = 0 

(ii) Reflection in x axis then translation ( ); x = 0

(iii) y = –(x – 1)2: translation ( ), and reflection in 

x axis, either order; x = 1

1
0

0
4

x

y

0

y = x3 – 6x2 + 11x – 6

1 2 3–3 –2 –1

y = (–x)3– 6(–x)2 + 11(–x) – 6

x

y

0

y = sinx

180°

360°

–1

1
y = sin(–x)

x

y

O

y = x2 = (–x)2

x

y

0

y = x3 – 6x2 + 11x – 6

1 2 3

y = –(x3 – 6x2 + 11x – 6)

180°
0

x

y

0

y = sinx

180°

360°

–1

1
y = –sinx

x

y

O

y = x2

y = –x2
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2 (i) (a)

(b) y = cos x

(ii) (a)

(b) y = –tan x

(iii) (a)

(b) y = sin x

(iv) (a)

(b) y = –tan x

(v) (a)

(b) y = –sin x

3 (i) a = 3, b = 5

(ii) Translation ( )

(iii) y = 6x – x2 – 14

4 (i)

(ii) (a)

(b)

(c)

5 a = 2, b = 1, c = 3; (–1, 3)

6 + = 1

7 (i) y = f(x + 2) 

(ii) y = –f(x)

(iii) y = f ( )
(iv) y = f(x) – 3

(v) y = f(–x) (or y = 2 – f(x))

(vi) y = f(x)3–
2

x–2

y2
––
4

x2
––
9

3
5
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8 (i) (–1, 5); y = 2

(ii) a = –3, b = 5

(iii)

(iv) y = 3x 2 + 6x +2; (–1, –1)

9 (i)

(ii)

(iii)

●? (Page 39)

(i) (a) Function with an inverse function.

(b) f: C → C + 32

f–1: F → (F – 32)

(ii) (a) Function but no inverse function since one 

grade corresponds to several marks.

(iii) (a) Function with an inverse function.

(b) 1 light year ≈ 6 × 1012 miles or almost 1016 metres.

f: x → 1016x (approx.)

f –1: x → 10 –16x (approx.)

(iv) (a) Function but no inverse function since fares 

are banded.

Activity 3.4 (Page 41)

(i)

f(x) = x2; f –1(x) = x

(ii)

f(x) = 2x ; f –1(x) = x

(iii)

f(x) = x + 2; f –1(x) = x – 2

(iv)

f(x) = x3 + 2; f–1(x) = 
3

x – 2

y = f(x) and y = f –1(x) appear to be reflections of each

other in y = x.

x

y

y = f –1(x)

y = f(x)

O 2

2

x

y

y = f –1(x)

y = f(x)

O 2

2

1–
2

x

y

y = f –1(x)

y = f(x)

O

x

y

y = f –1(x)

y = f(x)

O

5–
9

9–
5

(–1, 1)

x

y

O

2
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●? (Page 45)

(i) Sometimes it depends on the number of significant 

figures in the original number and in the calculator 

memory. For example:

123 → 15 129 → 123 but 

123.456789 12 → 15241.578 77 → 123.4567891 

on some calculators.

Also –2 → 4 → 2 since a calculator will give the 

positive root.

(ii) sin 199° = –0.325… .

arcsin(–0.325…) = –19° since this is the solution in 

the range of the inverse function.

● (Page 46)

sec θ = 0.5 ⇔ cos θ = 2

(i)

so there is no solution for 0 � θ �

(ii) cos θ continues to oscillate between +1 and −1 so

there is no solution for any value of θ.

Exercise 3D (Page 47)

1 (i) 8x3

(ii) 2x3

(iii) (x + 2)3

(iv) x3 + 2

(v) 8(x + 2)3

(vi) 2(x3 + 2)

(vii) 4x

(viii) [(x + 2)3 + 2]3

(ix) x + 4

2 (i) f–1(x) = 

(ii) f–1(x) = 4 – x

(iii) f–1(x) = 

(iv) f–1(x) = x + 3, x � –3

3 (i), (ii)

4 (i) fg

(ii) g2

(iii) fg2

(iv) gf

5 (i) f(x) not defined for x = 4; 

h(x) not defined for x � 2

(ii) f–1(x) = ; 

h–1(x) = 2 – x2, x � 0

(iii) g(x) is not one-to-one.

(iv) Suitable domain: x � 0

(v) No: fg(x) = , not defined

for x = ± 2; gf(x) = ( )2
,

not  defined for x = 4.

6 (i) x

(ii)

(iii)

(iv)

7 (i) a = 3

(ii)

(iii) f(x) � 3

(iv) Function f is not one-to-one when domain is �.

Inverse  exists for function with domain x � –2.

8 f–1: x → 3 , x ∈ �.

The graphs are reflections of each other in the 

line y = x.

x – 3––––
4

1–
x

1–
x

1–
x

3––––
x – 4

3–––––
x2 – 4

4x + 3–––––
x

2x – 4–––––
x

x – 7––––
2

π–
2

y = cosθ

0 π
2

1

y

θ

366

A
n

sw
er

s



9 (i) a = 2, b = –5

(ii) Translation ( )

(iii) y � –5

(iv) c = –2

(v)

10 (i) P(c, 0); Q( , 0); R(0, ); S(0, a)

(ii) x =

(iii) a = 3; b = 4; c = 3

(iv) a = 3; b = 2; c = 1

11 (i) x = 5.35

(ii) c = 3, d = 4

(iii) g = 4, h = 2

● (Page 51)

f(x) = x2 – 2x ⇔ f(−x) = (−x)2 − 2(−x)

= x2 + 2x

f(x) ≠ f(−x) so f(x) is not even.

−f(x) = −(x2 – 2x) = −x2 + 2x

f(−x) ≠ −f(x) so f(x) is not odd.

Exercise 3E (Page 53)

1 (i) Even 

(ii) Odd

(iii) Neither

(iv) Neither

(v) Odd

(vi) Even

2 (i) Even

(ii) Odd, periodic; π

(iii) None

(iv) Odd

(v) Periodic; 2π

(vi) Odd, periodic; π

3 (i)

(ii) Half the period of sin x

(iii) (a) 90°

(b) 120°

(c) 720°

4

5

(i) f(x) = x + 1

(ii) f(x) = 3 – x

6

7 (i) (a) 2

(b) f(x) = x + 1 for –1 � x � 0;

f(x) = 1 – x for 0 � x � 1

(ii) (a) A1(0, 1); B1( , 0); C1(1, 1); D1(1 , 0)
(b) A2(–3, 1); B2(–2, 0); C2(–1, 1); D2(0, 0).

1–
2

1–
2

2–
3

cy – b–––––
y – a

b–c
b–a

x

y

O

y = g(x)

y = x

y = g–1(x)

(–2, –5)

(–5, –2)

x

y

(–2, –5)

O

y = g(x)

–2
–5
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8

9 (i) f(x) � 18; Range of g(x) = �;

g(x) is one-to-one; g–1(x)=

(ii) gf(x) = 2x2 + 35;

fg(x) = 4x2 – 4x + 19

(iii) x = 4 or –2

(iv)

(v)

(vi)

●? (Page 57)

g(3) = 3, g(−3) = 3

| 3 + 3 | = 6, | 3 − 3 | = 0, | 3 | + | 3 | = 6, | 3 | + | −3 | = 6

●? (Page 58)

| x | � 2 and x � 0 ⇒ 0 � x � 2

| x | � 2 and x � 0 ⇒ −2 � x � 0

Exercise 3F   (Page 59)

1 (i) −8 � x � 2

(ii) 0 � x � 4

(iii) x � −1 or x � 11

(iv) x � −3 or x � 1

(v) −2 � x � 5

(vi) − � x � 2

2 (i) | x – 1 | � 2

(ii) | x – 5 | � 3

(iii) | x – 1 | � 3

(iv) | x – 2.5 | � 3.5

(v) | x – 10 | � 0.1

(vi) | x – 4 | � 3.5

3 (i)

(ii)

(iii)

(iv)

O

1

x

y

O

(–2, 2)

x

y

–4

O 1.5

3

x

y

O–2

2

x

y

2–
3

x

y

0–1–2–3–4 1 2 3 4

–1

1

2

–2

y = h(x)1
2

x

y

0–1–2–3–4 1 2 3 4

–1

1

2

–2

y = h( x)1
2

x

y

0–1–2–3–4 1 2 3 4

–1

1

2

–2

y = h(x)

x + 1–––––
2
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(v)

(vi)

Activity 3.5 (Page 60)

1

(i) one

(ii) two

(iii)

(iv) Increase x max. to 15

Decrease y min. to –300

2

(i) one

(ii) three

(iii)

(iv) x min.: –0.4 x max.: 0.4
y min.: 0.9 y max.: 1.1

3

(i) x = 5

Investigation (page 61)

f(x) = 0 ⇔ has an asymptote and f(x) has an 

asymptote ⇔ = 0

f(x) = 1 ⇔ = 1 and f(x) = −1 ⇔ = −1

| f(x) | < 1 ⇔ > 1

Chapter 4

●? (Page 63)

is the rate of change of the volume with respect to the

height of the sand.

is the rate of change of the height of the sand with

respect to time.

× is the rate of change of the volume with respect

to time.

● (Page 65)

y = (x2 – 2)4

= (x2)4 + 4(x2)3(–2) + 6(x2)2(–2)2 + 4(x2)(–2)3 + (–2)4

= x8 – 8x6 + 24x4 – 32x2 + 16

= 8x7 – 48x5 + 96x3 – 64x

= 8x(x6 – 6x4 + 12x2 – 8)

= 8x(x2 – 2)(x4 – 4x2 + 4)

= 8x(x2 – 2)(x2 – 2)2

= 8x(x2 – 2)3

dy––
dx

dh––
dt

dV––
dh

dh––
dt

dV––
dh

1––––––
| f(x) |

1–––
f(x)

1–––
f(x)

1––––
f(x)

1––––
f(x)

10

y

x2O

10

y

x2O

10

y

x2O

O

5

x

y

(2, 3)

O

(–2  , –4)

1

x

y

1
2

1
2

1
2

–4 –
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Exercise 4A (Page 67)

1 (i) 3(x + 2)2

(ii) 8(2x + 3)3

(iii) 6x(x 2 – 5)2

(iv) 15x 2(x 3 + 4)4

(v) –3(3x + 2)–2

(vi)

(vii) 3x(x 2 – 1)q-∑

(viii) 3( + x )
2

(1 – )
(ix) ( x – 1)3

2 (i) 9(3x – 5)2

(ii) y = 9x – 17

3 (i) 8(2x – 1)3

(ii) ( , 0), minimum

(iii)

4 (i) 6x(x 2 – 4)2

(ii) (0, –64), minimum; 

(–2, 0) point of inflection; 

(2, 0), point of inflection.

(iii)

5 (i) 4(2x – 1)(x2 – x – 2)3

(ii) (–1, 0), minimum; 

( , ), maximum; 

(2, 0), minimum

(iii)

6 4 cm2 s –1

7 –0.015 Ns –1

8 m2 day –1 (= 0.314 m2 day–1 to 3 s.f.)

9 (i) 3x(3x – 2)(x3 – x2 + 2)2

(ii) = 0 when x = –1 and when x = 0. 

When x � –1 (e.g. –1.1) �0;

when –1 � x � 0 (e.g. –0.5) � 0

⇒ point of inflection at x = –1.

When x is just greater than 0 (e.g. 0.1)

� 0 ⇒ maximum point at x = 0.

(iii) a =

(iv) Gradient at (1, 8) is 12; y = 12x – 4.

10 km

Activity 4.1 (Page 72)

y = where u = x10 and v = x7

gives      = 10x 9 and      = 7x6.

Using the quotient rule, 

v – u
= ––––––––

v2

=

= = 3x 2

y = = = x3 ⇒ = 3x 2.
dy
––
dx

x10
––
x7

u
–
v

10x16 – 7x16
––––––––

x14

x7 × 10x9 – x10 × 7x6
––––––––––––––––

x14

dy
––
dx

dv––
dx

du––
dx

dv
––
dx

du
––
dx

u–
v

1–
8

2–
3

dy
––
dx

dy
––
dx

dy
––
dx

dy
––
dx

π––
10

6561––––
256

1–
2

1–
2

2–––
x

1––
x2

1–
x

–6x––––––––
(x2 – 3)4
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Exercise 4B (Page 73)

1 (i) x(5x3 – 3x + 6)

(ii) x4(21x2 + 24x – 35) 

(iii) 2x(6x + 1)(2x + 1)3

(iv) –

(v)

(vi) 2(2x + 1)(12x2 + 3x – 8)

(vii)

(viii)

(ix)

2 (i) – (ii) –1; y = –x

(iii) –1; y = – x + 4 

(iv) The two tangents are parallel.

3 (i) 3x(x – 2)

(ii) (0, 4), maximum; (2, 0), minimum

(iii)

4 (i) – (ii) 4y + x = 12

(iii) y = x – 3

(iv) ≠ 0 for any value of x

5 (i) 3(4x + 1)(x + 1)2(2x – 1)2

(ii) x = –1, point of inflection; 

x = – , minimum; 

x = , point of inflection

(iii) P(–1, 0); Q(– , – ); R( , 0)

6 (i)

(ii)

(iii) (4, 8)

(iv) Tangent: y = 8; normal: x = 4 

(v) (a) Q( , 8)
(b) R(4, 29)

7 (i)

(ii) (–1, –2); (–2, –3) 

(iii) (–1, –2), minimum; (–2, –3), maximum

8 (i) ; (0, 0) and (–1, –1)

(ii) (0, 0) minimum; (–1, –1) maximum

9 (i) = 2y

(ii) y = ± (x – 4)

(iii) = ±

(v) x � 4

10 (i) 0; 2; 1.6

(ii) (1, 2)

(iii) f(x) → 0

(iv)

(v)

11 (i) P(−1, 0); Q(1, 0); R(0, 1); f(x) → −1

(ii) The y axis is the line of symmetry of the graph.

(iii) For any value a, f´(a) and f´(−a) have the same 

magnitude and opposite signs.

(iv) (– , ); ( , ); points of inflection
1
–
2

1
––

3
1
–
2

1
––

3

y (1, 2)

(–1, –2)

x

f(x)

(1, 2)

1–
2

1
––––––
2(x – 4)

dy
––
dx

1–
2

dx
––
dy

2x(x + 1)–––––––––
(2x + 1)2

2(x + 1)(x + 2)––––––––––––––
(2x + 3)2

37––
4

1–
4

x – 2–––––––––
( x – 1)2

1–
2

729–––
512

1–
4

1–
2

1–
4

dy
––
dx

1–––––––
(x – 4)2

1–––––––
(x – 1)2

3x – 1––––––––
2 x – 1

7 – x––––––
(x + 3)3

2(1 + 6x – 2x2)––––––––––––
(2x2 + 1)2

x2(x2 + 3)––––––––
(x2 + 1)2

2––––––––
(3x – 1)2
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12 (i)      

(iii) ; 3; gradient = ∞

Activity 4.2 (Page 77)

1 = 3x2

2 x =
3

y ⇒ = y – =

3 = = 

4 × = 1 or =   
1

––

5 y = 2x : = 2, = ;

y = x2: = 2x, = 

y = x4: = 4x3, = 

6 As for 4.

● (Page 78)

= and = 2; No

Exercise 4C (Page 80)

1 (i) 0.16 cm min–1

2 (i)

(ii)

(iii) 26;

3 cm s–1

4 (i) 3.2π (�10.5) cm3 s–1

(ii) 0.8 cm s–1

5 (i) x = 0, 2

(iii)

(iv) &

6 (i) (a)

(b)

(c)

x

y

O

–1 1 2

y = f (x + 2)

y = f (x)

–2

x

y

O

–1 1 2

y = f (–x) y = f (x)

–2

x

y

O

–1 1 2

–1

y = 2f(x)

y = f (x)

4––
13

2
3

2O x

y

9.5 y = x2(4 – x)

2–
3

1––
3π

1––
26

g–1(x)

g(x)

x

y

y

x
O

–1–2

dx
––
dy

1–
2

dy
––
dx

1
–––
4x3

dx
––
dy

dy
––
dx

1
––
2x

dx
––
dy

dy
––
dx

1–
2

dx
––
dy

dy
––
dx

dy
––
dx

dx
––
dy

dx
––
dy

dy
––
dx

1
–––
3x22–

3

1
–––––
3(x3)

dx
––
dy

2–
3

1
–––
3y

2–
31–

3
dx
––
dy

dy
––
dx

3–
2

3 2––––
2
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(ii) Not one-to-one

(iii)

(iv) 15;

Activity 4.3 (Page 82)

(i) z = xp ⇒ = pxp–1

z = yq ⇒ = qyq–1

(ii) = ×

= × pxp–1

= × pxp–1

= × pxp–1

= xp–1 × x–p+

= x –1

● (Page 82)

Direct argument

● (Page 83)

(f(x)) is a polynomial of order (n – 1) so it has no term

in xn.

●? (Page 85)

y = ln(3x) is a translation of y = ln(x) through ( ).
The curves have the same shape.

Exercise 4D (Page 86)

1 (i) (ii)

(iii) (iv)

(v) –

(vi) 1 + ln x

(vii) x(1 + 2 ln(4x))

(viii) –

(ix)

(x)

2 (i) 3ex

(ii) 2e2x

(iii) 2xex2

(iv) 2(x + 1)e(x +1)2

(v) e4x(1 + 4x)

(vi) 2x 2e–x(3 – x)

(vii)

(viii) 6e2x (e2x + 1)2

3 (i) 0.108e0.9t

(ii) 0.108 mh–1; 0.266 mh–1; 0.653 mh–1; 1.61 mh–1

4 (i) = (1 + x)ex;

= (2 + x)ex

(ii) (–1, – )
5 (i) Rotation symmetry, centre (0, 0) of order 2. f(x)

is an odd function since f (–x) = –f(x).

(ii) f ´(x) = 2 + ln(x2); f ´´(x) = 

(iii) (– , ), maximum; ( , – ), minimum.

6 (i)

(ii) (l, e), minimum

(iii)

7 (i) y = lnx ⇒ = ; 

y = x lnx ⇒ = 1 + lnx
dy
––
dx

1–
x

dy
––
dx

ex(x – 1)–––––––
x2

2–
e

1–
e

2–
e

1–
e

2–
x

1–
e

d2y
–––
dx2

dy
––
dx

1 – x––––
ex

1 – 2 ln x––––––––
x3

x–––––
x2 – 1 

1–––––––
x(x + 1) 

1–
x

2x–––––
x2 + 1

2–
x

1–
x

3–
x

0
3

d
––
dx

p
–q

p
–
q

p
–q

p
–
q

p
–q

1
––––
qxp–

p
–q

1
––––––
q(x )q–1

1
––––
qyq–1

dz
––
dx

dy
––
dz

dy
––
dx

dz
––
dy

dz
––
dx

1––
15

1

1

2

2

y = g(x)

y = g–1(x)

O

y

x

y = x
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8 (i) (1 – x)e–x

(ii) (1, )

9 (i) (a) = Akekt; A = 3, k = 2

(b) t = ln 2

(c) Increases without bound.

(ii) (a) = 3(a – 2bt)e(at – bt2); a = 2; b = 0.1

(b) Reduces to zero.

10 (i) ln m = –bt + ln a

(ii) a = 20; b = 0.4

(iii) t = 19.0

(iv) –0.3pe–0.3t – 0.2qe–0.2t

(v) p = 6, q = 11

11 (ii) f ´(x) = 1 – lnx; f ´́ (x) = –

(iii) (e, e)

(iv) g(x) � e

(v) g(x) is a one-to-one function. 

gradient = –0.5

12 (i) (1, e2)

(ii) (a) Translation ( ); (2, e2)

(b) Reflection in the y axis; (−1, e2)

(c) Stretch, scale factor parallel to the x axis;

( , e2)
(iii) k = e−2

13 (i) 1

(ii) f´(x) = ; f ´́ (x) = 

(iii) ; −

14 (i) A(− 3, 0); C(0, −3); D( 3, 0)

(iii) B(−1, −2e); E(3, 6e−3)

(iv)

Activity 4.4 (Page 91)

When y = sin x the graph of against x looks like the

graph of cos x.

●? (Page 92)

No. You can see this if you sketch both on a graphic

calculator.

● (Page 92)

This is a demonstration but ‘looking like’ is not the same

as proof. 

Activity 4.5 (Page 93)

y = tan x =

=

= = 
1

–––––
cos2 x

cos2 x + sin2 x
–––––––––––

cos2 x

cos x(cos x) – sin x(–sin x)
––––––––––––––––––––

cos2 x
dy
––
dx

sin x
––––
cos x

dy
dx

1

–2π –π π 2π0

–1

y

1

–2π –π π 2π0

–1

x

x

y = cosx

dy
––
dx

dy
dx

–2π –π π 2π0

–1

1

x

A

B

C

DO

E

x

y

1–
e3

1–
e

2 ln x – 3–––––––
x3

1 – ln x––––––
x2

1–
2

1–
2

1
0

O x

y

g(x)

g–1(x)

(e, e)

1–
x

dP
––
dt

dP
––
dt

1–
e
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Exercise 4E (Page 95)

1 (i) –2 sin x + cos x

(ii)

(iii) cos x + sin x

2 (i) + tan x

(ii) cos2 x – sin2 x

(iii) ex(sin x + cos x)

3 (i) x cos x – sin x
–––––––––––

x2

(ii) ex(cos x + sin x)
––––––––––––

cos2 x

sin x(l – sin x) – cos x(x + cos x)
(iii) ––––––––––––––––––––––––

sin2 x

4 (i)

(ii) –2sin x cos x

(iii)

sin x
5 (i) – –––––––

2 cosx

(ii) ex(tan x + )
(iii) 8x cos 4x2

(iv) –2 sin 2xecos2x

1
(v) –––––––

1 + cos x

1
(vi) –––––––––

sin x cos x

6 (i) cos x – x sin x

(ii) –1

(iii) y = –x

(iv) y = x – 2π

7 (i) 3 cos x sin2 x

(ii) (–π, 0) point of inflection, (– π, –1) min, 

(0, 0) point of inflection, ( π, 1) max, 

(π, 0) point of inflection

(iv)

8 = ex cos 3x – 3ex sin 3x

= –6ex sin 3x – 8ex cos 3x

9 (i) e–x(cos x – sin x)

(iii) (0.79, 0.32), (–2.4, –7.5)

(iv) Differentiate with respect to x again and 

evaluate the second derivative at the stationary 

points.

●? (Page 98)

(i) Interchange x and y to reflect in the line y = x.

(ii) The mapping is one-to-many.

Exercise 4F (Page 101)

1 (i) 4y3

(ii) 2x + 3y2

(iii) x + y + 1 + 

(iv) –sin y

(v) e(y + 2)

(vi) y3 + 3xy2

(vii) 4xy 5 + 10x2y4

(viii) 1 + 

(ix) xey + ey + sin y

(x) + 2x ln y

(xi) esiny + x cosy esiny

(xii) tan y + – (tan x) –
y

––––––
cos2 x

dy
––
dx

dy
––
dx

x––––––
cos2 y

dy
––
dx

dy
––
dx

x2
–
y

dy
––
dx

dy
––
dx

dy
––
dx

1
–
y

dy
––
dx

dy
––
dx

dy
––
dx

dy
––
dx

dy
––
dx

dy
––
dx

dy
––
dx

dy
––
dx

d2y
–––
dx2

dy
––
dx

1

y

00

–1

–π π x

y = sin3x

1–
2

1–
2

1––––––
cos2 x

1–––––
tan x

2x–––––––––––
cos2 (x2 +1)

x––––––
cos2 x

1––––––
cos2 x
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2

3 0

4 (i) 0

(ii) y = –1

5 (1, –2) and (–1, 2)
y + 4

6 (i) –––––
6 – x

(ii) x – 2y – 11 = 0

(iii) (2, –4 )
(iv)

Asymptotes x = 6, y = –4

7 (i) ln y = x ln x

(ii) = 1 + ln x

(iii) (0.368, 0.692)

(iv)

8 (ii) Max (4, 8), min (–4, –8)

Chapter 5

●? (Page 103)

It is the same as

∫1

4
x dx .

●? (Page 105)

Yes: Using the chain rule 

= × .

Integrating both sides with respect to x

y = ∫( × )dx = ∫( )du.

Activity 5.1 (Page 107)

(x – 2)t-∑ + (x – 2)e-∑ + c

= (x – 2)e-∑ [3(x – 2) + 10] + c

= (3x + 4)(x – 2)e-∑ + c

Exercise 5A (Page 107)

1 (i) (x + 1)4 + c

(ii) (2x – 1)e-∑ + c

(iii) (x3 + 1)8 + c

(iv) (x 2 + 1)6 + c

(v) (x3 – 2)5 + c

(vi) (2x 2 – 5)e-∑ + c

(vii) (2x + 1)e-∑(3x – 1) + c

(viii) (x + 9)q-∑(x – 18) + c

2 (i) 205

(ii) 928 000 

(iii) 5

(iv) 30

(v) 222 000  

(vi) 586

(vii) 18.1

3 (i) 4

(ii) –4; the graph has rotational symmetry about (2, 0).

4 (i) 5.2

(ii) 1.6

(iii) 6.8

(iv) Because region B is below the x axis, so the 

integral for this part is negative.

5 (i) 4

(ii) 2

(iii) 22

(iv) 1

6 (i) A(–1, 0): x � –1

1–
9

1–
2

2–
3

1–
3

2–
3

1––
15

1–
6

1–
5

1–
6

1–
8

2–
3

1–
4

2––
15

2––
15

4–
3

2–
5

dy
––
du

du
––
dx

dy
––
du

du
––
dx

dy
––
du

dy
––
dx

y

x1

1

dy
––
dx

1
–
y

6

4

y

x0

1–
2

1–
5
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7 (i) (a) + c

(b) 2

(ii) (2 2 – 1) � 0.609

8 Area = 2( 2 – 1) � 0.828

9 (i) 14(2x – 1)6

(ii) x =

(iii) square units

(iv)

10 (i) (a) 8 x – + c

(b) 2(1 + x2)e-∑ + c

(ii) k = 2, a = 1, b = 2; 32.5

Activity 5.2 (Page 113)

1 The areas of the two shaded regions are equal since 

y = is an odd function.

● (Page 114)

The denominator will contain a function of x that can

take the value zero.

x2 – 2x + 3 = (x – 1)2 + 2 so is defined for all values of x

and is always greater than or equal to 2.

Exercise 5B (Page 114)

1 (i) 3 ln⏐x⏐+ c

(ii) ln⏐x⏐+ c

(iii) ln⏐x – 5⏐+ c

(iv) ln⏐2x – 9⏐+ c

(v) ln⏐x2 + 1⏐+ c

(vi) ln⏐3x2 + 9x – 1⏐+ c

2 (i) e3x + c (ii) – e–4x + c

(iii) –3e
–Â-́ + c (iv) 4ex3 + c

(v) – + c (vi) ex – 2e–2x + c

3 (i) 2(e8 – 1) = 5960 (ii) ln = 1.69

(iii) 0.018 (iv) 4.70

(v) 0.906 (vi) ln = 0.585  

4 (i) (e – 1)

(ii) (e4 – 1)

(iii) (e + e4) – 1 = 27.7 (to 3 s.f.)

5 (i) (1 – 2x2)e–x2

(ii)

(iii) 0.294

6 0.490; 0.314 

7 (i) P(2, 4); Q(–2, –4)

(ii) 8.77; 14.2 (to 3 s.f.)

8 (i) (1 – e–X 2
)

(ii) 0.3161; 0.4908; 0.4999; 0.5000

(iii)

9 (i) –(x + 2)e–x

(ii) (–2, e2)

(iii) –e2; max. at x = –2

(v) 3 – 

10 (i) (2x – 3)t-∑ + (2x – 3)e-∑ + c

(ii) ; 2 x ln x + c

(iii) (a) –2xe–x 2

(b) 3x2e–x 6

11 (i) (a) ln 3

(b) 9 + x2 + c

(ii) (b) ( , ) and ( – , – )
(c) 0.074

12 (i)

(ii) ln( ) � 1.434

(iii) ln( ) � 1.434
e2 + 1––––––

2

e2 + 1––––––
2

1
–––

2e
1

–––
2

1
–––

2e
1

–––
2

1–
2

ln x + 2––––––
2 x

1–
5

4–
e

1–
2

1–
2

1
–––

2

1–
2

1–
2

1–
2

29––
9

1–
2

49––
9

2–––
e5x

1–
4

1–
3

1–
3

1–
2

1–
4

1–
x

3–––
2x2

1––
60

1––
72

1––
16

1–
3

2–
5

(1 + x)4
–––––––

4
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(iv) The same. The substitution e x = t 2 transforms 

the integral in part (ii) into that in part (iii).

13 (ii) ln 2

(iii) – ln 2

(iv) translation ( )
(v) – ln 2

14 (i) (a) –4xe–2x2

(b) e–2x2 – 4x 2e–2x2

(ii) (1 – e–2k2)

(iii) Max. at (0.5, 0.303)

15 (i) 4; 5 ln 5 – 4

(ii) (a) Reflection in y = x

(b) Stretch scale factor 3 

parallel to y axis

(iv) (a) 3(5 ln 5 – 4)

(b) 4 ln 3 + 5 ln 5 – 4

16 (i) 101 m

(ii) = –0.4e–0.08x; –0.4

(iii) 49.88 units2

(iv) 40.24 units2; 480 000 m3(2 s.f.)

17 (i)

(ii) (–1, – ) and (1, )

(iii) ln⏐x 2 + 1⏐+ c

(iv) 22 026

18 (i) (0, ); y = 1

(ii) ;

(iii) ln ( )
(iv) Rotation symmetry, order 2, centre (0, )

19 (i) Rotation symmetry, order 2, centre (0, 0)

(ii) (1, ); (–1, – )

(iii) ln2

20 (i)

(ii) (– , – )

Investigation (Page 122)

a0 = 1

a1 = 1

a2 =

a3 =

a4 =

e = 2.718 281 83 (8 d.p.)

Investigation (Page 122)

Scheme B: R = 2.594

Scheme C: R = 2.653

1000 instalments: R = 2.717

104 instalments: R = 2.718

106 instalments: R agrees with the value of e to 5 d.p.

Exercise 5C (Page 125)

1 (i) –cos x – 2 sin x + c

(ii) 3 sin x – 2 cos x + c

(iii) –5 cos x + 4 sin x + c

2 (i) sin 3x + c

(ii) cos(1 – x) + c

(iii) – cos4 x + c

(iv) ln | 2 – cos x | + c

(v) –ln | cos x | + c

(vi) – (cos 2x + 1)3 + c

3 (i) –cos(x2) + c

(ii) esin x + c

(iii) tan2 x + c

(iv) + c

4 (i) 1

(ii)

(iii) 1

(iv) e – 1

(v) ln 2 

1––
16

–1––––
sin x

1–
2

1–
6

1–
4

1–
3

1––
4!

1––
3!

1––
2!

1–
8

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2

1 + e––––
2

1–
4

ex
––––––
(1 + ex)2

1–
2

1–
2

1–
2

1–
2

1 – x2
––––––––
(x2 + 1)2

dy
––
dx

1–
4

1–
2

–1
0

1–
2

1–
2
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5 (i)

(ii)

Activity 5.3 (Page 126)

(i) (a) (x cos x) = –x sin x + cos x

(b) ⇒ x cos x = ∫–x sin x dx + ∫cos x dx

⇒ ∫x sin x dx = –x cos x + ∫cos x dx

(c) ⇒ ∫x sin x dx = –x cos x + sin x + c

(ii) (a) (xe2x) = x × 2e2x + e2x

(b) ⇒ xe2x = ∫2xe2x dx + ∫e2x dx

⇒ ∫2xe2x dx = xe2x – ∫e2x dx

(c) ⇒ ∫2xe2x dx = xe2x – e2x + c

●? (Page 126)

Each of the integrals in Activity 5.3 is of the form

∫x dx and is found by starting with the product xv.

Exercise 5D (Page 130)

1 (i) (a) u = x , = ex

(b) xex – ex + c

(ii) (a) u = x , = cos 3x

(b) x sin 3x + cos 3x + c

(iii) (a) u = 2x + 1, = cos x

(b) (2x + 1)sin x + 2 cos x + c

(iv) (a) u = x , = e–2x

(b) – xe–2x – e–2x + c

(v) (a) u = x, = e–x

(b) –xe–x – e–x + c

(vi) (a) u = x, = sin 2x

(b) – x cos 2x + sin 2x + c

2 (i) x 4 ln x – x4 + c

(ii) xe3x – e3x + c

(iii) x sin 2x + cos 2x + c

(iv) x3 ln 2x – x3 + c

3 (1 + x)e-∑(3x – 2) + c

4 (x – 2)5(5x + 2) + c

5 (i) x ln x – x + c

(ii) x ln 3x – x + c

(iii) x ln px – x + c

6 x2ex – 2xex + 2ex + c

7 (2 – x)2 sin x – 2(2 – x)cos x – 2 sin x + c

Exercise 5E (Page 133)

1 (i) e3 +

(ii) –2

(iii) 2e2

(iv) 3 ln 2 – 1

(v)

(vi) & ln 4 – 7 

2 (i) (2, 0), (0, 2)

(ii)

(iii) e–2 + 1

20

2

y

x

y = (2 – x)e–x

64––
3

π–
4

1–
9

2–
9

1––
15

2––
15

1–
9

1–
3

1–
2

1–
3

1––
16

1–
4

1–
4

1–
2

dv
––
dx

dv
––
dx

1–
4

1–
2

dv
––
dx

dv
––
dx

1–
9

1–
3

dv
––
dx

dv
––
dx

dv
––
dx

1–
2

d
––
dx

d
––
dx

8–
3

y

2

0

–2

π 2π 3π 4π x

y = sinx (cosx – 1)2
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3 (i)

(ii) π

4 5 ln 5 – 4

5 1

6 – so area = square units 

7 x = 0.5; area = 0.134 square units

8 The curve is below the trapezia.

9 I3 = 6 – 16e–1

Chapter 6

●? (Page 135)

(i), (ii) and (iv) can be solved algebraically; 

(iii) and (v) cannot.

●? (Page 137)

0.012 takes 5 steps

0.385 takes 18 steps

0.989 takes 28 steps.

In general 0.abc takes (a + b + c + 2) steps.

Activity 6.1 (Page 138)

For 1 d.p., an interval length of � 0.05 is usually

necessary, requiring n = 5. However, it depends on the

position of the end points of the interval.

For example, the interval [0.25, 0.3125] obtained in 

4 steps gives 0.3 (1 d.p.) but the interval [0.3125, 0.375]

obtained in 4 steps is inconclusive. As are the interval

[0.34375, 0.375] obtained in 5 steps, the interval 

[0.34375, 0.359375] obtained in 6 steps, the interval 

[0.34375, 0.351 562 5] obtained in 7 steps, etc.

In cases like this, 2 and 3 d.p. accuracy is obtained very

quickly after 1 d.p. 

The expected number of steps for 2 d.p., requiring an

interval of length � 0.005, is 8 steps.

Activity 6.2 (Page 140)

Consider the case when a � b, f(a) � 0, f(b) � 0.

AB has gradient 

and equation 

y – f(a) = ( )[x – a].

This crosses the x axis at (x1, 0)

⇒ –f(a) = ( )[x1 – a]

⇒ –bf(a) + af(a) = [f(b) – f(a)]x1 – af(b) + af(a)

⇒ af(b) – bf(a) = [f(b) – f(a)]x1 or x1 = .

Exercise 6A (Page 142)

1 1.62, 1.28

2 (i) [–2, –1]; [1, 2]; [4, 5]

(ii)

(iii) –1.51, 1.24, 4.26

(iv) a = –1.511 718 75, n = 8

a = 1.244 384 766, n = 12

a = 4.262 695 313, n = 10

3 (i) [1, 2]; [4, 5]

(ii) 1.857, 4.536

4 (ii)

(iii) 1.154

bf(a) – af(b)––––––––––––
f(a) – f(b)

f(b) – f(a)––––––––––
b – a

B

A

x1

(b, f (b))

(a, f (a))

f(b) – f(a)––––––––––
b – a

f(b) – f(a)––––––––––
b – a

4––
15

4––
15

0

y

x

y = xsinx

π
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5 (i) 2

(ii) [0, 1]; [1, 2]

(iii) 0.62, 1.51

6 (i)

(ii) 2 roots 

(iii) 2, –1.690

7 –1.88, 0.35, 1.53 

8 (i) (a)

(b) No root

(c) Convergence to a non-existent root

(ii) (a)

(b) x = 0

(c) Success

(iii) (a)

(b) x = 0 

(c) Failure to find root

Investigation (Page 143)

(i) Converges to 0.7391 (to 4 d.p.) 

since cos 0.7391 = 0.7391 (to 4 d.p.).

(ii) Converges to 1.

x < x for x > 1, x > x for x < 1 and 1 = 1

(iii) Converges to 1.6180 (to 4 d.p.) since this is the

solution of x = x + 1 (i.e. the positive solution of 

x2 – x – 1 = 0).

●? (Page 145)

Writing x5 – 5x + 3 = 0 

as x5 – 4x + 3 = x

gives g(x) = x5 – 4x + 3 

Generalising this to 

x5 + (n – 5)x + 3 = nx

gives g(x) = 

and indicates that infinitely many rearrangements are

possible.

Activity 6.3 (Page 148)

x0 = –2 gives divergence to –∞

x0 = –1 gives convergence to 0.618

x0 = 1 gives convergence to 0.618

x0 = 2 gives divergence to +∞.

● (Page 148)

Bounds for the root have now been established.

21–1–2
O

x

y

0.618

x5 + (n – 5)x + 3––––––––––––––––
n

x

y

O

1

x

y

O

x

y

O
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Between x = –1 and x = 1,
–1 � gradient � 1.

x = –1,
gradient = 1.

Gradient is
just greater

than zero here.

At this root
gradient � 1
so the root is

not found.

At this root
gradient � 1
so the root is

not found.

At this root
–1� gradient � 1

so the root is found.

x = 1,
gradient = 1.



Exercise 6B (Page 149)

1 (ii)

(iii) 1.521

2 (iii) 2.120

3 (iii) x =
3

3 – x

(iv) 1.2134

4 (ii) 1.503

5 (i)

(ii) Only one point of intersection

(iii) g(x) = ln(x2 + 2) is possible.

(iv) 1.319

6 (i)

(ii) 0.747

7 (i)

(ii) 0.739 09

Activity 6.4 (Page 150)

(i)

y = ln x and y = sin x

only intersect at A.

ln x – sin x = 0

x = 2: ln 2 – sin 2 � 0

x = 3: ln 3 – sin 3 � 0

⇒ root in [2, 3]

Examples of rearrangements:

(a) (ii) Rearranging as x = esinx

(iii) Gradient of y = esinx is � –1 near the root so the 

iteration diverges.

(b) (ii) Rearranging as x = arcsin (ln x)

(iii) Graph of y = arcsin (lnx) does not intersect y = x

(c) (ii) Rearranging as x = ln x – sin x + x

(iii) Gradient of y = ln x – sin x + x is � 1 near 

the root so the iteration diverges.

(d) (ii) Rearranging as x = x(sin x – ln x + x)

(iii) Converges to x = 2.219107149.

Investigation (Page 151)

The first tangent is parallel to the x axis, so you cannot

proceed.

Exercise 6C (Page 152)

1 (i)

(ii) –2.355

(iii) Eventually converges to –2.355  

2 (i) f(0) = 1; f(1) = –5 

(ii) 0.54

(iii) The process involves division by zero.

1–1–2 O x

y

y =      – x + 2x3

3

O

y

x

1

y = sinx

x

y

O

y = lnx

A

2ππ1

0–1–2 21 x

y
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3 (i) Sign changes in the intervals 

[–1, 0], [0, 1], [3, 4]

(ii) –0.46; faster convergence with x0 = –1

0.91; needs x0 = 1 rather than x0 = 0

3.73; faster convergence with x0 = 4

(iii) f(0) = 1; f´(0) = 1

4 (i) Sign changes in [1, 2] and [4, 5]

(ii) 1.86, 4.54

5 0.567

6 (i) Sign changes in [–2, –1], [0, 1] and [1, 2]

(ii) 1.8019, 0.4450, –1.2470 

(iii) No, e.g. –0.5 → 1.8019

7 (i) Sign changes in [–1, 0], [0, 1] and [2, 3]

(ii) –0.532, 0.653

(iii) 2.879 385 241 57  

(iv) After a slow start (7 steps to give 1 d.p. 

accuracy) convergence is suddenly very rapid.

8 (i) 1

(ii)

(iii) 1.202

(iv) 1.202 achieved in 3 steps.

Investigation (Page 153)

1 x1 = –1; f´(x1) = 0 so the iterations cannot proceed.

x1 = –1.5; x2 < –2 which is outside the domain 

of f(x) so the iterations cannot proceed.

x1 = –1.8 is a suitable starting point.

2 x1 = 1; divergent

x1 = 1.2; divergent

x1 = 1.4; divergent

x1 = 1.6; converges to 2.105 (the larger root)

x1 = 1.8; converges to 1.895 (the root required)

x1 = 2; f´(x1) = 0 so the iterations cannot proceed.

So x1 = 1.8 is a suitable starting point.

Chapter 7

Investigation (Page 156)

1.01, 1.02, 1.03

1 + x ≈ 1 + x or x ≈ (1 + x)

k =

0.20

● (Page 158)

(1 + x) = 3 but substituting x = 8 into the expansion

gives successive approximations of 1, 5, –3, 29, –131, …

and these are getting further from 3 rather than closer 

to it.

Investigation (Page 159)

−0.19 � x � 0.60

−0.08 � x � 0.07

Activity 7.1 (Page 160)

For |x | � 1 the sum of the geometric series is which

is the same as (1 + x)–1.

Investigation (Page 161)

(1 – x)−3 = 1 + 3x + 6x2 + 10x3 …

The coefficients of x are the triangular numbers. 

●? (Page 162)

101 = 100 × 1.01

= 10 1.01

= 10(1 + 0.01)

( )(– )
= 10[1 + (0.01) + –––––– (0.01)2 + …]

2!
= 10.050 (3 d.p.)

●? (Page 164)

x – 1 is only defined for x � 1.

A possible rearrangement is x(1 – ) = x (1 – )q-∑.

Since x � 1 ⇒ 0 � � 1 the binomial expansion

could be used but the resulting expansion would not be a

series of positive powers of x .

1–
x

1–
x

1–
x

1–
2

1–
2

1–
2

1–
2

1–––––
1 + x

1–
2

1–
2

1–
2

1–
2
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Exercise 7A (Page 164)

1 (i) (a) 1 – 2x + 3x2

(b) |x | � 1

(c) 0.43%

(ii) (a) 1 – 2x + 4x2

(b) |x | �

(c) 0.8%

(iii) (a) 1 – – 

(b) |x | � 1

(c) 0.0000063%

(iv) (a) 1 + 4x + 8x2

(b) |x | �

(c) 1.3%

(v) (a) – + 

(b) |x | � 3

(c) 0.0037%

(vi) (a) 2 – – 

(b) |x | � 4

(c) 0.000 95%

(vii) (a) – – – 

(b) |x | � 3

(c) 0.0088%

(viii) (a) – + 

(b) |x | �

(c) 0.013%

(ix) (a) 1 + 6x + 20x2

(b) |x | �

(c) 4%

(x) (a) 1 + 2x2 + 2x4

(b) |x | � 1

(c) 0.00020%

(xi) (a) 1 + – 

(b) |x | �

(c) 0.000048%

(xii) (a) 1 – 3x + 7x2

(b) |x | �

(c) 1.64%

2 (i) 1 + 3x + 3x2 + x3

(ii) 1 + 4x + 10x2 + 20x3 for |x | � 1

(iii) a = 25, b = 63

3 (i) 16 – 32x + 24x2 – 8x3 + x4

(ii) 1 – 6x + 24x2 – 80x3 for |x | �

(iii) a = –128, b = 600

4 (i) 1 + x + x2 + x3 for |x | � 1

(ii) 1 – 4x + 12x2 – 32x3 for |x | �

(iii) 1 – 3x + 9x2 – 23x3 for |x | �

5 (ii) 1 + + for |x | � 4

(iii) 1 + + 

6 (i) 1 – y + y 2 – y 3 …

(ii) 1 – + – 

(iv) – + – 

(v) x � –2 or x � 2; –2 � x � 2;

no overlap in range of validity.

7 (ii) 1 + x + + for |x | �

(iii) 0.005 16     

Exercise 7B (Page 168)

2a2
1 –––

3b3

1
2 ––

9y

x + 3
3 ––––

x – 6

x + 3
4 ––––

x + 1

2x – 5
5 –––––

2x + 5

3(a + 4)
6 –––––––

20

x(2x + 3)
7 ––––––––

(x + 1)

2
8 ––––––

5(p – 2)

a – b
9 –––––

2a – b

(x + 4)(x – 1)
10 –––––––––––

x(x + 3)

1–
2

5x3
–––

2
3x2
–––

2

x4
––
16

x3
––
8

x2
––
4

x–
2

8––
x3

4––
x2

2–
x

19x2
––––
128

9x––
8

3x2
–––
128

x–
8

1–
2

1–
2

1–
2

1–
2

1
–––

2

4x4
–––
9

2x2
–––
3

1–
2

4–
3

27x2
––––
256

3x–––
16

1–
2

5x2
–––
27

5x–––
9

2–
3

17x2
––––
64

7x–––
4

x2
––
27

x–
9

1–
3

1–
2

x4
––
8

x2
––
2

1–
2
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9
11 –––

20x

x – 3
12 ––––

12

a2 + 1
13 –––––

a2 – 1

5x – 13
14 –––––––––––

(x – 3)(x – 2)

2
15 ––––––––––––

(x + 2)(x – 2)

2p2

16 –––––––––––––
(p2 – 1)(p2 + 1)

a2 – a + 2
17 ––––––––––––

(a + 1)(a2 + 1)

–2(y2 + 4y + 8)
18 ––––––––––––

(y + 2)2(y + 4)

x2 + x + 1
19 –––––––––

x + 1  

(3b + 1)
20 – –––––––

(b + 1)2

13x – 5
21 ––––––––––––

6(x – 1)(x + 1)

4(3 – x)
22 –––––––

5(x + 2)2

3a – 4
23 ––––––––––––

(a + 2)(2a – 3)

3x2 – 4
24 ––––––––––––

x(x – 2)(x + 2)

Exercise 7C (Page 171)

1 (i) 84

(ii) 4

(iii) –2

(iv) 5.24 or 0.76

(v) 3 or 

(vi) 0 or 3

(vii) 1.71 or 0.29

(viii) –

(ix) –1.25 or 4

(x) –1.52 or 0.57

2

3 (i) – = 4

(ii) n = 6

600
4 (i) –––

x

600
(ii) ––––

x – 1

(iii) x2 – x – 600 = 0, x = 25 

270   270
5 (i) ––– , –––––

x x – 10

(ii) x2 – 10x – 9000 = 0, x = 100

(iii) Arrive 1 pm

6 (i) True for all values of x

(ii) x =

(iii) x = – or x = 5

7 Cost = £16, 16 staff left

8 12 thick slices

9 (i) 1.714 ohms

(ii) 4 ohms

(iii) Equivalent to half

● (Page 173)

This is an example of proof by contradiction. 

Assuming that the equation can be solved leads to 

the contradiction 1 = 0.

●? (Page 175)

The identity is true for all values of x. Once a particular

value of x is substituted you have an equation. Equating

constant terms is equivalent to substituting x = 0.

Exercise 7D (Page 176)

1 (i) –

(ii) –

(iii) –

(iv) –

(v) +

(vi) –

(vii) –

(viii) +

(ix) –
2––
x

5––––––––
(2x – 1)

2––––––––
5(x + 1)

3––––––––
5(x – 4)

3––––––––
(3x – 1)

1–––––––
(x – 1)

2–
x

2–––––––
(x – 2)

1––––––––
(2x – 1)

1–––––––
(x + 1)

1–––––––
(x + 2)

2–––––––
(x – 1)

2–––––––
(x – 1)

2–––––––
(x – 4)

1–––––––
(x + 1)

1–
x

1–––––––
(x + 3)

1–––––––
(x – 2)

1–
5

1–
2

156––––
n

210–––––
n + 1

6––
11

1–
9

1–
3
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(x) –

(xi) +

(xii) –

Exercise 7E (Page 178)

1 (i) – – 

(ii) –

(iii) – + 

(iv) +

(v) +

Can be taken further using surds.

(vi) – – 

(vii) –

Can be taken further using surds.

(viii) +

(ix) – – 

2 A = 1, B = 0, C = 1

3 A = 1, B = 0, C = –4

Investigation (Page 180)

The binomial expansion is 

1 – x + 3x2.

The expansion is valid when |x | � .

Which method is preferred is a matter of personal

preference for (a) and (b) but for (c) must be (iii).

Exercise 7F (Page 180)

1 (i) 4 + 20x + 72x2

(ii) –4 – 10x – 16x2

(iii) + + 

(iv) – – – 

2 (i) –

(ii) 1 + 2x + 4x2 … a = 1, b = 2, c = 4, for |x | �

(iii) – + for |x | � 2

(iv) – – – ; 0.505%

3 (i) 2 + x – x2

–

(ii) |x | < 1

4 (i) –

(ii) 0, 1

(iii) +

Chapter 8

●? (Page 183)

Possible answers are:

Bridge: wavelength 50–100 m; amplitute 15–30 m

Ripple: wavelength 0.02–0.05 m; amplitude 0.005–0.01 m

Bridge: a = 15–30; b = – (about 0.06–0.13)

Ripple: a = 0.005–0.01; b = 125–300

Exercise 8A (Page 186)

1 (i) 90°

(ii) 60°, 300°

(iii) 14.0°, 194.0°

(iv) 109.5°, 250.5°

(v) 135°, 315°

(vi) 210°, 330°

2 (i) –1

(ii)

(iii)

(iv)

(v) 0

(vi) – 2

3 (i) B = 60°, C = 30°

(ii) 3

4 (i) L = 45°, N = 45°

(ii) 2, 2, 1

5 (ii) 14.0°

–2–––
3

–2–––
3

–2–––
3

π––
25

π––
50

8x2
––––

3
4x–––
3

1–
2

9–––––––
(3 – x)

1–––––––
(1 – x)

1–––––––
(1 + x)

2–––––––
(2 – x)

67x2
––––

8
13x––––

4
7–
2

x2
––
8

x–
4

1–
2

1–
2

3–––––––
(x + 2)

2––––––––
(2x – 1)

x2
––
8

5x–––
16

1–
8

33x 2
–––––

8
11x––––

4
5–
2

1–
2

3––
x

4––––––––
(2x – 1)2

8––––––––
(2x – 1)

1–––––––
(x + 1)

1–––––––––
(2x2 + 1)

3–
x

10x–––––––––
(3x2 – 1)

3––––––––
(2x + 1)

1––
x2

2––
x

2–––––
x + 2

5 – 2x––––––-––
(2x2 – 3)

6 – 5x–––––––––
8(x2 + 4)

5––––––––
8(x – 2)

1–––––––
(x + 2)

1–––––––
(x – 1)

1––––––––
(x – 1)2

2x––––––––
(x2 + 1)

4–––––––
(2x – 1)

2––––––––
(1 – x)2

3–––––––
(1 – x)

9––––––––
(1 – 3x)

11––––––––––
24(3x + 2)

19––––––––––
24(3x – 2)

9–––––––––
13(x + 4)

8––––––––––
13(2x – 5)

1–––––––
(x + 2)

2––––––––
(2x – 3)
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6 (i) 0 � α � 90°

(ii) No, for each of the second, third and fourth 

quadrants a different function is positive.

(iii) No, the graphs of all three of the functions 

do not intersect at a single point.

7 (i) 0°, 180°, 360°

(ii) 45°, 225°

(iii) 60°, 300°

(iv) 54.7, 125.3°, 234.7°, 305.3°

(v) 18.4°, 71.6°, 198.4°, 251.6°

(vi) 45°, 135°, 225°, 315°

Activity 8.1 (Page 187)
y = sin(θ + 60°) is obtained from y = sin θ by a

–60°translation ( ).
0

y = cos(θ – 60°) is obtained from y = sin θ by a
60°translation ( ).
0

It appears that the i co-ordinate of A is midway between
the two maxima (30°, 1) and (60°, 1).

Checking: θ = 45° → sin(θ + 60°) = 0.966
cos(θ – 60°) = 0.966.

If 60° is replaced by 35°, using the trace function on a
graphic calculator would enable the solutions to be found.

● (Page 187)
Area of a triangle = base × height. The definitons of sine
and cosine in a right-angled triangle.

Activity 8.2 (Page 188)

(i) sin(θ + z) = sin θ cosz + cos θ sinz

⇒ sin[(90° – θ) +z] = sin(90° – θ)cosz+ cos(90° – θ)sinz

⇒ sin[90° – (θ – z)] = cos θ cosz + sin θ sinz

⇒ cos(θ – z) = cos θ cosz + sin θ sinz

(ii) ⇒ cos[θ – (–z)] = cos θ cos(–z) + sin θ sin(–z)

cos(θ + z) = cos θ cosz – sin θ sinz

sin(θ + z)
(iii) tan(θ + z) = ––––––––––

cos(θ + z)

sin θ cosz + cos θ sinz
= ––––––––––––––––––––

cos θ cosz – sin θ sinz

sin θ cosz cos θ sinz
––––––––– + –––––––––
cos θ cosz cos θ cosz

= ––––––––––––––––––––
cos θ cosz sin θ sinz
––––––––– – –––––––––
cos θ cosz cos θ cosz

tani + tanz= ––––––––––––
1 – tani tanz

tan θ + tan(–z)
(iv) tan[i + (–z)] = ––––––––––––––

1 – tan θ tan(–z)

tan θ – tanz
tan(i – z) = –––––––––––––

1 + tan θ tanz

● (Page 189)

3 + 
No. In part (iii) you get tan 90° = ––––––––––.

1 – 3 ×

Neither tan 90° nor is defined. For the result to be 

valid you must exclude the case when θ + z = 90°
(or 270°, 450°, ...). 

Similarly in part (iv) you must exclude θ – z = 90° , 270°,
etc.

Exercise 8B (Page 190)
3         1

1 (i) –––– + ––––
2 2     2 2 

1(ii) – –––
2

3  – 1
(iii) –––––––

3  + 1

3  + 1
(iv) –––––––

3  – 1

12 (i) ––– (sin θ + cos θ)
2

(ii) ( 3 cos θ + sin θ)

(iii) ( 3 cos θ – sin θ)

1(iv) ––– (cos 2θ – sin 2θ)
2

tan θ + 1(v) –––––––
1 – tan θ

tan θ – 1(vi) –––––––
1 + tan θ

1–
2

1–
2

1––––
1 – 1 

1––
3

1––
3

1–
2

θ

y

0

1

180° 360°

A

y = sin(θ + 60°)

y = cos(θ – 60°)

387

C
h

ap
ter 8



3 (i) sin θ

(ii) cos 4z

(iii) 0

(iv) cos 2θ

4 (i) 15°

(ii) 157.5°

(iii) 0° or 180°

(iv) 111.7°

(v) 165°

5 (i)

(ii) 2.79 radians

6 (i)

(ii) sin β = , cos β =

7 (i) x sin kx + cos kx + c

(ii) cos 2x – cos 8x

8 (ii) α =

(iii) p = , q =

A ≈ 0.058 66 (5 d.p.)

A = 0.058 30 (5 d.p.)

● (Page 192)

For sin 2θ and cos 2θ, substituting θ = 45° is helpful. 

You know that sin 45° = cos 45° = and that sin 90° = 1 

and cos 90° = 0.

For tan 2θ you cannot use θ = 45°. Take θ = 30° instead;

tan 30° = and tan 60° = 3.

No, checking like this is not the same as proof.

Exercise 8C (Page 196)

1 (i) 14.5°, 90°, 165.5°, 270°

(ii) 0°, 35.3°, 144.7°, 180°, 215.3°, 324.7°, 360°

(iii) 90°, 210°, 330°

(iv) 30°, 150°, 210°, 330°

(v) 0°, 138.6°, 221.4°, 360°

2 (i) –π, 0, π

(ii) –π, 0, π

(iii) , 0, 

(iv) , , , 

(v) , , , , , , , 

3 3 sin θ – 4 sin3 θ, θ = 0, , , π, , , 2π

4 51°, 309°

5 cot θ

tan θ(3 – tan2 θ)
6 ––––––––––––––––

1 – 3 tan2 θ

8 (ii) 63.4°

9 (i)

(iii) x = or    x =

● (Page 197)

Either give a counter-example, for example α = β = 45° so

sinα + sinβ = but sin(α + β) = sin 90° = 1 and ≠ 1.

Or deduce the correct result, as given in the working that

follows in the text. Notice that you would have to prove

that the correct result is not the same as sin(α + β).

Activity 8.3 (Page 198)

cos(θ + z) = cos θ cosz – sin θ sinz �1

cos(θ – z) = cos θ cosz + sin θ sinz. �2

Adding �1 and �2

cos(θ + z) + cos(θ – z) = 2 cos θ cosz

Let θ + z = α; θ – z = β;

α + β α – β⇒ cosα + cosβ = 2 cos(–––––)cos(––––)2             2

2
–––

2
2

–––
2

5π––
6

π–
6

2

–2

–4

0 π 2π x

y

y = cos2x

y = 3sinx – 1

7π––
4

5π––
4

3π––
4

π–
4

3π––
4

5π––
12

π–
4

π––
12

–π––
4

–7π–––
12

–3π–––
4

–11π––––
12

3π––
4

π–
4

–π––
4

–3π–––
4

2π––
3

–2π–––
3

1
–––

3

1
–––

2

3–––
2

1–
2

5π––
12

1––
k2

1–
k

4–
5

3–
5

1
–––

5

π–
8
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Similarly, subtracting �2 from �1

⇒ cos(θ + z) – cos(θ – z) = –2 sinθ sinz

α + β α – β⇒ cos α – cos β = –2 sin(–––––)sin(–––––)2                 2

Investigation (Page 198)

In tune:

x1 + x2 = 2a sin(ωt + ) cos

= a´ sin(ωt + )
which is a single wave.

Out of tune:

x1 + x2 = 2a sin(ω + )t cos

Most piano tuners use a tuning fork to give them a

perfect note. They compare the note from the piano with

it. If the piano note is nearly right but not exactly, you

can hear beats. When the piano note is exactly right there

are no beats. 

Exercise 8D (Page 200)

1 (i) 2 cos 3θ sin θ

(ii) 2 cos 3θ cos 2θ

(iii) –2 sin 5θ sin 2θ

(iv) cos θ

(v) 2 sin 3θ

2 2 cos 3θ cos θ

20°, 90°, 100°, 140°

tan 4θ
3 ––––––

tanθ

4 0, , , π, , , 2π

5 cos(θ + 43°)

Exercise 8E (Page 204)

1 (i) 2 cos(θ – 45°)

(ii) 5 cos(θ – 53.1°)

(iii) 2 cos(θ – 60°)

(iv) 3 cos(θ – 41.8°)

2 (i) 2 cos(θ + )
(ii) 2 cos(θ + )

3 (i) 5 sin(θ + 63.4°)

(ii) 5 sin(θ + 53.1°)

4 (i) 2 sin(θ – )
(ii) 2 sin(θ – )

5 (i) 2 cos(θ – (–60°))

(ii) 4 cos(θ – (–45°))

(iii) 2 cos(θ – 30°)

(iv) 13 cos(θ – 22.6°)

(v) 2 cos(θ – 150°)

(vi) 2 cos(θ – 135°)

6 (i) 13 cos(θ + 67.4°)

(ii) Max 13, min –13
(iii)

(iv) 4.7°, 220.5°

7 (i) 2 3 sin(θ – )
(ii) Max 2 3, θ = ; min –2 3, θ =

(iii)

(iv) , ππ–
3

5π––
3

2π––
3

π–
6

π–
6

π–
4

π–
6

π–
4

7π––
4

5π––
4

3π––
4

π–
4

δt––
2

δ–
2

ε–
2

ε–
2

ε–
2
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8 (i) 13 sin(2θ + 56.3°)

(ii) Max 13, θ = 16.8°; min – 13, θ = 106.8°

(iii)

(iv) 53.8°, 159.9°, 233.8°, 339.9°

9 (i) 3 cos(θ – 54.7°)

(ii) Max 3, θ = 54.7°; min – 3, θ = 234.7°

(iii)

1                                           1
(iv) Max –––––– , θ = 234.7°; min –––––– , θ = 54.7°

3 – 3                                3 + 3

10 (ii) 30.6° or 82.0°

11 (i) cos x cos α – sin x sin α

(ii) r = 29, α = 68.2°

(iii) Max 29 when x = 291.8°, 

min – 29 when x = 111.8°

(iv) x = 235.7° or 347.9°

12 (i) 34 cos(x + 30.96°)

(ii) x = 15.7° or 282.4°

(iii) x = 7.9° or 141.2° or 187.9° or 321.2°

13 (i) R = 10, α = 53.13°

(ii)

(iii) x = 119.55° or 346.71°

(iv) θ = 103.29° or 330.45°

14 (i) c = a2 + b2

(ii) tan α =

(iii) α = 36.87°

(iv) θ = 103.29° or 330.45°

15 (i)

(ii) a = 2, b = 1

(iii) R = 5

− 5 − 1 � f(x) � 5 − 1

16 (i) R = 10,    α = 18.43°

(ii) x = 90° or 306.9°

(iii) x = 90°, 233.1° or 306.9°

(iv) Part (iii) also contains solutions to 

–3 cos x = 1 – sin x

17 (ii) θ = −40.9°

(iii) 7 sin(θ + 40.9°), h = 7, θ = 30°

Investigation (Page 209)

The total current is 

I = A1 sin ωt + A2 sin(ωt + α)      (where ω = 2πf).

I = A1 sin ωt + A2 sin ωt cos α + A2 cos ωt sin α

= (A1 + A2 cos α)sin ωt + (A2 sin α)cos ωt

Let A1 + A2 cos α = P and A2 sin α = Q

so I = P sin ωt + Q cos ωt

= P2 + Q2 sin(ωt + ε)

where ε = arctan ( ).
This is a sine wave with the same frequency but a greater

amplitude. The phase angle ε is between 0 and α.

Exercise 8F (Page 209)

1 (i) sin 6θ

(ii) cos 6θ

(iii) 1

(iv) cos θ

(v) sin θ

(vi) sin 2θ

(vii) cos θ

(viii) –1

2 (i) 1 – sin 2x

(ii) cos 2x

(iii) (5 cos 2x – 1)

4 (i) 4.4°, 95.6°

(ii) 199.5°, 340.5°

(iii) , π–
2

–π––
6

1–
2

3–
2

Q–
P

2
–––

5

b–
a

10

6

y

–10

0 α 360° x
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(iv) –15.9°, 164.1°

(v) , , 

(vi) 20.8°, 122.3°

(vii) 76.0°, 135°

● (Page 211)

Because the formula Area of a sector = r2 θ assumes θ is

in radians.

●? (Page 212)

By the shape and symmetry of the graphs, in each case the

maximum percentage error will occur for θ = 0.1 radians.

y = sin θ: θ = 0.1 rad

true value = 0.099 833

approximate value = 0.1

% error = 0.167%

y = tan θ: θ = 0.1 rad

true value = 0.100 335

approximate value = 0.1

% error = 0.334%

y = cos θ: θ = 0.1 rad

true value = 0.995 004

approximate value = 0.995

% error = 0.000 419%

Activity 8.4 (Page 212)

cos θ – cos 2θ 1 – 1    0
(i) When θ = 0, ––––––––––– = –––– = – (undefined)

i2 0 0

(ii)

● (Page 214)

The formula sin(θ + z) = sin θ cosz + cos θ sinz. This is

used with θ = x and z = δx.

The small angle approximations for sin and cos.

Exercise 8G (Page 215)

1 (i) 2

(ii) 1 – 3θ –

(iii) 1 – 

(iv)

(v) –3θ

(vi) θ sin α + θ2 cos α

2 (i) 5θ

(ii) 5

3 (i)

(ii)

4 (i)

(ii) 2θ2

(iii)

5 (i) 8θ2

(ii) 4θ2

(iii) 2

6 (i)

(ii) 1 – θ + θ2

(iii) 0.03% and 0.13%

7 (i) 1 + θ

(ii) 1 + θ – θ2

(iii) 1 + θ since this has only used one 

approximation.

(iv) 1 + θ = 1.048 81, 1 + θ – θ2 = 1.048 75, true 

value 1.048 73.

Errors due to the double approximation appear 

to have cancelled out to some extent, rather 

than compounding.

1
8 (i) ––––––––

1 – θ2

(ii) 1 + θ2

(iii) 0.47 radians

(iv) It is a good appoximation since 0.47 rad ≈ 27°.

1–
2

1–
2

1–
8

1–
2

1–
8

1–
2

1–––––
1 + θ

3–––
4

3θ2
–––––

2

1–
8

θ2
––
2

1–
2

5θ2
–––

2

θ2
––
2

1–
2

5π––
6

π–
2

π–
6
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θ

0.20 1.475

0.18 1.480

0.16 1.484

0.14 1.488

0.12 1.491

0.10 1.494

0.08 1.496

0.06 1.498

0.04 1.499

0.02 1.500

cos θ – cos 2θ–––––––––––
θ2



9 (ii) �BAE = 90° – �OAB

10 (i) x = – or 

(ii) 2x

(iii) 2x + 1 – 2x2

(iv) x = –0.366 or 1.366

(v) The angles in (i) are not ‘small’.

2           2
11 (i) –––– – –––– ; k =

1 – x 2 – x

(iii) θ = ±0.2

12 (i) sin x cos(δx) + cos x sin(δx)

(ii) sin x + (δx)cos x – sin x

(iii) cos x – sin x

(iv) cos x

(v) Derivative of sin x

13 (i) θsin 2θ + cos 2θ + c

(ii) 1 – 6x + 24x2 – 80x3 for |x | �

(iii) a = 1, b = 6; 0.00515

14 (i) (a) –

(ii) (b) a = , b = –

Investigation (Page 218)

tan 89° = = ≈

⇒ tan 89° ≈

Activity 8.5 (Page 220)

General solution is θ = 2n π + arcsin c

or θ = (2n + 1)π – arcsinc

i.e. even multiples of π are followed by + arcsin c

odd multiples of π are followed by – arcsin c.

Now (–1)n = +1 when n is even and

(–1)n = –1 when n is odd

so θ = nπ + (–1)n arcsin c.

Chapter 9

●? (Page 225)

At points where the rate of change of gradient is greatest.

● (Page 233)

= cos θ, = sin θ

� ( )2 + ( )2 = cos2 θ + sin2 θ = 1

⇒ + = 1

Exercise 9A (Page 234)

1 (i) (a)

(b)

(c) y =

(ii) (a)

(b)

(c) A segment of y = ,

where –1 � x � 1 and 0 � y � 1

(iii) (a)

1 – x––––
2

x2
––
4

y2
––
b2

x2
––
a2

y
–
b

x–
a

y
–
b

x–
a

180–––
π

π–––
180

1–––π–––
180

1––––––
tan

1–––––
tan 1°

1––
16

1–
2

1–
2

1–
2

1–
4

1–
2

(δx)
–––

2

(δx)2
––––

2

3–
2

3π––
8

π–
8
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t –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x 4 2.25 1 0.25 0 0.25 1 2.25 4

y –8 –3.375 –1 –0.125 0 0.125 1 3.375 8

t –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x –4 –3 –2 –1 0 1 2 3 4

y 4 2.25 1 0.25 0 0.25 1 2.25 4

θ 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°

x 1 0.5 –0.5 –1 –0.5 0.5 1 0.5 –0.5 –1 –0.5 0.5 1

y 0 0.25 0.75 1 0.75 0.25 0 0.25 0.75 1 0.75 0.25 0



(b)

(c) y2 = x3

(iv) (a)

(b)

(c) Part of (y – 1)2 = 4x,

where 0 � x � 1 and –1 � y � 3

(v) (a)

(b)

(c) x2 – y2 = 4

(vi) (a)

(b)

(c) Part of y2 = (2 – x),

where 0 � x � 2 and –3 � y � 3

(vii) (a)

(b)

(c) y =

(viii) (a)

(b)

(c) y = x ± x

(ix) (a)

(b)

(c) y =
x––––––

1 – 2x

1

0

–1

–2

–3

1 2 3

–1

y

x

2x–––––
1 – x2

9–
2
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θ 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°

x 0 0.25 0.75 1 0.75 0.25 0 0.25 0.75 1 0.75 0.25 0

y 1 2 2.73 3 2.73 2 1 0 –0.73 –1 –0.73 0 1

θ 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°

x ∞ 4 2.3 2 2.3 4 ∞ –4 –2.3 –2 –2.3 –4 ∞

y ∞ 3.5 1.2 0 –1.2 –3.5 ∞ 3.5 1.2 0 –1.2 –3.5 ∞

θ 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°

x 0 0.5 1.5 2 1.5 0.5 0 0.5 1.5 2 1.5 0.5 0

y 3 2.6 1.5 0 –1.5 –2.6 –3 –2.6 –1.5 0 1.5 2.6 3

θ 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°

x 0 0.6 1.7 ∞ –1.7 –0.6 0 0.6 1.7 ∞ –1.7 –0.6 0

y 0 1.7 –1.7 0 1.7 –1.7 0 1.7 –1.7 0 1.7 –1.7 0

t –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x 4 2.25 1 0.25 0 0.25 1 2.25 4

y 6 3.75 2 0.75 0 –0.25 0 0.75 2

t –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x 2 3 ∞ –1 0 0.33 0.5 0.6 0.7

y –0.7 –0.6 –0.5 –0.33 0 1 ∞ –3 –2



2 (i) x2 + y2 = 25

(ii) x2 + y2 = 9

(iii) (x – 4)2 + (y – 1)2 = 9

(iv) (x + 1)2 + (y – 3)2 = 4

3 (i) (a)  xy = 1 (b) xy = 16 

(ii) The curve in (b) is an enlargement of the one 

in (a), centre the origin, s.f. 4.

4 (i)

(ii)

(iii) Because it should also state ‘for x � 0’

5 (i) y = –

(ii)

6 (i)

(ii) 240 m

(iii)

(iv) 36 m

7 (i)

(ii)

(iii) y = –2 (iv) x = (y + 2)2

x2
–––
80

x–
2

y

(–1, 3)

O x

(4, 1)

O
–2

y

x

4

3

–3

–3

3

y

xO

y

O x5–5

–5

5
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t –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x 4 2.25 1 0.25 0 0.25 1 2.25 4

y 16 5.0625 1 0.0625 0 0.0625 1 5.0625 16

t 0 1 2 3 4 5 6

x 0 40 80 120 160 200 240

y 0 25 40 45 40 25 0

t 0 1 2 3 4 5 6

x 0 39 76 111 144 175 204

y 0 25 40 45 40 25 0

t –4 –3 –2 –1 0 1 2 3 4

x 9 4 1 0 1 4 9 16 25

y –5 –4 –3 –2 –1 0 1 2 3



8 (i)

(ii) x � 0

(iii)

(iv) The graph oscillates infinitely many times from 

–1 to +1 for t � –2, i.e. where 0 � x � 0.14.

For t � 2 the graph oscillates infinitely many 

times from –1 to +1, but successive distances 

between a maximum and a minimum become 

increasingly large.

9 (i)

(ii)

(iii) Periodic

10 (i)

(ii)

When n = 0 the curve becomes the single 

point (a, a).

(iii) (a) The larger the value of n, the closer the 

curve is to the axes. If the power is even, the 

curve is only in the first quadrant.

(b) If the power is odd, the curve is in all four 

quadrants.

Investigations (Page 237)

Cutting out patterns

The shape of each piece when laid on its side is as shown

in the diagram.

The question is ‘What is the equation of the curve PAB?’

The arc BEC is of the equator of the ball and so has

length (r is the radius of the ball). 

PE is the arc from the (North) pole to the equator and so

has length .

The co-ordinates of a general point A on the arc PB are

given by 

x = rθ cos ( × ), y = rθ sin θ ( × )
with θ taking values between 0 (P) and (B).π–

2

sinθ–––
θ

π–
8

sinθ–––
θ

π–
8

πr––
2

πr––
4

1–
8

P

A B

E

C

a

a–a

–a

n = 2 (line)

n = 4
(1 arc)

n = 6
(1 arc)

n  = 5
(4 arcs)

n = 3 (4 arcs)

n = 1 (full circle)
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t –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x 0.14 0.22 0.37 0.61 1 1.65 2.72 4.48 7.39

y –0.91 –1.00 –0.84 –0.48 0 0.48 0.84 1.00 0.91

θ 0 π 2π 3π

x 0 0.2a 1.2a 3.1a 5.1a 6.1a 6.3a 6.5a 7.5a 9.4a

y 0 0.5a 1.5a 2a 1.5a 0.5a 0 0.5a 1.5a 2a

8π––
3

7π––
3

5π––
3

4π––
3

2π––
3

π–
3

θ 0 π 2π

x a 0.13a 0 –0.13a –a –0.13a 0 0.13a a

y 0 0.65a a 0.65a 0 –0.65a –a –0.65a 0

5π––
3

3π––
2

4π––
3

2π––
3

π–
2

π–
3

θ 4π 5π 6π

x 11.3a 12.4a 12.6a 12.7a 13.8a 15.7a 17.6a 18.7a 18.8a

y 1.5a 0.5a 0 0.5a 1.5a 2a 1.5a 0.5a 0

17π–––
3

16π–––
3

14π–––
3

13π–––
3

11π–––
3

10π–––
3



The apparent motion of planets

Here are some pointers to get you started on this

investgation.

For convenience, take the starting point as a time when

the planets are in line.

At a time d days later, Mercury has turned through 

4d° relative to the Sun, Earth through d° and Mars

through d°.

Taking the Sun as the origin, their positions are 

Mercury (6 cos4d, 6 sin4d)

Earth (15cos d, 15sin d)

Mars (23cos d, 23sin d).

So, relative to the Earth, the positions of the other two

planets are

Mercury (6 cos4d − 15cos d, 6 sin4d − 15sin d)

Mars (23cos d − 15 cos d, 23sin d − 15sin d).

Plot these on your graphic calculator, using parametric

mode. 

Exercise 9B (Page 242)

1 (i) t

(ii)

(iii)

(iv) – cot θ

(v)

(vi) –tanθ

(vii)

(viii)

2 (i) 6

(ii) y = 6x – 3

(iii) 3x + 18y – 19 3 = 0

3 (i) ( , 0)
(ii) 2

(iii) y = 2x –

(iv) (0, – )
4 (i) x – ty + at2 = 0

(ii) tx + y = at3 + 2at

(iii) (at2 + 2a, 0), (0, at3 + 2at)

6 (i) –

(ii) at2y + bx = 2abt

(iii) X(2at, 0), Y(0, )
(iv) Area = 2ab

7 (ii) y = tx – 2t2

(iii) [2(t1 + t2), 2t1t2]

(iv) x = 4

8 (i) t = 1

(iii) x + y = 3

(v) (–8, –5)

9 (i) t = –2

(iii) y = 2x – 6

(iv) (–5, 9)

10 (i) –

(ii) 3x cos t + 4y sin t = 12

(iii) t = 0.6435 + nπ

11 (i) x cosθ + y sinθ = 3sinθ + 3 cosθ + 2

(iii) 2.85, 5.01 radians

(iv)

12 (i) –

(ii) y cosθ – x sinθ = 5 cosθ – 2sinθ

13 (i) + = 1
y2
––
4

x2
––
9

cosθ–––––
sinθ

3cos t––––––
4 sin t

2b––
t

b––
at2

1–
2

1–
2

1–
4

(1 + t )2
–––––––
(1 – t)2

1–––
2et

t – 1––––
t + 1

2–
3

t2 + 1–––––
t2 – 1

1 + cos θ–––––––––
1 + sinθ

1–
2

1–
2

1–
2

1–
2

Mercury
Earth Mars

Sun

6 15 23

1–
2

Mercury Earth MarsSun
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(ii)

(iii) –

(v) θ = 1.57 or 5.64 (2 d.p.)

14 (i) (a) + = 1

(b) 20sin(θ + 0.9273)

(c) max. L = 20 when θ = 0.6435

(ii) (a) –

(b) –

(c) θ = 0.34

15 (i) t =

(ii) = ; = –

(iii) y =

16 (i)

(ii) = –

(iv) t = 0.253 or 2.889 (3 d.p.)

17 (i) x = 5cos(θ – 0.4636);  – 5� x � 5

(ii)

(iv) 3; 1

18 (i)

(ii) 0 and π

(iii) − cos 2t + sin2t + c

(iv)

19 (i) , , 

(ii) −1, 2, 1

(iii) R = 5, C = ( 5, )

(iv) ; −1

20 (i) , (π, 2)

(ii) 5 cos (α − 1.107); α = 2.214

(iii) 3π

21 (i) ( , 0), (0, 1), (0, −1)

(iii) −3t

22 (i) A(2, 0), θ = 0; B(0, 1), θ =

(ii) + y2 = 1

(iii) −

(iv) (−2 sinα, cosα),

Chapter 10

●? (Page 253)

You can either estimate it as a disc or as two cones.

●? (Page 254)

1 (i) A cylinder

(ii) A sphere

(iii) A torus

2

● (Page 257)

Follow the same procedure as that on page 255 but with

the solid sliced into horizontal rather than vertical discs.

Exercise 10A (Page 258)

1 For example: ball, top (as in top & whip), roll of

sellotape, pepper mill, bottle of wine/milk etc., 

tin of soup

7π––
3

sinα – cosα–––––––––––––––
2(sinα + cosα)

cosθ–––––––
2sinθ

x2
––
4

π–
2

1–
2

sinθ––––––––
1 – cosθ

2cos 2t––––––––––––
2cos t – sin t

4–
5

4–
5

1–––
5

2–––
5

π–
4

1–
4

t–
2

2

2

0 1 2 x

y

t =
π
2

t = 0
t = π

1–
2

cos2t––––––
sin t

dy
––
dx

y

xt = π t = 0
t = 3π

2

t = π
2

1––––
1 – t

1––––––
(1 + t)2

dx
––
dt

2t––––––––––––
(1 + t)2(1 – t)2

dy
––
dt

1 – x–––––
x

3cosθ–––––––
4sinθ

2–––––
cosθ

y2
––
9

x2
––
16

2cosθ–––––––
3sinθ

2

–2

–3 3

y

x

(6, 2)

O
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2 (i)

(ii)

(iii)

(iv)

8π

3 (i) A(–3, 4); B(3, 4)

(ii) 36π units3

4 (i) (ii)

(iii) 12π units3

5

(ii) 2 units2 (iv) 6.4π units3

6 (i)

(ii) 18 units2 (iii) x4 + 4x3 + 6x2 + 4x + 1

(iv)

7 (i)

7π

(ii)

234π

(iii)

18π

O x

y

y = x2 – 24

–2

O x

y

3

y = x – 3

–3

6

O x

y

y = 3x

3

6

992π––––
5

2–
3

O x

y

y = (x + 1)2

–1 2 31 4

2–
3

O x

y

y = (x – 2)2

4

–1 2 5

3

O x

y

4y = 3x

4

(4, 3)

O x

y

4

y = √x

56π–––
15

O x

y

y = x2 + 1

1

–1 1

56π–––
3

O 2 x

y

y = x + 2

2

104π––––
3

O 1 3 x

y
y = 2x
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8 (i)

(ii)

9 (i)

(ii) 45.9 litres  

10  (i)

(ii) ∫12

0
π(y + 4)dy

(iii) 3 litres

(iv) ∫10

0
π(y + 4)dy = 90π = of 120π

●? (Page 261)

Substitution using u = x2 – 1 needs 2x in the numerator.

Not a product, not suitable for integration by parts.

Exercise 10B (Page 264)

3x – 2
1 (i) ln ⎪–––––⎪ + c

1 – x

1 x – 1
(ii) –––– + ln ⎪––––––⎪ + c

1 – x 2x + 3

x – 1
(iii) ln⎪–––––––⎪ + c

x2 + 1

(x – 1)2

(iv) ln⎪–––––––⎪ + c
2x + 1

x 1
(v) ln⎪–––––⎪ – – + c

1 – x x

x + 1
(vi) ln⎪–––––⎪ + c

x + 3

x2 + 4
(vii) ln⎪–––––––⎪ + c

x + 2

2x + 1              1
(viii) ln⎪––––––⎪ + –––––––– + c

x + 2        2(2x + 1)

x 1             2
2 &– –––––– + ––––– , ln(––––)x2 + 4 x – 3       6

1     2         4
3 –– – – + –––––

x2 x 2x + 1

2              1
4 (i) (a) ––––– + ––––

1 – 2x 1 + x

(b) ln( ) = 0.318 45

(ii) (a) 3 + 3x + 9x2 +…

(b) 0.318 00       

(c) 0.14%

5 (i) A = 1, B = 3, C = –2

(ii) 2 + ln( ) = 5.73

6 (i) xe2x – e2x + c

9π – 2(ii) –––––
24

(iii) A = 8, C = 1

2        (x + 1)
7 (i) ––––– – ––––––

1 + 2x 1 + x2

(ii) |x | �

(iii) 0.078

8 (i) B = 1, C = 16

(ii) ln 2

x4
(iii) 8 + 5x + 2x2 + –– for |x | � 1

2

1          1
9 (i) 2 + –––– – ––––

u – 1 u + 1

33––
2

1–
2

1–
4

1–
2

125–––
3

11––
8

1–
2

3–
4

O x

y

y = x2 – 412

–4

–2 2

R

y

x

62.5

10 25

10 y = 10 (base)

1408π–––––
3

2000π–––––
3
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●? (Page 266)

You will return to these integals in Activity 10.1.

Activity 10.1 (Page 267)

(i) This is a quotient. The derivative of the function on

the bottom is not related to the function on the top,

so you cannot use substitution. However, as the

function on the bottom can be factorised, you can put

it into partial fractions. 

x – 5 2 1∫–––––––––– dx = ∫––––– dx – ∫––––– dx
x2 + 2x – 3 (x + 3) (x – 1)

= 2 ln |x + 3 | – ln |x – 1 | + c

(ii) The derivative of the function on the bottom line is 

2x + 2, which is twice the function on the top line. So

the integral is of the form

f´(x)
k∫ –––– dx = k ln | f(x) | + c.

f(x)

This integral can also be found using partial

fractions, but using logarithms is quicker.

x + 1 2x + 2∫––––––––– dx = ∫––––––––– dx
x2 + 2x – 3 x2 + 2x – 3

= ln |x2 + 2x – 3 | + c

(iii) This is a product of x and ex. There is no relationship

between one function and the derivative of the other,

so you cannot use substitution. As one of the

functions is x , you can use integration by parts.

∫xex dx = xex – ∫ex dx

= xex – ex + c

(iv) This is also a product, this time of x and ex 2. ex 2 is a

function of x2, and 2x is the derivative of x2, so you

can use the substitution u = x2.

∫xex 2 dx = ∫ eu du where u = x2

= eu + c

= ex 2 + c

(v) In this case the numerator is the differential of the

denominator and so the integral is the natural

logarithm of the modulus of the denominator.

2x + cos x∫––––––––– dx
x2 + sin x

Since (x2 + sin x) = 2x + cos x the integral is 

ln | x2 + sin x | + c.

(vi) This is a product: sin2 x is a function of sin x , and 

cos x is the derivative of sin x , so you can use the 

substitution u = sin x.

∫cos x sin2 x dx = ∫u2 du where u = sin x

= u3 + c

= sin3 x + c

Exercise 10C (Page 268)

1 (i) sin(3x – l) + c

–1
(ii) ––––––––– + c

(x2 + x – 1) 

(iii) –e1–x + c

(iv) sin2x + c

(v) x ln 2x – x + c

–1
(vi) –––––––– + c

4(x2 – 1)2

(vii) (2x – 3) + c

x – 1          1
(viii) ln ⎪––––⎪ – ––––+ c

x + 2 x – 1

(ix) x4 ln x – x4 + c

x – 3
(x) ln ⎪––––– ⎪ + c

2x – 1

(xi) ex 2+2x + c

(xii) –ln(sin x + cos x) + c

(xiii) – x2 cos 2x + x sin 2x + cos 2x + c

(xiv) – cos 2x + cos3 2x + c

2 (i)

(ii) ln 4

(iii) 48 + 8 ln 4 2

(iv) – � 0.0774

(v) ln 2 –

3

4 (2 2 – 1)

5 0.24

6 π – 1–
4

1–
8

1–
3

4–
3

7–
9

8–
3

5––––
6   2

2––
3

1–
3

8–
3

1–
6

1–
2

1–
4

1–
2

1–
2

1–
2

1––
16

1–
4

3–
21–

3

1–
2

1–
3

1–
3

1–
3

d––
dx

1–
2

1–
2

1–
2

1–
2

1–
2
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7 (i) – xe–2x – e–2x + c

(ii) 0.112

8 (i) – cos(2x – 3) + c

(ii) e4 +

(iii) ln | x2 – 9 | + c

9 (i)

(ii) –&

10 , – 

●? (Page 269)

There are any number of functions that cannot be

integrated algebraically, for example fractions involving

different sorts of elements, like .

By contrast, all functions of x can be differentiated with

respect to x, usually using the standard rules. However

for the differentiation to be valid, their curves must be

smooth. Some functions, like and | x – 4 |

can be differentiated apart from at certain points, in these

cases x = 2 and 5 and x = 4 respectively.

●? (Page 270)

(i) (a) Underestimate

(b) Yes, would improve

(ii) (a) Cannot tell

(b) Cannot tell because of the point of inflection in

the graph

(iii) (a) Overestimate

(b) Yes, would improve

Activity 10.2 (Page 270)

1

2 It is clearly going to be 0.2… and the next digit will

probably be 9. After that nothing can be said.

●? (Page 271)

You may be able to judge the sign of the error, that is

whether the answer is an overestimate or an 

underestimate. You can say nothing about the size of 

the error.

Activity 10.3 (Page 271)

1 0.298 498 931

2

The greater the number of strips, the more accurate the

answer. The error is approximately proportional to h2.

Since the value of h halves each time, the error is one

quarter of its previous value. 

● (Page 272)

Line 1 uses the fact that the error is proportional to h2.

Line 2 follows from subtraction.

Line 3 follows from dividing by (h1
2 – h2

2).

Line 4 is a rearrangement of the second statement in line 1. 

In line 5, k is substituted in line 4.

Exercise 10D (Page 273)

1 (i)

(ii) 2.179 218, 2.145 242, 2.136 756, 2.134 635

(iii) 2.13

y

x

1––––––––––
(x – 2)(x – 5)

x3 + cos x–––––––
x4 +ex

3–––
4e2

1–
4

1–
4

3–––
4e2

1–
4

38––
9

1–
2

1–
4

3–
4

1–
2

1–
4

1–
2
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n h Approximation 
to I

1 4 0.454 054 054  

2 2 0.344 674 085  

4 1 0.310 798 581  

8 0.5 0.301 630 068  

16 0.25 0.299 285 378  

n h Approximation ε
to I

1 4 0.454 054 054 0.155 555 123 0.0097  

2 2 0.344 674 085  0.046 175 154 0.0115 

4 1 0.310 798 581  0.012 299 650 0.0123  

8 0.5 0.301 630 068  0.003 131 137 0.0125

16 0.25 0.299 285 378  0.000 786 447 0.0126

ε
––
h2



2 (i)

(ii) 0.458 658, 0.575 532, 0.618 518, 0.634 173, 

0.639 825

(iii) 0.64

3 (i)

(ii) (a) 3

(b) 3.1

(c) 3.131 176

(d) 3.138 988

(iii) 3.14 (This actually converges to π.)

4 (i) 2, 2, 4, 4

(ii)

(iii) 4

5 0.34

Investigation (Page 273)

(i)

(ii) 0.469 115, 0.508 270

(iii) 0.521 321

0

y

x2ππ

y = e–xsinx0.3

1

0

–1

y

x2ππ

y = sinx

0

1

y = e–x

y

x

0 1 2

y

x
0.5 1.5

1

2

3

0 1 2

y

x
0.5 1.5

1

2

3

0 1 2

y

x

1

2

3

0 1 2

y

x

1

2

3

y

x

2

4

1
0

y

x

1

0 1
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Chapter 11

●? (Page 275)

To find the distance between the two vapour trails you

need two pieces of information for each of them: either

two points that it goes through, or else one point and its

direction. All of these need to be in three dimensions.

However, if you want to find the closest approach of the

two aircraft you also need to know, for each of them, the

time at which it was at a given point on its trail and the

speed at which it was travelling. (This answer assumes

constant speeds and directions.)

Exercise 11A (Page 281)

1 (i) 3i + 2j

(ii) 5i – 4j

(iii) 3i

(iv) –3i – j

(v) 2j

2 (i)

( 13, 56.3°)

(ii)

( 13, –33.7°)

(iii)

(4 2, –135°)

(iv)

( 5, 116.6°)

(v)

(5, –53.1°)

3 (i)

3.54i + 3.54j

(ii)

–8.66i – 5j

(iii)

4j

(iv)

8i

(v)

–2.83i – 2.83j

4 (i) 2i – 2j

(ii) 2i

(iii) –4j

(iv) 4j

(v) –i + j

(vi) i – j

(vii) 8i

(viii) –8i

(ix) 2i – 4j

(x) 4i + 4j
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5 (i) A: 2i + 3j, C: –2i + j

(ii) AB
→

= –2i + j, CB
→

= 2i + 3j

(iii) (a) AB
→

= OC
→

(b) CB
→

= OA
→

(iv) A parallelogram

Exercise 11B (Page 287)

6
1 (i) (  )8

1
(ii) (  )1

0
(iii) (  )0

8
(iv) (  )–1

(v) –3j

2 (i) 2i + 3j

(ii) i

(iii) j

(iv) 3i + 2j

(v) 0

3 (i) (a) b

(b) a + b

(c) –a + b

(ii) (a) (a + b)

(b) (–a + b)

(iii) PQRS is any parallelogram and 

PM
→

= PR
→

, QM
→

= QS
→

4 (i) (a) i

(b) 2i

(c) i – j

(d) –i – 2j

(ii) |AB
→

| = |BC
→

| = 2, |AD
→

| = |CD
→

| = 5

5 (i) –p + q, p – q, – p, – q

(ii) NM
→

= BC
→

, NL
→

= AC
→

, ML
→

= AB
→

2–––
13

6 (i) (  )3–––
13

(ii) i + j

–1–––
2

(ii) (  )–1–––
2

(iv) i – j

(v) i

–1–––
5

(vi) (  )2–––
5

–1–––
5

(vii) (  )2–––
5

1–––
5

(viii) (  )2–––
5

cos α
(ix) ( )sin α

cos β
(x) ( )sin β

● (Page 291)

OP
→ 

= OA
→

+ λ (OB
→

– OA
→ 

)

= (1 – λ) OA
→

+ λOB
→

Activity 11.1 (Page 291)

–2       0        2      3     3 4        8
(ii) ( ), (   ), ( ), (  ), ( ), ( ), ( )–9     –5    –1     1      2       3      11

(iv) 0, 1, , 

(v) (a) It lies between A and B.

(b) It lies beyond B.

(c) It lies beyond A.

3–
4

1–
2

1–
2

12––
13

5––
13

4–
5

3–
5

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2
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Activity 11.2 (Page 294)

(i) and (iv) are the same since (a) putting λ = –1 in (i) gives

( 1
–3) (b) (1

2) is parallel to (3
6).

(iii) is parallel to (i) since the direction vector is the same.

(iv) is parallel to (ii) since (–1
2) = –( 1

–2).

Exercise 11C (Page 297)

1 (i) (a) 2i + 8j

(b) 68

(c) 3i + 7j

(ii) (a) –4i – 3j

(b) 5

(c) 2i + 1.5j

(iii) (a) 6i + 8j

(b) 10

(c) i + 3j

(iv) (a) 6i – 8j

(b) 10

(c) 0

(v) (a) 5i + 12j

(b) 13

(c) –7.5i – 2j

2 Note: These answers are not unique.

2        1
(i) r = ( )+ λ( )1        2

3        –1
(ii) r = ( ) + λ( )5          1

–6       1
(iii) r = ( )+ λ( )–6       1

5          1
(iv) r = ( ) + λ( )3          1

2
(v) r = λ( )1

–1
(vi) r = λ( )4

–1
(vii) r = λ( )4

3        –1
(viii) r = (    ) + λ(  )–12 4

3 (i) y = 3x – 1

(ii) y = x + l

(iii) y = x – 1

(iv) y = x – 1

(v) y = 5 (x may take any value)

4 Note: These answers are not unique.

0           1
(i) r = ( ) + λ( )3         2

0           1
(ii) r = ( ) + λ( )–4          1

0           2
(iii) r = ( ) + λ( )–1          1

–4
(iv) r = m( )1

0          –2
(v) r = ( ) + m( )4            1

45 (i) ( )1

5(ii) ( )5

12(iii) (  )17

–5(iv) ( )6

6(v) ( )3

6 (i) 12.8 km

(ii) 20 km h–1, 5 km h–1

(iii) After 40 minutes there is a collision.

7 (i) OL
→

= (10
4.5); OM

⎯→
= (7

3.5); ON
⎯→

= (4
1)

1        2                        7          0
(ii) AL: r = ( ) + m( );    BM: r = ( )+ n( );

0        1                        2         1

13           3
CN: r = (  ) + o( )7           2

1–
2–2 0 2 4 6 8 x

–2

2

4

6

8

y

(iii) (v)(ii)

(i), (iv)
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(iii) (a) (7, 3)

(b) (7, 3)

(iv) The lines AL, BM and CN are concurrent. (They

are the medians of the triangle, and this result

holds for the medians of any triangle.)

● (Page 299)

The cosine rule 

Pythagoras’ theorem

● (Page 301)

a1 b1( ) · ( ) = a1b1 + a2b2a2 b2

b1 a1( ) · ( ) = b1a1 + b2a2b2 a2

These are the same because ordinary multiplication is

commutative.

Exercise 11D (Page 302)

1 (i) 42.3°

(ii) 90°

(iii) 18.4°

(iv) 31.0°

(v) 90°

(vi) 180°

1         2
2 (i) r = ( ) + λ( )0         1

6         1
(ii) r = ( ) + μ( )1         2

7
(iii) ( )3

(iv) 36.9°

3 (i) Parallelogram: AB || CD, BC || DA

(ii) A(5, 2); B(1, 1); C(2, 4); D(6, 5)

(iii) 57.5°, 122.5°

3     –1
4 (i) ( ), (  )1      3

(ii) BA
→

. BC
→

= 0

(iii) |AB
→

| = |BC
→

| = 10

(iv) (2, 5)

5 (i) PQ
→

= –4i + 2j; RQ
→

= 4i + 8j

(ii) 26.6°

(iii) 3i + 7j

(iv) 53.1°

● (Page 304)

The length of a vector

The vector a1i + a2j + a3k is shown in the diagram.

Start with the vector OQ
⎯→

= a1i + a2j.

Length = a1
2 + a1

2

Now look at the triangle OQP.

OP2 = OQ2 + QP2

= (a1
2 + a2

2) + a3
2

⇒ OP = a1
2 + a2

2 + a3
2

P

QO

a3

a2
1+ a2

2

O

x

y

Qa2

a1

O

P

Q

a3

a1

a2

z

y

x
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● (Page 304)

The angle between two vectors

Consider the triangle OAB with angle AOB = θ, as shown

in the diagram.

OA2 + OB2 – AB2
cos θ = –––––––––––––––

2 × OA × OB

OA2 = a1
2 + a2

2 + a3
2, OB2 = b 1

2 + b 2
2 + b 3

2,

AB2 = (b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2

2(a1b1 + a2b2 + a3b3)
⇒ cos θ = –––––––––––––––––

2 | a | | b |

a . b
= ––––––

| a | | b |

Exercise 11E (Page 311)

Note: Many of these answers are not unique.

2          3
1 (i) r = ( 4 ) + m(6)–1            4

1           1
(ii) r = ( 0 ) + m(0)–1           0

1            5
(iii) r = (0) + m( 3)4         –6

0           2
(iv) r = (0 ) + m(1)1           3

1
(v) r = m( 2)3

x – 2 y – 4 z + 1
2 (i) –––– = –––– = ––––

3          6           4

y z + 1
(ii) x – 1 = – = ––––

3        4

z – 4
(iii) x – 3 = –––– and y = 0

2

x z – 1
(iv) – = –––– and y = 4

2        4

(v) x = –2 and z = 3

3         5
3 (i) r = (–2) + λ( 3)1         4

–6          6
(ii) r = ( 0) + λ(2)–4          3

0          1
(iii) r = ( 0) + λ(2)–1          3

1
(iv) r = λ(1)1

2          0
(v) r = (0) + λ(1)0          1

4 (i) 29.0°

(ii) 76.2°

(iii) 162.0°

5 (i) 53.6°

(ii) 81.8°

(iii) 8.7°

6 (i) (0, 4, 3)

–5
(ii) ( 4 ), 50

3

5         –5
(iii) r = ( 0 ) + λ( 4)0           3

3
(iv) ( 1), 63.4°

(v) Spider is then at P(2.5, 2, 1.5) and OP
→

.AG
→

= 0, 

|OP
→

| = 3.54

7 (i) A(4, 0, 0), F(4, 0, 3)

(ii) 114.1°, 109.5°

(iii) They touch but are not perpendicular.

–0.25
8 (i) ( 0 )0

(ii) (0, 0.05, 1.1)

0         1
(iii) DE: r = (0) + λ(0)1         0

0.25         0
EF: r = (0 ) + λ( 1)1             2

9 (i) (1, 0.5, 0)

(ii) 41.8°

(iii) 027°

(iv) (2, 2.5, 2)

(v) t = 2, 5 km

3–
4

3–
4

θO

b

a

b – a = (b1 – a1)i +
(b2 – a2) j + (b3 – a3)k

A

B
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●? (Page 315)

A three-legged stool is the more stable. Three points, such

as the ends of the legs, define a plane but a fourth will

not, in general, be in the same plane. So the ends of the

legs of a three-legged stool lie in a plane but those of a

four-legged stool need not. The four-legged stool will rest

on three legs but could rock on to a different three.

●? (Page 317)

(i) 90° with all lines.

(ii) No, so long as the pencil remains perpendicular to 

the table.

Activity 11.3 (Page 322)

Repeat the work in Example 11.22 replacing (7, 5, 3) by

(α, β, γ), so 7 by α, 5 by β and 3 by γ; and (3, 2, 1) by 

(n1, n2, n3) and 6 by –d.

Exercise 11F (Page 322)

–2                1
1 (i) AB

→
= (–2); AC

→
= (–2)–6              –1

0          –2            1
(ii) r = (1) + λ(–2) + μ(–2)1          –6          –1

5
(iv) The vector ( 4) is perpendicular to the plane ABC.

–3

2               5
2 (i) LM

→
= ( 2); LN

→
= ( 2)–2              –1

(iii) x – 4y – 3z = –2

3 (iii) The plane is parallel to the yz plane and passes

through (3, 0, 0).

4 (iii) B

5 (iii) Three points define a plane.

(iv) (1, 0, –1) 

6 (i) (0, 1, 3)

(ii) (1, 1, 1)

(iii) (8, 4, 2)

(iv) (0, 0, 0)

(v) (11, 19, –10)

2          1
7 (i) (a) r = (2) + λ(–1)3            2

(b) (1, 3, 1)

(c) 6

2          2
(ii) (a) r = (3) + λ(5)0          3

(b) (1, 0.5, –1.5)

(c) 3.08

3          1
(iii) (a) r = (1) + λ(0)3          0

(b) (0, 1, 3)

(c) 3

2            3
(iv) (a) r = (1) + λ(–4)0            1

(b) (2, 1, 0): A is in the plane

(c) 0

1
(v) (a) r = m(1)1

(b) (2, 2, 2)

(c) 12

8 (i) x + 2y + 3z = 25

(ii) 206 = 150 + 56

(iii) W is in the plane; UW
→

. UV
→

= 0

13            3
9 (i) r = ( 5) + λ( 1)0         –2

(ii) (4, 2, 6)

(iii) 11.2

–1                  8
10 (ii) AB

→
= ( 2); AC

→
= (–4 ); in both cases the scalar 

1                 1
product = 0

(iii) 132.9°

(iv) 8.08

11 (i) (a) 5

(b) 89

(ii) 62.2°

(iii) 20.9

(iv) (4, 6, –3)
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2         –1                      –2          1
12 (i) PQ: r = ( 2) + λ( 2 );    XY: r = (–2) + μ(2)4            2                      –3          3

(iii) Yes

(iv) Yes, (1, 4, 6)

4          2
13 (i) r = (1) + λ(3)3          5

(ii) (0, –5, –7)

(iii) Q: (3, –1, 4)      A1: (2, –3, 5)

(iv) Both 78.5° (3 s.f.)

2
14 (ii) (–1)3

(iii) (10, –5, 15)

5                          5          1 
(iv) OA: r = λ(–12);    AB: r = (–12) + μ(5)16                         16          1
(v) 69°

8            2
15 (i) r = ( 0) + λ( 1)–4          –1

(ii) (2, –3, –1)

(iii) 150

(iv) 3 : 2

(v) 8.48° (2 d.p.)

2            4
16 (i) r = ( 0) + λ( 3)15         –2

–1 + 4λ
(ii) ( 1 + 3λ ), (6, 3, 13)

14 – 2λ

(iii) 13

(iv) 1 : 2

2
17 (i) (–3)4

3             2
(ii) r = (–8 ) + λ(–3);    (–1, –2, 4)

12             4

(iii) (0, –3.5, 6)

(iv) 15.6° (1 d.p.)

18 (i) r = (2i + 3j + 5k) + λ(3i + j – 2k)

(ii) λ = 1; (5, 4, 3)

(iii) (9.5, 5.5, 0)

(iv) (6.5, 4.5, 2); 1.87 (3 s.f.)

(v) i + 2j = 3k; 38.2° (1 d.p.)

19 (i) 2x – 3y + 7z = –5

(ii) r = (130i – 40j + 20k) + λ(8i – 4j + k)

(iii) 10i + 20j + 5k

(iv) 135 m

a
20 (i) (b)1

2                    3
(ii) AB

→
= (–3);  AC

→
= (–5)0                    1

(iii) 2a – 3b = 0;    3a – 5b + 1 = 0

(iv) 3x + 2y + z = 6

(v) 36.7° (1 d.p.)

(vi) (3 , –3 , 2 )

21 (i) AB
→

= 14i + 2j + 5k;    AD
→

= –5i + 10j + 10k;
(13, 14, 18)

(iii) λ = , μ = . It contains the origin.

(iv) 2x + 11y – 10z = 0

22 (i) (6, 4.5, 3)

(iii) x – 2z = 0

0                     1
(iv) AOBC: ( 2);  DOBE: ( 0);  41.9° (1 d.p.); 138.1°

–3                    –2
2 1

23 (i) r = (3) + λ( 1 )5           –0.5
(ii) (12, 13, 0)

(iii) 109.5° (1 d.p.)

(iv) 25 m
2 −1

24 (i) r = (−1) + t ( 1); (4, −3, −1)
3              2 

(ii) 5x + 2y + z – 15 = 0

(iv) 21°

25 (i) (3, 1, 0)

(ii) 63.4°
1           1

(iv) r = (1) + λ(2)1           2

(v) ( , , ) or ( , – , – )
26 (i) 26

(iii) x + 4y + z = 12

(iv) r = (i + j – 2k) + λ(i + 4j + k); (1.5, 3, −1.5)

(v) 65.4°

1–
3

1–
3

1–
3

7–
3

7–
3

5–
3

2––
15

1–
3

1–
3

2–
3

2–
3
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−1 −3
27 (i) (−1) ; (−1) ; 36.3°

−3 −2

(ii) x – y + 2z = 2

3 1
(iii) r = (1) + λ (–1); (2, 2, 1), 6

3 2

28 (ii) λ = , μ = − ; They are coplanar.

(iii) x – y + z = 4

(iv) 79.1°

29 (i) 37 m

(ii) 12x – y + 6z = 6

(iii) 126.2°, 53.8°

(iv) (1.30, 3.25, 0)

30 (i) A(–50, –50, 0); B(50, –50, 0); C(50, 50, 0); 
D(–50, 50, 0); E(0, 0, 100)

(ii) ECD: 2y + z = 100; EDA: –2x + z = 100; 
EAB: –2y + z = 100

0        2
(iii) r = ( 0) + λ(0), 35.8 m

20        1

Investigation (Page 332)

You should see two interlocking hoops.

The two points should be at (−1.6, 2.4) and (3.2, 2.4).

Chapter 12

Exercise 12A (Page 339)

1 is the rate of change of velocity with respect to

time, i.e. the acceleration. 

The differential equation tells you that the

acceleration is proportional to the square of 

the velocity.   

ds    k
2 –– = –– 

dt      s2

dh
3 –– = k ln(H – h)

dt

dm k
4 ––– = –– 

dt       m

dP
5 –– = k P

dt

de
6 –– = kθ

dθ

dθ (θ – 15)
7 –– = – ––––––

dt 160

dN      N
8 ––– = ––      

dt 20

do 4
9 –– = ––––

dt o

dA 2k π k´
10 ––– = ––––– = ––––

dt A A

dθ s
11 –– = – –

ds 4

dh 1
12 –– = – ––––

dt 8πh2

dV 2V
13 ––– = – ––––––

dt 1125π

dh (2 – k h)
14 –– = ––––––––

dt 100

Investigation (Page 341)

H is about (70° N, 35° W) and L is about (62° N, 5° W)

so they are separated by 30° in longitude at a mean

latitude of 66°. Reference to the scale shows this to be

about 900 nautical miles.

The mean level is 996 and the amplitude 39 so a model is 

p = 996 + 39 cos( ) and

= sin( )
or      = −a sin bx with a = 0.136 and b = 0.0035.

●? (Page 343)

ln | y | + c1 = x2 + c2 can be rewritten as 

ln | y | = x2 + (c2 – c1).1–
2

1–
2

dp
––
dx

πx
–––
900

−39π
––––
900

dp
––
dx

πx
–––
900

1035

996

957

900
nautical miles

is
ob

ar
s

dv
––
dt

1–
2

1–
2
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Exercise 12B (Page 344)

1 (i) y = x3 + c

(ii) y = sin x + c

(iii) y = ex + c

(iv) y = x + c

2
2 (i) y = – ––––––

(x2 + c)

(ii) y2 = x3 + c

(iii) y = Aex

(iv) y = ln |ex + c |

(v) y = Ax

(vi) y = ( x2 + c)2

1
(vii) y = – ––––––––

(sin x + c)

(viii) y2 = A(x2 + 1) – 1

(ix) y = –ln(c – x2)

(x) y3 = x2 ln x – x2 + c

Exercise 12C (Page 348)

1 (i) y = x3 – x – 4

(ii) y = ex3/3

(iii) y = ln( x2 + 1)

1
(iv) y = –––––

(2 – x)

(v) y = e(x2–1)/2 – 1

(vi) y = sec x

2 (i) θ = 20 – Ae–2t

(ii) θ = 20 – 15e–2t

(iii) t = 1.01 hours

3 (i) N = Aet

(ii) N = 10et

(iii) N tends to ∞, which would never be realised

because of the combined effects of food

shortage,  predators and human controls.

4 = ; s = 4t + c

1            1
5 (i) –– + ––––––

3y 3(3 – y)
y Ay

(ii) ln⎪––––⎪ + c or ln⎪––––⎪3 – y 3 – y

3x3
(iii) y = ––––––

(4 + x3)

6 y = 2 + e–kt

7 (i) N = 1500e0.0347t = 1500 × 2t /20

(ii) N = 24 000

(iii) 11 hours 42 minutes

1         1
8 (ii) –––– – ––––

x – 1 x + 1

(x + 1)
(iii) y = –––––– e3–x

2(x – 1)

dx (2 – 3x)
10 –– = ––––––, x = (2 – 2e–3t/100),

dt 100

time taken = 40.8 seconds

11 (i) P = 600ekt

(iii) P = 600e(0.005t – 0.4sin(0.02t)) ; very good fit

(iv) 549

dr    k
12 (i) –– = ––

dt     r2

(ii) k = 5000;  141 m (3 s.f.)

dr            k1(iii) –– = –––––––; k1 = 10 000
dt      r2(2 + t)

(iv) 104 m (3 s.f.)

1                1
13 (i) –––––– + ––––––

3(2 – x)    3(1 + x)

(ii)

(iv) 1.18 hours (2 d.p.)

(v) 0.728 kg

14 (i) 2xsin 2x + cos 2x + c

(iii) y2 = 4x2 + 4xsin 2x + 2 cos 2x + 1

1–
3

1–
3

1–
3

1–
3

2
–
s

ds
––
dt

1–
2

1–
3

3–
4

3–
2

1–
2

1–
4

2–
3

3–
22–

3

1–
3
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15 (i) y2 = 4x

dy 1
(ii) –– = –

dx     t

(iv) y2 = –2x2 + c ; y2 + 2x2 = 4

(v)

3         1
16 (i) ––––––– – –

(3x – 1) x

(iii) t = 1.967 (3 d.p.)

(iv) 500 and 3550

17 (ii) cot x ; ln(sin x) + c

(iii) y = 0.185 (3 s.f.); minimum

18 (i) b = 25, a = 0.2

(ii) (a) 20

(b) 60, ln 2

(iii) f(t) = cos t, c = 1000

sin θ − 2 cos θ
19 (ii) ––––––––––––

2 sin θ + cos θ

(iii) + y = − + 2x; a circle with centre (2, −1),

radius 5

(iv) 5 cos(θ + arctan )

20 (i) (a) 0.215

(b) It predicts that P → ∞.

(ii) (a) +

(c)

(d) Population → 2 million.

21 (i) –

(iii) 1 – + ; 1 + x – – + + 

22 (i) (a) = ks, h = ks2

(b)

(c) Unrealistic as wave height increases 

without limit, ever faster

(ii) (a) = , h = k ln( )
(b)

(c) More realistic but still no limit to wave 

height

(iii) (a) = ke–cs, h = A(1 – e–cs)

(b)

(c) The most realistic

Investigation (Page 357)

Using the assumptions in Exercise 12A, question 7: the

rate of cooling is proportional to the temperature of the

tea above the surrounding air. The initial temperature is

95°C and the cooling rate is 0.5°Cs−1. So

θ = 15 + 80e−t/160.

Adding 10% milk at 5°C gives

θ = 15 + 71e−t/160.

The final temperature is lower if the milk is added at

the end.

dh
––
ds

s + 5
––––

5
k

––––
s + 5

dh
––
ds

1–
2

dh
––
ds

3x5
––

8
3x4
––

8
x3
––
2

x2
––
2

3x4
––

8
x2
––
2

x–––––
1 + x2

1––––
1 + x

t–
2

t–
22e–––––

1 + e 

2––––
2 – P

2–
P

1–
2

x2
––
2

y2
––
2

1–
2

y

x–√2 √20

2

–2
C (parabola)

D
(ellipse)
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absolute error  164
acceleration  337
addition of

algebraic fractions  167
sine and cosine functions  197
vectors  283

algebraic form of inverse
functions  42

algebraic fractions
addition of  167
division of  166
equivalent  167
in equations  169
multiplication of  166
partial  173
proper  174
simplification of  166
subtraction of  167

amplitude  183
angle

between directions  309
between lines  310
between vectors  299, 304

approximations
linear  180
quadratic  161, 162, 180
using small angles  210

base of logarithms  10
binomial

coefficients  157
expansion  157, 160, 161
theorem  157, 160
validity of expansion  157, 163

cartesian equation
of a line  294, 305
of a plane  316, 319

chain rule for differentiation  63
change of sign methods  136
circle, parametric equation of

231
cobweb diagram  146
co-domain

of a function  38
of a mapping  19

common factor  166 
comparing coefficients  26, 33
completing the square  26 
components of a vector  276
composite functions

definition  36
differentiation of  64

compound-angle formulae  187
conjecture  3, 6, 9
co-ordinate geometry using

vectors
three-dimensional  303
two-dimensional  289 

counter-example  6
curve sketching  60

decimal search  137
denominator  166
differential equations

definition of  336
first-order  336 
formation of  336
general solution  342
particular solution  344
second-order  336
solving  341

differentiation 
from first principles  214
of a function of a function  63
of composite functions  63
of exponentials  82
of functions defined implicitly

96
of functions defined

parametrically  238
of inverse functions  77
of natural logarithms  82
of trigonometrical functions

91
using the chain rule  63
using the product rule  68
using the quotient rule  71
with respect to different

variables  65
direction 

of a line  293

of a vector  275
of the perpendicular to a

plane  318
disproving a conjecture  6
distance of a point from a plane

321
divisibility  4
division of algebraic fractions

166
domain

of a function  38
of a mapping  19
restricted  41, 45

dot product  300
double-angle formulae  192

eliminating parameters  227
ellipse, parametric equation of

232
equal vectors  279
equating coefficients  175
equation(s)

differential  336
involving algebraic fractions

169
of a line (cartesian)  294, 305
of a line (vector)  291
of a plane (cartesian)  316,

319
of a plane (vector)  315, 318
parametric  224

equivalent fractions  167
error

absolute  164
relative  164

error bounds  140
even function  49
exponential

decay  13
differentiation  82
functions  12
graphs  12
growth  12, 
integration  110
series  122

413

Index



factor formulae  197
factorising

in algebra  166
in trigonometry  197

first-order differential equations
336

fixed point iteration  143
forming differential equations

336
formulae

compound-angle  187
double-angle  192
factor  197
r, α 201

fractions
addition of  167
algebraic  166
division of  166
equivalent  167
multiplication of  166
partial  173
simplifying  166
subtraction of  167

functions
co-domain  38
composite  36
definition of  21
domain  38
even  49
exponential  12
implicit    96
inverse  39
inverse trigonometrical  45  
language of  19
modulus  56
odd  50
of a function  36
order of  37
periodic  52
rational  166
reciprocal trigonometrical  46,

184

general binomial expansion  157
general quadratic curve  32
general integration  266
general solutions

differential equations  342
trigonometrical equations

218
graphs

of exponential functions  12

of inverse functions  41
of logarithmic functions  11
of parametric functions  226
of quadratic functions  32

half-life  14

identity  185, 187, 220
image of a mapping  19
implicit functions,

differentiation of  96  
improper algebraic fractions

174
inequalities using modulus  58
input of a mapping 19
integration

by change of variable  104
by parts  125, 131
by substitution  104
changing the limits of  104
choosing an appropriate

method for  266
general  266
involving natural logarithms

111
numerical  8, 270
of exponential functions  110
of trigonometrical functions

123
to find volumes  254
using partial fractions  261
using substitution  103
using trigonometrical

identities  220
intersection

of a line and a plane  320
of two lines  295

interval
bisection  137
estimation  136
notation  136

inverse functions
algebraic form of  42
definition of  39
differentiation of  77
graphs of  41
reflection property of  41
trigonometrical  45

length of a vector  275, 304
line segment  280
line symmetry  49

linear approximation  180
linear interpolation  138
location  293
logarithmic

function  10, 11
integrals 111

logarithms
base of natural  10
differentiation of  82
graphs of  11
integration involving  111

lowest common multiple  167

magnitude  57
magnitude–direction form  276
magnitude of a vector  275
mapping(s)

co-domain  19
domain  19
image  19
input  19
many-to-many  20
many-to-one  20
mathematical  20
object  19
one-to-many  20
one-to-one  20
output  19
range  19

modulus function  56
modulus of a vector  277
multiplication

of a vector by a scalar  282
of fractions  166
of two vectors  300

natural logarithms  8
negative of a vector  283
Newton–Raphson method  150
numerator  166
numerical integration  8, 270
numerical solution of equations

135

object of a mapping  19
odd function  50
one-way stretches  25
order of functions  37
output of a mapping  19

parabola, parametric equation
of  233414



parameter
definition of  225
elimination of  227
trigonometrical  230

parametric
co-ordinates  225
differentiation  238
equations  224
graphs  226

partial fractions
definition  173
in integration  261
types of  174, 176, 177
with the binomial expansion

179
particular solution of

differential equations  344
period of a function  52
periodic functions  52
perpendicular to a plane  318
perpendicular vectors  301
polar form  276
position vector  279
principal value  41
product rule for differentiation

68
proof

by contradiction  4
by direct argument  2
by exhaustion  3

proper algebraic fractions  174
Pythagorean identity  185

quadratic
approximation  161, 162, 180
curve  32

quotient rule for differentiation
71

r, α formulae  201
range of a mapping  19
rate

of change  335, 336
of convergence  139

rational
expression  166
function  166

rearrangement x = g(x)  143
reciprocal trigonometrical

functions  46, 184

rectangular hyperbola,
parametric equation of  233  

reflection
in the x axis  31
in the y axis  31
property of inverse functions

41
relative error  164
resultant vector  284 
roots of equations  135
rotation

about the x axis  254
about the y axis 257

rotational symmetry  49
rules for differentiation

chain rule  63
product rule  68
quotient rule  71

scalar  275
scalar product  300
scale factor of a stretch  25
second-order differential

equation  336
self-inverse  48
separation of variables  342
simplifying fractions  166
skew lines  310
small-angle approximations

210
solution bounds  140
solving differential equations

341
staircase diagram  146
stationary points  

for implicit functions  98
for parametric functions  241

subtraction
of algebraic fractions  167
of vectors  284

symmetry
line  49
rotational  49

three dimensions  303
transformations

for curve sketching  25
order of  26

translations  25
trapezium rule  8, 269

trigonometrical
equations, general solutions

218
identities  185, 187, 220
parametric equations  230
reciprocal functions  46, 184

types of partial fractions  174,
176, 177

unit vectors  276, 287

validity of the binomial
expansion  157, 163

vector(s)
addition of  283
angle between  299, 304
component form of  276
components of  276
definition of  275
direction  275
dot product of  300
equal  279
equation of a line  291
equation of a plane  315, 318
geometry  275
joining two points  290
length of a  275, 304
magnitude of a  275
magnitude–direction form of

276
modulus of a  277
multiplication by a scalar  282
negative of a  283
perpendicular  301
polar form of a  276
position  279
resultant  284
scalar product of  300
subtraction of  284
three dimensional  303
two dimensional  289
unit  276, 287

velocity  337
volumes

by integration  254
of revolution  255

wavelength  183
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